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P R E F A C E
There are many things of which a wise

man might wish to be ignorant.
—Ralph Waldo Emerson

This book comes from the trenches. Well, it actually 
comes from deep within the software factory, but some-
times there isn’t too much difference. This book is for 
programmers who care about what they’re doing. If you 
don’t, then shut the book now and put it neatly back 
on the bookshelf.

What’s In It for Me?

Programming is your passion. It’s sad, but it’s true. As a hardcore techie, you 
practically program in your sleep. Now you’re in the heart of the Real World, 
deep in the industry, doing what you could never imagine: being paid to play 
with computers. The truth is, you’d have paid someone for the privilege.

But this is an odd place, not what you were expecting at all. Surprised by 
the incursion of unrealistic deadlines and bad management (if management 
is what they call it), of shifting requirements and a legacy of awful code, you’re 
left wondering if this is really it. The world is conspiring to prevent you from 
writing the code you always dreamed of. Welcome to life in the software 
factory. You’re on the front line of a tough battle to create pieces of artistic 
mastery and scientific genius. Good luck.
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That’s where Code Craft comes in. This book is about what no one has 
taught you yet: how to program, properly, in the Real World. Code Craft picks 
up where the textbooks left off. Sure, it’s about the technicalities and intri-
cacies of good code. But it’s also about something more than that: How to 
write the right code, in the right way.

What does that mean? Writing good programs in the Real World means 
many things:

Crafting technically elegant code

Creating maintainable code that others can interpret

Understanding and adapting other people’s messy code

Working well alongside other programmers

You need all of these skills (and more) to be a crack coder. You must 
understand the secret life of code: What happens to it after you type it. You 
must have a sense of aesthetics: distinguishing beautiful code from ugly code. 
And you must have a head for the practicalities: to work out when shortcuts 
are justified, when to labor on the code design, and when to give up and move 
on (the pragmatic quit when you’re ahead principle). This book will help you to 
achieve these goals. You’ll learn how to survive the software factory, how to 
survey the battlefield and understand your enemy, how to work out tactics to 
avoid enemy traps, and how to produce truly excellent programs, despite it all.

Software development is an interesting profession. It’s fast moving, full 
of fleeting vogues and transient fashions, get-rich schemes and peddlers of 
new ideologies. It’s not mature. I’m not claiming to have any magic answers 
here, but I do have some practical, useful advice to impart. There’s no ivory 
tower theory—just Real World experience and good practice.

By the time you’ve digested this stuff, you won’t just be a better program-
mer. You will be a better inhabitant of the software factory. A real code warrior. 
You’ll have learned code craft. If that doesn’t sound exciting, then perhaps 
you should consider a career in the military.

Getting Better

So what sets good programmers apart from bad ones? More importantly, what 
sets exceptional programmers apart from merely adequate ones? The secret 
doesn’t lie solely in technical competence—I’ve seen intellectual programmers 
who can write intense and impressive C++, who know their language standard 
by heart, but who write the most awful code. I’ve seen more humble pro-
grammers who stick to very simple code, but write the most elegant and 
well-thought-out programs.

What’s the real difference? Good programming stems from your attitude. It 
lies in knowing the professional approach and always wanting to write the best 
software you can, despite the pressures of the software factory. Attitudes are the 
lenses through which we view things. They color our work and our actions. 
Good code needs to be carefully crafted by master artisans, not thoughtlessly 
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hacked by sloppy programmers. The code to hell is paved with good intentions.
To become exceptional programmers, we must learn to rise above intentions, 
foster positive perspectives, and develop these healthy attitudes.

In this book, we’ll see how to do this. I cover a lot of ground, from 
the lowest hands-on code-writing issues to larger organizational concerns. 
Through all of these themes, I highlight what our correct attitude and 
approach should be.

Who Should Read This Book?

Obviously, the people who should read this book are those who want to 
improve the quality of their code. We should all aspire to be better pro-
grammers; if you don’t have that aspiration, then this book isn’t for you. 
You might be a professional programmer, perhaps a few years into your 
employment. You might be an advanced student, familiar with programming 
concepts but unsure about how best to apply them. This book is also a useful 
aid if you are being mentored or are mentoring a trainee.

You must have programming experience. This book won’t teach you 
how to program; it will teach you how to program better. While I’ve tried to 
avoid language bias and dogma, I need to show code examples. Most of 

A T T I T U D E S — A N  A N G L E  O F  A P P R O A C H

The more I’ve investigated and cataloged the world of software development, the 
more I’ve become convinced that it is specific attitudes that distinguish exceptional 
programmers. The dictionary definition of the word attitude looks something like this:

attitude (at.ti.tude)

1. A state of mind or a feeling; a disposition.

2. The position of an aircraft relative to a frame of reference.

That first definition isn’t exactly surprising, but what’s the second one about? 
It’s actually more revealing than the first.

There are three imaginary lines of axis running through an aircraft; one from 
wing to wing, one from nose to tail, and one running vertically where the other two 
cross. A pilot positions his aircraft around these axes; they define the aircraft’s angle 
of approach. This is known as the attitude of the aircraft. If you apply a little power to 
the aircraft while it has the wrong attitude, it will end up missing the target massively. 
A pilot has to constantly monitor his vehicle’s attitude, especially at critical times like 
takeoff and landing.

At the risk of sounding like a cheesy motivational video, this closely parallels our 
software development work. The plane’s attitude defines its angle of approach, and 
our attitude defines our angle of approach to the coding task. It doesn’t matter how 
technically competent a programmer is, if his or her abilities aren’t tempered by 
healthy attitudes, the work will suffer.

A wrong attitude can make or break a software project, so it’s vital that we main-
tain the right angle of approach to programming. Your attitude will either hinder or 
promote your personal growth. To become better programmers, we need to ensure 
we have the right attitudes.
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these are written in C, C++, or Java, since they are in the family of popular 
contemporary languages. None of them require great language expertise to 
read, so don’t panic if you’re not a world-class C++ programmer.

The assumption here is that you are—or will be—writing code in the heat 
of the software factory. This often means employment in a commercial devel-
opment organization, but it could be working on a chaotic open source 
development project, or becoming a hired gun (a contractor) providing 
software for a third party.

What’s Covered?

This book addresses programmer attitudes, but it’s not some kind of psychology 
textbook. We’ll investigate many topics, including:

Source code presentation

Defensive coding techniques

How to debug programs effectively

Good teamworking skills

Managing your source code

Take a quick glance through the table of contents to see exactly what’s 
covered. What is the rationale behind my selection of topics? I’ve been mentor-
ing trainee programmers for many years, and these are the topics that have 
come up time and time again. I’ve also worked in the software factory for 
long enough to have seen the recurring problems—I address these too.

If you can conquer all of these programming demons, you’ll progress 
from an apprentice coder to a real code craftsman.

How This Book is Organized

I’ve tried to make this book as easy to read as possible. Conventional wisdom 
says you should start at the beginning and work to the end. Forget that. You 
can pick up this book, open it to a chapter that interests you, and start there. 
Each chapter stands on its own, with helpful cross referencing so you can see 
how they all fit together. Of course, if you enjoy being conventional, the 
beginning is as good a place to start as any.

Each chapter is similarly structured; you won’t find any nasty surprises. 
They are split into these sections:

In This Chapter
At the very beginning, I list the highlights of the chapter. You’ll get a few 
lines of content overview. Go on, skim through them all now to see what 
ground we’ll cover.

The chapter
All the riveting stuff that you paid good money to read.
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Dotted throughout the chapter are key concepts. These emphasize the 
important tips, issues, and attitudes, so watch out for them. They look 
like this:

KEY CONCEPT This is important. Pay attention!

In a Nutshell
At the end of each chapter, this little section wraps up the discussion. It 
provides a bird’s eye view of the material. If you’re really pushed for time, 
you could just read the key concepts and these concluding sections. Just 
don’t tell anyone I said that.

Afterwards, I contrast a good programmer’s approach with that of a 
bad programmer to summarize the important attitudes you should aim 
to develop. If you’re feeling brave, you can rate yourself against these 
examples; hopefully the truth won’t hurt too much!

See Also
This list points you at the related chapters and explains how they tie in 
to the topic at hand.

Get Thinking
Finally, there are some questions to consider. These haven’t just been 
included to fluff out the book—they are an integral part of each chapter. 
They don’t ask for a banal rehashing of the material you just read, but 
are intended to make you think, and to think beyond the contents of the 
chapter. The questions are split into two groups:

Mull it Over These questions investigate the chapter’s topic in 
depth and raise some important issues.

Getting Personal These questions probe the working practices and 
coding maturity of you and your software development team.

Don’t skip these questions! Even if you’re too lazy to sit down and 
seriously think about each answer (believe me, you’ll gain a lot from 
doing so), at least read the questions and consider them in passing.

The final part of this book contains answers and discussion for each of 
these questions. It’s not a straight answer set—few of the questions have a 
definite yes or no response. Once you’ve thought about them, compare your 
answers with mine. Many of my “answers” contain extra information that isn’t 
covered in the main chapter.

The Chapters—a Closer Look

Each chapter covers a single topic, a specific problem area in modern soft-
ware development. These are the common reasons people write bad code or 
write code badly. Each chapter describes the correct approaches and attitudes, 
which will make life on the front line more bearable.
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The chapters are split into six parts; the contents page for each lists the 
chapters in the part with a short description of the material contained in 
each. These parts work from the inside, outwards. We’ll start off looking at 
what code we write and end up looking at how we write it.

Our investigations begin at the codeface, focusing on the micro level of 
writing source code. I’ve deliberately put this first; cutting code is what 
programmers really care about:

Part I: At the Codeface
In this part we look at the nuts and bolts of developing source code. We’ll 
investigate defensive programming techniques and how to format and 
lay out code. Then we’ll move on to look at naming and documenting 
our code. Comment-writing conventions and error-handling techniques 
are also covered.

Part II: The Secret Life of Code
Next we’ll take a look at the process of writing code; how we create it 
and work with it. We’ll look at construction tools, testing methods, 
debugging techniques, the correct processes for building executables, 
and optimization. Finally, we’ll consider how to write secure programs.

Part III: The Shape of Code
Then we’ll look at the wider issues of source code construction. We’ll 
discuss the development of a code design, software architecture, and 
how source code grows (or decays) over time.

We then move to the macro level, when we lift up our heads and see 
what’s going on around us—life in the software factory. We can’t write large-
scale software without being part of a development team, and the next three 
parts contain tricks and techniques for getting the best out of these teams:

Part IV: A Herd of Programmers?
Few programmers exist in a vacuum. (It requires special breathing 
equipment.) In this part we’ll move into the wider world with a look at 
good development practices and how they fit into a professional pro-
grammer’s daily routine. Good personal and team programming skills 
and the use of revision control systems are covered here.

Part V: Part of the Process
Here we’ll look at some of the rites and rituals of the software develop-
ment process: writing specifications, performing code reviews, and the 
black art of timescale estimation.

Part VI: From the Top
The final part provides a higher level look at the development process, 
investigating software development methodologies, and the different 
programming disciplines.
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How to Use This Book

Work from the front cover to the back, or pick it up in the places that interest 
you—it doesn’t matter.

What does matter is that you read Code Craft with an open mind, and 
think about how to apply what you read to what you do. A wise man learns from 
his mistakes; a wiser man learns from the mistakes of others. It’s always good to 
learn from others’ experiences, so look at this material, and then ask the 
opinion of a programmer you respect. Look over the questions and discuss 
them together.

As you learn code craft, I hope you enjoy yourself. When you have 
finished, look back and see how much more of the craft you appreciate, how 
your skills have grown, and how your attitudes have improved. If nothing has 
changed, then this book has failed. I’m sure it won’t.

A Note to Mentors

This book is a great tool for mentoring less experienced programmers. It 
has been specifically designed with this in mind, and has proven to increase 
programmer maturity and insight.

The best approach to this material is not to methodically work through 
each section together. Instead, read a chapter separately, and then get 
together with your trainee to discuss the contents. The questions really work 
as a springboard for discussion, so it’s a good idea to start there.





A C K N O W L E D G M E N T S
There is always something for which to be thankful.

—Charles Dickens

This book was written over a period of several years. 
They say good things come to those who wait. In that time 
countless people have helped along the way . . .

No one deserves more thanks, and indeed sympathy, than my wife 
Bryony who has put up with me and this project over its long gestation 
period. Phillipians 1v3.

My good friend, excellent programmer, and illustrator extraordinaire, 
David Brookes, took my awful monkey cartoons with lame jokes and turned 
them into things of beauty. Thanks Dave! The lame jokes are still my fault.

Many people have read early drafts of this material in one form or 
another. Specific thanks are due to ACCU (www.accu.org) which has been 
a fertile proving ground for my writing skills. Thanks to the cthree.org geeks 
Andy Burrows, Andrew Bennet, and Chris Reed who gave valuable feedback, 
to Steve Love, and to the #ant.org geeks. Jon Jagger provided well balanced 
technical review and lent his own war stories and battle scars, which have 
improved the book considerably.

Most of this book is born from my experience and frustration with the 
poor state of software development in the Real World, and a desire to help 
people improve. “Thanks” are therefore also due to the various dysfunctional 



xxxvi Acknowledgments

companies I’ve worked in, and the awful programmers I’ve encountered 
there, who have provided me with almost a lifetime’s worth of things to 
moan about! I never really realized how lucky I was.

Finally, thanks to all the guys at No Starch Press who have taken my 
painful XML formatted manuscript and turned it into a really great book. 
Thanks for your faith in the project, and for going the extra mile.



A B O U T  T H E  A U T H O R

Pete Goodliffe is an expert software developer who never stays at the same 
place in the software food chain; he’s worked in numerous languages on 
diverse projects. He also has extensive experience in teaching and mentor-
ing programmers, and writes the regular “Professionalism in Programming” 
column for ACCU’s C Vu magazine (www.accu.org). Pete enjoys writing 
excellent, bug-free code so he can spend more time having fun with his kids.





PART I
A T  T H E  C O D E F A C E

Programmers write programs. It doesn’t take a 
genius to figure that one out. But there is a more 
subtle distinction: Only good programmers habitually 
write good code. Bad programmers . . . don’t. They 
create messes that take more effort to fix than they 
did to write.

Which would you rather be?
Code craft starts at the codeface; it’s where we love to be. We program-

mers are never happier than when immersed in an editor, bashing out line 
after line of perfectly formed and well-executed source code. We’d be quite 
happy if the world around us disappeared in a puff of boolean logic. Sadly, 
the Real World isn’t going anywhere—and it doesn’t seem willing to keep 
itself to itself.

Around your carefully crafted code, the world is in a chaotic state of 
change. Almost every software project is characterized by flux: changing 
requirements, changing budgets, changing deadlines, changing priorities, 
and changing teams. These all conspire to make writing good code a very 
difficult job. Welcome to the Real World.
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Good programmers naturally write neat code when left to their own 
devices. But they also have an array of battle tactics to help write robust 
code on the front line. They know how to defend themselves against the 
harsh realities of the software factory and write code that can survive the 
whirlwinds of change.

That’s what we’re looking at here. This first section delves into the 
painfully practical, gory details of code construction, the nuts and bolts of 
writing source code statements. You’ll learn strategies to keep yourself afloat 
on the turbulent software development ocean and will be challenged to 
improve your code-writing skills.

These chapters focus on the following issues:

Chapter 1: On the Defensive
Defensive programming: How to write robust code when the world is 
conspiring against you.

Chapter 2: The Best Laid Plans
Good presentation: why it’s important and how to present code well.

Chapter 3: What’s in a Name?
Choosing clear names for the parts of your program.

Chapter 4: The Write Stuff
Self-documenting code. Practical strategies to explain code when you 
can’t write a whole novel.

Chapter 5: A Passing Comment
Effective techniques for writing the most appropriate code comments.

Chapter 6: To Err Is Human
Handling errors: How to manage operations that might go wrong, and 
what to do when they do.

These form the path to sound code in an unsound world; they are solid 
code-writing techniques that should become second nature. If you don’t 
write clear, understandable, defensive, easily testable, easily maintainable 
software, then you’ll be distracted by tedious code-related problems when 
you should be preparing for what the software factory will throw at you next.



O N  T H E
D E F E N S I V E

Defensive Programming Techniques
for Robust Code

1

In this chapter:

What is defensive programming?

Strategies for safer code

Constraints and assertions

We have to distrust each other. It’s our only defense 
against betrayal.

—Tennessee Williams

When my daughter was 10 months old, she liked 
playing with wooden bricks. Well, she liked playing 
with wooden bricks and me. I’d build a tower as 
high as I could, and then with a gentle nudge of 
the bottom brick, she’d topple the whole thing and 
let out a little whoop of delight. I didn’t build these 
towers for their strength—it would have been point-
less if I did. If I had really wanted a sturdy tower, 
then I’d have built it in a very different way. I’d 
have shorn up a foundation and started with a wide 
base, rather than just quickly stacking blocks upon 
each other and building as high as possible.

Too many programmers write their code like 
flimsy towers of bricks; a gentle unexpected prod 
to the base, and the whole thing falls over. Code 
builds up in layers, and we need to use techniques 
that ensure that each layer is sound so that we can 
build upon it.
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Toward Good Code

There is a huge difference between code that seems to work, correct code, and 
good code. M.A. Jackson wrote, “The beginning of wisdom for a software 
engineer is to recognize the difference between getting a program to work, 
and getting it right .” (Jackson 75) There is a difference:

It is easy to write code that works most of the time. You feed it the usual 
set of inputs; it gives the usual set of outputs. But give it something sur-
prising, and it might just fall over.

Correct code won’t fall over. For all possible sets of input, the output will 
be correct. But usually the set of all possible inputs is ridiculously large 
and hard to test.

However, not all correct code is good code—the logic may be hard to 
follow, the code may be contrived, and it may be practically impossible 
to maintain.

By these definitions, good code is what we should aim for. It is robust, 
efficient enough and, of course, correct. Industrial strength code will not 
crash or produce incorrect results when given unusual inputs. It will also 
satisfy all other requirements, including thread safety, timing constraints, 
and re-entrancy.

It’s one thing to write this good code in the comfort of your own home, a 
carefully controlled environment. It’s an entirely different prospect to do so in 
the heat of the software factory, where the world is changing around you, the 
codebase is rapidly evolving, and you’re constantly being faced with grotesque 
legacy code—archaic programs written by code monkeys that are now long 
gone. Try writing good code when the world is conspiring to stop you!

In this torturous environment, how do you ensure that your code is 
industrial strength? Defensive programming helps.

While there are many ways to construct code (object-oriented approaches, 
component based models, structured design, Extreme Programming, etc.), 
defensive programming is an approach that can be applied universally. It’s 
not so much a formal methodology as an informal set of basic guidelines. 
Defensive programming is not a magical cure-all, but a practical way to 
prevent a pile of potential coding problems.

Assume the Worst

When you write code, it’s all too easy to make a set of assumptions about how 
it should run, how it will be called, what the valid inputs are, and so on. You 
won’t even realize that you’ve assumed anything, because it all seems obvious 
to you. You’ll spend months happily crafting code, as these assumptions fade 
and distort in your mind.

Or you might pick up some old code to make a vital last-minute fix when 
the product’s going out the door in 10 minutes. With only enough time for 
a brief glance at its structure, you’ll make assumptions about how the code 
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works. There’s no time to perform full literary criticism, and until you get a 
chance to prove the code is actually doing what you think it’s doing, assump-
tions are all you have.

Assumptions cause us to write flawed software. It’s easy to assume:

The function won’t ever be called like that. I will always be passed valid 
parameters only.

This piece of code will always work; it will never generate an error.

No one will ever try to access this variable if I document it For internal 
use only.

When we program defensively, we shouldn’t make any assumptions. We 
should never assume that it can’t happen. We should never assume that the 
world works as we’d expect it to work.

Experience tells us that the only thing you can be certain about is this: 
Your code will somehow, someday, go wrong. Someone will do a dumb thing. 
Murphy’s Law puts it this way: “If it can be used incorrectly, it will.” Listen to 
that man—he spoke from experience.1 Defensive programming prevents 
these accidents by foreseeing them, or at least fore-guessing them—figuring 
out what might go wrong at each stage in the code, and guarding against it.

Is this paranoid? Perhaps. But it doesn’t hurt to be a little paranoid. In 
fact, it makes a lot of sense. As your code evolves, you will forget the original 
set of assumptions you made (and real code does evolve—see Chapter 15). 
Other programmers won’t have any knowledge of the assumptions in your 
head, or else they will just make their own invalid assumptions about what 
your code can do. Software evolution exposes weaknesses, and code growth 
hides original simple assumptions. A little paranoia at the outset can make 
code a lot more robust in the long run.

KEY CONCEPT Assume nothing. Unwritten assumptions continually cause faults, particularly as 
code grows.

Add to this the fact that things neither you nor your users have any 
control over can go wrong: Disks fill up, networks fail, and computers crash. 
Bad things happen. Remember, it’s never actually your program that fails—
the software always does what you told it to. The actual algorithms, or 
perhaps the client code, are what introduce faults into the system.

As you write more code, and as you work through it faster and faster, the 
likelihood of making mistakes grows and grows. Without adequate time to 
verify each assumption, you can’t write robust code. Unfortunately, on the 
programming front line, there’s rarely any opportunity to slow down, take 
stock, and linger over a piece of code. The world is just moving too fast, and 
programmers need to keep up. Therefore, we should grasp every opportunity 
to reduce errors, and defensive practices are one of our main weapons.

1 Edward Murphy Jr. was a US Air Force engineer. He coined this infamous law after discovering 
a technician had systematically connected a whole row of devices upside down. Symmetric con-
nectors permitted this avoidable mistake; afterward, he chose a different connector design.
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What Is Defensive Programming?
As the name suggests, defensive programming is careful, guarded program-
ming. To construct reliable software, we design every component in the 
system so that it protects itself as much as possible. We smash unwritten 
assumptions by explicitly checking for them in the code. This is an attempt 
to prevent, or at least observe, when our code is called in a way that will 
exhibit incorrect behavior.

Defensive programming enables us to detect minor problems early on, 
rather than get bitten by them later when they’ve escalated into major 
disasters. All too often, you’ll see “professional” developers rush out code 
without thinking. The story goes something like this:

They are continually tripped up by the incorrect assumptions that they 
never took the time to validate. Hardly a promotion for modern day software 
engineering, but it’s happening all the time. Defensive programming helps 
us to write correct software from the start and move away from the code-it,
try-it, code-it, try-it . . . cycle. With defensive programming, the story looks 
more like this:

Okay, defensive programming won’t remove program failures altogether. 
But problems will become less of a hassle and easier to fix. Defensive program-
mers catch falling snowflakes rather than get buried under an avalanche of 
errors.

Defensive programming is a method of prevention, rather than a form 
of cure. Compare this to debugging—the act of removing bugs after they’ve 
bitten. Debugging is all about finding a cure.

Tinker with the code Run it Crash!

Tinker with the code Run it Crash!

Tinker with the code Run it Crash!

TestCode It works!
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Is defensive programming really worth the hassle? There are arguments 
for and against:

The case against
Defensive programming consumes resources, both yours and the 
computer’s.

It eats into the efficiency of your code; even a little extra code 
requires a little extra execution. For a single function or class, this 
might not matter, but when you have a system made up of 100,000 
functions, you may have more of a problem.

Each defensive practice requires some extra work. Why should you 
follow any of them? You have enough to do already, right? Just make 
sure people use your code correctly. If they don’t, then any problems 
are their own fault.

The case for
The counterargument is compelling.

Defensive programming saves you literally hours of debugging and 
lets you do more fun stuff instead. Remember Murphy: If your code 
can be used incorrectly, it will be.

Working code that runs properly, but ever-so-slightly slower, is far
superior to code that works most of the time but occasionally col-
lapses in a shower of brightly colored sparks.

W H A T  D E F E N S I V E  P R O G R A M M I N G  I S N ’ T

There are a few common misconceptions about defensive programming. Defensive 
programming is not:

Error checking 
If there are error conditions that might arise in your code, you should be checking 
for them anyway. This is not defensive code. It’s just plain good practice—a part 
of writing correct code.

Testing
Testing your code is not defensive. It’s another normal part of our development 
work. Test harnesses aren’t defensive; they can prove the code is correct now, but 
won’t prove that it will stand up to future modification. Even with the best test suite 
in the world, anyone can make a change and slip it past untested.

Debugging 
You might add some defensive code during a spell of debugging, but debugging 
is something you do after your program has failed. Defensive programming is 
something you do to prevent your program from failing in the first place (or to 
detect failures early before they manifest in incomprehensible ways, demanding 
all-night debugging sessions).
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We can design some defensive code to be physically removed in 
release builds, circumventing the performance issue. The majority of 
the items we’ll consider here don’t have any significant overhead, 
anyway.

Defensive programming avoids a large number of security prob-
lems—a serious issue in modern software development. More on 
this follows.

As the market demands software that’s built faster and cheaper, we need 
to focus on techniques that deliver results. Don’t skip the bit of extra work up 
front that will prevent a whole world of pain and delay later.

The Big, Bad World

Someone once said, “Never ascribe to malice that which is adequately 
explained by stupidity.”2 Most of the time we are defending against stupidity, 
against invalid and unchecked assumptions. However there are malicious 
users, and they will try to bend and break your code to suit their vicious 
purposes.

Defensive programming helps with program security, guarding against 
this kind of willful misuse. Crackers and virus writers routinely exploit sloppy 
code to gain control of an application and then weave whatever wicked 
schemes they desire. This is a serious threat in the modern world of software 
development; it has huge implications in terms of the loss of productivity, 
money, and privacy.

Software abusers range from the opportunistic user exploiting a small 
program quirk to the hard-core cracker who spends his time deliberately 
trying to gain illicit access to your systems. Too many unwitting programmers 
leave gaping holes for these people to walk through. With the rise of the 
networked computer, the consequences of sloppiness become more and 
more significant.

Many large development corporations are finally waking up to this threat 
and are beginning to take the problem seriously, investing time and resources 
into serious defensive code work. In reality, it’s hard to graft in defenses after
an attack. We look at software security in more detail in Chapter 12.

Techniques for Defensive Programming

Enough of the background. What does all this mean to programmers work-
ing in the software factory?

There are a number of common sense rules under the defensive pro-
gramming umbrella. People usually think of assertions when they think of 
defensive programming, and rightly so. We’ll talk about those later. But 
there’s also a pile of simple programming habits that will immeasurably 
improve the safety of your code.

2 Some historians attribute this quote to Napoleon Bonaparte. Now there’s a guy who knew 
something about defense.
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Despite seeming common sense, these rules are often ignored—hence 
the low standard of most software at large in the world. Tighter security and 
reliable development can be achieved surprisingly easily, as long as pro-
grammers are alert and well informed.

The next few pages list the rules of defensive programming. We’ll start 
off by painting with broad strokes, looking at high-level defensive techniques, 
processes, and procedures. As we progress, we’ll fill in finer detail, looking 
more deeply at individual code statements. Some of these defensive tech-
niques are language specific. This is natural—you have to put on bulletproof 
shoes if your language lets you shoot yourself in the foot.

As you read this list, evaluate yourself. How many of these rules do you 
currently follow? Which ones will you now adopt?

Employ a Good Coding Style and Sound Design

We can prevent most coding mistakes by adopting a good coding style. This 
naturally dovetails with the other chapters in this section. Simple things like 
choosing meaningful variable names and using parentheses judiciously can 
increase clarity and reduce the likelihood of faults slipping past unnoticed.

Similarly, considering the larger-scale design before ploughing into 
the code is key. “The best documentation of a computer program is a clean 
structure.” (Kernighan Plaugher 78) Starting off with a set of clear APIs to 
implement, a logical system structure, and well-defined component roles 
and responsibilities will avoid headaches further down the line.

Don’t Code in a Hurry
It’s all too common to see hit-and-run programming. Programmers quickly 
hack out a function, shove it through the compiler to check syntax, run it 
once to see if it works, and then move on to the next task. This approach is 
fraught with peril.

Instead, think about each line as you write it. What errors could arise? 
Have you considered every logical twist that might occur? Slow, methodical 
programming seems mundane—but it really does cut down on the number 
of faults introduced.

KEY CONCEPT More haste, less speed. Always think carefully about what you’re typing as you type it.

A particular C-family gotcha that snares speedy programmers is 
mistyping == as just =. The former is a test for equality; the latter a variable 
assignment. With an unhelpful compiler (or with warnings switched off) 
there will be no indication that the program behavior is not what was 
intended.

Always do all of the tasks involved in completing a code section before 
rushing on. For example, if you decide to write the main flow first and the 
error checking/handling second, you must be sure you have the discipline to 
do both. Be very wary of deferring the error checking and moving straight on 
to the main flow of three more code sections. Your intention to return later 
may be sincere, but later can easily become much later, by which time you 
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will have forgotten much of the context, making it take longer and be more 
of a chore. (And of course, by then there will be some artificially urgent 
deadline.)

Discipline is a habit that needs to be learned and reinforced. Every time 
you don’t do the right thing now, you become more likely to continue not 
doing the right thing in the future. Do it now; don’t leave it for a rainy day in 
the Sahara. Doing it later actually requires more discipline than doing it now!

Trust No One
Your mother told you never to talk to strangers. Unfortunately, good software 
development requires even more cynicism and less faith in human nature. 
Even well-intentioned code users could cause problems in your program; 
being defensive means you can’t trust anybody.

You might suffer problems because of:

Genuine users accidentally giving bogus input or operating the program 
incorrectly.

Malicious users trying to consciously provoke bad program behavior.

Client code calling your function with the wrong parameters or supply-
ing inconsistent input.

The operating environment failing to provide adequate service to the 
program.

External libraries behaving badly and failing to honor interface con-
tracts that you rely on.

You might even make a silly coding mistake in one function or forget 
how some three-year-old code is supposed to work and then use it badly. 
Don’t assume that all will go well or that all code will operate correctly. Put 
safety checks in place throughout your work. Constantly watch for weak 
spots, and guard against them with extra-defensive code.

KEY CONCEPT Trust no one. Absolutely anyone—including yourself—can introduce flaws into your 
program logic. Treat all inputs and all results with suspicion until you can prove that 
they are valid.

Write Code for Clarity, Not Brevity
Whenever you can choose between concise (but potentially confusing) code 
and clear (but potentially tedious) code, use code that reads as intended, 
even if it’s less elegant. For example, split complex arithmetic operations 
into a series of separate statements to make the logic clearer.

Think about who might read your code. It might require maintenance 
work by a junior coder, and if he can’t understand the logic, then he’s bound 
to make mistakes. Complicated constructs or unusual language tricks might 
prove your encyclopedic knowledge of operator precedence, but it really 
butchers code maintainability. Keep it simple.
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If it can’t be maintained, your code is not safe. In really extreme cases, 
overly complex expressions can cause the compiler to generate incorrect 
code—many compiler optimization errors come to light this way.

KEY CONCEPT Simplicity is a virtue. Never make code more complex than necessary.

Don’t Let Anyone Tinker with Stuff They Shouldn’t
Things that are internal should stay on the inside. Things that are private 
should be kept under lock and key. Don’t display your code’s dirty laundry 
in public. No matter how politely you ask, people will fiddle with your data 
when you’re not looking if given half a chance, and they will try to call 
“implementation-only” routines for their own reasons. Don’t let them.

In object-oriented languages, prevent access to internal class data by 
making it private. In C++, consider the Cheshire cat/pimpl idiom. 
(Meyers 97)

In procedural languages, you can still employ object-oriented (OO) 
packaging concepts, by wrapping private data behind opaque types and 
providing well-defined public operations on them. 

Keep all variables in the tightest scope necessary; don’t declare variables 
globally when you don’t have to. Don’t put them at file scope when they 
can be function-local. Don’t place them at function scope when they can 
be loop-local.

Compile with All Warnings Switched On
Most languages’ compilers draw on a vast selection of error messages when 
you hurt their feelings. They will also spit out various warnings when they 
encounter potentially flawed code, like the use of a C or C++ variable before its 
assignment.3 These warnings can usually be selectively enabled and disabled.

3 Many languages (like Java and C#) classify this as an error.

S A Y  “ W H E N ”

When do you program defensively? Do you start when things go wrong? Or when 
you pick up some code you don’t understand?

No, these defensive programming techniques should be used all the time. They 
should be second nature. Mature programmers have learned from experience—
they’ve been bitten enough times that they know to put sensible safeguards in place.

Defensive strategies are much easier to apply as you start writing code, rather 
than retrofitting them into existent code. You can’t be thorough and accurate if you 
try to shoehorn in this stuff late in the day. If you start adding defensive code once 
something has gone wrong, you are essentially debugging—being reactive, not 
preventative and proactive.

However, during the course of debugging, or even when adding new functionality 
you’ll discover conditions that you’d like to verify. It’s always a good time to add 
defensive code.
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If your code is full of dangerous constructs, you’ll get pages and pages of 
warnings. Sadly, the common response is to disable compiler warnings or just 
ignore the messages. Don’t do either.

Always enable your compiler’s warnings. And if your code generates any 
warnings, fix the code immediately to silence the compiler’s screams. Never 
be satisfied with code that doesn’t compile quietly when warnings are enabled. 
The warnings are there for a reason. Even if there’s a particular warning you 
think doesn’t matter, don’t leave it in, or one day it will obscure one that does
matter.

KEY CONCEPT Compiler warnings catch many silly coding errors. Always enable them. Make sure your 
code compiles silently.

Use Static Analysis Tools
Compiler warnings are the result of a limited static analysis of your code, a 
code inspection performed before the program is run.

There are many separate static analysis tools available, like lint (and its 
more modern derivatives) for C and FxCop for .NET assemblies. Your daily 
programming routine should include use of these tools to check your code. 
They will pick up many more errors than your compiler alone.

Use Safe Data Structures
Or failing that, use dangerous data structures safely.

Perhaps the most common security vulnerability results from buffer 
overrun. This is triggered by the careless use of fixed-size data structures. 
If your code writes into a buffer without checking its size first, then there 
is always potential for writing past the end of the buffer.

It’s frighteningly easy to do, as this small snippet of C code demonstrates:

char *unsafe_copy(const char *source)

{

char *buffer = new char[10];

strcpy(buffer, source);

return buffer;

}

If the length of the data in source is greater than 10 characters, its copy 
will extend beyond the end of buffer’s reserved memory. Then anything 
could happen. In the best case, the result would be data corruption—some 
other data structure’s contents will be overwritten. In the worst case, a 
malicious user could exploit this simple error to put executable code on 
the program stack and use it to run his own arbitrary program, effectively 
hijacking the computer. These kinds of flaw are regularly exploited by 
system crackers—serious stuff.

It’s easy to avoid being bitten by these vulnerabilities: Don’t write 
such bad code! Use safer data structures that don’t allow you to corrupt the 
program—use a managed buffer like C++’s string class. Or systematically use 
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safe operations on unsafe data types. The C code above can be secured by 
swapping strcpy for strncpy, a size-limited string copy operation:

char *safer_copy(const char *source)

{

char *buffer = new char[10];

strncpy(buffer, source, 10);

return buffer;

}

Check Every Return Value

If a function returns a value, it does so for a reason. Check that return 
value. If it is an error code, you must inspect it and handle any failure. 
Don’t let errors silently invade your program; swallowing an error can 
lead to unpredictable behavior.

This applies to user-defined functions as well as standard library ones. 
Most of the insidious bugs you’ll find arise when a programmer fails to check 
a return value. Don’t forget that some functions may return errors through a 
different mechanism (i.e., the standard C library’s errno). Always catch and 
handle appropriate exceptions at the appropriate level.

Handle Memory (and Other Precious Resources) Carefully

Be thorough and release any resource that you acquire during execution. 
Memory is the example of this cited most often, but it is not the only one. 
Files and thread locks are other precious resources that we must use care-
fully. Be a good steward.

Don’t neglect to close files or release memory because you think that 
the OS will clean up your program when it exits. You really don’t know how 
long your code will be left running, eating up all file handles or consuming 
all the memory. You can’t even be sure that the OS will cleanly release your 
resources—some OSes don’t.

There is a school of thought that says, “Don’t worry about freeing memory 
until you know your program works in the first place; only then add all the 
relevant releases.” Just say no. This is a ludicrously dangerous practice. It will 
lead to many, many errors in your memory usage; you will inevitably forget to 
free memory in some places.

KEY CONCEPT Treat all scarce resources with respect. Manage their acquisition and release carefully.

Java and .NET employ a garbage collector to do all this tedious tidying 
up for you, so you can just “forget” about freeing resources. Let them drop to 
the floor, since the run time sweeps up every now and then. It’s a nice luxury, 
but don’t be lulled into a false sense of security. You still have to think. You 
have to explicitly drop references to objects you no longer care about, or 
they won’t be cleaned up; don’t accidentally hold on to an object reference. 
Less advanced garbage collectors are also easily fooled by circular references 
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(e.g., A refers to B, and B refers to A, but no one else cares about them). This 
could cause objects to never be swept up; a subtle form of memory leak.

Initialize All Variables at Their Points of Declaration

This is a clarity issue. The intent of each variable is explicit if you initialize it. 
It’s not safe to rely on rules of thumb like If I don’t initialize it, I don’t care about 
the initial value. The code will evolve. The uninitialized value may turn into a 
problem further down the line.

C and C++ compound this issue. If you accidentally use a variable with-
out having initialized it, you’ll get different results each time your program 
runs, depending on what garbage was in memory at the time. Declaring a 
variable in one place, assigning it later on, and then using it even later 
opens up a window for errors. If the assignment is ever skipped, you’ll 
spend ages hunting down random behavior. Close the window by initial-
izing every variable as you declare it; even if the value’s wrong, the behavior 
will at least be predictably wrong.

Safer languages (like Java and C#) sidestep this pitfall by defining an 
initial value for all variables. It’s still good practice to initialize a variable as 
you declare it, which improves code clarity.

Declare Variables as Late as Possible
By doing this, you place the variable as close as possible to its use, preventing 
it from confusing other parts of the code. It also clarifies the code using the 
variable. You don’t have to hunt around to find the variable’s type and 
initialization; a nearby declaration makes it obvious.

Don’t reuse the same temporary variable in a number of places, even if 
each use is in a logically separate area. It makes later reworking of the code 
awfully complicated. Create a new variable each time—the compiler will sort 
out any efficiency concerns.

Use Standard Language Facilities
C and C++ are nightmares in this respect. They suffer from many different 
revisions of their specifications, with more obscure cases left as implemen-
tation-specific undefined behavior. Today there are many compilers, each with 
subtly different behavior. They are mostly compatible, but there is still plenty 
of rope to hang yourself with.

Clearly define which language version you are using. Unless mandated 
by your project (and there had better be a good reason), don’t rely on com-
piler weirdness or any nonstandard extensions to the language. If there is an 
area of the language that is undefined, don’t rely on the behavior of your 
particular compiler (e.g., don’t rely on your C compiler treating char as a 
signed value—others won’t). Doing so leads to very brittle code. What happens 
when you update the compiler? What happens when a new programmer 
joins the team who doesn’t understand the extensions? Relying on a parti-
cular compiler’s odd behavior leads to really subtle bugs later in life.
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Use a Good Diagnostic Logging Facility
When you write some new code, you’ll often include a lot of diagnostics to 
check what’s going on. Should these really be removed after the event? 
Leaving them in will make life easier when you have to revisit the code, 
especially if they can be selectively disabled in the meantime.

There are a number of diagnostic logging systems available to facilitate 
this. Many can be used in such a way that diagnostics have no overhead if not 
needed; they can be conditionally compiled out.

Cast Carefully
Most languages allow you to cast (or convert) data from one type to another. 
This operation is some times more successful than others. If you try to convert 
a 64-bit integer into a smaller 8-bit data type, what will happen to the other 
56 bits? Your execution environment might suddenly throw an exception or 
silently degrade your data’s integrity. Many programmers don’t think about 
this kind of thing, and so their programs behave in unnatural ways.

If you really want to use a cast, think carefully about it. What you’re 
saying to the compiler is, “Forget your type checking: I know what this 
variable is, you don’t.” You’re ripping a big hole into the type system and 
walking straight through it. It’s unstable ground; if you make any kind of 
mistake, the compiler will just sit there quietly and mutter, “I told you so,” 
under its breath. If you’re lucky (e.g., using Java or C#) the run time might 
throw an exception to let you know, but this depends on exactly what you’re 
trying to convert.

C and C++ are particularly vague about the precision of data types, so 
don’t make assumptions about data type interchangeability. Don’t presume 
that int and long are the same size and can be assigned to one another, even 
if you can get away with it on your platform. Code migrates platforms, but bad 
code migrates badly.

The Fine Print

There are many low-level defensive construction techniques, all part of a 
sensible coding routine and a healthy distrust of the Real World. Consider:

Providing default behavior 
Most languages provide a switch statement; they document what hap-
pens in the default case. If the default case is erroneous, make that 
explicit in the code. If nothing happens, make that explicit in the 
code—that way the maintenance programmer will understand.

Similarly, if you write an if statement without an else clause, stop for a 
moment and consider whether you should handle the logical default case.

Following language idioms 
This simple piece of advice will ensure that your readers understand all 
of the code you have written. They’ll make fewer bad assumptions.



16 Chapter 1

Checking numeric limits 
Even the most basic calculations may cause numeric variables to overflow 
or underflow. Be on the lookout for this. Language specifications or core 
libraries provide mechanisms for determining the capacity of standard 
types—use them. Make sure you know all the available numeric types, 
and what each is most suitable for.

Check that each calculation is sound. For example, make sure you 
can’t use values that would cause a divide by zero error. 

Being const-correct 
C/C++ programmers should be really vigilant about this—it will make 
life much easier. Make everything as const as you possibly can. It does two 
things: const qualifications act as code documentation, and const allows 
the compiler to spot silly mistakes that you make. It prevents you from 
modifying data that’s off-limits.

Constraints

We’ve thought about the set of assumptions we make as we program. But 
how can we physically incorporate these assumptions into our software so 
they’re not illusive problems waiting to emerge? Simply write a little extra 
code to check for each condition. This code acts as the documentation of 
each assumption, making it explicit rather than implicit.4 In doing so, we’re 
codifying the constraints on program functionality and behavior.

What do we want the program to do if a constraint is broken? Since this 
kind of constraint will be more than a simple detectable and correctable run-
time error (we should already be checking for and handling those), it must 
be a flaw in the program logic. There are few possibilities for the program’s 
reaction:

Turn a blind eye to the problem, and hope that nothing will go wrong as 
a consequence.

Give it an on-the-spot fine and allow the program to continue (e.g., print 
a diagnostic warning or log the error).

Go directly to jail; do not pass go (e.g., abort the program immediately, 
in a controlled or uncontrolled manner).

For example, it is invalid to call C’s strlen function with a string pointer 
set to zero, because the pointer will be immediately dereferenced, so the 
latter two options are the most plausible candidates. It’s probably most 
appropriate to abort the program immediately, since derefencing a null 
pointer can lead to all sorts of catastrophes on unprotected operating 
systems.

There are a number of different scenarios in which constraints are used:

Preconditions 
These are conditions that must hold true before a section of code is 
entered. If a precondition fails, it’s due to a fault in the client code.

4 This doesn’t replace writing good documentation, though.
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Postconditions
These must hold true after a code block is left. If a postcondition fails, it’s 
due to a fault in the supplier code.

Invariants 
These are conditions that hold true every time the program’s execution 
reaches a particular point: between loop passes, across method calls, and 
so on. Failure of an invariant implies a fault in the program logic.

Assertions 
Any other statement about a program’s state at a given point in time.

The first two listed here are frustrating to implement without language 
support—if a function has multiple exit points,5 then inserting a postcondi-
tion gets messy. Eiffel supports pre- and postconditions in the core language 
and can also ensure that constraint checks don’t have any side effects.

However tedious, good constraints expressed in code make your 
program clearer and more maintainable. This technique is also known as 
design by contract, since constraints form an immutable contract between 
sections of code.

What to Constrain

There are a number of different problems you can guard against with 
constraints. For example, you can:

Check all array accesses are within bounds.

Assert that pointers are not zero before dereferencing them.

Ensure that function parameters are valid.

Sanity check function results before returning them.

Prove that an object’s state is consistent before operating on it.

Guard any place in the code where you’d write the comment We should 
never get here.

The first two of these examples are particularly C/C++ focused. Java and 
C# have their own ways of avoiding some of these pitfalls in the core language, 
as do other languages.

Just how much constraint checking should you do? Placing a check on 
every other line is a bit extreme. As with many things, the correct balance 
becomes clear as the programmer gets more mature. Is it better to have too 
much or too little? It is possible for too many constraint checks to obscure 
the code’s logic. “Readability is the best single criterion of program quality: 
If a program is easy to read, it is probably a good program; if it is hard to 
read, it probably isn’t good.” (Kernighan Plaugher 76)

Realistically, putting pre- and postconditions in major functions plus 
invariants in the key loops is sufficient.

5 There is a theological debate about whether functions should have multiple exit points.
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Removing Constraints
This kind of constraint checking is usually only required during the develop-
ment and debugging stages of program construction. Once we have used the 
constraints to convince ourselves (rightly or wrongly) that the program logic 
is correct, we would ideally remove them so as not to incur an unnecessary 
run-time overhead.

Thanks to the wonders of modern technology, all of this is perfectly 
possible. The C and C++ standard libraries provide a common mechanism 
to implement constraints—assert. assert acts as a procedural firewall, test-
ing the logic of its argument. It is provided as an alarm for the developer to 
show incorrect program behavior and should not be allowed to trigger in 
customer-facing code. If the assertion’s constraint is satisfied execution 
continues. Otherwise, the program aborts, producing an error message 
looking something like this:

bugged.cpp:10: int main(): Assertion "1 == 0" failed.

assert is implemented as a preprocessor macro, which means it sits more 
naturally in C than in C++. There are a number of more C++-sympathetic 
assertion libraries available.

To use assert you must #include <assert.h>. You can then write something 
like assert(ptr != 0); in your function. Preprocessor magic allows us to strip 
out assertions in a production build by specifying the NDEBUG flag to the com-
piler. All asserts will be removed, and their arguments will not be evaluated. 
This means that in production builds asserts have no overhead at all.

Whether or not assertions should be completely removed, as opposed to 
just being made nonfatal, is a debatable issue. There is a school of thought 
that says after you remove them, you are testing a completely different piece 
of code.6 Others say that the overhead of assertions is not acceptable in a 
release build, so they must be eliminated. (But how often do people profile 
execution to prove this?)

Either way, our assertions must not have any side effects. What would 
happen, for example, if you mistakenly wrote:

int i = pullNumberFromThinAir(); 

assert(i = 6); // hmm - should type more carefully!

printf("i is %d\n", i);

The assertion will clearly never trigger in a debug build; its value is 6 
(near enough true for C). However, in a release build, the assert line will be 
removed completely and the printf will produce different output. This can 
be the cause of subtle problems late in product development. It’s quite hard 
to guard against bugs in the bug-checking code!

6 In practice, more may change between development and release builds of software—com-
piler optimization levels and the inclusion of debugging symbols, for example. Both of these 
can make subtle differences to execution and may obscure the manifestation of other faults. 
During even the earliest stages of development, testing should be performed equally with 
development and release builds.
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It’s not difficult to envision situations where assertions might have even 
more subtle side effects. For example, if you assert(invariants());, yet the 
invariants() function has a side effect, it’s not easy to spot.

Since assertions can be removed in production code, it is vital that 
only constraint testing is done with assert. Real error-condition testing, like 
memory allocation failure or filesystem problems, should be dealt with in 
ordinary code. You wouldn’t want to compile that out of your program! 
Justifiable run-time errors (no matter how undesirable) should be detected 
with defensive code that can never be removed.

Java has a similar assert mechanism.7 It can be enabled and disabled by 
controls on the JVM, and throws an exception (java.lang.AssertionError)
instead of causing an instant program abort. .NET provides an assertion 
mechanism in the framework’s Debug class.

When you discover and fix a fault, it is good practice to slip in an 
assertion where the fault was fixed. Then you can ensure that you won’t be 
bitten twice. If nothing else, this would act as a warning sign to people 
maintaining the code in the future.

A common C++/Java technique for writing class constraints is to add a 
single member function called bool invariant() to each class. (Naturally 
this function should have no side effects.) Now an assert can be put at the 
beginning and end of each member function calling this invariant. (There 
should be no assertion at the beginning of a constructor or at the end of the 
destructor, for obvious reasons.) For example, a circle class’s invariant may 
check that radius != 0; that would be invalid object state and could cause 
later calculations to fail (perhaps with a divide by zero error).

7 It was added in JDK 1.4 and is not available in earlier versions.

O F F E N S I V E  P R O G R A M M I N G ?

The best defense is a good offense.
—Proverb

While writing this chapter, I wondered, What’s the opposite of defensive program-
ming? It’s offensive programming, of course!

There are a number of people I know who you could call offensive program-
mers. But I think there’s more to this than swearing at your computer and never 
taking baths.

It stands to reason that an offensive programming approach would be actively 
trying to break things in the code, rather than defending against problems. That is, 
actively attacking the code rather than securing it. I’d call that testing. As we’ll see 
later in “Who, What, When, and Why?” on page 132, testing, when done properly, 
has an incredibly positive effect on your software construction. It improves code 
quality greatly and brings stability to the development process.

We should be all offensive programmers.
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In a Nutshell

Draw water for the siege, strengthen your 
defenses! Work the clay, tread the mortar, 

repair the brickwork!
—Nahum 3:14

It is important to craft code that is not just correct but is also good. It needs 
to document all the assumptions made. This will make it easier to maintain, 
and it will harbor fewer bugs. Defensive programming is a method of expect-
ing the worst and being prepared for it. It’s a technique that prevents simple 
faults from becoming elusive bugs.

The use of codified constraints alongside defensive code will make your 
software far more robust. Like many other good coding practices (unit testing,
for example—see “The Types of Test” on page 138), defensive programming 
is about spending a little extra time wisely (and early) in order to save much 
more time, effort, and cost later. Believe me, this can save an entire project 
from ruin.

See Also

Chapter 8: Testing Times 
Offensive programming—say no more.

Chapter 9: Finding Fault
When faults breach your careful defenses, you’ll need a strategy to round 
them up.

Chapter 12: An Insecurity Complex
Defensive programming is a key technique for writing secure software 
systems.

Good programmers . . . Bad programmers . . .

Care that their code is robust

Make sure every assumption 
is explicitly captured in 
defensive code

Want well-defined behavior 
for garbage input

Think carefully about the code 
they write, as they write it

Write code that protects itself 
from other people’s (or their 
own) stupidity

Would rather not think about what 
could go wrong in their code

Release code for integration that 
may fail and hope that someone 
else will sort it out

Leave important information 
about how their code should be 
used locked in their heads, ready 
to be lost

Apply little thought to the code 
they are writing, resulting in 
unpredictable and unreliable 
software
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Chapter 19: Being Specific
You must document pre- and postconditions; how else will anyone know 
they exist? If you have any constraints specified, then you can add defen-
sive code to assert them.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 463.

Mull It Over

1. Can you have too much defensive programming?

2. Should you add an assertion to your code for every bug you find and fix? 

3. Should assertions conditionally compile away to nothing in production 
builds? If not, which assertions should remain in release builds?
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4. Are exceptions a better form of defensive barrier than C-style assertions?

5. Should the defensive checking of pre- and postconditions be put inside
each function, or around each important function call?

6. Are constraints a perfect defensive tool? What are their drawbacks?

7. Can you avoid defensive programming?

a. If you designed a better language, would defensive programming still 
be necessary? How could you do this?

b. Does this show that C and C++ are flawed because they have so many 
areas for problems to manifest?

8. What sort of code do you not need to worry about writing defensively?

Getting Personal

1. How carefully do you consider each statement that you type? Do you 
relentlessly check every function return code, even if you’re sure a 
function will not return an error?

2. When you document a function, do you state the pre- and postconditions?

a. Are they always implicit in the description of what the function does? 

b. If there are no pre- or postconditions, do you explicitly 
document this?

3. Many companies pay lip service to defensive programming. Does your 
team recommend it? Take a look at the codebase—do they really? How 
widely are constraints codified in assertions? How thorough is the error 
checking in each function?

4. Are you naturally paranoid enough? Do you look both ways before cross-
ing the road? Do you eat your greens? Do you check for every potential 
error in your code, no matter how unlikely?

a. How easy is it to do this thoroughly? Do you forget to think about 
errors?

b. Are there any ways to help yourself write more thorough 
defensive code?



T H E  B E S T  L A I D  
P L A N S

The Layout and Presentation
of Source Code

2

In this chapter:

Why code presentation 
matters, and what makes 
a good layout

How to choose a code layout 
style

Creating a coding standard

Religious wars—why you 
should avoid them

Stop judging by mere appearances, and make a right 
judgment.

—John 7:24

Coding style has been, is, and will continue to be 
the subject of holy wars among programmers—
professional, amateur, and student—where, 
unfortunately, intense disagreements degrade 
into mere name-calling. I’ll show you where to stick 
your stupid brackets.

The first company I ever worked for kick-
started a process to define its internal coding 
standard. The guidelines were supposed to 
encompass several languages, defining common 
conventions and best practices. Months later, the 
group compiling the guidelines was still arguing 
about where to put brackets in C. I’m not sure if 
anyone ever followed the standard that was 
eventually produced.
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Why do people get so worked up about this? As we’ll see, presentation 
dramatically affects the readability of code—no one wants to work with code 
that isn’t easy to read. Presentation is also a very subjective and personal 
thing—you may not like the style that turns me on. Familiarity breeds comfort, 
and an alien style puts you on edge.

Programmers are passionate about code, so presentation stirs deep 
emotions.

What’s the Big Deal?

The layout and presentation of code is an issue in most modern program-
ming languages. The freedom of formatting that permits individual artistic 
expression came en vogue in the early 1960s with the language Algol; the 
previously available Fortran versions had been more restricted in format. 
Since then, very few languages have deviated from that free-form approach.

A code presentation style governs a surprisingly large number of things; 
brace positioning is the most obvious1 and perhaps the most contentious 
issue. The wider aspects of code style, like conventions for function and 
variable naming, tie in with other coding concerns such as program structure 
(e.g., Don’t use gotos, or Only write Single Entry, Single Exit functions) to dictate 
the style in which you write a program. Altogether, this constitutes your 
coding standard.

Although there are many individual choices to make when you define a 
code presentation format, all are aesthetic. By definition, presentation has 
no syntactic or semantic meaning at all; the compiler ignores it.

However, presentation makes a real impact on the quality of code. 
Programmers read meaning into code based on its layout. It can illuminate 
and support your code’s structure, helping the reader understand what’s 
going on. Or it can confuse, mislead, and hide the code’s intent. It doesn’t 
matter how well designed your program is; if it looks like a thrown-together 
mess, it will be unpleasant to work with. But bad formatting not only makes 
code harder to follow; it may actually hide bugs from you. As a simple example 
of this, consider the following C code:

int error = doSomeMagicOperation();

if (error)

fprintf(stderr, "Error: exiting...\n");

exit(error);

The layout shows what the author meant to happen, but he’ll be surprised 
when the code actually runs.

Since we’re conscientious craftsmen committed to high-quality code, we 
strive for clear presentation. There are already plenty of stumbling blocks in 
software development; we shouldn’t let basic code presentation become one 
of them.

1 Brace is a common name for the curly bracket (that is, { and }) so common in C-style program-
ming languages.
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Know Your Audience

To write effective source code, it’s important to know who you’re presenting 
it to. If you’re going to confuse someone, you’d better know who deserves 
the apology. There are, in fact, three audiences for our source code:

Ourselves 
My handwriting is so bad that sometimes even I can’t read it. It’s practi-
cally useless unless I concentrate on writing clearly. It’s the same with 
code. You have to be able to read what you’ve written immediately after 
you write it, but also perhaps years later when you come back to it. 
Who would have expected to come back to archaic (relatively speak-
ing) COBOL code to fix a Y2K bug?

The compiler
The compiler doesn’t care what your code looks like, as long as it doesn’t 
have any syntactic errors. The intent of the code is completely ignored. 
You can write detailed comments explaining what you want a function to 
do, but the compiler won’t tell you if the instructions don’t actually do 
what your comments say. As long as it’s valid code, your development 
environment will be happy.

Others
This is the most important audience and often the least considered.

So you’re working in a team, but you’re the only person who will ever 
see your bit of code, right? Wrong. It never works that way.

You’re at home writing some code for fun; no one will ever see it. You 
don’t need to worry about making it neat, do you? No, you don’t; but 
how would that benefit you? You aren’t developing skills that will make 
you a professional. This is the perfect opportunity to practice really good 
discipline on a project with no external pressures. A chance to get into 
good habits. If you blow it here, is it any wonder you have no discipline 
on “real” projects?

Your source code is a document, describing the program you are 
creating. It needs to read clearly to whoever might come back to it. This 
will include those auditing (code reviewing) the work you have done and 
anyone who maintains it later. Be kind to people who have to look after 
your code—just imagine yourself in their shoes.

We tailor the elements of presentation style with our audiences in mind. 
How does the audience affect how we lay out code? Surprisingly, we care least 
of all about the compiler. Its job is to ignore all that unnecessary whitespace 
and get down to the serious business of interpreting our syntax. Presentation 
is not about syntactic meaning, and the compiler can cope with whatever 
freakish layout we throw at it.

Rather, we use layout to emphasize the logical structure of the code to 
human readers. It’s about communication, and the clearer the better.

KEY CONCEPT Understand the real audience for your source code: other programmers. Write for their 
benefit.
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What Is Good Presentation?

As you can see, good presentation means more than just being neat. Tidy 
code certainly gives an impression of high quality, but code can be both tidy 
and misleading. We strive for clear layout; the code structure must be enhanced
by an indentation strategy, not hidden by it. If a particular flow of control is 
necessarily complex, the layout should be helping you to read the code. 
(If you’ve written a flow of control that is unnecessarily complex, you should 
change it immediately.)

Our code layout must convey meaning, rather than disguise it. I suggest 
the following as good metrics for the quality of a presentation style.

Consistent
The indentation strategy must be consistent across the project. Don’t 
change styles halfway through a source file. Not only does this look 
unprofessional, it can confuse and give the impression that your source 
files are not really related.

The individual presentation rules should be internally consistent. 
The positioning of braces, brackets, and so on in different situations 
should all follow a single convention. The number of spaces of 
indent should always be the same.

Kernighan and Ritchie—the fathers of C—say, after stressing the 
importance of having good indentation: “The position of braces is less 
important, although people hold passionate beliefs. We have chosen 
one of several popular styles. Pick a style that suits you, then use it 
consistently.” (Kernighan Ritchie 88)

Conventional
It’s sensible to adopt one of the major styles currently in use in the indus-
try rather than invent your own indentation rules. You can be sure of it 
being accessible to others who are reading your code. And you’re less 
likely to make people vomit.

Concise
Can you concisely describe your indentation strategy? Think about it. 
If you do this unless such-and-such, in which case you do this if X holds; 
otherwise you do something else which depends on . . .

Someone may eventually need to extend the code you’ve written and 
should do so in the same style. If it’s not easy to pick up, then is it really a 
useful presentation style?

Brace Yourself

To illustrate the impact presentation has on source code and the trade-offs 
involved in choosing a particular style, this case study investigates an impor-
tant C-related layout issue. By looking at the variation in this one simple area, 
we’ll see how important presentation is and what a profound impact it has on 
your code.

Brace positioning is a big concern for the curly bracket languages, 
although it’s really only a fraction of the total code layout problem. As the 
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most immediately visible artifact, it generates about 80 percent of the fuss. 
Other languages have their own similar layout concerns.

There are a number of conventional brace positioning styles. Which you 
pick comes down to your sense of aesthetics, the culture you code in, and 
what you’re used to. Different styles are appropriate in different contexts—
consider a magazine article versus a source editor (see “Well Presented” on 
page 28). You may prefer the exdented style, but in a magazine you’re forced 
to use K&R to maximize use of the printed page.

K&R Brace Style
K&R style is the oldest flavor, established by the fathers of C Kernighan and 
Ritchie in their book The C Programming Language. (Kernighan Ritchie 88) 
For this reason, it is often considered the original and best. It was driven by the 
need to display the most information possible on a small screen. It’s probably 
the dominant style for Java code.

int k_and_r() {

int a = 0, b = 0;

while (a != 10) {

b++;

a++;

}

return b;

}

Pros

Takes up little room, so you can get more code on screen at once

The closing brace lines up with the statement it matches, so you can scan 
up to find the construct being terminated

Cons

The braces don’t line up, so it’s hard to visually match them

You might not notice if an opening brace goes off the right of the page

Code statements appear very densely packed

Exdented Brace Style
A more spacious approach is the so-called exdented (or sometimes Allman)
style. This is my personal favorite.

int exdented()

{

int a = 0, b = 0;

while (a != 10)

{

b++;

a++;

}

return b;

}
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Pros

A clear and uncluttered format

Easier to scan code for opening braces since they’re distinct; this makes 
each code block more obvious

Cons

Takes up more vertical space

Looks wasteful when you have lots of blocks containing only one 
statement

Too much like Pascal for some hackers

W E L L  P R E S E N T E D

How you present code depends on the context in which it will be read. There are 
more contexts than you might think. When you’re reading some code, it’s important 
to appreciate the forces that drove its presentation. The common code habitats are:

Source editor
This is most code’s natural habitat. It raises all the presentation concerns program-
mers automatically think about. The code is read on a computer screen, usually in 
some dedicated editor or IDE. You scroll or navigate through a file to places of 
particular interest. It’s an interactive world—more often than not, you’re reading 
code to make modifications. This means that the code has to be malleable.

The editor may have horizontal scrollbars for long lines or may limit the page 
width and wrap them. Usually there’s syntax coloring to aid comprehension. As 
you type, the editor performs some formatting work for you. For example, it intelli-
gently positions the cursor on new lines.

Published code
Unless you live in a lonely, isolated little world, you’ll regularly read published 
code. There are plenty of forums: listings in books and magazines, snippets from 
library documentation, or even lines in postings to newsgroups. These are format-
ted for clarity, but also favor a more compact representation since space is not 
cheap. Lines are compressed vertically to get the most code into a short space, 
and they are compressed horizontally to fit into narrow print margins.

This sort of code tends to omit error handling and anything not pertinent to the 
main idea of the example. It only serves to convey a point, not to be thorough.

You may never have to write code for this medium, but you’ll certainly see 
plenty of it (you’re reading code snippets in this book, at least). You need to 
understand the trade-offs and differences from normal code, so you don’t unwit-
tingly pick up any bad habits.

Printouts 
When you print out project code you run into new issues. Column widths become 
a problem. Should you reformat before you print, scale pages down and cope 
with small fonts, or have haphazard line wrapping? There’s no syntax coloring to 
enhance presentation (unless you’re rich enough for a color printer and all that 
ink), so messy commenting or code disabled by large comment blocks suddenly 
becomes less obvious.

Although you may never print out a page of source, these are valid concerns 
that you should consider.
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Indented Brace Style

Less common but still used is the indented style. Here the braces are indented 
with the code. It’s also known as the Whitesmith style, since example code for 
the early Whitesmith’s C compiler used it.

int indented()

{

int a = 0, b = 0;

while (a != 10)

{

b++;

a++;

}

return b;

}

Pro

Links code blocks to the braces that contain them

Con

Many people don’t like their blocks linked to their braces

Other Brace Styles

There are others. For example, the GNU style is sandwiched between 
exdented and indented; braces are placed halfway between each level of 
indent. There are also hybrids; the Linux kernel coding style is half K&R, 
half exdented. Most C# programmers also combine layout styles. If you’re 
really perverse, you’ll like this:

int my_worst_nightmare()

{

int a = 0, b = 0;

while (a != 10) {

b++;

a++;

}

return b;

}

I’ve seen plenty of surreal code like it, and I’m sure you could concoct 
something of equally nightmarish proportions if you tried.

KEY CONCEPT Recognize the common code layout styles for your chosen language, and become familiar 
working with each of them. Appreciate their advantages and disadvantages.
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One Style to Rule Them All

Having seen seen what constitutes a good coding style, what it governs, and 
why it’s necessary, you must now actually choose one. This is where the fights 
begin. Disciples of one presentation religion clash with the evangelists of the 
next, leading to programmer civil war. But the craftsman steps back from 
these petty squabbles and takes a more balanced view.

As long as you write in a style that’s good, it doesn’t matter what style that 
is. And there’s no point in arguing about it. There is more than one good style; 
the quality and applicability of each will depend on context and culture.

KEY CONCEPT Pick a single good coding style, and stick to it.

It could be argued that if your language standard defined the One True 
Presentation Style, the world would be a better place. After all, all code 
would look the same. The arguments would cease, and we’d all move on to 
something more useful instead. You could pick up anyone’s code and get to 
grips with it immediately. Sounds pretty good, doesn’t it?

The counterargument is competition is a Good Thing. If we had a single 
monopoly coding style, who would be able to say that it was the best one? 
By having more than one coding style, we are encouraged to think and 
improve the way we apply a style. It encourages style guidelines to improve. 
The upshot: It makes us write better code.

That argument is not a license to code in your own particular style, 
though. Remember that good presentation is conventional—a layout that 
readers expect.

C O M M O N  C O D I N G  S T A N D A R D S

A number of well-known coding standards are generally used.

Indian Hill
The full title of this famous document is Indian Hill Recommended C Style and 
Coding Standards. It has nothing to do with Native Americans standing on 
mounds of earth; instead, it came from the renowned Indian Hill AT&T Bell lab.

GNU
The GNU’s Coding Standards are important since they influence most of the 
commonly used open source or free software out there.

You can find them on the GNU Project’s website (www.gnu.org).

MISRA
The UK’s Motor Industry Software Reliability Association (MISRA) has defined 
a well-known set of standards for writing safety critical embedded software in C. 
It consists of 127 guidelines, and a number of tools exist to validate your code 
against them. These guidelines are focused more on language use than code 
layout.

Project foo
Most every project under the sun defines its own pet coding style. Just go on a 
hunt, and you’ll find literally thousands. The Linux kernel, for example, has its own 
guidelines, as does the Mozilla project.
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House Styles (and Where to Stick Them)

Many software companies have an internal (house) coding style that defines, 
among other things, its code presentation rules. But why bother—code that’s 
been written in any good style is easy to read and maintain. If no one will have 
a hard time following it, do we really need this extra level of bureaucracy?

House styles are important and useful for a number of reasons. If every-
one sings from the same hymn book (perhaps that should be writes on the 
same hymn book), then all source code will be consistent and homogenized. 
What value does this bring? It increases the code quality and makes software 
development safer. Here’s how:

Any code released outside the organization will be neatly presented and 
coherent, appearing to be well thought out. Having many conflicting 
styles in one project looks careless and unprofessional.

The company can be assured that programs are written up to a certain 
standard, thanks to common idioms and methodologies. This doesn’t 
guarantee good code, but it does help to protect against bad code.

It makes up for poor tools; IDEs set in different ways will fight against 
each other, pulling code apart and generally molesting the layout. 
A standard provides level ground (and a common enemy for all the 
programmers).

The appeal of being able to instantly recognize the shape of your peers’ 
code and to quickly make appropriate maintenance alterations is clear. 
It saves reading time and therefore the company’s money.

Since the programmers won’t be continually reformatting the code to 
suit their particular aesthetic fetishes, your version control history is very 
useful. If Fred reformats Bert’s code to “his” style, what happens when, a 
bit later on, you look at a diff? Many diff tools are pretty crude and will 
now display a plethora of trivial whitespace and brace differences.

These house coding standards are a Good Thing. Even if you don’t 
actually agree with the rules they mandate—if, for example, your indentation 
strategy is much prettier and easier to understand (in your opinion)—it 
shouldn’t matter one iota. The benefits of everyone sharing the same style 
outweigh the burden on you to have to conform. If you don’t agree with the 
standard, you should still work to it.

KEY CONCEPT If your team already has a coding standard, then use it. Don’t use your own pet style.

You may be surprised to find how much of your coding style is bred from 
familiarity and practice. If you use a house style for a while, it soon becomes 
second nature and seems perfectly normal.

What happens if you’re working on code that originated from outside 
the company and doesn’t conform to your house style? In this case, it makes 
more sense to write code conforming to the existing style of that source file. 
(This is why writing to a style that’s easy to pick up is important.) The only 
other real alternative is to convert the file (and any others) into your house 
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style. For most Real World projects, this latter course of action isn’t feasible, 
especially if you are continually being fed with external source code updates.

Conform to the style of a given file or project, conform to your house 
style where this doesn’t conflict, and sacrifice your own preferences. Don’t 
surrender your style blindly, though; understand the benefits weighed 
against the costs. And what if your company doesn’t have a house style? 
Push for one. . . .

Start coding.

Give up now.

Use that style.

Is it new code?

Is there a
house style?

Is there an
unwritten style?

Do you like it? Well, that’s
a start. . . .

Other people’s
trash; bad luck!

Tough. Learn to
live with it.

No

No

No

No

No

Yes

Yes

Yes Yes

Yes

Does it have a
consistent style?

MAKING YOURSELF PRESENTABLE
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Setting the Standard

You’ve been tasked to draw up a code presentation style where there 
currently is none. Good luck! You can be sure that everyone will have an 
opinion on what the style should contain and that no one will be completely 
satisfied with the end result. Techies are helpful like that.

Creating a coding standard is a delicate task, and it should be approached 
tactfully but firmly. Why? Dumping edicts upon a group of programmers will 
neither make you nor your standard popular. But if you don’t emphasize 
how important it is, programmers will not embrace it and will continue 
coding in their own peculiar ways.

The difficulty of this task depends on the people in the team:

How many programmers there are

How they code as individuals

How similar their coding styles are already

Whether they actually want a standard or not

Whether they are prepared to change their styles at all

If their coding styles are all reasonably similar, then the job’s a breeze. If 
they vary wildly, you’re in for a bumpy ride. While people seldom agree on 
the best style, they will generally agree that some styles are better than others. 
You must aim to provide a sufficiently detailed set of layout directives while 
trying to satisfy as many programmers as possible—and produce something 
that will help them to work better as a team. Here’s a collection of pragmatic 
advice for this herculean task:

What’s it for? 
Start off with a clear idea of the scope of the work—is the coding standard 
just for your immediate team, the department, or the whole company? 
This makes a big difference in how you’ll develop and implement it.

Remember: What makes a good personal style is not necessarily the 
best for a whole team of programmers. You are creating something that 
shouldn’t just serve your aesthetic fetishes; it should be a standard that 
will unite team code and avoid common problems. Keep this goal in 
mind as your develop the standard.

Determine the level of detail you intend to go into. Is this just a 
code layout document, or will it also touch on language usage concerns? 
It’s best to keep it simple: Write one document for presentation and a 
different document for language use.

Get buy-in 
Involve everyone on the team, so they own it. If the programmers feel like 
they contributed, they’ll be more likely to follow the standard.

Get everyone to agree that a standard is needed before you start 
working on it. Make sure the team understands the benefits of 
code consistency and the perils of ad-hoc code presentation.
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If you have more than a few programmers, don’t try to design the stan-
dard by committee. Well, not unless you hide all the sharp objects in 
the office first. Select a small crack team to get the work done.

When the standard nears completion, review it with a panel of 
adopters. Make sure that you have a chairman who can make a final 
decision though, or everything will stall while 15 programmers sidetrack 
themselves in religious disputes.

Produce something
The end product should be an accessible document, not just a fuzzy set 
of agreed conventions. You should be able to refer to the document 
later, and point newcomers at it. The document contains a list of the 
rules, perhaps with justification for the more contentious decisions.

Standardize best practice
Make sure the standard embodies the team’s current best practices—
let them know that they’re doing things right. If there’s nothing that 
comes out of the blue, they will be more likely to adopt it. However, if 
you include random conventions from outside the team’s experience, 
they’ll revolt.

Focus on what matters
Concentrate your efforts on the things that really matter and will make 
the biggest improvements to your team’s code. Don’t try to create a pre-
sentation standard for C, C++, and Java if you only ever use C.

Avoid hotspots
Leave rare-but-tedious cases to individual taste if they won’t actually 
make much difference. If people get really worked up over the layout of 
split lines in an if statement, give up and let them do what they want.

Don’t be too restrictive; allow the rules to be broken if a violation can 
genuinely be justified.

Do it in pieces
A sensible approach is to develop your house style a bit at a time. Start 
by agreeing on brace layout and indent size. Just that. It will be difficult 
enough! Once you have that in place, progress will be much easier; any 
change is just more of the same. At some point, it won’t be worth adding 
new rules, since the code will be sufficiently regular.

Plan for adoption 
Have a clear idea how this coding standard will be adopted. Be realistic. 
People have to be happier with it, or they won’t use it. Adoption will have 
to be based on some form of majority rule; if Fred still thinks that switch
statements look better his way when everyone else managed to compro-
mise, too bad, Fred. Don’t be tempted to make it a democratic process, 
though. That just won’t work.

Don’t threaten people with the standard or induce punishments for 
not using it. That’s not going to go down well. Instead, offer incentives—
even if it’s just public kudos in a code review.
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Ultimately, the take-up of a standard depends on the authority with 
which it is introduced. Either the programmers themselves authorize it 
or the process gets management to back it. Or it’s a big waste of time.

Does this sound like trying to persuade a load of school children to get 
along and play nicely? Funny, isn’t it. . . . Still, you’ll wade your way through a 
religious quagmire, emerging on the other side with a house style that will 
genuinely improve your team’s code. Once the wounds heal, it will have been 
worth it.

Righteous Wars?

The quickest way of ending a war is to lose it.
—George Orwell

Engaging in holy wars over code layout is unproductive and a waste of time; 
there are far more important things to focus our attention on. But beware—
code layout is not the only hot potato in the programming community. You 
could extend this to cover editors, compilers, methodologies, the One True 
Language,2 and beyond.

These little commotions have been going on for years. They’ll continue 
to go on. And no one will ever win. No one will ever manage to establish the 
right answer, because there is no right answer. These arguments are just an 
opportunity for one person to try to enforce his or her particular (carefully 
formed) opinion on others, and vice versa. After all, my opinion must be 
right, because it’s mine. It’s like trying to knit spaghetti—amusing for a while, 
but messy and totally pointless. It’s usually only ever immature programmers 
that get involved. (The old-timers are already argued out.)

The key point to learn is: Holy wars are a waste of effort. As a professional, 
you should step back from such petty arguments. Of course, have an educated 
personal opinion, but don’t arrogantly presume that it’s correct.

KEY CONCEPT Holy wars: Just say no. Don’t get involved. Walk away.

In a Nutshell

Nothing succeeds like the appearance of success.
—Christopher Lasch

Presentation is one of the key features differentiating good code from bad 
code. Programmers glean a lot from code’s appearance, so it is right to worry 
about layout. It’s an important skill to be able to sensitively lay out code for 
maximum clarity, within the guidelines of any company coding standard that 
may exist.

2 This brings to mind a C/C++ programming conference I attended some years ago. A speaker 
presented his discovery that you get fewer bugs (which are easier to fix) using Pascal rather 
than C, while the most difficult to fix and numerous bugs occur in C++. The reaction was 
wonderful—everyone’s feathers were ruffled!
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It’s reasonable to assume that code that has been carefully laid out will 
have been carefully designed. It’s even more reasonable to assume that 
sloppily presented code hasn’t been designed with much care. But there’s 
more to this story than formatting source code.

Besides presentation skills, there are certain attitudes that separate good 
programmers from bad programmers. The moral is simple: Avoid creating hot 
air. Computers will do that for you (we don’t need in-office heating because 
ours belch out so much heat). Know what you like and be prepared to defend 
it, to put your view across—but don’t presume that you have to win or that 
you have to be right, and don’t arrogantly do your own thing anyway.

Good programmers . . . Bad programmers . . .

Avoid pointless arguments and 
are sensitive to others’ opinions

Are humble enough to know 
that they’re not right all the time

Know how code layout impacts 
readability and strive for the 
clearest code possible

Are close-minded and 
opinionated—My view is
the right one

Argue with anyone over the most 
trivial things; it’s a chance to 
prove their superiority

L O O K I N G  F O R  A  F I G H T

Code layout is not the only excuse for a programmer flame war. There are many 
religious subjects that you’d best tactfully dodge for the sake of your blood pressure. 
Watch out for:

My OS is better than yours
. . . because it scales from a wristwatch to an alien mothership, only requires 
rebooting once every epoch, and performs most operations with a single two-
letter command.

But mine’s better than yours because you’ll never see a single piece of text 
using it, it’s tastefully color coordinated, and it can be operated by a blind 
squirrel. Anything you can’t do with it is illegal in most civilized countries, 
anyway.

My editor is better than yours
. . . because it recognizes more than a million different syntax schemes, can edit 
files written in hieroglyphics, and each of its 400 operations are accessible with 
fewer than 10 simultaneous keystrokes. You can use it on the desktop, from a 
command line, over a modem, through a rising main, and over 128-bit encrypted 
smoke signals.

But mine’s better than yours because it integrates with my underwear and 
knows what I want to type before I’ve even thought of it myself.

My language is better than yours
. . . because it implements the artificial intelligence of most major governments 
and is clever enough to interpret random gesticulations as meaningful sequences 
of instructions.

But mine’s better than yours because it allows you to write in haiku and 
encodes information in combinations of whitespace characters.
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See Also

Chapter 3: What’s in a Name? 
A coding standard may mandate how you create names.

Chapter 4: The Write Stuff 
Good presentation is key to writing code that’s self-documenting.

Chapter 5: A Passing Comment 
Describes how we write comments; some comment use relates to source 
code layout.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 466.

Mull It Over

1. Should you alter the layout of legacy code to conform to your latest code 
style? Is this a valuable use of code reformatting tools?

2. A common layout convention is to split source lines at a set number of 
columns. What are the pros and cons of this? Is it useful?

3. How detailed should a reasonable coding standard be?

a. How serious are deviations from the style? How many limbs should 
be amputated for not following it?

b. Can a standard become too detailed and restrictive? What would 
happen if it did?

Will adopt a house style even if 
it contradicts their personal 
preferences

Have no consistent personal 
coding style

Trample over others’ code in 
their own style

Good programmers . . . Bad programmers . . .
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4. When defining a new presentation style, how many items or cases need 
layout rules? What other presentation rules must be provided? List them.

5. Which is more important—good code presentation or good code 
design? Why?

Getting Personal

1. Do you write in a consistent style?

a. When you work with other people’s code, which layout style do you 
adopt—theirs or your own?

b. How much of your coding style is dictated by your editor’s auto-for-
matting? Is this an adequate reason for adopting a particular style?

2. Tabs: Are they a work of the devil, or the best thing since sliced bread? 
Explain why.

a. Do you know if your editor inserts tabs automatically? Do you know 
what your editor’s tab stop is?

b. Some hugely popular editors indent with a mixture of tabs and 
spaces. Does this make the code any less maintainable?

c. How many spaces should a tab correspond to?

3. Do you have a preferred layout style?

a. Describe it in a series of simple statements. Be complete. Include, for 
example, how you format switch statements and split up long lines.

b. How many statements did it take? Is that what you expected?

c. Does your company have a coding standard?

d. Do you know where it is? Is it advertised? Have you read it?

i. If yes: Is it any good? Perform an honest critique, and feed your 
comments back to the document owners.

ii. If no: Should it? (Justify your answer.) Is there a common 
unwritten code style that everyone adopts? Can you drive the 
adoption of a standard?

e. Is there more than one standard used, perhaps one per project? If so, 
how is code shared among projects?

4. How many different layout styles have you followed?

a. Which did you feel most comfortable with?

b. Which was the most rigorously defined?

c. Is there a link?
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Giving Meaningful Things
Meaningful Names

3

In this chapter:

Why good names are 
important for quality code

What is a good name?

How to name variables, 
functions, types, namespaces, 
macros, and files

When I use a word, Humpty Dumpty said, in a rather 
scornful tone, it means just what I choose it to mean—
neither more nor less.

—Lewis Carroll

Ancient civilizations knew that to name 
something was to have power over it. This was 
more than a simple claim to possession. Some 
believed so strongly in the power of names 
that they would never give their own names to 
strangers, for fear the strangers might use it to 
inflict harm against them.
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Names mean an awful lot. You may not live in fear of them, but don’t 
underestimate the power of a name. A name describes:

Identity
Names are fundamental to our concept of identity. There are examples 
throughout history—even before 2000 BC, there are Biblical examples of 
meaningful place names and children named to reflect circumstances. 
In most cultures it’s still convention for a woman to change her last 
name when she gets married, although the fact that some women choose 
not to shows how they attribute significant meaning to their names.

Behavior
A name not only promotes identity, but also implies behavior. Obviously, 
a name doesn’t dictate what an object does, but it will influence how you 
interact with it and how the outside world interprets it. We’re never fixed 
to one name per object. I’m known by different monikers in different 
contexts: the name my wife calls me,1 the name my daughters know me 
by, the nickname I use in chat rooms, and so on. These names indicate 
different relationships and interactions with me and the roles I fulfil.

Recognition
A name marks something as a distinct entity. It elevates it from ethereal 
concept to well-defined reality. Before someone put a name to electric-
ity, no one would have understood what it was, although they might 
have some vague idea of its effects by watching lightning or Benjamin 
Franklin’s demonstrations. Once named, it became identifiable as a 
distinct force and, consequently, easier to reason about. The Basque 
culture believes that naming something proves its existence: Izena duen 
guzia omen da—That which has a name exists. (Kurlansky 99)

Today the act of naming has become a multimillion-dollar business, used 
(with varying degrees of success) by small firms, the largest multinational 
corporations, and everything in between. To launch, rebrand, and publicize 
products, these organizations need newer, ever more catchy names. These 
names help to build awareness of products and services.

Clearly, names are of immense importance.
As programmers, we wield this enormous power over our constructs 

when we name them. A badly named entity can be more than just incon-
venient; it can be misleading and even downright dangerous. As a very 
simplistic example, consider the following C++ code:

void checkForContinue(bool weShouldContinue)

{

if (weShouldContinue) abort();

}

1 Which depends on whether she’s in a good or bad mood at the time!
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The parameter name is clearly a lie, or at least its sense is the opposite 
of what you’d expect. The function will not perform as anticipated and, 
as a consequence, your program will abort—a reasonably dire result from 
a single misnamed variable.

Sticks and stones may break my bones, but names will never hurt me. Not true.

Why Should We Name Well?

We need to carefully consider the names we give things. Remember that 
writing source code is all about clear communication. A name creates a 
channel of understanding, control, and mastery. Appropriate naming means 
that to know the name is to know the object.

Good names really matter. The human brain can only hold about seven 
pieces of information concurrently2 (although I’m sure I have a couple of 
defective slots, reducing this capacity). It’s already hard enough to cram all 
the information about a program into your head; we should not add complex 
naming schemes or require obscure references to make this task even harder.

Clear naming is one of the hallmarks of well-crafted code. The ability to 
name things well is an important skill of the code craftsman—he’ll work hard 
to write easy-to-read code.

KEY CONCEPT Learn to name things transparently—an object’s name should describe it clearly.

What Do We Name?

In this chapter we’ll spend some time thinking, as programmers, about what 
we name and how we name it. First: What? The things we name most often 
while writing code are:

Variables

Functions

Types (classes, enums, structs, typedefs)

C++ namespaces and Java packages

Macros

Source files

This list is by no means exhaustive—there are other, higher-level entities 
we’ll give meaningful names to: states of a state machine, parts of messaging 
protocols, database elements, application executables, and so on. But these 
six are enough to start with.

2 This is known as the Miller number, after George A. Miller’s psychological research. (Miller 56)
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Name Games

How do you name? The naming technique for each of these items will depend 
on any coding standard you’re working to. However, while a standard might 
mandate certain naming conventions, it won’t be specific enough to guide 
the appropriate naming of each and every part of a program.

In order to name well, it’s essential to know exactly what you’re naming 
before you think up a name for it. If you don’t know what you’re naming, 
how it will be used, and why it actually exists, how can you give it a meaning-
ful name? Bad names are often a sign of poor understanding.

KEY CONCEPT The key to good naming is to understand exactly what you’re naming. Only then can 
you give a meaningful name. If you can’t invent a good name for something, do you 
really know what it is, or even if it should exist at all?

Before we look in detail at the specific categories of names we create, it’s 
important to understand the forces that drive our choice of names and exactly 
what constitutes a good name. The next few sections explain the qualities of 
a good name.

Descriptive

Obviously a name must be descriptive. That’s what you use it for—to describe 
something. Yet it’s common to see puzzling identifiers that bear little resem-
blance to the data they describe.

Even an accurate name can be limiting. People often stick to their initial 
perceptions of a concept, despite the proverb about judging books by their 
covers. Therefore, it’s important to convey the right first impression through 
careful naming. Choose names from the perspective of an inexperienced 
reader, not from your internal, knowledgeable perspective.

Sometimes finding a good description is difficult. If you can’t come up 
with a good name, then you might need to change your design. It’s an indi-
cation that something might be wrong.

Technically Correct

Modern programming languages impose some rules on how we name 
things. Most allow case-sensitive names, don’t allow whitespace (spaces, tabs, 
newlines), and allow just alphanumeric characters plus certain symbols (like 
the underscore). These days, there are no appreciable limits on identifier 
length.3 Although many languages permit use of Unicode identifiers, it’s still 
common to select from the ISO8859-1 (ASCII) character set for simplicity.

There may be other technical restrictions. The C/C++ standards reserve 
specific ranges of names: You should not use any global identifier beginning 
with str followed by a lowercase letter, or beginning with an underscore, and 

3 Be aware that older versions of C limited external unique linkage to the first six characters, and 
case was not necessarily significant. You need to understand exactly what the target of your code is 
when you write it.
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anything in a namespace called std. It’s important to be aware of these kinds 
of restrictions so we can write robust, correct code.

Idiomatic
Just because a language permits certain combinations of characters doesn’t 
meant they’re automatically good names. Clear names follow conventions that 
the reader expects: the language’s idioms. Just as fluency in a natural language 
depends on understanding its idioms, fluency in a programming language 
requires idiomatic usage.

Some languages have a single, common naming convention—the vast 
Java library establishes a prior art that is hard to ignore—while C and C++ 
have a lesser degree of convergence. There are several cultures, each with 
their own foibles; the standard libraries use one convention, Windows Win32 
APIs another.

KEY CONCEPT Know your language’s naming rules. But more importantly, know the language’s 
idioms. What are the common naming conventions? Use them.

Appropriate
An appropriate name strikes a good balance in several areas:

Length
To create clear, descriptive names, we must use natural language words. 
Programmers have a built-in urge to abbreviate and shorten these words, 
but this leads to confused, messy names. It doesn’t matter that a name is 
long if its meaning is unambiguous. a is not a realistic replacement for 
apple_count.

KEY CONCEPT When naming, favor clarity over brevity.

However, there is a case for short (even one letter) variable names: 
as loop counters. They actually make sense in small loops where variable 
names like loop_counter are not just overly verbose but can quickly 
become tedious.

KEY CONCEPT Understand the trade-offs between short and long names—how they depend on the 
scope of the variable’s use.

Tone
The tone of a name is important. Just as a rude joke isn’t appropriate 
at a funeral, an ill-judged name ruins the professionalism of your code. 
Is this serious? Yes—silly names make the reader doubt the ability of 
the original author.

Avoid jokey names like blah or wibble, or the bigger geek snares foo
and bar. They can easily creep in, and while amusing at first, they just 
create confusion later on. (Objects given these names are usually quick 
temporary hacks that outlast their expected lifetime.) And, obviously, 
being professional means that you don’t use expletives when naming.
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KEY CONCEPT Name things well the first time, all the time.

The Nuts and Bolts

The following sections investigate how to name each category of item we 
listed earlier. Even if you’ve been programming for years, this is a useful 
review of the broad spectrum of naming conventions.

Naming Variables

If a variable wasn’t just an electronic entity, it would be the sort of thing you 
could hold in your hand, the software equivalent of a physical object. A name 
that reflects this will usually be a noun. For example, variable names in a GUI 
application might be ok_button and main_window. Even variables that don’t 
correspond to Real World objects can be given noun names; consider 
elapsed_time or exchange_rate.

If not a noun, a variable will usually be a “noun-ized” verb, for example, 
count. A numeric variable’s name describes the interpretation of the value, as 
in widget_length. A boolean variable name is often the name of a conditional 
statement, which is natural, considering the value will either be true or false.

There are a number of object-oriented language conventions for adorn-
ing member variables to show they are members, not ordinary local variables 
or (evil) global variables. This is a mild form of Hungarian Notation, which 
some programmers find useful.4 For example, C++ members are commonly 
prefixed with an underscore, suffixed with an underscore, or prefixed with 
m_. The first method is frowned upon because it is somewhat risky and 
distasteful.5 Besides, a leading or trailing underscore makes the variable 
pretty unnatural to read.

Some programmers adorn pointer types with a suffix like _ptr and refer-
ence types with one like_ref. This is another subtle infiltration of Hungarian 

FOOD  F O R  T H O U G H T

So what’s with all this foo and bar business? These words are a bit of geek humor, 
utterly meaningless and yet full of purpose. They are usually used as placeholders to 
represent arbitrary things. You might write: for some variable foo, increment it by 
++foo;.

The words generally come in a series. There are several variant series, but you’ll 
see foo, bar, and baz quite universally. What comes next may be up to the fickle 
finger of fate or to whatever geek folklore you prefer.

The etymology of these terms is debatable. Some trace them back to the World 
War II army slang FUBAR (Mucked Up Beyond All Repair). Needless to say, you 
should never use these names in production code.

4 Of course, this kind of naming convention won’t have any impact on a class’s public API 
because all of your member variables are private, aren’t they?
5 You can’t have global identifiers beginning with an underscore followed by a capital letter. The 
archaic C naming rules make many such odd demands.
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Notation, and it is redundant. The fact the variable is a pointer is implicit in 
its type. If your function is so large that you think this adornment is useful, 
then it’s probably too large!

Another common variable-naming practice is using acronyms as concise, 
“meaningful” names. For example, you might declare a variable like this: 
SomeTypeWithMeaningfulNaming stwmn(10);. If the scope of use is small, this kind 
of name may be clearer than a long-winded variant.

Conventions that distinguish type names from variable names are gen-
erally best. Type names often have an uppercase initial letter, while variables 
have a lowercase one. This way, it’s not unusual to see variables declared like 
this: Window window;.

KEY CONCEPT Employ a helpful naming convention that differentiates variable names from type names.

Naming Functions

If a variable is like something you could hold in your hand, the function is 
what you do with it—you don’t want to hold it forever. Since a function is 
an action, its name will most logically be (or will at least include) a verb. 
A function with a noun for a name wouldn’t be clear; for example, what does 
the function apples() do? Does it return a number of apples, does it convert 
something into apples, or does it make apples out of thin air?

Meaningful function names avoid the words be, do, and perform. These are 
classic traps for beginners trying to consciously include verbs (this function
does XXX . . . ). They are just noise and don’t add any value to the name.

A function should always be named from the viewpoint of the user, 
hiding all the internal implementation stuff neatly away. (That’s the point 
of a function—it’s a level of compression and abstraction.)  Who cares if, 
behind the scenes, it stores an element in a list, makes calls over a network, 
or builds a new computer and installs a word processor on it? If the user only 
sees the function count apples, the function should be called countApples().

KEY CONCEPT Name functions from an external viewpoint, with a doing phrase. Describe the logical 
operation, not the implementation.

H U N G A R I A N  N O T A T I O N

Hungarian Notation is a controversial naming convention that encodes information 
about a variable or function’s type in its name with the belief that it will make the 
code more readable and maintainable. It originated at Microsoft in the 1980s and 
is widely used in the company’s public Win32 APIs and the MFC library, which is 
the main reason for its popularity.

It is called Hungarian Notation because it was pioneered by Charles Simonyi, 
a Hungarian programmer. It’s also called that because variable names look like 
they may as well have been written in Hungarian: Non-Windows programmers get 
confused by surreal names like lpszFile, rdParam, and hwndItem.

There are many subtly different and not-quite-compatible dialects of Hungarian 
Notation, which don’t help matters.
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The only time you might choose to break this rule is for simple query 
functions that request information. For these accessors, you can sensibly 
name the function after the data being requested. For an example of this, see 
the answer to question 9 in this chapter’s “Mull It Over” section on page 478.

When you write a function, it should be well documented (either in a 
specification or using some literate programming method). However, the 
name should still be a clear statement of what the function does; it is part of 
the function’s contract. What does void a() do? It could be anything.

Naming Types

Which types you can create depends on the language you’re using. C pro-
vides typedefs, which are synonyms for other type names. You use them to 
provide easier, more convenient names. It stands to reason, then, that a 
typedef should be clearly named. Even if it’s only a local typedef in a 
function body, it should still have a descriptive name.

Java, C++, and other OO languages are profoundly based on the creation 
of new types (classes). C also allows you to define compound types called 
structs. Just as good variable and function names are vital to the readability 
of the code, good type names are paramount. There aren’t too many rigid 
heuristics for naming classes, though, because different classes serve differ-
ent purposes.

A class may describe some stateful data object. In that case, its name will 
probably be a noun.

C A P I T A L I Z A T I O N  C O N V E N T I O N S

Most languages prohibit us from using whitespace and punctuation in our identifiers, 
so we adopt a convention for joining up multiple words. These capitalization con-
ventions cause as many programmer fist fights as the eternal Holy Editor Wars. 
There are a number of common methods that you’ll see in modern code:

camelCase
camelCase is used extensively by the Java language libraries and also in many 
C++ codebases. It is so called because the capitalization resembles a camel’s 
humps and was probably first used in Smalltalk in the early 1970s.

ProperCase
This is a close relative of camelCase, its only difference being that the first letter is 
also capitalized. It is sometimes known as PascalCase. Often the two conventions 
are used together. For example, Java class names are written in ProperCase and 
members in camelCase. The Windows API and .NET methods use ProperCase.

using_underscores
Proponents of this style are the implementers of the C++ standard library (look at 
all the names in the std namespace) and the GNU foundation.

There are also many other forms. How many can you think of? You can start by 
mixing ProperCase with underscores, or by dropping uppercase characters entirely.
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It may be a function object (a functor) or a class implementing some 
virtual callback interface. Here the name will probably be a verb, perhaps 
including the name of a recognized design pattern. (Gamma et al. 94)

If the class is a combination of both, then it’s probably hard to name and 
possibly designed badly.

Interface classes (e.g., abstract C++ classes with pure virtual functions 
or interfaces in Java and .NET) tend to be named according to the 
interface facility. Names like Printable and Serializable are common. 
.NET adds a Hungarian wart, prefixing all interface names with I,
resulting in names like IPrintable.

Earlier, we discussed words to avoid in function names; there is similar 
quicksand here. For example, DataObject is a bad name: The class may very 
well contain data, and it’s obviously going to be used to create an object—
this doesn’t need to be restated.

KEY CONCEPT Avoid redundant words in names. Specifically, avoid these words in type names: class,
data, object, and type.

Ensure that you describe the class of data and not an actual object. That’s a 
subtle, but important distinction.

Naming Namespaces

What name do you give something specifically designed to collate names? 
C++ and C# namespaces and Java packages are like bags, acting primarily as 
grouping mechanisms.

They are also used to prevent name collisions. When two programmers 
create different things with the same name and their code gets glued 
together, what will happen is anyone’s guess. At best, the code will fail to 
link; at worst, all sorts of run-time carnage will ensue. Putting items into 
different namespaces avoids the danger of polluting the global namespace. 
This makes them valuable naming tools.

But namespaces on their own do not prevent collisions; your utils
namespace could still clash with someone else’s utils. To remedy this, we 
employ a naming scheme. Java defines a hierarchy of package names, nested 

A  C L A S S  O F  B A D  N A M E S

A bad class name can serve to really confuse programmers. I once worked on an 
application that contained a state machine implementation. For some historical 
reason, the base class of each state was called Window, rather than something 
sensible like State. It was very confusing and threw off several programmers when 
they first saw it. To add insult to injury, the base class of a command pattern was 
called Strategy, when it wasn’t actually implementing a strategy design pattern. 
It was never easy to figure out what was going on. Better naming would have 
provided a clear route into the code’s logic.
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like Internet domain names—you’ll place code in your own uniquely named 
package. This neatly avoids the problem of collisions. Without such a conven-
tion, namespaces reduce, but do not eliminate, the likelihood of problems.

When picking a name for your namespace, choose something that 
describes the relationship of the contents. If they are all part of a library’s 
interface, make it the library name. If the contents are a single section of a 
larger system, choose a name that describes this section; UI, filesystem, or 
controls are good names. Don’t choose a name that redundantly implies a 
collection of items—controls_group is a bad name.

KEY CONCEPT Give namespaces and packages names that reflect the logical relationships of their 
contents.

Naming Macros

Macros are the walnut-cracking sledgehammers of the C/C++ world. They 
are search-and-replace tools for basic text that don’t respect scope or visibil-
ity. They’re tactless. However, there are some walnuts that just won’t crack 
without them.

Macros have very drastic effects, so there is a well-established tradition 
for naming macros in a maximally obvious way: using CAPITAL LETTERS. 
Follow this without fail, and don’t make any other name entirely capitalized. 
This makes macros stand out like sore thumbs, which is basically what they are.

Since they are simple text replacement tools, give macros names that are 
unique enough to not appear elsewhere in the code. Otherwise, carnage and 
confusion will ensue.

A unique file or project name prefix will help here. The macro name 
PROJECTFOO_MY_MACRO is much safer than MY_MACRO.

KEY CONCEPT Macros in C/C++ are always capitalized to make them stand out and carefully named 
to avoid collisions. Don’t capitalize anything else. Ever.

Naming Files

The names of your source files can have a real impact on the ease of coding. 
Some languages have strict filename requirements—Java source filenames 
must correspond to the contained public class name. On the other hand, C 
and C++ are lax, with no restrictions at all.6

To make choosing filenames easy and obvious, each file should contain a 
single conceptual unit. Putting more stuff into one file is asking for trouble 
in the long run. Split your code into the maximum number of files you can; 
not only will it make them easier to name, but it will reduce coupling and 
make the project’s structure clearer.

A C/C++ file that defines the interface for a widget should be called 
widget.h, not widget_interface.h, widget_decls.h, or any other variation. You 
should conventionally balance each widget.h with a matching widget.cpp or 

6 Except those imposed by your operating system or filesystem.
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widget.c (see “All That Ends Well” on page 50) that implements whatever 
the widget.h declares. The shared base name ties them together logically. 
This is both obvious and conventional.

There are many other subtle, but important issues when naming files:

Be aware of capitalization. Some filesystems can’t get this right and 
ignore case when looking up filenames. But when porting to platforms 
where case is important, your code won’t compile unless you’ve observed 
capitalization carefully. Perhaps the easiest way to avoid being tripped 
up is to mandate that all filenames be lowercase; as they say, If you can’t 
be good, be careful. (Of course, that won’t work for Java, which uses the 
PascalCase naming style for its classes and interfaces.)

For the same reason, if your filesystem considers the filenames foo.h and 
Foo.h to be different, don’t exploit it. Make sure that filenames in the 
same directory differ by more than just case.

If you mix languages in a single project, don’t create foo.c, foo.cpp, and 
foo.java in the same directory. It’s messy—which file is used to create the 
object file foo.o, and which creates the executable called foo?

Try to ensure that all the files you create have a distinct names, even if 
they’re all spread across different directories. This makes it easier to rea-
son about which file is which. It’s obvious which header file you mean 
when you #include "foo.h". If there were two files with the same name, 
then a newcomer to the codebase would be confused. This becomes 
more of an issue as a system grows.

One valid approach is to add some path information to the logical 
filename. Arrange your files so that you can include library_one/version.h
and library_two/version.h without confusion.

File naming seriously impacts ease of coding. I once worked on a C++ 
project where the majority of the filenames matched the class names exactly; 
the class Daffodil was defined in Daffodil.h (names have been changed to 
protect the guilty). However, a handful of files were named in a slightly differ-
ent manner, usually abbreviated, so HerbaciousBorder was held in HerbBdr.h.
That made finding the right filename to #include complex and time consum-
ing. On top of this, not all of the Daffodil class implementation was necessarily 
in Daffodil.cpp—some of it might have been in a shared FlowerStuff.cpp and 
perhaps also in Yogurt.cpp, for no adequately explained reason. As you can 
imagine, this made finding particular bits of code a nightmare. Source code 
browsers help in situations like this, but they are no substitute for plain old, 
well-named code.

A Rose by Any Other Name

There is more to the name game than you’d first think, and there are clearly 
a lot of considerations for naming bits of code. What are the main principles 
to pull out?
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To invent a good name, do the following:

Be consistent

Exploit content

Use names to your advantage

Be Consistent

This is perhaps the most important naming principle. Be consistent—not just 
within your own work, but with respect to company-wide practices. I have no 
confidence in the quality of a class interface if it looks like this:

class badly_named : public MyBaseClass

{

public:

void doTheFirstThing();

void DoThe2ndThing();

void do_the_third_thing();

};

When a lot of people work together, it’s very easy to end up with code 
like this—about as internally consistent as a random number generator. It’s 
often a symptom of a more serious problem—perhaps that the programmers 
aren’t respecting the fundamental design of the code they’re simultaneously 
working on. This is where mandated coding standards and central design 
documents can be a big help.

Naming consistency goes beyond capitalization and formatting to the 
way you create names. A name establishes an implicit metaphor. Across a 
program or project, these metaphors should be consistent. Your naming 
approach should be holistic.

KEY CONCEPT Choose a consistent naming convention—and use it consistently.

A L L  T H A T  E N D S  W E L L

Choosing a suffix is integral to file naming. Java’s build system insists that source 
filenames end in .java. C and C++ compilers are suffix agnostic, but calling header 
files something.h is such a universal convention that it would be like sticking pins in 
your eyes not to do it. We do feel some pain from the lack of rigid definition; there 
are several conventions for C++ implementation filenames, like the common suffixes 
.C, .cc, .cpp, .cxx, and .c++. Less common, but still seen, are C++ headers files 
suffixed with .hpp. Your choice may depend on the compiler, personal preference, 
and/or a coding standard. Consistency is the key; pick a file suffix scheme and use 
it consistently.

I have even worked on a platform that didn’t support filename suffixes. Determining 
the filetype was a complex and messy business.



What’s in a Name? 51

With consistent naming, we get code that is intuitive and therefore easier 
to work with, easier to extend, and easier to maintain. In the long run, it’s 
much cheaper to manage.

Exploit Context

Every name should make perfect sense when read in context. A name 
will only ever be read in its context, so you can delete all the superfluous bits 
that duplicate contextual information. We strive for succinct, descriptive 
names, without unnecessary baggage.

This contextual information may come from:

Scope
Things either live in a top-level, global scope or exist within some name-
space, class, or function. Choose a name that makes sense in the context 
of that scope. The smaller and more specific a scope is, the easier it is 
to create a name within it and the easier it is for the reader to under-
stand what that name really means. If a function counts the number of 
apples in a tree and is defined in a class Tree, then it needn’t be called 
countApplesInTree(). Its fully qualified name would be an unambiguous 
description: Tree::countApples(). Put things in the smallest (and there-
fore most descriptive) scope you can.

The French language, like most other Romance languages, has two 
forms of the word you: tu and vous. Which one you use depends on how 
familiar you are with the person you’re addressing. Similarly, the name 
you call a variable may depend on the context in which you’re using it. 
You may see a variable named differently in a function’s public declara-
tion than in the function implementation.

Type
Everything has a type, and you’ll know what that type is. A name doesn’t 
need to restate this type information. (Restating this is the purpose of 
Hungarian Notation and is why it’s an often derided convention.)

An inexperienced programmer will name his address string variable 
address_string. What good does the _string suffix do? Nothing, so get 
rid of it.

KEY CONCEPT The detail required in a name depends on its context. Use contextual information to 
your advantage when naming.

Use Names to Your Advantage

There is power in a name—power that allows you to be more expressive than 
a language’s syntax alone might allow. Think about how you can use similar 
names to group things together, using a common prefix. Or consider how 
you can imply which of a function’s parameters are input or output by 
including this information in their names.
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In a Nutshell

In your name I will hope, for your name is good.
—Psalms 52:9

Our ancient ancestors knew it, and good programmers know it: It’s crucial to 
name things well. Good names serve more than just an aesthetic purpose; 
they convey information about the structure of code. They are an essential 
tool to aid comprehensibility and maintainability.

The main reason we write code in high-level languages is to communi-
cate, and that communication is to an audience of code readers—other 
programmers—rather than to the compiler. Bad names have the potential to 
mislead. There is power in a name, and experienced programmers under-
stand the balance of concerns involved when naming any part of their code.

G E N E R A L  D O S  A N D  D O N ’ T S

We can condense a lot of the advice in this chapter into some general dos and 
don’ts. Don’t create names that are:

Cryptic
You can create inexplicable names in a number of ways. Acronyms and abbrevi-
ations can appear quite random, and single letter names are far too magical.

Verbose
Avoid terse names, but don’t create a variable called the_number_of_apples_
before_I_started_eating, either. It’s neither remotely useful nor funny.

Inaccurate or misleading
As obvious as it seems, make your names accurate. Don’t call something a 
widget_list if it has nothing to do with lists. Don’t call something widget if it’s a 
container of widgets.

Misspelling opens a minefield of confusion: I thought the variable was called 
ignoramus, but I can’t find it anywhere. Oops, it was misspelled ignoramous. Sigh.

Ambiguous or vague
Don’t use a name that could be interpreted in several ways. Don’t use a hope-
lessly vague name like data or value unless it’s perfectly clear what it represents. 
Avoid the vague temp or tmp unless you really need it.

Don’t differentiate names by capitalization or by changes of a single character. 
Be wary of names that sound similar.

Don’t gratuitously create local variables with the same name as something in 
an outer scope.

Too cute
Sexy little abbreviations, clever shortenings that are hard to remember, and inter-
pretive use of numerals should be avoided. i18n, a common abbreviation for 
internationalization, reads like nonsense to the uninitiated.

On the other hand, do create appropriate names that are clear, specific, concise, 
accurate, and unambiguous. Do use common terms and frames of reference. Use 
words from the problem domain, and draw on descriptive design pattern names. 
(Gamma et al. 94)
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See Also

Chapter 2: The Best Laid Plans
Discusses coding standards, which may guide you in naming things. 
Also talks about holy wars, which Hungarian Notation is definitely a 
cause of.

Chapter 4: The Write Stuff
Good names don’t replace well-documented code—but they are an 
integral part of code documentation.

Get Thinking

A detailed discussion of the following questions can be found in the 
“Answers and Discussion” section on page 474.

Good programmers . . . Bad programmers . . .

Realize the importance of names 
and treat them with respect

Think about naming and choose 
appropriate names for every-
thing they create

Hold many forces in balance: 
name length, clarity, context, 
and so on

Keep a view of the bigger 
picture, so their names hold 
together across a project (or 
projects)

Care little for the clarity of 
their code

Produce write-once code that is 
quick to write and poorly 
thought out

Ignore the language’s natural 
idioms

Are inconsistent in naming

Don’t think holistically, failing 
to consider how their piece of 
code fits into the whole
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Mull It Over

1. Are these good variable names? Answer with either yes (explain why, and 
in what context), no (explain why), or can’t tell (explain why).

a. int apple_count

b. char foo

c. bool apple_count

d. char *string

e. int loop_counter

2. When would these be appropriate function names? Which return types 
or parameters might you expect? Which return types would make them 
nonsensical?

a. doIt(...)

b. value(...)

c. sponge(...)

d. isApple(...)

3. Should a naming scheme favor the easy reading or easy writing of code? 
How would you make either easy?

a. How many times do you write a single piece of code? (Think about 
it.) How many times do you read it? Your answers should give some 
indication as to the relative importances.

b. What do you do when naming conventions collide? Say you’re work-
ing on camelCase C++ code and need to do STL (using_underscore) 
library work. What’s the best way to handle this situation?

4. How long should a loop be before you need to give a meaningful loop 
counter name?

5. In C, if assert is a macro, why is its name lowercase? Why should we name 
macros so they stand out?

6. What are the pros and cons of following your language’s standard library 
naming conventions?

7. Can you wear out a name? Is it okay to repeat a local variable name in 
many different functions? Is it okay to use local names that override (and 
hide) global names? Why?

8. Describe the mechanics of Hungarian Notation. What are the pros and 
cons of this naming convention? Does it have a place in modern code 
design?

9. We see many classes containing member functions acting as getters and 
setters; reading and writing the value of certain properties. What are the 
common naming conventions for these functions, and which is the best?
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Getting Personal

1. How good are you at naming? How many of these heuristics do you 
follow already? Do you consciously think about your naming and these 
sorts of rules, or do you just do it all naturally? In which areas can you 
improve?

2. Does your coding standard mention naming at all?

a. Does it cover all the cases we’ve looked at here? Is it sufficient? Is it 
useful, or just superficial?

b. How much naming detail is appropriate in a coding standard?

3. What’s the worst name you’ve come across recently? How have names 
ever misled you? How would you have changed them to avoid future 
confusion?

4. Do you have to port code between platforms? How has this affected file-
names, other names, and the overall code structure?





T H E  W R I T E
S T U F F

Techniques for Writing
“Self-Documenting” Code

4

In this chapter:

How to document your code

Literate programming

Documentation tools

Real seriousness in regard to writing is one of two absolute 
necessities. The other, unfortunately, is talent.

—Ernest Hemingway

Modern self-assembly ( flat-pack) furniture is 
remarkable, leaving even the seasoned carpenter 
in a state of awe and confusion. Generally, it’s 
cleverly designed and will eventually build into 
what you expect it to.

When assembling it, you have to rely on the 
supplied instructions—you’ll build something 
more like modern art than furniture without them. 
The quality of the instructions drastically affects 
how easy construction is. Bad instructions make 
you sweat, swear, and continually take apart pieces 
of wood that should never have been attached in 
the first place.

It’s a shame they don’t make things like they 
used to.
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Source code suffers from similar problems. It’s true, they don’t make it 
like they used to, but no one was ever that fond of punched cards or COBOL 
anyway. More importantly, without good instructions that explain how the 
code fits together, working with some programs can make you sweat, swear, 
and continually take apart pieces of code that should never have been 
attached in the first place.

Creating good code means creating well-documented code. The reason we 
write code is to communicate clear sets of instructions—not just to the com-
puter, but also to the poor fools who have to fix or extend those instructions 
later on. Code in the Real World is never written and then forgotten about. 
It will be modified, extended, and maintained over the life of the software 
product. To do this we need instructions, a user guide—documentation.

Common wisdom for documenting code is that you should either write 
tons of documents about the code or write tons of comments in the code.

Both ideas are nonsense. Most programmers have an aversion to word 
processors and get bored with writing too many comments. Writing code is
hard work. Documenting it shouldn’t be more hard work. In the heat of the 
software factory, anything that requires extra work tends not to be done. 
Or if it is, it is done badly.

I’ve seen software systems propped up by design specifications, imple-
mentation notes, maintenance guides, and style guides. Unsurprisingly, this 
is the kind of code that’s really tedious to work with. The problem with all of 
this supporting documentation is:

We don’t need extra work to do. Writing documentation takes a lot of 
time; so does reading it. Programmers would rather spend that time 
programming.

All these separate documents must be kept up to date with any code 
changes. In a large project, that’s an awful lot of work. The common 
alternative (never updating any documentation) leads to dangerously 
inaccurate and misleading information.

A forest of documentation is hard to manage. It’s not easy to find the 
right document or to locate a particular piece of information that could 
be in one of several places within a document. Like code, documentation 
has to be held under revision control, and you must make sure you’re 
reading the corresponding document version for the version of source 
code you’re working on.

Important information in separate documents can easily be missed. 
If it’s not beside the code, and there are no helpful pointers, things 
are overlooked.

KEY CONCEPT Don’t write code that needs to be propped up by external documentation. It’s flimsy. 
Ensure that your code reads clearly on its own.

The common alternative—documenting your code with detailed 
code comments—can be just as bad, if not worse. Reams of slavishly 
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detailed comments obstruct good code. You’ll end up writing poorly 
formatted documentation rather than a good program.

How do we avoid this nightmare? We write self-documenting code.

Self-Documenting Code

It sounds like a good idea, doesn’t it? But what is self-documenting code? 
This program is self-documenting:

10 PRINT "I am very small and very pointless"
20 GOTO 10

It’s not anything to be proud of, though. A more complicated, more useful 
self-documenting program requires a great deal of skill. Computer programs 
tend to be much harder to read than they are to write. Anyone who has used 
Perl will understand this; it has been described as the ultimate write-once 
language. Indeed, old Perl code can be truly unfathomable, but you can write 
opaque code in any language, and it doesn’t take much effort.

The only document that describes your code completely and correctly 
is the code itself. That doesn’t automatically mean it’s the best description 
possible, but more often than not, it’s the only documentation you’ll have 
available.

You should, therefore, do everything you can to make it good documen-
tation, the kind of documentation that anyone can read. By necessity, code is 
something that more people than just the author must be able to understand. 
Programming languages are our communication medium. Clear communica-
tion is vital. With clarity, your code gains quality because you’re less likely to 
make mistakes (since errors are more obvious), and it is cheapter to main-
tain the code—it takes less time to learn.

Self-documenting code is easily readable code. It is comprehensible on 
its own, without relying on external documentation. We can improve the 
clarity of our code in many ways. Some techniques are very basic and have 
been drilled into us since we were taught to program. Others are more subtle 
and come with experience.

KEY CONCEPT Write your code to be read. By humans. Easily. The compiler will be able to cope.

Here’s an example of a simple function that’s about as far from self-
documenting as you can get. What do you think it does?

int fval(int i)

{

int ret=2;

for (int n1=1, n2=1, i2=i-3; i2>=0; --i2)

{

n1=n2; n2=ret; ret=n2+n1;

}

return (i<2) ? 1 : ret;

}
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That’s a realistic example; countless millions of lines in production soft-
ware look like that, and programmers on the front line suffer because of it. 
In contrast, the following code is self-documenting. You can probably work 
out what it does by just reading the first line.

D O N ’ T  J U D G E  A  B O O K  .  .  .

A file of self-documenting code reads a lot like a good reference book. Such a book 
is carefully structured, sectioned, and laid out. It reads naturally from front to back 
and top to bottom, but you can just as easily dive into it as a reference. That’s how 
our code should work. Let’s compare the parts:

Introduction
A book’s introduction explains what’s inside, sets the tone, and explains how 
it into the bigger picture. A source file should begin with a code comment header. 
It explains what’s in the file and specifies to which project the source file belongs.

 Table of contents
Although some argue that the file header should include a list of all the contained 
functions, I strongly advise against this. It will rapidly become out of date. You can, 
however, list the contents of the file (all types and classes, functions, variables) with 
most modern editors or IDEs, providing useful directions to specific pieces of code.

Sections 
This book is divided into several parts. Source files may also split into major 
sections; perhaps a single file contains several classes or logical groups of 
functions. This is where breakwater comments help. Extravagant ASCII art is 
generally a Bad Thing, but these kinds of comments help to logically break up 
the file for easy navigation.

Beware, though. Putting too many things in a single source file is not a good 
idea. A simple one-to-one file/class correspondence is best. Large, multipurpose 
files are confusing to understand and very hard to navigate. (If this advice leaves 
you with too many source files, then you need to improve the higher-level code 
structure.)

Chapters
Each chapter of a book is a self-contained and well-named chunk. Source files 
typically contain a number of well-named functions.

Paragraphs 
Within each function, you’ll group code into blocks of statements. The initial 
variable declarations will be in one logical block, separated from the following 
code by a blank line (well, at least they will be in older C code). This isn’t a 
syntactic thing, just layout that helps you read the code.

Sentences 
Sentences naturally correspond to each single code statement.

Cross-references and index
Again, this isn’t a part of your source file markup, but a good editor or IDE will 
provide cross-referencing capabilities. Learn how to use them.

This is an interesting analogy, but what difference does it make for writing code? 
Many good book-writing techniques translate into good code-writing techniques. 
Learn them to make your code more readable. Split code into sections, chapters, 
and paragraphs. Use layout to emphasize the code’s logical structure. Use simple, 
short code statements—just like short sentences, they’re more readable.
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int fibonacci(int position)

{

if (position < 2)

{

return 1;

}

int previousButOne = 1;

int previous = 1;

int answer = 2;

for (int n = 2; n < position; ++n)

{

previousButOne = previous;

previous  = answer;

answer = previous + previousButOne;

}

return answer;

}

There’s one thing you should notice about that function—the lack of 
comments. It’s obvious what’s going on without any. Comments would just 
add more stuff to be read. They’d be unnecessary noise and would make the 
function harder to maintain in the future. That’s important—because even 
the smallest, most beautiful functions will need later maintenance.1

Techniques for Self-Documenting Code

Writing self-documenting code is traditionally thought to involve adding a 
copious amount of comments. Good commenting certainly is an important 
technique, but there’s much more to it than that. In fact, we should actively 
avoid comments by writing clear code that doesn’t need them.

The following sections list important self-documenting code techniques. 
You’ll notice that they cover similar ground to the other chapters in this first 
part of the book. That’s not entirely surprising—there are many overlapping 
characteristics of good code; the benefits of one technique will be seen in 
several areas of code quality.

Write Simple Code with Good Presentation

Presentation has an enormous impact on the clarity of code. Thoughtful 
layout conveys the structure of the code; it makes functions, loops, and 
conditional statements clearer.

Make the “normal” path through your code obvious. Error cases should 
not confuse the normal flow of execution. Your if-then-else constructs 
should be ordered consistently (i.e., always place the “normal” case 
before the “error” case, or vice versa).

1 Did you work out what that first example did? Both functions compute a value in the Fibonacci 
sequence. Which would you prefer to read?
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Avoid too many nested statements. They lead to complex code that 
needs lengthy explanation. Common wisdom claims that each function 
should have one and only one exit point; this is known as Single Entry, 
Single Exit (SESE) code. But this is actually too restrictive for readable 
code and leads to deep levels of nesting. I prefer the fibonacci example 
we saw previously to this SESE variant: 

int fibonacci(int position)

{

int answer = 1;

if (position >= 2)

{

int previousButOne = 1;

int previous = 1;

for (int n = 2; n < position; ++n)

{

previousButOne = previous;

previous  = answer;

answer  = previous + previousButOne;

}

}

return answer;

}

For the sake of an extra return statement, I’d rather avoid that gra-
tuitous nesting—it has made the function much harder to read. returns
deep in the middle of a function’s logic are questionable, but simple 
short circuits at the top aid function readability immensely.

Be wary of optimizing code so that it’s no longer a clear expression of 
a basic algorithm. Never optimize code unless you’ve proved that it is a 
bottleneck to acceptable program function. Optimize only then, and 
clearly comment about what’s going on.

Choose Meaningful Names

All variable, type, file, and function names should be meaningful, not 
misleading. A name should faithfully describe what it represents. If you 
can’t name something meaningfully, then do you really understand what 
it’s doing? Your naming scheme should be consistent so that there are no 
nasty surprises. Make sure that a variable is only ever used for what its 
name implies.

Good names are probably our best way of avoiding gratuitous comments. 
They are the nearest thing we have in code to the expressiveness of natural 
language.

Decompose into Atomic Functions

The way that you split the code into functions and the names you give those 
functions can either add meaning to code or totally strip it of sense.
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One function, one action. Make that your mantra. Don’t write complex func-
tions that make coffee, clean shoes, and guess the number you first thought 
of. In one function, do one action. Choose a name that unambiguously 
explains that action. A good name means that no extra documentation is 
needed.

Minimize any surprising side effects, no matter how benign they appear. 
They require extra documentation.

Keep it short. Short functions are easy to understand. You can get your 
head around a complex algorithm if it’s broken into small pieces with 
descriptive names, but you can’t if it’s a sprawling mess of code on the page.

Choose Descriptive Types

As much as possible, describe constraints or behavior with the available 
language features. For example:

If you are defining a value that will never change, enforce it as a constant 
type (use const in C).

If a variable should not contain a negative value, use an unsigned type 
(if your language provides one).

Use enumerations to describe a related set of values.

Select appropriate types. In C/C++, put sizes in size_t variables and 
pointer arithmetic results in ptrdiff_t variables.

Name Constants

Stumbling over some code that reads if (counter == 76) will leave you scratch-
ing your head. What is the magic significance of the number 76? What is the 
intent of that test?

These so-called magic numbers are evil. They hide meaning. Writing

const size_t bananas_per_cake = 76;

...

if (count == bananas_per_cake)

{

// make banana cake

}

is much clearer. If you use the constant 76 (sorry, bananas_per_cake) a lot in 
your code, you gain an additional benefit: When you need to change the 
banana-to-cake ratio, you only need to make one code change, rather than 
perform an error-prone search-and-replace for every 76 in the project.

KEY CONCEPT Avoid magic numbers. Use well-named constants instead.

This holds true for constant strings as well as numbers. Question the use 
of any literal in your code, especially when you use it several times over—can 
you use a more maintainable named constant instead?
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Emphasize Important Code

Make important stuff stand out from mundane stuff. Draw the reader’s atten-
tion to the right places. There are many coding opportunities to do this. 
For example:

Order the declarations in a class helpfully. Public information should 
come first, since this is what the class user needs to see. Put the private 
implementation details at the end, since they are less important to most 
readers.

Wherever possible, hide all nonessential information. Don’t clutter the 
global namespace with unnecessary cruft. In C++ you can use the pimpl 
idiom to hide class implementation details (Meyers 97).

Don’t hide important code. Write only one statement per line, and keep 
each statement simple. You can write very clever for loops, putting all the 
logic on one line with an assortment of commas, but it’s not easy to read. 
Don’t do it.

Limit the number of nested conditional statements. If you don’t, the 
handling of important conditions will become hidden by a nest of ifs
and braces.

KEY CONCEPT Make sure all important code stands out and is easy to read. Hide anything that the 
client audience doesn’t care about.

Group-Related Information

Present all related information in one place. Otherwise, you’ll not only make 
the reader jump through hoops, you’ll require him to know via ESP where the 
hoops are. The API for a single component should be presented in a single 
file. If there is so much related information that it becomes messy to present 
it all together, question the code’s design.

Whenever possible, group items by a language construct. In C++ and C# 
we can group items within a namespace. Java provides packages as grouping 
mechanisms. Related constant values can be defined in an enum.

KEY CONCEPT Group information together intentionally. Use language features to make this grouping 
explicit.

Provide a File Header

Place a comment block at the top of a file to describe its contents and the 
project to which it belongs. This takes only a little effort, but it can make a 
big difference. When someone comes to maintain that file, they’ll have a 
good idea what to expect.

This header can be important: Most companies mandate that every source 
file contains a visible copyright notice for legal reasons. File headers commonly 
look something like the following.
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/*********************************************************

* File: Foo.java 

* Purpose: Foo class implementation

* Notice: (c) 1066 Foo industries. All rights reserved. 
********************************************************/

Handle Errors Appropriately

Handle any error in the most appropriate context. If there is a disk I/O prob-
lem, you should handle it in code that accesses the disk. Perhaps handling this 
error would mean raising a different error (like a “couldn’t load file” exception) 
to a higher level. This means that at each level in the program, an error is an 
accurate description of what the problem is in that context. Don’t handle hard 
disk corruption in the user interface code—it doesn’t make sense.

Self-documenting code helps the reader to understand where an error 
came from, what it means, and its implications for the program at that point.

KEY CONCEPT Don’t return nonsensical errors. Present the appropriate information in each context.

Write Meaningful Comments
As you can see, we’ve tried to avoid writing comments by using other 
implicit code documentation techniques. However, once you’ve written 
the clearest code you can, you need to comment what remains. Clear code 
contains an appropriate amount of commenting. What is this appropriate 
amount?

KEY CONCEPT Only add comments if you can’t improve the clarity of the code in any other way.

Think about all these other techniques first. Would a name change or a 
new subordinate function make the code clearer and avoid a comment?

S E L F - I M P R O V E M E N T

How do you get better at writing self-documenting code? Let’s head back into book-
writing territory for some clues.

There’s a simple principle for improving your writing skills: If you read a lot, you 
become a better writer. Critically reading the works of recognized authors teaches 
you what works and what doesn’t. You pick up new techniques and idioms to add to 
your arsenal.

Similarly, if you read a lot of code, you’ll become a better programmer. If you 
immerse yourself in good code, you’ll soon be able to smell bad code a mile away. 
Customs officials see so many passports each day that a forged one stands out like 
a sore thumb. Even clever imitations become obvious. Bad code becomes so much 
more striking when you’re sensitive to the warning signs.

With this experience you’ll naturally find yourself using good techniques in your 
own code. You’ll begin to spot when you write bad code; it will feel uncomfortable.
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Practical Self-Documentation Methodologies

We’ll conclude this chapter by comparing two specific code documentation 
methods. Remember that these methods come after the techniques we’ve just 
seen. Kernighan and Plaugher said, “Don’t document bad code—rewrite it.” 
(Kernighan Plaugher 78)

Literate Programming

Literate programming is an extreme self-documenting code technique, conceived 
by the renowned computer scientist Donald Knuth. He wrote a book by this 
name that described it. (Knuth 92) It is a radical alternative to the traditional 
programming model, although some people think the literate programming 
episode of Knuth’s career was a large and unfortunate sidetrack. Even if it’s 
not the One True Way to code, there are still things we can learn from it.

The idea behind literate programming is simple: You don’t write a pro-
gram, you write a document. The documentation language is bound up tightly 
with the programming language. Your document is primarily a description of 
what is being programmed, but also happens to compile into that program. 
The source code is the documentation, and vice versa.

A literate program is written almost as a story; it is easy for the human 
reader to follow, perhaps even enjoyable to read. It is not ordered or 
constrained for a language parser. This is more than just a language with 
inverted comments; it’s an inverted method for programming. Literate 
programming is a whole different way of thinking.

Knuth originally mixed (a markup language for document type-
setting) and C in a system called WEB. A literate programming tool parses 
the program file and generates either formatted documentation or source 
code that can be fed into a traditional compiler.

Of course, this is just another programming technique, like structured 
programming or object-oriented programming. It doesn’t guarantee quality 
documentation. That is, as ever, up to the programmer. However, literate 
programming shifts the emphasis toward writing a description of the pro-
gram rather than just writing code that implements it.

Literate programming really comes into its own during a product’s 
maintenance phase. With good quality (and quantity of) documentation 
directly on hand, it becomes much easier to maintain the source.

There are many useful qualities of literate programming:

Literate programming places emphasis back on writing documentation.

It makes you think about your code in a different way since you write 
explanations and justifications as you go along.

You are more likely to update the documentation when you make changes 
to the code, since it’s situated conveniently nearby.

You are guaranteed to only have one document for the whole codebase. 
You’ll always be able to view the correct version for the code you’re 
working on—it is the code you’re working on.
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Literate programming encourages the inclusion of items not normally 
found in source comments. For example: a description of the algorithms 
used, proofs of correctness, and the justification of design decisions.

However, literate programming isn’t a magical cure-all. It has some serious 
drawbacks:

Literate programs are harder to write, because most programmers don’t 
find it natural. We tend not to think of code as a printed document that 
needs formatting. Rather, we mentally model control flows and interact-
ing objects.

Extra compilation steps are required, which make literate programs 
slower to work with. There is still no really good tool support.

It’s quite difficult to process a literate program, since the compiler 
needs to extract all the program fragments and reassemble them, in the 
correct order. While it’s nice to write the document in any order, C can 
be quite specific about how it wants to see code; #includes must come 
first, for example. This leads to some practical compromises.

You might end up documenting some code that doesn’t really need it. 
And the alternative, not documenting swathes of simple code, often 
happens too. This is no longer a good literate program; you may as well 
not have bothered.

When everything is being written about, you can miss the few important 
bits of documentation in all the noise.

Knuth talked about the programmer as essayist. Many a programmer couldn’t 
write an essay to save his life, but he can write the most exquisite code. 
Maybe these guys are exceptions to the rule, but not every good program-
mer is a capable literate programmer.

Tying documentation intimately to code can be problematic. You may 
have frozen your code for a major release—no changes are allowed—but 
you still need to work on the documentation. Altering the documentation 
means altering the source code. Now you have an executable-release ver-
sion and a documentation-release version of the same codebase that you 
have to tie together: a management nightmare.

A later chapter discusses software specifications; how does literate pro-
gramming relate to specifications? A literate program will never replace a 
functional specification describing what work needs to be done. However, 
it should be possible to develop a literate program from such a specification. 
The literate program really is more of a combination of traditional code with 
a design and implementation specification.

Documentation Tools

There is a breed of programming tool that sits halfway between the literate 
programming approach and writing external specifications. These tools 
generate documentation from your source code by pulling out blocks of 
specially formatted comments. This technique has become particularly 
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fashionable since Sun introduced Javadoc as a core component of the Java 
platform. All of the Java API documentation is generated by Javadoc.

To understand exactly how this works, we’ll look at an example. The 
exact comment formats may differ, but to document a Widget class, you’d 
write something like:

/**

* This is the documentation for the Widget class.

* The tool knows this because the comment started

* with the special '/**' sequence.

*

* @author Author name here

* @version Version number here

*/

class Widget

{

public:

/**

* This is the documentation for a method.

*/

void method();

};

The documentation tool will parse each of your project’s files, extract the 
documentation, build a cross-referenced database of all the information it 
finds on the way, and spit out a pretty document containing this information.

You can document pretty much any code you write: classes, types, 
functions, parameters, flags, variables, namespaces, packages, and so 
on. There are facilities to capture a lot of information, including the 
ability to:

Specify copyright information

Document the date of creation

Cross-reference information

Mark old code as deprecated

Provide a short synopsis for quick reference

Present a description of each function parameter

There are many documentation tools available, both open source 
and commercial. We’ve already mentioned Javadoc; other popular tools 
are C#’s NDoc and the excellent Doxygen (www.doxygen.org).

This is an excellent approach to documentation, allowing you to document 
code at a sensible level of detail without writing a separate specification. You 
can easily read your documentation in the source files too, which can be very 
helpful.

Documentation tools offer many benefits:

Like literate programming, this approach encourages you to write 
documentation and keep it up to date.

No separate step is required to get compilable code.
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It’s more natural, not requiring massive adjustments or a steep learning 
curve. While the code can be used to generate a document, you don’t 
have to artificially make your code look like a book or worry about 
tedious text layout concerns.

The documentation tools support rich searching, cross-referencing, and 
code-outlining features.

However, it is important to understand the consequences of comment-
based code documentation:

Unlike literate programming, it’s really only useful for API documenta-
tion, not internal code documentation. You must use regular comments 
at the statement level.

It’s hard to glance at a source file and get an overview of the contents, 
since they are spaced out by reams of documentation comments. You’d 
have to use the overview output of the tool instead. This may be beauti-
fully formatted, but it’s inconvenient to view when you’re immersed in 
the world of the code editor.

KEY CONCEPT Use literate documentation tools to automatically generate documentation from 
your code.

Although this is a powerful way to write documentation, you can still 
write bad documentation using it. These are some helpful heuristics for 
getting it right:

For each publicly visible item, write a one- or two-sentence description; 
don’t go overboard with reams of text. A slew of prose is slow to read and 
hard to update. Don’t waffle.

Document variables or parameters if it’s not clear what they’re used for, 
but don’t document them if their names make it obvious. You don’t need 
to document every last detail if it doesn’t add any value. The tool’s output 
will still include the item, just with no textual explanation.

If some of a function’s parameters are used for input and some for output, 
make this clear in their descriptions. Few languages provide a syntactic 
mechanism to express this, so you must document it explicitly.

Document any function pre- or postconditions, what exceptions might 
be thrown, and any of a function’s side effects.

In a Nutshell

The skill of writing is to create a context
in which other people can think.

—Edwin Schlossberg

We write code primarily to communicate. Code without documentation is a 
perilous thing, hardly communicative. It is a high-maintenance problem. Bad
documentation is no better, either misleading the reader or resulting in a 
flimsy program that relies on external explanation.
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Often the only documentation we have for a piece of code is that code 
itself. Making the code self-documenting and clear to read goes some way to 
remedy this situation. Self-documenting code doesn’t happen magically, 
you have to carefully think about it. The result is code that looks like it was
easy to write.

Literate programming is one (quite extreme) method of writing self-
documenting code. Another less extreme method employs documentation 
tools. These tools can generate API documentation very easily, but they don’t 
necessarily replace all written specifications.

See Also

Chapter 3: What’s in a Name? 
Good names are powerful tools when writing self-documenting code.

Chapter 5: A Passing Comment 
When you do resort to writing comments, this is how to do it correctly.

Good programmers . . . Bad programmers . . .

Seek to write clear, self-
documenting code

Try to write the least amount 
of documentation necessary

Think about the needs of 
programmers who will 
maintain their code

Are proud that they write 
unfathomable spaghetti

Try to avoid writing any 
documentation

Don’t care about updating 
documentation

Think, “If it was hard for me 
to write, it should be hard for 
anyone else to understand.”
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Chapter 19: Being Specific 
Code should document itself, but we still need separate specifications for 
many reasons.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 480.

Mull It Over

1. Grouping related code will make its relationships clear. How can we 
perform this grouping? Which methods document the relationships 
most strongly?

2. We should avoid using magic numbers in our code. Is zero a magic number? 
What should you call a constant value representing zero?

3. Self-documenting code makes good use of context to convey informa-
tion. Show how you do this, and give an example of how a particular 
name would lead to a different interpretation in different functions?

4. Is it realistic to expect a newcomer to pick up some self-documenting 
code and understand it totally?

5. If code is truly self-documenting, how much other documentation is 
required?

6. Why must more people than the original author understand any piece 
of code?

7. This simple C bubblesort function could use some improvement. What 
specific things are wrong with it? Write an improved, self-documenting 
version.

void bsrt(int a[], int n)

{

for (int i = 0; i < n-1; i++)

for (int j = n-1; j > i; j--)

if (a[j-1] > a[j])

{

int tmp = a[j-1];

a[j-1] = a[j];

a[j] = tmp;

}

}

8. Working with code documentation tools brings up some interesting 
issues. What’s your opinion on these?

a. When you review the documentation, should you perform a 
code review, looking at the comments in the source files, or a 
specification review, looking at the generated documents?
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b. Where do you put documentation of protocols and other non-API 
issues?

c. Do you document private/internal functions? In C/C++, where do you 
place this documentation—in the header file or implementation file?

d. In a large system, should you create a single, large API document or 
several smaller documents, one per area? What are the advantages of 
each approach?

9. If you’re working on a codebase that isn’t literately documented, and 
you need to alter or add new methods or functions, is it a good idea to 
give them literate documentation comments, or should you leave them 
undocumented?

10. Is it possible to write self-documenting assembly code?

Getting Personal

1. What do you consider to be the best documented code you’ve come 
across? What made it so?

a. Did this code have a large number of external specifications? How 
many of them did you read? How can you be sure you knew enough 
about the code without reading them all?

b. How much of this do you think was due to the author’s programming 
style, and how much was because of any house style or guidelines he 
or she worked to?

2. If you write in more than one language, how does your documentation 
strategy differ in each?

3. In the last code you wrote, how did you make the important stuff stand 
out? Did you hide private information away appropriately?

4. If you’re working on a team, how often do others come to you to ask you 
how something works? Could you avoid this with better-documented code?



A P A S S I N G
C O M M E N T
How to Write Code Comments

5

In this chapter:

What are comments used for?

How many comments are 
required?

How to write effective 
comments

Comments are free but facts are sacred.
—Charles Prestwich Scott

Comments are a lot like opinions. You’re free to 
make them, but just because you do doesn’t mean 
they’re right. In this chapter, we’ll spend a little 
time thinking about the details of writing these 
things. There’s a lot more to writing comments 
than you’d think.

Probably one of the first things you learned 
when you were taught to program was how to 
write comments. You were told that comments aid 
the readability of code, and you were probably 
encouraged to write lots of them. But in this game, 
we need to be thinking more about quality than 
quantity. Comments are our lifelines, memory jogs, 
and guides through code. We should treat them 
with the respect they deserve.

I set my syntax-highlighting code editor to 
display comments in green. This way, I get an 
immediate feeling for the quality of a piece of 
codeand how easy it’s going to be to work with as 
soon as I load up a source file. A nice proportion of 
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green spread through in the right pattern makes me feel good about the 
world. The opposite makes me stroll to the kitchen for a strong coffee before 
going any further.

Comments can make the difference between bad code and good code, 
between a grossly complex and unfathomable morass of logic and a nice set 
of clear algorithms. But let’s not overstate the case—there are things far more 
important to get right than comments. When you’ve written truly good code, 
your comments are the icing on the cake, delicately placed to add aesthetics 
and value, rather than liberally slapped on to cover up all the cracks and 
blemishes.

Good commenting is a strategy to avoid intimidating code. Comments 
aren’t a magic additive to turn sour code sweet.

What Is a Code Comment?

Don’t skip this section! Admittedly, this is an excruciating place to start. We 
all know what a code comment is, right? But it is more philosophical than 
you might think.

Syntactically, a comment is a block of source that the compiler will ignore. 
Put what you like in it, the names of your grandchildren or the color of your 
favorite shirt; the compiler won’t bat an eye as it merrily parses its way through 
the file.1

Semantically, a comment is the difference between a dingy dirt track and 
a well-lit highway. The comment is an annotation of the code it’s situated by. 
You can use it as a highlighter to make a particular problem area stand out or 
as a documentation medium in your header file. You might use comments to 
describe the shape of an algorithm, to aid the maintenance programmer 
(which could be you later on), or to mark the space between each function 
to help you navigate through a source file more quickly.

Comments are aimed at the human reader, not the computer. In this 
sense, comments are the most human-focused brick in the programming 
wall. They are ornately molded bricks, as opposed to structural breeze 
blocks. If we want to improve the quality of our comments, we need to 
look at and address what the human really needs as he reads code.

Code comments are not the only documentation that you should put in 
your code. Comments are not specifications. They are not design documents. 
They are not API references.2 However, they are an invaluable form of docu-
mentation that will always be physically attached to the code (unless someone 
maliciously hits DELETE). Their close proximity means they’re more likely to 
be updated and more likely to be read in context. It’s an internal documen-
tation mechanism.

As responsible programmers, we have a duty to comment well.

1 Of course, the thing that chews up and spits out the comments differs with the kind of language 
you’re using. In C/C++, the monstrous preprocessor beast devours comments before the compile 
stage begins. In other languages, the compiler itself throws away comments as it tokenizes the 
source. In interpreted languages, your intense commenting may slow down execution, since the 
interpreter has to jump over the names of all your grandchildren.
2 Well, unless you use a literate programming tool, discussed in “Literate Programming” on 
page 66.
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What Do Comments Look Like?

Well, they’re green aren’t they? At least they are for me.
C comments come in blocks between /* and */ and can span any number 

of lines. C++, C99, C#, and Java add the single line comment that follows //.
Other languages provide similar block and line comment facilities, but with 
different syntaxes.

Again, this is elementary subject matter. But the different comment 
markers are often used in subtly different ways. We’ll see examples as we go 
along. However, any commenting scheme that makes cute use of subtle 
syntax differentiations should be viewed warily.

How Many Comments?

Vigorous writing is concise.
—William Strunk Jr.

We need to focus on comment quality, not quantity, so more important than 
the amount of comments we write are the contents of those comments. The 
next section discusses this.

Student programmers are taught to write comments, and lots of them. 
But there is such a thing as too much commenting—you can obscure important 
sections of code in a dense forest of words. Code quality suffers when you 
have to spend more time wading through complex paragraphs of comments 
than the actual code that you need to read.

I liken this skill to being a good musician. Playing in a band is not about 
how much noise you can make at every conceivable opportunity. The more 
you play your instrument, the more complex the overall sound, and the worse 
the music. Likewise, too many comments muddle the code. A good musician 
doesn’t have to think, When should I stop playing and let someone else have a chance?
A good musician only plays when it will really add something. It’s about playing 
the minimum you can to create the best sound possible. The beauty is in the 
space. We should only be writing comments when they really add something.

KEY CONCEPT Learn to write enough comments, and no more. Favor quality, not quantity.

The people who will read your comments can also read the code, so try 
to document as much as possible in the code itself, rather than in comments. 
It’s what they’ll believe, anyway—comments have a nasty tendency to lie. 
Consider your code statements the first level of comment, and make them 
self-documenting.

Well-written code doesn’t actually need comments, because everything 
should be self-explanatory. Function names like f() and g() scream out for 
comments to describe them, but someGoodExample() doesn’t ask for a comment 
at all. You can see it’s a good example function name.

KEY CONCEPT Spend your time writing code that doesn’t need to be propped up by tons of comments.

The fewer comments you write, the less chance you have of writing bad 
comments.
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What Goes Inside Our Comments?

Of writing well the source and
fountainhead is wise thinking.

—Horace

Bad comments are worse than no comments at all—they will misinform and 
mislead the reader. So what sort of thing should you write in comments? Here 
are a few basic steps to improve the quality of your comment content:

Explain Why, Not How
This is a key point, so read this paragraph twice. Then eat the page. Your 
comments should not describe how the program works. You can see that by 
reading the code. After all, the code is the definitive description of how the 
code works. And it has been written clearly and comprehensibly, hasn’t it? 
You should instead focus on describing why something is written the way it is 
or what the next block of statements ultimately achieves.

Constantly check whether you’re writing /* update WidgetList structure 
from GlbWLRegistry */ or /* cache widget information for later */. They might 
equate to the same thing, but the latter conveys the intent of the code, while 
the former just tells you what it’s doing.

As you maintain a section of code, the reason why it exists will change less 
often than how it achieves that purpose, making this sort of comment’s mainte-
nance much easier.

KEY CONCEPT Good comments explain why not how.

You might also use a comment to explain why you have made a particular 
implementation choice. If you have two possible implementation strategies 
and you decide on one over the other, then consider whether it is worth 
adding a comment explaining this rationale.

Don’t Describe the Code
Worthless descriptive comments can be obvious: ++i; // increment i. They 
can also be more subtle: a lengthy comment description of a complex algo-
rithm, followed by the implementation of the algorithm. There is no need to 
restate code laboriously in English unless you’re documenting a really com-
plex algorithm that’s impenetrable without it. And then you should probably 
worry more about rewriting the algorithm than the comment.

KEY CONCEPT Honor the golden rule: One fact—one source. Don’t duplicate code in a comment.

Don’t Replace Code

If you see a comment stating something that could be enforced by the lan-
guage itself (e.g., // this variable should only be accessed by class foo), then 
look to express it in concrete syntax.
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If you find yourself writing reams of comments to explain how a complex 
algorithm works, stop. First pat yourself on the back for trying to document 
what’s going on. But then consider whether you could change the code or 
the algorithm to make it clearer.

Perhaps you could split the code into several well-named functions to 
reflect the program logic.

Don’t write comments to describe the use of a variable; rename the 
variable. The comment you were going to write will often tell you what 
the name of the variable should be!

If you are documenting a condition that should always hold, perhaps you 
should be writing an assertion.

Remember that you don’t need to prematurely optimize (and thus 
obfuscate) your code.

KEY CONCEPT When you find yourself writing dense comments to explain your code, step back.
Is there a bigger problem to solve?

Keep It Useful
A good comment usually takes several iterations to move up the quality ladder, 
just like code. Make sure your comments:

Document the unexpected
If any bits of code are unusual, unexpected, or surprising, document them 
with a comment. You’ll thank yourself when you come back later, having 
forgotten all about the problem. If there are specific work-arounds, say 
for an operating system issue, then mention this in a comment.

The flip side of this is that you don’t need to document the obvious. 
Remember: Don’t repeat the code!

Tell the truth
When is a comment not a comment? When it’s a lie. Okay, you’ll never 
deliberately write lies, but it’s easy to accidentally introduce mistruths, 
especially when modifying code that has already been commented. 
Later code changes can easily render a comment inaccurate; “Working 
with Comments” on page 84 describes tactics to cope with this.

Are worthwhile
Little witty cryptic comments may be witty, and they might be little, 
but don’t put them in. They get in the way and cause confusion. Avoid 
expletives, inside jokes that only you understand, and comments that 
are unnecessarily critical—you never know where your code will end up 
in a month or year’s time, so don’t write comments that could cause 
you embarrassment later.

Are clear
Your comment serves to annotate and explain the code. Don’t be ambigu-
ous. Be as specific as you can (without writing a thesis about each line). 
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If someone reads your comment and is left wondering what it means, then 
you have made the code worse and slowed down their comprehension.

Are comprehensible
You don’t need to write complete, grammatically correct English sen-
tences inside every comment you write. However, the comment must be 
readable. Cute abbreviations of words usually only serve to confuse the 
reader—especially if English is not his or her first language.

KEY CONCEPT Think about what you’re writing in a comment; don’t type without using your brain. 
Read it back again in the context of the code. Does it contain the right information?

Avoid Distractions
Comments serve to illuminate the surrounding code, so we must avoid 
anything that distracts from it. Comments should only add value. Avoid 
comments that include:

The past 
We don’t need to keep a record of how we used to do something. The 
revision control system does that. We don’t need to see old code repro-
duced in comments, nor a description of an old algorithm.

Code you don’t want 
Don’t knock out code by enclosing it in comments. It’s confusing. Even 
when debugging commando style (no pants, no debugger, and no printfs),
don’t hide code you need to remove in a comment block. Use C’s 
#ifdef 0 . . . #endif or some equivalent. These constructs nest and 
have clearer intent (especially important if you forget to come back 
later and tidy up).

ASCII art 
Avoid ASCII art pictures or anything else that tries to highlight code in 
clever ways. This, for example, is a bad idea:

aBadExample(n, foo(wibble)); 

// ^^^

// My favorite 

// function 

A  W A R  S T O R Y

I once did some consulting work for a company that had a mixture of programmers: 
some were native English speakers, some native Greek speakers. The Greeks could 
all speak excellent English, but not one of the English speakers could speak Greek 
(no surprise there).

One of the Greek programmers wrote comments in Greek and, when politely 
asked, refused to change this practice. The English programmers couldn’t read these 
comments because they were, quite literally, all Greek to me!



A Pass ing Comment 79

It won’t make sense in editors with variable width display fonts. 
Comments are not supposed to double maintenance effort!

End of blocks 
Some programmers comment the end of every control block, for example 
putting // end if (a < 1) after the closing brace of an if statement. This 
is a redundant form of comment; it needs to be filtered out before real 
comprehension can occur. The bottom of a block should be visible on 
the same page as the top, and the code layout should make its start and 
end clear. All extra verbiage should be avoided.

In Practice

The following example illustrates these commenting principles. Consider 
the following snippet of C++ code. Idiomatic criticisms aside, it is not at all 
clear what’s going on.

for (int i = 0; i < wlst.sz(); ++i) 
k(wlst[i]);

Yuck. There’s some room for improvement here, so let’s improve. The 
code can be made less cryptic by applying sensible layout rules and adding a 
few comments:

// Iterate over all widgets in the widget list 

for (int i = 0; i < wlst.sz(); ++i) 

{ 

// Print out this widget 

k(wlst[i]); 

}

Much better! Now it’s entirely clear what the code snippet is supposed to 
be doing. I’m still not entirely happy, though. With appropriate function and 
variable names, we no longer need any comments at all, since the code 
describes itself:

for (int i = 0; i < widgets.size(); ++i) 

{ 

printWidget(widgets[i]); 

}

Note that I didn’t rename i to something more long-winded. It’s a loop 
variable with a very small scope. Calling it loopCounter would have been overkill 
and would arguably have made the code harder to read.

It shouldn’t be surprising that we ended up with no comments at all. 
Remember Kernighan and Plaugher’s advice: “Don’t document bad code—
rewrite it.” (Kernighan Plaugher 78)
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A Comment on Aesthetics

You’ve no doubt heard people religiously touting about how you should format 
your comments. I’m not going to prescribe the One True Way to format 
(there is no such thing), but there are a few important aspects to consider. 
Interpret these as guidelines, according to your personal taste, rather than as 
rigid dictates.

Consistency

All commenting should be clear and consistent. Choose a specific way to lay 
out your comments, and use it throughout. Every programmer has a different 
sense of aesthetics, so choose what works for you. Do use a house style if one 
exists, or examine (good) existing code and follow the styles you see there.

Small formatting issues in comment writing may seem trivial—for example, 
should each comment start with a capital letter or not? However, if all your 
comments are randomly capitalized, it conveys a lack of cohesion in the code, 
as if the programmer didn’t really think all that carefully when he crafted it.

Clear Block Comments

Syntax highlighting editors are great because they help comments to stand 
out. But don’t rely on them too much. Your code might be read from a mono-
chrome printout or viewed in an editor without syntax coloring. The comment 
work should still be easily readable.

A few strategies can help here, especially regarding block comments. 
Placing the start and end markers (e.g., /* and */ in C and C++) on their own 
lines makes them stand out. Placing a margin character down the left side of 
a block comment also helps to make it appear as a single item:

/*

* This is much more readable 

* as a block comment in the midst 

* of a whole pile of code 

*/

This is much better than the alternative:

 /* 

a comment that might 

span a few lines but without

any margin character. 

*/

At the very least, line up the comment text so it’s not a jagged mess.
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Indenting Comments

A comment shouldn’t cut across the code and break up the logical flow. 
Keep it at the same level of indentation as the code around it. That way, the 
comment appears to apply to the correct level of the code. I always have to 
stare hard at code like this:

void strangeCommentStyle() 

{ 

for (int n = 0; n < JUST_ENOUGH_TIMES; ++n) 

{ 

// This is a meaningful comment about the next line. 

doSomethingMeaningful(n); 

// But frankly, it's confusing the pants off of me. 
anotherUsefulOperation(n); 

} 

}

In a loop without braces (which isn’t a good idea anyway), don’t put a 
comment before the single loop body statement—this can lead to all sorts of 
distaster. If you want a comment in there, wrap up the whole thing in braces. 
It’s a far safer strategy.

End-of-Line Comments

Most comments are written on lines of their own, but sometimes a short single 
line comment can follow a code statement. In this case, it’s good practice to 
space out the comment to mark it as clearly apart from the code. For example:

class HandyExample 

{ 

public:

... some nice public stuff ... 

private: 

int appleCount; // End-of-line comments: 

bool isFatherADustman; // Make them stand out 

int favoriteNumber; // from the code 

};

This is a good example of using comment layout to improve the 
appearance of your code. If each end-of-line comment came directly after 
the variable declaration, they’d look jagged, messy, and require more 
squinting to read.

Helping You to Read the Code

Comments are usually written above the code that they describe, not below it. 
This way, the source code reads downward, almost like a book. The comment 
serves to prepare the reader for what is to come.
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Used with whitespace, commenting helps to break the code up into 
“paragraphs.” A comment introduces a few lines, explaining what they intend 
to achieve; the code immediately follows, then a blank line, then the next 
block. This is such a convention that a comment with a blank line before it 
feels like a paragraph start, whereas a comment sandwiched in the middle of 
two code lines feels more like a statement in brackets or a footnote.

KEY CONCEPT Comments are part of the code narrative. Use them in a way that reads naturally.

Choose a Low-Maintenance Style

It’s sensible to choose a low-maintenance comment style, or you’ll waste time 
fiddling with comments when you should be writing code.

Some C coders create comment blocks with a column of asterisks in the 
left margin and a column of asterisks as a right margin. Arguably this looks 
very pretty, but the amount of work required to adjust a paragraph of text 
within such margins is immense. When you could have moved on to the next 
task at hand, you have to manually realign all the asterisks on the right. If 
the programmer used tabs, then things get even nastier: If someone with a 
different-sized tab stop opens the file, he or she will wonder what the original 
programmer was up to—all the asterisks will look incredibly ugly and badly 
lined up.

The end-of-line comments we saw above are an example of alignment 
that requires some effort. How much work you’re prepared to spend is up 
to you. There is always a balance between good-looking source code and 
maintenance effort. I suppose I prefer a little bit of effort to ugly code.

Breakwaters

Comments are often used as breakwaters between sections of code. This is where 
people’s artistic sensibilities take over; programmers use different schemes to 
differentiate major comments (this is a new section of code) from minor com-
ments (this describes a few of lines of a function). A source file implementing 
several classes may have something like this between each major section:

/**************************************************************************

* class foo implementation

**************************************************************************/

Some programmers insert large blocks of comment art between each 
function. Some use a long, single-line comment as a rule-off. I just place a 
couple of blank lines between functions. If your functions are so large that 
you need visual clues to see where they start and end, then you need to revise 
your code.

Avoid using these large rules to emphasize every comment in sight. 
Otherwise, nothing gets emphasized. Good indentation and structure, not 
impressive ASCII art, should group code together.
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All that being said, well-chosen breakwater comments can help you to 
quickly navigate around a file.

Flags
Comments can also be used as inline flags in the code. There are a number of 
common conventions. You’ll see //XXX, //FIXME, or //TODO littered though files 
that are still works in progress. Good syntax-highlighting editors display these 
comments prominently by default. XXX is used to mark troublesome code or 
something that needs to be reworked. TODO often marks missing pieces of 
functionality for a later return.3 FIXME indicates something that’s known to 
be broken.

File Header Comments
Every source file should begin with a comment block that describes its 
contents. This is just a quick overview, a preface, providing some essential 
information that you always want displayed as soon as a file is opened. If such 
a header exists, then any programmer who opens the file will have confidence 
in the contents; it shows the file was thoughtfully created rather than just 
hacked up as a dumping ground for some new code. 

KEY CONCEPT Give every source file a comment prologue.

Some people advocate that this header should provide a list of every 
function, class, global variable, and so on that is defined in the file. This is a 
maintenance disaster; such a comment would rapidly become out of date. The 
kind of information this file header should contain is the purpose of the file 
(e.g., implementation of foo interface) and a copyright statement describing 
ownership and copying rights.

If a source file is automatically generated during the build process, then 
you must arrange for this file to receive a comment header that states very 
clearly (in BIG SCARY CAPITAL LETTERS) where it originated. This will 
prevent someone from mistakenly editing it, only to have the contents 
regenerated at the next build.

The header should not contain information that could easily become out 
of date, like the author(s), modifiers, or the date the file was last modified. 
This probably wouldn’t be updated often, and would become misleading. 
Version control tells you this anyway. It also needn’t contain a source file 
history describing every modification ever made. That information exists in 
your source control system and doesn’t need to be duplicated here. Moreover, 
if you have to scroll through 10 pages of modification history to get to the 
first line of code, then the file becomes tedious to work with. For this reason, 
some programmers put it at the end of the file instead, but this will still make 
the file unreasonably large, slow to load, and bothersome to work with..

3 Be careful with TODO comments. You might be better off throwing a TODO exception instead, 
which cannot be missed. That way, if you forget to implement the missing code, your program 
will fail in a well-defined way.
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Working with Comments

Comments are convenient tools to use while you are writing code. But be 
careful not to abuse them.

Helping You to Write Routines
A common routine-writing approach is to fashion its structure in comments 
first and then fill in the code underneath each comment line. If you work 
this way, you should ask yourself, once finished, whether the remaining 
comments are still useful. Evaluate them against the criteria just discussed, 
and revise or remove them if necessary. Don’t just leave them and move on.

The alternative is to write the new routine freehand, and then add any 
necessary comments afterward. The danger is that you’ll forget to finish the 
job, or that you might not write the best comments—now knowing almost 
too well how the code works. The experienced programmer comments as he 
goes along. Practice shows you the right amount of commenting to use.

A  W E L L - P L A C E D  C O M M E N T

We’re focusing on code comments in this chapter, what we actually type into source 
code. But different breeds of comment graze in neighboring pastures:

Check in/out comments 
Your revision control system maintains a history of how each file was modified 
over the life of the project. It associates metadata with each revision—at the very 
least, programmer-supplied check-in comments. It may also record checkout 
comments if it keeps tabs on which files are currently in use. You use these com-
ments to describe what you are changing, as a record for posterity.

Such comments are invaluable, and should be created carefully. They should be:
• Short (so you can quickly browse a log of all modifications)
• Accurate (don’t get information wrong, or the history is worthless)
• Complete (so you can see all that has happened in a file without manually 

diff ing revisions)
Document what has changed and why, not how it has changed. You can use 

the file revision differences to work out how you modified the code.
This is where comments about the past belong. It’s also the right place for bug-

tracking references. Don’t be tempted to put information that belongs here into 
source code comments. Remember: One fact—one source.

README files
These are plaintext files that live in the directories alongside source code files. 
They are useful documentation, falling somewhere between formal specifications 
and code comments. They often contain practical information, perhaps on what 
each file does or on the structure of the file hierarchy; they are basically short notes.

READMEs tend to be either haphazard and poorly thought out or badly main-
tained and out of date—which is a shame. When you come across a README 
file, you naturally load it up to see what helpful information it contains. The pres-
ence of a README shows someone was thinking when they collected the source 
files together; there was something worth documenting and something worthwhile 
to say about it.
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Don’t be afraid of using the flags we saw earlier, like TODO, as markers to 
yourself. It will avoid the embarrassment of forgetting to tie up pesky little 
loose ends. You can easily search your entire codebase for these comments to 
find out what still needs to be completed.

Bug-Fix Notices
A common, but questionable, comment practice is placing notices where faults 
have been fixed. You may stumble over a comment like this in the middle of 
a function:

// <bug reference> - changed to use blah.foo2() 

// method because blah.foo() didn't handle <some 

// condition> properly 

blah.foo2();

Although written with the best intentions (to help you see what’s 
happened in the course of development), these comments often do more 
harm than good. To understand the real problem, you’d have to look up the 
fault in your fault-tracking system and pull out the previous revision of the 
file to investigate what changed. Few bug fixes require that kind of reading, 
so the newcomer can probably live in blissful ignorance. These comments 
proliferate in the later stages of development and during maintenance and 
litter the source code with sidelines, stale information, and distractions from 
the main thread of execution.

There is an argument for inserting a comment when you make a non-
obvious fix—to prevent someone who is revising the code later from reintro-
ducing the bug. However, in these well-chosen cases, you are actually 
documenting the unexpected rather than placing a bug-fix notice.

KEY CONCEPT Comments should live in the present, not the past. Don’t describe things that have 
changed, or tell what something used to do.

Comment Rot

Comments rot. Well, all carelessly maintained code tends to rot, acquiring 
unsightly blemishes and losing the original neat design. However, comments 
seem to rot much more quickly than any other piece of code. They become 
out of date with the code they describe. This can be profoundly annoying.

A  W A R  S T O R Y

I once worked on a section of code containing the comment Features A and B not 
yet implemented. I needed both these facilities, so I wrote them. Only after having 
done so did I discover that feature B had already been implemented—I had just 
wasted effort—and feature A was redundant, since the implementation of B handled 
it as well. If the programmer who did this had removed the incorrect comment, I would 
have been spared a lot of work.
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The simple solution is this: When you fix, add, or modify any code, fix, 
add, or modify any comments around it. Don’t just fiddle with a couple of 
lines and move on. Make sure that any code changes don’t turn comments 
into lies. The corollary is: We must make comments easy to keep up to date, 
or they won’t be updated. Comments must be clearly related to their section 
of code, not placed in obscure locations.

KEY CONCEPT When you alter code, maintain any comments around it.

Another bad habit is leaving blocks of code commented out. This will 
confuse you when you come back in a year’s time, or when any other program-
mer stumbles across them. If you encounter some code in a comment block, 
you’ll wonder why it’s there. Was it a fix that was never completed? Is it still a 
work in progress? Did that code never work? Is the rest of the code functionally 
complete?

Either leave a note explaining why you have commented the code out or 
remove it completely—you can always get it back from the source control 
system. Even if you think you’re only knocking something out temporarily, 
leave yourself a note; you may forget to finish it off.

Maintenance and the Inane Comment
As you wade though an old codebase, it’s best not to remove any inane 
comments you find unless they are downright dangerous. Leave them as a 
warning for future maintenance programmers—they give a useful insight 
into the (lack of) quality of the surrounding code. Of course, if you’re actually 
trying to improve that piece of code, then do rework the comments as you 
go! If you find a comment that is factually wrong or misleading, then you 
should rewrite it as a part of your maintenance of the code.

Learn the interesting area flags like XXX, and treat them with respect and 
caution. Also watch for output statements that have been commented out. 
These are a sure sign that there has been a problem area here in the past—
treat the code with care!

Be aware of comment rot. Just because a comment says this is defined in 
foo.c doesn’t mean that it is anymore. Always have faith in code and doubt 
comments.

In a Nutshell

Major writing is to say what has been seen,
so that it need never be said again.

—Delmore Schwartz

We write a lot of comments. That’s because we write a lot of code. Learning 
to write the right sort of comment is important, or our code may keel over 
under the weight of inappropriate and outdated commenting.

Comments are no more important than the code they annotate—you can’t 
make bad code good using comments. Your aim should be self-documenting 
code that requires no comments at all.
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See Also

Chapter 2: The Best Laid Plans 
Code layout and presentation schemes will affect how you lay out your 
comments.

Chapter 3: What’s in a Name? 
Another aspect of self-commenting code: choosing good names.

Chapter 4: The Write Stuff 
Discusses self-documenting code, a tactic that makes heavy commenting 
redundant. Also describes literate programming techniques.

Chapter 18: Practicing Safe Source 
Revision control systems hold file history so you don’t need to explain it 
in comments.

Get Thinking

A detailed discussion of the following questions can be found in the 
“Answers and Discussion” section on page 485.

Good programmers . . . Bad programmers . . .

Try to write a few really good 
comments
Write comments explaining why
Concentrate on writing good 
code rather than a plethora of 
comments
Write helpful comments that 
make sense

Can’t tell the difference between 
good and bad comments
Write comments explaining how
Don’t mind if comments only 
make sense to themselves
Bolster bad code with many 
comments
Fill their source files with 
redundant information 
(revision history, etc.)
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Mull It Over
1. How might the need for and the content of comments differ in the following 

types of code:
a. Low-level assembly language (machine code)
b. Shell scripts

c. A single-file test harness

d. A large C/C++ project

2. You can run tools to calculate what percentage of your source code lines 
are comments. How useful are these tools? How accurate a measure is 
this of comment quality?

3. If you come across some incomprehensible code, which is the better way 
to factor in some intelligibility: adding comments to document what you 
think is going on, or renaming variables/functions/types with more 
descriptive names? Which approach will most likely be easier? Which 
approach will be safer?

4. When you document a C/C++ API with a code comment block, should it 
go in the public header file that declares the function or the source file 
containing the implementation? What are the pros and cons of each 
location? 

Getting Personal
1. Look carefully at the source files you’ve recently worked on. Inspect your 

commenting. Is it honestly any good? (I bet as you read through the code 
you’ll find yourself making a few changes!)

2. How do you ensure that your comments are genuinely valuable and not 
just personal ramblings that only you can understand?

3. Do the people you work with all comment to the same standard, in about 
the same way?

a. Who’s the best at writing comments? Why do you think that? Who’s 
the worst? How much of a correlation does this bear to these individ-
uals’ general quality of coding?

b. Do you think any imposed coding standards could raise the quality 
of the comments written by your team?

4. Do you include history logging information in each source file? If yes:

a. Do you do maintain it manually? Why, if your revision control system 
will insert this for you automatically? Is the history kept particularly 
accurate?

b. Is this really a sensible practice? How often is this information 
needed? Why is it better if placed in the source file than in another, 
separate mechanism?

5. Do you add your initials to or otherwise mark the comments you make in 
other people’s code? Do you ever date comments? When and why do you 
do this—is it a useful practice? Has it ever been useful to find someone 
else’s initials and timestamping?
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Dealing with the Inevitable—
Error Conditions in Code

6

In this chapter:

The types of errors we 
encounter

Dealing with errors correctly

How to raise errors

Learning to program in the 
face of uncertainty

We know that the only way to avoid error is to detect it, 
that the only way to detect it is to be free to enquire.

—J. Robert Oppenheimer

At some point in life, everyone has this epiphany: 
The world doesn’t work as you expect it to. My one-year-
old friend Tom learned this when climbing a chair 
four times his size. He expected to get to the top. 
The actual result surprised him: He ended up 
under a pile of furniture.

Is the world broken? Is it wrong? No. The 
world has plodded happily along its way for the 
last few million years and looks set to continue 
for the foreseeable future. It’s our expectations that 
are wrong and need to be adjusted. As they say: 
Bad things happen, so deal with it. We must write 
code that deals with the Real World and its 
unexpected ways.

This is particularly difficult because the world 
mostly works as we’d expect it to, constantly lulling 
us into a false sense of security. The human brain is
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wired to cope, with built-in fail-safes. If someone bricks up your front door, 
your brain will process the problem, and you’ll stop before walking into an 
unexpected wall. But programs are not so clever; we have to tell them where 
the brick walls are and what to do when they hit one.

Don’t presume that everything in your program will always run smoothly. 
The world doesn’t always work as you’d expect it to: You must handle all 
possible error conditions in your code. It sounds simple enough, but that 
statement leads to a world of pain.

From Whence It Came

To expect the unexpected shows
a thoroughly modern intellect.

—Oscar Wilde

Errors can and will occur. Undersirable results can arise from almost any 
operation. They are distinct from bugs in a faulty program because you know
beforehand that an error can occur. For example, the database file you want 
to open might have been deleted, a disk could fill up at any time and your 
next save operation might fail, or the web service you’re accessing might not 
currently be available.

If you don’t write code to handle these error conditions, you will almost 
certainly end up with a bug; your program will not always work as you intend 
it to. But if the error happens only rarely, it will probably be a very subtle bug! 
We’ll look at bugs in Chapter 9.

An error may occur for one of a thousand reasons, but it will fall into one 
of these three categories:

User error 
The stupid user manhandled your lovely program. Perhaps he provided 
the wrong input or attempted an operation that’s absolutely absurd. 
A good program will point out the mistake and help the user rectify it. 
It won’t insult him or whine in an incomprehensible manner.

Programmer error 
The user pushed all the right buttons, but the code is broken. This is the 
consequence of a bug elsewhere, a fault the programmer introduced 
that the user can do nothing about (except to try and avoid it in the 
future). This kind of error should (ideally) never occur.

There’s a cycle here: Unhandled errors can cause bugs. And those 
bugs might result in further error conditions occurring elsewhere in your 
code. This is why we consider defensive programming an important 
practice.

Exceptional circumstances 
The user pushed all the right buttons, and the programmer didn’t mess up. 
Fate’s fickle finger intervened, and we ran into something that couldn’t be 
avoided. Perhaps a network connection failed, we ran out of printer ink, 
or there’s no hard disk space left.
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We need a well-defined strategy to manage each kind of error in our code. 
An error may be detected and reported to the user in a pop-up message box, 
or it may be detected by a middle-tier code layer and signaled to the client 
code programmatically. The same principles apply in both cases: whether a 
human chooses how to handle the problem or your code makes a decision—
someone is responsible for acknowledging and acting on errors.

KEY CONCEPT Take error handling seriously. The stability of your code rests on it.

Errors are raised by subordinate components and communicated upward, 
to be dealt with by the caller. They are reported in a number of ways; we’ll 
look at these in the next section. To take control of program execution, we 
must be able to:

Raise an error when something goes wrong

Detect all possible error reports

Handle them appropriately

Propagate errors we can’t handle

Errors are hard to deal with. The error you encounter is often not 
related to what you were doing at the time (most fall under the “exceptional 
circumstances” category). They are also tedious to deal with—we want to 
focus on what our program should be doing, not on how it may go wrong. 
However, without good error management, your program will be brittle—
built upon sand, not rock. At the first sign of wind or rain, it will collapse.

Error-Reporting Mechanisms

There are several common strategies for propagating error information to 
client code. You’ll run into code that uses each of them, so you must know 
how to speak every dialect. Observe how these error-reporting techniques 
compare, and notice which situations call for each mechanism.

Each mechanism has different implications for the locality of error. An error 
is local in time if it is discovered very soon after it is created. An error is local 
in space if it is identified very close to (or even at) the site where it actually 
manifests. Some approaches specifically aim to reduce the locality of error to 
make it easier to see what’s going on (e.g., error codes). Others aim to extend 
the locality of error so that normal code doesn’t get entwined with error-
handling logic (e.g., exceptions).

The favored reporting mechanism is often an architectural decision. 
The architect might consider it important to define a homogeneous hierarchy 
of exception classes or a central list of shared reason codes to unify error-
handling code.

No Reporting

The simplest error-reporting mechanism is don’t bother. This works wonderfully 
in cases where you want your program to behave in bizarre and unpredictable 
ways and to crash randomly.
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If you encounter an error and don’t know what to do about it, blindly 
ignoring it is not a viable option. You probably can’t continue the function’s 
work, but returning without fulfilling your function’s contract will leave the 
world in an undefined and inconsistent state.

KEY CONCEPT Never ignore an error condition. If you don’t know how to handle the problem, signal a 
failure back up to the calling code. Don’t sweep an error under the rug and hope for the best.

An alternative to ignoring errors is to instantly abort the program upon 
encountering a problem. It’s easier than handling errors throughout the code, 
but hardly a well-engineered solution!

Return Values

The next most simple mechanism is to return a success/failure value from 
your function. A boolean return value provides a simple yes or no answer. 
A more advanced approach enumerates all the possible exit statuses and 
returns a corresponding reason code. One value means success; the rest repre-
sent the many and varied abortive cases. This enumeration may be shared 
across the whole codebase, in which case your function returns a subset of 
the available values. You should therefore document what the caller can 
expect.

While this works well for procedures that don’t return data, passing error 
codes back with returned data gets messy. If int count() walks down a linked 
list and returns the number of elements, how can it signify a list structure 
corruption? There are three approaches:

Return a compound data type (or tuple) containing both the return 
value and an error code. This is rather clumsy in the popular C-like 
languages and is seldom seen in them.

Pass the error code back through a function parameter. In C++ or .NET, 
this parameter would be passed by reference. In C you’d direct the vari-
able access through pointers. This approach is ugly and nonintuitive; 
there is no syntactic way to distinguish a return value from a parameter.

Alternatively, reserve a range of return values to signify failure. The count
example can nominate all negative numbers as error reason codes; they’d 
be meaningless answers anyway. Negative numbers are a common choice 
for this. Pointer return values may be given a specific invalid value, which 
by convention is zero (or NULL). In Java and C#, you can return a null
object reference.

This technique doesn’t always work well. Sometimes it’s hard to 
reserve an error range—all return values are equally meaningful and 
equally likely. It also has the side effect of reducing the available range of 
success values; the use of negative values reduces the possible positive 
values by an order of magnitude.1

1 If you used an unsigned int then the number of values available would increase by a power of 
two, reusing the signed int’s sign bit.
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Error Status Variables

This method attempts to manage the contention between a function’s return 
value and its error status report. Rather than return a reason code, the function 
sets a shared global error variable. After calling the function, you must then 
inspect this status variable to find out whether or not it completed successfully.

The shared variable reduces confusion and clutter in the function’s sig-
nature, and it doesn’t restrict the return value’s data range at all. However, 
errors signaled through a separate channel are much easier to miss or willfully 
ignore. A shared global variable also has nasty thread safety implications.

The C standard library employs this technique with its errno variable. 
It has very subtle semantics: Before using any standard library facility, you 
must manually clear errno. Nothing ever sets a succeeded value; only failures 
touch errno. This is a common source of bugs, and it makes calling each library 
function tedious. To add insult to injury, not all C standard library functions 
use errno, so it is less than consistent.

This technique is functionally equivalent to using return values, but it 
has enough disadvantages to make you avoid it. Don’t write your own error 
reports this way, and use existing implementations with the utmost care.

Exceptions

Exceptions are a language facility for managing errors; not all languages sup-
port exceptions. Exceptions help to distinguish the normal flow of execution 
from exceptional cases—when a function has failed and cannot honor its con-
tract. When your code encounters a problem that it can’t handle, it stops dead 
and throws up an exception—an object representing the error. The language 
run time then automatically steps back up the call stack until it finds some 
exception-handling code. The error lands there, for the program to deal with.

There are two operational models, distinguished by what happens after 
an exception is handled:

The termination model
Execution continues after the handler that caught the exception. This 
behavior is provided by C++, .NET, and Java.

The resumption model 
Execution resumes where the exception was raised.

The former model is easier to reason about, but it doesn’t give ultimate 
control. It only allows error handling (you can execute code when you notice 
an error), not fault rectification (a chance to fix the problem and try again).

An exception cannot be ignored. If it isn’t caught and handled, it will 
propagate to the very top of the call stack and will usually stop the program 
dead in its tracks. The language run time automatically cleans up as it unwinds
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the call stack. This makes exceptions a tidier and safer alternative to hand-
crafted error-handling code. However, throwing exceptions through sloppy 
code can lead to memory leaks and problems with resource cleanup.2 You 
must take care to write exception-safe code. The sidebar explains what this 
means in more detail.

The code that handles an exception is distinct from the code that 
raises it, and it may be arbitrarily far away. Exceptions are usually provided 
by OO languages, where errors are defined by a hierarchy of exception classes. 

2 For example, you could allocate a block of memory and then exit early as an exception 
propagates through. The allocated memory would leak. This kind of problem makes writing 
code in the face of exceptions a complex business.

W H I S T L E - S T O P  T O U R  O F  E X C E P T I O N  S A F E T Y

Resilient code must be exception safe. It must work correctly (for some definition of 
correctly, which we’ll investigate below), no matter what exceptions come its way. 
This is true regardless of whether or not the code catches any exceptions itself.

Exception-neutral code propagates all exceptions up to the caller; it won’t 
consume or change anything. This is an important concept for generic programs like 
C++ template code—the template types may generate all sorts of exceptions that 
template implementors don’t understand.

There are several different levels of exception safety. They are described in terms 
of guarantees to the calling code. These guarantees are:

Basic guarantee 
If exceptions occur in a function (resulting from an operation you perform or the 
call of another function), it will not leak resources. The code state will be consistent
(i.e., it can still be used correctly), but it will not necessarily leave in a known state. 
For example: A member function should add 10 items to a container, but an 
exception propagates through it. The container is still usable; maybe no objects 
were inserted, maybe all 10 were, or perhaps every other object was added.

Strong guarantee 
This is far more strict than the basic guarantee. If an exception propagates through 
your code, the program state remains completely unchanged. No object is altered, 
no global variables changed, nothing. In the example above, nothing was inserted 
into the container.

Nothrow guarantee 
The final guarantee is the most restrictive: that an operation can never throw an 
exception. If we are exception neutral, then this implies the function cannot do 
anything else that might throw an exception.

Which guarantee you provide is entirely your choice. The more restrictive 
the guarantee, the more widely (re)usable the code is. In order to implement the 
strong guarantee, you will generally need a number of functions providing the 
nothrow guarantee.

Most notably, every destructor you write must honor the nothrow guarantee.* 
Otherwise, all exception handling bets are off. In the presence of an exception, 
object destructors are called automatically as the stack is unwound. Raising an 
exception while handling an exception is not permissible.

*That’s the case in C++ and Java, at least. C# stupidly called ~X() a destructor, even though it 
was a finalizer in disguise. Throwing an exception in a C# destructor has different implications.
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A handler can elect to catch a quite specific class of error (by accepting a 
leaf class) or a more general category of error (by accepting a base class). 
Exceptions are particularly useful for signaling errors in a constructor.

Exceptions don’t come for free; the language support incurs a perfor-
mance penalty. In practice, this isn’t significant and only manifests around 
exception-handling statements—exception handlers reduce the compiler’s 
optimization opportunities. This doesn’t mean that exceptions are flawed; 
their expense is justified compared to the cost of not doing any error handling!

Signals

Signals are a more extreme reporting mechanism, largely used for errors sent 
by the execution environment to the running program. The operating system 
traps a number of exceptional events, like a floating point exception triggered 
by the maths coprocessor. These well-defined error events are delivered to 
the application in signals that interrupt the program’s normal flow of execu-
tion, jumping into a nominated signal handler function. Your program could 
receive a signal at any time, and the code must be able to cope with this. When 
the signal handler completes, program execution continues at the point it was 
interrupted.

Signals are the software equivalent of a hardware interrupt. They are a 
Unix concept, now provided on most platforms (a basic version is part of the 
ISO C standard [ISO99]). The operating system provides sensible default 
handlers for each signal, some of which do nothing, others of which abort 
the program with a neat error message. You can override these with your own 
handler.

The defined C signal events include program termination, execution 
suspend/continue requests, and math errors. Some environments extend 
the basic list with many more events.

Detecting Errors

How you detect an error obviously depends on the mechanism reporting it. 
In practical terms, this means:

Return values 
You determine whether a function failed by looking at its return code. 
This failure test is bound tightly to the act of calling the function; 
by making the call, you are implicitly checking its success. Whether or 
not you do anything with that information is up to you.

Error status variables 
After calling a function, you must inspect the error status variable. If it 
follows C’s errno model of operation, you don’t actually need to test for 
errors after every single function call. First reset errno, and then call any 
number of standard library functions back-to-back. Afterward, inspect 
errno. If it contains an error value, then one of those functions failed. 
Of course, you don’t know what fell over, but if you don’t care, then 
this is a streamlined error-detection approach.
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Exceptions
If an exception propagates out of a subordinate function, you can choose 
to catch and handle it or to ignore it and let the exception flow up a level. 
You can only make an informed choice when you know what kinds of 
exceptions might be thrown. You’ll only know this if it has been docu-
mented (and if you trust the documentation).

Java’s exception implementation places this documentation in the 
code itself. The programmer has to write an exception specification for every 
method, describing what it can throw; it is a part of the function’s signa-
ture. Java is the only mainstream language to enforce this approach. 
You cannot leak an exception that isn’t in the list, because the compiler 
performs static checking to prevent it.3

Signals 
There’s only one way to detect a signal: Install a hander for it. There’s no 
obligation. You can also choose not to install any signal handlers at all 
and accept the default behavior.

As various pieces of code converge in a large system, you will probably 
need to detect errors in more than one way, even within a single function. 
Whichever detection mechanism you use, the key point is this:

KEY CONCEPT Never ignore any errors that might be reported to you. If an error report channel exists, 
it’s there for a reason.

It is good practice to always write error-detection scaffolding—even if 
an error has no implication for the rest of your code. This makes it clear to a 
maintenance programmer that you know a function may fail and have con-
sciously chosen to ignore any failures.

When you let an exception propagate through your code, you are not 
ignoring it—you can’t ignore an exception. You are allowing it to be handled 
by a higher level. The philosophy of exception handling is quite different in 
this respect. It’s less clear what the most appropriate way to document this is—
should you write a try/catch block that simply rethrows the exception, should 
you write a comment claiming that the code is exception safe, or should you 
do nothing? I’d favor documenting the exception behavior.

Handling Errors

Love truth, and pardon error.
—Voltaire

Errors happen. We’ve seen how to discover them and when to do so. The 
question now is: What do you do about them? This is the hard part. The 
answer largely depends on circumstance and the gravity of an error—
whether it’s possible to rectify the problem and retry the operation or to 
carry on regardless. Often there is no such luxury; the error may even 

3 C++ also supports exception specifications, but leaves their use optional. It’s idiomatic to avoid 
them—for performance reasons, among others. Unlike Java, they are enforced at run time.
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herald the beginning of the end. The best you can do is clean up and 
exit sharply, before anything else goes wrong.

To make this kind of decision, you must be informed. You need to know 
a few key pieces of information about the error:

Where it came from 
This is quite distinct from where it’s going to be handled. Is the source a 
core system component or a peripheral module? This information may 
be encoded in the error report; if not, you can figure it out manually.

What you were trying to do 
What provoked the error? This may give a clue toward any remedial 
action. Error reporting seldom contains this kind of information, but 
you can figure out which function was called from the context.

Why it went wrong 
What is the nature of the problem? You need to know exactly what 
happened, not just a general class of error. How much of the erroneous 
operation completed? All or none are nice answers, but generally, the 
program will be in some indeterminate state between the two.

When it happened 
This is the locality of the error in time. Has the system only just failed, 
or is a problem two hours old finally being felt?

The severity of the error 
Some problems are more serious than others, but when detected, one 
error is equivalent to another—you can’t continue without understand-
ing and managing the problem. Error severity is usually determined by the 
caller, based on how easy it will be to recover or work around the error.

How to fix it 
This may be obvious (e.g., insert a floppy disk and retry) or not (e.g., you 
need to modify the function parameters so they are consistent). More often 
than not, you have to infer this knowledge from the other information 
you have.

Given this depth of information, you can formulate a strategy to handle 
each error. Forgetting to insert a handler for any potential error will lead to a 
bug, and it might turn out to be a bug that is hard to exercise and hard to track 
down—so think about every error condition carefully.

When to Deal with Errors

When should you handle each error? This can be separate from when it’s 
detected. There are two schools of thought.

As soon as possible 
Handle each error as you detect it. Since the error is handled near 
to its cause, you retain important contextual information, making the 
error-handling code clearer. This is a well-known self-documenting code 
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technique. Managing each error near its source means that control 
passes through less code in an invalid state.

This is usually the best option for functions that return error codes.

As late as possible 
Alternatively, you could defer error handling for as long as possible. This 
recognizes that code detecting an error rarely knows what to do about it. 
It often depends on the context in which it is used: A missing file error 
may be reported to the user when loading a document but silently swal-
lowed when hunting for a preferences file.

Exceptions are ideal for this; you can pass an exception through each 
level until you know how to deal with the error. This separation of detec-
tion and handling may be clearer, but it can make code more complex. 
It’s not obvious that you are deliberately deferring error handling, and 
it’s not clear where an error came from when you do finally handle it.

In theory, it’s nice to separate “business logic” from error handling. 
But often you can’t, as cleanup is necessarily entwined with that business 
logic, and it can be more tortuous to write the two separately. However, 
centralized error-handling code has advantages: You know where to look 
for it, and you can put the abort/continue policy in one place rather than 
scatter it through many functions.

Thomas Jefferson once declared, “Delay is preferable to error.” There is 
truth there; the actual existence of error handling is far more important than 
when an error is handled. Nevertheless, choose a compromise that’s close 
enough to prevent obscure and out-of-context error handling, while being 
far enough away to not cloud normal code with roundabout paths and error 
handling dead ends.

KEY CONCEPT Handle each error in the most appropriate context, as soon as you know enough about 
it to deal with it correctly.

Possible Reactions

You’ve caught an error. You’re poised to handle it. What are you going to do 
now? Hopefully, whatever is required for correct program operation. While 
we can’t list every recovery technique under the sun, here are the common 
reactions to consider.

Logging
Any reasonably large project should already be employing a logging 
facility. It allows you to collect important trace information, and is an 
entry point for the investigation of nasty problems.

The log exists to record interesting events in the life of the program, 
to allow you to delve into its inner workings and reconstruct paths of 
execution. For this reason, all errors you encounter should be detailed 
in the program log; they are some of the most interesting and telling 
events of all. Aim to capture all pertinent information—as much of the 
previous list as you can.
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For really obscure errors that predict catastrophic disaster, it may be 
a good idea to get the program to “phone home”—to transmit either a 
snapshot of itself or a copy of the error log to the developers for further 
investigation.

What you do after logging is another matter.

Reporting
A program should only report an error to the user when there’s nothing 
left to do. The user does not need to be bombarded by a thousand small 
nuggets of useless information or badgered by a raft of pointless questions. 
Save the interaction for when it’s really vital. Don’t report when you 
encounter a recoverable situation. By all means, log the event, but keep 
quiet about it. Provide a mechanism that enables users to read the event 
log if you think one day they might care.

There are some problems that only the user can fix. For these, it is 
good practice to report the problem immediately, in order to allow the 
user the best chance to resolve the situation or else decide how to 
continue.

Of course, this kind of reporting depends on whether or not the 
program is interactive. Deeply embedded systems are expected to cope 
on their own; it’s hard to pop up a dialog box on a washing machine.

Recovery
Sometimes your only course of action is to stop immediately. But not all 
errors spell doom. If your program saves a file, one day the disk will fill 
up, and the save operation will fail. The user expects your program to 
continue happily, so be prepared.

If your code encounters an error and doesn’t know what to do about 
it, pass the error upward. It’s more than likely your caller will have the 
ability to recover.

Ignore
I only include this for completeness. Hopefully by now you’ve learned to 
scorn the very suggestion of ignoring an error. If you choose to forget all 
about handling it and to just continue with your fingers crossed, good luck.
This is where most of the bugs in any software package will come from. 
Ignoring an error whose occurrence may cause the system to misbehave 
inevitably leads to hours of debugging.

You can, however, write code that allows you to do nothing when an 
error crops up. Is that a blatant contradiction? No. It is possible to write 
code that copes with an inconsistent world, that can carry on correctly 
in the face of an error—but it often gets quite convoluted. If you adopt 
this approach, you must make it obvious in the code. Don’t risk having 
it misinterpreted as ignorant and incorrect.

KEY CONCEPT Ignoring errors does not save time. You’ll spend far longer working out the cause of bad 
program behavior than you ever would have spent writing the error handler.
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Propagate
When a subordinate function call fails, you probably can’t carry on, but 
you might not know what else to do. The only option is to clean up and 
propagate the error report upward. You have options. There are two 
ways to propagate an error:

Export the same error information you were fed (return the same 
reason code or propagate exceptions).

Reinterpret the information, sending a more meaningful message to 
the next level up (return a different reason code or catch and wrap 
up exceptions).

Ask yourself this question: Does the error relate to a concept exposed 
through the module interface? If so, it’s okay to propagate that same error. 
Otherwise, recast it in the appropriate light, choosing an error report that 
makes sense in the context of your module’s interface. This is a good 
self-documenting code technique.

Code Implications
Show me the code! Let’s spend some time investigating the implications of error 
handling in our code. As we’ll see, it is not easy to write good error handling 
that doesn’t twist and warp the underlying program logic.

The first piece of code we’ll look at is a common error handling structure. 
Yet it isn’t a particularly intelligent approach for writing error-tolerant code. 
The aim is to call three functions sequentially—each of which may fail—and 
perform some intermediate calculations along the way. Spot the problems 
with this:

void nastyErrorHandling()

{

if (operationOne())

{

... do something ...

if (operationTwo())

{

... do something else ...

if (operationThree())

{

... do more ...

}

}

}

}

Syntactically it’s fine; the code will work. Practically, it’s an unpleasant style 
to maintain. The more operations you need to perform, the more deeply 
nested the code gets and the harder it is to read. This kind of error handling 
quickly leads to a rat’s nest of conditional statements. It doesn’t reflect the 
actions of the code very well; each intermediate calculation could be con-
sidered the same level of importance, yet they are nested at different levels.
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Can we avoid these problems? Yes—there are a few alternatives. The first 
variant flattens the nesting. It is semantically equivalent, but it introduces 
some new complexity, since flow control is now dependent on the value of a 
new status variable, ok:

void flattenedErrorHandling()

{

bool ok = operationOne();

if (ok)

{

... do something ...

ok = operationTwo();

}

if (ok)

{

... do something else ...

ok = operationThree();

}

if (ok)

{

... do more ...

}

C R A F T I N G  E R R O R  M E S S A G E S

Inevitably, your code will encounter errors that the user must sort out. Human interven-
tion may be the only option; your code can’t insert a floppy disk or switch on the 
printer by itself. (If it can, you’ll make a fortune!)

If you’re going to whine at the user, there are a few general points to bear in mind:

• Users don’t think like programmers, so present information the way they’d expect. 
When displaying the free space on a disk, you might report Disk space: 10K.
But if there’s no space left, a zero could be misread as OK—and the user will not be 
able to fathom why he can’t save a file when the program says everything’s fine.

• Make sure your messages aren’t too cryptic. You might understand them, but can 
your computer-illiterate granny? (It doesn’t matter if your granny won’t use this 
program—someone with a lower intellect almost certainly will.)

• Don’t present meaningless error codes. No user knows what to do when faced 
with an Error code 707E. It is, however, valuable to provide such codes as 
“additional info”—they can be quoted to tech support or looked up more easily 
on a web search.

• Distinguish dire errors from mere warnings. Incorporate this information in the 
message text (perhaps with an Error: prefix), and emphasize it in message boxes 
with an accompanying icon.

• Only ask a question (even a simple one like Continue: Yes/No?) if the user fully 
understands the ramifications of each choice. Explain it if necessary, and make 
it clear what the consequence of each answer is.

What you present to the user will be determined by interface constraints and 
application or OS style guides. If your company has user interface engineers, then 
it’s their job to make these decisions. Work with them.
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if (!ok)

{

... clean up after errors ...

}

}

We’ve also added an opportunity to clean up after any errors. Is that 
sufficient to mop up all failures? Probably not; the necessary cleanup may 
depend on how far we got through the function before lightening struck. 
There are two cleanup approaches:

Perform a little cleanup after each operation that may fail, then return 
early. This inevitably leads to duplication of cleanup code. The more work 
you’ve done, the more you have to clean up, so each exit point will need 
to do gradually more unpicking.

If each operation in our example allocates some memory, each early-
exit point will have to release all allocations made to date. The further 
in, the more releases. That will lead to some quite dense and repetitive 
error-handling code, which makes the function far larger and far harder 
to understand.

Write the cleanup code once, at the end of the function, but write it in such 
a way as to only clean up what’s dirty. This is neater, but if you inadvertently 
insert an early return in the middle of the function, the cleanup code will 
be bypassed.

If you’re not overly concerned about writing Single Entry, Single Exit (SESE)
functions, this next example removes the reliance on a separate control flow 
variable.4 We do lose the cleanup code again, though. Simplicity renders this 
a better description of the actual intent:

void shortCircuitErrorHandling()

{

if (!operationOne()) return;

... do something ...

if (!operationTwo()) return;

... do something else ...

if (!operationThree()) return;

... do more ...

}

A combination of this short-circuit exit with the requirement for cleanup 
leads to the following approach, especially seen in low-level systems code. 
Some people advocate it as the only valid use for the maligned goto. I’m still 
not convinced.

4 Although this clearly isn’t SESE, I contend that the previous example isn’t, either. There is only 
one exit point, at the end, but the contrived control flow is simulating early exit—it might as well
have multiple exits. This is a good example of how being bound by a rule like SESE can lead to 
bad code, unless you think carefully about what you’re doing.



To Er r  I s  Human 103

void gotoHell()

{

if (!operationOne()) goto error;

... do something ...

if (!operationTwo()) goto error;

... do something else ...

if (!operationThree()) goto error;

... do more ...

return;

error:

... clean up after errors ...

}

You can avoid such monstrous code in C++ using Resource Acquisition Is 
Initialization (RAII) techniques like smart pointers. (Stroustrup 97) This has 
the bonus of providing exception safety—when an exception terminates 
your function prematurely, resources are automatically deallocated. These 
techniques avoid a lot of the problems we’ve seen above, moving complexity 
to a separate flow of control.

The same example using exceptions would look like this (in C++, Java, 
and C#), presuming that all subordinate functions do not return error codes 
but instead throw exceptions:

void exceptionalHandling()

{

try

{

operationOne();

... do something ...

operationTwo();

... do something else ...

operationThree();

... do more ...

}

catch (...)

{

... clean up after errors ...

}

}

This is only a basic exception example, but it shows just how neat excep-
tions can be. A sound code design might not need the try/catch block at all 
if it ensures that no resource is leaked and leaves error handling to a higher 
level. But alas, writing good code in the face of exceptions requires an under-
standing of principles beyond the scope of this chapter.
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Raising Hell

We’ve put up with other people’s errors for long enough. It’s time to turn 
the tables and play the bad guy: Let’s raise some errors. When writing a 
function, erroneous things will happen that you’ll need to signal to your 
caller. Make sure you do—don’t silently swallow any failure. Even if you’re 
sure that the caller won’t know what to do in the face of the problem, it 
must remain informed. Don’t write code that lies and pretends to be doing 
something it’s not.

Which reporting mechanism should you use? It’s largely an architectural 
choice; obey the project conventions and the common language idioms. In 
languages with the facility, it is common to favor exceptions, but only use them 
if the rest of the project does. Java and C# really leave you with no choice; 
exceptions are buried deep in their execution run times. A C++ architecture 
may choose to forego this facility to achieve portability with platforms that 
have no exception support or to interface with older C code.

We’ve already seen strategies for propagating errors from subordinate 
function calls. Our main concern here is reporting fresh problems encountered 
during execution. How you determine these errors is your own business, but 
when reporting them, consider the following:

Have you cleaned up appropriately first? Reliable code doesn’t leak 
resources or leave the world in an inconsistent state, even when an 
error occurs, unless it’s really unavoidable. If you do either of these 
things, it must be documented carefully. Consider what will happen 
the next time your code is called if this error has manifested. Ensure 
it will still work.

Don’t leak inappropriate information to the outside world in your error 
reports. Only return useful information that the caller understands and 
can act on.

Use exceptions correctly. Don’t throw an exception for unusual return 
values—the rare but not erroneous cases. Only use exceptions to signal 
circumstances where a function is not able to meet its contract. Don’t 
use them non-idiomatically (i.e., for flow control).

Consider using assertions (see “Constraints” on page 16) if you’re 
trapping an error that should never happen in the normal course of 
program execution, a genuine programming error. Exceptions are a 
valid choice for this too—some assertion mechanisms can be config-
ured to throw exceptions when they trigger.

If you can pull forward any tests to compile time, then do so. The sooner 
you detect and rectify an error, the less hassle it can cause.

Make it hard for people to ignore your errors. Given half a chance, some-
one will use your code badly. Exceptions are good for this—you have to 
act deliberately to hide an exception.
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What kind of errors should you be looking out for? This obviously depends 
on what the function is doing. Here’s a checklist of the general kinds of error 
checks you should make in each function:

Check all function parameters. Ensure you have been given correct 
and consistent input. Consider using assertions for this, depending on 
how strictly your contract was written. (Is it an offense to supply bad 
parameters?)

Check that invariants are satisfied at interesting points in execution.

Check all values from external sources for validity before you use them. File 
contents and interactive input must be sensible, with no missing pieces.

Check the return status of all system and other subordinate function calls.

Managing Errors

The common principle uniting the raising and handling of errors is to have a 
consistent strategy for dealing with failure, wherever it manifests. These are 
general considerations for managing the occurrence, detection, and handling 
of program errors:

Avoid things that could cause errors. Can you do something that is 
guaranteed to work, instead? For example, avoid allocation errors by 
reserving enough resource beforehand. With an assured pool of mem-
ory, your routine cannot suffer memory restrictions. Naturally, this will 
only work when you know how much resource you need up front, but 
you often do.

Define the program or routine’s expected behavior under abnormal 
circumstances. This determines how robust the code needs to be and 
therefore how thorough your error handling should be. Can a function 
silently generate bad output, subscribing to the historic GIGO principle?5

A N  E X C E P T I O N  T O  T H E  R U L E

Exceptions are a powerful error reporting mechanism. Used well, they can simplify 
your code greatly while helping you to write robust software. In the wrong hands, 
though, they are a deadly weapon.

I once worked on a project where it was routine for programmers to break a 
while loop or end recursion by throwing an exception, using it as a non-local goto.
It’s an intersting idea, and kind of cute when you first see it. But this behavior is nothing 
more than an abuse of exceptions: It isn’t what exceptions are idiomatically used for. 
More than one critical bug was caused by a maintenance programmer not under-
standing the flow of control through a complex, magically terminated loop.

Follow the idioms of your language, and don’t write cute code for the sake of it.

5 That is, Garbage In, Garbage Out—feed it trash, and it will happily spit out trash.
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Clearly define which components are responsible for handling which 
errors. Make it explicit in the module’s interface. Ensure that your client 
knows what will always work and what may one day fail.

Check your programming practice: When do you write error-handling 
code? Don’t put it off until later; you’ll forget to handle something. Don’t 
wait until your development testing highlights problems before writing 
handlers—that’s not an engineering approach.

KEY CONCEPT Write all error detection and handling now, as you write the code that may fail. Don’t 
put it off until later. If you must be evil and defer handling, at least write the detection 
scaffolding now.

When trapping an error, have you found a symptom or a cause? Consider 
whether you’ve discovered the source of a problem that needs to be rec-
tified here or if you’ve discovered a symptom of an earlier problem. If it’s 
the latter, then don’t write reams of handling code here, put that in a more 
appropriate (earlier) error handler.

In a Nutshell

To err is human; to repent, divine; to persist, devilish.
—Benjamin Franklin

To err is human (but computers seem quite good at it, too). To handle these 
errors is divine.

Every line of code you write must be balanced by appropriate and 
thorough error checking and handling. A program without rigorous error 
handling will not be stable. One day an obscure error may occur, and the 
program will fall over as a result.

Handling errors and failure cases is hard work. It bogs programming 
down in the mundane details of the Real World. However, it’s absolutely 
essential. As much as 90 percent of the code you write handles exceptional 
circumstances. (Bentley 82) That’s a surprising statistic, so write code expecting
to put far more effort into the things that can go wrong than the things that 
will go right.

Good programmers . . . Bad programmers . . .

Combine their good 
intentions with good 
coding practices

Write the error-handling code 
as they write the main code

Are thorough in the code they 
write, covering every error 
possibility

Take a haphazard approach to 
writing code, with neither thought 
to nor review of what they’re doing

Ignore the errors that arise as they 
write code

End up conducting lengthy 
debugging sessions to track down 
program crashes, because they 
never considered error conditions in 
the first place
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See Also

Chapter 1: On the Defensive 
Handing errors in context is one of the many defensive programming 
techniques.

Chapter 4: The Write Stuff 
Self-documenting code ensures that error handling is integral to the 
code narrative.

Chapter 9: Finding Fault 
Unhandled error conditions will manifest as bugs in the code. Here’s 
how to squash them. (It’s best to avoid them in the first place, though.)

Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 487.

Mull It Over

1. Are return values and exceptions equivalent error reporting mechanisms? 
Prove it.

2. What different implementations of tuple return types can you think of? 
Don’t limit yourself to a single programming language. What are the 
pros and cons of using tuples as a return value? 

3. How do exception implementations differ between languages? 

4. Signals are an old-school Unix mechanism. Are they still needed now 
that we have modern techniques like exceptions? 

5. What is the best code structure for error handling?

6. How should you handle errors that occur in your error-handling code?
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Getting Personal

1. How thorough is the error handling in your current codebase? How does 
this contribute to the stability of the program?

2. Do you naturally consider error handling as you write code, or do you 
find it a distraction, preferring to come back to it later?

3. Go to the last (reasonably sized) function you wrote or worked on, and 
perform a careful review of the code. Find every abnormal occurence 
and potential error situation. How many of these were actually handled 
in your code?

Now get someone else to review it. Don’t be shy! Did they find any 
more? Why? What does this tell you about the code you’re working on? 

4. Do you find it easier to manage and reason about error conditions using 
return values or exceptions? Are you sure you know what is involved in writ-
ing exception-safe code?



PART II
T H E  S E C R E T  L I F E  

O F  C O D E

This section investigates the art and craft of develop-
ing code—the daily activities of programming life. 
Although these topics aren’t closely guarded secrets, 
you rarely hear expert discussion or see much written about them. Even 
so, mastering each practice is crucial if you want to write good programs; 
the code craftsman has a thorough understanding of all of these subjects.

We’ll look at:

Chapter 7: The Programmer’s Toolbox
A survey of the tools of our trade and how you should use them.

Chapter 8: Testing Times
No code is complete until it has been proved fit for purpose; until it has 
been tested. Here we look at the techniques for doing so.

Chapter 9: Finding Fault
Dealing with the inevitable: How to find and remove bugs in your code.

Chapter 10: The Code That Jack Built
“Building” code: The process of converting source code into executable 
programs.
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Chapter 11: The Need for Speed
A look at the gory details of code optimization. What, why, when, and how.

Chapter 12: An Insecurity Complex
The thorny topic of software security—how to protect your code from 
willful abuse and malicious attack.

These are fundamental aspects of code construction. With the pressures 
and time constraints of the software factory, they are more than essential 
skills—they’re survival tactics. With experience, they become second nature, 
so you can spend your precious time focusing on more pressing concerns: 
the architecture of your next system, the customer’s changing requirements, 
and who’s going to fetch your next cup of espresso.



T H E
P R O G R A M M E R ’ S

T O O L B O X
Using Tools to Construct Software

7

In this chapter:

The tools we use to 
construct code

Using tools effectively

Common types of tools

Perilous to us all are the devices of an art deeper than we 
possess ourselves.

—J.R.R. Tolkien

To be a productive craftsman, you need a good set 
of tools. The contents of a plumber’s toolbox will 
support him in whatever task he encounters, or 
else you wouldn’t call him the next time your taps 
explode.

Not only the existence but also the quality of 
these tools is vital; a good craftsman can be let 
down by poor tools. If the compression valves are 
bad, there will be water everywhere, no matter 
how good your plumber is.

Of course, it’s your use of these tools that sets 
you apart as a master craftsman. The tools, by 
themselves, will achieve nothing. Before power 
tools, carpenters were perfectly able to craft exquis-
ite furniture. The tools were more basic, but their 
skill with them produced things of beauty.
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The same is true of programming. To do a good job, you need to be 
supported by an appropriate kit of tools; tools that you have confidence in, 
know how to use, and are fit for the jobs you’ll encounter. It takes a skilled 
craftsman, good tools, and mastery of those tools to craft great code.

This is serious stuff. How you use your tools can set you apart as a truly 
productive programmer. In extreme cases, these tools could provide the 
shortcut that determines your project’s success or failure. The relentless pace 
of the software factory means that you should cling tightly to anything that 
will help you produce better code and produce it more quickly and reliably.

Other chapters cover issues that relate to particular tools. Here we’ll 
broach the subject of software tools as a whole. Programming is a discipline that 
simply can’t do without tools. From day to day, we use tools without much of a 
thought, taking the compiler for granted in much the same way you’d take a 
can opener for granted—it’s fine while it works, but as soon as it goes wrong 
(or you need to open an oddly shaped can) you’re stuck, no matter how fancy 
the can opener is. A cheap, basic can opener that works is better than some 
pretentious contraption that doesn’t.

What Is a Software Tool?

We use a wide range of tools to construct software; they are programs that build 
programs—if that isn’t too philosophical. Everything we use to create software 
is a tool of some form. Some tools help you write code. Some help you write 
good code. Some help sort out the mess of code you just created.

They come in all shapes and sizes and work in different ways. Obviously, 
the platform and environment they inhabit is a factor, but they also differ in:

Complexity 
Some tools are elaborate environments with many, many features and 
incredible configurability. Some are minuscule utilities for a single task. 
Each approach has its pros and cons:

A feature-rich tool is cool, when you’ve finally learned how to get it 
to make coffee and bring you doughnuts at the same time. If the 
many magical features make it hard to use, then it’s less helpful.

Simple tools are easier to learn; it’s obvious what they do. You just 
end up with a lot of them, one for each task. But if you string them 
together, there are a lot of interface points, so they don’t always work 
together seamlessly.

Different tools have different scopes, performing everything from 
very specific tasks (searching files for text strings) to entire projects (a 
collaborative project management environment).

Frequency of use 
Some tools are used constantly; we can’t live without them. Others are 
only dusted off once in a blue moon, but they’re invaluable when you 
need them.
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Interface
Some tools have pretty graphical user interfaces (GUIs). Some are more 
basic, driven by a command-line interface (CLI) and directing their output 
to a file. Which you prefer depends on how your brain is wired and what 
you’re used to.

Windows utilities tend to be graphical with no command-line access. 
The standard Unix utilities are the opposite, which makes them easier to 
automate and integrate into larger tools using scripts. The interface 
alters the way you harness a tool’s power.

Integration
Some tools fit into a larger toolchain, often subsumed in a graphical 
integrated development environment (IDE). Stand-alone command-line utili-
ties tend to generate plaintext output in a format suitable as input to 
other tools, acting primarily as data filters.

Monolithic GUI interfaces can be very comfortable to use, and the 
integration can make you incredibly productive. On the other hand, they 
take time to set up just as you’d like them, and they seldom offer the 
full power of more manual command-line tools. But although they are 
incredibly powerful, the discrete Unix tools all have different cryptic 
interfaces that make them hard to use.

Cost 
There are many excellent free tools.1 However, you often get what you 
pay for. Free tools tend to have have poorer documentation, less sup-
port, or a smaller feature set. This doesn’t always hold true, though. 
Some free tools are far superior to their commercial counterparts.

You can pay as much as you want for any type of tool, but a higher 
price tag doesn’t guarantee a better product. I’ve worked with some fan-
tastically expensive tools that were spectacularly poor. Which leads on to . . .

Quality 
Some tools are really good. Some tools are really bad. I have a couple of 
critical tools that I’d gladly never see again; they do the job, but only 
barely, and are permanently on the brink of a crash. But without them, I 
can’t produce the code I get paid for. How often have I been tempted to 
rewrite them myself? I can keep on dreaming.

You’ll pick tools based on these characteristics, making appropriate 
compromises. Although it’s important to get accustomed to your usual tool 
set, to learn it and to be productive with it, avoid the temptation to become 
religious about it. Most Windows users despise Unix-style development, while 
Unix hackers look down on Windows coders because they can’t handle the 
command line. Get over it.

I challenge you to try working in a different environment on a reasonably 
large project. It will help you fully understand what makes a good toolchain 
and help you gain a real “world view” of software tools.

1 Free has two meanings in the software world: free as in beer (the tool won’t cost you anything to 
obtain) and free as in speech (open source software whose code you can view and modify). Which 
free is more important depends on how much of an idealist you are. See “Licenses” on page 361.
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Why Worry About Tools?

It’s impossible to create programs without a core set of software tools; you’d 
be stuck without an editor or compiler. There are other tools that you can get 
by without, but that are still genuinely useful. In order to improve your produc-
tivity, code quality, and craftsmanship, it’s good to pay a little attention to the 
tools you’re currently using and find out what they can really do.

When you understand how your tools work and which tool to use for 
which job, you are better able to produce code that works properly—and 
produce it more quickly. Smarter tool use will make you a smarter 
programmer.

KEY CONCEPT Know your common tools inside out. A little time invested to become proficient with 
them will quickly pay off.

Let’s be clear about why we actually use tools: Tools don’t do our work 
for us—they enable us to do our work. The quality of software is always deter-
mined by the competence of its programmer. Remind yourself of that the 
next time your compiler spits out pages of error messages. You wrote the 
code, dimwit!

Programmers have wildly varying attitudes with regard to selecting and 
using tools. There’s probably some deep psychological reasoning behind 
it all—something to do with whether you’re an Evil Genius or not. On 
encountering a new lengthy task:

Some programmers laboriously complete it by hand.

Others write a tool in a scripting language to do the job automatically.

Others spend hours searching for a pre-written tool to do the job 
for them.

Given a tool that might solve the problem:

Some programmers fiddle with it until they get something near enough 
to what they want.

Others carefully read the documentation to find out exactly what can be 
done and then start to use it.

Which the right approach? Well, it depends. Part of becoming a mature 
programmer is understanding how different situations require different 
solutions and applying the right tools for the right job. Everyone is different 
and everyone works differently—your colleagues may be most productive 
using different tools than the ones that are your favorites. But if you saw some-
one converting his C code into assembly by hand on a day-to-day basis, you’d 
question his sanity.

Invest your time and money in tools practically. Think about how you’re 
going to use a tool. Search for or write a new tool only when the time it will 
take to do so will pay off. Don’t spend a week writing a tool that will only save 
you one hour every month. Do spend a week writing a tool that will save you 
one hour every day.
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KEY CONCEPT Adopt a pragmatic approach to software tools—use them only when they’ll make your 
life easier.

Power Tools

Since programming and tools go hand in hand, in order to be a super-
programmer, you need to be a super–tool user. What does that mean?

First, it’s important to have a good understanding of which tools are 
around. In the next section, we will run down a list of the common tools that 
every programmer should have on hand. You don’t need to know every tool 
on the market; it makes for incredibly dull dinner party conversation, anyway. 
Just knowing the general categories of tools that exist, rather than specific 
products, is the important step forward. That will help you choose between 
finding a tool for a particular task, writing the tool yourself, or doing the task 
by hand.

Take the time to get informed. Check out where you can obtain some of 
these tools—there are shops that specialize in selling software tools and 
plenty of download sites on the Internet. Maybe you already have some 
installed but never needed them, or you didn’t appreciate how useful they 
were. Learn what you can expect tools to do for you; it will prepare you for 
good tool usage.

KEY CONCEPT Know the sorts of tools that are available. Make sure you know where to get them, even 
if you don’t need them right now.

Be prepared to try a new tool and to take time to learn it; this is a healthy 
attitude. You may be forced to find new tools if you start a new project, move 
to a new platform, encounter a new kind of problem, or find that your old 
tools have become deprecated. But don’t wait to be pushed—make sure that 
right now, you’re using the best tools you can get your hands on.

Devote a portion of your time to honing your tools skills—just as you’d 
spend time reading a techie book or magazine or taking a professional train-
ing course. This stuff is important, so invest in it accordingly.

Here are a few simple steps to become a tool power user. For each weapon 
in your software construction arsenal . . .

Understand What It Can Do

Find out the feature set—what it can really do, not what you think it should be 
able to do. Even if you don’t know how to wring out every last drop of goodness 
(maybe you’d have to look up the more esoteric command-line parameters), 
knowing what it’s capable of will be helpful.

Are there particular things the tool can’t do? Perhaps it doesn’t support 
some facilities provided by its counterparts. Understand these limitations, so 
you know when to shop around for something better.
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Learn How to Drive it

Just because you’ve run the tool without generating an error doesn’t mean it 
has done exactly what you wanted it to do. You must know how to use it properly 
and be confident that you can make it do your bidding.

How does the tool fit into the whole toolchain? This will affect how you 
use it. For example, Unix tools can be used as sequential filters by piping them 
together—splicing small individual tools into a larger utility.2 Understanding 
how to harness the power of each tool and learning about how they inter-
operate lifts your tool usage a notch.

Figure out the best way to use each tool—it might not be by calling it 
directly or by clicking somewhere in the GUI interface. Can it be triggered 
automatically? A compiler is often invoked through a build system, rather 
than manually.

Know What Tasks It’s Good For

Know how each tool fits in the context of the other available tools. For 
example, I can set up keystroke recording macros, which allow me to save 
time on repetitive actions, in my text editor. Some of these alterations could 
also be done using a magic sed invocation.3 However, it’s better to use the 
keystroke macros in this context—I’m already using the editor and so it’s 
quicker to fire them off.

You might not know how to use yacc,4 but if you ever need to write a 
parser, you’ll save yourself loads of effort knowing it’s there.

KEY CONCEPT Use the right tool for the right task. Don’t crack a walnut with a sledgehammer.

Check That It’s Working

Everyone becomes the victim of bad tools at some point. Your code doesn’t 
work, but no matter how long you search for the errant behavior, there’s no 
explanation. In desperation, you’ll test random things—checking that the 
wind is blowing in the right direction and the light fittings have been 
secured correctly. Several hours later, you’ll find a flaky tool doing 
something peculiar.

Compilers can produce faulty code. Build systems can get dependencies 
wrong. Libraries harbor bugs. Learn how to check for obvious failures before 
you rip out too much of your own hair.

Having access to the source code for your tools can be instrumental in 
diagnosing any problems you encounter, allowing you to work out exactly what 
a tool is doing. This might be a deciding factor in your choice of tool set.

2 If you don’t know much about this, I urge you to read up on it. The Unix command man bash is 
a good place to start; search the man pages for pipelines.
3 sed is a stream editor command-line utility, explained in the next section.
4 A parser generator. Don’t worry—it’s explained later too.
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Have a Clear Route to Find Out More

You don’t have to know it all. The trick is to know someone who does!
Find out where the tool’s documentation is. Who provides support? 

How do you get more information? Look for manuals, release notes, online 
resources, internal help files, and man pages. Know where they are and how 
to access them on demand. Do the online versions have useful search tools 
and good indexing?

Find Out When New Versions Appear

Tools seem to develop at an incredible rate—in this industry, technology 
changes fast. Some tools develop much faster than others. You’ve barely 
installed the latest widgetizer when the authors release a newer version with a 
longer red stripe down the side.

It’s important to stay informed about the tools you use so that you don’t 
get out of date and end up with a potentially buggy and unsupported tool kit. 
But this should be done cautiously; don’t blindly chase the latest version. 
The bleeding edge can be painful!

New versions may have new bugs and new higher prices. Adopt upgrades 
if they provide significant fixes and have been proven stable. Test first—
sanity check the new tool on your old code to make sure that it behaves itself.

KEY CONCEPT Keep up to date with the latest developments in your tools, but don’t upgrade carelessly.

Which Tools?

There’s a staggering array of software development tools. Over the years they 
have been developed to scratch particular itches, the needs that often crop 
up. When a task has been done many times, you can bet that someone has 
written a tool for it.

Exactly what comprises your tool kit will depend on your line of work. 
The available tools for embedded platforms are rarely as rich as those for 
desktop applications. We’ll consider the common components below. Some 
are really obvious; others are less so.

While we’ll look individually at each class of tool, don’t forget that modern 
IDEs collect these disparate programs into a single, streamlined interface. 
This is undoubtedly convenient, but it’s important to understand how each 
tool stands on its own, for these reasons:

You’ll know how to get the best from each feature that’s available.

You’ll know what useful features your IDE lacks.

Most IDEs are modular—you can substitute one component with a better 
alternative and plug in facilities that are not available right out of the box. 
Learn what tool varieties are around, and you’ll improve your IDE experience.
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Source Editing Tools

A potter’s medium is clay; a sculptor’s, stone; and a programmer’s, code. This 
is the fundamental thing we work with, so it’s important to pick excellent 
tools to help us write, edit, and investigate source code.

Source Code Editor

The editor is probably your most important tool, even more important than 
a compiler. The compiler faces the computer, whereas the editor faces you.
And you’re the one driving. This is where you’ll spend most of your program-
ming life, so pick a good editor and learn to use it really well. Being productive 
with your text editor will dramatically improve how you write code.

KEY CONCEPT Your choice of code editor is vital: It has a huge impact on how you write code.

The One True Source Editor is an age-old debate that doesn’t need to 
be stirred here, but you should select an editor that you are comfortable with 
and does what you require. Just because an editor is embedded in your visual 
IDE does not mean that it is the best editor for you. On the other hand, you 
may find that having it integrated is an incredible boon. For source code 
editing, I require at least the following from my editor:

Comprehensive syntax coloring (with support for many languages—since 
I use many languages)

Simple syntax checking (e.g., highlighting mismatched brackets)

Good incremental search facilities (an interactive form of find that searches 
as you type)

Keyboard macro recording

Highly configurable

Works across every platform that I use

My requirements and choice of editor may not be the same as yours, but 
that seems like a fair list of the most important facilities. I don’t mind spending 
a little time learning how to get the best out of all these features. It’s worth it 
if it makes me productive.

Depending on the type of work you’re doing, you may find other types of 
editors useful. There are binary file editors (usually displaying file contents 
in hexadecimal; they’re commonly called hex editors) and editors devoted to 
specific file formats, for example XML file editors.

Vim and Emacs are the infamous Unix-land editors, available now on 
pretty much any platform (probably even your electric toaster). These contrast 
with the default editors bundled with IDEs.

Source Manipulation Tools

The Unix philosophy is characterized by a large collection of small command-
line tools. GUI environments have their counterparts for each tool, but they 
are rarely as powerful or easy to string together. The GUI versions are far 
simpler to learn, though.
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The following Unix commands provide powerful mechanisms to invest-
igate and modify source code:

diff

Compares two files and highlights the differences between them. Basic 
diff spits output to the console, but more sophisticated graphical ver-
sions exist. There are even editors that allow you to work on the diffed 
files, displaying them side by side and updating the differences as you 
type. Exotic diffs can compare three files at once.

sed

Stands for stream editor. Sed reads files a line at a time, applying a specified 
conversion rule. Sed can be used to reorder items, as a global search and 
replace tool, or to insert patterns into lines.

awk

Imagine sed on steroids. Awk is another pattern-matching program that 
can process text files. It implements a full programming language for 
this task, so you can write quite advanced awk scripts to perform involved 
manipulation.

grep

Searches for patterns of characters in a file. These patterns are described 
by regular expressions, a form of mini-language allowing wildcard charac-
ters and flexible match criteria.

find/locate
These tools help to find files in the filesystem. They can hunt them down 
by name, date, or a number of other criteria.

These are only the tip of the iceberg, and there are many other tools. wc,
for example, performs word/character counting. For more gems, look into 
sort, paste, join, and cut.

Source Navigation Tools

Really large projects have codebases like cities. Not even the town planners 
intimately know each and every back street. A few taxi drivers know the best 
routes around. Normal citizens know their own neighborhoods fairly well. 
Tourists get lost as soon as they step off a bus.

There is a breed of tool to help you delve into and understand code, map 
it out, and perform easy searches, navigation, and cross-referencing. Some 
tools produce call-graph trees so you can see how control flows around the 
system. They may produce a graphical map or integrate with your editor to 
provide auto-completion, function call help, and more. This can be invaluable 
on large codebases or when entering a project that is well established.

Good examples of freely available tools are LXR, Doxygen, and the 
venerable ctags.
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Revision Control

We won’t dwell on source control tools here, since we cover them in “Source 
Control” on page 351. Suffice to say: you must use one, or else have a limb 
forcibly amputated.

Source Generation

A number of tools automatically generate source code. Some are good; some 
frighten me.

One example is yacc, an LALR(1)5 parser generator. You define the input 
grammar rules, then use it to generate programs that can parse well-formed 
input matching those rules. It spits out a C code parser with hooks for you to 
add functionality when items are parsed. Bison is a similar tool.

There is a class of code-generating tools that helps you to design user 
interfaces, spitting out the workhorse back-end code. These are especially 
used for complex GUI tool kits like MFC. If a library requires a tool to do this 
much legwork, then it implies that the library is too complex (or fundamen-
tally broken) in the first place. Tread with caution!

Wizards that write reams of scaffolding code that you must later revise 
and modify should also be treated with caution. You must honestly under-
stand the generated code before you begin to attack it, or you’ll be bitten by 
your own ignorance. If you rerun the wizard after modifying any generated 
code, all your hand-edits will be silently overwriten. Ouch.

You can even write your own scripts to spit out repetitive sections of 
code. Sometimes this is an indicator that your code could have been designed 
better. Sometimes it is the right technical approach. In the past, I have written 
Perl scripts to generate code for me automatically. Having written the gener-
ator, I trusted the code it generated. Another programmer might look at it 
distrustfully, like any other code wizard.

Source Beautifiers

These tools homogenize source code formatting, creating a uniform lowest 
common denominator layout. I honestly think they are more hassle than they’re 
worth—they can destroy as much important and helpful formatting as they fix.

Code Construction Tools

We don’t want to stare at pretty source code all day. The fun bit is making it 
do something. We do this so often that we take the following tools for granted, 
assuming they all work, without thinking about what’s going on behind the 
curtain.

Compiler

Besides a source editor, this is the most used software tool. Compilers 
convert your source code into an executable so you can marvel at the ways

5 A cryptic techie (and dull) way of saying reasonably complex grammar.
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your program fails to work. Since this tool is used so often, it’s important that 
you can drive it properly. Do you really know all the options and facilities 
that it has? Many companies have a specific buildmaster who ensures that the 
build tools are used correctly, but this isn’t an excuse to be ignorant of your 
compiler.

Do you understand what level of optimization to employ and how that 
might affect the generated code? It’s important—among other things, it 
will determine how surprisingly the code runs in the debugger, and even 
which compiler bugs you enable!

Do you compile with all warnings switched on? There really is no excuse 
not to (perhaps only if you’re maintaining legacy code that is already rid-
dled with warnings). The warnings highlight potential errors, and their 
absence gives you extra confidence in the code. 

Is the compiler standards-compliant by default? The C++ ISO standard 
is, (ISO 98) the 1999 C standard is, (ISO 99) the Java language is defined 
by, (Gosling et al. 00) and C# by the ISO standard. (ISO 05) Does the 
compiler have any nonstandard extensions; if so, do you know what 
they are and how to avoid them?

Is it generating code for the correct CPU instruction set? You may be 
churning out 386-compatible code when you’ll only ever run it on the 
latest Intel whiz-bang chip. Get your compiler to spit out the most appro-
priate code possible.

I  N E E D  A  T O O L  .  .  .

You need to perform a task. It’s a dull task. It’s repetitive. It’s the kind of thing that 
must be better for a computer to do; it would be less error prone, less tedious, and 
far quicker. That’s what computers were invented for! How do you find out if there’s 
something to do the job for you?

• If it’s mentioned in this list, you’ll know already that a tool is available.

• If it’s not in the list, but you’re sure that you’re not the first person to have this kind 
of problem, there’s probably a tool out there somewhere that will help. You’d be 
surprised at some of the random programs a quick web search brings up.

• If your problem seems unique, you might have to write your own program for it. 
See “Rolling Your Own” on page 126 for more on this.

When looking for a tool, get as much advice as you can:

• Ask others on your team if they have any experience.

• Search the web, and read appropriate newsgroups.

• Go to tools vendors.

Given the selection of available tools, you’ll need to make an informed choice 
based on the criteria we saw in the first section. To make this decision, you must 
establish your requirements. Is it important that the tool is free? Or is it more important 
that you can get it now? Should it be easy to use for everyone on the team? How 
often will you use it—will it justify the expense?
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A cross compiler targets a different platform from the development 
machine. This is primarily used when writing embedded software (after all, 
it’s hard to run Visual C++ on a dishwasher).

The compiler is a single part of a larger toolchain, including the linker, 
assembler, debugger, profiler, and other object-file manipulators.

Some popular compilers include gcc, Microsoft’s Visual C++, and 
Borland’s C++ builder.

Linker

The linker is closely allied with the compiler. It takes all the intermediate 
object files that a compiler spits out and glues them together into a single 
executable lump of code. The C and C++ linkers are so closely bound to the 
compiler that sometimes the same executable does both tasks. For Java and 
C# the linker is tied to the run-time environment.

When using your linker, make sure you know:

Does it strip the binary? That is, does it remove debugging symbols like 
the names of variables and functions? These can be used by a debugger 
to show useful diagnostic information, but they can also significantly 
bloat executables and make them slow to load.

Does it eliminate replicated code sections?

Can you make it spit out library objects rather than executables? What 
control do you have over the library—can you make it statically or dynam-
ically loaded?

Build Environment

The entire build environment is more than just a compiler and linker. The 
kind of build tools that we use are the Unix make program or the build por-
tions of your IDE. They automate the compilation process. Many open 
source Unix projects use the autoconf and automake tools to simplify 
building.

Learn how to get the most out of your integrated build environment, but 
not at the expense of knowing how to use each individual construction tool. 
We’ll investigate these topics in more detail in Chapter 10.

Testing Toolchain

Note that this is a code construction tool, not a debugging tool! Appropriate 
testing is vital to the production of reliable, high-quality software. It is often 
neglected—perhaps because it’s seen as too much work, distracting attention 
away from the important task of writing code. This is one of the biggest threats 
to good software. You cannot construct a reliable piece code unless you can 
prove that it works correctly, and the only way to do this is to construct tests 
for it as you write.

There are tools that help automate unit testing, offering a skeleton into 
which you can place your test code. These tools can be easily integrated into 
your build system, so testing becomes a central part of the code construction 
process.
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As well as automated unit testing, there are tools that generate test data 
and formulate test cases. There are also tools that simulate a target platform, 
perhaps with the ability to model particular error conditions (low memory, 
high load, etc.).

Debugging and Investigative Tools

These tools characterize running code and help to track down problems—
both things we have seen going wrong and potential disasters waiting to 
pounce. We’ll look at them in greater detail in “Wasp Spray, Slug Repellent, 
Fly Paper . . .” on page 169.

Debugger

Having a quality debugger and understanding how to use it can save you 
hours of development time chasing surprising behavior. It allows you to 
investigate paths of execution in your program, break into it, investigate 
variable values, set breakpoints, and generally dissect your running code. 
It’s an order of magnitude more sophisticated than peppering programs 
with printf logging statements!

gdb is GNU’s open source debugger; it has been ported to almost every 
conceivable platform. ddd is an accomplished graphical interface for it. Every 
IDE and toolchain has its own debugger.

Profiler

This tool is used when your code runs unacceptably slowly. The profiler 
times sections of running code and identifies the bottlenecks. It is used to 
find targets for sensible optimization; armed with its results, you won’t waste 
effort speeding up code that is rarely executed.

Code Validators

Code validators come in two varieties: static and dynamic. The former digest 
code in a similar way to a compiler, inspecting your source files to identify 
possible problem areas and flawed language use. lint is a well-known example; 
it performs static checks for a series of common coding errors in C. Much of 
its functionality is built into modern compilers, but there are still separate 
tools available for extra checking.

Dynamic validators modify and instrument the code as it is compiled and 
then perform checking at run time. Memory allocation/bounds checkers are 
a good example—they ensure that all dynamically allocated memory is freed 
appropriately and that array accesses do not occur out of bounds.6 These 
tools can save hours of legwork looking for obscure bugs. They are much
more useful than a debugger in most situations, since they act like preven-
tion mechanisms rather than cures: They’ll find faults before they have a 
chance to break your program.

6 More socially responsible languages, like Java, avoid this kind of problem in the language 
design.
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Metrics Tools

These tools perform code inspection and are usually a form of static analyzer 
(although dynamic metric tools do exist). They produce statistical assessments 
of the quality of your code. While statistics can easily mislead, these tools can 
powerfully highlight the most brittle areas. This information can help you 
pick specific targets for code reviews.

Metrics are usually gathered on a per-function basis. The most basic metric 
is number of lines of code, followed by the ratio of comments to code. Neither really 
tell you anything particularly useful, but there are plenty of more interesting 
metrics. Cyclomatic complexity is a measure of the complexity of code, con-
sidering the number of decision points and potential flows of control. A high 
cyclomatic complexity implies unintelligible code, which is more likely to be 
brittle and harbor faults.

Disassembler

This peers into executables, allowing you to inspect the machine code. 
Debuggers do contain this kind of support, but advanced disassemblers can 
attempt to reconstruct code where no symbols exist, generating a high-level 
language reinterpretation of the binary program file.

Fault Tracking

A good fault-tracking system provides a shared database that keeps track of 
the bugs found in your system. It allows colleagues to report faults, query, 
assign, or comment on them, and eventually mark faults as fixed. It’s an 
essential tool to ensure the quality of a product—you need to manage faults 
systematically, or they’ll slip through your fingers, and you’ll release a flawed 
product. Capturing and storing this information is also useful when looking 
back over the project history.

Language Support Tools

To write in a high-level language, you need a lot of support. The language 
implementation provides everything you need to make coding possible, 
making it easier than wallowing in a swamp of machine code.

The Language

The language itself is a tool. Some languages provide facilities absent in others. 
These gaps may be filled by separate tools you can run over the program 
source. For example, C’s much maligned preprocessor can be remarkably 
useful, and text-processing packages exist for other languages. Generic code 
facilities (like C++’s templates), and pre- and postcondition checking are 
other similarly useful language tools.

It’s valuable to have a selection of languages under your belt. Understand 
how they differ, what tasks they lend themselves to, and what their weak points 
are. Then you can select the best language for any given task.
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KEY CONCEPT Learn several languages; each will teach you different ways to approach problems. 
Consider them tools, and select the most appropriate language for each task.

Run Time and Interpreter

Most languages can’t be used without the requisite run-time support. 
Interpreted languages rely on their interpreter (or virtual machine), but 
directly compiled languages still lean on their support libraries. These libraries 
are often intimately entwined with the language itself, so the two can’t be 
separated.

Just as you can pick a different compiler, you may be able to select a 
different language run time, with different characteristics.

Java’s JVM (The Java Virtual Machine) is a common language interpreter. 
The C++ standard library supports the language, providing the default handlers 
for some core language features. Similarly, the C# language rests upon the 
run-time support of the .NET environment.

Components and Libraries

Yes, these are tools too! Reusing software components and finding libraries 
that do what you need avoids reinventing the wheel. A good library can 
increase productivity as much as any other software tool.

The scopes of these libraries vary—some are vast abstraction layers for an 
entire OS, while some do a very simple job, providing a humble date class. 
They look after their details and hide the complexity away so that you don’t 
have to worry about it. You don’t have to spend time writing, testing, and 
debugging your own versions.

All languages these days come with some level of library support. The 
C++ STL is a wonderful example of a powerful extensible library. The Java 
language and .NET environment ship with more standard libraries than you 
can shake a stick at. Many, many third-party libraries exist, both commercial 
and free.

Miscellaneous Tools
The story doesn’t end here. You will come across plenty more tools. “See 
Also” on page 127 points out other places where we’ll discuss software tools.

The following are some other interesting tool varieties.

Documentation Tools

Good documentation is invaluable; it’s a key part of well-engineered code. 
Various tools help you to write it, both in the source code itself and separately 
(I describe some in “Practical Self-Documentation Methodologies” on 
page 66). Never underestimate how important a good word processor is.

Documentation needs to be read as well as written. Good online help 
systems (backed up by a quality bookshelf) are critical.
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Project Management

Management and work collaboration tools allow you to report and track work 
against a schedule, manage faults, and monitor team performance. Depending 
on the scope of the management tool, humble programmers may not need 
to go near it. But more exotic systems may become the central hub of project 
activity, drawing in all users.

In a Nutshell

Give us the tools and we will finish the job.
—Sir Winston Churchill

Tools make software development possible. Good tools make it much easier.
Make a point of evaluating the set of tools you use. Do you really know 

how to use them all properly? Are there any missing tools you should have? 
Are you getting the most from the ones you do have?

A tool is only ever as good as its user. The proverb A bad workman blames 
his tools contains a lot of truth. Poor programmers create poor code, no matter 
how many tools they use. In fact, tools can help produce spectacularly worse 
code. Fostering a professional, responsible attitude toward your toolbox will 
make you a better programmer.

R O L L I N G  Y O U R  O W N

What happens when you can’t find a tool for a job and it’ll take forever to do by 
hand? There’s nothing wrong with “rolling your own” tools. Indeed, if this task is 
going to crop up repeatedly, a short tool development may save you hours in the 
long run.

Some tasks are naturally more tool-able than others. Make sure you’re attempting 
something realistic, and check that the effort will be a cost-effective investment.

These are the common ways to create a tool:

• Combine existing tools in a new ways, commonly using the Unix piping 
mechanism, perhaps writing a little connecting glue. You can put complex 
command-line incantations into a shell script (or batch file in Windows-land) so 
you don’t have to type them in every time.

• Use a scripting language. Most small homegrown tools are written in some form 
of scripting language, often Perl. They’re quick and easy to work with, yet power-
ful enough to provide the kind of support you need to write tools.

• Create a full-blown program from scratch. You only really want to do this if it’s a 
serious tool that you’ll be using over and over again. Otherwise, the effort probably 
isn’t justified.

When writing the tool, consider:

• The audience—how polished does the tool have to be? Are a few rough edges 
acceptable? If it’s only you and one other techie using it, you can cope. If other, 
more delicate souls may one day need it, perhaps you should upholster it tastefully.

• Can you extend an existing tool (wrap its command up, or perhaps create a plug-
in for it)?
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See Also

Chapter 10: The Code That Jack Built 
The software build process is driven by tools. Just imagine compiling 
code by hand!

Chapter 13: Grand Designs 
Contains a section discussing specific design tools.

Chapter 18: Practicing Safe Source 
A chapter devoted to the use of revision control tools.

Good programmers . . . Bad programmers . . .

Would rather learn once how to 
use an appropriate tool, rather 
than repeat a tedious job over
and over and over again

Understand different toolchain 
models and are comfortable 
with each

Use tools to make their lives 
easier but don’t become slaves 
to them

See everything they use as a tool, 
a replaceable utility

Are productive, because the use 
of their tools is second nature

Know how to use a few tools and 
look at every problem in terms 
of them

Are afraid of taking the time to 
learn new tools

Started using one development 
environment and now use it 
religiously, never trying out or 
even investigating alternatives

Don’t add to their toolboxes 
when they come across a 
valuable new tool
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Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 491. 

Mull It Over

1. Is it more important for everyone in a development team to use the same 
IDE, or for each person to pick the one that suits him or her best? What 
are the implications of different people using different tools?

2. What is the minimum set of tools that any programmer should have at 
his or her disposal?

3. Which are more powerful: command-line or GUI-based tools?

4. Are there construction tools that aren’t programs?

5. What’s most important for a tool?

a. Interoperability

b. Flexibility

c. Customization

d. Power

e. Ease of use and learning

Getting Personal

1. What are the common tools in your toolbox? Which do you use every 
day? Which do you use a few times a week? Which do you only call on 
occasionally?

a. How well do you know how to use them?

b. Are you getting the most from every tool?

c. How did you learn to use them? Did you ever spend any time 
improving your skill with them?

d. Are these the best tools you could be using?

2. How up to date are your tools? Does it matter if they’re not the latest 
cutting-edge versions?

3. Do you favor an integrated tool set (like a visual development environ-
ment) or a discrete toolchain? What are the advantages of the other
approach? How much experience do you have with both ways of working?

4. Are you a Default Dan or a Tweaker Tom? Do you accept the default set-
tings in your editor, or do you customize them to within an inch of their 
lives? Which is the “better” approach?

5. How do you determine your budget for software tools? How do you know 
whether a tool is worth its cost?



T E S T I N G
T I M E S

The Black Art of Testing Code

8

In this chapter:

Why test code?

Whose responsibility is it 
to test?

How do you test properly?

The different types of testing

Test everything. Keep what is good.
—1 Thessalonians 5:21

Write as much code as you like—there’s one thing 
you can be sure of: It won’t work perfectly the first 
time. It doesn’t matter how long you took to care-
fully design it; software faults have a creepy ability 
to work their way into any program. The more 
code you write, the more faults you’ll introduce. 
The faster you write, the more you’ll introduce. 
I’ve yet to meet a really prolific programmer who 
created anything near bug-free code.

What do we do about this? We test our code. 
We do this to find any problems that exist, and 
once we’ve fixed them, we use the tests to maintain 
confidence in the quality of the code as we continue 
to modify it. It’s suicide to release untested software, 
no matter how good a programmer you think you
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are. Untested software is bound to fail; testing is an essential part of our 
craft. Too many software factories underestimate the importance of thorough 
testing or try to squeeze it into a last-minute dash before the software ships. 
It shows.

Testing is not something relegated to the end of the development process, 
used to prove that your final program is okay. If that’s all you ever try to do, 
you’ll produce very poor code, indeed. Testing is a central construction tech-
nique. It’s only by testing that you can prove that each bit of code works, which 
then tells you when you’ve finished it. How could you tell, otherwise? How do 
so many software factories think they can get away without decent testing?

T E R M S  A N D  C O N D I T I O N S

The term bug is remarkably evocative and incredibly imprecise. It’s easy to throw 
words around without really understanding what they mean. Using more specific 
terminology helps us to define what we’re doing. These definitions are inspired by 
IEEE literature (IEEE 84):

Error 
An error is something that you do wrong. It is a specific human action that results 
in software containing a fault. For example: Forgetting to check a condition in your 
code (like the size of a C array before indexing into it) is an error.

Fault 
A fault is the consequence of an error, embodied in the software. I made an error, 
and this resulted in a fault in the code. At first, this is a latent problem. If the code 
I’ve just written is never executed, then this fault will never have a chance to cause 
problems. If execution often passes through the faulty code, but never in the 
particular way that triggers the fault, we’ll never notice that there is a fault at all.

This subtle point is what makes debugging notoriously difficult. A faulty line of 
code may seem fine for years, and then one day it causes the most bizarre system 
tantrum you’ve ever seen; you won’t suspect the aged code since it’s been reliable 
for so long.

You might discover a fault in a code review, but you can’t identify a fault from 
a running program.

Failure 
When encountered, a fault may cause a failure. It may not. The failure, the 
manifestation of the fault, is what we really care about. It’s probably the only 
thing we’ll take notice of. A failure is the departure of your program’s operation 
from its requirements, from its expected behavior. This is where we verge on 
philosophy. If a tree falls over in a forest, does it make a sound? If the running 
program doesn’t exercise a bug, is the mistake still a fault? These definitions help 
to answer this.

Bug 
The term bug is a colloquialism, often used as a synonym for fault. According to 
folklore, the first computer bug was an actual bug. It was discovered by Admiral 
Grace Hopper in 1947 at Harvard. A moth trapped between two electrical relays 
of the Mark II Aiken Relay Calculator caused the whole machine to shut down.
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Reality Check
The two simple questions What is testing? and Why do you test? seem painfully 
obvious. Yet all too often, adequate software testing is not performed—or it is 
not performed at the appropriate stage of production. Good testing is a skill. 
Actually doing some testing is more than many programmers achieve; the mere 
mention of testing is enough to make most of them break out in a cold sweat. 
“The single most important rule of testing is to do it.” (Kernighan Pike 99)

Testing is a distinct and separate activity from debugging, although their 
boundaries blur, and the two often get mixed up together. Testing is a method-
ical process of proving the existence, or lack thereof, of faults in your software. 
Debugging is the act of tracking down the cause of this faulty behavior. Testing 
leads to debugging, which leads to repair, which leads to more testing (we test 
again to prove that the fix worked).

KEY CONCEPT Testing is not debugging. Don’t get the two confused. They require different skills. 
Make sure you know when you’re testing and when you’re debugging.

If you’re programming well, you’ll do a lot more testing than debugging. 
That’s why this chapter comes before the debugging chapter.

Throughout the software development process, various things are tested:

A large number of documents will go through a testing stage (more com-
monly known as a review process). Doing this ensures, for example, that 
the requirements specification correctly models the customer’s needs, the 
functional specification implements the requirements specification, 
the various subsystem specifications are complete enough to fulfill the 
functional specification, and so on.

Naturally, then, the implementation code is tested on the developer’s 
machine. It is tested at several levels, ranging from line-by-line testing 
of each function as it’s written, to the testing of individual modules, to 
integration tests when sections of code are glued together.

Finally, the end product is tested. While this level of testing will (or should)
indirectly test all the code components that have been developed, that 
is not the focus of these tests. Here we worry about whether or not the 
program, as a whole, is working as specified.1

Product tests may be concerned with a number of things. Most import-
antly, they check that the system functions as intended. They also check that 
it installs correctly (if it’s shrink-wrapped PC software) and that it’s usable.

This is the kind of testing performed by the QA department. It is this 
department’s job to understand how the product should work and to 
ensure that it does, while also meeting any quality criteria that have been 
established for it.

In this chapter, we’ll focus on the middle point—how we test our code as 
software developers. The other testing activities are large and separate topics, 
which are outside the scope of this book.

1 Because, obviously, the correct behavior has been carefully specified beforehand, hasn’t it?
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Who, What, When, and Why?

For our software testing to be effective, we need to understand why we test, 
who does it, what it entails, and when it is done.

Why We Test

As software developers, our testing procedure exists for a few reasons: to help 
us to find faults and fix them, and to ensure the same faults don’t reappear in 
later versions.

Note that testing can never reveal the absence of faults, only their exist-
ence. If your tests don’t find any bugs, it doesn’t necessarily mean they aren’t 
there; it just means you haven’t found them yet.

KEY CONCEPT Testing can only discover the presence of faults. It can’t prove the absence of faults. 
Don’t be led into a false sense of security by code that passes a suite of inadequate tests.

Software testing at the end of a development cycle may have another 
motivation. As well as verifying that a software component is correct and 
contains no faults, you may need to validate it—ensure that it fulfills the 
requirements originally established—to prove that it is good enough for 
release. Validation is one form of an acceptance test.

Q U A L I T Y  A S S U R A N C E

QA: quality assurance. Sounds painful, doesn’t it? But just who or what is it? This 
name is given both to a tribe of software factory inhabitants and a development 
practice. To understand QA properly, it’s important to separate colloquialisms and 
misconceptions from the real definiton.

People mistakenly bundle QA with testing, but the two differ significantly. Testing 
aims to detect erroneous behavior, where software diverges from its specification; 
it is effectively detection. Real QA is prevention. It ensures that our processes and 
development practices will result in high-quality software. Testing is a small part of 
QA—software quality includes more than just a low bug count. It means software 
that is delivered on time, to budget, and meeting all requirements and expectations 
(these two are not necessarily the same). Sadly, there still isn’t a lot of high-quality 
software coming out of today’s software factories.

Who’s responsible for software quality? An organization’s test department (often 
known as the QA department) is the group of people dedicated to product testing. 
They have the final say as to whether your program is good enough to release. This 
is an important piece of the quality jigsaw, but not the whole picture. Everyone in the 
development process is involved in producing quality software—it’s not something 
you can tack on once the code is complete.

The responsibility for monitoring software quality often rests with the same group 
of people performing product testing. Otherwise, overall QA is the responsibility of 
project managers, while the testers are left to test.
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Who Tests

It is a programmer’s responsibility to test the source code he or she writes. Tattoo 
that sentence backward across your forehead and stare in the mirror for 
10 minutes every morning.

Too many developers, disillusioned by the trials of the software factory, 
crank out code and release it thoughtlessly to QA without having tested it 
themselves. This is irresponsible and unprofessional. In the long run, it’ll 
cost you more time and effort than testing properly. It’s plain stupid to release 
untested code in a product and almost as bad to supply untested code to the 
QA department. Its job is testing, but testing the product, not your new lines 
of code. It is likely to find the silly coding errors that you left behind, prob-
ably manifesting themselves in obscure and seemingly unrelated ways; but its 
job is to look for more fundamental errors that couldn’t have been caught 
any earlier, not mop up after sloppy programmers.

KEY CONCEPT You must test every piece of code you write. Don’t expect anyone else to do it for you.

What Testing Involves

When writing software, we create individual functions, data structures, and 
classes and glue them together into a working system. Our main testing strat-
egy is to exercise all this code and validate its behavior by writing more code—
test code. This forms a harness around the test subject that prods, pokes, and 
drives it, provoking it to respond and checking that its response is correct.

We write test code for each level of the system, testing each important 
class and function, through to the superstructures composed of these smaller 
parts. For each test, you must be clear about the following:

Exactly which piece of code you’re testing. Clear modules with well-defined 
boundaries help here; the interfaces are your test points. Vague or com-
plex interfaces make testing vague and complex.

The method you’re using to test (see “The Types of Test” on page 138).

When you will be finished. This is one of the hardest and most important 
questions to answer—you could go on forever. When can you say that 
you’ve run enough test cases?

 Another common testing strategy is to inspect the code in order to 
prove its correctness. Inasmuch as this is a human activity, it is prone to 
failure, and it also relies upon the requirements being well defined. Code
reviews are a common inspection technique (see Chapter 20). Code inspec-
tion tools help, but they cannot magically perform all the tests for you. Too 
often, inspection is ad hoc and haphazard; it’s so very easy to overlook faults. 
Prefer to use programmatic tests; they bring many benefits, which we’ll see 
throughout this chapter. A combination of the two is most effective.
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When We Test
Test your code as it’s written, catching coding errors at the earliest possible 
opportunity. It’s at this time when errors are easiest to fix, affect fewest people, 
and cause the least havoc. Testing early and thoroughly is the most effective 
way to ensure software quality.

The cost of a bug escalates as it works through the development process,2

so it’s essential to start testing code as soon as possible—during (or perhaps 
before) serious software development. The test-driven development approach, 
popularized by agile programmers, advocates testing as a central construc-
tion technique; you write test code before the code being tested!

KEY CONCEPT Effective code testing starts early, so you catch bugs when they’re least harmful. You can
write tests before writing code!

This is an essential point, and it is vitally important to absorb into your 
programming routine. For each piece of code you write, immediately write a 
test. Or write the test first. Prove that your code works, so you know that it’s 
safe to move on. If you don’t write a test at this point, you’ll leave unproven, 
potentially buggy code behind. This destroys the stability of your codebase: 
When you hit a bug, you won’t know which bit of code (in the mass you’ve 
accumulated since you last wrote a test) is causing the problem. So you end 
up in the debugger, which is a massive waste of time.

Writing the test later means you will test from a distance—either too late, 
when you’ve forgotten what the code is supposed to do, or as a consequence 
of testing a separate code module. This will not be an effective test. You’re 
also far more likely to forget to write the test at all.

This testing strategy has profound implications: When you start to think 
about writing some code, you must simultaneously think about testing it. 
This will shape the way you design that code, for the better; we’ll see why in 
“Design for Test” on page 144.

Every time you find a fault that managed to slip past your existing tests, you 
must add a new test to your test suite (after scolding yourself for missing it in 
the first place). The new test will help to prove that your bug fix is correct. It will 
also catch any later reappearance of the same bug; bugs can rise unexpectedly 
from the dead—this often happens when your code is modified later.

KEY CONCEPT Write a test for every fault you find.

So we write tests as early as possible, but how often do we run them? 
As often as humanly possible, if not more often (using computer support). 
The more often we run the tests, the more likely we are to detect problems. 
This is embodied in a continuous integration strategy (see “Automated Builds” on 
page 190), and begins to show why programatic tests (which are easy to run 
repeatedly) are so powerful.

KEY CONCEPT Run your tests as often as you can.

2 See “The Economics of Failure” on page 157 for more on the cost of bugs.
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Testing Isn’t Hard . . .

Unless you do it badly, and then it’s really hard. It does take thoughtful effort, 
though. To test whether a particular piece of code works, you need a test 
harness that demonstrates that:

The correct output is generated for all valid inputs.

The appropriate failure behavior is generated for all invalid inputs.

That sounds innocuous enough, yet for all but the simplest of functions, 
it is just not practical to exhaustively perform this testing. The set of valid 
inputs is usually very large, and it’s impossible to test each input individually. 
You’ll have to pick a smaller set of representative input values. The set of 
invalid inputs is almost always much larger than the set of valid inputs, so 
you have to pick a number of representative bad values, as well.

To illustrate this, here are two examples. This first function is easy to test:

bool logical_not(bool b)

{

if (b)

return false;

else

return true;

}

The set of valid inputs is of size two, and there are no invalid inputs. This 
means that the function’s test harness is simple. It might look like this:

void test_logical_not()

{

assert(logical_not(true) == false);

assert(logical_not(false) == true);

}

The function doesn’t do anything particularly exciting, though. Now con-
sider the following function (let’s not critique its elegance at the moment). 
How much harder is it to test?

int greatest_common_divisor(int a, int b)

{

int low = min(a, b);

int high = max(a, b);

int gcd = 0;

for (int div = low; div > 0; --div)

{

if ((low % div == 0) && (high % div == 0))

if (gcd < div)

gcd = div;

}

return gcd;

}
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It’s still a small snippet of code, but testing it is far more difficult for 
these reasons:

Although there are only two parameters, the set of valid input is extremely 
large. You can’t conceivably test every possible combination of values; 
it would take a very long time.3 Adding more parameters to a function 
extends this problem exponentially.

It contains a loop. Any form of branch (including a for loop) adds 
complexity and more potential for failure.

There are several conditional statements. You now have to arrange to 
exercise the code running through each combination of conditions to 
check that each side works.

And that’s just for a single small function. There’s already a fault in there, 
did you notice it? Can you find it? Ten points and a gold star if you can.4

KEY CONCEPT It’s very easy to trust the code you read and to believe that it’s correct. When you’ve just 
written some code, you’ll read what you intended to write, not what you actually wrote. 
Learn to look twice—read all code cynically.

Those three problems aren’t the only reasons software gets harder to test. 
There are plenty of other ways to increase test complexity.

Code size 
The more code there is, the more room for potential faults, and the more 
individual paths of execution that must be traced through to check validity.

Dependencies 
Testing one small piece of code should be easy. But if the test harness 
has to attach the rest of the codebase before it will do anything, then it 
becomes too painful (and too time consuming) to write any tests. In this 
case, either testing doesn’t happen, or the tests aren’t comprehensive 
enough, since it’s too hard to orchestrate all of the attached code com-
ponents. This is an example of untestable design. We’ll look at remedies 
for this later (in “Design for Test” on page 144).

The next two sections are also examples of kinds of inter-code 
dependency.

External inputs 
Any reliance on the state of an external part of the system is essentially 
another input. Unlike function parameters, it’s not easy to arrange for 
these external inputs to take on certain test values. A shared global vari-
able can’t be set to an arbitrary value without compromising other parts 
of the running program.

3 The higher your input values, the longer the for loop will take. Assuming an int is a 32-bit 
value (meaning there are 264 input combinations) and you have a nice, fast machine (let’s say 
that every function call will take one millisecond—that’s one hell of a processor cache), a brute-force 
test would take almost 600 million years! And that’s without printing out any test results. . . .
4 Look at the answer to this chapter’s first “Mull It Over” question (page 494) to find out what it is.
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External stimuli 
The code may react to stimuli other than function calls. It’s particularly 
troublesome when they may occur asynchronously (at any time), and 
with any frequency.

A class can act on callbacks from other parts of the system, which 
may crop up at any time.

Hardware interface code reacts to changes in physical device state.

Communication with other systems may take any length of time. 
Physical connections are prone to interference, so they may degrade, 
and network connections can be unreliable.

User interface code is driven by the user’s mouse gestures. It’s hard 
to physically automate a GUI in test conditions.

These conditions are hard to simulate in an artificial test environ-
ment, and they may be particularly timing sensitive (for example, the 
speed of mouse double clicks or the frequency of hardware-generated 
interrupts).

Some outside influences are unplanned: memory may run low, disk 
space may become exhausted, and network connections may fail. You 
have to ensure that your code is robust in all prevailing environmental 
conditions.

Threads
Multiple threads of control make testing more complex, since the con-
current code may intertwine in any arbitrary sequence. The complex 
interplay of execution paths means that any given test run may never be 
repeatable. Thread faults leading to deadlock or starvation may be hard 
to trigger, but they cause serious problems when they do crop up.

The program’s threaded behavior will be different on truly parallel 
multiprocessor systems to the behavior exhibited under simulated con-
currency on single-processor time-slicing environments.

Evolution
Software evolves. This evolution tends to break tests. If the requirements 
are not pinned down, your early tests will probably be invalid by the time 
you come to deliver because the APIs will have changed, the functional-
ity will be completely different, and a full set of tests will not have been 
created because development never stood still long enough.

We require stable interfaces both in our own code and any external 
code we rely on. In the Real World, this is an impractical ideal—the code 
will never stand still—so we must craft small, malleable tests that can be 
easily modified alongside the code.

Hardware faults 
Faults exist in hardware as well as in software. Work in an embedded 
environment is generally more likely to run into hardware errors, because 
you’re closer to the metal. Hardware faults can be an order of magnitude 
more difficult to diagnose and fix; they are seldom repeatable, and you’ll 
naturally distrust your software first.



138 Chapter 8

Nasty failure modes 
Code can fall over in a multitude of exciting and bizarre ways. Program 
faults don’t just lead to incorrect output—there’s more to contend with: 
infinite loops, deadlock, starvation, program crashes, OS lock-ups, and 
other potential failures raise their ugly heads to make testing a varied 
and exciting thing. A pathological software failure may even lead to phys-
ical damage to hardware!5 Write a test harness to check for that.

Writing a test harness is no small feat. When components get glued 
together and start relying on each other, the complexity of software expands 
exponentially. All of these problems gang up to make your life very compli-
cated. This is when it becomes not just difficult, but technically infeasible 
to write harnesses that test the software exhaustively. The time and resources 
do not exist to generate all the test data necessary, and to run the software 
over all sets of inputs and stimuli. The brute-force method rapidly becomes 
impractical, and it seems more convenient to ignore testing and just hope 
that there aren’t any bugs.

No matter how hard you test, you still can’t produce fault-free software—
writing test code is as hard and requires as much skill as writing regular code. 
Some errors will invariably slip through even the most rigorous testing (studies 
show that the most carefully tested software still contains 0.5 to 3 errors per 
1,000 lines of code). (Myers 86) Testing in the Real World rarely proves that 
software is bulletproof—merely that it is adequate.

With this in mind, we need to focus on the key tests that are likely to 
capture the majority of software defects for the most effective testing. We’ll 
see how to choose these later.

The Types of Test

There are many different kinds of software tests, and no one is better than 
any other. Each method approaches the code from a different direction and 
will catch a different class of faults. All are needed.

Unit testing 
The term unit test is commonly used to mean testing a module of code 
(say a library, device driver, or protocol stack layer), but it really describes 
the testing of atomic units: each class or function.

Unit testing is performed in strict isolation. Any untrusted external 
code with which the unit interfaces is replaced with a stub or simulator—
this ensures that you only trap bugs in this unit, not bugs caused by outside 
influences.

Component testing 
A step up from unit testing, this validates the combination of one or more 
units into a full component. Often this is what people mean by unit test.

5 This is no joke. The 68000 processor had an undocumented stop and catch fire instruction—a 
bus test operation that rapidly cycled the address lines, causing the circuit board to overheat and 
catch on fire.



Tes t ing T imes 139

Integration testing 
This tests the combination of components as they are brought together 
in the system, ensuring that they interconnect properly.

Regression testing 
This is retesting after fixes or modifications are made to the software or 
to its environment. You run regression tests to ensure that the software 
works as it did before and that your modification hasn’t broken anything 
along the way. When you work with brittle software, a change in one place 
can cause strange faults to appear elsewhere. Regression testing helps to 
guard against this.

It can be difficult to determine how much retesting is needed, 
especially near the end of the development cycle. Automated test tools 
are especially useful for this type of testing. I’ll discuss this in detail in 
“Look! No Hands!” on page 144.

Load testing
You perform load tests to ensure that your code can handle the expected 
volume of data being thrown at it. It’s simple to write code that generates 
a good answer, but doing so in a timely manner is another thing. This can 
unearth problems related to the efficiency of a system, perhaps due to 
incorrect buffer sizes, bad memory usage, or inadequate database design. 
Load testing checks that the program “scales up” as expected.

Stress testing
Stress testing throws a huge amount of data at the code within a short 
space of time to see what it does. It’s similar to load testing, often used 
for high-availability systems. Stress tests check the characteristics of the 
system: how tolerant it is to overloading. Load testing is performed to 
prove that the code can meet its expected demands; stress testing makes 
sure that it won’t just crumple in a heap if it receives a real battering. The 
code doesn’t have to keep working perfectly; it just has to fail gracefully 
and recover well.

Stress testing helps determine the capacity of the software—how hard 
you can push before it falls over. It is especially pertinent in threaded or 
real-time systems.

Soak testing 
Soak testing is similar to stress testing. The focus is on running at a 
high load for a prolonged period of time—several days, weeks, or even 
months—to identify any performance problems that appear after a large 
number of operations have been executed. Soak testing reveals faults 
that might otherwise go undetected: small memory leaks that eventually 
crash the program or performance degradation as internal data structures 
slowly become fragmented.

Usability testing 
Ensures that your software can be used easily by a shortsighted gerbil. 
There are various forms of end-user tests, often performed in usability 
labs under very controlled and scripted conditions. We also test software 
in field trials, putting it in a Real World setting to see what users think.
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When we write unit and component tests, there are two main approaches 
to devising the test cases: black box and white box testing.

Black box testing 
This is also known as functional testing. Black box testing compares actual 
functionality against intended functionality. The internal workings of the 
code are not known by the tester; it is seen as a black box. The designer and 
tester can be independent of each other.6

Black box testing is not concerned that every line of code is tested, 
only that it meets the software’s specification—that if you put the right 
things into one end of the box, the right things come out the other. 
Therefore, without clear specifications and documented APIs, it is very 
hard to devise black box tests.

Black box test cases can be designed as soon as the software specifi-
cation is complete. They rely on the specification being correct in the 
first place and on it not being radically altered after the tests have been 
devised.

6 However, this isn’t necessarily a good idea—a programmer is usually the best person to write 
the unit test for the code he or she creates.

A L P H A ,  B E T A ,  G A M M A  .  .  .

What about alpha and beta testing? They are common terms, but not quite in the 
same league as the other tests we’ve looked at here. They are more focused on final 
product testing than on the implementation of particular bits of code. Nevertheless, 
they deserve some explanation.

Happily, the terms have no formal definition. Each company will have its own 
idea of what software in an alpha or beta state is. For all you know, alpha software 
might be made of lemon jelly and explode on exposure to light. Alpha or beta 
software is often released externally, as an advance customer preview—an early 
chance to elicit feedback and garner confidence.

These are common interpretations of the terms:

Alpha software 
The first “code complete” stage. It may still have many, many bugs, and be 
completely unreliable. Alpha software provides a good representation of what the 
final product will be like, if you can look past the obvious flaws.

Beta software 
Well past the alpha stage, beta software is mostly bug free; there are very few 
remaining problems. It’s not too far from a final product. Beta testing (that is, 
testing beta software) is used in the run up to final release candidates to nail the 
remaining issues. Beta testing usually involves Real World field trials.

Release candidate 
This is the final stage before a formal software release. Candidate builds go 
through verification and assurance testing (validation) prior to the production 
release. Release candidates are internal builds, usually going to the test 
department only.

If alpha and beta releases venture to the outside world, they may have some 
form of crippling (time-limited operation, for example). The release candidates are 
“pure” builds, without any of these limitations.
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White box testing 
This is also known as structural testing. It is a code-coverage–based 
approach. Each line of code is scrutinized systematically to ensure correct-
ness. Where you couldn’t see into the black box beforehand, you now 
can and do. For this reason, white box testing is sometimes called glass 
box testing. It is really only concerned with testing the lines of code pro-
duced, and it doesn’t guarantee that they meet their specifications.

There are static and dynamic methods of white box testing. Static tests 
do not run the code; instead, it is inspected and walked through to ensure 
that it represents a valid solution. Dynamic tests run the code and are 
concerned with path and branch testing—trying to visit every line of 
code and execute every decision. This may require some modification of 
the code to force control down certain paths. Such modification can be 
easier than trying to engineer test cases for all behavioral combinations.7

White box testing is laborious and much more expensive than black 
box; consequently, it is done a lot less. The completed code is needed 
before white box tests can even be planned. Black box testing is typically 
done before white box testing starts. The consequence of a failure at this 
stage is much more expensive. You’d have to code a fix, black box test 
again, then devise and run new white box tests.

Tools exist to instrument your code and measure the test coverage. 
Without tool support, white box testing could make your head explode.

Black box testing is concerned with faults of omission (where the soft-
ware misses out some of the specified behavior), while white box testing 
discovers faults of commission (where parts of the implementation are 
faulty). In order to fully test a software unit, both black and white box 
testing is required.

7 If you do modify the source code, then you’re not actually testing the final executable, which is 
concerning.

T E S T  T I M E

Each of these test methods is employed at different points in the development 
process. The following table illustrates this, showing which tests are most important 
at each point.

Stage of Development
Is Black or White 
Box Appropriate?

Common Testing Approaches at This 
Stage of Development

Who Performs 
the Test?

Requirements gathering Black Black box tests devised Developers, QA

Code design Black Black box tests devised Developers, QA

Code construction Black, white Unit, component, regression Developers

Code integration Black, white Component, integration, regression Developers

Alpha status Black, white Regression, load, stress, soak, usability Developers, QA

Beta status Black, white Regression, load, stress, soak, usability QA

Release candidate Black, white Regression, load, stress, soak QA

Release Black, white It’s too late by now . . . Users (good luck)
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Choosing Unit Test Cases

If testing is essential but exhaustive testing is impossible, you must judiciously 
choose the set of most effective tests. To do this, you need a thoughtful and 
methodical plan. You could take a scattergun approach—just prop the code 
up on a wall and then fire everything that comes to hand at it. . . .

That way you might find some flaws. But without a sensible, staged testing 
approach, you’ll never have the quality tests that will give you proper con-
fidence in your code. Instead of the scattergun, you should pick up a rifle 
with an accurate sight and aim careful shots at the code, hitting well-judged 
marks, to see how well it stands up.

Where do you aim? How do you determine the volley of test data to 
launch? Since you can’t try every possible value, you need to select a handful 
of pertinent inputs. You must pick the tests that are most likely to disclose the 
software’s faults, rather than run tests that just show the same few problems 
repeatedly.

KEY CONCEPT Write a comprehensive suite of tests, each one exercising a different aspect of the code. 
Fifteen tests that demonstrate the same fault over and over are less useful than fifteen 
tests that show fifteen different faults.

To do this, you must understand the requirements for your piece of code. 
You can’t write an accurate test case unless you know what it’s supposed to do. 
It might be doing the wrong thing very well.

When black box testing, some test cases will be:

Some good input 
Select a number of well-chosen good inputs to ensure that the software 
works properly in the normal cases.

Cover the whole range of valid input values; include some middle of 
the road values, some values from around the lower bounds of acceptable 
input, and some from the upper bounds.
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Some bad input 
Just as important are a certain number of well-chosen bad inputs. This 
ensures that the software is robust and doesn’t give misleading answers 
to invalid input.

You must consider all sorts of bad data, including:

Values that are numerically far too large or far too small (handling 
negative values is often overlooked)

Input that is too long or too short (string lengths are a classic 
example—try sending an empty string to see what happens, or 
try different-sized arrays and lists)

Data values that are internally inconsistent (what this means will 
depend on the contract of the function; perhaps it expects values 
in a certain order)

Boundary values 
Test all the boundary cases—they are a rich source of error. Identify the 
highest and lowest inputs that are valid, or wherever the natural input 
boundaries are (perhaps where behavior changes). For each of these 
positions, test the code’s behavior at:

The boundary value itself

The values just above it

The values just below it

This ensures that your software works correctly right into the corners, 
and that it then gives up exactly when expected.

Boundary tests catch the all-too-easy mistakes, like typing > instead of 
>=, or getting loop count bases wrong (did you start counting from zero 
or one?). All three boundary tests are needed to check for these kinds of 
mistakes.

Random data 
Test randomly generated sets of input data to avoid guesswork. This is a 
surprisingly effective test strategy. If you can write an automated test har-
ness that repeatedly generates and applies random data, you stand a good 
chance of picking up subtle errors that you would have never thought of 
otherwise.

Zero 
If the input is numeric, always test for the zero case. For some reason, 
programmers fail to think properly about zero, a blind spot in their 
reasoning.

C/C++ pointers are often given a zero value to mean unset or undefined.
Try throwing zero pointers at your code to see if it reacts correctly. In Java, 
you can send null object references for a similar effect.
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Design for Test

The quality of unit test you can write is determined largely by the quality of the 
interface you have to test. Testing is easier when your code is written thought-
fully and specifically designed to accommodate inspection and verification. 
You achieve this by crafting clear APIs, reducing reliance on other bits of code, 
and breaking any hard-coded links to other components. This way, it’s easy 
to place a component into its test environment and stimulate it. If, instead, 
it’s grafted intimately into other sections of code, you have to drag all of that 
code into the test environment and arrange for it to interact with your unit 
appropriately. This is not always easy, and often impossible, limiting your 
scope for possible tests.

KEY CONCEPT Design your code for easy testing.

There’s a helpful side effect of this rule: When you structure code for 
testability, you will be structuring it in a sensible, understandable, and main-
tainable way. You’ll reduce component coupling and increase cohesion. 
You’ll make it more flexible, easy to use, and easier to wire up in different 
configurations. Your code will be better.

And since you’ve tested it well, the code is more likely to be correct.
You must design for tests up front. You can’t easily return to an old com-

ponent and bolt a “testable” interface onto it. If a lot of other code relies on 
the existing interface, then such modifications are hard. Remember: You’re 
most likely to design geniunely testable code if you write unit tests alongside 
the code.

A few simple design rules lead to highly testable code:

Make each section of code self-contained, without undocumented and 
tenuous dependencies on the outside world. Don’t hard-code links to 
other parts of the system; rely on abstract interfaces that could be imple-
mented by system components or by test simulators.

Don’t rely on global variables (or singleton objects, which are thin 
veneers for globals). Gather such states in a shared structure passed 
as an argument.

Limit the complexity of your code; break it into small, comprehensible, 
bite-sized chunks that can be individually tested.

Make the code observable, so you can see what it’s doing, query internal 
state, and ensure that it’s operating as expected.

Look! No Hands!

You can’t hang around all day turning the handle on your test machinery. 
Manually invoking test after test isn’t my idea of a great day’s programming. 
Repeated regression testing would rapidly get boring. It wouldn’t just be 
boring, but also slow, inefficient, and prone to human error. The golden 
testing rule is simple: Automate.
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KEY CONCEPT Automate your code testing as much as possible. It’s quicker and easier than running 
tests by hand, and it’s far safer: The tests are more likely to be run regularly.

If the tests run without any intervention, they can be triggered as a valid-
ation phase of your build procedure. Before you play with some freshly built 
software, you’ll know the unit tests have automatically run and passed; you’re 
assured that there are no silly programming errors and that any new work 
hasn’t broken old code.

KEY CONCEPT Run unit tests automatically as a part of your build process.

You can gather your individual pieces of test code together in an auto-
mated scaffold that marshals the test execution and gathers the results of the 
testing in a single place. This harness monitors which tests have been done; 
the more complex test harnesses maintain a history of test results over time. 
There are many such popular tools, like JUnit, a common Java unit test 
framework.

A high level of automation comes into its own during regression testing. 
If you make a modification to the code and want to ensure that you haven’t 
accidentally broken anything, you can run the whole set of tests automatic-
ally; out of the end pops a yes or no answer. Of course, the regression test 
result is only ever as good as the tests put into the harness.

Automation really is a fundamental concept for solid code development. 
If you don’t currently have an automated suite of unit tests, acting as a con-
tinual regression test of your codebase, then get one. Your work will quickly 
improve in quality.

Sadly, not all tests can be automated. Unit testing library functions is 
relatively easy; automatically testing user interfaces is very hard. How do you 
emulate mouse clicks, check the Urdu translation of a text string, or ensure 
that the correct sound clip is playing?

The Face of Failure

Our greatest glory is not in never falling,
but in rising every time we fall.

—Confucius

What do you do when your testing finds a program failure? Before you rush 
in headlong to debug it, step back and characterize the problem. This is 
especially important when you don’t intend (or have no time) to repair it 
right away. Follow these steps to pin down the nature of the fault so that you, 
or any other developer, can come back later and attempt to sort it out.

1. Note what you were trying to do at the time and which actions triggered 
the failure.

2. Try it again. Discover whether the problem is repeatable, how frequently 
it crops up, and whether it coincides with any other activities going on at 
the same time.
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3. Describe the fault. Fully. Be very specific. Include the following:

The context of problem

The simplest steps that can replicate it

Information about repeatability and frequency of occurrence

The version of the software, exact build number, and hardware used

Anything else that might conceivably relate

4. Record it. Don’t lose it! Put this information in your fault-tracking system, 
even if it’s a simple coding error that you intend to fix yourself (see “Can 
You Manage It?” next).

5. Write the simplest test harness that will demonstrate the failure, and 
add it to the suite of automatic tests. This will ensure that the fault cannot 
be lost or ignored and, once it’s eventually fixed, won’t reoccur later in 
development.

Remember, testing is not debugging—and these steps are not debug-
ging! You’ve not tried to unveil the cause of the failure, or peek into the 
code, just to establish enough information to describe the problem to 
another developer.

Our favorite kind of fault is a repeatable fault. Really—we like code 
that falls over repeatedly: It’s easy to replicate the problem; therefore it’s 
easy to track down the fault and easy to prove that you’ve fixed it. Nasty 
failures are irregular, even random, and consequently hard to characterize. 
Failures that take an eon to manifest and depend upon the wind speed are 
a nightmare.

Can You Manage It?

You must be methodical and systematic in order to find faults. You must also 
be methodical and systematic in your management and handling of them. 
Before releasing code (or checking it into source control), you are the only 
person who’d be bitten by its gremlins. But as soon as it leaves your care, code 
takes on a life of its own. It’s no longer just you who is concerned with its faults. 
The rules change as more players join the game:

A programmer will find problems at the codeface—in his own code and 
in other people’s.

The code integrator will find errors as components are glued together.

The QA department will find faults in the product as it tests.

With so many people finding so many problems while others are simul-
taneously trying to make fixes, there had better be a good procedure for 
managing it all. Otherwise, the result will be a mess, and development will 
come crashing down around everyone’s heads.
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Fault-Tracking System

Our key weapon in managing faults is a fault-tracking system. This tool is a 
specialized database with interfaces visible to everyone who has a hand in the 
testing process.

As bugs are discovered and dealt with, this database is updated to reflect 
the status of the software. In doing so, the fault-tracking tool becomes an 
integral part of the project’s fault-management procedure. The general actions 
performed are:

Report a failure 
When you find a bug, make a new entry for it in the database by creating 
a fault report. It becomes a fully paid-up member of the fault club, with its 
own personal membership number. This reference number uniquely 
identifies it for future use. The bug now cannot be overlooked. It must be 
addressed before the software is shipped.

Creating a report also alerts others in the team that this fault has been 
found; they don’t need to enter the same information when they run into it.

Assign responsibility 
This marks a fault report for a particular person’s attention. It defines who is 
responsible for fixing (or making sure that someone fixes) each problem. 
Without this idea of ownership, every programmer will think that someone 
else is going to fix the fault, while the bug works its way through the cracks.

Prioritize reports 
The fault-tracking system allows you to mark which faults are the most 
important. A repeatable startup crash is clearly more serious than a button 
that’s occasionally shifted one pixel to the right.

By differentiating the show-stopping faults from little annoyances, 
developers can plan their work and choose which faults need to be fixed 
first. There may be various levels of severity supported by the tool—from 
critical faults, though medium-to-low priority issues, to feature requests.

Mark as fixed 
A developer will do this once a repair has been made. It doesn’t close 
the fault report but places it on a pile ready for verification. The person 
who submits the report is responsible for testing that the fix is correct, 
although he can delegate this task. A fix certainly shouldn’t be verified 
by the person who made it, for obvious reasons.

Close a report 
Once verified, a report can be closed, becoming nothing more than a 
distant memory (and perhaps a project statistic).

There may be other scenarios leading to report closure—the issue 
may not have been a fault at all, perhaps just a characteristic of the system, 
or even perfectly valid behavior. Testers are fallible too.

Instead of closing a report you don’t intend to deal with, you can defer it, 
marking the fault to be fixed in a later software revision.
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Query the database 
You can query the fault-tracking system for information:

Naturally, you can produce a list of all the pending fault reports, 
ordering them by software version, assignee, priority, or whatever.

You can discover which faults have been assigned to you.

You can produce a report on which faults have been fixed in each 
software version. This is helpful for preparing release notes.

You can also view project statistics—how many faults have been 
reported during development, how many have been fixed, and the 
rate of closure versus generation. Presented graphically, this can 
give a good impression of how well the software is progressing.

Modify an entry 
You can open a report and alter the information it contains. This 
includes:

Adding comments for any new information you’ve found

Attaching log files, containing example output, to illustrate the 
problem

Marking a report as a duplicate of another fault, to prevent later 
confusion

There are plenty of fault-tracking tools available, both commercial and 
freely available versions, like the popular Bugzilla system developed as a part 
of the Mozilla project.

Bug Reviews
Toward the end of product development, as release deadlines inch ever nearer, 
bug review meetings become a part of life, occurring about once a week. These 
reviews are scheduled once functionality is complete but before all the bugs 
are ironed out—the long home stretch of the development process. They 
provide an overview of the project’s progress to all interested parties, help 
plan the remaining repair work, and shepherd the software toward release.

These meetings are attended by an eclectic bunch of people:

The software developers responsible for the product. (They’ll be doing 
the fixing, after all.)

Representatives from the test team, who will explain the context of faults 
and ensure the bug review is steering in the correct direction. (More often 
than not, it’s their responsibility to convene the meeting.)

Product managers, who will gain an overview of the progress and will make 
the buck stops here decisions.

Commercial and marketing team members, who are the people that will 
have to sell this bug-ridden product. (Their viewpoint on the importance 
of each fault helps to decide which ones to fix and which to sweep under 
the digital carpet.)
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A list of outstanding fault reports is generated from the fault tracking 
tool, and each fault is discussed in turn during the meeting. Test or develop-
ment team members may present additional information, if required, and 
then commercial decisions on the importance of the problem are made. Nasty 
lingering faults are discussed, with a progress report of the repair. If work is 
struggling, a decision to apply additional resources might be made.

With such a large range of people, the meeting can rapidly get off track, 
and it takes a strong-willed chairman to keep discussion focused and to the 
point. The topic is fault reports and how to deal with them, not specific code 
fixes. Programmers love to talk technical and try to solve every issue in the 
meeting. This is not the place for it.8

In a Nutshell

Testing is critical to producing good software. In general, the more testing, the 
better—although the quality of the tests will be reflected in the quality of the 
final product. Poor tests will catch few faults, and the result will be a defective 
software release.

We test at various levels of development, from individual functions, 
through component integration, to the final assembled program. At each 
stage, you must adopt a methodical approach to finding and managing 
software faults.

It is each programmer’s responsibility to test his or her code. The QA 
department has enough problems to deal with apart from your buggy code. 
You can’t perform testing and then add in software quality at end of develop-
ment—it must be designed in from the start, with tests being developed and 
run alongside the code.

8 Tactics for successful meetings are described in “Meeting Your Fate” on page 340. 

Good programmers . . . Bad programmers . . .

Write tests for all their code 
(possibly even before they write 
the code)

Test at the micro level, so macro-
level testing is not hindered by 
stupid coding mistakes

Care about product quality and 
take responsibility for it, playing 
their parts in the total testing 
effort

Don’t consider testing to be an 
important and integral part of 
software development—it’s 
someone else’s job

Release untested code to the QA 
department and look surprised 
when testing uncovers faulty 
behavior

Make their lives more compli-
cated by discovering problems 
too late—not testing early 
enough and then being hit by a 
slew of hard-to-locate faults
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See Also

Chapter 9: Finding Fault 
What to do when you find a fault—the process of locating and fixing bugs.

Chapter 20: A Review to a Kill 
Code reviews are a testing technique—a manual form of static code analysis.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 494.

Mull It Over

1. Write a test harness for the greatest_common_divisor code example earlier 
in this chapter. Make it as exhaustive as you can. How many individual 
test cases have you included?

a. How many of these passed?

b. How many failed?

c. Using these tests, identify any faults and repair the code.

2. How should the testing of a spreadsheet application and an automatic 
aircraft pilot differ?

3. Should you test all of the test code that you write?

4. How does a programmer’s testing differ from a QA department 
member’s testing?

5. Is it necessary to write a test harness for every single function?

6. Test-driven development encourages you to write tests first, before any code. 
What sort of tests should you write?

7. Should you write C/C++ tests to check for the handling of NULL (zero) 
pointer parameters? What’s the value of such a test? 
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8. Your early code tests might not be on the final platform—you may not 
yet have access to it. Is it safest to defer testing until you do have a target 
test platform, or to steam ahead now?

If the code is intended to run in a different environment (perhaps 
on a high-capacity server, or some embedded device), how can you be 
sure that your tests are representative and adequate?

9. How do you know when you’ve finished and can stop testing? How much 
is enough?

Getting Personal

1. For what percentage of your code do you write tests? Are you happy with 
this? Are your tests an automated part of the build process? What sort of 
testing do you give the remaining code? Is this adequate? What will you 
do about it?

2. How good is your relationship with the people in your QA department? 
What personal reputation do you think you have with them?

3. What’s your usual response to finding an error in your code?

4. Do you file a fault report for every code problem you uncover?

5. How much testing are the project engineers expected to do?





F I N D I N G
F A U L T

Debugging: What to Do
When Things Go Wrong

9

In this chapter:

Where do bugs come from?

What sorts of bug do we 
encounter?

Debugging techniques: 
finding and fixing

Debugging tools

I have not failed. I’ve just found 10,000 ways that 
won’t work.

—Thomas Edison

Nobody’s perfect. Well, except for me. All day, I 
have to sit down and work through tedious prob-
lems in other people’s code. The test department 
discovers that our software falls over when it does 
such-and-such. So I trawl through the system to 
find what Programmer Fred did wrong three 
years ago, patch it up, and send it back for them 
to break again.

Of course, you wouldn’t find me making those 
sorts of elementary mistakes—not a chance. My 
code is watertight. Faultless. Low fat and cholesterol 
free. I never write a line without meticulous plan-
ning, I won’t complete a code statement without 
considering all the special cases that might occur, 
and I type so carefully that I’ve never once mis-
placed = for == in an if statement.

Totally fault free, me. Really.
Well, perhaps not quite.
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The Facts of Life

I don’t think anyone sits trainee programmers down and explains the facts 
of life to them. It’s like this, son. There are the birds and the bees. Oh, and the bugs.
Bugs are the inevitable dark side of constructing software, a simple fact 
of life. Sad, but true. Whole departments, and even industries, exist to 
manage them.

We’re all aware of the proliferation of faults in released software. How do 
bugs appear with such frightening regularity and in such great magnitude? It 
all comes down to human nature. Programs are written by humans. Humans 
make mistakes. They make mistakes for a number of reasons (or excuses). 
They make mistakes because they don’t understand the system they’re working 
on well enough or because they don’t correctly understand what they are 
implementing, but more often than not, they make mistakes because they 
just don’t pay enough attention to what they’re doing. Most bugs are due to 
mindlessness. I once saw a wonderfully simple illustration of this; play along 
at home:

The tree that grows from an acorn is called an . . .

The noise a frog makes is a . . .

The vapor that rises from fire is called . . .

The white of an egg is called the . . .

The yolk, right? Think about it. If you didn’t fall for that one, then you 
were probably only paying attention because I’d just warned you. (Give yourself 
a brownie point anyway.) But tell me, who warns you every time you’re about 
to write a potentially flawed line of code? If that person existed, he’d deserve 
a lifetime supply of brownie points. 

As programmers, we’re all to blame for the bad state of software. We’re 
all guilty. Do we learn to live with the guilt, or do we do something about it? 
There are two types of responses. The first is the It’s not a fault, it’s a feature
school: Just make up an excuse and ignore it. A fault turns up, and we respond 
in the words of the great philosopher Bart Simpson: “I didn’t do it. Nobody 
saw me do it. You can’t prove anything!” (Simpsons 91) We blame compiler 
quirks, OS flaws, random climate changes, and computers with minds of 
their own. Or as I alluded to in the opening paragraphs, we blame other 
people. A Teflon raincoat is a handy programming tool.

However, we should really subscribe to the second school, the school 
that concedes that software errors are not entirely inevitable. Many mindless 
mistakes can be picked up or even prevented, and as responsible programmers, 
we should be taking steps to do so. Defensive programming and sensible 
testing are our main weapons. In this chapter, we’ll look at good debugging 
techniques to employ when bugs do slip through the net.



Finding Faul t 155

Nature of the Beast

Contrary to popular belief, the term bug was in use before the advent of 
computers. In the 1870s, Thomas Edison talked about bugs in electrical 
circuits. The story of the Harvard University Mark II Aiken Relay Calculator 
tells of the first recorded computer bug. In 1945, the early days of computers 
when they took up whole rooms, a moth flew in and managed to lodge itself 
in some circuits, causing a system failure. They taped it into the logbook and 
wrote, First actual case of bug being found. For posterity’s sake, it has been pre-
served in the Smithsonian Institute.

Bugs are bad news. But what are they, really? We outlined the correct 
nomenclature for these things in “Terms and Conditions” on page 130. It’s 
worth identifying the varieties of bugs we encounter and understanding how 
they are born, how they survive, and how they can be exterminated.

The View from 1,000 Feet
Software bugs fall into a few broad categories, and understanding these will 
help us to reason about them. Some bugs are naturally harder to find than 
others, and this is related to their categories. Stepping back and squinting 
from a distance, these three classes of bugs emerge:

Failure to compile
It’s really annoying when the code you’ve spent ages writing fails to com-
pile. It means that you’ll have to go back and fix a tedious little typo or a 
parameter type mismatch, and then wait for the compiler to run again 
before you can get to the real job of testing your handiwork. Surprisingly, 
this is the best type of error you can get. Why? Simply because it’s the 
easiest to detect and fix. It’s the most immediate and the most obvious.1

The longer it takes to detect faults, the more it will cost to fix them; 
this is demonstrated in “The Economics of Failure” on page 157. The 
sooner you catch and fix each fault, the sooner you can move on and 
the less fuss and cost they can incur. Compilation failures are very easy 
to notice (or rather, they are hard to ignore) and usually easy to fix. You 
can’t run the program until you have taken care of them. 

Most of the time, a compilation failure will be a silly syntactic mistake 
or a simple oversight, like calling a function with the wrong number or 
type of parameters. The failure might be due to a fault in a makefile, it 
might be a link stage error (perhaps a missing function implementation), 
or even a build server running out of disk space.

Run-time crash 
After you fix the compilation errors, an executable pops out and you hap-
pily run it. Then it crashes. You’ll probably swear and mutter something 
about random cosmic rays. After the 60th crash, you’re threatening to throw 
your computer out the window. These kinds of errors are much harder 
to deal with than compilation errors, but they’re still reasonably simple.

1 Provided you have a sane build environment that stops when it encounters an error and 
provides some reasonable diagnostic messages.
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That’s because, like compilation errors, they are blindingly obvious. 
You can’t argue with a dead program. You can’t pretend a crash is a 
“feature.” When it has kicked the bucket and shuffled off its mortal coil, 
you can step back and begin to figure out where your program went 
wrong. You’ll have some clues (which input sequence preceded the 
crash and what it did before crashing), and you can employ tools to 
discover more information (more on this later).

Unexpected behavior
This is the really nasty one—when your program isn’t pushing up the 
daisies, just pining for the fjords. Suddenly it does the wrong thing. You 
expected a blue square, and out popped a yellow triangle. The code con-
tinues to meander on its happy way with total disregard for your frustra-
tion. What caused the yellow triangle to appear? Has the program been 
overthrown by a militant army of guerrilla COM objects? It will almost 
certainly be a minute logic problem in the bowels of the code that exe-
cuted over half and hour ago. Good luck finding it.

A failure may manifest itself because of defective single line of code, or it 
may only show up when several interconnecting modules whose assumptions 
don’t quite match up are finally glued together.

The View from the Ground

If we move in a bit and take a closer look at run-time errors, more groupings 
of faults become clear. Here they are ranked in order of pain, from splinter 
to decapitation.

Syntactic errors
While these are mostly caught by the compiler at build time, sometimes 
language grammar errors slip through undetected. They generate weird 
and unexpected behavior. In C-like languages, the syntax error will often 
be one of these:

Mistaking == for = or && for & in a conditional expression

Forgetting a semicolon or adding one in the wrong place (the classic 
location is after a for statement)

Forgetting to enclose a set of loop statements in braces

Mismatching parentheses

The simplest way to avoid being tripped up by these sorts of errors is 
to keep all compiler warnings switched on; modern compilers moan 
about of lot of these problems. 

KEY CONCEPT Build your code with all compiler warnings switched on. It will highlight potential 
problems before they can bite.
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Build errors 
While not a run-time fault per se, a build error may only manifest itself at 
run time. Be on the lookout and always distrust your build system, no 
matter how good you think it is. In these enlightened times, you’re unlikely 
to come across a compiler bug. However, you may not always be running 
the code you thought you built.

I’ve been hit by this several times: The build system failed to rebuild a 
program or shared library (perhaps because the makefiles didn’t contain 
adequate dependency information or the old executable had a bad time-
stamp). Every time I tested my modifications, I was still unknowingly 
running the old buggy code. There are a number of ways to confuse a 
build system, but the worst is when you don’t notice it failing—like a 
leprous limb.

T H E  E C O N O M I C S  O F  F A I L U R E

The art of debugging is intimately bound to the topic of the previous chapter—testing
your code. Testing will expose faults that need to be debugged. I’ve covered these 
topics in two separate chapters because they are different disciplines. However, the 
two in tandem are fundamental to reliable software development.

The frantic pace of the software factory demands code that’s produced quickly 
and cheaply. This haste leads to software projects that are riddled with bugs and are 
consequently delivered incredibly late. Late software is a huge problem—it’s not just 
embarrassing and inconvenient; it could spell disaster for any company.

In fact, the longer you ignore testing and allow bugs to remain, the worse it gets—
this graph illustrates the escalating impact of bugs as they wriggle through the 
development process. It shows the average cost of finding and fixing an error 
relative to the phase of production in which it is discovered. (Boehm 81)

As you can see, the cost rises dramatically with time (note that the cost axis is a 
logarithmic scale). To make matters worse, the nearer we get to a project deadline, 
the less time we have to perform thorough testing. The added pressure of impending 
deadlines makes debugging that much harder—with the pressure on, you’re even 
more likely to introduce fresh faults with each repair.

To save your skin and prevent a lot of debugging stress, test your code early and 
thoroughly. Eradicate any bugs you find as soon as possible, before they have a 
chance to cause major grief. There are established methodologies for this—look at 
test-driven development, one of the components of agile software development.
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It can take quite some time to figure this out. For this reason, when 
you feel at all wary of what’s going on, it’s sensible to do a total cleanout 
of your project and rebuild it from scratch. This should flush out any 
potential build system problems.2

Basic semantic bugs
The majority of run-time faults are due to very simple errors causing 
incorrect behavior. Using uninitialized variables is a classic example and 
can be quite hard to track; the program’s behavior will depend on the 
garbage value previously in the memory location used by the variable. 
One time the program will work fine; another time it may fail. Other 
basic semantic faults are:

Comparing floating-point variables for (in)equality3

Writing calculations that don’t handle numerical overflow
Rounding errors from implicit type conversions (losing the sign of a 
char is common)
Declaring an unsigned int foo, later writing if (foo < 0)—oops!

This type of semantic fault is often caught with static analysis tools.

Semantic bugs 
These insidious errors that won’t be caught by inspection tools are much 
harder to identify. A semantic bug might be a low-level error, like the wrong 
variable being used in the wrong place, not validating a function’s input 
parameters, or getting a loop wrong. It may be a higher-level piece of 
wrong-headedness: calling an API incorrectly or not keeping an object’s 
state internally consistent. Many memory-related errors fall into this cate-
gory—they can be devilishly hard to find due to their ability to warp and 
corrupt your running code so that it behaves in totally unpredictable and 
unreasonable ways.

Programs often behave strangely. The only consolation is that they’re 
doing exactly what we told them to. 

The best kind of run-time failures are the repeatable ones. If they’re 
reproducible, they are much easier to write tests for and track down the cause 
of. The failures that don’t always occur tend to be memory corruptions.

The View from the Trenches
Now that we’ve arranged things into neat little boxes, let’s zoom right in and 
take a look at some of the common types of semantic faults:

Segmentation faults
Also known as protection faults, segmentation faults come from accessing 
memory locations that have not been allocated for the program’s use. They 

2 This presumes that you trust your build clean facility. To be really thorough, delete the entire 
project and check it back out again afresh. Alternatively, manually remove all intermediate object 
files, libraries, and executables. For large projects, both options are extremely tedious. C’est la vie.
3 You can’t do this meaningfully; floating point arithmetic is too approximate to offer an exact 
comparison that indicates anything.
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result in the operating system aborting your application and producing 
some form of error message, usually with helpful diagnostic information. 

This can be triggered far too easily by typing errors involving pointers 
or by poor pointer arithmetic. A common C typo causing a segfault is 
scanf("%d", number);. The missing & before number makes scanf try to write 
into the memory location referenced by the (garbage) contents of 
number, and poof—the program disappears in a wisp of smoke. If you’re 
really unlucky, though, number happens to hold a value that equates to a 
valid memory address. Now your code will continue as if nothing is wrong, 
until the memory you just wrote over is used and your fate is in the lap 
of the gods.

Memory overruns
These are caused by writing past memory that has been allocated for 
your data structure, be it an array, a vector, or some other custom con-
struct. When writing values into the wide blue yonder, you’ll probably 
clobber the data in some other part your program. If you’re running on 
an unprotected operating system (more common in embedded environ-
ments), you may even tamper with data from another process or the OS 
itself. Ouch.

Memory overrun is a common problem and difficult to detect; usually 
the symptom is random unexpected behavior manifesting at a much later 
point than the overrun, possibly many thousands of instructions later. If 
you’re lucky, the memory overrun hits an invalid memory address and you 
get a segfault, which is hard to ignore. Use safe data structures wherever 
possible to insulate yourself from the possibility of such disaster.

Memory leaks
These are constant threats in languages that do not have garbage collec-
tion.4 When you want some memory, you have to ask the run time for it 
nicely (using malloc in C or new in C++). Then you have to be polite and 
give it back when you’re done (using free and delete, respectively). If you 
rudely forget to release memory, your program slowly consumes more 
and more of the computer’s scarce resources. You may not notice it at 
first, but your computer’s response will gradually degrade as memory 
pages thrash to and from the disk.

Two other classes of error relate to this: freeing a memory block too
many times, causing unpredictable environmental failures, and not man-
aging other scarce resources carefully, such as file handles or network 
connections. (Remember: Anything you manually acquire must be 
manually released.)

Running out of memory
This is always a possibility, as is running out of file handles or any other 
managed resource. It might be rare (modern computers have so much 
memory, how could this possibly happen?), but that’s no excuse to 

4 It is also possible to leak memory in a language with garbage collection. Hand two object 
references to one another, and then let go of them both. Unless you have an advanced garbage 
collector, they will never be swept up.
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ignore the potential for failure. Only sloppy code fails to make appropri-
ate checks, and it will consequently perform in a very brittle manner 
when run in constrained situations. For this reason, you should always 
validate the return status of a memory allocation or filesystem call.

Some operating systems never return failure from a memory allocation 
call—every allocation returns a pointer to a reserved but unallocated 
memory page. When the program eventually tries to access this page, an 
OS mechanism traps the access and then really allocates memory to the 
page, resuming normal program operation. This all works nicely until 
the available memory is finally exhausted. Your program will then be 
sent error signals—a long time after the relevant allocation occurred.5

Math errors
These errors come in a number of guises: floating-point exceptions, 
incorrect mathematical constructions, overflow/underflow, or expres-
sions that may fail (for example, divide by zero). Even trying to output a 
float but passing an int through printf("%f") can cause your program to 
bomb with a maths error.

Program hangs
These are usually caused by bad program logic; infinite loops with badly 
crafted terminal cases are the most common. We also see deadlock and 
race conditions in threaded code, and event-driven code waiting on events 
that will never occur. However, it is usually fairly easy to interrupt the 
running program, see where the code has stalled, and determine the 
cause of the hang.

Different OSes, languages, and environments report these errors in 
different ways, using different terminology. Some languages avoid whole 
classes of errors by not providing features you can shoot yourself in the foot 
with. Java, for example, has no pointers, and it automatically checks every 
memory access you make.

Pest Extermination

Weeding out bugs in your software is hard. You have to discover a bug, 
diagnose the problem, eradicate all traces of the unwanted behavior, make 
sure the bug hasn’t bred elsewhere, and try not to break the code while you’re 
doing all of it. The first step alone, finding a fault, is a major hassle: Humans 
make mistakes when writing, but they make just as many mistakes when 
reading. When looking over my prose or my code, I’ll naturally read what I 
meant to write and not what I really wrote. Faulty code isn’t obvious. The 
compiler isn’t much help; in fact it’s really quite pedantic. It can only produce 
exactly what you asked, not what you were hoping for.

5 This is certainly the case for Linux, at least until you exhaust the virtual memory address space. 
At this point, malloc may return 0, but the system would probably have keeled over before you 
got a chance to notice.
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Some programmers introduce far fewer faults than their peers (up to 
60 percent less), can find and fix faults quicker (in as little as 35 percent 
of the time), and introduce fewer faults as they do so. (Gould 75) How do 
they do it? They are naturally able to pay more attention to the task and 
can focus on the microscopic level of the code they’re writing, while still 
keeping the broader picture in mind.

This is the art of debugging; it’s very much a skill to be learned. 
Experience teaches you how to become an effective debugger. And this 
is something that we will all get plenty of experience doing.

The single most important rule when debugging is this: Use your brain.
Think. Consider what you’re doing. Don’t flail around, thoughtlessly hacking 
at bits of code until something appears to work.

KEY CONCEPT Always follow the golden rule of debugging: Use your brain.

There are two paths to pest extermination: the quicky-and-dirty low road
and the theologically correct high road. We must be aware of them both; 
sometimes the low road looks like a good shortcut but will actually be slower, 
and sometimes the high road takes more effort to follow than is genuinely 
required.

The Low Road

The bug is really simple. The cause is obvious. You don’t need to think too 
much about it, do you? Sometimes a quick tweak will achieve results; a few 
simple tests can pinpoint a problem quickly. So is it a justifiable thing to do? 
Perhaps, but don’t fall into the trap of believing it will work every time. Too 
many programmers try to fix faults by tinkering, fiddling, poking, and prod-
ding the code without any real thought about what they’re doing. What 
happens is rarely anything useful—they just mask the original problem 
behind a myriad of other faults.

If you do make the conscious decision to do some quick-and-dirty stabbing 
around, set yourself a firm time limit to do it in. Don’t spend an entire morning 
with the “just one more try” approach. After your time limit is up, follow the 
more methodical approach laid out here.

KEY CONCEPT Set a reasonable time limit for “unstructured” debugging, and then resort to more 
methodical approaches if you don’t find success.

If your guesswork turns up trumps and you do find the fault, reengage 
your thinking gear. Look at “How to Fix Faults” on page 167, and make the 
change carefully and thoughtfully. Even if the fault was easy to find, the fix 
isn’t necessarily as obvious.

The High Road

A better debugging technique is more methodical and considered. It 
recognizes that there are two distinct facets to removing a bug: finding the 
fault that caused it and fixing that fault.
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Each presents its own challenges to overcome and problems to solve. It’s 
very easy to forget the latter part and to presume that once you’ve found a 
fault, it will be easy and obvious to fix. Don’t believe it. I’ll cover both aspects 
in depth in later sections, and I’ll outline a sensible approach to the task. But 
first, a few key principles govern the debugging game:

How difficult a fault is to find depends on how well you know the code 
it’s lurking in. It’s hard to jump into some random source and make any 
kind of judgment about it without knowing the structure and how it’s 
supposed to work. For this reason, if you have to debug some new code, 
take time to learn about it first.

KEY CONCEPT Learn the code you’re debugging—you can’t expect to find errors in code you don’t 
understand.

Ease of debugging is also dependent on the control you have over the 
execution environment—how much you can play around with the run-
ning program and inspect its state. In an embedded world, debugging 
can be much harder because the tool support is more sparse. You’re also 
probably running in an environment that is providing a lot less insula-
tion from your own stupidity; little mistakes can have much bigger con-
sequences.

One of the most potent weapons in our debugging arsenal is a distrust of 
anyone’s code mixed with a healthy dose of cynicism. The cause of your 
errant behavior could be absolutely anything, and in the act of diagnosis, 
you should start by eliminating even the most unlikely of candidates.

KEY CONCEPT When you look for a fault, suspect everything. Eliminate even the unlikeliest of causes 
first, rather than presume they have nothing to do with it. Assume nothing.

Bug Hunting

How do you find bugs? If there was a simple three-step process, we’d all have 
learned it, and our programs would be perfect by now. As it is, there isn’t, 
and they aren’t. Let’s try to distill the available bug-hunting wisdom.

Compile-Time Errors

We’ll look at these first, since they are comparatively easy to deal with. When 
your compiler comes across something unpleasant, it will not normally just 
complain once, but will take the opportunity to sound off about life in general, 
spitting out a barrage of subsequent error messages. It’s been told to do this; 
upon encountering any error, the compiler tries to pick itself back up and 
carry on parsing away. It rarely manages very well, but with code like yours, 
who could blame it?

The upshot is that the later compiler messages can be quite random and 
irrelevant. You only need to look at the very first error reported and sort out 
that problem. Have a glance farther down the list by all means; there may be 
some other useful errors there, but often there aren’t.
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KEY CONCEPT When your build fails, look at the first compiler error. Trust this far more than the 
subsequent messages.

Even this first compiler error may be cryptic or misleading, depending 
on the quality of the compiler (if you’re really stumped by what an error 
means, try using another compiler). Hardcore C++ template code can provoke 
quite inspired errors from some compilers—listing reams and reams of 
mystical template incantations.

The syntax error usually is on the line that the compiler reports, but 
sometimes it may actually be on the preceding line—a syntax error there causes 
the following line to be nonsensical; this is what the compiler notices and 
moans about.6

C A S E  S T U D Y  # 1 :  P I C T U R E  T H I S

The program 
A reasonably small utility with graphical interface.

The problem 
The program was redesigned with an updated “look and feel”—new icons and a 
new layout. The old interface was intended to remain available as a configurable 
option. During redevelopment, everything worked fine until just before release, 
when someone tried to use the legacy interface. The program crashed just as a 
window was appearing but before you had a chance to see it fully.

The story 
Thankfully, this was a nicely repeatable problem. The program was fired up 
in a debugger, and the point of failure was determined to be deep within the UI 
library in some image-rendering code.

On investigation, it seemed the failure was due to an invalid graphic being 
used. The program was trying to display an icon at memory location zero; a null 
pointer was causing the crash. We traced back up the call stack to see which 
graphic should have appeared. Armed with this information, a brief look at the 
legacy graphics directory showed that this particular icon was missing.

The icon load operation in the window’s constructor had obviously failed, 
returning a zero pointer value to signify “No icon loaded.” This return value was 
never checked—the author assumed that the graphic would always be present.

The fix would be twofold:
• Check the return values of all icon load routines so they deal with any other 

missing graphics more gracefully.
• Place the missing graphic in the correct directory.

Time to fix 
A few hours to trace the problem, fix the fault, and verify the repair.

Lessons learned 
• Check all function return codes, even the ones you don’t think will fail.
• Test all program functionality as soon as possible, especially the rare condi-

tions that won’t be used very often.

6 C++ has a great party trick here: The preceeding line might be in a different file! If you forget 
the ; at the end of your class declaration in a header file, the first line of the implementation file 
makes no sense. The compiler gives you a very crytpic error.
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Linker errors, on the whole, are far less cryptic. The linker will tell you 
that it’s missing a function or a library, so you’d better scurry off and find it 
(or write it). Sometimes the linker may complain about arcane v-table related 
C++ problems; this is usually a symptom of a missing destructor implemen-
tation or something similar.

Run-Time Errors

Run-time errors require more of a game plan. If your program contains a 
bug, then it’s likely that a condition somewhere in the code that you believed 
to be true isn’t. Finding the bug is a process of confirming what you think is 
correct until you find the place where that condition doesn’t hold. You have 
to develop a model of how the code really works and compare this with how 
you’d intended it to work. Doing this methodically is the only sensible way.

KEY CONCEPT Debugging is a methodical activity, slowly closing in on the location of a fault. 
Don’t treat it like a simple guessing game.

The scientific method is the process scientists use to develop an accurate 
representation of the world. That sounds akin to what we are trying to do, 
right? There are four steps to the scientific method:

1. Observe a phenomenon.

2. Form a hypothesis to explain it.

3. Use this hypothesis to predict the results of further observations.

4. Perform experiments to test these predications.

Although we’re trying to get rid of the errant phenomenon rather than 
build a model of it, we need to understand a fault to truly fix it. The scientific 
method is a good debugging backbone, and you’ll see it reflected in the steps 
below.

Identify a Failure

It all starts here, when you notice that the program doesn’t do what it’s 
supposed to do. It may crash or it may produce a yellow triangle instead of a 
blue square, but you know something’s up, and you’ve got to fix it. The first 
thing to do is put a fault report into the fault database (see “Fault-Tracking 
System” on page 147). This is particularly valuable if you’re in the middle of 
tracking some other bug or don’t have time to handle the fault right away. 
Making a record ensures that the fault won’t get lost. Don’t just make a 
mental note to come back to a problem later—you’ll forget.

Before you rush on and try to find a bug you’ve stumbled across, identify 
the nature of the errant behavior. Characterize the problem as completely as 
possible by answering questions like: Is it timing sensitive? and Does it depend 
on input, system load, or program state? If you don’t understand the bug 
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before you try to fix it, you’ll just be changing code until the symptom disap-
pears. You may only have masked a cause, so the same fault will crop up 
elsewhere.

Did the code work before? Skip back through your revision control 
system to find the last working version, and compare that working code with 
this faulty revision.

Reproduce It

This goes alongside characterizing the failure. Work out the set of steps you 
must take to reliably trigger the problem. If there is more than one way, then 
document them all.

KEY CONCEPT The first step to locating a fault is finding out how to reproduce it reliably.

You have a problem if the bug doesn’t seem reproducible; the best you 
can do is set up mousetraps and see what information you can find out when 
it does occur. For these unreliable failures, keep careful notes of the informa-
tion you collect; it may be a while until you see the problem crop up again.

Locate the Fault

This is the big one. You’ve got the scent; now you need to use what you’ve 
learned to track the beast and pinpoint its location. That is far more easily 
said than done. This is a process of eliminating all the things that don’t con-
tribute to the failure or can be shown to work correctly, Sherlock Holmes 
style. As you progress, you will find that you need to gather more and more 
information—the more answers you get, the more questions that arise. You 
may need to draft some new tests. You may need to poke around in the seedy 
underbelly of the code.

Analyze what you have learned about the failure. Without jumping to 
conclusions, draw up a list of code suspects. See if you can spot patterns of 
events that hint at causes. If possible, keep a record of the inputs and outputs 
that demonstrate the problem.

A good starting point for the investigation is where the error manifests
itself—although this is rarely the actual habitat of the fault. Remember: Just 
because a failure exhibits itself in one module, it doesn’t necessarily mean 
that module is to blame. Determining this location is easy if the program 
crashed; a debugger will tell you the line of code that failed, the value of all 
variables at that point, and who called this function. In the absence of a crash, 
start from a point you know exhibits incorrect behavior. Work backward from 
there, following the flow of control, checking that the code is doing what you 
expect it to at each point.

KEY CONCEPT Start from what you know—the point of a program crash, for example. Then work back 
from there to the cause of the failure.
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There are a few common bug-hunting strategies:

The worst thing to do is randomly change things to see if the failure goes 
away. This is an immature approach. (A professional will at least try to 
make it look scientific!)

A far better strategy is to divide and conquer. Say you have the fault pinned 
down to a single function that consists of 20 steps. After the 10th step, 
print out the intermediate result, or set a breakpoint and investigate it in 
your debugger. If the value is good, then the fault lies in the instructions 
after this; otherwise, it’s in the instructions before. Concentrate on those 
instructions and repeat until you’ve cornered the fault.

Another technique is the dry run method. Rather than relying on intu-
ition to locate the error, you play the role of the computer, tracing pro-
gram execution through a trial run, calculating all intermediate values to 
get the final result. If your result and reality don’t match, then you know 
a fault lies in the code—it’s not doing what you expect it to. Although it 
is time consuming, this can be very effective because it highlights your 
bad assumptions. 

Understand the Problem

Once you’ve found out where the fault is lurking, you’ve got to understand 
the real problem. If it’s a simple syntactic error, such as using = instead of ==
(d’oh!), then the implications aren’t too nasty. For more complex semantic 
problems, make sure you really know what the problem is and all the ways 
that it may manifest itself before you move on—you may have only found a 
part of the problem.

Often the fault is very subtle: The code will be doing exactly what it 
should do and what you thought it was supposed to do when you wrote it! 
The problem is a flawed assumption (remember how evil these are?). A 
function’s writer and caller can easily presume that different behavior is 
acceptable in particular strange cases. Trace back and understand exactly 
what the cause of the problem is and whether or not any other bits of code 
may contain the same mistake.

KEY CONCEPT Once you think you’ve found the cause of a bug, investigate it thoroughly to prove that 
you are right. Don’t blindly accept your first hypothesis.

This is a key principle in the fight against bugs. Otherwise, you’ll join the 
ranks of the programmers who introduce more faults than they fix with every 
bit of repair work.

Create a Test

Write a test case to demonstrate the failure. You may have done this in the 
“Reproduce It” step if you were clever. If you didn’t, then you really want to 
write one now. With your new understanding, make sure the test is rigorous.
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Fix the Fault

And now the easy part: You’ve just got to fix the darned thing! This should
actually be the easy part—you understand exactly why the faliure occurs, and 
you’ve got a reproducible way to excerise it. Given that depth of information, 
the fix is usually child’s play. Most programmers find bug fixing hard because 
they skip the first two steps.

We’ll look at fixing faults in more detail in the following section.

Prove You’ve Fixed It

Now you know why you wrote a test case. Run it again, and prove the world is 
a better place. The test case can be added to your regression test suite to 
ensure that the fault is never reintroduced at a later point.

KEY CONCEPT You haven’t finished debugging until you’ve proved that the problem’s been fixed and 
has gone away for good.

That’s it! Game over—mission accomplished. Well done. However . . .

If All Else Fails

Sometimes you try all of this but it just doesn’t work; you’re left wailing and 
gnashing your teeth, with a sore head from banging it against a brick wall for 
too long. When things get this bad, I always find it helps to explain the whole 
problem to someone else. Somewhere in the description, everything seems 
to slip into place and I see the one key piece of information I had been 
missing all along. Try it and see. This is one reason why pair programming is 
such a successful strategy.

How to Fix Faults

You’ll notice that this section is much smaller than the preceding one. 
Funny. Usually the whole problem is finding the darned fault. Once you’ve 
worked out where it is, then the fix is obvious.

But don’t let that lure you into a false sense of security. Don’t stop 
thinking once you’ve diagnosed the source of your errant behavior. It’s very 
important not to break anything else as you make the fix—it’s surprisingly 
easy to trample over something in the flower bed as you stroll over to pluck 
out a weed.

KEY CONCEPT Fix bugs with the utmost care. Don’t risk breaking anything else with your modification.

As you modify code, always ask yourself, What are the consequences of this 
change? Be aware of whether the fix is isolated to a single statement or if it 
affects other surrounding bits of code. Might the effect of your change ripple 
out to any code that calls this function; does it subtly alter the behavior of the 
function?
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Convince yourself that you have really found the root cause of the 
problem, and you’re not just hiding another symptom. Then you can feel 
confident that you’ve put a fix in the right place. Consider whether similar 
mistakes may have been made elsewhere in any related modules; go and fix 
them if necessary.7

7 This is why copy and paste programming—duplicating code, perhaps with minor modifications—
is bad. It’s dangerous; you’ll mindlessly duplicate bugs, and then you won’t be able to fix them 
in a single place.

C A S E  S T U D Y  # 2 :  H U N G ,  D R A W N ,  A N D  Q U A R T E R E D

The program 
Embedded software controlling a consumer electronics device.

The problem 
A random lockup, occurring after about a week’s continuous operation. It resulted 
in the total death of the device; there was no UI response, no network connectivity, 
not even an interrupt being handled—the processor was completely stalled. This 
was particularly nasty, leaving no easy way to find out the cause.

The story 
The lockup happened so rarely that it was remarkably hard to track. In an attempt 
to pinpoint the cause, we tried a number of tests, leaving each to run for the week-
long gestation period. First we tried different usage patterns to see if we could make 
the fault happen sooner and thereby determine what was causing it. These tests 
made no difference whatsoever.

The nature of the lockup seemed to imply that it was a gnarly hardware problem. 
We tried running the software on different versions of the mainboard with different 
peripheral components and different CPU versions. Weeks of testing later, we 
were still no nearer to figuring out the problem, but we did have less hair (and 
what remained was graying). No matter what configuration we used, the soft-
ware still ran for about a week and then locked up.

Next we tried removing different sections of code from the system. After a lot of 
iterative testing, we tracked the problem down to a single component: Its presence 
in the build heralded a lockup; its absence prevented it. Finally, progress!

Working out why this software component caused such problems wasn’t straight-
forward. It was layered on top of a third-party library, which itself was built against 
a core OS library. We discovered that this core OS library had been upgraded to a 
more recent version, but the third-party library had not been rebuilt. We’d been 
continually linking against an inappropriate piece of code. While theoretically, 
this shouldn’t have made a difference—the OS library change was supposedly 
binary compatible—a rebuild of the third-party library fixed the problem for good.

Time to fix 
The total process took about four months, elapsed time. It involved many people 
on and off over that period, consumed lots of test resources, tied up many bits of 
hardware, and caused more review meetings than you’d believe were possible. 
As bugs go, this one had a nasty sting, and caused the company a lot of pain 
(not to mention expense).

Lesson learned 
Rebuild the whole software platform whenever any component changes to prevent 
subtle version mismatches.
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KEY CONCEPT When you fix a bug, check to see if the same mistake is lurking in related sections of 
code. Exterminate the bug once and for all: Fix all occurences of the fault now.

Finally, try to learn from your mistake. We must learn, or else we will be 
doomed to repeat the same errors for all eternity. Is it a simple programming 
error you keep making or something more fundamental, like the incorrect 
application of an algorithm?

KEY CONCEPT With each fault you fix, learn the lessons. How could you have prevented it? How 
could you have discovered it more quickly?

Prevention

Anyone will tell you that “an ounce of prevention is worth a pound of cure.” 
The best way to manage the population of bugs is to not introduce them. 
Sadly I don’t think that we’ll ever completely reach this ideal. For as long as 
programming involves problem solving, it will always be difficult—not only do 
you have to solve the problem correctly, you have to understand the whole 
problem fully in the first place. Despite this, careful defensive programming 
can avoid many problems. Good programming is about discipline and atten-
tion to detail. Thorough testing will prevent faults from leaking out in your 
software releases.

This section could be enormous, but all prevention advice boils down to 
that one simple statement: Use your brain. Enough said.

Wasp Spray, Slug Repellent, Fly Paper . . .

Many useful debugging tools exist, and you’d be stupid not to take advantage 
of them. Some are interactive, allowing you to inspect the code while it is 
running. Others are noninteractive, often running as a code filter or parser 
spitting out information about the program following analysis. Learn how 
they work to immesurably reduce your debugging time.

Debugger

This is the best known debugging tool; the name belies its purpose. A 
debugger is an interactive tool that allows you to view the internals of your 
running program and poke around with it. You can follow the flow of control, 
inspect the contents of variables, set breakpoints in the code for later inter-
ruption, and even run arbitrary sections of code at will.

Debuggers come in many shapes and sizes; some are command-line 
tools, and others are graphical applications. There will be at least one avail-
able for your particular development platform (although the ubiquitous gdb 
seems to be ported to every conceivable platform these days).

A debugger relies on symbols being left in your executable (these are 
elements of the compiler’s internal information that are normally stripped 
out at the final link stage)—it uses these to provide you with information 
about function and variable names and the location of the source files.
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Although debuggers are rich and powerful tools, I believe that they are 
often misused or overused, and can actually inhibit good debugging. Program-
mers easily become wrapped up chasing what the program is doing, getting 
sidetracked by observing the wrong variable values, stepping into the wrong 
functions, and they forget to step back and think about the problem they are 
trying to solve. A little more thought about a failure may pinpoint the specific 
fault far more quickly than it would take to hunt it down in a debugger.

KEY CONCEPT Use debuggers sparingly, when you encounter behavior you can’t explain. Don’t reach 
for them routinely to use as an alternative to understanding how your code works.

Memory Access Validator
This interactive tool inspects your running program for memory leaks and 
overruns. It can be remarkably useful, revealing reams of memory release 
errors you never knew existed.

System Call Tracing
System call trace utilities, like Linux’s strace, show all the system calls issued 
by an application. This is a good way to see how a program is interacting with 
its environment and is particularly useful when it appears to be stalled on 
some external activity that is not happening.

Core Dump
This is a Unix term for the OS-generated snapshot of a program that is 
produced when it exits abnormally. The term derives from archaic machines 
with ferrite core memory; the dump file is still called core today. It contains a 
copy of the program’s memory when it died, the state of the CPU registers, 
and the function call stack. The core dump can be loaded into an analyzer 
(which is often the debugger) to reveal a great deal of useful information.

Logging
Logging facilities allow you to programmatically generate information about 
your application as it runs. Rich logging systems allow you to assign priorities 
to the output (e.g., debug, warning, fatal) and then filter out a particular 
message level at run time. The program’s log gives a history of activity that 
can help pinpoint the circumstances that triggered a failure.

Even without a good logging facility (either as part of the operating 
environment or from a third-party library), you can achieve the same effect 
by peppering your code with basic print statements on an ad hoc basis. 
However, these printouts may interfere with normal program output, and 
they all must be carefully removed in the production code release.

Sometimes even lowly print instructions aren’t available. Once, when 
bringing up a new piece of hardware, the only diagnostic output I had was a 
single eight-segment LED display and a scope attached to a spare system bus. 
It’s impressive how much information you can shoehorn into a few lights 
when you try!
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There are downsides to logging: It can slow down program execution, 
bloat the executable size, and even introduce bugs of its own. Some logging 
systems, in which the crash destroys the buffer containing log messages, are 
useless for trapping a program crash. Be sure you know how well your logging 
mechanism behaves, and always send diagnostic print statements to an 
unbuffered output stream.

Static Analyzer

This is a noninteractive tool that inspects your source code for potential prob-
lems. Many compilers perform basic static analysis when set to their maximum 
warning level, but good analysis tools go far beyond this. Products exist to 
detect problem code and any usage of undefined behavior or non portable 
constructs, to identify dangerous programming practices, to provide code 
metrics, to enforce coding standards, and to create automatic test harnesses.

Use of a static analysis tool can eradicate many errors before they have a 
chance to bite—a handy safety net. It’s a pragmatic idea to use a static analyzer 
from a different company than your compiler manufacturer—two companies 
are less likely to have made the same set of assumptions or mistakes.

In a Nutshell
I can remember the exact instant when I realized that a 

large part of my life from then on was going to be spent in 
finding mistakes in my own programs.

—Maurice Wilkes

Like death and taxes, no matter how hard we try to avoid them, bugs happen. 
Sure, you might be able to mitigate the effects of the first two by using every 
sort of antiwrinkle cream available and manipulating your money in cunning 
ways, but if you don’t know how to deal with faults when they stare you in the 
face, your code is doomed.

Debugging is a skill you develop. It doesn’t rely on guesswork, but on 
methodical detection and thoughtful repair.

Good programmers . . . Bad programmers . . .
Don’t cultivate bugs; they write 
code carefully to prevent intro-
ducing them in the first place

Understand what their code does 
and write careful tests to ensure 
that it won’t be broken easily
Hunt for bugs methodically and 
carefully, rather than rush in 
headfirst without a battle plan
Know their limitations and will 
ask others to help find a fault 
when they’re stuck

Change code carefully, even 
when making a “simple” repair

Don’t debug; they flail around, 
sinking in a sea of bad code

Spend most of their life in a 
debugger, figuring out what 
their code is doing
Encounter a failure and try to 
hide it—they actively avoid 
debugging
Have unrealistic expectations of 
the quality of their code and of 
their ability to fix faults

“Fix” bugs by masking symp-
toms rather than tracing the 
problem back to its real cause
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See Also

Chapter 1: On the Defensive 
How to prevent bugs from ever gaining a foothold in your code.

Chapter 8: Testing Times 
You can’t fix a fault until you know it exists. Thorough testing is a pre-
vention mechanism that stops faults from leaking out into your software 
releases.

Chapter 20: A Review to a Kill 
Code reviews help to pinpoint and eradicate bugs and can identify prob-
lem areas that would otherwise go undetected.
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Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 500.

Mull It Over
1. Is it best for faults to be fixed by the original programmer who wrote the 

code? Or is the programmer who discovered the problem better placed 
to make a fix?

2. How can you tell when to use a debugger and when to use your brain?

3. You should learn unfamiliar code before you start trying to find and fix 
faults in it. But the time pressures of the software factory often dictate 
that you can’t spend any serious time studying and understanding the 
program you’re repairing. What’s the best way forward?

4. Describe good techniques to avoid memory-leak bugs. 

5. When is it justifiable to have a quick stab at finding and fixing a fault, 
rather than adopting a more methodical approach?

Getting Personal

1. How many debugging techniques/tools do you routinely use? What 
others have you seen that you might find useful?

2. What are the common problems and pitfalls in your language(s) of 
choice? How do you guard against these kinds of bugs in your own code?

3. Are most of the bugs that occur in your code sloppy programming 
errors, or are they more subtle issues?

4. Do you know how to use a debugger on your platform? How routinely do 
you use it? Describe how to do the following:

a. Produce a backtrace

b. Inspect variable values

c. Inspect value of fields within a structure

d. Run an arbitrary function

e. Swap thread contexts





T H E  C O D E  T H A T  
J A C K  B U I L T
Mechanisms to Turn Source Code

into Executable Code

10

In this chapter:

How do we build software?

The different program-
ming language models 
of construction

The mechanisms of a good 
build system

Building release versions

What you spend years building may be destroyed 
overnight. Build anyway.

—Mother Teresa

The programmer (Geekus maximus) is usually found 
in its natural habitat, hunched in the ethereal glow 
of a monitor, entering profound combinations of 
punctuation characters into a text editor. Occasion-
ally, this timid beast will leave the confines of its 
lair to forage for coffee or pizza. Quickly it returns 
to safety, continuing its ritual at the keyboard.

If typing language constructs was all there was 
to programming, then our job would be a great 
deal easier, although we’d risk being replaced by 
the proverbial infinite number of monkeys with 
their infinite number of text editors. Instead, we 
must run our source code through a compiler (or 
interpreter) to obtain something that might just 
function as we intend it to. Invariably, it doesn’t. 
Rinse and repeat.
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The task of converting carefully honed, high-level language into an 
executable that can be distributed is commonly referred to as building code 
(although you’ll find that this term is used pretty interchangeably with making
and compiling in most contexts).

This act of building is a fundamental part of what we do—we can’t develop 
code without performing a build. It’s important, then, to understand what’s 
involved and how your project’s build system works in order to have any con-
fidence in the code that’s generated. There are a lot of subtle issues at play 
here, especially when a codebase reaches a reasonable size. Interestingly, almost 
all programming textbooks will gloss over this kind of topic; they present 
single-file example programs that don’t show any real build complexity.

Many developers rely on their IDE’s build system, but this doesn’t remove 
the burden of understanding how it works. It’s very convenient to hit a button 
and have all your code generated, but if you don’t know which options are 
being passed to the C compiler or which level of instrumentation is left in your 
object files, then you’re not really in control. The same holds true if you type 
a single build instruction at a command prompt. You must understand what’s 
going on under the hood to be able to repeatably perform reliable builds.

Language Barriers

There are several varieties of programming languages, each with its own 
mechanical process of constructing an executable program from source 
code. Some construction models are more complex than others, and each 
has its strong and weak points.

There are three main mechanisms: interpreted languages, compiled
languages, and byte-compiled languages. These are shown in Figure 10-1.

Figure 10-1: Programing language build and execution methods

1. Interpreted languages 
2. Compiled languages 
3. Byte-compiled languages 
4. JIT-compiled execution 
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Interpreted Languages

Code written in interpreted languages does not need to go through a specific 
build phase. After writing some code, you need only tell the interpreter where 
it is; it parses and acts on the instructions in real time. Common interpreted 
languages are Perl, Python, and JavaScript. The majority of OO languages 
are interpreted, largely because they have been developed more recently as 
computers have become better able to run interpreters at reasonable speeds.

D O  W E  R E A L L Y  BUILD  S O F T W A R E ?

Building is often used as a metaphor for programming, equating what we do to the 
“traditional” building industry. There are many striking parallels, since both are con-
struction processes. We have, in fact, seen some sort of overlap and collaboration 
between the two disciplines, as the software patterns movement (see “Design 
Patterns” on page 255) learned from Christopher Alexander’s architectural work. 
(Alexander 79)

It’s valuable to understand how far this metaphor stretches and how useful it really is. 
No metaphor is perfect, after all. Although philosophical and a bit of an aside, it does
matter because the comparison will inevitably prejudice our approach to development. 
The metaphor is helpful in places; elsewhere it’s less than perfect (even potentially 
harmful).

The good 
Like the physical construction process of a house, we start from nothing and build 
by placing one layer of structure atop another. Before the construction begins, a 
process of gathering requirements and careful design and architecture should have 
been performed. While you can probably build a garden shed without much 
planning, you’d be crazy to hope an unplanned skyscraper had a chance of 
standing up; you need serious design and planning up front. This neatly parallels 
our software construction.

The bad 
The metaphor stretches thin in other areas, though. We can modify the foundational 
layers of our software constructions more easily than the foundations of a house. 
It’s far cheaper to tear down a software edifice than a physical one. This means 
that the software world offers the opportunity to prototype and explore more often 
than the physical world does.

Real World building mandates sound engineering principles; this is enshrined 
in statute and enforced by public liability. Many software firms wouldn’t know an 
engineering principle if it slapped them in the face.

The ugly 
Our entire development procedure is akin to a physical construction process, 
comprising system conception, design, implementation, and testing. But what 
we’re actually thinking about in this chapter is subtly different—it revolves around 
compilation and the procedures involved in this kind of building task. The metaphor’s 
a bit out of kilter here too. Each time you take a fresh copy of some source code, 
you “build” it, creating an executable program; that is what we’re looking at here. 
Be clear about these two different uses of the term “build.”

The software build process follows its own rules—if you modify a function, you 
must then perform a system rebuild. In contrast, you don’t have to rebuild the walls 
in your house every time you paint the doors.
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The main advantage of interpreted languages is their speed of develop-
ment; with no intermediate compile stage; you can test each change very quickly. 
You also gain platform independence—popular language interpreters run on 
many different platforms. Your program will work wherever the interpreter 
has been ported.

But interpreted programs have some disadvantages: They execute 
more slowly than a compiled equivalent since the language run time has to 
read, parse, interpret, and act on each individual code statement. That’s a lot 
of work. Modern machines are so fast that this is only a problem for the most 
computing-intensive applications. There are various interpreter technologies 
that improve code performance: Some languages precompile the source file 
before execution (slowing down startup time) or employ Just-In-Time (JIT)
compilation, compiling each function as it’s about to be run (slowing down 
each function’s first call). For most programs, this isn’t an appreciable 
overhead, and JIT-compiled performance is indistinguishable from native 
compiled code.

Scripting languages are often interpreted. These languages support a very 
fast development cycle by being very forgiving to questionable code (with lax 
language rules and weak typing) and by avoiding complex features. Scripting 
languages are often used as glue to invoke other utilities in more convenient 
ways. Unix shell scripts, Windows batch files, and Tcl are examples of script-
ing languages.

Compiled Languages

Compiled languages employ a build toolchain to convert your source code 
files into machine instructions that will execute natively on the target plat-
form. The target execution platform is usually the same as the development 
platform, but embedded developers often build on a PC and target very differ-
ent machines, using a cross compiler. Large projects are compiled in several 
stages; each individual source file is compiled into an intermediate object file,
and then these objects are linked into a final executable. This build model 
is illustrated by the cake-baking metaphor, shown in Figure 10-2, where 
individual ingredients (source files) are mixed (compiled) and finally 
baked together (linked).

C and C++ are the most popular compiled languages, although most 
structured languages are compiled. By its very nature, a compiled application 
will run faster than its interpreted counterpart (at least, without JIT compila-
tion), although in practice, you won’t notice this—most applications are not 
computing-intensive; they spend most of their time stalled and waiting for 
user, disk, or network input.

The compiled language build procedure is more complex than an 
interpreter, so there are more possible points of failure. An application has 
to be recompiled for each target platform you want to run it on.1

1 Target platforms are distinguished by their processor types and the host operating systems. 
Other factors, like the available peripheral hardware, may be important.
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Figure 10-2: Compilation confectionary

Byte-Compiled Languages

Byte-compiled languages sit halfway between interpreted and compiled lan-
guages. They involve a compilation step but don’t produce a native executable 
program. Instead, the product is a file of byte code; a pseudo machine language 
that can be executed by a virtual machine. Java and C# are common byte-
compiled languages.

A common misconception is that executing byte code is necessarily slower 
than executing an equivalent compiled binary. This is not always so. A JIT 
optimizer can make intelligent decisions about the code that may make it par-
ticularly fast (for example, tailoring itself to the exact hardware the program 
is executing on).

As a compromise, byte compilers inherit some of the advantages and 
disadvantages of the previous approaches. Byte code can be executed on any 
platform the virtual machine has been ported to, so you gain portability 
(although some language run times are more widely ported than others).

Making Mountains out of Molehills

The compiled (and byte-compiled) build models are the hardest to reason 
about, so let’s investigate what compiling software entails. It’s shocking how 
few newly trained programmers really understand this, so we’ll start from 
first principles. If you already know this stuff, feel free to skip ahead.



180 Chapter 10

For a good understanding, it’s best to think about each manual step 
rather than rely on your IDE to do all the rebuilding work for you. This 
five-part story of a simple program’s development will explain:

1. You’re starting a new project, coded in C. It will solve all the ills of the 
software development world and will usher in a new era of world peace. 
However all you have at first is a single file containing main. You’ve got to 
start somewhere.

It’s easy to build and run this single-file program—you just type 
compiler main.c,2 and out pops an executable for you to run and test. 
Simple.

2. The program grows. To help organize the parts, you split it into multiple 
files, one per functional block. The build is still a simple process. Now 
you type compiler main.c func1.c func2.c. The same executable program 
pops out, leaving you to carry on testing as before. No sweat.

3. Soon, you recognize that some sections of the code are really individual 
components with isolated concerns, almost like stand-alone libraries. 
It would be easier to reason about these sections of code by placing them 
in their own directories—grouping the similar sections of code together. 
Now the project is beginning to spread out. The simple way to build this 
new file structure is to compile each individual source file by hand, using 
a compiler call that doesn’t build an executable, just intermediate object 
files. Afterward, main.c is compiled and linked with all the intermediate 
object files. To do this, you may also have to point the compiler at some 
other directories’ include files. Now things are getting a little more 
complex.

Whenever you change some code in one of the new directories, you 
have to fire off the compile command in that directory and then issue the 
final “link everything” command once more. Quite manual. Additionally, 
if you change a header file that other directories use, all of those directories 
have to be rebuilt too. If you forget, the linker will probably generate a 
slew of cryptic complaints.

To eliminate this huge command-line burden, you can write a shell 
script (or batch file in Windows) that walks around each directory and fires 
off the requisite build commands. Having hidden all that messy work 
and the tedious compiler parameters, you can get back to the serious 
business of code development with the peace of mind that you don’t 
have to memorize unnecessary build fluff.

4. Later on, these subdirectories become real stand-alone libraries; they are 
also used in other projects. You tidy up the code so it’s a little friendlier 
to use, add some good user-facing documentation, and then alter the 
build commands to generate shared libraries rather than object files. This 
requires some more changes to your build script, but it’s a relatively hid-
den change and isn’t too painful.

2 Obviously, you would replace compiler with the command to prod your C compiler—this is a 
hypothetical example.
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5. Development carries on like this for some time. Code is added rapidly. 
Many new subdirectories and sub-subdirectories are created. Although 
the file structure seems pretty neat, build times become a problem—
each time you fire up the build script, it recompiles every source file, 
even those that haven’t changed. The temptation here is to track 
all changes yourself and to issue subdirectory builds by hand again 
(perhaps by creating individual directory build scripts as a halfway 
house). The project is now so large that it would be very easy to miss 
some dependencies. This would lead to hard to resolve build errors, 
or even subtler problems (e.g., you may encounter flaws that don’t 
stop the link from working, but that do make the program behave 
in incorrect ways).

Now your development is on the brink. You can’t trust the system 
being used to build the code. It’s not safe. You can only really trust 
the executable if you’ve done a complete cleanout and rebuilt from 
scratch.

Enter the tool for just this occasion. The classic solution is a command-
line program imaginatively called make. (Feldman 78) It deals with all of the 
intermediate object files and compilation rules for you and, most importantly, 
tracks which files depend on which other files. You tell it what to do by writing 
makefiles that provide the necessary build rules. It looks at the source file time-
stamps to check what has changed since you last performed a make, and then 
it recompiles just those files, along with anything dependent on them. It’s a 
more intelligent version of the scripts we wrote above, specifically tailored to 
the task of compiling and recompiling software.

Over the years, many variants of the humble make have appeared, 
these days many with pretty GUI façades. GNU Make is one of the most 
widely used tools (it’s free and very flexible). If you haven’t been initiated 
into the Cult of Make, “Make: A Tourist’s Guide” on page 183 explains its 
basic operation.

There are many other build systems in common use. Look at SCons, 
Ant, Nant, and Jam for examples. They are each tailored to a specific kind of 
build environment (for example, Nant is used to build .NET projects) or for 
a particular quality (many aim to simplfy the syntax of make, which is quite 
baroque!).

Building Builds

In that sinking morass of software construction, we’ve seen some of the main 
issues of a build procedure. Essentially, any software build process takes one 
or more source files as input, and it spits some executable program out the 
other end. It may even produce an entire release distribution, including 
an executable, help files, an installer, and so on, all packaged neatly and 
ready to be burned onto CD.
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Like the cumulative story from which I shamelessly pilfered this chapter’s 
title, as our software develops and matures, the build process develops and 
matures with it. Maybe yours didn’t start in as basic a state as the example 
above, but build scaffolding tends to start simple and grow alongside the code 
it builds. A large project often has a bewildering build process that requires 
(but doesn’t necessarily always have) adequate documentation. We can see 
that the act of compiling a single source file is at the lowest level of the build 
food chain, and we will raise a tower of extra work upon this simple act.

T E R M S  A N D  C O N D I T I O N S

These terms comprise the main software construction terminology:

Source code 
Source code is physically contained in the files that you write, and it usually occurs 
in a high-level language. These language constructs can be converted into a 
functioning program with the appropriate tools.

Compilation 
Source code is converted into an executable in one of two ways. One is to compile
it into an executable program. The alternative is to interpret the source code in real 
time—a language run time parses and acts on the source code as the program is run.

Build 
This is a vague term, often used as a synonym for compile. Compilation is a 
single construction step, whereas a build describes the entire construction process. 
The term make is used in a similarly vague fashion; even worse, it is also the 
name of a common software build tool.

Object code 
Object code is held in an object file. It represents the compiled version of a file of 
source code. Object code is not directly executable; it relies on other files of code 
(most programs are made of more than one source file). An object file must be linked
with other objects to create an executable.

Library 
A code library is akin to an object file—it is a collection of compiled code and not 
itself a whole program. A library contains a cohesive collection of useful functionality 
that can be incorporated into any program. A library can be static or dynamic.
The former is linked like an object file, whereas the latter is dynamically loaded 
by the application when it is run.

Machine code 
Some compilation steps produce machine code rather than object files. This is a 
form of source code that represents the exact CPU instructions for a program. 
Machine code is converted into real CPU instructions by an assembler, which is 
why it’s also known as assembly code.

Some low-level OS libraries and embedded programs are written in assembly 
language, but we generally work in high-level languages and leave assembly to 
the internal workings of the compiler.

Linking 
The linker combines one or more object files (and perhaps libraries) into a final 
executable or into a partially linked code library.

Executable
The outcome of a compile or link step. This is a self-contained program that can 
be run directly on your computer.
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A build process is not just about compiling source files. It may also 
involve preparing some text registration files from templates, creating 
internationalized strings for the UI, or converting graphics files from their 
source resolution to some destination format. Practically all such activities 
can hang off a build system and be run in the normal course of a build. 
This does presume that all the tools are scriptable—that they can be run 
by some other program (e.g., by make).

It’s important to consider your build system a part of the entire source 
tree, not something separate. Makefiles are kept under revision control along-
side other source files, are maintained alongside the source, and are as much 
a part of the program as any other source file. They’re essential—you can’t 
create the application without them.

KEY CONCEPT Consider the build system a part of the source tree, and maintain the two together. They 
are intimately entwined.

M A K E :  A  T O U R I S T ’ S  G U I D E

Make is one of the most widely used build systems in the programming world. Here 
is a whirlwind tour of what it is and what it can do.

Make is driven by makefiles, which usually reside in directories beside the source 
code they build. These makefiles contain rules describing how to build the application. 
Each rule describes a target (that is, a program or intermediate library to build), details 
what it depends on, and how to create it. Comments in the file are prefixed by #.
Here’s a short example (using the hypothetical compiler program to build source):

# This first rule says ".o files can be built from
# .c files and here's the command to do it." $< and
# $@ are magic names for the source and destination
# file. Yes, make's syntax can be a little cryptic...
%.o: %.c

compiler -object $@ $<

# This rule says "the program myapp is built from these
# three .o files, and here's how to link them together"
myapp: main.o func1.o func2.o

linker -output $@ main.o func1.o func2.o

That’s the general idea. If you save this with the magic filename Makefile and 
then issue the make myapp command, it will be loaded and parsed. Since myapp
depends on some .o files, these will first be built from their respective .c files using 
the rule provided. Then the linker command will be run to create the application.

There are many ways to neaten this up so that it’s more manageable. For example, 
makefiles can define variables; the myapp rule looks nicer like this:

OBJECT_FILES=main.o func1.o func2.o
myapp: $(OBJECT_FILES)

linker -output $@ $(OBJECT_FILES)

A deeper description of the nuts and bolts of make usage is outside the scope of 
this book, but it’s something every developer ought to know. There are many more 
useful features available. GUI build tools are essentially wrappers around this kind of 
functionality, hiding the detail of writing makefiles. They are generally easier to set up, 
but can be a hindrance when you want to do some advanced build configuration.
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What Makes a Good Build System?

Following are a few important qualities of a good build system.

Simplicity
The build system must be accessible to all programmers, not just the build 
gurus. Every developer must be able to perform a build, or he can’t get any work 
done. If a build system is too complicated, it’s practically useless. It must be:

Simple to learn 
That is, a new developer should be able to join the team and quickly 
understand how to build software. He won’t be productive until he’s 
mastered the build procedure. I’ve worked in companies where it was 
considered a rite of passage to figure out how the build works and to per-
form one. That is not just an unhelpful attitude, it is dangerous—what 
happens when everyone who really knows how to build the code leaves?

As software grows, it becomes larger and harder to understand. As the 
build system grows alongside it, it becomes larger and harder to under-
stand. Builds tend to become more clever and more cryptic as new facilities 
are introduced. Resist complexity.

Simple to set up 
Setting up a build means:

Taking a clean PC (with just a fresh copy of the host OS)

Installing all the necessary software (compilers, translators, source 
control, installers, plus patches/service packs)

Installing all the necessary libraries (noting the correct versions)

Creating the correct environment to perform a build in (this may 
involve setting up directory structures, assigning environment 
variables, getting the correct tool licenses, and so on)

Without clear instructions for setup, how can you be sure that your 
build is a repeatable procedure?

Unsurprising 
It’s best to use common, well-known build tools. They are what people 
expect and know how to use, so the learning curve is less steep. Complex 
build tools that do things no one really understands are worrying.3

Uniformity
It’s essential that everyone uses the same build system. Otherwise they’re not 
building the same software. Different build mechanisms may seem equivalent—
I use my IDE while he uses makefiles—but you’re increasing the maintenance 

3 I have an built-in distrust of anything more clever than GNU Make, but that probably says 
more about me than the other clever make tools. GNU Make is quite clever enough, thank you!
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effort and the potential for error. Subtle differences can creep in—for example, 
compiler options may not be the same, resulting in a different executable.

This dovetails with the requirement to maintain the build system alongside 
the source tree. If the build system physically is a part of the code, then it can’t 
be ignored or avoided.

KEY CONCEPT Every programmer on a project must use the same build environment. Otherwise you’re 
not all building the same software.

This may seem blindingly obvious, but it’s incredibly easy to get wrong. 
Even if you are all happily sharing makefiles, other differences can slip past 
unnoticed—mismatched versions of libraries, tools, or the build scripts can 
all lead to a different program being built.

Repeatable and Reliable

Builds must be deterministic and reliable. You should be able to determine 
the set of input files easily before performing the build. Performing two 
separate builds on the same set of files should give you exactly the same 
executable both times—the build should be repeatable.

KEY CONCEPT A good build system allows you to repeatedly create physically identical binary files.

You can then mark this set of source files in the revision control system as 
a particular version of the software (or archive the files to a backup store), 
and perform many identical builds at any time in the future.

This is crucial—an important customer may find a significant bug in an 
old revision of software, and if you can’t get back to that version and generate 
the exact same program, you may never be able to reproduce the failure, let 
alone find the fault.

KEY CONCEPT You must be able to pull out a source tree from three years ago and rebuild it correctly.

A build process that spits out an unreproducible binary is worrying. If what 
comes out of a build depends on the lunar cycle, the world becomes a hard 
place to reason about. This means that gratuitous use of C’s __DATE__ or other 
potentially changeable information should be kept to an absolute minimum 
in the source files.

The build must work perfectly all the time—it must be reliable. If it falls 
over every other day or occasionally produces a broken binary, then it is worse 
than useless—it’s dangerous. How can you be sure that you’re testing a good 
binary? How can you be sure that your company is releasing an acceptable 
product? Problems with the build system really hamper development.

The build should be almost invisible; the only thing you need to worry 
about is how to turn the handle, and you should be assured that the right 
things will come out at the end.
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Atomic

The ideal build system takes undoctored virgin source and compiles it all at 
once, with no human intervention. There should be no special steps you 
have to go through to perform the build. You should not have to fire up 
another application halfway through and prod a file. You shouldn’t even 
need to run more than one command to perform the build. This ensures 
that no information is locked away in your head, just waiting to be lost. All the 
build magic is documented in a reliable place—the build script itself. The build 
is always repeatable. It’s safe.

KEY CONCEPT A good build is presented as a single step. You need only push a button or issue one 
command.

If you can’t reach this ideal (and it’s not at all unreasonable), then the less 
manual a build is, the better. All of the manual steps need full documentation. 
It is acceptable (in fact, it’s advisable) to break the procedure up into these 
separate parts:

1. Obtain the virgin source.

2. Build it.

3. Create the release distribution from this.

See how the notion of building the code is separate from obtaining it—the 
same build instruction could potentially create any version of the software, 
depending on the version of source you start with. Packaging the program is 
also a separate step; for development work, you don’t always want to waste 
time creating a full install package.

A  W A R  S T O R Y

Repeatable builds are essential; you must be able to regenerate any released version 
of your software. You’ll get into trouble otherwise. I once worked for a company that 
struggled with this exact problem.

They had made a live change to the code on a customer’s site and did not 
replicate the change in their master copy under version control. The customer was 
no longer running an “official” software release. Later on, when the customer 
found a critical bug, the programmers couldn’t reproduce it. But of course no one 
could figure out why, because the on-site tweak had been long forgotten.

Why did they do this? Because it was much, much easier to make a quick-and-
dirty change than to do it properly (i.e., fix the bug in the main codebase, test it, 
make an official software release, ship it to the customer, and then get the appropriate 
approval and sign-off before installation). When your client’s business depends on 
your software and its entire production line is waiting for you to fix a bug, the pressure 
for a dirty hack is enormous.
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Coping with Errors

At the end of development, when the dust settles over finished code, there 
will be no build errors. But during development you’ll be breaking things all 
over the place. The build system has to cope with this and should lend a 
hand to deal with it.

Your build system should not continue after an error. It should stop and 
leave you with no doubt about what broke and where it can be fixed. 
If the build process continues, other problems will almost certainly result 
as a consequence of that first skipped error. These will be very hard to 
understand. For your own sanity, don’t break this rule!

The build system should remove any incomplete objects when a build 
step fails. Otherwise the next time you run a build, it will assume that file 
is actually intact and pick up after it. This will cause much pain later on; 
errors that magically hide themselves are great fun.

Builds should not be noisy. This isn’t determined so much by the build 
process as the source code that you’ve written.4 If your code generates 
compiler warnings, then there is something in it that you should be looking 
into. Persuade the compiler to be quiet by writing better code. Copious 
silly warnings can cloak the more insidious messages that you should be 
reading. 

For maximum peace of mind, build with all compiler warnings 
enabled—switching them off does not fix the problem; it hides it.

The only real way to follow this advice is from the very start: Think about 
the build process at the beginning of your project. Trying to add the flag 
that says all warnings enabled when you’ve already written a lot of code will 
result in an instant flood of warnings. The overwhelmingly likely response is 
to quickly turn the flag off again and pretend it never happened. Anything 
for an easy life. You really have to start as you mean to go on.

The Mechanics

Beyond those quality concerns are the practicalities of a build system. 
To discuss this in concrete terms, we’ll talk about make, a specific build 
system, and makefiles a lot—don’t worry too much; barring syntactic 
differences, other build systems follow similar conventions (even the 
pretty graphical ones).

Choice of Targets

Makefiles define rules that describe how to build targets. (Remember: Other 
build systems work in a very similar manner, even if the terminology is subtly 
different.) The system is clever enough to infer all intermediate targets and 

4 Actually, it could be—you can disable compiler warnings to remove the noise. This is the wrong
way to solve the problem.
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build those along the way. A single makefile can contain multiple targets. 
This allows you to use one build system to generate several different outputs, 
such as:

Distinct programs (commonly seen when two programs have some 
common code components and so live in the build source tree)

Different target platforms to build your application for (say a Windows/
Apple/Linux version, or a desktop/PDA release)

Product variants (the full release build or a demo version with save/print 
disabled)

The development build (with debugging support enabled, logging 
switched on, and assertions made fatal) 

Differing levels of build (build just the internal libraries, build the appli-
cation, build an entire distribution)

You might even require some combination of these targets, say a 
“demonstration PDA” build.5 You can design your source tree so that each 
of these targets can be built from the same place. Rather than type just make,
you might type make desktop or make pda, and an appropriate executable will 
come out the other end. (The name following make is the rule it should 
attempt to build.)

There is a huge benefit in doing this rather than having separate source 
trees for each target. Maintaining several source trees across which most of the 
code is identical would be an intense and error-prone task. You could easily 
forget to apply one of your modifications to all copies of the code.6

So how do these target rules differ? The actual differences can boil down 
to a number of things:

Different files being built (e.g., save_release.c or save_demo.c)

Different macro definitions being passed through to the compiler (e.g., 
the compiler predefines a DEMO_VERSION macro to select appropriate 
#ifdefed code in save.c)

Different compiler options being used (e.g., to enable debugging support)

Different tool sets or environments being selected for building (e.g., using 
the correct compiler for the target platform)

While you could have any number of targets for all sorts of minor 
differences, it opens the possibility of making your build system complex and 
unwieldy. Some selections can be moved to build configuration options. Some 
configuration can actually be done at code install time, or even at run time. 
This is preferable if it reduces the number of different builds that exist and 
require testing.

5 In this case, the mechanism changes: You can only build one target at a time, so the “demo-ness” 
would become a build configuration rather than a target. A later section discusses configurations.
6 Note how this dangerous approach is different from maintaining multiple branches of a project 
in a revision control system. Revision control systems provide a mechanism to merge changes across 
branches and to easily compare branches for differences.
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Housekeeping

For every target rule you define, there should be a corresponding clean rule 
that undoes all the build operations—removing the program executable, 
intermediate library, object files, and any other files created during the build. 
The source tree should revert to its original virgin state—it’s relatively easy to 
verify that it does.7

This implies that a build system that physically alters the source files is 
nasty—how can you easily revert from these changes? You should instead use 
the original files as templates, and send modifications to a different output file.

Clean rules are a good housekeeping convention. They allow you to easily 
sweep everything away and rebuild from scratch when you think that a build 
gremlin is catching up to you.

KEY CONCEPT For every build rule, have a corresponding clean rule that undoes the action.

Dependencies
How does a build system know which files depend on which others? Short of 
ESP, it’s a difficult task, and so we will elicit help from the people who do know.

You provide dependency information in your makefile rules: a recipe in 
make’s preferred format. Make can build and follow the tree of dependencies, 
inspect each file’s timestamp, and work out which parts need to be rebuilt 
after any modification.

This is simple enough for an executable build rule—you just need to 
specify which object files and libraries comprise it. You don’t, however, want 
to laboriously specify dependency information for every single source file; no 
doubt there are many #included files, which themselves #include many others. 
Quite a list. It would be really easy to type incorrectly at first and very likely to 
become out of date; you could easily add a new #include and forget to alter 
the makefile correspondingly.

7 Just do a build, do a clean, and then check the tree for differences from the start state.

L I F E  A F T E R  M A K E

A lot of the issues we’re investigating here are quite specific to the C-style develop-
ment cycle, where a compiler generates object code and libraries from source files, 
and these are linked into a final executable. Some languages follow a different model. 
Java simplifies the build process greatly; the javac compiler takes over the role of 
make, performing dependency checks automatically. It locks you down more, enforcing 
a particular build tree structure, but makes your life easier by doing so.

Simple Java programs don’t need an elaborate build system; one javac command 
can safely rebuild the world. However, a reasonably large Java project often will
employ make. We’ve seen that there is more to a build than just compiling source. 
You need a mechanism to prepare supporting files, to run automated tests, and to 
create the final distribution. Make is a good framework for this to hang off of, so it 
isn’t entirely redundant.
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Who does know about all this dependency information? The compiler 
does—it’s the one component in the build system that actually traces all source 
file dependencies. Helpfully, all good compilers have an option that causes 
them to spit out dependency information. The trick is to write a make rule that 
gathers this dependency information, places it in an appropriately formatted 
file, and then includes that in the dependency tree.

Automated Builds
If your build procedure is atomic, a simple matter of firing off one command, 
you can easily set up overnight builds of the entire source tree.8 A regular over-
night build takes the code that has been produced during the day and applies 
the full build procedure to it. This is a remarkably helpful practice with many 
benefits:

Every morning there’s a fresh copy of the state of the art. Developers 
often spend the day in their own little worlds, forgetting to synchronize 
their code with colleagues’ check-ins. This technique provides a painless 
integration test, checking that everything knits together properly.
It identifies build problems early on, with no extra work on your part. When 
you sit down at your desk in the morning, coffee in hand, you can see 
whether the source tree is in a buildable state. You’ll know immediately 
where to start fixing, rather than wait for your own build to complete.
You can add automated regression and stress tests to the overnight build. 
This is a good way to sanity-test code before anyone ever tries to use it. 
During the day, you may not have time to run the full test suite with every 
build—this ensures that it never gets overlooked. It’s a potent valida-
tion mechanism.
The overnight build can be used as a yardstick of project progress. Publish 
the overnight test results and, as more and more tests pass, the developers 
gain a sense of achievement.
You can make actual product releases from the overnight build. You’ll 
trust this build to have not suffered from command-typing mistakes, 
misconfiguration, or other human errors.
It proves that you really know how to build the software and that the 
build procedure really is atomic. Without running automatic builds, how 
do you know that your build process doesn’t rely on some other activity, 
like one of the developers cleaning away the old build tree first?

KEY CONCEPT Establish an automatic build of your software. Use it to ensure that your codebase is in 
a consistent state.

Automated builds are especially good for big systems (where a build of 
everything may take hours and hours) or for systems with many people working 
alongside one another (where each developer may not have a copy of the 
absolute latest system source at any given point).

8 Time-delayed commands can be set up in Unix using the cron utility or in Windows using the 
Scheduled Tasks facility.
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A good practice with nightly builds is to capture the build log (the output 
of the build procedure) and make it publicly accessible. Perhaps even email 
the results around when the build fails, to highlight the problem. It’s impor-
tant to know what happened each time a build ran, especially when something 
goes wrong.

The overnight build becomes a central heartbeat of project development. 
The code is developing healthfully and happily if the builds are successful. 
A great rule enforced on many projects is: Don’t break anything in the source 
tree—checking in code that breaks during the nightly build is punishable by 
something extremely painful and unpleasant (preferably involving public 
humiliation). A second rule is this: If the build breaks, it’s everyone’s problem. If the 
overnight build fails, all developers must put down their down tools until it 
works again.

You can take this automatic build procedure to the extreme, and use 
tools that perform a build whenever the source repository is altered. This is 
known as continuous integration and is a powerful way to check that your code 
is consistent and buildable at any point in time.

Build Configuration

A good build system allows you to configure certain aspects on a per-build 
basis. This could be via options in your IDE, but makefiles usually achieve 
this by defining variables. Variables can be picked up from a number of places:

Inherited from the calling environment

Set on make’s command line

Defined explicitly within a makefile

Configuration variables are commonly used in the following ways:

A PROJECT_ROOT variable is defined, pointing to the root of the build tree. 
This allows the build system to know where to look for other files—for 
example, to establish paths for header files. You really don’t want to 
hard-code the location of the build tree on your development machine. 
If you did, you could never move it around, and you wouldn’t be able to 
manage two build trees at the same time.

Other variables may specify where to find each external library (so you 
can point the build at different versions for testing purposes).

They may specify the kind of build to produce (development or release, for 
example).

The command to invoke each build tool (compiler, linker, etc.) can 
be placed into a variable. This makes it easy to test a different set of 
command-line parameters, or to employ a different vendor’s tool.

You can put default values into the makefile. This serves two purposes: 
it documents all the available options and means you don’t have to provide 
values for every config option all the time.
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Recursive Make 

Source code naturally nests into directories. If all the files in a large project 
got dumped into one directory, things would rapidly become unmanageable. 
Since the source tree nests, the build system has to nest too. Far from making 
life more complex, accommodating this nesting can make the build system 
more flexible.

A makefile in one directory can invoke the makefiles in subordinate 
directories by firing off another make command, just as it would invoke a 
compiler. This is a common technique known as recursive make; the build 
system that recurses into each subdirectory builds the components in there 
and returns to build the components in this directory. In this way, you can 
type make from the project root directory to build the whole codebase, or within 
a subcomponent’s directory for a partial build. Whatever you want to be built 
is built.

Recursive make helps to compartmentalize and manage build components, 
but introduces some problems of its own. It is slow (as it fires off many child 
processes to traverse into subdirectories), and since each child-make only sees 
its portion of the entire build tree, it can get dependency information incorrect. 
Be wary of recursive make if you see it—prefer to make non-recursive build 
systems. (For more on this, see the answer to this chapter’s “Mull It Over” 
question 7 on page 506.)

Please Release Me

Some builds are particularly important and require more care in their prepara-
tion. These are release builds, builds that are made with a special purpose, rather 
than in the course of code development. A release could be one of a num-
ber of exciting events: a beta version, the first official product release, or a 
maintenance release. It may also be an internal development milestone or 
an interim release to the test department; these builds won’t leave the company 
but are held in as high regard as external releases, almost a fire drill for an 
official release.

If the build system is carefully crafted, there shouldn’t be any extra prep-
aration needed for a release build. However, these important builds must be 
handled thoughtfully, so we need to make sure that no build issues compromise 
the final executable. The key concerns with release builds are:

Release builds should always come from a virgin source tree, not from 
someone’s half-built development tree. Start from scratch. We need to 
know the exact state of the source files being built. Do not trust the files 
on Joe’s computer to be in a “good enough” state.

Prior to the build itself, a specific step identifies which source code and 
which particular file versions to include in this release. It then marks them 
in some manner, usually by tagging or labeling them in the source control 
system. The release’s file set is now retrievable at any later point.
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Each release build has a particular name you identify it by, sometimes a 
cool code name, sometimes just a build number. This should tally with 
the source control label the code was marked with. If you and I agree 
that we’re talking about “build five” when investigating a fault, then we’re 
working in harmony. If you are working with build five, but I found a fault 
in build six, how do we know we’ll see the same issues?

KEY CONCEPT Release builds are always made from virgin source. Ensure that these pristine sources 
can always be retrieved from source control or a backup archive in the future.

There may be some extra packaging stage after the code has been built, 
like preparing a CD, adding documentation, integrating licensing infor-
mation, or whatever. This step should also be automated.

T H E  ( S O U R C E )  T R E E  O F  K N O W L E D G E

All code lives in a source tree; a file structure housing directories and source files. The 
structure of this tree affects how easy the code is to work with. A messy glob of files 
is far harder to understand than a neatly arranged hierarchy. We can use the source 
file structure to our advantage, making development easier. This tree structure goes 
hand-in-hand with the build system, since the build system physically is a part of 
the source tree (hence the term build tree is used interchangeably with source tree). 
A modification to one requires meddling with the other.

We divide code into separate modules, libraries, and applications. A good 
source tree reflects that structure. The code composition should map neatly into 
files, using directories as a logical grouping mechanism. This helps to manage 
development with multiple programmers—each person will probably be working in 
his own self-contained directory, removed from other people’s work by a reasonably 
safe distance.

Libraries
Place each library in its own self-contained directory. Use the tree structure to 
differentiate the library interface (the public header files) from private implementation
details. It is a good idea to place the public API within a directory on the compiler’s 
lookup path and keep any private headers out of the way.

Applications 
Structuring is easier; there are no public files as such, just a collection of source 
files that link to libraries. Even so, wrap each application in its own directory to 
make its bounds clear. If the application is large enough to have distinct constituent 
parts, they should be separated into subdirectories, or even libraries, and built 
separately. Make the build tree reflect the program structure.

Third-party code 
The source tree should clearly mark your own code from third-party work. Projects 
increasingly rely on others’ code; common libraries are brought in from outside 
(from commercial vendors, free software projects, or even other parts of the 
company). These external files should be kept separate.

Other stuff 
Program documentation can live in the source tree. Put it in directories beside the 
code it refers to. The same holds for graphics and any other supporting files.
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Each release should be archived and stored for future reference. 
Obviously you store a copy of the final built executable in whatever 
form it ships to the user (the exact shipped Zip file, self-extracting 
EXE, or whatever). You should also capture the final state of the build 
tree if possible, but often this will be enormous and impractical.

At the very least, the build log, the exact sequence of commands issued 
and the response generated, should be retained. These logs allow you to 
look back over old builds and see which compiler errors were overlooked 
or exactly what happened during the build. Sometimes this can give a clue 
into a fault reported in a years-old version of product that has long since 
been discontinued.

Each release has a release note that describes what has changed. It may 
or may not be a customer-facing document, depending on exactly what 
you’re building. These notes should also be archived. Usually the release 
note describes the changes since the last release and contains updates 
subsequent to the printing of the official documentation, any known 
issues, upgrade instructions, and so on. It is an important part of the 
release procedure and shouldn’t be overlooked.

When performing release builds, you must select the correct set of com-
piler switches—they might differ from those used in development builds. 
Debugging support gets switched off, for example. You also need to choose 
what level of code optimization is appropriate. Optimization may be 
disabled for development builds since the optimizer often takes a par-
ticularly long time to execute. This can become unbearable on very large 
build trees. However, ramping the optimizer up to warp speed nine may 
expose compiler bugs that break your code; you have to carefully choose 
(and test) a level.

If you use different sets of compiler options for development and 
release builds, beware. You must test the release builds regularly, long 
before a deadline approaches. Aim to minimize the differences between 
release and development builds.

KEY CONCEPT Ensure that you test the release configuration of your application, not just the develop-
ment builds. Subtle differences may adversely affect the code’s behavior.

Since creating a release build is a relatively involved task and is so important 
to get right, responsibility is usually delegated to a nominated team member 
(perhaps one of the coders, perhaps someone in QA). That person produces 
all the release builds for the project to make sure that each build is of the same 
high quality. Release builds are as much about procedure as they are about 
the build system. 

Jack-of-All-Trades, Buildmaster Of?

Many organizations employ a specific person to fulfill a build engineer role, 
often known as the buildmaster. This person’s job is to maintain the build 
system. The role may also involve planning and managing release schedules, or 
it may be purely technical. The buildmaster knows the build system intimately. 
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He or she probably sets it up, adds new targets as required, maintains the over-
night build scripts, and so on. The buildmaster also owns the build system 
documentation, and probably administers the source control system.

The buildmaster performs the release builds, and for this reason is often 
heavily involved with tracking component stability. He or she is charged with 
ensuring the reliability and safety of the release process.

The buildmaster is not always a specific full-time position; sometimes 
a programmer will double in this task.

In a Nutshell

It is easier to pull down than to build up.
---Latin proverb

On the face of it, building software is easy if you have the right tools. But you 
have to know how to use the tools properly. The quality of your build system 
is paramount; without a safe, reliable build process, you can’t realistically 
develop solid code. Producing trustworthy release builds for production 
is an even more involved matter—it requires a thorough approach and a 
well-defined procedure. It is important to have an understanding of what’s 
going on when you fire off a build, even if you don’t have to alter the build 
system every day.

Performing good builds is not a straightforward task; our jobs are safe 
from the proverbial infinite number of monkeys. They’re too busy arguing 
about which of their infinite number of text editors is the better one, anyway.

See Also

Chapter 9: Finding Fault 
Describes how to deal with build errors.

Chapter 18: Practicing Safe Source 
The build tree is held in a source control system, and the two are 
intimately linked.

Good programmers . . . Bad programmers . . .

Understand how their build 
system works, how to use it, and 
how to extend it

Craft simple, atomic build 
systems, and maintain them 
alongside the source code

Automate as many build 
activities as possible

Use overnight builds to catch 
integration problems

Ignore build system mechanics, 
then get caught by silly build 
problems

Don’t care how unsafe and unre-
liable their build system is

Expect newcomers to pick up 
their baroque build procedure 
in an almost adversarial manner

Create thrown-together release 
builds without following a 
defined release procedure
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Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 502.

Mull It Over

1. Why should people with nice integrated development environments 
worry about using a command-line make utility, when they can just hit 
a single button to build their project?

2. Why is it important to treat the extraction of source code as a separate 
step from building it?

3. Where should the intermediate files from construction steps (e.g., object 
files) be put?

4. If you add an automated test suite to the build system, should it run auto-
matically after the software is built, or must you fire a separate command 
to invoke the tests?

5. Should the overnight build be a debug or release build?

6. Write a make rule to automatically generate dependency information 
from your compiler. Show how to use this information in the makefile.

7. Recursive make is a popular method of creating a modular build system 
spanning several directories. However, it is fundamentally flawed. 
Describe its problems and suggest alternatives.

Getting Personal

1. Do you know how to perform different types of compilation using your 
build system? How can you build a debug or release version of the appli-
cation from the same sources, with the same makefiles?
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2. How good is your current project’s build process? Does it rate well 
against the characteristics in this chapter? How could you improve it? 
How easy is it to:

a. Add a new file to a library?

b. Add a new directory of code?

c. Move or rename a file of code?

d. Add a different build configuration (say, a demo build)?

e. Build two configurations in one copy of the source tree without 
doing a clean in between?

3. Have you ever created a build system from scratch? What drove you to its 
particular design?

4. Everyone suffers from flaws in a build system from time to time. When 
programming a build script, you’re as likely to introduce bugs as you are 
when programming real code.

What kinds of build errors have you been bitten by, and how could 
you fix, or even prevent, them?





T H E  N E E D  F O R  
S P E E D

Optimizing Programs and
Writing Efficient Code

11

In this chapter:

Why efficient code matters

Designing efficient code

Improving the performance 
of existing code

There is more to life than increasing its speed.
—Mahatma Gandhi

We live in a fast food culture. Not only must our 
dinner arrive yesterday; our car should be fast 
and our entertainment instant. Our code should 
also run like lightning. I want my result. And I 
want it now.

Ironically, writing fast programs takes a 
long time.

Optimization is a spectre hanging over 
software development, as renowned computer 
scientist W.A. Wulf observed: “More computing 
sins are committed in the name of efficiency 
(without necessarily achieving it) than for any 
other single reason—including blind stupidity.” 
(Wulf 72)
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Optimization is a well-worn subject, on which everyone has offered their 
two cents’ worth, and the same advice has been served time and time again. 
But despite this, a lot of code is still not developed sensibly. Optimization 
seems like a good idea, but programmers get it wrong all too often: They get 
sidetracked by the lure of efficiency, they write bad code in the name of 
performance, they optimize when it’s really not necessary, or they apply the 
wrong kind of optimizations.

In this chapter, we’ll address this. We’ll tread the familiar ground, but 
look out for some new views on the way. Don’t worry—if the subject is 
optimization, it shouldn’t take too long. . . .

What Is Optimization?

The word optimization purely means to make something better, to improve it. 
In our world, it’s generally taken to mean “making code run faster,” measuring 
a program’s performance against the clock. But this is only a part of the 
picture. Different programs have different requirements; what’s “better” for 
one may not be “better” for another. Software optimization may actually mean 
any of the following:

Speeding up program execution

Decreasing executable size

Improving code quality

Increasing output accuracy

Minimizing startup time

Increasing data throughput (not necessarily the same as execution speed)

Decreasing storage overhead (i.e., database size)

Conventional optimization wisdom is summed up by M.A. Jackson’s 
infamous laws of optimization:

1. Don’t do it.

2. (For experts only) Don’t do it yet.

That is, you should avoid optimization at all costs. Ignore it at first, and 
only consider it at the end of development when your code is not running 
fast enough. This is a simplistic viewpoint—accurate to a point, but potentially 
misleading and harmful. Performance is really a valid consideration right 
from the humble beginnings of development, before a single line of code 
has been written.

Code performance is determined by a number of factors, including:

The execution platform

The deployment or installation configuration

Architectural software decisions

Low-level module design
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Legacy artifacts (like the need to interoperate with older parts of the 
system)

The quality of each line of source code

Some of these are fundamental to the software system as a whole, and an 
efficiency problem there won’t be easy to rectify once the program has been 
written. Notice how little impact individual lines of code have; there is so 
much more that affects performance. We must manage performance issues 
at every step of the development process and deal with any problems as they 
arise. In a sense, optimization (while not a specific scheduled activity) is an 
ongoing concern through all stages of development.

KEY CONCEPT Think about the performance of your program from the very start—do not ignore it, 
hoping to make quick fixes at the end of development.

But don’t use this as an excuse to write tortured code based on your 
notion of what is fast or not. Programmers’ gut feelings for where bottlenecks 
lie are seldom right, no matter how experienced they are. In the following 
sections, we’ll see practical solutions to this code-writing dilemma.

But first, the golden rule. Before you consider a stint of code optimization, 
you must bear this advice in mind:

KEY CONCEPT Correct code is far more important than fast code. There’s no point in arriving 
quickly at the wrong answer.

You should spend more time and effort proving that your code is correct 
than making it fast. Any later optimization must not break this correctness.

What Makes Code Suboptimal?

In order to improve our code, we have to know the things that will slow it 
down, bloat it, or degrade its performance. Later on, this will help us to 
determine some code optimization techniques. At this stage, it’s helpful to 
appreciate what we’re fighting against.

A  W A R  S T O R Y

I once discovered that a module I’d written was running unbelievably slowly. I profiled 
it and tracked the problem down to a single line of code. It was called frequently 
and appended a single element to a buffer.

Upon inspection, the buffer (which I was given and hadn’t written) was expanding 
itself by a single element each time it got full! In other words: Every single append 
was allocating, copying, and deallocating the entire buffer. Ouch. Needless to say, 
I was not expecting this behavior.

This helps to show how we get suboptimal programs: by growth. Few people 
willfully attempt to write an ambling program. As we glue software components into 
a larger system, we can easily make assumptions about the performance character-
istics of the code and end up with a nasty shock.
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Complexity 
Unnecessary complexity is a killer. The more work there is to do, the 
more slowly the code will run. Reducing the amount of work or break-
ing it up into a different set of simpler, faster tasks can greatly enhance 
performance.

Indirection 
This is touted as the solution to all known programming problems, sum-
marized by the infamous programmer maxim: Every problem can be solved 
by an extra level of indirection. But indirection is also blamed for a lot of 
slow code. This criticism is often leveled by old-school procedural pro-
grammers, aimed at modern OO designs.

Repetition 
Repetition can often be avoided and will inevitably ruin code perfor-
mance. Repetition can often be avoided and will inevitably ruin code 
performance. It comes in many guises—for example, failing to cache 
the results of expensive calculations or of remote procedure calls. 
Every time you recompute, you waste precious efficiency. Repeated 
code sections unnecessarily extend executable size.

Bad design 
It’s inevitable: Bad design will lead to bad code. For example, placing 
related units far away from each other (across module boundaries, for 
example) will make their interaction slow. Bad design can lead to the 
most fundamental, the most subtle, and the most difficult performance 
problems.

I/O
A program’s communication with the outside world—its input and out-
put—is a remarkably common bottleneck. A program whose execution is 
blocked waiting for input or output (to and from the user, the disk, or a 
network connection) is bound to perform badly.

This list is nowhere near exhaustive, but it gives us a good idea of what to 
think about as we investigate how to write optimal code.

Why Not Optimize?

Historically, optimization was a crucial skill, since early computers ran very, 
very slowly. Getting a program to complete in anything like reasonable time 
required a lot of skill and the hand-honing of individual machine instructions. 
That skill is not so important these days; the personal computer revolution 
has changed the face of software development. We often have a surplus of 
computational power, quite the reverse of the days of yore. It might seem 
that optimization doesn’t really matter anymore.
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Well, not quite. The software factory still throws us situations requiring 
high-performance code, and if you’re not careful, you’ll need a mad optimi-
zation dash at the last minute. But it is preferable to avoid optimizing code 
if at all possible. Optimization has a lot of downsides.

There’s always a price to pay for more speed. Optimizing code is the act 
of trading one desirable quality for another. Some aspect of the code will 
suffer. Done well, the (correctly identified) more desirable quality is 
enhanced. These trade-offs are the top reasons to avoid optimizing code:

Loss of readability 
It’s rare for optimized code to read as clearly as its slower counterpart. 
By its very nature, the optimized version is not as direct an implementa-
tion of the logic or as straightforward. You sacrifice readability and neat 
code design for performance. Most “optimized” code is ugly and hard 
to follow.

Increase in complexity
A more clever implementation—perhaps exploiting special backdoors 
(thereby increasing module coupling) or taking advantage of platform-
specific knowledge—will add complexity. Complexity is the enemy of 
good code.

Hard to maintain/extend 
As a consequence of increased complexity and a lack of readability, the 
code will be harder to maintain. If an algorithm is not clearly presented, 
the code can hide bugs more easily. Optimization is a surefire way to add 
subtle new faults—these will be difficult to find because the code is more 
contrived and harder to follow. Optimization leads to dangerous code.

It also stunts the extensibility of your code. Optimizations often come 
from making more assumptions, limiting generality and future growth.

Introducing conflicts 
Often an optimization will be quite platform specific. It might make cer-
tain operations faster on one system, at the expense of another platform. 
Picking optimal data types for one processor type may lead to slower 
execution on others.

More effort 
Optimization is another job that needs to be done. We have quite enough 
to do already, thank you. If the code is working adequately, then we should 
focus our attentions on more pressing concerns.

Optimizing code takes a long time, and it’s hard to target the real 
causes. If you optimized the wrong thing, you’ve wasted a lot of precious 
energy.

For these reasons, optimization should be quite a way down on your list 
of concerns. Balance the need to optimize your code against the requirement 
to fix faults, to add new features, or to ship a product. Often optimization is 
not worthwhile or is uneconomical. If you take care to write efficient code in 
the first place, you’re less likely to need to optimize anyway.
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Alternatives

Often code optimization is performed when it’s not actually necessary. There 
are a number of alternative approaches that we can employ without altering 
our exisiting good-quality code. Consider these solutions before you get too 
focused on optimization:

Can you put up with this level of performance—is it really that disastrous?

Run the program on a faster machine. This seems laughably obvious, 
but if you have enough control over the execution platform, it might be 
more economical to specify a faster computer than spend time tinkering 
with code. Given the average project duration, you are guaranteed that 
by the time you reach completion, processors will be considerably faster. 
If they're not much faster, then they'll have double the number of CPU 
cores embedded in the same physical space.

Not all problems can be fixed by a faster CPU, especially if the 
bottleneck is not execution speed—a slow storage system, for example. 
Sometimes a faster CPU can cause drastically worse performance; faster 
execution can exacerbate thread-locking problems.

Look for hardware solutions: Add a dedicated floating-point unit to 
speed up calculations; add a bigger processor cache, more memory, a 
better network connection, or a wider-bandwidth disk controller.

Reconfigure the target platform to reduce the CPU load on it. Disable 
background tasks or any unnecessary pieces of hardware. Avoid processes 
that consume huge amounts of memory.

Run slow code asynchronously, in a background thread. Adding threads 
at the last minute is a road to disaster if you don’t know what you’re doing, 
but careful thread design can accommodate slow operations quite 
acceptably.

Work on user interface elements that affect the user’s perception of 
speed. Ensure that GUI buttons change immediately, even if their code 
takes over a second to execute. Implement a progress meter for slow tasks; 
a program that hangs during a long operation appears to have crashed. 
Visual feedback of an operation’s progress conveys a better impression 
of the quality of performance.

Design the system for unattended operation so that no one notices the 
speed of execution. Create a batch-processing program with a neat UI 
that allows you to queue work.

Try a newer compiler with a more aggressive optimizer, or target your 
code for the most specific processor variant (with all extra instructions 
and extensions enabled) to take advantage of all performance features.

KEY CONCEPT Look for alternatives to optimizing code—can you increase your program’s performance 
in any other way?
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Why Optimize?

Having seen the dangers of code optimization, should you now give up 
any foolish notion of ever optimizing your code? Well, no: You should still 
avoid optimization wherever possible, but there are plenty of situations 
where optimization is important. And contrary to popular belief, some 
areas are guaranteed to require optimization.

Games programming always needs well-honed code. Despite the huge 
advances in PC power, the market demands more realistic graphics and 
more impressive artificial intelligence algorithms. This can only be deliv-
ered by stretching the execution environment to its very limits. It’s an 
incredibly challenging field of work; as each new piece of faster hard-
ware is released, games programmers still have to wring every last drop 
of performance out.

Digital signal processing (DSP) programming is all about high performance. 
Digital signal processors are dedicated devices specifically optimized to 
perform fast digital filtering on large amounts of data. If speed didn’t 
matter, you wouldn’t be using them. DSP programming generally relies 
less on an optimizing compiler, since you want to have a high degree of 
control over what the processor is doing at all times. DSP programmers 
are skilled at driving these devices at their maximum performance.

Resource constrained environments, such as deeply embedded platforms, 
can struggle to achieve reasonable performance with the available hard-
ware. You’ll have to hone the code for acceptable quality of service or 
work hard to fit it into the device’s tight memory.

Real-time systems rely on timely execution, on being able to complete 
operations within well-specified quanta. Algorithms have to be carefully 
honed and proven to execute in fixed time limits.

Numerical programming—in the financial sector, or for scientific 
research—demands high performance. These huge systems are run on 
very large computers with dedicated numerical support, providing vector 
operations and parallel calculations.

Perhaps optimization is not a serious consideration for general-purpose 
programming, but there are plenty of cases where optimization is a crucial 
skill. Performance is seldom specified in a requirements document, yet the 
customer will complain if your program runs unacceptably slowly. If there 
are no alternatives, and the code doesn’t perform adequately, then you have 
to optimize it.

There is a shorter list of reasons to optimize than not to. Unless you have 
a specific need to optimize, you should avoid doing so. But if you do need to 
optimize, make sure you know how to do it well.

KEY CONCEPT Understand when you do need to optimize code, but prefer to write efficient high-
quality code in the first place.
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The Nuts and Bolts

So how do you optimize? Rather than learn a list of specific code optimizations, 
it’s far more important to understand the correct approach to optimizing. 
Don’t panic; we will see some programming techniques later, but they must 
be read in the context of this wider optimization process.

The six steps for speeding up a program are:

1. Determine that it’s too slow, and prove you do need to optimize.

2. Identify the slowest code. Target this point.

3. Test the performance of the optimization target.

4. Optimize the code.

5. Test that the optimized code still works (very important).

6. Test the speed increase, and decide what to do next.

This sounds like a lot of work, but without it you’ll actually waste time 
and effort and end up with crippled code that runs no faster. If you’re not 
trying to improve execution speed, adjust this process accordingly; for 
example, tackle memory consumption problems by identifying which data 
structures are consuming all the memory and target those.

It’s important to begin optimization with a clear goal in sight—the more 
optimization you perform, the less readable the code becomes. Know the 
level of performance you require, and stop when it’s sufficiently fast. It’s 
tempting to keep going, continually trying to squeeze out a little extra 
performance.

To stand any chance of optimizing correctly, you must take great care to 
prevent external factors from changing the way your code works. When the 
world is changing under your feet, you can’t compare measurements 
realistically. There are two essential techniques that help here:

KEY CONCEPT Optimize your code separately from any other work, so the outcome of one task doesn’t 
cloud the other.

. . . and . . .

KEY CONCEPT Optimize release builds of your program, not development builds.

The development builds may run very differently from release builds, 
due to the inclusion of debugging trace information, object file symbols, and 
so on.

Now we’ll look at each of these optimization steps in more detail.

Prove You Need to Optimize

The first thing to do is make sure you really do need to optimize. If the code’s 
performance is acceptable, then there’s no point in tinkering with it. Knuth 
said (himself quoting C.A.R. Hoare): “We should forget about small efficiencies, 
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say about 97 percent of the time: Premature optimization is the root of all 
evil.” There are so many compelling reasons not to optimize that the 
quickest and safest optimization technique is to prove that you don’t need 
to do it.

You make this decision based on program requirements or usability 
studies. With this information you can determine whether optimization takes 
priority over adding new features and fixing bugs.

Identify the Slowest Code

This is the part that most programmers get wrong. If you’re going to spend 
time optimizing, you need to target the places where it will make a difference. 
Investigations show that the average program spends more than 80 percent 
of its time in less than 20 percent of the code. (Boehm 87) This is known as 
the 80/20 rule.1 That’s a relatively small target that is very easy to miss, which 
means you might waste effort optimizing code that’s rarely run.

You might notice that a part of your program has some relatively easy 
optimizations, but if that part is seldom executed, then there’s no point in 
optimizing—in this situation, clear code is better than faster code.

How do you figure out where to focus your attention? The most effective 
technique is to use a profiler. This tool times the flow of control around your 
program. It shows where that 80 percent of execution time is going, so you 
know where to concentrate your effort.

A profiler doesn’t tell you which parts of the code are slowest; this is a 
common misconception. It actually tells you where the CPU spends most of 
its time. This is subtly different.2 You have to interpret these results and use 
your brain. The program might spend most of its execution time in a few 
perfectly valid functions which cannot be improved at all. You can’t always 
optimize; sometimes the laws of physics win.

There are plenty of benchmarking programs around—many excellent 
commercial programs and a number of freely available tools. It’s worth 
spending money on a decent profiler: Optimization can easily eat into your 
time; this is also an expensive commodity. If you don’t have a profiler 
available, there are a few other timing techniques you can try:

Put manual timing tests throughout your code. Make sure you use an 
accurate clock source and that the time taken to read the clock will not 
affect program performance too much.

Count how often each function is called (some debug libraries provide 
support for this kind of activity).

Exploit compiler-supplied hooks to insert your own accounting code when 
each function is entered or exited. Many compilers provide a means to 
do this; some profilers are implemented using such a mechanism.

1 Some go so far as to claim this should be the 90/10 rule.
2 All code runs at a fixed rate, based on the speed of the CPU clock, the number of other 
processes being juggled by the OS, and the thread’s priority.
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Sample the program counter; interrupt your program periodically in a 
debugger to see where control is. This is harder in multithreaded pro-
grams and is a very slow, manual approach. If you have control over the 
execution environment, you can write scaffolding to automate this kind 
of test—effectively writing your own form of profiler.

Test an individual function’s impact on the total program execution 
time by making it slower. If you suspect that a particular function is caus-
ing a slowdown, try replacing its call with two calls in succession, and 
measure how it affects execution time.3 If the program takes 10 percent 
longer to run, then the function consumes approximately 10 percent of 
execution time. Use this as a very basic timing test.

When profiling, make sure that you use realistic input data, simulating 
Real World events. The way your code executes may be drastically affected by 
the kind of input you feed it or by the way it is driven, so make sure that you 
provide true representative input sets. If possible, capture a set of real input 
data from a live system.

Try profiling several different data sets, to see what difference this 
makes. Select a very basic set, a heavy use set, and a number of general use 
sets. This will prevent you from optimizing for the particular quirks of one 
input data set.

KEY CONCEPT Select profiling test data carefully to represent Real World program use. Otherwise, you 
might optimize parts of the program that are not normally run.

While a profiler (or equivalent) is a good starting point to choose 
optimization targets, you can easily miss quite fundamental problems. The 
profiler only shows how the code in the current design executes—and 
encourages you to perform code-level improvement only. Look at larger 
design issues too. The lack of performance may not be due to a single 
function, but rather a more pervasive design flaw. If it is, then you’ll have to 
work harder to remedy the problem. This shows how important it is to get 
the initial code design right, with knowledge of established performance 
requirements.

KEY CONCEPT Don’t rely solely on a profiler to find the causes of program inefficiency; you might miss 
important problems.

Having completed this step, you’ve found the areas of your code where 
a performance improvement will have the most benefit. Now it’s time to 
attack them.

Testing the Code
We recognized three testing phases in the optimization procedure. For each 
piece of code targeted, we test its performance before optimization, confirm 

3 This won’t necessarily make the function run twice as slowly. Filesystem buffers or CPU memory 
caches can enhance the performance of repeated code sections. Treat this as a very rough 
guide—more qualitative than quantitative.
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that the code still works correctly once optimized, and test its performance 
after optimization.

Programmers often forget the second check: that the optimized code 
still works correctly in all possible situations. It’s easy to check the normal mode 
of operation, but it’s not in our nature to test each and every rare case. This 
can be the cause of weird bugs late in the day, so be very rigorous about this.

You must measure the code’s performance before and after modification 
to make sure that you have made a real difference—and to make sure that it 
is a change for the better; sometimes an “optimization” can be an unwitting 
pessimization. You can perform these timing tests with your profiler or by 
inserting timing instrumentation by hand.

KEY CONCEPT Never try to optimize code without performing some kind of before and after 
measurement.

These are some very important things to think about when running your 
timing tests:

Run both the before and after tests with exactly the same set of input 
data so that you’re testing exactly the same thing. Otherwise, your tests 
are meaningless; you’re not comparing apples to apples. An automated 
test suite is best (see “Look! No Hands!” on page 144)—with the same 
kind of live representative data we used in the profiling step.

Run all tests under identical prevailing conditions, so that factors like the 
CPU load or amount of free memory don’t affect your measurements.

Ensure that your tests don’t rely on user input. Humans can cause timings 
to fluctuate wildly. Automate every possible aspect of the test procedure.

Optimizing the Code

We’ll investigate some specific optimization techniques later. Speed-ups vary 
from the simple refactoring of small sections of code to more serious design-
level alterations. The trick is to optimize without totally destroying the code.

Determine how many different ways exist to optimize the identified 
code, and pick the best. Only perform one change at a time; it’s less risky, 
and you’ll have a better idea of what improved performance the most. 
Sometimes it’s the least expected things that have the most significant 
optimization effects.

After Optimization
Don’t forget to benchmark the optimized code to prove that you’ve made a 
successful modification. If an optimization is unsuccessful, remove it. Back 
out your changes. This is where a source control system is useful, helping you 
to revert to the previous code version.
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Also remove the slightly successful optimizations. Prefer clear code to 
modest optimizations (unless you’re absolutely desperate for an improve-
ment, and there are no other avenues to explore).

Optimization Techniques

We’ve avoided this for long enough; now it’s time to look at the really gory 
details. Having followed the optimization procedure outlined above, you’ve 
proved that your program performs badly and have found the worst code 
culprit. Now you need to whip it into shape. What can you do?

There’s a palette of optimizations to choose from. Which is the most 
appropriate will depend on the exact cause of the problem, what you’re 
trying to achieve (e.g., increased execution speed or reduced code size), and 
how much of an improvement is required.

These optimizations fall into two broad categories: design changes and 
code changes. A change at the design level will usually have a more profound 
effect on performance than a code-level tweak. An inefficient design can 
strangle efficiency more than a few bad lines of source code, so a design fix—
while more difficult—will have a bigger payoff.

Most often, our goal is to increase execution speed. The speed-based 
optimization strategies are to:

Speed up slow things

Do slow things less often

Defer slow things until you really need them

The other common optimization goals are to reduce memory consump-
tion (mainly by changing the data representation, by tweaking the pattern of 
memory consumption, or by reducing the amount of data accessed at once), 
or to reduce executable size (by removing functionality or by exploiting 
commonality). As we’ll see, these goals often conflict: Most speed increases 
come at the expense of memory consumption, and vice versa.

Design Changes
These are the macro optimizations, the fixes on a large scale that improve the 
internal design of your software. Bad design is hard to fix. The nearer a 
project is to a release deadline, the less likely you are to perform design 
changes; the risk is too great.4 We end up plastering over the cracks by 
employing small, code-level fixes instead. 

When brave enough, the kinds of design optimization we can perform 
include:

Adding layers of caching or buffering to enhance slow data access or pre-
vent lengthy recalculations. Precompute values that you know will be 
needed, and store them for immediate access.

4 Sadly, it’s often only near project deadlines that anyone notices that performance isn’t good 
enough.
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Creating a pool of resources to reduce the overhead of allocating 
objects. For example, preallocate memory, or hold a selection of files 
open rather than repeatedly opening and then closing them. This tech-
nique is often used to speed up memory allocation; older OS memory 
allocation routines were designed for simple non-threaded use. Their 
locks stall multithreaded applications, leading to horrible performance.

Sacrificing accuracy for speed if you can get away with it. Dropping 
floating-point precision is the obvious example. Many devices have no 
floating-point unit (FPU) hardware and employ slower FPU emulation soft-
ware instead. You can switch to fixed-point arithmetic libraries to bypass 
a slow emulator, at the expense of numeric resolution. This is particu-
larly easy in C++ by taking advantage of its abstract data type facilities.

Accuracy is not solely due to your choice of data types; this tactic can 
run far deeper to your use of algorithms or the quality of your output. 
Perhaps you can let users make this decision—allow them to select slow 
but accurate or fast but approximate operation modes.

Changing the data storage format or its on-disk representation to some-
thing more suited to high-speed operation. For example, speed up text 
file parsing by using a binary format. Transmit or store compressed files 
to reduce network bandwidth.

Exploiting parallelization and using threading to prevent one action 
from being serialized after another. As advances in processor speeds tail 
off, CPU manufacturers are increasingly introducing multi-core, multi-
pipeline processors. To use these effectively, your code must be designed 
with a threaded model at its heart. The front line of the optimization bat-
tle is rapidly moving in this direction.

Threading efficiently: Avoiding or removing excessive locking. It inhibits 
concurrency, generates overhead, and often leads to deadlock. Employ 
static checking to prove which locks are necessary and which aren’t.

Avoiding overuse of exceptions. They can inhibit compiler optimiza-
tions5 and will hamper timely operation when used too frequently.

Forgoing certain language facilities if it will save code space. Some C++ 
compilers allow you to disable RTTI and exceptions, consequently 
reducing executable size.

Removing functionality: The quickest code is code that doesn’t run at 
all. A function will be slow if it is doing too many things, some of which 
are unnecessary. Cut out the superfluous stuff. Move it elsewhere in the 
program. Defer all work until it’s really necessary.

Compromising design quality to gain speed. For example, reducing indi-
rection and increasing coupling. You can do this by breaking encapsula-
tion: leaking a class’s private implementation through its public interface. 
Knocking down module barriers will cause irreparable damage to the 
design. If possible, try a less disruptive optimization mechanism first.

5 Like functions, try/catch blocks act as barriers to an optimizer. It’s not possible to look through 
the barrier to perform optimization, so some potential speed-ups will be lost.
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The major design-level optimizations involve improvements in 
algorithms or data structures. Most speed degradation or memory consumption 
comes down to a bad choice of one or both, and a subsequent change will 
rectify this.

Algorithms
Algorithms have a profound impact on the speed of execution. A function 
that works acceptably in a small local test may not scale up when Real 
World data gets thrown at it. If profiling shows that your code spends 
most of its time running a certain routine, you must make it run faster. 

C O M P L E X I T Y  N O T A T I O N

Algorithmic complexity is a measure of how well an algorithm scales—how long it 
takes in proportion to the size of input. It’s a qualitative mathematical model, allowing 
you to quickly compare the performance characteristics of different implementation 
approaches. It doesn’t measure exact execution time (this is highly dependent on 
CPU speed, OS configuration, etc.).

Complexity is determined by the amount of work an algorithm must perform: the 
number of basic operations it executes. A basic operation is something like an arith-
metic operation, an assignment, a test, or a data read/write. Algorithmic complexity 
doesn’t count the exact number of operations performed, just how this value relates 
to the problem size. We are usually interested in the worst case performance of an 
algorithm, the most work that will ever need to be done. A good comparison looks 
at the best case and average time complexity as well.

Algorithmic complexity is expressed using Big O notation, invented by the German 
number theorist Edmund Landau. For a problem with input size n, it might have a 
complexity of:

O(1): Order 1
This is a constant time algorithm. No matter how large the input set, it always 
takes the same amount of time to complete the task. This is the best performance 
characteristic possible.

O(n): Order n
A linear time algorithm’s complexity rises in line with the input size. Searching a 
linked list will involve visiting more nodes as the list size grows; the number of 
operations is directly related to the size of the list.

O(n2): Order n squared
This is where performance really begins to get bad: Complexity is increasing 
faster than the rate of input growth. A quadratic time algorithm may seem fine 
when you give it a small set of data, but large data sets take a seriously long time. 
The bubblesort algorithm is O(n2).

Of course, complexity may be of any order; the quicksort algorithm averages 
O(n log n). This is worse than O(n), but far better than O(n2). A simple optimization 
route for a slow bubblesort algorithm is to replace it with a quicksort algorithm, 
especially since there are plenty of freely available quicksort implementations.

These Big O expressions don’t include constants or low-order terms. You’ll rarely 
see any talk about a complexity of O(2n+6). When n gets large enough, these constants 
and low-order terms dwarf into insignificance.
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One approach is at the code level, chipping small improvements from 
each instruction. A better approach is to replace the entire algorithm 
with a more efficient version.

Consider this realistic example: A particular algorithm runs a loop 
1,000 times. Each iteration takes 5 milliseconds (ms) to execute. The 
operation therefore completes in around 5 seconds. By tweaking the code 
inside the loop, you can shave 1 ms from each iteration—that’s a saving 
of 1 second. Not bad. But instead, you can plug in a different algorithm, 
where an iteration takes 7 ms, although it only iterates 100 times. That’s 
a saving of almost 4 and a half seconds—significantly better.

For this reason, prefer to look at optimizations that change funda-
mental algorithms, not that tweak specific lines of code. There are many 
algorithms to chose from in the computer science world, and unless your 
code is particularly dire, you’ll always gain the most significant perfor-
mance improvements by selecting a better algorithm.

KEY CONCEPT Prefer to replace a slow algorithm with a faster variant than to tinker with the 
algorithm’s implementation.

Data structures
Data structures are intimately related to your choice of algorithms; 
some algorithms require certain data structures, and vice versa. If your 
program is consuming far too much memory, changing the data storage 
format may improve matters, although often at the expense of execution 
speed. If you need to quickly search a list of 1,000 items, don’t store them 
in a linear array with O(n) search time; use a (larger) binary tree with 
O(log n) performance.

Selecting a different data structure seldom requires you to implement 
the new representation yourself. Most languages come with library support 
for all common data structures.

Code Changes

And so now we creep anxiously on to the really disgusting stuff: the micro-
level, small-scale, shortsighted, code-tweaking optimizations. There are many 
ways to molest source code for the sake of performance. You must experiment 
to see what works best in each situation: Some changes will work well; others 
will have little, or even negative effect. Some may prevent the compiler’s 
optimizer from performing its task, producing startlingly worse results.

The first task is easy: Turn on compiler optimization or increase the 
optimization level. It often gets disabled for development builds since the 
optimizer can take a very long time to run, increasing the build time of large 
projects by an order of magnitude.6 Try configuring the optimizer, and test 
what affect this has. Many compilers allow you to bias optimization toward 
extra speed or reduced code size.

6 It has to do complex inspection of the parsed code to determine the set of possible speed-ups 
and select the most appropriate ones.
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There are a few very low-level optimizations that you should know about 
but should generally avoid. These are the kind of changes that a compiler is 
able to perform for you. If you’ve switched the optimizer on, it’ll be looking 
in these areas already—enable optimization and make the most of its help. 
You will rarely need to apply these by hand, which is good: They butcher your 
code’s readability, since they warp its fundamental logic out of shape. Only 
consider using one of these optimizations if you can prove that it’s really 
required, that your optimizer hasn’t already done it, and that there are no 
better alternatives.

Loop unrolling 
For loops with very short bodies, the loop scaffolding may be more 
expensive than the looped operation itself. Remove this overhead by flat-
tening it out—turn your 10-iteration loop into 10 consecutive individual 
statements.

Loop unrolling can be done partially; this makes more sense for large 
loops. You can insert four operations per iteration, and increment the 
loop counter by four each time. But this tactic gets nasty if the loop doesn’t 
always iterate over a whole number of unrolls.

Code inlining 
For small operations, the overhead of calling a function might be pro-
hibitive. Splitting code into functions brings significant benefits: clearer 
code, consistency through reuse, and the ability to isolate areas of change. 
However, this can be removed to increase performance, by merging the 
caller(s) and the callee.

There are a number of ways to do this. With language support, you 
can request it in the source code (in C/C++ using the inline keyword); 
this method preserves a lot of the code’s readability. Otherwise, you have 
to merge the code yourself, either by duplicating the function over and 
over again or using a preprocessor to do the work for you.

It’s hard to inline recursive function calls—how would you know 
when to stop inlining? Try to find alternative algorithms to replace 
recursion.

Inlining often opens the way for further code-level optimizations 
(that were not previously possible across a function boundary) to be 
performed.

Constant folding 
Calculations involving constant values can be computed at compile time 
to reduce the amount of work done at run time. The simple expression 
return 6+4; can be reduced to return 10;. Carefully ordering the terms of 
a large calculation might bring two constants together, enabling them to 
be reduced into a simpler subexpression.

It’s unusual for a programmer to write something as obvious as 
return 6+4;. However, these sorts of expressions are common after macro 
expansion.
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Move to compile time 
There is more you can do at compile time than just constant folding. 
Many conditional tests can be proved statically and removed from the 
code. Some kinds of tests can be avoided altogether; for example, 
remove tests for negative numbers by using unsigned data types.

Strength reduction 
This is the act of replacing one operation with an equivalent that exe-
cutes faster. This is most important on CPUs with poor arithmetic sup-
port. For example, replace integer multiplication and division with 
constant shifts or adds; x/4 can be converted to x>>2 if it’s faster on your 
processor.

Subexpressions 
Common subexpression elimination avoids the recalculation of expressions 
whose values have not changed. In code like this:

int first = (a * b) + 10; 
int second = (a * b) / c; 

the expression (a * b) is evaluated twice. Once is enough. You can factor 
out the common subexpression, and replace it with

int temp = a * b; 

int first = temp + 10; 

int second = temp / c; 

Dead code elimination 
Don’t write needless code; prune anything that’s not strictly necessary to 
the program. Static analysis will show you the functions that are never 
used or the sections of code that will never execute. Remove them.

While those are particularly distasteful code optimizations, the following 
ones are slightly more socially acceptable. They focus on increasing program 
execution speed.

If you find that you’re repeatedly calling a slow function, then don’t call 
it so often. Cache its result and reuse this value. This might lead to less 
clear code, but the program will run faster.

Reimplement the function in another language. For example, rewrite a 
critical Java function in C using the Java Native Interface (JNI) facility. Con-
ventional compilers still beat JIT code interpreters for execution speed.

Don’t naïvely assume that one language is faster than another—
many programmers have been surprised by how little difference using 
JNI makes. It has been commonly claimed that OO languages are far 
slower than their procedural counterparts. This is a lie. Bad OO code can
be slow, but so can bad procedural code. If you write OO-style code in C, 
it is likely to be slower than good C++; the C++ compiler will generate 
better-tuned method dispatch code than your attempts.
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Reorder the code for improved performance.
Defer work until it’s absolutely necessary. Don’t open a file until 

you’re about to use it. Don’t calculate a value if you might not need it; wait 
until it’s wanted. Don’t call a function yet if the code will work without it.

Hoist checking further up the function to avoid needless work. If a 
test leading to an early return can be placed at the top of a function or 
halfway though it, prefer to place it at the top. Make the check sooner to 
avoid delays.

Move invariant calculations out of a loop. The most subtle source 
of this problem is a loop condition. If you write for (int n = 0; n < 
tree.appleCount(); ++n), but appleCount() manually counts 1,000 items 
on every call, you’ll have a very slow loop. Move the count operation 
before the loop:

int appleCount = tree.appleCount();

for (int n = 0; n < appleCount; ++n)

{

... do something ...

}

However, don’t forget to profile first to prove that the loop truly is 
a problem. This is a great example of how optimizations are local to a 
particular execution environment: In C#, the new version could well 
be slower because the unoptimized code is a pattern the JIT compiler 
understands and can optimize away itself.

Use lookup tables for complex calculations, trading time for space. For 
example, rather than write a set of trigonometric functions that individu-
ally calculate their values, precalculate the return values and store them 
in an array. Map input values to the closest index into this array.

Exploit short-circuit evaluation. Make sure that the tests likely to fail are 
placed first to save time. If you write a conditional expression if 
(condition_one && condition_two), make sure that condition_one is 
statistically more likely to fail than condition_two (unless, of course, 
condition_one acts as a guard for condition_two’s validity).

Don’t reinvent the wheel—reuse standard routines that have already 
been performance tuned. Library writers will have already carefully 
honed their code. But be aware that a library may have been optimized 
for different goals than yours; perhaps an embedded product was pro-
filed for memory consumption, not for speed.

Size-focused, code-level optimizations include:

Producing compressed executables that unpack their code before run-
ning. This doesn’t necessarily affect the size of the running program, but 
it reduces the storage space required.7 This might be important if your 
program is stored in limited flash memory.

7 This may have the pleasant side effect of decreasing program startup time: A compressed 
executable will load from disk much faster.
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Factoring common code into a shared function to avoid duplication.

Moving seldom-used functions out of the way. Put them into a dynami-
cally loaded library or into a separate program.

Of course, the ultimate hard-core optimization technique is to reimple-
ment a section of code in assembly—the one environment where you have 
full control over the CPU and can do exactly what you want (including shoot-
ing yourself in the foot). This is always a last resort and is almost certainly 
unnecessary. These days, compilers produce perfectly acceptable code, and 
the lost time spent writing, debugging, and maintaining “optimized” sections 
of machine code far outweighs the advantages gained.

Writing Efficient Code

If the best approach is not to optimize, how can we avoid any need to improve 
code performance? The answer is to design for performance, planning to provide 
adequate quality of service from the outset, rather than trying to whittle it 
out at the last minute.

Some argue that this is a dangerous road to follow. Indeed, there are 
potential hazards for the unwary. If you try to optimize as you go along, then 
you’ll write at a lower level than needed; you’ll end up with nasty, hacky code 
full of low-level performance enhancements and back-door interfaces.

How do we reconcile these seemingly opposing views? It isn’t hard, 
because they’re not actually at odds. There are two complementary strategies:

Write efficient code.

Optimize code later.

If you make a point of writing clear, good, efficient code now, you will 
not need to perform heavy optimizations later. Some claim that you don’t 
know whether any optimization is necessary at first, so you should write 
everything as simply as possible, and only optimize when profiling proves that 
there is a bottleneck.

This approach has obvious flaws. If you know that you need a data 
structure with good search performance (because your program must 
perform fast searches), pick a binary tree over an array.8 If you’re not aware 
of any such requirement, then go for the most appropriate thing that will 
work. This still might not be the simplest—a raw C array is a hard data 
structure to manage.

As you design each module, don’t blindly chase performance—only 
spend the effort when necessary. Understand the mandated performance 
requirements and justify how your choices will meet these requirements at 
each stage. When you know what level of performance is required, it’s easier 

8 But, as always, it’s not necessarily that simple. Arrays often provide better cache coherence 
(since binary tree nodes can easily become scattered across memory). An array that is kept 
sorted (you amortize time when inserting) would be a worthy consideration. Measure, 
measure, measure.
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to design for appropriate efficiency. It also helps you to write explicit tests 
that prove you do achieve these performance goals.

Some simple design choices that will increase efficiency and aid later 
optimization are:

Minimizing your reliance on functions that might be implemented on 
remote machines or that will access the network or a slow data storage 
system

Understanding the target deployment and how the program is expected 
to be run so you can design it to work well in these situations

Writing modular code so it’s easy to speed up one section without having 
to rewrite other sections too

P E S S I M I Z A T I O N S

Without careful measurement, you can easily end up writing optimizations that are 
not at all optimal. A perfectly good optimization for one situation might turn out to 
be a performance disaster in another. Here’s a case study. Exhibit A: The copy-on-
write string optimization.

This was a common optimization applied to C++ standard library implementations 
around 1990. Programs that performed intensive string manipulation experienced 
a massive overhead when copying long strings, both in terms of execution speed 
and memory consumption. Copying large strings means duplicating and shoveling 
around large quantities of data. Many string copies are automatically generated, 
temporary objects that are created and then thrown away shortly after—they are 
never actually modified. The expensive copy operation is an unnecessary cost.

The copy-on-write (COW) optimization turns the string data type into a form of 
smart pointer; the actual string data is held in a (hidden) shared representation. 
The string copy operation now only has to perform an inexpensive smart pointer 
copy (attaching a new smart pointer to the shared representation), rather than 
duplicate the entire string contents. Only when you make a modification to a shared 
string is the internal representation copied and the smart pointer remapped. This 
optimization avoids a large number of unnecessary copy operations.

COW worked well in single-threaded programs; it was shown to greatly speed up 
performance. However, a problem became apparent when multithreaded pro-
grams used COW strings. (Indeed, this problem also manifests in single-threaded 
programs if the COW string class is built with multithreading support). The implemen-
tation requires very conservative thread locking around the copy operations—
these locks become a major bottleneck. Suddenly, a lightning-fast program slowed 
down to a crawl. The COW optimization proved to be a serious pessimization.

Far better multithreaded performance was achieved by reverting to classic string
implementations and writing more careful code that reduced automatic string copying. 
Thankfully, C++ library vendors now provide more intelligent versions of the string
class, which are both thread safe and fast.
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In a Nutshell

Technological progress has merely provided us 
with more efficient means for going backwards.

—Aldous Huxley

High-performance code is not as important as some people think. 
Although you sometimes do have to roll your sleeves up and tinker with 
code, optimization is a task you should actively avoid. To do this, make sure 
that you know the software’s performance requirements before you start 
working on it. At each level of design, ensure that you provide this quality of 
service. Then optimization will be unnecessary.

When you do optimize, be very methodical and measured in your 
approach. Have a clear goal, and prove that each step is getting you closer to 
it. Be guided by solid data, not your hunches. As you write code, ensure that 
your designs are efficient, but don’t compromise on quality. Worry about 
code-level performance only when it proves to be a problem.

See Also

Chapter 1: On the Defensive 
Optimizations that remove “unnecessary” code often clash with any extra 
defensive code.

Chapter 4: The Write Stuff 
The needs of optimized code are often at odds with self-documenting 
code.

Chapter 13: Grand Designs 
Efficiency must be designed into the codebase from the start of a project.

Good programmers . . . Bad programmers . . .

Avoid optimizing unless it proves 
to be absolutely necessary

Attempt optimization methodi-
cally, taking a considered and 
measured approach

Look for alternatives and 
investigate design improve-
ments before ever resorting to 
code-level optimizations

Prefer optimizations that won’t 
destroy the code’s quality

Start optimizing before the code 
proves to be inadequate

Dive in feet first, attacking the 
pieces of code they think are 
bottlenecks without measuring 
or investigating

Never consider the wider picture: 
what the full implications of 
their optimization are in other 
code areas and usage patterns

Think speed is more important 
than code quality
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Chapter 19: Being Specific 
Performance requirements must be carefully specified before construc-
tion begins so you know how much optimization is necessary.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 510.

Mull It Over

1. Optimization is a process of making trade-offs—sacrificing one quality of 
code for another desirable quality. Describe the kinds of trade-offs that 
lead to a performance increase.

2. Look at each of the optimization alternatives listed in “Why Not Opti-
mize?” on page 202. Describe what trade-offs are being made, if any.

3. Explain these terms and their exact relationship:

Performance

Efficiency

Optimized

4. What are the likely bottlenecks in a slow program?

5. How can you avoid the need to optimize? What methods will prevent you 
from writing inefficient code?

6. How does the presence of multiple threads affect optimization?

7. Why don’t we write efficient code? What stops us from using high-
performance algorithms in the first place?

8. A List data type is implemented using an array. What is the worst case 
algorithmic complexity of each of the following List methods?

a. The constructor

b. append—places a new item on the end of the list
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c. insert—slides a new item in between two existing list items, at a 
given position

d. isEmpty—returns true if the list contains no items

e. contains—returns true if the list contains a specified item

f. get—returns the item with a given index

Getting Personal

1. How important (honestly) is code performance in your current project? 
What is the motivator for this performance requirement?

2. In your last optimization attempt:

a. Did you use a profiler?

b. If yes, how much improvement did you measure?

c. If no, how did you know whether you made any kind of improvement?

d. Did you test that the code still worked after optimizing?

e. If yes, how thoroughly did you test?

f. If no, why not? How could you be sure the code still worked properly 
for all cases?

3. If you’ve not yet attempted to optimize the code you’re currently work-
ing on, take a guess at which parts are the slowest and which bits con-
sume the most memory. Now run it through a profiler—how accurate 
were you?

4. How well specified are your program’s performance requirements? Do 
you have a concrete plan to test that you meet these criteria?
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Writing Secure Programs

12

In this chapter:

The security threats to 
operational code

How crackers can exploit 
your code

Techniques to reduce code 
vulnerability

Security is mostly a superstition. It does not exist in 
nature. . . . Life is either a daring adventure or
nothing.

—Helen Keller

Not so long ago, computer access was a scarce 
commodity. The world contained only a handful 
of machines, owned by a few organizations and 
accessed by small teams of highly trained per-
sonnel. In those days, computer security meant 
wearing the right lab coat and pass card to get 
past the guard on the door.

Fast-forward to today. We carry more compu-
tational power in our pockets than those operators 
ever dreamed of. Computers are plentiful and, 
more pertinently, highly connected.
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The volume of data carried by computer systems is growing at a fantastic 
rate. We write programs to store, manipulate, interpret, and transfer this 
data. Our software must guard against information going astray: into the 
hands of malicious attackers, past the eyes of accidental observers, or even 
disappearing into the ether. This is critical; a leak of top-secret company infor-
mation could spell financial ruin. You don’t want sensitive personal informa-
tion (your bank account or credit card details, for example) leaking out for 
anyone to use. Most software systems require some level of security.1

Whose responsibility is it to build secure software? Here’s the bad news: 
It’s our headache. If we don’t consider the security of our handiwork carefully, 
we will inevitably write insecure, leaky programs and reap the rewards.

Software security is a really big deal, but generally we’re very bad at it. 
Nearly every day you’ll hear of a new security vulnerability in a popular 
product or see the results of viruses compromising system integrity.

This is an enormous topic, far larger than we have scope to go into 
here. It’s a highly specialized field, requiring much training and experience. 
However, even the basics are not adequately addressed by modern software 
engineering teaching. The aim of this chapter is to highlight security issues, 
explore the problems, and learn some basic techniques to protect our code.

The Risks

Better be despised for too anxious apprehensions, 
than ruined by too confident security.

—Edmund Burke

Why would anyone bother to attack your system? It’s usually because you’ve 
got something that they want. This could be:

Your processing power

Your ability to send data (e.g., spam)

Your privately stored information

Your capabilities—perhaps the specific software you have installed

Your connection to more interesting remote systems

People might even attack you for the sheer fun of it or because they 
dislike you and want to cause harm by disrupting your computer resources. 
While malicious people are lurking around looking for easy, insecure prey, a 
security vulnerability might also be caused by a program that accidentally 
releases information to the wrong audience. A lucky user might exploit the 
leak and cause you harm.

KEY CONCEPT Know what important assets you possess. Do you have particularly sensitive informa-
tion or specific capabilities that an attacker might want? Guard them.

1 As we’ll see, this is true whether they handle sensitive data or not. If a noncritical component 
has a public interface, then it poses a security risk to the system as a whole.
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To understand the kinds of attack you might suffer, it’s important to 
differentiate protecting an entire computer system (comprising of several 
computers, a network, and a number of collaborating applications) from 
writing a single secure program. Both are important aspects of computer 
security; they blur together since both are necessary. The latter is a subset of 
the former. It takes just one insecure program to render an entire computer 
system (or network) insecure.

These are the common security risks and compromises of a live, running 
computer system:

A thief who acquires a laptop or PDA can read any unsecured sensitive 
data. The stolen device might be configured to automatically dial into a 
private network, allowing a simple route straight through all your com-
pany’s defences. This is a serious security threat and one that you can’t 
easily guard against in code! What we can do is write systems that aren’t 
immediately accessible to computer thieves.

Flawed input routines can be exploited, leading to many types of com-
promise—even to the attacker gaining access to the whole machine 
(we’ll see this in “Buffer Overrun” on page 229).

Break-ins through an unsecured public network interface are partic-
ularly worrying. While vulnerbilities in a GUI interface can only be 
exploited by people actually using that UI, an insecure system running 
on a public network could lead to the whole world trying to break down 
your door.

Privilege escalation occurs when a user with limited access rights tricks the 
system to gain a higher security level. The attacker could be an authentic 
user or someone who has just broken into the system. His or her ultimate 
aim is to achieve root or administrator privilege, where the attacker has 
total control of the machine.

If communication is unencrypted and traverses an insecure medium 
(e.g., the Internet), then any computer en route can syphon off and read 
data, like a phone tap. A variant of this is known as a man-in-the-middle 
attack: An attacker’s machine pretends to be the other communicant 
and sits between both senders, snooping on their data.

Any system has a small set of trusted users. Malicious authorized users 
can wreak havoc by copying and sharing data they’re not supposed to or 
entering bad data to compromise the quality of your computer system.

It’s hard to guard against this. You have to trust that each user is 
responsible enough to handle the level of system access he or she has 
been designated. If the user isn’t trustworthy, you can’t write a program 
to fix it. This shows that security is as much about administration and 
policy as it is about writing code.

Careless users (or careless administrators) can leave a system unnecessarily 
open and vulnerable. For example:

People forget to log off; if there is no session timeout, anyone can 
pick up your program later and start using it.
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Many attackers use dictionary-based password-cracking tools that 
fire off many login attempts until one works. Users choose easy-to-
memorize passwords that are also easy to guess. Any system that allows 
weak, easy-to-guess passwords is vulnerable. More secure systems sus-
pend a user’s account after a few unsuccessful logins.

Social engineering—the art of acquiring important information from 
people, items in an office, or even the outgoing trash—is usually a 
lot easier (and often quicker) than worming a way into your com-
puter system. People are easier to con than computers, and attackers 
know this.

Out-of-date software installations permit many compromises. Many 
vendors issue security warnings (or bulletins) and software patches. 
An administrator can easily fall behind the cutting edge, leaving the 
system open to attack.

Setting lax permissions will allow users access to sensitive parts of your 
system—for example, letting casual viewers read everyone’s salary details. 
The cure could be as basic as setting correct access permissions on the 
database files.

Virus attacks (self-replicating malicious programs, commonly spread by 
email attachment), Trojans (hidden malicious payloads in seemingly 
benign software), and spyware (a form of Trojan that spies on what you 
are doing, the web pages you visit, etc.) infect machines and can cause all 
sorts of mayhem. They can capture even the most complex password 
with keystroke loggers, for example.

Storing data “in the clear” (unencrypted)—even in memory—is danger-
ous. Memory is not as safe as many programmers think; a virus or Trojan 
can scan computer memory and pull out a lot of interesting tidbits for an 
attacker to exploit.

The risks increase as the number of routes into a system grows, with more 
input methods (web-access, command-line, or GUI interfaces), more individ-
ual inputs (different windows, prompts, web forms, or XML feeds), and more 
users (there is a better chance of someone discovering a password). With 
more outputs, there are more chances for bugs to manifest in the display 
code, leaking out the wrong information.

KEY CONCEPT The more complicated a computer system is, the more likely it is to contain security 
vulnerabilities. Therefore, write the simplest software possible!

The Opposition

It’s probably difficult to believe that anyone would take the time and effort to 
hack your application. But these people exist. They’re talented, motivated, 
and very, very patient. In the battle to write secure software, it’s important to 
know who you’re fighting against. Understand exactly what they’re doing, 
how they do it, the tools they’re using, and their objectives. Only then can 
you formulate a strategy to cope.
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Who 
Your attacker might be a common crook, a talented cracker, a script kiddie
(a derogatory name for crackers who run automated cracker scripts—
they exploit well-known vulnerabilities with little skill themselves), a 
dishonest employee cheating the company, or a disgruntled ex-employee 
seeking revenge for unfair dismissal.

Crackers are well informed. There is a cracker subculture where 
knowledge is passed on and easy-to-use cracker tools are distributed. 
Not knowing about this doesn’t make you innocent and pure, just naïve 
and open to the simplest attack.

Where 
Thanks to pervasive networking, attackers could be anywhere, on any 
continent, using any type of computer. When working over the Internet, 
attackers are very hard to locate; many are skilled at covering their tracks. 
Often they crack easy machines to use as covers for more audacious 
attacks.

When 
They could attack at any time, day or night. Across continents, one 
person’s day is another’s night. You need to run secure programs 
around the clock, not just during business hours.

Why 
With such a large bunch of potential attackers, the motives for an attack 
are diverse. It might be malicious (a political activist wants to ruin your 
company or a thief wants to access your bank account), or it might be for 
fun (a college prankster wants to post a comical banner on your website). 
It might be inquisitive (a hacker just wants to see what your network infra-
structure looks like or practice his cracking skills) or opportunist (a user 
stumbles over data he shouldn’t see and works out how to use it to his 
advantage).

S E C U R E  I N  T H E  K N O W L E D G E

These important terms help us to reason about security problems:

Flaw
A security flaw is an unintended problem in an application. It is a program fault 
(see “Terms and Conditions” on page 130). Not all flaws are security problems.

Vulnerability 
A vulnerability exists when a flaw opens the possibility for a program to be 
insecure.

Exploit 
This is an automated tool (or a manual method) that employs a program vulnera-
bility to force unintended—and insecure—behavior. Not all vulnerabilities are 
found and exploited (that’s called luck).
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In a networked world, you usually won’t know who your enemies actually 
are until after they have struck. You might not even find out who they are then; 
your forensic skills might not be able to work back from a smouldering pile 
of digital debris. But like any good boy scout: Be prepared. Don’t ignore vulner-
abilities and assume no one is interested in attacking your systems—someone 
out there is interested.

KEY CONCEPT Don’t ignore vulnerabilities and pretend that you’re invincible. Someone, somewhere 
wants to exploit your code, guaranteed.

Excuses, Excuses

How do attackers manage to break into code so often? They’re armed with 
weapons we don’t have or (due to lack of education) know nothing about. 
Tools, knowledge, skills: These all work in their favor. However, they have 
one key advantage that makes all the difference—time. In the heat of the soft-
ware factory, programmers are pressed to deliver as much code as humanly 
possible (probably a little bit more) and to do so on time, or else. This code 
has to meet all requirements (for functionality, usability, reliability, etc.), 
leaving us precious little time to focus on other “peripheral” concerns, like 
security. Attackers don’t share this burden; they have plenty of time to learn 
the intricacies of your system, and they have learned to attack from many 
different angles.

C R A C K E R  V S .  H A C K E R

These two terms often get confused and used inappropriately. Their correct 
definitions are:

Cracker 
Someone who purposefully exploits vulnerabilities in computer systems to gain 
unauthorized access.

Hacker 
Often used incorrectly to mean cracker, a hacker is really someone who hacks 
at—works on—code. This is a 1970s term used with pride by a particular breed 
of programming geek. A hacker is a computer expert or enthusiast.

You might also see these two hacker terms in use:

White hat 
White hat hackers consider the consequences of their work, scorning the actions 
of crackers and unethical computer users. They believe that their work is for the 
good of society.

Black hat 
This is a programmer from the dark side who enjoys abusing computer systems. 
Black hats are crackers who actively seek to use systems dishonestly. They have 
no regard for other people’s property or privacy.
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The game is stacked heavily in their favor. As software developers, we 
must defend all possible points of the system; an attacker can pick the weakest 
point and focus there. We can only defend against the known exploits; 
attackers can take their time to find any number of unknown vulnerabilities. 
We must be constantly on the lookout for attacks; attackers can strike at 
will. We have to write good, clean software that works nicely with the rest of 
the world; attackers can play as dirty as they like.

Software security presents a myriad of extra—but important—problems 
and challenges for the poor, overworked programmer. What does this tell 
us? Simply that we must do better. We must be better informed, better armed, 
more aware of our enemies, and more conscious of the way we write code. 
We must design in security from the outset and put it into our development 
processes and schedules.

Feeling Vulnerable

The programmer’s role in this mess is to write secure code, so let’s survey the 
weak points in our software to determine where we must focus our effort. 
These are specific types of code vulnerabilities, holes that can be compro-
mised by an attacker.

Insecure Design and Architecture

This is the most fundamental flaw, and consequently the hardest to fix. 
Failure to consider security at the architectural level will lead to committing 
security sins everywhere: sending unencrypted data over public networks, 
storing it on easily accessible media, and running software services that have 
known security flaws.

Security should appear on the radar as soon as development starts. Every 
system component must be considered for security holes; a computer system 
is only as safe as its least secure part, which may not even be the code you’re 
writing. For example, a Java program can be no more secure than the JVM 
executing it.

Buffer Overrun

Most applications are public facing, listening on an open network port or 
handling input from a web browser or GUI interface. These input routines 
are prime sites for security failure.

C code programs often use the standard library function sscanf to parse 
input. Although it’s part of C’s standard library and appears in C code regu-
larly, sscanf unashamedly provides subtle ways to write insecure code.2

2 This example is written in C and is common in C code, but remember that this exploit is far 
from a C-only problem.
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You might see code like this:

void parse_user_input(const char *input) 

{ 

/* first parse the input string */ 

int my_number; 

char my_string[100]; 

sscanf(input, "%d %s", &my_number, my_string); 

... now use it ... 

}

Can you see the glaring problem? An ill-formed input string—anything 
over 100 characters—will overrun the my_string buffer and smear arbitrary 
data across invalid memory addresses.

The results depend on what memory is trashed. Sometimes the program 
will carry on unaffected; you’ve been very, very lucky.3 Sometimes the program 
continues, but its behavior is subtly altered—this can be hard to spot and 
confusing to debug. Sometimes the program will crash as a consequence, 
perhaps taking other critical system components down with it. But the worst 
case is when the spilt data gets written somewhere in the CPU’s execution path. 
This isn’t actually hard to do and allows an attacker to execute arbitrary code 
on your machine, potentially gaining complete access to it.

Overrun is easiest to exploit when the buffer is located on the stack, as 
in the example above. Here it’s possible to direct CPU behavior by overwriting 
the stack-stored return address of a function call. However, buffer overrun 
exploits can abuse heap-based buffers too.

Embedded Query Strings

This breed of attack can be used to crash programs, execute arbitrary code, 
or fish for unauthorized data. Like buffer overrun, it relies on a failure to 
parse input, but rather than burst buffer boundaries, these attacks exploit 
what the program subsequently does with the unfiltered input.

Format string attacks are a classic example of this problem in C programs. 
A common culprit is the printf function (and its variants), used as follows:

void parse_user_input(const char *input) 

{ 

printf(input); 

}

A malicious user could provide an input string containing printf format 
tokens (like %s and %x) and coerce the program to print data from the stack 
or even from locations in memory, depending on the exact form of the printf
call. An attacker can also write arbitrary data to memory locations using a 
similar ploy (exploiting the %n format token).

3 Or, to look at it another way, you’ve been very unlucky. You didn’t spot the flaw when testing; it 
will enter production code, just waiting for a cracker to exploit it.
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Solutions to this problem aren’t hard to find. Writing printf("%s", input)
will avoid the problem by ensuring that input is not interpreted as a format 
string.

There are many other situations where an embedded query can mali-
ciously exploit a program. SQL statements can be surreptitiously fed into 
database applications to force them to perform arbitrary database lookups 
for an attacker.

Another variant exhibited by lax web-based applications is known as a 
cross-site scripting exploit, due to the way the attack works across the system: 
from an attacker’s input, through the web application, finally manifesting on 
a victim’s browser. An attacker’s bogus comment on a web-based messaging 
system will be rendered by all browsers viewing the page. If the message 
contains hidden JavaScript code, the browsers will execute it without their 
users realizing it.

Race Conditions

It is possible to exploit systems that rely on the subtle ordering of events, to 
provoke unintended behavior or crash the code. This is generally exhibited 
in systems with complex threading models or that are comprised of many 
collaborating processes.

A threaded program might share its memory pool between two worker 
threads. Without adequate guarding, one thread might read information in 
the buffer that the writer thread did not intend to release yet—part of a 
privileged transaction or a different user’s information.

This problem isn’t restricted to threaded applications, though. Consider 
the following fragment of Unix C code. It intends to dump some output to a 
file and then change file permissions on it.

fd = open("filename"); /* create a new file */ 

/* point A (see later) */ 

write(fd, some_data, data_size); /* write some data */ 

close(fd); /* close the file */ 

chmod("filename", 0777); /* give it special privileges */

There is a race here that an attacker can exploit. By removing the file 
at point A and replacing it with a link to his own file, the attacker gains a 
specially privileged file. This can be used to further exploit the system.

Integer Overflow

Careless use of mathematical constructs can cause a program to cede control 
in unusual ways. Integer overflow will occur when a variable type is too small 
to represent the result of an arithmetic operation. The unsigned 8-bit data 
type (uint8_t) renders this C calculation erroneous:

uint8_t a = 254 + 2;
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The contents of a will be 0, not the 256 you’d expect; 8 bits can only 
count up to 255. An attacker can supply very large numeric input values to 
provoke overflow and generate unintended program results. It’s not hard to 
see this causing significant problems; the following C code contains a heap 
overrun waiting to happen, thanks to integer overflow:

void parse_user_input(const char* input) 

{ 

uint8_t length = strlen(input) + 11; /* a uint8_t might overflow */ 

char *copy = malloc(length); /* so this might be too small */ 

if (copy) 

{ 

sprintf(copy, "Input is: %s", input); 

/* oh dear, we might have overrun the buffer */ 

} 

}

It’s true that uint8_t is an unlikely candidate for the string length variable, 
but the exact same problem manifests itself with larger data types. It’s less 
likely in normal operation, but just as exploitable.

This kind of problem also occurs with subtraction operations (where it’s 
called integer underflow), mixed signed and unsigned assignments, bad type 
casting, and multiplication or division.

Protection Racket

The more you seek security, the less of it you have.
—Brian Tracy

We’ve seen how software construction is like building a house (see “Do We 
Really Build Software?” on page 177, and Chapter 14). We must learn to 
secure our programs just like we’d protect a house, locking all doors and 
windows, employing a sentry, and adding security mechanisms (like a burglar 
alarm, electronic pass cards, identity badges, etc.). But you must still be con-
stantly vigilant: A door can be left ajar regardless of any fancy lock devices, 
and a burglar alarm can be left unset.

Our software security strategies apply at different levels:

The system installation
The exact OS configuration, network infrastructure, and version num-
bers of all running applications have important security implications.

The software system design
We need to address design issues like whether the user can remain logged 
in for indefinite periods, how each subsystem communicates, and which 
protocols are used.

The program implementation
It must be flaw-free. Buggy code leads to security vulnerabilities.
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The system’s usage procedure
If it is routinely used incorrectly, any software system can be compro-
mised. We should prevent this as much as possible with sound design, 
but users must be taught not to cause problems. How many people write 
down their username and password on paper beside their terminals?

Creating a secure system is never easy. It will always require a security/
functionality compromise. The more secure a system is, the less useful it 
becomes. The safest system has no inputs and no outputs; there’s nowhere 
for anyone to attack. It won’t do much, though. The easiest system has no 
authentication and allows everyone full access to everything; it’s just terribly 
insecure. We need to pick a balance. This depends on the nature of the appli-
cation, its sensitivity, and the perceived threat of attack. To write appropriately 
secure code, we must be very clear about such security requirements.

Just as you would take steps to secure a building, the following techniques 
will protect your software from malicious attackers.

System Installation Techniques

No matter how good your application is, if the target system is insecure, your 
program is vulnerable. Even the most secure application must run in its 
operating environment: under a particular OS, on a specific piece of hard-
ware, on a network, and with a certain set of users. An attacker is just as likely 
to compromise one of these as your actual code.

Don’t run any untrusted, potentially insecure program on your computer 
system.

This raises the question: What makes you trust a piece of software? 
You can audit open source software to prove that it’s correct (if you have 
the inclination). You can opt for the same software that everyone else 
uses, thinking that there’s safety in numbers. (However, if a vulnerability 
is found in that software, you, and many other people, must update.) 
Or you can pick a supplier based on their reputation, hoping that it’s a 
worthwhile indicator.

KEY CONCEPT Only run trusted software on your computer system. Have a clear policy to decide who 
you trust.

Employ security technologies like firewalls and spam and virus filters. 
Don’t let crackers in through a back door.

Prepare for malicious authorized users by logging every operation, record-
ing who did what and when. Back up all data stores periodically so that 
bogus modifications don’t lose all of your good work.

Minimize the access routes into the system, give each user a minimal set 
of permissions, and reduce the pool of users if you can.

Set up the system correctly. Certain OSes default to very lax security, 
practically inviting a cracker to walk straight in. If you’re setting up such 
a system, then it’s vital to learn how to protect it fully.
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Install a honeypot: a decoy machine that attackers will find more easily 
than your real systems. If it looks plausible enough, then they’ll waste 
their energy breaking into it, while your critical machines continue 
unaffected. Hopefully you’ll notice a compromise of the honeypot and 
repel the attacker long before he gets near your valuable data.

Software Design Techniques
This is the essential place to get your security story straight. You can try to 
shoehorn security into code at the end of a development cycle, and you’ll 
fail. It must be a fundamental part of your system’s architecture and design.

KEY CONCEPT Security is an essential aspect of every software architecture. It’s a mistake to gloss over 
it during early development work.

The simplest software design has the fewest points of attack and is con-
sequently the easiest to secure. More complex designs naturally lead to more 
interactions between constituent parts, and so provide more places for a 
cracker to attack. If you’re one of the 99.9 percent of programmers who can’t 
run your program in a sealed box in an underground bunker in an undis-
closed location in the middle of a desert, then you need to consider how to 
make your design as simple as possible.

As you design the code, think about how to actively prevent anyone from 
abusing it. Here are the winning strategies:

Limit the number of inputs in your design, and route all communication 
through one portion of the system. This way, an attacker can’t get all over 
your code—only through a single (secured) bottleneck. His influence is 
limited to a secluded corner, and you can focus your security efforts there.4

Run every program at the most restrictive privilege level possible. Don’t 
run a program as the system superuser unless it’s absolutely necessary, 
and then take even more care than usual. This is especially important for 
Unix programs that run setuid—these can be run by any user but are 
given special system privileges when they start.

Avoid any features that you don’t really need. It will not only save you 
development time, but also reduce the chance of bugs getting into the 
program—there’s less software for them to inhabit. The less complicated 
your code, the less likely it is to be insecure.

Don’t rely on insecure libraries. An insecure library is anything you don’t 
know to be secure. For example, most GUI libraries aren’t designed for 
security, so don’t use them in a program run as the superuser.

KEY CONCEPT Only rely on known, secure third-party components in your program design.

Tailor your code to an execution environment that manages security 
issues. The .NET run time offers offers a code access security infrastructure 
that allows you to assert, for example, that the calling code has been 

4 Of course, it’s never quite that simple. A buffer overrun could occur anywhere in your code, 
and you must be constantly vigilant. However, most security vulnerabilities exist at, or near, the 
sites of program input.
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signed by a trusted third party. This doesn’t remove all potential problems 
(the company’s private key could always go astray), and you must learn 
how to use it correctly, but it does help to manage security problems.
Avoid storing sensitive data. If you must, encrypt it so that prying eyes 
can’t easily read it. When you handle secrets, be very wary of where you 
put them; lock memory pages containing sensitive information so that 
your OS’s virtual memory manager can’t swap it onto the hard disk, 
leaving it available for an attacker to read.
Obtain secrets from the user carefully. Don’t display passwords.

The least impressive security strategy is known as security through obscurity,
yet this is really the most prevalent. It merely hides all software design and 
implementation behind a wall so that no one can see how the code works 
and figure out how to abuse it. Obscurity means that you don’t advertise your 
critical computer systems in the hope that no attacker will find them.

It’s a flawed plan. Your system will one day be found, and it will one day 
be attacked.

It’s not always a conscious decision, and this technique works very conve-
niently when you forget to consider security in the system design at all—that 
is, it’s convenient until someone does compromise your system. Then it’s a 
different matter.

KEY CONCEPT Expect your software to be attacked, and design each part with this in mind.

Code Implementation Techniques
With a bulletproof system design, your software is unbreakable, right? Sadly, 
it is not. We’ve already seen how security exploits can capitalize on flaws in 
code to wreak their particular brand of chaos.

Our code is the front line, the most common route an attacker will try to 
enter through and the place our battles are fought. Without a good system 
design, even the best code is vulnerable to attack; but upon the foundation 
of a well-thought-out architecture, we must build strong walls of defense with 
secure code. Correct code is not necessarily secure code.

Defensive programming is the main technique to achieve sound code. Its 
central tenet—assume nothing—is exactly what secure programming is 
about. Paranoia is a virtue, and you can never assume that users will 
employ your program as you expect or intend them to.

Simple defensive rules like “check every input” (including user input, 
startup commands, and environment variables), and “validate every calcu-
lation” will remove countless security vulnerabilities from your code.
Perform security audits. These are careful reviews of the source code by 
security experts. Normal testing won’t find many security flaws; they are 
generally caused by bizarre combinations of use that ordinary testers 
wouldn’t think of (for example, very long input sequences that provoke 
buffer overrun).
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Spawn child processes very carefully. If an attacker can redirect the sub-
task, then he can gain control of arbitrary facilities. Don’t use C’s system
function unless there’s no other solution.

Test and debug mercilessly. Squash bugs as rigorously as you can. Don’t 
write code that can crash; its use could bring down a running system 
instantly.

Wrap all operations in atomic transactions so attackers can’t exploit race 
conditions to their advantage. You could fix the chmod example in “Race 
Conditions” on page 231 by using fchmod on the open file handle, rather 
than chmoding the file by name: It doesn’t matter if the attacker replaces 
the file, you know exactly which file is being altered.

Procedural Techniques
This is largely a matter of training and education, although it helps to select 
users who aren’t totally inept (if you have that luxury).

Users must be taught safe working practices: not to tell anyone their 
password, not to install random software on a critical PC, and to use their 
systems only as prescribed. However, even the most diligent people will make 
mistakes. We design to minimize the risk of these mistakes, and we hope that 
the consequences are never too severe.

In a Nutshell

Security is a kind of death.
—Tennessee Williams

Programming is war.
Security is a real issue in modern software development; you can’t stick 

your head in the sand and hide from it. Ostriches write poor code. We can 
prevent most security breaches by better design, better system architecture, 
and greater awareness of the problems. The benefits of a secure system are 
compelling, since the risks are so serious.

Good programmers . . . Bad programmers . . .

Understand the security 
requirements for each project 
they work on

Instinctively write code that 
avoids common security 
vulnerabilities

Design security into each 
system; they don’t patch it 
in at the end

Have a security test strategy

Dismiss security as an unimpor-
tant concern

Consider themselves security 
experts (very few people are
security experts)

Only think about security flaws in 
their programs when vulnerabili-
ties are discovered, or worse, when 
their code is compromised

Focus on security when writing 
code and ignore it at the design 
and architectural levels
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See Also

Chapter 1: On the Defensive 
Defensive programing is an important technique for writing secure code.

Chapter 8: Testing Times 
We must rigorously test our software for security issues.

Chapter 13: Grand Designs 
Security is similarly essential to the design of each section of code.

Chapter 14: Software Architecture 
Security is one of the fundamental architectural concerns of a computer 
system. It must be designed in from the outset.

Get Thinking

A detailed discussion of the following questions can be found in the 
“Answers and Discussion” section on page 515.
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Mull It Over

1. What is a “secure” program?

2. What input must be validated in a secure program? What sort of valida-
tion is required?

3. How can you guard against attacks from the pool of trusted users?

4. Where can an exploitable buffer overrun occur? What functions are 
particularly prone to buffer overrun?

5. Can you avoid buffer overruns altogether?

6. How can you secure the memory in use by your application?

7. Are C and C++ inherently less secure than alternative languages?

8. Has the experience of C led to C++ being a better, more securely 
designed language?

9. How do you know when your program has been compromised?

Getting Personal

1. What are the security requirements for your current project? How were 
these requirements established? Who knows about them? Where are they 
documented?

2. What’s the worst security bug in one of your shipped applications?

3. How many security bulletins have been posted against your application?

4. Have you ever run a security audit? What kinds of flaws did it reveal? 

5. What kind of person is most likely to attack your current system? How is 
this influenced by

Your company

The type of user

The type of product

The popularity of the product

The competition

The platform you run on

The connectedness and public visibility of the system



PART III
T H E  S H A P E  O F  C O D E

Unlike a fine wine, your code is not likely to get any 
better the longer you leave it. If it starts like a small 
pile of something that the dog produced, then it will 
no doubt end up like a large pile of something an 
elephant produced.

This is no secret, yet software factories continually churn out elephan-
tine creations and then suffer the consequences. Their products are neither 
adaptable, extensible, or malleable enough to suit their future requirements, 
nor easy enough to develop: They fail to deliver on time and to budget. As 
programmers, this hurts our pride—but it hurts managers’ wallets, hard.

The answer? One solution is to never attempt code development in the 
first place, but that’s hardly practical. The other is to develop code with a view 
to the entire system’s structure. Good code doesn’t happen by accident; it is 
the product of careful crafting, with much emphasis placed on prior planning 
and design. But it also stems from a nimble development approach, from 
being agile enough to cope with the inevitable problems and changes that 
you’ll encounter en route.
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This section explores this process. We’ll look at:

Chapter 13: Grand Designs
Code micro design: low-level construction tips for individual code 
modules.

Chapter 14: Software Architecture
Larger-scale system design—the first construction stage of any software 
development.

Chapter 15: Software Evolution or Software Revolution?
A look at how software grows and expands over time, with some practical 
suggestions for grafting new work into an old codebase.

These are not optional extras or nice-to-haves. They are essential stages 
of our craft and are therefore crucial to the production of quality software. 
Ignore this stuff at your peril.



G R A N D
D E S I G N S

How to Produce Good
Software Designs

13

In this chapter:

The internal design of code

What we design and why

What does a good design 
look like?

Design tools and 
methodologies

A camel is a horse designed by committee.
—Sir Alec Issigonis

Some code just makes you sigh.
I once had to write a device driver for an 

embedded product. The driver’s interface to the 
OS was quite complex. The interface to the hard-
ware I was using was also complex. To keep myself 
sane, I split the code into two sections. The first 
was an internal library that accessed the hardware, 
performed some data buffering, and provided a 
simple API to access that buffered data. Then I 
wrote a second, distinct layer that implemented the 
finicky OS driver interface in terms of this internal 
library. The structure of the device driver looked 
like Figure 13-1.
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Later, the manufacturer of the hardware sent me a sample imple-
mentation of the same device driver. The author of this code had clearly 
not thought it out at all. The code was a sprawling mess, tightly intermingling 
the complex OS interface with the hardware logic in a completely incompre-
hensible manner. An approximation of its structure is shown in Figure 13-2.

Now, I’m not trying to toot my own horn (any more than is necessary, 
anyway). The point of this illustration is clear. The first design is better. It is 
easier to understand because it’s so straightforward, it is easier to implement, 
and consequently it is easier to maintain.

C.A.R. Hoare wrote, “There are two ways of constructing a software design: 
One way is to make it so simple that there are obviously no deficiencies, and 
the other way is to make it so complicated that there are no obvious deficiencies. 
The first method is far more difficult.” (Hoare 81)

One of the signs of a mature programmer is the design quality of his or 
her code. In this chapter, we’ll look at what constitutes a good design and 
investigate how to craft high-quality software designs.

Programming as Design

It’s a popular belief that “design” is a stage you complete before moving on 
to writing code. Its product is some form of design specification, which is suffi-
cient for a generic code monkey to implement.

The truth is very different. Programming—the act of writing code—is a 
design activity.

Even the most detailed specification has holes, or else it would be the 
code—you can’t describe every minuscule detail in a design document. 
The act of programming verifies the initial design decisions and performs 
the remaining design work. It exposes holes, inconsistencies, and errors and 
allows you to find a route around them. “Some programmers don’t think 
they’re doing design when they program, but whenever you write code, 
you’re always doing design, either explicitly or implicitly.” (Page Jones 96)

KEY CONCEPT Programming is a design activity. It’s a creative and artistic act, not mechanical code 
generation.

A good development process recognizes this and doesn’t shy away from 
writing code when it’s appropriate. Practitioners of Extreme Programming 
advocate that design is the code. (Beck 99) There is no separate design activity; 

Figure 13-1: Pete’s sane software design Figure 13-2: How not to design software

OS interface Hardware interface
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there is no team of designers. It’s the programmers who constantly refine and 
extend the design by refining and extending the code. This is enshrined in 
their test-driven design approach: Code tests are written before any code, as a 
design verification tool. This is a wise idea.

Does this mean that you don’t need to think before starting to hack at 
code? Not at all! Deep inside a text editor is not the place to plan what you’re 
writing. That’s like trying to drive from Berlin to Rome without deciding a 
route first. You’ll end up in Moscow before you’ve worked out which way is 
north. By definition, design is something you do first.

KEY CONCEPT Think before you type; establish a coherent design. Otherwise you’ll end up with 
chaotic code.

What Do We Design?

Programmers design code structures, obviously. But this means different 
things at different stages of the development process. At each stage, design is 
a process of decomposing the task into its constituent parts and figuring out 
how each part works.

These levels of software design are:

The system architecture
Here we look at the system as a whole, identify the main subsystems, and 
work out how they communicate. The architectural design has the most 
influence on the performance and characteristics of the system as a whole
and the least impact on specific lines of code. It is the most important 
design act and is covered in the next chapter. In this chapter, we’re con-
cerned with the internal design of code, which involves the subsequent 
design levels.

Modules/components 
The architectural subsystems are usually too large to directly implement 
in code, so the next step is to break each one down into comprehensible 
modules. It’s very easy to be vague about design at the module level. 
In some ways, a “module” does not really exist. Module may mean some-
thing different depending on the design approach; it might be a logical 
clump of code, perhaps some physical unit like a Java package, C++/C# 
namespace, or a reusable library. It might be a class hierarchy or maybe 
even a free-standing executable. 

This design stage often produces published interfaces. These can’t 
be easily changed later on, since they form strict contracts between code 
modules and between the teams of programmers writing them.

Classes and data types 
Next, we break a module into bite-sized chunks. Interface design tends 
to be less formal and easier to change behind the module. The tendency 
is to do this micro design at the keyboard. This urge should be resisted, 
or else you’ll write the first code that comes into your head, not the best 
code for the problem.
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Functions 
This may be the lowest design level in the food chain, but it’s of no less 
importance. A program is built from routines: If the routines are poorly 
designed, then the entire system will suffer. After having established exactly 
which functions are required, we design how they work internally, how 
the flow of control is routed, and which algorithms are used.1 This is 
usually a mental exercise rather than a documented procedure, but a 
diligent design is essential.

What’s All the Fuss About?

You won’t find anyone arguing for bad design, but nonetheless, there’s a lot 
of badly designed code out there. After a few years on the front line, any 
developer has the scars to prove it. (Battle-hardened veterans are already 
nodding their heads and mentally rehearsing their war stories.) But why is 
this the case?

Sloppy design can be the product of inexperienced programmers, but 
more often it is caused by the commercial pressures of the software factory 
squeezing out any time that might have been spent on good design. No one 
listens to the poor, protesting coders. Programming in the Real World is 
necessarily bound by the drive to ship software—any software—on time. 
The irony is that in almost every case, a lack of a good design ultimately 
costs more than doing it properly would have. As they say, “There’s never 
time to do it right, but there’s always time to do it twice.”

Getting design right is really very important. The design of your code is the 
foundation upon which it is built. If it’s wrong, then the code will be unstable, 
unsafe, and not fit for purpose—dangerous. A bad design foundation leads 
to the software equivalent of the Leaning Tower of Pisa. While novel that it 
manages to stand up under the strain of real use, it will never be as good as it 
ought to be, and in time this inevitably shows.

A sound design makes code:

Easier to write (there’s a well-defined plan of attack, and it’s clear how 
it’s all going to fit together)

Easier to understand

Easier to fix (you can identify the location of problems)

Less likely to harbor bugs (program errors are not hidden behind 
mystifying design problems)

More resilient to change (the design will encourage extensions and 
accommodate modification)

1 Key algorithms will often span multiple functions; they’ll be determined at the module design 
stage.
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Good Software Design

For any programming problem, there will be many potential code designs. 
Your job is to find one. The best one. Or at least a sufficiently good one. 
It’s not an easy task. . . .

How do you know that your design will work? After completing a bullet-
proof plan of attack, you confidently begin implementing it. Later, an 
unexpected problem will show its ugly head. Back to the drawing board.

How do you know when your design is finished? You can’t know until 
you’ve actually implemented it and found that it works. Many issues can’t 
be fore-guessed; you have to step out, implement the design, and see 
whether or not it’s complete. It’s only by attempting a solution that you 
even begin to understand the original problem. Armed with this new 
knowledge, you can then try to solve it again properly.

How do you know it’s the best design solution for the problem? You can’t 
tell unless you try out every possibility. This isn’t practical. Instead, how 
do you know it’s good enough? If performance is a requirement, you won’t 
really know until the system is performing.

The best design approaches address these problems. They are:

Iterative 
Avoid too many nasty surprises by doing a small amount of design, imple-
menting it, assessing the implications, and feeding this into to the next 
design round. This incremental construction approach is very powerful.

Cautious 
Don’t try to design too much at once. If something fails, it might be 
because of any number of design decisions. Limit the room for failure, 
and you’ll find it easier to progress. Small, sure design steps are more 
likely to succeed than large, clumsy ones.

Realistic 
A prescriptive design process will not work all of the time, every time. 
The outcome depends on the quality of the requirements established, 
the experience of the team, and the rigor with which the process is applied. 
A pragmatic approach takes the best of all methodologies and admits 
that it relies on the programmers’ gut feeling—experience has a lot to 
do with shaping good design.

Informed 
You must fully understand all requirements and motivating principles to 
be clear about the problem you’re solving, and also about the important 
qualities of the right solution. If you don’t, you’ll solve the wrong problem. 
You need this information to get early design decisions right, and some 
are hard to reverse.
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Your design approach is inevitably affected by the overall development 
methodology in use (see “Programming Styles” on page 420 for a description 
of these). A good design process is a step towards creating a good design, but 
no guarantee. It still comes down to the quality of the design decisions you 
make. Different trade-offs lead to different designs. A design for speed will 
differ from design for extensibility, for example. Ultimately, there is no right or 
wrong design. At best, there are good designs and bad designs.

Good designs have a number of attractive characteristics, whose opposites 
are sure indicators of bad design. We’ll discuss these next.

Simplicity

This is the single most important characteristic of well-designed code. A simple 
design is easy to understand, has no unnecessary warts or blemishes, and is 
easy to implement. It is coherent and consistent.

Simple code is as small as possible but no smaller. This takes some doing, 
as the mathematician Blaise Pascal appreciated: “I am sorry for the length of 
my letter, but I had not the time to write a short one.” Carefully work out how 
little code is needed, and then write just that. Remember, you can always add 
more code later for extra functionality, but you can rarely remove something 
that has become intimately entwined.

M A K I N G  A  T R A D E

Software design is a process of making decisions—of decomposing the system into 
its constituent parts, but also balancing the contending forces that pull in different 
directions. There are trade-offs to be made that shape the final design.

These are common examples of such tightropes and games of tug-of-war:

Extensibility vs. simplicity 
A design for extensibility provides plenty of interface points for future code to be 
plugged into and ensures the scaffolding is sufficiently general to support any 
later requirements. Simplicity avoids the complication of extra levels of indirection 
and needless generality.

Efficiency vs. safety 
Gains in performance often come by sacrificing purity of design—putting in special 
back doors for certain important operations or adding lots of coupling to prevent 
too much indirect access. Highly optimized systems are generally less clear and 
more brittle in the face of change.

Not all efficient designs are bad, though; many good designs naturally perform 
well because of their simplicity.

Features vs. development effort 
At project initiation, there are a thousand desired features and a reasonable idea 
of when they should be delivered by (tomorrow, if not sooner). Without an infinite 
number of monkeys and their infinite number of PCs, you’ll never get it all done. 
More features take more time to implement.

Which of these characteristics is most important depends on the project require-
ments. That’s why it’s so important to be clear about them up front.
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Laziness can pay off. Work your design so you can defer as much work as 
possible, and only concentrate on the immediate problems.

KEY CONCEPT Less is more. Strive for simple code that does a lot with a little.

A simple design is not necessarily easy to create. It takes time. For all but 
the most basic programs, a great deal of information must be sifted through 
to reach a final solution. Well-designed code looks obvious, but it probably took 
an awful lot of thought (and a lot of refactoring) to make it that simple.

KEY CONCEPT It’s a complicated job to make something simple. If a code structure looks obvious, don’t 
assume that it was easy to design.

There are many ways to make a design unnecessarily complex, including 
incorrect component decomposition, the thoughtless proliferation of threads, 
inappropriate choice of algorithms, complex naming schemes, and excessive 
or inappropriate module dependencies.

Elegance

Elegance embodies the aesthetic aspects of design and often goes hand in 
hand with simplicity. It means that your code isn’t baroque, confusingly 
clever, or overly complex. Well-designed code has a beauty in its structure. 
These are desirable characteristics:

Control flowing gracefully around the system. A single operation doesn’t 
pass through every module, converting the format of its parameter between 
16 different representations, before finally ignoring it.

Each part complements the others, adding something distinct and 
valuable.

The design is not riddled with special cases.

It associates similar things.

No nasty surprises lurk around the corner.

There is a small locality of change: A single, simple change in one place 
doesn’t lead to modifications of the code in many other places.

Good design has a lot to do with balance and aesthetics. I won’t go so far 
as to say programming is art, although some could argue a convincing case 
for this. Elegance and simplicity underpin most of the remaining character-
istics in this list.

Modularity

As we attack a design problem, we naturally divide it into parts called modules
or components. We decompose into subsystems, libraries, packages, classes, and 
so on. Each part is less complex than the original problem, but put together, 
they form a complete solution. The quality of this decomposition is paramount.
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Key qualities of modularity are cohesion and coupling. We aim for 
modules with:

Strong cohesion 
Cohesion is a measure of how related functionality is gathered together 
and how well the parts inside a module work as a whole. Cohesion is the 
glue holding a module together.

Weakly cohesive modules are a sign of bad decomposition. Each 
module must have a clearly defined role and not be a grab bag of 
unrelated functionality (like the pitifully common utils namespace—
why do people write these things?).

Low coupling 
Coupling is a measure of the interdependency between modules—the 
amount of wiring to and from them. In the simplest designs, modules 
have little coupling and so are less reliant on one another. Obviously, 
modules can’t be totally decoupled, or they wouldn’t be working 
together at all!

Modules interconnect in many ways—some direct, some indirect. 
A module can call functions on other modules or be called by other 
modules. It may use another module’s data types or share some data 
(perhaps variables or files). Good software design limits the lines of 
communication to only those absolutely necessary. These communi-
cation lines are part of what determines the code design.

Once identified, each module can be worked on in isolation and tested 
separately. This is an advantage of modularity; it allows you to split tasks 
between programmers. Take care, though; Conway’s Law warns that 
software structure may follow team structure: “If you have four teams 
working together to build a compiler, it will become a four-pass compiler” 
(see “Organization and Code Structure” on page 320). Make sure the 
decomposition is sensible and based on the problem, not the team 
organization.

KEY CONCEPT Design modules that are internally cohesive with minimal coupling. The decomposition 
must represent a valid partition of the problem space.

Good Interfaces
Modules help us separate concerns and partition the problem. Each module 
defines an interface, the public façade behind which it hides an internal imple-
mentation. This set of available operations is often called an application 
programming interface (API). It is the sole route to a module’s functionality, 
and its quality determines the quality of that module, at least as seen from 
the outside.

KEY CONCEPT Draw lines in the sand that people don’t need to cross: Identify clear APIs and interfaces.

To create a good interface, follow these steps.

1. Identify the client and what it wants to do.

2. Identify the supplier and what it’s able to do.
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You can only successfully separate the user and implementer with 
an interface if both parties have been correctly identified and their 
individual needs are understood. Once you’re clear about this, you 
stand a chance of creating an interface that will satisfy its users and is 
actually implementable.

Bad design puts operations in the wrong place, making it a night-
mare to follow the application logic and difficult to extend the design. 
It leads to increased module coupling and reduced cohesion.

3. Infer the type of interface required.
Is it a function, a class, a network protocol, or something else? This is 

probably dictated by who supplies the functionality, but an interface may 
also be wrapped up to present it in different ways. For example, wrap-
ping a CORBA object around a library publishes its functionality to a 
network of collaborating computers.

4. Determine the nature of operation.
What functionality really needs to be provided—is it more general 

than this client’s specific requirement? Inside every function, there is 
often a more useful operation waiting to get out.

There are a few key principles that help us to reason about the nature and 
quality of our interfaces. As illustrated in Figure 13-3, these are:

Partitioning 
An interface forms a point of contact, but also a line of separation between 
client and implementer. They can only communicate in the defined 
manner, not in any other ad hoc way.

Well-designed code clearly defines roles and responsibilities. Knowing 
who the main actors are in a system and what they are all supposed to 
do ensures that interfaces are crisp and effective.

A good example is my house: Its main interface is the front door. The 
door partitions occupants from visitors and determines where they meet. 
There are a number of other interfaces for other operations: windows, 
telephones, the chimney, and so on.

Abstraction 
An abstraction allows the viewer to concentrate on important decisions, 
selectively ignoring certain details. It neatly organizes reality behind a 
simpler representation, helping us to cope with complexity. It’s a partic-
ularly important concept in OO design. When designing an interface, 
you create an abstraction by carefully choosing exactly what is important 
for the user and what can be usefully hidden from them.

Given a bowl of fruit, you can happily say, “Eat the item on top,” 
and then “Eat the next one,” without worrying exactly what that 
entails; a grapefruit needs to be peeled, while rhubarb needs to be 
boiled and smothered in sugar. These details are hidden behind the 
abstraction eat; you only care that the fruit was eaten, not how.2

2 This ability to hide multiple physical behaviors behind a single logical abstraction is known as 
polymorphism and is described in “Polymorphism” on page 423 .
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Figure 13-3: The interfaces provided by a house

Abstractions can form a hierarchy. You can view my house at differ-
ent levels of abstraction, depending on whether you’re a builder, a particle 
physicist, or a bank manager. It can be considered:

A collection of rooms

An arrangement of walls, floors, and ceilings

A construction of bricks and timber

A collection of molecules, or even atoms

A mortgage that needs to be paid

Compression 
This is the ability of an interface to represent a large operation with 
something simpler. Compression is often the result of making good 
abstractions, but bad abstractions can lead to more verbose code.

Substitutability 
You can substitute one implementation of an interface with another, if it 
meets the same contract. If you define a sort interface in your program, 
then any algorithm can sit behind it: It could be a quicksort, a heapsort, 
or (heaven forbid) a bubblesort. You can change it at any point, as long 
as the visible behavior through the interface is the same.

In class inheritance hierarchies, any object can be substituted for its 
supertype.
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If you want me to open my front door, you’ll ring the doorbell. It used 
to be a wired switch that ran to the bell mechanism, but I’ve just invested 
in a new-fangled wireless doorbell. This doesn’t affect you at all, in fact 
you won’t even know I’ve changed it; you push a button, and I appear.

Extensibility

Well-designed code allows extra functionality to be slotted in at appropriate 
places, when necessary. The danger is that this may lead to over-engineered 
code, trying to cope with any potential future modification.

Extensibility can be accommodated through software scaffolding: 
dynamically loaded plug-ins, carefully chosen class hierarchies with abstract 
interfaces at the top, the provision of useful callback functions, and even a 
fundamentally logical and malleable code structure.

KEY CONCEPT Design for extensibility, but don’t be hopelessly general—you’ll end up writing an OS, 
not a program.

A good designer thinks carefully about how his or her software will be 
extended. Randomly sprinkling code with hooks for extensibility may actually 
degrade quality. You should balance the functionality needed now, what will 
definitely need to be added later, and what might be needed to determine 
how extensible the design should be.

Avoid Duplication

Well-designed code contains no duplication; it never has to repeat itself. 
Duplication is the enemy of elegant and simple design. Unnecessary 
redundant code leads to a brittle program: Given two similar pieces of 

A B O U T  F A C E

Most of computer science is built around defining interfaces and organizing complexity 
around them. The infamous maxim is, “Any problem can be solved by adding an 
extra level of indirection”—that is, hiding new complexity behind another interface. 
There are many types of interfaces. They all present some public face to their clients 
and hide the gory implementation details behind this façade.

Common forms of interfaces that you’ll create are:

• Libraries

• Classes

• Functions

• Data structures (particularly more exotic ones with additional behavior, 
like semaphores)

• OS interfaces

• Protocols (network communications, for example)
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code that differ only in minor details, you may find and fix a bug in one 
and then forget to fix the same bug in the other. This clearly compromises 
code safety.

Most duplication comes through cut-and-paste programming—copying code 
in the editor. It can arise more subtly through the reinvention of wheels by 
programmers who don’t understand the whole system.

If you see strikingly similar things being done by separate sections of 
code, generalize it in a function with appropriate parameters. There’s 
now a single place to fix any faults. This has the benefit of making the 
code’s intent clearer with a descriptive function name.

Classes that are strikingly similar indicate that some functionality could 
be pushed up to a superclass or that there’s a missing interface to describe 
the common behavior.

KEY CONCEPT Do it once. Do it well. Avoid duplication.

Portability
A good design is not necessarily portable; it depends on the code’s require-
ments. A lot can be done to prevent platform dependence, but compromising 
code for unnecessary portability is bad design. A good design is appropriately
portable and manages portability concerns when they are an issue.

The story is familiar: Your code was never intended to run in any other 
environment, so it wasn’t designed to cope. Later development unexpectedly 
required a new runtime platform; it was simpler to adapt the old program 
than write a new one. The code didn’t lend itself to portability, and there 
wasn’t enough time to refactor or redesign for cross-platform support. The 
result? A tangled mess of code, whose design has been irreparably warped, 
riddled with #ifdef NEW_PLATFORM constructions. It has not been programmed 
by an engineer; it has been plumbed by a philosopher.

Make careful choices about the structure of your OS-dependent or 
hardware-dependent sections of code. It will pay dividends in the future, 
and need not affect performance or clarity (sometimes it may even improve 
clarity). It’s important to think about this as early in the design as possible; 
it is expensive to rework old assumptions.

The common approach is to create a platform abstraction layer (which 
may be a simple veneer over a few OS interface functions). You can imple-
ment this layer differently on each platform.

KEY CONCEPT Manage the portability of your code in its design, rather than hacking it in as an 
afterthought.

Idiomatic
A good design naturally employs best practices, fitting in with both the design 
methodology (see “Programming Styles” on page 420) and the implemen-
tation language’s idioms. This allows other programmers to immediately 
understand the code’s structure.
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Given the implementation language (which may be fixed or may be 
part of the design domain) you must understand how to use it well. C++, for 
example, has idioms like Resource Acquisition Is Initialization (RAII) and operator 
overloading, which make a big difference to how you design code. Learn 
them. Understand them. Use them.

Well-Documented

Last, but by no means least, a good design should be documented. Don’t leave 
readers to infer the structure by themselves. This is particularly important at 
the higher levels of design. The documentation should be small because the 
design is so simple.

At one end of the spectrum, architectural designs are documented in a 
specification. At the other end, functions employ self-documenting code. In 
the middle, you’ll probably use literate programming for API documentation.

How to Design Code

Always design a thing by considering it in its next larger 
context—a chair in a room, a room in a house, a house in 

an environment, an environment in a city plan.
—Eliel Saarinen

How do you learn to design well? Are good designers born or made? Can 
design be taught or caught? Some programmers have a natural flair for 
good design; it fits the way their brains work. They naturally appreciate 
aesthetics and can comprehend enough of a problem to make balanced 
judgments. Nevertheless, you can learn to design more effectively.

When I was born, I wasn’t very good at pottery. (I’ve never met anyone 
who was.) I’m still terrible now, but I took some lessons once. I understand 
the mechanics and can produce (almost recognizable) pots. I’d probably be 
much better if I practiced a little, but I’ll never become a master artisan.

Similarly, no one is born able to design code: We learn. We are 
taught design methodologies and good engineering practice. These aim 
to make design a repeatable process, but they are no substitute for craftsmanship.
The creative thought process and construction of innovative designs is much 
harder to convey; there will always be better designers who grasp this.

Good software design is aesthetic; to create this digital art requires skill, 
experience, and practice. This chapter cannot attempt a paint-by-numbers 
description of how to design software. A shame: If I could bottle good design, 
I’d be a millionaire. To be a good designer, you must understand what con-
stitutes a good design and learn to avoid the characteristics of bad design. 
Then practice. For a long time.

Apart from personal ability, there are design methods and tools that 
promise much to the programmer. We’ll conclude by investigating how they 
can (or can’t) help us.
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Design Methods and Processes

There are many software design methodologies. Some emphasize a notation, 
others the process. A systematic approach is better than seat of your pants
design; which method you use is usually dictated by company practice and 
culture. I’m always wary of getting too bogged down in a particular process—
satisfying its minuscule details tends to stifle creativity.

Modern design methods fall into two main families, the fundamental 
design philosophies upon which they are based:

Structured design 
This is primarily about functional decomposition, breaking up the function-
ality of the system into a series of smaller operations. Routines are the main 
structuring devices; the design is composed of a hierarchy of routines. 
Structured design is characterized by the divide-and-conquer approach, 
splitting a problem into successively smaller procedures until each piece 
can be decomposed no more. 

There are two main lines of attack: top-down and bottom-up.

Not surprisingly, a top-down approach starts with the entire problem 
and breaks it down to smaller activities. These, in turn, are designed 
as self-contained units, until no more division is necessary.

In contrast, bottom-up design starts with the smallest units of function-
ality, the simple things you know the system must do. It then stitches 
these functions together until it arrives at an entire solution.

In practice, these are used in tandem, and the design process ends 
where they meet, somewhere in the middle.

Object-oriented design 
Whereas structured design focuses on representing the operations a 
system must perform, OO design focuses on the data within that system. 
It models the software as an interacting set of individual units, known 
as objects.

An OO design identifies the primary objects in the problem domain 
and determines what their characteristics are. The behavior of these 
objects is established, including the operations they provide and which 
other objects they each relate to. The objects are weaved into a design, 
incorporating any implementation domain objects needed. Design is 
complete when all object behavior and interaction is determined.

Object-oriented programming was hailed as the savior of the software 
design world, a new paradigm to usher in world peace, so much so that 
people are often embarrassed to not be performing OO design. But it has 
largely lived up to the hype, allowing software designs to manage the 
complexity of far bigger problems. 

See “Programming Styles” on page 420 for a more detailed description of 
design methods and processes.
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Design Tools

Our designs are ultimately expressed in code, but it can often be helpful to 
work at a more abstract level. Tools help us to reason about a design, help us 
produce more effective designs, and help us to communicate those designs 
to other programmers—documenting what we intend to produce and what 
we have already created.

In a sense, methodologies are tools, but there’s a broad range of other 
design aids that complement them.

Notations 
Pretty pictures are worth their weight in words. Many graphical notations 
exist to help us express our designs pictorially. Most became fleetingly 
fashionable and then quietly slunk out of the limelight to be replaced 
by an even sexier way of drawing boxes and lines. The Unified Modeling 
Language (UML) is currently the most popular and well-specified notation. 
It provides a standard way to model and document practically every 
artifact generated by the software development process. In fact, it has 
grown so comprehensive that you can use it to visualize far more than 
just software; it has been used to model hardware, business processes, 
and even organizational structures. 

D E S I G N  P A T T E R N S

Patterns have become a buzzword in the OO programming community over the last 
few years. Popularized by the book Design Patterns: Elements of Reusable Software
(Gamma et al. 94) by the authors affectionately known as the “Gang of Four” (hence 
it’s often known as the GoF book), design patterns are the software version of 
Christopher Alexander’s architectural work. (Alexander 99)

Patterns establish a vocabulary of proven design solutions, and each pattern 
describes a recognizable structure of collaborating objects. These aren’t clever 
invented designs, but recurring patterns found in real code that have been shown 
to work. Pattern languages collate a catalog of design patterns, showing how they 
relate to and complement one another. Each pattern in a language follows a common 
form, describing the context, the problem, and the solution. This information allows 
you to apply the pattern appropriately in your designs.

Patterns crop up at several levels in a software system. Architectural patterns have 
a profound influence on the organization of a system. Design patterns are midlevel 
collaborations of software components. Language-level patterns are specific code 
techniques, known more commonly as language idioms.

The names of design patterns have entered common parlance, a testament to their 
usefulness. You’ll hear programmers happily talking about adaptors, observers,
factories, and singletons.

There is far more to design patterns than this quick description can do justice. 
They are a genuinely useful concept, and it’s worth devoting some time to learn 
about them. Read the GoF book and material beyond it.
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Notations provide a medium to help you express, think about, and 
discuss your software design. They serve two purposes:

They allow you to scrawl quick “back of an envelope” designs and 
share thoughts around a whiteboard.
They allow you to formally document designs.

To maintain your sanity in the latter case, diagram creation must be 
automated with a dedicated drawing tool. Otherwise, diagrams will be 
hard to update and will diverge from reality as you develop the code. 
Spend your time doing something useful, not drawing boxes and lines.

I prefer to not be bogged down by overly formal use of a notation, 
happily using it as a method of communicating the essential elements 
of a design. Knowing enough to be able to communicate is good enough 
for me; I don’t want to get too concerned about what every diamond and 
dotted line means in every type of picture.

Design patterns 
A powerful design tool providing a vocabulary of proven design tech-
niques, and showing how to apply them in practice. “Design Patterns” 
on page 255 discusses design patterns in more depth.

Flowcharts 
A particular kind of graphical notation, used to visualize algorithms. 
They’re good for giving a high-level overview but are less precise than 
code and become another thing to be kept in sync with code changes. 
For this reason, it’s best to use them sparingly.

Pseudocode
Pseudocode helps you draft function implementations. It’s one of the most 
curious inventions in software design—halfway between a natural language 
and a programming language, a sort of pidgin English. Its advantage is the 
freedom from any particular language’s syntax and semantics. You can con-
centrate on what needs to be done, not on language mechanics, and you 
can include arbitrary amounts of descriptive prose for clarity.

These aren’t incredible benefits compared to the downsides. The 
pseudocode will require translation into an implementation language. 
You could have started to write in that language anyway and saved yourself 
some effort. If pseudocode is being used as design documentation, then 
you’ll have to keep it in sync with code.

Program Design Language (PDL) is an even more absurd invention—
a formalized pseudocode. I guess it made sense to somebody at the time. 
I’d love to have seen their pseudocode compiler. 

Design in code 
This is a useful informal approach to code design. During the initial 
design stages, you capture all APIs and the lower-level interfaces in code, 
but without implementing any of them—you just write stubs that return 
plausible values, putting comments inside each describing what should 
be done. When you have reached a sufficiently mature design, the system 
already has a lot of code written.

This can be a mixed blessing, as it can lead to less fluid designs. The 
more you change the design, the more stubbed code you have to alter.
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CASE tools 
Computer-aided software engineering (CASE) tools assist in all or part of the 
design process, automating tedious jobs and managing the workflow. 
Most are capable of generating code (of variable quality) from your 
pretty pictures. Some even update the pictures when you modify the 
code; this is known as round-trip engineering (or round-tripping). Many CASE 
tools support collaborative work, allowing teams of programmers to con-
tribute to a single large-scale design.

A breed of CASE tool worthy of mention is Rapid Application Develop-
ment (RAD) tools: environments for quickly building applications. They 
tend to work well in their specific domain (usually simple UI-focused 
applications) but aren’t good general-purpose software design models.

KEY CONCEPT Take a pragmatic approach to design tools and methodologies—use them when they are 
genuinely helpful—but don’t become a slave to them.

In a Nutshell

Out of intense complexities, intense simplicities emerge.
—Winston Churchill

Good code is well designed. It has a certain aesthetic appeal that makes it feel 
good. You must plan a design before beginning to write code, or you’ll end up 
with an unpleasant mess. Consider things like clean structure, possible future 
extensions, correct interfaces, appropriate abstractions, and portability require-
ments. Aim for simplicity and elegance.

Design involves a strong element of craftsmanship. The best designs come 
from experienced and skilled hands. Ultimately, a good designer is what makes 
a good design. Mediocre programmers do not produce excellent designs.

Good programmers . . . Bad programmers . . .

Want to leave anything they 
touch in a good state

Think of programming as a cre-
ative process and weave an ele-
ment of artistry into their work

Think about the structure of 
code before they start working 
on it

Feel the need to tidy up and 
refactor messy code before they 
do any extra work on it

Constantly learn about the 
design of other software, build-
ing up knowledge of successes 
and failures

Keep knitting more and more 
code into a tight ball until they 
think they’ve done enough and 
then complain about the result

Don’t notice a bad design or feel 
any distaste when working with 
dense code

Are happy to hack quickly and 
run away, leaving someone else 
to clean up the mess

Don’t appreciate or respect the 
internal design of code they’re 
working on; they trample over it 
in an unsympathetic manner



258 Chapter 13

See Also

Chapter 8: Testing Times
Describes how to design code for testing—making it easier to prove that 
your code works properly.

Chapter 14: Software Architecture 
The highest level of software design is known as software architecture.
It provides its own specific problems and is dealt with in this chapter.

Chapter 19: Being Specific 
Software designs are often captured in a specification document.

Chapter 22: Recipe for a Program 
Design fits into the overall software development process.

Chapter 23: The Outer Limits 
The type of system you’re building has an inevitable influence on the 
software’s internal design.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 519.

Mull It Over
1. How does project size affect your software design and the work involved 

in creating it?

2. Is a well-documented bad design better than an undocumented 
good one?
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3. How can you measure the design quality of a piece of code? How can you 
quantify its simplicity, elegance, modularity, and so on?

4. Is design a team activity? How important are teamworking skills in 
creating a good design?

5. Are different methodologies more suitable to different projects?

6. In what ways can you determine whether a design is highly cohesive or 
weakly coupled? 

7. If you’ve solved a similar design problem in the past, how good an 
indicator is it of how difficult this problem will be?

8. Is there a place for experimentation in design?

Getting Personal

1. Look back and think about how you learned to design code. How could 
you convey the knowledge you’ve gained to a total novice?

2. What experience do you have with using particular design methodologies? 
Were these good or bad experiences? What was the resulting code like? 
What might have worked better?

3. Do you find it important to stick rigidly to the methodology you’re using?

4. What was the best designed code you’ve ever seen? What was the worst 
designed?

5. A programming language is essentially a tool to implement your design, 
not a religion to argue about. How important is it really to know language 
idioms?

6. Do you think programming is an engineering discipline, a craft, or an art?





S O F T W A R E
A R C H I T E C T U R E

Laying the Foundations
of Software Design

14

In this chapter:

What is software architecture?

How is software architecture 
different from code design?

The qualities of good 
architecture

Overview of key architectural 
styles

Architecture is the art of how to waste space.
—Philip Johnson

Go into a city. Stand in the middle of it. Look 
around. Unless you’ve picked an unusual place, 
you will be surrounded by a large number of 
buildings of varying ages and styles of construction. 
Some fit into their surroundings sympathetically. 
Others look totally out of place. Some are aesthet-
ically pleasing and seem well proportioned. Others 
are downright ugly. Some will still be there in 100 
years’ time. Many will not.

The architects who designed these buildings 
took a lot into consideration before they put 
pencil to paper. During the process of design, 
they worked carefully and methodically to ensure 
that the building was feasible to fabricate, and 
they balanced all the contending forces: user 
requirements, construction methods, maintain-
ability, aesthetics, and so on.

Software is not made of bricks and mortar, but 
the same careful thought is required to ensure that
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a system meets similar sets of requirements. We have been erecting buildings 
far longer than we’ve been writing software, and it shows. We’re still learning 
about what makes good software architecture.

In this little foray into the world of software architecture, we’ll investigate 
some common architectural patterns and look at what software architecture 
really is, what it really isn’t, and what it’s used for.

What Is Software Architecture?

Is this just another term that stretches the building metaphor a little thinner 
(see “Do We Really Build Software?” on page 177)? Maybe so, but it is a 
genuinely useful concept. Software architecture is sometimes known as high-
level design; regardless of the terms used, the meaning is the same. Architecture 
is a more evocative description of the concept.

Software Blueprints
As an architect prepares his blueprint for a building, the software architect 
prepares a blueprint for the software system. However, while a building’s blue-
print is a rigorously detailed plan with all the important features included, our 
software architecture is a top-level definition, an overview of the system that 
specifically avoids too much detail. It is macro, not micro.

In this high-level view, all implementation details are hidden; we just 
see the essential internal structure of the software and its fundamental 
behavioral characteristics. The architectural view does the following:

Identifies the key software modules (or components, or libraries; at this 
point call them what you like—blobs)

U N D E R G R O U N D  M O V E M E N T

I joined a project that had produced a large amount of undocumented software, 
erected without plan or purpose, with no architect to guide the construction process. 
Naturally, it had become an unsightly carbuncle. The time came when we needed to 
understand how it all really worked, and an architectural diagram of the system was 
drawn up. There were so many different components (many largely redundant), 
inappropriate interconnections, and different methods of communication that the 
diagram was an intense jumble of tightly woven lines in many interpretive colors—
almost as if a spider had fallen into a few different cans of paint and then spun 
psychedelic webs across the office.

Then it struck me. We had all but drawn a map of the London Underground. Our 
system bore such a striking resemblance, it was uncanny—it was practically incomp-
rehensible to an outsider, with many routes to achieve the same end, and the plan was 
still a gross simplification of reality. This was the kind of system that would vex a 
traveling salesman.

The lack of architectural vision had clearly made its mark on the software. It was 
hard to work with and hard to understand, with bits of functionality strewn across 
completely random modules. It had gotten to the point where the only useful thing 
you could do with it was throw it away.

In software construction, as in building construction, the architecture really matters.
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Identifies which components communicate with each other

Helps to identify and determine the nature of all the important inter-
faces in the system, clarifying the correct roles and responsibilities of the var-
ious subsystems

This information allows us to reason about the system as a whole without 
having to understand how every individual part will work. The architecture 
provides a framework into which the later development fits. It shows how 
work can be split between teams and allows you to weigh different imple-
mentation strategies.

Not only does the architecture give a picture of how the system is com-
posed, it also shows how it should be extended over time. In large teams, a 
program will develop more elegantly when there’s a clear, unified vision of 
how the software should be adapted, of what should be put in each module, 
and of how modules connect.

KEY CONCEPT The architecture is the single largest influence on the design and future growth of a soft-
ware system. It is therefore essential to get it right in the early stages of development.

As an up-front activity, the architecture is our first chance to map the 
problem domain (the Real World problem we are solving) to a solution domain.
There isn’t always a simple one-to-one mapping of objects and activities 
between the two, so the architecture shows how to think about one in terms 
of the other.

Exactly what needs to be addressed by the software architecture will 
differ from project to project. The target platform is not important at this 
stage; it may be possible to implement the architecture on a number of 
different machines using different languages and technologies. However:

For certain projects, it may be important to specify particular hardware 
components, most likely for embedded designs.

For a distributed system, the number of machines and processors and 
the split of work between them might be an architectural issue. Mini-
mum and average system configurations should be considered.

The architecture may also describe specific algorithms or data structures if 
they are fundamental to the overall design (although this is far less likely).

There is always a trade-off. The more information that is set in stone at 
the architectural level, the less room for maneuverability there is at a later 
design or implementation stage.

Points of View
In physical architecture, we use a number of different drawings or views of 
the same building: one for the physical structure, one for the wiring, one 
for the plumbing, and so on. Similarly, we develop different software views 
in the architectural process. Four views are commonly recognized:

The conceptual view 
Sometimes called the logical view, this shows the major parts of the system 
and their interconnections.
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The implementation view 
This view is seen in terms of the real implementation modules, which 
may have to differ from the neat conceptual model.

The process view 
Designed to show the dynamic structure in terms of tasks, processes, and 
communication, this view is best used when there’s a high degree of con-
currency involved.

The deployment view 
Use this view to show the allocation of tasks to physical nodes, in a dis-
tributed system. For example, you may split functionality between a 
database server and a farm of web interface gateways.

You don’t start with all of these. Particular views arise as development 
work progresses. The main result of the initial architectural phase is the 
conceptual view, and that’s what we’re concentrating on here.

Where and When Do You Do It?
The architecture is captured in a high-level document called something 
imaginative like the architecture specification. This specification explains the 
system’s structure and shows how it fulfills the requirements, including 
important issues like the strategy to reach any performance requirements 
and how acceptable fault tolerance will be achieved.

KEY CONCEPT Capture system architecture in a known place; a document accessible to everyone 
involved—programmers, maintainers, installers, managers (perhaps even customers).

The architecture is the initial system design. It is therefore the first
developmental step after the requirements have been agreed upon. It’s 
important to generate a specification up front because it provides a first 

F O R  W H A T  I T ’ S  W O R T H

Software architecture has wide-ranging implications—far beyond the initial structure 
of the code, right into the heart of the software factory. The architecture will be a 
lasting legacy, both in the technological and practical realms. Architecture affects 
how the code will grow and how teams of people will work together to extend it; 
software design affects workflow. With a three-tiered architecture, you’ll end up with 
three teams of people working on the separate parts. There will probably be three
sets of admin staff too, and three management reporting lines. Someone’s early 
design decision will affect which desk you sit at.

Since the architecture determines how malleable the software is and how well the 
codebase can accommodate future requirements, it ultimately influences the commer-
cial success of your company. A bad architecture is more than just inconvenient—it 
could cost you your livelihood. Serious stuff.

As programmers, it affects us most directly—it will affect how fun our work will be. 
No one wants to labor intensely to add a minuscule feature that would have taken 
two seconds with a correct initial design. At conception, check that the architecture 
supports what you think it should, not just what the architects believe.
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chance to review and validate the design decisions that will have the most 
significant impact on the project. It will expose weaknesses and potential 
problems. Reversing a bad decision this early on will save a lot of time, effort, 
and money. It’s expensive to change the foundation of a system once a lot of 
code has been built upon it.

Architectural work is a form of design, but it is separate from the module 
design phase, and distinct from low-level code design, although it certainly 
overlaps somewhat. Later work on detailed design may feed changes back up 
to the system architecture. This is natural and healthy.

What Is It Used For?

Architecture is the initial system design. But its uses stretch even further. We 
use the system architecture to:

Validate 
The architecture is our first chance to validate what is going to be built. 
With it, we can mentally check that the system will meet all requirements. 
We can check that it really is feasible to build. We can ensure that the 
design is internally consistent and hangs together well with no special 
cases or gratuitous hacks. Nasty blemishes in the high-level design will 
only lead to more dangerous hacks at lower levels.

The architecture helps to ensure that there is no duplication of work, 
wasted effort, or redundancy. We use it to check that there are no gaps in 
the strategy, that we have included all the necessary pieces. We ensure 
that there will be no mismatches as separate sections are brought together.

Communicate
We use the architecture specification to communicate the design to all 
interested parties. These may be system designers, implementers, main-
tainers, testers, customers, or managers. It’s the primary route to under-
stand the system and is an important piece of documentation that should 
always be kept up to date as changes are made.

W H O S E  J O B ?

We’ve seen that software architecture affects everyone on the project—not just the 
programmers. In contrast, the architecture is determined by a far smaller group of 
people. What a responsibility.

The architecture designer is called a software architect. This is a grandiose title 
and, like engineer, somewhat contentious. “Real” architects must study, qualify, and 
reach levels of professional excellence to even be called architects. There are no such 
requirements in the software world.

Software architects are among the project initiators, working right at the beginning 
of the development cycle. As development ramps up, programmers will join the 
effort to implement this established architecture.

However, on smaller projects requiring less specialized architectural experience, 
the programmers themselves will devise the architecture. No big guns are drafted in. 
Be ready to contribute to architectural design.
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KEY CONCEPT An architecture specification is an essential device to communicate the shape of your 
system. Ensure that you keep it in sync with the software.

The architecture conveys the vision of your system, mapping the 
problem domain to the solution domain. It should neatly identify how 
future extensions fit in, helping to maintain the system’s conceptual 
integrity. (Brooks 95) It implicitly provides a set of conventions and 
contains an element of style. For example, it’s clear that you shouldn’t 
introduce a new component with custom socket-based communication if 
the rest of the design uses a CORBA infrastructure.

The architecture provides a natural route into the next level of 
design without being too prescriptive.

Discriminate
We use the architecture to help us make decisions. For example, it 
identifies build versus buy decisions, determines whether a database is 
required, and clarifies the error-handling strategy. It will flag problem 
areas, areas of particular risk on the project, and help us plan to mini-
mize this risk. Just as an architect’s primary goal is to ensure his building 
stays up when it’s built—under all expected conditions (and some unusual 
conditions too)—so should we ensure the resillience of our software 
structure. A little wind or extra load shouldn’t topple the thing over.

We need this systemwide perspective to make the appropriate trade-
offs, ensuring that the design meets its required properties. These import-
ant issues are considered at the beginning rather than grafted in toward 
the end of development.

KEY CONCEPT Make all software design decisions in the context of the architecture. Always check that 
you’re working in line with the system vision and strategy. Don’t create a little wart on 
the side that doesn’t complement anything else.

Of Components and Connections
Architecture mostly concerns itself with components and connections. It deter-
mines the number and type of each.

Components

Architecture captures information about each component, whatever component
means in the architecture’s context. It could be an object, a process, a library, 
a database, or a third party product. Each of the system’s components is 
identified as a clear and logical unit. Each performs one task and does it well. 
No component includes a kitchen sink unless there’s a specific kitchen-sink 
module.

While it won’t dwell on component implementation issues, the architec-
ture will describe all exposed facilities and perhaps the important externally 
visible interfaces. It defines the visibility of the component: what it can see 
and what it can’t, and what can see it and what can’t. Different architectural 
styles imply different visibility rules, as we’ll see later.
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Connections

The architecture identifies all the inter-component connections and 
describes the connection properties. A connection may be a simple function 
call or data flow through a pipe. It may be an event handler or a message 
passing through some OS or network mechanism. A connection can be 
synchronous (blocking the caller until the implementation has completed the 
request) or asynchronous (returning control to the caller immediately and 
arranging for a reply to be posted back at a later date). This is important, 
since it affects the flow of control around the system.

Some communication is indirect (and consequently quite subtle). For 
example, components can share certain resources and talk through them—
rather like posting messages on a shared whiteboard. Examples of shared 
communication channels are: a subordinate component, a shared memory 
region, or something as basic as the contents of a file.

A R C H I T E C T S  V S .  M A R K E T E R S

An architecture is inadequate if it doesn’t fulfill the product requirements for initial 
deployment or any future development; design quality is about more than just technical 
excellence. Technical issues must be addressed alongside product management and 
marketing considerations.

There is no point in developing a product that no one wants; it would obviously 
be a huge waste of time. But you can miss vital business opportunities by omitting 
marketing requirements from technical consideration. The marketing department 
identifies core business objectives including sales strategies (do you charge a one-off 
fee or employ a licensing/billing model?), the product’s position in the marketplace 
(is it a high-end, feature-packed, high-cost product or a cheap, mass-produced item?), 
and the importance of a unique brand running through the system.

In some situations, visibly good architecture may be a unique selling point and 
may provide a strong competitive advantage. Other markets care less about the 
internal system structure, but an architecture that anticipates and handles future 
customer requirements is still essential to establish and maintain a strong market 
position.

Technical architects must work closely with the marketing decision makers to 
understand how new software will fit into the company’s overall strategy and what 
the customer requires for a truly exceptional solution. The software architecture will 
address marketing issues such as usability, reliability, upgradeablity, and extensibility. 
Each of these has a real influence on the software design. Support for different charg-
ing methods alone may have a huge impact on the profitability of the project—the 
inclusion of rich logging support will pave the way for per-transaction billing, which 
may lead to increased product revenue. However, it may mandate the inclusion of 
additional security and fraud-prevention measures in the architectural planning.

Marketing requirements feed into the technical architecture. Technical considera-
tions will also feed back to the marketing strategy. A truly great architecture is born 
when technical and strategic visions meet to create a product that stands out from its 
competitors.
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What Is Good Architecture?

The key to good architecture is simplicity. A few well-chosen modules and 
sensible communication paths are the aim. It also needs to be comprehensible,
which often means visually represented. We all know that a picture speaks a 
thousand words.

KEY CONCEPT Good system architecture is simple. It can be described in a single paragraph and sum-
marized in one elegant diagram.

In a well-designed system, there should be neither too few nor too many 
components. This criterion scales with the size of the problem. For a small 
program, the architecture may fit on (or even be done on) the back of an 
envelope, with just a few modules and some simple interconnections. A large 
system naturally requires more effort and more envelopes.

Too many fine-grained components lead to an architecture that is bewilder-
ing and hard to work with. It implies that the architect has gone into too much 
detail. Too few components means that each module is doing far too much 
work; this makes the structure unclear, hard to maintain, and hard to extend. 
The correct balance is somewhere between the two.

The architecture does not dictate the inner workings of each module—
that’s what module design is for. The goal is that each module should know 
very little about the other parts of the system. We aim for low coupling and 
high cohesion (see “Modularity” on page 247) at this level of design, as with 
all others.

KEY CONCEPT Architecture identifies the key components of the system and how they interact. It 
doesn’t define how they work.

The architecture specification lists the design decisions made and makes 
it clear why this approach is being favored over any alternative strategies. It 
doesn’t need to labor these other approaches, but should justify the chosen 
architecture and prove that some serious thought went into it. It must have 
correctly identified the primary goal of the system: For example, extensibility is 
a different game from performance and will lead to different architectural 
design decisions.

A good architecture leaves room for maneuverability; it allows you to 
change your mind. It may specify that we wrap third party components with 
abstract interfaces so we can swap one version out for another. It may suggest 
technologies that make it easy to select different implementations during 
deployment. As a project gains momentum, the correct implementation 
choices become clear—they aren’t always obvious at first. A successful archi-
tecture is flexible, providing a mechanism for nimble design during these 
initial uncertainties. The architecture is the first pivot on which to balance 
contending forces; it will show how we trade one quality for another.

KEY CONCEPT A good architecture leaves space for maneuverability, extension, and modification. 
But it isn’t hopelessly general.

The architecture must be clear and unambiguous. Preexisting, well-
known architectural styles or well-known frameworks are best (see the 
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next section for more on these). Architecture must be easy to understand 
and work with.

Like a good design, good architecture has a certain aesthetic appeal that 
makes it feel right.

Architectural Styles

Form ever follows function.
—Louis Henry Sullivan

Just as an immense gothic cathedral and a quaint Victorian chapel, or an 
imposing tower block and a 1970s public lavatory employ different archi-
tectural styles, there are a number of recognized software architectural styles 
that a system may be built upon. A style may be chosen for various reasons, 
good or bad—perhaps on sound technological grounds, or perhaps based 
on the architect’s prior experience, perhaps even by what style is currently in 
fashion. Each architecture has different characteristics:

Its resilience to changes in the data representation, algorithms, and 
required functionality

Its method of module separation and connection

Its comprehensibility

Its accommodation of performance requirements

Its consideration of component reusability

In practice, we might see a mixture of architectural styles in one system. 
Some data processing may progress through a pipe and filter process, while 
the rest of the system employs a component-based architecture.

KEY CONCEPT Recognize the key architectural styles and appreciate their pros and cons. This will help 
you to sympathetically work with existing software and perform appropriate system 
design.

The following sections describe some of the common architectural styles. 
And then compare them to pasta.

No Architecture

want to build good software. Not planning an architecture is a surefire way to 
doom development before you’ve even started.

A system always has an architecture, but like my 
London Underground project, it may not have 
a planned architecture. Before long, this state of 
affairs becomes an albatross around the neck 
of your development team. The resulting 
software will be a mess.

Defining an architecture is essential if you 

Spaghetti Ball

Architecture
as Pasta:

Messy, uncontrollable, 
unmanagable morass of 

interwoven gloop.
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Layered Architecture

block in the stack. The positions in the stack indicate what lives where, how the 
components relate to each other, and which components can “see” which 
other components. Blocks may be placed alongside each other on the same 
level and can even become tall enough to span two layers.

A famous example of this is the OSI seven-layer reference model for net-
work communication systems. (ISO 84) A more interesting example is the 
Goodliffe seven-layer trifle reference model shown in Figure 14-1.

Figure 14-1: The Goodliffe seven-layer 
trifle reference model

At the lowest level of the stack, we find the hardware interface, if the 
system does indeed interact with physical devices. Otherwise, this level is 
reserved for the most basic service, perhaps the OS or a middleware tech-
nology like CORBA. The highest level will likely be occupied by the fancy 
interface that the user interacts with. As you rise further up the stack, you 
move further away from the hardware, happily insulated by the layers in 
between in the same way that the roof of a house doesn’t have to worry 
about the magma at the earth’s core.

At any point, you can brush out all the lower layers and slot in a new 
implementation of the layer below—the system will function as before. This 
is a key point: It means that you can run the same C++ code on any comput-
ing platform that supports your C++ environment. You can swap the hardware 
platform without touching your application code—relying on the OS layer 
(for example) to swallow the technical differences. Handy.

Higher levels use the public interfaces of the layer directly below. 
Whether they can use the public interfaces of the lower levels depends of 
your definition of layering. Sometimes the diagram is fiddled to represent 

This is probably the most commonly used archi-
tectural style in conceptual views. It describes 
the system as a hierarchy of layers, with a 
building-block approach. It is a very simple 
model to comprehend; even a non-techie 
can quickly grasp what it’s telling him.

Each component is represented by a single 

Architecture
as Pasta:
Lasagne

Several distinct layers, 
arranged one on top of 

another.

Almonds Chocolate sprinkles

Double cream

Custard

Raspberry jelly

Fruit pieces

Sponge cake
Sherry

Bowl
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this, like the sherry brick in the trifle stack. Whether or not components on 
the same layer can interconnect is also not rigidly defined. You certainly can’t 
use anything from a higher level; if you break this edict, you no longer have a 
layered architecture, just a meaningless diagram drawn in stack form.

As you can see, most layer diagrams are informal. The relative size and 
position of boxes gives a clue as to importance of a component, and that is 
generally sufficient as an overview. Component connections are implicit, and 
the methods of communication irrelevant. (However, this can be a key archi-
tectural concern for the efficiency of the system—you won’t send gigabytes of 
data down an RS232 serial port.)

Pipe and Filter Architecture

the computer display or a log file). It’s the old through-the-grapevine tele-
phone game in digital form. The data flows down the pipe, encountering the 
various filters en route. The transformations are usually incremental; each 
filter does a single simple process and tends to have very little internal state.

The pipe and filter architecture requires a well-defined data structure 
between each filter; it has the implicit overhead of repeatedly encoding the 
output data for transmission down the pipe and parsing it back again in each 
subsequent filter. For this reason, the data stream is usually very simple—just 
a plaintext format.

This architecture makes it easy to add functionality by just plugging a 
new filter into the pipeline. Its main downside is error handling. It is hard to 
determine where an error originated in the pipeline by the time a problem 
manifests itself at the sink. It’s cumbersome to pass error codes down the chain 
toward the output stage; they need extra encoding and are hard to handle 
uniformly over several separate modules. The filters may use a separate error 
channel (e.g., stderr), but error messages can get mixed up all too easily.

Client/Server Architecture

This architecture models the logical flow of 
data through the system. It is implemented as 
a string of sequential modules that each read 
some data, process it, and spit it out again. At 
the start of the chain is a data generator (maybe 
a user interface or perhaps some hardware har-
vesting logic). At the end is a data sink (perhaps 

A typically network-based architecture, the 
client/server model separates functionality into 
two key pieces: the client and the server. It differs 
from the older mainframe style of networked 
design in the division of work between each 
part; a mainframe “client” is a dumb terminal—
little more than a means to capture and trans-
mit keypresses, with some output display. 

Good conduit for its contents, 
suits particular situations

very well.

Architecture
as Pasta:

Cannelloni

Architecture
as Pasta:
Gemelli

Two complementary strands, 
woven tightly together.
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The clients of a client/server architecture are richer, more intelligent, and 
generally able to present data in an interactive, graphical manner. Here is a 
more detailed look at the role of the two elements:

Server 
The server provides certain well-defined services to clients. It will gener-
ally be a powerful computer dedicated to providing specific functionality 
or to managing a resource (shared files, printers, a database, or pooled 
processing power).

The server waits for requests from clients and responds to them. It 
may be able to handle any number of simultaneous client connections or 
might be limited to certain usage patterns.

Client
The client consumes a server’s services. It sends off requests and 
processes the results that are returned. Some clients are dedicated 
terminals which only fulfill one role; other clients serve many 

A  S L A P  I N  T H E  I N T E R F A C E

A key software construction principle is modularity, designing systems from replace-
able components. This is almost a “LEGO brick” approach to construction. Done 
correctly, you should be able to take out a square, blue brick and replace it with 
a slightly fancier red one. If the bricks are the same size and shape and have the 
same kinds of connector, they will fit into the same hole and do the same job.

How do we implement this in software? We define interfaces; these are our con-
nection points and component barriers. They define the size and shape of each 
component (as seen from the outside, at least) and determine what you have to do 
to provide a like-for-like replacement. Key types of interfaces are:

APIs 
Application programming interfaces (APIs) are specified as collections of functions 
in a physically linked application. To replace a component that implements a 
particular API, you just reimplement all the functions and relink the code.

Class hierarchies 
You can design an abstract “interface” class (in Java and C#, you’d actually define 
an interface). Then provide any number of concrete implementations that derive 
from it and implement that interface.

Component technologies
Technologies such as COM and CORBA allow your program to determine the 
correct implementation component at run time. Typically, interfaces are defined in 
an abstract Interface Definition Language (IDL). The beauty of this approach is that 
components can be written in any language. It requires middleware or OS support.

Data formats 
These formats can form a connection point in designs focused on the movement of 
data rather than the flow of control. You can replace any component in the data 
chain with an analog that interacts with the same data types.

As you can see, architecture—indeed, most of software design—is about crafting 
appropriate interfaces. Each of these interface techniques maps to a particular archi-
tectural style. Pick an interface mechanism that complements the architecture.
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functions (for example, a “client” application may run on a standard 
desktop PC that can also browse the web and view email).

There can be many different types of clients using one server, all 
performing the same set of requests but in different ways. One client 
might be web based, one might have a GUI interface, while another might 
provide command line access.

This client/server approach is sometimes known as a two-tier architecture, 
for obvious reasons. It’s very common and is seen throughout the software 
development world. The means of communication between client and server 
varies—it’s simplest to use standard network protocols, but you may also see 
use of remote procedure calls (RPC), remote SQL database queries, or even 
proprietary application-specific protocols.

There are various ways of splitting work between the two components. 
The main application logic (also known as business logic) may run on either 
the client or server, depending on how intelligent and specialized the client 
is supposed to be. As more application logic is pushed down to the client, the 
design becomes less flexible—separate clients have to reimplement similar 
features, negating the benefit of the central server. Clients are generally con-
cerned with providing sensible human interfaces to the published server 
functionality.

We sometimes see an extension of this two-tier design, which introduces 
another layer (the middle tier). This component is explicitly designed to contain 
the business logic, separating it from both the client application (which is now 
most definitely only an interface) and the back-end data storage. This is a three-
tier architecture.

A client/server approach is different from a peer-to-peer architecture, 
where no network node has more capability or importance than any other. 
Peer-to-peer architectures are harder to deploy but more tolerant of faults. 
The client/server design is crippled when the server is unavailable (through 
some software fault or routine maintenance): No client will be able to operate 
until the server comes back to life. For this reason, client/server installations 
generally require a designated administrator to keep all systems running 
smoothly.

Component-Based Architecture

Definition Language (IDL) and is separate from any implementation, although 
some component technologies (like .NET’s built-in component support) can 
determine this from the implementation code itself. 

This architecture decentralizes control and splits 
it into a number of separate collaborating 
components rather than a single monolithic 
structure. It is an object-oriented approach, 
but doesn’t necessarily require implementation 
in an OO language. Each component’s public 
interface is typically defined in an Interface

Architecture
as Pasta:

Conchiglie

Separate little bits floating in 
some connecting goo.
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Component-based design arrived with the lure of assembling applications 
quickly out of prefabricated components, supposedly enabling plug-and-play 
solutions. It’s still up for debate how much of a success this has been. Not all 
components are designed for reuse (it’s hard work), and it’s not always easy 
to find a component that does what you want it to do. It’s easiest for UIs, where 
popular frameworks and established marketplaces exist.

The core of a component-based architecture is a communication infra-
structure, or middleware, which allows components to be plugged in, to broad-
cast their existence, and to advertise the services they provide. Components 
are used by looking up this information through a middleware mechanism, 
rather than by hardwiring a direct connection between two components. 
Common middleware platforms include CORBA, JavaBeans, and COM; 
each have different strengths and weaknesses.

A component1 is essentially an implementation unit. It honors one 
(maybe more) specific published IDL interfaces. This interface is how clients 
of the component interact with it. There are no back doors. The client is con-
cerned with dealing with an instance of that interface, rather than in how the 
component is implemented.

Each component is an individual, independent piece of code. Behind its 
interface, it implements some logic (perhaps business logic or user interface 
activity) and contains some data, which may just be local or may be published 
(say a filestore or database component). Components don’t need to know 
much about one another. If they are tightly coupled, then the architecture is 
just an obfuscated monolithic system.

Component-based architectures can be deployed in a networked 
environment with components on different machines, but they can just as 
easily exist as a single machine installation. This may depend on the type of 
middleware in use.

Frameworks

of the work in a framework has been done for you, with the remaining 
pieces following a fill-in-the-blanks approach. Different frameworks follow 
different architectural models; by using a framework, you commit to its 
particular style.

1 We’ve already talked about components as modules, ephemeral implementation units. But this 
is a new definition for the word, quite specific to the world of component-based architecture. 
Sadly, the terms are overloaded with multiple meanings.

Instead of developing a new architecture for a 
specific project, it may be appropriate to use 
an existing application framework and add devel-
opment into that skeleton. A framework is an 
extensible library of code (usually a set of co-
operating classes) that forms a reusable design 
solution for a particular problem domain. Most 

Architecture
as Pasta:

Canned Ravioli

Most of the work’s already 
been done for you. Just heat 

and serve.
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Frameworks differ from traditional libraries in the way they interact with 
your code. When using a library, you make explicit calls into the library com-
ponents under your own thread of control. A framework turns this around; it is 
responsible for the structure and flow of control. It calls into your supplied 
code as and when necessary.

Sitting alongside off-the-shelf frameworks are architectural design patterns.
While not an architectural style in their own right, patterns are small-scale 
architectural templates. They are micro-architectures for a few collaborating 
components, distilling a recurring structure of communication. Architectural 
patterns describe common component structures at the architectural design 
level, explaining how they fulfill the requirements of a given context. Patterns 
are a set of design best practices, described in the ubiquitous GoF book 
(Gamma et al. 94) and numerous subsequent publications (see “Design 
Patterns” on page 255).

In a Nutshell

The Roman architect Vitruvius made a timeless statement of what constitutes 
good architectural design: strength (firmitas), utility (utilitas), and beauty 
(venustas). (Vitruvius) This holds true for our software architectures. With-
out a well-defined, well-communicated architecture, a software project will 
lack a cohesive internal structure. It will become brittle, unstable, and ugly. 
Eventually, it will reach a breaking point.

All this talk of pasta has made me hungry. I’m off to build a seven-layer 
reference trifle. . . .

Good programmers . . . Bad programmers . . .

Understand their software 
architecture and write new 
code within it

Can apply the appropriate 
architecture to each design 
scenario

Create simple architectures
that are beautiful and ele-
gant—they appreciate the 
aesthetics of software design

Capture the system architec-
ture in a live document that is 
continuously updated

Relay problems with the 
structure back to the system 
architects in an attempt to 
improve the design

Write code regardless of any overall 
architectural vision—resulting in 
unsympathetic blemishes and unin-
tegrated components

Fail to perform any high-level design 
before ploughing into code, ignor-
ing any architectural alternatives

Leave architectural information 
locked inaccessibly in people’s 
heads or in a dangerously out-of-
date specification

Put up with inadequate architec-
tures, adding more badly designed 
code rather than fixing the under-
lying problems—they can’t be 
bothered to open a larger can 
of worms
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See Also

Chapter 12: An Insecurity Complex 
Security concerns must be addressed by a system architecture.

Chapter 13: Grand Designs 
Code design is the subsequent level of code construction.

Chapter 15: Software Evolution or Software Revolution? 
Architecture is the start of your software’s life, but it is by no means the 
only thing that steers its development.

Chapter 22: Recipe for a Program 
Where architectural design fits into the software development process.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 522.

Mull It Over

1. Define where architecture ends and software design begins.

2. In what ways can a bad architecture affect a system? Are there parts that 
wouldn’t be affected by architectural flaws?

3. How easy is it to repair architectural deficiencies once they become 
apparent?

4. To what extent does architecture affect the following things?

a. System configuration

b. Logging

c. Error handling

d. Security
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5. What experience or qualifications are required to be called a software 
architect?

6. Should sales strategy influence architecture? If so, how? If not, why?

7. How would you architect for extensibility? How would you architect for 
performance? How do these design goals affect the system, and how do 
they complement one another?

Getting Personal

1. How diverse is the range of architectural styles to which you are 
accustomed? What do you have the most experience with—how does 
it affect the software you write?

2. What personal experience do you have of architectures that succeeded 
or failed? What made them winning solutions or a hindrances?

3. Get every developer on your current project to draw a picture of the 
system architecture—individually (without talking to anyone) and 
without any reference to system documentation or the code. Compare 
the pictures. See what strikes you about each developer’s efforts—aside 
from the relative artistic merit!

4. Do you have an architectural description that’s commonly available for 
your current project? How up to date is it? Which kinds of view are you 
using? If you needed to explain the system to a newcomer or a potential 
customer, what would you really need to have documented?

5. How does your system’s architecture compare to the architecture of your 
competitors in the marketplace? How has your architecture been 
defined to determine your project’s success?





S O F T W A R E  E V O L U T I O N  
O R  S O F T W A R E  
R E V O L U T I O N ?

How Does Code Grow?

15

In this chapter:

How software grows over time

Software rot—how decay 
sets in

How to manage the risks of 
old code

I cannot say whether things will get better if we change; 
what I can say is they must change if they are to get better.

—G.C. Lichtenberg

If only software grew like a plant. You’d put the 
seed of an idea into some fertile programming soil, 
add a little water, and wait. You’d tend it carefully: 
Fertilize it, keep it in good light, and cover it to 
keep the birds off. In time, a code seedling would 
sprout, and when the program plant was big 
enough, you could release it to the world. For 
extra functionality you’d keep watering and add 
some more fertilizer, and it would continue to 
develop. The trunk would strengthen in order to 
support the new branches and the program would 
stay in perfect balance. If it grew in a direction 
you didn’t like, a little pruning would soon set it 
straight.
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Unfortunately, the Real World does not work like this. Not by a 
long shot.

Software is a live entity. It’s not sentient or organic, but it has its own 
kind of life: It is conceived, develops steadily, and eventually reaches maturity. 
Then it’s sent out into the Big Wide World to make a living and hopefully 
garner respect and admiration. It may continue to develop, perhaps to the 
point where it gains a middle age spread and loses its youthful looks. Over 
time, it grows tired and old and is eventually retired, put out to pasture in a 
digital farmyard where it can gracefully die.

This chapter looks at how we cultivate software, especially after the initial 
round of development. Programs require thoughtful tending and seldom 
receive the care and attention they really deserve. What can we do to prevent 
a slowly spreading code cancer that leads to early death?

To answer this, we’ll work backward. We’ll take a look at the symptoms of 
bad code growth, explore how we grow our code, and determine some 
strategies to develop healthier software.

M O R E  M E T A P H O R S  F O R
S O F T W A R E  C O N S T R U C T I O N

We’ve already examined the metaphor of building and discussed what it tells us 
about the software construction process (see “Do We Really Build Software?” on 
page 177 ). In this chapter, I’ll introduce some more metaphors. They provide different 
insights into our programming methods:

Growing software 
This relates to how we extend existing software, usually by adding new features. 
Bug fixing isn’t growth: It is tending to diseased parts of the code.

Our code does grow as we add to it, but programming is not a perfect analog 
of plant growth—we have far more control and influence over code growth than 
over a seedling. Code grows more like an oyster making a pearl: slowly, by the 
progressive accretion of small extra parts.

Evolving software 
Another common construction metaphor is the evolution of software. We start with 
a single-celled code organism and gradually see it develop into a larger, more 
complex beast. This is an incremental process; the software develops through a 
number of evolutionary stages. However, there are a few key differences to 
biological evolution:

We are the ones deliberately making changes; the software doesn’t develop 
by itself.
We don’t employ natural selection to choose the best design. We have 
neither the time nor the inclination to develop many different variants of the 
same program.

We do have the opportunity to iteratively improve the quality of our code, 
mimicing evolutionary development somewhat. We can use experience gained 
from previous releases to adapt the code to its natural habitat, ensuring its long-
term survival.
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Software Rot

When you’re green, you’re growing. When you’re ripe, you rot.
—Ray Kroc

Bad things happen to good code. No matter how well you start, no matter 
how honorable your intentions, no matter how pure your design and how 
clean the first release’s implementation, time will warp and twist your 
masterpiece. Never underestimate the ability of code to acquire warts and 
blemishes during its life.

There is a misconception that software only develops during its initial 
stages of life. The maintenance phase of software development1 is always the 
longest. It’s where most of the overall effort goes—even if this effort is not 
scrunched into a compact ball, like the initial design and development work. 
B.W. Boehm, a respected computer science professor, observed that 40 to 80 
percent of total development time is spent in maintenance. (Boehm 76)

Software is never expected to stand still after a release. There will always 
be odd faults to fix, no matter how much testing went on. Customers demand 
new features. Requirements change under the development team’s feet. 
Assumptions that were made during development prove to be incorrect in 
the Real World and require adjustments. The upshot: More code is written 
after the project is considered complete.

During the initial development stages, you can keep a firm grip on your 
code and play with it as much as you like within the available time constraints. 
After it has been released, you’re more restricted. These restrictions may be 
practical:

Changes have to be minimized to reduce their impact on the carefully 
tested codebase.

Published APIs are already being used by clients, so they are harder to 
modify.

The UI is familiar to users and can’t be changed gratuitously.

The restrictions may also be psychological, based on the developers’ 
(potentially erroneous) preconceptions:

The code has always worked this way, so we can’t change it like that.

It’s too hard to revise the architecture at this late stage.

It’s not worth the time or expense to make this modification properly 
now; the product won’t be around for very much longer.

The restriction might even be a simple lack of understanding—a 
maintenance programmer may not understand original author’s mental 
model of the code; this leads to inappropriate modifications.

There is a fine line between maintaining an existing product and 
developing the next version. Where it lies is a moot point. But whatever you’re 
doing, the original codebase gets modified—sometimes by the original author, 

1 That is, work done after initial delivery that isn’t considered a major new release.
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often by someone else. This is where the rot sets in. It’s a damned if you do, 
damned if you don’t scenario; whatever you do, the code will rot.

If you never touch the code again, if you don’t keep it up to date with 
fixes and modifications, the program will degrade. In the worse case, it will 
stop working as the OS changes or its assumptions become outdated. The 
Y2K bug is a glorious example of this.2 Or the program will putrefy as 
competing solutions develop more features and gain more popularity. 
Untouched code slowly rots away.

If you do make extensions and fixes as the code grows, it might still rot. 
When fixing a fault, the programmer often introduces more faults as a side 
effect. Brooks found that as many as 40 percent of fixes introduced new 
faults. (Brooks 95) “The Programmer’s Drinking Song” (sung to the tune of 
“99 Bottles of Beer on the Wall”), written by a minstrel unknown, sums this 
up neatly:

99 little bugs in the code, 99 bugs in the code,
Fix one bug, compile it again, 101 little bugs in the code.

(Repeat until BUGS == 0)

Even bug-free modifications can cause code turmoil. Quick-and-dirty 
fixes pile atop one another, putting nail after nail into the original design’s 
coffin, making future maintenance harder. The plant analogy is useful here: 
If more heavy branches grow at the top and nothing is reinforcing the trunk, 
the entire codebase becomes less stable. Eventually, and inevitably, it totters 
over. Healthy plants don’t grow like that; why should we expect our code to?

KEY CONCEPT Be aware of how easily code degrades as it is modified. Don’t be satisfied with changes 
that leave the system in a worse state.

Does all this sound unduly pessimistic? Surely code won’t rot if you’re 
careful? Perhaps, but adequate care is not taken in today’s software factories. 
It’s a culture thing. Fixes must be quick and cheap. Programs have a habit of 
hanging around longer than they were ever intended to. Many quick hacks 
live on, well past their expected lifetimes.

The Warning Signs

Switch on your code radar, and constantly look out for rotten code. Beware 
of the telltale signs: Rot sets in with any change that leads to a lack of clarity 
or that makes the system more complex. Unnecessary complexity comes in 
many guises. 
Here are some, the flashing red lights and Klaxon calls:

The code is littered with many large classes and convoluted functions.

Function names are cryptic or misleading. Functions have suprising side 
effects not implied by their names.

2 Many old programs were never expected to be operational in the year 2000, so programmers 
considered it safe to encode years in two digits—76 rather than 1976. As the digits rolled over to 
00, all their date calculations went awry.
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There is no structure: It’s not clear where to look for a certain bit of 
functionality.

There is duplication: Many separate bits of code crop up to do the 
same thing.

There is high coupling: Complex module interconnections and depen-
dencies mean that a small change in one place ripples out across the 
entire code, even into seemingly unrelated modules. (See “Modularity” 
on page 247).

As data flows through the system it is repeatedly converted between 
different representations (e.g., display data is transferred between 
std::string, char*, Unicode, UTF-8, and back again).

APIs become blurred; once neat interfaces are now far too broad in 
scope, with new features being thoughtlessly added.

APIs change rapidly between code revisions.

Bits of private implementation leak out of public APIs to enable other 
quick hacks.

The code is littered with work-arounds: fixes for symptoms but not for 
causes. They hide the real problems. The edges of the system are 
cluttered with these, leaving faults lurking at the core.

There are functions with enormous parameter lists. Many don’t use 
these parameters, passing them through to subordinate function calls.

You find code that’s too scary to even think about improving. You have 
no idea if you’ll improve it, break it subtly, or make it even worse.

New features are added with no supporting documentation; the 
existing documents are out of date.

The code compiles noisily, with many warnings generated.

You find comments saying, Don’t touch this. . . .

Many of these forms of rot are particularly visible in the code and can be 
seen with a quick inspection or using certain tools. However, there is a class 
of more subtle, invisible degradations that usually manifest at a higher level 
than syntactic gunk. Modifications that fudge the original code architecture 
or that subtly circumvent program conventions are much harder to spot until 
you’re deeply immersed immersed in the system.

KEY CONCEPT Learn to detect putrid code. Know the warning signs and handle rotten code with the 
utmost care.

Why do we make such a big mess of code? The answer is simple: complexity.
A program is a huge collection of information organized on many levels: the 
architecture, its component design, the interfaces, the implementation of 
each bit of code, and so on. That’s a lot to understand before you start work 
on a project. With tight deadlines, there isn’t enough time to work out how a 
few lines actually work, let alone how they fit into the overall picture. We 
haven’t yet learned to manage this vast complexity.
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How Does Code Grow?

No code development ever follows the classic model of lock down all 
requirements, design completely, code completely, integrate, test, release. 
Unexpected modifications happen to an existing codebase. New pieces are 
grafted in somehow. It’s an incremental development cycle toward ever 
shifting goalposts.

Code growth happens by one of the following mechanisms, loosely 
ranked in order of disgust:

Luck
This is the most frightening way to make code, and far too common. 
Code that grows by luck never had any design. It was modified without 
thought. Its structure is down to happenstance, and it’s a miracle it works 
at all.

Even if your code originally was designed carefully, maintenance 
modifications can follow this happy-go-lucky approach. Hit-and-hope 
fixes may just mask the immediate problem and make the real fix harder 
later on.

Accretion 
We need to add a new feature. Doing it properly would involve ripping 
up the interfaces between a few key modules and revising a lot of code. 
There’s no time to do all this and, even if we did, it would probably still 
be too complicated. We’ll just graft on another clump of code. It’ll hang 
off one of the existing modules—well, perhaps a few of them—and use 
its own special back door interface to talk to them. We’ll have something 
working really quickly.

Okay, it’s a monstrous kludge. Oh, and the performance will be awful. 
And the modules will no longer have clear roles and responsibilities. 
There won’t be a neat design anymore, and maintaining it in the future 
will be a nightmare. But we’ll get this version out quickly, and we don’t 
have any time to do it the right way now, anyway.

Maybe we’ll come back later and do it properly. . . .

Rewrite 
When you recognize that the code you’re working on is truly awful—
unintelligible, fragile, and inextensible—it needs a rewrite. Based on 
prior experience, a rewrite is often quicker and safer than hacking at 
the original mess. However, rewrites are rarely done. It takes courage 
and vision.

Rewrites get riskier as you attack more code at once. Rewriting a 
whole product is a different prospect from rewriting a troublesome 
function or class. Good modularity and separation of concerns means 
that you needn’t rewrite the whole system, just the module you’re working 
on, keeping its original interface. If the interface is terrible, or you need 
to rewrite because the system isn’t actually modular enough, then a lot 
more work is involved.
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Refactor 
A formalized cousin of rewrite. If your code is mostly okay, but bits of it 
need some work, you can refactor these unpleasant parts. Refactoring is a 
process of making small changes to a body of code in order to improve 
its internal structure without changing its external behavior. It improves 
the design so that you can work with it more easily in the future. It’s not 
about performance improvement, just design enhancement. Not as 
drastic as a complete rewrite, refactoring is a series of gentle massages 
of what you already have.

This is a fancy name for particular kinds of code modification. Martin 
Fowler has formalized it, documenting a number of small, understandable 
code refinements. (Fowler 99)

Design for growth 
You’ll often have an idea how your code will expand in the future; 
perhaps some features have been deferred until the next release. You can 
carefully design the system so that it’s easy to make these future additions. 
Most of the time, this won’t make the design work much harder.

Even if you don’t know the set of future additions, careful design 
affords room for growth. An extensible system provides hinge points for 
new functionality to be plugged in. Be careful that this isn’t an exercise 
in chasing the wind, though,3 trying to guess the future when you don’t 
have a clue how the system will expand. Extensibility comes at the cost of 
complexity. If you correctly guess where this complexity is needed, you 
win; if you guess incorrectly, then you’ll make an unnecessarily compli-
cated system. This is the danger of over-design, and it’s especially likely 
when design occurs by committee. 

There is a school of thought, exemplified in Extreme Programming, 
that insists on the absolute simplest design that can possibly work in 

3 Ecclesiastes 2:11

D O U B L I N G  U P

The software had reached a major crossroad. There wasn’t much future in the existing 
codebase—it really needed to be rewritten. Finally the management accepted this 
fact, and a plan was formed. The developers were split into two teams. Some contin-
ued to hack away at the existing codebase to try and limp it along for just a bit 
longer. The rest of the programmers got to start the entire application again from 
scratch.

One task was glamorous: devising a sleek new design with interesting implemen-
tation challenges and the chance to work on a fresh, cruft-free codebase. The other 
task was menial: patching up holes in a sinking ship until the new cruise liner was 
ready (at which time all the old work would be left for scrap). Which team would 
you rather have been on?

Not surprisingly, this led to a build up of resentment and frustration and a rivalry 
between the teams. Many programmers relegated to the old application asked to 
change projects or left the company to seek greener pastures. The work on the old 
codebase was second rate, as it was the second-rate project.
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any given situation. This could be at odds with the design for growth 
mentality (depending on how malleable the initial simple design is). 
Exactly how much design for growth you should employ can be a hard—
but important—balance to strike.

Believe the Impossible

Perhaps the reason we see so much bad code and so many dirty hacks is the 
mistaken belief that it takes longer to do the job properly. When you factor 
in the time spent debugging and the ease of making later modifications, this 
proves to be a false assumption. You may be able to close a single fault report 
quickly by hacking out a fix, but it’s not a good solution. True craftsmen take 
responsibility for what they do to code.

In the corporate world, there is often a management expectation of 
quick fixes. It’s reasonably easy to show a manager that a five-ton block of 
concrete stuck on top of a flimsily erected flagpole won’t stay up for very
long. It’s harder to make him stand underneath the thing. And it’s much
harder to get the same message across when we’re talking about software. 
Managers just don’t get it. As far as they’re concerned, programmers are 
magicians who practice dark mystical arts and have limitless powers. Tell 
them what to do, provide a deadline, and it will happen, however many all-
night coding sessions are required.

Being gifted and dedicated, sometimes we meet these expectations. 
This actually makes matters worse, as management now expects that this 
tactic will always work. Worse, they assume that it’s our fault when it doesn’t. 
Sadly, there comes a time when hastily hacked software just cannot be made 

C H A O S  T H E O R Y

Code is obviously shaped by design, but the organization that built it and its life 
history also play a large role. Years ago, I joined a project with particularly disgus-
ting user interface code. It worked (usually), but was unfathomable, an intense lump 
of intertwining logic with no discernible architecture and labyrinthine paths of exe-
cution. And it was like that for a reason: history.

The code was initially created as a simple one-off television UI for a single customer, 
with minimal specifications. Successfully built, it served its purpose well. Sadly, the 
story didn’t end there.

It was then sold to a second customer, who wanted it to look different. A second 
skin (visual appearance) was hacked on. Then it was sold to another customer in a 
different country. Internationalization was bolted on, with another skin. Then it was 
sold to a third customer, who wanted some new UI facilities—these were shoehorned 
in. This story continued. For a long time. Today the UI is unrecognizable from its 
former self, and it’s now also unmaintainable: Each addition has been a quick hack 
since the whole thing was always a temporary system.

If the initial design had incorporated all these features, then the code would still 
be lean and logical. However, it would have been far too much work up front, and 
the company would never have started the project. Pity the poor programmers that 
work under these Real World conditions.
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to expand any more, when it really just wants to keel over and find its final 
resting place in a quiet corner somewhere. Management will not be happy.4

Code growth is easier if the company’s culture is to develop software in 
small incremental steps (see “Iterative” on page 245 and “Iterative and 
Incremental Development” on page 432). This way, evolution is built into 
the design strategy, and rewriting code to accommodate change is expected. 
The alternative, when you have to attack a monolithic code edifice with a small 
pickaxe in 20 seconds flat, is unreasonable—but not unusual.

What Can We Do About This?

God grant me the serenity to accept the things 
I cannot change, the courage to change the things 

I can, and the wisdom to know the difference.
—Reinhold Niebuhr

Now that we’ve identified some of the problems of an evolving codebase, 
how do we manage the mess? What strategies can we adopt to avoid this?

The first and most important step is to recognize the problem. Too 
many programmers hack away without thinking about the quality of their 
code. As long as they silence the users’ screams in the shortest time possible, 
they don’t care what state they leave the code in. Someone else can deal with 
it next time.

KEY CONCEPT Code conscientiously. Good programmers care more about how their code will look 
after a few years’ work than how much effort it takes to write now.

Writing New Code
Before we think about how to work with legacy (existing) code, here are a few 
tactics for creating brand-new code that will greatly aid later maintenance:

Consider the interconnection of modules, and reduce coupling as much 
as possible. Avoid having one central module that every other module 
depends on; a change there will affect every other module in the system.

Modularity and information hiding (see page “Modularity” on page 247) 
are the cornerstones of modern software engineering. Isolate any likely 
changes to a small part of the system, making your system more viscous 
and therefore stable under change.

Extension and malleability need to be designed in—but, as we’ve seen, 
not at the expense of complexity. Modern component/object based par-
adigms promise greater reuse and extensibility. They give clear interface 
points between code modules. However, if the interfaces don’t support 
later extension, then the code can’t grow. Think very carefully about 
your system interfaces as you create them.

4 Of course this is a gross generalization, but not too inaccurate. Many managers used to 
be programmers themselves and understand the tensions. A good manager listens to the 
programmers’ objections. A good programmer will make his or her boss listen. Too often, 
neither happens, and the software suffers.
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Write neat, clear code that can easily be understood and worked with, 
accompanied by good documentation and well-defined, clearly named 
APIs. Consider literate programming tools to document interfaces.

KISS. That is, Keep It Simple, Stupid. Don’t over-complicate; don’t over-
engineer. Optimize an algorithm only when you know that there are 
performance issues, not just because you think you know a good way to 
make code run faster. Simplicity is nearly always more desirable than 
performance, and it certainly makes later maintenance easier.

KEY CONCEPT Write new code with a view to its modifiability. Make it readable, extensible, and simple.

Maintenance of Existing Code
Maintaining good code requires a different battle plan than maintaining bad
code. With the former, you must carefully preserve the integrity of the design 
and ensure that you don’t introduce anything out of place. With the latter, 
you must try to not make the mess any worse and, if possible, improve things 
on your way through. If you can’t rewrite the offending code, a little refactor-
ing will go a long way.

Before you touch any code, these organizational issues should be 
considered:

Prioritize any changes that are needed. Balance the importance of each 
task against its complexity, and decide which should be done first. What 
early changes will have an impact on later work?

Only change what’s necessary. If it ain’t broke, don’t fix it. Don’t gratuitously 
“improve” bits of code because you think they need it—only make the 
changes that are really required. Refactor the bad code you need to work 
with. Give the rest a wide berth.

Monitor how many modifications are being made at once. Making sev-
eral parallel modifications yourself is either incredibly clever or foolish; 
most likely the latter. Do one thing at a time. Carefully.

If several people are working on the code at once, be aware of what’s 
changing around you. There is a danger of too many separate hacks 
causing odd conflicts. Methodical change by a single developer gives 
clearest visibility of where the code is being stretched and where the 
most care is needed. Several simultaneous modifications might stretch 
the code thin without anyone understanding or noticing.

KEY CONCEPT Manage changes carefully. Make sure you know who else is trying to modify code near 
where you’re working.

Just as the initial code should be reviewed during its development, 
subsequent changes should also be reviewed. Organize formal reviews, 
and try to include the code’s original author and reviewers. It’s very easy 
to introduce subtle new bugs with small code extensions; reviews will 
catch many of these errors.

KEY CONCEPT Review sensitive changes, especially in the run-up to a release. Even the simplest change 
can break other code.



Sof tware Evolu t ion or Sof tware Revolu t ion? 289

Once at the codeface, how do we tackle existing source? Here are 
practical suggestions:

To make good modifications, you must be informed about the code you’re 
working on. Before you modify a file or code module, understand:

Where it sits within the whole system

What interdependencies it has (i.e., which components might be 
affected by your change)

What assumptions were made when the code was created (hopefully 
documented in the code’s specifications)

The history of modifications that have already been made

Inspect the code’s quality. This is surprisingly easy to do, and rapidly 
gives you a sense of how easy the code is going to be to work with. You 
may find it helpful to use tools that visualize the code and generate quality 
metrics; this will highlight where hidden gotchas could be lurking. 
Collate all relevant documentation.

Adopt the correct attitude—avoid the just one more hack mentality. 
Don’t dismiss code, thinking that it will be thrown away or rewritten in 
the future. It won’t be.

Be constantly aware of the warning signs cataloged in “The Warning 
Signs” on page 282. If your modification moves the codebase nearer to 
one of those states, refactor the code to alleviate the problem. Take 
responsibility for these problems.

Be prepared to do some redesign work. Don’t be afraid to unpick the 
code and perform major surgery when necessary. Sometimes a modifica-
tion will be costly right now (in terms of your time and effort), but the 
investment will pay off later: Future work with the code will be much, 
much easier. For legacy code, this may be considered uneconomical. 
Sadly, it’s legacy code that makes cash and is unlikely to be phased out. 
If you know that you’ll be working on a section of code a lot in the future, 
make sure that the code structure will support future extension.

KEY CONCEPT Don’t mindlessly fiddle with code. Step back and look at what you’re doing.

Try not to introduce extra dependencies with newly added code. An 
increase in coupling makes code more complicated and harder to 
change next time.

When maintaining any code, retain the programming style of the source 
files you are working with, even if it’s not your favorite style or the house 
style. A file with code in several formats is confusing and hard to work 
with. Apply presentation tidy-ups as you go if they’re not too gratuitous, 
but be aware that source code diffs across versions will be harder if you 
do so. Maintain the comments around the code you’re working on (see 
“Maintenance and the Inane Comment” on page 86).

Use the code’s test suite to check that you don’t break anything. 
Exhaustive regression testing is the only real way to have confidence in 
the changes you’ve made.

Ensure that you have an adequate test suite, and run it regularly.
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KEY CONCEPT Carefully test any modification you make, no matter how simple. It’s really easy for silly 
faults to slip past unnoticed.

If you are fixing a fault, do you really understand the cause? Write a test 
harness to trigger it; this demonstrates your understanding and will prove 
that you have made the fix. Add it to the suite of regression tests.

Once you have made a successful fix, look around the codebase for 
similar faults. This overlooked step can make a big difference: Many 
problems hang around in packs, and it’s much easier to defeat them in 
one crushing blow than to slowly chip away as they each individually 
manifest.

If you make a bad change, back it out quickly. Don’t litter code with 
unnecessary dead wood.

As a code craftsman, you should always shy away from the pressure to 
do a quick bodge job. Strive to make careful, considered changes. Unfortu-
nately, we don’t work in ivory towers, and compromise is sometimes required 
on the battle front; it’s not always commercially feasible to complete a task in 
the theologically correct way.

This explains why so much code is brittle, flaky, and dangerous. But it 
also explains why there’s any code out there at all. If there wasn’t the com-
mercial drive to get software shipped, programmers would spend forever 
tweaking their software to get it just right, writing and rewriting. The company 
would have collapsed around them long before they’d finished.

However, don’t introduce pragmatic (but distasteful) modifications 
without a plan to fix them at a later date. Place a tidy-up task on the develop-
ment schedule.

In a Nutshell

Change in all things is sweet.
—Aristotle

I’m not sure that I agree with Aristotle. Change can be a real pain in the rear 
end. We should manage code changes carefully. Then a good program will 
evolve into something greater, rather than degrade into an unstable mess.

It’s important to maintain software well and expand it correctly, 
preserving the code design and making sympathetic modifications. 
Don’t expect maintenance to be easy. You may need to invest a lot of 
time to rewrite, redesign, or refactor.

See Also

Chapter 17: Together We Stand 
We build and maintain software as a team. Team dynamics inevitably 
affect the final shape of your code.
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Chapter 18: Practicing Safe Source 
A history of your code’s development is recorded in the revision control 
system.

Chapter 22: Recipe for a Program 
The software development lifecycle: the procedures we follow to create 
and grow software.

Get Thinking

A detailed discussion of the following questions can be found in the 
“Answers and Discussion” section on page 527.

Good programmers . . . Bad programmers . . .

Write maintainable software 
with clean structure and 
logical layout

Recognize and are prepared 
to deal with bade code

Try to understand as much 
of the code and the author’s 
original mental model as 
possible, prior to working 
on it

Care about the quality of 
code they’re working on; 
they refuse to clumsily 
patch code

Create complex code without 
thinking about the needs of 
maintenance programmers

Avoid maintaining old code, 
preferring to ignore problems 
rather than fix them

Favor an easy patch over thinking 
about a good solution

Litter code with quick and dirty 
hacks; they employ every shortcut 
they can find

Focus attention in the wrong 
places, tinkering with code that 
didn’t actually need to be fixed
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Mull It Over
1. What is the best metaphor for software growth?

2. Looking at a program’s development through the colorful lifetime 
metaphor I talked about in the introduction, what Real World events 
correspond to a program’s:

Conception

Birth

Growth

Coming of age

Sending out into the Big Wide World

Middle age

Growing tired

Retirement

Death

3. Is there a limit to software life—how long can you keep developing and 
working on a program before you have to start afresh?

4. Does the size of a codebase correspond to the maturity of the project?

5. How important is backward compatibility when maintaining code?

6. Is code likely to rot more quickly if you alter it or if you leave it alone?

Getting Personal
1. Is the majority of the code you write brand new or a modification of 

existing source?

a. If it’s brand-new code, do you create entirely new systems or new 
extensions to existing systems?

b. Does this affect how you write? In what ways?

2. Do you have experience of working with preexisting codebases? If so:

a. How has it shaped your current skill set? What lessons did you learn?

b. Was it predominantly good or bad code? What did you have to judge 
it against?

3. Have you ever made changes that degraded the quality of code? Why?

4. How many revisions has your current project gone through?

a. How much changed functionally between revisions? How did the 
code change?

b. Has it grown by luck, by design, or something between the two? How 
is this evident now?

5. How does your team safeguard code so that it can’t be changed by more 
than one programmer at once?



PART IV
A  H E R D  O F

P R O G R A M M E R S ?

Cubicle after cubicle, arranged in long, dreary rows. 
A soul farm. The corporate drudgery of unrealistic 
schedules, bad management, and disastrous software. 
No natural light and awful coffee.

Welcome to the software factory.
Some programmers freelance, hopping from office to office. Some write 

open source code at home for kicks. But most are institutionalized in 
uninspiring software factories, serving time for a cause they still love 
passionately.

We’re a funny bunch: antisocial by nature, preferring the company of a 
compiler and web browser. However, to create software masterpieces, we are 
forced to work together, against our natural instincts. As we’ll see, the quality 
of your software is determined by the quality of your programmers and their 
collaboration. Without sound tactics to cope in the Real World, you’re sunk.

This section investigates how culture and dynamics affect the shape of 
your code. We’ll see:

Chapter 16: Code Monkeys
The essential skills and personal qualities of potent programmers.
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Chapter 17: Together We Stand
How to work as an effective and productive software team.

Chapter 18: Practicing Safe Source
Managing source code that’s shared between many programmers: how 
to avoid disaster and heartache.

So what is the collective noun for a group of programmers? It’s certainly 
not a swarm: We’re nowhere near as fast and rarely as organized. It’s not a 
pride : We’re neither as fierce as lions, nor likely produce something worthy of 
boast. The answer (at least for C-family coders) is clear: The collective noun 
is a brace of programmers.



C O D E
M O N K E Y S

Fostering the Correct Attitude and
Approach to Programming

16

In this chapter:

The different programmer 
attitudes

Identifying your natural 
approach to programming

The characteristics of 
effective programmers

How to work successfully 
with others

We are just an advanced breed of monkeys on a minor 
planet of a very average star. But we can understand 
the Universe. That makes us something very special.

—Stephen Hawking

Pop quiz: How many programmers does it take to 
change a light bulb? Is it:

1. None. The bulb’s not broken; it’s a power-
saving feature.

2. Just the one, but it will take all night and an 
inordinate amount of pizza and coffee.

3. Twenty. One to fix the initial problem, and 
nineteen to debug the resultant mess.1

1 That’s no joke: I have a friend who’s only ever changed two 
light bulbs in her life. The first time, glass showered all over the 
carpet. The second time, an electrician had to fit a new light 
socket afterward.
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What’s the correct answer? It could be any of those, depending on who 
does the work. Different programmers work in different ways and will have 
their own individual approaches to solving the same problem. There is always 
more than one way to do it,2 and different programmers’ attitudes will lead them 
to make very different decisions.

Throughout this book, we’ve been identifying the important attitudes of 
a good programmer. This chapter focuses specifically on this: We’ll investigate 
programmer attitudes, good and bad, and identify the key ones for successful 
programming. This includes how we approach the task of coding and also how 
we relate to other programmers. We’ll come to some surprising conclusions 
about what makes the best coders.

Monkey Business

The software factory is inhabited by a strange collection of freaks and social 
misfits, the code monkeys. Any serious software system is built by a bunch of these 
people, with their different skill levels and attitudes, all working toward a 
common goal.

The way we work together and the kind of code we write will inevitably be 
shaped by our attitudes toward the work as much as by technical competence. 
If everyone was a diligent, pragmatic, hardworking genius, our software would 
be a lot better—delivered on time, to budget, with no bugs. But we’re not 
perfect, and unfortunately, it shows in the code we write.

To work out strategies to deal with this, I’ll lead us on a guided tour 
through a gallery of programmer stereotypes. These are all directly based on 
the types of people I have met in the software factory. Of course it’s a neces-
sarily general list; you’ll know programmers who fall into categories other than 
those listed here, or even fit several descriptions at once.

Even so, this shameless categorization highlights important facts and 
shows us how to improve. We’ll see:

What motivates the different types of code monkeys

How to work with each of them

How each code monkey can improve

What we can learn from each of them

As you read each code monkey description, ask yourself:

Are you this type of programmer? How closely does the description match 
your programming style? What lessons can you learn to improve your 
approach to coding?

How many people do you know like this? Are they close colleagues? How 
could you work with them better?

2 The Perl programmer’s mantra.
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The Eager Coder
We’ll start with this guy, because he3 probably embodies the traits of most 
programmers reading this book. The Eager Coder is fast and fleeting; 
he thinks in code. An impulsive, natural-born programmer, he writes code 
as soon as an idea forms in his head. He won’t stand back and think first. 
So, although an Eager Coder does have very good technical skills, the code 
he writes never shows his true potential.

The Eager Coder often tries to use a new feature or idiom because it’s 
fashionable. His desire to try out new tricks means that he applies technology 
even when it isn’t appropriate.

Strengths
Eager Coders are productive, in terms of code quantity. They write a lot
of code. They love learning new stuff and are really enthusiastic—even 
passionate—about programming. The Eager Coder loves his job, and 
genuinely wants to write good code.

Weaknesses
Because of his unfettered enthusiasm, the Eager Coder is hasty and 
doesn’t think before rushing into the code editor. He does write a lot of 
code, but because he writes so fast, it’s flawed—the Eager Coder spends 
ages debugging. A little forethought would prevent many silly errors and 
many hours ironing out careless faults.

Unfortunately, the Eager Coder is a really bad debugger. In the same 
way he rushes into coding, he dives straight into debugging. He’s not meth-
odical, so he spends ages chasing faults down blind alleys.

He’s a poor estimator of time. He’ll make a reasonable estimate for 
the case when it all goes well, but it never does go according to plan; he 
always takes longer than expected.

What to do if you are one
Don’t lose that enthusiasm—it’s one of the best characteristics of a pro-
grammer. Because your joy lies in seeing programs work and standing 
back and admiring the beauty of code, work out practical ways to do this. 
Writing units tests as an integral part of code development is a great idea. 
But it mostly boils down to this simple piece of advice: Stop and think.
Don’t be hasty. Work out personal disciplines that will help you, even 
something basic like writing THINK on a Post-It note and sticking it on 
your monitor!

How to work with them
When they work well, these are some of the best people to program along-
side. The trick is to channel their energy into productive code rather than 
mindless flapping. They are great to work with in pair programming.

Ask an Eager Coder about what he’s doing each day and what his 
plans are. Show an interest in his design—it will encourage him to really 
think about it! If you rely on an Eager Coder’s work, ask for early pre-
releases, and ask to see his unit tests too.

3 I’ll describe all code monkeys as male, for no other reason than clarity of prose.
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An Eager Coder benefits from appropriate management, to help 
with his discipline. Make sure his time is carefully placed on a project 
plan (you don’t have to plan his time yourself).

The Code Monkey

If you ever needed an infinite number of monkeys, these guys would be 
your first choice. (I wouldn’t advise it though; you’ll be picking monkeys for 
a loooong time!)

The Code Monkey writes solid but uninspired code. Given an assignment, 
he faithfully plods through it, ready to be handed the next one. Because of 
their menial work, these guys are also known—perhaps unfairly—as grunt 
programmers.

Code Monkeys have quiet personalities. Afraid to push for good jobs, they 
are sidelined on unglamorous projects. They carve out niches as maintenance 
programmers, keeping the aged codebase going while the pioneers are off 
writing exciting replacements.

A junior Code Monkey will learn and progress given time and mentoring, 
but he is given low risk assignments. An older Code Monkey has probably 
stagnated and will retire as a Code Monkey. He’ll be quite happy to do so.

Strengths
Give them a job and they’ll do it—reasonably well, reasonably on time. 
A Code Monkey is reliable and can usually be counted on to put in extra 
effort when it comes to crunch time.

Unlike Eager Coders, Code Monkeys are good estimators of time. 
They are methodical and thorough.

Weaknesses
Although Code Monkeys are careful and methodical, they don’t think
outside of the box. They lack design flair and intuition. A Code Monkey will 
follow the existing code design conventions unquestioningly, rather than 
address any potential problems. Since they are not accountable for the 
design, they don’t accept responsibility for any problems that arise and 
often won’t take the initiative to investigate and fix them.

It’s hard to teach a Code Monkey new stuff; he’s just not interested.

What to do if you are one
Do you want to explore new areas and broaden your responsibility? If so, 
start to strengthen your skills by practicing on personal projects. Grab some 
books and study new techniques.

Push for more responsibility, and offer to join in the design work. 
Take the initiative in your current work—identify possible failure points 
early, and work out plans to avoid them.
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How to work with them
Don’t look down on a Code Monkey, even if you have stronger technical 
skills or greater responsibility. Encourage him—compliment his code and 
teach him techniques to improve his work.

Write your code thoughtfully to make the maintenance programmer’s 
(that is, the maintenance Code Monkey’s) job as easy as possible.

The Guru

This is the fabled mystic genius: a program wizard. The Guru tends to be 
quiet and unassuming, perhaps even a little odd.4 He writes excellent code, 
but he can’t communicate well with mere mortals.

The Guru is left alone to work on the fundamental stuff: frameworks, 
architectures, kernels, and so on. He holds the deserved respect (and some-
times fear) of his colleagues.

Omniscient, the Guru knows all and sees all. He turns up sagely in any 
technical discussion to dispense his expert opinion.

Strengths
Gurus are the experienced magicians. They know all the modern tech-
niques and understand which old tricks are better. (Gurus invented all 
the cool techniques in the first place.) They have a wealth of experience 
and write mature maintainable code.

A good Guru is a wonderful mentor—there’s so much to learn 
from him.

Weaknesses
Few Gurus can communicate well. They’re not always tongue tied, but 
their ideas fly so fast and at a level beyond mere mortals’, so it’s hard 
to follow them. A conversation with a Guru makes you feel stupid, 
confused, or both.

The poorer a Guru’s communication skills, the worse mentor he will 
make. Gurus find it hard to understand why others don’t know as much 
or don’t think as fast as they do.

What to do if you are one
Try to step off of your cloud and live in the Real World. Don’t expect every-
one to be as quick as you are or to think in the same way as you do. It takes 
a lot of skill to explain something simply and clearly. Practice this.

How to work with them
If you cross paths with a Guru, learn from him. Absorb what you can—
and not just technical stuff. Becoming established as a Guru takes a 
certain temperament and personality—knowledge but not arrogance. 
Observe this.

4 Well, more odd than “normal” programmers, anyway. Eccentric is probably the polite way to put it.
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The Demiguru

The Demiguru thinks he’s a genius. He isn’t. He talks knowledgeably, but it’s 
a load of trash.

This is probably the most dangerous type of code monkey; a Demiguru is 
hard to spot until the damage is done. Managers believe he’s a genius because 
he sounds so plausible and self-assured.

A Demiguru is generally louder than a Guru. He’s more boastful and full 
of himself. He appoints himself to a position of authority. (Gurus, on the other 
hand, are recognized as experts by their peers.)

Strengths
It’s easy to assume that a Demiguru has no strengths, but his great asset is 
his belief in himself. It’s important to trust your own abilities, and to be 
secure that you write high-quality code. However . . .

Weaknesses
The Demiguru’s great weakness is his belief in himself. He overestimates 
his abilities, and his decisions will jeopardize your project’s success. He’s 
a serious liability.

The Demiguru will haunt you, even after he’s moved on to new 
pastures. You’ll be left with the consequences of his bad design and 
overly clever code.

What to do if you are one
Right now, take an honest appraisal of your skills. Don’t oversell yourself. 
Ambition is a good thing; pretending to be something you’re not isn’t.

You may not be doing this on purpose, so be objective about what 
you can and cannot do. Be more concerned about the quality of your 
software than how important or clever you look.

How to work with them
Be very, very careful.

Once you have recognized a Demiguru, you’ve won half the battle. 
Most of the damage he can cause will occur while you haven’t got him 
figured out. Keep a careful watch on the Demiguru: You must filter the 
garbage he speaks, grapple with his flawed designs, and inspect his 
wretched code.

The Arrogant Genius

This guy is a subtle, but significant, variation on the Guru species. A killer 
programmer, he’s fast, efficient, and writes high-quality code. Not quite a 
Guru, but he’s hot. But because he’s all too aware of his own skills, he is 
cocky, condescending, and demeaning.

The Genius is terminally argumentative because he’s usually right and 
always has to promote his correct view over others’ wrong opinions. He’s 
become used to it. The most annoying thing is that most of the time, he 
is right, so you’re bound to lose any argument with him. If you are correct, 
he’ll keep talking until the argument moves on to something he is right about.
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Strengths
The Genius has considerable technical skill. He can provide a strong 
technical lead and will catalyze a team when everyone agrees with him.

Weaknesses
The Genius doesn’t like to be proved wrong and thinks that he must 
always be right. He feels compelled to act as an authority; The Genius 
knows everything about everything. He can never say I don’t know,
suffering from a full humility bypass.

What to do if you are one
Not everyone achieves Godlike status, but there are plenty of good pro-
grammers worthy of respect. Recognize this. Practice humility, and honor 
other people’s opinions.

Look for people who might have a more experienced viewpoint, and 
learn from them. Never pretend or cover your inexperience—be honest 
about what you do and do not know.

How to work with them
Do show a Genius respect, and show respect to other programmers around 
him. Avoid nonconstructive quarrels with him. But stand your ground—
assert your reasonable opinions and views. Don’t be daunted by him. 
Discussing technical issues with a Genius can make you a better pro-
grammer; just learn to detach your emotions first. If you know that you’re 
correct, gain allies to help argue with him.

Take heed and avoid being cocky or argumentative yourself.

G E T T I N G  P E R S O N A L

This classification of programmer attitudes isn’t particularly scientific. Psychologists 
have devised more formal personality classifications; authoritative ways of calling 
you a freak. They don’t focus exclusively on the software development world, but do 
give a valuable insight into programmer behavior.

The Myers Briggs Type Indicator is perhaps the most popular tool. (Briggs 80) 
It decomposes your personality across four axes: extrovert (E) or introvert (I); 
sensing (S) or intuitive (N); thinking (T) or feeling (F); and judging (J) or perceiving (P). 
This classification results in a four letter descriptor; ISTJ would be common for 
a Code Monkey.

Belbin’s Team Roles is a taxonomy of attitudes, defined as a tendency to behave, 
contribute, and interrelate with others in a particular way. (Belbin 81) This is a means 
to characterize your natural social behavior and ability to form relationships, to 
determine how it helps or hinders the progress of a team. It shows how your person-
ality type affects your teamworking skills. Belbin identifies nine specific behavioral 
roles: three action-oriented, three people-oriented, and three cerebral personalities. 
Understanding these enables us to build effective teams from people with comple-
mentary skills; if every programmer was a coordinator, then nothing would ever 
get done.

Neither of these personality taxonomies have a one-to-one mapping with my 
programmer classifications. They also have a distinct lack of primates.
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The Cowboy

The Cowboy is a bad programmer who actively avoids hard work. He’ll take 
as many shortcuts as he can find. Some would incorrectly classify this guy a 
Hacker. He’s not a hacker in the classic sense of the word. Hacker is a term 
used by geeks to proudly describe a heroic coder.5

The Cowboy dives straight into code and does the minimum amount 
of work to solve the immediate problem. He won’t care if it’s not a very good 
solution, if it compromises the code structure, or will not satisfy future 
requirements.

A Cowboy is anxious to complete each task and move on to the next. 
If he’s read a little about processes, he’ll call this Agile Programming. 
It’s really just laziness.

Strengths
Cowboy code works, but isn’t particularly elegant. Cowboys like to learn 
new things, but seldom get around to it (it’s too much like hard work).

Weaknesses
You’ll spend ages cleaning up after a Cowboy. His aftermath is not a 
pleasant place to be. Cowboy code always requires later repair, rework, 
and refactoring. They have a limited palette of techniques to use, and 
no real engineering skills.

What to do if you are one
Learn to hack code in the right sense of the word. Take pride in your 
work, and spend more time over it. Admit your failings, and try to improve.

How to work with them
Never go into a Cowboy’s house; if his code is anything to go by, it’ll 
be a DIY disaster! Understand that they’re not a malicious breed, just 
a little lazy. Organize reviews of their code. Get him pair programming. 
(A Cowboy might work well with an Eager Coder; if you want to see fur 
fly, pair him with a Planner.)

The Planner

The Planner thinks about what he’s doing so much that the project has been 
canned long before he’s started writing any code.

It’s true, you must plan up front and establish a cohesive design, but this 
guy forms an impenetrable cocoon around himself and refuses any contact 
with the outside world until he’s finished. Meanwhile, everything’s changing 
around him.

Terminally educated, the Planner studies and reads a lot. A common sub-
species is the Process Weenie; he knows all about the “proper development 
process” but is weak on hitting deadlines or getting anything done. (Process 
Weenies eventually become middle managers, and then they get fired.)

5 It has also been subverted by ignorant people and used mistakenly to mean cracker—someone who 
breaks into computer systems without permission. See “Cracker vs. Hacker” on page 228.
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Strengths
They do design. They do think. They don’t hack out thoughtless code.

Weaknesses
When a Planner sets to work, there is a very real danger of over design.
He tends to create very complex systems. Planners are the key cause of 
analysis paralysis—where development becomes more focused on methods 
and modeling than on prototyping and creating a solution. The Planner 
likes to generate endless documents and call meetings every other hour.

He spends ages thinking and not enough time doing anything. He 
knows a lot, but it doesn’t all make the leap from theory to practice.

What to do if you are one
It is important to create careful designs up front, but consider incremental 
development and prototyping as methods to verify your design. Sometimes 
you can’t commit to a design until you’ve actually started to implement it. 
Only then will you appreciate all the problems.

Try to establish a better balance of planning and action. Console 
yourself that it’s better to spend too long designing than to write awful 
code—the latter is far harder to fix.

How to work with them
Ahead of time, agree on all milestones and deadlines for a Planner’s work. 
Throw in a design complete milestone; a Planner will be happy that it has 
been recognized as an important task and will be encouraged to complete 
his design work on time. This is usually enough to crystallize a Planner 
into action.

Avoid meetings with a Planner. You’ll spend an hour arguing about 
how to decide the agenda.

The Old Timer

This old boy is a senior programmer from the old school. Sit back and listen 
to him reminisce about the Good Old Days, when he used punch cards and 
machines without enough memory to hold the result of an integer addition.

The Old Timer is either happy that he’s still doing what he loves the 
most or bitter that he’s missed promotion countless times. He’s seen it all, 
knows all the answers, and won’t learn new tricks (he’ll tell you that there’s 
nothing new to learn; we just repackage the same old ideas). He’s reluctant 
to learn new languages: “I don’t need C++. I can get by perfectly well in 
Assembler, thank you very much.”

An Old Timer doesn’t suffer fools gladly. He’s a bit cranky and is easily 
irritated.

Strengths
He’s been programming for years, and so he has considerable experience 
and wisdom. The Old Timer has a mature approach to coding. He has 
learned which qualities make good and bad programs and how to avoid 
the common pitfalls.
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Weaknesses
The Old Timer won’t willingly learn new techniques. Fed up with fash-
ionable ideas that promise much and deliver little, he’s a bit slow and 
can be resistent to change.

He has little patience, thanks to years of corporate ineptitude. He’s 
been at the receiving end of countless tight deadlines and unreasonable 
managers.

What to do if you are one
Don’t be too judgmental of younger, more enthusiastic programmers. 
You were once like them, and your code wasn’t awful, was it?

How to work with them
You don’t know how easy you have it, you young programmers. Don’t mess with 
an Old Timer, or you’ll find out how he survived this long in the software 
factory. Choose your battles with him wisely. Show him respect, but treat 
him as a peer, not a deity.

Understand the Old Timer’s motivation. Find out if he’s programming 
because he loves to, or because he’s in a career dead end.

The Zealot

The Zealot is a brainwashed convert, a disciple who blindly thinks that every-
thing BigCo produces is excellent. Teenage girls have rock stars to worship; 
programmers have their own idols. In his enthusiasm, the Zealot takes it upon 
himself to become an unpaid technology evangelist. He’ll try to incorporate 
BigCo products into every assignment he is given.

The Zealot follows BigCo to the exclusion of all other approaches and 
rarely knows about alternatives. Anything that’s not excellent in the current 
BigCo product line will surely be fixed in the next version, which we must
upgrade to immediately.6

Strengths
He knows BigCo’s products inside out and will produce genuinely good 
designs based on them. He is productive with that technology, but not 
necessarily maximally productive—other unfamiliar approaches might 
be more effective.

Weaknesses
Being a Zealot, he’s neither objective nor pragmatic. There may be better 
non-BigCo designs that he will miss. Worse, though, are the Zealot’s 
continual rants about BigCo.

What to do if you are one
No one expects you to turn away from your beloved BigCo. It is valuable 
to understand its technologies and know how to deploy them. But don’t 
be a technology bigot. Embrace different approaches and new ways of 
thinking. Don’t look at them with an air of superiority or prejudge them.

6 Zealots don’t only idolize software vendors. A Zealot might be an open source advocate or 
hanker after an obsolete software package.



Code Monkeys 305

How to work with them
Don’t bother getting into philosophical arguments with a Zealot. Don’t 
try to explain the virtues of your preferred technology—he won’t listen. 
Watch out: One conversation with this guy can turn you into a Zealot. 
He’s contagious.

Zealots are generally harmless (and amusing to watch from a distance), 
unless your project is at a critical design stage. At this point, provide a clear, 
unbiased perspective on the problem domain and insist on a thorough 
evaluation of all implementation approaches. Remember: He might 
be right.

If you encounter silly arguments, counter them with well-prepared, 
accurate, detailed information about the strengths of your approach and 
the weaknesses of his.

The Monocultured Programmer

This is the archetypal geek, the guy who lives and breathes technology. It’s his 
whole life; he probably dreams about it.

The Monocultured Programmer has a remarkable one-track mind. Taking 
work home with him, he returns with the whole system designed and written, 
all the major bugs fixed, and a plan for how to implement the rest of the 
project. He’s done it all before you’ve had breakfast.

Strengths
The Monocultured Programmer is focused and determined. He’ll ensure 
that the project works, or he’ll die trying. He’s willing to put in a lot of 
extra effort, and he’s really useful as deadlines draw near.

Weaknesses
He expects others to be as obsessive and focused as he is and might be 
disapproving of those who aren’t. His biggest danger is overlooking 
things, since he permanently lives too close to the problem.

What to do if you are one
Take up stamp collecting—or anything—to help you switch off. All work 
and no play makes Jack a dull boy. But you probably don’t care anyway.

How to work with them
These guys are great to work with. Their enthusiasm is contagious, and 
the project will move quickly when they’re on board. But don’t let them 
take over. Given half a chance, the Monocultured Programmer will do 
all your work too! Although that might sound good, you’ll be left main-
taining foreign code. It’s not worth the hassle.

Don’t worry about their lack of a personal life, and don’t feel pressured 
to spend all the hours God sends on the project—sometimes the best 
design tool is a relaxing night off.
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The Slacker

The Slacker is a work-shy sluggard. He’s hard to detect, because he’s learned 
to make it look like he’s overloaded with jobs. His “design” is playing solitaire, 
his “research” is looking at fast cars on the Web, and his “implementation” 
is working on his own stuff. The Slacker actively avoids all assignments. 
(Oh, I’m far too busy to do that.)

A more subtle Slacker will only work on the things he wants to or the bits 
he thinks should be done, not on what he’s supposed to. Despite working con-
stantly, he’ll never get his jobs done.

The Slacker knows how to have fun. He parties too much and can usually 
be found sleeping under his desk. His diet consists mostly of coffee, except for 
lunchtime, when you’ll find him in the bar.

This guy can be a burnout; one too many failed projects has killed his 
desire to work.

Strengths
At least he knows how to have fun.

Weaknesses
A Slacker is an obvious liability. It’s hard to prove he’s slacking—some 
hard problems do take a while to sort out. A programmer might not be 
slacking; he just might not have enough skill to solve the problem quickly.

What to do if you are one
Work on your morals, and start to put some effort in. Or learn to live 
with the guilt.

How to work with them
It’s best not to complain about a Slacker—you have your own flaws. 
He’ll get his come-uppance in good time.

Take measures to prove that you are working effectively, and that 
delays are the Slacker’s fault. It might help to keep a methodical diary of 
your work. A clear set of deadlines is generally enough to get a Slacker 
working. Don’t start writing his stuff too, even in desperation. He’ll only 
expect you to do this next time.

Avoid burnout yourself; try to have fun as you work. Perhaps you 
should hit the bar with him sometimes.

The Reluctant Team Leader

This is the organizational classic; a developer who’s been promoted to team 
leader when there was no further technical route for him to advance.

You can plainly see that he is uncomfortable in this role. He doesn’t have 
the correct skill set, and he struggles to keep up. He is a programmer, and he 
wants to program. This guy is not a natural organizer or manager of people, 
and he is a bad communicator.
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Most programmers make spectacularly bad leaders. There are few gen-
uinely excellent software team leaders; it requires a particular skill set that is 
both technical and organizational.

The Reluctant Team Leader is usually quite mild mannered and 
indecisive—how else did he get persuaded to take on this job? He becomes 
squashed between the development team and management, taking the 
blame for slippage and poor software. An increasingly harassed expression 
grows on his face until he finally burns out.

Strengths
The Reluctant Team Leader has a real sympathy for the programmer’s 
plight—he’s been there and now wishes he was back. Often, he is far 
too willing to take responsibility for late software delivery to prevent the 
programmers being picked on by management. Just as he’s not good at 
delegating work, he’s not good at apportioning blame.

Weaknesses
When a Team Leader tries to write code, it will be awful. He never has 
enough time to write, design, or test carefully enough. He naïvely plans 
himself a full day’s coding alongside team leading duties. He can’t fit it 
all in, and so the Reluctant Team Leader spends longer and longer in 
the office, trying to keep up. He can’t organize well, can’t explain things 
to managers, and can’t manage his team members properly.

What to do if you are one
Get training. Quickly.

If you’re not happy in this role, push for a career move. This is not 
admitting defeat; it’s pointless to burn yourself out doing something you 
hate and aren’t good at. Not everybody has the skills or passion for man-
agement. Move to an area you do have skill and passion for.

If you like herculean tasks, try to sort out the promotion path at your 
company. Get the company to recognize that a managerial position should 
not be the next step up from senior developer. Few programmers make 
decent managers; their brains aren’t wired up the right way.

How to work with them
Be sympathetic, and do everything you can to help the Team Leader. Give 
him reports on time, and try to get your work done on schedule. If you 
might miss a deadline, let the Team Leader know early on, so he can plan 
around it.

You

In the interest of politeness, we’ll say no more about this curious beast. Sadly, 
some people are beyond help. . . .



308 Chapter 16

The Ideal Programmer

From this tangled mess, it’s clear that we’re a strange breed. Which of these 
code monkeys should we aspire to be? What code monkey cocktail will create 
the Ideal Programmer?

Unfortunately, in the Real World, there are no perfect programmers—
the beast is an urban legend. Therefore, this is an academic question, but 
finding an answer will give us something to aim for.

The fabled Ideal Programmer is part:

Politician 
He must be diplomatic, able to deal with the peccadilloes of these weird 
code monkeys and the many, many more creatures that inhabit the soft-
ware factory—managers, testers, support, customers, users, and so on.

Relational 
He works well with others. He isn’t territorial about his code and isn’t 
afraid to get his hands dirty if a task is for the common good. He commu-
nicates well—he can listen as well as talk.

Artistic 
He can design elegant solutions and appreciate the aesthetic aspects of a 
high-quality implementation. 

Technical genius 
He writes solid, industrial-strength code. He has a broad palette of tech-
nical skills and understands how and when to apply them.

Reading that list again, it’s quite clear what we should be. If you haven’t 
realized yet, I’ll spell it out: The ideal programmer is a

Well, that’s something to aspire to.

So What?

Only the wisest and stupidest of men never change.
—Confucius

While it’s entertaining to stare into the cages of these code monkeys and 
have a laugh at their expense, what should you do about this? If you do 
nothing, then it has been little more than mere entertainment; you’ll walk 
away doing exactly the same stupid things you’ve always done.
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To improve as a programmer, you must change. Change is hard—it runs 
contrary to our nature. The saying goes, a leopard doesn’t change his spots. 
If he did, he wouldn’t be a leopard anymore. Perhaps that’s the key. More of 
us should be wildebeests or rhinoceroses.

Take a moment to think about the following questions. You might find it 
useful to use the action sheet at the end of this chapter to record your answers.

1. What kind of code monkey are you most like? If you’re honest, there’s 
probably a little of each of them in you. Identify the one or two that 
describe you best.

2. What are your particular strengths and weaknesses?

3. Look over your code monkey description again and see what practical 
things you could change. What specific techniques will help you to over-
come bad attitudes? How can you capitalize on your good ones?

KEY CONCEPT Know what kind of programmer you are. Determine how to exploit your strengths and 
compensate for your weaknesses.

The Stupidest of Men

To help us think about the kinds of change required, what lessons can we 
learn from each of the code monkeys? We all have individual personality 
flaws, but this summary shows some good attitudes and a few common areas 
of improvement. To be a good programmer, you must learn to become

That is:

Team player 
Learn to work with others effectively. Try to understand each of your 
colleagues’ particular traits, and learn how to respond to them better.

Honest and humble 
Be realistic about your capabilities: Know your strengths and weaknesses. 
Don’t pretend that you are more able. Adopt an attitude that seeks to 
help others and to work with them effectively.

Improving constantly 
No matter what you know, how much experience you have, and how 
good your code is, there is always more to learn, new skills to acquire, 
and bad attitudes to address. Confucius said, “Real knowledge is to know 
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the extent of one’s ignorance.” Acknowledge that you’re not perfect. 
A good programmer is in a constant state of improvement.

Considerate 
Train yourself to always think about what you’re doing. Silly mistakes 
creep in when you’re not paying attention. Always use your brain. Con-
sider what you’re doing before you write each piece of code. Then read 
back what you’ve written, even if it’s a simple change. 

Keen 
Try to maintain the enthusiasm of the Eager Coder. If you love learning 
new skills, then keep reading and keep practicing. If you work best with 
regular breaks, then plan that vacation! If you relish facing new challenges, 
then position yourself where you’ll be most stimulated.

If you become staid and bored, your attitude will worsen, and the 
quality of your code will suffer.

In a Nutshell

Darwinian Man, though well-behaved,
At best is only a monkey shaved!

—Gilbert and Sullivan

Programmers are a social species (which is odd considering their lack of 
social skills). They are social by necessity; you can’t create excellent large 
software systems without a closely working team of programmers who are 
knit into a larger social structure (be it a department, company, or an open 
source culture).

Each of these programmers has their own foibles and peculiarities. Their 
underlying attitudes affect how well they program, shaping their approach to 
the code and to their relationships with teammates.

If you want to be an exceptional programmer, you need to foster the 
correct positive attitudes. Remember: Aim to be a thick prat.

See Also

Chapter 17: Together We Stand 
Discusses team dynamics in more depth.

Good programmers . . . Bad programmers . . .

Are PRATs: politicians, 
relational, artistic, and 
technical

Are THICK: team players, 
honest and humble, improv-
ing constantly, considerate, 
and keen

Are not interested in writing 
good code

Do not work well on a team

Try to look better than they 
really are

Stagnate—they don’t seek to 
improve themselves
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Action Sheet

Look at the following action sheet. Take some time to fill it in and figure out 
how to put what you’ve learned into practice.

      

Code Monkeys ACTION SHEET 
Take some time to fill out this form thoughtfully. 
Refer to the code monkey descriptions for more information. 

I am a . . . 

Check the code monkey that applies the most. 

You can check a second code monkey if you think 
that you fall into more than one category. If you 
want to check more than two, I can recommend a 
good psychiatrist. 

My strengths are . . . 

List what you think are your best characteristics, 
skills, and abilities. Compare them to the description 
of your code monkey. 

My weaknesses are . . . 

List what you think are your worst characteristics, 
skills, and abilities. Compare them to the description 
of your code monkey. 

I can improve by . . .

How can you capitalize on your strengths and 
compensate for or improve upon your weaknesses? 

I work with . . . 

Think about the programmers you work with most 
closely. What kind of code monkeys are they? 
Check all that apply. 

Consider how you can interact with these guys 
better. Does identifying their personality types help 
you to work with them more effectively?

Our team can improve by . . .

How can you write software better together as a 
team? Are there specific steps you could take to help 
with this? 

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

� Guru

� Planner
� Old Timer
� Zealot
� Monocultured
� Slacker
� Reluctant Team
      Leader

� Eager Coder
� Code Monkey

� Demiguru
� Arrogant Genius
� Cowboy

� Guru

� Planner
� Old Timer
� Zealot
� Monocultured
� Slacker
� Reluctant Team
      Leader

� Eager Coder
� Code Monkey

� Demiguru
� Arrogant Genius
� Cowboy
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Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 532.

Mull It Over
1. How many programmers does it take to change a light bulb?

2. Is it better to be enthusiastic and less skilled (not incompetent) or to be 
incredibly talented and unmotivated?

a. Who will write the better code?

b. Who is the better programmer? (Not the same thing.)

Which does more to shape the code you write: your technical 
competence or your attitude? 

3. There are various different types of programs we write, differentiated by 
code “heritage.” How does writing the following types of code differ?

a. A “toy” program

b. A brand-new system

c. Extensions to an existing system

d. Maintenance work on an old codebase

4. If programming is an art, what is the correct balance of consideration 
and planning versus intuition and gut instinct? Do you program by gut 
or by plan?

Getting Personal

1. If you haven’t done so already, fill out the action sheet on the previous 
page carefully. Make sure you figure out how to improve, and start acting 
it out!

2. Here’s an interesting game you can set up for your development team to 
help each programmer work out his or her natural coding approach.

The teams 
If there are a lot of you, split into smaller groups of three to five 
programmers.

The task 
You are a team of programmers tasked with the development of the 
following new product. In the time available, design the system. Explain 
how you’ll split it into components and arrange the work among your 
team members.

You don’t have to write the code yet (although there might be bonus 
points if you manage to show a working prototype!). Don’t get hung up 
on perfectionism (there’s no time); just start to design something that 
will work.
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The system 
Due to massive NASA cutbacks, you are the entire team writing control 
software for the next Mars probe. It must be able to:

Drive around

Take pictures

Measure atmospheric conditions

Communicate with Earth control

Be very reliable

The time limit 
Here’s the fun part. You’ve only got five minutes. Of course, this is totally 
unreasonable, but it’s a good metaphor for our project timescales. (Just 
watch the slippage. . . .)

Afterward
Look at how well people worked together. Which teams were most suc-
cessful? Which failed? Why was this? How did different people approach 
the task? The outcome of this task is nowhere near as important as how 
people attempted to perform it.

Answering these kinds of questions will show quite clearly which type 
of code monkey each team member is most like.





T O G E T H E R
W E  S T A N D

Teamwork and the
Individual Programmer

17

In this chapter:

Developing software in teams

The types of development 
team

Tips and techniques for 
effective teamwork

The most important single ingredient in the formula of 
success is knowing how to get along with people.

—Theodore Roosevelt

It’s Saturday night, and you’re settling down with 
popcorn and drinks to watch a film. Perhaps you’ve 
persuaded some unsuspecting, non–computer 
nerds to watch it with you. You didn’t tell them it 
was The Matrix, did you?

The production that you’re watching is the 
result of enormous effort by dedicated teams of 
people, all working together to create the final 
movie. Although you can’t necessarily see it, there 
have been many, many man-hours (man-days, and 
“mythical” man-months) put into the production.

When you see some films, though, you have to 
wonder if they really should have bothered.
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Compare that vast coordination of effort to how we write software. If 
you tried to create a movie on your own, the result would be poor. No one 
person can make a film on his or her own—or at least, not a film that’s any 
good. To get a complete, edited movie to your television takes more effort: 
marketing, manufacture, distribution, retailing, and more. Perhaps you 
could create an entire “professional” software package yourself, but it would 
take a phenomenally long time. In the commercial world, who would give 
you such a risky contract?

In most professions, good products are the result of good teamwork. 
Software development is no exception. In fact, teamwork is vital to the 
survival of a project. An ineffective team will quickly stifle any software 
development activity, leaving progress to the heroic efforts of a few 
dedicated individuals working against huge odds. Being a good software 
engineer means more than just being a good programmer. You might be 
able to compute PI to ridiculous accuracy in less than five lines of code. 
Well done. But there are many other skills required, and one of these is 
teamworking.

KEY CONCEPT Teamwork is an essential skill of a high-quality software developer.

In this chapter, we’ll examine teamwork as it applies to us, as programmers. 
We’ll look at what constitutes good teamwork and how we can be more effective 
in our teams.

Our Teams—The Big Picture

Over the years, many types of teams have worked together to produce soft-
ware products. They range from the highly formal teams (suits in offices), 
with rigid structures and defined processes, to the new frontier work of the 
open source movement, where anyone can contribute and changes are 
incorporated on merit.

Both methods of working have had great successes, and both have had 
great failures. The IBM OS/360 and the Linux kernel are notable successes 
for each camp, respectively. The Ariane 5 is a legendary flop—this European 
launcher exploded during its maiden take-off because two software teams mis-
understood the formally defined interface. Mozilla is an interesting open 
source flop—when Netscape open sourced its code, they expected rapid devel-
opment and improvement. Years of Mozilla development were disappointing 
compared to other open source projects.

A software developer typically participates in various levels of teams, each 
with different dynamics and requiring different levels of contribution. Consider 
this scenario:

You’re creating a distinct software component that is part of a larger 
project. You may develop it by yourself or as part of a team of program-
mers: Team One.
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The component will fit into a wider product. All the people involved with 
this product (including any hardware designers, software developers, 
testers, and other non-engineering roles such as management and mar-
keting) form Team Two.

You are also part of a company that may be working on many different 
products simultaneously—Team Three.

In reality, there are more levels of teamwork in any reasonably large 
software-development company. These are shown in Figure 17-1, along with 
an example of the different dynamics at play. Inter-team dynamics, when 
separate teams interact, introduces the most complex teamwork considera-
tions: Politics and managerial mistakes plague intra-organizational collab-
oration. Although a company is effectively one large team, it’s not unusual 
for it to be layered with a “them and us” mentality between departments and 
groups. This is not an ideal atmosphere for effective product development.

Figure 17-1: The levels of teamwork

As programmers, we are directly involved in the smaller level of team 
activity: in our day-to-day development teams. We have the most control and 
influence over this world. It is the level we are responsible for, where we have 
authority to make design and implementation decisions and to report on 
team progress. Programmers are less responsible for the effects of higher 
level teams, but we are affected by teamwork “in the large” as much as we are 
by teamwork “in the small,” even if it’s not as immediately obvious.

Development team size dictates the dynamic and nature of shared soft-
ware construction work as much as the team’s place in the organizational food 
chain. A lone engineer is given responsibility for all software architecture, 
design, and implementation work. In really small outfits, they may also have 
to work on gathering requirements and create and run a thorough test plan.
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As soon as more developers are added to this mix, the nature of the 
programming task changes. It’s no longer just about coding skill; it requires 
social interaction, coordination, and communication skills. This is where 
your teamworking skills will affect the software you build—for better or worse.

KEY CONCEPT Both the interactions within and outside your development team will affect the code you 
produce. Notice how they affect your work.

Team Organization

The structure of a software development team is inevitably shaped by the 
management approach and the division of responsibility among its members. 
These two factors will naturally determine the amount of code and the size of 
the units that you work on. This shows us that the code we produce is shaped 
by the organization of our teams.

Management Approach

A project may be managed on a peer basis, with no coder considered more 
important than any other, or under the leadership of an über–programmer/
manager. The programming team could be considered part of a software 
production line: Fed designs from a team upstream, they produce code to 
specification.1 Enlightened software engineers are given more autonomy and 
responsibility.

Tasks may be allotted months in advance on long-range plans (which can 
rapidly become out of date and inaccurate), or just-in-time by assigning each 
work package when a developer finishes his previous one. Programmers 
might work alone on their individual parts of the system, or work collabor-
atively via pair programming to spread responsibility and knowledge.

Division of Responsibility

The axis of responsibility determines how each line of development is split 
amongs programmers:

With a vertical team organization, you employ a team of generalists who are 
skilled in a wide number of roles. They are each given a piece of work 
and implement it end-to-end—from the architecting and designing, 
right through implementation and integration, to development testing 
and documentation.

The main advantage of this approach is that developers gain a wider 
range of skills and become more experienced in the whole software 
system. With one key developer per feature, there is cohesion in its 
design and implementation. However, generalists are expensive and hard 
to find. They don’t have expertise in all areas and therefore take longer 

1 Here, management expects replaceable, commodity—grunt—programmers. See “The Code 
Monkey” on page 298.
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to solve some problems. There is likely to be less cohesion between 
separate features, since they are implemented by different developers. 
The customer has to work with more people, since there’s no specific 
liaison point—each developer needs to give input to scope the 
requirements and validate the design.

To make this kind of team work, you must define common standards 
and guidelines. You must have good communication to prevent people 
from reinventing the wheel. A common architecture must be agreed 
upon early on, or a chaotic and haphazard system will ensue.

In contrast, a horizontally organized team is built from a team of specialists, 
and every development task is split between them, using their respective 
talents at the appropriate times. Because each aspect of work (require-
ments gathering, design, coding, etc.) is done by a specialist, it should be 
of a higher quality.

This has many opposite characteristics to the vertical arrangement: 
We build cohesion between separate work packages, but there’s a danger 
that each set of work holds together less well because more people have

I T ’ S  A L L  G O I N G  P A I R  S H A P E D

Pair programming is a collaborative software development approach, especially 
fashionable in agile development circles. It has claimed to make programmers more 
efficient: producing code faster, with fewer faults.

Two developers code together—at the same time, at the same terminal. While 
one (the driver) types, the other (the navigator) thinks about what’s being done and 
acts as second pair of eyes, removing many mistakes before they have a chance to 
bite. The pair periodically swaps roles. The navigator sees consequences that the 
driver would miss, removing the common danger of being focused narrowly on the 
code as it’s typed. Two people think of more than two ways to solve any problem, so 
you’re far more likely to hit upon the best code design. Because of this unusually 
close collaboration, pair programming best suits talented programmers who have 
positive attitudes.

Studies claim that, once trained, two programmers are more than twice as 
productive on any given task. According to data published in The Economist,
“Laurie Williams of the University of Utah in Salt Lake City has shown that paired 
programmers are only 15 percent slower than two independent individual program-
mers, but produce 15 percent fewer bugs. Since testing and debugging are often 
many times more costly than initial programming, this is an impressive result.” 
(Economist 01)

Pair programming has many advantages. It promotes knowledge transfer and 
aids mentoring, increases your focus (you are less likely to daydream, take long 
phone calls, or tune out), increases discipline, and reduces interruptions (you’re less 
likely to interrupt two people working closely together than a single programmer 
staring vacantly into space). It works as an early real-time inspection mechanism—
an instant code review—and brings the benefits of better code. It’s a social process; 
with the right people, it improves morale (although it can be disastrous when two 
people grate against each other). The programmers get to know each other more 
closely and better understand how to work together. Pair programming promotes 
collective code ownership, spreads good coding culture and values, and emphasizes 
the development process.
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worked on it. Interaction outside the team (with customers or other com-
pany factions) is made by a small number of specialists. This is easier to 
manage for the team itself and the external contacts.

You must take care to ensure that the specialists are well coordinated 
and that they see right through to the end of each work package, or their 
work will be narrow-sighted. With many people involved in each develop-
ment procedure, the team is harder to manage; there is more workflow. 
This arrangement requires good communication, defined processes, 
and smooth handoffs between developers.

There is no “right” kind of organization. Which one is most appropriate 
depends on the team members, the size of the team, and the nature of the 
work produced. The pragmatic arrangement is probably somewhere in the 
middle.

Organization and Code Structure

A team’s organization has an inevitable affect on the code it produces. This is 
enshrined in software folklore as Conway’s Law. Simply stated, it says, “If you 
have four groups working on a compiler, you’ll get a four-pass compiler.” 
Your code inevitably takes on the structure and dynamics of your interacting 
teams. The major software components lie where teams gather, and their 
communications follow the team interactions. Where groups work closely, 
component communication is simple and well defined. When teams separate, 
the code interacts clumsily.

We naturally aim to create well-defined interfaces between each team’s 
work to facilitate our interaction with that team. We do so even in cases where 
reaching into some internal part of another component might be a valid and 
better approach. In this way, teams can foster arbitrary divisions; despite our 
good intentions, design decisions are forced by team composition.

Of course, there’s nothing wrong with encapsulation and abstraction; 
but they must be designed in for the right reasons. If anything, you should let 
the code you are building define the team membership and organization.

KEY CONCEPT Organize your team around the code you’re building, not your code around the team.

Teamwork Tools

There are foundational tools that help us to organize a functioning software 
team. They facilitate collaboration and help to elevate joint development 
from chaos to a well-oiled machine. On their own, they won’t make you a 
team of commando programmers, but they’re the arsenal every crack outfit 
relies on—the prerequisites for effective software developer interaction.

Source control 
A development team revolves around the source code, and this is 
where it is held. Source control helps to marshal who is doing what
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and when, provides the definitive latest code snapshot, and allows 
you to manage changes, undo mistakes, and make sure that no one 
misses source code updates. You need it equally on a 100-strong team 
and on a one-man project.

Faults database
We’ve already looked at how this aids development (see “Fault-Tracking 
System” on page 147), but notice how it facilitates interaction between 
teams: A fault-tracking system acts as the pivot between test and develop-
ment. It helps to organize test and repair work, prioritize faults, assign 
problems to individuals, and track pending fixes in the software. It iden-
tifies which faults are currently a developer’s responsibility and which 
are a tester’s.

Groupware
A team needs effective communications infrastructure, especially when 
geographically separated. A centralized calendar, address book, and 
meeting booking system provide a digital administrative backbone.

You also need a mechanism to share and collaborate on documents. 
Consider using wikis (web-based community documentation tools) and 
internal newgroups (email discussion boards with permanent storage) to 
facilitate group interaction.

A methodology 
It’s important to establish a defined and universally understood develop-
ment methodology, or else work will be chaotic and performed on an ad 
hoc basis. One developer will release code, while another will refuse to 
let go until it has been thoroughly tested and debugged. One developer 
will halt all coding until an intricately detailed specification has been 
produced, while another will rush straight into prototyping the code. 
Holy Wars are made of smaller things than this.

A methodology defines the development process details, who is 
responsible for what work, and how work is passed along. With this, each 
developer knows what’s expected and how to work as a part of the team. 
You must pick an appropriate methodology, based on the size of the team, 
the kind of code you are producing, and the talent, experience, and 
dynamics of people. This is described in Chapter 22.

Project plan 
To produce any work in a predictable, timely manner you need some 
organization. This is provided by the project plan, detailing who is doing 
what over the course of development. To be of any use, the plan must be 
based on sound estimates and kept up to date with any changes required.

Programmers are notoriously poor at estimating, and managers are 
notoriously poor at planning. We must not be pressured to work to an 
unrealistic project plan. This is a geniunely hard problem that we dissect 
in Chapter 21.
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Team Diseases

Recovering from failure is often easier
than building from success.

—Michael Eisner

Even with good programmers and wonderful organization, you can still 
have a dysfunctional team. Teams fail to produce results for many reasons, 
and just as we stereotyped different species of programmer, we can also 
identify categories of doomed development teams—to see what we can learn 
from them.

Here are some of the classic team disasters. In each case we’ll see:

The particular road to ruin

The warning signs (so you can recognize when you’re headed in this 
direction)

How to turn around a team stuck in that particular rut

How to be a successful programmer in that team situation (sometimes 
despite the team)2

Hopefully you won’t recognize your current team in the following list.

Tower of Babel

The original Babel builders were fragmented by multiple spoken 
languages.3 However, multinational projects rarely suffer from Babel 

2 I don’t claim that these strategies will solve the team’s general problem; they’re deliberately 
shortsighted ways to get your work done now, with minimum risk of problems.

Just like the Biblical builders, a Babel-
esque team suffers a massive communi-
cation breakdown. Once programmers 
fail to communicate, development 
work is doomed—if anything works, 
then it’s more likely by luck than by 
design.

With ineffective communication, 
people make incorrect assumptions. 
Bits of work fall between the cracks, 
potential error cases are ignored, faults 
are forgotten about, programmers 
duplicate effort, interfaces are mis-
used, problems aren’t addressed, and 
small slippages, unnoticed, grow into 
mammoth project delays because no 
one’s monitoring progress.

3 Genesis 11:1–9
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syndrome—with language barriers to cross, people make more of an 
effort to communicate well.

It’s not only different spoken languages that can separate developers. 
Different backgrounds, methodologies, programming languages, and even 
different personalities cause team members to misunderstand one another. 
A small seed of confusion, unchecked, will eventually grow; resentment and 
frustration will build up. At worst, Babel teams end up not talking at all, with 
each programmer sitting in his own corner, doing his own thing.

This problem can brew within the immediate software team and also 
between interacting teams. Extra-team Babel syndrome occurs when devel-
opers fail to talk to testers or the management team is disconnected from 
development.

Warning Signs
You can tell that your team is headed toward Babel when one developer 
can’t be bothered to ask another about something, feeling it’s not 
worth the effort. It creeps in with a lack of detailed specifications and 
with ambiguous code contracts. You see too few or too many emails fly-
ing about. Too many emails means that everybody’s shouting, and no 
one’s listening: Nobody has time to keep up with the constant barrage 
of information.

On the road to Babel, there are no team meetings, and no one 
person knows exactly what’s going on in the project. If you pick someone 
at random, they can’t tell you whether development is on course or not.

Turnarounds
Talk to people. Go on—open the floodgates! Soon they’ll all be doing it.

Babel attitudes are difficult to redress once the rot has set in, because 
morale has been dragged to an all time low, apathy is rampant, and no 
one believes that change is possible. The most effective strategy is to 
work at boosting team morale, to bring the developers closer together. 
Do something social to shake the team up: Consider a team-building 
exercise, even a simple trip out for a drink together. Buy pizza one day 
for lunch, and share with the team.

Then develop some strategies to force people to talk to one another. 
Create small focus groups to scope new features. Put two people in charge 
of a piece of design work. Introduce pair programming.

Success Strategies
To write good code in the face of such problems, you have to be very 
disciplined. Before you start a work package, ensure that it’s rigorously 
defined. Write the specification yourself if you have to, and mail it to 
all the people involved to get their buy-in (provide a time limit for 
comments, stating that no feedback is assumed to be agreement). 
Then it’s clear when you’ve succeeded because you have fulfilled the 
agreed spec.

Lock down all your external code interfaces fully, so there’s no confusion 
about what you’re relying on or what people can expect of your code.
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Dictatorship

Brooks. (Brooks 95) The surgical team places the most highly qualified 
technical individual, the lead surgeon,4 at the top of the pile: acting as a 
code writer, not a manager. He performs the bulk of the development and 
has ultimate responsibility if bad things happen (if the patient dies). He is 
backed up by a deliberately chosen team. This includes a junior surgeon 
who performs smaller, lower-risk tasks, supports the lead surgeon, and 
learns the trade. The team also involves the software equivalent of 
anaesthetists, nurses, and perhaps more junior surgeons learning skills 
(e.g., sewing up the patient).

There are two dangers with this kind of team. The first comes when 
external pressures force the Dictator to become more of a manager; his 
technical specialism almost guarantees a lack of management skills. His focus 
will shift away from the software and the project will collapse. The second 
danger is a self-appointed Dictator, who isn’t recognized by the team. Work-
flow will stall as the team is neither structured nor prepared to support his 
leadership.

Warning Signs
This team structure tends to develop slowly and subtly, as a would-be 
Dictator slowly modifies the focus of his work role and presumes his 
level of authority. You can see a Dictated team brewing when you often 
find yourself saying:

I can’t do this without consulting . . .

Oh, . . . will moan if we do it like that.

But . . . says we must do . . . first.

This is the original one-man show, a team led by a 
strong-willed, strong personality who is (usually) a 
highly skilled programmer. Other programmers are 
required to be yes men, even if they don’t want to be, 
following the Dictator’s mandates without question.

In some teams this works fine—with a well-
chosen benevolent leader and a team who respects 
him. Problems loom when a Dictator’s personality 
doesn’t support his position, or when he is tech-
nically substandard (see “The Demiguru” on 
page 300). If his ego gets in the way, the team is 
in trouble: They will resent him and grind to a 
frustrated halt.

When fashioned on purpose, this kind of team 
is a hierarchy, with lines of defined authority. This 
structure was likened to a surgical team by Frederick 

4 Usually this guy is a technology specialist, as defined by Belbin’s team roles.
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Turnarounds
If you have a Dictator who is not a worthy team leader, then you must 
address the situation. Otherwise, the team will petrify under this authori-
tarian tyrant. Either work the issues through with him (in all honesty, 
this is unlikely to work—change is hard, especially for people with an 
inflated ego), or unseat him from the throne by confronting a manager 
on the issue.

After overthrowing the king, you either need a team restructure or a 
new king. Lead surgeons are hard to come by, so it’s probably better to 
restructure the team.

Success Strategies
In a (functional or dysfunctional) Dictatorship, determine your level of 
authority and responsibility. Confer on this with the person whose opin-
ion really counts—your manager or team leader.

However, once you’ve asserted your rightful development role, you 
(and the other programmers) must still listen to and work with the 
Dictator, even if you don’t like his current position. Otherwise, you 
won’t work well together and won’t write complementary code. There 
must be consensus in the design, or the software will not work.

Don’t be disrespectful or rude toward a Dictator; it’ll just bring down 
the team morale and make you more angry.

Development Democracy

based on whose skills are most in demand at this stage of the project. Often 
there is not a clear leader, and all decisions are taken by consensus. Open 
source development often follows this pattern.

We tend to forget the other half of that proverb: All men are created 
equal, but by practice grow apart. It takes a special set of individuals to make 
this team culture work. The danger with a team founded on this laudable 
principle is that as it grows, or when a certain member leaves (the one who 
crystallizes the group into making decisions), things begin to drift. The team 
can lose its focus, failing to agree on anything, and failing to produce results 
in a timely fashion. In the worst case, the team ends up arguing forever about 
a single issue, contemplating its navel, and never actually achieving anything.

With endless meetings and circular discussions, the team is in danger 
of analysis paralysis: of becoming focused on process, not on delivery of 

An old proverb says, All men are created equal, and 
here this is outworked. This is a team of peers—
programmers with similar levels of skill and 
complementary personalities—who organize 
themselves in a nonhierarchical fashion. It’s 
an unusual beast in the corporate world, which 
expects that someone must be boss. The idea of 
a self-organizing team seems heretical. However, 
it has been shown to be a team model that 
can work well. Some democratic teams run by 
periodically electing a leader from their ranks, 
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the project. Like a real democracy, the genuine team business can get 
lost in a sea of politicking.

You can accidentally end up with a Development Democracy if you have 
a ineffective team leader who is incapable of making decisions. This kind of 
bumbling leader will slowly phase himself out without realizing it. The 
frustrated team ends up jointly taking over his role—forcing decisions to 
be made and choosing the direction of development.

Democracy is a particularly difficult team structure in a crisis, even when 
established on purpose. If personality friction prevents the election of the 
right leader for a situation, then an outside leader must be brought in to 
steer the project.

Warning Signs
You can smell a sick Democracy a mile off: The rate of decision making 
drops like a stone. If there is a software team leader, then everyone 
bypasses him, rather than be stalled by his dithering. He is now a leader 
in name only; no one recognizes his authority or his ability to achieve 
anything.

Without leadership, no one is assigned responsibility for each task; 
it’s never clear who should be ensuring a task’s completion, and so 
nothing gets done. Weeks can go by without a specification being 
completed and with no visible progress.

In a rampant Development Democracy, the smallest decision forces 
the team into committee mode, and it takes days to conclude. Or a 
decision is made: Let’s say yes until we decide to do something else. 
“Let your ‘yes’ be yes, and your ‘no’ be no,”5 otherwise you’ll spend ages 
ripping up old code and redoing it whenever someone changes his mind.

You might also notice that junior programmers feel alienated 
because they’ll never be elected leader.

Turnarounds
Democracies aim to remove a specific bottleneck: where all decisions 
must be made by the boss, who is not always the most appropriate person 
to make them (especially when the boss isn’t technical). In a dysfunc-
tional Democracy, there is no decision-making process, and no decisions 
are made at any level. To return to a healthy Democracy, ensure that 
leadership can move around the team freely and that replacing the 
leader is easy. Don’t attempt to run a Democracy unless you have 
enough potential leaders.

As with any other slipping project, make sure that problems are 
visible to everybody, both developers and managers. Make sure that it’s 
clear who’s responsibility this problem is—especially if it’s not yours!

You can attempt to correct indecisive Democracies by showing some 
strong will; don’t be content to let matters continually slide. You’ll prob-
ably be named as a troublemaker, but eventually you’ll also be named 
as someone who achieves results. Beware, though, of the danger of 
becoming a demi-Dictator as a backlash.

5 Matthew 5:37, unless you’re a Babel builder, in which case your “yes” might be Oui and your 
“no,” Nein!
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Success Strategies
For your own sanity, avoid ditherers—the people who cannot decide the 
simplest thing.

Ensure that you are allotted a well-defined part of the project and 
have clear and realistic deadlines. This is a major anchor against the ebb 
and flow of uncertain leadership.

Satellite Station

office elsewhere, but since they have little input on day-to-day programming 
activities, this isn’t problematic. However, if part of the development team is 
many miles away, then you need to put measures in place to ensure that the 
project succeeds. You must be deliberate about this—split teams don’t work 
together by accident.

Programming requires close team interaction because our individual 
pieces of code must interact closely. Anything that threatens our human 
interactions also threatens our code. Satellite teams present these threats:

Physically disjointed development teams lose the informal, spontaneous 
conversations that spring up beside the coffee machine. The chance for 
easy dynamic cooperation disappears. With it goes a level of shared 
insight and the group understanding of the code.

There is a lack of cohesion in development. Each site’s local practices 
and development culture will differ (even if only slightly). Inconsistent 
methodologies make handing over work more complex.

Since you don’t know people in the Satellite very well, there is an inevita-
ble lack of trust and familiarity. A them and us attitude emerges.

An old proverb says, “Out of sight, out of mind.” When you don’t see 
Satellite programmers regularly, you’ll forget them, you won’t know 
their progress, and you won’t think about whether or not your work 
impacts them (technically or procedurally).

A Satellite team—split from the main 
development team—presents its own 
world of potential pain and pitfalls. 
It’s hard to work as a cohesive unit 
when part of the team is physically 
separated, like a severed limb.

The Satellite might be an entire 
peripheral department, or a part of 
your immediate software team sepa-
rated off in a different location. Tele-
commuting (working from home) is a 
special case, with only one person in 
the Satellite.

It’s not unusual for members of 
upper management to be in a head 
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Satelites make the simplest conversation difficult. You need greater 
awareness of other programmers’ schedules; when they’re in meetings 
or on vacation.

Cross-country projects introduce time zone problems. There is a smaller 
communication window between teams and a larger eclipse period.

Warning Signs
Geographically split teams are obvious, but also be wary of separated 
teams within the same office. Splitting developers into different rooms 
or even across corridors imposes an artificial divide that can impede col-
laboration.

Watch out for separation between departments too. It can be just as 
damaging. For example, test teams are often hived off separately from 
the developers, sometimes in a different office or section of the building. 
This is a real shame; it hinders essential interaction between the teams, 
with the result that the QA process is not very fluid.

Turnarounds
A Satellite Station team is not necessarily doomed; it just requires careful 
monitoring and management. The problems are not insurmountable, 
but definitely inconvenient—avoid them if you can.

An essential survival strategy is to get all team members meeting 
face-to-face early in the project. This helps to build a rapport, trust, and 
understanding. Regular meetings are even better. Provide food and 
drink when the team assembles; this sets people at ease and creates a 
more social atmosphere.

Arrange the Satellite so that its work requires the least collaboration 
and coordination with the mothership. This will minimize the impact of 
any communication problems.

Avoid code interaction problems by defining interfaces between the 
separate sites’ work early on. But beware of designing your code around 
the team; you might not be creating the most appropriate design. Pro-
gramming is a process of making pragmatic choices, so choose well.

Groupware becomes an essential tool in a Satellite to make commu-
nication effective. Also consider using instant message communication 
between sites. And remember: Don’t be scared of the telephone!

Success Strategies
If you have to work with off-site people, make sure that you know them 
well—personally and professionally. It makes a big difference. You’ll know 
how they react and when they are being sincere or sarcastic. Make an 
effort to be friendly to Satellite programmers—it’s easy to be mistaken 
for a grumpy idiot when they only ever phone you at inconvenient times.

Make sure that you know exactly who is off site. Learn everyone’s 
names, and find out what they do and how to contact them. Work at 
improving your communications skills. Don’t be afraid to contact 
someone when you need to: Think about whether or not you’d talk to 
them if they were sitting beside you.
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The Grand Canyon

programmers socialize among themselves. This isn’t helped when the senior 
developers sit in one enclave, and the junior developers in a separate ghetto.

The reason for Grand Canyon culture is often historical: A project starts 
with a small number of crack developers who must quickly establish an archi-
tecture and get proof-of-concept code out the door. They are naturally seated 
together and learn to work as a swift, cohesive unit. As the project progresses, 
more programmers are required, and junior members are brought in. Because 
of the existing office layout, they are seated on the periphery and then given 
smaller programming tasks in order to learn the structure of the system.

Without careful checking, the senior developers adopt a superior 
attitude and look down on the junior developers. They hand over small, 
tedious chunks of work and continue with the interesting grand design work. 
The senior developers reason that it would take a prohibitively long time to 
teach a junior about the bigger picture, and there is an element of truth there. 
In this way, the junior developers never get a chance to gain responsibility 
and do more fun programming. They become frustrated and disillusioned.

Junior programmers want to learn the trade, have a youthful enthusiasm, 
and have a passion for programming. Senior programmers may have a very 
different (more jaded?) worldview, with aspirations for management or more 
senior development roles. These different personal motivations pull the 
factions in different directions.

Warning Signs
Watch your team as it grows. Look carefully at the demographics of the 
members and watch how work is allotted among them. Monitor the 
social dynamics of your team; unhealthy teams develop cliques.

Turnarounds
The Grand Canyon problem is the team not mixing; there are polarized 
factions. The fix is simple: Adopt strategies that will mix them up. For 
example:

Change the seating plan so that the factions are interspersed. This 
might consume valuable development time, but a day of desk mov-
ing might win weeks of productivity.

This team is comprised of 
members whose skill levels and 
experience lie at oppostite ends 
of the spectrum. There is a clear 
skills gap; the chasm between the 
senior developers and the junior 
developers has not been bridged, 
and so two distinct factions have 
grown. In almost every Grand 
Canyon team, this is both a social 
and technical phenomenon: The 
junior programmers socialize 
among themselves, and the senior 



330 Chapter 17

Introduce team meetings to spread information.

Start pair programming, mixing senior and junior programmers. 
Get the junior one to drive, while the senior navigates. This is a disci-
pline for the senior and educational for the junior.

Begin a mentoring scheme to train junior developers. Although 
this will emphasize the skills divide, it will also force the factions 
closer.

Look at all the developers’ job titles—do they foster a dangerous and 
unnecessary pecking order?

Success Strategies
Treat everyone as an equal, as a peer.

If you’re a senior programmer, recognize that the juniors need to 
learn. You were once a novice too and didn’t understand how the 
world worked. Don’t hog all the interesting programming tasks. Be 
willing to let others take responsibility.

If you’re a junior programmer, ask for more challenging tasks. Seek 
to learn. Perform your current task as well as you can; this will prove 
that you are ready for greater responsibility.

Quicksand

A technically incompetent programmer (probably the Cowboy coder we saw 
on page 302) is on board. This guy isn’t easy to spot immediately, and no 
one will notice while he’s writing poor code. The time bomb has been 
laid, and the project will be stalled later until his mess has been purged 
and replaced.

A morale drain is sitting under a little black cloud and demoralizes the 
entire team, sucking out all enthusiasm and cheer. Within a few weeks, 
no one can bring themselves to write any code, and they’re all consider-
ing jumping off the nearest bridge.

It takes just one person, one sour 
apple, one loose cannon, to bring a 
team to its knees. You need a group 
of good programmers to make a good 
team, but you only need one bad 
programmer to make a bad one. 
A team stuck in Quicksand has 
unwittingly fallen foul of a rogue 
member. This can be subtle: Maybe 
no one has spotted where the prob-
lem starts, and the culprit has no 
intention of causing any harm.

You might get stuck in Quicksand 
for a number of reasons:
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A mis-manager is performing the exact opposite actions of a good man-
ager, constantly changing decisions, altering priorities, shifting times-
cales, and promising the impossible to customers. The team members 
don’t know where they stand because the ground is always moving under 
their feet.

A time warp programmer is bending the laws of relativity so that time 
slows down around him. Anything coming his way takes a phenome-
nally long time to process. Decisions stall on his input, his coding 
work doesn’t get done, and meetings always start late because he 
can’t make the start. There’s always a good reason—perhaps he is 
doing other very important jobs—but he amasses a backlog of tasks 
and never gets around to anything. Eventually other programmers 
get fed up and bypass him.

In a Quicksand team, one member’s weakness can quickly destroy the 
entire team’s productivity. This is especially dangerous when the culprit is 
high up on the food chain. The more responsibility he has, the more dire 
the consequences.

Warning Signs
Look for the one guy who doesn’t fit in with the team. He’s the person 
that everyone complains about6 or the programmer who always works 
alone (because everyone avoids him).

Turnarounds
The most drastic but probably the easiest fix is to get rid of the 
Quicksand cause. But first you have to identify him, and sometimes 
that’s quite difficult. Calls of unfair dismissal frighten managers, 
who will be reluctant to fire someone because a few people can’t get 
along with him. It takes some major league incompetence to make 
this plan happen.

So you’ve got to find a way to minimize the chaos he can cause, or 
work out ways to integrate him into the team better.

Success Strategies
Most importantly: Don’t be the Quicksand!7

Presuming you’re not, try to insulate yourself as much as possible 
from the effects of a Quicksand team member. Limit interaction with 
him, for the sake of your blood pressure. Don’t rely on his code too 
much, and try to avoid his input as much as possible. Don’t get sucked 
into his bad practices, and don’t over-react to him—acting the exact 
opposite and making matters worse.

6 They’ll complain behind his back, which is a part of what drags the team into Quicksand. No 
one addresses the problem head on. No one likes to rock the boat. It will take more effort to 
confront him than anyone can be bothered to invest.
7 Luke 6:42
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Lemmings

required—the team is in constant danger of delivering what was asked but 
not what was needed.

Lemming teams are particularly vulnerable to the demands of startup 
companies. The disease starts when managers say, “Write this code quickly; 
we’ll redo it properly later.” Later never comes; instead the Lemmings hear, 
“The company needs more code, fast, so just bolt this on quickly too.” Before 
long, the team culture is to dance when someone plays music. The work 
slowly becomes more and more difficult, with ever-more herculean tasks and 
an ever-decaying codebase.

Eventually, the team finds itself a broken mess at the bottom of a 60-foot 
cliff. Game over.

Warning Signs
If you’re not happy with the specification you’re currently working to, 
you may be in a team of Lemmings. Without faith in your current 
project, you’re a mere code mercenary. When you find yourself listen-
ing to vacuous promises and being committed to unreasonable work, 
and when no one argues or points out flaws in the plan, you’re defi-
nitely in Lemming country. We hope you enjoy your stay.

Like a group of cute, furry animals with an 
insane urge to launch themselves off the 
nearest cliff, this team is far too willing—
even eager—to accommodate the brief 
they’ve been given. Even when it’s bogus.

The team is comprised of very trusting, 
very loyal members. They are technically 
competent but don’t see beyond their 
specific instructions. Their enthusiasm and 
eagerness are commendable, but without a 
visionary member—someone who asks why,
who looks beyond the spec to what’s really 

T H E  M I S - M A N A G E R  A T  W O R K

The developers were a good team. They enjoyed their work. They were working 
really hard. Sadly, they had (at best) mediocre management.

Early one morning, the manager (who looked like he was having a particularly 
bad day) called a meeting to complain that the developers didn’t understand the 
“real world,” that they were slacking, and that they never met the (impossible) dead-
lines he set them (having already sold products that didn’t exist). He’d noticed that 
people were somtimes not at work between the core hours, and that from now on 
everyone had to be. Or else.

It went down really well.
The programmers did no work at all that afternoon. Nothing. They decided to 

work strictly to the core hours: no more unpaid overtime. I estimate that manager 
killed productivity and morale by at least 50 percent in one fell swoop.
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Turnarounds
Review what your team is doing right now. Don’t stop working, but take a 
look, from the customer requirements right through to final delivery. 
Will the code you’re working on provide what is ultimately needed? Is it 
a short-sighted hack that won’t stand the strain of many years in your 
codebase or many years of use?

Success Strategies
Question the work you are given. Understand the motivation for it. 
Stand up for good programming principles, and never believe that you’ll 
be allowed to fix code later unless you can see it scheduled on a plan that 
you believe in.

Personal Skills and Characteristics for Good Teamwork

It is amazing what can be accomplished when 
nobody cares about who gets the credit.

—Robert Yates

Of course, not every team is doomed. Now, let’s see how to make some sense 
of this mess and how to do things right. In the rest of this chapter, we’ll look 
at techniques that will improve your software development team and hopefully 
avoid these pitfalls. Although tools and technology do help to improve pro-
ductivity, the largest gains are related to the human aspects of relationships 
between people and their work.

Every software team is comprised of individuals. To start improving your 
team’s performance, you can begin close to home—by addressing your attitudes 
toward the team and the joint development effort. We’re not all managers, 
so this is really the main area that we have any influence over.

To be a high-quality programmer, you must be a high-quality team 
player. There are number of nontechnical skills, characteristics, and 
attitudes that an effective team member must develop before we can even 
consider his or her programming language dexterity or design capability.

Communication

Teamwork is dead without communication. Individual parts cannot move as 
a whole without communication. The goal and vision cannot be shared 
without communication. Projects really do fail because of a lack of good 
communication.

Intra-team communication occurs in several ways: conversations between 
individual engineers, phone calls, meetings, written specifications, email 
correspondence, reports, and instant messaging. Sometimes we even com-
municate in pictures! Each medium has a particular usage dynamic and is 
most appropriate for a specific kind of discussion.

The most effective communication should involve (or at the very least be 
visible to) all relevant parties. It should be sufficiently detailed but shouldn’t 
consume too much time or effort. It should be performed in a suitable 
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medium—for example, design decisions should be captured in a written 
specification, not verbally agreed upon and shared by word of mouth.

We’ve already seen how code itself is a form of communication. A pro-
grammer must be able to communicate well. This requires both good input 
and good output—the ability to:

Write unambiguous specifications, to describe ideas clearly, and keep 
things succinct.

Read and comprehend specifications correctly, to listen carefully, and to 
understand what you are told.

In addition to intra-team communication, we must also consider 
communication between teams. The classic example of bad communication 
seen in most companies exists between the marketing department and the 
engineers. If marketing doesn’t ask the engineers what is possible, then it will 
sell products that the company can’t make. This problem is cyclical: once it 
has occurred and people have been burned, the two teams are less likely to 
talk to each other (due to resentment). It will then happen again and again.

KEY CONCEPT Clear lines of effective communication are vital to a well-functioning team. They must 
be established and cultivated. A good programmer is able to communicate well.

Humility
This is an essential characteristic and one that is often lacking in our 
profession.

Humble programmers want to make a contribution to serve the team. 
They don’t slack off to let others do all the work. They don’t believe that they 
are the only talented people capable of making a worthwhile contribution.

You can’t hoard all the good work for yourself; it’s just not possible for 
one person to do everything. You have to be willing to let another team 
member contribute—even if it’s something you want to do.

You should listen to and value the opinions of other people. Yours is not 
the only point of view, not the only solution. You don’t necessarily know the 
only or the best way to solve every problem. Listen to others, respect them,
value their work, and learn from them.

Dealing with Conflict
We have to be realistic: Some people can’t help winding each other up. In 
this situation, we must be mature and responsible in our attitudes and learn 
to avoid (or learn to resolve) conflict situations. Conflict and animosity will 
severely degrade the performance of a team.

However, harnessed and channeled conflict can be a major success 
factor in your teamwork. Teammates who stimulate and provoke each other 
produce the best designs. Disagreement can act as a refining process, ensuring 
that ideas are valid. Knowing that your work will be cast under a critical eye 
keeps you focused.

It’s important to keep this kind of conflict constructive—on a strictly 
professional, not personal, level.
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Learning and Adaptability

You must continually learn new technical skills, but you must also learn to 
work as a team. It’s not a God-given gift. A new team has to learn how to work 
together, how each member reacts, each member’s strengths and weaknesses, 
and how to capitalize on individual skills to the group’s benefit (see “Team 
Growth” on page 341 for more on this).

C O M M U N I C A T I O N  B R E A K D O W N

There are many communication methods in our highly connected world, and we 
must learn to use them effectively to support and facilitate our team interaction. The 
key to this lies in understanding their particular dynamics, etiquette, and individual 
merits.

Telephone 
Best used for communication that requires an urgent response, a phone call inter-
rupts what you are doing. For this reason, it’s inconvenient to be called for non-
urgent matters: Use another method instead. With mobile phones, we are far more 
connected than we used to be; this is a blessing and a curse at the same time.

Being audio only, you can’t see the other person’s face or their subtle body 
language cues. It’s easy to misinterpret someone on the phone and draw an 
incorrect conclusion.

Too many techies are scared of using the phone. Don’t be: For urgent commu-
nication it’s invaluable.

Email 
An asynchronous, out-of-band communication medium. You can specify a level of 
urgency, but email is never immediate; it’s not a real-time conversation. It’s a rich 
medium, allowing you to quickly send attachments and compose replies when it’s 
convenient for you. It is often used for memo-style broadcasts to many recipients. 
Your email history provides a reasonably permanent record of communications. 
Email is an immensely powerful communication mechanism.

You must learn to use email as a tool instead of becoming a slave to it. Don’t 
open every new mail as it arrives; your coding will be interrupted far too often and 
your productivity will take a hit. Designate email reading times, and stick to them.

Instant messaging 
A quick, conversational medium that requires more attention than email, yet one 
that can be ignored or sidelined more easily than the telephone. It is an interest-
ing and useful middle ground.

Written report 
A written report is less conversational than email communication and more perma-
nent. Written reports and specifications are formal documents (see Chapter 19). 
They take longer to prepare, and are consequently harder to misinterpret. Written 
reports are generally reviewed and agreed on, so they are more binding.

Meetings 
Desipte all this modern techno-wizardry, it’s hard to beat good, old fashioned, 
face-to-face conversations for getting things sorted out quickly and effectively. All 
too often, programmers try to avoid human interaction (we’re not a social species 
by nature!), but meetings have a valuable place in our teamwork. We’ll look at 
this in more detail in “Meeting Your Fate” on page 340.
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Emerson wrote, “Every man I meet is in some way my superior.” Look at 
what you can gain from your peers. Learn from what they know, learn what 
they’re like, and learn how they react. Learn to communicate with them. 
Seek criticism from them at all levels, from the formal code review to their 
passing opinions offered in conversation.

Adaptability is tied closely with learning. If the team has a need that no 
developer can currently fulfill and it’s not possible to bring in an outside 
resource, then a solution needs to be found. Adaptable programmers learn 
new skills quickly to fill the gap and serve the team.

Know Your Limitations

If you are committed to work that you know you can’t do or work you discover 
you’re unable to complete, then you should make your manager aware of 
this as soon as possible. Otherwise, you will fail to deliver your piece of the 
project, and the whole team will suffer as a consequence.

Many people feel that admitting inability is a sign of weakness. It’s not. 
It’s better to admit your limitations than to be a point of failure in the team. 
A good manager will provide extra resources to help you do the work, and 
along the way, you will learn the new skills that you previously lacked.

Teamwork Principles

Here are the key team precepts that, once absorbed into your group’s DNA, 
will change the way you write software. They shift focus away from individuals 
to the software and its collaborative development. Remember: For these 
principles to be effective in your team, you must make a purposeful change 
toward them; don’t just agree they’re good ideas and carry on coding as you 
always have.

Collective Code Ownership

Many programmers are territorial about their work. This is natural: Program-
ming is a very personal, creative act. We’re proud when we craft an elegant 
module, and we don’t want anyone to trample all over it, destroying the 
masterpiece. That would be sacrilege.

But effective teamwork demands that we shed egos before entering the 
software factory. Don’t complain that “Fred fiddled with my code.” It’s a team 
effort: The code is not owned by you; it’s owned by the team. Without this 
attitude, each programmer builds his or her own empire, not a successful 
software system.

KEY CONCEPT No programmer owns any part of the codebase. Everyone in the team has access to the 
whole code and can modify it as is appropriate.

With this culture in place, the team immunizes itself from the danger 
of little Programmer Kings, each ruling their own islands of code. If no 
one has ever been allowed to see a certain person’s code, what happens 
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when that person leaves the project? Losing a local expert will severely 
disadvantage the team.

It’s not wrong to feel a sense of parental responsibility for the code you 
produce, to be protective of it, and to want to nurture it. But this must be 
connected to a healthy team focus. Instead of ownership, consider code 
stewardship. Stewards don’t own their charges, they are appointed to maintain 
them on behalf of the owner. A steward has primary responsibility for a piece 
of code’s upkeep, weeding it, and tending the borders. Usually the steward 
makes all changes, although trusted team members can also make changes 
that would ultimately be verified by the steward. This is a constructive 
approach to your code and one that will serve the team well.

Respect Other People’s Code

Even in an enlightened development culture without code ownership, you 
must still respect other people’s code. Don’t tinker with it at random. This 
holds especially true if they’re working on it right now. You can’t change some-
thing under another programmer’s feet; it will cause untold confusion.

Respect for others’ code means that you should honor the presentation 
style and design choices currently in place. Don’t make gratuitously inappro-
priate modifications. Honor the method of error handling. Comment your 
changes appropriately.

Avoid making quick hacks that you’d be embarrassed to see in a code 
review. They slip in when you need to get your code working quickly and one 
small tweak elsewhere makes your stuff compile. If you forget to tidy the 
tweak, then you’ve just degraded someone else’s code. Even temporary 
modifications must show respect.

Code Guidelines

For collaborative development to produce reasonable code, your team must
have a set of code guidelines. These are dictates on the standard of code a 
programmer must write, ensuring that everything in the system reaches a 
certain minimum quality.

It’s important not to stir arguments over code layout (although it is better 
if all code follows one style). However, there must be consensus on the stand-
ard and mechanism for code documentation, for language use and common 
idioms, for the act of interface creation, and for architectural design.

Teams that get by without such guidelines still do have them: just as 
unwritten conventions. The problem with such implicit knowledge is that a 
new team member’s code won’t match the existing codebase until he or she 
has been integrated into the code culture.

Define Success

To feel like they’re achieving something and that they’re working well 
together, the team members need a clear set of targets and goals. This must 
be more than milestones on a project plan, although milestones can be 
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good motivators: Define lots of small milestones as short-term goals, 
and celebrate when you hit them.

You must define the criteria for success, so the team knows what it looks 
like and how to reach it. What does success mean for your current project? Is 
it work delivered on time, to a certain quality,8 with a satisfied customer, 
bringing in a particular revenue, or with a certain bug count? Prioritize these 
factors, and let the programmers know the main motivator behind their 
development work. It will change what they do and how they do it.

Define Responsibility

All effective teams have a well-defined structure with clear responsibilities. 
This doesn’t mean that your team has to be hopelessly hierarchical with a 
strict pecking order and multiple levels of management. The team structure 
must just be clear and recognizable. It should be clear:

Who has the final say on important decisions? Who maintains the bud-
get, who makes hire/fire decisions, who prioritizes tasks, who approves 
designs, signs off code releases, manages the schedules, and so on? These 
are not all necessarily roles within the team, but they are all roles that the 
team must know about.

Where does the buck stop, and whose head will roll if the project is an 
unmitigated disaster?

What are the members’ responsibilities and accountability? What have they 
been assigned individual authority for, what is expected of them, and to 
whom are they accountable?

Avoid Burnout

No team should have impossible goals. Sanity check the project you’re 
embarking on—there’s nothing less motivating than knowing failure is 
inevitable.

Watch how the work is split between programmers. Avoid giving all the 
difficult work or all the high risk work to a few individuals. This is a common 
fault, especially when a team cultivates Programmer Kings. If they burn them-
selves out working many extra hours or worrying about the implications of a 
mistake, they’ll jeopardize the project and demoralize the team.

Congratulate the team when it does well and works hard. Do it publicly. 
Keep feeding the team members praise and encouragement. It’s surprising 
how refreshing some support and enthusiasm is.

Mix up people’s jobs; don’t force someone to repeatedly do the same 
kind of task until they get bored and give up. Give everyone a chance to learn 
and to develop new skills. “A change is as good as a rest.” Even if there’s no 
chance to slacken the development pace, a little variety can prevent program-
mer burnout.

8 And how will you measure this?
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The Team Life Cycle

Coming together is a beginning, staying together 
is progress, and working together is success.

—Henry Ford

It’s important to see our software teams in the light of their entire lives. 
Teams don’t spring out of holes in the ground, and they don’t last forever.

KEY CONCEPT Successful teams are grown and run on purpose; they don’t happen by accident.

There are four distinct stages of a team’s life: creation, growth, work, and 
closure. At each stage, the focus of activities is different. Sometimes you might 
iterate through these a few times in different orders, but every team will go 
through each stage. Subteams within the main development project team 
will undergo a similar process; this is a recursive model. We’ll look at the 
details of each stage in the next few sections.

Team Creation
There is a new project looming. It needs a development team. On your marks. 
Get set. Go. A leader is appointed by the powers that be, and it is his responsi-
bility to pull the team together. Members may be drawn from other teams or 
hired specifically for this project. Wherever people come from, they have to 
fit together as an effective team—the success of the project (and the leader’s 
job) depends on it!

So it all starts here. Formation establishes the core team members. At 
this early stage, the team has not begun working in earnest yet, nor has it 
jelled together properly. There are a number of important considerations as 
the team is forged:

You must establish where the team sits in the organizational food chain. 
Which other teams will it interface with? Set up communications chan-
nels with them, so it’s clear how work will flow between departments and 
who the contacts are.

Think about this carefully, and try to minimize communication 
across team boundaries to make work as simple as possible. At this 
stage, you can design your team to have the most chances for success by 
eliminating unnecessary bureaucratic overhead.

To be effective, the team requires competent, talented members who have 
the potential to become a single high-performance unit. They must cover 
all critical areas of experience and expertise before it’s needed; otherwise 
development will stall while another person is sought. Plan to grow the 
team as required, and figure out when you’ll need to start looking for 
more people.

Choose and communicate an appropriate teamwork model; otherwise 
the team will adopt an ad hoc structure and chaotic working practices. 
Arrange the team structure to eliminate management overhead and 
internal communication paths, keeping things as nimble as possible.
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M E E T I N G  Y O U R  F A T E

Programmers trapped in the software factory quickly develop an aversion to meetings 
for the simple reason that they are forced to go to countless meetings, all of which 
are awful. Meetings absorb huge amounts of valuable time that could be spent pro-
gramming to prevent project disaster. The same few points are debated endlessly 
until the meeting disbands, then everyone forgets what was said and repeats it all at 
the next meeting.

To run effective software teams, we must learn to run effective meetings. It’s not 
that hard; it just requires a little planning and discipline. Here’s a seven-point guide 
to getting the most out of meetings: the rules of combat. Responsibility for this is 
placed on the person calling the meeting:

1. Meetings are important and inevitable. Don’t shy away from calling a meeting 
when it’s needed. However, don’t call one when an informal chat in the hallway 
would resolve the problem more quickly and with less overhead.

2. Give plenty of notice of a meeting—days, not hours. Invite the right people: not 
too few people (no work can get done because the decision makers are absent), 
and not too many (no work can get done because everyone’s struggling to make 
themselves heard).

3. Convene the meeting at a reasonable time. Not ridiculously early in the morning 
when only half of the attendees are normally awake, and not so late in the day 
that everyone’s tired, fed up, and itching to get home.

4. Set a strict time limit, and declare it up front. Stick to it. This way, attendees know 
how much of their day remains to do other work. If you overrun, defer business to 
another meeting.

5. Make sure that everyone knows what the meeting is about and why they have 
been asked to attend. Distribute an agenda with the meeting announcement. Ensure 
that everyone who needs to make prior preparation is aware of their expected 
input.

6. Make sure that everyone knows where the meeting is being held. Ensure that the 
location has appropriate facilities: a whiteboard, a computer, and even enough 
chairs (this sounds silly, but is often overlooked).

7. Define roles before the meeting begins. You must have at least:

A chairman
This person leads the meeting, keeps discussion on topic, and to the agenda. 
He or she makes sure the meeting concludes on time, with a suitable resolution 
(perhaps this is the scheduling of another meeting).

A secretary 
This person takes minutes of the proceedings, writes them up afterward, and 
circulates them to the appropriate audience (this is probably a larger group 
than the meeting attendees).

Decision maker(s) 
These people have the final say on each issue. Without a defined authority, 
discussions go around and around with no conclusions.

Understand the purpose of the meeting. Most meetings are either informational (to 
disseminate information; attendees are largely a captive audience), or for conflict 
resolution (to work out a solution to a pressing problem). To run an effective meeting, 
everyone must understand this and act appropriately. Personal agendas can quickly 
steer an informational meeting in a random direction; the chairman must spot this 
and prevent people from hijacking a meeting for their own purposes.
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The initial aim when forming a team is to create more than a mere group.
You don’t need another collection of people or a little social club; you need a 
cohesive, working unit of people who are motivated and aiming for a single 
common goal.

Don’t bring a team together until you really know what it exists to do. If 
people are asked to start working without actually being given anything to do 
and they are left awaiting further instructions, then the team’s long-term 
ethos will be to hold back; there will forever be untapped potential. If the 
team can’t begin working from the outset, don’t bring it together yet.

Team Growth
After creation, once the team is populated with a core staff, the project begins 
to gain momentum. The team must grow to accommodate the increased work-
load. There are several facets to this: The team must grow in numbers, but 
also in experience and in vision. It must grow inward and grow outward.

Inward Team Growth

As they work together, the members get to know each other on a personal 
and professional level. The team settles into a work pattern, and a coding 
culture is established. At first, this must be subtly guided so the culture is 
healthy and will serve the team structure and goals. This is dubbed jelling
by Tom DeMarco; the point where individual members jell into a cohesive 
team. (DeMarco 99)

This stage aligns personal and team objectives and determines the indi-
vidual roles and relationships. The team’s feel at this point sets the tone for 
the whole project, so watch out for skepticism or bad will.

If it hasn’t already been provided, the team infrastructure is laid down as 
the work builds up. Tools like source control and groupware are deployed. 
The project specifications are written, objectives are solidified, and the scope 
of the work is determined.

Outward Team Growth

Outward growth sees the accretion of more members. This is the visible kind 
of team growth. At its zenith, the team contains each of the following roles. 
These are not necessarily individual job titles; it depends on the size of the 
team. In a small team, individual members take on more than one role, either 
full or part time. Large projects may have whole departments per role.

Analyst 
The liaison between the programming team and the customer. The 
analyst (also called a problem domain specialist) studies and understands 
the Real World problem well enough to write a specification that the 
developers can implement. 

Architect 
A high-level design authority who devises a system structure based on the 
analyst’s requirements.

Database administrator 
Designs and deploys the database infrastructure for the project.
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Designer 
Works below the architect to design components of the system. This is 
often a facet of the programmer’s job.

Programmer 
Naturally the most important person on the entire team!

Project manager 
Takes overall responsibility for the project, making crucial decisions. The 
manager balances contending project forces (e.g., the budget, dead-
lines, requirements, feature set, and software quality).

Project administrator 
Supports the manager, deals with the day-to-day running of the 
project team.

Software quality assurance engineer 
Produces QA plans and ensures the code produced is of an appropriate 
standard.

User educator 
Writes product manuals, ensures marketing is accurate, draws up train-
ing schedules, and so on.

Product delivery specialist 
Otherwise known as a release engineer, plans how to package, manufac-
ture, distribute, and install the final product.

Operations/support engineer 
Supports the product in the field, once it’s in the hands of end users.

A successful project must make sure that all these activities are covered. 
As the need for each role is felt, but before the need is acute, people must be 
brought in. Appointing members needs management insight, both of a candi-
date’s personality type, his or her technical skills, and the job requirements. 
Once the team is established, new people must match the working practices 
and complement existing team members.

Teamwork

This is the point of performance when the team is functioning fully with 
everyone in place. The cogs turn, and the software construction process 
grinds relentlessly onward.

The majority of a team’s life is spent in this phase, working out the pro-
ject’s objectives. To do this, the single large task is decomposed into a series 
of smaller tasks. Team members are assigned their own work packages and 
kept synchronized (perhaps by a project meeting or by close communication). 
Their work is integrated as it’s completed. Slowly, the software takes shape.

Although working to a predetermined development process, the team 
must adapt to changes as they arise: handling unforeseen problems, changes 
in the team, or the dreaded Shifting Requirements Syndrome. As work pro-
gresses, each member must identify and manage outstanding issues and risks.
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The team must get into a development groove—finding the appropriate 
pace of work, and meeting targets at each step of the way. However, you must 
prevent the groove from turning into a rut. Don’t be frightened to shake up 
working practices—if required—to ensure that the team doesn’t get compla-
cent or lazy or to counter ineffective team members who might jeopardize 
progress.

Team Closure
Eventually, even the most delayed project will come to an end. That end 
might be successful software that makes the customer happy; it might be a 
doomed product and prematurely abandoned development. Either way, the 
project concludes, and the team is removed from it.

From the very beginning of development, a clear end point must be in 
sight. No team can continue forever or plan to work indefinitely. The lure of 
completion actually motivates people, and many programmers won’t invest 
much effort until confronted with a hard deadline.

For this reason, every team must plan to disband, dissolve, or transition 
to a different kind of team (perhaps a maintenance or support team) upon 
project completion. This plan must cover both normal and abnormal 
completion conditions.

Team disbanding doesn’t happen suddenly. Projects don’t halt without 
warning; they slowly ramp down. We usually transition people off a project 
gradually as they become surplus to requirements. No team needs people 
kicking around doing nothing, absorbing resources. As each person leaves 
the team, ensure that all his or her important knowledge and work products 
are captured. It’s easy for information to leak between the cracks of a 
splitting team.

KEY CONCEPT Don’t lose information when people leave a team. Perform a hand-over, and capture 
all important knowledge from team members. Include all code documentation, test har-
nesses, and maintenance instructions.

What happens once a team gets to the end of a project? You could take 
one of the following steps:

Move the team into support mode, maintaining the product.

Start some new development work (perhaps a new version of the same 
software).
Instigate a post mortem if the project was a failure.

Split the team up to work on separate projects (or release them if their 
contract expires).

Whether a team is recycled or disbanded is a difficult choice, and one 
that’s often made badly. Just because a team was successful on one project 
doesn’t mean that they will be on the next. A new project may require a 
different mix of skills or a different development approach. However, it’s 
wise to keep a good team together. Well-integrated teams with competent 
members and an effective work culture are rare. Don’t throw them to the 
wind needlessly.
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When there’s a choice, it should be made based on the characteristics of 
the next project. Sometimes this choice is made for you: In small development 
organizations the project team is the whole development team. It’s simply 
not possible to mix and match programmers, and you are forced to use the 
same people on the next project.

P E O P L E  P O W E R !

Here are a few simple guidelines for managing and maintaining a team of software 
developers. Without programmers you don’t get programs, so we need techniques 
that release the potential in people and help them to work together. Even if you’re 
not in a leadership position right now, you can use these as a simple yardstick to 
judge how your team is run and how people are treated. They distill a lot of the 
wisdom we’ve already seen into practical bite-sized chunks.

Use fewer and better people.
Larger teams require more lines of communication and more management, 
provide more potential points of failure, and are harder to share vision with.

Fit tasks to capability, and also to motivation.
Avoid the Peter Principle:* Excellent programmers should not be promoted to 
managerial positions they are not suited for or interested in.

Invest in people.
You’ll get more out of them if you build something into them. Technology moves 
fast; don’t leave their skills out of date. Otherwise they’ll move somewhere where 
they will gain better experience.

Don’t cultivate experts.
It’s dangerous when one programmer becomes the only expert in a certain area. 
That person becomes a single point of failure.** Some people actively try to 
become Programmer Kings, while others are forced into it, not being allowed to 
work on anything else. When your expert needs a new challenge, he’ll leave. 
How will you maintain the software now?

Select complementary people.
The team members can’t all be world-class experts. Equally, they can’t all be inex-
perienced programmers. You need a healthy skills mix. You also need a healthy 
interpersonal mix, with personalities that jell and work together well.

Remove failures.
Someone who doesn’t fit should be removed. It’s not easy to do, but a rotten part 
can quickly spoil the whole—and the consequences of procrastination can be dire 
(see “Quicksand” on page 330). Don’t wait to see how things will pan out or just 
hope they’ll improve. Deal with the problem.

Team members make or break a development team. A successful organization 
chooses them well and uses each person to his or her full potential.

* A theory that originated from Dr. Laurence J. Peter: Successful people are promoted to their 
highest level of competence and, as they can do that job, then promoted one step more—to the 
level at which they are not competent.
** Project managers joke about a project’s truck number: the number of people who could be hit 
by a truck without the project collapsing.
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In a Nutshell

The important thing to recognize is that it takes a team, 
and the team ought to get credit for the wins and the losses. 

Successes have many fathers, failures have none.
—Philip Caldwell

Programmers only really care about writing good code, so does all this 
matter? Yes: The health and structure of our software teams has a direct 
affect on the health and structure of our code. They are inextricably linked. 
Software is written by humans. Just as the software components have to fit 
together, communicate well, and form a cohesive structure, so must the 
programmers building it.

Good teamwork comes from more than a well-defined process or a fixed 
structure. Good teamwork stems from good individuals. “The whole is greater 
than the sum of its parts,” or so the saying goes. This is, of course, only true if 
all the parts are working well. If any single part is failing, then the whole will 
be compromised. Our individual attitudes affect the quality of our teams, 
and therefore the code produced. We must address these attitudes to create 
good code. Understanding your natural attitudes and responses will help to 
improve your programming skills.

A professional programmer has to be able to work in a team. Alongside 
technical skills, you must be able to create a piece that will fit into the larger 
jigsaw. This means being able to communicate and work with others. It means 
understanding your role and carrying it out appropriately, working to the 
best of your ability. It means cooperating with other team members and 
being team-focused, not self-focused.

Later chapters develop some of these collaborative themes further: We 
will cover source control, development methodologies, and estimation and 
planning techniques.

Good programmers . . . Bad programmers . . .

Are not territorial about the 
code they write
Will perform any kind of devel-
opment task if it advances the 
software system
Learn and grow while contrib-
uting to the team; they have 
personal objectives without 
sacrificing the team
Are good communicators; they 
always listen to other team 
members
Are humble, serve the team, 
and respect and value the 
other members

Try to build code empires and 
make themselves invaluable
Want to do their own thing and 
search for the most glamorous 
assignments
Work their personal agendas 
at the expense of the team’s 
effectiveness
Always want to assert their per-
sonal opinions
Believe the team exists to serve 
them and that they’re the best 
member of the team—God’s 
gift to the coding community
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See Also

Chapter 16: Code Monkeys 
The personal skills and characteristics of good programmers.

Chapter 18: Practicing Safe Source 
Software teams collaborate on code, and without a source control system 
this is almost impossible.

Chapter 22: Recipe for a Program 
Development methodologies: how teams interact and develop code 
together.
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Action Sheet

Look at the following action sheet. Take some time to fill it in, and figure out 
how to put what you’ve learned into practice.

o

Teamwork ACTION SHEET
Take some time to fill in this form thoughtfully. Answer honestly.
Team infrastructure

Rate your team’s use of the following tools. Check yes/no
answers, or rate your team on a scale of 1 (very bad) to 5
(very good). W

e 
ha

ve
 it

(y
es

/n
o)

Team members

Team structure and work

Code structure vs. team structure
� Our code design shapes the team structure
� Our team structure shapes the code design

     (reverse scoring: 1 = strongly agree, 5 = disagree)

� We share documentation well, using revision control
� We record meeting minutes and design decisions

Working practices
� We have a mentoring scheme in place
� We perform pair programming
� We perform code reviews
� We perform document reviews
� We don’t have a ‘code ownership culture’
� We have a clear set of code guidelines

Management
� We are managed well
� My needs are valued, as well as the team’s success

About the plan
� There is a development plan

� Everyone knows where it is

� Everyone knows when the next deadline is
� The deadlines are realistic

� We know what we’re aiming for
� We know how we’re achieving this

Team health
� The team is motivated
� The team is growing (should it be?)
� The team is shrinking (should it be?)

� Team communication is effective
� We have good meetings, run well
� I know what everyone else is doing
� I know who is in charge of each technical area

The big picture
For each separate team in the organization, rate the
following statements from 1 (strongly disagree) to 5 
(strongly agree).

Add to this list any other teams that you work with W
e 
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Other development teams
Test

Marketing
Management
The customer

Review
Finally, review all the answers you have given.

Did you achieve predominantly high or low scores? 

Communication

Source control
Fault/bug tracking

Groupware
Methodology/development process

A project plan
Specifications

* If any items don’t contribute to effective teamwork: Why?
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Rate each of the following statements from 1 (strongly
disagree), through 3 (neutral), to 5 (strongly agree).

� All necessary roles are covered (look at the Team
Growth section), and
� These roles are formally defined and recognized
� All team members are competent
� We couldn’t live without any team members
� No one is overloaded with work
� There are problem members
(1 = big problems, 5 = no problem members)
 − What are the problems?
 − How can you resolve them?

Documentation

What do these answers tell you about your team? 

What measures will improve problem areas? 

� We have team members with a good range of skills

� There is a low turnover of coding staff

� Adequate training is provided

� It’s up to date



348 Chapter 17

Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 533.

Mull It Over

1. Why write software in teams? What are the real advantages over writing a 
system on your own?

2. Describe the telltale signs of good and bad teamwork. What are the pre-
requisites for good teamwork, and what characterizes bad teamwork?

3. Compare software teamwork with the construction metaphor (see “Do 
We Really Build Software?” on page 177). Does it reveal insights into our 
teamwork? 

4. Will external or internal factors do the most to ruin the effectiveness of a 
software development team?

5. How does a team’s size affect the team dynamics?

6. How can you insulate a team from problems caused by inexperienced 
members?

Getting Personal

1. What kind of team are you working in right now? Which of the stereotypes 
on pages 322 through 332 is it most like?

a. Is it like this by design?

b. Is it a healthy team?

c. Does it need to be changed?

What factors have you encountered that prevent good teamwork?
If you haven’t done so already, fill out the action sheet on the 

previous page carefully. Make sure you work out how to improve your 
team and start to make the changes.

2. Are you a good team player? How could you work better with your team-
mates and build better software?

3. What is the exact responsibility of a software engineer on your cur-
rent team?
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Source Control and Self-Control

18

In this chapter:

Safeguarding your 
source code

Source control and configu-
ration management

Backups

Software licensing

The superior man, when resting in safety, does not forget 
that danger may come. When in a state of security he does 
not forget the possibility of ruin. When all is orderly, he 
does not forget that disorder may come. Thus his person 
is not endangered, and his States and all their clans are 
preserved.

—Confucius

No master jeweler crafts an exquisite diamond 
necklace and then leaves it in an unlocked work-
shop where it could be stolen by a passing thief. 
When a car manufacturer brings a new model to 
market, it doesn’t instantly forget how to support 
and service the old models. Both would be pro-
fessional (and financial) suicide, reckless attitudes 
toward valuable work.

The code we write is similarly precious: With 
our time and effort invested, it is both financially 
valuable and also emotionally important. We must 
safeguard source code like any other precious 
object and adopt working practices to ensure that 
we don’t break, endanger, or lose it.
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KEY CONCEPT Code is valuable. Treat it with respect and care.

In this chapter, we’ll play minder, bodyguard, and warden, working out 
essential techniques to keep our code well protected. Who (or what) are we 
protecting it from? With varying degrees of melodrama, we’re fighting against:

Ourselves and our own silly mistakes

Our teammates and their silly mistakes

Inherent problems in the collaborative development process

Mechanical failure (exploding computers and evaporating hard disks)

Thieves who want to exploit the software

Your sanity, your happiness, and even your livelihood depend on the 
contents of this chapter. Those of you nodding off in the back should pay 
attention!

Our Responsibility

As conscientious software craftsmen, we must take responsibility for our work. 
Not only must we write high-quality code, we must ensure that our work is:

Safe and secure 
It won’t be accidentally lost after three months of development, and it 
can’t be leaked out of the company as top secret information.

Accessible 
The appropriate people can modify it easily. It is visible to the appropriate 
people and not to anyone else.

Reproducible
Once released, the source isn’t lost or thrown away. It can still be used to 
build exactly the same application image 10 years later, when tool versions 
have changed and the original language isn’t supported anymore.

Maintainable 
This doesn’t just include using good programming idioms, but also ensur-
ing that the code can be modified by the whole programming team. Can 
more than one programmer work on it simultaneously without courting 
disaster? Is it possible to make fixes and updates to older products while 
developing a new product version?

We achieve these aims by adopting safe development practices. In this 
chapter, we’re not considering the security of our running executables;1

we’re looking at our development techniques. These issues might seem 
tediously removed from the act of writing code, but we should not discount 
their importance. A craft involves the process of creation as much as the 
final product.

1 That’s covered in Chapter 12.
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Source Control

For team members to collaborate on code development, they must all be able 
to work on the codebase at the same time. This isn’t as easy as it would first 
appear—you must ensure that concurrent code modifications don’t interfere 
and that no work is lost on the way. There are some low-tech ways to collabo-
rate on code:

The most basic is to share a single computer and take turns to edit code. 
Two programmers won’t fit in the same chair without a struggle, and so 
no code edits will conflict. However, you’ll suffer a massive productivity 
loss, since only one person can code at a time.

You can put two chairs in front the machine and pair program for a 
potential productivity gain (see “It’s All Going Pair Shaped” on page 319). 
But this doesn’t work when three, four, or more programmers all try to 
work on the same code at the same time.

Alternatively, you could share the code on a network fileserver. Then 
other developers can see source files and even edit them alongside each 
other. But this is far from ideal. The code is shared but not safe, because 
you can’t prevent two people from working on the same file at the same 
time. This will cause all sorts of confusion—and lost work—when they both 
hit the Save button. What happens if someone edits a central header file 
halfway through your build? The answer: An inconsistent executable that 
will either crash or behave in wildly unpredictable ways.

For this reason, when programming teams evolved from the primordial 
digital soup, they invented the source control tool to act as a central storehouse 
for, provide access to, and marshal concurrent modification of their source 
code. But source control is important even if you’re working by yourself; as 
we’ll see, a central code repository is an incredibly useful facility.

KEY CONCEPT Source control is an essential tool for software development. It is vital for teams to work 
together safely.

Source control enables one or more people to work on the same repository
of source code in a controlled manner, avoiding all these problems. It allows 
each developer to create (or check out) his or her own personal copy of a 
common source repository and work on it in isolation. This copy is known as a 
sandbox, since local code changes cannot escape to pollute others’ work. The 
sandbox can be brought up to date with other users’ changes—as and when 
required—by asking the tool to resynchronize with the repository. When 
complete, changes are committed (or checked in) to the main repository for 
other developers to see.

To achieve this, source control systems will follow one of two access 
models:

Strict locking 
Some systems physically prevent users from editing the same file at 
the same time, using a file reservation mechanism. At first, all files 
in the sandbox are read-only; you can’t edit them. You must tell the 
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system that you want to edit foo.c; it becomes writeable, and no one 
else can edit the file until you commit your changes or release the file 
unmodified.2

Optimistic locking 
More sophisticated systems allow users to edit the same files concurrently. 
There is no reservation step, and the sandbox files are always writeable. 
Changes are merged together as they are checked in. Merges usually 
happen automatically. Occasionally, conflicts occur and the developer 
has to merge manually (this is not generally a difficult task). This is 
known as optimistic locking (although there’s really no locking at all).

People hold passionate beliefs about which mode of operation is best and 
swear by one approach or the other. Concurrent modification works best for 
a widely distributed set of developers, working over the Internet. When people 
are harder to shepherd, lower process hurdles are preferable; locking files 
for modification can become frustrating.

Revision Control

Source control systems don’t just hold the latest revision of each file. The 
repository records the differences made at each check-in. With this impor-
tant revision information, you can obtain any version of a file over its entire 
development history. For this reason, we also talk about version (or revision
or change) control systems. This is a very powerful weapon: Any change can be 
fully reversed—you have a code time machine! The repository’s file version-
ing means that you can:

Undo any change that you make, at any point in history

Track changes made to the source as you are working on it

See who changed each file and when they did it (and even do complex 
searches to see how much work a single developer has done on a particular 
product—useful when development spans many years)

Check out a copy of the repository as it stood at some particular date

2 It’s therefore considered bad practice to lock a file for too long—it might prevent other 
programmers from carrying on with their work. This is an inherent limitation of this access model.

A  W A R  S T O R Y

Poor source code management can combine with source control to produce painful 
development headaches. Seemingly sane, simple rules can accidentally stifle soft-
ware development.

One large project in a well-known company had a policy of strict locking—all 
code checkouts were exclusive, preventing developers from modifying the same file 
at the same time. Unfortunately, the coding policy dictated that all enums must be 
placed in the same source file. This file grew and grew and grew.

The net result was not hard to predict: The file became a checkout bottleneck. The 
developers were constantly hanging around waiting for this file to become available.
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All good source control systems allow you to create named labels (or tags)
and apply them to specific versions of a set of files. This allows you to mark 
important repository states: You can identify all the files that comprised a 
specific code release and retrieve them easily with this label at a later date. 
This is helpful when you’re working on product version 3, but an important 
customer finds a critical bug in the first release, and you need the code ASAP.

With each check-in, you can attach metadata: at the very least, a textual 
description of the change you have made. Using these messages, you can get 
an overview of development by viewing a file’s revision log. More sophisticated 
tools allow you to add arbitrary metadata to file revisions, including references 
to fault reports, supporting documentation, test data, and so on.

Good source control tools version directories as well as files. This enables 
you to track modifications made to the file structure, including the creation, 
deletion, moving, and renaming of files. Some source control tools record 
changes on a file-by-file basis; when you check in many files at once, each one 
is versioned individually. Other tools implement changesets: They record each 
batch of file changes as an atomic modification. This helps you to visualize 
how one piece of work affected many files simultaneously.

Access Control
A source code repository can be held locally on your computer or on a remote 
machine, accessed over a network connection. With the appropriate security 
measures, it can be accessed by developers worldwide via the Internet, remov-
ing the burden of developers in different time zones coordinating their work.

C O N T R O L  F R E A K

What kinds of files should you put into a source control system? To manage and 
version your software effectively, you must collect your entire source tree in one 
repository. This includes:

• All source code

• The build scaffolding

• Unit test code and any test harnesses

• Any other assets required to create a packaged distribution (graphics, data files, 
configuration files, and so on)

The ultimate goal is to perform an entire build out of the repository. Starting with 
just the build toolchain and the source control tool, you should be able to generate a 
complete product in a few simple steps (i.e., check out the repository and type make)—
without needing to supply any more files or modify anything by hand. If you have to 
add anything else to the source tree, then your software is not under change control.

But why stop there? We can extend this list to be really thorough:

• Consider placing the whole development environment under change control. 
Check in every build tool update, and keep these files synchronized with each 
release version of your software.

• Revision control all documentation: specifications, release notes, manuals, 
and so on.
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The source control tool also governs which users have access to which 
parts of the codebase. With this you can enforce visibility rules and modifica-
tion rights. A project’s buildmaster is usually responsible for administering 
the source control tool, assigning these access rights, and ensuring that the 
repository is kept tidy. It’s important to have a designated source control 
administrator. If all developers are given admin privileges to the repository, 
it will encourage them to fiddle with it and make careless administrative 
changes. Even with the best intentions, things will go wrong.

Working with the Repository

There are two ways to develop code in a revision-controled repository:

In the little and often check-in approach, each file is checked in whenever 
a small change is made. The repository therefore contains many, many 
revisions of each file. Doing this makes it easy to track the changes you 
make during development and helps you to visualize all the modifications 
made in the file’s lifetime. However, you’ll see a proliferation of file 
revisions which are potentially confusing.

The alternative approach (presumably called big and seldom) is to only check 
in the important changes: to check in a revision for each release of the 
product or whenever you’ve successfully added an entire feature to a code 
module. This makes it easier to obtain a particular previous version of the 
code but much harder to track all the individual changes that it comprised.

Favor the little and often approach. Repository labels allow you to mark 
each major milestone, so it lacks none of its counterpart’s capabilities.

You must be disciplined when checking in code modifications. Your work 
can be seen immediately by every other developer, so test your code thoroughly 
first: Don’t check in anything that will break the build or make automated 
unit tests fail. You won’t be popular if your fault brings the entire team to a 
grinding halt. Many teams enforce a penalty for this kind of antisocial check-in 
to encourage people to work carefully. This is nothing severe—perhaps public 
ridicule by email or buying the next round of drinks.

KEY CONCEPT Treat the repository with respect. Never check in broken code that will stall other 
developers.

Leave Branching to the Trees

One of the most powerful source control facilities is branching : a mechanism 
to make multiple parallel streams of development on a file or a set of files. 
Branches have many applications, including:

Adding multiple features to the codebase concurrently

Providing personal workspace for a developer to check in potentially 
broken work in progress, without breaking the main codebase

Maintaining an old software version while working on a new one



Pract ic ing Safe Source 355

Suppose you sell an image processing application, and you need to add 
some new drawing tools. You also want to start a second development effort 
on the same source files to port the code to a new operating system. The two 
tasks must begin separately, but eventually they will merge back together. This 
is a common development scenario. For each task, you create a branch in the 
repository, and commit code revisions onto the branch rather than onto the 
main line of code development. This keeps the two tasks in separate worlds. 
One developer works on the drawing tools, another concentrates on the 
porting effort. Their work does not interfere.

As the name implies, branches create a tree structure of parallel file revi-
sions in the repository. There is always at least one line of code development 
called the trunk (for obvious reasons). Figure 18-1 shows this in practice for a 
particular file being branched. It was created (at version 1) and intially devel-
oped on the trunk—the center column. At version 2, we create the first feature’s 
branch (for new drawing tools) and perform a number of check-ins down it. 
None of these affect code in the trunk at all. Work on the trunk continues 
concurrently, and at version 3, a second branch is created to accommodate 
the porting task.

Figure 18-1: Branching a project under version control
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Work progressing down a branch can be merged with any other branch or 
back down onto the trunk. This means, for example, that you can try some 
exploratory bugfix work in a branch and, when proven stable, you can merge 
it back into the main code. If it was a development dead end, then you can 
abandon the branch—with no effect on the trunk. Very useful. In our exam-
ple, the first branch is merged at version 2.9 into main’s version 4. This results 
in main’s version 5. Later, the second branch is also merged down to main.

Even if you’re not simultaneously developing features in your codebase, 
branching can be usefully applied to single-track development. This scheme 
leaves the trunk version stable: always a complete, tested product—probably 
the latest release version of the code. Each feature is developed on its own 
feature (or release) branch, and the product itself is released from this branch. 
When complete, we merge it back down to the trunk and create a new branch 
from there for the next feature. This keeps the mainline code free from poten-
tially broken work in progress and keeps all related work collated together on 
a development branch rather than scattered down the mainline alongside a 
host of other feature development work.

A Brief History of Source Control

There are many different source control systems available with both open and 
proprietary licenses. Often, the choice of source control system is enforced 
by company practice. (“We’ve always used . . . , and we know how it works.”) 
Sadly, this does not necessarily mean that it is the right, or best, tool for the 
job. Many companies run legacy systems; the investment and complication of 
migrating large chunks of code out of one source control system to another 
is prohibitive.

The father of all version control systems is SCCS (Source Code Control 
System), developed at Bell Labs in 1972. It was superseded by RCS (Revision 
Control System). The most commonly used source control tool in the open 
source world is currently CVS (Concurrent Versions System), although it is begin-
ning to show its age. CVS was originally built upon RCS and introduced a 
collaborative environment where several developers could work on the same 
file at the same time. Whereas RCS implements the file reservation model 
(described in “Strict locking” on page 351), CVS is concurrent. The modern 
successor to CVS is called Subversion, and it improves on most of CVS’s 
shortcomings.

Although they have subtle functional differences, most source control 
tools have both command-line and GUI façades. They can all be embedded 
in popular IDEs. If you’re looking for a source control tool to begin to use 
on private projects, take a look at Subversion and one of the available GUI 
front ends.

Configuration Management

Software configuration management is a subject bound closely with, although 
often mistaken for, source control. It’s actually a world beyond the storage 
of source code.
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We’ve seen that the aims of source control are to:

Store your source code centrally

Provide a historical record of what you have done to the files

Allow developers to work together without interfering with each 
other’s work

Allow developers to work on separate tasks in parallel, merging their 
efforts later

Configuration management builds on this foundation to manage 
software development throughout a project’s life. It encompasses source 
control and adds a development procedure to its use. Software CM is formally 
defined as “The discipline of identifying the configuration of a system at 
discrete points in time for purposes of systematically controlling changes 
to this configuration and maintaining the integrity and traceability of this 
configuration throughout the system life cycle.” (Bersoff et al. 80) It controls 
the project’s artifacts (the things you put in source control) and its develop-
ment processes.

Some source control tools provide configuration management capabili-
ties and can integrate with project workflow tools; for example, managing 
fault reports and change requests, tracking their progress, and linking them 
to physical changes in the codebase.

T E R M S  A N D  D E F I N I T I O N S

Source control is our primary weapon in the battle to safeguard code. It’s an essential 
tool that no software craftsman could live without. We’ve already seen the various 
names used to describe it. They are used interchangeably, but each one reveals a 
specific aspect of its operation:

Source control 
Also known as source code management, this is a mechanism to manage the files 
of code that we write. It maintains the files and their directory structure; it also 
marshals concurrent access to and modification of the code.

Version control 
Otherwise known as revision control or change control, this is a source control 
system that records the changes you make to a file. It allows you to inspect, 
retrieve, and compare any version of the file over its entire development history.

Version control usually works best for text-based file formats—they can be 
easily scanned for differences—but you can version other kinds of files too: 
documents, graphic files, and so on. The source files for this book are held in 
a revision control system so I can track development history.

Configuration management 
Builds on version control to provide a reliable environment in which software 
development is carefully managed and processes are enforced.

Some commonly-used source control acronyms are: SCMS (source code 
management system), VCS (version control system), and RCS (revision control 
system).
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Configuration management involves:

Defining all the individual software components in a system and which 
artifacts are required to construct them (this is especially useful when 
one codebase can be configured to generate multiple product variants 
or can target several platforms).

Managing the released versions of a product, and which versions of the 
constituent components each release comprises.

Tracking and reporting the status of the code and its components. Is it in 
a beta state or is it now a release candidate? (See “Alpha, Beta, Gamma . . .” 
on page 140.)

Managing formal code change requests, tracking which ones have been 
prioritized and approved for development; tying change requests to the 
necessary design work, investigation, code modification, testing, and 
review work.

Determining which documentation relates to specific product variants 
and what sort of compilation environment is required.

Verifying the completeness and correctness of software components.

How do you currently manage the configuration of your codebase?

Backups

This is good old-fashioned common sense. Backups are your insurance 
policy, guarding against the accidental deletion of a file, computer system 
failure and, if held offsite, loss of data when the office burns down. They 
don’t yet cure the common cold, but some enterprising backup company is 
probably working on it.

Everyone knows that they should make regular backups of their work. 
But we’re human; just because it is both rational and sensible to perform a 
task doesn’t mean we will—there are far more pressing (and fun) things to 
do. Hindsight isn’t helpful: When you’re sitting amidst the smouldering 
ruins of your computer, with hardware beyond hope of repair and all data 
lost in digital purgatory, you’ll curse the day you decided to play solitaire 
instead of back up your code. Days’ worth of work must be rewritten, and 
while you’ll remember most of it, it always seems harder and more tedious 
(and certainly soul destroying) the second time around. If you’re near a 
deadline, this could be a real disaster.

Think about it: Is all of your source code backed up? I’m frightened when 
I discover how much work is done on computer systems and workstations 
that aren’t backed up. The level of risk is preposterous.

KEY CONCEPT Back up your work. Don’t wait for disaster to strike before you think about a recovery 
strategy.
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You must establish a sound backup procedure. Don’t rely on a manual 
backup plan, like performing file copy operations by hand. One day you will 
forget to kick off that critical backup, leave it too long between backups, or 
manually copy the wrong thing. Remember Murphy’s Law (on page 5): If it 
can go wrong, it will. That goes double for anything you do! Instead, ensure 
that all important files are placed on a filesystem that is being backed up. 
When using a workstation that is not backed up, I will save my code on a 
network-mounted fileserver that is backed up rather than on the unsafe 
local disk.3

To be useful, backups must be:

Done regularly

Checked and audited

Easily retrievable

Automatic (both automatically initiated and able to run without 
intervention)

Critically, all source code repositories must be held on a server that is 
backed up. Otherwise, you’re putting things in a safe but not shutting the 
door. In fact, “little and often” check-ins reduce reliance on personal com-
puter backups—most of the work you’ve done is checked into a backed up 
repository. The loss of files on your workstation will not be critical to the 
entire project.

The bottom line is: Your work is not safe unless it’s retrievable in the 
event of human or mechanical failure. Even if it’s “only” code for personal 
use, protect it with backups. A small investment in some backup software, the 
extra storage, and a little administration time is immeasurably worthwhile. 
The cost and hassle of a failure far outweighs this meager outlay.

Releasing Source Code

Source code sometimes needs to leave your tight grip and set off to explore 
the Big Wide World. Perhaps you sell a library: Your shipping product is the 
source code itself. Perhaps you’ve been contracted to ship code alongside an 
executable. Even if you don’t intend to release your source code, it might one 
day be sold to a new owner, or you might need to collaborate with outsiders 
on a new feature. We must take reasonable measures to ensure code safety 
and accessibility in these situations too.

The scale of horror that this entails depends on the nature of your code. 
Proprietary source code—written specifically for internal use in a company’s 
products—is closely guarded intellectual property, and it’s generally considered 
commercial suicide to release it openly, where your competitors can find it 

3 Of course, there’s a trade-off. This simple approach makes file access slower, since network 
latency and fileserver delays have been introduced. But I can live with this (usually) minor 
inconvenience.
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and exploit it. The polar opposite is open source or free code, written specifically 
to be released: freely viewable and modifiable. The choices and nature of a 
software release differ in each case:

If you are releasing some closed proprietary code then you need to 
obtain a signed non-disclosure agreement (NDA) before you let the third 
party see it. This is a standard contractual agreement to ensure that they 
don’t abuse, share, or use the code in a way that violates the agreement. 
It is legally binding, and its main purpose is to keep the company’s law-
yers at bay while the technical staff gets on with the important business of 
creating exciting software. 

If the people you are releasing to will exploit the code for commer-
cial gain, you must also enforce a licensing agreement to ensure that 
you profit, too. This really concerns the marketing or sales staff, and 
mere mortal programmers need not worry about this side of corporate 
wrangling.

Open source developers must choose an appropriate license to dictate 
what users can do with the code and whether they must share any deriva-
tive works. For more on software licensing, see the sidebar.

In both cases, you must ensure that the source files are presentable. The 
code must be all your own work, or you must own redistribution rights to all 
the parts that aren’t. This is why a lot of old commercial code can’t be open 
sourced: if a company doesn’t hold all rights to its source code, then they 
can’t release it freely without costly modification.

To stand on firm legal ground, ensure that every source file contains a 
copyright notice attributing it to the correct owner (the author or company) 
and a short description of the license it is released under. Then, if someone 
finds the code, it’s obvious that it is confidential material. See “File Header 
Comments” on page 83 for more on file header comments.

Beware of an accidental source release: Prevent easy reverse engineering 
of your executables. It is sometimes possible to reconstruct source code from 
a distributed binary. This is a particular problem in byte-code compiled lan-
guages like Java and C#. Consider obfuscating the byte code; there are tools 
that can do this for you.

Wherever I Lay My Source

Finally, think about where you put your source code. Top-secret company 
work shouldn’t be left on a laptop in an unlocked car. Likewise, source code 
should not be left on a publicly accessible network.

Ensure that your login passwords are kept secret. Outsiders (or mali-
cious coworkers) should not be able to sabotage work using inappropriate 
access rights.
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In a Nutshell

We must respect the past, and mistrust the present,
if we wish to provide for the safety of the future.

—Joseph Joubert

It’s not the size of your code, it’s what you do with it that counts.
In this chapter, we’ve looked at various working methods to ensure that 

we take responsibility for the source code we create, developing it in a safe 
and controlled manner. These things really do matter; a mishap at the wrong 

L I C E N S E S

A software license defines the rights that users have over it. This holds for both 
binary distributed programs and the source code that creates it. Most proprietary 
licenses withdraw the rights of copying, modification, lending, renting, and use on 
more than one machine. On the other hand, open source licenses strive to protect 
your right to copy and distribute the software at will.

Software authors choose their licenses based on specific goals and ideologies. 
Indeed, an author can chose to release software under multiple licenses, covering 
different usage patterns and permitting different price and support models. There are 
many types of source code licenses, although only a few are commonly used. They 
differ in:

Permitted use 
Can the licensed code be exploited commercially, or may it only be used in free 
software? It’s not really making money that’s the issue, but whether proprietary 
closed products can incorporate your work without permission. Some open source 
licenses require the user to release any code built with their software. A typical 
commercial license lets you do what you want, as long as you pay.

Terms of modification 
If you change the code, must you publish those changes? Or can you ship derived 
works without any further obligation? Some open source licenses are described 
as “viral” because any change you make must also be released under the same 
open source license, and likewise any code you ship using it.

Commercial licenses are drawn up by company lawyers to suit their nefarious 
purposes (that is, protecting the company’s commercial investment). However, there 
are many common free or open source licenses. Open source is a term coined by 
the Open Source Initiative (OSI), an organization that certifies software licenses. The 
availability of source is not enough to characterize a product as open source. It must 
provide certain rights: to allow free modification and redistribution of the code or 
any modifications, but with the restriction that these rights must be given to all and 
be non-revocable.

Open source conflicts with the Free Software Foundation’s concept of free software. 
The FSF (steward of the GNU Project) is rather more ideological and promotes soft-
ware licenses that are free, as in speech, not just free, as in beer—the word free is 
used in the sense of the French libre. OSI accept some free-as-in-beer licenses, which 
does not endear them to the GNU faithful. GNU’s famous licenses are the GNU 
General Public License (GPL) and the GNU Lesser General Public License (LGPL).
The latter is a more lax “library” version that allows linking with proprietary code.
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moment could spell disaster for your development project. You must protect 
your mission-critical codebase.

Source control is the essential weapon in our battle to develop code safely. 
It facilitates team interaction, ensures that group development is predictable 
and safe, helps to manage product revisions and configurations, and acts as a 
historical archive of all development work. It’s a development safety harness, 
and your life would be considerably worse without it.

See Also

Chapter 7: The Programmer’s Toolbox 
The tools we use to develop software effectively.

Chapter 10: The Code That Jack Built 
The accessibility of your code affects how easy it is to perform a build—
either of the cutting-edge codebase or a historical version that needs to 
be reworked.

Chapter 12: An Insecurity Complex
The other safety concern—security issues within running programs, rather 
than in the development process.

Good programmers . . . Bad programmers . . .

Take responsibility for their work 
and know how to safeguard code 
development

Use source control carefully, 
ensuring that the repository 
is always in a consistent and 
usable state

Never check broken code in to 
source control

Use all tools thoughtfully, with 
the intent to produce maintain-
able, accessible code 

Wait for disaster to strike before 
considering their code’s security 
and accessibility

Presume that someone else will 
think about backups and security 
for them

Don’t care about updating 
documentation

Don’t consider the state of their 
code in the repository—they check 
in broken code and leave a mess 
behind them for others to clean up
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Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 539.

Mull It Over

1. How can you reliably release your source code to other people? 

2. Of the two models for repository file editing (locking file checkouts or 
concurrent modification), which is best?

3. How do the requirements for version control systems differ between a 
distributed and a single-site development team?

4. What is a sound rationale for selecting a source code management system?

5. How can you separate bleeding-edge code under active development from 
stable code during team development?

Getting Personal

1. Does your development team make effective use of source control?

2. Is your current work backed up? How important are backups to your 
development team? When are backups made?

3. On which computers is your source code held?





PART V
P A R T  O F  T H E  

P R O C E S S

Writing high-quality software isn’t just about churning 
out good code. Obviously, good code helps. A little. 
But there’s much more to it than that. Good software 
is created intentionally; it takes planning, foresight, 
and a robust battle plan. We’ll see exactly what this battle plan looks like 
in the next section. However, before we assemble the troops, we must 
know what they should do. It helps to point them all in the same direction.

This section looks at some specific parts of the development process, the 
extra activities we schedule time for that help us to intentionally craft excellent 
code. We’ll see:

Chapter 19: Being Specific
How to write and read software specifications. The correct approach to 
recording what you will do, and what you have done. This chapter shows 
how specifications can make your life easier, rather than get on your 
nerves.

Chapter 20: Review to a Kill
A discussion of code reviews—an important practice that ensures you are 
writing high-quality code.
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Chapter 21: How Long Is a Piece of String?
Software timescale estimation—an essential activity in the planning 
process, yet still one of the mystic black arts of the software development 
community. This chapter busts some estimation myths and provides 
practical advice to use on the front line.

The relentless pressures of the software factory continually drive us to 
work faster and harder. The only way to cope is to learn ways to work smarter. 
We need to employ each of these pracices to stand a chance in the endgame.
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In this chapter:

Why we need specifications

The types of specifications 
we write

What they contain

Why are they ignored?

I’ve never known any trouble that an hour’s reading didn’t 
assuage.

—Charles De Secondat

Almost everything worth using is documented. 
Your DVD player has an instruction manual. Your 
car has a maintenance manual. A contract has 
small print. Chocolate cake has a recipe. There are 
books and magazines dedicated to practically every 
pursuit known to man. If your software is worth 
using, it also should be well documented.1

We all know that the carefully tested software 
we give to our customers needs to have documen-
tation. Just how much documentation is a moot 
point. The user of an office suite certainly thinks 
there should be more than the publisher does. 
Without a manual to describe the usage mechanics 
of your software, whatever form it takes, people 
will falsely assume that it can do more than it 
was designed to, or use it for purposes no sane 
programmer would have ever imagined.

1 Of course, that’s no excuse to craft a bad interface; it must still 
be easy and intuitive to use.



368 Chapter 19

Developers can just as easily make the same kinds of mistakes during 
coding. Just as the final software product needs documentation, so do the 
intermediate development steps. This is the sort of documentation that the 
end user will (usually) never see. These are the definitions of how the program 
will be designed and built. These are the software specifications.

Writing and working with specifications is an important skill of the practic-
ing programmer. Communicating in English (or any other natural language) 
is just as important as communicating in code.2 Like eating your vegetables 
and exercising regularly, specifications are “good for you” and good for your 
software. However, like cabbage and the gym, we avoid them, feel guilty, and 
then live to regret the consequences: We end up with unhealthy, flabby 
software development.

The traditional notion of a software specification involves a huge wedge 
of paper filled with dense text, cryptic tables, and meaningless terminology. 
It’s a highly uninspiring prospect: a document that requires more mainte-
nance effort than the code it describes. Developers live in perpetual fear of 
being forced to work with the spec.

But it doesn’t have to be this way. Used correctly, specifications oil the 
development process. They reduce development risk, help you to work 
effectively, and make your life a lot easier. In this chapter, we’ll investigate 
the sorts of specifications we need, what should be in them, and why reality 
differs so greatly from this ideal.

What Are They, Specifically?

Apply your heart to instruction and 
your ears to words of knowledge.

—Proverbs 23:12

Specifications are formal documents that form part of the development proc-
ess, providing internal software documentation. There are many different types 
of specification (we’ll see them shortly) containing different information and 
targeted at different audiences. Each one is appropriate to a particular stage of 
the software construction process, from the conception of a project to its final 
deliverable. We use them to capture exactly what the user requires (or exactly 
what they are going to get, if the two differ—they usually do), to detail the 
architecture of a software solution, the interface of a particular code module, 
the design and implementation decisions for a piece of code, and more.

Specifications help you to work smarter and to produce better software. 
But a bad specification can do quite the opposite. Like your code, the quality 
of a software specification is vital. Good specifications and documentation 
are generally taken for granted, whereas poor specifications rapidly become 
loathed; a millstone around the project’s neck.

KEY CONCEPT Not just the existence, but also the quality of software specifications is vital to the soft-
ware development process.

2 Indeed, Dijkstra once remarked, “Besides a mathematical inclination, an exceptionally good 
mastery of one’s native tongue is the most vital asset of a competent programmer.”
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Specifications are a form of inter- and intrateam communication. 
We’ve seen that projects can die from a lack of communication. We should 
therefore exploit specifications as a communication medium—where appro-
priate. (Projects can just as easily fail because too much time is spent writing 
documents, and not enough time is actually spent writing software!)

Specifications become increasingly important as the size of a project 
increases. This is not because specifications are unimportant in smaller 
projects but because larger projects have more to lose—there are more 
people whose lack of communication and coordination will have a greater 
negative impact on the outcome of the software development process.

KEY CONCEPT Specifications are an important communication mechanism for software developers. 
Use them to capture information that must not be lost or forgotten.

Writing specifications helps to make your information:

Safer 
Information isn’t stored in people’s heads where it can be lost, forgotten, 
or remembered incorrectly. With all important facts written down, there’s 
less risk when people leave the project: The amount of information loss 
will be minimized, and there will be a solid base to help any replacement 
programmer get up to speed.

Thorough, complete specifications reduce the risk of two people mak-
ing different sets of assumptions—the classic reason why two separately 
created modules do not work together when first integrated. Specifications 
help to prevent subtle bugs.

Accessible 
All information is conveniently recorded in a known place. New people 
can join your project and understand what each component does and 
how they fit together, just by reading the documentation. They don’t have 
to search for the information in a hundred different people’s heads 
before they become productive.

More accurate 
When all information is gathered and captured, you are more likely to 
see problems, to indentify missing parts of the design, and to spot any 
unfortunate consequences or side effects. A few disconnected thoughts 
floating around your brain are not as easy to validate.

The Types of Specification

Each type of specification forms an intermediate gate of the software process: 
A method of handover between separate parts of the development process. 
For example, a specification for the API of a software component is written 
by the group of people who are scoping its functionality and interface. The 
programmer works to this specification; it is complete enough to implement 
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all the code. The same specification is a contract detailing how the systems 
integrator can stitch it into the system and how other programmers can use it. 
It also describes expected behavior, so the test department can validate that 
the software is working correctly.

In this way, the output of one specification flows naturally into the con-
tents of the next, leaving a trail of documents in the wake of the rapidly 
evolving software. An example of this paper trail is shown in Figure 19-1. 
We see a natural hierarchy of documents generated as a project matures—
each subcomponent has a similar set of documents to the overall project; 
its development can be managed as a mini-project.

Since software design is an iterative process, this is not a one-way flow of 
information (otherwise you’re trapped in a waterfall methodology straight-
jacket—see “Waterfall Model” on page 427). As you discover missing infor-
mation or need to adjust the software design, the specifications must be 
updated accordingly. If your documents are not malleable and maintainable, 
your software development will suffer. Bureaucratic development processes 
try to stifle good software development by ensuring that all work is performed 
to The Specification, even if it’s 10 years old and completely out of date. 
Good programmers consider their specifications to be just as malleable as 
their code.

Figure 19-1: The typical specification paper trail

Let’s look at the different types of software specifications and see how they 
enhance your code-writing lifestyle. Unfortunately, in the Real World, these 
documents are called by many different names. A requirements specification is var-
iously called a user requirements specification and a functional constraints specification
by different people.
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Requirements Specification

If all other specifications disappeared in a software development process 
meltdown, this is the one document that you should fight for. It’s the head of 
the merry software development parade and the stumbling block for many 
failing projects. The information in here is vital. It will keep you sane.

The requirements for a project are never clear at first; customers can’t 
tell you exactly what they want their software to do (they’re not computer 
experts, so they don’t know). This can cause all kinds of problems, so there 
must be a single document that pins down what your software is supposed to 
do and the characteristics of an acceptable implementation: the requirements 
specification. It lists in great detail (or at least appropriate detail, which will 
usually be great) how the code is expected to behave. It must cover all the 
important, high-risk, high-value areas of system behavior, comprehensively 
and unambiguously.

The requirements are usually written as a series of numbered sentences 
each containing a single factual piece of information. For example:

1.3.5 The user interface shall consist of a black rectangle containing the 
words Don’t Panic in a red sans-serif typeface at 13pt.

Uniquely numbering each requirement enables easy cross-referencing in 
subsequent documents and helps you to trace a particular design or imple-
mentation decision back to a single requirement.

We must consider:

Functional requirements
These requirements detail what the program must do. For example: 
Must process BMP images and convert them to either JPEG or GIF format.

Performance requirements
These requirements show how fast it must work and whether there are 
operations with deadlines. For example: The user must receive feedback for 
every operation within one second, and all operations must complete within five 
seconds.

Interoperability requirements
These requirements describe the other software, hardware, and external 
systems that it must interact with. For example: Must support HTTP and 
RS232 communication with an upgrade server.

Future operation requirements
These requirements determine what functionality must be accommodated
now, even if it’s not implemented right away. For example: Must provide 
a skinnable UI so that the user can customize the look and feel.

These requirements fall into two camps. Discrete requirements are binary. 
You can easily check whether your program meets them by looking at the 
source: There will be a chunk of code dedicated to each bit of functionality. 
You can write specific tests to ensure that each discrete requirement is honored.
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Nondiscrete requirements are less tangible. You can’t check whether your 
program meets them just by inspecting the source. These include the required 
fault-tolerance of a system, the required uptime of a server, a program’s mean 
time between failure, its security, or its scalability. These kinds of requirements 
can be massively important and remarkably hard to verify.

The process for creating a requirements specification will differ from 
company to company, and often depends on the project characteristics and 
the customers (how smart and competent they are). The requirements speci-
fication is collated by the marketing team, a future product focus group, 
or a business analyst whose job is to understand the problem domain and 
scope the work required. Usually the customer, or a representative of the 
customer, is involved.

The customer must agree to and sign off on the requrements specifica-
tion; it forms an effective contract between the software developer and its 
client. The supplier agrees to ship a product whose functionality meets these 
requirements; the customer agrees to pay for it. Without an agreed specifica-
tion, the customer can refuse the product on a whim, and the developers will 
have spent a lot of effort to no avail. Sadly, this is a common problem in the 
software factory that I have seen many times, especially when the customer is 
not a technical expert and doesn’t know what a good software solution looks 
like. When the requested software is finally built, the customer realizes that 
what it asked for wasn’t what it actually wanted: Rewrite it in pink. You’re back 
to square one. This sort of thing happens all the time; the requirements 
specification is your insurance policy.

Sadly, many software factories skip requirements gathering or do not give 
it sufficient import. It’s vital to agree on the requirements early on, before 
software design has started and certainly before any code has been written. 
We use the functional requirements specification:

To keep the project on track and on time—by preventing (or at least 
reducing) the tardy addition of new features that will postpone delivery.

To improve customer satisfaction—by setting expectations up front.

To reduce bugs—by restricting feature creep, we avoid last-minute code 
additions, which helps to avoid scary bugs.

To maintain your sanity—without requirements specifications, developers 
rapidly lose their hair.

Depending on the type of development methodology you employ, a single 
monolithic requirements specification might be written up front before any 
software development begins, or it might be developed incrementally along-
side the code. Understand how your requirements are gathered from the 
customer and how this impacts the way you develop code.

KEY CONCEPT Software requirements must be captured early to set expectations, to prevent feature creep, 
and to reduce developer angst.

Also consider your developmental requirements: the things that you as a 
developer must have in order to develop the software. For example, you 
might require a certain kind of internal architecture to provide adequate 
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future extensibility, and you need version control to develop software 
(it is not optional). Some of these might justifiably belong in a require-
ments specification.

Functional Specification

Perhaps the document most frequently used by programmers, the functional
specification describes the observable behavior of a piece of software. It is 
derived from—and must satisfy—the requirements specification. There are 
usually a number of functional specifications in one project: one for the 
overall product and then individual specifications for individual software 
components.

For a software component, the functional specification includes a com-
plete and unambiguous description of its public interface. This equates to a 
list of every method or function in the module’s API, together with a descrip-
tion of what they do and how to use them. It contains details of all external 
data structures and formats, and all dependencies on other components, 
work packages, or specifications.

This is more than a user guide to a piece of software. There is enough 
detail to build the component from it. Two teams could read the document 
and work separately on implementions. Although the implementations will 
differ, both components should behave identically.

This fact is exploited in practice: Some NASA spacecraft employ five 
computers to do the job of one; four computers implement the specification 
for a particular computation, running independently developed implementa-
tions. The fifth computer is used to average the results of the four calculations 
(or to decide if one computer wildly disagrees with the others).

If you’re writing a software component without a functional specification, 
begin by writing one yourself. Show it to all interested parties so they can agree 
that what you’ll build is sufficient and so they won’t be surprised when it is 
delivered.

KEY CONCEPT If your software task is not adequately specified, don’t start coding until you’ve written 
a functional specification, and people agree that it’s correct.

System Architecture Specification
The architecture specification describes the overall shape and structure of the 
software solution. It encompasses such things as:

Physical computer layout. (Is it distributed client/server software or a 
single user desktop application?)

Software componentization. (How is it split up? Which parts do we need 
to write; which can we buy in?)

Concurrency. (How many threads run at the same time?)

Data storage (including database design).

All other aspects of the system’s architecture (redundancy, communica-
tion channels, and more).
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It is important to specify these things in detail before too much develop-
ment work happens. The architecture affects the later stages of development; 
a mistake or ambiguity here will filter down to become serious flaws in later 
phases. Of course, nothing is set in stone: If you discover a flaw in the archi-
tecture specification, then it must be fixed, regardless of how much work has 
already occurred. Don’t accept a bad architecture specification as a millstone 
around your neck. However, it is important to perform adequate architectural 
design up front. We discuss software architecture in detail in Chapter 14.

User Interface Specification

This document contains information about the user interface: what it will 
look like and how it will react. This is how we present the system’s capabilities 
to the user. It might describe a GUI application or a web-based interface, 
an audible phone menu system, a braille accessibility interface, or a simple, 
single-LED display.

Sometimes the user’s view of the system is very different from the 
implementation behind the shiny façade. Here are two examples:

A highly networked system can be deployed on a single box and hidden 
behind a unified UI.

The available functionality can be simplified for ease of use or to create 
a cut-down cheaper version.

The UI specification describes the interface conventions and metaphors 
and shows how the user sees the functions interact. It is comprised of a textual 
description, with pictures and screenshots. It often contains a storyboard repre-
sentation of the UI in action—a pictorial map of each UI state, its transitions, 
and what is displayed in each. It includes every screen that the user will see and 
all detail (that is, all graphics, fields, lists, buttons, and the on-screen layout 
of each). It will also detail acceptable response times for each operation 
and the behavior in common error cases (this isn’t exhaustive—trying to 
enumerate all possible error conditions is a practically endless task!).

This work may include or lead to a UI prototype. Prototypes can be made 
with varying levels of detail and accuracy; this depends on the application 
and how much testing and review will be done. Inevitably, the UI design is 
incomplete at this stage, but this is your first chance to see what the finished 
product will look like. Although prototypes help to envision how the interface 
will behave, it’s not until the system is integrated that the UI can be properly 
reviewed and tweaked.

Design Specification

A design specification (or technical specification) documents the internal design 
of a component. It describes how a functional specification will be, or has 
been, implemented. The design specification describes all internal APIs, data 
structures, and formats. It should detail all key algorithms, execution paths, 
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and thread interactions. It describes the choice of programming language and 
the tools used to build the code. All of this is critical information for the code 
implementers and maintainters.

Many heavyweight development processes mandate the production of 
a design specification prior to implementation; it is reviewed before coding 
begins to prevent work from progressing down a dead end. However, in most 
software factories, this document is written alongside, or after, the code.

It sounds like such a good idea, but most design specifications are a big 
waste of time! They need continual maintenance to stay in sync with the code 
being described. Without care, they quickly rot and are left inaccurate and 
incomplete—potential snares for unwary readers. For this reason, I suggest 
that you don’t write a design specification!

But wait, before you run off unencumbered, there’s more. Replace it with 
something that contains the same information but is easier to keep accurate. 
Literate programming tools (see “Practical Self-Documentation Methodologies” 
on page 66) are a great documentation mechanism that can replace heavy-
weight design specifications by generating documentation from the code 
itself. You need only supply any extra commentary in specially formatted 
code blocks.

KEY CONCEPT Use literate programming tools to write your technical documentation. Don’t write 
a word-processed document that will quickly go stale.

You don’t need the complete production code to use literate documen-
tation tools in this way. You can document your intended code structure in the 
same manner: Mock up some code and run the tool over it. This automatically 
generates design documentation, serves as prototype proof-of-concept code 
and, with care, can evolve into the production code.

Test Specification

The test specification describes the testing strategy for a particular piece of 
software. It shows how to validate the implementation against its functional 
specification so you know when the software is acceptable for release. Naturally, 
the size and scope of this task depends on what is being tested: whether it’s a 
single software component, an entire subsystem, a desktop application, or an 
embedded consumer product.

The test specification contains a list of every test that must be performed. 
Each test is detailed in a test script: a set of simple steps to run the test, together 
with its acceptance criteria and the environment in which the test will run. 
The scripts themselves may be written in separate documents or included in 
this one.

As we’ve seen in Chapter 8, many code-level tests can be performed in
code themselves and run as an automated part of the development process. 
These tests stand distinct from high-level tests that can only be performed 
by running the software in its final context with scripted human input.
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Wherever you can create programmatic unit tests for your software, prefer 
to do this rather than create a lengthy test specification. Just as design speci-
fications can rapidly become out of date, test specifications written at the code 
level will rot as the system evolves around them. Use programatic test code as 
the documentation of your testing strategy—you can write literate test code 
as easily as literate normal code. Automated test cycles will also force you to 
keep the tests up to date with the code; your tests will fail if you don’t!

What Should Specifications Contain?

The contents of each type of specification are naturally very different. However, 
the information in any specification must be:

Correct 
This might seem obvious, but it is absolutely vital. An incorrect specifica-
tion can cause days of wasted effort. It must be kept up to date or it will 
become dangerously misleading: It will waste readers’ time, cause confu-
sion, and may lead to bugs being introduced as a consequence.

If a specification can be interpreted in more than one way, then the 
“specification” isn’t specific—it’s not doing its job. Two readers could make 
different interpretations of the ambiguous information, with inevitable 
unfortunate consequences. Make sure that your specifications can only 
be interpreted as you intended.

D E V I L ’ S  A D V O C A T E

Specifications are expensive: Reading and writing them requires both time and 
effort. They require extra work. Are all of these documents really necessary? Yes, 
they are—to write high-quality software, you need to consciously generate all this 
information and then record it somewhere where it can be retrieved when necessary. 
Specifications encourage us to follow good development practices—to track 
requirements, perform design, and construct a test plan—and we’ve seen how they 
facilitate communication.

Agile processes (see “Agile Methodologies” on page 433) place far less emphasis 
on writing specifications, but they don’t advocate coding by the seat of your pants. 
Since specifications don’t write themselves, can easily get out-of-date, and require 
extra work to maintain, and programmers have more than enough to do already, 
it’s sensible to only write as many documents as necessary. We should always 
avoid lengthy procedural hurdles. But any specification you remove must be replaced 
by an equivalent store of information. Don’t skip a specification unless you have 
conciously replaced it with something of equal quality containing the same set of 
information.

Extreme Programming doesn’t produce a lengthy requirements specification, but it 
captures all requirements in an equivalent set of user stories, held on a stack of story
cards. Design specifications are eschewed: The code is its own documentation.

Agile practice also promotes test-driven design, where codified tests act as addi-
tional documentation of the code and its behavior. This full and clear suite of unit 
tests can replace the test specification for individual components but is seldom 
suitable to verify the final product against its validation criteria.



Being Speci f ic 377

The text must not contradict itself. When a specification gets reason-
ably large, it becomes difficult to ensure consistency. This becomes a 
particular problem when a maintainer (different from the original author) 
makes modifications—it can be very easy to alter information in one 
place and not change any subsequent sections that allude to the same 
information.

A specification should be carefully written to comply with all relevant 
standards (for example, language definitions and company coding stand-
ards). It should follow the document standards/conventions of your 
company and use any document templates that exist.

Comprehensible 
An effective specification is inviting to read and easy to understand. 
It makes sense to every reader. If it’s so technical that only engineers can 
understand it, then non-techie departments (like marketing and manage-
ment) will not feel part of the audience and will not look at it carefully. 
Problems won’t be spotted until it’s too late.

Like good code, the best specifications are written from the perspec-
tive of the reader, not the writer. The information is organized to make 
it comprehensible to a newcomer, rather than convenient for the author. 
Blaise Pascal once apologized, “I made this letter longer than usual 
because I lack the time to make it short.” Good writing is concise and 
doesn’t hide the main point behind a wall of words. This does require 
more work and will take more time, but it’s worth it if the result is simpler 
to understand.

Don’t feel compelled to write reams of boring prose in a specifica-
tion. Consider using devices to compress it and make it easier to read. 
Bulleted and numbered lists, diagrams, headings and subheadings, tables, 
and judicious use of whitespace break up the flow and help the reader to 
create a mental map of the material.

Complete 
A specification should be self-contained and complete. That doesn’t 
mean it should contain all possible information; it is perfectly acceptable 
to reference other relevant documents, as long as the reference is precise 
(consider document revisions in your references) and will allow the 
reader to easily locate the document.

The level of detail in a specification should be significantly less than the 
detail in the implementation; otherwise it is either overly prescriptive or too 
dense to understand. People tend to ignore complicated specifications, 
so they become abandoned. Left festering in a corner, they only serve to 
confuse readers who don’t realize that they’re no longer authoritative.

Verifiable 
A specification for a software component interface will lead to the pro-
duction of two things: the software implementation and a test harness 
to verify it. The contents of a specification must, therefore, be verifiable. 
In practice, this largely equates to being correct, unambiguous, and 
complete.
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Modifiable 
Nothing is set in stone, neither code nor documents. If a specification 
needs updating (perhaps to correct a factual error) then this should be 
easy. A cast-iron specification prevents the world changing underneath 
your feet. However, it’s no use if the specification is wrong. The document 
must be editable (i.e., you should be able to get to the source, not just 
a PDF copy), and its release and update procedure must not be too 
troublesome.

In order to make modifications easily, the document must be carefully 
structured and no bigger than absolutely necessary.

Self-describing 
Each specification must contain at least:

A frontsheet, clearly showing the document title, subtitle, author(s), 
revision number, date last modified, and document release status 
(e.g., company confidential, supplied externally under NDA, or a 
public release).

An introduction to the document, providing a brief summary of its 
aims, scope, and the target audience.

All relevant terms and definitions that the reader needs in order to 
understand the contents. (But don’t patronize the reader: If your 
audience is made up of software engineers, don’t explain what 
RAM stands for.)

A set of references to other related or cross-referenced documents.

A history section that lists all important modification and revision 
information.

Traceable 
There should be a document control procedure (akin to a source man-
agement system) and a central file store in which all documents reside. 
Every release version of a specification should be lodged in the repository 
and must remain be accessible, so you can discover which version of a spec 
you were working to a year ago; one day you’ll need it again. Consider 
using a revision control system—it’s a great tool for versioning any sort 
of file.

The document frontsheet contains control information (version 
number, date, author, etc.) so you can check that you have the most 
up-to-date copy.

KEY CONCEPT Think about the contents of your specification as you write it. Choose a structure and 
vocabulary that the audience will understand, and make sure that the document is 
correct, complete, and self-describing.
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The Specification-Writing Process

What is written without effort is in 
general read without pleasure.

—Samuel Johnson

Now knowing the types of specification we must produce and what should go in 
them, we’re armed and ready. It’s time to write something! The specification-
writing process is simple:

1. Select the appropriate document template to start from. This may be 
provided as part of a defined project development process. If there is no 
template, base it on an existing specification.

2. Write the document. Okay, this is the hard part. What you write naturally 
depends on the type of specification.

3. Arrange for the document to be reviewed. Include all the people with an 
interest in it.

4. Once it’s agreed upon (and, if your process demands, formally signed off 
on), put a versioned copy in the document repository and release it to 
the appropriate audience.

5. If there are any later problems, raise a change request for the specifica-
tion and make sure that you understand how the modification affects the 
scope of your development work. If you don’t, then the coding effort will 
double without anyone noticing.

This is a simple procedure to list, but it isn’t simple to do. It’s easy to 
focus only on step 2—we skip the rest for an easy life. But without these other 
actions, you haven’t created a formal identifiable document; this may cause 
problems later.

Consider these spec-writing guidelines when composing your literary mast-
erpiece. The first few relate to authorship and to your artistic sensibilities:

Writing usually works best when there is one author per document. It’s 
hard to coordinate multiple authors and accommodate different writing 
styles. If you are documenting a big system, then split the specification 
into parts and give one to each person to work on separately. Create an 
umbrella document that links them all together.

Contrary to some opinions, it is not at all egotistical to have one 
person’s name on the front of a specification. Someone needs to take 
credit for it—praise when it’s a good job and blame when it’s not.

If you significantly extend someone else’s document, don’t feel 
embarassed to add yourself to the list of authors. But don’t remove 
someone from the author list unless his or her original input has now 
been removed.
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The author must be the right person. The marketing department 
doesn’t write your functional specification; it provides requirements. 
Managers don’t design the code; the developer with the right skill and 
knowledge does it. The author must be capable of writing—it’s a skill 
that’s learned, a muscle that requires exercise.

Each document must have a defined owner who takes responsibility for it. 
The owner may be different from the original author; it might be the 
technical authority or the document’s maintainer now that the primary 
author has moved on.

L A N G U A G E  B A R R I E R S

I hate definitions.
—Benjamin Disraeli

Compose your specification’s text very carefully. Compared to code, the English 
language is full of ambiguity and complexity. These genuine newspaper headlines 
show just how ambiguous seemingly simple English statements can be: “Stolen 
painting found by tree,” “Kids make nutritious snacks,” “Red tape holds up new 
bridge,” and “Hospitals are sued by 7 foot doctors.”

Specifications are formal documents and they must not be chatty or verbose; this 
tends to hide the important facts behind a wall of words. Non-native English readers 
may struggle. However, a terse document is hard to follow. This is a delicate balance, 
and document review helps to determine the correct style of writing.

Formal documents are written in the third person, in present tense. An accurate 
selection of words is very important. A useful convention is defined in the Internet 
RFC document #2119. This defines the following key terms for protocol specifica-
tions (which are also very useful in requirements specifications):

Must
The word must (or shall or is required to) means that the following definition is an 
absolute requirement of the specification.

Must not 
The words must not (or shall not) signify an absolute prohibition of the specification.

Should
Use should (or the adjective recommended) to indicate an optional requirement—
behavior that may be ignored, but only when the full implications are understood 
and have been carefully considered.

Should not 
Use should not (or the adjective not recommended ) to describe a particular 
behavior that should be avoided unless there are valid reasons to choose it—
again, the consequences must be fully understood.

May 
Using may (or the adjective optional ) means that an item is truly optional. An 
implementer can choose to support it or ignore it but, when applied to protocols, 
it must interoperate with another implementation that made a different choice.

This is the word that should often be used when people write can. Can is a 
commonly misused word in specifications and standards; it is ambiguous and, 
depending on the reader’s interpretation, could be taken to mean must or may.
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Here are some tips for the document writing process:

It’s good to have a best practice example of each kind of specification. This 
will help authors to understand what is expected of them as they write.

Early drafts of a specification should be marked as such, with a disclaimer 
stating that it is incomplete. This will prevent people from mistakenly 
interpreting it as complete—they can’t moan at you about the content 
(yet). Maintain a list of the incomplete sections and open issues within 
the document itself.

Document review is important: It checks that the contents are correct 
and well presented. It is a mechanism to get others’ agreement with your 
decisions and to thereby bestow authority on the document. This is espe-
cially important for specifications that are sent outside the project: to the 
customer or to other departments.

Once you’ve finished the specification, don’t forget about it. Keep it 
alive and up to date. A functional specification is not complete when the 
design phase is over. Requirements inevitably change, and we continue 
to learn more about the system’s operation. Capture all of this in revised 
specifications.

Why Don’t We Write Specifications?

I do not understand what I do. For what 
I want to do I do not do, but what I hate I do.

—Romans 7:15

Decent specifications are conspicuous by their absence in the Real World. 
We know it’s not good practice to avoid them, so hasty developers gloss over 
their absense and pretend that there’s no problem. It’s not unusual to be 
given a coding task without an adequate requirements or functional speci-
fication. (This is a procedural problem that must be overcome by persistent 
moaning, education, and abuse of the powers that be.)

But it’s equally common for sloppy programmers to sidestep their own 
document writing. Why is this? There are a few excuses we meet repeatedly. 
Developers don’t write specifications because:

They don’t know that they should

They forget

They don’t have the time

They consciously decide not to, thinking they can get by without them 
(“Who reads specifications, anyway?”)

None of these reasons are defensible. An experienced developer certainly 
shouldn’t fall foul of the first two if a specification is an expected deliverable 
of his or her work.
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Programmers like to program, not write long documents. Most pro-
grammers don’t have good writing skills; they write elegant code but awful 
English. It’s hardly surprising that they try to avoid writing specs: It’s hard 
work, uninteresting, or they just don’t like doing it. Often it’s seen as a 
time wasting activity that isn’t really necessary. Or they think, I’ll code first, 
then come back to the documentation later. Bitter experience shows that this 
does not happen.

The depressing thought that no one will ever read my beautiful specification
puts many more programmers off of the idea of committing their brainwaves 
to prose. And it’s probably true: No other soul may ever read your literary 
masterpiece. But so what? The act of specification writing forces you to engage 
your brain: a very important step. Sure, a few Gurus can code on the run and 
produce excellent work. But most programmers, whether they admit it or not, 
simply can’t. We need to design. Carefully. First. That design should then be 
captured: in a document. Potentially, this document will be for your eyes only. 
But, if one day you hear a higher calling and run off to become a Croatian 
monk, how can a maintenance programmer pick up your work? The speci-
fication will outlive you. Think of it as your legacy.

Not having time is the only scenario that you don’t have control over: 
Sometimes a coding task lands in front of you and there genuinely isn’t 
enough time to write a good specification for it. If you have no time to write 
a specification, then you probably don’t have time to write the code properly 
either. Make sure you’re aware of when you’re doing things properly and 
when you’re rushing code out without any real discipline—that sort of code 
really doesn’t belong in a production release.

Saving time by avoiding specifications is almost certainly a false economy; 
specifications help to save time communicating. When you write a specifica-
tion, you only have to describe how the program works once. If you skip this 
step, at least the same amount of communication happens anyway, but on an 
ad hoc basis—over a longer space of time and in a less controlled manner. 
This communication is far less effective and will actually take longer, because 
you will have to explain the same things over and over again with a slightly 
different spin for each audience.

KEY CONCEPT It is dangerous and unprofessional to avoid writing specifications. If there isn’t enough 
time to write a specification, there probably isn’t enough time to write the code.

Of course, few people write detailed specifications at home for their own 
personal pet projects. This is an extreme case of an appropriately detailed 
specification. Any reasonably large project (which could be determined by 
the number of source files, modules, developers, or customers) really does 
require specification support.
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In a Nutshell

Words are, of course, the most 
powerful drug used by mankind.

—Rudyard Kipling

They’re not the most glamorous part of a software developer’s life, but 
specifications are an important part of our code-writing routine. Learn to 
read and write them effectively—to record the right information in the right 
place, in a way that will save time and hassle later. But don’t become enslaved 
by a paper-chain bureaucracy.

See Also

Chapter 4: The Write Stuff 
Self-documenting code is a solid technique that helps to eliminate some code 
documentation. Good code is so easy and intuitive to work with that it 
doesn’t need a long manual.

Chapter 18: Practicing Safe Source 
Consider change control and a backup strategy for your specifications—
they’re as vital as your code and need protecting.

Chapter 20: A Review to a Kill 
Just like your code, any document you write should be reviewed to ensure 
that it’s correct and of a high quality.

Chapter 22: Recipe for a Program 
Specifications are an essential part of the software development process 
and are often the gates between development phases.

Good programmers . . . Bad programmers . . .

Understand the importance of 
specifications and use them to 
make their development lives 
easier

Know the appropriate level of 
documentation required

Want to improve their writing 
skills and seek reviews and 
chances to practice

Dive headlong into a code task 
without a thought for design, 
documentation, or review

Don’t think about the text 
they are writing; they produce 
unstructured, hard-to-follow 
specifications

Avoid writing documents, thinking 
it’s boring and pointless
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Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 544.

Mull It Over

1. Is a poor specification better than no specification at all?

2. How detailed does a good specification have to be?

3. Is it important that all the documents in a company/project have a 
common presentation style?

4. How should you store documents? Should you provide an index of them 
(by type or by project), for example?

5. How should you conduct a specification review? 

6. Does self-documenting code render all specifications useless? Specific ones?

7. How can a document be collaborated on by more than one author? 

Getting Personal
1. Who decides on the contents of your documents?

2. Consider your current project. Do you have:

a. A requirements specification?

b. An architecture specification?

c. A design specification?

d. A functional specification?

e. Any other specification?

Are they up to date? Are they complete? Do you know how to get the 
latest versions? Can you access historical revisions?

3. Do you revision control your documents? If so, how?
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T O  A  K I L L
Performing Code Reviews

20

In this chapter:

What are code reviews?

What do they achieve?

How do you run one?

Reviewing has one advantage over suicide: in suicide you 
take it out on yourself; in reviewing you take it out on 
other people.

—George Bernard Shaw

How do you learn to be a good carpenter? You 
become a carpenter’s apprentice. You watch the 
master work, help him daily, gradually take on 
more responsibility, and learn from his advice. 
You don’t jump in feet first without any practical 
ability and expect to churn out quality woodwork 
right away.

We don’t have a version of that in the coding 
world, even though programming is as much a craft 
as it is an engineering discipline (possibly more so). 
A good programmer learns the difference between 
good and bad code by experiencing it firsthand, 
discovering what works in Real Life and what 
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doesn’t. This is the stuff that books can’t teach you, and only a lucky few ever 
learn these things from a mentor. Code reviews are about as close as most of us 
will ever come to this ideal.

Code reviews (also called inspections or walkthroughs) are similar to the 
open source model of software development—providing a structured oppor-
tunity for others to eyeball your precious code and for you to inspect others’ 
work. They facilitate knowledge interchange. But their primary goal is to 
increase software quality. They help you to spot faults before they become 
raging disasters.

Code reviews also have another subtle advantage: They encourage you to 
take greater responsibility for your handiwork. When you know that the code 
isn’t just for you to look at, but that it will be viewed, used, maintained, and 
criticized by others, your approach tends to change. You’re less likely to make 
the quick-and-dirty fix that you’ll never have time to revise. The account-
ability brought on by code reviews brings a greater quality to your coding. 
They help to establish the “collective code ownership” culture described in 
“Collective Code Ownership” on page 336.

Sound good, don’t they? Let’s pop the hood and see how they work. . . .

What Is a Code Review?

A review places source code under the microscope—really aiming to criticize 
and verify it. This is not to ridicule or get at the author, but to improve the 
quality of software that the team produces. The process normally generates a 
list of must-fix issues (the size of the list is a reflection of the quality of your 
programming skills!). Sometimes you will spot improvements that are not 
worth making now; chalk up those discoveries for future experience.

We look for bugs and any code that could be improved. The code review 
weeds out problems at several levels:

The overall design (we check the choice of algorithms and external 
interfaces).

The expression of that design in the code (its breakdown into classes 
and functions).

The code in each semantic block (we check that each class, function, and 
loop is correct, follows appropriate language idioms, and is a practical 
implementation choice).

Each individual code statement (each must follow project coding stan-
dards and best practices).

Code reviews can be:

Personal
The author carefully and methodically reviews his or her own work to 
make sure that it’s good. Don’t get this confused with casually reading 
your code after typing it; a personal code review is a more detailed and 
involved task.
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One-on-one 
You walk another programmer through your code. The other programmer 
checks the logic and looks out for faults as you lead through it. These 
reviews tend to be informal, driven by the author. The code is therefore 
approached from the author’s perspective: with his or her set of assump-
tions, rather than from a more objective, outside view.

Formal 
Involving other programmers brings new expertise, more experience, 
and more eyeballs to the task and shifts the perspective from which the 
review is run. Large-scale reviews are consequently harder to coordinate 
and require greater overall effort, but they are more likely to root out 
problems. It’s difficult to delve this deeply in a personal review; often the 
author is too close to the code, and it’s easy to overlook flaws.

This usually takes place in a formal meeting, but it can be run as a 
virtual review: online, with no physical meeting. 

Each type of review can be used at a different time in the development 
process. One-to-ones might be used daily throughout code development, as 
an integration review before modifications are committed to the main source 
tree. Formal reviews are brought in toward the end of code development, as 
a final software quality audit.

Apart from the obvious benefits of correct code, reviews have other useful 
side effects. The cross fertilization that comes from looking at each other’s 
code ensures that coding style is more uniform across a whole project. A 
review also spreads knowledge about the inner workings of core bits of code, 
so there is less risk of losing information when people leave a project (a very 
real problem—see “Team Closure” on page 343).

KEY CONCEPT Code reviews are excellent tools to detect and eliminate hard-to-find bugs, to increase 
code quality, to enforce collective code responsibility, and to spread knowledge.

When Do You Review?

If you are not criticized, you may not be doing much.
—Donald H. Rumsfeld

In an ideal world, every bit of code would be carefully reviewed prior to 
release. According to the Software Engineering Institute at Carnegie Mellon 
University, a thorough code review should take at least 50 percent or more of 
coding time (personal code review is included in this statistic). (Humphrey 98) 
That would take longer than most Real World projects are prepared to invest.1

KEY CONCEPT As we write a system, we need to ask whether to review the code and, if so, exactly 
which code to review.

1 The fact that they’re rarely prepared to invest any time in code review is a more serious 
problem.
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Whether to Review

We’ve seen that bugs are inevitable, and that you can be sure your code 
contains some classic mistakes. There will be obvious flaws that you’ll find 
quickly and many more subtle problems that would only be spotted by a 
fresh pair of eyes approaching the code with no preconceptions. It’s hard for 
the original author to see the inherent faults in his own work—he’s too close 
to the codeface, suffering the psychological cognitive dissonance described in. 
(Weinberg 71) If your code is at all important (clue: it is, or you wouldn’t 
have written it) and if you care about its quality (clue: you do, or you’re a 
disgrace), then you must review it.

Not reviewing code drastically increases the chance of faults slipping into 
your production software. That could spell your embarrassment, a lot of 
expensive rework and in-the-field upgrades and, in extreme cases, your 
company’s financial ruin. The effort of a code review pales in comparison 
to the consequences. According to Humphrey, “Students and engineers 
typically inject 1 to 3 defects per hour during design and 5 to 8 defects when 

R E V I E W I N G  T H E  A L T E R N A T I V E S

There are a number of development techniques that have been argued to make formal 
code reviews redundant. These are:

Pair programming 
When you pair program (described in “It’s All Going Pair Shaped” on page 319), 
your code is effectively reviewed on the fly. Two pairs of eyes are better than one 
and will find many, many more faults—as they are entered. However, code reviews 
can catch even more problems by employing reviewers who are physically and 
emotionally removed from the implementation work.

Open source 
Opening and freely releasing the source code allows anyone to see it, to judge 
the code’s quality, and to fix problems. Some call this the ultimate code review. 
However, it doesn’t actually guarantee that anyone will inspect the source. Only 
really popular open projects have actively maintained codebases. Making your 
code open source will not instantly bring code review–like benefits.

Unit tests 
These are an automatic means to show that a modification hasn’t degraded the 
correctness of your code’s output (see “Look! No Hands!” on page 144), but they 
don’t help to increase the overall quality of the written code statements. Your code 
could be a jumbled mess of spaghetti, but if it passes the unit tests, no one will 
notice. If the unit tests aren’t rigorous, bugs could still slip through, regardless.

Not reviewing 
Alternatively, you can just trust the programmer to get it right—that’s his job 
after all. If this is a winning strategy, then you don’t need to test the code either. 
Good luck!

None of these, on their own, can honestly replace the code review. Perhaps a 
combination of them and a particularly effective development team culture would 
render reviews less necessary, but I’ve yet to meet a team where that has been 
the case.
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writing code. They only remove about 2 to 4 defects per hour in testing but 
find 6 to 12 per hour during code review.” (Humphrey 97)

People often make excuses to justify avoiding reviews. They say, “The 
code’s too large to review fully,” or “It’s too complex; no one person could 
ever understand it—there’s no point in even trying to review it.” If a project 
can muster enough man-hours to write a large program, it can find enough 
time to review it. If the code is too complex, then it desperately needs to be 
reviewed! In fact, it probably needs something a little more drastic. Well-
written code is decomposed into self-contained sections that can undergo 
separate reviews.

Which Code to Review

Any project will quickly produce a ton of source code. For all but the most 
stringent development processes, there simply isn’t enough time to review 
every last scrap of code. So how do you decide which parts to review? That 
isn’t easy.

You must select the code that will benefit most from review. This is the 
code that is most likely to be bad or that is most important to the correct 
functioning of your system. You could try these strategies:

Select core bits of code in the central components.

Run a profiler to see where most CPU time is spent, and review those 
parts of code.

Run compexity analysis tools, and review the worst offending code.

Target areas that have already exhibited a high bug count.

Pick on code written by programmers you don’t trust (a code review 
vendetta!).

The most practical approach is probably a hybrid of all of the above. 
Pick the best code candidates based on a sober assessment of your team, 
the codebase, and the current system characteristics (performance, bug 
count, etc.).

KEY CONCEPT Select the code you review carefully. If you can’t review everything, make informed
choices about review candidates. Don’t guess—you might waste your precious time.

Performing Code Reviews

That which we persist in doing becomes easier, 
not that the task itself has become easier, but that 

our ability to perform it has improved.
—Ralph Waldo Emerson

Simply having a code review is not enough. It’s not going to solve all the 
problems itself. You also need to make sure that you review properly. The next 
few sections describe how to do this.
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Code Review Meetings
The most common review setting (at least in high-ceremony development 
processes) is the formal code review meeting. There is a fixed agenda (to ensure 
that no action is forgotten) and a defined ending (not necessarily a time limit, 
but a definition of exactly which code you are reviewing, and which you 
aren’t—it’s very easy to be unclear about this).

An example code review meeting procedure is described below.

Where?

The best place to hold a code review meeting is in a quiet room. The review-
ers should not be disturbed. There should be coffee (and, for those who must, 
tea) available.

A suite of networked laptops with code editors may be useful, as may a 
computer hooked up to a projector. Old-school programmers swear by print-
outs and pen-and-paper notetaking—detaching from the computer screen 
can help to find new faults. This really depends on how much respect you 
have for trees and electricity consumption.

When?

Obviously, at a mutually convenient time. Common sense tells us that Friday 
at 5 PM is not a good time. You need to devote serious time to this, so make 
sure that you won’t be disturbed or distracted.

If the code is too large, split the review into a number of separate sessions. 
You can’t sit people in an enclosed space for hours on end and expect the 
quality of their review to remain high.

Roles and Responsibilities

One of the most important factors contributing to the success of a code 
review meeting is who attends. Each attendee should be assigned a specific 
role; in small groups it is likely that people will take on multiple roles. These 
roles will include:

Author 
Obviously the person who wrote the code should attend the review to 
describe what he or she has done, refute unfair or incorrect criticism, 
and listen to (and subsequently act on) valid, constructive feedback.

Reviewers 
The reviewers should be carefully picked, people with available time and 
skill to review. It helps if the code is within their area of expertise or if 
they are involved with it in some way. For instance, the writer of a library 
should be invited to review a program that uses the library to diagnose 
incorrect API usage.

There should be an appropriate number of experienced software 
engineers present. There should possibly be a representative from the 
QA or testing department (see “Quality Assurance” on page 132) so QA 
can be assured of the software’s quality and of the quality of the develop-
ment process.
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Chairman 
Any meeting needs a chairman, or chaos will ensue (see “Meeting Your 
Fate” on page 340). This person leads the review and guides the discus-
sion. He or she ensures that the conversation keeps to the point and that 
the meeting doesn’t get sidetracked. Any minor issues that don’t need to 
be discussed in the meeting should be quickly taken offline by the chair-
man. Given half a chance, programmers will discuss a minute technical 
detail for hours at the expense of the rest of the code review.

Secretary 
The secretary takes minutes. This means writing down all points that 
arise, to make sure that nothing is forgotten after the review. If there 
is a review checklist (see the example on page 398), the secretary fills 
it in. The secretary role should not be fulfilled by the same person who 
acts as chairman.

Before arrival, everyone is expected to have familiarized themselves with 
the code. Everyone must have read the supporting documentation (any 
relevant specifications, etc.)2 and must be aware of any project coding stand-
ards. Whoever organizes the meeting should highlight these documents in 
the meeting announcement to prevent misunderstanding.

Agenda

To organize the code review meeting:

The author signals that their code is ready for review.

The chairman arranges the meeting (booking an appropriate location, 
setting the time, and assembling the correct set of reviewers).

All required resources (computers, a projector, printouts, etc.) are 
arranged.

The meeting must be called sufficiently ahead of time to allow the 
reviewers to prepare.

After the meeting announcement, the author cannot change the code 
gratuitously—this is not fair to the reviewers.

The code review meeting is run as follows:

The chairman arranges for the room to be prepared beforehand so the 
review can start on time.

The author takes a few minutes (no longer!) to explain the purpose 
of the code and a little bit about its structure. This should be prior 
knowledge, but it’s surprising what misunderstandings can be caught 
at this first stage.

Structural design comments are invited. These are comments relating to 
the structure of the implementation—not the code at statement level. 
This could include the breakdown of functionality into classes, the split 

2 Naturally, all supporting documentation will have been thoroughly reviewed beforehand.
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of code into files, and the style of function writing. (Is it sufficiently 
defensive, and are there good tests?)

General code comments are invited. These may relate to a consistent 
incorrect coding style, bad application of design patterns, or incorrect 
language idioms.

The code is carefully stepped through in detail, a line or block at a time, 
to look for flaws. The things to look out for are described later (in “Code 
Perfection” on page 395).

A number of example scenarios of code usage are considered, and the 
flow of control is investigated. If there is a complete suite of unit tests 
(there should be) then these detail all the scenarios to explore. This 
helps the reviewers cover all execution paths.

The secretary notes all changes required (recording the filename and 
line number).

Any issue that might percolate out to the wider codebase is recorded for 
further investigation.

When the review has finished, a follow-up step should be agreed upon. 
The possible scenarios are:

Okay
The code is fine, no further work is necessary.

Rework and verify
The code needs some rework, but another code review meeting is 
unnecessary. The chairman nominates someone to act as verifier.
When the rework is complete, the verifier checks it against the 
recorded minutes of the code review meeting.

A reasonable deadline should be imposed for any rework, so 
that the detail of and reasons for actions stay fresh in people’s minds.

Rework and re-review
The code needs a lot of rework, and another code review is deemed 
necessary.

Remember, the aim here is to identify problems, not to fix them during 
the meeting. Some problems require considerable thought to fix, and this is 
a job for the author (or modifier) after the review has finished.

You may find it useful to use the code review checklist at the end of this 
chapter when conducting your reviews.

Integration Reviews

Code review meetings are a high-ceremony review method. They’re hard 
work, but they undoubtedly find many problems that would otherwise go 
undetected.

Other, less intense review procedures exist, providing most of the 
benefits of code review meetings but packaged in an easier-to-swallow pill. 
Perhaps the most effective is the integration review, performed whenever new 
code is integrated onto a mainline code branch. 
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This could be when:

A new piece of code is about to be checked into source control

A new piece of code has just been checked into source control

A code package is merged from a feature development branch onto 
the main release branch

At such a point, the code in question is marked for review, and a suitable 
reviewer is picked: either someone responsible for that module (the code 
integrator or maintainer3) or a shadow (or code buddy) who is assigned to 
verify that author’s work in a one-on-one review session.

These gated code check-ins are often implemented with a software tool 
that is integrated with the source control system. They’re quite hard to arrange 
manually and are usually left as a check-in discipline: You are not supposed 
to check any code in until it has been peer reviewed. This approach is quite 
hard to police; errors can slip past in hurried, last-minute check-ins.

The actual review step here is usually a lot less formal than the meetings 
described earlier. The reviewer scans the code to check that it isn’t obviously 
broken, tests it (perhaps reviewing the available unit tests to ensure that 
they’re valid), and then authorizes it for inclusion in the mainline. Only then 
will the code integrator migrate the verified code into the release tree. For 
more serious projects, or at more sensitive times (just before a major release 
milestone, for example) this review step may become much more stringent—
requiring more eyeballs and more effort.

Since the reviewer and author don’t need to actually meet face to face 
(although it is preferable to do so), this can be considered a form of virtual 
review process.

Review Your Attitudes

Do to others as you would have them do to you. 
—Luke 6:31

Code reviews require a constructive attitude—you need to approach a review 
with the correct mindset, or it will be unsuccessful. This works two ways: for 
the author and the reviewer.

The Author’s Attitude
Many people shy away from a code review for fear it will expose their inade-
quacies. Don’t do this. Having your code reviewed is a good way to learn new 
techniques. You must be humble enough to admit that you’re not perfect and 
are willing to accept criticism from others. Your coding style will improve as 
you learn from the changes made to your work.

3 Compare this with an open source project’s maintainer, who collates patches submitted by 
other hackers and integrates them into the main source tree, performing periodic software 
update releases.
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KEY CONCEPT No one’s code is above review and peer scrutiny. Actively invite review of your code.

As an author, do not be defensive about your code. There is a natural 
tendency to take all criticism personally and assume that it’s an assault on 
your abilities. To cope with a code review, you need to reduce ego and personal 
pride. Understand that no one writes perfect code: Even the most awesome 
programmer’s code will be criticized for tedious little problems in a code 
review.

This is egoless programming, described by Gerald M. Weinberg in his 1971 
book The Psychology of Computer Programming: a timeless description of the 
critical attitude that makes reviews work. (Weinberg 71) Programmers 
who aren’t afraid of bugs in their code or of others finding those bugs will 
generate better, safer, more correct software. A willingness for others to help 
find faults in your work is an essential attribute of the master programmer.

When you’re in the hotseat, try not to waste other people’s time. Before 
you present your code for review, run a dummy review by yourself first. 
Imagine you’re presenting your work to the others. You’ll be surprised by 
how many little flaws you’ll filter out, and it will help you to be more confi-
dent in the real review. Don’t rush out half-baked code and expect others to 
review the flaws away for you.

The Reviewer’s Attitude
When reviewing code and making criticism, you must be sensitive. Comments 
must always be constructive and not intended to lay blame. Do not launch 

M E T H O D  I N  O U R  M A D N E S S

Code reviews are a universally acknowledged technique and have been around 
since people punched their programs into stacks of cards. We’ve looked at two 
review procedures in detail, but there are many subtle variants. Programming teams 
pick a review mechanism to suit their members and the nature of their work. (Poor 
teams perform no code review at all.)

Here are two other common review methods:

Fagan inspections 
This is a well-respected process for formal reviews, much as described in this 
chapter, defined by Michael Fagan in his Defect Free Process. (Fagan 76) Fagan 
emphasizes the importance of an ability to review and shows how to improve 
review skills. Fagan inspections identify problems both with the work product and 
with the process that created it.

Shadowing 
This is a a halfway house between pair programming and code reviews. Each 
code module has a lead developer who works on the code. A shadow developer
is also assigned; periodically the shadow reviews the module with the lead. As 
design solidifies, the shadow developer verifies the decisions that are made. As 
the code fills out, the shadow reviews progress and offers constructive advice.

In more formal settings, the shadow is given authority to approve the code for 
release. No module can be integrated until the shadow developer agrees that it’s 
ready for inclusion in the release build.
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personal attacks on the author. Diplomacy and tact are important. Address 
your comments to the code, rather than the coder; prefer to say The code does 
this . . . rather than You always do this. . . .

Code review is a peer process: Every reviewer is considered equal. Seniority 
doesn’t matter, and all views are considered. It is interesting that even the 
least experienced programmer will have something worth mentioning in a 
code review. And just as the author learns from the review, so may a reviewer.

Over time, you will perform many, many reviews (especially if you perform 
integration reviews). Be careful that your review process doesn’t become a 
mundane chore; it’ll soon be an ineffective waste of everyone’s time. Maintain 
a positive approach to your code reviewing. As a reviewer, always try to have 
something useful to say at each review. Sometimes this is easy; sometimes it is 
very difficult to say anything interesting. But by forcing yourself to make com-
ments, you won’t fall into the easy review rut, becoming a yes man who adds 
nothing to the process.

KEY CONCEPT The success of a code review depends heavily on the author and reviewers adopting a 
positive attitude. The aim of a review is to collaboratively improve the code, not to 
apportion blame or to justify implementation decisions.

Code Perfection

When perfection comes, the imperfect disappears.
—1 Corinthians 13:10

We haven’t yet considered what type of code will pass review and what code 
will fail. It’s beyond the scope of this chapter to describe what good code 
looks like—the first 15 chapters of this book describe important aspects of high-
quality code. As we look for bad code design and hunt software bugs, there 
are a few recurring themes. The reviewed code must be:

Bug free 
Bugs are our enemy, the nemesis of good software development. We must 
be confident about the quality of our work and need to find faults as 
early as possible in the development process. The earlier we try to find 
problems, the more we are likely to find and fix and the less cost and 
hassle they incur (see “The Economics of Failure” on page 157).

Correct 
The code must meet all relevant standards and its requirements. Ensure 
that all variables are of the correct type (e.g., there is no chance of numeric 
overflow). Comments must be completely accurate. The code must meet 
any memory size or performance requirements (especially important for 
embedded platforms). Check that there is appropriate use of libraries 
and that all function parameters are correct.

The code is validated to conform with its requirements and functional 
specifications. The content of its specification is taken to be correct; if it 
wasn’t, then the task would be herculean! Sometimes code review 
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comments might feed up to the specification (for example, where 
clarification is needed), but this is not our goal at code review—don’t get 
sidetracked into discussions on whether the specification is wrong; the 
secretary should record the issue in the minutes, and the review should 
continue.

Complete 
The code must implement the entire functional specification. It must 
have been integrated and debugged satisfactorily and pass all test suites. 
The test suites must be comprehensive.

Well structured 
Check that the implementation’s design is sound, that the code is easy to 
understand, and that there is no duplication or redundant code. Look 
for any obvious cut-and-paste programming, for example.

Predictable 
There must be no unnecessary complexity and no unexpected surprises. 
The code should not be self-modifying, must not rely on magic default 
values, and must not contain the subtle chance of infinite loops or 
recursion.

Robust 
The code is defensive. Wherever possible, it protects against detectable 
run-time errors (divide by zero, number-out-of-range errors, etc.). All 
input should be checked (both function parameters and program input). 
The code handles all error conditions and is exception safe. All appro-
priate signals are caught.

Data checking 
Bounds checking is performed on C-style array access. Other similarly 
insidious data access errors are avoided. Multithreaded code has correct 
use of mutexes to prevent race conditions and deadlock. The return 
values of all system/library calls are checked.

Maintainable 
The programmer has been wise in his or her use of comments. The code 
is kept under correct revision control. There is appropriate configura-
tion information. The code formatting meets house standard. It compiles 
quietly, without spurious warnings. 

KEY CONCEPT If you don’t know what good code looks like, then you can’t make a valid judgment of 
other people’s work.

Beyond the Code Review

A review process is key to the production of any high-quality item, so it is not 
solely useful for source code development. A similar review process is used 
for specification documents, lists of requirements, and so on.
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In a Nutshell
It is easier to be critical than to be correct.

—Benjamin Disraeli

Code reviews are an essential part of the software development process and 
help us to maintain a high quality of code. Just as an apprentice learns a 
trade from knowledge passed on, code reviews spread knowledge and teach 
coding capability. As more of a peer-to-peer than master-apprentice activity, 
they provide a learning opportunity for author and reviewer alike.

Write your code to be reviewed. Remember that it’s never just for you to 
read; other people must be able to maintain it as well. The author is always 
accountable for the quality of his or her work. A good programmer cares 
more about crafting great code than his or her own pride.

See Also

Chapters 1 through 15 
Each of the opening chapters of this book describes important aspects 
of good code.

Chapter 9: Finding Fault 
A description of the types of bugs that may exist in your code.

Chapter 19: Being Specific 
Code is reviewed against its specification. The specification also requires 
careful reviewing.

Good programmers . . . Bad programmers . . .

Desire code reviews and 
are confident in their code 
quality

Accept others’ opinions and 
learn from them

Can sensitively and accu-
rately comment on other 
people’s code

Are scared of code reviews and 
frightened of others’ opinions

Take criticism badly; they are 
defensive and easily offended

Use reviews to demonstrate 
their superiority over lesser 
abled coders; their comments are 
unduly harsh and unconstructive
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Checklist

Many review processes involve a checklist—a set of characteristics of good 
(passable) code to check off as you go along. If your code doesn’t meet these 
criteria, then it has failed the review. These checklists vary in detail, length, 
and subject matter.

The following code review checklist is an example. You can use it to help 
direct your review work. Unlike some checklists, it doesn’t systematically list 
every potential problem in every possible language; it just helps to guide the 
review process and figure out when to continue to the next review step.

.

Code review CHECKLIST
Use this form to help you perform a code review.
About the code
Module name:
Version reviewed:
Code author:

Automated inspection
� The code compiles without errors
� The code compiles without warnings
� There are unit tests
� They are sufficient (include all boundary cases, etc.)
� The code passes them

Design
� The code is complete (against its specification)
� There is a good choice of algorithms
� Optimizations are necessary and appropriate
� Any missing functionality is marked clearly in the code

General code comments
Style
� The code layout is clear
� It follows project style guidelines
� There is a good (unambiguous) public API
� There is a good choice of names

Defensive programming
� Array access is guarded and safe (C/C++)
� There is a correct choice of types
� All input is validated
� There is no use of compiler-specific features

General comments

Statement-level review

File Line Issue

Follow-up
Conclusion:
� Code OK
� Rework and verify
� Rework and re-review

Reviewed by:
Date:

Language:
Number of files:

� The code is kept under source control
� The code has been tested with inspection tools

Tool name Results

� Continue to next section � Stop review here

General observations about the code’s design

� The code is well structured
� There is design documentation
� The code matches the documentation

� Continue to next section � Stop review here

General comments about the quality of the written code

Error handling
� Error conditions are routinely handled
� Assertions are used to validate logic
� The code is exception safe
� Errors are propogated, not hidden
� There are no resource leaks

� The code uses multiple threads
� It is thread safe
� There isn’t potential for deadlock

Structure
� There is no redundant code
� There is no cut-and-paste programming

� Continue to next section � Stop review here

Fill out the table below, and move on to a new sheet
as required. Rate issues on a scale from 0 (cosmetic/
nice to have) to 5 (must fix).

Rating

Continue on a separate sheet (or mark up a paper copy of the code)

Record the outcome of the review here

Complete work by:

Assigned verifier:
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Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 547.

Mull It Over

1. Does the required number of reviewers depend on the size of the code 
being reviewed?

2. Which tools are useful aids for code reviewing?

3. Should you perform a code review before or after running it through 
source code checking tools?

4. What preparation is required for a code review meeting?

5. How do you differentiate review comments to be acted upon immediately 
from those to chalk up for experience on the next project?

6. How do you run a virtual review meeting?

7. How useful are informal code reviews?

Getting Personal

1. Does your project perform code reviews? Does it perform enough code 
reviews?

2. Do you work with any programmers whose code is considered to be 
above review?

3. What percentage of your code has ever been subject to code review?
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P I E C E  O F  S T R I N G ?

The Black Art of
Software Timescale Estimation

21

In this chapter:

Why do we need timescale 
estimation?

Why is estimation hard?

Practical ways to estimate

Keeping to schedules

I never guess. It is a shocking habit—destructive to the 
logical faculty.

—Sherlock Holmes (Sir Arthur Conan Doyle)

How long is a piece of string? Or for our purposes, 
how long does a piece of string take? It’s as simple 
a question to answer, and it makes about as much 
sense.

This chapter is about software timescale 
estimation, an important skill of the professional 
programmer. It’s one of the mystical black arts 
of development, based more on hunches than 
science, with frequently inaccurate results. It’s 
complicated, but an essential part of the software 
development process, and is something that every 
programmer must learn to do.
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The rules of the software factory are necessarily governed by economics: 
the flow of money. Timing estimates are important, since the bulk of the cost 
of software development is manpower—programmers aren’t cheap. Develop-
ment environments and hardware costs pale into insignificance. To make a 
software product, we must know how much work is involved, how many people 
are required to build it, and when it will be completed and ready to make 
money. This tells us how much construction will cost. The marketing depart-
ment will predict how much it will make in sales. These two predictions go 
head-to-head in a dramatic fight to the death; the bean counters draw up 
budgets to work out whether a project is financially viable.

This is an odd thing called planning, something at which most program-
mers don’t excel. Don’t worry: That’s why we have managers. But you have to 
understand the rules of the game if you really want to play well. Writing 
commercially successful software requires a huge amount of foresight and 
planning. Oh, and nerves of steel.

To construct a development plan, we perform a high-level design of the 
software system, break it into components, and estimate how long each com-
ponent will take to write. There’s rarely enough time to seriously scope and 
design each one, so this is a very rough science. Choosing a software develop-
ment model (see “Development Processes” on page 425), we assemble the 
estimates on a plan, spread across a number of programmers, and use this to 
work out the economics. The quality of this plan is clearly founded on the 
quality of the timescale estimates. Catastrophically bad guesses could spell 
financial ruin, so it’s important stuff!

Without plans, you’re creating products by luck, not on purpose. Estima-
tion is an integral part of the project planning process—but that doesn’t mean 
that it’s done by the project planners! The only people able to provide time-
scale information are the programmers who have to do the work. That’s you! 
This is part of the commercial reality of life in the software factory.

A Stab in the Dark

In any company, on any project, at any point in time, software timescale esti-
mates are nothing more than educated guesses—or else they wouldn’t be 
estimates. Guesswork doesn’t sound very professional, does it? But it’s the 
best you can do: You’ll never know exactly how long a task will take until it’s 
complete, when it’s generally too late for the information to be useful.1

The quality of an estimate is primarily determined by how well you 
understand the task being estimated. That is, how well you really understand 
it, not how well you think you do. It also depends on how much time you have 
to create the estimate, and therefore how much effort you can put into a 
realistic design effort or feasibility review. With a very precise specification, 
you can make an estimate in a short time; with a vague specification, it could 

1 Except, of course, as experience to base future estimates on.
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take ages. A reasonable, justified estimate might require several prototypes to 
investigate implementation choices—different options could have radically 
different time consequences and levels of inherent risk.

Without enough time to do this, you need to concoct a worst-case figure 
that development should not exceed. The less effort you put into a timescale 
estimate, the less the confidence you may have in the figure, and the greater 
the likely variance of reality from the estimate. Development could take half 
of the estimate, the full period or—even worse—could require more time. 
We manage this risk by building contingency into the development plan to 
balance risky areas. How much contingency do you provide? You have to 
guess! We’ll look at this later.

KEY CONCEPT Software timescale estimation requires educated guesswork. Each estimate should 
come with a gauge of your confidence in it.

While good estimates are reasoned and justified, bad estimates are little 
more than a stab in the dark. This is a standard engineering issue, requiring 
a perceptive and flexible management. It has been an engineering issue for 
centuries.2 Managers and planners deal with estimations for the whole project. 
That’s exceptionally hard. We’ll just look at estimating single programming 
jobs. Thankfully, that’s not exceptionally hard, just really hard.

Why Is Estimation So Hard?

I live in Cambridge, UK; my family lives in Bristol. Software timescale estima-
tion is like estimating how long it will take me to visit them. Given a strong 
tailwind and no traffic, I can tell you how long the drive takes. But if there is 
road work or a traffic jam, if my car breaks down, I leave late, or I travel at 
rush hour, then this estimate becomes a lot less reliable. Foreseeing some of 
these problems, I will commit to a likely arrival window. I know the best-case 
journey time; I have an idea of the worst case (I’ve had some nightmare trips). 
I can judge an expected arrival time somewhere between the two. However, I 
can’t ever fully account for the unforeseen—if my car breaks down, I’m stuck. 
Mobile phones are helpful in this situation: If I’m going to be late, I can call 
and let my folks know to keep dinner heated (and preferably out of the 
dog’s bowl).

The software development process follows a similar pattern. When 
planning software, there are foreseeable potential problems to account for, 
third-party dependencies to manage, and a need for contingency to cope 
with the unforeseen. You can give a best-case development time for a slice of 
work, and you need to consider a worst-case time. Of course, the impact of a 
bad guess isn’t just your dinner inside the family pet—it’s the success or 
failure of a project, and possibly the solvency of your company.

2 For a Biblical example, see Luke 14:28!
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This begins to show us why estimating the length of a development task 
is so hard and so crucial. There are plenty of things conspiring to make this a 
tricky task:

There are lots of variables to consider. They come with the inherent 
complexity of the problem, the implications of your code design, and 
the existing software ecosystem it must fit into. Some of those variables 
may change from day to day.

Requirements will change under your feet, leading to software scope 
increases. As the feasibility of a project is investigated, new problems and 
user-level requirements are unearthed at a phenomenal rate. This makes 
the estimation job tricky—you’ve got to work hard to keep up with it all 
(see “Requirements Specification” on page 371 for strategies to man-
age this).

You can’t give an accurate estimate without knowing all the work involved. 
Perhaps you’ll need to rework existing libraries that don’t provide enough 
functionality or refactor to enable safe extension of existing code. If you 
haven’t discovered this, then your estimate will be too low.

Few projects start on a blank canvas. You must learn the existing system 
before you can estimate how long work will take. You seldom have time 
to do this properly before the estimate is delivered.

If the task is something that has not been attempted before, then it is 
harder to figure how long it will take. You have no prior experience to 
base the estimate on.

Many projects rely on third parties, and these dependencies can prove to 
be nightmarish. The source of the dependency could be an operating 
system vendor, a small but significant code library, an external specifica-
tion, even the customer. You can’t control the third-party delivery; your 
estimates depend on it shipping on time. This increases the risk of delay 
and must be monitored carefully.

Estimation is hard. But that doesn’t absolve us from responsibility. We 
must account for the things that are genuinely foreseeable: Like road work 
or bad weather, we can reasonably expect some of these pitfalls. You need to 
find the right balance of pessimism, optimism, and—somewhere in the 
middle—realism.

KEY CONCEPT Creating timescale estimates is a genuinely hard task. Don’t underestimate how much 
work is involved. Appreciate the repercussions of making a bad estimate.

T H E  W E A K E S T  L I N K

Unforeseen problems can trip you up in unexpected places. Recently, my linker 
couldn’t cope with the size of executable image I was generating, and I needed 
to go off and fix the linker before I could run my code. The development time 
more than tripled its original estimate.
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The story doesn’t end there: It’s not just making the estimate that’s hard. 
Living with the consequences can be just as painful.

Estimates become contractual, used to set delivery schedules with cus-
tomers. Once set in concrete, these dates are hard to move and costly to 
get wrong.

It is hard to work to someone else’s estimate—were you not up to the 
task if you miss a deadline, or was the estimate wrong?

New tasks are often discovered during development which need account-
ing for and slotting into the schedule, pushing everything else back. 
Similarly, you’ll only discover specification problems once the develop-
ment work is actually under way. These specification changes will affect 
the amount of work required, and therefore the time estimate.

There are always unforeseen problems. You can absorb the impact of 
small problems by working a little harder to stay on schedule. You didn’t 
need to sleep this month, did you? But large problems introduce buckets 
of extra work and cause schedule mayhem.

The estimate is just another responsibility: You are not only accountable 
for creating the code, and for it to be good, well-designed, maintainable 
code; you also have to deliver it to a timescale that you have promised. 
Pity the poor programmers!

Under Pressure

The software factory is not a reasonable place, and the temptation to give 
optimistic estimates is strong. Programmers new to the estimation game are 
particularly vulnerable. There is pressure from above to promise short 
schedules so that we can win contracts, announce new releases, maintain 
internal political stability, and so on. This is an understandable, sad reality; 
no company exists in a vacuum, and the shareholders want to be kept in 
caviar and champagne.

But the pressure isn’t entirely from above. It also comes from a program-
mer’s personal pride. Techies like to promise an optimistic timescale; we are 
motivated people who are proud of what we deliver and how fast we can do 
it. It’s tempting to think, “Oh, it shouldn’t take too long.” But there’s a very 
real difference between a quick code hack or prototype effort and a full, 
production-ready piece of work. Our timescales must be grounded in reality, 
not in hopeful ideals.

KEY CONCEPT Everyone (including you) wants shorter development timescales. Don’t kid yourself 
about what is technically possible in the given development time. Don’t promise a hack 
timescale when you must deliver production code.

We must be aware of this pressure and react to it carefully. Beware of the 
danger of an extreme opposite reaction. It is easy to be a pessimistic doom-
sayer, to imagine a task lasting indefinitely, and compensating with a stupidly 
large timescale estimate. The very real danger of an overestimate is that 
projects inevitably expand to fit the available time! You’ll always find bits of 
code to polish when there are a few days spare.
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In an ideal world, project deadlines are established after a feasibility 
review that proves the project is possible in reasonable time. The Real World 
is rarely that kind. Instead, you are given a deadline (“Get it shipping by 
Christmas”), and then have to figure out how to deliver. If the work doesn’t 
fit, you must negotiate how you’ll get there: Remove features, add program-
mers, outsource risky parts, or perhaps provide a later upgrade with more 
functionality. Sometimes this planning becomes more of a marketing 
exercise and gets quite creative!

No one said that it was supposed to be easy.

Practical Ways to Estimate

With the increasing pressure to be prophets as much as programmers, how 
do we meet expectations? Estimation, like many other skills, is something you 
get better at it with experience. It’s not an old man’s game, but if you don’t 
work against a backdrop of schedules and set yourself targets to work toward, 
then you won’t grow in the skill. Practice makes perfect.

In the Real World, we rarely have the luxury of practice projects or a 
sandbox to experiment with timescale estimation. Somewhere along the 
road from junior programmer to guru, you have to pick up this skill! Sadly 
there is no magic formula or easy recipe for coming up with an estimate. But 
following these simple steps will immeasurably improve your accuracy:

1. Break the task down into the smallest blocks possible, effectively 
performing a first pass of system design.

2. When you reach a fine resolution with suitably comprehensible parts, 
provide a timescale estimate for each block in man-hours or man-days.

3. Once you’ve estimated all of the individual timescales, place them back-
to-back, add up their durations, and voilà: an instant timescale estimate.

A  W A R  S T O R Y

The company had just taken the biggest and most strategically important order in its 
five-year history. This one was make or break. Sales fought hard to close the deal, 
agreeing to a hard customer deadline: The software must ship by the end of the 
year. With contracts signed, everyone patted themselves on the back.

But no one had the time (or wit) to confer with the technical staff to ensure that the 
project was feasible. It wasn’t. Managers started panicking, but with an immobile 
deadline and fixed feature set, there wasn’t much they could do. The engineers com-
plained and waved their project plans aloft, but were told to “just make it fit.” They 
worked hard day after day, late into the night, and were soon exhausted. Each week 
saw them slip further away from the hopelessly optimistic schedule.

In one last herculean effort, they completed the code by their deadline, only to 
be tripped up by an unforeseen hardware problem that delayed the project by two 
months. There was no contingency in the plan to account for this disaster.

The project was a failure, the engineers got burned out, nerves were fraught, and 
the customer was unhappy. Not long into the next project, most of the development 
team quit.
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This strategy works because you can fully comprehend and accurately 
estimate a series of smaller activities more easily than one gargantuan task. 
Estimates should never be made in units larger than man-days: Such large 
tasks show that you don’t really understand the problem yet; your estimate 
cannot be at all reliable. Mercilessly decompose large tasks until you end up 
with fine-grained—estimatable—work units.

KEY CONCEPT Time estimates should be made for small tasks whose individual scope is easy to under-
stand. The measurement should be in units of man-hours or man-days.

Of course, development work can often be parallelized between people; 
by breaking it into small comprehensible parts, we can juggle tasks around 
and work out how to run them concurrently, bringing forward the completion 
date. This becomes a project planning issue.

Set aside a reasonable amount of time to make an estimate. The requisite 
high-level design is not immediate; don’t presume that timescales can be 
guessed easily. You’ll fool yourself by producing a finger-in-the-air estimate 
with no foundation on prior experience and no basis in a system design.

It is vital to consider every activity that will be required to deliver the 
software. This means including time for: 

Performing adequate thoughtful design

Any exploratory work or prototyping required

The actual code implementation work

Debugging

Writing unit tests

Integration testing

Writing the documentation

Any research or training you’ll be undertaking in the period

This list shows that less time than you might expect is spent writing code, 
compared to other peripheral activities. Programming isn’t just about cutting 
code; don’t forget to include testing and documentation in your timescale 
estimates. They are essential. Without testing and documentation, you’ll 
deliver code that doesn’t work properly and can’t be fixed later because no 
one knows how to use it.

Don’t try to calculate elapsed time (by incorporating distractions from 
other projects, reading email, browsing the web, drinking coffee, and 
answering the call of nature). It will inevitably be very different from the 
actual time spent on the task. The task may run concurrently with another, 
or be interrupted to provide space for another project. We deal with this 
on a project plan (described in “The Planning Game” on page 409).

How conservative should your estimate be? Should you veer toward 
optimism or pessimism? The correct answer is: The estimate must be realistic. 
Anticipate likely problems and factor them in, but don’t invent 1,000 ways a 
simple task could fail and use it as an excuse to give an inflated estimate. 
Don’t overestimate just to cover your tracks, or to give yourself more slack to 
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fill with games of solitaire. Our individual task estimates can’t mitigate for 
everything that can go wrong. Risk should be managed at the project level; the 
scheduler takes our estimates and works them into a reasonable plan with 
suitable contingency.

To make more accurate estimates, consider these important issues:

The more concrete and specified a project is, the easier it is to estimate. 
Have you been given a good spec?

Without a specification, there is no traceability, and a lot of the work 
involved in each package will be assumed. Two people could assume very 
different things about the project scope and expect different things at 
the project deadline. Rigorous specifications avoid this problem.

Delivering the wrong system on time can be just as damaging as 
delivering the right one, late. If there is no specification, write one and 
get it approved by the task stakeholders.3 At the very least, document all 
assumptions that you have made about the work.

The more functionality requested, the harder the estimate is to make. Try 
to shave off all unnecessary work. An excellent approach is to stage the 
delivery of the software, giving estimates for each deliverable iteration.

Feed estimate information back upstream. The project decision-
makers can then balance the importance of each requirement against 
its technical difficulty. It helps to see which small feature requests will 
double development time.

If you don’t fully comprehend the entire problem, then you’ll make a 
very bad estimate. Spend time getting to know exactly what the software 
must do. If you need more time to make an estimate, then ask for it, or 
indicate your confidence in the time values. Never guess an estimate 
and hope that it’s about right—if you can’t justify an estimate, then 
don’t give it.

If the task depends on third-party input, then it is harder to estimate. 
Who is responsible for chasing the third party for delivery? You may 
need to factor this into your development estimate. Get the third party’s 
estimated delivery date, and then add time to integrate its work with your 
codebase (it never “just slots in”). Consider how much you trust the third 
party, and include a suitable amount of contingency as a buffer to 
accommodate problems.

Different people will work on the same task at different rates. This is 
natural; everyone has a different set of skills, level of experience, confi-
dence level, and relative number of distractions (e.g., older projects 
vying for attention or home commitments). You need to gauge how 
fast you work, and have a good understanding of the task you’re 
embarking on. Estimation is personal.

KEY CONCEPT Understand whether you’re creating an estimate for work that you will do (on a system 
you understand well) or that someone else will do (who might have to learn it first).

3 Of course, that will take time you didn’t plan for!
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Don’t accept pressure from above to be optimistic. Don’t promise 
unrealistic timescales, thinking you can make it up if you work over-
time. Have an appropriate response to managers who say, “It just has 
to be done faster.”

Perhaps most importantly, never plan up front on working overtime.

A simple way to improve your estimates is to ask for help with them. If 
you don’t understand a problem, then find someone who does, and ask for 
his or her opinion. James Surowiecki’s book The Wisdom of Crowds describes 
how large groups of people can be smarter than an elite few. Taking this 
extreme approach, get all the developers in your team to give rough esti-
mates for all tasks on the plan, and then take the average of their individual 
estimates. That estimate might not be too far off!

KEY CONCEPT Don’t make estimates in isolation. Solicit other people’s opinions to help improve your 
estimates.

The Planning Game

A few disconnected timescale estimates are no use to anyone. You have to 
join them up and convert them into something useful: a project plan with 
which you can manage the development schedule. Based on their individual 
timescale estimates, tasks are assembled on a timeline and allotted to devel-
opers. Dependencies between tasks are identified and factored in to the plan 
(obviously, dependent tasks cannot start before their dependencies have 
completed). The final result is a pictorial chart with time running along the 
horizontal axis and tasks positioned concurrently on it, looking something 
like Figure 21-1 (a variant of the classic Gantt chart).

Figure 21-1: A Gantt chart

Project planning is about allocating tasks to developers and working out 
how to schedule development effort. But that’s the easy half of the game. The 
important part is risk management—creating a safe and sensible plan in the 
face of uncertainty and hidden traps. 

The safest project plans:

Reduce the critical path
This is the single line of back-to-back tasks that trace from the start to the 
end of the project, shown by the darker blocks in the diagram above. A 
slip in any one of these tasks will force back all the tasks depending on it 
and push out the final deadline.
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There is always—by definition—a critical path on the plan. This is 
what gives project planners grey hair! We aim for the optimum juxta-
position of tasks to provide the smallest (or least risky) critical path.

Are not massively parallel 
The standard planning misconception when trying to compress a large 
project is that throwing more developers at a problem will speed it up. 
This rarely works. An extra burden is imposed when managing more 
people—there are more lines of communication, more people to coordi-
nate, and more points of failure. This is the subject of Brooks’s seminal 
essay, “The Mythical Man-Month.” (Brooks 95)

You mustn’t over-parallelize a project plan, and you shouldn’t 
parallelize individual developers, either. If you put one developer against 
two tasks concurrently, you can’t expect them to finish in the same length 
of time as those two tasks serialized. This sounds obvious, but it often 
happens in practice: You might be asked to support an old project and 
simultaneously start development work on another. Significant time is 
taken up switching between tasks, which reduces your overall efficiency. 
If you did the two tasks back to back, then you’d complete faster (but 
probably fail to meet the business requirements of your organization).

Are not too long 
A lengthy project plan is too ambitious. One small problem on the 
critical path at any point could jeopardize the entire project.

This is where iterative and incremental development (see “Iterative 
and Incremental Development” on page 432) brings benefits, by break-
ing large development schedules into smaller, less risky iterations that 
can be more easily managed. This makes the plan more dynamic; it is 
effectively re-created at each delivery point. Although this approach is 
inherently safer and will highlight problems earlier in the development 
process, it consequently involves more work overall. Many managers don’t 
like this—they like the illusion of an up-front waterfall plan that cannot 
be deviated from.

Good plans don’t just butt timescale estimates back to back. They 
account for the reality of the software factory and build in important risk-
reducing structures. This includes accounting for:

Vacation 
The amount of vacation allocated to each developer is known in advance 
and must be built in to the schedule. We must also include public holi-
days and any company shutdown over a Christmas break. On average, a 
developer takes half a day a week as vacation.

Loading
To be realistic, the plan must factor in normal interruptions (meetings, 
training, sickness, and so on). It’s normal to employ an 80 percent load-
ing on the plan for each developer to accommodate this. People who are 
in more demand are spread more thinly. You must be honest about this, 
or the “popular” developers will slip against the schedule, despite their 
hard work, and will quickly become frustrated.
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Contingency 
This is the biggie. You have to account for the problems seen looming on 
the horizon and provide space for the unforeseen disasters that might 
stand between you and your release date. This is where the risk manage-
ment rubber hits the road.

Risk is best managed at this project level, rather than within individual 
timescale estimates. On a development plan, we can accommodate poten-
tial problems by making informed judgments in full sight of the whole 
development process. The alternative, a series of pessimistic estimates 
placed on a plan, will inevitably be wildly out.

The million dollar question is: How much contingency should you 
add in? You can’t simply multiply the plan by three and call it contingency! 
A good strategy is to give each task a confidence value. Based on this, 
provide an extra pseudo-task on the plan for the riskiest tasks as “danger 
time.” Make this a fraction of the original task length, based on your 
confidence value.

Integration 
A task is not done once a component is code complete and unit tested. 
Reserve adequate time to glue all of the components together, and to 
test that the entire system works as expected. There will be debugging 
required and issues that only surface when components meet (perfor-
mance issues or interface mismatches, for example).

Support 
The longer people have been within an organization, the more call there 
will be on them to support old projects, answer bug reports from the field, 
and so on. Ensure that this is incorporated into their loading, and that 
they then stick to the plan, highlighting when other projects are demand-
ing more of their time.

Projects slip subtly when key people are stretched in all directions.

Mopping up 
Provide time to tidy up at the end of your plan. In the battle to release 
software, corners are cut to meet the deadline. This is known as amassing 
technical debt. Despite our preaching about good design and coding prac-
tices, this isn’t necessarily evil; it’s quite pragmatic. However, you must 
set aside time to tidy up and maintain a good, clean codebase. Otherwise, 
the next development iteration will build upon a broken, crufty codebase. 
Left unaddressed, this increasing pile of short-term hacks will become a 
burden to your programmers.

Think of this exercise as part of the previous job (despite occurring 
after the release deadline), and not as the beginning of the next one. 
Pay off your debt in the project that accrued it.

Never let these tidy-ups been viewed as optional extras; they are an 
important integral part of the project. In the frantic world of the software 
factory, optional tasks placed at the end of the schedule simply will not 
happen. Guard these tasks carefuly.
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KEY CONCEPT Create development schedules that will leave your codebase in a clean state. Plan to 
repay your technical debt.

An in-depth investigation of project planning is outside the scope of this 
book; it’s a large, complex task. But it is important to understand the basic 
principles. You must be able to develop software according to a plan, and 
must understand the rationale behind a plan to truly understand what you’re 
asked to do.

The are many planning models: formal methods of making educated 
guesses. Program Evaluation and Review Technique (PERT) is a classic planning 
method developed in the 1950s by the US Navy. It’s like my arrival window 
calculation when driving to Bristol. For each task, you estimate three times 
corresponding to different likelihoods of meeting delivery dates: a best case, 
worst case, and likely case. This ties into a scheduling procedure that identi-
fies the critical path and calculates the best- and worst-case project completion 
time. The bigger the gap between each task’s estimate, the bigger the risk 
associated with the task. Perhaps it will need more careful management or 
to be given to a more experienced member of the staff.

Boehm’s Constructive Cost Model (COCOMO) dates from 1981 and is an 
estimation model based on analysis of real software projects. It has evolved 
into COCOMO II, which more accurately reflects the nature of modern soft-
ware projects. (Boehm 81) Projects in Controlled Environments (known by the 
rather contrived acronym PRINCE) is a classic British piece of bureaucracy 
embodied in project management form; if it could mandate standing in 
queues, it would!4 Its scope is the entire project life cycle, from start to closure. 
The PRINCE planning process comprises seven steps, covering designing 
the plan, through estimation and scheduling, to plan completion. It too has 
evolved, into a method imaginatively called PRINCE2.

Keep Up!

How does a project get to be a year late?
. . . One day at a time.
—Frederick P. Brooks Jr.

As work slips and the project deadline looms, engineers work very hard and 
get little credit. The idea of rigorous testing is squeezed out in a mad rush 
to get something passable out the door on time. Bad estimates are a prime 
cause of this software circus. They foster managers’ incorrect assumptions 
about the difficulty of the development work, since they have no way to 
know the schedule was incorrect in the first place. When we make an 
estimate, it is therefore essential to get it right.5

4 Queueing is a popular British pastime, like drinking tea and playing cricket.
5 Ironically, good estimates can also cause this problem. DeMarco and Lister recount a genuine 
episode where a project lead reported their 100 percent confidence that the project would 
complete on time and to budget. (DeMarco 99) The managers, taken aback by this unexpected 
piece of good news, consequently decided to bring the deadline forward! No matter how good 
the engineer, you can always build a better manager to destroy his or her hard work!
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Given a realistic estimate for a software task, there are a few key ways to 
keep to schedule and prevent this kind of last-minute squeeze:

When starting a new task, check whether or not the allotted timescale 
really is practical—especially if you didn’t have the luxury of making the 
estimate yourself. Even if you did make the estimate, start by verifying it. 
Don’t rush headlong into a code editor, hoping that you can complete on 
time; be sure that you are genuinely able to deliver. A little sanity check-
ing up front can save you from a world of pain and embarrassment later.

Refer to the schedule—it matters. Keep a constant eye on how long 
you’re taking against scheduled time. Write down your timescales and 
keep them close at hand. Add personal estimates for any intermediate 
tasks that don’t figure on the main software plan, and run yourself as a 
mini-project. If you hit your internal milestones, you’ll have more chance 
of keeping on track with your externally visible timescales. Repeatedly 
review your list—at least once a day.

If you discover that you won’t hit the deadline, make this known as 
soon as possible so the plan can be adjusted. Like phoning ahead when 
I’m traveling to Bristol, it is better to get this fact out in the open as soon 
as possible. If the possibility of overrun is foreseen, then different sched-
uling decisions can be made to minimize the impact of the overrun.

This happens far too rarely in practice. If an important project has 
five programmers who must all report their progress, then none of them 
wants to be the first one to admit falling behind the schedule. This is 
known as playing schedule chicken. The result is everything seems to be 
fine, but then suddenly the project is hugely late. It was getting late one 
day at a time, but no wanted to admit it. Break this cycle and broadcast a 
warning as early as possible.

KEY CONCEPT Continually monitor your progress against the plan. Then you will never be surprised 
that your task has slipped.

I T ’ S  A L L  A B O U T  P L A N N I N G

The development team was getting quite large, and our working space had become 
really cramped. After a lot of effort, a new office was found and the team was told 
on Friday that we’d be working in the new location on Monday. Over the weekend, 
all the computers, servers, cables, routers, printers—everything—would be manhan-
dled into vans and transported to the new location. We were assured that it would 
be seamless and that everything would be ready on Monday morning.

On Monday morning, we turned up at the new office and, sure enough, everything 
had been set up and worked perfectly! All the IT infrastructure had been installed. 
The servers were back online and fully operational. Everyone’s workspace had been 
set up. A truly herculean effort.

But there was one small problem: There were no chairs. Not one. They had 
somehow been forgotten in the move plan, had gotten lost, and couldn’t be found 
anywhere! We had no chairs for three days.

Now that’s what you call planning.
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Do as much work as necessary, and no more. It might be fun to add that 
cute extra feature. But don’t. There are more important—planned—
things to be done. Ask for important extras to be scheduled in later if 
they aren’t really needed now. An ill-chosen detour on my route to Bristol 
will really set back my arrival time—even if it is a lovely scenic drive—so 
I take the sensible straight route to arrive on time.

Careful design exploiting modularity tends to reduce component depen-
dency, and so reduces the ill effects of slippage and the bunching up of 
tasks on the schedule. Agree on component interfaces early on, and 
provide stub components so development can continue while others 
parts of the system are being built.

Write good code, with a thorough set of unit tests. As keen craftsmen, 
this should be self-evident! It helps to reduce debug and maintenance 
time radically.

Don’t forget to finish coding with time to document and test 
thoroughly. Don’t build up to a final coding sprint in the last few 
days of the schedule. You need time to prove that your code works. 
Otherwise, you’ll slip as debugging inches out beyond your deadline. 
If you don’t have time to complete all this work, say so and get the 
timescale extended. Don’t skip these things—they’ll bite you later.

Watch out for changing requirements and specifications and track how 
this will affect your timescales. If it’s an adverse change, report it immedi-
ately. Don’t silently absorb functionality changes.

Be strict with distractions. Don’t work on other tasks unless they are 
accounted for on a plan. Learn to say no to old projects, extra work from 
other departments, and intrusions from the phone and email.

Guard against these external distractions, even the short ones that 
seem harmless; they can really lower the quality of your work. It takes 
time to get into the zone, that productive place where your mind is on the 
task and the code is flowing freely from your fingertips (psychologists 
call this state flow). Even short distractions interrupt this effectiveness, 
and when you return to work, you must spend more time getting back 
into the zone. The impact of interruptions can be more than three times 
their duration. (DeMarco 99)

Foster a development culture that’s conducive to getting work done. 
Respect each other’s brain-space: a person’s time to think and work. Make 
sure that every meeting really is necessary—don’t pull developers into 
random, time-wasting get-togethers.

Maintain a positive and optimistic approach. Believing a project is 
doomed is a surefire way to make that happen in reality.
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In a Nutshell

Good luck is a lazy man’s estimate of a worker’s success.
—Anonymous

Timescale estimation and planning help us to develop commercially 
successful software. However, there is no rigorous method to accurately 
determine software timescale values. That’s why it’s estimation.

Aim to develop your estimation techniques, and become wary of potential 
problems that can ruin your neatly scheduled development plan. Learn how 
to work to a schedule and to identify when your schedules are impractical.

See Also

Chapter 13: Grand Designs 
Good timescale estimates can only be based on a sound initial code 
design.

Chapter 19: Being Specific 
Making an estimate requires a well-defined scope of work, which must be 
captured unambiguously in a specification.

Chapter 22: Recipe for a Program 
Development methodologies determine how tasks are slotted together 
and placed on a project plan.

Good programmers . . . Bad programmers . . .

Create good timescale esti-
mates by considering all parts 
of the development process, 
based on a sound component 
breakdown

Try to produce tested code 
with full documentation, prop-
erly integrated within the 
timescales

Highlight timescale problems 
early on so that they can be 
dealt with

Produce hopeful estimates, 
based solely on hunches and 
gut feelings

Can hack out some code within 
their timescale estimates but 
will not produce production 
quality, bug-free code

Think that admitting a time-
scale problem is a sign of weak-
ness, and work themselves silly 
trying to catch up—when they 
fail, they look silly (and tired)
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Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 550.

Mull It Over

1. How can you rescue a slipping project and bring it back on track?

2. What’s the correct response to having a deadline imposed on you before 
feasibility or planning work commences?

3. How do you ensure that a development plan is genuinely useful?

4. Why do different programmers work at different rates? How can you 
reflect this on the plan?

Getting Personal

1. What percentage of the projects that you’ve worked on have run to 
schedule?

a. For those that did: What contributed to the success of the planning 
effort?

b. For those that failed: What were the main problems?

2. How accurate are your timescale estimates? How far off target are you 
normally?



PART VI
V I E W  F R O M  T H E  T O P

The air’s getting thinner, but the view’s getting better. 
Several hundred pages ago we started our journey at 
the lowest level, grubbing around the seedy underbelly 
of source code construction. In this last section we complete our journey 
by climbing to the very top of the software development mountain and 
surveying the territory below. I hope you’re not afraid of heights.

Here we’ll look at how the final parts of the jigsaw fit together.

Chapter 22: Recipe for a Program
The code cookbook: how we actually write software in our development 
teams. This chapter describes both software development methodologies 
and software development processes. It shows how we manage to pro-
duce programs in a predictable, timely manner (or, at least, attempt to).

Chapter 23: The Outer Limits
A look at the different code-writing disciplines out there: applications 
programming, games programming, distributed programming, and 
more. Each of these branches of programming has its own special 
problems and important skills. Understanding these will equip you 
to write the most suitable code for each occasion.

Chapter 24: Where Next?
The end is in sight. . . . This is the final, tearful farewell. We look at where 
to go next in your continuing study of code craft. This book is just the 
beginning.
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Code Development
Methodologies and Processes

22

In this chapter:

Programming styles

Software development 
processes

How they affect our code

They always say time changes things, but you actually have 
to change them yourself.

—Andy Warhol

Ingredients
1 bunch programmers (preferably fresh)

1–2 tsp language

1 target platform

1 project manager

1 pinch luck

1 sachet dehydrated training

Various industry buzzwords

Instructions
Marinade programmers in training. Add lan-
guage, target platform, and season with project 
manager. Stir briskly until well mixed. Add 
buzzwords to taste. Sprinkle evenly with luck 
and leave to cook in a hot software oven until 
deadline. Remove, tip onto wire rack, and allow 
to cool before handing on to customer.
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I know at least four recipes for sponge cake. They vary depending on 
whether you want a fat-free or an egg-free cake and also on the method you 
want to prepare with. Writing software is like that. There is no one recipe or 
magic formula; the same system could be built in many different ways, with 
no one necessarily better than any other. There are different ingredients that 
you may choose to feed the development process and different methods to 
follow. Likely as not, they will each produce a slightly different cake; different 
in terms of features, structure, stability, extensibility, maintainability, and more. 
These recipes describe the software life cycle : the phases of development rang-
ing from the very beginning (conceptualizing the software) to its very end 
(decommissioning it).

As software engineers, we should be able to predictably (and to some 
extent reproducibly) create software by following a defined procedure. As 
software craftsmen, we should be able to harness a particular development 
procedure as a tool to help fashion the best software possible. In this chapter, 
we’ll investigate some of the recipes for creating software; we’ll compare, 
contrast, criticize, and see how they affect the way we code.

We programmed a ZX spectrum differently from a modern palmtop PDA, 
and that differently from a mainframe stock control system with a high-capacity 
web interface. We program differently alone than we would working in a pair, 
and differently than we would in a 200-strong worldwide project team. Differ-
ences in the target platform and development team (and their levels of 
experience) will shape the choice of recipe. The art of programming is much 
more than just edit, compile, link, and run.

KEY CONCEPT Good programmers are aware of how they program—the methods and practices that 
shape their work.

What are these programming recipes?

Programming Styles

A programming style describes how a software problem is mapped out and 
how its solution is decomposed and then modeled by the target language. 
We have to model a solution, since useful systems can’t be entirely held in the 
mind of a single developer. The programming style shapes how we split a proj-
ect up into manageable pieces; it is the design paradigm used to express your 
code’s intent.

Different programming languages support different programming styles. 
Some are tailored to a specific one; some cater for a number of them. The 
programming styles fall into two main camps: imperative and declarative.

Imperative (or procedural) languages allow you to specify the explicit 
sequence of steps to follow to produce the program’s output. It’s what 
most programmers are used to.

Declarative languages describe relationships between variables in 
terms of inference rules (or functions), and the language executor
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applies some fixed algorithm to these rules to produce the result. 
(This description might turn into understandable English once 
when we take a look at functional and logic programming.)

The programming language you choose will go some way to determine 
the style you design with. (However, it would be better to select a language 
that supports the style you want to use.) The programming language is not 
the ultimate determinant, though. It is perfectly possible to build structured 
code in an object-oriented language, in the same way that it is possible to write 
hateful code in any language. The next few sections describe the popular 
programming styles.

Structured Programming

This common imperative design method applies algorithmic decomposition—
a process of breaking a system into parts, each of which represents a small 
step in the larger process. Design decisions focus on the flow of control and 
create a hierarchy of functional structure. As Dijkstra observed, “Hierarchical 
systems seem to have a property that something considered as an undivided 
entity on one level is considered as a composite object on the next lowest 
level of greater detail: as a result, the natural grain of space or time that is 
applicable at each level decreases by an order of magnitude when we shift 
our attention from one level to the next lower one. We understand walls in 
terms of bricks, bricks in terms of crystals, crystals in terms of molecules, etc.” 
Indeed, it was Dijkstra’s seminal paper “Go To Statement Considered Harmful” 
that popularized structured programming. (Dijkstra 68)

Structured programming is a control-centered model and follows a 
top-down design technique. You start with the whole program in mind 
(e.g., do_shopping). Then you decompose it into sequential sub-blocks (e.g., 
get_shopping_list, leave_house, walk_to_shop, collect_items, pay_at_checkout,
return_to_house, put_shopping_away). In turn, each sub-block is decomposed 
until it is at a level that can be easily implemented in code. The blocks are 
assembled into a whole, and the design is complete.

The implications of a structured approach are:

Each step of the decomposition should be within the programmer’s 
intellectual understanding. (Dijkstra said, “I now suggest that we confine 
ourselves to the design and implementation of intellectually manageable 
programs.”)

Control flow should be carefully managed: Avoid the dreaded goto state-
ment (an unstructured jump in the code to some arbitrary place), and 
instead prefer functions to have a single entry and single exit point (this 
is known as SESE code).

Looping constructs and conditional statements are used within func-
tional blocks to provide code structure. Short-circuit jumping out of the 
middle of a loop or from within a nested block of code is held in similar 
disdain to goto.
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Common structured programming languages are C, Pascal, BASIC, and 
more venerable languages like Fortran and COBOL. Most other imperative 
languages can be easily used to write structured code, although it’s not their 
design specialism; structured programmers often adopt new fashionable 
languages without adopting new idioms.1

Object-Oriented Programming

Booch describes OO programming as “A method of implementation in which 
programs are organized as co-operative collections of objects, each of which 
represents an instance of some class, and whose classes are all members of 
a hierarchy of classes united via inheritance relationships.” (Booch 94) It is 
another imperative style, but one that allows us to more naturally model the 
world in our code designs; we focus on the interacting entities being modeled 
rather than on the notion of a particular flow of execution.

This is very much a data-centred model (as opposed to structured pro-
gramming’s process-centric view). We think about the life of our data and 
how it moves about, rather than the sequence of steps that need to be taken 
to get the job done. Objects (the data) have behavior (they do things) and 
states (which change when they do things). This is implemented at language 
level by methods on classes of objects. We think of OO programs as sets of collabo-
rating software components, rather than as monolithic lists of CPU instructions. 
OO design has allowed us to effectively model larger systems.

Object-oriented programming exploits the following computer science 
concepts:

Abstraction 
The art of selective ignorance—abstraction allows us to design code 
so that the higher levels of control can ignore gory implementation 
details below. Who cares whether get_next_item does a binary search in 
a list, indexes an array, or makes a phone call to Frankfurt? It returns 
the next item (whatever that is), and that’s all the calling code has to 
care about.

Dijkstra’s earlier exposition of hierarchy—go back and read it again—
revealed a form of abstraction.

Encapsulation 
Encapsulation is the placing of cohesive units of execution into 
one tightly bound package that can only be accessed through a
well-defined API: a code capsule. Users of that capsule can only call 
the defined API and cannot tinker directly with internal state. This 
provides a clear separation of concerns, helps us to reason about 
metaphysical questions like What is an object? and provides some 
assurance that no evil programmer can tinker with your innards 
when you’re not looking.

1 This is not necessarily a Bad Thing, unless the programmer believes that he’s moved beyond 
structured coding without changing the way he designs code.
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Inheritance    
A mechanism to create an object type that is a specialized version of a 
parent object. Consider a parent type called Shape, with inherited child 
types Square, Circle, and Triangle. The inherited types provide more detail, 
specializing behavior (for example, knowing the exact number of sides 
the shape has). Like any other programming concept, inheritance can 
be abused to create unfathomable, surprising programs or leveraged to 
create logically sound, elegant code. Good OO programmers know how 
to create appropriate inheritance hierarchies.

Polymorphism
This allows the same code to use different underlying data types (what 
most OO programming languages call classes) depending on the context 
in which it runs. This technique emphasizes programming to explicitly 
defined interfaces, not to an implicit implementation—polymorphism
provides a clear separation of concerns as you write code. There are two 
types of polymorphism, dynamic and static.

Dynamic polymorphism, as the name suggests, determines the actual 
operation to be performed at run time, based on the type of an operand 
or target object. This often exploits inheritance hierarchies: a client that 
deals with Shape types might currently be using a Square or a Triangle
object—which one is figured out at run time.

Static polymorphism determines the exact code to be run at com-
pile time. Language features that provide static polymorphism include: 
function overloading (functions with the same name accept different param-
eter lists—the compiler deduces the correct function to invoke from the 
arguments supplied), operator overloading (where you can define certain 
operations on types—including +, !=, <, and &—these functions are called 
when the types of operands match), and generic programming facilities like 
C++’s template specialism (where you can overload a template based on the 
template parameter type).

These facilities are all possible to use in non-OO languages, using non-
OO practices. However, OO languages express them directly and OO designs 
exploit them to create a cohesive system.

Object-oriented programming started with Simula around 1970 and has 
been recently popularized by C++ and Java. One of the few pure OO program-
ming languages is Smalltalk. These days, OO is en vogue, and there are many 
OO languages; a number are structured languages with fashionable OO 
bolt-ons.

Functional Programming
This is a declarative programming style based on typed lambda calculus, a more 
mathematical model of programming. You work with values, functions, and 
functional forms. Functional programs are generally compact and elegant, 
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although seldom compiled. They are therefore reliant on a language executor. 
The program’s performance is governed by these executors—they can be 
quite slow and memory hungry.2

The structured and OO styles are far more popular in mainstream use 
than any declarative languages, although that doesn’t diminish the useful-
ness of this breed of programming. They have different strong points and 
uses. Functional programs require a totally different approach to code design 
from the procedural methods.

Common functional programming languages are Lisp (although it does 
contain nonfunctional elements), Scheme, ML, and Haskell.

Logic Programming
This is another declarative style, in which you provide the executor with a set 
of axioms (rules) and a goal statement. A set of built-in inference rules (over 
which the programmer has no control) are applied to determine whether the 
axioms are sufficient to ensure the truth of the goal statement. Program 
execution is essentially the proof of the goal statement.

Interest in artificial intelligence was a huge boost to the development of 
logic programming languages. They are widely used for automatic theorem 
proving and in expert systems (which model large problem domains and gen-
erate specific answers based on the amassed body of knowledge).

The best known logic programming language is Prolog.

Recipes: The How and the What
There are two different aspects we’ll investigate. Software “recipes” employ 
a development process and also a programming style. The two are separate and 
connected:

The process is the larger picture: It describes the steps taken to construct 
software. This encompasses the entire development organization, not just 
the programmers. Most software construction is not a one-person job; the 
process explains how to get a number of people to build a coherent whole. 
Or at least, it should attempt to.

The programming style is the smaller picture: It is an underlying approach 
for dissecting, building, and gluing software components together. It will 
quite likely be influenced by the choice of development process, but 
doesn’t have to be.3 It’s more likely to be influenced by a target language 
or the designer’s prior experience.

2 This is not a problem solely encountered by declarative languages (for example Java has an 
executor, the JVM). However, comparatively less optimization effort has gone into the declarative 
breed of language executors—they’re more often backed by academic institutions than wealthy 
corporations.
3 For example, OO styles are often picked in “iterative and incremental” processes; this is mostly by 
convention. (If you don’t know what this means, don’t panic! It will all be explained in “Iterative 
and Incremental Development” on page 432.)
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You’ll see both of these construction aspects called methodologies, so it’s 
easy to get them confused.4 We’ll look in turn at styles and then development 
processes. It’s important to have a grasp of the different development methods 
out there, to give you a better programming worldview and to help you choose 
a process, should you ever have the opportunity.

KEY CONCEPT Our software development efforts are molded by the styles and processes we employ. 
These have an inevitable effect on the shape and quality of our code.

The following sections do not provide a textbook description of these 
topics; they provide a suitably hand-wavy overview to help us compare and 
contrast. If you want or need more detail, you can easily find a hard-core 
software engineering textbook.

Development Processes

There are as many development processes as there are people who feel like 
inventing them. Many are slight evolutions of one or two basic development 
models. We’ll look here at those basic variants. Some of them are closely 
related, as you will see.

Your choice of development processes determines how projects are 
planned, how work flows between phases, and how the project team interacts. 
Processes vary along a number of axes:

Thick/thin    
A thick development process is heavyweight and bureaucratic. It generates a 
lot of paperwork, regiments developer behavior, and presumes a certain 
team structure. It’s characterized by the ISO 9000 organizational model, 
where every work procedure is slavishly written down in great detail, 
without regard for whether the process is flawed or appropriate.

At the other end of the process spectrum, thin development processes
eschew unnecessary bureaucracy, favoring leaner, people-centric princi-
ples. Agile processes, described in “Agile Methodologies” on page 433, 
are built around thin practices.

Sequencing 
Some development processes sensibly recognize that the world is not a 
predictable place and attempt to model and plan for this by running a 
number of iterations around a process loop. This provides an opportu-
nity for the developers to incorporate feedback from one iteration into 
the work of the next. They can adapt to the natural changes that occur 
as software develops (changing customer requirements, unexpected 
problems encountered, etc.).

Other processes are more regimented and linear—predicting a formal 
progression of development from one phase to the next. They involve 
heavy up-front planning efforts and try to foresee the future in great detail. 
These predictions make it hard to change direction late in development.

4 If you want to make a distinction, then what I call programming styles are often called 
methodologies (with a lowercase m). Development processes are often called Methodologies 
(with an uppercase M); a kind of high-church/low-church classification. That’s far too subtle. 
In this chapter I’ll stick to styles and processes.
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Design direction      
A top-down design creates the system from an initial undetailed overview. 
Each top-level package is refined and split into subcomponents. This 
process iterates until the software is specified sufficiently to begin work. 
Top-down design emphasizes planning and a good understanding of the 
final system, and presumes that few requirements change en route.

The opposite, bottom-up design, specifies individual parts of the system 
in detail and then determines how best to connect them to form a cohesive 
whole. This helps us to leverage existing software components in a new 
design. Modern processes tend to blend these two polar opposites—some 
idea of the entire system is required to begin initial planning, then the 
design progresses by identifying and coding low-level components and 
objects.

No one style of development process is better than any other. Extreme 
religious views are held about the correct position on any one of these axes. 
The correct methodology for any project is determined by a number of factors, 
including the development culture of the organization, the type of product 
being developed, and the experience of the development team.

Now please buckle your seat belts for our roller coaster ride through the 
range of software development processes. Hold on tight.

Ad Hoc
This is a starting point, but it’s really an anti-process. Here there is no process, 
or else it is undocumented. Everybody works to his or her own agenda, no one 
knows what anyone else is doing, and hopefully something useful will drop 
out at the end. Perhaps your team works like Figure 22-1?

If an organization doesn’t know how it builds software, then it’s in an 
unforgivable state, even if it’s a small outfit and it doesn’t think it needs a 
process. In this state, there is no guarantee that the software will be delivered 
on time, since there’s no accountability. Who can guarantee that all the 
features will be implemented?

A lot of open source software is created using this chaotic method.5 If you 
have an infinite number of monkeys and an infinite number of computers, 
you might eventually get a program out—however it isn’t feasible to wait the 
requisite infinite amount of time. Even back-of-napkin designs are a step 
toward a more formal, predictable development process.

KEY CONCEPT Without a development process, your team is in a state of anarchy. Your software will be 
produced by luck, not on purpose.

This case is development anarchy. Individual programmers may work 
hard, and their heroic efforts might eventually produce something of value. 
Such an outcome cannot be seriously relied upon, though. The team is likely 
to be very inefficient and will probably never deliver anything of value.

5 And there, perhaps, it doesn’t matter so much, since there’s no paying customer and no formal 
set of requirements—a lot of open source software is developed because the programmer feels 
like it. However, applying some development process to ad hoc open source work will almost 
certainly yield better programs.
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Figure 22-1: Engineering a release

Waterfall Model
The waterfall model is the classic software development life cycle model. It has 
been much criticized for its simplicity (even for being old fashioned). How-
ever practically every other development process is in some way based on it. 
It has numerous flaws, and yet it is still an instructional starting point in 
process study. It’s modeled after a more conventional engineering life cycle 
and was described by W.W. Royce in 1970. (Royce 70) It’s the most predictive 
of the development processes.
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It is a simple idea; the development process is broken up into a number of 
stages, which run one after the other. This is likened to a waterfall because 
of the steady, irreversible flow from one stage to another. Just as water always 
flows downward toward the river, the development always flows downward 
through each stage toward release.

The traditional waterfall model is shown in Figure 22-2.6 You can see 
the five standard stages; these are described in the “Stages of Development” 
text box. Once a stage is successfully completed, progression is made via 
some gating process (usually a review meeting) to the next stage. The output 
of most stages is a document; a requirements specification, a design specifi-
cation, or something similar. If the review finds an error or problem, it is fed 
back upstream, setting that stage back again.

6 This is a common simplicifcation of Royce’s original paper. Royce did allow feedback up the 
waterfall, but didn’t actively encourage it. Zealous managers imagined software development to 
be a strictly linear process, and soon removed these upstream paths; the waterfall was tarnished.

S T A G E S  O F  D E V E L O P M E N T

The waterfall model describes five stages in the life of a software development process. 
Many other processes identify the same phases but order them differently or change 
their relative emphasis.

Requirements analysis  
First, the requirements for the software project are established. This scopes its 
goals, the services it will provide, and what constraints it needs to work within. 
This step is often preceded by a feasibility study to kick the project off, or feasibility 
is done at the same time. The feasibility study asks questions like: Will this project 
work? Should we develop this software? What are the alternatives?

Design and specification 
The established requirements flowing from the first stage are converted into software 
or hardware requirements. The software requirements are then transformed into a 
form that can be readily implemented in a computer program, perhaps by splitting 
into separately developed components.

Implementation  
This is where the programs are created. Each program or subcomponent is a unit,
and is unit tested. The unit test ensures that each unit meets its specification as 
defined in the previous step.

Integration and testing  
All units are combined and the whole system is tested. We test that the code 
integrates correctly, that the entire system behaves as it should, and that it 
implements all system requirements. When successfully tested, the software is 
considered complete.

Maintenance 
Finally, the product is delivered. We should never presume software is finished 
when it ships; it is naïve to do so. The largest phase of the software lifecycle is 
maintenance (see “Maintenance of Existing Code” on page 288). There will be 
bugs to fix, unnoticed requirements to accommodate, evolution of the original 
requirements, and other product support work for software deployed in the field.
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Following this model, you can’t easily backtrack to make changes; it’s like 
a salmon expending massive amounts of time and energy swimming back 
upstream. While salmon are genetically programmed to do this, program-
mers aren’t. This means that the process is not helpful when changes are 
made late in the development process. The requirements must be fixed 
before system design, and it is difficult to accommodate too many alterations 
after the process is underway. Generally, problems at the design stage are not 
discovered until system testing.

In its defense, though, it is simple to manage—at least conceptually—
and is the basis for most other development models. The waterfall doesn’t 
scale well to very large projects; it works fine for a two-week project. Other 
development models exploit this by running many, smaller, waterfalls over 
the life of a large project.

Figure 22-2: The traditional waterfall model

SSADM and PRINCE

Although SSADM sounds like development only partaken by consenting 
adults, it actually stands for Structured Systems Analysis and Design Methodology.
It is a structured and rigorous method following the waterfall approach, 
perhaps the most regimented waterfall variant you’ll encounter.

It covers analysis and design, not implementation and testing, and is a 
well-defined open standard, heavily used in UK government organizations. 
SSADM consists of five main steps (each subdivided into many other proce-
dures), which for our purposes are self-descriptive:

Feasibility study

Requirements analysis

Requirements specification

Logical system specification

Physical design

Projects In a Controlled Environment (PRINCE) and its imaginatively named 
successor, PRINCE2, were created in 1989 and 1996 to supercede SSADM. 
Like SSADM, they define a heavyweight, document-centric model. They list 
regimented steps (this time in eight separate phases) that can be followed 
to produce a product, aiming to meet identified requirements and quality 
standards.

Requirements

Design

Implementation

Integration/Testing

Maintenance



430 Chapter 22

V Model

This process model derives from the classic waterfall and was developed to 
regulate the software development process within German administration 
and military. It shares much in common with the waterfall model (including 
a propensity to attract criticism) but rather than model the processes as a 
cascade, it is visualized as a V, as shown in Figure 22-3.

Figure 22-3: The V model

On the left, we see the development phases leading up to software con-
struction: the planning, design, and implementation work. The right-hand 
stream governs testing and approval.7 Each level of test work is measured 
against the specification generated from the corresponding left-hand phase.

The V model’s difference from the waterfall is more than the orientation 
of a diagram. The testing phases (in the right branch) can begin in parallel 
to the development work (the left branch), and are given an equal impor-
tance. This is good because:

Traditionally, testing is squeezed out during the dying stages of a slipping 
project. This is dangerous. Emphasizing testing as a keystone of the devel-
opment process highlights this fact and helps to ensure product quality.

We should always test more than the final software: reviewing and validat-
ing at all stages of development work, from the requirements specification 
through to the completed software. The V model highlights this.

In the Real World, testing and bug fixing often take up more than 
half of a project’s total time. The waterfall model doesn’t accurately 
reflect this.

This model can shave time from the entire development process, since 
the test plans can be drawn up as soon as each development phase is com-
plete. This streamlined, parallelized work will bring forward the project’s 
end date because we don’t need to wait for the waterfall’s implementa-
tion phase to end before beginning test activity.

Prototyping

Despite our many years of research and experience in software develop-
ment processes, the waterfall is still a standard reference model since it 
has a clear logic to it—you obviously can’t perform useful implementation 

7 Note how development flows downward, like the waterfall, but testing is seen as an uphill 
effort—a reasonably accurate model of software development!
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before requirements analysis or any design work. However, the waterfall 
makes it hard to evaluate a software system until development is complete. 
It is also hard to demonstrate the software to your customer until the inte-
gration phase has completed and the system is ready to alpha test.

The prototyping approach attempts to work around this limitation. It helps 
to explore and evaluate implementation as development progresses and to 
refine unknown or ambiguous requirements (users never know what they 
really want).

The essence of the prototyping process is to create a number of throw-
away prototypes of the software system. Each prototype is evaluated, shown 
to the customer, and customer feedback is used to shape the next prototype. 
This continues until enough is known to develop and deploy the real product.

We see an analogy with other industries here. If you were developing a 
new car, you’d create many prototypes until you hit on exactly the right design. 
We aim to do the same with our software. However, there is an important 
difference that must be observed. When building a car, the major cost is in 
the manufacturing, not the development. It works the other way around with 
software. You can make multiple copies of the code for free; the development 
is the costly part. For this reason, the prototyping cycle needs to be controlled; 
it can’t be repeated an unlimited number of times.

The prototypes are developed quickly in very high-level languages. Some-
times they are simply drawn: The use of automated tool support8 can speed 
prototype production immensely. The prototypes are proofs-of-concept, so 
efficiency, stability, or a complete feature set are not primary concerns. For 
this reason, prototyping works best for systems with an emphasis on the user 
interface.

Prototypes help us to manage risk. We can use them to ensure that 
customers really do want what they say they want. We can also use prototypes 
to explore the use of a new technology or to check that our design decisions 
will stand up to real use.

8 For example, Rapid Application Development (RAD) tools with simple GUI builders.

P R O T O T Y P E  B L U E S

Releasing prototypes can cause severe maintenance problems.
I did some work for a company that had a policy of only using one GUI library for 

its Java front ends. But in practice, it had some systems that used the library and some 
that didn’t. Whenever a bug cropped up, the maintenance programmers had to jump 
through hoops to work out what the front end code was doing. They didn’t understand 
the other GUI libraries, and often their fixes introduced yet more problems. The more 
this happened, the less respected the company’s products became.

It didn’t take much software archeology to discover the cause of this problem: 
The front ends that didn’t use the correct GUI library had been prototypes that 
“accidentally” became products. A little time spent releasing correct code would 
have saved months of work later on and wouldn’t have destroyed the company’s 
reputation.
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The danger with prototyping is the temptation to continue developing 
the inefficient, quickly produced, not fully thought-out prototype code into a 
real release. This is especially true when a project is running out of time and 
the real development might not fit the schedule. Without education, customers 
will confuse the prototype with the finished product and be surprised that it 
takes a lot longer to receive their completed software. It needs very careful 
management to work. The best way to avoid this problem is to leave your 
prototypes deliberately rough around the edges, and to never get them near a 
releasable state. A prototype that has too much functionality is not a prototype!

Iterative and Incremental Development
All the recent advances on the waterfall approach are basically variations on 
a theme. The major improvement is performing development in an iterative 
and incremental manner. That is, many trips (iterations) around a small devel-
opment life cycle run back to back (incrementally), with each cycle adding 
more and more functionality to the system until it is complete. Each single 
run of a mini lifecycle tends to follow the waterfall model and may last a num-
ber of weeks or months (depending on the scale of the project). Each phase 
of the waterfall therefore gets executed more than once. At each iteration 
end is a software release.

Incremental development is neither a top-down nor a bottom-up approach. 
A complete version of the code is created for each code release, with all 
requisite high- and low-level components. During each iteration, the system 
grows, and subsequent design work can be done based on the existing design 
and implementation. There is a parallel to prototyping here, but we’re not so 
focused on quick demonstrative hacks. With this approach each stage is less 
complex and easier to manage—and process progress is more easily monitored; 
you know how much of the system is built and integrated.

This kind of process works well for projects whose requirements are less 
understood at the start. Let’s face it: That encompasses most projects in the 
Real World. It is more resilient to change, and it saves the lengthy redesign 
and reimplementation of the entire system that you’d encounter in the water-
fall approach. Iterative and incremental development works well because it 
fits the fundamental nature of software development, it consequently helps 
us to better control the inherent chaos. Because iterative cycles are much 
shorter, there is greater opportunity for feedback and correction; you don’t 
have to wait until the end of your project to find out that it’s failing.

Spiral Model
The spiral model, proposed by Barry Boehm in 1988 (Boehm 88), is a good 
example of the iterative and incremental approach.9 The development process 
is modeled as a spiral, like Figure 22-4. It starts in the center and fans outward 
toward the later stages of the process. We start working on a very rough notion 
of the system, becoming more detailed over time, as we enter later stages of 
the spiral. Each 360-degree turn of the spiral sees us go through a single 
waterfall, and each iteration typically lasts six months to two years.

9 Boehm’s process wasn’t the first iterative model, but he was the first to popularize and emphasize 
the importance of iteration.
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Features are defined and implemented in order of decreasing priority; 
the most important facilities are created as soon as possible. This is a way of 
managing risk; it’s safer because as you inch toward the ship date, you can be 
sure that the majority of the system is complete. In fact, it is very pragmatic 
approach; the programmers will not be spending 80 percent of their time on 
the trifling (but fun) 20 percent of the system.

Figure 22-4: The spiral model

Boehm splits the spiral into four quadrants or four distinct phases:

Objective setting 
Specific objectives for this phase are identified.

Risk assessment and reduction 
The key risks are identified and analyzed, and information is sought 
to reduce these risks.

Development and validation 
An appropriate model is chosen for next phase of development.

Planning 
The project is reviewed, and plans are drawn up for the next round 
of the spiral.

Agile Methodologies
These were developed as a backlash against the bureaucratic and heavyweight 
methodologies that tried to straitjacket the software development process. 
Agile practitioners observed that software development cannot easily be made 
a predictable process; they claim that it is very different from the established 
engineering procedures, like constructing a bridge.10 The old-fashioned, 

10 This is a religious debate: Many programmers believe that it is possible to make the software 
development process a repeatable, predictable thing, but the industry is currently not mature 
or disciplined enough to do so.
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monumental methodologies only serve to get in the way of people trying to 
write good software, and so they should be thrown away.

Agile methodology is an umbrella term that describes a number of devel-
opment processes, including the much-hyped Extreme Programming, as well 
as Crystal Clear and Scrum. Agile processes focus on nimbleness and risk 
reduction rather than on long-term planning or forcing (pretending to have) 
predictability.

Agile processes share these central tenets:

Minimize risk by performing many small iterative development cycles. 
The software and all process artifacts are complete, consistent, and of 
releasable quality at the end of each cycle. Although the software seldom 
is released, it can be passed on to the customer to review and to comment 
on. This gives the customer reassurance of the team’s progress.

Agile process iterations tend to be much smaller than iterative and 
incremental process loops (typically lasting a number of weeks, rather 
than months).

Minimize risk by placing far more emphasis on a suite of automated 
regression tests that are run continually, rather than on a lengthy test 
cycle at the end of development.

Reduce the documentation that plagues heavyweight processes. Agile 
processes view the code itself as the design and as the implementation 
documentation. Good code stands on its own and doesn’t need to be 
lumbered with bureaucratic documentation processes.

Emphasize people and aim to facilitate communication, preferably 
face-to-face rather than through documents. This keeps the customer 
(or a customer representative) as close to the development team as 
possible, to take part in implementation and prioritization decisions.

Consider working software as the measure of progress and performance, 
not specification writing or a manager’s opinion of the team’s position 
in a fictitious development cycle. The developers meet problems and 
respond to changes by modifying the code as development progresses.

The agile approach is not always appropriate. It tends to work best on 
smaller projects, with teams of less than 10 high-quality programmers who 
are geographically co-located. Agile processes excel in domains with a high 
degree of requirements change. They are hard to run in companies with a 
heavy process culture.

Other Development Processes
There are many other development processes: variations on these themes, 
each with its own distinct features. There are modified waterfall processes 
that overlap certain phases or contain subprojects, managed as mini-waterfalls. 
The evolutionary prototyping approach starts with an initial concept, designs 
and implements a prototype, iteratively refines the prototype until it is accept-
able, and then releases this, perhaps planning to include some throw away 
prototypes in the process.
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Staged delivery follows a sequential process up to architectural design 
and then implements the separate components showing them to the customer 
as each is completed, going back to previous development steps if needed. 
Evolutionary delivery is essentially a cross between evolutionary prototyping 
and staged delivery.

Rapid Application Development (RAD) emphasizes user involvement 
and small development teams, and it makes heavy use of prototyping and 
automated tools. In a slight twist on other processes, the development time 
frame is established up front and considered immovable. Then as many 
features as feasible are incorporated into the design to accommodate the 
deadline—some features may be sacrificed.

The Rational Unified Process (RUP) is a notable commercial methodology 
that stems from Ivar Jacobson’s 1987 Objectory Process. It’s a heavyweight but 
flexible object-oriented process that leans heavily on UML diagrams, with use
case–driven design (a use case describes a single user activity or interaction with 
the software system). It favors iterative development, continuous testing, and 
careful change management. As a commercial process, it is supported by a 
suite of commercial tools.

Enough, Already!

If you’ve read this far and haven’t gotten bored yet, then you’re doing well. 
Finally, and perhaps more importantly, what are the key points to draw from 
all this? A software craftsman has a good working understanding of develop-
ment processes and programming styles, but anyone can get this from the 
right books. How do we apply this stuff usefully to our work? How can it 
improve our skill set?

All of these processes share some common threads. The phases described 
in “Stages of Development” on page 428 are present in each. The processes 
really only differ in the length and relative positioning of these stages. Each 
activity is vital to the production of good-quality software. The better proc-
esses ensure that testing is not left as an afterthought, but is carried out 
continuously—and monitored—throughout the development process.

It’s hard to compare or evaluate the different processes and program-
ming styles. Which is best? Which will ensure that a high-quality product is 
shipped on time and to budget? There is no answer, because those are not 
the right questions. Which process is suitable depends on the nature of the 
project and the culture of your company. If you have 20 programmers who 
know nothing of object-oriented development and only ever use C, then 
trying to build an OO Java product is clearly a stupid idea.

KEY CONCEPT You’ll pick a software recipe for a number of reasons—make sure they’re good ones. The 
motivation for your choice of process says a lot about the maturity of your organization.

We can see two procedural extremes: The anarchy of the ad hoc method 
contrasts with the strict regime of a rigid process. In the latter, any experimen-
tation that could yield a more elegant architecture is discouraged. The user’s 
real requirements may never filter down to a developer since it’s lost in a sea 
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of bureaucracy; the programmer just codes to a specification that’s passed on 
to him from the previous process phase.

Following the Goldilocks prinicple, the most flexible approach is somewhere 
in between. You do need to know the process you’re working to and where 
it’s defined. Effective development requires discipline; you need a coherent 
strategy to get something out of the door on time (having a realistic schedule 
is another topic in its own right—see “The Planning Game” on page 409). 
Experienced programmers know the value of their development processes, 
as well as the faults. They know how to work with it and when to step outside 
it. Good programmers don’t just program. They understand their recipes 
and how to adapt them as appropriate. This is why our science is still a craft.

It’s important not to be uptight and legalistic about the process you follow, 
but you must have an agreed framework for producing software. It must be 
appropriate for your development team—not every organization needs a high-
ceremony process with many hoops and hurdles to navigate and lengthy forms 
to fill in.

KEY CONCEPT The process you adopt doesn’t have to be high-ceremony and hard to follow. In fact, the 
exact opposite characteristics are generally hallmarks of a good process. You must have 
a defined process, though.

New methodologies spring up (or rather evolve) from time to time. They 
tend to arrive with a big fanfare and a spurt of fireworks; they’re claimed to 
be the silver bullet, the panacea that will make development better for our 
children and our children’s children. Sadly, it’s never the case. When it comes 
down to it, no matter which life cycle you follow, the programming team is only 
as good as its programmers. If there is no intuition, no flair, no experience, 
and no motivation present then, regardless of the development process you 
use, you won’t reliably produce good code. You might be better able to track 
how far behind schedule you are, though.

Pick a Process

Many factors contribute to a good choice of development process. However, 
the choice is seldom made on sensible grounds; a development process is 
used because It’s the way we always do it, It works well enough, or It was the first 
thing we could think of.

How do you know what development method is appropriate? Ultimately, 
if the process works for your team—if you collaborate well and produce good 
software on time—then you have a good development approach.

A good choice of process is based on the type and size of the project. Small 
modifications to an existing codebase don’t need a large iterative development 
cycle; three-year industrial projects starting from scratch probably do. A good 
process choice suits the experience of the existing team members, has the 
developers willing (even eager) to use it, and is something that the project 
manager really understands.
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On the flip side, there are plenty of bad reasons to choose a develop-
ment process. There’s no point in moving to a new process just because 
you feel like a change; a new process must be introduced to fix a problem 
with the current development model. There’s no point in trying to make a 
political statement (I know people who’ve tried to foster an open develop-
ment culture, just to swing the organization toward open sourcing their 
internal codebase). The ultimate bad motivation for picking a particular 
process is fashion. More buzzwords do not necessarily mean a more useful 
process.

This is important: An inappropriate process really can ruin the quality 
of your code; you’ll spend more time pandering to the demands of a pro-
cedural straitjacket than delivering software. A good process does not get 
in your way. Indeed, it enables your team to create more software, better 
and faster.

KEY CONCEPT Process is vital. Most projects fail for nontechnical reasons. And bad process is almost 
always high on the list of reasons.

In a Nutshell

Building software is like crime: It’s better when it’s organized. Every now 
and again, an undisciplined team will pull off something spectacular and 
create a software masterpiece. However, that is the exception. The develop-
ment process needs to be defined and understood and carried out by team 
members with appropriate skills to stand a chance of working well. Otherwise, 
you’ll end up with software that’s criminal.

We need to use proven development processes and established design 
styles to allow us to build software that meets expectations against a backdrop 
of timescales, budgets, and changing requirements. Building software is hard—
and we’ve just looked at another way to make it easier.

Good programmers . . . Bad programmers . . .

Understand the programming 
style and development process 
they are expected to work 
within

Exploit their development 
process to shape interactions 
with other software factory 
inhabitants; when the process 
becomes constraining, they’ll 
sidestep it

Appreciate the pros and cons 
of different development 
recipes and can pick the 
appropriate one for any 
given situation 

Ignore development process 
issues, and attempt to do things 
their own way

Do not know how the process 
shapes their interaction with 
other developers

Avoid thinking about this kind 
of stuff—it’s for managers to 
worry about
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See Also

Chapter 8: Testing Times 
Testing is a key phase of the development process. Often the pressures 
of Real World deadlines try to squeeze out room for it.

Chapter 17: Together We Stand 
Teamwork: the cornerstone of large scale software development.

Chapter 19: Being Specific 
Specifications are often the gates between phases of the development 
process.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 553.

Mull It Over

1. How do the choices of programming style and development process 
influence one another?

2. Which is the best programming style?

3. Which is the best development process?

4. Where does each development process listed in this chapter fall on the 
classification axes we saw in “Development Processes” on page 425?

5. If development processes and programming styles are recipes, what 
would a software development cookbook look like?

6. With a suitable process, can software construction become a predictable, 
repeatable task?
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Getting Personal

1. What development process and programming language style are you 
currently using?

a. Has it been formally agreed upon by the development team, or do 
you use it by convention?

b. How was it chosen? Was it chosen specifically for this project, or is it 
the recipe you always use?

c. Is it documented anywhere?

d. Does the team stick to the process? When problems arise and your 
back is against the wall, do you maintain the process, or is all ivory 
tower theory ignored in a rush to produce something—anything?

2. Are your current processes and styles appropriate? Are they the best way 
for you to develop your software right now?

3. Does your organization appreciate that there are other development 
models that might be worth investigating?
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The Different Programming Disciplines

23

In this chapter:

Comparing programming 
disciplines

Working effectively in your 
discipline

The skills that are required 
in each

Everything that irritates us about others can lead us to an 
understanding of ourselves.

—Carl Jung

I like sweeping generalizations and tenuous meta-
phors. Sue me. I’ve also been doing my research. I 
found that there are over 40 churches in the city I 
live in. Each one of these is subtly different; differ-
ent types of people attend, and they do different 
things. They have different concerns and ways of 
working. They’re located in different areas. How-
ever, they’re all doing roughly the same thing.

What on earth has this got to do with programming?
I hear you ask. If you forgive the tenuous link, 
software development works in pretty much the 
same way. Okay, we don’t all file into a building 
every Sunday morning (well, most of us don’t). 
But, to outsiders, we do appear to engage in 
bizarre rituals and invoke arcane rites to get our 
own way with things that are out of the control 
of normal human beings.
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The real comparison I draw, though, is that there is no single way to 
program, no one methodology that solves every problem. There is no one 
programming language. There are different classes of problems to be solved 
in many, many different arenas. The work in each differs by more than mere 
technology (i.e., which tools and code libraries are available); they differ by 
technique. Each requires a different skill set, a particular mindset, and subtly 
different ways of working. The differences might seem slight, but there is no 
replacement for specific experience of programming a particular type of 
system—if there was, job advertisements for programmers would be a lot more 
vague. It’s important to know your field well and to appreciate its unique 
concerns. In a particular programming arena, the craftsman knows how to 
ply his trade, how to work his medium, and how to best use his tools.

KEY CONCEPT There are various types of programming, in different problem domains. Each presents 
its own unique problems and requires specific skills and experience.

In this chapter, we’ll explore this. We’ll take a guided tour of the vast 
field that is computer programming, discover some of the common problem 
domains we program in, see how they differ, and learn the particular problems 
and challenges of each.

Some of these arenas overlap. That’s natural. Nothing is ever quite 
as clear-cut as you’d imagine. The following descriptions are necessarily 
general, since each of these is a big field with lots of variations within. 
Nonetheless, this should give you a taste of what’s going on out there.

Applications Programming

This is what most non-techies think of when you mention the word program-
ming.1 It’s probably the broadest category we’ll consider in this chapter.

It is programming applications—self-contained programs—typically for 
single-user, workstation-like computers. This world focuses on end users and 
how they use their desktop machines. For commercial reasons, we usually 
target the mainstream platforms—currently Windows and Mac OS. Although 
you hear a lot about Linux programming these days, that’s still not where the 
applications work is (at least, at the time of writing). As portable devices become 
more powerful and their application development environments become 
richer, mobile applications work has moved from the embedded realm (see 
“Embedded Programming” on page 447) into this class of more general-
purpose applications programming; the specific embedded hurdles have 
largely been removed.

There are many languages and environments for this kind of work; 
C and C++ are common. We also see common use of Visual Basic and Delphi, 
Java, and .NET, plus a number of libraries and frameworks like MFC and Qt. 
This choice is made according to what is convenient for the developers—
something that’s well-enough known and provides all required features.

1 Which, of course, you don’t. Admitting your job at a party can be an instant conversation killer. 
Well, unless it’s a party full of nerds, in which case you’re probably trying to escape, anyway!
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Modern applications programming has advanced rapidly since the dawn 
of personal computing. We now have rich development environments to work 
in with helpful framework code that automates a lot of tedious boilerplate stuff. 
We have threading support, libraries of standard user interface components, 
and facilities for network transparency. There is a lot of operating system 
support provided to make applications programming easier, but this also 
means that there’s a lot to learn as you get started. You have to know a lot to 
really understand what’s going on around you.

All this extra support raises the bar to determine what a good application 
is. What was acceptable application behavior years ago is not today. People 
expect high-quality, robust programs, with a standard interface and look-and-
feel, good responsiveness, user-friendliness (the ability to cope with the most 
inept user), and a plethora of features (even if the user will only take advantage 
of a fraction of them). The huge professional applications marketed today 
are the results of large development teams with departments specifically 
focusing on usability issues.

We are seeing a move toward web-based systems, applications that run on 
browsers, over a network. We’ll look at them separately; this also cuts into the 
enterprise or distributed programming arenas somewhat (see “Distributed 
Programming” on page 450).

There are two main markets for applications programming: shrink-wrap 
software and custom applications.

Shrink-Wrap Software

Shrink-wrap software is developed for the mass market. It’s used by a large 
number of people, or at least that’s what the marketing departments are 
praying for. This is key: The market is speculative, so the software has to 
appeal to the broadest cross-section of consumers possible in order to make 
money. Since no customer commissions or pays for the development of 
shrink-wrap software, you must establish a profitable market before you 
begin work, or else you’re throwing away time and effort. The software 
needs to differentiate itself from competing products in terms of features, 
performance, or a unique approach to the problem.

Shrink-wrap software might be bought over the counter in a box neatly 
wrapped in cellophane (hence the name), or it could be downloaded from 
the Internet. It could even be a subscription-based web service. The key point 
is the way you sell it and how that forces you to develop it.

Life is hard for shrink-wrap applications programmers. You can’t con-
trol the environment the code runs in. It must gracefully handle all versions 
of the operating system, on different machine configurations, with different 
libraries and other apps installed, and it has to cope reliably with them all. 
That’s a testing nightmare! Web applications programmers win half the battle 
(as we’ll see later)—you have control over the server deployment. But you 
still have the headache of browser compatibility to contend with: Your web 
pages must render correctly on a wide range of target platforms.
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Custom Applications

Custom applications are made-to-order—developed to a specific brief for a 
specific customer. Therefore, the focus isn’t so much on an inviting UI, a 
never-ending feature list, or even to get it perfect and bug free. There’s no 
commercial imperative to do this. Get it working. Get it shipped. Get the cash. 
This is a more certain business model.

Since a customer commissions this work, it will use this software or use 
nothing. With no real competition, the software only needs to be good enough.
Given half a chance, programmers will keep tinkering and improving their 
code until it reaches some mythical state of perfection. But in this situation, 
it doesn’t make commercial sense to do so. It doesn’t really matter if the 
program works fine, but crashes once a week; it costs less to restart it period-
ically than to engage in a lengthy bug hunt (assuming that it doesn’t trash 
any data as it goes down).

T H E  R U N D O W N

Application work is fun. Modern PCs are powerful, so you 
don’t have to worry too much about code size or 

performance, and you can concentrate on writing neat, 
elegant code. It’s a buzz to know your application is used 

by tens of thousands of people around the world.
—Steve (applications programmer for a major company)

Typical products
Typical shrink-wrap products are desktop applications like web browsers, spread-
sheets, and so on. Custom software could be anything—a highly tailored inventory 
management system for a large retailer, for example.

Target platform
This tends to be the same kind of machine you are doing the development on 
(more often than not, an x86 Windows PC).

Development environment
You’ll normally build code on the same workstation you run the program on. 
Modern integrated development environments (IDEs) provide comfortable working 
environments, bringing the editor, compiler, debugger, and help systems together 
in a single unified point-and-click interface. Many third-party components are 
available to simplify the development of common tasks. The full gamut of lan-guages 
is employed here: from low-level C/C++, through BASIC and Java, to scripting 
languages.

Common problems and challenges
Users expect high-quality programs that conform to standard interface principles. 
More features than any person could remember are the order of the day; this is a 
serious commercial requirement, and usually what differentiates one product from 
the next. New product revisions these days tend to introduce more features (and 
bugs) than any problems they might solve. This is what the market demands.
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Games Programming

The exciting and glamorous world of games programming is a specific form 
of applications work, usually developing shrink-wrap software. A lot of the 
battle is waged with captivating marketing and a very good initial concept for 
the game play. This is a fine line that differentiates a great, successful game 
from the also-rans.

These games often involve first-person, massive, immersive, 3D environ-
ments. To provide an absorbing experience, the graphics capability of the 
hardware is fully exploited, and the CPU is maxed out managing maps, 
enemies, and puzzles, while performing serious modeling of the physics of 
moving objects. This must all be coordinated in real time and stresses the 
hardware to its limits. A significant portion of games programming is opti-
mizing the code to the execution platform. As faster hardware is released, 
the problem doesn’t lessen; to stand out from other games, more optimi-
zation is required to squeeze a better experience out of the new platforms. 
This field is very much about staying on the cutting edge and using the 
latest state-of-the-art technology to do the coolest thing.

T H E  R U N D O W N

Professional games development is about fun, but it’s a 
hugely competitive industry where developers are expected 
to keep up with the latest technologies, furious deadlines, 
and nonnegotiable, last-minute change requests. Sweat, 
blood, and tears are required to write the software, only 
for it to meet the harsh public glare of a highly critical 
specialist press. But it can be hugely rewarding—once 
finished, you’ve made something that people can see, 

understand, and enjoy.
—Thaddeus (professional games programmer)

Typical products
First-person, immersive, 3D games, strategy games, online puzzles.

Target platform
Desktop PC, games consoles, mobile devices (PDAs and mobile phones), arcade 
machines.

Development environment
Dedicated games platforms (including high-end graphics cards in standard PCs) 
have tailored development environments to help exploit their power. It still takes 
very talented developers to fully capitalize on the platform’s functionality.

Common problems and challenges
Getting excellent game play; balancing features, user response, aesthetics, atmo-
sphere, and difficulty. A good game unfolds very much like a story, and draws 
the player in.

Optimization is required to capitalize on the execution platform.
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Modern games development teams often have a cast more akin to Holly-
wood movie production than to standard bean-counting software. We see 
teams including graphics artists and level designers and the development of 
storyboards, concept art, and proof-of-concept designs.

The software might target a (suitably souped-up) PC platform or dedicated 
games consoles. These machines have specific hardware to accelerate the 
many graphics operations required per second and special tools to help you 
harness their power. Console manufacturers provide development kits 
(special versions of the hardware and tailored software tools) to help you 
create products, assisting with code loading, testing, and debugging, while 
helping to avoid security features on production hardware that would 
impede development.

Multiplayer games provide richer game play. This brings network collab-
oration into the mix and requires some skill to get acceptable real-time 
performance out of slow Internet connections.

The quality of the ultimate product is determined by the feel of the 
game play. Everything is tweaked until the game feels right: the level design, 
the physics models, the graphics, the color of your underwear. Nothing is 
sacred. You might write the most beautiful code in the world; the program 
might never crash; it might do everything it was specified to do; it might be 
highly efficient. But if it lacks that special spark that makes it a compelling, 
addictive game, it will not be successful. Tricky stuff.

Systems Programming

Applications sit atop rich system libraries: layers of code for networking, 
graphical interfaces, multitasking, file access, multimedia, peripheral control, 
inter-process communication, and more. If applications programmers receive 
a lot of support from the underlying system, then someone’s got to supply 
that underlying system. This is systems programming.

It is generally for workstation machines too, but it’s not aimed at the end 
users. Systems software is aimed at the application developer; the public façade 
is a set of APIs to be used by software layers higher up the food chain. Systems 
software is concerned with the low-level logic that interacts with the computer 
at a very basic level, and also middle-level support frameworks that don’t 
interface directly to hardware but provide important services to the rest of 
the system.

Work in this arena typically includes writing device drivers (controlling 
devices such as printers, storage media, output devices, etc.), writing common 
shared libraries and utilities for managing scarce resources, implementing 
the actual operating systems controlling the computer, and providing com-
ponents such as filing systems and network stacks. Even compilers and 
installation tool suites can come under this heading, as they are support 
services for application programmers and are often intimately entwined 
with the program run-time environment.
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Embedded Programming

Computer technology shows up everywhere in our daily lives, whether we’re 
aware of it or not. We’re constantly using devices and gizmos, from micro-
waves to watches, radios to thermostats. These consumer electronics products 
require software for control and operation. More often than not, this software 
is invisible to the device’s user. It’s not just consumer electronics appliances 
that contain embedded software: Anything with a microcontroller (e.g., 
laboratory instruments or the machines that issue parking tickets) is software 
driven. We must write programs that are embedded in the hardware devices: 
embedded software.

T H E  R U N D O W N

I wrote the USB stack for a proprietary operating system. 
I had to understand the OS, USB hardware, and the USB 
protocol, so there was a lot to take in. I had to keep up 
performance so the system worked well. Acting as the 
middleman, I was abstracting the hardware interfaces 

and providing a neat API for applications to use. I had to 
make this platform agnostic, which added extra 

complexity.
—Dave (systems component writer)

Typical products
Operating systems, device drivers, a window manager, or a graphics subsystem.

Target platform
Since every execution environment needs some form of run-time support, there is 
system-level software in almost every electronic device. Systems software is 
required in the smallest embedded device and the largest mainframe computer.

Development environment
Writing device drivers and operating system components tends to screw with the 
computer and make your system unstable, so it’s common to develop on one 
machine and run the code on a second system. C is by far the most common 
language in this arena, although some library-level work is done in other lan-
guages (C++ is popular, as it aims to be a systems-capable language).

Common problems and challenges
The key here is stability, since these are foundational blocks of the entire computing 
environment. While an application might crash and have a chance to save work 
and gracefully recover, a device driver rarely has such a luxury; it is required to 
work correctly the entire time it runs. This could be an awfully long time, so even 
small memory leaks can become major problems.

The code must be efficient (enough), both in terms of space and speed, and will 
need to be appropriately tailored to the particular operating environment.
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Embedded developers work under tight constraints:

There are usually very scarce resources: restricted CPU power and/or 
strict memory limits. Memory limitations concern both ROM (for the 
program image) and RAM (space for the code to execute and to store 
information). On platforms without much capacity, you have to shoe-
horn a lot of software into the available device space. Sometimes this 
requires quite creative (and heroic) solutions, like decompressing pro-
gram code or data on the fly.

The opportunities for user interface are quite limited: how do you pack 
all user interaction into two buttons and an LED? Indeed, there may be 
no user interface at all; there may be no direct interaction with a user—
the software is expected to just work.

These constraints have a profound impact on the nature of the code you 
write. Sadly, in the embedded environment (more than others), we end up 
sacrificing the purity of our code to get something working. Fast code that 
fits into the device’s ROM and works is more important than theologically 
correct but large and slow software.

Embedded systems are designed to do one job and to do it reliably. It 
should appear as if the software is not there; the embedded device should 
just work, all the time. Failure is rarely an option; it might physically break 
the hardware. Contrast this to a desktop computer—it’s a general-purpose 
machine. It has to be able to word process, play movies, browse websites, 
read email, manage your accounts, and so on. As users, we’ve been con-
ditioned to accept the odd crash and a bit of instability. We’ll sacrifice a 
little convenience for power and flexibility. Embedded work is a totally 
different ballpark.

A good example is the modern car industry. We see vehicles manufactured 
with many embedded systems, controlling all sorts of things: engine manage-
ment, ABS brakes, safety features like air bags and seat belt pre-tensioners, 
climate control, the odometer, and so on. However, the users (in this case 
the driver and/or passengers) don’t have to be at all aware that there are any 
microprocessors whirring away under the hood. They expect the car to just 
work. When an engine management system fails, the user becomes acutely 
aware of the software! Think also about mobile phones. They are obviously 
computer-driven devices, but few consumers think of them as a computer. 
We pack a lot of power into these small packages, but there are still strict 
operational limits that the software must work within.

An embedded system is typically the combination of a small computer, 
some dedicated hardware, and either a real-time operating system or a simple 
controlling program. It will have direct control over the hardware on the 
device. Embedded systems are usually made-to-order: developed for specific 
hardware, for a specific purpose. Simple embedded systems have only one 
piece of software running on them; no highly complex threaded program-
ming environments are used—not even an operating system.
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The code is usually stored in firmware, permanently held in a read-only 
memory chip. It is seldom updatable, so it has to work correctly the first time. 
There’s no chance to get it wrong and ship a version 1.1. One simple mistake 
can render your miracle product a failure.

Recently, memory and CPU power have become a lot cheaper as more 
and more mass market devices are created. Embedded environments have 
become more powerful and the constraints are widening. However, there 
will always be the need for very small devices with little horsepower that 
achieve just what they need to. Just.

You might consider that programming applications for handheld devices 
like PDAs is embedded-level or applications-level work, depending on where 
you stand.

T H E  R U N D O W N

I like working near the metal—it really forces you to think 
about what’s going on. You need tight code and a good 
understanding of what the hardware’s doing. It can be 
tricky to debug problems, but these challenges are what 

makes it interesting.
—Graham (embedded software developer)

Typical products
Control software for washing machines, hi-fis, mobile phones.

Target platform
Small, custom-made devices with very limited resources and meager UIs.

Development environment
Since you work with custom-made devices, the toolchain is also often custom made. 
Frequently, it’s not very advanced at all, compared to the relative luxury of the 
applications programmer. (As the market broadens, we are seeing improvements 
here.) The code is developed in a cross-compilation environment, where the target 
platform is different from host compilation environment. (Clearly you can’t compile 
C on a washing machine . . . yet.)

We write specialized software for each specific device. Embedded program-
ming almost universally uses C, apart from really low-level work, which resorts to 
assembly code. C++ is making inroads into this area, and ADA has also been used.

Common problems and challenges
There are all sorts of problems you can encounter, largely depending on whether 
you are working with a commodity, off-the-shelf embedded platform or building 
your own. There are issues of real-time programming (for example, timely handling 
of hardware events and interrupts), direct hardware interfacing, and controlling 
peripheral connections, plus tedious low-level concerns like byte endianness and 
physical memory layout. 

To ensure the system is robust, there must be a great emphasis on product testing.*

* Of course any good software development—not just embedded work—needs a great 
emphasis on testing. In all environments, testing tends to suffer as it is squeezed out by over-
zealous marketing and management departments who do not really understand the nature of 
software. However, desktop applications can be more easily updated than the firmware in an 
embedded device.
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Distributed Programming

Distributed systems are comprised of more than one computer. As we’ll see 
later, the World Wide Web is effectively a huge distributed system with infor-
mation being stored on many computers across many continents and with 
applications delivered remotely via your web browser. It’s not all about web 
browsers, though. Multimachine architectures are used in many situations. 
Working with and designing distributed systems ushers in a whole new world 
of problems.

You might need to distribute a software system for a number of reasons. 
Perhaps some types of computers are more suited to particular tasks than 
others. Perhaps the system is in high demand, and you can share the work-
load among many machines on a network to improve performance. Perhaps 
there are physical location restrictions for certain machines that mandate 
distributing the system. Perhaps you need to interoperate a new installation 
with a legacy system or some old hardware.

The goal is to design a system that is composed of a number of programs 
on different machines that all work as a cohesive whole. Tied together by a 
network connection, they might be physically co-located in a corporate server 
room or scattered across the globe, communicating over the Internet.

The disparate parts need to be glued together somehow; each of the pro-
grams needs to communicate, and it is desirable to call functions on remote 
machines as if they were locally linked to the code. This is known as remote 
procedure call (RPC), and such facilities are provided by a number of available 
middleware technologies. These act as brokers for data transfer between machines; 
they describe how you discover and talk to services on other machines and 
how you publish your services for other programs to call. Middleware manages 
the policies involved with interoperability: there are security issues (Who’s 
allowed to call whom?), network latency issues (What happens if a remote 
function call takes too long or a computer goes down?), considerations 
for balancing synchronous remote function calls with asynchronous calls, 
and more.

Some middleware systems employ object-oriented technologies; some 
take more of a procedural approach. The middleware is simply connectivity 
software and allows some degree of platform neutrality. As long as the middle-
ware runs on a given platform, the client code shouldn’t care what platform 
it’s calling into—it could even be a ZX spectrum—the function calls all look 
the same. Of course, in the design of a distributed system, you will select the 
appropriate hardware for each task. It’s doubtful you’ll see any ZX spectrums 
hanging around!

Commonly used middlewares are CORBA, the Java RMI, Microsoft’s 
DCOM, and .NET remoting. Using these, we split the system between user 
interface elements, the business logic (real workhorse code), and any storage 
required (e.g., a database and query engine). The user interface client may 
be a GUI program or a web-based front end. This is the classic tiered architecture 
approach (described in “Client/Server Architecture” on page 271). We also 
see the emergence of web APIs—communications methods for services that use 
standard web protocols.
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Grid computing and clustered systems are specific distribution mechanisms 
that help numerical programming work (more on this later), enabling the 
creation of high performance, distributed computational algorithms. Clusters 
are tightly coupled systems; usually all the machines are in the same room, 
using the same hardware and OSes, linked by a specific cluster middleware. 
Grids are loosely coupled; they could be geographically scattered and run 
heterogeneous environments. They communicate via standard web protocols 
(e.g., HTTP/XML).

Web Application Programming

In 1990, Tim Berners-Lee created the first HTML browser and server, and 
the World Wide Web was born. Today it is a pervasive technology, and servers 
can not only deliver static pages of information, but they can dynamically 
create pages based on programs running on the webserver. This is a very 
specific form of distributed computing, where the user interface is hosted on 
a remote client: the web browser.

T H E  R U N D O W N

The Smallpox project, completed in 2003, was a grid com-
puting project to help find a cure for smallpox by screening 
a huge number of potential drug molecules. It was a collabo-

ration between scientists, universities, and businesses that 
identified 44 strong candidates for treatment of the disease.

Typical products
An online purchase system, splitting work between front-end applications (web 
interface, in-shop kiosk, and/or phone ordering system), business logic (manages 
stock control, implements ordering system and secure billing) and the shared 
storage.

Target platform
Many different computer systems connect via a middleware, almost always sitting 
on top of standard networking protocols.

Development environment
Many and varied. This will depend on languages used, the nature of each computer 
in the system, and the type of middleware employed. Remotely callable interfaces 
are often defined in some form of interface definition language (IDL) and compiled 
to an implementation language representation that provides all the calling glue 
and provides hooks for each function implementation to be slotted in to.

Common problems and challenges
Designing the correct split of services between computers and streamlining the 
communications involved. This can severely affect the scalability of a distributed 
system. What works for a few transactions per day may not work efficiently for 
100 transactions per minute. This calls for a real need to design carefully. You 
also have to deal with computer availability and cope gracefully if one of the 
computers in the system becomes unavailable.
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Examples of this kind of application include:

Online shopping

Bulletin boards, messaging services, and web-based email packages

Ticket availability and booking systems

Internet search engines

Most people now use web applications without thought; it’s as natural as 
a local word processor. These programs clearly have different characteristics 
from ordinary (so-called rich client) desktop applications. There are different 
things that each can do well. Without heroic JavaScript coding, interaction in 
a browser-based application UI is a lot more limited.

The web application operational model is different from vanilla 
applications programming—session state is held on a remote machine, 
which must manage numerous simultaneous client connections, storing their 
state between HTTP interactions and gracefully handling clients that stop 
connecting. To facilitate this, some information is stored on the server (e.g., 
the items each customer is ordering are placed in a database) and some on 
the local client (using web browser cookies—nuggets of stored session state—
to record the current user/session ID). Frameworks like ASP.NET and 

T H E  R U N D O W N

A web app makes you treat the web browser as your OS. 
All good web developers start by learning client-side 

browser technologies inside out. Then you learn to write 
good server-side code (i.e., fast, concurrent, transactional, 

distributed, and correct). The best thing about the Web is that 
it is constantly evolving and users’ expectations are always 
rising. The bad thing about the Web is that users’ expecta-
tions are always rising and your code never stands still.

—Alan (web applications programmer)

Typical products
Interactive services that require up-to-date infomation and feedback: ticket booking 
or shopping systems.

Target platform
The back end is a webserver (commonly Apache or IIS). This choice is under your 
control, since you deploy the web app. The clients are web browsers, and there 
are many variants. Each has its own quirks, and you have no control over what is 
used. You have to produce web pages that are compatible with most of these.

Development environment
The environment consists of the specific webserver and the applications program-
ming language you write the system in, running on that server. Common languages 
are Perl and PHP.

Common problems and challenges
Coping with different browsers; scalability.
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Java Servlets exist to speed web application development. Numerous off-
the-shelf systems exist, such as content management systems and shopping 
cart systems.

Many open standard protocols and encoding systems are used to repre-
sent and transfer information. HTTP is the common data transfer mechanism, 
and XML is often used to encode data packets (e.g., SOAP is a web-based 
communication protocol based on an XML schema).

The problems faced by web application programmers mainly revolve 
around interoperability with the many types of browsers that might be used, 
handling their HTML peculiarities and their odd JavaScript quirks. It’s not 
unusual to develop tortuous HTML output to cope with all manners of flaws 
in the popular browsers. Web programmers often have to interface with 
legacy systems (customer databases, existing order management systems, etc.) 
to generate their information; this can get quite messy. Scalability is a real 
concern: A system might work fine when tested by five simultaneous users. 
But when it goes live, it must withstand 500 users accessing it at the same 
time. Load testing is important here (see “Load testing” on page 139).

Enterprise Programming

Enterprise is one of those tedious buzzwords that floats around, more 
management-speak than any programmer dialect. An enterprise is literally a 
business organization. So enterprise programming provides systems for entire 
companies, gluing all their separate systems together to form a unified, 
cohesive whole. Enterprise programming almost always means the develop-
ment of large distributed systems.

They’ll commonly be deployed on a company intranet (internal network) 
and link the different departments of the business together to improve work-
flow. The systems may or may not be customer facing. Once the organization 
is running an integrated computer system, it’s generally not too hard to have 
automated customer interaction—for example, through a web-based shop 
interface. Perhaps an enterprise system will need to interface to other 
companies’ systems too, to track the delivery status of goods being shipped, 
for example.

Enterprise programming shares a lot of characteristics with made-to-order 
applications software. The product only really needs to be good enough, since 
it’s developed under contract for a specific customer, rather than speculatively 
for a general-market release. Quality here is not the measure of success (at 
least as determined by general stability and a larger feature set than any 
competitor); meeting the customer’s objectives is.

Enterprise systems are written for installation on specific machines in a 
company’s server room or on locked-down desktop machines. You have 
reasonable control over the execution environment, so you don’t need to 
worry about making the code work on every release of the operating system 
and under every conceivable hardware configuration. This deftly sidesteps a 
lot of the headaches that applications programmers suffer.
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Numerical Programming

This kind of work involves scientific, highly technical tasks making heavy use 
of mathematics. This is a very specialized area that requires writing applica-
tions specifically targeted at particular numerical problems. The programs 
are often aimed at supercomputers, the fastest type of computers, capable of 
massive number-crunching operations. Although we’re living in times when 
the fastest computer changes from year to year, these are very expensive 
platforms, employed for specialized applications that require immense 
mathematical calculations.

Weather forecasting, for example, requires a supercomputer (or perhaps 
a gift of prophesy!). We also see supercomputers used for animated graphics, 
fluid dynamic calculations, and other areas that require highly complex 
mathematical investigation and calculation.

A supercomputer is not a mainframe. The latter is a high-performance 
computer designed to concurrently execute as many programs as possible, 
often used as a centralized computing resource in a business setting. A super-
computer channels all its power into executing a few programs as fast as 
possible. There are a number of different supercomputer architectures 
exploiting different technological advances, each requiring different algo-
rithmic approaches to fully exploit their power. General-purpose machines 
are now becoming powerful enough for serious numerical work—clustered, 
they can respectably make a poor man’s supercomputer.

Numerical work requires high-performance algorithms that execute 
calculations rapidly, to capitalize on the performance of the computing 
platform. It is common to make use of carefully designed, heavily optimized 
numerical libraries and to make explicit use of parallel processing, designing 
this into the computational algorithms and processes. This will involve both 

T H E  R U N D O W N

I work in the IT department of a large city bank. We write soft-
ware to solve specific business needs. It’s mission critical; what 
we do makes a real difference to the company’s profits, so we 
have to take it seriously. With many thousands of dollars going 

through the system every hour, there’s no room for error.
—Richard (Enterprise programmer)

Typical products
Business systems for an entire company, managing its commercial operations.

Target platform
A tailored distributed system.

Development environment
Same as for distributed systems. We’ll probably be working with huge data stores, 
perhaps various database technologies from previous internal systems (legacy 
systems in manager-speak). XML is all the rage here.

Common problems and challenges 
Same as for distributed systems.
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task and data parallelism: either performing many similar tasks on many 
CPUs at once or pipelining the algorithm, performing different parts of it on 
different CPUs.

This branch of programming requires heavy optimization to the character-
istics of the target platform to achieve acceptable performance.

So What?

Freedom from the desire for an answer is essential 
to the understanding of a problem.

—Jiddu Krishnamurti

How do these programming niches affect us? What do they make us do 
differently? To be a good programmer, a true craftsman, you must know:

What your discipline is—the kind of software you’re producing.

How the discipline affects your architecture. (Is it a tiered enterprise 
system or tightly woven ball of embedded code? See Chapter 14.)
What is an appropriate code design in this field and what isn’t. (For 
example, should you sacrifice clarity and elegance for performance, try 
to squeeze the executable image into the smallest size possible, or per-
haps incorporate many hooks for future extensibility?)
The tools you use—what’s available and what isn’t.

Which is the most appropriate choice of programming language and 
which coding idioms you should employ.

T H E  R U N D O W N

I work on software systems for an engineering firm. We 
model large mechanical installations to figure out where 

physical problems might lie now or in the future. I have to 
represent the real world in a mathematical way, figuring 
out how things (should) work. Once I’ve done this, it’s a 
case of finding the right mathematical constructs to repre-

sent the systems in an acceptable, accurate way.
—Andy (Numerical programming expert)

Typical products
Fields involving highly complex mathematical investigation like nuclear energy 
research or petroleum exploration.

Target platform
Supercomputers or grid-based computing clusters.

Development environment
Although there is work on advancing numerical programming support in C++, 
and some of this work is performed in C, a lot of numerical programming is done 
in Fortran, which has excellent numeric support (that was what it was designed 
for: formula translation).

Common problems and challenges
Crafting efficient algorithms to really exploit the power of the supercomputer.
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KEY CONCEPT Know your discipline. Learn its intricacies. Understand how to write excellent software 
that appropriately meets its requirements.

In a Nutshell

Still round the corner there may wait,
A new road or a secret gate.

—J.R.R. Tolkien

We’ve dipped a toe in the water and sampled the different flavors of program-
ming going on out there. Of course, there are other areas than those we’ve 
seen: some well defined, others more ephemeral. For example, safety-critical 
software drives high-reliability systems like medical equipment and aircraft 
control. Here failure is not an option, and the code must be provably correct; 
this has a profound affect on the way you design and write it.

What have we learned? These fields all have one thing in common: their 
differences. Each requires fundamental design decisions to be made to suit 
software to them. Application-level code is not generally suited to an embed-
ded environment. A workstation application design may not scale when 
applied to a distributed system.

This means that software developers tend to specialize in particular fields 
and learn to think in particular patterns that suit their worlds. Understanding 
the very real concerns of each environment will make you a more flexible 
and mature programmer. Ultimately, you must know your programming 
church and practice its rites and rituals well.

See Also

Chapter 7: The Programmer’s Toolbox 
Different niches have different qualities and ranges of development tools.

Chapter 14: Software Architecture 
Different problem domains call for very different software solutions.

Good programmers . . . Bad programmers . . .

Understand the nature 
of the problems they face

Tailor their code and 
designs to the problem 
domain

Have a naïvely narrow software 
worldview; they don’t understand 
the forces that drive other types of 
software development

Write code ill-suited for the problem 
domain (choosing unsympathetic 
architectures or inappropriate code 
idioms)
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Get Thinking

A detailed discussion of these questions can be found in the “Answers and 
Discussion” section on page 557.

Mull It Over

1. Which of the programming niches we’ve looked at here are particularly 
similar or share common characteristics? Which are particularly different?

2. Which of these programming disciplines is hardest?

3. Is it important to be an expert in one particular area or to have a good 
grounding in all of them without a particular specialism?

4. Which programming niche should trainee programmers be introduced to?

Getting Personal

1. What programming arena are you working in right now? How does it 
affect the code that you’re writing? What specific design and implemen-
tation decisions has it led you to make?

2. Do you have experience working in more than one programming disci-
pline? How easy was it for you to switch mindsets and apply appropriate 
techniques in a different world?

3. Are any of the people you work with unaware of the forces that shape the 
particular kind of code you write? Do you have embedded software being 
written by programmers who only understand applications work? What 
can you do about this?





W H E R E
N E X T ?

All’s Well
That Ends Well

What we call the beginning is often the end. And to make an 
end is to make a beginning. The end is where we start from.

—T.S. Eliot

Congratulations! You’ve reached the end of this book. Either that, or you’re 
the kind of person who likes to spoil an ending by reading the last page first. 
(If you are: The butler did it.) Presuming that you’ve read every chapter, by 
now you should have:

Learned many practical code-writing techniques that have already 
improved your source code.

Gained an understanding of how to write code in the Real World and 
the tricks that help you to produce useful code in the madness of the 
software factory.

Worked out some personal ways to improve your skill set. (You did 
attempt the questions, didn’t you? If not, try them now.)

Discovered how to write effective code as part of a team, establishing 
practical steps to improve the way your team currently works together.

Found out more about cartoon monkeys than you ever really needed to.

24
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But more importantly, you should now appreciate that an exceptional 
programmer is one with the right attitude: one who always seeks to write the 
best code in any situation, who works well with others, and who can make 
pragmatic decisions in the heat of the software factory. The craftsman knows 
how to manage technical debt and seeks to address problems early, before 
they become software snares.

KEY CONCEPT Becoming a good programmer requires you to adopt effective attitudes—the angle of 
approach you take to software construction.

But What Now?

The important thing is not to stop questioning. Curiosity 
has its own reason for existing. One cannot help but be in 
awe when he contemplates the mysteries of eternity, of life, 
of the marvelous structure of reality. It is enough if one 

tries merely to comprehend a little of this mystery every day. 
Never lose a holy curiosity.

—Albert Einstein

As a code craftsman, you’ll never reach perfection; the best you can ever 
achieve is a continual state of improvement. There’s always more to learn. 
So what should you do now? The very fact that you’re asking that question is 
pivotal—one of the most important charateristics of a code craftsman is a 
desire to improve.

If I wanted to become a skilled soccer player, I might find some books on 
soccer, buy a soccer training video, and then sit down with some popcorn 
and a few beers to learn how to play the game. Great. Ask me how it’s going 
two months later. If I say, “I’ve read loads about it, and I know all the top 
moves of the premier players,” then you won’t be at all impressed: How well 
can I actually play? It is a geniunely good idea to read about the game and to 
study it, but couch potato soccer skills aren’t any real use.

I can only learn soccer by doing it—by getting dirty, out on a field, play-
ing the game. Practice makes perfect. I need to play with people who are skilled 
and who can train me well. I need to expend energy, feel the burn, and 
perhaps make a fool of myself in front of others. Slowly, gradually, painfully, 
I’ll get better.

I hate to break it to you, but that’s the only way to get good at code 
craft too. Just reading this book won’t cut it. You have to get out there and 
do it. Properly. So how can we translate this into practice? Here are a few 
simple ideas:

Place this book on your bookshelf. Put what you’ve learned into practice 
as best you can right now. You can always refer to a specific chapter when 
you run into problems later on.

After a few months of working with this advice, pull out the book 
once more and give it another read. Pay particular attention to the
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questions in the “Getting Personal” sections—work out what your next 
steps must be to improve your code. Each time you go through this pro-
cess, you’ll identify new ways to improve your skills.

Maneuver your career into the path of great coders, and glean all you 
can from them. Learn what makes their code good and their attitudes 
constructive, and how you can apply these characteristics to yourself. 
Seek their advice, criticism, review, and opinion. Ask them to mentor 
you. (Bribe them with popcorn and alcohol if you have to!)

Keep programming, and expand your horizions. Write more code. Try 
out new techniques. Tackle new problems, different languages, and 
unfamiliar technologies.

Don’t be afraid of making mistakes; you won’t become a perfect pro-
grammer overnight. As you learn, you will almost certainly make many 
embarrassing faux pas. Don’t let these stunt your growth or define you as 
a programmer. Unless you try out new techniques, you’ll never learn and 
won’t improve. George Bernard Shaw wrote, “A life spent making mis-
takes is more useful than a life spent doing nothing.”

Receive advice and code review comments with a constructive attitude. 
Look back at what you’ve done, and see how it can be improved.

Develop outside interests that you can use as a frame of reference for 
technical knowledge. If all you ever study is programming, then you will 
become a very two-dimensional person and will not be able to fit code 
craft into the context of the Real World.

Find the classic books in your field. (Code Craft is obviously one of them!) 
Get a copy of each, and digest it well. Every disicpline and every language 
has its renowned gurus—ensure you know who they are and what they’ve 
written.

Read the classic software tomes, like:

The Mythical Man-Month (Brooks 95)

The Psychology of Computer Programming (Weinberg 71)

Peopleware: Productive Projects and Teams (DeMarco 99)

The Pragmatic Programmer (Hunt Davis 99)

Code Complete (McConnell 04)

The Practice of Programming (Kernighan Pike 99)

Design Patterns: Elements of Reusable Object-Oriented Software
(Gamma et al. 94)

Refactoring: Improving the Design of Existing Code (Fowler 99)

Ask your peers which books they have found valuable. Seek out 
relevant magazines, websites, and conferences.

Teach. Mentor a lesser abled programmer. You’ll learn a lot more by 
passing on your wisdom.
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Broaden your skills base by joining a professional organization like 
the British Computer Society (BCS), the Association for Computing 
Machinery (ACM), or the ACCU (www.accu.org). Then join in—
contribute. The more you participate, the more you’ll invest in your-
self. The ACCU, for example, is highly contributory. It runs mentored 
developer projects and encourages members to write for its periodicals. 
These organizations run programming contests, provide forums for 
social networking, and often have local chapters where you can meet 
like-minded people who care about the craft of programming.

Have fun! Enjoy cutting code to solve tricky problems. Produce software 
that makes you proud. Confucius said, “If you enjoy what you do, you’ll 
never work another day in your life.”

KEY CONCEPT Take responsibility for improving your skills. Never lose your passion for programming 
or your desire to do it with excellence.



Principles for the Development of a Complete Mind: 
Study the science of art. Study the art of science. Develop 

your senses—especially learn how to see. Realize that 
everything connects to everything else.

—Leonardo DaVinci

This part contains my musings on the questions at the 
end of each chapter. It’s not a straight answer set—
few of the questions have a definite yes or no response. 
Compare your answers with these.

The point of these questions is simply to get you thinking, to make you 
delve deeper into each subject, and to spur you to improve your 
programming skills.

If you’re thinking of reading this just to get the “answers” without having 
thought about the questions first, I’d really encourage you not to. Spending 
even a little time mulling things over and getting personal will really pay off. 
As Confucius said, “I hear and I forget. I see and I remember. I do and I 
understand.”

Chapter 1: On the Defensive

Mull It Over

1. Can you have too much defensive programming?

Yes—just as too many comments can degrade code readability, so can many 
defensive checks, if they are bad. Redundant checks can be avoided with 
careful coding; for example, by making a good choice of types.

ANSWERS AND
DISCUSSION
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2. Should you add an assertion to your code for every bug you find and fix? 

Fundamentally, it’s not a bad practice. But think about where you’d add the 
assertions. Many, many faults are due to incorrect honoring of API contracts. 
If you passed garbage into a function, you would want to put some precondition
checking inside that function, rather than put a test at the call site. If the 
function returned garbage, you would either fix the function so that it won’t 
again (and prove it’s fixed) or write some postconditions.

It would be more beneficial to add a new unit test for every bug you find 
and fix.

3. Should assertions conditionally compile away to nothing in production 
builds? If not, which assertions should remain in release builds?

People hold passionate beliefs on this subject. The answer isn’t black and 
white; there are powerful arguments for both sides. There are always some 
very nit-picky assertions that really don’t need to be left in production builds. 
But some assertion occurrences may still interest you in the field.

Now, if you do leave any constraint checks in releases, they must change 
behavior—the program shouldn’t abort on failure, just log the problem and 
move on.

Remember: Genuine run-time error checks should never be removed; 
they should never be coded in assertions anyway.

4. Are exceptions a better form of defensive barrier than C-style assertions?

They can be. Exceptions behave differently; while propagating back up the 
call stack, an exception can be caught and ignored—suppressing its effect. 
This makes exceptions more flexible tools. You can’t ignore an assert that 
aborts execution; assertions are lower-level mechanisms.

5. Should the defensive checking of pre- and postconditions be put inside
each function, or around each important function call?

In the function, without a doubt. This way, you only need to write tests once. 
The only reason you’d want to move them out is to gain flexibility, to choose 
what happens when a constraint fails. This isn’t a compelling gain for such 
an explosion in complexity and potential for failure.

6. Are constraints a perfect defensive tool? What are their drawbacks?

No, they are nowhere near perfect. Redundant constraints can be pests at 
best and hindrances at worst. For example, you could assert that a function 
parameter i >= 0. But it’s much better to make i an unsigned type that can’t 
contain invalid values anyway.

Treat constraints that can be compiled out with a certain degree of 
suspicion: We must carefully check for any side effects (assertions can have 
subtle indirect consequences) and for timing issues in the debug build that 
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alters its behavior from a release build. Ensure that assertions are logical 
constraints and not genuine run-time checks that mustn't be compiled out. 
It is possible to put bugs in the bug-defense code!

But carefully used, constraints are still far better than dancing barefoot 
over the hot coals of chance.

7. Can you avoid defensive programming?

a. If you designed a better language, would defensive programming still 
be necessary? How could you do this?

b. Does this show that C and C++ are flawed because they have so many 
areas for problems to manifest?

Some language features certainly could be designed to avoid errors. For 
example, C doesn’t check the index of any array lookup you perform. As a 
result, you can crash the program by accessing an invalid memory address. 
The Java run time, on the other hand, checks every array index before lookup, 
so such an catastrophe will never arise. (Bad indexes will still cause an error 
though, just a better defined class of failure.)

Despite the long list of “improvements” you could make to the liberal C 
specification (and I urge you to think of as many as you can), you’ll never be 
able to create a language that doesn’t need defensive programming. Functions 
will always need to validate parameters, and classes will always need invariants 
to check that their data is internally consistent.

Although C and C++ do provide plenty of opportunity for things to go 
wrong, they also provide a great deal of power and expression. Whether that 
makes the languages flawed depends on your viewpoint—this is a topic ripe 
for holy war. 

8. What sort of code do you not need to worry about writing defensively?

I’ve worked with people who refused to put any defensive code into an old 
program because it was so bad that their defenses would make no difference. 
I managed to resist the urge to whack them with a large mallet.

You might argue that a small, stand-alone, single-file program or a test 
harness doesn’t need this sort of careful defensive code or any rigorous 
constraints. But even in these situations, not being careful is just being 
sloppy. We should aim to be defensive all the time.

Getting Personal

1. How carefully do you consider each statement that you type? Do you 
relentlessly check every function return code, even if you’re sure a 
function will not return an error?

I bet you don’t check everything. It’s far too easy to overlook certain function 
return codes, especially since some are deemed more important than others. 
How many C programmers check the return value of printf? How many 
actually know that it returns anything?
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2. When you document a function, do you state the pre- and postconditions?

a. Are they always implicit in the description of what the function does? 

b. If there are no pre- or postconditions, do you explicitly 
document this?

No matter how obvious you think a contract is (from the function name or its 
description), explicitly stating the constraints removes any ambiguity—
remember, it’s always better to remove areas of assumption. Explicitly writing 
Preconditions: None will document a contract explicitly.

Of course, you don’t want every function to explicitly restate a global 
precondition. It would be laborious and tedious. If an entire API expects 
that pointer values mustn’t be null, it’s arguably better to document this 
once, globally.

3. Many companies pay lip service to defensive programming. Does your 
team recommend it? Take a look at the codebase—do they really? How 
widely are constraints codified in assertions? How thorough is the error 
checking in each function?

Very few companies have a culture of excellent code with the right level of 
defense. Code reviews are a good way to bring a team’s code up to a reasonable 
standard; many eyes see many more potential errors.

4. Are you naturally paranoid enough? Do you look both ways before cross-
ing the road? Do you eat your greens? Do you check for every potential 
error in your code, no matter how unlikely?

a. How easy is it to do this thoroughly? Do you forget to think about 
errors?

b. Are there any ways to help yourself write more thorough 
defensive code?

No one finds it naturally easy—thinking the worst of your carefully crafted 
new code is contrary to a programmer’s instincts. Instead, expect the worst of 
any people who will be using your code. They’re nowhere near as 
conscientious a programmer as you are!

A very helpful technique is to write unit tests for each function or class. 
Some experts strongly advise doing this before writing a function, which makes 
a lot of sense. It helps you to think about all the error cases, rather than 
happily trusting that your code will work.

Chapter 2: The Best Laid Plans

Mull It Over

1. Should you alter the layout of legacy code to conform to your latest code 
style? Is this a valuable use of code reformatting tools?
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It’s usually safest to leave legacy code however you find it, even if it’s ugly and 
hard to work with. I’d only entertain reformatting if I was absolutely sure that 
none of the original authors would ever need to return.

By reformatting, you lose the ability to easily compare a particular 
revision of the source with a previous one—you’ll be thrown by many, many 
formatting changes which may hide the one important difference you really 
need to see. You also risk introducing program errors in the reformatting.

As far as code reformatting tools go, they’re nice curiosities, but I don’t 
advocate the use of them. Some companies insist on running source files 
through beautifiers before checking any code into their repository. The 
advantage is that all code is homogenized, pasteurized, and uniformly 
formatted. The major disadvantage is that no tool is perfect; you’ll lose 
some helpful nuances of the author’s layout. Unless all the programmers 
on your team are gibbons, don’t use a reformatting tool.

2. A common layout convention is to split source lines at a set number of 
columns. What are the pros and cons of this? Is it useful?

As with many presentation concerns, there is no absolute answer; it is a 
matter of personal taste.

I like to split my code up so that it fits on an 80-column display. I’ve 
always done that, so it’s a matter of habit as much as anything else. I don’t 
disagree with people who like long lines, but I find long lines hard to work 
with. I set my editor up to wrap continuous lines rather than provide a 
horizontal scrollbar (horizontal scrolling is clumsy). In this environment, long 
lines tend to ruin the effect of any indentation.

As I see it, the main advantage of fixed column widths is not printability, 
as some would claim. It’s the ability to have several editor windows open side 
by side on the same display.

In practice, C++ produces very long lines. It’s more verbose than C; you 
end up calling member functions on objects referenced by another object 
through a templated container. . . . There are strategies to manage the many, 
many, long lines this may lead to. You can store intermediate references in 
temporary variables, for example.

3. How detailed should a reasonable coding standard be?

a. How serious are deviations from the style? How many limbs should 
be amputated for not following it?

b. Can a standard become too detailed and restrictive? What would 
happen if it did?

Six limbs should be amputated for deviations from any coding standard.
The correct answer really depends on the exhaustiveness of the coding 

standard and the coding culture you work in. There are usually much bigger 
software problems to address than a misplaced bracket, but brackets are 
easier to moan about. I have seen many coding standards that are so pre-
scriptive and paralyzing that the poor programmers have just plain ignored 
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them. To be useful and to be accepted, a coding standard should provide a 
little room for maneuvering, perhaps with a best practice approach given as an 
example.

4. When defining a new presentation style, how many items or cases need 
layout rules? What other presentation rules must be provided? List them.

If you write out each layout rule individually, there will be an awfully large 
number of cases to consider. Coding style is a delicate interplay of many forces: 
indentation, yes, but also internal spacing, naming, positioning of operators, 
presentation of parentheses, contents of files, use and ordering of header 
files, and more, and more.

The following list of presentation items is long, but it’s far from complete. 
It’s a good starting point for a style checklist. In practice, some items are 
more important to standardize than others. As you read this list, make sure 
that you have considered a personal preference for each item. Also make 
sure that you know the correct convention for your current software project.

Code margins

The number of spaces per indent shapes the left edge of the code. It’s 
common to see two- or four-space indents, though some programmers 
diplomatically choose three spaces. Smaller indents mean that you don’t 
run into the right margin as quickly, but they look cluttered and make it 
harder to differentiate among levels. Larger indents are more distinct, 
but you run out of space more quickly.

Whether to indent with tabs or spaces is a long-running debate that has 
driven many programmers to therapy. Spaces are more portable; they’ll 
display the same width in any editor. When displaying code using a vari-
able width font,1 tabs can give better alignment.

Page width determines how you format the right-hand code edge. You 
can limit lines to a fixed number of columns or let them grow forever, 
requiring horizontal window navigation. Fixed pages are often 79 or 80 
characters wide. This is historic; 80 characters is a common terminal 
width, but the last column was not always usable for display.

There are choices for aligning certain constructs. At which level do you 
put public:, private:, and protected: in a class declaration? Where do case
labels go in switch statements? How do you format labels for the goto
statements you never use?2

Spacing and separation

You can line up pieces of code with an internal tabular layout; for 
example, aligning operators in the same column across subsequent 
lines. This provides visual emphasis for the function of a block of 

1 More common in published code than in a source code editor.
2 Because, of course, no high-quality programmer will use gotos in these enlightened times—see 
“Structured Programming” on page 421.
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statements. However, it does require extra typing and maintenance 
effort, and some programmers don’t feel it is justified. A tabular 
horizontal layout would look something like:

int cat = 1; 

int dog = 2; 

char *mouse = "small and furry";

Whitespace can appear pretty much anywhere, and there are different 
ways to space out individual code statements. It’s a good idea to put spaces 
around operators, like this: hamster = "cute". It’s akin to having spaces 
between words when you write. The alternative, hamster="ugly", looks 
cramped and dense.

Similarly, function calls can be spaced in various ways. You might employ 
one of the following formats:

feedLion(mouse)

feedLion( hamster )

feedLion (motherInLaw)

Many view the latter option as bad—a mathematical equation 
wouldn’t have a space after the function name. (The mother-in-law, 
however, might be a genuinely edible commodity.)

Should you follow a similar convention for keywords? How does 
while(lionIsAsleep) look? Cramped. Keywords aren’t functions; they 
read more like words, so it’s most common to see spaces around them.

If code gets too long for a single line, it must be split, but where to split is 
another choice. Naturally, you’d break in the most logical place, but one 
man’s logic is another man’s folly. Lines are generally broken around an 
operator, but whether before or after it—whether the operator appears 
on the end of the previous or beginning of the next line—is a matter 
of taste.

Variables

A classic C/C++ contention is where to put the asterisk in a pointer dec-
laration (a battle often called Star Wars). You can chose between these 
three:

int *mole;

int* badger;

int * toad;

The first two associate the “pointeryness” with the variable and with 
the type, respectively. The problem with associating with type is it doesn’t 
work as expected for statements like this: int* weasel, ferret;. The third 
version is a reasonable fence-sitting alternative, but isn’t as common.
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Some C/C++ standards mandate that all constant names should be in 
uppercase letters to make them clear. Some argue that only preproces-
sor macro names should be capitalized.

Lines of code

Exactly what goes on each line is a layout concern; it is often mandated 
that every individual statement goes on its own line, making each one 
distinct and clear.

This leads on to the issue of side effects in statements; should you allow 
code like index[count++] = 2 or permit assignments in ifs?

Some presentation styles will place code on the same line as an opening 
brace:

for (...) { ostrich++;

buryHead(ostrich);

}

Constructs

Should you always include braces, even if there’s only one statement 
within them? You might allow braces to be missed when the code follows 
on the same line, like this:

if (weAreAllDoomed) startPanicking();

It’s common to see else clauses aligned in the same column as their 
respective if, but you’ll sometimes see them placed at a subordinate 
indent level.

How important is it to make special cases clear? Some coding standards 
mandate that fall-throughs between switch statement cases should be 
flagged with comments. Similarly, no-ops in loops should be flagged to 
avoid confusion; otherwise, this little bodiless loop that finds the end of a 
C string str may confuse the unwary:

char *end;
for (end = str; *end; ++end);

Should C++ inline methods be put inside the class declaration, outside it 
(directly afterward), or in a separate source file?

Files

The most basic decision is how to split a project into files and what infor-
mation to put into each one. Is there one file per class or per function? 
Or can you split files into smaller or larger units than this, perhaps per 
library or section of code? What if there are a lot of very small related 
classes? Do you really want lots of very small related files?3

3 Java answers this by mandating the physical mapping of classname to filename.
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Conventions for splitting a file into sections differ. Some programmers 
like to insert a number of blank lines as a separator, some prefer com-
ment blocks, some like reams of ASCII art.

In C/C++, the exact order of #included files may be fixed by a presen-
tation style. There are different schools of thought here. Some prefer 
to neatly order system includes first, then project includes, then file-
specific includes. Others feel that the exact opposite is safer; it can
prevent one header file from accidentally relying on headers normally 
included before itself. Some standards suggest that no header file should 
ever #include another, leaving it to be done long-hand in every imple-
mentation file.

Misc
There will always be plenty of other issues specific to particular coding 
situations. How do you format embedded SQL commands in code that 
performs database access? Do you require consistent formatting in a 
project across different languages?

5. Which is more important—good code presentation or good code 
design? Why?

This is really a very artificial question. Both are fundamental for good code, 
and you should never be asked to sacrifice one for the other. If you ever are, 
beware. However, which one you just chose may say a lot about you as a 
programmer.

Bad formatting is certainly easier to fix than bad design, especially if you 
use clever tools to homogenize your code’s formatting.

There is an interesting connection between presentation and design: 
Bad presentation often shows that the code was produced by a bad pro-
grammer, which probably means that it suffers from bad internal design too. 
Or it may imply that the code has been maintained by a series of different 
programmers, with a subsequent loss of the initial code design.

Getting Personal

1. Do you write in a consistent style?

a. When you work with other people’s code, which layout style do you 
adopt—theirs or your own?

b. How much of your coding style is dictated by your editor’s auto-for-
matting? Is this an adequate reason for adopting a particular style?

If you can’t alter the way your editor positions the cursor for you, you 
shouldn’t be using it (either you’re too inept, or your editor is).

If you can’t write code in a consistent style, you should have your 
programmer’s license revoked. If you can’t follow someone else’s 
presentation style, you should be forced to maintain BASIC for the rest of 
your career.
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Guard your attitude: The typical programmer cares more about his code, 
personal practices, and individual layout fetishes than the overall health of 
the project. Too often, there is an individual versus team dilemma. If a 
programmer rebels against an imposed house style or can’t maintain code 
using its existing presentation style, it is a bad sign. This suggests that the 
programmer can’t see the big picture.

2. Tabs: Are they a work of the devil, or the best thing since sliced bread? 
Explain why.

a. Do you know if your editor inserts tabs automatically? Do you know 
what your editor’s tab stop is?

b. Some hugely popular editors indent with a mixture of tabs and 
spaces. Does this make the code any less maintainable?

c. How many spaces should a tab correspond to?

Since this is such a religious issue, I’ll just say Tabs suck! and back away 
quickly. Well, actually I’ll add that the only thing more evil than indenting 
with tabs is indenting with tabs and spaces—a nightmare!

If your editor is inserting tabs (and probably spaces) without you 
noticing, try using another editor for a while to appreciate how frustrating it 
is. Try setting your tab stop to a different value, and see what a mess it makes 
of the code. Everyone uses the same editor, so it doesn’t matter is not a professional 
attitude. Everyone doesn’t use the same editor, so it does matter.

You’ll hear people recommend their choice of tab-stop length and 
carefully justify their opinions. That’s all very well; in fact a respected study 
claims that a three- or four-space tab stop provides optimum readability. (I 
favor four spaces because I don’t like odd numbers!) However, a tab should 
correspond to no fixed number of spaces. A tab is a tab, which is not a space 
or any multiple thereof. For code laid out using tabs, it shouldn’t matter 
exactly how many spaces the tab is displayed as—the code should read well, 
regardless. Unfortunately, I have rarely seen tab-indented code that works 
this way. All too often, tabs and spaces are mixed together to make code line 
up neatly. This works fine with a tab stop set as the author intended. But it 
makes an unholy mess with any other setting.

3. Do you have a preferred layout style?

a. Describe it in a series of simple statements. Be complete. Include, 
for example, how you format switch statements and split up long 
lines.

b. How many statements did it take? Is that what you expected?

c. Does your company have a coding standard?

d. Do you know where it is? Is it advertised? Have you read it?

i. If yes: Is it any good? Perform an honest critique, and feed your 
comments back to the document owners.
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ii. If no: Should it? (Justify your answer.) Is there a common 
unwritten code style that everyone adopts? Can you drive the 
adoption of a standard?

e. Is there more than one standard used, perhaps one per project? If so, 
how is code shared among projects?

Make sure you are aware of any style guides (or undocumented conventions) 
that you should work to.

This question was partly motivated by personal experience: I was working 
in a large organization with several isolated departments, each following its 
own set of guidelines. As the separate products slowly converged, it made 
technological (and sound financial) sense to combine some parts of the 
codebases. The result was a mess of code with different styles of interface, 
different presentation, even different language use. It looked unorganized 
and unprofessional and was very hard to work with. It was painful.

4. How many different layout styles have you followed?

a. Which did you feel most comfortable with?

b. Which was the most rigorously defined?

c. Is there a link?

After a few years of programming, it’s easy to settle into your own peculiar 
layout style without really thinking about how or why you arrived at it. 
Undoubtedly, it was a result of other code you’ve read and worked with, 
mixed with your own personal tastes. Take some time to consider this, and 
ensure that your coding style is sound. Perhaps now is the time to modify and 
improve it.

Changing your style isn’t straightforward. There will still be your old 
legacy code to deal with—should you convert it to the new style, or leave it in 
the previous state?

Grab a text editor and type in this bit of code; it calculates the nth prime 
number. It’s written in one particular coding style. Present it as you’d like to 
see it. Don’t try to change the implementation at all.

/* Returns whether num is prime.*/

bool

isPrime( int num ) {

for ( int x = 2; x < num; ++x ) {

if ( !( num % x ) ) return false;

}

return true;

}

/* This function calculates the 'n'th prime number.*/

int

prime( int pos ) {

if ( pos ) {

int x = prime( pos-1 ) + 1;
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while ( !isPrime( x ) ) {

++x;

}

return x;

} else {

return 1;

}

}

That is a representative bit of Real World code, so don’t dismiss this as a 
stupid and tedious exercise.

Note that I haven’t given any suggested answer here. My reformatting is 
just as valid as yours, and indeed as valid as the original format. That’s why 
this is a Getting Personal question.

If you’re reading these answers without chewing over the questions at all, 
go on—give this one a try. The book can wait while you type in a few lines. . . .

Now, take a look at what you’ve written.

How different is your version? How many specific changes did you make?

For each change, ask yourself: Is it a personal aesthetic preference, or 
can you justify the change with some rationale? Question this rationale—
is it truly valid? How strongly would you be prepared to defend it?

How comfortable were you with the original format? Did it bother you to 
read? Could you work in that coding style if you encountered code like 
it? Should you be able to become comfortable with it?

Give yourself bonus points if you wanted to reimplement the code to be 
more efficient, and extra bonus points if you resisted the temptation. (Pre-
mature optimization is a Bad Thing—see “The Nuts and Bolts” on page 206.)

Chapter 3: What’s in a Name?

Mull It Over

1. Are these good variable names? Answer with either yes (explain why, and 
in what context), no (explain why), or can’t tell (explain why).

a. int apple_count

b. char foo

c. bool apple_count

d. char *string

e. int loop_counter

The quality of a name depends on its context, and we can’t honestly tell 
whether any of these are good or bad names. That’s why the question asks for 
example contexts. There are some obvious contexts where the names might 
be bad: apple_count wouldn’t be a particularly good name for a grapefruit 
counter.
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foo is never a good name. I’ve yet to see anyone counting foos. loop_counter
is also bad; even if a loop gets too big for a short counter name, you can still 
pick a more descriptive name, one that reflects the actual use of the variable 
rather than its role as a loop counter.

We can’t really tell whether bool apple_count is a good name, but it looks 
like it isn’t—a boolean cannot hold a number. Perhaps it’s recording whether 
a separate count of apples is valid, but if this was the case, it ought to be called 
something like is_apple_count_valid.

2. When would these be appropriate function names? Which return types 
or parameters might you expect? Which return types would make them 
nonsensical?
a. doIt(...)

b. value(...)

c. sponge(...)

d. isApple(...)

What each of these might mean depends on where you find them. A name 
depends on its context for meaning; that context is provided by the 
enclosing scope of the function. Context information can also be given by 
function parameters or return variables.

3. Should a naming scheme favor the easy reading or easy writing of code? 
How would you make either easy?

a. How many times do you write a single piece of code? (Think about 
it.) How many times do you read it? Your answers should give some 
indication as to the relative importances.

b. What do you do when naming conventions collide? Say you’re working 
on camelCase C++ code and need to do STL (using_underscore) 
library work. What’s the best way to handle this situation?

I’ve worked on C++ codebases that used such a collision of naming con-
ventions to their advantage. The internal logic used camelCase, whereas 
libraries and components that extended the standard library followed STL 
naming_conventions. It actually worked quite well, neatly marking separate 
parts of the project.

Unfortunately, it doesn’t always work that nicely. I’ve seen plenty of incon-
sistent code where there was no rhyme or reason behind the changing styles.

4. How long should a loop be before you need to give a meaningful loop 
counter name?

This depends on how long your piece of string is. It’s clear, though, that a 
100-line loop with a counter called i is not best practice.4 Whenever you 
insert new code into a loop, check the counter name to see if it now needs 
adjustment.

4 But generally a 100-line loop itself is not best practice.
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5. In C, if assert is a macro, why is its name lowercase? Why should we 
name macros so they stand out?

assert isn’t capitalized because assert isn’t capitalized. In an ideal world it 
would be, but standards being what they are, we have to live with this second-
rate macro name. Sigh.

Fire is useful, but it can also be very dangerous. Macros are the same. 
Macros and #defined constant definitions are dangerous—adopting the 
UPPERCASE name convention will prevent nasty collisions with ordinary 
names. It’s as sensible as wearing safety goggles when a lunatic is walking 
around with a big pointy stick.

Because macros can be so painful, you should choose names that are 
very unlikely to cause headaches. More importantly, avoid using the 
preprocessor as much as humanly possible.

Long calculations can be made more readable by putting intermediate 
results in temporary variables. Suggest good naming heuristics for these 
types of variables.

Bad temporary names are tmp, tmp1, tmp2, and so on, or a, b, c, and so on. 
These, unfortunately, are all common intermediate names.

Like any other item, temporary names should be meaningful (like 
circle_radius in a trigonometric calculation or apple_count in an arboreal 
analysis routine). In fact, in a complex calculation, good names can really 
serve to document the internal logic and show what’s going on.

If you find a value that really has no nameable purpose, if it truly is an 
arbitrary intermediate value that’s hard to name, then you’ll begin to under-
stand why tmp is so popular. Avoid calling anything tmp if possible—try to break 
the calculation in some other way that makes more sense.

6. What are the pros and cons of following your language’s standard library 
naming conventions?

Standard libraries are often a source of language best practice, so it can be 
valuable to follow their conventions. Other programmers are used to the 
naming style, so they will have fewer nasty reading surprises and will feel at 
home with your code.

On the other hand, the library might not always present best practices, 
so think first! C’s horribly named assert macro is a good example of this.

7. Can you wear out a name? Is it okay to repeat a local variable name in 
many different functions? Is it okay to use local names that override (and 
hide) global names? Why?

It is perfectly acceptable to repeat a local variable name in many different 
contexts. Sometimes it’s good practice to: Why use a different loop index 
counter name all the time? It would only serve to make your code harder 
to read.

Don’t hide global names with local variable names; it’s really confusing. 
This is an indicator of brittle code.
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8. Describe the mechanics of Hungarian Notation. What are the pros and 
cons of this naming convention? Does it have a place in modern code 
design?

Hungarian Notation is a naming convention that adorns variable and 
function names with cryptic prefixes to denote type. It’s seen predominantly 
in C code. There are several subtly different dialects, but the most common 
Hungarian prefixes are shown in Table 1.

Hungarian Notation was relatively unbearable in C (not to mention 
unnecessary once the language became more strongly typed), and is rapidly 
nauseating in C++, since it doesn’t really scale up to the many new type 
definitions you can introduce.

If you really want to confuse a maintenance programmer, use Hungarian 
Notation and then, a few months later, change the types of all the variables 
without correcting every single variable name (since it would take far too 
long to do that). This is a real weakness with the naming scheme.

KEY CONCEPT Avoid Hungarian Notation like the plague.

Some naming conventions have diluted Hungarian leanings. Witness the 
foo_ptr and m_foo ideas mentioned earlier in the chapter. There are other 
cute conventions with similar intent: Some programmers call their global 
variables theFoo and their member variables myFoo. Perhaps this shows that 
some Hungarian Notation is a good idea in principle; but taken to its logical 
extreme, it’s a dictatorial tyrant of a convention. Be on your guard.

Table 1: Common Hungarian Notation Prefixes

Prefix Which means . . .

p pointer to . . . (lp means long pointer, an old architectural issue—if you don’t know, 
don’t ask)

r reference of . . . 

k constant . . . 

rg array of . . . 

b boolean (bool or some C typedef)

c char

si short int

i int

li long int

d double

ld long double

sz zero-terminated char string (Note: not p)

S struct

C class (You can define your own class abbreviations, too.)



478 Answers and Discuss ion

9. We see many classes containing member functions acting as getters and 
setters; reading and writing the value of certain properties. What are the 
common naming conventions for these functions, and which is the best?

While some argue that the existence of get and set methods shows a weak 
design, we nonetheless see a lot of classes written like this. Some languages 
actually have built-in support for these operations.

There are several naming conventions to choose from. If you’re writing 
in C++, using camelCase, and have some property called foo of type Foo, you 
might pick:

Foo &getFoo();
void setFoo(const Foo &) const; 

or

Foo &foo();
void setFoo(const Foo &) const; 

or perhaps 

Foo &foo();
void foo(const Foo &) const; 

Your choice may be dictated by a coding standard; otherwise, it’s down 
to your sense of aesthetics. This is a case where I’d violate the Function name 
should always contain a verb rule and go for the second option, since it reads 
the most naturally in code. Try it and see.

If a “getter” method has to perform a long calculation the first time it’s 
run (even if it can cache the answer for future invocations), then I’d be wary. 
It’s no longer a simple retrieval function, and these naming schemes don’t 
imply this. Tree::numApples is a good getter name, unless the operation could 
block for a minute while an image recognition system detects all the apples. 
In that case, I’d like to see the behavior implied by name. Tree::countApples()
hints at some greater activity—it’s the verb in the name.

Getting Personal

1. How good are you at naming? How many of these heuristics do you 
follow already? Do you consciously think about your naming and these 
sorts of rules, or do you just do it all naturally? In which areas can you 
improve?

Go back over the section “The Nuts and Bolts” on page 44. Compare 
those guidelines with the last piece of code you wrote. How does it 
match up? How much of your naming necessarily follows existing 
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coding conventions (as you’re exhorted to do on page 50), and how 
much have you established from scratch?

2. Does your coding standard mention naming at all?

a. Does it cover all the cases we’ve looked at here? Is it sufficient? Is it 
useful, or just superficial?

b. How much naming detail is appropriate in a coding standard?

Sometimes a coding standard with comprehensive naming mandates can 
make it harder to invent names—you have so many rules to try to satisfy that 
it’s hard to remember and reconcile them all. Look with caution at anything 
more prescriptive than the guidelines laid out in Chapter 3.

Good code craftsmen habitually name well, and don’t need coding 
standards to “help” them. The standards-setters often claim that their stand-
ards will help less-experienced programmers to name well. But more often 
than not, these standards are not that helpful—inexperienced programmers 
commit more programming sins than just bad naming. Code reviews are 
required to ensure that their work is appropriate.

3. What’s the worst name you’ve come across recently? How have names 
ever misled you? How would you have changed them to avoid future 
confusion?

Did you spot this in a formal review of someone else’s work, or while trying to 
maintain some old, long-forgotten code?5 Finding and correcting bad names 
just after they’ve been written (when you still know what the thing should 
really be called) is best. And it takes the least effort. Working it out months 
later can sometimes be quite painful.

4. Do you have to port code between platforms? How has this affected file-
names, other names, and the overall code structure?

Older filesystems limited the number of characters you could use in a 
filename. This made file naming much messier (and more cryptic). Unless 
you have to port code to such an archaic system, this kind of limitation can 
be safely ignored.

File-based polymorphism is a cunning way to exploit filenames to achieve 
code substitutability at build time. It’s often used to select platform-specific 
implementations in portable code. You can set up header file search paths, 
allowing one #include to pull in a different file depending on the current 
build platform.

5 Obviously, it would never be a problem you found in your own code!
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Chapter 4: The Write Stuff

Mull It Over

1. Grouping related code will make its relationships clear. How can we 
perform this grouping? Which methods document the relationships most 
strongly?

Obvious grouping devices are common name prefixes and suffixes; file-
system location; and putting items in the same class or structure, C++/C# 
namespace, Java package, source file, or code library. Can you think of more?

Relationships enforced by the language are the strongest—both obvious 
to read and also automatically checked for you. However, proximity of code 
layout is a more potent association than you’d think. Ordering also implies a 
lot—you’ll think that the first item is more important than subsequent 
items. Exploit these facts to document your code.

2. We should avoid using magic numbers in our code. Is zero a magic number? 
What should you call a constant value representing zero?

The number zero has magic properties in many different contexts; in C code 
it is used as a null pointer value, and the initial value for most loops. What 
could you replace 0 with?

A single shared constant called ZERO is no better than writing 0; it’s just as
magic. The name doesn’t imply what any zero actually means—is it a null 
pointer value, or a loop initialization value? This approach would defeat 
the purpose.

A different name for each zero constant would get very tedious 
because you’d have to create many similar variations on the theme of 
for (int i = SOME_ZERO_START_VALUE; i < SOME_END_VALUE; ++i). None of 
these zero constant names gives any new meaningful information, anyway.

You’d have to think carefully about names for zero constants. The 
obvious choice would be something like NO_BANANAS, meaning no bananas 
counted. But this NO_ prefix could be confused as an abbreviation for 
number (like NUM_).

3. Self-documenting code makes good use of context to convey informa-
tion. Show how you do this, and give an example of how a particular 
name would lead to a different interpretation in different functions?

There are many ways to exploit context to your documentation’s advantage. 
Consider a Cat class. Inside it, member functions don’t need to be called set-
CatName, setCatColor, and so on; the cat part is implicit from the class context.
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Many English words have a dual meaning. You’d expect the count
variable in a search function to hold different information than one in a 
vampire database schema. More practically, a name variable in our Cat class 
clearly holds the cat’s name, whereas one in an Employee class is more likely 
to hold a human’s—with first name, last name, and title information. Same 
variable name, different contents. Exploit context information as much as 
possible, but ensure that the context in which you write is truly obvious.

4. Is it realistic to expect a newcomer to pick up some self-documenting 
code and understand it totally?

Yes, that’s our aim—it is realistic. However, the reader will still need overview 
and design documents describing the entire system, what it does, and how 
it’s structured. If the code comments try to explain this, then they’re in the 
wrong place (or it’s a very small system).

With good code documentation, a newcomer should find it perfectly 
clear what a particular section of code is doing. Comprehensive API docs show 
the meaning of any function call the newcomer may come across.

5. If code is truly self-documenting, how much other documentation is 
required?

It depends on the size and scope of the project. You’ll require functional 
specifications and design documents. You may still need an implementation 
overview, and will definitely require thorough test specifications.

To document the design of a single piece of code, good literate comments 
mean that you shouldn’t need any other documentation.

6. Why must more people than the original author understand any piece 
of code?

It’s a reality of the software factory. Being the only person who understands 
some code is good job security for the unscrupulous programmer. Writing 
code that’s worse than a cryptic crossword puzzle will guarantee you a job 
for life (or until the company folds, whichever happens first). The 
downside is that you’ll spend your days immersed in your own foul 
concoctions.

In reality, code is dangerous if it can’t be understood by anyone else. If 
you leave the company, move to another department, get promoted, or no 
longer have time to perform maintenance, then someone else must be able to 
take over. And if it doesn’t come down to that, sometime down the road, 
when you’ve forgotten how your code works, a fatal fault will turn up that 
must be fixed by last Tuesday.

Code reviews can help to ensure that code is well understood and 
adequately documented.
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7. This simple C bubblesort function could use some improvement. What 
specific things are wrong with it? Write an improved, self-documenting 
version.

void bsrt(int a[], int n)

{

for (int i = 0; i < n-1; i++)

for (int j = n-1; j > i; j--)

if (a[j-1] > a[j])

{

int tmp = a[j-1];

a[j-1] = a[j];

a[j] = tmp;

}

}

The first problem is that a bubblesort algorithm should never be used. 
There are plenty of better sorts. There’s also probably a much better, 
generic language library function available; in C you can call qsort, for 
example. I’ve used bubblesort here as a simple code example.

The function’s interface isn’t clear at all. The function name is too cryptic, 
and the parameter names mean nothing. I’d like to see an API documentation 
comment provided too, but I’ll leave that out in the rewrite below.

Internally, the code is a mess. Its intent would be much clearer if the 
code that transposes array values is split out as a swap function. Then the 
reader can see what’s going on. A little more massaging leads to this:

void swap(int *first, int *second)

{

int temp = *first;

*first = *second;

*second = temp;

}

void bubblesort(int items[], int size)

{

for (int pos1 = 0; pos1 < size-1; pos1++)

for (int pos2 = size-1; pos2 > pos1; pos2--)

if (items[pos2-1] > items[pos2])

swap(&items[pos2-1], &items[pos2]);

}

This is adequate C, although there are some more changes you might 
prefer. Depending on your religion, you might want braces around the 
loops. swap could be made into a macro for efficiency. This isn’t a clever 
optimization though; you should really choose a more efficient sort 
algorithm.

In C++, I’d consider making swap inline, and take its parameters by 
reference (documenting the fact that they will be changed). The best choice 
would be to use the std::swap facility available in the language libraries.
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8. Working with code documentation tools brings up some interesting 
issues. What’s your opinion on these?

a. When you review the documentation, should you perform a 
code review, looking at the comments in the source files, or a 
specification review, looking at the generated documents?

b. Where do you put documentation of protocols and other non-API 
issues?

c. Do you document private/internal functions? In C/C++, where do you 
place this documentation—in the header file or implementation file?

d. In a large system, should you create a single, large API document or 
several smaller documents, one per area? What are the advantages of 
each approach?

My thoughts on these questions are:

a. Review the generated spec; don’t get too hung up about the layout of the 
comments in the source file. You’re reviewing the content, not the code.

b. Don’t be fooled into thinking documentation must be put in a header file
or in an implementation file. Even if documentation tools are a Good Thing, 
it’s not evil to have some separate “traditional” documents as well. Write 
about your protocol there.

c. Document any internal functions that need documentation. You don’t nec-
essarily have to write exhaustive docs on all private parts. These docs 
should be hived off into the implementation file if they’re reasonably 
large, to keep the public interface neat and simple.

d. Both! Use different invocations of the tool to generate a single, large 
document and documents for each subsystem.

9. If you’re working on a codebase that isn’t literately documented, and you 
need to alter or add new methods or functions, is it a good idea to give 
them literate documentation comments, or should you leave them 
undocumented?

The craftsman wants to document and automatically feels the need to write 
comment blocks. Now, if the code has a separate specification document, 
then your documentation should go in there alongside everything else. 
Otherwise, it’s not too bad to start adding literate comments. Make sure 
that the original programmer isn’t going to take offense, though!

10. Is it possible to write self-documenting assembly code?

You can give it your best shot, but it’s not going to be easy. Assembly code 
isn’t particularly expressive; you’re not programming at the level of intent, 
more at the level of do this, you dumb microprocessor. Your code will be mostly 
comment blocks (probably good practice for assembly, anyway). Except for 
subroutine labels, there’s not much else to self-document with.
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Getting Personal

1. What do you consider to be the best documented code you’ve come 
across? What made it so?

a. Did this code have a large number of external specifications? How 
many of them did you read? How can you be sure you knew enough 
about the code without reading them all?

b. How much of this do you think was due to the author’s programming 
style, and how much was because of any house style or guidelines he 
or she worked to?

Well-documented code does not necessarily have any separate description 
documents. Internally, it employs good naming, logical modularization, 
simple techniques, clear layout, documented assumptions, and good 
commenting. House styles help, but they are no substitute for astute, 
sensitive programming. An idiot can follow the most stringent guidelines 
and still produce shabby shreds of code.

2. If you write in more than one language, how does your documentation 
strategy differ in each?

Different languages are more or less expressive, and so what can and can’t be 
documented within the language syntax varies. As much as anything else, this 
will affect how many comments you’d write.

You’re probably better at writing self-documenting code in your most 
familiar programming language.

3. In the last code you wrote, how did you make the important stuff stand 
out? Did you hide private information away appropriately?

Think carefully about this—the natural tendency is to dismissively say, 
Yeah, I wrote it okay. Look at your code as if it had been written by some 
other muppet. Criticize it.

4. If you’re working on a team, how often do others come to you to ask you 
how something works? Could you avoid this with better-documented code?

A good two-pronged strategy to cope with this is:

a. If the question is genuinely about something unclear in your code, after 
having explained it to the curious programmer (and learned what he 
really needed to know), capture the information in some appropriate doc-
umentation. You can email this to him afterward, too, to ensure he took 
away the right information.

b. If the question was about something that was already explained in the 
documentation, point him at it, shout RTFM,6 and give him a poke in 
the eye.

6 Read The (ahem . . . ) Manual.
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Chapter 5: A Passing Comment

Mull It Over

1. How might the need for and the content of comments differ in the 
following types of code:

a. Low-level assembly language (machine code)

b. Shell scripts

c. A single-file test harness

d. A large C/C++ project

Assembly language is less expressive, providing fewer opportunities for self-
documenting code. Therefore, you’d expect more comments in assembly 
code, and you’d expect those comments to be at a much lower level than 
comments in other languages—assembly language comments generally 
would explain how as well as why.

There isn’t an enormous a difference between the remaining three. 
Shell scripts can be quite hard to read back; they are proto-Perl in this respect. 
Careful commenting helps. You’re more likely to use literate programming 
techniques on a large C/C++ codebase.

2. You can run tools to calculate what percentage of your source code lines 
are comments. How useful are these tools? How accurate a measure is 
this of comment quality?

This kind of metric will give insight into the code, but you shouldn’t get too 
concerned about it. It isn’t an accurate reflection of code quality. Well-
documented code might not contain any comments. Enormous revision 
histories or large corporate copyright messages can dominate small files, 
affecting this metric.

3. If you come across some incomprehensible code, which is the better way 
to factor in some intelligibility: adding comments to document what you 
think is going on, or renaming variables/functions/types with more 
descriptive names? Which approach will most likely be easier? Which 
approach will be safer?

You should do both, as appropriate. Renaming is arguably the best approach, 
but it’s dangerous if you don’t know exactly what a function does. You might 
be giving it another equally bad name. When renaming, you must be sure 
you know the nature of the item you’re changing.

Use the code’s unit tests to ensure that your modifications don’t break 
any behavior.
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4. When you document a C/C++ API with a code comment block, should 
it go in the public header file that declares the function or the source 
file containing the implementation? What are the pros and cons of each 
location? 

This question was the cause of a big fight at one place I worked. Some argued 
for descriptions to go in the .c file. Being close to the function means that 
it’s harder to write an incorrect comment and harder to write code that 
doesn’t match the documentation. The comment is also more likely to be 
changed in line with any code changes.

However, when placed in a header file, the description is visible along-
side the public interface—a logical location. Why should someone have to 
look into the implementation to read any public API docs?

A literate programming documentation tool should be able to pull 
comments out of either place, but sometimes it’s quicker to just read com-
ments in the source instead of using the tool—a bonus of the literate code 
approach. I favor placing the comments in header files.

Of course, in Java and C#, there’s only one source file anyway; you’d 
conventionally use the Javadoc or C# XML comment format.

Getting Personal

1. Look carefully at the source files you’ve recently worked on. Inspect 
your commenting. Is it honestly any good? (I bet as you read through the 
code you’ll find yourself making a few changes!)

When you read and review your own code, it’s very easy to skip the 
comments, presuming they’re correct or at least adequate. It is a good idea 
to spend some time looking at them and assess how well you’ve written them. 
Perhaps you could ask a trusted colleague to give you his or her 
(constructive) opinion on your commenting style.

2. How do you ensure that your comments are genuinely valuable and not 
just personal ramblings that only you can understand?

Some considerations for this are: write whole sentences, avoid abbreviations, 
and keep comments neatly formatted and in a common language (both the 
native language and the selection of words used from the problem domain). 
Avoid inside jokes, throw-away statements, or anything that you’re not 
entirely sure about.

Code reviews will highlight weaknesses in your comment strategy.

3. Do the people you work with all comment to the same standard, in about 
the same way?

a. Who’s the best at writing comments? Why do you think that? Who’s 
the worst? How much of a correlation does this bear to these individ-
uals’ general quality of coding?
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b. Do you think any imposed coding standards could raise the quality 
of the comments written by your team?

Use code reviews to inspect the comment quality of your peers and to move 
your team toward a consistent quality of commenting.

4. Do you include history logging information in each source file? If yes:

a. Do you do maintain it manually? Why, if your revision control system 
will insert this for you automatically? Is the history kept particularly 
accurate?

b. Is this really a sensible practice? How often is this information 
needed? Why is it better if placed in the source file than in another, 
separate mechanism?

It’s human nature not to keep a history accurate, even with the best 
intentions in the world. It requires a lot of manual work that gets skipped 
when time is tight. You should use tools to help maintain a history and put 
the right information in the right place (which I don’t believe is the source 
file at all).

5. Do you add your initials to or otherwise mark the comments you make in 
other people’s code? Do you ever date comments? When and why do you 
do this—is it a useful practice? Has it ever been useful to find someone 
else’s initials and timestamping?

For some comments, this is a useful practice. In other places, it’s just 
inconvenient—extra comment noise that you have to read past to get to the 
really interesting stuff.

It’s most useful with temporary FIXME or TODO comments, marking work 
in progress. Released production code probably shouldn’t have these; no 
finished code should need a reader to understand the author or date of a 
particular change.

Chapter 6: To Err Is Human

Mull It Over
1. Are return values and exceptions equivalent error reporting mechanisms? 

Prove it.

Return values are equivalent to global status variables because the same 
reason code information can be sent back by both mechanisms (although 
it is easier to ignore a status variable). You can write code that works in a 
similar manner using both of these approaches.7

7 They are not quite the same, though. In C++ you can return a proxy value type that has behavior 
in its destructor. This infuses extra magic into the return code mechanism.
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Exceptions are a very different beast. They involve a new control flow, 
something very different from simple reason codes. They are tightly bound 
into the language and program run time. While you can simulate exceptions 
by hand-crafting code that propagates errors, you’d have to carefully 
consider:

How to represent errors as arbitrary objects, not just as integer reason 
codes

Supporting exception class hierarchies and providing the ability to catch 
by base class

Propagating exceptions through any function, even those without try,
catch, or throw statements

It’s that final point which shows most clearly why the two are not equiva-
lent. Implemented at a language level, exceptions are not at all intrusive in 
your code. A hand-crafted facsimile must manage the possibility of failure 
at every point. Every function is forced to return an error code—even if it 
cannot fail itself—just to propagate other error information. This requires 
serious adaptation of the code.

2. What different implementations of tuple return types can you think of? 
Don’t limit yourself to a single programming language. What are the pros 
and cons of using tuples as a return value? 

In C you can create a struct for every return type, linking it with an error 
reason code. This would look something like:

/* Declare the return type */

struct return_float

{

int reason_code;

float value;

};

/* A function using it ... */

return_float myFunction() { ... }

This is messy, tedious to write, cumbersome to use, and hard to read. 
You can exploit C++ templates or Java/C# generics to automatically build 
this scaffolding, or you can use C++’s std::pair class. Both approaches are 
seen in production C++ code. Both are tedious to use, with the extra declara-
tions and the machinery necessary to return these types. Some languages, 
like Perl, support lists of arbitrary types; this is a much easier implementation 
mechanism. Functional languages also provide such a facility.

We’ve just seen some of the disadvantages of this technique: It’s very 
intrusive in the code and not at all sympathetic to the reader. It is also not an 
idiomatic coding practice. There may be a performance hit when returning 
more than one argument, but this is not a compelling argument, unless 
you’re working at the machine code level. The notable advantage is that a 
separate reason code doesn’t interfere with any return value.
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3. How do exception implementations differ between languages? 

The four main implementations we’ll consider are: C++, Java, .NET, and 
Win32 structured exceptions. Win32 exceptions are bound to the operating 
platform, the others to their languages. Languages may be implemented in 
terms of such underlying platform facilities, or they may not be.

They all follow a similar approach; you can throw an exception, which is 
later handled by a catch statement placed after code wrapped in a try block. 
They all follow the termination model’s behavior.

Java, .NET, and Win32 also have a finally construct. It contains code that 
is run whether execution leaves the try block normally or abnormally. This 
can be a good place to put cleanup code to ensure that it always gets called. 
finally can be simulated in C++, but it isn’t pleasant.

The raw Win32 exceptions (minus any language support provided by 
compilers) don’t clean up as they unwind the stack, because the OS has no 
concept of destructors. They must be used with care—they are intended to 
handle situations more akin to signals than code logic errors.

Java exceptions (deriving from Throwable) and C# exceptions (deriving 
from Exception) automatically provide a diagnostic backtrace—very helpful in 
later debugging. .NET’s CLI allows anything to be thrown, but C# does not 
expose the ability to do so (it does expose the ability to catch them, though). 
Other .NET languages can throw whatever they like.

4. Signals are an old-school Unix mechanism. Are they still needed now that 
we have modern techniques like exceptions? 

Yes, they are still needed. Signals are a part of the ISO C standard, and so 
they aren’t easy to remove, anyway. Signals date from (pre) System-V Unix 
implementations. They are an asynchronous mechanism to report system-
level problems/events. Exceptions solve a different problem, reporting code 
logic errors that can percolate up to a handler. It makes no sense to throw an 
exception for signal-type events, especially using the termination model—it 
doesn’t provide asynchronous handling.

5. What is the best code structure for error handling?

There is simply no answer to this question. Different code strategies will work 
best in different situations. What’s important is to reliably detect and handle 
errors with clear, readable, maintainable code.

6. How should you handle errors that occur in your error-handling code?

Errors signaled within error handlers should be dealt with as you would any 
other error. It gets nasty fast, though—you end up with error handlers 
nested within error handlers nested within error handlers. Be very careful 
about this, and check for a neater way to structure your code.

A better approach is to only perform operations that are guaranteed to 
succeed (or that honor the nothrow exception guarantee) in your error 
handlers. That way, your world is a much nicer place to be.
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Getting Personal

1. How thorough is the error handling in your current codebase? How does 
this contribute to the stability of the program?

There is a direct correlation between good error handling and stable code. 
Either your program is not required to be robust, or it must systematically 
detect and handle all error conditions. If this isn’t deeply rooted in the 
program’s philosophy, then you will not have a reliable system.

2. Do you naturally consider error handling as you write code, or do you 
find it a distraction, preferring to come back to it later?

It’s natural to dislike error handling; no one wants to focus on the negative 
aspects of program functionality all the time.8 However, heed this important 
advice: Don’t put it off until later. If you do, some potential errors will inevi-
tably be missed, one day causing unexpected program behavior. Get into the 
habit of thinking about errors now.

3. Go to the last (reasonably sized) function you wrote or worked on, and 
perform a careful review of the code. Find every abnormal occurence 
and potential error situation. How many of these were actually handled 
in your code?

Now get someone else to review it. Don’t be shy! Did they find any 
more? Why? What does this tell you about the code you’re working on? 

This is a telling insight into how thorough a programmer you really are. 
Make sure that you perform this exercise carefully—and do ask someone else. 
Even the most accomplished programmer will miss some error cases.9 If 
these are unlikely to manifest as bugs, you’ll probably never notice and live 
forever in the shadow of potentially weird behavior.

When using exceptions, you can’t easily ignore an error case—exceptions 
force their own way up the call stack, regardless of whether you handle 
them or not. You can still write bad code if it isn’t exception safe (it may 
exit in a bad state, or with leaked resources) or if it performs over-eager 
catches (consuming errors that can’t actually be handled at that level—for 
this reason, don’t write catch(...) to catch all exceptions).

4. Do you find it easier to manage and reason about error conditions using 
return values or exceptions? Are you sure you know what is involved in writ-
ing exception-safe code?

To some extent, this depends on what you’re used to. Exceptions com-
plement and extend return values. An exception user can also understand 
return values, but the opposite doesn’t necessarily hold. Return values are 
more obvious, hence easier to use properly.

8 If you are inclined that way, you’d probably make a very good software tester. But don’t change 
careers just yet—really thorough programmers are few and far between.
9 How often does anyone check for errors from C’s printf, for example?
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If you do use exceptions, it’s important to know what issues to be aware 
of. Exception safety affects all of your code, not just the parts that raise and 
catch errors. Exception safety is a large and involved subject that needs much 
study. Don’t underestimate how seriously it affects the way you program.

Chapter 7: The Programmer’s Toolbox

Mull It Over

1. Is it more important for everyone in a development team to use the same 
IDE, or for each person to pick the one that suits him or her best? What 
are the implications of different people using different tools?

All professional programmers should be responsible and informed enough 
to select the tools that make them most productive. No two programmers 
are the same, and different people will naturally prefer different tools. As 
long as the choice is made based on practical considerations, the team’s 
overall effectiveness will be improved. But forcing strong-minded techies to 
use particular tools rarely enthuses them to work well.

If the people on a team are all using different development environments, 
then they must work together properly. They must build identical code, and 
each editor mustn’t fight the others’ layout rules every time a source file is 
edited.

2. What is the minimum set of tools that any programmer should have at his 
or her disposal?

You can’t get by without at least:

Some rudimentary form of editor

The minimum language support required (either a compiler, an inter-
preter, or both—it depends on the language)

A computer to run them on

But that minimum set won’t make a very productive programmer. You 
need a toolbox of other tools to get any serious work done.

There must be a revision control system, or work is downright 
dangerous.

A reasonable set of libraries will prevent reinventing wheels and lower 
the risk of introducing avoidable bugs.

You also need a build tool to help construct the software system.

That’s a more realistic minimum set. The more fundamental tools you 
add in, the easier it is to develop, and the better the code that will be 
produced.
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3. Which are more powerful: command-line or GUI-based tools?

I should break your arm if you even began to answer this question. 
Command-line and GUI tools are different. End of story.

An interesting philosophical question is: In this context, how do you define 
“powerful?” Does it mean having more esoteric features? Does it mean how 
easy the tool is to use? Does it mean how fast it runs? Or does it determine 
how well a tool fits into the rest of the toolchain? Decide on a definition, 
and then try justifying your answer in terms of that. Then I might not break 
your arm.

4. Are there construction tools that aren’t programs?

We already categorized languages and libraries as tools, so the answer is yes.
Other good examples to consider are:

Regular expressions

Graphical components (GUI “widgets”)

Network services

Common protocols and formats (like XML)

UML diagrams

Design methodologies (like CRC cards)

5. What’s most important for a tool?

a. Interoperability

b. Flexibility

c. Customization

d. Power

e. Ease of use and learning

Each of these is important. The balance probably changes for different types 
of tools and the situations in which you’ll use them.

Power is important; your tools must be powerful enough for the tasks you 
set them to, or your life will be hell. If this weren’t the case, programmers 
would edit their source code using Notepad or vi.

Getting Personal

1. What are the common tools in your toolbox? Which do you use every 
day? Which do you use a few times a week? Which do you only call on 
occasionally?

a. How well do you know how to use them?

b. Are you getting the most from every tool?
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c. How did you learn to use them? Did you ever spend any time 
improving your skill with them?

d. Are these the best tools you could be using?

The last question in that list is critical. Honestly appraise whether there are 
any better tools you could be using. It really is worth spending some time 
looking around. If there are better tools, get your hands on them and start 
experimenting.

2. How up to date are your tools? Does it matter if they’re not the latest 
cutting-edge versions?

Out-of-date tools can cause nasty problems, but so can the latest tool 
versions. The nastiest problems occur when one tool version is out of sync 
with rest of the toolchain. There may be a subtle functional mismatch 
because of the version skew, causing the toolchain not to work together 
properly. The symptom is seldom a toolchain failure, but code that behaves 
in surprising ways.

Out-of-date tools may miss important bug fixes. An update might not 
seem important until you’ve been bitten by the bug it addresses. Hindsight is 
a wonderful thing. If you get out of date, you could end up relying on tools 
that are no longer supported, written by companies that no longer exist. This 
can become a serious problem in a critical project.

Of course, you can’t always download and install a new tool version on a 
whim. It may not be practical to upgrade for a number of reasons. It may cost 
more than you can afford. The upgrade may force you to upgrade your OS 
or other critical parts of your toolchain, when this isn’t practical.

3. Do you favor an integrated tool set (like a visual development environ-
ment) or a discrete toolchain? What are the advantages of the other
approach? How much experience do you have with both ways of working?

A careless answer here might cost you your arm (see the answer to question 3 
in the “Mull It Over” section on page 492). Try to come up with a serious list 
of the benefits of the other way of working—to ensure you avoid a narrow-
minded and opinionated view.

4. Are you a Default Dan or a Tweaker Tom? Do you accept the default set-
tings in your editor, or do you customize them to within an inch of their 
lives? Which is the “better” approach?

You learn to use and get the most out of your editor by discovering how to 
configure it. In that case, Tom might have the most sensible approach. A 
pragmatic stance is probably somewhere between the two (a good example 
of the Goldilocks principle; behavior at the extremes is rarely best). There’s 
no point configuring features you’ll never touch. Some things really don’t 
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matter—I’m not all that worried about the color scheme an editor uses. But 
others things do matter—I don’t want to be forced to accept a default code 
layout style if it’s grotesque.

It’s far better to code to your carefully chosen layout style than have it 
dictated by the editor’s default settings. Indeed, your house coding style may 
require it. I’d rather configure my editor to automatically format code as I 
want, rather than fight its cursor positioning every time I hit ENTER.

This kind of discussion scales beyond editors to any kind of configurable 
software tool.

5. How do you determine your budget for software tools? How do you 
know whether a tool is worth its cost?

It depends on what kind of organization you’re working for and the kind of 
work you’re doing. If your project has the tools budget of a small country’s 
GDP, then the cost of tools is of no consequence—buy the best tools (which 
may not necessarily be the most expensive ones) and enjoy them. But a lone 
hacker working at home can’t justify the same kind of expense for a top-
notch toolchain. Often the freely available tools are more than adequate 
for this kind of home use.

Indeed, the freely available tools are often of a very high quality, which 
makes it hard to draw the line as to when paying for tools is worthwhile. Pay-
ing for a toolchain usually means that you can expect good product support 
and demand future bug fixes or development work. However, this doesn’t 
always pan out—companies go out of business and products are discontinued. 
This is perhaps an argument for picking the most popular, widely used tools. 
There’s safety in numbers.

If all reasonable criteria fail, the more expensive a tool is, the larger its 
box should be. If it costs a fortune but comes in a small box, don’t buy it!

Chapter 8: Testing Times

Mull It Over

1. Write a test harness for the greatest_common_divisor code example earlier 
in this chapter. Make it as exhaustive as you can. How many individual 
test cases have you included?

a. How many of these passed?

b. How many failed?

c. Using these tests, identify any faults and repair the code.

There are a large number of tests you should run, even though there are very 
few invalid input combinations. Thinking of invalid inputs first: Test for zero.
It may or may not be an invalid value (we’ve seen no spec, so we can’t tell), 
but you’d expect the code to cope reasonably with it.
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Next, write tests considering combinations of usual inputs (say of 1, 10, 
and 100 in all orders). Then try numbers with no common multiple, like 
733 and 449. Test for some very large numbers and for some negative 
numbers.

How do you write these test cases? Write a simple unit test function, and 
then place it into an automated test framework. For each test, don’t pro-
gramatically calculate what the correct output value should be;10 just check 
against a known constant value. Keep your test code as simple as possible:

assert(greatest_common_divisor(10, 100) == 10);

assert(greatest_common_divisor(100, 10) == 10); 
assert(greatest_common_divisor(733, 449) == 0);

... more tests ... 

There are a surprisingly large number of tests for this simple function. 
You could argue that for such a small piece of code, it’s easier to inspect, 
review, and prove correctness rather than laborously create a set of tests. 
This seems like a valid argument. But—what if later on, someone makes 
modifications? Without the tests, you’d have to carefully reinspect and 
revalidate the code, an easy task to overlook.

Did you find the mistake in greatest_common_divisor? There’s a clue coming 
up. If you don’t want the puzzle spoiled, then look away now. . . . Try feeding it 
a negative argument. This is a more robust (and more efficient) version written 
in C++:

int greatest_common_divisor(int a, int b)

{

a = std::abs(a);

b = std::abs(b);

for (int div = std::min(a,b); div > 0; --div)

{

if ((a % div == 0) && (b % div == 0))

return div;

}

return 0;

} 

2. How should the testing of a spreadsheet application and an automatic 
aircraft pilot differ?

In an ideal world, there would be no faults in either. In this utopia, both 
would be exhaustively tested and not released until perfect. Reality is some-
what different. Whereas you expect spreadsheets to crash from time to time,11

you expect an autopilot to contain no errors at all. When human lives hang in 
the balance, software is developed in a very different way—far more formally 
and with much greater care. It is tested rigorously. There are safety standards 
at play here.

10 This would open the door to more coding errors—imagine the pain of bugs in the test code!
11 It’s sad we’ve been conditioned to accept this.
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3. Should you test all of the test code that you write?

If you think about this for long enough it will give you a headache. You can’t 
keep testing test code—how can you be sure the test code for your test code’s 
test code is correct? The trick is to keep tests as simple as possible. This way, the 
most likely testing errors will be lack of important test cases, not problems 
with the actual lines of test code.

KEY CONCEPT Keep test code as simple as possible to prevent the introduction of errors.

4. How does a programmer’s testing differ from a QA department 
member’s testing?

Testers are more concerned with the black box style of testing and usually only 
perform product testing. It’s rare to have testers working at the code level, 
because most products are executable software; there are comparatively few 
code library vendors.

Programmers are more concerned with white box tests, making sure 
their masterful creations work as they planned them to.

The secret aim of any programmer writing tests is to prove that his code 
works, not to find cases where it doesn’t! I can easily write a load of tests to 
show how perfect my code is by deliberately avoiding all the bits I know are 
problematic. This is a good argument for getting someone other than the 
original programmer to create test harnesses.

5. Is it necessary to write a test harness for every single function?

You don’t need to be quite so extreme. Some functions are easy enough to 
verify by inspection. Be careful not to get sloppy, though—remember to read 
the code cynically. Simple getter and setter functions don’t need a slew of 
individual tests.

At what code size do test harnesses become attractive? Generally when 
the code becomes sufficiently complex to require it. When a single glance 
can’t prove the code is correct, write some test cases.

6. Test-driven development encourages you to write tests first, before any 
code. What sort of tests should you write?

Without having written any code, these can only be black box tests. Either 
that, or test-driven developers need a gift of prophecy.

7. Should you write C/C++ tests to check for the handling of NULL (zero) 
pointer parameters? What’s the value of such a test? 

If zero is an expected input value, then of course you must test for it.
But you don’t always need to test for null pointers. If you don’t specify 

magic behavior for a zero pointer value, then your function is quite within its 
rights to fall over when you pass it a bad pointer. In this case, zero could be as 
bad as a pointer to deallocated or invalid memory. It’s rarely possible to test 
that the code will survive all bad pointers.
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However, it can be valuable to write code that is robust in the face of zero 
pointers, since they tend to fly around a lot. Many allocation routines return 
zero pointers for failure, and undefined pointers are often set to zero. If the 
dog might bite, it’s a good idea to put a muzzle on it.

8. Your early code tests might not be on the final platform—you may not 
yet have access to it. Is it safest to defer testing until you do have a target 
test platform, or to steam ahead now?

If the code is intended to run in a different environment (perhaps on 
a high-capacity server, or some embedded device), how can you be sure 
that your tests are representative and adequate?

It depends on the nature of the code you’re testing—whether it’s a simple 
function doing housekeeping work or some hardware access logic. You 
must understand the differences between the development platform and 
the target environment. Memory constraints or processor speed may affect 
how the code runs. This probably isn’t a big deal for the majority of the code 
you write, for which it is perfectly possible to create local test harnesses.

If your code exploits particular target platform features (parallel 
processors or particular hardware facilities), then you can’t test fully with-
out them. There may be simulators to check that the code runs; they are 
helpful, but not the definitive answer.

Putting all testing off until you have a target platform is a dangerous 
practice. By then you’ll have a large body of code that you will have neither 
the time nor the inclination to test fully. For maximum confidence, test as 
early as you reasonably can.

9. How do you know when you’ve finished and can stop testing? How much 
is enough?

Since testing can’t prove the absence of faults, you can never really tell when 
you’re done. The task is potentially endless, and we’re trying to come up with 
a test plan to make it a realistic exercise.

For simple blocks of code under black box testing, successfully running 
all the test cases in “Choosing Unit Test Cases” on page 142 is sufficient. 
The larger your code gets, the more work you have to do.

You can measure the adequacy and exhaustiveness of your tests by the 
angle of attack you’re taking. There are a few key strategies:

Coverage-based testing 
The test plan is specified in terms of coverage of the software. For example: 
You may plan to execute every line of code at least once, execute every 
conditional branch both ways, or ensure that all system requirements are 
exercised at least once.

Fault-based testing 
This is based on weeding out a certain percentage of program faults. You 
start with a hypothetical number of faults, generally picked from prior 
experience. You then aim to detect and remove, say, 95 percent of them.
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Error-based testing 
This approach focuses on the common points of error, where the soft-
ware is likely to be brittle. For example, you’d eliminate off-by-one errors 
by testing all boundary values.

Based on this, here are some good reasons to stop testing:

Regression test cases complete with a certain percentage passed (and no 
major show-stopping failures remaining).

Coverage of code, functionality, or requirements reaches a specified 
point.

Exhibited bug rate falls below a certain level.

Beyond these are some physical barriers, seldom movable, which will 
have a final say in determining an end point:

Hitting scheduled deadlines (testing deadlines or release deadlines). 
Development work has a nasty habit of overrunning and eating into the 
scheduled test time; this requires very careful management.

The test budget is depleted (a very sad criteria for stopping).

The beta or alpha testing period ends.

In most organizations, the decision to stop testing and ship the product 
comes at a deadline. It’s a compromise based on the remaining known faults, 
their severity, and the frequency of their occurrence, pitched against the 
need to get to market. The tests allow an informed judgment to be made 
about how acceptable the software is.

Getting Personal

1. For what percentage of your code do you write tests? Are you happy with 
this? Are your tests an automated part of the build process? What sort of 
testing do you give the remaining code? Is this adequate? What will you 
do about it?

Don’t feel obliged to write a test harness for every scrap of code. But don’t 
forget to use your brain, either. The implementation of a small function is 
often a no-brainer—so you tend to code it with no brain—and voilà: stupid 
errors. Since a simple function only needs a simple test, it’s probably 
valuable to write it. In my code shop, we have a simple rule: Every piece of 
code has a unit test, or it’s not in the codebase.

Be sure that you are performing the adequate and appropriate testing for 
which you are responsible, not just skipping an unpleasant task. Ask yourself 
this: How many of the errors that have bitten you recently could have been 
prevented by a good set of tests? Make sure you do something about it.

If your tests are not a part of the build system, then how do you ensure 
that the tests are ever run and that all the code passes them?
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2. How good is your relationship with the people in your QA department? 
What personal reputation do you think you have with them?

It is vital to establish good working relationships between the QA department 
and the software developers. Rivalry often brews; the testing department is 
seen as a bunch of people who aim to get in the way of developers and hinder 
the path to release, rather than as a team who is helping to build a stable 
product. Usually the test and development departments sit far, far away from 
one another, only taking orders from their individual tribal chieftains.

Forget that.
Make them coffee. Take them out for lunch. Head down to the bar with 

them. Anything to prevent fostering a them and us attitude.
Develop a professional working relationship. Make sure that you 

provide them with good, well-tested code—not just any old hurried junk. 
Throwing them your scraps to mop up will give the impression that you 
see them as servants working for you, not colleagues working with you.

3. What’s your usual response to finding an error in your code?

There are several possible reactions:

Disgust and disappointment

An urge to blame someone else

Happiness, if not downright excitement

Pretending you didn’t find it, ignoring it, and hoping it will go away 
(as if that’s likely)

Some of those are so plainly wrong that I’ll assume you can rise above 
them. Does it seem a little crazy to suggest that you might be happy to find a 
fault? Surely that’s the reasonable reaction for a quality-conscious engineer—
it’s far better to find faults during development than for a user to find them 
in the field.

Your level of excitement will depend on where in the development life 
cycle the fault is found. Discovering a show-stopping bug the day before 
release won’t make anyone smile.

4. Do you file a fault report for every code problem you uncover?

It’s not really necessary to do this for every single fault: If no one’s seen your 
code yet and it’s not been integrated into the wider system, then you don’t 
need to broadcast your incompetence! If you don’t report a fault in the 
database, then you must make methodical notes so that you don’t forget 
about it. For this reason, you might find it easier to use the fault-tracking 
system from the outset. You might be forced to raise fault reports if delivery 
is so late that people need visibility of the remaining problems.

As soon as any code is released, you should make all of its faults public; 
you have to file fault reports. This shows that you have identified each issue 
and have a plan to deal with it.
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Whenever you discover a code fault, you should write a test case that 
excercises it and incorporate it into your suite of automatic tests to be run as 
a regression check. This acts as a form of documentation for the fault and 
ensures that it won’t be reintroduced accidentally, later on.

5. How much testing are the project engineers expected to do?

It’s important to know what’s expected of you and to deliver that level of 
testing. But above this, don’t just do what’s expected—do what needs to be done.

Write a unit test for every piece of code you create. If you need to modify 
someone else’s work, write a test for it first if there isn’t one. That way, you 
will know how well it currently works, what needs to be fixed, and how to 
prove that your modifications haven’t busted anything.

Chapter 9: Finding Fault

Mull It Over
1. Is it best for faults to be fixed by the original programmer who wrote the 

code? Or is the programmer who discovered the problem better placed 
to make a fix?

It’s always helpful to approach any problem with a fresh pair of eyes. When 
debugging, this method avoids the common problem of a programmer 
reading what he meant to write, not what the code actually says—too many 
bugs stay hidden that way.

On the other hand, the original programmer is probably best placed to 
make the fix. He understands the code inside out (hopefully). He knows 
what repercussions a particular change will have. He’ll be the quickest to 
pinpoint the location of a fault.

In Real World organizations, the choice of who makes a fix may be 
determined by individual free time and what other commitments the team 
has. For bugs that have been in the program since time immemorial, the 
original programmer is probably no longer available. He may have left the 
company, moved projects, or (worst of all) been promoted to management.

2. How can you tell when to use a debugger and when to use your brain?

Obviously, even the use of a debugger should be with your brain engaged. 
(Remember the golden rule of debugging?)

My rule of thumb is: Don’t fire up a debugger until you know exactly what 
information you need to get out of it. The danger lies in using a debugger to 
putter around in the running code, not really knowing what you are looking 
for. You can waste hours doing this, with no real reward.



Chapter 9: F inding Faul t 501

3. You should learn unfamiliar code before you start trying to find and fix 
faults in it. But the time pressures of the software factory often dictate 
that you can’t spend any serious time studying and understanding the 
program you’re repairing. What’s the best way forward?

In your dreams, you’d slap the people who wrote the schedule and take as 
long as necessary to fix the fault properly. Wake up, Alice. . . .

The best you can do is try to learn the code as you go along. Proceed 
with extra caution when working through it, and don’t trust what you think is 
happening—always make sure that the code is doing what you expect it to. 
When you think that you’ve found the cause of the bug, see if anyone on 
your team knows about the offending section of code. Discuss with them 
what you’re going to do. Often when you describe the situation, you’ll 
explain to yourself the obvious thing you’ve just missed.

4. Describe good techniques to avoid memory-leak bugs. 

These are some good approaches:

a. Use a language where you’re less likely to be bitten by them, such as 
Java or C#. (You can still be bitten by memory leaks in these languages. 
Do you know how?)

b. Use “safe” data structures that manage memory for you, so you don’t 
have to worry about it.

c. Employ helpful language idioms, such as C++’s auto_ptr, to avoid 
problems.

d. Be rigorous and methodical in your handling of memory. For every 
allocation point, make sure there is a balancing deallocation point 
and that it will always be called.

e. Run your code through memory validator tools to ensure no bugs have 
crept through.

5. When is it justifiable to have a quick stab at finding and fixing a fault, 
rather than adopting a more methodical approach?

You always need to think about what you’re doing. Even quick fiddling 
should be done with your brain firmly in gear. Don’t blindly pepper the code 
with breakpoints to start digging around in the internals; try to think about 
how the code is designed and what it should be doing.

Gut feelings and your instant reactions may find a fault quickly in 
very small programs (say, a few tens of lines). But in a program that’s many 
thousands of lines long, you really need to know what’s going on. There is 
no substitute for insight. There’s nothing wrong with tracing the program’s 
execution in a debugger to examine what it’s doing, but chose the test points 
methodically.
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Getting Personal

1. How many debugging techniques/tools do you routinely use? What 
others have you seen that you might find useful?

Obviously the answer is none. You always write perfect code the first time!

2. What are the common problems and pitfalls in your language(s) of 
choice? How do you guard against these kinds of bugs in your own code?

It’s important to know this kind of thing. It’s what sets mediocre pro-
grammers apart from the experts. If you don’t know where the dragons live, 
then you don’t know how to avoid them.

3. Are most of the bugs that occur in your code sloppy programming 
errors, or are they more subtle issues?

If you get bitten over and over again by little language snafus, it shows that you 
should write code more carefully. Take time with your code. Proofread it, and 
then reread it—you’ll save time overall. A classic mistake is fixing one fault, 
not testing that it works, and then being bitten by undesirable side effects of 
your “fix.”

There’s no shame in having bugs in your code. Everyone gets them. Just 
make sure they’re not stupid mistakes that you could have easily prevented.

4. Do you know how to use a debugger on your platform? How routinely do 
you use it? Describe how to:

a. Produce a backtrace

b. Inspect variable values

c. Inspect value of fields within a structure

d. Run an arbitrary function

e. Swap thread contexts

If you use a debugger all the time, then that’s too much. If you never use one, 
then that’s too little. Don’t be afraid of your debugger, but don’t use it as a 
crutch, either. Intelligent use of a debugger will allow you to hone right in to 
the location of a fault in little to no time.

Chapter 10: The Code That Jack Built

Mull It Over

1. Why should people with nice integrated development environments 
worry about using a command-line make utility, when they can just hit 
a single button to build their project?



Chapter 10: The Code That Jack Bui l t 503

Besides learning what’s really going on behind the build button, knowing how 
to use make is a route to more powerful, flexible software construction. 
Rarely does a GUI build tool compare to the capabilities and malleability of 
makefiles. Simplification often is a good thing, and GUI tools can help devel-
opers to create software quickly, but this simplicity comes at an expense.

GUI build tools simply do not scale well and are of little use on really 
large projects. Make does have a cryptic syntax, but it lets you do far, far 
more. For example, makefiles allow nesting of directories, creating a build 
hierarchy. Simplistic GUI tools only provide one level of depth, the nesting 
of projects inside a workspace.

People complain about make’s complexity and that you can foul things 
up using it. This is a valid concern, but it is the same as with any power tool—
you might injure yourself if you don’t use it properly.

This doesn’t mean that you should throw away all GUI build tools and start 
writing a raft of replacement makefiles. On the contrary: Use the right tool 
for the job. Balance simplicity and integration with power and extensibility; 
choose the tool that’s required each time.

2. Why is it important to treat the extraction of source code as a separate 
step from building it?

The two are logically different steps. In a properly crafted build system, you 
should be able to check out any version of the software, no matter how old, 
and then issue the same make instruction to build it. Later you should be 
able to clean the tree and rebuild it using the same instruction, without 
checking everything back out again.

It’s no loss to have these as two separate steps. You can easily wrap a script 
around them to make a single-step retrieve/build procedure—this will then be 
useful for an overnight build script. For these overnight scripts, it’s vital to start 
from a fresh source tree each time (to avoid being caught out by problems 
carried over from the last tree). This is a good test of your source tree; by 
deleting it and performing a complete rebuild, you’ll check that no files are 
missing or out of date (you might have forgetten to check something in).

Other problems with binding source extraction into the build step 
include the following:

You don’t want the build system to automatically check files out of the 
source repository as you do a build. You rarely want the whole world 
changing under your feet each time you rebuild. It’s important to be in 
control of the code you’re working on, not a slave to the build system 
behavior.

There is a bootstrapping problem: If extraction is a part of the build 
process, where do you get a source tree from in order to start the build? 
You’d have to check it out manually anyway! Or you’d have to recite more 
magic incantations to partially check out the build portions of the tree in 
order to perform a real checkout and build. Don’t go there.
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3. Where should the intermediate files from construction steps (e.g., object 
files) be put?

Some build systems dump object files beside the source file that generated 
them. Advanced build systems can create a parallel directory tree and build 
objects into there, leaving the source directories intact. This keeps things neat, 
distinguishing source files from the build-generated files. There are downsides, 
though: It’s harder to search around the hierarchy. You might want to force 
a source file recompilation by deleting a .o file, but with split trees you have 
to navigate further from the source to do so.

Another neat approach for object file placement is to put intermediate 
files within the source tree, but in their own subdirectory; out of way of the 
source files, but still close to hand. You’d end up with a directory hierarchy 
looking like Figure 1.

This is a good way to support the building of multiple targets from 
one source tree—each target has its own build subdirectory. Without this 
mechanism, you could start a debug build, finish it off in release mode, and 
have a link stage that’s a disaster. Adopting this approach leads to a build 
tree looking Figure 2.

4. If you add an automated test suite to the build system, should it run auto-
matically after the software is built, or must you fire a separate command 
to invoke the tests?

Figure 1: Putting built object 
files in a subdirectory

Figure 2: Even better: Putting object 
files in a named subdirectory
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You can easily provide a separate command (something like a tests makefile 
target; you’d type make tests after make all). However, this extra step would be 
less likely to be performed—there’s no requirement to do so. The tests may 
be overlooked. This is quite likely, human nature being what it is. The 
untested code could cause all sorts of problems, making the effort of writing 
tests fruitless. Ensure your unit tests are a part of the main build procedure.

Automated stress tests and load tests probably shouldn’t be part of this 
build step, though. They might take too long to execute, only intended to be 
run on the overnight build. In this case, make an automated scaffold to run 
them, but don’t trigger it during a normal build.

5. Should the overnight build be a debug or release build?

Both. It’s very important to test the release build configuration as early 
as possible. Debug builds shouldn’t be released to the QA department, let 
alone outside the company.

It’s important to test that both release and development build processes 
work—not just once when the build system is created, but on an ongoing 
basis. It’s remarkably easy to make a minor update that breaks one or other 
build. If a build isn’t tested until the last minute, you’re going to be very 
angry when it fails with a deadline looming.

There may be serious differences between executables generated 
by debug and release builds. Some compilers exhibit markedly changed 
behavior in debug and release mode. One popular compiler is happy to pad 
out data buffers in debug builds, so memory overruns are harmless and go 
undetected—hardly a good debugging aid. If you only ever tested the debug 
build, switching to release mode just before the product ships means that 
you are bound to run into problems.

6. Write a make rule to automatically generate dependency information 
from your compiler. Show how to use this information in the makefile.

There are several ways to achieve this, depending in part on how you get 
dependency information from your compiler. Say the hypothetical compiler
takes an extra -dep parameter that cajoles it to create a dependency file as 
well as the object file. Let’s say that the format of this generated file is already 
in make’s dependency format.12 Using GNU Make, you can specify a com-
pilation rule that has the side effect of generating dependencies:

%.o: %.c
compiler -object %.o -dep %.d %.c 

You can then incorporate all generated dependency files directly into 
the makefile by putting this at the bottom of Makefile:

 include *.d 

12 These are quite reasonable assumptions; many systems work like this.
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It’s that easy! Of course, this is the simplest mechanism that will work. 
There are many refinements to clean this up. For example:

You can direct the dependency files into a separate directory. This pre-
vents them from cluttering up the working directory and covering up the 
important files.

You can write an include rule to only pull in the correct .d files. There may 
be other .d files lying around that you shouldn’t include, making the 
wildcard include line dangerous: The inclusion of random information 
from invalid files will confuse make. This problem can crop up easily: If 
you remove a source file from the makefile but don’t clean the build tree 
first, the old .o and .d files will hang around in the working directories 
until you remove them manually.

If the compiler permits, you can write a separate rule to create .d files, 
making them first-class citizens of the build system. This has the down-
side of slowing down the build process—the compiler will now be 
invoked twice for each source file.

7. Recursive make is a popular method of creating a modular build system 
spanning several directories. However, it is fundamentally flawed. 
Describe its problems and suggest alternatives.

Conventional wisdom suggests that all large codebases built with makefiles 
should use the recursive make technique. Yet as powerful as recursive make 
is, it’s fundamentally flawed. Don’t ignore it, though. It’s important to 
understand how recursive make works (or doesn’t work) because it’s so 
prevalent (many codebases employ recursive make), and you need to you 
know its problems to understand what makes a better solution.

What renders recursive make a liability? It has a number of pitfalls:

Speed
It’s so slooooooow. If you try to rebuild a source tree that’s already up to 
date, a recursive build still has to trawl faithfully through each directory. 
For a reasonably sized project this takes ages, which is nonsensical when 
no action is necessary.

Each directory is built as a separate make invocation.13 This circumvents 
many potential optimizations; shared include files will be inspected over 
and over and over again. Although filesystems can cache information, 
this is still an unnecessary overhead. A sensible build system would only 
need to inspect each file once.

Dependencies 
Recursive make cannot follow dependencies correctly; subdirectory 
makefiles have no way of determining all dependency information. 
Your module makefile can observe that its local func1.c source file 
depends on a shared.h header in another directory. It will happily 
rebuild func1.c every time shared.h is changed. But what happens if 

13 Just think of the overhead of starting up all those child processes!
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shared.h is automatically generated by a separate module, based on 
some template file shared.tmpl? Your module can’t know about this extra 
dependency. Even if it could, it doesn’t know how to rebuild shared.h—
that isn’t its job. So if shared.tmpl is changed, func1.c will not be rebuilt 
appropriately.

The only way to plaster over this crack is to arrange for shared.h to be 
built first, before func1.c’s module. The programmer must carefully define 
the order of recursion to make sure the software rebuilds correctly.14 The 
more indirect dependencies that exist, the worse the mess gets.

Faced with this problem, programmers devise nefarious work-
arounds, like making several build passes over the tree or manually 
removing certain files to force a rebuild every time. These hacks only 
serve to slow the build down more and unnecessarily complicate the 
procedure.

Puts onus back on the developer 
Make was created to manage the complexity of rebuilding code. Recur-
sive make turns this inside out and forces you to get involved in the build 
process again. We’ve seen how the programmer has to manage the order 
of recursion, kludging each makefile to work around limitations.

Subtlety 
Recursive make’s problems are not at all obvious. That’s why many 
people still think it’s a good idea. When things go wrong, they do so in 
strange ways. The cause of a problem is rarely clear, so it’ll be dismissed 
as “one of those freak events.”

This adds up to a build system that is dangerously brittle.

These are all problems people wrongly attribute to make itself, arguing 
that it is defective. But in this respect, make is an innocent bystander. It’s our 
use of make that is at fault. The recursion introduces each of these problems; 
it inhibits make from doing its proper job.

So what’s the solution to this mess? Clearly we don’t want to throw away 
the nesting in our source trees. We need a build process that supports nest-
ing but doesn’t split up the build process recursively. This isn’t too hard; 
we’ll call the technique nested make. It simply involves putting all build infor-
mation in one master makefile. There is no longer a need for individual 
subdirectory makefiles. The über-makefile manages all source nesting 
internally.

KEY CONCEPT Contrary to popular belief, recursive make is a bad build technique. Avoid it in favor 
of a more robust nested make approach.

You might be thinking that this is a more complex and less flexible 
approach. How can you manage a large build tree with just a single 
makefile?

14 This is a one-up for GUI tools—without recursive make, they tend to manage dependencies 
properly.



508 Answers and Discuss ion

A number of practical implementation techniques make it easy:

Use make’s include file mechanism. Put the list of each directory’s 
source files in that directory—it’s far more maintainable and clear that 
way. Place this list in a file called something like files.mk, and include 
that from the master Makefile.

You can retain recursive make’s modularity—entering any component 
subdirectory to type make—by defining more intermediate targets. These 
targets construct specific parts of the project. Constructing modular 
builds this way can be more meaningful than recursive make’s arbitrary 
directory-based approach, and it ensures that each intermediate target 
is always built properly.

Nested make is no more complex than recursive make; in fact it can be 
less complex. It produces more reliable, accurate, speedy builds. 

Getting Personal

1. Do you know how to perform different types of compilation using your 
build system? How can you build a debug or release version of the appli-
cation from the same sources, with the same makefiles?

In an earlier answer, we saw a good solution to this problem: Build objects into 
different subdirectories, created by the build script, based on the type of 
build (one directory for debug files and one for release files).

You can achieve this in GNU Make by massaging filenames. Here’s an 
example:

# Define the source files

SRC_FILES = main.c func1.c func2.c

# Default build type (if none specified)

BUILD_TYPE ?= release

# Synthesize the object filenames

# (This is a magic GNU Make incantation that swaps

# the .c file suffix for .o)

OBJ_FILES = $(SRC_FILES:.c=.o)

# Now the clever bit: add the build-type directory

# prefix to object filenames (more GNU Make magic)

OBJ_FILES = $(addprefix $(BUILD_TYPE)/, $(OBJ_FILES)) 

You’ll obviously be doing more with the selected BUILD_TYPE, altering the 
compiler flags, for example. Don’t forget that you’ll need a rule to create 
the subdirectories, or your compiler will complain when it tries to generate 
output. Here’s how to do this on Unix:

$(BUILD_TYPE):
mkdir -p $(BUILD_TYPE) 
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Now you can type these two commands, one after the other, knowing the 
build system will cope perfectly:

BUILD_TYPE=release make all
BUILD_TYPE=debug make all 

You can create a simpler system without this subdirectory technique, but 
it will rely on doing a cleanout whenever you change the BUILD_TYPE.

2. How good is your current project’s build process? Does it rate well 
against the characteristics in this chapter? How could you improve it? 
How easy is it to:

a. Add a new file to a library?

b. Add a new directory of code?

c. Move or rename a file of code?

d. Add a different build configuration (say, a demo build)?

e. Build two configurations in one copy of the source tree without 
doing a clean in between?

This shows both how well you know the build process and how maintainable 
it is. Comparing your build mechanism to other projects’ is a good idea—it will 
show where your processes are inadequate and need improvement.

Consider moving and renaming source files. Both are common during 
refactoring and are very easy to overlook. These simple actions can cause 
build systems to calculate dependencies incorrectly and build flawed code. 
I’ve been bitten more than once by such a problem; it takes a while to notice 
when this goes wrong.

Often there is “no time” in the programmers’ busy schedules to spend on 
improving the build system; they are all far too busy trying to get a product 
out the door. This is a dangerous misconception. The build scripts are a part 
of the code and require as much maintenance and careful extension as any 
other source file. A safe and reliable build system is so important that time 
spent sorting it out is not time wasted. It’s time invested in the future of the 
codebase.

3. Have you ever created a build system from scratch? What drove you to its 
particular design?

As with any programming task, the shape of your solution is influenced by a 
number of factors:

Your prior experience

What you know

Your understanding of the problem at the moment

The limitations of the technology available

The amount of time you have to set it up
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Generally, a little time and a little usage will tell how good your design 
decisions were. You never appreciate all the requirements at first, and things 
change that no one can anticipate:

Requirements change—if the product becomes really successful, you 
may need to build different internationalized versions or target a new 
processor architecture. The build system must accommodate extension.

The code may need to be moved across to a new build toolchain, when 
no one ever anticipated that this should be a selectable option.

How easily these modifications can be incorporated is a testament to 
the quality of your design. You’ll learn with each change, gaining valuable 
experience for the next build system you craft.

4. Everyone suffers from flaws in a build system from time to time. When 
programming a build script, you’re as likely to introduce bugs as you are 
when programming real code.

What kinds of build errors have you been bitten by, and how could 
you fix, or even prevent, them?

Common build errors include:

Picking up dependency information incorrectly

Not coping gracefully with file system failures, like running out of disk 
space or incorrect file permissions; the build may continue with no indi-
cation that one of the steps failed

Source control problems: merges go wrong, or the wrong version of 
some source code is checked out

Library configuration errors, often using incompatible or out of date 
versions

Programmers not understanding how to use the build system, and mak-
ing silly mistakes

When something’s not going as expected, step back and consider 
whether or not the build system is playing a part in the problem.

Chapter 11: The Need for Speed

Mull It Over

1. Optimization is a process of making trade-offs—sacrificing one quality 
of code for another desirable quality. Describe the kinds of trade-offs 
that lead to a performance increase.

The kinds of decisions that profoundly influence a program’s 
performance are:

Number of features versus size of code

Program speed versus memory consumption
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Storage and caching versus computation on demand

Guarded approach versus unguarded; optimistic versus pessimistic

Approximate calculations versus exact calculations

Inline versus function call; monolithic versus modular

Indexing an array versus searching a list

Passing a parameter by reference or address versus passing a copy

Implemented in hardware versus software

Hard-coded, direct access versus indirect access

Predetermined, fixed value versus variable and configurable

Compile-time work versus run-time work

Local function call versus remote call

Lazy computation versus eager computation

“Clever” algorithm versus clear code

2. Look at each of the optimization alternatives listed in “Why Not Opti-
mize?” on page 202. Describe what trade-offs are being made, if any.

Some of these alternatives could be considered optimizations, depending on 
how much of the system is under your control. If you specify the hardware 
platform that your program will run on, using a faster machine is an 
optimization. If not, it’s more of a work-around.

Many of the alternatives have hidden complexity costs. For example, 
relying on a certain host platform configuration (i.e., what services or 
background programs are running) leads to specific environmental 
dependencies that are hard to capture and easy to miss during installation 
or later maintenance.

3. Explain these terms and their exact relationship:

Performance

Efficiency

Optimized

The efficiency of code determines its performance. Optimizing is the act of 
improving the code’s efficiency in order to improve performance. Notice that 
none of these terms directly describe speed of execution; the quality required 
may not be speed, but rather memory footprint or data throughput.

4. What are the likely bottlenecks in a slow program?

It’s common fallacy to think that everything is contending for the CPU and 
that bad code will be consuming all the processor time. Sometimes the CPU 
can be running almost idle, yet performance is dire. A program may stall for 
a number of reasons:

Memory is being thrashed to and from swap space on the hard disk.

It is waiting on disk access.
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It is waiting on slow database transactions.

There is bad locking behavior.

5. How can you avoid the need to optimize? What methods will prevent you 
from writing inefficient code?

We’ve seen how important it is to design performance into a software system 
from the very beginning. You can only do this if you already have a firm idea 
of what the required performance characteristics are.

Once you have a sound design in place, write your code sensibly. Be 
aware which constructs are most efficient in your language, and avoid using 
the inefficient ones. For example, in C++, pass const references rather than 
expensive temporary copies.15

It’s useful to have a rough idea of the relative costs of different operations. 
If we scale time so that a processor executes one instruction a second, then a 
function call typically takes a few seconds, a virtual function call takes 10 to 
30 seconds, a disk seek takes a few months, and the time between keystrokes 
of an average typist is several years. Try to work out this kind of measure for 
operations like a memory allocation, claiming a lock, creating a new thread, 
and a simple data structure lookup.

6. How does the presence of multiple threads affect optimization?

Threading can cause as many problems as it’s supposed to solve. Naïvely 
threaded designs can introduce extra bottlenecks, particularly when locks 
are used badly, leading to long periods of deadlock.

Multithreaded programs are harder to profile, unless the profiler has 
good thread support; you need to interpret the profiler’s results based on 
the relative thread priorities. If the threads are supposed to cooperate, you 
have to work out how the overall execution is progressing as several threads 
of control weave around one another.

7. Why don’t we write efficient code? What stops us from using high-
performance algorithms in the first place?

There are many perfectly valid reasons for not writing optimized code on the 
first attempt:

You don’t know the final pattern of usage. With no Real World test data, 
how can you choose the code design that will work best?

It’s hard enough to get the program working, let alone working fast. To 
prove it’s feasible, we choose designs that are easy to implement so that 
prototypes get finished quickly.

15 Conversely, this reference might inhibit other performance gains. Copies are guaranteed not 
to have aliasing issues; some compiler optimizations cannot be performed if there are potential 
variable aliases. As always, you must measure and work out what works best.
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“High-performance” algorithms can be more complex and daunting to 
implement. Programmers naturally shy away from them, since it’s an 
area where faults can be easily introduced.

Programmers often think that the time taken to run some code is 
proportional to the amount of effort spent writing it.16 You might have 
written some file-parsing code in hours, but it will always takes ages to 
execute, because disks are slow. The complex code you spent half a week 
getting right may only consume a few hundred processor cycles. In fact, 
neither the efficiency of a piece of code nor the amount of time you need 
to spend optimizing it bears any relation to the amount of time you spent 
writing it.

8. A List data type is implemented using an array. What is the worst case 
algorithmic complexity of each of the following List methods?

a. The constructor

b. append—places a new item on the end of the list

c. insert—slides a new item in between two existing list items, at a 
given position

d. isEmpty—returns true if the list contains no items

e. contains—returns true if the list contains a specified item

f. get—returns the item with a given index

The worst cases are:

a. The constructor is O(1) since it only needs to create an array; the list is 
initially empty. However, it’s worth considering that the size of this array 
will affect the complexity of the constructor—most languages create 
arrays fully populated with objects, even if you don’t plan to use them 
yet. If the constructors for these objects are nontrivial, then the List
constructor will take some time to execute.

The array size might not be fixed—the constructor could take a 
parameter to determine this size (effectively setting the maximum 
possible list size). The method then becomes O(n).

b. The append operation is O(1) on average: It simply has to write an array 
entry and update the list size. But, if the array is full, it will have to reallo-
cate, copy, and deallocate—a worst case complexity of O(n), at least (it 
depends on the performance of your memory manager).

c. insert is O(n) on average. You might be asked to insert an element at the 
very beginning of the list. This requires all the elements in the array to 
be shuffled down one place before writing the first element. The more 
items in the List, the longer this will take. However, the worst case, again, 
involves memory reallocation and could be much more than O(n).

16 That looks stupid when you see it written down, but it’s a very easy trap to fall into at the 
codeface.
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d. Unless you have a ridiculously bad implementation, isEmpty is O(1). The 
list size will be known, so the return value is a single calculation based on 
this number.

e. contains is O(n), presuming the list contents are unordered. In the worst 
case, you will be asked to look for an item that doesn’t exist and will have 
to traverse every single list item.

f. get is O(1), thanks to the array implementation. Indexing an array is a 
constant time operation. If List had been implemented as a linked list,
then this would have been an O(n) operation.

Getting Personal

1. How important (honestly) is code performance in your current project? 
What is the motivator for this performance requirement?

The performance requirements should not be arbitrarily chosen. They 
should be justified, not just a time limit pulled out of thin air. Every perfor-
mance requirement is important; there are no specifications that don’t 
matter. How much concern a particular requirement generates depends on 
how hard it is to meet. Whether it’s hard or not, you still have to come up 
with a design that satisfies it.

2. In your last optimization attempt:

a. Did you use a profiler?

b. If yes, how much improvement did you measure?

c. If no, how did you know whether you made any kind of improvement?

d. Did you test that the code still worked after optimizing?

e. If yes, how thoroughly did you test?

f. If no, why not? How could you be sure the code still worked properly 
for all cases?

Only the most dramatic performance improvements can be detected without 
a profiler or some other good timing tests. Human perception is easily 
fooled—when you’ve just slaved to speed up the program, it will always appear
faster to you.

Test performance improvements carefully, and discard those that are 
not worthwhile. It’s better to have clear code than a minuscule speed 
increase and unmaintainable logic.

3. If you’ve not yet attempted to optimize the code you’re currently 
working on, take a guess at which parts are the slowest and which 
bits consume the most memory. Now run it through a profiler—how 
accurate were you?

You’ll probably be quite surprised at the results. The larger the program you 
profile, the less likely you are to correctly judge these bottlenecks.
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4. How well specified are your program’s performance requirements? Do 
you have a concrete plan to test that you meet these criteria?

Without a clear specification, no one can really complain that your program 
isn’t fast enough!

Chapter 12: An Insecurity Complex

Mull It Over

1. What is a “secure” program?

A secure program is able to stand up against attempts to abuse it, to break 
into it, or to use it for a purpose it was not intended for. This is more than a 
robust program; robust code meets its specification and doesn’t crash when 
you apply a little pressure. However, a robust program might not have been 
designed with security in mind and could still leak sensitive information 
under some extreme conditions. Sometimes it’s preferable to crash when 
used wrongly, rather than provide unintended output. So secure code might
crash!

The definition of a secure program depends on the security requirements 
for the application. These are defined in part by what you can expect from 
the supporting services (the OS and other applications). Given these, your 
application’s objectives could be any of the following:

Confidentiality 
The system will not disclose information to the wrong people. They will 
get an access denied message, or will have no idea that the information 
exists in the first place.

Integrity 
The system won’t allow unauthorized changing of information.

Availability 
The system works continually—even while being attacked. It’s hard to 
guard against all possible attacks (what if someone removes the power?), 
but it’s possible to resist many attacks by including a level of redundancy 
in the design, or by providing a rapid restart after attack.

Authentication 
The system ensures that users are who they say they are, usually with a 
login and password mechanism.

Audit 
The system records information about all important operations, to catch 
or monitor the activities of attackers.

2. What input must be validated in a secure program? What sort of valida-
tion is required?
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All input must be validated. This includes command-line parameters, 
environment variables, GUI inputs, web form inputs (even those with client-
side JavaScript checking), CGI-encoded URLs, cookie contents, file contents, 
and filenames.

You should check the input’s size (if it’s not a simple numeric variable), 
the validity of its format, and the actual contents of the data (that numbers 
are in range, and there are no embedded query strings).

3. How can you guard against attacks from the pool of trusted users?

Not very easily. They have been given a specific level of privilege because they 
are trusted not to abuse it. Most users will not intentionally abuse your 
software, but a small number will try to subvert programs for their own 
advantage.

There are a few techniques to manage this:

Log every operation so you know who made what change and when.

Require two users to authenticate all really important operations.

Wrap each operation in an undoable transaction so it can be unrolled.

Back up all data stores periodically so you can retrieve lost data.

4. Where can an exploitable buffer overrun occur? What functions are 
particularly prone to buffer overrun?

Buffer overrun is probably the biggest security vulnerability, and it is a simple 
problem that is easy for an attacker to exploit. It can occur anywhere that a 
multi-location structure is addressed—either by copying data into or out of it 
or by indexing into it to access a specific item. Arrays and strings are the most 
common culprits.

It is most often seen in user input routines, although this is not the only 
habitat—it can exist within any data manipulation code. Exploitable buffers 
can be situated both on the stack (where function-local variables are placed) 
or on the heap (the pool of dynamically allocated memory).

5. Can you avoid buffer overruns altogether?

Yes—as long as you are diligent in validating each function’s input and can 
be sure that the stack of software leading up to each input (possibility imple-
mented in the OS input routines or your language’s run-time library) is safe.

Here are some key techniques to safeguard your code:

Use a language with no fixed-size buffers—for example, a language that 
has automatically extending strings. It’s not just strings that are danger-
ous, though: Look for bounds-checked arrays and safe hash maps.

If you can’t rely on language support, you must bounds check all input.

In C, always use the safer standard library functions strncpy, strncat,
snprintf, fgets, and so on. Don’t use stdio routines like printf, and 
scanf—you can’t guarantee their safety.
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Never use third-party libraries that aren’t provably safe.

Write your code in a managed execution environment (like Java or C#). 
Then buffer overrun attacks become almost nonexistent—the executive 
traps most overruns automatically.

6. How can you secure the memory in use by your application?

There are three times to think about memory security:

a. Before you use it. When you claim some memory, it contains arbitrary 
values. Don’t write code that accidentally relies on the contents of 
uninitialized memory. A cracker could exploit this to attack your code. 
To be extra safe, zero all allocated memory before you use it.

b. During use. Lock memory containing sensitive information so it can’t be 
swapped to disk. Obviously you must be using a secure OS—if one appli-
cation can read any other’s memory, then you’ve already lost!

c. After use. Often forgotten by application programmers is that when you 
release memory, it should be cleaned before you hand it back for the OS 
to recycle. If you don’t do this, a rogue process could mine memory for 
the secret data you leave behind.

7. Are C and C++ inherently less secure than alternative languages?

C and C++ produce more than their fair share of insecure applications and 
allow you to write code containing classic security vulnerabilities. You 
definitely have to keep your brain switched on; even experienced developers 
must pay attention when writing C/C++ code to avoid buffer overruns. These 
languages don’t exactly encourage secure programming.

However, other languages don’t avoid all security problems either, just 
the ones C and C++ have made famous. A different language will most likely 
avoid potential buffer overruns, but you shouldn’t have a false sense of 
security; many other problems that can’t be avoided in the language itself 
remain. You must be aware of security issues when using any language—you 
can’t pick a “safe” language and forget all about security.

Indeed, buffer overrun is a vulnerability that can be very easily audited 
and worked around. If you need to program secure applications, then the 
language you use is a small concern among all the other problems.

8. Has the experience of C led to C++ being a better, more securely 
designed language?

C++ has gained an abstract string type that manages its own memory 
internally. This goes a long way toward avoiding buffer overruns, although 
traditional C-style char arrays remain for those who still want to shoot them-
selves in the foot. The vector is another handy device: a memory managing 
array. However, it is possible to overrun both of these structures—do you 
know how?
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C++ could be considered more dangerous than C, because it stores a lot 
of function pointers on the heap (this is where virtual function tables are 
stored). If an attacker can overwrite one of those pointers, then he can 
redirect operation to his own evil code.

In many ways, C++ is more secure, or rather, it is more easy to use 
securely. However, it was not designed with security solely in mind, and 
provides its own set of security problems that the developer must be aware of.

9. How do you know when your program has been compromised?

Without detection measures, you’ll have no idea—and you will just have to 
keep an eye out for unusual system behavior or different patterns of activity. 
This is hardly scientific. A hacked system can remain a secret indefinitely. 
Even if a victim (or his software vendor) does spot an attack, he probably 
doesn’t want to release detailed information about it to invite more intruders. 
What company would publicize that its product has security flaws? If it is 
conscientious enough to release a security patch, not everyone will upgrade, 
leaving a well-documented security flaw in many operational systems.

Getting Personal

1. What are the security requirements for your current project? How were 
these requirements established? Who knows about them? Where are they 
documented?

Answer this honestly. It’s not too hard to make up something that sounds 
plausible. But unless the security requirements are formally documented, 
security has not really been addressed by your project. This should be some-
thing that every developer is aware of and knows how to fulfill.

2. What’s the worst security bug in one of your shipped applications?

It’s important to know about this, even if it’s now ancient history. You have to 
know what you’ve got wrong in the past to stand any chance of avoiding it in 
the future. If you don’t know of any past security vulnerabilities, then you’ve 
probably not been thorough in security testing—you’ve not been paying 
attention, or you’ve been very lucky to have nothing discovered.

3. How many security bulletins have been posted against your application?

Have these been caused by silly developer mistakes like stupid code errors, or 
do they stem from larger design problems? Most common problems that get 
documented in bulletins are the former.

4. Have you ever run a security audit? What kinds of flaws did it reveal? 

Unless you have a professional security specialist running this test, it will 
surely miss some security vulnerabilities. However, the audit will still uncover 
many glaring problems and is very worthwhile.
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5. What kind of person is most likely to attack your current system? How is 
this influenced by

Your company

The type of user

The type of product

The popularity of the product

The competition

The platform you run on

The connectedness and public visibility of the system

Everyone is a target to someone: a malicious user, unscrupulous competitors, 
and even terrorist organizations. Who do you trust?

Chapter 13: Grand Designs

Mull It Over
1. How does project size affect your software design and the work involved 

in creating it?

The larger a project gets, the more architectural design it requires in 
proportion to low-level code design. More time needs to be spent up front 
ensuring the design is right, because bad choices will have more serious 
consequences.

2. Is a well-documented bad design better than an undocumented 
good one?

Documentation is part of what makes a design good. A well-documented 
bad design provides a route in to the code, even if it’s a brightly illuminated 
dirt track to a cesspit. At the very least, it will teach you never to touch the 
code again.

A sufficiently simple piece of code shouldn’t need reams of documenta-
tion, but any reasonably complex piece of software becomes hard to work 
with when there isn’t adequate description.

Which is better? The undocumented good design is best: If it is a truly 
high-quality design, then it should be obvious and self-documenting.

3. How can you measure the design quality of a piece of code? How can you 
quantify its simplicity, elegance, modularity, and so on?

Quality is difficult to quantify; it’s largely an aesthetic judgment for design. 
What makes a picture beautiful? The kind of thing you can’t hold in your 
hand and count. Hindsight will show how easy the code was to pick up or to 
modify. But that doesn’t really help when you first come across some code. 
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If I have two designs A and B, and I think A is more elegant, but in practice 
B turns out to be more usable and copes with the pressures of reuse much 
better, then it is hard to argue that A is the better design.

The only way to judge design quality is to look at the code. Reading a 
little code generally gives a good impression of overall quality; if one small 
bit appears good, then the rest is likely to be of reasonable quality too. This 
doesn’t always hold, but it’s a handy yardstick. A realistic approach is this: 
If that little bit of code is bad, expect the whole codebase to be terrible. If 
the little bit is any good, then just suspect the codebase of harboring more 
subtle problems.

Running code tools that inspect the source, producing diagrams and 
documentation, can also help to gauge design quality.

4. Is design a team activity? How important are teamworking skills in 
creating a good design?

Very important. Programming tasks are seldom a lone activity. In the soft-
ware factory, most large-scale design activities involve more than one designer. 
Even if the work is split into separate areas, those areas interface at some 
point—so the designers must interface. If there is only one designer, he or 
she must still be able to document and communicate the design effectively.

5. Are different methodologies more suitable to different projects?

Yes, the scope of some projects will render certain design approaches 
unnecessary. If you are writing a set of device drivers, you won’t find much use 
in a full-blown OO design process.

If you are working on a very formal project, perhaps for a government 
agency, you’ll need to use a very formal process that documents every stage 
and provides accountability for every design decision made. This may be 
quite different from an exploratory R&D project in a software lab.

6. In what ways can you determine whether a design is highly cohesive or 
weakly coupled? 

Ultimately you have to look at the code and see how it fits together, but that’s 
boring! You can get a good feel for coupling in a C or C++ project by looking 
at the #includes at the top of the file. If there are tons of them, the coupling is 
probably disastrous. Alternatively, you can run inspection tools that produce 
pretty pictures of your code.

7. If you’ve solved a similar design problem in the past, how good an 
indicator is it of how difficult this problem will be?

Experience teaches you how to design, so learn and then exploit your 
knowledge. But employ wisdom with this knowledge; don’t run on autopilot. 
Different situations present different challenges—don’t presume that one 
problem is the same as another just because it looks like it on the surface.

If you know how to use a hammer, don’t make every problem into a nail.
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8. Is there a place for experimentation in design?

Yes, any design is experimental until it has been implemented and found 
acceptable. Consider the “build one to throw away” approach that Frederick 
Brooks described. (Brooks 95) There’s a lot to be said for experimentation.

Design is an iterative process; during each iteration you can try out 
design alternatives and decide which is most sensible. The more iterations 
you go through and the smaller in scope you make each one, the less painful 
any bad design decisions will be.

Getting Personal

1. Look back and think about how you learned to design code. How could 
you convey the knowledge you’ve gained to a total novice?

How much do you honestly think you could teach, and how much would 
have to come from the novice’s inherent abilities and experience? Could 
you create a set of exercises based on your experience that would help 
someone else?

You wouldn’t give a novice a large system to design at first. You’d start 
him off on a small self-contained project, and then perhaps get him to make 
extensions to existing programs, all the time keeping a mentoring eye on 
what he’s doing.

Most programmers didn’t get this kind of help themselves when they 
were learning to design. They learned through a process of trial and error. 
Do consider teaching and mentoring a novice—it really helps you to grow in 
your own abilities.

2. What experience do you have with using particular design methodologies? 
Were these good or bad experiences? What was the resulting code like? 
What might have worked better?

Was the taste left in your mouth by a methodology influenced by your prior 
experience and preferences? If you don’t know how to use a particular meth-
odology, it will be hard work and uncomfortable. A hard-core C programmer 
may dislike any form of object-oriented design, and his OO designs will be 
appalling. But that doesn’t make OO a flawed approach.

3. Do you find it important to stick rigidly to the methodology you’re using?

The design approach is a tool, a utility, like a programming language—you 
should only use it up to the point it remains useful. If it stops being useful, it’s 
no longer a utility! A methodology won’t work if no one on the team knows 
how to perform it; use something they do know, or teach them first.

4. What was the best designed code you’ve ever seen? What was the worst 
designed?

I bet you’ll easily remember the worst designed code. Bad code sticks out 
like a sore thumb, and likewise sticks in your memory. Well-designed code 
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looks simple and obvious, so you probably won’t step back and say, “What a 
great design!” You probably won’t even notice there was much design work 
involved.

5. A programming language is essentially a tool to implement your design, 
not a religion to argue about. How important is it really to know language 
idioms?

It’s very important, or you’ll end up with code that doesn’t make sense.
Some architectural decisions may be language independent, but low-

level code design is heavily influenced by the implementation language. An 
obvious example: Don’t create a flat procedural design when you’re coding 
in Java—it’s just plain wrong.

6. Do you think programming is an engineering discipline, a craft, or an art?

Quite simply, it depends on how you do it. It has elements of all three.
I prefer to think of programming as a craft—it requires skill, workman-

ship, discipline, and experience. Its products can be at once functional and
beautiful. There is an element of artistry in it; it’s a creative process. Allied 
with this artistry is the mastery of tools and techniques. These are the hall-
marks of a craft.

Chapter 14: Software Architecture

Mull It Over

1. Define where architecture ends and software design begins.

In truth, both terms can be defined to whatever suits you. In their common 
usage, the distinctions are as follows:

Architecture is the high-level structural design. It looks at the wide-
ranging implications of its choices, seeing how it will impact construction 
and maintenance costs, overall system complexity, ability to accommodate 
future extensions, and marketing concerns. The architecture is devised 
at the start of a project. It has serious consequences, at the very least on 
the further software design.

Software design is the next level down, a more refined and focused 
activity. It’s concerned with code details—data structures, function 
signatures, and the exact flow of control through modules. Software 
design is conducted on a per-module basis. Its consequences are 
nowhere near as significant to the system as a whole.

Exactly where the two meet depends in part on the size of the project. 
Software construction is an iterative and incremental process—although archi-
tecture is created first, design results can feed back up to the architecture.
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2. In what ways can a bad architecture affect a system? Are there parts that 
wouldn’t be affected by architectural flaws?

Bad architecture will undermine any effort to write good software. It is 
fundamental to the quality of your code. If some code isn’t affected by the 
flawed architecture, then it’s probably either a stand-alone library or it never 
really belonged in the system in the first place.

3. How easy is it to repair architectural deficiencies once they become 
apparent?

During the early formative stages of a project, it’s relatively easy to massage the 
architecture. But once development is committed to that architecture, with 
sufficient investment (design and code) slotted into its scaffold, it’s very, very
hard to change. You might as well try rewriting the entire product from 
scratch.

This is why it is so important to get the architecture right the first time. 
You can refactor small bits of code, but not an entire structural foundation.

Of course, it is easier for us to rip up software and start it afresh than it is 
in the physical construction industry, but economics dictate that we can’t do 
it. We usually only have one chance to get the architecture right, and if we 
don’t, we will have to live with the consequences for the entire lifetime of the 
software system.

4. To what extent does architecture affect the following things?

a. System configuration

b. Logging

c. Error handling

d. Security

The architecture has a profound impact on each of these, or more correctly, 
each of these has a profound impact on the architecture. You need to establish 
requirements for these areas before embarking on serious architectural 
design. It will be hard to graft such features into the code at a later date, let 
alone into the overriding architecture.

a. The architecture determines what should be configurable (a lot or a 
little) and how it should be configured. The kind of configuration 
mechanism is determined by several factors: the importance of a 
shared “configuration manager” component, whether or not the 
system supports remote configuration, and who has rights to perform 
configuration (is it just the developers; should the software be tweaked 
by installers, maintainers, or users?). All of these concerns are funda-
mental architectural issues.

b. The separate components may log information using some shared facil-
ity, or they might use their own custom mechanisms. The architecture 
will define which approach is acceptable, how you access the logs, and 



524 Answers and Discuss ion

also the sort of logging information that’s important. This needs to 
address the requirements of the software developers as well as the soft-
ware users. Should development logging information be produced by 
release versions?

c. Architectural error management concerns include whether or not there 
is a central error-logging service and the error-reporting scheme (how 
does an error propagate from the seedy back-end components to the 
user’s sanitized GUI interface?). It also defines what kind of error mecha-
nisms are used: perhaps a centralized table of error codes shared across all 
components or a common exception hierarchy. It will address how 
errors from third-party code are incorporated into the system.

d. Security issues will depend on the kind of software under development. 
A distributed Internet-based shop-front system has different security 
requirements from a small piece of code that will only ever be deployed 
on a stand-alone computer. Security is an important topic and can’t be 
grafted in at the last minute; it must be addressed in the early architec-
tural designs.

5. What experience or qualifications are required to be called a software 
architect ?

You can decide to call yourself an architect, but you can’t gain insight and 
experience overnight or magically conjure up the wisdom to make good 
design decisions.

Good architectural design requires a wealth of prior experience—
learning from, devising, and refining real software systems. This can only be 
learned by actually doing it, not by watching someone else. Be wary of people 
who call themselves architects after working on just one release of software.

You can work on software architecture and not be called an architect; the 
use of this moniker often depends on company structure and culture. No 
formal qualifications are required before you claim the title—however in 
some countries, it is illegal to call yourself any kind of architect without 
professional accreditation.

6. Should sales strategy influence architecture? If so, how? If not, why?

Yes, commercial concerns will inevitably affect the technical architecture. 
Otherwise, you’ll build a system that is not a viable product; you’ll rapidly 
find yourself out of a job and your company in receivership.

We must address the commercial implications of our designs—for 
example, considering the consequences of failure modes and the cost 
associated with return-to-base or on-site system support. The architecture 
must minimize these events if they are problems (you can provide remote 
access and rich diagnostics to avoid such intense product support).

Commercial concerns also affect these architectural areas: customer 
support facilities (including how easy the system is to administer), the installa-
tion approach (performed by trained personnel or by an automated CD 
installer), and maintenance support and fee structures.
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7. How would you architect for extensibility? How would you architect for 
performance? How do these design goals affect the system, and how do 
they complement one another?

There are a number of architectural decisions that follow from these two 
requirements.

Extensibility can be supported through architectural devices such as plug-
ins, programmatic access to code (reflection), more language bindings, 
scripting capabilities, and extra levels of indirection.

Performance is achieved by streamlining the architecture, keeping it 
mean and lean. You must remove all unnecessary components and ensure 
the connections provided are timely and adequate. Perhaps caching 
layers must be incorporated to boost data throughput.

As you can see, these two have little in common; every hook for extensi-
bility will consume some, no matter how little, performance. Extra indirection 
has a cost—the indirection. If your goal is extensibility, this is an appropriate 
price to pay. A good architecture makes the correct high-level compromises 
to suit the perceived requirements.

Getting Personal

1. How diverse is the range of architectural styles to which you are 
accustomed? What do you have the most experience with—how does 
it affect the software you write?

Architecture affects us in many ways. Different architectural styles lead to 
different design and coding techniques. We are creatures of habit, and these 
techniques will shape how we think and code, even when working within a 
different architecture later on.

It is healthy to be exposed to a number of different architectures and 
to be able to work with them. In practice, you will focus on one particular 
style. Make sure you understand how your code is shaped by this architec-
ture, and check that you’re writing sympathetic code when you do change 
architectures.

2. What personal experience do you have of architectures that succeeded 
or failed? What made them winning solutions or a hindrances?

First, we must define what architectural success means. Is it an architecture with 
technical merit? Is it a system that achieves commercial profitability? Is it a bit 
of both? Place your answer here.

Software that buckles under the weight of inappropriate architecture 
usually suffers because the architecture was not suitably extensible. Important 
features cannot be accommodated. This inevitably means the product loses 
market share to the more nimble competitors. History is strewn with software 
products that have fallen by the wayside like this.
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Another danger is legacy; a huge investment in architectural baggage 
is a great hindrance. It requires real insight and a fair bit of courage to throw 
away an old system or architecture and start from scratch. A rework must 
always learn lessons from the previous version.

An over-engineered architecture is just as dangerous as an insufficient 
one. If the architecture supports too much, it will make the product overly 
complex, cumbersome, and unacceptably slow. It usually means that even 
the simplest change requires modifying many components.

3. Get every developer on your current project to draw a picture of the sys-
tem architecture—individually (without talking to anyone) and without 
any reference to system documentation or the code. Compare the pic-
tures. See what strikes you about each developer’s efforts—aside from 
the relative artistic merit!

Be fearful if the pictures bear no resemblance to one another. Don’t worry 
if there are minor variations; different people will miss different small com-
ponents, and each may be focused on different parts of the system. But if the 
diagrams contain wildly different components or the communication paths 
are not similar, then the team does not have the same mental model of the 
code. This will almost certainly lead to disaster. Pull the developers together 
and make sure they know what the system really looks like.

If all the diagrams do look similar, then give yourselves a pat on the back. 
You get bonus points if the components are positioned similarly on each sheet 
of paper. This is a hint that there is a central architecture specification and, 
more importantly, that everyone understands it.

4. Do you have an architectural description that’s commonly available for 
your current project? How up to date is it? Which kinds of view are you 
using? If you needed to explain the system to a newcomer or a potential 
customer, what would you really need to have documented?

Note how far your ideal documentation is from reality. What opportunities do 
you have to improve this situation? In a busy commercial environment, you’ll 
rarely be able to schedule specific time to document the entire architecture, 
but you can plan to capture parts during the design and specification of new 
modules. In this way, you can construct a good architectural overview, piece 
by piece.

5. How does your system’s architecture compare to the architecture of your 
competitors in the marketplace? How has your architecture been defined 
to determine your project’s success?

It’s important to understand how your architecture is designed to meet all 
your requirements and to ensure your success. (If it has not been designed 
with this in mind, then you’re in trouble.) We’ve seen how architecture has 
the most fundamental affect on the shape and quality of a software system—
it therefore really does have a large influence on your product’s success or 
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failure. You’ll rarely see software products thriving despite their bad archi-
tecture. If you do know of a successful one, it probably won’t be around for 
very much longer.

An architecture must be able to support at least the same core functionality 
as competing systems and provide good support for the unique features that 
will cause someone to choose your product over anyone else’s. The simple 
features that don’t require architectural support are rarely as compelling as 
core functionality embedded deeply in the system.

Chapter 15: Software Evolution or Software Revolution?

Mull It Over

1. What is the best metaphor for software growth?

There is none. In the immortal words of Forrest Gump, “Software is as 
software does.” (Groom 94) Code construction has many correlations, yet 
no metaphor fully conveys its subtleties, just as you could never fully describe 
the beauty of a sunrise in words.

Analogies can be misleading; software is a very different substance from 
any physical item, and building it is accordingly different. There are fewer 
physical constraints, and you can manipulate it in many more ways.

There is a glimpse of truth in each metaphor. Learn what you can from 
them, but don’t be tunneled into an incorrect view of software.

2. Looking at a program’s development through the colorful lifetime 
metaphor I talked about in the introduction, what Real World events 
correspond to a program’s:

Conception

Birth

Growth

Coming of age

Sending out into the Big Wide World

Middle age

Growing tired

Retirement

Death

Although we’ve seen that metaphors are imperfect, investigating this one 
does teach us a lot about the lifetime of a software system. It’s certainly not 
practical to try to place one developmental stage before the preceding steps—
you can’t release software until it has come of age. Well, you can, but the 
consequences are dire.
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Conception 
The company observes an opening for a new product. The market 
requirements are established. The decision is made to build it.

Birth 
A project is initiated to build the software. Designers and programmers 
are drafted in. An architecture is established. The code is started.

Growth 
The code develops, and the program matures. It becomes more and 
more functionally complete. Deadlines loom.

Coming of age 
Finally, the code is complete. It passes all tests to QA’s satisfaction. 
It’s considered a job well done, and hopefully it wasn’t too far behind 
schedule.

Sending out 
The program is released as version 1.0. It successfully meets the market’s 
needs.

Middle age 
The program is heavily used by clients and has been deployed for some 
time. Now, several revisions later, it has accumulated extra functionality 
and a degree of bloating.

Growing tired 
Eventually, more nimble competition overtakes the program, with a 
greater feature set and better performance. No new customers choose 
our program, but existing customers clamor for upgrades. The software 
has become hard (even uneconomical) to extend.

Retirement 
Finally, the company decides to give up on development and cease 
support. It announces support is ending in x months: a formal end-of-
life statement. Development stops, although some maintenance work 
continues.

Death
We reach the inevitable: All development and maintenance stops. 
There is no longer anything offered by way of support. The world has 
moved on; soon, no one will remember what the program was called, 
let alone how to use it.

3. Is there a limit to software life—how long can you keep developing and 
working on a program before you have to start afresh?

This depends more on the market for the program than the quality of the 
software itself. Code can last indefinitely if it’s well maintained and extended 
carefully. However, technologies go out of date rapidly, and trends change. 
Operating systems evolve quickly, hardware platforms become obsolete, and 
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something that began as state-of-the-art, market-leading functionality will be 
given away for free a few years later. You must work hard to maintain the 
program’s competitive advantage. Perhaps you’ll have to continually add 
new functions, or port the software to new platforms.

Open source software is not immune to these competitive and market-
related issues; in some cases the problem is worse. There may be little or no 
money involved, but there is a still a real market with advancing technology, 
lower barriers to entry, and greater chances to switch products.

4. Does the size of a codebase correspond to the maturity of the project?

 No. On many occasions, I have vastly improved a system by removing code 
from it. Duplication can lead to massive code growth with little functional 
gain. The use of external libraries provides a lot of functionality without 
any discernible increase in project code size.

Many people quote lines of code as a good measurement of development 
progress. Such metrics are useless unless interpreted correctly. This is merely 
a view of the amount of code written, not of its quality or the purity of its design. 
It is certainly not a measure of its functionality.

5. How important is backward compatibility when maintaining code?

 This depends on the individual project and how it has been deployed. More 
often than not, it is very important to retain backward compatibility when 
you change code—especially with regard to file formats, data structures, and 
communication protocols. Few applications can justifiably break this rule—
only systems with small deployments and no need to store, retrieve, or 
communicate legacy data.

You should also consider forward compatibility. That is, designing code for 
extension and ensuring that future events will not render it inoperable. The 
Y2K bug is a good example of this rule being ignored, with expensive and 
potentially disastrous consequences.

6. Is code likely to rot more quickly if you alter it or if you leave it alone?

Code rots quickest when you attempt to alter it. It’s true that leaving a 
program to slowly stagnate will ensure your competitors gain an advantage, 
eventually rendering your code worthless. Your product will hear its death 
knell, but the code itself is as beautiful as it ever was.

Careless maintenance and sloppy extension will really cripple code. 
New faults are introduced all too easily as other problems are cleaned 
up. The pressure for rapid turnaround leads to modifications that 
degrade code clarity and structure. Maintaining code often renders it 
unmaintainable.

It takes good programmers and informed project management to 
avoid this.
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Getting Personal
1. Is the majority of the code you write brand new or a modification of 

existing source?

a. If it’s brand-new code, do you create entirely new systems or new 
extensions to existing systems?

b. Does this affect how you write? In what ways?

Different forces come into play in these different scenarios. When 
extending existing code or fitting new software into an old framework, you 
have to do a lot of investigation up front to understand how all the existing 
stuff works. If you don’t, you’ll end up writing bad code that doesn’t fit in 
properly, causing headaches in the future.

Brand-new code must be created with a view to future modification. It 
must be clear, extensible, and malleable to prevent such problems from 
cropping up later.

2. Do you have experience of working with preexisting codebases? If so:

a. How has it shaped your current skill set? What lessons did you learn?

b. Was it predominantly good or bad code? What did you have to judge 
it against?

A few years experience helps you to judge what’s good software and what’s 
bad. The telltale signs become clear, and you’re able to quickly detect code 
that must be handled with care.

Although vaguely masochistic, it can be good experience to work with 
someone else’s trashy code—it teaches you what not to do, how one program-
mer’s shortsightedness can make other programmer’s lives painful later on. 
It helps you to appreciate the importance of taking responsibility for the 
code you write.

3. Have you ever made changes that degraded the quality of code? Why?

Common reasons (or excuses) are:

I didn’t know any better at the time.

I was pressed for time and had to ship the code quickly.

It was too much work to do any other way.

I could only modify code that was under our control—the problem was 
in another team’s code or in third-party library code that we only had 
binaries for.

None of these reasons are satisfactory.
For bonus points, come up with counter arguments against each of 

those excuses and find ways to avoid each situation. For example, if you’re
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pressured to ship a code release quickly, you can make a simple hacky 
change now, and revise the work once the software is released to create 
a more engineered solution.

4. How many revisions has your current project gone through?

a. How much changed functionally between revisions? How did the 
code change?

b. Has it grown by luck, by design, or something between the two? How 
is this evident now?

Here are some important things to consider.

a. The two are not necessarily connected. Even some very simple functional 
changes may require fundamental code rewrites. I’ve seen many projects 
where this was the case, where the system architecture didn’t support 
future requirements and had to be radically altered.

And I’ve also seen the opposite: releases that were functionally 
identical to their predecessor, but where almost everything had changed 
under the covers. There is no point in performing a complete project 
rewrite if the system is spiraling toward its death, but when it has a 
viable commercial future and the current code cannot accommodate 
future requirements, such action may be justified.

It might be commercial suicide to release a new version with no new 
features—customers will refuse to upgrade unless it’s worth their while. 
Therefore, a few minor features tend to be thrown in as bait, or the 
revision is released with a certain amount of spin (i.e., This revision 
includes significant bug fixes).

b. You must know the history of your codebase to understand how it grew 
to this current shape and to be able to make informed modifications and 
appropriate tidy-ups.

5. How does your team safeguard code so that it can’t be changed by more 
than one programmer at once?

Employ a revision control system to manage code changes. Blocking file 
checkouts prevent more than one person from modifying a file at once. How-
ever, this is not enough. One change can be checked in with a contradictory 
change immediately following. You need to manage the development carefully, 
so that each developer with access to the source code understands what his 
or her peers are doing and who is responsible for making which changes. 
Code reviews help to detect and correct when this kind of problem has 
occurred.

A good suite of regression tests will ensure that any modification you 
make does not break functionality.
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Chapter 16: Code Monkeys

Mull It Over
1. How many programmers does it take to change a light bulb?

The question’s wrong. It’s a hardware problem, not a software one. Get the 
hardware engineers to fix it. Of course, the hardware engineers will want to 
work around the problem in software. . . .

2. Is it better to be enthusiastic and less skilled (not incompetent) or to be 
incredibly talented and unmotivated?

a. Who will write the better code?

b. Who is the better programmer? (Not the same thing.)

Which does more to shape the code you write: your technical 
competence or your attitude? 

There are various types of software systems, and the creation of each requires 
a different set of skills. That’s how programmers can carve out niches in 
embedded programming, web services, financial systems, and so on. The 
coding task also differs with the heritage of the code. You might write:

Simple “toy” programs

New systems from scratch

Extensions of existing systems

Maintenance work on old codebases

Each task requires a different level of skill and discipline, and a very 
different development approach. We’ll see this in the next question. Not 
every programmer who can write a personal “toy” can create a brand-new, 
industrial-strength system.

For all of these, the quality of the resulting code is determined as much 
by your technical competence as your attitude regarding the task—indeed, 
the two must complement one another. If you lack some technical skills, then 
you must have an attitude that acknowledges this and compensates for it.

Your attitude can do more to shape the code you write than your 
current skill set can. If you’re less skilled but desire to do a good job, then 
you’re more likely to work well. You’re also more likely to learn and to 
improve your skills.

3. There are various different types of programs we write, differentiated by 
code “heritage.” How does writing the following types of code differ?

a. A “toy” program

b. A brand-new system

c. Extensions to an existing system

d. Maintenance work on an old codebase
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It might not look like there’s a great different between these code scenarios, 
but they require surprisingly different approaches.

A toy program 
This might be a small fun hack for your own use or a little utility to help 
develop a larger system. This program doesn’t need to be bulletproof, have 
in-depth design, or have exhaustive features. It just needs to do enough 
to solve the immediate problem. Then it’s thrown away.

Speed and ease of development is probably more important than 
design elegance or the theological purity of the construction process.

A new system 
Creating a brand-new professional system from scratch requires serious 
design and careful planning. You must take into account future use and 
extensions, and ensure that the whole system is adequately documented.

Extensions 
Few projects create a new system from the ground up. More often, we 
extend existing code, adding new features to an old codebase. The new 
work must knit correctly into the existing system. This can’t be done prop-
erly without a thorough understanding of the original code and the ability 
to make changes that sit well alongside existing work.

Maintenance 
The most common software activity is the maintenance of existing code, 
fixing any remaining faults, and ensuring that it remains operational as 
the world around it changes. This needs a careful methodical approach. 
It probably requires a lot of exploratory work; it will stretch your deduc-
tive powers since few systems are ever documented well enough to easily 
maintain, especially as they grow old and near obsolescence.

4. If programming is an art, what is the correct balance of consideration 
and planning versus intuition and gut instinct? Do you program by gut 
or by plan?

As we’ve seen, effective programmers use both approaches. Intuition and the 
artist’s aesthetic sensibilities will help craft elegant code. Thoughtful plan-
ning works alongside to ensure the code is sound, pragmatic, and delivered 
on time.

We can’t formulate an exact ratio or formula for the optimum balance. 
Effective programmers have both and know how to moderate the use of each.

Chapter 17: Together We Stand

Mull It Over

1. Why write software in teams? What are the real advantages over writing a 
system on your own?
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Software development might be easier on your own; you don’t have to work 
with other weird programmers, you don’t need to coordinate work or suffer 
ineffective management. However, it isn’t hard to see the many benefits of 
software development in teams.

In a team you can solve larger problems by decomposing them between 
individual members. And you can create code faster too. Groups of developers 
combine talents to make something greater than the sum of their parts. In 
cases where there is no well-established design or prior art, the wider skill set 
and knowledge of the group has a distinct advantage; a collaborative approach 
will filter ideas and generate better solutions. Peer reviews ensure that work 
is sound.

There is also a personal motivation: Techies like working on cool projects. 
You can work on systems well beyond your own ability when developing in a 
team. This might be software that is much larger than an individual could 
tackle, which requires specialized skills, or that provides the chance to work 
alongside more experienced programmers.

In a Real World organization, even a lone developer is part of a larger 
team. If you’re not working with other software developers, you are still part 
of a corporate team, working to create a final polished product. Without 
those other people, your software would never be released.

2. Describe the telltale signs of good and bad teamwork. What are the pre-
requisites for good teamwork, and what characterizes bad teamwork?

For effective teamwork, all of these factors must be in place:

The correct spread of people, with a range of appropriate technical 
skills.

Team members with a range of experience, who are each able to learn 
from others. A whole team of trainees will clearly be very unlikely to 
succeed. (However, they’d be much easier to mold and manage than a 
bunch of Demigurus who are far more set in their ways.)

Team member personality types must be complementary. To succeed, 
the team needs encouragers and motivators, not people who will drag 
morale down.

A clear and realistic goal (even better if it’s an exciting project that the 
team members really want to see completed).

Motivation (whether financial or emotional).

Suitable specifications provided as soon as possible, so all members 
understand what they are building and to ensure that the individual 
pieces of work fit together.

Good management.

As small a team as realistically possible, but no smaller. Adding more 
people makes teamwork harder: There are more lines of communica-
tion, more people to coordinate, and more points of failure. We should 
try not to make things unnecessarily difficult.
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A clear and universally understood software engineering process for the 
team to follow.

Backing from the company, not hindrances and unnecessary bureaucracy.

In contrast, these are sure indicators of a team that is not able to work 
effectively. Note that this list includes a mix of internal and external factors:

Unrealistic schedules with deadlines established before the team has 
scoped their work.

Unclear project objectives and a lack of project requirements.

Communication failures.

Bad or unqualified team leaders.

Badly defined individual roles and responsibilities—who’s responsible 
for doing what?

Individual bad attitudes and personal agendas.

Incompetent team members.

Management not valuing individual engineers, and treating them like 
minions instead.

Individual appraisals based on criteria that don’t match the team 
objectives.

Rapid turnover of team members.

No change in management procedure.

A lack of training or mentoring.

3. Compare software teamwork with the construction metaphor (see “Do 
We Really Build Software?” on page 177). Does it reveal insights into our 
teamwork? 

There are a number of different metaphors that can be used to describe our 
work (for example, DeMarco’s sports team or choral society and the factory we 
joke about here). (DeMarco 99) The problem with any metaphor is that it 
can only tell a partial truth. Software engineering has its own problems and 
challenges. Chemical engineering is different from civil engineering, which 
is different from making a movie, which is different from writing software.

While not perfect, building construction is a useful metaphor. After all, we 
construct software according to a plan, from different components (some of 
which we build ourselves, others which we buy or bring in). These are the 
useful parallels:

You need a team: You can’t single-handedly build a skyscraper or an 
enterprise-level highly complex software superstructure.

The team has a goal: It works to finish the construction on time and 
on budget.

Someone commissions the work, for a purpose: There is an end-purpose 
for the work.
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Each team member does something different: Different roles help to get 
the job done. There are architects, builders, carpenters, plumbers, elec-
tricians, foremen, office staff, security guards, and more. Each makes a 
valuable contribution.

There are team members with responsibility: The foreman is the people 
manager.

But of course, buildings are very different from programs. Buildings 
can’t be developed in an iterative and incremental manner. Any change to a 
building’s specification will result in costly demolition prior to rebuilding. In 
our world of pure thought stuff, we can tear down and rebuild with very little 
material cost (but with the costs of time and labor). In software, we are better 
able to build abstract interfaces between blocks. The engineering discipline 
is different, but that doesn’t mean we can’t learn from the parallels with 
other professions.

4. Will external or internal factors do the most to ruin the effectiveness of 
a software development team?

They’ll both conspire to destroy your development work. Internal 
factors like:

Ineffective team members

Conflict

Confusion

Show-stopping bugs late in development

Inaccurate plans

Mix with external factors like:

Unclear or shifting requirements

Unrealistic deadlines

Bad management

Corporate bureaucracy

This makes the life of a software developer incredibly difficult. Internal 
and external pressures are equally likely to destroy your teamwork, although 
it’s widely recognized that most projects fail for nontechnical reasons.

One thing is certain: There are far more detrimental influences on team 
performance than there are success factors. For this reason, you must guard 
your team’s work closely, attempting to insulate yourself from both internal 
and external attacks.

5. How does a team’s size affect the team dynamics?

With more people, the team members suffer increased

Coordination effort

Communication effort (more people introduce more separate paths of 
communication; this grows exponentially)
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Cooperation effort

Dependency on others (direct and indirect)

Each of these can make your work harder. However, it’s clear that a team 
of programmers can produce greater software than a single coder. This means 
that there must be an appropriate balance of team size versus size of task; this 
will change depending on the kind of system being developed.

As a team gets bigger, there is more likelihood that individual program-
mers will slacken the effort they put in, since they can be carried by the rest 
of the team. Brooks’s The Mythical Man-Month shows that adding people to a 
project does not necessarily make it complete sooner. (Brooks 95)

With a larger project, there is more chance that management talent will 
differentiate success from failure and more scope for management to 
provoke catastrophic failure.

In general, smaller development teams are better; but they must still be 
large enough to accomplish the task.

6. How can you insulate a team from problems caused by inexperienced 
members?

There will always be inexperienced programmers. This is the same in any 
field of endeavor. In many professions, new recruits undergo some form of 
apprenticeship period and must complete a stage of academic study. This 
ensures that their skills are already honed to a reasonable level. Although 
ripe with academic programming courses (of varying quality), our software 
profession doesn’t recognize any formal form of apprenticeship. Mentoring 
new programmers is a fantastic way to quickly bring fresh recruits to a reason-
able standard.

A few techniques contribute to making inexperienced coders’ work 
less risky:

Have realistic expectations; don’t expect miracles from them. Allot 
trainees appropriate tasks.

Monitor their progress, and ensure they aren’t afraid to raise questions 
and problems.

Don’t require too much prior experience: Use popular languages and 
tools that will require less time to get up-to-speed.

Don’t use bleeding edge technologies and techniques.

Standardize tools across teams so trainees only need to learn a 
toolset once.

Train them.

Review their code.

Mentor them.

Pair program with them.
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Getting Personal

1. What kind of team are you working in right now? Which of the stereotypes 
on pages 322 through 332 is it most like?

a. Is it like this by design?

b. Is it a healthy team?

c. Does it need to be changed?

What factors have you encountered that prevent good teamwork?
If you haven’t done so already, fill out the earlier action sheet care-

fully (see “Action Sheet” on page 347). Make sure you work out how to 
improve your team and start to make the changes.

Work out how you will carry out any required changes. Set goals and review 
the team’s health in a few months’ time.

Common team problems include:

Unbalanced team composition

Ineffective team members

Bad management

Unrealistic deadlines

Shifting requirements

Communication failure

2. Are you a good team player? How could you work better with your team-
mates and build better software?

Look again at the personal characteristics in “Personal Skills and 
Characteristics for Good Teamwork” on page 333. Determine how closely 
you model each of these and how you can improve.

3. What is the exact responsibility of a software engineer on your 
current team?

How much responsibility and authority does a software developer have? Are 
there several ranks of programmer job titles—if so, how do these roles differ? 
Does a development role involve any of the following activities?

Forming the project scope and objectives

Analysis

Estimating timescales

Architecture

Design

Review

Project management

Being a mentor
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Investigating and implementing performance

Documentation

Integrating systems

Testing (to what level?)

Interaction with the customer

Planning enhancements or the next software revision

This detail will differ from company to company and from project to 
project. Are there clear lines of accountability in your team? Are there 
technical and pastoral managers to whom developers are assigned?

Do you have a job description? Do you have a set of personal objectives? 
If so, are you fulfilling them right now, or are they actually incorrect?

Chapter 18: Practicing Safe Source

Mull It Over

1. How can you reliably release your source code to other people? 

The easiest option for proprietary source code is not to release it—then you’ll 
avoid all sorts of problems. If you must ship code, don’t forget to sort out 
licensing and get NDAs in place first. Know the size and extent of your 
audience and, if it’s important to you, take measures to ensure that the code 
doesn’t leak further afield.

For open source projects, this is not such a big concern; by their nature, 
they ship as source.

Before release, make sure that there are clear copyright and license 
notices in every source code file.

There are several mechanisms for a source code release, with differing 
abilities to guard against your code getting into the wrong hands:

Allow the external viewer to have access to your source control system. 
You can lock this down through an account that is granted read-only 
access, possibly using a shared anonymous account if your code is publicly 
available.

Obviously, to see your VCS server, users must have some level of 
privilege and network access to your development environment, so this 
must be closely managed—both so that they don’t do anything untoward 
and so that crackers can’t get in to look at your code.

Tarball the source tree (create a compressed archive of files—this term is 
named after Unix’s tar command). This tarball can be emailed, FTPed, 
or sent on a CD. Ensure that your method of dispatch is appropriately 
secure.

Include a set of release notes with your code, and clearly display the 
source tree revision information (usually a source control version or build 
number) for later reference. Mark the released code in your source control 
repository with a label so that you can retrieve it at a later date.
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2. Of the two models for repository file editing (locking file checkouts or 
concurrent modification), which is best?

Neither model of operation is better or worse than its counterpart. Each 
hides different file editing problems and forces users to work differently when 
modifications might collide.

The locking model requires you to check out a file to reserve it before 
making any modifications. You can be sure that no other developer’s 
change will interfere with your work and that you have sole access to that 
file until you check it back in or release the file unchanged. The downside 
is that a reserved file is blocked until the owner has relinquished control. 
You have no immediate way of knowing how long this will take.

If the owner sits at the desk next to you, then it’s annoying but not 
hard to work out. However, if the owner is on another continent, works 
different hours, or accidentally leaves the file checked out while on vaca-
tion, then you’re stuck. The best you can do is subvert the checkout by 
fiddling with the owner’s computer to release the file. This will undoubt-
edly cause hassle and confusion later.

The concurrent model avoids this problem and ensures that you can 
continue coding unhindered at all times. The hidden danger is the pos-
sibility of conflicting file modifications. If Fred alters lines 10 through 20 
of foo.c, while George alters lines 15 through 25, a race is on! The first 
developer to check in the file won’t have any problems, so if Fred wins, 
his work on lines 10 through 20 will be put into the repository. But when 
George tries to check in, the SCMS will tell him that his source tree is out 
of date—he has to merge Fred’s change into his copy of foo.c first. The 
five conflicting lines will need to be merged manually; George must do 
extra work to understand Fred’s change and integrate it with his own. 
Only then can he check his work in.

This isn’t ideal, but it happens very rarely in reality, and most con-
flicts are not at all contentious. The more common case is when Fred 
modifies lines 10 through 20 and George modifies lines 40 through 50; 
the two modifications don’t conflict and the SCMS can merge the changes 
automatically. If you do encounter conflicting concurrent modifications, 
it’s often a sign that the code needs some refactoring.

Neither mode of operation is perfect; but each works fine. Which you 
choose depends on the operation of your source control tool and the devel-
opment process and culture you work in.

3. How do the requirements for version control systems differ between a 
distributed and a single-site development team?

If a SCMS can accommodate remote sites, it will definitely be able to cope 
with a single-site development team, so we’re mostly considering a set of extra
requirements for multisite operation. These extra requirements include:

There must be a scaleable client/server architecture.

The tool must work effectively over low-bandwidth network links (which 
are common for satelite sites), or your deployment must include a really 
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high-quality intersite connection. Low-bandwidth links require intelligent 
data compression and sensible communications protocols (for example, 
the tools should send small file differences, rather than entire files).

There must be a centralized method to administer user accounts so that 
collaboration is seamless across sites.

There are two main designs: wide area network communication and 
remote repository replication. The first performs all client communication 
with a central server hosted at the parent location. This requires a sufficiently 
fast and reliable communication channel between sites. The latter method 
reduces communication overhead by replicating the repository onto a remote 
server at low-load times. However, this adds a lot complication to the devel-
opment process; you need to understand that the two repositories are not 
costantly synchronized, and you must work out sensible branching strategies 
to avoid conflicting lines of development work.

When evaluating source control systems, don’t ignore these requirements, 
even if you only have one development site. In the future, you may need to 
add a secondary site or support for telecommuters. Bear this in mind as you 
scope your system.

4. What is a sound rationale for selecting a source code management system?

Good criteria for selecting a SCMS include:

Reliability 
Check that it is proven technology and won’t suddenly lose your source 
files. The server must be robust and not prone to crashing every few days.

Capacity 
The tool must scale up well, handling large teams and large projects as 
well as small ones. In more demanding situations, does it consume a lot 
of disk space, soak up all network bandwidth, or take an excruciating 
time to run? Perhaps you require multisite repository synchronization, 
or does it work well enough on a low-bandwidth link?

Flexibility 
Does it provide all the operations and reports that you need? Does it 
handle all the filetypes that you want to control? Can it manage binary 
files? Does it support Unicode? Does it version directories, allowing the 
renaming and moving of files? Does it manage atomic change sets, or is 
each file individually versioned?

Branching 
To support more than one release, product variants, concurrent feature 
work, or to help with logical development, the tool must support branch-
ing. Does it support sub-branches? Is merging easy, or is it prohibitively 
difficult?

Platforms 
Make sure that it works on all the platforms, hardware configurations, 
and operating systems that you work with.
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Costs and licensing 
The SCMS must meet your budget constraints (remember, there are 
some very free source systems). Consider whether there are extra license 
costs per client. Sometimes these are hidden extra costs; as your team 
grows, you must pay an SCMS tax.

Audit 
The repository must record who makes each change: Don’t force every-
one into one SCMS user account. The system must support your access 
policies, allowing you to restrict modification rights as required. Do you 
want it to provide automatic notification of changes?

Simplicity 
The tool must be easy to use, configure, and deploy. This is especially 
important if you don’t have a full-time designated SCMS administrator.

5. How can you separate bleeding-edge code under active development 
from stable code during team development?

You need a strategy to separate the two in the source control repository. Your 
choices are:

Don’t separate them. Everyone has bleeding-edge code and must learn 
to cope with it. Don’t check in anything that is obviously broken or 
nonfunctional.

Employ branches. Perform each line of development work on a separate 
branch, and merge the branches down at appropriate stable points. With 
this scheme, integration problems are only discovered on a merge; this 
places the burden of maintenance on the branch merger (which might 
be the developer working on the branch or a separate system integrator).

Use a stable label, applied to the entire source tree as a baseline. Develop-
ers check out this labeled baseline and then move the components they 
are developing to the latest version. They can then work and commit 
changes without affecting anyone else’s stable source tree. When new 
development work is deemed stable (fit for public consumption) the 
label is moved. This change is picked up by other developers when they 
next synchronize to the baseline.

Which you chose depends on the facilities of your SCMS and your 
development culture.

Getting Personal
1. Does your development team make effective use of source control?

Ultimately, does your SCMS help you to develop software easily, and does 
it facilitate collaboration better than any alternative? Consider tool setup 
issues like:

Are you using the right tool with the right feature set?

Do you have an SCMS administrator, or is it managed on an ad hoc basis?
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Does everyone know how to use it? Is there an appropriate training 
scheme?

Is the repository integrated with your defect management or fault-
tracking tool?

Consider asset management issues like:

Is there agreement over the contents of check-in messages and the use 
of other revision metadata?

Do you have a consistent labeling scheme to mark important source 
tree revisions?

Do you have a defined (and documented) branching strategy, with 
provably correct merging?

Can you automatically create release notes from the source repository?

Are you able to re-create old builds? Have you addressed when the build 
toolchain altered, affecting code compatibility?

Can you build a product entirely from the contents of the repository, or 
do you need to supply any extra files?

How important are each of these issues to your development team?

2. Is your current work backed up? How important are backups to your 
development team? When are backups made?

If you can be bothered to write some code, it must be important, and so it 
must be backed up. There are several levels at which backups can be employed:

Personal workstation backups. These will ensure that no work is lost from 
your local hard drive or from your source tree sandbox.

The server holding the source control repository. This ensures that you 
won’t lose the central source tree files and their revision histories.

The latter is the most important: It’s criminally insane not to back up a 
source repository. If your workstation only contains sandbox development 
areas, then it’s not as critical to back it up; there should be little work at any 
time that isn’t checked in (remember to perform little and often check-ins), so 
a loss of a local disk is not critical.

Consider also how you back up documents and any other non--source 
tree items you produce. Either check them in to the repository somewhere or 
make sure that they are stored in logical places on a shared fileserver, some-
where that is backed up. Without revision control, you will have to perform 
manual document versioning—it’s as important to keep historical versions of 
specifications as it is to version the source code.

In a multiuser environment, the systems administrator will determine 
when backups are made. This is usually during the night when there is less 
computer activity and less information changing on the filesystems being 
backed up. (But what about multi-continent projects with massive time 
zone delays?)
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3. On which computers is your source code held?

Obviously, it is held on the development servers and workstations within 
the company network. These sit safely in the office behind a corporate 
firewall. But also consider whether your code is held on laptops or on the 
home machines of telecommuters. How sensitive is the work? How should 
these machines be digitally and physically protected?

Chatper 19: Being Specific

Mull It Over

1. Is a poor specification better than no specification at all?

A factually incorrect or painfully out-of-date specification is definitely worse. 
It will send readers down a blind alley and waste a lot of their time. The false 
information it contains could easily lead to broken code that will cost a lot of 
time, energy, and money to fix later on.

If a specification is ambiguous or misses important information, then 
you’re hoping that the readers are experienced enough to recognize the 
problem and interpret the information carefully. Hopefully they’ll all make 
the same set of assumptions about the missing information. A specification 
should really stand on its own and not require the intuition of its readership.

If a specification is too verbose and hides information, then it is probably 
better (in the long run) to rewrite it.

The number of factual inaccuracies in your company’s specifications will 
probably frighten you! In my experience, very few companies have a set of 
consistently good specifications.

2. How detailed does a good specification have to be?

The answer is: appropriately detailed, where the value of “appropriate” 
depends on the project, the team, the contents, the quality of related 
documents, and the lunar phase. Too much detail can definitely be counter-
productive: Clearly, if a design specification was too detailed it would be the 
code itself. However, ambiguity in key areas is a road to disaster.

3. Is it important that all the documents in a company/project have a 
common presentation style?

This is about as important as a uniform code style. That is, there are plenty of 
more important things to worry about, even if this is the most immediately 
visible problem with a specification. The importance of visual consistency 
depends (in part) on whether the documents are released outside the 
company or not. It looks more professional to ship consistent documents, 
all written in a similar style with the same template.

Ultimately, the content of your documents is far more important than 
their appearance.
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4. How should you store documents? Should you provide an index of them 
(by type or by project), for example?

You must be able to quickly locate and retrieve a document that has been 
written. The actual storage scheme is unimportant, provided that it’s well 
known and universally followed.

It usually makes sense to store all documents on a single central filestore, 
and group them by work package (this could be by project, by customer, by 
component, or by feature). It’s helpful to maintain a central list of all stored 
documents to aid retrieval. However, this adds management overhead, and if 
not maintained, it will quickly fall out of use.

Large companies employ people to deal with the storage and retrieval of 
documents. Though experts at this task, their presence adds more steps to the 
working procedure and more links in the development process chain.

It’s essential to keep documents under some form of revision control and 
to monitor which versions of the documents apply to which versions of the 
code. This is part of a configuration management strategy (see “Configuration 
Management” on page 356).

5. How should you conduct a specification review? 

Document reviews work similarly to code reviews. They generally take place 
in a meeting, in which case there are some important prerequisites: the 
correct set of reviewers must be selected, and the material for review should 
be distributed with enough time for reviewers to adequately prepare.

Alternatively, the review can be run virtually by soliciting email feedback 
or by giving a printed copy to each reviewer and receiving his or her marked-
up copies for inspection.

The review will address a number of things; the importance of each should 
be agreed upon up front:

The quality of the contents. (Is it complete, correct, and so on? This is 
paramount.)

The quality of the presentation style. (Does the document conform to 
project guidelines?)

The quality of the writing style. (Does the author write like Shakespeare 
or a five year old? For software specifications, both are bad!)

In a meeting context, it’s best to discuss general comments about the 
material and the overall approach first. (But be careful here: It’s very easy to 
get waylaid by more specific technical issues at this stage.) Then the specifics 
of the material can be discussed. Since all the reviewers have looked at the 
material beforehand and have already amassed their comments, stepping 
through, section by section, is usually appropriate. Long sections might be 
traversed paragraph by paragraph if necessary.

6. Does self-documenting code render all specifications useless? 
Specific ones?

Not entirely. Self-documenting code can avoid the need for design specifica-
tions or other maintenance documents. Literate API documentation placed 
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in code comments can even replace functional specifications in some cases, if 
the docs are really thorough. Be careful, though: If you try to write a lot of 
documentation in literate comments, you’d probably find it easier to type the 
same information into a word processor. Literate code documentation can 
never replace a requirements specification or a test specification.

A comprehensive set of automated test cases could replace a software com-
ponent’s test specification, if the test were sufficiently clear and maintainable. 
However, they are seldom sufficient to replace final product validation tests.

7. How can a document be collaborated on by more than one author?

With difficulty—few documentation systems provide the same collaborative 
facilities as a source code control tool. Look at wiki-webs for shared text editing, 
if you can cope with your documents being in an HTML-derivative form.

Otherwise, you have to split the document into sections and give one 
section to each person. Each section will have an inevitable difference in 
writing style, quality of content, and will be based on a different set of assump-
tions; check for this as the work is stitched back together. You might find it 
easier to split the sections into their own documents and put an umbrella 
document over the top of them. A leader must be appointed to coordinate 
the work of several people—to guide the writing process, collate the parts, 
and encourage people to complete their sections on time.

An alternative approach is to give one person overall writing responsibil-
ity, but with a strong element of peer review. The document’s content and 
structure is agreed upon in meetings beforehand, then the writer retires to 
craft the document alone, before offering it for group review.

Be careful with any of these approaches, as writing by committee can 
produce laborious documents and can take a very long time.

Getting Personal

1. Who decides on the contents of your documents?

This is defined by a company’s development process, by a document 
template, or by convention. But just because there is a convention doesn’t 
mean that it’s actually good practice. Check that the types of documents you 
write, as well as their contents, are genuinely valuable to your software develop-
ment process.

2. Consider your current project. Do you have:

a. A requirements specification?

b. An architecture specification?

c. A design specification?

d. A functional specification?

e. Any other specification?

Are they up to date? Are they complete? Do you know how to get the 
latest versions? Can you access historical revisions?
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If you don’t have some of these or they’re substandard, why? How can you 
remedy the problem?

Whose job is it to keep the documents up to date? Document versioning 
is an important aspect of specification generation—make sure that you have 
a clear plan for doing this.

3. Do you revision control your documents? If so, how?

Several techniques for managing document revisions are seen in the field:

Store them in an SCMS alongside the code.

Use a document (or even a workflow) management system.

Use the filesystem: Encode the document revision in its filename (possibly 
archiving old versions in a separate old directory).

Store old revisions in an email attachment sent to a “magic” user 
(grotesque, but—yes—I have seen a company do this).

Whichever scheme you use, it must address these issues:

Ease of use and document accessibility

How to prevent two people from editing the same document at the 
same time

Differentiating the latest release version from the copy currently under 
development

How to avoid accidental deletion or overwriting the wrong document 
version

How to maintain the document history with each change

The ease of referencing a specific document revision

Chapter 20: A Review to a Kill

Mull It Over

1. Does the required number of reviewers depend on the size of the code 
being reviewed?

Not really. If your code is particularly important, then you might consider 
inviting a few more reviewers, or you might make a particular effort to select 
reviewers with the most experience.

However, if the code is too large, you don’t need more reviewers—you 
need a rewrite!

2. Which tools are useful aids for code reviewing?

Common sense, a keen pair of eyes, and an alert brain!
A number of software tools are also useful. Many different tools can 

inspect your code and help you to gauge its quality and relative risk to the 
entire codebase. They can trace the flow of execution, work out which code 
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is executed most often, and calculate a value for each function’s code com-
plexity. This last metric is very useful when identifying which pieces of code 
need to be reviewed as soon as possible. A visual design program may help 
you to understand the code structure and its dependencies (particularly 
useful for reviewing class hierarchies in object-oriented languages).

3. Should you perform a code review before or after running it through 
source code checking tools?

After. Reviewers should probably use these tools themselves during review 
preparation, but authors must perform all possible checking on their own 
code before releasing it for review. They’d be foolish not to. It makes no 
sense to waste reviewers’ time on code that could have been easily improved. 
Reserve review time to find more interesting problems.

If an issue is detected during a review, thought should be given to whether 
the same issue can be automatically detected in the future using a tool.

4. What preparation is required for a code review meeting?

The author has completed the code satisfactorily (otherwise he or she is 
wasting the reviewers’ precious time). The chairman has arranged the 
meeting properly so that it will run smoothly. More interestingly, before 
the meeting, each reviewer must have already:

Read (and understood) the specification

Become familiar with the code

Drawn up a list of issues and questions (this step enforces discipline; if 
you don’t force yourself to do this, it’s easy to superficially skim the code 
and not really know it well enough to review thoroughly)

There will always be things you’ll find during methodical inspection in a 
review meeting that you missed beforehand. Even so, this prior preparation 
is essential to prevent the meeting from wasting a lot of people’s time.

5. How do you differentiate review comments to be acted upon immediately 
from those to chalk up for experience on the next project?

You must make a decision based on:

How important the identified problem is

Whether it’s a matter of personal aesthetics or it breaks an agreed 
best practice

How much work is involved in the fix

How serious the effect of the change is on the rest of the code

How wrong (or misleading) the code is without the fix

How fragile or dangerous the change work is

Where the project is in the development cycle—you only want to make 
essential changes near a release deadlin.
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There is no easy rule. If there is any ambiguity in a review meeting, 
then the chairman makes the ultimate choice. Sometimes problems are 
rated between must fix and nice to have—the author implements as many 
high priority fixes as feasible in the available time. Other issues may be 
deferred to the next iteration of the component’s development.

6. How do you run a virtual review meeting?

Virtual reviews are commonly run by email. The review is organized by a 
chairman, who is usually the hub of communications. Certainly, the author 
must not be the hub of communications; it would be too easy for him to select 
which comments are important and to ignore all the things he doesn’t like. 
This is obviously a bad idea.

There is an important question with this approach: Do the reviewers get 
to see each other’s comments? In a virtual review, debate is much harder to 
facilitate, especially if emails are directed only to the chairman. However, a 
1,000-email conversation broadcast to all reviewers quickly becomes irritating 
and diverting. As an alternative, you could meet in a virtual chat room, use 
an instant messenger, a dedicated newsgroup, or a mailing list.

An alternative virtual review mechanism is to distribute printouts of 
the code in question. The reviewers scribble comments on their copies 
and return them to the author. You can run a similar scheme using a wiki: 
Post your code on the wiki and let reviewers add comments to the page. 
The format of how you conduct a review is less important than simply 
doing it somehow.

7. How useful are informal code reviews?

Informal reviews are much better than no review at all, but since they are less 
thorough, they’ll inevitably find fewer faults (for the same quality of code 
reviewer).

Although terms are not officially defined, McConnell describes two types 
of informal review: (McConnell 96)

Walkthroughs
These are very informal gatherings where programmers look over the 
code together. This could be in front of an editor, with changes made on 
the fly.

Code reading
The author distributes copies of the code to a set of reviewers, who make 
comments on it and send them back to the author.

Getting Personal

1. Does your project perform code reviews? Does it perform enough code 
reviews?

Even if it makes a vaguely regular event of code reviews, there probably still 
isn’t enough reviewing going on. Too little value is put on this practice; if the 
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code seems to work, then people think that there’s no point wasting valuable 
time reviewing it.

This attitude is careless. The time taken to track lingering code faults is 
often far greater than the effort of review. Code reviews are a sensible and 
pragmatic way to take control of your development process and ensure that 
your software is of high quality.

What can you do to improve on this in your current project?

2. Do you work with any programmers whose code is considered to be 
above review?

A respected Guru programmer (see “The Guru” on page 299) is often held 
in awe, and no one ever suggests that his work should be reviewed. No one 
probably dares. This reverence is misguided and dangerous.

In my experience, Gurus write some of the most review-worthy code you’ll 
ever see: full of deep, incomprehensible, unmaintainable magic. The fact that 
they never put their code forward for review illustrates their incorrect attitude 
toward the task and the team. No one’s code is above review; all code should 
be carefully scrutinized.

3. What percentage of your code has ever been subject to code review?

Unless you’re a very unusual beast, this amount is undoubtedly small. How 
formal have the reviews been? How useful was each review, and how much 
did it contribute to the final quality of the code?

How much of your unreviewed code was pair programmed? How much 
should have been reviewed? How much unreviewed code was critically impor-
tant commercial code? How many bugs slipped through into production 
software, and how many of those bugs caused later problems?

Even if it’s not a part of your project culture to run code reviews, make 
a point of inviting formal review for your work. Don’t worry if no one else 
does it—your code will be exceptional by comparison!

Chapter 21: How Long Is a Piece of String?

Mull It Over

1. How can you rescue a slipping project and bring it back on track?

One technique to protect yourself from a failing project is to run, fast, like a 
rat from a sinking ship. It’s not very professional, though!

Once a project is behind schedule, there’s rarely anything you can do 
to bring it back on track—that is, unless there was a monster amount of 
contingency allocated. You might instead consider these strategies:

Reschedule the project; see if you can agree a later delivery date with 
the customer.



Chapter 21: How Long Is  a P iece of  S t r ing? 551

De-scope the first release, possibly agreeing to a later release with the 
missing functionality. It’s better to commit to doing less stuff, but doing 
it better and within the allotted time, than to implement loads of 
unnecessary functionality and slip badly.

Don’t blindly throw more developers at the project to speed things up. 
Brooks lucidly described how bad this idea is, especially when a project is 
failing. (Brooks 95) It would take the existing developers time to get the new 
guys up to speed, and there would then be extra overhead in managing the 
larger team. Any benefit would almost certainly be outweighed by the costs 
of new personnel.

2. What’s the correct response to having a deadline imposed on you before 
feasibility or planning work commences?

 Tact! The fixed delivery deadline might be a valid business requirement: 
You’ll make money if you ship software on time; you’ll make nothing if you 
don’t. You can’t always do the theologically correct thing and move a deadline 
or adjust the scope of the work.

Sometimes it helps your design effort to have early visibility of the anti-
cipated project deadline. This information shows you how pure and well-
thought-out your design can be, and it will help you to scope out the amount 
of code required and whether future flexibility can be considered. Ultimately, 
it will show you whether or not you need to hack out a quick-fix solution or 
the elegantly engineered code you always want to write. It might help you to 
make buy versus build decisions and to set the final quality expectations for 
the delivered software.

Make it clear that this is not an ideal way to develop software. Hopefully
someone will listen, and the managers will learn to stop promising such risky 
deadlines—it’s a careless form of gambling with the success of a project and 
the future of an organization.

3. How do you ensure that a development plan is genuinely useful?

 High-quality development plans are:

Accurate 
They include all the tasks required to build the software and are based 
on sound timescale estimates.

Fine-grained 
There aren’t a few large tasks with rough estimates, but many small tasks 
carefully sequenced. Our confidence in the accuracy of a small task’s 
timescale is higher, so the quality of the overall plan will be higher.

If you think that a task comprises several parts (e.g., it is dependent 
on a third party and splits into the third-party release milestone, followed 
by a period of integration and bug fixing) then make this explicit on 
the plan.
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Agreed 
Everyone buys into the plan: Management is happy with the level of 
inherent risk, while programmers agree that the timescales are accurate, 
no tasks are missing, and all the dependencies are correctly mapped out.

Visible 
They are used to make important decisions by individual developers and 
by managers. Timescale changes are communicated through the plan. 
The plan is versioned, and progress against the plan is recorded clearly.

Monitored 
If the schedule is poorly monitored, the timescale estimates become a 
worthless statistic. Progress must be checked against the plan. The 
course of the development effort is steered by this measurement.

4. Why do different programmers work at different rates? How can you 
reflect this on the plan?

Programmers differ in many ways:

They have different technical abilities and reason about problems in 
different ways. This affects the quality of work produced.

Different levels of experience lead to different design choices.

People have different levels of commitment: responsibility for old projects, 
levels of enthusiasm for the company or project, respect for the craft of 
software construction, and external commitments (family pressures, 
socializing, etc.).

Some people are highly motivated and prepared to put in hours of over-
time to get a project finished. Others want to work their minimum hours 
and then go party.

It’s not just the duration of a work package that differs between program-
mers. The quality of their code, the soundness of their design, and the bug 
count of their programs will differ too. It will even differ when the same 
programmer attempts the same task multiple times—with more experience, 
a programmer will work better the second time.

To reflect this on a project plan, check which developer each task is 
allocated to. If the task is not within his or her core competency, then increase 
the timescale estimate, or add in a block of contingency to the end. Consider 
putting in an extra up-front task to get the developer up to speed with the 
work, and make sure that you include any training that might be required.

Getting Personal

1. What percentage of the projects that you’ve worked on have run to 
schedule?

a. For those that did: What contributed to the success of the planning 
effort?

b. For those that failed: What were the main problems?
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It’s easier to characterize failure than success; you’ll identify the single 
reason that something went wrong far more easily than a delicate balance of 
things working together well. When everything on a project is healthy, the 
whole thing appears to just work.

Iterative and incremental development helps to accommodate problems 
and de-risk the plan. Well-understood work packages, a fine-grained plan, and 
a good initial design are also key. High-quality testing performed early and 
often makes development much safer. Talented developers are also very useful!

2. How accurate are your timescale estimates? How far off target are you 
normally?

This is a skill that you can continually improve. Experience is a great teacher. 
Hopefully, your later estimates have been more accurate than your earlier 
ones. Is this the case? 

If you haven’t yet been asked to make timescale estimates, start practicing 
now! Make a mini-plan for your current development task. Estimate time-
scales for the small parts of this mini-plan and see how accurate you are. This 
has the added benefit of making you think carefully about what you’re doing, 
putting a good initial design into place. It will also force you to leave enough 
time for testing, debugging, and documentation—all good things.

Chapter 22: Recipe for a Program

Mull It Over

1. How do the choices of programming style and development process 
influence one another?

They don’t need to have any bearing on one another, but hopefully they’re the 
kinds of things you think about together as you begin a project.

Iterative processes are easier to implement with programming method-
ologies that support componentization—the object-oriented paradigm. Linear 
processes are suitable for all types of programming styles, but are not necessar-
ily the best match.

The developers’ prior experiences and their personal preferences for 
programming style will have the greatest affect on these choices.

2. Which is the best programming style?

Trick question! If you actually gave an answer, put down this book and give 
yourself 30 lashes with a wet noodle.

3. Which is the best development process?

You can’t possibly have fallen for this too? Electric shock therapy with a 9-volt 
battery is your only option.
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4. Where does each development process listed in this chapter fall on the 
classification axes we saw in “Development Processes” on page 425?

First, a quick recap: The thick/thin classification relates to the bureaucracy 
and paperwork involved in a process, sequencing describes how linear and 
predictive the process is, and the design direction determines whether design 
starts from the minuscule implementation details or from the grand overview:

Ad hoc  
Who knows how to classify this mess? An ad hoc process could be any-
where on any axis, even constantly moving. Ad hoc developers are typically 
low on bureaucracy, but with no discipline at all, things fall through the 
cracks or are repeated time and time again. There’s no sequencing 
whatsoever, so this anti-process rates off the scale, and if there is any 
design, then it probably has nothing to do with what is actually being 
built, anyway!

Waterfall model  
This is a reasonably thick, very linear process. It generally leads to a top-
down design, although it doesn’t enforce this.

SSADM  
This scores full marks on the thick scale—there’s paperwork and heavily 
documented steps aplenty here. The sequencing axis is full throttle 
toward linear.

V model  
Another thick, linear process (although some parts of this process are 
explicitly parallelized for efficiency). As with other waterfall variants, 
it leans toward top-down design.

Prototyping  
An explicitly cyclical process (although by fixing the number of prototypes 
anticipated, we can enforce some level of linearity on the development 
process). This tends to edge toward the thin camp, sometimes too much so: 
Prototypes by themselves are not sufficient to capture user requirements or 
design decisions, so when prototyping, it’s dangerously easy to avoid 
capturing decisions in specifications.

Iterative and incremental   
Again nonlinear by design, this process can be as bureaucratic as you 
like, but some variants (especially as seen in the agile movement) can be 
quite thin. Iterative and incremental processes tend to stick in the middle 
of the design direction axis—at each iteration, we perform high-level 
design right through to low-level design. These design decisions are 
revised in the next cycle, and additional work repeat the top-level and 
bottom-level design.

Spiral model  
A thick version of an iterative and incremental process.
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Agile methodologies  
Agile processes are thin and nonlinear. They do not fix a design direction; 
you are constantly redirecting the design. Compare design to driving to 
Paris: In a traditional process, you would point your car at Paris and drive; 
in an agile process, you’d start driving and make constant streering tweaks. 
You might even map out sections of the middle of the journey before 
determining the best route out of your hometown.

Remember that an organization’s implementation of a specific process 
model will be inevitably tailored to its particular ways of working. (This is per-
fectly healthy.) These tweaks can make a significant difference. For example, 
you might base your development around the V model but aim to make the 
interphase handoff procedure as lightweight as possible, to reduce unnecessary 
bureaucracy.

5. If development processes and programming styles are recipes, what 
would a software development cookbook look like?

It would probably look dangerously like a software engineering textbook. 
There probably wouldn’t be that many mouth-watering pictures! Just as 
the Naked Chef’s17 recipes differ from Rachael Ray’s, you could imagine 
a number of different approaches to a mythical software development 
cookbook.

You don’t really see that many software development cookbooks because 
people don’t shop around for new recipes that often. These things only tend 
to spring up when a marketing machine can gather sufficient momentum 
behind the next big thing.

6. With a suitable process, can software construction become a predictable, 
repeatable task?

We’re still not in a position where the software industry is able to make this 
claim. No matter how hard we try to homogenize the development process, 
the quality of code produced is ultimately determined by the quality (e.g., 
experience, ability, intuition, and flair) and the particular mood (e.g., ability 
to concentrate, being in the zone or constantly interrupted, see page 414) 
of the programmers doing the work. A master craftsman will produce more 
elegant, robust, and well-fashioned designs than a fresh apprentice.

With such variance, it’s hard to reproducibly create software, even with 
the most prescriptive process. Using the same programmers, the same process, 
and trying to produce the same piece of software, you’ll never get the exact 
same result. On different days, the team will make different choices, which 
will lead to radically different software with different inherent faults and 
strengths. (This point is hypothetical anyway; the same team would learn 
from its mistakes the first time around and create a different—probably 
better—piece of software on its second attempt.)

17 If you think that sounds rude, see www.jamieoliver.com.
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Agile methods exploit this, and celebrate the unpredictability of software 
construction. They attempt to address uncertainty by choosing pragmatic 
approaches that minimize the inherent risk of an unpredictable task.

Getting Personal
1. What development process and programming language style are you 

currently using?

a. Has it been formally agreed upon by the development team, or do 
you use it by convention?

b. How was it chosen? Was it chosen specifically for this project, or is it 
the recipe you always use?

c. Is it documented anywhere?

d. Does the team stick to the process? When problems arise and your 
back is against the wall, do you maintain the process, or is all ivory 
tower theory ignored in a rush to produce something—anything?

This question is probing how organized your development team is—and 
whether you develop software on purpose or by accident. Do you really know
how you produce software, or do you still rely on the heroic efforts of a few 
key team members to get your work done?

Can you point to a specific reference for your way of working? Is it docu-
mented? Is it understood? Is it understood by all the developers, by all the 
process managers, and by all those who play some part in the construction 
process?

2. Are your current processes and styles appropriate? Are they the best way 
for you to develop your software right now?

If you don’t know how you’re producing software, or if you’re not using the 
best approach, what would be better, and why?

Watch for the danger of ad hoc methods. I’ve seen numerous organiza-
tions where there is no agreed method; one person produces wholly OO 
designs while another avoids OO and performs structural design. The code 
produced is ugly and inconsistent.

3. Does your organization appreciate that there are other development 
models that might be worth investigating?

Understand who makes decisions about this kind of thing—is it the 
developers, the software team leader, or the managers? Are these people 
sufficiently informed about software development processes? Understand 
why they’ve chosen to work in the current way: what problems have they 
already solved? Often the reason for an odd development procedure is 
historical—organizations evolve a set of working practices, they don’t 
fashion them consciously.

What would it take to persuade your organization to adopt another 
process model?
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Chapter 23: The Outer Limits

Mull It Over

1. Which of the programming niches we’ve looked at here are particularly 
similar or share common characteristics? Which are particularly different?

There is more in common than you might think. Crossovers include:

Games and web applications could both be considered specific forms of 
applications programming.

Web programming is a form of distributed programming.

Some enterprise work can take the form of web applications.

Some systems implementation is for embedded platforms.

Numerical work is sometimes optimized by parallelizing and distributing 
the computation.

2. Which of these programming disciplines is hardest?

Each type of programming presents a different set problems, and every 
individual program is complex in its own way. Otherwise, programming 
would take very little skill and any idiot could do it. (The fact that many 
idiots do program doesn’t bear discussion here!)

The “harder” programming worlds could be considered to be the ones 
that demand more formal processes to ensure adequate quality is met. For 
example, the world of safety-critical software (mentioned in “In a Nutshell” 
on page 456) is particularly fraught. Watertight specifications, very formal 
development and testing models, and certification to regulated standards are 
essential in this world, along with the inclusion of reliable failsafes. 

Numerical work, in particular, would be hard for someone who doesn’t 
have a head for math and designing complex algorithms. It requires extra 
statistical or scientific skills.

3. Is it important to be an expert in one particular area or to have a good 
grounding in all of them without a particular specialism?

An understanding of each area is helpful. However, to truly excel in a given 
area requires specific skills and expertise that can only be gained from experi-
ence in the trenches. To get this good experience, you’ll probably have to 
focus on one particular work area. Vincent van Gogh remarked, “If one is 
the master of one thing and understands one thing well, one has at the same 
time insight into and understanding of many things.” Learn the particular 
intricacies that set your discipline apart from the others.

4. Which programming niche should trainee programmers be introduced to?

This is seldom thought about by the writers of programming courses. It’s a 
sad oversight; many courses are not tailored to programming in the Real 
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World—more to some theoretical, androgynous branch of programming. 
Of course, this makes teaching programming much easier, and there are 
fewer issues to confuse the trainee with. But it is important to understand 
how to make appropriate coding choices when you’re in the thick of the 
software factory, and someone has to teach this.

Compared to the other programming areas, applications programming 
is relatively unencumbered by specific rituals and practices, so this is presum-
ably the easiest area to introduce programmers to. Because trainees rarely 
appreciate the wider world of software development, this is probably what 
they’d expect to learn anyway.

Getting Personal

1. What programming arena are you working in right now? How does it 
affect the code that you’re writing? What specific design and implemen-
tation decisions has it led you to make?

It’s important to understand the type of code you write so you can make the 
correct programming decisions. If you can’t explain how your code has been 
shaped by the demands of the problem domain, then you may not have been 
thinking hard enough about what you’re doing. Software has to survive in—
and must therefore be shaped by—its environment.

2. Do you have experience working in more than one programming disci-
pline? How easy was it for you to switch mindsets and apply appropriate 
techniques in a different world?

Be careful of the temptation to dismiss these differences and hop thoughtlessly 
from one domain to another. It can lead you to write bad code. You probably 
won’t realize that your code isn’t appropriate until the end of the game, when 
you’re working on tedious bugs or trying to optimize your system to get it to 
meet the original requirements (e.g., code size or scalability). If that’s when 
you realize your work isn’t molded to its environment, then you’re in a sticky 
position.

3. Are any of the people you work with unaware of the forces that shape 
the particular kind of code you write? Do you have embedded software 
being written by programmers who only understand applications work? 
What can you do about this?

Programmers who don’t tailor their work to the requirements of the problem 
domain endanger your project. If they don’t understand the inherent con-
straints (scalability, performance, code size, interoperability, and so on), their 
code will not match the specifications, and they will be weak links in the 
development chain.

Code and design review will help to catch this, as would pair programming.
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and comments, 76

Allman indentation, 27. See also
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and performance, 210
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no architecture, 269
patterns, 275
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and team dynamics, 264
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B
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batch files, 126, 178
baz, 44
behavior, 422, 423
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and naming, 40
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beta software, 140, 498
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debugging
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cost of, 155
finding, 162
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golden rule of debugging, 161
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run-time errors, 155, 156, 160, 164
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building, 175, 195
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build errors, 157, 187. See also bugs
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and cleaning, 189
configuration, 191
dependencies, 189, 506
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as metaphor, 177, 262, 535
nested make, 507
overnight, 190
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targets, 187
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code, 179, 360
compilers, 179

byte-compiled languages, 176, 
179, 360

C
C, 14, 26, 66, 107, 259, 422, 488, 520

bugs, 108, 159, 396, 490
comments, 75
macros, 48
preprocessor, 74
and security, 517
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errors, 98
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errors from, 155
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security
names, 40
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dead code elimination, 215
deadlines, 343, 498, 551
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90, 396
deciding when to use, 11
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dependencies, 403, 409, 414
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testing, 136
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direction, 426
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Doxygen, 68, 119
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cut-and-paste, 252
efficiency, 199. See also optimization
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endless loops, 160, 396
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error-based testing, 498
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detecting, 95
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exceptional circumstances, 90
exceptions, 93, 96, 98, 103, 104, 211
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handling, 96, 100
locality of error, 91
logging, 98
managing, 105
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propagation, 100
raising, 104
recovery, 99
reporting, 91, 99, 101
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return values, 92, 95
safety, 94, 103

signals, 96
specification, 96
status variables, 95
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FIXME, 83
flaw, security, 227
floating point arithmetic, 211
flow, 414



INDEX 571

flowcharts, 256
foo, 44
formatting, 24. See also code, 

formatting
Fortran, 24, 422, 455
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source
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programming, 423
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principle, 105
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standard, 121
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just-in-time (JIT) compilation, 178
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Knuth, Donald, 66

L
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byte-compiled, 179
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life cycle, software, 420
limitations, identifying, 336
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logging, 98, 170, 233
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London Underground, 262
lookup tables, 216
loop
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endless, 160, 396
for, 64
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overrun
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method, 422
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Miller number, 41
mindlessness, 154
MISRA (Motor Industry Software 
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Murphy’s Law, 5, 359
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name collisions, 47
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files, 48
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functions, 45, 63
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garbage collection, 13
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360, 363, 539
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development, 325, 426
security, 233

Open Source Initiative (OSI), 361
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design, 275. See also design patterns



INDEX 575

PDL (Program Design 
Language), 256
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types of, 296

Programmer King, 342
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ProperCase capitalization 

convention, 46
proprietary source, 361
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security, 232, 360
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tools, 113

Quicksand team, 330
quicksort, 212
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Rational Unified Process (RUP) 435
RCS (Revision Control System), 356
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recipe, 419, 437
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infinite, 396. See also infinite 
recursion

recursive make, 192, 506
is bad, 506

refactoring, 209, 285
regression testing, 139, 145, 190, 

289, 434, 498
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release, 190, 342, 375

candidate, 140, 358
note, 148, 194, 539
source code, 359
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reports
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error, 91
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requirements, 404, 414, 428, 431
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security, 233, 515
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responsibility, 318, 338, 350, 386
return values, 92, 95
reverse engineering, 360
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reviews
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source control

Revision Control System (RCS), 356
rewriting, 66, 284, 288. See also
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risk, 408, 409, 434
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249, 263
rot, 281. See also code, rot; 
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RPC (remote procedure call), 450
RTFM, 484
RTTI, 211
run-time errors, 164. See also bugs, 

run-time errors
RUP (Rational Unified Process), 435

S
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safety critical systems, 30, 456, 557
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security, 223, 349
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privilege escalation and, 225
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system installation and, 233
tapping into data, 225
vulnerabilities, 227, 229

sed, 119
segmentation faults, 158
self-documenting code, 59, 70, 

376, 545
comments in, 75
errors in, 98
example of, 60
techniques for writing, 61

self-improvement, 65, 308
semantic errors, 158
server, 272
SESE (Single Entry, Single Exit) 

functions, 17, 24, 62, 102, 421

seven, 41
seven-layer trifle reference 

model, 270
shadowing, 393, 394
shell scripts, 126, 178
short circuit evaluation, 216
shrink-wrap software, 443
side effects, 17, 63, 470
signals, 95, 96
Simonyi, Charles, 45
simplicity, 10, 61, 203, 226, 242, 246, 

268, 288. See also complexity
Single Entry Single Exit (SESE), 24. 

See also SESE functions
singleton, 144, 255
slacker, 306
Smallpox, 451
smalltalk, 46, 423
smart pointers, 103, 218
soak testing, 139
SOAP, 453
social engineering, 226
software

architect, 265
architecture, 261. See also

architecture
licenses, 361
life cycle, 420

solution domain, 263
source code, 182
source control, 31, 320, 351, 356, 357

access control and, 353
backups and, 359
baseline, 542
branching, 354
change control and, 352
check in/out, 351
check-in schemes, 354
history, 356
labels, 353
repository, 351
revision control and, 352
stable labels and, 363, 542
tags, 353
version control and, 352
what you control and, 353

Source Code Control System 
(SCCS), 356
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source code management system 
(SCMS), 357

source management, 357
source tree, 193
spaces, 468. See also whitespace

vs. tabs, 24
spam, 224
specification, 67, 242, 367, 383, 395

architecture, 264, 373
authors, 379
avoidance, 381
contents, 376
design, 374
functional, 373
owners, 380
planning and, 407, 408, 414
quality, 368
requirement, 371
reviewing, 131
test, 375
user interface, 374
writing, 379

spiral process, 432, 554
sponge cake, 420
spyware, 226
SQL, 231
SSADM (Structured Systems 

Analysis and Design 
Methodology), 429, 554

stable label, 363, 542
stack, 230, 516
staged delivery, 408, 435
static analysis, 12, 123
static polymorphism, 423
status variables, 93, 95
std namespace, 43
stewardship, 336
strength reduction, 215
stress testing, 139
strict locking, 351
string, 401
structural testing, 141
structured programming, 254, 421
Structured Systems Analysis and 

Design Methodology 
(SSADM), 429, 554

substitutability, 250

success, 337
supercomputer, 454
supplier, 248
surgical team, 324
switch, 15, 470
syntactic errors, 156
syntax highlighting, 74

T
tabs, 24, 82, 468. See also spaces, vs. 

tabs; whitespace
tags, 353
tarball, 539
targets, 337
Tcl, 178
team leader, 306
teams, 315, 345. See also teamwork

diseases, 322
levels of, 316, 317
lifecycle of, 339
management approach, 318
organization of, 318

code structure and, 320
horizontal, 319
vertical, 318

people and, 344
size of, 317, 536
types of

Democracy, 325
Dictatorship, 324
Grand Canyon, 329
Lemmings, 332
Quicksand, 330
Satellite Station, 327
Tower of Babel, 322

teamwork, 315, 345. See also teams
architecture and, 264
code ownership and, 336
communication and, 265
dynamics of, 317

inter-team, 317
personal skills and, 333
principles for performance, 336
stewardship and, 336
tools for, 320

technical debt, 411
telecommuting, 327
telephone, 335
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templates, 423
test-driven development, 157, 

376, 496 
testing, 6, 129, 149, 393

automated, 144
boundaries, 143
bug reviews, 148
cases, 142

choosing, 142, 151, 497
code for, 133
vs. debugging, 131, 146
department, 132
designing for, 144
during optimization, 208
dynamic, 141
fault report, 147
fault tracking system, 147
harness, 133, 145
inspections, 133
load, 453
maintenance and, 289
planning for, 407, 414
process, 146, 428, 430
quality of, 138
regression, 289, 434
responsibility, 133, 147
script, 375
specification, 375
static, 141
tools, 122
types, 138, 497
unit, 122, 428

TeX, 66
them and us mentality, 317
THICK, 309
third-party

code, 32, 193, 408
dependency, 404

threads, 137, 204, 211, 231, 512. See
also race conditions

safety, 93
threats, 350
three-tier architecture, 273
tiered architecture, 271, 450
time zone, 328
timescale estimation, 401, 415

accuracy, 407
attitudes toward, 297

contingency, 411
deadlines, 551
difficulty, 403
how to, 406
keeping to schedule, 412
planning, 409
pressure, 405
purpose of, 401

TODO, 83
tools, 111, 127, 255

code construction, 120
command line, 113
debugging, 123
finding, 121
IDE, 113. See also IDE
importance of, 114
integration of, 113
investigative, 123
language support, 124
source control, 356
source editing, 118
for teamwork, 320
types of, 117, 126
upgrading, 117
using well, 115
writing, 126

top-down design, 426. See also
design, top-down

Tower of Babel, 322. See also Babel
trade-offs, 246, 263
trifle reference model, 270
Trojan, 226
truck number, 344
trust, 389
tuple, 92
two-tier architecture, 273
type checking, 15
typedef, 46
types

choice of, 12, 63, 231
designing, 243
interfaces for, 272
naming, 46

U
UI. See user interface
UML (Unified Modeling 

Language), 255, 435, 492
undefined behavior, 14
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underscore capitalization 
convention, 46

uninitialized variable, 158
unit tests, 138, 375, 388, 414, 428
usability testing, 139
use case, 435
use your brain!, 161, 169, 173, 207, 

310, 498, 500
user interface (UI), 374

bugs, 163
prototypes, 374
specification, 374. See also GUI
testing, 137

users, 516

V
V model process, 430, 554
vacation, accounting for, 410
validation, 132, 265
variables

build/make, 191
declaration, 14
error status of, 93
global, 11, 94, 136, 144
initialization, 14
naming, 44
scope, 11, 52, 476
uninitialized, 158

verb, 45, 47
verification, 132
version control, 193, 351, 352, 356, 

357. See also source control
vertical organization, 318
views, 263
virtual

machine, 125, 179
memory, 235

virus, 226, 233
vulnerability, 227

W
walkthroughs, 386, 549. See also

code reviews
warnings, 9, 11, 121, 156, 187, 

283, 396
waterfall process, 427, 434, 554
WEB, 66
web programming, 451
white box testing, 141
white hat hacker, 228
Whitesmith indentation, 29. See also

code, layout styles
whitespace, 42, 469
wibble, 44
Wiki, 321, 549
Win32

exceptions, 107, 489
naming, 46

wizards
code generation, 120
programmer, 299

World Wide Web, 450, 451

X
XML, 453, 492
XXX, 83

Y
Y2K bug, 25, 282, 529
yacc, 120

Z
Zealot, 304
zero, 143, 480, 494

divide by, 16, 160, 396
as invalid pointer, 16, 92, 150, 496

zone, 414, 555


	Code Craft: The Practice of Writing Excellent Code
	CONTENTS
	Preface
	PART 1 AT THE CODEFACE
	Chapter 1: On the Defensive
	Chapter 2: The Best Laid Plans
	Chapter 3: What’s in a Name?
	Chapter 4: The Write Stuff
	Chapter 5: A Passing Comment
	Chapter 6: To Err Is Human

	PART 2 THE SECRET LIFE OF CODE
	Chapter 7: The Programmer’s Toolbox
	Chapter 8: Testing Times
	Chapter 9: Finding Fault
	Chapter 10: The Code That Jack Built
	Chapter 11: The Need for Speed
	Chapter 12: An Insecurity Complex

	PART 3 THE SHAPE OF CODE
	Chapter 13: Grand Designs
	Chapter 14: Software Architecture
	Chapter 15: Software Evolution or Software Revolution?

	PART 4 A HERD OF PROGRAMMERS?
	Chapter 16: Code Monkeys
	Chapter 17: Together We Stand
	Chapter 18: Practicing Safe Source

	PART 5 PART OF THE PROCESS
	Chapter 19: Being Specific
	Chapter 20: A Review to a Kill
	Chapter 21: How Long Is a Piece of String?

	PART 6 VIEW FROM THE TOP
	Chapter 22: Recipe for a Program
	Chapter 23: The Outer Limits
	Chapter 24: Where Next?

	Index




