

by Richard Mansfield

Office 2003
Application

Development
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

00a_570676 ffirs.qxd 6/4/04 9:49 PM Page i

00a_570676 ffirs.qxd 6/4/04 9:49 PM Page iv

by Richard Mansfield

Office 2003
Application

Development
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

00a_570676 ffirs.qxd 6/4/04 9:49 PM Page i

Office 2003 Application Development All-in-One Desk Reference For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
e-mail: brandreview@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING,
OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPE-
TENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or
fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004103152

ISBN: 0-7645-7067-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/ST/QW/QU/IN

00a_570676 ffirs.qxd 6/4/04 9:49 PM Page ii

About the Author
Richard Mansfield’s recent titles include Visual Basic .NET All-in-One Desk
Reference For Dummies, Visual Basic .NET Weekend Crash Course, Visual Basic
.NET Database Programming For Dummies, Visual Basic 6 Database Programming
For Dummies (all from Wiley), Hacker Attack (Sybex), and The Wi-Fi Experience:
Everyone’s Guide to 802.11b Wireless Networking (Que).

From 1981 through 1987, he was editor of COMPUTE! magazine, during which
time he wrote hundreds of magazine articles and two columns. From 1987 to
1991, he was editorial director and partner in Signal Research and began writ-
ing books full-time in 1991. He has written 34 computer books since 1982. Of
those, four became bestsellers: Machine Language for Beginners (COMPUTE!
Books), The Second Book of Machine Language (COMPUTE! Books), The Visual
Guide to Visual Basic (Ventana), and The Visual Basic Power Toolkit (Ventana,
with Evangelos Petroutsos). Overall, his books have sold more than 500,000
copies worldwide and have been translated into 11 languages.

00a_570676 ffirs.qxd 6/4/04 9:49 PM Page iii

00a_570676 ffirs.qxd 6/4/04 9:49 PM Page iv

Dedication
This book is dedicated to my mother, Florence Ethel Mansfield.

Author’s Acknowledgments
I want to thank executive editor Greg Croy for his many kindnesses. I’ve
always enjoyed working with Greg. He knows how to get the best out of
authors (at least this author). Greg’s one of the good guys.

I was also lucky to have two first-rate editors work with me on this book.
Project editor Christopher Morris asked good questions when my writing
needed some questions raised. He also made a number of very useful changes.
He deserves credit for discernment and the high quality of his editing. Copy
editor Teresa Artman kept a close eye on me and asked many good questions
as well. In addition, she ensured consistency of punctuation, diction, and
cross-reference. Thanks to her and Chris for the many improvements they
made to this book.

Technical editor D. J. (Deepesh Jain) reviewed the entire manuscript for tech-
nical problems. For that, I thank him. I’m happy to report that he found few
flaws but certainly glad that we fixed the flaws he did spot.

To these and all the other good people at Wiley who contributed to the book,
my thanks for the time and care they took to ensure quality every step along
the way to publication.

Finally, I want to give special thanks to my agent, Matt Wagner of Waterside
Productions, who has been offering me good advice for over a decade.

00a_570676 ffirs.qxd 6/4/04 9:49 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Christopher Morris

Executive Editor: Gregory S. Croy

Senior Copy Editor: Teresa Artman

Technical Editor: Wiley-Dreamtech India
Pvt Ltd

Editorial Manager: Kevin Kirschner

Permissions Editor: Laura Moss

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Production

Project Coordinator: Adrienne Martinez

Layout and Graphics: Andrea Dahl,
Lauren Goddard, Denny Hager,
Stephanie D. Jumper, Barry Offringa,
Lynsey Osborn, Heather Ryan,
Julie Trippetti

Proofreaders: Andy Hollandbeck, Carl Pierce,
Evelyn Still

Indexer: Joan Griffitts

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

00a_570676 ffirs.qxd 6/4/04 9:49 PM Page vi

Contents at a Glance
Introduction ...1

Book I: Office 2003 Essentials19
Chapter 1: Getting with the Program...21
Chapter 2: Programming Lite: Making the Most of Macros ..41
Chapter 3: What’s New in 2003?..59

Book II: Understanding Office Programming.................71
Chapter 1: The Basics of Office Development with VBA...73
Chapter 2: Managing Data ...89
Chapter 3: Looping and Branching ..113
Chapter 4: Managing Files and UserForms..129
Chapter 5: Moving to the Internet ..151
Chapter 6: Debugging...171

Book III: Maximizing Word ..193
Chapter 1: The Word Object Model ...195
Chapter 2: Power Editing...211
Chapter 3: Using XML in Word..229
Chapter 4: The Internet Connection ..243
Chapter 5: Advanced Word Macros ...255

Book IV: Making the Most of Excel.............................269
Chapter 1: The Excel Object Model ...271
Chapter 2: Handling Excel Events ..287
Chapter 3: Advanced Worksheet Editing...295
Chapter 4: Data Diving with Pivot Tables..311
Chapter 5: Business Analysis with Excel...325
Chapter 6: Ten Excellent Excel Macro Techniques ..333

Book V: Advanced Access..351
Chapter 1: Access Today ...353
Chapter 2: Programming Access ..367
Chapter 3: Manipulating Datasets ..385

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page vii

Chapter 4: Automating Access ...411
Chapter 5: Troubleshooting in Access ..419
Chapter 6: Access Macro Techniques..429

Book VI: Exploiting Outlook439
Chapter 1: Outlook Power Tools ..441
Chapter 2: Programming Outlook ..453
Chapter 3: Managing Work and Life ...467
Chapter 4: Expert E-Mail Administration ..483
Chapter 5: Group Management in Outlook ...493
Chapter 6: Advanced Outlook Macros...503

Book VII: InterOffice: Working as a Team...................517
Chapter 1: Collaboration Features Overview ...519
Chapter 2: Managing Shared Documents ..531
Chapter 3: XML and Office ..541
Chapter 4: Working with InfoPath ..561
Chapter 5: Adding Smart Tags ..579
Chapter 6: Exploring Smart Documents ..591
Chapter 7: Using Project 2003...615
Chapter 8: Employing SharePoint ..627

Book VIII: Power Techniques: Advanced Office
Automation, VBA, and .NET.......................................641
Chapter 1: Advanced Office 2003 Programming...643
Chapter 2: Exploring XML ...661
Chapter 3: Employing Objects ..689
Chapter 4: Advanced Internet VBA ..707
Chapter 5: Working with .NET...723
Chapter 6: Using Visual Studio Tools for Office 2003...731
Chapter 7: Office 2003 Security ..745
Chapter 8: No More Paranoia: Programmatic Encryption ..761

Index ...795

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page viii

Table of Contents
Introduction..1

I’ve Seen It All ...1
Moving beyond VBA ..2

VBA code is legacy code!...3
Recognizing VBA’s excellence...3
Using the framework..4
Understanding managed code..4

About This Book...5
Who Should Read This Book ..6

Making do in a shaky economy ..6
Plain, clear English ...7

How to Use This Book ...7
Foolish Assumptions ...8
How This Book Is Organized...9

Book I: Office 2003 Essentials ...9
Book II: Understanding Office Programming10
Book III: Maximizing Word...10
Book IV: Making the Most of Excel ...10
Book V: Advanced Access ...11
Book VI: Exploiting Outlook ..11
Book VII: InterOffice: Working as a Team ..12
Book VIII: Power Techniques: Advanced Office Automation,

VBA, and .NET ...12
Conventions Used in This Book ...14
Find All the Code Online ...15
The Searchable VBA/VB.NET Dictionary ..16
What You Need to Get Started..16
Icons Used in This Book..17

Book I: Office 2003 Essentials19

Chapter 1: Getting with the Program .21
Modifying the User Interface ..22

Turning off mini help..22
Modifying menus ..24
Editing menus ...24
Creating your own menus ...26
Customizing shortcut menus..26

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page ix

Office 2003 Application Development All-in-One Desk Reference For Dummiesx

Personalizing Toolbars..29
Adding hyperlinks ..29
Vaporizing interface elements programmatically32

Customizing the Keyboard..37
Restoring Classic Key Behaviors..37
Getting Online Help..38

Chapter 2: Programming Lite: Making the Most of Macros41
Discovering the Pluses of Macros..41
Recording Macros ..43

Recording a simple Word macro ..43
Understanding the VBA behind recorded macros46

Using Special Macros in Access ...48
Creating an Access macro ...48
Converting Access-style macros to VBA ...49

Working with Auto Macros..49
Dealing with Macro Security Issues: What You Need to Know.................51

Adjusting macro settings...53
Triggering trouble ..55
Setting security for your needs ..56

Chapter 3: What’s New in 2003? .59
Opening Task Panes...60
Security: Adjusting Permissions and Protections......................................61
SharePoint Everywhere ...62
Sharing with Document Workspaces...62
Introducing OneNote ...64
XML under Everything ..64

Using InfoPath with Word..65
Using InfoPath with Excel..66

Checking Out Outlook’s New Features ..68

Book II: Understanding Office Programming71

Chapter 1: The Basics of Office Development with VBA 73
Discovering the IDE..73
Navigating the Complex VBA Vocabulary...74

Using AutoListMembers and parameter info....................................75
Displaying a reminder..75
Using the Object Browser..78

Understanding Objects..79
Should You Go Fully OOP? ..81

Encapsulation ...82
Instantiation woes ..85

Using Events ...85

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page x

Table of Contents xi

Chapter 2: Managing Data .89
Understanding Variables ...89
Creating Variables ..90
Explicit Variable Declaration and Data Types ..91
Using Operators and Expressions..93

Testing True or False ...95
Using arithmetic operators ...96
Combining Variant variables...97
Using logical operators..98
Operator precedence...100

Variables versus Constants...102
Arrays — Cluster Variables...103
Variable Types ..104

Object variables..105
The value of numeric types...105

Scope: The Range of Influence..107
Scope Blowout..110

Chapter 3: Looping and Branching .113
Going ’Round and ’Round in Loops ...113

Using a For...Next loop ...113
Working with Do...Loops ...116
Exploring While...Wend: A simple loop..118

For...Each: Looping in Object Collections ...118
Creating a Very Useful File Search Utility..119
Making Decisions via Branching ..122

Understanding If...Then ...123
Multiple choice: The Select Case command125

Chapter 4: Managing Files and UserForms .129
Communicating with the Hard Drive ...129

Loading files in Word and Excel..129
Loading files in Access ..130
Saving files...132

Creating User Interfaces..133
The UserForm as a container..133
Displaying a UserForm from a macro ..135

Engaging the User with Dialogs..136
Understanding Controls ..138

The Label control ...140
The TextBox control ..141
The ComboBox control..143
The ListBox control..143
The CheckBox control ...144
The OptionButton control...145

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xi

Office 2003 Application Development All-in-One Desk Reference For Dummiesxii

The ToggleButton control ...146
The Frame control..146
The CommandButton control ...147
The TabStrip and MultiPage controls ..147
The ScrollBar control...148
The SpinButton control ...148
The Image control ..149

Chapter 5: Moving to the Internet .151
Taking Office 2003 to the Web ..151
Moving Office to the Web..151
Loading Additional Controls...153
Using the Web Controls ...154
Publishing an Excel Spreadsheet ...155
Securing a Spreadsheet: Protecting Cells ...158
Publishing Access Data ...160

Creating a data access page..161
Deploying a data-access page...162

Security: Locks on Top of Locks ..165
Securing databases ..166
Protecting data-access pages..167
Protecting your code ...168

Chapter 6: Debugging .171
Typos in Commands and Variables..172
Command Name Errors as Typos ..172
Understanding Syntax Errors ...173
Handling Runtime Errors...174
How Runtime Errors Occur...174
Using On Error or Try...End Try ...175

Using On Error (VBA)...175
The VB.NET version: Structured trapping177

Tracking Down Logic Errors ...182
The watchful voyeur technique..183
Using Debug.Write or Debug.Print ...185

The Add Watch Technique..186
Setting Breakpoints..186

Setting conditional breakpoints in VBA ..187
Setting conditional breakpoints in .NET..188

Alternative Debugging Strategies...189
Step Over ...189
Step Out ...190
Run to Cursor..190
Set Next Statement ...190
Show Next Statement ...191
Call Stack ...191

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xii

Table of Contents xiii

Book III: Maximizing Word...193

Chapter 1: The Word Object Model .195
Understanding Objects..195
Dissecting the Document ..197

Object variables..198
Editing text ..199

Search and Replace..206
The Find Object’s Properties..207
Trapping Events ...208

Chapter 2: Power Editing .211
Selecting Text Quickly ...211
Making Snappy Retorts . . . er, Repeats ...212
Going Backward with Undo ..212
Mastering Quick Maneuvering..213

Viewing a document...213
Searching within a document ...214

Introducing Smart Documents ...216
Programming with Fields ..218

Inserting fields ..218
Using the Fields collection ..220

Importing Data..221
Mass Mailings with Mail Merge ..224

Chapter 3: Using XML in Word .229
Introducing Word XML ..229
XML in Word ...231
Deeper into WordML..234

The Word XML Content Development Kit234
Programmatic XML...235
Adding a reference ...235

Choosing XML Options in Word ...236
Working with XML in Word’s Special Editor ...238

Creating a practice schema...238
Using the XML Structure Task Pane...239
Building your XML document ...239

Chapter 4: The Internet Connection .243
Creating Web Pages in Word...243
Saving as a Web Page: The Three Kinds of Files244
Adjusting the Web Options Settings ..244
Building a Web Page in Word ..245

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xiii

Office 2003 Application Development All-in-One Desk Reference For Dummiesxiv

Using the Web Tools Toolbar..248
Adding scrolling text ..249
Adding background texture ..249

Scripting in Word Web Pages..251
Testing your Web page ..254
Understanding scripting’s drawbacks ...254

Chapter 5: Advanced Word Macros .255
Writing Macros 101 ..255
Interception: Modifying Built-In Word Features256
Using Macros for Specialized Formatting ...258

Naming shortcut keys..260
Storing macros..261

Automating Macro Execution ...262
The Best Word Macros of All Time ..262

Redefining ordinary keys...263
Switching windows and deleting words ..264
Assigning normal style ..265
Assigning an anti-table macro...266
Toggling revisions ..266
Accepting all changes ..267
Using WordCount..267

Book IV: Making the Most of Excel269

Chapter 1: The Excel Object Model .271
Understanding the Excel Object Model...271
How to Use Excel VBA ...272
Adding a Workbook..273

Referring to Me ...274
Accessing the active cell ...275

Creating a New Instance of Excel ...275
Using the Application Object..276
Working with Ranges ...277

The A1 style reference ...278
The R1C1 style reference...279
Using the Offset method..279
Using the Names collection...280
Accessing special ranges...280
Transforming a selection into a range...283

Creating a Chart ...284

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xiv

Table of Contents xv

Chapter 2: Handling Excel Events .287
Programming an Excel Event..288
Events in the Worksheet Object...289
Writing Chart Events..290
Writing Application Events ...290

Chapter 3: Advanced Worksheet Editing .295
Importing Data into Excel ...295
Importing an Access Database ...297
Importing Data from an XML Dataset ..299
Programmatically Creating a Dataset ..300
Adding Shapes and Pictures ...303
Augmenting Find and Replace..305

Understanding Find methods ...306
The Replace method ..308

Chapter 4: Data Diving with Pivot Tables .311
What Is a PivotTable? ..311
Creating a Pivot Table..313
The Table Pivots...317

Collapsing the pivot table ...318
A sudden surprise ..320

Creating Instant Pivot Charts ...321
Modifying the Data in a PivotTable..322

Refreshing pivot table data ...322
Automatically updating pivot table data...323

Chapter 5: Business Analysis with Excel .325
Seeking Goals with Goal Seek ...325
Using Scenarios ..327
Displaying Scenarios: Summary Reports ..329
Exploiting Solver ..329

Chapter 6: Ten Excellent Excel Macro Techniques 333
Accessing Other Office Applications...333
Understanding Scope...334
UserForms for User Interaction..335
Adding Macros to Worksheet Controls ...337
Applying Formatting ..339
Adding Controls Programmatically ...340
Trapping Keypresses ...340

The KeyCodes ...342
Detecting Shift, Alt, and Ctrl ...345

Selecting from a ListBox..346
Sending a Workbook via E-mail ..348
Differentiating Select from Activate...348

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xv

Office 2003 Application Development All-in-One Desk Reference For Dummiesxvi

Book V: Advanced Access ..351

Chapter 1: Access Today .353
Understanding Access’s Limitations ...353
Adding Access 2003 Developer Extensions ..354

The Package Wizard and the Custom Startup Wizard355
The Property Scanner..355

Adding Smart Tags ...355
Exploiting XML support...358
Using the new desktop server ..361
Using improved data access pages ..362
Using augmented forms and reports ...364

Chapter 2: Programming Access .367
Introducing Access Objects ..367
Adding a New Access Table ..369
Understanding Microsoft Database Technologies370

The great Babel...370
Understanding Open Database Connectivity..................................371

Access and the Future of Database Management372
The recent legacy: Data Access Objects (DAO)373
Understanding ActiveX Data Objects ..374

Working with the DataSet Object ...377
Collections within collections ..377
Substituting names (mapping) ...377

What If Someone Else Modifies the Database in the Meantime?378
Optimism versus pessimism...378
Comparing versions with optimistic concurrency379

Getting Results in Seven Easy Steps ..380

Chapter 3: Manipulating Datasets .385
Loading Access Tables into VB.NET Projects...385
Generating a Dataset for an Imported Database......................................388
Case Study: Maintaining Alphabetical Order..389
Filtering with Select ...391

Alphabetizing with Select..394
One is sorted, the other isn’t ..395
The overloaded Select method...396
Which version is it?..397

Using the DataView Object ...398
Close Relations ...399

Master-detail, parent-child..399
Programmatic relations ...400

Creating a Dataset with Relations ..402
Relations via Wizards and Designers...403

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xvi

Table of Contents xvii

Using the XML Designer ..405
Binding the controls...407
Using Clear ..409

Saving an XML Dataset ..409
Importing XML by hand...409
Importing XML programmatically ..410

Chapter 4: Automating Access .411
Automating How to Access a Form..411
Understanding SendKeys ..414

SendKeys and SendWait ..415
Sending nonprinting keys..415

Automating the Runtime ...417
Displaying a Report..417

Chapter 5: Troubleshooting in Access .419
Error Management in Access..419

Understanding Option Explicit and Option Strict420
Locating the Error event, part II ...422
Adding a custom error message...423

Sandbox Mode: Adjusting Macro Security..424
Backing Up for Safety...425
Automatic Form and Report Error Checking..426

Chapter 6: Access Macro Techniques .429
Understanding the Languages of Access ..429
Creating Macros without a Recorder...430
Using the Object Browser ...432
Using DoCmd ..433
Seeing Built-in VBA Language Features...434
Using Classic Error Trapping..435
Using Keyboard Shortcuts ..436

Book VI: Exploiting Outlook..439

Chapter 1: Outlook Power Tools .441
Using Outlook’s New Reading Pane ...441
Adjusting the Nasty Read Filter..442
Managing Multiple Accounts ..443
Blocking Spam and Virii ..445
Using Encryption..446
Flagging E-mail..448
Using Special Folders...449
Using Twin Calendars ..451

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xvii

Office 2003 Application Development All-in-One Desk Reference For Dummiesxviii

Chapter 2: Programming Outlook .453
Discovering the Outlook Object Model...453
Using the Outlook Object Model ..455

Why namespaces? ..456
Import or qualify ..456
Practical advice about namespaces...458

Using the MAPI Namespace ..459
Using Practical VBA in Outlook..460
Handling Events..462
Advanced Searching ..462

Chapter 3: Managing Work and Life .467
Do This First ...467
Sending Access Data into Outlook...468
Displaying a Folder Item..471
Creating a New Contacts Folder...472
Making Mass Modifications ..473
Searching Tasks..474
Using Calendar Automation..475

Using non-Outlook e-mail programs ..477
AppointmentItem members ..479

Outside Outlook: Extracting Data from Outlook to Word479
Using the New Business Contact Manager ...481

Chapter 4: Expert E-Mail Administration .483
Exploring Messaging Management ..483
Routing: Out of Office Assistant ...485
Using Multiple E-Mail Accounts..488

Using Exchange Server ..489
Working with Send/Receive Groups...490

Avoiding Virii ..491

Chapter 5: Group Management in Outlook .493
Using Profiles ..493
Sharing Calendars ..496

Setting up your own site..496
Using Microsoft’s Free/Busy Service..497

Planning Meetings..498
Responding to invitations ...500
Tracking responses ..500
Setting up resource responses ...501

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xviii

Table of Contents xix

Chapter 6: Advanced Outlook Macros .503
Interacting with Other Office Applications...504
Trapping Events ...507

Getting incoming mail ..507
Intercepting outgoing mail ..508

Searching Via Iteration ..509
Bringing Macros to the User...511

Creating a UserForm ..511
Adding macros to your toolbar ..516

Book VII: InterOffice: Working as a Team517

Chapter 1: Collaboration Features Overview .519
Exploring OneNote...519

Handwriting in OneNote ..520
Recording in OneNote..520
Sending a OneNote document ..520
Side notes in OneNote ...522
Saving a side note...522

Introducing SharePoint..524
Sharing Outlook Contacts ...524
Levels of permission ..525

Shared Workspaces..525
Conquering the version problem ...526
Establishing a Meeting Workspace...527

Chapter 2: Managing Shared Documents .531
Restricting Documents with IRM ...531

Viewing IRM-protected files ..532
Phase Two: Authentication ...533
Setting permissions in IRM..534

Using IRM in Outlook ...536
Changing Workspace Options ..536
Using Word’s Protect Document Feature ..537
Managing Versions in Word ..539

Chapter 3: XML and Office .541
Communicating via a Web Page ...541

Adjusting Web page properties ..544
Seeing the code...544
Filling out the Web page ..545

Scripting ..547

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xix

Office 2003 Application Development All-in-One Desk Reference For Dummiesxx

Scripting in Excel..550
The simplest page ..552
Scripting errors...553

Debugging Script ..554
Typos ...556
Impossible commands...557

Using MSXML Core Services ...558
Using Forms for Interaction..558

Chapter 4: Working with InfoPath .561
Introducing InfoPath..561
Understanding How InfoPath Is Divided ...562

InfoPath for the designer...562
InfoPath for the user ..564

Trying Out InfoPath ...565
Designing the main sections of a form ..566
Adding controls ..567
Seeing the data hierarchy..571

Generating an InfoPath Form from XML..572
Generating a Form from a Database ..573
Jumping Java Babies..577

Chapter 5: Adding Smart Tags .579
Why Bother Programming Your Own Tags? ...580
Understanding Smart Tags..580
Working with a Smart Tag ...582
Smart Tags in Word..583
Programming with Smart Tags ...584

Experimenting in Excel ..584
Manipulating tags in VBA ..585

Creating Your Own Smart Tags...585
Creating your first Smart Tag..587
Triggering your tag to test it ...588
Feeding data to an Internet site..588

Chapter 6: Exploring Smart Documents .591
First Things First: Downloading the SDK ..591
Understanding Smart Documents..592

Security measures ..593
Disabling security...594
Deployment simplified...595

The Building Blocks of a Smart Document ...596
Programming Smart Documents ..596

Simple XML Smart Document programming597
Attaching a schema..599

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xx

Table of Contents xxi

Attaching the XML Expansion Pack ...601
If you have problems ...603
Understanding Smart Document source code................................604
Source code inflation goes wild..604
Programming moves to the computer...604
Lists upon lists..605

Modifying the Template ..610

Chapter 7: Using Project 2003 .615
Taking a Look at Project 2003...615

Creating a new project...617
Exploring dependencies in Project ..618

Building a Project from Scratch ...618
Understanding a Gantt chart ..618
Seeing milestones...620
Adding Outlook functionality to a project621

Managing the Version Problem ..623

Chapter 8: Employing SharePoint .627
Deciding Why to Use SharePoint..627

Seeing SharePoint features and integration....................................628
Setting permissions in SharePoint ...630

Installing SharePoint..630
Using The SharePoint Task Pane..630
Exploiting Scalability in SharePoint...631
Finding SharePoint Solutions..632

File sharing and collaboration..632
Intranet capabilities ...632
Web page management..633

Using SharePoint with Office 2003 Applications633
XML and InfoPath ...633
Outlook and Document Workspaces..633
OneNote...634
Access ..635

Introducing ASP.NET..635
Adding dynamism to Web pages ..636
Aiding the programmer ...636

Discovering the Purpose of ASP.NET...637
Solved security ...638
Segregated source files ..639

Seeing the New Advantages of ASP.NET..639
A shared IDE..639
Easier deployment ...640

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xxi

Office 2003 Application Development All-in-One Desk Reference For Dummiesxxii

Book VIII: Power Techniques: Advanced Office
Automation, VBA, and .NET641

Chapter 1: Advanced Office 2003 Programming643
Understanding Class Hierarchies...643
Fighting Class Warfare ...644

Properties are methods are properties ...645
Tautology runs wild ...645

Deciding When to Use VB.NET ...646
The Buzzwords...646
Understanding Streams ...647

Streaming basics...649
Stream writing...652

Creating Add-Ins ...653
Programming your own add-in ...653
Adjusting add-in loading behavior ...660

Chapter 2: Exploring XML .661
An XML Primer ...661
Seeing XML Support in Office ...662
Exploiting Extensibility in XML ..665
Comparing XML and HTML...666
Deciding Whether to Use an Element or Attribute667
Understanding XML Terminology ..668

Nesting within XML ..669
Using data islands in XML ...669
Paying attention to XML strictness..669

Seeing the Many Faces of XML ...671
Using Namespaces in XML..671

Using explicit declaration..672
Using implicit declaration ...672

The Explosion of Schemes ..672
Understanding XSD..673

Using XML data types ..675
Declaring simple XML data types ..677

Specifying Content in an XML Schema..677
Extending a Schema...678
Using the Content Attribute..680
Using Office XML Programming ...681

Viewing and applying a schema ...683
Dropping an entire XML file ..685

Programmatic XML Manipulations ..686
Adding a node...686
Adding child nodes and data ..686

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xxii

Table of Contents xxiii

Chapter 3: Employing Objects .689
Looking at OOP...689
Understanding Fundamental OOP ...690
Employing Practical VBA Objects..691

Distributed instantiation ...693
Early and late binding ..694

Understanding .NET Data Types ..694
Declaring in VBA ..695
Discovering the Changes in VB.NET..696

Variants go away...696
DefType commands are gone ...696
Mix types within a Dim list..697
You can no longer use ReDim in place of the Dim command698
Declare the same variable name in more than one location698
Strongly typed...699
Declaring arrays in .NET..699
Declaring with symbols ...699
Changes to values and parameters..699
Bidding farewell to the Set command..700

Using VBA Events...701
Using VBA Collections ...702
Using Arrays of Objects...704

Chapter 4: Advanced Internet VBA .707
Looking at Web Services ...708
Discovering Why Web Services Matter ...709

Understanding distributed computing ..710
Discovering the tools for translation...711

Reviewing Web Services Highlights ...711
Solving migration issues..712
Solving interoperability issues ...713

Seeing How Web Services and XML Dance ...713
Seeing Web Services at Work in Office 2003 ...714

Replacing VBA with VB.NET ...714
Adding a Web Service to VBA code..715

Creating Your First Web Service...717

Chapter 5: Working with .NET .723
Understanding .NET...723

Seeing the need for .NET ...724
Seeing the benefits of VB.NET ..725

Using .NET to Facilitate Software Services ...726
Using .NET for Internet initiatives..727
Using .NET and databases...727

Finding .NET Programming Help..728

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xxiii

Office 2003 Application Development All-in-One Desk Reference For Dummiesxxiv

Chapter 6: Using Visual Studio Tools for Office 2003 731
Following Correct Setup..732
If You Have Problems...732
Communicating between .NET and Office Applications734

Why use VSTO?...735
The five ways to program Office ..736

Understanding VSTO ...738
Creating Your First Visual Studio Tools for Office Project......................739

When to touch the untouchable...742
Adding your code ...742
Adjusting .NET security (don’t do this) ..744

Chapter 7: Office 2003 Security .745
Getting to the Heart of the Problem: People ..746

Hope springs eternal..746
Some protection helps...747

Understanding Office 2003 Security Initiatives ..747
Using IRM...747
Hiding files...749

Going beyond IRM..750
Setting Up Virus Protection ..751
The Security Properties Dialog Box...753

Encryption options ..753
File saving considerations...754
Using strong encryption..756
Editing permission settings...757
Removing embarrassing comments...757
Preventing tracing ..758
Macro security..758

Avoiding Data Loss ..760

Chapter 8: No More Paranoia: Programmatic Encryption 761
Securing Your Private Information...762
Comparing the Two Encryption Tactics..762
Understanding Office Encryption ..763
Write Your Own Encryption Utility ..764
Using RSA ..765
Powering Up DES Encryption ...769

Making it public ..770
Can it be cracked? ..771
Choosing a good password ...772

Encrypting in VB.NET..772
Streaming the encryption..775
Generating a password ..776
Understanding what does a key does..778

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xxiv

Table of Contents xxv

Finishing the Program ...779
Displaying mangled text ..780
Trying the program ..782

Some Suggested Improvements to the Crypt Program783
Making it happen..785
Going beyond paranoiac to psychoiac..787
Saving changes ...790

Using Streams to Avoid Storing Plaintext on Disk792

Index ..795

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xxv

Office 2003 Application Development All-in-One Desk Reference For Dummiesxxvi

00b_570676 ftoc.qxd 6/4/04 9:50 PM Page xxvi

Introduction

Discover the world of Office 2003 programming and development.
Microsoft has put many of its best cutting-edge tools into this power-

house package. And you can also add .NET technology to Office 2003 quite
easily, taking your programming to the next level. There’s lots to explore.

This book shows you — the Office user, programmer, or developer — how
best to exploit, expand, administer, and write code for Office 2003, the
world’s most popular application suite. And it certainly is popular: Experts
estimate that Office has over 90 percent of the market share. I think I know
why (and the answer isn’t what Microsoft-haters claim).

I’ve Seen It All
I’ve seen all the software. Over two decades — first as editor of COMPUTE!
magazine and since then as a full-time computer-book author — I’ve worked
with review copies of most major software. I work daily with computers and
have used most all the major applications.

Word processors? I’ve used SuperScript, XYWrite, WordStar, WordPerfect,
Word, and more. I’ve also put in time with other products that are today
little more than memories: dBase, early spreadsheet applications like
VisiCalc, and so on.

In its day, WordPerfect was the word processor of choice, and I happily used
it for years (the last half of the 80’s), but when Microsoft Word appeared in
1989, I switched to it pretty fast. Right away, actually. I switched because
I thought that Word was a better word processor than the competition.
That’s not because of any special ties I have to the Windows operating
system or because I work for Microsoft. (They’re not even giving me free
software anymore when I write a book.) I’m mad at them because I have to
buy all this software, truth be told. But truth should be told, and Microsoft
does put out very good software. Microsoft-haters are wrong, in my opinion.

Today Word enjoys almost 100 percent market share in the word processing
application market. Why? Because it’s just plain the best word processor
you can buy.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 1

Moving beyond VBA2

Whatever your politics, most of us living in the real world of practical com-
puting use, manage, or program for Microsoft Office. And that’s what this
book is all about: how to take your current knowledge of Office to the next
level. You’ll find tips, solutions, code examples, clear explanations, migration
paths, and lots of other useful information that you can apply to your every-
day personal and business computing.

While writing this book, I’ve tried hard to give you information that is practi-
cal, makes sense, and helps you do the jobs you have to do.

Moving beyond VBA
This book has another, secondary goal: to help you migrate from VBA
(the traditional Office programming language) to VB.NET, the next genera-
tion programming technology that offers you considerable additional muscle.

You’ll find plenty of examples illustrating how to add .NET programming to
your Office 2003 projects and how to tap into the various tools that the .NET
editor (Visual Studio, the IDE) offers us programmers. Ignore .NET at your
peril.

Connectivity, Internet programming, scalability, interoperability, stability,
and more — VB.NET brings many qualities to the Office programmer’s
toolkit. VB.NET is the future of Office programming, and this book prepares
you to make the move. You’ll find code examples written in both VBA and
VB.NET, showing you how to move to this important language and apply it to
Office 2003 solutions. You need to know how to do things that VBA simply
cannot handle by itself.

You can add .NET’s power to your Office programming very easily — I show
you how throughout this book.

But good old VBA isn’t neglected. A mini-book is devoted to it (Book II,
“Understanding Office Programming”), and much of this whole book’s pro-
gramming is written in it. VBA remains the “official” Office language in Office
2003. And we all have lots of VBA code that we’ve written over the years,
either in VBA itself or its brother language, Visual Basic (versions 6, 5, 4, 3, 2,
and 1).

Nonetheless, there are certain hints — suggestions of obsolescence —
coming out of Redmond. For example: “There are no language enhancements
to VBA 6.0 itself in the Microsoft Office System.” In other words, VBA was not
improved in Office 2003. (That’s always a bad sign.) Further, Microsoft has
announced that it will continue to support VBA in the future. Cue the “Jaws”
movie music.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 2

Moving beyond VBA 3

VBA code is legacy code!
Microsoft says that “if VBA is ever retired” (cellos: dunn-dit-dunn-dit-dunn-
dit, as the shark approaches), it will provide utilities or other assistance to
help us move our code from VBA to .NET. Here’s a statement from a white
paper on the MSDN site. Be afraid, VBA programmers, be very afraid:

VBA 6.0 is not going away in the next release of the Microsoft Office System,
and Microsoft will provide a migration strategy if VBA is ever retired. There is
quite a bit of legacy code that is written in VBA 6.0. In many cases, there may

be no reason for existing code to be rewritten. However, the significant advan-
tages and capabilities the .NET Framework offers may cause you to rethink

whether to leave some solutions as they are. There are no language
enhancements to VBA 6.0 itself in the Microsoft Office System.

Here they’re starting to refer to our beloved VBA programming as “legacy
code.” You know what legacy means: done for. So how should we react?
Should we say:

“We, the programmer soldiers, salute you! Bring it on!”

or

“Do me baby one more time.”

The choice is yours.

Recognizing VBA’s excellence
VBA is to classical procedure-oriented programming as Bach’s incomparable
works are to Baroque music. They represent the finest example, the summa-
tion, of an epoch.

VBA is probably the most efficient and mature procedure-oriented language
available today. And although VBA includes some object-oriented features,
they seem a bit uncomfortable within the VBA structure — they feel more
like workarounds and patches than integral elements.

By contrast, VB.NET was designed from the ground up to be object-oriented
and to be an effective way to write distributed programs — programs that are
divided into segments that execute on different machines.

Also, the .NET IDE offers a very powerful suite of programming tools. It’s
simply more capable and sophisticated than the VBA editor in Office 2003
applications. Given a choice, any serious Office 2003 developer — or indeed
pretty much any programmer doing most kinds of Windows or Internet
programming — likely prefers the Visual Studio programming environment.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 3

Moving beyond VBA4

Using the framework
Also, the .NET language itself, the .NET framework, is huge and contains
effective, specialized, and generally powerful classes to accomplish what-
ever you might need to do. (Database, Internet, security, and nearly any
other kind of programming are supported with advanced tools and versatile
objects.) For example, NET lets you add classic Windows forms to Office
solutions. These windows are superior to the UserForms available via VBA.
And the VB.NET debugging facilities are among the most thoughtfully organ-
ized and robust available. .NET includes extensive XML and namespace
support; ADO.NET — an advanced, highly scalable, database management
technology — and ASP.NET (ditto for highly scalable Internet programming).
The list goes on and on.

This book is not about .NET, but I do provide considerable information for
Office programmers who want to find out how to add .NET to their Office
solutions and in the process, see how to migrate from VBA to .NET.

The VB.NET language is not merely a revision of VBA or VB 6. Instead, it was
rewritten from the ground up to be a brand-new, fully OOP language. Do real-
ize, though, that if your programming projects are relatively small or you
don’t program as part of a programming team, OOP is often simply more
trouble than it’s worth. Fortunately, you can ignore OOP when writing code
in .NET if you wish. You can just use familiar, tried-and-true, VBA-style
procedure-oriented programming techniques if you wish. And you still get
the double bonus of tapping into the powerful .NET framework of prewritten
functions and also the use of the splendid .NET programming editor.

Understanding managed code
VB.NET — like the other VS.NET languages — runs under the supervision
of the common language runtime (CLR), thereby earning Microsoft’s new
phrase: managed code. Such code is validated (checked to see that it doesn’t
violate memory restrictions and other illegal behaviors). It also offers code-
based security features unavailable to unmanaged (non-.NET languages)
code. However, compared with older languages — particularly the VBA built
into Office applications — .NET requires that you deal with a bit of a learning
curve, particularly when adapting to the .NET programming styles, language
elements, and security settings. Also, after you come to grips with the essen-
tials of OOP, communication between .NET and Office objects or VBA is gen-
erally quite smooth although there are a few data type discrepancies that
now and then must be dealt with.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 4

About This Book 5

About This Book
My main job in this book is to show you the best way to create solutions for
Office 2003 applications. You see how to master the various techniques that
collectively put you on the path to true Office programming expertise.

If a task requires hands-on programming, I show you step-by-step how to
write that programming. In other cases, I tell you when there’s a simpler,
better way to accomplish a job. Otherwise, you could spend days hand-
programming something that’s already been built — something you can
create by clicking a simple menu option, adding a prebuilt component, firing
up a wizard, using a template, or tapping into an object library.

This book is designed for Office programmers and developers or for people
who want to become one. Most new computers ship with Office, and it is
used in nearly every business today. What these businesses have in common
is an ongoing effort to improve their efficiency. In many cases, developing or
automating Office applications is one of the most effective ways to increase
workplace productivity. Many workers know what they wish they could do,
and this book shows you how to help them do it.

Office 2003 Application Development All-in-One Desk Reference For Dummies
covers all the new features in Office 2003 and demonstrates how developers
can best exploit them. Many of these features are designed to improve work-
flow, boost productivity, and facilitate better communication between
employees — just the sort of goals that Office developers themselves work
to achieve. For example, InfoPath simplifies interaction with all kinds of data
sources: everything from unformatted lists to legacy databases. SharePoint
assists developers in building an automated collaborative environment.

Underlying many of the improvements in Office 2003 is XML and related
technologies such as Web Services. This book explains precisely how to take
advantage of XML’s promise with simple, no-nonsense, real-world examples.
Readers will understand exactly how to leverage their current work and com-
munication patterns using the new and powerful data sharing techniques
available in Office 2003.

Businesses understand the importance of remaining competitive. This book
shows developers how to make the most of Office’s tools and technologies.
All the innovations in Office 2003 are fully explained, employing the famous
For Dummies approach: clear explanations, step-by-step examples, and lots
of practical advice.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 5

Who Should Read This Book6

No significant Office topic is ignored. I explain traditional but significant fea-
tures such as Visual Basic for Applications (which are too often ignored in
other books on Office). And I cover all the latest developments such as
Smart Documents, Access 2003 Developer Extensions, programming task
panes, managing Smart Tags, the new security features, and much more.

Anyone interested in building intelligent business applications will find the
solutions they’re looking for in this book. And the example code is practical:
Not only do I show you how the code works, but as often as possible, I try to
provide code that you can use in your own programs. You find out, for exam-
ple, how to write a text search utility that searches across folders and direc-
tories for a specific word or phrase. What’s the benefit? This search utility is
far faster than the Windows search utility found on the Start menu.

Who Should Read This Book
This book is written for a broad audience: programmers, developers, office
managers, IT staff, and even individual users of the Office 2003 suite of appli-
cations. In other words, the book has value for everyone who wants to be
more efficient when using Office 2003.

The book shows how to exploit the Office applications by learning how to
develop solutions to common business problems. The reader will under-
stand how to solve those problems by using the many utilities, features,
hidden shortcuts, wizards, add-ins, and other tools in the Office suite.

The book is also for would-be developers who want to get involved in cus-
tomizing or automating the applications but just don’t know how to get
started. Whether you want to get Access to communicate with Outlook or
are interested in building a sophisticated inter-office scheduling system,
you’ll find what you need in this book. The book is filled with useful macros
and plenty of practical, real-world programming examples including

✦ Automating e-mail routing

✦ Administering the task pane from within an application

✦ Writing your own add-ins

✦ Building a distributed business system using Web Services

Making do in a shaky economy
No matter what they tell us from the bully pulpit, we know how shaky the
economy is, don’t we? The primary trend in nearly all industries today is
toward making do with less: fewer workers, less time to complete tasks, and
stretching resources as much as possible. This trend demands improved
productivity.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 6

How to Use This Book 7

Some offices respond by letting part of the staff go and heaping additional
work on the remaining employees or by outsourcing or offshoring. In many
cases, a more successful long-term tactic is to retain a high-quality, loyal
staff but to improve the general efficiency of that staff. Microsoft Office 2003
is loaded with tools to improve productivity if you know how to exploit
them. Office 2003 Application Development All-in-One Desk Reference
For Dummies is the handbook that takes the reader from idea to finished
business solution.

I hope that all my work these past years exploring programming and working
with Office will benefit you, showing you the many useful shortcuts and guid-
ing you over the rough spots. I won’t pull any punches: I confess if it took me
several hours wrestling with code to accomplish something. But after I’ve
put in the time getting it to work, I can almost always show you how to do it
in a few minutes. (I never got one new technology, Visual Studio Tools for
Office, to work, but I confess that, too.)

Plain, clear English
Also, unlike some other books about Office 2003 programming (which must
remain nameless), this book is written in plain, clear English. Novices will
find many sophisticated tasks made easy: The book is filled with step-by-
step examples that even beginners can follow even if they’ve never written a
line of programming or designed a single computer application. And if you’re
an experienced programmer, better still. You’ll find out how to accomplish
sophisticated tasks quickly. You also discover how to harness the machinery
built into Office 2003. And you also discover how to leverage your current
skills to prepare for the future of Office programming: moving beyond VBA
to VB.NET.

How to Use This Book
This book obviously can’t cover every feature in Office 2003, VBA, and espe-
cially VB.NET. Instead, as you try the many step-by-step examples in this
book, you’ll become familiar with the most useful features of Office develop-
ment and programming and discover many shortcuts and time-saving tricks
(some that can take years to discover on your own). Believe me, some of
them have taken me years to stumble upon.

Whether you want to turn a Word document into a Web site or create
impressive Office 2003 solutions in Windows, this book tells you how to
build what you want to build. Here are just a few of the goals that you can
achieve with this book:

00c_570676 intro.qxd 6/4/04 9:50 PM Page 7

Foolish Assumptions8

✦ Explore and program with new Office 2003 features such as Document
Workspaces, shared attachments, OneNote, XML, and others. Some tech-
nologies explored in this book are not covered in other Office program-
ming titles, including encryption programming and the new Visual Studio
Tools for Office.

✦ Build professional-looking, effective programs.

✦ See how to connect the various Office 2003 applications and data stores
into a seamless, distributed, and secure business solution (and how to
be smart enough to know when to use wizards to help).

✦ Make the transition from Microsoft’s traditional VBA Office language to
the powerful new .NET technologies for database and other kinds of
programming.

✦ Understand how to best use the many features built into VB.NET.

✦ Kill bugs using powerful debugging tools.

✦ Get the most out of the Office and .NET security features, including how
to automate strong programmatic encryption.

Many people think that programming is impossibly difficult and that distrib-
uted (inter-application) programming is even more difficult. It doesn’t have
to be.

In fact, many common programming jobs have already been written for you in
Office object libraries or the VB.NET framework, so you don’t have to do the
programming at all. If you’re smart, you don’t reinvent the wheel. Sometimes,
all you need to know is where in VBA to find a particular component, wizard,
template, or other prebuilt solution. Then drop it into your application. This
book is your guide to building efficient Office 2003 applications, utilities, and
large-scale solutions.

This book tells you whether a particular wheel has already been invented. It
also shows you how to save time by using or modifying existing components
or Help code to fit your needs instead of building new solutions from scratch.
But if you’re doing something totally original (congratulations!), this book
also gives you step-by-step recipes for tackling many common tasks from the
ground up.

Foolish Assumptions
In writing this book, I had to make a few assumptions about you, dear reader.
I assume that you know how to use Office (except for the brand-new features
in Office 2003) and understand the basics of programming in general.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 8

How This Book Is Organized 9

I also assume that you don’t know much, if anything, about VB.NET program-
ming as it applies to Office. Perhaps most importantly, I assume that you don’t
want lots of theory or extraneous details. You just want to get programming
jobs done, not sit around listening to airy-fairy theory about polymorphism
and such. When a job can be done in VBA, I show you how. When you need
to reach out to the more powerful .NET framework, I show you that, too.
Whatever it takes, the job gets done.

How This Book Is Organized
The overall goal of Office 2003 Application Development All-in-One Desk
Reference For Dummies is to provide an enjoyable and understandable guide
for the Visual Basic programmer. This book will be accessible to developers
and programmers with little or no .NET programming experience.

The book is divided into eight mini-books, with several chapters in each
book. Just because the book is organized doesn’t mean that you have to be.
You don’t have to read the book in sequential order from Chapter 1 to the
end, just as you don’t have to read a cookbook in sequential order.

For example, if you need to add today’s most powerful encryption technology
to your office solution programmatically, I suggest you read the last chapter
first (Book VIII, Chapter 8).

If you want to brush up on VBA, Book II is for you. You’re not expected to
know what’s in Book I to get results in Book II. Similarly, within each chapter,
you can often scan the headings and jump right to the section covering the
task that you want to accomplish. There is no need to read each chapter
from start to finish. I’ve been careful to make all the examples as self-
contained as possible. And each of them works, too. They’ve been thor-
oughly tested.

All of the source code for all the examples in this book is downloadable from
this book’s Web site at www.dummies.com/go/office2003dev.

The following sections give you a brief description of the book’s eight main
parts.

Book I: Office 2003 Essentials
This first mini-book introduces Office 2003 — explaining its purposes, what’s
new in this edition, and Office’s fundamental nature. You see how common
tasks are accomplished, and you discover the elements of Office program-
ming. You are introduced to the main new features in Office 2003 such as

00c_570676 intro.qxd 6/4/04 9:50 PM Page 9

How This Book Is Organized10

OneNote, XML, task panes, the major overhaul of Outlook, and so on. Topics
in this mini-book include managing menus and toolbars, how to find program-
ming help online, understanding macro security, introduction to document
workspaces, and joining the XML revolution.

Book II: Understanding Office Programming
Book II covers the primary elements of VBA. It’s a refresher course for pro-
grammers to need to brush up on classic Visual Basic programming, and a
full-on programming course for people new to programming VBA, the classic
language built into Office applications. All the essentials are covered, from
simple concepts such as data types to advanced subjects like various secu-
rity measures that you can take to protect databases. This mini-book covers
how to move Office documents and other elements to the Internet. You also
see how to exploit the famous Visual Basic debugging tools.

Book III: Maximizing Word
Book III focuses on the world’s greatest word processor. You see how to
work with the Word object model to tap into the power of this huge dedi-
cated language. You explore enums, ranges, selections, and the dialog
object, among other topics. Then on to power editing — ways to maximize
Word’s editing features. Many (perhaps most) Office workers don’t take
advantage of Word’s many powerful editing capabilities. You also see how to
maneuver efficiently, use Smart Documents, import data, and manage mail
merge.

You explore how XML and Word now work together synergistically to facili-
tate communication between any and all platforms, operating systems, data
stores, applications, and whatever else might want to communicate with
Word. You see how Word does a serviceable job for smaller Internet jobs,
such as displaying your pictures or blogging your feelings for all to see. You
find out how to transform DOC files into Web pages. This book concludes
with power macro programming: how to contact and manipulate other Office
applications from within Word, how to access and modify the behavior of
Word’s built-in features such as FileSave, and a set of what I consider the
best Word macros available.

Book IV: Making the Most of Excel
This mini-book focuses on many aspects of programming Excel, beginning
with an exploration of the Excel object hierarchy including all the expected
classes, plus collection objects, ranges, charts, pivot tables, shapes, and so
on. Concrete examples illustrate how you can get down deep into Excel
and make it really glide across the ice like a champion skater. You also see
how to respond programmatically to Excel events, automate data and XML

00c_570676 intro.qxd 6/4/04 9:50 PM Page 10

How This Book Is Organized 11

importation, create datasets, and programmatically build pivot tables. You
see how to manage goal seeking, scenarios, and summary reports and also
explore problems with the Solver. You contact other Office applications from
within Excel, employ UserForms, add macros to worksheet controls, automate
formatting, add controls programmatically, trap keypresses, send workbooks
via e-mail, and tell the differences between the activate and select methods.
Whew! If I’ve left out anything you’re interested in, send me an e-mail, and I’ll
include it in the next printing.

Book V: Advanced Access
There are dozens of books on Access 2003, but few I’ve found make a con-
scious attempt to integrate Access with the other Office applications.
Access, poor darling, has always stood alone. It’s always been the strange
stepchild — the one that doesn’t quite get into the act or the one off in the
shadows in the family pictures. Access differs in many ways from the other
Office 2003 applications, from its lack of direct keyboard modification to the
peculiarities of its object model. Throughout this book, I’ve often found
myself writing “. . . but of course, Access does this differently. Here’s how to
get Access to accomplish this task.”

So I’ve done my best to always include Access in any important discussion
all through the entire book. In this mini-book, though, I focus directly on
Access. You see how to sort out the various database technologies and
ODBC and how to move beyond VBA and DAO to ADO. You wrestle with the
concurrency problem and benefit from various RAD efficiencies. Cutting-
edge technologies are explored, including loading an Access database into
.NET; data views; the XML Designer and XML dataset; loading XML into
Access; using the new Access 2003 Developer Extensions; exploring the
Package Wizard and Custom Startup Wizard; learning about the Property
Scanner add-in; Smart Tags in Access; connecting to Access via automation;
automating the Access runtime; using the new sandbox mode; and other
topics that might interest you.

Book VI: Exploiting Outlook
No Office 2003 application has been as overhauled as Outlook. In this mini-
book, you explore the new pane and other topics such as filters, spam block-
ing, encryption, special folders, and double calendars. As a programmer, you
want to read the sections that show you how to exploit the Outlook object
model, deal with namespaces, use MAPI objects, trap events, handle Contacts,
send data between Outlook and Word or Access, create new folders, modify
collections, search tasks, and manage the Outlook Calendar. Also covered
are topics such as effective automatic routing (during your vacation), man-
aging multiple accounts, using send/receive Groups, blocking virii, working
with profiles, sharing schedules, planning meetings, searching e-mail, and
ergonomics for your users.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 11

How This Book Is Organized12

Book VII: InterOffice: Working as a Team
This mini-book takes a closer look at ways to integrate workers and applica-
tions to improve overall workplace efficiency. I start with OneNote, the cool
new utility and notes organizer that some people cannot live without. You
also see how to work well with others. It’s not always easy to avoid stepping
on people’s toes when several people try to edit the same document or plan
the same project. You see how to best use Office 2003 to manage shared
Contacts, handle document collaboration, set up a meeting workspace and
permissions, use the new Information Rights Management, change work-
space options, protect documents in Word, specify editing and formatting
restrictions, create custom views, and deal with the version problem using
Word’s new versions feature. You also explore topics such as building Web
pages, adjusting properties, viewing code, writing scripts, doing scripting in
Excel, debugging script, using forms, and sharing information efficiently.
InfoPath offers a variety of useful collaborative tools. You discover designing
with InfoPath, viewing data hierarchies, generating InfoPath forms from XML,
and building InfoPath forms from databases.

You also see how Smart Tags can be added to your Office 2003 projects to
assist users in filling out forms, getting context-sensitive help, and other ben-
efits. You see how to create, program, and test Smart Tags. You move on to
the containers of Smart Tags — Smart Documents — and read about feeding
data to Web sites, managing security issues, simplifying deployment, work-
ing with the elements of Smart Documents, using XML, attaching schemas,
attaching the XML Expansion Pack, coding, and modifying a template.

Project 2003 isn’t ignored. You explore creating and editing projects, dealing
with dependencies, understanding Gantt charts, and employing Outlook fea-
tures in your projects. Then you move on to SharePoint, beginning with the
reasons why you might choose it over other collaboration technologies. You
see how to install, specify permissions, use the Task Pane, manage SharePoint
scalability, integrate SharePoint with office 2003 applications, and a bit about
the ASP.NET connection.

Book VIII: Power Techniques: Advanced
Office Automation, VBA, and .NET
If you’re looking for real heavy-duty programmer info and industrial-strength
development, many of those topics are gathered together in this mini-book.
But don’t be misled: Some seriously advanced topics are covered in other
mini-books as well. It’s just that I chose this last mini-book to focus on some
of the more cutting-edge or sophisticated techniques.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 12

How This Book Is Organized 13

This mini-book starts off with a discussion of the drawbacks of OOP pro-
gramming and also a comparison of the qualities of VBA versus VB.NET
(when you should choose one over the other). You also see code that
introduces a cool .NET feature called streaming. You then create your own
add-in — one of several techniques whereby you add the power of .NET to
your Office 2003 programming.

Chapter 2 is all about XML and associated technologies such as XSD, XML
data types, schemas, and XML programming. You wallow in objects in
Chapter 3: discovering techniques for using objects in VBA, understanding
.NET data types, making declarations and using events in VBA, and managing
collections and arrays of objects. Then you move on in the next chapter
to some advanced Internet programming topics, including working with
Web Services and how XML and Office work with this interesting Internet
technology.

Chapter 5 is a dive into .NET — something every serious programmer must
master sooner or later. Sure, it’s a learning curve at first; Visual Basic will
never be the same again, after VB.NET. But believe me, what you spend in
time mastering .NET, you gain in considerable additional programming capa-
bility. You see how to use software services, Internet initiatives, .NET data-
base technologies, and general programming practices. This chapter is for
those readers who understand that the migration from VBA to .NET is essen-
tial (unless they’re near retirement and don’t have to worry about the future
of their career).

Chapter 6 continues this migration topic by focusing on Visual Studio Tools
for Office. It sounds like just the ticket. (Visual Studio is the set of utilities,
editors, and languages that collectively contain .NET.) It might sound like the
ticket, but at this point, it’s maybe a little too unfinished to be of much real
use to programmers. It has a little two-page wizard that merely sets up a
template that you can use to build an Excel or Word document, using some
code-behind features: that is, programming in .NET that can be used when a
user opens these documents (thereby also running Excel or Word).

Read Chapter 6 to see the struggles I faced trying to get VSTO to work.
Maybe it has been improved by the time you read this book, or maybe the
days I spent trying and failing to get it working correctly were a result of
temporary confusion on my part. Whatever. I got it mostly working — right
up to the final step. So perhaps you’ll succeed where I failed. (Some on the
VSTO newsgroup seem to have it working.) One other point, though: Even if
it works, there are other ways to do what VSTO does. Thus, unless I’m miss-
ing something, I actually don’t understand VSTO’s raison d’être. I might not
have conquered VSTO, but I do know French.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 13

Conventions Used in This Book14

Chapters 7 and 8 move you into an area of computing that is of increasing
interest to all of us who program or simply use computers — security.
Chapter 7 walks you through the various ways you can tighten Office 2003
security. You read about IRM, virus protection, file- and folder-based sys-
tems, macro security, signing, and hashing.

Chapter 8 is my personal favorite because to me, encryption is one of the
most compelling aspects of programming. There’s something intriguing
about the contest of intellects on either side — those cooking up new
attacks versus those thinking up new defenses. And the computer brings
an entirely new dimension to this ancient spy-versus-spy game.

For example, computers can try millions of passwords in less than an hour.
This speed wasn’t possible before computerization. It’s called a brute force
attack. This attack is countered by brute force encryption systems, as you’ll
see in Chapter 8. When you finish this chapter, you’ll be able to employ
today’s strongest encryption systems in your own programming. It’s quite a
bit of power for just a little extra work.

You also discover how to harness the DES system, used today by most banks
and other commercial institutions to secure their data and the messages
that they send over the Internet. But you also see how to add public key
encryption (RSA) to your programming. RSA is today’s most powerful
encryption system, used by the military and others to transmit shorter
pieces of data, such as passwords and keys. RSA isn’t generally used for
actual messages (because they’re too lengthy), and although it’s fantastically
secure, it’s really too slow to practically encrypt large amounts of data.
But combine the two technologies, and you’ll have today’s most powerful
encryption system at your disposal. Use RSA to exchange passwords or
keys and then use fast DES to exchange messages.

This chapter also shows you how to avoid storing your messages on a hard
drive (where, even if “deleted,” they can be recovered by widely available
utilities). Instead, you see how to employ .NET streaming technologies to
keep your information floating in the air like smoke — then disappearing
without a trace into the encryption. These memorystreams and crypto-
streams have lovely, poetic names, but they embody important, potent
technology . . . technology that you’ll want to understand.

Conventions Used in This Book
This book is filled with step-by-step lists that serve as recipes to help you
cook up finished Office 2003 solutions. Each step starts off with a boldface
sentence or two telling you what you should do. Directly after the bold step,
you might see a sentence or two, not in boldface, telling you what happens
as a result of the bold action — a menu opens, a dialog box pops up, a
wizard appears, you win the lottery, whatever.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 14

Find All the Code Online 15

A primary convention used in this book is that I’ve tried to make the step-by-
step examples as general as possible but at the same time make them spe-
cific, too. Sounds impossible, and it wasn’t easy. The idea is to give you a
specific example that you can follow while also giving you a series of steps
that you can apply directly to your own projects. In other words, I want to
illustrate a technique but in a way that employs real-world, useful code.

In some of the examples, particularly when exploring Access 2003, I use the
Northwind sample database that comes with Office 2003. With Access run-
ning, choose Help➪Sample Databases and then select Northwind Sample
Database. If it’s not there in the Help menu, go to the Windows Control Panel,
choose Add/Remove Programs, find and click Microsoft Office, click the
Change button, and follow the instructions to install the Northwind sample
database. You’ll need it, even for some programming involving other Office
2003 applications as well.

Also, note that a special symbol shows you how to navigate menus. For
example, when you see “Choose File➪New➪Project,” you should click the
File menu, click the New submenu, and finally click the Project option.

When I display programming code, you see it in a typeface that looks like
this:

Dim pfont As Font
pfont = New Font(“Times New Roman”, 12)

If I mention some programming code within a regular paragraph of text, I use
a special typeface, like this: Dim pfont As Font.

If I ask you to type something in, it shows up in bold, like this.

Find All the Code Online
Every line of code that you see in this book is available for downloading
from this book’s companion Web site at dummies.com/go/office2003dev.
Take advantage of this handy electronic version of the code by downloading
it from the Web site so that you can then just copy and paste source code
instead of typing it by hand. This will save you lots of time and help you
avoid those pesky typos.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 15

The Searchable VBA/VB.NET Dictionary16

The Searchable VBA/VB.NET Dictionary
Also, over the years I’ve compiled a book-length Rosetta stone dictionary
of traditional VBA programming commands alongside their VB.NET equiva-
lents. VBA programmers can look in this Dictionary of VB.NET online for a
VBA function that they already know (such as InStr) to see how that same
job is done the VB.NET way. Even readers who are not familiar with tradi-
tional VBA will also find this searchable Appendix of use. If you want to
quickly find out, for example, how to change a property of Form1 from within
Form2, search the dictionary and you get your answer. Find this dictionary
at the following Web site:

http://www.dummies.com/extras/vb_net_all_in_one_fd/

What You Need to Get Started
To use this book to the fullest, you need only one thing: a copy of Office
2003 — preferably the Professional or Enterprise versions — to take full
advantage of all the topics covered in this book. However, this book does not
require the high-end Enterprise version or even the Professional version.
The book covers what I consider the most significant topics in whatever ver-
sion you use.

Although throughout this book (and particularly Book VIII), I cover OOP in
depth, it does help to understand a few basic terms upfront. VBA program-
mers have not traditionally written classes. They use procedure-based pro-
gramming techniques, which is usually quite sufficient for many Office
programming jobs. But time marches on, and fashions arrive and fade. The
current fashion in programming is OOP, and you have to come to grips with
it. Here are some essential OOP concepts:

✦ A class module is a container for OOP source code that you write in the
VBA editor. And after you define a class in your source code, when you
execute that source code (by pressing F5 or otherwise running the
code), an object comes into being. (The object is instantiated; an instance
of the object comes alive.) So class is to object as recipe is to cookie:
The class is the blueprint, the latter is the resulting thing.

✦ An object is an entity that comes into existence when you run your proj-
ect by pressing F5 or otherwise triggering the code to execute. The
object’s characteristics and behaviors are based on the description of
that object you provided in the class. For example, a UserForm becomes
an object when you press F5 and thereby execute your program.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 16

Icons Used in This Book 17

✦ Classes (and the objects that result from them) are primarily composed
of two types of code: properties (the object’s characteristics, like its
BackColor) and methods (the object’s behaviors, like its Show method
that makes it visible to the user). Properties are similar to traditional
variables, and methods are similar to traditional functions (or Sub pro-
cedures). Collectively, an object’s methods and properties are called
members. There’s another member, events, but let’s not go too far, too
fast.

Icons Used in This Book
Notice the eye-catching little icons in the margins of this book. They’re next
to certain paragraphs to emphasize that special information appears. Here
are the icons and their meanings:

The Tip icon points you to shortcuts and insights that save you time and
trouble.

A Warning icon aims to steer you away from dangerous situations.

A Technical Stuff icon highlights nerdy technical discussions that you can
skip if you want to. I’m not too fond of unnecessary technical stuff, so this
icon is used rarely.

00c_570676 intro.qxd 6/4/04 9:50 PM Page 17

Office 2003 Application Development All-in-One Desk Reference For Dummies18

00c_570676 intro.qxd 6/4/04 9:50 PM Page 18

Book I

Office 2003
Essentials

01a_570676 p01.qxd 6/5/04 12:37 AM Page 19

Contents at a Glance
Chapter 1: Getting with the Program..21

Chapter 2: Programming Lite: Making the Most of Macros ..41

Chapter 3: What’s New in 2003?..59

01a_570676 p01.qxd 6/5/04 12:37 AM Page 20

Chapter 1: Getting
with the Program

In This Chapter
� Exploring what you’ll find in this book

� Managing menus and toolbars

� Creating your first Office program (it’s easier than you think)

� Customizing the keyboard

� Getting programming help online

O ver the years, Office has evolved. As the result of hundreds of focus
groups, ergonomic studies, user feedback, and hard-won experience,

the Office design teams have come up with a highly effective suite of
applications.

One of Office’s strong points over the years has been its considerable depth.
You can find literally thousands of features within the Office applications,
yet the surface that you interact with can be as smooth and simple as you
wish. You can even hide the toolbars and menu bars.

Put another way, Office applications are highly customizable. Throughout
this book, you discover ways to manage and exploit Office 2003 to take it
to a new level of efficiency. You see how to write programs that make your
work easier as well as how to build utilities that facilitate communication
between Office applications and automate other common business tasks.
I also show you hundreds of other useful techniques and tools.

Most new computers ship with Office, which is also used in nearly every
business today. What these businesses have in common is an ongoing effort
to improve their efficiency. And in many cases, developing or automating
Office applications is one of the most effective ways to increase workplace
productivity. Many workers know what they wish they could do — and this
book shows them how to do it.

Office 2003 Application Development All-in-One Desk Reference For Dummies
covers all the new features in Office 2003 and demonstrates how developers
can best exploit them. Many of these features are designed to improve work-
flow and facilitate better communication between workers — just the sort of

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 21

Modifying the User Interface22

goals that Office developers want to achieve. You’ll find everything you need
to know to make Office 2003 an effective, valuable, and customized workplace
engine.

For example, InfoPath simplifies interaction with all kinds of data sources:
everything from unformatted lists to legacy databases. SharePoint assists
developers in building an automated collaborative environment. And
eXtensible Markup Language (XML) as well as related technologies, such as
Web Services, underlies many of the improvements in Office 2003. Among
many other topics, this book explains precisely how to take advantage of
XML’s promise with simple, no-nonsense examples. You’ll understand exactly
how to leverage your current work and communication patterns by using the
new and powerful data sharing techniques available in Office 2003.

No significant Office topic is ignored here. Read on to discover how to use
classic but important features such as Visual Basic for Applications (VBA).
And I cover all the latest developments such as Smart Documents, Access
2003 Developer Extensions, and the new security features. Anyone interested
in building intelligent business applications will find the solutions they’re
looking for here.

Modifying the User Interface
This chapter starts things off with an introduction to some relatively easy
modifications that you can make to Office 2003 applications. (No point jump-
ing immediately into the deep end of heavy-duty programming; there’s time
enough for all that in subsequent chapters.) And although these modifica-
tions are on the simpler side, some of the techniques that I describe in this
chapter are powerful, new, or both.

I show you various ways of manipulating the user interface, the surface that
you work on when using Office applications. If you’re already an Office guru,
you might want to skim this chapter to search for techniques you don’t yet
know. Less-experienced readers are likely to find many ideas in this chapter
that are of immediate practical use, such as hiding a new Help feature or
modifying and editing menus.

You will find a bit of programming in this chapter, too, but it’s not very
advanced, and you’re not even expected to understand it at this point. You
can just benefit from the exercise, and you might find the results (such as
quickly turning toolbars on and off) a valuable addition to your bag of tricks.

Turning off mini help
Begin by seeing how to get rid of that new little Office 2003 Help field. It
seems as if Microsoft introduced a new, cute Help feature. Remember the
little paper clip fellow (Clippit) that started annoying many people a few

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 22

Book I
Chapter 1

Getting w
ith the

Program
Modifying the User Interface 23

years back? Most people find the animated Office Assistant rather bother-
some, not to mention unprofessional looking. At least it’s easy enough to
turn off that annoying paper clip by just deselecting Office Assistant on the
Help menu.

Now to get rid of that new Help field, located by default at the upper-right
corner of Office applications such as Word and Access, as you can see in
Figure 1-1.

What I don’t like about this feature is that anyone can see your last Help
request, which could be embarrassing. Personally, I don’t want people
seeing the kind of help that I last requested. It lets them know what I didn’t
know. Your last question stays up there for all to see, even after you’ve
closed the Help pane. And even though there’s no obvious way to make this
little feature go away, I know the easy secret.

Before I lead you through this example, note something important about the
Customize dialog box. When it’s open, Office 2003 applications freeze and
wait to see whether you’re modifying something. All the menus and toolbars
are loosened, so you can drag and drop items from the dialog box onto tool-
bars or remove items by dragging them off toolbars and dropping them into
the document workspace.

The Help field

Figure 1-1:
Type Help
questions
here or
hide Help.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 23

Modifying the User Interface24

Here are the steps for removing the Help field:

1. Choose Tools➪Customize.

2. Click the Toolbars tab of the Customize dialog box.

3. Right-click the little Help field.

You see a check box with a check mark in it.

4. Remove the check and then close the Customize dialog box.

The discomforting little critter won’t ever advertise your personal short-
comings again.

If you want this feature back, just repeat these steps, but mark the check box
to select it.

Making this change in Word won’t get rid of the Help field in other Office
2003 applications; you have to turn it off in each application.

Modifying menus
Menus can be adjusted to suit your needs. You can move the menu bar itself
the same way that you move toolbars: Just drag the dotted line on the left or
top of the menu bar and drop the menu elsewhere on the screen. To switch
between long and short menus (short menus display only the most frequently
used options), choose Tools➪Customize➪Options, and then select the Always
Show Full Menus check box.

To modify a menu’s location on the menu bar, follow these steps:

1. Choose Tools➪Customize.

2. While the Customize dialog box is open, you’re free to drag around
the menu headings on the menu bar, reorganizing them any way
you wish.

If you want to remove a menu heading entirely, drag it away from the
menu bar and drop it somewhere in the document.

Editing menus
The contents of menus can be modified, too. To modify the order of items
within a menu, follow these steps:

1. Choose Tools➪Customize.

2. In the Customize dialog box, click the Commands tab.

3. Click the Rearrange Commands button.

The Rearrange Commands dialog box opens, as shown in Figure 1-2.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 24

Book I
Chapter 1

Getting w
ith the

Program
Modifying the User Interface 25

4. Select a command you want to rearrange; then click the Move Up or
Move Down buttons.

Click the Modify Selection button in Figure 1-2 to rename menu items, change
their icon, and otherwise manipulate them to suit yourself, as shown in
Figure 1-3.

Figure 1-3:
Here’s
where you
can really
take control
of your
menus.

Figure 1-2:
Add, delete,
or adjust the
order of
commands
here.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 25

Modifying the User Interface26

Creating your own menus
You can even create a new menu of your personal favorite features. Just
follow these steps:

1. Choose Tools➪Customize and then click the Commands tab.

2. Click New Menu in the Categories list.

3. Drag the new menu icon from the Customize dialog box and drop it
on the menu bar.

4. Right-click the new menu to name it whatever you want.

To add commands to your new menu, click the Rearrange Commands
button. Then locate the name of your new menu in the Choose a Menu
or Toolbar to Rearrange list.

5. Click the Add button and select which features you want to include on
your new custom menu.

Customizing shortcut menus
Shortcut menus, also called context menus, are those little menus that
appear when you right-click something. In Office 2003, you can customize
these menus in Access, Word, or PowerPoint.

Although thousands of shortcut menus exist, never fear. Here’s how to add a
new command to a shortcut menu in Access. Follow these steps to add the
Help command to the default database background shortcut menu:

1. Open a database window in Access; then right-click the window to
open the default context menu, as shown in Figure 1-4.

Figure 1-4:
BEFORE:
Many
objects in
Office 2003
come with
a context
menu that
you can
modify.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 26

Book I
Chapter 1

Getting w
ith the

Program
Modifying the User Interface 27

2. Choose Tools➪Customize.

3. Click the Toolbars tab.

4. Select the Shortcut Menus check box.

A special shortcut toolbar appears, as you can see in Figure 1-5.

5. From this special toolbar, choose Database➪Background, as shown in
Figure 1-6.

6. Click the Commands tab of the Customize dialog box.

7. Choose the category that contains the command you want to add to
the shortcut menu.

8. Drag the command from the Commands list to the shortcut menu
(position it where you want it to appear).

9. Drop the command (release the mouse button) into the shortcut
menu, as shown in Figure 1-7.

A special shortcut menu toolbar appears.

Figure 1-5:
This special
toolbar
allows you
to choose
which
shortcut
menu to
modify.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 27

Modifying the User Interface28

In this example, I add the Help feature to the shortcut menu that pops
out when I right-click the background of a database, as shown in
Figure 1-8.

Figure 1-7:
Drag and
drop new
commands
that you
want added
to a context
menu.

Figure 1-6:
Choose the
shortcut
menu you
want to
modify.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 28

Book I
Chapter 1

Getting w
ith the

Program
Personalizing Toolbars 29

You can edit context menus in many of the same ways you edit ordinary
menus — rename, rearrange, add icons, and so on. However, you can’t add
or delete an entire context menu.

Personalizing Toolbars
You can manipulate toolbars, tailoring them to suit yourself, much the same
way you customize menus. In fact, a toolbar is simply another kind of menu.
Although toolbars are more graphic and they are always open, they’re just
another way for you to trigger behaviors in Office 2003 applications. Some
people prefer menus; others consider toolbars more convenient. (You say
toe-may-toe, and I say toe-mah-toe.) As usual in Office, how you work is largely
up to you, as long as you know how to modify the applications. After all, it’s
your work surface, so you should be able to decide where things go and how
best to manage it, just as you arrange your desk to suit yourself.

In addition to adding built-in commands (such as File➪Open), to menus
and toolbars, you can also add macros. A macro is simply a short program,
designed to work within and improve the efficiency of the application that
hosts it. (See Book I, Chapter 2.) Writing macros allows you to really take
control of the elements of an Office application and do with it what you will.
You can also add special hyperlinks, such as a link to a worksheet or work-
book in Excel or to a Web page.

Adding hyperlinks
As with menus, you modify toolbars via the Customize dialog box. Just add a
custom button, change its image (if you like), and name it. You can even turn
the button into a hyperlink. Follow these steps to see how to add a hyperlink
to CNN News to the standard Excel toolbar.

Figure 1-8:
AFTER:
Success!
This context
menu now
has a Help
command.
Compare
this menu
with Figure
1-4.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 29

Personalizing Toolbars30

First add the custom button:

1. Choose Tools➪Customize.

2. Click the Commands tab in the Customize dialog box.

3. Click Macros in the Categories list.

4. Drag a custom button from the Commands list and drop it on the
Standard Excel toolbar.

You don’t have to detach the Standard toolbar as it’s shown in Figure 1-9.

Don’t worry about the smiley face default icon; you can always change this
icon by right-clicking it and choosing another graphic. In fact, try that now
(with the Custom dialog box still open from the preceding step list).

1. Right-click the smiley face and choose Change Button Image.

You get a palette of images to choose from.

2. Select the microphone image to remind you that this is CNN, which is
broadcast.

Smiley is gone, replaced with the microphone image.

Figure 1-9:
Add a new
button to a
toolbar by
dragging
and
dropping.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 30

Book I
Chapter 1

Getting w
ith the

Program
Personalizing Toolbars 31

Now rename the custom buttom:

1. Right-click the new button and click the Rename option from the
context menu.

2. Rename it from Custom Button to CNN.

Finally, make the button hot (into a link):

1. Right-click the button once again and this time choose Assign
Hyperlink, and then Open, from the context menu.

The Assign Hyperlink: Open dialog box opens, as shown in Figure 1-10.

Note in Figure 1-10 that you can link to various destinations: specific
cells or ranges in an Excel workbook; files; e-mail addresses; or new
documents, workbooks, Word files, or Notepad TXT files.

2. Type http://www.cnn.com into the Address field (refer to Figure 1-10).

3. Click OK.

The dialog box closes.

4. Click the Close button on the Customize dialog box.

Now try your new hyperlink. Click the microphone icon on the Standard
toolbar, and you should see CNN appear, with all the latest shocks, scandals,
and scary celebrity agony.

Follow essentially the same steps to add links to menus instead of toolbars.
Hyperlinks can also be inserted into Excel workbooks (just right-click a cell
and choose Hyperlink from the context menu), Word documents (right-click
the document), and so on.

Figure 1-10:
Use this
dialog box
to create
hyperlinks
to work-
books, Web
sites, and
so on.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 31

Personalizing Toolbars32

Access, however, is, as usual, the odd stepchild and does things its own, dif-
ferent way. You add hyperlinks to reports, forms, and so on in Access. (It just
creates a Label control containing the link.) However, the links don’t work
in Access itself. You must output the report to Excel, HTML, Word, or some
other host before the links can actually do their job. As you’ll see throughout
this book, Access often trods a different path than other Office applications.
It appears to exist in a parallel, although similar, universe.

Vaporizing interface elements programmatically
Throughout this book, you’ll find all kinds of programming techniques that
you can use to exploit and unify Office 2003 applications. Although you’ve
not yet explored the vast VBA language built into most Office applications,
create a useful little macro right now while I’m talking about toolbars. You
don’t have to understand what’s happening in the programming at this
point: Monkey-see, monkey-do is just fine at this stage.

Many games and programs have a key you can press that removes all the
extraneous, distracting menus, help windows, gauges, and other things
from the screen. This frees you up to simply see the essentials. It’s similar to
choosing View➪Full Screen in Word: All the rulers, scroll bars, menus, and
toolbars vanish, and you see the immortal words of the document’s writer
(you) unadulterated by debris. However, note a couple of problems with Full
Screen mode in Word: You lose the scroll bars, and an annoying little bar
appears right in the document, which allows you to restore the view to
Normal mode.

Here I show you how to write a macro to improve on Word’s clean-screen
mode. In this macro, I preserve the scroll bar, and you won’t need that
annoying back-to-Normal-mode bar. Instead, you just use the shortcut key
combination Alt+V to toggle Full Screen mode on and off. Simple, clean,
and — for those of us who like to type on a blank piece of “paper” without
distracting icons all over the edges — a real pleasure to use.

Programming a macro to hide a toolbar
Here’s how to write a macro to hide one or more menus and toolbars so that
you can selectively clear the screen any way you choose or toggle between
sets of toolbars/menus for different purposes.

Many people have the primary menu (File, Edit, View, and so on), and the
Standard and Formatting toolbars visible at all times while using Word.
But you use them only now and then. Most of the time, you’re just typing.
Wouldn’t it be nice to have a clean screen in which to type? Figures 1-11 and
1-12 show before and after examples.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 32

Book I
Chapter 1

Getting w
ith the

Program
Personalizing Toolbars 33

Figure 1-12:
AFTER:
Some
people
prefer a
clean
screen to
write on.

Figure 1-11:
BEFORE:
Toolbars
and menus
can clutter
up a word
processor
screen.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 33

Personalizing Toolbars34

Here’s how to make distracting menus and toolbars disappear, or reappear,
every time you press the Alt+V key combination (V for vanish).

1. In Word, choose Tools➪Macro➪Macros.

2. Type Alt+V in the Name field in the Macros dialog box.

You’re later going to assign this macro to the Alt+V key combination, so
it’s useful to name the macro after these keys. It helps you remember.

3. Click the Create button in the Macros dialog box.

A powerful editor opens, about which you can find more in Book II and
other places in this book.

Your insertion cursor (the blinking, vertical line) is now located within
your AltV macro.

4. Type in the following VBA commands so that the AltV macro (a Sub,
technically) looks like Listing 1-1.

Listing 1-1: AltV Macro

Sub AltV()
‘
‘ AltV Macro
‘ Macro created 11/25/2003 by Richard
‘

If CommandBars(“Standard”).Visible = True Then

CommandBars(“Standard”).Visible = False
CommandBars(“Formatting”).Visible = False

Else

CommandBars(“Standard”).Visible = True
CommandBars(“Formatting”).Visible = True

End If

End Sub

5. Close the Visual Basic editor by clicking the small X icon in the upper-
right corner.

When reviewing the code, you can ignore the lines that begin with single
quote marks. They’re simply comments that the programmer (or in this case,
VBA itself) inserted as hints or notes to the programmer. VBA ignores such
lines when executing a macro.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 34

Book I
Chapter 1

Getting w
ith the

Program
Personalizing Toolbars 35

You can also ignore these programming commands, but for the curious, the
above code translates into English like this: If the Standard toolbar is show-
ing, make it and the Formatting toolbar invisible or else make them both visi-
ble. And that’s just what you want. Pressing Alt+V toggles their visibility, just
the way you toggle a light switch on and off.

Using macros to remove menus
If you want to hide the main menu, too, you have to do things a bit differ-
ently. Menus are not part of a Menus collection but are in the CommandBars
collection. (Collections are, simply put, arrays of objects. Like arrays, collec-
tions can be manipulated programmatically in loops.) What’s more, you
can’t specify the primary menu (the one with File, Edit, View, and so on) by
name but instead must refer to it as the ActiveMenuBar. Finally, you can’t
use the Visible = False approach that works with toolbars. Instead, you
must use Enabled = False. There’s no rhyme or reason for these differ-
ences: It’s just one of the challenges faced by programmers every day.
Consistency is attempted in computer languages like VBA but is never fully
achieved. Anyway, here’s the code that you should add to the above macro
to toggle the visibility of the main menu. Insert the bold lines in the places
indicated.

If CommandBars(“Standard”).Visible = True Then

CommandBars(“Standard”).Visible = False
CommandBars(“Formatting”).Visible = False
CommandBars.ActiveMenuBar.Enabled = False

Else

CommandBars(“Standard”).Visible = True
CommandBars(“Formatting”).Visible = True
CommandBars.ActiveMenuBar.Enabled = True

End If

Modify this code to add any additional command bars — beyond Standard
and Formatting — that you use in Word.

Assigning the macro to hide menus and toolbars
After you program the macro to hide toolbars and menus (see the preceding
sections), all that remains is to assign this macro to the Alt+V key combina-
tion. Follow these steps:

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 35

Personalizing Toolbars36

1. Choose Tools➪Customize.

2. Click the Keyboard button at the bottom of the Customize dialog box.

3. Choose Macros in the Categories list.

A new list named Macros appears, with all your macros displayed,
including the new one you just wrote, AltV.

4. Choose AltV in the Macros list.

5. Click in the Press New Shortcut key field in the Customize Keyboard
dialog box.

The insertion cursor begins blinking in this field, ready for you to press
the key combination that will launch the AltV macro.

6. Press Alt+V.

You are informed that Alt+V is unassigned unless you’ve already
assigned it to something previously, in which case you must decide
whether to override the previous assignment or choose a new key
combination.

7. Click the Assign button of the Customize Keyboard dialog box.

8. Click the Close button of the Customize dialog box.

Let Office do the programming
If you’re unsure what commands to use when
programming in VBA, you can always try a
shortcut: Let Office do the programming for you.
Here’s how. Choose Tools➪Macro➪Record
New Macro. The Record New Macro dialog
box opens. Click the OK button to begin
the recording process. Then do something —
type, click the mouse, choose menu options,
whatever — while the recorder runs and writes
programming for everything you’re doing.
When you’ve finished, click the blue square in
the Macro Recorder toolbar to stop the record-
ing. Now press Alt+F11 (in Word) to display the
VB editor and the programming that was gen-
erated for you by the recorder. You can now
edit this code, copy and paste it into other
macros, or just learn from it. For example, if you

choose File➪Save while the recorder is run-
ning, you’ll find the following code in the VB
editor later:

Sub Macro6()
‘
‘ Macro6 Macro
‘ Macro recorded 11/25/2003 by

Richard
‘

ActiveDocument.Save
End Sub

The currently visible Word document is the
ActiveDocument object. You can append a
period after this object’s name to perform vari-
ous tasks that can be accomplished with the
ActiveDocument.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 36

Book I
Chapter 1

Getting w
ith the

Program
Restoring Classic Key Behaviors 37

Now for the fun. Press Alt+V in Word’s Normal document view. The toolbars
disappear. Press Alt+V again, and they reappear, just as you’d hoped. You
can take this technique as far as you want, showing or hiding pretty much
whatever you want, whenever, however . . .well, you get the idea. More about
VBA in chapters to come.

If you want to go the whole way and create a macro to toggle Full Screen
mode, use the following code. (Use this instead of the code in the previous
sections, not in addition to.)

ActiveWindow.View.FullScreen = Not ActiveWindow.View.FullScreen

Customizing the Keyboard
Just as you have essentially total freedom to manipulate Office 2003 menus
and toolbars, you can also reassign keys to suit your needs. Key combina-
tions can be assigned to trigger all the features in the applications as well as
macros and other targets. These combinations are hot keys or shortcut keys.
However, when you open menus via built-in keyboard shortcuts featuring
the Alt key (such as Alt+F to open the File menu), this behavior is also called
shortcut keys or keyboard shortcuts. Never mind. Whenever you want, you can
change the classic key assignments to whatever you want.

To see the shortcut keys assigned to toolbar buttons when you pause your
mouse cursor over a button, choose Tools➪Customize and then click the
Options tab. Mark the Show ScreenTips on Toolbars and the Show Shortcut
Keys in ScreenTips check boxes to select them. Making these changes
affects the behavior of all the other Office 2003 applications. (Note: Excel
displays only the Show ScreenTips on Toolbars check box, so you can’t
make this change from Excel.)

Restoring Classic Key Behaviors
When you first start using Office 2003 Word, you might notice that several
traditional keyboard behaviors have been rather strangely altered. For exam-
ple, the Delete key has for decades been used to delete a selected block of
text. Now, when you select (drag) some text (so it reverses color, to white on
black), pressing the Delete key merely displays a little (and for most of us
who are capable typists, highly annoying) question: Delete block? No (Yes).
Repeatedly pressing the Delete key has no effect. You must also press Y to
actually perform the job that pressing the Delete key used to accomplish.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 37

Getting Online Help38

Similarly, keys that maneuvered you through a document have been reas-
signed. You used to get to the start of a line of text by pressing the Home key.
Now you must press Home+←. You used to be able to press Ctrl+Home to
get to the beginning of the document; now this displays the Find and Replace
dialog box, with the Go To tab selected.

If you’re finding these strange behaviors, you won’t be able to remap these
keys by using the usual approach (choosing Tools➪Customize and then
clicking the Keyboard button). The Delete key is set to Edit➪Clear, which is
what it’s supposed to say. It just behaves oddly.

Here is the solution: For reasons unknown, when Word is installed, it some-
times switches on the Navigation Keys for WordPerfect Users option. To fix
this and restore your familiar Word behaviors, choose Tools➪Options and
then click the General tab. Deselect the Navigation Keys for WordPerfect
Users option.

Getting Online Help
Microsoft provides extensive online help for developers and programmers,
and its Office information is no exception.

Your portal to Office 2003 help online is http://office.microsoft.com.
(You’ll find a link to this site in the Office applications’ Help menu.) At this
location. you find a list of the individual Office applications and utilities.
(See the left side of Figure 1-13.)

Click the Access link, for example, and you’ll be told that in Office 2003,
you need to upgrade to Jet 4.0 if you want Access to be able to offer all its
features yet at the same time block unsafe expressions that could cause
virus-like damage.

Another useful online resource is MSDN, the Microsoft Developer Network.
Here at http://msdn.microsoft.com, you can find advanced tutorials, a
search engine, white papers, downloads, free software trials, and other often
useful items. MSDN is also a subscription service that sends out early versions
of Microsoft products, CDs full of various kinds of programmer-oriented tools,
and so on. However, you don’t have to be a subscriber to take advantage of
the wealth of information online.

If you’re looking for answers to specific questions, try joining one of the
newsgroups dedicated to the various Office applications. Try this address:
http://support.microsoft.com/newsgroups/default.aspx. Then drill
down until you find the application, topic, and messages of interest to you.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 38

Book I
Chapter 1

Getting w
ith the

Program
Getting Online Help 39

Figure 1-13:
This is the
gateway to
all kinds
of infor-
mation at
Microsoft’s
Office site.

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 39

Book I: Office 2003 Essentials40

01b_570676 bk01ch01.qxd 6/4/04 9:52 PM Page 40

Chapter 2: Programming Lite:
Making the Most of Macros

In This Chapter
� Knowing what you can and can’t record

� Assigning macros to toolbars and keyboard shortcuts

� Viewing standard macros

� Using the Auto macros

� Understanding macro security

Perhaps you’ve created macros (little programs) in an application such
as Word. (Nobody knows how macros got their name: Macro means

large, but macros are small. Whatever.)

Macros can be real timesavers, automating tasks that you perform frequently.
Macros are available for every other major Microsoft application. Even Visual
Basic .NET and the Visual Studio .NET editors now have macro capabilities.

Discovering the Pluses of Macros
You can automate and customize your applications in many ways: assigning
layout configurations to function keys, adding new shortcut keys, building
custom add-ins, creating your own wizards, modifying toolbars, and even
extending the existing menus with your own utilities.

However, for those of us who love to program, macros (also known as VBA
subs or procedures) are among the most enjoyable ways to modify how appli-
cations behave — easy, little utilities that can be quite simple to create but
are also sometimes surprisingly useful.

The most obvious reason to use a macro is to accomplish instantly what
might take you a fair amount of time to do. For example, if you find yourself
doing something repeatedly, such as having to fill out your address, create a
macro to do the job for you.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 41

Discovering the Pluses of Macros42

Macros can be composed of a simple series of application commands, such
as creating a new Access database with certain parameters. Or macros can
be quite complex, involving .NET libraries and other low-level (sophisticated
programming) activities. You can read how to create complex macros in
Books II and VIII.

In essence, a macro is a computer program. No, it’s not as large or complex
as a typical utility (such as a spell checker), but it’s a program nonetheless.
You tell the macro how to do something for you. Then, forever after, it car-
ries out your instructions flawlessly.

Although macros are just one way to write a computer program, they’re
widely used because they’re efficient — both easy to create and useful. Most
commercial applications contain an embedded programming language: the
macro language. In Microsoft applications, that language is Visual Basic for
Applications (VBA).

Macros run within their applications; they can’t run if the host application
isn’t also running. However, you can build small programs by using Visual
Basic 6, VB .NET, or other languages outside of Office applications while
you’re working in any application or even just on the desktop or in Explorer.
And with a third-part utility that I use all the time, you can even imitate the
way macros are usually launched. These outside programs can be launched
with shortcut key combinations, such as W+Tab to launch Word.

The ABCs of BASIC and C
BASIC (Beginner’s All-Purpose Symbolic Instruc-
tion Code) has been around for a long time (think
mid-1960s). An early programming language, it’s
the most popular, straightforward, and efficient
computer language ever invented. Prior to 1995,
most Office applications had their own, unique
version of BASIC: WordBasic, AccessBasic, and
so on. That was unfortunate, but now these spe-
cial languages have all been replaced by VBA.

It’s a great relief that Microsoft had the wisdom
to use BASIC as the macro language rather
than the alternative (the crypto-mathematical,
pseudo-scientific C language and its many deriv-
atives). Had C been chosen — and doubtless

there were some programmers advocating it —
few people would bother to write macros.

Nonetheless, over the years, some aspects of
C have leaked into BASIC, most notably the
academic theory of object-oriented program-
ming (OOP). VBA is somewhat less straightfor-
ward, intuitive, and plain-English than previous
versions of BASIC such as WordBasic, which
VBA replaced. That’s because OOP has moved
into VBA in various ways, adding some com-
plexities while offering some benefits as well.
But VBA will never be fully object-oriented. For
that, you must move to Visual Basic .NET.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 42

Book I
Chapter 2

Program
m

ing Lite:
M

aking the M
ost

of M
acros

Recording Macros 43

In other words, regardless of whether any applications are running, you can
launch a program, substitute text, open a document, send e-mail, go to an
Internet site, open a folder or Windows peripheral (such as printers, disk
drives, and so on), and even launch scripts that you write to do such things
as switching screen resolutions with a single keypress. (Script languages are
similar to regular computer languages such as BASIC, but they usually lack
the ability to directly modify or delete files on the hard drives, or other poten-
tially malicious, virus-like actions.) This Windows-wide, keyboard shortcut-
capable macro utility is available from ActiveWords (www.activewords.com),
which offers a free 60-day trial and two versions. (The more expensive
one includes the scripting feature among other enhancements.) I find this
utility indispensable.

Recording Macros
Whenever you find yourself doing some small task repeatedly, that task is a
candidate for a macro. For example, I often need to see how many words are
in a document I’m writing in Word. I could take the long route through the
menu system: File➪Properties➪Statistics. Or I could record this activity into
a macro and then simply add that macro to a toolbar, so I could see the word
count with a single click. Or I could assign that macro to a keyboard shortcut
such as Alt+W. Either way, macros make frequent tasks a snap.

Try an example. You can read in Chapter 1 how to write a macro directly —
to program it — in the Visual Basic editor. You can also record macros,
which is the simplest (but most limited) way of creating a new macro.
(However, you can’t record a macro in Access. You can write them, but you
can’t record them.)

Recording a simple Word macro
Assume that you’re running a little eBay business, selling Samoan straw
dolls. Every time you write a letter to a customer, you have to type We’re
hoping you enjoy your new MuNaa Doll! Remember, though, never put it in the
microwave.

This tedious, repetitive task is a perfect candidate for a macro. What’s the
point of typing those sentences over and over, day after day? The following
steps show you how to create a macro to automate the process.

1. In Word, choose Tools➪Macro➪Record New Macro.

The Record Macro dialog box appears, as shown in Figure 2-1.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 43

Recording Macros44

2. In the Macro Name text box, type Closing as the name for your new
macro.

3. Decide how you want the user to activate the macro: mouse or
keyboard.

You can also opt to assign your new macro to a toolbar, but that requires
that you move your hands from the keyboard and reach for the mouse.
(Bad.) It also requires that the toolbar be visible at the time. (Double
bad.) In my view, creating a keyboard shortcut is often preferable. So,
click the Keyboard icon of the Record Macro dialog box.

The Customize Keyboard dialog box opens, as shown in Figure 2-2.

4. Click the Press New Shortcut Key field to put the blinking insertion
cursor there; then press Alt+C (or whatever other combination you
want to use).

Figure 2-2:
Assign your
new macro
to a key
combination
here.

Figure 2-1:
Begin
recording a
Word macro
from this
dialog box.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 44

Book I
Chapter 2

Program
m

ing Lite:
M

aking the M
ost

of M
acros

Recording Macros 45

5. Click the Assign button and then click the Close button.

The Record Macro toolbar appears on the upper left of your document,
with a blue square (End Recording) and a red circle (Pause).

6. Type in the following text, which is what you want to automatically
insert whenever this macro is run.

We’re hoping you enjoy your new MuNaa Doll! Remember, though, never
put it in the microwave.

7. Click the blue square on the Record Macro toolbar.

The toolbar disappears, and your macro is finalized.

Now whenever you press Alt+C, the text is typed in for you.

Although the macro recorder can detect mouse clicks on such things as
menu items (it sees this as simply the same as a keyboard menu selection
via Alt+keypress), some mouse behaviors can’t be correctly interpreted
(such as dragging to draw a line). So, if possible, use the keyboard when
recording a macro, especially in Excel and PowerPoint.

If a dialog box appears while you’re recording a macro, note the settings dis-
played in the dialog box. Every setting will be recorded by the macro, even if
you’re merely trying to adjust one of the settings. For example, if you decide
to switch to boldface, you can open the Font dialog box by choosing Format➪
Font during recording. However, all the following information (everything this
dialog box is capable of modifying) is inserted into your macro:

With Selection.Font
.Name = “Times New Roman”
.Size = 10
.Bold = True
.Italic = True
.Underline = wdUnderlineNone
.UnderlineColor = wdColorAutomatic
.StrikeThrough = False
.DoubleStrikeThrough = False
.Outline = False
.Emboss = False
.Shadow = False
.Hidden = False
.SmallCaps = False
.AllCaps = False
.Color = wdColorAutomatic
.Engrave = False
.Superscript = False
.Subscript = False
.Spacing = 0.3

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 45

Recording Macros46

.Scaling = 100

.Position = 0

.Kerning = 0

.Animation = wdAnimationNone
End With

This is fine if forcing all these parameters is your intention. However, if you
just meant to make the text you’ve selected boldface, you’d be better off
avoiding the dialog box altogether when recording the macro. Try using
Ctrl+B instead.

Understanding the VBA behind recorded macros
If you want to view or modify the macro you just recorded, press Alt+F11 to
open the VB editor and scroll until you find the macro named Sub Closing.
It should look like this:

Sub Closing()
‘
‘ Closing Macro
‘ Macro recorded 11/27/2003 by Richard
‘
Selection.TypeText Text:=”We’re hoping you enjoy your new

MuNaa Doll! Remember, though, never put it in the
microwave.”

End Sub

A short overview of objects
To understand .NET, Office applications’ object
models, the XML object model, and other con-
temporary programming, you need to know
about a few key qualities of objects.

You can divide computing into two broad cate-
gories: information and processing (manipulat-
ing the information). Similarly, objects are made
up of two broad categories: properties and
methods. Properties are similar to information;
properties describe an object’s characteristics,
like the format of an XML attribute (format=
ounces, for example). Methods are similar to
processing. A method is a behavior or job that
an object knows how to perform, like make a
copy of yourself. Another way to look at this

distinction is that properties are similar to what
a programmer thinks of as traditional variables,
but methods are similar to traditional functions.
Collectively, an object’s methods and properties
are known as its members.

These distinctions between object, properties,
and methods are hardly new to computer pro-
gramming, much less an invention of OOP or
XML. Instead, they are built into reality and can
be found in the simplest childhood grammar:
“Black storm go boom!” is more than a two-
year-old’s poetic description of thunder. It
reveals the fundamental nature of object/
member relationships: Black (property), storm
(object), go boom (method).

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 46

Book I
Chapter 2

Program
m

ing Lite:
M

aking the M
ost

of M
acros

Recording Macros 47

The lines Sub and End Sub surround all macros, and mean start here and end
here, respectively. The commands and information between those two lines
tell VBA what to do when the macro is executed. Lines that start with apos-
trophes are comments and are ignored during execution.

You can delete this macro Sub if you wish, but be sure to delete everything,
including the End Sub. Or you can modify the message by typing something
else as the text. In other words, you can directly modify the macro program-
ming in the VB editor.

What does the programming mean? It’s written in BASIC (see the sidebar,
“The ABCs of BASIC and C”). But because of the influence of OOP, instead of
simply writing Insert “This Text”, as would be the case in WordBasic,
you must refer to a selection object and its TypeText method: Selection.
TypeText. Then you have to provide a Text object. (Some would call it a
property.)

Today’s programmers face the job of transitioning from classical computer
programming (typified by VBA) to the current trend of object-oriented pro-
gramming, as exemplified by VB.NET. Throughout this book, I illustrate
migration paths that you take to ease this transition if you’re used to tradi-
tional Office programming techniques but now need to move beyond them
to VB.NET. If you aren’t yet familiar with the fundamental concepts of OOP
(objects and their properties, methods, and events), don’t be concerned.
You’ll pick up the jargon as you go along.

Briefly, and somewhat simplified, an object can be practically anything (a vis-
ible button, single word of text, range of words, calendar utility, and so on).
An object’s properties are its qualities (such as its color, size or length, posi-
tion on the screen, and so on). An object’s methods are things that it can do,
such as a calendar object’s ability to calculate the number of days between
two dates. Events are things that can happen to an object, such as the user
clicking the object to trigger it or select it, and so on.

The Selection object
The Selection object is not well-named.
Selection, in computer terms, typically means
that you’ve dragged your mouse across text or
held down the Shift key while using the arrow
keys to highlight some text. The selected text
reverses to white letters on a black background

to indicate that it’s a selection. Unfortunately,
this is not what is commonly meant by selec-
tion in VBA. A Selection object is merely a
fancy way of saying the current insertion
cursor position (although it can also confus-
ingly mean a true, classic selection of text).

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 47

Using Special Macros in Access48

The point is that with OOP-inflected BASIC, your programming becomes
more verbose than traditional BASIC programming as well as less clear, less
descriptive, and less easy to read and modify. The punctuation also becomes
awkward and strange (such as the := used instead of the more sensible =).
And, c’mon: You’re simply inserting text here. Why not just use the obvious
programming (WordBasic’s version), like this?

Insert “We’re hoping you enjoy your new MuNaa Doll! Remember,
though, never put it in the microwave.”

The answer is that a generation of programmers has graduated from schools
that teach only the OOP way, so that’s what they tend to prefer.

Using Special Macros in Access
Although Access includes VBA, it has a separate (albeit rather awkward)
macro facility as well. However, for reasons of backward-compatibility
(surely it’s not nostalgia for ungainliness), Access retains its old macro pro-
gramming system as well as VBA. Also, Access contains a utility that can
translate legacy Access macros into VBA macros.

I don’t spend much time exploring Access macros, but you should know that
you can’t record a macro in Access. In fact, if you open the Tools➪Macro menu
in Access, all you see are three options: the VB editor, Run Macro, and Convert
Form’s Macros to Visual Basic. Form’s Macros are Access’s old-style macros:
You select various actions from a list box; when translated into VBA, these
actions become methods of the DoCmd object. In all the other Office 2003
applications, macros are what I’ve been describing in this chapter, namely
VBA Subs (also called procedures). However, Access (always the maverick)
requires you to explicitly request (via Tools➪Macro) that a particular Access-
style “macro” be translated into VBA.

Creating an Access macro
To create a legacy Access macro, go to the primary database window, click
the Macros option in the left pane, and then click the New button. The spe-
cial Macro window appears, as shown in Figure 2-3, from which you choose
actions from a drop-down list:

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 48

Book I
Chapter 2

Program
m

ing Lite:
M

aking the M
ost

of M
acros

Working with Auto Macros 49

Never fear, however. As you’ll see in Book II and elsewhere, you can create
whatever you need via VBA in Access perfectly well, just without the free-
dom to use a recorder to assist you.

Converting Access-style macros to VBA
If you do have legacy Access macros that you want to convert to VBA — so
you can edit them along with your other, newer Access macros — follow
these steps:

1. Click the Macros option in the Objects pane of the database window.

Your macros are listed.

2. Click the name of the macro you want to convert.

3. Choose File➪Save As.

The Save As dialog box opens.

4. Choose Module in the lower text box.

5. Click OK.

6. Choose Convert in the Convert Macro dialog box.

Working with Auto Macros
Word, Excel, PowerPoint, and Outlook each permit you to use a special type
of macro. If you use special names when naming a macro, the macro is han-
dled in a special way by VBA. These special macro names begin with Auto

Figure 2-3:
Use this
awkward
process to
create
Access
macros.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 49

Working with Auto Macros50

and other special, reserved names. Office applications recognize that such
macros must be executed in response to events that happen while the appli-
cation is executing. In fact, in OOP, these macros would actually be called
events.

The most useful Auto macros are

✦ AutoExec: This executes when you first start the application running
(or also if you load a global template in Word).

✦ AutoNew: This executes each time you create a new document, work-
book, or presentation.

✦ AutoOpen: This executes any time you open an existing document,
workbook, or presentation.

✦ AutoClose: This executes every time you close a document, workbook,
or presentation.

✦ AutoExit: This executes when you shut down the application (or also if
you unload a global template in Word).

Auto macros are useful if you need to do some housekeeping before an
application runs or a document loads (such as loading in the last two
documents you worked on, or calculating the latest sales tax). Other
housekeeping — such as saving a special backup file — might need to be
done during document or application shutdown.

Word includes several specialized Auto events, but you will probably need
to use only AutoOpen and AutoClose (put these in a Normal module),
Document_Open, Document_Close, and Document_New.

Excel also offers a variety of Auto macros — New Sheet, Sheet Activate, and
so on — but the spelling is a bit different. (AutoOpen becomes Auto_Open,
for example). Press Alt+F11 to get to the Excel VBA editor and then look in
the Project Explorer for Name.Personal.xls. Double-click this entry and
choose Modules, Module1. You’re now in Module1 of your Personal Macro
Workbook. Choose Insert➪Procedure. You see the Add Procedure dialog
box. Type Auto_Open in the Name field. Click OK.

Access does permit a limited Auto event facility, but you cannot use VBA. You
must use that early macro legacy technology that Access (alone among Office
applications) includes. Search Access help for AutoExec to find instructions.

Outlook uses this format:

Private Sub Application_Startup()

End Sub

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 50

Book I
Chapter 2

Program
m

ing Lite:
M

aking the M
ost

of M
acros

Dealing with Macro Security Issues: What You Need to Know 51

PowerPoint wants you to put any Auto macros in a class module. Beyond
that, you must trigger the macros from a code in a different location. I don’t
have time or space or patience to outline the unnecessarily convoluted
process to execute PowerPoint events, but if you must do it, search
PowerPoint Help for Application Events.

If the user holds down the Shift key, Auto macros are blocked and will not
execute. Also, you might have a macro that creates new documents, which
would, therefore, trigger the Document_New macro. If you want to block the
Document_New event from triggering in your programming, use this code:

WordBasic.DisableAutoMacros

Dealing with Macro Security Issues:
What You Need to Know

The struggle to achieve computer security is doomed. It’s impossible to
completely secure a computer, just like it’s impossible to build a car that
can’t crash, you cannot completely secure a computer. (You could secure
a computer or car by encasing them in cement and then burying them in a
salt mine, but then they’d no longer do their jobs.)

Of course, you know that your computer can delete files: Just right-click a
filename in Window Explorer, and then choose Delete from the shortcut
menu. However, if a file can be deleted, a virus can potentially delete it, too.
Or reformat an entire hard drive, or use your computer to launch blizzards
of span, and so on.

All you can do is minimize the risks; you can’t eliminate them. Similarly,
macros are executable programs, albeit small programs. And therefore, they
can be used for good, or ill.

Administrators (and if you work on a personal computer at home, you should
be the administrator) are people who are permitted to do everything to
modify how Windows behaves. They can hide files from other users, change
passwords, adjust security settings, and make many other modifications.

Administrators can specify how macros behave, as well as any other exe-
cutable code located in documents, presentations, templates, workbooks,
and most objects attached to these various elements via linking or other
techniques. (Remember that objects are famous for including not merely
data, but also executable code — known as methods — that can act upon
that data.)

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 51

Dealing with Macro Security Issues: What You Need to Know52

Windows has various kinds of built-in security. In XP, an administrator can
assign levels of “trust” to various different users. (For example, some are not
allowed to delete files, for example). In addition, the .NET languages have
built-in security features. Office 2003 applications contain their own kinds of
security. As you see, there are layers upon layers of security measures.

By far, the most effective security that you can personally achieve is to take
these relatively simple steps:

✦ Make frequent backups. This prevents a file-deleting virus attack from
doing much harm.

✦ Install a firewall like Zone Alarm. This blocks (so invaders from the
Internet will be blocked, and spyware can’t send secret messages out
from your machine).

✦ Set your macro security level to High.

✦ Simply refuse to install software from unknown sources. This includes
opening e-mail attachments.

Microsoft recommends the following additional safety measures: “run up-to-
date antivirus software on your computer; clear the Trust All Installed Add-ins
and Templates check box (described below); use digital signatures; maintain
a list of trusted publishers.” To me, these are fine precautions if you want to
take them, but personally I’ve never found much use for anti-virus software
because it interferes with some software installation processes (even though
you trust the source); it exacts a speed penalty; it’s a hassle to continually
update it with the latest versions; and if you take the steps I suggest at the
start of this tip, it’s not necessary.

When your macro security settings are set to High, macros created by you
are trusted, as are other sources of executables (runnable programs) that
you can specify. However, nothing prevents a virus author from posing as
you. Somewhere in the computer, a macro’s author is identified — and iden-
tity theft is not impossible; indeed it’s rather common.

VeriSign (www.verisign.com) — and other sources such as Microsoft’s own
Authenticode technology — attempts to ensure security by verifying the
origin of software via digital signatures. A digital signature usually does two
things

✦ Certification: They certify that the sender of a message or the author of
a piece of code (like a macro) is who he says he is.

In this sense, digital signatures are like a driver’s license.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 52

Book I
Chapter 2

Program
m

ing Lite:
M

aking the M
ost

of M
acros

Dealing with Macro Security Issues: What You Need to Know 53

✦ Verification: The other job they perform is to verify that the message or
code has not been modified after the author signed it.

In other words, you can rely on the message to be accurate, or the code
to be benign.

Technically, an electronic signature is usually generated by hashing a public
key, which is, itself, encrypted using an associated private key. The terms hash
and public/private key pairs are explained in detail in Book VIII, Chapter 8, if
this topic is of interest to you and you want to try programming using these
technologies.

Digital signatures are better than nothing, but viruses can imitate signatures,
just as people can put on police uniforms as a disguise. Likewise, they might
get caught relatively quickly but not before they’ve done some damage.

You can also self-certify your own macros. Choose Start➪All Programs from
the Windows toolbar, and then choose Microsoft Office➪Microsoft Office
Tools➪Digital Certificate for VBA Projects. In the dialog box that opens, type
in whatever name you want to use for your personal certification. Note that
this is a pretty weak certification process. (Not that any of them are com-
pletely secure.) This self-certification is kind of like issuing yourself a home-
made driver’s license — it’s not likely to impress the sheriff. It works on your
computer, but if your programming is run on a different machine, a warning
message appears. Commercial certificate issuing companies can revoke their
certificates, if necessary, and can trace signatures back to their origin. Neither
of these capabilities are available when you self-certify.

If you want to digitally sign your own macros for use on other computers,
choose Tools➪Digital Signature in the VBA editor. (You have to sign up with
VeriSign or another vendor before this will work. Prices vary depending on
the size of your business and other factors. Contact VeriSign sales for details
at 866-893-6565.)

Adjusting macro settings
To see your current Office 2003 macro security settings, choose Tools➪
Macro➪Security. You see the Security dialog box, where you can adjust the
levels of macro security. By default, security is set to High, as shown in
Figure 2-4.

The macro security settings (Tools➪Macro➪Security) work as follows:

Low
Anything goes! Live dangerously, hellzapoppin’! Every macro or eXtensible
Stylesheet Language (XSL) script file can do whatever it will. This is crazy
and dangerous. Nobody should use this setting.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 53

Dealing with Macro Security Issues: What You Need to Know54

Medium
For unsigned macros, the user is shown a dialog box requesting permission
to run this macro. Signed macros are first examined to see the quality of the
digital signature.

✦ A signature from a trusted source and by a trusted digital signature com-
pany (such as VeriSign) executes automatically.

✦ A valid source but by an unrecognized author displays the permission
dialog box.

✦ An invalid signature causes the macro to be disabled and the user to be
warned.

✦ A signature that can’t be verified or certificate (validation method) that
has expired displays a dialog box and requests user permission to
execute.

High
This setting is similar to Medium except that

✦ No dialog box is shown for unsigned macros.

✦ Network administrators can lock the list of trusted sources so that users
can’t accidentally add new (but nasty) trusted sources.

✦ In all additional situations, macros are summarily disabled, along with
dialog boxes displaying warnings.

Although I’m the administrator on my personal machine, this is the setting
I use.

Figure 2-4:
Set macro
security
here.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 54

Book I
Chapter 2

Program
m

ing Lite:
M

aking the M
ost

of M
acros

Dealing with Macro Security Issues: What You Need to Know 55

Very High
New in Office 2003, this most conservative setting disables all Smart Tag
DLLs, COM add-ins, and any macros not from trusted locations. DLLs are
dynamic link libraries (collections of executable code, loaded as needed by
applications: hence, the term dynamic). COM add-ins are similar to macros,
but they are sometimes larger, utility-size programs and are written and exe-
cute outside of documents or worksheets. Add-ins can also be used to glob-
ally change the behavior — or add functionality — to several Office 2003
applications simultaneously and automatically. What’s more, add-ins execute
more quickly than the typical macro.

You build an add-in for yourself using .NET (see Book VIII, Chapter 1). To pre-
vent any macros from running on a particular computer, choose Tools➪
Macro➪Security, click the Trusted Sources tab, and deselect the Trust All
Installed Add-ins and Templates check box, as shown in Figure 2-5:

Different Office 2003 applications display different options in the Security
settings. And, always the odd stepsister of the Office system, Access 2003
doesn’t offer the Very High option, although all other Office 2003 applica-
tions do.

Triggering trouble
No matter what settings you choose for the macro security feature in
Office 2003, other sources of potential damage lurk. In early versions, VBA
was VBScript, which was a language without such potentially dangerous
capabilities as file deletion. However, VBA does have FileSystemObject.
DeleteFile and FileSystemObject.DeleteFolder commands. What’s
more, Word documents and Excel workbooks can execute code from within

Figure 2-5:
Here’s how
to disable all
macros
entirely.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 55

Dealing with Macro Security Issues: What You Need to Know56

.NET assemblies. This execution ignores any security settings within the
dialog box shown in Figure 2-4: .NET security is managed by the .NET frame-
work itself.

You can avoid .NET assembly code execution from within Office 2003 appli-
cations by removing any _AssemblyLocation0 or _AssemblyName0 proper-
ties from a document (or template) or workbook’s list of custom document
properties. To do so, choose File➪Properties➪Custom.

Alternatively, you can handle the problem from within .NET itself by deleting
a .NET assembly’s associated code group from the computer or by modifying
code group properties by using the Code Access Security Policy Tool or the
Microsoft .NET Framework Configuration tool. For information on this tactic,
see the Microsoft .NET Framework Developer’s Guide that comes with Visual
Studio .NET. These are rather drastic steps, however.

Office 2003 includes a new capability to scan XML files to see whether any
references to XSL exist, which can contain executable scripts. If the macro
security level is set to High or Very High, all scripts are disabled. With the
security at Medium, the user is prompted to decide whether to permit the
script to execute. Set macro security to Low, of course, and Office allows
any scripts to execute and also invites angry ex-cons to your house for
Thanksgiving dinner.

Setting security for your needs
Here’s how to achieve whatever level of security you want:

✦ To prevent all executables from running: Disable the Trust All Installed
Add-ins and Templates option and set the macro security level to Very
High.

✦ To prevent all executables from running, other than those from a
trusted location: Enable the Trust All Installed Add-ins and Templates
option and set the macro security level to Very High.

✦ To allow trusted signed executables to run automatically: Set the
macro security level to Medium or High.

✦ To prevent unsigned executables from running: Set the macro security
level to High.

✦ To display a prompt to users to see whether they want to allow an
untrusted executable to run: Set the macro security level to High.

✦ To display a prompt to users to see whether they want to allow any
executable to run: Set the macro security level to Medium.

✦ To allow all executables to run with no prompt: Set the macro security
level to Low.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 56

Book I
Chapter 2

Program
m

ing Lite:
M

aking the M
ost

of M
acros

Dealing with Macro Security Issues: What You Need to Know 57

Administrators can set these levels for an entire office by using these vari-
ous approaches:

✦ Custom Maintenance Wizard

✦ Office Profile Wizard

✦ Custom Installation Wizard

✦ Group Policy snap-in

A snap-in is a utility that can be added to a Microsoft Management
Console (MMC).

The Office 2003 Editions Resource Kit Tools can be downloaded from

http://www.microsoft.com/downloads/details.aspx?familyid=
4bb7cb10-a6e5-4334-8925-3bcf308cfbaf&displaylang=en

This resource kit is a set of utilities and information. It includes the Custom
Maintenance Wizard (and the CMW File Viewer), Office Profile Wizard, Custom
Installation Wizard, Policy Template files, customizable alerts, HTML Help
Workshop, international information, Office Converter Pack, Office informa-
tion, Outlook Administrator Pack, Package Definition Files, MST File Viewer,
and OPS File Viewer.

The Group Policy allows administrators to specify and govern how network
resources, applications, and the operating system itself will behave. The
administrator can configure security settings for domains, computers, and
individual users by manipulating the MMC. To open the MMC, choose Start➪
Run. In the Open field, type mmc. Click OK to launch the console. To get fur-
ther information on using snap-ins, choose Action➪Help in the MMC.

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 57

Book I: Office 2003 Essentials58

01c_570676 bk01ch02.qxd 6/4/04 9:53 PM Page 58

Chapter 3: What’s New in 2003?

In This Chapter
� Seeing an overview of task panes

� Introducing Document Workspaces

� Discovering OneNote

� Joining the XML revolution

� Discovering the redesigned Outlook

Many users and developers are upgrading from previous versions of
Office to Office 2003. Perhaps you’ve been using Office XP or even

Office 2000, and you’re wondering what the primary new features are in
Office 2003 and how they can be used to your advantage. If so, this chapter’s
for you.

On the user interface level, Smart Tags and task panes are more in evidence
in Office 2003, and Outlook has undergone quite major changes. However,
many Office applications should seem pretty much as you remember them.
A quick look at the surface of Office 2003 will seem rather familiar, but you’ll
soon discover significant changes under the hood, where we programmers
spend most of our time.

For example, Office 2003 emphasizes interoffice communications in two
major ways: communication between office workers, and communication
between Office applications.

In fact, Microsoft is no longer calling the Office applications a suite. Instead,
it’s now the Microsoft Office System. This new terminology suggests that you
should consider Office a kind of special network, with lots of improvements
designed to assist the flow of data among workers. No longer are Office
applications merely isolated, individual applications running on separate,
self-contained computers. Instead, there is a great push to integrate the
system into a client-server network. After all, how many company docu-
ments are generated by one person working alone?

Throughout this book, you’ll find lots of examples showing how to exploit
Office’s new collaborative features. In this chapter, I take you on a brief
introductory tour of some of the major new tools and utilities in Office 2003.

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 59

Opening Task Panes60

Opening Task Panes
In various Office 2003 applications, you see a pane (a zone within a window)
open up, usually on the right side, as shown in Figure 3-1. These panes have
never been used as extensively as they now are in Office 2003, although
they’ve been around for several years. For example, in many XP applications,
the Help system opens a pane on the right side of the application.

In Office 2003, task panes are frequently used to provide context-sensitive
links, templates, help, and various other kinds of information. These panes
pop up in various ways: if the user clicks certain words, loads an XML-based
document, works on a shared document, opens a new document, chooses
View➪Task Pane, and several other actions.

For example, if you need to do research, be sure to check out the new
Research task pane. Just hold down the Alt key while clicking a word in a
document, and the Encarta encyclopedia pops open in the Research pane,
as shown in Figure 3-1.

In addition, you can open the All Reference Books list box to see various the-
sauri, translation services, and other research sites.

Figure 3-1:
Alt+click a
word for a
list of ency-
clopedia
articles.

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 60

Book I
Chapter 3

W
hat’s N

ew

in 2003?
Security: Adjusting Permissions and Protections 61

To see research for an entire phrase, highlight it before Alt+clicking it.

Security: Adjusting Permissions and Protections
All the new collaborative features of Office 2003 are welcome, but sometimes
too much collaboration isn’t a good thing. For example, the accounting
department gets to look at everyone’s salary, but fights would undoubtedly
break out around the water cooler if the whole office could see just who’s
being slighted and who’s rolling in cash.

Each Office application now has a Permission item on its File menu, as
shown in Figure 3-2. And you’ll also find various other options, such as the
Protection option on the Excel Tools menu or the Protect Document option
on the Word Tools menu.

One new security aspect is Information Rights Management (IRM). With this,
you can decide to mark documents so they can’t be forwarded, copied, or
printed. Of course, forbidding copying or printing can be a rather weak secu-
rity feature, given that (although the PrintScreen key is disabled) third-party
utilities can still copy a document as a graphic that can then be merrily for-
warded, copied, or printed.

Figure 3-2:
Specify here
how widely
this docu-
ment can be
distributed
or viewed.

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 61

SharePoint Everywhere62

You can also specify an expiration date on a document as well as lock docu-
ments (or parts of documents) from modification. If an organization prefers
not to use IRM, it can use the Passport system (Microsoft’s authentication
system, permitting quick and easy log on/password entry and verification).

SharePoint Everywhere
To streamline and improve workflow, Office 2003 is designed to work suc-
cessfully with SharePoint. With SharePoint, anyone in an office, or indeed an
entire distributed company, can easily collaborate with others to produce
documents, diagrams, presentations, or whatever other computer-based
task is required.

To this end, a core SharePoint portal hosts newsgroup-like discussions, links,
database features such as disconnected recordsets drawn from the corpo-
rate database, files of all types, annotated multimedia content, and so on.
Making all this more effective is that you’re not called upon to use special
utilities to communicate, with all the inconvenience and copying and pasting
that implies. You don’t need to open an Internet browser to e-mail a para-
graph from a Word document to a colleague. You can hold a chat discussion
or show someone part of a Word document right from within Word itself,
via the Shared Workspace task pane. You can invite others into a Shared
Workspace session by using the instant messaging feature of Microsoft
Office Live Communications Server 2003.

To use Office 2003’s collaboration features, you need to install on your
server either Windows Server 2003 (which includes SharePoint and costs
around $1,000 for five clients) or the SharePoint Portal Server 2003, which
costs $3,999 and $71 per user. Client computers can simply install Office
2003 itself.

Sharing with Document Workspaces
A Document Workspace site is a SharePoint Services site devoted to allowing
colleagues to collaborate efficiently on a document (or set of related docu-
ments). It’s similar to the idea behind other project management utilities
that permit people to check out documents and then update the common
copy of those documents in the shared library.

You can use the Shared Workspace task pane to launch a Document
Workspace in Office 2003 Word, Excel, PowerPoint, or Visio. After you
choose Tools➪Shared Workspace in one of these applications, the Shared
Workspace Task pane appears, as shown in Figure 3-3.

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 62

Book I
Chapter 3

W
hat’s N

ew

in 2003?
Sharing with Document Workspaces 63

In other words, use Document Workspace to facilitate intelligent merging
and solve version-control problems when documents are worked on by
groups. You know, how do you know which version contains everyone’s
latest modifications? Use SharePoint to handle this version problem for you
by permitting designated users read-only access to a document that you
(feel the power) can freely edit. Or you could choose to let everyone in your
group see the changes that you’re making in real-time if you wish.

Cool factor: Perhaps the most interesting aspect of this feature is that it
mimics a group of workers standing around a table, simultaneously modify-
ing a document. To prevent version collisions when two people try to edit
the same word, when anyone makes a change, everyone else’s mouse pointer
disappears. The final version of the document is then saved to the SharePoint
server after the collaborators have agreed on the changes. Explore these
concepts in more depth in Book VII, Chapter 8.

Figure 3-3:
Here’s a
way to
create a
new Shared
Workspace.

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 63

Introducing OneNote64

Introducing OneNote
If you’re a reporter, office worker, or anyone who takes a lot of notes, you’ll
doubtless be impressed by the new, slick note-taking program, Microsoft
OneNote 2003. Featuring an interesting interface, it can integrate a variety of
note bits and pieces into a single, easily searched, location. You can create
outlines, simple test notes, formatted text, graphics, pasted items from Web
pages, or drawings. OneNote can even include handwritten notes, diagrams,
and audio snippets (synchronized to your other notes), providing you with
very convenient ways to organize and retrieve disparate kinds of information.

OneNote offers many of the other formatting features of Word, but it’s specif-
ically designed for quick organization and easy retrieval, including sections,
tabs, running heads, specifying which notes are particularly important (by
using note flags: icons such as stars, question marks, and check boxes), and
other visual aids to help put notes in order systematically. You don’t even
have to remember to explicitly save a note: After you create a note, it’s auto-
matically saved for you. Also, cutting and pasting can be avoided because
you can e-mail and otherwise access the Internet directly from within
OneNote itself.

Think of OneNote as an electronic briefcase full of miscellaneous items:
diagrams, handwritten notes, audiotape snippets, and so on. You want to
accomplish two primary objectives with this collection of items. First, you
want to be able to organize them efficiently. Second, at some point, you’re
likely to want to combine some of them into an actual document to show
others. Both of these needs are thoughtfully and effectively met as a result
of all Microsoft’s efforts to make the product anticipate your researching,
searching, and document-generating needs and behaviors.

Alas, like some other satellite utilities such as Visio and FrontPage, the Office
2003 suite does not include OneNote. (Even the high-dollar Enterprise ver-
sion doesn’t have it.) With current rebates, you can buy OneNote at the time
of this writing for around $80.

XML under Everything
As with most Microsoft products — such as Visual Studio — Office 2003
rests on eXtensible Markup Language (XML). XML is a daughter language of
HyperText Markup Language (HTML), which is a communication scheme
becoming increasingly popular as a way to send messages over the Internet
(among other uses).

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 64

Book I
Chapter 3

W
hat’s N

ew

in 2003?
XML under Everything 65

XML’s primary benefit for Office 2003 users is that it offers yet one more way
to avoid having to use the Clipboard for copying and pasting information —
or worse, copying data by hand. XML permits you to automate the process
of transferring data between applications or between a data store (a data-
base, or perhaps another place where data is stored, like a list) and an
application.

Using InfoPath with Word
New in Office 2003, InfoPath offers you a way to create templates that take
data from a database and change it into forms that can be added to your cor-
porate database. InfoPath — unlike the rest of Office — stores data directly
as XML. InfoPath can be used by itself, but it’s especially valuable as a tool
to connect front-end users to back-end data stores. You can build forms
where users enter, view, or modify data, and the data store — and perhaps
a set of proprietary, legacy user-input interfaces — remain invisible to the
user. InfoPath can be a significant part of any Office 2003 data-related system.
And, of course, XML is now also available to all Office 2003 applications, if
not as directly as it is to InfoPath.

For example, after translating a table in a Word document into an XML file,
it’s then relatively easy to automatically flow that data into an Access data-
base (or indeed, any other kind of database). XML deconstructs data into
the famous self-describing format and then reconstructs it according to the
rules of the target.

To put it another way: When you choose File➪Save As and then select Save
As Type XML document, the process of translating a spreadsheet, database
table, or Word document separates the formatting from the raw data. The
formatting is preserved. An italicized word, for example, gets a tag pair like

Markup languages
XML shares HTML’s inability to compute. They
are fundamentally markup languages: that is,
they’re used to describe how things look or
how information should be arranged but are not
themselves capable of processing information.
Information processing is the definition of com-
puting; however, by themselves, languages such

as HTML and XML can’t even add 2 + 2. (A
derivative language, XSL or XML transforms,
however, can include executable script. Other
derivative languages can perform various doc-
ument editing functions. XML itself, though, is
by definition merely structured data with no
processing capability.)

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 65

XML under Everything66

these — <italic>identifying</italic> — that is indeed italic. However, if
the data is sent to a target application where italics are not available as part
of the presentation, the italic tags are ignored. In other words, formatting is
not lost, but it can be recast if the recipient application prefers to display
it — or otherwise manipulate it — a different way.

Here’s how it all looks. Suppose you enter a recipe into a Word table and then
send that table to a co-worker or store it in a database. The Word table is
translated first into XML format, with each element delimited (surrounded)
by tags describing the raw data inside those tags:

<?xml version=”1.0”?>
<recipes>
<recipe>
<name>Paste</name>
<cook>Mrs. Sprud</cook>
<date>2/12/03</date>
<size format=”ounces”>14</size>
<recipe>
<ingredients>
<dry>flour</dry>
<wet>water</wet>
</ingredients>

</recipes>

Using InfoPath with Excel
Here’s an example showing how InfoPath can be used with Excel. Data that
you type into an Excel spreadsheet doesn’t always remain in the classic Excel
format. Instead, like everywhere else in Office 2003, the data can become XML.
The advantage here is that the time-honored and terribly inefficient process
of printing out a hardcopy of an Excel spreadsheet and then having someone
type that data into a database or report is no longer necessary. The connec-
tion between Excel and the database becomes possible via XML’s universal
data format.

Another time factor, too, is improved by XML. Because Excel data can
now appear immediately in various structures, formats, applications, and
reports, people all over the organization can see various views of data right
away. They don’t have to wait until it’s retyped or otherwise massaged
into a different format via some cumbersome process. XML offers instant
communication.

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 66

Book I
Chapter 3

W
hat’s N

ew

in 2003?
XML under Everything 67

Figure 3-4 shows a sample Excel spreadsheet that I saved in an XML spread-
sheet format:

To save data in XML in Excel, choose File➪Save As and then change the
Save As Type selection at the bottom of the Save As dialog box to XML
Spreadsheet (*.xml). When you look at this file (it’s in plain, unformatted
text, as XML usually is), it describes the data in the classic <tag></end tag>
format and includes considerable redundancy (for clarity when this data is
translated into the target format). In Listing 3-1 is part of the XML file gener-
ated from the spreadsheet in Figure 3-4:

Listing 3-1: XML Generated by the Spreadsheet Data Shown in Figure 3-4
</Row>
<Row ss:StyleID=”s41”>
<Cell ss:StyleID=”s42”><Data ss:Type=”String”>Mortgage or rent</Data></Cell>
<Cell ss:StyleID=”s43”><Data ss:Type=”Number”>1000</Data></Cell>
<Cell ss:StyleID=”s43”><Data ss:Type=”Number”>1000</Data></Cell>
<Cell ss:StyleID=”s44” ss:Formula=”=RC[-2]-RC[-1]”><Data

ss:Type=”Number”>0</Data></Cell>
<Cell ss:StyleID=”s39”/>
<Cell ss:MergeAcross=”1” ss:MergeDown=”1” ss:StyleID=”m18355140”><Data
ss:Type=”String”>Actual Monthly Income</Data></Cell>

</Row>

Figure 3-4:
This classic
spreadsheet
can be
saved in
XML format.

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 67

Checking Out Outlook’s New Features68

<Row ss:StyleID=”s41”>
<Cell ss:StyleID=”s42”><Data ss:Type=”String”>Second mortgage or

rent</Data></Cell>
<Cell ss:StyleID=”s43”><Data ss:Type=”Number”>0</Data></Cell>
<Cell ss:StyleID=”s43”><Data ss:Type=”Number”>0</Data></Cell>
<Cell ss:StyleID=”s44” ss:Formula=”=RC[-2]-RC[-1]”><Data

ss:Type=”Number”>0</Data></Cell>
<Cell ss:StyleID=”s39”/>
</Row>
<Row ss:StyleID=”s41”>
<Cell ss:StyleID=”s42”><Data ss:Type=”String”>Phone</Data></Cell>
<Cell ss:StyleID=”s43”><Data ss:Type=”Number”>54</Data></Cell>
<Cell ss:StyleID=”s43”><Data ss:Type=”Number”>100</Data></Cell>
<Cell ss:StyleID=”s44” ss:Formula=”=RC[-2]-RC[-1]”><Data ss:Type=”Number”>-

46</Data></Cell>
<Cell ss:StyleID=”s39”/>
<Cell ss:StyleID=”s45”><Data ss:Type=”String”>Income 1</Data></Cell>
<Cell ss:StyleID=”s43”><Data ss:Type=”Number”>4000</Data></Cell>
</Row>

Excel also has a feature that translates and saves spreadsheets in an XML
data format that’s more like a traditional database table than the XML
spreadsheet format above with its cell identifiers and other spreadsheet-
specific tags.

Checking Out Outlook’s New Features
Outlook has been considerably improved. It’s a hotbed of collaborative fea-
tures, as you would expect. For one thing, you can now look at two calendars
at the same time. This is the sort of thing that people do in their offices all
the time, reconciling their personal day planner or PDA with their wall calen-
dar, for example, or comparing their schedule with a co-worker’s.

Several years ago the Microsoft Office team must have sat down and said:
“What do people do in offices a lot that we’re not offering in Office?” The
result is the many collaboration features supported by the SharePoint engine
as well as many individual touches like Outlook’s dual calendars.

In Outlook and Visio, you can send files as shared attachments, and a
Document Workspace site can be automatically created for you, named after
the attached document. You specify the SharePoint site where your new site
is to reside. This action makes you the default Document Workspace admin-
istrator, and the recipients of your e-mail attachment (who are members
of the contributor site group) become members of this new Document
Workspace.

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 68

Book I
Chapter 3

W
hat’s N

ew

in 2003?
Checking Out Outlook’s New Features 69

Among the many other new team-centric features in Outlook, when you
attach a document to an e-mail, you see a pane open with many options, as
shown in Figure 3-5. One notable new option is the suggestion that you might
not want to e-mail the attachment in the traditional way but instead use the
Shared Attachment feature. If you choose this option, the document is
placed into a shared workspace rather than sent to individual client
computers.

Figure 3-5:
Outlook
offers to
create a
shared
document
when you
add an
attachment
to e-mail.

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 69

Book I: Office 2003 Essentials70

01d_570676 bk01ch03.qxd 6/4/04 9:53 PM Page 70

Book II

Understanding Office
Programming

02a_570676 p02.qxd 6/5/04 12:38 AM Page 71

Contents at a Glance
Chapter 1: The Basics of Office Development with VBA ..73

Chapter 2: Managing Data ..89

Chapter 3: Looping and Branching ..113

Chapter 4: Managing Files and UserForms ..129

Chapter 5: Moving to the Internet ..151

Chapter 6: Debugging ..171

02a_570676 p02.qxd 6/5/04 12:38 AM Page 72

Chapter 1: The Basics of Office
Development with VBA

In This Chapter
� Using the IDE

� Introducing the Object Browser

� Understanding objects and collections

� Employing events

In this chapter, you orient yourself to the Visual Basic for Applications
(VBA) editor, also known as the Visual Basic editor or IDE (Integrated

Design Environment or Integrated Development Environment).

Although the VBA editor isn’t the powerhouse development environment
available in the Visual Studio IDE, the VBA editor is nonetheless full of useful
tools, a mature and effective Help system, and other features that help move
your programs from idea to finished product. This chapter also explores the
Object Browser utility and examines objects themselves (their uses, collec-
tions, and events).

Discovering the IDE
To get started with the grand tour of the editor, press Alt+F11 and behold
the Visual Basic editor, as shown in Figure 1-1.

For now, you can close the Properties window, the Project Explorer pane,
and any other windows that are visible, except the normal (Normal.dot)
macros window, as shown in Figure 1-1.

Here you get to do some real programming. You can use VBA to create
macros, but it’s also a very powerful language in its own right. The common
use of the term macro suggests a limited series of commands, similar to those
of the old AccessBasic language, but don’t be misled: VBA is full of commands
and capabilities. Indeed, its capabilities exceed those needed for many macro
tasks, but Microsoft figured why not just go whole hog and give us everything
we could possibly ever want?

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 73

Navigating the Complex VBA Vocabulary74

In fact, both VBA and VB.NET (VBA’s likely successor as the Office applica-
tion development language) give you access to many thousands of program-
ming commands, and most of them have multiple variations: You can use
each command in various ways. Remembering all the commands and their
variations would be impossible for most of us, so in this chapter, I show you
how to find help quickly when programming in BASIC.

Navigating the Complex VBA Vocabulary
Over the years, BASIC source code has grown far more complex. Visual Basic
(VB) Version 1 in 1991 had a vocabulary of approximately 350 words. When
VB made its first, tentative moves toward object-oriented programming
(OOP) in version 4, the vocabulary began to balloon. Now, in VBA and
VB.NET, the lid has blown off: You can program with thousands of objects,
and each of them can have dozens of members (methods, properties, and
events). Each of these members can include yet more diction (various argu-
ments). The total vocabulary now available to the VBA programmer is many
thousands of words. For example, when you use VBA in Word, you’re not
only accessing all the VBA commands but also the thousands of Word
objects and all their properties and methods.

How are you going to remember all these commands and their grammar?

Figure 1-1:
This editor
sits on top
of the VBA
engine,
providing
you with
high-level
tools.

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 74

Book II
Chapter 1

The Basics of Office
Developm

ent
w

ith VBA
Navigating the Complex VBA Vocabulary 75

Using AutoListMembers and parameter info
Fortunately, you don’t have to remember all the properties and methods
(known as the object’s members). Always at your service is the Help feature,
which continues to improve with each new version of Visual Basic.

Also, Microsoft has IntelliSense features — AutoListMembers and parame-
ter info — that pop up while you’re writing your source code, listing all the
members. And then after you choose a member, all that member’s parame-
ters are listed, too. This list displays the number, names, and data types of
both required and optional parameters used by a function, template, or
attribute.

Displaying a reminder
Whenever possible in this book, the examples will kill two birds with one
stone. They illustrate a technique, but they’re also useful in their own
right. (You discover how to do something actually worth doing rather
than its underlying theory.) In this example, I show you how to use the
AutoListMembers feature and also see how to display reminder or comment
messages to users in the title bar of Office applications. This is less obtru-
sive than a message box as a way of communicating with users: They don’t
have to close the message box before continuing with their work.

For some of the code examples in this book, you need to make sure that the
Office Object Library is available (is referenced) by the VBA editor. Press
Alt+F11 to open the Word VBA editor and choose Tools➪References. Ensure
that the check box next to Microsoft Office 11.0 Object Library is marked.

Now follow these steps:

1. Run Word and press Alt+F11.

The Visual Basic editor opens.

2. In the editor, choose Insert➪Procedure.

The Add Procedure dialog box opens.

3. Type ChangeTitle as the name for your new procedure.

4. Click OK.

The dialog box closes, and a new, empty Sub procedure appears, waiting
for you to insert some programming.

Public Sub ChangeTitle()

End Sub

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 75

Navigating the Complex VBA Vocabulary76

You want to add Remember to Save! to the title bar at the top of the cur-
rent Word document(s). Most Office applications have an object that
represents them. Not surprisingly, it’s the Application object. Like
most objects, it has lots of properties and methods, including a Caption
property that affects what you see on the title bar. To see one kind of
AutoListMembers feature, type this line just below the Public Sub
line:

Dim App As

As soon as you finish typing the word As, a list of objects appears, as
shown in Figure 1-2.

5. Type the following lines, ending with a period after the word app.,
like this:

Public Sub ChangeTitle()

Dim app As Application
Set app = Application

app.

Don’t worry about the strange Dim and Set redundancy. I explain those
commands shortly in the upcoming section, “Instantiation woes.”
As soon as you type the period following app, the AutoListMembers
window opens, showing you all the properties and methods available
to the Word Application object, as shown in Figure 1-3.

Figure 1-2:
Here’s one
kind of
automatic
Help list that
VBA
displays.

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 76

Book II
Chapter 1

The Basics of Office
Developm

ent
w

ith VBA
Navigating the Complex VBA Vocabulary 77

6. Scroll down in the list with the down-arrow key until you highlight
the Caption property; then press Enter.

The Caption property is inserted into your source code, and the list
disappears.

7. Finish the line by assigning your text message to the Caption
property, as in the following:

app.Caption = “Remember to Save!”

8. Just below the line you entered in Step 7, type MsgBox and press the
spacebar.

As soon as you press the spacebar, a list of the arguments available
to the MsgBox (message box) command is displayed. This handy
AutoQuickInfo feature, as shown in Figure 1-4, reminds you of the
required arguments, the optional arguments shown in brackets, and
the order of the arguments.

9. Complete your little macro procedure by assigning text to the mes-
sage box prompt.

Figure 1-4:
This small
argument
list Help
feature is
AutoQuick
Info.

Figure 1-3:
An object’s
members
are all listed
here for you
to choose
from.

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 77

Navigating the Complex VBA Vocabulary78

Your entire macro should look like this:

Public Sub ChangeTitle()

Dim app As Application
Set app = Application

app.Caption = “Remember to Save!”

MsgBox (“Done.”)

End Sub

10. With your blinking insertion cursor somewhere inside the new
ChangeTitle procedure in the VBA editor, press F5 to execute and
test the macro.

When you look at Word’s title bar now, you should see the name of the
currently opened document, followed by the message Remember to
Save!

Using the Object Browser
Some people like to use the VBA Object Browser utility instead of (or in addi-
tion to) the IntelliSense features. Press F2 to see the Object Browser, as shown
in Figure 1-5.

Figure 1-5:
Find the
class
names and
hierarchies
of objects
in this
browser.

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 78

Book II
Chapter 1

The Basics of Office
Developm

ent
w

ith VBA
Understanding Objects 79

Click the various classes in the left pane to see the members of the objects
that interest you. Figure 1-5 illustrates the Document Close event that I dis-
cuss at the end of this chapter. Of course, you do run into the old paradox
from time to time: How do you look up a word in the dictionary if you don’t
know how to spell it? You might have a tough time finding what you’re look-
ing for in Help, the Object Browser, or the IntelliSense features. I don’t know
of any solution to this problem other than memorizing the necessary names
for important, but strangely named, classes.

Understanding Objects
What, you might well ask, is an object? Simply, objects are items like message
boxes, but lots of other things are called objects, too, as you’ll soon see.
Truth be told, everything in today’s programming languages is an object —
even a lowly integer is an object in VB.NET.

If everything is an object, is there any meaning to the concept object? Does
the term object have any value in categorizing things? Good questions,
friend. But you’re getting ahead of yourself.

To try to get a sense of what an object is, first ask this question: How does
an object differ from a traditional variable? An object is more powerful and
sophisticated; some objects are like self-contained mini-programs (quite
mini). A variable contains a value: a single piece of data. An object, on the
other hand, usually contains several pieces of data, sometimes arranged in
a hierarchy. Some of an object’s data are known as its properties, such as a
document’s typeface style, called its FontName property. Another piece of
data, its FontColor property, specifies a graphic that is displayed within the
button.

In addition to its data, an object also usually includes programming: that is,
things it knows how to do with its data (or data passed to it), such as a Word
document object’s Add method, which adds a new Word document to the
current collection of open documents. An object’s programming is known as
its methods.

All the currently open documents in a Word application are, collectively,
considered an object (technically a collection, but with all the features of an
object, such as methods and properties). And, each document within the
documents collection is itself an object. So you can have objects nested
within other objects. (For more on collections, see the sidebar, “Objects
versus collections.”)

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 79

Understanding Objects80

Finally, objects can (but don’t necessarily) have events, which are places
for a programmer to define how the object behaves in the event that some
outside action happens to that object, such as an Excel workbook object’s
BeforeClose event. In this case, when a user attempts to close a workbook,
your macro can respond to that event by putting up a message box that reads
Would you like to back up your work? The workbook’s BeforeClose
event can contain optional programming that you insert into the event to
display the message box.

Objects versus collections
Take a look at this little Word macro to under-
stand the relationship between objects and
collections:

Sub ShowFonts()
Documents.Add

s = “You have these “ &
FontNames.Count & “ fonts
you can use:”

ActiveDocument.Range.
InsertAfter s & vbCr & vbCr

For Each afont In FontNames
ActiveDocument.Range.
InsertAfter afont & “, “

Next afont

End Sub
Here you use the Add method of the
Documents collection to create a new blank
document. It’s the same behavior as if the
user had chosen File➪New➪Blank Document,
but here, you’re accomplishing that job
programmatically.

Then you compose a text string (s) incorporat-
ing the Count property of the FontNames col-
lection. It tells you how many typefaces are
available to you. They’re in an array. A collection

is often just a simple array, with index numbers
so you can access each member of the col-
lection, such as FontNames(2). Then you
use the InsertAfter method of the Range
object to type the variable s into the newly
created blank document, followed by two car-
riage returns. (vbCr imitates what happens
when the user presses Enter.) Finally, you use
the For Each command to step through the
entire FontNames collection, typing in the
name of each font name. Try typing this macro
into the VBA editor, and then pressing F5 with
your blinking insertion cursor inside the macro
text to run it.

Most applications have collections that can
provide you with useful information that might
be important during program execution. Here’s
an example that tells you how many tables are
in an Access database:

Sub infoAccess()

With Application.CurrentData
s = “This database has “ &
.AllTables.Count & “

tables.”
MsgBox s

End With

End Sub

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 80

Book II
Chapter 1

The Basics of Office
Developm

ent
w

ith VBA
Should You Go Fully OOP? 81

To summarize: An object can have properties (qualities), methods (abilities),
and events (responses). Together, this entire group of features is known as
the object’s members.

Also note that an object can (but doesn’t necessarily) include a visible user
interface. For example, a Button object has a visible user interface, but a
Timer component does not. Some objects just do math calculations or
search for a particular name in a database, but other objects display the
results of that calculation or that search to the user or invite the user to
modify the object’s data.

However, don’t get the idea that objects are limited to components like
buttons or text boxes. True, all components are objects, but not all objects
are components. Some objects that you program with are located inside
applications — like the workbook object in Excel and other objects that you
create within your programs for your own purposes.

Objects can be used in two main ways when programming in VBA. First, you
can take advantage of the many objects available in the Office 2003 applica-
tions. This is useful. Second, you can create your own objects for program-
ming purposes in VBA. Generally speaking, this is not useful. It’s overkill
unless you’re creating a large, complex project or programming in a group
(where such features as OOP’s encapsulation assist in helping people avoid
stepping on each other’s code).

Should You Go Fully OOP?
Some programmers believe that all Visual Basic programs — indeed all com-
puter programs — should be written with OOP. I’m not one of them. I feel
that objects are most useful with large, complex programs, or when you’re
writing a program with other programmers as a group effort. Some people
also advocate OOP for all programs because they claim that you can easily
reuse objects in future programs.

It is true that programming with objects forces you to follow some strict
rules that can help avoid problems commonly encountered when group-
programming, working with complex applications, or reusing code. However,
smaller, simpler applications generally don’t benefit from most OOP tech-
niques, and macros (of course) individually need not be made into classes
to be useful — that would be dreadful overkill.

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 81

Should You Go Fully OOP?82

For macros and small utilities — the primary use of VBA — OOP imposes
a superstructure more sophisticated and heavy-handed than is called for.
What’s more, VBA still employs outdated programming techniques for
instantiation, property procedures, and so on. Unless you have a compelling
reason to employ OOP, you’re better off with classic structured (procedure-
oriented) programming in VBA.

If you’ve never been exposed to OOP, you might find the following para-
graphs helpful. I show you some of what OOP can do for you, should you
need to use it.

Encapsulation
Perhaps the primary benefit of OOP is encapsulation, which means that an
object doesn’t permit outside programming to directly manipulate its data.
(In programming terms, this means that none of the encapsulated object’s
variables should be declared Public. They’re all Private or declared with
some other self-application-only scope.)

Any properties that you want to permit outsiders (source code that uses the
object) to read (query) or set (change) can be exposed to those outsiders in
a special way: by using property procedures. The outside code must contact
these procedures, and then the procedures in turn deal directly with the
object’s data. It’s rather like having someone answer the phone for you — to
run interference in case you don’t want to accept the call. The outside code
doesn’t get to manipulate an object’s actual data directly. This allows you
(the programmer) to validate that incoming behaviors, properties, or other
data are proper and won’t cause problems for your encapsulated objects.

To illustrate the idea of encapsulation, first create an object (a class). It has
a Private (encapsulated) string variable. It can’t, therefore, be changed, or
even accessed for viewing by outsiders (any code outside the class itself,
such as a macro that activates the class). For comparison, the object also
includes a Public variable that outsiders can modify. Follow these steps to
create the object:

1. In the Word VBA editor, choose Insert➪Class Module.

A new window appears, with a default initialize method (Sub).

You can view this Sub by opening the drop-down list in the upper-left
corner of the Class code window and choosing Class. This Sub Class_
Initialization method is carried out every time the class is instanti-
ated (brought into being) by being accessed from code inside a macro.
Initialization is similar to the traditional Visual Basic Form_Load event:
the place a programmer usually writes any code that has to execute
before the user interacts with the form (such as loading in some data).

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 82

Book II
Chapter 1

The Basics of Office
Developm

ent
w

ith VBA
Should You Go Fully OOP? 83

You can ignore this Sub by writing no programming inside it if you don’t
need to do any housekeeping during initialization. (There’s also a termi-
nate method for handling any necessary tasks when the object is about
to be destroyed.)

I illustrate how a class in VBA works, though, by displaying some
messages.

2. By default, your new class is named Class1. Move your insertion
cursor up to the top of the Class1 editor window and type in the fol-
lowing private variable:

Private m_OutsideMessage As String

This Private property can’t be accessed directly from code outside the
class itself.

3. Now just below that, type in the Property procedure:

Public Property Let TheMessage(ByVal s As String)
If Len(s) > 10 Then ‘validate
MsgBox (“ERROR. LIMIT 10 characters.”)

Else
Let m_OutsideMessage = s

End If
End Property

This property is Public, so it can be accessed from outside the class,
but the string passed from the outside is validated. In this case, if it’s
greater than ten characters, the outside code is warned. If it passes
the test, you assign the outsider’s string to the private property
m_OutsideMessage. It’s traditional to prepend an m or m_ to private
property names, as I did here.

4. Inside the Initialize method, type this:

Private Sub Class_Initialize()
s = “Initializing...”
MsgBox (s)

End Sub

The purpose of this method is just to indicate when the initialization
takes place by displaying a message.

5. Finally, type this to create a method that the outside code can access.

Public Sub OurClass()

MsgBox (m_OutsideMessage)

End Sub

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 83

Should You Go Fully OOP?84

Just as a Public Property is a property of an object, a Public Sub
is a method of an object. This method displays the Private property
m_OutsideMessage, showing that the user’s string was correctly
assigned. The entire class should look like Figure 1-6.

To test your new macro, go to the Normal New Macros window (where most
of your ordinary Word macros are). If it’s not visible, press Ctrl+R to see the
Project Explorer (see Figure 1-6), choose Normal➪Modules, and then double-
click New Macros. Now type in this new macro to test your class, as follows:

Sub TestClass()

Dim o As Class1 ‘create object variable
Set o = New Class1 ‘assign object variable

o.TheMessage = “Hi, Bobbi!”
o.OurClass

End Sub

The first two lines of code within this Sub instantiate the object (that you
just created as Class1). Then, using the object variable Office, you send a
message to the object’s TheMessage property. Finally, you request that the
object’s OurClass method be exectued.

Figure 1-6:
This is the
VBA class
editor
window.

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 84

Book II
Chapter 1

The Basics of Office
Developm

ent
w

ith VBA
Using Events 85

Instantiation woes
You must first instantiate the object before you can access its public mem-
bers. The approach shown in the previous section — using Dim and then
Set and then New commands — is not only cumbersome, but it’s technically
indefensible. It simply makes little sense and is highly redundant. Fortunately,
VB.NET has simplified the process of instantiating objects, and presumably
VBA will eventually adopt the superior approach. But for now. . . .

The code works like this: After you create your object variable o, you
then assign the object variable to point to your Class1. Then you set the
message property with o.TheMessage and display the message with the
o.OurClass method.

Press F5 to run the TestClass macro to see how it instantiates, and then
employs, the class.

Class modules in VBA never have a user interface. (You choose Insert➪
UserForm to add user interfaces to your VBA programming.) When you want
a class to do some computing that doesn’t require a user interface, choose a
class module.

Using Events
The Word Document object includes a variety of events, as do the primary
objects in Excel, Access, and other applications. Events are behaviors, like
methods, but they’re not hard-wired into an object. Instead, outside pro-
grammers can write code that goes inside an event that executes when the
event itself is triggered. For example, many objects have a Click event that
triggers whenever a user clicks the mouse on the object.

In this example, you display a reminder to anyone who closes the current
document that a copy of the document needs to be sent to a co-worker.
Follow these steps:

1. Run Word.

2. Open a document file.

3. Press Alt+F11.

The VBA editor opens.

4. Press Ctrl+R.

The Project Explorer opens, showing all macros, references and other
items associated with the currently running application.

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 85

Using Events86

5. Locate the name of your currently open document in the Project
Explorer window.

6. Locate and then double-click ThisDocument under the currently open
document title (in boldface, Project (Document name)), as shown in
Figure 1-7.

As soon as you double-click, you see a code window for the
ThisDocument object, as shown in Figure 1-8.

The list box on the right in Figure 1-8 contains the available events that
are built into the document object. You chose the Close event.

Figure 1-8:
Use the two
drop-down
lists at the
top of this
code
window to
choose
Document
from the left
list, and
Close from
the right list.

Figure 1-7:
Click This
Document
under the
currently
open
Project
(document),
not under
Normal.

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 86

Book II
Chapter 1

The Basics of Office
Developm

ent
w

ith VBA
Using Events 87

7. Type the following into the Close event:
MsgBox (“Remember to send this file to Suzanne when it’s finished.”)

8. Now return to Word and close the current document.

Your message is displayed before the Word document closes.

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 87

Book II: Understanding Office Programming88

02b_570676 bk02ch01.qxd 6/4/04 9:55 PM Page 88

Chapter 2: Managing Data

In This Chapter
� Using variables and arrays

� Handling operators and expressions

� Understanding scope

If you’re an experienced BASIC programmer, you can skip this chapter
because it’s too elementary for you. In fact, the next few chapters cover

the fundamentals of VBA programming, which you perhaps already know.

However, if you’re coming to BASIC (Visual Basic for Applications, the ver-
sion of BASIC used in Office) from a different language, you’ll want to at least
read the parts that explain the variable types available, the various opera-
tors, and how BASIC handles scope (a variable’s range, or duration, of
influence).

Understanding Variables
I start from the beginning by explaining what variables do in computer pro-
gramming. You create variables for the same reason that you might have a
manila envelope on your desk with VISA written on it. Each month, when
you get your new bill, you replace last month’s bill with the latest bill. In
other words, the envelope always contains your current Visa charge card
balance.

The amount that you owe varies from month to month — hence the term
variable. If someone asks about your current balance, you could just hand
her the envelope. In other words, the envelope named VISA contains the
current data about your credit card account. In a computer program, you
can use variables the same way: the variable’s name takes the place of the
number that it contains. For example

MsgBox 214.15

displays the number 214.15. The same number would be displayed if you
instead assigned that number to a variable (like currentbill) and then
used the variable’s name in the code rather than the literal number, like this:

currentbill = 214.15
MsgBox currentbill

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 89

Creating Variables90

This code also displays the number 214.15. After you create a variable in a
running program, the computer’s memory contains the variable’s name
along with its current contents (called the variable’s value), which is the
information that this variable holds. Later, the program might change the
contents of the variable so a new value would be held by that variable. The
value in a variable can vary, which is where it gets its name. A constant is
similar, but as its name suggests, its value does not vary:

Const ReagansWife = “Nancy”

The distinction isn’t really too significant, and constants are used much. In
fact, if you were writing a program involving Ms. Spears, I’d strongly advise
that you use a variable in that case:

BritneysHusband = “?”

Creating Variables
You can create a variable by assigning data to it, as in the earlier example:

currentbill = 214.15

This is an implicit declaration because you haven’t specified a variable type:
You let BASIC worry about the type of variable that you’re creating. BASIC is
smart enough to know that if you use quotation marks around your data, it’s
a text variable (a string), as in

MyName = “Richard”

Or, in the case of the Visa-bill example, you’re assigning a fractional number,
so BASIC knows that 214.15 should be a floating-point numeric variable.

BASIC is also smart enough to know how to perform implicit conversions in
many situations — that is, it can change a variable’s type from, say, numeric
to string. An implicit conversion happened in the example earlier in this
chapter. The MsgBox function displays string variables — not numeric vari-
ables. However, BASIC created a floating-point variable when you assigned it
the fractional number 214.15:

currentbill = 214.15

Then, when you later use that variable with the MsgBox function, BASIC auto-
matically translates it into a string variable:

MsgBox currentbill

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 90

Book II
Chapter 2

M
anaging Data

Explicit Variable Declaration and Data Types 91

Any time you use implicit declaration, BASIC simultaneously creates the vari-
able’s name (the label you want to give it, such as currentbill), assigns
your data to that variable, and then assigns it an indeterminate type called
the variant type, which is capable of changing into various kinds of data
types as needed. The Variant type has been removed from VB.NET
(because of the rounding problems and other kinds of errors it can introduce
when the context in which it’s used is ambiguous) and will likely disappear
from Office programming as well in the future. The rounding error problem
occurs when a variant changes to a less precise data type. For example, a
double precision floating point data type can be quite precise because it per-
mits such a small fractional portion — so many digits to the right of the deci-
mal point, like this: 1.79769313486232. However, were that converted to a
single precision data type, rounding would occur because the single only per-
mits this many decimal places: 1.402823. If a high degree of accuracy were
required — such as during laser surgery — rounding off decimal places
could be catastrophic.

Also, note that your program’s users never see variables’ names. You use
those variable names when writing your program, so it’s helpful to give your
variables names that mean something to you. Most programmers give vari-
ables names that help them to understand the meaning of the contents
of those variables. A variable named X is less helpful than one named
MyVisaBill when you later read, test, or modify your program.

You can use any name you want when creating a variable except the name of
a word that itself VBA uses, like Print or Show or End. VBA tells you if you
make this error; it won’t allow you to assign a value to one of these reserved
words.

Explicit Variable Declaration and Data Types
Some languages don’t permit implicit declaration or conversion. You can
also force VBA to refuse to execute a program or macro if a variable isn’t
explicitly declared by typing Option Explicit at the top of your code window.

One reason for insisting on explicit declaration is that sometimes errors can
be caused by BASIC’s attempts to figure out what variable type you intend.
Also, when variables are explicitly declared, BASIC can catch a particular
type of programming error: namely, a typo where you incorrectly typed in
the variable name (curretbill instead of currentbill, for example).
Without Option Explicit turned on, your program would execute with no
error messages when you used curretbill — and that could easily cause a
mysterious and hard-to-track-down bug.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 91

Explicit Variable Declaration and Data Types92

With Option Explicit in force, it’s not enough to simply assign a datum
(some value) to a variable; you must formally declare the variable name and
also declare its type as well:

Dim MyName As String
MyName = “Richard”

Also, implicit conversion isn’t allowed in some languages. If you want to
display a numeric variable in a text box or message box, you must formally
and explicitly transform (also called casting, or coercing) the variable from
a numeric to a text variable type. Here’s an example. When converting one
type into another type — such as changing a floating-point numeric type into
a String type — you specifically do that transforming in your source code:

Sub Vars()

Dim currentbill As Single ‘this is a floating point data type
currentbill = 214.15

Dim billString As String

billString = CStr(currentbill)

MsgBox billString

End Sub

In this example, two variables are explicitly declared, and their types are
defined. Then the CStr (convert to string) function is used to transform the
floating-point numeric type variable currentbill into a string so that it can

Never send a rocket to Tempe
Here’s why NASA engineers must be explicit
when declaring or converting variable types. A
floating-point data type (which might hold a
value such as 12.335) should not be permit-
ted to automatically (that is, implicitly via
BASIC’s best guess) convert to an Integer
data type because the conversion would
strip off the .335 fractional portion of the
number. Integers have no decimal point, and
BASIC converts decimals to integers by trun-
cating the fraction. Of course, stripping off
that .335 is insignificant in many kinds of

programming — for example, when calculating
calories in a diet program. But when you’re cal-
culating a rocket’s trajectory, every fraction
must be accounted for. You might send the
moon shot to Tempe, Arizona instead of its
intended target.

What about the other way around? Is automatic
conversion of an integer into a floating-point
type permitted? Yes, because that type of con-
version is safe; it merely increases the preci-
sion of the number.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 92

Book II
Chapter 2

M
anaging Data

Using Operators and Expressions 93

be assigned to the string variable billString. Of the various ways to shorten
this code, I wanted to show you the full monty so you could see the various
steps. It can be shortened by doing the conversion directly before passing
the data to the message box, like this:

Sub Vars()

Dim currentbill As Single
currentbill = 214.15

MsgBox CStr(currentbill)

End Sub

VBA lets you declare variables as one of the following data types: Boolean,
Byte, Integer, Long, Currency, Single (a floating point data type with less
precision — fewer digits to the right of the decimal point — than the Double
floating point type), Double, Date, String (for variable-length strings),
String * length (for fixed-length strings), Object, or Variant. The details
and specifications for each of these types are described in Table 2-5, later in
this chapter.

Whether you turn on the Option Explicit feature is your decision. If
you’re working for NASA, calculating orbital velocities, you’d better turn
it on and force yourself to be explicit. You don’t want a moon shot heading
off-course. If you’re just writing a little geography quiz program for Junior,
however, I wouldn’t worry too much about explicit declaration.

Using Operators and Expressions
Variables can interact with each other. Here’s one example:

Donkeys = 15
Monkeys = 3
TotalAnimals = Donkeys + Monkeys

In other words, you can use the variable names as if they were the same as
the contents of the variables. If you write Monkeys = 3, you assign the value
3 to the word Monkeys. You can thereafter use Monkeys just as you would
use the number 3:

TotalAnimals = Donkeys + Monkeys

The preceding line is the same as the following:

TotalAnimals = Donkeys + 3

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 93

Using Operators and Expressions94

When you combine variables on the same programming line and make them
interact, you’re using an expression. Here’s how it works: If someone tells
you that she has a coupon for $1 off a $15 Mozart CD, you immediately think
$14. In the same way, VBA reduces the several items linked into an expres-
sion into its simplest form.

A numeric expression means anything that represents or results in a single
number. Strictly speaking, the numeric expression evaluates into a single
number (or true or false, which is another way of saying 1 or 0, the
binary numbers).

When an intelligent entity hears an expression, the entity collapses that
expression into its simplest form. In plain English, if you type 15 – 1 into
one of your programs, Visual Basic reduces that group of symbols — that
expression — to a single number: 14. Visual Basic simply evaluates what
you’ve written and uses it in the program as the essence of what you are
trying to say.

We humans always reduce things, too. Sometimes we call it intuition; some-
times we call it putting two and two together. But we routinely reduce compli-
cated expressions or ideas to their simpler forms, their essence.

5 * 3 is a numeric expression, and as far as BASIC is concerned, 5 * 3 is just
another way of expressing 15 (a single number). 5 * 3 collapses into 15 inside
the program and is essentially that single number.

You can combine many kinds of numeric entities into expressions. Any com-
bination of any of the following entities is acceptable in a numeric expression:

✦ A numeric variable.

✦ A numeric variable in an array.

✦ A function that returns a number.

✦ A literal number. (12 is a literal number, as opposed to a variable.)

Print Sqr(12) ‘literal number
Print Sqr(N) ‘Variable

✦ A numeric constant, like Const Pi = 3.14159265358979.

✦ Any combination of literal and variable numbers.

Print X + 14

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 94

Book II
Chapter 2

M
anaging Data

Using Operators and Expressions 95

Any combination of the preceding examples that can evaluate to a single
numeric value is an expression. An expression is made up of two or more of
the preceding items connected by one or more operators. For example, the
plus symbol in 2 + 2 is an operator. Altogether, there are 23 different opera-
tors. (I get to operators shortly in the following section.)

Testing True or False
An expression can be evaluated by Visual Basic as either 0 (False) or not 0
(True). See how this works:

BobsAge = 33
BettysAge = 27
If BobsAge > BettysAge Then Print “He’s Older”

BobsAge > BettysAge is an expression making the assertion that BobsAge
is greater than BettysAge. The greater-than (>) symbol is one of several rela-
tional operators. Visual Basic looks at the variables BobsAge and BettysAge
and at the relational operator (see Table 2-1) that combines them into
the expression. VB then determines whether the expression is True. The
If...Then structure bases its actions on the truth or falsity of the expression.

Table 2-1 Relational Comparison Operators
Operator Means This

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

<> Not equal

= Equal

Is Do two object variables refer to the same object?

Like Pattern matching* (see upcoming example)

*The Like pattern-matching operator works like this:

Sub LikeTest()
X = “Farina”
If X Like “F*a” Then MsgBox “Yes, like!”

End Sub

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 95

Using Operators and Expressions96

The patterns are case-sensitive, so “f*a” in the above Like example would
fail: that is, would not be true and the message box would not display. Here
are the Like patterns that you can use:

✦ ?: Any single character. (“BETTYboohoo” Like “B?T*”)

✦ *: Zero or more characters.

✦ #: Any single digit (0–9). (“a2a” Like “a#a”)

✦ [charlist]: Any single character in charlist. (“F” Like “[A-Z]”)

✦ [!charlist]: Any single character not in charlist. (“F” Like “[!A-
Z]”) (This returns False.)

Note: You can use the relational operators with text as well. When used with
literal text (or text variables), the operators refer to the alphabetization qual-
ities of the text, with Andy being “less than” Anne.

The relational operators make comparisons, and the result of that compari-
son is always True or False.

Using arithmetic operators
Just like relational operators make comparisons based on such criteria as
less than and greater than, the arithmetic operators (as shown in Table 2-2)
describe mathematical relationships, such as multiplication.

Table 2-2 Arithmetic Operators
Operator Means This

^ Exponentiation (the number multiplied by itself: 5 ^ 2 is 25, and 5 ^ 3 is 125).

– Negation (negative numbers, such as –25).

* Multiplication.

/ Division.

\ Integer division (division with no remainder, no fraction, no floating-point
decimal point: 8 \ 6 is 1. Integer division is easier, and the computer performs
it faster than regular division).

Mod Modulo arithmetic.

+ Addition.

– Subtraction.

& String concatenation.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 96

Book II
Chapter 2

M
anaging Data

Using Operators and Expressions 97

Combining Variant variables
Variant variables can be combined in a way that is similar to how tradi-
tional text variables are concatenated:

A = “This”:B = “That”:MsgBox (A & B)

results in ThisThat.

When adding numbers, use the + operator. When adding (concatenating)
text, use the & operator:

MsgBox (A & B)

When you use variants (recall that unless you specify otherwise, VBA
defaults to the Variant data type):

x = 5:a = “This”
MsgBox (x & a)

results in 5This.

Dividing the Mod way
The modulo (Mod) operator gives you any
remainder after a division but not the results of
the division itself. This operation is useful when
you want to know whether some number
divides evenly into another number. That way,
you could do things at intervals. If you wanted
to print the page number in bold on every
fifth page, for example, you could enter the
following:

If PageNumber Mod 5 = 0 Then
FontBold = True

Else
FontBold = 0

End If

If this program were to check each page
number in turn, the results of the expression at
the beginning would look something like this:

15 Mod 5 results in 0.

16 Mod 5 results in 1.

17 Mod 5 results in 2.

20 Mod 5 results in 0 again.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 97

Using Operators and Expressions98

Variants are in an indeterminate state, like Schrödinger’s Cat, until they are
used. For example, if you add two Integer variable types, you get an over-
flow error if the result is larger than 32767, which is the biggest number that
a variable of Integer type can hold:

Dim x As Integer, y As Integer
x = 32760
y = 22
x = x + y
MsgBox x

results in Overflow Error.

The TypeName command can tell you what subtype a variant currently is.
Notice in the following code how the variant variable x changes from an
Integer type into a Long type to accommodate the addition that results in
a number greater than an integer can hold:

Sub Vars()

x = 32760
MsgBox TypeName(x)
y = 22
x = x + y
MsgBox x
MsgBox (TypeName(x))

End Sub

results in Integer, 32782, Long.

Using logical operators
Logical operators (as shown in Table 2-3) are rather specialized and not too
often used in most programming. They compare two entities, resulting in
True or False. For example, you can use the logical operator And to see
whether two conditions are true, like this:

X = 12: Y = 22
If X > 0 And Y > 0 Then MsgBox “true”

This evaluates to True, and the message is displayed because both
expressions — X is greater than zero and Y is greater than 0 — are true.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 98

Book II
Chapter 2

M
anaging Data

Using Operators and Expressions 99

Table 2-3 Logical Operators
Operator Means This

Not Logical negation

And And

Or Inclusive Or

XOR Either but not both

Eqv Equivalent

Imp Implication — first item False or second item True

In practice, you’ll likely need to use only Not, And, XOR, and Or from among
the logical operators. These four operators work pretty much the way they
do in English:

If 5 + 2 = 4 Or 6 + 6 = 12 Then MsgBox “One of them is true.”

Understanding XOR
For years, a number of respected journals pub-
lished articles on computer encryption that
suggested using the binary operation XOR.
XOR remains widely used in computer-based
encryption because XOR has the pleasant fea-
ture that it toggles things. XOR a character
once, and it is changed into another character;
XOR this new character, and it is restored back
to the original.

XOR does this to bits:

0 XOR 0 = 0

0 XOR 1 = 1

1 XOR 0 = 1

1 XOR 1 = 0

In computers, the letters of the alphabet are
already in the ASCII code (or the double-byte
Unicode). Each letter has a numeric equivalent;
in ASCII code, capital A is 65, B is 66, and so on.
That’s already one level of substitution. Now,
when you XOR capital A with something, you

get another number. But XOR it with what? The
thing that you use to make substitutions unique
is a key. This obviously helps “mess up” the
original because using a different key will pro-
duce different patterns in the resulting
encrypted document.

For example, if you XOR the characters RM
against the key it, you get the symbols ;9.

If you then XOR the encrypted text (;9), you
restore the original text: RM.

In effect, XOR is a black box that you can feed
an original into and get a garbled result. Then
feed that garbled result into XOR a second time,
and you get back the original text. Sounds like
a perfect way to encrypt and then decrypt a
message, right?

You can go both ways with this same little box.
For this reason, XOR was widely used as the
basis for computer encryption. It has fallen out
of favor, however, because this type of encryp-
tion is too easily cracked.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 99

Using Operators and Expressions100

Because one of these expressions is True, the message box will be dis-
played. Remember that with the Or operator, only one or the other needs
to be True.

If 5 + 2 = 4 And 6 + 6 = 12 Then MsgBox “Both of them are
true.”

As before, only one expression is true. This makes the And operator evaluate
to False, so nothing is displayed. Both expressions (the first and the second)
must be True for the message box to be displayed.

Use the XOR operator to change an individual bit within a number without
affecting the other bits. XOR has been used for some crude, easily solved
encryption schemes. There was a time when people actually thought XOR
was a useful computer encryption tool.

Operator precedence
When you use more than one operator in an expression, you have to be
aware that operators follow an order of precedence. In other words, some
operators are executed before others, without regard to their physical posi-
tion in a line of code. In simple terms, you sometimes need to specify which
operator should be evaluated first in an expression.

For instance, multiplication might need to be carried out before addition. To
illustrate the importance of operator precedence, try this example:

MsgBox (10 + 5 * 3)

Does this mean to first add 10 + 5 (getting 15) and then multiply that by 3 for
a final result of 45? (Thank you for playing, Contestant Number 1.) Or does it
mean to multiply 5 * 3 (getting 15) and then add 10 for a final result of 25?
(Contestant Number 2 wins the vacation to Hawaii.) You see the ambiguity
here. Expressions are not necessarily evaluated by the computer from left to
right. Left-to-right evaluation in this example results in 45, which is incorrect.

To make sure that you get the results you intend when using more than one
operator, the simplest approach is to just use parentheses to enclose those
items you want evaluated first. For example, if you intend to add 10 and 5
and then multiply that result by 3, write the expression like this:

MsgBox (10 + 5) * 3

By enclosing the addition operation in parentheses, you tell VBA that you
want the enclosed items to be considered a single value and to be evaluated
before anything else happens.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 100

Book II
Chapter 2

M
anaging Data

Using Operators and Expressions 101

In complicated expressions, you can even nest parentheses to make clear
which items are to be calculated in which order, like this:

MsgBox 3 * ((9 + 1) + 5)

This expression adds 9 and 1 (getting 10), which is then added to 5 (getting
15), which is multiplied by 3 (getting, finally, 45). If you work with numbers a
great deal, you might want to memorize the following table. However, most
people just use parentheses and forget about this precedence order.

Table 2-4 shows the order in which VB will evaluate an expression, from first
evaluated to last:

Table 2-4 Arithmetic Operators in Order of Precedence
Operator Means This

^ Exponents. (6 ^ 2 is 36. The number is multiplied by itself x number of times.)

– Negation (negative numbers like –33).

* / Multiplication and division.

\ Integer division (division with no remainder, no fraction, no floating-point
decimal point. 8 \ 6 is 1).

Mod Modulo arithmetic (any remainder after division; 23 Mod 12 is 11. See the
sidebar, “Dividing the Mod way”).

+/– Addition/subtraction.

Expressions combined into larger expressions
Expressions themselves are acceptable elements of expressions. In other
words, you can put expressions together, building a larger entity that itself is
an expression, like this:

Sub Vars()

Z = “Tom”
R = Right(Z, 2) ‘Pick off “om,” the two characters on the right side
L = “om”
N = 3
M = 4
o = 5
P = 6
If N + M + o + P = 18 And Z = “Tom” Or R = L Then MsgBox “Yes.”

End Sub

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 101

Variables versus Constants102

This expression, complicated as it is with various operators and interior
expressions, evaluates in the end to True, so the message box is displayed.
Also notice that no matter how complex an expression becomes, it always
ends up evaluating in only two possible ways: true or false.

Expressions with literals, constants, and variables
You can include literals as well as variables in an expression. In the follow-
ing, Z is a variable, but “Tom” is a literal in the preceding example. M is a vari-
able, and 4 is a literal. You can mix and match. You could also create the
preceding example with some literal numbers mixed, as well as a constant
or two, in

const Nance = “Morphing”

If 3 + M + 5 + P = 18 And Z$ = “Tom” And Nance = “Morphing”
Then MsgBox “Yes.”

Expressions and functions
Expressions can include functions, in addition to all the other elements
described earlier that are legally included in expressions. In this example,
the Val function tests the number at the start of the variable A. Finding
True, the string variable A doesn’t match 55.

A = “44 Rue Madeline”

If Val(A) <> 55 Then MsgBox “The text variable doesn’t start
with the digits 55.”

Variables versus Constants
Although a variable’s name remains the same while a program runs, the con-
tents of the variable can vary, which is how a variable differs from a constant.
Constants are not changed while a program runs; they are a known quantity,
like the number of donuts in a dozen or months in a year:

Const MONTHSINYEAR = 12

Variables, um, vary:

MyVisaBillAtThisPoint = 1200.44

but a month later . . .

MyVisaBillAtThisPoint = 1530.78

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 102

Book II
Chapter 2

M
anaging Data

Arrays — Cluster Variables 103

In practice, a few programmers love constants, but most others avoid them.
If you read some people’s programs, you can see they are making their pro-
grams more readable — more English-like — by including several constants:

BackColor = vbBlue

The preceding line is preferred by many people over the following line:

BackColor = RGB(170, 170, 170)

VBA includes many constants built into the language. With built-in constants,
you can just use them in your programming. You don’t have to declare them;
they’re just there. To see what constants are built in, press F2 to get the
Object Browser and select All Libraries in the top drop-down list. Then in the
Classes list, look for words that end in constant, such as ColorConstants or
KeyCodeConstants, as shown in Figure 2-1.

Arrays — Cluster Variables
Arrays, unlike constants, are universally regarded as extremely useful. Arrays
are variables that have been gathered together into a structure, so you can
manipulate the data by using loops.

An array is a group of variables that all have the same variable name and are
distinguished only by an index number. This way, you can refer to each item
in the array by referring to its index number, thereby manipulating the items
serially and mathematically.

Figure 2-1:
Look up
constants in
the Object
Browser.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 103

Variable Types104

This approach might look like a small savings of effort, but imagine that your
program will probably have to use a set of variables in many situations. And
eventually, you’ll have to save them to disk. If you had to refer to each item
by name, you couldn’t go quickly through the group, like this, to add sales
tax to each item:

For i = 1 To 12
ArrayName(i) = ArrayName(i) * 1.06
Next I

If you don’t understand how loops work, like the For...Next loop here,
they’re explained in Book II, Chapter 3.

Variable Types
The terms variable types and data types are interchangeable. However, I’m
now pulling back and looking at a larger, more abstract set of variable cate-
gories. All numeric variables can be thought of as one category and strings
(text) as a separate category. Finally, objects form a third major type. Just
remember that within the numeric and object types, there are many subcate-
gories, but the text type has only one version: the string.

Text and Numeric are the two basic kinds of variables; they’re defined as
follows:

✦ Text variables (often called string variables): Can be used in captions,
text boxes, and so on. Text variables are made up of the symbols — the
characters in text. They can’t be divided or used to calculate the amount
of linoleum that you would need to redo your kitchen floor. Text is for
communication, not calculation. Text is merely a group of graphic
symbols; for example, the word Europe can’t be divided by the word
spaceship.

✦ Numeric variables: Are used to calculate things; they are numbers
rather than symbols. The digits 1 and 2 stamped on top of a carton of
eggs are text, but the actual number of eggs in that carton is numeric.

How do you change a text variable into a numeric variable and vice versa?
The Str and Val commands mediate between the two kinds of numbers. Str
translates a true number into digits (text characters) that can be displayed.
Val does the opposite; it turns a text digit like 5 into a real number that you
could multiply. However, VBA doesn’t require that you use Str or Val much
because VBA uses implicit type conversion automatically. Just remember
that those commands will cure the problem if you ever get a Type Mismatch
error message.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 104

Book II
Chapter 2

M
anaging Data

Variable Types 105

Although only one kind of text variable is available, you can pick from sev-
eral types of numeric variables because there are several ways of expressing
numbers in a computer. The term variable type is also sometimes expressed
as data types.

Object variables
A new, third major variable type has been introduced to VBA. You can use
variables to point to objects, including forms and controls (which are
objects). (Point to is a common usage among programmers, meaning techni-
cally that the variable contains the memory address where the value of a
variable resides.) This provides you with efficient ways to access, manage,
and create copies of forms and controls and also to get your feet wet pro-
gramming with some object-oriented programming (OOP) features, such as
classes. Several metaphysical-sounding commands support object variables
in VBA: Is, Set, New, Null, Empty, Nothing, and Me. They mostly disappear
from BASIC when you move to Visual Basic .NET, so I won’t waste your time
exploring them in this book. You’re unlikely to use them in your VBA, either.
And Help is always only an F1 keypress away if you think you might want to
look at them.

As a reminder of how object variables are used, here’s an example from
some code in Book II, Chapter 1:

Sub TestClass()

Dim o As Class1 ‘create object variable
Set o = New Class1 ‘assign object variable

o.TheMessage = “Hi, Bobbi!”
o.OurClass

End Sub

The value of numeric types
Computers calculate in different ways with different numeric variable types.
They can do arithmetic faster with integers than with floating-point types
because integers have no decimal point and thus no bothersome fractions
manipulate.

Why? The simplest explanation is found in the fact that elementary school
teachers have to spend much more time teaching division than teaching
multiplication. These operations — addition, subtraction, multiplication,
and division — are not symmetrical. Multiplication is pretty easy to get after
you understand the idea of addition. (Anyone who has written a list for Santa
or made a stack of cookies understands addition. Subtraction, too, is clear
enough — especially when your older brother steals some cookies from the
stack.)

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 105

Variable Types106

But division is in a class by itself. Division can cause something to go below
unity, below one, into the problematic world of fractions. Suddenly, two
simple digits like 3 and 1 can expand into a list of digits bigger than the uni-
verse, like .3333333333333333333, the infinitely long answer to dividing 1 by 3.
And then there are those remainders — you know, those unsettling things
left over after the arithmetic is supposedly finished.

Computers have exactly the same problems working with division; there’s
more to consider and more to manipulate. Just like us, the computer calcu-
lates more slowly when using floating point variables. If you want to speed
up your programs, allow the computer to use integers instead. If you don’t
need the precision fractions offer — and most of the time you don’t — use
an Integer.

In Table 2-5 is a list of the numeric variable types that you can use in VBA,
along with their symbols, the range of numbers they can hold, and the
amount of space each requires in the computer to store a number of that
type:

Table 2-5 Variable Types
Name Symbol Range Storage Required

Boolean None True or False 2 bytes

Byte None 0 to 255 1 byte

Integer % –32,768 to 32,767 2 bytes

Long Integer & –2,147,483,648 to 2,147,483,647 4 bytes
(or Long)

Single (single-precision ! –3.402823E38 to –1.401298E-45 4 bytes
floating point) (negative numbers); and

1.401298E-45 to 3.402823E38
(positive numbers)

Double (double-precision # 1.79769313486232E308 to 8 bytes
floating point) –4.94065645841247E-324

(negative numbers); and
4.94065645841247E-324 to
1.79769313486232E308
(positive numbers)

Currency (scaled @ –922,337,203,685,477.5808 to 8 bytes
integer) 922,337,203,685,477.5807

Decimal None +/–79,228,162,514,264,337,593,543, 14 bytes
950,335 if no decimal point; +/–
7.9228162514264337593543950335
with 28 places to the right of the
decimal. The decimal type is
removed in VB.NET.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 106

Book II
Chapter 2

M
anaging Data

Scope: The Range of Influence 107

Name Symbol Range Storage Required

Date None January 1, 100 to 8 bytes
December 31, 9999

Object None Any Object 4 bytes

Text (string) (a $ 1 to roughly 2 billion The length plus
string of variable length) 10 bytes

Text (“string”) $ 1 to roughly 2 billion (roughly Length of string;
(a string of fixed-length) 65,400 for Windows 3.1) the length of the

text

Variant (when None Any number 16 bytes; can be as
holding a number) large as a Double
Variant (when None 1 to roughly 2 billion The length of the
holding text) (roughly 65,400 for Windows 3.1) text plus 22 bytes

User-defined Variable None The size of the defined contents Whatever is
(use the Type command) (You, the programmer, establish required by the

the range.) contents

Some programmers type DefInt A–Z at the very top (in the general declara-
tions section above any Subs) of each form and module. This forces all unde-
clared variables to default to the integer rather than variant type. This used
to offer a more significant gain in program execution speed than it does now,
but there is still some improvement. The A–Z means every variable name
starting with any letter between A and Z: in other words, all variables.

Scope: The Range of Influence
So far the variables in the examples in this chapter have been located inside
procedures (between Sub and End Sub). When you declare a variable inside
a procedure, the variable works only within that procedure. While the pro-
gram executes the procedure or event, the variable comes to life and does
its thing but then dies and disappears as soon as the End Sub line is exe-
cuted. Variables that live only within a single procedure are local variables.

Local variables have two qualities that you should understand:

✦ Limited scope: No programming outside their own procedure can inter-
act with them, either to read their value or to change their value. Their
scope is limited to their own procedure. (I discuss the concept of scope
at greater length in the next section.)

✦ Disappearing value: When VBA finishes executing the procedure in
which they reside, the local variable’s value (whatever data it holds)
evaporates. If that procedure is executed a second time, whatever value
the local variable once contained is simply no longer there.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 107

Scope: The Range of Influence108

What do you think would happen if you click somewhere in the RunThis
macro (to put the blinking insertion cursor there) and then press F5 to
execute it?

Sub RunThis()
First
x = x + 3
MsgBox x
End Sub

Sub First()
x = 12
x = x + 5
MsgBox x
End Sub

Here’s what happens when you execute RunThis. The first command that
the computer encounters is First, which refers to the macro of the same
name. By using the command First, the First macro is executed, which
first defines the value of x as 12, and then 12 + 5 or 17. A message box then
pops up displaying 17, which is the value of the variable x.

Then the line x = x + 3 executes, and a message box displays 3. The vari-
able x inside the RunThis macro is not the same variable as the x inside the
First macro.

But what if you want both of these procedures to be able to access and manip-
ulate the same variable? To do this, move your insertion cursor to the very
top of the code window — above any procedures. When you do this (press
the up arrow until you move the cursor to the top, or click your mouse at
the top), you’ll notice that the two list boxes at the top of the code window
now read (General) and (Declarations), as you can see in Figure 2-2.

Preserving the values of local variables
In some programming situations, you want a
local variable’s value to be preserved. In those
cases, use the Static command, like this:

Sub Minx()
Static x

End Sub

In this example, the variable x retains its value
until the program is shut down. Another way of
putting it is this: When you use the Static
command to declare a local variable, the value
of that variable is preserved for the lifetime of
your application. If you don’t use Static, a
local variable exists only for the lifetime of the
procedure within which it sits.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 108

Book II
Chapter 2

M
anaging Data

Scope: The Range of Influence 109

Having created a module-wide variable by declaring it outside any particular
procedure (using Dim X to declare the variable X), try executing the RunThis
procedure again. Now, the variable x is the same variable in both procedures,
so the second message box displays 20 this time.

When a variable has module-wide scope like this x, it’s available to all the
procedures in that module. It’s not available, however, to the procedures in
any other modules or forms in the project. Instead of Dim, you can use the
declaration Private. Private has that same effect as Dim but is a bit more
descriptive because it makes it clear that the variable is private to its own
module rather than public to all modules in the project. Also, Dim is more
frequently used within procedures.

What if you want to make a variable available to all the procedures in all
your modules and forms? (In other words, you want to create a variable with
project-wide scope.) To do this, declare the variable with the Public com-
mand rather than Dim. What’s more, you have to put the declaration into a
module, like the one named NewMacros that I use for the programming exam-
ples in this chapter.

A module is similar to a form, but it doesn’t have a user interface. Forms dis-
play buttons, text boxes, or other user-interaction objects. Forms are covered
in Book II, Chapter 4.

Figure 2-2:
Declare a
variable in
the General
Declarations
zone if
you want
it usable
anywhere —
in all the
procedures
— in this
module.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 109

Scope Blowout110

Modules are never made visible to the user. Modules also contain no events.
A module is just a code window — a location where you put your program-
ming and also put public declarations that then become project-wide in
scope). A public Sub or Function in a module is available to the entire
program, too.

Form-wide, module-wide, and project-wide variables are preserved for the
lifetime of your application. They never lose their value, as does a local vari-
able declared with the Dim command.

It’s considered good programming practice to try to avoid using Public vari-
ables when possible. Variables with that much scope can make your program-
ming harder to debug. Looking at the status of variables is one of the primary
ways to find out where a problem is located in a program. If you use a local
variable, a problem with that variable will be confined to its procedure. That
really narrows your search for a bug. You have more code to search if there’s
a bug involving a form-wide variable, but at least this kind of variable limits
the problem to a single form rather than the entire program.

You might have noticed that procedures themselves also have scope. All pro-
cedures are default to public scope, except for event procedures that default
to private. (You find them within forms, which I discuss in Book II, Chapter 4.)
To make your procedures private to their module, insert the Private
command:

Private Sub RunThis()

Scope Blowout
Classic BASIC, of which VBA is an example, limits itself to the four primary
scoping declarations discussed in this chapter: Dim, Private, Public, and
Static. (There’s also a ReDim, but it’s arcane.)

However, when you get into OOP languages — such as Visual Basic .NET —
scoping becomes more complex. It can be much more complex. Quite a bit of
time and effort is spent on scoping rules and techniques in OOP. Among the
OOP scoping commands are Protected, Friend, and Shared. You even find
combination scoping, which is using two scope declarations at the same time,
such as Protected Friend, ReadOnly Public, and WriteOnly Friend.
So far there’s no Prison Pen-pal Friend declaration, but give it time.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 110

Book II
Chapter 2

M
anaging Data

Scope Blowout 111

The fundamental purpose of OOP is to promote encapsulation, which is a
security measure that attempts to hide data and code in an effort to reduce
confusion and bugs. For more on this, see Book II, Chapter 1.

You can ignore this OOP explosion of scoping behaviors and commands as
long as you limit your programming to VBA. OOP is often overkill for individ-
ual programmers or small projects anyway. However, throughout this book,
VB.NET is covered along with VBA, so you find out what Friend (and lots of
other terms) means when used to declare scope.

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 111

Book II: Understanding Office Programming112

02c_570676 bk02ch02.qxd 6/4/04 9:56 PM Page 112

Chapter 3: Looping and Branching

In This Chapter
� Handing repetition

� Making decisions with If...Then

� Branching with Select...Case

This chapter is for people who are new to programming. However, if
you’re new just to Visual Basic (VB), you might want to skim through

it to get a feel for how VB handles looping and branching, which are two of
the most important techniques in programming.

Looping means repeating a task until a condition is met; branching means
choosing between carrying out a set of different tasks, based on a condition.

Going ’Round and ’Round in Loops
Often a job requires repetition until a result is achieved: Polish your boots
until they shine, or add spoonfuls of sugar one at a time until the lemonade
tastes good. This kind of repetitious behavior is handled with looping in a
computer program.

Repetition is often needed in computer programs, and the most common
loop structure is For...Next.

Using a For...Next loop
Between the For and the Next are program lines, which are instructions that
get carried out repeatedly. The number of times that the computer executes
the loop is defined by the two numbers listed right after the For:

Sub Iterate()

For I = 1 To 4
A = A + I

Next I

MsgBox A
End Sub

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 113

Going ’Round and ’Round in Loops114

In this example, the loop’s counter variable is named I. (There’s a tradition
to use the name I in For...Next loops.) But the important thing to under-
stand is that the counter variable is incremented (raised by 1) each time the
program gets to the Next command.

The Next command does three things.

✦ Adds 1 to the variable I.

✦ Checks whether I has reached the limit set in the For statement (4 in
this example) and makes sure the limit has not been exceeded.

✦ Then Next loops — that is, it sends the program back up — to the For
statement to repeat the code one more time. The lines of programming
code within the loop are executed each time the loop cycles.

The answer displayed by the message box in the previous example is 10.
Try single-stepping through the execution of this loop (press F8 repeatedly),
pausing your mouse cursor over the counter variable I and also over the
variable A each time you go through the loop. You’ll see that the first time
through I is 1. (Look at For I = 1 To 4; the counter starts with 1.) The
variable A is empty, but as soon as its line of code is executed, it contains
the value of I plus whatever was in A. The second time through the loop, A
first has a 1 in it, but the value of I is 2, so A then contains 3. The third time
through the loop, 3 is added to 3, resulting in 6. Finally, the last time through
the loop, I has a value of 4, which when added to 6, becomes 10. The pro-
gram then exits the loop and displays the MsgBox.

Using the Step command with For...Next
Step is an optional command that works with For...Next. Step can be
attached at the end of the For line to allow you to skip numbers — in other
words, to “step” past them. When the Step command is used with
For...Next, Step alters the way the loop counts.

By default, a loop counts by 1:

Sub Iterate()

Dim a As String

For i = 1 To 12
a = a & i & “ “

Next i

MsgBox a
End Sub

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 114

Book II
Chapter 3

Looping and
Branching

Going ’Round and ’Round in Loops 115

And results in 1 2 3 4 5 6 7 8 9 10 11 12.

However, when you use a Step command, you change how a For...Next
loop counts. For example, use Step 2 to count every other number:

Sub Iterate()

Dim a As String

For i = 1 To 12 Step 2
a = a & i & “ “

Next i

MsgBox a
End Sub

And results in 1 3 5 7 9 11.

If the mood strikes you, you can even “step” every 73rd number (Step 73),
count backward (For I = 10 to 1 Step –1), or count by fractions
(Step .25).

Nesting For...Next loops
For...Next loops can be nested, one inside the other. At first, this sort of
structure seems confusing (and it often remains confusing): The inner loop
interacts with the exterior loop in ways that are instantly clear to only the
mathematically gifted, although a couple of beers also helps.

Essentially, the inner loop does its thing the number of times specified by its
own counter variable, multiplied by the counter variable of the outer loop.
Got it? It’s like the moon. It’s revolves around the Earth, but both are simulta-
neously revolving around the sun. So the moon’s path resembles a corkscrew.
To make matters worse, the entire solar system is revolving around the
galaxy, but let’s not get into that.

When working with nested loops, simply keep substituting counter numbers
(and maybe moving code from one loop to the other) until things work the
way you want. One meaning of hacking to a programmer is similar to what
carving is to a sculptor: messing around until the desired result emerges. In
this example, I want to display two sets of numbers: 1 2 3 and 1 2 3. After
a frosty, cool one, I finally figured how to do it. The outer loop (I) should
loop twice, and the inner loop (J) should loop three times. And the value
of J should be used each time to display the numbers that I want. Here’s
the code:

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 115

Going ’Round and ’Round in Loops116

Sub Nested()

Dim a As String
cr = vbCrLf ‘ move down one line

For I = 1 To 2
For J = 1 To 3

a = a & “ “ & J & cr
Next J

Next I

MsgBox a
End Sub

Any numeric expression can be used with For...Next. However, the range
that you’re counting must be possible. For example, the following is not
possible:

For i = –10 To –20 Step 2
MsgBox “loop”; i

Next

This loop does nothing. It can’t. You’re asking it to count downward, but
your Step command is positive. As any intelligent entity would when con-
fronted with a senseless request, Visual Basic does nothing with these
instructions. It ignores you. You have to make the Step negative with –2
before something will happen.

Early exits from loops
If you want to exit the loop before the counter finishes, use the Exit For
command. The Exit For command is rarely used, but here’s an example of
when you’d want to use it. Suppose you’re filling an array that should only
hold 500, and you don’t want to overflow it. You avoid this by making a pro-
vision for an early exit from the loop if necessary. If the Exit For is carried
out, execution moves to the line of code following the Next command.

If n > 500 Then Exit For

You can use Exit Do (for Do loops), Exit Function, Exit Property, and
Exit Sub commands as well.

Working with Do...Loops
Sometimes you might prefer the Do...While loop structure to For...Next;
in fact, some programmers favor it over For...Next because it can be a bit
more flexible. Do...Loop structures can be handy in special looping situa-
tions. Read on.

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 116

Book II
Chapter 3

Looping and
Branching

Going ’Round and ’Round in Loops 117

Choosing Do While over For...Next loops
In its most common use, Do...While employs a comparison operator at
the start of the loop to test something (is it = or =>, and so on). If the com-
parison succeeds, the statements in the loop are executed at least once.
However, the first time the comparison fails, the loop is skipped, and execu-
tion continues on the line following the Loop command. The Loop command
signals the end of the Do While structure, just as the Next command signals
the end of the For...Next loop structure.

Sub Iterate()

Dim a As String
cr = vbCrLf ‘ move down one line

Do While y < 11
y = y + 1
a = a & y & cr

Loop

MsgBox a
End Sub

Remember that you must do something in the code within the loop that
changes the comparison value. Otherwise, you create an endless loop. Also
note that if Y in the example above already holds a value of 11 or more when
the program reaches this loop, the loop will never execute. The exit test will
fail the very first time the loop is encountered, and none of the code within
the loop will execute at all.

Using Do Until loops
A version of Do While is Do Until. It’s just another way of expressing the
same idea, but you might find it a little clearer. Do While loops as long as
the comparison is True, but Do Until loops until the comparison is False:

Do Until y = 11
‘Some behaviors
Loop

Using Loop While and Loop Until
If you want to put the loop exit test at the end of the loop structure, here are
two additional ways to construct a Do loop:

Do
‘Some behaviors
Loop While Y < 11

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 117

For...Each: Looping in Object Collections118

This works the same way as the earlier Do While example. The difference is
that when you put the test at the end, the loop always executes at least
once, no matter what value is in the variable Y when you enter the loop.

Do
‘Some behaviors
Loop Until Y = 11

Which of these four structures should you use? Use Do While or Do Until
if you don’t want the loop to execute even once if the exit test fails at the
start. As for the difference between the While and Until styles, it’s often a
matter of which one seems to you to be more readable, or which one works
better with the exit test. Many times, it’s merely a semantic distinction: the
difference between Do the dishes while any are still dirty versus Do the dishes
until all are clean.

Exploring While...Wend: A simple loop
Finally, at your disposal is the While...Wend structure, although it’s little-
used. It’s simple but relatively inflexible:

While X < 7
‘Some behaviors
Wend

As you can see, this looping technique is comparatively simple. While...Wend
has no Exit command (like the Exit Do command). While...Wend is lim-
ited to an exit test at the start of the loop, and it does not permit you to use
the alternative command Until.

For...Each: Looping in Object Collections
The job of moving through a collection of objects is made easy for program-
mers because the collection itself knows how many objects it contains. With
collections, you can use the For Each structure.

For example, to see a list of the text fonts available on a given computer in
VBA, you can create this macro:

Sub ShowFonts()

For Each F In FontNames
Debug.Print F & “, “

Next F

End Sub

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 118

Book II
Chapter 3

Looping and
Branching

Creating a Very Useful File Search Utility 119

The results are displayed in the Immediate window.

To do the same thing VB.NET, you use the System.Drawing.FontFamily
object, like this:

Dim F As System.Drawing.FontFamily

For Each F In System.Drawing.FontFamily.Families
Console.WriteLine(F.Name)

Next

For Each is a quick and clean way to loop because you don’t have to spec-
ify a literal number or some other exit test.

Creating a Very Useful File Search Utility
The macro you create in this next example is one of my favorites because it
executes so much faster than the built-in Windows text search utility. If you
write 800-page books as I sometimes do, you now and then find yourself near
the end, writing Chapter 28, and thinking, “Didn’t I mention object collections
in one of the early chapters?”

Until I wrote the following macro, I had to rely on the search engine in
Windows: the one you launch with Start➪Search, or by right-clicking in
Windows Explorer and choosing Search from the context menu. Windows
includes an indexing feature that works in the background during idle time,
attempting to create lists to speed up the search process. Nonetheless, these
Window searches are really quite slow if you’re looking through dozens of
DOC files for a particular word or phrase such as object collections.

Type in the following macro and then add it to a toolbar in Word. (Right-
click the toolbar, click the Commands tab, click Macros in the left list of
the Customize dialog box, locate the SearchText macro in the right list box
and drag it onto the toolbar.) Or create a shortcut key combination for the
macro. (Choose Tools➪Customize and click the Keyboard key.)

This example code also illustrates the For Each structure, so that’s the
excuse I’m using to include this high-speed search utility in this chapter.

The first time in a given session that you use this macro to search, it is about
as slow as the Windows search utility. But thereafter, the documents being
searched are cached in RAM, and the search is extremely fast. Try searching
the same folder for two different phrases. You’ll see that the search for the
second phrase is lightning fast.

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 119

Creating a Very Useful File Search Utility120

Press Alt+F11 to open the Word’s VBA editor, and choose Tools➪References.
Ensure that the Microsoft Office 11.0 Object Library check box is marked.
Then type Listing 2-1 into the Normal macros editor, where you put all the
macros you want to make available to all Word documents.

Listing 2-1: Search Macro

Sub SearchText()

‘after the first search of a given path, this is faster than
the built-in Windows search.

‘and, unlike the Windows Explorer search, this one can be
hard wired for a project’s folder.

cr = vbCrLf
quot = Chr(34) ‘quotes

Dim l As FileSearch
Set l = Application.FileSearch

s = InputBox(“Please enter the search string...”, “Enter the
text you’re looking for.”)

With l
.NewSearch
.LookIn = “C:\book OFFICE 2003”
.SearchSubFolders = True
.FileName = “*.doc”
.MatchTextExactly = True

.TextOrProperty = s

nFound = .Execute(msoSortByLastModified)

If nFound > 0 Then
For Each F In .FoundFiles
UserForm1.ListBox1.AddItem F

Next
End If

End With

UserForm1.Caption = nFound & “ hits for “ & quot &
l.TextOrProperty & quot & “ found in” & l.LookIn

UserForm1.Show

End Sub

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 120

Book II
Chapter 3

Looping and
Branching

Creating a Very Useful File Search Utility 121

In this macro, you first create a variable to move down one line (cr) and
another to display quotation marks.

Then you define a FileSearch object variable and use Set to assign this
application’s FileSearch object to that variable. You ask the user for the
text that should be searched for. You can also ask the user at this time to
specify which folder or drive to search, but I prefer to hardwire it into the
code with this line in the macro:

.LookIn = “C:\book OFFICE 2003”

For several months while working on a book, I generally search in the same
folder, so it’s quicker to just define that folder right in the code. This way
I don’t have to answer the LookIn question each time I use the search utility.
It’s easy enough to press Alt+F11 and type a new .LookIn filepath as need be.

Similarly, you can ask the user to enter the file specification (the .FileName
property of the FileSearch object), but I like to hardwire .doc into the
macro code.

Using the With structure so you don’t have to keep repeating the object
variable name l, you then specify the various properties and use the
FileSearch object’s Execute method to iterate (loop) through each
(For Each) item in the .FoundFiles collection built by the Execute
method. These items are dumped into a ListBox on a UserForm.

This line does quite a bit of work:

If .Execute(msoSortByLastModified) > 0 Then

The Execute method returns the number of files found, so if it is zero, you
don’t use the For Each loop. Also, the msoSortByLastModified argument
is one of several you can choose from to specify how the filenames are
ordered in the collection of hits that the Execute method finds during its
search. msoSortByLastModified orders them by (you guessed it) their
date of modification. To get a list sorted alphabetically, use
msoSortByFileName.

At the end of the macro, some statistics are displayed on the UserForm’s
title bar, and the UserForm is shown to the user so he can click one of the
documents listed to view the document in Word.

The .NewSearch property is used because the other search properties are
remembered between searches and reused during a given session. In other
words, without specifying .NewSearch, filepaths, text to search for, and
so on are retained and become the defaults. Also, the text you search for
includes a search of the documents’ properties (the name of the document’s

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 121

Making Decisions via Branching122

title, its author, and so on). I haven’t found a way to leave out the document
properties during a search and just look through the text. This
.TextOrProperty seems the only option here.

Add the UserForm to this project now by choosing Insert➪UserForm in the
VBA editor. Drop a ListBox from the Toolbox onto the UserForm. Double-
click the ListBox to get to its Click event and type in this code:

Private Sub ListBox1_Click()

n = ListBox1.Value

Documents.Open FileName:=n, ConfirmConversions:= _
True, ReadOnly:=False, AddToRecentFiles:=False,

PasswordDocument:=””, _
PasswordTemplate:=””, Revert:=False,

WritePasswordDocument:=””, _
WritePasswordTemplate:=””, Format:=wdOpenFormatAuto,

XMLTransform:=””

End

End Sub

When the user clicks a document name in this list box, Word’s documents
object’s Open method is triggered, displaying the document so the user can
read it.

You can include another property of the FileSearch object to allow users
to specify a filter for the search based on the time the files were saved. If
you don’t include the .LastModified property in your code, it defaults
to any date (msoLastModifiedAnyTime). However, you can select from
these alternative time stamps: msoLastModifiedLastMonth,
msoLastModifiedLastWeek, msoLastModifiedThisMonth,
msoLastModifiedThisWeek, msoLastModifiedToday, and
msoLastModifiedYesterday.

Making Decisions via Branching
Making decisions is central to any intelligent behavior. As a result, the
If...Then structure is one of the most important features in any computer
language — indeed, in any kind of language.

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 122

Book II
Chapter 3

Looping and
Branching

Making Decisions via Branching 123

If...Then is the most common way that decisions are made. After the deci-
sion is made, actions are taken that respond to the decision. A program is
said to branch at this point because the path it was following splits into more
than one trail. The branch that the program chooses is decided here at the
If...Then junction. For each of the branches, you write code appropriate
to that path.

Many times a day, we do our own personal branching, using a similar struc-
ture: If you’re hungry, you eat. If it’s nice weather, you don’t wear a jacket. If
the car windows are fogged up, you wipe them off. This constant cycle of
testing conditions and then making decisions based on those conditions is
what makes our behavior intelligent and adaptive.

Understanding If...Then
This same kind of testing is what makes computer behavior intelligent, too.
You put If...Then structures into a program so it reacts appropriately to
various kinds of user input, as well as such additional events as incoming
data from a disk file, the passage of time, or other conditions.

Here’s a simple example of how If...Then is used:

Sub Branching()

Response = InputBox(“How many calories did you take in today?”)

If Response > 2200 Then
m = “Keep that up and you’ll have to buy new pants. Your bad self.”

Else
m = “Good self-control on your part.”

End If

MsgBox m

End Sub

The line of code starting with If tests whether something is True. If so, the
code on the line or lines following the If are carried out. If the test fails
(the test condition is false), your program skips the line(s) of code until it
gets to an Else, ElseIf, or End If command. Then the program resumes
execution. Put another way, the If test determines whether some lines of
code will be executed.

Notice that if you’re making a simple decision (either/or) with only two
branches, you can use the Else command. In the above example, if the
user’s response is that he ate more than 2,200 calories, the first message is
displayed. Or, if the opposite happened, the message following the Else
command is displayed.

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 123

Making Decisions via Branching124

What if you want to branch into more than only two paths? Easy! You can
use the ElseIf command:

If X = “Bob” Then
MsgBox “Hello Bob”

ElseIf X = “Billy” Then
MsgBox “Hello Billy”

ElseIf X = “Ashley” Then
MsgBox “Hello Ashley”

End If

In a way, using ElseIf is like using several If...Thens in a row. But for situ-
ations in which you want to test multiple conditions, the better solution is to
use the Select Case command, as you’ll soon see.

As with loops, it’s traditional to provide a visual cue by indenting all lines of
code that will be carried out inside the If...Then structure. Also, there is a
simple, one-line version of If...Then that you can use if your test is simple
enough (True/False) and short enough that you can just put it all on a
single line. In that case, you do not use an End If. (The If...Then struc-
ture is assumed to be completed by the end of the line of code.) The com-
puter knows that this is a single-line If...Then because some additional
code follows the Then command. In a multiline If...Then structure, the
Then command is the last word on the line. Here’s an example of the single-
line structure:

Sub Branching()

Password = “sue”
Reply = InputBox(“What is the password?”)
If Reply <> Password Then MsgBox (“Access Denied”): End
MsgBox “Password verified as correct. Please continue.”

End Sub

Notice the colon that appears at the end of the If...Then line in the pre-
ceding example code. It’s used to combine separate programming state-
ments (logical lines of code) on the same physical line. This is a rarely used
technique, but you should be aware of it. It’s handy for single-line If...Then
code, as this example illustrates. You want to do two things should the pass-
word fail the test:

✦ Show a message box.

✦ End the program.

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 124

Book II
Chapter 3

Looping and
Branching

Making Decisions via Branching 125

Normally, the End command would have to be on a line of its own in the
code. When you use the colon, VBA reads the code that follows it as a sepa-
rate logical line of code. Recall that you can use the space-underscore char-
acters to break a single, long, logical line of code into two physical lines.
(Logical here means what VB acts on, and physical means what you see
onscreen.) Using a colon is the opposite of the space-underscore. A colon
allows you to place two logical lines on the same physical line. (You can
even cram more than two logical lines on one physical line:
X=X+1:A=B:N=”Hi.”, for example.)

Remember that the condition you test with If is an expression, so it can
involve variables, literals, constants, and any other valid combination of
components that can make up an expression. For instance, you can use a
function in an expression:

If InputBox(“Enter your age, but it’s optional”) <> “” Then

MsgBox “Thank you for responding”

End If

The InputBox function is executed, and its result is tested to see whether it
does not equal (<>) an empty string (“”), which would mean that the user
failed to type anything into the InputBox.

A Function, like a Sub, is a procedure. However, a Function usually returns
a value, and a Sub (usually) does not. In practice, over the years, the distinc-
tion between Sub (no return value) and Function (returns a value) has
broken down, and now these procedures are fairly interchangeable. Generally,
code that you execute with programming commands, such as MsgBox or
InputBox, are called functions although they reside in the language’s code
library and you, yourself, do not write these functions. You merely call them
(use them) in your programming.

Multiple choice: The Select Case command
If...Then is great for simple, common testing and branching. But if you’re
testing for more than two branches, If...Then becomes clumsy. Fortunately,
here’s the alternative decision-making structure in VBA that specializes in
multiple-branching. Select Case should be used when there are several
possible outcomes and several tests.

The main distinction between If...Then and Select Case goes something
like this:

If CarStatus = burning, Then get out of the car.

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 125

Making Decisions via Branching126

But the Select Case structure tests many and various situations:

Select Case CarStatus
Case Steaming

Let radiator cool down.
Case Wobbling

Check tires.
Case Skidding

Steer into skid.
Case Burning

Leave the car.
End Select

Select Case works from a list of possible answers. Your program can
respond to each of these answers differently. There can be one, or many,
lines of code within each case:

Response = InputBox(“What’s your favorite color?”)

Select Case LCase(Response)
Case “blue”

MsgBox “We have three varieties of blue”
Case “red”

MsgBox “We have six varieties of red”
Case “green”

MsgBox “We have one variety of green”
Case Else

MsgBox “We don’t have “ & Response & “, sorry.”
End Select

This example illustrates that you can use any expression (variable, literal,
function, compound expression, or other kind of expression) in the Select
Case line. In this example, I use the LCase command to reduce whatever the
user typed to all lowercase letters. Then VB goes down the list of cases and
executes any lines in which the original expression on the first line matches
one of the Case lines. Note that the final case is special: The optional Case
Else command means that if there were no matches, execute the following
code.

Using the Is command with Select Case
You can use the special Is command with each case to use comparison tests
on each case:

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 126

Book II
Chapter 3

Looping and
Branching

Making Decisions via Branching 127

X = InputBox(“Your weight, please?”)

Select Case X
Case Is < 200

‘(put one or more commands here)
MsgBox “Good for you”

Case Is < 300
‘(put one or more commands here)

MsgBox “Not too bad.”
End Select

In the above example, if the number is lower than 200, the first block of code
lines executes; then execution jumps to the line of programming following
End Select. If the number is lower than 300, the second block of code exe-
cutes (any code between Case Is < 300 and End Select). Note that as
soon as one of the cases triggers a match, no further cases are even checked
for a match. The Case structure is merely exited.

Using the To command with Case Select
If you want to check a range of values, use the To command. It can be a
numeric range (Case 4 To 12) or an alphabetic range (based on the first
letter of the string being tested):

Reply = LCase(InputBox(“Type in your last name.”))

Select Case Reply
Case “a” To “m”

MsgBox “Please go to the left line.”
Case “n” To “z”

MsgBox “Please go to the right line.”
End Select

You can also combine several items in a Case, separating them by commas:

Case “a” To “l”, “gene”, NameOfUser

This is an or type of test: that is, take action if

✦ The answer begins with a letter between a and l.

or

✦ It’s gene.

or

✦ It matches the value in the variable NameOfUser.

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 127

Book II: Understanding Office Programming128

02d_570676 bk02ch03.qxd 6/4/04 9:56 PM Page 128

Chapter 4: Managing Files and
UserForms

In This Chapter
� Understanding saving and loading

� Displaying a user interface

� Working with dialogs

� Using Windows controls

This chapter continues the introduction to VBA, covering several topics
of interest to anyone who doesn’t know how to build a user interface.

Specifically, here I cover UserForms, dialogs, and Windows controls. And
because hard drive storage is also important, I start with a little background
on loading and saving disk files.

Communicating with the Hard Drive
To preserve data, you need to load and save disk files. The syntax to do this
differs between various Office applications, with Access, as always, being
the odd man out.

Each Office application has its own type of file because the documents used
within the applications have different internal structures representing their
different purposes. Excel opens a workbook object (an XLS file), so it uses
the Open method of the Workbooks object. Word opens a document, so it
uses the Open method of the Documents object. And Access, of course, does
things a little differently.

Loading files in Word and Excel
Here’s how you open a file in Word, adding it to the collection of currently
open documents:

Documents.Open “c:\test.doc”

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 129

Communicating with the Hard Drive130

Here’s how to load a file in Excel:

Workbooks.Open “c:\test.xls”

You can also specify a slew of optional conditions when opening document
or workbook files, such as the one that makes the file read-only, like this:

Documents.Open FileName:=”C:\MyFiles\MyDoc.doc”, ReadOnly:=True

Here’s the full syntax for the Open command:

Workbooks.Open(FileName, ConfirmConversions, ReadOnly,
AddToRecentFiles, PasswordDocument,
PasswordTemplate, Revert, WritePasswordDocument,
WritePasswordTemplate, UserFormat, Encoding,
Visible, OpenConflictDocument, OpenAndRepair ,
DocumentDirection, NoEncodingDialog)

If you want to open all recent files (those listed at the bottom of the File
menu), use this code:

Sub OpenRecentFiles()
Dim rFile As RecentFile
For Each rFile In RecentFiles

rFile.Open
Next rFile

End Sub

Loading files in Access
Access, of course, does things differently. You import ordinary text files by
using archaic Open commands that hearken back to the early days of BASIC.
Here’s an example that opens a file in sequential-input mode, and then reads
and displays the contents. Follow these steps:

1. Open a database in Access. If you don’t have a file on your root C:\
directory named test.txt, create one in Notepad.

2. Choose Window➪the database name.

The main database window opens.

3. Click Modules in the left pane of the main window, as shown in
Figure 4-1.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 130

Book II
Chapter 4

M
anaging Files and

UserForm
s

Communicating with the Hard Drive 131

4. Click the New button in the main database window (refer to
Figure 4-1).

The Visual Basic editor opens, as shown in Figure 4-2.

Figure 4-2:
The Visual
Basic editor,
ready for
you to write
your own
program-
ming.

Figure 4-1:
To write a
VBA macro
(as opposed
to an
Access-
style
macro),
select
Modules.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 131

Communicating with the Hard Drive132

5. Type this macro into the editor:

Sub opentext()

Open “c:\test.txt” For Input As #1

If LOF(1) > 0 Then
Do Until EOF(1)
Line Input #1, s
a = a & s
Loop
End If

‘ Close
Close #1

MsgBox a

End Sub

6. Click somewhere in this macro so your blinking insertion cursor
shows within the code.

7. Press F5 to execute the macro.

The test.txt file is opened, and a message box displays its contents.
You can use this technique to load data from some legacy databases.

You use the Open command for both loading and saving files in Access. This
example opens the file in binary mode (which sometimes results in smaller
file sizes) for writing operations only:

Open “c:\test.txt” For Binary Access Write As #1

Many variations on the Open command exist. See Access’s VBA Help for a
description of all the permutations.

Saving files
In most Office applications (Access excluded), you can simply use the Save
method of the document, workbook, or other object to store the information
on the hard drive. (See the preceding section for how to save a file in Access.)

For example, in Word, you can use this code to save the current document
(the one you’re looking at in the Word window) if it has been in any way
modified since the last time it was saved:

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 132

Book II
Chapter 4

M
anaging Files and

UserForm
s

Creating User Interfaces 133

Sub savedoc()

If ActiveDocument.Saved = False Then ActiveDocument.Save

End Sub

To save all opened documents, use the Documents collection’s Save method,
like this:

Sub saveAlldocs()

Documents.Save NoPrompt:=True

End Sub

Creating User Interfaces
In Visual Basic programming, the UserForm is a container that you use to
arrange the visual elements of a user interface. When the program later exe-
cutes, the UserForm appears to the user as a window, with whatever appro-
priate controls (buttons, text boxes, scrollbars, and so on) are necessary for
the user to interact with the application.

The UserForm as a container
For a programmer, though, the UserForm is also a container for program-
ming code that supports the behaviors of the controls and brings them to
life. For example, if you put a button control on a UserForm and label that
button Click Me to see BBC!, you can put underlying code for that
button that responds when the user clicks the button by connecting to the
Internet and showing the BBC news page.

Try an example; follow these steps to take the user to the BBC news page.

1. Press Alt+F11 in Word.

The VBA editor is displayed.

2. Choose Insert➪UserForm from the VBE menus.

A new UserForm, along with a Toolbox containing controls, appears, as
shown in Figure 4-3.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 133

Creating User Interfaces134

3. Drag a CommandButton from the Toolbox (as shown in Figure 4-3) and
drop it on the UserForm.

A new CommandButton appears on the UserForm.

4. Click the button.

An insertion cursor appears, cluing you that you can edit the default
caption.

5. Type Click Me to see BBC as the new caption of the button.

6. Click outside the button on the UserForm.

7. Double-click the button.

A new code window opens, displaying the Click event of the button.
Into this event (a Sub procedure, just like a macro), you can type what-
ever programming you want to execute when the user clicks this button.

8. Type this code to open the user’s browser and to display the BBC site:

Private Sub CommandButton1_Click()

ActiveDocument.FollowHyperlink _
Address:=”http://news.bbc.co.uk”, NewWindow:=True

End Sub

9. With the blinking insertion cursor inside this procedure, press F5 to
test your user interface.

The UserForm appears as a window, just as the user would see it, as
shown in Figure 4-4.

Figure 4-3:
Design
a user
interface in
VBA using
this Toolbox
of controls
and a
UserForm.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 134

Book II
Chapter 4

M
anaging Files and

UserForm
s

Creating User Interfaces 135

10. Click the button.

The BBC news page appears in your browser.

Displaying a UserForm from a macro
After you create a UserForm, you want to be able to display it to users. You
can display UserForms from within macros by using the UserForm object’s
Show method. Follow these steps:

1. In the VBA editor, choose View➪Project Explorer.

The VBA Project Explorer window pane opens.

2. Click the + symbol next to the Modules node to expand it.

The node opens, displaying all the modules in this document.

3. Double-click the New Macros entry under Modules.

The main macro editor window opens.

4. Move down to the bottom of the macro window and type in this new
macro:

Sub savedoc()

UserForm1.

End Sub

As soon as you type the period following UserForm1, IntelliSense takes
over and displays a list of all the members of a UserForm.

5. Locate Show in the members list and click it to make your line of code
read

UserForm1.Show

6. Press F5 to execute this macro.

Your UserForm is displayed.

Figure 4-4:
Your pro-
gramming
UserForm
has been
transformed
into a
window.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 135

Engaging the User with Dialogs136

Using an object variable
A more formal approach to displaying and managing UserForms involves cre-
ating an object variable, which I name MyForm here, in a macro or applica-
tion, like this:

Dim MyForm as New UserForm1

Thereafter, you can use the object variable to assign values to the form’s
properties and the properties of controls on the form. Here’s a macro that
manipulates a form and its contents:

Sub ShowForm()

Dim MyForm As New UserForm1
MyForm.TextBox1.Text = “Welcome”
MyForm.Caption = “Florida”
MyForm.Show

End Sub

You can also retrieve values from a form by using the object variable:

S = MyForm.TextBox1.Text

Hiding and destroying an object variable
When you’re done with the form, use its Hide method to make it invisible:

MyForm.Hide

If you don’t need it any more, destroy the object variable and its object:

Set MyForm = Nothing

Engaging the User with Dialogs
A set of standard Windows dialogs are available to you in several Office 2003
applications: printing, file access, color adjustments, and so on. Here is an
example that displays the standard Open dialog box:

Sub ShowDia()
Dialogs(wdDialogFileOpen).Show

End Sub

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 136

Book II
Chapter 4

M
anaging Files and

UserForm
s

Engaging the User with Dialogs 137

In addition to the standard Windows dialog boxes, dozens of application-
specific dialogs are also available, such as Word’s Date and Time dialog box
(as shown in Figure 4-5), which you display with the following:

Dialogs(wdDialogInsertDateTime).Show

To see a list of all the dialog boxes available and their arguments, search the
Excel or Word Help system for Built-in Dialog Box Argument Lists. (Outlook
and PowerPoint don’t offer this capability.) Or just type in Dialogs((with a
left parenthesis), as shown in Figure 4-5, and the VBA IntelliSense feature
opens with a list of all the dialogs.

Access, of course, doesn’t directly support a simple UserFormat for display-
ing dialogs, although you can use this technique. However, to get it to work,
you need to figure out which code library (Tools➪References in the Access
VBA code window) contains the standard Windows dialogs; then select its
check box:

Sub ShowDia()

Dim dlgOpen As FileDialog

Set dlgOpen = Application.FileDialog(_
FileDialogType:=msoFileDialogOpen)

With dlgOpen
.AllowMultiSelect = True
.Show

End With

End Sub

Figure 4-5:
You can
manipulate
dozens of
built-in
dialog boxes
program-
matically.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 137

Understanding Controls138

You can employ a variety of techniques with the dialog boxes. For instance,
if you want to simply show a dialog box to the user but prevent the user
from taking action, use the Display method. The Open button in this next
dialog box will be disabled:

Sub ShowDia()
Dialogs(wdDialogFileOpen).Display

End Sub

A value is returned by the Show and Display methods, telling you whether
the user clicked the Close, OK, or Cancel buttons:

Sub ShowDia()

If Dialogs(wdDialogFileOpen).Show = -1 Then
‘user clicked OK

End If

End Sub

A returned value of 0 means that the user clicked the Cancel button, and a
returned value of -2 means that the user clicked the Close button.

Understanding Controls
You can of course construct custom dialog boxes to display to the user.
A simple approach is to use the msgbox and inputbox functions. More
complex and satisfactory is to create a UserForm and interact with the user
with it.

To see a control’s properties, right-click the control on the UserForm and
then choose Properties from the context menu. The Properties window
opens, as shown in Figure 4-6.

To see how to employ the various controls in the UserForm Toolbox, follow
these steps:

1. Press Alt+F11 in Word.

The VBA editor is displayed.

2. Choose Insert➪UserForm from the VBA editor menu.

A new UserForm appears, along with a Toolbox that contains controls.
A close-up of the Toolbox is shown in Figure 4-7.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 138

Book II
Chapter 4

M
anaging Files and

UserForm
s
Understanding Controls 139

Excel’s Toolbox has an additional control named RefEdit that displays the
address of a range of cells on one or more worksheets.

Figure 4-6 shows the default controls on the Toolbox, but you can add
dozens more to the Toolbox. Some controls might be installed on your com-
puter from other Microsoft products. You can also get controls from third-
party sources, and there’s even a set available from within Office that’s not
considered as frequently used as the default set.

Figure 4-7:
Here is your
set of
controls.

Figure 4-6:
Adjust
properties in
this window.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 139

Understanding Controls140

To see the list of controls that you can add to the Toolbox, right-click the
Toolbox and choose Additional Controls. You’ll see the list of controls, as
shown in Figure 4-8. You can read more about these in Chapter 5, Book II.

Read on to explore the purpose and behavior of each of the default controls.

The Label control
A Label is generally used to inform the user of the meaning of something
visible on a window. For example, if you have a TextBox, you could describe
its purpose to the user by positioning a Label that reads Please enter
your address here just above the TextBox.

Here are some common uses for a Label:

✦ Print information on a UserForm.

✦ Add captions or other descriptive text to controls that have no Caption
property of their own, such as ScrollBars.

✦ Apprise the user of changing conditions while your program runs: that
is, a file is being loaded, records are being sorted, and so on.

A Label normally has no border (the default) and appears to be printed on
a UserForm. Labels are usually not changed while a program runs, although
they can be. Often the Caption (the label’s displayed text) and its other
properties are adjusted while you design your program using the Properties
window.

Figure 4-8:
A slew
of other
controls is
available to
add to your
Toolbox.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 140

Book II
Chapter 4

M
anaging Files and

UserForm
s
Understanding Controls 141

The most important element of a Label is its Caption property, which is
where you put your descriptive text. Remember that the main purpose of a
Label is to label something on your UserForm. TextBox controls are also
designed to handle text, but they also accept input from the user and have
much greater overhead.

A Label wraps its text at its right edge. (It breaks lines at a space character.)
You can take advantage of this fact to add multiline notations on UserForms.
First, create a Label that’s a few lines high and then type some words sepa-
rated by spaces into its Caption property. When you reach the edge of the
Label, the words move to the next line. A Label is limited to 1,024 charac-
ters, and its TextAlign, AutoSize, and WordWrap properties determine how
text is displayed within the label.

The TextBox control
The TextBox control and the CommandButton are probably the most fre-
quently used of all the controls. The VB TextBox control is a simple
(although surprisingly functional) word processor.

The TextBox control responds to all the usual editing keys: Delete, Insert,
Backspace, PgUp, and PgDn. It can also automatically word wrap: that is,
detect when the user has typed to the right side of the text box and then
move the word down to the next line without breaking it in two.

You can add ScrollBars (via that property of the TextBox). By manipulat-
ing the SelText and related properties during runtime, you can create cut,
copy, and paste features. By using the KeyDown event, you can capture char-
acters while the user types them, thus adding special, additional features
triggered by the Ctrl, Alt, or function keys.

A TextBox is like Notepad — elementary, but useful. For example, you can
use text boxes for data entry or any situation where the user needs a con-
venient way to type something into your program. If you want to limit the
number of characters the user is permitted to enter into a TextBox, use the
MaxLength property. It can be set in the Properties window or while the pro-
gram is running. When not 0 (the default), a TextBox will refuse to accept —
will not print onscreen or add to the Text property — any more characters
typed by the user. You can also use text boxes to display information, such
as a disk file that the user will want to view or edit.

When using TextBox, you can’t add a selective boldface or italics feature,
however, or include varying typefaces or font sizes. These properties are set
for the entire TextBox, so you can’t mix and match them in the text inside
the box.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 141

Understanding Controls142

However, a more advanced TextBox control is available — the RichText
Box — and you might find it in the list of additional controls you can see by
right-clicking the Toolbox. This control does permit formatting, such as ital-
ics, boldface, various type faces and type sizes, bulleted lists, and even
color. You can import and export RTF files, thereby retaining the formatting.
(Most word processors recognize the RTF codes.)

The TextBox MultiLine property is rather an annoyance, to the regret of
millions of BASIC programmers (and a waste of man-centuries of time), ever
since Visual Basic version 1 MultiLine has defaulted to False. The practi-
cal effect of this bizarre decision on the part of the designers is that you
almost always have to change the property to True whenever you add a
TextBox to a UserForm. That’s because text boxes are almost always more
functional with more than one line (and, consequently, with word-wrap
activated).

If you add a horizontal ScrollBar with the scroll bar’s property, all text will
be on a single line. This single line can contain up to 255 characters. Any
additional characters that the user attempts to type in or that your program
attempts to add to the Text property will be ignored. It’s therefore usually
practical to use only a vertical ScrollBar, both horizontal and vertical bars,
or none. A lone horizontal bar is restrictive.

There is no default limit (beyond the user’s available memory) to the size
of the text within a TextBox. A TextBox Text property (Text1.Text, for
instance) behaves just like a text variable.

You can use the KeyDown event of a TextBox to intercept characters as
they’re typed in, which allows you to control user input — refusing to accept
letters, for example, if the user is supposed to be entering a phone number.

You can also add shortcut commands with this technique, such as Ctrl+Q for
Quit. To add a cut, copy, and paste feature, see the SelText property in the
earlier section, “The TextBox control.”

Windows uses the Tab key as a way of moving between the items — the
controls — in a window. Pressing Tab cycles you through the various
OptionButtons, CommandButtons, or whatever controls are on a UserForm
(see “TabIndex” in Help). In a TextBox (unless it’s the only control on the
UserForm that can respond to tabbing), the user can’t use the Tab key to
move the cursor over as would be possible in most word processors (and
typewriters). Pressing Ctrl+I, however, will tab in a TextBox.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 142

Book II
Chapter 4

M
anaging Files and

UserForm
s
Understanding Controls 143

The ComboBox control
ComboBoxes are similar to ListBoxes; however, a ListBox simply provides
a list of options the user can choose from, whereas a ComboBox offers that
list and also lets the user type in additional items.

Use ComboBoxes to offer the user choices but accept alternatives. For exam-
ple, if your program dials the telephone and is an electronic substitute for a
Rolodex, you can keep track of the six most-frequently dialed people.

When the program starts, it shows a ListBox with these people’s names so
the user can just click one and then press Enter to select the one that’s high-
lighted. Pressing arrow keys moves the user up and down through the list.
And — the main feature — there’s a place for the user to simply type in a
person who is not listed in the top six.

Your macro or program detects the user’s selections, which trigger the text
box’s Click event. Your program also knows when the user starts typing:
That act triggers the box’s Change event.

Your program can add or remove items from a ComboBox:

ComboBox1.AddItem “New York”

Or to add an item, use this:

ComboBox1.AddItem N

Or to remove the fourth item from a ComboBox, use this:

ComboBox1.RemoveItem 3

The items in a List or ComboBox start with a zero-th item, so the fourth item
is removed by requesting number 3.

Computer language designers still cling to the confusing habit of starting a
count from zero (in some cases, not all).

The ListBox control
A ListBox is the same as a ComboBox except that the user can’t type any-
thing into a ListBox. He can click only one or more of the listed items,
thereby selecting that item or set of items.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 143

Understanding Controls144

When using ListBoxes, remember these points:

✦ Provide the user with a list of hardwired choices reflecting your judg-
ment about appropriate options.

For example, if you want the user to select between light, medium, and
dark blue for the BackColor of a UserForm, put only those names in a
ListBox. The user must follow your aesthetic rules because those are
the only options that you offered.

✦ Provide the user with the only possible choices.

Only a limited number of font style settings are available, so your
ListBox would contain only those options.

✦ Make a ListBox more accommodating to the user.

Add a TextBox or other controls to the UserForm as adjuncts to a
ListBox, offering the user more flexible control than a lone ListBox
would normally offer. Let the user, for instance, select from CheckBoxes
or OptionButtons to AddItems to your ListBox.

ListBoxes can be made more efficient in some situations by adjusting their
MultiSelect, ColumnCount, and TopIndex properties. MultiSelect per-
mits the user to select more than a single item at a time; Columns displays
more than a single vertical list of items; and TopIndex allows your program
to scroll the list, independent of the user.

The Text property of a ListBox always contains the currently selected item
(available as a text [string] variable). X = List1.Text would allow your
program to examine and react to the selected item in the box. The Text
property of a ComboBox, however, can contain something the user might
have typed in — some text that’s not part of the box proper.

The user can select an item from a ListBox by clicking it or by typing in its
first letter. This triggers a Click event without using the mouse.

The CheckBox control
Check boxes allow the user to select from among several options, and more
than one of these options can be simultaneously selected. The OptionButton
is a similar, related control, but only one of them can be selected at a time.

The Value property of a CheckBox determines whether a given box is
unchecked, checked, or grayed out (meaning that it can’t be selected by
the user at this particular time; it’s inactive and unavailable as an option).

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 144

Book II
Chapter 4

M
anaging Files and

UserForm
s
Understanding Controls 145

The user can trigger a CheckBox by clicking anywhere within the frame of a
CheckBox (on the box image, on the caption, or even outside the caption if
the frame is larger). The box that has the focus is indicated visually while
the program runs by a dotted-line box around the caption. In other words, if
a particular CheckBox (among all the controls on a window) has the focus, it
will have a faint, gray line around it.

The OptionButton control
OptionButtons are similar to CheckBoxes, but OptionButtons allow the
user to select one choice from a group of mutually exclusive choices. That is,
selecting one button automatically deselects all the other buttons in the
group. Only one OptionButton in a group can be selected at a given time.

This control is frequently referred to as a radio button group because it oper-
ates the way the buttons do on an old car radio (think Rambler or DeSoto,
not Escort or Passat). Time-warp back (or ask your dad) about how you liter-
ally had to press a button to make the currently selected button pop out. In
control terms, when you click a radio button, the currently selected button
is deselected. In other words, only one radio button in a group can be
selected at a time.

CheckBoxes are used in groups too, but any number of CheckBoxes can be
selected (active) at a given time.

You could use a group of OptionButtons if you want to offer the user a
choice of possible BackColors for a UserForm. Because there can be only
one background color on a UserForm at a time, the choices are mutually
exclusive. For example, if the button for Green were previously in effect and
the user selects Magenta, Green should pop out and become inactive.

OptionButtons can be placed directly on a UserForm or grouped within a
Frame control. If you want to create a group of OptionButtons that will
cause each other to pop out when a new one is selected, they must all be on
the same UserForm or within the same Frame. You can create more than one
group of OptionButtons on a single UserForm by placing each group within
a Frame, which acts as a container.

To place an OptionButton within a Frame, for example, first put a Frame
control on a UserForm; then drag and drop the OptionButton icon from the
VB Toolbox.

The group of OptionButtons that you place into a Frame all move together
if you drag the Frame around. And, more importantly, the OptionButtons
are now part of a team, and pressing one will automatically pop out any of
the others.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 145

Understanding Controls146

The ToggleButton control
A ToggleButton is essentially a CheckBox in a fancy costume. It has two
states, on and off, and the user can tell when it’s on because it looks as if it’s
depressed into the UserForm. Like OptionButtons, ToggleButtons can be
grouped inside Frames.

The Frame control
Frames have something in common with UserForms: They are dual-purpose
entities that can assist you in organizing your program both visually and
structurally. Frames subdivide a UserForm into logical zones (to visually
clue the user about the relatedness of variously framed sets of controls).

A Frame can draw a visible line around a group of controls. This alerts the
user that these controls, like a set of OptionButtons, are working together
toward some purpose — such as selecting a graphic, or a record in a data-
base. More importantly, a Frame can group controls drawn on top of it. This
grouping has two effects.

One, while you are designing your program, you can drag the Frame around
on the UserForm, and any other controls contained within the Frame will
follow it as a unit. They have been contained within the Frame. This simpli-
fies design and maintains the positional relationship between the grouped
controls.

To group controls, you must first add the Frame to the UserForm. Then
drag and drop the other controls from the Toolbox — or elsewhere on the
UserForm — into the Frame.

VBA also allows you to surround a group of controls by dragging the mouse
around them (or by clicking them while holding down the Shift key). Then
they can be dragged in concert.

The second effect that frames have is that all OptionButtons contained
within a particular Frame or PictureBox are considered a unit. If the user
clicks one of these buttons, any other button in the unit that was selected
will be deselected. For more on this, see the section, “The OptionButton
control,” earlier in this chapter.

A Frame sinks its Caption into the Frame border, to the left side. If this
design style appeals to you, the Frame offers it.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 146

Book II
Chapter 4

M
anaging Files and

UserForm
s
Understanding Controls 147

The CommandButton control
Just like the Click event is the most popular event in Visual Basic, so the
CommandButton is perhaps the most frequently used control. It provides
visually intuitive, direct access: The user sees the caption and simply clicks
the command button to get something done. The animation offers good,
strong feedback; there’s a real sense that something has happened, unlike
some other VBA selection methods.

Use CommandButtons any time the user needs to make something happen in
the program. Accompany them with pictures (by setting their Picture prop-
erty). Use Label controls to explain the button’s purpose to the user.

The TabStrip and MultiPage controls
The TabStrip can be a useful control because it organizes information in a
way similar to a card file of 3 x 5 cards, with divider tabs to indicate logical
categories. In other words, it’s similar to some of the dialog boxes and prop-
erty windows displayed in various Windows applications.

Display large amounts of data
Use a TabStrip when you want to display a considerable amount of informa-
tion to the user and need to organize that information into categories.

The TabStrip control offers the user a more visually intuitive and easier to
use format than the traditional menu approach to changing an application’s
options or preferences.

MultiPage does basically what a TabStrip does except it’s easier for the
programmer to work with.

When an event fires in a MultiPage or TabStrip control, you see a different
syntax than you find in other controls. An index is passed as an argument to
the event, so that you (the programmer) can figure out which page or tab on
the control was clicked (or otherwise triggered an event). For example

Private Sub TabStrip1_Click(ByVal Index As Long)

End Sub

Designing a MultiPage control
It’s not difficult to design a MultiPage. Just drag it so that it fills the
UserForm. (This looks best, and users expect to see a tab-style page as a
single entity — not as a part of a larger window.) Then from the Toolbar,

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 147

Understanding Controls148

drag and drop whatever controls you want on page one. Click the Page2 tab
and add controls to it. If you want additional pages, right-click the Page2 tab
and choose New Page. You can also choose Move from this same right-click
context menu to rearrange the pages.

The ScrollBar control
A ScrollBar is an analog control, like the volume knob on a stereo. The
position of an analog control offers a visual analogy corresponding to, and
illustrating, the status of the thing it adjusts.

Such controls can be turned all the way up or all the way down or can be
moved gradually between the extremes. ScrollBars are, therefore, appro-
priate for allowing the user to adjust things that have a range of possible
states, such as background color. This range of states should also be con-
tiguous, like how the colors of a rainbow blend into each other across the
spectrum.

And, of course, the classic use for ScrollBars is to help the user move data
up and down in a window (or sideways).

You can reverse the direction of a ScrollBar. Normally, Max is at the far
right of a horizontal bar and at the bottom of a vertical bar. However, if you
set the Max property to a number lower than the Min property, the Max flips
and becomes the far left of a horizontal bar and the top of a vertical bar.

A ScrollBars property of the TextBox control adds an internal scrollbar to
that control.

The SpinButton control
This simple control increments and decrements numbers when the user
clicks it. You can use it to manipulate the values displayed in other controls,
such as changing the date displayed in a label. To get an idea how it works,
add a SpinButton and a Label to a UserForm; then double-click the
SpinButton to get to its Change event. Type this into the event, press F5,
and click the SpinButton to observe the activity:

Private Sub SpinButton1_Change()

Label1.Caption = SpinButton1.Value

End Sub

Adjust the Min and Max properties to suit your needs.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 148

Book II
Chapter 4

M
anaging Files and

UserForm
s
Understanding Controls 149

The Image control
The Image control holds graphics, displaying BMP, GIF, JPG, ICO, and WMF
graphics files. Graphics placed in an Image control can be freely resized.
You can stretch or shrink the graphics to suit your needs by adjusting the
PictureSizeMode property. Zooming, stretching, and clipping — to pre-
serve the original resolution — are all available techniques.

Figure 4-9 illustrates the clipping mode in the image (top) and the stretch mode
(bottom). Set the PictureSizeMode property to fmPictureSizeModeStretch
if you want the entire graphic to display no matter how you resize the Image
control that contains it.

UserForms can also display graphics, via their Picture property.

Figure 4-9:
Clipping
mode
versus
stretch
mode.

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 149

Book II: Understanding Office Programming150

02e_570676 bk02ch04.qxd 6/4/04 9:57 PM Page 150

Chapter 5: Moving to the Internet

In This Chapter
� Developing Web Pages

� Using Web controls

� Understanding database security levels

In this chapter, I show you how to use Office 2003 to build Web pages.
You also discover how to manage Internet security features, use Web

controls, and create a direct connection between a database and an Internet
Web page by using the data-access page feature in Access.

Taking Office 2003 to the Web
Office 2003, like most other major applications, has provisions for the
Internet, both in terms of input and output. The input “features” include
hyperlinks embedded in documents that, when clicked, result in that annoy-
ing (to me, anyway) surprise when the Internet Explorer browser suddenly
takes over a window, or a pane, within an application or utility. Press the
wrong keys or click a hyperlink by accident, and suddenly Word or Windows
Search utility transforms into a kind of faux browser. Even Windows Explorer
also participates in this sudden and — I think unwelcome — transformation.
When I want to surf the Internet, I prefer to do it in the full browser and not
some partial browser that invades another program.

As for output — displaying your information in Web pages for the world to
see — Office 2003 applications include some special controls, wizards, and
other features to help you do just that. For example, the Microsoft Office
Web Components are controls you can use to display charts, spreadsheets,
and database contents on the Internet. And you’ll likely be amazed at how
the Access data-access page helps you easily and quickly create connec-
tions between databases and Web pages. That used to be quite a tough job.

Moving Office to the Web
Although the four Internet-related controls in the preceding steps are the
most visible Internet-related elements in Office 2003, additional features in
Office also contribute to the job of publishing on the Web. Many Office 2003
applications use the Web (or an intranet site) to assist in various kinds of
collaboration and user communication.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 151

Moving Office to the Web152

One simple Web publishing feature is available in Word and Excel. Choose
File➪Save as Web Page from Excel or Word, and an HTML version of your
spreadsheet or document is stored. These versions can be directly displayed
in Web pages. An HTML file is — for all practical purposes — simply a Web
page. Loaded into a browser, it becomes a Web page.

If you open the .mht (a single-page version of HTML) file in a browser, it
looks like Figure 5-1.

You can also use the Save As Web Page dialog box to save your document as
an ordinary HTML page or even as XML.

When you use the Save As Web Page feature, any elements in your document
that must be translated for browser viewing are described. For instance,
when I saved this Word page, I was told that

✦ Decorative border styles will appear as single-line borders.

✦ Pictures and objects with text wrapping will become left- or right-aligned.

Figure 5-1:
When you
save a
document
as a Web
page, it can
easily be
displayed in
a browser.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 152

Book II
Chapter 5

M
oving

to the Internet
Loading Additional Controls 153

However, these saved documents are not interactive. They’re static, like
snapshots. To permit the user to interact with your Office 2003 applications’
data, you can use the special controls that you added to your toolbox earlier
in this chapter.

Loading Additional Controls
When you add a UserForm to a VBA project in an Office application, a
Toolbox also appears. This Toolbox contains a set of controls you can drag
and drop onto the UserForm to build the user interface. However, this isn’t
the entire story; there are more controls you can employ for special pur-
poses. To load additional controls to display Office applications’ information
on the Internet, follow these steps:

1. In Excel, press Alt+F11.

The VBA editor window opens.

2. In the editor, choose Insert➪UserForm.

A new UserForm — and the Toolbox with its controls — appears. For
more on UserForms, see Chapter 4, Book II.

3. Right-click the Toolbox and choose Additional Controls from the con-
text menu.

The Additional Controls dialog box appears, as shown in Figure 5-2.

4. Scroll down until you find the following controls in the dialog box:

• Microsoft Office Chart 11.0

• Microsoft Office Data Source Control 11.0

Figure 5-2:
Add new
controls to
the Toolbox
with this
dialog box.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 153

Using the Web Controls154

• Microsoft Office PivotTable 11.0

• Microsoft Office Spreadsheet 11.0

To see what these controls are used for, see the section, “Using the Web
Controls,” later in this chapter.

If you don’t see these controls listed in the dialog box, close the dialog
box and download them from the Microsoft Web site at

www.microsoft.com/downloads/details.aspx?familyid=
7287252C-402E-4F72-97A5-E0FD290D4B76&displaylang=en

You might see versions 10.0 of these controls or other versions. Mark
the check box next to the most recent versions. Another name for Office
2003 is Office 11, so generally you’ll look for Office 11 components when
adding features.

5. Click the check box next to each control name in Step 4.

6. Click OK.

The Additional Controls dialog box closes, and you see that four new
icons have been added to your Toolbox, as shown in Figure 5-3.

Using the Web Controls
Here’s a summary of the four Office 2003 Web Controls that I show you how
to load earlier in this chapter:

✦ ChartSpace: The ChartSpace control lets you display graphs and
charts from a worksheet or pivot table (Access and Excel) or a database
table (Access). You can display more than one graph or chart at a time.
(This control is a container, which is probably why it’s called a space.)

The new control icons

Figure 5-3:
These
added
controls
help you
display data
on the
Internet.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 154

Book II
Chapter 5

M
oving

to the Internet
Publishing an Excel Spreadsheet 155

✦ PivotTable: The PivotTable control allows users to interact with a
worksheet or database table. Options include filtering, outlining, and
sorting. Pivot tables are reports that can be quickly switched to show
various views on a set of data. You can find much more on pivot tables
in Book IV, Chapter 4, “Data Diving with PivotTables.”

✦ Spreadsheet: The Spreadsheet control displays a basic version of a
worksheet but does allow users to manipulate functions and recalculate.

✦ DataSource: The DataSource control is not displayed to the user but
does help the programmer create a connection between a data source
and the Web page or controls on that page.

You can also drop these controls into spreadsheets or UserForms for
Windows programming, rather than Internet purposes.

Publishing an Excel Spreadsheet
You can Web-publish a single Excel spreadsheet or pivot table but not an
entire workbook. Obviously, publishing this kind of data might be especially
useful as a way to share information with co-workers, even those on the
road. To see how to display an interactive spreadsheet in a Web page, follow
these steps:

1. Run Excel and choose File➪New.

The New Workbook pane opens. (If it doesn’t open, choose View➪
Task Pane.)

2. Click the Templates on Office Online link.

3. Choose an Excel template, such as the Buy vs. Lease Car Calculator
template (listed under the Finance and Accounting link, then the
Personal Finance link).

4. Click the Download button to bring it into your version of Excel.

If you want to see how this entire sheet would look in a Web page,
choose File➪Web Page Preview.

5. Drag your mouse to select the range of cells you want to publish, as
shown in Figure 5-4.

6. Choose File➪Save As Web Page.

7. Click the Selection radio button to publish only the range, as shown in
Figure 5-5.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 155

Publishing an Excel Spreadsheet156

8. Click the Add Interactivity check box.

This determines that the spreadsheet isn’t read-only when displayed in
the Web page, permitting users to actually use the spreadsheet.

9. Click the Publish button.

The Publish as Web Page dialog box opens, as shown in Figure 5-6.

Figure 5-5:
To publish
only a
selected
range,
click the
Selection
radio button.

Figure 5-4:
Select the
range of
cells you
want to put
in a Web
page.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 156

Book II
Chapter 5

M
oving

to the Internet
Publishing an Excel Spreadsheet 157

10. Ensure that the Add InteractivityActivity With check box is checked.

11. Specify a filepath for your Web page.

12. Select the Open Published Web Page in Browser check box.

13. Click the Publish button.

After some behind-the-scenes grinding away, the Web page file (.mht) is
stored on your hard drive, and Internet Explorer opens with the spread-
sheet range displayed, as shown in Figure 5-7. This spreadsheet range is
a Web page, and it is dynamic. Users can type in data, formulae, and per-
form calculations.

Type some data into this Web page and then choose View➪Source in
Internet Explorer to see the underlying HTML code that was generated to
create your Web page. Here’s one interesting part of the code, where the
Excel spreadsheet object is defined:

<object
id=”Buy vs_26422_Spreadsheet”
classid=”CLSID:0002E559-0000-0000-C000-000000000046”>
<param name=DisplayTitleBar value=false>
<param name=ViewableRange value=”A1:B20”>
<param name=Autofit value=true>
<param name=DataType value=XMLData>

In the preceding code block, note the classid. That’s a unique number
(or so you hope) that identifies the Microsoft Office Spreadsheet Web
Component version 11. Version 10 has this similar but unique ID number:

0002E551-0000-0000-C000-000000000046

Figure 5-6:
Make any
changes
you wish
to the
published
sheet here.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 157

Securing a Spreadsheet: Protecting Cells158

(See more about the version differences in the earlier section, “Loading
Additional Controls.”)

Securing a Spreadsheet: Protecting Cells
You might want to display some cells in a spreadsheet that are protected:
namely, that the user is not permitted to modify. In the following example
(using the Buy vs. Lease Car template), you want to freeze the Refundable
Security Deposit cell at 0 (zero) and not allow users to make any changes
to it.

To see how to publish a selectively disabled spreadsheet, follow these steps:

1. In Excel, open the spreadsheet template from the preceding example.

2. Type 0 (zero) into one of the cells.

Your goal now is to disable this cell so that the user can’t adjust it.

3. Drag your mouse to select the cell (with the 0) that you want to dis-
able. (It may appear selected after you complete Step 2, but it isn’t.
You must drag to see the context menu in Step 5.)

Figure 5-7:
Post a
functional
spreadsheet
range as a
Web page.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 158

Book II
Chapter 5

M
oving

to the Internet
Securing a Spreadsheet: Protecting Cells 159

4. Right-click the selected cell.

5. Choose Format Cells from the context menu that appears.

The Format Cells dialog box opens, as shown in Figure 5-8.

6. Click the Protection tab in the dialog box.

7. Click the Locked check box to add a check mark.

8. Click OK.

The dialog box closes.

9. Choose Tools➪Protection➪Protect Sheet.

In the Protect Sheet dialog box that opens, you can choose various
levels of protection.

10. Leave the default settings as they are and click OK. These defaults
allow the user to select, but not edit, the locked cell.

The dialog box closes.

Don’t choose the Password option in the Protect Sheet dialog box — if
you do, the cells can’t be used in a Web page.

11. Select the range of cells you want to publish — perhaps a dozen cells
surrounding the protected one — so you can test the protection feature.

12. Choose File➪Save As Web Page.

13. Enable the Selection radio button to publish only the range.

14. Click the Add Interactivity check box.

Now all the cells in the spreadsheet (other than the protected one) can
be modified by the user when displayed in the Web page.

Figure 5-8:
Use this
dialog box
to protect
(disable) a
cell or range
of cells.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 159

Publishing Access Data160

15. Click the Publish button.

The Publish as Web Page dialog box opens.

16. Ensure that the Add Interactivity With check box is checked.

17. Specify a filepath for your Web page.

18. Click the Open Published Web Page in Browser check box.

19. Click the Publish button.

Now try to make changes to that 0 in the protected cell. Doesn’t happen.
Instead, a message box informs you that this cell is read-only, so your efforts
to modify it are doomed, as shown in Figure 5-9.

Publishing Access Data
Access doesn’t work the way that Excel does; no File➪Publish as Web page
feature exists. Instead, you use the special data-access page, which is
already an HTML document — and thus, already published, in a sense. You
can permit users to interact with data — or indeed to use the Web controls
(Chart, PivotTable, or Spreadsheet) — within a data-access page.

Although data-access pages are used to create Web pages, you can also
employ them within the Access application itself in Windows. And, either
within a browser or Access, a user can edit and add or delete records as well
as sort and filter the data.

Figure 5-9:
Not so fast,
dude. This
cell is read-
only, so
forget about
changing it.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 160

Book II
Chapter 5

M
oving

to the Internet
Publishing Access Data 161

Data access pages can be created several ways:

✦ Convert an existing Web page or Access report (or table, form, or
custom view).

✦ Start from scratch.

✦ Use a wizard in Access.

Whichever method you choose, you’ll avoid the maddening tedium and
downright waste of human time writing HTML by hand to accomplish the job
of building an interactive, database-connected Web page. Programmers used
to write this stuff by hand; fortunately, wizards and other automated features
make a Web programmer’s life far more pleasant these days.

Creating a data access page
To see how to create a data access page from an opened database, follow
these steps:

1. In Windows Explorer, open the Northwind sample database
(Northwind.mdb) in Access.

Northwind can be found at C:\Program files\Microsoft Office\
Office11\Samples. Choose Help|Sample Databases, then select
Northwind Sample Database. If it’s not there, go to Windows’s Control
Panel, choose Add/Remove Programs, then find and click Microsoft
Office, click the Change button, and follow the instructions to install the
Northwind sample database.

2. Start creating a data-access page by choosing Pages (in the left pane of
the database window, as shown in Figure 5-10).

Figure 5-10:
Click the
Pages
object to
begin
building a
data access
page.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 161

Publishing Access Data162

3. Click the New button on the database window toolbar.

The New Data Access Page dialog box opens, as shown in Figure 5-11.

4. Click the AutoPage: Columnar option.

5. In the drop-down list at the bottom of the dialog box, choose the
Employees table as your data source (refer to Figure 5-11).

6. Click OK.

The dialog box closes, and your new data-access page appears, as
shown in Figure 5-12.

Notice in Figure 5-12 that a set of database manipulation icons are available
in a strip along the bottom. These include the usual first, previous, next, and
last record navigation buttons, as well as new record, delete record, sorting
and filtering buttons. The user has quite a bit of freedom to manipulate and
view this table from the database.

Deploying a data-access page
To save the data-access page (so you can drop it into a Web site via
FrontPage or other Web site-building tools), just click the data-access page’s
toolbar to select it. Choose File➪Save, and you’ll see a Save dialog box
where you can specify where the .htm (HTML) file will be stored.

After the file is saved, you see a warning dialog box telling you that you’ve
saved the file to an absolute filepath (a hard-wired address on your hard
drive) as opposed to the more desirable network Universal Naming
Convention (UNC) path. If you intend for others on your intranet to use this
file, you should indeed correct the address. However, if you’re deploying the
file to a server for Internet Web site purposes, you undoubtedly know how
and where to store the file — just store it in the same directory along with
your other Web pages.

Figure 5-11:
Choose
here which
data access
page
approach
to take.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 162

Book II
Chapter 5

M
oving

to the Internet
Publishing Access Data 163

After the file is saved, it can be displayed in a browser, just like a Web page
because it is in fact (hmmm) a Web page. In Windows Explorer, double-click
the employees.htm file (or whatever name you saved the file). If you
(or your machine’s administrator) applied some permissions security meas-
ures to this location, you’ll see a message like the one displayed in Figure 5-13.

Figure 5-13:
Security
measures
can prevent
a database
from being
accessed
from a Web
browser.

Figure 5-12:
A finished
data access
page,
showing the
first record
in the
Employees
table.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 163

Publishing Access Data164

However, precisely this same security warning can be displayed erroneously.
The message should also state

This file or database may currently be in use by another application or
process.

If you haven’t shut down Access and it’s still displaying the data-access file,
shut Access down now. Then try double-clicking the employees.htm file in
Windows Explorer again.

This time you should see it appear in Internet Explorer, as shown in
Figure 5-14. You’ve made a connection between your Access database
and a Web browser; users can manipulate this database from the Internet.

Experiment a bit with the database records by trying some of the manipula-
tion and maneuvering tools on the toolstrip at the bottom of the Web page.

Figure 5-14:
Make a
connection
between
your Access
database
and a Web
browser.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 164

Book II
Chapter 5

M
oving

to the Internet
Security: Locks on Top of Locks 165

Also, to give yourself a thrilling yet frightening treat, right-click the back-
ground of the Web browser and choose View Source from the context menu.
You now see the enormous amount of HTML that’s been created for you. This
is why I said earlier that creating database-connected Web pages (indeed
pretty much any kind of a Web page) used to be HTML hell. Imagine having
to write this stuff by hand, as people used to do.

Also notice that buried in the HTML code is a Data Access control as well
as the various parameters that it uses, including the Northwind sample data-
base, the Jet database engine, and various security settings. Here is the por-
tion of the HTML that defines the control:

<OBJECT id=MSODSC tabIndex=-1
classid=CLSID:0002E553-0000-0000-C000-000000000046>
<PARAM NAME=”XMLData” VALUE=”<xml xmlns:a="urn:schemas-

microsoft-com:office:access">

<a:DataSourceControl>
 <a:OWCVersion>10.0.0.5605
</a:OWCVersion>

<a:ConnectionString>Provider=Microsoft.Jet.OLEDB.4.0;User
ID=Admin;Data Source=C:\Program Files\Microsoft
Office\OFFICE11\SAMPLES\Northwind.mdb;Mode=Share Deny
None;Extended Properties=&quot;&quot;;Persist
Security Info=False;Jet OLEDB:System
database=&quot;&quot;;Jet OLEDB:Registry
Path=&quot;&quot;;Jet OLEDB:Database
Password=&quot;&quot;;Jet OLEDB:Engine Type=0;Jet
OLEDB:Database Locking Mode=1;Jet OLEDB:Global Partial
Bulk Ops=2;Jet OLEDB:Global Bulk Transactions=1;Jet
OLEDB:New Database Password=&quot;&quot;;Jet
OLEDB:Create System Database=False;Jet OLEDB:Encrypt
Database=False;Jet OLEDB:Don’t Copy Locale on
Compact=False;Jet OLEDB:Compact Without Replica
Repair=False;Jet
OLEDB:SFP=False</a:ConnectionString>

Security: Locks on Top of Locks
Always an interesting topic (to some of us anyway), security takes many
forms in today’s computers. Layers upon layers of technology exist these
days, all trying to save us from intruders, probes, spies, and virii of various
kinds. Security initiatives today have become rather overdone. Like doors
you see in New York City apartments, there are locks upon locks, sliders,
chains, multiple bolts . . . as if quantity were quality.

Of course, if you take a few, easy common-sense precautions, you have noth-
ing much to fear. If you simply back up your documents frequently, refuse to
open e-mail attachments or execute programs from unknown sources, and

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 165

Security: Locks on Top of Locks166

use a firewall when connected to the Internet, you’re in little real danger
from anything that the big, bad hackers and whackers can do to your
machine.

Nonetheless, it’s annoying to get spied on or have to reinstall your applica-
tions after a virus attack. Most careful people never experience a virus attack
in their personal computers at home, but the danger in lost productivity in
office situations is clear. And the more connectivity (the more people online
at an office intranet for example), the more likely that someone in the office
will be dumb enough to try to open an e-mail attachment named BIGFUN.EXE
or something and infect the whole place.

With .NET, and the general thrust to make security a priority, security initia-
tives are flowing freely into every level of computation. This isn’t merely a
Microsoft phenomenon — almost everyone selling anything related to com-
puting has security on the mind (and in the advertising). It’s almost enough
to make one bemused.

Securing databases
If you create a direct connection between a database and an Internet Web
page by using the data-access page feature in Access, any visitor to this page
can alter or delete records. Think about it. You’ve exposed your quivering
hard drive to the depredations of the world’s bad guys.

In the earlier section, “Securing a Spreadsheet: Protecting Cells,” I show you
how to post an Excel spreadsheet to the Internet and selectively specify
some or all cells as read- only, thus preventing users from making any
changes to it.

Likewise, you can protect databases in a variety of ways — everything from
encrypting the data so users can’t see what they shouldn’t see to employing
user-permissions (Tools➪Security➪User and Group Permissions) or pass-
words so that only authorized people get to look at the data — and perhaps
only a subset of those people are given full permissions so they are able to
actually modify the data.

An easy way to manage user-level security settings is to select the main data-
base window and then choose Tools➪Security➪User-level Security Wizard.

If you assign a password to a database file, only people whom you tell the
secret password are able to open it. After they’re in, though, they’re com-
pletely in and can do whatever they want (unless you’ve separately specified
user-level security permissions), so passwords by themselves are sometimes
an all-or-nothing approach. You can password-protect only .mdb database
files (see the upcoming section, “Protecting your code,” for the scoop
on.mdb’s cousin, .mbe.) Follow these steps:

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 166

Book II
Chapter 5

M
oving

to the Internet
Security: Locks on Top of Locks 167

1. Choose File➪Open in Access.

The Open dialog box opens.

Here’s a weird UI feature. The Open button on the lower right of this
dialog box has a drop-down feature. A little arrow on it. This is the first
time I’ve ever seen a drop-down button — but you never know. Somebody
thought this unique approach was clever or something. Baffles me.

2. Click an .mdb file in the Open dialog box to select it.

3. Click the down-arrow icon on the Open button, as shown in Figure 5-15.

4. Choose Open Exclusive in the drop-down button list.

5. Choose Tools➪Security➪Set Database Password.

6. Type in whatever password you want to use.

This password is case-sensitive.

You can remove passwords by choosing Tools➪Security➪Unset Database
Password.

Protecting data-access pages
In Book VIII, Chapter 7, I cover various Office 2003 security features in depth.
For now, be aware that you can protect a data-access page by opening it in
design view. (Choose View➪Design View with the data-access page selected.)
Right-click the section bar in the group that you want to make read-only.
Then, from the context menu, choose GroupLevel Properties. The GroupLevel
Properties dialog box appears, as shown in Figure 5-16.

Figure 5-15:
This odd
drop-down
button
offers
various
ways to
open a
database
file.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 167

Security: Locks on Top of Locks168

In the GroupLevel Properties dialog box, enable whatever kinds of protection
you want to enforce: forbid additions, deletions, editing, or any combination
of these permissions.

Protecting your code
Another aspect of security is protecting the programming that you do from
others. Perhaps you’ve come up with an excellent solution that you want to
hide from prying eyes. Or perhaps you just want to hide the code so others
won’t mess around with it and introduce bugs.

You can save an .mdb file in a different format (.mde; the e is for encrypted).
Similarly, you can also transform .adp files into .ade files.

When saved as an .mde file, all your VBA modules are compiled (turned into
machine language executables), and your readable source code (what you
see when programming in the VBA editor) is removed. As a result, people can
execute — but not read (or modify) — your VBA programming. This kind of
security is pretty efficient. You don’t have to subdivide your users into vari-
ous levels of permissions, or manage passwords, and so on. You’re just giving
out the executable and not letting anyone into the source code that generates
the executable. Users of .mde files can’t use design view to import, export, or
modify forms, reports, source code, or modules. Nor can they add, remove,
or modify references to databases or code libraries. They can’t even open the
Object Browser. (Data access pages, tables, queries, and macros can, how-
ever, still be imported from, or exported to, databases that are not saved in
the .mde format.)

Say you’ve written some VBA code in Access, and you don’t want others
viewing your macros or programs. Here’s how to transform an unprotected
Access database into an .mde database:

Figure 5-16:
Protect
elements in
data access
pages in this
dialog box.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 168

Book II
Chapter 5

M
oving

to the Internet
Security: Locks on Top of Locks 169

1. Open your .mdb or .adp file and ensure that no one else on the net-
work is currently viewing it.

2. Choose Tools➪Database Utilities➪Make MDE File.

If Access finds that you’re trying to save an Access 2000 database in the
.mde format, it informs you that the database must first be converted
into an Access 2003 version. To do so, click the Main database window
to select it, and then choose Tools➪Database Utilities➪Convert Database.

The Save dialog box opens.

3. Specify where you want the new database saved; then click Save.

The new .mde or .ade file is saved.

Your original .mdb or .adp file still remains on the hard drive. It’s not deleted
because you might want to modify it later, so you should keep your original in
a secure place. Note that you can’t revert an .mde or .ade database back
into an .mdb or .adp version. Also be aware that you’ll run into versioning
problems if people have been modifying data in an .mde or .ade version,
and then you want to make some changes to, say, a macro. You can’t easily
reconcile the versions.

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 169

Book II: Understanding Office Programming170

02f_570676 bk02ch05.qxd 6/4/04 9:58 PM Page 170

Chapter 6: Debugging

In This Chapter
� Handling typos

� Trapping errors within code

� Locating logic errors

� Using step-throughs, watches, and other debugging techniques

Bugs — errors in a computer program — are inevitable. You can be enor-
mously painstaking, tidy, and thoughtful, but if your program is more

than 50 lines long, errors are likely to occur. If it’s longer than 100 lines, errors
are virtually certain.

Macros are short enough that you might create five or six of them without a
bug, but odds are that you won’t. One reason, though, that short programs
like macros are easier to write bug-free (aside from the obvious point that
there’s simply less code to err in) is that much of the job of debugging long
programs is the work you must invest finding and fixing the very worst bugs
(logic bugs). You’ll spend a lot of time just figuring out where the little crit-
ters are. Locating bugs in large programs is usually much more difficult than
actually fixing them. Most macros, though, are small enough that you already
know where the bug is: It’s right there in the few lines of code that you’re
staring at.

However, if you write programs in VB.NET (as I describe in several chapters
in Book VIII), you’ll have more code to look through. To debug longer pro-
grams, you want to avail yourself of several of the tools like watches, as I
describe here, that help you track down exactly which line contains the bug.

Roll up your sleeves and see what tools the VBA and .NET editors offer for
those who need to track bugs down and kill them dead. Because VBA pro-
grammers stand astride two different languages — classic Visual Basic rep-
resented by VBA, and the future of BASIC, VB.NET — this chapter covers the
error-trapping techniques available in both languages. If you’re not ready to
transition to .NET just yet, simply ignore the comments applicable to that
language.

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 171

Typos in Commands and Variables172

Errors in computer programming fall into three primary categories:

✦ Typographical errors (includes syntax errors)

✦ Runtime errors

✦ Logic errors

I deal with each in turn, starting with typos, which are the easiest. Logic
errors are the toughest.

Fortunately for us programmers, Visual Basic (VB) editors provide a powerful
suite of tools to help you track down and eliminate bugs. Basic programmers
have been the envy of the programming community for years. However, with
the arrival of Visual Studio .NET, all supported languages (namely C and its
derived daughter languages) now share the same editor (Integrated Design
Environment; IDE) and, therefore, the other languages have finally caught up.

Typos in Commands and Variables
Typos are the easiest errors to locate and correct. For example, Visual Basic
knows at once if you mistakenly type Prjnt instead of Print. If it doesn’t
recognize the word, it detects that kind of error and alerts you. When you
give VB an impossible command like Prjnt, VB realizes that it can’t do any-
thing with that line of code because that word just isn’t in the language’s
vocabulary.

VB also lets you know if you have a typo in a variable name. Typing an
Option Explicit in the top of the code window forces you to explicitly
declare all variables. This has the effect of preventing a particular kind of
typo: If you misspell the name of a variable, an error message will warn
you that the variable has not been declared. This alerts you that you’ve
made a typo.

Command Name Errors as Typos
Perhaps you didn’t mistype something but instead mistakenly thought that
VB knew a command that it doesn’t know. For example, type in the command
Pass the Salt:

Sub Whaaa()

Pass the Salt

End Sub

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 172

Book II
Chapter 6

Debugging

Understanding Syntax Errors 173

As soon as you press Enter after typing Salt, you have an error. VB expects
to see a command at the start of that line, and Pass is not part of the list of
commands that VB understands. To help you find your error, that line of
code turns red (in the VB editor) or is underlined (in the .NET editor). (In
.NET, VB also displays its best guess as to the nature of the problem in its
Task List window, although the suggestions can be a bit vague.)

If you press F5 to run the Pass the Salt code, VB displays a message box
informing you of compile or build errors. You can ask for Help in the VBA
error message box, but it, too, is a bit vague, reporting in this case that the
problem might be punctuation, a misnamed procedure, misspelling, and
several other possibilities.

Understanding Syntax Errors
Related to typographical errors are syntax errors. Computer languages can
be snippy little schoolmarms when it comes to correct punctuation. And lan-
guages don’t tolerate it when you leave out required arguments or put them
in the wrong order.

VB expects correct punctuation. This line — UserForm1..BackColor =
Blue — will trigger a syntax error because there’s no double-period punctua-
tion in VB’s Little Book of Correct Punctuation.

Another kind of error is when you don’t provide the right type of informa-
tion, or enough information, for VB to carry out a command:

CommandButton1.Top

The information in this statement is incomplete. You’ve given only the name
of a control (CommandButton1) and one of its properties (Top), but you
haven’t provided the information that tells the Top method which location
you want it to move to. That’s as incomplete a statement as an English sen-
tence like Mary’s Hair.

A third variety of easily detected (and easily fixed) error is an inconsistency
of some kind between parts of your program. For example, if you have a pro-
cedure that expects an argument, like the following:

Sub MultiBeep(numbeeps)
For counter = 1 To numbeeps

Beep
Next counter

End Sub

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 173

Handling Runtime Errors174

and you try to call it but give no argument:

MultiBeep

VBA catches the error right away, displaying this message: Argument Not
Optional. (.NET displays this somewhat more complete message: No argu-
ment specified for non-optional parameter “numbeeps”)

If you have the AutoListMembers option selected in Tools➪Options➪Editor
(or in .NET: Tools➪Options➪Text Editor➪All Languages), VB displays the
argument list for any procedure that you’re trying to call. This happens as
soon as you type the left parenthesis following the procedure’s name. Of
course, if you don’t type any left parenthesis, this doesn’t happen.

Handling Runtime Errors
Some errors occur only during runtime. Your code is valid code with no
typos or syntax errors, but something unexpected happens when the pro-
gram is running. This is often a problem related to contacting a peripheral,
such as a hard drive. For example, if the user has no diskette in Drive A:,
and your program executes this code:

Documents.Open “a:\test.doc” ‘VBA

or the .NET version:

Open(5, “A:\Test.doc”, OpenMode.Input) ‘.NET

VBA puts up an error message telling you that the file can’t be found.
VB.NET is somewhat more technical in its error message: An unhandled
exception of type ‘System IO.IOException’ occurred and so on.

VBA’s error message lets you choose between four buttons: Continue, End,
Debug, and Help. .NET’s buttons are Break, Continue, Ignore, and Help.

You need to prevent, or at least gracefully handle, runtime errors. It’s no
good having a smoothly running program that suddenly halts if the user has,
say, forgotten to put a disk into Drive A: or failed to close the drive door.

How Runtime Errors Occur
Runtime errors include various kinds of unexpected situations that can
come up when the program is running. While you’re writing the program,
there are a number of things you can’t know in advance about the user’s
system. For example, how large is the disk drive? Is it already so full that

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 174

Book II
Chapter 6

Debugging

Using On Error or Try...End Try 175

when your program tries to save a file, there won’t be enough room? Are you
creating an array so large that it exceeds the computer’s available memory?
Is the printer turned off, but the user tries to print anyway?

Whenever your program is attempting to interact with an entity outside the
program — the user’s input, disk drives, Clipboard, RAM — you need to take
precautions by using the On Error (VBA) or Try...End Try (.NET) struc-
tures. These structures enable your program to deal effectively with the
unexpected while it runs.

Unfortunately, your program can’t correct many runtime errors. For
instance, you can only let the user know that his or her disk drive is nearly
full. The user will have to remedy this kind of problem; you can’t fix it with
your code.

Using On Error or Try...End Try
If a runtime error can occur, you should use the On Error or Try commands
to trap the error. If you don’t use these error-trapping commands, Visual
Basic will provide an error message to the user (which might be very confus-
ing to the user), and VB might have to shut down your VB program as well.
This scares the wits out of new users. They sometimes think they’ve broken
the computer. Here’s a comparison of the traditional (VBA) On Error error-
trapping technique and the more advanced Try technique (.NET).

Using On Error (VBA)
.NET permits you to use the classic On Error technique: You don’t have to
revise this aspect of your older programs. However, for new programs that
you write in VB.NET, you might want to consider the possibility that a supe-
rior error-trapping and handling approach exists. It’s called structured error
handling, which implies that your familiar, classic VBA error handling is . . .
well . . . unstructured.

However, if you try to write some traditional VBA like If Err Then, you’ll
be informed that VB.NET doesn’t permit the ErrObject to be treated as
Boolean (True/False). But where there’s a will, there’s a way. You can test
the Err object’s number property. If you want to test the Err object within
an If...Then structure, use this VB.NET code:

x = CInt(textbox1.Text)

If err.Number <> 0 Then

textbox1.Text = “You must enter a number...”

End If

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 175

Using On Error or Try...End Try176

Consider first the classic VBA On Error syntax. Because there is no
Drive Z:, the following input causes an error:

Sub Mungo()
Open “Z:\MYFILE” For Output As #1
Print #1, x
Close #1

End Sub

When this macro runs, a Path Not Found message will appear. Many users
will be baffled; some will undoubtedly go into a deep depression. Only expe-
rienced programmers or users will understand what Path Not Found means.
However, if you modify the macro to insert an error handling structure, you
can provide a more helpful message of your own and also make the program
continue to run rather than shut down:

Sub SaveIt()

On Error Resume Next

Open “Z:\MYFILE” For Output As #1

If Err Then
MsgBox (Error(Err)) & “. There was a problem with the disk

drive. Perhaps there is no Drive Z on your system?”
Close
Exit Sub
End If

Print #1, X
Close #1

End Sub

When this disk access fails, the user sees the helpful, custom error message
shown in Figure 6-1 instead of VBA’s cryptic, scary Path Not Found default
message.

Figure 6-1:
Be friendly
to users
with custom
error-
trapping
and error
messages
that are
descriptive.

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 176

Book II
Chapter 6

Debugging

Using On Error or Try...End Try 177

Notice in the above code that you put an On Error Resume Next command
at the start of a procedure where you suspect that a runtime error might
occur (such as contacting a peripheral like the disk drive). This command
tells VB to not shut down the program if an error occurs. Rather, it should
resume execution of the next line of code following the error.

You then place the line that starts handling the error (If Err Then) just fol-
lowing the possible error (Open Z:). This code is sometimes called an error
handler or an error trap. The point is that you are saying this: If the Err vari-
able contains some value other than 0, there is an error. Consequently, you
must do something about that error in your code between the If Err and
the End If, as I did in the preceding example. The Error(Err) command
feeds the error code (Err) to the Error function — and you get back a text
description of the error.

The VB.NET version: Structured trapping
If you’re writing a .NET program, consider using the new Try...Catch...
Finally structure rather than VBA’s On Error:

Sub TryError()

Try

Microsoft.VisualBasic.FileOpen(5, “A:\Test.Txt”,
OpenMode.Input)

Catch er As Exception
MessageBox.Show(er.ToString)

Finally

End Try

End Sub

Code between the Try and End Try commands is watched for errors. You
can use the generic Exception (which will catch any error) or merely trap a
specific exception such as the following:

Catch er As DivideByZeroException

The term exception is used in C-like languages (and now in VB.NET) to mean
error. It sounds better, more PC, and certainly less embarrassing to tell the
boss, “I have a couple of exceptions in my program” rather than “I have a
couple of errors.”

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 177

Using On Error or Try...End Try178

I use er in this example, but you can use any valid variable name for the
error. Or you can leave that variable out entirely and just use Catch, like
this:

Try
Microsoft.VisualBasic.FileOpen(5, “A:\Test.Txt”, OpenMode.Input)

Catch
MessageBox.Show(“problem”)

Finally

End Try

When Catch executes
If an error occurs during execution of the source code in the Try section,
the following Catch section is then executed. You must include at least one
Catch section, but there can be many such sections if you need them to test
and figure out which particular error occurred. A series of Catch sections is
similar to the Case sections in Select Case structures. The Catch sections
are tested in order, and only one Catch block (or none) is executed for any
particular error.

You can use a When clause to further specify which kind of error you want to
trap, like this:

Dim Y as Integer
Try

Y = Y / 0
Catch When y = 0

MessageBox.Show(“Y = 0”)
End Try

Or you can specify a particular kind of exception, thereby narrowing the
number of errors that will trigger this Catch section’s execution:

Catch er As ArithmeticException
MessageBox.Show(“Math error.”)

Catch When y = 0
MessageBox.Show(“Y = 0”)

End Try

To see a list of the specific exceptions, use VB.NET’s menu Debug➪Windows➪
Exceptions and then expand the Common Language Runtime exceptions. You
might have to do a bit of hunting. For instance, the FileNotFound error is
located two expansions down in the hierarchy: Common Language Runtime➪
SystemException➪IOException. So you have to expand all three nodes (click
the + next to each) in order to finally find FileNotFoundException.

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 178

Book II
Chapter 6

Debugging

Using On Error or Try...End Try 179

Also notice in the Exceptions window that you can cause the program to
ignore any of the exceptions. (Select the Continue radio button in the
Exceptions window.) This is the equivalent of On Error Resume Next in
older versions of BASIC such as VBA or VB 6.

Here is a list of common errors that you can trap in VB.NET. The following
errors are in the System namespace:

AppDomainUnloadedException, ApplicationException,
ArgumentException, ArgumentNullException,
ArgumentOutOfRangeException, ArithmeticException,
ArrayTypeMismatchException, BadImageFormatException,
Can’tUnloadAppDomainException, ContextMarshalException,
DivideByZeroException, DllNotFoundException,
DuplicateWaitObjectException, EntryPointNotFoundException,
Exception, ExecutionEngineException, FieldAccessException,
FormatException, IndexOutOfRangeException, InvalidCastException,
InvalidOperationException, InvalidProgramException,
MemberAccessException, MethodAccessException,
MissingFieldException, MissingMemberException,
MissingMethodException, MulticastNotSupportedException,
NotFiniteNumberException, NotImplementedException,
NotSupportedException, NullReferenceException,
OutOfMemoryException, OverflowException,
PlatformNotSupportedException, RankException,
ServicedComponentException, StackOverflowException,
SystemException, TypeInitializationException, TypeLoadException,
TypeUnloadedException, UnauthorizedAccessException,
UnhandledExceptionEventArgs, UnhandledExceptionEventHandler,
UriFormatException, WeakReferenceException.

The following errors are in the SystemIO category:

DirectoryNotFoundException, EndOfStreamException,
FileNotFoundException, InternalBufferOverflowException,
IOException, PathTooLongException.

You can list as many Catch phrases as you want and respond individually to
them. You can respond by notifying the user as in the previous example or
merely by quietly fixing the error in your source code following the Catch.
You can also provide a brief error message with the following:

e.Message

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 179

Using On Error or Try...End Try180

Or, as in the previous example, use the following fully qualified error message:

e.ToString

Here’s the full Try...Catch...Finally structure’s syntax:

Try
tryStatements

[Catch [exception [As type]] [When expression]
catchStatements

[Exit Try]

Catch [exception [As type]] [When expression]
catchStatements

[Exit Try]

. . .

Catch [exception [As type]] [When expression]
catchStatements]

[Exit Try]

[Finally
finallyStatements]

End Try

Recall that following the Try block, you list one or more Catch statements.
A Catch statement can include a variable name and an As clause defining
the type of exception or the general all errors, As Exception (er As
Exception). For example, here’s how to trap all exceptions:

Try
Microsoft.VisualBasic.FileOpen(5, “A:\Test.Txt”, OpenMode.Input)

Catch e As Exception

‘Respond to any kind of error.

Finally

End Try

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 180

Book II
Chapter 6

Debugging

Using On Error or Try...End Try 181

And here is how to respond to the specific File Not Found error:

Try

Microsoft.VisualBasic.FileOpen(5, “A:\Test.Txt”, OpenMode.Input)

Catch FileNotFoundE As FileNotFoundException

‘Respond to this particular error here, perhaps a messagebox to alert the
user.

Finally

End Try

An optional Exit Try statement causes program flow to leap out of the Try
structure and to continue execution with whatever follows the End Try
statement.

Using Finally
The Finally statement should contain any code that you want executed
after error processing has been completed. Any code in the Finally state-
ment is always executed, no matter what happens (unlike source code fol-
lowing the End Try line, which might or might not execute, depending on
how things go within the Try structure). Therefore, the most common use
for the Finally section is to free up resources that were acquired within the
Try block. For example, if you were to acquire a Mutex lock within your Try
block, you would want to release that lock when you were done with it,
regardless of whether the Try block exited with a successful completion or
an exception (error). It’s typical to find this kind of code within the Finally
block:

objMainKey.Close()
objFileRead.Close()
objFilename.Close()

Use this approach when you want to close, for instance, an object reference
to a key in the Registry, or to close file references that were opened during
the Try section (block) of code.

Mutex means mutual exclusion object. A Mutex object can help direct traffic
when more than one thread attempts to access a file or other resource.
When a thread makes a connection to the shared resource, it locks the
Mutex. It’s unlocked when the connection is no longer needed. Then other
threads are free to make their connections in the same lock/unlock fashion.

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 181

Tracking Down Logic Errors182

Here’s how source code that you put within the Finally section differs from
source code you put following the End Try line.

If there is an error, here is the order in which code execution takes place:

1. Try section.

2. Catch section. (The Catch section that traps this error.)

3. Finally section.

If no error occurs, here is the execution order:

1. Try section

2. Finally section

3. Source code following the End Try line

Even if a Catch section has an Exit Sub command, the Finally section
nevertheless will still be executed. Remember that Finally is always exe-
cuted. However, the Exit Sub does get executed just after the Finally
block.

Tracking Down Logic Errors
The third major category of programming bugs — logic errors — is usually
the most difficult of all to find and fix.

Some can be so sinister, so well concealed, that you think you will be driven
mad trying to find the source of the problem within your code. BASIC pro-
gramming editors devote most of their debugging features and resources to
assisting you in locating logic errors.

A logic error occurs even though you made no typos, followed all the rules
of syntax, and otherwise satisfied Visual Basic so that your commands can
be carried out. You and VB think everything is shipshape. However, when
you run the program, things go wrong: Say, the entire screen turns black, or
every time the user enters $10, your program changes it to $1,000.

BASIC’s set of debugging tools help you track down the problem. The key
to fixing logic errors is finding out where in your program the problem is
located. Which line of code (or multiple lines interacting) causes the
problem?

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 182

Book II
Chapter 6

Debugging

Tracking Down Logic Errors 183

Some computer languages have an elaborate debugging apparatus, sometimes
even including the use of two computer monitors: One shows the program
as the user sees it; the other shows the lines of programming that match the
running program. Using two computers is a good approach because when
you’re debugging logic errors, usually your main job is to figure out where
the code is that’s causing the problem.

It’s not that you don’t notice the symptoms: Every time the user enters a
number, the results are way, way off. You know that somewhere your pro-
gram is mangling the numbers — but until you X-ray the program, you often
can’t find out where the problem is located.

The watchful voyeur technique
Many logic errors are best tracked down by watching the contents of a vari-
able (or variables). Something is going wrong somewhere, and you want
to keep an eye on a variable to find out just where its value changes and
goes bad.

Some of VB’s best debugging tools help you keep an eye on the status of
your variables. Type in a simple VBA macro, like this:

Sub Adder()

Dim a As Double, b As Double

a = 112

b = a / 2

b = b + 6

End Sub

Now press F8 once to take your first step into the macro. After you press
F8 to take that first step, make the watch window visible: Choose Debug➪
Add Watch (VBA) or Debug➪Windows and select the Locals, Watch, and
Immediate windows (.NET). Open the Immediate and Locals windows in VBA
from the View menu.

Each time that you press F8 to execute the next line of code (called single-
stepping, or step into), the program again goes into break mode (paused in
its execution).

The .NET Watch and Locals windows share the same space, and you can
switch between them by clicking the tabs on the bottom of their shared
window.

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 183

Tracking Down Logic Errors184

In VBA’s Add Watch dialog box, type b in the Expression field and then click
OK to close the dialog box. This tells VBA to display the contents of variable
b while the program is executing, while you’re stepping through it, or while
in break mode.

Press F8 several times to step through the code lines and keep an eye on the
value in variable b, as shown in Figure 6-2.

In the .NET Locals window, you see the contents of all variables that have
been declared within the currently executing procedure.

Also take a look at the Immediate window. In this window, you can directly
query or modify variables, or expressions. To find out the value in variable b,
for instance, just type the following into the Immediate window and then
press Enter:

? b

Figure 6-2:
The Watch
window
displays a
variable’s
value while
you’re
debugging.

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 184

Book II
Chapter 6

Debugging

Tracking Down Logic Errors 185

The answer — whatever value b currently holds while you’re in break
mode — will be printed in the Immediate window. (The ? command is short-
hand for the Print command.)

If you want to experiment and actually change the value in a variable during
break mode, delete the number in the Value column in the .NET Locals or
Watch windows, and then type in your new value. You can also launch and
test procedures (events, Subs, or Functions) by typing their names and
pressing Enter. VB.NET will execute the procedure and then halt again. This
is a good way to feed variables to a suspect procedure and watch it (and it
alone) absorb those variables to see if things are going awry within that
procedure.

Using Debug.Write or Debug.Print
Some .NET programmers like to insert Debug.Print (or Console.Write in
.NET) commands at different locations within their code. (I don’t because
I find that approach rather clumsy compared to setting watches or break-
points. For one thing, with these printing/writing statements, you have to
spell out the location and variable name yourself in the printed message.)
This also has the effect of displaying the contents of the variable b in the
Output window. But in this case, you’re causing the values in the variables
that you choose to show to be displayed via code within your program. Try
inserting some Debug.Write (MyVariableName) lines here and there in a
VB.NET program, and then run the program and watch the results appear in
the Output window.

Actually, you can type any executable commands that can be expressed on a
single line into the Immediate window to watch their effects. Notice that this
is all done while the VB program is halted during a run. You can test condi-
tions from within the living program while it’s in break (pause) mode. You
can get into break mode several ways:

✦ Insert a Stop command into your code.

✦ Set a breakpoint (which I discuss later in the section, “Setting
Breakpoints”) in the code.

✦ Single-step (press F8).

✦ Choose Break from the Run menu (or the toolbar).

✦ Press Ctrl+Break.

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 185

The Add Watch Technique186

The Add Watch Technique
The Locals window in .NET is fine for local variables, but what about form-
wide or project-wide variables? Although they show up in the VBA Watch
window, they don’t in the Locals window.

To watch one of these other kinds of variables in .NET, put your program in
break mode, right-click the variable you’re interested in, and choose Add
Watch from the context menu. You can alternatively select and then drag a
variable from the code window, dropping it into the Watch window. Also,
while you’re in break mode, you can simply pause your mouse pointer over
a variable to see its contents in a small box.

When you add a watch, VB keeps an eye on whatever expression(s) you’ve
asked it to watch. You can watch a single variable, an expression, a property,
or a procedure call. The Watch window shows the current status of any
watched expressions.

In VBA but not .NET, the Watch window permits some highly useful debugging
techniques, like conditionally halting the program (throwing it into break
mode so you can examine variable values, see where the break occurred, and
examine surrounding conditions). You can break when a condition becomes
true (such as the variable I holding a value, say, larger than 44 I > 44) and
other tests. This ability to break conditionally is, in VB.NET, part of the break-
point debugging feature, which I discuss in the next section.

Setting Breakpoints
Sometimes you have a strong suspicion about which line, macro, form, or
module contains the error you’re hunting for. Instead of single-stepping
through the entire code, you want to press F5 to execute the program at
normal speed but then stop when execution enters the dubious form or pro-
cedure. After halting the program in a suspect region, you can start pressing
F8 to single-step through each line.

Breakpoints can be one of the most useful debugging aids. You can certainly
press Ctrl+Break and stop a running program in its tracks. But what if it’s
moving too fast to stop just where you want to look and check on things?
What if it’s alphabetizing a large list, for example, and you can’t see what’s
happening? What if you want to specify a condition (n = 1445, for example)
that triggers a break?

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 186

Book II
Chapter 6

Debugging

Setting Breakpoints 187

You can specify one or more breakpoints in your program. While running,
the program will stop at a breakpoint just as if you had pressed Ctrl+Break
(or if you’ve made the breakpoint conditional — it will break when that con-
dition occurs).

When the IDE enters break mode, the code window pops up, showing you
where the break occurred so that you can see or change the code, or single-
step, or look at the Watch window or other debug windows to see the values
in variables.

You set a breakpoint by clicking the gray margin to the left of the line in the
code window where you want the break. A red dot appears in the gray
margin. The red dot alerts you that a line of code is a breakpoint. Execution
will halt on this line (or perhaps not if the breakpoint is conditional), and VB
enters break mode. Click the red dot a second time to turn it off.

Setting conditional breakpoints in VBA
Try creating a conditional breakpoint in VBA. For this example, you can use
the code you created in the previous section. Say that you want to halt exe-
cution when the variable counter is greater than 1,000. Follow these steps to
make this code break execution when this condition occurs:

1. Click the gray margin to the left of the line that you want to break on
(the For line, for example, as shown in Figure 6-3).

Figure 6-3:
The line is
highlighted,
and a dot
appears
in the
margin —
both
signaling
the location
of a
breakpoint.

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 187

Setting Breakpoints188

A red dot appears where you clicked, and also the line of code is high-
lighted where the breakpoint is set.

2. Right-click the breakpoint line.

3. From the context menu that appears, choose Add Watch.

The Add Watch dialog box opens.

4. Type counter > 1000 into the Expression field.

This is your condition that will trigger the break.

5. Select the Break When Value Is True radio button.

This means break when the expression becomes true.

6. Click OK.

The dialog box closes, and the breakpoint is now conditional on the
value of the counter variable increasing above 1,000.

7. Choose View➪Watch to open the Watch window and then press F5 to
execute the procedure. Press F5 twice if necessary.

The loop executes and then halts when the variable reaches 1001. The
Value column in the Watch window turns from False to True.

Another use for breakpoints is when you suspect that the program is not
running some lines of code. Sometimes a logic error is caused because you
think that a subroutine, a function, or an event is getting executed, but the
program never reaches that procedure. Whatever condition is supposed to
activate that area of the program never occurs.

To find out whether (as you suspect) a particular event is never executing,
set a breakpoint on the first line of code within that procedure. Then, when
you run your program — and the breakpoint never halts execution — you
have proven that this procedure is never called.

Sometimes you set several breakpoints in your code that you later want to
delete because you’ve fixed the bug. If you’ve set a lot of breakpoints, the
Clear All Breakpoints (Ctrl+Shift+F9) feature allows you to get rid of all of
them at once without having to hunt them all down and toggle each one off
individually by locating them and then clicking their red dot.

Setting conditional breakpoints in .NET
I use an example earlier in this chapter in which $10 grew to $1,000 for no
good reason. If something like this happens to you, you’d obviously want
to find out where that happened in your code. You could add breakpoints
to stop the program when $10 grows larger than, say, $200 (that’s your

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 188

Book II
Chapter 6

Debugging

Alternative Debugging Strategies 189

condition). Then, while the program is running and $10 is transformed into
$1,000 — your logic error — VB halts the program and shows you exactly
where this problem is located.

Type this code into the VB.NET editor:

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Static moneyvariable = 55
moneyvariable = moneyvariable + 44

End Sub

To set a conditional breakpoint, go to the line in this procedure where
moneyvariable is increased by 44. Click in the gray area to the left of that
line of code. The red dot appears, and the line is changed to a red color as
well. Right-click the red part of the line (not the red dot) and choose
BreakPoint Properties from the content menu that pops out.

Click the Condition button in the BreakPoint Properties dialog box. In the
BreakPoint Condition dialog box that appears, type your condition that will
trigger the break: that is, moneyvariable > 200, when this variable goes
above 200.

Press F5 and keep clicking Button1 five times. Then your variable will have
exceeded the conditional value, and the editor will enter break mode. You
can specify any kind of condition by using the Is True, Has Changed, or Hit
Count options in the BreakPoint Properties dialog box.

Alternative Debugging Strategies
You likely noticed several other tools on the Debug menu. Although they’re
not as widely useful as breakpoints, single-stepping, or watches, when you
need these lesser tools, you’ll be glad that they’re available. Here’s a brief
survey of the minor debuggers.

Step Over
Step Over is the same as single-stepping (pressing F8) except that if you’re
about to single-step into a procedure, Step Over ignores the procedure. No
procedure calls will be carried out. All other commands will be executed. If
you’re single-stepping (pressing F8 repeatedly) and you come upon a proce-
dure that you know isn’t the location of the bug, press Shift+F10 on that line

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 189

Alternative Debugging Strategies190

to step over the entire procedure, ignoring it entirely. This option gets you
past areas in your program that you know are free of bugs and would take a
lot of single-stepping to get through.

Keyboard shortcut: In VBA, press Shift+F8. In .NET, press Shift+10.

Step Out
You must be in break mode for the Step Out feature to work. It executes
the remaining lines of the procedure that you’re currently in, but it stops
on the next line in the program (following the current procedure). Use this
to quickly get past a procedure that you don’t want to single-step through.

Keyboard shortcut: Press Ctrl+Shift+F8.

Run to Cursor
To use the Run to Cursor option, click somewhere in your code other than
the line on which VB currently stopped. (You’re moving the insertion cursor
to a different line of code.) VB remembers both the original line and the new
line where the insertion cursor now resides. Choose the Run to Cursor
option, and the code between the original and new locations is executed
quickly. This is a useful trick when you come upon, for example, a really
large For...Next loop. You want to get past this loop quickly rather than
waste all the time it would take to complete the loop by pressing F8 over
and over. Just click a program line past the loop and then use the Run to
Cursor feature. VB executes the loop at normal execution speed and then
halts at the code following the loop. You can now resume stepping from
there.

Keyboard shortcut: In VBA, press Ctrl+F8. In .NET, press Ctrl+10.

Set Next Statement
You must be in break mode to use this. With the Set Next Statement fea-
ture, you can move anywhere in the current procedure and restart execution
from there. (It’s the inverse of the Run To Cursor feature described above.)
While the program is in break mode, go to the new location where you want
to start execution from, and then click the new line of code where you want
to resume execution. Now, pressing F8 will single-step from that new location
forward in the program. This is how you skip over a line or lines of code. Say
that you know that things are fine for several lines, but you suspect other
lines further down. Move down by using Set Next Statement and start
single-stepping again.

Keyboard shortcut: In VBA, press Ctrl+F9. In .NET, press Ctrl+Shift+10.

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 190

Book II
Chapter 6

Debugging

Alternative Debugging Strategies 191

Show Next Statement
If you’ve been moving around in your program’s code, looking in various
events, you might have forgotten where in the program the next single-step
will take place. Pressing F8 would show you quickly enough, but you might
want to get back there without actually executing the next line. Show Next
Statement moves you in the code window to the next line in the program
that will be executed, but doesn’t execute it. This way, you can look at the
code before proceeding.

Keyboard shortcut: None.

Call Stack
The Call Stack feature is on the View menu in VBA, and the Debug➪
Windows menu in .NET. Call Stack provides a list of still-active procedures
if the running VB program went into break mode while within a procedure
that had been called (invoked) by another procedure. Procedures can be
nested: That is, one can call on the services of another, which, in turn, calls
yet another. The Call Stack option shows you the name of the procedure
that called the current procedure. And if that calling procedure was itself
called by yet another procedure, Call Stack shows you the complete his-
tory of what is calling what.

Keyboard shortcut: None.

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 191

Book II: Understanding Office Programming192

02g_570676 bk02ch06.qxd 6/4/04 9:59 PM Page 192

Book III

Maximizing Word

03a_570676 p03.qxd 6/5/04 12:38 AM Page 193

Contents at a Glance
Chapter 1: The Word Object Model ..195

Chapter 2: Power Editing ..211

Chapter 3: Using XML in Word ..229

Chapter 4: The Internet Connection ..243

Chapter 5: Advanced Word Macros ..255

03a_570676 p03.qxd 6/5/04 12:38 AM Page 194

Chapter 1: The Word Object Model

In This Chapter
� Beginning with the Application object

� Programming with Document objects

� Accessing enumerations

� Understanding ranges and selections

� Using bookmarks

� Handling events

The terms object model or class hierarchy refer to the system of categoriza-
tion that is used to try to organize a set of classes into some meaningful

arrangement. For example, the Application object is the largest object in
Office applications. It contains many other objects, such as ranges, selections,
toolbars, and so on.

In practical terms, the outermost (or largest container) object is often simply
left out of coding; it’s understood, so it’s only optional. Lesser objects, such
as a document, paragraph, or selection are contained within each other, like
nested Russian eggs. These lesser objects must be named in your code
(although Document is sometimes omitted).

In this chapter, you wrestle with the dodgy concepts of objects and object
variables, and also see how some useful objects can be used to search and
otherwise manipulate Word documents.

Understanding Objects
Objects are slippery things. Born of and nurtured by academic theoreticians,
the idea of object-oriented programming (OOP) has spread throughout the
computer world. Whether you consider this a good thing is beside the point;
OOP is as pervasive among today’s programmers as alchemy was in the
Middle Ages. If you call yourself a programmer, you must deal with objects.
You don’t have to create them in your programming: Classes can be entirely
left out in favor of simpler, shorter procedure-based programming techniques.
VBA, VB 6, and all earlier versions of Visual Basic are only incidentally
object-oriented.

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 195

Understanding Objects196

However, if you wish to make use of the features built-into applications — and
you certainly do — you must at least learn the fundamentals of OOP in order
to employ the members of the classes (objects) that are exposed (you’re
allowed to use them) by Office 2003 applications. These members are proper-
ties and methods. Properties are generally qualities (similar to traditional
variables); methods are just other names for what have always been called
procedures. But you do need to learn the lingo and the syntax with which you
instantiate an object and then access its members. You might never need to
write your own classes when programming for Office 2003, but you’ll cer-
tainly need to use the classes built into the Office suite of applications.

Objects are so widely used because professors mostly love the concept of
OOP and have taught a generation of programmers to use them. In addition,
when writing very large programs in groups (such as the people at Microsoft
who collectively cobbled Excel together), OOP offers security/clerical bene-
fits that traditional procedure-oriented programming does not.

However, objects do suffer from two undeniable weaknesses. The first is that
they are not logical. How do you keep everything straight when everything is
an object (as is true in the .NET languages)? In .NET, even an integer variable
is an object. What good is the term object? What can it mean if it means every-
thing? How much information do you convey if you describe everything with
the word thing?

The second weakness is the fact that OOP nomenclature has little stability.
The same object can be a collection, an object, and a property. For example,
Document is an object in the Word object hierarchy, but it’s simultaneously a
collection of the current documents (Documents). The Document object has
properties, yet it is also itself a property (of the Application object). This
situation is more than simply amusing: It’s as if biological classification had
been designed by a bunch of drunk monks . . . as if a toad were classified as
both land animal and fish. In a sense, this is vaguely accurate about toads —
they are kind of intermediate — but how useful is a taxonomic system that
can’t effectively categorize any animal with any useful specificity?

Nonetheless, you’re obligated to wrestle with the hierarchies and structures
that OOP promotes, and programming in Office 2003 requires that you learn
to work with objects and their members. You do want to be able to display
dialogs, use the built-in search utility, and other features that are contained
within the Office applications’ class libraries.

As George Orwell said of communists, some are more equal than others.
Some objects are more important than others. In Word, for instance, the
Application object is the big one in hierarchical terms but is generally of
little importance to programmers (unless you need to programmatically
manipulate options, windows, views, and such).

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 196

Book III
Chapter 1

The W
ord

Object M
odel

Dissecting the Document 197

The Application object is the object from which all other objects derive.
However, you need not use it explicitly when programming the Document
object in Word. (When contacting Word from outside applications, you do
need to use an object variable referencing the Application object.)

In Word document programming, you can leave the Application object out
of your code because derived objects such as the Document object are under-
stood to be part of the application. Just as you don’t have to say America’s
California, there’s no other possibility.

Dissecting the Document
Much Word programming involves the Document object, the ActiveDocument
object (the document with the focus — the one that you’ve been working with
most recently) and the Documents collection (all currently open documents).
You can be as granular as necessary because the Document object decon-
structs into the components of a piece of writing: for example, a Paragraphs
collection containing a Sentences collection containing a Words collection
containing a Characters collection. Or so you would imagine. Read on.

You can retrieve the first paragraph in the first document by using this code:

Sub Gran()

n = Documents(1).Paragraphs(1)
MsgBox (n)

End Sub

This displays the first paragraph in the first document. However, you can’t
get the first word in that paragraph this way (as you logically would think):

n = Documents(1).Paragraphs(1).words(1)

Oops! (Get it, OOPs?) An error message appears: method or data member
not found. With OOP, things aren’t always what you might expect. The Words
collection is a property of the Document object and not the Paragraphs
object. Instead, use this, which searches in the ActiveDocument object of
Document:

n = ActiveDocument.Words(5)

or

n = Documents(2).Words(5)

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 197

Dissecting the Document198

Note that the Words object is a property of various other objects, including
the Document, ActiveDocument, and Range objects. Yet, to surprise us yet
again, the Characters collection is a property of the Words collection and
not the document:

n = Documents(2).Words(5).Characters(2)

So, you just never know. Patterns do exist, but they are unpredictable and
vary from one application’s object model to the next.

To keep your head from rolling off your shoulders when in OOP World, you
must rely heavily on the IntelliSense (lists that pop out while you’re writing
code such as statement completion and AutoListMembers) in programming
editors, Help, MSDN online, books that describe the object model, and per-
haps to a lesser extent, the Object Browser.

Objects themselves aren’t the problem. It’s the inconsistencies and the
randomness by which they are organized and manipulated in computer
languages.

I can’t think of an alternative to objects and the members that describe their
capabilities and qualities. Indeed, what’s best about working with objects is
that you have the ability to manipulate essentially everything in an applica-
tion. You can programmatically do pretty much anything a user can do with
menus and toolbars and quite a bit that users can’t do (such as directly
redefining ordinary keys, like the accent grave key — as you’ll see how to
do at the end of Book III.) You’ll also see why it’s quite a useful adjustment
to make to Word.

But the people — committees actually, as you might expect — who are design-
ing the system are so terribly inconsistent. I’d use the word blithe to describe
the general approach to classification.

So my advice is to approach objects deductively rather than inductively. Don’t
try to sit there like a philosopher and say, well, logically, the Words collection
must be a property of the Paragraph object. Be deductive and try experiment-
ing (and use Help features) until you get the answer in the real world. Logical
assumptions don’t get you too far with today’s object taxonomies. The clas-
sification scheme is far from orderly, and the committees who design these
schemes include some people who look exactly like Gyro Gearloose.

Object variables
If you want to create or open a document, it’s necessary in VBA to take the
time to generate an object variable and then instantiate an object and assign
it to that variable, like this:

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 198

Book III
Chapter 1

The W
ord

Object M
odel

Dissecting the Document 199

Dim mydoc As Word.Document
Set mydoc = Documents.Add()

That creates a new document, giving it a default filename (Document1, for
example). To specify your own filename (like, say, t.doc), use this:

Dim mydoc As Document

Documents.Add.SaveAs (“C:\t.doc”)
Set mydoc = Documents(“C:\t.doc”)

The following statement opens an existing file:

Set mydoc = Documents.Open(“C:\t.doc”)

Editing text
You can do the usual things with document elements: add, delete, or modify
(words, paragraphs, headers, or whatever).

To make these changes, use either the Range or Selection objects. You can
have multiple Range objects but only one Selection object at any given
time. Also, with a Selection, you must first select (highlight) before you
can manipulate. A Range can merely be directly described in the code.

There is always a Selection object in a document’s text. (If nothing is high-
lighted, the blinking insertion cursor — representing the insertion point — is
the Selection object.)

Here’s an example. In a Word document, type this is selected, and then drag
your mouse across those three words to highlight (select) them. Now switch
to the VBA editor and type this in:

Sub SelectionInfo()

s = “The selection contains “ & Selection.Characters.Count & “ characters.”

MsgBox s

Selection.InsertDateTime

End Sub

Press F5 to run the macro. You’re told that there are 16 characters in the
selected text, and then the InsertDateTime method replaces the selection
with today’s date.

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 199

Dissecting the Document200

Significant selection properties
As you might expect, various properties of the Selection object can tell
you information about what’s selected — or indeed, modify the selection.
(The Range object shares many of these same properties.)

The End and Start properties
The End and Start properties tell you the character position, within the
document’s Characters collection, of the selection. For example, if your
document starts like this:

One two three four five

And you select the word two, the Start property is 4, and the End property
is 7. You can use these properties to set (change) the selection start and end
points — moving the highlight.

The Font and ParagraphFormat properties
The Font and ParagraphFormat properties get or set objects describing the
formatting. The Range object returns a range identical to the selection. You
can go the other way with the ActiveDocument.Range.Select method.
Notice that when you get a range from a selection, it’s a property; but when
you go the other way and get a selection from a range, it’s a method. I tell
you, there’s no logic.

The StoryType property
An object called (who knows why?) Story represents the various kinds of text.
You can use the StoryType property to get a built-in constant (also called an
enumeration) telling what kind of Story is selected: ordinary document text
= wdMainTextStory, wdCommentsStory is a comment, wdFootnotesStory
for footnotes, and so on. The StoryLength property tells you how many
characters long the story is (that contains your selection).

Enumerations do not directly report (in English) the answer you’re after.
Instead, you get a code — a number — and you have to look up the constant
list to see what the number represents:

MsgBox Selection.StoryType

If this displays 1, what does it mean? Which of the constants is represented
by 1? If you look up StoryType in Help, it doesn’t give you the list of codes.
Instead, you must search Help for constants, where you’ll find the Word
Enumerated Constants entry — and that includes a WdStoryType entry,
shown in Figure 1-1.

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 200

Book III
Chapter 1

The W
ord

Object M
odel

Dissecting the Document 201

After you look up the constants, you discover that 1 means MainText story.

However, you can use the built-in constant names in expressions, like this:

If Selection.StoryType = wdFootnotesStory Then

The Style property
The Style property can get or set the style, which can either be one of the
styles in the Styles drop-down list in the Formatting toolbar or one defined in
the constant style’s enumeration. But don’t bother looking in the list of enu-
merations shown in Figure 1-1 for wdStyles or anything like that. You won’t
find it there. What do you imagine is the name they gave this enumeration?
Boo! Surprise! It turns out to be wdbuiltinStyles! Who could have guessed?

There are 103 built-in styles, ranging from wdStyleBlockQuotation to
wdStyleTOC9. If you want to change the style of a selection to, say, the
third-level headline, use the following statement:

Selection.Style = wdStyleHeading3

Figure 1-1:
Here’s
where you
can find the
many lists of
enumerated
constants in
Word Help.

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 201

Dissecting the Document202

Queerly, the numeric codes for all the style constants are negative! For exam-
ple, wdStyleBodyTextFirstIndent is -78. Fortunately, when you query
the style, you get back a string variable (not a code) telling you the name
of the style:

n = Selection.Style

Please don’t try to find patterns in these behaviors. Believe me, there aren’t
any useful rules here. Things can go any which way. Just, (I repeat), lean
on Help and the various IntelliSense features, along with reference books.

The Text property
The Text property returns or sets the text:

s = Selection.Text
MsgBox s

The Words property
The Words property returns a collection of the words in the current selection.
So, to make the third word in the selection boldface and 8 point (small), you
can use this code:

Sub SelectionInfo()

With Selection.Words(3)
.Font.Size = 8
.Bold = True

End With

End Sub

In some versions of BASIC, you find the property FontSize, but in others,
you find (as here) the Size property of the Font object. (The Font object is
also a property of the Selection object, but that’s another tale.)

Significant selection methods
When providing arguments to methods, you can use either the peculiar
colon-equals (:=) punctuation or the traditional parentheses. Beware that
the colon-equals approach has not survived in future versions of BASIC.
The following two lines of code do the same thing:

Selection.Expand Unit:=wdParagraph
Selection.Expand (wdParagraph)

The following methods are of the Selection object, but many are also meth-
ods of the Range object. Selection.copy copies the selection to the Clip-
board. The Cut and Delete methods are similar, but Cut puts a copy in the
Clipboard (like pressing Shift+Del). Paste pastes.

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 202

Book III
Chapter 1

The W
ord

Object M
odel

Dissecting the Document 203

You can increase the size of the selection with the EndOf or Expand meth-
ods. The InsertAfter and InsertBefore methods insert a string where
described. The InsertBreak method takes the following arguments, among
others: wdPageBreak (default), wdSectionBreak, and wdLineBreak.

InsertParagraph replaces the selection, but InsertParagraphAfter
and InsertParagraphBefore do not. SetRange(Start, End) specifies
the starting and ending character positions. Shrink reduces the selection
to the next smaller unit of text (following this pattern: entire document, sec-
tion, paragraph, sentence, word, insertion point). For example, if you select
a paragraph, only a sentence remains selected after using Shrink.

Creating ranges
You can create a range directly by specifying its starting position and length:

Sub Ranges()

Dim myrange As Word.Range
Set myrange = ActiveDocument.Range(0, 25)
myrange.Bold = True

End Sub

In this example, you ask VBA to create a range from the 0th to the 24th
character.

Starting at 1 or 0?
Although nearly all other collections in VBA
(Paragraphs, Characters, and so on)
begin counting with the number 1, the Range
object counts from 0 (zero). There’s no reason
for this discontinuity: Every list, group, array, or
collection should begin counting with 1. That’s
the way our numeric system has worked for
thousands of years, and there’s no reason to
start counting from zero in computer lan-
guages. We don’t say, for example, “I’ve been
to Greece five times, but the very zeroth time I
went was the most fun.” We quite reasonably
say, “The first time I went. . . .” Why some com-
puter language designers decided to count

from 0 in some cases and from 1 in other cases
remains one of those sad mysteries in the
annals of human folly. And don’t assume that
you can ever know which of the two modes —
start with 0 or start with 1 — applies in any par-
ticular case. Some collections, list box controls,
arrays, and other groups in programming begin
with 0 and some with 1. You just have to wres-
tle with this problem until sanity eventually
gains the upper hand with computer language
designers. Eventually, they’ll realize how many
man-centuries of debugging they’ve caused by
authoring this confusion.

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 203

Dissecting the Document204

Recall that you can create as many different ranges within a document as you
need. Also, a whole slew of Word objects have a Range property that you can
use to create a new range. The range that you get is the same unit of the
object. (A Paragraph object returns, for example, a paragraph-long range.)
Here are the objects with a range property: Bookmark, Cell, Comment,
Endnote, Footnote, FormField, Frame, HeaderFooter, Hyperlink, Index,
InlineShape, List, Paragraph, Revision, Row, Section, Selection,
Subdocument, Table, TableOfAuthorities, TableOfContents, and
TableOfFigures.

Here’s an example that uses the Range property of the Paragraph object.
Your goal here is to change the size and color of the first character in
each paragraph in the active document. In addition, you change the charac-
ter to the engraved style. You first define two object variables: one for
the Paragraph object and one for the Range object. Then you specify
the following for every paragraph (in turn) throughout this document’s
Paragraphs collection: If the paragraph has at least one sentence in it,
create a range that spans merely the first character in the paragraph’s
range’s Characters collection. Then, change that little range (that first
character).

Sub Ranges()

Dim p As Word.Paragraph
Dim r As Word.Range

For Each p In ActiveDocument.Paragraphs
If p.Range.Sentences.Count > 0 Then

Set r = p.Range.Characters(1) ‘point to first letter
r.Font.Size = 12
r.Font.Engrave = True
r.Font.Color = wdColorBlue

End If
Next p

End Sub

Bookmarking
Similar to the Range and Selection objects, the Bookmark object has a start
and end position. It can also be as large as the entire document or merely
the size of the insertion point (zero characters). Bookmarks, though, are
kind of like ghost documents within the regular document. They can be used
as place markers showing where addresses from a database — or perhaps
boilerplate text — are to be inserted in a letter. Also, bookmarks can them-
selves contain text that, depending on conditions, is inserted into the main
document.

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 204

Book III
Chapter 1

The W
ord

Object M
odel

Dissecting the Document 205

Bookmarks are normally invisible but can be made visible by setting the View
object’s ShowBookmarks property to True (or by choosing Tools➪Options➪
View). Here’s an example that inserts one of two messages at the end of a
letter to a customer, depending on whether the customer’s account is paid
up. In a Word document, choose Insert➪Bookmark and then name your new
bookmark AreTheyPaidUp. Then switch to the VBA editor and type the
macro in Listing 3-1.

Listing 3-1: Bookmark Insertion Macro

Sub BookIt()

Dim Range1 As Word.Range
Set Range1 = ActiveDocument.Bookmarks(“AreTheyPaidUp”).Range

With Range1

If paidup = True Then
.InsertAfter vbCrLf & “Thank You for your business!” & vbCrLf
Else
.InsertAfter vbCrLf & “Where’s the cash??!!” & vbCrLf
End If
.Select

End With

ActiveDocument.Bookmarks.Add “AreTheyPaidUp”, Selection.Range

End Sub

When executed, this macro accepts a parameter named paidup (probably
from a database) that describes whether the customer owes any money. A
Range object is then created and set to point to the bookmark. Then you use
the InsertAfter method to append your message to any text that might
already exist in the bookmark. (In this case, there’s none, but boilerplate
text might well exist in a typical business or professional document.)

Surrounding the text with & vbCrLf, which is a constant representing press-
ing Enter, has the effect of making your text a separate paragraph. Finally, you
use the Bookmarks collection’s Add method to replace the existing bookmark
with your new one. When you use the same name as an existing bookmark, the
original bookmark’s text (if any) is retained, but your new text is inserted.
Unfortunately, bookmarks are deleted from a document if you use a range’s
Text property to replace the contents of the bookmark. Likewise, if you hadn’t
used the Select method to create a new selection, the bookmark in the above
example would have been destroyed.

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 205

Search and Replace206

Search and Replace
Automating Word can sometimes require that you employ the Find and
Replacement objects. This is another way to insert boilerplate text or to
change a letter’s contents based on information coming in from a database
or other source. You could even display an InputBox to ask the letter writer
to choose whether he wants to send the polite, neutral, or really exasperated
version of the same letter. (The exasperated version searches for, and then
deletes, all use of the phrases thank you and please.)

One quick way to program in VBA is to first record a macro and then see
what VBA code was automatically created for you. You can modify that code
as necessary, but at least you’re not starting from scratch.

Follow these steps:

1. In Word, open a document that you don’t mind messing up.

2. Choose Tools➪Macro➪Record New Macro.

The Record New Macro dialog box opens.

3. Click OK to close the dialog box.

The macro recording toolbar appears.

4. Choose Edit➪Replace.

The Find and Replace dialog box opens.

5. In the Find What field, type the; in the Replace With field, type xxxx.

6. Click the Replace All button.

All instances of the word the are replaced with xxxx’s.

7. Close the dialog box.

8. Click the Stop button on the Macro toolbar.

The macro recording stops, and the toolbar disappears.

9. Press Alt+F11.

You see the VBA editor.

10. Locate your new macro. It should look like this:

Sub Macro8()
‘
‘ Macro8 Macro
‘ Macro recorded 12/19/2003 by Richard
‘

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 206

Book III
Chapter 1

The W
ord

Object M
odel

The Find Object’s Properties 207

Selection.Find.ClearFormatting
Selection.Find.Replacement.ClearFormatting
With Selection.Find

.Text = “the”

.Replacement.Text = “xxxx”

.Forward = True

.Wrap = wdFindContinue

.Format = False

.MatchCase = False

.MatchWholeWord = False

.MatchWildcards = False

.MatchSoundsLike = False

.MatchAllWordForms = False
End With
Selection.Find.Execute Replace:=wdReplaceAll

End Sub

You can adjust any of the Selection or Find objects’ properties to modify
how your search and replace behaves.

The Find Object’s Properties
The significant properties of both the Find and Replacement objects
include Font, ParagraphFormat, Style, and Text. The important proper-
ties of the Find object (by itself) are Forward, Found, MatchCase, and
MatchWholeWord.

The Execute method of the Find object has several optional arguments that
are duplicates of some of the Find object’s own properties. You can either
specify these options as properties or arguments, as you wish. For example,
the statement

myrange.Find.Execute Forward:=True

is equivalent to

With myrange.Find
.Forward = True
.Execute

End With

or

myrange.Find.Forward = True

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 207

Trapping Events208

The ClearAllFormatting method of the Find object eliminates any previ-
ously specified formatting rules. This way, you won’t cause that frequently
confusing result of finding no hits in a document that you know contains
plenty of hits. Then, you notice that the italic or Headline1 Style format-
ting criteria are specified because your last search required them.

Trapping Events
Of the three members of any object model — properties, methods, and
events — it’s events that are generally less often discussed. Nonetheless,
you frequently need to provide a programmatic response to something that
happens to an object (such as the user clicking a button, or an incoming
message arriving).

The document object offers six events: New, Open, Close, Sync,
XMLAfterInsert, and XMLBeforeDelete. You can provide programming
for these events in the ThisDocument object. Press Alt+F11 to open the
VBA editor, and then right-click ThisDocument under the Normal node.
Choose View Code from the context menu and select Document in the
top-left, drop-down list box of the Code window. By default, the Document_
New event is displayed, but you can select the document’s other events by
opening the drop-down list in the upper-right of the Code window.

For example, you put any code you want to execute when a new document is
created inside the New event, like this:

Private Sub Document_New()

MsgBox “Welcome!”

End Sub

An alternative approach to using ThisDocument events is to trap
events by giving your macros special names (such as FileSave). In this
case, any time the user chooses File➪Save from the Word File menu,
your macro code is executed. Read about this technique in Book III,
Chapter 5.

To respond to Word’s Application or mail merge object’s events, you must
add a class module to your project to contain the event. Then create the
event in the class module, like this:

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 208

Book III
Chapter 1

The W
ord

Object M
odel

Trapping Events 209

Public WithEvents o As Word.Application

Private Sub o_Quit()

MsgBox “bye”

End Sub

You can find out the syntax and any arguments required by the various events
by searching for application in VBA Help, choosing Application Object, and
then clicking the Events link at the top of the Help page. (The Quit event has
no arguments.)

Before your event trapping works, you must also initialize the object. A good
place to do that is in the ThisDocument Open event:

Dim X As New Class1 ‘this assumes your class module is named Class1

Private Sub Document_Open()

Set X.o = Word.Application ‘point object variable to app

End Sub

For an example of how to do this in Excel (Word works the same way), see
the Book IV, Chapter 2.

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 209

Book III: Maximizing Word210

03b_570676 bk03ch01.qxd 6/4/04 10:00 PM Page 210

Chapter 2: Power Editing

In This Chapter
� Maximizing Word’s editing features

� Viewing and maneuvering the smart way

� Introducing Smart Documents

� Understanding fields

� Importing data

� Using Mail Merge

Many — perhaps most — Office workers don’t take advantage of Word’s
many powerful editing features. Before exploring some VBA and pro-

gramming techniques, this chapter first offers some useful (albeit underused)
techniques that can improve productivity for nearly any kind of Office worker.
You’ll see how to do some power editing, maneuver efficiently, and use Smart
Documents. Fields, data importing, and mail merge are also covered.

Selecting Text Quickly
Selecting text is a common job in Word, but few people realize the many
shortcut ways to do this. For example, double-click any word to select it.
To select an entire line, click the left margin. Double-click the left margin to
select the entire paragraph. Drag in the left margin to select a group of lines.
Triple-click the left margin to select the entire document (or press Ctrl+A).
Quadruple click the left margin to send a Word document to the Space
Station. (Let me know how this last one works out.)

To select a chunk of text of any size, do the same thing you do to select a
contiguous group in a list box or a group of filenames in Windows Explorer.
That is, click at the start of the text block and hold Shift while clicking the
end of the block. Or click the start of the block, press F8, and then drag (or
click the end point). To select all text formatted the same way, right-click the
text and choose Select Text with Similar Formatting from the context menu.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 211

Making Snappy Retorts . . . er, Repeats212

Making Snappy Retorts . . . er, Repeats
Memorize the F4 key; it can be a real timesaver. If you have to do something
repeatedly (such as formatting, typing in a phrase, or many other tasks), you
don’t have to repeat all the steps in the task. For example, maybe you want
to change the style of all the headlines in a document, reducing them from the
Heading1 style to Heading2. Instead of selecting each headline, dropping the
style list in the Formatting toolbar, scrolling until you find Heading2, and
then clicking it in the list — yipes — just take those steps for the first head-
line in the document. Thereafter, merely click each headline and press F4.
The style is correctly applied to each headline.

Going Backward with Undo
Always remember your Undo friend: Press Ctrl+Z to undo a mistake. If you
delete some text and then wish you hadn’t, the Undo feature restores the
text. Sweet. Likewise, Undo is a lifesaver when you make foolish formatting
mistakes. The downside: If you made your mistake several steps previously,
of course, you could repeat Ctrl+Z until the problem is fixed, but this also
undoes in-between things you probably don’t want undone as well. Undo,
unfortunately, undoes every action between the error up to and including
your latest action.

To see a list of your actions — and I mean everything you’ve done since you
opened the document! — locate the Undo icon on the Standard toolbar and
then click the down arrow on the Undo icon. (Undo looks like a left-curved
arrow.) Your most recent six behaviors are listed, but you can scroll down
this list as far as necessary to find the problem. Then you click the error.
Remember, though, that all previous actions will also be undone. It’s up
to you.

If the Undo button isn’t visible, right-click the Standard toolbar and choose
Customize from the context menu. In the Customize dialog box, click the
Commands tab, click Edit, and drag the Undo icon and drop it on the Standard
toolbar.

Note Undo’s brother, the Redo feature (Ctrl+Y). Its toolbar button also
includes a drop-down list with all the actions that you most recently undid.
This is your lifesaver if you undo 143 actions and then regret having to
repeat the 142 tasks that you correctly accomplished.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 212

Book III
Chapter 2

Pow
er Editing

Mastering Quick Maneuvering 213

Mastering Quick Maneuvering
When editing a document, you sometimes want to see the forest, not the trees.
You want to move around quickly, just locating a particular zone or type of
style. Here are a couple of tips for how to view and search your document
differently.

Viewing a document
Speed up your work by choosing different views in Office 2003. A change of
view can help you see a document’s outline, or maybe you want to see how
two pages next to each other look. You can still rely on the stalwart Document
Map, but you have some new choices, too.

Document Map
Use Document Map to collapse a document into a kind of outline format,
based on the headings you’ve used in the document. One great thing about
this view is that you still get to see the original document. This is handy when
you want to make sure you have headings in a logical progression or when you
want to jump to a certain heading in the document. Choose View➪Document
Map to see this outline version, as shown in Figure 2-1. See a similar view in
the upcoming “Thumbnail view” section.

Figure 2-1:
Click in the
outline in the
left pane to
move there
in the main
document.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 213

Mastering Quick Maneuvering214

Reading Layout view
New in Office 2003 is Reading Layout view. When you select this option
from the View menu, you see two pages at a time, as if you had opened a
book. This view makes it somewhat easier to scan larger amounts of text
at a glance.

Thumbnail view
Also new in Office 2003 is a view of small versions of the pages in a docu-
ment. When you choose View➪Thumbnails, click anywhere within these
sample pages to immediately go to that place in the main document. You
see a scrollable set of thumbnail shots of your document’s pages, as shown
in Figure 2-2.

Searching within a document
Use these Office tools to help you quickly navigate a document, finding spe-
cific items such as page numbers, comments, bookmarks, and more.

Figure 2-2:
Click any-
where in the
thumbnails
to move to
that location
in your
document.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 214

Book III
Chapter 2

Pow
er Editing

Mastering Quick Maneuvering 215

Go To
Use the Go To tab of the Find and Replace dialog box (choose Edit➪Go To)
to search for many kinds of elements in a document (comment, line, page,
and so on), as shown in Figure 2-3. Go To’s cousin — Find — works much the
same way but with a little more precision. Pressing Ctrl+F brings up the Find
tab of the same dialog box, from which you can search for a word, word frag-
ment, special characters or formatting, and so on.

Bookmarks
Bookmarks are convenient for marking somewhere you want to return to, like
the stopping point of the day’s work. When you insert bookmarks through-
out your document, you can use them to quickly locate and move to certain
points in a document. To insert a bookmark, choose Insert➪Bookmark to open
the Bookmark dialog box, enter a name for the bookmark, and then click Add.
To go to a bookmark, press Ctrl+G (which takes you to the Go To tab of the
Find and Replace dialog box), click Bookmark (under Go To What), find the
bookmark (under Enter Bookmark Name), and then click the Go To button.
(Speed hint: Just double-click the bookmark’s name in the dialog box.)

Browsing with Select Browse Object
On the bottom of the horizontal scrollbar (in the lower right of your docu-
ment), you’ll see some symbols — icons that most people ignore. The central
icon is a small ball, as illustrated in Figure 2-4.

Go Back
Press Shift+F5 to use Go Back to cycle among the most recently edited loca-
tions in a document. This feature is most handy when you reopen a docu-
ment and want to find where you last worked. You can also make use of the

Figure 2-3:
Use this
dialog box
to quickly
locate a
particular
element in a
document.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 215

Introducing Smart Documents216

GoBack method of the Application object. To open the most recently
edited document and then move the insertion cursor to the most recently
edited location in that document, create this macro:

RecentFiles(1).Open
Application.GoBack

If you name this macro autoexec, this behavior automatically loads the
most recent document, at the most recent edit, every time you start Word:

Sub autoexec()

RecentFiles(1).Open
Application.GoBack

End Sub

Any instructions you write in a macro named autoexec are automatically
executed every time you run the Word application.

Introducing Smart Documents
Although the new Smart Documents technology in Office 2003 (Word and
Excel, specifically) certainly qualify to be included in a chapter about power

Go To Find

Browse by edits

Browse by heading

Browse by graphic

Browse by table

Browse by field

Browse by endnote

Browse by footnote

Browse by
comment

Browse by section

Browse
by page

Figure 2-4:
Click this
Select
Browse
Object icon
to see a set
of targets
you want to
see in your
document.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 216

Book III
Chapter 2

Pow
er Editing

Introducing Smart Documents 217

editing, I cover this technology in depth in Book VII, Chapter 6. Still, a little
preview here is useful.

To a user, on the surface, Smart Documents behave somewhat like wizards but
without the step-by-step pages of instructions. Smart Documents are based
on XML and offer you, the developer, a programmable solution to a variety
of common Office tasks. You can semi-automate processes, like creating pro-
posals, business plans, reports, and other kinds of documents that have
predictable form and/or content. You can hand someone a Smart Document,
and he can use the task pane (that you’ve built) to get help, lists of options,
and other assistance in writing, editing, and publishing the document.

Smart Documents are built on XML, so you might suspect that there’s an
Internet connection here. Good guess, Office 2003 developer. Technically —
and thankfully, someday all this will be kept under the hood — a Smart
Document is built by using managed code that’s Internet-connected with
either a primary interop assembly or a COM interface. I only mention this
because some readers like brief clouds of sophisticated-sounding nonsense.
Unfortunately, at this time, Smart Documents are technically demanding
because creating them is not yet smart (that is, not filled with useless buzz-
words or pointless propeller-head verbiage). The main problem is that there’s
no wizard to guide you through the process of creating Smart Documents.
One day soon there will be such a wizard, but not yet.

As you might suspect, the task pane is context-sensitive, so when a user
maneuvers through a Smart Document, the commentary and other assistance
offered by the pane changes. Exactly what kind of commentary appears in
the task pane is up to you, the programmer. You can insert lists, calculation
fields, all kinds of controls (such as list boxes), hyperlinks, and various other
kinds of assistance.

Here are some ideas about what you could do with Smart Documents:

✦ Facilitate import and export of data in a fashion similar to Mail Merge
but with more flexibility (regarding the location, type, destination, and
source of the data).

✦ Take a single document and automate the process of transforming it into
several versions, each appropriate for a different target (a database, a
published report, an outline, and so on).

✦ Programmatically build new Word documents more flexibly than previ-
ously, drawing on more diverse sources for the content.

✦ Semi-automate various librarian functions (answering questions like,
Who has the latest version? Whose comments can be ignored? and so on).

✦ Increase document security and validation automation.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 217

Programming with Fields218

Although creating Smart Documents is a mildly interesting new feature, it’s far
from ironed out. You have to manage quite a few details manually (ever try
writing XML by hand?), and the opportunity for version conflicts (between
different Smart Documents), deployment problems, and other new technology
glitches is great. Smart Document creation cries out for a wizard, but there
currently isn’t one. As you can see in Book VII, Chapter 6, creating Smart
Documents currently is not for the faint of heart.

Programming with Fields
Of the various ways to automate document creation and modification, fields
are among the most venerable. The three types of fields are

✦ Result fields: These tell Word what text you want inserted.

✦ Marker fields: Rather simple, these resemble bookmarks, indicating a
location in the document (so that Word can later return to this location
and do something: for example, add a term to an index). Bookmarks, in
fact, are themselves a field. A difference between fields and bookmarks
is that you can delete fields in your text with the Delete or Backspace
keys. However, to delete a bookmark, you must open the Bookmark dialog
box (choose Insert➪Bookmark), select the bookmark from a list, and
click the Delete button.

✦ Action fields: These do something by themselves, such as launch a
macro, but don’t themselves add new text to the document. A hyperlink
is considered an action field, for example.

In some ways, a field is similar to a variable in programming. Based on condi-
tions or context, a field can be automatically changed without user or pro-
grammer intervention. For example, a field containing a date can change to
always display the current date.

Fields can import data from files, from elsewhere in a document, or from
data about the document (its word count, for example).

To see fields within a document, select the field (or the entire document if you
wish), and then toggle field view by pressing Shift+F9. If you have a date field
in your document, it will change from 1/30/2003 to {DATE \@ “M/d/yyyy }.
Fields are enclosed in braces.

Inserting fields
The simple way to insert a new field into a document is to choose Insert➪
Field. Memorable, isn’t it? The Field dialog box appears, as shown in Figure 2-5.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 218

Book III
Chapter 2

Pow
er Editing

Programming with Fields 219

The Field dialog box includes a MacroButton option, as shown in Figure 2-5.
And when you select that option, you can scroll through the macro name
list and find all your macros, plus dozens of menu items (most everything
available on a menu) such as HangingIndent and WindowNewWindow. Most
of these menu items are named after the menu on which they reside. Thus,
if the Word Count feature is on the Tools menu, the name of this item is
ToolsWordCount.

Here are some helpful field tips:

✦ If you want Word to always update the fields before printing documents,
choose Tools➪Options, click the Print tab, and then select Update
Fields.

✦ If you prefer to type fields directly into your documents, type the field’s
name, select it, and press Ctrl+F9.

✦ To update all the fields in a selection, press F9.

✦ To prevent a field or fields from being updated, select the fields, and
then press Ctrl+F11. To reverse this process — to permit the fields to
be updated — choose Ctrl+Shift+F11.

✦ To move from one field to the next, press F11. To move in reverse, press
Shift+F11.

✦ When you right-click a field, you can accomplish three things with this
field from the context menu: update it, edit it, or toggle between results
and the code.

Figure 2-5:
Insert fields
from this
dialog box.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 219

Programming with Fields220

Using the Fields collection
You can programmatically manage fields by using the Fields collection. In
this example, the number of pages in the document is inserted:

Sub fieldwork()

Set myField = ActiveDocument.Fields.Add(Range:=Selection.Range, _
Type:=wdFieldNumPages)

End Sub

To update all the fields in a selection:

Selection.Fields.Update

Using the Ref field
The Ref field is interesting. It allows you to both refer to a bookmark else-
where in the document as well as insert that bookmark’s text at the field
location. To see how this works, select a block of text somewhere in your
document and choose Insert➪Bookmark. When the Bookmark dialog box
opens, name this bookmark ThisText. Click somewhere else in the document
where you want this text inserted, and then choose Insert➪Field. The Field
dialog box opens, as shown in Figure 2-6.

Select the Ref field in the Field dialog box, select name of your bookmark
(ThisText), and click OK to close the dialog box. The bookmarked block of
text is reproduced at the current location (of the field) in your document.
Now go to the bookmark, make a change to the text, and move back to the
field Ref copy. Click your mouse in the field, and poof! The entire block of
text goes gray, indicating that it’s a field. Press F9 to update the field. The
change that you made to the bookmark text is now made in the updated field.

Advanced field tricks
If you feel that you’ll use fields extensively in your documents, it’s worth using
Word Help to investigate various advanced tricks that you can do with fields.
For example, you can customize your field’s appearance in various ways,
choose differently formatted numbers, create fields that calculate results from
literals or variables (like a spreadsheet does), format date and time, and so
on. You can even nest fields inside each other: This way, one field’s changes
or conditions can optionally update the nested field, or you can base the out-
come of an IF field, for example, on the status of a nested field.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 220

Book III
Chapter 2

Pow
er Editing

Importing Data 221

Importing Data
You can bring data into a document automatically, using much the same style
of programming that works when programming .NET or older versions of
Visual Basic.

You can open the sample Access Northwind database and then insert a
comma-delimited (data separated by commas, such as this, this, and this)
list of all the customers’ names into the current document. Sometimes indi-
vidual data are delimited (separated) by commas or other special symbols.
To perform this task, follow these steps:

1. Press Alt+F11.

The Word VBA editor opens.

2. Press F7.

The code window opens where you can write macros.

3. You must first import a library of DAO (Data Access Objects) code, so
choose Tools➪References.

The References dialog box opens.

4. Scroll down in the dialog box until you locate Microsoft 3.0 DAO Object
Library, or versions 3.51 or 3.6.

5. Click the latest DAO library version to select it.

6. Click OK to close the dialog box.

Figure 2-6:
Use the Ref
field to copy
updatable,
bookmarked
text.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 221

Importing Data222

To open the Northwind database and bring in the customer name
records, type this code into the VBA code window:

Sub datawork()

Dim d As Document
Set d = ActiveDocument

Dim db As DAO.Database
Dim r As Recordset

Set db = OpenDatabase(Name:=”C:\Program Files\Microsoft
Office\Office11\Samples\Northwind.mdb”)

Set r = db.OpenRecordset(Name:=”Customers”)

For i = 0 To r.RecordCount - 1
d.Content.InsertAfter Text:=r.Fields(2).Value & “, “
r.MoveNext

Next i

r.Close
db.Close

End Sub

7. Click somewhere within the above macro; then press F5 to execute it.

You see a list of 91 names inserted into your current document, ending
with the name Zbyszek Piestrzeniewicz, which is pronounced Ziggy
Stardust.

If your version of Northwind.mdb isn’t in the path used in this code,
you’ll get an error #3044 message (not a valid path). Use the Start➪Search
feature to locate Northwind.mdb on your hard drive. If it’s nowhere to be
found, rerun your Office 2003 setup CD and choose to install the sample
databases.

In this example, you first create a document object and point it to the current
active document; then you create database and recordset variables. (I talk
more about recordsets and their sucessor, datasets, in Book V when I discuss
Access.) The database variable is pointed to the sample database (which
also opens the database), and the recordset is pointed to the Customers
table in that database.

You can view the structure (tables, fields, views, stored procedures) of a
database by opening the database in Access or by using the new and useful
Server Explorer in the .NET IDE, as shown in Figure 2-7.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 222

Book III
Chapter 2

Pow
er Editing

Importing Data 223

The fields within the Northwind Customers table include customer ID, con-
tact, and other fields. But I’m interested in the CompanyName field (which
happens to be field 2, as you can see in Figure 2-7). So the example code
loops through the entire table by using the MoveNext method of the record-
set object. Notice that you must start your loop with 0 and end it with
RecordCount-1 because recordset fields begin counting their lists with 0,
and that throws everything off by 1, so you have to compensate in your code.

Each time through the loop, the Content.InsertAfter method is used to
add text to the document. (This text is the Value property of the Fields
collection.) A comma and a space are added to the text in the document.
Finally, the two objects are destroyed with the Close method.

You can employ the various bookmarks, fields, paragraphs, and other collec-
tions and objects available in the Word object model to insert your data
coming in from a database (or other source) wherever appropriate in your
text. See Book III, Chapter 1 for additional information on the Word object
model.

Figure 2-7:
Use this
Server
Explorer
to see
database
structures.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 223

Mass Mailings with Mail Merge224

Mass Mailings with Mail Merge
Word’s Mail Merge is a specialized combination of some of the techniques
featured in this chapter: bringing data in from outside Word, and automating
the process of inserting text into ranges, fields, or bookmarks. However,
because merging names and addresses into a document for mass mailings is
such a venerable and essential word processing task, a wizard exists to make
the job fairly painless. The wizard sits in Word, but you can also get to it via
Outlook. I show you both pathways.

Word’s Mail Merge is a classic technique: From a data source, you insert
unique information (such as addresses) into form letters. It’s a cheap, easy
way to customize anything from mass ad mailings to the Christmas letter
that you send to all your friends.

You first create a form letter, specifying where you want custom content
inserted (merge fields). Then create a data source (a database table, a table
in a Word document, a spreadsheet, or your Outlook Contact list.)

You use the Mail Merge Wizard to step you through the necessary tasks,
and your form letter can actually take five different forms: a traditional form
letter, e-mail, envelopes, labels, or directories (catalogs) — a single document
containing all the merged data, including a repetition of any additional static
text you want associated with the data.

To create a mail merge, follow these steps:

1. Create a Word document, saving this document to your hard drive
with the name MassMail.doc.

Fill your holiday letter full of news about little Billy and Betty, their many
accomplishments, and an update on Uncle Bob and his dog Sam.

2. Choose Tools➪Letters and Mailings➪Mail Merge.

The Mail Merge Wizard appears, as shown in Figure 2-8.

3. Select Letters in the first step of the wizard, as shown in Figure 2-8.

4. Click the Click Next to continue link on the bottom of the task pane.

5. On the second step of the wizard, select Start from Existing Document.

A file browser opens in the task pane, asking you to identify the existing
document.

6. Select Use the Current Document.

7. Click Next.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 224

Book III
Chapter 2

Pow
er Editing

Mass Mailings with Mail Merge 225

8. Select Type a New List in the Select Recipients option button group.

9. Click the Create button.

The New Address List dialog box opens, as shown in Figure 2-9.

Figure 2-9:
Create a list
of targets
here for your
form letter.

Figure 2-8:
Start here
to create a
mail merge.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 225

Mass Mailings with Mail Merge226

10. Click the Close button.

The Mail Merge Recipients dialog box opens, as shown in Figure 2-10.

11. Click OK.

The dialog box closes.

12. Click Next.

The task pane tells you to personalize the letter by adding address
blocks, greetings, and so on.

13. Click above the main body of the letter, where you want to write
Dear XXXXX.

14. Click the Greeting Line link in the task pane.

The Greeting Line dialog box opens, as shown in Figure 2-11.

15. When you’re satisfied with the default greeting style, click OK.

The dialog box closes.

Figure 2-11:
Here’s
where you
create a
greeting
merge field.

Figure 2-10:
Edit the
order or
other
properties
of your mail
merge data
list here.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 226

Book III
Chapter 2

Pow
er Editing

Mass Mailings with Mail Merge 227

16. Click above the greeting line in your letter, in the location where you
want the address field to appear.

17. Click the Address Block link in the task pane.

The Insert Address Block dialog box opens, showing you the default style.

18. Click OK.

The dialog box closes. At this point, your document includes two merge
fields, and looks something like this (although details of your Christmas
mass mailing will undoubtedly differ slightly from those written by
Karyn here):

<<AddressBlock>>
<<GreetingLine>>
Thank you for everything!!
Uncle Billy is getting better every week!! And little Billy still loves

his bike!
Love,
Karyn (“Fluffy”) Primstance-Mesuremaseur

19. Click Next in the task pane.

You see a preview of your form letter, with the merge fields filled in from
the first record of data.

20. Click Next in the task pane.

The task pane tells you how to either print your mass mailing or edit the
individual letters (making them even more deeply personal).

To start a mass mailing process from within Outlook (where perhaps you
keep addresses of many of your Contacts), click the Contacts button in the
left pane of the Outlook window and choose Tools➪Mail Merge. When you
finish making any selections in that dialog box that open and then click OK,
Word opens with the merge document loaded. You then choose Tools➪
Letters and Mailings➪Mail Merge in Word, but you begin with the wizard’s
Step 3, as described in the earlier steps.

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 227

Book III: Maximizing Word228

03c_570676 bk03ch02.qxd 6/4/04 10:01 PM Page 228

Chapter 3: Using XML in Word

In This Chapter
� Discovering WordML

� Using XML

� Using programmatic XML

� Selecting options

� Using the special Word XML editor

In this chapter, you see how XML and Word now work together, synergisti-
cally, to facilitate communication between any and all platforms, operating

systems, data stores, applications, and whatever else might want to commu-
nicate with Word. In a word, XML is today’s lingua franca.

Lingua means tongue. Franca is a corrupted version of Italian that was once
spoken on the Mediterranean coast. It was the language of the Franks blended
into Italian. But the phrase lingua franca has come to stand for whatever
means of communication can be used to make interaction possible between
people who speak different languages.

Introducing Word XML
eXtensible Markup Language (XML) and associated technologies have
become de rigueur in contemporary computing. Book VIII, Chapter 2 goes
into the topic of XML in relation to all Office 2003 applications, but it’s useful
here to introduce the features of XML in Word specifically. Likewise, in the
books on particular Office 2003 applications — Excel, Outlook, and Access
most notably — you’ll find explanations of how XML works in the context of
each specific application.

Microsoft — although located in Seattle, home office of grunge — is no
slacker. Do you imagine that Microsoft would sit idly by while others created
versions of XML and not have a go at it, too? Actually, many flavors of XML
float around in Microsoft operating systems and applications. And the one
of interest here is WordML, which is the schema for Word 2003.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 229

Introducing Word XML230

Excel (with its grids of orderly data) and Access (with its tables of organized
data) seem ideally suited to XML. It’s easy to see how an XML document’s
tidy structure can accommodate a database table or spreadsheet. But what
about Word? Aren’t Word documents fundamentally unstructured? Well, yes
and no. Of course, there are sentences and paragraphs, but they’re not really
that predictable. Too, Word can include tables, numbered lists, and other
comparatively more structured data. But don’t worry; Microsoft has figured
out a way to preserve Word’s hidden structures (formatting, document sta-
tistics, and so on). That’s WordML’s job: to provide a schema to store a sys-
tematic XML version of a Word document, complete with all the necessary
tag pairs that preserve all the underlying structures of a document.

You can save documents in XML (WordML) format in all versions of Word
2003, but the other XML features are found only in Office 2003 Professional
(or the confusingly named Enterprise Professional version) and the standalone
version of Word 2003.

XML — daughter of HTML and mother of countless child languages — differs
from HTML in some fundamental ways. For one, XML is highly extensible.
Anyone can invent any elements or attributes they want. XML also describes
data (preserving the structure of the information it contains). HTML isn’t
designed to be customized by users, and it describes appearance, such as
boldface or the location and size of a headline.

Although an XML file itself is highly redundant — often containing many
repetitious tags and duplicated data — using XML in the workplace can
paradoxically reduce another, more important redundancy.

Making do with what you’ve got
Although XML files are bulky because they’re
wildly redundant, this just doesn’t matter.
Developers and programmers have undergone
a paradigm shift in the past decade. In the early
days (1985 and before), programmers had to be
careful to conserve computer memory because
it was expensive and quite limited. As a result,
programming used every little corner of a RAM
chip. This lead to such unhappy consequences
as employing the number 0 as the first item in a
list. (Arrays, lists, and collections sometimes
still have a zeroth index, leading to lots of
unnecessary programming bugs.) Y2K fears

were also caused by programmers trying to
conserve memory, storing dates using only two
digits: 88 instead of 1988.

Times change, and yet they don’t. Hey, when
paper was expensive, monks in the Middle
Ages wrote on every scrap, sometimes writing
on top of earlier manuscripts (which is how we
lost some invaluable classics, like a treatise by
Archimedes destroyed when a monk thought
the parchment was more valuable than the
genius’s thoughts.) Of course, on the plus side,
monks preserved quite a lot of classical knowl-
edge, as well.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 230

Book III
Chapter 3

Using XM
L in W

ord

XML in Word 231

Take this (intentionally long) example: A salesman writes down an order and
faxes it to the office. There it’s retyped into the home office computer, and
another form is filled out by someone in the fulfillment department. Then
some tags and mailing labels are typed in the warehouse, and the billing
department retypes the details into an invoice while another worker retypes
the order into the inventory management software — and on and on. Not only
does all this repetition introduce obvious productivity losses, but it also
greatly increases the opportunity for typographical errors. If the salesman
had entered the order into his notebook and saved it as an XML file right
from the start, software could take over the job of radiating the order into
its various different forms in the various departments that handle the order.

Put another way, XML data is polymorphic and can easily be expressed,
stored, and printed in a variety of formats — from invoices to mailing labels —
without human intervention. This kind of system is a primary way that your
local friendly SprawlMart differs from the corner mom-and-pop grocery.

Try an experiment. Create a blank Word document and type in Hello, Snarky.
Saving this information in a simple TXT format takes up only 14 bytes, 1 for
each character. Saving it as a WordML file requires 3,442 bytes, and saving it
as a DOC file takes up 24,064 bytes. As you can see, storing all the extra infor-
mation about formatting, author, styles, when it was last saved, line pitch,
and whatnot requires quite a bit of space more than the simple characters
themselves.

Although XML wallows in redundancy, the paradigm shift in computer pro-
gramming is this: Computer memory is now so cheap that different program-
ming styles are possible, such as XML’s complete refusal to engage in any
reduction of redundancy. When you can store a person’s entire lifetime of
e-mail messages on a CD that costs less than a penny, why not use redundant
data storage methods if there’s an advantage to be gained? And indeed there
is: Computers don’t make mistakes (although human data-entry or source
code can make computers seem to err). The less that data is handled by
humans (retyping it, for example), the safer that data is.

For more on XML, try XML All-in-One Desk Reference For Dummies by
Richard Wagner and Richard Mansfield (Wiley).

XML in Word
XML, being extensible, invites people to create their own versions, so you’ve
got different XML languages (schemas, or sets of rules and tags) for the baker,
the butcher, and the candlestick maker. What’s more, two different bakeries
might each use their own proprietary XML. However, XML theorists were quite
aware of the Tower of Babel problem. After all, XML was designed in part to
solve the tremendous difficulties resulting from incompatible data storage

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 231

XML in Word232

schemes. So, most importantly, XML is stored as ordinary text — letters
making words that people can actually read. If you can read and write your
language, you can also read and write XML (not that you’ll usually want to,
but you can if you must).

Here are some of the things you can do with XML in Word:

✦ Mix XML into ordinary Word documents or save documents (convert
them) in XML format.

✦ Validate Word XML files to ensure that the XML is well-formed (meaning
that it makes sense, that all its tags appear in pairs, and that it otherwise
follows the rules of XML documents).

✦ Import or export XML data when communicating with other XML-capable
applications.

WordML is primarily a set of custom tags defining the elements of a Word
document (and there are hundreds of potential elements). Before WordML,
you couldn’t make much sense of a DOC file if you loaded it into Notepad or
otherwise tried to view it as text. Note: It’s not text; it’s a binary file. WordML,
however, is a fully documented set of tags that you can actually read and (if
you wish) manipulate programmatically.

For example, if you open a new document in Word (File➪New), you see a task
pane open up with XML document as one of the options. Click the XML docu-
ment link in the task pane. An XML Structure task pane opens. Type hello,
select it, and then make it italic and underline it. Now choose File➪Save and
click the Save button in the Save As dialog box. You can choose to optionally
save only the data (no schema), or if you’ve attached a separate schema,
Word saves that information along with the data.

You then use Windows Explorer to locate the file that you just saved. (Look for
an .xml extension.) Right-click the filename, and choose Open with Notepad
from the context menu. In the mass of information, you should be able to
locate your hello twice in the document, but the one you want is down near
the bottom:

<w:r><w:rPr><w:i/><w:u w:val=”single”/></w:rPr><w:t>hello</w:t></w:r>

Note the <w:i/> tag (for italics) and the <w:u w:val=”single”/> tag (u for
underlining with the additional attribute, single underlining). Rumor has it
that there are more than 3,000 different tags in WordML, which is more than
I can explore here. Whenever possible, smart programmers let utilities and
applications convert data and documents into HTML or XML. But do be
aware that every Word feature is supported by an XML tag.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 232

Book III
Chapter 3

Using XM
L in W

ord

XML in Word 233

Here’s the most basic XML document that Word can read — that Word can
translate from XML into the native DOC format. (This is not the simplest
form of XML file that Word can save, which is much more complex, as you
can see in the preceding hello example.)

<?xml version=’1.0’?>
<w:wordDocument xmlns:w=’http://schemas.microsoft.com/
office/word/2003/wordml’>

<w:body>
<w:p><w:r><w:t>Hello, World.</w:t></w:r></w:p>

</w:body>

</w:wordDocument>

If you type this into Notepad (or use Save As Plain Text from within Word)
and then save this file with an .xml extension, you can use File➪Open in
Word to load it into Word. When you do this and you’re asked whether you
want to convert it from an XML file, click OK. You see the XML neatly format-
ted, as shown in Figure 3-1.

All visible content in a Word document is contained within the <body> tag
pair. The <p> is for paragraph, <r> for run (a run of text is a string of charac-
ters that all share the same formatting), and <t> is for text.

If you open a WordML file with a schema that you’ve attached (referenced)
and Word cannot find the eXtensible Stylesheet Language Transformation
(XSLT; schema file) in the Schema Library when opening this file, Word applies
its default XSLT.

Figure 3-1:
The XML
data view
window,
with the
XML
Document
task pane at
the ready.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 233

Deeper into WordML234

Deeper into WordML
You can, of course, automate the process of using XML by writing program-
ming to manipulate it. One typical kind of XML programming involves trans-
lating traditional objects or data structures into XML and then back into their
original formats (or indeed into other formats). You see here how that’s done.

The Word XML Content Development Kit
Go to this address and download the Microsoft Word XML Content Develop-
ment Kit (CDK) Beta 2. It assists you with your Word XML programming by
providing sample code illustrating XML in Word 2003 and documentation
about using XML in your own programming.

http://msdn.microsoft.com/library/default.asp?url=/downloads/list/office2k3.asp

After installing this software development kit (SDK), choose Start➪All
Programs➪Microsoft Office 2003 Beta Documentation. Follow the pop-out
menu items through Microsoft Word XML CDK, and click MSXML Reference.
You’ll see the Help window, as shown in Figure 3-2.

Figure 3-2:
Locate
information
about using
XML in
Office 2003.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 234

Book III
Chapter 3

Using XM
L in W

ord

Deeper into WordML 235

Programmatic XML
I talk more about manipulating XML data by using shocking-sounding tech-
niques like SAX and DOM in my book XML All-in-One Desk Reference For
Dummies (Wiley), but do note that communication is one of the advantages
of using XML with Word and other applications. You can communicate
between Office 2003 applications — and indeed with other entities such as
.NET-created applications and utilities, or even between platforms — by
using XML in your programming.

As an example, create a VBA program that builds a little XML file with two
objects. (Pieces of data surrounded by schema tags can be called objects, but
then, what can’t?) First the program instantiates two objects; then it loads
an XML string into each. (Read more about Word objects in Chapter 1 of this
mini-book.)

Adding a reference
Open VBA in Word. In the Visual Basic editor, choose Tools➪References.
References attach outside code libraries to your projects; in this case, you
want the XML library. Scroll in the References dialog box until you locate
Microsoft XML, v 5.0 (or a later version). Select its check box to select it and
then click OK to close the dialog box.

Now type in this macro:

Sub XMLwerk()

Dim d As New DOMDocument50
Dim d1 As New DOMDocument50
d.loadXML “<FirstName>Nitsy</FirstName>”
d1.loadXML “<LastName>Aha</LastName>”

Debug.Print d.XML, d1.XML

End Sub

When you press F5 to execute this macro, you’ll see your XML objects printed
in the Immediate window (View➪Immediate Window). This is what you see:

<FirstName>Nitsy</FirstName>
<LastName>Aha</LastName>

You have programmatically created an XML document, added a couple of ele-
ments to it, and then printed the contents of both of those elements. In other
words, you’ve manipulated an XML schema and its data programmatically.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 235

Choosing XML Options in Word236

Choosing XML Options in Word
When you’re working with WordML, you might want to specify some behav-
iors regarding how XML will be validated, displayed, saved, and loaded. To
do this, choose Tools➪Templates and Add-Ins. When the dialog box opens,
click the XML Schema tab and then click the XML Options button. The XML
Options dialog box opens, as shown in Figure 3-3, with the following choices:

✦ Save Data Only: The Save Data Only option filters what data Word saves.
Only data related to an attached schema will be saved; none of the other
document information (such as author, date of origin, number of words,
macros, and so on) is saved. This is a slimmer, less Word-specific version
of saving the full XML data. If you don’t choose this option (it’s also avail-
able in the XML task pane), Word saves everything specified in the default
WordML schema, including formatting, embedded graphics, and other
such details.

✦ Apply Custom Transform: If you select Apply Custom Transform, Word
runs the data through whatever XSLT transformation you request. Find
more on transforms in Book VIII, Chapter 6.

✦ Validate Document against Attached Schemas: Selecting the Validate
Document against Attached Schemas option causes Word to check the
accuracy of the XML. In other words, it asks, Does it conform to the
schema? Any errors are displayed in the XML Structure task pane.

✦ Hide Schema Violations in This Document: This option causes Word to
eliminate the graphics (lines) in the document that alert you to any vio-
lations of the schema.

✦ Ignore Mixed Content: This option is used when you want to save DOT
files (templates), and you expect users to enter data into your XML struc-
tures. Formatting that they enter along with their text causes no problems.

✦ Allow Saving as XML Even if Not Valid: This option permits XML to be
saved even if it can’t be validated via an attached schema. Use this to
save your work even though you’ve not completely filled in the entire
document (and it’s thus invalid technically).

✦ Hide Namespace Alias in XML Structure Task Pane: This option causes
Word to omit an attached schema’s namespace alias (or even the entire
namespace if no alias has been provided) after each element name.
(Namespace is another clerical term used to specify a particular library
of code. Read more about aliases in the following section.) Seeing the
namespace repeated like this can be cumbersome, redundant, and unnec-
essary in the diagram displayed in the narrow task pane. You usually want
a cleaner view — like the one in Figure 3-4 — especially if more than one
schema is attached to your file.

✦ Show Advanced XML Error Messages: This option causes Word to dis-
play extra information about schema violations.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 236

Book III
Chapter 3

Using XM
L in W

ord

Choosing XML Options in Word 237

✦ Show Placeholder Text for All Empty Elements: This option takes effect
if you’ve turned off the display of XML tags in the document (by dese-
lecting the Show XML Tags in the Document option on the task pane).
Word displays instead a placeholder when it finds an empty element.

Figure 3-4:
Display only
the element
names
(as here)
without
namespace
clutter.

Figure 3-3:
Specify your
preferences
for XML
behaviors in
Word here.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 237

Working with XML in Word’s Special Editor238

Working with XML in Word’s Special Editor
Try a couple of exercises to familiarize yourself with how XML documents
can be manipulated by using the special XML editor window and its associ-
ated task pane. (See any of the task panes by choosing View➪Task Pane.
Then click the small, inverted triangle symbol next to the X in the top-right
corner to drop a list of available task panes.)

First, create a schema to use for practice. Type this simple schema (Listing
3-1) into Notepad (to avoid any extra formatting, and so on) and then save it
as PartyTime.xsd.

Creating a practice schema
Remember that a schema is an XML structure into which data can be inserted.
The particular schema in this example helps you plan a party by including
fields for the names of all your friends as well as a Personality section describ-
ing their strengths and drawbacks as people.

Listing 3-1: Practice XML Schema
<?xml version=’1.0’ ?>
<xs:schema id=’ PartyTime’

xmlns:xs=’http://www.w3.org/2001/XMLSchema’
>

<xs:element name=’ MyFriends’ >
<xs:complexType>
<xs:choice maxOccurs=’ unbounded’ >

<xs:element name=’ NameAndComments’ >
<xs:complexType>
<xs:sequence>
<xs:element name=’ Name’ minOccurs=’ 1’ maxOccurs=’ 1’ >

<xs:complexType>
<xs:sequence>
<xs:element name=’ Firstname’ type=’ xs:string’

minOccurs=’ 1’ maxOccurs=’ 1’ />
<xs:element name=’ Lastname’ type=’ xs:string’

minOccurs=’ 1’ maxOccurs=’ 1’ />
</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name=’ Personality’ type=’ xs:string’
minOccurs=’ 0’ maxOccurs=’ 1’ />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>
</xs:complexType>

</xs:element>
</xs:schema>

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 238

Book III
Chapter 3

Using XM
L in W

ord

Working with XML in Word’s Special Editor 239

Now follow these steps to store your new schema:

1. Choose File➪New in Word and then choose XML Document from the
task pane.

2. Click the Templates and Add-Ins link in the task pane.

3. Click the Add Schema button in the dialog box.

4. Browse your hard drive and choose PartyTime.xsd.

5. Type this in for the URL: http://www.w3.org/2001/XMLSchema.

You have to put one in, so just use this.

6. Type Party for the alias.

It’s nice to use aliases, or else you’ll see the schema displayed with the
entire cumbersome namespace. And sometimes you’ll go hog-wild and
use several schemas at once, each with its own cryptic namespace.
Aliases make it easier to remember what each schema does.

7. Close the dialog box.

Your new schema is displayed in the task pane as MyFriends{Party}.
Party is the namespace alias.

You now have your empty shell into which you can pour data. This schema
is also automatically added to the library of schemas maintained by Word
(and it can be later used with other documents).

Using the XML Structure Task Pane
Word’s XML Structure task pane offers several advantages to the busy XML
document creator. With it you can

✦ See the entire structure of the attached schema(s), including child ele-
ments nestled within outer elements.

✦ See the structure displayed hierarchically.

✦ Edit the XML data by adding and removing elements.

✦ Show or hide tags within Document view.

✦ Get error messages if you abuse the schema’s structure (removing an
End tag, for example).

Building your XML document
Now build an actual XML document by adding some data. In the Element list at
the bottom of the task pane, you see the top-level element (the outermost ele-
ment, or the one within which all other elements are nested). It’s MyFriends.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 239

Working with XML in Word’s Special Editor240

Click it in the list to add to your document, and you see NamesAndComments,
which is the second outermost pair of tags in this Russian dolls eggs-within-
eggs structure of nested items.

You now see the outer element tag pair in your document, as shown in
Figure 3-5.

At this point, though, you’ve been a bad puppy and made a mess . . . temporar-
ily. Notice the little question mark in the top of the task pane. Hover your
mouse pointer over that ? to see Word telling you that you’ve violated one
of the rules of your schema. That’s right: This must contain other elements.
In other words, just your outermost tag pair by itself does not a valid docu-
ment make, according to your schema. And, should you be a really bad dog
and try to save this as an XML file, you’ll be told that you can’t because it’s
in violation of the rules. You can save it as a DOC file but not as an XML file.

Word also alerts you to the violation with the vertical, saw-toothed purple
line in Document view. Right-click that, and you get the same violation report
at the top of the context menu. Anyway, you know what to do: Add more ele-
ments to correct the violation.

Notice in the lower box in the task pane that a new element (the second
outermost) is now displayed: NameAndComments, which you should click.
It’s inserted where it should be between the outer MyFriends tags. Click
Firstname in the task pane box. Notice that the box is now empty because
no further nested tags are within the Name pair. However, there are two other
pairs of tags: LastName and Personality. To see them in the box, press the
right-arrow key. Now you see Firstname and Lastname. Click Lastname.

At this point, the two, innermost tag pairs become strange. They turn pink!
And they also no longer display tag pairs but have been collapsed into a single
pink icon, with () closed parentheses. This is to save some space in the dia-
gram. It’s still the same old open-tag/close-tag pair in the underlying XML, but

Figure 3-5:
Your first
XML tag
pair ready
for editing in
Document
view.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 240

Book III
Chapter 3

Using XM
L in W

ord

Working with XML in Word’s Special Editor 241

for your viewing pleasure, tags that can hold data automatically turn pink and
collapse. You can force other (no-data) tags to collapse, too, if you wish. Click
to the left of a tag and then press Tab. That tag-pair collapses, and any tags
that it encloses (child elements as they’re called) also collapse. Ctrl+Z reverses
the collapse.

At this point, you might want to cursor around within the document and use
the Enter key and others to format the diagram in the usual XML way, putting
child elements on their own lines, indenting to show nesting, or whatever else
rings your bell. The underlying XML is unaffected by these merely visual
rearrangements.

To add the final data element, Personality, click between the Name and
NameAndComments closing tags. You see Name and Personality listed in the
task pane box. (You can add as many Name elements as you wish; that’s why
it’s available.) However, just click the Personality element to add it to the
diagram. Personality has no child elements. At this point, your document
should look something like Figure 3-6.

Type in a first name, last name, and a brief description of the personality in
the appropriate places between the parentheses and the tags. Then choose
File➪Save As and save the document as Party.xml. This time, Word doesn’t
object to your wish to save the file.

Figure 3-6:
Your
complete
Party XML
document,
displayed
in two
diagrams.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 241

Working with XML in Word’s Special Editor242

Extending the variety of uses to which a single XML data document can be
put is not difficult in Word. You can manipulate the data or schema itself via
SAX and DOM techniques, and you can convert XML into various formats via
transforms. These and other topics are covered in various sections through-
out this book, and specifically in Book VIII, Chapter 6.

03d_570676 bk03ch03.qxd 6/4/04 10:02 PM Page 242

Chapter 4: The Internet Connection

In This Chapter
� Creating Web pages in Word

� Understanding Web file types

� Changing Web options

� Using the Web Tools toolbar

� Using Web page controls

� Scripting Word Web pages

� Testing Web pages

� Understanding ASP

Can your Word documents be stored as Web pages and then viewed on
the Internet? Indeed, they can. As you see in this chapter, you won’t

want to use Word as the front end for a big enterprise database-driven
invoicing system. But for smaller jobs, such as displaying your pictures or
blogging your feelings for all to see, Word does a serviceable job. And if
you’ve already created documents that you want to display to the world,
nothing could be easier than changing DOC files into Web pages.

Creating Web Pages in Word
Few areas of contemporary computing have been untouched by the impact
of the Internet, which is currently estimated to comprise 92-million giga-
bytes of data (and exploding). Office 2003 applications are no exception.

If you’re creating a complex, huge Web site, use a dedicated Web page
designer application. FrontPage, for example, includes helpful tools to make
working with multifaceted sites easier than using Word. And if you want true
power — including tools for creating dynamic, scalable Web pages — go for
Visual Studio .NET.

However, if you’re comfortable working in Word — you’re familiar with its
formatting features, tables, and so on — you can design perfectly fine Web
pages in Word. Just do what you normally do to create and design a docu-
ment, and what you see is what you will get on the Internet.

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 243

Saving as a Web Page: The Three Kinds of Files244

When you save a Word document as a Web page, you can then load that
page into Internet Explorer and be pleased with what you see. Word does the
tough job of translating the document into a Web page; all the HTML code is
hidden from you. Yet, with the exception of a few items (headers, footers,
and newspaper-style columns, which HTML doesn’t support), the page
should look pretty much as you designed it.

And if you need to build some interactivity built into your Web page, VBScript
and JScript are available in Word as well. But don’t be misled: Word-designed
Web pages are largely for display and not serious interactivity. You can build
nice advertisements, informative tutorials, and so on. But because Word is a
document-processing system, it simply doesn’t offer the tools necessary to
build a database-driven, heavy-duty, or complex interactive Web site. For that,
do consider using Visual Studio .NET instead.

Saving as a Web Page: The Three Kinds of Files
When you choose File➪Save as Web Page, you’re given a choice between
three file types:

✦ Ordinary, plain HTML: Word calls this type filtered because all Word
codes are stripped out and only HTML is left. Choose this if you plan to
edit the page further in some other Web page editor that could trip on
some of the proprietary Word formatting.

✦ Web Page: This includes both HTML and the codes that Word uses to
construct the page’s formatting in the Word editor. This choice creates a
larger file, obviously, but it allows you to continue working on the page
in Word.

✦ Single File Web page (Mime, MHTML with an .mht extension): This
format incorporates any necessary support pages (such as a graphics
file) into a single file. If you don’t choose this option, any support files
are kept in a separate, dependency folder from the main HTML file.

Adjusting the Web Options Settings
You can make more specific adjustments for your Web pages in Word by
choosing Tools➪Options and then clicking the Web Options button of the
General tab. Here, as shown in Figure 4-1, you can select specific target
browsers, which is useful if you’re creating pages for an office intranet and
you know that your company is still using an old version of Internet Explorer
or even Netscape.

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 244

Book III
Chapter 4

The Internet
Connection

Building a Web Page in Word 245

The Portable Network Graphics (PNG) and Vector Markup Language (VML)
graphics formats are relatively new but do outperform the standard formats
such as JPG. PNG is a beefed-up version of GIF, with support for 48-bit true-
color or 16-bit grayscale and improved compression. VML uses equations to
describe shape and fills, resulting in highly scalable drawings with very little
bandwidth hit. (The drawings are described mathematically rather than
transmitted as graphics files.) Of course, the results are essentially cartoon-
ish, clip-art quality — not photographic.

Because cascading style sheets (CSSes) are pretty much universally under-
stood now, you probably leave that option selected. Use the Files tab to
refine how you want your Word Web pages saved, and the Pictures tab speci-
fies the monitor resolution you want to target. Adjusting the pixels per inch
(ppi) allows you to adjust the loading time of graphics-intensive Web pages
(by, for example, speeding things up at the expense of some image quality by
setting the ppi to 72). Leave this one alone for most applications. The Fonts
tab allows you to specify different default fonts.

Building a Web Page in Word
You can take two approaches to creating a Web page in Word: Start with an
ordinary Word document and then save it as a Web page, or begin with a
blank Web page from Word’s File➪New menu. I suggest that you take the
second approach because Word knows from the beginning that you intend
this document to end up on the Internet, so it offers you some additional
help (some menu features specific to HTML, for example).

To create a new Web page, follow these steps:

1. Choose File➪New.

The New Document task pane pops out.

Figure 4-1:
Change Web
options in
this dialog
box.

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 245

Building a Web Page in Word246

2. Click the Web page link in the task pane.

A new document opens, looking pretty normal (but don’t be fooled).
Take a look at the mouse pointer, for example. It’s got some extra lines
following it around the screen; it’s a different icon than the usual I-beam
shape, as shown in Figure 4-2.

3. Create your Web page by typing in some text and maybe adding some
pictures (choose Insert➪Picture).

4. For a good scare, choose View➪HTML Source.

The Microsoft Script Editor opens, holding your code. You can type in
VBScript (or JScript) if you wish, using this editor. You also see the
bloated HTML code that is necessary to display your few words and
graphics in a Web page, as shown in Figure 4-3.

5. Close the Script Editor.

No point in spooking yourself by seeing what unfortunate Web program-
mers had to contend with a few years ago. You’ll reopen this editor at
the end of this chapter to fiddle around a bit with scripting, which isn’t
the same thing as writing HTML. Scripts are Visual Basic (or Java), some-
what pared down to remove file-access and other behaviors that could
be used for bad purposes by hackers.

6. Choose File➪Save As.

The Save As dialog box opens.

7. In the Save as Type list box on the bottom of the dialog box, choose
Web Page.

The file is saved. If you inserted graphics, a subfolder is created to hold
them.

Figure 4-2:
Your mouse
cursor is
followed by
some extra
lines when
you’re in the
Web page
design
window.

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 246

Book III
Chapter 4

The Internet
Connection

Building a Web Page in Word 247

8. In Windows Explorer, locate the HTM file that you just saved, and
double-click its filename to open it.

Your browser (probably Internet Explorer) opens, and your Web page is
displayed, as shown in Figure 4-4.

If you’re creating a Web page, you’ll probably enter a test-modify/code-retest
cycle until you get things working as you want. It’s simpler to view and test
the Web page by using the File➪Web Page Preview feature than to save the
file each time through the cycle and then activate it via Windows Explorer, as
you did in Step 8 in the preceding example.

Figure 4-3:
The Script
Editor,
displaying
the HTML
code.

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 247

Using the Web Tools Toolbar248

Using the Web Tools Toolbar
With the various buttons on the Web Tools toolbar, you can easily add a vari-
ety of useful controls, such as check boxes, option (radio) buttons, list boxes,
text boxes, submit buttons, passwords — even movies and sound. Just click
in your document where you want the control, and then click its icon on the
toolbar.

Right-click any toolbar in Word and then mark the Web Tools check box in
the drop-down list of toolbars. You see the Web Tools toolbar, as shown in
Figure 4-5.

Properties

Checkbox

Dropdown Box

Textbox

Submit

Reset

Password

Sound

Design Mode

Script Editor

Option Button

List Box

Text Area

Submit with image

Hidden

Movie

Scrolling Text

Figure 4-5:
Use this
toolbar to
jazz up your
Web pages.

Figure 4-4:
A finished
Web page,
displayed in
a browser
as it would
be seen via
the Internet.

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 248

Book III
Chapter 4

The Internet
Connection

Using the Web Tools Toolbar 249

You can also use this toolbar to add special effects, such as scrolling text
(great, if you like annoying people) and background texture (okay if used in
moderation).

Adding scrolling text
I ask that you avoid using scrolling text. (Shudder.) It’s usually second only to
animations and pop-ups as the most annoying features of vulgar Web sites.
Used mostly for ads, scrolling text makes it hard to read the other elements
on the Web page. But if you must (cough . . . if the boss insists), add it from
the Scrolling Text dialog box, as shown in Figure 4-6.

Open this dialog box by clicking the rightmost icon on the Web Tools toolbar.

Adding background texture
Background textures do add quality to your Web pages. From the Fill Effects
dialog box (choose Format➪Background➪Fill Effects), you can add gradi-
ents, textures, or graphics to the background of your Web page. (Another
option, patterns, I’d avoid. They’re not only distracting; they’re also cheesy.)
A gradient adds interest to the Web page shown in Figure 4-7. Gradients, if
not too extreme, add a nice metallic look. The one in Figure 4-7 goes from
white to gray, but I recommend avoiding the default white-to-black gradient
because it’s too strong.

The textures available in this dialog box are also useful, but again, as with
gradients, use a light touch and ensure that the background doesn’t interfere
with the foreground text and graphics, as it does in Figure 4-8.

Figure 4-6:
Add annoy-
ing scrolling
or sliding
text mar-
quees to
your Web
pages. Sigh.

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 249

Using the Web Tools Toolbar250

Figure 4-8:
A crumpled
paper
texture can
overpower
foreground
text.

Figure 4-7:
Gradients
can add a
metallic
look.

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 250

Book III
Chapter 4

The Internet
Connection

Scripting in Word Web Pages 251

Scripting in Word Web Pages
While viewing your Word Web page, press Alt+Shift+F11. There it is! A VBA-
style editor, complete with a Toolbox for adding controls, debugging facili-
ties, a properties window for adjusting controls’ qualities, and a project
window to show you the various documents and other files in the current
project (which in this case is a Web site).

Although Word created the HTML that describes your Web page, strangely
enough, you’ll find lots of little, squiggly red underlines in the code. These
are indications of various errors in the HTML code, but just ignore them. The
editor’s parser is evidently more uptight about HTML violations and illegal
nesting than Internet Explorer is. And lucky for you, you don’t have to worry
about this stuff, anyway.

You can drag and drop controls from the Toolbox into the code, but do try to
add them in the right places (not within attribute lists of other elements, not
in the header, and so on). In fact, it’s easier to add controls from the Web
Tools toolbar. (See the earlier section, “Using the Web Tools Toolbar.”)
Remember that you’re working in a design view (not this code view), and
you can let Word worry about inserting the controls’ code where it should
be inserted. However, the Toolbox in the Scripting Editor does have a few
controls not available on the Web Tools toolbar.

Scripting is inserted into an HTML page between <SCRIPT> tag pairs
</SCRIPT>. Also, the script code is clumsily enclosed within the HTML tag
pair for comment: <!--

-->

Normally in programming, a commented zone within code is ignored and not
executed. In HTML, though, this merely prevents browsers that cannot execute
script from instead displaying the source code to users (many of whom would
be baffled by seeing it).

Scripting is similar to programming any other language, but note a few
differences:

✦ HTML pages are read from top to bottom by a browser, so you usually
insert your script code in the HEAD section of a Web page.

This way, it’s decoded by the browser and is ready to respond to any
action that later takes place in the lower BODY section of the page.

✦ You can put your code within Sub or Function procedures, and that
code executes only when the procedure is called (by other code in
the page).

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 251

Scripting in Word Web Pages252

Or, if you put code outside a procedure, that code is executed only one
time — when the page first loads. So, you put your initialization code
outside procedures in the HEAD section, which is the equivalent of using
VB’s Form_Load event.

To see how all this works, create a new Web Page (File➪New➪Web Page) and
then press Alt+Shift+F11 to open the editor. In the HEAD section (just above
the </head> tag), type this function:

<script language=”VBScript”>
<!--
Function SubmitIt()
n = Msgbox (“Thank you for your order!”)
End Function

-->
</script>
</head>

You can name the function whatever you want. It’s an event that will respond
whenever a Submit button (a button-style control in HTML) is clicked by the
user.

Whenever you want to insert script, you can get the template of the code by
right-clicking the background of the code window and then choosing Insert
Script from the context menu.

In the code view in the Editor, click in the BODY section of your HTML code
and then double-click the Submit button on the Toolbox. This code is
inserted for you:

<INPUT type=”submit” value=”Submit” ID=Submit1>

That’s enough to display a Submit button in a browser, but you need to add
an additional attribute to this element to make it trigger your function when-
ever the user clicks this button:

<INPUT type=”submit” value=”Submit” ID=Submit1 onclick=”SubtmitIt()”>

By adding an onclick attribute, you’re telling the browser to execute the
named procedure — SubmitIt in this case — whenever the user clicks the
button. This is one way to interact with the user.

If you copy code from a word processor, the code will contain extra format-
ting codes when you paste it into a code editor such as the Script Editor or
Visual Studio. It will look something like this:

<p class=Code><INPUT type="submit"
value="Submit"ID=Submit1> </p>

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 252

Book III
Chapter 4

The Internet
Connection

Scripting in Word Web Pages 253

To strip off all the unwanted codes, first paste the copied programming into
Notepad. Then copy it from Notepad (select it and then press Ctrl+C) and
paste it into the editor. It will then look like this, as it should:

<INPUT type=”submit” value=”Submit” ID=Submit1>

Understanding ASP
One of the best ways to interact with users —
and to provide dynamic content in Web pages,
such as database interactivity — is ASP and
not ordinary scripting. Active Server Pages
(ASPs) refers to a technology in which you can
write scripting such as VBScript (or using
ASP.NET, you can use the full VB.NET language)
to respond to and interact with Web site visi-
tors in a more efficient way than with ordinary
scripting. The key is that security problems are
solved because no script is ever sent to the
user’s browser. Instead, all executables (scripts
or programming code) run on the server — only
HTML is sent to the user.

When a Web page is loaded into a browser
(when a user visits a Web site), the user’s
browser handles the typical HTML codes — for
example, <H1>, which causes the browser to
display text as a large headline. (<H1> means
Heading #1, the biggest one.)

However, if a Web page contains ASP pro-
gramming, something happens before the page
is sent to the user. Any code in the page found
between the special ASP percent symbol
codes <% and %> is interpreted on the server
where the Web site sits. The page is interpreted
before that Web page is sent to the user’s
browser. The server translates the program-
ming code into plain ordinary HTML, so there’s
no security issue — it flows directly into the
user’s browser.

What use is ASP in a real-world situation?
Without ASP, Web pages can be mere exercises

in publishing — not all that much more useful or
advanced than the traditional advertisement. If
you own a bookstore, you can print a flyer or
take out an ad in a paper. You can do the same
kind of thing with your Web site — list titles and
display covers. Because users block scripts,
your page is not interactive.

But by adding ASP to your Web pages, you
enable users. They can, for example, tap into
your databases directly (read-only, of course,
unless you specify otherwise). With ASP, you
could let a visitor to your bookstore’s site see
the latest discounts, see all the books you offer
by searching your database, compare prices
interactively, and even place orders. In other
words, users can do dynamic things that used
to require both a phone call to your office and a
person in your office to provide assistance.
Think of it this way: The ASP technology — to
a great extent — lets users be their own cus-
tomer service department.

When a user clicks a button or otherwise inter-
acts with the page, a message is sent back to
the server for a response. Executables execute
on the server, and another HTML page is com-
posed and sent back to the user. In this way,
users can interact with your site without facing
any danger of virus attacks. Thus, if you want
to create Web pages that seriously, dynami-
cally interact with users, abandon the features
available in Word or other Office 2003 applica-
tions and start using Visual Studio .NET to build
your Web site.

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 253

Scripting in Word Web Pages254

Testing your Web page
Now test your Web page. Go to the design view of your Web page (the Word
document view) and click the Refresh button if necessary. You should see
your Submit button. Choose File➪Web Page Preview. Click the Submit button
in the browser, and you should see your message box. (If you don’t see it,
proofread your code to ensure that your onclick attribute includes the cor-
rectly spelled name of the function.)

In VBScript, you can avoid having to add an event trap to a Submit button.
VBScript allows you to simply create a function with the ID of the object
(submit1 in this example) separated by an underline (_) from the name of
the event you’re handling (onclick in this example). So you could option-
ally omit the onclick=”SubmitIt()” attribute and just name your function
like this: Function Submit1_OnClick(). If you name the Function like
that, it will be executed when the user clicks the Submit1 button.

Understanding scripting’s drawbacks
Alas, scripting has been responsible for some virii — or blamed for it,
anyway — so some people turn off scripting in their browsers. Then no
script can execute. A more elegant and universally effective approach is
available via Active Server Pages (ASP).

03e_570676 bk03ch04.qxd 6/4/04 10:03 PM Page 254

Chapter 5: Advanced Word Macros

In This Chapter
� Deciding what deserves to be automated

� Accessing other Office applications from within Word

� Modifying Word’s built-in features

� Specialized formatting

� Advanced automation

� The best Word macros of all time

With VBA, you can use a macro to automate anything that you do
repeatedly. Macros are a highly useful way to shift the burden of repet-

itive tasks from you to the machine. And don’t forget that you can turn on
the macro recorder and then follow the usual steps to accomplish your task
(for the last time). When you’re finished, just turn off the recorder, assign
your macro to a shortcut key combination, and happily ever after just press
a couple of keys to accomplish what you used to do slavishly by hand.

In this chapter, you see how to contact and manipulate other Office applica-
tions from within Word, access and modify the behavior of Word’s built-in
features such as FileSave, and are treated to what I consider the best Word
macros available (at least for a writer).

Writing Macros 101
Perhaps the best way to master Office applications’ macro programming is
to record a macro and then look at the code that’s automatically produced.
(Choose Tools➪Macro➪Record New Macro.) In fact, if you ever get con-
fused and need to see how a menu item or some other feature can be coded
into VBA — the macro language — just record the behaviors, press Alt+F11
to open the macro code editor, and look at the code.

Additionally, macros can also do some things that are not available in
normal Word. That is, they can do things that don’t appear in any toolbar or
menu. For example, you can contact other applications and send messages
back and forth between Word and the outside application. To see how to
send some data to an Excel worksheet, type the Sub in Listing 5-1 in the
macro editor.

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 255

Interception: Modifying Built-In Word Features256

Listing 5-1: Sending Interapplication Data via a Macro

Sub ContactExcel()

Dim ExcelSheet As Object
Set ExcelSheet = CreateObject(“Excel.Sheet”)

With ExcelSheet.Application
.Cells(1, 1) = “Hello, Excel! This is Word speaking!.”
.ActiveWorkbook.SaveAs “c:\ExcelTest.xls”
.Quit

End With
Set ExcelSheet = Nothing
End Sub

To execute the macro, press F5 while your blinking insertion cursor is inside
this Sub in the code window. Although nothing seems to happen, use Windows
Explorer to double-click the new file (ExcelTest.xls) on your C drive. When
you do, the file loads in Excel, proving that Word started Excel running
(CreateObject), sent your data to one of the cells in the current worksheet,
saved the workbook that contained this worksheet, and then closed Excel —
all with a few lines of code.

If you prefer to see Excel running, just the.Visible = True property in the
above code.

With ExcelSheet.Application
.Visible = True
.Cells(1, 1) = “Hello, Excel! This is Word speaking!”
.ActiveWorkbook.SaveAs “c:\ExcelTest.xls”

End With

If you want users to be able to see the names of your macros and execute
them, create them as a Sub in the Macros dialog box (Tools➪Macro➪Macros).
If you don’t want a macro to appear in the dialog box, create it as a Function.

Interception: Modifying Built-In Word Features
Another great use for macros is their ability to intercept Word’s built-in menu
or toolbar features and make them behave differently. For example, to over-
ride the File➪Save option through a macro — replacing the usual actions with
your own preferences — just name the macro after the menu+item, such as
Sub FileSave(). Now whenever someone chooses File➪Save (or activates it
otherwise, such as via a shortcut key combination), your macro — not the
built-in Save action — will execute.

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 256

Book III
Chapter 5

Advanced W
ord

M
acros

Interception: Modifying Built-In Word Features 257

Here’s a useful example. Perhaps you want to always save your documents
in two different locations on your hard drive as a safety measure. After all,
unless you’re directly hit by a meteor, it isn’t inevitable that two different
locations on your hard drive will simultaneously fail. (Of course, they could,
which is why you also back up your work to CDs or some other offline stor-
age.) But saving your current document to two locations in your computer
(or perhaps a separate, second disk drive) is a good precaution.

Suppose that whenever you choose File➪Save, you want to save the document
in the normal way, but you also want to save a copy of the document to a direc-
tory called C:\archives. First, record a macro that copies the File➪Save As
action. Listing 5-2 shows you the format for SaveAs, which is what you want
when saving two copies because SaveAs is necessary if you’re changing the
filepath for the Save. Then press Alt+F11 to see your new macro in the editor.

Listing 5-2: Double-Saving a Document

Sub doublesave()
‘
‘ doublesave Macro
‘ Macro recorded 12/31/2003 by Richard
‘
ActiveDocument.SaveAs FileName:= “bk0305 new.doc”,

FileFormat:=wdFormatDocument, _
LockComments:=False, Password:=””,

AddToRecentFiles:=True, WritePassword _
:=””, ReadOnlyRecommended:=False,

EmbedTrueTypeFonts:=False, _
SaveNativePictureFormat:=False, SaveFormsData:=False,

SaveAsAOCELetter:= _
False

End Sub

Fair enough. But now you want to also save the backup copy as well. When
you use SaveAs, the current directory is switched to the new target of the
SaveAs. However, you don’t want this to happen. You want to preserve the
current directory. The way to do this is to first store the current directory:

Path = Selection.Document.FullName ‘save current path

Then build a new filepath for the backup:

bakpath = “c:\archives\” & Selection.Document.Name ‘create backup path

Now you can employ these paths to first SaveAs to the archive folder and
then SaveAs to the original folder (which has the effect of restoring the origi-
nal current directory). The complete macro is in Listing 5-3.

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 257

Using Macros for Specialized Formatting258

Listing 5-3: The Complete Double-Save Backup Macro

Sub FileSave()
‘
‘ doublesave: archive and original, for backup

Path = Selection.Document.FullName ‘save current path
bakpath = “c:\archives\” & Selection.Document.Name ‘create

backup path

ActiveDocument.SaveAs FileName:=bakpath,
FileFormat:=wdFormatDocument, _

LockComments:=False, Password:=””,
AddToRecentFiles:=True, WritePassword _

:=””, ReadOnlyRecommended:=False,
EmbedTrueTypeFonts:=False, _

SaveNativePictureFormat:=False, SaveFormsData:=False,
SaveAsAOCELetter:= _

False

ActiveDocument.SaveAs FileName:=Path,
FileFormat:=wdFormatDocument, _

LockComments:=False, Password:=””,
AddToRecentFiles:=True, WritePassword _

:=””, ReadOnlyRecommended:=False,
EmbedTrueTypeFonts:=False, _

SaveNativePictureFormat:=False, SaveFormsData:=False,
SaveAsAOCELetter:= _

False

WordBasic.PrintStatusBar “This document, and a backup,
were saved, honey.”

End Sub

Finally, as a courtesy to myself, I display a subtle, yet heartwarming, mes-
sage on the status bar.

If you get an error when running this macro, your security settings are likely
to blame. The path specified might be read-only or something. As usual,
when you’re tripped up by security, consult your administrator. If you’re the
administrator, consult your own bad self.

Using Macros for Specialized Formatting
You should also consider employing macros to combine multistep jobs like
specialized formatting. For example, one book publisher’s editors do not like
the phrase do not. They want you to replace it with don’t, on the theory that

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 258

Book III
Chapter 5

Advanced W
ord

M
acros

Using Macros for Specialized Formatting 259

this usage is more friendly, less academic, and less bossy. I suppose they’re
right. They go further: They want you to replace cannot with can’t, will not
with won’t, and for instance with for example. So, the intelligent person
records these various search and replace actions into a single macro. Then,
each chapter can be instantly scanned and fixed in one single step by run-
ning the macro. In Listing 5-4, you can see what part of this macro looks like.

Listing 5-4: Replacement Formatting in Word

Sub firstFormat()
‘
‘ firstFormat Macro
‘ Macro recorded 12/2/2002 by Richard Mansfield
‘

Selection.Find.ClearFormatting
Selection.Find.Replacement.ClearFormatting
With Selection.Find

.Text = “cannot”

.Replacement.Text = “can’t”

.Forward = True

.Wrap = wdFindContinue

.Format = False

.MatchCase = False

.MatchWholeWord = False

.MatchWildcards = False

.MatchSoundsLike = False

.MatchAllWordForms = False
End With
Selection.Find.Execute Replace:=wdReplaceAll
With Selection.Find

.Text = “will not”

.Replacement.Text = “won’t”

.Forward = True

.Wrap = wdFindContinue

.Format = False

.MatchCase = False

.MatchWholeWord = False

.MatchWildcards = False

.MatchSoundsLike = False

.MatchAllWordForms = False
End With

Macros should also be used when you want to combine formatting jobs that
cannot be accomplished via a single Search and Replace dialog box. For
example, you cannot simultaneously format both a paragraph and a font:
These require two separate dialog boxes. However, you can accomplish this
kind of thing with macros. Also, you’re likely to find various jobs easier when
you assign macros to keyboard shortcuts. Anyone who frequently writes or
edits documents will understand.

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 259

Using Macros for Specialized Formatting260

For example, I frequently have to apply four headline styles while I’m writing
a book. I could drop the list box of styles on the Standard toolbar and scroll
through that list to find the appropriate headline style. I could, but I’d be nuts.
It’s far easier to create this macro (see the following steps):

Sub AltH()
Selection.Style = ActiveDocument.Styles(“Heading 1”)

End Sub

Now assign this macro to the Alt+H key combination:

1. Choose Tools➪Customize➪Keyboard.

2. In the Customize Keyboard dialog box, click Macros in the category list.

3. Find the appropriate macro in the list on the right and click it to select
it (in this case, the macro named AltH).

4. Click in the Press New Shortcut Key text box and press whatever key
combination you want.

I suggest Alt+H, for headline. Then I follow this same approach to rede-
fine Alt+J (Headline Style 2) and Alt+K (Headline Style 3).

If your new shortcut is already assigned to a different (perhaps Word
default) shortcut, such as Ctrl+O (the Open standard), you see a message
to that effect. You can usually override the default, but some presets are
sacrosanct, like File➪Open (Ctrl+O). For more limitations on what keys
you can (yea!) and can’t (argg) reassign, see the later section, “Redefining
ordinary keys.” And for the scoop on how to override Word’s overrides
(woohoo!), see the later section, “Switching windows and deleting words.”

5. Click the Assign button.

The shortcut that you enter hops to the Current Key field.

6. Click the Close button to exit the Customize Keyboard dialog box and
then click the Close button of the Customize dialog box.

Thereafter, any time I want a Level 1 (main) heading, I just press Alt+H any-
where on the line where the headline sits, and it’s instantly formatted.

Naming shortcut keys
Follow these simple rules when assigning keyboard shortcuts.

✦ Name the macro after the shortcut (AltH, AltJ, AltK, AltL, for example).

This way, you can always tell which keyboard shortcut triggers the macro.

You can also look up this information by choosing Tools➪Customize➪
Keyboard and then clicking the name of the macro to see the macro’s
shortcut combination.

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 260

Book III
Chapter 5

Advanced W
ord

M
acros

Using Macros for Specialized Formatting 261

✦ Name the macro after its purpose.

Some people prefer to give their macros names that are descriptive of
the macro’s job: LevelOneHeadlineStyle, for example. This approach
doesn’t interest me because I find it quite easy to read the programming
code in a macro to find out what it does. However, you could always add
a descriptive comment to the code by preceding the line with a single
quote character: ‘.

✦ Group related macros together.

For example, in my macros, AltH, AltJ, AltK, and AltL apply the four
heading styles from largest to smallest, respectively.

✦ When possible, use mnemonic first characters.

For example, use AltH for headline style, AltN for normal style, and so on.

Storing macros
For the most part, you can store your macros in the Normal.dot (NewMacros)
file, which is the template that’s always loaded with any document you open,
no matter what other templates might also be used. When you first record a
macro, it’s automatically stored in Normal.dot by default, as you can see in
Figure 5-1.

You can choose to store this macro only in the current document by select-
ing the Store Macro In drop-down list as shown in Figure 5-1. In that case, the
macro is usable only when this document is the active one: that is, not in
any other document. You can also store a macro in a template so that it
works only in documents that use that template. Select this option from the
Store Macro In drop-down list, too. Finally, you can store macros in add-ins,
but I’ve never tried that.

Figure 5-1:
Unless you
specify
otherwise,
a newly
recorded
macro is
stored in
Normal.
dot.

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 261

Automating Macro Execution262

Add-ins can, however, be useful in their own right, without using any macro
code in them. In Book VIII, Chapter 1, you can read all about add-ins and see
how to create them. One major advantage of creating an add-in is that you
thereby bring VB.NET’s powerful programming capabilities to your Office proj-
ects. Add-ins use compiled native code and also run in-process, thus avoiding
the slight speed penalty exacted when either of these conditions are not met.
Also, as the example in Book VIII, Chapter 1 illustrates, a single COM add-in
can automatically load within multiple Office applications (either at applica-
tion startup or on demand, depending on your specification).

Automating Macro Execution
To have Word automatically execute a macro at specified times, give the
macro the following names:

✦ AutoExec: Runs each time you start Word

✦ AutoNew: Runs each time you create a new document

✦ AutoClose: Runs when you close a document

✦ AutoExit: Runs each time you shut down Word itself (not just a document)

✦ AutoOpen: Runs whenever you open a template (or any document based
on a template) containing a macro with this name

To use one of these special macros, just name the macro using one of the
words in the list above. For example, to display the word count each time
you close a document, name your macro AutoClose, like this:

Sub AutoClose()

Dim dlg As Object: Set dlg = WordBasic.DialogRecord.Documentstatistics(False)
WordBasic.Curvalues.Documentstatistics dlg

MsgBox “Words: “ & dlg.Words

End Sub

The Best Word Macros of All Time
Well, perhaps I exaggerate, but the following macros are those that I’ve found
most useful. I have been a busy beaver in the past two decades, using a word
processor (on average) 5 hours a day for 20 years. I’ve used Word since it
first became available, switching from Word Perfect (which was serviceable
but less powerful and less well-thought-out).

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 262

Book III
Chapter 5

Advanced W
ord

M
acros

The Best Word Macros of All Time 263

My favorites list is, of course, skewed toward what’s most useful for a writer
because that’s what I do. But I suspect some of these macros are universally
worth using.

You can find other nifty macros earlier in this chapter, like DoubleSave (see
Listing 5-2) and FirstFormat (see Listing 5-4). There are also some good
macros sprinkled here and there throughout this book. If you have any per-
sonal favorite macros — for any Office 2003 application — I’d be interested
in seeing them. Please send them to richardm52@hotmail.com.

Redefining ordinary keys
You can easily assign key combinations such as Alt+H to macros. See the ear-
lier section, “Using Macros for Specialized Formatting.” However, you aren’t
allowed to redefine ordinary character keys, such as r or z. And you some-
times want to do just that.

Frivolity aside, you really do need all the normal keyboard characters except
for three: the accent grave (`; the one just under the Esc key) and [], the two
square brackets. Only a few nationalities need an accent grave diacritical
mark, and unless you’re a typist for a mathematics professor, you don’t
much need brackets either. If you find you ever do need them (ahem, I just
did to write this paragraph), you can always type them into Notepad and
then copy and paste them into the Word document. A bit cumbersome, true,
but rare. And by freeing up these keys, you can assign them to macros you
use every time you use Word. They’re the best because they’re not even key
combinations — you just press a single key, and the macro executes.

The next section illustrates how to assign macros to these keys.

We don’t need no stinkin’ f key
I had an extra computer keyboard in my study.
(When you buy a new computer, you some-
times get a keyboard even if you don’t want it.)
A lady was visiting me and asked whether she
could buy it because she needed a new one. I
asked her: “Do you use the letter f very often?
Could you work around it?” She replied: “Is it

bad?” I told her, “The keyboard works just fine,
but it doesn’t print the letter f.” She considered
this for a moment and then said that yes, she
needed the f. I told her that I was just joking and
gave her the keyboard . . . but I don’t think she
ever really forgave me for my funny little prank.

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 263

The Best Word Macros of All Time264

Switching windows and deleting words
I often have two documents open at once — one containing notes and research,
and the other in which I’m actually writing. I like to be able to switch quickly
between them. I assign the accent grave key to this important job.

You can always use Word’s Window menu to switch, but one of the most signif-
icant benefits of redefining keys is that you don’t have to take your hands from
the keyboard and reach for the mouse, or go through a series of shortcut key
maneuvers to access the menu system. Here’s the macro that switches to the
next open document. If you want to use it, too, just type this into the macro
editor, naming it NextWindow:

Sub NextWindow()
WordBasic.NextWindow
End Sub

If you want to ensure that the windows are always full-screen, add this line
just above the End Sub:

Application.WindowState = wdWindowStateMaximize

I assign both bracket keys to a macro that deletes the word currently closest
to the blinking insertion cursor. I use both because I so frequently have to
quickly delete words, and using both bracket keys makes it almost impossible
to press the wrong key. Repeatedly pressing this key sucks up whole strings
of words quite rapidly, as if it were a vacuum. To me, it’s an indispensable
macro, and here it is:

Sub killword()

WordBasic.DeleteWord

End Sub

Now I don’t need to select a word before deleting it, repeatedly press the
Backspace or Delete key, or resort to any mouse/keypress interactions. I just
press one of the bracket keys, and the word to the right of the insertion
cursor vaporizes immediately.

Not out of the woods yet. Remember that you have to reassign keys: the
accent grave key to point to the NextWindow macro, and the bracket keys to
point to the killword macro.

This next Sub does the trick. Type this (Listing 5-5) into the macro editor.

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 264

Book III
Chapter 5

Advanced W
ord

M
acros

The Best Word Macros of All Time 265

Listing 5-5: Key Reassignment Macro

Sub Assignkey()
‘219 is keycode for left bracket
‘221 is keycode for right bracket
‘96 is keycode for Circumflex (lowercase)

‘run this macro to assign “killword” macro to the brackets
‘just delete the assignment (in Tools@-->Customize@-->

Keyboard) to ‘restore the bracket keys

WordBasic.ToolsCustomizeKeyboard Category:=1,
Name:=”killword”, KeyCode:=219, Add:=1

WordBasic.ToolsCustomizeKeyboard Category:=1,
Name:=”killword”, KeyCode:=221, Add:=1

WordBasic.ToolsCustomizeKeyboard Category:=1,
Name:=”NextWindow”, KeyCode:=96, Add:=1

‘OR TO UNDO THIS CHANGE
‘WordBasic.ToolsCustomizeKeyboard Category:=1,

Name:=”killword”, KeyCode:=219, Remove:=1
‘WordBasic.ToolsCustomizeKeyboard Category:=1,

Name:=”killword”, KeyCode:=221, Remove:=1
End Sub

By going inside the engine room underneath Word and grabbing hold of the
tube that routes keystrokes, you can assign a macro to a keycode (representing
the tube through which the electricity flows when a particular key is pressed).
By using the Add:=1 command, you tell Word to flip this switch and route this
keystroke to your macro instead of simply printing the character onscreen.
This is the same process that Word itself uses when you define a custom key
combination, except here you’re doing it on a low level — bypassing Word’s
refusal to permit some redefinitions in its Customize Keyboard dialog box.

If you are one of the few who rarely use the f key (see the sidebar, “We don’t
need no stinkin’ f key”) and wish to redirect it (or any other key) to a macro,
you can find the codes by searching VBA Help for Character Set.

Assigning normal style
I assign Alt+N (for normal) to the normal style macro so that when I copy
and paste text into my documents, I can quickly make it conform to the cur-
rent document’s primary body text format. Here’s the macro:

Sub AltN()

Selection.Style = ActiveDocument.Styles(“Normal”)

End Sub

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 265

The Best Word Macros of All Time266

Assigning an anti-table macro
The following macro is quite useful. It eliminates table formatting and leaves
the text behind.

Text pasted into a document from a Web page is formatted often by Word as
a table. You usually don’t want this. For example, when I make a motel reser-
vation at one of the better establishments (or any kind of establishment, for
that matter, although I no longer stay in actual dives), I select the whole Web
page containing all the reservation information. Then I copy and paste that
into a Word document.

Alas, all kinds of havoc results: The various sections of the Web page are
now separated by dozens of blank lines, boxes, frames, and what-not. I don’t
need all that mess, especially because what should print out as a one-page
document requires five pieces of paper to accommodate all the pseudo tables.
Just put your insertion cursor anywhere inside this fake tabled data and
then run this macro. I keep it on my custom toolbar, triggered by a button I
named Untable.

Sometimes these table formats are nested, so you might have to run the
macro more than once to get rid of all the lines and stuff:

Sub Untable()

On Error Resume Next

Selection.Rows.ConvertToText
Separator:=wdSeparateByCommas, NestedTables:= _

True
Selection.MoveDown Unit:=wdLine, Count:=1

If Err Then MsgBox “No table was detected, dude.”

End Sub

Toggling revisions
When working with another person on a document (an editor in my case),
it’s useful to turn on the revision marks feature so that the other person
can quickly see the changes you made. This feature is particularly difficult
to locate and select via the Word menu system or the Reviewing toolbar.
(Microsoft calls this Track Changes instead of revision marks, so no wonder
I have problems locating it, even when searching Help. You’d think it would
be on the View, Edit, or Format menus, but it’s on the Tools menu, instead.)

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 266

Book III
Chapter 5

Advanced W
ord

M
acros

The Best Word Macros of All Time 267

I add a macro — RevTog — to my custom toolbar that toggles revision marks
on and off. Sometimes you make changes to a document that you don’t want
highlighted for others to see (either because they’re cumbersome and unneces-
sary, or because they’re deeply embarrassing). I find I need to toggle revision
marks off and on rather frequently. Here’s the macro:

Sub RevTog()

Dim DR As Object: Set DR = WordBasic.DialogRecord.ToolsRevisions(False)
WordBasic.Curvalues.ToolsRevisions DR

If DR.MarkRevisions = 0 Then
WordBasic.PrintStatusBar “Revision Marks ON.”
WordBasic.ToolsRevisions MarkRevisions:=1
Else
WordBasic.PrintStatusBar “Revision Marks OFF.”
WordBasic.ToolsRevisions MarkRevisions:=0

End If

End Sub

Add a macro to a toolbar by right-clicking the toolbar, choosing Customize
from the context menu, and then clicking Macros in the left list box. From
the right list box in this dialog box, drag the name of the macro to the toolbar
and drop it. Right-click the new button to rename the button. By default, the
entire path of the macro is included in the button’s name, such as Normal.
NewMacros.Untable. You don’t want all that cluttering up your toolbars.

Accepting all changes
When you’re looking at a document all messed up with revision marks — or
should I say, Track Changes marks — you sometimes want to just get rid of
them all and see the final, clean version. You can use Accept All Changes to
do this, and it’s another button on my custom toolbar:

Sub AcceptAll()
WordBasic.AcceptAllChangesInDoc

End Sub

Using WordCount
I often need to know how many words I’ve written in a document. I don’t want
the entire document properties stats — paragraphs, characters, author’s
name, fishing tips, and everything else — just the word count. This macro
does it:

Sub wordcount()

‘update the statistics
WordBasic.FileSummaryInfo Update:=1

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 267

The Best Word Macros of All Time268

Dim dlg As Object: Set dlg =
WordBasic.DialogRecord.Documentstatistics(False)

WordBasic.Curvalues.Documentstatistics dlg

WordBasic.PrintStatusBar “ “ +
dlg.Words + “ words in this document”

End Sub

03f_570676 bk03ch05.qxd 6/4/04 10:04 PM Page 268

Book IV

Making the Most
of Excel

04a_570676 p04.qxd 6/5/04 12:39 AM Page 269

Contents at a Glance
Chapter 1: The Excel Object Model ..271

Chapter 2: Handling Excel Events ..287

Chapter 3: Advanced Worksheet Editing ..295

Chapter 4: Data Diving with Pivot Tables ..311

Chapter 5: Business Analysis with Excel ..325

Chapter 6: Ten Excellent Excel Macro Techniques..333

04a_570676 p04.qxd 6/5/04 12:39 AM Page 270

Chapter 1: The Excel Object Model

In This Chapter
� Understanding the Excel object hierarchy

� Using worksheets and workbooks

� Working with cells

� Understanding Excel collection objects

� Accessing the Application object

� Using ranges

� Naming ranges

� Creating charts

This chapter begins the focus on Excel. You see how objects are organ-
ized in Excel and then work with the various members of important

objects such as worksheets, workbooks, and cells. You also see how to
manipulate ranges and charts.

Understanding the Excel Object Model
Excel’s uses in an Office context include financial planning, modeling, and
building charts. In some cases, it’s even used as a kind of database (a reposi-
tory of ordered information). But the trick that spreadsheets are famous for
is recalculation: A cell can contain text, a numeric value, or a formula (such
as the sum of all the values in a column). For example, if salesman Bob
Racrette reports $2,000 worth of extra orders this month, you can change
the value in the appropriate worksheet cell; if this cell is one of those gov-
erned by a SUM formula, the cell containing the total immediately changes
to reflect Bob’s success. Likewise, any Excel chart that gets its data from
these changed cells will also be updated.

Like the Word object model (and most other application’s models), Excel
begins with the Application object at the top. (Read more about the Word
object model in Book III, Chapter 1.) Within the Application object resides
the Workbook object and a Workbooks collection.

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 271

How to Use Excel VBA272

The Application and Workbook objects have many members in common,
but when you work with the Application object’s members, you’re usually
accessing the current workbook (the one that has the focus). A workbook’s
members are specific to that particular workbook.

Within the workbook is the Worksheet object, referring to a particular work-
sheet. Note that the Workbook object has a Sheets collection containing a
set of Worksheet or Chart objects.

Going further down is the Range object, and you’ll use this one frequently.
To read or write to any cells, rows, columns, or other elements within Excel,
you usually first create a Range object. Compare this with Word, in which
you work primarily with Range or Selection objects to manipulate text. In
Excel, you define a Range object so that you can read, manage, or edit its
contents.

The Excel Range object specifies a section of a worksheet, or it can also
specify several sections at once. A range can be a single cell, a block of cells
within a single worksheet, or even a set of blocks of cells in two or more
worksheets.

There is an Excel Selection object, but I caution you against using it.
Generally, use Range instead because the selection that the user creates will
be lost if you activate a Selection in code: It is replaced by the selection
that the code made. Also, the Range object is more flexible: You can have
multiple ranges at a given time but only one selection. To see how to convert
a Selection to a Range, see the upcoming section, “Transforming a selec-
tion into a range.”

How to Use Excel VBA
To experiment with the Excel VBA example code, follow these steps:

1. Start Excel.

2. Press Alt+F11.

You see the Visual Basic editor, which is probably empty — no place to
write code yet.

3. Choose View➪Project Explorer.

You see a list of the worksheets and workbooks that are currently avail-
able in this instance of Excel.

4. Double-click the default workbook’s name, which is ThisWorkbook
(unless you’ve changed it), as shown in Figure 1-1.

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 272

Book IV
Chapter 1

The Excel Object
M

odel
Adding a Workbook 273

A code window opens where in which you can type in procedures, like
the Sub in the next section.

Adding a Workbook
When you start Excel, the Application object is automatically created. You
don’t need to use the Application object in your VBA code because it’s
understood. For example, you don’t need to prepend Excel.Application
to code that closes the current workbook’s Workbooks.Close. You can just
directly reference the Workbooks collection or any individual workbook or
other element without using the Application object.

The following code adds a new worksheet and then displays the names of all
the worksheets in the current (with focus) workbook:

Sub ShowSheets()

Set s = Sheets.Add(Type:=xlWorksheet)
For i = 1 To Sheets.Count

s.Cells(1, i).Value = Sheets(i).Name
Next i

End Sub

With your blinking insertion cursor somewhere in this code, press F5 to exe-
cute the code. Press Alt+11 to return to the Excel workbook view. You’ll see a
new worksheet added to your workbook, with the names of all the worksheets
listed in the first row. Note that the newly added sheet is not in the right order,
though. Suppose you want Sheet4 to appear after Sheet3. As with most any-
thing in Excel, you can automate the task programmatically. In this case, add
the following bold line to this procedure that moves the new worksheet:

Figure 1-1:
Double-click
a workbook
name to
make your
VBA macros
available to
the entire
workbook.

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 273

Adding a Workbook274

Sub ShowSheets()

Set s = Sheets.Add(Type:=xlWorksheet)

Worksheets(1).Move After:=Worksheets(“Sheet3”)

For i = 1 To Sheets.Count
s.Cells(1, i).Value = Sheets(i).Name

Next i

End Sub

Notice that the worksheets here are referenced in two ways. The first refer-
ence specifies a worksheet by its index number in the Worksheets collection:
Worksheets(1).Move.

The alternative way to reference a worksheet is illustrated by the second
reference. In this case, you specify a worksheet by using its name:
After:=Worksheets(“Sheet3”). Note that this After:= specification
works only if there is a worksheet named Sheet3.

Now when you execute the code, the sheets are in the order that you want
them. As usual, you’ll find a variety of approaches that you can take. For exam-
ple, a copy method works the same way but adds a new sheet to the existing
collection instead of merely moving one. If you prefer, you can replace the
after argument with a before argument. Or, you can leave these out, and a
new workbook is created with the moved or copied sheet. Finally, if you don’t
know how many sheets might be in the workbook — and you want the new
sheet appended to the end of the collection — use After:=(Sheets.Count).

Referring to Me
In Visual Basic .NET, you can specify an object itself with the Me command.
For example, Me.BackColor = Color.AliceBlue turns the form (in which
this code resides) a cunning, light blue. The object in which the code resides
isn’t necessarily the active object (the cell with the focus, with the black
insertion frame, for example). Perhaps you have a macro that needs to refer-
ence an object in the same workbook where the macro resides. For example,
you might want to display a DialogSheet from the workbook. You cannot
always be sure that this workbook has the focus. The workbook might not
be the currently active workbook. To ensure that a macro references its own
workbook, use the ThisWorkbook property, like this:

ThisWorkbook.DialogSheets(2).Show

There is no equivalent ThisWorkSheet property.

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 274

Book IV
Chapter 1

The Excel Object
M

odel
Creating a New Instance of Excel 275

Accessing the active cell
The smallest unit that you can manipulate is the cell. You can read or edit
the currently active cell by using several equivalent code phrases (each
of the following points to the same cell):

ActiveCell
ActiveWindow.ActiveCell
Application.ActiveCell
Application.ActiveWindow.ActiveCell

As usual, the Application object is optional in code unless you want to
start a whole new instance of Excel running. Here’s how to read the contents
of the currently active (with focus) cell in Sheet2:

Sub accessCell()

Worksheets(“Sheet2”).Activate
MsgBox ActiveCell.Value

End Sub

Notice that something other than a worksheet might currently have the
focus, so you use the activate method to set the focus on a particular
worksheet — in this case, the one named Sheet2.

Creating a New Instance of Excel
The following code uses the Application object because no current
Application object exists; for example, you’re not running Excel but are
instead executing this code from within Word. Or perhaps you want a second
instance of Excel to run concurrently with the instance in which you execute
this code. In other words, if you run the following VBA from within Excel
itself, you spawn a new, second Excel instance:

Sub BringToLife()

On Error Resume Next

Dim e As Excel.Application
Set e = New Excel.Application
e.Visible = True

e.Workbooks.Add
e.Worksheets(“Sheet1”).Cells(4, 4).Value = 256

If Err Then MsgBox Error$

End Sub

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 275

Using the Application Object276

Execute this, and you see a new Excel instance with a worksheet containing
256 in cell 4,4.

Note that when you instantiate Excel in this fashion (programmatically), no
workbook or worksheets are automatically added to the instance. That is,
you have an empty Excel instance, and thus your programming must explic-
itly create a workbook by using the Add method of the Application object’s
Workbooks collection. Also notice that you must specify whether a new
instance of Excel created this way is visible. Similarly, if you programmati-
cally create a new Workbook, it remains hidden until you set its Visible
property to True.

As you might have noticed, when starting Excel yourself nonprogrammatically
(from the Start menu for example), Excel does provide you with a default
workbook, and it contains three worksheets. You can programmatically rede-
fine the number of default worksheets by using the SheetsInNewWorkbook
property of the Application object.

Using the Application Object
In Word is an Options object that you can use to manipulate various options
(Tools➪Options). In Excel, however, you use the Application object to
adjust options, like this:

Application.Calculation = xlCalculationManual
Application.CalculateBeforeSave = True

Recall that you can often leave out the Application object name when
referencing other objects such as ActiveCell. However, when accessing
application properties, you must use Application. For example, this code
will fail to adjust the Calculation option:

Calculation = xlCalculationManual

Other options that are adjusted via the Application object can be found in
this list of the Application object’s 174 properties. Some of these are other
objects (such as ActiveWindow), and others are options (CanPlaySound):

ActiveCell, ActiveChart, ActivePrinter, ActiveSheet, ActiveWindow,
ActiveWorkbook, AddIns, AlertBeforeOverwriting, AltStartupPath,
AnswerWizard, Application, ArbitraryXMLSupportAvailable,
AskToUpdateLinks, Assistant, AutoCorrect,
AutoFormatAsYouTypeReplaceHyperlinks, AutomationSecurity,
AutoPercentEntry, AutoRecover, Build, CalculateBeforeSave,
Calculation, CalculationInterruptKey, CalculationState,
CalculationVersion, Caller, CanPlaySounds, CanRecordSounds,

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 276

Book IV
Chapter 1

The Excel Object
M

odel
Working with Ranges 277

Caption, CellDragAndDrop, Cells, Charts, ClipboardFormats, Columns,
COMAddIns, CommandBars, CommandUnderlines, ConstrainNumeric,
ControlCharacters, CopyObjectsWithCells, Creator, Cursor,
CursorMovement, CustomListCount, CutCopyMode, DataEntryMode,
DDEAppReturnCode, DecimalSeparator, DefaultFilePath,
DefaultSaveFormat, DefaultSheetDirection, DefaultWebOptions,
Dialogs, DisplayAlerts, DisplayClipboardWindow,
DisplayCommentIndicator, DisplayDocumentActionTaskPane,
DisplayExcel4Menus, DisplayFormulaBar, DisplayFullScreen,
DisplayFunctionToolTips, DisplayInsertOptions,
DisplayNoteIndicator, DisplayPasteOptions, DisplayRecentFiles,
DisplayScrollBars, DisplayStatusBar, EditDirectlyInCell,
EnableAnimations, EnableAutoComplete, EnableCancelKey,
EnableEvents, EnableSound, ErrorCheckingOptions,
Excel4IntlMacroSheets, Excel4MacroSheets, ExtendList,
FeatureInstall, FileConverters, FileDialog, FileFind, FileSearch,
FindFormat, FixedDecimal, FixedDecimalPlaces,
GenerateGetPivotData, Height, Hinstance, Hwnd,
IgnoreRemoteRequests, Interactive, International, Iteration,
LanguageSettings, Left, LibraryPath, MailSession, MailSystem,
MapPaperSize, MathCoprocessorAvailable, MaxChange, MaxIterations,
MemoryFree, MouseAvailable, MoveAfterReturn,
MoveAfterReturnDirection, Name, Names, NetworkTemplatesPath,
NewWorkbook, ODBCErrors, ODBCTimeout, OLEDBErrors, OnWindow,
OperatingSystem, OrganizationName, Parent, Path, PathSeparator,
PivotTableSelection, PreviousSelections, ProductCode,
PromptForSummaryInfo, Range, Ready, RecentFiles, RecordRelative,
ReferenceStyle, RegisteredFunctions, ReplaceFormat, RollZoom,
Rows, RTD, ScreenUpdating, Selection, Sheets, SheetsInNewWorkbook,
ShowChartTipNames, ShowChartTipValues, ShowStartupDialog,
ShowToolTips, ShowWindowsInTaskbar, SmartTagRecognizers, Speech,
SpellingOptions, StandardFont, StandardFontSize, StartupPath,
StatusBar, TemplatesPath, ThisCell, ThisWorkbook,
ThousandsSeparator, Top, TransitionMenuKey,
TransitionMenuKeyAction, TransitionNavigKeys, UsableHeight,
UsableWidth, UsedObjects, UserControl, UserLibraryPath, UserName,
UseSystemSeparators, Value, VBE, Version, Visible, Watches, Width,
Windows, WindowsForPens, WindowState, Workbooks,
WorksheetFunction, Worksheets.

Working with Ranges
You can specify ranges either absolutely (specifying a particular cell or group
of cells) or relative to the active cell (the one currently with the focus). Here’s
an absolute range, which is also being given a name:

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 277

Working with Ranges278

Sub SetRange()

Names.Add Name:=”Vac”, RefersTo:=”=sheet1!A3”

Range(“Vac”).Value = “This”

End Sub

When you put a dollar sign ($) in front of the row and column references, the
range becomes absolute: No matter what cell is currently active (selected),
this code puts the word This in cell A3. Also note that an exclamation point
(!) is used to separate the name of the sheet from the cell reference.

However, if you remove the dollar signs, the range specification becomes rel-
ative to the active cell. If the active cell is A1, only then will A3 mean cell
A3 in the above code. If instead the active cell is A2, like this, in what cell do
you suppose the message will appear?

Here’s an example that illustrates how to specify a relative reference:

Sub SetRange()

Names.Add Name:=”Vac1”, RefersTo:=”=Sheet1!” & “D3”

Range(“Vac1”).Value = “This”

End Sub

You can also mix and match columns and rows (one can be absolute, the
other relative). Here are the possible combinations:

✦ B2: Absolute column and absolute row

✦ B$2: Relative column and absolute row

✦ $B2: Absolute column and relative row

✦ B2: Relative column and relative row

The A1 style reference
One referencing system used in Excel is the A1 style, meaning that columns
are labeled A– IV, and that the rows range from 1–65536. Mercifully, Excel
doesn’t start with row 0 (zero).

You can specify ranges and blocks of cells in the following fashion:

✦ The cell at column B and row 12 is B12.

✦ The range of cells from column A and rows 11–30 is A11:A30.

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 278

Book IV
Chapter 1

The Excel Object
M

odel
Working with Ranges 279

✦ The range of cells from row 16 and columns C–G is C16:G16.

✦ All cells in row 6 is 6:6.

✦ All cells in rows 2–4 is 2:4.

✦ All cells in column B is B:B.

✦ All cells in columns A–B is A:B.

✦ The range of cells in columns A–C and rows 9–20 is A9:C20.

A 3-D reference specifies cells across more than one sheet. For example, to
get a total of all the values stored in cell R23 on sheets 4, 5, 6, and 7, you
write it this way:

=SUM(Sheet4:Sheet7!R23)

The R1C1 style reference
The R1C1 style reference is an optional way of specifying cells that avoids
using letters to represent columns: R1C1 uses numbers instead. This can be
useful if you need to compute mathematically some row or column positions.
(You can’t do math on the letters A, B, and so on; you must use numbers.)
In this system, R stands for row, and C stands for (you guessed it) column. It
works like this:

✦ R is an absolute reference to the current row.

✦ R[-3]C is a relative reference to the cell three rows up in the same column.

✦ R[-1] is a relative reference to the entire row immediately above the
active cell.

✦ R[4]C[2] is a relative reference to the cell four rows down and two
columns to the right.

✦ R2C5 is an absolute reference to the cell in the second row in the fifth
column.

Note that Excel itself often uses this style of reference when you record a
macro. For example, if you click a cell and type in a value while recording,
you get this mix of both the A1 style and the R1C1 style:

Range(“F9”).Select
ActiveCell.FormulaR1C1 = “22”

Using the Offset method
You can also reference a range relative to the current cell by using the
Offset method. In this example, the word Norma appears six cells over and
four down from the current cell:

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 279

Working with Ranges280

ActiveCell.Offset(4, 6).Value = “Norma”
ActiveCell.Offset(4, 6).Font.Underline = xlSingle

This notation might be a bit easier to visualize than the R1C1 style of relative
addressing.

Using the Names collection
The Names collection of a workbook can contain as many named ranges as
you wish, and you can thereafter refer to a named range by its name rather
than its cell addresses, as you can see in the preceding example.

You can also assign temporary names, but if they’re not added to the Names
collection, they won’t be saved when you shut down Excel:

Dim r As Range
Set r = Range(“B3”)
r.Name = “Total”
Range(“Total”).Value = 124

Accessing special ranges
In addition to the ActiveCell and Range objects, you can use other Excel
VBA members to specify useful ranges in your code. For example, you might
want to programmatically add some more rows or columns to a sheet but
need to know where the outermost used cell is.

The SpecialCells method
The SpecialCells method of the Range object can come in handy. Suppose
that you want to go to the end of used cells in a sheet (the cell in the farthest
column, and down in the farthest-used row). This code does that:

Worksheets(“Sheet2”).Activate
ActiveSheet.Cells.SpecialCells(xlCellTypeLastCell).Activate
ActiveCell.Value = “Boo”

The format is

.SpecialCells(Type, Value)

The Type can be any of the following built-in constants:

✦ xlCellTypeAllFormatConditions

✦ xlCellTypeAllValidation

✦ xlCellTypeBlanks

✦ xlCellTypeComments

✦ xlCellTypeConstants

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 280

Book IV
Chapter 1

The Excel Object
M

odel
Working with Ranges 281

✦ xlCellTypeFormulas

✦ xlCellTypeLastCell

✦ xlCellTypeSameFormatConditions

✦ xlCellTypeSameValidation

✦ xlCellTypeVisible

Using SpecialCells is a way of filtering. It allows you to get only particular
kinds of cells from a range. The Value argument is optional. You can use it to
specify that you want only particular types of cells. Value is used only with two
of the preceding constants: xlCellTypeConstants or xlCellTypeFormulas.
You can use Value types either alone (such as xlTextValues by itself to get
only text cells) or combine several Value constants to broaden the results.
These are the Value constants that you can use: xlErrors, xlLogical,
xlNumbers, or xlTextValues.

The UsedRange property
The UsedRange property of the Worksheet object returns the smallest
rectangular region that can be drawn that includes all the used cells in the
worksheet. For example, this could be useful if you want to color these cells
to highlight them. This code applies a light gray pattern to the range of used
cells in a sheet:

Worksheets(“Sheet1”).Activate
ActiveSheet.UsedRange.Interior.Pattern = xlPatternGray16

To find a list of the built-in constants, such as xlPatternCrissCross,
xlLogical, and xlBorderWeight, search the VB editor’s Help (while in the
editor, press F1) and search for Microsoft Excel Constants.

The CurrentRegion property
The CurrentRegion property gives you the current region (all the cells that
are in use: bounded by the white, unused cells). It works like a fill tool in a
graphics program, searching from the current cell in all four directions until
it finds blank rows and columns. Then it defines the region.

The blocks of data in Figure 1-2 are (as is often the case) framed by empty
rows and columns. To specify a range for one of these blocks of data, you
can use the CurrentRegion property, like this:

Sub dorange()

Worksheets(“Sheet1”).Activate
ActiveCell.CurrentRegion.Select

End Sub

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 281

Working with Ranges282

After you execute this code, the block is selected, as you can see in Figure 1-3.

If you want to access that range by using an object variable, this code does it:

Sub dorange()

Dim r As Range
Set r = ActiveCell.CurrentRegion
r.Interior.Pattern = xlPatternLightDown

End Sub

Figure 1-3:
Get a range
for a block
of data
with the
Current
Region
property.

Figure 1-2:
A typical
spreadsheet
with empty
rows and
columns
surrounding
data.

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 282

Book IV
Chapter 1

The Excel Object
M

odel
Working with Ranges 283

Transforming a selection into a range
Recall that generally you work with ranges in your programming. But now
and then, you need to interact with users, who make selections. The follow-
ing code shows you how to query the user about the current selection and
then translate the Selection object into a Range object before you change
its format in the code. This preserves the selection, which would be lost if
you accessed it directly, programmatically:

Public Sub SelectionToRange()

Dim r As Range

Set r = ActiveWindow.RangeSelection
s = MsgBox(“Do you want this range highlighted?”, vbYesNo)
If s = vbYes Then
r.Interior.Pattern = xlPatternLightVertical
End If

End Sub

Here’s code that returns the address of the current selection:

MsgBox ActiveWindow.RangeSelection.Address

Adding a formula
The following transforms the current selection into a range to specify that a
SUM formula should be added to cell A1, displaying the total of the values in
the user’s selection:

Public Sub AddFormulaRange()

ActiveSheet.Cells(1, 1).Formula = “=Sum(“ &
ActiveWindow.RangeSelection.Address & “)”

End Sub

Using the WorksheetFunction
Alternatively, you might need only to get the result programmatically. That
is, you don’t want it displayed on the sheet to the user. To do that, you can
use the WorksheetFunction method, like this:

Public Sub ShowSum()

Set r = Worksheets(“Sheet1”).Range(“G4:G6”)
n = WorksheetFunction.Sum(r)
MsgBox n

End Sub

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 283

Creating a Chart284

Creating a Chart
It’s easy to create charts of data in Excel. Type these numbers into cells
G4–G10 in Sheet 1: 45, 66, 33, 33, 44, 55, 66. Then type in and execute this
simple macro:

Public Sub ShowChart()

Dim ch As New Excel.Chart

Set ch = Charts.Add
ch.SetSourceData Source:=Worksheets(“Sheet1”).Range(“g4:g10”)
ch.ChartType = xl3DArea

ch.Activate

End Sub

You see the chart displayed in Figure 1-4.

Dozens of varieties of charts are available in Excel. Search the VB editor Help
(not Excel Help) for Microsoft Excel Constants, locate XLChartType, and click
it to open the list, as shown in Figure 1-5.

Figure 1-4:
Adding
charts to
an Excel
workbook
is easy.

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 284

Book IV
Chapter 1

The Excel Object
M

odel
Creating a Chart 285

Figure 1-5:
Look here
for all the
chart types
you can use
in Excel.

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 285

Book IV: Making the Most of Excel286

04b_570676 bk04ch01.qxd 6/4/04 10:05 PM Page 286

Chapter 2: Handling Excel Events

In This Chapter
� Programming events in workbooks and worksheets

� Managing chart events

� Dealing with Application events

� Adding a class module

Events occur when programmers write code to respond to things that
happen to an application. For example, when you write an application,

you cannot know when (or even whether) the user will ever click one of
your buttons. In an object’s event procedures, you can write code to specify
what happens when an event occurs: like when the program starts, when
the user clicks a particular button, after a PivotTable report is updated,
when the selection changes, and so on. All these (and many more actions)
are events.

Generally speaking, events trigger (or fire) because the user does something
to interact with your program. But events can also trigger when other objects
interact with them. For example, the SheetChange event will fire whether
the user changes a cell in that worksheet or whether some code in a macro
(for instance) makes the change.

By default, the Application object’s EnableEvents property is True,
allowing events to trigger; however, if you want to prevent events from firing
for some reason, you can turn it off like this:

Application.EnableEvents = False

In this chapter, you explore how to provide source code that executes when
events trigger in workbooks, worksheets, charts, or other objects. Events
are a way that a programmer responds to user interaction with their pro-
grams, although sometimes other code also interacts and triggers events.
(Events are sometimes said to fire when triggered, just like a gun.)

04c_570676 bk04ch02.qxd 6/4/04 10:05 PM Page 287

Programming an Excel Event288

Programming an Excel Event
To see a list of the events available in the Workbook object, follow these
steps:

1. Press Alt+F11 in Excel.

The Visual Basic editor appears.

2. Choose View➪Project Explorer in the VB editor.

Project Explorer appears.

3. Double-click This Workbook in Project Explorer.

The editor window for this workbook is displayed.

4. From the drop-down list in the upper left of the workbook’s editor,
choose Workbook.

The Workbook_Open event (a Sub procedure, like a macro) appears with
its basic structure typed in for you.

VBA chooses what it thinks is the most frequently used event to type in
by default. For a Button object, for instance, it’s obviously the Click
event that you most likely want to use. If you wish, you can simply erase
the default event procedure that VBA types in for you. Or you can just
leave it empty, with no code in it. Nothing will happen when an empty
event fires because there’s no source code to execute.

5. Open the drop-down list in the upper right.

You see a list of all the events that can be programmed for a workbook,
as shown in Figure 2-1.

Figure 2-1:
Find the
events
for the
Workbook
object here.

04c_570676 bk04ch02.qxd 6/4/04 10:05 PM Page 288

Book IV
Chapter 2

Handling Excel
Events

Events in the Worksheet Object 289

Now try writing code for a Worksheet object event.

1. In Project Explorer, double-click Sheet1 under the current VBA project.

Sheet1’s code editor opens.

2. In the top-left list of the code window, choose Worksheet.

3. In the top-right list, choose the BeforeDoubleClick event.

4. Type in this code to display a running total of the number of times
that the sheet has been double-clicked:

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As
Range, Cancel As Boolean)

Static c As Integer
c = c + 1

Application.StatusBar = Caption & “Sheet 1 has been
double-clicked “ & c & “ times.”

End Sub

5. Try double-clicking Sheet1 to see the message in the lower-left corner
of the Excel window.

Notice that a report appears in the status bar each time you double-click.

Also notice how event programming differs from ordinary programming:
Ordinary procedures are executed when the program itself decides that they
should be triggered. However, events execute when an outside agent (another
program, an object, or the user) decides to trigger them. Think of it this way:
An ordinary procedure in your day is when you, yourself, decide to make a
sandwich. An event is when someone else asks you to make one.

Events in the Worksheet Object
As you can read in the preceding section, you can access the list of Workbook
events by opening a workbook programming editor. Likewise, you can get to
the events of a worksheet by opening its editor. To write code that triggers
when a selection in a worksheet changes, for example, follow these steps:

1. Choose View➪Project Explorer in the VBA editor.

Project Explorer appears.

2. Double-click Sheet1 in Project Explorer.

The editor window for the worksheet is displayed.

04c_570676 bk04ch02.qxd 6/4/04 10:05 PM Page 289

Writing Chart Events290

3. From the drop-down list in the upper left of the worksheet’s editor,
choose Worksheet.

The Worksheet_SelectionChange event appears with its basic struc-
ture typed in for you.

4. Open the drop-down list in the upper right.

You see a list of all the events that can be programmed for a worksheet.

To write a Worksheet object event, just type this into the SelectionChange
event:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

MsgBox Target.Address

End Sub

Now each time you click a different cell in the worksheet, a message box
displays its address.

Notice that some events include a parameter, such as Target here. You
sometimes want to use this information. For example, if you plan to take
some action on the newly selected range, you need that Target argument.

Writing Chart Events
To write event procedures for a chart, you must first add a chart to your
workbook. Select some cells with some data in them: These cells provide the
basis for the chart. Then press F11 to add a new chart to your workbook.

Now, go to the VBA editor and choose View➪Project Explorer. Double-click
Chart1 in Project Explorer to open its code editor window. Now you can
open the drop-down list in the upper right to see (or choose) the various
events available to the Chart object.

Writing Application Events
Application events are used for more generic behaviors than worksheet or
workbook events.

04c_570676 bk04ch02.qxd 6/4/04 10:05 PM Page 290

Book IV
Chapter 2

Handling Excel
Events

Writing Application Events 291

Here are the events available to the Application object: NewWorkbook,
SheetActivate, SheetBeforeDoubleClick, SheetBeforeRightClick,
SheetCalculate, SheetChange, SheetPivotTableUpdate,
SheetDeactivate, SheetSelectionChange, WindowActivate,
WindowDeactivate, WindowResize, WorkbookActivate,
WorkbookAddinInstall, WorkbookAddinUninstall,
WorkbookBeforeClose, WorkbookBeforePrint, WorkbookBeforeSave,
WorkbookDeactivate, WorkbookNewSheet, WorkbookOpen,
WorkbookPivotTableCloseConnection,
WorkbookPivotTableOpenConnection.

SheetBeforeDoubleClick and SheetBeforeRightClick events can be
useful if you want to respond via your code differently than the default
responses built into Excel when these actions take place.

Defining an Application event requires some extra steps. Because there
is no code window for the Application object, you have to add a class
module to the VBA editor, defining a global application variable by using the
WithEvents command. Suppose that you want to respond whenever the
user adds a new worksheet to a workbook, but instead of using the
WorkBook_NewSheet event, you decide to use the Application object’s
WorkbookNewSheet event. To respond in this way when the user chooses
Insert➪Worksheet, follow these steps:

1. In the VBA editor’s Project Explorer, right-click the project’s name.

It’s the one in boldface, not PERSONAL.XLS.

2. Choose Insert➪Class Module from the context menu that appears.

A new class module appears.

3. In the General Declarations section of the class module (in other
words, not inside any procedure), type this (as shown in Figure 2-2):

Public WithEvents objApp As Application

As soon as you create this object variable, the list boxes at the top now
contain additional information.

4. Open the upper-left, drop-down list in the same code window
(the class module window).

You see your new objApp listed there.

04c_570676 bk04ch02.qxd 6/4/04 10:05 PM Page 291

Writing Application Events292

5. Click it.

6. Open the upper-right, drop-down list.

You see all the Application objects available to you, as shown in
Figure 2-3.

Figure 2-3:
The
Applica-
tion
object’s
various
events are
listed in the
class
module.

General Declarations

Figure 2-2:
The General
Declarations
section.

04c_570676 bk04ch02.qxd 6/4/04 10:05 PM Page 292

Book IV
Chapter 2

Handling Excel
Events

Writing Application Events 293

7. Type this into the NewWorkbook event:

Private Sub objApp_NewWorkbook(ByVal Wb As Workbook)

MsgBox (“A new workbook has been created.”)

End Sub

You’re not done yet, though. You’ve still got to connect your declared
object variable with the application in actual code. (The class module
doesn’t automatically run itself.)

Isn’t object-oriented programming (OOP) fun when it forces you into
these meaningless clerical contortions? You now have to put some acti-
vation code into one of the events that automatically triggers when Excel
opens.

8. In Project Explorer, double-click ThisWorkbook in the Project
Explorer, and then type this into its General Declarations section:

Dim X As New Class1

You’ve now created a reference (the variable X) to the class module,
which you can use to access any of the members of this class (in other
words, the procedures in this module, to avoid OOP-speak).

9. Type this into this workbook’s Workbook_Open event:

Private Sub Workbook_Open()

Set X.objApp = Application
MsgBox “Application Object Active.”

End Sub

10. Save this project as TestAppObj.xls and then close Excel.

11. Now you can try out this twisted sister. Run Excel and open
TestAppObj.xls.

Because you inserted a macro that runs automatically (as opposed to
writing new macros and testing them), a security warning message might
appear (depending on your Excel macro security settings). If this hap-
pens, choose Tools➪Options, click the Security tab, and then click the
Macro Security button. Change the setting to Medium so you can test
your code. If you wish, restore your setting to High after testing.

Your message box appears, telling you that the Application object has
been activated. From here on, any application events that you’ve coded
will execute.

04c_570676 bk04ch02.qxd 6/4/04 10:05 PM Page 293

Writing Application Events294

12. Now test the application event by choosing File➪New.

A task pane appears.

13. In the task pane, click Blank Workbook.

A message box displays, informing you that a new workbook has been
created.

04c_570676 bk04ch02.qxd 6/4/04 10:05 PM Page 294

Chapter 3: Advanced Worksheet
Editing

In This Chapter
� Importing data

� Importing XML

� Creating datasets programmatically

� Understanding the Shape object

� Augmenting Find and Replace

Although this mini-book is about Excel, it’s important to realize that of
all the Office 2003 applications, Access is closest to Excel in many

ways — not least in that both are frequently used to store tabular data. In
this chapter, you go deeper into Excel programming, importing both tradi-
tional data structures, and XML-based data. Then you see how to build
datasets, work with the Shape object, and improve on the built-in Find and
Replace utility.

Importing Data into Excel
One easy way to programmatically import data into Excel is to first start
recording a macro and then use the Data➪Import External Data➪Import
Data feature. Then you can modify the code created by the macro recorder
to import other data from other source. Here’s the raw, unmodified code
that you get when you record the importation of an Access database. In this
case, I imported the Products table from the Northwind sample database:

Sub GetData()
‘ Macro recorded 4/9/2004 by Richard
‘

With ActiveSheet.QueryTables.Add(Connection:=Array(_

“OLEDB;Provider=Microsoft.Jet.OLEDB.4.0;Password=””
””;User ID=Admin;Data
Source=C:\Northwind.mdb;Mode=Share Deny
Write;Extended Propertie” _

, _
“s=””””;Jet OLEDB:System database=””””;Jet

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 295

Importing Data into Excel296

OLEDB:Registry Path=””””;Jet OLEDB:Database
Password=””””;Jet OLEDB:Engine Type=5;Jet
OLEDB:Da” _

, _
“tabase Locking Mode=0;Jet OLEDB:Global Partial Bulk
Ops=2;Jet OLEDB:Global Bulk Transactions=1;Jet
OLEDB:New Database Password=””” _

, _
“””;Jet OLEDB:Create System Database=False;Jet
OLEDB:Encrypt Database=False;Jet OLEDB:Don’t Copy
Locale on Compact=False;Jet OLEDB” _

, “:Compact Without Replica Repair=False;Jet
OLEDB:SFP=False”), Destination:= _

Range(“A1”))
.CommandType = xlCmdTable
.CommandText = Array(“Products”)
.Name = “Northwind Products”
.FieldNames = True
.RowNumbers = False
.FillAdjacentFormulas = False
.PreserveFormatting = True
.RefreshOnFileOpen = False
.BackgroundQuery = True
.RefreshStyle = xlInsertDeleteCells
.SavePassword = False
.SaveData = True
.AdjustColumnWidth = True
.RefreshPeriod = 0
.PreserveColumnInfo = True
.SourceConnectionFile = _
“C:\Documents and Settings\Richard Mansfield\My

Documents\My Data Sources\Northwind Products.odc”
.SourceDataFile = “C:\Northwind.mdb”
.Refresh BackgroundQuery:=False

End With
End Sub

In this recording, I imported a connection file (an ODC file) from the Northwind
sample database. In the next section, I modify this recorded code to allow
the user to both choose the data source and choose a table from a full MDB
database file.

The Northwind sample database is supplied with Office 2003 to allow you to
experiment using a realistic MDB (Jet/Access-style) database. Northwind.
mdb should be found on your hard drive in C:\Program files\Microsoft
Office\Office11\Samples. However, you might not have it installed or
know where to look for it. Choose Help➪Sample Databases in Access, and
then select Northwind Sample Database. If it’s not there, go to the Windows
Control Panel, choose Add/Remove Programs, find and click Microsoft
Office, click the Change button, and follow the instructions to install the
Northwind sample database.

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 296

Book IV
Chapter 3

Advanced
W

orksheet Editing
Importing an Access Database 297

Importing an Access Database
The following macro asks the user to choose an Access database (MDB), dis-
plays a dialog box asking the user which of that database’s tables to import,
and then displays the results in an Excel worksheet.

Run Excel and press Alt+F11 to open the Visual Basic editor. Choose View➪
Project Explorer and then double-click the ThisWorkbook entry in Project
Explorer to open its programming window.

Type the macro in Listing 3-1 into the editor:

Listing 3-1: Import an Access Database into a Worksheet Macro
Sub importdata()

On Error Resume Next

r = Application.Dialogs(xlDialogOpen).Show

With ActiveSheet.QueryTables.Add(Connection:=Array(_
“OLEDB;Provider=Microsoft.Jet.OLEDB.4.0;Password=””””;User ID=Admin;Data

Source=C:\Documents and Settings\Richard Mansfield\My Documents\” _
, _
“Order Entry1.mdb;Mode=Share Deny Write;Extended Properties=””””;Jet

OLEDB:System database=””””;Jet OLEDB:Registry Path=””””;Jet
OLEDB:” _

, _
“Database Password=””””;Jet OLEDB:Engine Type=5;Jet

OLEDB:Database Locking Mode=0;Jet OLEDB:Global Partial Bulk
Ops=2;Jet OLEDB:Glo” _

, _
“bal Bulk Transactions=1;Jet OLEDB:New Database Password=””””;Jet

OLEDB:Create System Database=False;Jet OLEDB:Encrypt
Database=Fal” _

, _
“se;Jet OLEDB:Don’t Copy Locale on Compact=False;Jet OLEDB:Compact

Without Replica Repair=False;Jet OLEDB:SFP=False” _
), Destination:=Range(“A1”))
.CommandType = xlCmdTable

‘ .CommandText = Array(“Employees”)
.Name = “Order Entry1”
.FieldNames = True
.RowNumbers = False
.FillAdjacentFormulas = False
.PreserveFormatting = True
.RefreshOnFileOpen = False
.BackgroundQuery = True
.RefreshStyle = xlInsertDeleteCells
.SavePassword = False
.SaveData = True
.AdjustColumnWidth = True
.RefreshPeriod = 0
.PreserveColumnInfo = True
.SourceDataFile = r
.Refresh BackgroundQuery:=False

End With

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 297

Importing an Access Database298

If Err Then MsgBox (Error)

End Sub

All the code from this book is available on the book’s companion Web site.
(Please see the Introduction for the specific URL.) You certainly don’t want
to type in lengthy code examples, so just copy and paste it from this Internet
site.

The preceding code is quite similar to the code produced by recording a
macro as when you use the Excel Data➪Import External Data➪Import Data
feature. The modifications are these:

✦ Adding a couple of error trapping lines (On Error and If Err)

✦ Adding this line to allow the user to choose which database file to
import:

r = Application.Dialogs(xlDialogOpen).Show

✦ Using the variable r to specify the SourceConnectionFile or
SourceDataFile argument

.SourceDataFile = r

To test this data-import programming, click somewhere within the code that
you just typed and press F5 to execute the code. When the Excel Open dialog
box displays, use it to locate and open the Access Northwind.mdb sample
database on your hard drive. Close the Open dialog box.

After you select the Northwind.mdb database from the Open dialog box, the
Select Table dialog box opens, asking you to choose the table you want to
see, as shown in Figure 3-1.

Double-click the table you want, and you see the data imported into Excel’s
current sheet, as shown in Figure 3-2.

Figure 3-1:
Choose the
table you
want to
import from
this dialog
box.

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 298

Book IV
Chapter 3

Advanced
W

orksheet Editing
Importing Data from an XML Dataset 299

If you want to import data from text files with low-level programmatic con-
trol over delimiters (such as data separated by # characters or whatever),
you can use the file input/output (I/O) commands available in VBA. For
details, see Book II, Chapter 4.

Importing Data from an XML Dataset
Disconnected datasets (tables detached from their host database) represent a
valuable technology, providing a highly scalable solution when large num-
bers of users simultaneously need to access a database. They get in and out,
without needing to maintain an active connection to the database.

You can find out more about datasets in the following mini-book (Book V) on
Access, but here’s an example of how you can import an XML dataset into
Excel. You’ll import fields from the same Products table of the Northwind
database (see the preceding example in this chapter). Here, however, you
don’t connect to the database directly; instead, you get your data from a
dataset.

Figure 3-2:
Behold!
Data
automati-
cally
dumped
into your
worksheet.

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 299

Programmatically Creating a Dataset300

To create an XML dataset by hand, follow these steps:

1. Double-click the Northwind.mdb file.

The database is loaded into Access.

2. In Access, double-click the Products table in the main database
window.

The table opens.

3. Choose File➪Export.

4. In the Save as Type drop-down list of the Export dialog box,
choose XML.

5. Click the Export All button.

6. Clear the Schema of the Data check box.

You want to let Excel format this data, not Access.

7. Click OK.

The dialog box closes, and your XML dataset is saved.

8. Close Access.

9. Run Excel.

10. Choose File➪Open in Excel.

11. In the Open dialog box, locate on your hard drive the Products.xml
dataset that you just created. Double-click it to open it.

The Open XML dialog box is displayed.

12. Choose As an XML List.

13. Click OK.

You’re notified that no schema exists for this data (no XSD or other asso-
ciated formatting file). But you knew that.

14. Click OK.

Your worksheet fills with the Products table.

Programmatically Creating a Dataset
To create a dataset from an Access-style database (MBD) programmatically,
you can type in and then execute the following code (Listing 3-2) in Visual
Basic .NET.

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 300

Book IV
Chapter 3

Advanced
W

orksheet Editing
Programmatically Creating a Dataset 301

Listing 3-2: Creating a Dataset from an Access-style Database
Public s As String = “Provider=Microsoft.Jet.OLEDB.4.0;Data Source=” & _

“C:\Program Files\Microsoft Office\Office11\Samples\Northwind.mdb;”

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim connect As New System.Data.OleDb.OleDbConnection(s)

Try
connect.Open()

Dim SQ, fname As String, dset As New DataSet

Dim adap As New System.Data.OleDb.OleDbDataAdapter

SQ = “Select ProductName, CategoryID, QuantityPerUnit, UnitPrice from
Products”

adap.SelectCommand = New System.Data.OleDb.OleDbCommand(SQ, connect)

adap.Fill(dset)

fname = “C:\Products.xml”

Dim fs As New System.IO.FileStream(fname, System.IO.FileMode.Create)

Dim t As New System.Xml.XmlTextWriter(fs,
System.Text.Encoding.Unicode)

‘this is a necessary first element for Excel to recognize the dataset
as XML:
t.WriteProcessingInstruction(“xml”, “version=’1.0’”)

dset.WriteXml(t)
t.Close()

MsgBox(“EXPORT SUCCEEDED”)

Catch ex As Exception
MsgBox(ex.Message)

End Try

End Sub

Remember that all this book’s code is available at this book’s companion
Web site. (Please see the Introduction for the specific URL.)

Press F5 to execute this and then follow Steps 9–14 in the preceding example
to load your dataset into Excel.

In Listing 3-2, first the variable s is defined to hold the connection string to
the database. This is done in the General Declarations section, in case you
want to access this connection elsewhere in your project. In this code,

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 301

Programmatically Creating a Dataset302

though, you use it only in the Form_Load event. You first create a connection
object named connect. Then within an error-trapping Try block, you open
the connection to the database, create a string variable to hold an SQL Query
string, and also declare a couple of variables to hold a filepath and a dataset.
The dataset, being a particular kind of object (it has no special name, but it
does behave differently than built-in objects like strings) requires that you
use the New keyword when declaring it.

SQL (Structured Query Language) is the most widely used language for get-
ting information from a database. You often don’t want an entire chunk of
data, such as a whole table, so you can write an SQL query, like this: Show
me all customers whose accounts are more than three months overdue. This
provides you with a useful subset of the data. SQL can also be used to
modify a database, such as updating information.

A data adaptor object is created. Also, an SQL query is specified, asking
that the dataset to be built from four fields in the Products table of the
database. The specify query connection (a command, as it’s called) is now
made, and the dataset object is filled. Now the New .NET FileStream and
TextWriter objects are used to save the XML data to a file on the hard
drive.

Database management in the .NET world involves several objects that inter-
act. Dividing the task of accessing data into these several objects is perhaps
more of interest to the programmers at Microsoft who created this division
than to the rest of us. But if you’re curious, here are the four primary objects
that are collectively known as the data provider:

✦ The data connection makes contact with a data store, such as a database.

✦ The data adapter makes a connection between a dataset and a data store.

✦ The data command allows you to specify how you want data retrieved or
modified (similar to the idea that SQL can frame specific requests for
subsets of data, or to modify the database).

✦ A data reader object provides a read-only, forward-only stream of data
from a data store. (A reader executes very quickly.)

A dataset is a table, for example, that’s been separated from its original data-
base so you can work with it “offline,” so to speak, without having to main-
tain an active connection to the original database.

Note that Access starts to buckle under the pressure of more than ten simul-
taneous connections; its performance seriously degrades. Disconnecting or
“checking out” tables solves this problem. For more details about .NET data-
base management, see my book Visual Basic .NET Database Programming
For Dummies (Wiley).

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 302

Book IV
Chapter 3

Advanced
W

orksheet Editing
Adding Shapes and Pictures 303

Adding Shapes and Pictures
Now for a little recreation. Whether you’ve been naughty or nice, there’s no
use perma-sticking your nose to a grindstone. The following example shows
you how to goose up your worksheets and presentations with some fun clip
art. Also, graphics can have practical uses as well, such as drawing attention
to important points.

OOP and the degeneration of languages
Object-oriented programming (OOP) theorists
have offered convoluted explanations for the
false “distinction” between objects that require
New during instantiation and those that don’t.
But they (the explanations, not the professors)
are too tedious to endure. Just note that some
variable declarations in VB.NET require the
New keyword, others don’t, and there’s no
rule nor pattern that you can learn to differen-
tiate them. It’s the usual thing with OOP
programming — you just have to try something.
And if that doesn’t work, insert a New command
or some other fiddling until the compiler agrees
with your grammar.

You’ve probably heard that the classic Chinese
language cannot be typewritten because
(being pictographic) the keyboard would have
to be an acre wide and contain hundreds of
thousands of keys. Chinese words aren’t made
up of 26 rearrangeable characters; instead,
each word is a unique drawing, a little picture
resembling the meaning (the word for duck
looks like a duck).

Many of these words are quite lovely, and a
language like this is easier to learn, but it
certainly has drawbacks when you try to
design a computer keyboard for it. Likewise, the
many unique behaviors and interrelationships

between objects and members in OOP lan-
guages increasingly baffle programmers. Even
the people responsible for designing OOP lan-
guages themselves are often at a loss to
explain the classifications systems, internal
illogic, and absence of useful taxonomic rules.
The Visual Basic language started off in 1990
with around 300 words. There are now hun-
dreds of thousands of phrases — massive
assemblies crammed with objects, each
object’s many members, and the many argu-
ments and overloaded argument lists available
to each member.

Computer programming is the second time in
history (after Esperanto) that a human language
was deliberately designed rather than simply
evolving from grunts or accreting blindly over
centuries of use. Programming offered a spe-
cial opportunity to specify a logical grammar: a
consistent set of rules. It’s truly a shame that
computer programming has now become the
plaything of raging academics. To put the situ-
ation bluntly, confusion is triumphing over
common sense. Our only hope is that sooner
rather than later, the computer itself will design
a programming language that is — like BASIC
used to be — easy for humans to read and
write.

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 303

Adding Shapes and Pictures304

You can use both the AddShape method of the Shapes collection and the
Insert method of the Picture collection to liven up your work. The follow-
ing code adds an explosion graphic, followed by a dropshadowed cloud
drawing, and then a second explosion superimposed on the cloud.

The order in which you add these objects to a sheet defines the z-axis
format — that is, which is superimposed on which.

Sub AutoShapes()

‘insert explosions
ActiveSheet.Shapes.AddShape(msoShapeExplosion2, 425.25, 145.5, 86.25,

101.25).Select

‘get a shape from the collection on the hard drive:
ActiveSheet.Pictures.Insert(“C:\Program Files\Microsoft

Office\MEDIA\OFFICE11\AutoShap\BD18185_.wmf”).Select

‘superimpose second explosion:
ActiveSheet.Shapes.AddShape(msoShapeExplosion2, 465.75, 324.75, 72#,

72#).Select

End Sub

Execute this Sub, and you see the graphics added to your worksheet, similar
to the sheet shown in Figure 3-3.

The AddShape method takes the following arguments:

AddShape(Type, Left, Top, Width, Height)

Figure 3-3:
Surprise
your co-
workers
with
sudden,
program-
matically
added
graphics.

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 304

Book IV
Chapter 3

Advanced
W

orksheet Editing
Augmenting Find and Replace 305

In the preceding code, note that the AddShape method specifies the absolute
position in the sheet as well as absolute size of the graphic. However, when
you insert a picture, its upper-left corner appears at the current selection
point.

A collection of clip art .wmf (Windows Metafile) files can be found in the
AutoShap folder in the path specified in the earlier code. Figure 3-4 shows
some of the available drawings.

Augmenting Find and Replace
As in Word — or indeed many situations including programming itself — you
sometimes need to locate a particular item or even mass-replace one item
with another in Excel. It could be text, formulae, captions, values, or what-
ever else needs to be located or cleaned up.

Automating a find-and-replace isn’t a difficult challenge; often you can record
a macro that shows you the ropes by providing the necessary code. But do
be aware of the limitations of recorded code. Sometimes it’s too specific: It

Figure 3-4:
Tasteless or
fun, adding
clip art
is your
judgment
call.

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 305

Augmenting Find and Replace306

specifies the current selection, for instance, rather than using a relative pro-
gramming command. Sometimes it’s hard-wired rather than free-form. Other
times it includes lots of extraneous code, such as line after line of default set-
tings in Word.

In any case, you do want to be aware of your options for programmatic find-
ing and replacing.

The Find method of the Range or WorkSheetFunction objects returns
either nothing if no match is found or the single-cell range where the match
was found. If you want to do a global find-and-replace, therefore, you must
use a loop to iterate through the target cells.

Read more about loops in Book II, Chapter 3.

Understanding Find methods
The Range object offers Find, FindNext, and FindPrevious methods.
Listing 3-3 illustrates how to use the Find and FindNext methods. It asks
users what they want to search for, turns each hit (find) gray, and then dis-
plays how many hits occurred:

Listing 3-3: Using Find and FindNext
Sub Count()

ActiveSheet.UsedRange.Style = “normal”

s = InputBox(“Type in the search term.”)

With ActiveSheet.UsedRange

Set c = .Find(s, LookIn:=xlValues)

If Not c Is Nothing Then
firstAddress = c.Address
Do

counter = counter + 1
ActiveSheet.Range(c.Address).Interior.Pattern = xlPatternGray16
Set c = .FindNext(c)

Loop While Not c Is Nothing And c.Address <> firstAddress
End If

End With

If counter = 0 Then counter = “no”

MsgBox (“We found “ & counter & “ instances of “ & s)

End Sub

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 306

Book IV
Chapter 3

Advanced
W

orksheet Editing
Augmenting Find and Replace 307

Getting user input
You first blank (delete the contents of) any cells that have shading in the
UsedRange (the entire group of used cells on the active sheet.) Next, you dis-
play an input box to get the user’s target; it can be a number or text. Then
you amend the ActiveSheet.UsedRange in a With block. You define c as
the result of the search (via the Find method of the UsedRange object) —
in other words, the first instance of the target that the user requested be
searched for. If c is not nothing (meaning that something was found as a
match for the requested target), you enter a Do loop, raising the counter
variable each time through the loop and also turning the hit cell gray. You
continue to loop as long as there’s a hit (c has something in it) and the
address of c isn’t the same as the first hit. When finished looping, the results
are displayed to the user.

The Find Format
Here is the argument list for the Find method:

Range.Find(What, [After], [LookIn], [LookAt], [SearchOrder],
[SearchDirection], [MatchCase], [MatchByte],
[SearchFormat])

✦ What: This is the target value you’re looking for, such as bottles or 200. It
can be any type of data permitted in Excel. What is the only required
argument; brackets mean optional arguments.

✦ After: This is the address of a single cell in the range where you want
the search to begin. It’s an offset; if omitted, your search begins in the
top-left cell of your Range object’s cells.

✦ LookIn: This can be one of three constants:

• xlValues (the default)

• xlFormula

• xlComments

✦ LookAt: This can be one of two constants. (Note: The entire value must
be matched. For example, Boy will not be a match for cowboy.)

• xlPart (the default)

• xlWhole

✦ SearchOrder: This can be either xlByColumns or xlByRows.

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 307

Augmenting Find and Replace308

✦ SearchDirection: This argument specifies the search direction.
Choose from

• xlNext (the default)

• xlPrevious

✦ MatchCase: This is False by default. If True, the search is case-sensitive.

✦ MatchByte: If this is True, Unicode (characters represented by a two-
byte code) matches only other Unicode characters. If False, Unicode
characters can match ASCII code (single-byte) characters. This defaults
to False, so just ignore it.

✦ SearchFormat: This argument is puzzling. If I were you, I wouldn’t
worry about it. It can be True or False and appears to interact with
the FindFormat method, toggling it on or off. This code, for example,
changes italicized cells to boldface but only because the Replace
method’s SearchFormat argument is True:

With Application.FindFormat
.Clear
.Font.Bold = True

End With

With Application.ReplaceFormat
.Clear
.Font.Italic = True

End With

Cells.Replace SearchFormat:=True, ReplaceFormat:=True

Some of the arguments for the Find method persist! In other words, the next
time that you use the Find method in the same session, any values that
you’ve previously assigned to LookIn, LookAt, SearchOrder, or MatchByte
will be used again unless you change them in your new code. This strange
persistence can certainly be expected to cause some confusing bugs.

The Replace method
A typical recorded version of Find and Replace looks like this:

Sub Macro1()

Cells.Replace What:=”10”, Replacement:=”4000”, LookAt:=xlPart, _
SearchOrder:=xlByRows, MatchCase:=False, SearchFormat:=False, _
ReplaceFormat:=False

End Sub

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 308

Book IV
Chapter 3

Advanced
W

orksheet Editing
Augmenting Find and Replace 309

Fortunately, Replace is a pretty straightforward method, and it doesn’t
require that you build a loop or anything as in the previous Find examples
in this chapter. The arguments are also the same as those for Find except
for Replacement (what you want to replace the targeted value with) and
ReplaceFormat, which allows you to change the formatting of a cell, after
this fashion:

With Application.ReplaceFormat.Font
.Size = 12
.Name = “Optima”
.FontStyle = “Italic”

End With

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 309

Book IV: Making the Most of Excel310

04d_570676 bk04ch03.qxd 6/4/04 10:06 PM Page 310

Chapter 4: Data Diving
with Pivot Tables

In This Chapter
� Building pivot tables

� Using the PivotTable Wizard

� Revealing hidden data

� Creating pivot charts

� Modifying the data in pivot tables

� Updating pivot tables

Pivot means to turn, yet remain in the same place, like a ballerina revolv-
ing en pointe, so you see her from all sides.

An Excel pivot table allows you to see data in new ways. Maybe you’ve heard
about expensive, complex data mining technology: Sophisticated software
explores a database and then presents users with ideas they never expected,
predictions they never could have made themselves, and answers to ques-
tions they never thought to ask. (Check out Excel Data Analysis For Dummies,
by Stephen L. Nelson, Wiley, for Excel data mining ins and outs.)

As you’ll discover in this chapter, you can look at a set of data in several dif-
ferent ways and still miss something of importance. The first few figures in
this chapter contain an interesting anomaly, but you’re unlikely to spot it
until I — with the help of a pivoting table — reveal it to you. Then you’ll go
back and say, “Why didn’t I see that?” (Answer: You did see it, Bunky, but it
was camouflaged by the data surrounding it. Only after some pivoting was it
revealed to us all.)

This chapter also covers pivot charts and ways to modify or update the
data in pivot tables.

What Is a PivotTable?
Data mining technology is becoming increasingly important in proportion to
the increasing size and complexity of databases. No human has the ability
to sort through millions of data and spot oddities, notable variants, and inter-
esting trends.

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 311

What Is a PivotTable?312

Pivot tables aren’t as advanced as data mining, but they’re in the same ball-
park. With them, you get to twist data around — to pivot it, as it were — to
see it in new ways. I call it data diving because it’s less extreme than mining
although pivoting tables can (in their own way) yield valuable results in
much the same way panning for gold by hand sometimes yields nuggets.

When you drag and drop fields to various locations within a pivot table,
you’re pivoting it. The pivot table re-sorts and recalculates the data, adjusting
the subtotals and grand total(s) as necessary. You don’t type in any formulae.
You simply choose from a drop-down list in the PivotTable Field dialog box
(double-click a field title button, the gray buttons, in the PivotTable) whether
you want a COUNT, SUM, AVERAGE, MAX, MIN, PRODUCT, COUNT NUMS,
STANDARD DEVIATION, or other options. If you need to perform calculations
not available on this drop-down list, it’s possible (see Excel’s Help).

Here’s an example of data too complex to be useful unless it’s been pivoted
or mined. Everyone entering the Super Bowl is watched by a video camera,
and their face patterns are compared to stored photos. Tied to the photos is
personal data, such as young, male, pilot lessons, one-way tickets. The visual
and other patterns are automatically and rapidly transformed in various
ways. This kind of analysis, although somewhat chilling for those of us who
value liberty and privacy, might end up saving many lives.

Pivot tables are especially useful in a variety of situations:

✦ Performing simple data-mining by hand, noticing significant facts other-
wise hidden within the data.

✦ Generating budgets and business plans, complete with easy ways to
generate charts and reports.

✦ Tracking expenses.

✦ Discovering hidden patterns and relationships.

✦ Improving inventory control.

✦ Boosting productivity.

✦ Spotting problems or trends early. (Which division wastes the most
money on bad ads or sells the most widgets?)

✦ Summarizing lengthy data in a compact format (see upcoming Figure 4-10).

✦ Deciding what data to selectively hide.

✦ Arranging data in ways that are easily charted (see Figure 4-10, which
results in the chart shown in Figure 4-12).

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 312

Book IV
Chapter 4

Data Diving w
ith

Pivot Tables
Creating a Pivot Table 313

Creating a Pivot Table
Like swimming, a pivot table is difficult to describe. The result is obvious in
both cases, but the activity itself needs to be experienced, dear readers, so
jump in here and experience it.

Start by creating a pivot table. Pivot it and twirl it around. Fool with it. Get a
feel for it. To see how a pivot table works, follow these steps:

1. Create a spreadsheet with four columns of fake data: Company, Year,
Expense, and Amount.

You’re pretending to be a wild greed engine, a mogul named Varla Vepp,
who wants to examine the costs of three of her companies. She plans to
decide which one to shut down during next year’s New Year’s celebra-
tion, just after many of her employees have maxed out their credit cards.
Watch out for Varla’s bad self; she’s extremely scary when in high spirits.

2. Fill in the data for 20 to 30 rows. Use three different company names,
three different years, three expense categories (transportation,
salaries, and utilities), and various different amounts of money, as
shown in Figure 4-1.

Copying and pasting helps you quickly add this data.

Figure 4-1:
Create a
sample set
of data.

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 313

Creating a Pivot Table314

3. Click any cell in the data.

4. Choose Data➪PivotTable and PivotChart Report.

The PivotTable and PivotChart Wizard opens.

5. Leave the Microsoft Office Excel List or Database radio button
selected as the data that you want to analyze.

6. Leave the PivotTable radio button selected.

7. Click Next.

8. In the second page of the wizard, specify A1:D300 as your range (in
the Range text field).

You want to specify a range larger than the actual current data because
you might add data in the future.

9. Click Next.

10. In the final wizard page, select the New Worksheet radio button to set
the location of your new pivot table.

11. Click Finish.

You now see a new worksheet containing a template for your pivot table,
as shown in Figure 4-2.

Figure 4-2:
Here’s
where you
design the
pivot table.

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 314

Book IV
Chapter 4

Data Diving w
ith

Pivot Tables
Creating a Pivot Table 315

Now you’re ready to build the actual pivot table. You begin by dragging
and dropping items from the Pivot Table Field List dialog box, as shown in
Figure 4-2. Follow these steps:

1. Drag the AMOUNT header and drop it into the data field (Drop Data
Items Here) in the template.

The template unhelpfully collapses. The template actually disappears
at this point, and you’re left looking at the usual Excel cells. (There’s
a solution to this, which I describe later in the tip in the section, “A
sudden surprise.” The upcoming Figure 4-11 illustrates the dialog box
that solves the problem.)

The item that you drop into the data field is the one that gets summarized
by the pivot table.

2. Click Company to select it in the PivotTable Field List dialog box.

3. Click the Add To button (with Row Area visible in the drop-down list)
in the dialog box.

Your company field is added to the worksheet.

4. Repeat Steps 2 and 3 to add the Year and Expense fields to the worksheet.

See the results in Figure 4-3.

Figure 4-3:
This Pivot
Table is
almost
ready to
pivot.

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 315

Creating a Pivot Table316

5. Close the PivotTable Field List dialog box.

6. Double-click Count of AMOUNT at the top of the data in this worksheet.

Refer to Figure 4-3.

The PivotTable Field dialog box opens. (See Figure 4-4.)

By default, Count of AMOUNT is displayed, which is rather odd. That’s
not very useful information when you’re looking at expenses or, indeed,
many other kinds of summaries. In this example, you want to see the
sum — the total cost — not simply a count of the number of expense
entries. (However, if you’re summarizing non-numeric data, such as
company names, Count is the only possible choice — you can’t perform
math on words.)

7. Click Sum in the dialog box (in the Summarize By list) to choose
Summarize by Sum.

8. Click OK.

The dialog box closes, and you see that the Total column has been recal-
culated to show various subtotals and totals. At this point, your work-
sheet should look like Figure 4-5.

Notice in Figure 4-5 that you’re seeing expenses for each company, broken
down by yearly subtotals, company subtotals, and a final grand total. Now
drag the Expense button (in cell 4) and drop it on top of the Company
button. At this point, the pivoting takes place. Read on.

Figure 4-4:
The Pivot-
Table Field
dialog box
offers you
a variety
of ways
to pivot
the data.

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 316

Book IV
Chapter 4

Data Diving w
ith

Pivot Tables
The Table Pivots 317

The Table Pivots
Now the information is recalculated — the table pivots — and you see the
subtotals for each category of expense, rather than by company subtotals.
This is an interesting way to quickly reorient the view on the data, wouldn’t
you agree? You actually have a differently arranged, newly sorted, new table.

Try double-clicking the Expense button. You see the PivotTable Field dialog
box from which you can select various options, such as hiding subtotals. Try
clicking the Layout button in the dialog box to see the PivotTable Field
Layout dialog box, as shown in Figure 4-6.

Figure 4-6:
Use this
dialog box
to change
the format
of a Pivot-
Table to suit
yourself.

Figure 4-5:
Now you’re
seeing
some
interesting
information.

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 317

The Table Pivots318

Use the PivotTable Field Layout dialog box to change the way your pivot
table looks to perhaps make the information clearer: Select Show Items in
Outline Form, Display Subtotals at Top of Group, and Insert Blank Line after
Each Item. Click OK twice to close both dialog boxes.

You now see a slightly different — and I think more readable — summary of
the costs of each expense item, as shown in Figure 4-7.

Just so we’re all on the same page, for the next example, reverse your recent
actions, again open the PivotTable Field dialog box, click the Layout button,
and then deselect all three options: Show Items in Outline Form, Display
Subtotals at Top of Group, and Insert Blank Line after Each Item.

Collapsing the pivot table
Try collapsing the entire report to see just the essentials. On the PivotTable
toolbar, click the Hide Detail button (see Figure 4-8). If this toolbar isn’t visi-
ble, right-click the Excel menu bar and mark the PivotTable check box. If the
buttons on the PivotTable are disabled, click a cell within the worksheet’s
data to enable them.

Figure 4-7:
You can
adjust the
layout to
clarify what
you’re
seeing.

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 318

Book IV
Chapter 4

Data Diving w
ith

Pivot Tables
The Table Pivots 319

Now you see only the essentials. To see the fundamental difference between
the two tables you’ve been looking at (broken down by expenses versus by
company), drag the Expense button and drop it on the Company button.
Now it’s easy to see how different a table is when pivoted. This is still the
same basic data (the grand total doesn’t change), but when rearranged and
recalculated, it tells you quite different things about your empire — and
where the money goes — as shown in Figure 4-9.

Now try pivoting again, working again with the wizard. Because in the earlier
example, I originally asked the wizard to make a new worksheet when it
created the first pivot table in this chapter, the original data still exists on
Sheet1. That’s what I use. Click Sheet1’s tab on the bottom of the workbook
(which should look like Figure 4-1, earlier in this chapter).

Click to select any cell in the table of data in Sheet1; then choose Data➪
PivotTable and PivotChart Report to open the wizard. Drag Company to
the Row field, Expense to the Column field, and Amount to the Data field.
Double-click Amount and choose Sum. You’ve deliberately left out the year

Figure 4-9:
The table
organized by
expenses
(top) can be
pivoted to
reorganize
the data into
a table
organized by
companies
(bottom).

Format Report

Hide Detail

Refresh Data

Always Display Items

Hide Field List

Chart Wizard

Show Detail

Include Hidden Items in Total

Field Settings

Figure 4-8:
The Pivot
Table
toolbar and
its various
buttons.

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 319

The Table Pivots320

field, which simplifies your view of the table because there’s less data to
view and less to summarize.

Notice how different this view is from earlier pivots. The table has rotated
again into a new view, as shown in Figure 4-10.

Calendar data such as year, month, and so on can add needless complexity
to a pivot table’s data. You can either leave this field out of the pivot table
entirely as I did in this example, or you can drop the Year (or other calendar
field) into the Page section of the pivot table layout (see the upcoming
Figure 4-11). Do this, and you can selectively view each unit of time — or all
of them together — via a drop-down list. And if you’re working with large
amounts of data (such as comparing 200 companies), you can try the group-
ing continuous variables (see Excel Help).

A sudden surprise
One thing pops out in this new view of the data shown in Figure 4-10:
Murrey’s Fishfood never pays utilities! I wonder whom they know.

Take a look again at Figures 4-1 and 4-5. If you were looking particularly care-
fully at these tables of data, you might have noticed that Murrey’s wasn’t
paying a utility bill. But many people would have missed this detail in the
larger mass of data. That’s precisely the value of pivoting data: You might
see information that was previously hidden. By rotating the table in different
ways, you can often get a deeper understanding of what the data means and
how to perhaps make wiser decisions. I’m sure that Varla will want to know
more about this Fishfood deal.

The sample table of data that I pivot in this chapter is actually rather small.
Real tables can be quite a bit larger and, thus, quite a bit more likely to need
pivoting to reveal their secrets.

Figure 4-10:
This pivot
simplifies
seeing the
overall
picture by
eliminating
the time
factor (the
year-by-year
breakdown).

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 320

Book IV
Chapter 4

Data Diving w
ith

Pivot Tables
Creating Instant Pivot Charts 321

You can rearrange the rows, columns, and data fields quickly in an existing
pivot table (as opposed to using the original table’s data as I did in the
previous example). Right-click any cell in the pivot table, and then choose
PivotTable Wizard from the context menu. Click the Layout button of the
wizard. In the Layout dialog box that appears (as shown in Figure 4-11), you
can freely rearrange the various field buttons by dragging and dropping
them into the various zones in the diagram.

Double-click any of the field buttons shown in Figure 4-11 to change that
field’s summary behavior from count to sum, or select from many other
options. Between the wizards, context menus, dialog boxes, and drop-down
lists, you have many ways to pivot, reformat, and manipulate pivot tables.

Try pivoting this table in various ways. Use the Layout dialog box (refer to
Figure 4-11) to rearrange the field buttons and then close the dialog box to
see your newly pivoted table. And don’t forget these pointers:

✦ You don’t have to include all the available fields in the pivot table.

✦ You can insert fields more than once.

✦ You can insert fields in more than one of the three layout locations
(Data, Row, and Column).

Creating Instant Pivot Charts
Nothing could be simpler than seeing a chart of a pivot table — a pivot chart.
Here is yet another view of your data, although this one is graphical. Pivot
tables automatically generate subtotals for you, scaling the subtotals so that
summary data can be easily displayed graphically.

Figure 4-11:
Use the
Layout
dialog box
to quickly
pivot your
tables.

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 321

Modifying the Data in a PivotTable322

Right-click any cell in the pivot table shown in Figure 4-10. Choose PivotChart
from the context menu that appears. Et voilà, your data is charted. Here’s
another view where you might notice that the fishbait guy isn’t paying his
electric bill, as shown in Figure 4-12.

Modifying the Data in a PivotTable
You cannot directly edit the data in a pivot table. It’s like a report — not a
data source. But you can edit the source data and then choose Data➪Refresh
Data. The data that populates a pivot table need not be a loaded, active work-
sheet like the examples that I explore in this chapter. It can be a set of ranges,
another pivot table, or various kinds of external data sources.

Refreshing pivot table data
If the data source is modified — for example, if you make changes to the
values in the sheet shown in Figure 4-1 in this chapter — you can turn back
to the pivot table and click the Refresh Data button on the PivotTable tool-
bar or choose the same option from Data menu. The pivot table is updated
because it remembers the source of its data.

Figure 4-12:
Pivot charts
are just a
click away.

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 322

Book IV
Chapter 4

Data Diving w
ith

Pivot Tables
Modifying the Data in a PivotTable 323

Pivot charts revert to their default formatting when refreshed. Pivot tables,
however, stay formatted after being refreshed.

Automatically updating pivot table data
Perhaps you want to make the updating process automatic. Every time a pivot
table’s workbook is opened, any pivot tables in it are updated automatically.
To do this, put your updating code in the workbook’s special Open macro that
executes automatically each time the workbook is opened. To do this, press
Alt+F11 to open the Visual Basic editor (VBE) and choose View➪Project
Explorer. In Project Explorer, double-click ThisWorkbook to open its macro
window. Now type this:

Private Sub Workbook_Open()

For i = 1 To ActiveSheet.PivotTables.Count
ActiveSheet.PivotTables(i).RefreshTable

Next

End Sub

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 323

Book IV: Making the Most of Excel324

04f_570676 bk04ch04.qxd 6/4/04 10:07 PM Page 324

Chapter 5: Business
Analysis with Excel

In This Chapter
� Forecasting with Goal Seek

� Creating scenarios

� Using summary reports

� Exploring problems with Solver

Excel includes a variety of tools that you can employ to assist your busi-
ness with forecasting, planning, and general analysis. When it comes

time to run your company stats through Excel, you might as well take advan-
tage of some of these tools. In the preceding chapter of this mini-book, I
cover in depth one of the most important data-analysis tools — the pivot
table. In this chapter, you explore several additional tools useful for people
whose job it is to combine computer expertise with business savvy.

Seeking Goals with Goal Seek
Excel’s Goal Seek feature allows you to specify a particular goal value (such
as profit = $12,000 monthly), and Excel will adjust the value in a second cell
until the goal is achieved. Goal Seek has been called what-if in reverse because
instead of adjusting the income cell to see the effect on the profit cell — the
usual what-if behavior — you do the reverse: Specify what profit you want,
and Excel adjusts income to achieve that goal. It’s rather a simple tool, but it
can be useful. And when you understand how it works, you’ll have an easier
time finding out how to use the more advanced tools such as scenarios and
Solver, which I explore later in this chapter.

To see how the Goal Seek feature works, open a new worksheet and type in
these three labels describing the cash flow of your cheese business: Monthly
Income, Monthly Expenses, and Profit. Then type in these figures: 11000 for
Monthly Income, and 4000 for Monthly Expenses.

The formula that you use to calculate Profit is B1 – B2. Click cell B4 to select
it; in the formula (fx) line at the top, type =B1 – B2, as shown in Figure 5-1. As
soon as you enter the formula, the result of the calculation, 7000, displays in
the Profit cell, as shown in Figure 5-1.

04e_570676 bk04ch05.qxd 6/4/04 10:06 PM Page 325

Seeking Goals with Goal Seek326

Now to seek your goal. Click cell B4 to select it. Choose Tools➪Goal Seek.
The Goal Seek dialog box opens (as shown in Figure 5-2), and cell B4 is dis-
played as the cell that you want to change. For this example, you want to
see how you can increase Profit, which is cell B4. You also need to enter the
value that you want cell B4 to have (11000) as well as the cell that you want
to adjust to reach this goal. Remember that when using Goal Seek, the goal
cell itself must contain a formula, not merely data.

To reach your goal in this example, you either have to increase your income
(B1) or decrease your expenses (B2). Assume that you want to see what
your monthly income must be to achieve the desired profit. Into the By
Changing Cell field, enter B1. Click OK. You see the correct answer — 15000,
in the Monthly Income cell — as displayed in Figure 5-3. The Goal Seek dialog
box is replaced by the Goal Seek Status dialog box.

Figure 5-2:
Specify your
goal and
how you
want to
achieve it.

Figure 5-1:
Here’s some
simple
cheese
factory
cash-flow
analysis.

04e_570676 bk04ch05.qxd 6/4/04 10:06 PM Page 326

Book IV
Chapter 5

Business Analysis
w

ith Excel
Using Scenarios 327

In the Goal Seek Status dialog box, click OK to leave the changed cell as is;
then click Cancel to restore the original value.

To see how much you’d have to cut down on expenses to achieve your goal,
follow the same steps as above, but instead type B2 in the By Changing Cell
field of the Goal Seek dialog box.

Using Scenarios
A step up from goal seeking, scenarios allow you to collapse what would
require several worksheets into a single, easily viewed set of scenarios for a
single worksheet. A scenario is a set of values that you offer to your formu-
lae and that are displayable from within the Scenario Manager.

Try it by using the same sheet that I use in this chapter’s earlier example for
the cheese factory. Assume that you want to see the effect of various differ-
ent expense levels on profits. One way to do this would be to create several
sheets, each with a different value in the Monthly Expenses cell, but why do
that when you can build a set of scenarios? Follow these steps:

1. Use the cheese factory sheet shown in Figure 5-1.

2. Choose Tools➪Scenarios.

The Scenario Manager dialog box opens.

3. Click the Add button.

The Add Scenario dialog box opens.

Figure 5-3:
Your goal is
achieved
when your
income
reaches
15000 per
month.

04e_570676 bk04ch05.qxd 6/4/04 10:06 PM Page 327

Using Scenarios328

4. Type Expenses @ 1000 as the name for the scenario.

5. Click the Changing Cells field.

The blinking cursor appears, indicating that a cell is selected.

6. Click B2 in the worksheet, the Monthly Expenses cell.

This is the cell you want to see adjusted to various values so you get to
see the impact this item has on profits.

7. Click OK.

The Scenario Values dialog box opens.

8. Type 1000 into the dialog box.

9. Click OK.

The Scenario Values dialog box closes, and the Scenario Manager lists
your new scenario.

10. Repeat Steps 3–9 to add Expenses @ 2000 and Expenses @ 3000,
respectively.

You now have three scenarios from which to choose any time you open
the Scenario Manager and click its Show button. At this point, your
dialog box should look like the one in Figure 5-4.

11. Click the Close button to close the Scenario Manager.

If you want to see additional cells’ values change in Step 6 in the preceding
example, hold down Ctrl while clicking the additional cells to add them to
the scenario.

Figure 5-4:
This dialog
box now
contains
three
defined
scenarios.

04e_570676 bk04ch05.qxd 6/4/04 10:06 PM Page 328

Book IV
Chapter 5

Business Analysis
w

ith Excel
Exploiting Solver 329

Displaying Scenarios: Summary Reports
Can you display the results of several scenarios on a single worksheet? Sure.
It’s called a summary report. Follow these steps:

1. Open the workbook from the preceding section’s example.

It should contain the three scenarios that you built (Expenses @ 1000,
Expenses @ 2000, and Expenses @ 3000).

2. Choose Tools➪Scenarios.

The Scenario Manager opens, as shown in Figure 5-4.

3. Click the Summary button.

The Scenario Summary dialog box opens. Scenario Summary is selected
by default.

4. If B4 isn’t selected, type that into the Result Cells field.

You want the results to be the Profit cell.

5. Click OK.

The summary worksheet is displayed, as shown in Figure 5-5.

Exploiting Solver
Solver, which was purchased by Microsoft and integrated into Excel, is simi-
lar to (but more advanced than) the Goal Seek feature. Goal Seek allows you
to only directly specify a single cell as the variable (expenses, for example)
to reach the goal that you specify (such as profit). Many real-world business
problems, though, are more complex and involve multiple variables. With
Solver, you can specify the goal (target cell) as well as constraints and multi-
ple variables (changing cells).

Figure 5-5:
Here’s a
summary
report,
created out
of three
scenarios.

04e_570676 bk04ch05.qxd 6/4/04 10:06 PM Page 329

Exploiting Solver330

For reasons known only to the privileged few, some features of Microsoft
applications are not part of the menu system and must be added to the
application. Solver is one of these mystery sisters that you have to invite
explicitly to come down and join the party. Choose Tools➪Add-ins, mark
the Solver check box, and then click OK. Excel shudders a little, and Solver
becomes a member of the family: The Tools menu now displays Solver.
(You might have to insert your Office 2003 CD.)

Solver works with a relatively complex worksheet. (Read more about this in
Excel Data Analysis For Dummies, Stephen L. Nelson, Wiley.) Because of that,
rather than creating a new worksheet to explore, take a look at the sample
workbook of Solver examples that ships with Office 2003. Locate the file
SolvSamp.XLS in this path: C:\Program Files\Microsoft Office\
OFFICE11\SAMPLES. If it’s not there, find it on your Office 2003 CD. Load it
into Excel by double-clicking its name. Click the Staff Scheduling tab at the
bottom of the SolvSamp worksheet. It should look like Figure 5-6.

The problem to be solved by the Staff Scheduling Solver example is actually
deceptive. It seems simple, but like the famous math puzzle involving the
shortest route for a traveling salesman, it’s actually rather complicated.
This Solver model has three rules that must be followed (constraints). You
can see these in the Problem Specifications area of the SolvSamp example in
Figure 5-6:

Figure 5-6:
Use Solver
to analyze
complicated
situations.

04e_570676 bk04ch05.qxd 6/4/04 10:06 PM Page 330

Book IV
Chapter 5

Business Analysis
w

ith Excel
Exploiting Solver 331

1. The number of employees must be >= 0 (in other words, not negative).

2. The number of employees for each day must be a whole number and not
a fraction.

3. The total number of employees must equal or exceed the number
required to run the amusement park.

There’s also a constraint not expressed in the sheet itself (but understood by
the person filling in the sheet) that each employee must have two consecutive
days off per week.

Check out the color-coded borders around the cells, showing which cells are
constrained, which can be changed, and which is the target cell (the goal).
By default, target cells are indicated by cyan (a rather bland color, similar to
turquoise), changing cells indicated by green, and constraints by red.

The profit cell is the target, and you want to maximize profits by minimizing
the number of employees on any given day while still remaining within the
constraints.

Now solve the problem by asking Solver to take a look at it. Choose Tools➪
Solver. The Solver Parameters dialog box opens, where you can specify Solver
parameters and options. See Figure 5-7.

The Guess button in this dialog box asks Solver to list all cells without for-
mulae in them that are referred to by the formula in the target cell. These
are likely to be, or at least contain, the cells that should be specified as the
changing cells.

To avoid possibly slowing up your computer for hours, click the Options
button. Notice that in this Solver Options dialog box, you can limit the
amount of time that Solver will spend finding the solution. Some problems
with many variables can take enormous computing power, so you might
want to specify a limit.

Figure 5-7:
Use this
dialog box
to adjust the
behavior of
the Solver.

04e_570676 bk04ch05.qxd 6/4/04 10:06 PM Page 331

Exploiting Solver332

Close this dialog box and then click the Solve button (in the Solver Parameters
dialog box). This solution comes quickly, as shown in Figure 5-8.

Compare Figure 5-6 with Figure 5-8. The schedule itself didn’t change (the
1s and 0s) remain fixed — they’re not changing cells. But the changing cells
(employees who have days off on any particular day), and consequently the
schedule totals and profits, do change.

The various scenarios in this SolvSamp sample workbook make good tem-
plates for problems that many businesses must solve. Microsoft suggests
that you see whether they might apply to problems you’re facing. If so,
adjust the data in the cells to reflect conditions that apply to your business,
and then solve away to see various outcomes.

If you need to do advanced statistical analysis, choose Tools➪Add-ins and
then select Analysis ToolPak or Analysis ToolPak - VBA. You’ll then have all
the co-variance, exponential smoothing, random number generating, reverse
transforms, and other fabulous (to statisticians anyway) tools at your finger-
tips. (You can find out more about this in Excel 2003 Power Programming with
VBA, John Walkenbach, Wiley.)

Figure 5-8:
The first
thing to
notice here
in the
solution is
that you’ve
saved your
company
over $10,000
in annual
payroll
costs.

04e_570676 bk04ch05.qxd 6/4/04 10:06 PM Page 332

Chapter 6: Ten Excellent Excel
Macro Techniques

In This Chapter
� Accessing other Office applications from within Excel

� Using UserForms to communicate with the user

� Adding macros to worksheet controls

� Automating formatting

� Trapping keypresses

� Selecting from a list box

� Sending workbooks via e-mail

� Differentiating between the Activate and Select methods

If you’ve read the earlier chapters in this book, you know what macros are
and how to press Alt+F11 to open the macro editor in Word, Excel, and

Access. In this chapter, you explore some useful macros that make working
with Excel easier. Perhaps you haven’t thought of some of these shortcuts
or techniques.

If you want a macro to be available every time you run Excel (and from all
worksheets), put it into Personal.xls. Do this by choosing Tools➪Macro➪
Record New Macro. In the Record Macro dialog box, open the Store Macro
In drop-down list and choose Personal Workbook. This is similar to the
Normal.dot template in Word that’s always available to any Word document.

Accessing Other Office Applications
Contacting another application programmatically isn’t difficult after you know
the code. Obviously, being able to send data automatically between Office
2003 applications has uses. The different applications specialize in different
jobs. For instance, if you want to run some scenarios, you might want to send
data from Access to Excel because Excel excels in math. Word, of course, has
the best facilities for creating reports and formatting documents. So sending
information from Excel to Word is sometimes useful, too.

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 333

Understanding Scope334

In this example, you send the Excel value in cell A1 to Word and then save
the Word document. Follow these steps:

1. Run Excel.

2. Type Mrs. Murphy into cell A1.

3. Press Alt+F11.

The Excel VB editor opens.

4. Press Ctrl+R.

Project Explorer opens.

5. Double-click ThisWorkbook and type in this procedure:

Sub SendToWord()

s = Worksheets(“Sheet1”).Range(“A1”).Value

Dim objWord As Object
Set objWord = CreateObject(“Word.Document”)

With objWord.Application
.Selection.TypeText s & “ is from Excel to you.”
.ActiveDocument.SaveAs “Word Test.doc”

End With

Set objWord = Nothing ‘destroy the object

End Sub

6. Press F5 to execute this macro, and then you find that Mrs. Murphy
is from Excel to you is typed into a new Word document.

Understanding Scope
Notice the separate code windows for each of the three default worksheets,
as well as one for ThisWorkbook. If you enter a macro (or module-level vari-
able) into a worksheet VBA code module, its scope is limited to that work-
sheet unless you declare it Public (making it available to the entire project).
If you create a standard or class module, using Public makes the procedure
available not only to the entire project but also to any outside project that
references the current project.

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 334

Book IV
Chapter 6

Ten Excellent Excel
M

acro Techniques
UserForms for User Interaction 335

UserForms for User Interaction
You can simplify interacting with users by displaying a graphic form to
accept and validate their input. In this example, I walk you through doing
just that. Additionally, in this UserForm, you also want users to periodically
change their password. For more on UserForms, see Book II, Chapter 4.

1. Press Alt+F11 to open the Excel Visual Basic editor and then choose
Insert➪UserForm.

An empty UserForm and a Toolbox appear, as shown in Figure 6-1.

Some people insist on calling this a UserForm object, but I just call it a
UserForm in the interest of brevity and common sense. Because nearly
everything is nowadays called an object — text boxes and even integers —
it seems to add little to the communication to add the essentially meaning-
less term object. You might as well say, “Please fill the birdfeeder thing,
using the scoop thing.” Leaving out thing in this case doesn’t decrease the
information content one bit.

2. Press F4.

The Properties window opens, where you can modify the various prop-
erties of any controls that you place on the form or the form’s properties
themselves. I added a compelling (some would say cunning) gradient
background to the UserForm by importing a graphic into its Picture
property.

Sometimes the Toolbox disappears for no apparent reason. (There actu-
ally isn’t any good reason why it should; it’s just one of those funny little
things.) If it disappears, click the background of the UserForm to make it
reappear.

Figure 6-1:
Interact with
users via
this form.

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 335

UserForms for User Interaction336

3. Click the UserForm to select it, click Caption in the Properties
window, and then change the default Caption (title bar) property
from UserForm1 to Type in your new password, please

You want users to periodically change their password, so you automate
the process by creating a macro under a UserForm that requests this infor-
mation on a regular basis. You can use this technique to get any informa-
tion from the user.

4. Click the TextBox icon in the Toolbox to select it, and then drag your
mouse in the UserForm to place the text box where you want it.

5. Add two command buttons to the UserForm and change their Caption
properties to OK and Cancel, respectively.

6. (Optional) Add a graphic to the background of this form by clicking
the form to select it. Then in the Properties window, click Picture and
then click the ellipsis button (...) to browse your hard drive for a suit-
able background texture, like the cunning gradient I added.

Drag your mouse around the text box and both control buttons to select
all three. Then the Property window displays only those properties that
they have in common. This is a quick way to increase the size of the font
for these objects. (This is usually necessary, given that the default font
size is 8 pt, which is pretty tiny.)

7. Double-click the Font property in the Properties window and change
the size from 8 to 11.

8. Press F5 to see your form.

It should look something like the one in Figure 6-2, but perhaps without
the gorgeous gradient graphic that I added using the Picture property.

9. Close your UserForm to return to editor mode.

10. Complete the design of your form by clicking the text box and then
double-clicking PasswordChar in the Properties window.

Figure 6-2:
Users often
respond
better to
custom
dialog
boxes.

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 336

Book IV
Chapter 6

Ten Excellent Excel
M

acro Techniques
Adding Macros to Worksheet Controls 337

11. (Optional) Enter * if you wish to use asterisks as the characters that
are displayed when a password is entered.

I’ve never quite understood this feature. Is anyone really dumb enough
to type in their password while some office snoop is standing behind
them, watching them type it in? If the snoop is that close, he can just
watch your fingers as your typing reveals which keys on the keyboard
make up your password.

12. Put the code into the buttons’ events and double-click the OK button.

Its Click event procedure opens, ready for you to insert code.

13. Enter this:

Private Sub CommandButton1_Click()

‘write code here to send password to administrator

MsgBox (“Your password has been entered”)
End

End Sub

14. In the Cancel button’s event, type this:

Private Sub CommandButton2_Click()

End

End Sub

You can add lots of additional controls to the Toolbox by right-clicking it and
then choosing Additional Controls.

Adding Macros to Worksheet Controls
In the preceding example, you display a UserForm with controls to the user.
You can also add controls directly to worksheets if a UserForm seems overkill.
If you need only one or two user-interaction controls, they can just be dropped
right into a worksheet without cluttering it up.

Display a worksheet in Excel and then choose View➪Toolbars➪Control
Toolbox. A set of controls similar to the ones in the VB editor Toolbox appears,
as shown in Figure 6-3. (For more on controls, see Book II, Chapter 4.)

In the lower-left corner of the worksheet is Control Toolbox, a special icon
(see Figure 6-3). Click it to add additional controls to the Toolbox.

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 337

Adding Macros to Worksheet Controls338

Click the CommandButton icon in the Toolbox and then drag your mouse on
your worksheet where you want to display the command button. Right-click
the new button on the worksheet and then choose CommandButton Object➪
Edit. Change the caption on the button to Click Me to Fill.

Click the worksheet to get out of editing mode. Then double-click the button
to get to its code window. Enter the code in Listing 6-1 into the button’s
Click event. It will fill this worksheet with data when the user clicks the
CommandButton that you added to the worksheet:

Listing 6-1: Filling a Worksheet by Clicking a Button
Private Sub CommandButton1_Click()

With ActiveSheet.QueryTables.Add(Connection:=Array(_
“OLEDB;Provider=Microsoft.Jet.OLEDB.4.0;Password=””””;User ID=Admin;Data

Source=C:\Northwind.mdb;Mode=Share Deny Write;Extended Propertie” _
, _
“s=””””;Jet OLEDB:System database=””””;Jet OLEDB:Registry Path=””””;Jet

OLEDB:Database Password=””””;Jet OLEDB:Engine Type=5;Jet
OLEDB:Da” _

, _
“tabase Locking Mode=0;Jet OLEDB:Global Partial Bulk Ops=2;Jet

OLEDB:Global Bulk Transactions=1;Jet OLEDB:New Database
Password=””” _

, _
“””;Jet OLEDB:Create System Database=False;Jet OLEDB:Encrypt

Database=False;Jet OLEDB:Don’t Copy Locale on Compact=False;Jet
OLEDB” _

, “:Compact Without Replica Repair=False;Jet OLEDB:SFP=False”),
Destination:= _

Range(“A1”))
.CommandType = xlCmdTable
.CommandText = Array(“Products”)
.Name = “Northwind Products”

Figure 6-3:
Use this
Toolbox to
add controls
directly
to Excel
worksheets.

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 338

Book IV
Chapter 6

Ten Excellent Excel
M

acro Techniques
Applying Formatting 339

.FieldNames = True

.RowNumbers = False

.FillAdjacentFormulas = False

.PreserveFormatting = True

.RefreshOnFileOpen = False

.BackgroundQuery = True

.RefreshStyle = xlInsertDeleteCells

.SavePassword = False

.SaveData = True

.AdjustColumnWidth = True

.RefreshPeriod = 0

.PreserveColumnInfo = True

.SourceConnectionFile = _
“C:\Documents and Settings\Richard Mansfield\My Documents\My Data

Sources\Northwind Products.odc”
.SourceDataFile = “C:\Northwind.mdb”
.Refresh BackgroundQuery:=False

End With

End Sub

In Listing 6-1, replace the bold line with a path to a Northwind ODC file on
your hard drive:

“C:\Documents and Settings\Richard Mansfield\
My Documents\My Data Sources\Northwind Products.odc”

The Northwind sample database is supplied with Office 2003 to allow you to
experiment using a realistic MDB (Jet/Access-style) database. Northwind.mdb
should be found on your hard drive in C:\Program files\Microsoft
Office\Office11\Samples. However, you might not have it installed or
know where to look for it. Choose Help➪Sample Databases in Access and then
select Northwind Sample Database. If it’s not there, go to the Windows Control
Panel, choose Add/Remove Programs, find and click Microsoft Office, click the
Change button, and follow the instructions to install the Northwind sample
database.

Now return to the worksheet where your button resides. Click the Exit
Design Mode button on the top of the Toolbox. The Toolbox disappears.
Now click the button on the sheet, and your sheet should fill with data from
the database.

Applying Formatting
If you have a favorite formatting scheme — a favorite way of presenting Excel
data using certain fonts, colors, and so on — you can easily write it (or record
it) into a macro and then assign it to a keyboard shortcut, toolbar, or menu.

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 339

Adding Controls Programmatically340

Here’s a macro that applies an AutoFormat to all the data in the current
sheet instantly:

Sub FormatIt()

ActiveSheet.UsedRange.Select

Selection.AutoFormat Format:=xlRangeAutoFormatColor1,
Number:=True, Font _

:=True, Alignment:=True, Border:=True, Pattern:=True,
Width:=True

End Sub

Format:=xlRangeAutoFormatColor1 gives you a black/cyan color scheme.
Replace that with Format:=xlRangeAutoFormatColor2 for a brown/tan
effect, or otherwise adjust the constants and parameters to get whatever
formatting you prefer.

Adding Controls Programmatically
You can add controls to worksheets via programming. This example adds a
command button to the active sheet and then adjusts its Caption property:

Sub AddButton()

ActiveSheet.OLEObjects.Add ClassType:=”Forms.CommandButton.1”, _
Left:=120, Top:=100, Height:=20, Width:=100

ActiveSheet.CommandButton1.Object.Caption = “Click To Fill”

End Sub

If you want to add other controls, use this format to describe their class:
Frame, Forms.Frame.1, Image, Forms.Image.1, Label, Forms.Label.1,
ListBox, Forms.ListBox.1, and so on.

For more on controls, see Book II, Chapter 4.

Trapping Keypresses
In UserForms, you can use the KeyDown event to trap (react to with your own
programming) user keyboard input. This event is available to any control
that’s sensitive to keypresses, such as check boxes, command buttons, forms,
option buttons, and text boxes.

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 340

Book IV
Chapter 6

Ten Excellent Excel
M

acro Techniques
Trapping Keypresses 341

One use for this technique is to imitate the keyboard shortcuts in Excel that
you can specify when you choose Tools➪Macro➪Record New Macro and then
specify a shortcut key in the Record Macro dialog box. The same kind of key-
press trapping is also available for your UserForms via the KeyDown event, and
KeyDown is more flexible than the technique available in Excel itself.

In addition to creating custom keyboard shortcut “macros” within your
UserForms, you can also use this technique to redefine the keyboard layout
itself. For example, you could trap all Ctrl+C keypresses and then respond by
clearing the text box (TextBox.Text = “”).

Another relatively uncommon use for trapping keypresses is to repeat some
behavior based on how long the user holds down a key. For example, in order
for a user to draw a line or border, you allow the user to hold down a key that
repeats a character (like an underline) until the KeyUp event detects that the
user has released the key.

To try this keypress capture technique, first add a TextBox control and then
a UserForm. Then, from the drop-down lists at the top of the UserForm code
window (double-click the TextBox control), locate and click the KeyDown
event for the text box:

Private Sub TextBox1_KeyDown(ByVal KeyCode As
MSForms.ReturnInteger, ByVal Shift As Integer)

End Sub

The KeyDown and KeyUp events provide you with two variables: KeyCode and
Shift. KeyCode provides a unique number for every key on the keyboard —
even distinguishing between the 3 on the numeric keypad and the 3 in the row
above the alphabetic keys. In this way, you can have your program react to
anything — the arrow keys, the Num Lock key, and so on.

The numeric codes can be located in the VBA Help. Search for keycode con-
stants. You’ll also notice a list of constant names (such as VBKeyBack and
VBKeyTab). You should use these descriptive constants in place of the
numeric codes if you wish — the constants are built into VBA.

For example, VBKeyTab is defined as 0x9 (this is an archaic numbering
system known as octal, so you probably want to stick with the named con-
stants), so you can then use the word VBKeyTab in place of 9 when you are
testing for that KeyDown:

If KeyCode = VBKeyTab

or

If KeyCode = 9

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 341

Trapping Keypresses342

The KeyCodes for uppercase and lowercase letters of the alphabet — A and
a, for example — are the same. Also, the normal and shifted digits, such as 3
and #, are the same. To detect a shifted key, use the Shift parameter pro-
vided by the KeyDown events.

The KeyCodes
Table 6-1 shows the KeyCodes used by the KeyDown event.

Table 6-1 KeyCodes Used by the KeyDown Event
Constant Code Key

vbKeyLButton 1 Left mouse button

vbKeyRButton 2 Right mouse button

vbKeyCancel 3 Cancel

vbKeyMButton 4 Middle mouse button

vbKeyBack 8 Backspace

vbKeyTab 9 Tab

vbKeyClear 12 5 on the keypad

vbKeyReturn 13 Enter (both keyboard and keypad)

vbKeyShift 16 Shift

vbKeyControl 17 Ctrl

vbKeyMenu 18 Menu

vbKeyPause 19 Pause

vbKeyCapital 20 Caps Lock

vbKeyEscape 27 Esc

vbKeySpace 32 Spacebar

vbKeyPageUp 33 Pg Up

vbKeyPageDown 34 Pg Dn

vbKeyEnd 35 End

vbKeyHome 36 Home

vbKeyLeft 37 Left arrow (←)

vbKeyUp 38 Up arrow (↑)

vbKeyRight 39 Right arrow (→)

vbKeyDown 40 Down arrow (↓)

vbKeySelect 41 Select

vbKeyPrint 42 PrintScreen

vbKeyExecute 43 Execute

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 342

Book IV
Chapter 6

Ten Excellent Excel
M

acro Techniques
Trapping Keypresses 343

Constant Code Key

vbKeySnapshot 44 Snapshot

vbKeyInsert 45 Insert

vbKeyDelete 46 Delete

vbKeyHelp 47 Help

vbKeyNumlock 144 Num Lock

vbKey0 48 0 and)

vbKey1 49 1 and !

vbKey2 50 2 and @

vbKey3 51 3 and #

vbKey4 52 4 and $

vbKey5 53 5 and %

vbKey6 54 6 and ^

vbKey7 55 7 and &

vbKey8 56 8 and * (not keypad *)

vbKey9 57 9 and (

vbKeyA 65 A

vbKeyB 66 B

vbKeyC 67 C

vbKeyD 68 D

vbKeyE 69 E

vbKeyF 70 F

vbKeyG 71 G

vbKeyH 72 H

vbKeyI 73 I

vbKeyJ 74 J

vbKeyK 75 K

vbKeyL 76 L

vbKeyM 77 M

vbKeyN 78 N

vbKeyO 79 O

vbKeyP 80 P

vbKeyQ 81 Q

vbKeyR 82 R

vbKeyS 83 S

vbKeyT 84 T

(continued)

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 343

Trapping Keypresses344

Table 6-1 (continued)
Constant Code Key

vbKeyU 85 U

vbKeyV 86 V

vbKeyW 87 W

vbKeyX 88 X

vbKeyY 89 Y

vbKeyZ 90 Z

The following codes in Table 6-2 for the ten digits occur when the Num Lock
key is on.

Table 6-2 KeyCodes When the Num Lock Key Is On
Constant Code Key

vbKeyNumpad0 96 0

vbKeyNumpad1 97 1

vbKeyNumpad2 98 2

vbKeyNumpad3 99 3

vbKeyNumpad4 100 4

vbKeyNumpad5 101 5

vbKeyNumpad6 102 6

vbKeyNumpad7 103 7

vbKeyNumpad8 104 8

vbKeyNumpad9 105 9

vbKeyMultiply 106 Multiplication sign (*)

vbKeyAdd 107 Plus sign (+)

vbKeySeparator 108 Enter

vbKeySubtract 109 Minus sign (–)

vbKeyDecimal 110 Decimal point (.)

vbKeyDivide 111 Division sign (/)

vbKeyF1 112 F1

vbKeyF2 113 F2

vbKeyF3 114 F3

vbKeyF4 115 F4

vbKeyF5 116 F5

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 344

Book IV
Chapter 6

Ten Excellent Excel
M

acro Techniques
Trapping Keypresses 345

Constant Code Key

vbKeyF6 117 F6

vbKeyF7 118 F7

vbKeyF8 119 F8

vbKeyF9 120 F9

vbKeyF10 121 F10

vbKeyF11 122 F11

vbKeyF12 123 F12

vbKeyF13 124 F13

vbKeyF14 125 F14

vbKeyF15 126 F15

vbKeyF16 127 F16

vbKeyNumlock 144 Num Lock

none 145 Scroll Lock

186 ; and :

187 = and + (same as keypad =)

187 = (keypad)

188 , and <

189 - and _ (not keypad —)

190 . and >

191 / and ? (not keypad /)

192 ` and ~

219 [and {

220 \ and ➪

221] and }

222 ' and "

Detecting Shift, Alt, and Ctrl
The KeyDown event also lets you determine whether a key is being pressed
at the same time as the Shift, Alt, or Ctrl key — in other words, a key combi-
nation. A typical macro might allow the user to press Ctrl+F, for example, as
an alternative to accessing a menu or pressing a command button to start a
text search within a text box.

The parameter name Shift that’s passed to your programming by the
KeyDown event tells you the status of the Shift, Alt, and Ctrl keys as follows:

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 345

Selecting from a ListBox346

Shift = 1
Shift + Ctrl = 3
Shift + Alt = 5
Shift + Ctrl + Alt = 7
Ctrl= 2
Ctrl+ Alt = 6
Alt = 4

So, to determine whether the user is pressing Alt+Shift+F3, use this program-
ming, press F5 to display the UserForm, type some text into the TextBox,
and then press Alt+Shift+F3 to see the trapping work:

Private Sub TextBox1_KeyDown(ByVal KeyCode As
MSForms.ReturnInteger, ByVal Shift As Integer)

If Shift = 5 And KeyCode = 114 Then

MsgBox (“Trapped”)

End If

End Sub

Selecting from a ListBox
If you frequently apply custom formatting styles to your worksheets —
suppose you have four styles that you always seem to use — it’s helpful to
create a personal list box from which you can simply click any of the styles
to apply. This same technique can be used whenever you find yourself fre-
quently choosing between a set of behaviors.

In the VBA editor, choose Insert➪UserForm, put a list box on the form, and
then resize the form so it’s only a bit larger than the list box. Double-click the
ListBox to get to its Click event, and then enter this (Listing 6-2).

Listing 6-2: Choosing Custom Formats

Private Sub ListBox1_Click()

Select Case ListBox1.ListIndex

Case 0

MsgBox (“Case 1”)

Case 1

ActiveSheet.UsedRange.Select

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 346

Book IV
Chapter 6

Ten Excellent Excel
M

acro Techniques
Selecting from a ListBox 347

Selection.AutoFormat Format:=xlRangeAutoFormatColor2,
Number:=True, Font _

:=True, Alignment:=True, Border:=True, Pattern:=True,
Width:=True

Case 2

MsgBox (“Case 3”)

Case 3

MsgBox (“Case 4”)

End Select

End Sub

Replace the message boxes with the formatting you want to apply.

The Case numbers in the preceding example are off by one; for example, the
second case in the code is Case 1. This results from the fact that the first
ListIndex number is 0 (zero), so you have a Case 0. Sure, it’s daft, but you
have to live with it. The first Case should of course be 1, but long ago some-
one decided that programmers will continually create bugs and trip them-
selves up when using indexes because, “Hey! Wouldn’t it be weird to call the
firstborn child Boy Zero, and the kid’s third birthday Birthday Number 2?”
Programming languages are unnecessarily difficult in this way. By now, so
much legacy programming code exists that contains this wacky numbering
system that it’s probably impossible to rectify this moronic way of counting
in computer programming. Bitter? Moi?

Put code to create the list in your UserForm’s Activate event:

Private Sub UserForm_Activate()
ListBox1.AddItem (“Red Border”)
ListBox1.AddItem (“Casual Style”)
ListBox1.AddItem (“Color #2”)
ListBox1.AddItem (“Formal Style”)

End Sub

Now execute your UserForm by pressing F5 and click an item in the list to see
it work. You can activate the UserForm in any of the usual ways: via a menu
item, a toolbar, or a keyboard shortcut. You could alternatively add a ListBox
control to your worksheet. If you want the UserForm to disappear after you’ve
finished using it, add this line of code to the ListBox Click event:

Me.Hide

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 347

Sending a Workbook via E-mail348

Sending a Workbook via E-mail
To send someone a whole workbook, type this code into a macro:

Sub sendit()
ThisWorkbook.SendMail “richrdm52@hotmail.com”, “WorkBook for

Rita”
End Sub

The format is

ThisWorkbook.SendMail “EmailAddress”, “Subject Line in email”

To send the active workbook, replace ThisWorkbook with

ActiveWorkbook.SendMail

Differentiating Select from Activate
You might recall the difference between a selection and a range. (See Book IV,
Chapter 1 for the full discussion if you don’t.) But many people have difficulty
understanding the difference between the Activate and Select methods —
and indeed they appear similar. (Confusingly, you use the Range object’s
Select method to specify and create a selection.)

A range or selection can be, but isn’t necessarily, a single cell. For example

Range(“C6”).Select

creates a selection comprising this single cell, but

Range(“C6:D8”).Select

creates a selection of six cells. Thus, a selection6 can be, but isn’t neces-
sarily, a single cell. Specifying a selection that spans multiple cells, results,
however, in a single cell in the upper-left corner of the selection being some-
what different from the others (in this case it’s white, not shaded), as shown
in Figure 6-4.

Figure 6-4:
The active
cell is in
the upper
left of the
selection.

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 348

Book IV
Chapter 6

Ten Excellent Excel
M

acro Techniques
Differentiating Select from Activate 349

Notice the active cell in the upper left. In Word, this is the insertion point —
the location in the document where whatever the user types will appear. Cell
C6 in Figure 6-4, is the active cell. Note: Only one cell can be the active cell at
any given time.

If you want to move the location of the active cell from its default in the
upper left of a newly created selection, you can do it with this code:

Range(“C12:D14”).Select
Range(“D13”).Activate

When this code is executed, it results in the selection and active cell shown
in Figure 6-5.

If you use the Activate method to move the active cell beyond the current
selection, the selection itself becomes the same cell as the active cell. The
previous selection is lost.

Unfortunately, the Activate method can be used to specify more than a
single cell. You should avoid using it in this way, though, because it can
cause mystery bugs. Take this example:

Range(“B2:D4”).Select
Range(“C7:D13”).Activate

After the first line with the Select command executes, its effects are ignored
when the Activate method obliterates the selection and moves it down to
C7:D13. Always use the Select method when creating a selection involving
multiple cells.

Figure 6-5:
Programm-
atically
move the
active cell
by using the
Activate
method.

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 349

Book IV: Making the Most of Excel350

04g_570676 bk04ch06.qxd 6/4/04 10:08 PM Page 350

Book V

Advanced Access

05a_570676 p05.qxd 6/5/04 12:40 AM Page 351

Contents at a Glance
Chapter 1: Access Today ..353

Chapter 2: Programming Access..367

Chapter 3: Manipulating Datasets..385

Chapter 4: Automating Access ..411

Chapter 5: Troubleshooting in Access ..419

Chapter 6: Access Macro Techniques..429

05a_570676 p05.qxd 6/5/04 12:40 AM Page 352

Chapter 1: Access Today

In This Chapter
� Discovering Access’s strengths and weaknesses

� Using the new Access 2003 Developer Extensions

� Exploring the Package Wizard and Custom Startup Wizard

� Discovering the Property Scanner add-in

� Introducing Smart Tags

With Office 2003, Access has reached a new level of sophistication and
efficiency. In this chapter, you see what Access does well and less

well, and also discover some new tools that can make a developer’s life
easier.

Access has been improved in a variety of ways:

✦ The ListBox and ComboBox controls can now display four fields in
ascending or descending order for reports and forms.

✦ You can adjust fonts in Query Design, and its Help system has been
upgraded.

✦ Smart Tags can link fields.

✦ The Microsoft Data Engine (MSDE) — used for client-server and Internet
program testing on a single machine — has been upgraded to a newer
version, the SQL Server 2000 Desktop Engine.

✦ Improvements have been made to data access pages.

✦ Forms and reports have new methods, properties, and events.

✦ XML features have been either added or improved.

All in all, Microsoft continues to vigorously support Access with each new
version of Office.

Understanding Access’s Limitations
Access cannot do everything. There, I said it. Access, good for home or
small office use, can also be used as a data store for large enterprise solu-
tions (big companies that want to coordinate all their data and program-
ming needs into a single, harmonious system). However, Access cannot be

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 353

Adding Acess 2003 Developer Extensions354

the database management tool for enterprise solutions because it’s not scal-
able enough: It can effectively handle only ten simultaneous connections.
A popular Web site — not to mention a large-scale, corporate intranet —
simply grinds Access to a halt by the demands of the traffic that are brought
to bear on Access.

Although you can use MDB files as databases, you cannot use Access as a
database management system if your company wants to handle high traffic.
And most companies at least hope to. (Don’t they?)

For small business users, Access can build quick solutions via its many rapid
application development (RAD) tools, such as wizards that walk you through
various tasks. But if your business requires specialized coding — and many
businesses do — you might find yourself spending quite a bit of time cus-
tomizing via VBA or other programming tools such as VB.NET.

For large businesses, though, you quickly see performance degradation to
unacceptable levels after you have more than 10 concurrent users or more
than around 100,000 records. You can significantly reduce the network load
that a heavily trafficked Access installation can cause by moving query pro-
cessing to the back end (onto a server). When using this approach, Access
itself merely acts as a front end (a user interface, essentially) for a client/server
system; on the server, a more robust application such as Oracle or Microsoft’s
SQL Server handles the heavy duty processing. To the user, it appears that
Access itself is managing the data, performing updates, sending back query
results, and so on. In fact, another database management system (DBMS) is
doing the heavy lifting. The net result of dividing the workload in this way is to
take advantage of Access’s RAD tools and many experienced Access program-
mers while simultaneously scaling up to handle heavy traffic.

If you plan to set up a large-scale client/server system with Access as the
front end (and primary programming environment, via Access Data Project
tools), you can benefit from the Access SQL Server 2000 Desktop Engine. It
comes with Access and allows a developer to build the client/server applica-
tion on a single machine — simulating a client/server installation on one
computer. Then, after the system is built, it can be installed on SQL Server.

Adding Access 2003 Developer Extensions
If you’re determined to go beyond Access’s usual capabilities, you’ll be inter-
ested in exploring a couple of new utilities in the Access 2003 Developer
Extensions. You can give this suite of utilities, part of the Visual Studio Tools
for the Microsoft Office System, a test run at this location: http://msdn.
microsoft.com/vstudio/tryit.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 354

Book V
Chapter 1

Access Today

Adding Smart Tags 355

Alas, there’s a delicate interaction between Office 2003, Internet Information
Server (IIS), Visual Studio, and other components used by developers. I use
the term delicate because you have to install these various items in a spe-
cific order or suffer the consequences: That is, things won’t work or won’t
work as expected.

In case you’re interested in these utilities, here is a summary of the Access-
specific tools in the Visual Studios Tools package. I cover the Package Wizard,
the Custom Startup Wizard, and the Property Scanner.

The Package Wizard and the Custom Startup Wizard
The Package Wizard assists with deployment of Access systems, offering an
easy way to build a setup installation utility, including automatic inclusion of
dependencies such as the runtime files. Like the other utilities in this pack-
age, you get the source code for the Package Wizard so you can customize it
to your heart’s content. A related tool, the Custom Startup Wizard, allows you
to easily create several different custom MDE files (MDB files stripped of your
proprietary source code) — individualized MDE files for various customers.

The Property Scanner
This utility is like an industrial-strength search-and-replace. You can search
an entire Access database solution globally (all the files) and replace a string
semiautomatically via a list of links where the string appears. Anyone who’s
worked with a large distributed group of interrelated software projects (what
Microsoft calls a solution) will understand how valuable a global search-and-
replace tool could be.

Adding Smart Tags
Access can now link and export data from Windows SharePoint Services via
Smart Tags, which are those small, context-sensitive icons that can be used
in a variety of ways. (See Book VII, Chapter 5 for in-depth coverage of Smart
Tags.) In Access 2003, you can add Smart Tags to any field in any query,
table, form, report, or data access page in your databases. To see how to add
a Smart Tag to a field, follow these steps:

1. Open an Access database and select a table from the list of tables.

2. Choose View➪Design View.

3. Click Smart Tags in the General tab of the property box (similar to the
Properties window in other Microsoft applications), as shown in
Figure 1-1.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 355

Adding Smart Tags356

4. Click the ellipsis button in the Smart Tags field of the property box.

The Smart Tags dialog box opens, as shown in Figure 1-2.

5. (Optional) Click the More Smart Tags button to see third-party Smart
Tags that you can purchase.

Your browser opens with a list of various tags. At the time of this writ-
ing, they included utilities allowing you to quickly create labels from
Outlook Contact lists, build custom Smart Tags, and translate text into
various languages.

6. Select the Person Name check box in the list of available Smart Tags.

This tag style is selected. You now see a list of actions that this Smart
Tag is capable of. For a person’s name, the actions are Send Mail, Schedule
a Meeting, Open Contact, and Add to Contacts. These are useful tasks
that a user might well want to have available while working with your
database table.

Figure 1-2:
Use this
dialog box
to add
Smart Tags
to your
Access
objects.

Figure 1-1:
This is the
Access
property
box.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 356

Book V
Chapter 1

Access Today

Adding Smart Tags 357

7. Click OK.

The dialog box closes, and a Person Name Smart Tag is now available
in the field you assigned it to. In the property box, this specification is
added to the Smart Tag property:

“urn:schemas-microsoft-com:office:smarttags#PersonName”

8. Choose View➪Datasheet View.

Your table is displayed with small, dark-purple triangles added to each
item in the field where Smart Tags are available. In addition, when you
pause your mouse pointer on an item or select an item, an encircled i
appears, symbolizing (perhaps) information — who knows? You can see
this effect in Figure 1-3.

9. Click the Smart Tag icon.

The available options for this Smart Tag open in a drop-down list for the
user to select from, as shown in Figure 1-4.

Figure 1-4:
The user
can select
Smart Tag
options from
this list.

Figure 1-3:
Smart Tags
always
display a
small i
symbol.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 357

Adding Smart Tags358

Exploiting XML support
Of course, XML has invaded Access 2003 just as it has most other areas of
contemporary computing. You can import or export XML schemas (struc-
tures) and data — in other words, both form and content. You can also use
your own custom XSL transforms when bringing data in or out of Access,
manipulating the XML prior to import or export.

Also, the old Access-specific schema that was obligatory in Access 2003 has
been replaced by the newest XSD (schema) standard. This standard is now
accepted as the preferred way to message data between data stores and data
management systems.

It’s generally quite simple to import or export XML-based data in Access
2003. You don’t even need to use an XSD file to import data. If an XSD file is
present, Access uses the structure defined within that file for importing the
data. If no XSD file is present, Access 2003 deduces the incoming data’s
structure automatically and builds the structure for you.

Here’s a simple example. Assume you have an old set of data in a comma-
delimited list. It’s just a long list of names separated by commas and car-
riage returns. You want to transform that list (stored in a Notepad TXT file)
into a new XML file and also have Access generate an associated schema file
(describing the structure of the XML file). You can import the original TXT
file into Access as a table and then export the table as an XML/XSD file pair.

Importing text data
Here is how this works.

1. Open Notepad and create a simple TXT file. Type this data into the file
and save it as c:\data.txt:

Jones, Dottie
Smith, Stan

2. Open an Access database.

You cannot import unless a database is already open in Access.

3. Choose File➪Get External Data➪Import.

4. In the Import dialog box, choose Text Files in the Files of Type list box
and load your data.txt file.

The Import Text Wizard appears, as shown in Figure 1-5. Notice in
Figure 1-5 that this wizard is smart enough to assume that commas
delimit fields and that carriage returns delimit records.

5. Click Next and leave the default Fields Are Separated by Commas
radio button selected.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 358

Book V
Chapter 1

Access Today

Adding Smart Tags 359

6. Click Next and leave the default New Table option selected.

7. Click Next and then click Advanced.

8. Rename the default Field1 to something more meaningful (use
LastName) and rename Field2 to FirstName.

9. Click OK.

10. Click Next and choose No Primary Key (keep this simple).

11. Click Next and type MyTable in the Import to Table text box.

12. Deselect the check box that requests the wizard to analyze your table
(again, keep this simple).

13. Click Finish.

A rather redundant message box appears, telling you that the importing
has been accomplished.

14. Click OK to close that message box.

15. Look in the main database window and double-click your new table
named data.

You can see that a proper Access table has been created out of your
original TXT file’s data.

Exporting XML and XSD files
Take the data from the preceding section and transform it into XML and an
associated schema (XSD) file.

1. Click Tables, and then click to select the table named data in the
main database window.

Figure 1-5:
This wizard
imports
simple text
files and
helps
transform
them into
database
tables.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 359

Adding Smart Tags360

2. Choose File➪Export.

3. In the Export dialog box, choose XML in the Files of Type list box.

4. Click the Export button.

5. In the Export XML dialog box that appears, leave both the XML and
XSD check boxes marked and then click OK.

The job is done! You’ve taken a simple (perhaps a legacy) list of data, trans-
formed it first into an Access database table, and then further transformed it
into the newest XSD (schema) file and an associated XML file. These files can
now be used to communicate with any other XML-aware database manage-
ment system or other software that can understand XML.

The XSD file that you created specifies your table’s structure and looks like
this:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:od=”urn:schemas-microsoft-com:officedata”>
<xsd:element name=”dataroot”>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=”Data” minOccurs=”0” maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”generated” type=”xsd:dateTime”/>
</xsd:complexType>
</xsd:element>
<xsd:element name=”Data”>
<xsd:annotation>
<xsd:appinfo/>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”LastName” minOccurs=”0” od:jetType=”text”

od:sqlSType=”nvarchar”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:maxLength value=”255”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name=”FirstName” minOccurs=”0” od:jetType=”text”

od:sqlSType=”nvarchar”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:maxLength value=”255”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 360

Book V
Chapter 1

Access Today

Adding Smart Tags 361

</xsd:complexType>
</xsd:element>
</xsd:schema>

By default, if you double-click an XSD file and you have Visual Studio installed,
the XML structure is loaded into a handy schema designer, as you can see in
Figure 1-6.

The actual XML data that you exported from your table looks like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<dataroot xmlns:od=”urn:schemas-microsoft-com:officedata”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance”
xsi:noNamespaceSchemaLocation=”Data.xsd”
generated=”2004-04-12T03:07:23”>

<Data>
<LastName>Jones</LastName>
<FirstName>Dottie</FirstName>
</Data>
<Data>
<LastName>Smith</LastName>
<FirstName>Stan</FirstName>
</Data>
</dataroot>

Using the new desktop server
The venerable testing server — Microsoft Data Engine (MSDE) — has now
been replaced with a new, improved version: SQL Server 2000 Desktop Engine.
Added features include updatable views, linked servers, custom functions,
additional properties supporting such Access capabilities as input masks and
lookup fields, and copy and transfer database features.

Figure 1-6:
Visual
Studio
includes
powerful
XML
support,
including
this schema
designer.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 361

Adding Smart Tags362

MSDE isn’t automatically removed when you install Office 2003, and you can
continue to use it with Access. However, if you want to explore the newest
features available in Access and also keep your prototyping system current,
you likely want to replace MSDE with SQL Server 2000 Desktop Engine.

You can remove MSDE and then install the SQL Server 2000 Desktop Engine
fresh (Microsoft suggests this), but you might want to instead choose the
upgrade option if you’ve done considerable customization work on your
existing system. Perhaps you’ve spent a lot of time customizing permissions
or logon authentication for lots of users or you’ve worked hard to customize
database roles for SQL Server. If so, you will likely want to choose the upgrade
rather than clean install option when moving from MSDE to SQL Server 2000
Desktop Engine.

Using improved data access pages
Data access pages are Access’s way of presenting its data in Web pages.
Although they were introduced in Access 2000, they’ve only now come into
their own in Access 2003. Data access pages are a way for you to efficiently
build Internet or intranet pages that users can interact with easily. They’re effi-
cient for the programmer because the process of creating these pages is now
assisted by a powerful and automated wizard and Page Designer. The resulting
front end is highly scalable, and you can create Web pages that are highly
sophisticated while letting Access do the dirty work of building the HTML.

Major improvements to data access pages include improved deployment,
formatting, and updates to the Page Designer. Multiple Undo and Redo has
been added, along with other features that bring data access pages from
their relatively lame beginnings to what can now be fairly described as a
full-featured form designer.

To see how easily scrollable tables can be dropped into a Web page, follow
these steps:

1. Load the Northwind sample database into Access.

2. Click the Pages icon in the main database window.

You see the first three options relate to data access pages — different
approaches to the same goal:

• Using design view

• Using a wizard

• Editing an existing Web page, as shown in Figure 1-7

3. Double-click Create Data Access Page in Design View, as shown in
Figure 1-7.

Depending on your version of the Northwind sample database, you
might see a warning message. Just ignore it.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 362

Book V
Chapter 1

Access Today

Adding Smart Tags 363

You now see the data access page, a Toolbox, and a list box containing
the tables and queries in your database (ready to be simply dragged and
dropped into the new Web page.)

4. Click the title section of the data access page and rename it
Northwind Orders, as shown in Figure 1-8.

5. Drag the Orders table from the Field List dialog box and drop it into
the Web page, stretching the table to make it a bit larger and dragging
it wherever you want to position it in the page.

Your new Web page now looks like the one in Figure 1-8.

Figure 1-8:
You’re
almost
finished
designing
this data
view of a
table. How
easy was
that?

Figure 1-7:
You have
multiple
choices
when
designing a
data access
page.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 363

Adding Smart Tags364

6. To complete the job, just save this Web page as an HTM file by choos-
ing File➪Save.

You see the Save as Data Access Page dialog box.

7. Choose a location on the hard drive to save this file and click the Save
button.

You might see a warning message describing how to deal with network
addressing. Ignore it for now.

When you double-click this HMT file that you just saved, it opens in
Internet Explorer (as shown in Figure 1-9), and the user can freely
browse.

The user can also make modifications to the data displayed in this Web page,
but to accept such modifications — that is, to permit updating of your data-
base by users — you must handle such requests programmatically.

Using augmented forms and reports
Forms and reports both now include a Move method and a Moveable prop-
erty with which you can change the position of forms or controls. New form
events include OnDirty (is it being edited?) for controls and OnUndo for
forms and controls. Reports now have the following properties previously
only available to forms: AutoCenter, AutoResize, BorderStyle,
CloseButton, ControlBox, MinMaxButtons, Modal, and PopUp.

Figure 1-9:
Here’s the
finished
Web page,
with a table
of data that
the user can
freely scroll.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 364

Book V
Chapter 1

Access Today

Adding Smart Tags 365

Also note that the pivot table and pivot chart functionality in Excel was
added to Access 2002. With these features, you can conduct sophisticated
analysis on data in any query, form, table, ADP (Access Data Project) table,
ADP view, ADP stored procedure, or ADP function. Pivot tables are described
in depth in Book IV, Chapter 4.

Although introduced in Access 2000, ADP technology wasn’t quite ready for
prime time. However, now, most agree that ADP is quite a useful set of tools for
creating client/server solutions. ADP files can contain the front-end objects
(Access macros, data access pages, reports, forms, and so on) and then you
connect to a back-end data store that holds the actual data (tables, views, pro-
cedures, and so on). After making this connection, you can use Access’s effi-
cient user interface to manage the tables and other objects stored on the back
end. Build your client-server application on your personal machine using the
SQL Server 2000 Desktop Engine described earlier in this chapter in the sec-
tion, “Using the new desktop server.” Then after building and testing is com-
plete, port your finished client-server project to the SQL Server database.

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 365

Book V: Advanced Access366

05b_570676 bk05ch01.qxd 6/4/04 10:09 PM Page 366

Chapter 2: Programming Access

In This Chapter
� Introducing Access objects

� Sorting out database technologies

� Using ODBC

� Abandoning VBA

� Abandoning DAO

� Understanding ActiveX Data Objects (ADO)

� Managing the concurrency problem

� Understanding RAD efficiencies

This chapter is for those who want to move their database programming
forward, and, moving forward sometimes means leaving something famil-

iar behind. In this case, your experience with DAO (Data Access Objects)
technology — a well-loved, stable system — must be eventually abandoned
in favor of ADO (ActiveX Data Objects). You also need to look past VBA to
VB.NET. This chapter is something of a launching pad, then: sorting out
the current Access object model but also looking forward to other, more
advanced programming technology.

Access differs in many ways from other Office applications, both in its user
interface and its programming technologies and tools. For one thing, Access
programming relies relatively less than other applications on VBA. In Word, for
example, you build solutions largely by using VBA to manipulate the objects
built into Word. With Access, however, two additional technologies — and
their object models and features — become significantly important in your
programming. These technologies are SQL (for creating queries to extract sub-
sets of data from a data store, or sometimes for modifying the data) and ADO
(for database management, scalability, interoperability, and other efficiencies).
Nonetheless, VBA can be the glue that ties the Jet engine’s features, record-
sets, SQL, and other elements together, so I cannot ignore the Access object
model.

Introducing Access Objects
Like other Office 2003 applications, Access’s highest object is the
Application object, which embraces several essential secondary objects:

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 367

Introducing Access Objects368

Table, Query, Form, Report, and DataAccessPage. In turn, these objects
themselves contain sets of objects.

Because the Application object is generally understood, in many situations,
it doesn’t need to be explicitly named in code when working with other Access
objects. Access also includes the usual collections: Forms, for example, is a
collection containing all currently active forms.

Start Access, choose File➪New, and then choose Blank Database from the
task pane. Click the Create button to close the dialog box and accept the
default name for the MDB file.

Press Alt+F11. Choose Insert➪Module. A nearly empty module appears.
Folks from MS (who enjoy enforcing rules on other people) have forced each
new Access module to include a line of code at the top of the module that
they think we should all use. They’re wrong, but how fun! This line of code
can introduce some bugs into your programming, but, well . . . so what?

Option Compare Database means that when strings are compared, they’re
not compared as you would expect on the binary level (case-sensitive, which
is the normal Visual Basic default) nor on the text level (case-insensitive).
Instead, the comparison is based on the locale (the language used by the
culture) of the database itself.

Because few of us need this type of comparison — and because most pro-
grammers who do work in some cross-cultural, multidatabase environment
surely know by now that they need to insert this line into their code — you
can just erase it. This way, your string comparisons will work as they nor-
mally do in all other versions of BASIC — namely, case-insensitive and based
on the cultural language of the computer system.

Now to ease into the world of ActiveX Data Objects (ADO), Data Access
objects (DAO), Access objects, alphabet soup, and the lovely, busy world of
object-oriented programming (OOP). Here’s an example of OOP in Access:

Set db = CurrentDb

CurrentDb doesn’t sound like the name of a typical method, but it is indeed
a method of the Access Application object. It delivers an object variable
of the database type, as techies like to say. In the code above, db is an object
variable containing a reference to the currently open database in Access —
the sample database Northwind, in the upcoming example.

Technically, this object variable contains a hidden reference to the Microsoft
DAO Object Library, but I won’t delve too deeply into useless OOP jargon.
You can use it without knowing all the gory details about its taxonomy, which
are usually only of interest to the people who classified all these things in
the first place.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 368

Book V
Chapter 2

Program
m

ing
Access

Adding a New Access Table 369

Adding a New Access Table
The structure of a database can be modified in many ways in your program-
ming. Try this example. It opens the Northwind sample database, adds a new
table to it (complete with four fields), and then closes it.

The Northwind sample database is supplied with Office 2003 to allow you to
experiment using a realistic MDB (Jet/Access-style) database. Northwind.
mdb should be found on your hard drive in C:\Program files\Microsoft
Office\Office11\Samples. However, you might not have it installed or
know where to look for it. Choose Help➪Sample Databases in Access, and
then select Northwind Sample Database. If it’s not there, go to the Windows
Control Panel, choose Add/Remove Programs, find and click Microsoft Office,
click the Change button, and follow the instructions to install the Northwind
sample database.

Before taking the drastic step of modifying the sample database, make a copy
of Northwind.mdb so that you can restore it to its pristine state after you’re
through adding this table. Of course, you could also always get it off the
Office 2003 CD.

Type the contents of Listing 2-1 into the Access VBA code window.

Listing 2-1: Adding a Table and Fields

Sub BuildTable()

Dim dbNorthwind As Database
Dim td As TableDef

Set db = OpenDatabase(“C:\Program files\Microsoft
Office\Office11\Samples\Northwind.mdb”)
Set td = db.CreateTableDef(“Arrests”)

With td
‘ Build the fields:
.Fields.Append .CreateField(“Alibi”, dbMemo)
.Fields.Append .CreateField(“Name”, dbText)
.Fields.Append .CreateField(“Alias”, dbText)
.Fields.Append .CreateField(“PrisonerNumber”, dbText)

‘ Append the new table to the database
db.TableDefs.Append td

End With

db.Close

End Sub

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 369

Understanding Microsoft Database Technologies370

Press F5 to execute this code. Now you’ve done it! Take a look at what hap-
pened to Northwind. Run Access, locate the Northwind sample database,
and open it.

Look at the tables in Northwind and then double-click the new one: Arrests,
created from the code in Listing 2-1. You see the fields that you created. By
using this same technique, you can add, remove, or otherwise modify tables
and their internal structures.

Understanding Microsoft Database Technologies
Before continuing with programming examples, draw back a bit to get a
handle on Microsoft’s various database-related initiatives.

Try to get a sense of the meaning of the many database programming terms
and how they’re related. Oh, yes: You must also always consider XML (the
technology that, theoretically, will someday permit universal data access and
messaging), the buried treasure toward which all the other roads — DAO,
Open Database Connectivity (ODBC), and ADO — supposedly lead. XML pack-
ages are supposed to be self-describing, which means that they contain both an
explanation of their structure as well as the data that fills that structure. For
example, when DataSets are translated into XML, they are divided into two
files: the schema (structure) and a separate file that holds the actual data.

Don’t run for the exits just because the subject of contemporary database
programming has some contradictions and is littered with acronyms.
Understanding these variations and acronyms is important. They represent
the yesterday, today, and tomorrow of database management . . . that is, if
Microsoft has anything to say about it. And for the foreseeable future at
least, Microsoft will have something to say about it.

The great Babel
You can store data in databases in thousands of ways. Most useful computer
applications store data, but rarely do they store it the same way as other
applications. They usually do it in peculiar, proprietary ways. For example,
can you use Access to search the e-mail messages in your Microsoft Outlook
Express Inbox database? Not directly.

One problem is the proliferation of structures. Some files are plain text
delimited by commas; others are delimited in other ways. Some files are in
proprietary binary formats; others are encrypted. And on it goes. To give
you an idea of this problem, Outlook 2003 uses the following 36 file exten-
sions: .cfg, .chm, .csv, .dat, .dic, .dll, .ecf, .eco, .exe, .fav, .fdm,
.htm, .html, .ics, .inf, .mdb, .msg, .nk2, .ocx, .oft, .oss, .ost, .pab,
.pag, .pst, .rhc, .rtf, .srs, .stf, .txt, .vcf, .vcs, .vfb, .wab, .xls,
.xnk. Think about it.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 370

Book V
Chapter 2

Program
m

ing
Access

Understanding Microsoft Database Technologies 371

You should (ahem, should) be able to search those files and extract useful
data that can be stored and managed by Access — or indeed, any other data-
base management system. True, you can search some of them; for example,
MDB, TXT, XLS, and some other formats are readily accessible to Access. But
all data files should be understandable, readable, and accessible unless they
need to be encrypted for security reasons. (And even then, encryption isn’t
designed to destroy data but just to temporarily disguise it until it can safely
be decrypted.)

More shoulds. You should be able to add a subset of your e-mail messages to
your company’s customer-service database if you want. You should be able
to store or copy e-mail anywhere, but you can’t. (Access saves data in files
with an .mbd extension, Outlook Express stores e-mail in files with a .dbx
extension, and the twain do not meet. Even Outlook Express itself has differ-
ent database styles — a few years ago it stored your e-mail in MBX files!)

And how about plain TXT files produced by Notepad or other simple (but
often useful) text editors? Why can’t many database applications retrieve
data from these kinds of files? Or from any and all kinds of files?

Data universality is hampered by various current trends, including the
increasing importance of distributed computing and client/server computing.
A primary trend today involves working harmoniously with applications and
data that’s spread across two or more machines. In other words, the Internet
and intranets sometimes extract tables (sometimes as DataSets) from their
database application or fracture an application into several parts running on
several different computers and cause other divisions.

Increasingly, businesspeople are realizing that lots of important information
remains unused or unintegrated because it’s not in the proper format.
Companies establish sites on the Internet and ask visitors for feedback on
their products. More and more, that feedback comes in the form of e-mail.
How many companies can make wide use of the information in that e-mail?
Can they sort it, search it, and otherwise exploit it in an organized fashion?
In other words, can they manage the data and store it for efficient integration
into other data? Very few companies could do these things until ADO.NET
technology arrived. And even fewer could make efficient use of HTML-based
data such as the Web-based catalogs of their competitors. (Companies do like
to check out competitors’ catalogs, you know.)

Understanding Open Database Connectivity
Open Database Connectivity (ODBC) is a Microsoft database standard that is
still widely used. ODBC takes on the burden of translating some proprietary
database formats into formats that database applications can understand.

Simply put, ODBC sits on your machine or a user’s computer (the client) and
translates remote (server) relational databases into data packages that your

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 371

Access and the Future of Database Management372

client application can handle. On a fundamental level, your application can
use Structured Query Language (SQL) to query or modify data held in a
remote database without worrying about the details of the remote data-
base’s methods of storing that data (such as punctuation, organization,
delimiting, and labeling).

One useful feature of ODBC is that you can specify ODBC connections.
(Technically, they’re Data Source Names, or DSNs.) You give these connec-
tions a name; then the next time you want to connect to that database, all
the necessary information (password, log-on information, type of database,
and so on) is already filled in, and you can just employ the DSN itself.

However, like many other acronyms you’ve gotten used to over the years,
ODBC is now in the twilight of its useful life. Microsoft has announced its
successors: OLE DB and, finally, ADO.NET. ODBC enables you to get rela-
tional data into a client computer. ADO.NET enables you to get any data
source’s data into a client computer — at least, that’s the promise.

These days, a source of data is increasingly called a data store rather than a
database. This new term is designed to help us broaden our sense of where
useful data can be stored. It need not be in a proper database file; instead,
you can now get data from simple TXT files, e-mail files, streams of data, and
more. In what other job are new terms so rapidly invented and then killed off
by newer jargon? Fashion? Advertising? Hair dressing?

ADO.NET can access data from many kinds of sources. Potential ADO.NET
data stores cover the waterfront, including structured, semistructured, and
unstructured data; relational and nonrelational data; and SQL-based and
non-SQL data. Examples include desktop databases, flat files, mail stores,
directory services, personal information managers (PIMs), multidimensional
stores, and even those elusive OLAP cubes (don’t ask).

Access and the Future of Database Management
Office 2003 developers might need to move beyond the programming capa-
bilities built into the Office suite — namely VBA. VBA served for years as the
best available programming technology for small businesses using Office.
Now, though, with the demands of the Internet, larger intranets, security
issues, and bandwidth conservation, creating robust solutions requires
moving to VB.NET and Visual Studio (the editor and set of programming
tools used by most serious developers).

With Access, you have a tested, effective system for small offices and home
use. Access’s many rapid application development (RAD) tools, such as its
property pages, wizards, and other helpful utilities, are well known and quite
functional on the small office/home level.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 372

Book V
Chapter 2

Program
m

ing
Access

Access and the Future of Database Management 373

But as your view expands to Internet sales, distributed programming solu-
tions, larger numbers of employees, and more complex Access programming,
you need to expand your programming skills and move to .NET.

Access itself cannot support your needs with its efficient (although limited)
built-in tools. You can still work with the actual Access database files (MDBs),
and perhaps data entry can still be serviceable by using the Access facilities.
Put another way, existing MDB files can sit on the back end, and you can
employ Access to build a user interface on the front end. But other activities —
such as multiple simultaneous Internet connections — can place too great a
burden on Access’s tools.

Access’s performance degrades as you increase the scale of interaction
(ramp up the number of users). In addition, Jet’s (Access’s engine) record-
locking behaviors don’t offer the necessary scalability for modern, enterprise-
large applications. You can relieve this scalability pressure in some ways by
using VBA to buffer user loads and manage security issues. But if you really
want to prepare yourself, your co-workers, and your company for future
needs, my advice is to move on from VBA to VB.NET.

You can download a 60-day trial version of Visual Studio .NET from this site:

http://msdn.microsoft.com/vstudio/productinfo/trial/default.
aspx

That said, take a look at the several technologies relating to database
management.

The recent legacy: Data Access Objects (DAO)
Only a few years ago, the most popular database technology was Microsoft’s
Data Access Objects (DAO). Robust and well-tested, DAO was used by most
database programmers until recently. They understood its object model (its
syntax and how to program its methods and properties).

However, DAO had several weaknesses. It is best at single, desktop computer
database management rather than distributed client/server, Internet, or
intranet database management. In addition, DAO doesn’t like old database
formats — and lots of businesses have stuff stored in legacy formats.

Nor does DAO like new data formats all that much either, such as HTML,
DHTML, e-mail, and plain text. DAO wants relational data — data organized
into tables, fields, indices, and relations. You can’t blame DAO for all this
because it was never designed to do anything other than what it does (and
does splendidly). Nevertheless, the time has come to phase out DAO and
raise the curtain on the new stars of the database world. If your company is
still using DAO, you’re not preparing for the future.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 373

Access and the Future of Database Management374

What solution does Microsoft propose for addressing the shortcomings in
DAO and other schemes? Universal data access through XML. This plan
doesn’t require that you massage data in any extreme ways. You don’t have
to pour e-mail files, a bunch of old DBF dBASE files, and Notepad TXT files
through filters until they end up in a new, all-purpose file type.

Tools that support the XML strategy are designed to package data from its
current format; provide self-describing, plain-text packages; and then send
those packages freely (no firewall blockage) over an intranet or the Internet.
When received, the XML data packages can be absorbed into whatever data
store the receiving party uses. In theory, this approach will let you (the pro-
grammer) send or receive data without worrying about its native format. It
doesn’t matter whether the data comes from or goes into TXT, MDB, DBF, or
DBX files. Microsoft supports XML, of course, and has built the .NET data
storage and messaging systems on XML.

Now, you might be asking, “Isn’t this universal access the same promise that
we’ve been offered so many times before?” What about all the previous
attempts to resolve the Babylon problem, such as the Symphony application
suite offered in the mid-80s as the solution to the confusion of file types and
data storage schemes? And Symphony’s many successors?

Sure, for more than two decades, developers have been playing the universal
data-access tune. XML is simply the latest attempt to offer everything to
everyone in the Web-development crowd.

So, do I believe that XML is a step in the right direction? Yes. And to move
toward XML and the .NET technology, you must begin to explore ADO.NET. If
you work with databases, you should learn how to program ADO.NET. In all
likelihood, it will become the technology of choice for database programming
in the future.

Understanding ActiveX Data Objects
With ActiveX Data Objects (ADO), database programming became somewhat
simpler to write, and new capabilities pointed the way to true distributed
computing.

Consider just a couple of intriguing features of ADO: building recordsets from
scratch (without any database connection) and disconnecting recordsets from
the server. When disconnected, recordsets continue to work fine in your work-
station (client) computer. Just like a worm chopped in half, each part behaves
normally. And later, you can rejoin these recordsets to their original database
or merge them into other databases. This can greatly improve the scalability of
an application because lots of people need not maintain ongoing connections
to the same database, thereby jamming the traffic on a server and taxing the
abilities of aging applications like Access that were never designed to leap and
twirl within the sudden-scaling world of the Internet.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 374

Book V
Chapter 2

Program
m

ing
Access

Access and the Future of Database Management 375

Instead, users all work independently with disconnected recordsets sitting in
their own personal machines. Recall that Access can effectively handle only
ten simultaneous connections.

Also, when you know how to use ADO, you can use it with virtually any kind
of data: HTML, e-mail, and plain text, as well as traditional relational data
and even legacy data sources.

ADO offers all the features of its ancestors (DAO and RDO), but it requires
some changes in programming techniques. For example, ADO is said to flatten
the object model of DAO and RDO. Flattening means streamlining the model
by reducing the number of objects but increasing the number of properties
and methods of the objects that remain. Flattening also generally lessens the
emphasis on the object hierarchy. Put simply, you can create objects without
having to create other, higher objects. You can create a recordset without
first having to create a Connection object for it, for example.

DataSets replace recordsets
Go deeper into the ADO.NET framework, and you discover various ways to
manipulate and benefit from the new DataSet concept. You’ll find many
improvements, including ways to map aliases (make one-to-one substitu-
tions) when, for example, you’re using a DataSet from Greece and prefer to
program using English words to name the various columns in the data store.

Note that with the move from ADO to ADO.NET, the ADO recordset has been
replaced by the ADO.NET DataSet.

Some advantages of ADO.NET
The ADO.NET technology has been designed to provide you with as much
flexibility as you might need — and database programming can require flexi-
bility. Above all, remember that ADO.NET supports disconnected DataSets.
The reason is that maintaining a continuously open connection between
client and server is not only wasteful of system resources, it’s often simply
not possible in the world of Internet programming. So many people, so little
power and memory in your server.

What’s more, the typical database can handle only a few concurrent open
connections. That pretty much eliminates old-style connected programming
for any but the least popular Web sites. When you program for the Web, you
must face the fact that 4 visitors to your site can suddenly swell to 400 —
and many of these visitors might want to view your catalog or place an order
at the same time. You hope, anyway.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 375

Access and the Future of Database Management376

Web programming is always essentially disconnected programming. For exam-
ple, when a server sends an ASP.NET HTML page to a user’s browser, it dis-
cards its copy of that page. It pays no more attention to the user’s browser
until another request arrives from the user. It’s like the relationship between
the president and hundreds of clamoring reporters.

ADO.NET and ASP.NET (its Internet-programming counterpart) are based on
the premise that you’ll often be programming for a disconnected architec-
ture. You permit your application to connect to a database only while fetch-
ing data or saving changed data back to the database. Otherwise, you’re not
connected, and the database can therefore service some other request for
data. If your application is designed to work on a single-user, standalone
computer — therefore requiring a continual connection — use ADO instead
of ADO.NET.

Microsoft sometimes now uses the term column to mean what used to be
called a field in a database table. Likewise, MS now uses the term row for
what used to be called a record. This seemingly endless shifting of terminol-
ogy . . . well, it’s the way things are. Keeps us all on our toes. IBM is using
this terminology, too. I don’t think it’s going to catch on.

With ADO.NET, after data has been extracted from its data store, the result-
ing set of data (DataSet) is then translated into XML. If you need to store
the DataSet as a file, it’s stored in XML format. If you send the DataSet to
another application, it is transmitted as an XML file. The translation to and
from XML is handled for you automatically by ADO.NET.

In ADO, you were forced to use what is called COM when transmitting a
disconnected recordset, but in ADO.NET, you use the simpler, cleaner XML
stream. Among the benefits of XML is that no data-type conversions are
required. With COM, ADO data types must be converted to COM data types,
slowing things down.

Another advantage is that firewalls generally have no problem permitting
the transmission of XML. (Ordinary HTML, from which XML is derived and
which it resembles, is considered harmless by firewalls.) XML is seen as
text — probably formatting or simple data — with no capability to spread
viruses, inject worms, or otherwise threaten security. A COM transmission,
on the other hand, makes a firewall slam shut because the transmission is
fundamentally a binary — possibly an executable — form of information.
Finally, the XML technology places no restrictions on the data types, unlike
the limited set offered by the older COM technology.

Of course, there is no perfect technology. XML has its critics, too. The number-
one defect is that platform independence — a frequently sought goal — has so
far proved elusive. Already there are thousands of proprietary flavors of the
supposedly universal XML data structure. Also, XML’s claims that it is self-
documenting are doubtful. Because artificial intelligence doesn’t yet exist, the

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 376

Book V
Chapter 2

Program
m

ing
Access

Working with the DataSet Object 377

notion that a file could arrive at a server and explain itself to a receiving
application — without any human intervention — seems more than a little
far-fetched. There are other criticisms, too, including XML’s famous
verbosity.

Nonetheless, here are some reasons for you to consider switching from ADO
to ADO.NET, particularly for distributed applications. Although ADO did
introduce the concept of the disconnected recordset, ADO is nonetheless
optimized for connected programming. ADO fundamentally assumes a
continuous connection between the database and the application using it.
ADO.NET, on the other hand, is optimized for the opposite: connect-on-
demand programming.

Think of an ADO recordset as essentially a single table. If you want data from
more than one database table, you have to use a JOIN query. The ADO.NET
DataSet is a collection of one or more tables (DataTable objects). Therefore,
data extracted from more than one table in a database is represented in the
DataSet as more than one DataTable object. This is easier to visualize
because there is essentially a one-to-one relationship between the structures
in the database and the DataTable objects in the DataSet.

Working with the DataSet Object
Like objects everywhere, the DataSet class offers collections and proper-
ties. You need to understand the structure of the DataSet object to work
with ADO.

Collections within collections
The DataSet has two primary collections: Tables and Relations. Lower
in the hierarchy are several collections within the DataTable object: rows,
columns, keys, childrelations, and parentrelations. The DataRow class
includes a RowState property indicating whether and how the row (record)
has been modified since its DataTable was first loaded from the database.
The RowState property can be set to modified, new, deleted, and unchanged.

Substituting names (mapping)
When you first load the data from a database into a DataSet, the names of
the tables and columns in the DataSet are the same as those used in the
database or data store. If you prefer to use different names while working
with the DataSet, just create your new names in the DataSet command and
then map your names to the ones used in the original database. Both the
OleDbCommand and SqlCommand use their TableMappings collections to
map custom names to database names. When you return the data to the
database, all will be well: Any edited data will flow into the correct columns
and tables as named originally in their database.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 377

What If Someone Else Modifies the Database in the Meantime?378

Why would you want to map or rename tables and columns? Perhaps the
database is written in a foreign language, and you find it easier to work with
mapped aliases rather than foreign words. Or maybe you have an in-house
naming scheme for your databases but are working with DataSets from
some other organization. You want to maintain the custom naming scheme
in your programming. So map.

What If Someone Else Modifies
the Database in the Meantime?

While your DataSet is been disconnected from its database, someone might
have also been working with some or all of that data in his or her separate
DataSet. Maybe the person modified some of that same data and updated
the database by restoring the contents of the DataSet to the database. What
if the person edited a record that you also edited? Should you overwrite the
other person’s changes with your changes? Or vice versa?

Unfortunately, the ADO.NET DataSet commands cannot handle this prob-
lem automatically, but what technology can? The DataSet — like all other
contemporary computing — is not artificially intelligent, after all. ADO.NET
will not automatically lock a record in the database and then warn others
that the record is being edited and that they must wait . . . and then solve
the version problem that arises when multiple, duplicate DataSets compete
for inclusion in the database update process.

It’s up to you to write programming to solve a potential problem when new
versions of a record conflict. If this is a possible problem for the database
you’re working with, you have to find a solution and write the source code
for that solution yourself. What’s more, if the database you’re working with
could have a problem with conflicting records, you have to find a solution
and write the source code for that solution yourself.

The problem of two or more users in conflict during their attempts to flush
back disconnected data into a database is the problem of concurrency or
the version problem. When two or more users try to update a given record,
should the changes made by the last person to update that record win?

Optimism versus pessimism
You can approach the concurrency problem in two fundamental ways: opti-
mistic concurrency and pessimistic concurrency.

✦ Optimistic concurrency: This prevents outsiders from changing a
record (row) only while another person is updating that record. The
updating usually takes very little time, so the lockout is brief.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 378

Book V
Chapter 2

Program
m

ing
Access

What If Someone Else Modifies the Database in the Meantime? 379

✦ Pessimistic concurrency: By contrast, this locks out others for a longer
time. The lock starts when one user accesses a record (which that user
might potentially edit or delete) and is in effect until the original user
sends the record back to the database. (This is similar to the older style
of database programming that maintained an open connection between
an application and a database.)

Optimism
Optimistic concurrency locks a record only briefly, during the save to a hard
drive. This prevents a nasty collision if two different records are simultane-
ously sent to the same record location in a database.

When a user attempts to update a record under optimistic concurrency, the
updated data is compared with the existing record in the database. If there is
any difference between them, the update is rejected. An exception is raised:
An error message is generated. You (the programmer) must handle such
errors in ADO.NET. You must write programming that responds to this type
of error (using the Try-Catch error handling system in VB.NET) and decide
what to do about the changed record. Do you accept it? Or do you have
some criteria that can reconcile a data clash?

One version of optimistic concurrency is last-in wins. This version doesn’t
compare the updated record with the original record. It merely lets each new
update replace the previous version of the record. The last-in wins approach
is the most scalable approach that you can employ.

Pessimism
Pessimistic concurrency is useful if you need to freeze a record while making
arrangements for a customer. For example, if an Amtrak agent is talking to
someone about booking a sleeping car room on the train for a popular holi-
day, pessimistic locking will prevent two agents in two different stations
from contending for the same room, thereby angering a customer. In that
type of situation, you want to lock the record for that room until the first
customer makes up his mind and either reserves that room or not.

The problem is that when you’re using a DataSet, you can’t use pessimistic
concurrency. It’s not practical in a disconnected architecture, and it’s not
scalable for the same reason that maintaining an open connection between
an application and a DataSet isn’t scalable.

Comparing versions with optimistic concurrency
When deciding which record gets saved, classic optimistic concurrency
compares versions by checking their version number (or, in some cases,
their time and date stamps) or by saving all the values (all the data in the
DataSet is saved when the data is initially read).

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 379

Getting Results in Seven Easy Steps380

If the version number approach is used, each record must have a version
number (or datestamp) column. This special column is saved on the client
computer when the record is first read. Then if that client has modified a
record, the database is checked to see whether the stored version number
matches the version number currently in the database. If they match, it
proves that no other person has modified that record since it was “checked
out” for use by the client. Therefore, it is safe to update the record with the
client’s edited version. You can use an SQL statement like the following to
conduct this test:

UPDATE myTable SET Field1 = ChangedValue1, Field2 =
ChangedValue2

WHERE ClientStoredStamp = OriginalStampInDatabase

If this SQL is attempted but the ClientStoredStamp doesn’t equal the
OriginalStampInDatabase, an error is returned, and you can write program-
ming to make a decision about what to do. (You could store the client’s editing
and thereby replace the current record, extract the current record to compare
it with the client’s edited record, or save both versions and ask a human to
make the decision.) It’s also your responsibility to write the programming that
updates the version or datetime column whenever a record is modified.

The other approach to managing optimistic concurrency is to save a copy of
a record when it is first read. This means that your DataSet will have two
copies of any record that is read: the one from the database and the one that
the user modified. By using this approach, when the user attempts to update
a record, the original version that came from the database is compared with
whatever is now in that database. If they match, there’s no problem. It proves
that no one messed with the record while it’s been “checked out” of your
DataSet, so you can go ahead and save the updated version (containing the
user’s modifications) to the database without worrying about overwriting
someone else’s work.

Every DataSet command includes four parameter collections, one for each
of the four commands: Select, Update, Insert, and Delete. Each param-
eter corresponds to a placeholder (? in an SQL statement) in the command
text. The properties of a parameter specify both the column that the param-
eter is associated with and whether the parameter represents the edited ver-
sion or the original version. These parameter collections make it possible for
the DataSet command to generate dynamic SQL (or provide parameters to a
stored procedure).

Getting Results in Seven Easy Steps
(Drum roll, please) I now conclude this chapter with a demonstration of
some of the RAD features available to VB.NET. By progressing beyond VBA to

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 380

Book V
Chapter 2

Program
m

ing
Access

Getting Results in Seven Easy Steps 381

manage database-related programming with .NET, you’re not giving up wizards,
add-ons, or other features that can assist you in quickly moving from need to
solution.

This next example demonstrates how quickly you can connect to a server data-
base (Northwind, to be precise) with VB.NET’s RAD tools. No human hands will
write any programming! Yet, in seven quick steps, you’ll watch as a big Access
table of data travels from its server database and is displayed in a client grid
before your very eyes. You’ll be slap speechless! Just seven quick steps!

I end this chapter by showing you how much VB.NET can do to help you
with your Access database programming. In the following example, you see
VB.NET make a connection, define a query, access the data, and preview the
DataSet it created:

1. After starting a new VB.NET Windows-style project, open Server
Explorer in Visual Studio, as shown in Figure 2-1.

You can do lots of things with Server Explorer, including adding, editing,
and deleting tables and columns. You can even create a new database!

2. Drag a table (Orders for this example) and just drop it onto the
VB.NET form, as shown in Figure 2-2.

As soon as the Orders table is dropped onto the form, a Connection
control and a DataAdapter control are automatically added to the proj-
ect. They are placed in the tray below the form.

3. To create a DataSet that contains the Orders table, right-click the
SqlDataAdapter1 icon in the tray and then choose Generate Dataset
from the context menu that appears, as shown in Figure 2-3.

Figure 2-1:
Server
Explorer is a
very useful
feature of
Visual
Studio .NET.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 381

Getting Results in Seven Easy Steps382

Figure 2-3:
A Data-
Adapter
can
generate
as many
DataSets
as you want.

Figure 2-2:
Adding
tables from
an SQL
database is
as easy as
dragging
and
dropping.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 382

Book V
Chapter 2

Program
m

ing
Access

Getting Results in Seven Easy Steps 383

The Generate Dataset dialog box appears.

4. Your only job is to give this new DataSet a name.

Name it Maxie, as shown in Figure 2-4.

5. Click OK.

The new DataSet appears in the tray, as you can see in Figure 2-5.Your
new DataSet was created courtesy of the DataAdapter control.

6. Right-click the SqlDataAdapter1 icon again, but this time, choose
Preview Data from its context menu.

The Data Adapter Preview utility opens.

7. Click the Fill DataSet button.

All the data in the Orders table rolls into view, as you can see in Fig-
ure 2-6. That didn’t take long, did it?

I believe that after you’ve used them a little, you’ll come to consider the
VB.NET DataSet your friend.

Figure 2-4:
Use this
dialog to
name a new
DataSet
(or modify
an existing
one).

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 383

Getting Results in Seven Easy Steps384

Figure 2-6:
The
Orders
table is
extracted
from the
server and
sent to the
DataSet.

Figure 2-5:
There’s
Maxie1
sitting
proudly in
the tray.

05c_570676 bk05ch02.qxd 6/4/04 10:10 PM Page 384

Chapter 3: Manipulating Datasets

In This Chapter
� Loading an Access database into .NET

� Filtering queries with Select

� Working with the DataView object

� Creating relations

� Communicating with a database

� Using the XML Designer

� Saving an XML dataset

� Loading XML into Access

After tables get liberated from the usual restraints and proprietary restric-
tions within databases — after they’re flying free as datasets — the sky’s

the limit. In this chapter, you see how to import a table or tables from an
Access database into a VB.NET dataset, how to manipulate datasets every
which way, and then how to send a dataset back into Access. The aging VBA
language still built into Office applications comes nowhere close to VB.NET
when free data management is concerned.

The techniques that I describe in this chapter, however, show you a way to
retain your investment in Access. You can use it as a front end for user-
interaction with a data store or even add Access databases to other back-
end data. And of course, XML will often be the technology of choice when
communicating between front ends, back ends, or any other ends.

Loading Access Tables into VB.NET Projects
Many offices use Access to both store data as well as to provide a way for
users to view or update that data. However, Access isn’t scalable enough by
itself to manage data for large, enterprise systems. One approach to bring-
ing Access into the world of distributed systems and Internet programming
is to integrate Access databases and the Access user interface with .NET
technologies. .NET is designed to be used with XML, to be Internet-ready,
and to permit highly scalable solutions. For these reasons, you want to con-
sider preparing for your company’s future by finding out how to tie Access
into .NET — how to send data stored in Access, for example, to a VB.NET
project. To see how to import data from an Access (MDB) database into a
VB.NET project, follow these steps:

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 385

Loading Access Tables into VB.NET Projects386

1. Start a new VB.NET Windows project.

2. Add a DataGrid control from the Toolbox (Windows Forms tab) to
Form1.

3. Choose View➪Server Explorer.

Server Explorer appears, with a list of all your data connections. (Read
more about Server Explorer in Book V, Chapter 1.)

4. Right-click Data Connections in the Explorer.

5. Choose Add Connection from the context menu that opens.

6. In the Data Link Properties dialog box that opens, click the
Provider tab.

7. Choose Microsoft Jet 4.0 OLE DB Provider.

8. Click Next.

9. Click the ellipsis button next to Select or Enter a Database Name.

The Select Access Database dialog box opens.

10. Locate the Northwind.mdb sample database on your hard drive.

If it wasn’t installed when you installed Office 2003, use Control Panel’s
Add/Remove Programs utility to install the samples from the Office CDs.

11. Double-click Northwind.mdb.

The Select Access Database dialog box closes.

12. Click Test Connection.

You should have no trouble passing this test.

13. Click OK to close the Data Link Properties dialog box.

Your new connection is displayed within Server Explorer, ready to
be dropped into any form that you want to connect to this Access
database.

14. Drag and drop this new ACCESS connection onto Form1.

15. Click the Don’t Include Password button.

The Do You Want to Include the Password in the Connection String
dialog box closes, and a new OleDbConnection1 icon appears in your
tray.

16. Close Server Explorer.

17. Double-click the OleDbDataAdapter icon in the Toolbox (Data tab) to
add it to the form.

The Data Adapter Configuration Wizard appears, ready for you to define
which tables — and which fields — should be used to build your new
disconnected dataset from the original Access database.

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 386

Book V
Chapter 3

M
anipulating
Datasets

Loading Access Tables into VB.NET Projects 387

18. Click Next.

Your connection is automatically listed.

19. Click Next again.

SQL statements are selected (that, too, is what you want to use).

20. Click Next and then click the Query Builder button.

This opens the automated SQL Query utility, which is similar to Access’s
various query tools, such as the Simple Query Wizard or Expression
Builder. You might find the .NET Query Builder easier to use, though,
because there’s no need to switch between design view and SQL view
like there is in Access.

21. Double-click Customers to add that table to the new dataset.

22. Click Close.

Your Query Builder should now look like the one in Figure 3-1.

23. Select the fields from this table that you want to include in the
dataset. For the heck of it, select All Columns.

Columns is the latest fad term for fields. Sure, it’s been used by IBM and
some others for years, but only recently has Microsoft been trying it on
for size. Time will tell whether it sticks.

Notice that the SQL statement is automatically adjusted from this:

SELECT
FROM Customers

Figure 3-1:
Building
SQL queries
was never
this easy.

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 387

Generating a Dataset for an Imported Database388

To this:

SELECT Customers.*
FROM Customers

24. Click OK to close the Query Builder.

25. Click Next and then click Finish.

Generating a Dataset for an Imported Database
After you define a connection and specify the database contents that you
want to import (in the preceding steps), you can generate a dataset for your
VB project. In the preceding section, you can read how to specify a connec-
tion to the Access database, including an SQL statement that requests the
Customers table from that database. Now that things are set up, you can do
the actual work. You pull the data from the database and store it in a brand
new dataset. The dataset is a detached table of data that can now be manip-
ulated by the VB.NET application you’re writing. It can be transmitted via
XML, stored in other formats, filtered, or whatever your heart desires.
Follow these steps:

1. Right-click the OleDbDataAdapter1 icon in the tray.

A context menu appears.

2. Choose Generate Dataset.

The Generate Dataset dialog box opens.

3. Name your new dataset dsCustomers.

4. Click OK.

The dialog box closes, and the new dataset’s icon is added to the tray.
Now you want to bind the DataGrid control to this dataset so that data
will fill it when the VB.NET project executes.

5. Click the DataGrid to select it.

6. Press F4 to display the Properties window.

7. Click the DataSource property in the Properties window.

A down-arrow button appears.

8. Click the button to drop the list down — it’s like a list box.

9. Click dsCustomers1.Customers to select the dataset.

The dataset is now bound to the grid control. Notice that the fields are
displayed along the top of the grid control in the form.

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 388

Book V
Chapter 3

M
anipulating
Datasets

Case Study: Maintaining Alphabetical Order 389

The wizard’s work is now over. You have to do a bit of programming (very
little, calm down) to actually fill the dataset when your project executes.
Double-click the form and type this into your Form_Load event:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

OleDbDataAdapter1.Fill(DsCustomers1)

End Sub

Press F5 to see the results displayed in Figure 3-2.

Case Study: Maintaining Alphabetical Order
So far, so good. Now for some manipulation — demonstrations illustrating
the ways you can manage datasets — starting with figuring out how to alpha-
betize them.

Purists insist that relational data should not be maintained in alphabetical
order. Well, those of us who design database solutions for actual living
people here on planet Earth know that although data might not need to be
maintained that way inside the database, it often has to be displayed in
alphabetical order to users.

Figure 3-2:
There it is,
your Access
database
moved into
a VB.NET
project,
displayed
and ready to
be manipu-
lated.

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 389

Case Study: Maintaining Alphabetical Order390

.NET Arrays, ArrayLists, DataViews, and DataTables are all objects that
have a built-in sorting method. Oddly, DataSet object does not. You can, of
course, specify that a particular column be indexed (and if it’s a primary key
column, its values are forced to be unique). However, although indexing a
column makes searching more efficient, it does not maintain the rows in
alphabetical order.

Precisely how indexing works varies among the different database types.
Typically, databases include a primary key (also known as a primary key
index). Some databases also feature a clustered index in which the rows are
maintained in the same order as the index. In other words, when you add a
new record, it is inserted into its alphabetical location within the set of exist-
ing rows rather than simply appended to the set. This kind of indexing is not
available, however, to DataSets.

When you first create an SQL query to extract a DataSet from a database,
you can specify that the result be ordered (alphabetized) in a particular
way (ascending or, more rarely, descending). You can also specify that the
DataSet be ordered by whatever column you want. Imagine a database table
that works like a cookbook, filled with recipe titles in one field and recipe
instructions in a second field. You could order this table alphabetically by
recipe title column in a recipe database, for example.

This is all well and good, but what happens after the DataSet gets into the
user’s computer, and the user starts adding new rows of information? There’s
the problem. Each new row is not inserted alphabetically. If you permit the
user to go to the next or previous row by clicking buttons to maneuver
through the DataSet, or if you display the entire list of titles (for example,
in a list box), some of the rows (at the bottom of the list box) will be out of
alphabetical order. That’s bad. You have to figure out a way around that prob-
lem. You want your DataSet to always be in alphabetical order, even when
the user adds a new record or changes a title so that the recipe must now be
listed elsewhere in the alphabetized list.

Providing an ordered list is such a common user-interface issue that it’s sur-
prising that the DataSet doesn’t have a sort method.

Your first thought might be to just set a list box’s Sorted property to True.
That way, when you display all the titles, they are displayed in alphabetical
order. True, but it doesn’t solve the following two problems:

✦ When users add some recipes to the recipe database and then click the
Next button to move up to the end of the rows, they go past recipes
titled X, Y, and Z and find a mixture of S, R, A, Q, N, or whatever. (The
added recipes are just sitting at the end, appended in no particular
order.) The list box’s Sorted property does not alphabetize items as
they are browsed by the Next button.

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 390

Book V
Chapter 3

M
anipulating
Datasets

Filtering with Select 391

✦ The order of the titles displayed in the list box gets out of sync with the
recipes column. For example, if the user clicks the third title in the list
box, it might or might not represent the third record in the DataSet. Why?
Because perhaps the user has added a new row, and its title begins with A.
That record shows up at the beginning (top) of the list box and bumps all
lower titles down one in the list box (but not in the DataSet table). When
users click in the list box, they expect to see the recipe for that title dis-
played in a text box. How do you, the programmer, figure out which row
in the DataSet to display? You can’t use the SelectedIndex property of
the list box: It tells you which title the user clicked but not which row in
the DataSet to display. The SelectedIndex number doesn’t necessarily
sync with the DataSet item number (Tables(0).Rows(i).Item(1)).

Of the several ways to deal with this, you could search the DataSet for the
title that matches the one the user clicked and then display the recipe. As long
as the title column contains unique entries (is a primary key), this works.

You can choose from two approaches to query and sort the records in a
DataSet: the Select method and the DataView object. These two tech-
niques are worth knowing about because sorting and searching are quite
common database-related jobs. However, as you see, they don’t solve the
problem outlined in the preceding paragraphs. They do not permit you a
way of sorting the DataSet itself.

I suspect that in the drive toward scalability (another word for one-size-fits-all),
some features that are useful to small- or medium-size applications have been
left out. Clearly, a huge database with 10,000 records isn’t going to be inter-
acted with by clicking Next and Previous buttons. Nor is it practical to display
a huge list box with 10,000 titles. There are other, better ways to interact with
monster databases. However, many of us work with smaller projects, such as a
small office’s inventory or personnel file. Creating utilities on this scale with a
DataSet becomes problematic when you attempt to use a DataSet and find
you can’t sort it. However, probably the best solution is to simply search on
your primary key field for a match to the string that the user clicked in the list
box. This doesn’t solve the Next and Previous button navigation method,
though.

Filtering with Select
When you use the Select method of the DataTable object to get a list of
data, the process is filtering. This is essentially the same process as query-
ing, when you use SQL to extract a subset of the data in a database. In effect,
you say something like, “Give me a list, ordered by age, of all the kids on the
swim team who are still in the Minnows class.” This process involves both
searching and sorting simultaneously. Explaining SQL is beyond the scope of
this book, but there are lots of other lovely books that just spend all their

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 391

Filtering with Select392

time on it. I recommend SQL For Dummies, 5th Edition by Allen G. Taylor
(Wiley).

To experiment with the Select method, start a new VB.NET Windows-style
project and add a ListBox to the form. In this example, I build a dataset
from scratch rather than importing one from an Access database or some
other outside source.

Type these Imports statements at the very top of the code window:

Imports System.Data
Imports System.Data.OleDb
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports System.Data.SqlDbType

You don’t need them all, but what the heck. Why fiddle around? Just dump
them in. Now type these declarations just above the Private Sub
Form_Load line:

Dim ds As New DataSet(), dr As DataRow, dt As DataTable

‘ Used to create a new table, and an array of DataRow objects
Dim newRows() As DataRow
Dim newTable As DataTable

The newRows and newTable objects are used in later examples in this chapter.

In the Form_Load event, you define the schema of a DataSet and populate it
with some rows of names. For simplicity, in this example, you use the same
schema as in the example in the previous chapter. However, you let the com-
puter generate a list of 30 rows that you can experiment with. Type the fol-
lowing code (Listing 3-1) into the Form_Load event:

Listing 3-1: Filling a Dataset

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

‘define the dataset:
dt = New DataTable(“Recipes”)
dt.Columns.Add(“title”, GetType(String))
dt.Columns.Add(“desc”, GetType(String))

Dim colArray(1) As DataColumn
colArray(0) = dt.Columns(“title”)
dt.PrimaryKey = colArray

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 392

Book V
Chapter 3

M
anipulating
Datasets

Filtering with Select 393

ds.Tables.Add(dt)

‘create 30 random titles and descriptions, and add
them to the DataSet:

makeupnames()

‘display the random title and description columns in
the listbox

Dim i As Integer, n As String
For i = 0 To dt.Rows.Count - 1

n = ds.Tables(0).Rows(i).Item(0) & “...” &
ds.Tables(0).Rows(i).Item(1)
ListBox1.Items.Add(n)

Next i

End Sub

Just below the End Sub that ends the Form_Load event, add this next sub-
routine, which makes up 30 fake, random titles and recipes and adds them to
the DataSet. They are out of alphabetical order. (They’re just random non-
sense until you later alphabetize them by using the Select method.) Type in
this Sub (Listing 3-2) below the Form_Load procedure’s End Sub, just above
the End Class:

Listing 3-2: Making Up Fake Names

Sub makeupnames()
‘create fake names
Dim rndGenerator As New System.Random(1)
Dim i, j, x As Integer
Dim word As String

For i = 1 To 30

For j = 1 To 12
x = rndGenerator.Next(97, 123) ‘limit it to

lowercase letters
word += Chr(x) ‘add a character (from the

ASCII code value) to the word
Next

dr = dt.NewRow()
dr!title = Microsoft.VisualBasic.Left

(word.ToUpper, 6) ‘make the titles uppercase to
distinguish them
dr!desc = Microsoft.VisualBasic.Right(word, 6)
dt.Rows.Add(dr)
word = “”

Next

End Sub

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 393

Filtering with Select394

Notice that by seeding the random number generator with an integer in the
first line of code — (1) in this example — you force it to provide the same list
of random names each time the program runs. I chose this approach so that
you can repeatedly test various aspects of these examples and tell at a glance
how the records have been selected or ordered. Don’t seed the generator if
you want varying lists of random names. Now press F5 to see your DataSet
titles column displayed. Notice that they are not in alphabetical order.

Alphabetizing with Select
In this next example, you alphabetize the list by creating a new array (of
DataRow objects) and by specifying that the Select method should order
them alphabetically (which is the default behavior of the Select method).

Add a button control to the form and change its Text property to Order by
Select. Double-click the button and type this (Listing 3-3) into its Click
event:

Listing 3-3: Alphabetizing

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim i As Integer
ListBox1.Items.Clear()

‘ Create a new table, and an array of DataRow objects
Dim newRows() As DataRow
Dim newTable As DataTable
Dim n As String

‘ Get the DataTable of a DataSet.
newTable = ds.Tables(“Recipes”)

newRows = newTable.Select()

‘ Display the values in both columns of each DataRow.
For i = 0 To newRows.GetUpperBound(0)

n = newRows(i)(“Title”) & “...” &
newRows(i)(“Desc”)
ListBox1.Items.Add(n)

Next i

End Sub

Press F5 and click the button. The titles are now alphabetized within the list
box, as shown in Figure 3-3.

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 394

Book V
Chapter 3

M
anipulating
Datasets

Filtering with Select 395

Interestingly, in this array of DataRows (newRows), the Titles and Desc
columns remain synchronized. This is what you wanted to happen to your
DataSet, but you had to create a new array and use the Select method of
the DataTable to accomplish it. The DataSet doesn’t have a Select
method nor any other way of sorting itself.

One is sorted, the other isn’t
Even after creating this new array, notice that the DataSet itself isn’t
alphabetized — just the new array. As you see in a moment, to alphabetize
the DataSet, you can try to replace the rows in the DataSet by deleting the
current DataSet’s rows and then dumping this newRows array into the
DataSet. That sorts the DataSet, albeit in a rather roundabout way.

However, if you do try to replace the existing DataRows with the new array,
you run into all kinds of permissions problems: The primary key row already
exists and can’t be duplicated, Row doesn’t exist, and Column Title doesn’t
allow nulls. Here is a way (Listing 3-4) to replace the rows in the DataSet
with the rows in the array without offending the security squad:

Figure 3-3:
A sorted list
created by
the Select
method.

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 395

Filtering with Select396

Listing 3-4: Replacing DataSet Rows

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

Dim i As Integer
Dim newRows() As DataRow
Dim newTable As DataTable
Dim n As String

ListBox1.Items.Clear()

newTable = ds.Tables(0).Copy()

ds.Tables(0).Rows.Clear()

newRows = newTable.Select()

For i = 0 To newRows.GetUpperBound(0)
ds.Tables(0).ImportRow(newRows(i))

Next

For i = 0 To dt.Rows.Count - 1
n = ds.Tables(0).Rows(i).Item(0) & “...” &

ds.Tables(0).Rows(i).Item(1)
ListBox1.Items.Add(n)

Next i
End Sub

The overloaded Select method
When you use the Select method with no parameters (just empty parenthe-
ses), it automatically puts the result in alphabetical order by the primary key
field. In this example, you specify that the Titles column is the primary key
field. So you can simply use the no-parameter form to get the results you
want:

newRows = newTable.Select()

However, three other forms of this method can be used, which means that it
is overloaded. The arguments that you provide to this method determine
how it behaves. You can specify a Criterion, which is an SQL-like string
that defines how you want the rows to be filtered (queried). Here’s an exam-
ple that doesn’t display any titles starting with A through E:

‘find all rows matching the filter: (greater than F
in the alphabet)

Dim Criterion = “Title > ‘F’”
newRows = newTable.Select(Criterion)

This result is still sorted because the Title column is the primary key, but no
rows beginning with letters lower than F in the alphabet are placed into the

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 396

Book V
Chapter 3

M
anipulating
Datasets

Filtering with Select 397

newRows array. The list of possible expressions (filters or criteria) is exten-
sive and involves various special characters and punctuation rules. To see
how to define a criterion to use with the Select method, open VB.NET’s
Help feature (choose Help➪Index). Type DataColumn.Expression into the
Look For text box, and then double-click the DataColumn.Expression prop-
erty in the left pane of the Help window.

Yet another variation of the Select method permits sorting in descending
order (backward from Z to A). The final Select method enables you to spec-
ify that only rows matching a particular DataViewRowState property are to
be placed into the array. DataViewRowState includes Added, Modified,
Deleted, Unchanged, and so on.

Which version is it?
To see the current version of the DataTable — as opposed to the original
version that was loaded into the DataSet at the start — use code like this:

dv.RowStateFilter=DataViewRowState.Deleted

You can also test the status of individual rows in a DataTable by querying
the RowState property. The following results are returned on these various
rows when you run this code: Detached, Added, Unchanged, Modified,
Deleted.

Dim dTable As New DataTable(“dTable”)
Dim dCol As New DataColumn(“Title”,
Type.GetType(“System.String”))

dTable.Columns.Add(dCol)
Dim dRow As DataRow

‘ Make a new DataRow.
dRow = dTable.NewRow()
Console.WriteLine(dRow.RowState.ToString())

dTable.Rows.Add(dRow)
Console.WriteLine(dRow.RowState.ToString())

dRow(“Title”) = “Moby Dick” ‘edit the row
Console.WriteLine(dRow.RowState.ToString())

dTable.AcceptChanges() ‘this makes the rowstate
“unchanged”

Console.WriteLine(dRow.RowState.ToString())

dRow.Delete()
Console.WriteLine(dRow.RowState.ToString())

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 397

Using the DataView Object398

In VB.NET, Console.WriteLine is a common way of testing code when you
want to print out and see some results. It prints to the Output window,
which you can view by choosing View➪Other Windows➪Output, and then
selecting the Debug variation in the drop-down list in the Output window.

When using the Select method, you can set the third parameter to specify
which version of the rows you want to see, as in this pseudocode example.
(Pseudocode uses descriptive names to illustrate the elements of source
code, but the code isn’t actually runnable.)

newRows = newTable.Select(filter expression, sort mode,
DataViewRowState)

You have to replace the italicized parameters in the preceding sample line
of code with actual VB.NET expressions or enumerations (various built-in
constants). For example, before you could run this line, you must replace
DataViewRowState with one of the enumerations shown when you type in
the line of code. Enumerations are lists of constants. There are sets of con-
stants built-into .NET, or you can create your own with the Enum statement.

If you are using a DataView object, set its RowStateFilter property to
specify which version of the rows you want to see:

Dim drView As DataRowView
dv.RowFilter = “Title LIKE ‘*q*’”
dv.Sort = “Title”
dv.RowStateFilter = DataViewRowState.Deleted

Using the DataView Object
Datasets are disconnected from the database from which they drew their
data. But what if you want to view the data in a dataset in a different way?
For example, if you want to see only customers in Montana, should you go to
the trouble of reconnecting to the original database and build a new dataset?
That’s not efficient. It’s easier to use a data view, which provides you with a
filtered and sorted view of the dataset’s contents. A data view is not a copy
of the data; it’s just a different view of the dataset.

Using the DataView feature isn’t too hard. You have to create a few objects
and use For Each to iterate through them to display them. Add a button to
the form used in the earlier example (“Filtering with Select”) and change its
Text property to Display Dataview Q. Then double-click that button and
type this (Listing 3-5) into its Click event:

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 398

Book V
Chapter 3

M
anipulating
Datasets

Close Relations 399

Listing 3-5: Building a Data View

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

‘Create a DataView and display it

‘ Get a reference to the Recipes table.
Dim dtNew As DataTable = ds.Tables(“Recipes”)
‘ Create a dataview
Dim dv As New DataView(dtNew)
Dim drView As DataRowView
‘ Set the criterion filter and sort on title.
‘ This criterion says: list all records with a Q in
the title field

dv.RowFilter = “Title LIKE ‘*q*’”
dv.Sort = “Title”

‘display the DataSet

Dim i As Integer, s As String
ListBox1.Items.Clear()
Me.Text = “From DataView”

For Each drView In dv
s = drView(i)
ListBox1.Items.Add(s)

Next

End Sub

Close Relations
One of the prime virtues of a DataSet is that it permits you to create rela-
tions, just like a real database. After all, the kind of database that’s most
popular these days — and that includes SQL Server and DataSets — is a
relational database. So, just what are relations, and why are they so popular?

A relation is a connection between two tables that both share a common, pri-
mary key (a column in which each row contains unique data). The fact that
they identify their rows uniquely, and both do it the same way, permits you
to access data simultaneously from both rows but in sync. This can be useful
when one table contains details not available in the other table. Recall that
you sometimes use two tables to prevent redundancy.

Master-detail, parent-child
Data coming from multiple yet related tables is often referred to as master-
detail. For example, a master table (the parent) could contain a list of pub-
lishers and their addresses, phone numbers, and other information.

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 399

Close Relations400

However, because each publisher puts out many books, you don’t want to
have to repeat the publisher’s address, phone number, and so on for each
book. That’s the redundancy that multiple tables solves. You simply put the
main information about each publisher in one table, and you link (make a
relation, or join) that table to a different detail (the child) table that lists all
the books for each publisher. The child table doesn’t contain the publisher’s
address, phone number, and so on; rather, it contains details about each book.

This master-detail relationship between tables is quite common. In a dentist’s
office, they put your name, phone number, and so on in one table; then they
link it to a second table containing, for example, details about your payment
history.

In the following sections, you first see how to create a relation between two
tables programmatically, and then you see how to use wizards and the excel-
lent, graphic XML Designer, which shows you a visual diagram of tables and
any relations between them.

Programmatic relations
Start a new VB.NET Windows-style project. Double-click the form to get to
the Form1_Load event in the code window. Type the following code above
the Private Sub Form1_Load line:

Dim ds As New DataSet(), dr As DataRow, dt, dt1 As DataTable

Also add the usual Imports statements at the very top of the code window:

Imports System.Data
Imports System.Data.OleDb
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports System.Data.SqlDbType

You now want to create two tables, dt and dt1, and then define a relation-
ship between them. Type this code (Listing 3-6) into the Form1_Load event.
(In this example, the explanation of the various parts of the source code is
provided by comments within the code itself.)

Listing 3-6: Generating Relations Programmatically

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

‘define two new datasets:
dt = New DataTable(“Recipes”)
dt.Columns.Add(“title”, GetType(String))
dt.Columns.Add(“desc”, GetType(String))

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 400

Book V
Chapter 3

M
anipulating
Datasets

Close Relations 401

Dim colArray(1) As DataColumn ‘make title primary key
(unique)

colArray(0) = dt.Columns(“title”)
dt.PrimaryKey = colArray

dt1 = New DataTable(“Calories”)
dt1.Columns.Add(“title”, GetType(String))
dt1.Columns.Add(“CalorieCount”, GetType(Integer))

‘make title primary key (unique) for this table, too.
colArray(0) = dt1.Columns(“title”)
dt1.PrimaryKey = colArray

‘add both tables to the dataset
ds.Tables.Add(dt)
ds.Tables.Add(dt1)

‘add three rows to the two tables:
dr = dt.NewRow()
dr!title = “First Title”
dr!desc = “Description of first title”
dt.Rows.Add(dr)

dr = dt.NewRow()
dr!title = “Second Title”
dr!desc = “Description of second title”
dt.Rows.Add(dr)

dr = dt.NewRow()
dr!title = “Third Title”
dr!desc = “Description of third title”
dt.Rows.Add(dr)

‘second table:

dr = dt1.NewRow()
dr!title = “First Title”
dr!CalorieCount = 130
dt1.Rows.Add(dr)

dr = dt1.NewRow()
dr!title = “Second Title”
dr!CalorieCount = 220
dt1.Rows.Add(dr)

dr = dt1.NewRow()
dr!title = “Third Title”
dr!CalorieCount = 30
dt1.Rows.Add(dr)

‘now create a relation between these two tables

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 401

Creating a Dataset with Relations402

‘This next line of code creates a new relation object
named

‘ “CalRel” and specifies that the first column
‘ (Recipes.Title) is the parent and the second column
‘ (Calories.Title) is the child (the parent/child
relation is

‘ based on the order that you specify the two columns
in the

‘ parameter list).

ds.Relations.Add(“CalRel”, ds.Tables(“Recipes”).
Columns(“Title”), _

ds.Tables(“Calories”).Columns
(“Title”))

‘ Now, loop through each row in the parent table’s
rows collection

‘ (it has three rows), and then loop through each row
in the relation

‘ object (there is only one row), displaying the
“count”

‘ (the parent table’s row number), and both columns
in the child.

‘ Note that you are not accessing dt1 directly (the
child table)

‘ instead, you are accessing the relation object

Dim da As DataRow
Dim count As Integer

For Each dr In dt.Rows
For Each da In dr.GetChildRows(“CalRel”)

count += 1
Console.WriteLine(count & “.” & da(“Title”) &

“ “ & da(“CalorieCount”))
Next

Next

End Sub

Press F5 and look in the Output window for the results. You should see this:

1.First Title 130
2.Second Title 220
3.Third Title 30

Creating a Dataset with Relations
As you doubtless suspected, VB.NET offers you many interesting auto-
coding features — wizards, designers, parsers, add-ins, and other helpers

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 402

Book V
Chapter 3

M
anipulating
Datasets

Relations via Wizards and Designers 403

that let you drag-and-drop or answer a series of questions before they write
source code for you. Sometimes you can get hundreds of lines of source
code based on a three-minute little quiz from a wizard.

In the next example, you see how to connect to two different tables in the
Northwind sample database and how to create a relation between the ID
column that they have in common. You use both a wizard and a designer.
You also see how to bind a DataGrid and a ListBox to the database connec-
tion. This example requires that you have SQL Server installed.

Relations via Wizards and Designers
You need to know how to summon wizards and designers to make your life
as a programmer easier than you thought possible. To create a connection
between a database and a DataSet, follow these steps:

1. Start a new Windows-style VB.NET project.

2. On the form, place a ListBox and a DataGrid from the Windows
Forms tab of the Toolbox.

3. Double-click the OleDbDataAdapter icon in the data tab of the Toolbox.

An OleDbDataAdapter is added to your form, and the Data Adapter
Configuration Wizard opens. Recall that you can use either this
OleDbDataAdapter (which is slower but more versatile because it con-
nects to more databases) or the SqlDataAdapter used in most examples
in this book. For variety, you use the OleDbDataAdapter in this example.

4. Click Next.

5. Choose the Northwind database in the drop-down list.

6. Click Next.

7. Leave the Use SQL Statements radio button selected.

8. Click Next.

9. Click the Query Builder button.

10. Double-click Orders in the Add Table dialog box.

The Orders table is added to the Query Builder dialog box.

11. Click Close to close the Add Table dialog box.

12. Click order_id and customer_id in the top pane.

This SQL query is constructed for you:

SELECT OrderID, CustomerID
FROM Orders

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 403

Relations via Wizards and Designers404

The order_id column is the one on which a relation will be created to
link this table with another table in the Northwind database.

13. Click OK and then click Finish. Choose not to add a password if the
security patrol queries you.

An OleDataAdapter1 and an OleDbConnection1 are added to your tray.
You need only this one connection to the database, but to add a new
table, you can add a second OleDataAdapter to your form. This new
adapter also employs the existing OleDbConnection.

14. Double-click the OleDbDataAdapter icon in the Toolbox.

The Data Adapter Configuration Wizard dialog box opens again.

15. Select the Northwind database and click Next.

16. Leave the Use SQL Statements radio button selected. Click Next.

17. Click the Query Builder button.

18. Double-click Order Details in the Add Table dialog box.

The Order Details table is added to the Query Builder dialog box.

19. Click Close to close the Add Table dialog box.

20. Click orderID, quantity, and unit price in the top pane to specify that
you want to access the data from these fields (columns).

This SQL query is constructed:

SELECT OrderID, Quantity, UnitPrice
FROM [Order Details]

Some databases refuse to permit spaces in table names. To avoid prob-
lems, you can enclose the name in brackets, as illustrated in the preced-
ing SQL statement.

21. Click OK and then click Finish. Click Yes to permit the primary keys to
be added.

22. Now you need to build a DataSet that includes both of these tables.

a. Right-click either of the OleDbDataAdapter icons in the tray beneath
your form.

b. Choose Generate DataSet from the context menu.

c. Mark the check boxes next to both Order Details and Orders.

d. Name this DataSet dsOrders in the New text box on the dialog box.

e. Click OK.

You now see a new DataSet icon in your tray.

05d_570676 bk05ch03.qxd 6/4/04 10:10 PM Page 404

Book V
Chapter 3

M
anipulating
Datasets

Using the XML Designer 405

Using the XML Designer
At this point, you can open the XML Designer to create your relation. This
illustrates the intimate relationship between tables, datasets, and XML ver-
sions of either. Follow these steps:

1. Double-click the dsOrders.xsd file in Solution Explorer (VB.NET’s
equivalent of VBA’s Project Explorer).

The XML Designer opens, as shown in Figure 3-4. Notice the little key
symbols next to the key fields in both tables. OrderID is a unique field,
and you create your relation based on it.

If you don’t see dsOrders.xsd file displayed in Solution Explorer, click
the name of your project (which is in boldface in Solution Explorer) to
highlight it, and then click the icon — it looks like three sheets of paper,
one yellow — in the Solution Explorer title bar named Show All Files.

2. Open the Toolbox.

Notice that when the XML Designer is open, you see a number of XML
schema icons that you can use to create a structure.

Figure 3-4:
This
designer
helps you
graphically
study and
edit
relations
between
tables.

05d_570676 bk05ch03.qxd 6/4/04 10:11 PM Page 405

Using the XML Designer406

3. The Order Details table is your child (details) table in this relation-
ship, so drag a relation icon from the Toolbox and drop it on the
Order Details table in the designer.

The Edit Relation dialog box opens, as shown in Figure 3-5.

4. In the Name field, the designer has provided a name for your relation:
Order_x0020_DetailsOrder_x0020_Details, at this point.

5. Ensure that the parent element is Orders and the child element is
OrderDetails.

Now change the name to relOrders. You want to remember this name
so that you can use it in a minute when you bind the ListBox and
DataGrid to the relation.

Note the use of the term element here for what you normally call a table.
Element is a term used in XML to refer to an item enclosed by <> </>
symbols — tags — as in the following line:

<H1>This is a headline</H1>

The reason for using element here is that VB.NET has actually translated
your DataSet (the tables, their schema, their relation, and eventually
even their data) into XML. This way, they can be communicated over
firewalls on the Internet. To see the XML source code that VB.NET has
so thoughtfully generated for you, right-click either table in the designer
and choose View XML Source.

Figure 3-5:
Use this
dialog box
to specify
the details
of a relation.

05d_570676 bk05ch03.qxd 6/4/04 10:11 PM Page 406

Book V
Chapter 3

M
anipulating
Datasets

Using the XML Designer 407

6. Ensure that Key Fields and Foreign Key Fields both read OrderID.

7. Click OK.

The Edit Relation dialog box closes, and you see something that looks
like a necklace appear in the XML Designer, connecting the two tables
graphically and symbolizing their relation, as shown in Figure 3-6.

8. Right-click the dsOrders.xsd* tab at the top of the designer and
choose Save dsOrders.xsd.

9. Click the Form1.vb[Design] tab at the top of the designer.

You see your form, almost ready to display this relation.

Binding the controls
You now need to bind the ListBox to the Orders master (parent) table and
bind the DataGrid to the details (child) table, Order Details. To do that,
follow these steps:

1. Click the ListBox to select it.

2. Press F4.

The Properties window opens.

Figure 3-6:
This
necklace
symbolizes
the relation
established
between
these two
tables.

05d_570676 bk05ch03.qxd 6/4/04 10:11 PM Page 407

Using the XML Designer408

3. Select the DataSource property and click the down-arrow icon next
to that property.

You see a list of possible data sources.

4. Click dsOrders1, your DataSet.

5. Select the DisplayMember property and click the down-arrow icon
next to that property.

You see a list of columns (fields) within the table you chose as your data
source.

6. Choose ProductID, under the relOrders node.

A node is an entry with a – or + symbol next to it in a list, indicating that
other items are listed underneath it and subordinate to it.

7. Click the + to open this node and select UnitPrice.

The property should now read relOrders.ProductID.

8. Click the DataGrid to select it.

9. Click the DataSource property in the Properties window and then
click the down-arrow icon next to that property.

You see a list of possible data sources.

10. Click dsOrders1.Orders.

11. Click the DataMember property in the Properties window and then
click the down-arrow icon next to that property.

12. Click relOrders.

You see the relation, and the DataGrid control displays the four fields
(the schema) of the child table in the DataSet.

At this point, your DataGrid is now able to point to all child rows in the
child table whenever the user clicks on a product ID in the parent table (dis-
played in the list box). By selecting the relation object as the DataMember
for the DataGrid, you make it possible to see the Details (child) fields.

Many people assume that with the DataSet created and the controls bound,
you can just press F5 and see the data in the controls. Well, as you might
remember from the first example in this chapter, you do have to write just a
little source code to complete the process. Double-click the form to get to
the code window and then type this into the Form_Load event:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

DsOrders1.Clear()
OleDbDataAdapter1.Fill(DsOrders1)
OleDbDataAdapter2.Fill(DsOrders1)

End Sub

05d_570676 bk05ch03.qxd 6/4/04 10:11 PM Page 408

Book V
Chapter 3

M
anipulating
Datasets

Saving an XML Dataset 409

Using Clear
Using the Clear method isn’t strictly necessary here because this is the first
time that this DataSet is being used in this application. Nonetheless, it’s a
good habit to empty a DataSet of all its contents prior to filling it with new
data. The Fill method of a DataAdapater object dumps the data from the
database connection into the DataSet.

Saving an XML Dataset
As a final exercise, send this dataset via XML to Access. Change the
Form_Load event code in the previous example to this:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

DsOrders1.Clear()
OleDbDataAdapter1.Fill(DsOrders1)
OleDbDataAdapter2.Fill(DsOrders1)

‘SAVE
Try

DsOrders1.WriteXmlSchema(“c:\test.xsd”)
DsOrders1.WriteXml(“c:\test.xml”)

Catch ex As Exception
MsgBox(ex.ToString)

End Try

Me.Text = “Saved...”

End Sub

The new XML file Test and its associated schema file (XSD) are now avail-
able to Access.

Importing XML by hand
You can also use the manual import approach within Access:

1. Choose File➪Get External Data➪Import.

The Import dialog box opens.

2. Open the drop-down list next to Files of Type in the dialog box and
select .XML (*.xml; *.xsd).

3. Locate the Test.xml file you created in the preceding section and
double-click its name in the dialog box.

05d_570676 bk05ch03.qxd 6/4/04 10:11 PM Page 409

Saving an XML Dataset410

The Import XML dialog box opens.

4. Click the Options button in the Import XML dialog box.

The dialog box grows a bit larger. Notice that Structure and Data is
selected by default. That’s indeed what you want — both the schema
(from the XSD file) and the data (from the XML file).

5. Click OK.

You’re informed that the importing has taken place, and you also notice
that both tables — Orders and Order Details — have been added to
your database.

6. Click OK.

The message box and the dialog box both disappear.

7. Double-click Order Details and Orders to see that indeed both tables
from your original dataset have now been transferred to Access.

Importing XML programmatically
If you prefer, you can import an XML file and its schema file by using the fol-
lowing VBA code in Access. Press Alt+F11 to get to the code window. Choose
Insert➪Module. Then type this code into the code window:

Sub GetXML()

Application.ImportXML _
DataSource:=”c:\test.xml”, _
ImportOptions:=acStructureAndData

End Sub

05d_570676 bk05ch03.qxd 6/4/04 10:11 PM Page 410

Chapter 4: Automating Access

In This Chapter
� Using automation to connect to Access

� Working with SendKeys

� Automating the Access runtime

� Displaying a report

Managing Access from the outside is essential if you want to go beyond
the built-in capabilities that VBA macros — much less old-style Access

macros — offer.

For example, Access has limited Internet programming capabilities, relative
to the splendid and efficient ASP.NET programming facilities built into .NET.
Or, if you want to create a really rich front end for Access Windows projects,
Access’s VBA UserForm is not nearly as full of features — nor as well-tested —
as the Windows Form in VB.NET. Beyond that, the security features, com-
munication classes, and many other elements of the .NET framework are more
advanced and far more plentiful than those built into Access (or any Office
2003 product, for that matter). Serious Office 2003 developers facing projects
of any significance should become familiar with Visual Studio .NET program-
ming. .NET is the future of Microsoft programming, and a programmer’s future
might well depend on his or her ability to make good use of it.

Automating How to Access a Form
Follow this example to see how to use automation to connect to Access.
Here’s the flow: Start Access, display a form from the Northwind sample
database, move to the second record on the form, copy the data, and send
the data back to the .NET application for further processing.

Before you can do all that, you have to get some DLLs in place — object col-
lections, code libraries, communication tubes, and other such under-the-
hood necessities. Go to this location and download the Office XP Primary
Interop Assemblies (PIAs). (They’re the same for Office 2003.)

http://msdn.microsoft.com/library/default.asp?url=/
downloads/list/office.asp

05e_570676 bk05ch04.qxd 6/4/04 10:11 PM Page 411

Automating How to Access a Form412

This set of assemblies (code libraries, in this case) isn’t always absolutely nec-
essary to control Office 2003 applications from within .NET. Other assemblies
can do the trick. But the PIA is primary — it’s the official set of libraries — so
you can expect it to be supported and to cause the fewest side effects.

After you download the PIA, read the README.HTM file and follow its instruc-
tions to take a trip back in time to the command line. (That would be DOS,
not much used for the past decade, except in cases like this.) Use the batch
file to install the assemblies and update the Global Assembly Cache (GAC).

The README.HTM file doesn’t mention this, but you probably need to restart
Windows before Visual Studio .NET (which contains Visual Basic .NET) will
work properly.

Read the section in the README.HTM file titled “Distributing solutions that
rely on the Office XP PIAs” if you intend to deploy projects relying on the PIA
to other computers. Creating a custom setup utility is likely the simplest
solution to provide these other machines with the proper assemblies.

Now run VB.NET, choose File➪New➪Project, name the new project
AutomateAccess (in the New Project dialog box), and then double-click the
Windows Application icon. You must create a reference to your newly down-
loaded PIA, which is done indirectly by following these steps:

1. To add a reference to the Access 11.0 object library, choose
Project➪Add Reference.

2. In the Add Reference dialog box that appears, click the COM tab.

3. Locate and double-click the Microsoft Access 11.0 Object Library.

It appears in the Selected Components pane.

4. Click OK.

The Add Reference dialog box closes, and the reference (the assembly,
actually) is added to your current project.

5. Add a TextBox control to Form1; then double-click Form1 to get to the
code window. At the very top of the code window, add this reference
to Access’s objects:

Imports Access

6. Type Listing 4-1 into the Form_Load event.

Listing 4-1: Moving Data from Access to .NET

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim s As String = “Customer Orders”

05e_570676 bk05ch04.qxd 6/4/04 10:11 PM Page 412

Book V
Chapter 4

Autom
ating Access

Automating How to Access a Form 413

Dim oAccess As Access.Application ‘ “o” for object
Dim pathNorth As String = “C:\Program Files\Microsoft
Office\Office11\Samples\Northwind.mdb”

‘ instantiate Access
oAccess = New Access.ApplicationClass
‘ show it
oAccess.Visible = True

‘ open Northwind
oAccess.OpenCurrentDatabase(filepath:=pathNorth)

‘select the customer orders form
oAccess.DoCmd.SelectObject(ObjectName:=s, _

InDatabaseWindow:=True,
ObjectType:=Access.AcObjectType.acForm)

‘ display the form
oAccess.DoCmd.OpenForm(FormName:=s, _

View:=Access.AcFormView.acNormal)

‘ send two Ctrl+Tabs to move to the second record
SendKeys.SendWait(“^{TAB}”)
SendKeys.SendWait(“^{TAB}”)

‘select, then copy, the record
SendKeys.SendWait(“^a”) ‘select all
SendKeys.SendWait(“^c”) ‘copy

‘get the copied data back to .NET from clipboard
Dim cl As IDataObject = Clipboard.GetDataObject()
If (cl.GetDataPresent(DataFormats.Text)) Then

TextBox1.Text =
cl.GetData(DataFormats.Text).ToString()

End If

‘ destroy the app object
oAccess = Nothing

End Sub

The InDatabaseWindow argument of the SelectObject method selects the
object in the database window, but it defaults to False, so you set it to True
here to carry out the selection process. In effect, this argument sets the
focus to the database window.

05e_570676 bk05ch04.qxd 6/4/04 10:11 PM Page 413

Understanding SendKeys414

Press F5 to execute this code, and you see Access fire up and display the
form. The data from the form is sent back to your VB.NET project and dis-
played in the text box.

This example illustrates a combination of techniques. Object instantiation is
one technique. The Access application is instantiated by using today’s fash-
ionable object-oriented programming (OOP) approach:

New Access.ApplicationClass

A second technique is older — it used to be called OLE Automation — but it
has its uses. You can use AppActivate or Shell commands to set the focus
to another currently running application or start a new instance of an appli-
cation, respectively. However, you then have to use SendKeys extensively to
maneuver — macro-like — around the windows and other elements of the
application. It’s usually easier to first get an object variable (oAccess in
Listing 4-1) referring to an instance of Access, and then use that and a form
object variable to do the heavy lifting (that is, the main manipulations).
SendKeys can then be used for other, smaller maneuvers. (For more on
SendKeys, see the next section.)

Here’s an example showing how Shell instantiates the Windows Character
Map utility and then switches it to display the Times New Roman font:

Shell(“CHARMAP.EXE”, 1)
SendKeys.SendWait(“Times New Roman”)

Understanding SendKeys
SendKeys is worth spending a little time exploring because it can be helpful
when you don’t have the time to try to figure out all the ins and outs of a
class library to know how to do a job that some simple keystrokes can
accomplish.

When you import the Access namespace, as in Listing 4-1, you can then use
the VBA commands available within the Access object model, including
SendKeys. Alternatively, you can import a VisualBasic namespace (a refer-
ence to a code library, or class library, or object model — three ways of fun-
damentally saying the same thing) and get to use the Visual Basic 6 classic
commands, of which SendKeys is one:

Imports Microsoft.VisualBasic

However you get to it — and whether you call it a function (as it was called
traditionally) or a method (as it’s now described) — SendKeys is nonethe-
less worth knowing about.

05e_570676 bk05ch04.qxd 6/4/04 10:11 PM Page 414

Book V
Chapter 4

Autom
ating Access

Understanding SendKeys 415

SendKeys allows your VB program to send keystrokes to another Windows
program, just as if the user were typing those keys into the other program.
In other words, SendKeys slips data — fake keystrokes — into the pipeline
between the keyboard and a Windows program. SendKeys makes it seem
that the user is typing something, and the program with the focus cannot tell
that a user isn’t simply typing away.

This technique allows applications to communicate with each other. (You
cannot use SendKeys on the DOS command line.)

SendKeys and SendWait
The target program must be running and have the focus when SendKeys
attempts to “type” something into it.

Normally, you’ll want to use the SendWait method with SendKeys to
cause your VB program to pause until the outside program has digested —
processed — whatever keystrokes you have sent. Otherwise, keystrokes
can get lost in the ether if focus is shifting or other events are interfering
with a quick cascade of keystrokes. For example, here’s how to send Ctrl+A:

SendKeys.SendWait(“^a”)

To directly send the following 12 text characters, use the following:

SendKeys.SendWait(“MESSAGE SENT”)

Or to repeat an individual key — in other words, to specify the number of
repeats — put both items in braces. For example, to print seven z’s, use

({Z 7})

Sending nonprinting keys
You can also send the nonprinting keys: the keys that cause actions to take
place rather than text to be printed, such as F1, Alt, Enter, PgDn, and so on.
Many programs recognize and respond to special keys, like the Function
keys and Alt+key combinations, for example. To “press” those keys by using
SendKeys, you provide the name of the special nonprinting key and put it
inside braces ({}) using the following list. Note: The key names themselves
are case-insensitive: It doesn’t matter how you capitalize them. Enter is the
same as enter or ENTER.

{Backspace} or {Bksp} or {Bs}

{Break}

{Capslock}

05e_570676 bk05ch04.qxd 6/4/04 10:11 PM Page 415

Understanding SendKeys416

{Clear}

{Delete} or {Del}

{Down}

{End}

{Enter} or ~

{Esc} or {Escape}

{Help}

{Home}

{Insert}

{Left}

{Numlock}

{Pgdn}

{Pgup}

{Prtsc} (for Print Screen)

{Right}

{Scrolllock}

{Tab}

{Up}

{F1} through {F16}

Or, you can simulate the Ctrl, Alt, or Shift keypresses in combination with
other characters. For Shift, put the + (plus) symbol before the character you
want shifted: +E, for example.

Many commercial programs save to disk by pressing the Alt+F, S — activating
the File menu and selecting the Save option.

For Alt, put the % (percent) symbol before the character you want pressed
simultaneously with Alt: %F S, for example.

For Ctrl, use the ^ (caret) symbol before the character you want pressed
simultaneously with Ctrl: ^F, for example.

To hold down the Shift, Alt, or Ctrl key while several other keys are pressed,
put the other keys in parentheses. For example, to send shifted ABC, use
SendKeys “+(abc)”.

05e_570676 bk05ch04.qxd 6/4/04 10:11 PM Page 416

Book V
Chapter 4

Autom
ating Access

Displaying a Report 417

Using “+abc” would shift only the A, resulting in Abc.

Because the braces characters are used in a special way, if you need to send
one of them, enclose the brace itself in braces: {{}, for example.

Because the +, %, and ^ characters are used to indicate Shift, Alt, and Ctrl,
respectively, enclose them in braces if you want to send one of them as a char-
acter or as printable text. For example, to print the percent symbol, use {%}.

If the program to which SendKeys is instructed to send keystrokes is not
running or hasn’t been given the focus (with the AppActivate command, for
example), the keystrokes are sent back to your Visual Basic .NET program as
if the keys were being typed into your program. This permits you to simulate
keystrokes that the user might have typed while the VB program is running.

Automating the Runtime
The Developer Edition of Access allows you to deploy your Access 2003 appli-
cations to computers where no retail version of Access is installed. Instead, a
runtime (code library) version of Access (named msaccess.exe) is installed
on these machines. Your code will work, but the users themselves cannot
write code nor customize your code unless they install their own copy of
commercial — not runtime — Access, in which case they can go ahead and
freely manipulate the objects and data that you gave them.

If you want to contact the runtime so you can automate this type of Access
installation, you should start msaccess.exe and also load a database into it
before attempting automation. You must revert to the command line style of
programming to do this (DOS), and you must supply a database as an argu-
ment. Then use the GetObject command to get the Application object. You
cannot use CreateObject or New to instantiate Access’s runtime.

For valuable additional information about using the Package Wizard and
deploying Access using the runtime, see the article, “Packaging Access 2003
Solutions” at this Web page on MSDN:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnsmart03/html/sa03j8.asp

Displaying a Report
For a final example of automation, you see how to display an Access report.
It’s similar to displaying an Access form; see Listing 4-2:

05e_570676 bk05ch04.qxd 6/4/04 10:11 PM Page 417

Displaying a Report418

Listing 4-2: Displaying an Access Report

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

Dim s As String = “Sales Totals by Amount”
Dim oAccess As Access.Application ‘ “o” for object
Dim pathNorth As String = “C:\Program Files\Microsoft
Office\Office11\Samples\Northwind.mdb”

‘ instantiate Access
oAccess = New Access.ApplicationClass
‘ show it
oAccess.Visible = True

‘ open Northwind
oAccess.OpenCurrentDatabase(filepath:=pathNorth)

‘ select the report
oAccess.DoCmd.SelectObject(ObjectName:=s,
InDatabaseWindow:=True, _

ObjectType:=Access.AcObjectType.acReport)

‘ display the report
oAccess.DoCmd.OpenReport(ReportName:=s, _

View:=Access.AcView.acViewPreview)

‘ destroy app object
oAccess = Nothing

End Sub

05e_570676 bk05ch04.qxd 6/4/04 10:11 PM Page 418

Chapter 5: Troubleshooting
in Access

In This Chapter
� Using the Error event

� Understanding Option Explicit and Option Strict

� Adjusting macro security

� Using the new sandbox mode

� Backing up Access 2003

� Error-checking for forms and reports

Error Management in Access

Access contains several built-in error-management (and avoidance!) fea-
tures. A primary one is the Error event that’s triggered in a form or

report when something isn’t right.

This Error event is not fired when any VBA errors occur in your programming
code. For those errors, you must use the On Error trapping code, which I
describe in detail in Book II, Chapter 6. The Access form and report Error
event is fired when the Jet database engine or another outside source reports
a problem. To see where this error trapping happens, follow these steps:

1. Open the Northwind sample database.

2. Choose Help➪Sample Databases and then select Northwind Sample
Database.

If it’s not there, go to Control Panel, choose Add/Remove Programs, find
and click Microsoft Office, click the Change button, and follow the
instructions to install the Northwind sample database.

3. With the sample database open, press Alt+F11 to open the VB editor
and then press Ctrl+R to see Project Explorer.

4. Open the Access class objects node in Project Explorer (click the +)
and then double-click Form Employees to open its code window.

05f_570676 bk05ch05.qxd 6/4/04 10:12 PM Page 419

Error Management in Access420

Each object has its own private code window. Notice that the Program-
ming Police have been busy in this code window. They’ve already turned
off two options that they don’t believe should be options:

Option Compare Database
Option Explicit

Hold everything. Why did the Programming Police turn off these options? Take
a look at the next section for the answer, and then I’ll resume this step list.

Understanding Option Explicit and Option Strict
Option Compare Database means that when strings are compared, the com-
parison is based on the locale (the language used by the culture) of the data-
base itself. For more details on this dubious feature, see Book V, Chapter 1.

When Option Explicit is included in code, you cannot use implicit vari-
ables. You must declare every variable name formally (by using Dim, Public,
or one of the other declaration/scoping/lifetime commands). In VBA and
VB6, you are not required to explicitly declare variables. You can simply
assign a value to a variable, which causes the variable to come into exis-
tence, like this:

MyVariablesName = 12

Also, you are permitted to forget about variable types and let VB decide for
you which type was required at any given place in the code, based on the
context. This is a variant variable. For example, if MyVariablesName contains
numeric 12 yet you want to display this number in a text box, VB automati-
cally transforms this numeric Integer data type into a text String type:

Text1 = MyVariablesName

This line causes Text1 to display the digit characters 12. However, many pro-
grammers and professors of computer “science” (as they prefer to call it —
some of them are quite certain that their style of programming should be Zee
Only Style of Programming!) insist that all variables must be explicitly declared.
It’s not enough to simply assign some value to a variable; you should declare it
and declare its type as well:

Dim MyVariablesName As Integer
MyVariablesName = 12

Not only that, if you want to transform (cast, or coerce) a variable of one type
into another type — such as changing an Integer type into a String type —
you must specifically do that transforming in your source code:

TextBox1.Text = CStr(MyVariablesName)

05f_570676 bk05ch05.qxd 6/4/04 10:12 PM Page 420

Book V
Chapter 5

Troubleshooting
in Access

Error Management in Access 421

The CStr command is one of several commands that begin with C (CInt,
CByte, and so on) that cast one variable type into another. In VB.NET, if you
attempt to use a variable before explicitly declaring it, VB.NET informs you
that you’ve made an error — that the variable name has not been declared.
If you want to turn off this error message and use undeclared variables, type
this line at the very top, on the first line, in your code window:

Option Explicit Off

However, you can avoid some kinds of bugs by explicitly declaring all your
variables, and it doesn’t take too much extra time to declare them.

Although VB.NET enforces Option Explicit by default, it does not enforce
Option Strict by default. Option Strict governs whether an error mes-
sage will be generated if you don’t cast variables. You can use this line of
code even though the text box displays a string and MyVariablesName was
declared as an Integer variable type:

TextBox1.Text = MyVariablesName

This is perfectly legal in VB.NET. No error message will be displayed when
you execute this code. However, some programmers insist that casting is
important. If you are one of those, you can enforce casting by typing this line
at the top of your code window:

Option Strict On

Now, try to execute the following line:

TextBox1.Text = MyVariablesName

The VB.NET compiler does not like that line and displays the following error
message:

Option strict disallows implicit conversions from
System.Integer to System.String.

Option Strict, in spite of its charming name, does permit VB.NET to handle
a few “safe” data type conversions itself. For instance, changing a 16-bit integer
to a 32-bit integer cannot result in any loss of data, so it is permitted to take
place automatically within VB.NET — there is no need for the programmer to
explicitly do this conversion with special source code. The reverse, though
(changing a 32-bit integer into a 16-bit version) is not permitted to take place
automatically. You, the programmer, must use one of the data-conversion com-
mands (see the “Searchable VBA/VB.NET Dictionary” in the online appendix.
For more on this appendix, refer to this book’s Introduction). Likewise, a float-
ing-point data type (which might hold a value such as 12.335) is not permitted

05f_570676 bk05ch05.qxd 6/4/04 10:12 PM Page 421

Error Management in Access422

to automatically convert to an integer (which would strip off the .335 fractional
portion of the number because integers have no decimal point). Is converting
from an integer to a floating-point type permitted? Yes, because that is safe.

The point is that the Programming Police want Option Explicit to be
embedded in every programming language — underneath, where you cannot
choose to turn it off. They really don’t want it to be an option at all. Like
autocrats in any context, it’s their way or the highway. Fortunately, some
people enjoy the freedom of options, preferring to decide for themselves
what’s safe and what’s an acceptable risk. That’s why, in BASIC at least,
these options still survive. But programming options — like any freedoms —
are always under attack, and the newest version of BASIC (.NET) has now
made explicit declaration the default.

Locating the Error event, part II
After recovering from the shock of seeing someone else turning off some of
your options by writing code for you in your code window, you can now
locate the Error event. Let me restart my step list where I left off:

5. Open the list box in the top left of the code window.

6. In this list box, click Form.

7. In the other list box (top right of code window), locate and click Error.

You now see the event where you can insert programming to deal with
Jet or other outside errors, as shown in Figure 5-1.

Figure 5-1:
Add any
database
error
handling
here.

05f_570676 bk05ch05.qxd 6/4/04 10:12 PM Page 422

Book V
Chapter 5

Troubleshooting
in Access

Error Management in Access 423

Recall that you cannot put VBA macro code error handling here. This
event doesn’t fire for those errors. Use On Error within your VBA code
for that kind of problem.

Adding a custom error message
Most of the time, you employ the Error event shown in Figure 5-1 to keep your
users calm. If they see the standard default Access error message, they might
panic. You want to offer a gentler, kinder message — one that they can under-
stand. Insert your custom error messages in this event, like in Listing 5-1:

Listing 5-1: Custom Error Message

Private Sub Form_Error(DataErr As Integer, Response As
Integer)

If DataErr = 2757 Then ‘SQL Server error returned
‘don’t display error message
Response = acDataErrContinue

Else ‘deal with non-SQL Server errors here:

MsgBox “An error unrelated to SQL Server occurred. Please
contact your IT professional.”

End If

End Sub

Unfortunately, SQL Server cannot return specific error codes to your Form_
Error event. DataErr 2757 includes all possible errors that could occur via
SQL Server. Often, you want to handle errors in your programming rather
than simply displaying an error message to your user and shutting down the
application. To deal with SQL Server problems programmatically, you can
add code like the following to get the error description returned from the
SQL Server to a Recordset object. First create the object, like this:

Private WithEvents recSet As ADODB.Recordset

Private Sub Form_Open(Cancel As Integer)
Set recSet = Me.Recordset

End Sub

Then use the acDataErrContinue command (illustrated in Listing 5-1) to
cause an SQL Server error to be ignored by the Error event and handled
instead within the RecordChangeComplete event, like Listing 5-2.

05f_570676 bk05ch05.qxd 6/4/04 10:12 PM Page 423

Sandbox Mode: Adjusting Macro Security424

Listing 5-2: Dealing with SQL Server Errors

Private Sub recSet_RecordChangeComplete(ByVal adReason As
ADODB.EventReasonEnum, ByVal cRecords As Long,
ByVal pError As ADODB.Error, adStatus As
ADODB.EventStatusEnum, ByVal pRecordset As
ADODB.Recordset)

If adStatus = adStatusErrorsOccurred Then

s = pError.Description

If InStr(s, “UPDATE statement conflicted with column
check constraint”) > 0 Then

MsgBox (“You violated a check constraint.”)

ElseIf InStr(s, “Cannot insert the value NULL into
column”) > 0 Then

MsgBox (“You cannot use a null value in this
column.”)

Else
MsgBox (s & “ ... This error occurred in the SQL

Server. Contact your administrator.”)
End If

End If
End Sub

You can use ElseIf to trap as many error messages as you wish.

Sandbox Mode: Adjusting Macro Security
If you choose Medium or High macro security, you enter sandbox mode. This
disables the usual problem commands (disk formatting and so on) of which
virus writers are so fond. Authorization is used to see who can and cannot
access these features. However, this mode protects you only from attacks
originating in SQL statements or expressions in default values or control
sources. VBA itself is not sandboxed.

Changing macro security levels should be easy, but it’s not. In other Office
applications, you can generally manage macro security easily. Just choose
Tools➪Macro➪Security and adjust the settings. Alas, though Access Help
says to do this, there’s no Security option on the Macros menu at all. To get
to the Security dialog box, you have to go through the following steps:

1. Choose Tools➪Customize.

2. In the Customize dialog box that opens, click the Commands tab.

05f_570676 bk05ch05.qxd 6/4/04 10:12 PM Page 424

Book V
Chapter 5

Troubleshooting
in Access

Backing Up for Safety 425

3. Click the Rearrange Commands button.

4. In the Rearrange Commands dialog box that opens, select the Menu
Bar option button.

From this drop-down list, choose Tools➪Macro.

5. Click Add.

6. In the Add Command dialog box that opens, choose Tools from the
Categories list.

7. Choose Security from the Commands list.

This list isn’t in alphabetical order, but don’t lose heart; Security is at
the very bottom of the list.

8. Click OK to close the dialog box.

The Security option appears in the Controls list for the Macros entry.

9. Click both Close buttons.

The dialog boxes close, and the Security option — with sandboxing — is
now available to you.

Backing Up for Safety
The single most important thing you can do to avoid virus and other data-
loss problems is to frequently back up your work. Access 2003 has a new
backup feature that you should become familiar with.

Choose Tools➪Database Utilities➪Back Up Database. The Save Backup As
dialog box appears, like the one shown in Figure 5-2.

Figure 5-2:
Use this
dialog box
to save
backups of
your current
database.

05f_570676 bk05ch05.qxd 6/4/04 10:12 PM Page 425

Automatic Form and Report Error Checking426

A new MBD file is specified, with a default filename incorporating the date in
a strange year-first format, like this: Northwind_2004-01-26.mdb. I suppose
the idea is that if you have huge numbers of otherwise identical backup file-
names, it’s most useful to sort them by year for display in Windows Explorer.
The backup file is saved to the same path as the original MBD file.

Automatic Form and Report Error Checking
Access 2003 has an automatic form and report error-checking feature that
does more than simply flag problems: It tries to offer ways to fix the problems.

Double-click the Products form in the Northwind sample database, choose
Tools➪Options, and click the Error Checking tab on the Options dialog box,
as shown in Figure 5-3.

Error checking is turned on by default, as are all the design rules displayed
in Figure 5-3. To see what happens if an error is on your form, click OK to
close the Options dialog box. Then choose View➪Design View so you can
fiddle with the Products form.

Right-click the Product Name TextBox control on the form (not the label by
the same name) and then choose Properties. The text box’s properties dialog
box appears, as shown in Figure 5-4. Click the Data tab and change the Control
Source to a non-existent data source by typing in x (yup, one solitary x).

Close the dialog box and take a look at the form. A small, green triangle
appears in the upper-left corner of the offending text box, and an exclama-
tion point icon also appears, as shown in Figure 5-5.

Figure 5-3:
Specify
which error-
checking
features
you want
activated.

05f_570676 bk05ch05.qxd 6/4/04 10:12 PM Page 426

Book V
Chapter 5

Troubleshooting
in Access

Automatic Form and Report Error Checking 427

Click the exclamation point and notice that some very useful information is
displayed, as shown in Figure 5-6.

As Figure 5-6 illustrates, this error feature is quite helpful. You’re not only told
that the control source (the data field bound to this control) doesn’t exist but
also how to fix it: Edit the form’s or the control’s data source property. This is

Figure 5-6:
Some error
messages
are quite
useful, like
these.

Figure 5-5:
The triangle
and
exclamation
point icons
signal an
error in this
form.

Figure 5-4:
Adjust
properties
here.

05f_570676 bk05ch05.qxd 6/4/04 10:12 PM Page 427

Automatic Form and Report Error Checking428

considerably more helpful than the usual computer language error message,
although the new .NET languages do enjoy improved error messages and a
continually improving Help system.

Specificity in error messages is a novel (and quite welcome) development.
And information telling you exactly how to fix the problem is even more rare
and more welcome. Too often, a single computer language error message
is triggered by dozens of different causes. Also, error messages and Help
entries are too often written by a raging propeller-head who knows the tech-
nical details brilliantly and cannot communicate his ideas to ordinary pro-
grammers to save his life. Here’s an example of what I’m talking about, from
an actual VB Help entry:

Changing the value of a field or property associated with any one instance
does not affect the value of fields or properties of other instances of the
class. On the other hand, when you change the value of a shared field and
property associated with an instance of a class, you change the value associ-
ated with all instances of the class.

If you understand the previous paragraph, reach up and give the propeller
on your beanie a spin for me.

Hint: The paragraph would be less confusing were the author, or editor, to
make this change: “. . . a shared field or property . . .” Also, the words associ-
ated and field are used incorrectly here, but don’t get me started. If The
Powers That Be ever do manage to create comprehensible documentation,
many of us computer book authors will be out of work. However, I take com-
fort in the fact that Japanese electronics manuals haven’t improved much
since the first transistor radios appeared in the 1950s, with their lively advice
to Replace the blue pull with the battery plastic, under the battery while shipped
to you, before turning unit off. Or upward.

05f_570676 bk05ch05.qxd 6/4/04 10:12 PM Page 428

Chapter 6: Access Macro Techniques

In This Chapter
� Managing without a macro recorder

� Exploring the Object Browser

� Understanding DoCmd

� Using built-in functions

� Employing classic error trapping

� Adding keyboard shortcuts

In this chapter, you see how macros work in Access. They’re treated a bit
differently from how other Office 2003 applications manage macros. You

find out how to use the important DoCmd object, how to employ built-in func-
tions, and how to trap errors. Access often goes its own way, using different
dialog boxes and approaches than are found in other Office applications.
Keyboard shortcuts are no exception; you see how they’re created in Access.

Understanding the Languages of Access
Access’s built-in programming languages (macro languages) have accreted
over time, like barnacles on a ship. And unlike any other application known
to man, Access currently includes three different built-in languages: BASIC,
VBA, and VBScript, described as follows:

✦ BASIC: Access includes the ancient, limited, and essentially unsupported
Access BASIC language, with its outdated — and relatively distinctive —
point-and-click interface.

✦ VBA: VBA is actually a complete programming language, not merely a
macro language. Although lacking inheritance and a few other object-
oriented programming (OOP) features (that many programmers simply
don’t need or want anyway), VBA is a powerful, mature, and efficient
language.

✦ VBScript: Finally, a subset of VBA’s command set is found in the VBScript
language, which is Microsoft’s answer to JavaScript. VBScript is useful for
Internet applications, where executables must be lite (not contain any
commands that could do damage to a user’s system) to pass through
users’ virus defenses. VBScript is a subset of VBA because it’s missing
certain potentially dangerous capabilities, such as hard drive access.

05g_570676 bk05ch06.qxd 6/4/04 10:13 PM Page 429

Creating Macros without a Recorder430

Creating Macros without a Recorder
Unlike Excel and Word, Access doesn’t have a macro recorder, so you cannot
use that helpful shortcut to generate sample programming that you can
modify while creating your own macros.

Often, if you want to know the code to do a particular job (such as opening
a file), the easiest way to get this code up and running is simply to record
it, look at the code automatically generated, and adjust it as necessary. This
approach can even be used with Access if you hit a brick wall. You could
record something in Word, for example, and then see whether that code
works in an Access macro. But this approach isn’t that reliable because the
Access object model has too many unique aspects.

One shortcut is to go back in time to the older Access macro creator and
convert the result into VBA. To see how this works, follow these steps:

1. Open the Northwind database in Access.

2. In the Objects list of the main database window, click Macros.

3. Click New on the window’s icon bar.

4. In the Macro dialog box that opens, click the top line.

5. Open the list box from the top line.

6. Choose Quit from the list.

Quit appears in the list of macro actions, along with a SaveAll option.
You can click SaveAll to see another drop-down list of options. (Aargh.
Why don’t they just display the list instead of showing a drop-down
arrow icon and making you click it? After all, if you clicked it, you want
to see the list, right?)

7. Choose Prompt as your option.

8. Close the Macro dialog box.

WordBasic
Truth be told, Word also had its aging WordBasic
for a while, but remnants don’t remain in Word
2003. Word 2003 automatically converts any
WordBasic macros (which can be found embed-
ded in Word 6 and Word 95 templates) to VBA.
This happens if you create a new document

based on one of these older templates, or simply
open a template or attach it to a Word 2003
document. Macros in Word versions 97, 2000, or
2002 are already in VBA, not WordBasic, so no
translation is necessary.

05g_570676 bk05ch06.qxd 6/4/04 10:13 PM Page 430

Book V
Chapter 6

Access M
acro

Techniques
Creating Macros without a Recorder 431

A dialog box appears, asking whether you want to save changes.

9. Click Yes.

A Save As dialog box appears, allowing you to rename the macro.

10. Rename it Quitting.

11. Click OK.

The dialog box closes, and your macro is now officially a real macro. It
appears in the list of macros in the main window.

12. Click Quitting in the main database window.

13. Choose Tools➪Macro➪Convert Macro to Visual Basic.

The Convert Macro: Quitting dialog box appears.

14. Leave the default check boxes selected because you do want the
error trapping and the comments so cunningly offered to you. (Who
wouldn’t?)

15. Click Convert.

The Convert Macros to Visual Basic dialog box appears telling you that
the conversion is finished.

16. Click OK.

This odd dialog box closes.

17. Locate your new macro. Press Alt+11 to open the VBA editor and then
press Ctrl+R to open Project Explorer.

Its code window does not automatically open for you to view it.

18. Under the Modules node in Project Explorer, double-click the
Converted Macro-Quitting macro.

The special module window devoted just to this particular macro opens,
and you see Listing 6-1.

Listing 6-1: Converted Access Quitting Macro

‘--
‘ Quitting
‘
‘--
Function Quitting()
On Error GoTo Quitting_Err

DoCmd.Quit acPrompt

Quitting_Exit:

05g_570676 bk05ch06.qxd 6/4/04 10:13 PM Page 431

Using the Object Browser432

Exit Function

Quitting_Err:
MsgBox Error$
Resume Quitting_Exit

End Function

Well, maybe you didn’t need this commenting after all. It’s not too useful, but
the error trapping is good. And what’s most useful is the translation that
Access has — albeit, reluctantly, compared with the recording feature in
other applications — now provided you. You know how to write code that
quits with a prompt: DoCmd.Quit acPrompt.

I talk more about DoCmd and the error-trapping features shortly. However, I
won’t have anything to say about this line of code:

Resume Quitting_Exit

I have no idea why this line of code exists. The End Function does the
same thing without redirecting execution.

Using the Object Browser
To help you figure out the object model in Access, you can press Alt+F11 to
get to the VBA code window; then press F2 to open the Object Browser, as
shown in Figure 6-1.

Figure 6-1:
Use the
Object
Browser to
see what
objects are
available
and their
members.

05g_570676 bk05ch06.qxd 6/4/04 10:13 PM Page 432

Book V
Chapter 6

Access M
acro

Techniques
Using DoCmd 433

The object’s members are symbolized by little icons next to their names.
Properties are symbolized by a hand holding a VCR tape (collections add a
small, cyan, floating ball to this icon), methods by a flying green eraser, enu-
merations by an equal sign, and events by a yellow lightning bolt.

Click a method in the Members pane, and you see the proper syntax for
employing that method in the lowest pane of the browser. The method
is called a function (the older name for method). For example, the
CompactRepair method of the Access Application object looks like this:

Function CompactRepair(SourceFile As String, DestinationFile
As String, [LogFile As Boolean = False]) As Boolean

This can be helpful, although the Access VBA editor includes IntelliSense
features such as statement autocompletion and argument lists.

Using DoCmd
DoCmd is a class in the Access library. DoCmd contains many useful, commonly
used methods such as ShowToolbar, GoToPage, FindRecord, Maximize, and
so on. Indeed, by using the DoCmd.RunCommand method, you can trigger all
the Access menu features programmatically, thus taking control over Access’s
behavior.

As you might expect, DoCmd has many methods. Press Alt+F11 to go to
the Access VBA editor, and then press F2 to see the Object Browser. Click
DoCmd in the Classes list in the Object Browser to see all the methods. The
RunCommand method is especially full of variations and possibilities: It’s your
gateway to many Access behaviors. Although any custom menu and toolbar
commands cannot be manipulated via RunCommand, all the built-in Access
menus and toolbars are available. The menu and toolbar items are invoked
by using a built-in constant starting with ac, such as acCmdOptions. For
example, the following displays the Tools➪Options dialog box:

Sub ShowOptions()

DoCmd.RunCommand acCmdOptions

End Sub

Notice that the argument for the RunCommand, acCmdOptions here, is oddly
not enclosed in parentheses. Also, to see all the built-in constants (enums, as C
programmers call them) that can be used with this method, choose Help in the
VBA editor, choose Microsoft Visual Basic Reference in the Table of Contents,

05g_570676 bk05ch06.qxd 6/4/04 10:13 PM Page 433

Seeing Built-in VBA Language Features434

choose Enumerations, and then click the Microsoft Access Constants hyper-
link. (Simply searching for Microsoft Access Constants won’t do it — that would
be too easy.) In the list of enums, click AcCommand, as shown in Figure 6-2, to
see all the constants that you can employ with the RunCommand method.

Seeing Built-in VBA Language Features
The Object Browser can provide you with a shortcut view — quicker than
Help — of the commands that you can use to manage your macros. In the
upper-left corner of the Object Browser, open the list and choose VBA. You
see a list in the left pane showing all the various groups of functions, catego-
rized by purpose such as FileSystem, Math, and so on. Click Strings, and you
see all the classic Visual Basic functions. Click InStr, for example, and you
can see the syntax, like this:

Function InStr([Start], [String1], [String2], [Compare As
VbCompareMethod = vbBinaryCompare])

Figure 6-2:
Here are the
constants
that you can
use to
trigger
Access
menu items.

05g_570676 bk05ch06.qxd 6/4/04 10:13 PM Page 434

Book V
Chapter 6

Access M
acro

Techniques
Using Classic Error Trapping 435

Using Classic Error Trapping
The On Error command helps you to avoid user panic. It also allows you to
gracefully deal with the unexpected. In this example, what if the user has
deleted a form that you expected to be left in the database?

Sub OpenForm()

DoCmd.OpenForm FormName:=”Suppliers”

End Sub

This works fine in the Northwind database (opening the Suppliers form)
unless that form doesn’t exist or has been renamed. To deal with these pos-
sibilities, use this error structure:

Sub OpenForm()
On Error GoTo handler
Dim fn, s As String

fn = “xx”

DoCmd.OpenForm FormName:=fn

Exit Sub
handler:

If Err = 2102 Then ‘handle wrong form name:
s = InputBox(“There is no form by the name of “ & fn & “.

Please enter the name of a form in this database.”)

DoCmd.OpenForm FormName:=s

End If

End Sub

The handler is a labeled location to which execution is transferred if an error
occurs. (Otherwise, the Exit Sub executes following a successful form
opening.) If an error exists, the code following handler executes. Some (not
all) error codes can be found by searching Help for Trappable Errors. Others
can be discovered by inserting this line into your code and then deliberately
triggering an error (such as supplying a bad filename or form name, as in the
previous example):

MsgBox Err

05g_570676 bk05ch06.qxd 6/4/04 10:13 PM Page 435

Using Keyboard Shortcuts436

Using Keyboard Shortcuts
The usual Microsoft keyboard redefinition feature accessible via the Keyboard
button of the Customize dialog box (Tools➪Customize) is available in Excel
and Word, from which you can easily assign and reassign keyboard short-
cuts. Access (sigh) lacks this feature. Instead, you have to assign keyboard
shortcuts to macros somewhat less directly in Access. To assign a keyboard
shortcut to a macro in Access, follow these steps:

1. Open the Northwind database.

2. In the Objects list of the main database window, click Macros.

3. Click New on the window’s icon bar.

The Macro dialog box opens, and a Macro Design toolbar appears.

4. Click the Macro Names icon on the Macro Design toolbar, as shown in
Figure 6-3.

The Macro dialog box divides into three zones: Macro Name, Action, and
Comment.

5. In the Macro Name column, type the key combination that you want to
use to execute your macro.

The syntax for key combinations involves braces:

Enter This To Get This

^A Ctrl+A

{F1} F1

^{F1} Ctrl+F1

+{F1} Shift+F1

{INSERT} Insert

{DEL} Delete

Figure 6-3:
Create
keyboard
shortcuts in
Access.

05g_570676 bk05ch06.qxd 6/4/04 10:13 PM Page 436

Book V
Chapter 6

Access M
acro

Techniques
Using Keyboard Shortcuts 437

6. Click the Action column.

7. From the Action column list, choose RunMacro.

The Action Arguments changes to include a Macro Name field.

8. Click the Macro Name field in the Action Arguments section of the
dialog box.

Another drop-down list appears, containing all the macros in the current
database.

9. Click the name of the macro you want to assign this keyboard short-
cut to.

10. Close the macro window. In the Save As dialog box that appears,
name it AutoKeys.

05g_570676 bk05ch06.qxd 6/4/04 10:13 PM Page 437

Book V: Advanced Access438

05g_570676 bk05ch06.qxd 6/4/04 10:13 PM Page 438

Book VI

Exploiting Outlook

06a_570676 p06.qxd 6/5/04 12:40 AM Page 439

Contents at a Glance
Chapter 1: Outlook Power Tools..441

Chapter 2: Programming Outlook ..453

Chapter 3: Managing Work and Life..467

Chapter 4: Expert E-Mail Administration..483

Chapter 5: Group Management in Outlook ..493

Chapter 6: Advanced Outlook Macros ..503

06a_570676 p06.qxd 6/5/04 12:40 AM Page 440

Chapter 1: Outlook Power Tools

In This Chapter
� Discovering the new reading pane

� Fixing a filter

� Blocking spam

� Using encryption

� Flagging e-mail

� Using special folders

� Seeing double Calendars

Outlook 2003 is considerably changed from previous versions. This chap-
ter covers the changes of most interest to developers, including the

new reading pane, how to find “missing” e-mail, and the new spam-blocking
feature. Also of interest are the double Calendars, how folders are employed,
using flags to categorize e-mail, and how to manage encryption.

Using Outlook’s New Reading Pane
Probably the first thing that you notice in Outlook 2003 is the reading pane
on the right side. Many people find it easier to open their e-mail this way,
although you can still use the older Mail view. To avoid opening multiple
windows (one for each e-mail you double-click) or reduce the amount of
scrolling, this pane might be the way for you to go. Figure 1-1 illustrates how
efficient the reading pane can be.

Defaulting to Outlook
To make Outlook your default e-mail, Contacts,
and Calendar application, choose Tools➪
Options➪Other. (See the Options dialog box

here.) Under the General section, select the
Make Outlook the Default Program blah blah
check box, click OK, and you’re good to go.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 441

Adjusting the Nasty Read Filter442

Adjusting the Nasty Read Filter
Newcomers to Outlook 2003 are sometimes startled to find that as soon as
they read an Inbox e-mail message, then do something else, or close Outlook,
that particular message disappears! It cannot be found in Inbox or indeed in
any of the mail folders. In fact, another frightening moment occurs when you
realize that there are various categories of folders — personal, favorites,
searches, archives — that aren’t individual folders but rather groups of folders.
And when you look in the three Deleted Items folders (yes, there are three of
these, although they’re different listings for the same folder) or look in the two
For Follow Up folders, you won’t find your e-mail anywhere. (This behavior is
quite different from how Outlook Express works. It leaves all your Inbox e-mail
alone unless you specifically delete it or move it.)

The problem is that a default filter is applied to the Inbox folder that auto-
matically hides e-mail that you’ve read (or even just glanced at). You might
find this a convenience, but if you don’t (and I certainly don’t), follow these
steps to make Outlook straighten up and fly right: that is, unhide already
read Inbox e-mail.

1. Select the Inbox (in the Mail column).

2. Choose View➪Arrange By➪Custom.

3. In the Customize View dialog box, click the Filter button.

Figure 1-1:
Use this
reading
pane to see
more of an
e-mail than
you could in
the older
style. Often,
scrolling
isn’t even
necessary.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 442

Book VI
Chapter 1

Outlook Pow
er

Tools
Managing Multiple Accounts 443

4. In the Filter dialog box, click the More Choices tab.

At long last (sheesh), you see the culprit, displayed in Figure 1-2.

The check box next to Only Items That Are is selected by default, and
the filter is unread. This has the effect of showing you only those e-mails
that you’ve never seen before; all the other e-mails are not displayed.

5. Clear this check box to restore all your e-mail in the Inbox.

Why this is the default, and why you must maneuver through so many
twisted paths down into submenus and dialog boxes to finally rectify
this default behavior . . . well, it’s beyond me.

Outlook 2003 is in many ways a marvel of efficiency and ergonomics. In this
case, though, it seems both wrong-headed and poorly designed.

Managing Multiple Accounts
If you’re savvy about e-mail, you likely have a very private e-mail address
known only to a few friends and business associates, whom you ask to please
never give out this e-mail address to anyone. Then you create a public e-mail
address (the one you provide when you buy things online, enter contests, or
otherwise risk having the address published or sold, thereby attracting the
usual hailstorm of spam).

Online services such as Hotmail (www.hotmail.com) are useful for setting
up a public e-mail account. But then you have to look for your e-mail in two
locations: your private e-mail program (such as Outlook) and your public
address (your browser where you log on to Hotmail or another Web-based
e-mail service.) No more. Now you can add public accounts like Hotmail to
Outlook so you can see all your e-mail in one application. Outlook will auto-
matically suck all your public account e-mail into a special Inbox.

Figure 1-2:
Clear this
default filter
to see your
Inbox mail.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 443

Managing Multiple Accounts444

To add a Hotmail e-mail account to Outlook, follow these steps:

1. Choose Tools➪E-mail Accounts.

The E-mail Accounts wizard opens.

2. Select the Add a New E-mail Account radio button.

3. Click Next.

You see a list of server options.

4. Click the HTTP option button.

5. Click Next.

You see the wizard’s settings page.

6. Type in your online name, your Hotmail e-mail address (which is also
used as your User Name), and then type in your Hotmail password.

7. Click Next and then click Finish.

After a little background work, Outlook adds a new folder category
named Hotmail to your All Mail Folders pane, as shown in Figure 1-3.

Figure 1-3:
Adding a
Hotmail
account to
Outlook is
easy and
convenient.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 444

Book VI
Chapter 1

Outlook Pow
er

Tools
Blocking Spam and Virii 445

Strangely, the Deleted Items folder appears at the top of the Hotmail category
(and other folders as well). I would prefer to have the Inbox located at the
top. After all, Inbox is by far the most often used of the categories of mail, and
the deleted mail folder is probably least used. And although you cannot drag
these folders to reposition them (arrrg; perhaps in the next version of
Outlook), you can rearrange the Favorite Folders.

To complete rerouting Hotmail to Outlook, follow the steps in Book VI,
Chapter 4.

Blocking Spam and Virii
A relatively sophisticated spam-blocking system has replaced the old rules-
based, anti-spam scheme that Outlook used to rely on (and that Outlook
Express still does). Various telltale cues — you know, the ubiquitous You’ve
Won! e-mail sent at 4 a.m. — are used to divide the good e-mail from the junk.
However, these filters aren’t perfect by a long shot, so you’ll still get spam —
and virus-writers are even more clever than spammers.

Outlook 2003 offers several layers of protection. You can modify the file
types (executables like BAT, EXE, and so on) that are automatically blocked.
You can also force HTML messages to display as text. The new Junk E-mail
Filter can be modified by following these steps:

1. Choose Tools➪Options.

2. In the Options dialog box that opens, click the Junk E-mail button.

The Junk E-mail Options dialog box opens, as shown in Figure 1-4.

Figure 1-4:
Specify
here how
you want
Outlook
junk mail
handled.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 445

Using Encryption446

By default, the level of blocking is set to Low, which probably makes sense for
most people. It blocks obvious junk but does let some through. An alternative
setting, High, seems rather pointless because it blocks so much that some
authentic messages get blocked along with the junk. So, you have to read
through the Junk E-mail folder to find which real messages got blocked by mis-
take. Given that this is what you have to do with no filtering selected, what’s
the point of even trying to redirect some e-mail? You have to check it, anyway.

Also, you can specify that particular senders should always be blocked
from the settings available on the Blocked Senders tab (of the Junk E-mail
Options dialog box; refer to Figure 1-4). However, this isn’t much use unless
you have a stalker sending you messages. Spammers constantly change their
addresses, and virii writers often use your friends’ address books to harvest
your address, sending trouble your way by attaching a virus to e-mail that
appears to come from this friend. You’ll find more on Outlook security meas-
ures in Chapter 4 of this mini-book.

You can update the Junk E-mail Filter detector software as Microsoft continues
to improve it. Go to this address:

http://www.microsoft.com/downloads/details.aspx?FamilyID=a
d3699f7-5cc3-4604-a768-32c4d044b630&displaylang=en

Using Encryption
Avoiding virii is only half of the e-mail security battle. The other half is pro-
tecting your privacy, including such things as confidential business details
or even certain kinds of monkey business. Encryption provides protection
against prying eyes, and digital signing authenticates that the person who
appears to have sent the e-mail actually did. Signing can also ensure that a
communication hasn’t been tampered with.

To see the level of encryption currently in effect for your company’s Office
2003 installation, follow these steps:

1. Run Word.

2. Choose File➪Save As.

The Save As dialog box opens.

3. Click the Tools drop-down list in the upper-right corner of the Save As
dialog box.

4. Choose Security Options from the drop-down list.

5. In the Security dialog box that opens, click the Advanced button.

The Encryption Type dialog box opens, as shown in Figure 1-5.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 446

Book VI
Chapter 1

Outlook Pow
er

Tools
Using Encryption 447

As you can see in Figure 1-5, unless you’ve changed it, the default encryption
scheme employed by your company is Office 97/2000 Compatible. Although
not as laughably simple-minded as the XOR encryption system, the older
Office version of encryption was not a massively complex problem to solve.

It took me about four hours to crack it and to write a utility that decodes any
documents encrypted using the older versions of Word. I don’t need to know
the password; I just run my utility, and the document decrypts.

So, unless you absolutely require backward compatibility with earlier versions
of Office applications, I suggest that you select one of the DSS (symmetrical
encryption) options in the dialog box shown in Figure 1-5. DSS is quicker than
RSA (public key), but RSA is stronger. Unless you have relatively small docu-
ments, you might find RSA too slow. And DSS is plenty powerful. These encryp-
tion systems are explored in depth in Book VIII, Chapter 8.

You can also specify various key (password) lengths. Most modern encryp-
tion schemes permit several key lengths: the longer the key, the greater the
protection. Note, too, that the encryption schemes in the Encryption Type
dialog box are listed roughly in order of security. DSS should be good enough
for you; after all, it’s good enough for banks.

Logged on at Administrator level access, you can modify your users’ registries
to beef up the security level for each machine. Employ a configuration mainte-
nance file, a transform, an OPS file (Office profile settings), or distribute a Reg
file (having used File➪Export in Regedit).

To encrypt an individual e-mail message, follow these steps:

1. While viewing the message, click the Options button on the toolbar.

2. In the Message Options dialog box that opens, click the Security
Settings button.

The Securities Property dialog box opens.

3. Select the Encrypt Message Contents and Attachments check box.

4. Click OK.

Figure 1-5:
Specify
more
advanced
encryption
from here.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 447

Flagging E-mail448

If you don’t already have a digital ID (used for both digital signatures and
encryption), you’ll have to choose Tools➪Options, click the Security tab, and
click the Get a Digital ID button. You’ll be shown a Web site at Microsoft with
some third-party companies offering digital signing. This same Options dialog
box allows you to select the Encrypt Contents and Attachments for Outgoing
Messages check box. This option automatically encrypts all messages that
you send.

Flagging E-mail
The new Quick Flag feature allows you to rapidly categorize e-mail for later
handling. With one click next to an e-mail message, a red flag replaces the
pale gray flag, and the message is also automatically put into the For Follow
Up folder. Click the red flag, and it turns into a check mark, meaning that the
follow-up is finished and the message has been dealt with.

Right-click the flag, and a list of various additional flags appears, as shown in
Figure 1-6.

All these different colored flags have no built-in meaning (other than the red
one and the check icon); Microsoft hasn’t labeled them. You decide what a
green or purple flag means. (I assume that purple represents royalty, so use
it for messages you get from the queen.) Also, others who send e-mail to you
can flag it; if their sense of its importance or category differs from yours, you
can easily reflag the message.

Messages flagged by senders are displayed at the top of the Unflagged Group
if you choose to arrange your messages by flag, as shown in Figure 1-7.

Figure 1-6:
Easily tag
your e-mail
with these
flags.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 448

Book VI
Chapter 1

Outlook Pow
er

Tools
Using Special Folders 449

The Add Reminder option (refer to Figure 1-6) allows you to specify a date
and time to be reminded about this message.

Using Special Folders
Messages that don’t belong in the built-in folders — Notes, Large Mail, and
For Follow Up — can be put into new folders that you create and name. For
example, right-click Personal Folders in the All Mail Folders list and then
choose New Folder. The Create New Folder dialog box appears, as shown in
Figure 1-8. Here, name the new folder, define what you want it to contain, and
give it a home; click OK.

Search folders are a special category of Personal Folders: For one thing, two
or more of these folders can contain the same message. Microsoft calls them
virtual folders, which should cue you that they’re not quite as real as the
other, more traditional, folders. You can group and view messages in these
search folders without having to actually copy or move them there. The For
Follow Up, Unread Mail, and Large Mail folders are provided as the set of
default search folders, but you can add new ones.

Large Mail is where e-mail with big attachments or huge messages are displayed.

The trick involved with search folders is that messages are automatically
included in these folders based on specified criteria. For example, when you
click the red flag on a message, it is automatically then available in the For
Follow Up folder although it also remains in the Inbox or whatever other
folder you placed it.

Figure 1-7:
Arrange
your e-mail
with these
options.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 449

Using Special Folders450

To create a custom search folder, follow these steps:

1. Right-click Search Folders in the navigation pane (the pane on the left
in Figure 1-8).

2. From the context menu that opens, choose New Search Folder.

3. In the New Search Folder dialog box that opens, scroll down to
Organizing Mail and then click Mail with Specific Words.

4. Near Show Messages That Contain These Words, click Choose.

5. Type Richard (or whatever other key term you want to use).

6. Click Add.

7. Click OK.

The new folder, named Containing Richard, appears under the Search
Folders group. When you click this new folder, you see a list of all mes-
sages containing your keyword. Remember, this is a virtual folder — that
is, a view of select e-mail — so the actual, real e-mails still reside within
whatever folders they are really contained, such as Inbox.

Figure 1-8:
Create
custom
folders here.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 450

Book VI
Chapter 1

Outlook Pow
er

Tools
Using Twin Calendars 451

In Step 3 of the preceding step list, if you choose Create a Custom Search
Folder rather than Mail with Specific Words, click Choose, and then click
Criteria, Advanced, and Field, you can go hog-wild in the Search Folder
Criteria dialog box, specifying nearly any kind of criteria you can imagine, as
shown in Figure 1-9.

Using Twin Calendars
Also new in Outlook 2003, you can now view two or more Calendars side-by-
side, as shown in Figure 1-10. Comparing your schedule to a co-worker’s cal-
endar can be quite useful for setting up meetings and otherwise coordinating
joint projects. Likewise, you might want to compare your personal and busi-
ness calendars, or this year’s calendar with last year’s.

Figure 1-9:
Specify
hundreds
of search
folder
criteria
here; even
combine
various
criteria for
greater
specificity.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 451

Using Twin Calendars452

To create a new Calendar, follow these steps:

1. Choose Go➪Folder List.

The Folder List appears.

2. Right-click the Calendar folder (not the colored, shaded Calendar
bar button).

3. Choose New Folder from the context menu that appears.

The Create New Folder dialog box appears.

4. In the Name box, type whatever name you want to give to your new
Calendar.

5. Click OK.

The dialog box closes, and your new Calendar is added to your list of
calendars.

Figure 1-10:
Open more
than one
Calendar
at once.

06b_570676 bk06ch01.qxd 6/4/04 10:14 PM Page 452

Chapter 2: Programming Outlook

In This Chapter
� Understanding the Outlook object model

� Discovering namespaces

� Using MAPI objects

� Using practical VBA

� Handling events

In this chapter, you see how to take control of Outlook, programming it to
do your bidding. You see how the object model works and how to deal

with the special Windows Messaging API (MAPI) objects. And, of course,
you want to know how to trap events and respond to them programmati-
cally. As always, I try to provide examples that are simultaneously illustra-
tive and potentially useful in your efforts to improve Office efficiency and
increase productivity.

Discovering the Outlook Object Model
The Outlook object model is similar to the other Office 2003 application’s
class hierarchies, but there are some differences. For one thing, in the other
major Office applications, you can open multiple documents, workbooks,
tables, and other objects. In Outlook, there’s only one primary “document” —
the current contents of your Calendar, Contacts, Inbox, and so on. In other
words, there aren’t alternative repositories of data that you can save from
or load into Outlook the way you can open several documents in Word. For
this reason, Outlook’s library of objects contains no methods to save or
load files and otherwise manipulate multiple primary documents.

Outlook also employs special objects named explorer and inspector. The
former stands for each pane (zone onscreen) in which a folder’s contents
are displayed. The inspector is a pane in which a lone object is displayed.
For example, the window displaying a list of all your Inbox folder’s mail is an
explorer. Double-click an e-mail listed in that explorer, and that individ-
ual e-mail is then displayed in an inspector pane or window. To see the
Outlook object model, follow these steps:

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 453

Discovering the Outlook Object Model454

1. Press Alt+F11 to open the Outlook VBA editor.

2. Choose Insert➪Module in the VBA editor.

A new module window opens.

3. Choose Help➪Microsoft Visual Basic Help.

The Help window opens.

4. Click the book icon next to Microsoft Outlook Visual Basic Reference
in the Help window.

A list of subcategories is displayed.

5. Click Microsoft Outlook Object Model.

You see the diagram shown in Figure 2-1.

Figure 2-1:
Here’s the
Outlook
object
model in all
its splendor.

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 454

Book VI
Chapter 2

Program
m

ing
Outlook

Using the Outlook Object Model 455

Using the Outlook Object Model
Try using the Outlook object model. Follow along to see how to automate
sending an e-mail with an attachment from Outlook. Type Listing 2-1 into the
module created in the preceding section:

Listing 2-1: Automating Sending an Outlook E-Mail with an Attachment

Sub SendEmail()

‘create the object variables
Dim o As Outlook.Application
Dim oMail As Outlook.MailItem

‘Instantiate the new objects:
Set o = New Outlook.Application
Set oMail = o.CreateItem(olMailItem)

‘Fill in fields and mail the message:
With oMail

.Importance = olImportanceHigh

.To = “richardm52@hotmail.com”

.Body = “Get this new message.”

.Subject = “For YOU a new Message about our next Meeting!”

.Attachments.Add “c:\test.txt”

.Display

.Send

End With

‘kill the objects
Set o = Nothing
Set oMail = Nothing

End Sub

This code creates a new e-mail message, specifies the target address, the
message (Body in the object model), types in the subject line, sets the
importance flag to High, attaches a file, and then displays and sends the
e-mail.

Outlook’s VBA has IntelliSense, so while you’re typing lines of code, you’ll
usually see a list of options when you type a period (.) to signify a new ele-
ment in a chain of objects or a left parenthesis to signify that you’re begin-
ning an argument list.

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 455

Using the Outlook Object Model456

Regrettably, the usual classification problems and inconsistencies associ-
ated with object models plague Outlook VBA. Whereas you can access a
Mail object via the Outlook Application object (as illustrated in the previ-
ous example), you cannot use the same technique to access a folder object.
Instead, you must use a namespace object.

Namespaces are a relatively new category: They first appeared in BASIC with
.NET. They’re intended to prevent one of the less-charming aspects of object-
oriented programming (OOP): name collision. In other words, you often pro-
gram with more than a single code library at the same time — for example, a
library of math functions and also a library of string functions. What hap-
pens, though, if both libraries include a function named Add? How is the
compiler to know which of the two functions you intend to use? That’s
where namespaces come in.

Why namespaces?
Why are they using namespaces? It’s a clerical thing, as is so often the case
with OOP. Namespaces can help prevent name collisions, although not
always. They’re enigmas, really, but you have to deal with them just as mar-
itime navigators must deal with sand bars. They’re here and there, they’re
sometimes in the way, they shift around unpredictably from one Application
Programmers Interface (API) to another — but can hang you up if you ignore
them.

Import or qualify
In .NET, you can add Imports namespaceName statements at the top of
the code window. Alternatively, you can qualify a function name each
time it appears within the source code, like this: namespaceName.
FunctionName. In effect, you’re telling the compiler: “Use the function in
this namespace — not the other one if there’s one with the same name in
some other namespace.”

Confusingly, new terminology is constantly being introduced, often for no
good reason. The latest term for code library (or Dynamic Link Library, DLL)
is assembly. An assembly is a file containing a group of related functions,
such as the Microsoft Office Web Components Function Library. Assemblies,
when being added to a project, are called references. Now, one more point.
Don’t be upset, but I have to tell you that there can even be multiple name-
spaces within a single assembly — a single code library, a single DLL. So, you
must think of namespaces as virtual libraries of functions because a name-
space can refer to an entire physical library like a DLL, or it can refer merely
to a subset of functions in a library containing several namespaces.

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 456

Book VI
Chapter 2

Program
m

ing
Outlook

Using the Outlook Object Model 457

Sometimes, you might find that you need to actually add a library of code to
a VB project. In other words, a function or functions that you want to use
aren’t part of the default set of libraries available to VBA or VB.NET. VBA and
VB.NET both include a huge set of functions, so to write some programs, you
don’t need to import additional libraries. In other cases, though, you must
specifically choose Project➪Add Reference in VB.NET — or in VBA, choose
Tools➪References, as shown in Figure 2-2.

To see which code libraries are added by default in VB.NET, right-click the
name of your project in Solution Explorer (it’s the boldface line), choose
Properties, and then select Imports in the Properties dialog box.

What happens, you might say, if you use the Imports command to specify
two namespaces that have a pair of identically named objects? Now you will
have a name collision — no doubt about it. Imports doesn’t help you distin-
guish between these objects because you’ve used Imports for both name-
spaces. The classification system has a kink or two, as you can see.

You can also create your own namespaces when programming. For example,
assume that you write code for a custom cursor class and put this class into
a namespace called NewCursors within your library MyObjects. Then you
reference it with the Imports command:

Imports MyObjects.NewCursors

And at the same time, you need to also reference the standard Windows
objects namespace (which includes controls such as the TextBox, as well as
other items such as default cursors):

Imports System.Windows.Forms

Figure 2-2:
These
checked
code
libraries are
available by
default in
Outlook’s
version of
VBA. Just
select new
libraries to
add them.

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 457

Using the Outlook Object Model458

You don’t need to actually use Imports System.Windows.Forms; it’s
already imported as one of the default libraries in VB.NET. I’m just showing
you an example here.

Now you have two namespaces in your project, each containing a (different)
cursor class. The only way you can distinguish them is to forget about the
Imports trick and just use the long form (fully qualify the object) whenever
you use the Cursor object. Here’s how you specify that you intend to use
the cursor in the System.Windows.Forms namespace:

Dim n As New System.Windows.Forms.Cursor(“nac.ico”)

Or, to use your personal custom cursor, fully qualify it like this:

Dim n As New MyObjects.NewCursors.Cursor(“nac.ico”)

Practical advice about namespaces
For VBA programmers: You can pretty much ignore namespaces because
they’re very rarely used in VBA. But do be aware of the concept of assem-
blies and namespaces because they’re coming down the river toward you
from the future. Eventually, .NET will replace the VBA languages built into
Office applications, so it doesn’t hurt to get used to these classification sys-
tems. True, they might be half-baked, not completely thought-through, and
too often inconsistent and clumsy — but you just have to live with things
like this as programming evolves through its current airy, academic phase
into something more practical (I hope). After all, this isn’t the first time that
programming has suffered from the introduction of ill-conceived new ideas
that upon later reflection had to be yanked from the languages because they
caused so much trouble. Two examples of now-disgraced — although once-
highly touted — concepts are dynamic link libraries (which resulted in the
phrase DLL Hell) and the Variant variable type (which still exists in VBA
but has been banished from VB.NET).

For .NET programmers: Don’t worry about adding extra Imports statements
that you actually use in your program: Namespaces neither increase the size
of your executable (EXE) program nor slow execution. VB.NET is a huge lan-
guage. It includes more than 60 .NET assemblies (code libraries), containing
the hundreds of .NET namespaces. Each namespace contains many classes.
In turn, these classes have multiple members (methods you can employ;
properties you can read or change). Also, many of the methods are over-
loaded: They often permit you to provide a variety of arguments to make
them behave in different ways. As you can see, hundreds of thousands of
commands and variations of those commands are in this language.

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 458

Book VI
Chapter 2

Program
m

ing
Outlook

Using the MAPI Namespace 459

What to do if you’re a VB.NET programmer? You’ll master the important
tools fairly quickly — file input/output (I/O), printing, useful constants, inter-
acting with the user, debugging, and so on. Most of these major programming
techniques are different in .NET from their VBA counterparts but are not
unrecognizably different. Also, you can use VB.NET Help’s Search and Index
features as well as the Object Browser when needed. To see the format,
syntax, punctuation, and (sometimes) code examples of the many classes, try
this approach. Run the Help Index and then type the following into the Look
For field. (Cutting and pasting doesn’t work; you must type this in.)

system.drawing.

You then see the massive number of classes listed in the left pane. Click any
of these classes to see its members and other information about how to use
it. Each page contains hyperlinks that take you to more specific information
about particular members.

The more practice you get using VB.NET, the more you’ll learn about which
namespaces you need to import. The most common namespaces are auto-
matically imported by VB.NET when you create a new project. These seven
are imported by default: Microsoft.VisualBasic (a compatibility name-
space, permitting you to use most VB6 and VBA constants and functions,
such as InStr rather than the new .NET equivalent, IndexOf, System,
System.Collections, System.Data, System.Diagnostics,
System.Drawing, and System.Windows.Forms.

Using the MAPI Namespace
To manage folder objects in Outlook, you must refer to the Windows
Messaging API (MAPI) namespace. This is the only namespace within the
Outlook application object, but for some reason, when working with folders,
you cannot simply use the Application object by itself as you do with most
other Outlook objects. Perhaps more namespaces will be added later.
(Search folders, though, are not included in the MAPI namespace, so you
have to use different techniques with them.) MAPI itself puts you in touch
with stored mail messages, among other things.

The following example illustrates how to use the MAPI object (yes, name-
spaces, like nearly everything else, are objects) to switch to the Tasks view
in Outlook:

Sub SwitchToTasks()

Dim o As Outlook.Application
Dim n As Outlook.NameSpace

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 459

Using Practical VBA in Outlook460

Set o = CreateObject(“Outlook.Application”)
Set n = o.GetNamespace(“MAPI”)

Set o.ActiveExplorer.CurrentFolder =
n.GetDefaultFolder(olFolderTasks)

End Sub

The first four lines of this code merely get you the handle (the address of)
to the MAPI namespace inside the Application object. You can then employ
the GetDefaultFolder method of the MAPI namespace to change the
CurrentFolder property. The other possible arguments for the GetDefault
Folder method are olFolderCalendar, olFolderContacts, olFolder
DeletedItems, olFolderDrafts, olFolderInbox, olFolderJournal,
olFolderNotes, olFolderOutbox, olFolderSentMail, olFolderTasks,
olPublicFoldersAllPublicFolders, and olFolderJunk.

The Explorer object contains the contents of the currently viewed folder. In
other words, when you look at your Inbox or view a list of Tasks, you’re look-
ing at an Explorer. There’s also an Inspector object that displays more
specific data, such as a single e-mail when you double-click in an Explorer
view of your e-mail. These terms have no particular use nor pattern across
different applications, so the only reason to pay any attention to them is that
they’re your passport to accessing this particular object model’s behaviors
and elements.

Using Practical VBA in Outlook
Suppose that a new wind of political change again sweeps the nation, and
now you’re supposed to refer to people as Ms or Miss rather than either
single title. Whatever. But you, clever you, decide that you can automate this
process. Instead of laboriously opening each name in your Contacts folder,
and modifying some of them as required by the latest cultural shift, you
whip up a little VBA code to do the job for you. Here’s how.

You first want to change any name that begins with Miss to Ms or Miss. Use
the code in Listing 2-2 to rifle through your contacts and make the changes:

Listing 2-2: Search-and-Replace Example in Outlook

Sub MissToMs()

Dim n As Outlook.NameSpace
Set n = Application.GetNamespace(“MAPI”)

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 460

Book VI
Chapter 2

Program
m

ing
Outlook

Using Practical VBA in Outlook 461

Dim f As Outlook.MAPIFolder
Set f = n.GetDefaultFolder(olFolderContacts)

Dim o As Object
Set o = f.Items.GetFirst

For Each o In f.Items

If Left(o.FullName, 4) = “Miss” Then

o.FullName = “Ms or “ & o.FullName
o.Save

End If
Next

Set o = Nothing
Set f = Nothing
Set n = Nothing

End Sub

First, you do the usual drill of creating object variables and then instantiat-
ing objects for them to refer to. You end up with a generic object, a MAPI
namespace, and a Contacts folder object. Your object uses the GetFirst
method to point to the first item in the Contacts folder — the first Contact,
in other words. Then you go through each item (each Contact) and see
whether its FullName property begins with Miss. If so, you make the change
by prepending Ms or; then you save the item back into the collection with
the change. Then you go through the usual drill of destroying the objects
you created. Setting things to Nothing causes some confusion. Some
experts insist you always must do this to save memory, to free up resources,
or to prevent problems. Others say that the garbage collection truck will be
along in due time to automatically destroy unused objects. (It knows they’re
unused because they’re only local in scope, having been instantiated within
a procedure, and no other references to them exist.) So you can leave off the
three lines ending in Nothing . . . and nothing is going to happen. That is,
unless the other experts are correct in their warnings and memory or
resources get all clogged up from pointers pointing to nothing. I’ve never
noticed a problem.

The Contacts Items collection can contain distribution items as well as
Contacts items. If this is the case, you might try to access properties that
distribution items don’t have. If this problem applies to you, add this test to
the loop in the previous example to filter out the distribution items:

If o.MessageClass = “IPM.Contact” Then

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 461

Handling Events462

Handling Events
You might want to insert some VBA code into one of Outlook’s built-in
events to customize Outlook’s behavior. To see the available events for the
Application object, choose View➪Project Explorer, and then double-click
ThisOutlookSession in the Project Explorer. Open the list box on the left
top of the code window and choose Application. Then open the other list
(right side), and you see all the events for the Application. Choose Quit
(the event that fires when you close Outlook). In this event, type this code:

Private Sub Application_Quit()

MsgBox (“Tell Mary to go home.”)

End Sub

Now close Outlook, and you see the reminder to tell workaholic Mary it’s
time to pack it in.

Open the Outlook VBA editor Help window. In the Table of Contents,
choose Microsoft Outlook Visual Basic Reference; under that, click Events.
You’ll find a large number of events for various objects within Outlook.
Unfortunately, creating code for most of these events is rather indirect and
complex — you have to insert WithEvents commands, initialize the handler
in the Application_Startup event, and such twists and turns. Fortunately,
the Help system contains quite a generous number of code examples.

Advanced Searching
If simple searches aren’t enough, Outlook also includes an object modestly
named AdvancedSearch. Use this object to really take the bull by the horns.
Interestingly, AdvancedSearch requires that you split your code into two
procedures. You start the search in a procedure of your own. Then, when the
search is finished, it triggers the AdvancedSearchComplete event where
you write code to handle the results.

To see how it works, press Alt+F11 to open the Outlook VBA editor. Choose
Insert➪Module if no Module1 is listed in Project Explorer. Type this public
variable at the very top of Module1:

Public r As results

Making a Public variable allows you to easily pass the results object
between procedures. This object will contain the — you guessed it — results
of the search, and you want to display in a text box the body of any e-mail
message the user clicks in the list box.

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 462

Book VI
Chapter 2

Program
m

ing
Outlook

Advanced Searching 463

Choose Insert➪UserForm and put a small text box on the top left, a list box
underneath it, a button on the top right, and a text box under the button. It
should all look like Figure 2-3.

Double-click the button on the UserForm and type this code into its Click
event:

Private Sub CommandButton1_Click()

Dim s As Search

where = “‘Inbox’”

n = “urn:schemas:mailheader:subject LIKE ‘%” & TextBox1.Text & “%’”

Set s = Application.AdvancedSearch(where, n, True)

End Sub

When the user clicks this button, the search is initiated in the Outlook Inbox
(although you can change the where variable here to point to any target you
want to search — perhaps put a group of radio buttons on the form, and let
the user click the target).

Whatever the user has typed into the small text box will be the search term,
and by surrounding it with % symbols, you’re saying, Include any additional
text on either side. In this way, searching for bob will also provide hits for
bobby, joe-bob, and so on. This search looks through the subject headers
of each e-mail — not the body text, although you can change that. (See
AdvancedSearch in Outlook VBA Help for additional ways you can specify
the search fields and the search term.) The final argument True in the pre-
ceding code means to search all subfolders.

Figure 2-3:
The results
of the
search
appear in
this
UserForm.

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 463

Advanced Searching464

In this same UserForm, double-click the list box so you can provide a way for
the user to click an e-mail subject header and thereby cause that e-mail’s
text (the actual message) to be displayed in the text box to the right of the
list box:

Private Sub ListBox1_Click()

Dim rr As results
Set rr = Module1.r

TextBox2.Text = rr(ListBox1.ListIndex + 1).Body

End Sub

Notice that you create an object variable rr to hold the results and point it
to the public variable r that you previously declared in Module1.

Now all that’s left to do is to write some programming in the
AdvanceSearchComplete event. Double-click ThisOutlookSession in Project
Explorer to open the module where Application events are located. Use
the list boxes at the top of this module’s code window to open the
Application_AdvancedSearchComplete event and type this into it:

Private Sub Application_AdvancedSearchComplete(ByVal
SearchObject As Search)

Set r = SearchObject.results

If r.Count = 0 Then
UserForm3.ListBox1.AddItem (“NOTHING FOUND MATCHING “ &

UserForm3.TextBox1.Text)
Else

For i = 1 To r.Count

UserForm3.ListBox1.AddItem (r(i).Subject & “ “ &
r(i).SenderName)

Next i

End If

End Sub

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 464

Book VI
Chapter 2

Program
m

ing
Outlook

Advanced Searching 465

Here you point Module1’s public variable r to the results returned by the
SearchObject. If the count property of this object is 0, no hit was found, so
you tell the user. Otherwise (Else), you display the Subject property for
each hit that was found in the list box.

I suspect that you might prefer to use the above example code to construct
your own custom search utilities for Outlook messages. Also note that you
can conduct as many as 100 multiple simultaneous searches (for example,
searching through several folders at the same time). To run multiple searches,
just call the AdvancedSearch method in successive lines of source code.

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 465

Book VI: Exploiting Outlook466

06c_570676 bk06ch02.qxd 6/4/04 10:16 PM Page 466

Chapter 3: Managing Work
and Life

In This Chapter
� Handling Contacts

� Sending Access data into Outlook

� Creating and displaying folders

� Modifying collections

� Searching Tasks

� Managing the Calendar

� Moving data from Outlook to Word

� Using the new Business Contact Manager

In this chapter, I explore how to program several of Outlook’s primary
features: Contacts, Tasks, scheduling, and the Calendar. You begin by

solving a common programming problem: how to transfer data from one
application to another. Fortunately, the rich object model available in most
Office 2003 applications makes the process of automating data transfer rela-
tively painless. As usual, the only real pain is figuring out the necessary
syntax. The objects are there; you just have to know how to reference them
and punctuate correctly.

Do This First
For the example code in this chapter to work, you must first set the follow-
ing references:

1. Press Alt+F11 to open the Outlook VBA editor.

2. Choose Tools➪References in the editor and ensure that you have
selected the following three libraries:

• Microsoft Office 11.0 Object Library

• Microsoft Outlook 11.0 Object Library

• Microsoft DAO 3.6 Object Library

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 467

Sending Access Data into Outlook468

Each of these libraries should have a check mark next to its name in the
References dialog box.

3. Close the References dialog box.

Sending Access Data into Outlook
For this example, suppose that you have a table in Access containing a list of
employees for a particular company — in this case, the Northwind sample
database. You want to import this data into Outlook’s Contacts folder.

If you execute this example code, you’ll want to later delete the nine new
Contacts that the example adds to your current list of Contacts. You don’t
want to clutter up your Contacts list with the fakes added during this example.

Choose Insert➪Module in the Outlook VBA editor. A new module appears for
you to type in the following subroutine (Listing 3-1):

Listing 3-1: Importing Access Data into Your Outlook Contacts List

Sub ImportAccessData()

Dim DAOdb As DAO.Database
Dim r As DAO.Recordset

Set DAOdb = OpenDatabase _
(“c:\Program Files\Microsoft Office\Office11\Samples\

Northwind.mdb”)
Set r = DAOdb.OpenRecordset(“Employees”)

‘create outlook object variables
Dim o As New Outlook.Application

Dim c As Outlook.ContactItem
Dim upr As Outlook.UserProperty

With r
.MoveFirst

‘ Loop through the Access records
Do While Not .EOF

‘ Create a new Contact object
Set c = o.CreateItem(olContactItem)

‘ Transfer data to existing Outlook contact
categories:

‘If ![ACCESS FIELD NAME] <> “” Then
OUTLOOK.FIELDNAME = ![ACCESS FIELD NAME]

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 468

Book VI
Chapter 3

M
anaging W

ork
and Life

Sending Access Data into Outlook 469

If ![LastName] <> “” Then c.FullName = ![LastName] &
![FirstName]

If ![Title] <> “” Then c.JobTitle = ![Title]
If ![BirthDate] <> “” Then c.Birthday = ![BirthDate]
If ![HomePhone] <> “” Then c.HomeTelephoneNumber =
![HomePhone]

If ![Notes] <> “” Then c.Body = “Personality defects
or positives: “ & ![Notes]

‘ Create an Outlook user property for any missing
fields.

Set upr = c.UserProperties.Add(“Hire date at
Northwind”, olText)

‘ send the data from the appropriate Access field:
If ![HireDate] <> “” Then upr = ![HireDate]

‘ Save then destroy the contact object
c.Save
c.Close olDiscard
.MoveNext

Loop
End With

End Sub

Some Outlook fields are not named the same way that they are labeled in the
Outlook Contact dialog box. For example, the Phone Numbers area in the
Contact dialog box contains four possible entries, so PhoneNumber alone
won’t work. (One of these fields must be referred to as
BusinessTelephoneNumber in programming code but is labeled Business
in the dialog box.) To see the list of field names that you should use in your
code, type c. in the code below this line of code:

Set c = o.CreateItem(olContactItem)

Typing c. (with the dot) opens the IntelliSense list with all the different field
names for a contact object, as shown in Figure 3-1.

Figure 3-1:
To see the
correct
names for
Outlook’s
Contact
dialog box,
display this
IntelliSense
list.

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 469

Sending Access Data into Outlook470

In this example, you declare DAO database and recordset objects, open the
sample database, and then open the Employees table. Then you declare
outlook application, contact, and userproperty objects. Next, a With
block defines what you’re going to do with r, which is the recordset contain-
ing the Access data from the Employees table. You move to the first record
with the .MoveFirst method, and then begin a loop that iterates through
the entire recordset via the .MoveNext method. The loop terminates when
an EOF (end of file) is located.

You create a new Contact object each time through the loop and then stuff
that object’s fields with the data found in the various fields in the Employee
table. The names of the fields don’t always match. Indeed, in the first field
(what Outlook calls FullName), you have to concatenate two fields from the
Access table: LastName and FirstName. Likewise, Access’s Title field
becomes JobTitle in Outlook, and Birthdate becomes Birthday. So it
goes.

Notice that what Access accurately calls Notes, Outlook (for some reason)
calls Body. (Calendar notes are also in a field named Body.) Also, this line of
code illustrates how you can add your own comments to incoming data. This
line prepends your comment “Personality defects or positives:“ to
each incoming notes field value from Access:

If ![Notes] <> “” Then c.Body = “Personality defects
or positives: “ & ![Notes]

Why do this? Because field values (data) are raw data that, in some cases,
you might want to prepend a description to (for the same reason that you
might stamp Personnel on each resume sent to you). Prepending descrip-
tions can help categorize and identify data.

Finally, for data that you want to transfer but which has no prebuilt field
already defined in the Outlook Contact dialog box, you can define a user-
defined field, displayed in the All Fields tab of the dialog box, as shown in
Figure 3-2.

You create a user field by first using the Add method of the UserProperties
object, defining the name of the new field:

‘ Create an Outlook user property for any missing
fields.

Set upr = c.UserProperties.Add(“Hire date at
Northwind”, olText)

Then you transfer the data from Access to your new field in the Contact
object:

If ![HireDate] <> “” Then upr = ![HireDate]

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 470

Book VI
Chapter 3

M
anaging W

ork
and Life

Displaying a Folder Item 471

Displaying a Folder Item
Sometimes you want to programmatically display a folder to the user. In this
next example, you see how that’s done. In this case, you display the New
Contact form to the user. Type this procedure (Listing 3-2) into your code
window.

Listing 3-2: Displaying a Folder for User Interaction

Sub ShowNewContact()

Dim o As New Outlook.Application
Dim ns As Outlook.NameSpace
Dim f As Outlook.MAPIFolder
Dim c As Outlook.ContactItem

Set ns = o.GetNamespace(“MAPI”)
Set f = ns.GetDefaultFolder(olFolderContacts)

Set c = f.Items.Add(“IPM.Contact”)
c.Display

End Sub

This task requires that you create the usual Outlook objects, and then use
the GetDefaultFolder method of the Application object to access the
Contacts folder (via the enum in the method’s argument). Then you use the
Add method to create a new Contact and display the dialog box for that
Contact.

Figure 3-2:
Create your
own custom
fields from
this tab of
the Contact
dialog box.

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 471

Creating a New Contacts Folder472

For more information on the unfathomable, enigmatic world of namespaces
and object-oriented programming (OOP) nomenclature schemes, see Chap-
ter 2 of this mini-book. As an example, the Windows Messaging API (MAPI)
namespace in Outlook is a strange requirement in many programming
instances. You’ll find that for much programming written in Outlook VBA,
instantiating a MAPI namespace is required, although for other types of
programming, it’s not needed. Efforts on the part of this author to find any
pattern or rule defining when this namespace must be included in your
Outlook programming have failed. Undoubtedly, there’s some arcane techie
explanation, but I’ve never come across it. The only rule I know of is that
you must instantiate a MAPI namespace whenever your program won’t exe-
cute without it.

MAPI is the only namespace in Outlook, so including it is pointless: Having to
declare it is rather like adding Planet Earth to every letter that you address.
It’s assumed because (as yet) there are no post offices in outer space . . . but
never mind. Just follow the rules and, as Little Richard likes to say, “Shut up!”

You might think that MAPI would be needed for any programming that
accesses the Outlook Mail folder’s methods or sends e-mail via Send meth-
ods. Not so. You can leave MAPI out of your code when you use the Send
method of the AppointmentItem object, as illustrated later in the section
“Using Calendar Automation.” So, do what’s needed, don’t try to figure out
the taxonomy for heaven’s sake, and just shut up!

Creating a New Contacts Folder
How about creating an entirely new folder? Declare the usual variables,
instantiate the usual objects, and provide a name for the new folder
(see Listing 3-3). It’s now part of your Outlook, as shown in Figure 3-3.

Listing 3-3: Creating a New Outlook Folder

Sub AddNewFolder()

Dim o As New Outlook.Application
Set o = CreateObject(“Outlook.Application”)

Dim ns As Outlook.NameSpace
Set ns = o.GetNamespace(“MAPI”)

Dim fo As Outlook.MAPIFolder
Set fo = ns.GetDefaultFolder(olFolderContacts)

Dim fn As Outlook.MAPIFolder
Set fn = fo.Folders.Add(“NewContacts”)

End Sub

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 472

Book VI
Chapter 3

M
anaging W

ork
and Life

Making Mass Modifications 473

Making Mass Modifications
Sometimes you need to loop through a set of data, gathering certain values
and building the data into a list. In the following example, you use the Items
collection — also very common in .NET programming — to access the data
in a Contacts folder. Specifically, you want to build a list of names and birth-
days of all the Contacts.

Type this procedure (Listing 3-4) into your Outlook VBA editor.

Listing 3-4: Building a List of Data

Sub Iterating()
Dim o As Outlook.Application
Set o = New Outlook.Application

Dim ns As Outlook.NameSpace
Set ns = o.GetNamespace(“MAPI”)

Dim c As Outlook.Items
Set c = ns.GetDefaultFolder(olFolderContacts).Items

For Each i In c

Your new Contacts folder now appears in Outlook.

Figure 3-3:
Add new
folders
easily with
the
Folders.
Add
method.

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 473

Searching Tasks474

If i.Birthday <> “” Then a = a & i.FullName & “,” &
i.Birthday & “,”

i.Close olDiscard
Next

MsgBox a

Set c = Nothing
Set ns = Nothing
Set o = Nothing

End Sub

Notice that in this code, you don’t create an olContactItem object during
each iteration through this loop, as you did in the ImportAccessData
example earlier in this chapter (Listing 3-1) using Set c = o.CreateItem
(olContactItem). Instead, you get an Items collection holding the items
from the Contacts folder (in other words, all the individual contact records).
Then you use a For Each loop, which doesn’t care what variable you use
(i in this example) to iterate through the collection, any more than a For
Next loop cares whether you use i or j or whatever. This same technique
can be used to write data to the fields instead of reading it as is done here.
To write, simply use the syntax i.birthday =.

You inspect each record, reading the birthday field to see whether it has any
data. If so, you add the name and birthday values to your list, delimiting
them with commas. A list like this can be imported into other applications,
such as Access.

Searching Tasks
You can search any of the Outlook collections by using a variation of the
techniques described in previous examples, along with a Find method. This
code (Listing 3-5) searches through a Tasks folder to see whether a Task is
specified as high priority.

Listing 3-5: Searching the Tasks Folder

Sub searchTasks()

Dim o As Outlook.Application
Set o = CreateObject(“Outlook.Application”)

Dim ns As Outlook.NameSpace
Set ns = o.GetNamespace(“MAPI”)

Dim ts As Outlook.MAPIFolder
Set ts = ns.GetDefaultFolder(olFolderTasks)

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 474

Book VI
Chapter 3

M
anaging W

ork
and Life

Using Calendar Automation 475

Dim t As Outlook.TaskItem
Set t = ts.Items.Find(“[Importance] = “”High”””)

If t Is Nothing Then ‘no high priority items
MsgBox “No High Priorities”
Exit Sub ‘quit

Else
MsgBox “The following high importance item was found:

“ & t.Subject
End If

End Sub

The Find method of the Items collection can be used to locate the first
match. If you want to find more matches, use the FindNext method. This is
an alternative way to search through a collection than techniques employing
For Each or For Next.

Using Calendar Automation
In this chapter and the preceding one, I cover a variety of programming tech-
niques involving Outlook Tasks, Mail, and Contacts. I don’t want to ignore
the important Calendar folder, though, and its scheduling capabilities. You
can create new Calendar entries, send meeting notices, and, in fact, pretty
much do anything you want with the Calendar features via VBA.

This example illustrates how to set up a meeting, require that some employ-
ees attend, and then send them e-mail notification of the compulsory meet-
ing. Their Outlook calendars will be updated to include this meeting and its
details. This example doesn’t require that you instantiate the MAPI name-
space, even though it sends messages. There’s no accounting for OOP classi-
fication schemes, so there’s often no predicting what objects are needed and
what aren’t in any given instance. Do you object to this kind of arbitrariness?
Well, shut up!

Type this (Listing 3-6) into the VBA code window.

Listing 3-6: Setting up an Outlook Meeting

Sub SetMeeting()

Dim o As Outlook.Application
Set o = CreateObject(“Outlook.Application”)

Dim a As Outlook.AppointmentItem
Set a = o.CreateItem(olAppointmentItem)

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 475

Using Calendar Automation476

Dim required, required2 As Outlook.Recipient

‘force these two to attend:
Set required = a.Recipients.Add(“Janice Loez”)

required.Type = olRequired
Set required2 = a.Recipients.Add(“Richard Mansfield”)

required.Type = olRequired

With a

.Subject = “Bob’s Wife’s Party”

.Body = “Everyone’s invited to see their great new house and
to provide presents.”

.AllDayEvent = True

.MeetingStatus = olMeeting

.Start = #8/18/2004 8:30:00 AM#

.Duration = 600 ‘ten hours!

.Save

.Send

End With

Set o = Nothing
Set a = Nothing

End Sub

You want to send e-mail notices to two recipients in this code, so you define
two recipient objects:

Dim required, required2 As Outlook.Recipient

Then you instantiate them and add them to your Recipients collection,
specifying that their attendance is mandatory.

Set required = a.Recipients.Add(“Janice Loez”)
required.Type = olRequired

Set required2 = a.Recipients.Add(“Richard Mansfield”)
Required2.Type = olRequired

Then you enter a With block, where (no particular order is required) you
define various properties of this new meeting:

With a

.Subject = “Bob’s Wife’s Party”

.Body = “Everyone’s invited to see their great new house and
to provide presents.”

.MeetingStatus = olMeeting

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 476

Book VI
Chapter 3

M
anaging W

ork
and Life

Using Calendar Automation 477

.Start = #8/18/2004 8:30:00 AM#

.Duration = 600 ‘ten hours!

.Save

.Send

End With

Typing a period (.) anywhere within this block brings up an IntelliSense list
of all the members of the AppointmentItem object.

In this example, you’re only setting a few of the 68 total AppointmentItem
object’s properties. For one thing, the End property isn’t necessary if you
provide a Duration property. Outlook calculates the ending time for you,
as illustrated in the End Time field displayed in Figure 3-4.

Then, after the property fields have been filled in, you save this new item to
your Calendar folder and send it to the previously instantiated Recipients
objects. They will get e-mail notices, and their Calendars will automatically
be updated.

Using non-Outlook e-mail programs
If the recipient gets e-mail in a program other than Outlook — such as in
their browser via Hotmail while on the road — he simply finds an attach-
ment to your message. If he opens this attachment in Notepad or some other
text editor, he sees this:

Figure 3-4:
The recipi-
ents of your
meeting
notice will
find that this
Appointment
item has
been
automati-
cally added
to their
Calendar.

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 477

Using Calendar Automation478

BEGIN:VCALENDAR
PRODID:-//Microsoft Corporation//Outlook 11.0 MIMEDIR//EN
VERSION:2.0
METHOD:REQUEST
BEGIN:VEVENT
ATTENDEE;ROLE=REQ-PARTICIPANT;RSVP=TRUE:MAILTO:richardm52@hotmail.com
ATTENDEE;ROLE=REQ-PARTICIPANT;RSVP=TRUE:MAILTO:richardm52@hotmail.com
ORGANIZER:MAILTO:earth@triad.rr.com
DTSTART:20040818T133000Z
DTEND:20040818T233000Z
TRANSP:OPAQUE
SEQUENCE:0
UID:040000008200E00074C5B7101A82E00800000000703049E897E9C3010000000000000000100
0000034EF463C8AC0644D90F5284190214507
DTSTAMP:20040202T192154Z
DESCRIPTION:When: Wednesday\, August 18\, 2004 8:30 AM-6:30 PM (GMT-05:00)
Eastern Time (US & Canada).\n\n*~*~*~*~*~*~*~*~*~*\n\nEveryone’s invited
to see their great new house and to provide presents.\n

SUMMARY:Bob’s Wife’s Party
PRIORITY:5
X-MICROSOFT-CDO-IMPORTANCE:1
CLASS:PUBLIC
END:VEVENT
END:VCALENDAR

Of course, some details will differ (such as UID and DTSTAMP), but this illus-
trates the interior structure of a Calendar appointment item as Microsoft
transmits it between Outlook instances. You can think up a special code for
the Subject property, such as this:

.Subject = “APPT: Bob’s Wife’s Party”

Then when one of your associates receives a message where the Subject line
begins with APPT:, he knows to open it in Outlook. Opening this attachment
in Outlook integrates the message into his appointments, as shown in
Figure 3-5.

Figure 3-5:
Even people
who don’t
get their
mail directly
in Outlook
can import
Appoint-
mentItem
attachments
into Outlook,
like this.

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 478

Book VI
Chapter 3

M
anaging W

ork
and Life

Outside Outlook: Extracting Data from Outlook to Word 479

AppointmentItem members
The AppointmentItem object offers quite a few properties and methods.
Here are the 68 AppointmentItem properties: Actions, AllDayEvent,
Application, Attachments, AutoResolvedWinner, BillingInformation,
Body, BusyStatus, Categories, Class, Companies,
ConferenceServerAllowExternal, ConferenceServerPassword,
Conflicts, ConversationIndex, ConversationTopic, CreationTime,
DownloadState, Duration, End, EntryID, FormDescription,
GetInspector, Importance, InternetCodepage, IsConflict,
IsOnlineMeeting, IsRecurring, ItemProperties,
LastModificationTime, Links, Location, MarkForDownload,
MeetingStatus, MeetingWorkspaceURL, MessageClass, Mileage,
NetMeetingAutoStart, NetMeetingDocPathName,
NetMeetingOrganizerAlias, NetMeetingServer, NetMeetingType,
NetShowURL, NoAging, OptionalAttendees, Organizer,
OutlookInternalVersion, OutlookVersion, Parent, Recipients,
RecurrenceState, ReminderMinutesBeforeStart,
ReminderOverrideDefault, ReminderPlaySound, ReminderSet,
ReminderSoundFile, ReplyTime, RequiredAttendees, Resources,
ResponseRequested, ResponseStatus, Saved, Sensitivity, Session,
Size, Start, Subject, UnRead, and UserProperties.

Here are the 14 AppointmentItem methods: ClearRecurrencePattern,
Close, Copy, Delete, Display, ForwardAsVcal, GetRecurrencePattern,
Move, PrintOut, Respond, Save, SaveAs, Send, ShowCategoriesDialog.

Outside Outlook: Extracting
Data from Outlook to Word

Because Office applications each specialize in different tasks, you often find
that you want to send data from one application to another. For example,
Word is clearly the best place to format documents, so if you have a list of
data in Outlook that you want to edit in a document, send the Outlook data
to Word. If this transfer of data is something you do often, automating the
process is quite a bit faster than copying and pasting individual data from
one application to another.

In this example, you write code that extracts a subset of AppointmentItems
from your Outlook Calendar and then sends the list to Word for distribution
to others or for printing as hard copy. It would be pretty slow and boring to
have to locate each item in this subset by hand, and then copy it to Word.

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 479

Outside Outlook: Extracting Data from Outlook to Word480

This code is designed to execute from within Word. So start Word up and put
the code into Word’s VBA editor. In Word, press Alt+F11 to open the VBA
editor. Then (in the editor) choose Tools➪References and select Microsoft
Outlook 11.0 Object Library to add these functions to your project. Finally,
type this macro (Listing 3-7) into the Word VBA editor.

Listing 3-7: Sending Outlook Data to Word
Public Sub MonthsAppointments()

Dim o As Outlook.Application
Set o = New Outlook.Application

Dim ns As Outlook.Namespace
Set ns = o.GetNamespace(“MAPI”)

Dim m As Outlook.MAPIFolder
Set m = ns.GetDefaultFolder(olFolderCalendar)

Dim a As Outlook.AppointmentItem

‘ create a date one month from today:
mo = DateAdd(“d”, 30, Date)

Selection.TypeText “This Month’s Appointments”
‘move down two lines
Selection.TypeText vbCrLf
Selection.TypeText vbCrLf

For Each a In m.Items

d = a.Start

If d >= Date And d <= mo Then

X = X + 1

s = X & “. “ & a.Start & “: “ & a.Subject & vbCrLf

s = s & “ Start: “ & Format(a.Start, “Long Time”) & vbCrLf

s = s & “ End: “ & Format(a.End, “Medium Time”) & vbCrLf

s = s & “ Location: “ & a.Location

Selection.TypeText s
Selection.TypeText vbCrLf & vbCrLf

End If

Next

End Sub

06d_570676 bk06ch03.qxd 6/8/04 4:26 PM Page 480

Book VI
Chapter 3

M
anaging W

ork
and Life

Using the New Business Contact Manager 481

When you press F5 to execute this, all the appointments in your Outlook
Calendar for the next 30 days are listed in a Word document, starting wher-
ever the blinking insertion cursor is currently located.

After the usual object instantiations, as described throughout this chapter,
you create a date variable containing whatever date is 30 days from today:

mo = DateAdd(“d”, 30, Date)

Then you use the Word Selection object to type a title for the list and move
down two lines with the vbCrLf enum (built-in constant). Then you move
through the entire collection of appointments, checking whether any fall
within the specified dates: today to today +30:

d = a.Start
If d >= Date And d <= mo Then

If so, data about the appointment is printed in the document, along with an
incrementing number X at the start of each entry.

Using the New Business Contact Manager
A new add-in available for Outlook 2003 called Business Contact Manager
(BCM) allows business people to record, track, and organize their profes-
sional activities from within Outlook (where their Contacts, schedules,
Tasks, Calendar, and other utilities also reside). BCM becomes a new folder
in Outlook. BCM is essentially a specialized database where you can enter
and manage the following:

✦ Leads: Info about how to contact the potential human targets of your
sales pitch (also know as opportunities)

✦ Products: What you want to sell to leads

✦ Existing customers: Former leads

✦ Prospects: Same as leads but perhaps closer to conversion into
customers

✦ Narratives: Describing your various schemes and plots, and lessons
learned from previously unsuccessful schemes and plots

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 481

Book VI: Exploiting Outlook482

06d_570676 bk06ch03.qxd 6/4/04 10:17 PM Page 482

Chapter 4: Expert E-Mail
Administration

In This Chapter
� Effective routing during vacation

� Managing multiple accounts

� Using Send/Receive Groups

� Blocking virii

This chapter focuses on e-mail and the most significant, e-mail-related fea-
tures that Outlook offers users, administrators, and others working with

Office 2003. You see how to automate routing, handle multiple e-mail accounts
from disparate sources, manage groups, and block virii.

Exploring Messaging Management
E-mail management and general messaging within Outlook 2003 is extremely
flexible. Indeed, messaging throughout Office 2003 applications allows you
to pretty much call the shots any way you want them.

For example, you can use Exchange to send a Word document to a folder in
someone’s Outlook application. In Word, choose File➪Send To, and a con-
text menu pops up with a nice choice of targets, as shown in Figure 4-1.

Choose Exchange Folder from the context menu (if Exchange Server is avail-
able to your office). You see a list of possible targets, including your own
Outlook application, as shown in Figure 4-2.

06e_570676 bk06ch04.qxd 6/4/04 10:18 PM Page 483

Exploring Messaging Management484

Choose Mail Recipient (as Attachment) to employ the more conventional
approach: ordinary e-mail. The familiar Outlook e-mail form appears, with
your file attached, as shown in Figure 4-3.

Figure 4-2:
Exchange
Folder
allows you
to move a
document
into a folder
of your
choice.

Figure 4-1:
Choose
from a
variety of
targets
when
sending a
Word
document.

06e_570676 bk06ch04.qxd 6/4/04 10:18 PM Page 484

Book VI
Chapter 4

Expert E-M
ail

Adm
inistration

Routing: Out of Office Assistant 485

If you right-click a filename in Windows Explorer, you’ll find a Send To con-
text menu. It’s not as full-featured as the Office 2003 applications’ Send To
option, but you can choose Mail Recipient. If you do, an Outlook Mail dialog
box opens with the file attached to the message. Unfortunately, the message
is filled in for you, with the following sentence, which is sure to confuse the
recipient of this e-mail. Who thought this default message was a good idea?

Your files are attached and ready to send with this
message.

If you try to send a BMP file, you’re offered the option of letting Outlook
“make all my pictures smaller.” (The picture isn’t actually made smaller, per
se, but its file size shrinks because it’s compressed. This is an admission that
JPG graphics files are superior — less bloated — than BMP files.) If you
select this option, your BMP is converted to a JPG.

Routing: Out of Office Assistant
Using the routing feature requires an Exchange Server e-mail account. If
you’re going to be gone for a while from your desk, you can use the Out of
Office Assistant to follow various rules about how to handle incoming e-mail.

E-mail can be automatically deleted (you know, those useless notes and gossip
from that pest, Anthony, in R&D), route other e-mail to particular folders,
respond with individualized replies, and so on.

Figure 4-3:
Your docu-
ment is
automati-
cally
attached to
this e-mail.

06e_570676 bk06ch04.qxd 6/4/04 10:18 PM Page 485

Routing: Out of Office Assistant486

You must leave Outlook running the whole time you’re gone on vacation for
this autoresponse technique to work.

To see how to automatically respond to incoming e-mail, follow these steps:

1. Choose Tools➪Options in Outlook 2003.

2. Click the Mail Format tab of the Options dialog box.

3. Deselect Use Microsoft Word 2003 to Edit E-mail Messages.

This can be restored after you get back from vacation. This option
cannot be used to autoreply because it must be turned off when you
save a message as a template.

4. Click OK.

The dialog box closes.

5. Click the Mail folder; then click New on the toolbar.

A new e-mail message dialog box opens (see Figure 4-4), somewhat
abbreviated because you have a more limited menu and toolbar features
than you do in Word 2003.

6. Type the message you want automatically sent to your boss if she
should e-mail you from her “study retreat” in Monte Carlo.

7. Choose File➪Save As.

8. In the Save As dialog box that opens, name this file AutoNitsy.

9. Open the Save as Type drop-down list.

You see a list of various kinds of file options.

10. Choose Outlook Template.

11. Click Save.

Figure 4-4:
This isn’t the
full-featured
message
box that
borrows
from Word
2003.

06e_570676 bk06ch04.qxd 6/4/04 10:18 PM Page 486

Book VI
Chapter 4

Expert E-M
ail

Adm
inistration

Routing: Out of Office Assistant 487

12. Close the message dialog box and don’t save a draft.

13. Choose Tools➪Rules and Alerts.

If the Rules and Alerts option isn’t visible, you haven’t closed the mes-
sage dialog box. Repeat Step 11.

14. In the Rules and Alerts dialog box that opens, click the New Rule link
in the dialog box.

The Rules Wizard opens. You’ve created and saved a message that can
automatically be sent to the intended recipient, Nitsy, your boss, in this
example.

In the following steps, you use the Rules Wizard to specify behaviors that
result in an automatic response on Outlook’s part.

1. Select Start from a Blank Rule.

2. Select Check Messages When They Arrive.

3. Click Next.

4. Under Select Conditions, select the From People or Distribution List
check box.

Select Received in a Specific Date Span in this list if you want to reply
with an out-of-office message to all incoming e-mail.

5. In the Edit the Rule Description list, click the people or distribution
list link.

The Rule Address dialog box opens, as shown in Figure 4-5.

Figure 4-5:
Specify the
target
person in
your
Contacts
list.

06e_570676 bk06ch04.qxd 6/4/04 10:18 PM Page 487

Using Multiple E-Mail Accounts488

6. Click the From button in the dialog box.

Your target person’s e-mail is entered into the dialog box.

7. Click OK, and then click Next.

You see a new page in the wizard.

8. In the What Do You Want to Do with the Message list, choose Reply
Using a Specific Template.

9. Click the a specific template link.

10. In the Look In list, choose User Templates in File System.

You should now see the template that you named AutoNitsy in Step 7 of
the preceding step list.

11. Click AutoNitsy, click Open, and then click Next.

You see a list of exceptions, such as (apply this rule) if sent only to me.
For example, you might want to respond at once — not automatically,
but personally — if the boss sends you a personal e-mail.

12. Click Next.

13. Type AutoNitsy for the rule’s name.

You gave the template underlying this rule this descriptive name, and it
works just as well for the rule itself.

14. Click Finish and then click OK.

The dialog box closes, and your rule is in effect as long as someone
doesn’t turn off your computer or close Outlook. (You can, of course,
turn off your monitor while you’re in Vegas. What happens there, stays
there.)

Using Multiple E-Mail Accounts
You can set up more than a single e-mail account, just as you can have a
home, business, and PO box address for regular mail. With Outlook 2003,
you can also redirect Web-based accounts, such as Hotmail, to Outlook.

An advantage of adding Internet-based accounts to Outlook is that your local
machine has lots of storage for keeping Inbox and Sent Items e-mail. This can
be important if you need to search your e-mail for addresses, discussions,
and so on. Internet-based e-mail accounts are notorious for deleting e-mail
that you don’t want to discard. These accounts have limited storage, but
when you dump your online folders into Outlook folders, you preserve these
potentially important e-mail records.

06e_570676 bk06ch04.qxd 6/4/04 10:18 PM Page 488

Book VI
Chapter 4

Expert E-M
ail

Adm
inistration

Using Multiple E-Mail Accounts 489

Also, if you maintain several accounts within Outlook, you can use rules like
those described in the preceding section to route incoming e-mail to the
proper folder, set flags on it, adjusting priorities, sending automated replies,
and so on. You often set up Send/Receive Groups for different connection
settings. When using this technique, you can segregate e-mail accounts to
prioritize your response, based on the different Groups.

Here’s the difference between creating new folders and new Send/Receive
Groups.

Folder: Create a folder if you’re currently working on a project with sev-
eral colleagues. You can set up this special folder just for communica-
tions about that project. This simplifies reading your e-mail because you
would look in this account only when you were interested in working on
that particular project.

Send/Receive Group: Create a separate Send/Receive Group for differ-
ent kinds of e-mail connections. If you’re a road warrior, you know that
many hotels don’t yet have broadband. To get around this limitation,
you might want to set up a Send/Receive Group that initially downloads
only message subjects rather than the entire body of the message. Slow
Internet connections can make this technique a real timesaver. (Obviously,
at home or the office where you’ve got a cable/modem connection, you
wouldn’t benefit from this approach.)

Using Exchange Server
Exchange Server has been around for about eight years in one guise or
another. Although Exchange Server makes possible some of the more
advanced features of Outlook, studies say that only about 50 percent of
people using Outlook also employ Exchange Server. With Exchange Server,
you get some offline features, allowing mail management while not con-
nected to the Internet. These days, though, with always-on connections and
high-speed, broadband throughput, the advantages of working offline are
rapidly diminishing.

Also, when you maintain two folders — one on a server and one in a
laptop or desktop — you face the old bugaboo of version control issues.
That is, how can you reconcile two different versions of file collections? The
process of reconciling files — either duplicated, edited responses, or two
collections — cannot be successfully automated because no current pro-
gramming language taps into the necessary artificial intelligence. Humans
must step in and decide which collection, or file, is the current one. Simple
rules that can be programmed, such as the which comes last rule based on
deleted earlier versions, are not sufficient. Sometimes date/timestamps do
not reveal which version should survive.

06e_570676 bk06ch04.qxd 6/4/04 10:18 PM Page 489

Using Multiple E-Mail Accounts490

Some office situations, however, make server-based e-mail stores practical:
for example, if you travel around the office and need to access e-mail from
different computers, or if you’re on the road. Also, some offices ask people
to share accounts for one reason or another.

Working with Send/Receive Groups
To set up a Send/Receive Group, follow these steps:

1. Start Outlook.

2. Choose Tools➪Send/Receive➪Send/Receive Settings➪Define Send/
Receive Groups.

You see the Send/Receive Groups dialog box, as shown in Figure 4-6.

You see that all your current accounts are in a single Send/Receive
Group and any new account you might add will be automatically saved
into this same Group.

3. Click New.

A new Group can now be added.

4. Type Hotmail or Priority or whatever other name describes this new
group.

5. Click OK.

You see the Send/Receive Settings dialog box. You can specify qualities
of your new Send/Receive Group in this dialog box. The left pane lists
your e-mail accounts.

Figure 4-6:
Specify
new Send/
Receive
Groups
here.

06e_570676 bk06ch04.qxd 6/4/04 10:18 PM Page 490

Book VI
Chapter 4

Expert E-M
ail

Adm
inistration

Avoiding Virii 491

6. To add an account, select Include the Selected Account in This Group.

You see the options for routing mail incoming from this account, as
shown in Figure 4-7.

7. Click OK after specifying which folders you want included in this
Group’s Send/Receive.

The dialog box closes, and you’re returned to main Send/Receive Groups
dialog box where you can now see the new Group that’s been added to
your default Group.

8. Click Close to complete the process.

Avoiding Virii
The simplest and most effective advice on avoiding virii is to not open e-mail
attachments and to maintain frequent backups. These two steps should pre-
vent nearly all problems unless you have someone in your organization who
deliberately introduces problems.

If you’re an administrator, I suggest that you prevent most of your co-workers
from opening attachments at all. Where transferring files is necessary, take
steps to institute digital signatures, certificates, IDs, or whatever other
secret code or authentication process makes sense for you. In a small office,
where everyone inside can be trusted, your authentication process can be as
simple as adding a line to the e-mail message, such as “This is from Betty. It’s
OK, as we agreed.” Personalized or previously agreed-upon statements like

Figure 4-7:
This dialog
box displays
the options
for your
account.

06e_570676 bk06ch04.qxd 6/4/04 10:18 PM Page 491

Avoiding Virii492

this — or phone calls verifying the attachment — are unique to your organi-
zation and cannot easily be replicated by the bad guys.

Outlook automatically blocks executable attachments (.exe, .scr, .bat,
and .js), but virii authors are becoming increasingly clever. Users simply
cannot open these files at all.

To adjust Internet security settings, follow these steps:

1. Choose Tools➪Options.

2. In the Options dialog box that opens, click the Security tab.

You see available security options. Explore the Zone Settings and other
buttons on this dialog box to see which levels of restriction should be
enforced for your employees.

06e_570676 bk06ch04.qxd 6/4/04 10:18 PM Page 492

Chapter 5: Group Management
in Outlook

In This Chapter
� Working with profiles

� Sharing schedules

� Planning meetings

People, of course, work together in groups in most businesses. Outlook
can help you avoid stepping on each other’s toes in various ways. In

this chapter, you see how to establish profiles so that different users work
with their own, custom virtual Outlook. You also explore the new shared
Calendars feature — introduced in the first chapter of this mini-book — in
greater depth. You see how to use the feature to make collaborative work
more efficient by setting up a Web site to store calendar information.
Another topic covered is Microsoft’s Free/Busy Service, allowing you to
automate the process of organizing meetings. The chapter concludes with
various other utilities that assist with meetings, including reserving that
slide projector.

Using Profiles
Profiles are yet another way to organize Outlook and its contents. Just as
you might have various Windows profiles for each person who uses your
home computer, you can also establish multiple Outlook profiles at work if
more than one person uses a single machine. (You can also use a new profile
to clean up a messy Outlook setup; read on.)

With profiles, it’s as if there were several different Outlooks, each with its
own customizations for different purposes or for different people. When you
turn on Windows and choose a Windows profile, the desktop and many
other aspects of Windows can look different from different profiles on that
same computer. Similarly, different Outlook profiles might have different
default folders. For example, one profile might display the Mail folder first,
and another the Calendar folder.

A profile includes toolbar settings, accounts, connection settings,
AutoComplete files, views, navigation pane settings, security preferences,
color and design choices, and others.

06f_570676 bk06ch05.qxd 6/4/04 10:18 PM Page 493

Using Profiles494

Creating a new profile can also be useful if you’ve really messed up your
Outlook. Suppose you’ve created too many different folders, imported too
many Contacts or Appointments, or otherwise have gotten confused. If
you want to start over, create a new profile and make it the default folder
(as shown in the upcoming Figure 5-3). You’ll lose whatever data you’ve
entered, but perhaps this is an easier path to follow than uninstalling/rein-
stalling if Outlook gets hopelessly mucked up. To create a new profile, follow
these steps:

1. Close Outlook.

2. In Windows XP, choose Start➪Control Panel. In Windows 2000,
Start➪Settings➪Control Panel.

The Control Panel opens.

3. Double-click the Mail icon.

4. In the Mail Setup dialog box that opens, click the Show Profiles
button.

You see the Mail dialog box.

5. Click Add.

You see the New Profile dialog box.

6. Type in a name for your new profile, perhaps Private.

7. Click OK.

The E-mail Accounts Wizard (sometimes oddly referred to as the Custom
Installation Wizard) opens, as shown in Figure 5-1.

Figure 5-1:
Use this
wizard to
create a
new profile.

06f_570676 bk06ch05.qxd 6/4/04 10:18 PM Page 494

Book VI
Chapter 5

Group M
anagem

ent
in Outlook

Using Profiles 495

8. Following the successive wizard pages, create as many e-mail
accounts as you wish for this new profile.

9. Click OK to close the wizard.

You see the Mail dialog box again, as shown in Figure 5-2, but now it
includes your new profile.

10. Decide which of your profiles should be the default when you open
Outlook, or whether you want to see a dialog box each time and make
a selection, as shown in Figure 5-3.

The option you choose, as well as any new profiles you’ve added, aren’t
available until you restart your computer.

Figure 5-3:
To select a
profile, have
this dialog
box open
whenever
Outlook
opens.

Figure 5-2:
Choose
here
whether to
make your
new profile
the default.

06f_570676 bk06ch05.qxd 6/4/04 10:18 PM Page 495

Sharing Calendars496

Just as with your default Outlook profile, you can create multiple e-mail
accounts. If you copy a profile, this resets its views and toolbar settings to
their original default state yet retains any personalization done to e-mail
accounts, connections, security settings, and folders. Bizarrely, there is some
leakage between profiles. Most custom settings are correctly preserved for the
different profiles, but some are not. For example, if you change the back-
ground color of the Calendar in one profile, all other profiles also reflect this
new color.

If you get tired of always having to choose between profiles every time you
start Outlook, it’s not enough to click the Remove key in the Mail dialog box
(as described in Step 4 of the preceding example). In fact, you need not
remove a profile at all; just select the Always Use This Profile radio button in
the Mail dialog box.

Sharing Calendars
You can use Exchange Server as a way of sharing schedules with your co-
workers. This is fine if you’re in an office that uses Exchange Server, but fewer
than half of today’s offices do. Also, if you have traveling salesmen, or other
people who aren’t always connected to your LAN, it’s easiest to rely on Micro-
soft’s Free/Busy Service. It’s on the Web, so you can use it anywhere.

Why share Calendars? Meetings can be easily set up when you can see
whether everyone is free at a particular time. Also, travel can be more easily
planned, projects can be more efficiently organized, and so on. Collaborative
work often requires that people take a look at each other’s Calendar. In Office
2003, you can view two Outlook Calendars at the same time, but many times,
you need to look at more than just two.

Setting up your own site
If you don’t use Exchange Server, you can still employ any Internet site
or intranet server that you control as a store for iCalendar information.
(iCalendar is the format used to compare schedules.) Just publish your data
and ask others to publish theirs — then everyone can see what times are
free and what times are busy. Exactly why they’re busy doesn’t show up. To
use an ordinary server, follow these steps:

1. In Outlook choose Tools➪Options.

2. In the Options dialog box that opens, select the Calendar Options
button on the Preferences tab.

You see the Calendar Options dialog box.

06f_570676 bk06ch05.qxd 6/4/04 10:18 PM Page 496

Book VI
Chapter 5

Group M
anagem

ent
in Outlook

Sharing Calendars 497

3. Click the Free/Busy Options button.

You see the Free/Busy Options dialog box.

4. Select the Publish at My Location option.

5. Fill in your server’s URL address, or LAN address, in the text box.

Using Microsoft’s Free/Busy Service
With the Free/Busy Service, you can share schedules with anyone who uses
Microsoft Passport. This schedule sharing can be accomplished no matter
where you might be located, thanks to the Internet. This is a good way to
automatically remove scheduling conflicts when planning group activities,
such as meetings. Everyone publishes his or her Calendar (free and busy
times) and then Outlook’s meeting request feature uses this Free/Busy
Service to help you pick a good time for everyone to get together.

To use Microsoft’s Free/Busy Service, everyone you want to schedule with
must have a Microsoft Passport account. If you invite nonmembers to join in,
they’ll first be asked to get a Passport account. To use the Microsoft Free/
Busy Service, follow these steps:

1. Choose Tools➪Options.

2. In the Options dialog box that opens, click the Calendar Options
button on the Preferences tab.

You see the Calendar Options dialog box, as shown in Figure 5-4.

Figure 5-4:
This is your
gateway to
Internet-
based
scheduling.

06f_570676 bk06ch05.qxd 6/4/04 10:18 PM Page 497

Planning Meetings498

3. Click the Free/Busy Options button.

You see the Free/Busy Options dialog box.

4. Select the Publish and Search Using Microsoft Office Internet Free/
Busy Service check box.

5. Click the Manage button.

Your browser opens displaying the Web site where this service is
located.

If you already have a Passport account and are currently signed in, click the
Sign Out button on the Web page (at the preceding URL), and then click the
Sign In button. Things should work smoothly from there on.

After your Passport account has been reconciled with Outlook, you can
permit Outlook to communicate automatically with the online service and
display available meeting times when you or others request a meeting.

Planning Meetings
If you want to schedule a meeting, select the Calendar view and then choose
Actions➪New Meeting Request. You see the Plan a Meeting dialog box, as
shown in Figure 5-5.

Note that you can visualize the start and end time of your meeting by the
green (go) line symbolizing start and the red (stop) line for the end. These
lines can be dragged with your mouse to adjust the meeting span.

Figure 5-5:
Specify start
and end
times,
attendees,
and other
information
for a new
meeting
here.

06f_570676 bk06ch05.qxd 6/4/04 10:18 PM Page 498

Book VI
Chapter 5

Group M
anagem

ent
in Outlook

Planning Meetings 499

You’re essentially creating an e-mail in the dialog box shown in Figure 5-5,
albeit a specialized one. Note: You can add graphics, files, or other attach-
ments if you wish.

If you prefer, wait to add attendees until you click the Make Meeting button
and go to the next dialog box where you can quickly add names by clicking
the To button, as shown in the upcoming Figure 5-6. However, skipping this
Planning dialog box doesn’t allow you to check the free/busy status of your
attendees (as I describe in the preceding section).

Notice in Figure 5-5 that a key to various colors appears in the lower left.
People without published schedules (you don’t have access to their free/
busy information because they’ve refused to grant this permission, or they
don’t have an Exchange server or Free/Busy account) are indicated by
slashed lines.

A solid block of color (under 9:00 in the Figure 5-5) shows that person is
busy from 9:00 to 9:30.

If someone has slashed lines indicating that her schedule is unavailable to
Outlook and she is on Exchange server, it’s possible that somehow her Free/
Busy data is corrupt. Try starting her Outlook by using the /cleanfreebusy
command line switch. This will both clear up and regenerate her Free/Busy
data.

Click the AutoPick Next button (refer to Figure 5-5) to have Outlook auto-
matically find the next available time during work hours when all required
attendees and resources are simultaneously available. You can refine how
AutoPick Next works by clicking the Options button and then moving your
mouse pointer down to AutoPick in the context menu.

If you click the Add Others button, you see a list from Exchange’s global
address list or from your Address Book or other source. Three buttons
appear at the bottom of the Select Attendees and Resources dialog box. You
can assign Required or Optional categories to each attendee or click the
Resources button to specify resources. Note: Resources are things (not
people), like PowerPoint projectors, models, videoconference setups, and so
on. These resources must have previously been defined as recipients on the
Exchange Server, but I must report that people are referred to as resources
(and worse) by certain hard management types.

When you’re satisfied with the details of the meeting, click the Make Meeting
button. You then fill in an e-mail form that is automatically sent to anyone
you specified as an attendee in the previous dialog box. Figure 5-6 illustrates
how you prepare to send invitations to a meeting.

06f_570676 bk06ch05.qxd 6/4/04 10:18 PM Page 499

Planning Meetings500

If you want to further specify the nature of the meeting, click the Categories
button or type in a message in the text box beneath the Meeting Workspace
button. When you’re finished, click the Send button on the toolbar, and
e-mail is automatically sent to your attendee list, as well as notices and
reminders (if any) entered into their Outlook Calendars.

Click the Scheduling tab shown in Figure 5-6 to get to the same free/busy
view illustrated in Figure 5-5. You can check others’ schedules either first
(as described earlier) or after you’ve filled in the invitation e-mail, as shown
in Figure 5-6.

Responding to invitations
After your invites have been sent out, the startled targets see a special e-mail
in their Inbox, complete with several filled-in responses: Accept, Tentative,
Decline, and Propose New Time. (Too bad The Heck With You! isn’t on the
list.) A user can click any of these responses to reply to the sender, as shown
in Figure 5-7.

Tracking responses
Nothing is sadder than sending out birthday party invitations to your child’s
“friends” and then watching the clock tick-tock as the party start-time passes
and nobody shows up. (It’s no good telling the little person that popularity
fades and surges throughout life: Sometimes you’re nobody, and then a few
years later, you might be elected prom queen!)

Figure 5-6:
Fill in the
meeting title
(Subject),
location,
and other
details here.

06f_570676 bk06ch05.qxd 6/4/04 10:18 PM Page 500

Book VI
Chapter 5

Group M
anagem

ent
in Outlook

Planning Meetings 501

To see how people are responding to your meeting invitations — and risk a
possible personality collapse if nobody replies — right-click a meeting that
you scheduled in your Calendar. Choose Open from the context menu. You
see the same dialog box shown in Figure 5-6, but now it has a Tracking tab
added to it. Click that tab, and you see the dialog box shown in Figure 5-8.

Setting up resource responses
Whoever manages company resources — meeting rooms, laser light shows,
expensive catered hors d’oeuvres, company apartments, whatever —
can work with administrators or developers to automate the process of

Figure 5-8:
Nobody has
accepted
your
invitation.
Could it be
unpopu-
larity?!

Figure 5-7:
Simplify
your reply
by clicking
any of the
links at the
top of the
meeting
invitation
e-mail.

06f_570676 bk06ch05.qxd 6/4/04 10:18 PM Page 501

Planning Meetings502

allocating time at the apartment for visiting bigwigs or arranging a real nice
spread for the next fancy meeting. (I suggest lobster-asparagus salad, a pile
of giant shrimp mounded on crushed ice, rumaki, mushrooms stuffed with
crab . . . things like that. Martha would know what to order.)

To make such arrangements do this, choose Tools➪Options and then click
the Calendar Options button. Click the Resource Scheduling button to open
the dialog box shown in Figure 5-9.

Select the check boxes shown in Figure 5-9 to specify the options you want.
Then click OK to close the Resource Scheduling dialog box and begin the
automatic process of coordinating and scheduling resources.

Figure 5-9:
Automate
resource
allocation
here.

06f_570676 bk06ch05.qxd 6/4/04 10:18 PM Page 502

Chapter 6: Advanced Outlook
Macros

In This Chapter
� Accessing other Office applications from within Outlook

� Trapping events

� Searching e-mail

� Paying attention to macro-ergonomics for the user

To run the programming code in this chapter, you must first ensure
that the necessary code libraries are referenced in the Outlook VBA

editor. As grammars go, few world languages — either historical or
contemporary — are as mangled and senseless as the mishmash grammar
underlying computer languages.

Most features of computer languages have multiple names, often with no
distinctions in meaning — not even subtle distinctions. For example, the
term function has lately been less popular than the term method, although
they mean the same thing.

Likewise, when you add a reference to a VBA project, you find many, many
synonyms for what is probably best described simply as a code library: that
is, a collection of code into a library that adds functionality (adds new func-
tions, usually) to a programming language such as VBA. Synonyms for code
library include

Assembly

Control library

Control type library

Class library

Object library

Namespace

Project model

Object model

Host object model

Proxylib

Type library

Plug-in

Plug-in type library

Services

Services library

Development environment

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 503

Interacting with Other Office Applications504

Some will argue that distinctions are here. Indeed, in some cases, adjectives
such as core, control, or plug-in do shade the meaning a bit. But nearly all the
terms in this list are mere synonyms without even a delicate distinction
between them.

Some of the terms are simply bizarre. One popular usage, object library, just
makes no sense. The distinction between classes and objects is that the
latter exist only during runtime, during execution of a program. The proper
term is class library, for the same reason that you don’t confuse a cookbook
with a cafeteria.

So, take a deep breath, kiddo, try to ignore the mess and confusion, and run
Outlook. Press Alt+F11 to open the VBA editor, and then choose Tools➪
References to open the References dialog box. Ensure that the check boxes
next to following code libraries are marked:

✦ Visual Basic for Applications

✦ Microsoft Outlook 11.0 Object Library

✦ OLE Automation

✦ Microsoft Office 11.0 Object Library

Interacting with Other Office Applications
You can use the CreateObject command to instantiate an instance of an
outside application and then send data to it. Here’s an example that creates
a Word document, sends an e-mail from the Outlook Inbox, and then prints it
in the Word document.

Open Outlook and press Alt+F11 to get to the VBA editor. Type in this macro
(Listing 6-1).

Core type library

Extensibility

Runtime library

Runtime execution
library

Runtime execution
engine

Kernel

Helper (!? This one must have been
named by a seven-year-old just before
nap time.)

DLL (for dynamic link library)

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 504

Book VI
Chapter 6

Advanced Outlook
M

acros
Interacting with Other Office Applications 505

Listing 6-1: Sending Inbox E-mail to Word and Then Printing It

Sub SendEmailToWord()
Dim o As Outlook.Application
Set o = CreateObject(“Outlook.Application”)

Dim ns As Outlook.NameSpace
Set ns = o.GetNamespace(“MAPI”)

Dim f As Outlook.MAPIFolder
Set f = ns.GetDefaultFolder(olFolderInbox)

On Error GoTo ErrorHandler

Title = f.Items(2)
Body = f.Items(2).Body

s = “Title: “ & Title & vbCrLf & vbCrLf
s = s & “Body: “ & Body & vbCrLf

‘create word doc:
Dim oWord As Object
Set oWord = CreateObject(“Word.Document”)

With oWord.Application
.Selection.TypeText s

End With

Exit Sub
ErrorHandler:

MsgBox Error

End Sub

You start off by creating the two always-necessary Outlook objects:
Application and Namespace. You must have those objects before you can
create any other objects, such as a folder. Then you create an Inbox folder
object so you can get to its Items collection (the individual e-mails).

Now you’re about to request actual data from this folder and send it off to
Word, so you insert an instruction to VBA that if there’s an error, jump exe-
cution down to the ErrorHandler: location in the code and execute a mes-
sage box to display the string description of the error:

On Error GoTo ErrorHandler

Then you gather the actual data, using the folder.Items collection. When
the folder is an e-mail type (such as olFolderInbox), the Item object is an
individual e-mail. The e-mail’s Subject line is the default data, so this gives
you the subject:

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 505

Interacting with Other Office Applications506

Title = f.Items(2)

And the text of the e-mail is found in the Body property of the Item:

Body = f.Items(2).Body

You build a string s, separating the subject from the body with carriage
returns by using the built-in constant vbCrLf.

s = “Title: “ & Title & vbCrLf & vbCrLf
s = s & “Body: “ & Body & vbCrLf

Finally, you instantiate a Word instance (the application opened and running
under Windows) and then create a Document object (the ordinary Word
document):

Dim oWord As Object
Set oWord = CreateObject(“Word.Document”)

Then use the TypeText method of the Selection object to enter your
e-mail message into the Word document:

With oWord.Application
.Selection.TypeText s

End With

After that, you exit the Sub. Without this exit, your execution would fall
through to the error message section of the macro and display a message box.

Exit Sub

The final result is shown in Figure 6-1.

Figure 6-1:
This e-mail
was
plucked
from
Outlook’s
Inbox and
printed in a
Word
document.

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 506

Book VI
Chapter 6

Advanced Outlook
M

acros
Trapping Events 507

Trapping Events
You can go through a series of steps requiring initialization, special classes,
event declarations, and so on to add event processing to an Outlook macro
(see Book VI, Chapter 2), but if you want to trap events built into the Outlook
Application object itself, the job is much easier. It’s a trick, but it’s extremely
simple to do after you know how (rather like cooking rice).

Getting incoming mail
Suppose you want to display a message box each time mail is received in the
Outlook Inbox. You could use this same technique to send automatic replies,
process or route incoming mail, forward imported e-mail to your cellphone,
or otherwise manage your mail as it arrives.

Press Alt+F11 to switch to the Outlook VBA editor. Press Ctrl+R to display
the Project Editor. The Application object has its own special code
window. To open it, click the + next to Microsoft Office Outlook Objects —
a node that is inconveniently closed by default.

Open the Microsoft Office Outlook Objects node by clicking the + next to it.
You then see ThisOutlookSession, the only entry in this node. Double-click
ThisOutlookSession. A code window opens named ThisOutlookSession
(Code), as shown in Figure 6-2.

Figure 6-2:
Use this
code
window to
trap a set of
Outlook
Applica-
tion
events.

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 507

Trapping Events508

From the top-left drop-down list, choose Application, as shown in Figure 6-2.
Then open the top-right drop-down list. For this example, choose NewMail
from the list of possible events you can trap.

A new subroutine is inserted into this code window: It’s the event that fires
(executes its code) whenever a new e-mail arrives:

Private Sub Application_NewMail()

MsgBox (“New Mail Received”)

End Sub

Type in the message box, and then try sending yourself some e-mail to see
that, indeed, the message is displayed whenever you get new e-mail.

And rice? Just dump a cup of it into a small saucepan, add 13⁄4 cups water,
and bring to a boil. Immediately reduce to a simmer and let cook, covered,
for 20 minutes. With the cover still on, remove from the heat, and let it sit for
20 more minutes. Perfect every time.

Intercepting outgoing mail
The ItemSend event, as shown in Figure 6-2, can also be a useful one. It
allows you to tap into the pipeline through which outgoing mail flows before
it actually hits the greater world of your LAN or the Internet itself. Type this
into the ItemSend event, as I describe in the preceding section, send an
e-mail, and see what happens:

Private Sub Application_ItemSend(ByVal Item As Object, Cancel
As Boolean)

MsgBox (Item.Body)

End Sub

This event has several uses, most of them related to censorship. Maybe your
husband is a golf fanatic and has dozens of expensive clubs, but both he and
you know that clubs can be had for $2 at the Junior League Bargain Box. The
trouble with hubby is that he realizes he has more than enough good equip-
ment to service his rather meager skills on the green. Nonetheless, after a
few liquid pick-me-ups, he sashays over to the computer and starts teasing
himself with golf catalogs, golf club instant-shipping sites, and other irre-
sistible fairway-fun enticements. Sooner or later, hubby is once again shop-
ping under the influence. Perhaps you could put some code into the
ItemSend event to quietly divert his e-mails to a folder for cooler heads to
review in the morning.

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 508

Book VI
Chapter 6

Advanced Outlook
M

acros
Searching via Iteration 509

Searching via Iteration
No built-in search feature can possibly provide the flexibility that you get
when you program your own search. For example, what if you want to
search your entire Sent Mail folder? (I never empty or archive mine; I just let
them sit there for searches.) You could use Outlook’s Tools➪Find feature.
Outlook’s Find engine is unique among Office 2003 applications in two ways:
It’s on the Tools menu rather than the Edit menu, and it’s more flexible and
feature-rich than others. But what if you want to search for the two most
recent e-mails?

Run an advanced search. Start by choosing Tools➪Find➪Advanced Find to
bring up the dialog box shown in Figure 6-3.

You do have the limitation of not being able to specify OR searches, though,
like finding any reference to money in messages from Fred or Suzy. Nor can
you combine searches, like if you want to display all messages arriving only
during the month of February for the past five years. And so on. Specialized
searches can be important, particularly if the data store is quite large.

However, the following macro (Listing 6-2) allows you to specify whatever
conditions you wish for the search. Here, the InStr function searches the
body field (the message part) of each Sent Mail message for the word reason.
You can use multiple InStr functions to specify the details of your search as
well as the various fields you want to involve in the search. When finished,
any e-mails that match the search criteria are printed in a Word document
for you to read.

Figure 6-3:
The Outlook
Find feature
is extremely
flexible.

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 509

Searching via Iteration510

Listing 6-2: Outlook Search Macro

Sub FindIterate()

Dim o As Outlook.Application
Set o = CreateObject(“Outlook.Application”)

Dim ns As Outlook.NameSpace
Set ns = o.GetNamespace(“MAPI”)

Dim f As Outlook.MAPIFolder
Set f = ns.GetDefaultFolder(olFolderSentMail)

On Error GoTo ErrorHandler

n = f.Items.Count

For i = 1 To n

If InStr(f.Items(i).Body, “reason”) Then
x = x + 1

from = f.Items(i).SenderName
Title = f.Items(i).Subject
Body = f.Items(i).Body

s = s & x & “.” & vbCrLf & “ From: “ & from & vbCrLf
s = s & “ Title: “ & Title & vbCrLf
s = s & “Body: “ & Body & vbCrLf & “................” &

vbCrLf & vbCrLf

End If

Next

If x = 0 Then MsgBox “No match found.”: Exit Sub

‘create word doc:
Dim oWord As Object
Set oWord = CreateObject(“Word.Document”)

With oWord.Application
.Selection.TypeText s

End With

Exit Sub
ErrorHandler:

MsgBox Error

End Sub

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 510

Book VI
Chapter 6

Advanced Outlook
M

acros
Bringing Macros to the User 511

This macro first uses the Count property to read the total number of mes-
sages in your Sent Mail folder (after having created the usual necessary
objects via Dim and Set).

Then you use a For Next loop to search through the entire collection (f.
items) of messages for a match to the word reason. You next look at each
e-mail by using the InStr function; if there’s a hit, you increment your hit
counter (the variable x):

If InStr(f.Items(i).Body, “reason”) Then
x = x + 1

If an e-mail matches, you pick off the From, Subject, and Message portions of
the e-mail:

from = f.Items(i).SenderName
Title = f.Items(i).Subject
Body = f.Items(i).Body

And then you build a string s containing these items, separated by carriage
returns.

A carriage return is an old term from typewriter days when you shoved the
black paper roller — the carriage — back over to the left side each time you
wanted to move down a line on the page. Cr stands for carriage return; lf
stands for line feed (go down to the next line).

You continue through the loop, building the string with every new hit. Then
when you’ve gone through the entire collection of messages, you send the
completed string off to a new Word document.

Bringing Macros to the User
The preceding example cries out for a UserForm to interact with someone
wanting to do a search. For one thing, you can provide the user with a text
box in which to enter the search term(s). Putting Outlook macros that you
use frequently on an Outlook toolbar is also useful.

Creating a UserForm
To create a UserForm so users can interact with your macros, first press
Alt+F11 to switch to the VBA editor. There, choose Insert➪UserForm.

Drag two text boxes, two option buttons, and a button onto the UserForm.
Press F4 to reveal the Properties window. Change the Caption property of
the button to read Click to Search. Change the Multiline property of
TextBox2 to True and its ScrollBars property to Vertical. Change the
Caption properties of the option buttons, as shown in Figure 6-4.

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 511

Bringing Macros to the User512

Because a large Inbox or Sent Items folder can take a while to search, you
want to add a progress bar for this kind of utility — something to show that
some progress is actually being made and that the program hasn’t frozen.

By default, a progress bar control isn’t on the Toolbox. To add a progress bar
to your Toolbox, follow these steps:

1. Right-click the Toolbox.

2. From the context menu that appears, choose Additional Controls.

3. In the Additional Controls dialog box that appears, choose the
Microsoft ProgressBar control by selecting its check box.

4. Close the dialog box.

The ProgressBar control is now available on the Toolbox.

Now add the progress bar control onto the UserForm.

1. Drag the ProgressBar control onto the UserForm.

When users execute your search utility, they’ll see how much time is left
indicated by this progress bar, as shown in Figure 6-5.

ProgressBar control

Figure 6-4:
Modify this
search form
any way you
want.

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 512

Book VI
Chapter 6

Advanced Outlook
M

acros
Bringing Macros to the User 513

Users expect to see movement in a progress bar like this, or at least a
blinking light, to indicate activity if a job takes more than a few seconds.

2. Double-click the command button to open its Click event in the code
window. Type the code in Listing 6-3 into the Click event.

3. Press F5 to test the macro.

You should see results similar to Figure 6-6.

Figure 6-6:
The utility
works
flawlessly,
finding all
hits within a
folder.

Figure 6-5:
Add a
progress
bar to some
UserForms.

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 513

Bringing Macros to the User514

Listing 6-3: Searching with User Interaction

Private Sub CommandButton1_Click()

If TextBox1.Text = “” Then _
MsgBox (“You must type in a search term in the upper

textbox.”): Exit Sub

If OptionButton1.Value = False And OptionButton2.Value =
False Then _

MsgBox (“Choose an OptionButton”): Exit Sub

Dim o As Outlook.Application
Set o = CreateObject(“Outlook.Application”)

Dim ns As Outlook.NameSpace
Set ns = o.GetNamespace(“MAPI”)

Dim f As Outlook.MAPIFolder
‘figure out which folder:

If OptionButton1.Value = True Then
Set f = ns.GetDefaultFolder(olFolderInbox)

Else
Set f = ns.GetDefaultFolder(olFolderSentMail)

End If

On Error GoTo ErrorHandler

n = f.Items.Count

ProgressBar1.Max = n

Target = TextBox1.Text

For i = 1 To n

ProgressBar1.Value = i

If InStr(f.Items(i).Body, Target) Then
x = x + 1

from = f.Items(i).SenderName
Title = f.Items(i).Subject
Body = f.Items(i).Body

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 514

Book VI
Chapter 6

Advanced Outlook
M

acros
Bringing Macros to the User 515

s = s & x & “.” & vbCrLf & “ From: “ & from & vbCrLf
s = s & “ Title: “ & Title & vbCrLf
s = s & “Body: “ & Body & vbCrLf & “................” &

vbCrLf & vbCrLf

End If

Next

If x = 0 Then TextBox2.Text = “No match found.”: Exit Sub

TextBox2.Text = s

Exit Sub
ErrorHandler:

MsgBox Error

End Sub

This code begins by checking whether the user has chosen an
OptionButton and entered a search term.

The usual object instantiation follows, but the namespace object’s Get
DefaultFolder method requires different arguments based on whether the
user chose the Inbox or the Sent Items, so you differentiate them this way:

If OptionButton1.Value = True Then
Set f = ns.GetDefaultFolder(olFolderInbox)

Else
Set f = ns.GetDefaultFolder(olFolderSentMail)

End If

You can add additional options such as searches of the Calendar, Notes,
Contacts, and so on, by using Select Case or a series of If...Then state-
ments, like this:

If OptionButton3.Value = True Then
Set f = ns.GetDefaultFolder(olFolderCalendar)

End If

However, if you go beyond an e-mail search, you need to modify the fields
(properties) of the Items collection by adjusting the properties specified in
these lines of code:

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 515

Bringing Macros to the User516

from = f.Items(i).SenderName
Title = f.Items(i).Subject
Body = f.Items(i).Body

You can execute a UserForm from the VBA editor for testing purposes by
either clicking the UserForm to select it and then pressing F5, or by pressing
F5 from within the code itself.

The progress bar must be given a Max property that reflects the total number
of activities it is illustrating: in this case, the total number of e-mails being
searched (the Count property of the Items collection): ProgressBar1.
Max = n.

Then you get the user’s search term: Target = TextBox1.Text. And within
the loop, the progress bar is continually updated, employing the variable i,
representing the current e-mail count as the loop increments:

For i = 1 To n
ProgressBar1.Value = I

Adding macros to your toolbar
You can execute macros from Outlook toolbars. To add a macro to a toolbar,
follow these steps:

1. If the target toolbar isn’t visible, right-click an open toolbar. (If it is,
skip to Step 3.)

You see a context menu.

2. Click a new toolbar name if you want it visible.

3. Right-click the toolbar that you want to add a macro to.

4. From the context menu that appears, choose Customize.

The Customize dialog box appears.

5. Click the Commands tab in the Customize dialog box.

6. Click Macros in the Categories list.

7. Drag the macro that you want and drop it onto the toolbar.

06g_570676 bk06ch06.qxd 6/4/04 10:19 PM Page 516

Book VII

InterOffice:
Working as a Team

07a_570676 p07.qxd 6/5/04 1:05 AM Page 517

Contents at a Glance
Chapter 1: Collaboration Features Overview ..519

Chapter 2: Managing Shared Documents..531

Chapter 3: XML and Office ..541

Chapter 4: Working with InfoPath ..561

Chapter 5: Adding Smart Tags ..579

Chapter 6: Exploring Smart Documents..591

Chapter 7: Using Project 2003..615

Chapter 8: Employing SharePoint ..627

07a_570676 p07.qxd 6/5/04 1:05 AM Page 518

Chapter 1: Collaboration
Features Overview

In This Chapter
� Using OneNote

� Using SharePoint for shared Contacts

� Exploiting document collaboration

� Tackling the versioning problem

� Setting up a Meeting Workspace

You’ll find lots of ways to communicate between Office 2003 applications
and between Office 2003 users. Sharing information can require that

you resolve security issues, versioning problems (whose version of an
edited document should be saved as the official, final one?), and other
issues that arise when people try to avoid stepping on each other’s toes.

Working in groups has its advantages. For one thing, many people think it’s
just fine to attend meetings on subjects they know nothing about. Also,
when things go wrong, being in a group dilutes the blame.

This chapter is an overview, so several of the topics introduced here are
covered in more depth in other chapters. For example, SharePoint is
explored in detail in Book VII, Chapter 8, but presented briefly here.

Exploring OneNote
The first utility to consider when working with groups is OneNote, which is
Microsoft’s attempt to create an electronic equivalent of a legal pad. The
idea is that laptops and notebooks flip up fence-like barriers at meetings —
the portables’ screens isolate participants from one another — so we
should all migrate to the less intrusive writing pad, an electronic version of
which is the Tablet PC. OneNote doesn’t ship with any version of Office
2003. It’s sold separately for a list price of $199.

In OneNote, you can type, insert pictures, write by hand, or even draw on
the background or on top of pictures, which is useful for annotations and
diagramming. (See Figure 1-1.) You can more easily (and portably) take

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 519

Exploring OneNote520

written and oral notes (think meetings, classes, interviews, and lectures) or
collect research. If you want something half-way between the power of Word
documents and the simplicity of Notepad text files, OneNote might fill the
bill for you. The side note feature alone is quite valuable because it automat-
ically stores and saves short notes.

Handwriting in OneNote
OneNote can also be used on an ordinary computer, but its handwriting fea-
ture is awkward at best when using a mouse. A mouse is just not finely cali-
brated enough to reproduce pen-like strokes, so you end up with strange,
five-year-old scrawling instead of your usual script.

Recording in OneNote
You can even record in your notes. In Figure 1-2, notice the audio recording
icon. Just click it to hear its message.

Sending a OneNote document
To send a OneNote document, choose File➪Email, and the document drops
down to allow you to fill in the address and subject and also add any addi-
tional text you want, as shown in Figure 1-3.

Figure 1-1:
Being able
to draw and
write in
OneNote is
a useful
feature.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 520

Book VII
Chapter 1

Collaboration
Features Overview

Exploring OneNote 521

The recipient gets an interesting combination of embedded graphics and
copyable text. One of the big drawbacks (to me at least) of PDF files (used
with Adobe Acrobat Reader) is that the text is essentially a picture of text.
That is, you cannot copy, cut, paste, or otherwise manipulate it. Perhaps
there’s a version of Acrobat that avoids this shortcoming, but OneNote does
a good job of allowing text-editing while mixing in graphics or drawings of
any kind.

When a OneNote message arrives in Outlook, it appears like the one in
Figure 1-4.

Figure 1-3:
Sending
OneNote
documents
via e-mail
is simple.

Figure 1-2:
Recording in
OneNote is
a useful
feature.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 521

Exploring OneNote522

Side notes in OneNote
OneNote installs a tray icon, which is always near your clock. Click this icon
for you to add a new side note (as shown in Figure 1-1), which is like an
abbreviated version of the full OneNote utility. OneNote doesn’t need to be
open when you work with side notes; these are saved in a folder in OneNote,
which is a nice touch of automatic organization.

The point of side notes is that they’re fast and automatic: just as Notepad is
often easier to use than Word when jotting down some brief text, so too is a
side note easier than firing up the full OneNote application. In fact, side
notes are easier than Notepad. To create a side note, you click its icon in the
system tray, then when you’re done writing your note, you just close its
window, and it’s automatically stored for you in the main OneNote applica-
tion for later use.

Saving a side note
Saving a side note couldn’t be any easier: You don’t have to do anything. You
open the side note, jot down whatever you want (or speak into your mike),
and then just close the side note window. Even though you never saved the

Figure 1-4:
A recipient
of a
OneNote
message
can copy
and paste
its contents.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 522

Book VII
Chapter 1

Collaboration
Features Overview

Exploring OneNote 523

note, it’s still there for you in OneNote’s searchable Side Notes folder, as
shown in Figure 1-5.

OneNote documents, as well as side notes, never require you to actually
back up or save your notes. This is done automatically for you. Just close
OneNote or side note windows, go about your business, and they’re saved
for you automatically.

More side note toys
Also, side notes go quite a bit beyond what you’ve done in the past with
little text editors like Notepad. You can add importance flags, add new
pages, choose from a set of different formatting pens and highlighters, add
audio notes, and spell check. Side notes can also be made modal (always on
top of other windows and applications) if you wish. The new Office 2003
Research pane is even available in these little note windows, as shown in
Figure 1-6, where the squiggle line indicates a misspelled word.

The one feature that I wish were available is a way to link the notes to loca-
tions in Word documents and other Office 2003 applications.

Figure 1-5:
Use the tabs
here to
identify
stored side
notes.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 523

Introducing SharePoint524

Introducing SharePoint
SharePoint allows Office 2003 users to broadly communicate in various
ways, depending on permissions levels and other factors. For in-depth cov-
erage of SharePoint, see Book VII, Chapter 8, which is entirely devoted to
that topic.

✦ Look at each other’s Contact lists, events, and other Outlook items and
folders.

✦ Manage files in shared documents folders and send copies of shared
attachments to e-mail.

✦ Manage data located on the SharePoint Server with Excel.

✦ Create document workspaces and meeting workspaces, linked directly
to Outlook meeting requests.

✦ Manage Web discussions while collaborating on presentations or other
documents such as Excel worksheets.

✦ Share graphics libraries and other data stores.

In addition, various kinds of lists can be manipulated on the server, such as
links, upcoming events (this list is built in), or pretty much any other kind
of list.

Sharing Outlook Contacts
Here’s one example of using SharePoint. You can share Contacts, among
other items, when you’re using an Exchange Server e-mail account. Click
Contacts in the Outlook navigation pane (on the left side), and then click

Figure 1-6:
Little side
notes can
even be
spell
checked.
A lot of
functionality
is packed
into these
little note
takers.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 524

Book VII
Chapter 1

Collaboration
Features Overview

Shared Workspaces 525

Share My Contacts. Click Default in the Name box and select the permission
level that you want to grant. Note that these permissions are similar to the
schedule of various permissions granted by Windows administrators to
others on the network.

Levels of permission
Here’s a list of the levels of Outlook permissions and their features:

✦ Owner: Total control; can read, create, change or delete any items
(like Appointments, e-mails, Tasks, and so on.) Can also do anything
with folders, including adjusting permission levels for each folder, and
can create subfolders.

✦ Publishing Editor: Same as owner but cannot manage permissions.

✦ Editor: Same as Publishing Editor but cannot create subfolders.

✦ Publishing Author: Can create and read items and files, create sub-folders,
and can modify and delete items and files that this person creates.

✦ Author: Can create and read items and files; can modify and delete items
and files that this person creates.

✦ Contributor: Can create items and files only.

✦ Reviewer: Can only read items and files.

✦ Custom: Folder’s owner can specify permissions.

Shared Workspaces
Shared Workspaces allow a group working together on a project to maintain
all their project-related files in a central repository on a Web server. In Word,
choose Tools➪Shared Workspace. A pane opens on the right side of your
Word document, as shown in Figure 1-7.

By default, the pane lists any documents in the same library as the currently
opened document. You can also create libraries of other shared items, such
as graphics files.

After you create a shared workspace, you can then pester others sharing
this space with hyperlinks, additional documents, and even task lists that
contain to-do items for each other. It becomes a kind of group information
manager.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 525

Shared Workspaces526

Conquering the version problem
Of course, sharing means (by definition) passing around the good with the
bad. The bad, in the case of Shared Workspaces, could mean “Who knows
which version of documents should be considered the best, final one?” And
by final, I don’t mean the most recent but instead the one that should ulti-
mately be used (and all other versions discarded).

Document updating in SharePoint can be used with PowerPoint, Word, Visio,
or Excel documents. When you open a copy of such a document for your
own purposes, Office 2003 makes any updates to this document by others
available for your perusal. Say that Sally deleted a paragraph that you want
left in. This is your opportunity to compare your version with hers and make
a final decision. Of course, others sharing this space with you and Sally will
also have to incorporate this version with theirs. This versioning problem
cannot be easily solved unless one person has the job of making the final
review and the final decision. And documents within a Meeting Workspace
are guaranteed to be the latest version, so that worry is eliminated.

Figure 1-7:
Use this
panel to
access
shared
documents
and
workspaces.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 526

Book VII
Chapter 1

Collaboration
Features Overview

Shared Workspaces 527

Establishing a Meeting Workspace
Meeting Workspaces are another built-in feature available in SharePoint
Services. Similar to the scheduling system in Outlook 2003, the SharePoint
Meeting Workspace is a location where you can conveniently store lists of
people scheduled to attend a meeting, notes, support data such as diagrams
or reports, and other information relating to a meeting. This information is
for the most part maintained and updated automatically for you after you
create a Meeting Workspace subsite.

Perhaps this should be given a grander name than meeting because it’s actu-
ally capable of more than managing single meetings. Indeed, this kind of
store can hold information for an ongoing project — a series of meetings, not
just a single meeting. Minutes from past meetings, as well as announcements
of upcoming meetings, can all be shared and viewed by the collective partici-
pants. You can manage recurring meetings here and otherwise manipulate
the data for your project or a set of related projects.

Meeting Workspaces also avoid the traditional flurry of e-mails, attachments,
or paper documents that must be provided to someone who joins a project
after a couple of meetings have already taken place. If you have a well-
maintained Meeting Workspace — including details about the events that
took place in each meeting after it’s over — all you have to do is give the
new project member access to the Meeting Workspace, and she can see all
the information she needs to get up-to-speed.

This isn’t a Messenger Chat or anything. You don’t have to communicate
and meet with the other attendees in realtime via the Meeting Workspace.
Instead, it’s merely a location to store relevant documents, agendas, lists,
and so on. People in the meeting, however, might certainly want to be
connected to the Workspace during the meeting to be able to view the
documents.

To set up a Meeting Workspace, you must use Exchange Server and have
access to a SharePoint Services or SharePoint Portal server site. The
Workspace can grow out of an Outlook Calendar meeting request:

1. Right-click the day in your Outlook Calendar when you want to have
the meeting.

A context menu appears, as shown in Figure 1-8.

2. Choose New Meeting Request.

The context menu closes, and the Meeting dialog box opens.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 527

Shared Workspaces528

3. Fill in the fields in the dialog box describing the details of the meeting
and the recipients of the notice. Also look at the Scheduling tab to see
whether this feature is available for the participants.

Outlook automatically modifies the Meeting Workspace data if you
should later make any changes to the date, time, location, attendees,
and so on. You make these modifications as you would for any ordinary
meeting scheduled via the Outlook Calendar: by updating the informa-
tion in the Request dialog box (double-click the meeting in the Calendar).

4. Click the Appointment tab in the dialog box.

5. Click the Meeting Workspace button.

A new right pane appears in the dialog box, as shown in Figure 1-9.

6. Click the Change Settings link.

7. Choose the Create a New Workspace option.

A new pane appears.

8. Choose the language, workspace template, or other options you want.

Your choices will reappear as default options when you set up future
meetings with this pane.

Figure 1-8:
Begin a
Meeting
Workspace
by request-
ing a
meeting in
Outlook.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 528

Book VII
Chapter 1

Collaboration
Features Overview

Shared Workspaces 529

9. Click OK.

You return to the first task pane.

10. Click the Create button.

Your new Meeting Workspace site’s link is added to your meeting
request, and the subject, date, time, and location of your meeting
request are automatically added to the workspace site, as shown in
Figure 1-10.

11. Click the link to see the workspace (named Festering Pests in the
example after the Subject specified when the meeting was initially set
up in Step 3).

Figure 1-10:
A new
Meeting
Workspace
has been
created,
and here’s
its link.

Figure 1-9:
Use this
Meeting
Workspace
pane to set
up a new
meeting.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 529

Shared Workspaces530

12. Press Alt+Tab.

You return to Outlook.

13. Click the Send button in the Meeting dialog box (refer to Figure 1-9).

Your meeting request and details about the Meeting Workspace are now
sent to all the people listed in the To field.

Any meetings in your Outlook 2003 calendar that have a Meeting Workspace
attached are easily identified by the little three-people-at-a-table icon shown
in Figure 1-11.

Figure 1-11:
This icon
next to a
meeting in
Outlook’s
calendar
indicates
that a
Meeting
Workspace
is available
for this
meeting.

07b_570676 bk07ch01.qxd 6/4/04 10:20 PM Page 530

Chapter 2: Managing Shared
Documents

In This Chapter
� Using the new Information Rights Management

� Setting permissions

� Changing Workspace options

� Protecting documents in Word

When collaborating on documents, it’s too easy for co-workers to get
in each other’s way. Perhaps there’s a wild writer trying to work

with a very picky editor or vice versa. Or perhaps the accounting depart-
ment wants an entirely different kind of document than the graphics
department — one with fewer border decorations and a less-intense design.

In any case, group document-making, like group music, has to be orches-
trated and controlled. First, participants all have to be together in rhythm,
trying to harmonize if the end result is to be useful . . . not to mention
appealing. Second, you need to manage the collaborators so that no one
inadvertently (nor deliberately) damages the contributions of another.
These goals are more likely to be achieved by using various features built
into Office 2003, such as the new Information Rights Management technol-
ogy, managing permissions and workspace options, and protecting docu-
ments in various ways. That’s what this chapter is all about.

Restricting Documents with IRM
New in Office 2003 is Information Rights Management (IRM), which you can
use to apply specifically restricted permission settings to documents,
e-mail, and other files. You specify policies that govern who can copy, for-
ward, print, or even open documents created in Word, Excel, Outlook, and
PowerPoint.

Despite its strides, IRM isn’t the panacea for all document protection,
although it can prevent documents from being forwarded, copied, or
printed. The PrintScreen key is disabled by IRM, but nothing prevents you
from taking a digital picture using widely available screen capture utilities.
Save the document as a graphic file and send it hither and yon.

07c_570676 bk07ch02.qxd 6/4/04 10:22 PM Page 531

Restricting Documents with IRM532

IRM does have one rather slick trick up its sleeve, though. Like Mission
Impossible tapes, you can give documents a lifetime; that is, set them to self-
destruct at some point in the future. Expire is the polite term for this.

IRM’s full feature set is available only in the Professional and Enterprise edi-
tions of Office 2003, with Windows Server 2003, and works only with docu-
ments created by Word, Excel, Outlook, or PowerPoint. However, users of
the other Office 2003 editions (Standard, Small Business, and Student and
Teacher) can, with your permission, edit or read IRM-protected files and
e-mail.

Suppose you want to set permissions levels for a Word document — that is,
access to the document with various specified degrees of control over the
document. Begin by choosing File➪Permission. If you see the dialog box dis-
played in Figure 2-1, you need to install or update the new IRM feature. This
requires that you have Windows Rights Management client (some software)
installed on your system.

Viewing IRM-protected files
IRM protection might have its uses, but what about those folks who are not
on your LAN and can’t participate in the IRM system, such as a customer?
And how do you take care of those folks who aren’t using Office 2003?

Relax. You’re covered. IRM-protected documents can be shared with out-
siders even if they don’t use Office 2003. A free IRM viewer (technically, the
Rights Management Add-on for Internet Explorer) can be provided to out-
siders, letting them view IRM-protected files. One small catch: The outsider
must be granted explicit permission to view the file, though. This viewer can
be downloaded from www.microsoft.com/windows/ie/downloads/addon.

When you install IRM on your machine — at least at the time of this writing —
after some preliminaries, two apparently related entities (Activates Machine
and the mysterious GIC, according to my firewall) access the Internet. After
that, the installation completes. Then you move to Phase Two, authentication.

Figure 2-1:
If you see
this, you
have to
install or
update IRM
on your
system.

07c_570676 bk07ch02.qxd 6/4/04 10:22 PM Page 532

Book VII
Chapter 2

M
anaging

Shared Docum
ents

Restricting Documents with IRM 533

Phase Two: Authentication
After you install/update IRM, you have one more step before you can begin
assigning permissions. You need some way to let IRM know — authenticate —
the users who create or receive document with set permissions. You do this
through the MS Information Rights Management server or your own rights
management server.

MS offers a free trial service, but you must use .NET Passport. The Passport
authenticates those people who are attempting to access restricted content.

Choose File➪Permission➪Restrict Permission As (after the IRM client is
installed). The Service Sign-Up dialog box, as shown in Figure 2-2, appears.
This is where you can opt for the free trial server authentication service
from MS.

If your company use custom rights management systems, you need not sign
up for the Microsoft management service, which requires .NET Passport.
The Passport authenticates people who are attempting to access restricted
content.

Figure 2-2:
After you
install the
IRM client,
your attempt
to restrict
permissions
isn’t quite
yet ready.

07c_570676 bk07ch02.qxd 6/4/04 10:22 PM Page 533

Restricting Documents with IRM534

Setting permissions in IRM
After you follow the steps in the preceding sections and are a full-power IRM
user — that is, you have the IRM up and running and you’ve enabled an
authentication server — you can set permissions. Lock and seal your docu-
ments by following these steps:

1. Choose File➪Permission➪Restrict Permission.

You see the Select User dialog box.

2. Choose the user account and click OK.

The dialog box closes, and the Permission dialog box opens, as shown in
Figure 2-3.

3. Select the Restrict Permission to This Document check box.

4. Add the users to whom you’re granting permission.

5. Click the More Options button.

You see a different Permission dialog box, as shown in Figure 2-4.

6. Select the various options you’re interested in.

For example, specify when the document self-destructs.

7. Click OK to close the dialog box.

You now see your document with a special Shared Workspace pane on
the right side, as illustrated in Figure 2-5.

Figure 2-3:
Decide here
who gets
editing and
read-only
permissions.

07c_570676 bk07ch02.qxd 6/4/04 10:22 PM Page 534

Book VII
Chapter 2

M
anaging

Shared Docum
ents

Restricting Documents with IRM 535

Figure 2-5:
These
explosive
details
about the
company’s
new
unguent
will self-
destruct
2/24/04.

Figure 2-4:
Set permis-
sions (and
when this
document
goes up in
flames)
here.

07c_570676 bk07ch02.qxd 6/4/04 10:22 PM Page 535

Using IRM in Outlook536

Using IRM in Outlook
IRM works in Excel and PowerPoint the same way it works in Word, as I
describe earlier in this chapter. You have the same options and capabilities.
In Outlook, however, things are a little different, given that this application
focuses on messaging and scheduling. Here’s one interesting feature: You
can specify IRM behaviors and conditions for e-mail that you’ve already sent.

You can specify that e-mail cannot be printed, copied, or forwarded. This
obviously is a limited protection. Recipients cannot use File➪Print, Edit➪
Copy, or the forward option, but they can certainly take a screenshot of the
message. Interestingly, Microsoft’s documentation for IRM doesn’t say that it
prevents copying. It only says this technology will help prevent.

To use IRM in Outlook, click the Mail folder, and then choose File➪New➪
Mail Message. In the Message dialog box, choose File➪Permission➪Restrict
Permission As. Your e-mail is then given a header, as shown in Figure 2-6.

When a protected e-mail is received, the Copy, Print, and Forward options
are disabled. Further, any attachment to protected e-mail is given the same
restrictions. And messages are encrypted during transmission so if someone
intercepts them on the Internet or your intranet, the restrictions that you
place on the contents cannot be adjusted by the outsider.

Changing Workspace Options
Shared Workspaces allow a group working together on a project to maintain
all their project-related files in a central repository on a Web server. Shared
documents are also dynamic: They can be changed and updated. Just as you

Figure 2-6:
Notice the
warning:
Do Not
Forward.
Nor can
you copy
or print this.

07c_570676 bk07ch02.qxd 6/4/04 10:22 PM Page 536

Book VII
Chapter 2

M
anaging

Shared Docum
ents

Using Word’s Protect Document Feature 537

can specify how frequently Outlook updates your e-mail by automatically
sending and receiving, you can also specify how frequently you want shared
documents updated.

You can also decide whether changes you’ve made to a document should be
automatically the final version changes — that is, whether your version of
this document should supersede anyone else’s editing.

Click the Options link in the Shared Workspace pane. You see the various
choices displayed in Figure 2-7.

Using Word’s Protect Document Feature
If you don’t want to go to the trouble of using IRM, Word itself has a built-in
protection scheme. Choose Tools➪Protect Document, and you see the
Protect Document pane, as shown in Figure 2-8.

Select the Limit Formatting to a Selection of Styles check box. Then click the
Settings link, and you see the Formatting Restrictions dialog box, as shown
in Figure 2-9. If a style in this list isn’t selected, others cannot modify text
written in that style.

Figure 2-7:
Adjust these
options to
specify how
you want
shared
documents
to behave.

07c_570676 bk07ch02.qxd 6/4/04 10:22 PM Page 537

Using Word’s Protect Document Feature538

Now click Cancel to see the Protect Document task pane again; this time, try
the other options. Select the Allow Only This Type of Editing in the
Document check box. You see a couple of drop-down lists, illustrated in
Figure 2-10.

The final option is to drag your mouse to select areas within your docu-
ment, and then specify who — on your list of groups; see the Groups list in
Figure 2-10 — is permitted to edit those selected zones. The editable zones
then turn a cunning, pale peach color, enclosed within gray brackets.

Figure 2-9:
The recom-
mended
minimum
restrictions
on styles
that others
can modify.

Figure 2-8:
Protect
documents
from
unwanted
changes
via these
settings.

07c_570676 bk07ch02.qxd 6/4/04 10:22 PM Page 538

Book VII
Chapter 2

M
anaging

Shared Docum
ents

Managing Versions in Word 539

When you click the Yes, Start Enforcing Protection button, you see the dialog
box shown in Figure 2-11.

Managing Versions in Word
Word 2003 includes a new way to keep track of various versions of a docu-
ment: It maintains the versions in one file. This can assist considerably in
preventing problems caused by a single document’s various versions stored
in files located here and there.

Figure 2-11:
Either enter
a password
here or
choose
authenti-
cation to
control who
gets to
unlock the
protection.

Figure 2-10:
Restrict
would-be
editors to
messing
around
with only
Tracked
Changes,
Comments,
Filling in
Forms, or
No Changes
(Read-only).

07c_570676 bk07ch02.qxd 6/4/04 10:22 PM Page 539

Managing Versions in Word540

To create this kind of multiple-versions file, follow these steps:

1. Choose File➪Versions.

You see the Versions dialog box.

2. Click the Save Now button.

The Save Version dialog box opens, as shown in Figure 2-12.

3. Type in any comments you want to include to identify this version,
such as, Marty really made some good suggestions on this one!

4. Click OK.

The new version is saved and date-stamped; both dialog boxes close.

5. Choose File➪Versions.

You now see a list of all the previously saved versions, with descrip-
tions, who saved them, and the date/time-stamp. They are shown in
order of most recently saved version. You’re free to delete any versions
you no longer need and to choose to automatically save a new version
each time you close Word. The file size increases by about 300 percent,
from a typical 80K to 230K, but who cares? You can get 120MB hard
drives these days for $60. The time it takes to save the file doesn’t seem
to increase much, if any.

Figure 2-12:
Use these
dialog boxes
to store
multiple
versions of
the same
document
in one file.

07c_570676 bk07ch02.qxd 6/4/04 10:22 PM Page 540

Chapter 3: XML and Office

In This Chapter
� Displaying documents in a browser

� Building Web pages

� Adjusting properties

� Viewing code

� Writing scripts

� Scripting in Excel

� Debugging script

� Using forms

In this chapter, I explore ways to use Office 2003 applications to generate
Web pages. You see both how to simply display passive data by merely

saving documents as Web pages, and also how to interact with the user via
scripting, using the built-in Script Editor. You also see how to employ forms
and debug your projects.

Communicating via a Web Page
One way to communicate with customers, or between Office 2003 users, is
to set up a Web page. Office 2003 provides various tools for this task, includ-
ing displaying a Word document in HTML format in a Web page. There’s
even a special scripting editor built into Word 2003, Access, and Excel with
which you can create programming and interactivity for your Web page.
However, for the greatest power, scalability, design freedom, testing capabil-
ities, and efficiency, I urge you to look into ASP.NET available in Visual
Studio .NET. Displaying Office 2003 applications’ documents and elements in
a Web page is a quick and often functional solution. But if you need serious
interactivity — such as allowing the user to interact with your online inven-
tory, or place orders over the Internet — you need something more robust
than the Web tools built into Office 2003 products.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 541

Communicating via a Web Page542

Some readers at this point are saying under their breath: Well! If ASP.NET is a
superior approach to Web programming, why spend the better part of this
chapter covering scripting? Fair question. The answer is that scripting
remains an important technology because it easily integrates into various
XML technologies where full-featured languages do not, ASP.NET excepted.
Also, scripting is a fairly mature technology, with its own efficiencies for
use with small-to-medium programming tasks. For example, scripting is the
programming technology built into Access’s Data Access Pages, and also
Microsoft’s new InfoPath application, as you’ll see in the next chapter of this
mini-book.

To see how to build and program a Web page by using Word, follow these
steps:

1. Start a new Word document and build your Web page.

2. Type in two paragraphs of text.

3. Add a headline between the two paragraphs by choosing Format➪
Styles and Formatting, and then choosing a headline style from the
list displayed.

4. Add a diagram or photo (Insert➪Diagram or Insert➪Picture).

Word does its best to generate usable HTML from whatever formatting and
other elements you add to your Word document. HTML generally doesn’t
generate error messages itself when a page is displayed in a Web; it just
ignores problems and displays the page as well as it can. You can use
parsers and editors that will flag HTML errors, including the Script Editor
built into Word or Excel (which I describe later in the section, “Scripting”).
Also, the latest versions of Internet Explorer display a discreet icon in the
lower-left corner when an error is detected.

You can save all support documents (such as a graphics file) in the same,
single MHTML (Mime HTML) file. Older browsers don’t support this conven-
ient format, but who cares? Also, if you intend that your interactive features
work in every possible browser (meaning some open source browsers as
well as Netscape), you should use JavaScript rather than VBScript — but,
again, who cares? I would never recommend that a programmer or devel-
oper struggle with the bizarre syntax in Java (derived from C) just to deal
with the one or two percent of potential Web site visitors who still avoid
using Internet Explorer. (It can handle either JavaScript or VBScript.)
Netscape has become a mere ghost now, used by very few die-hards.
Netscape never permitted VBScript to execute any code (some say because
VB is a Microsoft product). Whatever.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 542

Book VII
Chapter 3

XM
L and Office

Communicating via a Web Page 543

Lots of cool features, such as dynamic HTML (DHTML; Web page animation),
Active Server Pages (ASP; efficient user-interaction via active server pages
technology, scrolling marquees, and many others) are supported in Internet
Explorer. It’s a mature, robust, and powerful Internet browser with no real
competition. Whether this monoculture is good or bad, it remains a fact.
Books that advise you to test other browsers (mainly meaning Netscape)
should probably be updated. There’s no reason to assume that any signifi-
cant portion of your Web page audience will be using anything other than
Internet Explorer.

Now take a look at your Word document as a Web page. Choose File➪Web
Page Preview. It may take a minute or two for Word to get its act together
and compose the HTML for the Web page, but be patient. Sooner or later,
you’ll see how the page looks in Internet Explorer, as shown in Figure 3-1.

Now save your Web page to your hard drive. (Preview mode doesn’t require
that the document be saved.) Choose File➪Save As Web Page. Then in the
Save as Type box, choose Single File Web Page. Name it WebTest and click
the Save button. The dialog box closes, and your MHT file (Mime HTML) is
saved.

Figure 3-1:
Your new
Web page,
in preview
mode.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 543

Communicating via a Web Page544

Adjusting Web page properties
The Web page title displayed on the title bar of the browser is determined
by the title that you give your document. Choose File➪Properties and then
click the Summary tab in the Properties dialog box. Type in Our Web Page as
the title. And, if you intend that your Web page be attractive to Google and
other search engines, enter several appropriate keywords and some comments
on this same page in the dialog box. Click OK to close the dialog box.

Seeing the code
In preparation for adding some scripting code of your own, take a look at
Word’s hard work. It translated your page into HTML, which is the verbose
parent language of many others, such as XML. Sure, it’s a huge amount of
code to describe two paragraphs, a headline, and a picture, but so what?
Memory is cheap, and broadband Internet is the future. Who cares about
verbosity if it helps ensure clarity?

Choose Tools➪Macro➪Microsoft Script Editor. You now see the HTML code,
and the scripting editor, as shown in Figure 3-2.

The saw-tooth underline indicates an error.

Figure 3-2:
Here’s the
scripting
editor,
where you
can make
your Web
pages come
alive.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 544

Book VII
Chapter 3

XM
L and Office

Communicating via a Web Page 545

Notice that some of the HTML code has a saw-toothed, red underline, indi-
cating that it violates some rule or other: That is, it’s either an error or a
potential error. For example, this line was generated by Word when it trans-
lated the example page into HTML, but Word’s script parser is rejecting the
work of Word’s translator:

<body lang=EN-US style=’tab-interval:.5in’>a

Note that both the lang and style attributes are underlined. If you pause
your mouse cursor on either of them, you’re informed by the parser that
they are not attributes of the body element. Nonetheless, Word itself must
have thought they were when it did the translation. (Perhaps the various
workers in different sections of the Word programmer department should
have a meeting.) In any case, you can ignore most HTML error messages. No
harm done. Generally your page gracefully degrades, as the expression goes.
(That is, it doesn’t show all the formatting but does show the text and other
essentials.) And don’t forget that you can always preview your page (by
choosing File➪Web Page Preview, as I describe earlier in this chapter) to
look for any nasty surprises.

Notice that the title, keywords, and comments are also included in the code,
and also that a zone of XML is embedded within the HTML:

<title>Our Web</title>
<!--[if gte mso 9]><xml>
<o:DocumentProperties>
<o:Author>Richard</o:Author>
<o:Keywords>books, writing, developers</o:Keywords>
<o:Description>We want this to be a successful

site!</o:Description>

The headline is enclosed in the largest headline style tags available in
HTML, <H1>:

<h1>This is a Headline</h1>

Filling out the Web page
You can add additional features to your Web page before getting into coding
a script language. Display the Web toolbar by right-clicking any other toolbar
and choosing Web Tools. It has a number of controls that you can drag and
drop into your Web page, as shown in Figure 3-3.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 545

Communicating via a Web Page546

Double-click the Textbox icon on the Web Tools toolbar. A text box appears
within a form (an HTML element). You can drag the text box to make it larger.
Also notice that you’re put in design mode automatically when you add a
control.

Type Please enter your name here... and click Submit when done under-
neath the text box. Then double-click the Submit icon on the Web Tools tool-
bar. You can easily drag and drop controls to position them wherever on the
Web page you want them.

Now press Atl+Shift+F11 to see the Script Editor again. Notice in Listing 3-1
that that additional HTML has been added — two form elements and two
INPUT objects: a “TEXT” and “SUBMIT” type.

Listing 3-1: Added HTML
<form>

<p class=MsoNormal><INPUT TYPE=”TEXT” SIZE=”63”></p>

</form>

<form method=Get enctype=”application/x-www-form-urlencoded”>

<p class=MsoNormal>Please enter your
name here...

<span style=’mso-bookmark:
OLE_LINK2’>and click Submit when done:

<INPUT TYPE=”SUBMIT”></p>

<p class=MsoNormal><o:p> </o:p></p>

</form>

However, soon enough the Refresh button appears in the Script Editor,
and when you click it, additional information is added to this code
(see Listing 3-2), replacing the standard HTML objects (INPUT) with
custom Microsoft objects shown in boldface:

Textbox Submit

Figure 3-3:
This toolbar
includes
many useful
controls.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 546

Book VII
Chapter 3

XM
L and Office

Scripting 547

Listing 3-2: Custom Objects
<form>

<p class=MsoNormal><!--[if gte vml 1]>
<v:shape id=”_x0000_i1026” type=”#_x0000_t75”

style=’width:249.75pt;height:56.25pt’>
<v:imagedata src=”Webtest_files/image003.wmz” o:title=””/>
</v:shape><![endif]--><![if !vml]><img width=333 height=75
src=”Webtest_files/image004.gif” v:shapes=”_x0000_i1026”><![endif]></p>

</form>

<form>

<p class=MsoNormal>Please enter your name here...

and click Submit when
done:

<!--[if gte vml 1]><v:shape
id=”_x0000_i1027” type=”#_x0000_t75” style=’width:36.75pt;height:22.5pt’>
<v:imagedata src=”Webtest_files/image005.wmz” o:title=””/>
</v:shape><![endif]--><![if !vml]><img width=49 height=30
src=”Webtest_files/image006.gif” v:shapes=”_x0000_i1027”><![endif]></p>

This special code references graphics (GIF files) that are included in your
MIME file (or if you’ve chosen to employ multiple dependency files, in sepa-
rate files).

You’re close to finishing designing this page. Note that ordinary Word effects
(lines, diagrams, textures, and so on) can be added to a Web page document.
Add a texture by choosing Format➪Background➪Fill Effects. Click the
Texture tab and select one you like — just be sure you can still read the
text on top of the texture. Click OK to close the dialog box.

Scripting
Scripting is programming, albeit with a somewhat abbreviated language.
Scripting is designed to get past firewalls, browser security settings, and
other security measures because it doesn’t have potentially dangerous com-
mands. Unfortunately, there are ways to make scripting dangerous, but
Microsoft has come up with an ingenious solution: Do your code execution
on the server, compose an ordinary HTML page after the computation has
finished, and send that HTML back to the user’s browser. HTML, like a televi-
sion show, cannot introduce a virus into your house. It’s the difference
between seeing a picture of someone with a cold and sitting next to a conta-
gious person who is hacking and wheezing.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 547

Scripting548

ASP is the name Microsoft gave to this server-side code execution technique.
It works quite well, allowing us programmers to enjoy the full VBA, VB.NET,
or other languages rather than simply scripts. For serious, complex Web pro-
gramming solutions (or what they now like to call enterprise development),
you will find it much more efficient to work with the heavy-duty suite of tools
available in the Visual Studio .NET suite.

But for now, see what you can do with the Script Editor: Simple Web solu-
tions can be generated quickly and easily via scripting. First, in case there’s
some odd default, ensure that you’re using VBScript and not JavaScript.
Choose View➪Property Pages to see the Property Pages dialog box, as
shown in Figure 3-4.

Ensure that the Client list box displays VBScript. Then click OK to close the
dialog box.

Typically, script is located just under the <HEAD> element’s opening tag (the
one without the backslash.) Locate <HEAD> in the code window of the Script
Editor. It’s near the top of the source code. Then click a blank line beneath
the <HEAD> to put the blinking insertion cursor there.

Right-click at the insertion point and choose Insert Script Block➪Client from
the context menu. Why Client is a separate menu option is baffling, given
that it’s the only possibility. Nonetheless, you find this little bit of code
is inserted for you. The <!-- means start a comment, and --> means end a
comment. By writing your script within a comment, you can ensure that the
HTML interpreter will ignore it and not try to figure out how to display it in
the browser. A script engine, though, will pay attention to this code and try
to execute whatever you write in the comment.

Figure 3-4:
Specify
the script
language
here.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 548

Book VII
Chapter 3

XM
L and Office

Scripting 549

<script language=vbscript>
<!--

-->
</script>

Now type a simple command in the script area:

<script language=vbscript>
<!--
MsgBox(“HI”)
-->
</script>

Press F5. The page appears in a Web page, but first, a message box displays
the word HI.

If you want to use an Access-style list of possible commands, press Ctrl+J.
A list appears from which you can select commands. Properties and enums
(such as built-in VB colors) are symbolized in this list by a hand holding a
VCR tape. Functions (methods in OOP-speak) are symbolized by a flying
purple eraser.

Try double-clicking the Abs function in this list of commands. (Formally, it’s
known as the Object member list.) The list disappears, and Abs appears in a
lovely blue color in your code window.

Now press Ctrl+Shift+spacebar to see the parameter info (what arguments
this function takes). You see Abs(number), so you realize that you must fur-
nish a number. This somewhat limited IntelliSense help is available if you
just need a brief reminder. Otherwise, there’s a script Help engine available
by pressing F1.

Commenting client-side programming
When HTML was first written, evidently nobody
suspected that a computer might actually want
to compute — to execute any real program-
ming code. So HTML contains no provision for
programming as such, just for displaying and
primitive reactions like clicking a submit button.

That’s why you write client-side programming
inside a comment. It’s one of those embarrass-
ing little workarounds that testify just how
much foresight goes into planning computer
languages.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 549

Scripting in Excel550

Scripting in Excel
Run Excel and then press Alt+Shift+F11 to get to the Script Editor. It’s essen-
tially the same as the Word Script Editor, but note one peculiar zone in the
automatically generated, default script:

<script language=”JavaScript”>
<!----
function fnUpdateTabs()
{
if (parent.window.g_iIEVer>=4) {
if (parent.document.readyState==”complete”
&& parent.frames[‘frTabs’].document.readyState==

”complete”)
parent.fnSetActiveSheet(0);
else
window.setTimeout(“fnUpdateTabs();”,150);

}
}

if (window.name!=”frSheet”)
window.location.replace(“../Book1.htm”);
else
fnUpdateTabs();
//-->
</script>

Right there in the middle of the script is a little bit of JavaScript! But don’t be
dismayed. Just because some (perhaps most) of Microsoft’s own in-house
programmers prefer to avoid using VBScript — the most popular scripting
language in the world, and the one that Microsoft itself developed, promoted,
and created — doesn’t mean that you have to use Java.

You can mix and match script languages within a single script. For example,
you can now extend this chapter’s earlier example (written in Word’s Script
Editor) by creating one in Excel that accepts data from the user and returns
it to the script for processing. This illustrates one way that you can have the
user fill in a form, place an order, or otherwise communicate with your appli-
cation online.

While in the Excel Script Editor, choose View➪Toolbox. Then drag and
drop a TextField (text box) icon into your script, somewhere within the
<BODY></BODY> section of the HTML.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 550

Book VII
Chapter 3

XM
L and Office

Scripting in Excel 551

The HTML that’s automatically created for you to represent these two
controls looks like this:

<INPUT type=”text” ID=Text1>
<INPUT type=”submit” value=”Submit” ID=Submit1>

Now on the line just under the <HEAD> tag, right-click; from the context menu,
choose Insert Script Block➪Client. If your default language isn’t VBScript,
choose View➪Property Pages and change the Client field to VBScript. Then
type into the script block the following lines of code (shown in boldface):

<script language=vbscript>
<!--

sub Submit1_Onclick

msgbox (text1.value)

end sub

-->
</script>

Press F5 to execute this code in the browser. You see your text box and
submit button. Type something into the text box, and then click the submit
button. You see a message box displaying the text that was typed in. Your
script can in this fashion accept typed input from the user, and then process
it by adding it to a database, sending e-mail, or whatever other response
makes sense. Likewise, your script can respond to the Value property of
other controls on the Script Editor Toolbox, such as the radio button or
check box.

Now switch back to the Excel worksheet and notice that the controls you
added to the script code — the text field and submit button — have also
been added to the worksheet.

Here’s what many think is the most reductive, simplest HTML document:

<HEAD>
<TITLE>New Page</TITLE>
</HEAD>
<BODY>
Message here
</BODY>

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 551

Scripting in Excel552

If you replace the current script in your Excel Script Editor with this and
then press F5, you’ll see that the browser’s title bar displays New Page and
the browser itself displays Message here.

The HEAD pair encloses the TITLE pair. Other commands can also appear
within the HEAD pair, in particular scripts, but also meta-descriptions (refer-
ences to support documents, comments, style specifications, and so on). In
general, things not intended to be actually viewed by the user are often put
into the HEAD.

The TITLE and HEAD pairs are not essential. You can leave them out of your
source code with no harm done. Finally, the BODY pair encloses objects, con-
trols, text, images, links, or other elements that you want to present to the
user within the browser window. Not surprisingly, you can leave out the
BODY pair if you want. In fact, contemporary browsers (namely Internet
Explorer) are extremely forgiving when it comes to HTML.

The simplest page
Try this. Erase everything from your Script Editor and then type in only
these words:

A Simple Page

Press F5, and you actually see this message in the browser. The Internet
Explorer browser will display these words, even if you’ve included nothing
else in your source code. No other computer programming language comes
close to HTML’s forgiveness. Try submitting A Simple Page to BASIC, C, or
any other language. None of them will simply display the words; all will
choke and throw out an error message.

The good news is that the user will rarely be baffled by an error message
from an Internet browser and will almost never experience a browser freeze-
up or crash as a result of your programming. HTML was designed this way. It
was supposed to be robust, to avoid crashing the user’s computer, or other-
wise doing anything untoward. After all, when you go out into the Web, you’re
opening your computer and (in particular) your hard drive to the world. And
as we all know, bad people are out there who would like nothing more than
to have you visit an Internet site with this source code:

Format C:

Your hard drive would be reformatted, and they would jump up and down
with glee.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 552

Book VII
Chapter 3

XM
L and Office

Scripting in Excel 553

Scripting errors
What happens if you write a script that seems innocent enough but still causes
a problem? One of the classic errors in computer programming is the endless
loop. By accident, you set up some condition that can never be fulfilled. After
the VBScript interpreter gets to this loop, it can never get past it. In the follow-
ing code, I’m saying to do this loop (to keep repeating the instructions between
Do and Loop) as long as X is less than 3. And my instructions make sure that
X always remains 2. All previous operating systems would hang on this (just
freeze up), and the user would have to turn the computer off and then back on.

<HTML>

<script language=vbscript>
<!--

Do While X < 3
X = 2
Loop

-->
</script>

</HTML>

If you press F5, Internet Explorer quickly detects the endless loop and dis-
plays the message shown in Figure 3-5.

Internet Explorer refuses to be frozen by an endless loop. Naturally, people
want an Internet browser to be robust and safe to use. As a result, a number
of commands found in Visual Basic have been stripped from VBScript. There
are no provisions for exploring or otherwise directly contacting the user’s
hard drive (with one exception, cookies). You can’t adjust the user’s clock
although you can read their clock with the Time function:

CurrentTime = Time

Figure 3-5:
Endless
loops don’t
freeze
Internet
Explorer.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 553

Debugging Script554

There are no Link commands for dynamic data exchange, nor can you
access the user’s printer or Clipboard (or any other peripherals, for that
matter) beyond the keyboard, mouse, and monitor. Of course, no access is
permitted to the user’s Windows API (low-level Windows functions).

In other words, the script is limited to working within — well within — the
operating environment of the browser. No contact with the user’s peripher-
als or operating system is permitted.

Debugging Script
Either errors in HTML source code are generally just ignored by browsers, or
error messages are suppressed and made optional, as I discuss shortly. If
you feed the following impossible HTML source code (there’s no such com-
mand as OFF WHITE) to the Internet Explorer browser, the background inex-
plicably turns bright red:

<HTML>
<HEAD> <TITLE>HTML Bugs</TITLE>
</HEAD>

<BODY BGCOLOR = “OFF WHITE”>
</BODY>
</HTML>

Bright red isn’t quite what you intended, but at least the browser didn’t
freeze up or crash or otherwise do some damage and frighten the user.
Actually, that red is a bit frightening.

Script errors, though, can be more serious. Typos and other kinds of bugs
can interrupt your VBScript by displaying an error message to the user — a
message that’s unlikely to be understood by most users and that ensures
they will avoid visiting your site again.

Logic errors (such as arithmetic miscalculation) won’t generate an error
message, but they can result in ridiculous information. For example, your
document might announce to the user that the gas for a trip from Atlanta to
Orlando costs $0.28. This kind of thing isn’t reassuring to users, either.

The Script Editors in Office 2003 applications do have a subset of the usual
suite of debugging tools, such as Step Into (F11, although it’s usually F8 in all
other versions of Visual Basic, demonstrating that C programmers wrote this
editor). Take a quick look at the kinds of errors that crop up when writing
computer programs, and what you can do about them in VBScript.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 554

Book VII
Chapter 3

XM
L and Office

Debugging Script 555

Microsoft Help online says that if you choose Tools➪Options in the Script
Editor, click the Debugging node, click the JIT (Just in Time) button, and
then select the Enable Attach and the Enable JIT Debugging check boxes,
you’ll see error messages when scripting (and HTML) has bad code. (On my
computer, they were selected by default. And oddly, the Enable Attach check
box cannot be disabled — nothing happens when you click it.) Although
Microsoft says that message boxes will display errors after these check
boxes are selected, on my computer, no message boxes were displayed
within the Script Editor. However, I noticed that Internet Explorer was dis-
playing a little error icon in the lower-left corner, as shown in Figure 3-6.

Evidently, Microsoft’s recent browser versions suppress error messages
when script or other code generates problems. You, the developer, want to
see these messages, so double-click the error icon shown in Figure 3-6, and
you see the dialog box shown in Figure 3-7.

Figure 3-7:
Enable
seeing
debugging
error
messages
while
working
with script.

Figure 3-6:
Double-click
this error
icon to
choose to
have error
messages
displayed.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 555

Debugging Script556

Typos
Typos are the easiest errors to deal with. If you have error messages turned
on, the VBScript interpreter signals the browser to report them. For exam-
ple, if you mistakenly type MgsBox instead of MsgBox, the interpreter doesn’t
recognize the command, and it flags the error with a message to you, the pro-
grammer, as shown in Figure 3-8. Here is the example code, complete with typo
in boldface:

<HTML>
<HEAD>
<TITLE>Debugging</TITLE>
</HEAD>
<BODY BGCOLOR = “WHITE”>
<SCRIPT LANGUAGE = “VBScript”>
<!--
MgsBox “What gives?”
-->
</SCRIPT>
</BODY>
</HTML>

Note in Figure 3-8 that you’re told that the error is located in line 9. Take a
look at your source code in the Script Editor, count down from the top to
line 9, look for the typo, and fix it. In this case, the error message is highly
specific, mentioning the misspelled msgbox.

Given that error messages mention line numbers in your source code, you
might want to turn them on in the editor. Choose Tools➪Options, click Text
Editor, All Languages, and then select the Line Numbers check box. After
doing that, your source code is numbered, like the code displayed in
Figure 3-9.

Figure 3-8:
Misspelling
a VBScript
command
generates
this error
message.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 556

Book VII
Chapter 3

XM
L and Office

Debugging Script 557

Impossible commands
Also, another kind of typo — impossible commands — are easily noticed and
reported: for example, Erase the blackboard. VBScript cannot digest this
command, so it reports the problem. It does understand and recognize the
command Erase, but it expects the Erase command to be followed by the
name of an array because that’s how Erase is supposed to work. Not finding
the proper argument, the debugger reacts with an error message.

Unfortunately, error messages, even after over two decades of effort, remain
generic and often confusing. For example, when reacting to Erase the
blackboard, instead of offering The function argument is wrong or
something true, the error message is Expected end of statement.
Technically, this reference to punctuation isn’t entirely wrong, but it does
miss the main point: that Erase requires a specific kind of argument, namely
an array. This information could be entered into a database and displayed to
programmers. Too bad that with all the computing power we’ve got at our
disposal, error messages are still as cryptic, brief, and often simply wrong as
they were 20 years ago. When you do OOP programming, you’re going to see
Object variable not set and stuff like that hundreds of times.

Figure 3-9:
Display line
numbers to
make
tracking
errors
easier in
the Script
Editor.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 557

Using MSXML Core Services558

Another generic and frequently seen message is Type mismatch. You get
that if you provide the wrong argument, too, as in X = Sqr(“five”)
(because you cannot square text).

A third variety of easily detected, easily fixed error is an inconsistency of
some kind between parts of your script. Say you have a subroutine that
expects three variables:

Sub Numbers (a, b, c)
End Sub

and you try to call it but provide only two numbers:

Numbers a, b

In this case, you get a really good error message: Wrong number of
arguments.

Using MSXML Core Services
If you’re interested in trying out sophisticated XML manipulation with Office
applications and data but you’re not ready to commit to the Visual Studio
.NET XML tools, you might be interested in XML Core Services or, simply,
MSXML. This is a powerful set of XML tools — including SAX and DOM
facilities — that allows you to manage XML in many ways. MSXML can be
used by all Office applications that have VBA built into them. You add
MSXML as a reference in the VBA editor (choose Tools➪References).
A description of how to add this reference and such interesting-sounding
technologies that MSXML provides you with (such as SAX and DOM) can
be found in Book III, Chapter 3.

Using Forms for Interaction
Although you can build Web pages with Word documents, forms are some-
times easier to manage because they have some built-in functionality that
you don’t need to code. Plus, many sample forms are in various Office 2003
applications that you can use as a starting point; simply edit them to make
them specific to your needs.

Forms can contain zones that are frozen and cannot be edited by users
(such as labels captioning fields like Name, Address, Phone). In other areas
in forms, the user is expected to edit or fill in data, such as the text boxes
next to the labels Name, Address, Phone. You can use macros, autocomple-
tion (Tools➪AutoCorrect), and other features of the various Office 2003
applications to assist users.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 558

Book VII
Chapter 3

XM
L and Office

Using Forms for Interaction 559

Here is a summary of the best uses of forms in the various Office 2003
applications:

✦ Access is your clear choice for database-related forms. For example, if
a user is interacting with a large database, Access has the tools and the
strength to handle considerable amounts of data. Also, its comparative
tools allow data to be manipulated and analyzed in a wide variety of
ways. This suggests that Access is the choice when you want to gener-
ate various different kinds of reports in response to varying user needs.
However, if you need What If analysis, recall that Excel offers specialized
pivot table and pivot chart facilities.

✦ Word is probably the first choice for forms that involve complicated
layouts. If you need to mix and match graphics, tables, lines, shading,
backgrounds, links, and objects such as drop-down lists or option but-
tons, Word is optimized to generate documents with a complex design.
By using VBA, input trapping (data validation), and other techniques,
you can also guide the user through the process of filling in forms cor-
rectly and quickly.

✦ InfoPath is best when you need to design forms resting on the XML
technology. InfoPath also includes some advanced controls only found
elsewhere in the .NET environment, such as data repeaters. InfoPath has
advanced features making it easier to add task panes, toolbars, forms for
merging, and forms with alternative views the user can switch between
while working with the form (such as the difference between design and
HTML view in an editor). InfoPath is designed from the bottom up to
work exclusively via XML for both messaging and data storage. It spe-
cializes in collecting data and generating reports but using the most
advanced techniques. The following chapter (Book VII, Chapter 4) is all
about InfoPath.

✦ Outlook forms naturally focus on scheduling appointments, feedback
(RSVP), and e-mail.

✦ Excel is a calculation engine with financial undertones. So use its
forms capability when your solution demands complex math, financial
math, math analysis, math, math, and math.

✦ FrontPage offers forms, but it specializes in building attractive Web
pages. You can design forms that display your database (such as online
catalogs) or that gather information from users (such as order forms).

Office 2003 applications’ built-in, form-generating features can be useful, but
if you really want to see how dynamic and useful forms can be, take a look at
InfoPath — the forms specialist — which I discuss in depth in the following
chapter.

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 559

Book VII: InterOffice: Working as a Team560

07d_570676 bk07ch03.qxd 6/4/04 10:23 PM Page 560

Chapter 4: Working with InfoPath

In This Chapter
� Sharing information efficiently

� Designing with InfoPath

� Designing an InfoPath form

� Viewing the data hierarchy

� Generating InfoPath forms from XML and from databases

� Viewing sample scripts

Available only for the Professional Enterprise edition of Office 2003,
InfoPath deserves attention if you need to manage and report data in

an XML-based environment. (Don’t confuse the Professional Enterprise edi-
tion with the different Professional edition.) Users work with what appear to
them to be simple forms, but unbeknownst to them, they’re actually creat-
ing XML that programmers and developers can easily message or incorpo-
rate into pretty much any kind of a data store.

In this chapter, you see how to build InfoPath forms in various ways (from
databases, from XML, directly designing from the ground up) and you also
discover how InfoPath can improve Office efficiency by making it unneces-
sary for you to translate user-entered data into XML. When the user finishes
filling in an InfoPath form, the data is in XML already.

Introducing InfoPath
InfoPath is a high-level, rapid development, Office-like interface that shields
nonprogrammers from the murky depth of XML, data stores, schemas, and
all the other mess down there.

InfoPath blends two primary technologies: form design and XML. You use
InfoPath to build forms that users then fill in. But unlike classic forms, you
can rigorously validate what they enter, and the data they provide is immedi-
ately cast into a schema. In other words, you don’t have to take the user data
and translate it later into XML — it becomes XML as they enter it. In fact, you
can just save the data as an XML file right there and then. Or you can choose
to stream the XML to a data store, to a Web Service, or e-mail it. Scripting
capabilities are built into InfoPath, and you can of course send the XML that
InfoPath generates to VBA or other languages for further processing.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 561

Understanding How InfoPath Is Divided562

InfoPath can work as a standalone application, or you can embed it into
enterprise solutions: that is, large-scale, often-distributed, programming for
business. If your company requires any significant access to back-end data-
base information, you can let those who best know their own needs use
InfoPath to craft their own custom forms. Even nonprogrammers should be
able to create effective, personalized little programs to facilitate their data
entry, access, or reports. Think of one of InfoPath’s strengths as a customiz-
able front end, easy enough for nonprogrammers to manipulate.

It’s long been a goal to give tools to users with which they can manipulate
data to suit their special circumstances. InfoPath, although not the final
answer, is certainly a step in the right direction. And although users think
they’re simply filling out a form — albeit one with more flexibility and
dynamism than usual — they’re actually generating XML. (Rub your hands
together and chuckle with me: “Little do they know.”) Still, we developers
understand how flexible and useful data in an XML format can be.

Understanding How InfoPath Is Divided
InfoPath is divided into two modes: form design and form completion. When
InfoPath first opens, it’s in design mode, ready for you to modify an existing
form or create a new one.

InfoPath for the designer
InfoPath is tightly integrated with the other Office 2003 applications. You
can, for example, begin designing a new form by pointing InfoPath to an
Access database, and InfoPath will build a form template based on that data-
base’s structure (namely, its tables and fields). Other data store structures
can also be used as starting points, including XML files, Web Services, Jet
engine (Access MDB) databases and queries, XML schemas and SQL Server
database views, some kinds of functions, tables, and stored procedures.

Although mature, powerful data entry and viewing tools are already avail-
able, InfoPath can be used as a user interface (UI) for databases. Because
InfoPath is a technology specializing in XML contexts, it can provide consid-
erable benefits as a UI for the creation and maintenance of XML-based data.
For instance, although Web Services were originally employed in communi-
cations between servers, or between clients and servers, Web Services can
be used in other ways. If users need a forms-based interface to XML docu-
ments, InfoPath is ideal.

Parts of an InfoPath form can be designed to display additional fields or
data, depending on the context or events. In other words, like a helpful
friend sitting next to the user, InfoPath can watch what the user does and

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 562

Book VII
Chapter 4

W
orking

w
ith InfoPath

Understanding How InfoPath Is Divided 563

respond in various beneficial ways. For instance, imagine an income tax
preparation form. When users fill in a gross income higher than $50,000, you
can display a section asking for additional information, informing them that
they are a victim of the alternative minimum tax trick. This information
becomes visible only when the InfoPath form detects a certain condition —
in this case, the user’s relatively high income. In this and other ways,
InfoPath forms are intelligent, responsive, and dynamic.

When designing InfoPath forms, you’ll notice the extensive error trapping
and validation system available to you. Imagine a business travel reimburse-
ment form with a field for dining expenses. If somebody enters an amount
over her Las Vegas budget, you can inform her of that and refuse to accept
any restaurant tabs greater than, say, $200 (unless it’s that great Asian place
in the MGM Grand, where you permit $400).

Rapid application development (RAD), first introduced to the world in 1990
via the Visual Basic Toolbox, is full of drag-and-drop controls. RAD revolu-
tionized programming because you could add a fully functional text box or
option button merely by dropping it into a prototype window (a form). Prior
to that, you had to struggle with complex messaging and Application
Programmers Interface (API) structures to do even the simplest GUI jobs.
Even the C language eventually adopted RAD several years later.

Creating dynamic forms with InfoPath involves RAD technology, as you
might expect. You employ the Layout toolbar to design the major zones of
your page, and then fill those zones by using the Controls task pane, filled
with check boxes, calendars, and so on that you can drag and drop. Just like
in Visual Basic and its imitators, after a control is on a form, you can then
further modify its behavior by changing its color, size, and other properties.

Specialized container controls are also available, helping you cue the user
that various elements of the form are related because they’re visually con-
tained within a zone on the form. The InfoPath designer’s equivalent of
pressing F5 in Visual Basic (to execute your program so you can test it) is
the Preview Form button found on the Standard InfoPath toolbar. Click it and
you see your form the way a user sees it, allowing you to try filling in data,
clicking buttons, displaying optional sections, and otherwise interacting
with the fields and controls on the form. In other words, Preview mode
allows you to give the form a trial run to see how it can be improved.

When describing form design, the term field is slightly different from the way
that term is used in database programming. A form field is any area where
the user can add information, but typically it’s a text box — also called a text
field — into which the user types a name, address, phone number, or what-
ever other piece of data is required. This form field, however, does typically
map directly to a database field if the form’s data is intended to be stored as

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 563

Understanding How InfoPath Is Divided564

a database record. Note that not all forms’ data is saved to a database.
Travel expense reports, for instance, can simply be thrown out as soon as
the accounting department has combed through them for padding, errors,
deliberate deception, falsification, and other freeloader attempts to gouge
the company. Today we use the term freeloader, but our great grandparents
had a more colorful phrase: lounge lizard.

Continuing with InfoPath’s borrowing from Visual Basic’s RAD system, you
can bind databases directly to controls. Long available in Visual Basic, you
can, for example, assign a particular text box to a particular field in a table.
Also, when you design an InfoPath form, an associated XML schema is auto-
matically created for you, representing the structure that you’ve designed
visually. Fields and sections, along with their data types, are displayed as
you move your mouse around your form.

Also, after a form has been filled in — and consequently its data and schema
are in XML format — you can route the data in multiple simultaneous direc-
tions. One advantage of this flexibility is that a worker doesn’t have to fill out
multiple forms for the various departments involved in a single requisition.
The data in the single InfoPath XML file can be absorbed into the various
departments with their various data storage schemes and applications.

InfoPath for the user
Unlike simpler forms, InfoPath permits users to fill in data with various rich
text features, such as using italics, shading, graphics, and other document
capabilities typically missing from ordinary form-completion software,
including tables, hyperlinks, and color schemes. You also have other
capabilities at your disposal, such as spell checking, search and replace,
and autocompletion.

Users can participate in the design of the forms, too, after the fact. If they
need additional rows, they can add them to the form. Or if they want to add
some notes explaining how they spent that extra $300 at that convention in
Vegas, they can add this information. The forms are customizable.

After a form is filled in, the user can optionally interact with other Office
2003 applications: e-mail it, combine it with other forms’ data, export the
form’s data to Excel for further analysis, and so on.

If you’re an advanced developer, interested in additional sample forms
(beyond those supplied by default with InfoPath), deployment information,
programming tools, and sophisticated documentation, download the
InfoPath software development kit (SDK) from

www.microsoft.com/downloads/details.aspx?FamilyId=351F0616
-93AA-4FE8-9238-D702F1BFBAB4&displaylang=en

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 564

Book VII
Chapter 4

W
orking w

ith
InfoPath

Trying Out InfoPath 565

This SDK is a way to really get under the InfoPath hood, integrating it with
Office 2003 applications and other applications in large-scale solutions.
(Solutions is the current name for computerized tasks of a certain size and
complexity.)

When you’re in design mode, the InfoPath title bar reads Design, and you
also see lots of dashed lines around the various zone of your form. In design
mode, you can press Alt+Shift+F11 to get to the Script Editor. As you’ll see
later in this chapter, default scripting underneath the sample forms is writ-
ten in JavaScript by Microsoft’s programmers. Of course, you want to use
the more efficient VBScript because after the choice to use JavaScript has
been made in a form, you cannot switch back to VBScript for your own pro-
gramming in that form. These languages cannot be mixed within a given
InfoPath form.

However, if you start designing a form from scratch, you get to decide which
language should be used with that form. To set the default scripting lan-
guage used in a new form, choose Tools➪Form Options and then click the
Advanced tab. For blank forms you build from the get-go, VBScript is the
default language.

Even sample forms with no scripting — such as the Resume Builder sample —
default to JavaScript, and you cannot change that default after you open the
Script Editor. So, beware. After you open the Script Editor, the script lan-
guage option is disabled in the Form Options dialog box. Other sample
forms — such as Expense Report — contain prewritten JavaScript code and
cannot be switched to VBScript no matter what you do. Even if you click the
New Blank Form link on the Design a Form taskbar and then switch to the
Script Editor, it becomes impossible to change the script language.

You’d expect to switch between design mode and preview (“fill-out-the-
form”) mode via the View menu or perhaps via a pair of tabs as in most
other Microsoft applications and utilities. Not so with InfoPath. Somebody
decided that this important switch belonged on the File menu. So, to switch,
choose File➪Design a Form or File➪Fill Out a Form. (Or if the task pane is
visible, use links there to switch modes as well.) How novel, but also how
confusing.

Trying Out InfoPath
In this example, you want to design a form to gather information about
employee disputes and flare-ups. You begin by adding tables to create the
primary zones where the user provides data or gets information from you.
Then you add controls. I also show you how to see the organization of your
data.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 565

Trying Out InfoPath566

Designing the main sections of a form
To get a feel for designing and using InfoPath forms, follow these steps. In
my example here, I’m designing a form for documenting employee conflicts.

1. Run InfoPath.

The Fill Out a Form task pane appears.

2. Click the Design a Form link in the task pane.

The Design a Form task pane appears.

3. Click the New Blank Form link.

The page changes from gray to white, hinting that you have an empty
canvas on which to build your form. You also see the task pane come
into its own. A set of tasks is listed in order: Layout, Controls, Data,
Views, and Publish — the steps you take to get a form designed.

4. Click the Layout link.

The Layout task pane appears, a shown in Figure 4-1.

Figure 4-1:
Use this
task pane
to design
the main
sections of
a form (the
broad
outline).

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 566

Book VII
Chapter 4

W
orking w

ith
InfoPath

Trying Out InfoPath 567

5. Drag a Table with Title from the task pane and drop it into the form.

If the task pane ever disappears — and it does sometimes — just choose
View➪Task Pane to bring it back.

6. Type in the new title in the table, as shown in Figure 4-2: Associate
Conflict Resolution Form.

7. Just below the title — where it reads Click to Add Form Content —
type General description of the dispute.

8. Drag and drop a two-column table just below the previous table.

9. Where it reads Click to Add Form Content, type Your Name:; in the
second section, type Your Phone Extension:.

10. Drag a one-column table and drop it beneath the existing two tables.

11. Where it reads Click to Add Form Content, type Detailed description of
this other person’s problems....

That creates the basic form and its main zones, as shown in Figure 4-2.

Adding controls
At this point, the form looks rather small, so add some controls to it to flesh
it out with places where the user can provide data. Follow these steps to add
controls:

1. Click the Controls link in the task pane.

You see a Toolbox-like area in the task pane where you can drag and
drop controls onto your form.

2. Drag a text box from the task pane and drop it just next to the label
you provided: General description of the dispute.

The text box appears on the line following your label, but it’s too small.

Figure 4-2:
Your first
step in
creating an
InfoPath
form is to
define the
primary
broad
zones.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 567

Trying Out InfoPath568

3. Click the text box.

Eight handles appear around the textbox, allowing you to resize it.

4. To make the text box larger, drag down the handle in the middle of
the lower line of the text box.

Your table size grows as necessary to accommodate your text box, as
shown in Figure 4-3.

Notice that a control, when selected as shown in Figure 4-3, displays its
element name (to use XML-speak) or its field name (to use database-
speak). In other words, this is the tag that identifies whatever data the
user types in. field1 is the default given to the first control you place
on an InfoPath form, but that’s not descriptive enough. You want to help
those on the back end who are absorbing this data into their systems by
identifying in some descriptive way the data they’re getting in this field
(or element, as XML puts it).

5. Right-click the text box.

6. From the context menu that appears, choose Text Box Properties.

The Properties dialog box appears, as shown in Figure 4-4.

Instead of the traditional Properties window used in most Microsoft
design environments, InfoPath uses this dialog box.

field1 control

Figure 4-3:
Drag
controls like
this text box
to resize
them.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 568

Book VII
Chapter 4

W
orking w

ith
InfoPath

Trying Out InfoPath 569

7. Change Field1 to GeneralDescription.

Try to avoid using spaces in field names because that throws some data
stores into a tizzy. If you use two words, push them together as here
(GeneralDescription).

8. The data type (string) is correct, but you want to insist that the user
fill in this field, so mark the Cannot Be Blank check box.

9. Click the Display tab in the dialog box. In the Placeholder field, type
Please briefly describe the issues here....

This provides a hint about what the user should do. The hint will appear
in a subtle gray and will vanish as soon as the user starts to use the
text box.

If you want your text boxes to scroll, word-wrap, and display scrollbars
(and you should if you’ve made them larger than a single line high),
select the Wrap Text check box on the Display tab, and then adjust the
Scrolling List Box options as desired.

10. Click the Advanced tab to provide one additional cue for the user:
In the Screen Tip field, type Please briefly describe the issues of your
conflict here....

This appears as one of those yellow messages that display only when
the user’s mouse hovers over a control.

11. Click OK.

The dialog box closes.

12. Drag a text box and drop it under Your Name:.

Figure 4-4:
Use this
dialog box
to adjust the
properties
of controls.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 569

Trying Out InfoPath570

13. Right-click the text box, choose TextBox Properties, and change the
field name to Name.

14. Drag a text box and drop it under Your Phone Extension:.

15. Right-click the text box, choose TextBox Properties, and change the
field name to PhoneExt.

16. Click the table outline at the bottom (the dashed line) and drag it up a
bit because this table by default was a bit large.

17. Drag a text box and drop it under Detailed description of this other
person’s problems....

18. Right-click the text box, choose TextBox Properties, and change the
field name to DetailedDesc.

19. You want to add one more table (zone) to this page, so click the
Layout link in the task pane and drag a one-column table to the
bottom of the form.

20. Where it reads Click to Add Form Content, type Add optional addi-
tional complaints here.

21. Into the new table you just added, add an Optional Section control.

22. Click the Controls link.

23. At the top of the optional section, type this: Any further complaints
about the company or its people?

24. Drag a text box and drop it just below what you just typed.

Because this is a section (a container control similar to a GroupBox),
InfoPath assumes that you might be putting several controls horizon-
tally, so it might make this text box small. Drag the text box both wider
and higher so it matches the width of the other large text boxes.

25. Right-click the text box and change the field name to
OptionalComplaints.

Try to avoid using spaces in field names.

26. Click the Preview Form button on the toolbar.

You see your form as the user will see it, and you can type in data, click
buttons, or otherwise interact with it to test it, as shown in Figure 4-5.

Notice in Figure 4-5 that the optional section’s text box doesn’t appear
unless the user clicks the arrow icon to open it.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 570

Book VII
Chapter 4

W
orking w

ith
InfoPath

Trying Out InfoPath 571

Seeing the data hierarchy
If you want to see the organization of your data — what XML calls the
schema — click the Data Source link in the task bar. You see that groups
enclose fields. If you want to add additional fields to this schema that are not
visible to the user via controls, click the Add button. XML refers to these as
optional attribute fields.

If you add yet later delete a control to your form, it will still appear in the
Data Source list. This bug can confuse you later, so right-click the extraneous
phantom control’s name in the Data Source list and choose Delete to remove
it from the schema.

Figure 4-5:
Try adding
data and
otherwise
manipulating
the controls
on your form
to test it in
preview
mode.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 571

Generating an InfoPath Form from XML572

Save your work to a disk file by choosing File➪Save. The file is saved with an
.xsn extension, a proprietary InfoPath format — not XML. The form, when
filled in by a user, does store the schema and the resulting data that the user
entered as XML.

For example, try filling in the form created in this chapter’s running example
(choose File➪Fill Out a Form). Then choose File➪Save and save it as
TestForm.xml. If you look at the resulting saved XML file in Notepad, you’ll
see the schema. A filled-in form from the previous example generates this
XML schema. (The data, of course, depends on what you just typed in when
you filled in the form.)

<?xml version=”1.0” encoding=”UTF-8”?><?mso-infoPathSolution
solutionVersion=”1.0.0.2” productVersion=
”11.0.5531” PIVersion=”1.0.0.0” href=”file:
///C:\book%20OFFICE%202003\7-4\
ComplaintsPublished.xsn” ?>

<?mso-application progid=”InfoPath.Document”?>

<my:myFields xmlns:my=”http://schemas.microsoft.com/office/
infopath/2003/myXSD/2004-02-21T19:57:12”
xml:lang=”en-us”>

<my:GeneralDescription>Well, he tried to make faces at me
during the Halloween

party!</my:GeneralDescription>
<my:Name>Marva Purisa</my:Name>
<my:PhoneExt>332</my:PhoneExt>
<my:DetailedDesc>Well, what can I say? I’m not used to

getting faces made at me! Especially by people
like this.</my:DetailedDesc>

<my:group2>
<my:OptionalComplaints>I don’t like the donuts either!.

</my:OptionalComplaints>
</my:group2>
</my:myFields>

Generating an InfoPath Form from XML
You can go the other way. Instead of generating XML from a form, you can
generate a form — a simple one that you can spruce up using InfoPath
tools — from an XML file. To see how this works, follow these steps:

1. Open InfoPath.

2. Choose File➪Design a Form.

3. Click the New from Data Source link in the taskbar.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 572

Book VII
Chapter 4

W
orking w

ith
InfoPath

Generating a Form from a Database 573

4. Leave the default XML schema or XML data file option marked.

5. Click Next.

6. Click the Browse button to locate TestForm.xml.

This is the form you filled out and saved in the preceding section.

7. Click Finish.

You’re informed via a message box that your form will have a structure
based on the chosen XML file. (The message confusingly calls this struc-
ture the data source, which makes little sense, but just ignore it.)

8. When you’re asked whether you want the actual data (called the
values in this message) to be inserted into the form as well, click Yes.

The task pane automatically displays the data source, and you can drag
and drop these fields onto the form to create a simple form, as shown in
Figure 4-6.

Note that you can drag individual fields. Or by dragging MyFields (the top, or
parent, element, or node), you get the entire structure all at once as shown
in Figure 4-6.

Generating a Form from a Database
You can also generate a form by importing a database and letting its struc-
ture shape the form. You have freedom to adjust and improve the visual
design to assist the user by using optional sections for fields that aren’t
required to be filled in by the user.

Figure 4-6:
Drag the
topmost
node
(MyFields
in this
example),
and you can
drop the
entire
schema into
the form.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 573

Generating a Form from a Database574

To do it from a database, follow these steps:

1. Choose File➪Design a Form.

The Design a Form task bar appears.

2. Click the New from Data Source link in the task bar.

The Data Source Setup Wizard appears.

3. Select the Database option button in the wizard.

4. Click Next.

5. Click the Select Database button.

6. Locate the Northwind.mdb database file on your hard drive — or any
other MDB file — and then double-click it.

The Select Table dialog box appears, as shown in Figure 4-7.

7. Double-click the Employees table (or some other table of your choice).

You see the structure (the data fields or columns, as they’re called) of
your chosen data source, as shown in Figure 4-8.

Figure 4-8:
Here,
choose the
fields you
want to
include
in your
InfoPath
form.

Figure 4-7:
Choose the
table or
query from
your data
source.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 574

Book VII
Chapter 4

W
orking w

ith
InfoPath

Generating a Form from a Database 575

8. Select or deselect any of the fields you wish in the wizard, as shown
in Figure 4-8.

9. Click Next.

You’re shown the summary page of the wizard, as illustrated in Figure 4-9.

Figure 4-9:
You can see
any errors
displayed
here.

Text versus string
InfoPath cannot currently handle what is called
a “long” data type (graphics, ntext, text, or
hyperlink). Take a moment to catch up on some
of the neologisms that have popped up here
suddenly in this dialog box. Don’t confuse the
use of text here with string. These are special-
ized uses of the terms text derived from jargon
used in Transact-SQL, which is a flavor of the
SQL query language that adds programming
capabilities for both Microsoft SQL Server
6.5/7.0 and Sybase version 11.5.

Ntext stands for national text, which should
clue you that it involves Unicode — the
replacement for the ASCII character code.
Unicode’s purpose is to embrace many of the
languages on Earth, and their many peculiar

characters: circumflexes, acute dieresis (ever
suffered from that?), virgules, accents grave,
acute, and aigu, Hungarian and French signes
diacritique, umlauts, cedillas, macrons, ogoneks,
ligatures, and the always popular Spanish tilde
(that’s the little ~ wormy looking character just
beneath your Esc key).

ASCII used only the 256 code numbers avail-
able in a byte. Unicode is a two-byte code
system used to accommodate all the other pos-
sible characters, including some of those Asian
mega-character-sets. The Ntext data type
can hold a string up to 1,073,741,823 characters,
which means that it would use twice that many
bytes.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 575

Generating a Form from a Database576

Notice in Figure 4-9 that one or more of the fields (columns) in this table was
not imported into InfoPath. (In this case, it was the graphics field, a photo of
each employee.)

What the error message in Figure 4-9 refers to as the text data type has an
upper limit of 2,147,483,647 characters. And of course images (graphics)
data types can be huge, too. InfoPath doesn’t deal with these gigantic data
types, so it lets you know if you try to import them.

The wizard shown in Figure 4-9 also offers you two choices: whether to
design the query first or the data view.

The query view (as in Figure 4-10) offers the user a way to search the data-
base by filling in fields and then clicking the Run Query button. The data
view is a form designed to allow users to enter new records into the data
store.

If you chose the data view, the form is initially blank, but try dragging the
dataFields entry in the taskbar and dropping it onto the form. You see a
choice of Section with Controls or just Section. Choose the former, and you
see the result shown in Figure 4-11. (In this example, there’s only a single
table, but there could be multiple tables.)

Figure 4-10:
This is
the query
view of a
Northwind
database
table.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 576

Book VII
Chapter 4

W
orking w

ith
InfoPath

Jumping Java Babies 577

If you drag the table itself rather than entire dataFields set, you have three
choices when you drop it: Repeating Table, Repeating Section with Controls,
and Repeating Section. Choose the first option, and you see the result dis-
played in Figure 4-12.

The Repeating Section option looks like Figure 4-11, without the container
section.

Jumping Java Babies
You might be tempted to look at the programming examples shipped with
InfoPath. Resist, unless you’re used to Java. The sample scripts, which
demonstrate how to manipulate the behavior of buttons by event trapping,

Figure 4-12:
This is the
Repeating
Table
option.

Figure 4-11:
This is the
Section with
Controls
option when
dragging a
set of tables
from the
taskbar.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 577

Jumping Java Babies578

and other programming tricks, are (alas) written in Java. To see these sam-
ples, follow these steps:

1. Choose File➪Design a Form.

You’re switched to design mode in InfoPath.

2. Choose File➪Open in Design Mode.

You see the Open in Design Mode dialog box.

3. Browse until you locate the CD_Edit.xsn file — or one of the other
four samples — in this path:

C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\INFOPATH\

4. Double-click the XSN file.

It opens in InfoPath, and you can examine it.

To see the documentation for these samples, follow these steps:

1. Choose Help➪Microsoft Office InfoPath Help.

The InfoPath Help task pane appears.

2. Click Table of Contents in the task pane.

You see the TOC.

3. Click InfoPath Developer’s Reference.

Some additional topics appear in the task pane.

4. Click Developer Sample Forms.

Of the four samples listed, choose the one you want to view.

When you look at the sample code, you’ll know at once (thanks to all the
semicolons) that you’re dealing with a C-type language — in this case,
JavaScript. It’s not all that hard to translate Java into Visual Basic, but it’s
boring. Rather like rewriting a bad writer’s work. You have to remove redun-
dancies, rearrange illogically ordered syntax, and delete unnecessary punc-
tuation. Not hard, just tedious.

07e_570676 bk07ch04.qxd 6/4/04 10:24 PM Page 578

Chapter 5: Adding Smart Tags

In This Chapter
� Understanding Smart Tags

� Programming Smart Tags

� Creating and testing your own Smart Tags

� Feeding data to Web sites

Smart Tags first appeared in Office XP, but they’ve been improved in
Office 2003. Access and PowerPoint now offer them, along with Word,

Outlook, Excel, and Internet Explorer. (Find more coverage on Smart Tags in
Book V, Chapter 3.)

Smart Tags have a bit in common with OneNote’s side note feature and other
recent mini-applications. (Read about OneNote in Book VII, Chapter 1.) The
idea is to provide quick access to a pared-down version of a full application.

Smart Tags are probably most like hyperlinks but with a twist. Smart Tags
are dynamic, they can change (over time, based on the user’s behaviors,
based on other contexts). For example, in Word, Smart Tags parse your doc-
ument as you write it and react by displaying themselves when they recog-
nize a particular item, such as a date, a financial acronym, and so on. In
Word, Excel, and PowerPoint, Smart Tags pop up based on phrases or indi-
vidual words. In Access, Smart Tags attach to a field or form control.

In Office 2003, the developer doesn’t have to tokenize the text so it can be
detected by the recognizer (the parser that identifies terms as triggers for
Smart Tags.) So a developer merely has to supply the recognizer with a list
of trigger terms and the associated behaviors. It’s similar to naming proce-
dures and then writing code for those procedures to carry out. However,
you can supply terms via a modified version of Perl (regular expressions, as
they’re called).

Before exploring the Smart Tags currently built into various Office 2003
applications or showing you how to create your own Smart Tags, first con-
sider why you would actually want to bother programming Smart Tags in
the first place.

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 579

Why Bother Programming Your Own Tags?580

Why Bother Programming Your Own Tags?
Smart Tags can provide the developer a way to add dynamic, updatable
information to documents, presentations with PowerPoint, Excel spread-
sheets, and other Office 2003 applications. Consider, for example, the need
to instantly display the latest data about a company you’re doing a presenta-
tion for. Just insert a Smart Tag in your presentation that can display a Web
page that your research team keeps updated with the very latest data. You’re
on the road, but team members can update this page every day. It’s a way of
connecting a static document to up-to-the-minute data on a network or the
Internet.

Or how about people working with reports? Insert a Smart Tag that sends
their report to the next person who should review it or saves it to an
Exchange folder or PowerPoint. Or your tags could merely offer optional
assistance or information if the person filling out the form makes an error,
such as leaving out an area code when filling in a phone number. Up pops a
tag, asking the user to add the area code. Think of a spell checker that
checks any kind of data.

Smart Tags are also a way for a developer to watch for key terms and then
respond in pretty much any way that makes sense. In this way, each datum
that a user enters into a document, spreadsheet, record, or form becomes an
event — a trigger you can code for and respond to. Sound good? Read on.

Understanding Smart Tags
Smart Tags combine various concepts: hyperlinks, instant application
access, Web Services, and third-party add-ons. You click a Smart Tag, and
something happens: You get a weather report, e-mail a message, find refer-
ence material, and so on.

Try it in Access first. Follow these steps:

1. Open the Northwind sample database.

Search your hard drive for Northwind.mdb.

2. Click the Tables label in the left pane of the database window.

3. Click the Employees table to select it.

4. Press Alt+D.

You open the design view and see the fields of the Employees table.

5. Click the LastName field to select it.

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 580

Book VII
Chapter 5

Adding Sm
art Tags

Understanding Smart Tags 581

6. Look at the bottom of the properties under the General tab, as shown
in Figure 5-1.

7. Click the Smart Tags property in the properties window.

A button appears with an ellipsis.

8. Click the button next to Smart Tags in the properties window.

The Smart Tags dialog box opens, as shown in Figure 5-2.

9. Select the Person Name check box.

You see the various actions that a user can choose among: Send Mail,
Schedule a Meeting, Open Contact, and Add to Contacts.

10. Click OK.

The dialog box closes, and the Smart Tag definition is added to the prop-
erties window.

Figure 5-2:
Choose
whatever
Smart Tag
you want to
use in this
dialog box.

Figure 5-1:
Smart Tags
are included
in the
properties
window.

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 581

Working with a Smart Tag582

Working with a Smart Tag
To see how a user works with a Smart Tag, follow these steps.

1. Choose View➪Datasheet View.

The actual data from the Employees table appears.

2. Click a person’s name in the LastName field.

A small i icon appears, which is a Smart Tag icon, as shown in the top of
Figure 5-3.

3. Move your mouse onto the Smart Tag icon.

It changes to a larger drop-down button, as shown in the middle of
Figure 5-3.

4. Click the Smart Tag icon.

A menu showing a choice of tasks appears, as shown in the bottom of
Figure 5-3.

Figure 5-3:
Smart Tags
in action.
The icon
(top), the
drop-down
symbol
(middle),
and the task
list (bottom).

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 582

Book VII
Chapter 5

Adding Sm
art Tags

Smart Tags in Word 583

5. Select the Add to Contacts option in the drop-down list.

The Smart Tag in Access launches the Outlook dialog box, where you
can add a new person to your Contacts list.

Only fields whose field names match in both Outlook’s Contact database and
Access’s current database will be automatically filled in. Unfortunately, no
standardized field naming convention exists (and XML certainly isn’t helping
this situation, allowing anyone, anywhere to define a unique custom schema).
Thus, mapping is often necessary when programmers need to flow data from
one table into another, and typing is often necessary when users need to
flow data, as in this example from an Access table to an Outlook table.

Smart Tags in Word
Word recognizes various terms and phrases as Smart Tags, underlining them
with purple dots, as shown in Figure 5-4.

You can ignore the Smart Tag or take action by hovering your mouse pointer
over the Smart Tag and then clicking the drop-down button to see the list of
options, as shown in Figure 5-5.

Figure 5-5:
An address
in Word
offers you
these Smart
Tag tasks.

Figure 5-4:
Word
recognizes
certain
phrases as
Smart Tags,
underlining
them like
this.

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 583

Programming with Smart Tags584

If you want to turn off Smart Tags in Word or manage them in other ways,
choose Tools➪AutoCorrect Options and then click the Smart Tags tab
(this works in Excel as well), as shown in Figure 5-6.

Programming with Smart Tags
You cannot create Smart Tags by using the macro, VBA, or scripting lan-
guages built into Office applications, but you can manipulate existing Smart
Tags programmatically. To actually create new Smart Tags, you need to use a
Visual Studio .NET language.

Experimenting in Excel
Look at how to do some Smart Tag programming in Excel. Excel recognizes
stock symbols, like MSFT, as you might expect. Type MSFT into an empty
cell, and you see Excel’s Smart Tag signal: a small triangle in the lower-right
corner of the cell, as shown in Figure 5-7.

Figure 5-7:
Excel’s
small
triangle
Smart Tag
symbol is
quite subtle.

Figure 5-6:
Edit Smart
Tags in this
dialog box
in Word.

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 584

Book VII
Chapter 5

Adding Sm
art Tags

Creating Your Own Smart Tags 585

Manipulating tags in VBA
This example activates a Smart Tag by typing a stock symbol for IBM. Then,
selecting cell B1 has the effect of actually inserting the tag, making it possi-
ble to use. (The little Smart Tag symbol is now visible in cell A1, as if you’d
pressed the Enter key.) Finally, you specify the #stockticker tag, its
SmartTagActions, and use the Execute method.

To see how to manage Smart Tags with programming, follow this example:

1. Start a new workbook in Excel.

2. Press Alt+F11 to open the VBA editor.

3. Choose View➪Project Explorer.

4. Double-click Module1 under Personal .XLS. Enter into this Module1
editor window the following code:

Sub TagIBM()

Range(“A1”).Select
ActiveCell.FormulaR1C1 = “IBM”
Range(“B1”).Select
Range(“A1”).SmartTags(“urn:schemas-microsoft-com:office:

smarttags#stockticker”) _
.SmartTagActions(“Insert refreshable stock price...”).Execute

End Sub

5. Press F5 to execute this code.

You see today’s report on IBM’s stock price and other details about the
stock inserted into your worksheet.

Creating Your Own Smart Tags
By simply creating an XML file containing the target words (terms) that
should trigger a Smart Tag as well as the behaviors (actions) those words
offer the user in the drop-down list, you can build your own Smart Tags. The
example in Listing 5-1 handles stock symbols tags:

Listing 5-1: Stock Symbol Smart Tags
<FL:smarttaglist xmlns:FL=”urn:schemas-microsoft-com:smarttags:list”>

<FL:name>MSN MoneyCentral Financial Symbols</FL:name>
<FL:lcid>1033,0</FL:lcid>
<FL:description>A list of stock ticker symbols for recognition, as well as a

set of actions that work with them.</FL:description>
<FL:moreinfourl>http://office.microsoft.com</FL:moreinfourl>

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 585

Creating Your Own Smart Tags586

<FL:updateable>true</FL:updateable>
<FL:autoupdate>true</FL:autoupdate>
<FL:lastcheckpoint>100</FL:lastcheckpoint>
<FL:lastupdate>5123942</FL:lastupdate>
<FL:updateurl>http://office.microsoft.com/smarttags/stockupdate.

xml</FL:updateurl>
<FL:updatefrequency>20160</FL:updatefrequency>
<FL:smarttag type=”urn:schemas-microsoft-com:office:smarttags#stockticker”>

<FL:caption>Financial Symbol</FL:caption>

<FL:terms>

<FL:termfile><FL:filename>stocks.dat</FL:filename>
</FL:termfile>

</FL:terms>

<FL:actions>
<FL:action id=”LatestQuoteData”>

<FL:caption>Stock quote on MSN MoneyCentral</FL:caption>
<FL:url>http://moneycentral.msn.com/redir/moneycentralredirect.
asp?pageid=SmartTag_1&Target=/scripts/webquote.dll?ipage=
qd%26Symbol={TEXT}</FL:url>

</FL:action>
<FL:action id=”CompanyReportData”>

<FL:caption>Company report on MSN MoneyCentral</FL:caption>
<FL:url>http://moneycentral.msn.com/redir/moneycentralredirect.

asp?pageid=SmartTag_2&Target=/investor/research/profile.
asp?Symbol={TEXT}</FL:url>

</FL:action>
<FL:action id=”RecentNews”>

<FL:caption>Recent news on MSN MoneyCentral</FL:caption>
<FL:url>http://moneycentral.msn.com/redir/moneycentralredirect.
asp?pageid=SmartTag_3&Target=http://news.moneycentral.msn.
com/ticker/rcnews.asp?Symbol={TEXT}</FL:url>

</FL:action>
</FL:actions>

</FL:smarttag>
</FL:smarttaglist>

You can likely find a file named STOCKS.XML in this path: C:\Program
Files\Common Files\Microsoft Shared\Smart Tag\Lists. Depending
on your version of Office, you might find additional XML files here, or this
file might differ. But this path is the repository for XML files for Smart Tags
lists.

Notice in this XML code that the <terms> section references a DAT file,
which is in this same subdirectory. However, as you’ll soon see, you can
simply type a text list right in this <terms> element rather than provide a
separate data file. You use the <termlist> rather than <termfile> tag pair.

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 586

Book VII
Chapter 5

Adding Sm
art Tags

Creating Your Own Smart Tags 587

The <termfile> DAT file is not written in XML or any of its offspring. It’s a
proprietary format, so unless you can track down the utility that creates it,
you have to use a text list as illustrated in the next example.

The next section (element, if you insist) is <actions>, which includes a
group of individual <action> elements, each with a caption, an ID, and a
URL (address). The user selects one of these actions from the drop-down list
displayed when the Smart Tag is activated. In this case, the actions are a
series of what are (in effect) merely hyperlinks, not programming.

Creating your first Smart Tag
Following the pattern in the previous XML code example, you can build your
own set of actions and your own list of trigger words. Try typing Listing 5-2
into Notepad:

Listing 5-2: Creating Triggers and Actions
<FL:smarttaglist xmlns:FL=”urn:schemas-microsoft-com:smarttags:list”>
<FL:name>Internet weather places for updates</FL:name>
<FL:lcid>1033</FL:lcid>
<FL:description>My list of various weather stations on the Internet

</FL:description>
<FL:smarttag type=”urn:schemas-microsoft-com:smarttags#msdnterms”>

<FL:caption>Weather Sites</FL:caption>
<FL:terms>

<FL:termlist>weather, storm, heat, temperature, forecast, weather
outlook, travel</FL:termlist>

</FL:terms>
<FL:actions>

<FL:action id=”WeatherChannel”>
<FL:caption>The &Weather Channel Web site</FL:caption>
<FL:url>http://www.weather.com</FL:url>

</FL:action>

<FL:action id=”CNNWeather”>
<FL:caption>&CNN Weather Report</FL:caption>
<FL:url>http://www.cnn.com/WEATHER</FL:url>

</FL:action>

<FL:action id=”WeatherUnderground”>
<FL:caption>Weather &Underground</FL:caption>
<FL:url>http://www.wunderground.com</FL:url>

</FL:action>
</FL:actions>

</FL:smarttag>
</FL:smarttaglist>

Save this to the tag’s list path: C:\Program Files\Common Files\
Microsoft Shared\Smart Tag\Lists.

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 587

Creating Your Own Smart Tags588

If you typed this in Word, copy it into Notepad to strip off the formatting
codes. If you save it from Notepad, ensure that the extension is .xml, not
.txt. Close Word and then reopen it. Opening an Office 2003 application
causes any XML Smart Tag files to be scanned and their lists loaded so the
application can work with the Smart Tags defined in the file.

Triggering your tag to test it
With Word freshly open, type forecast — one of the trigger Smart Tag terms
you defined in Listing 5-2 — and then click the Smart Tag icon to drop down
the list. You see the various actions (Internet sites in this case) that you
defined in the XML file, as shown in Figure 5-8.

Click any of the actions to open Internet Explorer at that site.

To provide shortcut keys in a Smart Tag’s actions list, add the & code in
the caption element’s text, as illustrated in the code in Listings 5-1 and 5-2.
When the user drops the actions list for the Smart Tag, the character imme-
diately following & will be underlined, and the user can merely press
that key rather than clicking the action in the list.

Feeding data to an Internet site
You can use the special {TEXT} code to feed specific data to a Web site or
other target of a Smart Tag action. In this next example, you use {TEXT}
code in a URL, and it gets replaced with the Smart Tag term. In other words,
whenever the user types 27263 (my ZIP code), that triggers the Smart Tag,
and the URL for the MSNBC weather Web page accepts a ZIP code variable.
This URL has a czstr= attribute that wants a ZIP code, which is automati-
cally supplied when the Smart Tag action is triggered.

<FL:url>http://www.msnbc.com/news/wea_front.asp?ta=y&
tab=BW&tp=&czstr={TEXT}</FL:url>

Figure 5-8:
Here’s your
new custom
Smart Tag,
working
as you
specified.

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 588

Book VII
Chapter 5

Adding Sm
art Tags

Creating Your Own Smart Tags 589

Type Listing 5-3 into Notepad, substituting your ZIP code for 27263 in the
code below:

Listing 5-3: Sending Data to the Internet
<FL:smarttaglist xmlns:FL=”urn:schemas-microsoft-com:smarttags:list”>
<FL:name>Local Weather</FL:name>
<FL:lcid>1033</FL:lcid>
<FL:description>My Local Weather</FL:description>
<FL:smarttag type=”urn:schemas-microsoft-com:smarttags#msdnterms”>

<FL:caption>Local Weather</FL:caption>
<FL:terms>

<FL:termlist>27263</FL:termlist>
</FL:terms>
<FL:actions>

<FL:action id=”LocalWeather”>

<FL:caption>The &Local Weather</FL:caption>

<FL:url>http://www.msnbc.com/news/wea_front.asp?ta=y&tab=BW&tp=&
czstr={TEXT}</FL:url>

</FL:action>

</FL:actions>
</FL:smarttag>
</FL:smarttaglist>

Save this XML file as LocalWeather.xml. Close Word, open it, and type your
ZIP code into the document. Click the Smart Tag and choose Local Weather.
You’ll see your current weather report. The Smart Tag term — your ZIP
code — replaced {TEXT} in the URL.

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 589

Book VII: InterOffice: Working as a Team590

07f_570676 bk07ch05.qxd 6/4/04 10:25 PM Page 590

Chapter 6: Exploring
Smart Documents

In This Chapter
� Understanding Smart Documents

� Managing security issues

� Simplifying deployment

� Working with Smart Documents elements

� Using XML

� Attaching schemas

� Attaching the XML Expansion Pack

� Understanding the code

� Modifying a template

Smart Tags — which you can read about in Book VII, Chapter 5 — are only
part of the “smart” story. Microsoft’s new Smart Document technology

involves Smart Tags, but it also includes context-sensitive task panes. In fact,
the term Smart Document generally refers to task pane behaviors, although
Smart Tags are part of the concept, namely to provide users with various kinds
of assistance by being aware of the user’s current location in the document.

In this chapter, you see how to approach Smart Document technology the
way a true developer/programmer should — not merely understanding how
to use Smart Documents (users, after all, can do that) but instead rolling up
your sleeves and controlling Smart Documents programmatically — manag-
ing security, deployment, and creating your own Smart Documents for users
to, well, merely use.

First Things First: Downloading the SDK
Before exploring how to program Smart Documents, download the Smart
Documents software development kit (SDK) from this URL:

www.microsoft.com/downloads/details.aspx?FamilyId=24A557F
7-EB06-4A2C-8F6C-2767B174126F&displaylang=en

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 591

Understanding Smart Documents592

When the setup wizard displays a screen with a Browse button and asks you
to Choose Where to Install the Smart Document SDK, don’t click the Browse
button or follow the advice there. You must install the SDK to the default
location suggested by this wizard, or some of the samples will not work:
They’re hard-wired to work here and here only.

With this download, you have samples, tools, and documentation that you
can use to explore Smart Document creation.

Understanding Smart Documents
Like the wizards found in many of Microsoft’s programming languages and
some applications, a Smart Document is a new technology designed to assist
users in completing a task. For example, you could create a Smart Document
to assist a prospective employee in filling out your company’s job application.

Both Word 2003 and Excel 2003 offer Smart Document capabilities. Smart
Documents can

✦ Contain their own macros

✦ Access the features built into the host application

✦ Display controls and other objects to assist users

✦ Help manage version problems

For example, a Smart Document can define range objects in Word as
read-only and can do so dynamically: Those ranges can be made read/
write for certain users. How can Smart Document code know the current
user? In Word’s User Information dialog box (choose Tools➪Options➪
User Information) is a Name field. This translates into VBA code like this,
which works in either Excel or Word:

MsgBox Application.UserName

Smart Documents can access this information, just like VBA can. Smart
Documents can even use VBA. In fact, Smart Document programming sounds
quite a lot like VBA, no? What’s new and different about Smart Documents?
What can you do with them that you cannot already do with VBA?

Microsoft’s answer to this surprise question centers around the task pane
feature, added to Office in the XP version. Improvements in the user inter-
face (primarily the use of the task pane), deployment, and security distin-
guish Smart Documents technology from older VBA and ActiveX objects
programming.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 592

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Understanding Smart Documents 593

Smart Documents are sensitive to themselves: They can check whether
they’re the latest version. For example, when a user loads a Smart
Document-based Suggestions form from their hard drive, this form can be
programmed to quickly look on the network to see whether it’s the most
recent version — and if not, update itself. Sweet.

Smart Documents are also sensitive to the user’s location within a document
and can respond based on the context where it finds the user interacting.
For example, if the user is asked to enter his birth date, the task pane can
provide help by displaying the required format for entering dates if the user
fails to employ that format. A specialized control can even be displayed to
assist the user. But above all — Microsoft says — the functionality built into
the Smart Documents technology makes life easier for us programmers. You
can create solutions more easily than with previous technology and can also
interact with data stores or other Office 2003 applications more easily.

Based on XML, Smart Documents employ an expanded version of the Smart
Tag Application Program Interface (API). But whereas Smart Tags parse a
document for terms that behaviors can be mapped to, Smart Documents
instead employ XML schemas that are mapped to elements in the document.

Security measures
Because Smart Documents — like Smart Tags — are crawling with executa-
bles, security has to be tight. Before Smart Documents can be installed on a
computer, they must be recognized by that machine’s Registry as digitally
signed by a trusted authority. Further, the user can be prompted (and can
refuse) to permit a Smart Document to be installed. Users, though, are by far
the greatest security weakness in any system of computer safeguards, so
this last security measure doesn’t provide much protection in most cases.

If you attempt to view the SimpleSample.doc Smart Document that’s
included with the Smart Document SDK, you see the security message dis-
played in Figure 6-1.

Figure 6-1:
Without the
XML
Expansion
Pack, a
Smart
Document
isn’t so
smart.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 593

Understanding Smart Documents594

If you choose to download this Expansion Pack (which can mean simply
registering it on your local machine because it’s already downloaded), you
see the following security warning that refuses your request, as shown in
Figure 6-2. This message is displayed because your Registry blocks installa-
tion of potentially dangerous XML-based executables. Arrrg. See how to
remedy this in the following section.

Disabling security
The SDK samples are not digitally signed. To allow the Smart Document’s
SDK to work so you can explore and test this new technology, you have to
run a little fixer at Start➪All Programs➪Microsoft Office 2003 Developer
Resources➪Microsoft Office 2003 Smart Documents SDK➪Tools➪Disable
XML Expansion Pack Manifest Security. Do this, and you’re up and running.
The SDK’s Smart Document SDK Getting Started (same path as the Tools just
listed) document, however, ominously warns:

IMPORTANT: You are strongly encouraged to disable XML expansion
pack manifest security checking only within a testing environment.

You should not disable security checking on users’ machines.

You’ve been warned.

Security is such a slippery slope . . . always a game of chess between the
good guys and the bad guys. The odd thing about the signing safety measure
for this XML Expansion Pack — if I understand it correctly — is that this SDK
also includes an XML Expansion Pack Manifest Signing Utility. You can use
this utility to digitally sign XML expansion packs and eXtensible Stylesheet
Language Transformation (XSLT) files. And, also, presumably so can the bad
guys. Some of them might even pose as you, a trusted source.

But what’s truly intriguing is that you and I and everyone else can download
the tool that disables the manifest security check in the Registry. You can
even read the tool in Notepad because it’s just a plain text Registry setting.

Figure 6-2:
Here’s a
problem
with a
security
certificate.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 594

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Understanding Smart Documents 595

Deployment simplified
Using a technique introduced by .NET language solutions to avoid DLL Hell,
Smart Documents gather their dependencies into a single XML manifest.
(As you doubtless know, in the past code libraries such as DLLs were not
well managed. Several applications would share a DLL, but when an updated
version of that DLL was installed, it could easily cause some of the applica-
tions sharing it using it to fail. Sharing DLLs was an effort to conserve
memory and disk space, but that’s no longer a significant issue. Both
memory and hard drives are now cheap, and therefore, capacious.

With Smart Document manifests, a user opens an Excel or Word template,
and the manifest communicates the template’s metadata and checks that the
dependencies are current versions and are working. The programmer’s job is
to make the manifest file and save it with the Smart Document’s dependency
files on the server.

At the time of this book’s writing, you could program Smart Documents by
using Visual Basic 6.0, Visual Basic .NET, Visual C++, or Visual C#. Also, Smart
Documents can be deployed to many locations, such as

✦ An intranet

✦ Web Services

✦ A corporate network

✦ The Internet

✦ SharePoint Portal Server 2003

✦ SharePoint Services

What is XSLT?
XSLT is one of the many variants or offspring of
standard (ha!) XML. XSLT is designed to help
XML by translating native XML into other for-
mats, such as HTML that can be displayed in a
Web page. XSLT is sometimes referred to as

XSL, but according to the experts, XSL is a
broader term that includes XSLT and also XPath
and XSL (additional technologies used to help
manage XML documents). Got it?

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 595

The Building Blocks of a Smart Document596

The Building Blocks of a Smart Document
Five interacting parts compose a Smart Document:

✦ A Word document or Excel spreadsheet on which to build the Smart
Document solution: An XML file maps to sections of this document,
providing a set of XML elements that are associated with components
(controls, help messages, boilerplate text, and so on). These compo-
nents are displayed in the task pane. Precisely what is displayed
depends on where the user clicks (or moves the insertion cursor via the
keyboard) in the document. The location of the insertion cursor triggers
whatever XML element governs that section of the document.

✦ An XSD file (an XML schema definition file) that expresses, in XML,
the structure of a document: Many business documents are already
structured. They have a set of headlines, subheads, tables, and other
formatting or organizing elements that define its structure. You, the pro-
grammer, merely then need to express the structure as an XML schema
to prepare the document to become a Smart Document.

✦ An action handler: This is a code library containing the executable
functions that carry out the actions the Smart Document is capable of.

✦ The XML manifest file: This provides any necessary server locations
(for dependency files) and a list of those dependencies.

✦ Dependency files: This could be boilerplate text that the user can
choose to insert, graphics, and so on that support the solution.

Programming Smart Documents
Smart Documents can be created in a variety of ways. For elementary Smart
Documents, you need not create a DDL or a component, as illustrated in the
following example. Or you can use COM components and Visual Basic 6
(unmanaged code) or .NET languages (managed code).

You first have to ensure that you’re using the primary interoperative assem-
blies for Microsoft Office 2003 (usually found in the C:\WindowsFolder\
assembly path). To see whether you’ve met this requirement, follow these
steps:

1. Open Control Panel.

2. Click the Add or Remove Programs icon.

The Add or Remove Programs dialog box opens.

3. Click Microsoft Office 2003.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 596

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Programming Smart Documents 597

4. Click the Change button.

The Setup dialog box appears.

5. Select the Add or Remove Features option button.

6. Click Next.

You see the custom setup page of the setup wizard.

7. Select the Choose Advanced Customization of Applications check box.

8. Click Next.

9. Open the Microsoft Office Word entry in the list by clicking it.

10. Click .NET Programmability Support.

11. Choose Run from My Computer.

12. Repeat Steps 9–11 but this time for Excel.

13. Click the final item on the list, Office Tools.

14. Click Smart Tag .NET Programmability Support, Run from My
Computer (under Office tools).

15. Click Update.

The installation process proceeds, complete with mystery Registry
changes and other behind-the-scenes activity. Then, finally, the process
is announced as being complete.

16. Close the dialog box and then close Control Panel.

Simple XML Smart Document programming
In this next example, you can use the sample document (simplesample.doc)
from the Smart Document SDK download example earlier in this chapter (“First
Things First: Downloading the SDK”). If you merely want to display links, help
text, graphics, prebuilt controls (like buttons), and other simple items in the
task pane, you can write an XML file that conforms to the Microsoft Office
Smart Tag List (MOSTL) Schema, described at this MSDN site:

http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnsmarttag/html/odc_stadvtools.asp

and elsewhere on the Microsoft site.

However, if you want to see how to view and explore the SimpleSample.doc
example, I suggest that you use the following instructions to tour this
sample. The instructions currently on the Microsoft site are difficult to

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 597

Programming Smart Documents598

follow, to put it kindly. To be fair, creating a programmatic Smart Document
is not child’s play at this point in the technology’s development. Significant
security issues need to be worked around, and various support files are nec-
essary for success.

The first step is to locate the SmartSample.doc in the default location
where it was stored during the SDK download (from the earlier section,
“First Things First: Downloading the SDK”). Open Windows Explorer and
maneuver to this path:

C:\Program Files\Microsoft Office 2003 Developer
Resources\Microsoft Office 2003 Smart Document SDK\

If you did not install it to this location, you must. The sample won’t work in
other locations because it’s hard-wired to look here for dependencies. If you
try to execute it from elsewhere, you get this error message:

A file that’s part of this solution could not be downloaded. The solution may
not work properly. Contact your administrator for further information.

This error message can also be triggered if a necessary dependency is missing
from the files in this path or permissions aren’t granted to load these files.

Via Windows Explorer, double-click SmartSample.doc in the following path:

C:\Program Files\Microsoft Office 2003 Developer
Resources\Microsoft Office 2003 Smart Document SDK\
Samples\SimpleSample\SourceFiles\SimpleSample.doc

You should see the unadorned document, as shown in Figure 6-3.

Figure 6-3:
Before the
XML is
added, this
Smart
Document-
to-be looks
like any
other Word
document.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 598

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Programming Smart Documents 599

Attaching a schema
The XML schema needs to be attached to the document, providing a map of
its various zones. Follow these steps:

1. Choose Tools➪Templates and Add-Ins.

The Templates and Add-Ins dialog box opens.

2. Click the XML Schema tab.

3. Click the Add Schema button.

You can now add an XML schema to the Word Schema Library.

4. Browse this location to find the Source Files subdirectory:
C:\Program Files\Microsoft Office 2003 Developer Resources\

Microsoft Office 2003 Smart Document SDK\
Samples\SimpleSample\SourceFiles\

5. Double-click the SimpleSample.xsd file (the schema).

A dialog box opens asking you to provide an alias for this file.

If you see a security warning, you need to go to the same Source Files
path in Step 4 and double-click the DisableManifestSecurityCheck.
reg file. Answer Yes when asked whether you want to take this risk.

6. Type ssample as the alias.

This alias (a friendly name, meaning descriptive) is displayed in the list of
available XML schemas.

7. Click OK.

You see the schema now added to your library, as shown in Figure 6-4.

Figure 6-4:
The schema
is now
attached to
your Word
document.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 599

Programming Smart Documents600

8. Select the check box next to SimpleSample.xsd to ensure that it’s
attached to the SimpleSample.doc.

9. Click OK.

The dialog box closes, and you see that a taskbar has been added to
your document, as shown in Figure 6-5.

You might see the dialog box shown in Figure 6-6 from time to time. It
warns you that you’ve disabled Expansion Pack security (but you knew
that, didn’t you?). You either did it in Step 5 in the preceding example or ear-
lier in the chapter. (The way to re-enable this security feature is to click Yes
when you see the dialog box in Figure 6-6, but you don’t want to do that now
because you’re exploring how to manage this technology.)

The SimpleSample.xsd file looks like Listing 6-1, describing the zones in
your document (in this case, simple strings):

Figure 6-5:
After you
add a
schema to
a Word
document,
an XML
Structure
task bar
appears.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 600

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Programming Smart Documents 601

Listing 6-1: SimpleSample.xsd File
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns=”SimpleSample”
targetNamespace=”SimpleSample”
elementFormDefault=”qualified”>

<xsd:complexType name=”exampleType”>
<xsd:all>

<xsd:element name=”textbox” type=”xsd:string”/>
<xsd:element name=”commandbutton” type=”xsd:string”/>
<xsd:element name=”help” type=”xsd:string”/>
<xsd:element name=”radiobutton” type=”xsd:string”/>
<xsd:element name=”checkbox” type=”xsd:string”/>
<xsd:element name=”listbox” type=”xsd:string”/>
<xsd:element name=”image” type=”xsd:string”/>
<xsd:element name=”documentfragment” type=”xsd:string”/>
<xsd:element name=”activex” type=”xsd:string”/>
<xsd:element name=”hyperlink” type=”xsd:string”/>

</xsd:all>
</xsd:complexType>

<xsd:element name=”example” type=”exampleType”/>

</xsd:schema>

Attaching the XML Expansion Pack
You’re not done yet. Now you have to add the Expansion Pack to this docu-
ment to fully activate the Smart Document task pane features. Follow these
steps:

1. With the SimpleSample.doc visible, choose Tools➪Templates and
Add-Ins.

The Templates and Add-Ins dialog box opens.

2. Click the XML Expansion Packs tab.

3. Click the Add button.

The Install XML Expansion Pack dialog box opens.

Figure 6-6:
Click No.
You want
the sample
Smart
Document
examples
to work.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 601

Programming Smart Documents602

4. Browse to the same directory from which you opened
SimpleSample.doc:

C:\Program Files\Microsoft Office 2003 Developer Resources\
Microsoft Office 2003 Smart Document SDK\
Samples\SimpleSample\SourceFiles\

5. Double-click manifest.xml to load it into your document.

If you see a security warning, you need to go to the same
SourceFiles path described in Step 4 and double-click the
DisableManifestSecurityCheck.reg file. Answer Yes when asked
whether you want to take this risk.

6. Click OK.

The dialog box closes.

You can now see the results of your trials and tribulations, as shown in
Figure 6-7.

Click any of the text zones (the areas enclosed by the XML tags from the
schema file). Try clicking This is a Checkbox in the left pane (see the selected
text in Figure 6-7), and you then see a couple of check boxes appear in the task
pane on the right, as you can see in Figure 6-7.

Figure 6-7:
Here’s a
Smart
Document
in action,
showing the
results of
user clicks
by changing
what
appears in
the task
pane.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 602

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Programming Smart Documents 603

Select the Show/Hide XML Tags check box to conceal the tags in the docu-
ment. The user would not normally see these XML tags but would rather
simply see the text (as in Figure 6-3). However, with the schema and Expan-
sion Pack added to this document — even with the tags not visible to the
user — clicking any of these paragraphs changes what appears in the task
pane. That’s the heart of the user-interaction with a Smart Document. When
users click somewhere in the document, help, controls, or other resources
appear in the task pane, and users can then interact with these resources.

Try clicking the various other paragraphs in this document to see how the
individual controls can be used in a Smart Document.

The manifest file looks like Listing 6-2.

Listing 6-2: Manifest File
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<manifest xmlns=”http://schemas.microsoft.com/office/xmlexpansionpacks/2003”>

<version>1.1</version>
<updateFrequency>20160</updateFrequency>
<uri>SimpleSample</uri>
<solution>

<solutionID>{15960625-1612-46AB-877C-BBCB59503FCE}</solutionID>
<type>smartDocument</type>
<alias lcid=”*”>Simple Smart Document Sample</alias>
<file>

<type>solutionActionHandler</type>
<version>1.0</version>
<filePath>SimpleSample.dll</filePath>
<CLSID>{14E38799-0AD2-4EA2-8EF6-B5754A9A7A90}</CLSID>
<regsvr32/>

</file>
</solution>
<solution>

<solutionID>schema</solutionID>
<type>schema</type>
<alias lcid=”*”>Simple Smart Document Sample</alias>
<file>

<type>schema</type>
<version>1.0</version>
<filePath>SimpleSample.xsd</filePath>

</file>
</solution>

</manifest>

If you have problems
If you find yourself having difficulties with this example, try double-clicking a
different SimpleSample.doc file in this path:

C:\Program Files\Microsoft Office 2003 Developer
Resources\Microsoft Office 2003 Smart Document SDK\
Samples\SimpleSampleVB6

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 603

Programming Smart Documents604

It includes a DLL file, but if you attach the Expansion Pack and then follow
the instructions in the earlier section, “Attaching a schema,” you should be
able to get this sample to work.

Understanding Smart Document source code
If you look at the clsActions file in the SimpleSample.vbp file found in the
SDK directory:

C:\Program Files\Microsoft Office 2003 Developer
Resources\Microsoft Office 2003 Smart Document SDK\
Samples\SimpleSampleVB7

you’ll discover how actual programming can be written to make a Smart
Document respond to user movements (clicking or otherwise moving the
insertion cursor in a document).

Source code inflation goes wild
Take a look at SimpleSampleVB7.sln, which is a solution file (the equivalent
of the VB6 and earlier VBP Visual Basic project file). In fact, I urge you to use
this example file as a starting place. Modify it and build on it to create your
own solutions Why? Because when you attempt to interact with XML, your
VB source code becomes XML-like — a bit more redundant, repetitive, and
verbose than usual. Given the tremendous redundancy in this code, you’d
have a difficult time imagining how to actually write the code from scratch.
You would expect to use a single list to handle a set of ten controls — text
boxes, check boxes, and so on. You would use this single list to provide
object variables and property values all in one place. Or, you might use ten
different property procedures to manage them. Instead, inflation goes wild
in this code, and you find seven complete lists, each referencing an aspect
of each of the ten controls in this project. In other words, you have 70
entries where 10 would have done the job in traditional (non-XML-inflected)
programming.

Programming moves to the computer
You simply cannot write this kind of programming by hand, from scratch.
Well, you could, just as some people spend a year building a model of the
Eiffel Tower out of matchsticks. (It’s called torture art: You’re not impressed
by the beauty of the result as much as by the persistence, struggle, and
sheer determination required of the person who made it.)

When working with XML and its dreadful repetitiveness, the computer must
increasingly take over the burden of generating source code. When you
create a Smart Document of your own, it’s virtually assured that you will not

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 604

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Programming Smart Documents 605

begin from scratch. Instead, you must use this class module as a template or
some other prewritten code. Not only does XML have primitive debugging
tools, its verbosity greatly increases the opportunity for error and the diffi-
culty of reading and maintaining its code. To add insult to injury, it can be
case-sensitive as well. In this case, it is case-sensitive.

Lists upon lists
For an example of verbosity and repetition, first refer to Figure 6-7. To set the
properties of the check box captions, you must write this programming in
your clsActions class module:

Case 501
ControlCaptionFromID = _
“Show/Hide paragraph marks.”

Case 502
ControlCaptionFromID = _
“Show/Hide XML tags.”

These lists are quite a bit longer than I’m displaying here. I’ll generally just
provide the first two items in each list rather than waste book space show-
ing everything.

A complete list of controls specifies caption information for each control,
like this:

Case 1
SmartDocXmlTypeCaption = “Textbox”

Case 2
SmartDocXmlTypeCaption = “Click”

Another list specifies how many controls of each type are being used in this
Smart Document:

Select Case XMLTypeName
Case cTEXTBOX

ControlCount = 1
Case cBUTTON

ControlCount = 1

However, to define these check boxes as controls to be identified by the
following case structure:

Select Case ControlID

you must include yet another list, another Public property, specifying the
range of ID numbers used for each control type, like Listing 6-3.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 605

Programming Smart Documents606

Listing 6-3: Specifying ID Numbers
Public ReadOnly Property ControlID(ByVal XMLTypeName As String, ByVal

ControlIndex As Integer) _
As Integer Implements Microsoft.Office.Interop.SmartTag.

ISmartDocument.ControlID
Get

Select Case XMLTypeName
Case cTEXTBOX

ControlID = ControlIndex
Case cBUTTON

ControlID = ControlIndex + 100
Case cEXAMPLE

ControlID = ControlIndex + 200
Case cHELP

ControlID = ControlIndex + 300
Case cRADIO

ControlID = ControlIndex + 400
Case cCHECKBOX

ControlID = ControlIndex + 500
Case cLIST

ControlID = ControlIndex + 600
Case cIMAGE

ControlID = ControlIndex + 700
Case cDOCFRAG

ControlID = ControlIndex + 800
Case cACTIVEX

ControlID = ControlIndex + 900
End Select

End Get
End Property

You must include a similar (and somewhat redundant) list of constant
declarations:

Const cTEXTBOX As String = cNAMESPACE & “#textbox”
Const cBUTTON As String = cNAMESPACE & “#commandbutton”

And so on until you’ve specified one constant for each object you plan
to use. Because this programming interacts with XML, the internal
documentation — the comments in the source code — refers to these
objects as elements.

Then you must create a constant representing the total number of elements.
Don’t confuse this with the total number of instantiated controls actually
used but rather the total number of control objects. There are, for example,
two check boxes actually used:

‘Number of types (or element constants)
Const cTYPES As Integer = 10

No sooner do you find out that you must refer to controls or objects as ele-
ments (even though they’ve been called controls for decades) than you
come upon yet another alien name for them: types. Found in the source

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 606

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Programming Smart Documents 607

code comments referencing the TextBox and other controls, types is a rela-
tively meaningless term used by C programmers, even though this is pur-
portedly a Visual Basic example. You’ll find C and XML influences throughout
the Visual Basic .NET Help system and code examples.

In another example of redundancy, after you define the cTYPES constant,
you must also create a property representing this number of controls that
you already defined:

Public ReadOnly Property SmartDocXmlTypeCount() As Integer Implements _
Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocXmlTypeCount

Get
SmartDocXmlTypeCount = cTYPES

End Get

End Property

Likewise, each control constant must be listed in a property containing a
series of SmartDocXmlTypeNames.

Stupidly, some XML code is case-sensitive, which is yet another source of
bugs, but that some loony committee thought was a helpful feature. Visual
Basic code is sensibly case-insensitive, but when you’re interacting with
XML as you are when programming for Smart Documents, you must always
remember to check that you’ve matched the capitalization as it’s used in the
XML schema. For example, Radiobutton does not match RadioButton. Also,
because programming Smart Documents is distributed among .NET and XML
source code, error messages won’t be thrown simply because you’ve used
one of those Option Explicit statements at the start of your .NET code
designed to trap typos. (The source code comment refers to capitalization
as a spelling issue.)

A global variable objApp is defined to represent Word itself, so you can
access Word’s features or a control:

Private objApp As Microsoft.Office.Interop.Word.Application

In this code, this object is used only once to manage the calendar control:

objApp.ActiveWindow.Selection.Range.Text = objCal.Value

This object variable is instantiated in what Visual Basic programmers would
call the Form_Load event although here it’s SmartDocInitialize. This is
where necessary preliminary tasks are carried out:

Public Sub SmartDocInitialize(ByVal ApplicationName As String, ByVal Document
As Object, ByVal SolutionPath As String, ByVal SolutionRegKeyRoot As
String) Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.
SmartDocInitialize

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 607

Programming Smart Documents608

Dim objDoc As Microsoft.Office.Interop.Word.Document
objDoc = Document
strPath = objDoc.Path & “\”
objApp = objDoc.Application

End Sub

As you can see by this procedure’s arguments and Implements statement,
object-oriented programming (OOP) can go quite wild with messaging
between procedures and qualifications. In any case, this event triggers when
the Smart Document process begins (when a Smart Document is loaded into
Word, in this case). The primary task here is to instantiate the objApp, the
object variable that refers to the executing Word application.

The strPath variable is used to reference dependency files, such as graph-
ics, which (following the current fashion) are included in the same directory
as all the other files used for the solution.

Also, the form itself needs a special definition, as does the calendar control:

Public ReadOnly Property ControlNameFromID(ByVal ControlID As Integer) As
String _

Implements Microsoft.Office.Interop.SmartTag.
ISmartDocument.ControlNameFromID

Get
Select Case ControlID

Case 901
ControlNameFromID = “Calendar”

Case Else
ControlNameFromID = cNAMESPACE & ControlID

End Select
End Get

End Property

The calendar control needs this object variable, and it includes events that
the user might trigger:

Private WithEvents objCal As MSACAL.Calendar

Here’s another lovely example of code inflation. This is just the first line of
the code that builds a group of radio buttons (formerly known as option
buttons):

Public Sub PopulateRadioGroup(ByVal ControlID As Integer, ByVal
ApplicationName As String, ByVal LocaleID As Integer, ByVal Text
As String, ByVal Xml As String, ByVal Target As Object, ByVal
Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties,
ByRef List As System.Array, ByRef Count As Integer, ByRef
InitialSelected As Integer) Implements Microsoft.Office.
Interop.SmartTag.ISmartDocument.PopulateRadioGroup

Notice that any code that calls this procedure must provide ten parameters
to satisfy the argument list. Computer programming languages are moving
into an Alice in Wonderland phase. Will they ever come back?

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 608

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Programming Smart Documents 609

You’ll also notice that HTML terminology is creeping into other programming
as well. Instead of event procedures simply naming the control and the trig-
ger action:

Sub Form1_Click

you get this:

Public Sub OnRadioGroupSelectChange

The addition of On to each event procedure name is typical of the unneeded
repetitiveness characteristic of HTML, XML, and the many variants of these
markup languages. You get the new OnTextboxContentChange event instead
of the traditional and more sensible TextBox_Change event.

One other point of interest. In this next code, you handle controls or objects
that are not handled in their own OnClick or other procedures. Put another
way, some controls are handled differently than others. The primary events
(Click in these cases) are gathered into a single procedure named Invoke
(why not OnInvoke, one wonders). See Listing 6-4.

Listing 6-4: Invoke Procedure
Public Sub InvokeControl(ByVal ControlID As Integer, ByVal ApplicationName As

String, ByVal Target As Object, ByVal Text As String, ByVal Xml As
String, ByVal LocaleID As Integer) Implements Microsoft.Office.
Interop.SmartTag.ISmartDocument.InvokeControl

Dim objXML As System.Xml.XmlDocument
Dim objRange As Microsoft.Office.Interop.Word.Range
Dim objNav As SHDocVw.InternetExplorer

Select Case ControlID
Case 101

System.Windows.Forms.MessageBox.Show(“This is an example of a
button.”)

Case 204
objNav = New SHDocVw.InternetExplorer
objNav.Navigate(“http://www.microsoft.com”)
objNav.Visible = True

Case 801
objRange = Target
objRange.XMLNodes(1).Text = “The quick red fox jumped over “ & _

“the lazy brown dog.”
Case 802

objRange = Target
objXML = New Xml.XmlDocument
objXML.Load(strPath & “gettysburgaddress.xml”)
objRange.XMLNodes(1).Range.InsertXML(objXML.InnerXml)

Case Else
End Select

End Sub

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 609

Modifying the Template610

As identified by their ControlID

✦ 101 is the test button on the task pane.

✦ 204 is the label Microsoft.com.

✦ 801 and 802 are document fragments (text that can be inserted into
the document, or otherwise displayed).

Click the button, and the response is a message box. Click the label
(a hyperlink, actually) and the Navigate method of the Internet
Explorer object takes you to the Microsoft site. Click a document frag-
ment, and that fragment is placed at the location of the current range in
the Word document.

Note that in Case 801 in Listing 6-4, you can supply a literal fragment of
text. Or, in Case 802, you can supply a reference to a file containing the
text that gets dumped into an XML document before being, in turn,
inserted into the Word document.

Modifying the Template
If you want to modify this Smart Document code, you’re in for a bit of a
struggle. Try to add a check box to those shown in Figure 6-7. There are
many places where check boxes are referenced, and you have to find and
modify some of these locations in the code to add a new check box.

First, locate this:

Public ReadOnly Property ControlCaptionFromID(ByVal ControlID
As Integer, _
ByVal ApplicationName As String, ByVal LocaleID
As Integer, ByVal [Text] As String, _
ByVal Xml As String, ByVal Target As Object) As
String Implements Microsoft.Office. _
Interop.SmartTag.ISmartDocument.
ControlCaptionFromID

Then within this property, locate this reference to the number of check
boxes:

Case cCHECKBOX
ControlCount = 2

and change it to

ControlCount = 3

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 610

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Modifying the Template 611

Find this property:

Public ReadOnly Property ControlCaptionFromID(ByVal ControlID
As Integer, _
ByVal ApplicationName As String, ByVal LocaleID
As Integer, ByVal [Text] As String, _
ByVal Xml As String, ByVal Target As Object) As
String Implements Microsoft.Office. _
Interop.SmartTag.ISmartDocument.
ControlCaptionFromID

and then within the property, locate this code:

Case 501
ControlCaptionFromID = _

“Show/Hide paragraph marks.”
Case 502

ControlCaptionFromID = _
“Show/Hide XML tags.”

Case 601
ControlCaptionFromID = _

“Select your favorite baseball team.”

and, following the Case 502 lines, add this:

Case 503
ControlCaptionFromID = _

“Show User.”

Find this property:

Public ReadOnly Property ControlTypeFromID(ByVal ControlID As
Integer, _
ByVal ApplicationName As String, ByVal LocaleID
As Integer) As _
Microsoft.Office.Interop.SmartTag.C_TYPE
Implements Microsoft.Office.Interop.SmartTag. _
ISmartDocument.ControlTypeFromID

and within it, change this line:

Case 501, 502
ControlTypeFromID = C_TYPE.C_TYPE_CHECKBOX

to

Case 501, 502, 503
ControlTypeFromID = C_TYPE.C_TYPE_CHECKBOX

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 611

Modifying the Template612

Ignore this procedure because you want your new check box to default to
unchecked:

Public Sub PopulateCheckbox(ByVal ControlID As Integer, ByVal
ApplicationName As String, ByVal LocaleID As
Integer, ByVal Text As String, ByVal Xml As
String, ByVal Target As Object, ByVal Props As
Microsoft.Office.Interop.SmartTag.
ISmartDocProperties, ByRef Checked As Boolean)
Implements Microsoft.Office.Interop.SmartTag.
ISmartDocument.PopulateCheckbox

Select Case ControlID
Case 501, 502

Checked = True
End Select

End Sub

The key procedure you want to modify is this one. This is where the behav-
iors of the check boxes are coded (see Listing 6-5).

Listing 6-5: Specifying Checkbox Behaviors

Public Sub OnCheckboxChange(ByVal ControlID As Integer, ByVal
Target As Object, ByVal Checked As Boolean)
Implements Microsoft.Office.Interop.SmartTag.
ISmartDocument.OnCheckboxChange

Dim objDoc As Microsoft.Office.Interop.Word.Document
Dim objView As Microsoft.Office.Interop.Word.View

objDoc = Target.Document
objView = objDoc.ActiveWindow.View

Select Case ControlID
Case 501

objView.ShowAll = Not objView.ShowAll
Case 502

objView.ShowXMLMarkup = Not
objView.ShowXMLMarkup
Case 503

MsgBox(objView.Creator)
End Select

End Sub

Add this code where shown in bold in Listing 6-5:

Case 503
MsgBox(objView.Creator)

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 612

Book VII
Chapter 6

Exploring
Sm

art Docum
ents

Modifying the Template 613

Follow these steps:

1. Choose Build➪Rebuild Solution.

2. Double-click SimpleSample.doc in the SimpleSampleVB7 subdirec-
tory that you’ve been working with.

3. Attach the manifest and the schema files, if necessary, by choosing
Tools➪Templates and Add-Ins.

4. See whether you can see the new check box that you added to this
example.

I can’t. I do get the three controls on the task pane — the hyperlink to
Microsoft.com, the text fragment, the button — but none of the other
controls appear, including the check boxes.

Warnings in the Help file associated with this Smart Document SDK read like
this:

After you make changes to the smart document code, delete the XML expansion
pack, reboot the host application, and then re-add the XML expansion pack.
Alternatively, change the version number for the smart document solution in

the XML expansion pack manifest file every time the code is updated, and then
delete and re-add the XML expansion pack.

However, following these instructions (and several variations of them)
doesn’t seem to help. Somewhere, deep in the Registry or elsewhere, some
switch was thrown, and future attempts to see this Smart Document —
even after removing the new 503 check box — fail. Please e-mail me at
richardm52@hotmail.com if you figure out what’s gone wrong. Perhaps
we’re in the famous Version 1 Zone and so must just be patient until this
technology stabilizes.

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 613

Book VII: InterOffice: Working as a Team614

07g_570676 bk07ch06.qxd 6/5/04 12:41 AM Page 614

Chapter 7: Using Project 2003

In This Chapter
� Creating and editing projects

� Dealing with dependencies

� Understanding Gantt charts

� Adding Outlook features

� Handling the version problem

Managing projects is a job that falls to many of us in our professional
career, and Project 2003 assists you in the various phases of seeing a

project through to its conclusion.

Project helps you deal with the complexities of any but the smallest proj-
ects. (You can send e-mails to make assignments and follow up for little
jobs.) But if you have responsibility for a project of any size, you’ll likely
value Project’s features — like Gantt charts, project templates, network dia-
grams, and task sheets — that can help you keep track of deadlines and oth-
erwise organize things.

Taking a Look at Project 2003
As is often the case with its applications and utilities, Microsoft divides
Project into different versions, adding additional features and/or scalability
as the price goes up. Project Standard 2003 (list price $599) includes the
essentials for planning and tracking a project. It is highly integrated with
Office 2003 applications, although no version of Project is bundled with any
version of Office 2003. The next version up, Project Professional 2003 ($999
list), can be integrated with Office Project Server 2003, providing special col-
laborative features, described by Microsoft as “Enterprise Project
Management (EPM) capabilities such as up-to-date information on resource
availability as well as skills and project status.” For an in-depth comparison
of the versions of Project, look here:

www.microsoft.com/office/project/howtobuy/choosing.mspx

Project 2003 demonstrates once again that Microsoft’s various application
development teams don’t work under some sinister master plan — that is,
sharing, plotting, and generally coordinating their efforts. As you perhaps

07h_570676 bk07ch07.qxd 6/4/04 10:25 PM Page 615

Taking a Look at Project 2003616

know, Access goes its own way quite often, offering unique macro technolo-
gies; redefining keystrokes in its own, special way; omitting macro recording;
and so on. Likewise, you get a surprise when you first fire up Project 2003.
Notice anything odd in Figure 7-1?

The oddity in Figure 7-1 is that of all the Office 2003 applications, only
Project puts the task pane on the left side. You can rectify that by grabbing
the task pane by clicking and holding down the mouse button on the four
vertical dots on the task pane title bar. Then drag the entire pane off to the
right of the screen and drop it.

The Tasks pane (is it related to the task pane?) shown on the left in Figure
7-1, and in Figure 7-2, can be used like a browser: Click the links in it to see
different views and options. Also note the useful pair of Back and Forward
buttons to help you maneuver through the various levels of this pane.

However, the mouse buttons that can be used to move back or forward in a
browser don’t work here. Also, some features are strangely categorized. For
example, to import data from Excel, you must click the List tasks link for
some reason.

Figure 7-1:
The default
Project 2003
layout.

07h_570676 bk07ch07.qxd 6/4/04 10:25 PM Page 616

Book VII
Chapter 7

Using
Project 2003

Taking a Look at Project 2003 617

Creating a new project
Start to harness the power of Project by creating one — a project, that is. To
help, Project offers a number of project management templates to choose
from, including a software development plan, a project plan for a new busi-
ness, a training rollout initiative, and many more.

Jump in and get a feel for it. Here I walk you through opening a software
development plan template. After Project is up and running, do the following:

1. Click the Create a new project link in the task pane (or choose
File➪New if that link isn’t visible).

2. Click the Templates on Office online link.

The Microsoft Office Templates Home Page opens.

3. Under Meetings and Projects in this home page, click Project
Management. Or go directly to this page:

http://office.microsoft.com/templates/category.aspx?CategoryID=CT06264042
1033&CTT=4&Origin=ES790000301033

Notice the icons on the left side of each Project template. The ones with
the green tablet are Project projects.

4. Click the Software development plan link.

5. Click the Download Now button.

This template is loaded into Project 2003 where you can view it and learn
from it. But, whoops! First you notice that the task pane has flown back
over to the left side again. (Oh well, this isn’t technically the task pane.)

Figure 7-2:
Use the
Tasks pane
to plan your
project.

07h_570676 bk07ch07.qxd 6/4/04 10:26 PM Page 617

Building a Project from Scratch618

Exploring dependencies in Project
One major feature offered in Project is the relationships that you can specify
between different tasks. This clearly goes beyond the simple task assignment
features in Outlook.

Some tasks have inherent dependencies: That is, a certain task must be
accomplished before a second one can begin. For example, if you need to
submit a budget for your ambitious software development plan, you must
first make a list of the necessary resources. In other words, the budget meet-
ing should not take place until after the resources list task is completed. The
budget depends on the completion of the resources list. You can relate tasks
to each other in this fashion, specifying cause and effect. And if you try to
rearrange tasks in a way that affects a defined dependency relationship,
Project squawks and notifies you of the bearing that one task has on a subse-
quent (and dependent) task in the project.

A dependency can also develop when some action has ripple effects. Sup-
pose a key employee runs off with her boyfriend to Alaska. You can quickly
view the effect of her sudden departure on other tasks related to her jobs.
Here’s how to define a dependency:

1. Click a row (a task) in a Gantt chart (described shortly).

2. Choose Task Information from the context menu.

3. In the Task Information dialog box, click the Predecessors tab.

4. Enter the ID of one or more previous tasks that must be completed
before this task or have some other relationship to it (defined in the
Type field in this dialog box).

Arrows are drawn in the chart to illustrate dependencies, as you can see
in the upcoming Figure 7-3.

Building a Project from Scratch
To launch a brand new project without following a template, choose File➪
New and then click the Blank project link in the Tasks pane. (You see the
Tasks pane over on the left side with a list of steps that you should follow to
structure and build your new project.)

Understanding a Gantt chart
Before seeing how to add functionality by integrating some of Outlook’s
capabilities into a Project job, take a look at Gantt charts. These charts are
commonly used when planning because they allow you to visualize the
timing involved in the various tasks that collectively result in a successful
conclusion.

07h_570676 bk07ch07.qxd 6/4/04 10:26 PM Page 618

Book VII
Chapter 7

Using
Project 2003

Building a Project from Scratch 619

Projects should be broken down into tasks. Each task has its own row in a
Gantt chart, with a running calendar of dates along the top of the chart, like
a set of column titles. Because time is a major issue when manipulating proj-
ects, you’d expect the scheduling feature to govern much of what a project
chart should be.

Take a look at the Gantt chart in Figure 7-3.

The time that you’ve allotted to each task is indicated by the bars on the
right side of the chart, and the task names and categories appear on the left
side. Major task name categories are indicated by bold text and lines that
stretch across several tasks. However, individual tasks can also be parallel,
or overlapping, in duration. It just so happens that many of the tasks in the
template illustrated in Figures 7-1 and 7-3 are sequential (and also often
dependencies as well, explaining their sequential nature).

Sequential (cause and effect) tasks are often found clustered at the beginning
and end of a project, with more parallel or overlapping tasks occurring in the
middle phase. This is the case with the template used earlier in this chapter
(the Software Development Plan, as shown in Figures 7-1 and 7-3). However,
if you scroll through that template’s Gantt chart, you’ll see quite a bit of par-
allel task behavior during the middle portion of the project.

Figure 7-3:
Use a Gantt
chart to help
keep your
project
moving
smoothly.

07h_570676 bk07ch07.qxd 6/4/04 10:26 PM Page 619

Building a Project from Scratch620

As time passes, tasks are completed or in process, and the progress of the
work on each task (its percentage of completion) is visually illustrated in the
chart by a bar within the task’s bar. For example, if you right-click a task and
then choose Task Information from the context menu, you can specify the
fraction of the task that’s completed by adjusting the Percent Complete field,
as shown in Figure 7-4.

Set a task’s completion to 45%, and it looks like the task shown in Figure 7-5.

When a task is 100% completed, a check mark appears in the Indicators field,
just to the left of the Task Name field.

Seeing milestones
If you have events, or milestones — as opposed to tasks — that you want indi-
cated on the chart, set their duration to 0 (zero), and they become milestones,

Figure 7-5:
This bar-
within-a-bar
illustrates
that one of
these tasks
is 45%
complete.

Figure 7-4:
Track
fractional
completion
of tasks by
adjusting
this Percent
Complete
field.

07h_570676 bk07ch07.qxd 6/4/04 10:26 PM Page 620

Book VII
Chapter 7

Using
Project 2003

Building a Project from Scratch 621

visible as a diamond symbol. The Analysis Complete entry in the Task Name
field of the Software Development Plan template is a milestone. It has no dura-
tion, but it does appear on the chart.

Some milestones do require a duration. For example, maybe the budget must
be approved, and it will take your crack accounting department two days. To
give a duration to a milestone, follow these steps:

1. Right-click the milestone in the chart.

2. Choose Task Information from the context menu.

3. Click the Advanced tab of the Task Information dialog box.

4. In the Duration box, enter the task duration but select the Mark Task
as Milestone check box.

Adding Outlook functionality to a project
After you define your project and assigned tasks, you are ready to ride the
horse. You, as project manager, must keep on top of things. One helpful way
for a developer to assist in this process is to integrate the benefits of Outlook
(the Contacts list, for example, and the ability to message and flag) into a
Project job.

Take a look at how to merge some of Outlook’s functionality into a Project
project. (There’s no way to get around this double word phrase, unless I use
something vile like undertaking.) In this example, I show you how to create a
reminder in Project that will, in turn, automatically create a task in Outlook.
To add a set reminder feature to the default toolbar buttons in Project,
follow these steps:

1. With the Software Development Plan project loaded in Project (see the
earlier section, “Creating a new project”), choose View➪Toolbars➪
Customize.

The Customize dialog box opens.

2. Click the Commands tab.

3. Click Tools in the Categories list box.

4. Click Set Reminder in the Commands list box.

5. Drag the Set Reminder button (looks like a bell) and drop it on the
end of the Formatting toolbar, next to the blue ? (Help) button, as
shown in Figure 7-6.

07h_570676 bk07ch07.qxd 6/4/04 10:26 PM Page 621

Building a Project from Scratch622

6. Click Close.

The dialog box closes.

Now you can set reminders for any of the tasks in your Gantt chart.

1. Ensure that the Gantt chart represents dates in the future.

What good is a reminder if the task is in the past?

2. Go to the second row (Determine Project Scope) at the top of the
Software Development Plan template and then click this row’s Start
field.

This field currently holds Mon 1/3/00.

3. Click the down-arrow button to open a calendar.

4. At the bottom of the calendar, click the red circle next to Today.

This changes everything. Today’s date is inserted into this field, the
start date in row 1 also changes to today’s date, and all the rest of the
dates are also recalculated for the entire chart, based on the tasks’ dura-
tions.

If you’ve changed any of the tasks’ Percent Complete field, as described ear-
lier in this chapter, you’ll need to reset those to 0% complete before these
tasks’ start dates will be recalculated.

Add a reminder by following these steps:

1. Click a task that you want to add a reminder to.

You can select a contiguous group of multiple tasks by dragging your
mouse if you want to add them all at once. Each will become a separate
task in Outlook.

2. Click the bell button (the Set Reminder button; read about this earlier
in this section and refer to Figure 7-6) on the Formatting toolbar.

The Set Reminder dialog box opens.

Figure 7-6:
This bell is
the symbol
for the Set
Reminder
feature.

07h_570676 bk07ch07.qxd 6/4/04 10:26 PM Page 622

Book VII
Chapter 7

Using
Project 2003

Managing the Version Problem 623

3. Choose how much time prior to the onset of the task you want the
reminder to pop up.

You can choose to set a reminder during a task instead of prior to the
start of the task, if you wish.

4. Click OK.

The dialog box closes.

Your reminder is now waiting to go off. When it does go off, you see a dialog
box like the one in Figure 7-7.

What does all this have to do with Outlook? By following the above steps in
Project, this task is automatically added to the Tasks list in Outlook. Switch
to Outlook and open the task window. You’ll see your Project task in the
Outlook list.

Managing the Version Problem
If you’re working with a group, you always run into version problems. You
know, you hand a copy of a document to everyone in a meeting and ask them
all to edit it. And then when you get back this stack of documents, you have
to go through them all and reconcile the various modifications made by each
person.

Similarly, if you e-mail a document to several people working on a project,
you’ll get back several different versions of this document. You then have to
go through that reconciliation process. It’s not only tedious but also unnec-
essary. Here’s a better way to get everyone’s input without multiplying the
documents: routing.

Figure 7-7:
Set
reminders to
tell you that
a Project
task should
be attended
to, pronto.

07h_570676 bk07ch07.qxd 6/4/04 10:26 PM Page 623

Managing the Version Problem624

One way to avoid having multiple versions of a project document is to send
a single copy of the document to only one recipient. When that person is fin-
ished marking it up with suggestions, he sends it in turn to one additional
recipient, and so on down the chain. This is the equivalent of passing a
single document around a conference table and asking each person to add
comments or otherwise edit the document. When you get this document
back, you can more easily merge the disparate editing into the final version.
What’s more, it saves team time as well because duplication effort is
avoided. Say that you misspelled a word in the document. Why should vari-
ous members of the team have to fix this error? After one of them fixes it on
a routed document, none of the subsequent reviewers of the document need
concern themselves with it.

Then again, you could use Project. The routing feature in Project sends the
actual Project (MPP) file. However, you can add files of many different kinds —
including Word documents — to your project file. Just choose Insert➪Object.

To see how to route a Project file, follow these steps:

1. Choose File➪Send To➪Routing Recipient.

You see the Routing Slip dialog box (see the upcoming Figure 7-9).

Depending on your security settings, you might not see the routing
dialog box just yet. Instead, you might see the dialog box displayed in
Figure 7-8. If so, follow Step 2. If not, skip to Step 3.

Figure 7-8:
Security
issues can
be a terrible
bore.
Thanks,
hackers, for
burdening
all the rest
of us with
your odious
noise and
stupid
malice.

07h_570676 bk07ch07.qxd 6/4/04 10:26 PM Page 624

Book VII
Chapter 7

Using
Project 2003

Managing the Version Problem 625

2. Select the Allow Access For check box (to your Outlook Address)
Book, enter a time setting, and close the security dialog box.

The Routing Slip dialog box appears, as shown in Figure 7-9.

3. Click the Address button.

The Outlook Address Book opens.

4. Double-click the names of each project member to whom you want to
route the file.

Note that the order in which you add them is the routing order although
you can change this order later in Step 6.

Each name is added to the To list at the bottom of the dialog box.

To delete any names that you’ve added, select them in the To list, and
then press the Delete key.

5. Click OK.

The Address Book dialog box closes.

6. Double-click any of the names in your routine list, and then click one
of the arrow buttons to adjust the routing order if you wish.

7. Leave the default settings marked as-is: One After Another, Return
When Done, and Track Status.

• One After Another

• Return When Done: Sends you a copy after the routing is finished.

Figure 7-9:
Use this
dialog box
to route
your file
through
the team
members.

07h_570676 bk07ch07.qxd 6/4/04 10:26 PM Page 625

Managing the Version Problem626

• Track Status: Sends you e-mail each time the file moves from one
group member to the next on the route. The message reads Richard
Mansfield routed the project Software Development to
NancyDrew@hotmail.com or something similar.

8. Modify the Subject field if you wish.

It defaults to the project name. This field will appear as the message sub-
ject when your team members receive their e-mail.

9. Type whatever message you want to include in the e-mail in the
Message Text field.

10. To send the file on its route, click the Route button. To send it later
but save the routing information, click the Add Slip button (and at
sending time, choose File➪Send to➪Next Routing Recipient).

You see the security warning again. Go ahead and grant permission to
use your Outlook Contacts list. You’ll probably see a second security
warning. Again, just put up with the unhappy necessity to protect your
Address Book from harvester virii.

To modify an existing routing slip, choose File➪Send To➪Other Routing
Recipient. The Routing Slip dialog box appears. To delete a slip, simply click
the Remove All button in the dialog box.

When a recipient gets your e-mail, the following text will have been appended
to any message you might have written in Step 9 in the preceding step list:

The project below has a routing slip. When you are done reviewing this
project, choose Next Routing Recipient from the Send To menu in the

Microsoft Office Project File menu to continue the routing.

Why this says below is confusing. There’s nothing below this text. The
attachment and your custom message are above the text.

07h_570676 bk07ch07.qxd 6/4/04 10:26 PM Page 626

Chapter 8: Employing SharePoint

In This Chapter
� Choosing SharePoint over other collaboration technologies

� Specifying permissions

� Installing SharePoint

� Using the task pane

� Understanding SharePoint scalability

� Using SharePoint with Office 2003 Applications

� Discovering ASP.NET

Even though it’s been available for years under various different names,
SharePoint only now seems to be getting off the ground. Perhaps it was

an idea before its time. Microsoft hopes (one assumes) that with this latest
version, now called SharePoint Services 2.0 for Windows Server 2003 (it’s a
free, optional component of this OS), it will catch on in a big way. I see no
reason why it should fail. Like the .NET suite of languages, SharePoint is
designed to be Web-based, and those who think they can continue to regard
their local hard drives as the future of data storage (and indeed executables)
are missing the boat.

SharePoint is a way for people to collaborate by efficiently sharing files and
managing tasks and Web sites. SharePoint Services 2.0 is designed for work-
groups, departments, and small- to medium-size businesses. A larger version,
SharePoint Portal Server, is available for larger (enterprise) installations.
Read on to discover when SharePoint should be chosen over competing col-
laboration technologies, how to handle permissions, ways to use the task
pane and scale SharePoint, how to integrate SharePoint with other Office
2003 applications, and a bit about Microsoft’s ASP.NET technology.

Deciding Why to Use SharePoint
Microsoft and others have already provided several ways for companies to
accomplish many of SharePoint’s jobs. What’s the point of yet another col-
laboration technology, especially if your company is satisfied with its cur-
rent solutions? After perhaps years of getting the kinks out of dealing with
the version problem, security, and other file-share issues, why not stick with
what you already have?

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 627

Deciding Why to Use SharePoint628

The simple answer is, I repeat, the Internet.

For one thing, consider that SharePoint offers an efficient way to permit
users, via their browser, to access Office 2003 applications’ features and data
from anywhere, anytime. Office 2003 applications are designed to interact
closely with SharePoint and vice versa. Setting up SharePoint Web sites and
connecting them to Office 2003 elements is quite easy with SharePoint.

Unlike task management in Outlook or Project or older file-sharing systems,
SharePoint is designed from the ground up as an Internet-based collabora-
tion system for business. Of course, networks themselves are collaboration
systems, and networks have been around in one form or another for decades.
Tools already in place in most offices of any size permit people to share files,
reconcile calendars to set up meetings (well, perhaps this tool is a paper
calendar), send automated e-mail, and other features that SharePoint offers.

Indeed, throughout this book, you can find out how to accomplish many of
these tasks by using Outlook’s dual-calendar feature (Book VI, Chapter 1),
Project’s task management utilities (Book VII, Chapter 7), and other Office
2003 applications’ built-in collaboration or Web-access features. What’s more,
if a needed feature isn’t built in, programming sections in this book illustrate
how you — the Office 2003 developer — can build your own solutions by
using recorded macros, VBA, or .NET.

Seeing SharePoint features and integration
Nonetheless, SharePoint offers quite a tempting set of features, wizards, and
other efficiencies, and it’s well integrated with Office 2003 via the Shared
Workspace task pane. This direct SharePoint access is available in Word,
Excel, and PowerPoint.

To see the SharePoint task pane, follow these steps:

1. Press Ctrl+F1.

This shortcut key combination is supposed to remind you of F1, the
classic Help key.

The default Getting Started task pane opens.

2. Click the down-arrow symbol on the task pane’s title bar (right next to
the x).

You see a list of the available task panes, including Help, Search Results,
Clip Art, Research, Clipboard, New Document, Shared Workspace,
Document Updates, Protect Document, Styles and Formatting, Reveal
Formatting, Mail Merge, and XML Structure. (Watch this space: More are
to be added later.)

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 628

Book VII
Chapter 8

Em
ploying

SharePoint
Deciding Why to Use SharePoint 629

3. Click Shared Workspace to see what’s available if you’re hooked up to
SharePoint, as shown in Figure 8-1.

In other words, you get direct access to SharePoint’s site if you open a file
residing on the SharePoint Services Web site. And with that direct access
comes the ability to exploit various SharePoint features without leaving your
Office 2003 application, including tasks, other documents, stored pictures
(including thumbnails and slide shows), Web links, calendars, Contacts (or
resources, as Project refers to your co-workers and acquaintances) links, com-
munication with team members, issues lists (and many other kinds of lists),
announcements, and even site management (if you have proper permission).

Lists have long been the neglected red-headed stepchild of most program-
ming languages and database managers. However, SharePoint uses lists as
its basic data structure, and these lists are quite similar to — and importable
from or exportable to — Excel ranges and Access tables. Of course, Outlook
data, such as the Address Book, is also stored as lists when used under
SharePoint.

Figure 8-1:
Many
options are
available
when you
open a
SharePoint
task pane.

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 629

Installing SharePoint630

Setting permissions in SharePoint
SharePoint users can selectively provide various levels of permission, includ-
ing previewing the content of submissions, specifying that content should
expire and when, direct site monitoring, site creation permission, and site
membership control. Although you can delegate this kind of authority to
your users, you can also retain special management privileges for yourself.
Via Windows SharePoint Services, you can view data such as how long a
SharePoint site has been inactive or even specify that sites that are unused
for a certain period of time should be automatically deleted. You can see
who created which sites. You can also impose quotas for sites, storage
amounts, and users. You can also refuse users permission to add specific file
types to sites.

Installing SharePoint
Getting SharePoint up and running is considerably easier than you might think.
If you have other collaboration features installed — such as Exchange — you
might find a bit more to deal with, but generally it’s a smooth process, and the
instructions are clear. It runs on IIS 6.0 in Windows Server 2003 and includes
the Microsoft Data Desktop Engine as a database although you can connect to
SQL Server.

The server where you install SharePoint must have at least 512MB of RAM,
Windows Server 2003 (Standard, Enterprise, Datacenter, or Web Editions),
and Web Application Server with ASP.NET, IIS 6.0 (including Common Files,
Database, SMTP Service, and World Wide Web Service). Also required is SQL
Server 2000 (Enterprise, MSDE 2000, and Network).

Using The SharePoint Task Pane
The SharePoint task pane offers a set of six icons across the top (refer to
Figure 8-1). Click them to see the following information, from left to right.

✦ Status (the exclamation point icon inside a yellow triangle): This
tells you details about the currently open document, such as its
check-out status and version.

✦ Members list (two people): This indicates the online status of the
people who are members of a group or meeting. You can interact
with these people via instant messaging, add new members to the
group, send mass e-mail to everyone in the group, and other
options.

✦ Tasks (clipboard with a check mark): This shows the Project tasks
list.

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 630

Book VII
Chapter 8

Em
ploying

SharePoint
Exploiting Scalability in SharePoint 631

✦ Document library (dog-eared document): Here you can save files
useful to the group or meeting.

✦ Links (the Earth with a chain on it; how disturbing): Here you add
hyperlinks to whatever files or sites you feel are of value to the
project.

✦ Document information (i-in-a-circle): This shows what was modi-
fied by whom, when last modified, and other metadata (data about
data). What data appears in this store is customizable.

Exploiting Scalability in SharePoint
SharePoint used to be called SharePoint Team Services, riding on top of
SharePoint Portal Server. The new 2003 version’s official title is SharePoint
Services for Windows Server 2003. A really large-scale version is also avail-
able: SharePoint Portal Server v2.0 sits on top of SharePoint Services and
ramps up to the scale required to handle enormous companies’ portal site
needs. The Portal Server version adds enterprise-wide features — spanning
the entire collection of individual SharePoint sites — including site naviga-
tion, site organization, searching and alerts features, and enterprise applica-
tion integration. Ramp up to Portal Server if you need a high degree of
customization or want to integrate multiple SharePoint sites into one large
enterprise solution.

Portal Server (which costs extra) is installed on top of Windows Server 2003
and SharePoint Services. Well, perhaps costs extra is a bit too demure a term.
For this huge enterprise version of SharePoint, I’m talking a starting price of
$3,999 per server and $71 per user (volume pricing available). An external
connector license (permitting unlimited user-access connections for non-
employees) is $30,000 per server.

With Portal Server, you get BizTalk Server integration and Enterprise
Resource Planning (ERP) integration with systems such as SAP and Siebel.
You also get a more extensive library of Web Parts.

SharePoint can use ASP.NET Web Parts (the latest name for controls) that
execute server-side (like most ASP.NET code or objects) and then translate
the results into HTML, which is sent to the user’s browser. These Web Parts
include news tickers, picture boxes to hold graphics, list controls, and so on.

The version of SharePoint that you might want for a small- or medium-size
business is considerably more modest. In fact, it’s free. SharePoint 2.0 (for-
merly Team Services) is an optional, free component of Windows Server 2003.

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 631

Finding SharePoint Solutions632

As you see, SharePoint is built for scalability. You can run Windows
SharePoint Services on a single computer for small businesses or individual
departments in larger businesses. Or you can set it up on a vast server farm
handling 200,000 users and 40,000 sites or more. Load balancing for Web
servers is supported, as is server clustering technology for all data, includ-
ing documents, configuration, and list data.

Finding SharePoint Solutions
SharePoint can offer your business many solutions, including file sharing
and collaboration, intranet capabilities, and Web page management. Here’s
an overview of SharePoint’s capabilities.

File sharing and collaboration
With SharePoint, you can manage and share documents easily from anywhere
(the Internet’s famous you’re on from anywhere, 24/7 capability). Document
libraries help you organize files in an organized way. Custom templates (or
you can use Front Page), subfolders, security provisions (including role-based
security), file versioning, and check-in/check-out features round out the file
collaboration features. Collaboration features include online chats, document
change e-mail alerts, and so on. The templates deserve particular mention.
They’re well-thought-out and effective, with a generous number of options
and variations. You’ll also find step-through wizards that make building
various kinds of SharePoint-based Web sites quite easy.

Intranet capabilities
Each person who needs to use a SharePoint-based Web site can be given a
custom login and individualized accounts, offering a secure way to publish
your corporate data. Think of this as a secure intranet on the Web. Included
are a bulletin board simulator, threaded discussions, and excellent wizards
for such jobs as creating and managing surveys. Also, the current version of
SharePoint is easier to use, so it might not be necessary for sophisticated IT
support. Local users and team members should be able to manage their site
in many situations. Backup, modification, and other maintenance tasks are
now possible for users without sophisticated understanding of Web site man-
agement. Management is largely Web-based. Of course, creating solutions and
systems with ASP.NET (described later in the section, “Introducing ASP.NET”)
isn’t trivial, although that programming, too, has become more rapid and
simple than it was only a few years ago with Active Server Pages (ASP).

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 632

Book VII
Chapter 8

Em
ploying

SharePoint
Using SharePoint with Office 2003 Applications 633

Web page management
Like FrontPage, Microsoft’s quick and easy Web page designer, SharePoint
includes rapid page development features. You can use templates (or
FrontPage) to get a site up and running quite quickly or to expand it. You can
create your own custom templates for reuse. You can also create subsites
(separate zones within the main site) to help segregate different projects and
work groups. After the site is built (by using IIS Manager), maintenance is
almost totally Web-based.

Using SharePoint with Office 2003 Applications
Given that SharePoint is designed to work well with Office 2003 applications,
you shouldn’t be surprised to see that task panes and other features can be
used for collaborations with some efficiency. For example, you can link list
data in a shared workspace to an Excel spreadsheet. (SharePoint has list-
making and list-keeping features.) Word documents are a natural for starting
docu-centric Document Workspaces. Here are some additional SharePoint
features closely tied to other Office 2003 applications.

XML and InfoPath
You’re probably wondering how InfoPath fits in (which I discuss at length in
Book VII, Chapter 4.) Doesn’t InfoPath include important tools for collabora-
tive solutions? True enough, and you’ll be happy to know that SharePoint
takes InfoPath seriously. In fact, if you’re looking to expand SharePoint fea-
tures toward XML and back-end data stores, investigate the relationship
between SharePoint and InfoPath.

You can store InfoPath forms in SharePoint form libraries. And, after forms
have been filled out by users, Sharepoint’s form library includes a location
to store them as well.

Outlook and Document Workspaces
When you add an attachment to an Outlook 2003 message, an Attachment
Options button appears on the Attachment field. Click this and you see the
task pane shown in Figure 8-2.

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 633

Using SharePoint with Office 2003 Applications634

If you wish, a new Document Workspace can be created, and the attached
file can be stored there. Everyone in the To and Cc fields are given access
automatically to this new Document Workspace. You can also optionally
create a new Meeting Workspace whenever you send out an Outlook meeting
announcement.

The distinction between a Meeting Workspace and a Document Workspace is
this: The former focuses the team on preparation for a meeting, and the latter
involves collaboration centered around a document or set of documents.

OneNote
OneNote’s file format is also recognized by SharePoint, enabling you to search
side notes and OneNote files stored on a SharePoint site. In addition, you can
save a shared OneNote notebook for all members of your team to use.

Figure 8-2:
Select the
Shared
Attachments
radio button
here to
create a
Document
Workspace
in
SharePoint.

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 634

Book VII
Chapter 8

Em
ploying

SharePoint
Introducing ASP.NET 635

Access
For some reason (I have theories), Access is usually the odd-man-out of
Office applications. It seems to stand alone in a variety of ways — different
macro systems, fewer collaborative features, and so on.

However, SharePoint does pay attention to Access, even if a SharePoint task
pane isn’t available for it. You can import a SharePoint list into an Access
2003 table, or go the other way and export an Access table to a SharePoint
list. Also, list grid views can be added to an Access table either as plain data
or linked dynamically to the original SharePoint list. Thus, changes to the list
are reflected in the Access table.

Dynamism — actively refreshing data to keep the information current in doc-
uments, task panes, Smart Tags, Web pages, and so on — is one of the most
important contributions made by XML’s integration into the Office 2003
application suite and orbiting technologies such as SharePoint and InfoPath.
In many business situations, keeping data up-to-date is crucial. Some offices
send copies of their database as e-mail attachments every day after work.
Others have used aging, sometimes fragile, technologies such as OLE to
cobble dynamic links to automate (at least to a degree) the job of maintain-
ing current data. XML, though, promises to solve this problem once and for
all. And XML is a fundamental feature of the documents, data, and applica-
tions in Office 2003. The back end can be attached to the front end more
easily than ever before.

Introducing ASP.NET
Given that SharePoint rests on ASP.NET technology, if you want to customize
SharePoint solutions, ASP.NET can be an important tool. You can also use
ASP.NET to work with other Office 2003 customization and automation. For
example, you can even create Web Services using .NET and then access
them from VBA if you wish. Just install the Office 2003 Web Services Toolkit,
available to download from Microsoft.com:

www.microsoft.com/downloads/details.aspx?FamilyID=fa36018a
-e1cf-48a3-9b35-169d819ecf18&DisplayLang=en

You can then integrate Web Services right from within the VBA editor (VBE)
in Office 2003 applications. You use the Web Service References user inter-
face to locate Web or just directly address a known Web Service’s Web
Services Definition Language (WSDL) file.

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 635

Introducing ASP.NET636

Adding dynamism to Web pages
ASP is designed to allow programmers to customize, automate, and connect
Web sites to databases and other external systems, such as Office 2003
applications. In other words, although you can export a Word document to a
Web site rather quickly (File➪Save as Web Page), it’s inert. It’s just a dis-
played document with perhaps some simple embedded controls. Or maybe
you’ve designed a site by using the wizards in FrontPage or by translating
other Office applications into HTML and publishing them. To create a truly
dynamic Web page with custom behaviors, you often have to write some
programming. Programming for Internet sites used to be a tedious and very
difficult proposition. ASP was designed to help programmers speed up the
job. ASP.NET replaces ASP and, in fact, realizes the ideal that ASP only
strived for.

ASP.NET offers significant benefits to programmers and developers, so you
should be aware of it. ASP has been used the world over since early 1997.
However useful and widespread it became, ASP nonetheless had some really
serious drawbacks, like requiring artists to insert their design code right in
the same file used by programmers for their source code. ASP.NET avoids
those drawbacks and offers a variety of valuable new rapid application
development tools, including OOP support. ASP.NET is not merely the next
version of ASP: ASP was thrown out, and ASP.NET was written from the
ground up as a brand new, object-oriented language.

Aiding the programmer
In a white paper explaining the ASP.NET technology, Microsoft’s Anthony
Moore pointed out that ASP.NET and its Web Forms feature represent an
important advance in programmer-friendly tools. He even compared these
new tools with the vast improvement in traditional Windows programming
efficiency that occurred when Visual Basic version 1 was introduced 14
years ago. Before VB came along, Windows applications were very difficult
to build: time-consuming, complex, and disagreeable. The C language, with
all its syntactic convolutions and needless complexity, was all that was avail-
able to Windows programmers until VB 1 made its welcome appearance.

Similarly, prior to ASP, programming Web sites was a pretty nasty business
too. Now, though, ASP.NET, VB .NET, and improvements to the Visual Studio
IDE (Integrated Design Environment) promise to bring VB-like efficiencies to
what has previously been tedious and cumbersome CGI (common gateway
interface) and ASP programming. Mr. Moore puts it this way:

As with creating Windows applications, creating a reliable and scalable Web
application is extremely complicated. Our hope for ASP.NET is that it hides

most of this complexity from you just as Visual Basic 1.0 did for Windows devel-
opment. We also want to make the two experiences as similar to each other as

possible so that you can “use the skills you already have.”

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 636

Book VII
Chapter 8

Em
ploying

SharePoint
Discovering the Purpose of ASP.NET 637

ASP.NET is part of the suite of programming tools and languages bundled
into Visual Studio .NET (which includes the database programming ADO.NET
technology, Visual Basic .NET, and some other, less useful, languages like C).
There’s even a Java-esque language called C#, but it seems to me that they
took the plain, understandable Visual Basic language, twisted its syntax
around, added some unnecessary punctuation such as semicolons, and in
general tried to make a C-like, yet relatively uncomplicated, new language.
It’s quite easy to translate between Visual Basic .NET and C#. So easy, in fact,
that it can be automated. You can find a translator at www.kamalpatel.net/
ConvertCSharp2VB.aspx.

Discovering the Purpose of ASP.NET
The core idea of Active Server Pages is that somebody (or many people at once)
is surfing around the Internet (or a local intranet) and arrives at a page in your
Web site. Instead of merely showing static, canned content on that page (simple,
prewritten HTML), you can dynamically generate the page on your server right
then and there, sending the resulting fresh HTML to the visitor.

This is how you can make your Web site attractive, up-to-date, varying, and
interesting to the visitor. It’s also how you provide dynamic content, such as
allowing the user to see your latest catalog, place an order, communicate a
suggestion and so on. In other words, interaction.

A given Web page might be used by thousands of people simultaneously. This
possibility requires some adjustments in how you program, particularly in
how you handle persistent global variables and connections to a database.
(Access begins to groan under the strain when more than ten users are con-
nected at once.)

ASP.NET addresses these and other Internet-related issues. It’s not the same
as writing a traditional Windows program wherein only one person at a time
will be using your application, but ASP.NET makes it pretty easy.

Pure HTML merely describes how text and graphics should look — size,
location, color, and things like that. You cannot do significant computing
with HTML. For example, you cannot add 2+2. HTML merely specifies that a
headline is relatively large, that the body text is colored blue, that one
graphic is lower on the page than another graphic, and so on. HTML also
includes a few, simple objects such as tables and list boxes. However, even
its tables and list boxes are static and essentially lifeless display objects.

The active server premise permits you compute on your server. Then, as the
result of the computation, you compose a page of HTML right then and
there, sending it off to visitors’ computers for viewing in their browser. This
capability permits you to bring your Web pages alive.

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 637

Discovering the Purpose of ASP.NET638

ASP.NET uses a full language, such as VB.NET, to do its computing. You don’t
have to resort to crippled script languages — a subset of their parent lan-
guage (Java or Visual Basic). With ASP, visitors don’t need language features
built into their computer: They get the results of your server-side computing
translated into ordinary HTML and then sent to them.

ASP.NET, therefore, permits you to do lots of useful things on your server
that you could never do with HTML. For example, you can access a data-
base, insert prewritten components, revise your Web pages (include news
about your company, today’s date, and so on) so visitors don’t get bored
seeing the same content each time they visit, and many other valuable tech-
niques. The visitor sees the most recent product announcements, today’s
date, and any other current information you want to provide. Your Web
pages are responsive and timely.

Solved security
In addition, firewalls — designed to block access by hackers, whackers,
viruses, worms, and other invaders — are built to permit HTML to pass
unchallenged. Innocent, merely descriptive, and merely visual HTML can do
no damage to your machine.

You can, however, insert scripting or executable objects (such as text boxes)
into an HTML page and therefore let the visitor’s computer do some comput-
ing. This is client-side scripting or execution. It’s generally verboten, though.

Sure, client-side execution works fine if you’re sure that all your visitors have
the necessary language components installed on their machines, that their
security settings permit scripting, and that they all use the same browser
(and that browser supports scripting). So, if you’re merely running a site
intended for use in-house and everybody in your company uses Internet
Explorer — and you’re sure they all have the right components on their hard
drives — go ahead and try some client-side computing. Intranets do some-
times permit scripting with certain security safeguards in place. However,
there are many reasons to prefer server-side computing that sends mere HTML
to clients. After all, you don’t want executables — even scripts — running wild
on your machine or network. That’s an invitation to viruses, Trojan horses, and
other bad things, isn’t it?

If you see file and Web page extensions named ASPX, ASP.NET is being used.
Here’s an overview of the strengths and features you’ll find when you begin
using ASP.NET and Visual Basic .NET.

ASP.NET code is relatively easy to write, debug, and maintain. Also, with
ASP.NET, you use the Visual Basic .NET language so you can leverage some
of your existing programming knowledge, transferring your experience from
the Windows OS platform to the browser intranet/Internet platform.

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 638

Book VII
Chapter 8

Em
ploying

SharePoint
Seeing the New Advantages of ASP.NET 639

The Visual Studio .NET integrated design environment offers you all the
support you’ve always enjoyed with mature, rapid application development
(RAD) languages such as Visual Basic. In fact, for much functionality, you
don’t need to write any code at all: ASP.NET gives you a toolbox full of smart,
rich, server-side components that you can just drop right into your ASP.NET
projects (maintain state, validate, cache — you’ll find that many program-
ming problems are now handled for you by components); powerful debug-
ging tools; WYSIWYG design and editing; and wizards to step you through
tedious or complex tasks.

Segregated source files
In earlier versions of Internet programming, you had to mix your source
code programming (such as VBScript) in with the HTML source code. These
hybrid script/HTML files sometimes grew large and unwieldy. And two
people often had to work with the same source code file. The person who is
talented at designing the look of a Web site is often not the best person to
write the programming that interacts with a database and vice versa.

ASP.NET solves this problem by separating programming source code and
visual design (HTML) source code into two different files. Programming code
is stored in a code-behind file, separate from the HTML file that the page
designer works with.

Seeing the New Advantages of ASP.NET
The ASP.NET runtime (the library of functions that actually carry out the
commands you write in the source code) has been built to take advantage of
multiprocessor or clustered server structures. Also, the runtime ensures
robust, continuous performance by keeping track of all running processes.
If any process freezes or begins to leak, the runtime kills the process that is
behaving badly and spawns a new process to take its place.

ASP.NET sits on top of the .NET runtime. .NET is designed from the ground
up as an Internet-based platform (as opposed to a single-local-computer-
based platform like Windows). Unlike previous versions of computer lan-
guages, all the languages that can be used with ASP.NET share the same
runtime. (The .NET runtime is also called CLR, or common language runtime.)
This means that you can write some code in VB, and someone else can write
in Java or C# — and these pieces can be combined in the same ASP.NET proj-
ect. .NET languages can also share each other’s objects and libraries.

A shared IDE
A single IDE (programming editor) is now used by all the various .NET lan-
guages. A grand unification is going on here in the .NET programming model.
Prior to .NET, you would choose your language based on what kind of work

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 639

Seeing the New Advantages of ASP.NET640

you were doing: ASP and script languages for Web page programming; VB for
fast, efficient programming and RAD features-like forms; and the C-like lan-
guages when you wanted optimization and full object-oriented programming
(OOP) inheritance. The programming you were working on — or, more likely,
whatever language you were taught — forced you to choose a particular lan-
guage. And your choice of language also determined which of the various
APIs (runtime code libraries) you would be using. Now, with the single .NET
API (Application Program Interface), all languages share the same IDE for
designing your programs and also share the same API as well.

What’s available to one language, then, is simultaneously available to all. No
more learning various IDEs and various APIs if you need to switch between
languages to accomplish your goals. All the new languages — ASP.NET, C#,
VB.NET, and VC++.NET — sit on top of the same single .NET CLR.

Easier deployment
Deployment is simplified. You add an ASP.NET application to your server
merely by copying the ASP.NET application’s files to the server’s hard drive.
All the dependencies (files needed by your application, such as graphics)
are stored together within the same folder and its subfolders.

No need to go through an elaborate setup and registration process. You can
even upgrade an ASP.NET application on-the-fly while it’s running without
needing to reboot the server. (The Registry is not involved.)

In the past, if you had large, complex ASP n-tier apps that used components,
the problems of registration, versioning and others (sometimes called DLL
Hell) made life difficult for programmers and administrators alike. (The n in
n-tier is math shorthand for some number. n-tier is also called multi-layer
because sometimes the middle tier itself is subdivided.)

ASP.NET completely abolishes DLL locking, XML configuration files, and
component registration. To deploy your ASP.NET Web app, just copy the
main folder and its subfolders. Controls located in your application’s BIN
subfolder are simply available to your application: You don’t need to worry
about registering them or that they are locked: They’re not locked, and
they’re not registered, but they work just fine. That’s the new model. Do you
have a newer, better version of a control that you’ve written and now
improved? Just copy it into the folder on the server. It runs right away.

07i_570676 bk07ch08.qxd 6/4/04 10:26 PM Page 640

Book VIII

Power Techniques:
Advanced Office
Automation, VBA,

and .NET

08a_570676 PP08.qxd 6/5/04 12:42 AM Page 641

Contents at a Glance
Chapter 1: Advanced Office 2003 Programming ..643

Chapter 2: Exploring XML ..661

Chapter 3: Employing Objects..689

Chapter 4: Advanced Internet VBA ..707

Chapter 5: Working with .NET ..723

Chapter 6: Using Visual Studio Tools for Office 2003..731

Chapter 7: Office 2003 Security ..745

Chapter 8: No More Paranoia: Programmatic Encryption ..761

08a_570676 PP08.qxd 6/5/04 12:42 AM Page 642

Chapter 1: Advanced Office
2003 Programming

In This Chapter
� Surveying weaknesses in OOP

� Knowing when to use VBA and when to use VB.NET

� Discovering streaming

� Creating your own add-ins

Throughout this book, examples illustrate how to program Office 2003 —
how to control both individual applications programmatically as well as

control one application from another to develop larger scale Office solutions.

This chapter deepens your understanding of the interactions possible
between Office 2003 applications as well as how to improve company pro-
ductivity using tools like VBA and add-ins available to you as a developer/
programmer. I also demonstrate streaming as a way of contrasting VBA with
VB.NET programming. The chapter concludes by showing you how to build
your own add-ins, which is useful for simultaneously adding functionality to
all Office applications and also an effective way to hook up VB.NET program-
ming to Office 2003 solutions.

I start with a brief overview of class hierarchies.

Understanding Class Hierarchies
Consider these facts about the current programming classification system
(also known as object-oriented programming, or OOP).

✦ An object’s properties or methods can return a second object, called
a child object. The first object is a parent. (OOP experts disagree what
constitutes this parent-child relationship although they all agree that it
exists. The disagreement is about which specific situations should be
described as parent-child.)

✦ The same object can have many parents and many children.

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 643

Fighting Class Warfare644

✦ A given action, such as changing a window’s color, can be a property
or a method. In practice, these categories are imprecise. Lots of theory
exists, but here in the real world of day-to-day programming with objects,
it’s anybody’s guess which category will contain any given item. You
essentially have to memorize the common members or for those you
haven’t memorized, guess — and if wrong, look it up in Help.

✦ Properties can turn into objects, depending on the context in which
they’re used. And vice versa.

✦ The same object can be a child of its parent. And vice versa. For exam-
ple, in Excel 2003, the Range object is a child of the Worksheet object,
but a Worksheet is also a child of the Range object.

Ready for a drink? Personally, I could use a stiff one right now.

Fighting Class Warfare
Don’t break your brain trying to make too much sense out of object models.
If you take them too literally, you’ll be disappointed. For one thing, the term
object has been inflated beyond belief.

In VBA, many elements of the language are considered objects. However, VBA’s
successor languages — VB.NET and the other .NET languages — move us
closer to the truth about object-oriented programming. In .NET, everything —
including the simple integer variable type — is now an object. And when
everything falls into a category, that category becomes like water to fish:
It’s so omnipresent that it simply disappears from their consciousness.

The term object has little remaining meaning for a programmer. It has
become as general and as meaningless as the term thing. How useful is it
to say, “The thing is behind the other thing but not under the same thing,
until later”?

Here’s a programming example of what I’m saying. Consider this line of code:

CurrentWindow.Font.Size = 12

CurrentWindow is an object because it has properties (Font, for one). Font
is a property of the CurrentWindow object. However, the Font property
is simultaneously in this same line of code also an object itself, with a prop-
erty named Size. Were you to refer to the collection of Window objects,
CurrentWindow itself would become simultaneously an object and a property:

ScreenWindows.CurrentWindow.Font.Size = 12

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 644

Book VIII
Chapter 1

Advanced Office
2003 Program

m
ing

Fighting Class Warfare 645

A dual-monitor system would make the ScreenWindows collection a property/
object of the Monitors collection, and so on and so on.

Move up or down an object hierarchy, and you find this Escher-like circular-
ity. Indeed, consider this: The Application object sits at the top of most
Office 2003 applications, and all other objects are child objects of the
Application object. It’s the parent object of most other objects.

However, to make life interesting, the Application object is also a property
of nearly all other objects in Office 2003 applications. To put it bluntly, nearly
every object in the object models of Office applications is a parent of the top
object. Makes you wonder, doesn’t it, just how useful this system of catego-
rization is. It’s as if biologists considered apes the ancestors of modern man,
and modern man the ancestors of apes. Would this be a clear, useful classifi-
cation system?

Properties are methods are properties
It gets worse. A primary distinction is made in object models between prop-
erties and methods. At least people claim to employ these categories. Alas,
this is a distinction without a difference.

The division between the concepts of property and method is purely bogus.
Most of the time, setting the color property of an object means changing a
Color property. However, do you see that making a change in a color is an
action? — which is the essential meaning of a method.

In practice, sometimes changing a color is classified as a method, yet some-
times it’s a property. You find this kind of ambiguity throughout object
models. That’s why people are now spending more time struggling to get
OOP syntax correct than they are debugging (unless they use inheritance,
which can rapidly add bugs to code).

Tautology runs wild
OOP experts sometimes make statements like this, which are wonderfully
revealing: A method can change a property or return the value of a property,
but it’s not itself a property. If I had a bell named tautology, I would be ringing
it now, believe me! (And if you have a dictionary nearby, go look it up and
learn a new word.)

Changing the color property changes the color?, just as executing a
ChangeColor method changes the color. There is no distinction here
between a Color property and a ChangeColor method. It’s just a matter of
whimsy, all too often, how things are categorized.

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 645

Deciding When to Use VB.NET646

Deciding When to Use VB.NET
If you’re familiar and comfortable with traditional Visual Basic (version 6 or
earlier, or VBA), you might wonder why to bother with VB.NET, After all, VBA
represents about ten years of perfecting a language that was pretty good to
begin with.

The answer lies in the changes that are taking place for programmers.
Increasingly, you must deal with distributed programming. A database man-
ager might reside in Houston, with the inventory executable on a network in
Toronto and customer fulfillment software in Boston. These distributed
pieces (tiers) collectively represent a single, general program (or solution).
They must work together smoothly (referred to as interoperability, although
it used to be called compatibility or sometimes platform independence), must
be stable (robust) and capable of handling a large volume of (or surges in)
traffic (scalable). But distributed programs (solutions) are not a single, tradi-
tional Windows program residing on a single hard drive. A solution can con-
tain several programs working together. The Internet drives this fracturing of
resources and executable code.

VBA works well when you’re working within or among Office 2003 applica-
tions. However, if you need a more powerful language, particularly for dis-
tributed or Internet-related programming, you’ll want to move on up to
VB.NET.

To illustrate a primary difference between VBA and VB.NET, consider code
that saves and loads files. Traditionally, files resided on a local hard drive —
right there in your machine. The worst confusion you had to deal with was
specifying a path to a local area network hard drive. Today data still usually
ends up in files, but it can also be elsewhere, coming in over the Internet, for
example, in a stream.

Streaming is the metaphor that .NET language designers use for sending or
receiving data. In the past, VB programmers used a somewhat more restric-
tive metaphor: saving and opening files. But in the brave new Internet world,
data can be stored in more places than you can imagine — not just in files on
your local hard drive. New times demand new thinking, so get ready for the
data stream and all that it implies.

The Buzzwords
If you haven’t been using any of these new terms — tier, solution, interopera-
ble, robust, and scalable — you’d better start now. They help you sound oh
so au courant. Oh yes, and mission critical means essential to the task. While
I’m at it, let me also define a bit of additional computer jargon. (Why not?)

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 646

Book VIII
Chapter 1

Advanced Office
2003 Program

m
ing

Understanding Streams 647

✦ Solution: A piece of software that handled a single job used to be called
application, program, project, or utility. However, a new term, solution,
is now used to mean a set of programs (and perhaps associated data
stores and utilities) working together to achieve a common goal, such
as sending invoices and tracking inventory for a business.

Traditionally, a single program did a single computing job. This is still
true in some contexts (such as using a simple text processor like
Notepad), but now several applications or utilities often work together
to handle a common task — particularly for large or distributed tasks —
so the term solution makes more sense, suggesting as it does that a set
of programs is being used. A really large, complex solution is referred to
as an enterprise solution.

✦ Front end/back end: Front end and back end refer to the distance
between the user and a piece of software or a data store. Front-end is
what used to be called the user interface. For example, it’s the form the
user sees onscreen and fills out, or the spreadsheet the user calculates
with. The back end is the farthest part of the solution from the user,
such as a data store or database management system residing on a
server. The user never sees the back end, much less is permitted to
directly access its data or use its features.

✦ Tier: Tier refers to the different pieces of a solution.

Understanding Streams
Streams are flows of data to or from your application. Streams now replace
traditional VB communication techniques between applications and data.
What mainly distinguishes the concept of streaming from traditional
approaches is that a stream isn’t limited to communication with disk files.

In the new world of distributed programming (typical of Web programming),
data can be stored in more than one place. In addition to files, for example,
collections of data can be in memory. In VB.NET, you can bind an array to a
list box — treating the array, which resides in memory, as if it were a data-
base file. The Internet might be another source of data streaming into your
application. This, too, is a nontraditional source of data.

So, to take into account the various places where you might get or send
data, the idea of streaming permits connections between all kinds of data
sources (now known as data stores, to distinguish them from databases,
which people traditionally associate with files). It’s even possible to connect
one data stream to another.

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 647

Understanding Streams648

Consider this: Sometimes keeping data off hard drive files is desirable. For
example, when you use .NET encryption classes, you can create a cryp-
tostream in memory and feed it with a stream of data coming in over a secure
line from Spain or wherever. The idea here is that you want to actually avoid
storing this incoming data stream on your hard drive as a file. You don’t
want to encrypt from data in a file because even if erased, that original file
could perhaps be reconstructed by disk analysis tools, and it contains the
unencrypted data. So you keep everything as light, streams in RAM, evapo-
rating as they move into your cryptostream. Then you can save the cryp-
tostream to your hard drive because that stream is, by definition, encrypted
and secure. In Book VIII, Chapter 8, I show you how to write a utility that
encrypts text coming in from a stream rather than a file.

Understanding tiers and other new terms
Early on in network-based or Internet-based
solutions were two-tier solutions (also known as
two-tier architecture or two-layer architec-
tures). This refers to splitting a job between a
client and a server. Often the client holds the
user interface and other executable code while
the server simply acts as a storage location for
data. However, the client can be relatively dumb
(few or no executables), and the database man-
agement executables (or other programming)
can reside and execute on the server.

A few years ago, three-tier architectures
emerged, with the new tier (the middle-tier
server or application server) mediating between
the client (generally limited to user-interface
tasks) and the server (the data store, or data
management, components).

The middle-tier usually holds the business logic
(or rules), such as managing the execution of
utilities elsewhere in the solution (distributed
processing, or process monitoring), queuing
users (directing user traffic, resourcing, or
asynchronous queuing), and other housekeep-
ing and police work. Collectively, these tasks
are sometimes called centralized process
logic. (Are we having fun? Never mind.)

The primary goal of the middle tier is to permit
increases in scale (scalability). Whereas a two-
tier architecture might be able to handle 100
users, a three-tier system can ramp up to
handle orders of more magnitude. Also, three-
tier systems, if properly organized, can improve
maintainability (making adjustments or solving
bugs in a program), flexibility (this word means
what it does in ordinary English; what a relief!),
reusability (after you’ve written and tested a
piece of programming, you can use it again in a
different program), along with the improvement
in scalability.

Can you have more than three tiers? Sure.
There are n-tier solutions (n being math short-
hand for some number), also called multilayer.
Sometimes the middle tier itself is subdivided.
There is a light client (as in lightweight or triv-
ial, a favorite term of disparagement used by
scientists and would-be scientists, such as
some programmers) user interface display
(markup) code, such as HTML. This layer ulti-
mately simply shows up in a browser for some
user to interact with. The other layer involves
heavy-duty (non-trivial) programming (called
code-behind, or application servers).

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 648

Book VIII
Chapter 1

Advanced Office
2003 Program

m
ing

Understanding Streams 649

In sum, after you grasp the concept of streams and learn how to use them to
send or receive data, you can then employ the same techniques no matter
what data stores are involved. In theory, getting data from that remote com-
puter in Spain should be no different from getting data off your own hard
drive. I say in theory because as much as we might wish it were so, it’s not
possible to do everything the same way in all situations. For example, when
you’re working with a file on your local hard drive, you can ask the stream to
tell you the length of that file — how much data is stored there. When work-
ing with a remote file coming in from Madrid, there is no Length property
that you can query. The stream will stop when it’s ready to stop. So you
don’t intercept the stream with a fixed loop like For...Next; you must use
a While or Until loop instead.

You can still use the traditional VBA random access files techniques in
VB.NET if you must. (In VB.NET, the syntax for these techniques is similar
but not identical to traditional VBA.) But you’re encouraged to make the
transition to streams because of the greater flexibility they offer.

Also, programming is moving away from the random access file as a way of
storing and accessing data. Instead, contemporary programming prefers
databases and even XML files as data store constructs. It’s all really pretty
similar, when you get down to it — just labeled pieces of information organ-
ized one way or another. But fashions change, and right now, you really
should start moving away from the classic, random access files and their
record-number techniques. If nothing else, basing your data storage on data-
bases or XML makes your information more compatible with other applica-
tions (at least for the next few years until a newer fashion in data storage
takes the programming world by storm).

Streaming basics
Traditional Visual Basic file access assigns a file number to each opened file.
The simplest traditional format is as follows:

Open filepath {For Mode}{options}As {#} filenumber {Len = recordlength}

For example:

Open “C:\Test.Txt” As 5

However, for reasons known only to those in charge of .NET, the actual syntax
of the VB.NET version of the traditional VB isn’t exactly the same as it used
to be. Open becomes FileOpen, and the order of the arguments shifts around.
So, you might as well just move on to streaming, no?

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 649

Understanding Streams650

If you do want to stick with the older style file I/O, though, here’s the VB.NET
version:

FileOpen(5, “C:\Test.Txt”, OpenMode.Random)

Streaming is quite a bit more flexible, but as usual, you pay a penalty for this
flexibility. Streaming requires more programming because it offers more
options for the same reason that the dashboard of a Lexus is more compli-
cated than a VW.

To see a simple example of streaming, follow these steps:

1. Using VB.NET in Visual Studio, chose File➪New➪Project.

You see the New Project dialog box.

2. Double-click the Windows Application icon.

A new Windows-style application opens in the IDE.

3. Double-click the TextBox icon in the Windows Forms tab of the
Toolbox.

A TextBox is added to your Form1.

4. Double-click a Button icon to add it also.

5. Click the TextBox in the IDE so that you can see its properties in the
Properties window.

Press F4 if the Properties window isn’t visible.

6. Change the TextBox’s Multiline property to True by double-clicking
it in the Properties window. Also delete TextBox1 from the Text prop-
erty in the Properties window.

7. Double-click the button.

The button’s Click event is displayed in the code window.

8. Type this in at the top of the code window (above Public Class
Form1):

Imports System.IO

9. To try the simplest example of VB.NET file streaming, type this into
the button’s Click event:

Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button1.Click

Dim a As String = “This works fine.”
Dim b As String

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 650

Book VIII
Chapter 1

Advanced Office
2003 Program

m
ing

Understanding Streams 651

Dim sw As New StreamWriter(“c:\test.txt”)
sw.WriteLine(a)
sw.Close()

Dim sr As New StreamReader(“c:\test.txt”)
b = sr.ReadLine
MsgBox(b)
sr.Close()

End Sub

10. Press F5 to run this example.

This code creates a new file (or replaces an existing one if you already
have c:\test.txt on your hard drive). Then the code writes your test
line of text and closes the StreamWriter. Next it opens that same file,
reads the line of text, displays that text in a message box, and closes
the file.

Here’s a more flexible version of streaming. Replace the code in the button’s
Click event with Listing 8-1.

Listing 8-1: More Flexible Streaming

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
Button1.Click

Dim strFileName As String = “C:\test.txt”
Dim objFilename As FileStream = New

FileStream(strFileName, FileMode.Open,
FileAccess.Read, FileShare.Read)

Dim objFileRead As StreamReader = New
StreamReader(objFilename)

TextBox1.Text = “”

While (objFileRead.Peek() > -1)
TextBox1.Text += objFileRead.ReadLine()
TextBox1.Text += ControlChars.CrLf

End While

objFileRead.Close()
objFilename.Close()

End Sub

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 651

Understanding Streams652

Notice that you first create a FileStream object and then use it to create a
new StreamReader. Later, within the While...End While loop, you use the
StreamReader to control the duration of the loop (with the Peek method) as
well as to read individual text lines, one by one, within the opened file (with
the ReadLine method).

The ControlChars.CrLf command inserts a line feed (moves down one
line in the TextBox) following each line that the ReadLine method retrieves
from the file. However, if you don’t need to examine the file’s contents line by
line, you can simply replace the entire While...End While structure with
this simple line of code that brings in the entire file (including line feeds) in
one big gulp:

TextBox1.Text += objFileRead.ReadToEnd()

Stream writing
Going in the other direction — dumping data into a stream — is similar to
reading a stream as illustrated in the preceding section. Listing 8-2 shows
how to write to a stream.

Listing 8-2: Writing to a Stream
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Dim strText As String = TextBox1.Text

If (strText.Length < 1) Then
MsgBox(“Please type something into the TextBox so we can save it.”)
Exit Sub

Else
Dim strFileName As String = “C:\test.txt”
Dim objOpenFile As FileStream = New FileStream(strFileName,

FileMode.Append, FileAccess.Write, FileShare.Read)
Dim objStreamWriter As StreamWriter = New StreamWriter(objOpenFile)

objStreamWriter.WriteLine(strText)

objStreamWriter.Close()
objOpenFile.Close()
TextBox1.Text = “Done. File saved.”

End If

End Sub

This example actually appends to the existing text.txt file because you
used FileMode.Append. Using FileMode.Create will either overwrite an
existing file or create a new file if none exists.

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 652

Book VIII
Chapter 1

Advanced Office
2003 Program

m
ing

Creating Add-Ins 653

Creating Add-Ins
Macros, wizards, templates, and toolbar customization are all features that
allow you to personalize your Office 2003 applications. But if you want to be
able to use features of the entire OS — to manipulate anything — you might
want to try your hand at writing add-ins. You’ll be delighted to know that
Visual Basic .NET includes a wizard to make creating add-ins easier than it
would otherwise be.

Add-ins can globally change the behavior or add functionality to several
Office 2003 applications simultaneously and automatically. The following
example illustrates how to do this. What’s more, add-ins execute more
quickly than the typical macro.

You might not think of a use for add-ins right now, but you should know that
this technology exists to extend Office applications in powerful ways. When
you write an add-in, you can tap the entire power of .NET. (I have written an
encryption/decryption system that I’m planning to turn into an add-in, but
describing it is beyond the scope of this book. You click a button on the
Standard toolbar — or the Access Database toolbar — and instantly your
current document will be encrypted and stored.) You’ll also find commercial
add-ins for sale.

The add-in that I describe in the following example adds itself automatically
to the Office applications that it’s designed to service. However, some add-
ins must be attached to an application manually. To do that, follow these
steps:

1. Choose Tools➪Templates and Add-Ins.

The Templates and Add-Ins dialog box opens.

2. Click the Add button.

The Add Templates dialog box opens.

3. Double-click whatever add-in you want.

Programming your own add-in
Here’s an example showing you how to create an Office 2003 add-in by using
Visual Basic .NET. It adds a toolbar button named Time that when clicked,
displays the current date and time.

To simultaneously add a toolbar button to Word, PowerPoint, Outlook,
Excel, and Access — along with whatever behavior you want that button to
trigger — follow these steps:

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 653

Creating Add-Ins654

1. Run Visual Basic .NET in Visual Studio.

2. Choose File➪New➪Project.

You see the New Project dialog box.

3. In the left pane of the New Project dialog box, click Other Projects to
open this node.

4. In the left pane, under Other Projects, click Extensibility Projects.

Two templates appear in the right pane of the dialog box.

5. Click the Shared Add-in template to select it.

6. In the Name field, type comTIME.

You can name your add-in whatever you want; this name will appear in
the title bar of any message box that your add-in might display.

7. Click OK.

The dialog box closes, and the Extensibility Wizard opens, as shown in
Figure 1-1.

8. Click Next.

9. Select the Create an Add-in by Using Visual Basic option button.

10. Click Next.

11. Select Word, Outlook, Excel, and Access as your host applications, as
shown in Figure 1-2.

Figure 1-1:
Use the
Extensibility
Wizard to
simplify
building an
Office 2003
add-in.

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 654

Book VIII
Chapter 1

Advanced Office
2003 Program

m
ing

Creating Add-Ins 655

12. Click Next.

13. Type TimeDisplay as the name and Shows current date and time as the
description of your Add-in.

These are displayed to the user in the Templates and Add-ins dialog box
in the Office applications, as described earlier in this section.

14. Click Next.

15. Choose to have your add-in load when the host application loads and
also to have the add-in available to all users of this machine.

16. Click Next.

You see a summary of the choices you made while running this wizard.

17. Click Finish.

The wizard creates a public class, writing lots of code you’d never be
able to think up for yourself. Included is this globally unique identifier
(GUID):

<GuidAttribute(“50861F26-00E5-4195-8F22-733EF51A7E82”),
ProgIdAttribute(“comTIME.Connect”)> _

Public Class Connect

Listing 8-3 shows the code that you should enter into the various procedures
of this class that the wizard built for you.

Figure 1-2:
Choose
here which
applications
you want
your add-in
to work
with.

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 655

Creating Add-Ins656

Listing 8-3: Creating an Add-in

Imports Microsoft.Office.Core
imports Extensibility
imports System.Runtime.InteropServices

<GuidAttribute(“79245F63-E547-43D3-BF16-1A22D780C972”),
ProgIdAttribute(“MyComAddin.Connect”)> _

Public Class Connect

Implements Extensibility.IDTExtensibility2

Dim WithEvents OcButton As CommandBarButton

Dim applicationObject As Object
Dim addInInstance As Object

Public Sub OnBeginShutdown(ByRef custom As System.Array)
Implements Extensibility.
IDTExtensibility2.OnBeginShutdown

‘get rid of the button
On Error Resume Next

OcButton.Delete()
OcButton = Nothing

End Sub

Public Sub OnAddInsUpdate(ByRef custom As System.Array)
Implements Extensibility.
IDTExtensibility2.OnAddInsUpdate

End Sub

Public Sub OnStartupComplete(ByRef custom As
System.Array) Implements Extensibility.
IDTExtensibility2.OnStartupComplete

Dim oToolbars As CommandBars
Dim oStandardBar As CommandBar

On Error Resume Next

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 656

Book VIII
Chapter 1

Advanced Office
2003 Program

m
ing

Creating Add-Ins 657

‘ Add a button to the Standard toolbar
oToolbars = applicationObject.CommandBars

‘ Outlook must be handled differently.
‘ The CommandBars collection is a property of the

ActiveExplorer object
‘ in Outlook. So see if the oToolbars object has been

intantiated:
If oToolbars Is Nothing Then

‘ If it’s nothing, then we’re dealing with
Outlook, so instantiate it now:
oToolbars = applicationObject.ActiveExplorer.
CommandBars

End If

‘we’re using the “Standard” toolbar, but you could
use “Formatting” or whatever:

oStandardBar = oToolbars.Item(“Standard”)

‘ Another anomaly: Access calls the “Standard”
toolbar the “Database” toolbar.

‘ so again, if instantiation has failed, we must
instantiate this object differently:

If oStandardBar Is Nothing Then
oStandardBar = oToolbars.Item(“Database”)

End If

‘ Try instantiating this particular button:
OcButton = oStandardBar.Controls.Item(“Time”)

‘it’s possible that there was a power loss or other
disorderly exit from an application,

‘in which case, the button was not deleted from a
previous session

‘the button is deleted in the OnBeginShutdown event
in this class (above)

‘but if it does not yet exist, then add the button:
If OcButton Is Nothing Then

OcButton = oStandardBar.Controls.Add(1)
With OcButton

.Caption = “Time”

.Style = MsoButtonStyle.msoButtonCaption

‘ The tag property is needed by some apps
(think of it as a variable name:

.Tag = “Time”

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 657

Creating Add-Ins658

‘ The OnAction property deals with the
possibility that the add-in isn’t loaded

‘ but the user clicks the button. If this
happens, the add-in will be

‘ loaded automatically, and the button’s
click event will be triggered

‘ the OcButton_Click event is located in this
class (below).

.OnAction = “!<MyCOMAddin.Connect>”

.Visible = True
End With

End If

‘ kill these objects; they’re no longer needed:
oStandardBar = Nothing
oToolbars = Nothing

End Sub

Public Sub OnDisconnection(ByVal RemoveMode As
Extensibility.ext_DisconnectMode, ByRef custom As
System.Array) Implements Extensibility.
IDTExtensibility2.OnDisconnection

On Error Resume Next

‘ kill the app object and trigger the shutdown event
(if it’s not automatically raised).

If RemoveMode <> Extensibility.ext_DisconnectMode.
ext_dm_HostShutdown Then _
Call OnBeginShutdown(custom)

applicationObject = Nothing

End Sub

Public Sub OnConnection(ByVal application As Object,
ByVal connectMode As Extensibility.ext_
ConnectMode, ByVal addInInst As Object, ByRef
custom As System.Array) Implements Extensibility.
IDTExtensibility2.OnConnection

applicationObject = application
addInInstance = addInInst

‘ If startup isn’t in effect, call OnStartupComplete
here.

If (connectMode <> Extensibility.ext_ConnectMode.
ext_cm_Startup) Then _
Call OnStartupComplete(custom)

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 658

Book VIII
Chapter 1

Advanced Office
2003 Program

m
ing

Creating Add-Ins 659

End Sub

Private Sub OcButton_Click(ByVal Ctrl As Microsoft.
Office.Core.CommandBarButton, ByRef CancelDefault
As Boolean) Handles OcButton.Click

‘display the time
MsgBox(Now)

End Sub

End Class

After you add this code to the code that the wizard provided for you, test it.
In the VB.NET editor, choose Build➪Build ComTIME. Your new class will be
registered. Start Word, Excel, Outlook, or Access. Look at the Standard tool-
bar. There it is: The Time button has been added. Click it. You see a message
box displaying the date and time, as shown in Figure 1-3.

To remove this button or other add-ins from your applications, rebuild the
previous code (choose Build➪Build ComTIME, if that’s the name of your
add-in) after having added this exit line to the following event procedure:

Public Sub OnStartupComplete(ByRef custom As
System.Array) Implements
Extensibility.IDTExtensibility2.OnStartupComplete

Exit Sub

This will prevent the button from being added to the toolbars in the first
place. Then you can right-click the Standard toolbar, choose Customize from
the context menu, and drag the button off the toolbar. Or you can use

Figure 1-3:
Your add-in
has been
included in
Excel, and
when
clicked, it
does its job.

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 659

Creating Add-Ins660

RegEdit to search the registry for ComTIME and get rid of references to it in
the Add-Ins section for each application. Locate this registry entry for each
host application. (Excel’s is shown here.)

HKEY_CURRENT_USER\Software\Microsoft\Office\Excel\Addins

Adjusting add-in loading behavior
You can either delete the ComTIME entry under this add-in’s Registry loca-
tion or adjust the add-in’s loading behavior according to the following
LoadBehavior chart. Changing this value changes how the add-in works
when one of its host applications starts running. You can combine these
values; for example, a value of 3 means both Is loaded and Load on applica-
tion startup:

Value Name Means This

0 Disconnect Is not loaded

1 Connected Is loaded

2 Bootload Load on application startup

8 DemandLoad Load only when requested by user

16 ConnectFirstTime Load only once (on next startup)

The default value 0x00000003 means Connected and Bootload. Don’t be
put off by the bizarre numbering system. It’s cute that some programmers
always seem to think that confusion, noise, and oddity are preferable to
clear, informative, ordinary notation.

08b_570676 bk08ch01.qxd 6/4/04 10:27 PM Page 660

Chapter 2: Exploring XML

In This Chapter
� Understanding XML

� Seeing how XML exploits extensibility

� Using XML and HTML

� Mastering the terminology

� Using namespaces

� Working with XSD

� Using XML data types

� Using schemas

� Using XML in Office 2003

� Programming manipulations

This chapter begins with an overview of XML: its components, derivative
languages, and uses. It concludes with examples illustrating how to

manage and access XML features within Office 2003 applications program-
matically via VBA code. I demonstrate a range of XML technologies, includ-
ing namespaces, XSD, XML data types, and programming XML in Office 2003.

An XML Primer
The purpose of XML is to structure data, using an ordinary text file like
those created in Notepad. In other words, no special codes, no executables,
no tricky compression, no proprietary formats, no hidden constructs, and
nothing behind the curtain. It’s all out there, in plain text, without having
to use a special program (such as the program that produced the data) to
read it.

Even though it’s a text file, XML isn’t really read by anyone except a pro-
grammer, and even programmers try to avoid the tedium of translating into
or out of XML. XML is stored as plain text because that makes it easier to
debug. Also, it’s easier to fix a bad XML file if you can edit it with simple,
good old Notepad. And, alas, sometimes you do have to create filters that
translate the raw XML into a format usable by a legacy application.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 661

Seeing XML Support in Office662

XML files are necessarily larger than a comparable amount of information
when stored in binary format (particularly if you use a simpler, more com-
pact way to delimit the data), but so what? A goal that drove early computer
programmers was to conserve precious memory. That goal is no longer sig-
nificant. Memory chips are cheap these days, and you can get a 120GB hard
drive for under $100 on sale. If you’re concerned about transmitting the XML
(after all, data transmission is a major reason for XML’s existence), many
compression schemes are in use today that can effectively reduce the band-
width requirements of a text file down to close to the load imposed by pure
binary data.

Seeing XML Support in Office
The standard for sending messages in the computer world, XML — or its off-
spring, such as Simple Object Access Protocol (SOAP) — is also being used
in a variety of other ways to assist with data storage, interoperability, and
so on. Office 2003 includes considerable support for XML, as does the .NET
world.

XML implementation is limited in some editions of Office 2003 applications.
For example, aside from being able to save documents in XML format, all
other XML support in Word 2003 is available only in Office Professional
Edition 2003 and standalone Microsoft Office Word 2003.

For example, a table in Access can quickly and easily be saved in XML. To
see how, follow these steps:

1. Run Access and load the Northwind.mdb sample database.

2. Click Tables in the main database window.

You see a list of the Northwind tables, as shown in Figure 2-1.

Figure 2-1:
These
tables are
currently
stored in
Access’s
MBD
format,
but soon
they’ll be
translated
to XML.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 662

Book VIII
Chapter 2

Exploring XM
L

Seeing XML Support in Office 663

3. Double-click Products in the main database window.

You see the Products table displayed.

4. Choose File➪Export.

The Export Table dialog box appears.

5. In the Save as Type drop-down list, choose XML.

6. Click the Export All button.

You see the Export XML dialog box, as shown in Figure 2-2.

7. Leave the default Data and Schema of the Data check boxes selected.

You want to save your table in two XML files.

• XSD file: Describes the structure of the table (its fields and their data
types)

• XML file: Saves the actual data

To preserve the formatting of a report or other formattable document,
you could also choose to save a third file (XSL).

8. Click the More Options button.

You see additional choices, as shown in Figure 2-3. Here you can specify
which data is saved, how much of the schema to save, whether to include
graphics (from the Presentation tab), and other options.

9. Click OK.

The XSD and XML files are saved.

Figure 2-2:
Decide here
how many
XML files
you want
to save.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 663

Seeing XML Support in Office664

If you examine the schema file (the XSD file), you see the structure of your
table described, using the element/attribute format typical of XML:

<xsd:element name=”ProductID” minOccurs=”1” od:jetType=
”autonumber” od:sqlSType=”int” od:autoUnique=
”yes” od:nonNullable=”yes” type=”xsd:int”/>

<xsd:element name=”ProductName” minOccurs=”1” od:jetType=
”text” od:sqlSType=”nvarchar” od:nonNullable=
”yes”>

<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:maxLength value=”40”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

The data file (the XML file) maps to the schema, with each record contained
in a <Products> element:

<Products>
<ProductID>1</ProductID>
<ProductName>Chai</ProductName>
<SupplierID>1</SupplierID>
<CategoryID>1</CategoryID>
<QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
<UnitPrice>18</UnitPrice>
<UnitsInStock>39</UnitsInStock>
<UnitsOnOrder>0</UnitsOnOrder>
<ReorderLevel>10</ReorderLevel>
<Discontinued>0</Discontinued>
</Products>

Figure 2-3:
Find
additional
saving
choices
here.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 664

Book VIII
Chapter 2

Exploring XM
L

Exploiting Extensibility in XML 665

The table has been rapidly transformed into XML. You can, of course, go
in the other direction. However, Access (being Access) does things a bit
strangely. Always the red-headed stepchild, instead of putting the Import
option on the File menu next to the Export option, Access hides it away a bit.
To import an empty table (XSD schema file) or a table filled with data (XSD
plus associated XML files), choose File➪Get External Data➪Import.

In Book VII, Chapter 3, I explore various Office 2003 XML features that allow
you to publish documents as Web pages. Most Office 2003 documents can be
saved as HTML. However, when saved, Office-specific formatting can also be
saved simultaneously. Not only can you export to a browser from an Office
2003 application, you can take the return trip and translate the HTML back
into an Office document.

Word 2003 also permits a filtered style of document-to-Web page translation,
resulting in simpler and more compact HTML files. This topic is examined in
Book III, Chapter 4.

Exploiting Extensibility in XML
XML was designed to be extensible (you can add new descriptive categories
to it), as unambiguous as possible, and (that long-sought-after yet elusive
goal) platform-independent.

It’s extensible because you can make up as many different descriptive names
(element names and attribute names) as you wish. For example, if you’re in
charge of a summer camp, you can create a data structure in XML that con-
tains elements (tags) like these: Name, Age, SpecialMeals,
PersonalityDrawbacks, Allergies, Hobbies, EmergencyPhoneNumber,
PreviousExperience, and so on. Within your summer camp and other
places in your organization, you can easily establish rules about how to
access these tags and how to manage the data contained between the tags.
Even different organizations exchanging XML files across the Internet should
be able to manage the tag structures without any great difficulties.

You can use XML to transmit and store a variety of kinds of information.
Here are some of the different types of data that can be stored in an XML
document:

✦ A structured record, such as a student’s school records

✦ Regular text documents

✦ A DataSet (the result of a query against a data store)

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 665

Comparing XML and HTML666

✦ A control, such as a UserControl, an ActiveX, or a Page control

✦ A description of a user interface

✦ Other standardized graphics data

XML arrives at a client machine as a self-contained package. After it arrives
at a client machine, the user can then manipulate, view, and otherwise inter-
act with the XML package without requiring any round-trips to the server.
This, of course, takes a load off the server.

Another efficiency of XML is granular updating. If some data has changed in
an XML document, only the changed element (not the entire document)
needs to be sent from server to client (or vice versa). Also, if new elements
are added to an XML document, only those elements must be sent to the
client browser. (ASP.NET, though, rebuilds an entire page of HTML each time
it receives a request from a browser.)

Comparing XML and HTML
When you first see an XML file, you can be forgiven for thinking that it must
be HTML. They share punctuation and structural features in common but no
real underlying commonality. Both use < > symbols to bracket what both call
tags. Quite often tags — elements — in XML are similar to arrays in Visual
Basic, containing an entire set of variables. However, in a simple XML ele-
ment (containing only one value), the element/value pair is similar to the VB
variablename/value pair.

<cookie>sugar</cookie>

This XML code defines this particular value, sugar, as being a particular
cookie. You might also have this element. (A start/end tag pair and the data
within it are usually called an element.)

<dancer>sugar</dancer>

This other element, in the same file, defines a person and the name (sugar).
Both HTML and XML use attributes name/value pairs written in the form
SomeName=”MyValue”, which also roughly corresponds to variablename/
variable value pairs in VB. However, XML is primarily a way of transmitting
data from one place to another. The transmitting agent (the application that
generates the XML) merely treats the tags and attribute names as delimiters:
that is, as ways of naming and indicating the start and end of items of data.
It is up to the receiving application to interpret the meaning of the tags
although along with the XML file, a schema file is usually sent defining, via

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 666

Book VIII
Chapter 2

Exploring XM
L

Deciding Whether to Use an Element or Attribute 667

metadata in an XSD file (the structure of the XML data). Likewise, if format-
ting, graphics, or other presentation layout information exists for this data,
an XSL file accompanies the other two.

Unlike HTML, in which the tag
 always means line break (move to the
next line on the screen), in an XML file,
 could mean anything: branch,
broken cookies, Mrs. Simpson’s bank statement, or anything else. It’s similar
to the way you can assign a variable name such as ArtView to a particular
graphic filename that might contain a picture of Toronto, your puppy, or
indeed anything else (perhaps Art’s opinions). It’s up to your application
how it interprets ArtView and what it does with the value represented by
that word. Put another way, HTML is a simple computer language dedicated
to describing the appearance of a document. (Its tags and attributes tell the
computer how to arrange text, color, and so on.) Comparatively, XML is a
way to structure and communicate data.

Attributes are not required, but an element can contain one or more of them,
and they can be listed in any order. Attributes always use the = sign to sepa-
rate the attribute’s name from its value:

<BOSS BOXNUMBER=”1”>Jack Jackson</BOSS>

BOSS is an element, and BOXNUMBER=”1” is an attribute of that element.

Each XML tag pair contains a datum. A tag pair is similar to a field (or column)
in a database. However, there is no requirement for a one-to-one mapping
between XML tag-pair content and the records in a database. Indeed, XML
often packages information from various sources or even computed informa-
tion (the way that a spreadsheet can combine two or more data into a third
data that represents an arithmetic or other computation against the original
data). Don’t be concerned about name collisions — that different tags from
different XML documents might share the same name. You’ll see the solution
to this potential problem later in this chapter in the section on namespaces.

Deciding Whether to Use an Element or Attribute
You might be wondering about the difference between an element and an
attribute. In truth, you can store data in either one. Keep in mind, however,
a few practical differences when designing an XML document or pouring a
database table (or list) into it:

✦ Elements can be contained within a structure similar to the Select
Case structure. In a schema, you can use a <CHOICE> tag to contain sev-
eral elements in the source code, only one of which can be active in a
given context.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 667

Understanding XML Terminology668

✦ The order in which attributes are listed in the source code is irrele-
vant. However, you can specify in a schema that the order of elements
does, in fact, matter.

✦ Elements can be used more than one time in an XML schema.
Attributes cannot.

✦ Elements can contain attributes. Attributes cannot contain elements.

✦ Attributes can limit their permitted contents to a small set of strings
delimited by spaces. Elements cannot do this. Limit an attribute’s con-
tents to these three strings, for example:

<AttributeType name=”Temp” dt:values=”cold warm hot” />

✦ Attributes can have default contents. However, the attribute must be
left out of an element, like this:

<AttributeType name=”Qualified” dt:type=”boolean”>
<attribute type=”Qualified” default=”0”/>

✦ You cannot provide alternative attributes (for example, “CheckedOut”
or “Shelved”). You can do this with elements.

✦ Your schema can specify that a particular attribute is either required
or optional. To make it required, use the following:

<AttributeType name=”Rating” required=”yes”/>

✦ Elements encapsulate attributes, so different attributes in different
elements in the same XML document can have the same name. The
beginning and ending tag pair of an element creates a scope for any
attributes contained within the element. This is similar to how a proce-
dure contains local variables in VB .NET. (You can reuse the same
variable names with different local variables if they’re in different
procedures.)

Understanding XML Terminology
An XML element consists of a start tag, an end tag, and the data that the tags
enclose. The enclosed data is sometimes called the element’s content. One dif-
ference between XML and HTML is that HTML has a limited set of predefined
tags whereas XML permits an unlimited number of tags (just as VBA permits
an unlimited number of variable names). HTML tags describe how the content
looks in a browser; XML tags describe the meaning of the content (<DayOfThe
Week>Monday</DayOfTheWeek>). Just like coming up with descriptive vari-
able names is the responsibility of the VB programmer, coming up with
descriptive tag names is the responsibility of the XML programmer.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 668

Book VIII
Chapter 2

Exploring XM
L

Understanding XML Terminology 669

Nesting within XML
XML elements can be nested, like this:

<films>
<film copyrightnumber=”133117”>
<name>Annie Hall</name>
<director>Woody Allen</director>
<star>Diane Keeton</star>

</film>
</films>

The preceding example, with its nested elements, begins with a unique first
element (the root note). In this case, the films root node can contain many
<film> elements; these element tags need not be unique.

Using data islands in XML
If you wish, you can insert XML data into an HTML page and then use VB to
access that data. The ways to insert XML into HTML are data islands. To
create a data island, use the HTML tag <XML> like this and put an XML docu-
ment inside the tags:

<XML ID=”Movies”>
<films>
<film copyrightnumber=”133117”>
<name>Annie Hall</name>
<director>Woody Allen</director>
<star>Diane Keeton</star>

</film>
</films>
</XML>

Or, if you prefer, you can provide a filename instead that contains the XML
document, like this:

<XML ID=”Movies” SRC=”movies.xml”></XML>

Paying attention to XML strictness
Don’t be misled: XML is far more strict in some ways than HTML. As you
probably know, HTML ignores lots of kinds of broken rules. You can leave
out the <HEAD> tag or sometimes write impossible attribute values or forget
to use quotes around a value. Usually, when coming upon such an error,
HTML simply ignores it and goes on to the next tag or attribute. HTML might
punish you by not displaying something in the browser, but that’s it. HTML
will ignore various slip-ups on the programmer’s part. In this respect, HTML
is quite a bit looser and less demanding than (for example) VB or any other
programming language.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 669

Understanding XML Terminology670

XML, however, is very strict. Absolutely no missing quotes or missing tags
are permitted. (XML is said to demand that your XML code must be well-
formed.) If an application reading XML comes across such an error, that
application is supposed to reject the entire XML file and stop in its tracks,
raising an error. It’s all or nothing. What’s more, XML (unlike HTML or
BASIC) is case-sensitive: <cookie> is a different tag than <Cookie>.

Fortunately, testing an XML document to see whether it is well-formed is rel-
atively simple. XML has pretty simple punctuation rules; for example, each
pair of tag names must be surrounded by <> </> symbols. Little, simple
utilities called parsers can check through XML code to see whether it’s well-
formed in simple terms.

Validating a Word document
An XML file can also be validated against its own schema file. Word 2003 can
validate XML if a schema is attached to a document. Any schema violations
are shown in the XML Structure task pane. To activate this feature, choose
Tools➪Templates and Add-Ins. From the XML Schema tab, select the Validate
Document Against Attached Schemas check box.

You can also watch the XML Structure task pane while working on an XML
document to ensure its validity. Errors are flagged with icons next to each
element.

Ensuring valid and well-formed XML
You can include a Document Type Definition (DTD) with an XML document.
XML with a DTD (or XSD) is called valid XML. The DTD defines the rules that
govern the structure and vocabulary of the tags in the document. If a pro-
grammer is writing an application that will receive and manipulate such an
XML document, he can study the DTD to learn the rules that define the data
structure. You could even write an XML parser utility to check XML docu-
ments to ensure that they conform to the DTD. DTDs are optional.

A well-formed XML document can be thought of as self-describing, particu-
larly if the person who creates the tags and the structure does a good job.
You will agree that this XML structure is pretty effectively self-describing:

<film copyrightnumber=”133117”>
<name>Annie Hall</name>
<director>Woody Allen</director>
<star>Diane Keeton</star>

</film>

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 670

Book VIII
Chapter 2

Exploring XM
L

Using Namespaces in XML 671

Seeing the Many Faces of XML
XML itself is merely a specification that describes what tags and attributes
are and how they are to be used. However, several auxiliary technologies
expand and assist XML. For instance, XML (like HTML) can use Cascading
Style Sheets (CSSes) or the even more advanced styles technology XSL,
which can reorder or add and delete tags and attributes. The XML Linking
Language (XLink) provides a standardized method to include hyperlinks
within an XML file.

The Document Object Model (DOM) is a way for programs to read and write
to XML, adjusting the style, content, and structure of the XML file. DOM
offers a standardized set of objects and also a standard framework that
describes how the objects can be manipulated or combined. Therefore, the
DOM can be considered an interface to the many proprietary Application
Program Interfaces (APIs) and XML data structures, making it possible for a
programmer to work with standard DOM interfaces rather than having to
study proprietary APIs. For example, Ford and GM are likely to use different
tags to represent the number of steering wheels in their inventory, and they
are likely to use different applications and interfaces to manipulate those dif-
ferent tags. But with DOM, a programmer can count on a known, abstract
interface that will work with either the Ford or GM APIs.

Also supporting XML are XML schemas, which assist programmers define
their own, proprietary XML structures. Schemas, including one proposed by
Microsoft, ultimately go beyond self-describing tags (understood by pro-
grammers) to self-describing data structures (understood by programs
themselves, without the direct aid and translation of a programmer).

Using Namespaces in XML
XML namespaces help prevent collisions that can happen when attribute
names or tags are identical if a document contains multiple markup
vocabularies (more than one namespace). The namespace allows you to
differentiate between different markup vocabularies. It works because each
namespace is given a unique number. Commonly, a different URL is assigned
to each namespace. By definition and design, URLs are unique: Only one
possible number exists for each URL anywhere in the world of the Internet.
Sometimes a Uniform Resource Number (URN) is used instead. In either
case, the number is unique and prevents collisions of the names that you
use in different vocabularies.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 671

The Explosion of Schemes672

Using explicit declaration
Just like with variables in VBA, VB6, and earlier versions, you can either
explicitly declare a namespace, or you can let it happen implicitly (more on
this in the following section).

Explicit declarations keep things straight if your node contains elements
from more than one namespace. You use a shorthand name for the name-
space that you use as a prefix (like an alias) to specify which namespace an
element belongs to.

<mo:film xmlns:mo=”urn:FilmSociety.com:FilmData”
xmlns:directors=”urn:CinemaHistory.com:Directors”>

<mo:name>Annie Hall</mo:name>
<directors:director>Woody Allen</directors:director>

</mo:film>

xmlns is the attribute used to declare a namespace and, at the same time,
specify a prefix that represents the namespace. In the preceding example,
I define a prefix (mo) that represents the namespace identified by the unique
value of “urn:FilmSociety.com:FilmData”. I also declare a second name-
space (“urn:CinemaHistory.com:Directors”) and assign directors as
its prefix. Then I use the mo prefix to indicate that the name element belongs
to the “urn:FilmSociety.com:FilmData” namespace. Next I use the
directors prefix to specify that the director element belongs to the
“urn:CinemaHistory.com:Directors” namespace. In this way, you can
freely employ elements from different namespaces, not having to worry that
you’ll run into duplicate (and therefore ambiguous) element names. The pre-
fixes prevent confusion if more than one element has the same name.

Using implicit declaration
With implicit declarations, all the elements inside its scope belong to the same
namespace; thus, a prefix is not needed. You accomplish implicit declaration
by simply leaving out the prefix when you declare the namespace, like this:

<film xmlns=”urn:FilmSociety.com:FilmData”>
<name>Annie Hall</name>
<star>Diane Keaton</star>

</film>

The Explosion of Schemes
As you probably can guess, the extensibility of XML is a double-edged sword.
Allowing folks to create their own tag vocabulary and data structures could
quickly result in thousands of unique, proprietary XML schemes.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 672

Book VIII
Chapter 2

Exploring XM
L

Understanding XSD 673

In the early 80’s, an intriguing language named Forth fascinated many pro-
grammers. It permitted a crude form of inheritance and polymorphism. You
built a program by renaming the low-level language functions and redefining
the language by adding functionality to the functions as you went along. The
problem was that each application contained many unique statements that
only the programmer could understand (if even he or she could figure it out
after a few weeks passed).

Similarly, if every organization builds its own set of XML structures and tags,
each organization generates a new language unique to itself. All these new
languages will share the XML punctuation and syntax rules, but the actual
vocabulary will be special to each implementation. How you navigate the
structures, what the tags mean, the hierarchy, the relationships, and the
diction . . . all this differs among the many thousands of versions of XML
schema invented by each organization.

Microsoft and others have proposed sets of rules: schemata. One such initia-
tive is Microsoft’s BizTalk, a site that attempts to gather information about
XML, XSL, and other data models used by all those thousands of organiza-
tions. See www.biztalk.org for further details.

Understanding XSD
Microsoft programming focuses on XSD (schema files) rather than DTD or
other alternatives. (Read about DTD files in the earlier section, “Ensuring
valid and well-formed XML.”) Take a brief look at what you can do with XSD.

A schema is a structured framework (or diagram) that is meant to clarify and
describe a set of related ideas. A blueprint, for example, is a schema that
describes all the elements in what will be a house. If you are deeply into
object-oriented programming (OOP) thinking, you might want to visualize
a schema as a class and an XML document that uses that schema as an
object — an instance of the class.

A schema is metadata: data about data. The metadata (or schema) for a data-
base comprises the names and relationships between tables, fields, records,
and properties of that database. Similarly, an XML document can be thought
of as another kind of database. And an XML schema is a description of the
structure of an XML document. If you own a grocery store, you can use XML
to communicate your inventory needs to your suppliers as long as you both
use the same XML schema.

VB.NET contains a tool, the XML Designer, which you can use to build and
modify XML schemas and the resulting XML documents. This designer
shows you both source code and diagrams of a schema.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 673

Understanding XSD674

Microsoft has selected XSD as its favored schema builder because it

✦ Permits you to group elements and attributes (to assist you in repeating
the groups).

✦ Contains KEY and KEYREF statements, which allow you to create one-to-
many relationships and uniqueness constraints.

✦ Supports inheritance, namespaces, and extensibility (not simple XML
tag extensibility: rather, the extension of a schema itself).

✦ Employs XML to define the XSD schemas. (Thus, it has the benefits that
XML offers over other data definition techniques.)

Here’s an example of a typical XSD schema. Notice that there is no actual
data content here (no proper names such as Bobby or numeric values such
as a phone number). Instead, you have a list of elements, their data type,
and a definition of their structural relationship within a sequence. This is
quite like creating an array or type of declared variable names:

Dim FirstName as String
Dim LastName as String
Dim ZipCode as Integer
Dim Address as String

Here’s the declaration of a complex data type using XSD:

<?xml version=”1.0” encoding=”utf-8”?>

<schema targetNamespace=”http://CardCorp.com/XMLSchema1.xsd”
xmlns=”http://www.Nams.com/Ars/XMLSchema2”>

<complexType name=”customerType”>
<sequence>

<element name=”LastName” type=”string”/>
<element name=”FirstName” type=”string”/>
<element name=”StreetAddress” type=”string”/>
<element name=”City” type=”string”/>
<element name=”State” type=”string”/>
<element name=”ZipCode” type=”integer”/>

</sequence>
</complexType>

</schema>

The line that begins with ?xml describes which version of XML this docu-
ment uses. The following line, beginning with <schema, describes which XSD
schema file is being used and also specifies the namespace.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 674

Book VIII
Chapter 2

Exploring XM
L

Understanding XSD 675

Using XML data types
The type of an element or attribute can be either one of the standard types
defined by the World Wide Web Consortium (W3C) or can be simple or com-
plex types that you defined earlier in your schema.

Here in Table 2-1 is the full set of data types supported in XML.

Table 2-1 Data Types Supported in XML
Type Example

bin.base64 MIME-style, base 64-encoded binary BLOB.

bin.hex Hexadecimal digits representing octets.

Boolean 0 = false, and 1 = true.

Char A string one character long.

Date Date in a subset ISO 8601 format, without the time data. Example:
1945-12-26. (Note that this is different from normal American date
expression, which uses the format month/day/year.)

DateTime Date in a subset ISO 8601 format, with optional time and no optional
zone. Fractional seconds can be as precise as nanoseconds. Example:
1998-05-04T17:22:01.

DateTime.tz Date in a subset ISO 8601 format, with optional time and optional zone.
Fractional seconds can be as precise as nanoseconds. Example:
1998-05-04T17:22:01-04:00.

fixed.14.4 Same as Number but no more than 14 digits to the left of the decimal
point and no more than 4 to the right.

Float Real number, with no limit on digits. It can potentially have a leading
sign, fractional digits, and optionally an exponent. Punctuation as in
U.S. English. Values range from 1.7976931348623157E+308 to
2.2250738585072014E–308.

Int Number, with optional sign, no fractions, and no exponent.

Number Number, with no limit on digits. It can potentially have a leading sign,
fractional digits, and optionally an exponent. Punctuation as in U.S.
English. Values have same range as most significant number, R8,
1.7976931348623157E+308 to 2.2250738585072014E–308.

Time Time in a subset ISO 8601 format, with no date and no time zone.
Example: 04:12:22.

time.tz Time in a subset ISO 8601 format, with no date but optional time zone.
Example: 04:12:22-04:00.

i1 Integer stored in one byte. Number, with optional sign, no fractions, and
no exponent. Examples: 5, 110, –128.

(continued)

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 675

Understanding XSD676

Table 2-1 (continued)
Type Example

i2 Integer stored in one word. Number, with optional sign, no fractions,
no exponent. Examples: 1, 323, –32768.

i4 Integer stored in four bytes. Number, with optional sign, no fractions,
no exponent. Examples: 1, 323, –32768, 115295, –1000000000.

r4 Real number, with seven-digit precision; can potentially have a leading
sign, fractional digits, and optionally an exponent. Punctuation as in
U.S. English. Values range from 3.40282347E+38F to 1.17549435E–38F.

r8 Real number, with 15-digit precision; can potentially have a leading
sign, fractional digits, and optionally an exponent. Punctuation as in
U.S. English. Values range from 1.7976931348623157E+308 to
2.2250738585072014E–308.

ui1 Unsigned integer, stored in one byte. Number, unsigned, no fractions,
no exponent. Example: 6, 255.

ui2 Unsigned integer, two bytes. Number, unsigned, no fractions,
no exponent. Example: 6, 255, 65535.

ui4 Unsigned integer, four bytes. Number, unsigned, no fractions,
no exponent. Example: 6, 999, 3000000000.

Uri Universal Resource Identifier (URI). Example:
urn:Myschemas-MyLocation-com:Teaoram.

Uuid Hexadecimal digits representing octets, optional embedded hyphens
that are ignored. Example: 246B7CC2–150E– 22C0– CD11– 3000D8987B29.

Some programmers prefer to use only the string type for XML files, and then
in applications, convert the strings to other types as necessary.

If you want to use data types supported by Internet Explorer 5 and above,
include the following datatypes namespace:

<schema name=”YourSchema”
xmlns=”urn:schemas-microsoft-com:xml-data”
xmlns:dt=”urn:schemas-microsoft-com:datatypes”>

<!-- define your schema here -->

</schema>

You are allowed to specify data types for attributes as well as elements; how-
ever, with attributes, there are fewer permitted types. The types permitted
for use with attributes are string, id, idref, idrefs, nmtoken, nmtokens,
entity, entities, enumeration, and notation. For example:

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 676

Book VIII
Chapter 2

Exploring XM
L

Specifying Content in an XML Schema 677

<AttributeType name=”Overdue” dt:type=”idref”/>
<attribute type=”Overdue”/>

If an attribute has an idref data type, that attribute contains a unique iden-
tifying value in the document. (Think of the ID of a VB control that must be
unique in a given Web Form, or of the ID in an HTML document, which also
must be unique in that document.) However, note the two similar XML data
types in a schema: id and idrefs.

Attributes with the type id are references to the element that uses the same
id. idrefs is like id, but idrefs contains a list of ids separated by spaces:

<LateCharge creditcard=”First Second Third”>

Note that elements support the id attribute data type only in Internet
Explorer 5.01 and above:

<ElementType name=”Factory”>
<datatype dt:type=”id”>

</ElementType>

Declaring simple XML data types
To declare simple (Boolean, Float, and such) data types for attributes in
your schema, just use the <datatype> element within an <AttributeType>
element, like this:

<AttributeType name =”MyAttributeType”/>
<datatype dt:type=”int”/>

</AttributeType>

<ElementType name=”Points”>
<attribute type=”MyAttributeType”/>

<ElementType>

Specifying Content in an XML Schema
You can use previously defined ElementTypes to build a new, more complex
ElementType, like what you see in Listing 2-1.

Listing 2-1: Building a More Complex ElementType

<schema xmlns=”http://www.Nams.com/Ars/XMLSchema2”>

<ElementType name=”LastName”/>
<ElementType name=”FirstName”/>

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 677

Extending a Schema678

<ElementType name=”StreetAddress”/>
<ElementType name=”City”/>
<ElementType name=”LastName”/>

<ElementType name=”Voter” order=”seq”>
<element type=”FirstName” />

<element type=”LastName” />
<element type=”StreetAddress” />
<element type=”City” />

</ElementType>

</schema>

In this example, I built the Voter element out of four previously defined ele-
ments. I also use <seq> to specify that the four elements must be in
sequence.

XML that correctly follows the previous schema looks like this:

<Voter xmlns=”Myschema:Voter-schema.xml”>
<FirstName>Jon</FirstName>
<LastName>Popodoupolous</LastName>
<StreetAddress>922 W. Archer St.</StreetAddress>
<City>Bogotoa</StreetAddress>
</Voter>

Extending a Schema
Schemas can be freely extended (you can add new elements and attributes
that go beyond what is defined in the schema) as long as you follow a few
rules. This means that a schema’s content model is by default open,
although you can force it to be closed if you wish by using the
model=”closed” attribute.

If you want to extend an open-content model, you must remember that you
can add new, undeclared elements only if they are in a new namespace. For
example, here I add a new namespace with the prefix n:

<Voter xmlns= xmlns=”Myschema:Voter-schema.
xml” xmlns:n=”urn:AnotherNamespace”>

Now I can add an attribute from the n namespace, like this:

<FirstName>Jon</FirstName>
<LastName n:Alpha = “P”>Popodoupolous</LastName>

or add a new element from the n namespace, like this:

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 678

Book VIII
Chapter 2

Exploring XM
L

Extending a Schema 679

<StreetAddress>922 W. Archer St.</StreetAddress>
<City>Bogotoa</StreetAddress>
<n:Country>Chile</n:Country>
</Voter>

You can’t add (or delete) any content from the model that would violate
the content model rules. In the original schema (Listing 2-1), I use the
order=”seq” attribute to require that the FirstName, LastName,
StreetAddress, and City elements be sequential. You are allowed to add
new attributes to these elements, but you are not allowed to violate the
sequence of the elements. That is, you cannot remove one of the required
four elements nor insert a new element above or within the sequence. The
<Voter> element must begin with the four elements although you can add
additional elements below those four elements. Also, if you want to add
more FirstName elements to <Voter> (to accommodate people like many
first names, like Prince Charles Albert James . . .), you can do it, but these
new FirstName elements must be appended to the sequence. In other
words, you must add new FirstName elements after the <City> element.
Otherwise, you would violate the sequence as defined in the schema.

If for some reason you want to freeze a content model and not permit any
extensibility, simply use the following attribute in the schema:

<ElementType name=”Voter” order=”seq” model=”closed”>

With this directive in place, any added or deleted elements — any changes
to the original schema at all — will not validate. It doesn’t matter if you add
new namespaces. Closed means closed.

The order attribute can be used with the seq value in a schema to freeze a
sequence of elements. You can also use the one value with the order attrib-
ute to require that only one, single sub-element (an element within another
element) must be used (from a list of possible sub-elements). For example,
you might want to specify that only one of the following elements can be
used: <ZipCode> or <CountryCode> but not both. Here’s how:

<ElementType name=”Code” order=”one”>
<element type=”ZipCode” />
<element type=”CountryCode” />

</ElementType>

If you want to go in the other direction and throw all caution to the winds,
use the many value with the order attribute. The many value says that there
can be any number of sub-elements and that they can appear in any order as
well.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 679

Using the Content Attribute680

Sometimes you might need to specify an order on some of the sub-elements
but want to leave the rest of the sub-elements unaffected by the order rule.
To do that, use the group element. For instance, isolate the ZipCode or
CountryCode elements by forcing them to be either/or but not extending
this rule to other sub-elements:

<ElementType name=”Code”>

<group order=”one”>
<element type=”ZipCode” />
<element type=”CountryCode” />

</group>

<element type=”PhoneNumber” />
<element type=”Age” />

</ElementType>

In this example, either ZipCode or CountryCode will be used but not both.
However, both PhoneNumber and Age will be required.

The group element has two other possible attributes: minOccurs and
maxOccurs. These attributes define how often a given sub-element can
appear within a container element. You can specify maxOccurs by using an
integer (maxOccurs=”5” means that no more than five of this sub-element
can appear) or an asterisk to indicate that there can be unlimited numbers
of the sub-element:

<element type=”Voter” maxOccurs=”*” />

The default value for maxOccurs is 1; however, if the content=”mixed”, the
default value for maxOccurs is “*”.

MinOccurs defines the minimum number of times that a given sub-element
can appear. MinOccurs defaults to 1, but if you set it to “0”, the inclusion of
that sub-element is then optional.

Using the Content Attribute
Elements can contain other elements (called sub-elements), and/or text, or
simply be empty of content. You can use the values textOnly and eltOnly
mixed and empty as values for the content attribute of an element. These
values specify the permitted content for that element.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 680

Book VIII
Chapter 2

Exploring XM
L

Using Office XML Programming 681

If you want to insist that an element contain text but can contain no other
elements (nor be empty), use the textOnly value:

<ElementType name=”FirstName” content=”textOnly” />

If you use the empty value, no text or sub-elements are permitted. The mixed
value permits you to use both text and sub-elements. Or, to specify that an
element must contain sub-elements but no other content, use this variation.
(elt is short for element.)

<ElementType name=”Voter” content=”eltOnly” />

If you define a data type for an element, textOnly becomes the default con-
tent specification.

If the content attribute is eltOnly, the order value defaults to seq. If the
content attribute is mixed, the order value defaults to many.

Using Office XML Programming
Now that the tools are in place in Office 2003 applications, managing XML
from within VBA is not difficult. Various classes added to the VBA object
hierarchy permit you to accomplish pretty much anything with XML, includ-
ing these tasks:

✦ Add, delete, cut, copy, move, and edit XML elements or attributes.

✦ Attach schemas to XML documents or the schema library.

✦ Save the document in either plain XML or with Word markup tags.

✦ React via code to events, including the user moving the insertion point,
deleting elements, violating a schema, or adding a new schema.

✦ Apply custom eXtensible Stylesheet Language Transformation (XSLT)
transforms.

✦ Add custom XML document validation error handling.

Try this example in Word:

1. Open a new, blank document.

2. Press Alt+F11.

The VBA Code window opens.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 681

Using Office XML Programming682

3. Press Ctrl+R.

Project Explorer opens.

4. Click the name of the new, blank document.

Document names are in boldface.

5. Choose Insert➪Module from the VBA menu.

A new module appears.

6. Create a sample XML and XSD file pair to work with in this example.

a. Run Access and load Northwind.mdb (the sample database that
comes with Access).

b. Click the Tables icon in the left pane of the main database window.

c. Double-click the Employees table (in the right pane of the main data-
base window) to open and view this table.

d. Choose File➪Export.

e. In the Save as Type field of the Export table dialog box, choose .xml.

f. Save it to C:\, your root directory.

g. Click Export All.

h. When the Export XML dialog box appears, click OK.

7. Right-click the XSD file, choose Open with Notepad, and look in the
XSD file for a targetNamespace.

If you’re using the Employees.xsd created in Step 6, there is no
targetNamespace. However, some XSD files will have one, and it looks
something like this:

targetNamespace=”http://www.tempuri.org/dsOrders.xsd”

8. Type the following into your new module.

Use whatever is your XSD file’s targetNamespace for the
NamespaceURI in the following code if there is a targetNamespace:

Sub XM()

ActiveDocument.XMLSchemaReferences.Add _
NamespaceURI:=”http://www.tempuri.org/dsOrders.

xsd”, _
Alias:=”Emps”, _
FileName:=”C:\Employees.xsd”, _
InstallForAllUsers:=True

End Sub

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 682

Book VIII
Chapter 2

Exploring XM
L

Using Office XML Programming 683

Otherwise (if there is no targetNamespace, as with the Employees.xsd
sample file), you can just make up a NamespaceURI, like this:

Sub xm()

ActiveDocument.XMLSchemaReferences.Add _
NamespaceURI:=”Nspc”, _
Alias:=”Emps”, _
FileName:=”C:\Employees.xsd”, _
InstallForAllUsers:=True

End Sub

9. Press F5 to execute this code.

You’ve added a new XML schema to your document. You can see it by
choosing Tools➪Templates and Add-Ins and then clicking the XML
Schema tab, as shown in Figure 2-4.

If you try to execute this code again — with the schema already attached —
you’ll get an error message (Error 6106, Requested schema cannot be
found.) This error message is incorrect. The schema is obviously still
there, but you are not allowed to try to import it if it’s already active in the
document.

Viewing and applying a schema
After the schema is attached to the document (from the preceding section),
try viewing and applying the schema.

Figure 2-4:
You’ve
program-
matically
added this
schema to
your Word
document.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 683

Using Office XML Programming684

1. Choose View➪Task Pane.

The XML Structure task pane should appear. If some other task pane
shows up, click the down arrow in the task pane’s title bar and choose
XML Structure.

2. At the very bottom of the XML Structure taskbar, clear the List Only
Child Elements of Current Element check box to deselect it.

You want to see the entire schema, as shown in Figure 2-5.

3. Type the word Betty in your document and drag your mouse to
select it.

4. Click the FirstName element (field) in the list of elements in the XML
Structure task pane.

Betty becomes surrounded with XML tags representing this field
(element) name, as shown in Figure 2-6.

Figure 2-5:
This task
pane
displays the
schema you
just added.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 684

Book VIII
Chapter 2

Exploring XM
L

Using Office XML Programming 685

Dropping an entire XML file
Try another experiment. Using Windows Explorer, right-click the Employees.
xml file and choose Open With➪Microsoft Office Word. When asked, agree to
view it as an XML document. You see the full set of tags. Now click the drop-
down arrow icon in the taskbar’s title bar and choose XML Structure. You see
the full XML view, as shown in Figure 2-7. Templates like this can be passed
around for editing or filling in by co-workers. Then you’re ready to export the
data back into Access, use it with a Web service or whatever.

Figure 2-7:
You can
drop an
entire
XML file.

Figure 2-6:
This is how
XML data
can be
displayed
in a Word
document.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 685

Programmatic XML Manipulations686

Programmatic XML Manipulations
You can, of course, manage an XML document entirely via code if you wish.
Try some experiments to see how it’s done.

Adding a node
With the Employees.xml file loaded in a Word document (as shown in
Figure 2-7), press Alt+F11 to get to the code window.

Type this:

Sub xlAddElement()

ActiveDocument.XMLNodes.Add _
Name:=”Employees”, _
Namespace:=”Nspc”

End Sub

When you press F5 to execute this code, a new node is added to your docu-
ment: in this case, an Employees tag pair. Note that this node can be only
the Employees element and not any of the child elements. In this schema,
Employees is the so-called root element, and that’s what the XMLNodes.Add
method works with.

If you get an error message, choose Tools➪Templates and Add-Ins, click the
XML Schema tab, and ensure that the Emps schema is selected (or whatever
alias name you gave this schema in Step 8 of the earlier section, “Using
Office XML Programming”).

Adding child nodes and data
This code illustrates how to add a root node, its child elements, and the
actual data. In database terms, you’re adding an entire record with the exam-
ple in Listing 2-2.

Listing 2-2: Adding a Node and Its Data
Sub xlAddChildren()

Dim oActiveNode As Word.XMLNode

‘Note that parentheses are necessary in this case:
Set oActiveNode = ActiveDocument.XMLNodes.Add _

(Name:=”Employees”, _
Namespace:=”Nspc”)

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 686

Book VIII
Chapter 2

Exploring XM
L

Programmatic XML Manipulations 687

‘ Add child elements under the root node.

With oActiveNode.ChildNodes

.Add(Name:=”EmployeeID”, _
Namespace:=Nspc).Range.Text = “15”

.Add(Name:=”LastName”, _
Namespace:=Nspc).Range.Text = “De La Rouuage”

.Add(Name:=”FirstName”, _
Namespace:=Nspc).Range.Text = “Bonzit”

.Add(Name:=”Title”, _
Namespace:=Nspc).Range.Text = “Garage Associate”

.Add(Name:=”TitleOfCourtesy”, _
Namespace:=Nspc).Range.Text = “Dr. of Parking”

.Add(Name:=”BirthDate”, _
Namespace:=Nspc).Range.Text = “1952-02-19T00:00:00”

.Add(Name:=”HireDate”, _
Namespace:=Nspc).Range.Text = “1992-08-14T00:00:00”

.Add(Name:=”Notes”, _
Namespace:=Nspc).Range.Text = “Bonzit shows early signs of hyper-

narco-compulsive personality disorder. There are the unsigned
letters, the strange jokes about Venusians, the Betty Ford
imitations.”

End With

Notice that to save time, I didn’t add every child element (database field) in
this Employees record. I skipped address, postal code, phone, and other
fields, but I did want to include the final element (the Notes field) because
it’s important to keep an eye on Bonzit.

This example illustrates how you can mix and match the child elements at
will within a root element. You cannot invent new elements that are not
already in the schema, though.

There are many more things you can do via VBA to Office 2003 applications’
XML content and schemas. For additional information, search Office 2003
applications’ Help systems and look online at MSDN for information on
Office 2003 programming: http://msdn.microsoft.com.

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 687

Book VIII: Power Techniques: Advanced Office Automation, VBA, and .NET688

08c_570676 bk08ch02.qxd 6/4/04 10:28 PM Page 688

Chapter 3: Employing Objects

In This Chapter
� Exposing the fundamentals of OOP

� Using objects in VBA

� Understanding .NET data types

� Exploring the differences between VBA and Visual Basic .NET

� Making declarations in VBA

� Using VBA events

� Working with collections

� Managing arrays of objects

This chapter surveys the uses and syntax of objects in programming
Office applications. Of course, VBA is covered, but you can also manage

Office 2003 applications and solutions from above by creating VB.NET pro-
grams. Also, it’s increasingly important for programmers to migrate from
classic VB (as represented by VBA) to the future of BASIC, VB.NET. Therefore,
this chapter also explores changes you need to make to your programming
practices after you make the move from VBA to VB.NET.

Looking at OOP
First, briefly consider the implications of object-oriented programming
(OOP) in general. Often, you should just ignore OOP classes when you write
a program of moderate size by yourself. Just use traditional subroutines and
functions to organize your code (classic procedure-based programming).
Classes contribute nothing in this context.

However, you will have to work with the classes — and their members
(methods and properties) — when you tap into Office applications’ features.

It used to be that when you went beyond your own BASIC code, you used an
Application Programming Interface (API). Now you use an object model (or
several). So you do need to come to grips with object-oriented programming,
if only to be able to exploit the features built into Office 2003 applications as
well as other code libraries such as the extraordinarily powerful encryption
features available in the .NET framework (set of code libraries).

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 689

Understanding Fundamental OOP690

And, of course, if you’re creating a large program, a distributed program, or
working with other programmers, OOP has several advantages to offer you
over classic procedure-based programming. OOP is mainly a clerical utility,
offering tools to keep programmers from stepping on each other’s toes when
they must write programs as a group.

Understanding Fundamental OOP
You face the practical job of migrating from essentially procedure-oriented
traditional languages like VBA (and VB 6 and earlier) to object-oriented lan-
guages like VB.NET. You must migrate because the programming community
is migrating and because VB.NET is worth learning — it’s simply a much
more powerful language than VBA, whether or not you’re interested in using
the (primarily clerical) benefits offered by OOP.

OOP theory claims that OOP offers three primary elements: encapsulation,
inheritance, and polymorphism (although there’s not much talk about poly-
morphism any more because it turned out to be essentially just an aspect of
inheritance).

The main virtue of OOP is encapsulation: sealing off tested objects from
outsiders. Inheritance is inherently dangerous and leads to many bugs.
(Professors claim that inheritance is safe when done properly, but circus
people say the same thing about walking a tightrope.)

Here’s an example of encapsulation. A programmer hands you an object,
telling you the public (meaning available to you) properties it exposes that
you can read or write, and also the public methods you can invoke (along
with the parameters: data that the methods need from you, and what, if any,
data they pass back).

How is this different from traditional programming? Not much. Traditional
programming uses variables, which are usually equivalent to properties.
Traditional variables can be read or written to although properties can get
so elaborate that in OOP, they can confusingly behave as if they were meth-
ods. Sometimes when you pass a value to a property, it checks (validates) if
this value is acceptable. However, this same kind of validation can be built
into functions just as easily.

Traditional functions and subroutines (collectively called procedures) are the
equivalent of methods. Procedures tell you what parameters they want you
to send them and what they pass back.

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 690

Book VIII
Chapter 3

Em
ploying Objects

Employing Practical VBA Objects 691

OOP differs from classic programming in that you could traditionally look at
the source code written by another programmer. (Of course, languages,
applications, and operating systems themselves contain libraries’ built-in, or
add-on, functions. These complied libraries are not readable by the program-
mer. So in this sense, encapsulation has always existed.)

With OOP, though, a particular clerical job is solved: You don’t have to worry
about one programmer editing the source code written by another program-
mer while they’re working on a project together. Encapsulation ensures that
people programming in groups can be sure that there’s only one (presum-
ably stable and tested) version of any given object. A programmer designs
an object, tests it, and then seals it off (perhaps even compiling the object so
it’s as impossible to modify as a code library DLL). Other programmers are
supposed to use the object’s public properties and methods but not ask to
view (and potentially modify) the object’s source code. Another significant
benefit offered by OOP derives from instantiation: You can quite easily reuse
or manage code because you can simply instantiate as many objects as you
want in any given context.

OOP projects can sometimes be more easily modified than traditional projects.
And OOP objects are also often easier to reuse in a new project than trying
to cut and paste the code that describes functions in traditional projects. If
you write a class representing an individual book order for a bookstore pro-
gram, you can instantiate this BookOrder object every time someone orders
a book. Much of the functionality and most of the data needed to service a
book order can be contained within each object. And, if you later write
another program to manage books, you can probably reuse the BookOrder
object relatively easily.

Employing Practical VBA Objects
VBA, like Visual Basic 6, permits the programmer to employ the most useful
aspects of OOP. The main element that’s missing is inheritance, but few VB
programmers miss it, and few VB experts suggest using it even when it’s
available (as in VB.NET). Inheritance offers a way to modify the behavior of
an object in spite of encapsulation. You inherit an existing object, but you
specify different behaviors for that object. The problems this causes are
famous among programmers. You modify an object whose internal structure
(source code) is invisible to you; the side effects can be spectacularly
unpleasant (and might not show up for years).

So you don’t have to switch to .NET to experience OOP. You can work with it
in VBA — a context with which you, as an Office developer, are likely quite
familiar with.

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 691

Employing Practical VBA Objects692

Try some OOP in VBA. You often don’t need to define an object variable
(to reference an application’s object, such as the Word TaskPanes object)
because an object such as the Application object inherently exists when-
ever the program is running. Thus, the following VBA Sub displays the
research task pane without requiring that you first instantiate (bring into
existence) the Application object, the taskpanes collection of objects, or
the specific research taskpane object. Just refer to them because they’re
already instantiated by Word itself. All you have to do is set this task pane’s
Visible property to True:

Sub ShowTask()

Application.TaskPanes(wdTaskPaneResearch).Visible = True

End Sub

However, if an object is not currently instantiated, you then need to instanti-
ate it before you can access its properties or methods.

Object variables have a rather simple job: They act like shorthand refer-
ences to their objects, just as a classic variable is a shorthand reference to
the value it holds.

You can create object variables several ways in VBA. The best approach —
and one that serves you well as you move from VBA to .NET — is to specify
the object type. All you do is create an object variable that refers to an exist-
ing object, such as the document object in Word:

Dim oDoc As Word.Document

As for referencing objects that don’t already exist, there are two VBA formats
for this. First, you can declare the variable name and object type, and then
Set that variable to a New instance of the object:

Dim o As Outlook.Application ‘this is the type of variable
Set o = New Outlook.Application ‘this is the actual object

A similar approach is called implicit object creation because when using this
next approach, the object isn’t instantiated until this variable is first used
elsewhere in the code:

Dim MyWordApp As New Word.Application

People feel, however, that implicit declaration is slippery and undesirable
because you, the programmer, are not certain where in your code the instan-
tiation actually might take place.

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 692

Book VIII
Chapter 3

Em
ploying Objects

Employing Practical VBA Objects 693

Also, New works only as a way of creating top-level objects. (In Office 2003,
this primarily means Application objects.) Objects below the top level in
the hierarchy cannot be created with New. It’s up to the top-level objects to
provide a way to create their child objects, like when you use the Add
method of the Excel workbooks collection to add a workbook child object:

Dim oEx As Excel.Application
Set oEx = New Excel.Application

oEx.Workbooks.Add

Distributed instantiation
You can also use CreateObject (to instantiate objects not currently in exis-
tence) or GetObject (to reference existing objects), in this fashion:

Dim oExSheet As Object
Set oExSheet = CreateObject(“Excel.Sheet”)

These functions are useful when the New command doesn’t provide the nec-
essary tools, particularly when you’re attempting to instantiate an object
remotely (on another machine, such as a server). Using the name of the
server instantiates the object on the server:

Set oExSheet = CreateObject(“Excel.Sheet”,”ServerName”)

The server name is the machine-name part of a share name. For example, in
this share name, \\HomeBase\Public, the server name is HomeBase.

It’s traditional — at least among some programmers — to begin object vari-
ables’ names with lowercase o to mean Office, as in oDocument or oRange.

You can alternatively use the following (generally less-desirable) ways to
create an object variable. This variable can only hold objects, not other data
types:

Dim oDoc as object

This variable is a variant, so it can hold objects or any other kind of data
type, such as string or integer:

Dim oDoc as variant

This is the same as the variant because if you don’t specify a data type, a
declaration in VBA defaults to the variant type:

Dim oDoc

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 693

Understanding .NET Data Types694

Early and late binding
Dim VarName As Object is an example of late binding. You’re using the
generic Object data type, not a specific object type. When you use a specific
object type (as in Dim oEx As Excel.Application), Excel.Application
is a particular object type. This is early binding. What’s the diff?

Simply put: Use early binding whenever you can, and you almost always can.
You almost always know what kind of object you’re planning to deal with
when declaring a variable, so specify it. (The generic Object data type can
refer to any kind of object, so execution is slowed down while the reference
is resolved.) Another benefit is that with early binding, VBA’s IntelliSense fea-
ture kicks in (the lists of options displayed while you’re programming, as
shown in Figure 3-1). And IntelliSense makes programming with object
models much easier.

Understanding .NET Data Types
Before exploring objects further, consider some additional changes that you
can look forward to in .NET concerning data types and variable declarations.

In .NET are some changes to the traditional VBA data types beyond the
rejection of the variant type. A new Char type, which is an unsigned 16-bit
type, is used to store Unicode characters. The Decimal type is a 96-bit
signed integer scaled by a variable power of 10. The VBA currency type is
now gone; use the Decimal type instead.

The VB.NET Long data type is now a 64-bit integer. The VB.NET Short type
is a 16-bit integer. And in between them is the new VB.NET Integer type,
which is a 32-bit value. If you are working with programming where these
distinctions will matter, memorize these differences from the way that inte-
gers were handled in traditional VB programming.

Figure 3-1:
IntelliSense
lists are
extremely
helpful
when
wrestling
with object
models.

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 694

Book VIII
Chapter 3

Em
ploying Objects

Declaring in VBA 695

Tables of both the VBA and VB.NET data types are included in this book’s
Cheat Sheet for easy reference.

Use the Integer type when possible because it executes the fastest of the
comparable numeric types in VB.NET.

Table 3-1 lists all the VB.NET data types.

Table 3-1 VB.NET Data Types
Traditional VB Type New .NET Type Memory Size Range

Boolean System.Boolean 4 bytes True or False
Char System.Char 2 bytes 0–65535 (unsigned)

Byte System.Byte 1 byte 0–255 (unsigned)

Object System.Object 4 bytes Any type

Date System.DateTime 8 bytes 01-Jan-0001 to
31-Dec-9999

Double System.Double 8 bytes +/–1.797E308

Decimal System.Decimal 12 bytes 28 digits

Integer System.Int16 2 bytes –32,768 to 32,767

Integer System.Int32 4 bytes +/–2.147E9

Long System.Int64 8 bytes +/–9.223E18

Single System.Single 4 bytes +/–3.402E38

String System.String Character 2 billion characters
Count * 2
(plus 10 bytes)

Declaring in VBA
The Dim command can either dimension an array or declare a variable
(or a group of variables).

The default variable type is the variant, so if you wanted to use a different
type, you have to explicitly declare it by using Dim or one of the other
declaring commands such as Public. You can use Dim on a list of different
variables on the same line:

Dim X As String, Y As Integer, Z

In the preceding code example, Z defaults to variant because you didn’t
specify a data type. Or you could use the DefType commands to change the
default from variant to, say, Integer:

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 695

Discovering the Changes in VB.NET696

DefInt A-Z ‘(all variables become integer types unless
otherwise declared).

The ReDim command could be used two ways: to resize arrays or to declare
variables.

Discovering the Changes in VB.NET
As you can read here, .NET does things a bit differently.

Variants go away
The variant data type has been removed from Visual Basic; it’s not permit-
ted in .NET. For that reason (among others), you should probably abandon
the habit of relying on variants even in your current VBA code. Get used to it.

Variants are disallowed in the .NET framework, although they were intro-
duced only a few years ago with great fanfare as a helpful new technology.
(With a variant, the language analyzes the context in which a variable is
being used and then changes its data type automatically as necessary.)

As time passed, though, variants were found to introduce errors in some sit-
uations, particularly when rounding errors occurred if moving from a long
numeric data type to a shorter one, thus chopping off some digits in the
process. In many situations, this rounding wouldn’t make any difference, but
it can be a source of serious error in some kinds of programming (such as
ballistics).

The variant type, efficient though it often was, had two additional fatal
flaws from the VB.NET designers’ perspective. In some cases, VBA had a
hard time figuring out which type the variant should change to, so it had to
guess. Sometimes it guessed wrong. Also, the other languages in the .NET
universe do not use variants, and the .NET philosophy requires conformity
between its various languages (at least on the fundamental issues, such as
variable typing, if not case-sensitivity). Therefore, the variant variable is
no longer part of the VB language; it has been banished in VB.NET.

DefType commands are gone
The DefType commands have been removed from the language. The now-
removed DefType commands are DefBool, DefByte, DefCur, DefDate,
DefDbl, DefDec, DefInt, DefLng, DefObj, DefSng, DefStr, and DefVar.

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 696

Book VIII
Chapter 3

Em
ploying Objects

Discovering the Changes in VB.NET 697

Mix types within a Dim list
You can mix types within a Dim list, but all variables are required to have an
As clause defining their type (if you set Option Strict On). This next line
of code is not permitted because of the Z:

Dim X As String, Y As Integer, Z

However, the following is allowed:

Dim X As String, Y As String, z As Integer

or

Dim X, Y As String

Note that in VBA, the X (because no As phrase defines it) would have been a
variant type. In VB.NET, X is a string type. If you leave Option Strict
Off and you don’t attach an As clause, the variable will default to the
object type:

Dim X

With Option Strict On, you must declare every variable and every array.
You must use Dim (or use another declaring command such as Private or
Public).

The default data type in .NET is the object rather than the VBA variant,
but you must declare even this default type with Option Strict.

VB.NET has a streamlined way of declaring variables; it allows you to assign
a value in the same statement that declares the variable:

Dim X As Integer = 12

Also, if you are using the latest version, VB.NET 2003, you can even declare a
loop counter variable within the line that starts the loop, like this:

For i As Integer = 0 To 10

instead of the traditional style:

Dim i as Integer
For i = 0 To 10

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 697

Discovering the Changes in VB.NET698

You can no longer use ReDim
in place of the Dim command
In .NET, you can no longer use ReDim in place of the Dim command. Arrays
must be first declared using Dim (or similar); ReDim cannot create an array.
You can use ReDim only to redimension (resize) an existing array originally
declared with the Dim (or similar) command. (Look up the .NET ArrayList
for a superior way to let VB.NET handle arrays that must dynamically change
size. ArrayList also does other neat tricks.)

You can declare arrays in a similar way. Here’s a two-dimensional array
declaration:

Dim TwoArray(3, 4) As Integer

Use empty parentheses to declare a dynamic array:

Dim DynArray() As Integer

Declare the same variable name
in more than one location
In .NET, you are allowed to declare the same variable name in more than one
procedure. This can cause problems that are not flagged by any error mes-
sages. Here’s an example: Assume that you originally declared n within the
Form_Load event (so that it’s local to that event only). However, you decide
you need to make it Public so that other procedures can use its contents
as well. Therefore, you type in a Public declaration at the top of the code
window in the General Declarations section, outside of any event or proce-
dure, but you forget to erase the local declaration. Unfortunately, you’ll get
hard-to-track-down bugs because the local declaration will remain in effect,
and n will lose its contents outside the Form_Load event. Here’s an example:

Public Class Form1
Inherits System.Windows.Forms.Form
Public n As Integer ‘(holds the number of files being

renamed)

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim myfile As String
Dim mydir As String
Dim n, i As Integer

. . .
End Sub

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 698

Book VIII
Chapter 3

Em
ploying Objects

Discovering the Changes in VB.NET 699

Strongly typed
VB.NET is strongly typed. Several changes to the language support this new
approach. For one thing, the VBA As Any command has been deleted from
the language. You can no longer declare a function As Any (meaning that it
can return any kind of data type).

Declaring arrays in .NET
You declare an array in a way similar to how you declare a variable. To
create an array that holds 11 values, ranging from MyArray(0) through
MyArray(10), type the following:

Dim MyArray(10)

You can simultaneously declare and initialize (provide values to) an array.
You use the braces ({ }; punctuation marks that had never before been used
in Visual Basic). Here’s how to initialize a string array with two elements,
MyArray(0) and MyArray(1), which contain Billy and Bob:

Dim MyArray() As String = {“Billy”, “Bob”}
MsgBox(MyArray(0) + MyArray(1))

Notice that you are not permitted to specify the size of an array when you
initialize it with values, as illustrated in the previous example: MyArray().
This array has two elements: (0) and (1).

Declaring with symbols
You can still use symbols when declaring some data types in VB.NET. For
example, the following declares N as an Integer variable:

Dim N%

The following code is equivalent and also preferred:

Dim N as Integer

Changes to values and parameters
In VBA, you can use the following terms: Empty, Null, Missing, IsNull,
IsObject, and IsMissing. They are deleted from VB.NET; they’re gone with
the variant.

In VBA, you can assign to the variant data type these special kinds of
values: Null (not known), Empty (no value was ever assigned to this vari-
able), and Missing. (The latter is used if this variable was not sent, for
example, as part of a procedure’s parameters.)

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 699

Discovering the Changes in VB.NET700

Null is sometimes used to identify fields in databases that are not available
(or unknown), and the term Empty represents something that doesn’t exist
(as opposed to simply not being currently available). Some programmers
use the IsMissing command to see whether an optional parameter had
been passed to a procedure, like this:

Sub SomeSub(Optional SomeParam As variant)
If IsMissing(SomeParam) Then

The VB.NET object data type does not use Missing, Empty, or Null. There
is an IsDBNull function that you can use with databases instead of the now-
missing IsNull command. Similarly, an IsReference command replaces
the IsObject command.

An optional parameter can still be used with procedures, but you must
declare that As Type and you must also supply a default value for them. You
cannot write code within a procedure that will tell you whether a particular
parameter has been passed. If you need to test whether an optional param-
eter has been passed, you can overload a procedure. Overloading is a new
technique (to VB) wherein a function (or indeed a method or property) can
be made to behave differently based on what is passed to it. Overloading is
worth looking into because it allows your code to react in useful ways.

Bidding farewell to the Set command
When you migrate to VB.NET from VBA, you must remove all uses of the
Set command. Just write the same line of code as before but without using
VBA’s Set.

In VBA, the Set command is used like this:

Set MyDataConn = Server.CreateObject(“ADODB.Connection”)

Also note that in VBA, when you change an object variable so that it refer-
ences a different object, you use this syntax:

Set CurrentObjVar = DifferentObjVar

In VB.NET you leave out the Set command, like this:

CurrentObjVar = DifferentObjVar

If you omit Set in VBA, something entirely different occurrs. If the
DifferentObjVar had no default property, an error is triggered. If it does
have a default property, that default property is assigned to CurrentObjVar
as its default property.

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 700

Book VIII
Chapter 3

Em
ploying Objects

Using VBA Events 701

Not only does VB.NET omit the Set command, .NET (in general) doesn’t
allow default properties, anyway. For example, you can no longer use X =
Text1 as a way of assigning the text in a TextBox to the variable X. Instead,
you must explicitly name any property, including what were previously
default properties. In VB.NET, this works like so: X = TextBox1.Text.

However, just to make life interesting, some objects do have default proper-
ties that you can use in VB.NET. Specifically, objects that take arguments
(the dictionary object, the Item property in a collection, parameterized
properties, and so on) can be assumed to be defaults. Explicit reference to
the property can, in these few cases, be omitted from your source code.

Parameterized properties (properties that take parameters) are still permit-
ted to be defaults in VB.NET. For example, in VB.NET, most collections fall
into this category. Here are some examples from the ActiveX Data Objects
(ADO) data language:

Recordset object (its default property is Fields)
Fields collection (its default property is Item)
Field object (its default property is Value)

For instance, this code illustrates two ways to reference the Item property
of a recordset’s field object:

Dim rs As Recordset

You can use the fully qualified code:

rs.Fields.Item(1).Value = “Hello”

Alternatively, you can omit the term Item because it is the default property
of the Fields collection:

rs.Fields(1).Value = “Hello”

Using VBA Events
Objects are said to have three members: properties, methods, and events.
Events are things that happen to objects — often things a user does to an
object, such as the Click event of a UserForm. An event is quite like any other
procedure. (It’s sometimes called an event procedure.) It’s a Sub, like this:

Private Sub UserForm_Click()

End Sub

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 701

Using VBA Collections702

And it’s always empty of code unless you add some to respond to the event.
You find events in the VBA editor by opening the drop-down list on the top
left side of an editor window and then choosing an object. Then open the
other, top-right list and choose one of that object’s events, as shown in
Figure 3-2.

A macro that you record or write in VBA is also a Sub, but the difference
between an ordinary Sub and an event procedure is that the latter is auto-
matically executed when something, such as a mouse click, happens to an
object (such as a UserForm). Macros are not automatically executed, with
the exception of a couple that can execute on application startup. Macros
must normally be activated by assigning keystroke combinations, menu
items, toolbar buttons, or other triggers to them.

Using VBA Collections
Collections are to OOP what arrays are to ordinary programming: items
grouped together. In a database, you find a tables collection. And, in turn,
each table has a collection of fields (describing the structure of the table)
and a collection of records (holding the data). Thus, each table object con-
tains a records collection.

Compared with traditional arrays, collections have more built-in functional-
ity (although the VB.NET ArrayList is loaded with useful capabilities).
Collections, for example, don’t need to rely on the For...Next loop when
you iterate through them. Instead, you normally use the For...Each state-
ment, which knows how many items are in the collection, so you don’t have
to supply an upper limit as you do with For...Next.

Notice in this next code how many different parent objects must be declared
and then instantiated before you can get to the calendar folder collection of
appointment items:

Figure 3-2:
Events are
found here,
in the VBA
editor.

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 702

Book VIII
Chapter 3

Em
ploying Objects

Using VBA Collections 703

Dim o As Outlook.Application
Set o = New Outlook.Application

Dim ns As Outlook.Namespace
Set ns = o.GetNamespace(“MAPI”)

Dim m As Outlook.MAPIFolder
Set m = ns.GetDefaultFolder(olFolderCalendar)

Dim a As Outlook.AppointmentItem

For Each a In m.Items

You’re creating a new Outlook Application instance (this code runs within
Word), so you have to declare an object variable and then instantiate the
Application object. Next you have to do the same for a namespace object
(this is peculiar to Outlook), followed by a folder object. Finally, you get to
actually work with the appointment item objects. This mess isn’t always
necessary when working with objects. If, for example, you’re working within
an already executing (instantiated) application, such as Word, you need to
instantiate a new Word object, or even many of its child objects (which
already exist). The following example code illustrates this concept, formally
know as shortcut accessors.

In a traditional For...Next loop, you use an ordinary variable — usually
an integer — to count up through the loop. However, with For...Each,
you must reference an object variable, and that variable must have been
declared as being of the same type as the objects in the collection. In the
preceding code, a is declared as an Outlook.AppointmentItem, which is
the object collected within the calendar folder collection.

If an application is already running, you need not define all kinds of object
variables just to be able to iterate through a collection. In the following
example, you don’t need to define all the object variables and their children
(as in the preceding example) because this code is written in Word VBA and
executes within a running instance of Word itself. Thus Word’s Documents
collection is directly available. All you need declare is a single object vari-
able of the document type to use with the For...Each loop:

Sub DocInfo()
Dim oDocs As Word.Document

For Each oDoc In Documents

If oDoc.Name = “0803.doc” Then

MsgBox (“Found”)

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 703

Using Arrays of Objects704

End If

Next

Using the Documents collection without having to first instantiate all its
parent objects can, as this example illustrates, be done. When you use short-
cut accessors, you must be executing your VBA code inside the application
itself. For instance, if you write VBA code for a macro designed to run within
Excel, you can simply reference the Workbooks collection directly. (Or, as
above, within Word you can directly access the Documents collection.)

However, if you’re writing code executing within Word that’s supposed to
manipulate or access an Excel Workbook, you cannot simply directly access
the Workbooks collection, much less a particular Workbook object held
within that Workbooks collection. It works the same way with VB.NET code,
which is by definition executing outside any Office applications you intend
to access with the code. In those outside-access cases, you must drill down
from the top-level object, through the hierarchy of objects, until you get to
the specific document or workbook you’re after. Here’s an example of this
drilling down through the hierarchy, starting with the top-level object — the
Application object — and working downward:

Dim o As Outlook.Application
Set o = New Outlook.Application

Dim ns As Outlook.Namespace
Set ns = o.GetNamespace(“MAPI”)

Dim m As Outlook.MAPIFolder
Set m = ns.GetDefaultFolder(olFolderCalendar)

When you use ActiveObject names — as in ActiveSheet — you’re refer-
encing the object in a collection that currently has the focus. Word uses
ActiveDocument, and some other programs use ActiveWindow. However,
you might be unsure whether a particular object will have the focus when
your code executes. In those cases, in Word, you can use the ThisDocument
object; or, in Excel, use the ThisWorkbook object. These two ensure that
your code references the document or workbook where the code itself
executes.

Using Arrays of Objects
In VB.NET, you can create an array of objects. The trick is to first declare an
array object variable and then instantiate each object in the array. Listing 3-1
illustrates how to create an array of seven objects:

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 704

Book VIII
Chapter 3

Em
ploying Objects

Using Arrays of Objects 705

Listing 3-1: Creating an Object Array

Dim arrRecipe(6) As recipe ‘create the array object variable

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim i As Integer

‘instantiate each member of the array:
For i = 0 To 6

arrRecipe(i) = New recipe()
Next

‘ set the two properties of one of the array members
arrRecipe(0).Title = “MyZeroth”
arrRecipe(0).Description = “MyZeroth recipe goes like

this”

End Sub
End Class

Public Class recipe
Private _Title As String
Private _Description As String

Public Property Title() As String
Get

Return _Title
End Get
Set(ByVal Value As String)

_Title = Value
End Set

End Property

Public Property Description() As String
Get

Return _Description
End Get
Set(ByVal Value As String)

_Description = Value
End Set

End Property

End Class

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 705

Book VIII: Power Techniques: Advanced Office Automation, VBA, and .NET706

08d_570676 bk08ch03.qxd 6/4/04 10:29 PM Page 706

Chapter 4: Advanced Internet VBA

In This Chapter
� Understanding Web Services

� Using XML with Web Services

� Seeing Web Services in Office 2003

� Creating your first Web Service

VBA takes classic Visual Basic to its limits: It’s a powerful, flexible, and
well-designed language. As Bach’s music is to the Baroque period, VBA

represents the summit and completion of traditional procedure-oriented
programming. Yet even as VBA represents apotheosis of one kind of pro-
gramming, it carries within itself the seeds of its successor: object-oriented
programming, as represented by the .NET version of BASIC. And you must
realize that VBA is in its twilight time. The sun is going down on our beloved
VBA. So, if necessary, slap yourself. And prepare for the future.

In spite of everything, Microsoft continues to support VBA, even to the
point of superimposing cutting-edge technologies onto it, such as Web
Services. A Web Service is just an Internet-based program. It used to mean
a small program (perhaps merely a single function that you consumed as a
client), but now Web Services can be of any size. In this chapter, I describe
how to exploit existing Web Services by connecting your Office 2003 VBA
programming to them. I also show you how to create your own Web
Services.

To be ready for examples later in this chapter, please slap yourself and
download the Office 2003 Web Services Toolkit 2.01 from this location:

www.microsoft.com/downloads/details.aspx?FamilyID=fa36018
a-e1cf-48a3-9b35-169d819ecf18&DisplayLang=en

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 707

Looking at Web Services708

Looking at Web Services
A traditional VBA module contains procedures (like a Sub), and a VBA class
module contains a class or several classes. However, neither of these types
of modules has a user interface. (For a user interface, add a UserForm.)
Remember that modules are just repositories containing a collection of pro-
cedures (like a small DLL) that do various jobs, such as a group of macros.

Suppose you write a series of Sub procedures that work together to translate
one currency into another. You put those Subs together in a module to assist
you organize your work. If you move that module to the Web, making it avail-
able to other programs to access over the Internet, it’s no longer described
as a module (or DLL, or set of VBA macros). Instead, it is now described as a
Web Service.

Web Service is just the latest name for a function or set of functions that do
a job for a program. You call (the term de rigueur is consume) the service.
When you call a service, you also usually provide some data: the parameters
that you pass to the service. Suppose you want to translate $125 into another
currency, such as German marks. The programming in the procedure(s) of
the Web Service figures out what $125 equals in marks and returns the answer
to your application by sending back 249.697 deutsche marks. Your pro-
gram makes use of this information. The only difference between this process
and a traditional function is that the Web Service is on the Web.

As so often happens, the phrase Web Service has drifted from its original
meaning. It is now used as a general term for any Internet-based program-
ming, no matter how large. Originally, it referred to a small, self-contained
function, such as a currency translator. Web Services then progressed to
larger, more complex services such as local weather (you pass your ZIP code
to the service, and it sends back a paragraph describing the current local
conditions or perhaps even a map) or maybe a scrolling news ticker that you
could insert into your own Web page. Lately, Web Service has been stretched
to include huge, distributed enterprise solutions — in other words, the entire
suite of programs and databases that work together to represent the com-
puterization of a giant business.

Given that the phrase can now be used to describe anything from a single
function to a huge enterprise solution, the phrase no longer indicates the
scale of the programming involved. Web Service now merely means program-
ming that you communicate with via the Internet.

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 708

Book VIII
Chapter 4

Advanced
Internet VBA

Discovering Why Web Services Matter 709

One advantage of using Web Services is that they’re dynamic: They remain
up-to-date. Obviously, the ratio of $ to marks changes minute by minute. You
can’t define this ratio in your source code. Therefore, if you need current
conversion data, your program can consume a $ to marks Web Service that
always provides the current, accurate exchange rate (thanks to the Internet).

The main difference between a Web Service and functions in a module, DLL,
namespace, or assembly is that a Web Service isn’t located on your com-
puter’s hard drive. It’s on the Internet; thus, it could be part of a distributed
programming solution. And, because it is on the Web, it must communicate
with the caller in a special way to avoid firewall rejection. That special way
is XML.

Discovering Why Web Services Matter
Web Services could prove to be an important programming technology in
the coming years. Simply put, Web Services are the latest effort to bridge the
communication gap between applications, operating systems, and platforms.
Sometimes called platform independence or lately, interoperability, this com-
munication problem has proven surprisingly difficult to solve. However,
unlike previous attempts that have all more or less failed, Web Services and
XML might actually succeed.

Web Services are stateless. ASP.NET, for example, accepts a request from a
client, and then usually fulfills that request by sending information back to
the client and dropping the connection. End of story. The client might do
all kinds of things on its end with the data it got from the Service, but the
server is finished with the transaction: It treats every incoming request
as a separate request (even if from the same client). The server sees all
incoming messages as unique requests, distinct from any previous requests.
(Traditional FTP servers maintained an interactive session with the client,
and this session could be lengthy.)

Statelessness solves several server-side data storage, communication, and
timing problems. Web Services communicate via ordinary text XML, which
obviously simplifies searching, programming, and just plain understanding
the messages.

Being stateless and text-based also makes Web Services fundamentally
platform-independent. In theory — and usually in practice — Web Services
freely communicate between Macs and PCs, between contemporary data
formats and legacy structures, and between local processes and remote
ones: in a nutshell, between your data store format and mine.

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 709

Discovering Why Web Services Matter710

A Web Service, however, involves more than just sending a message from
one computer, requesting that a remote computer perform a job (process
some data).

Understanding distributed computing
Some very important implications arise when you divide data and process-
ing between more than one machine. Think of it as the adjustment you must
make when you get married. It’s like figuring out how to manage your money
jointly with your new spouse. A joint checking account forces you to behave
differently than you did when you were single. It’s more complicated. For
example, you have to share data and synchronize your deposits and with-
drawals to avoid bouncing checks. You might even have to figure out some
security measures, such as ways to communicate about your finances
without letting others in on your secrets. What was once merely a computa-
tion job within your single checkbook now also becomes a communication
problem between two checkbooks.

Likewise, in traditional computing, a programmer wrote procedures knowing
various facts about the environment in which the procedures operate: which
operating system is used, the language in which other procedures are writ-
ten, and the location and structure of any data used by the procedures. In
other words, the programmer was working within a predictable, stable, and
fundamentally local environment.

Distributed computing is not local: not self-contained on a single hard drive.
Distributed programming does not offer the programmer that kind of pre-
dictability. For example, the data might reside in Des Moines, on a machine
running Linux, but the procedure that processes that data might sit on a
computer in London running Windows. Web Services simplify the exchange
information between distributed computers.

Although Web Services themselves are designed to be platform-independent,
we programmers of course use a particular platform — and usually a single
language — during the process of creating the Web Service. Programmers
and developers need to work within an environment that offers them a rich
set of useful and familiar tools: debugging features, pop-up lists of methods,
an effective help system, and so on.

Web Services make a special demand on the programmer. Exchanged infor-
mation must be translated into XML and communicated via Simple Object
Access Protocol (SOAP) calls, which are a subset of XML. (Don’t be fooled by
the hopeful, but often misleading, use of the word simple here.)

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 710

Book VIII
Chapter 4

Advanced
Internet VBA

Reviewing Web Services Highlights 711

Discovering the tools for translation
Fortunately, Office 2003 applications and VBA itself provide some tools to
assist you in translating documents and other data into HTML or XML, along
with other tools you can use to consume Web Services. Also, as you might
expect, Visual Studio .NET provides powerful tools for dealing with the ver-
bosity and complexity of XML and SOAP. The majority of Web Services pro-
grammers will probably choose Microsoft’s Visual Studio .NET and Visual
Basic .NET as their programming environment. Although it isn’t the only Web
Services programming environment, it appears destined to be the dominant
one. (This isn’t the result of some Microsoft marketing trick; .NET is just plain
well-done.) What’s more, it features many useful tools, including the capabil-
ity to automatically generate SOAP envelopes, thus lifting that significant
burden from the programmer.

VS.NET includes other important tools. For example, ADO.NET brings data-
base programming up to speed with its support for disconnected DataSets
and the capability to automatically translate data into XML for transmission
to a remote computer. And of course, ASP.NET does for Web programming
what ADO.NET does for database programming. The security technologies
built into the .NET framework are extremely powerful yet not difficult for
you to use in your own programs, as you see in Book VIII, Chapter 8. In sum,
VS.NET boasts a powerful set of tools to assist programmers and developers
in consuming, creating, and maintaining Web Services.

Reviewing Web Services Highlights
Web Services are an important, still-emerging technology. You want to get
your mind around what they are and what they do. The following list covers
the main points to remember about Web Services:

✦ They are free of physical (geographical) and computer language con-
straints. Because Web Services are made available on the Internet
(note the option of keeping some of them on your local hard drive), they
can be accessed from anywhere: from within your local intranet, from
Zambia, or from anywhere else.

✦ They are essentially a set of functions (or a collection of functions,
although this can be a large collection). Therefore, they do not include
a user interface that is sent to the consumer: no text boxes, buttons, and
so on for people to interact with. Think of a Web Service as a utility that
sits there and responds to requests coming in from the Internet (or an
intranet). However, remember that a Web Service can be a huge enter-
prise solution.

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 711

Reviewing Web Services Highlights712

✦ They communicate with applications and with one another by using
the XML-based technology SOAP. This eliminates the difficulties that
have traditionally hampered computer-to-computer communications. In
the past, proprietary database structures, unique object models, and
incompatible computer languages have made life very difficult for pro-
grammers trying to reach out and touch a computer beyond the one
they are working on. All too often, even the various applications on the
same computer’s hard drive could not efficiently communicate.

✦ They can’t transmit viruses. Because a Web Service merely sends text
(XML) over the Internet (rather than an executable), a Web Service
cannot transmit a virus. Remember that firewalls are designed to block
executables but to permit text to pass right through, so firewalls do not
block Web Service communications. It is possible to embed virii in text
strings, but let’s not get into that. So far, text at least doesn’t self-start.

✦ They are based on a universal standardized language: XML. Because
they are written in XML, any application that can deal with XML can
access any Web Service.

✦ They permit applications to consume (use) the functions that the Web
Service exposes (makes available). In this way, Web Services are just
like traditional classes. However, unlike traditional classes, Web Services
do not require that the consumer application employ the same object
model as the Web Service. Both the Web Service and its consumers rely
instead on XML as their shared protocol. Traditional objects are said to
be tightly coupled to specific object models. Web Services are not.

✦ They decrease inefficiencies. Perhaps most important in the long run,
Web Services can circumvent traditional inefficiencies within organiza-
tions. For example, a salesman in Santa Barbara should be able to pretty
easily access the data and software at the home office in Des Moines,
thanks to the relative simplicity and universality offered by the Web
Services communication model. This, anyway, is the hope. We’ll see
how it plays out in practice.

Solving migration issues
Most programmers now face a daunting task: migrating from traditional
Windows-based programming to Internet-based programming. For many pro-
grammers, this migration is as challenging as anything they will face in their
entire career. Not only must they cope with a new platform — the Internet —
but they must also learn to employ novel technologies to ensure the stability
and security of their applications.

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 712

Book VIII
Chapter 4

Advanced
Internet VBA

Seeing How Web Services and XML Dance 713

And, ideally — but perhaps too idealistically, and only time will tell — Web
Services might permit many of today’s nonprogrammers to join in the fun.
Web Service programming can be quite high-level yet relatively easy to use,
particularly for people using Visual Basic .NET. Smaller Web Services can
be assembled as objects into modular applications that, hopefully, at least
some business people will be able to fashion themselves rather than relying
on overworked, understaffed, and chronically behind IT staffs. After all, who
is in a better position to know what’s needed, and thus to update a business
or e-business utility, than the business people who use it daily?

Perhaps IT staff can generate sufficiently well-designed and clearly described
Web Service objects so that the actual applications employing those objects
can be put together by business people. Salespeople, department managers,
analysts, and so on could then join in the effort to improve a company’s effi-
ciency. In the Internet Age, most businesses must try to be as agile as possi-
ble, and Web Services offer great agility to a company transitioning to
e-business.

Solving interoperability issues
Whatever way things eventually turn out, many experts believe that Web
Services might just be (at long last) the solution to interoperability, which is
one of computing’s most serious and persistent problems. And if Web Services
do solve the backward compatibility, messaging security, and cross-platform
communication difficulties (the Tower of Babel that has plagued programmers
and developers for decades), you’ll certainly want to be among the early
adopters who start converting to this new technology relatively soon.

Remember, in the fast-moving information economy, only agile companies
survive. Think of Polaroid, which until quite recently was among the bluest
of the blue chip stocks. Nothing was ever supposed to happen to a power-
house company like that. Then, of course, along came the digital camera.
Not too many people shake it like a Polaroid picture any more.

Seeing How Web Services and XML Dance
Web Services are not written in XML; rather, the source code is most likely a
.NET language. However, the Web Service’s communication with its consumer
is translated into XML. Here are the three basic steps:

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 713

Seeing Web Services at Work in Office 2003714

1. An XML message (an XML document) is built by the consumer,
requesting the Web Service.

This is quite similar to calling a function. You send the name of the
service that you want to invoke and (optionally) parameters (data) if
required. This message is sent over the Internet (or possibly just an
intranet).

2. The Web Service receives the XML message, translates the XML mes-
sage if necessary, and processes it.

For example, if ChangeToMarks (123) is sent to a currency converter
function, the conversion — processing the request — is done on the
server where the Web Service resides. What’s received by the Web
Service is the name of the Web Service as well as any parameters (such
as 123 in this example, which denotes the dollar amount) required by
the service.

3. To send the resulting data back to the consumer, the Web Service
creates its own XML document containing the response data.

This message is then sent back to the consumer. In some cases, this
step is not necessary. The Web Service might be performing a job that
doesn’t require a response.

Seeing Web Services at Work in Office 2003
Although not as sophisticated or efficient as the Web Services features in
Visual Studio, Office 2003 does endeavor to make the connection to this
latest programming technology.

For example, Office 2003 expands XML support in its applications. Excel and
Access 2003 improve their XML support, and it’s been now added to Word
2003. Office 2003 is also now integrated (meaning more compatible) with
Visual Studio .NET using the Visual Studio .NET Tools for Office.

Replacing VBA with VB.NET
Just as VBA replaced WordBasic and AccessBasic several years ago, it’s clear
that VB.NET will eventually replace VBA. Nonetheless, a large number of
expert Office developers want to leverage their current expertise, pushing
Office applications and VBA to the limit. That’s perhaps why Microsoft is
attempting with Office 2003 to build bridges between future technologies like
Web Services and legacy technologies like VBA.

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 714

Book VIII
Chapter 4

Advanced
Internet VBA

Seeing Web Services at Work in Office 2003 715

Adding a Web Service to VBA code
Time to become a consumer. Follow these steps to consume (call) a Web
Service in VBA:

1. Download and install the Office 2003 Web Services Toolkit 2.01 from
this address:

www.microsoft.com/downloads/details.aspx?FamilyID=fa36018a-e1cf-
48a3-9b35-169d819ecf18&DisplayLang=en

2. Open Word and press Alt+F11.

The VBA editor opens.

3. In the VBA editor, choose Tools➪Web Service References.

The Microsoft Office 2003 Web Services Toolkit dialog box opens, as
shown in Figure 4-1.

4. Type c (just the letter c) or some other letter into the Business Name
field.

5. Click the Search button.

It takes a while, but the Web Services “Yellow Pages” listings at Microsoft
are searched for all Web Services starting with the letter c.

Figure 4-1:
Use this
dialog box
to add
a Web
Service to
your VBA
project.

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 715

Seeing Web Services at Work in Office 2003716

How do people let the world know of the existence of a Web Service?
The “Yellow Pages” for Web Services is the UDDI (Universal Description,
Discovery, and Integration) Business Registry (also known as cloud serv-
ices or UBR). You can even set up your own registry in an intranet. It’s
just a searchable list of the names, addresses, and descriptions of Web
Services.

6. When the list appears, click one of the services offered that sounds
interesting to you.

You see a description of the service (although many don’t offer this).

7. Click the Test button.

Internet Explorer opens with links to the service description (an XML-
like file specifying with great redundancy the name, address, and param-
eters of the Web Service). You can examine this file if you wish or simply
move on to Step 8.

8. Click the Web Service’s name (a hyperlink).

You should now be able to test this service by entering parameters into
a field and then invoking the Web Service to see the response. If you
can’t, go back to Step 6 and try a different service.

9. When you’re finished testing a Web Service, you’re ready to import it
into your VBA module. Click Add.

Adding a Web Service to VBA is surprisingly easy because after you click
Add, classes and code are added to your module.

After you add a Web Service, you’re given instructions, error handling, class
management, and example code demonstrating how to access the Web
Service in your VBA projects, like this:

‘This class was created by the Microsoft Office 2003 Web Services Toolkit.
‘
‘Created: 3/15/2004 05:01:18 PM
‘
‘Description:
‘This class is a Visual Basic for Applications class representation of the Web
‘service as defined by http://www.yorRM.com/Rea/Logon.wsdl.
‘
‘To Use:
‘Dimension a variable as new clsws_Logon, and then write code to
‘use the methods provided by the class.
‘Example:
‘ Dim ExampleVar as New clsws_Logon
‘ debug.print ExampleVar.wsm_Logon(“Sample Input”)
‘
‘For more information, see Complex Types in Microsoft Office 2003
‘Web Services Toolkit Help.
‘
‘Changes to the code in this class may result in incorrect behavior.
‘
‘***

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 716

Book VIII
Chapter 4

Advanced
Internet VBA

Creating Your First Web Service 717

You’re not supposed to edit these new classes — just instantiate them and
call them from other modules:

Dim ExampleVar as New clsws_Logon
debug.print ExampleVar.wsm_Logon(“Sample Input”)

For further information on consuming Web Services in your VBA Office 2003
applications, click the Help button shown in the dialog box in Figure 4-1. You
can then examine the Office 2003 Web Services Toolkit Help file in your
browser, as shown in Figure 4-2.

Creating Your First Web Service
In the preceding section, you can read how to consume (use) a Web Service.
To create your own Web Services, you need to use Visual Studio .NET. In this
section, you write and test Web Services of your own. Start by creating a
Web Service template; just follow these steps:

Figure 4-2:
Find help
here for
using Web
Services in
Office 2003
VBA code.

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 717

Creating Your First Web Service718

1. Choose File➪New➪Project in VB.NET.

The New Project dialog box appears.

2. Double-click the ASP.NET Web Service icon.

A new project is created.

If the new project can’t be created, you’ll get a message to that effect.
You need to ensure that you’ve installed IIS — Internet Information
Services — and the necessary dependencies that support ASP.NET. Look
at MSDN on the Web for instructions at

http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/iissdk/iis/newsystemarchitecture.asp

You first see a design window, and you can add controls to this window.
But remember that a Web Service doesn’t display any user interface, so
it would be rather eccentric of you to add a button that no one will ever
see. However, you might want to use some nonvisible controls, such as
data connection controls.

3. Click the Click here to switch to code view link in the center of the
design window.

You now see the code template. When VB.NET first creates a Web
Service template for you, it provides this source code in the code
window (Listing 4-1).

Listing 4-1: Web Service Source Code
Imports System.Web.Services

<WebService(Namespace := “http://tempuri.org/”)> _
Public Class Service1

Inherits System.Web.Services.WebService

“ Web Services Designer Generated Code “

‘ WEB SERVICE EXAMPLE
‘ The HelloWorld() example service returns the string Hello World.
‘ To build, uncomment the following lines then save and build the
project.
‘ To test this web service, ensure that the .asmx file is the start
page
‘ and press F5.
‘
‘<WebMethod()> Public Function HelloWorld() As String
‘ HelloWorld = “Hello World”
‘ End Function

End Class

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 718

Book VIII
Chapter 4

Advanced
Internet VBA

Creating Your First Web Service 719

To see how you write a Web Service and then test it, try creating a new Web
Service that provides the current time and date. To write your own Web
Service, follow these steps:

1. Replace the WEB SERVICE EXAMPLE in Listing 4-1 (all those com-
mented lines that begin with the ‘ character) with your own code.

Delete the commented lines in the template and then type the following
source code, shown in boldface:

Imports System.Web.Services

Imports System

<WebService(Namespace := “http://tempuri.org/”)> _
Public Class Service1

Inherits System.Web.Services.WebService

“ Web Services Designer Generated Code “

<WebMethod()> Public Function WhatTimeIsIt() As String

Dim s As String

s = Now.ToString

Return s

End Function

End Class

The <WebService(Namespace:=”http://tempuri.org/”)> element
specifies that this is a special kind of class: a Web Service. Notice the
< > symbols, which traditionally enclose an element in HTML. This
WebService element can be omitted because ASP.NET understands that
you are writing a Web Service: Its file extension is .asmx, which makes
that clear. However, the element has its uses. It can include various
attributes, including the namespace and also a Description attribute,
like this:

<WebService(Description:=”Provides the current date and
time”, Namespace:=”http://tempuri.org/”)> Public
Class Service1

Also, you use the <WebMethod()> element to make it clear that the func-
tion is part of a Web Service. (You can include a Description attribute
in this element, too.) Note: The <WebMethod()> element is not optional:
You must include it because it’s the only way that a remote client can
see and access your function (method) from the outside.

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 719

Creating Your First Web Service720

This mingling of HTML-style source code (elements and attributes) with
VB.NET code might seem a bit awkward at first, but you get used to it.
Aside from those elements, the source code in this function is typical,
familiar VB.NET.

2. Press F5 to test this Web Service.

You should see your browser fire up and display the information shown in
Figure 4-3. (You can ignore the information about tempuri — temporary
URI — and changing the default namespace for now. That’s information
you must deal with when deploying a real Web Service on the Internet.)

The name of your Web Service is displayed as a hyperlink, as shown in
Figure 4-3. In this example, it’s named WhatTimeIsIt. (Note: If you pro-
vide a Description attribute for your WebMethod, it is displayed just
below the link.)

3. Click the Web Service name link.

An Invoke button appears, as shown in Figure 4-4.

Figure 4-3:
If you
include a
Descrip-
tion
attribute, it
is displayed
at the top of
this page.

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 720

Book VIII
Chapter 4

Advanced
Internet VBA

Creating Your First Web Service 721

4. Click the Invoke button to imitate a request to your Web Service —
as if someone had sent the request over the Internet.

Your service responds; see the result shown in Figure 4-5. Your Web
Service sent back the date and time as a string in XML format to the
remote client.

Figure 4-5:
This is
the Web
Service test
result.

Figure 4-4:
Click the
Invoke
button to
run your
Web
Service.

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 721

Book VIII: Power Techniques: Advanced Office Automation, VBA, and .NET722

08e_570676 bk08ch04.qxd 6/4/04 10:30 PM Page 722

Chapter 5: Working with .NET

In This Chapter
� Discovering .NET

� Using software services

� Understanding Internet initiatives

� Using .NET database technologies

� Programming VB.NET

In the late 1990’s, various Microsoft products began sporting the name
active: Active Desktop, Active Directory, ActiveX, and so on. More

recently, Microsoft began favoring a different term, namely the suffix .NET,
as in Visual Studio .NET, Visual Basic .NET, ASP.NET, ADO.NET, and so on.

Time marches on. .NET enjoyed vogue status for approximately five years,
but this term, too, is gently fading away. Microsoft server products aren’t
called .NET any more. And instead of referring to the upcoming version of
Visual Studio as .NET, it’s officially called Visual Studio 2005. Nonetheless,
.NET is still used to describe the underlying technology, such as the collec-
tion of code libraries (the .NET framework). We might as well continue to
use the term while acknowledging that it’s in the twilight of its life.

Nevertheless, .NET gives you quite a variety of new skills for your program-
mer’s bag of tricks. This chapter introduces you to the .NET tools and tech-
niques that you might want to learn. This chapter is all about .NET for the
BASIC programmer. You see how to employ software services, deal with
issues involved in Internet programming, employ the powerful .NET data-
base technologies, and, in general, continue on the path to .NET guru status.

Understanding .NET
The central concept around which all the .NET-based products circle is a
technology designed for (you guessed it) programming that’s Internet-
centric.

.NET, like Microsoft’s older COM technology, is not a single entity. Rather, it’s
a collection of tools and rich (feature-full) components, a programming and
development environment, a runtime, a library of classes, a set of languages,

08f_570676 bk08ch05.qxd 6/4/04 10:30 PM Page 723

Understanding .NET724

and a group of robust built-in security features. .NET is also a highly effective
way of programming for the Internet with strong database features. In .NET,
you find the commitment to support XML-based, object-oriented, easily
deployed, scalable, and reliable multiplatform computing.

Oh, yes, .NET is also an excellent system to use for traditional Windows pro-
gramming, too.

That’s quite an ambitious little solar system of new objects and technolo-
gies, all in orbit around the central idea of .NET.

.NET represents a major shift for developers and programmers. Driven by an
effort to make programming more coherent and secure, and by the nature
and requirements of Internet computing, it’s being called the next wave in
computing. Some argue that this shift from Windows-based to Internet-based
computing is as profound as the shift from the text-based, colorless DOS
world to the rich graphics of Windows. Perhaps. What isn’t arguable is that
.NET requires us programmers and developers to learn many new techniques,
habits, and attitudes. Well, maybe we can keep some of the old attitudes. If
you were snarky then, you’re going to be snarky now, most likely.

Seeing the need for .NET
Think back to the late 70’s when computing was mostly confined to IBM main-
frames. These large centralized computers fed information to dumb terminals,
which had very little computational power of their own: They were simply
display devices with a dumb keyboard. Their entire reason for existence was
to act as an interface between a human and the mainframe. Both memory
and processing were contained on the central mainframe.

At the start of the 80’s, processing and memory split off into millions of per-
sonal computers. And for the past 20 years, discrete, self-contained machines
have dominated computing.

Perhaps we’re now coming full circle back to where we started . . . but with a
twist. In the next few years, some input/output units could become as small
(and as dumb) as a cellphone. Your data might reside somewhere on the
Internet, perhaps in a massive, centralized server farm or even distributed
among many servers.

And that data might also be processed by services on the Internet that you
subscribe to rather than applications that you purchase in a shrink-wrapped
package. This computing model avoids the need for a dedicated personal
computer, with its hard drive for storage, and lots of RAM and processing
power located right there at your desk. Instead, you can access your virtual

08f_570676 bk08ch05.qxd 6/4/04 10:30 PM Page 724

Book VIII
Chapter 5

W
orking w

ith .N
ET

Understanding .NET 725

personal computer anywhere, anytime, using anything from a PDA to a huge
wallscreen TV. Once again, I/O terminals might become dumb, connecting to
remote data storage and processing.

If these predicted changes do occur (and some of them already appear to be
underway), programmers will be required to make quite a few adjustments
to their ways of working. .NET attempts to ease this transition while simulta-
neously anticipating the platform demanded by Internet-centric computing.
For one thing, traditional method-driven (or procedure-driven) programming
styles might have to shift to a more message-driven model.

Of course, you aren’t forced to abandon your familiar programming tech-
niques. You can use the Visual Studio .NET editor as well as VB.NET tools
and techniques to produce traditional Windows programs just as you always
have. In fact, you can produce better programs faster after you learn .NET
techniques and discover how to tap into the huge .NET set of built-in classes
(the Framework).

.NET includes many familiar VB elements but sometimes gives them new
names. Errors, for example, are now called exceptions, which sounds so
much nicer. “Yes, boss, I’m going to work on some of my exceptions today.”
(Oh, yes, I forgot. You can’t use the word boss anymore. We’re all associates
now, aren’t we? Some of us are just more associated than others.)

Seeing the benefits of VB.NET
VB.NET brings with it many new ideas and capabilities — such as overload-
ing and inheritance — which were never part of traditional (VB 6 and earlier)
Visual Basic.

For decades, people have been trying to design languages and operating sys-
tems that are platform-independent. In other words, in theory, a language or
system should be able to run on all kinds of different machines, of all sizes,
made by different manufacturers, with different operating systems. Internet
programming is similar: A program should adapt itself to both a large-screen
TV as well as a PDA. So far, this has been an elusive goal.

But with all the new and varying sizes of computer display devices (television/
Internet boxes, hand-helds, car computers, cellphones, and videogame/
Internet devices) as well as all the new platforms (the Internet itself is a
platform, in a sense), platform-independence is becoming more than merely
an aspiration. It’s becoming a necessity.

.NET must be able to run in a variety of environments. One primary thrust of

.NET is that it has to be compatible with many possible devices as well as
various programming languages, data stores, and even different processes

08f_570676 bk08ch05.qxd 6/4/04 10:30 PM Page 725

Using .NET to Facilitate Software Services726

running at different speeds from different hard drives located different
places around in the world. The programmer’s world is no longer a pre-
dictable, coherent place.

The Internet is, of course, driving these changes, and the changes run deep.
There must be new programming styles, new user interfaces, and new ways
of communicating between applications and objects. By definition, the
Internet is a vast collection of loosely connected objects. Another way of
saying this is that the Web is highly distributed. The Internet stores bits and
pieces here and there, and each new page you visit can contain a different
collection of information coming from different servers, working in different
computer languages.

And of course, large-scale applications must be able to ramp up from zero to
perhaps thousands of simultaneous users: That is, they must be scalable.

Using .NET to Facilitate Software Services
Another feature of this Internet-centric trend is that software might increas-
ingly be sold as a service. You won’t buy a CD/manual package in the store;
instead, you’ll sign up for a subscription to an application, and the applica-
tion will be automatically upgraded as bugs are fixed and new features are
added. This marketing model resembles cable TV subscriptions, from which
you choose among various packages of channels, and the service is delivered
to you continuously.

Imagine that your data, applications (services), and any other computing
items are stored in a secure location (or spread among several locations)
on the Internet rather than on your local hard drive as they are now. This
Internet-storage approach has several advantages.

✦ You can access your data from any Internet device, no matter where
you are or what kind of localized storage the device has.

✦ You also lessen the version problem, no longer having to use the old
Windows “briefcase” utility to attempt to synchronize your files between
your home, office, and portable machines.

Wireless Internet access is an important element in this next phase of per-
sonal computing.

Another facet of services is that small, self-contained libraries or compo-
nents can reside on the Internet (or intranets) and easily be accessed thanks
to the light, flexible communications protocol SOAP (Simple Object Access
Protocol), built upon XML and usable throughout the .NET technology.

08f_570676 bk08ch05.qxd 6/4/04 10:30 PM Page 726

Book VIII
Chapter 5

W
orking w

ith .N
ET

Using .NET to Facilitate Software Services 727

Using .NET for Internet initiatives
How about .NET capabilities for Internet programming? Are you kidding?
With ASP.NET technology, the entire VB.NET language is at your disposal
(not just some limited scripting language, as in the past) when you want to
create Web pages and sites. .NET is Internet-centric, to be sure, but you can
also write dedicated Windows-style programs quite effectively with .NET.
Using a technique called code-behind, you can program with VB.NET in one
editor window while a separate window contains HTML (the traditional Web
programming language). The code-behind technique is also used as a way of
bringing VB.NET to Office programming, as you can see later in Book VIII,
Chapter 6.

Using .NET and databases
Don’t overlook the new .NET database management capabilities. ADO.NET
works well with XML and also takes detached recordsets (now called
DataSets) to a new level of detachment. This feature is particularly useful
when you’re using ASP.NET Web Services to transmit and receive data.
ADO.NET has been designed to accept data in many formats and from a
variety of sources. It’s object-oriented, of course, and also works well with
relational data.

The main reason to move to ADO.NET is to make database management
highly scalable. Briefly, ADO .NET neatly solves problems related to large
local area networks and the Internet. For most of the history of personal
computing, your database application could establish a connection to a
database and keep that connection open until the user was finished reading
or modifying the data.

This approach works okay if only a few people (perhaps ten or so) need a
connection with the database at the same time. However, hundreds (or pos-
sibly thousands) of people on the Internet can’t simultaneously look through
your catalog of Irish flannel sweaters. They simply can’t all be connected at
once! This problem is scalability.

For example, can your application handle 5 clients and then grow gracefully
to deal with 5,000 in the days before Christmas? Or like Microsoft’s Access
database system (and others), will it grind to a halt and smolder as soon as
more than 10 connections are open?

In ADO.NET, you use disconnected DataSets, which are copies of data from a
database. Here’s what happens: A brief connection to the server’s database
is made while a DataSet is checked out. Then the connection is broken. The
DataSet is sent to the requesting client application. The client can keep the
DataSet as long as necessary and manipulate the data as much as permitted.
When the client is finished and if the client wants to update the database, a

08f_570676 bk08ch05.qxd 6/4/04 10:30 PM Page 727

Finding .NET Programming Help728

new (and brief) connection is established with the server database. The
DataSet is submitted to the server, which decides whether to merge the
changes into the database. When using this library model (check out/check
back in), your database system becomes quite scalable. The server database
is uncoupled from any sustained connections to clients. Do you see how sim-
ilar this approach is to Web Services statelessness described in Book VIII,
Chapter 4?

Finding .NET Programming Help
Time to examine the actual programming. True, .NET programming is unforgiv-
ing, but so are earlier versions of Visual Basic (or indeed, any other computer
language).

Yet in many ways, a computer is the least flexible thing you’ll ever try to
communicate with. Put a comma — just one little innocent comma! — in the
wrong place, and the computer language completely misunderstands what
you’re asking it to do. Misspell a word, even only slightly, and the compiler
doesn’t understand it at all. There’s no getting around it: At this stage of
their development, computer languages are extremely literal critters.
Communicating with them means doing it their way or not at all.

However, in spite of this literal-mindedness, VB helps you out in many ways
when you’re programming. First, some of VB’s commands — the words in VB’s
language — are familiar English words like stop, end, text, and timer. Second,
you can sometimes combine VB commands into statements that are quite sim-
ilar to English sentences: for example, If Dollars = 12 Then PayBill().

To be sure, punctuation, word order, and other elements must be exact, but
Visual Basic hates to let you fail. While you’re learning to program, you can
turn on various kinds of training wheels that are built into VB.NET. For exam-
ple, if you make a punctuation error or misspell a command, VB.NET (even
more frequently than VBA) makes suggestions.

Unforgiving gestures
Of course, human languages are sometimes
unforgiving, too, as any American who hitch-
hikes in Europe quickly discovers. If you move
your thumb up and down, a passing driver
might slam on his brakes but only so he can

jump out and pound you to a pulp. That thumb
gesture means something very nasty in some
other parts of the world, politely expressed as
sit on this.

08f_570676 bk08ch05.qxd 6/4/04 10:30 PM Page 728

Book VIII
Chapter 5

W
orking w

ith .N
ET

Finding .NET Programming Help 729

Computers may indeed be highly literal, but they make up for it by offering
you tireless and watchful assistance. For example, if you mistype a VB com-
mand, VB itself immediately shows you the error and suggests how to fix it.
And if you’re still not exactly sure what a particular command does — or
how to use it — descriptions of each command (and often source code
examples) are only a keypress away (F1, to be specific). Just click a com-
mand in your programming code to select it and then press F1. With VB,
you’re rarely left hanging and twisting in the wind.

Too, IntelliSense features such as Auto Syntax Check and Auto Quick Info are
always available. If you don’t remember the various capabilities (members) of
a given object, IntelliSense lists them for you and also shows you their param-
eters and the syntax. Even experienced programmers are unlikely to turn off
IntelliSense features. And although you’re still getting used to the idea of telling
a machine what you want it to do (also known as programming), these various
kinds of helpers are invaluable.

08f_570676 bk08ch05.qxd 6/4/04 10:30 PM Page 729

Book VIII: Power Techniques: Advanced Office Automation, VBA, and .NET730

08f_570676 bk08ch05.qxd 6/4/04 10:30 PM Page 730

Chapter 6: Using Visual Studio
Tools for Office 2003

In This Chapter
� Understanding installation issues

� Dealing with setup problems

� Communicating between .NET and Office

� Does this tool have a use?

� Considering alternatives

� Creating your first VSTO project

With Visual Studio Tools for Office (VSTO) installed, you get some help
building a bridge between traditional Office programming with VBA

as well as the future of Office programming, VB.NET. VSTO also supports the
quasi-Java, hybrid language C#.

Just as using ASP.NET’s code-behind feature allows you to employ all the
tools and power of the VB.NET language in your Internet programming, so,
too, are these advantages yours when you use VB.NET as code-behind your
Office 2003 programming.

However, note these two warnings before you run out and spend $200–$450
for a version of VSTO:

✦ You can do pretty much the same things that VSTO does with other
technologies — technologies that you probably already own, might
already understand how to use, and that are likely more stable (at this
point in VSTO’s life cycle). These technologies are explored in various
other chapters in this book, but they’re explicitly listed in the upcoming
section, “The five ways to program Office.” You might want to choose to
avoid VSTO until it’s a bit more, um, finished. Or maybe VSTO will work
better for you than it did for me.

✦ Continuing with this “more stable” concept, I simply cannot get the
version of VSTO that I have to work at the time of this writing. So the
example in this chapter goes fine up to a certain, crucial point, and then

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 731

Following Correct Setup732

stops with my confession that I cannot go any further. The crucial point?
When I press F5 to actually see the program that I built execute. It’s sup-
posed to send some data from the VB.NET VSTO template code to Excel.
Excel does open up, ready, indeed fairly quivering, to receive this data.

But, alas, a security warning appears. This warning tells me that current
.NET security policy does not permit this project to run from this folder. . . .
Well, ho-hum. Never mind that this is a development computer, with
.NET security set at its lowest possible level (no security at all), and that
for years I’ve written and tested all kinds of other .NET projects on this
machine, with no such security troubles. Don’t hate me for suspecting
that it’s VSTO, not me or my machine, that is likely the source of this
little problem here.

So, you’ve been warned. This chapter must remain theoretical. Unlike all
the other chapters in this book, I cannot present you with working examples.
I can only lead you to the final step, where what should happen — data
moving from .NET to Excel — simply does not. Thanks, virii authors, under
whatever rocks you hide, for making all our lives more difficult by making all
these convoluted, multilayered, deliberately confounding security measures
necessary.

Some programmers on the VSTO public newsgroup have not had the prob-
lems I faced. Some on the newsgroup report problems; others have gotten
the system up and running okay. Maybe you’ll be one of the lucky ones. The
newsgroup is microsoft.public.vsnet.vstools.office.

Following Correct Setup
You must follow a particular order when installing the technologies that
work together with VSTO. First, Visual Studio .NET 2003 must be installed,
then Office 2003, and finally VSTO. You can obtain VSTO via an MSDN sub-
scription or purchase it from software sources such as Amazon. It’s around
$200 for the upgrade version (if you currently own versions of VB, some
Office development products, Visual InterDev, Visual Studio, and lots of
other products). VSTO costs $450 for the non-upgrade version.

If you’re interested in VSTO, visit the Microsoft site titled “How to Buy:
Visual Studio Tools for the Microsoft Office System.”

If You Have Problems
Before going any further, you might have difficulties when first installing
VSTO. I certainly did. Dealing with temperamental software isn’t uncommon
when the software is brand-new. There are many glittering, interacting side

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 732

Book VIII
Chapter 6

Using Visual Studio
Tools for Office 2003

If You Have Problems 733

effects, and several things have to be just so for things to work correctly.
This technology, of course, will stabilize over time.

The first problem popped up when I chose File➪New➪Project, selected
Microsoft Office System Projects in the left pane to open that node, and then
under that, selected Visual Basic Projects. I double-clicked Word Document
in the right pane.

The wizard opened. I left the defaults (Create New Document) but changed the
location of the document to a temp file on drive C:. I clicked Finish, and the
wizard wrote the code.

However, at the top of the code window, an error was flagged (with the saw-
tooth underline) on this line of the code:

Imports Office = Microsoft.Office.Core

This reference is supposed to be automatically added to any new VSTO
project that you start in VB.NET, but it wasn’t. The solution is to choose
Project➪Add Reference, click the COM tab, locate Microsoft Office 11.0
Object Library in the list of code libraries, double-click it, and then click OK
to close the dialog box. The reference is then added to the project and also
now appears in the Solution Explorer list of References.

However, if your problem is deeper than this (because you cannot find
Microsoft Office 11.0 Object Library in the COM libraries list), you now need
to reinstall the PIAs (Primary Interop Assemblies; don’t ask) for Office 11.
To do that, follow these steps:

1. Open Control Panel and close all other applications.

2. Double-click the Add Remove Programs icon.

The Add Remove Programs dialog box opens.

3. Click Microsoft Office Professional Edition 2003 to select it.

4. Click the Change button.

5. Select Add or Remove Features.

6. Click Next.

7. Select the Choose Advanced Customization of Applications check box.

8. Click Next.

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 733

Communicating between .NET and Office Applications734

9. Ensure that the .NET Programmability Support node is assigned to
Run from My Computer from the following nodes:

• Microsoft Office Excel.

• Microsoft Office Word.

• Office Tools. (This node is called Microsoft Forms 2.0 .NET
Programmability Support here.)

• Microsoft Graph (under Office Tools).

10. Click Update.

Your PIAs should be added (or repaired). Now you can rerun VB.NET
and add the Microsoft Office 11.0 Object Library as described earlier in
this chapter.

Communicating between .NET and Office Applications
Given that you can instantiate Office applications from .NET programs with-
out resorting to VSTO, why bother with it? For example, this next VB.NET
code example (Listing 6-1) instantiates Word, types something, saves the doc-
ument, and then closes the instance. First, choose Project➪Add Reference
and then click the COM tab. Add the Microsoft Word 11.0 Object Library to
your project by double-clicking it in the list box and then clicking OK to
close the Add Reference dialog box.

At the top of the code window, type this:

Imports Microsoft.Office.Interop

Then type Listing 6-1 into the Form_Load event.

Listing 6-1: Instantiating Word via Plain .NET

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

Dim WordApp As Word.Application
Dim WordDoc As Word.Document
WordApp = CType(CreateObject(“word.Application”),

Word.Application)
WordDoc = CType(WordApp.Documents.Add, Word.Document)

Dim s As String = “See, this text has been added
to our new document. Now we’ll save it as
C:\test.doc.”

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 734

Book VIII
Chapter 6

Using Visual Studio
Tools for Office 2003

Communicating between .NET and Office Applications 735

Dim sln As Word.Selection
sln = WordApp.Selection
sln.TypeText(s)

WordDoc.SaveAs(“c:\test.doc”)

WordDoc = Nothing
WordApp = Nothing

End Sub

Why use VSTO?
Aside from the fact that I cannot yet get VSTO to actually work, the more
I worked with it, the more I wondered why VSTO actually exists. Why use it
at all? What benefits does it offer that you cannot get from other, more
tested and traditional technologies?

If you attach the Microsoft.Office.Interop assembly to a .NET project,
you can quite easily instantiate and manipulate Office applications’ objects
from within .NET. This has the advantage of allowing you to create Office
solutions that work with Access, Outlook, and all the other apps, while VSTO
is limited to Word and Excel.

There must be something gained by VSTO or it likely wouldn’t have been
invented, would it?

Various white papers and other documents describing VSTO mention all the
benefits of .NET. Well, I agree that .NET certainly brings lots of goodies to the
programmer’s toolkit. .NET offers many advantages over older technologies.
But you can easily add .NET to your Office solutions without resorting to
VSTO. All .NET benefits are also available to a programmer when you create
a front end in .NET and just instantiate Office apps. Likewise, those .NET
benefits are available as well if you build COM add-ins. (See the section on
programming your own add-in in Book VIII, Chapter 1.)

White papers also mention such benefits as in-process execution, event
handling, and managed code. But none of these features is exclusive to
VSTO; you can get them using other approaches (described later).

These white papers (and some mauve papers, too) also put forward the idea
that VSTO is document-centric. (Users can click an XLS file in Windows
Explorer, for instance, Excel starts running, and that workbook is loaded.)
The user opens a document (or a creates a new document based on a tem-
plate), and your code is loaded along with that document.

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 735

Communicating between .NET and Office Applications736

But again, it’s not at all difficult to achieve this behavior without using VSTO.
Just put a VBA AutoExec macro into a DOC (or other) file. This macro auto-
matically executes your VB.NET application (via the VBA Shell function)
when the document is loaded. Docu-centricity, right?

What, I ask, finally, what does VSTO offer that cannot otherwise be achieved
using existing technologies? The answer seems to boil down to nothing.
E-mail me at richardm52@hotmail.com if you know of some advantage that
VSTO confers.

When you use VBA code, the code does stay in the document. So, if you
need to update that code or fix a bug, you have lots of copies to replace all
over the office. That, along with various other drawbacks and weaknesses of
the VBA language (such as XML deficiencies) are solved when you add .NET
to your Office programming tools.

When you use VSTO, you can take the more convenient .NET approach and
store your assembly (code libraries) at a public network location. This way,
all user’s documents — no matter how many of these exist or where they’re
located — use this single assembly. This simplifies security somewhat and
considerably simplifies maintenance. To change something in the assembly,
just delete the existing version and replace it with the new version. (Of
course, this seems simpler to describe than it turns out to be in practice.
You must confront the multitudes of .NET security settings for your clients,
install .NET itself, deal with PIAs, and other issues.)

But using VSTO is simply not the only way to add .NET capabilities to Office
programming. And unless I — and others — are missing something, VSTO
brings nothing to the table that you cannot find by using alternative, more
stable and tested, approaches. VSTO is merely one way among several to
manage Office 2003 applications programmatically. You might want to con-
sider the advantages of employing alternative technologies rather than
VSTO. To be fair, perhaps VSTO is more stable and effective now than it was
when I worked with it while writing this book. Products do improve. You
might want to research VSTO a bit more to see whether it fits in with your
plans or needs.

The five ways to program Office
Here is a list of the ways you can program Office; there are five primary
approaches:

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 736

Book VIII
Chapter 6

Using Visual Studio
Tools for Office 2003

Communicating between .NET and Office Applications 737

✦ Use classic VBA and instantiate other Office applications as necessary
if you want to create a solution larger than a single application.

VBA code executes and (except for Outlook) is stored within the applica-
tion where the code resides. A Word DOC file, therefore, can contain a
VBA application. Such code executes in process. VBA code is p-code, not
compiled native code, so there is some degradation of performance, if
slight. However, because the code executes in-process, you gain a com-
pensating speed boost when interacting with Office object members.

✦ Use Visual Basic 6 or some other COM-aware language.

✦ Create a front end in VB.NET that manipulates instantiated Office
objects, as illustrated by Listing 6-1.

You get all the benefits of .NET. You can choose to use .NET forms as your
user interface, or you can even make this approach Office-document-
centric. To do that, the user can click a DOC file that includes a VBA
macro named AutoExec that automatically executes your VB.NET appli-
cation (via the VBA Shell function).

✦ Create an add-in, as illustrated in Book VIII, Chapter 1 in the section
about programming your own add-in.

Add-ins use compiled native code and also run in-process, thus avoiding
the slight speed penalty exacted when either of these conditions are not
met. As the example in Book VIII, Chapter 1 illustrates, a single COM add-
in can automatically load within multiple Office applications (either at
application startup or on demand, depending on your specification).
COM add-in code created in .NET is managed code.

✦ Use VSTO.

VSTO offers a way to employ managed code that runs in-process and
can respond directly to Office application events, but these behaviors
are simply not unique to VSTO.

Of course, add-ins run in-process, and you can handle events with add-ins or
other VB.NET front-end applications. For example, to respond to a document
close event from within VB.NET code, you can modify Listing 6-1 (the exam-
ple code earlier in this chapter) by adding an event handler:

Dim WithEvents WordApp As Word.Application
Dim WithEvents WordDoc As New Word.Document

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 737

Understanding VSTO738

WordApp = CType(CreateObject(“word.Application”),
Word.Application)

WordDoc = CType(WordApp.Documents.Add, Word.Document)
WordApp.Visible = True

Dim s As String = “See, this text has been added
to our new document. Now we’ll save it as
C:\test.doc.”

Dim sln As Word.Selection
sln = WordApp.Selection
sln.TypeText(s)

End Sub
Private Sub EventHandler() Handles WordDoc.Close

MsgBox(“EventHandler caught event.”) ‘ Handle the
event.

End Sub

Understanding VSTO
VSTO is limited at the present time to creating Word (DOC or DOT) or Excel
projects, although it’s likely that the technology will be extended to other
Office 2003 applications, particularly Access and Outlook.

The .NET IDE (Integrated Design Environment) is a very powerful suite of
tools for the programmer — far more capable and sophisticated than the
VBA editor in Office 2003 applications. Given a choice, any serious Office
2003 developer — or indeed pretty much any programmer doing most kinds
of Windows or .NET programming — likely prefers the Visual Studio pro-
gramming environment.

Microsoft marches on. The term IDE is being replaced with MDE in some
products. What do you suppose the M stands for?

Here’s a little list (not in order of importance) of many of the things that
I like about .NET, and why I left my familiar, beloved VBA and Visual Basic 6
for it:

✦ Immense power: The .NET framework is huge and really quite wonder-
ful. You cannot exhaust it. The framework contains effective, specialized,
generally powerful classes that can accomplish whatever you might
need to do. (Database, Internet, security, and nearly all other kinds of
programming are supported here with advanced tools and versatile
classes.)

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 738

Book VIII
Chapter 6

Using Visual Studio
Tools for Office 2003

Creating Your First Visual Studio Tools for Office Project 739

✦ A brand-new language: VB.NET language is not merely a revision of VBA
or VB 6. Instead, it was rewritten from the ground up to be a brand-new,
fully object-oriented programming (OOP) language. And if you aren’t all
that much of a fan of OOP, VB.NET allows you to easily ignore those
extra features.

✦ Server Explorer: The .NET IDE also includes Server Explorer (choose
View➪Server Explorer), which is handy for adding database connec-
tions, creating schemas in the XML designer, accessing your intranet,
adding, editing, and deleting tables and columns. You can even create a
database with it.

✦ Backward compatibility: In .NET, you can use classic VBA and VB6 func-
tions if you prefer, mixing them in with .NET code as you will. You can
also add classic VB Windows forms to Office solutions. These forms are
superior to the UserForms available via VBA.

✦ The best programming editor tools: Just one example (of many) is the
VB.NET debugging facilities, which are among the most thoughtfully
organized and robust available.

✦ XML: Extensive XML and namespace support.

✦ ADO.NET: An advanced, highly scalable, database management
technology.

✦ ASP.NET: Ditto for highly scalable Internet programming.

VB.NET — like the other VS.NET languages — runs under the supervision of
the common language runtime (CLR), thereby earning Microsoft’s new phrase
managed code. Such code is validated (checked to see that it doesn’t violate
memory restrictions and other illegal behaviors). It also offers code-based
security features unavailable to unmanaged (that is, non-.NET languages)
code. However, compared with older languages — particularly the VBA built
into Office applications — .NET requires that you deal with a bit of a learning
curve with the programming, deployment (this is actually quite a bit easier),
and security settings. Also, although communication between .NET and Office
objects is generally quite smooth, there are a few data type discrepancies
that must be dealt with, although rarely.

Creating Your First Visual Studio
Tools for Office Project

To see how to work with VSTO, first install VSTO on your computer and then
follow these steps:

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 739

Creating Your First Visual Studio Tools for Office Project740

1. Choose File➪New➪Project in Visual Studio.

You see the New Project dialog box.

2. In the Project Types pane on the left side of the dialog box, open the
Microsoft Office System Projects node, as shown in Figure 6-1.

3. Click the Visual Basic Projects entry, as shown in Figure 6-1.

You see the three possible project templates: Excel Workbook, Word
Document, and Word Template.

4. Double-click the Excel Workbook icon in the dialog box.

The dialog box closes, and the VSTO Wizard opens. You can build your
new project by using either an existing document or a new one.

5. Select the Create New Document radio button.

6. Click Finish.

The wizard builds a template for you. Actually, it’s an Excel Workbook,
with some code in it. The template includes Open and BeforeClose
events.

7. Click the + next to Generated Initialization Code in the code window.

You see the code in Listing 6-2, along with some warnings not to tamper
with some of the code.

Figure 6-1:
Here you
see the new
project
types that
VSTO adds
to Visual
Studio.

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 740

Book VIII
Chapter 6

Using Visual Studio
Tools for Office 2003

Creating Your First Visual Studio Tools for Office Project 741

Listing 6-2: Look but Don’t Touch!

Region “Generated initialization code”

‘ Default constructor.
Public Sub New()
End Sub

‘ Required procedure. Do not modify.
Public Sub _Startup(ByVal application As Object, ByVal

workbook As Object)
ThisApplication = CType(application,

Excel.Application)
ThisWorkbook = CType(workbook, Excel.Workbook)

End Sub

‘ Required procedure. Do not modify.
Public Sub _Shutdown()

ThisApplication = Nothing
ThisWorkbook = Nothing

End Sub

‘ Returns the control with the specified name on
ThisWorkbook’s active worksheet.

Overloads Function FindControl(ByVal name As String) As
Object

Return FindControl(name, CType(ThisWorkbook.
ActiveSheet, Excel.Worksheet))

End Function

‘ Returns the control with the specified name on the
specified worksheet.

Overloads Function FindControl(ByVal name As String,
ByVal sheet As Excel.Worksheet) As Object

Dim theObject As Excel.OLEObject
Try

theObject = CType(sheet.OLEObjects(name),
Excel.OLEObject)
Return theObject.Object

Catch Ex As Exception
‘ Returns Nothing if the control is not found.

End Try
Return Nothing

End Function
#End Region

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 741

Creating Your First Visual Studio Tools for Office Project742

Visual Studio added this interesting feature to Visual Basic: code that is dis-
played to you but that you are not supposed to modify. That’s a bit like leav-
ing a bone near a dog and saying, “STAY” to the poor creature, but there you
have it: ‘ Required procedure. Do not modify. (Look at this, honey . . .
but don’t touch it. Microsoft programmers can be such teases!)

Actually, you should make up your own mind. Some areas of “hidden”
regions can be usefully modified. (Psst: You do sometimes want to modify
parts of the forbidden source code zones, no matter what the police say.)

For example, if you want to make something happen when an object (such
as this Public Class OfficeCodeBehind) is instantiated, you can insert
your code into the constructor (the procedure that executes when an object
is constructed):

‘ Default constructor.
Public Sub New()
End Sub

When to touch the untouchable
Even though you’ll find the ominous do not modify warnings here and there
in the template’s code, you sometimes must make changes. For example, this
line of code would have to be edited were you to change the name of the class.
This class is instantiated when a user opens the workbook you’re working
on, and its name is OfficeCodeBehind:

<Assembly: System.ComponentModel.DescriptionAttribute
(“OfficeStartupClass, Version=1.0, Class=
ExcelProject1.OfficeCodeBehind”)>

Adding your code
Now you want to try adding a bit of code to find out how to work with a
code-behind project like this one. Into the workbook’s Open event, type this:

‘ Called when the workbook is opened.
Private Sub ThisWorkbook_Open() Handles ThisWorkbook.Open

Dim r As Excel.Range = ThisApplication.Range(“A1”)
r.Value = 12

End Sub

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 742

Book VIII
Chapter 6

Using Visual Studio
Tools for Office 2003

Creating Your First Visual Studio Tools for Office Project 743

Press F5. If all security systems permit it and if the code-behind system is
stabilized, you should see Excel start running and the value 12 placed into
the worksheet.

In my computer, security settings somewhere (perhaps VSTO mucked up
.NET) refuse to permit the code to execute behind the worksheet. So,
although Excel does start, it refuses to engage. The VB.NET project is not
permitted to execute from this folder.

The .NET code-access security system is complex. As this book goes to
press, the version of VSTO that I have has no security configuration options
in its wizard. They are evidently supposed to be accessible on the second
page of the Microsoft Office Project Wizard, as shown in Figure 6-2.

Figure 6-2 appears just before you click the Finish button (described in Step 6
in the step list in the earlier section, “Creating Your First Visual Studio Tools
for Office Project”). It seems that you should be able to obviate security, as
shown in Figure 6-2. But the version of the wizard that I had while working
on this book had those capabilities disabled.

If you have a similar experience, you might be tempted to try adjusting the
.NET security settings. However, I suggest that if your other .NET program-
ming executes just fine — as mine has for years — the .NET settings are
likely as they should be. You must wait for a version of VSTO that deals more
effectively with security issues for us programmers who, obviously, need to
be able to test our own programming on our own machines.

Figure 6-2:
No security
options are
available on
this wizard
page.

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 743

Creating Your First Visual Studio Tools for Office Project744

Or, as I did, you could ask questions on the VSTO newsgroup mentioned ear-
lier in this chapter. Or you could retire and move to Florida with Amber or
Mysti, David or Joe, your preferred other.

Adjusting .NET security (don’t do this)
If you want to look into your computer’s .NET configuration, here’s how:

For Windows 2000 Professional, go to the Administrative Tools group in
Control Panel and run the Microsoft .NET Framework Configuration. For
Windows 2000 Server or Windows .NET Server, choose Start➪Programs➪
Administrative Tools➪Microsoft .NET Framework Configuration. In XP
Professional, from Control Panel, double-click the Administrative Tools
icon and then double-click the Microsoft .NET Framework Wizards (or
Configuration).

But it’s really not .NET that’s causing this problem: It’s VSTO. So I advise you
to just use the other .NET-Office 2003 bridges described in this chapter until
VSTO gets its act together. And even then, what does VSTO really bring to
the table that other approaches don’t? E-mail me if you know the answer:
richardm52@hotmail.com.

08g_570676 bk08ch06.qxd 6/4/04 10:31 PM Page 744

Chapter 7: Office 2003 Security

In This Chapter
� Understanding Office 2003 security

� Using Information Rights Management (IRM)

� Going beyond IRM

� Virus protection

� Using file- and folder-based security

� Managing encryption

� Removing comments

� Preventing tracing

� Setting macro security

� Signing and hashing code

You’ve seen those New York apartment doors covered with multiple
deadbolts, chains, and rods. Is there a funnier or sadder topic in com-

puting today than security? All the storm and fury, all the king’s men, all
the billions of dollars thrown at the problem — and it’s no closer to being
solved than it ever was or ever will be.

News flash: This problem cannot be solved. Technology cannot eliminate
viciousness or foolishness without destroying human nature in the process.
Has bank robbery been stopped? Mail fraud? Con games or pipe bombs? As
long as there are people, some will be mean and childish, and others will be
foolish enough to be vulnerable to the mean ones.

What can be done is to improve computer security so that malicious and
foolish people have less impact than they currently do. For example, Office
2003 now includes an Anti-Virus API (Application Programmers Interface)
that, among other things, allows commercial antivirus software to examine
a document for virii after a user opens it but before any VBA code is permit-
ted to execute. That’s in addition to examining executables when first
downloaded, always watching what’s running in RAM, looking at e-mail,
and so on.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 745

Getting to the Heart of the Problem: People746

The same phenomenon — layer upon layer of security measures like a door
covered with locks — describes current computer security measures, yet
virii routinely blossom around the world, rapidly infecting millions of
machines within a few days.

Getting to the Heart of the Problem: People
The primary security problem is people: to be more specific, people who
are nitwits. You can spend $20,000 to install professional hardware firewall,
antivirus utilities, spyware detection, worm blockers, and all the rest, but
when one silly person on your network opens an infected e-mail and exe-
cutes the attachment, you’ve got trouble.

Think of it this way: Install a solid steel door in your apartment and add
35 deadbolts. But how much good does all this do if you’re brainless enough
to open the door to a stranger who says, “Hey! I’m trying to get $25 million
out of Nigeria. Will you help if I give you some of the millions?” Knock, knock.
“Want to see a shocking picture of Misti or Amber?” “Well, heck yeah!”
Candygram. Land Shark.

Hope springs eternal
In spite of the fact that there’s no way this side of heaven to ever be entirely
secure, people do keep trying. Some of it is understandably psychological:
Installing that steel door probably makes you feel more secure, and that is
worth something. At least they can’t set fire to it.

Note the implicit paradox here: You’re reading information about security
technologies in Office 2003 and Windows. But some information should
remain secret, no? And there’s lots more info out there on the Internet.

Someone has to implement, maintain, and enforce security measures.
Administrators, IT professionals, developers . . . all of us need to know how
to manage these security technologies (I couldn’t get VSTO to work in the
preceding chapter of this mini-book because of security issues.) But face it:
Some technically astute people work for the dark side and have access to
the same information that we do.

Security in today’s computing systems often suffers from the weakest-link
problem. For example, everyone in an organization must protect their pass-
word effectively for the LAN to remain entirely secure. Everyone must be
sophisticated enough to understand the danger if they answer a phone call
like this: “Hi, Jimmy in IT here. We’re conducting a routine password test.
Please type in your password now. Done? OK. That’s working fine. Good.
Now read it back to me off your screen, just for verification. Thanks! Bye.”
Whammo! That bad guy is in.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 746

Book VIII
Chapter 7

Office 2003 Security

Understanding Office 2003 Security Initiatives 747

Some protection helps
However, layered security can offer some protection against such tricks.
For example, even if an employee gives out a password, that employee might
belong to a restricted group: that is, someone without unlimited permissions.
So the damage (to file erasure or privacy attack) remains limited to the extent
of that person’s file-access permission level. In most security situations, mul-
tiple security strata do offer this kind of buffering against a total breach of
your intranet.

Also, today’s best systems tend to require extreme verification. All the
layers of a security system must grant permission to the caller (human or
computer) trying to access a hard drive, registry, or the security features
themselves.

Understanding Office 2003 Security Initiatives
If you and your co-workers already know how to intelligently encrypt your
documents, how to use a firewall effectively, not to open e-mail attachments
or otherwise expose your machines to executables, and to frequently back
up your work, you can probably skip this chapter. Encryption and backing
up are the primary defenses against attacks of any kind. Other defenses —
such as antivirus software — are less useful. Nonetheless, Office 2003 comes
with lots of security features that, in many cases, can limit the damage if you
don’t carefully follow the two golden rules: encrypt and back up your work.

The security features in Office 2003 and .NET are considerable. You owe it to
yourself to familiarize yourself with them and to find a balance between suffi-
ciently strong security and the inconvenience that too much security causes.

Why consider .NET security along with Office 2003? Just as .NET will eventu-
ally replace VBA for Office programming, .NET security features will replace
VBA security features. What California is to the rest of America, .NET is to
the rest of Microsoft products: the wave of the future. However, covering
.NET security is beyond the scope of this book.

Office 2003 continues the endless process of adding new security features,
albeit a claim made by everyone, everywhere, about everything. You must
come to grips with the new security features, though, if only to understand
what they can and cannot do to protect us.

Using IRM
Consider Information Rights Management (IRM), which works with Word,
Excel, and PowerPoint but not Access. You can specify that a document
cannot be sent as an attachment to e-mail, has a limited lifetime, and cannot

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 747

Understanding Office 2003 Security Initiatives748

be copied. (The PrintScreen key is disabled.) But someone can still take a
picture of the screen with a camera. Also, third-party screen capture utilities
can sometimes be used to capture a graphic version of the document.

IRM can restrict individual users from

✦ Copying a document or portions of it

✦ Printing a document

✦ Using VBA to access a document programmatically

✦ Accessing a document following a specified expiration date

IRM won’t work unless your system can verify users’ identities via Microsoft’s
Passport authentication or Windows Server 2003 with the necessary Client
Access Licenses.

Permissions can be tailored to each user with potential access to a docu-
ment. To see the Permission dialog box, choose Tools➪Protect Document. At
the bottom of the Protect Document taskbar, click the Restrict Permission
link. The Permission dialog box appears, as shown in Figure 7-1.

To refine the permissions, click the More Options button to see the
expanded version, as shown in Figure 7-2.

Notice the Set Defaults button in Figure 7-2. Click this to make the current per-
mission settings the default for any Excel workbook, PowerPoint presentation,
or Word documents that you create in the future (that is, if you choose to add
IRM protection to them). The settings in the dialog box shown in Figure 7-1
also apply to the default.

Figure 7-1:
Manage
IRM
permissions
here.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 748

Book VIII
Chapter 7

Office 2003 Security

Understanding Office 2003 Security Initiatives 749

Someone using a pre-2003 version of Office cannot read a document pro-
tected by IRM. However, there’s an add-in for Internet Explorer that such a
user can employ to read IRM-protected documents if you grant this permis-
sion. To do that, select the Allow Users with Earlier Versions of Office to
Read with Browsers Supporting Information Rights Management check box
as shown in Figure 7-2. Book VII, Chapter 2 includes additional information
on IRM.

Hiding files
Another way to protect data is to hide files on your hard drive from other
users. For Windows 2000 and later

1. Right-click a filename in Windows Explorer.

2. Choose Properties from the context menu.

3. Select the Hidden check box.

Two things can now happen: Either the file’s listing in Explorer disappears,
or the file’s icon merely gets pale. If the latter happens, you’ve previously
changed the default Windows Explorer setting to Show Hidden Files and
Folders. (In Explorer, choose Tools➪Folder Options, click the View tab, and
find the Hidden Files and Folders section under Advanced settings.)

Figure 7-2:
Refine user
permissions
in the
expanded
dialog box.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 749

Going beyond IRM750

If you do hide a file this way, you can restore it to view by following the steps
just mentioned, and selecting the Show Hidden Files and Folders check box
at least temporarily: that is, long enough to right-click the hidden file and
deselect its Hidden check box in its Properties dialog box.

NTFS file systems also permit you to specify behaviors and permission levels
for entire folders. To do so, follow these steps:

1. In Windows Explorer, right-click a folder and choose Properties.

2. Click the General tab.

You can select hidden or read-only properties on this tab.

3. Click the Advanced button to choose to encrypt the contents of this
folder.

4. Click the Sharing tab to adjust local or network sharing settings.

If other users share your computer, they won’t be able to see your hidden
files or folders as long as their Windows Explorer Tools➪Folder options still
has the default setting: Do Not Show Hidden Files and Folders.

Going beyond IRM
In addition to IRM, Office 2003 adds several new security features and
improves existing features. For example, Access has a peculiar security
warning when you load an MDB database: This file may not be safe
if it contains code that was intended to harm your computer.
Do you want to open this file or cancel the operation? Similar
warnings appear in Outlook and other Office 2003 applications, depending
on the security settings that the user or administrator have specified.

Beyond this, at your disposal are other security measures involving macros,
warnings about loading ActiveX objects, trusted sources, password protec-
tion, certificates, and encryption. For example, administrators can go ahead
and disable VBA although that can have a serious impact on employee pro-
ductivity. Also, some Office 2003 add-ins, downloads, and programming of
various kinds will not run.

Macros and other programming are like cars: inherently dangerous precisely
because they’re powerful. Rather than entirely eliminating such dangers, the
best course is usually to establish rules about who can use the technology
and how they can use it. You never entirely eliminate the dangers, but you
reduce them to tolerable levels.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 750

Book VIII
Chapter 7

Office 2003 Security

Setting Up Virus Protection 751

If you feel you must turn off VBA, you can change the option for VBA to Not
Available or Not Available, Hidden, Locked. This can be done in three places:

✦ The Set Feature Installation States page of the Custom Maintenance
Wizard

✦ The Setup.exe Advance Customization page

✦ The Custom Installation Wizard

If you choose the Run from My Computer option for Access, VBA is required
for Access to execute in this fashion.

The alternative to turning macros off entirely and eliminating VBA from
your Office 2003 environment is to goose up the security options settings.
Choosing a High or Medium macro security prompts your users when
unsigned macros are about to run, giving them the option to refuse to permit
the macro execution. (This likely has little impact on George Nitwit, so it’s no
real protection against wanton foolishness.)

For details on managing macro settings in Office 2003 applications, see the
section on adjusting macro settings in Book I, Chapter 2.

If you set macro security to Very High, no macros can execute unless they’re
stored in a trusted location on the user’s hard drive.

If you’re in charge of managing Office 2003 security, you should know that
most Office security settings are specified either via policies or when using
the Custom Installation Wizard. The improved Custom Maintenance Wizard
permits you to adjust security settings after Office 2003 has already been
installed. Nearly all the features that you can specify during setup can also
be adjusted later with the Custom Maintenance Wizard.

Setting Up Virus Protection
Various improvements have been made in Office 2003 applications to guard
against virus attack. Some of them rely on the user (!?), such as warnings/
questions that a database might contain executables and whether you want
to load it, anyway. Others involve changes to the object model and applica-
tion behaviors. For instance, the Outlook Address Book defaults to allowing
only user-specified programmatic access to it, with an additional time limit
on that access. If you write a program that wants to see your Address Book,
you’ll see a dialog box pop up asking whether you permit access to this
information — and if so, for how long. This is to guard against currently
notorious Address Book harvester viruses.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 751

Setting Up Virus Protection752

SharePoint and InfoPath offer some security features, discussed in this book
in chapters on those technologies. Read about SharePoint in Book VII,
Chapter 9 and InfoPath in Book VII, Chapter 4.

Because Office 2003 macro languages are fully capable of doing damage
(file deletion, for example), you do have to be aware that a virus in VBA code
is just like a macro. Typically, an infection via VBA results when the user
opens a document. That triggers a macro, which starts to replicate itself,
going into Normal.dot and other files. As with e-mail attachments, don’t
open documents from strangers.

Office 2003 applications default to automatic Internet connections (to pro-
vide automatic online Help features, descriptions of new templates and fea-
tures, and so on). This connection can, of course, be unwise for some kinds
of employees or if your company works on top-secret projects. To change
this default, deselect this option by following these steps:

1. Choose Tools➪Options.

You see the Options dialog box.

2. Click the General tab.

3. Click the Service Options button.

You see the Service Options dialog box.

4. Click the Online Content link in the left pane.

You see the default settings, as shown in Figure 7-3.

Figure 7-3:
Prevent
automatic
Internet
connections
here.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 752

Book VIII
Chapter 7

Office 2003 Security

The Security Properties Dialog Box 753

5. Clear the Show Content and Links from Microsoft Office Online
check box.

6. Click OK.

The dialog box closes.

The Security Properties Dialog Box
Individual security settings for Office 2003 applications can be adjusted
via the Security tab of the Options dialog box (choose Tools➪Options).
(Access, as usual, differs from the other Office 2003 applications. There,
you choose Tools➪Security.)

The Security tab of the Options dialog box is shown in Figure 7-4.

Encryption options
As you see in Figure 7-4, you can encrypt the document: mangling it so that
others cannot read it. A variety of encryption schemes exists, including the
powerful RSA system. Precisely which encryption systems are listed for you
depend on which ones are installed on your machine.

Figure 7-4:
Adjust
various
security
settings of
Office 2003
apps here
(except
Access).

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 753

The Security Properties Dialog Box754

In any case, avoid the Office 97/2000 Compatible encryption scheme, even
though it’s the default in the dialog box. That system is rather lame; it took
me only a few hours one day to crack it and write a little utility that automat-
ically decrypts any document so encrypted (without even having to use
brute force or password guessing). And, obviously, you should avoid the
first system listed: the self-describing Weak Encryption (XOR). Interestingly,
XOR was used for years until someone pointed out that zeros in the plaintext
(the unencrypted document) provided a wide-open door into the cyphertext
(the encrypted document). Choose a version of RSA or another of the
strong encryption systems. If asked, choose the largest possible key length.
(Specify the encryption and the key length by choosing Tools➪Options and
then click the Advanced button of the Security tab.)

In the Security dialog box, you can also manage digital signing to verify your-
self as a trusted source. (For details on digital signatures, see the section on
dealing with macro security issues in Book I, Chapter 2.)

File saving considerations
If you encrypt a document, be aware that versions of it in plaintext might
still exist on your hard drive — you know, backups, recovered versions, and
those odd temp files (like this: ~WRL2772.tmp) that Word creates but that
sometimes remain undeleted. Even if you (or Word) delete them, the data in
these documents might still exist magnetically on the hard drive, if no longer
in the file allocation directory. In other words, you might not see them listed
any longer in Windows Explorer, but they can often be recovered and viewed
with special utilities.

As long as those plaintext copies of your document reside in one form or
another on the hard drive, your data is not secure. The solution is to encrypt
the document before you do any work on it or save it. This ensures that the

RSA
RSA (named after its inventors, Professors
Rivest, Shamir, and Adleman) is quite an
unusual system. Until RSA was invented,
encryption depended on a secret key that
you and your recipient used to decrypt the
cyphertext message. RSA makes a key public

information, yet RSA is the strongest encryption
available today (unless the government is keep-
ing something from us). For details on how you
can add RSA to your own programming, see
Book VIII, Chapter 8.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 754

Book VIII
Chapter 7

Office 2003 Security

The Security Properties Dialog Box 755

encrypted version will be the only one extant. (For example, if you intend to
keep a document secure, start the new document and then immediately
encrypt it without actually typing anything into it yet. Then after it’s
encrypted, no other earlier/unencrypted version will remain behind on
your hard drive.)

Choices on the Save tab (in Word, Excel, and PowerPoint, choose Tools➪
Options) can also have security consequences. Most of today’s speedy
machines don’t require the Fast Saves option because files save quickly
enough as is. The Fast Saves feature simply appends changes to a document
rather than integrating them. In some cases, however, opening a Fast Saved
document with programs like Notepad or other text viewers can reveal text
that was deleted. You might not want people seeing this deleted text.

Similarly, deleted text can remain in documents saved if you select the Always
Create Backup Copy option. (Neither option is on by default.) If you select
the second option, a backup copy of each document (a WBK file) is stored
with the original. However, this backup is the previous version: namely, the
one that might include text you deleted from the current version.

If you provide a password when encrypting a document, public key encryp-
tion is not used. The password is used as a secret key; that is, both you and
the recipient must know this password to decrypt the document.

Nobody can decrypt a strongly encrypted file. That is the idea, after all
(isn’t it?). For one thing, the password isn’t stored in the file. The password
might exist only in your mind after you’ve typed it in when first encrypting
the file. Will you remember it? Passwords can also cause a different problem:
What if Patti suddenly leaves the company, perhaps because of a fatal yoga
mishap? If she’s the only one who knows her password, all her encrypted
files are useless. It’s the administrator’s job to keep copies of employee pass-
words in a secure place.

Pas en France (Not in France)
However, France, like Access, does things its
own way. In this context, France has outlawed
128-bit keys. If you’re sending a document to
Claudette, she’ll likely have her Regional and
Language Options in Control Panel set to
French. She won’t be able to open 128-bit key

encrypted documents. Let’s not pretend to
understand how a government thinks it can
outlaw a technology that’s available worldwide
with the click of a mouse. America, too, out-
lawed public key encryption until recently. Je
m’amuse.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 755

The Security Properties Dialog Box756

I suggest creating a secure, encrypted data store for this purpose, as I
describe in Book VIII, Chapter 8. I use this utility several times a week. It’s a
very practical place to store such things as logon/password pairs, financial
information, and sensitive data of any kind. You can create this utility follow-
ing the simple instructions in Book VIII, Chapter 8, or you can get someone
who knows VBA to do it for you. If I were in charge of a group of employees,
I’d give each of them a copy of this utility. It’s that helpful. Everyone has data
they’d like to keep secret, and it has features that make it faster and easier to
use than other encryption-based data stores.

Anyone who knows the password (or finds a file open on someone’s machine)
can remove the password from a document. The encrypted document must
first be opened — requiring that someone know the password — before the
password can be deleted. To remove a password, follow these steps:

1. With the file open, Choose File➪Save As.

The Save As dialog box opens.

2. Click the drop-down arrow labeled Tools (in the upper-right of the
dialog box, near its title bar).

3. Choose Click Security Options from the drop-down list.

The Security dialog box opens.

4. Delete the asterisks in the Password to Open box.

5. Click OK.

The dialog box closes.

6. Click Save.

The now-unprotected file is saved.

Using strong encryption
Strong encryption systems are available in Office 2003 for Word, Access, and
Excel. Outlook uses Secure Multipurpose Internet Mail Extensions (S/MIME)
security extensions with which you can both digitally sign and encrypt your
e-mail and any attachments.

You can automate password protection with a macro, but if you do, be sure
to display a dialog box asking the user to type in the password. Don’t write
the password in the source code. Including the password in an encrypted doc-
ument used to be fairly common practice, but it’s almost as foolish as leav-
ing your front door key in the lock for any passing stranger to gain entrance.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 756

Book VIII
Chapter 7

Office 2003 Security

The Security Properties Dialog Box 757

Editing permission settings
Click the Protect Document button to prevent others from applying various
kinds of formatting or editing, as shown in Figure 7-5.

You can also use the task pane shown in Figure 7-5 to assign different levels
of editing permission to different users.

Don’t confuse document protection with encryption. A protected document
cannot be edited via the application, but parts of it can certainly be viewed
with disk view utilities or even (in some cases) document readers as simple
as Notepad.

Removing embarrassing comments
The primary value of the privacy options group of settings on the Security
dialog box is to prevent you from letting others see the editing process as
well any perhaps unkind comments you made about the document or a

Figure 7-5:
Use this
taskbar to
specify
limits to the
formatting
or editing
of this
document.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 757

The Security Properties Dialog Box758

co-worker. By default, the Make Hidden Markup Visible When Opening or
Saving option is selected. This helps to prevent you from adding revisions or
comments that remain with the document when you, say, submit it to the
boss with a comment like, “As you know, Big Mike has no idea how to punctu-
ate, so after he reviews this, be sure to check it one more time.”

In Word, Excel, and PowerPoint, you can remove sensitive metadata when
saving a document. (Choose Tools➪Options, click the Security tab, and
then select the Remove Personal Information from File Properties on Save
check box.)

Preventing tracing
The Store Random Number to Improve Merge Accuracy option is peculiar.
It’s on by default, and it does evidently serve a purpose when merging or
comparing documents, but it has a perhaps sinister side effect. It’s like an
invisible digital signature or hidden watermark that can uniquely identify
you as the document’s author. If you have a reason to remain anonymous
when creating documents — that is, you don’t want them traced to you —
deselect this option.

You can fire up the Office 2003 Resource Kit, available from www.microsoft.
com/office/ork/2003/default.htm.

You can employ the Resource Kit’s System Policy Editor to make sure this
random number option is in effect for all your users. You can also use this
approach to mass-enforce the Make Hidden Markup Visible option discussed
in the preceding section. However, the Remove Personal Information from
This File on Save option is individual for every document and thus cannot
be mass-enforced.

Macro security
Click the Macro Security button to adjust the settings that govern whether
macros are permitted to execute or whether warning dialog boxes are dis-
played. I discuss these options are discussed in detail in Book I, Chapter 2.
Clicking this button also allows you to specify trusted sources — organiza-
tions or people who have digitally signed their macros or other VBA code,
and whom you’ve specified can be trusted. Digital signatures are designed to
verify that code originated from the signer and has not been subsequently
modified. You can add your own digital signature to a document by clicking
the Digital Signatures button on the Security tab of the Options dialog box.
Digital signatures are now considered legally binding in the U.S. and Europe.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 758

Book VIII
Chapter 7

Office 2003 Security

The Security Properties Dialog Box 759

Signing your VBA code
To add a signature to VBA code, choose Start➪All Programs➪Microsoft
Office➪Microsoft Office Tools➪Digital Certificate for VBA Projects. You see
the dialog box shown in Figure 7-6. Beware, though, because this self-signing
is rather limited. It only works only on the machine where it was created, it
could be a forgery, and it’s limited to personal use only.

Signatures and hashing
Office 2003 employs powerful, public key technology to sign data blocks
(such as Word documents, workbooks, and other blocks of data or files).
This process provides validation: that the document comes from whomever
it says it does (as long as you know the author; clearly, the bad guys can sign
documents, too). Also, the private key generated by RSA public key encryp-
tion is used to encrypt a hash of the data. (.NET allows you to programmati-
cally hash, along with many other powerful security features that you can
add to your solutions. Hashing is explained in Book VIII, Chapter 8.) The
encrypted hash value is then generated by the recipient of the data block
and compared with the hash value transmitted along with the data. It they
match, you can be virtually certain that this data block has not been altered
(and thus can be trusted).

Like any security measure, digital signatures don’t provide complete protec-
tion from the people on the dark side. Troubled individuals who write viruses
could themselves get a digital certificate, just as good people can. They might
not have the best certificate or even have it for very long, but a spree is a
spree. Also, innocent folks might accidentally send you a signed yet poisoned
document as a result of adding a valid certificate to what they did not realize
was a toxic file.

Figure 7-6:
A limited
kind of
digital
signature
can be
added to
your VBA
code.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 759

Avoiding Data Loss760

Avoiding Data Loss
If you have really interesting secrets to protect, Office 2003 encryption
features, if intelligently used, can guard your privacy quite adequately.
By intelligently used, I mean the following:

✦ Use a strong encryption like RSA.

✦ Guard the password.

✦ Encrypt the document before adding any data to it so you don’t leave
any plaintext copies around on your hard drive.

The other great threat to security in computers is attacks on data. This kind
of assault isn’t an attempt to expose your secrets. It just wants to do damage:
delete files, slow down your system, launch smash-and-grab raids, turn your
machine into a zombie, and so on. The list of variations on childish malice is
lengthy and growing. Probably the worst kind of attack destroys your work.
You’ve spent days building a spreadsheet or writing a great proposal, and
then, whack! It’s deleted along with useful historical information like your
Address Book and Inbox.

The solution is to back up your data often. With blank CDs costing five-for-a-
penny or cheaper at your local computer megamart store and CD-R/W drives
at $19, you have no excuse for avoiding what takes only minutes and costs
nearly nothing. Also, ensure that any auto-backup features are turned on and
set to high-frequency (such as every 30 minutes), so even a power outage
won’t cost you more than a half hour of work.

If you’re working on an Office 2003 document and the application freezes,
don’t resort to manually shutting down (Ctrl+Alt+Del) the not-responding
application. Instead, choose Start➪All Programs➪Microsoft Office➪
Microsoft Office Tools➪Microsoft Office Application Recovery. This utility
attempts a graceful shutdown that tries to preserve the data.

08h_570676 bk08ch07.qxd 6/4/04 10:32 PM Page 760

Chapter 8: No More Paranoia:
Programmatic Encryption

In This Chapter
� Understanding encryption

� Reviewing the two main encryption techniques

� Building your own encryption solutions

� Working with public key encryption

� Exploring high-speed DES encryption

� Discovering encryption in .NET

To me, encryption is one of the most interesting aspects of computing.
There’s something intriguing about the contest of intellects on either

side — the bad people cooking up new attacks versus the good people
thinking up new defenses. And the computer brings an entirely new dimen-
sion to this ancient spy-versus-spy game.

For example, computers can try millions of passwords in less than an hour.
Known as a brute force attack, this technique (not possible before computer-
ization), is countered by brute force encryption systems, as you’ll see in
this chapter. When you finish this chapter, you’ll be able to employ today’s
strongest encryption systems in your own programming.

By contrast, I don’t find virii all that interesting. They’re usually just the
computer version of some teenagers’ infantile need to spray-paint public
places. Sad, childish people trying to get attention because they’re pretty
much ignored in real life. Well, maybe they’re ignored for a reason. But
encryption is quite another level of intellectual achievement. Oddly, though,
although the importance of computer security is universally recognized,
very few books even mention .NET security classes, much less provide code
examples. This book does. This chapter gives you the tools you need to pro-
tect your sensitive information.

The vast .NET security classes are far too extensive to cover in a single
chapter, so I concentrate here on demonstrating how to use two of the most
important (and, I think, most interesting) features: encryption and decryp-
tion. But trust me: You can do this.

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 761

Securing Your Private Information762

Securing Your Private Information
Knowing how to create encryption utilities can be valuable in both your pro-
fessional and personal computing. In this chapter, you build your own utility
that swiftly secures data. This utility will likely prove quite, quite useful to
you. I use it all the time.

You can use the utility to securely hide your logon/password combinations,
your private financial data, and so on. The fact that you write it yourself
(and thus have the source code) means that you can personalize it to suit
yourself. At the end of this chapter, I suggest various customizations that
you might find useful.

You see how to add encryption features to other, larger Office 2003 program-
ming solutions as well.

In this chapter, you see how to include in your programs both RSA, the
strongest possible encryption, and Triple Data Encryption Standard
(TripleDES), a system strong enough for nearly any purpose. (The banks use
it.) You also see how to encrypt files of any kind as well as how to employ
the elegant .NET cryptostream and memorystream classes to conceal all
traces of your secrets. By using these streams, your sensitive information is
never stored in a file on a hard drive where even if you “delete” it, it usually
remains behind for easy retrieval by commonly available, disk-read utilities.

With the information in this chapter, you can equal the skills of encryption
gurus and ensure that Office 2003 data, or your personal data, is entirely
secure because it’s entirely disguised.

As politicians say: Those are my principles, and if you don’t like them, I have
others.

Comparing the Two Encryption Tactics
First, a bit of background. Experts divide secret messaging into two broad
categories.

✦ Steaganography: This is the attempt to hide that a secret message is
being sent. Invisible ink; microdots; shaving a runner’s head, tattooing a
message there, and letting the hair grow out; burst radio transmissions
posing as static — all these approaches involve pretending that nothing
sly is going on. Recently, terrorists have been accused of using the
Internet to communicate by concealing messages in graphics files
(A picture of a rose can contain hidden information, if you know where
to look.)

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 762

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Understanding Office Encryption 763

✦ Cryptography: More common and generally more secure, cryptography
doesn’t try to hide the fact that a message is being sent. Instead, the
message is mangled (encrypted), thus transforming the original (called
the plaintext) so that it can’t be read. After being encrypted, the message
is called cyphertext.

Encryption can solve several computer security problems. For example,
when you send something over the Internet, it can easily be intercepted.
Encrypting the message, however, can make it impossible for the interceptor
(intruder is the usual term for this person) to understand. Thus, an effec-
tively encrypted message is useless to any intruder.

Cryptography can also protect information that isn’t transmitted, such as
information that merely sits on your hard drive but you don’t want others to
see. Perhaps it’s your diary, a list of all your ID/password combinations, your
opinions about sensitive subjects, investment details, or whatever. In this
chapter, I walk you though building a utility program that you can use to
save a file to your hard drive that nobody but you can decipher.

Understanding Office Encryption
Useful, quality encryption is now available in some Office applications. Only
a few years ago, exporting the most powerful encryption technologies to
foreign countries — or even discussing them with any specificity — was
illegal. Fortunately, that law has been revoked. Lawmakers were finally made
to understand that widely discussed ideas such as public key encryption
cannot be made illegal.

You can encrypt Excel, PowerPoint, and Word documents. Outlook e-mail
offers a form of encryption. Access has an encoding feature that compacts
the database, but this isn’t really encryption. In any case, the default encryp-
tion schemes in Office 2003 are not the strongest. I recommend maximizing
the key length (how long the password is). For sensitive data, you’ll even
want to specify a superior encryption system. With your administrator’s
permission level, you can change these Registry entries:

✦ HKCU\Software\Microsoft\Office\11.0\Common\Security

✦ HKCU\Software\Policies\Microsoft\Office\11.0\Common\
Security

✦ Value name: DefaultEncryption

✦ Value type: MultiString

✦ Value data: “<Encryption Provider>”,”<Encryption
Algorithm>”,”<Encryption Key Length>”

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 763

Write Your Own Encryption Utility764

For example:

DefaultEncryption=”Microsoft Enhanced Cryptographic
Provider v1.0”,”RC4”,”128”

Write Your Own Encryption Utility
For complete freedom and the strongest possible encryption, you’ll want to
write your own VB.NET code and thereby utilize the extremely powerful
.NET encryption tools. This chapter also shows you how to employ these
encryption functions in Office 2003 programs or other programs you might
write.

When you build your own encryption utility, you can encrypt whatever kinds
of information you want: documents (of course) but also graphics, database
files, or whatever you wish. And you can automate or customize the process
to suit yourself.

First, take a look at how to create an RSA encryption utility. It illustrates how
to use the strongest possible encryption available today in your own program-
ming (unless the government has made some unannounced breakthroughs
in quantum encryption).

RSA (named after its inventors, Professors Rivest, Shamir, and Adleman) is
quite an unusual system. Until RSA was invented, encryption depended on
a secret key that you and your recipient used to decrypt the cyphertext
message. This key (think of it as a password) had to be kept secret or an
intruder — someone getting hold of the cyphertext — would be able to
decrypt the message.

RSA, however, works differently. It employs two keys: a public key that anyone
can see, and a private key that each recipient keeps secret. To receive an
encrypted message, you generate a public key and a related private key
mathematically. Then you give the public key to the person who is sending
you a secret message. In fact, you can give the public key to everyone in the
office. Public keys are even sometimes provided in the same way that a com-
pany provides a list of phone extensions.

The sender uses the public key to encrypt the message. When he sends you
the encrypted message, you mathematically combine the public and private
keys, which are used together to decrypt the message. Key generation is
done via functions in the .NET security code library. It’s simple. Trust me.

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 764

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Using RSA 765

In fact, the entire process of using public key encryption is pretty straightfor-
ward after you see how to use the brief source code. It’s easy to plug this
technology into your own programs. However, note this drawback to RSA:
It’s quite slow if you need to send messages longer than, say, a paragraph.
And a paragraph can even take a minute or two to encrypt on today’s typical
desktop computers.

The example code I provide shortly in Listing 8-1 is limited to encrypting 58
characters (the limit in the .NET Framework RSA implementation). However,
you can obviously feed a longer message into a loop and repeatedly, and
very slowly, encrypt multiple 58-character packets. But what use is this? In
fact, RSA is not usually employed to send the actual messages. Instead, it’s
excellent for sending passwords (keys) for use by another encryption
system called Data Encryption Standard (DES; explored at the end of this
chapter). It’s a division of labor. Each technology gets to do what it does
best. Fast, secure DES sends the long messages; lumbering, ultra-powerful
RSA sends the key to unlock those messages. This approach works great.
The government and banks use this dual technology approach. Why
shouldn’t you?

DES is very fast and actually quite secure although not as secure as RSA.
DES is a classic encryption scheme in which the sender and recipient share
a secret key. Sharing a secret key between two people has always been a
real problem — often the main problem — with ensuring encryption secu-
rity. Simply put, how do you send the key from one person to another with-
out some intruder finding it? And, in fact, how would you even know if an
intruder intercepted it and were reading all your private stuff?

The answer used by many corporations, banks, governments, and others
today is to use RSA to encrypt the key, transmit the encrypted key, and then
decrypt it on the recipient’s end. With the key now safely in both the sender’s
and recipient’s possession, the speedy DES system can be used to encrypt
and exchange messages of any length.

Using RSA
You don’t need to understand the inner workings of RSA to use it any more
than you need to be a mechanic to drive a car. So don’t bother your pretty
head trying to fathom asymmetric encryption, prime number theory, and
all the rest. Just copy the following code and plug it into your own
programming.

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 765

Using RSA766

RSA is called asymmetric because it doesn’t use the same secret key for the
encryption that is used for the decryption. DES does use the same key on
both ends of the process, so it’s referred to as symmetric encryption.

Start a new VB.NET Windows-style project in Visual Studio.NET by choosing
File➪New➪Project and then double-clicking the Windows application icon.

Put three text boxes (set their MultiLine property to True) and two
buttons on Form1, so it looks like Figure 8-1.

Type this at the very top of the VB.NET Code window:

Imports System.Security.Cryptography
Imports System.Text

These namespaces provide access to the cryptography and text code
libraries needed in this utility. Then, just above Private Sub Form1_Load,
type these global variables:

Figure 8-1:
RSA
encrypts
and then
decrypts a
secret key.

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 766

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Using RSA 767

Dim bArrayPlainText As Byte()
Dim bArrayCypherText As Byte()

Dim xPublicKey As String
Dim xBothKeys As String

Both the cyphertext and plaintext are manipulated in byte arrays, so you
create those. The public key and the public/private key pair are held in
simple string variables.

Now type this into the Form_Load event:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim rsa As New RSACryptoServiceProvider

xBothKeys = rsa.ToXmlString(True)
xPublicKey = rsa.ToXmlString(False)

End Sub

When this utility first executes, you use the RSACryptoServiceProvider
object to generate a public/private pair (when the ToXmlString method’s
argument is set to True). And, when set to False, this same method pro-
vides only the public key, which you can send. When I executed this code,
here’s the public key I got:

<RSAKeyValue><Modulus>mkKN+zBCrrNrhJ+EY+7j78Nwr9/
CHSOJripMIALHmoScu2k8juGlLa+uQSXP3gBqW5ATp9/
YI3mST5Foo9Rmq9e6UyEnEpkRvTyLLNnzk3rpW34nYG89zgQZBR9v5XSRR
xKPbONvo0VOdkagIV/MhsLD8p4uBCLlkjRHGqz/
ov8=</Modulus><Exponent>AQAB</Exponent>
</RSAKeyValue>

Your key will differ because they’re generated randomly. The default key is
1,024 bits long, but you can specify any size key from 384 up to a whopping
16,384 bits. Also, note that each character in this key can represent any
number between 0–255, not merely the digits 0–9. The number expressed in
this key is larger than it appears when expressed in characters.

Finally, type in the following encryption and decryption procedures, as
shown here in Listing 8-1.

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 767

Using RSA768

Listing 8-1: Exchanging a Key with RSA
Private Sub encrypt()

TextBox2.Clear()

Dim rsa As New RSACryptoServiceProvider

rsa.FromXmlString(xPublicKey)

Dim sPlainText As String = TextBox1.Text

If sPlainText.Length > 58 Then MsgBox(“You must use fewer than 59
characters”) : Exit Sub

bArrayPlainText = (New UnicodeEncoding).GetBytes(sPlainText)

bArrayCypherText = rsa.Encrypt(bArrayPlainText, False)

For i As Integer = 0 To bArrayCypherText.Length - 1
TextBox2.Text &= Chr(bArrayCypherText(i))

Next i

End Sub

Private Sub decrypt()

Dim rsa As New RSACryptoServiceProvider

rsa.FromXmlString(xBothKeys)

Dim sDecryptedPlainText As Byte() = rsa.Decrypt(bArrayCypherText, False)

For i As Integer = 0 To (sDecryptedPlainText.Length - 1)
TextBox3.Text &= Chr(sDecryptedPlainText(i))

Next i

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

encrypt()
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

decrypt()
End Sub

End Class

In the Encrypt procedure, you get the public key:

rsa.FromXmlString(xPublicKey)

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 768

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Powering Up DES Encryption 769

Then you get the message from the first text box, transforming the message
into a byte array in preparation for feeding it to the Encrypt method of the
CryptoServiceProvider. Finally, you loop through the cyphertext byte
array to display the mangled message in the second text box. Notice that not
only are you limited by the CryptoServiceProvider limit of transforming
only 58 characters in one chunk, but also that no matter what size the plain-
text message you feed in, the encrypted result is always expanded into a
128-byte cyphertext block.

The decryption procedure must use the same key pair that was originally
generated in the Form_Load event. This is accomplished by using the
FromXmlString method and providing the original XML key (xBothKeys)
as an argument. Then you dump the cyphertext into a byte array and feed it
to the Decrypt method. The resulting restored plaintext is displayed in the
third text box. If you get strange results in the third text box, add Step 2 to
the loop, like this:

For i As Integer = 0 To (sDecryptedPlainText.Length - 1) Step 2
TextBox3.Text &= Chr(sDecryptedPlainText(i))

Next i

Powering Up DES Encryption
DES — and variants of it — is the strong encryption system of choice for
most contemporary secure communications.

I enjoy programming in Visual Basic and have enjoyed it for over a decade.
However, if I were limited to creating one application for myself — if I could
write only a single program in my life — it would probably be the one that
I show you how to build in this chapter. It’s interesting to build, interesting
to modify, and quite useful. I wrote it several years ago, and I still use it
every few days. Of all the programs you might write for yourself, it’s likely
that an encryption program to safeguard your information benefits more
than most from your intimate knowledge of how it works, how it can be
made secure in your environment, how you can modify it, and from your
hands-on customization.

Think first about your security needs. Do you want a secure repository to
save all your logon/password pairs? Do you have secrets that you need to
save in a particular way, for only a certain length of time? Do you want a
quick way to cut and paste your credit card numbers? Do you want a secure
place to store order numbers and e-mail receipts when you buy something
online or make a reservation? A place to describe and record your finances?
To keep a secret diary? Whatever your security needs are, they are highly
specific to you. Thus, being able to satisfy those needs by designing and
maintaining your own personal security zone can be invaluable.

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 769

Powering Up DES Encryption770

The DES encryption technology was created by IBM in the early 70’s. Back
then, IBM was one of the few games in town, and the government requested
that the brilliant IBM R&D people come up with a way of protecting bank
money transfers, government communications, and other sensitive informa-
tion. In 1972, the National Bureau of Standards asked for a reliable, fast, inex-
pensive, standardized, and very robust United States encryption system.
They got what they wanted.

It was clear that computer communications would become increasingly
essential in the modern world, and those communications had to be secured
in some way. After all, the only difference between $1,000 and $1,000,000 in
your savings account is three tiny, changeable magnetic patterns.

Formally introduced in 1976, DES to this day is routinely used for the great
majority of business and government encryption. With the DES technology
built into .NET, you, too, can protect your secrets as well as the big guys.

Making it public
Strangely, the DES algorithm was made public! In the past, the primary reason
that people couldn’t crack an encryption scheme was precisely because they
didn’t know how the scheme worked. For example, you might cook up a
scheme to encrypt a message by spelling all the words backward. And while
you’re at it, you also substitute x for e. Having invented this system, you cer-
tainly don’t tell people that these are the steps you’re taking to mess up the
messages. You don’t let people know the algorithm.

However, the process used by the DES technique was published. Made public.
For one thing, those in charge wanted software written to automate the
encryption process (and possibly for other more mysterious reasons). The
inventors of DES said that knowledge of how a DES message was encrypted
wouldn’t provide an intruder with a way of decrypting it.

How IBM’s DES system works isn’t really that tough to understand if you’ve
done any bit-level programming. It’s just that DES performs many, many
transformations (such as rotation) of the key against the plaintext. So even
though you can grasp the machinery that makes it work, you nevertheless
cannot use that knowledge to break the code.

Each individual DES transformation is simple. A typical rotation left of a 4-bit
unit, for example, changes 0101 into 1010, or 1001 into 0011. However, DES
does so many transformations, each one impacting the next one, that a
cumulative distortion occurs: a sum-greater-than-the-parts effect. It’s as if
you started a rumor that was passed along through a million people. You
certainly wouldn’t recognize your original message when they finished with it.

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 770

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Powering Up DES Encryption 771

Can it be cracked?
A dispute among cryptologists concerns whether the government (or ama-
teur groups) has actually cracked DES and can read DES encrypted messages.
(Some even claim that there was always a secret, so-called trap door built
into the DES system right from the start to permit government agencies
access any time they wished. Like most conspiracy theories, this seems
doubtful.)

However, if the government has cracked DES in the past 30 years, we wouldn’t
likely be told, would we? Some experts claim that the fifteenth cycle, of the
16 cycles used by DES, has been successfully penetrated. Now and then, an
amateur group claims to have cracked DES completely. A 1999 attack on a
DES message, during a contest, is said to have found a solution in a little more
than 22 hours by testing 245 billion keys per second. This claim seems to me
believable.

In fact, it does appear likely that the rudimentary 56-bit version of DES is no
longer secure from supercomputer (or massive parallel processing) brute
force key searches. Therefore, if your diary contains information so exciting
that you think someone is going to rent 24 hours on a supercomputer to
crack your secret file, you should consider moving up to TripleDES, which
uses three times as many key bits (but runs three times slower, unfortu-
nately). In this chapter, I show you how to use ordinary 56-bit DES and also
192-bit TripleDES. If you do decide to opt for TripleDES, be warned that you
have to come up with a 24-character password instead of the easier-to-
remember 8-character DES password. And don’t try to get clever, dude:
Simply repeating an 8-character password three times compromises the
benefits of TripleDES.

If you do want to use TripleDES, simply change this DES declare statement
in the code examples that use DES in this chapter:

Dim des As New DESCryptoServiceProvider()

and replace it with the following TripleDES declaration:

Dim TripleDes As New TripleDESCryptoServiceProvider()

Also, you must adjust the source code to expand the key (and the initializa-
tion vector) three times larger than the DES key and vector pair. (You expand
from DES’s 8-byte to TripleDES’s 24-byte.)

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 771

Encrypting in VB.NET772

Choosing a good password
DES encryption — whatever size you use — requires a password. It’s the
password that DES uses to uniquely encrypt, and later decrypt, your file.
You must be able to remember the password, or you’ll never be able to
decrypt the file.

The password should include digits (1–9) as well as alphabetic characters.
What’s more, you should choose the most random password that you will be
able to remember. No matter how much encryption power you use, if people
can guess your password, they’re in! Your entire message rolls out for them
to read.

Or if you write down the password and tape it to your desk drawer, well, you
don’t deserve to work with encryption. Some people actually choose the
term password as their password. And if you walk through any large office,
you’re likely to see that some 15-watt bulb has this sticky note attached to
his monitor: My Password 1422S.

Your dog’s name is not a good password . . . likewise for your address, your
birthday, or your favorite food. All these would probably be tried by an even
moderately motivated, semi-talented intruder. Don’t write the password
down. Memorize it.

Although computers make it possible to run millions of transformations on
a message to encrypt it, computers are value-neutral. A computer doesn’t
know whether it’s running an encryption program written by you (the inno-
cent good person, trying to protect his personal information) or running an
intruder’s (the bad person trying to get into your bank account) key-testing
hacking program that goes through entire dictionaries of possible passwords
in a flash.

Encrypting in VB.NET
Time to get down to specifics. Here’s a class, named crypt, that you can use
to encrypt or decrypt a file on your hard drive. Before it encrypts (or decrypts)
a file, you must provide this class with four pieces of information:

✦ What file you want encrypted: Set its filetoopen property.

✦ The filename you want to give the new, encrypted version: Set its
filetosave property.

✦ Your password: Set its password property.

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 772

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Encrypting in VB.NET 773

✦ Whether you want to encrypt or decrypt: Set its whichway argument.
You do this by setting a parameter when you create the crypt object.
You might have noticed that when you create certain objects, you can
provide them with parameters, just like you do when using a function.
When you write a class, you can add this feature by using a parameter-
ized constructor. It’s just a Sub New, and that New tells VB.NET that you
intend to receive a parameter when the object is instantiated (created)
during runtime.

The crypt class requires three Imports, so start a new VB.NET Windows-
style project and type the following at the very top of your Code window:

Imports System.IO
Imports System.Text
Imports System.Security.Cryptography

Now, move your cursor to the very bottom of the code window, below the
final line of code that reads End Class, and type in the following new class
(Listing 8-2).

Listing 8-2: Practical Encrypting with DES
Public Class crypt ‘user must provide “whichway” (encrypt or decrypt) filetoopen,

filetosave and key.

Sub New(ByVal WhichWay As String) ‘ parameterized constructor
‘ store their choice: encrypt or decrypt
Way = WhichWay

End Sub

Private Way As String ‘encrypt or decrypt
Private pfname As String ‘filename of incoming file
Private efname As String ‘filename of outgoing file
Private pword As String ‘ the password the user enters

Public WriteOnly Property password() As String
Set(ByVal Value As String)

pword = Value
End Set

End Property

Public WriteOnly Property filetoopen() As String
Set(ByVal Value As String)

pfname = Value
End Set

End Property

Public WriteOnly Property filetosave() As String
Set(ByVal Value As String)

efname = Value
End Set

End Property

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 773

Encrypting in VB.NET774

Function cryptIt()

If efname = “” Or pfname = “” Or pword = “” Then

MsgBox(“You must set the password, filetoopen, and filetosave
properties of this encrypt object before using the CryptIt
method.”)

Return (“error”)

End If

‘create the key from the password:

Dim the_key(7) As Byte
Dim doKey As New make_key(pword)

the_key = doKey.MakeKey

‘random bytes for the initialization vector (see description in text)
Dim Vector() As Byte = {&H22, &HD1, &H11, &HA8, &H82, &H62, &HDA, &H36}
Dim buffer(4096) As Byte
Dim tb As Long = 8 ‘Keeps track of number of bytes written
Dim packageSize As Integer ‘Byte block size

‘Create the streams.
Dim fileIn As New FileStream(pfname, FileMode.Open, FileAccess.Read)
Dim fileOut As New FileStream(efname, FileMode.OpenOrCreate,

FileAccess.Write)
fileOut.SetLength(0)

Dim tf As Long = fileIn.Length ‘find out file size.

Try
‘create the cryptography object
Dim DES As New DESCryptoServiceProvider()

‘flow the streams

If Way = “encrypt” Then

Dim cryptStream As New CryptoStream(fileOut,
DES.CreateEncryptor(the_key, Vector), CryptoStreamMode.Write)

While tb < tf
packageSize = fileIn.Read(buffer, 0, 4096)
cryptStream.Write(buffer, 0, packageSize)
tb = Convert.ToInt32(tb + packageSize / DES.BlockSize *

DES.BlockSize)
End While

cryptStream.Close()
fileIn.Close()
fileOut.Close()

Else ‘decrypt

Dim decryptStream As New CryptoStream(fileOut,
DES.CreateDecryptor(the_key, Vector), CryptoStreamMode.Write)

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 774

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Encrypting in VB.NET 775

While tb < tf
packageSize = fileIn.Read(buffer, 0, 4096)
decryptStream.Write(buffer, 0, packageSize)
tb = Convert.ToInt32(tb + packageSize / DES.BlockSize *

DES.BlockSize)
End While

decryptStream.Close()
fileIn.Close()
fileOut.Close()

End If

Catch e As Exception
MsgBox(e.Message & “Perhaps you’re using a bad password?”)

End Try

End Function

End Class

At this point, you can’t press F5 to see any results yet. You have to add some
more elements to this project to be able to try this encryption class. Notice
the squiggly line in your Code window under make_key. That class has not
been coded yet.

After the various properties are created at the top of this code, you come to
Function cryptIt(), which is the method in this class that does the actual
work. First, cryptIt checks whether the user has set the necessary proper-
ties. If so, a key (a series of eight numbers) is created out of the user’s pass-
word. The .NET DES encryption routine wants a byte array with 8 bytes in it,
so you first create the byte array, and then you instantiate a doKey object
(created by the MakeKey class). MakeKey transforms the user’s password
into a random series of numbers (and I explain how this class does its job
soon in this section):

Dim the_key(7) As Byte
Dim doKey As New make_key(pword)
the_key = doKey.MakeKey

Next, in the cryptIt class, several necessary housekeeping variables are
created. The initialization vector is required by the .NET DES encryption
routine. It’s rather interesting, but you can skip the sidebar describing it if
you’re uninterested; you can easily use the encryption code without under-
standing the vector.

Streaming the encryption
After the initialization vector is defined in the cryptIt source code, a pair of
filestreams are defined. They carry the data in from the plaintext file and out
to the cyphertext file during the encryption process. (This class can also

08i_570676 bk08ch08.qxd 6/4/04 10:32 PM Page 775

Encrypting in VB.NET776

decrypt, so if that’s what’s going on, these same streams instead carry
cyphertext in and send plaintext out.)

Finally, the actual encryption takes place, starting with the creation of a
DESCryptoServiceProvider() object. After that object is instantiated, the
code determines whether the user wants to encrypt or decrypt. The only
difference between the two processes is that you use two different cryp-
tostreams: one CreateEncryptor and the other CreateDecryptor. I put
those declarations within the If...End if structure. Then, as long as
tb < tf (the bytes written are less than the total bytes in the source file),
the streams flow. The encryption process reads in a chunk from the
FileIn stream; then it’s encrypted and streamed out to FileOut (via the
cryptoStream). Finally, the number of bytes written is updated into the
variable tb.

When the process is complete, all three streams are closed. Interestingly, if
someone provides the wrong password for decrypting a file, the DES Crypto
class knows that it is the wrong password. Many decryption schemes simply
spew out nonsense text when given the wrong password. (They simply go
ahead and generate the nonsense that results from grinding a bad password
against cyphertext.)

The .NET DES scheme, however, throws a Bad Data error message. This means
that the correct password is somehow contained within the encrypted file
(either somehow disguised, or in the form of a hash or checksum, described
shortly). In any case, if an exception is thrown, you can display a message to
users asking whether they supplied the wrong password and asking them to try
again, as I did in this example.

Generating a password
To actually use the CryptIt class, you must also include a class to generate
the key out of the user’s password, so type in the following class (Listing 8-3)
at the very bottom of your Code window, below all the other existing lines of
code.

Listing 8-3: Creating a Key

Public Class make_key

Sub New(ByVal TheirPassword As String) ‘ parameterized
constructor

‘ store the password
kpassword = TheirPassword

End Sub

Private kpassword As String ‘the password string

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 776

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Encrypting in VB.NET 777

Public ReadOnly HashedKey(7) As Byte

Function MakeKey()
‘ Declare a byte array that will hold the key
Dim arrByte(7) As Byte

Dim AscEncod As New ASCIIEncoding()
Dim i As Integer = 0
AscEncod.GetBytes(kpassword, i, kpassword.Length,

arrByte, i)

‘Generage a hash value from the password
Dim hashSha As New SHA1CryptoServiceProvider()
Dim arrHash() As Byte = hashSha.ComputeHash(arrByte)

‘store the hash into the key array
For i = 0 To 7

HashedKey(i) = arrHash(i)
Next i

Return HashedKey

End Function

Function Create() ‘method to transform password string
into a key

‘ Save the current value of the LastFile property to
the registry.

Dim arrByte(7) As Byte

‘change the password string into a byte array:
Dim AscEncod As New ASCIIEncoding()
Dim i As Integer = 0
AscEncod.GetBytes(kpassword, i, kpassword.Length,

arrByte, i)

‘Get the hash value of the password byte array:
Dim hash As New SHA1CryptoServiceProvider()
Dim arrHash(7) As Byte
hash.ComputeHash(arrByte)

‘return the key:

Return arrHash

End Function

End Class

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 777

Encrypting in VB.NET778

This Make_Key class begins with a parameterized constructor (the Sub
New), which requires that when clients using the class instantiate the class,
they must provide a password as a parameter, like this:

Dim doKey As New make_key(pword)

Then the MakeKey method creates an 8-byte array, and the password
is separated by the ASCIIEncoding class into individual bytes (each
character’s ASCII code value) and stored into the array. After that, the
SHA1CryptoServiceProvider class generates a hash out of the array.

The user’s password strKey is passed to this procedure; then the password
is separated into individual ASCII values held in a byte array. This byte array
is fed to the ComputeHash method of the SHA1CryptoServiceProvider
class, which returns the hash value. I put the hash into my TheKey array, for
later use in the encryption (or decryption) procedures.

Understanding what does a key does
A key is used in encryption to provide a way of distorting the plaintext.
Here’s a simple example. Assume that you think up an encryption scheme.
Your idea is to stick the password’s characters between each letter of the
plaintext, like this:

✦ Key: Mike

✦ Plaintext: Ring of fire

✦ Encryption: RMiinkge Moifk efMiirkee

As you can see here, the key is repeated as often as necessary throughout
the plaintext. For illustration purposes, I used alphabetic characters here.
However, with the arrival of the computer, modern encryption generally
involves mathematical transformations rather than the simple character
substitutions or transpositions characteristic of classic encryption schemes.

Computers are so good at math, compared with us, and so much faster at
it as well. So, before being used mathematically in a modern encryption
scheme like DES, the text password is transformed (hashed, for example)
into a numeric value (the key) that can then be employed in the mathemati-
cal encryption. Remember, DES wants an 8-byte numeric array, not a pass-
word. That’s the job of the make_key class in this chapter.

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 778

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Finishing the Program 779

Finishing the Program
To complete the DES encryption application that’s been developed in this
chapter, you should add two buttons and two text boxes to the form. Ensure
that TextBox2 is fairly small and drag it down near the bottom of the form;
TextBox2 is where the user enters the password, so it only needs to be a
single-line TextBox. Set the TextBox1 MultiLine property to True and
stretch it to make it fairly large so that users can enter as much text as they
wish, as shown in Figure 8-2.

It’s nice to show the user some mangled text from the resulting encryption.
Mangled text excites users. They think, “Wow! That’s pretty messed up. Who
could figure that out?” It excites me, to be honest. I’ve got to sit here quietly
now and wait until I’ve stabilized.

This chapter’s example program, therefore, displays some of the encrypted
text after users click the Encrypt button. They type something into the text
box, type in a password, click the Encrypt button, and voilà!, the trans-
formed result appears in the text box, as illustrated in Figure 8-2.

Figure 8-2:
Arrange
your DES
crypto
program’s
user
interface
like this.

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 779

Finishing the Program780

Displaying mangled text
Here’s a function you should type into the Form1 class to display the
encrypted result. This same function also does a second job; it displays the
decrypted plaintext if the user clicks the Decrypt button instead. Don’t
worry about it; you’ll see what I mean when you run it. Move down through
Public Class Form1 in your Code window until your blinking insertion
cursor is just above the line End Class. (Be sure you’re still in the Form1
class, not in the Crypt class or some other class beneath the Form1 class.)
Now type in this function (Listing 8-4) just above the line End Class:

Listing 8-4: Show the Encrypted Text

Function showcrypt(ByVal fname As String) ‘displays a file in
the textbox

Dim fs As FileStream = New FileStream(fname,
FileMode.Open)

Dim r As New StreamReader(fs)

Dim x As Integer = fs.Length
Dim i As Integer

‘ Read in all the data from the file:

TextBox1.Text = r.ReadToEnd

r.Close()
fs.Close()

‘kill the temp file
Dim fa As New FileInfo(“c:\temp”)
fa.Delete()

End Function

The CryptIt class creates a temporary file on the hard drive (named
C:\temp) to hold the intermediary results of encryption or decryption.
This file must be destroyed, however, or it would hold the plaintext after
encryption had been performed on it. That would be bad: People could
read all your secrets if they could locate the temp file. So at the end of this
ShowCrypt function, the temp file is deleted.

Of course, even using a temp file isn’t a good idea. For stronger security, you
should use a cryptostream (illustrated in the example code in Listing 8-11 at
the end of this chapter).

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 780

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Finishing the Program 781

All that remains to be done to complete this application is to respond when
the user clicks the two buttons. Type in the following code (Listing 8-5) for
the button that encrypts.

Listing 8-5: Encryption

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
Button1.Click

‘encrypt the contents of the TextBox

Dim sfd As New SaveFileDialog()
sfd.ShowDialog()

Dim objCrypt As New crypt(“encrypt”)
objCrypt.filetoopen = “c:\temp”
objCrypt.filetosave = sfd.FileName
If Len(TextBox2.Text) <> 8 Then MsgBox(“Your password

must be eight characters long”) : Exit Sub
objCrypt.password = TextBox2.Text.ToUpper

‘save textbox1 to c:\temp

Dim strText As String = TextBox1.Text

If (strText.Length < 1) Then
MsgBox(“Please type something into the TextBox so
we can encrypt it.”)
Exit Sub

Else
Dim strFileName As String = “C:\temp”
Dim objOpenFile As FileStream = New FileStream
(strFileName, FileMode.Create, FileAccess.Write,
FileShare.None)
Dim objStreamWriter As StreamWriter = New
StreamWriter(objOpenFile)
objStreamWriter.WriteLine(strText)
objStreamWriter.Close()
objOpenFile.Close()

End If

Dim n As StringBuilder
n = objCrypt.cryptIt()
showcrypt(sfd.FileName)

‘delete the password
TextBox2.Text = “”

End Sub

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 781

Finishing the Program782

This button’s Click event first displays a Save dialog box and asks the user
to specify where on the hard drive to store the encrypted file and what name
to give it. Then it streams the contents of the large TextBox1 to a temporary
file in preparation for encrypting the text. Finally, the cryptIt method is
invoked. After the encryption is finished, the showcrypt function displays
the results (mangled text like this: 10!@09jd ()#JF&).

Finish the application by typing in the following code (Listing 8-6) for
Button2, which decrypts.

Listing 8-6: Decrypting

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
Button2.Click

‘decrypt a saved file

Dim ofd As New OpenFileDialog()
ofd.ShowDialog()

Dim objDecrypt As New crypt(“decrypt”)
objDecrypt.filetoopen = ofd.FileName
objDecrypt.filetosave = “c:\temp”
objDecrypt.password = TextBox2.Text
Dim n As StringBuilder
n = objDecrypt.cryptIt()
showcrypt(“c:\temp”)

‘delete the password
TextBox2.Text = “”

End Sub

Trying the program
Okay, time to try it out.

1. Press F5 and type an 8-character password into the lower text box.

In the future, you can use any password you want, but while experiment-
ing in this chapter, use the password MYSTERY2. Later in this chapter, you
will see why this is important.

2. Copy and paste a few paragraphs of text into TextBox1, the upper
text box.

3. Click the Encrypt button.

You see the Save As dialog box.

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 782

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Some Suggested Improvements to the Crypt Program 783

4. Use the drop-down list at the top of the dialog box to move to your
C: drive, and then type secrets as the filename for your encrypted file.

Again, for a technique explained later in this chapter, please use C:\
secrets as the filename.

5. Click the Save button.

The dialog box closes, and the upper text box’s text is replaced with
encrypted text.

Now try going the other way.

1. Type in the password you used to encrypt the file and click the
Decrypt button.

The Open dialog box appears.

2. Double-click the filename you used when encrypting.

There you are: Your plaintext is restored.

Some Suggested Improvements to the Crypt Program
If you’ve followed this chapter to this point, you can use the project you’ve
created as-is. It will calm the paranoiac in you by efficiently hiding your
secrets. However, here are some exciting and sinister improvements I want
to suggest to conclude this chapter. Read on, friend.

Fifty years ago, still struggling with their categories, crack psychologists
combined the term paranoia with maniac and came up with the delightful
word paranoiac. With today’s political correctness, cracked (I mean crack)
shrinks have been forced to rename many kinds of mental disturbances in
an effort to soften the insult by using words such as borderline. This sug-
gests that with a little help, the person can come over the line to join us
happy, smiling normal people, over here where we all gather on this side of
the line. Tennis, anyone?

Whatever you call it, surely nothing is wrong with being moderately para-
noiac about your personal information. After all, some of your secrets, if
known, could be used against you in various ways.

In this chapter, you constructed encryption/decryption and key-making
classes, which make use of the sophisticated security classes built into .NET.
Now I want to suggest some additions and customizations that can make
your crypt utility even more useful to you as a way of protecting your pri-
vate information.

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 783

Some Suggested Improvements to the Crypt Program784

For one thing, if only you are going to use it and you’re going to create only
one file that holds all your private data, why not simplify things and hard-
wire the filename? (Put it into the source code rather than displaying Open
or Save dialog boxes to have the user type it in.) That way, when you run the
program, you only have to type in the password, and the file is automatically
opened, decrypted, and displayed. Then, when you’ve finished editing the
information and want to store it encrypted, you simply click a button, and
it’s all done for you automatically.

Remember that all the source code for these additions, as well as all the
code for this book, is available for quick downloading from this book’s com-
panion Web site. (Refer to the Introduction for the URL.)

Here’s an example of code you can type into the Form_Load event to auto-
matically open, decrypt, and display plaintext:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

‘load and decrypt the encrypted file

Dim objDecrypt As New crypt(“decrypt”)

objDecrypt.filetoopen = “c:\secrets”
objDecrypt.filetosave = “c:\tem”
objDecrypt.password = passwordFromForm2
Dim n As StringBuilder
n = objDecrypt.cryptIt()

showcrypt(“c:\tem”)

‘kill the temp file
Dim fa As New FileInfo(“c:\tem”)
fa.Delete()

End Sub

Note that the filetoopen is simply hardwired here (shown in boldface).
Also note that the password comes from another Form, Form2. The variable
passwordFromForm2 is currently underlined with a squiggly line because it
hasn’t yet been declared. This leads us to another clever trick that you might
want to try, which adds one more layer of protection.

Choose Project➪Add Windows Form. You now have to change the startup
object from Form1 (the default) to Form2. That way, the code in Form2 is the
first code executed when your project starts running. To make this change,
follow these steps:

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 784

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Some Suggested Improvements to the Crypt Program 785

1. Choose View➪Solution Explorer.

Solution Explorer displays.

2. Right-click the name of your project.

It’s the only line in boldface in Solution Explorer.

3. Click Properties in the context menu that appears.

Your project’s Property Pages dialog box opens.

4. Open the drop-down list under Startup Object by clicking its down-
arrow button.

You see the forms and module listed here as potential startup objects.

5. Click Form2 in the drop-down list.

Form2 is now displayed as the new startup object.

6. Click OK.

The dialog box closes.

When people run your program, just show them at first an empty Form2.
Put no buttons on Form2 — nothing to interact with. I like to set its
FormBorderStyle property to None, its BackGroundImage property to
some ominous-looking graphic file, and its Opacity property to 75%, just to
make it look scary to someone who stumbles upon this utility. It just sits
there, ghostly, teasing the paranoiac qualities in the intruder. You could even
add a loop and a timer to slowly decrease its opacity, making it evaporate
like smoke in front of their eyes. That can be spooky, and I say that in a help-
ful, caring way. Boo! (Let them worry what other tricks you might have up
your sleeve.)

However, Form2 is doing something behind the scenes: It’s waiting to accept
any keystrokes users might type. Whatever you type becomes the key used
to decrypt your secret file. (It’s passed to Form1.) Intruders will probably
never be able to figure this out, but if they do, they still don’t know the key.
You know the key, though, so when you run the program and the spooky
Form2 shows up, you just type in your 8-character password and Form2 dis-
appears, Form1 appears, and the decrypted file is displayed. All in a flash,
but highly secure.

Making it happen
Use Project➪Add Windows Form to add Form2 to your project and Project➪
Add Module to add Module1.

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 785

Some Suggested Improvements to the Crypt Program786

When this project runs, Form2 is not supposed to do anything until the user
types the number 2 above the keyboard, thereby making Form2 disappear
and Form1 appear. (You can, of course, change this trigger character to suit
yourself.)

In Module1, type the following variable. Putting it in a Module permits both
Form2 and Form1 to access the variable. This technique is a way to commu-
nicate information between forms:

Module Module1
‘this variable can now be seen in both Form1 and Form2

Public passwordFromForm2 As String

End Module

Now, switch to the Code window for Form2 and type Listing 8-7 into the
Form_KeyDown event. (To create the KeyDown event, open the drop-down list
on the top right of the Code window and click KeyDown.)

Listing 8-7: Inter-Form Communication

Public Class Form2
Inherits System.Windows.Forms.Form

Windows Form Designer generated code

Dim presses As String

Private Sub Form2_KeyDown(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyEventArgs) Handles
MyBase.KeyDown

presses += e.KeyCode.ToString

If e.KeyCode = Keys.D2 Then ‘pressing the number 2
triggers the end of the key input
‘form one is displayed and the user’s key input
is then sent as the password
‘to decrypt. If the wrong password was entered,
the program will shut down in
‘form1@mdno text will be decrypted or displayed.

‘this will be in all uppercase
passwordFromForm2 = presses.Substring(0, 7) & “2”

Me.Hide()

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 786

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Some Suggested Improvements to the Crypt Program 787

Dim n As New Form1
n.Show()

End If

End Sub
End Class

Notice that just above the line Private Sub Form2_KeyDown, you must add
the following line to declare the variable presses:

Dim presses As String

For this key-detection feature to work, you must switch to design view and
set the Form2 KeyPreview property to True in the Properties window.

Notice that the variable presses here continues to accumulate all the
characters that the user types in until the user types the digit 2. Then
all characters in presses (except the first eight) are discarded, and the
passwordFromForm2 is filled with those first eight characters. Interestingly,
the numbers are identified in the e.keycode with a D in addition to the digit.
If you press 3, e.keycode contains D3.

Here’s what happens if your password is treatww2 and you type that in.
As soon as you press the 2 key, the presses.Substring(0, 8) contains
treatwwD because the variable presses contains treatwwD2, but only eight
of its characters are retained when you use the Substring method to strip
off any extras.

Anyway, Form2 hides, Form1 is displayed, and Form1’s Load event triggers,
bringing in the entire decrypted text for you to view.

Also in Form1, you can change the process of encryption by hardwiring
your filename and avoiding having to interact with a SaveFileDialog.
Remember, too, that the password is already available for the encryption
process in the variable passwordFromForm2.

Going beyond paranoiac to psychoiac
Here’s another feature I find useful. Sometimes I get distracted while comput-
ing. I make some changes to the decrypted data in the TextBox, but I forget
to shut down the Crypt program. Or I switch to Internet Explorer for a little
browsing or leave the computer to get something to drink. I’ve done this
while the crypt program is running, leaving my entire private life gaping
open there in the text box for anyone to read.

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 787

Some Suggested Improvements to the Crypt Program788

To prevent this problem, I like to add two timer controls that shut down the
Crypt program automatically if there have been no keypresses for one minute.
Also, the following code adds a useful search feature so that you can quickly
locate passwords and so on in your text box.

First, remove the main, large text box (not the password text box) and add a
RichTextBox from the Toolbox in its place. The document in a RichTextBox
automatically scrolls to display a match if one is found when you’re searching.
Also, set the Form1 KeyPreview property to True. Then type the following
variable declarations at the top of the Code window:

Dim freezer As Boolean

‘these next variables are used by the Searchit routine
Dim searchstring As String, pos As Integer
Dim pressedonce As Boolean
Dim Search, Where ‘ Declare variables as objects

(default).

Dim isdirty As Boolean ‘has the user changed the
textbox at all?

Private Sub Form1_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles MyBase.Load

‘load and decrypt the encrypted file

Search (press Ctrl+H) all references in your code to TextBox1 and replace
them with RichTextBox1. Now add two Timer controls to Form1 and type in
this code (Listing 8-8).

Listing 8-8: Timers
‘These timers prevent you from forgetting to shut down

‘this application. If no keypresses are made for 1 minute,
‘the program is shut down:

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer1.Tick

‘Timer1’s Interval should be set to 6000 (six seconds)
‘ and it’s enabled to true (in the Properties window).

Static Counter As Integer

If freezer = True Then
Counter = 0
Me.Text = “ Frozen “
Exit Sub

End If

Counter = Counter + 1
If Counter = 9 Then End ‘Shutdown!

End Sub

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 788

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Some Suggested Improvements to the Crypt Program 789

Private Sub Timer2_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer2.Tick

‘Timer2’s Interval should be set to 60000 (one minute)
‘ and it’s enabled to false (in the Properties window).

‘1 minute has elapsed so turn freezer off
freezer = False
Timer2.Enabled = False

End Sub

The Form’s KeyDown event detects keypresses (affecting the freezer vari-
able used by the timers) and also detects whether the user presses F3 or
Crtl+F, either of which triggers a search of the RichTextBox contents
(Listing 8-9).

Listing 8-9: Searching

Private Sub Form1_KeyDown(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyEventArgs) Handles
MyBase.KeyDown

‘For this to work, the Form’s KEYPREVIEW PROPERTY
MUST BE SET TO TRUE! (default=false)

‘This procedure searches through the TextBox
‘when the user presses F3 or Crlt+F...

freezer = True ‘a keypress, so stop the Timer
countdown

Timer2.Enabled = True ‘watch to see if 1 minute
passes

‘after last keypress and if so, turn freezer false

If e.KeyCode = 114 Then ‘ pressed f3 to search

searchit()

Exit Sub

End If

If e.KeyCode = Keys.F And e.Control = True Then
‘pressed CTRL+F to search

searchit()

Exit Sub

End If

End Sub

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 789

Some Suggested Improvements to the Crypt Program790

Listing 8-10 shows the procedure that searches the RichTextBox.

Listing 8-10: Searching a RichTextBox
Private Sub searchit()

Dim x As String, n As String
x = LCase(RichTextBox1.Text)
If pos = 0 Then pos = 1

If pressedonce = True Then GoTo cont

If searchstring <> “” Then n = searchstring

Search = InputBox(“Please enter your search text”, , n)
If Search = “” Then pressedonce = False : Exit Sub ‘they clicked the

cancel button on the Search Input box
pressedonce = True
Search = LCase(Search)
searchstring = Search

cont:

Where = InStr(pos, x, Search) ‘ Find string in text.
Dim ra = x.Length

If Where Then ‘ If found,
RichTextBox1.SelectionStart = Where - 1 ‘ set selection start and
RichTextBox1.SelectionLength = Len(Search) ‘ set selection length.
pos = Where + Len(Search)

Else
MsgBox(“Search text not found.”) ‘ Notify user.
pressedonce = False
pos = 0
Search = Nothing
Where = Nothing

End If

End Sub

Finally, here’s another optional improvement. I sometimes make changes to
the RichTextBox but forget to press the button to actually encrypt and save
those changes to the disk file. Instead, I go ahead and click the x in the top
right of the form or press Alt+F4 to shut down the program.

Saving changes
Here’s a way to alert the user that editing hasn’t been saved when the pro-
gram is about to shut down. You test the isdirty variable (which is set if
any changes are made to the RichTextBox), and you also check the freezer
variable:

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 790

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Some Suggested Improvements to the Crypt Program 791

Private Sub Form1_Closing(ByVal sender As Object, ByVal e As
System.ComponentModel.CancelEventArgs) Handles
MyBase.Closing

If isdirty and freezer = True Then

Dim r As Integer
r = MsgBox(“You have made changes in the TextBox.
Do you really want to quit without encrypting
those changes? Click Yes to END the program,
click NO to return to the program.”,
MsgBoxStyle.YesNo, “Do you really want to quit?”)

If r = 6 Then End
‘OR
e.Cancel = True ‘cancel the closing

End If

End Sub

Recall that if freezer is False, there has been one minute of activity. In that
case, you don’t want to halt the shutdown. (You don’t want the message box
holding up shutdown.)

Be very careful if you use the preceding technique. Message boxes can be
dangerous in a secret program like this one. If you were to shut down this
program and walk away from your computer, it’s possible that you wouldn’t
notice the message box. A message box will prevent the program from shut-
ting down, allowing others to view your secrets if they come upon the com-
puter while you’re away. Rather than using a message box, a safer approach
would be to add a form to the project and simply display it for 20 seconds or
so (put a Timer control on it to keep track), informing users that they can
click a button on that form to encrypt if they wish to. Then after 20 seconds
elapses, End the program if the user has not clicked the button.

I wanted to show you in this example utility how to encrypt files that are
already on your hard drive, including any Office 2003 files, or indeed files of
any type. But you should consider revising the utility to never store plaintext
in a file anywhere. To do that, you can use some of the code in the DES utility
described in this chapter but remove the part that encrypts a disk file or
stores a temporary file.

Instead, encrypt the text you’ve typed into a text box and save only the
resulting cyphertext to a disk file. When you want to modify your cyphertext
file, load it, decipher it, display and modify it in the text box, encrypt it

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 791

Using Streams to Avoid Storing Plaintext on Disk792

again, and save only the encrypted result to the hard drive. The plaintext
need never be stored on the hard drive. To accomplish that, you can use
cryptostreams and memorystreams. I think those are lovely names, even if
they do derive from the C language. Here’s how they work.

Using Streams to Avoid Storing Plaintext on Disk
To conclude the code examples in this chapter, here’s how you can avoid
storing your plaintext in a disk file. Instead, you will encrypt it in memory.
Data manipulated in RAM memory is as evanescent as smoke drifting through
the air. No record of the plaintext can be found by intruders because here
only the cyphertext is stored on the hard drive. The plaintext existed only
within RAM and in the pixels on your monitor (or maybe in a temporary
disc cache, but that’s volatile). When the program shut down, the plaintext
evaporated.

Start a new VB.NET Windows-style project. Type these Imports statements
at the top of the Code window:

Imports System.Security.Cryptography
Imports System.Text
Imports System.IO

Then type in the rest of the code (Listing 8-11).

Listing 8-11: Avoiding Disk Files

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

encrypt()
decrypt()

End Sub

Public Sub encrypt()

Dim des As New DESCryptoServiceProvider

Dim bArrayIVector() As Byte = {2, 4, 46, 141, 8, 5,
99, 2}

Dim bArrayKey() As Byte = {12, 13, 44, 22, 21, 44,
22, 128}

‘Create a file stream to hold the cyphertext:
Dim fs As New FileStream(“c:\CypherText.txt”,

FileMode.Create, FileAccess.Write)

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 792

Book VIII
Chapter 8

N
o M

ore Paranoia:
Program

m
atic

Encryption
Using Streams to Avoid Storing Plaintext on Disk 793

Dim bArrayMessage As Byte() = (New UnicodeEncoding).
GetBytes(“This could be from TextBox1. But for
this example it’s just a literal string, OK?”)

des.IV = bArrayIVector
des.Key = bArrayKey

Dim desencrypt As ICryptoTransform =
des.CreateEncryptor()

Dim cryptostream As New CryptoStream(fs, desencrypt,
CryptoStreamMode.Write)

‘Save the cyphertext
cryptostream.Write(bArrayMessage, 0,

bArrayMessage.Length)
cryptostream.Close()

End Sub

Public Sub decrypt()

Dim des As New DESCryptoServiceProvider

Dim bArrayIVector() As Byte = {2, 4, 46, 141, 8, 5,
99, 2}

Dim bArrayKey() As Byte = {12, 13, 44, 22, 21, 44,
22, 128}

des.IV = bArrayIVector
des.Key = bArrayKey

Dim fs As New FileStream(“c:\CypherText.txt”,
FileMode.Open, FileAccess.Read)

Dim desdecrypt As ICryptoTransform =
des.CreateDecryptor()

Dim cryptostreamDecrypt As New CryptoStream(fs,
desdecrypt, CryptoStreamMode.Read)

MsgBox(New StreamReader(cryptostreamDecrypt, New
UnicodeEncoding).ReadToEnd())

End Sub

Press F5 to see the wonders of cryptostreams and .NET security libraries.
With the example code in this chapter, you can do pretty much whatever
you need to do to guard the privacy of your corporate data, whether in
Office 2003 or outside it.

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 793

Book VIII: Power Techniques: Advanced Office Automation, VBA, and .NET794

08i_570676 bk08ch08.qxd 6/4/04 10:33 PM Page 794

A
A1 style, 278–279
absolute filepath, 162
Access

about, 11, 353
adding custom error

messages, 423–424
augmented forms and

reports, 364–365
automatic form, 426–428
automating, 411
automating runtime, 417
backing up for safety,

425–426
Custom Startup

Wizard, 355
data access pages,

362–364
desktop server, 361–362
developer extensions,

354–355
displaying reports,

417–418
error management,

419–424
forms, 559
limitations, 353–354
loading files in, 130–132
locating Error event,

422–423
Option Explicit, 420–422
Option Strict, 420–422
Package Wizard, 355
Property Scanner, 355
publish Access data,

160–165
report error checking,

426–428
Sandbox mode, 424–425
sending nonprinting keys,

415–417
SendKeys, 414–417
SendWait, 415

SharePoint, 635
Smart Tags, 355–365
troubleshooting, 419–428

Access macros
about, 429
built-in VBA language

features, 434
classic error trapping, 435
converting to VBA, 49
creating, 48–49
DoCmd, 433–434
keyboard shortcuts,

436–437
languages, 429
Object browser, 432–433
without recorder, 430–432

accessing
active cells, 275
forms in Access, 411–41

action fields, 218
action handlers, Smart

Documents, 596
active cells, accessing, 275
Active Server Pages,

ASP.NET, 637–638
ActiveDocument

object, 197
ActiveWords, 43
ActiveX Data Objects

(ADO), 374–377
.adapt files, 169
Add Watch technique,

debugging, 186
adding

controls
programmatically, 340

custom error messages,
423–424

formulas, 283
nodes, XML, 686
Outlook functionality,

Project 2003, 621–623
shape and pictures,

worksheets, 303–305

tables, Access, 369–370
workbooks, 273–275

adjusting
Web options settings,

244–245
Web page properties, 544

administrators, 51
ADO.NET, programming

Access, 375–377
advanced searching,

Outlook, 462–465
alphabetizing

datasets manipulation,
389–391

Select, 394–395
Alt key, 345–346
AltV macro, 34
app., 76
Application events,

290–294
Application object

about, 196–197, 276–277
Access, 368
Excel, 272

Apply Custom
Transform, 236

apply formatting, Excel
macros, 339–340

AppointmentItem
object, 479

arithmetic operators,
96–97, 101

arrays
objects, 699, 704–705
VBA, 103–104

ASP, 253
ASP.NET

Active Server Pages,
637–638

deployment, 640
programming, 636–637
security, 638–639
segregated source

files, 639

Index

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 795

Office 2003 Application Development All-in-One Desk Reference For Dummies796

ASP.NET (continued)
shared IDE, 639–640
SharePoint, 635–640
Web pages, 636

assemblies, 412
assigning

anti-table macro, Word
macros, 266

normal style, Word
macros, 265

attaching XML Expansion
Pack, Smart
Documents, 601–603

attribute fields, 571
attributes, XML, 667–668
authentication, shared

documents, 533
Authenticode, 52
Auto macros, 49–51
auto update, Pivot

Tables, 323
AutoClose event, 50
AutoClose macro, 50
AutoExec macro, 50
AutoListMembers, 75
automatic forms, Access,

426–428
automating

Access, 411
runtime Access, 417
Word macros, 262

AutoNew macro, 50
AutoOpen event, 50
AutoOpen macro, 50

B
background texture, Word,

249–250
backing up for safety,

Access, 425–426
backups, 52
BASIC, 42, 429
binding controls, XML

Designer, 407–408
binding objects, 694

BizTalk Server, 631
bookmarking, Word object

model, 204–205
branching, 122–127
break mode, 183
building Web pages in

Word, 245–248
built-in VBA language

features, 434
business analysis,

Excel, 325
Business Contact Manager,

Outlook, 481

C
calendar automation,

Outlook, 475–476
Call Stack, 191
Caption property, 77
Catch...Finally

command, 177
cells, protect, 158–160
certification, 52
ChangeTitle procedure, 78
changing workspace

options, 536–537
Chart events, 290
charts, Excel, 284–285
ChartSpace control, 154
CheckBox control, 144–145
child nodes, XML, 686–687
child table, datasets, 400
class modules, 16
classic error trapping,

Access, 435
Clear method, XML

Designer, 409
Click event, 85
client-side

programming, 549
Clippit, 22
Close event, 85–86
cluster variables, VBA,

103–104

code protection, security,
168–169

collaboration
about, 519
OneNote, 519–524
Shared Workspaces,

525–530
SharePoint, 524–525, 632

collections
about, 35, 79
versus objects, 80

Collections, Datasets
object, 377

columns, 387
ComboBoxes, 143
comma-delimited data, 221
command name errors as

typos, 172–173
CommandBars collection, 35
CommandButton

control, 147
comments

about, 34, 548
Office 2003 security,

757–758
conditional breakpoints in

.NET, setting, 187–189
Console.WriteLine, 398
constants

about, 90
variables expressions, 102
versus variables, 102–103

container controls, 563
content attribute, XML,

680–681
controls

about, 138–139
adding programmatically,

340
VBA, 138–149

converting Access macros
to VBA, 49

cookies, 553
cracking encryption, 771
Criterion, 396
Crypt program, 783–788

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 796

Index 797

cryptography, 763
Ctrl key, 345–346
current insertion cursor

position, 47
CurrentDb, Access, 368
CurrentRegion property,

Excel, 281
custom error message,

423–424
Custom Startup Wizard,

Access, 355
Customize dialog box, 23
customizing

keyboard, Office 2003, 37
shortcut menus, 26–29

cyphertext, 763

D
Data Access control, 165
Data Access Objects,

373–374
data-access pages

about, 161–162
Access, 362–364
deploy, 162–165

data adapter, 302
data command, 302
data connection, 302
data islands, XML, 669
data loss, Office 2003

security, 760
data reader, 302
data store, 65
data to Internet site, Smart

Tags, 588–589
data types

about, 91–93
VBA, 104–107
XML, 675–677

data view, 398–399
DataAdapter, 382
databases

modifications, DataSet
object, 378–380

.NET, 727–728

security, 166–167
technologies,

programming Access,
370–372

databases management
future, 372–377

DataColumn.Expression,
397

DataGrid, 408
DataSet object

collections, 377
database modifications,

378–380
mapping, 377–378
optimistic concurrency,

378–379
pessimistic concurrency,

378–379
substituting names,

377–378
datasets

about, 302
programming Access, 375
with relations, 402–403

datasets manipulation
about, 387
alphabetical order,

389–391
child table, 400
datasets with relations,

402–403
DataTable version,

397–398
DataView, 398–399
filtering with Select

method, 391–398
generating dataset for

imported database,
388–389

importing XML, 409–410
loading Access tables into

VB.NET projects,
385–388

master-detail, 399–400
overloaded Select

method, 396–397

parent table, 399–400
programmatic relations,

400–402
relation, 399–400
relations via wizards and

designers, 403–404
saving XML dataset,

409–410
sorting, 395–396
XML Designer, 405–409

DataSource, 155
DataTable version,

397–398
DataView, 398–399
debugging

about, 171–172
Add Watch technique, 186
alternative strategies,

189–191
Call Stack, 191
command name errors as

typos, 172–173
Debug.Print, 185
Debug.Write, 185
On Error command,

175–177
logic errors, 182–185
Run to Cursor, 190
runtime errors, 174–175
script, 556–558
Set Next

Statement, 190
setting breakpoints,

186–189
Show Next

Statement, 191
Step Out, 190
Step Over, 189–190
structured trapping,

177–182
syntax errors, 173–174
Try...End Try, 175–177
typos in commands and

variables, 172
VB.NET, 4

Debug.Print, 185

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 797

Office 2003 Application Development All-in-One Desk Reference For Dummies798

Debug.Write, 185
declaring objects in

VBA, 695
decrypt, 773–775
default filter, Outlook,

442–443
defaulting to Outlook, 441
Deflnt A-Z, 107
DefType commands, 696
delimited, 66
delimited data, 221
dependencies, Project

2003, 618
dependency files, Smart

Documents, 596
deploy data-access page,

162–165
deployment, ASP.NET, 640
DES encryption, 769–772
design main sections of

form, InfoPath, 566–571
designer, InfoPath, 562–564
desktop server, Access,

361–362
developer extensions,

Access, 354–355
dialogs

Help, 137
VBA, 136–138

diction, 74
digital signatures, 53
Dim list, objects, 697–698
disabling security, Smart

Documents, 594
disappearing value, 107
disconnected datasets, 299
disk files, avoiding for

encryption, 792–793
display mangled text,

encryption, 780–782
displaying Folder item,

Outlook, 471–472
displaying reports, Access,

417–418
distributed computing,

Internet VBA, 710

distributed instantiation,
objects, 693

distributed programs, 3
DLLs

about, 55
Smart Documents, 595

Do Until loops, 117
DoCmd, 433–434
document information,

SharePoint, 631
document library,

SharePoint, 631
Document Map, 213
Document Object Model

(DOM), XML, 671
Document Workspace site,

62–63
document workspaces,

SharePoint, 633–634
Do...Loops, 116–118
double-saving documents,

Word macros, 256–258
Do...While loops, 117
downloading SDK, Smart

Documents, 591–592

E
e-mail administration

about, 483
Exchange Server, 489–490
folders, 489
management, 483–485
multiple e-mail accounts,

488–491
non-Outlook e-mail,

477–479
Office Assistant, 485–488
Outlook, 483–492
routing, 485–488
send/receive groups, 489,

490–491
virii, 491–492

editing
about, 211
menus, 24–25

redo, 212
repeats, 212
searching within

documents, 214–216
selecting text quickly, 211
text, 199–205
Undo, 212
viewing documents,

213–214
electronic signatures, 53
elements

about, 406
XML, 667–668

Else command, 123
ElseIF command, 124
encapsulation, 82–84
encryption

about, 14, 761
cracking, 771
cryptography, 763
DES, 769–772
display mangled text,

780–782
finish program, 779–783
Office 2003, 763–764
Office 2003 security,

753–756
Outlook, 446–448
passwords, 772
program improvement,

783–792
public, 770
RSA, 765–769
saving changes, 790–792
securing private

information, 762
steaganography, 762
tryout, 782–783
using streams to store

text, 792–793
utility, 764–765
VB.NET, 772–778

End properties, 200
End Sub, 47
enterprise development, 548
enumerations, 398

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 798

Index 799

Error event, 419
error management, Access,

419–424
error trapping, Access

macros, 435
events

about, 47, 85–87
Excel, 287–294

Excel
A1 style, 278–279
about, 10–11
accessing active cell, 275
add formula, 283
adding workbook, 273–275
Application object,

276–277
business analysis, 325
charts, 284–285
CurrentRegion

property, 281
events, 287–294
forms, 559
Goal Seek feature, 325–327
InfoPath, 66–68
loading files in, 129–130
Me command, 274
Names collection, 280
new instance, 275–276
Offset method, 279–280
pivot tables, 311–323
protect cells in

spreadsheet, 158–160
publish Excel

spreadsheets, 155–158
ranges, 277–283
R1C1 style reference, 279
Scenarios, 327–329
scripting, 550–554
Smart Documents, 596
Smart Tags, 584–585
Solver, 329–332
SpecialCells method,

280–281
transform selection into

range, 283
UsedRange property, 281

worksheet editing,
295–309

WorksheetFunction
method, 283

Excel events
about, 287
Application events,

290–294
Chart events, 290
programming, 288–289
in Worksheet object,

289–290
Excel macros

about, 50, 333
adding controls

programmatically, 340
apply formatting, 339–340
KeyDown event, 340–345
Office applications access,

333–334
scope, 334
Select versus Activate,

348–349
selecting from ListBox,

346–347
sending workbook via

e-mail, 348
trapping keypresses,

340–346
UserForms, 335–337
worksheet controls,

337–339
Excel Object Model,

271–272
Excel Script Editor, 550–554
Excel scripting

scripting errors, 553–554
simple page, 552

Excel VBA, using, 272–273
Exchange Server, e-mail

administration,
489–490

executables, 52
Exit For loops, 116
explicit declaration,

XML, 672

explicit variable
declaration, 91–93

Explorer object, 460
expressions

about, 397
combined into larger

expressions, 101–102
functions, 102
with literals, constants,

variables, 102
VBA, 93–102

extensibility, XML, 665–666
extensible Markup

Language (XML),
64–68, 230

extracting data from
Outlook to Word,
479–481

F
F4 key, 212
F keys, Word macros, 263
fields, 387
Fields collection, Word,

220–221
file saving, Office 2003

security, 754–756
file sharing, SharePoint, 632
filling out Web pages,

545–547
filtering with Select

method, 391–398
Finally command, 177
Find, 306–308
find and replace, worksheet

editing, 305–309
Find objects, 206–208
FindNext, 306–308
FindPrevious, 306–308
finish program encryption,

779–783
firewalls, 52
flagging e-mail, Outlook,

448–449

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 799

Office 2003 Application Development All-in-One Desk Reference For Dummies800

floating-point numeric data
type, 92

floating-point numeric
variable, 90

folders, e-mail
administration, 489

Font dialog box, 45
Font properties, 200
FontColor property, 79
FontName property, 79
For...Each loops, 118–119
form field, 563
formatting, Excel macros,

339–340
forms

Access, 411, 559
Excel, 559
FrontPage, 559
InfoPath, 559
Outlook, 559
Word, 559

forms for interaction, Office
2003, 558

Form’s Macros, 48
formulas, adding, 283
For...Next loops

about, 113–116
nesting, 115–116
Step command, 114–115

Frame control, 146
FrontPage forms, 559
functions, 102

G
Gantt charts, Project 2003,

618–620
generating dataset for

imported database,
388–389

generating InfoPath,
572–577

getting started, 16
Goal Seek feature, Excel,

325–327

group management
about, 493
Microsoft Free/Busy

Service, 497–498
Outlook, 493–502
planning meetings,

498–502
profiles, 493–496
resource responses,

501–502
responding to invitations,

500
setting up your site,

496–497
sharing calendars,

496–498
tracking responses,

500–501
groups, 571
Guess button, 331

H
handling events, Outlook,

462
handwriting, OneNote, 520
hard drive communication

loading files in Access,
130–132

loading files in Word and
Excel, 129–130

VBA, 129–133
hash, 53
help

dialogs, 137
Office 2003, 555
online help, 38–39
removing, 23–24

help newsgroups, Web
sites, 38

hide menus and toolbars,
macros, 35

hiding files, Office 2003
security, 749–750

high macro setting, 54

high security level, 52
hot keys, 37
HTML

saving as Web page, 244
versus XML, 666–667

hyperlinks adding toolbars,
29–32

HyperText Markup
Language (HTML), 64

I
IDE, 73–74
If...Then, 122–125
Ignore Mixed Content, 236
Image control, 149
implicit conversions, 90
implicit declaration

about, 90
XML, 672

importing
Access database, 297–299
programming Outlook,

456–458
Word data, 221–223
worksheet editing data,

295–296
from XML dataset,

299–300
XML, 409–410

Imports command, 457, 792
impossible commands,

debugging script,
557–558

incoming mail, Outlook
macros, 507–508

indexing, 390
InfoPath

about, 65–68, 561–562
design main sections of

form, 566–571
designer, 562–564
with Excel, 66–68
forms, 559
generating, 572–577

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 800

Index 801

Java samples, 577
SharePoint, 633
software development kit

(SDK), 564–565
text versus string, 575
users, 564–565
using, 565–572

Information Rights
Management (IRM),
61–62

initialization, 82, 85
inserting fields, Word,

218–219
Inspector object, 460
installing SharePoint, 630
instantiated, 16, 82
Integrated Design

Environment, 73
Integrated Development

Environment, 73
integration, SharePoint,

628–629
IntelliSense features, 75
interception, Word macros,

256–258
Internet

adjusting Web options
settings, 244–245

building Web page in
Word, 245–248

creating Web pages in
Word, 243–244

loading controls, 153–154
moving Office 2003 to

Web, 151–153
.NET, 727
Office 2003 on Web, 151
publish Access data,

160–165
publish Excel

spreadsheet, 155–158
saving as Web page, 244
security, 165–169
using Web controls,

154–155
Web Tools toolbar,

248–250

Internet VBA
about, 707
distributed computing, 710
interoperability issues, 713
migration issues, 712–713
translation tools, 711
Web services, 708–711,

711–721
XML, 713–714

interoffice working, 12
interoperability issues,

Internet VBA, 713
Intranet, SharePoint, 632
IRM

Office 2003 security,
747–749

in Outlook, shared
documents, 536

Is command, 126–127

J
Java samples, InfoPath, 577

K
keyboard, Office 2003,

customizing, 37
keyboard shortcuts

about, 37
Access macros, 436–437

KeyCodes, 342–345
KeyDown event, 340–345

L
Label control, 140–141
languages, Access

macros, 429
legacy code, VBA, 3
limited scope, 107
links, SharePoint, 631
ListBox control, 143–144
lists, Smart Documents,

605–610

literals, constants, variables
expressions, 102

loading
Access tables into VB.NET

projects, 385–388
controls, Internet, 153–154
files in Access, 130–132

locating Error event,
Access, 422–423

logic errors, debugging,
182–185

logical operators, 98–100
Loop Until, 117–118
Loop While, 117–118
looping, branching, 122–127
loops

about, 113
Do...Loops, 116–118
Do...While loops, 117
Exit For, 116
For...Next loops, 113–116

low macro setting, 53–54

M
Macro Name text box, 44
macros

about, 29, 41
Access, 48–49
advantages, 41–43
bookmarking, 204–205
Excel macros, 50
hide menus and toolbars,

32–35
Office 2003 security,

758–759
Outlook macros, 50
PowerPoint, 51
recording, 43–48
remove menus, 35
security, 51–57, 56–57
security settings, 53–57
troubleshooting, 55–56
UserForm, 135
VBA behind, 46
writing, 255

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 801

Office 2003 Application Development All-in-One Desk Reference For Dummies802

Mail Merge, Word, 224–227
managed code, VB.NET, 4
management, e-mail

administration, 483–485
managing multiple

accounts, Outlook,
443–445

manifests, Smart
Documents, 595

manipulations, XML,
686–687

MAPI namespace,
programming Outlook,
459–460

mapping DataSet object,
377–378

marker fields, 218
markup languages, 65
mass modifications,

Outlook, 473–474
master-detail, datasets

manipulation, 399–400
.mdb files, 169
Me command, 274
medium macro setting, 54
Meeting Workspace, Shared

Workspaces, 527–530
members, 46, 74
members list,

SharePoint, 630
Menus collection, 35
menus creating user

interface, 26
message box, 77
methods, 17, 46, 47
MHTML, 244
Microsoft, 1
Microsoft Free/Busy

Service, group
management, 497–498

Microsoft Office 11.0 Object
Library, 75

migration issues, Internet
VBA, 712–713

milestones, Project 2003,
620–621

Mime, 244
mini help, user interface,

22–24
modifying

data in Pivot Tables,
322–323

menus user interface, 24
template Smart

Documents, 610–613
modulo operator, 97
moving Office 2003 to Web,

151–153
MSDN Web site, 38
MsgBox, 77
MSXML Core Services, 558
MultiPage controls, 147–148
multiple e-mail accounts,

488–491
Mutex, 181
mutual exclusion object, 181

N
Names collection, 280
namespaces

about, 236
programming Outlook,

456, 458–459
XML, 671–672

naming shortcut keys,
Word macros, 259–260

nesting
For...Next loops, 115–116
XML, 669

.NET
about, 2, 13, 723–726
benefits, 725–726
databases, 727–728
Internet initiatives, 727
programming help,

728–729
security, Visual Studio

Tools for Office (VSTO),
744

setting conditional
breakpoints, 188–189

software services, 726
Visual Studio Tools for

Office (VSTO), 734–738
new contacts folder,

Outlook, 472–473
new projects, Project

2003, 617
nodes, XML, adding, 686
non-Outlook e-mail, 477–479
numeric expressions, 94
numeric types values,

105–107
numeric variables, 104

O
Object Browser utility,

VBA, 78
Object browsers, Access

macros, 432–433
object models,

programming Outlook,
453–459

object-oriented
programming, 74

object variables
about, 105, 198–199
UserForm, 136

objects
about, 16, 46, 47,

79–81, 689
arrays, 699, 704–705
collections versus, 80
declaring in VBA, 695
DefType commands, 696
Dim list, 697–698
distributed

instantiation, 693
early and late binding, 694
.NET data types, 694–695
OOP, 689–691
ReDim, 698
Set command, 700–701
strongly typed, 699
symbols, 699
values and parameters,

699–700

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 802

Index 803

variants, 696
VBA, 691–694
VBA collections, 702–704
VBA events, 701–702
VB.NET, 696–701

Office 2003
about, 1–2, 21–22
about this book, 5–9
communicating via Web

pages, 541–547
customizing keyboard, 37
debugging script, 554–558
encryption, 763–764
essentials, 9–10
new features, 59
online help, 38–39
programming, 36
programming XML,

681–685
restoring classic key

behaviors, 37–38
Script Editors, 554
toolbars, 29–37
user interface, 22–29
using forms for

interaction, 558
using MSXML Core

Services, 558
on Web, 151
Web Services, 714–717
XML, 541, 662–666

Office 2003 security
about, 745–760
comments, 757–758
data loss, 760
encryption options,

753–756
file saving, 754–756
hiding files, 749–750
IRM, 747–749
macros, 758–759
people, 746–747
permissions, 757
RSA, 754
Security Properties dialog

box, 753–759

signatures and
hashing, 759

tracing, 758
VBA code signing, 759
virus protection, 751–753

Office applications, Outlook
macros, 504–506

Office Assistant
about, 23
e-mail administration,

485–488
Office Object Library, 75
Office XP Primary Interop

Assemblies (PIAs), 411
Offset method, 279–280
OLE Automation, 414
On Error command,

175–177, 435
OneNote

about, 12, 64
collaboration, 519–524
handwriting, 520
recording, 520
sending documents,

520–522
SharePoint, 634
side notes, 522–524

online help, Office 2003,
38–39

online help Web sites, 38
OOP programming

about, 13, 74, 81–82
objects, 689–691
worksheet editing, 303

Open Database
Connectivity (ODBC),
371–372

operators
about, 93
arithmetic operators,

96–97
logical operators, 98–100
modulo operator, 97
precedence, 100–102

optimistic concurrency,
DataSet object, 378–379

Option Explicit, Access,
420–422

Option Strict, Access,
420–422

OptionButton control, 145
Order Details table, 406
order of precedence,

100–102
outgoing mail, Outlook

macros, 508
Outlook

about, 11, 441
advanced searching,

462–465
creating new contacts

folder, 472–473
default filter, 442–443
defaulting to, 441
displaying Folder item,

471–472
e-mail administration,

483–492
encryption, 446–448
extracting data from

Outlook to Word,
479–481

flagging e-mail, 448–449
forms, 559
functionality, Project 2003,

621–623
group management,

493–502
handling events, 462
making mass

modifications, 473–474
managing multiple

accounts, 443–445
new features, 68–69
non-Outlook e-mail,

477–479
practical VBA, 460–461
reading pane, 441–442
searching tasks, 474–475
sending Access data,

468–71
SharePoint, 633–634

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 803

Office 2003 Application Development All-in-One Desk Reference For Dummies804

Outlook (continued)
spam blocking, 445–446
special folders, 449–451
twin calendars, 451–452
using Business Contact

Manager, 481
using calendar

automation, 475–476
virus, 445–446

Outlook macros
about, 50, 503–504
incoming mail, 507–508
other Office applications,

504–506
outgoing mail, 508
searching via iteration,

509–511
toolbar, 516
trapping events, 507–508
UserForm, 511–516

overloaded Select method,
datasets manipulation,
396–397

P
Package Wizard,

Access, 355
panes, 60–61
ParagraphFormat

properties, 200
parent table, datasets

manipulation, 399–400
passwords, encryption, 772
people, Office 2003

security, 746–747
permissions

Office 2003 security, 757
security, 61–62
SharePoint, 525, 630

Personal.xls, 333
pessimistic concurrency,

DataSet object, 378–379
Picture property, 149
pivot charts, Pivot Tables,

321–322

Pivot Tables
about, 311–312
auto update, 323
creating, 313–317
modifying data in, 322–323
pivot charts, 321–322
refresh, 322–323
table pivots, 317–321

PivotTable control, 155
placeholder, 237
planning meetings, group

management, 498–502
point, 105
portal, SharePoint, 62
Portal Server, 631
PowerPoint macros, 51
practical VBA, Outlook,

460–461
practice schema, XML,

238–239
primary assemblies, 412
primary key index, 390
private information

encryption, 762
Private string variable, 82
Professional Enterprise

edition, Office 2003, 561
profiles, group

management, 493–496
program improvement,

encryption, 783–792
program lines, 113
programmatic relations,

datasets manipulation,
400–402

programmatic XML,
Word, 235

programmatically creating
datasets, 300–303

programming
ASP.NET, 636–637
Excel events, 288–289
with fields, Word, 218–221
Office 2003, 36, 736–738
Smart Documents,

596–610
Smart Tags, 580, 584–585

programming Access
about, 367
ActiveX Data Objects

(ADO), 374–377
adding tables, 369–370
ADO.NET, 375–377
Data Access Objects,

373–374
database management

future, 372–377
database technologies,

370–372
datasets, 375
objects, 367–368
Open Database

Connectivity (ODBC),
371–372

programming help, .NET,
728–729

programming Outlook
about, 453
import, 456–458
MAPI namespace, 459–460
namespace, 456, 458–459
object model, 453–459
qualify, 456–458

Project 2003
about, 12, 615
adding Outlook

functionality, 621–623
dependencies, 618
Gantt charts, 618–620
milestones, 620–621
new projects, 617
Tasks pane, 616
versions, 623–626

project creation, Visual
Studio Tools for Office
(VSTO), 739–744

properties, 17, 46, 47, 79
Property Scanner,

Access, 355
protect cells in

spreadsheet, 158–160
protect data-access pages,

167–168
protections, security, 61–62

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 804

Index 805

public encryption, 770
public/private key pairs, 53
Public Property, 84
publish Access data,

160–165
publish Excel spreadsheet,

155–158

Q
qualify, programming

Outlook, 456–458
Quick Flag feature, 448

R
Range object, 272
ranges, Excel, 277–283
R1C1 style reference, 279
Reading Layout view, 214
reading pane, Outlook,

441–442
recognizer, 579
recorder, Access macros,

430–432
recording

macros, 43–48
OneNote, 520
word macros, 43–46

redefining keys, Word
macros, 263

ReDim objects, 698
redo, 212
Ref field, 220
RefEdit control, 139
references, Word, 235
refresh Pivot Tables,

322–323
relation, datasets

manipulation, 399–400
relational management, 373
Relations, 377
relations via wizards and

designers, 403–404
reminder messages, 75

removing Help field, 23–24
Replace worksheet editing,

308–309
replacement formatting,

Word macros, 259
replacement objects,

Word object model,
206–207

report error checking,
Access, 426–428

resource responses, group
management, 501–502

responding to invitations,
group management, 500

restoring classic key
behaviors, Office 2003,
37–38

restricting documents with
IRM, shared
documents, 531–535

result fields, 218
RichText Box, 142, 790
routing e-mail

administration, 485–488
RSA

about, 14
encryption, 765–769
Office 2003 security, 754

Run to Cursor
debugging, 190

runtime Access, 417
runtime errors, 174–175

S
Sandbox mode, 424–425
Save Data Only, 236
saving

side notes, OneNote,
522–524

XML dataset, 409–410
scalability

about, 390
SharePoint, 631–632

Scenarios, Excel, 327–329

schemas
about, 231, 571
content, XML, 677–678
extension, XML, 678–680
Smart Documents, 599–601

schemes, XML, 672–673
scope

Excel macros, 334
VBA, 107–110

script languages, 43
scripting

drawbacks, 254
Excel, 550–554
Web pages, 547–549
Word Web pages, 251–253

scripting errors, Excel,
553–554

ScrollBar control, 148
ScrollBars, 141
scrolling text, Word, 249
search utility macro,

119–122
searching, advanced,

Outlook, 462–465
searching tasks, Outlook,

474–475
searching via iteration,

Outlook macros,
509–511

searching within
documents, editing,
214–216

security
ASP.NET, 638–639
certification, 52
code protection, 168–169
databases, 166–167
Internet, 165–169
macro settings, 53–55
macros, 51–57, 56–57
Office 2003 security,

745–760
permissions, 61–62
protect data-access pages,

167–168
protections, 61–62

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 805

Office 2003 Application Development All-in-One Desk Reference For Dummies806

security (continued)
Smart Documents,

593–594
verification, 53
VeriSign, 52

Security Properties dialog
box, 753–759

see data hierarchy,
InfoPath, 571–572

seeing code, Web pages,
544–545

segregated source files,
ASP.NET, 639

Select alphabetizing,
394–395

Select Case
command, 125

Select versus Activate,
348–349

selecting from ListBox,
346–347

Selection object, 47, 272
self-certify macros, 53
send/receive groups, e-mail

administration, 489–491
sending

Access data, Outlook,
468–71

documents, OneNote,
520–522

nonprinting keys, Access,
415–417

workbook via email, Excel
macros, 348

SendKeys, Access, 414–417
SendWait, Access, 415
Set Next Statement,

debugging, 190
setting

breakpoints, 186–189
conditional breakpoints in

.NET, 188–189
conditional breakpoints in

VBA, 187–188
permissions, 534–536

setting up your site, group
management, 496–497

setup Visual Studio Tools
for Office (VSTO), 732

shape and pictures,
worksheets adding,
303–305

shared attachments, 68
shared documents

about, 531
authentication, 533
changing workspace

options, 536–537
restricting documents

with IRM, 531–535
setting permissions,

534–536
using IRM in Outlook, 536
using Word’s protect

document feature,
537–539

viewing IRM-protected
files, 532

Word versions, 539–540
shared IDE, ASP.NET,

639–640
Shared Workspace task

pane, 62–63
Shared Workspaces

Meeting Workspace,
527–530

versions, 526
SharePoint

about, 62, 524, 627
Access, 635
ASP.NET, 635–640
collaboration, 632
document information, 631
document library, 631
document workspaces,

633–634
features, 628–629
file sharing, 632
InfoPath, 633
installing, 630
integration, 628–629

Intranet, 632
links, 631
members list, 630
OneNote, 634
Outlook, 633–634
permissions, 525, 630
scalability, 631–632
sharing Outlook contacts,

524–525
solutions, 632–633
status, 630
task pane, 630–631
tasks, 630
uses, 627–630
Web page

management, 633
XML, 633

sharing
calendars, group

management, 496–498
Outlook contacts,

SharePoint, 524–525
Shift key, 345–346
shortcut keys, 37
Show Next Statement, 191
side notes, OneNote, 522
signatures and hashing,

Office 2003 security, 759
Simple Object Access

Protocol (SOAP),
XML, 662

simple XML programming,
Smart Documents,
597–598

Single File Web page, 244
single-stepping, 183
Smart Documents

about, 216–218, 591
action handlers, 596
attaching XML Expansion

Pack, 601–603
dependency files, 596
disabling security, 594
DLLs, 595
downloading SDK, 591–592
Excel documents, 596

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 806

Index 807

lists, 605–610
manifests, 595
modifying template,

610–613
parts of, 596
programming, 596–610
schema, 599–601
security, 593–594
simple XML programming,

597–598
solution files, 604
source code, 604
troubleshooting, 603–604
understanding, 592–595
Word documents, 596
XML manifest file, 596
XSD files, 596
XSLT, 595

Smart Tag DLLs, 55
Smart Tags

about, 12, 579
Access, 355–365
creating, 585–589
Excel, 584–585
feeding data to Internet

site, 588–589
programming your own,

580, 584–585
testing, 588
triggering, 588
understanding, 580–581
VBA, 585
Word, 583–584
working with, 582–583
XML support, 358–361
XSD files, 360–361

software development kit
(SDK), InfoPath,
564–565

software services, .NET, 726
solution files, Smart

Documents, 604
solutions, SharePoint,

632–633
Solver, Excel, 329–332

Sorted property, 390
sorting datasets

manipulation, 395–396
source code, Smart

Documents, 604
space, 154
spam blocking, Outlook,

445–446
special editor, XML,

238–242
special folders, Outlook,

449–451
special macros, Access,

48–49
SpecialCells method,

280–281
specialized formatting,

Word macros, 258–262
SpinButton control, 148
Spreadsheet control, 155
SQL, 302, 380
Start properties, 200
Static command, 108
status, SharePoint, 630
steaganography, 762
Step command, For...

Next loops, 114–115
Step Out, debugging, 190
Step Over, debugging,

189–190
storing macros, 261–262
StoryType property, 200
streaming, 13
streams to store text,

encryption, 792–793
strictness, XML, 669–670
string variables, 104
Style property, 200
Sub, 47
substituting names,

DataSet object,
377–378

suite, 59
switching windows and

deleting words, Word
macros, 264–265

symbols, objects, 699
syntax errors, debugging,

173–174

T
table pivots, Pivot Tables,

317–321
Tables, 377
tables, Access, adding,

369–370
TabStrip control, 147
task panes, 60–61

SharePoint, 630–631
tasks, SharePoint, 630
Tasks pane, Project

2003, 616
testing

Smart Tags, 588
Web pages, 254

text field, 563
Text property, 202
text variables, 104, 199–205
text versus string, InfoPath,

575
TextBox control, 141–142
TextBox MultiLine

property, 142
Thumbnail view, 214
To command, 127
ToggleButton control, 146
toggling revisions, Word

macros, 266–267
toolbars

about, 29–37
hyperlinks adding, 29–32
macros, 32–37
macros to hide, 32–35
Outlook macros, 516

tracing Office 2003
security, 758

tracking responses, group
management, 500–501

transform selection into
range, Excel, 283

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 807

Office 2003 Application Development All-in-One Desk Reference For Dummies808

translation tools, Internet
VBA, 711

trapping events
Outlook macros, 507–508
Word object mode,

208–209
trapping keypresses, Excel

macros, 340–346
triggering, Smart Tags, 588
Triple Data Encrytion

Standard
(TripleDES), 762

troubleshooting
Access, 419–428
Smart Documents, 603–604
Visual Studio Tools for

Office (VSTO), 732–734
true or false testing, 95–96
Try...Catch..Finally

command, 177
Try...End Try,

debugging, 175–177
tryout encryption, 782–783
twin calendars, Outlook,

451–452
TypeName command, 98
typos

in commands and
variables, 172

debugging script, 556

U
Undo, 212
Universal Naming

Convention (UNC)
path, 162

UsedRange property, 281
user interfaces

about, 22–29
customizing shortcut

menus, 26–29
editing menus, 24–25
menus creating, 26
mini help, 22–24
modifying menus, 24

UserForm, 133–136
VBA, 133–136

UserForms
about, 133–136
Excel macros, 335–337
Outlook macros, 511–516

users, InfoPath, 564–565
utility, encryption, 764–765

V
Validate Document against

Attached Schemas, 236
Value property, 551
values

about, 90
numeric types, 105–107

values and parameters
objects, 699–700

variables
about, 79, 89–90
versus constants, 102–103
creating, 90–91
explicit variable

declaration, 91–93
expressions, 102
variant variables, 97–98
VBA types, 104–107

variant type, 91
variant variables, 97–98
variants, 696
VBA

about, 2, 429
arrays, 103–104
cluster variables, 103–104
code signing, 759
collections, 702–704
controls, 138–149
creating variables, 90–91
data types, 91–93
dialogs, 136–138
events, 701–702
excellence, 3
explicit variable

declaration, 91–93
expressions, 93–102

hard drive communication,
129–133

language features, 434
legacy code, 3
literals, constants,

variables
expressions, 102

objects, 691–694
operators, 93–102
scope, 107–110
Smart Tags, 585
understanding, 10
user interfaces, 133–136
variable types, 104–107
variables, 89–90
variables versus

constants, 102–103
VBA Object Browser

utility, 78
VBA subs, 41, 48
VBA.NET, 74
VB.NET

about, 2
debugging, 4
framework, 4
managed code, 4
objects, 696–701
programs, 3
Web Services, 714–717

VB.NET encryption
about, 772–775
keys, 778
passwords, 776–778
streaming, 775–776

VBScript, 55, 429
verification, 53
VeriSign, 52
versions

optimistic concurrency,
DataSet object,
379–340

Project 2003, 623–626
Shared Workspaces, 526

very high macro setting, 55
viewing documents, 213–214
viewing IRM-protected

files, 532

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 808

Index 809

viewing schemas, XML,
683–685

virii
e-mail administration,

491–492
Outlook, 445–446

virus protection, Office
2003 security, 751–753

Visio, 68–69
Visual Basic, 2
Visual Basic for

Applications (VBA)
editor, 73

Visual Basic version 1, 74
Visual Studio Tools, 13
Visual Studio Tools for

Office (VSTO)
about, 13, 731–732,

738–739
.NET, 734–738
.NET security, 744
Office applications,

734–738
project creation, 739–744
setup, 732
troubleshooting, 732–734

W
Watch window, 184
Web controls, 154–155
Web options settings,

adjusting, 244–245
Web pages

about, 244
adjusting page

properties, 544
ASP.NET, 636
filling out Web page,

545–547
management,

SharePoint, 633
properties, adjusting, 544
scripting, 547–549
seeing code, 544–545

Web pages in Word
building, 245–248
creating, 243–244

Web Service References
user interface, 635

Web Services
creating, 717–721
Internet VBA, 711–721
Office 2003, 714–717
VB.NET, 714–717

Web sites
ActiveWords, 43
code, 15
help newsgroups, 38
MSDN, 38
Office 2003 Resources

Kit, 57
online help, 38
source code, 9
VBA programming

commands
dictionary, 16

VeriSign, 52
Web Tools toolbar, 248–250
While...Wend, 118
Windows XP security, 52
Word

about, 10
background texture,

249–250
forms, 559
importing data, 221–223
inserting fields, 218–219
loading files in, 129–130
Mail Merge, 224–227
programmatic XML, 235
programming with fields,

218–221
references, 235
scrolling text, 249
Smart Tags, 583–584
using Fields collection,

220–221
XML, 229–242
XML options, 236–237

Word Document object, 85
Word documents

Smart Documents, 596
validations, XML, 670

Word macros
accepting all changes, 267
advanced, 255
assigning anti-table

macro, 266
assigning normal style, 265
automating, 262
automating macro

execution, 262
double-saving documents,

256–258
F keys, 263
interception, 256–258
naming shortcut keys,

259–260
redefining keys, 263
replacement

formatting, 259
specialized formatting,

258–262
storing macros, 261–262
switching windows and

deleting words,
264–265

toggling revisions,
266–267

WordCount, 267
writing, 255

Word object mode,
ltrapping events,
208–209

Word object model
about, 195
bookmarking, 204–205
Document object, 197–205
Find objects, 206–207
Find objects properties,

207–208
objects, 195–197
replacement objects,

206–207

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 809

Office 2003 Application Development All-in-One Desk Reference For Dummies810

Word versions, shared
documents, 539–540

Word Web pages, scripting,
251–253

Word XML Content
Development Kit, 234

WordBasic, 430
WordCount, Word

macros, 267
WordML, 232
WordPerfect, 1
Words property, 202
Word’s protect document

feature, 537–539
Workbook object, 272
worksheet controls, Excel

macros, 337–339
worksheet editing

adding shape and
pictures, 303–305

Excel, 295–309
find and replace, 305–309
importing Access

database, 297–299
importing data, 295–296
importing data from XML

dataset, 299–300
OOP, 303
programmatically creating

datasets, 300–303
Replace, 308–309

Worksheet object, Excel
events, 289–290

Worksheet object, 272
WorksheetFunction

method, Excel, 283

workspace options,
changing, 536–537

writing Word macros, 255

X
XML

about, 13, 64–68, 229–242,
661–662

adding nodes, 686
attributes, 667–668
build documents, 239–242
child nodes and data,

686–687
content attribute, 680–681
data islands, 669
data types, 675–677
Document Object Model

(DOM), 671
elements, 667–668
explicit declaration, 672
extensibility, 665–666
versus HTML, 666–667
implicit declaration, 672
Internet VBA, 713–714
manifest file, Smart

Documents, 596
manipulations, 686–687
namespaces, 671–672
nesting, 669
Office 2003, 541, 662–666
Office 2003 programming,

681–685
practice schema, 238–239
schema content, 677–678

schema extension,
678–680

schemes, 672–673
SharePoint, 633
Simple Object Access

Protocol (SOAP), 662
special editor, 238–242
strictness, 669–670
Structure task pane, 239
support, Smart Tags,

358–361
terminology, 668–670
viewing schemas, 683–685
Word document

validations, 670
Word options, 236–237
XSD, 673–677

XML Designer
binding controls, 407–408
Clear method, 409
datasets manipulation,

405–409
XML Expansion Pack, Smart

Documents, 601–603
XOR operator, 99
XSD

Smart Documents, 596
Smart Tags, 360–361
XML, 673–677

XSLT, Smart Documents, 595

Z
Zone Alarm, 52

09a_570676 bindex.qxd 6/4/04 10:33 PM Page 810

PERSONAL FINANCE & BUSINESS

Also available:
Accounting For Dummies
(0-7645-5314-3)
Business Plans Kit For
Dummies
(0-7645-5365-8)
Managing For Dummies
(1-5688-4858-7)
Mutual Funds For Dummies
(0-7645-5329-1)
QuickBooks All-in-One Desk
Reference For Dummies
(0-7645-1963-8)

Resumes For Dummies
(0-7645-5471-9)
Small Business Kit For
Dummies
(0-7645-5093-4)
Starting an eBay Business
For Dummies
(0-7645-1547-0)
Taxes For Dummies 2003
(0-7645-5475-1)

Also available:
Bartending For Dummies
(0-7645-5051-9)
Christmas Cooking For
Dummies
(0-7645-5407-7)
Cookies For Dummies
(0-7645-5390-9)
Diabetes Cookbook For
Dummies
(0-7645-5230-9)

Grilling For Dummies
(0-7645-5076-4)
Home Maintenance For
Dummies
(0-7645-5215-5)
Slow Cookers For Dummies
(0-7645-5240-6)
Wine For Dummies
(0-7645-5114-0)

The easy way to get more done and have more fun

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct

HOME, GARDEN, FOOD & WINE

Also available:
Cats For Dummies
(0-7645-5275-9)
Chess For Dummies
(0-7645-5003-9)
Dog Training For Dummies
(0-7645-5286-4)
Labrador Retrievers For
Dummies
(0-7645-5281-3)
Martial Arts For Dummies
(0-7645-5358-5)
Piano For Dummies
(0-7645-5105-1)

Pilates For Dummies
(0-7645-5397-6)
Power Yoga For Dummies
(0-7645-5342-9)
Puppies For Dummies
(0-7645-5255-4)
Quilting For Dummies
(0-7645-5118-3)
Rock Guitar For Dummies
(0-7645-5356-9)
Weight Training For Dummies
(0-7645-5168-X)

FITNESS, SPORTS, HOBBIES & PETS

0-7645-2431-3 0-7645-5331-3 0-7645-5307-0

0-7645-5295-3 0-7645-5130-2 0-7645-5250-3

0-7645-5167-1 0-7645-5146-9 0-7645-5106-X

09b_570676 BOB.qxd 6/4/04 10:34 PM Page 811

Also available:
The Bible For Dummies
(0-7645-5296-1)
Controlling Cholesterol
For Dummies
(0-7645-5440-9)
Dating For Dummies
(0-7645-5072-1)
Dieting For Dummies
(0-7645-5126-4)
High Blood Pressure For
Dummies
(0-7645-5424-7)
Judaism For Dummies
(0-7645-5299-6)

Menopause For Dummies
(0-7645-5458-1)
Nutrition For Dummies
(0-7645-5180-9)
Potty Training For Dummies
(0-7645-5417-4)
Pregnancy For Dummies
(0-7645-5074-8)
Rekindling Romance For
Dummies
(0-7645-5303-8)
Religion For Dummies
(0-7645-5264-3)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct

A world of resources to help you grow

TRAVEL

Also available:
America’s National Parks For
Dummies
(0-7645-6204-5)
Caribbean For Dummies
(0-7645-5445-X)
Cruise Vacations For
Dummies 2003
(0-7645-5459-X)
Europe For Dummies
(0-7645-5456-5)
Ireland For Dummies
(0-7645-6199-5)

France For Dummies
(0-7645-6292-4)
Las Vegas For Dummies
(0-7645-5448-4)
London For Dummies
(0-7645-5416-6)
Mexico’s Beach Resorts
For Dummies
(0-7645-6262-2)
Paris For Dummies
(0-7645-5494-8)
RV Vacations For Dummies
(0-7645-5443-3)

Also available:
The ACT For Dummies
(0-7645-5210-4)
Chemistry For Dummies
(0-7645-5430-1)
English Grammar For
Dummies
(0-7645-5322-4)
French For Dummies
(0-7645-5193-0)
GMAT For Dummies
(0-7645-5251-1)
Inglés Para Dummies
(0-7645-5427-1)

Italian For Dummies
(0-7645-5196-5)
Research Papers For Dummies
(0-7645-5426-3)
SAT I For Dummies
(0-7645-5472-7)
U.S. History For Dummies
(0-7645-5249-X)
World History For Dummies
(0-7645-5242-2)

EDUCATION & TEST PREPARATION

HEALTH, SELF-HELP & SPIRITUALITY

0-7645-5453-0 0-7645-5438-7 0-7645-5444-1

0-7645-5194-9 0-7645-5325-9 0-7645-5249-X

0-7645-5154-X 0-7645-5302-X 0-7645-5418-2

09b_570676 BOB.qxd 6/4/04 10:34 PM Page 812

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct

Plain-English solutions for everyday challenges

HOME & BUSINESS COMPUTER BASICS

Also available:
Excel 2002 All-in-One Desk
Reference For Dummies
(0-7645-1794-5)
Office XP 9-in-1 Desk
Reference For Dummies
(0-7645-0819-9)
PCs All-in-One Desk
Reference For Dummies
(0-7645-0791-5)
Troubleshooting Your PC
For Dummies
(0-7645-1669-8)

Upgrading & Fixing PCs For
Dummies
(0-7645-1665-5)
Windows XP For Dummies
(0-7645-0893-8)
Windows XP For Dummies
Quick Reference
(0-7645-0897-0)
Word 2002 For Dummies
(0-7645-0839-3)

Also available:
CD and DVD Recording
For Dummies
(0-7645-1627-2)
Digital Photography
All-in-One Desk Reference
For Dummies
(0-7645-1800-3)
eBay For Dummies
(0-7645-1642-6)
Genealogy Online For
Dummies
(0-7645-0807-5)
Internet All-in-One Desk
Reference For Dummies
(0-7645-1659-0)

Internet For Dummies
Quick Reference
(0-7645-1645-0)
Internet Privacy For Dummies
(0-7645-0846-6)
Paint Shop Pro For Dummies
(0-7645-2440-2)
Photo Retouching &
Restoration For Dummies
(0-7645-1662-0)
Photoshop Elements For
Dummies
(0-7645-1675-2)
Scanners For Dummies
(0-7645-0783-4)

INTERNET & DIGITAL MEDIA

0-7645-0838-5 0-7645-1663-9 0-7645-1548-9

0-7645-0894-6 0-7645-1642-6 0-7645-1664-7

• Find listings of even more Dummies titles

• Browse online articles, excerpts, and how-to’s

• Sign up for daily or weekly e-mail tips

• Check out Dummies fitness videos and other products

• Order from our online bookstore

Get smart! Visit www.dummies.com

™

09b_570676 BOB.qxd 6/4/04 10:34 PM Page 813

Helping you expand your horizons and realize your potential

GRAPHICS & WEB SITE DEVELOPMENT

Also available:
Adobe Acrobat 5 PDF
For Dummies
(0-7645-1652-3)
ASP.NET For Dummies
(0-7645-0866-0)
ColdFusion MX For Dummies
(0-7645-1672-8)
Dreamweaver MX For
Dummies
(0-7645-1630-2)
FrontPage 2002 For Dummies
(0-7645-0821-0)

HTML 4 For Dummies
(0-7645-0723-0)
Illustrator 10 For Dummies
(0-7645-3636-2)
PowerPoint 2002 For
Dummies
(0-7645-0817-2)
Web Design For Dummies
(0-7645-0823-7)

Also available:
Access 2002 For Dummies
(0-7645-0818-0)
Beginning Programming
For Dummies
(0-7645-0835-0)
Crystal Reports 9 For
Dummies
(0-7645-1641-8)
Java & XML For Dummies
(0-7645-1658-2)
Java 2 For Dummies
(0-7645-0765-6)

JavaScript For Dummies
(0-7645-0633-1
Oracle9i For Dummies
(0-7645-0880-6)
Perl For Dummies
(0-7645-0776-1)
PHP and MySQL For
Dummies
(0-7645-1650-7)

SQL For Dummies
(0-7645-0737-0)
Visual Basic .NET For
Dummies
(0-7645-0867-9)

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct

PROGRAMMING & DATABASES

Also available:
A+ Certification For Dummies
(0-7645-0812-1)
CCNP All-in-One Certification
For Dummies
(0-7645-1648-5)
Cisco Networking For
Dummies
(0-7645-1668-X)
CISSP For Dummies
(0-7645-1670-1)
CIW Foundations For
Dummies
(0-7645-1635-3)

Firewalls For Dummies
(0-7645-0884-9)
Home Networking For
Dummies
(0-7645-0857-1)
Red Hat Linux All-in-One
Desk Reference For Dummies
(0-7645-2442-9)
UNIX For Dummies
(0-7645-0419-3)

LINUX, NETWORKING & CERTIFICATION

0-7645-1651-5 0-7645-1643-4 0-7645-0895-4

0-7645-0746-X 0-7645-1626-4 0-7645-1657-4

0-7645-1545-4 0-7645-1760-0 0-7645-0772-9

09b_570676 BOB.qxd 6/4/04 10:34 PM Page 814

	Office 2003 Application Development All-in-One Desk Reference For Dummies
	Cover

	Table of Contents
	Introduction
	Book I: Office 2003 Essentials
	Chapter 1: Getting with the Program
	Chapter 2: Programming Lite: Making the Most of Macros
	Chapter 3: What's New in 2003?

	Book II: Understanding Office Programming
	Chapter 1: The Basics of Office Development with VBA
	Chapter 2: Managing Data
	Chapter 3: Looping and Branching
	Chapter 4: Managing Files and UserForms
	Chapter 5: Moving to the Internet
	Chapter 6: Debugging

	Book III: Maximizing Word
	Chapter 1: The Word Object Model
	Chapter 2: Power Editing
	Chapter 3: Using XML in Word
	Chapter 4: The Internet Connection
	Chapter 5: Advanced Word Macros

	Book IV: Making the Most of Excel
	Chapter 1: The Excel Object Model
	Chapter 2: Handling Excel Events
	Chapter 3: Advanced Worksheet Editing
	Chapter 4: Data Diving with Pivot Tables
	Chapter 5: Business Analysis with Excel
	Chapter 6: Ten Excellent Excel Macro Techniques

	Book V: Advanced Access
	Chapter 1: Access Today
	Chapter 2: Programming Access
	Chapter 3: Manipulating Datasets
	Chapter 4: Automating Access
	Chapter 5: Troubleshooting in Access
	Chapter 6: Access Macro Techniques

	Book VI: Exploiting Outlook
	Chapter 1: Outlook Power Tools
	Chapter 2: Programming Outlook
	Chapter 3: Managing Work and Life
	Chapter 4: Expert E-Mail Administration
	Chapter 5: Group Management in Outlook
	Chapter 6: Advanced Outlook Macros

	Book VII: InterOffice: Working as a Team
	Chapter 1: Collaboration Features Overview
	Chapter 2: Managing Shared Documents
	Chapter 3: XML and Office
	Chapter 4: Working with InfoPath
	Chapter 5: Adding Smart Tags
	Chapter 6: Exploring Smart Documents
	Chapter 7: Using Project 2003
	Chapter 8: Employing SharePoint

	Book VIII: Power Techniques: Advanced Office Automation, VBA, and .NET
	Chapter 1: Advanced Office 2003 Programming
	Chapter 2: Exploring XML
	Chapter 3: Employing Objects
	Chapter 4: Advanced Internet VBA
	Chapter 5: Working with .NET
	Chapter 6: Using Visual Studio Tools for Office 2003
	Chapter 7: Office 2003 Security
	Chapter 8: No More Paranoia: Programmatic Encryption

	Index
	Team DDU

