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The increasing contribution of mathematics to the culture of the d c r n  
wr ld ,  as well as i t s  importance as a v i t a l  part of s c i e n t i f i c  and humanistic 
tdueation, has mndc it essential that the m a t h e ~ u t i e a  i n  our echool@ be bath 
wZ1 selected and e l l  taught. 

t j i t h  th i s  i n  mind, the various mathc~atical organLtaeions i n  the United 
Seatss cooperated i n  the forumtion of the School F ~ t k m a e i c s  Study Group (SPSC). 
SMG includes college and unirersiley mathmaticlans, eencbera of m a t h w t i e s  a t  
a l l  lavels, experts i n  education, and reprcscntarives of science and tcchrmlogy. 
Pha general objective o f  SMG i a  the i m p r o v m n t  a f  thc? teaching of =themtics 
in the sehmla of t h i s  country. The l a t i o n u l  Science Foundation has provided 
subs tantiaL funds for the support of this endeavor. 

One of the pterequlsitea for the improvement of t h e  teaching of math&matira 
in our ~ c h m t s  i e  on improved c u r r i e u ~ ~ n s  which takea account of thc incrcas- 
ing use of oathematice Ln science and teehnoLogy end i n  other areas o f  knowledge 
and a t  the a m  timc one v f i i ~ h  ref l o e t a  recent advancta i n  mathem~tica i t s c l f .  
One of thc f l rnt  projects undartaken by SrSC was t o  enlist a group of outstanding 
mathematiclans and nrarhematica teachern to  prepare a nariea of textbooks uhich 
would i l lustrmre such A n  improved curriculum. 

The professional arathcmatLcLanlr in SMSG belleve that the mathematics p r P  
eented In this t t x r  is vaLuahLc fat a l l  w2 l-ducatcd citlzene i n  our society 
to  know 6nd that  it ia tqmrtant fo r  the prceollage atudent: to learn in  prepara- 
tion far advanced vork i n  thc f i e l d .  A t  thc time t ine ,  teachers in SWC believe 
that  it is presented in rrueh a farm that i t  can ha r ~ a d F l y  grasped by students. 

In most inntanees the mnterlal will have a inmiltar n o t e ,  he the prcsenta- 
tion and the point of vicv vill be diftcrsnt. Samc matcrial w i l l  be ent ire ly  
neu to  ehc traditional curriculum, This i s  ar i t  should be, for ~Aathcm&ti~& i a  

! a ltving and an cvcwrawinff subject,  and Rat a dead and frozen product of an- 
t iquity .  This heakthy fusion o f  the old and Ehc ncu should lead students to a 
better undcsstsnding of the basic concepts and structure of mthemtics and 

! provide a f i m r  foundation for understanding and use of ~ t h c m a t i c s  in a 
gcitntlfic sociery. 

It la not intendad that this book be regarded an the mly dcf ini t lva way 
of presenting good mathcmatica to  student# a t  t h i s  Level. Instead, It should 
be thought of as e  ample of the kind of i q r w e d  currieulua that we need and 
as a source of nuggestiana for the authora of c-rclal t e x t b k a .  It is 
sincerely hoped that these tex ts  wLl1 lead the way coward inspiring a more 
meaningful reaching o f  Hathemnckea, t h e  Wcca and Servant of tho Sctencea. 

























(b) Name the entries in the 3rd row. 

(c) Name the entries in the 3rd column. 

(d)  Name the entry b12. 

(e) Forwhatva lues  i ,  j is b + 0 ?  
i j  

(f) For what values i, j i s  b = O ?  
ij 

(g) W r i t e  the transpose B ~ ,  

5. (a) Write a 3 x 3 matrix a l l  of whose entries are whole numbers. 

(b) Write a 3 X 4 matrix none of whose entries are whole numbers. 

(c )  Write a 5 x 5 matrix having a l l  entries in i t s  f i r s t  two rows 

pos i t ive ,  and a l l  entries in its last  three rows negative. 

6.  (a) How many entries are there in a 2 x 2 matrix? 

(b) In a 4 x 3 matrix? 

( c )  Xn en n x n matrix? 

( d )  In an rn x n matrix? 

1-3. Equality of Matrices 

Two matrices are equal provided they are o f  the same order and each entry 

in the f irst  is equal to  the corresponding entry Ln the second. For example, 

but  

Definition 1-2. Two matrices A and B are equal, A = B, if and only 

if they are of the same order and their corresponding entries are equal. 

Thus, 



























































36 
ordinary algebra of numbers insofar as multiplication is concerned? 

L e t  us consider an example that will y i e l d  an answer t o  the foregoing 

question. L e t  

If we compute AB, we find 

Now, if we reverse the order of the factors and compute BA, we find 

Thus AB and BA are d i f f e r e n t  matrices! 

For another example, let 

Then I 

while 

Again AB and BA are di f ferent  matrices; they are not even of the same order! 

Thus we have a first difference between matrix algebra and ordinary 

algebra, and a very significant difference it is indeed. men w e  multiply real 

numbers, we can rearrange factors since the commutative law holds:  For all 

x E R and y E R, we have xy = yx. When we multiply matrices, w have no 
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such law and w e  must consequently b e  careful to  take the factors in  the order 

given. We must consequently d i s t i n g u f s h  between the reaul t of  multiplying B 

on the right by A to get  BA, and the result  of multiplying B on the left: 

by A to g e t  AB. In the algebra of numbers, these two operations of "right 

mult ip l icat iont1  and "left muLtiplFcation" are the same; in matrix algebra, they 

are n o t  necessarily the same. 

Let us explore some mote differences! Let 

A = [; ;] and 8 = [-; _93] . 

Pa t en t l y ,  A # - 0 and B # g. But i f  we compute AB, we obtain 

thus, we f i n d  d .  Again, l e t  

Then 

The second major difference between ordinary algebra and matrix algebra is 

that the product of tw, matrices can be a zero matrix without either factor 

being a zero matrix. 

The breakdown for  matrix algebra o f  the law that xy = yx  and of the law 

that xy = 0 only i f  either x or y is zero causes additional  difference^. 

For instance, f o r  real numbers ue know that if ab = ac,  and a + 0, 

then b = c .  T h i s  property is called the cancellation law for multiplication. 

Proof, We div ided  the proof into afmple atepB: 

{a) ab ac, 

(b) ab - a t  = 0, 

( c )  a(b - c) = 0, 



For tmtricer , the above s t t p  from (el  t a  Cd) f a i l d  and rhs proof i e  not 
v a l i d .  In fact,  AB can be aqua1 to  AC, with A 3 2, yet  B + C g  Thud, l e t  

Then 

but 

Let us consider another d i f  faranee. Wi h o w  tht  r real nmber a can 

have a t  moer t v ~  square root.; that is, thars arc at  most  tw rocrre of the 

equation mt - a. 

Praof . Again, ws give the r i q l h  s t s p l  of  the proof: 

Supp6c that py - a; them 

XX W ,  

x x - y y - 0 ,  

( X  - Y)(X + Y) ' = + (v + x y )  - yy, 
Yx - KY. 
Prm ( d l  and l a ) ,  (x - y ) ( x  + y )  - m - n. 
Prom (cl  and (I) ,  (x - y ) ( x  + y )  - 0. 
Therefore, sither x - y - 0 or x + y m 0 .  

Therefore, either x - y or x - - y .  

For matrices, statement (c) is false ,  and therefore the steps t o  ( f )  and 

(g) arc inval id .  Even i f  ($1 vtre valid, the #tap from (g) t o  (h) f a i l & .  

ISM. 1-81 
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Thsrefore, the forcgofng proof i e  invalid if ue t r y  to  apply i t  t o  mtricaa .  I n  

fact, k t  is false that a matrix can have a t  =st two square roots: b k  have 

Ttluo tho  matrix 

has thc four d i f f erant  square roots 

There are mra! Given any number x # 0 ,  we have 

By giving x ady one of an i n f i n i t y  of different real values, w obtain an 

i n f i n i t y  o f  di f f erent  square roots a f  the matrix 1: 

Thub the very stnple 2 x 2 matrix I has i n f i n f t e l y  many d i s t i n c t  square 

roots! You can see, then, that the fact that a real or c q l c x  nunbct has a t  

most two  squaro m a t e  Lsr by no means trivial. 



2. k k c  the cakculations of EKrrcts-a L for tha artrictr 

3 .  kt A and B be as in Excrciae 2, and let 

Calculate AI, IA, RX, IB, and (AX)B.  

4. Ltt 

Show by c m p u t a t i o a  that  

(A) (A  + R I M  + BS + A' + ~ A B  + 8'. 

(b) (A  + B ) ( A -  B) + - 

where A and 02 denole M and BB, rempectlvtly. 



6 .  Find a t  Least t3 squara roots o f  the mtrix 

7. Show that: the mtrix 

aatisf lcs  the aquatian A' - 2. How many 2 x 2 matrices .atla fying t h i a  

equation can you f lad? 

8. Show that  the matrix 

sat iaf ier  the cquarion k3 - 0 .  

1-9. Properties of Hatrix Hultiplication (Concluded) 

tb have seen that tvo basic laus governing multiplication in  the algebra 

of ordinary ambers break dowa when k t  comas to  matrices. the  c-tativc law 

and the cancellation law do n o t  hold. A t  t h i ~  point, you night fear a total 

collapas o f  all thc other fmi l iar  law. This Is not the c a m .  Aside from the 

tw laws aentloned, and the f a c t  that, as wc ehall  rec later, many matrices do 

not have aulsiplicativc invarues (reciprocals), thc other bani c Paw of  

ardinary algebrn generally r-in val id  for mutriccs. The assoedative Law 

holda for the wlt ipl ieat im of mtricea and thare are dtatributive levr that 

uni te  addition and multiplication. 

A feu exmplrs will aid us In understanding the lam. 

kt 

[see. 1-81 
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Then 

and 

Thus, in this case, 

and 

so that also 

Since multiplication is not c m r a t i v e ,  we cannot conclude from Equation 

( 2 )  that the distrtbutive principle is v a l i d  with the factor A on the right- 

hand s i d e  of B + C. Having illustrated the Left-hand distributive law, w 
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now i l lus trate  the right-hand distributive law with the following example: 

We have 

and 

Thus, 

(I3 + C)A = BA + CA. 

You might note, in passing, that ,  i n  the above example, 

These properttes o f  matrix mu1 tiplication can be expressed as theorems, 

as fol lows.  

Theorem 1-55. If 

then 

(AB)C r: A(BC) . 

Proof. (Optional .) We have 



Since the order  of addi t ion  is arbitrary, we know that 

Hence, 

Theorem 1-6. I f  

then A ( B  f C) = AB + BC. 

Proof. (Optional.) We have 

(8 + C) = [bjk + 'jk] p x  n' 

aij ( b j k + c . )  
J~ m x n  1 

] ... 



- AB f AC. 

Hence, 

Theorem 1-7. If 

= [b jk ]  p x n *  = ['jk] p ~ n '  and A = [%i] n x q  

then (B + C I A  = BA + CA. 

Proof. The proof is similar t o  that o f  Theorem 1-6 and will be l e f t  as 

an exercise for the student .  

It should be noted that  if the c o m t a t i v e  Law h e l d  for matrices, it would 

be unnecessary to prove Theorems 1-6 and 1-7 separately, since the two stare- 

men ts 

would be equivalent. For matrices, however, the two statements are no t  e q u i v e  

lent ,  even though borh are true. The order of factors is most important, since 

statements like 

and 

can be false for matrices. 
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Earlier we defined the zero matrix o f  order m x n and showed that it: i s  

the identiry element for matrix addition: 

where A i s  any matrix of order m x n. This zero matrix plays the same role 

in t h e  m l t i p l f c a t i o n  of =trices as the number zero does in the ~mltiplicatition 

of real numbers. For exrtm~le, we have 

Theorem 1 4 .  For any matrix 

we have 

A = 0 and A 0 = 0 O m x p  p x n  m x n  p x n n x q  p x q '  

The proof is easy and is left  to  the student. 

Now we may be wondering If there is an i d e n t i v  element for the multiplica- 

tion of matrices, namely a matrix that p l a y s  the same role ae the number 1 does 

in the multiplication of real numbers. (Far all real numbers a, l a  = a = al.) 

There such a matrix, ca l l ed  the unit matrix, or the identity matrix for 

multiplicatfon, and denoted by the symbol I. The matrix 12, namely, 

is called the uni t  matrix of order 2 .  The matrix 

is called the unit matrix o f  order 3 .  In general, the unit marrix of  order 

n i s  the aquare matrix 
[ e i j ]  nx n 

such that e 1 f o r a l l  i - j  and 
ij 



e = Q  f o r a l l  # j ( i 2 . n ;  = 1 , .  n Wenowsta te  the 
ij 

important property o f  the unit matrix as a theorem. 

Theorem 1-9. If A is an m x n matrix, then AIn = A and ImA A .  

Proof. By def in i t ion ,  the  entry  in the i- th row and j-th column of the 

product A m  i s  the sum a + a e  + . . . + a  e .  Since e = 0  f o r  ilelj 12 2j i n  nj' kj 
all k j a l l  terms but one in this Bum are zero and drop o u t .  We are 

l e f t w i t h  a .e = a  
$J jj  ij' 

Thus the entry in the i-th row and j-th column of the 

product is the same as the corresponding entry in A.  Hence A l n  = A .  The 

equality Imh = A may be proved the same way. In most situations, i t :  is n o t  

necessary to  specify the order of the unit matrix since the order is inferred 

from the context. Thus, for 

ImA = A AI,, 

we write 

IA * A = AX. 

For example, we have 

and 

Exercises 1-9 
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Test the formulas 

A(B + C) = AB + AC, 
(B 4- CIA = BA + CA, 

A(B 4- C) - AB + CA, 
A(O + C) = BA + CA. 

Which are correct, and which are false? 

2 .  Let 

A -  [; 001 and .== [; ;I. 
Show that AB 2, b u t  BA = 2 .  

3 .  Show that  f o r  all matrices A and B of the form 

we have 

AB = BA. 

Illustrate by assigning numerical values to a, b, c, and d, w i t h  
a, b, c, and d integers .  

4 .  Find the value of x for which the following product is 1: 

5. For the matrices 

0 0 0  0 0 0  0 0 0  

0 1 0  1 0 0  1 2 0  

show rhat AB - BA, rhat AC = CA, and that BC 1 CB. 

6 .  Show t h a t  the matrix 

fsec. 1-93 



satisfies the equation = I. Find at least one more solurion of t h i s  

equation. 

7 .  Show that  for all matrices A of the form 

we have 

Illustrare by assigning numerical values to a and b. 

8 .  Let  

Compote the following: 

( a>  ED, 

(el  m, 
( f  FE. 

If AB = - BA, A and B are sa id  to  be -. bhat: con- 

c lus ions  can be drawn concerning D, E, and F? 

'I. Show that the matr ix  A = [-: :] is a solution o f  the equation 

A' - 5A + 71 = 2. 

10. Explain why, in matrix algebra, 

2 2 
(h 4- 8) ( A - B )  # A  - B  

except in special cases. Can you devise two m a t r i c e s  A and B that 

will i l lustrate  the inequality? Can you devise two matrices A and B 
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that will illustrate the special case? (Hint: Use square metrices of 

order 2.) 
* 

11. Show that if V and W are n x 1 colum vectors, then 

12 ,  Prove that ( A B ) ~  = B ~ A ~ ,  asrruming that A and B are c c m f o l l e  for 

multiplication, 

13. Using no tation, prove the right-hand distributive law (Theorem 1.7) . 

1-10. Sumwry 

In this introductory chapter ve have defined several operations on 

matricea, such as addit ion and multiplication. Theee operatione di f fer  from 

those of elementary algebra in  tbat  they cannot always be performed. Thus, 

we do not add a 2 x 2 matrix to  a 3 x 3 matrix; again, though a 4 x 3 

matrix and a 3 x 4 matrix can be multiplied together, the product i e  neither 

4 x 3 nor 3 x 4 .  More importantly, the c-tative law for multiplication 

and the cancellation law do not hold. 

There La a third significant difference that we shall explore more fu l ly  

in later chapeere but shall tntroduce now. Recall that the operation of 

subtraction was closely associated with that o f  addition. In order to  solve 

equations of the form 

it fsconveniept to  employ the additive inveree, or negative, 4. Thus, if 

the foregoing equation holds, then we have 

A + x + ( - A )  - B + ( - A ) ,  

X + A +  (-A) = B + ( - A ) ,  

x + g =  B - A *  

X - I - A .  

b you know, every matrix A e negative -A* Now "division" i s  closely 
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associated with m l t i p l i c a t i o n  in a parallel manner. In order to solve 

equation8 o f  the form 

we would analogously employ multiplicative inverse (or reciprocal), which is 

denoted by the symbol A-'. The defining property is A-' A = I = M-~. This 

enables us to solve equations of the form 

Thus i f  the foregoing equation holds, and if A has a mu1 tiplicarive Lnverse 
-1 A , then 

Now,  many matrices other than the zero matrix 2 do not possess multiplicative 

inverses; for i n s  mnce, 

are matrieee of this sort. This fact constimtes a very significant difference 

between the algebra o f  -trices and the algebra of real numberr. In the next 

tvo chapters, we shall explore the problem of matrix inversion in depth. 

Before closing this chapter, w e  should note that matrices arising in 

scientific and industrial applications are narch larger and their entries much 

more complicated than has been the case in this chapter. As you can imagine, 

the computations involved d e n  dealing with larger matrices (of order 10 or 

more), which is usual in applied work, are ao extensive a8 to discourage their 

uea i n  hand computations. Fortunately, the recent development of higltapeed 

electronic computers has largely overcome this difficulty and thereby has made 

it mre feasible to  apply matrix methods i n  many areas of endeavor. 



Chapter 2 

THE ALGEBRA OF 2 X 2 MTRICES 

2-1 . Introduction 

In Chapter 1, we considered the elementary operations of addition and 

multiplication for rectangular matrices. This algebra is similar in many 

respecta to the algebra of real numbers, a1 though there are important differ--  

ences. Specifically, we noted that the connnutative law and the cancellation 

law do not hold for  matrix multiplication, and that division is not always 

possible. 

With matrices, the whole problem of div i s ion  is  a very complex one; it  i s  

centered around the existence of a multiplicative inverse. Let us ask a 

question: If you were given the  matrix equation 

could you solve i t  for the unknom 4 x 4 matrix X? Do not  be dismayed 

if your answer is "No." Eventually, we shal l  learn methods of solving th i s  

equation, but the problem is complex and Lengthy. In order to understand 

this problem in depth and at the same time comprehend the f u l l  significance 

of the algebra we have developed so far, we shall largely confine our attention 

i n  t h i s  chapter t o  a special subset of the set of all rectangular matrices; 

namely, we shall consider the aer  of 2 x 2 square matrices. 

When one s tsnds back and takes a broad view of the many di f f erent  kinds of 

numbers that have been studied, one sees recurring patterns. For Lnstance, let 

us look at the rational numbers for a moment. Here is a set of numbers that WE 

can add and m l t i p l y .  This statement is so simple that we almost rake it for 

granted. But it is not true of a l l  sets,  so let: us give  a name to the not ion  

that: is involved. 

Definition 24. A set S i s  said to be closed under an operation R on 

a f i r s t  member a of S and a second member b of S i f  

(i) the operation can be performed on each a and b o f  S, 
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(ii) far  each a and b of S, the result  of the operation i e  a 

member of S .  

For example, the set o f  pos i t i ve  integers i s  not closed under the operation 

of division since for some pos i t ive  integers a and b the ratio a/b i s  not 

a positive integer; neither is the set  of rational nmbers closed under division, 

since the operation cannot be perfomed if b = 0; but the set of positive 

rational numbers is closed under d iv i s ion  since the quotient o f  two positive 

rational numbers is a positive rational number. 

Under addit ion and multiplication, the s e t  of rational numbers sat i s f ies  

the following postulates: 

The s e t  is closed under addition. 

Addition i s  c o m t a t i v e .  

Addition is  asaociarive.  

There i s  an identity member (0)  for addition. 

There is an additive inverse member -a for each member a. 

The set i s  closed under multiplication.  

Mu1 t ip l i ca t ion  is cwnattative . 
Efultiplication i s  associat ive .  

There is an ident i ty  member (1) for multiplication. 

-1 There i s  a multiplicative inverse member a for each member a, 
other than 0 .  

. . .  
Multiplication is distr ibut ive  over addit ion.  

Since there exists a rational multiplicative inverse for each rational number 

except 0, division (except by 0) is always possible in the algebra of 

rational numbers. In other words, all equations of the form 

where a and b are rational numbers and a # 0, can be solved for x in 

the algebra of rational  numbers. For example: I n  order t o  solve the equation 



we multiply both sidea of the equation by - 3 / 2 ,  the m u l t i p l i c a t i v e  inverse 

of - 2 1 3 .  Thus we obtain 

which i s  a rational number. 

The foregoing set of postulates is satisfied also by the s e t  of real 

numbers. Any s e t  that satisfies such a e e t  of postulates i s  called a f i e l d .  

Both the se t  o f  real numbers and the s e t  of rationals,  which i s  a subset of 

the s e t  of real numbers, are fields under addition and mult ip l icat ion .  There 

are many systems that  have this same pattern. In each of these systems, 

division (except by 0) is always possible. 

Now our imediate concern is to explore the problem of division in the set 

of matrices. There is no blanker answer that can readily be reached, although 

there i s  an answer that we can f i n d  by proceeding stepwise. A t  f i r a t ,  l e t  us 

limit our discussion to the s e t  of 2 x 2 matrices. We do t h i s  not  only to 

consider division in a smaller domain, but also to study i n  detai l  the algebra 

associated with  t h i s  subset. A more general problem of .mtr ix  d i v i s i o n  will be 

considered in Chapter 3 .  

Exercises 2-1 

1. Determine which of the following sets are closed under the sta ted  

operation: 

(a) the s e t  of integers under addition, 

(b) the s e t  of even numbere under multiplication, 

(c) the s e t  111 under multiplicarion, 

(d) the s e t  of positive irrational numbers under division, 

[ssc. 2-11 
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( e )  the set o f  integers under the operation of squaring, 

( f )  the set of numbers A = Ex: x - > 3)  under addition. 

2 .  Detennine which of the following statements are true, and s t a t e  which of 

the indicated operations are comutat tve:  

( a )  2 - 3 = 3 - 2 ,  

(b) 4 + 2 = 2 + 4 ,  

(c) 3 + 2 = 2 + 3 ,  

(d )  xa + Jb = + Ja, a and b positive, 

(e) a - b = b - a, a and b rea l ,  

( f )  Pq = qp,  P and q real, 

(g) Fl e 2 = 2 + fi. 
3 .  Determine which of the following operations 3, defined for p o s i t i v e  

integers in terns of addi t ion  and mu1 tlplication, are c m u t a t i v e :  

(a) x 3 y P x + 2 y  (forexample, 2 3 3 = 2 + 6 = 8 ) ,  

Y (e) x * y = x ,  

(f) x * y = x + y + l .  

4. Determine which of the following operations *, defined for positive 

integers i n  terms o f  addition and mu1 tipLfcation, are associative: 

( a )  x * y = x + Z y  (for enample, ( 2  * 3) * 4 = 8 * 4 a 161, 

(d )  x * Y XI 

(el x * Y = J G s  
( f )  x * y = xy + 1. 

5 .  Determine whether the operation * is distributive over the operation 

9, that is, determine whether x * ( y  5 z) = (x * y) + (x * 2) and 



( y  f z) * x = ( y  * x) % ( Z  * X) , where the operations and * are 

defined For positive integers i n  terms o f  addit ion and mu1 tiplicetion of 

real numbers: 

(a)  x + y =  x +  y ,  x * y E l l I Y ;  

(b) x 3 y E 2 x + 2 y ,  
1 

x * y = x y ;  

(c) x * y =  x +  y + 1 ,  x * y - x y .  

Why is the answer the same I n  each case for Left-hand di s t r ibut ion  as it 

is for right-hand d i s  rribution? 

6. In each of the following examples, determine if the specified s e t ,  under 

addi t ion  and multiplication, constitutes a f i e l d :  

(a)  the s e t  of all positive numbers, 

(b) the set: of all rational numbers, 

( c )  the set of ell reel numbers of the form a + b f i ,  where 
a and b are integers, 

( d )  the e e t  of all complex numbers o f  the form a f bi, where 
a and b are real numbers and i = f i .  

2-2. The Ring o f  2 x 2 Matrices 

Since we are confining our attention t o  the subset of 2 x 2 matrices, 

it i s  very convenient t o  have a symbol for this subset, tle let M denote the 

s e t  of all 2 x 2 matrices. If A is a member, or element, of th f s  set,  we 

express t h i s  membership symbolically by A E M. Since  all elements of M are 

matrices, our general  definitions of addition and multiplication hold for t h i s  

subset. 

The s e t  M is not a f i e l d ,  as defined in Section 2-2, since M does not 

have a l l  the properties of a f i e l d ;  for example, you saw in Chapter 1 that  

multiplication is not commutative in M. Thue, for 

we have 



Let us now consider a less restrictive sort of mathematical system known 

as a ring; - t h i s  name is usually aktribured t o  David Hilbert (1862-1943). 

Definition 2-2. A r ing  - is a s e t  with two operations, called addit ion and 

mu1 tiplication, that possesses the following properties under addi t ion  and 

mult ip l icat ion:  

The s e t  is closed under addit ion .  

Addition is c o m t a t i v e  . 
Addition i s  associative . 
There is an identity element for addition. 

There is an additive inverse for each element. 

The s e t  is closed under mu1 tiplieation. 

Multiplication is associative. 

Multiplication is distributive over addition. 

Does the s e t  M s a t i s f y  these properties? It seems clear that  it does, 

but the answer i a  not quite obvious. Consider the s e t  of a l l  real numbers. 

' This s e t  is a field because there exiets ,  among other things, an additlve 

inverse for each number in thfs set. Now the posi t ive  integers are a subset 

o f  the real numbers. Does thLs subset  contain an addit ive inverse for each 

element? Since we do not have negative integers i n  the set under consideration, 

the answr i e  "No"; therefore, the s e t  of positive integers irr not a f i e l d .  

Thus a subset does not: necessarily have the same propertlea aa the complete 

s e t .  

To b e  certain that the set  M is a ring, ue must systematically make sure 

that each ring criterion is satisf ied.  For the mast  part, our proof w i l l  be a 

reiteration of the material in Chapter 1, since the general properties of 

matrices w i l l  be valid for the subset M of 2 x 2 matrices. The sum of twu 

2 x 2 matrices i s  a 2 x 2 matrix; that i s ,  the set i6 c losed  under a d d i t i o n .  

For ewmple, 

[aec. 2-21 



fie general proofs of cormartativity and associativity are valid. The unit 

matrix is 

the zero matrix i s  

and the additive inverse of the matrix 

When we consider the multiplication of 2 x 2 matrices, we must first veri fy  

that the product is an element of this se t ,  namely a 2 x 2 matrix. &call 

that the number of rows in the product is equal to  the number of rows in the 

lef t d n d  factor, and the number of  coluarms i a  equal to  the number of columns 

in the right-hand factor. Thus, the product of two elements of the s e t  M 

must be an element of this s e t ,  namely a 2 x 2 matrix; accordingly, the set 

is closed under mu1 tiplication. For example, 

The general proof of associat iv i ty  i s  valid for elements of M, since it , i s  v a l i d  

for rectangular matrices. Also, both of the distributive laws hold for elements 

of M by the same reasoning. For example, t o  illustrate the ascrociative law 

for multiplication, ue have 

[see. 2-21 



and also 

and to  i l lustrate the left-hand distributive Law, we have 

and also 

Since we have checked that each of the ring postulates i s  fulfilled, we 

have shown that the s e t  M of 2 x 2 matrices is a ring under addition and 

multiplication. We s t a t e  this result fonaally as a theorem. 

Theorem 2-1. The set M of 2 x 2 matrices i s  a ring under addition 

and trmltiplication. 

Since the list of  defining properties for a f i e l d  contains a l l  the defining 

propertier for a ring, i t  follows that every f i e l d  is a r i n g .  But the converse 

statement i a  not  true; for example, we now know that the s e t  M of 2 x 2 

matrices i s  a ring but not a field. The set H bas one more of the f i e l d  

properties, namely there is an ident i ty  element 

for multiplication in M; that is, for each A € M we have 

U = A - AX. 
Thus the s e t  M is a ring with an identity element. 

[see. 2-21 
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A t  this time, we should verify that the comnutative law for multiplication 

and the cancellation law are not valid in H by giving counterexamples. Thus 

we have 

but 

so that the commutative Law for multiplication does not  hold. Also, 

so that the cancellation law does no t  hold; 

Exercises 2-2 

1. Determine i f  the set of a l l  integers 18 a ring under rhe operations of 

addition and multiplication. 

2 .  Determine which of the fallowing s e t s  are rings under addit ion and 

mu1 tiplication: 

(a) the s e t  of numbere o f  the form a + b A, where e and b 
are integers ; 

(b) the s e t  of f o u r  fou r th  roots of unity, namely, +L, -1, i , 
and -i; 

(c) the s e t  of numbers a/2, where a is an integer. 

3 .  Determine If the set o f  a11 u t r t c e ~  of the fom [ t  :] , with a e R, 

forms a ring under addition and multiplication as defined for matricea. 

4 .  Determine if the s e t  of a l l  matricea of the form 

forms a ring under addition and multiplication a@ defined for matrices. 
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2-3. The Uniqueness of the &ltiplicative Inverse 

Once again we turn our attention to the problem o f  matrix d i v i s i o n .  As we 

have seen, rhts problem arises when we seek to solve a matrfx equation of the 

form 

L e t  us look at  a parallel equation concerning real numbers, 

Each nonzero number a has a reciprocal l l a ,  which is often designated B' . 
Its defining property i s  e a l  = 1. Since multiplication of real numbers i s  

-1 
commutative, it follows that a a = 1. Hence if a l a  a nonzero number, 

then there is a number b, called the multiplicative inverse of a, such that 

-1 
ab, = 1 = ba (b = a 1. 

Given an equation ax = C ,  where a f 0, the multiplicative inverse b enables 

us t o  f ind  a solution for x; thus, 

b(ax) = bc, 

( b a h  = bc, 

lx = bc, 

X = h. 

Now our question concerning division by matrices can be put in another way. If 

A B M, i s  there a B E M for which the equation 

-L i s s a t i s f i e d ?  Weshal lemploy  themoreauggeativenotation A for t h e i n -  

verse, 80 that our question can be restated: Is there an element A - ~  E M for 

which the equation 
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i s  satisfied? Since we shall often be using t h i s  defining properw, let us 

s t a t e  it formally as a definition. 

Definition 2-3. If A E M, then an element A-' o f  M is an inverse of 

A provided 

If there were an element B corresponding to  each element A f M such 

t h t  

AB = 1 s  BA, 

then we could solve a l l  equations of the form 

AX = C, 

since we m u l d  have 

B(AX) = BC, 

(BA)X = BC, 

TX - BC, 
X = BC, 

and clearly t h i s  value s a t i s f i e s  the original equation. 

From the fact that there is a multiplicative inverse for every real number 

except zero, we might: wrongly infer a parallel conclusion for matrices. As 

stated in Chapter 1, not a1 1 matrices have inverses. h r  knowledge that 0 

has no inverse suggests that the zero matrix 0 has no inverse. This is true, - 
since we have 

ox = 0 - 

for all X c M, so that there cannot be any X E PI such that 

ox = I. - 

[set. 2-31 
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Galois (1811-1832), to whom is credited the origin of the systematic study of 

Group Theory. Unfortunately, Galois was killed in a duel at the age of 21 ,  

imed ia te ly  after recording some of his most notable theorems. 

Exercises 2-6 

1. Determine whether the following se ts  are groups under mulkiplication: 

(b) 'I, -I, K, -K, 

where 

2 .  Show that the s e t  a f  a l l  elements of M o f  the form 

const i tutes  a group under multiplication. 

3. Show that the set of all elements of M of the form 

2 2 [: :] , where t E R. s e R, and t - s = 1, 

c o n s t i t u t e s  a group under multiplicarion. 

show t h a t  the s e t  

(A,  A ~ ,  A ~ )  

[see. 2-61 
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i s  a group under multiplication. Plot the corresponding points i n  the 

plane. 

5. Let 

Show that the a e t  

is a group under multiplication. 1s this true i f  T i s  invertible 

matrix? 

6. Show that the set: of a l l  elements of the form 

[: :], w i t h  a E R, b E R, and ab - 1, 
is a group under multiplication. If you p l o t  all of the points  (a,b),  

with a and b as above, what sort of a curve do you get? 

7 .  L e t  

and let H be the s e t  of ell matrices of the form 

XI f yK, with x E R and y G R. 

Prove the following: 

(a) The product of two elements of H i s  also an element o f  H. 

(b) The element XI + y K  is invertible i f  and only i f  

2 2 
x - y  + o .  

2 
( c )  The set  of a l l  elements XI + yK with x - y2 = 1 is a group 

under multiplication. 
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8 .  If  a set  G o f  2 x 2 matrices i s  a group under multiplication, show that 

each of the following s e t s  are groups under multiplication: 

(a) { A ~ ;  A E GI, where A' = transpose of A; 

( b )  (8-I AB: A E G ) ,  where B is a fixed invertible element of M. 

9. If a aer  G of 2 x 2 matrices is a group under multiplication, show that 

(a) G = A E GI, 

(b) G - (BA: A E GI, where B is any fixed element o f  G.  

10. Using the de f in i t i on  of an abstract group, demanstrare whether or not each 

of the following sets under the indicated operation is a group: 

(a) the s e t  of odd integers under addition; 

(b) the s e t  R+ of posririve real numbers under multiplication; 

(c) the see of the four fourth root8 of 1, 1 i, 4 ,  under 

mu1 t iplieation; 

(d)  the s e t  of all integers of the form 3m, where m is an integer, 

under addit ion.  

11. By proper application of  the four defining postulates of an abstract group, 

prove that if  a, b, and c are elements in a group and a o b = a o c, 

then b = c .  

2-7 . An Isomorphism between Complex Numbers and Efatrfces 

It i s  true that  very many different kinds of algebraic systems can be 

expressed in tern of special collecrions of matrices. Wny theorems of thir 

nature have been proved in modern higher algebra. Without attempting any such 

proof, we shall aim in the preaent sect ion  to demonstrate how the system of 

complex numbers can be expressed in term of matrices. 

In the preceding section, several subaeta of the s e t  of all 2 x 2 matrices 

were displayed.  I n  particular, the s e t  Z of all matrices of the form 

[Y" :I * x E R  and y E R ,  

was considered. We shall exhibit a one--t-ne correspondence between the a e t  
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o f  all c 0 m p l e ~  numbers, which we denote by C, and the set 2. Thf s one-to-one 

correspondence would not be particularly significant if it d i d  not preserve 

algebraic properties - that i s ,  if the sum of tw complex numbers bid not 

correspond to the sum of the corresponding two matrices and the product of tvo 

complex numbers d i d  not correspond to the product: of the corresponding two 

matrices. There are other algebraic properties that are preserved in this 

sense. 

Usually a complex number is expressed in the form 

where 1 = 6 1 ,  x E R, and y h R. Thus, if c is an element of C, the 

s e t  of a l l  complex numbers, we may write 

The numeral L is introduced in order to make the correspondence more apparent. 

In order to exhfbit: an element: of Z i n  similar form, we must introduce the 

special matrix 

Note that 

thus 

The matrix J corresponds t o  the number i ,  which satisfies the analogous 

equation 
* 

This enables us to  v e r i f y  that 



which indicates that any element of Z may be written in the form 

For example, w have 

and 

Now we can establish a correspondence between C, the s e t  of complex numbers, 

and 2 ,  the s e t  of matrices: 

Since each element of C is matched with one element of Z, and each element: 

of Z is matched with one element of C, we cal l  the correepondence onetrrone. 

Several special correspondences are notable: 



As s ta ted  earlier, it is interesting that there is a correspondence 

between the complex numbers and 2 x 2 matrices, but the correspondence is not 

particularly signiftcant unless t he  o n e t m n e  matching is preserved in the 

operations, especial ly  in addition and multiplication. We shall now f o l l o w  the 

correspondence in these operations and demonstrate that  the one-tcrane property 

is preserved under the operations. 

When two complex numbers are added, the real components are added, and the 

imaginary components are added. Also, remember that the multiplication of a 

matrix by a number is distributive; thus, far a E il, b € R, and A E M, we 

have 

Hence we are able to show our o n p t o a n e  correspondence under addition: 

For example, we have 

( 2  - 3 i )  + ( 4  f li) (21 - 35) + (41 + 13) = 

= 6 - 2 1  61-2.T. 

and 

( 3  - 2 i )  + ( 2  + O i )  ( 33  - 2 5 )  + (27: + OJ) - - 
= 5 - 2 1  f-3 51-25, 

Before demonstrating that the correspondence 513 preserved under multiplica- 

tion, let us review for a moment. An example w i l l  suffice: 



Generally, for multiplication, we have 

If IM represent a complex number 

as a matrix, 

w e  do have a significant correspondence! Mot only is there a o n e t m n e  c o r  

respondence between the elements of the two sets,  but a l so  the correspondence 

is onet-ne under the operations of addition and multiplication. 

The addftive and multiplicative identity elements are, respectively, 

and 



and for the ~ d d f  tive inverse of 

we have 

Let uil now examine how the multiplicative inverses, or reciprocals, can be 

matched. We have seen that any member of the s e t  of  2 x 2 matrices has a 

multiplicative inverse i f  and only i f  for it the determinant function does not 

equal zero. Accordingly, if A E Z then there exlacs A i f  and only if 
2 2 

x + y # 0 ,  since 6(A) = x2 + y2 for A = XI + yJ. M u  we know that any 

complex number has a multiplicative inverse, or reciprocal, if and only i f  the 

complex nrrmber is not zero. That is, i f  c - x + yi, then there exists a 

multiplicative inverse of c if and only i f  x + yi # 0, which menne that x 
2 

and y are not bath 0 .  Thls l a  equivalent t o  saying that x2 + y # 0, 
since x E R and y E R. For mlt ip l icat ive  inverses, i f  

our correspondence yields 

It i a  now clear that the correepoadeace between C, the s e t  of complex 

nrrmbers, and 2, a subset of all 2 x 2 matrices, 
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is preserved under the algebraic operations. AIL o f  this may be summed up by 

saying that C and 2 have ident i ca l  algebraic structures. Another way of 

expressing this  i s  to say that C and Z are isomorphic. This word is derived 

from two Greek words and means "of the same form." Two number systems are 

isomorphic i f ,  f i r s t ,  there is a mapping of one onto the other that i s  a o n e t o -  

one correspondence and, secondly, the mapping preserves sums and products. If 

t w o  number systems a r e  isomorphic, their structures are the same; it is only 

the ir  terminology that  is different .  The world is heavy with examples o f  is* 

morphisms, some of  them t r i v i a l  and some quite the oppos i te .  One of the simplest 

is the isomorphism between the counting numbers and the pos i t ive  integers, a 

subset of the integers; another fs that between the real numbers and the subset 

a 4- Oi of  a l l  compLex numbers. (We should quickly guess that there is an 

isomorphism between real numbers a and the set of all matrices of the form 

a1 + OJ!) 
An example of an isomorphism that i s  more difficult to understand is that 

between real numbers and residue classes of polynomials. We won't try to explain 

this  one; but there is one more fundamental concept that can be introduced here, 

as follows. 

We have stated that the real numbers are isomorphic to a subset of the c m  

plex numbers. We speak of rhe algebra of the real numbers as being embedded in 

the algebra of complex numbers. In this sense, we can say that the algebra of 

complex numbers i s  embedded in  the algebra of 2 x 2 matrices. A l s o ,  we can 

speak of the complex numbers as being "richerf1 than the real numbers, or o f  the 

2 x 2 matrices as being richer than the complex numbers. The existence of 

complex numbers gives us solutions to equations such as 

which have no solution i n  the domain of real numbers. It is of  course clear 

that Z i s  a proper subset of M, that: is, Z C M and Z # M. Here is  a simple 

example to illustrate the statement that M is "richer" than 2: The equation 

has f o r  solution any matrix 

X = [l;t :], t t R and f 0, 

[see. 2-73 
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as may be seen quickly by easy computation; and there are still other solut ions .  

On the other hand, the equation 

has exactly two solutions among the complex numbers, namely c = 1 and 

c = -  1. 

Exercises 2-7 

1 ,  Using the fol/loving values, show the correspondence under addit ion and 

multiplication between complex numbere of the form x f yi and matrices 

of the form x1  + yJ: 
(a) x1 = 1, y1 = - 1, x2 = 0, and y = - 2 ;  2 

(b) X1 a 31 Y1 = - 4 ,  xZ ti 1, and y 2 = 1; 

(c) x1 = 0 ,  y l = - 5 ,  x 2 = 3 ,  and y 2 = 4 .  

2 .  Carry through, in parallel coluums as in the text ,  the necessary computa- 

tions t o  establish an isomorphism between R and the set 

by means of the correapondence 

3 .  In the preceding exercise, an iaomorphi~m between R and the sets of 

matrices 

was considered. Define a function f by 
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Determine which of the following statements are correct: 

(a) f l x  + Y )  = f(x) + f (y1,  

4 .  Is the s e t  G of matrices 

2 2 
wi th  a and b rational and a + b - 1, a group under multiplication? 

2-8. Algebras 

The concepts of group, ring, and f i e l d  are of frequent occurrence i n  modern 

algebra. The study o f  these systems is a study o f  the arructures or patterns 

that are the framevork on which algebraic operations are dependent. In this 

chapter, r ~ e  have attempted t o  demonstrate how these aame concepts describe the 

structure of the s e t  of 2 X 2 matrices, which is a subset o f  the s e t  of all 

rectangular matrices. 

N o t  only have we introduced these embracing concepts, but we have exhibited 

the ''algebra" of the s e t s .  "Algebra" is a generic word that  i s  frequently used 

i n  a Loose sense. By technical definition, an algebra is a system that has tuo 

binary operations, called "addition" and "mu1 tiplicarion," and also has 

"multiplication by a number," that make it both a ring and a vector space. 

Vector spaces will be discussed in Chapter 4,and we shall see then that 

the s e t  of 2 x 2 matrices constitutes a vector space under matrix addition 

and multiplication by a number. Thus the 2 x 2 matrices form an algebra. 

As you yourself might conclude at t h i s  t i m e ,  ,this algebra i a  only one of 

many possible algebras. Some of these algebras are duplicate8 of  one another 

in the aense that the basic structure of one is the aame aa the basic structure 

of another. Superficially, they seem different because of the terminology. 

When they have the same structure, t w o  algebras are called isomorphic, 



Chapter 3 

MATRICES AND LINEAR SYSTEMS 

3-1. Eauivalent Systems 

In this chapter, we shall demonstrate the use of matrices in the solution 

of systems of linear equations. We shall f i r s t  analyze some of our present 

algebraic techniques for so lv ing these systems, and then show how the same 

techniques can be duplicated in terms of matrix operations. 

Let u s  begin by looking at a system of three linear equations: 

In our f i r s t  step toward finding the so lut ion s e t  of t h i s  system, we proceed 

as follows: Multiply  Equation (1) by 1 t o  obtain Equation (1 ' ) ;  multiply 

Equation (1) by -1 and add the new equation to  Equation ( 2 )  to obtain Equation 

( 2 ' ) ;  multiply Equation (1) by -2 and add the new equation to Equation (3) t o  

obtain Equation ( 3 ' ) .  This gives the following system: 

Before continuing, we note  tha t  what we have done is reversible. In fact, we 

can obtain System I from System I1 as follows: b h l t i p l y  muation (1') by 1 

to obtain Equation (1); add Equation (L' ) to  Equation ( 2 '  ) to  obtain Equation 

( 2 )  ; multiply Equation (1') by 2 and add to  Equation (3 ' )  t o  obtain Equation (3 ) .  

Our second etep is similar to  the first: Retain Equation (1')  as Equation 

(1"); multiply Equation ( 2 ' )  by -1 to obtain Equation (2"); multiply Equation 

(2') by 3 and add the new equation to Equation (3') to  obtain Equation ( 3 " ) .  

This gives 



Our th ird  s t e p  reverses the direction; Mu1 t i p l y  Equation (3") by - 1/8 

to obtain Equation (3"' ) ; mu1 t i p l y  Equation (3") by 3/8 and add to  Equation 

(2") to obtain Equation (2"' ) ; multf p l y  Equation (3") by 1/8 and add t o  

Equation ( 1 " )  to obtain Equation (1"' ) . We thus get 

x - y  + o  =-I ,  

O + y f 0 = 2 ,  

O + O + z = - 1 .  

Now, by retaining the second and th ird  equatione, and adding the second equation 

to  the f i r s t ,  we obtain 

or, in a more familiar form, 

In the foregoing procedure, we obtain system I1 from system I, 111 from 

11, fV from 111, and V from IV. Thus we know that any set of values that 

satisf ies  system 1 must also satisfy each succeeding system; in particular, 

from eystem V we f ind that any (K, y ,  z) that satisf ies  I must be 

Accordingly, there can be no other solution of the original system I; i f  there 

is a so lut ion ,  then t h i s  is it. 



But do the values , 2 ,  - actually sat is fy  system I? For our 

sys terns of linear equations we have already pointed out  that sys tern I can be 

obtained from system 11; similarly, I1 can be obta ined  from 111, 111 from IV, 

and I V  from V. Thus the so lut ion of V, namely (1, 2 ,  - 1  sat i s f ies  I. 

Of course, you could verify by direct substitution that  (1,  2 ,  -1) 

s a t i s f i e s  the system I ,  and actually you should do this to guard against corn- 

putational error. But it is useful to note explicitly t h a t  the ateps are 

reversible, so that  the systems I, 11, 111, IV, and V are equivalent: in 

accordance with the following definition: 

D e f i n i t i o n  3-1. Two systems of l inear  equations are said to be equivalent 

if and only if each solution o f  either system is also a solution of the other. 

We know t h a t  the foregoing systems I through " are equivalc ..: because the 

steps we have taken are reversible. In fac t ,  the only operations we have per- 

formed have been o f  the fo l lowing  sorts: 

A .  Multiply an equation by a nonzero number. 

B. Add one equation to another. 

Reversing the process, we undo the addition by subtraction and the multi- 

plication by d i v i s i o n .  

Actually, there is another operation we shall sometimes perform in our 

systematic solution of systems of linear equations, and i t  a lso  is reversible:  

C . Interchange two equations. 

Thus, in solving the system 

our first step would be to interchange the f irst  two equations in order to have 

a leading coefficient d i f f e r i n g  from zero. 

In the present chapter we shall investigate an orderly method of elimina- 

t i on ,  without regard t o  the particular values o f  the coefficients except that we 

shall avo id  d i v i s i o n  by 0 .  Our method will be especially useful in dealing 

with several systems in which corresponding coefficients of the variables are 
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equal while the righ-ad membere are d i f  fereat - a situation that of ten 

occurs in industrial and applied ecientific problems. 

You might use the procedure, for example, i n  "programming, 'I i .e . , deviaing 

a method, or program, for solving a system of Linear equations by mane o f  a 

modern electronic computing machine. 

Exercises S1 

1. Solve the following ayaterrm of equation@: 

(a) 3x + 4y - 4, 
5x + 7 y  - 1; 

(e) x + Z y +  z - 3 w - 2 ,  (f) l x f O y + O z + O w = a ,  

y - 2 2 -  w - 7 ,  OX + ly + oz + O W  - b, 
z - 2 w  * 0, O x + O y + l a + O v = c ,  

u - 3;  Ox f Oy +0z + lw = d .  

2 .  Solve by drawing graphs: 

(b) 3x - y = 11, 

5x + 7 y  - 1. 

3. Perform the following matrix multiplications: 

4. Given the following systems A and B, obtain B f rom A by s teps  consisting 

either of w l t i p l y i n g  an equation by a nonzero oonstant OF of adding an 

arbitrary multiple of an equation to  another equation: 
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Are the two systems equivalent? Why o r  why not7 

j, The solution ser of one of the following sys terns of linear equations is 

empty, while the other so lut ion  set  contains an i n f i n i t e  number o f  

solutions. See i f  you can determine which i s  which, and give  three 

particular numerical solutions for the system that does have so lut ions:  

(a) x + 2 y -  z = 3 ,  (b) x -I- 2y - z = 3,  

x -  y +  z = 4 ,  x -  y +  z = 4 ,  

4 x  - y f 22 =t 14;  4x - y + 2 2  115. 

2 .  Formulation in Terms of Matrices 

In applying our method t o  the so lu t ion  o f  the original system of Section 

3-1, namely to 

we carried o u t  j u s t  two types of algebraic operations in obta in ing  an equivalent 

sys tern: 

A .  Multiplication of an equation by a number other than 0. 

B .  Addit ion of an equation to another equation. 

We noted that a third type o f  operation i s  sometimes required, namely: 

C. Interchange of two equations. 

This third operation is needed if a coefficient by which * otherwise would 

div ide  is 0, and there is a subsequent equation in which the same variable 

has a nonzero coefficient.  

The three foregoing operations can, in ef fect ,  be carried out through 

matrix operations. Before ve demonstrate this, we shall see how the matrix 

notation and operations developed i n  Chapter 1 can be used to  write a system 

of linear equations i n  matrix form and to  represent the steps in the so lu t ion .  

Let us again consider the system w warked with in Section 3 1 :  



We may display  the detached coefficients of  x, y, and z as a matrix A, 

namely 

Next, l e t  US consider the matrices 

.=[!I and 
B = ['I ; 

the entries of X are the variables  x ,  y, z ,  and of B are the right-hand 

members of the equations we are considering. By the definition o f  mgtrix 

multiplication, we have 

which is a 3 x 1 matrix having as entries the l e fehand members of the 

equations of our Linear s y s  rem. 

NOW the equation 

thar is, 

is equivalent, by the definition of equality o f  matrices, to the entire sys tern 

o f  linear equations. It i s  an achievement not t o  be taken modestly thar re are 

able  to consider and work with a large sys tern of equations in tern o f  such a 
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s i m p l e  representation as is exhibited in Equation (1). Can you see the pattern 

that  is emerging? 

In passing, let us note that there is an interest ing way of viewing the 

matrix equation 

where A is a given 3 x 3 matrix and X and Y are variable 3 x 1 colurrm 

matrices. We recall that equations such as 

and 

y = s i n  x 

define funct ions,  where numbers x of the domain are mapped into numbers y o f  

the range. We may also consider Equation ( 2 )  as defining a function, but in this 

case the domain consiats  of column matrices X and the range consists of column 

matrices Y ;  thus we have a matrix function of  a matrix variable! For example, 

the matrix equation 

defines a function with a domain of 3 x 1 matrices 

and a range of 3 x 1 matrices 

Thus  with any column matrix of the form (3), the equation associates a 
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column matrix of the form ( 4 ) .  

Looking again at the equation 

where A is a given 3 x 3 matrix, B is a given 3 x 1 matrix, and X is 

a variable 3 x 1 matrtx, we note that here we have an inverse question: What 

matrices X ( i f  any) are mapped onto the particular B ?  For the case we have 

been considering, 

we found in Section 3 1  that the unique so lut ion is 

We shall consider some geometric aspects o f  the  matrix-function point of 

view in Chapters 4 and 5. 

We a r e  now ready to look again at the procedure of Section 3-1, and restate 

each system in terms of matrices: 

[i 1 - 1  [ I  = [j] " 

The t-eaded arrows indicate Lhat, as w saw in Secrion 3-1, tho matrix 

equations are equivalent, 

In order to  see a little more clearly what has been done, let us look only 

[sec. 3-21 



a t  the f ixst and last equations. The first is 

the last is 

[ g  g g] [i] - [.i] . 
Our process has converted the coe t f i c i enr  matrix A into the ident i ty  matrix 

I. Recall that 

Thus to  bring about this change we must  have completed operations equivalent 

to multiplying on the l e f t  by A'. 
In brief, our procedure amunts  to  multiplying each member of 

on the left by A-l, 

to obtain 

Let ua note how far we have come. By introducing arrays of numbers as 

objects  in their own rfght, and by defining sui table  algebraic operations, we 

are able to write complicated systems of equations in the simple fonn 

This condensed notation, so similar to the long-familiar 



which we Learned to  solve ''by d i v i s i o n , "  indicates for us our so lu t ion  process; 

namely, multiply both sides on the left by the reciprocal or inverse o f  A, 

obtaining the s o l u t i o n  

This similarl ty be tween 

and 

should nor be pushed too  far ,  however. There is only one real number, 0, that 

has no reciprocal; as we already know, there are many matrices that have no 

multiplicative inverses. Nevertheless, we have succeeded in our aim, which i s  

perhaps the general aim of mathematics : to  make the complicated simple, by 

discovering i t s  pattern. 

Exercises 3 2  

1. Write in matrix £om: 

(a) 4x - 2y f 7 2  = 2 ,  ( b )  x $ y = 2 ,  

3x4- y + 5 z  = - I ,  x - y = 2 .  

6 y -  z = 3 ;  

2 .  Determine the systems of algebraic equations t o  which the following matrix 

equations are equivalent: 

3. Solve the following system of equations; then restate your w r k  In matrix 

form: 



4 .  (a) Onto what vector Y does the function defined by 

map the vector [;] = [i] ? (b) What vector [:I does i t  map onto the 

5. Let A = [al a2 a) a&] , Y - [Y~] , ai, xi, y1 E R. Discuss the 

domain o f  the function defined by 

Define the inverse function, if any. 

3 Inverse of a Matrix 

In Section 2-2 we wrote a system of linear equations in matrix form, 

-1 
and saw that solving the system amounts t o  determining the inverse matrix A , 
if it e x i s t s ,  since then ve have 

whence 

Our work involved a series of algebraic operations; l e t  us learn how to duplicate 

t h i s  work by a series of matrix alterations. TO do t h i s ,  we suppress the column 

matricea in the scheme shown in Section 3 2  and look a t  the coefficient matrices 
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on the Left: 

Observe what happens if ue subst i tute  "row" for "equation" in the procedure o f  

Section 3-1 end repeat our steps. In the first s t e p ,  we mu1 tiply row 1 by -1 

and add the result to  row 2 ;  multiply row 1 by -2 and add to  row 3 .  Second, we 

m u l t i p l y  row 2 by 3 and add to  row 3; multiply row 2 by -1. Third,  ue multiply 

row 3 by 3/8 and add to  row 2;  multiply row 3 by 118 and add to row 1; 

multiply row 3 by - L/8. b a t ;  we add row 2 to  row 1, Through "row operations" 

we have duplicated the changes i n  t h e  coeff ic ient  matrix as w proceed through 

the series of equivalent  system^. 

The three algebraic operations described in Sec tlon 3-2 are peralleled by 

three matrix row operations: 

Definition 3-2. The three row operations, 

Interchange of any tw r o w ,  

Multiplication of a l l  elements of any row by a nonzero constant, 

Addition o f  an arbitrary multiple of any row to any othet row, 

are cal led elementary row operations on a matrix. 

In Section 3-5, the exact relationship between row operations and the 

operations developed in Chapter 1 w i l l  be demonstrated. Earlier we defined 

equivalent systems of  linear equations; i n  a corresponding way, we now define 

equivalent matricee . 

Definition 3 3 .  Two matrices are said to be row equivalent i f  and only if 

each can be transformed into the other by means of elementary row operations. 

We now turn our attention to  the right-hand member o f  the equation 

A t  the moment, the right-hand member consists solely of t h e  matrix B ,  which 

we wish temporarily to  suppress just as w temporarily suppressed the matrix 

X in considering the left-hand member. Accordingly, ue need a coefficient 

matrix for the right-hand member. To obtain this, we use the i d e n t i t y  matrix 

[seem 3-31 



to write the equivalent equation 

AX = IB. 

Now our process converts this to 

which can be expressed equivalently as 

When we compare EquatFon (1) and Equation ( 2 )  we notice that  as A goes to  I, 

I goes to A-l. Might it be that  the row operation*, which convert A into I 

when applied t o  the left-hand member, w i l l  convert I into A-I when applied 

t o  the right-hand member? Let us t r y .  For convenience, w e  do t h i s  in paralLel 

columns, giving an indication in parentheses of how each new row is obtained: 



L O O  
4 4 4  - - 
8 8 8  

0 0 1  

To demonstrate that 

i s  a left-hand Fnverse f o r  A, it is necesaary to show that 

You are asked to verify this as an exercise, and also to check that AB = I, 
-1 thus demonstrating that 3 is the inverse A of A .  In Section 3-5 we shall 

see why i t  is that AB - 1 follows from BA = I for matrices B that are 

obtained in this way as products of elementary matrices. 

We now have the fol lowing rule for computing the inverse A-' of a matrix 

A, i f  there is one: Find a series of elementary row operations rhat convert 

A i n t o  the i d e n t i t y  matrix I; the same series of elementary row operations 

will convert the ident i ty  matrix I into the inverse A-'. 

When we start the process we may n o t  know if the inverse e x i s t s .  This 

need n o t  concern us at the moment. If the application of the rule  i s  successful, 

that i s ,  i f  A is converted into I, then we know that A' exists. In sub- 
-1 sequentsections,  w e s h a l l d i s c u s s  whathappens when A d o e s n o t e x i s t a n d w e  

a h a l l  a l s o  demonstrate that the row operations can be brought about by means of 

the matrix operations rhat were developed i n  Chapter 1. 



Exercises 3 3  

1. Determine the inverse of each of the following matrices through row 

operations. (Check your answers.) 

2 .  Determine the inverse, if any, of each of the fol lowing matrices: 

3 .  Solve  each of the following matrix equations: 

(a' [: 5 : 1 -1 :I [;I - [a] , [: 5 : I -1 $1 = [i] , 

4 .  Solve 

1 -1 x u m r  
3 

1 - 6 -  

3 -9 - 

5 .  Perform the multiplications 



6. M u l t i p l y  both member6 of the matrix equation 

on the left by 

and use the reaulr  to solve the equation. 

7 .  Solve: 

8 .  Solve: 
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. Linear Systems of Equations 

In  Sections 3 2  and 3 3 ,  a procedure for ~olving a mystem of linear equations, 

was presented. The method produces the multiplicative inverse A-I i f  i t  

ex i s t s  . 
In the p r e ~ e n t  section we shall consider systems of linear equatione in 

general. 

Let us begin by looking at a simple illustration. 

Example 1. Consider the system of equations, 

We start in parallel eolunu~s, thus: 

Proceeding, we arrive after three steps a t  the following: 

If we multiply these two matrices on the right by the matrices 

we obtain the system 



There is no mathematical loas i n  dropping the equation 0 = 0 from the system, 

which then can be written equivalently as 

Whatever value Is given t o  z, t h i s  value and the corresponding values of x 

and y determined by these equations sat i s fy  the original system. For example, 

a feu solutions are sham in the following table: 

Example 2 .  Now consider the systems 

If we start in parallel  columns and proceed as before, we obtain (as you should 

verify) 



Multiplying these matrices on the right by the column matrices 

we obtain the systems 

If there were a solution o f  the  original system, it would also be a solution of 

this last  system, which is equivalent to the f i r s t .  But the la t ter  system con- 

tains the contradict ion 0 = - 1; hence there is no so lut ion  of either system. 

Do you have an in tu i t ive  geometric notion of what might be going on in 

each of the above systems? Relative to a 3dimensional rectangular coordinate 

system, each of the equations represents a plane. Each pair of these planes 

actually intersect in a line. We might hope that the three lines of intersection 

(in each system) would intersect in a point. In the f i r s t  system, however, the 

three lines are coincident; there ts an entire "line" of solutions. On the 

orher hand, in the second system, the three lines are parallel; there i~ no 

point that lies on all three planes. In the example worked out in Sections 

3-2 and 5 3 ,  the three lines intersect in a s ing le  point. 

How many possible configurations, as regarda intersections, can you l i s t  

f o r  3 ~ l a n e s ,  n o t  necessari ly d i s t i n c t  from one another? They might, for example, 

have exactly one point in common; or  two might be coincident and the third 

d i s r i n c t  from but parallel t o  them; and so on. There are systems of linear 

equations rbt correspond to  each o f  these geometric situations. 

Hers are two additional systems that even more obviously than the sys tern 

in Example 2, above, have no solutions: 

n u s  you see that the number of variables as compared with the number oL equations 

does n o t  determine whether ox not  there i s  a solution. 
[sec. 3-41 
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The method we have developed for solving linear systems I s  routine and can 

be applied t o  sys terns of  any number of linear equations i n  any number of vari- 

ables . Let us examine the general case and see w h a t  can happen. Suppoae we 

have a Bystem of m linear equations in n variables: 

'If any variable occurs with coefficient 0 in every equation, we drop it. If 

a coefficient needed as a div i sor  is zero, we interchange our equatlons; ve might 

even interchange some of the terms in a l l  the equations for the convenience of 

getting a nonzero coefficient in leading position. Otherviae we can proceed in 

the customary manner un t i 1  there remain n_o equations in which any of the vari- 

able6 have nonzero coeff ic ients  , Eventually we have a syatem like this: 

X1 + 

linear terms in variables other t b n  xl . . . 5 5 P I ,  

X2 + 

t l  
a B2, 

and (possibly) other equations i n  which no variable appears. 

Either all of these other equations {if there are any) axe of the form 

in which case they can be disregarded, or there is a t  least one of them of the 

form 

i n  which caee there i r  a contradiction. 

If there is a contradiction, the contradiction was present in the original 

system, which means there is no solution s e t .  
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In case there are no equations of the form 

we have two po~sibilities. Either there are no variables other than xl,. . .,% 
which means chat the system reducee t o  

and has a unique solution, or there really are variables other than xl,, . .,% 
to  which we can assign arbitrary values and obtain a family of solutions as i n  

Example 1,  above . 

Exercises 3-4 

1. (a) List all possible configurations, a8 regards intersections, for 3 

d i s t i n c t  planes . 
(b) L i s t  a l s o  the addf tional possible configurations i f  the plane8 are 

al loved to be coincLdent . 
2 .  Find the ~ o l u t i o n s ,  i f  any, of each of the following systeme of equations: 

(a) x + y + 2 2  = 1, 

2x f Z = 3, 

3x + 2y + 42 4 4 ;  

(b) x +  y +  z - 6 ,  

x +  y + 2 2 = 7 ,  

y +  2 - 1 ;  

(d) 2 v +  x +  y +  t P O ,  

v -  x + 2 y +  2 - 0 ,  

4v - x + 5y + 33 = 1, 

v -  X f  y -  2 - 2 ;  
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( e )  2 x +  y +  z + w = 2 ,  

x + 2 y f  z - w = - 1 ,  

4 x + 5 ~ + 3 2 - W = 0 .  

3-55. Elementary Bow Operations 

In Section >I., three types o f  algebraic operations were l i s t e d  as being 

involved i n  the s o l u t i o n  o f  a linear system o f  equations; in Section 3 4 ,  three 

types of row operations were used when we duplicated the procedure employing 

matrices. In th i s  section we shall show how matrix multiplication underlies 

this earlier w r k ,  - in fact,  how t h i s  basic operation can duplicate the row 

operations. 

Let us start by looking a t  whit happens if Me perform any one of the three 

row operations on the i d e n t i t y  matrix I of order 3 ,  First if we mu1 t i p l y  a 

row o-f X by a nanzero number n, we have a matrix of the form 

L e t  J represent any matrix of  this type. Second, i f  w e  add one row of I to  

another, we obtain 

or one of th ree  other similar m a t r i c e s .  (What are they?) Let K arand for 

any matrix of' this type.  Third, if  we interchange tuo rows, we form matrices 

(denoted by L) of  the form 

Matrices of these three types are ca l l ed  elementary matrices. 

Def in i t ion  3-4. An elementary matrix is any square matrix obtained by 

performing a single elementary raw operation on the identity matrix. 



Each elementary matrix E ( that  is, each 3, K, or L) has an inverse, 
-1 

t h a t  is, a matrix E such that  

For example, the inverses of the elementary matrices 

are the elementary matrices 

respectively, as you can v e r i f y  by performing the multip~icatfons Fnvolved. 

An elementary matrix is related to its inverse i n  a very simple way.  For 

example, J was obtained by multiplying a row of the i d e n t i t y  matrix by n; 
-1 J is formed by dividing the same row of the i d e n t i t y  matrix by n. In a 

-1 
aense J "undoes" whatever was done to ob ta in  J from the i d e n t i t y  matrix; 

conversely, J will undo J-l. Hence 

The product of two elementary matrices also has an inverse, as the follow- 

ing theorem indica res . 

Theorem 3-L, I f  square matrices A and B of order n have inverses 

and B-', then AB has an inverse CAB)-', namely 

P r o o f .  We have 

and 
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-1 -1 

so that B A is the inverse o f  AB by the de f in i t ion  of inverse. 

You will recall that, for 2 x 2 matrices, t h i s  same proof was used in 

establishing Theorem 2.8. 

Corollary 3-1-1. If square matrices A,B ,  ..., K of order n have inverses 
-1 -1 -1 A , B , , . , , then the product AB. - *K has an inverse ( M a  *K)-I, namely 

The proof by mathematical induction is left: as an exercise. 

Corollary 3-1-2. If E1,E2,. . .,% are elementary matrices of order n, 

then the matrix 

has an inverse, namely 

This follows inmediately from Corollary 3-1-1 and the fact that each 

elementary matrix has an inverse.  

The primary importance of an elementary matrix r e s r s  on the following 

property. If an m X n matr ix  A is multiplied on the left by an m x n 

elementary matrix E, then the product  is the matrix obtained from A by 

the row operation by which the elementary matr ix  was formed from I. For 

example, 

You should ver i fy  these and o t h e r  similar left multiplications by elementary 

matrices to  familiarize yourseL f with the patterns. 



Theorem 3-2. Any elementary row operation can be performed on an m x n 

matrix A by multiplying A on the left by the corresponding elementary matrix 

of order m. 

The proof is left as an exercise. 

Multiplications by elementary matrices can be combined. For example, to 

add -1 times the first row to the second row, we would multiply A on t h e  

left by the product of elementary matrices of the type J-'KJ: 

Note that J multiplies the first row by -1; i t  i s  necessary to  multiply by 

;I' in order to change the first row back agafn to its original form after 

adding the f i r s t  row to the second. Similarly, to add -2 times the f i r s t  row 

t o  the third, we would multiply A on the left by 

To perform both of  the above steps at the same time, we would multiply A on 

the left by 

Since M1 is the product of two matrices that are themselves products of 

elementary matrices, 9 is the product of  elementary matrices. By Corollary 

3-1-1, the inverse of 9 is the product, in reverse order, o f  the corresponding 

inverses of the elementary matrices. 

Now our f i r s t  s t e p  in the so lu t ion  of the system of linear equations at 

the start of this chapter corresponds precisely to  m u l t i p l y i n g  on the left by 

the above matrix M1. If we multiply both sides of System I on page 103 on the 

left by 5' 



we obtain System 11. For the second, t h i r d ,  and fourth s t e p s ,  the corresponding 

matrix multipliers must be respectively 

Thus multiplying on the left by M2 has the effect of leaving the first row 

unaltered, mul t ip ly ing  the second row by -1, and adding 3 times the second 

row to the t h i r d .  

L e t  us now take advantage o f  the associative law for the nulriplication of 

matrices t o  form the product 

We recognize the inverse of the  orLginal coeff ic ient  matrix, as determined in 

Section 3-3, 

Theorem 3-3. I f  

BA = I ,  

where B i s  a product o f  elementary matrices, then 

A3 = I, 

SO that 3 is the inverse of A .  

-1 Proof. By Corollary 3-1-2, B has an inverse 3 . Now from - 

BA = I 
{see. 351 



we get 

whence 

so that 

and 

Exercises 3-5 

1 Find matrices A, B, and C such that  

2 .  Express each of the following matrices as a product of elementary matrices: 

(a) 1 0 0 

[: 1; -J a 



3 .  Using your answers t o  Exercise 2,  form the inverse of each of the given 

matrices. 

4. Find three 4 x 4 matrices, one each of the types  3, K, and I,, that 

w i l l  accomplish elementary row transformations when appl i ed  as a left 

multiplier to a 4 x 2 matrix. 

5. Solve the following system of equations by means of elementary matrices: 

6. (a) Find the inverse of the matrix 

(b) Express the inverse a product of elementary matrices. 

(c) Do you think the answer to  Exercise b(b) is unique? Why or why not? 

Compare, in class, your answer with the answers found by other members 

of your class. 

7. Give a proof of Corollary 51-1 by mathematical induction. 

8 .  Perform each of the following multiplications: 



m 
9. State a general conjecture you can make on the basis of your solution of 

Exercise 8. 

3-5- - 

In this chapter, we have discussed rhe role of matrices in finding the 

solutlon s e t  of a system of linear equations. We began by Looking at the 

fami liar algebraic methods of obtaining such solutions and then learned to 

duplica re this procedure using matrix notation and row operations . The intimate 

connection between row operations and the fundamental operation o f  matrix 

multiplication was demnst ra ted ;  any elementary operation is the reeult of l e f t  

multipl ication by an elementary matrix. Ue can obtain the solution set, if it 

exists,  to a system of l inear  equations either by algebraic methoda, o r  by row 

operations,  or by multiplication by elementary matrices. Each of these three 

procedures involves steps that  are reversible, a condition that  assures t h e  

equivalence of the sys terns. 

Our work with systems of linear equationa led as to a method for producing 

the inverse o f  a matrix when it exists. The idenrical  sequence o f  rou operations 

that converts a matrix A into the identity matrix will convert the identity 

matrix into the inverse of A, namely A-l. The inverse is particularly he lpfu l  

when-we need to solve many systems of l inear  equations, each possessing the 

same coe f f i c i en t  matrix A but d i f ferent  right-hand column matrices B, 

Since the matrix procedure 'diagonalized' the coef f ic ient  matrix, the 

method is of ten  called the "diagonalization method." Although ve have not 

previously mentioned it, there i s  an alternative method for solving a Linear 

system that is o f t e n  more usefu l  when dealing w i t h  a single system. In this 

alternative procedure, ue apply elementary matrices to reduce the system to the 

form 

as in Sya tern III in Section 3-1, from which the value for z can readily be 

obtained. This value o f  z can then be subs ti tuted in the  next to Last equation 

to determine the value o f  y, and so on. An examination of the coef f ic ient  
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matrix displayed above shows clearly why t h i s  procedure is called the "trt- 

angularization method ." 
On the other hand, the  diagonalizarion method can be speeded up to bypass 

the triangularized matrix of coeff ic ients  in ( I ) ,  or in System 111 of S e c t i o n  

3-1, altogether. Thus, after  p i v o t i n g  on the coe f f i c i ent  of x in the System 

I, 

to obtain the system 

we could next pivo t  completely on the coefficient of y to obtain the system 

and then on the coefficient of z to get  the system 

IV' 

which you will recognize as the system V of Section 3-1, 

It should now be plain that the routine diagonal i zat ion and triangulariza- 

t im methods can be appl ied  to sya terns o f  any number o f  equations in any number 

o f  variables and that the methods can be adapted to machine computations. 



Chapter 4 

REPRESENTATION OF COLUMN MATRICES AS GEOMETRIC VECTORS 

4-1. The Algebra o f  Vectors 

In the present chapter ,  we shall develop a simple geometric representation 

for a special class o f  matrices - namely, the s e t  of  column matrices 

with two entries each. The familiar algebraic operations on this s e t  of matrices 

will be reviewed and also given geometric interpretation, which w i l l  lead t o  a 

deeper understanding o f  the meaning  and implications of the algebraic concepts, 

By d e f i n i t i o n ,  a column vector of order 2 is a 2 x 1 matrix. Consequent- 

l y ,  usfng the rules of  Chapter 1, we can add two such vectors or m u l t i p l y  any one 

of them by a number. The set  of column vectors of order 2 has, i n  f a c t ,  an 

a lgebra ic  structure with propertfes that were largely explored i n  our study o f  

the rules  o f  operat ion with matrices, 

In the fol lowing pair o f  theorems, we sutmnarize what we already know con- 

cerning the algebra o f  these vectors,  and i n  the next section we shall  begin the 

interpretation o f  that algebra in  geometric terms. 

Theorem 4-1. Let: V and W be column vectors of order 2 ,  l e t  r be a 

number, and Let A be a square matrix o f  order 2 .  Then 

V + W, rV, and AV 

are each column vectors of order 2 .  

For e x a m p l e ,  i f  

V = [:I , W = [:] , r - 4 ,  and A = [i -:] 
then 

and 
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Theorem 4-2. Ler V, W, and U be column vectors of  order 2,  l e t  r 

and s be numbers, and let A and B be square matrices of order 2 .  Then 

a l l  the following laws are valid. 

I. Laws for the addition o f  vectors: 

( a )  V + W P W + V ,  

(b) (V  f W) + U  = V + (W f U), 
( c )  v + 0 = v, 

(d )  V + (4) = 2.  

11. Laws for the numerical multiplication o f  vectors: 

(a)  r ( V  + W) = rV f rW, 

(b) ~ ( B V )  = ( T S ) ~ ,  

(c) (r + s)V a r V  + sV, 
( d l  ov = 0, - 
(e)  l v  = V, 

(£1 rg = 0. 

III. Laws for the multipLication of vectors by matrieea: 

(a) A(V + W) = AV + AM, 

(b) (A + B ) V  = AV + BV, 

( c )  A(BV) = (AB)V, 

(d l  0 2 V  = 2, 

(e) IV = V, 

(f) A(rV) = (KA)V = r(AV). 

In Theorem 4-2, - 0 denotes the column vector of order 2, and O2 the 

square matrix of order 2 ,  all of whose entries are 0 .  

Both of the preceding theorems have already been proved f o r  matrices. ~ ' i n c e  

column vectors are merely special types of matrices, the theorem as stared must 

likewise be true. They would a l so  be true, o f  course, i f  2 were replaced by 

3 or by a general n, throughout, with the understanding that a column vector 

of order n is a matrix of order n x 1 .  



Exercises 4-1 

1. Let 

l e t  

r = 2  and a = - I . ;  

and l e t  

Verify each of the laws stated in Theorem 4-2 for this choice o f  values 

f o r  the variables. 

2 .  Determine the vector V such that AV - AW = AW + BW, where 

3 .  Determine the vector V such that  LV + 2W = AV + BV, if 

4 .  Find V, i F  

5. L e t  

Evaluate 



(e)  Using your answers to parts (a) and ( b ) ,  determine the entries of 

A if, f o r  every vector V of order 2 ,  

( d )  State your result  as a theorem. 

6. Restate the theorem obtained in Exercise 5 if A is a square matrix of 

order n and V stands for  any column vector o f  order n. Prove rhe new 

theorem for n = 3 .  Try to prove the theorem for a l l  n. 

7. Using your answers to parts (a) and (b) of Exercise 5 ,  determine the entries 

o f  A if, for every vector V of order 2, 

State  your result as a theorem. 

8 .  Restate the theorem obtained in Exercise 7 if A is a square matrix of order 

n and V stands for  any column vector of order n. Prove this  theorem f o r  

n = 3 .  Try to prove the theorem for all n. 

9 .  Theorems 4-1 and 6 2  surmnarize the p r o p e r t i e s  of the algebra of column 

vectors with 2 entries.  State  two analogous theorems s u m r i z i n g  the '1 
properties of the algebra of row vectors with 2 entries.  Show that the 

t w o  algebraic structures are isomorphic. 

4-2. Vectors and Their Geometric Representation 

The notion of a vector occurs frequently i n  the physical sciences, where a I 
vector ia of ten  referred to as a quantity having b o t h  length and d irect ion and 

accordingly i s  represented by an arrow. Thus force, velocity,  and even dis- 

placement are vector quantities.  

Confining our attention to the coordinate plane, l e t  u s  invesrigate t h i s  
I 

i n t u i t i v e  notion of vector and see how these physical or geometric vectors are 

related to the algebraic column and row vectors o f  Section 4-1. 

An arrow in the plane is determined when the coordinates of its &iJ and 

the coordinates of its head are given.  Thus the arrow A1 from ( 1 , Z )  t o  ( 5 , 4 )  

is shown in Figure 4-1. Such an arrow, in a given pos i t ion ,  is called a Located 



I . .  . . . . * X  

Figure 4-1. Arrows in the plane. 

yeetor; its ra i l  is called the initial point ,  and its head the terminal point 

(or end point), of the located vector. h second located vector A2,  with 

i n i t i a l  point (-2,3) and terminal point  (2,5), i s  also shown in Figure 4-1. 

A located vector A may be described briefly by giving f i r s t  the co- 

ordinates of its i n i t i a l  po int  and then the coordinates of i ts  terminal p o i n t ,  

Thus the located vectors in Figure 4-1 are 

A1: (1,2)(5,4) and +: { - 2 , 3 ) ( 2 , 5 )  a 

The h ~ r f z o n t a l  run, or x component, of Al is 

and its vertical rise, or y component, is 

Accordingly, by the ethagorean theorem, its length i s  



'Its direction is determined by the angle e that it makes w i t h  the pos i t ive  

x direction: 

Since s i n  9 is the cosine of the angle that A1 makes with the y direct ion ,  

cos 0 and s i n  8 are called the direct ion cosines of A 
1 ' 

You might wnder why we d i d  not  wrlte simply 

tan 8 = 
2 1 
T = T  

instead of the equations f o r  cos 8 and s in  8. The reason is that  while the 

value of tan 9 determines slope, it does not determine the direct ion  of A1.  

Thus if is the angle f o r  the  located vector (5,4)(1,2) opposite to A1, then 

-2 tan 0 = = 1 = t a n , ;  
2 

but the angles fl and 0 from the positive x direction cannot be equal since 

they terminate in directions differing by n . 
Now the x and y components of the second located vector A2: (-2,3) 

( 2 , S )  in Figure 4-1 are, respectively, 

2 - (-2) = 4 and 5 - 3 = 2,  

so that AL and A2 have equal x components and equal y components ; con- 

sequently, they have t he  same length and the same direcrion. They are not in 

the same position, so of course they are not the same located vectors; b u t  since 

in dealing with  vectors we are especially interested in length and direction we 

say that they are equivalent. 

Definition 4-1. Two located vectors are said t o  be equivalent if and only 

if they have the same length and the same direction. 

For any prescribed point  P in the plane, there is a located vector 

equivalent t o  A1 (and to A2) and having P as i n i t i a l  poin t .  To determine 
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the coordinates of  the terminal point, you have only to  add the components of  

A1 t o  the corresponding caordinates o f  P. Thus for the i n i t i a l  p o i n t  

P: (3,-7), the terminal point  is 

so that the located vector i s  

You might plot the initial point and the terminal point  of A in order to  
3 

check that it actually is equivalent t o  A1 and to A 2 ,  

In general, we denote the located vector A with f n i t i a l  point (x 
l'Y1) 

and terminal point (x2,yZ) by 

A: (x~'Y~)(x~*Y~) ' 

Its x and y components are, respectively, 

x Z - x L  and Y2 - Y1- 

Its length is 

If r 0, then its direceion l a  determined by the angLe that it makes w i t h  

the x axis: 

If r = 0, we find f t convenient to say that the vector is directed In 

any direction we please. A s  you w i l l  see ,  this makes it possible t o  s t a t e  

~everal theorems more simply, without having t o  mention special cases. For 

example, this null vector is both parallel and perpendicular to  every direction 

i n  the plane! 

A second located vector 



is equivalent t o  A if and only if it has the same length and the same direction 

as A, or, what amounts to the same thing, if and on ly  if it has the same c m  

ponents as A: 

For any given point  ( x O , y O ) ,  the located vector 

is equivalent t o  A and haa (xO,yO) as its i n i t i a l  point. 

It thus appears that: the located vector A is determined except for its 

pos i t ion  by its components 

a = x 2 - X1 and b a= YZ - Y l -  

These can be considered as the entries of a column vector 

In this  way, any located vector A determines a column vector V. Conversely, 

for any given point P, the entries of any column vector V can be considered 

as the components of a located vector A with P as i n i t i a l  p o i n t .  The 

locater vector A is said to represent V. 

A colunm vector is a "free vector'' in the sense that  it determines the 

components (and therefore the magnitude and direction), but: not the p o s i t i o n ,  

o f  any Located vector that represents it. In particular, we shall assign to 

the column vector 

a standard represen tation 

- 
OP : (O,O)(u,v) 

[see. 4-23 



as  the located vector  from the origin to the point  

as illustrated in Figure 4-2; t h i s  is the representation to which we shall 

ordinarily refer unless otherwise stated.  

Figure 4-2. Representations of the column vector - -e 

located vectors OP and QR. 
- as 

Similarly, of course, the components o f  the located vector A can be 

considered as the entries of a row vector. For the present ,  however, we shall 

consider only column vectors and the corresponding geometric vectors;  in this 

chapter, the term "vector" will ordinarily be used to mean "coLumn vector,''  

not "row vector" or T'located vector ."  - 
The length o f  the located vector OF, to which we have previously referred, 

is called the length or norm of the column vector 

Using the symbol I l V l I  to stand f o r  the norm of V, we have 
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Thus, i f  u and v are n o t  both zero, t h e  direction cosines of are 

u and v 
I I V I  1 I I V I  I ' 

respectively; these are also called the direction cosines of the column vector 

v. 
The association between column or row vectors and d i rec ted  l i n e  segments, 

introduced in t h i s  section, is as applicable to 34imensional  space as it is to 

the 2dimensional  plane. The only difference is that: the components of a 

located vector  in 3-dimensional space will be the entries of a column or row 

vec to r  of order 3,  not a column or row vector  o f  order 2 .  

In the rest  of  this chapter and i n  Chapter 5 ,  you will see how Theorems 

4-1 and 4-2 can be interpreted through geometric operations on locared vectors 

and how the algebra of matrices leads t o  beautiful geometric results.  

Exercises 4-2 

1. Of the following pairs of vectors,  

which have the same l eng th?  which have the same d i r e c t i o n ?  

2 .  L e t  V = t  . Draw arrows from the origin representing V for 

t = 1 ,  t = 2 ,  t = 3 ,  t = -  1, t = -  2, and t = - 3 .  

I n  each case, compute t h e  Length and direction cosines of V. 
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3. In a rectangular coordina te  plane, draw the standard representation for 

each of the following s e t s  of vectors.  Use a d i f f e r e n t  coordinate p l a n e  

far each s e t  of vectors .  Find the length and d i r e c t i o n  cosines of each 

vector : 

(el [:I, [ : I ,  and [:I + [ i] . 

Draw the line segments representing V if t = 0 ,  _+ 1, + 2 ,  and 

(a) rn = 1, b = 0; 

(b) rn = 2, b = 1; 

( c )  m = - 1 / 2 ,  b = 3 .  

In each case, verify that t h e  corresponding set of five points  (x ,y )  l ies  

on a line. 

5. n o  column vectors are called p a r a l l e l  provided their standard geometric 

representations l i e  on the same l i n e  through the origin, I f  A and B 

are nonzero parallel column vectors, de terrnine the two p o s s i b l e  relation- 

s h i p s  between the d irect ion  cosines o f  A and the  direction cosines of 

B. 

6. Determine a l l  the vectors of the form that are parallel to 



4-3. Geometric Interpretat ion  of the Multiplication of a Vector by a Number 

The geometrical significance of the multiplication of a vector by a number 

is readily guessed on comparing t he  geometrical representations of the vectors 

V, Zv, and -2V f o r  

By d e f i n i t i o n ,  

w h i l e  

Thus, as you can see in Figures 4-3 and 4 4 ,  the standard representa t ions  of 

V and 2V have the same direction, while -2V is represented by an arrow 

p o i n t i n g  in the opposite d i r e c t i o n .  The l e n g t h  o f  the arrow associated with V 

Figure  4--3. The product o f  Figure 4 4 .  The p r o d u c t  of  
a vector and a p o s i t i v e  number. a vector and a negative number. 

i s  5, while those for 2V and -2V each have length 10. Thus, mult iplying 

V by 2 produced a stretching o f  the associated geometric vector to twice its 

original Length while leaving i t s  d i r e c t i o n  unchanged. Multiplication by -2 

not only doubled the length of the arrow but a l s o  reversed its  d i r e c t i o n .  



These observations lead us to formulate the following theorem. 

Theorem 4-3. Let the directed  line segment represent the vector V 

and Let r be a number. Then the vector rV is represented by a directed l i n e  

having length Irl times the length of 8. If r > - 0 the repre- 

sentation of rV has the same direction aa G; if r < 0, the direct ion  of 

the representati~n of rV is opposite to that of G. 

Proof. L e t  V be the vector  - 

Now, 

hence, 

This proves the f i r s t  part  of the theorem. 

the second part o f  the  theorem is certainly true. 

- 
the direction cosines of PQ are 

[sac. 4-33 



U v 
I IVI I 

and - 
I I V I I  ' 

while those of r V  are 

ru rv 
I r l  1 I V l t  

and 
Irl l  l V l  l  ' 

If r > 0, we have I  = r,  whence it follows that the arrows associated w i t h  

V and rV have the same direc t ion   cosine^ and, therefore, the same d i r e c t i o n .  

If r < 0, we have I r l  = - r, and the direction cosines of the arrow associ- - 
ated with rV are the negatives of those of PQ. Thua, the direct ion o f  the 

representation o f  rV is opposite  to  that of G. This completes the proof of 

the theorem. 

One way of stating part of the theorem just  proved is t o  say that if r is 

a number and V i s  a vector ,  then V and rV are paral le l  vectors (see 

Exercise 4-24} ;  thus they can be represented by arrows Lying on the same line 

through the origin. On the other hand, i f  the arrows representing two vectors 

are parallel, i t  i s  easy to show that you can always express one of the vectors 

as the product o f  the other vector by a sui tably  chosen number. Thus, by check- 

ing direction cosines, i t  is easy t o  verify that 

are parallel vectors, and that 

In the exercises that follow, you will be asked to show why the general result  

illustrated by this example holds true. 

Exercises 4-3 

1. L e t  L be the set  o f  a l l  vectors parallel to  the v e c t o r  [;I . F i l l  in 

rhe following blanks so as to produce in each case a true statement: 



(e)  f o r  every real number t y  

( f )  f o r  every real number t, [-"LC] L; 

2 .  Verify graphically and prove algebraically that the vectors in each of the 

following pairs are parallel. In each case, express the first vector as 

the produc t  o f  the second vector by a number: 

3 .  Let V be a vector and W a nonzero vector such that V and W are 

parallel. Prove that there exists a real number r such that  

4 .  Prove: 

(a) If r V =  [:] and r 0, then Y =  [:] . 

(b) If rv  = [i] and v i [i] , then r 0 9  

5. Show that the vector V + rV has the same direction as V i f  r > - 1 ,  - 
and the opposite direction to V if r < - 1. Show also that 

I l V  f r V l f  = I l V l l  I1 + r l .  

1 4-4. Geometrical Interpretation o f  the Addition of Two Vectors 

If we have two vectors V and W, V = and W =  i] , their sum 

[sec. b 3 j  
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is, by d e f i n i t i o n ,  

To i n t e r p r e t  the addition geometrically, l e t  us return momentarily to the con- 

cept  of a "free" vector. Previously we have associated a c o l u m  vector 

w i t h  some located vector 

such that  c = x2 - xl and d = y2 - y 1. In part icu lar ,  we can associate W 

with the vector 

A: ( a , b ) ( a  i - c ,  b + d l .  

We use A to represent W and use the  standard representation fo r  V and 

V + W in Figure 4 - 5 .  

Figure 4-5. Vector  addi t ion .  

Alro,  we can represent V as the located vector 

0 :  (c,d)(a + c, b + d)  

[see. 4-41 
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and obta in  an alternative representation. If the tw poss ib i l i t i e s  are dram 

on one s e t  of coordinate axes, we have a parallelogram in which the diagonal 

represents the sum; see Figure 4-6. 

Figure 4-6. Parallelogram rule for addit ion.  

The parallelogram rule is often used in physics to obtain the resultant 

when two forces are acting from a single p o i n t .  

Let us consider now the sum of three vectors 

We choose the three located vectors 

- 
PQ : ( a ,b ) (a  + c, b + d )  

and 
5 : ((a + C ,  b + d)(a -I- c $. e, b f d +- f )  

to represent V, W, and u respectively; see Figure 4--7. 



Figure 4-7. The sum V + W + U. 

Order of addi t ion  does not a f f e c t  the sum although i t  does a f f e c t  the 

geometric representat ion,  as indicated i n  Figure 4-43. 

Figure 4 4 .  The sum V + U f W. 

If V and W are parallel, the construction of the proposed representative 

of V + W is made i n  the same manner. The detai ls  w i l l  be l e f t  to the student .  

Theorem 4-4. If the vectors V and W are represented by the directed 

[sec. 4-41 
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rr, -L - 

line segments OP and PQ, respectively, then V .t W is represented by OQ. 

Since V - W = V + (-W), the operation of subtracting one vector from 

another o f f e r s  no essentially new geometric idea, once the construcrion of  + 
is undets tood . Figure 4-9 lllus trates the construction of the geome e r i c  vector 

representtng V - W. It is useful  to note, however, that since 

the Length of t he  vector V - W equals the distance between the points 

P: (u, v)  and T: (r, s ) .  

T* / 
T: (r, a )  

Figure 4-9. The subtraction of vectors, V - W. 

Exercises 4 4  

1. Determine graphically the sum and difference of the following pairs of 

vectors. Does order matter in cons tructfng the sum? the difference? 
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2 .  Illustrate graphically the associative law: 

3.  Compute each of the following graphically: 

4 .  State the geometric significance of the following equations: 

(b) V + W + U P  [:I * 

(c) V + W f U + T =  [:I 
5. Complete the proof of both  parts a f  Theorem 4-4. 

4-55, The Inner Product of Two Vectors 

Thus f a r  in our development, we have invest igated a geometrical interpre- 

t a t ion  for the algebra of vectore. We have represented column vectors of order 

2 as arrows in the plane, and have established a one--twne correspondence b e  

tween t h i s  s e t  of column vectors and the set: of directed l i n e  segments from the 

origin a f  a coordinate plane. The algebraic operationa o f  addi t ion  of two 

vectors and of multiplication of a vector by a number have acquired geometrical 

s Fgni f icance . 
But we can a leo  reverse our point of view and see that the geometry of 

vectors can lead us to the consideration of  addit ional  algebraic structure. 

For instance, if you look at the pair  of arrows drawn in Figure 4--10, you 

may c m e n t  that they appear t o  be mutually perpendicular. You have begun t o  



Figure 4-10. Perpendicular vectors. 

talk about the angle between the pair of arrows. Since our vectors are located 

vectors, the following de f in i t i on  is needed. 

Definition 4-2. The angle between tm, vectors i s  the angle between the 

standard geometric representations of the vectore . 
Let us suppose, in general, that  the points P, with  coordinates (a,b) , 

and R, with  coordinates ( c , d ) ,  are the terminal points of two geometric 

vectors with initial points a t  the origin.  Consider the angle W R ,  which we 

denote by the Greek letter 8 ,  in the triangle WR of Figure 4-11. 

We can compute the cosine of 0 by applying the Law of cosines to the 

triangle POR. I f  IOPI , IORI , and l P R l  are the lengths of  the sides of 

the triangle, then by the law of cosines we have 

Figure 4-11. The angle between two vectors. 

I-. 4-51 



Thus, 

= 2(ae f. bd) . 
Hence, 

IOPI IORI cos 61 = ac + bd. (1 l 

The number on the right--hand side of this equation, although clearly a function 

of the two vectors, has not  heretofore appeared explicitly. L e t  us give it a 

name and introduce, thereby, a new binary operation fo r  vectors. 

Definition 4-3.  The inner product of the vectors 

is the algebraic sum of the products of corresponding entries. Symbolically, 

] [;] - sc + bd. 

We can similarly define the inner product of cur row vectors: [ a  b] rn [= d] - 
ac + bd. 

Another name for the fnner product of two vectors is the "dot product" of 

the vectors. You n o t i c e  that the inner product of a pair of vectors is simply a 

number. In Chapter 1, you met the product of a row vector by a column vector, 

say [ab] times [i] , and found that 



w 
the product being a 1 x 1 matrix. As you can observe, these two kinds of 

products are closely related; for, i f  V and W are the respective vector8 [:] and [ , w have vt = [a b] and 

vt" = [ae + bd] - [V w] . 

Later we shall exploit this close connection between the ttro product& i n  order 

ro deduce the algebraic properties of the inner product from the known properties 

of the matrix product. 

Using the notion of the inner product and the formula (1) obtained above, 

we can s t a t e  another theorem. We shall epeak o f  the cosine of the angle included 

between two column (or row) vectors,  although we realize that we are actually 

referring to an angle between aseociated directed l i n e  segments. 

Theorem 4-5. The inner product of two vectors equals the product of the 

lengths of the vectors by the cosine o f  the ir  included angle. Symbolically, 

V . w = l l V l  l l l W l  l cos 8 ,  

where 0 i s  the angle between the veetore V and W. 

Theorem 4--5 has been proved in the case in which V and W are not 

parallel vectors. If we agree t o  take the measure of the angle between tul 

parallel vectors t o  be 0' or 180' according as the vectors have the same or 

opposite directions,  the result s t i l l  holds. Indeed, as you may recall, the law 

of cosines on which the burden of the proof rests remains valid even when the 

three vertice~ of the "triangle" POR are collinear (~ igures  4-12 and 4-13). 

Figure 4-12. Collinear vectors 
in the same direction. 

Figure 4-13. Collinear vectors 
in opposite  direc t ione.  
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CoroLLary 4-3-1. The relationship 

holds for every vector V. 

The corollary follows a t  once from Theorem 4-5 by taking V = W, in which 

case 8 = 0'. To be sure, the result a l so  follows iwnediately from the facts 

that ,  f o r  any vector V = ] , we have 

2 
v m V = a 2  + b ,  while IIVII = d m .  

Two column vectors V and W are said to be orthogonal i f  the arroua 

OP and OR them are perpendicular to each other.  In particular, 

the null vector is orthogonal to every vector. Since 

cos 90' = cos 270' = 0, 

we have the following result: 

Corollary 4-+2. The vectors V and W are orthogonal i f  and only i f  

You will note that the condition V a W = 0 i s  automatically sa t i s f i ed  

i f  either V or W i s  the null vector. 

We have examined 8ome of the geometrical facets of  the inner product of two 

vectore, b u t  Let us  now look a t  same o f  i ts  algebraic properties. Does i t  sat- 

i ~ f y  conarmtative, associative, or other algebraic laws we have met i n  studying 

number aystems? 

We can show that the ctmrmurative Law holds,  that is, 

For if V and W are any pairs of 2 x 1 matrices, a computation shows that 



But 

V% = [V W] , while W'V - [ W  . V] . 
Hence 

It is equally poseible to  show that the aaaociative Law cannot hold for inner 

products. Indeed, the products V 4 (W U) and (V  W) U are meaningless. 

To evaluate V a ( W  U) , for example, you are aaked to  find the inner product 

o f  the vector V wlth the number W U. But the inner product is defined for 

two row vectors or two column vectors and not for a vector and a number. Inci- 

dentally, the product V(W a U) should n o t  be confused with the meaningless 

V (W a U). The former product has meaning, for it is the product of the vector 

V by the number W U. 

In the exercises that follow, you will be asked t o  coneider gome of  the 

other poss ib le  properties of the inner product. In particular, you will be asked 

ro establish the following theorem, the f irs  t part of which was proved above. 

Theorem4-6. If V, W, and D are column vectors of order 2, and r 

is a r e a l  number, then 

(a) V m W n W o V ,  

(b) (rV) W a r(V a W), 

(d) V a V 2 0 ;  and 

(e) i f  V e V - 0 ,  then V -  

Exercises 4-5 

1. Compute the  cosine o f  the angle between the two vector6 i n  each of the 

following pairs: 



In which cases, if any, are the vectors orthogonal ? In which cases, if any, 

are the vectors parallel? 

2 .  L e t  

E L z [ : ]  and E 2 =  [:I. 
Show that, for every nonzero vector V, 

V . El V • EZ 

1 I V I  1 
and - 

I I V 1  I  

are the direction cosines of V .  

3 .  (a) Prove that two vectors V and W are parallel if and only i f  

Explain the significance of the s i gn  of the right-hand side of t h i s  equation. 

(b) Prove that 

and write this inequality in terms of the entries of V and W .  

(c) Show also that  V W < l l V l l  I l W l l .  - 
4 .  Show t h a t  i f  V is the null vector  then 

5. Pill in the bLanks i n  the following statements so  as  to make the resulting 

sentences true: 

(a) The vectors [:] and [-!'I are parallel. 



(b) The v e c t ~ r s  [:I and [:I are orthogonal. 

The vectors 

The vectors 

and 

and 

are 

are para1 le 1. 

(e)  For every pos i t i ve  real number t, the vectors 

[ and [ ] are orthogonal. 

(f) For every negative real number t, the vectors 

[::I end [:] are orthogonal . 

6. Verify that parts (a) - (d) of Theorem 4-6 are true if 

7 .  Prove Theorem 4 - 4  

(a) by using the definition of the inner product of two vectors; 

(b) hy using the fact t ha t  the matrix product V% satisf ies  the 

equation 

8 .  Pmve that  I IV + Wl l 2  - (V + W) (V + W) = l l V l  i Z  + 2 V . W + l lUl lZ for 

every pair of vectors V and W. 

9. Show that,  in each of the following s e t s  of vectors, V and W are 

orthogonal, V and T are parallel ,  and T and W are orthogonal: 

Do the  same relationships hold for the s e t  
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10. Let V be a nonzero vec tor .  Suppose that W and V are orthogonal, while 

T and V are parallel. Show that W and T are then orthogonal, 

11. Show that ,  for  every s e t  of real numbers r ,  a ,  and t, the vectors 

[i] and [-:I are orthogonal. 

12. Let V = [z] , where V is no t  the zero vector .  Show that  if W and V 

are orthogonal, there exfs ts a real number t such that 

13. Show that the vectors V and W are orthogonal if and only if 

14. Show that i f  A = [:] and B = [i]  , then 

2 2 
I I A I  i Z  I I B I  l 2  - (A 8) = (ad - bc) . 

1 5 .  Show that the vectors V and W are orthogonal if and only if 

16. Show that the equation 

holds f o r  a l l  vectors V and W. 

17. Show that  the inequality 

I I V  + W I I  < I I V l l  + I l W l l  - 

holds for all vectors V and W. 



4-6. Geometric Considerations 

In Sect ion 4 4 ,  we saw that two parallel vectors determine a parallelogram. 

That is, if 

. A  u [:I and 8 = [ i ]  
are t w o  nonparallel vectors w i t h  i n i t i a l  points  a t  the origin, then the points  

Pt (a ,b) ,  0:(0,0), R;(c ,d)  and S:(a + c ,  b + d )  are the vertices of a 

parallelogram (Figure  4-14.) A reasonable question to ask is: '!How can we 

determine the area of the parallelogram ME?" 

R: (c ,  d )  

Figure 4-14,  A parallelogram determined by vectors .  

As you recall, the area of a parallelogram equals the product of the lengths 

of its base and its a l t i t u d e .  Thus, in Figure 4--15, the area of the parallel* 

gram is blh, where bl is the length of s ide  NM and h i s  the length 

of the altitude KD. 

Figure 4 1 5 .  Determination of the area of a parallelogram. 
[see, 4-61 
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~ u t  if b2 is the length of side NK, and 8 is the measure of e i ther  

angle NKL or angle KNM, we have 

Hence, the area o f  the parallelogram equals blb2 l  s i n  8 1 . 
Returning to Figure 4-14 and letting 0 be the angle between t he  vectors 

A and B, we can now say t h a t  if G 1s the area of parallelogram PORS, then 

2 2 2 
G = I t * , i 2  I IB I  I sin 8. 

Now 

2 
sin = 1 - cos2 e .  

It follows from Theorem 4-5 that 

2 r: 
COS e = (A . B) 

I  IA1 l 2  I  I B I  I 
2 ' 

therefore, 

Thus, we have 

2 
G~ = 1 1 ~ 1 1 ~  1 1 ~ 1 1 ~  - (A. B) . 

It follows from the result of Exercise 14 o f  the preceding section that 

2 
G' = (ad - bc) . 

Therefore, 

G = lad - bcl. 



E But ad - bc is the value of the determinant 6(D), where D I s  the 

~ t r i x  [ E] . For easy reference, l e t  ue vrtte our result in the form of a 

f theorem, L "  "1 

Theareri 4-7. The area o f  the parallelogram determined by the standard 

representation of the vectors equals 16(D)I, where 

D =  [; ; I .  
Corollary 4-7-1. The vectors are parallel if an? only 

if S(D) = 0 .  

The argument proving the corollary is left  at3 an exercise f o r  the s tudent .  

You not i ce  that we have been led to  the determinant of a 2 x 2 matrix in 

examining a geometrical interpretation o f  vectors. The role of matrices in th is  

interpretation will be further investigated in Chapter 5. 

From geometric considerations, you know that the cosine of an angle cannot 

exceed 1 in absolute value, 

and that the length of any side of  a triangle cannot exceed the sum of the 

lengths of the other two sides, 

OQ 5 OF + PQ. 

Accordingly, by the geometric interprets t ion of column vec tors ,  for any 

V - [;] and Y - [;] 
we must have 

i and 

I l V  + W l l  5 lIV11 + I l W l I .  

[see. 4-61 
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But can these inequalit ies be established algebraically? L e t  us see. 

The inequality (1) is equivalent to 

(V  . w ) ~  - < (V . V)(W . W), 
that  is, 

or - as we see when we mult ip ly  our and simplify - to 

But t h i s  can be written as 

2 
0 5 (ad - bc) , 

which certainly is v a l i d  s ince  the square of any real number is nonnegative. 

Since ad - bc = 6(D), where 

you can see that the foregoing result is consistent w i t h  Corollary 4-7-1, above; 

that i a ,  the sign of equality holds in (I) if and only i f  the vectors V and 

W are parallel .  

As for the inequality ( 2 ) ,  i t  can be written as 

which simplifies to  

which again is valid since 

0 < (ad - bc)". - 

Is-. b 6 3  
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This rime, the s ign  of equality holds if and only if the vectors V and w 
are parallel and 

that is, i f  and only i f  the vectors V and W are parallel and in the same 

direction. 

If you would like t o  look further into  the study of inequalitiee and their 

applications, you might consult the SMSG Monograph "An Introduction t o  

Inequalities," by E. F. Beckenbaeh and R. hllman. 

Exercises 4 4  

- 
1. Let OP repreeent the vector A, end 6? the vector B. Determine the 

area of triangle TOP if 

2. Compute the area of the triangle with  vertices: 

3 Verify the inequalities 

( V .  wl2  < (V. V)(Y.") 

and 

for the vectors 



(a) V = ( 3 , 4 )  and W = (5,121, 

(b) V = ( 2 . 1 )  and W = ( 4 , 2 ) ,  

( c )  V = (-2,-1) and W = ( 4 , Z ) .  

4-7. Vector Spaces and Subapacea 

Thus far our discussion of vectors has been concerned essentially u i t h  

individual vectors and operat ions on them. In t h i s  section we shall take a 

broader point of view. 

It will be convenient to  have a symbol for the s e t  of 2 x 1 matrices. 

Thus we let 

where R L s  the s e t  o f  real numbers. The s e t  H together u i t h  the operations 

of addition of vectors and of multiplication of a vector by a real number is an 

example of an algebraic system called a vector space. 

Def in i t ion  4-4. A s e t  of elements is a vector space over the s e t  R o f  

real numbers provided the following conditions are a a t i s f i e d :  

( a )  The sum of any tw elements of the set is aLao an element of the 
s e t .  

(b) The product of any element of the s e t  by a real  number is also an 
element of the set. 

( c )  The Laws I and If o f  Theorem 4-2 hold.  

In applying laws I and I f ,  - 0 will denote the zero element of the vector  

space, Let us emphasize, houever,that: the elements of a vector space are not  

necessarily vectors i n  the sense thus far discussed in this chapter; f o r  ex- 

ample, the s e t  of 2 x 2 matrices, together wi th  ordinary matr ix  addition and 

multiplication by a number, forms e vector space. 

Since a vector space consists  of a s e t  together with the operations of 

addition of elements and of multfplication o f  elements by real numbers, strictly 

speaking ue should no t  use the same symbol for the set o f  elements and for the 

vector space. But the practice is  not likely t o  cauae confusion and will be 

[sea. 4-63 
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£0 1 lowed. 

A completely trivial example of a vector space over R is the set con- 

sisting of the zero vector alone. Another v e c t o r  space over R is the 

set  of vectors parallel t o  that is, the  s e t  

It i s  evident that  we are concerned uith subsets o f  H in these two examples. 

Actually, these subsets are subspaces, in accordance with the following de fi- 

nition. 

Definit ion 4--5, Any nonempty subset F o f  H is a subspace of H 

provided the following conditions are sat isf ied:  

The sum of  any two elements of F is also an element of F. 

The product of any element o f  F by a real number is an element o f  F, 

By definition, a subspace must contain a t  least one element V and also 

m u s t  contain each of the produces rV f o r  real numbers r .  Every subspaee a f  

H therefore has the zero vector as an element, since f o r  r = 0 we have 

It is eeay to see that the set consisting of the zero vector alone is a subspace. 

We can a l s o  verify that the s e t  of a l l  vectors parallel  t o  any given nonzero 

vector is a subspace. Other than H i t s e l f ,  subsets o f  these two types are 

the only subspaces of H. 

Theorem 4 - 8 .  Every subspace of H consists of exact ly  one of  the folio* 

ing: the zero vector; the set of  vector^ para l l e l  to a nonzero vector; t h e  

space H itself, 

Proof. If P is a subspace containing only one vector, then 

since the zero vector  belongs to every subs pace. 

[see, b73 
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f f  F contains a nonzero vector V, then F contains all vectors r V  

f or  real r. Accordingly, if a l l  vectors of F are parallel to  V, i t  follows 

that  

If F also contains a vector W n o t  parallel t o  V, then F is actually 

equal to H, as we shall now prove. 

Let 

be nonparallel vectors in the subspace F, and l e t  

be any other vector  of H. We shall show that: Z is a member of F. 

By the def ini t ion of subspace, t h in  will be the case if there are numbers 

x and y such that 

that is, 

These can be found i f  we can solve the system 

fo r  x and y in terms of the known numbera, a ,  b, e ,  d ,  r, and s. But 

since V and W are not  parallel, i t  follows (see Corollary q - 1 )  that 

ad - bc + O and therefore the equations have the solution 
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Since F is a subspace that contains V and W, it contains x V ,  yW, and 

t h e i r  s u n  2 .  Thus every vector 2 of  H must belong to F; that is, H is 

a subset of F. But F is given to be a subset of H. Accordingly, F = H. 

Using the ideas o f  Section 4 4 ,  we can give  a geometric i n t e r p r e t a t i o n  t o  

Equation (1) . L e t  the nonparallel vectors  V and W in the subspace F have 

standard representations i% and O?i, respectively; see Figure 4-16, Let 2 
4 - 

be represented by OT. Since OP and O?R are not parallel, any line parallel 

t o  one of them must intersect the line containing the other. Draw the l i n e s  

through T p a r a l l e l  to 5 and d, and let S and (1 be t h e  points  in - - 
which these l i n e s  i n t e r s e c t  rhe lines containing OR and OP respectively. 

Then 

Figure 4-16. Representation o f  an arbitrary 
vector Z as a linear combination of a given 
pair of nonparallel vec tors  V and W. 

4 

But is parallel to 6$ and to OR. Therefore, there are real numbers 

x and y such that 

d 4 

6?j = ZP and OS = yOR. 

Hence, 



This ends our discussion o f  Theorem 4-7 and introduces the important concept 

of  a l inear combination: 

Definitfon 4--6. If a vector Z can be expressed in the form xV + yW, 
where x and y are real numbers and V and W are vectors, then 2 i s  

caLled a l inear combination o f  V and W .  

Further, we have incidentally established the useful  facts  stated in the 

following theorems: 

Theorem 4-9. A subspace F contains every linear combination of each 

pair of vectors in F. 

Theorem 4-10. Each vector of H can be expressed as a linear combination 

of any given pair of nonparallel vectors in H. 

For example, t o  express 

as a linear combination of 

we must determine real numbers x and y such that 

Thus, we must solve the s e t  of equations 

We f i n d  the unique so lut ion  x = 2 and y = 1; that is, we have 



X f  you observe rher the given vectors V and W in the foregoing example 

are orthogonal, that is, V W = 0 (see Corollary 4-5-2 on page 156) then a 

second method of so lut ion may occur ro you. For if 

then for the products 2 V and Z W you have 

2 2 
Z V =  allVll and Z W = bltWll . 

But 

Z V a  50, Z W =  25, 1 1 ~ 1 1 ~  = 25, and I I W 1 1 2  - 25. 

Hence, 

and accordingly 

50 = 25a and 25 = 2% , 

a = 2  and b S l .  

It i s  worth noting that  the representation of a vec tor  Z as a Linear 

combination of two given nonparallel vectors i s  unique; that i s ,  if the vectors 

V and W are not paral le l ,  then for each vector Z the coef f ic ienta  x and 

y can be chosen in exactly one way (Exercise 4--7-11, below) so that 

The pair o f  nonparallel vectors V and W is called a basis for H, while the 

real numbers x and y are called the coordinates of Z relat ive  to that  
r C l  

basis . In the example above, the vector \ li] has coordinates 2 and 1 

reLative to the basis 

In particular, the pair of vectors [i]  and [ y ]  1s called the 

natural basis for H .  This  basis allows us to employ the coordinates of the 

point (u,v) associated with the vector V = [:I as the coordinates relative 

t o  the basis; thus, 



Since every vector of H can be expressed as a linear combination of any 

pair of basic vectors,  the  basis vectors are said to span the vector space. 

The minimal number of v e c t o r s  that  span s vector space is ca l l ed  the dimension 

of the particular space. 

For example, the dimension of t he  vector space H is 2 .  In the same 

sense, the s e t  F 

is a subspace of dimension 1. Note that neither [:I nor [;I is a baais 

f o r  this subspace.  (What is?) 

In a 2-space, that  is, a vector space of  dimension 2 ,  it i s  necessary that 

any s e t  of b a s i s  vectors be linearly independent, 

D e f i n i t i o n  4-7. Two vectors V and W are linearly independent f f and 

only i f ,  f o r  a l l  real numbers x and y ,  the equation 

implies x = y = 0 .  Otherwise, V and W are said to be l inearly  dependent. 

For example, let V = 

V and W are linearly dependent. Note that 

which indicates that V and W are parallel, 



Exercise 4-7 
1 

i 1.  Express each o f  the following vectors as l inear combinations of 

i , and i l lus trate  your answer graphical ly:  
[:I and 

1 

2 .  In parts (a) through (i) of Exercise 1 ,  determine the coordinates o f  each 

of the vectors relative to the basis [-:I and [:] . 
3 .  Prove tha t  the following s e t  i s  a subspace of H: 

. Prove that, for any given vector W, the s e t  [rW : r E R] is a subspace 

of H. 

5 .  For 

- [:I , 

I determine which o f  the following subsets of H are subspacee: 

I (a) all V with u = 0, (d)  a l l  V w i t h  2u - v = 0, 

I- (b) a l l  V with v equal (e) a l l  V w i t h  u + v =  2,  
to an integer, 

t ( c )  a l l  V with u rational, (f) a l l  V w i t h  uv = 0. 

I 6 .  Prove that F is a subspace o f  H i f  and only if F contains every 

6 linear cmnbination of two vectors in F .  

I 7 .  Show that cannot be expressed as a l inear  combination of the 

vectors 

! 
8 .  Describe the s e t  of a l l  linear combinations o f  two given parallel  vectors, 

t [aec. 4-73 



9 ,  Let F1 and F2 be subspaces of H. Prove that  the s e t  F of all 

vectors belonging to both F and F2 is a l so  a subspace. 
1 

10. In proving Theorem 4-10, we showed that: if V and W are not  parallel 

vectors, then each vector of H can be expressed as a linear combination 

of V and W. Prove the converse: If each vector of H has a repre- 

sentation as a linear combination of V and W, then V and W are not 

parallel. 

11. Prove that i f  V and W are not parallel, then the representation o f  any 

vector in the form aV + bW i s  unique; that i s ,  the coefficients 

a and b can be  chosen in exactly one way. 

12. Show that any vector 

can be expressed uniquely as a linear combination of the basis vectors 

4-8. Summary 

In this chapter, we have developed a geometrical representation - namely, 
directed line segments - for 2 x 1 matrices, or coluum vectors. Guided by 

the definition of  the algebraic operation of  addition o f  vectors, we have found 

the "parallelogram law of additiont' of directed Line segments. The multiplica- 

t i on  of a vector by a number has been represented by the expansion or contraction 

of  the corresponding directed line segment by a factor equal to  the number, w i t h  

the sign of the factor determining whether or not the direction of the Line 

segment is reversed. Thus, from a set of algebraic elements we have produced a 

s e t  of geometric elements. Geometrical observations in turn led us back to 

additional algebraic concepts. 

Also in this chapter, we have introduced the important concepts of a vector 

space and l inear  independence. 

Since the nature of the elements of a vector space i s  not limited except 

by the postulates, the vector space does not necessarily cons i s t  of a set whose 
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elements are 2 x 1 column vectors;  thus i t s  elements might be n x n matrices, 

real numbers, and so on. 

For example l e t  us look at the s e t  P of linear and constant polynomials 

with real coefficients, that is, the s e t  

under ordinary addit ion and multiplication by a number. The sum of two such 

polynomials, 

is an element oi the set  s i n c e  the sums a1 + a2 and bl + b2 are real numbers. 

The product of any element o f  P by a real number, 

c(ax + b) = acx + bc, 

is also a member of P since the products ac and bc are real numbers. We 

can similarly show that addition is comutative and as~ociative, t h a t  there is 

an ident i ty  for addition, and that  each element has an additive inverse; thus, 

the laws 5: of  Theorem 4.2 are va l id .  In l i k e  fashion,  we can demonstrate that 

laws I1 are sa t i s f i ed:  both d i s t r i b u t i v e  laws hold; the mu1 tiplication of an 

element by two real numbers is associative; the product of any element p by 

the real number 1 is p itself; the product of 0 and any element: p is the 

zero element; and the product of any real number and the zero element is the 

zero element. 

We have outlined the proof  that  the s e t  P of linear and constant poly- 

nomials is a vector space. Thus the expression, "the vector, ax + b y "  i s  

meaningful when w e  are speaking of the vector space P. 

The mathematics t o  which our algebra has led us forms the beginnings of a 

discipline called "vector analysis," which i s  an important t o o l  in classical 

and modern p h y s i c s ,  as we11 as in geometry. The "free" vectors that  you meet 

in physics, namely, fnrces,  velocities, etc., can be represented by our geometric 

vectors. The study in  which we are engaged i s  consequently of v i t a l  importance 

f o r  physicists, engineers, and other appl ied  scientists, as well as for math- 

maticians . 



Chapter 5 

TRANSFORMATIONS OF THE PLANE 

5-1. Functions and Geometric Transformations 

You have discovered that one of  the most fundamental concepts i n  your study 

of mathematics is the not ion  of a function. In geometry the function concept 

appears i n  the idea of a transformation. 11: is the a i m  o f  this chapter to  recall 

what we mean by a function, to define geometric transformation, and to explore 

t he  role of matrices in the study of a significant class of these transformations. 

You recall  that a function from s e t  A t o  s e t  B i s  a correspondence or 

mapping from the elements of t h e  s e t  A t o  those ofathe set B such that with each 

element of A there is associated exactly one element of 0 .  The s e t  A is 

the domain of the function and the subset of B onto which A is mapped is the 

range of the function. In your previous work, the functions you net generally - 
had sets  o f  real numbers both for domain and fo r  range. Thus the function 

s p b o l i z e d  i n  the form 

is likely to be interpreted as a s s o c i a t i n g  the nonnegative real number xZ v i  th 

the real  number x .  Here you have a simple example o f  a "real function'' of a 

"real variable  .I1 

In Chapter 4 ,  however, you m e t  a function V t l V l  having f o r  its 

domain the vector space H, and f o r  its range the s e t  of nonnegative real 

numbers. 

In the present chapter, we shall cons ider  functions rhar have their range 

as well as their domain in H. SpecificeLly, we want to find a geometric in- 

terpretation for these "vector functions" of a "vector variable"; this is a 

continuation of the discussion started in Chapter 3. A l l  vectors will now be - 
considered i n  their standard representations OP, so that they w i l l  be parallel  

if and only if represented by col l inear  geometric vectors.  

Such a vector function will associate,  with the point P having coordinates 

(x,y), a po in t  P' with coordinate& x y Or we may say that it maps the - d 

geometric vector OP onto the geometric vector OP' . The function can, t h e r e  

fore, be viewed as a process that associates with each point P of the plane 

same point P f  of t h i s  plane. We shall c a l l  this process a transformation of 



the plane into i t se l f  or a geometric transformation. As a matter of fact ,  

these transformations are of ten called "point transformations" i n  conrras t t o  

more general mappings i n  which a point  may be carried into a l i n e ,  a c i rc le ,  or 

some other geometric configuration.  For us, a geometric transformation i s  a 

helpful means of  visualizing a vector function of a vector variable. As a 

matter of convenient  terminology, we s h a l l  call the vector that such a funct ion  

associates with a given vector  V the image of V; furthermore, we sha l l  say 

that the function 9 V ontD its image. 
Let us look a t  the simple function 

This function maps each vector V onto the vector that has the same direction 

as V, but: that is twice as long as V. Another way of asserting t h i s  i s  to 

say that the function associates with each point  P of the plane a point P t  

such that P and P' l i e  on the same ray from the origin,  but 

see Figure 5-1. You may therefore think o f  the function i n  this example as 

uniformly stretching the plane by a factor 2 in a l l  directions from the origin.  

(Under this mapping, what is the point onto which the origin i s  mapped?) 

As a second example, consider the function 

This time, each vector i s  mapped onto the vector having length equal and direction 

opposite to that of  the given vector. Viewed as a point transformation, the 

function associates with any point: P its "reflection" in  the origin; see 

Figure 5-2. 

The function 

combines both of the effects o f  the preceding functions, so that the vector 

associated with V is twice as Long as V, but  has the oppos i te  direction to 

that of V. 



Figure 5-1. The trans- 
formation V -+ 2V. 

Figure 5 2 .  The rrans- 
formation V -9 -V. 

Now, let us look a t  the function 

As in our first example, each vector is mapped by the function onto a vector 

having the same direct ion as the given vec tor .  Indeed, every vector of length 

1 is its own image. But if V > 1, then the image of V has a length 

greater than that  of V, with the expansion factor increasing with the length 

of V itself. Thus, the vector 

having length 2 ,  is mapped onto 

which is twice as long. The vector 

whose length i s  13, has the image 

[sec. 51) 



with length 169 .  On t he  other hand, for nonzero vectors of length less than 

1, we obtain image vectors of shorter length, the contraction factor decreasing 

with  decreacing length of the original vector.  Thus, 

is mapped onto 

the Lmaze being half as long as the given vector.  Again, the vector 

t he  length of the first vector being 5/7, while the length of i t s  image i s  
2 

only ( 5 / 7 )  , or 2 5 / 4 9 .  Although we may try to think of t h i s  mapping as a 

kind of stretching of  the plane  i n  a l l  d i r e c t i o n s  from the o r i g i n ,  so that any 

point and its image are collinear with the orig in ,  t h i s  mental picture has also 

to take into account the fact that the amount of expansion varies with the 

distance o f  a given point from the origin, and that f o r  points  within the circle 

of radius 1 about the origin the s e c a l l e d  stretching is actually a compression. 

We have been considering transformations of individual vectors; l e t  us look 

a t  certa in  transformations of the square ORST, determined by the basis vectors 

[:] and [ . As shown in Figure 5-3, the funct ion 

maps 

respectively,  onto 



Figure 5-3. Reflection in the orig in .  

Another transfontation that is readily visualized is the ref lect ion in the 

x a x i s ,  For t h i s  mapping, the point ( x , y )  goes into the point  (x,--y) ; 

see Figure 5-4. 

Figure 5 4 .  Reflection in the x axis. 

That i s ,  the map is given by 

Using a matrix, we may rewrite t h i s  re su l t  in the form 

[see. 5-11 



as is e a s i l y  ver i f i ed .  

NOW this the square ORST, leaves the point 

(1,O) unchanged; thus the vector i s  mapped onto  i t s e l f  . The vector 

[ ] is mapped onto  

Reflection in the y axis, or a rotation of 1 8 0 ~  in space about the 

y axis ,  can be expressed similarly: 

as shown in Figure S 5 .  

Figure 5-5. Rotation of 189' about the axes. 

Casual observation (see Figures 5-5 and 5-6) may l e a d  you to assume t h a t  

a 180' ro ta t ion  about the y axis and 90' rotation about the origin in 

the ( x , y )  pLane are equivalent; they are no t .  The f i r s t  transformation 

leaves t he  point ( 0 , l )  unchanged, whereas the second transformation maps 

( 0 , l )  onto -10). As a vector function, the 90' rotation with respect t o  



the origin is expressed by 

0 
Figure S 6 .  Rotation of 90 about the origin.  

The transformations of Figures 5-2 through 5 4  have altered neither the 

size nor  the shape of the square. The "stretching" function of Figure 5-1, 

does alter size. A "shear" that moves each point  parallel to  the x axis 

through a distance equel to twice the ordinate o f  the p o i n t  alters shape. Con- 

sider the transformation 

which maps the basis vectors onto 

The result is a sheering that  transforms the square into a parallelogrflm; see 

Figure 5-7. What does the s tretching  do t o  shape? The shear to size? 

f sec. 5-11 



Figure 5-7. Shearing. 

Another type of transformation involves a displacement or "translation" 

in the direction of a fixed vector. The mapping 

V + V + U, where U = I:1 * 

can be written in the form 

One way of visualizing this function is to regard it as translating the plane in 

the direction of the vector U through a distance equal to the length of U. 

Tran~formation of two d i f f e r e n t  types  can be combFned in one function. For 

in s  tance , the mapping 

1 
V + ?(V + U), where U = 

involves a translation and then a compression. When the function is expressed 

in the form 

ue recognize more easily that every point P is mapped onto the midpoint o f  

the line segment joining P to the point: (3,Z); see Figure 58. 

[sea. 5-11 
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Figure 5-8. The transformation V + -i.(V + U) . 

Under t h i s  mapping, the square ORST will likewise be translated 
1 

toward the point (3,2) and then compressed by a factor - , as shown in 2 
Figure 5-9. This f igu re  enables us to see that the points 0, R, S, and T 

are mapped onto midpoints of l f nes connecting these points  t o  (3 ,2 ) .  

Figure 5 - 9 .  Translation and compression. 

A l l  the vector functions discussed above map dist inct  points of the plane 

onto d i s t i n c t  p o i n t s .  This i s  not always the case;  we can certainly produce 

functions that do not have t h i s  property. Thug, the func t ion  

[sec. ~ l l  



maps every poinr of the plane onto the origin. On the other hand, the trans- 

formation 

maps the poinr (x,y) onto the point o f  the x axis that has the same f i r s t  

component as V For example, every point  of the line x = 3 is mapped onto 

the point  ( 3 , O ) .  Since the image of each point P can be located by drawing 

a perpendicu lar  Line £rum P to  the x axis, we may think of P as being 

carried or projected on the x axis by a l ine  perpendicular to  this axis. Con- 

sequently, t h i s  mapping may be described a6 a perpendicu lar  or orthogonal 

projection o f  the plane on the x axis .  You notice that these Last rw functions 

map H onto subspaces of H .  

Since we have met examplea o f  transformations that  map d i s t i n c t  p o i n t s  onto 

distinct points and have also seen transformations under which distinct points 

may have the same image, i t  i s  useful  to define a new term t o  d i s t i n g u i s h  be- 

tueen these two kinds o f  vector functions.  

Def in i t ion  5-1. A transformation frum the s e t  H onto the s e t  H is one- 

tcrone provided that the images of dist inct  vectors are also d i s t i n c r  vec tors .  

Thus, if f is a func t ion  from H onto H and if we write f (V )  for 

the image of V under the transformation f, then Definition 5--1 can be 

formulated symbolically as follows: The function f Is a on-to-one transforma- 

t ion of H provided that, for vectors V and U in H, 

imp lies 

Exercises 5-1 

1. Find the image of the vector V under the mapping 









V AV. (1) 

The study of the solution of systems of Linear equations thus leads to  the 

consideration of the special  class of transformations on H that are expressible 

in the form (11, where A is any 2 x 2 matrix with real entries. These matrix 

transformations constitute a very important class of mappings, having extensive 

applications in mathematics, statistics, phyefcs, operations research, and 

enatneering. 

h important properry of matrix transformations Is chat: they are linear 

mappings ; that is, they preserve vector sums and the products o f  vectors with 

real numbers. 

L e t  us formulate these ideas explicitly. 

Definition +2. A linear transformation on H is a functfon f from H 

into H such that 

(a) for every pa ir  of vectors V and U in H, we have 

(b) f o r  every real number r and every vector V in H, we have 

Theorem 5-1. Every matrix transformation is Linear. 

Proof .  Let f be rhe transformation 

where A is any real matrix of order 2 .  We must show that for any vectors V 

and U, we have 

A(V + U) = AV + AU; 

further, we must show that for any vector V and any real number r we have 
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But these equali tieg hold in virtue o f  parts I11 (a) and 111 ( £1  of  Theorem 4-2 

(see page 134) .  

The l inear i ty  property of matrix transformations can be used to  derive the 

following result concerning transformations of the subspaces of H. 

Theorem 5-2. A matrix A maps every subspace F of H onto a subspace 

F' o f  H. 

Proof. Let F t  denote the s e t  of vectore 

To prove that F1 i s  a subspace of H,  we must show that the following state- 

ments are true: 

(a) For any pair of vectors PI, Q' i n  F', the sum P' +Q' is 

in F1. 

(b) For any vector P' in F1 and any real number r, rP' i s  i n  

F' . 
If PI and Q' are in F', then they must be the images of vectors P 

and Q in F; that is, 

P' = AP, 

Q' = AQ. 

It follows that  

P' + Q' = AP + A Q  = A(P 4- Q), 

end PI f Q' is the image of the vector P + Q in F. (Can you t e l l  why 

P + Q i s  i n  F?) Hence, (P' f Q') E F'. Similarly, 

and hence rP' i s  the image of rP. But rP f F because F is a subspace. 

Thus, rP' is t he  image o f  a vector in F; therefore, rP' E F'. 

Corollary 5-2-1. Every matrix maps the plane H onto a subspace of H, 

Isec. 5-21 
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either the origin, or a straight Line through the origin, or H itself. 

For example, to  determine the subspaces onto which 

(b) H itself, 

we proceed as fol lows.  

For (a), the vectors of F are o f  the form 

Hence, 

Thus, F is mapped onto F', the set of vector8 collinear with [t] ; t h t  is, 

In other words, A maps the line passing through the origin w i t h  slope -3 onto 

the lfne through the origin with slope 1/2. 

A8 regards (b), we note that for any vector 

we have 

Since 2 x  + y assumes a11 real values as x and y run over the set of real 

numbers, it folloca that H fs also mapped onto F1; that is, A maps the 

entire plane onto the line 

[sec. 5-21 



Exercises L 2  

I .  L e t  A =  [ i  :] . For each of the following values of the vector V, 

determine: 

(i) the vector into which A maps V, 

(ii) the line onto which A maps the line containing V, 

2 .  A certain matrix maps 

[:I into [:] , and [ i ]  into [ r ]  . 
Using t h i s  in format ion ,  determine the vector in to  which the matrix maps 

each of the following: 

3 .  Consider the fol lowing subspaces of H: 

F3 =[[:I : Y E -  
2x I , F 4 = H  i t s e l f .  



194 
Determine the subepaces onto which F1, F 2 ,  F3 ,  and F4 are mapped by each 

of the following matrices: 

a = [ ] , ( 8 )  3 - [ -2 O '1 3 ' ( G I  *g5 ( d l  BA- 

(a) Calculate AV for 

(b) Find the vector V for which 

5. Determine which of the following transformations of H are linear, and 

j u s t i f y  your answer: 

1 
(e) V, 7 (V f U), where U = 

6 .  Prove that  the matrix A maps the plane onto the origin if and only if 

7 .  Prove that  the matrix A maps every vector of the plane onto itself if and 

only if 

8 .  Prove that 
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maps the line y = 0 onto itself. IS any point o f  that line mapped onto 

itself by t h i s  matrix? 

9.  ( a )  Show that each of the matrices 

maps H onto the x axis. 

(b) Determine the s e t  of aLL matrices that: map H onto the x ax is ,  

(Hint: You muat  determine all poss ib le  matrices A such that 

corresponding to  each V G H there is a real number r for 

which 

In part cular, (1) mus hold for sui table  r when V is replaced 

Y [ andby [;I h )  

LO. Determine the s e t  of a l l  matrices that map H onto the y axis. 

11. (a) Determine the matrix A such that  

f o r  all V. 

(b) The mapping 

multipliee the lengths of all vectors without changing their directions. 

It amount6 to  a change of scale.  The number a i~ accordingly called a 

scale factor or scalar. Find the matrix A that yields only a change o f  

scale: 

12.  Prove that for every matrix A the s e t  F of all vectors U f o r  which 

[see. ?2] 
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is a subspace of H. This subspace is called the kernel of the mapping. 

13. Prove that a transformation f of B into itself is linear if and only i f  

for every pair of vectors V and U of H and every pair of real numbers 

r and s .  

5-3. Linear Trans formations 

I n  the preceding section, we proved chat every matrix represents a linear 

transformation of H into 8. We now prove the converse: Every linear trans- 

formation of H into H can be represented by a matrix. 

Theorem 5-3.  L e t  f be a linear transformation of H into H .  Then, 

relative to any given basis for H, there ex i s t s  one and only one matrix A 

such that ,  f o r  all V E H, 

Proof. We prove f irs t  that there cannot be more than one matrix represent- - 
ing f. Suppose that there are t w o  matrices A and B such that, for all 

V E kt, 

AV = f (V) and BV = E(V) . 

Then 

AV - BV = f (V) - f (V) 

for each V. Hence, 

(A - B ) V  = [i] for all V t X. 

Thus, A - B maps every vector onto the or ig in .  It follows (Exerc i se  5 - 2 4 )  

that A - B is the zero matrix; therefore, 
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Hence, there is at most one matrix representation of f. 

Next, we show how t o  f i n d  the matrix representation for the linear transfor- 

mation f. Let S1 and S 2  be a pair of noncollinear vectors of H. k t  

be the respective images of SL and S2 under the mapping f .  If V is any 

vector of H, it follows from Theorem 4-10 that there exist real numbers vl 

and v such that V = vlSl + vZS2. Since f is a linear transformation, we 2 
have 

Accordingly, 

Thus, 

It follous that f is repre~ented  by the matrix 

when vectors are expressed in terms of their coordinates relatlve to  the basis 

S1' S* 

You notice that the matrix A is completely determined by the effect  of f 

on the pair of noncollinear vectors used as the basis for H. Thus, once you 

know that  a given transformation on H is linear, you have a matrix represent- 

ing the mapping when you have the imagee of the natural basis vectors, 

For example, I t  can be shown by a geometric argument that the counrerclock- 

Isec* 5 3 1  
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0 

wise rotation o f  the plane through an angle of 30 about the origin is a linear 

rransformarion. This function maps any point P onto the p o i n t  PI, where the 

measure of the angle POP' i s  equal t o  30' (Figure 5-10). It is easy t o  see 

(Figure 5-11} that 

Figure >10. A rota tion through 

en angle of 30' about the origin,  

Figure 5-1 1. The images of the points 

( 1 , O )  and (0,l) under a r o t a t i o n  of 30' 

about the or ig in .  

[;I is rapped onto [in: $1 
and 

Thus, the matrix representing this rotation is 

COS 30° s i n  30' - - -  

A = I... m0 c.. ,..I = [ ; 41 a 

Note that the f i r s t  column of A is the vector onto which ] i rmapped;  

the second c o l m n  of A is the image of Ly1  
The product or composition of two rransfowations is def ined  just as you 

[see. 5.31 



define the composition of two real functions of  a real variable. 

Definition 5-3. If f and g are transformations on H, then for each 

vector V in H the composition transformations Lg and gf are the trans- 

formations such that  

fg(V) a f(g(V)) and gf(V) = g(f(V1). 

Thus, to find the image of V under the transformation fg, you first 

apply g, and then apply f .  Consequently, if g maps V onto U ,  and i f  

f maps U onto W, then fg maps V onto W. 

The following theorem is readily proved (Exercise 5-3--7) . 

Theorem S .  If f is a linear transformation represented by the matrix 

A, and g is a linear transformation represented by the matrix B, then fg 

and gf are both linear transformations; fg is represented by AB, while  gf 

i s  represented by BA. 

For example, suppose that in the coordinate plane each position vector is 

f i r s t  re f l ec t ed  in the y axis, and then the resulting vector is doubled 

Ln length. L e t  us f i n d  a matrix representation o f  the resulting linear tratls- 

formation on H. I f  g i s  the mapping that  transforms each v e c t o r  into its 

reflection in the vertical axis, then we have 

I Y I  I -  I 1-1 n l  I Y l  

If f maps each vector into twice the vector, then we have 

Accordingly, the matr ix  representing fg is 
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Exercises 5-3 

1. Show that each of  the mappings in Exerci ae 5-1-3 is linear, by determining 

matrices representing the mappings. 

2 .  Conaider the linear transformations, 

p: reflection in the horizontal axis, 

q :  hotizontal project ion on the l i n e  y = - x (Exercise H - 5 e ) ,  

0 
r: rotation counterclockwise through 90 , 

a: shear moving each point  vertically through a distance equal to 
the abscissa of the po int ,  

of H into H. In each of the following, determine the matrix represent- 

ing the given transformation: 

3. L e t  f be the rotation of the plane counterclockwise through 45O about 

the origin,  and l e t  g be the rotation clockwise through 30'. Determine 

P matrix representing the rotation cmterc~oclruise through 15' about the 

o r i g i n .  

4. (a) Prove that every linear transformation mape the origin onto i t s e l f .  

(b) Prove that every linear transformation maps every subspace o f  H onto 
a subspace of H. 

5. For every two linear transformations f and g on H, define f + g to  

be the transformation such that, for each V E H, 

(f + g)(V) = f ( V )  + g(V1. 

Mithou t using matrices, prove that f + g is a linear trans formation on Ii. 

6. For each linear transformation f on H and each real number a, define 

af to be the transformation such that 
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Without using matrices, prove that a f  is a linear transformation on H .  

7 . Prove Theorem 5-4. 

8 .  Without using matrices, prove each of the following: 

(a> f ( g  + h) = f g  -4- fh, 

(b) ( f  + g)h = f h  + gh, 

(c> f(ae) = a(fg),  

where f ,  g ,  and h are any linear transformations on H and a i s  

any real number. 

5-4. One-to-one Linear Transformations 

The reflection of the plane in the x axis clearly maps d i s t i n c t  po ints  

onto distinct points; thus, the reflection is a one-to-one linear transformation 

on H. Moreover, the reflection maps any pair of noncollinear vectors onto a 

pair of noncollinear vectors. It is easy to  show that  this property is common 

to all one-to-one linear transformations o f  H into itself. 

Theorem 5-5, Every o n e t o a n e  linear transformation on H maps noncollinear 

vectors  onto noncollinear vectors.  

Proof. L e t  S1 and S2 be a pair of noncollinear vectors and let: 

f(S ) = T1 and f ( S . 1  = T2 1 L 

be their images under the one-to-one l i n e a r  mapping f. Since f is one-to- 

one, we know that T1 and T, are not both the zero vector.  We may suppose, t 
therefore, that TI i s  not the zero vector. To show that TI and T2 are 

not coll inear,  we shall demonstrate that the assumption that  they are collinear 

leads to a c o n t r a d i c t i o n .  

If TI and T2 are collinear, then there exists a real number r such 

that T2 = r TI. Now, cons ider  the image under f of the vector  r S1. Since 

f is linear, we have 
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~ h u s ,  each of the vectors r S1 and S2 is mapped onto T2. Since f is one- 

t-ne, it follows rhar 

and therefore that S1 and S2 are collinear vectors.  But this contradicts 

the fact that S1 and S2 are not collinear. Hence, the assumption that  T~ 
and T2 are collinear must be false. Consequently, f must map noncollinear 

vectors onto noncollinear vectors. 

Corollary 5-5-1. The subspace onto which a one-to-one linear transformation 

maps H is H itself. 

Proof. Since the subspace contains a pair of noncollinear vectors, the 

corollary follows by use of Theorems 4-9 and 4-10. 

The link between one-to-one transformations on H and second-order 

matrices having inverses i s  given in the next theorem. 

Theorem 5-6. L e t  f be a linear transformation represented by the matrix 

A, Then f is one-to-one if and only if A has an inverse. 

Proof .  Suppose that A has an inverse, Let S1 and S2 be vectors in 

H having the same image under f. Now,  

f(sl) = AS1 and f ( S 2 )  = AS2,  

Thus, 

Hence, 

and 



Thus, f must be a o n e t o - o n e  trans formation.  

On the other hand, suppose that f i s  one-to-one. From Theorem 5-5, it 

follows that every vector in H i s  the image of some vector in H. In part icu-  

l a r ,  there are vectors W and U such that 

and 

Accordingly, the matrix having for its f irs t  column the vector W, and for 

its aecond column the vector U, is the inverse o f  A .  

Corollary 5-6-1. A linear transformation represented by the matrix A is 

o n e - - t ~ n e  if and only i f  

The theory of systems of tw linear equation8 in two variables can now be 

s t u d i e d  geometrical t y  . Writing the sys tern 

i n  the form 

where 

we seek the vectors V that  are mapped by the matrix A onto the vector U. 

Isec. 3-4.3 
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If 6(A)  # 0 ,  we now know that  A represents a one-tc-one mapping of H 

-1 
onto H .  Therefore, A maps exactly one vector V onto U, namely, V = A U. 

Thus, the system (1) - or, equivalently, (2) - has exactly one s o l u t i o n .  

If F ( A )  = 0 ,  then, in v i r tue  of Corol la ry  4-7-1, the coltrmns of A must 

be collinear vectors.  Hence, A m u s t  have one of the forms 

where n o t  both a and b are zero .  Xf A has the Ef rs t of these forms, then 

A maps H onto the or ig in .  In the other  two cases, A maps H onto  the 

line of vectors collinear with the vector [;I . (See Exercise 54-7, be low. )  

With these results in mind, you may now complete the discussion of the s o l u t i o n  

of  equation ( 2 )  . 

Exercises 5-$ 

1. Using Theorem 5-6 or its corollary, determine which of the transformations 

in Exercise 5-1-3 are one-to-one. 

2 .  Show thar a linear rransformation is one-toone if and only if the kernel 

o f  the mapping cons is ts  only of t he  zero vector. (See Exercise 5-2-12 .) 

3 .  (a) Show that i f  f is a one-tmne linear transformation on H ,  then 

there exists  a linear transformation g such that, for a l l  V c H ,  

and 

The transformation g i a  called the inverse o f  f and is usually written 

-1 
(b) Show that the transformation g = f in part: (a) i s  a one-tcrone 

transformation on H. 

4 .  Prove that i f  f and g are o n e t r r o n e  linear transformations of H, then 

fg is also a one-to-one transformation of H. 
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5. Prove that the s e t  of one-t-ne linear transformations on H i s  a group 

relative to the operation of composition of transformations. 

6 .  Show that  i f  f and g are linear transformations of H such that fg 

i s  a o n e t m n e  transformation, then both f and g are onetc-one trans- 

forraations, 

7 .  (a)  Show that if &(A) = 0, then the matrix A maps H onto a point 

(the or ig in )  or onto a line. 

(b) Shov that i f  A i s  the zero matrix and U i s  the zero vector, 

then every vector V o f  H is a solution of the equation AV = U. 

( c )  Shov that if 6(A) = 0, but A is not the zero matrix, then the 

solution s e t  o f  the equation 

is a s e t  of collinear vectors. 

(d) Show that if 6(A) = 0, but A is n o t  the zero matrix,and U is 

not the zero vector ,  then the solution set of the equation 

either is empty or consists o f  all vectors of the form 

where V1 and V2 are fixed vectors such that 

AV1 = U and AV2 = [:I 
8. Show that if the equation AV = U has more than one so lut ion for any given 

U, then A does not have an inverse. 

5 5 .  Characteristic Values and Characreristic Vectora 

If we think of a mapping as "carryingt' points  of the plane onto other points 

of  the plane, we might ask, through curiosity, i f  there are cases in which the 
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image p o i n t  under a mapping i s  the same as t he  point  itaelf. Such 'fixedf 

p o i n t s ,  or vectors, are o f  great importance in mathematical analysis.  

Let us look at an example. The ref lect ion with respect to  the x axis, 

that i s ,  

has the property of mapping each vector on the x axis onto i t s e l f ;  thus, 

each of these vectors is fixed under the transformation. 

Definition 5 4 .  If a transformation of H into itself maps a given vector 

onto Ftaelf, then that: vector is a fixed vector for the transformation, 

More generally, we are interested in any vector that  is mapped into a 

mult ip le  of itself; that i s ,  we seek a vector V E H and a number c E R such 

rha r 

Since the equation is automatically sat isf ied by the zero vector regardless of 

the value c ,  this  vector i s  ruled o u t .  

The number c is called a characteristic value (or eigenvalue) o f  A, and 

the vector V a characteris t ic  vector of A. These notions are fundamental in 

atomic physics since the energy levels of atoms and molecules turn out to be 

given by the eigenvalues of certain matrices. Also  the analysis o f  f lu t ter  

and vibration phenomena, the stability analysis of an airplane, and many other 

physical problems require finding the characteristic values and vectors of 

matrices. 

In Section 5 1 ,  we saw that  the mapping 

carried the plane H onto the line y = x / 2 .  I f  we consider the s e t  F 
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under t h i s  same mapping, we see that F i s  mapped onto F' , t h e  s e t  of vectors 

collinear with F. Note that 

and hence that 5 is a characteristic value associated with A, and 1 2 : 1  Is 
L 4 

a characteristic vector for any t c R, t # 0 .  

Def in i t ion  5-5. Each nonzero vector sa t i s fy ing  the equation 

i s  called a characteristic vector, corresponding to the characteristic value 

(or characteristic root) c of  A .  

Note that, as remarked above, the tr iv ia l  so lu t ion ,  [:I of the equation 

is not considered a characteristic vector, 

Because of the importance of characteristic values i n  pure and a p p l i e d  

mathematics, we need a method for f inding  them. we seek nonzero vectors V 

and real numbers c such that  

If I is the ident i ty  matrix of order 2, then (1) can be written as 

If we l e t  

equation ( 2 )  becomes 



We know that  there is a nonzero vector v sa t i s fy ing  an equation of the form 

BV = 0 - 

if and only if 

Hence equation ( 2 )  has a so lut ion o t h e r  than the zero vector if and only  if c 

is chosen in such a way as ro s a t i s f y  the equation 

Rearranged, this equation becomes 

which is called the characteristic equation of the matrix A .  Once t h i s  

quadratic equation is solved f o r  c, the corresponding vectors V satisfying 

equation (1) can readily be found, as illustrated in the following example. 

Example. Determine the fixed lines under the mapping 

We must solve the matrix equation 

Since 

6 ( A  - cI) = ( 2  - c)(l - c ) ,  

[see* 5-51 



the characteristic equation is 

the roots o f  which are 1 and 2 .  For c = 1, equation ( 3 )  becomes 

which is equivalent to  the system 

Thus, A maps the l i n e  x + 3y = 0 onto i t s e l f ;  t h a t  i s ,  the s e t  F 

is mapped onto i t s e l f .  Actually, since c = 1, each vector of t h i s  subspace  

is invariant: if V i s  a cbracterist ic  vector, f ( V )  i t s  image, and c = 1, 

then 

f ( V )  - V. 
For c = 2, equation (3)  becomes 

Hence, 



maps the line y = 0 onto i t s e l f ;  the s e t  of vectors F 

is closed under the transformation. 

The characteristtc equation associated with the matrix 

This equation expresses a real-number function. For a matrix function, the 

corresponding equation i s  

where I is the identity matrix o f  order 2 and 0 IB the zero matrix of - 
order 2. I f  w e  substitute A in this matrix equation, 

we f ind that A is a root of i t s  characteristic equation, This La true f o r  

any 2 x 2 matrix. 

Theorem F7. The mtrix  A 

is a so lut ion  o f  its characteristic equation 



The proof is left as an exercise. 

Theorem 5-7 is the case n = 2 o f  a famoua theorem called the Cayley- 

Hamilton Theorem, vhich s t a t e s  that an analogous result holds for matrices of 

any order n. 

Exercises 5-5 

1. Determine the characteristic roots and vectors o f  each of the follouing 

matrices: 

2 .  Prove that zero is a characteristic root of a matrix A if and only i f  

6(A)  = 0 .  

3. Show that a linear transformation f is one-t-ne if and only i f  zero i s  

not a characteristic root of the matrix representing f . 
4. Determine the invariant subspaces (fixed Lines) of the mapping given by 

Show that  these l ines  are m~cual ly  p$rpendicular. 

is a solution of i t s  characteristic 

(matrix) equation 
2 2  

6. Show that is an invariant vector of the transformation 

but =hat 2 [i] is not invariant under this mapping.  
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7. Show that A maps every line through che o r i g i n  onto itself if and only if 

A = [: or] 
f o r  r # O .  

L 
8 .  L e t  d = (al1 - aZ2)  + 4 a a 12 21' where all'  a12' =21' and aZ2 are any 

real numbers. Show rhat the number o f  d i s t i n c t  real characteristic roots 

of the matrix 

9 .  Find a nonzero matrix t h a t  leaves no Line through the origin f ixed.  

10. Determine a one-te-one linear transformation that maps exactly one line 

through the origin onto i t s e l f .  

11, Show rhat every matrix o f  the form [: :I has two d i s t i n c t  characteris tic 

roots i f  B # 0. 

12.  Show that the matrix A and i ts  transpose A~ have the same characteristic 

roots. 

5-6. Rotations and Reflections 

Since length is an important property in Euclidean geometry, we shall look 

for the linear transformations of the plane that leave unchanged the length 

I I VI I of every vector V .  Examples of such transformetions are the following: 

(a) the reflection of the plane in the x axis, 

(b) a ro ta t ion of the plane  through any given angle about the o r i g i n ,  

( c )  a r e f l e c t i o n  in the  x axis followed by a ra tat ion  about the o r i g i n .  I 
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Actual ly ,  we can show that any linear transformation that preserves the lengths 

of a l l  vectors i s  equivalent  to  one of these three. The following theorem w i l l  

be very usefu l  i n  proving that  r e s u l t .  

Theorem 5-8. A linear transformation of H that leaves unchanged the 

length of every vector also leaves unchanged (a) the inner product o f  every pair 

of vectors and (b)  the magnitude of the angle between every pair of vectors .  

Proof. Let V and U be a pair of vectors in H and l e t  V t  and U' 

be the ir  respective imegea under the transformation. In virtue of Exercise 

4 - H i ,  we have 

and 

Since the transformation is linear, for the image of V + U we have 

Consequently, (2) can be written as 

2 2 
I I ( V  +u)'112 = I I V ' I I  + 2Vi . U' + I I V ' I I  . ( 3 )  

But the transformation preserves the Length of  each vector;  thus, we obtain 

I I V ' I I  = I I V I I ,  I I U ' I I  = I I U I I ,  and I I ( V  f U ) ' I I  - I I V  + U t l .  

Making these subst i tut ions  i n  equation (3),  ue get  

Comparing equations (1) and ( 4 ) ,  you see that we must have 

that  i s ,  the transformation preserves the value of the inner p r d u c t .  

[see. 563 
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Since the magnitude of the angle between V and U can be expressed in 

terms of i nne r  products ITheorem 4-51, it fo l lows  that the transformation also 

preserves that magnitude. 

Corollary 5-8-1. If a linear trans formarion preserves the length of every 

vector, 'then it maps orthogonal vectors onto orthogonal vectors.  

By the d e f i n i t i o n  o f  orthogonality, this  simply means that  the geometric 

vectors are mutually perpendicular. 

X t  is very easy to show the transformations we are considering also  pre- 

serve t h e  distance between every pair of points in the plane. Ke state this 

property formally i n  the next theorem, the proof of which is left as an exercise. 

Theorem 5-9, A linear transformation that preserves the length of every 

vector leaves unchanged the distance between every pai r  of p ~ i n t s  in the plane; 

that i s ,  if V' and U' are the respective images of the vectors V and U, 

then 

Let us now f i nd  a matrix representing any given l inear  lengttr-preserving 

t r a n s f o m a t i u n  of H. All we need to f i nd  are the images of the vectors 

under such e transformation. (Why is this so?)  

If Si and S; are the respective images of SL and S 2 ,  then we know 

that both Si and Si are o f  Length L and that they are orthogonal to each 

other .  

Suppose t h a t  S; forms the angle (alpha) with the positive half o f  

the x axis (Figure 5-12). Since the length of S; equals 1, we have 

We know that: S; is perpendicular to S; . Hence, there are two opposi te  



Figure 5-12 . A length-preserving trans formati  on. 

possibilities for the direction of S;, because the angle P (beta) that Si 

makes with the positive.half of the x axis may be either 

In the firs t case (5) , we have 

I n  the second case (61, we have 

n s i n  Cr 

[sec. 561 
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AccordingLy, any linear transformation f that  leaves the length of each 

vector unchanged must be repreeented by a matrix having either the form 

cos a -sin [r I 
or the form 

In  the f i r s t  instance (71, the transformation f simply rotates the basis 

vectors SL and S2 through an angle and we suspect that f is a rotation 

of the entire plane H through that angle. To veri fy  t h i s  observation, we write 

the vec tor  V in terms o f  its angle a f  inclination 9 (theta) t o  the x axis 

and the Length r = I I V I I ;  that is, we write 

Forming AV from equations ( 7 )  and (9),  we obtain 

AV = [ r(cos 9 cos - s i n  8 sin a) 
r(sfn 8 cos cX + cos 8 sin a) ' I 

From the formulas of trigonometry, 

cos ( 0  + a) = cos 8 cos a - s i n  8 sin a, 
sin ( 8  + a) = s in  8 cos (Y + cos Q s i n  a, 

w e  see that 

A. = [ r cos (9 + a) 
r s i n  (8 + a)  

Thus, AV is the vector o f  length r a t  an angle 8 + Cr to the horizontal 

a x i s .  We have proved that the matrix A represents a rotation of fl through 

the angle (T. 

But suppose f i s  represented by the matrix B in equation (8) above. 

This transformation differs from the one represented by A in that the vector 

S; is reflected across the line of the vector S;. Consequently, you may 

suspect that rhFs transformation amounts to a ref lect ion of the plane in the 

[sec. 2-61 
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x axis followed by a rotation through the angle LY.  Since you know that the 

reflection in the x axis is represented by the matrix 

you may therefore expect that 

We leave t h i s  verification as an exercise. 

Exercises 5 6  

1. Obtain the matrices that rotate H through. the following angles: 

(a) 180°, 

(b) 45O, 

(c) 30°, 

( d l  boo, 

(e)  270°, 

( £1  90°, 

(g) -120°, 

(h) 360°,  

i -13s0, 

( j )  LSO'. 

2 .  Write out  the matrices that represent the transformation conaieting of a 

ref lect ion in the x axis  followed by the rotations of Exercise 1. 

3 .  Verify Equatian (lo), above. 

4 .  A linear transformation of H that  preserves the Length of every vector is 

called an orthogonal transformation, and the matrix representing the' trans- 

formation is called an orthogonal matrix. Prove that the transpose of an 

orthogonal m a t r i x  is orthogonal. 

5. Show that the inverse of an orthogonal matrix is an orthogonal matrix. 

6. Show that the product of two orthogonal matrices i s  orthogonal. 

7. (a) Show that a translation of In the direction of the vector 

and through a distance equal to the length o f  U is given by the mapping 

[sac. 5-61 



(b) Show that this mapping does not preserve the length of every vector, 

bu t  that  it does preserve t he  dis tance  between every pair o f  p o i n t s  in the 

plane.  

(c) Determine whether or n o t  t h i s  mapping is linear. 

8. Let Ra and R denote rotations o f  H through the  anglea a and b, 
B 

respectively. Prove that a rotation through Q followed by a r o t a t i o n  

through 0 amounts to a rotation through CI + @; that i s ,  show that  

9. Note that  the matrix A of Equation (7) is a representation of a complex 

number. What does the result o f  Exercise 8 imply f o r  complex numbers? 

0 .  (a) Find a matrix that represents a reflection across the line of the 

vector 

(b)  Show that the  matrix B of equation (a), above, represents a re- 

flection across the Line of some vector.  



Appendix 

RESEARCH EXERC X S E S  

The exercises i n  t h i s  Appendix are essentially "research-type" problems 

designed to exhibit aspects of theory and practice in macrix algebra t h a t  could  

no t  be included in the t ex t .  They are especially suited as individual  assign- 

ments for those students who are p r o s p e c t i v e  majors i n  the theoretical and 

p r a c t i c a l  aspects of  the scientific d i s c i p l i n e s ,  and for students who would like 

to test their mathematical powers.  AlternativeLy, small groups of s tudents  

might join forces in working them. 

1. Quaternions .  The algebraic system that is explored in this exercise 

was invented by the Irish mathematician and physicist, William Rowan Hamilton, 

who publ i shed  his first paper on the subject in 1835. It was nor until 1858 

that Arthur Cayley, an English mathematician and lawyer, p u b l i s h e d  the f irs t  

research paper on matrices, though the nane matrix had prev ious ly  been a p p l i e d  

by James Joseph S y l v e s t e r  in 1850 to  rectangular arrays of numbers. Since 

Hamilton's system o f  quaternions i s  actual ly  an algebra o f  matrices, i t  is more 

easily presented i n  this guise than in the form in which i t  was first developed. 

In the present exercise, we shall consider the algebra o f  2 x 2 matrices 

with complex numbers as entr ie s .  The definitions of addi t ion ,  m u l t i p l i c a t i o n ,  

and inversion remain the same. We use C for the set of all complex numbers 

and we denote by K the s e t  o f  a11 matrices 

where z, w, zl, and w are elemerlts o f  C. As i s  the case w i t h  matrices L 
having real entries, the element 

of K has an inverse if and only if 
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and then we have 

Since 1 is a complex number, the unit matrix is s t i l l  

If 

then we write 

z a x 4- iy, 

and call this dumber the complex conjugate of z, or simply the conjugate of z .  

A quaternion i~ m element q of K of the particular form 

[G q] , r t C and w E C. 

We denote by Q the s e t  o f  all quaternions. 

2 
(a) Ohow that 6 ( q )  = x2 + y + uZ + v2 i f  r - x + iy and w = u + i v .  

Hence conclude that, since x, y, u, and v are real numbers, 6(q)  = 0 i f  

and only i f  q = 2. 

(b) Show that if q E Q, then q has an inveree if and only if q + 0 - , 
and exhibit the form of q-' if it exists. 

Four elements o f  Q are of particular importance and we give them special 

names : 



(c)  Show that  if 

where z 5 x f i y  and w = ' u  + i v ,  then 

q =XI + y U  + u v * v w .  

(d)  Prove the following identities involving I, U, V and W: 

v ' P V 2 i J i - f  

and 

U V = W = - W ,  V W = U = - W V ,  and W = V - - u w .  

(el  Use the preceding two exercises t o  show that if q E Q and r E Q, 

then q + r ,  q - r, and qr are all elements of Q. 

The conjugate of the element 

q = [ 1 ,  where r = x + iy, v - u + l v ,  

and the norm and trace are given respectively by 

and 

(f) Show that i f  q f Q, and i f  q is invertible, then 
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From this  c ~ n c  lude that if q -Z 9, and if q-l cnis t a ,  then q r 9. 

(g) Show that each q 6 Q satisf ies  the quadratic equation 

(h) Show that i f  q E Q, then 

Note that  t h i s  may be proved by using the result that  i f  

then 

and then ueing the results given in ( d ) .  

( i )  Show that  i f  q E Q and r e Q, then 

t q r l  = I q l  I r l  

and 

The geometry of quaterniona constitutes a very interest ing  subject. It 

requires the representation of a quaternion 

as a point  with coordinates (a, b, e, d) in four4imenaional spaces. The 

subset of elements, 

QL {q: 9 E Q and I q l  = I ) ,  

is a group and is represented geometrically as the hyperephere with equation 



2 .  Nonassociative Algebras 

The algebra o f matrices (we restrict our attention in t h i s  exercise to the 

s e t  M of 2 x 2 matrices) has an associative but not a comutative multipli- 

cation. "Algebras" with nonassociative multiplication have become increasingly 

important in recent years-for example, in mathema tical gene t ics .  Genetics is 

a eubdiacipline o f  biology and is concerned with transmission o f  hereditary 

traits.  Nonassociative "algebras" are important also in the study of quantum 

mechanics, a subdiscipline o f  physics .  We give first: a simple example of a L i e  

algebra (named after the Norwegian geometer Sophus LLe) . 
If A E M and 8 E bf, we write 

and read this "A op B," "op" being an abbreviation for operation. 

(a)  Prove the following properties of o: 

(i) AoB = - BOA, 

(ii) AoA = Q, 

liii) Ao(BoC) + Bo(CoA) + Co(AoB) = 2, 

(iv) A o I  = = I o A .  

(b) Give  an example ro show that Ao(BoC) and (AoB)oC are di f ferent  

and hence that o i s  not an associative operation, 

D e s p i t e  these strange properties, o behaves nicely relative to ordinary 

metrix addition. 

(c )  Show that o dietributes over addition: 

and 

(d) Show that o behaves nicely relative to multiplication by a number. 
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It will be recalled that A' is termed the multiplicative inverse of A 

and is defined as the element B satisfying the re lat ionships  

AB = I - BA.  

But i t  must elso be recalled thar t h i s  d e f i n i t i o n  was motivated by the fact that 

A 1  = A = IA, 

that is, by the fact that  I is a multiplicative unit. 

(e)  Show rhar there is no o u n i t .  

We know, from the foregoing work, thar o i s  neither comutat ive  no r  

associative. Here is another kind of operation, called Jordan multiplication: 

If A f M  and B f  M, w e d e f i n e  

A j B  = 
(AB + BA) 

2 -  

We see at once that 

A j B  = B j A ,  

so that Jordan mulriplicarion is a comutative operation; b u t  i t  i s  n s  

associative . 
(f) Determine all of the properties o f  the operation j that you can. 

For example, does j d i s t r i b u t e  over addit ion? 

3. The Algebra of Subsets 

We have seen that there are interestfng algebraically defined subsets of 

M, the set of all 2 x 2 matrices. One such subset, f o r  example, is the set 

Z, which is isomorphic wf th the set of complex numbers. Much of higher 

mathematics i e  concerned wi th  the "global structure" of "algebras," and generally 

this involves the consideration of eubsets of the "algebras" being s t u d i e d .  I n  

t h i s  exercise, we shall generally underscore letters t o  denote subsets of M. 

If 4 and g are subsets of M, then 



is the s e t  of a l l  elements of the form 

A + B ,  where A E  4 and B E  B. - 

In set-builder notation this may be written 

A + B =  { A + B  : A s 4  and B E B ] .  - - 

* By an a d d i t i v e  subset of M is meant a subset A C M such that 

(a) Determine which of the fo l lowing  are additive subsets o f  M: 

( i )  ( 2 1 3  

(ii> (11, 

(iii) M, 

( i v )  2 ,  

(v)  %, the s e t  of a l l  A in M with &(A) 5 1, 

(vi) the set of all elements of M whose entries are nonnegative. 

(b)  Prove t h a t  if A ,  - - 0, and 2 are subsets of M, then 

(i) if B =  !+A, 

(ii) A +  (B - + C )  - = ( A + B )  +C, 

(Lii) and if A C B  - - then A + C C B + C .  - - - -  
( c )  Prove that  if & and B are addttive subsets of M, then 

is also an addittve subset of M. 

Let V denote the s e t  of a l l  column vectors 

wi th  x E R and y c R.  

( d )  Show t h a t  i f  v is a fixed element of V, then 



A: A E M and Av = 

is an a d d i t i v e  subset of M. Notice also that i f  AV = 0 then (-A)" = 0. - 
If A - and - B are subsets o f  M, then 

is the s e t  of all 

AB, A E and B E g .  

Using set-builder notation, we can write  this in the form 

AB = IAB: A 6 A - and B E - 01. 

A subset A of M is multiplicative if 

(e)  Which of the s u b s e t s  in p a r t  (a) are multiplicative? 

( f )  Show that  i f  A ,  B, and C are subsets of M ,  then - - - 

(ii) and if - A C E ,  then A C C B C .  - - 

(g) Give an example of two s u b s e t s  A and B of M such that  -,. 

(h) Determine which o f  the following subsets are multiplicative: 

(iii) the s e t  of a l l  elements o f  M with  negative entries, 

(iv) the s e t  o f  all elements of M f o r  which t h e  upper left-hand 

e n t r y  is less than 1, 

(v)  the set of all elements of M o f  the  form 



with  O s x ,  O s y ,  and x + y < L .  - 

The exercises stated above are suggestions as to how this "algebra o f  

subsets" works. There are many other results that  come t o  mind, but we shall 

leave them to you to find. Here are some clues: How would you define tA_ i f  

t 6 R and A - C M? Is (-l)A - = - A? - Wait a minure! !hat does -A mean? - 
What does $' mean? Does set multiplication distribute over addition, over 

union, over intersection? Do no t  expect that  even your teacher knows the 

answer to all of these possible quest ions.  Few people know all of them and 

fewer s t i l l ,  of those who know them, remember them. I f  you conjecture that 

something is true but the proof o f  it escapes you, then try t o  construct an 

example to show that it :  i s  false. If this does not  work,  t ry  proving i t  again, 

and so on, 

4 .  Analysis and Synthesis o f  Proofs 

This is an exercise i n  analysis and s y n t h e s i s ,  raking an old proof to 

pieces and using the p a t t e r n  to  make a new proof. In describing his act iv i t i es ,  

e'mathematician i s  l i k e l y  to put a t  the very top that  of creating new results. 

Rut "re~ult" in mathematics usually means "theorem and proof." The mathematician 

does n o t  by any means lLmit his methods in conjecturing a new theorem: He 

guesses, uses analogies, draws diagrams and figures, sets up physical models, 

experiemente, computes; no holds are barred. Once he has his conjecture firmly 

in mind,  he is only half through, for he still must construct a proo f .  One way 

of doing t h i ~  is t o  analyze proofs of known theorems that are somewhat l i k e  the 

theorem he is trying to prove and then synthesize a proof o f  the new theorem. 

Here we ask you t o  apply  this process of analysis and synthesis of proofs to 

the algebra o f  matrices. To accomplish this, w e  shall introduce some new 

operatians among matrices by analogy with the old operations. 

For simplicity of computation, we shall use only 2 x 2 matrices. 

To start w i t h ,  we introduce new operations in the s e t  of real numbers, R .  

I f  x E R and y E R, we define 

x /\ y = the smaller of x and y (read: "x cap y") 

and 

x V y = the larger of x and y (read: "x cup y"). 
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(a) Show tha t  if x E R, y E R, and z f R, then 

(i) x A y a y A x ,  

(ii) x V  y = y v x,  

(iii) x A (y A 2) = ( x  /\ y) A z, 

( i v )  x V (Y  V 2 )  = ( x V Y )  V 2 ,  

( v )  X A X = X,  

(vi) x V x = x ,  

( v i i )  x A I y  V Z )  = (X A y) V (x A z), 

( v i i i )  x V ( y  A z) = (x V y) A (X V 2). 

Although the foregoing operations may seem a l i t t l e  unusual, you will have 

no d i f f i cu l ty  in proving the above statements. They are not: d i f f i c u l t  to 

remember if you n o t i c e  the following facts: 

The even-umbered resul ts  can be obtained from the odd-numbered results  by 

interchanging and V , and conversely. 

The first s t a t e s  thar A i s  comurative and the t h i r d  s t a t e s  that A is 

a s s o c i a t i v e .  The f i f t h  is new but  the seventh s t a t e s  that r\ di s t r ibute s  over 

v .  
To define the matrix operations, l e t  us think of  A as the analog of 

muLtiplication and V as the analog of addi t ion  and l e t  us begin with our new 

matrix "mu1 t i p l i c a t i o n . "  

We define 

This is simply the rowbycolumn operations, except that A is used in 

place o f  multiplication and V is used in place o f  addition. To see this  more 

clearly ,  we write 

(b) Write out a proof that i f  A ,  B, and C are elements of M ,  then 
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Be sure not t o  omit any steps in the proof. Using t R i 6  as a pattern, write out 

a proof that 

ver i fy ing  at each s t e p  that you have the necessary resul ts  from ( a )  to  make the 

proof sound. L i s t  all the properties of the tw pairs  o f  operations that  you 

need, much as a s s o c i a t i v i t y ,  conrmutativity, and d i s t r i b u t i v i t y .  

( c )  Using the analogy between V and addition, define A V 0 for elements 

A and B o f  M. 

( d )  State  and prove, for the new operations, analogs of a l l  the rules 

you know f o r  the operations of matrix addition and multiplication. 
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Equality of matrices, 7 
Equation, characteristic, 208 
Equivalence, row, 114 
Equivalent systems of linear equations, 

105 
Equ i v a  Len t vectors , 138 
Expansion factor,  179 
Factor, contraction, 130 

expans i o n ,  1 7  9 
Field, 5 5  
Fixed point, 206 
Four-dirnens iona l space, 222 
Free v e c t o r ,  175 
Function, 177 

determinant, 7 7  
domain, 177 
matrix, l r j 9  
range, 177 
real, 177 
stretching, 183 
vector ,  177 

Galois, Evariste ,  9 2  
Geometric r ep re sen ta t i on  of vector ,  140 
Global structure of algebras, 224 
Group, 85, 90 

abelian, YO 
commutative, 90 
o f  invertible matrices, 85 
related to face of clock, 90 

Head of  arrow, 1 3 i  
Hypersphere, 22.2 
I d e n t i t y  matr ix,  f o r  a d d i t i o n ,  11 

for multiplication, 4L 
Image, 178 



Independence, linear, 2 7 2  
Infinite decimal,  1 
I n i t i a l  po int  o f  vector,  137 
Inner product of vectors, 152, 154 
Integer, 1 
Invariant subspace,  211 
Invariant vector ,  209 
Inverse  of a m a t r i x ,  62-63, 113 
of order two, 7 5  

Inverse o f  a number, 54 
of a transformation, L O 4  

Isomorphism, 94,  100 
Jordan multiplication, 224 
Kernel,  196 
Law of  cosines, 153 
Lef t  multiplication, 37 
Length of a vector ,  137-138 
Linear combination, 270  
Linear dependence, 172  
Linear equations,  system o f ,  103, 119 

e q u i v a l e n t ,  105 
s o l u t i o n  o f ,  103-105 
r e l a t i o n  to  matrices, 107 
s o l u t i o n  by diagonaLization method, 

131. 
s o l u t i o n  by triangularization method, 

152 
Linear independence, 172 
Linear map, 190, 196 
Linear trans formation, 190, 196 
Located vector, 136137 
Map, 178 

inverse, 204 
kerne l ,  196 
l inear ,  190, 196 

onetcr-one, 201 
onto, 178 

Matrices, 1, 3 
Matrtx, 1, 3 

a d d i t i o n ,  9 
associative law f o r ,  12 
comutative law f o r ,  12 
confonnalb i l i ty  for, 10 
i d e n t i t y  element for, 11 

a d d i t i v e  inverse, 14 
an t i c m u  tative,  49 
column, 4 
column o f ,  2 
conformable far addition, 10 
difference,  14 
d i v i s i o n ,  50--51 
elementary, 124 
e n t r y  o f ,  3 
e q u a l i t y ,  7 
i d e n t i t y  for addi t ion ,  11 

for  multiplication, 46 

Matrix (continued) , 
inverse, 6 2 4 3 ,  113 
of order two,  7 5  

i n v e r t i b l e ,  63 
m u l t i p l i c a t i o n ,  24,  30, 32 

c a n c e l l a t i o n  Law for, 37 
conformability for, 27 

left, 37 
r i g h t ,  37 

multiplicatios by a number, 19-20 
n e g a t i v e  o f ,  14  
order o f ,  3 
orthogonal, 217 
product, 26 
row,  4 
row o f ,  2 
square,  4 

order of, 4 
sum, 10 
transformation, 189 
transpose of, 5 
unit, 46 
variable, 109 
zero, 11 

Matrix function, 109 
Mult ip l icat ion .  24,  30, 32 

Jordan, 224  
M u l t i p l i c a t i o n  of matr ices ,  24, 30, 32 

distributive l a w  for, over a d d i t i o n ,  
41-45 

Pful tiplication of  matrix by number, 
19-20 

Multiplication o f  v e c t o r  by number, 
144 

Natural basis, 171 
Negative o f  a matrix, 14 
Nonassociative a lgebra ,  223 
Norm of a quaternion, 221 
N o r m  of a vector, 141 
Null vector, 139 
Number, 1 
Number, complex, 1 ,  94 

conjugate, 220 
taunting, 1 
integer, L 
inverse,  54 
r a t i o n a l ,  1 
real ,  1 

One--to-one trans formation, 185 
Operation, row, 114, 124 
Opposite vectors, 138 
Order of a matrix, 3, 4 
Orthogonal matrix, 217 
Orthogonal projection, 186 
Orthogonal transformation, 217 
Orthogonal vec tors ,  156 



parallel vectors, 143, 163  
para1 lelograrn r u l e ,  149 
perpendicular p r o j e c t i o n ,  186 
Perpendicular vectors, 153 
P i v o t ,  132 
P o i n t ,  fixed, 206 
Product of transformations, 198 
Projection, 
orthogonal, 186 
perpendicular, 186 

mate rn ion ,  219-223 
conjugate, 221 
geometry o f ,  222 
norm, 221  
trace, 221 

Range of a function, 177 
Rational number, 1 
Real funct ion ,  177 
Real number, 1 
R e f l e c t i o n ,  178, 212 
Representation of vector, 140 
Right multiplication, 37 
Ring, 57-58 

with i d e n t i t y  e lement ,  60 
Rise, 137 
Root, characteristic, 206 
Row equivalent, 114 
ROW matrix, 4 
Xow o f  a matrix ,  2 
Row operation, 114, 124 
Row vector,  4 
n o t a t i o n ,  198, 212 
Run, 137 
Scalar, 195 
Set, 53 

closure under an operation, 53 
element of, 57 

Shear, 183 
Sigma notarion, 30 
Slope of a vector, 138 
Space, 166 

f o u r d i m e n s i o n a l ,  1 2 2  
Square matrix ,  4 
Square root of u n i t  matrix, 39 
Standard represen tarion, 140 
Stretching funct ion ,  183 
Subset,  

a d d f t i v e ,  225 
algebra o f ,  224 

Subspace, 1 6 6 1 6 7  
invariant, 211 

Sum o f  matrices, 10 
Synthesis o f  proofs, 227 
System of  l i n e a r  equations ,  103, 119 

solution by diagonalization method, 
131 

Sys tern of l i n e a r  equations  (continued) 
s o l u t i o n  by triangularization method, 

132 
Tail of vector ,  136 
Terminal p o i n t  of vector, 137 
Trace of a quaternion, 221 
Transf o m  t i o n ,  

composition, 198 
geometric, 177-178 
inverse, 2r~4 
kerne l ,  146  
length-preserving,  214-217 
l i n e a r ,  190,  196 

one-to-one, 2 0 1  
matrix, 189 
one-to-one, 186 
orthogonal , 217 
plane, 177-178 
product, 198 

Trans la t ion ,  184 
Transpose of a matrix, 5 
Triangularization method, 132 
Unit c i r c l e ,  88 
Uni t  matrix, 46 
Value, 

characteris t i c ,  205-207 
Variable, 

matrix, 139 
Vector,  4 ,  133 

addition, 147 
parallelogram rule for, 149 

analysis, 1 7 5  
a n g l e ,  153  
basis, 171 
charac ter i s t i c ,  21~5-2C17 
collinear, 1 5 5 ,  177 
column, 4 ,  133 

order o f ,  133--134 
component, 137 
d i r e c t i o n ,  138 
dot product,  L54 
end p o i n t ,  137 
equivalent ,  138 
free,  175 
funct ion ,  177 
geometric representation, 136 
i n i r i a l  potnt ,  137 
inner product,  152 ,  154 
i n v a r i a n t ,  209 
length, 137-138 
linear combination, 170 
Located, 136-137 
m u l t i p l i c a t i o n  by a number, 144 
natural b a s i s ,  1 7 1  
norm, 141 
n u l l ,  139 



Vector ( c o n t i n u e d ) ,  
o p p o s i t e ,  138 
orthogonal, 156  
parallel ,  143,  163 
perpendicular,  153  
representation by located vector,  14U 
r i s e ,  137 
row, 4 ,  136 

Vector (continued) , 
run,  137 
s l o p e ,  138 
space, 166 
subspace, 166167 
terminal p o i n t ,  137 
v a r i a b l e ,  1 7 7  

Zero matrix, 11 




