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FOREWDAD

The increasing contribution of mathematics to the culture of tha modern
world, as well as ite ismportance a3 a vital part of scientific and humanfistic
education, has made it essentisl that the mathemarics I{n our schools be boch
well selected and will taught.

Uith this in mind, the various mathemacical organizacions in the Uniced
States cooperaced im che formacionm of the School Hathematlcs Study Group (SHSG).
EM5G includes college and universaicy sathemacicians, teachers of mathematics at
all lovels, experts Lo education, and representatives of sclence and technology.
The genaral objective of SHSC is the improvement of the teaching of mathematica
in the schooles of this country. The Mational Science Foundation has provided
substantial funds for cthe support of this endeaver.

(me of the prerequisites for the improvement of the teaching of mathematics
in our schools 18 an izproved curciculum—one which takes account of the increas—
ing use of sathesatics in science and technology and in other areas of koowledge
and at the same cime one which reflects recent advances in mathematics itaself.
One of the first projects undortaken by SHSG was to enlist & group of ocutstanding
mathematiclans and macthematics teachers to prepare o series of textbooks which
would {llustrate such an improved curriculum.

The professlonal sachematiclans in SHSG believe that the mathematics pre—
aented in this text is valuable for all woll—educated citlzens in our scciety
to know and that it ils important for the precollege student to learn in prepara—
tion for advanced work in the field. At the sase time, ceachers in SM3G believe
that it is presented in such & form that it can be readily grasped by students,

In most inacances the macerial will have & familiar note, but the presenta—
tion and the point of view will be different, Sowe material vill be entirely
néw to the tradicional curriculum. This is as it should be, for machematics is
a living and an ever—growing subject, and not a dead and (rozen product of an—
clquicy. This healthy fusion of the old and the nev should lesd students to a
better undecstanding of che basic concepts and structure of mathematics and
provide a {irser foundation for understanding and use of mathematics in a
scientific sociecy.

It I8 not inténded thac this book be regarded as the only definitive way
of presenting good mathecatics to students at this level. Instead, 1t should
be thought of as & sasple of the kind of improved curriculus that we need and
a8 & source of suggestions for the suthors of commercial textbooks. It is
sincerely hoped that these texts will lead the way toward inspiring a sore
meaningful teaching of Hathemacics, the Queen and Servant of the Sciences,
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PREFACE

The present volume Ls an experimental edicion for a high-school course inm
the theory of macrices and vectors. In selecting material for che text, the
School Mathemacica Study Group has been mindful of the fact that this is the
lant mathematics course {n secondary school, the terminal course [or many
mtudents., As clicizens, they should have & sound idea of the nature of mathe—
matics, This point of view has been eaphasized in the Harvard report, "General
EBducation in a Free Sociery,” Harvard Universicy Press, Cambridge, 1945, which
statog: ''Hathematics may be defined as the sclence of abstract form. The dis—
cernment of seructure {8 espential, no loss to che appreciation of a painting or
symphony than in che behaviour of a physical aysce=; no lesg in economics than
in astronosy, Mathematices scudies order, abstracted from the particular objects
and phenowmena which exhibic ie, and in 2 generalized form."

fne of our basic alms {s thus to demomstrate cthe structure of mathemacics,
e shall not be concemmed, however, with structure meroly as such. Rather, we
shall exhibic sooe rich mathematics that i totally new to the student and
demonatrate structure as we proceed. To make abstract form a topic unto Lleself
olften leads to a barren presentation; to discuss the scructure of the already—
familiar arithmetic and algebra seems forced and repetitive to the boy or girl
who is dreaming of a place in a jet age, even in a space age.

It is important to give the student some ''mew" mathematics thac has con—
siderable viger and wicalicty. Until wery recently, the high—school curriculum
has baen almost encirely concerned with ideas chat were devaloped during or
bafore the sixteenth and seventeenth centurles. Computers and electronic brains
are [ront—page news. 1In order to appeal to the imagination of the student and
to expose sos¢ mathematics that is very msuch alive, the material must be naw,
differont, and bold.

Another criterion i{s to provide some tools that will be eminently useful
in the student’'s transitlon from school po college, vools that will help bridpge
the gap from the manipulative spirit of high-school mathematics to the abstract
viewpolint of modern algebraie studiea. Yer this material must not coma from
the vsval sequentlal courses.

A unit op matrix algebra will satiafy che foregeing criteria. As one
operation after snother iz defined, the structure of mathematics cam be repeat-—
edly emphasized. Terms like group, ring, field, and isocorphism will be {ntre—
duced when meaningful and needed for unifying concepts. Thus they will be met
in & new, appropriate, and substantial context; they will not be applied to
shopuorn oacerfial. Introduced by Cayley in 1853, recognized by Helsenberg in
1925 an exactly the tool he needed to develop his revolutionary work in guantum
mechanics, employed today in such diverse ways az providing a language for
atonic physics, seasuring the air flow over the wing of an airplane, and keeping
the parts inventory at a wminimus in a factory, matrices can put the student
clese te the frontiers of mathematics and provide striking examples of patterns
that arise In the most varied circumstances. Moreover, the student meets some
mathematics emancipated from the familiar rules of arithmetic, and he learus
that it is within his capacities to "invent" some of his own. If this study
can make sathesatics sore alive, then here indeed is a promising pach.



Our study of matrix algebra will {nvolve the {nvescigation of a significant
postulational system, which will reflect the wigoer of abstract mathemacics. This
is a unit {n "herd” mathematice that has power and besucy. It will provide an
effeceive language and some dynamic concepts that will enhance the student's
ability to handle his first college courses yet not duplicate material.

Lastly, with the objective that the intellectually vigorous students may,
in pome small pare, obtain an idea of what constitutes "mathesatical research,”
there 18 appended a set of "Research Exercises.” These are by no means over-
night homework and any one of them may well constitute a project to be executed
by several students. Such toam operations are conducive to stimulating dis—
epurse and ericical thinking.



Chaprer 1
MATRIK OPERATIONS

I-1. Incroduction

As we have studied more and more sophisticated mathematics, we have had
gccasion to use @ore and more sophiscicated kinds of "numbers." He began with
the aat of counting numbera, L, &, 3,.... Than, in order to make subtractions
like 3 = 7 possible, the system was extended fto the entire set of incegera,

O + 1, #2, #3,.... Next, In order to make it possible to divide any number
by any nonzerc musbeér, cational nusbers like 1/2, =23, =157/321, and 4/I were
invented. This did not bring ue to the end of ouvr story, for, in ovder that
every positive number should have a square root, a cube roor, a logarithm, etc.,
it was necessary to invent still more numbers: the infinite decimals or real
numbera, such as 1.&182..., 3.1415928..., and 0.13130313.... Finally, in order
that negative mmbers should also have square rootes, and Chat such guadratic
equations as

Xt 4 x+1=20
should have solutions, Lt was necessary to [nvent complex nusbers like

J+ 24, 1 +al, =L/2 4+ (L/37)L, amd 3 + OL.
Whenever there has seemed to be a good reasonm to do so, we have invented

new sets of "pumbers."” For instance, in inventing complex quantities, we
bagan not with the gquantities themselves but wicth a purpose: Eo find a
system of numbers each of which has a square root. When we have made one
such invention, it is not hard to realize that there ls nmo coason Co STop
ipnventing., %Why should we not hope to invent many kinds of nev numbera?

It g sasy to invent chings that do not work, but hard o invent things
that do work — easy to invent thinga chat are useless, but hard to invent
chings that are useful. The same is cruve of the invention of new kinds of
pusbers. The hard thing iz to invent useful kinds of m=mbers, and kinds of
numbars “that work."” MHeverctheless, several more or less successful new kinds
of pumbers have been invented by mathemaricisne. In this book, we are golng
to study one of the sost successful of these nev kinds of numbars: the matrices.

Before we tell you what matrices are, it is well for us to emphasize their
importance. They are uveeful In aleost every branch of science and engineering.
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A great numbar of the operacions periormed hy the glant "electromic braims"
are computationa with matrices. Hany problems im stacistics are expressed in
terms of matrices. Mactrices cose up In the mathematical problems of econcmics.
They are extremsely {mportant in the study of acomie physics; indeed, atomic
physicists express almost all their problems in terms of matrices, and it would
not be an exaggeration to say that the algebra of maecices is the language of
atomic physice. HMany other kinds of algebra, such as complem—number algebra
and vector algebra, which some of you may already have studied, can be explained
very easily in terms of mactrices. So, in atudying matrices, you will be study-
ing one of che newest and sost ioportant, as well as one of the most interesting,
branches of mathamacics.

Lec ua look ac & faw almple examples.

Many a baseball fan, when he first opens the newspaper, refers to a tabula=
cion similar to tha following:

G AB R H

Aaron 68 180 352 109
Williams 52 194 219 &0
Hantle 6O 228 51 70
Lopac 63 241 M 72

1f he i{a a Mantle fan, he looks at cthe entry Iin the third row and fourth colusn
of numbers in order to learn how many hits Mantle has chus far obtained during
the asasocn.

You will note that we have said "row” in speaking of a horizontal array,
and "column™ in speaking of a vertical acray. Thus, the third row {a

B0 228 51 70,

and thé fourth calumn is

109
&0
0
T2

An assembler of TV sets might have hefors him a table of the following

sOTE:
[sec, 1=1]



Hodel A Model B Hodel C

Mumber of tubes 13 18 20
Humber of apeakeors 2 3 iy

This table indicates the number of tubes and the nusbear of speakers used in
asgesbling a sat of each =odael.

Osiccing the row and column headings, let us focus our accention on the
arrays of numbers in the last two examples:

BH 280 3£ M09
52 194 29 B0 13 18 20
B3 228 5l T 2 ] 4
63 241 8 T2

Buch arrays of entries are called matrices (singular: macrix). Thus a
matrix is & recrangular array of entries appearing in rows and colusmas.
Accually, che entries may be complew numbers, functlons, and In appropriate
circumstances even matrices themselves; however, with a Few exceprions thar
will be clearly indicated, we shall confine our attention to the real nusbers
with which we are alrveady familiar.

Some examples of matrices avre the following:

4
2 3 & o J2 2
[1 0 -1]' [J.u 1]* o|* l_uz Lf4 ”3]' (1)

-

You will note here how square brackets [ ]I.'E'I used ip the sathematical
designation of macrices,

A great advantage of this nocation i the fsct that wa can use ic in
handling large mets of numbers as single entities, chus simplifying the statement
of complicated relacionships.

1=¢. The Order of a Macrix

The order of a matrix is given by stating firet the number of rows .ln_d
then the nusber of columns in che matrix. Thus the orders of the matrices in

[s8c. 1-1 ]
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the forvegoing examples (L) are respectively 2 x J (read "I by 3"}, I x 2,

4x1l, and 1 % 3. Generally, a matrix that has & rowds and n columns

is called an mx mn (read "m by n") macrix, or a macrix of order = x n.
1f the number of rows s the sase as tha nusber of colusns, as in the

second example above, then the matrix is square. Thus, given two linear

equations In two unknowns,

ix+ly =7,
lx — &y = O,

we observe thar the coefficients of x and ¥y constitute a square matoix:

]

Yhen speaking of & square n ¥ n matrix, we often refer to its order as n
rather than n % n. For example, the 2 % I macrix

B

i & square matrix of order 2, and the 3 X J matrix

=1 2 3
4 =5 &
I 8 -5

is & square matcix of order 1.

1f the nusber of rous s 1, as in the fourth example im {l), above, the
matrix is sosetimes called a row matrix or & row wector. For exsmple, in terms
of rectangular coordinates, a point in a plane might ba designated by the row
makrix [4! J] « o a point in space by tha row matrix [2 3 —1] ¥

Similarly, a column macrix or column vector i3 a matrix having just one
column. Thues, the f[oregoing polnts can squally wall be designated by colusn
maktrices,



and the nusber of men, women, and children in a femily might be denoted by

il

Capital letters are often used to depote general matrices, and the
corresponding small letters with appropriate subscripts are then esployed
to designate entcies, Thus, we sight have

%11 %12 Yy
A= |a & a and A= L3 w
21 "22 "2 by, Bas By

%31 *a2 "1

In these examples, the entries locaved at the intersecelon of the Ind row and
Jrd column are dencted by a4 and hu. reapectively.
Generally, the entry located at the intersection of the i=-th row and

Jj=th column of matrix A is denoted by a An @ n matrix can be denoted

1’
compactly as [l”]“n- Thus the foregoing matrices A and B are

A= [.ijl 1xy " B= [hlj]J.:ﬂ:}'

1f the order is clear from the context or Ls arbicrary, thas notation might be
raduced o

A o] od B b)) .

Associated with each matrix i{s another matrix called {cs transpose, which
is ofiten convenlent to use and has interesting theoretlical properties. The
Lranspose .ln" of a matrdx A {8 formed by Incerchanging Ilts rows and colu=ns.
For exa=ple, 1f

L 3
1 2 12 E
.t-[ o ].ﬂunn- 2 =1 .
3 =1 0 3 0

Deafinicion 1-1. If A = [-l”] is an m ¥ n matrix, then tha transposs
AY ef A 1s the nxm macrix B = I:b”] with b”-nn for esach

[see. 1=2])



1, (1 ®t,2,...,n5 J = 1,2,...,5).

2.

3.

(m)

(&)
(e)

Exercises 1—-2

Cheain from a newspaper or other similar source six examples of
information presented in matrix form.

In each of your examplea, state the order of the matrix.

1n each of the sxamples, suggest an alternative method (not in matrix
form) of presenting the sase information.

A row vector with three entries can be used to tabulate a person's age,
height, and weighe.

{a)
iB)
Let

(a)
(b)
Led
(d)
(e}
(£)
(8)

Lat

(=)

Give a row vector that lists your age, height, and weight.

Suggest when it might be useful to employ such a vector.

1 4 i | &4 5

B 10 12 1& 1la

-l =3 =5 & 1] '
o 3 =7 8 i
What s the order of AT

Mama the entries im the &4th row.
Hame the entries in the Jrd coluwsn.
Hame the entry B gt

Hame the entry .H'

Hama the entry L

Write the transpose A",

== ]
S S o D
=1l = =
Ll = ===

vhat {8 the order af BT

[sec. 1-2]



{b} Hame the entries im the 3rd fow,
{e} Hame the entries in the 3rd colusn,

{d} Hame the entry b

12"
(e} For what values 1, § is h” ¥ ar
(f) For wvhat values 1, j is h” = F

{g) Wrice the tranapose I-t.

5. f{a) Write a 3 % 3 matrix all of whose entries are whole numbers.
(b} Write a 3 x & matrix none of whose entries are whole nusbers.

(c) Weice a 5 x 5 matrix having all entries In its first two Tows
posicive, and all entries in its last three rovs negative.

6, d{a) How many entries are there ina 2 x 2 matrix?
() Ina & x 3 macrix?
{¢) Inan mnxn matriz?

(d) Inan = xn omatrixd

1=3. Egualicy of Macrices
Two satrices are equal provided they are of the saoe order and edach encry

in the Firstc is equal to the corresponding entry In the second. For example,

2 2 2
1 & 0 _ i 2wl 2=2 L 12 =1 2 |:{::—-1Hr.+l}]_
2 B 4 672 Lef2 /2 3 ® =
but

83 2] #fz 3| [oo] #[d]

Definition 1-2. Two matrices A and B are equal, A =3, if and only

b =
o £

if they are of the same order and their corresponding entries are cqual.
Thu’j

[sec. 1=2]



["u] axn [hlj] =0

if and only if lij = b for emch 1,) (i = Ll,2,...,8; J = 1,2,...,m).

1}
Using the foregoing definition of equality, we can express certain
relationships more compactly. For example, cthe following equation betwesn

ix L macrices,
m+y] (7
- ¥ ] X
can be employed instead of the two separate equations

by =,
Jx = y = 23

and
x+y a+hb]| _ |5 =1
x—¥% a=h 1 3
can be writtén in place of the four equacions
i+ys=3, a+b==1],
n—ym=1, a=-h= 3,
Exercises 1-3

1. BSolwe tha following equacions:

(a) [ x
{b) (x—2y] _ [-3
X+ ¥ | ¢

(el !l ¥l . 1 =
| X :rz -1 1

[sec. 1=3]
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i. From the saceix equalicies A= B and B = , would you conclude that

A=C? Why!

1. Wrice the matrix

11 Y11 Ya
1 %22 "1y
1§

oy - 24 + 3§ — 4,

&. Wrice the macrix whose entries are the sums of the corvesponding encriss
of the matrices

1 o o 2
i -l and -3 4
=1 & 2 1
o 1 0 0

5. Write the matrix whose entries are the differencea (first =minus second) of
the corresponding entries of the matrices In Exercises 4.

1=, Addielon of Matricea
We have now defined matrices and studied some of thair =cst elementary
properties. But we have not teally made them work. To do cthis, we sust give

rules for adding and mulciplying matrices, just as was done, for example, with
complox nusmbers. If these nombars weres defined bluncly as axpressions of the
form a +bil, without the operations of addicion and suleiplication, and with—
out relation oo the solution of such sguations an

szl-l-l-ﬂ,

chey would be of relacively little i{nterest. what gives life to complex
mumbera is the fact that we are able to define addirion and sultiplication for
them {n such a way that we have a whola algebra of complex ni=bers, which La
indeed useful and inceresting.

[eecs 1=3])
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The same remark applies to matrices. To give the study of matrices itas
real contentc, we must define "sum” and "product” for matrices. Im this seccion,
wi define and scudy sums of macrices. Produces will be considered lacer.

You will recall chat when two complex nusbers are added, for example
345 and =i + 51, the tww real componencs and the two imaginary cooponents
are added separately. Thus,

(3+50) + (=2 +61) = (34 (=2)) + (5 + &) =1 +91,

1f we represent the complex numbers as column vectors, we find their sus
by adding corresponding entcies; thus,

| g 1
HRHEUE
This suggeats che patteérn used in adding matrices of cthe same ovder. The

sum of two such macrices i{s obtained by adding the individual entries inm cor—
responding posicions. For example,

2 3 1] [ 2 1] _ [2 5 2
-1 0 & 13 =2 o 3 2| °

Since we ahall not éven give a rule by vhich matrices of different orders
could be added, we shall add two matrices only I{ they are of the same order.
Accordingly, tw matrices chat have the same order are scmetives sald co be
conformable for addicion. The sum has the sape order as the twe addends.

Definicion 1-3, The sum A+ B of two =X n matrices A and B {s
the mxn matrix C such that tha entry l:“ in the i—th row and j=th
column of C {8 equal to the sum l“ + h“ of the entrien l” and b
in the i—th row and j—th colu=n of A and B, respactivaly.

Thus,

i)

['1]] axn ¥ [hu] mxn ['u *”11] mxn’

For Lnetance,

[soc. 1-4)



o § Rl 1 P12 By ¥ Py 8 Ry, 11 12
By ®| * P Paz| " % YR %22 tPa2| % [ 22
b | e 7 by1 Py Ay H By By By, €31 ®12

If we consider all m ¥ n macrlces, with = and n fixed, as constituting
A sgt Eu , and 1f A and B are elements of E. o’ then A+ 8 i5 also
(] ¥
an element of this set. That {s, 1f A € 5 - (read "A is a&n element of
5__“ } and B & S, then (A +B) ¢ Sa,n’
In the algebra of real nusbers R, cthe equation

&+ =g

is saciafied for all m € B (chis ctime, vead “for all a € R as "for all
elements a of R"). Accordingly, we say that O is the {dencity alesanc for

mddicion ifn R. In che algebra of matrices, the matrices all of wvhose entries
ara 0 play a corresponding role. Thug,

[ <38 ~[3%0 238] ~[2 3] -

Such a matrix i called a gero matrix and is denoted by 0. If che order
sxn is significart we write 0.! ot
write Dn. where n indicates the order of the matcix. Thus,

00 0 f“
7 1“ “1 T [n o n] 1 Oy = 'E

l

or, L1f the matrix is square, we might

(= =N~

The equation

HIHIII +DIH;I'I = l*'n:l:'n.

clearly f{a wvalld for all Aovn

The addicion of matrices {8 a comsutative operation, as we can readily
verify. Thus,

["11 12 3] | ["11 b v M 71 [ LR LT T Al bt Sl e
*21 "3z "3 Sl TR i1 P2x Ppa 21 "2 *n

[sec. 1-4)
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In particular, the sum of the two matrices on che Left is a marrix having
Ay, + 'hu a3 olement in the [irst row and second colu=mn, and the corresponding

element of the sum on the righc is h“ Ay, But

82 ¥ by =By Ty

by the cosmutacive law for the addition of real numbers.
The foregoing observatjon holds gemertally, of cougse, so that we have the
following resule:

Theorem =1, 1If the matrices A and B are conformable for additiom,
chen they sacisfy the commutative law for addicion:

A+R =B +A,
Proof. We have
A+B= [.”1 + [b”]
& [‘1.1 x bn]
[y + o]

=[] * )

L B+ A,

Thus, in cterms of our usual potation, the emtry in the i-th row and
j=th column of the sum on the lefk is l” + h-”. and the corrvesponding

+a, . . But

entry of the sum on the right ia b“ 14

.ln.j L] h[i - h’p_‘ +.=.j v

by the comsurative law for the addicion of real numbera; hence tha theores
follows from the definition (Definieion 1=2) of the egquality of ews matrices.
The additien of conformable matrices is also assoclative; that is,

A+ (B+C)= (A+B) +C.

[mi ""h'j



For example,

and also
2 3 1 =1 2 0 1 0 &
([4-;5]" [—1&11)" [51:]
« [¥ 5 1] . 1 o 4] _[2 5 3
=5 0O 7 - T L. =1 1 & °

We can state the associacive property as & theore= and prove LE, as
follows:

Theorem I—2!. I1f the matrices A, B, and C are conformable for addiciom,
then they satisfy the asscciative law for asddicion:

A+ (B+C)= (A+B) +0C,

Froof. UWe note that, in terms of our usual noctatlon, the éntry in the
i=th row and J=th column of the sum on the left i 1.1_1 + “'1_1 + :ij}‘ and
« But

1) 1

the correaponding encry of che su= on the right is {(a, + b”} + €y

LI + {h” +¢”) - l:llj +'h”,'| +:U'

You can complete the proof of Theore= 1l-1 by telling wvhy cthis last equalicy is

b and & and why this equality fmplies

wvalid for all real numbeca a iy

1]! 1]!

the matrix equalicy
A+ (B+C)={A+B} +C.

Sinmca lc is lmmatarial in which order the matrices are added, we writce
A+ B+C for elther sxpreasion;

A+{(BE+C)=(A+B)y+C=A+08+C0C.
[sec. 1-b]



1k
Once we know how to add mumbers, it L8 uvsual to consider subtraceion, You

will recall thac the pegative, vhich we might call the additive inverse, of the

real number a is denoted by —a., It satisfies cthe equation
a+ (-a) =0,
Subtraction of matrices arises in a similar manner.
Definicion l-4. Let A be an m X n matrix. Then the negative of A,

written =A, s the m x n =atrix ecach of vhose entries is the negacive of
che corresponding entry of A.

Dafinition 1-5. If A and B are two m X n matrices, then the
differenceé of A and B, designated by A =B, iz che sum of A and the
negative of B.

Thus, for A + (-B), where A and B are matrices of equal orders, we
write A — B and say that cthe sysbols Indicate that B is co be subcracced
from A. For examples,

2 1 3 o1 =2] _ 2 o 5
& 0 =1} T I3 & 1 1 =4 =21f°*

L ee| _ }1 ] _ |0 =
e & z 2 < 2 :
How we can easily prove tha following theorem:

Theorem 1-3., If A and B are mxn matrices, and 0 the max n

zoro matrix, than

(o) A+ () =0,
(b) = (-A) = a,
{e} — 0= E_l

(d) = (A + B) = (=A) + (-8).

[30c. 1=~4)
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Proof of Theorem 1-3 {(a). The entry in the i—=th row and j=th columsn of
ig, by definition, -I“- Thus the entry in tha f{-th rov and j—th colusmn
A+ [=A) is -” + {u'.u}. But lLj + (-—.u
A+ [=A) I8 zero; that is, A + {=A) 13 che zero matrix.
The proofs of the remaining parts are similar and are laft to the scudenc

Y= 0. Hence wewveéry encry

exércliees.

Exercisea 1=

Find values =x, ¥, a, and b that sacisfy the marrix relationship

=+3 iy -8 Li| - &
a+l 4x+6] = =1 ix .
=3

ik b+ & =@l
1f
3 2 1 -1 & 8
L & =5 iz =3 6 =1
A o 8 3 and B 0 2 3 .
4 & B8 4 -1 8

decermine the éntry in the sum A + B that is at che intersection of
{a) the Jrd row and Znd column,
(b} the Lst row and Jrd coluan,

{c) the 4cth row and lat colusn,

Computa
L/ 173 L/& 117
17  Lf5 L/ga L1/9
Compute
W2 /3 1/4 1L 00
/s e 1N + |0 1 0] .
/g L9 1/10 0 0 1
Compute

[sece 1-%])



1-=x =y =~z
+ - L—a i
| —y L=

9 K
« |
E M

(a) Does the expreaslon

l 2 1
1 3 2 + 0
31 2 2
make aensel
(b} Doos the sxprasaicno
3 1 1
1L 3 2 +u3
K
make aense?
f{c} What is the latter su=t
Compute
L 1L o 3 2 -1 4] L 3
1 0 1| |4 17 8| = 14 B &
JZ 1 0 9 & 14 4+/2 11 11
Compure
1 2 3 9 8 7 o0 0 o 10
& 5 & + |6 5 &) = |0 O D] = 14
7 8 9 3 2 1 o 0 1 10
Given
1 2 2 =1 iy F
A= 13 4| , B= |3 <2| , and C= | 1 0
5 6 0 1 =F =l

compute tha following:

[pec. 1-4) .

10 10
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{a) A+ B, {d} A —N,
{b) (A +B) +0C, {e}y {(A-=1) +C,
{e) A+ (B +C), {fy B = A.

10. {(a) 1In Emercise 9, conaider the anawers to parcs (b) and {(c). Wwhat law
is {lluscraced?

(k) In Exerciss 9, consider the answers to parts (d) and (£)}. What con—
clusion can be drawn?

1l. Prove Theorem 1-3 (b}.
1Z. Prove Theotem 1-3 {c).
13, Prove Theorem 1-] (d).

14, Assuming that A and B are conformable for addicion, prove that

A" + 8% = (2 + B)E

1=-5. Addicion of Matrices (Concluded)
Tha theorems given in Seccion l—4 include exact analogues of all the basic

laws of ordinary algebra, i{nsofar as these laws refer to addition and subtraction.

We know that all of the more complicated algebraic laws concerning addition
and subtractlon are conassguences of these basie laws., 5Since cha basic laws of
the addicion and subtiaction of matriceés are che same as the basic lave of the
addition and subtraction of ordinary algebra, all tha othar lawa for the
addition and suberaction of matrices sust be the same as the correspending laws
for the addition and subtraccion of nusbers. We can state this as follows:

Insofar as only addicion and subtraceiom are 1.Evpn-l.w-d. the .l;g!br. of
matrices is exactly like the ordinary algebra of numbers.

So you do not have to study cthe algebra of addition and subtractiom of
matrices — you already know it! But now the algebra that you already kmow

has a mnow and much richer content. Formerly, it ¢ould be applied only ko
mmbers. MHow, it can be applied to matcices of any order. Thus, we hava
obtained a very considerabla resulec with a very small effort, simply by
observing that our old algebraic lawve of addicion and subtraction apply not
only to nusbers, but alse o quite differant kinds of things, namely, matriceas.
This very poverful trick of putting old results {n new sectings has been used
many timas, and often with great success, in the most modern mathematics.

[sec. 1=5)
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A pood exasple of the genaral principle esphasized above is provided by

the followlng problem, Suppoae that A and B are known satrices of the
samé order, MHow can we solve che equaclon

X+A=pR

for the unknown maerix XT The answer s easy. We do exactly what we learned
to do with numbera., Add the marrix -A to both sides. This gives

X+ A+ (=A) =B+ (-A)=B—A.

Since A+ (-A) =0, and X +0 =X, we have

X=B-—A.

This i{a our solukion.

Exarcises 1-%

1. Solve the equaction

for the matrix X.

Z, Solve the equation

-

L 5
==
[ =N =]
=N =N

[

e N
L
o B

for the matrix X.
1. 1f [:1;2:3" i [r-a 0 1} - [-ﬁ 2 _, , detersine 1:1 ::1] .

4. If =

1 -:L 1]
1{ + Syl = 1|, determine
2 =1

L =3

[sec. 1-5)
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deternine Xpe ®an ¥ya and ¥y

6. Prove that if the matrices A, B, and C are conformable for addition,
then (A +C) —(A+8) = - B,

7. 1Is the equation

valid?

1=6. Multiplication of a Marrix by a Number

(nce we know how to add numbers, it is customary to define Ix as the
sum x4+ x, Jx a8 the sum 2x + x, ectc. Fractionmal parts of x are defined
by requiring thar (1/2)x + (1/2)x = x, (1/3)x + {1/2)x + (1f3)x = x, ecc.
All of this can readily be done wicth matrices. Tf we add two equal matrices,
the sum is clearly a matrix In which each encry is exactly twice the correspond-—

ing entry Lo the two given matrices. Thus
2 1] 2 3 4 &
[-l o] * [-1 ﬂ] = |= uJ

Likewise, for thre¢ equal matrices we have

SHRAERIRCHR A

Each of the above sumé may be considersd to be the product of & number and

22y 23)
2(=1) 20)

32) 33
[:H} ::url *

a matrix. Wa write

[sec. 1-5]



The equaticm

defining the matrix (l/2)A, 1is clearly satisfied by the matrix sach of whose
entries is exaccly 1/¢ the corresponding enmtry of A; Cthe equation

1

s 34 T8

defining the mateix (L/33A, 48 clearly sarisfied by che matrix each of wvhose
entries is exactly L/] cthe corresponding encry of A,
Theaa conaideracions lead us to make the following general definition.

Definition 1—6. The product cA = Ac of anumber ¢ and an mx n
matrix A is the m X n matrix B such chat the entry b in the I-th

i)
1)

of che number ¢
in the i-th vow and jJ—th column of A.

row and j—th column of B is equal to the product ca

and the entTy l”

Thus,

" [‘u] BxXm {‘u] axn © " [“u] mxn’
¥or example,

ta ca

41 %12 11 “"12
G183 3| " (%M1 M
8y "3 Cly, S8y

Note that here we have defined the product of a matrix by & mumber, not
the product of two matrices. It is possible also to define the product of two
matricen; thia will be done in Section L-T.

How we may state the following theorem about products of macrices by

[sec. 1-6]
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Theorem 1—4. If A and B are mx m matrices, and x and ¥ are
numbers, chan

(a) x(ya) = (xy)A,

(B) (x+y)A = xh + yA,
fe) (=l)A ==a,

(d} ={A + B} = =pn + xB,
(e) =0 =0,

(f) OA=0D.

Part (e) states that the product of a nusber and the zero matrix is the
zero matrix, and part () scates that the product of the zero sumber and any
macrix is the zero matrix.

Procf of Theovem 1= (d)., The entry in che {-th row and |=th colu=n of
the mattix A+ B is oy * h“+ The entry in the {—th row and j—th column
of macrix x(A + B) is therefore, by definition, m’,.” + b”}+ Now the entry
in the {=th row and j-th colusm of the matrix =A s Xl g that in the
i=th row and j=th coluen of the matrix xB is :I:”. Thus the entry in the
i~¢h row and j—th column of the macrix xA + xB is xa, o+ ::h“, Since the
entries are nusbers and, for all mumbers, afb +c¢) = ab + ac, we have

;[.“ +b”} - u” + :‘b”.

a¢ that each entry In the matrix x{A + B) 4is the sa=e as the corresponding
entry of tho matrix A + xB. Hence,

x(A + B) = xA + xB.

The other parts of Theorem 1.4 may be proved in a sisilar way.

When we studied tha Llaws governing the addition and subtraction of
matrices, we sav that they were parallel co the lawve governing addition and
subtraction in ordinary algebra. The situation when we coma te the multiplica—
tion of mactrices by nusmbers ia 5"_ﬂ'!£ #imilar, but not exactly the sase. The

[sec. 1=6)
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various parcts of Theorem 1-4 resemble the basic algebralec laws for swleiplica=
tion wvery closely. Thus, many of the more complicated ordimary algebralec laws
and procedures governing sulciplication still rémain correct for expressions
involving the multiplication of matrices by numbers. The difference is that while
the product of a number by a number is a number, the product of a matrix
by a nusber is not a number but a matrix.

We are now able to solve some matrix equations imwolving addieiom,

subtraction, and sultiplication by a number. Let us look at an example,
Suppose we¢ want to solve the equation

w X

(=T 5
P R
=0 =T ]
L= = =
Ll = =}

il 1
lu

we firat perform the indicated sultiplication by =2, in sccordance with parc
{d} of the above theorem, to get

=1 =h = 1L 0 o
=% + 0 =2 <4| =X+ |0 O O
0 o =2 0 0 1

Then we add 2IX to both sides of the equation to obtain

-2 =4 =b 1 0 0
B =2 =h| =3 +2X+ [0 0 Of .
o0 0 = 0 0 1

Haxt wi usé part {b) of the theorem to find thar X + 2X = 5X, so that

-2 -4 =5 1 00
0 =2 =4 = 5 + o o af.
a 0 =2 g o 1
Adding
1 00
=0 0O 0
0 0 1

to both sides, we find chae

[sec. 1-€]



=] =& =f
0 =2 =4 = 5%.
0 a0 =1

Multiplying both sides of this last equation by 1/5, we see by pact (a) of
the theores that

=35 <4f5 —b/5
Xm 0 =25 —hfS
0 o =3f5
This is our solution.
Exercises L

l. For

21 - 30 5 5 -1 0
“'[10 4]' "[59-—1]' and “'[r a—l]'

determine the reésult of the [ollowing operations:

(a) ZA- B+ ©C, [e) 7A - 2{(B-0),
(b) JA - 4B - 12C, (d) 3(A - 2B + 3C).
2, For
21 2 b I T | 4 & &4
A= (2 1 <3|, B= |30 5|, and C= |5 =1 0|,
1 0 & 8 9 =1 7 8 =1

determing the result of the following operations:
(a) A - B + C, {e) 7A-2(B-C),

(b) 3A - 8B + 9C, (d) 3(A - 2B + 3C).

3. Let A; B; and C be the matrices of Exercles 2, Solve the equation
F(X 4 4) = 3(X + (2X +B)) +¢,

[sec. 1=6)



glving all the stepas in detail, and justlfying each atep.

4. Let A, B, and £ be tha matrices of Exercise 2. 5Solve the equacion

200+ B) = 3(x 4+ 3{X + &) + €.

5., Prove Theorem 1—& (a).

6. FProwve Theorem 1=4 ([b).

1-7. Muleiplicatiom of Maccices
Thus far, we have delined and studied cthe addicion and subtraction of

matrices and the multiplication of s matrix by a number. We still have noc
defined the product of two matricea, Since the formal definition is somevhat
complicated and may at firat seem odd, lat us look at a simple practical problem
that will lead us to operate with two matrices in the way that wve shall
ultimately call sultiplication.

In Section l=-1, the nusber of tubes and the nusber of speakers used in
assembling TV setas of three different wmodels were specified by a cable:

Model & Hodel B Model ©

Wamber of tubes 13 18 20
Husber of speakers F 4 3 &

This array will be called the parts—poer—set matrix.

Suppose orders were recoived in January for 12 sees of model A, I4 scts
of modal B, and 12 sets of model C; and in February for & sees of sodel A,
12 of wodel B, and 9 of model C. W can arrangs the informacion in the form
of o mateix:

Jamuarcy February

Model A 12 &
Model B 26 12
Hodel C 12 9

This will be called the sets—per-month matrix.

Emn 1-6]
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To determine the mmber of tubes and speakers crequired in each of the
moniths for these orders, it is clear that we must us¢ both aets of Informacion.
For inscance, to compute the number of tubes needed in Januvary, we multiply each
entry in the lat row of the parts—per-sct matrix by the corresponding entrcy in
the lst column of the sets—per-month matcix, and then add the three products.
Thus, the mumber of tubes required in Januacy is

13{12)y + 18(24) + 20{12) = B2B.

To compute the nusber of speakers necded in January, we mulrciply each entry
ia the Ind row of the parta—per—aet matrix by che corresponding emtry in the
ler column of cthe sets—per-month matrix and chen add che preduces. Thus, the
nusber of apeakers for January s

2012y + A[24) + &{12) = L1&4,

For February, firat we multiply the entries from the lst row of the parcs—per—
set matrix by the corresponding entries from the 2nd column of the secs—per—
monch matrix and add to determine the mumber of tubes; secondly, we mulciply
the entries from the 2nd row of the parts—per—set matrix by the corresponding
entries from the Ind column of the sets—per-month matrix and add to deteroine
the number of speakers. Thua the numbera of tubes and speakers for February

are, respectively,
13(6) + LB(L2) + 20(9) = 474,
and

2(6) + M11) + 4(9) = B&.

We can arrange the four sums in an array, which we shall call the parte—
per—-month matrix:

Janvary  February

Busmber of tubes 828 §74
Mumber of speakers Léds B

[secs 1-7)
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Can we now represent our ‘‘operation” in equation fora? Let us try:

12 &
13 18 20 828 474
[ 2 3 ﬁ] f: ‘g o [lﬁﬁ sn] g (L

We have "multiplied” the parts—per—set matrix by the sets—per-month matrix to
ger just what should be expected, the parts—per—month macrix!

Kote that, in Equatiom (l), 828 equals the sum of the products of the
entries in the lst row of the left—hand faccor by the corresponding enctricas
tn the lst colusmn of the right—hand factor. Likewise, 474 equals the sum of
the products of che entries in the lst row of the lefr-hand factor by the
corresponding entries in the Ind column of the right-hand factor, and se on.
Consider the “"product" matrix

B8 474
L44 B4

1 *12
. %3

The subscripts indicate the row and column in which the entry appears; they

in the symbolic form,

alaso indicate the row and the column of the two factor matrices that are
combined to get that entry. Thus, the entry "11. in che Ind row and lst
column is found by adding the products formed when the entries in the Ind

row of the lefe—hand factor are multiplied by the corresponding entries in the
lsc column of the right—hand factor. The most concise descriptiom of the
process is: “Multiply row by columm."

The description, "Multiply row by colusm,"” of the pattern in the foregoing
siople praceical problem serves as our guide in escablishing the general rule

for the muleiplication of two matrices. WVery simply the rule is co suleiply
pneriea of a row by corresponding entries of a column and then add the products.
Thus, glven two matrices A and N, to find the entry in the {=th row and
J-th eolusn of the product matcix AB, wmulciply esach entry in the i—=th row of
the left—hand factor A by the corresponding entry in the j—th column of the
right=hand factor B, and then mdd all the resulting terma, Since there oust

[lm‘h 1‘?]
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be an entry in each row of the left—hand factor to match with each enkry in a
colusn of the right—hand factor, and coenversely, it follows rhat the product
is not defined unless the number of colwms in the left—hand factor im equal
to the number of rows in the right—=hand factor. When the number of columns
in che lefct~hand factor equals the nusber of rows in che right—hand facror,
the matrices are conformable for sulciplication.

A diagran can ald underscanding; see Figure L-1.

= —

— —] b —

Figure 1=1. HMacrices A and B that are conformable
for mulciplication. The number of columms of A musc
be equal te the number of rows of B. Then the product
AE has the same nusber of rows as A and the same
number of colusns as B,

An entry In che product AR is found by sultiplying each of the p

entries in a row of A by the corresponding cme of the p entries in the
colus=n of B and taking the susm; sea Flgure 1-2.

[secs 1=7]
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i=th row of A
o ——— —— —— —— — — e EEe— s ] '_'_IH-{:!.URQI

antTy :”

r——l—h

A C = AB

— ] e

Figure 1-I. Determination of an entry in the product
AB of matrices A and B that are conformable for
sultiplication.

Thus, for the matrices

ol
== = h
-

1 2 13
A= |4 5 & and B =
7 8 %

to form the product AB, we coopute as follows:
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Determining one entry of the product after another in this way, we [inally
obtain the complete answer for the product AB:

1 2 3[11 o 17 5
ABw | & 5 B{|2 1| = |38 11
7 8 9|14 1 A 17

{Check each of the entries of the answsr yourselfl) To get the answer, 18
sultiplicacions and 12 additions of paire of numbers are necessary. 1t might
help to think of the first matrix in terms of its rows,

g
F Iil;2 i
HB
and the second in terms of its columna,
B [a::l ::2] .
Then the product appears as
Y e KRG
A= R [':L “z] = | %5 RS
Ry B %%

Here, of course, R Cy (for example) represents not m product but a sum of
productse:

RC,o= (L) + (2)(2) + (I)(4) = 17.

The symbol R,C, vepresents the entry im the Jrd row and Ind column, and you
can decide for yourself what symbol represents the antry In the i—th row and
Jj—the eolumn of the produce.

Here are some more examples;

[sec, 1-7)



B [ 101 + 2(6) 12 +2(0)  L(3) + 2(1)
(a) 3 1 [ﬁ 2 1] = | 3(1) +1(6)  3(2) + 1{0) 3(I) + L({1)
=] 2 =L{L} + I{ﬁ} -1{2} -+ Itﬂ} =1{3} + 2[1:
9 2 3
= {7 & w]|,
o=k =1
(1) [1 7 3 3l 12) + 7(6) +3(1)] = [3] .
1
2 201y 2(7)  2(3)
() P [1 7 3] = | a1y &(1 &)
1 Ll{l,'l L7y (1)
P
- 4 28 12| .
1 b 3

Lec us mow proceéed to define siltiplication formally.

Definition 1=7. Lat

o [.i.j] =K p and ll"[I"jll:] P m

be matrices of order m X p and p X n, rvespectively. Tha product AB

{s the macrix of order m X n, of which tha entry in the i-th row and the
J=th column is the sum of the products formed by sultiplying entries of che
i—th row of A by corresponding entries of the j—th colusm of B.

The definition of the product of two matrices can be expressed in terms
af the " }: notation” for suma. Hecall chat, in the “ }: notation," we writae
the sum

:5'r-:l:l+1tz-|-“-+.1:P

of p mm=mbara as



For example,

5
T 11_11+22+11+#2+51
J=1

- 55,

Again, the familiar forsula for the sum of the flrst p positive integers,

Lt24 o apablEtl)

I r
can be expressed am

p
plp + 1}
1 -_T_'_ .
ji;l

In cthis notacion, the sum

83101 * Bgbpy * Ut Ay b,

is expressed as

3
[ .

S e

You will recognize this as the element i{n the third row and fourth columm of
the matrix AB. Hore generally,

+ u,.b ses g b

Y VR T T 1p pk

is expressed as
P

h "
1‘::1 1y

this aum is the element in the 1—th rowv and k—th column of AB. Thus we can
express Definicion 1-7 more compactly as follows:

[soc. 1-7)
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Definicion 1-7'. L=t

A -[lu] axp ™ B - [hjh] ik

be matrices of order =¥ p and p x n, respectively. The product AB im
the matrix of order w X n, given by

8= o] mxp [Poe] pxa® (:': %) Jk) i (4] mx n-

Wobte that we have defined the product of two matrices only when the nusber
of columns of the lefc-hand faccor (s the same as the number of rows of the
right-hand factor. Alsec note that the number of rows in the product is the
ssme as the nusber of rows {n the lefr—hand factor, snd that the pusber of

columns In the product is the same as cthe number of columns in che righe—hand
factor.

Exarcisan 1=7

3 1 -

C= . dnd D = . z
7 8 9 -3 =3
1 0 1

State the orders of each of the following matrices:

fa} AB, (e} BD,

(b) Da, (f) D({AB),
(e} AD, (g} (CBY(DA),
{d) c», (k) B(DA).

2. Perform the following matrix sultiplication, vhere possible:

(98¢, 1-7]



B eh B

(a) :123#][

1
(b} i[l!]f-,
&

o129

(& 2
2 31 4
(d) 51[__].
]5]111:
[ 211 2 3 &
(e 13][024 s]'

Compute the following:

(a) 3UX, (d) XU + v,
(b) (3W)(IY), (e) (U -wW(X+1Y),
(e) 50— (2X — Y)W, (£) (X +¥)U=w).

Perform the following matrix sultiplicacionsa:

1 ol [e &
W o 1] [1 n] ’
- -
L 0 @ X, K, Xy
(4] D1 o ¥y ?2 Y4 »
‘ﬂ' 0o 1 :1 £, :3'.
l'l l-'l 2!.'3 i O 0
(2} 8 By 8y g 2 4,
tl :-E t] o o EJ

L.

[sec. 1-7]



7 o
a o

(d)

=]
=

- e R

(e}

(=1
=2 o S
=
o o o
-
o
Ty
P
-
[

L =
e

1
L= =

1
() i
1

- —
= - =

Lo L= =R ]
=

Ll =

0 1
LE) 1 o
0 0

For the matrices

1
1 -1 1 =1 ©
A-[u I]'H-[ﬁ 01:|'.'"d C= |2

teat the rule that (AB)C = A(BC).

Lt
L 2 3 1 0o =1
A= & 5 & and B = =] 0 1
T B 9 =2 0 1
Compute
(a) am, (£) a(e + 85,
(b) A", (8) Al - 8%,
(ey w8t (h) AB - A",
() (as)e®, (i) AA - BB +3°3°,
(e) a(ms®), (1) (AADA-

Let 1 denote the identity matrix of order 3 (sec page 46):

(v 0 o
yelo 1 al.
[nnl

[s8c. 1=7)
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Let A and B be as in Exercise &. Compore AI, BI, and Ht[. Compute

(A1)T and ((AI}I)I.

B. Let

Find (AB)" and 8% A%,

9. Por a cercain sanufscouring plant, the following informaction is gliven:

Parc 1 Part & Parc ]
Cost 4 3 5

Subassesbly 1 Subassesbly 2

Fart L s 1
Pare 2 3 5
Farg 3 7

HModel 1 Model 2 Model 1

Subassembly 1 2 1 i
Subassembly 2 ] ] 5

Day L Day & Day )

Hodel 1 7 B a
Modal 2 k| & 5
Modal 1 3 5 2]

Determine the parts—per-eodel matrix and the cost-per—day matrix,

1-8. FProperties of Matrix Multiplication
We have learned that insofar as only addition and subtraction ave Iovolwved,
the algebra of =atrices is exactly Llike the ordinary algebra of numbers; scc

Section 1-5. Ar this soment, we oight be concerned about multiplicacion since
the definition seems a bit unusual. Ia the algebra of matrices like the

[sec. 1=7]
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ordinary algebra of nusbers ipsofar as multiplication is concerned?
Let we conslder an examplé cthat will yield an answer to the foregoing
question. Let

If we compurte AR, we Find
0 0]
AR [L’: IJ .
Wow, if we revarse the order of the f{acvors and compute B4, we [ind
1 0
Ba = [I:r ﬂ] 2

Thua AE and BA ave different matrices!
For ansther example, let

1 2
1 2 3]
A= 3 1 and B = ;
-1 11 [" o 1
o
Then
L o211y 2 3 L) + 2¢a) LE2) + 2(0)  1{3) + (1) g 2 5
= |31 L,. : 1] w | 1) +1{4) MY + 20} I +1Q) =[7 5 10
=1 2 =L{1) + 2(4) =L1(2) + 2(0) ~-=1(3) + 2(1} 7=2 =1
while
= |} 23 ; f = [1E1}+I{J]+3{—-1} W) +2{() + X)| _ |4 10
& 0 1) ;5 L4(1) +0(3) + 1(-1) 4&(2) + 0(1) + L(2) 1 1wl

Again AR and BA are different matrices; they are not even of the same order)

Thus we have g first difference berween matrix algebra and ordinary

algebra, and a very significant difference it is indeed. When wve multiply real

numbers, we can rearrange factors since che commtative law helds: For all
x g R and ¥ € R, we have xy = yx. When we sultiply matrices, we have no

[sec. 1-B]
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such lav and we pust consequently be careful to take the factors in the order
given. We must consequently distinguish between the result of multiplying B
on the right by A to get BA, and the result of sultiplying B on the left
by A to get AB. In the algebra of numbers, these two operacions of "right
rulbiplicacion” and "left multiplication” are the sa=e; in =atrix algebra, they
are not necesgarily the same.

Let us explore some more differences! Let

31 4 3
A = [a z] and B [ 3 —9] .

Patently, A # 0 and B @ 0. PBut if we compute AB, we obtain

oo (243 3] (8 4]

thus, we find AB = 0. Again, lec

L 2 0 0 0o 0
A= L 1 0 and B = o o 0
=1 & O 1 & %
Then
L 2 0 o 4O 0 0 0 O
AD = L 1 ¢ o 0 0 = 0 6 of.
=1 & 0 L & 9 0 0 0

The second major difference between ordinary algebra and matrix algebra is
that the product of cwo matrices can be a zero matrix withour either factor
being a zero maktrix.

The breakdown for matrix algebra of the law that xy = yx and of the law
that xy = 0 only if either x or ¥ 1F zZero causes additional differences.
For instance, for real oumbérs we know that if ab = gc, and a ¥ 0,
them b = c. This property is called the cancellation law for multiplication.

Proof, We divided the proof into aisple steps;

(a) ab = ac,
(b} ab — ac = 0,
(e} afb=—¢) =0,
[sec. 1-B)
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and

have at moat twe square roots; thae {a, there are at most two roots of the

(d) b=c =0,
(e} b=e,

For matrices, the above step from (c) to (d) fails and the proof is not

1 20 Yogn o 1 2 3
1 10/, B=}|1 1 1], and €= |1 1 -1].
-1 4 O - 11 1

AdD,

B¢¥C.

In fact, AB can be equal to AC, with A9 0, yer B¢ C. Thus, let

Lee us consider another diffarence. We know that o real number a can

Iqtl..ll‘.iﬂl'l XX = B,

Proof .

(a)
(b)
{e)
{d)
(o)
(f)
(g)
(h)
(1)

Again, wa give che simple steps of the proof:

Suppose that yy = a; then

oE = Yy,

wo— yy = 0,

(2= yMx +y) = xx + (—yx + xy) = yy,
¥yx = Xy,

From {d) and (&), {(x—v){x +¥%) = =x — yy.
From {c) and (f}, (x —y)x +y) =0,
Therefore, either x =y =0 or x+y =0,
Therefore, either x =y or x = =y,

For matrices, statement (e) la falme, and therefore the steps co (f)
(g) are invalid. Even if (g) vere valid, tha scep from (g) to (h) Ffalls.

[see. 1-8)
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Therefore, the [oregoing proof is invalid if we try to apply it to matricoe. 1In
face, ic is false that a matrix can have at most twe square poocta: e have

=
=1

E i [5 ] = [& 3]

E 3 HE{ERPRE

e B EHE
[

[+ 4 4]

Thus the macrix

= [ 8]

has the four different square roots

1 o - -
T8 o PR | S | P O |

There are more’! Given any nusber x ¢ 0, we have

[ 3] [iecal =[G 8

By giving = any one of an infinity of different real values, we obtain an
infinlty of different aquare roots ol che matrix I:

a z 0 1/3 0o =4
[uz nl' [J u]' [um u]' are.

Thus the very simple 2 % 2 msatrix 1 has infinitely many distinct square
roots! You can see, then, that the fact that a real or complex pusher has at
B0st v square toots Is by no means trivial.

[sec. 1-8]



Exerciass -8

Let
1 2 1 0
""[J r.] ‘“""[-1 l]'
Caloulace:
(a) as, (d) (Ba)aA, (g) Alam),
(b} Ba, {e) (mA)}B, (b} ((BAJA)N,
{c) (AB)A, (f) B(EA), (1) ((AB)A)B.

Make the calculations of Exercise | for the matrices

1 2 3 i 0 =
A= |& 5 & and B = (=1 O 1
T 8 9 1 1 =1

Let A and 3 be as in Exerciss 2, and lac

-
L]
==
=R =]
= O

Caleulate AT, TA, BI, IB, and ([Al)S.

we ol 5] e e ]

Show by computacion thac

(a) (A +3)A+B) #A° + 228 + 2%,

(6) (A +B)CA=1) oAl =82,

Fs Z
wvhere A" and B denote AA and BB, respectively.

Lak
1 0o 2 0 0
A= |D 2 D and B = |0 2 Of.
09 3 0 o 2

[sec. 1-8)
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Caleculace ﬁi. ﬁ“'. !lz. !J. ﬁl!. -ﬁzl. where .ﬂ.l denoeea  A{AA) .

6. Find at least 8 sgquare roots of the marrix

=
[ ]

(= =

(= =]

=~

7. Show char the matrix

o o0
i l; n]
gatisfies the equation h: = (. How many & ¥ 2 matrices satisfying this

equation can you find?

8. Show chat cthe matrix

A=

L= S =
[l
(== ~]

satiafies the equacion .l;: = 0.

1=%. Properties of Marrix Hulciplicacion {(Concluded)

e have seen that two basic lawva governing sultiplication in the algebra
of ordinary numbers break down when it coses to matrices, The commucative law
ard the cancellation law do not hold, At this point, you might fear & tocal
collapae of all the other familiar laws. This is not the case. Asilde from the
two lawvs oentioned, and the fact thact, as ve shall see later, many macrices do

not have suleiplicative inversea (reciprocals), the other basic lawe of
ordinary algebra generally remain valid for matrices. The associative law
bolds for the sultiplication of matrices and there are distributive laws that
unite addition and suleiplicacion.

A fev examples will aid us in underscanding the laus.

Lat

189 = e [3]

[sec, 1-8)
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ACBC)

and

(AR}C

Thus, in this case,

Again,

AlB + ©)
and

AR + AC
50 that also

Since multiplication 18 not commueative, we cannat conclude from Equation
{1) that the distributive principle is valld with the factor A on the right—

hand side of B + C. Having illustraced the lefe—hand distributive law, we

,__,
ol

—
et

[y
g
=)

e

. 1

1 (1
3

r—
Bal ind
-
[
=

1
=
L
Re—]
L}
—

: g
HE

e
RNl

A(BC) = (AB)C.

=1 2
31

1 2
5 4"

)

A(B + C) = AB + AC.

[sec. 1-9]



now illustrate the right—hand distributive lawv with the fcllowing example:

avor- (33« FD)[ Y
-EARY -]
meas [F9[ ]« 320 0]

S HHES HH R

(B + C)A = BA + CA.
You might note, in passing, that, in the above example,
AlB +C) # (B + C)A.

These properties of matrix multiplication can be expressed as cheorems,
as follows .

Theorem 1-5. 1

A= [a5]axer " [Pi) pxnr ™ €= [G] axq?
eheEn
(AB)C = A(BC).

Proof, (Dprional.) We have

[s0c, 1~-9]
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AB = [(ja a“hjh)] e

o P
e L%'[ (.’El a'i.ilﬁ'jla) ';th = ’
o [ ‘E" hjk;m)] pxq
A{RC) =

p n
Lgl "t (uz:'l hjh:”)] mxq .

Since che ovder of addition 18 arbicracy; we know that
(2 P (2
a b c = & b, &
G s e e jgl 1) El Jk‘m; s

{(ABYC = A{BC).

Hence,

Theorem 1=6. TE

A= [aij] nx p’ B = [hlh] px a° gnd C = [:jk] pxa’

then A(B + C) = AB + BC.

Proof. (Optional.) We have

(B + C) b

ik i ‘_1'1] pxna"

£
A(B + C) La aj; (b +ey) -

J=1
[zee. 1=%]

P P
R R TN B



P P
= | ¥ a b + a,.c

j=1 1) 3k mEn jgl 1" )% mx n
= AR + AC.

Hence,

A(E + C) = AB + AC.

Theorom L-7. If
2= (o] axar €% [on] oxmr ¢ 4 [4] axq

then (B + ClA = BA + CA,

Proof. The proof is similar to that of Theorem l—6 and will be left as
an exercise for the stwdenc.

1t ahould be noted that if the commicative law held for matrices, it would
be unnecesgary to prove Theorems l—6 and 1-7 sepacately, since the two stace—

A(B + C) = AR + AC

(B +C)A=BA+CA

would be equivalent. For matrices, however, the two statements are not equive
lent, even though both are true. The order of factors is most important, since

gtatemencs like

AME + C) = AR + C4
and

(B + C)A = AB + CA
can be false for matrices.

[sec. 1-%]
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Eatlier we defined cthe zerpo matrix of order m x n and showed char it is

che identity element for macrix addiciom:
A+D=a,
where A 15 any oatrix of order @ ¥ n. This zero matrix plays the same role

in the miltiplication of satrices as the mueber zero does In the muliiplicatlon
af rea] nuchbers. For axemsle, we have

[zn:]g
1L 4],

= = =]
]
rm—
(o ]
==
e
a

=]

a3

Theorem l=8. For any macrix

wie have

= 0 and A o =0

0 A P
mEp pxn =X n pXn mxg pxq

The prool ie easy and is lefr to che studene.

How we may be wondering Lf thers fis an identicy element for the muleiplica—
tion of macrices, namely a matrix chat plays the sase role as the number 1| does
in the sultiplication of real nusbers. (For gll real numbers a, la = a = al.)
There L8 such & matrix, called the unilt matrixz, or the idenclicy macrix for
muleiplication, snd dencted by the sy=bol I. The matrix I,, namely,

we .

iz called the unit matrix of order 2. The matrix

1 o6 0
Low fo 1 g
3 00 1

is called the unit matrix of order 3. JIn general, the unic matrix of order

n is the sguare matrix [Eij]nxn such that I_u-l for all i = ] and

[pec. 1=9]
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lij =0 foraell 49§ (i=1,2,.00,m; J=1,2,...,08):. We now state the
inportant propercy of the unit matrix as & theorem.

Theores 1=8,. Tf A is an m % n matrix, then hln-,l; and I-A-i..

Proof. By definition, the entcy in the i-th row and j—th coluem of the
produst hIn is the sum t”t” + .“I.EEIJ + e F li‘l.'li'l'lj. Since tl:j = [ far
all k¢ §;, all terms but ope in this suwm are zero and drop out. We are
left with n“t“ = Iij- Thus the entry in the i—th row and J=th colusn of the
product 18 the same a8 the corresponding entry im A. Hence AL = A. The
egualicy IA= A may be proved the same way. In most situstions, it is not
necessary to specify the order of the unit matrix since the order is inflerred
from the context, Thus, for

IﬂA =4 '"'Iu"

we write

IA = A = AL.
For example, we have
1 2 1 2
3 4 [; 2] = |3 &
LI - i &
and
1 0 0 1 2 L 2
o 1L 6] &= |3 &].
a o 1 5 6 5 b
Exarclses 1-9
1 Let
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Test the forsulas

A(B + C} = AB + AC,
(B + C}A = BA + CA,
A{B + C) = AB + CA,

AlBE + C) = BA + CA.

Which are correct, and which are false?

2. Let

Show that AE # 0, but BA = 0.

1. Show that for all macrices A and B of the form

-+ -4 e}’

o

ﬁ_[.h] iy l_[cd

we hawve

AR = BA.

Illuserate by aspigning numericsl valuea ¢o a, b, ¢, and d, with
a; b, e, and 4 integers.

4. Find the value of = for which the following gwdw:: is 1I:
0 7| |= =lé&x 7=

1 0 0 1 i 3

2 1 | * dx  =ix

[l ]

5. For the matrices

2 a0 4 0 O o o o 0
A= |1 0 0}, B= |0 O Qf, =and C= |2 O J]|,
g 1L 0 1 4 4 1 2 4

show that AE = BA, that AC = CA, and that BC = CB.
f. Show that the matrix

[see. 1-9]
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r
L = = ]
(=10 =
L= =]

satisfien che equation h‘ir = J. Find at least one move solucion of this

equation.

Chow that for all matrices A of the form

ab  b°
ﬁ = z L]
=4 =ab
we have
P

Tlluscrace by assigning numerical values Eo a and b.

Lac

SO S RN )

Compute the following:

(2} DE, (d) ED,
(&) DF, (e} FD,
{e) EF, (£} FE.
If AR ==DB4A, & and B are said to be anticogmutative. What con—

clysions ean be drawnm conceérning D, E, and F7
Show that the matcix A = [_j ;] iz & solution of the equation
.!t.2 - M +7I =0,

Explain why, in matrix algebra,

&+ B} (A-1) ¢ a2 -8

axcapt in special cases. Can you devize two matrices A and B that
will 4llustrate the inequality? Can you davise two matrices A and B

[seca 1-T)



that will illustrace the special case] (Hint: Use square matrices of
order 2.)

11. Show that 1f ¥V and W are o x 1 coluen vectors, then
PR T R

12. Frove that [u-}: = Itnt. aspusing chat A and B are conformable for

sultiplication.

13. Using E notation, prove the right—hand distributive lav (Theorem 1.7).

1=10. Susmary
In this {ntroductory chapter we have defined several operationa om

matrices, such as addition and suleciplication. These opérationa diffeér from
thoge of elemancary algebra in that they cannot always be performed. Thus,
we do not add & 2 %2 matrix coa 3 ¥ T matrix; again, though 8 &4 = %
matrix and 8 3 X & matrix can be msultiplied together, the product is neither
4 ¥ 3 mor 3 x &, More isportantly, the comsutative law for multiplication
and the cancellation law do mot hold.

There I8 a third significant difference that we shall explore more fully
in later chapters but shall introduce now. Recall that the operacion of
subtraction was closely sssociaced wich that of addition. In order to solve
equations of the ferm

A+X=a,

it 18 ponvenlent to azploy the additive inverse, or negative, =-A. Thus, if
the foragoing eguation holds, then we have

A+ X & (=A) =B + (-A),
X4 Ah+(=A)=R+ (=),
X+0=3-A,

I=0 - A.
A# you kpow, every matrizx A has & oesgative —-A. How "division" i{a closely

[sec. 1-5)



sssociated with suwleiplication in a parallel manner. In order to solve
equations of the form

AX = B,

we would analogously azploy multiplicative inverse {or teciprocal), which is
denoted by the sysbol A L. The defining property 1s A " A= I = AA L. This

enzbles us to solve equations of the form
AX = B,

Thus Lf the foregoing equation holds, and if A has a sulciplicative loverse

.h_'l, then

At = a7,

(A VA = A0,

e A,

X = Aty

¥ow, many matrices other than the zero matrix 0 do not possess multiplicative

ionverses; for instance,
0 0 i =3
B ER

are matrices of this port. This fackt consticutes a very significant difference
berween the algebra of matrices and the algebra of real numbers. In the next
two chapters, we shall explore the problem of matrix inversion im depth.

Before closing this chapter, we should noteé that matrices arising in
sclentific and industrial applications are much larger and their entries much
moré comaplicated than has been the case in this chapter. As you can imagioe,
the computacions invelved when dealing wich larger macrices (of order 10 or
wmore), which is wsual in applied work, are sc extensive as to discourage their
ust in hand computations. Fortunately, the recent development of high—speed
elactronic cosputers has largely overcows this difficulty and thereby has made
it more feasible to apply matrix mechods in many aress of endeavor.

[see, 1-10]



Chapeter 2
THE ALCGEBRA OF 2 x 2 MATHICES

;:1 " _'_E_'I.l:'r.'ndul: cion

In Chapter 1, we considered the elementary operations of addition and
multiplication for rectangular matrices. This algebra is similar in sany
roopecks €2 the algebra of real numbers, alchough there are important differ—
ences. Specifically, we noted that the commutstive lav and the cancellation
iaw do noc hoeld for macrix multiplication, and that divisicon is net always
possible.

With macrices, the whole problem of division is & very complex one; it is
céntered around the éxisténce of a aultiplicacive inverse. Let uvs ask a
question: If you were given che matrix equation

1 2 3 &) X b L & 2 0
I

g 9o —f . M _lo1o2

& 5 & 5 X 2 613"

o & 2 0 Iﬁl -KM 0 0 1

could you zolve it for the unknown & x & matrizx X7 Do not be dismayed

if your answer is "No." Eventuslly, we shall lesrn methods of solving chis
efguation, but the problem is complex and lengchy., In order to understand

this problem in depth and at the zame time comprehend the full significance

of the algebra we have developed so far, ve shall largely confine our attentiom
inm this chapter o a special subset of the set of all rectangular matrices;
namely, we shall consider the sec of 2 » & square matrices,

When one scands back and takes a broad view of the many different kinds of
numbera that have been studied, onoe aees recurring patterms. For Lpnstance, lec
us Look at the rational numbers for a soment. Here iz a fét of numbers that we
cin add and multiply. This statement iz so simple that v almost zake ie for
granced. But [t i8 not crue of all sece, so let us give 2 ngme to the motion
that i involved.

Defipition 2--L. A set 5 is said to be closeéd undér an operation R on
a8 firet member & of 5 and a second member b of 5 i1if

{i) the operation can be perforsed on #ach a and b of 5,



Sk

(i1} for each a and b of 35, cthe resule aof che operatiom is &
mamber of 5.

For oxample, the se¢t of positive integers is not closed under the operation
of division since for some positive intégers a and b the ratio afb is mot
a positive integer; neither is cthe set of ratlional numbérs closed under divisiom,
since the operation cannct be performed 1if b = O; but the set of positive
rational numbers i{s closed under division since the quotiént of two positive
rational nembers is a positive rational mumber.

Under addition and muleiplicaticon, the set of rationsl numbers sacisfles
tha fellowlng postulates:

The set is closed under addition.

Addition is commutative.

Addition is asscclative.

There is an identity masber (0) for additiom.

There is an additive ioverse membeér —a for cach member a.
The sec iz closed under mulciplicacion.

Multiplication is commutative.

Multiplication iz associative.

There is an idencicy member (1) for multiplicacion.

There is a wultiplicative inverse msmber l-l for each member a,
other than 0.

Multiplication is distributive over additiom.

Since there exists a rational mulciplicacive inverse for each rarional number
except 0O, division (excepc by 0} is always possible im the algebra of
rational numbers. In other words, all equations of cthe form

ax = b,

where a and b are racional mombers and a ¢ O, can be solved for = im

the algebra of racional numbers. For exssple: In order to soclve the equation

[uli:.. 2‘1]
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we sultiply both sides of the equation by = 3/I, the sultiplicative inverse
af = 2/3. Thus we obrain

or

which is a rational nusber.

The foregoing set of postulates is spatisfied also by the sct of real
numbers. Any set that satisfies such & set of postulates {5 called a field,
Both the set of real numbers and che setr of rationals, which is a subser of
the set of real numbers, are fields under addition and suleiplicacion. There
are many syscems that have this same pattern. In each of these aystems,
division (ewcept by 0} is always possible.

Mow our immediste concern is ko explore the problem of division in cthe set
of macrices. There is no blanker answer that cap readily be resched, although
there is an answer that we can find by proceeding stepwise. At ficst, let usm
limit our discussion to the set of 2 x I macrices. We do this not only to
congider division In a smalleér demgin, but alss te study in detall the algebra
associnted with this subsee. A more general problem of .metrix division will be
considered in Chapter 3.

Exercises 2—1
1. Determine which of the following sets are closed under the stated
operation:
{a) the set of integers under additionm,
{b} the set of even numbers under multiplicacion,
{e} the sec [1] under mulciplicacion,

{d} the set of positive icrrational nusbers under division,

[eec. 2-1]



{e} the set of integers under the cperation of sguaring,
(f) cthe sct of numbers A = (x: x > 1] wunder addition.
. Derermine which of cthe following stacements are true, and state which of
the indicated cperations are commutatcive:
(z) 2=3m=mi=1,
(b) 4 +2=2+4,
{ey d+im=3 43,
() Ja+ /b= _/b+ /2, a and b positive,
{e}) a—beb=n, a and b real,
(f}) pg=qp, p and gq real,

5 J=L+2=24+ J-L.

. Decerzmine which of the following operations ¥, defined for positive
integers in cerme of addicion and multiplicecion, are comoutative:

(a) x T v =x + 2y (for example, 2 F 3 = 2 + & = B},
(6) x %y = Ixy,
(e} =Fy=Ix+ 2y,

£
(d) =2y =y,

(&) x¥y=x,
(f) = EFyv=x+vy + 1.

4, Determine which of the following operations *, defined for positive
intégera in teérms of addition and wultiplication, are associative:

(a) x*y=x+2y (for example, (I % 3) w4 = 8 * &4 = 1p),
(b) m*ty=x+y,

(e) I*r-wz.

(d) x*y=x,

(e) x*xy= Juy,

(i) mx*yw=xy +1,

5., Decermine whether the operation + is distributive over the operation
¥, that is, determinc whether x * {y T z) = (x * ¥} F (x * 2) and

[sec. 2-1]
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fy Fe)*xwm (% x) F (z%x), wvhere the opevations F and * are
defined for positive integers in terms of addicion and eultiplicacion of

real mumbers:
(a) xFy= x+ ¥y, x*y = xy;
(b =+ v =3z + Iy, x*}r-%t!ﬂ
{c) =xFy= x+ y+1, x*y = xy,

Why is the anewer the zame in each case for lefrc—hand discribucion as ic
is for right=hand diseribucion?

4. In each of the following examples, determine 1f the specified ser, under
addition and sulciplication, constitutes a field;

{a) the set of all posicive numbers,
() cthe set of all ratiomal mu=mbers,

tc) the set of all real numbers of the form a +bﬁ, where
a and b are integers,

{d} rthe set of all complex mumbers of the form a + bi, where
& and b are real nusbers and 1= /=L,

1-1. The Ring of 2 x 2 Matrices

Since we are confining our actention to the subset of £ x & macrices,
it is wery convenient to have a gpymbol for this subset. We let M denote che
sec of all 2 = ¢! matrices. If A ie & mesber, or element, of this set, we
express this mesbership symbolically by A € M. Since zll elements of M are
matrices, our general definitions of addition and multiplication bold for this

subset.

The set M is not & fleld, as defined in Sectiom 2-1, since M does not
have all the properties of a field; for example, you saw in Chaprer 1 thatc
mulriplicacion is not cosmatative in M. Thus, for

re 28] e os-[33]

we have

[2ec. 2-1]
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"""[a 1], while BA [u ﬁ].

Le#c us now consider a less restrictive sore of mathematical system known
as a ring; this mame is usually attributed to David Hilbert (1862-1%43).

Definition 2-2. A ring is a set with two operations, called pddition and
vultiplicacion, that possesses the following properties onder addicion and
sultiplicacion:

The set is closed under addition.

Addition (s commutative.

Addition is associative.

There is an identity element for addiciom.
There is an additive inverse for each element.
The set is closed under maltiplication.

Multiplication is associative.

Multiplication is distributive over addition.

Does the set M satisfy these propercies? It seems clear that it does,
but che answer is not quite obvious. Consider the ser of all real numbers.
This set is a field becavse there exists, among other things, an additiva
isverse for esch number in this set. ¥ow the positive lntegers acre a subset
of the real nusbers. Does this subset contain en additive inverse for each
element? Since we do not have npegative integers in the set under coneideracion,
the answer is "Ho"; therefore, the set of positive integera is not a Fleld.
Thus & subset does not necessarily have the same propaccies as the complete
sekt.

To be cercain that the sec H is a ving, we must systematically make sure
that esach ring criteriom is satisfied. For the most parc, ocur proof will be a
raiteration of the material in Chapter 1, #ince the general properties of
matrices will ba valid for the subzet M of 2 x 2 matrices. The dum of cwo
2% 2 matrices fa a 2 x 2 matrix; chae i8, the set ig closed vnder addition.
For example,

[sec. 2-2]
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The general proofs of commutativicy and associativity are valid. The unit
matrix Is

cthe zero matrix is

gnd the additive inverse of the matrix

gL

Whon we consider the multiplication of I x I matrices, we must first wverify
that the product is an element of this set, nemely 4 I ¥ & =atrix. Eecall
that the number of rows in the product is equal to the number of rows in the
lefe-hand factor, and the number of colums ia equal to the number of columms
in the right—hand factor. Thus, the product of two clements of the set H
must bé an element of this set, namely & 2 % 2 matrix; accordinmgly, the sst
is closed under multiplication. For exasple,

s 0 1 B

The general proof of assoclacivicy is walid for elements of M, since it 1la walid
for rectangular macrices. Also, both of the distributive laws hold for elementas

of M by the same veasoning. For example, to illuscrate the associative law
for sultiplication, we have

[sec. 2-2]
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and also

(ARG -k

and to illustrate the lefe—hand distributive law, we have

] e -akd-sl

[ — —_——
Ll = hal

and alao

AR BAR -3

Since we have checked that each of the ring postulates {s fulfilled, we
have shown chat the set H of 1 % 2 macrices 18 & riog under addieion and
sultiplicacion. We state this result formally ss & theores.

Theorem 2-=1. The set M of 2 x 2 matrices {s 2 ring under addicion
and multiplication.

Since the Llist of defining properties for & fleld contalons all the defining
properties for & ring, it follows that every fleld is a ring. But the converse
statement is not true; for example, we now know chae the pet M of 2 x 2
matrices 18 & ring but not & fileld. The ser ™ has one more of the field
properties, namely there {s an identity element

i [1 o]

a1
for multiplication in M; cthat is, for each A € H we have

TA = A = AT.

Thus the set M is & ring with an identicy element.

[s8e, 2-2]
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At this time, we should verify that the commutative law for mulciplicacion
and the cancellation law are not valid in M by giving counterexamples. Thuse

we have

Lt Rl =3 2l

g0 that the comsutative law for suletiplication does not hold., Also,
o o g 0 = o o o G
1 0O I 0 I 0 3 o}

8o that the cancellation lawv dees not hold.

Exércises 2-2

1. Determine if the set of all integers is a ring under the operations of
additicn and sultiplication.

2, Decermine which of the following secs are rimgs under addiciom and
sultiplication:

{a} the set of numbera of the fom a + b ﬁ, where 4 and b
are lAtegers,

(b} the set of four fourth roota of unity, namely, +l, =1, 1,
and =1;
{c) cthe set of oumbers a/l, wvhers a Iis an integer.

J; Determine if the set of all satricea of che form [; E]  with a € R,

forma a ring under pddicion and sultiplicacion as defined for macrices.

4. Determine 1I the set of all matrices of the form [; 22] y with a € R,

forms a riog under addition and multiplication as defined for matrices.

[eec. 2-2)
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i=3. The Uniqueness of the Multiplicative Inverse
(nce again we turp our actention Lo cthe problem of macrix division. #As we

have seen, this problem arises when we seek to solve a matrix equation of the

form
A = C.
Let us look at a paralle]l equation concerning real numbers,

an = ¢,
Each ponzero number a4 has a reciprocal 1/a, which is ofrven designated ‘—-l'
Its defining property is n_"'l = 1. Since multiplicaticn of real mumbers is
commutative, it follows that 1_1
then thére is & number b, called the multiplicative inverse of a, such that

a=1, Hence if a is a nonzerc number,

ab,= 1 = ba (b= aly.

Given an #quation ax = ¢, where a ¢ O, che multlplicacive {overse b enables
wa to find a solution for =; chus,

blax) = be,
(ba)x = be,
1x = e,
x = be.

Fovw our quastion concerming division by matricés can be put in anmocher way. If
AdLH, is there & B € H for which the equation

A = T = BA

is patisfied? WHe shall employ the more suggestive notatiom .1-1 for the in—
verse, 50 that our quéstion cen be restated: Is there an element A_l ¢ M for
which the equation

Mtegesly

[sec. 2-3]
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iz satiefied? Since we shall often be using this defining property, let us
state 1t formally as a definition.

Definition &—3. Tt A € M, then an clement Jn_l of H is an inverse of

A provided
mlaereals.

1t ehere were an element B corresponding to each element A € M such

that
AR = I = B,
then we could solve all equacions of the form
AX = C,
since we would have

BLAX)

BC,

(BA}X = BG,
IX = BC,

X = BC,

and elearly this value satisfies the original equation.

From the fact that there i a multiplicacive inverse for every real number
except zero, we might wrongly infer a parallel conclusion for matrices. As
stated in Chapter 1, not all matrices have inverses. Our knowledge that O
has no inverse suggests that the zero matrix 0 has no inverse. This is true,

since wae have
0K = 0

for all X € H, 8o that there cannot be any X € H such that
OX = 1.

[sec. 23]
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But there is a more fundamental difficulty than this, Let us take the

nonzeroc matrix

v |3 o)

and try to solve the equation

If we let

then we find that

e (g o]z 9] - 58]

Hence, no matter what entries we take for X, we camnot have

=1

for X € M.

since the entry in the lower right—hand corner of AX is zero, and the entry

in the lower right—hand corner of 1 is 1,

At this point, you might be thinking that no matrix has an inverse, Do not

move too fast! HNote that

I'IT=1I=1-1,

This means that I is its own inverse, just as 1l is its own inverse among the

real numbers.

Also, let us note that

kAl RS R,

Thus the matrix

[see. 2=3)
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has the inverse
-1 1/2 0
A== [ 0 112] .

Consequently, the equation

2 0 _ 1 2
5= 15 4]
may be solved by multiplying both sides by A_l, thus:
2 o lf2 o], [z olflr 2
o 1/2|1{0 2 o 1f2||3 &4]°
1 o X = 1/2 1
o1 iz 2|’
/2 1
X [3;2 2] .

This ie a specific illustration of a geperal pattern. Let a be any

nonzero number. Now

I=1I

= 33—11

= aa_l(I)(I).
Since the multiplication of real numbers and matrices is associative and
commutative, it follows that for all real numbers a and b, and all 2 x 2
matrices X and ¥, we have
abXy = (aX)(by).

In particular, then,

I = (aI)(z 7).

[860. 2‘3]



Since aa = = a "a, we can also state that
_ .1

This result enables us to enumerate a large number of matrices and their in—

verses. Thus, let A = alI; then A—l = 5“11. For example, if a = 3 then

30 -1 _ 1/3 0
[0 3} and AT = [ 0 1!3].

e
u

If a=20,2, then

_Je.z o -1 5 0
A‘[o 0.2] and A =,[0 5]'

At least we know that there are a great many matrices A with the property

that there is a corresponding matrix B such that
AB = T = BA.
Before turning to the problem of finding those matrices that have inverses,
let us show first that if a matrix has an inverse, it has only one inverse;

that is, this inverse is unique, For instance, in the example directly above,

we saw that
-1 5 0 0.2 0
A= [0 5] it A= [ 0 0.2] .

We wish to show that there is no other inverse. Suppose that we have elements
A, B, and C of M such that

AB = T = BA,
and
AC = 1 = CA;

that is, A has an inverse B, and A also has an inverse (. Multiply the
first of these two equations on the left by C. Then

[secs 2=3)
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C(4B) = CI,

or
(CA)B = C,

since multiplication is associative and T is the unit matrix. But CA = I.

Hence

or

This result is so important that we call it a theorem and state it formally:

Theorem 2—2, If A ¢ M and if there exists Afl, A_l € M, such that

-1

YL S

A,
then A—l is unique; that is, there is no other solution X of the equations
AX = T = XA,

Now we can readily show that A is the inverse of A-l if we know that

K—l is the inverse of A, This may seem a bit trivial, but it is important

enough to state formally and prove.

Theorem 2—3, If A e M and if A has an inverse A—l, then A—l also

has an inverse; namely, A is the jinverse of A—l.

Proof, Since Aul is the inverse of 4, this means, by definition, that
1 1

AA " =TI =A " A,

However, the statement of equality can be given in reverse order:

[sace 2=3]



This, by definition, is the statement that A is the inverse of A_l.

Exercigses 2—3

1. Show that each of the following matrices does not have a multiplicative

inverse:
0 1 1 ¢ 1 1 0 0

2. Which of the following pairs of elements ¢f M are inverses of one

another?

@ [B9] w [5.
o [33] = [33]
@ [29] e [27].
@ (23] we [23]
(e) : :] and [_g ";].

3., Use the argument in the text to show that, since

5 ] -

neither of the matrices in the product is invertible (has an inverse).

4, Show that if a2 + bc = 0, then

[sec, 2=3])
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and hence that in this case

has no inverse.

Show that if A ¢ M, Bec M, B#0, and AB =0, then A cannot have

an inverse. Can B have an inverse?

Show that if A € M, and A? — 4A =0, then either A =4I or A has
no inverse. {Hint: Factor the left—hand side and note Exercise 5.)

Show that if A€M, BE€M, C€M, and AB=1T1=CA, then B = C,

Show by direct computation that the matrix
3]
satisfies the equation
M —2m-31=0,

that is,

The matrices

-1 3 5 3
are inverses of cne another. Are their squares also inverses? Their

transposes?

Since
2
A = A-A,

A? - A-Az = AZ-A,

A4 = A-A3 = A-AS,

[SECO 2-3]
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11.

12.

13.

14,

1

. n—
and so on, we can readily demonstrate that A is the inverse of A if

n

A" = TI. Using this information, compute the inverse of each of the follow-

ing matrices:

(a) [‘3 -ﬂ ,

Let

g = cos B8 sin ©
-sin & cos ©

and compute B2 and B3 if o =120°,

I1f

3 4
A’[l—l'

verify that

A® —2a +1=0.

Does the transpose of A also satisfy this same equation?
Prove that if A € M, if p, q, and r are numbers, and if

pA2 +gqA +rI =0

with r # 0, then A has an inverse. (Hint: Subtract the "constant

term" r]I £from both members of the equation and factor the remaining terms

in the left member,)

Prove by direct substitution that if

SR
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then
2
X"~ (p+8)X + (ps —qr)Il = 0.

Show that X has an inverse if and only if ps — qr # 0. (Hint: Use
Exercise 13.)

15. Use the result of Exercise 14 to show that if X2 =0 then ps —qr = 0

and p + 8 = 0. (Perhaps you may have to consider several cases in the

proof.)

2—4. The Inverse of a Matrix of Order 2

At this peint, we have proved that the inverse of a 2 x 2 matrix, if it
exists, is unique, Also, we know that there are some 2 X 2 matrices that
have inverses and there are some that do not have inverses. But we have not
yet developed any general methods of attacking the problem. Certainly our
algebra will lack power unless general methods are developed. We are in a
situation similar to that in which a student finds himself when he has not yet
learned the quadratic formula or the general procedure for deriving it. He can
find the roots of many quadratic equations by trial, but he has no means for
solving all these equations.

It is our purpose now to develop a general method of determining the
inverse of a 2 X 2 matrix when it exists. We shall begin with a matrix whose
entries are specific numbers and then duplicate our procedure with a matrix

whose entries are more general. To start, we shall consider the matrix

e 3 2]

and determine whether there is an inverse B such that AB = I = BA. If we let

then

HElHE L

or [sec. 2=31]



3p —r 3q -s = |+ 0
Sp —2r 5q - 28 o 1|°

1f these two matrices are equal, the respective entries are equal. Thus we

have four equatiomns,

- r=1, (1) 39— s=0, (3)

S5p — 2r = 0, (2) 5q — 23 1. (&)

After multiplying Equation {(l) by 2, we subtract Equation (2) from Equation
(1) and obtain

p=2.

By substituting this value of p in either Equation (1) or Equation (2), we
obtain

r =3,
Equations (3) and (4) can be solved similaily, yielding
q=-1 and s = -3,
Now if we substitute these values for p, q, r, and s, we obtain
2 -1
5 (3 _3].

To demonstrate that B is the inverse of A, we must show that AR = I = BA.

BN EEEI S

Using the notation for the inverse of a matrix introduced earlier, we may write

227 -2 3]

[sec. 2=i]
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In our next step, we shall follow the same pattern as above, but now we
shall use a general notation for our matrix A, Instead of having specific

real numbers for entries, we let

As before, we represent the inverse, if it exists, as

SHE

Assuming AB = I, we have

a b||lp q| _ [ap +br aq +bs _ |1 O
c dlir s cp +dr eq + ds 0 1} -
This matrix equation may be written as four equations,

ap +br = 1, (5) aq +bs = 0, (7)

cp +dr =0, (6) cqg +ds = 1, (8)

Since we wish to find values for p, q, r, and s, in terms of the real
numbers a, b, ¢, and d, we multiply Equation (5) by d, Equation (6) by b,
and then subtract. We obtain

adp — bep = d,

or

(ad ~ be)p = d.
Repeating this procese, using appropriate pairs of equations, we obtain
(ad — be)q = —b, (ad — be)r = —¢, {ad — bc)s = a,

Should it happen that ad — bec = 0, then it follows from the four equa—
tiong, above, that a = b = ¢ = d = 0, 30 that A = 0.

We have seen in Section 2.3 that the zero matrix does not have an inverse.

[sec. 2-&)
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Hence if ad — bc = 0 we have a contradiction of the assumption that the matrix

A has an inverse B. In other words, if A hss an inverse, then ad — be # 0.
Temporarily, let us denote the number ad — bc by h, Now if h # 0, we

may write

Substituting these values appropriately in B, we obtain

o
L]

o o
e oo
]
=g Lo
[ — |
da
o &
| M|

In order to show that this matrix is the inverse of A, we check:

d _ b ad—bc —abtab
AB=[ab] B " h ) h =[1°]=1
c dj|_e a cd—cd —betad 01 ‘
h h h h

We must also make sure that BA = I, thus:

ad—bc bd~bd

=im o

D o
=N =
| DR |

b R L[t o] o
—act+ac  —bctad 0 1 ¢
h h

~lo Fle

The fact that the relationship BA = I follows from the relationship AB = I

is quite significant. While the definition of the inverse demands the existence
and equality of what are called left and right inverses, we have shown that for

2 X 2 matrices the existence of one jmplies the existence of the other and that
if they exist then they are, in fact, the same. Since the multiplication of
matrices is not generally commutative, we might have expected otherwize,

We shall state cur result formally as a theorem.

Theorem 2=4. If the matrix [: :] has an inverge, then h = ad — be # 0

and

-

[secs 2=4]
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Also, we state the converse of this result concerning h:

b

Theorem 2—5. If h = ad — be # O, then the matrix [2 d

] has an
inverse, which is

!
=ip o

=i o

Proof. Direct multiplication shows that

4 _b d _b
a b h h 1 0 h hlla b
c d|]|_¢ a 0 1 _c alle 4df°
h h h h
u will note that Theorems 2.4 and 2.5 together state that the matrix
[z : has an inverse if and only if h # 0. That is, the condition h ¥ 0

is both necessary and sufficient for the matrix to have an inverse. You should

remember the formula

h = ad — be # 0,

1
o n
oo
PR
|
—
It
I
=lo =la
|
e o

Exercises 24

1. For each of the following matrices, determine whether the inverse exists;

if it does exist, find it:

1 1 -3 7
(a) [0 1] s (c) [ 9 21] ’

(b) h i] @ [‘{ f]

[sec. 2-4]
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2.

(e) [—g 2] . {8) [_i _g] .

(£) [g _ﬂ.

Each of the following matrices is actually a function in the sense that it
depends on the value assigned to x, where X € R. Determine those values

of x for which the matrix has no inverse.
xz 1 x+2 0
(a) [1 x] , (c) [xa x__l] R

3 2
(b) [3 ’1‘], @ [’2‘ ";1].

Show that each matrix of the form

cos @ s8in O
—sin © cos ©

has an inverse and find it, Show that the product of two such matrices
(different values of @) is again such a matrix. (Hint: Use the addition

formulas from trigonometry.)

Show that if A €M then A has an inverse if and only if its transpose

has an inverse. If A has an inverse show that
-1 -1
transpose (A ) = (transpose A) .

Prove Theorem 2-3 by first computing A-l by Theorem 2—4 and then using

Theorem 2-—5 to compute the inverse of A—l.

Under the assumption that the element A of M has an inverse, show how
to solve the equation AX =38, with B a 2 x 1 matrix. Apply this to
solve the following equations:

(a) 2x +3z= 9, (e} 2y + 3w =10,
—-x + 4z = 10} - + 4w = 0;
(b) 3x+ z= 0, (dY 3y + w=1,
—2x + z= 1; -2y + w=20,

[sec. 2-4)
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2—5, The Determinant Function

We have seen that the criterion for the existence of an inverse for the

28]

involves the value of the expression ad — bec, If ad — bc # 0, the inverse

matrix

does exist; if ad — bc = 0, the inverse does not exist, Each 2 X 2 matrix

determines one real value for ad - be, For example,

if A= [é ?] , then ad — be = 1{1) -~ 0(0) = 1;
2 3
it a= 1, |, then ad — bc = 2(6) — 3(4) = 0;
; 0.5 3
if A = [4 . 6], then ad — be = 0.5(0.6) — 3(4) = ~11.7.

(Note that the second matrix does not have an inverse.) With each matrix of M
there is thus associated one value, a real number determined by the entries. It
is convenient to give a name to this number, the value of the expression

ad - bc, which is associated with the matrix

Definition 2—4. 1If

a b
then 5(X) = ad — bc is called the determinant of X.
Thus & assigns to each member X of M a real number &(X), read

"delta of X." It is appropriate to regard this assignment or mapping as a

function from the set M of 2 X 2 matrices
a b

{sec. 2-5]
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x = ad — be,
We indicate this as follows:
8 [a b] -—> ad — bc,
c d
that is,

B : X —> 8(X).

The function ©§ has interesting properties, some of which we shall
demonstrate.

First let us compute the values B&(X) for a few products:

{a)} 1If
3 2 0 3
A=[l 2] and B=[2 1],
then
B(A) = 3(2) — 2(L) = &,
5(B) = 0(1) — 3(2) = — 6,
3 2110 3 4 11
AB = [1 2][2 1] - [4 5]’
B8(AB) = 4(5) — 11(4) = — 24,
(b) It
-1 2 8 2
A= [ 0 3] and B = [ 3 1] ’
then

5(a) = — 1(3) — 2(0) = — 3,
8(B) = 8(1) — 2(3) = 2,

[sec. 2-5]



-1 271[8 2 -2 0
w- T3]0 - 59
B(AB) = — 2(3) — 0(9) = — 6.

We might suspect that B&{AB) = 5{a) &8(B)! This is true and we shall now prove
it.

Theorem 2—6, If A €M and B ¢ M, then
S(AB} = B{A) B(B).

Prooi. Let

then

AB = | 2P +br aq + bs
ep +dr c¢q + ds |’

B5(AB) = (ap + br){cq + ds) — {aq + bs)(ep + dr)
= apecq + apds + brcq + brds
— aqcp — aqdr — bscp -~ bsdr

= apds + breq — aqdr — bscp, (1)

8(A) = ad — be,

B(B) ps — qr,

B8(A)B(B)

[}

(ad — be)(ps — qr)

adps — adqr - bcps + beqr, (2)
By rearranging the terms in expressions (1) and (2), we see that
5(AB) = d(A) 3(B). q.e.d.

Let us look at more examples; let
[sece 2~5)
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_ |3
v 2

In Section 2—4 we learned that

then
X
Hence
1
-1 2
S It
4
Further,
8(a) =
5(B) =
s(a Ly
58 )
Theorem 2—7. 1If A 1is a
inverse, then
Procf. We have

But by computing &{(I),

2 —
2] and B = [

if

and B

o pofe

3(2) — 2(1) =

o(r) — 3(2) =

_(_

[T

o= Pl

1l

2x 2

B(A_l)

3

AA“l

"
—
-

5(a8 )

6(1}.

we see that

[sec. 2=5]
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8(I) = 1(1) — 0(0) = 1,

whence

SCAA Yy = 1,
so that by Theorem 2-6,
5(a) B(A™Y) = 1,
or
5(at) = ﬁ .

We shall now prove quite a significant theorem, which will give us the

power to decide when a product AB has an inverse and what the inverse is.
Theorem 2-8, If A and B are 2 X 2 matrices, then AR has an

inverse if and only 1f A and B both have inverses, Further, if these

matrices have inverses, then
(AB)_l = B—lA_l.
Proof., Since
&5(A) 5(B) = 5(aB),
it follows that
5(AB) # 0
if and only if

5(A) # 0 and B(B) # 0.

Then by Theorems 2.4 and 2.5 we see that AB has an inverse if and only if

A and B both have inverses.

[Sec. 2-5]
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To complete the proof of Theorem 28, we assume that A and B have

inverses A—l and B_l, regpectively, and then have only to exhibit a matrix
X such that

ABX = I = XAB.

Let:
X=3 4l
Then
ABX = ABR *a L

= A(BB_I)A"l

= A(I)A"1

- AAHI

= 1.

Hence 13_'1 A—l is a right inverse. Similarly, we can show that

Bl a7l ap 1.

Thus Bul A—l is the inverse of AB. This completes the proof.

For example, let .

_ 190 1 2 5
A = [2 3] and B = [l 3].

Then
.31
A—]' = 2 2 and B_]' = [__i —g] .
1 0
Now

o- [ 3]

[gec. 2-5])
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whence
a4 |-
1 _ |1 3 2 2
(43) [7 19] 7 _1
2 2
But also,
_31 _ls 3
B—l Ajl - 3 —5 2 2y 2 2
-1 2 1 O 7 _1
Fa 2

Thus, for our example we have (AB)—l = Bﬂl A_l.

There are many other theorems that can be develeoped from the concept of a
determinant function. A few of these will be included in the exercises that
follow. It is worth noting, though we shall not prove it, that there i3 a
determinant function associated with the other sets of square matrices, that is,
with those of order 11, 3, 4,..., and that similar theorems hold for them.
Specifically, there is a determinant function associated with each sguare matrix,
and its nonvanishing is a necessary and sufficient condition for the matrix to

have an inverse,

Exercises 2-5

1. Verify Theorem 2—6 for the matrices

R

1
]

L

[2
(a) A _4

(b) A

]
—
|
[l
| o]
[
| —
=]
1l
- o
L=
| I— [E—

(e A

]
—
WM
L1
ﬁ}ﬂ
[I—
=]
i
W
ook
—

2, Show that
2
5(tA) = t 5(A)

for any A e M and any t € R,
[Secc 2'5]



3. For A and t as in Exercise 2, show that &5(A) 1is the constant term
in the polynomial (A — tI).

4, 1If

x 1 2 1
A= [x2 —1] and B [_5 _2] '
find B8{(A) and B(BHIAB) and show that they are equal.

5. Show that 1f A€M, B €M, and B 4is invertible, then
—1
85(B "AB) = B(A).
6. Show that if A € M and at is the transpose of A, then
t
&(a) = 3(A7),
and conclude that
t
5(as%) >0

for any A € M,

7. The expression B(A — tI) is a polymomial in t. For each of the follow—

ing matrices A, expand this polynomial and find its zeros:

o =

(2) [ AP

(®) ['3 HE

e) [_f: °,
(d) [3 g]

8. Let

S

[sec. 2-5)
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and expand the polynomial B(AAt ~ xI). 1Is this the same as the polynomial
B(AtA — xI)? Are these two polynomials the same for every matrix A e M?

2—6, The Group of Invertible Matrices

In this chapter, we have been restricting our attention te the set M of
2 X 2 matrices. This set is, itself, a subset of the set of all rectangular
matrices, Now this set M can be separated into interesting subsets., In the
preceding section, we have divided M into two complementary subsets, the set
of 2 X 2 matrices that do not have inverses and the set of 2 X 2 matrices
that do have inverses, In this section, we shall confine our attention princi-
pally to the set of invertible 2 X 2 matrices. 1t is convenient to dencte
this set by the symbol Mi.

Let us summarize certain facts about the set Mi of invertible matrices:

(a) If A € Mi’ and B € Mi’ then AB € Mi.

{(b) 1If A€M, BeM and C ¢ Mi, then A(BC) = (AB)C.

i!
(c) In Mi, there is an identity element I, that is, an element

1 such that AT = A = IA for each A ¢ Mi'

(d) If AeM, then A has an inverse P M, that is, an
element A~ suchthat AL L = I =4 ‘a.

Not only does the set Mi satisfy each of these conditions, but there are
many subsets of Hi that satisfy conditions analogous to them. Any set § of
matrices that satisfies conditions (a), (b), (c), and (d), with S in place of
Hi’ will be called a group. The concept of a group is fundamental and extremely
important in mathematics. More generally, any set of elements A,8,C,..., not
necessarily matrices, satisfying the foregoing properties relative to an opera—
tion (not necessarily matrix multiplication) is defined to be a group. You will
note that only one operation is involved in the group properties. Although we
shall later introduce a few exampies of the more gemeral concept, for the
moment let us consider some examples of groups of invertible matrices.

The smallest set of invertible matrices that constitutes a group is the set
é 2] . Since (I){I) = I, condition

{a) is satisfied; and condition (b) is automatically fulfilled by any set of

whose one elament is the unit matrix [

aquare matrices. Certainly I 1s a member of the set, so that conditiom {c)

is satisfied. For condition (d), there must be an inverse for every element;

[seec. 2-5]
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this condition is satisfied since in our present set the only element 1 is its
own 1lnverse.

All quite simple, isn't it? Was it obvious?

Another set that constitutes a group is the set (I, —I}. Again conditions
(b) and (c¢) obviously are satisfied. Since

It
H
r—t

(DD = (D

and

(IX(D) = DD

I,

conditions {a) and (d) also are satisfied.

The third set that we shall show to be a group is a bit more significant.
The set of all elements A € M such that B(A) =1 1is a group. The proof is
a bit more difficult, and weimust check carefully each one of the defining
properties. To provide a language that will be helpful, let us denote this set
by W, thus:

W= {A: A€M and B(A) = 1},

Let us verify first that condition {a) is satisfied. If A € W and B € W,
then B8(A}) =1 and 5&(B) = 1. Since &(aB) = 5(A) 3(B) by Theorem 2-6, we

have
5(AB) = 5(A) B(B) = (1)(1) = 1,

and thus AB € W.

Property (b) holds automatically,

For property (¢}, since &(I) = 1, it is clear that I € W.

To demonstrate that condition (d) is satisfied, we must show not only that
each element of W has an inverse but also that the inverse is an element of
W. Now, If A € W, then B{A) = 1. Since &(A) ¥# 0, A has an inverse A_l,

by Theorem 2-5. By Theorem Z-7,

Hence A_l € W, and we have now demonstrated that W 1is a group.

[sec, 2-6]
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In our last example, we shall discuss all matrices of the form

X ¥ -
[—y x] {x,y = real numbers)

and denote this set by 2, ZC M. (Read Z{ M as, "The set Z 1is contained
in the set M.'")
We observe first that the product of any two members of this set Z 1is also

a member of Z, We have, indeed,

Y| %2 Y| | FF T2 *2 TR
1 X V2 % =y Ty Y, %,
Condition (b) is automatically satisfied; and I is a member of Z, with
x =1, vy =0, so that condition (c¢) is satisfied.

In considering condition (d), we rum into trouble, The zero matrix is an

element of this set, but the zero matrix does not have an inverse, The set of

5

Although the set Z does not satisfy the four conditions, a subset Zl of
Z, defined by

all matrices of the form

does mot form a group.

z, = {A&: A€ Z and 8(A) = 1),

does satisfy the conditions and is therefore a group.

1 and B € Zl. We know that

AR € Z, as already shown; and, since B(A) =1 and 5(B) = 1, we know that

The demonstration is easy. Let A e 2

5(AB) = 1. Hence AB € Z;5 and therefore condition (a) is satisfied. Obviously,
condition (b} also is satisfied. We know that I € Z and that &(I) = 1;

p» 80 that condition (c) is satisfied. Finally, for condition (d),
we must show that 1if A ¢ Zl then there is an inverse A_l such that Aﬂl € zl.

We follow the pattern set in an earlier illustration. Since B5(A) = 1, there is

hence, I e Z

an inverse. Then, using the fact that B(Afl) = 1/6(4), we proceed to show
that 5(Ad1) = ], which means that A—l € 21. Having demonstrated that the four

groups postulates are satisfied, we conclude that we have a group.

[sec. 2-6)
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Before considering the more general concept of a group, we shall demon—
strate a fruitful correspondence between the elements of 2, and the points on

a unit circle, which will let us examine a geometric interpretation of 2

1t
_Iy x

we have B(A) = 1; that is, we have

L

is any element of zl,

x2 + y2 = 1,

Now, if we let x and y be coordinates of a point (x,y), we are able to

establish a one—to—one correspondence between the elements of Z, and the

1
points on a unit circle:

[_; i] <> (x, ).

The set of matrices is thus mapped onto the set of points in such a way that to
each matrix there corresponds exactly one point of the set, and to each point of
the set there corresponds exactly one matrix.

The point (x, y) is on the circle of radjus 1 with center at the origin,

as shown in Figure 2-1.

(x, y)

N

Figure 2—1. The unit cirecle.

Let us call this circle the unit circle and denote it by Q.
[Bec. 2-6)




Thus

Q= {(x, ¥): x € R, yeR, and x2 + y2 = 1}.

A geometrical meaning can be assigned to the inverse of any element of Zl. 1f

A = [x y:|a
- x

then we can readily compute A_l by Theorem 2-5, to obtain

P [“ "3’].
y x

Recalling the one~to—one correspondence between the matrices of Z1 and the

points of @ (the unit circle),

X y
["Y x] <> (X, ¥),

1

we see, by examining Figure 2—2, that the correspondent of A =~ ig the reflec-

tion in the x axis of the correspondent of A.

Figure 2—2. Geometric representation of inverse matrices A and A—l € Zl.

Although a full discussion of the general notion of a group would be too

extensive for this bock, a few words are in order, The definition of amn abstract

[sec, 2-6]
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gtoup is stated somewhat differently from the definition given on page

85, although the abstract definition implies the latter.

Definition 2-H. A group is a set G of elements, a,b,c,..., on which a

binary operation o (read "circle')} is defined, such that the following

properties are satisfied:
{a) If ae6G and b ¢ G, then aob c ., {(Closure property.)

(b) If ae€G, beG, and c € G, then

aof{boc)=1{(aob)oc. {(Associative property.)

(¢} There exists a unique element i, 1 € G, such that
iocoa=a=ao0oi for all a € G. {(Identity property.)

{d) For each a € G, there exists an element d_l, a_l € G,

such that a_l oa=1i=ao a_l. {Inverse property.)

If, in addition, the following condition is fulfililed, the group is said to be

commutative or abelian:

(e} Foreach ae€ G and each b€ 3, aob=>boa., (Commutative

property.}

Although the operations we are most concermed with in mathematics are
addition and multiplication, we are not restricted to these in the foregoing
abstract definition. For instance, a very helpful exercise, not only for under—
standing the notion of a group but also for comprehending a finite mumber system,
is the addition associated with a clock face; see Figure 2-3. This furnishes

us with a group. The set of elements is 1,2,...,12. The operation is clockwise

Figure 2—3. A clock face. The addition associated with it gives us a group.

[secs 2-6]
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addition of hours. Each defining property of anm abstract group is satisfied, as
we shall now illustrate. First, the 'sum” of any two elements is another

element. For example, we have

1+ 6= 7,
8 + 4 =12,
11+ 2= 1,
3+12 = 3.

Secondly since, for example,
(8+2)+3=1 and 8+ (2 4+3)=1,
we see that the associative property holds. Thirdly, a full clock rotation, an

advance of 12 hours, gives the same time, so that 12 is our unique identity

element; thus,

12 +2 = 2 5 2 412,

Finally, to each of the elements, 1,2,...,12, there corresponds a number we can
"add" to obtain 12. Thus

44+ B =12= 8 4+ 4,
10+ 2212 = 2 4+ 10,
12 +12 = 12 = 12 + 12,

One of the most elegant examples of a group consists of the three cube

roots of 1, namely

—1+i/3  -1-i.03

2 2

1,

under multiplication, The demonstration is left to the student as an exercise.
Interestingly enough, although the integers are the most commonly used
system that has a group structure (under the operation of addition), they were
not the first to have their group structure analyzed, The first groups to be
studied extensively were finite groups such.as the two examples given above,.

These groups were found during a study of the theory of equations by Evariste



a2
Galois (18L1-1832), to whom is crediced the origin of the systematic study of

Group Theory. Unfortunately, Galeis was killed in & duel at the age of 21,
immediacely after recording some of his most notabie theorems.

Exercises 2—6

L. Detersine whether the following scts are groups under muleiplication;

o [ [5 4] [l

() 1, =1, K. -E,

e [23].

2. Show that the ast of all elements of M of the form

[; E]. where £ € B and £ o 0,

copnstitutes a group under multiplication.

3. Show that the set of all elements of M of the form

[: :] s where £ ¢ R, & € R, and :z--;z-L,

comstitutes a group uvnder multiplicacion.

&. 1f
-1 e
] 2 1
A N -."E . ,,
by z
thow that the see
(A, .tl. ajj
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is & group upder multiplication. Flot the corresponding points inm che
plane.

Let

ve 03] we <= [0 3]-

Show that the sec

(v L, T-nT L, TRT L, T(-EIT D)

is a group under sultiplication. 1Is this truee if T 1is any invertible

mabrix?

Show that the set af all alesents of the form

a 0
[l:l- h]' with m e B, be B, and ab =1,

is a group under multiplicacion. If you ploc all of the pointe (a,b),
with a and b as abowve, vhat sort of a curve do you gec?

Lek
0
K= [1 D

and let H be the ser of all macrices of the Form

—
L

®I + yK, wicth = ¢ B and ¥y € R.

Frove the following:
{a) The product of two elements of H Ls also an element of H.

(b} The elesent =xI + yE 18 iavertible 1f and only if
V. 3!'2 ¥ 0.

2
(e} The set of all elements =I + y¥ with = - yz = 1 is & group
under multiplication.

[sea. 2=56]



8, Ifasac G of ZZx 2 matrices is a group under multiplication, show that
each of the following sete are groupa uader multiplicacion:

ta) (A% A eG), where A® = transpose of A;

{hb) [l_l AB: A €G], where B 15 a fiwed invertible element of M.
9., 1faaser G of & ¥ 2 matrices is a group under sultiplicarion, show thart

{a) G = [.!n-l'. A€ G),

(t) ¢ = {BA: A€ G}, where B is any fixed element of G.

10, Using the definition of an abstract group, demonsztrate whather or mot each
of the following sets under the indicated operation is a group:

{(a) the set of odd integers under addicien;

+

{b) the sec R af posicive real pumbers under mulciplication;

{c) the set of the four fourth roots of 1, (1, -1, 1, —1), wunder
multiplication;

{d) the set of all integers of the form 3=, wvheré @ is an Integer,
under sddieion.

11. By proper application of the four defining postulates of an abstract group,
prove that if a, b, and ¢ aAre elementz in a group and a o b= g o g,
then b = ¢,

1=1. An Jsomorphism between Complex Wumbers and Matrices

It is true that wvery many different kindes of algebraic systems can be
expressed in terms of apecial colleccions of metrices. Hany theorems of this
nature have been proved (n modernm higher algebra. Without attespting any such
proof, we shall aim in the present section to demonscrate how the aystem of
complex numbers can be expressed in cerma of matrices.

In the preceding section, several subsects of the set of all 2 % I matrices
ware displayed. In particular, the get Z of all matrices of the form

[_; i]. %x€R and y € R,

was considered. We shall exhibit a one—to—one correspondence between the aet

[zec. 2-6]
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of all cosplex numbers, which we denote by €, and the set Z. This one—to—one
correspondence would not be partlecularly significant if it did not preserve
algebraic properties — that is, {f che sum of ftwo complex numbers did not
corcespond to the sum of che corresponding cwo matrices and che produce of cwo
comp leéx numbers did net correspond co che product of the corresponding two
satrices. There are other algebraic properties that are presérved in chis
ARDSE .

Usually & complex nusber is expressed im the form
%+ yi,

where 1= +'=1, x &R, and v € B, Thus, if ¢ 1is an element of ©, the
set of all complex numbers, we may write

e o= x{l) + y{i}.

The numeral 1 {8 introduced in order to make the correspondeénce more apparent.
In order to exhibit an elemane of 2 im sailmiler form, weé must introduce the

i [2 -

special macrix

Hoee that

[ 8- [3 9] -3 o --n

thus

The matrix J corresponds to the number i, which satisfies the analogous
egquition

This enables us to verify that

lgac, 2=7]



R L R
-l53-[5 3]
5.4

which indicates that any element of I may be written in the fors

xI + yJ.

For example, we have
1 o g 1
E‘I-I-I!.I-I[D 1] +J[_1 u]

5 8}~ 9]

0
e
G pa
[T
| B
=

and

OL + 5T

|

[ =]
e
L
-|--||:IlI

+

Ln
e |

(=]

et
[—_——]

How we can establish a correspondence between €, the set of complex numbers,

and Z, the set of matrices:
xl + yl % xT + %J.
Since sach glement of © 1s matched with one element of Z, and each slement

of T is marched wich one element of C, we call the corcespondence one—to—one.
Several speciaml correspondences are notable:

[sec. 2-7]



001 +0:1 =20-IT +0=J =D
L= L1 01 #=—21-T +0-J=1

i=0:1 +# 1.4 #—%0.T +1.J =]

As stated earlier, it 1s intéresting that there iz a correspondence
between the complex mumbers and 2 x 2 matrices, but the correspondence is not
particularly significant unless the one—to—one matching is preseérved In the
operations, especially in addition and muleiplication. We shall now follow the
correspondence in these operations and demonstrate that the one—toc—one property
is presérved undér the operations.

wWhen twd complex numbers are sdded, the real cosponents are added, and the
imaginary components are added. Also, remember that the multiplication of a
matrix by a4 nuaber {5 distributive; thus, for ae R, bE R, and A g M, we
have

{a + b)A = an + bA.
Hence we are able to show our one—to—one correapondence under addition:

tl*tz l+32'

- l_'xl + iy, } + l‘;‘.lll;2 + iyz} {:11 + :fl.l'}l + h‘.II +}IIJ}

A

= (x; +%;)  +y +y0 e (x #2014 (y) +y,)0

For example, we have

(2 = 31) + (4 + 11) (21 = 30 + (41 + 1) -
= 6 =21 =3 6L — 2]1.

and
(3 = 24) + {2 + 01) {31 = 23) + (i1 + 0J) -
= 5 = 2§ 3 31 — 3J.

Before demonstrating that the correspondence is preserved under multiplica—
tion, let us ceview for & poment. An example will suffice:
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E—-ﬁiirl.!i—ﬂiz

(2 + &1) (3 - 21)

6 = &1 + 124 — B(=1)

6 + B(1) + (=4 + L)1

14 4 Bi;

2 2

(21 + &N(31 = 23) = 61 — 41T + 1231 - 8J

6T — 4] + L1] — B{=I}

61 + 81 + (-4 + 12)J

14T + B,

Generally, for sultiplication, w have

©1% 4% =

- {11 + yli} {:r_‘, + 311} {:L'I'. + 31.1} {IEI + yrl'} -
2 2 2

= X%y + N Yol +oayol ¥ wd X X1+ ¥ x4y x0T =

- {“l"z - ¥ ¥y) {‘13’2 +xy i > (yx, - "r’"z” + {:lyz + :zr,‘}.r,
1f we represent a complex numbar
a +bi
as a matrix,

a b
a+ bi > [_h ‘l,

we do have & algnificant correspondencel Hot only is there a one—to—one cor—
respondence betwsen the elesents of the two sets, but also the correspondence
is one—to—one under the operations of addition and multiplication.

The additive and sultiplicative identity elements are, reapectively,

0 0
0= 0+ 01 <> [«-u ﬂ] -0

[‘“' 2=7]



l1=1+0i <> [_.]g 'J] -1

and for the additive inwverse of

a b
l-l-'biH[_h ]-

- a = bi > [_; _hl F

Lec usa now examine how the multiplicative inverses, or recliprocals, can be
matched., We have seen that any mesbeér of the set of 2 % 2 matrices has a
sultiplicative inverse if and only if for it the determinant function does not
equal zeére, Accordingly, 4f A € Z cthen there exists j;_l' if and only if
“I +32 # 0, since B{A) = :N:2 +}“1 for A = %1 + yvJ. bBow we know that any
complex sumber has 8 oultiplicative inverse, or reciprocal, if and only if the
complex number {m not zero. That is, 1f ¢ = x + yi, then there exiscs &
multiplizacive inverse of ¢ 4if gnd only 1f % + yi ¢ 0, wvhich meana thar =
and ¥ are pot both ©O. This is equivalent to saying that ::2 + yz ¥ 0,
since x E R and y € R. For multiplicative inverses, if

= +y° 40,
our correspondence ylelda
:l-:+y1 -!-w-}ul-i-:u-zl
1 L 1 =1
— & e (x=—yl) =% ——— (xI—-yI} = .
B Z 0 i

It 18 now clear that the correspondence between €, the set of cowmplex
ou=bers, and I, a vubset of all I x 2 matrices,

% 4+ yi o x1 + yI1,

[pon. 2=7]
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ig preserved under the algebraic operations. ALl of this may be susmed up by
saying that C and 2 have identical algebraic structures. Another way of
expressing this is to say that ¢ and 2 are isomorphic. This word is derived
from two Greek words and means "of the same form." Twoe number systems are
jsomorphic if, first, there is a mapping of ome onto the octher that is a one—to—
one correspondence and, secondly, the mapping preserves sums and producks. If
two number systems are isomorphic, thelr structures are che pame; it is only
ctheir terminology that is differenc. The world is heavy with examples of fzo—
morphismsa, some of thes trivial and some quite the opposite. One of the simplest
iz the isomorphism between the counting nusbers and the positive Integers, a
subset of cthe integers; another is that between the real aumbers and che subset
a4+ 01 of all complex numbers. (We should quickly guess char chere is an
isomorphism between real numbers a and the set of all macrices of the form

al + 0J%)

Ain example of an iscworphism that is more difficult to understand is that
between real numbers and residue classes of polynomials. We won'c cry o explain
this one; but there is one more fundamental concept that can be introduced here,
as follows.

We have stated that cthe real mumbers are isomorphic to a subset of che cos—
plex numbers. We speak of che algebra of the real numbers as being embedded in
the algebra of cosplex numbers. In this sense, we can say that che algebra of
complex numbers is embedded in the algebra of 2 % I matrices. Also, we can
gpeak of the complex numbers as being "richer" then the real oumbers, or of the
2 x ! matrices as being richer than cthe complex numbers. The existence of
complex numbers gives ws soletions to equations such as

12-1-1-':]'.

which have no solution in the domain of real numbors. It is of course clear
that # 1s a proper subsec of M, that is, ZC M and Z # M. Here is a simple
example to filluscrate the statement that MW is "richer" than 2: The equation

ol B

has for solucion any matrix

X = [ll'::t ;} tCR and t 40,
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a3 may be seen quickly by esasy computation; and there are acill other seolutions.
{m the other hand, the equation

X =1 =

has exactly two solutiona among the cosplex numbers, namely ¢ = 1 and

cw=1,

Exercises I-7

Using the following values, show the correspondence under addition and
multiplication between cosplex numbers of the form = + ¥i and matrices
of the form =xI + vI:

(a) % =1,y ==1,x, =0, and y, ==
(b) x =3, yy==4, %, =1, and y, = 1;

{c) xl-ﬂ.]rl-—i,xill, and :.rz--*r.

Carey through, in parallel columns as inm the texe, the necessary computa—
tions to establish an isomorphism becween B and the set

{3 9] =en}

by méans of the correspondence
= 0
X [ﬂ -:] .

In the preceding exercise, an iscmorphiem between R and the sets of

{[; ]}

was considered. Define a funceion £ by

i(x) = [; 3] ,

matrices

[sece 2-7)
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Decermine which of cthe following statements are correct:

(a) fix +y) = £{x) + E{v},

(b fixy} = f{x) £{¥),
(ey L0} =0,
(d) £(L}) Ll

CEtx)) L, x 4 0.

@ ()

&, 18 the set ¢ of matrices

HHE

with & and b ratiemal and ul + hz = | a group under mulciplicacion?

i=8. Algobras

The conceprs of group, ring, and field are of irequent occurrence in sodern
algebra. The study of these aystems is a study of the structures or pacterns
that are the framéwork on which algebraic cperations are dependenc. In this
chapter; we have accempred to demonstrate how these same concepes describe the
gtructure of the set of 2 ¥ ¢ maerices, which is a subset of che sec of all
reccangular matrices.

tior only have we introduced these embracing concepts, but we have exhibirced
the "algebra" of the sets. "Algebra" is a2 generic word that is freéquently uaed
in a loose sense, By cechnical definicion, an algebra 15 & system that has two
binary operations, called "addition"” and "multiplication,"” and alec has
"muletiplication by & number,” that make 1t both a ring and a vector apace.

Vector spaces will be discussed in Chapter &, and we shall see then chat
the aec of 2 » 2 matrices consticubtes a vecoor apace under matrix additien
and multiplication by a number. Thua the 2 % 2 matcices form an algebra.

As you yoursell might conclude at this time, this algebra is only one of
many posaible algebras. Some of these algebras are duplicates of one another
in the sense that cthe basic structure of one is the sase 44 the basic structure
of another. Superficially, they seem different because of che cerminology.

When they have the same structure, two algebras are called ifsomorphic.

[-’.’:l E"?]



Chapter 3
HATRICES AND LINEAR SYSTEMS

3-1. Equivalent Systems
In this chapter, we ghall deconstrate the vse of matrices in the solution

of systems of linear equations. We shall first analyze so=e of our present
algebralec techniques for solving these systems, and then show how the same
techniques can be duplicated in terms of matrix operations.

Let us begin by locking &t & system of three linesar equationa;

X= ¥+ gm= =], (L)
1 X= 2y = jg = =], {2y
e 4+ y 4+ Jzwm], ()

In our first scep eoward fipnding che soluction set of this system, wo proceed

as follows: Mulciply Equation (L) by 1 to obtain Equacifon (1'); multiply
Equatien {1} by =1 and add the néwv egquation to Eguation (2) to obtain Equation
{2'); multiply Equation {1} by —Z and add cthe new equation to Eguation (3} to
obeain Equation (3'). This gives the following ayatem:

X= ¥+ 2= =] (L")
11 0—- y=-32=1, (29
0O+3 4+ =5, (3')

Beforé continuing, we note that what we have dome is reveraible. In fack, we

can obtain System I from System IT as follows: Multiply Eguation (L'} by 1

to obtdin Egquation {(1); add Equation (L") to Egquation (2') to obtain Egquation

(2}); multiply Equation (1"} by Z and add to Equation (3") to obtain Eguation (3).
Qur second acep is similar to the Flrst: Retain Equation (1') as Equation

(1"); multiply Equation {2') by —l to cbtaln Equation {2"); multiply Equation

(2') by 3 and add the new equation to Equation (3') to obtain Equatiom (37).

Thiz gives
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=y 4+ 2= =] {1")
111 O+y %+ 3z = =], (2"
OG+0=8cw= @, 3"

Cur third step reverses the direction: MHultiply Equation (3) by — 1/8
to obtain Equation (3"'); multiply Equation (3") by 3/8 and add to Equation
(2") to obtain Equation (2" ); sultiply Equation (3"} by 1/B and add to
Equacion (1") to obtain Equatiom (L'"). We thus get

2=y +0==], ()
Iv O+y+0= 7, fz")
040 +zm=-l, S

How, by vetaining the second and thipd equatiens, and adding the second eguation
to the first, we obtain

x+0 +0=]1,
v O+y +0m= 2,

0 +0 +zm==],

or, in a more familiar formm,

#-lp
y = 2,

T w=].

In the foregoing procedure, we obtain aystem I1 from system [, II1 {rom
I1, IV from II1, and V from TV. Thus we know that any set of values that
satisfies system I must also aatisfy each succeeding system; in particular,
from ayatem V we find chae any (%, ¥, z) that satisefiea 1 must be

{1, 2, -1}.

Accordingly, there can be no other solution of the original system I; if there
is a solution, cthen this is it.

[sec. 31]
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But do the values (), 2, =1} =ctually satisfy system I? Far our
systems of linear eguations we have already pointed ouc that system I can be
cbralned from syscem [1; similarly, 11 can be obtainmed frem TII, III from 1V,
and IV from V. Thus the solution of W, nasmely (1, 2, =1}, satisfiss 1.

Of course, you could werify by direct subsritution that (1, 2, -1}
sacisfies the system I, and actually you should de this €o guard against com—
putational eérror. But it is uvseiul to note explicitly that the steps are
reveraible, so that the syscems I, II, 111, IV, and V are equivalent in
accordance with the following definicion:

Definition 3-1. Two systems of linear equations are sald to be squivalent

if and enly if each solucjon of eicher aystem iz alse a solucion of che other.

We know that the [oregoing syetems I through  are equivalc... because the
stepi we have taken are reversible. In fact, the only operations we have per—
formed have been of the following sorta:

A, HMultiply an eguation by a nonzero number.
B. Add one eguation to another.

Reversing the process, w undo the addition by subftaction and the multi=
plication by division.

Actually, there is another operacion we shall sometimes perform in our
systemitic solution of ayatems of linear equations, and it also is reversible:

. Interchange two equations.

Thus, in solving the system

¥4zm=h,
X+ldy +2=3,

X— y4+z=|],

our first step would be to intérchange the first two eéquatioms in order to have
a leading coeificient differing from zére.

In the present chapcer we shall investigate an orderly method of elimina-
tion, without regard to the particular values of cthe coefficients except that we
shall aveid division by 0. Our sethoed will be especially useful {n dealing
with several systema in wvhich corresponding coefficients of cthe variables are

[sces F=1]
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equil while the right—hand =meabers are different = a situation that often

oceurs in iodustrial and applied scientific problems.

You might use the procedurs, for exa=mple, in "programming,"” i.e., deviaing
a mathod, or program, for solving a aystem of linear equations by means of a
modern electronle computing machine,

Exerciscs 31

1. Solve the following aystems of squations:

(a) 3x + 4y = &, () x-—2y =13,
Sx 4+ Ty = 1; ¥ o= 2
(£} x4+ y— z= 3, (d}y =-— 3y + 3z =6,
iy + &= 1D, o= 8 ==
Sx = y -2z = =3 t =7
(e} =+2qy+ z=Twmd, (£ lx +0y +02 0w =g,
y—iz = wm], O + 1y + 0z + 0w = b,
E=Iua=(, e + 0y + 12 + 0w = g,
wom g Ox 4 Oy + 0z 4+ luww=d,

1. Solve by drawing graphs:

{a) =+ y= 2, (b 3x = y = 11,

= y= g S50 4+ Ty = 1.
3. Perform the following matriz sulciplicacions:

[EE— L

4. Given the followlng aystems A and B,obtain B from A by steps consisting
sither of multiplying an equation by & ponzero conatant or of adding an
arbicrary suleiple of an squation to another egquation:

(a)

[~ -N
L= =
==
= I R
Ll = =
n&B
Mo M

= 2 iz — 3y + =z = =@,
Az ¥y o= 3, B: X +dy—- z=9,
T = =l; Jx + v+ lz =6,

[sec. 3-1]
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Are the two systems equivalent? Why or why not?

3. The solution sec of one of the following systems of linear equations is
empty, while the other solution set contains an infinite number of
solutions. See if you can determine which is which, and give three
particular numerical sclutions for the ayscea that does have solutions:

(a) x+iy— z=3], (b) x+2y- z =],
X— ¥4 Em=4, X= ¥y 4+ z =4,
b — ¥ + Iz = L&; 4x = y + ip = L5,

33, Foroularion in Terms of Macrices
In spplying our method to the solution of the original system of Sectien
1, namcly to

XK= ¥+ z==373,
Xx—dy—ilzm=s=1],
ix + y+lzw ],

we carcied out just two types of algebraic operations im cbtaining an eguivalent
system:

A. Hultiplication of an equation by a number other tham O,

B. Addicion of an equation to ancther eguation.
We noted that & chird Eype of operation is sosetimes required, namely:
C. Intérchange of two equations.

This third operation is needed if & coefficient by which we otherwise would
divide is 0, and there ig a subsequent equationm in which the same variable
has a nonzero coefficlient.

The three foregoing operations can, in effece, be carried out chrough
matrix operations. Before we deésongtrate this, we shall see how the macrix
nocation and operations developed in Chapter L cam be used to write a system
of lincar equations in matrix form and to represent the steps In the solution.

Let us agaln consider the system we worked with in Sectliom 3-1:

[sec. 3-1)



¥—= Y+ E==232
X=Iy—=2zw=1,
Ix+ ¥y 4+ Izm=],

We may display the detached coefficients of =, ¥, and =z as a macrix A,

naoe Ly
1 =1 1
A= |1 =2 =2,
2 1 3
Hext, let us considér the matrices
X -2
Em |y and B= |=1]:
£ 1

the entries of X are the variables %, v, #, and of B are the right—hand
sembers of the equations we are considering. By the definition of matrix
sultiplication, we have

1 =l L]| = E— ¥4+ =
A = |1 =2 =2 ||ly]| = xX=2y = i8],
2 1 3|l= I+ v+ I

vhich {8 & 3 x 1 makrix having a2 entries the left—hand sembera of the
equations of our linear system.

How the equatiom

AX = B (i)

]| = -2
~ =1 i
3 L

is equivalent, by the definition of equality of matrices, to the entire system
of linear equations. It i3 an achievement not to be takéen modestly that we are
able to consider and work with a large syatem of eguiations in terms of such a

that is,

B =
>
&

L

[sec. 3=-2]
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gimple representacion as is exhibited in Bguation (1}, Can you see the pactern
that fa emerging?

In passing, let us note cthat there is an interesting way of viewing the
satrix equation

AL = ¥, £2)

where A ig & given 3 % 3 matrix amd X and ¥ are wvariable 3 x 1 columm

matrices. We recall cthae egquatioms such as

y = ax + b
and

¥ = gin =
define functions, where pumbers = of the domain are mapped iate numbers y of
the range. We may also consider Equatiom {(2) as defining a functliom, but in this
case the domain consists of coluen matrices X and the range consists of column

matrices ¥; thus wve have a matriz function of & matrix variable! For emample,

the macrix equation

1 =1 1 = XE= y+ E u
1l =2 =2y = xE—dy=-dz| = | w
i 1 ill= % 4+ g 4+ lz w

dofines & function with a domain of 3 x 1 matrices

X
¥ (3
z

and a range of 3 x 1 matrices

u o=y 4 =
W = X = Jy =32z . {4}
W i + oy 4 Iz

Thue with any column matrix of the fore (3}, the equacion asscciates a
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column matriz of the form (&).
Looking again at the eguation

A = B,

where A i &8 given 3 % 3 mateix, B i3 g given 3 x 1| macrix, and X is
a variable 3 x | matrix, we nocte cthat here we have an inverse gquescion: Whae
matrices X (if any} are mapped onto the particular B? For the case w-e have
been considering,

L =1 1 x =1
L = =2|[y]| = |-1],
F 1 3 z L

we found In Secetlon 31 that the uvnigue solution is

we shall consider some geometric aspects of the matrix—functiom poinc of
view in Chaprers 4 and 5.

We are now ready co look agaim at the procedure of Section =1, and restate
cach system im tarms of matrices:

1 -1 1|]=x] -2 1 -1 1= 2
1-1-1;,---1@1:-1—3;-1
2 1 3l]= 1 0 3 1fl= 5
P -1 1| -2
@ul:tr-—l
0 - 8
1 =1 o||x =1
@vu:uy- 2
a @ 1f|= -]
1 o of|=x L
{'_‘}n:ny- 2

0 0 1|z -1] .

The tw—headéd arrows @) indicate that, ag we gaw in Seceion 3=1, the smacrix
egquations are egquivalent.

In order to se& a little more clesrly vhat has been dome, let uws look only
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at the firsc and last equations. The firsc is

1 -1 1= ~2
L =2 =2||y| = |-1] ;
2 1 3|]|= i

the last is

=
B M
L]
= Py e

a o
I 0
a 1

Our process has conwverted che coeificient matrix A into cthe identity matrix
I. Hecall thac

P R

Thus ©o bring sbouwt this change we oust have completed operacions equivalent

to multiplying on the Lefc by AL,

In brief, our procedutre amounts to multiplying each member of

AX = B
on the left by A T,
Al = 471,
to obtain
X = A B,

Let uws mote how far we have come. By introducing arraye of numbers aa
objects in their own righe, and by defining suitable algebraic cperations, we
are able to write complicated systems of equations in the simple form

A = B,

This condensed motation, so eimilar co the long—familiar
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ax = b,

which we learned to solve "by division," indicaces for us our solution process;
namely, mulblply both sides on the left by the reciprocal or inverse of A,

obcaining che solution

X = A B,

This aimilaricy bebween

and

AX = B

should mot be pushed too far, nowever, There is only one real number, 0O, chat
has no reciprocal; as we already know, there are many matrices that have no
multiplicative inverses. Nevertheless, we have succeeded in our alm, which is
pechaps the general aim of mathematics: to make the complicated simple. by
discovering its pattern.

Exercises i

l. Write in macrix form:

(a) b4x—2y +7e =12, (B} x+y=2,
Ix+ v+ 5z=-], XK=y w2,
by — z = 3I;

2, Determine the systems of algebraic equations to which the following matrin

equations are eguivalent:

x 1 (b) 1 2 =2
y| = |o], 2 -1 ~4
z 2 -1 1 5

3. Selve the following eystem of eguations; then restace your work in matrix

[a}

L=
L L
BJ i k0
£l i W
[ - -
s P
ol e

form:
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E+ ¥4+ 2= ws]

= yo+ Jz +1w

il
a

I+ y+ 12+ ww=I,
X=2y + = + Iuw 1O,

{a)} Onto what vector ¥ does the function defined by

e 3205
map the wector [_

3 ]I'] " [:] T (b) What vector [:] doea it map onto the
3 T

o

vegtor Y =

Let A= [.1 &, &, .ﬂ-] i IT= ['_rl] T € R:. Discuss the
domain of the function defined by

A = Y,

Define che inverse funccion, Lif any.

Inverse of a Matrix

and saw that solving the system amounts Co determiniag the inverse matrix A

In Section 32 we wrote a system of linear equations in matrix form,

Al = B,

if ic exists, since then we have

A CAX = B,

whence

X = A B,

Our work involved a secies of algebraic cperacions; let us learn how to duplicate

this

work by a series of maerix alterationa. To do this, we suppress the colusn

matricea in the scheme shown in Sectioa 3=I and look at the coeflicient matrices

[see. 3=2]
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on the lefe:

- S | 1 =L 1 1 -1 1 1 =1 @ 1 0
1 -2 =|plo =L -3 o 1 3 o L o 01
z2 1 3 0o 3 1 0o 0 -8 o 0 1 D 0

Observe what happéns {f we substitute "row' for "equation" in the procedure of
Sfectlion 3=l and repeat our steps. In the first step, we multiply Tvow L by =1
and add the cesult co row 2 multiply row 1 by =2 and add to row 3. Second, we
multiply rov I by 3 and add to row 3; multiply row 2 by =1. Third, we sultiply
row J by 38 and add fo row 1) sulciply row 1 by L1/8 and add to row 1;
eultiply row 3 by = L/8. Last v add row 2 o row 1. Throogh "row operations™
wi have duplicated the changes in the coefficient matrix as wa proceed through

Ll = I =]

the series of equivalent ayste=ms,
The three algebrale operations described in Section 32 are paralleled by

three matrix row operations:

Pefinition 3=, The three row ocperationa,

Interchange of any two rows,
Multiplicarcion of all elements of any row by a nonzero constant,
Addicion of an arbitrary multiple of any row to any other row,

are called elementary row operations on a matrix.

In Section 35, the exact relationship between row acperations and the
operations developed inm Chaprer 1 will be demonstrated. Earlier we defined

equivalent systema of linear equacions; in 8 corcesponding way, we now define

equivalent matrices.

Deiinition 3=3. Two matrices are said to be row equivalent if and only if

each can be cransformed inge the other by means of elementary row cperations.

We now Eurn our attention to the right—hand member of the eguation

AX = B,

At the moment, the right—hand mesber copnsists solely of che matrix B, which
we wish temporarily bo suppress just &s we Cemporarily suppressed the matrix
X 4in considering the left—hand meober. Accordingly, w need a coeificient

matrix for the right—=hand mesber. To obtain chis, we use the idencity matrix

[sac. 3'3]
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to write the equivalent equation
AX = IB. (1}

How our process converts this to

XA lp,

which can be expressed equivalently as

= als. (2)

When wi compare Equetion (1) and Equation {(2) we notice that as A goes to 1,
I goes to ..h-l. Hight it be that the row operatioms, which convert A into 1
wvhen applied to the lefr—hand mesber, will copverc 1 into .h_'l when applied
to the cight-<haind meaber? Let us try. For convenlence, we do this in parallel
coluens, givirg an indication in parentheses of how each new row 18 cbtained:

1 =1 1 A

1 =2 =2 a1 0|;

2 L 3 LI R
ﬂtl' -*Hi‘.l + RE: --'-Rl + th

I -1 1 L 0 0

0 =1 =3 =1 1 0f;

o 3 1 =2 0 1

(Ry; =1Ry; 3R, + Ry):

o 1 1 L=k 0];
0o o -8 =5 3 1

= 4 3 1
1 L D B 8 )
7 1 3
0 1 { ~ 8 1 g
3 3 1
8 1 8 "8 "8

(1R, * R; Ryi Ry

[see. 3-3]
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7 1 3
g 1 O E E 1k
3 L
¢ & 3 T el
To demonstrate chac
=5 & ‘A
B 8 B
1 1 J
B=1-% &8 @
4 3 1
B 78 TE

is a leit-hand Inverse for A, it is necessary to show that

4 1 &
“§ ¥ E|||* ' !
7 1 E] ;
BA = -3 ry g 1 = =2 - T
& 3 L
5 —§ "E|]]* * 2

You are asked to verify chis as an exercise, and also to check thar AB = I,
thus demonstracing that B is che inverse .n.'l ef A. In Section 35 we shall
see why it i that AB = I follows from BA = 1 for matrices B that are
cbtained in this way as products oi elementary matrices.

We now have the following rule for computing the inverse AV of a matrix
A, 1f there is one: Find a series of elementary row operations that convert
A into the identity macrix I; the same scries of elementary row operations
will convert the identity matrix 1 into the inverse .ﬂ._l.

When we start the process we may not konow {f the inverse exists., This
need ot concern us at the moment. If the application of the rule is successful,
that is, if A is converted into I; then we koow that .Il._'1 exigtn. Im sub—
sequent scctions, we shall discuss vhat happens when A-l does not exist and we
ahall also demonstrace that che row operations can be brought about by seans of

the matrix operations that were developed in Chapter 1.

[zec. 3-3)



Exercises =31

7

1. Determine the inverse of cach of the following matrices through rew

oparacions.

{a)

L]

{Check your answers.)

3 s fu
1] v &
0 3 {d) ‘1
Y o
(i 3

_2 L]

L= =
- P
w

2. Deteérmine the inverse, if any, of each of the [ollowing matrices:

fa})

()

(e}

3. Soclve sach of

{a})

(c)

4., Solve

2 w [a
It L
0 3 {ay |-1
3 &, 1]
3 1 1
& ?1
3 B

i

the following matrix equations:

4 il = 1 3 (b) [ 1

3 G||x| = jyaf, 2

1 =1]|= 7 5

& 7= i (dy |1

3 6llyl =] 3], F)

1 =1]]= =k 3
=L Ll]|x » m ¢ 3
=2 =2lly v n g|] = |0
1 (= » p ©& [

5. Perform the mulelplicacions

[sec. 3~3]
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3]
2 L
1 =z .,
3 1
i 7 X K|
I af|y] = af 4
1 =1 z =3
i 7 % 0
E ¥y| = [0 .
1 -1 :J 4]
3
1 =& 3
=1 1 0 i
11
1 == 7



{a}) 3 2 =2 ﬁﬁ%
(b) Lo wlf,,
—1?%%—115

Muleiply both members of che matrix equation

1 12 10| = 17
& -13 - y| = | o
=] 5 i o 0

on the lefc by

3 2 =
£ =1 =4
=] 1 5

and use the result o solve the equatiom.

Solve;
2 ¥ v+ 2z — 3u=0D,
e + + £+ = 15,
B = ¥ = g= ww=5,
4y — dy # 32 — w= 2
Solve:

9% — y = 37,

T = Ju = =17,
% 4 buw = 14,



ng
J3=4. Linear Systeéems of Equations

In Sections 3~2 and 33, & procedure for solving & system of linear equations,
AKX = H'].

was présented, The methed produces che suleiplicative inverse j.-l if ik
exlsts.
In the present section we shall consider systems of linear equations im

general .
Let uas begin by looking at & simple illustracion.

Example 1. Consider the aystem of equations,
2 = My 4 b4z = 5,
% 4+ Jy = 2e = 1,

2 + 2y 4+ zw 3,

We start in parellel colusns, thus:

2 =1 & 1 0 0
2 1 =2 0 10
2 2 1 D o 1

Proceading, we arrive after three sceps at the following:

11 7 3

L% 19 0 20 ©
3 1 1

LN 6 16 ¢
1 1

0 0 -5 =3 1

If we multiply these rwoe matrices on the vight by the macrices

a
and 1|, respectcively,
K|

MW M

we abtain the syscem

[sec. 3-4]
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l+lu_ln ﬁ'
3
? 5=- 5b

There is no mathematical loss in dropping the eguation 0 = 0 from che systes,
which then can be written equivelently as

1951

etk v R Tt
|
y-—gdrg:.

wWhatever value s given €2 2, this value and the corvesponding values of x
and y decermiped by these equations satisfy the original system. For example,
a fev solutions are shown in che following ctable:

z X ¥
& a8
= | B3
l-| 1
L 3
19 2
| B |3
3 4
L1185 5

Example 2. HKow consider the systems

L}
Ral
=

x4+ dy— =
= v+ 2=4,
by — y #+ dz = L&,

If we start in parallel colu=ns and proceed as before, we obtain [as you should

verify)

1 Y 2
¥ 5 3 30

2 1 1
01 ~3 3 ~3 4
00 0 - =3 1

[sec. 3-4]



Muleiplying these matrices on the right by the colu=n matrices

]
-3
&
£

we obtain the aystems

1 Ll
l'l':‘-:_ll
T
¥ 3 3+

n.-l-l-

If there were a solution of the original system, it would also be a solucion of
this last system, which is equivalent to the first. But the latter system con—
taing the contradiction 0 = — |; hence there is no solutisn of either system.

Bo you have an intuitive geometrlc notion of what might be golong on in
each of the above systems? Relative to & }dimensional reccangular coordinate
system, each of the equations vepresents a plane. Each pair of these plancs
actuslly intersect in & line, We might hope that the three lines of intersection
{in e¢ach syacem) would imtersect in & point. In the first system, however, the
three lines are coincident; there is an entire "line™ of solutions. On che
other hand, in the second system, the three lines are parallel; there is no
point that lies on all three planes. In the example worked out in Sections
31 and 3}=3, the three lines intersect in a single point.

How mamy possible configurations, as regards intersections, can you list
for 3 planes, not necessarily diascinct from one another? They might, for example,
have exactly ope point in common; or two might be coincident and the thicd
diztinct from but parallel to them; and #0 on. There are systema of linear
equations that correepond to sach of these geometric sitvacions.

Here are two additional systems that even more obviously than the syatem
in Example 2, above, have no solutlomas:

¥ o= A, Lty d+z= 2,

E R H X+y+z=3,

Thus you see that the nusber of variables as compaved with the mumber ol equations

doca not determine whether or not tfm:: is & solution.
S&Ca
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The method we have developed for solving linear systema is routine and can
be applied to systems of any number of lirear equations in any mumber of vari-—
ables. Let us examine the generasl case acd see what can happen. Suppone we
have s aystem of m linear equations in n wvariables:

11:1 4 8%, & wre .II-:H- - ﬂl

ﬂlﬂl '|'-I2!,,2 L N L +mn:r.n ‘ﬁ-

1f any wariable gpecurs with coefficlent 0 in every equation, we drop it. TE

a coefficlent needed as 4 divisor is zero, we interchange our egquations; we might
even interchange saome of cthe terms in all che equations for the convenience of
getting 4 nonzero coefficient in leading posicion. Otherwise we can proceed in
the cugtomary manner untll there remain no equations in which amy of the vari-
ables have nonzero coefficlents. Eventually we have & aystem like this:

% + linear terms in varfables other than "l see X o= ﬂl'
ll + r- - all
;l + L - Bkr

and (possibly)} other equations Iin which no variable appears.
Either all of these other equaticoms (if there are any) are of the form

0 =aq,

in which case they can be disregarded, or there is at least one of them of the

form

0=hb, b ¢ 0,

in which case cthere f» a conteadiction,

If there is a contradiction, the contcadiction was present in the original
system, which means there is po soluelon sec.

[zec, 3-4]



In cape there are no sgquations of the form
0=b, b 40,

we have two possibilicies. Either chere are no variables other than Eyweneady
which meana chat the syscem reduces to

Xy Tﬂl.

X = Bys

and has a unigue solution, or there really are variables other than Xyaoeeay
to which we can assign arbictrary values and obraim a family of sclutlons as in
Example 1, abuove.

Exercises 34
1. {a) List all poseible configurations, as regards intersections, for 3
discinct planes.

{b} List alec the additional possible configuratioms 1if the planes are
allowed to be coincident.

2. Find the solutions, if any, of sach of the following systems of aguations:

{a) =+ y+ 2izm=], (e} =Z=2y+ z= |,
ix + rw 3, ix + y—- z =1,
I + dy + 4z = 4] =+ 2y 4 de = 2

(b)) =+ ¥+ z= b, d}) v+ x+ ¥4+ =i,
X+ y+lze=], v= X+iy+ =0,

y+ z=1; by — x+ 5% ¥ e =1,

= x4 y— zwli

[soc. 3-4]
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(e} ix+ v+ z4+um,
E+dy+ z=u=w=1,
bx + 3y + 2 -wum (.

35. Elementary Row Operations

In Section 3=1, three types of algebraic operations were listed as being
iavolved in the selution of a linear system of eguatioms; im Section =4, three
types of row operatlons were umed when we duplicated the procedurse employing
matrices., In chis seccion we shall show how matrix sultiplicacion uvnderlies
this earlier wark, — in fact, how this basic operation can duplicate the row
operations.

Let us skart by looking at whit happens if we perform any one of the three
row operations on the identity matrix T of order 3. First if we sultiply a
row of 1 by a nonzeérd number n, we have o matrix of the form

or

L= |
L=l ]
Ll = =
L= =1
=od a
Ll = ]
L

L= =
L=l =
o oo
*

Let J represent any matrix of this type. Second, if we add one row of 1 to

] L

or one of three other similar matrices. (bhat are chey?) Let K stand for
any matrix of this type. Third, if we interchange two rows, we form matrices
{denoted by L) of the form

another, we obtaln

o =
L=l =)
L= =]
Lol = = |
L= =
O o =

= ]
(=N~ N
Lol ==
L= =
=N =]
(= =]
-
[l = ]
(= =]
8 0 e
s

Matrices of these three types are called clementary matrices.

Definieion 3—4. An elementary maktrix iz any square macrix obtained by

performing & single elebentary vow operdtion on the identicy matrix.

sea, 3~54]
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Each elementacry matrix E (that 1&, each J, K, or L} hess an inverse,
that {5, a maerix lFl such that
Elfmi1m=gE?,

For example, the inverses of the eleméntacry matrices

L oo 1L 0 0 o 1L 0
J= |0 n 0), K= |0 1 1], and L= |1 O 0
o 01 g o0 1 00 1

ate the elezsentary matrices

L=
=
[=]

-1 |

(=0 NI =]

]
-
L |
=

respectively, as you can verify by performing the muleiplicacione involwed,
An elementary matrix is celated to its ifnverse I{n a very simple way. For
example, J wan obtained by sultiplyi 8 fow of the idenCity matrix by n;

J-'}' {s formed by dividing the same row of the identity matrix by n. In a
gEnse J-L "undoes' whatever was done ko obtain J from the identicy mateix;
conversely, J will unds T, Hence

L =1

J 3 =1= 133

The product of tw elementary matrices also has an inverse, as the fellow
ing theorem indlicaces.

Theorem J=l. IF square matrices A and B of order m have inverses

.1-1 and H-'l. then AR has an inverse um_l, nama ly

T RS T B

Wz have

i
a
e
L]

=1 =]
AT = AL =]

By By = B B s 2 0 . 1,

(a8) (87 A7Y) = agp 27!

and
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so that E'-l.n.-L i the inverse of AB by the definicion of fnverse.

You will recall thag, for 2 x ! matrices, this same proof was uvsed in
establishing Theorem Z.B.

Corollacy 3=1=l. 1f square matrices A,B;...,KX of order n have inverses

'h_l| B_l| e .H_l " then ehae product AB--+K has an inverse m e _H}'_]-‘ ].:f

T B L e P

The proof by mathematical inductlion is left as an exercise.

Corellary 3}=l=2. I EL'E"""'ER are elementary macrices of order n,

then the matrix

b= 5Byl

has an inverse, namely

This follows imoediately from Corollary 3=1-1 and the fact that each
elementary matrix has an inverse.

The primary importance of an eéleéeméntary matrix rests on the following
property. If an o x o matrix A is multiplied on the left by an m x n
elemencary matrix E, then the producc i# the matrix obrained from & by

the row operation by which the elementary matrix was forsed from 1. For

exasple,

o]

1 @ a b ¢ a ] e
0 m O|}jd @ f| = |nd ne mf| ,
0 0 1lf{]lg b i E h i

i 0 0 a b a b
o1l 1 e d = |le+e d+1] .
0 0 1 e f ] E

You should verify these and other similar left multiplicacions by elementacy

matrices to familiarize yourself with the patterns.

[Bee. 3-5]
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Theorem 3—2. Any elementary row opération can be peérformed onm an m X n
matrix A by multiplying A on the lefr by the corresponding elementacy matvix
of order m.

The proof is left as an exercise.

Multiplicacions by elementary matrices can be combined, For example, to
pdd =1 ¢times the first row to the second row, we would multiply A on the

laft by the product of elementary matrices of the type J_rll,._l:

iy

ﬂﬂll—'
f= =]
el = =]
03
oo
-0
o Qe
o = O
oo

i

]
=
L=
ol = =

HWote that J muleiplies the first row by =l; it is necessary to multiply by
.I'_l in order to change the first row back again to its original form after
gdding the First row to the second. Similarly, to add =2 ctimes the firsc row

to the third, we would multiply A on the Left by

- % 0o (L o 0 j=2 o 0O 1 & 0
g 1 o] j& 1 @ 01 gf = a1 0
o o 1 1 0 1 6 0 1 =2 0 1

To perform both of the above steps at the saze time, we would multiply 4 on
the left by

1 0 0 1 o 0 1 & 0
H1 = |=1 1 O g 1 49f = |=1 1 4@
o0 o0 1fj=2 0 1 = 0 1

dince H].

elementary matrices, H'!. iz the product of elementary matrices. By Corollacy

is the product of cwo matrices that are themselves products of

3=1=-1, the inverse of iH1 iz the productc, inm reverse order, of the corresponding
inverses of the elementary catrices.

HWow our first step In the solution of the system of linear equations at
the start of this chapter corresponds precisely to multiplying on the lefe by
the above matrix I‘I1 IE we multiply both sides of System I on page LU3 om the
lefe by H'l'

[sec. 3=5]



1 & 0O i 1 * 1 0 Of [—=2
=1 1 afjtL -2(l¥ =1 1 Of =]
=2 0 1 2 3 z = 0 1 1

we obtain Syscem II. For the second, third, and fourth steps, the corresponding
matrix sultiplicers sust be respectively

1 0 0 1::% 116
HZ-'L‘I—I.D,HS-:}:L%,H&-HI.G
0 3 1 nn-%- g 0 1

Thus mulciplying on the leftc by H.E
unaleered, muleiplying the second row by -1, and adding 3 times the second
oW to Ehe third.

Let us now take gdvantage of the associative law for the mulriplicacion of

matrices to form the product
1 O 0 1 o0
0 <1 oj)|-L 1 O
o 3 1f{|= o0 1

:I‘I-!!I&‘-zljlltl"'l.l 0 lﬂ]l

We recogmize the inverse of the original coefficient matrix, as derermined in
Section 3=3.

has the effect of leaving the first row

w
i i
s D8] ol

- P - -] g

1

ﬂ!lll o0 L e
0] = 0] s o] &~

Theorem 33. If
BA = I,
where B i8 & product of clementary =atrices, then
AR = T,
g0 that B is the inverse of A.
Proof. By Corellary 3-1-2, B has an inverse l_rl. How from

BA = ]
{see. 3=5]



we get
s g = 57y,
whence
O
so that
AB = B 'm = ]
and

Alelylas,

Exercises 33

i. Find macrices A, B, and © such chat

{a) 1 2 3 1 2 3
Al-1 o 2| = |=12 o 2|,
0 =1 1 1 =1 =1
i
(&) 1 2 3
2 -1 o 2| = |1 o -2,
[0 <1 1 1 -1 1
(<) 1 2 3 1 g
¢c |-t o 2| = |o 1 o
0 -1 1 0 0 1

2: Ewpress éach of the following matricez a3 a product of elementary sacrices;

{a) | o ¥
g = o,

3 1

e -% %

[sec. 3=5]
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(h)

(e)

Using your answers to Exerciae 2, form the inverss of each of the given

macrices,

Find three & = & matrices, one each of the Eypes J, X, and L, cthat
will meccomplish elementary row transformations when applied as a left
multiplier to a & * 2 matrix.

Solve the follewing ayscem of equations by oeans of elementary matrices;

XK= y=2z=]3,
¥+ 3z = 5,
2x + 2y — 3z = 135,

(@) Find the inverse of the macrix

=
=

(b} Express the inverse & product of slemertary matrices.

e} Do you think the answer to Exercise &{b) is unique? Why or why not?
Compare, in class, your answer with the answera found by other mesbers
of your class.

Give a proof of Corollary 3-1-1 by mathematical induction.

Perform each of the following sultiplications:

(o) a b e|l|l2 0 O
d e £|]|o L o],
g h i]]lo o 1

(b) |a b el O 1
d e £]|0 L o],
gh:Luul

te) [a b c|]2 0 0
d e £||lo 2z o
g h i|lo L 1

[sea. 3-5]
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9. B5tare a general conjecture vyou can make on the basis of your solution of
Exercise B.

6. Sumsary

In this chapter, we have discussed the tole of matrices in finding che
golution sec of a eystem of linear equations. We began by looking at che
familiar algebraic methods of obtaining such sclutions and them learned to
duplicate this procedure using matrix notation and row operatiome. The Iintimace
connection between row operations and the fundamental operation of matrix
multiplication wos demowstrated; any elementary operation ia tha result of lefp
pultiplication by an zlementary matrix. We can obtain the solution set, 1f it
exists, to a aystem of lipear equations eéither by algebraic oethods, or by row
operatione, or by multiplication by elementary matrices. Each of these three
procedures invelves steps that are reversible, a condltlon that assures the
equivalancs of the aystems.

Our work with systems of lioear equationa led ws to a method for producing
the inverse of a matrix when it exists. The identical sequence of row operations
that converts a matrix A into the identity matrix will convert the identity
macrix into the inverse of A, namely h-]'. The ioverse is particularly helpful
when we need to solve pany systems of linear equations, cach possessing the
same coefficient matrix A but different right—hand columm matrices B.

Since the satrix procedure 'diagonalized' the coefficient matrix, the
method {8 often called the "disgonali{zation sethod.” Alchouph we hawve not
previously mentioned it, there i3 an altermative mathod for solving a Linear
syaten that is often more useful when dealing with a single system. In thia
alternative procedure, we apply elementary matrices to reduce the system to the

® o
¥io= |50 (1)
E l:.!

gs in System III in Section 3=1, frem which the value for z can readily be
obtained. This value of =z can then be substituted in the next to last equationm
to determine the value of ¥, and so on. An examination of the coeffliclent

form

&S O e
=5 = W
- & o

[soc. 3-5]
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matrix displayed above shows clearly why this procedure is called the “eri-—

angularization =echod."

On the ocher hand, the diagonalizacion methed can bhe speeded up to bypass
the triangularized matrix of coefficients in (1), or in System 1I1 of Section
=1, altogether. Thus, after pivoting on the coeificient of =x in the System
I,

X= ¥+ zm=273,
I Xx=2y —lzm==1,
2+ Yy +3z= |,

to obeain the system
X= v+ g

11 0- y=3z= 1,
O+3y + 2= 5,

L}
I
Fa
-

we could next pivot completaely on the coefficient of y to obtain the system

=+ 0+ 4z ==3,
111’ 0O+ v +#3zmw=],
0+ 0—-8z= 8§, r

and then on the coeflicient of =z to ger the syscom

x+ 0+ 0= 1,
v’ 04 v+ 0= 2,
0+ 04 zm=1|,

which you will recognize as the system ¥V of Section 3=1.

It should now be plain that che routine diagonalization and triangularizs—
tion methods can be applied to systems of any number of equatlions in any number
of variables and that the methods can be adapted to machingé computacions.

[3ec. 3=6]



Chapter 4
REPRESENTATION OF COLUME MATRICES A5 GEOMETRIC VECTORS

G4=1. The Algebra of Vectors
In the present chapter, we shall develop a simple geometric representation

for & special class of matrices — nasely, the set of column macrices [:]
with two ontrics cach. The femiliar algebraic operations om this set of matrices
will be rewiewed and also given geometric interpretation, which will lead o a
deeper understonding of the meaning and implications of the algebraic concepts.

By definition, a colupn vector of order 2 s & £ x 1 matrix. Consequent—

ly, using the rules of Chapter L, we can add two such wectors or multiply any one
of them by a number. The set of column vectors of order 2 has, in fact, an
glgebraic structure with properties that were largely explored in our study of
the rules of operation with matrices.

In the following pair of theorems, we summarize whar we already know con—
cerning the algebra of these wvectors, and in cthe next section we shall begin the
interpretation of chat algebra in geometric cerms.

Theorem 4—L. Lect ¥V and W be colusn vectors of order 2, let T be a

number, and let A be a square matrix of order 2. Then
VW, eV, and AV

are each colusn vecrors of order 2.

For expople, if

o= [i] we 2] ema we an 3]

vews [3] + 2]

chen

and
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Theorem S—I4. Let ¥, W, and U be columm wvectors of order

and 8 be numbers, and let A

all the folleowing laws are walid.

I. Lawe for
(a)
(bl
{e)
(d)
11. Laws far
{a}
(b}
(e}
(d)
(e)
(£)

II11. Laws for
{a)
(o)
{e)
{d)
(e)
(f)

In Theorem &I,

the addition of vectors:
V4+W=04+V,

(V+ W) +U =¥+ (W+U),
V40 =v,

v+ (=V) = 0.

the oumerical multiplicetion of wectora:
e(V 4+ W = 2V 4 oW,

r{aW} = {re)V,

(r + 8)¥ = £V + &8V,

ov = 0,

1V = v,

0 = 0.

the multiplication of vectors by matrices:
ALY 4 W) = AW 4 AW,

(A + B)V = AV + BV,

A(BV) = (AB)V,

EI‘F = {0,

IV =V,

ALEV) = (pA)V = v{aAV).

square matrix of order 2, all of whose entries are 0.

0 denctes the column vector of order

2,

and B be square matrices of order

and

2,

0

2

leg ¢
Then

Both of the preceding cheorems have already been proved for matrices. Since

column wvectors are merely aspecial cypes of matrices, the theorems as stated muat

likewise be true.

They would alse be true, of course, If 2 were replaced by

3 or by a general n, Cthroughout, with the understanding that a colusm veckor

of order n 18 a matrix of order m % 1.

[sec. 4=1]
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Exercises b=

Let
v 2] v [3] e - 3]
let
rm2 and sm=];
and let

- |3¥ @ = L L

N I e SR
Verify each of the laws stated in Theorem &—=2 for this cholce af values
for the variables.

Determine the wvector VYV gsuch that AV — AW = AW 4+ BY, where

o[ e 1)

Decermine the vector V such that IV + IW = AV + BV, if

ORI |

Find WV, il
ify =173 Z 1
A= [___”,3 E.I'J]' B = [l 1:| s and ALIV) = A(BV).

Let

i a

& 11 "1z

a1 %z

Evaluate



{e} Using vour answers to parts (a) and (b}, deceérmine the entries of
A 1if, for every wvector V of order 2,

.M.F-g.

{dY Starte your result as a theorem.

&, FResrate the ctheorem obtained im Exercise 5 if A 15 a square matrix of
order m and V stands for any columm wvecter of order n. Prove the new

cheorem for n = 3., Ty to prove che thecrem for all mn.

7. Using your anawers to parts (a) and (b) of Exercise 5, determine the entries

of A 1f, for every vecror ¥V of order 2,

AV = ¥,

Sfate your result as a theovem.

8. HRestate the theorem cbtained in Exercise 7 1f A 1is a aquare macrix of order

n and V stands for any column vecter of order n. Prove this theorem for

n=3 Try to prove the checrem for all n.

9, Theorems 41 and 42 summarize the propecties of the algebra of coluwm
vectors with Z entries. S5tate two analogous theorems summarizing the
properties of the slgebra of row vectors with 2 eatries., S5Show that che

two algebraic atructures are isomorphle.

4=2, VWectors and Thelr Geometric Representation

The motlon of a vector ccocurs freguently in the physical sciences, where a
vector is often referred to 83 3 quantity having both length and direction and
accordingly is represenced by an arrow. Thus foree, veloclity, and even dis-
placement are vector quamtities,

Confining our attention te the cocrdinace plame, let us invescigate this
intuitive nocion of wvector and see how these physical or geometric vecCors are
related to the algebraie column and row vectorszs of Seccion &=1.

An arTov in the plane is determined when the coordinates of iea Eail and
the coordinates of its head are given. Thus the arrow "'1 feom {1,2) to (5,4)

iz shown in Figure 4=1. Such an arrow, In a given pogition, is called a locared




Figure &=1. Arrows in the plane.

vector; ita tail i called the initial point, and its head cthe terminal point
{or end point), of the located vector. A second located vector A,, with
inieial point {=2,3) and terminal point {2,5), iz also shown in Figure &1,

A located vector A may be degeribed briefly by giving firsc che co—
ordinates of 1ts initial point and then the coordinactes of it terminal poinme,

Thus the locaced vectors in Figure 4=l are
Ayt (1,2)(5,4) and Ly (=2,3)(2,5).
The horizontal tun, or x component, of A, 1is
5-1=4,
and 1ts vertlcal cise, or ¥ component, is
4 —2m2,

Accordingly, by the Pythagorean theorem, ite lengeh is

[san, &=2]
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S s ) e S 2 - 0.

Tts direction is determined by che angle @ that it makes with the positive

% direction:

i uinﬂ-Lh

/5

eof B @ 2 —— -

243

4 245 &5
5 5

Since sln & is the cosine of the angle that A, =akes with the y direction,
cof O and sim @ are called the direction cosines of A.l.
You might wonder why we did poc write sisply

2 1
el S

instead of the equations for cos @ apd sin @. The réeason is that while the
value of tan ® determines slope, it does not determine the dircctiom of A -
Thus if ¢ 1is the angle for the located vector (5,4)(1,2) opposite to 4.+ then

~2 1 ]
can @ = < = 7 = tan B
but the angles @ and 8 from the positive x direction cannot be equal since
they terminate in directions differing by =,
How the x and ¥y components of the second located vector hz: (=2,3)

{2,%) in Figure 41 are, respectively,

Z=(-2) =& and 5=131=1,
g0 that A, and A, have equal x components ond equal ¥ components; con—
sequently, they have the same length and the same direction. They are not in
the same position, so of course they are npot the same located vectors; but since

in dealing with vectors we are especlally inmcerested in length and direction we
say that they are equivalent.

Definition 4-1. Two located vectors are said to be equivalent if and only
if they bave the same length and the same direction.

For any prescribed poimt F 1in che plene, there is & located vecrcor
equivalent to 'ﬁ'l {and to ﬁzj and having P as initial point. To determine

[sec. 4-2]
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the coordinaces of che ceminal point, you have only to add the componentcs of
1.1 to the corresponding coordinates of FP. Thus for the inmitial point
P: (3,~7), the terminal point ia

(3+4, =T +2) = (7, =5,
g2 that the located wector is
Ay (3, 7T, -5).

You might plot the initial point and the terminal point of Ay in oeder to

check that it actually is equivalent to A, and to A,.
In peneral, we desoce the leocaced veceor A with fnicial point {;l,;,.rlj
and cerminal point {uz.}rl} by
Ar (xy a7y Mg, ).
Its = and ¥ components are, respectively,
=% sd oy, =¥

Its length im

el 2
T -J{:I - Il} + {Tl = ?1:

If v ¥ 0, then its direction is determined by the angle that it makes with
the x axis:
mlﬂ-u. linﬂ-u.
4 T

If r =0, we find it convenient te say that the vecter is directed in
any direction we please. As you will see, this makes it possible to state
sevaral thecrems more simply, without having to mention special cases. For
gxample, this null vecter is both parallel and perpendicular te every directiom
in the planel

A second locaced wector



A I:H].fjjhﬁ.}'ﬁ}

is equivalent to A if and only if it has the same length and the same direcrion
as A, or, what amounts to the same thing, Lf and only if it has the same com—

ponents as Al

Xy = Ry TEy T Ky ¥ T ¥y Ny TV
For any given point {:n,:pn}, the located wector

B: {:Db!ﬂ}[iu + :"'-2 ! “ll}ra + ?2 E- }"1}

ig equivalent toe A and hae {:ﬂ.yn} ag ics inicial point.
It thus appears that the located veestor A 18 determined except for fcs
position by its cooponents

nl-l'nz—:l and h'i‘z.'-‘.p‘la

These can be considered as che entries of & column vector

v [8]-

In this way, any located vector A determines a column vector V. Conversely,
for any given point P, the entries of any column vector V can be considered
as the components of a located vector A with P afF initial point. The
locater vector A is said to represent V.

A column vector Is a "free vector™ In the sense that it determines the
components {and cherefore the magnitude and directien), but net che position,
of any located wector that represents it. In particular, we shall assign to

v [3]

the column vector

a standard representation

OF : (0,0)(u,¥)

[see. U=2]
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as the located vector from the origin to the point

o o(u,v),

g5 1llustrated in Figure 4—2; this is the representation to which we shall
ordinarily refer unless otherwise staced,

P:(=3,4)

Figore &4=1. HRepresentations of the ecolusn vector [_2] g
located vectors OF and Ii{

Similarly, of course, the components of the located vector A can be
considered as the entries of a row vector. For the presenc, however, we shall
consider only colum vectors and the corresponding geometric vectors; in this
chaprer, the term "vector" will opdinarily be used o mean “eolusn vector,™
not "row vector" or "located vector.”

The length of the located vector OPF, to which we have previously referred,
iz called the length or noom of the columm wvector

Ve [“l .
w
Deing the symbol [IVI] to stand for che novm of WV, w2 have

¥
v = 1.|"+1.r2

[sec. 4=2]
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Thus, 1f u and v are not both zern, the direction cosines of OP are

L and v’

respectively; cthese are also called the direction cosines of the ecolumn wector
V.

The association becween column or row vectors and dirvecced line =egmencs,
introduced in this section, is as applicable to 3=dimensicnal space as it ie to
the I—~dimensional plane. The only difference fsz that the components of a
lpcated veetor in J—dimensional space will be the entries of a column or Tow
vector of order 3, not a4 column or row wector of order 2.

In the rest of this chapoer and in Chapter 5, you will see how Theorems
fi=] and 4= can be interpreted through geometric operations on locared veccors
and how the algebra of matrices leads to beautiful geometric results.

Exercises 42

1. Of the following pairs of vectors,

o [ B o B[
(5 _; [‘“E] (&) _;‘EE}. _i
@ [ Lol e [ [
o B [ o [ [3
(e) j r[f;"ﬁ]: ) [i :;

-

which have the same lengch? Which have the sane direction?

2

2. Ler V=r¢p [3

] « Draw arrows fvom the origin representing ¥V  for
t=1, t=2, te=»3, tmw=]1, tw=12 and bt w=-=3,

In sach caze, compute the length and direction cosines of V.

[sec, 4=2]



3.

3.

6.
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In & rectangular coordinate plane, draw the scandard representation lor
each of the following sets of vectors. Use a different coocdinate plane
for each sot of vectors. Find the lengch and direccion cosines of each

vector:
o [ [ - e[
o Wl -1
o [ B - [-E
o [ W = [
[dﬁ ¥ [ i] and [ﬂg: + [ i: .

W-[]”[] B

Oraw the line segmencs o representing V i t =0, %1, +2;, and

(a) m=1, b= 0;

(b} m= &, B=1;

(¢) m==1/2, b =3,
In each case, wverlfy that the corrvesponding set ol Ffilve polnts (x,y) lies
an 8 lime.

Two column vecters are called parallel provided their standard geometric
reprogentations 1ie on the game line through the orlgim. If A amd B
aceé noncero parallel column vectors, determine the two posslble relation—
ships betwtcn the direction cosines of A and che direction cosines of
B.

Determine all the veccors of the form [:] that are parallel to

() [f, (d) [_E;] - [}]

[sec. 4-2]
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4=3, Geosetric Ipcerpretation of the Mule{plication of a Weckor by a Humber

The geomecrical significance af the sultiplication of a vector by a mmber
iz veadily guessed on comparing the geomecrical representacions of che wectors
¥, 2¥, amd =2V for

By definition,

while

- 4]

Thus, as you ¢an 8ee in Figpures L=3 amd 4G, the scandard represencacions of
YV and 2V have the same directicon, while =iV (s represented by an arrow
pointing in the opposite direction. The lepgth of the arrow pssociated with ¥

mw 4:’

i v
0 -
i H
g, i

ek i L

L] =
Figure &3, The product of Figure &=4, The product of
a vector and a positive number. a vector and a negative number,

is 3, while chose for 2V and =2V each have length 10, Thus, sultiplving
¥V by 2 produeced a seretching of the associated geometric vector o twice ite
original length while leaving its directicn unchanged. HMultiplication by =1

not only doubled the length of the arrow but also reversed ite direction.

[se0. 4=3]
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These observations lead wve to formulace the following theorem.
Theorem 4—3. Let the directed line segment P_ﬁ repeesent the vector W

and let © be a number. Then the vector ¢V is represented by a directed line
having length Irl ctimes the length of . If =0, the repre=

sentation of rV has the seme direction as PQ; if r <0, the direction of
the representation of V¥ 1s opposice to that of FE

Proof. Let ¥V be the wictor [:] . Then

Y] = u v

Mo,
we [

hence,
v = o () + (rw)’
- -.,.':E{u.=+v2]

el TIwii.

This proves the first part of the thoorem,

11
r=0 or ¥= [g],

the sceond part of the theorom i{s certeinly true.
1f

c 0 and Vo [g].

the direction cosines of FEl are

[sec. 4=3]



while those of 1V are

W ™ e

1f r >0, we have |r|l = r, whence {t follows that the arrows associated with
¥ and ¥ have the same direction cosines and, therefore, the same direction,
1f r=0, we have |r| =—=1r, and the direction cosines of the arrow associ—
sted with V¥V are the negatives of those of I‘_Q. Thus, the direction of the
representation of ©V is opposite to that of ﬁ This completes the proocf of
the theorem.

ine way of scating part of the theorem just proved is to say that 1f r is
a number and V is a wvector, then V and ¢V arce parallel vectors (see
Exercise &—I—f);: thus they can be represented by arrows lying on the same line
through the origin. ©On the other hand, if the arrows representing two vectors
are parallel, it is easy to show that you can always express cme of the vectors
as the product of the other vector by a suitably chosen number. Thus, by check—
ing direction cosines, It Ls easy to verify that

- (2] - ]

are parallel veccors, and that

5] <o fd]. e [ -0 (4]

In the exercises that follow, you will be asked to show why the general resulk
illustrated by this example holds true,

Exerciges &6=3

1. Lecr L be the set of all vectors parallel to the vector [g] . Fill im

the folloving blanks =0 as to produce inm sach case a true statesent:

[sec. &-3]



(a) [i € L;
(b) [; € L;
(e} [_3_” €L;

147

(d) [f] fL;

(e} for every real nusber ¢,

{f} for every real number ¢

{g) Ffor every real number h o O, [E] £ L.

£
following pairs are parallel.

Verify praphically and prove algebraically that the vecrors in each of

£

In each case, express the Fficst vector as

the product of the second vecter by a number:

o [ 1)
o (g [l

@ [4. [4]:

(d) [

(£} [

g
-32§ *

(e} [,_i ' [_: '

:
DJ

d. Let V be a vector and W a nongere vecter such that Vo and W are
parallel. Frove that chere exists a regl nuasber ¢ such that
V= i,
4. Frove:
] 0
(g If V= o and rd D, then V= ol
L+ o
(By If V= a and W o HE then ¢ = 0.
5. show that the vector ¥V + r¥ has the same direction as ¥ if ¢ >-=1,
and the opposite direction to ¥V 1f r <= 1. Ehow alse that
LIV 4+ =¥ = [I¥IT §L +¥l.

&4, Geometrical Interpretatiom of the Addition of Two Vectors

If we have two vectors V and W, V= [l] and W = l;]  their sum

[sec.
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i, by definition,

vewe 3]+ 3] - [324].

To interpret the addivion geomecrically, let us return cosentarily to the con—

cept of a "free" vector. FPreviously we have ssscciated a coluss weceor

c
- [
with some locared wvector
Ar (x5, Mx508,)

such that ¢ = Ty T E and d = Yo = ¥)* In particular, we canm asgocidce W
with the wector

A {a,bita + ¢, b +4d).

We upe A o represent W and use the gtandard representation for WV oand
V+W in Figure &=5.

; {atc, bid)

Vel

(a,b)

Figure 4=5. Vector addicion.

dleo, we can represent V as the locared wvector

B: fe,dida + 2, b+ d)

[sec. b&=4)



and obtain an alternative represencation.

cepresents the sum; see Figure &=6.

Figure &=,

The parallelogram rule is often used in physics o ebtain the resultant

when two forces are dcting from & single point.

Let ws consider now the sum of thres vectors

we chooge the three located wectors

and

Lo representc WV, W,

oF

1]
QR

: (0,0)(a,b)
: {a,b)e + 2, b +4)

s fa4+e, b+d)fa+e +a,

Parallelogram rule for addiciom.

b+d+ f)

and U rvespectively; see Figure &=7,

[see. b-&)
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1f the twa possibilicies are drawm
on one set of coordinate axes, we have a parallelograsm in which the disgonal



I R, (atcte, biddf)

u
Q@ (a4, bwd)

Y4+ R +U
ifab)

Figure 4=7. The sum V 4+ W 4+ 0.

Order of addition does net affect the sum altheough it does affect che

geometric represéntation, as indicated in Figure f=h .

4 V+U+W

Figure 4—8, The sum V + U + W.

If ¥ and W are parallel, the conscruction of the proposed representative

of V+ W iz made in che same maoner. The details will be left to the student.

Theore= &4, If the vectors V and ¥ are represented by the directed

[sec. h=h]
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line segnents I;l.“ and 1-‘;}. cespectively, then V + W is represented by CTE

Since V=W =V + (W), the operation of subtracting cne vector [rom
another offers no assentially nev goometric idea, ooce the construction of W
i understood. Figure 49 {llustrates the conatruction of che geometric wvector
representing V — W. It is useful to note, however, that since

lu=r
I V=g
the length of the vector ¥ = W equals the distance between the points
P: {w, v) and T: [z, 5}.

2

1Y =Wl = - .v-"'{.,.-t}i+uu-.]. .

¢ D

P:lu, ¥)

-4 Sifu-t, v=u}

Figute &9, The subtraction of vectors, W — W.

Exgrcises &4=%

1. Derermine graphically the sum and diffevence of the following pairs of
vectors, Does order matter in constructing che sum? the difference?

SHE @ [3
o B Bl e 2
(£) [

o [ B

o L
P
1
.
i

=
—
bd
[ i |

Ll
-
—_—
L=
| E———

-2
[sec. 4=4] B




2. Illustrace graphically the assoclative law;

(V4 +U0 =V + (¥ +U).

3. Coopute each of the following graphically:
o [0+ 1
(b} [F: + [hi + [‘:l .
o [3+ [ B+ [3]:
o 3]« {3+ (] - Bl

b, 5State the geomatrlic significance of the following eguations:

{a) U+H-[g] )

(b U+H+U-[E].

fa) v+u+u+‘r-[g] .

5. Cosplete the proof of both parts of Theorem 44,

4=5, The Inner Product of Two Vectors

Thus far in owr development, we have invescigated a geometrical interpre—
tation for the algebra of wvectore. We have represcnted colusn vectors of order
2 ag Brrows Im the plane, and have established a one—to—one correspondence be—
tween this set of column vectors and the set of directed line segments from the
origin of & coordinate plane. The algebraic operations of addicion of two
wectors and of sultiplication of a vector by a number have acquired geometrical
significance.

But we can aloo reverse ocur point of view and see that the geometry of
vecbors can lead uws to the consideration of sdditional algebraic structura.

For imstance, i1f wvou look at the pair of arrows drawm in Fligure &=10, you
may comment cthat they appear to be muctually perpendicuvlar. You have begun to

[seec. 4=i]
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Figure 4—10. Perpendicular vectors.

talk about the angle betweesn the pair of arrows. Since our vectors are located

vocbors, the following definicion is needed,

Definirion G—=Z. The angle becween two vectors is the angle bectwsen cthe

gcandard geomecric representations of the vectors.

Let us suppose, in general, that the points P, with coordinates (a,b),
and R, with coordinaces (e,d), are che cerminal points of two geometric
wectors with inficial pointe at the erigin. Consider the angle POR, which we
denore by the Greek letter &, in the triangle PR of Figure 4=11.

We pan compute the cosine of 8 by applying the law of cosinea to the
triangle POR. If I10FI, IGRI, and (PRI are the lengths of the sldes of
the triengle, then by the law of cosines wé have

2
210P1 IORI cos @ = IQFI + IEIF.II - lPB.1z.

-
Ea
-

R:le, d}

Figure 4=l1. The angle between two vectora.
[sec. 4=5]



But
|OF] = o
ORI = et dt,
IPR| = u""{n—ﬂi—ﬂl— (—d)° . '
Thus,
2 /8% + %) ( 4/ c? +d%) cos B = (2 +b5) + (ef + 4%} —{ (a—c)® + {H}I}
= 2{ac + bd}.
Hence,
0P| 10R] cos & = ac + bd. L)

The number on the right—hand side of cthis equation, although elearly a funcrion
of the rwwo veccors, has not heretofore appeared explicicly. Let us give ic a

name and introduce, cthereby, & new binary operation for vectors.

Definicion 4—=3. The inner product of the wectors

(] = ] e 3] - [

ig the algebraic sum of the productes of corresponding entries. Symbolically,

[3] o [5] = ac e

We can similarly define che inner product of two row vectors: [l. I:] - l'= d] -

ac + bd,

snother name for the inmer prodeet of cwo vectors i® the “dot product' of
the wectors. You notice that the inner proeduct of a palr of vectors is sisply a
mumber. In Chapter 1, you met the product of a row wector by & column wector,
Bay [I. b] times [;] , and found that

[} [5] = [sc v .

[sec. ﬁ—j]
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the product bedng & 1 » 1 matrix. As you can observe, these two kinds of
products are clogely related; for, 1f ¥V and W are the respective vectora
- r.] , we have V' = [-l b] and

| ".I'til-[m:-l-hd.] -[v.u]

Later we ghall exploit this close coonection between the two producks im order

and

to deduce che algebraic properties of the inner product from the knowm properties
of the macrix prodoct.

Ueing the notion of the inmer product and che forsula (1) obtained abave,
we can state another theorem. We shall speak of the cosine of the sngle included
between two column (or row) wectors, although we realize chat we are actually
refarring to an angle between associated ditected line segments.

Theorem &=%, The inner product of two vectors equals the product of the
Lengthe of the wectors by the cosine of their included angle. Sy=bolically,

Val= LIVI] 1IW1 cos @,

where B8 18 the sngle between the vectors ¥V and W.

Theorem &=5 has been proved in the case in which ¥ apd W are nog
parallel wvectors. If we agree ©o take the measure of cthe angle between tuwo
parallel wveactors to be 0 or 180° according as the vectors have the sams or
opposite directions, the result still holds. Indesd, as you may recall, cthe law
of eosines on which the burden of the proof rests remains wvalid even when the
three vertices of the "triangle” POR are collinear (Figures 4=12 and 4=13).

¥
R T ¥
r
F
5 x m X
R
Figure &=12, Collinear vectors Figure &=13. Collinear vectors

in the sase direction. in cpposice directiocns.

[#ee, 4-5]
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Corollary &=5-1. The relationship

VeVs=I1I¥i®

holds for every wvector V.

The corollary followa at omce [rom Theorem 4=3 by taking YV = W, in which

case @8 =0". To be sure, the result also followvs immediately from the facts

that, for any vector V= : . wi have

VevVma® +55, while 1IV11 = +/a° 4137

Twe colusn vectors ¥V aend W are said to be orthogonal LE the arrows
OF and OB representing them are perpéndicular to each ather, In particular,
the null wector v is erthogenal te every veetor. Since

]
cos 90° = cos 270° = a,

we have the following result:

Corollary 4—5%=2. The vectors V and W are orthogomal if anmd omly Lif

Ve Waid.

You will note that the condition Ve W= 0 is sutomatically satisfied
if edther ¥ or W 48 the null vector.

We have examined some of the geometrical facets of the inner product of Ewo
vectors, but let us now look st some of its algebraic propercies. Doea it sap=—

isfy coomueative, associative, of other algebraic laws we have met in studylng
numbar aystams?
We can show that the commicacive lLaw holds, thac is,
VealW=Haes WV,
For 4f ¥ end W aAre any pairs of I x 1 matrices, a computation shows that

viw = why,

[sec. &=5)



Vv - [\'-u] , while WV = [u-u] .

Hence

Ve d=4as V.

It is equally possible to show chat the asscclacive Law cammot hold for imner
producta. Indeed, the products Ve (We U) and (Ve W) # U are meaningless.
To evaluate V o (We 0), for exasple, you are asked wo find the inmer prodece
of the vector ¥V with the nurber W e U, Buct the inner product is defined for
twe row vectora or two column vectors and pot for a vector and a number. Inci—
dentcally, the product WW & U} should not be confused with the meaningless
Ve (s ). The former preduct has meaning, for it {8 the preoduct of the wecter
V by the mumber Hae U.

In the execcises that follow, you will be asked to consider some of the
other possible properties of the inmer product. In particular, you will be asked
to establish the following theorem, the first part of which was proved sbove.

Theorem =6, If VWV, W, and U are colusn vectors of order 2, and ¥
is a real number, then

(a) u.u-ﬂ.'.r,l

(b) (eV) & W= (Ve W),

{e) Vea(W+U)=VeW+Val,
(d) VaV>0; and

(e} 1f VeWVs=0, them V= [g].

Exercisans fH—=5

1, Cospute the coailné of the angle between the two wvectors in cach of the
fallewing paira:

(a) j] ;



o ([ e [ [
o LB e [ R

In which cases, 1f any, are the vectors orthogonal? In which cases, 1if any,
are the vecrors parallel?

ool e

Show that, for ewvery noncerc vector W,

LBt

'I.I'-El - '.l'l-Ez
11¥L1 1Vl

are the direction cosines of V.

ta) Prove that two vecters V and W are parallel if and only Lf
VedW=+I1IVI] 1INI].

Explain the significance of the zign of the right—hand side of this equation.

(b} Prove that

(v e Wl < v pwn®

and write this inegqualiky in terms of the eéntries of V and W,
{c) Show also that Ve W< LIVII LIWII.

Show Ehac 4f V  is the null veceor then

VaUW= [,

Fill in the blanks in the following statements so &8 to make the resuleing

BEMLEACES Crue;

(a) The vectors [:] and [—-iﬂ] are parallel,.

[sec. &-5)
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(b} vectors [ﬂ and [-E] are arthogonal.

(d}) The vectors [-1§] and [E] are parallel.

7

)

(¢} For every positive real number c©, the véctors

i:__ and [i] are orthegonal .

{f) For every négetive real mumber &, the vectors

] -
-Et—

and [E] are orthogonal -

B. Verify chat parts (a4} — (d) of Theorem &6 are true if

eo [l v ils s (] moses

7. FPFrove Theorem &5
{a) by ur.[ﬁ the definition of the inmer product of two vectors;

(b) by using the fact that the matrix product v sacisfies the
equation

vy - [u.u}i

8. Prove that 11V + W12 e (V4 W) @ (V # W) = vl v 2 ve wa 1dt

avery palr of wvectors V and W,

%9, Show chat, in each of the following sets of wectors, V and W are
orthogonal, V and T arec parallel, and T and W are orthogonal:

@ v 3] e 3]
o v [ = a1

o the same relacionships hold for the set

Aol I EEEN PR H

[sec. B-5]
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Let ¥V e a nonzera vector. Suppose that W and YV are orthogonal, while
T and V are parallel. Show that W and T are chen orchogponal .

Show that, for every set of resl numbers ¢, a8, and ¢, rche vectocs

[[] et e [72] are orthoponat.

Lee V= [:] s where YV iz not cthe zere vector, Show thac if W and WV

are arthogopal, there exists a real number € gueh that

W=t [‘“] .
ik
Show that the vectors V and W  are arthogonal if and enly if

" |
Il'-’l-HIIz— ¥ =W =0,

4] 4 s .o

a2 1Bl - temia {:ﬂ—-hc}z.

Show that {f A=

Show that the vectors V and W are orchogonal 1f and only 1f

(V+ W o (V+W) ="VeV+uel.

Show that the equation

(V+H e (VW)= Ve V=-We W

holds for all vectors V and W.

Show that the inequalicty

IS 4+ W< 11V + 11K

holds for all vectors V and W.

[zee. H4=5%]
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G, Geometric Considerations

In Section &—4, we gaw that two parallel wvectors determine a parallelogran.

| ae o] weone[d]

are two nonparallel vectors with inmitisl points At the origin, thenm the points
Pia,b), O:{0,0), A:{c,d) and 5:{a +c;, b +d) are the vertices of a
parallelogram (Figure 4=14.) A reasonable question to ask is: "How can we
determine the area of the parallelogram PORST

‘3"
Pria, b}
A
1] j »x
S:late, bid)

R:{e, d)

Figure &—14. A parallelogram determined by vectors.

As you recall, the area of a parallelogram equals the product of the lengthe
of its base and {its aleltwvde, Thes, in Figure &-15, the area of the parallele—
gram KLMH is b h, where b is the lengeh of side MM and h is the length

1 1
of the altitude ED.

Figure &4-13. Determination of the area of a parallelogras,
[sac, W6
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Bur if 'hn2 ils che length of side WK, and 8 i1s the measure ol either

angle HEL or angle FKHH, we have

h = hl Isin @1.

Hence, che aresa of the parallelogram equals blhz lzin B1.

Returning to Figure 414 and lecting @ he the angle betwsen the vectors
A &nd B, we can now say that 1f & 18 the area of parallelogram PORS, cthen

GE = 'il.ﬂxli'E II!ltI2 r.l.'n'E B,

511:11 8 m ] = -r_n:m2 a.

It follows from Theorem &=35 that

)
coslgn —(heB) .
TI&LL LIBE

therefore,

2 |1.r|.1|2 1ru|:2—u- lil]l2
gin @ = = ]
1AL TIBED
Thus, we have
Gl = |1.-|.'|2 'IEIIE = (A ® E}z.

It follows from the result of Exercize 14 of the preceding section thar

g% = (ad - be)?.

Therefore,

G = jad — beil.

[oen. §=5]
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Put ad — be 18 the value of the determimant 8(D), vhere D 18 the
e

A
patrix b o4l *

theores.

For easy reference, let up write our result in the fora of a

Theorix &7, The area of the parallelogras determined by the standard

o equals |B(D}|, where

represencation of the vectors [: and d

a c
windll S

Corollary #=7=1l. The vectors [:l and [:] are parallel if and only
LE EB(D) = O.

The argument proving the corollary is lefc ar an exercise for the student.

You motice that we have been led to the determinant of @8 2 % 2 matrix in
examining a geometrical interprecacion of vecrora. The role of macrices in thia
incerprecacion will ba further investigated im Chapter 5.

From geometric consideractions, you know that the cosine of an sngle cannot

exceed 1 in absolute value,
icos Bl < 1,

and that the length of eny side of & triangle cannot exceed the sum of the
lengths of the other two sides,

0gQ < OF + PQ.
Accordingly, by the geometric Interpretation of column wectors, for amy

o [f] ees 3

we must have

Ve

<1 (1)
| vaewn’? .T]l_'ﬁ ‘

and

VIV + Wi < LIVIE + LW, (2)

[sec. 4=E)
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But can these inegualities be cstablished algebraically? Let us see.
The inoquality (1} is equivalent to

(vew <(venwew,
that is,
{ac + bd}z < E-I.z + I:|2‘,||1:i.'.2 +* dz}.
ot = a5 we seo whén we multiply out and simplify — to

2 abed < a’d” + bc”,

But this can be written as
2
0 < (ad = be),

which certainly is valid since the square of any real number is nonnegative.
Since ad = be = B(0), where

o= 8 3]

you can sée that the foregoing result is comsistent wicth Corollary &=7-1, abowve;
that i&, the sign of equality holds in (1) if and only if the wectors V and
W are parallel.

As for the inequality (2), it can be written as

Jﬁl*cﬁa**lh + dy? < ot en? s -..,-‘=2+d1,

which simplifies to

Zac+1bd<i a* + bl v"‘::z-lrdz,
which again 18 valid since
Z
0< (ad — be)".

[sea. 4=6)
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This crime, the sign of equalicy holds if and only {f the vectors V and W

are parallel and

ac + bd >0,

thae fa, if and only if the vectors ¥V and W are parallel and im the same

direction.

If you would like £o look further Into the study of inequalities and their
applications, you might consult the SMSG Momograph, “An Introduction to
Inequslities,” by E. F. Beckenbach ard H. Bellman.

1. Let QP

Exercises 46

represent the vector A, and OT the vecter B. Determine the

area of triamgle TOP Af

fa) A= [f]. B= [2 H

-1 -2] .
{b} ‘.. [i]' l" [—\1 L]
oa ) [,

i, Cowputé the area of che trisngle wich vertices:

(a)
(b)
(e}
(d)
(e)

(3,0,
(0,0),
(1,a},
(1,1),

(1,2),

(1,3), and (=3,1);
(5,2), and (-10,-4);
(0,1}, and (2,3);
{2,2), and (0,5);

(1,3, and (1,0).

3. Verify the inequalicies

for tha wvectors

Vaul < (Ve V(Uew

HY + Wl < LIVILE + [IWlHE

[sec. 4-6]



(a) V=1(3,4) and W= (5,12},
(b} V= (2. 1) and W= (4.2),

(e W= (=2,=-1) and W = (&,2}.

4=7. WVector Spaces and Subapaces

Thus far our discussion of wectors has been concerned ossencially with
irdividual wectors and operationa on them. In this section we shall cake a
hroader point of view.

Ie will be coovenlent to have a symbol for the set of 2 x 1| maccices.

v o] ven wavaal,

where H 18 the set of real nugbers. The set H rogether wich the operations

Thus we let

of addicion of vectors and of multiplication of a vector by a real number is an
exazple of an algebraic system called a wecror space.

Befinition 4—~4. A #¢C of elements is & vector space over the set R of

real numbers provided the following conditions are sactisfied:

(a) The sum of any two elemencs of the sec is also an element of che
set.

ib} The product of any element of che set by a real number is also an
element of the set.

{e) The lawa 1 and 1I of Theorem &4&—2 hold.

In applying laws I and IT, 0 will dencte the zevo elesent of the wvector
space. Let us esphasize, however, that the elements of 4 wector space Are Aot
néceasarily vectors In the sense thus far discussed in this chapter; for ex—
ample, the set of 2 x 2 matrices, togecther with ovdinary matrix addition amd
sulciplication by a number, forms a veclor space,

Since a vector space consisca of & set cogether with the operacions of
addition of elements and of muleiplication of eile=ments by real numbers, striccly
speaking we should not use the sase symbol for the set of elemsencs and for the

vecbor space. But the praccice is not Likely to cause confusion amd will be

[sec. &=6]
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fol lowed .
A completely trivial example of a vector space over R is the set com—
sisting of the zero vector E alone. Another vector space over R is che

st of vectors parallel eo % 3 thar is, the aet

{[g]u}

it is evident that wt are concermed with subsets of H in these twe sxamples.
Actually, these subsets are subspaces, in mccordance with the following defi-

nitlion.

Definition &=5. Any noneapty subset F of H is a subspace of H
provided the following conditions are satisiied:

The sum of any two elesents of F is also an element of F.

The product of any elesent of F by a ceal number is an element of F,

By definition, a subspace wust contain at least one element V and also

must contain each of the produces ¢V for real numbera t. Every subspace of
H thecefore has the zero wector as an elemént, since for r = 0 we have

o 3]

It is easy to see that the set consisting of the zere vector alone is & subspace.
We can also verify that the set of all vectors parallel to any given nonzéra
vector is a subspace. Other chan H itself, subsecs of these two cypeas are

the only subspaces of H.

Theorem 4—8. Every subspece of H consists of exactly one of the follow—
ing: the zerc vector; the set of vectors parallel to & nonzero wvector) Lhe

space H ilcself.
Froof. If F 4is & subspace containing only one wvector, then

gince the rerc vector belongs to &very subspace.

[see. &=7])
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1f F contains a nonzero vector W, then F contains all wectors oV
for real ¢. Accordingly, if all wvectors of F are parallel to W, it follows
that

F= {r‘hrs H}.

If F also contains & veckor W not parallel co ¥V, then F is actuwally
equal to H, as we shall now prowve.

Let
a [
(1] e [
be nonparallel vectors in the subspace F, and let
r
== 1]
be any other vector of H. We shall show that £ Ls a4 sember of F.
By the definition of subspace, this will be the case 1f there are numbers
x and y such chat
KV + yW = I, (1)
that is,
a el _ (T
< [3] ++[3) - 3]
These can be found Lf we can solve the syscem

ax + oy = T,
b + dy = &,

for x and y In terms of the known numbers, &, b, ¢, d, £, and #. But
since V and W are noc parallel, Lt follows (sea Corollary &= =L} tharc

ad — bc ¥ 0 and therefore cthe equations have the solutlion

. Or — cs an = hr
X ad—he W YR e

[8ec, 4-7]



149

Sionce F is a 5ub5pa¢c that contalns WV and W, it contains =V, wW, and
their sum 2. Thus every veceor Z of H must belong to F; cthact 45, H is
a subser of F. Bue F is given co be & gubasee of M, Accordingiy, F = H.

Using the ideas of Section &4=4, we can give a geometric interpretation o
Equation (1). Let the nonparallel wvectora ¥ and W in the subgtpace F have
standard representations OF and Eﬁ, respeccively; see Figure &—i6, Leg 2
be represented by OT. Since OF and OR are not parallel, amy line parallel
to one of them must intersect the line containing the ether. Draw the Lines
through T parallel te OF and Eli, and lert 5 and § be che poincs in
which these lines intersect the lines containing OR and OF reapectively .
Then

OT = 0 + O5.

Figure &—16. Representation of an arbitrary
wector 7 a8 & linear combimation of a given
pair of nomparallel wectors V and W,

But u_ﬁ is parallel to OF and 05 to OR. Therefore, there are recal numbars
x and ¥ such that

0o = ;Eb and OS = ;ai.

[sec. L=7]



170

Z = xV + yW. (13

Thin ends our discusaion of Theorem 5~7 and introduces the important conmcept

of a Linear cosbination:

Definicion &—6. If & vector Z can be expressed im the form =xXV + ¥W,
vhere x and y are real numbers and ¥ and W are vectors, them 2 is
called a linear combination of W and W.

Further, we have incidentally establiahed the useful factes acated In the
following theorcms:

Theorem &=5. A subspace F contains every linear combination of each
palr of wecroors im F.

Theore= 5-10. Each vector of H can be expressed as a linear combination
of any given pair of nonparallel wvectors im H.

5
- ]
a8 A linear combinacion of
4 =3
Ve [3I and W= [d'.]'
we pust decermine real numbers x and ¥y  guch thae
Ll . 4 -3
] == [3] + [3]
. |-
Iz # by |

Thus, wa must solve the ser of equations

For cxample, to expreas

5= b = 3y,
10 = Ix + &y.

We find che unique solution x = 2 and y = l; that is, we have

[a0c. b=7]
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L=V + W

I1f vou observe thar the given vectors V and W in the foregoimg example
are orthogonel, that is, Ve W= 0 (see Corocllary 4—5-Z on page l3h) then a
second mecthod of solution may occur to you. For if

Z = a¥ + bW,

chen for the products Z o V and Z @ W you have

iwm 'I'-I|“Ir|ll and E-Whhlrﬂllz.

But
2 2
e Vw3, LeW=25 [IVIl =25 and [IWI =25,
Hence,

3 = 358 and 25 = 250 ,
and accordingly
A= 2 and b=1.

It is worth noting that the representation of & vector I as a linear
combination of two given nonparallel vectors is unique; thae iz, if the vectors
¥ and W are not parallel, then for each vector 2 the coefficients = and
vy can be chosen in exaecly one way (Exercise &—7=lL, below) so chat

2 = xV 4+ yi.,

The pair of nonparailel vectors V and W is5 called a basis for H, while the
teal numbers x and w¥  are called the coordinmates of 2 relative to that
basis. In the example above, the wvector [l;] has coordinaces I and 1
relative to the basia ;] and [_:] .

In particular, the pair of vectors [;] and [‘” i called the
notural basis for H. This basis allows us to employ the coordinates of the
point {u,v} associated with the vector V = [:1 ag the coordinates relacive
to the basis; thus,

[sec. 4=7]
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T L (1]
Since every vector of H can be expressed as a linear combination of any
pair of basic vectors, the basis vectors are said to span the vector space.
The minimal number of vectors that span & vector space is called the dimension

of the particular space.

For example, the dimension of the véctor space H is 2. In the sa=e

F.[r[g];m}

15 & subspace of dimension 1. MHote Ehat neither [;] ngr [?] is a basia
for chis subspace. {Whac is7)

sense, the set F

In & I-space, that is, a vector space of dimension 2, it is necessary that
any et of basis veccors be linearly inmdependent.

Definicion &—=7. Tvo vectors VYV and ¥ are linearly independent §{f and

only if, for all real numbers = and ¥, the equation
¥V + yW = O

implies = =y = 0, Otherwise, V and W are said co be linearly dependent,

z
For example, ler V= ] and W= 3 Since
v2

Al o 1] e

¥ and W are linearly dependent. BHote that

which indicaces cthat ¥V and W are parallel.

[Begs 4=T]



Exercise 4—7

Expréss sach of the following vectors as linear combinations of

I;.l ; aod illustrate your snsver graphically:

2| L
{a) [ 1- ¥ (d) [nl "
(b} [_; # (i) [?] W

0 4
fe) I:_'j ¥ (E) [z] ¥

In parts {a) through (i) of Exercise 1, derermine the coordinates

s

of the vectors relacive to the basis [_l and

Frove that the following =et is a subspace of H:

Prove that, for any given vector W,

v- [3].

determine which of the following subsets of H are

the set

for

{a) all Vv with u =0, {dy all W

(b all ¥ with v equal {e) all W
to an integer,

{e) =all ¥V with u racional, (f) all v

Prove that F is a subspace of H If and only if
linear combination of twn wvectors in F.

[eW :

Li] and
(g) [:‘; '
(h) [g i
(i) ['E: ;
of each
2
&
r € Rl 1is & subspaca
subspaces:

with Iu =w =,

with TR ST

with wuv = 0,

F containsg every

Shew that [i’l cannct be expressed as a linear combination of the

veclors

[H;] = [~1§l'

Describe the set of all linear combinations of two glven parallel vectors.

[sec. 4=7)
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9. Let Fy amnd FI be subspaces of H. Prove that the set F of all

vectors belonging wo both FJ. and F, iz also a subspace.

1. In proving Theorem &—10, we showed that if V apmd W are not parallel
vectors, then sach vecter of H can be expressed as & linear combination
of ¥V and W. Prove the converse: I each vector of H has a repre—
gentacion a8 a linear combinmation of Vv and W, then ¥ and W are not

pazallel.

11. Prove that i1f V and W are not parallel, thén the representation of any
veetor 2 in the form aV + bW is unique; that is, the coefficients

a and b can be chosen in exactly one way.

1Z. 5Show that any wector

A

can be expressed uniquely as & linear combinatiom of the basis vecktors

3 2 =2
2 ] =1 » and =y B
k]

=1 1

4—8. Summary
In this chapter, we have developed a geometrical represencation — namely,

directed line segments — for 2 x 1 macrices, or column vectors. Guided by
the definition of the algebraic operation of addition of vecoors, we have Found
the "paralleleogram law of addiction” of directed line segments., The multiplica-—
tion of a vector by & number has been represented by the expansion or contraction
of the corresponding directed line segment by & factor equal to the pusber, with
che sign of the [actor determining whether or not the direction of cthe line
segment is reversed. Thus, from a set of algebraic elements we have produced a
set of geometric elements. Geomctrical observations in turn led we back to
additional algebraic concepts.

Also in this chapter, we have introduced the important concepts of a8 vector
apace and Llinear independence.

Since the nature of the elements of a vector space is not Llimited except

by the postulates, the vector space does not necessarily consist of a set whose

[sec. &=7]
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elemence are 2 x 1 column wvectors; thus ikts elements might b8 n ®x n wmatrices,
real numbers, and 30 on.

For example let us look ac the set P of liosar and constant polynomials
with real coeffic{encs, that is, the set

P = {F: plx) = ax + b, n.htﬂ.]'.

under ordinacy addition and multiplication by a numbeér. The sum of two such
poelynomials,

{alt + hl‘.l + hil + b} = Eal +a,)% + {bl + hl}'

ig am element of the set since the sums a, = 12 and hl + l:::2 are real numbers.

The product of any element of P by & real number,
clax + b) = aex + be,

iz also a memper of P since the products ac and be are real numbers., We
can similarly show that addition is commutative and associacive, that there is
an identity for addicion, and that each element has an additive inverse; thuas,
the laws T of Theorem 4.2 are valid. Tn like fashion, we can demomscrate that
laws II are satisfied: both distributive laws hold; the sultiplication of an
elesent by two rteal numbers is associative; the preduct of any element p by
the real number 1 is p dtself; the product of O and any clement p is the
zero element; and the product of any real numbér and the zero clement is the
Zete element.

¥e have outlined the proof thae cthe set P of linear and constant poly—
nomials is 2 wector space. Thus the eéxpreéssion, ''the vector, ax +b," is
meaningiul when we are speaking of the vector space P.

The mathematics to which our algebra has led us forms the beginnings of a
discipline called "vector analysis,” which is an important tool in classical
and modern physics, as well as in geomeery. The "free" vectors that you meet
in physics, namely, Iorces, velecities, ete.,; can be represented by our gecmetric
vectors. The study in wvhich we are eéngaged is consequently of vital ioportance
for physicists, engineers, and other applied scientists, as well as for mathe—

maticians .

[se0. 4=8]



Chapter 5
TRAHNSFORMATIONS OF THE PLAKNE

51. Functions and Ceomerric Transiormations

You have discovered that one of the most fundamental concepts in your study
of mathematics is the notlon of a function. In géometry the function concept
appears in the idea of a transiormation. 1Tt is the aim of this chapter to recall
what wve mean by a function, to define geometric transformacion, and to explore
the role of matrices in the study of a significant class of these transiormations.

You recall that a functiom from sk A to set B is a corcespondence or
-n.pp:l.ng from the elements of the ser A ©o thoas Dthhl!' st B such that with each
element of A there ig asscciated exaccly one element of B. The setc & is
the domain of the function and the subset of B onto which A is mapped is the
range of the function. In your previous wotk, the functions you met generally
had sets of real numbers boch for domain and for range. Thus the function
symbolized in the f[orm

X=—>x

igs likely te be incerpreted as associating the nonnegative real nusber tz with
the real number x. Here you have a simple example of a "real funceion” of a
"real warfable,"

In Chapter &, however, yvou met a function ¥V —= |[IVI| haviag for its
domain the vector space H, and for icts range the set of nonnegative real
numbers .

In the present chapter, we shall consider functions that have thelr range
as well a5 their domaim in H. Specifically, we want to find a geometric io—
terprétation for these "wvector functlons" of a "vector varlable"; chis is a
continuation of the discussion started in Chapter 3. ALl vectors will mow be
congidered in their standard representacions Eil, so chat they will be parallel
if and only if represented by collinear geomecric vectors.

Such & vector function will associate, with the point P having coordinates
{%,¥), & point P' with coordinates (x",y¥'). Or we may say that it maps the
gecmetric vector OF onto the geometric vector OF'. The function can, cthere—
fore, be viewed as & process that associates with each point P of the plane
sooe point P' of chis plane. We shall call this process a transformation of
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the plane into itseli or a geometric transformation. As a matter of fact,

these transformacions are often called "poinc cransformacions’ in contrast to
pore general mappings inm which & point may be carried into a line, a efrele, or
some other geometric configuration. For us, a gecmstric transformation is &
helpful means of visvalizing a vector [unction of a vector variable. As &
matter of convenient terminology, we shall call the vector that such a function
associates with a given vector V  the image of V; furthermore, we shall say
that the function maps V onto its image.

Let us look at the simple function

¥y—>»iI¥, ¥&H.

This function maps each wector ¥V onto the wvector that has the same direction
as WV, but that is cwice as long as V. Another way of asserting this is to
say that the funccion assoclates with each poine P of the plane a poine P
such that P and P' lie on the same ray from the origim, but

LIOP' 1 = 2| 10PI1;

gee Figure 5-1. You may therefore think of the funetiom in this example as
uniformly strecching the plane by a factor I in all dirvections from che origin.
{Under this mapping,what is the point onte which the origin is mapped?)

A5 a second example, consider the function

V—2-—-V, Ve&H.

This time, each vector is mapped onto the vector havimg length equal and directcien
opposite ko cthat of the given wector. WViewed as a point transformatcion, the
function sssociates with any point P 1t "reflection” im the origin; szee
Figure 5—1.

The [unctlon

vV—-1v
combines both of the effects of the preceding functions, =so that the vector

agsociated with V {3 twice as long as ¥, but has the opposite directiom to
that of V.

[sec. 51]
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“f 4
P [
L]
v
v
5 X 2 = X
Figure 51. ‘The crans— Figure 52. The crans—

formation WV —> 2IV. formation V —> =V,
BWow, let us look at the funcclionm
¥y¥—= 11Vl V.

At In our first example, each vector is mapped by the function onto a vector
having the same direction as the given vector. Indeed, every vector of length
1 is ies own image., Buc 14f 1IVI| > 1, cthen the image of ¥ has a length
greater than that of V¥, with the expansion factor increasing with the lemgch
of ¥ iecself. Thus, the vector

3]

a

HE

having length £, is mapped onto

which fa twice as long. The vector

HE

whose length is 13, has the image

[sec. 51]
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with lemgeh 169, On the other hand, for nonzero vectors of lesgeh less than

1, v obtain image vectors of shorcer lengeh, the contractlon factor decreasing

with decreasing length of che original vector. Thus,

|
P
—

is mapped onto 4 .
i

the lmaze being half as long as the given wvector. Again, the wector

.. o 20
7 4%
8 is mapped onto s e
7 &9

the length of the first vector being 3/7, while the length of its image is
only {'.'l)'?',‘ll. or 23/4%. Although we may try to think of this =mapping as a
kind of stretching of che plane {n all directions from the origin, so that any
poine and its fmage ave collinear wich the origin, this mental piecture has also
to cake inco accounc che facr chat the gmeunt of expansion varies with the
distance of a given point from the origin, and thar for points within the eircle
of radius 1 about the origin the so—called stretching 1s actuwally a compression.

We have been consldering transformacicons of individual vectors; let us lock
at certain Eransformations of the square ORST, detcrmined by the basis wectors
[;] and [‘:l . As shown in Flgure 53, the function

V o= =Y

Iﬂ.l.P!

respectively, ontoe



¥
R" .
0 b T
EI T1

Figure 5=3. Reflection in the origim.
Another trensformation that fs readily visualized {g the reflection in the

% axiz. For cthis mapping, the poimt (x,¥) goes into the point (x,—v);
sede Flgure 54,

a [a, %)

. (x:=¥)

Figure 54. Reflection in the = axis.
That i=, the map Ls given by
X %
[?] - [-r] '

Using a matrix, we may rewrite this result in che form

[seo. 51]
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Mow this transformation, applied ]n the square ORST,
q

as 15 easlly verified.

leaves the point

{1,0)% unchapnged; thus cthe vector is mapped onto itself. The vwector

0 1]
[1 is mapped onto [“L

Beflection in the ¥ axis, or & retation of 180°
y axis, can be expressed similarly:

HedHEA e HE

in space about the

as shown in Figure 3-5.

i i
5" T g
T 5
T
R - e
B ) R
W
o) 5"

Figure 55. HRotation af 180" about the axes.

Casual observation (see Figures 55 and %—6) may lead you to sssume chatc

a 180" cocation about the ¥ axis and 90" rotation about che origin in
the (x,¥) plane are equivalént; they are not.

The first transformation
leaves the point (0,1}

unchanged, whereas the gecond transformation maps
(0,1 ones (=1,0). Az a vector fupnction, the 90°  rotation with regpect o
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the origin is expressed by

B 'y 5

Figure 5%5. PRotation of 90° about the origin.

The cransformatcions of Flgures 52 through 56 have alcered neither the
gize nor the shape of the gquare, The "stretching” funceion of Figure 51,

.i'-‘"’zlup

does alter size. & "shear” that moves each point parallel to the x axis
through a discance equal to twice the ordinate of che point alters shape. Con—
sgider the transformation

HEd Rt B

which maps the basls vectors onto

[é] and [E]. reapictively .,

The result is a ghearing that transforms the square inte a parallelogram; see
Figure 5-7. What does the stretching do to shape? The shear to size?

[sec, 5-1)
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Figure 7. Shearing.

inother cype of cransformation involves a displacement or Ygranslacion”

in the direction of a fimed vector. The mapping

Vo Y, wvhers U= [:].

can be wricten in the form

5] = [543

One way of visuvalizing this functlon is to regard It as translating the plane in
the direction of the vector U  ehrough a distance equal te the length of 1.
Transformation of two different Cypes can be combined in one function. For
instance, the mapping
'I.F-—}-;-{'.r + Uy, where U = [g] i

involves & translation and then a compression. When the function is expressod
in the form

L x + 3
—_— 2 L]
¥ 4+ 2
¥ Fl

we recognlize more easily that every point P is mapped onto the midpoint of
the line segment joining P to the point (3,2} see Figure 58.

[sec. 51]



185

PI fi""r- - {]lzl

o +U

Figure 5-8. The cransformacion Y —» %{l" + U0},

Under this mapping, the square ORST will likewise be translated
coward the peint (3,2} and then compreszed by a factor % s a8 shown in
Figure 59. This flgure #nghles us to sée that the points O, K, 5, and T
are mapped onto midpoints of lioes coonecting these points ko (3,2).

Figure 59. Translation and compression.

ALl the vector functions discussed above map distinct points of the plane
onte distinct points. This is not alwiays the case; W can certainly produce
furictions that do not have this property. Thus, the function

[sec. 51]
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v— |3]
maps every point of the plane onte the origin. On the other hand, the Crans—

o= [3] = [3]

maps the poine (=,¥) onto the point of the = axis that has the same [irst

formation

componeént a2 V. For example, every point of the line x = 1 is mapped onto

the point (3,0). Since the image of each point P can be locared by drawiog

a perpendicular Line fvrom P to the x axis, we may think of P as being
carried or projected on the % axis by & line perpendicular to this axis. Con—
sequently, this mapping may be described as a perpendicular or orthogonal
projection of the plane on the x axls. You votice that these last two functions
pap H onte subspaces of H.

Since we have met examples of cronaformations that map discincet points onto
distinet pointe and have also seen transformations under which distinmct polnks
may have the same image, it is uvaeful fo define a neév term to distinguish be—
tween these two kinds of vector functioms.

Pefinition 5=l. A transformation from the set H onto the set H is one—
to—oné provided that the i=ages of discinct vectors ace also distinct vectors.

Thues, if f 1s a function from H onte H and 1f we write (V) for
the image of ¥ under the transformation £, then Definition 51 can be
formulaced symbolically as follows: The function § iz & one—toone cransforma—
tion of H provided that, for vecrors V and U in A,

veu
implies

(V) ¢ £{U).

Exgercises =]

L. Find the image of the vector ¥V under the mapping

Voo— AV
[ses. 51]



for each of the following values of V:

(a) [f] : () [g] , (@) [f]
(v) [_ﬂ : (@) [_;] : ® [f] - [ﬁg]
2. Find f£(V)} under the mapping
. = | X ¥
v 3] = 2]
for each of the following values of V:
1 -1 -1
(a) [1] s (c) [_3] ’ (e) 5 [_3] *
(b) m : (@) [2] , (£) ~2 [3] :

3. Describe the geometric effect of each of the following transformations of

H on the vector V = ;
(a) V—>v, (h) [_;] ’
o= [ w5
(¢) V—>av, a >0, (5) vV —> [g;] ,
(dy v—>—av, a >0, k) V—> [x:y]’
o[l el
(£) v—e[z], (m) v_:,[ ;2y-,
(g) Vv— [_;‘], (n) v....>[y_3x:

4, Determine which of the transformations in the preceding exercise are one-

to—one.

5. Find expressions cof the type V —> ¥' for the transformations of H that
map each point P onto the point P' related to P in the ways described

below:

[sec. 51}
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{a) P' 1is one unit to the right of P and four units above

P;

{(b) P' 1is the perpendicular projection of F on the horizontal line

through (3,2);

»
{(c) P' 1is the perpendicular projection of P on the vertical line

through (-1,-2);

(d) OP and OP' are collinear but opposite in direction, and

— 1 v
[1oR* I = 7 [1OPi1;

{e) P' is the intersection of the horizontal line through P with

the line of siope —1 passing through the origim (horizontal

projection on the line y = - x);

(f) P' 1is the intersection of the vertical line through

the line y = 2x (vertical projection on the line ¥

6. Show that the mapping of H into itself that sends each point

P

]

P

with
x).

into the

point of intersection of the line ¥y = x with the line through P having

slope 2 1is given by
7. (a) Show that the mapping

can be expressed in the form
1 2
o 27

(b) Find the image under this transformation of [i]

(¢) Find the image under this_transformation of the subspace of

1

vectors collinear with 1

8. Solve parts (b) and (¢) of Exercise 7 when [1} is replaced by

() [f] () [_}]
N ]

[see., 5-1]
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9. Under the transformation given in Exercise 7, find by two different methods

the image of each of the following vectors:
) m Z[f] @ [4].
o[- [
o I

10. Cconsider the mapping

Hi AR

(a) Find the images under this mapping of the pair of points (5,1)
and (1,—2), and show that the distance between the given pair

of points equals the distance between their images.
(b) Solve part (a) if the given points are (—2,10) and (6,-5).

{c) Solve part (a) if the given points are {a,b) and {c,d).

5—2. Matrix Transformations

As noted earlier, especially in Chapter 3, the pair of equations

811 x + 312 y = bl’
2,1 X + a22 Yy = b2,

can be written in the form

AV = B,
where
a a X b
A= 311 a12 ; V= s, and B =
21 922 y 2

Consequently, in solving the equations you actually determine all the vectors ¥

that are mapped onte the particular vector B by the function

[sec. 5-1]
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Vo= AV, (1)

The study of the solution of systems of linear equations thus leads to the
consideration of the speclal class of transformations on H that are expressible
in che form (1), where A 18 any 2 x» 2 mactrix with real entries. These matrix
transformations constitute a very important class of mappings, having extensive
applications in mathematics, statistics, phyeics, operatiens research, and
engineering .

An importent property of matrix transformations is that they are linear
mappings; that is, they preserve vector sums and the products of vectors with
real numbers.

Let us formulace these {deas expliclicly.

Definition 2. A ligear cransformation om H 4i& a funcetiom £ from H
inte H auch that

{a} for every pair of vectors ¥V and U imn H, we have

(v + Uy = £(Vy + £,

(b} for every real nusber r and avery wector V im H, we have

E(rV) = cE(V).

Theorem 5=1. Every matrix transformation is linear.

Froof. Let f be the transformation

£ : ¥V =AY,

where A 13 any real matrix of ordar 2. We oust show that for any wvectors W

and U, we have

ALV + 1) = AV + AU;

further, we sust show that for gny vector VYV and any real nusber r we have

AlTV) = T{aV).

[see. 5-2]
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But these squalities hold in virtue of parts III (a} and III (f) of Theorem &4-2
{see page 1347 .
The linearity propecey of satrix transformations can be used to derive the
following result concerning tcansformations of the subspaces of H.

Theorem 5-2. A matrix A maps every subspace F of H onto & subspace
F of H.

Proof. Let F' denoce the setc of vectora
{AU: U ¢ F).

To prove that F' is a subspace of N, we must show that the following state—

ments are true:

{a) For any pair of vectors P', @' in F', tche sum P' + Q' is
in PF'.

(b} For any vecktor P' im F' and any real nueber r, rP' is in
|

If P' and Q' are im F', rchen they must be the images of vectora I
and ©§ in F; that is,

P' = AP,
(' = AG.

It follows chac
P' 0" = AP + AQ = A(P + O},

and P' + ' 1is the image of the vector P+ 4§ in F. ([Can you tell why
P4+ i im F?) Hemce, (P'" +4G") € F'. Similarly,

eP' = r{AP} = A(TPF),

and henee t©P' is the image of P, But rP € F because F Ls a subspace.
Thus, rP' is the image of a vector in F; therefore, cP' € F'.

Corollary 3-2-1. Every matrix maps the plane M onto a subspace of H,

[see. 52)
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either the origin, or & straight line through the origin, or H itself.

For example, to determine the subspaces onto which

o= 23]
(a) r-“;] : r-—h].

(b) H icself,

=aps

we proceed as follows.

For {a), the vectors of F are of the form

5= [_3:] .,[_;], x ¢ B

Hence,

w34 G B [ 2] - [ - -

Thus, F is mapped onte F', the set of vectors collinear with [ﬂ 3 rthat is,

{4}

In ather worde, A maps the line passing through the origin with slope =3 onto
the line through the origin with slope 1f2.
As regards (b), we note that for any vector

e e

we have

o - [; *;-][] - [?:I*i] = K [ﬂ-

Since 2x + ¥ assumes all resl values as x and ¥ rum over the fet of real

numbers, it follows that H i3 alsoc mapped omto F'; that is, A =aps the

entire plane onto che line

[eec. 52]



Exercises 5-2

1. Let A= [:‘ g] . Far e¢ach of cthe followlng values of che wector V,
(a) Ve Ilir: s (d) ¥ = [__':'].
(v) V= [j . (e) V= [3]
(¢} V= [g ; () V= [’f]

determine:

(i) the vector into which A maps V,
(i1} the line onto which A maps cthe line containing V.

2. A coertain matrix maps

i e ] [ e [

Pging this information, determine the vector into which the matrix maps
each of the following:

S HICHH R HESHPE
) hl ; (e) [t] ;
(e) HJ : (n [";I
(4) ["il : (8) [";] :

1. Censider the following subspaces of H:

T P
FJ.“;]:,.-z;]. Pw W Leself.

[sec. 52]
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F.: F., and F

Determine the subspaces onte which 1"1, g0 By 4

of the following macrices;
(a) &= [j {] (8) 5= [_3 il. (c) 48,

1 1
4, Let .ﬂ.-[u ll.

{a) Caleuvlate AV for

O w1 E8 H = PR

(b} Find the vector VY for which

w4 00 1

[d)

are mapped by ecach

BA.

5. Determine which of the following transformaticns of H are linear, and

justify your answer:
*® i+ 1 ix
{a) V [3"] -—:-[ ?]. (d} v_}lfi:ﬁ'

1

(b) V—= ["]. (e) ?—:-%{1"+l.1}, where U = [

=

fe) V—= [1_3’]. (£} V—=> 11Vl V.

w4y

6. Frove that the matrix A =aps the plane onto the origin If and only if

a.[g g].

V. Prove that the matrix A& maps every vector of che plane onto icself if and

only 1E

8. Prove that

HH

[sec. 52)
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11.

12,

195
maps the line ¥ = 0 onto itself. I8 any point of that line mapped onto

itself by this matri=?

{a) Show that each of the matrices

s o] e 52

maps H onto the x axis.

{b} Determine the sec of gll matrices that sap H onto the x axis.
{Hint: You muat determine all possible macrices A soch chat

corresponding to each V & H there is a real nusber ¢ for

which

AV = ¢ [;] ; (1
In papefcular, {1} susg hold for svicable v when V 18 replaced
2 T

Determine the set of all matrices chat map H onte the y axis.

{a) Detormine the matriz A suvch chatc
AV = 2V

for all V.

{b)} The mapping
Vv —= aV {a > 0)
multiplies the lengths of all vectors without changing their directions.

Ic amounte to a chenge of scale. The number a 1s accordingly called a

scale factor or scalar., Find the matrix A chat yielde only & change of
gcale:

AV = aV.
Prove that for every matriz A the set F of all veceara U for which

w- [

[sec. 5-2)
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is & subspace of H. This subspace is called the kerpel of the mapping.

13. Prove that a transformacion f of H into itself iz linear if and omly if

E(eY + gll) = ¢ £(V) + 8 E(U)

for every pair of vectors ¥V and U of H and cvery palr of resl nusbers

r and =s.

=3, Linear Tranz{orsations

In the preceding section, we proved chat every matrix répresents a linear
trangformation of H into ., We now prove the cooverse: Every linear trans=—

formation of H inte M can be represented by a matoix.

Theorem 5>~3. Let [ be a linear transformation of H ince H. Then,
relativa to any given basis for H, there exists one and only one matriz &
auch that, for all ¥ € H,

AV = f{V}.
Proof. We prove first that there caonot be more than cne matrix repreéseént—

ing ¥%. Suppose that there are two matrices A and B such that, for all
VEN,

AV = (V) and BV = £(V).
Then
AV = BV = £(V) - £(V)
for each V. Hence,
(A = BV = [gl for all V € H.

Thug, A — B maps évery vector onto the origin. It follows (Exercise =i=4)
that A — B is the zerc matrix; therefore,

A= R,

(sec. 52]
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Hence, there is ar most one matrix representatiom of £.
Hext, we show how to find the macri= represencation for the linear transfor—

mation £. Let 5. a&and & be a pair of noncellinear vectore of H. Let

1

2
a &
11 12
f(5.) = and (5. ) =
L l'zl] ‘ a5

be the respective images of &, and 5y under the wmapping {. If ¥V iz amy

1
vaceor of H, it follows from Theorem 4—10 that there exist real numbers w

L
and ¥y such that V = "151 + vEEE. Sinee { iz a linear transformacion, we
hawve

E(V) = I{vlsl + "152} = \llf[‘.slj + \rlI{S!}.
Accordingly,
] a | a_ . v, +a,.V
11 12 111 112
f{“}-ul A +'2 a = a..v. + a..v
Fi 21 I1°1 2172
Thus,

£y = o b s 1 ll
1 %22 | |V2
It follows that f is represented by the matrix

e U B
o B
when vectors are expressed in cerms of their coordinaces relacive to the basis
51, 52.
You notice that the matrix A Is coopletely determined by the cffect of f
on the pair of noncollinear vectors used as the bazis for H. Thus, once you
know that &8 given transformation on H i linear, you have a marcrix represent—

ing the mapping when you have cthe images oi the natural basis vectora,

For example, 1t can be shown by & geometric argument that the counterclock—

[sec. 53]
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wise rotation of the plane through an angle of 30° about the origin is & linear
trans formation. This function maps any peint P onto the point P', where the
measure of the angle POP' is equal to 30° [(Figure 5-10). It is easy Eo sea
{Figure 5=11) that

e P -

Figure >l0. A rotation through Figure 5=11. The images of the poinca
an angle of W0 about the erigin. (1,0 and (0,1} under & rotation of 35°
about the origin.

[;] is mapped onto [::‘; ﬁ:]

Thug, the matrix representing this rotvation is

cos 30° —gin 20°
A = -

sin 30° cos 30°

|
Hote that the first columnm of A is the vector onte which [D] is mapped;
Q

the second coluwm of A is the image of 1

The product or composition of two transformations is defined just as you

[sec. 53]



define the composition of twe real functions of a real wvariable.

Definition 5~3. If f and g are transformations om M, then for each

veetor ¥ im H the composition transformations fg and gf are the trans—

formations such that
fg(V) = £(g(V)) amd gE(V) = g{I{V}).

Thus, to find the image of V under the transfermation fg, wyou firse
apply g, and them apply E. Consequencly, 1f g wmaps YV onte U, and if
f maps U onte W, them g maps YV onto W,

The following theorem is readily proved (Exercise 5—-3-7).

Theorem 54. If f is a linear transformation represented by the matrix
A, and g is & linear transformation represented by the matrix B, then fg
and gf are both linear transformations; £g is represented by A8, while gf
iz represenced by Bi.

For example, suppose that in the coordinate plane ceach position vecoor is
first reflected in the y axis, and chen the resulting vector is doubled
in length., Let us find a matrix represencation of the resulcing linear erans—
tormation on H. If g 1is the mapping that transforms cach wvector into Lts
reflection in the vercical axis, chen we have

Sl E R HE

If f maps each vector into twice the vector, then we have

e [2] =2[2] - [3 903

=

Accordingly, che matrix represencing fg is

[see, 53]



Exerclses 53
1. Show that esch of the mappings in Exercise 51-1 i{s linear, by decermining
matrices represénting Che mappings.
2. Coneider the linear transformptions,
p: reflection inm the horizoncal axis,
q: horizontal projection on the line vy = = x (Exerciese 31-3e),
r: rotation councerclockwise through 'J'I}a.

8; shear moving each polnr vertically through a distance egual to
the abscisss of the polot,

of H inte H. In each of the following, determine cthe macriz represent—

ing the given transformation:

(a) p, (£) qp, (k) a(rs),
(&) q. (g) pr, (1) (sr)s,
{e) =, {h) P, (m) pisq),
(d) =, (1) gqs, (n) (polq,
(e) pa, (i) =g, (e} (sp)(rg).

3. Ler § be the rotacion of the plane councerclockwise chrough 457 about
the otigin, and let g be the rotacion clockwise through 30%, Determine
a matrix representing the rotation counterclockwise through 157 about the

arigin.
4. (a) Prove that every linear transformation maps the origin onto itself.

{b) Prove thar every linesr transformation maps every subspace of H onto
a subspace of H.

3. For every two linear transformations f and g on MW, define f4+g to

be the transformacion such that, for esach ¥ € H,
(f + g)(V) = £(V) + g(¥).
Without using matrices, prove that f + g 1s g linear transformacion om M.

B. For each lioear transformation f on H and each real mnumber a, define

af vo be the crangformation such that

gf(V) = F(aV}.
[sec. 53]
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Hithout using macrices, prove that af is & linear transfoveation on H.

7. FProve Theorem 54,

B. Withowt weing matrices, prove each of the following:
(a) f(g +h) = fg + fh,
(b) (f + g)h = fh + gh,
(e} Elag) = a(ig),

where £, B, and h are any linear transformations on H and a is

any real number.

i, ne—to—ene Linear Transformations

The reflection of the plane in the = axis clearly maps distinct points
onkto distinct points; thus, the reflection is a one—to—one linear transfor=mation
e H. Meoreover, the reflection maps any pair of noncollinear vectors onto a
pair of noneollinear vectors. 1t i casy to show that this property is cosmon
to all ome—to—one linear transformatioms of H into itself,

Theorem 55, Ewery one—to—one limear trensformationm on H maps noncollinear

vectors onto noncollinear vectors.

Proof. Lec El and 52 ba & pair of nomcollinear vectors and let

fI{Sl} = Tl and FI'.S.IJ- = ‘l‘2

be their images under the ope—to—one linear mapping £. Since f is one-to—

one, we know Chat 'I.‘l and ‘I.'2 are not both the zero vector, We may suppose,

therefore, that T, is not the zerc vector. To show that T, and T, are

1
nok collinear, we shall demonstrate that the sssumptlon that they are collinear

leads to a contradiction.

If TL and ‘I‘z are collinear, then there exists a real number Tt such

that T2 =- T Tl' kow, conslider the image wnder [ of the wvector =r 51. Since

f is linear, we have
i{r 51} a2 T ﬁ.ﬁl]
- T Tl
- T .

2
[sec. 52]
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Thus, each of the vecrors ¢ 51 and 52 is mapped onto Ty Since f is one-

to—pne, it fallows thae

r s =5,

and therefore that 51 and :-'.2 are collinear vectors. But this contradicte
the fact that 5

1 and S.’.‘
and TE are collinear muatc be false. Consequently, { must map noncollinear
vectors onto noncollinear vectors,

are not collinear. Hence, the assumption thac 'l'1

Corollary 5-3%=l. The aubspace onto which a one—to—oneé linear cransfiormacion

maps H is H Lecself.

Proof. Since the subspace contains & pair of noncollinear wectors, the
corollary follows by uae of Theorems &-9 and 410,
The liak between one—to—one transformations on H and second-order

matrices having inverses i3 given in the next theorem.

Theorem 56. Let § be a linear cransformation represented by che matrix
A. Then f 1is cne—to—wne if and only if A has an inverse,

Proofl. Suppoze that A has an inverse. Lec 51 and 52 be wectors in
H bhaving the same image under E. Now,

£(5;) = A5, and ((5,) = AS

1 z*
Thus,
AS, = AS,
Hemee,
Alias,) = M s,
1 2
(s, = (A'Ws,,
15, = 15,,
and

[sec, 54]
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- E.I.

Thug, [ must be a cne—to—one transformation.

On the ocher hand, suppose that £ is one—to—one. From Theorem 55, it
follows that every vector im H iz the image of some vector im H. In particu—
lar, there are vectors W and U such thac

(W) = AW = [;]

E(UY = A = [?] .

Accordingly, the matrix having for itz first columm the vector W, and for

its second column the vector U, 18 the inverses of A.

Corollary 5~61. A linear transformation represented by the matriz A ds

one—po—one 1f and omly if

B{A) ¥ 0.

The theory of systems of two linear eguations in two variables can now be
studied gesmetrically. Writing the system

4. . Z+AE ¥ =,
1l 12
(L)
I.El X + '22 ¥o= o9,
in rthe form
AV = [, £y
where
a a 4 LT
PO e e - e e !
1 "2 ¥ ¥

we seek the vectors V Chat are mapped by the matrix A onte the wvector 1U.

Lm- H]
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I1{ 5{a) # 0, we now know that A& represents & one—co—one mapping of H
onte H, Therefora, A maps exactly one wector V onto U, namely, W = A-‘Il.l.
Thus, the sysrem {L) — or, eguivalently, {2) — has exactly one solution.

If Gfa) = 0, chen, in wirtue of Coreollary 4—7—1, the columns of A musc

be collinear vectors. Hence, A must have ane of the [orms

les]s [Ba)a 5 5]

where noc both a and b are zero. 1f£ A hag the first of chese forms, then
A maps H eonte the origin. In the osther tws ca=es, A maps H onte the
line of vectors collinear with the wvector [;E - L(S5ee Exercise 47, below.)
With these resuvlts in mind, you may now complete the discussion of the solution
of equation (2).

Exarcises &
L. Using Theorem 56 or {ite cotollary, determine which of the transformations
in Exercise 5=1-1 are one=to—one,

2. BShow that & linear transformation 1s one-to—oné if and only if cthe kernel

of the mapping consists oaly of the zero vecter, (See Exercise 5-2-12.)

Y. {a) Show that if { is a one—to—one linear trans{ormation on H, then

chere exisgts a limear craneformacion g such that, for all v o 1,

gi(V) = v

fg(V) = V.

The transformation g {8 called the inverse of § and 18 wsually written

-1
g= i,

(kY Show that the transformation g = le in part {a) is a one—to—one

trans[ormacion on H.

4, Prove that if f and g are one—to—oné linear transformations of H, then

fg is aleo a one—tc—one transformation of H.

[sec. 5U4]
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5. Prove cthat che set of one—to—one linear transformations em H 1 & group

relative to cthe cperation of composition of transformations.

f. BShow that 1f f and g are linsar tranzformations of M such thac [g
is a one—to—ome ccansformation, then both  and g are one—to—one Crans—

tormations .

7. (a) Show that 1f &(A) = 0, chen the matrix A maps H onto a point
{the origin) or onte & line.

(b} Show that 4f A is the zero matrix and U is the zero vecter,
then every vector V of H iz a solution of the equation AV = I,

{c} Show that 1f B{A) =0, bur A is poc che zero matrix, then the
solution set of the eguation

e []

iz a set of collinear vectors.

{(d} Show chac 1f B{A) =0, but A is nor cthe zero macrix,and U is
not che zerc vector, then the selution set of the equation

AV = 17
either is empty or consists of all wvectors of the form

Evl + tV te Rl

2 H

vhere W are fized vectors such that

l-lud'ﬂ'

P
AV, s U and AV, = [”].
1 F) 0

B. Show that if the equation AY = [ has more thin one solutionm for amy given
U, then A does not have an inverse.

55, Charscteristic Values and Chactacteristic Vectora
1f we think of a mapping as "cartying” points of the plane onto other pointa
of the plape, we might ask, through curicaity, {f there are cases in which the

[zea, H]
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image point under A =apping iz the same as the point leself. Such "Fixed'

points, or vectors, arc of great isportance in sathesatical analysis.
Let us look at an example, The reflection with respect to the = axis,

L ©

that ia,

® 1 a)|= X
ﬁ - %
[“’] [” _ll[?] ['T]
has the property of mapping each wvector on the =x axis onto itself; chus,
each of these vectors [8 fixed under the transformation.

Deifinition 54, If g trensformation of H into itself =maps & given vector
onkte Ltself, then that vector 1s a fixed wector for the tranaformation.

More generally, we are fncerescved in any vector that {s mapped into a
multiple of itsalf; that is, we seek B vector YV &€ H and a number ¢ € R sueh
that

AV = £V,
Since the equation is sutomacically satisfied by the zero veoctor regardless of

the value e, this wector is ruled out.

The number ¢ 18 called & characteristic value (or eigenvalue) of A, and

the vector V a characteristle vector of A, These notions are fundamental in
atomic physics since the energy levels of atoms and molecules turm out to be
Eiven by the eigenvalues of cercain matrices. Also the analysis of flucter
and vibration phenomena, the stability snalyais of anm alrplane, and many other
physical problems require finding the characteristie walues and vectors of
makrices.

In Section %1, we saw chac che mapping

- 23

carried the plane H onte the Lline y = xf2. If we consider the ser ¥

SRR

[ses. 5-5)

Futi] F=
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upder this same mapping, we S¢¢ that F is mapped onte F', the seét of vectors
collinear with F. HNote that

(2 ) - Tl -2 ]

2
and hence that 5 is a characteristic value sssociaced with A, and [ :l is

a characteristic vector for any t e R, t ¢ C.

Definicion 35, Each nonzers veccor satisfying che equation

AV = oV

is called a characteristic veckor, corresponding to the characteristic value

{or characteristic root) ¢ of A,
Hote that, as resarked above, the trivial solution, [g] of the equation

is not considered a characteristic wveccor.

Becaugse of the isporctance of characteristie walues in pure and applied
sathematics, we need & methed for finding them. We seek nonzers wectors W
and real numbera ¢ such that

AV = ¢V, (L)

If T is the identicy matrix of order 2, then (1) can be writcen as

AV = {cI)V,
OF

(A = eI}V = 0. (2)

If we let

equation (2} becomes

[sec. 5-5]
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We know cthat there is & nonzeroc vector YV gatisfying an eguation of the Eorm
BV = 0
if and enly if

B(B) = 0.

Hence equation {2) has a solution other than the zero vector if and oaly 4f e

is chosen in such a way as to satisfy the equation
f‘all = E]{IEE =¢) —aj,a,, =0,
Bearranged, this equation becomes
F]

£ = {nu + J.H}:: + B{A) = O, {69

which is called the characteristic equation of the matrix A. Once this
quadratic equacion is sslved for ¢, the corresponding vectors V satisfying

equation (L) can readily be found, as i1llustrated in the following example.

Example. Determine the tixed lines under the capping

SAHE

We must solve the matrix equatlon

o2 BT - ]
Since

5(A — ¢I) = (2 = c)(1l = e},

[sec. 55]



the characteristic equation is

(¢ = e}l - e) =0,

or
1.-2 = Je + 2=,
the roors of which are 1 and £, For ¢ = L, equation (3) becomaos
sl -
¢ o]y o|*
which is equivalent to the system

X+ dy =10,

Ox + 0y = O,
Thus, A maps the line = + Iy =0 onte itsell; that is, the set F
F-[r [-f]: rl'.H]
is mapped onto iftself. Actually, since ¢ = 1, ecach wector of this subspace
is invarient: {f V {is a characteriscic vector, f(V) dts imape, and c = 1,
then

V) = V.

For ¢ = !, equation (1) becomes
0 3If{x| _ |0
0 =L{]¥ gl "

Jy =0,

=1y = (.

Hence,

[sec. 55]
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maps the line % = 0 onto itself; the set of vectors F

a bt B

iz closed under the transiorsation.
The characteristic equation asscciated with the matrix

SN

22—31:1-1"-!:!.

is

This cquation expresses a real-pusber function. For & matrix function, the
corresponding egquation is

2
" -3¢ +21I=0,

where 1 is the identity matrix of order 2 and 0 is the zero macrix of
order 2. If we substitute A 4in this macrix equation,

I HH RS

we find that A 4is a root of Lts characteristlc equation. This is true for

any & % 1 macrix.

Theorem 57. The matriz A&

“11 *12

j'-
41 *2

is & soluticn of its characterlacic equacion

2
L= (l“ + .ﬂ“ + A{A)L = g..

[Hn. 5'5]



The proof is left as an exercise.

Theorem 57 is the case m = 1 of a famous thecrem called the Cayley—
Hamileon Theorem, which states that an analogouvs resull holds for matrices of

any order m.

Exercises 55

L., Determine the charscteristic coots and vectors of each of the following
macrices:

2 35 2 1
(a} [’ﬂ- 3] ¥ (c) [—l 1]] '
=3 4 b2
(b} [_.1 ._,_] ' (d) [D =] .
2. Prove that zero is a characteristic root of & matrix A 1i[ and only if

Bla) = 0.

3. Show that a linear transformation £ dis one—fo—ome if and only if zero iam
not a characeeristie root of rhe matrix representinmg [.

b, Decermine the invariant subspaces [fixed linea) of the mapping given by

£ 3]

Show that these Lines ace mucually perpendicular.

i § R

5. Show chat the matriz A = & ia 8 solution of {ts characteristic

]
(matrix) equacion 2L 22

F
AT = (o, +ey0A + BAYT = 0,
£, Show that [:]] is an invariant wvector of the transformation
Vo= |1V V¥,

bue thar 2 [é] is nor invariant under this mapping.

[soc, 5-5]



7. GShow that A mape every linme through the origin onto itself if and only 1if
r 0

12%21 where B11r B0 B and a,, Aare any

for r ¥ 0.

.
B, Lec d {!11 au} + 4% &
real numbers. Show that the number of distinct real characteristic roots
of the matrix

i 1 R i
431 *a7
I%

0 if d <o,
1 if d =0,
2 1f d >0.

9. Find a momzero matrix that leaves no line chrough the origin fixed.

0, Determing a onée—Cor-one linear transformatlon that maps exactly one line

through the erigim onte Lltsell.

11, Show chat every maceix of the form [: :] has two distiner characteriscic

roots if a o 0.

12, 5Show cthat cthe matrix & and 1its transpose 4% have the same characteristie

TOOER .

6. Rotations and Reflectiome

Since length is an ioportant propeérty in Euclidean geometry, we shall look
for the Linear transformations of the plane that leéave unchanged the length

LIVl of every wector V. Examples of such transformations are the following:
{a} the reflection of the plane in the x axis,
(b} a rotation of the plane through any given angle about the origin,

{c} & reflection in the =x axis followed by a rotation about the urinin,l

[sec. 5-5]
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Actuslly, we can show that any linear transformation that préserves the lengths
of all vectors is equivalent to one of these three. The following theorem will

be wvery useful in proving that resulk,

Theorem 5=-8. A linear cransformatiom of H that leaves unchanged the
length of every veccor also leaves unchanged (a) the inner product of every pair

of vectors and (b) the magnitude of the angle becween every pair of vectors.

Proof. Let V aod U be a pair of vectors in H and lee V' and 1"
be their respective images under the cransformaction. In virtue of Exercige

4=5H, we have

2
LIw + 0l -L|\r||2+w-u+|:u|r2 (1)

and

K ¥

2
T Uil = (EVRIT + 2V e U 4 UYL, (2)

Since the cransformation is linear, for the image of V 4+ U we have
(V+0)" =¥ 40",

Comsequencly, (I} can be writtem as

2 2

2
TIY AU = v + 29" U0 + v, {3
But the transformation preserves the length of each wvector; thus, we obrtain

POV Rl = | OVIL,  INU* b = g, aed DIEY 4+ 0300 o= LIV o+ Ui

Making chese substituriont in equation {3}, we get

F. 2

iH"‘I"lI“:-II'J'“ - 2V e O" 4+ 11OIIT. (&)
Comparing equations (1) and (&), you see that we must have

Vel=y au;

that is, the transformacion preserves cthe wvalua of the inner product.

[sec. 5-6)
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Since the magnitude of the angle between YV and U can be expressed in
terms of lomer products {Theorem 435}, it follows thar the transformation also

preserves that magnitode.

Corollary %8-l. Tf a linear transformation preserves the lengch of every

vector, ‘then it maps orthogonal wectors onto orthogonal vectors.

By the definition of orthogonality, this simply means that the geometric
wvectors are mutually perpendicular.

1c is very easy o show the transformations we are considering also pre—
gerve the discance between every pair of pointa in the plane. %We scace chis
propercy formally im the next theorem, the proof of which is left as an exercise.

Theorem 59, A linear transformation that presérves the length of every
vector leaves unchanged the distance between every pair of points in the plane;
that 1a, 4f V' and U' are the respective images of the vectors V¥ and W,
chen

NV = g*l) = 11v =ull.

Let ug now find & matrix representing any given linear length-presecving

transformation of H. ALl we neecd to find are the images of the vecwors

s, = [;] nd s, = [g]

uvnder such a fransformation. (Ehy is this sol)
1f Ell. and 5;:_, are the respective images of 5, and §,, then we know
that both Ei and 5:! are of length 1 and that they are orthogonal to each

other .

Suppose that 31 forms the angle o (alpha) with the positive half of

the x axis [(Figure 5=1Z). Since the length of 5i equals 1, we have
, cos
- o [ni'rl c:] T

is perpendicular to 5. Hence, there are two opposite

We know that 5! 1

Z

[sec, 56]
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cos o, sin )

(1.0)

Figure ¥12. A leéngth—preserving transformation.

pessibilities for the direction of Si.

because the angle B (beca) thar 5.

2

makes wicth the positive half of the = axis may bé cither

Bmo+3

or
fl
f=a-3

In the firse case (5), we have

S Ew

In the second case (6), we have

{ﬂ +
s

L]

X

2
"

3

(3)

(6}

=sin &

cos o

gin G

~co8 O



216
Accordingly, any linear transformation € that leaves che length of ecach
vector unchanged oust be represented by a matrix having either the form

cos @ —sin ﬂ]

i ain o cos {T}
or the form
cog @ ein
- [nin & =cos II] - (8)

In the first instance (7}, the transformation f simply rotates the basis
vectors 5, and 5, through an angle O and we suspect that { 1is a rotation
of the entire plane H chrough that angle. To verify this observation, we write
the vector V in terms of its angle of {inclination @ (ctheta) to the = axis
and cthe length r = ||VII; that is, we write

r coa @
e [r sin ﬂl ’ W3}

Forming AV from equations (7} and (%), we obtain

AV ticoa & cos O — ain 8 sin )
c{ain & com & + conm @ sin &) | °

From the formulas of trigonometry,

com (B + ) = cos B cos O = gin @ sin O,
gln (B + @) = gin & coB @ + cos @ sin O,

we gee thae

ite; [T (S0l
Thus, AV is the vector of length r at am sngle 8 + & to the horizoncal
axis. We have proved that che matrix A represents a rotation of H through
cthe angle .
But suppose f 1= represented by the matrix B in equation (B) above.
This transformation differs ircm the one represented by A in that the vector
' is reflected across the line of the vector Ei. Congequently, you may

2
sudpect that this transformation amounts to a ceflection of the plane in the

[5ec. 2=8]
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axls followed by a rotation through the angle &. Since you know that the

reflection in the X axis is represcnted by the matrix

32,

wou may therefore oxpect that

Bow Aj. (10)

We leave this verification as anm exercise.

L.

3.

2.

Exercises 6

Obtain the matrices that rotste H through the following angles:

(a) 180°, (f) 90°,
(b) 457, (g) -120°,
ey 2°, (h)  360°,
(dy 0%, ) -135°,
(ey 270°, (5 150,

Welte out the matrices that represent che transformation conplating of a
reflection in the = axis followed by the rotationz of Exercise 1.

Verify Equation (10}, above.

A linear cransforsation of H chat preserves tha lengeth of every vector is
called an orthogonal transformation, and the matrix representing the trans—
formation is celled an orthogonal matrix. FProve that the transpose of an
orthogonal matrix is orthogonal.

Show that the inverse of an erthogonal matcix f8 an orthogonal eatrix.
Show that the product of two orthogonal matrices is orthogonal,
{a)] Show that & translation of H ia the direction of the vector
2—|
o- (3]
and through a distance egual to the length of U is given by the mapping

[sec. 55}
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V=2V +U.

(k) Show that cthis zapping does not presecve the lengrh ol every vector,
but that it does preserve the dizcance between every pair of points in the

plane.
(¢} Determine whether or not this mapping is linear.

Let Hﬂ‘. and BB dencte rotatlions of H chrough the angles & and G,
respectively. PFrove cthat a rotacion through o followed by a cocation
through P amounts to & rotation cthrough a + B; that is, show that

R. BE = R d
B a+p

Mote cthac the matrix A of Eguation (7} is & representation of a complex
number. Wwhat does the result of Exercise 8 imply for complem mumbers?

{a) Find a matrix that represents & reflection across the line of the

VECEar
cog 0
ein x| ”

{b) Show that the matriz B of equation (B}, above, represents a re—

flection across the Line of some vector.

[sec. 5-6]
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Appendix

RESEARCH EXERCISES

The exercises in this Appendix are esszentially "research-type" problems
designed to exhibit aspects of theory and practice io matrix algebra that could
not be included in the text. They are especially suited as individual sssign—
nents for those students who are prospective majors inm the theorecical and
practical aspects of the scientifie disciplines, and for studencs who would like
to test their macthematical powers. Alcernacively, small groups of srudencs

might join forces im working them.

l. fuaternions. The algebraic syatem that iz ewplored in this exercise

wias invented by che 1rish mathematician and physicist, William Rowan Hamilton,
wha published hisz {irst paper on che subject fin 1B35., It was not until 1858
that Archur Cayley, an English mathematician and lawyer, published the [iret
research paper on matrices, though the name matrix had previously been applied
by James Joseph Sylvester in 1850 to rectangular atrays of tumbers. Since
Hamilton's system of gquaternions is actually an algebra of matrices, ir is more
eaaily presented in this guise than in the form in wvhich ic was firsc developad.
In the present exercise, we shall consider the algebra of I x ¢ matrices

with cooplex numbers ag entries. The definicions of mddicion, mulviplicacion,

and inverslon reémain the same. We uwse C for the set of all complex numbers

and we denote by K  the set of all macrices

where =z, w, I, and ¥, ~are elements of L. As is the case with matrices

i

of K has an inverse if and only if

having real enteies, the glemant

e, = Wi, #0,



=1
N T i 1 Sl I =™ = wE, 0,
R 2w — ul -2 2

Gince 1 is a complex numbeér, the unit matrix is still

- 39

I
z=x + iy,

then we write

E=x— iy

and call this fumber the complex conjugate of 2z, or simply the conjugate of =.
A quaternion is an element q of K of the particular form

z W
[-i El, z&€C and we C.

We denote by 0 the set of all gquaterniona.

2 Fs z
{a) Show cthat Big) = x +¥% +u +-r2 if z = x + 1y and w = u 4+ iv.

Hence conclude that, since =, ¥, u, and v are real nuabers, B&(g) =0 Aif
and only if q = 0.
{b) Show that if q € Q, then g has an Inverse if and only £f q # 0,
and exhibit the fors of qd_l
Four alements of ©§ are of parcicular ieportance and we give them special

if ic exists.

=

a

L=l

|

D e
B ar




{e¢} Show char 1if
- T W
q 5 Tl
where z = x + iy and ww='u 4 iv, chen
q = xI + ¥yl + u¥V + v,

(d} Prove the fellowing identities involwing I, U, V and W

'I.Iz-'qfi-ﬂz-—l
and

e e -1, VWe ==y and W = ¥ = = 174,

{e} Use the preceding two exercises to show that 1f q € § and
them g + r; q =, &nd qr are all elemencs of .
The conjugate of the element

r W
q = [_‘; *‘E]' where z = x + iy, w=u 4 {y,
is
t 3 -u_
. S [i I.J '
and the norm and trace are given respectively by

gl = [5{1}] 112
amd

elq) = 2x.

(f) Show that if q e §, and If g is invercible, then

rE g
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From this concluds that if g € g, and 1iE 'l:|;_11 exlsts, chen q-l € Q.

(g) Show chat each q & ¢ satisfies the quadratic equacion
¢ —t(q) q+1q1° 1 =g,
{b} Show chat if g € §, cthen
aq = 1q1” 1.
Hote that this may be proved by using cthe result chac il
g = al + bl + eV + dW,
then
q = al = bll — eV - dW,

and cthen using the resulits given in (d}.

(i) Show thae 1f g € § amd r € §, then

Iqel = gl Il

ig + £l < Igl + Irl.

The geometry of quatecnions constitutes & very interésting subject. It
requires the representation of a quatersien

g = al + bl + cV + d¥W

a3 & point with coordinaces (a, b, ¢, d}) in four—dimensional spaces. Tha

subsec of elesencs,

9 =lg: geq snd g1 = 1],

is & group and ia represented geometrically as the hypersphare with equation
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2. Konassociative Algebras

The algebra of matrices (we restrict our attention in thiz exercise to the

get M of 2 x 2 matrices) has an associative but not & commutative multipli-

cation. "“Algebras™ with nonassoclative smultiplication have become increasimgly

important in recent years—for example, in mathematical gemetics. Genatics is
a subdiscipline of biolegy and is concerned wich transmission of heredicary
traits. Wonassoclative "algebras" are lmportant alsc in the study of quangus
mechanies, a subdiscipline of physica., We glve firac a sicple example of a2 Lie
algebra (nased after che Morwegian geometer Sophus Lie).

If AeHM and B @ M, we write

AcBE = AR — BA

and reed this "4 op B,” Top" being an abbreviation for operatiom.
(o) Frove the [ollowlng propercies of o:
(1) #oB = — BoA,
(11) Ach =0,
{184} Ao(BoC) + So(CoA) + ColioB) = O,
{1v) Aol = 0 = Ioh.

{b} Give an example ro show that Ao{BoC) and (AcB)ol are diftferent
and hence that o is not an associative operation.

Desplite these strange propérties, o ‘behaves nicely relative to ordinacy
matrix addicien.

fc) Show that o diseribotes over addicion:

AolB + C) = [AcB) + (AoC)

{A + BYoC = (AaC) + (BoC)-

(d) Show that o behaves nicely relative to muleiplicaction by a number.
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Ie will be recalled chat a_l iz termed che sultiplicative inverse of 4

and L3 defined as the elesent B satisfying the relationships
AB = T = BA.

But it must also be recalled thae this definition waz morivated by the tace chat
AT = A = TA,

that is, by the fact that 1 is & oultiplicative unit,

(&} Show char there 8 ne o unit.

We know, from the foregoing work, that o is neither commutacive nor
agsociative. Here is another kind of operation, called Jordan mulciplicacion:
If AE M and B € H, we define

AR 4+ BA

AjB = 5

We sec at once that
AJBE = BjA,

a0 that Jordan sultiplication is a comsutative cperation; but it is no

agdociative,

(f} Decermine all of the propercies of the operation | that yvou can.
For example, does | diseribuce over addicion?

3. The Algebra of Subscts
We have seen that there are inceresting algebraically defined subsets of

H, the set of all 2 xX 2 matrices. Ome such subset, for example, is the sat
Z, which is {somorphic with the set of complex pumbers. Much of higher
mathematics is concermed with the "global structure"” of "algebras,” and genevally
this involves the consideration of subsecs of the "algebras" being studied. In
this exercise, we shall generally underscore letters co denote subsets of M.

If A and B are subsets of M, then

A+B
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i the set of all elements of the form

A+8, where A€ A and B c B.
In set—builder notation this may be written
A+B=s [A+B 1A€A and B € Rj.

® By an additive subser of M is meant a subset A C M such that
L]

A+aCa

() Determine which of the following are additive subserz of M:

(i) (9).
(i1) (1},
(114) N,
(1v) 2,

(vl Hl' the sct of all A in M wicth S{A) = 1,
{wi)} the sec of all elesents of M wvhose entries are nonnegative.
(b) Prove that if A, B, and C are subsets of M, then
(i) A+B=B+a,
{(1i) A+ (B +C)=(A +B) +C,
(4ii) and if ACB then A+ CC B +C.

{c)} Prove that if A and B are additive subsete of H, Cthen
A+3

is also an additive subsat of M.

Lec ¥V denore the set of all coluom vectors

with = e B Bnd y € H.

{(d} Show that 1f v is o fixed element of W, then



{sacn e - o]

is an additive subset of M. Notice alse that {f Av = 0 cthen (-A)v = 0.
If{ A and B are subsets of M, Cthen

AR

is the set of all
L

AB, A€ A and B € B.
Using sec—bullder notation, we can write this in che form
AB = [AB: A e h and B e B).
A subset A of M is muleiplicative if
AL C A

{e% Which of the subsets in part {a) are multiplicative?
(f) Show that if A, B, and C are subsets of M, then
(i) A(BC) = (AB)C,
(ii) and it A CH, then ACC BC.

(g) Give an example of two subsets 4 and B of M such that
AB # BA.

{h) Determine which of the following subsets are multiplicacive:
W (o, 1, '
(ii) {1, -1},
{iii) the set of all elements of H with negative entries,

{iv) tche ser of all elements of M for which the upper left<hand
entry is less thanm 1,

{w) the set of all elements af H of che formo
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g 1j*
with 0 <x, O0<y, and x +y < 1.

The exercises atated above are suggestions as to how this "algebra of
gubsets” works. There are many other results that come to mind, but we shall
leave thes to you to find. Here are some clues: How would you define ©A if
t€R and ACM Is (-1)A = —A? Wait a minute! What does -A wmean?
Whae does .r_L-'r mean? Does et mulciplicacion discribute over addicion, owver
union, over intersection? Do not expect that even your teacher knows the
answer to all of these possible question=. Few pecple know all of them and
fewer still, of those whe know them, remember them. If you conjecture that
gsomething {s true but cthe proof of it escapes you, chen ccy o construct am
exaople to show that it iz false. Tf this does not work, tcy proving it again,
and 8o on.

L. Analysis and Synthesis of Proofs
This is an exercise in anslysis and synthesis, caking an old proof eo

pieces and using the pattérn to make a néw proof. In describing his activities,
4 mathematician is likely to put at the very top that of creating new results.
But "result” in mathematics usually means "theorem and proof." The mathematician
dogs not by any means limit his methods in coniecturing a new theorem: He
guesses, uses analogies, dravs diagrams and figures, sets up physical models,
experiements, computes; no holds are barred. Omce he has his conjecture fimmly
in siod;, he is only half through, for he still must construct a procf. Ome way
of doing this is to analyze proofs of known cheorems that are somewhat like the
theorem he is trying to prove and then synthesize a proofl of the new theorem.
Here we ssk you to apply this process of analysis and synthesis of proofs to
th‘e algebra of macriees., To accomplish this, we shall introduce some new
operations among matricea by analogy with the old operations.

For aimplicicy of computation, we shall use only 2 % 2 matrices.

To scart with, we introdece new operations in the sct of real numbers, R.

If e B and y € R, we define
x Ay = the smaller of x and y (read: "x cap y")

amd

kl

iy v = the larger of x and ¥ {recad: x ocup ¥').



(a) Show that if x € R, y € R, and z € R, then

(1) xhy=yAx,

14y =Wy myV x,

(1) x Ay Az =(zxAx)A 2,

(iv) 2Vi{yVz)=xVyIVe,

(v) =Ax=nx,

(vi) =V =ns=ux,

(vil) xAlyVz)=(xAy)V (xAz),
(vitd) xViyAz)=(xVy) AlxVz),

Although the foregoing operations may seem & licele wnuswal, you will have
ne difficulty in proving the above statements. They arve not difficult co
resember 1f you notice the following facts:

The even—numbered resules can be obtained from the odd-numbered results by
interchanging A and V ., and conversely.

The first states that A is commutative and the third states that A is
aggociative, The fifeh is nmew but the seventh staces that A  Jdistributes over
Yo

To define the matcix operations, let us think of A as the analog of
multiplication and ¥V as the analog of addirion and let us begin with our new
matrix "multiplication."

We define

fla b Aalz vl o [GARDV(BAD (aAnV (AW
le d z W (e AV (@A) (cAy)V(dAW

This is simply the rowby—column operations, excepr chat A is used in

place of multiplication and W i3 wsed in place of addicion. To see Chis more
clearly, we write

a b X ¥ L ax + bz ay + bw
e dilz w ex +dz ey +du|
(b} Write out & proof that if A, B, and C are elements of M, then

A(BC) = (AB)C.
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BEe sure not to onit any steps im the procf. Using this as & patcem, write out

a proof that

AA(BAC =(AAB)AC,

werifying &t each step that you have the necessary results from (a) to make the
proof sound. List all the properties of the twr pairs of operations that you
need, #such s associacivity, commutativity, and distributivity.

{c)} Using the analogy between VWV and addition, define AW B for elements
A and B of H.

{d} 3State and prove, for the new opeérations, analogs of all the rules

vou know [or the ocperations of matri=x addirtion and smltiplicacion.
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Addition of matrices, 9
associative law far, 12
commutative law for, L2

Addicion of wectors, L&7

Addicive inverse of a maerix, 14

Addicive subset, 225

Algebra, 100, 102
global structure of, 214
nonaagociacive, 223

Analysis of proofs, 2127

Analysis, wvector, L73%

Angle betweon vectors, 153

Antlcommuracive matrix, 49

Ared of @ parallelogras, L5L

Arrow, 136
head, 1o
Eail, 138

Associative law, for addiefen, 12

Associative law,
for sultiplication, 43=Lb

fasis, L71
natural, 171

Cargellation law, 37

Cap, 227

Cayley=Hamilton Theorem, Zl0—£11

Characteristic equaticn, 2B

characteristic root, 206

Characteristic walue, 2J5=207

Characteristic vector, 205207

Circle, unit, B8

Closure, 53

Collinear wvectors, L35

Column satrix, 4

Column of 8 matrix, 2

Coluwmm weetor, 4, 133

Combination, linear, LIU

Commutative group, 90

Comutative law for addicion, 12

Complex conjugate, 220

Complex number, L, 94, 219

Compoments of @ vecear, L3V

Composition of Ecansformations, L98-1%9

Cospression, LBS

Conformable =atrices, for addiefon, L0
for mulejplication, 27

Conjugate quaternion, 2211

Contraction factor, LEO

Cosine, direction, 138

Cosines, law of, 153

Counting number, 1

Cup, 227

Decimal, inflnice, 1
Dependence, Linear, L7
Decerminant fumetion, 77
Diagonalizacion meehod, 131
Difference of matrices, 1&
Direction cosines, 138
Direction of a wector, L3B
Displacement, 184
Distribucive law, 41—45
Domain of o functiom, 177
ot product of vectors, 154
Efigenvalue, 20/
Electronic brain, 2, 132
Elesentary natcices, L24
Elesentary row operatiom, 116, Li&
Exbedding of an algebra, 17
End point of wvector, 137
Entry of o matrix, 3
Equality of matrices, 7
Equation, characteristic, 208
Equivalence, row, L1&
Equivalent systems of linear cquations,
135
Equivalent wectors, L3R
Expansion [acear, L7Y
Factor, comtractien,
expansion, L7%
Field, 35
Fized poine, Jud
rour=dimenslonal space, 2123
Free veceor, L1S
Fonction, 177
determinanc, 77
domain, L7V
macris, Lod
ange, 177
real, 177
stretching, 183
wvector, LIV
Galeis, Evariste, 92
Geomotric representation of wecenr, 140
Global structure of alpebras, 214
Group, 85, 90
sbelian, 90
commutative, 90
of invertible matrices, 85
related to face of clock, 90
Head of arrow, 13¢
Hypersphece, 221
Tdenelcy maeeix, for additiom, 11
for multiplication, 4G
lmage, 178

L4



Independence, lincar, 172
Infinite decimal, 1
Initial point of wector, 137
Inner product of wectors, 158, 154
Integer, 1
Invariant svbspace, 211
Invariant vector, 0%
Inverse of a mateix, 6263, 113
of order twn, 75
Inverase of a numher, 54
of a tcansformation, 104
Isomorphiam, 94, LOO
Jordan muleiplicacion, 2134
Kernel, 194
Law of cosines, L53
Left multiplication, 37
Length of a wecktor, L3I7—136
Linear combination, L70
Linear dependence, Li2
Linear equations, sysatem of,
equivalenc, 103
solwtion of, 103105
relacion to macrices, 107
solution by diagonalization method,
i1
solution by triangularization mechod,
151
Linear independence, 172
Linear map, 190, 196
Linear transformation, 190, 136
Located vector, 136-137

103, 119

Map, 178
inverse, 204
kernel, 196

Linear, 191, 196
one—to—one, 201

onto, 178

Matrices, 1, J
Matri=, 1, 3

addition, 9
associacive law for, 12
commutative law for, L2
conformalbilicy for, 1O
identicy elesent for, 11

additive inverse, l4&

anticommutative, 49

calumn, &4

coluan af, 2

conformable for addicien, 10

difference, L&

division, 50=31

elemencary, L&

entry of, 3

equalicy, 7

identity for addition, 11
for muleiplication, 46

Maerizx {(concioued),
inverse, 61-63, 1L1
of order two, 75
invertible, 63
sultiplication, 24, 33, 32
cancéllation law for, 37
conformability for, 27
lefe, 37
right, 37
muledplication by & mumber, 15-20
negative of, 14
arder of, 3
orthogonal, 217
produck, 26
row, 4
row of , 2
sgquare, 4
order of . &
sum, 10
transformation, 189
transpose of, 5
unit, 46
varlable, 109
zeTe, 1l
Hatrix functiom, LO9
HMultiplication, 2&, 30, 12
Jordan, 224
Multiplication of matrices, 24, 30, 32
digtributive lav for, over addiclion,
G145
Huleiplication of matrix by number,
L9=i0
Muleciplication of vestar by number,
ihg
Hatural basis, 171
hegacive of a matrix, L4
Honassociacive algebra, 213
Morm of a quaterpion, 221
Horm of & vector, 14l
Bull wveccor, 139
Number, 1
Humber, complex, 1, 94
conjugace, 20
counting, 1
integer, 1
inverse, 54
rational, 1
real, 1
(ne—to—one transf{armation, IBG
Operation, wvow, 114, L34
Opposite wectors, 138
Ordér of a matrix, 3, 4
Orchogonal maceix, 217
Orthogonal projection, 186
Orchogonal transformation, 217
Orthogonal veetors, L56



Pacallel vecrors, L&43, l&3
perallelogram rule, 144
rerpendicular projection, LBG
Perpendicular vectors, 153
Piwar, 132
Poing, fixed, 206
Froduct of transformations, 198
Projeccion,
orchagonal, 186
perpendicular, LBG
fwatermion, 219-=223
conjugate, 221
geometry of, 221
noem, 221
trace, 2211
Range of a funcklon, L77
Rational nusmber, 1
Real [unction, 177
Real number, 1
Reflection, 178, ZiZ
Representation of vector, l4ad
Right mulkiplication, 37
Ring, 57-58
with identity elemenc, Ol
Rise, 137
foot, characteristic, 204
Fow equivalent, 114
fow matrix, &
dow of & materix, 2
Row opeération, LL&, 124
How wector, &
Rocacianm, 198, 212
Rum, 137
Scalarg, 195
Set, 52
ciosure under an operation, 53
element of, 57
Shear, 183
Sigma notatiom, 30
S5lope of a vector, 118
Space, LG&
four—disensional, £22
Square mateix, &
sSquare root of unic mateix, 39
Scandard répresentation, 140
Stretching function, 183
Subser,
additive, 225
algebra of, 224
Subgpace, L66—LGT
invariant, 211
Sum of matrices, 10
Synthesis of proofs, 227

Eystem of linear equations, 103, 119
solution by diagonalization mechod,

L3l

System of linear eéquations {:nntiqund}
solution by triangularization mechad,

L1z
Tall of vecror, 136
Terminal point af wector, 137
Trace 0f a gquaterniom, 2I]
Trapsformation,
compogicion, 198
geometric, 177=178
inverse, 2ub
kermal, 196
length—preserving, Z146=217
lingar, 190, 196
one—te—one, 201
matrix, L&9
one—to—one, 186
orthogenal , £17
plane, L77-174
produce, L[98
Transiation, LS54
Transpose of a matrix, 5
Triangularization method, 132
Unit eivele, 8B
Unit matrdx, 44
Value,
characteristie, 205207
Variable,
matrix, lO%
Vector, &4, 133
addition, l&7
parallelogram rule for, 149
analysis, 175
angle, 153
basis, 171
characteriseic, JLS=M7
collinear, 155, 177
column, &4, 133
order of, 133134
component, L37
direction, L3I8
dot product, 15
end poing, 137
equivalent, 138
free, 175
functiom, 177
geometric representation, 136
initial peint, 137
inner produee, 152, 154
invarianc, 209
lengeh, L3r=138
lincar comblnation, 170
located, L36~137
multiplication by a number, 14&
natwral basis, L71
norm, L4l
null, 136



Vector (concinued), Vector (continued),

oppasite, L3E8 run, L37
orthogonal, 154 slope, L34
parallel, L&3, L&3 space, LE&

perpandbcular, 153 subspace, LiG—LGT
representation by located weegor, 140 cerminal polat, 130
rime, 137 variable, 177

rotw, L, 136 Zevo matrix, 1l





