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To the Student

These notes are provided for your benefit as an attempt to organise the salient points of the course. They
are a very terse account of the main ideas of the course, and are to be used mostly to refer to central
definitions and theorems. The number of examples is minimal, and here you will find few exercises.
The motivation or informal ideas of looking at a certain topic, the ideas linking a topic with another, the
worked-out examples, etc., are given in class. Hence these notes are not a substitute to lectures: you
must always attend to lectures. The order of the notes may not necessarily be the order followed in
the class.

There is a certain algebraic fluency that is necessary for a course at this level. These algebraic
prerequisites would be difficult to codify here, as they vary depending on class response and the topic
lectured. If at any stage you stumble in Algebra, seek help! I am here to help you!

Tutoring can sometimes help, but bear in mind that whoever tutors you may not be familiar with
my conventions. Again, I am here to help! On the same vein, other books may help, but the approach
presented here is at times unorthodox and finding alternative sources might be difficult.

Here are more recommendations:

• Read a section before class discussion, in particular, read the definitions.

• Class provides the informal discussion, and you will profit from the comments of your classmates,
as well as gain confidence by providing your insights and interpretations of a topic. Don’t be
absent!

• Once the lecture of a particular topic has been given, take a fresh look at the notes of the lecture
topic.

• Try to understand a single example well, rather than ill-digest multiple examples.

• Start working on the distributed homework ahead of time.

• Ask questions during the lecture. There are two main types of questions that you are likely to
ask.

1. Questions of Correction: Is that a minus sign there? If you think that, for example, I have missed
out a minus sign or wrote P where it should have been Q,1 then by all means, ask. No one
likes to carry an error till line XLV because the audience failed to point out an error on line I.
Don’t wait till the end of the class to point out an error. Do it when there is still time to correct
it!

2. Questions of Understanding: I don’t get it! Admitting that you do not understand something is
an act requiring utmost courage. But if you don’t, it is likely that many others in the audience
also don’t. On the same vein, if you feel you can explain a point to an inquiring classmate, I
will allow you time in the lecture to do so. The best way to ask a question is something like:
“How did you get from the second step to the third step?” or “What does it mean to complete
the square?” Asseverations like “I don’t understand” do not help me answer your queries. If
I consider that you are asking the same questions too many times, it may be that you need
extra help, in which case we will settle what to do outside the lecture.

• Don’t fall behind! The sequence of topics is closely interrelated, with one topic leading to another.

• The use of calculators is allowed, especially in the occasional lengthy calculations. However, when
graphing, you will need to provide algebraic/analytic/geometric support of your arguments. The
questions on assignments and exams will be posed in such a way that it will be of no advantage to
have a graphing calculator.

• Presentation is critical. Clearly outline your ideas. When writing solutions, outline major steps and
write in complete sentences. As a guide, you may try to emulate the style presented in the scant
examples furnished in these notes.

1My doctoral adviser used to say “I said A, I wrote B, I meant C and it should have been D!



Chapter 1
Preliminaries

1.1 Sets and Notation

1 Definition We will mean by a set a collection of well defined members or elements.

2 Definition The following sets have special symbols.

N = {0, 1, 2, 3, . . .} denotes the set of natural numbers.

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} denotes the set of integers.

Q denotes the set of rational numbers.

R denotes the set of real numbers.

C denotes the set of complex numbers.

∅ denotes the empty set.

3 Definition (Implications) The symbol =⇒ is read “implies”, and the symbol ⇐⇒ is read “if and only if.”

4 Example Prove that between any two rational numbers there is always a rational number.

Solution: ◮ Let (a, c) ∈ Z2, (b, d) ∈ (N \ {0})2, a
b
< c

d
. Then da < bc. Now

ab + ad < ab + bc =⇒ a(b + d) < b(a + c) =⇒
a

b
<
a + c

b + d
,

da + dc < cb + cd =⇒ d(a + c) < c(b + d) =⇒
a + c

b + d
<
c

d
,

whence the rational number
a + c

b + d
lies between a

b
and c

d
. ◭

☞ We can also argue that the average of two distinct numbers lies between the numbers and

so if r1 < r2 are rational numbers, then
r1 + r2

2
lies between them.

5 Definition Let A be a set. If a belongs to the set A, then we write a ∈ A, read “a is an element of A.” If
a does not belong to the set A, we write a 6∈ A, read “a is not an element of A.”

1



2 Chapter 1

6 Definition (Conjunction, Disjunction, and Negation) The symbol ∨ is read “or” (disjunction), the symbol
∧ is read “and” (conjunction), and the symbol ¬ is read “not.”

7 Definition (Quantifiers) The symbol ∀ is read “for all” (the universal quantifier), and the symbol ∃ is read
“there exists” (the existential quantifier).

We have
¬(∀x ∈ A, P(x)) ⇐⇒ (∃ ∈ A,¬P(x)) (1.1)

¬(∃ ∈ A, P(x)) ⇐⇒ (∀x ∈ A,¬P(x)) (1.2)

8 Definition (Subset) If ∀a ∈ A we have a ∈ B, then we write A ⊆ B, which we read “A is a subset of B.”

In particular, notice that for any set A, ∅ ⊆ A and A ⊆ A. Also

N ⊆ Z ⊆ Q ⊆ R ⊆ C.

☞ A = B ⇐⇒ (A ⊆ B) ∧ (B ⊆ A).

9 Definition The union of two sets A and B, is the set

A ∪ B = {x : (x ∈ A) ∨ (x ∈ B)}.

This is read “A union B.” See figure 1.1.

10 Definition The intersection of two sets A and B, is

A ∩ B = {x : (x ∈ A) ∧ (x ∈ B)}.

This is read “A intersection B.” See figure 1.2.

11 Definition The difference of two sets A and B, is

A \ B = {x : (x ∈ A) ∧ (x 6∈ B)}.

This is read “A set minus B.” See figure 1.3.

A B

Figure 1.1: A ∪ B

A B

Figure 1.2: A ∩ B

A B

Figure 1.3: A \ B

12 Example Prove by means of set inclusion that

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C).
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Solution: ◮ We have,

x ∈ (A ∪ B) ∩ C ⇐⇒ x ∈ (A ∪ B) ∧ x ∈ C

⇐⇒ (x ∈ A ∨ x ∈ B) ∧ x ∈ C

⇐⇒ (x ∈ A ∧ x ∈ C) ∨ (x ∈ B∧ x ∈ C)

⇐⇒ (x ∈ A ∩ C) ∨ (x ∈ B ∩ C)

⇐⇒ x ∈ (A ∩ C) ∪ (B ∩ C),

which establishes the equality. ◭

13 Definition Let A1, A2, . . . , An, be sets. The Cartesian Product of these n sets is defined and denoted
by

A1 × A2 × · · · × An = {(a1, a2, . . . , an) : ak ∈ Ak},

that is, the set of all ordered n-tuples whose elements belong to the given sets.

☞ In the particular case when all the Ak are equal to a set A, we write

A1 × A2 × · · · × An = An.

If a ∈ A and b ∈ A we write (a, b) ∈ A2.

14 Definition Let x ∈ R. The absolute value of x—denoted by |x|—is defined by

|x| =






−x if x < 0,

x if x ≥ 0.

It follows from the definition that for x ∈ R,

− |x| ≤ x ≤ |x|. (1.3)

t ≥ 0 =⇒ |x| ≤ t ⇐⇒ −t ≤ x ≤ t. (1.4)

∀a ∈ R =⇒
√
a2 = |a|. (1.5)

15 Theorem (Triangle Inequality) Let (a, b) ∈ R2. Then

|a + b| ≤ |a| + |b|. (1.6)

Proof: From 1.3, by addition,

−|a| ≤ a ≤ |a|

to

−|b| ≤ b ≤ |b|

we obtain

−(|a| + |b|) ≤ a + b ≤ (|a| + |b|),

whence the theorem follows by 1.4. ❑
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Homework

Problem 1.1.1 Prove that between any two rational
numbers there is an irrational number.

Problem 1.1.2 Prove that X \ (X \ A) = X ∩ A.

Problem 1.1.3 Prove that

X \ (A ∪ B) = (X \ A) ∩ (X \ B).

Problem 1.1.4 Prove that

X \ (A ∩ B) = (X \ A) ∪ (X \ B).

Problem 1.1.5 Prove that

(A ∪ B) \ (A ∩ B) = (A \ B) ∪ (B \ A).

Problem 1.1.6 Write the union A ∪ B ∪ C as a disjoint

union of sets.

Problem 1.1.7 Prove that a set with n ≥ 0 elements has
2n subsets.

Problem 1.1.8 Let (a, b) ∈ R2. Prove that

||a| − |b|| ≤ |a − b|.

1.2 Partitions and Equivalence Relations

16 Definition Let S 6= ∅ be a set. A partition of S is a collection of non-empty, pairwise disjoint subsets of
S whose union is S.

17 Example Let
2Z = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .} = 0

be the set of even integers and let

2Z + 1 = {. . . ,−5,−3,−1, 1, 3, 5, . . .} = 1

be the set of odd integers. Then

(2Z) ∪ (2Z + 1) = Z, (2Z) ∩ (2Z + 1) = ∅,

and so {2Z, 2Z+ 1} is a partition of Z.

18 Example Let
3Z = {. . .− 9, ,−6,−3, 0, 3, 6, 9, . . .} = 0

be the integral multiples of 3, let

3Z + 1 = {. . . ,−8,−5,−2, 1, 4, 7, . . .} = 1

be the integers leaving remainder 1 upon division by 3, and let

3Z + 2 = {. . . ,−7,−4,−1, 2, 5, 8, . . .} = 2

be integers leaving remainder 2 upon division by 3. Then

(3Z) ∪ (3Z+ 1) ∪ (3Z+ 2) = Z,

(3Z) ∩ (3Z+ 1) = ∅, (3Z) ∩ (3Z + 2) = ∅, (3Z+ 1) ∩ (3Z+ 2) = ∅,

and so {3Z, 3Z+ 1, 3Z+ 2} is a partition of Z.

☞ Notice that 0 and 1 do not mean the same in examples 17 and 18. Whenever we make use

of this notation, the integral divisor must be made explicit.

19 Example Observe
R = (Q) ∪ (R \ Q), ∅ = (Q) ∩ (R \ Q),

which means that the real numbers can be partitioned into the rational and irrational numbers.
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20 Definition Let A,B be sets. A relation R is a subset of the Cartesian product A × B. We write the fact
that (x, y) ∈ R as x ∼ y.

21 Definition Let A be a set and R be a relation on A × A. Then R is said to be

• reflexive if (∀x ∈ A), x ∼ x,

• symmetric if (∀(x, y) ∈ A2), x ∼ y =⇒ y ∼ x,

• anti-symmetric if (∀(x, y) ∈ A2), (x ∼ y) ∧ (y ∼ x) =⇒ x = y,

• transitive if (∀(x, y, z) ∈ A3), (x ∼ y) ∧ (y ∼ z) =⇒ (x ∼ z).

A relation R which is reflexive, symmetric and transitive is called an equivalence relation on A. A relation
R which is reflexive, anti-symmetric and transitive is called a partial order on A.

22 Example Let S ={All Human Beings}, and define ∼ on S as a ∼ b if and only if a and b have the same
mother. Then a ∼ a since any human a has the same mother as himself. Similarly, a ∼ b =⇒ b ∼ a
and (a ∼ b) ∧ (b ∼ c) =⇒ (a ∼ c). Therefore ∼ is an equivalence relation.

23 Example Let L be the set of all lines on the plane and write l1 ∼ l2 if l1||l2 (the line l1 is parallel to the
line l2). Then ∼ is an equivalence relation on L.

24 Example In Q define the relation a
b

∼ x
y

⇐⇒ ay = bx, where we will always assume that the
denominators are non-zero. Then ∼ is an equivalence relation. For a

b
∼ a

b
since ab = ab. Clearly

a

b
∼

x

y
=⇒ ay = bx =⇒ xb = ya =⇒

x

y
∼

a

b
.

Finally, if a
b

∼ x
y

and x
y

∼ s
t
then we have ay = bx and xt = sy. Multiplying these two equalities

ayxt = bxsy. This gives
ayxt− bxsy = 0 =⇒ xy(at− bs) = 0.

Now if x = 0, we will have a = s = 0, in which case trivially at = bs. Otherwise we must have at − bs = 0
and so a

b
∼ s

t
.

25 Example Let X be a collection of sets. Write A ∼ B if A ⊆ B. Then ∼ is a partial order on X.

26 Example For (a, b) ∈ R2 define
a ∼ b ⇔ a2 + b2 > 2.

Determine, with proof, whether ∼ is reflexive, symmetric, and/or transitive. Is ∼ an equivalence relation?

Solution: ◮ Since 02 + 02 ≯ 2, we have 0 ≁ 0 and so ∼ is not reflexive. Now,

a ∼ b ⇔ a2 + b2

⇔ b2 + a2

⇔ b ∼ a,

so ∼ is symmetric. Also 0 ∼ 3 since 02 + 32 > 2 and 3 ∼ 1 since 32 + 12 > 2. But 0 ≁ 1 since

02 + 12 ≯ 2. Thus the relation is not transitive. The relation, therefore, is not an equivalence

relation.

◭



6 Chapter 1

27 Definition Let ∼ be an equivalence relation on a set S. Then the equivalence class of a is defined and
denoted by

[a] = {x ∈ S : x ∼ a}.

28 Lemma Let ∼ be an equivalence relation on a set S. Then two equivalence classes are either identical
or disjoint.

Proof: We prove that if (a, b) ∈ S2, and [a] ∩ [b] 6= ∅ then [a] = [b]. Suppose that x ∈ [a] ∩ [b].
Now x ∈ [a] =⇒ x ∼ a =⇒ a ∼ x, by symmetry. Similarly, x ∈ [b] =⇒ x ∼ b. By transitivity

(a ∼ x) ∧ (x ∼ b) =⇒ a ∼ b.

Now, if y ∈ [b] then b ∼ y. Again by transitivity, a ∼ y. This means that y ∈ [a]. We have shewn

that y ∈ [b] =⇒ y ∈ [a] and so [b] ⊆ [a]. In a similar fashion, we may prove that [a] ⊆ [b]. This
establishes the result. ❑

29 Theorem Let S 6= ∅ be a set. Any equivalence relation on S induces a partition of S. Conversely,
given a partition of S into disjoint, non-empty subsets, we can define an equivalence relation on S whose
equivalence classes are precisely these subsets.

Proof: By Lemma 28, if ∼ is an equivalence relation on S then

S =
⋃

a∈S

[a],

and [a] ∩ [b] = ∅ if a ≁ b. This proves the first half of the theorem.

Conversely, let

S =
⋃

α

Sα, Sα ∩ Sβ = ∅ if α 6= β,

be a partition of S. We define the relation ≈ on S by letting a ≈ b if and only if they belong to

the same Sα. Since the Sα are mutually disjoint, it is clear that ≈ is an equivalence relation on

S and that for a ∈ Sα, we have [a] = Sα. ❑

Homework

Problem 1.2.1 For (a, b) ∈ (Q \ {0})2 define the relation
∼ as follows: a ∼ b ⇔ a

b
∈ Z. Determine whether this

relation is reflexive, symmetric, and/or transitive.

Problem 1.2.2 Give an example of a relation on Z \ {0}

which is reflexive, but is neither symmetric nor transi-
tive.

Problem 1.2.3 Define the relation ∼ in R by x ∼ y ⇐⇒
xey = yex. Prove that ∼ is an equivalence relation.

Problem 1.2.4 Define the relation ∼ in Q by x ∼ y ⇐⇒

∃h ∈ Z such that x =
3y + h

3
. [A] Prove that ∼ is an

equivalence relation. [B] Determine [x], the equivalence
of x ∈ Q. [C] Is 2

3
∼ 4

5
?

1.3 Binary Operations

30 Definition Let S, T be sets. A binary operation is a function

⊗ :
S × S → T

(a, b) 7→ (a, b)

.
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We usually use the “infix” notation a ⊗ b rather than the “prefix” notation ⊗(a, b). If S = T then we say
that the binary operation is internal or closed and if S 6= T then we say that it is external. If

a ⊗ b = b ⊗ a

then we say that the operation ⊗ is commutative and if

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c,

we say that it is associative. If ⊗ is associative, then we can write

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c = a ⊗ b ⊗ c,

without ambiguity.

☞We usually omit the sign ⊗ and use juxtaposition to indicate the operation ⊗. Thus we write

ab instead of a ⊗ b.

31 Example The operation + (ordinary addition) on the set Z×Z is a commutative and associative closed
binary operation.

32 Example The operation − (ordinary subtraction) on the set N × N is a non-commutative, non-
associative non-closed binary operation.

33 Example The operation ⊗ defined by a ⊗ b = 1 + ab on the set Z × Z is a commutative but non-
associative internal binary operation. For

a ⊗ b = 1 + ab = 1 + ba = ba,

proving commutativity. Also, 1 ⊗ (2 ⊗ 3) = 1 ⊗ (7) = 8 and (1 ⊗ 2) ⊗ 3 = (3) ⊗ 3 = 10, evincing
non-associativity.

34 Definition Let S be a set and ⊗ : S × S → S be a closed binary operation. The couple 〈S,⊗〉 is called
an algebra.

☞ When we desire to drop the sign ⊗ and indicate the binary operation by juxtaposition, we

simply speak of the “algebra S.”

35 Example Both 〈Z,+〉 and 〈Q, ·〉 are algebras. Here + is the standard addition of real numbers and ·
is the standard multiplication.

36 Example 〈Z,−〉 is a non-commutative, non-associative algebra. Here − is the standard subtraction
operation on the real numbers

37 Example (Putnam Exam, 1972) Let S be a set and let ∗ be a binary operation of S satisfying the laws
∀(x, y) ∈ S2

x ∗ (x ∗ y) = y, (1.7)

(y ∗ x) ∗ x = y. (1.8)

Shew that ∗ is commutative, but not necessarily associative.

Solution: ◮ By (1.8)

x ∗ y = ((x ∗ y) ∗ x) ∗ x.

By (1.8) again

((x ∗ y) ∗ x) ∗ x = ((x ∗ y) ∗ ((x ∗ y) ∗ y)) ∗ x.
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By (1.7)

((x ∗ y) ∗ ((x ∗ y) ∗ y)) ∗ x = (y) ∗ x = y ∗ x,

which is what we wanted to prove.

To shew that the operation is not necessarily associative, specialise S = Z and x ∗ y = −x − y
(the opposite of x minus y). Then clearly in this case ∗ is commutative, and satisfies (1.7) and

(1.8) but

0 ∗ (0 ∗ 1) = 0 ∗ (−0 − 1) = 0 ∗ (−1) = −0 − (−1) = 1,

and

(0 ∗ 0) ∗ 1 = (−0 − 0) ∗ 1 = (0) ∗ 1 = −0 − 1 = −1,

evincing that the operation is not associative. ◭

38 Definition Let S be an algebra. Then l ∈ S is called a left identity if ∀s ∈ S we have ls = s. Similarly
r ∈ S is called a right identity if ∀s ∈ S we have sr = s.

39 Theorem If an algebra S possesses a left identity l and a right identity r then l = r.

Proof: Since l is a left identity

r = lr.

Since r is a right identity

l = lr.

Combining these two, we gather

r = lr = l,

whence the theorem follows. ❑

40 Example In 〈Z,+〉 the element 0 ∈ Z acts as an identity, and in 〈Q, ·〉 the element 1 ∈ Q acts as an
identity.

41 Definition Let S be an algebra. An element a ∈ S is said to be left-cancellable or left-regular if ∀(x, y) ∈
S2

ax = ay =⇒ x = y.

Similarly, element b ∈ S is said to be right-cancellable or right-regular if ∀(x, y) ∈ S2

xb = yb =⇒ x = y.

Finally, we say an element c ∈ S is cancellable or regular if it is both left and right cancellable.

42 Definition Let 〈S,⊗〉 and 〈S,⊤〉 be algebras. We say that ⊤ is left-distributive with respect to ⊗ if

∀(x, y, z) ∈ S3, x⊤(y ⊗ z) = (x⊤y) ⊗ (x⊤z).

Similarly, we say that ⊤ is right-distributive with respect to ⊗ if

∀(x, y, z) ∈ S3, (y ⊗ z)⊤x = (y⊤x) ⊗ (z⊤x).

We say that ⊤ is distributive with respect to ⊗ if it is both left and right distributive with respect to ⊗.

Homework
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Problem 1.3.1 Let

S = {x ∈ Z : ∃(a, b) ∈ Z2, x = a3 + b3 + c3 − 3abc}.

Prove that S is closed under multiplication, that is, if
x ∈ S and y ∈ S then xy ∈ S.

Problem 1.3.2 Let 〈S,⊗〉 be an associative algebra, let
a ∈ S be a fixed element and define the closed binary
operation ⊤ by

x⊤y = x ⊗ a ⊗ y.

Prove that ⊤ is also associative over S × S.

Problem 1.3.3 On Q∩] − 1; 1[ define the a binary opera-
tion ⊗

a ⊗ b =
a + b

1 + ab
,

where juxtaposition means ordinary multiplication and
+ is the ordinary addition of real numbers. Prove that

➊ Prove that ⊗ is a closed binary operation on
Q∩] − 1; 1[.

➋ Prove that ⊗ is both commutative and associative.

➌ Find an element e ∈ R such that (∀a ∈ Q∩] −

1; 1[) (e ⊗ a = a).

➍ Given e as above and an arbitrary element a ∈
Q∩] − 1; 1[, solve the equation a ⊗ b = e for b.

Problem 1.3.4 On R \ {1} define the a binary operation
⊗

a ⊗ b = a + b − ab,

where juxtaposition means ordinary multiplication and
+ is the ordinary addition of real numbers. Clearly ⊗ is
a closed binary operation. Prove that

➊ Prove that ⊗ is both commutative and associative.

➋ Find an element e ∈ R \ {1} such that (∀a ∈
R \ {1}) (e ⊗ a = a).

➌ Given e as above and an arbitrary element a ∈
R \ {1}, solve the equation a ⊗ b = e for b.

Problem 1.3.5 (Putnam Exam, 1971) Let S be a set
and let ◦ be a binary operation on S satisfying the two
laws

(∀x ∈ S)(x ◦ x = x),

and

(∀(x, y, z) ∈ S3
)((x ◦ y) ◦ z = (y ◦ z) ◦ x).

Shew that ◦ is commutative.

Problem 1.3.6 Define the symmetric difference of the
sets A,B as A△B = (A \ B) ∪ (B \ A). Prove that △
is commutative and associative.

1.4 Zn

43 Theorem (Division Algorithm) Let n > 0 be an integer. Then for any integer a there exist unique integers
q (called the quotient) and r (called the remainder) such that a = qn + r and 0 ≤ r < q.

Proof: In the proof of this theorem, we use the following property of the integers, called the

well-ordering principle: any non-empty set of non-negative integers has a smallest element.

Consider the set

S = {a − bn : b ∈ Z ∧ a ≥ bn}.

Then S is a collection of nonnegative integers and S 6= ∅ as ±a − 0 · n ∈ S and this is non-

negative for one choice of sign. By the Well-Ordering Principle, S has a least element, say r.
Now, there must be some q ∈ Z such that r = a − qn since r ∈ S. By construction, r ≥ 0. Let
us prove that r < n. For assume that r ≥ n. Then r > r − n = a − qn − n = a − (q + 1)n ≥ 0,
since r− n ≥ 0. But then a− (q+ 1)n ∈ S and a− (q+ 1)n < r which contradicts the fact that

r is the smallest member of S. Thus we must have 0 ≤ r < n. To prove that r and q are unique,

assume that q1n + r1 = a = q2n + r2, 0 ≤ r1 < n, 0 ≤ r2 < n. Then r2 − r1 = n(q1 − q2), that
is, n divides (r2 − r1). But |r2 − r1| < n, whence r2 = r1. From this it also follows that q1 = q2.
This completes the proof. ❑

44 Example If n = 5 the Division Algorithm says that we can arrange all the integers in five columns as
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follows:
...

...
...

...
...

−10 −9 −8 −7 −6

−5 −4 −3 −2 −1

0 1 2 3 4

5 6 7 8 9

...
...

...
...

...

The arrangement above shews that any integer comes in one of 5 flavours: those leaving remainder 0
upon division by 5, those leaving remainder 1 upon division by 5, etc. We let

5Z = {. . . ,−15,−10,−5, 0, 5, 10, 15, . . .} = 0,

5Z+ 1 = {. . . ,−14,−9,−4, 1, 6, 11, 16, . . .} = 1,

5Z+ 2 = {. . . ,−13,−8,−3, 2, 7, 12, 17, . . .} = 2,

5Z+ 3 = {. . . ,−12,−7,−2, 3, 8, 13, 18, . . .} = 3,

5Z+ 4 = {. . . ,−11,−6,−1, 4, 9, 14, 19, . . .} = 4,

and
Z5 = {0, 1, 2, 3, 4}.

Let n be a fixed positive integer. Define the relation ≡ by x ≡ y if and only if they leave the same
remainder upon division by n. Then clearly ≡ is an equivalence relation. As such it partitions the set of
integers Z into disjoint equivalence classes by Theorem 29. This motivates the following definition.

45 Definition Let n be a positive integer. The n residue classes upon division by n are

0 = nZ, 1 = nZ+ 1, 2 = nZ+ 2, . . . , n − 1 = nZ + n − 1.

The set of residue classes modulo n is

Zn = {0, 1, . . . , n− 1}.

Our interest is now to define some sort of “addition” and some sort of “multiplication” in Zn.

46 Theorem (Addition and Multiplication Modulo n) Let n be a positive integer. For (a, b) ∈ (Zn)
2 define

a + b = r, where r is the remainder of a + b upon division by n. and a · b = t, where t is the remainder
of ab upon division by n. Then these operations are well defined.

Proof: We need to prove that given arbitrary representatives of the residue classes, we always

obtain the same result from our operations. That is, if a = a ′ and b = b ′ then we have a + b =

a ′ + b ′ and a · b = a ′ · b ′.

Now

a = a ′
=⇒ ∃(q, q ′) ∈ Z2, r ∈ N, a = qn + r, a ′ = q ′n + r, 0 ≤ r < n,

b = b
′
=⇒ ∃(q1, q

′
1) ∈ Z2, r1 ∈ N, b = q1n + r1, b ′ = q ′

1n + r1, 0 ≤ r1 < n.
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Hence

a + b = (q + q1)n + r + r1, a ′ + b ′ = (q ′ + q ′
1)n + r + r1,

meaning that both a+b and a ′+b ′ leave the same remainder upon division by n, and therefore

a + b = a + b = a ′ + b ′ = a ′ + b ′.

Similarly

ab = (qq1n + qr1 + rq1)n + rr1, a ′b ′ = (q ′q ′
1n + q ′r1 + rq ′

1)n + rr1,

and so both ab and a ′b ′ leave the same remainder upon division by n, and therefore

a · b = ab = a ′b ′ = a ′ · b ′.

This proves the theorem. ❑

47 Example Let
Z6 = {0, 1, 2, 3, 4, 5}

be the residue classes modulo 6. Construct the natural addition + table for Z6. Also, construct the
natural multiplication · table for Z6.

Solution: ◮ The required tables are given in tables 1.1 and 1.2. ◭

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Table 1.1: Addition table for Z6.

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Table 1.2: Multiplication table for Z6.

We notice that even though 2 6= 0 and 3 6= 0 we have 2 · 3 = 0 in Z6. This prompts the following
definition.

48 Definition (Zero Divisor) An element a 6= 0 of Zn is called a zero divisor if ab = 0 for some b ∈ Zn.

We will extend the concept of zero divisor later on to various algebras.

49 Example Let
Z7 = {0, 1, 2, 3, 4, 5, 6}

be the residue classes modulo 7. Construct the natural addition + table for Z7. Also, construct the
natural multiplication · table for Z7
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+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

Table 1.3: Addition table for Z7.

· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Table 1.4: Multiplication table for Z7.

Solution: ◮ The required tables are given in tables 1.3 and 1.4. ◭

50 Example Solve the equation
5x = 3

in Z11.

Solution: ◮ Multiplying by 9 on both sides

45x = 27,

that is,

x = 5.

◭

We will use the following result in the next section.

51 Definition Let a, b be integers with one of them different from 0. The greatest common divisor d of
a, b, denoted by d = gcd(a, b) is the largest positive integer that divides both a and b.

52 Theorem (Bachet-Bezout Theorem) The greatest common divisor of any two integers a, b can be writ-
ten as a linear combination of a and b, i.e., there are integers x, y with

gcd(a, b) = ax + by.

Proof: Let A = {ax+by : ax+by > 0, x, y ∈ Z}. Clearly one of ±a,±b is in A, as one of a, b is

not zero. By the Well Ordering Principle, A has a smallest element, say d. Therefore, there are

x0, y0 such that d = ax0 + by0. We prove that d = gcd(a, b). To do this we prove that d divides

a and b and that if t divides a and b, then t must also divide then d.

We first prove that d divides a. By the Division Algorithm, we can find integers q, r, 0 ≤ r < d
such that a = dq + r. Then

r = a − dq = a(1 − qx0) − by0.
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If r > 0, then r ∈ A is smaller than the smaller element of A, namely d, a contradiction. Thus

r = 0. This entails dq = a, i.e. d divides a. We can similarly prove that d divides b.

Assume that t divides a and b. Then a = tm, b = tn for integers m, n. Hence d = ax0 + bx0 =

t(mx0 + ny0), that is, t divides d. The theorem is thus proved. ❑

Homework

Problem 1.4.1 Write the addition and multiplication ta-
bles of Z11 under natural addition and multiplication
modulo 11.

Problem 1.4.2 Solve the equation 3x2 − 5x + 1 = 0 in
Z11.

Problem 1.4.3 Solve the equation

5x2
= 3

in Z11.

Problem 1.4.4 Prove that if n > 0 is a composite integer,
Zn has zero divisors.

Problem 1.4.5 How many solutions does the equation
x4 + x3 + x2 + x + 1 = 0 have in Z11?

1.5 Fields

53 Definition Let F be a set having at least two elements 0F and 1F (0F 6= 1F) together with two operations
· (multiplication, which we usually represent via juxtaposition) and + (addition). A field 〈F, ·,+〉 is a
triplet satisfying the following axioms ∀(a, b, c) ∈ F3:

F1 Addition and multiplication are associative:

(a + b) + c = a + (b + c), (ab)c = a(bc) (1.9)

F2 Addition and multiplication are commutative:

a + b = b + a, ab = ba (1.10)

F3 The multiplicative operation distributes over addition:

a(b + c) = ab + ac (1.11)

F4 0F is the additive identity:
0F + a = a + 0F = a (1.12)

F5 1F is the multiplicative identity:
1Fa = a1F = a (1.13)

F6 Every element has an additive inverse:

∃ − a ∈ F, a + (−a) = (−a) + a = 0F (1.14)

F7 Every non-zero element has a multiplicative inverse: if a 6= 0F

∃a−1 ∈ F, aa−1 = a−1a = 1F (1.15)

The elements of a field are called scalars.

An important property of fields is the following.

54 Theorem A field does not have zero divisors.
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Proof: Assume that ab = 0F. If a 6= 0F then it has a multiplicative inverse a−1. We deduce

a−1ab = a−10F =⇒ b = 0F.

This means that the only way of obtaining a zero product is if one of the factors is 0F. ❑

55 Example 〈Q, ·,+〉, 〈R, ·,+〉, and 〈C, ·,+〉 are all fields. The multiplicative identity in each case is 1
and the additive identity is 0.

56 Example Let

Q(
√
2) = {a +

√
2b : (a, b) ∈ Q2}

and define addition on this set as

(a +
√
2b) + (c +

√
2d) = (a + c) +

√
2(b + d),

and multiplication as

(a +
√
2b)(c +

√
2d) = (ac + 2bd) +

√
2(ad + bc).

Then 〈Q+
√
2Q, ,+〉 is a field. Observe 0F = 0, 1F = 1, that the additive inverse of a+

√
2b is −a−

√
2b,

and the multiplicative inverse of a +
√
2b, (a, b) 6= (0, 0) is

(a +
√
2b)−1 =

1

a +
√
2b

=
a −

√
2b

a2 − 2b2
=

a

a2 − 2b2
−

√
2b

a2 − 2b2
.

Here a2 − 2b2 6= 0 since
√
2 is irrational.

57 Theorem If p is a prime, 〈Zp, ·,+〉 is a field under · multiplication modulo p and + addition modulo
p.

Proof: Clearly the additive identity is 0 and the multiplicative identity is 1. The additive

inverse of a is p − a. We must prove that every a ∈ Zp \ {0} has a multiplicative inverse. Such

an a satisfies gcd(a, p) = 1 and by the Bachet-Bezout Theorem 52, there exist integers x, y with

px+ ay = 1. In such case we have

1 = px + ay = ay = a · y,

whence (a)−1 = y. ❑

58 Definition A field is said to be of characteristic p 6= 0 if for some positive integer p we have ∀a ∈ F, pa =
0F, and no positive integer smaller than p enjoys this property.

If the field does not have characteristic p 6= 0 then we say that it is of characteristic 0. Clearly Q,R and
C are of characteristic 0, while Zp for prime p, is of characteristic p.

59 Theorem The characteristic of a field is either 0 or a prime.

Proof: If the characteristic of the field is 0, there is nothing to prove. Let p be the least positive

integer for which ∀a ∈ F, pa = 0F. Let us prove that p must be a prime. Assume that instead we

had p = st with integers s > 1, t > 1. Take a = 1F. Then we must have (st)1F = 0F, which entails

(s1F)(t1F) = 0F. But in a field there are no zero-divisors by Theorem 54, hence either s1F = 0F or

t1F = 0F. But either of these equalities contradicts the minimality of p. Hence p is a prime. ❑
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Homework

Problem 1.5.1 Consider the set of numbers

Q(
√
2,

√
3,

√
6) = {a + b

√
2 + c

√
3 + d

√
6 : (a, b, c, d) ∈ Q4

}.

Assume that Q(
√
2,

√
3,

√
6) is a field under ordinary addition and multiplication. What is the multiplicative inverse

of the element
√
2 + 2

√
3 + 3

√
6?

Problem 1.5.2 Let F be a field and a, b two non-zero elements of F. Prove that

−(ab−1
) = (−a)b−1

= a(−b−1
).

Problem 1.5.3 Let F be a field and a 6= 0F. Prove that

(−a)−1
= −(a−1

).

Problem 1.5.4 Let F be a field and a, b two non-zero elements of F. Prove that

ab−1
= (−a)(−b−1

).

1.6 Functions

60 Definition By a function or a mapping from one set to another, we mean a rule or mechanism that
assigns to every input element of the first set a unique output element of the second set. We shall call
the set of inputs the domain of the function, the set of possible outputs the target set of the function,
and the set of actual outputs the image of the function.

We will generally refer to a function with the following notation:

f :
D → T

x 7→ f(x)

.

Here f is the name of the function, D is its domain, T is its target set, x is the name of a typical input
and f(x) is the output or image of x under f. We call the assignment x 7→ f(x) the assignment rule of the
function. Sometimes x is also called the independent variable. The set f(D) = {f(a)|a ∈ D} is called the
image of f. Observe that f(D) ⊆ T.

α
1 2
2 8
3 4

Figure 1.4: An injection.

β

2 2
1 4

3

Figure 1.5: Not an injection

61 Definition A function f :
X → Y

x 7→ f(x)

is said to be injective or one-to-one if ∀(a, b) ∈ X2, we have

a 6= b =⇒ f(a) 6= f(b).
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This is equivalent to saying that
f(a) = f(b) =⇒ a = b.

62 Example The function α in the diagram 1.4 is an injective function. The function β represented by
the diagram 1.5, however, is not injective, β(3) = β(1) = 4, but 3 6= 1.

63 Example Prove that

t :
R \ {1} → R \ {1}

x 7→ x + 1

x − 1

is an injection.

Solution: ◮ Assume t(a) = t(b). Then

t(a) = t(b) =⇒
a + 1

a − 1
=

b + 1

b − 1

=⇒ (a + 1)(b − 1) = (b + 1)(a − 1)

=⇒ ab − a + b − 1 = ab − b + a − 1

=⇒ 2a = 2b

=⇒ a = b

We have proved that t(a) = t(b) =⇒ a = b, which shews that t is injective. ◭

2
1

3
2
4

β

Figure 1.6: A surjection

8

γ

2 2
1 4

Figure 1.7: Not a surjection

64 Definition A function f : A → B is said to be surjective or onto if (∀b ∈ B) (∃a ∈ A) : f(a) = b. That is,
each element of B has a pre-image in A.

☞A function is surjective if its image coincides with its target set. It is easy to see that a

graphical criterion for a function to be surjective is that every horizontal line passing through a

point of the target set (a subset of the y-axis) of the function must also meet the curve.

65 Example The function β represented by diagram 1.6 is surjective. The function γ represented by
diagram 1.7 is not surjective as 8 does not have a preimage.

66 Example Prove that t :
R → R

x 7→ x3
is a surjection.
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Solution: ◮ Since the graph of t is that of a cubic polynomial with only one zero, every horizontal

line passing through a point in R will eventually meet the graph of g, whence t is surjective. To

prove this analytically, proceed as follows. We must prove that (∀ b ∈ R) (∃a) such that

t(a) = b. We choose a so that a = b1/3. Then

t(a) = t(b1/3) = (b1/3)3 = b.

Our choice of a works and hence the function is surjective. ◭

67 Definition A function is bijective if it is both injective and surjective.

Homework

Problem 1.6.1 Prove that

h :
R → R

x 7→ x3

is an injection.

Problem 1.6.2 Shew that

f :
R \

{
3

2

}
→ R \ {3}

x 7→ 6x

2x − 3

is a bijection.



Chapter 2
Matrices and Matrix Operations

2.1 The Algebra of Matrices

68 Definition Let 〈F, ·,+〉 be a field. An m×n (m by n) matrix A with m rows and n columns with entries
over F is a rectangular array of the form

A =

























a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

am1 am2 · · · amn

























,

where ∀(i, j) ∈ {1, 2, . . . , m} × {1, 2, . . . , n}, aij ∈ F.

☞ As a shortcut, we often use the notation A = [aij] to denote the matrix A with entries aij.

Notice that when we refer to the matrix we put parentheses—as in “[aij],” and when we refer to

a specific entry we do not use the surrounding parentheses—as in “aij.”

69 Example

A =









0 −1 1

1 2 3









is a 2 × 3 matrix and

B =

















−2 1

1 2

0 3

















is a 3 × 2 matrix.

70 Example Write out explicitly the 4 × 4 matrix A = [aij] where aij = i2 − j2.

18
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Solution: ◮ This is

A =

























12 − 11 12 − 22 12 − 32 12 − 42

22 − 12 22 − 22 22 − 32 22 − 42

32 − 12 32 − 22 32 − 32 32 − 42

42 − 12 42 − 22 42 − 32 42 − 42

























=

























0 −3 −8 −15

3 0 −5 −12

8 5 0 −7

15 12 7 0

























.

◭

71 Definition Let 〈F, ·,+〉 be a field. We denote by Mm×n(F) the set of all m × n matrices with entries
over F. Mn×n(F) is, in particular, the set of all square matrices of size n with entries over F.

72 Definition The m × n zero matrix 0m×n ∈ Mm×n(F) is the matrix with 0F’s everywhere,

0m×n =



































0F 0F 0F · · · 0F

0F 0F 0F · · · 0F

0F 0F 0F · · · 0F

...
...

... · · ·
...

0F 0F 0F · · · 0F



































.

When m = n we write 0n as a shortcut for 0n×n.

73 Definition The n × n identity matrix In ∈ Mn×n(F) is the matrix with 1F’s on the main diagonal and
0F’s everywhere else,

In =



































1F 0F 0F · · · 0F

0F 1F 0F · · · 0F

0F 0F 1F · · · 0F

...
...

... · · ·
...

0F 0F 0F · · · 1F



































.

74 Definition (Matrix Addition and Multiplication of a Matrix by a Scalar) Let A = [aij] ∈ Mm×n(F), B =
[bij] ∈ Mm×n(F) and α ∈ F. The matrix A + αB is the matrix C ∈ Mm×n(F) with entries C = [cij] where
cij = aij + αbij.
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75 Example For A =

















1 1

−1 1

0 2

















and B =

















−1 1

2 1

0 −1

















we have

A + 2B =

















−1 3

3 3

0 0.

















.

76 Theorem Let (A,B, C) ∈ (Mm×n(F))3 and (α, β) ∈ F2. Then

M1 Mm×n(F) is close under matrix addition and scalar multiplication

A + B ∈ Mm×n(F), αA ∈ Mm×n(F) (2.1)

M2 Addition of matrices is commutative
A + B = B + A (2.2)

M3 Addition of matrices is associative

A + (B+ C) = (A + B) + C (2.3)

M4 There is a matrix 0m×n such that
A + 0m×n (2.4)

M5 There is a matrix −A such that

A + (−A) = (−A) + A = 0m×n (2.5)

M6 Distributive law
α(A + B) = αA + αB (2.6)

M7 Distributive law
(α + β)A = αA + βB (2.7)

M8
1FA = A (2.8)

M9
α(βA) = (αβ)A (2.9)

Proof: The theorem follows at once by reducing each statement to an entry-wise and appealing

to the field axioms. ❑

Homework

Problem 2.1.1 Write out explicitly the 3 × 3 matrix A = [aij] where aij = ij.

Problem 2.1.2 Write out explicitly the 3 × 3 matrix A = [aij] where aij = ij.
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Problem 2.1.3 Let

M =

















a −2a c

0 −a b

a + b 0 −1

















, N =

















1 2a c

a b − a −b

a − b 0 −1

















be square matrices with entries over R. Find M + N and 2M.

Problem 2.1.4 Determine x and y such that









3 x 1

1 2 0









+ 2









2 1 3

5 x 4









=









7 3 7

11 y 8









.

Problem 2.1.5 Determine 2 × 2 matrices A and B such that

2A − 5B =









1 −2

0 1









, −2A + 6B =









4 2

6 0









.

Problem 2.1.6 Let A = [aij] ∈ Mn×n(R). Prove that

min
j

max
i

aij ≥ max
i

min
j

aij.

Problem 2.1.7 A person goes along the rows of a movie theater and asks the tallest person of each row to stand
up. Then he selects the shortest of these people, who we will call the shortest giant. Another person goes along the
rows and asks the shortest person to stand up and from these he selects the tallest, which we will call the tallest

midget. Who is taller, the tallest midget or the shortest giant?

Problem 2.1.8 (Putnam Exam, 1959) Choose five elements from the matrix



































11 17 25 19 16

24 10 13 15 3

12 5 14 2 18

23 4 1 8 22

6 20 7 21 9



































,

no two coming from the same row or column, so that the minimum of these five elements is as large as possible.
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2.2 Matrix Multiplication

77 Definition Let A = [aij] ∈ Mm×n(F) and B = [bij] ∈ Mn×p(F). Then the matrix product AB is defined
as the matrix C = [cij] ∈ Mm×p(F) with entries cij =

∑n
l=1 ailblj:











































a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

ai1 ai2 · · · ain

...
... · · ·

...

am1 am2 · · · amn



































































b11 · · · b1j · · · b1p

b21 · · · b2j · · · b2p

... · · ·
... · · ·

...

bn1 · · · bnj · · · bnp

























=











































c11 · · · c1p

c21 · · · c2p

... · · ·
...

· · · cij · · ·
... · · ·

...

cm1 · · · cmp











































.

☞ Observe that we use juxtaposition rather than a special symbol to denote matrix multipli-

cation. This will simplify notation.In order to obtain the ij-th entry of the matrix AB we multiply

elementwise the i-th row of A by the j-th column of B. Observe that AB is a m × p matrix.

78 Example Let M =









1 2

3 4









and N =









5 6

7 8









be matrices over R. Then

MN =









1 2

3 4

















5 6

7 8









=









1 · 5 + 2 · 7 1 · 6 + 2 · 8

3 · 5 + 4 · 7 3 · 6 + 4 · 8









=









19 22

43 50









,

and

NM =









5 6

7 8

















1 2

3 4









=









5 · 1 + 6 · 3 5 · 2 + 6 · 4

7 · 1 + 8 · 3 7 · 2 + 8 · 4









=









23 34

31 46









.

Hence, in particular, matrix multiplication is not necessarily commutative.

79 Example We have
















1 1 1

1 1 1

1 1 1



































2 −1 −1

−1 2 −1

−1 −1 2



















=



















0 0 0

0 0 0

0 0 0



















,

over R. Observe then that the product of two non-zero matrices may be the zero matrix.

80 Example Consider the matrix

A =

















2 1 3

0 1 1

4 4 0
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with entries over Z5. Then

A2 =

















2 1 3

0 1 1

4 4 0

































2 1 3

0 1 1

4 4 0

















=

















1 0 2

4 0 1

3 3 1

















.

☞ Even though matrix multiplication is not necessarily commutative, it is associative.

81 Theorem If (A, B,C) ∈ Mm×n(F) × Mn×r(F) × Mr×s(F) we have

(AB)C = A(BC),

i.e., matrix multiplication is associative.

Proof: To shew this we only need to consider the ij-th entry of each side, appeal to the

associativity of the underlying field F and verify that both sides are indeed equal to

n∑

k=1

r∑

k ′=1

aikbkk ′ck ′j.

❑

☞ By virtue of associativity, a square matrix commutes with its powers, that is, if A ∈
Mn×n(F), and (r, s) ∈ N2, then (Ar)(As) = (As)(Ar) = Ar+s.

82 Example Let A ∈ M3×3(R) be given by

A =

















1 1 1

1 1 1

1 1 1

















.

Demonstrate, using induction, that An = 3n−1A for n ∈ N, n ≥ 1.

Solution: ◮ The assertion is trivial for n = 1. Assume its truth for n − 1, that is, assume

An−1 = 3n−2A. Observe that

A2 =

















1 1 1

1 1 1

1 1 1

































1 1 1

1 1 1

1 1 1

















=

















3 3 3

3 3 3

3 3 3

















= 3A.

Now

An = AAn−1 = A(3n−2A) = 3n−2A2 = 3n−23A = 3n−1A,

and so the assertion is proved by induction. ◭
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83 Theorem Let A ∈ Mn×n(F). Then there is a unique identity matrix. That is, if E ∈ Mn×n(F) is such
that AE = EA = A, then E = In.

Proof: It is clear that for any A ∈ Mn×n(F), AIn = InA = A. Now because E is an identity,

EIn = In. Because In is an identity, EIn = E. Whence

In = EIn = E,

demonstrating uniqueness. ❑

84 Example Let A = [aij] ∈ Mn×n(R) be such that aij = 0 for i > j and aij = 1 if i ≤ j. Find A2.

Solution: ◮ Let A2 = B = [bij]. Then

bij =

n∑

k=1

aikakj.

Observe that the i-th row of A has i − 1 0’s followed by n − i + 1 1’s, and the j-th column of A
has j 1’s followed by n − j 0’s. Therefore if i− 1 > j, then bij = 0. If i ≤ j + 1, then

bij =

j∑

k=i

aikakj = j − i + 1.

This means that

A2 =











































1 2 3 4 · · · n − 1 n

0 1 2 3 · · · n − 2 n − 1

0 0 1 2 · · · n − 3 n − 2

...
...

...
... · · ·

...
...

0 0 0 0 · · · 1 2

0 0 0 0 · · · 0 1











































.

◭

Homework

Problem 2.2.1 Determine the product








1 −1

1 1

















−2 1

0 −1

















1 1

1 2









.

Problem 2.2.2 Let A =

















1 0 0

1 1 0

1 1 1

















, B =

















a b c

c a b

b c a

















. Find AB and BA.
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Problem 2.2.3 Find a + b + c if

















1 2 3

2 3 1

3 1 2

































1 1 1

2 2 2

3 3 3

















=

















a a a

b b b

c c c

















.

Problem 2.2.4 Let N =



























0 −2 −3 −4

0 0 −2 −3

0 0 0 −2

0 0 0 0



























. Find N2008.

Problem 2.2.5 Let

A =



























2 3 4 1

1 2 3 4

4 1 2 3

3 4 1 2



























, B =



























1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1



























be matrices in M4×4(Z5) . Find the products AB and BA.

Problem 2.2.6 Let x be a real number, and put

m(x) =

















1 0 x

−x 1 −
x2

2

0 0 1

















.

If a, b are real numbers, prove that

1. m(a)m(b) = m(a + b).

2. m(a)m(−a) = I3, the 3 × 3 identity matrix.

Problem 2.2.7 A square matrix X is called idempotent if X2 = X. Prove that if AB = A and BA = B then A and B are
idempotent.

Problem 2.2.8 Let

A =

















0
1

2
0

1

2
0 0

0 0
1

2

















.

Calculate the value of the infinite series
I3 + A + A2

+ A3
+ · · · .

Problem 2.2.9 Solve the equation








−4 x

−x 4









2

=









−1 0

0 −1
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over R.

Problem 2.2.10 Prove or disprove! If (A, B) ∈ (Mn×n(F))2 are such that AB = 0n, then also BA = 0n.

Problem 2.2.11 Prove or disprove! For all matrices (A, B) ∈ (Mn×n(F))2,

(A + B)(A − B) = A2
− B2.

Problem 2.2.12 Consider the matrix A =









1 2

3 x









, where x is a real number. Find the value of x such that there are

non-zero 2 × 2 matrices B such that AB =









0 0

0 0









.

Problem 2.2.13 Prove, using mathematical induction, that









1 1

0 1









n

=









1 n

0 1









.

Problem 2.2.14 Let M =









1 −1

−1 1









. Find M6.

Problem 2.2.15 Let A =









0 3

2 0









. Find, with proof, A2003.

Problem 2.2.16 Let (A,B, C) ∈ Ml×m(F) × Mm×n(F) × Mm×n(F) and α ∈ F. Prove that

A(B + C) = AB + AC,

(A + B)C = AC + BC,

α(AB) = (αA)B = A(αB).

Problem 2.2.17 Let A ∈ M2×2(R) be given by

A =









cosα − sinα

sinα cosα









.

Demonstrate, using induction, that for n ∈ N, n ≥ 1.

An
=









cos nα − sinnα

sin nα cos nα









.

Problem 2.2.18 A matrix A = [aij] ∈ Mn×n(R) is said to be checkered if aij = 0 when (j − i) is odd. Prove that the
sum and the product of two checkered matrices is checkered.
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Problem 2.2.19 Let A ∈ M3×3(R),

A =

















1 1 1

0 1 1

0 0 1

















.

Prove that

An
=

















1 n n(n+1)

2

0 1 n

0 0 1

















.

Problem 2.2.20 Let (A, B) ∈ (Mn×n(F))2 and k be a positive integer such that Ak = 0n. If AB = B prove that
B = 0n.

Problem 2.2.21 Let A =









a b

c d









. Demonstrate that

A2
− (a + d)A + (ad − bc)I2 = 02

.

Problem 2.2.22 Let A ∈ M2(F) and let k ∈ Z, k > 2. Prove that Ak = 02 if and only if A2 = 02.

Problem 2.2.23 Find all matrices A ∈ M2×2(R) such that A2 = 02

Problem 2.2.24 Find all matrices A ∈ M2×2(R) such that A2 = I2

Problem 2.2.25 Find a solution X ∈ M2×2(R) for

X2
− 2X =









−1 0

6 3









.

Problem 2.2.26 Find, with proof, a 4 × 4 non-zero matrix A such that

A



























1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1



























=



























1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1



























A =



























0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



























.

Problem 2.2.27 Let X be a 2 × 2 matrices with real number entries. Solve the equation

X2
+ X =









1 1

1 1









.
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Problem 2.2.28 Prove, by means of induction that for the following n × n we have



































1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1

...
...

... · · ·
...

0 0 0 · · · 1



































3

=



































1 3 6 · · · n(n+1)

2

0 1 3 · · · (n−1)n

2

0 0 1 · · · (n−2)(n−1)

2

...
... · · · · · ·

...

0 0 0 · · · 1



































.

Problem 2.2.29 Let

A =

















1 −1 −1

−1 1 −1

−1 −1 1

















.

Conjecture a formula for An and prove it using induction.

2.3 Trace and Transpose

85 Definition Let A = [aij] ∈ Mn×n(F). Then the trace of A, denoted by tr (A) is the sum of the diagonal
elements of A, that is

tr (A) =

n∑

k=1

akk.

86 Theorem Let A = [aij] ∈ Mn×n(F), B = [bij] ∈ Mn×n(F). Then

tr (A + B) = tr (A) + tr (B) , (2.10)

tr (AB) = tr (BA) . (2.11)

Proof: The first assertion is trivial. To prove the second, observe that AB = (
∑n

k=1 aikbkj) and

BA = (
∑n

k=1 bikakj). Then

tr (AB) =

n∑

i=1

n∑

k=1

aikbki =

n∑

k=1

n∑

i=1

bkiaik = tr (BA) ,

whence the theorem follows. ❑

87 Example Let A ∈ Mn×n(R). Shew that A can be written as the sum of two matrices whose trace is
different from 0.

Solution: ◮ Write

A = (A − αIn) + αIn.

Now, tr (A − αIn) = tr (A) − nα and tr (αIn) = nα. Thus it suffices to take α 6= tr (A)

n
, α 6= 0.

Since R has infinitely many elements, we can find such an α.

◭
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88 Example Let A,B be square matrices of the same size and over the same field of characteristic 0. Is
it possible that AB− BA = In? Prove or disprove!

Solution: ◮ This is impossible. For if, taking traces on both sides

0 = tr (AB) − tr (BA) = tr (AB− BA) = tr (In) = n

a contradiction, since n > 0. ◭

89 Definition The transpose of a matrix of a matrix A = [aij] ∈ Mm×n(F) is the matrix AT = B = [bij] ∈
Mn×m(F), where bij = aji.

90 Example If

M =

















a b c

d e f

g h i

















,

with entries in R, then

MT =

















a d g

b e h

c f i

















.

91 Theorem Let

A = [aij] ∈ Mm×n(F), B = [bij] ∈ Mm×n(F), C = [cij] ∈ Mn×r(F), α ∈ F, u ∈ N.

Then
ATT = A, (2.12)

(A + αB)T = AT + αBT , (2.13)

(AC)T = CTAT , (2.14)

(Au)T = (AT )u. (2.15)

Proof: The first two assertions are obvious, and the fourth follows from the third by using

induction. To prove the third put AT = (αij), αij = aji, C
T = (γij), γij = cji, AC = (uij) and

CTAT = (vij). Then

uij =

n∑

k=1

aikckj =

n∑

k=1

αkiγjk =

n∑

k=1

γjkαki = vji,

whence the theorem follows. ❑

92 Definition A square matrix A ∈ Mn×n(F) is symmetric if AT = A. A matrix B ∈ Mn×n(F) is skew-

symmetric if BT = −B.

93 Example Let A,B be square matrices of the same size, with A symmetric and B skew-symmetric.
Prove that the matrix A2BA2 is skew-symmetric.

Solution: ◮ We have

(A2BA2)T = (A2)T (B)T (A2)T = A2(−B)A2 = −A2BA2.

◭
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94 Theorem Let F be a field of characteristic different from 2. Then any square matrix A can be written
as the sum of a symmetric and a skew-symmetric matrix.

Proof: Observe that

(A + AT )T = AT + ATT = AT + A,

and so A + AT is symmetric. Also,

(A − AT )T = AT − ATT = −(A − AT ),

and so A − AT is skew-symmetric. We only need to write A as

A = (2−1)(A + AT ) + (2−1)(A − AT )

to prove the assertion. ❑

95 Example Find, with proof, a square matrix A with entries in Z2 such A is not the sum of a symmetric
and and anti-symmetric matrix.

Solution: ◮ In Z2 every symmetric matrix is also anti-symmetric, since−x = x. Thus it is enough

to take a non-symmetric matrix, for example, take A =









0 1

0 0









. ◭

Homework

Problem 2.3.1 Write

A =

















1 2 3

2 3 1

3 1 2

















∈ M3×3(R)

as the sum of two 3×3 matrices E1,E2, with tr (E2) = 10.

Problem 2.3.2 Give an example of two matrices A ∈
M2×2(R) and B ∈ M2×2(R) that simultaneously satisfy
the following properties:

1. A 6=









0 0

0 0









and B 6=









0 0

0 0









.

2. AB =









0 0

0 0









and BA =









0 0

0 0









.

3. tr (A) = tr (B) = 2.

4. A = AT and B = BT .

Problem 2.3.3 Shew that there are no matrices
(A, B, C,D) ∈ (Mn×n(R))4 such that

AC + DB = In,

CA + BD = 0n.

Problem 2.3.4 Let (A, B) ∈ (M2×2(R))2 be symmetric
matrices. Must their product AB be symmetric? Prove
or disprove!

Problem 2.3.5 Given square matrices (A, B) ∈
(M7×7(R))2 such that tr

(

A2
)

= tr
(

B2
)

= 1, and

(A − B)2 = 3I7,

find tr (BA).

Problem 2.3.6 Consider the matrix A =









a b

c d









∈

M2×2(R). Find necessary and sufficient conditions on
a, b, c, d so that tr

(

A2
)

= (tr (A))2.

Problem 2.3.7 Given a square matrix A ∈ M4×4(R)
such that tr

(

A2
)

= −4, and

(A − I4)
2
= 3I4,

find tr (A).

Problem 2.3.8 Prove or disprove! If A, B are square
matrices of the same size, then it is always true that
tr (AB) = tr (A) tr (B).

Problem 2.3.9 Prove or disprove! If (A, B, C) ∈
(M3×3(F))3 then tr (ABC) = tr (BAC).
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Problem 2.3.10 Let A be a square matrix. Prove that
the matrix AAT is symmetric.

Problem 2.3.11 Let A,B be square matrices of the same
size, with A symmetric and B skew-symmetric. Prove
that the matrix AB − BA is symmetric.

Problem 2.3.12 Let A ∈ Mn×n(F), A = [aij]. Prove that

tr
(

AAT
)

=
∑n

i=1

∑n
j=1 a

2
ij.

Problem 2.3.13 Let X ∈ Mn×n(R). Prove that if XXT =

0n then X = 0n.

Problem 2.3.14 Let m, n, p be positive integers and A ∈
Mm×n(R), B ∈ Mn×p(R), C ∈ Mp×m(R). Prove that
(BA)TA = (CA)TA =⇒ BA = CA.

2.4 Special Matrices

96 Definition The main diagonal of a square matrix A = [aij] ∈ Mn×n(F) is the set {aii : i ≤ n}. The
counter diagonal of a square matrix A = [aij] ∈ Mn×n(F) is the set {a(n−i+1)i : i ≤ n}.

97 Example The main diagonal of the matrix

A =

















0 1 5

3 2 4

9 8 7

















is the set {0, 2, 7}. The counter diagonal of A is the set {5, 2, 9}.

98 Definition A square matrix is a diagonal matrix if every entry off its main diagonal is 0F.

99 Example The matrix

A =

















1 0 0

0 2 0

0 0 3

















is a diagonal matrix.

100 Definition A square matrix is a scalar matrix if it is of the form αIn for some scalar α.

101 Example The matrix

A =

















4 0 0

0 4 0

0 0 4

















= 4I3

is a scalar matrix.

102 Definition A ∈ Mm×n(F) is said to be upper triangular if

(∀(i, j) ∈ {1, 2, · · · , n}2), (i > j, aij = 0F),

that is, every element below the main diagonal is 0F. Similarly, A is lower triangular if

(∀(i, j) ∈ {1, 2, · · · , n}2), (i < j, aij = 0F),

that is, every element above the main diagonal is 0F.
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103 Example The matrix A ∈ M3×4(R) shewn is upper triangular and B ∈ M4×4(R) is lower triangular.

A =

















1 a b c

0 2 3 0

0 0 0 1

















B =

























1 0 0 0

1 a 0 0

0 2 3 0

1 1 t 1

























104 Definition The Kronecker delta δij is defined by

δij =






1F if i = j

0F if i 6= j

105 Definition The set of matrices Eij ∈ Mm×n(F),Eij = (ers) such that eij = 1F and ei ′j ′ = 0F, (i
′, j ′) 6=

(i, j) is called the set of elementary matrices. Observe that in fact ers = δirδsj.

Elementary matrices have interesting effects when we pre-multiply and post-multiply a matrix by them.

106 Example Let

A =

















1 2 3 4

5 6 7 8

9 10 11 12

















, E23 =

























0 0 0

0 0 1

0 0 0

0 0 0

























.

Then

E23A =

















0 0 0 0

9 10 11 12

0 0 0 0

















, AE23 =

















0 0 2

0 0 6

0 0 10

















.

107 Theorem (Multiplication by Elementary Matrices) Let Eij ∈ Mm×n(F) be an elementary matrix, and
let A ∈ Mn×m(F). Then EijA has as its i-th row the j-th row of A and 0F’s everywhere else. Similarly,
AEij has as its j-th column the i-th column of A and 0F’s everywhere else.

Proof: Put (αuv) = EijA. To obtain EijA we multiply the rows of Eij by the columns of A. Now

αuv =

n∑

k=1

eukakv =

n∑

k=1

δuiδkjakv = δuiajv.

Therefore, for u 6= i, αuv = 0F, i.e., off of the i-th row the entries of EijA are 0F, and αiv = αjv,

that is, the i-th row of EijA is the j-th row of A. The case for AEij is similarly argued.❑

The following corollary is immediate.
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108 Corollary Let (Eij,Ekl) ∈ (Mn×n(F))2, be square elementary matrices. Then

EijEkl = δjkEil.

109 Example Let M ∈ Mn×n(F) be a matrix such that AM = MA for all matrices A ∈ Mn×n(F).
Demonstrate that M = aIn for some a ∈ F, i.e. M is a scalar matrix.

Solution: ◮ Assume (s, t) ∈ {1, 2, . . . , n}2. Let M = (mij) and Est ∈ Mn×n(F). Since M
commutes with Est we have



































0 0 . . . 0

...
... . . .

...

mt1 mt2 . . . mtn

...
... . . .

...

0 0 . . . 0



































= EstM = MEst =



































0 0 . . . m1s . . . 0

0 0
... m2s

... 0

...
...

...
...

...
...

0 0
... m(n−1)s

... 0

0 0
... mns

... 0



































For arbitrary s 6= t we have shown that mst = mts = 0, and that mss = mtt. Thus the entries off

the main diagonal are zero and the diagonal entries are all equal to one another, whence M is a

scalar matrix. ◭

110 Definition Let λ ∈ F and Eij ∈ Mn×n(F). A square matrix in Mn×n(F) of the form In + λEij is called
a transvection.

111 Example The matrix

T = I3 + 4E13 =

















1 0 4

0 1 0

0 0 1

















is a transvection. Observe that if

A =

















1 1 1

5 6 7

1 2 3

















then

TA =

















1 0 4

0 1 0

0 0 1

































1 1 1

5 6 7

1 2 3

















=

















5 9 13

5 6 7

1 2 3

















,

that is, pre-multiplication by T adds 4 times the third row of A to the first row of A. Similarly,

AT =

















1 1 1

5 6 7

1 2 3

































1 0 4

0 1 0

0 0 1

















=

















1 1 5

5 6 27

1 2 7

















,
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that is, post-multiplication by T adds 4 times the first column of A to the third row of A.

In general, we have the following theorem.

112 Theorem (Multiplication by a Transvection Matrix) Let In + λEij ∈ Mn×n(F) be a transvection and let
A ∈ Mn×m(F). Then (In + λEij)A adds the j-th row of A to its i-th row and leaves the other rows
unchanged. Similarly, if B ∈ Mp×n(F), B(In + λEij) adds the i-th column of B to the j-th column and
leaves the other columns unchanged.

Proof: Simply observe that (In +λEij)A = A+λEijA and A(In +λEij) = A+λAEij and apply

Theorem 107. ❑

Observe that the particular transvection In + (λ − 1F)Eii ∈ Mn×n(F) consists of a diagonal matrix with
1F’s everywhere on the diagonal, except on the ii-th position, where it has a λ.

113 Definition If λ 6= 0F, we call the matrix In + (λ− 1F)Eii a dilatation matrix.

114 Example The matrix

S = I3 + (4 − 1)E11 =

















4 0 0

0 1 0

0 0 1

















is a dilatation matrix. Observe that if

A =

















1 1 1

5 6 7

1 2 3

















then

SA =

















4 0 0

0 1 0

0 0 1

































1 1 1

5 6 7

1 2 3

















=

















4 4 4

5 6 7

1 2 3

















,

that is, pre-multiplication by S multiplies by 4 the first row of A. Similarly,

AS =

















1 1 1

5 6 7

1 2 3

































4 0 0

0 1 0

0 0 1

















=

















4 1 1

20 6 7

4 2 3

















,

that is, post-multiplication by S multiplies by 4 the first column of A.

115 Theorem (Multiplication by a Dilatation Matrix) Pre-multiplication of
the matrixA ∈ Mn×m(F) by the dilatation matrix In + (λ − 1F)Eii ∈ Mn×n(F) multiplies the i-th row of
A by λ and leaves the other rows of A unchanged. Similarly, if B ∈ Mp×n(F) post-multiplication of B by
In + (λ − 1F)Eii multiplies the i-th column of B by λ and leaves the other columns of B unchanged.
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Proof: This follows by direct application of Theorem 112. ❑

116 Definition We write Iijn for the matrix which permutes the i-th row with the j-th row of the identity
matrix. We call Iijn a transposition matrix.

117 Example We have

I(23)4 =

























1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

























.

If

A =

























1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

























,

then

I(23)4 A =

























1 2 3 4

9 10 11 12

5 6 7 8

13 14 15 16

























,

and

AI(23)4 =

























1 3 2 4

5 7 6 8

9 11 10 12

13 15 14 16

























.

118 Theorem (Multiplication by a Transposition Matrix) If A ∈ Mn×m(F), then IijnA is the matrix obtained
from A permuting the the i-th row with the j-th row of A. Similarly, if B ∈ Mp×n(F), then BIijn is the
matrix obtained from B by permuting the i-th column with the j-th column of B.

Proof: We must prove that IijnA exchanges the i-th and j-th rows but leaves the other rows

unchanged. But this follows upon observing that

Iijn = In + Eij + Eji − Eii − Ejj

and appealing to Theorem 107.

❑



36 Chapter 2

119 Definition A square matrix which is either a transvection matrix, a dilatation matrix or a transposi-
tion matrix is called an elimination matrix.

☞ In a very loose way, we may associate pre-multiplication of a matrix A by another matrix

with an operation on the rows of A, and post-multiplication of a matrix A by another with an

operation on the columns of A.

Homework

Problem 2.4.1 Consider the matrices

A =



























1 0 1 0

0 1 0 1

−1 1 1 1

1 −1 1 1



























, B =



























4 −2 4 2

0 1 0 1

1 1 −1 1

1 −1 1 1



























.

Find a specific dilatation matrix D, a specific transposi-
tion matrix P, and a specific transvection matrix T such
that B = TDAP.

Problem 2.4.2 The matrix

A =

















a b c

d e f

g h i

















is transformed into the matrix

B =

















h − g g i

e − d d f

2b − 2a 2a 2c

















by a series of row and column operations. Find explicit
permutation matrices P, P ′, an explicit dilatation matrix
D, and an explicit transvection matrix T such that

B = DPAP ′T.

Problem 2.4.3 Let A ∈ Mn×n(F). Prove that if

(∀X ∈ Mn×n(F)), (tr (AX) = tr (BX)),

then A = B.

Problem 2.4.4 Let A ∈ Mn×n(R) be such that

(∀X ∈ Mn×n(R)), ((XA)
2
= 0n).

Prove that A = 0n.

2.5 Matrix Inversion

120 Definition Let A ∈ Mm×n(F). Then A is said to be left-invertible if ∃L ∈ Mn×m(F) such that LA = In.
A is said to be right-invertible if ∃R ∈ Mn×m(F) such that AR = Im. A matrix is said to be invertible if it
possesses a right and a left inverse. A matrix which is not invertible is said to be singular.

121 Example The matrix A ∈ M2×3(R)

A =









1 0 0

0 1 0









has infinitely many right-inverses of the form

R(x,y) =

















1 0

0 1

x y

















.
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For









1 0 0

0 1 0

























1 0

0 1

x y

















=









1 0

0 1









,

regardless of the values of x and y. Observe, however, that A does not have a left inverse, for
















a b

c d

f g

























1 0 0

0 1 0









=

















a b 0

c d 0

f g 0

















,

which will never give I3 regardless of the values of a, b, c, d, f, g.

122 Example If λ 6= 0, then the scalar matrix λIn is invertible, for

(λIn)
(

λ−1In
)

= In =
(

λ−1In
)

(λIn) .

123 Example The zero matrix 0n is singular.

124 Theorem Let A ∈ Mn×n(F) a square matrix possessing a left inverse L and a right inverse R. Then
L = R. Thus an invertible square matrix possesses a unique inverse.

Proof: Observe that we have LA = In = AR. Then

L = LIn = L(AR) = (LA)R = InR = R.

❑

125 Definition The subset of Mn×n(F) of all invertible n × n matrices is denoted by GLn(F), read “the
linear group of rank n over F.”

126 Corollary Let (A, B) ∈ (GLn(F))2. Then AB is also invertible and

(AB)−1 = B−1A−1.

Proof: Since AB is a square matrix, it suffices to notice that

B−1A−1(AB) = (AB)B−1A−1 = In

and that since the inverse of a square matrix is unique, we must have B−1A−1 = (AB)−1. ❑

127 Corollary If a square matrix S ∈ Mn×n(F) is invertible, then S−1 is also invertible and (S−1)−1 = S,
in view of the uniqueness of the inverses of square matrices.

128 Corollary If a square matrix A ∈ Mn×n(F) is invertible, then AT is also invertible and (AT )−1 =
(A−1)T .

Proof: We claim that (AT )−1 = (A−1)T . For

AA−1 = In =⇒ (AA−1)T = ITn =⇒ (A−1)TAT = In,

where we have used Theorem 91. ❑
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The next few theorems will prove that elimination matrices are invertible matrices.

129 Theorem (Invertibility of Transvections) Let In +λEij ∈ Mn×n(F) be a transvection, and let i 6= j. Then

(In + λEij)
−1 = In − λEij.

Proof: Expanding the product

(In + λEij)(In − λEij) = In + λEij − λEij − λ2EijEij

= In − λ2δijEij

= In,

since i 6= j. ❑

130 Example By Theorem 129, we have

















1 0 3

0 1 0

0 0 1

































1 0 −3

0 1 0

0 0 1

















=

















1 0 0

0 1 0

0 0 1

















.

131 Theorem (Invertibility of Dilatations) Let λ 6= 0F. Then

(In + (λ − 1F)Eii)
−1 = In + (λ−1 − 1F)Eii.

Proof: Expanding the product

(In + (λ − 1F)Eii)(In + (λ−1 − 1F)Eii) = In + (λ − 1F)Eii

+(λ−1 − 1F)Eii

+(λ− 1F)(λ
−1 − 1F)Eii

= In + (λ − 1F)Eii

+(λ−1 − 1F)Eii

+(λ− 1F)(λ
−1 − 1F))Eii

= In + (λ − 1F + λ−1 − 1F + 1F

−λ− λ−1 − 1F))Eii

= In,

proving the assertion. ❑
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132 Example By Theorem 131, we have

















1 0 0

0 2 0

0 0 1

































1 0 0

0 1
2

0

0 0 1

















=

















1 0 0

0 1 0

0 0 1

















.

Repeated applications of Theorem 131 gives the following corollary.

133 Corollary If λ1λ2λ3 · · · λn 6= 0F, then


































λ1 0 0 0 · · · 0

0 λ2 0 0 · · · 0

0 0 λ3 0 · · · 0

...
...

...
... · · ·

...

0 0 0 0 · · · λn



































is invertible and


































λ1 0 0 0 · · · 0

0 λ2 0 0 · · · 0

0 0 λ3 0 · · · 0

...
...

...
... · · ·

...

0 0 0 0 · · · λn



































−1

=



































λ−1
1 0 0 0 · · · 0

0 λ−1
2 0 0 · · · 0

0 0 λ−1
3 0 · · · 0

...
...

...
... · · ·

...

0 0 0 0 · · · λ−1
n



































134 Theorem (Invertibility of Permutation Matrices) Let τ ∈ Sn be a permutation. Then

(Iijn )
−1 = (Iijn )

T .

Proof: By Theorem 118 pre-multiplication of Iijn by Iijn exchanges the i-th row with the j-th row,

meaning that they return to the original position in In. Observe in particular that Iijn = (Iijn )
T , and

so Iijn (I
ij
n )

T = In. ❑

135 Example By Theorem 134, we have

















1 0 0

0 0 1

0 1 0

































1 0 0

0 0 1

0 1 0

















=

















1 0 0

0 1 0

0 0 1

















.

136 Corollary If a square matrix can be represented as the product of elimination matrices of the same
size, then it is invertible.
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Proof: This follows from Corollary 126, and Theorems 129, 131, and 134. ❑

137 Example Observe that

A =

















1 0 0

0 3 4

0 0 1

















is the transvection I3 + 4E23 followed by the dilatation of the second column of this transvection by 3.
Thus

















1 0 0

0 3 4

0 0 1

















=

















1 0 0

0 1 4

0 0 1

































1 0 0

0 3 0

0 0 1

















,

and so

















1 0 0

0 3 4

0 0 1

















−1

=

















1 0 0

0 3 0

0 0 1

















−1 















1 0 0

0 1 4

0 0 1

















−1

=

















1 0 0

0 1
3

0

0 0 1

































1 0 0

0 1 −4

0 0 1

















=

















1 0 0

0 1
3

−4
3

0 0 1

















.

138 Example We have

















1 1 1

0 1 1

0 0 1

















=

















1 1 0

0 1 0

0 0 1

































1 0 0

0 1 1

0 0 1

















,
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hence

















1 1 1

0 1 1

0 0 1

















−1

=

















1 0 0

0 1 1

0 0 1

















−1 















1 1 0

0 1 0

0 0 1

















−1

=

















1 0 0

0 1 −1

0 0 1

































1 −1 0

0 1 0

0 0 1

















=

















1 −1 0

0 1 −1

0 0 1

















.

In the next section we will give a general method that will permit us to find the inverse of a square
matrix when it exists.

139 Example Let T =









a b

c d









∈ M2×2(R). Then









a b

c d

















d −b

−c a









= (ad − bc)









1 0

0 1









Thus if ad − bc 6= 0 we see that

T−1 =









d
ad−bc

− b
ad−bc

− c
ad−bc

a
ad−bc









.

140 Example If

A =

























1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

























,
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then A is invertible, for an easy computation shews that

A2 =

























1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

























2

= 4I4,

whence the inverse sought is

A−1 =
1

4
A =

1

4

























1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

























=

























1/4 1/4 1/4 1/4

1/4 1/4 −1/4 −1/4

1/4 −1/4 1/4 −1/4

1/4 −1/4 −1/4 1/4

























.

141 Example AmatrixA ∈ Mn×n(R) is said to be nilpotent of index k if satisfies A 6= 0n, A
2 6= 0n, . . . , A

k−1 6=
0n and Ak = 0n for integer k ≥ 1. Prove that if A is nilpotent, then In−A is invertible and find its inverse.

Solution: ◮ To motivate the solution, think that instead of a matrix, we had a real number x
with |x| < 1. Then the inverse of 1 − x is

(1 − x)−1 =
1

1 − x
= 1 + x + x2 + x3 + · · · .

Notice now that since Ak = 0n, then Ap = 0n for p ≥ k. We conjecture thus that

(In − A)−1 = In + A + A2 + · · · + Ak−1.

The conjecture is easily verified, as

(In − A)(In + A + A2 + · · · + Ak−1) = In + A + A2 + · · · + Ak−1

−(A + A2 + A3 + · · ·+ Ak)

= In

and

(In + A + A2 + · · ·+ Ak−1)(In − A) = In − A + A − A2 + A3 − A4 + · · ·

· · · + Ak−2 − Ak−1 + Ak−1 − Ak

= In.

◭
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142 Example The inverse of A ∈ M3×3(Z5),

A =

















2 0 0

0 3 0

0 0 4

















is

A−1 =

















3 0 0

0 2 0

0 0 4

















,

as

AA−1 =

















2 0 0

0 3 0

0 0 4

































3 0 0

0 2 0

0 0 4

















=

















1 0 0

0 1 0

0 0 1

















143 Example (Putnam Exam, 1991) Let A and B be different n × n matrices with real entries. If A3 = B3

and A2B = B2A, prove that A2 + B2 is not invertible.

Solution: ◮ Observe that

(A2 + B2)(A − B) = A3 − A2B + B2A − B3 = 0n.

If A2 + B2 were invertible, then we would have

A − B = (A2 + B2)−1(A2 + B2)(A − B) = 0n,

contradicting the fact that A and B are different matrices. ◭

144 Lemma If A ∈ Mn×n(F) has a row or a column consisting all of 0F’s, then A is singular.

Proof: If A were invertible, the (i, i)-th entry of the product of its inverse with A would be 1F.
But if the i-th row of A is all 0F’s, then

∑n
k=1 aikbki = 0F, so the (i, i) entry of any matrix product

with A is 0F, and never 1F. ❑

Problem 2.5.1 The inverse of the matrix A =

















1 1 1

1 1 2

1 2 3

















is the matrix A−1 =

















a 1 −1

1 b 1

−1 1 0

















. Determine a and b.

Problem 2.5.2 A square matrix A satisfies A3 6= 0n but
A4 = 0n. Demonstrate that In + A is invertible and find,
with proof, its inverse.

Problem 2.5.3 Prove or disprove! If (A, B, A + B) ∈
(GLn(R))3 then (A + B)−1 = A−1 + B−1.

Problem 2.5.4 Let S ∈ GLn(F), (A, B) ∈ (Mn×n(F))2,
and k a positive integer. Prove that if B = SAS−1 then
Bk = SAkS−1.

Problem 2.5.5 Let A ∈ Mn×n(F) and let k be a positive
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integer. Prove that A is invertible if and only if Ak is
invertible.

Problem 2.5.6 Let S ∈ GLn(C), A ∈ Mn×n(C) with
Ak = 0n for some positive integer k. Prove that both
In − SAS−1 and In − S−1AS are invertible and find their
inverses.

Problem 2.5.7 Let A and B be square matrices of the
same size such that both A−B and A+B are invertible.
Put C = (A − B)−1 + (A + B)−1. Prove that

ACA − ACB + BCA − BCB = 2A.

Problem 2.5.8 Let A,B, C be non-zero square matri-
ces of the same size over the same field and such that
ABC = 0n. Prove that at least two of these three matri-
ces are not invertible.

Problem 2.5.9 Let (A, B) ∈ (Mn×n(F))2 be such that
A2 = B2 = (AB)2 = In. Prove that AB = BA.

Problem 2.5.10 Let A =



































a b b · · · b

b a b · · · b

b b a · · · b

...
...

... · · ·
...

b b b · · · a



































∈

Mn×n(F), n > 1, (a, b) ∈ F2. Determine when A is in-
vertible and find this inverse when it exists.

Problem 2.5.11 Let (A, B) ∈ (Mn×n(F))2 be matrices
such that A + B = AB. Demonstrate that A − In is in-
vertible and find this inverse.

Problem 2.5.12 Let S ∈ GLn(F) and A ∈ Mn×n(F).
Prove that tr (A) = tr

(

SAS−1
)

.

Problem 2.5.13 Let A ∈ Mn×n(R) be a skew-symmetric
matrix. Prove that In + A is invertible. Furthermore, if
B = (In − A)(In + A)−1, prove that B−1 = BT .

Problem 2.5.14 A matrix A ∈ Mn×n(F) is said to be a
magic square if the sum of each individual row equals
the sum of each individual column. Assume that A is
a magic square and invertible. Prove that A−1 is also a
magic square.

2.6 Block Matrices

145 Definition Let A ∈ Mm×n(F), B ∈ Mm×s(F), C ∈ Mr×n(F), D ∈ Mr×s(F). We use the notation

L =









A B

C D









for the block matrix L ∈ M(m+r)×(n+s)(F).

☞ If (A,A ′) ∈ (Mm(F))2, (B, B ′) ∈ (Mm×n(F))2, (C,C ′) ∈ (Mn×m(F))2, (D,D ′) ∈ (Mm(F))2,
and

S =









A B

C D









, T =









A ′ B ′

C ′ D ′









,

then it is easy to verify that

ST =









AA ′ + BC ′ AB ′ + BD ′

CA ′ + DC ′ CB ′ + DD ′









.
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146 Lemma Let L ∈ M(m+r)×(m+r)(F) be the square block matrix

L =









A C

0r×m B









,

with square matrices A ∈ Mm(F) and B ∈ Mr×r(F), and a matrix C ∈ Mm×r(F). Then L is invertible if
and only if A and B are, in which case

L−1 =









A−1 −A−1CB−1

0r×m B−1









Proof: Assume first that A, and B are invertible. Direct calculation yields









A C

0r×m B

















A−1 −A−1CB−1

0r×m B−1









=









AA−1 −AA−1CB−1 + CB−1

0r×m BB−1









=









Im 0m×r

0r×m Ir









= Im+r.

Assume now that L is invertible, L−1 =









E H

J K









, with E ∈ Mm(F) and K ∈ Mr×r(F), but that,

say, B is singular. Then









Im 0m×r

0r×m Ir









= LL−1

=









A C

0r×m B

















E H

J K









=









AE + CJ AH + BK

BJ BK









,

which gives BK = Ir, i.e., B is invertible, a contradiction. ❑

2.7 Rank of a Matrix

147 Definition Let (A,B) ∈ (Mm×n(F))2. We say that A is row-equivalent to B if there exists a matrix
R ∈ GLm(F) such that B = RA. Similarly, we say that A is column-equivalent to B if there exists a matrix
C ∈ GLm(F) such that B = AC. We say that A and B are equivalent if ∃(P,Q) ∈ GLm(F) × GLn(F) such
that B = PAQ.
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148 Theorem Row equivalence, column equivalence, and equivalence are equivalence relations.

Proof: We prove the result for row equivalence. The result for column equivalence, and

equivalence are analogously proved.

Since Im ∈ GLm(F) and A = ImA, row equivalence is a reflexive relation. Assume (A,B) ∈
(Mm×n(F))2 and that ∃P ∈ GLm(F) such that B = PA. Then A = P−1B and since P−1 ∈
GLm(F), we see that row equivalence is a symmetric relation. Finally assume (A, B,C) ∈
(Mm×n(F))3 and that ∃P ∈ GLm(F), ∃P ′ ∈ GLm(F) such that A = PB, B = P ′C. ThenA = PP ′C.

But PP ′ ∈ GLm(F) in view of Corollary 126. This completes the proof. ❑

149 Theorem Let A ∈ Mm×n(F). Then A can be reduced, by means of pre-multiplication and post-
multiplication by elimination matrices, to a unique matrix of the form

Dm,n,r =









Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)









, (2.16)

called the Hermite normal form of A. Thus there exist P ∈ GLm(F), Q ∈ GLn(F) such that Dm,n,r = PAQ.
The integer r ≥ 0 is called the rank of the matrix A which we denote by rank (A).

Proof: If A is the m × n zero matrix, then the theorem is obvious, taking r = 0. Assume hence

that A is not the zero matrix. We proceed as follows using the Gauß-Jordan Algorithm.

GJ-1 Since A is a non-zero matrix, it has a non-zero column. By means of permutation matrices

we move this column to the first column.

GJ-2 Since this column is a non-zero column, it must have an entry a 6= 0F. Again, by means of

permutation matrices, we move the row on which this entry is to the first row.

GJ-3 By means of a dilatation matrix with scale factor a−1, we make this new (1, 1) entry into a

1F.

GJ-4 By means of transvections (adding various multiples of row 1 to the other rows) we now

annihilate every entry below the entry (1, 1).

This process ends up in a matrix of the form

P1AQ1 =



































1F ∗ ∗ · · · ∗

0F b22 b23 · · · b2n

0F b32 b33 · · · b3n

0F
...

... · · ·
...

0F bm2 bm3 · · · bmn



































. (2.17)

Here the asterisks represent unknown entries. Observe that the b’s form a (m − 1) × (n − 1)
matrix.

GJ-5 Apply GJ-1 through GJ-4 to the matrix of the b’s.
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Observe that this results in a matrix of the form

P2AQ2 =



































1F ∗ ∗ · · · ∗

0F 1F ∗ · · · ∗

0F 0F c33 · · · c3n

0F
...

... · · ·
...

0F 0F cm3 · · · cmn



































. (2.18)

GJ-6 Add the appropriate multiple of column 1 to column 2, that is, apply a transvection, in order

to make the entry in the (1, 2) position 0F.

This now gives a matrix of the form

P3AQ3 =



































1F 0F ∗ · · · ∗

0F 1F ∗ · · · ∗

0F 0F c33 · · · c3n

0F
...

... · · ·
...

0F 0F cm3 · · · cmn



































. (2.19)

The matrix of the c’s has size (m − 2) × (n − 2).

GJ-7 Apply GJ-1 through GJ-6 to the matrix of the c’s, etc.

Observe that this process eventually stops, and in fact, it is clear that rank (A) ≤ min(m,n).

Suppose now that A were equivalent to a matrix Dm,n,s with s > r. Since matrix equivalence

is an equivalence relation, Dm,n,s and Dm,n,r would be equivalent, and so there would be

R ∈ GLm(F), S ∈ GLn(F), such that RDm,n,rS = Dm,n,s, that is, RDm,n,r = Dm,n,sS
−1.

Partition R and S−1 as follows

R =









R11 R12

R21 R22









, S−1 =

















S11 S12 S13

S21 S22 S23

S31 S32 S33

















,

with (R11, S11)
2 ∈ (Mr×r(F))2, S22 ∈ M(s−r)×(s−r)(F). We have

RDm,n,r =









R11 R12

R21 R22

















Ir 0(m−r)×r

0(m−r)×r 0r×(m−r)









=









R11 0(m−r)×r

R21 0r×(m−r)









,
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and

Dm,n,sS
−1 =

















Ir 0r×(s−r) 0r×(n−s)

0(s−r)×r Is−r 0(s−r)×(n−s)

0(m−s)×r 0(m−s)×(s−r) 0(m−s)×(n−s)

































S11 S12 S13

S21 S22 S23

S31 S32 S33

















=

















S11 S12 S13

S21 S22 S23

0(m−s)×r 0(m−s)×(s−r) 0(m−s)×(n−s)

















.

Since we are assuming









R11 0(m−r)×r

R21 0r×(m−r)









=

















S11 S12 S13

S21 S22 S23

0(m−s)×r 0(m−s)×(s−r) 0(m−s)×(n−s)

















,

we must have S12 = 0r×(s−r), S13 = 0r×(n−s), S22 = 0(s−r)×(s−r), S23 = 0(s−r)×(n−s). Hence

S−1 =

















S11 0r×(s−r) 0r×(n−s)

S21 0(s−r)×(s−r) 0(s−r)×(n−s)

S31 S32 S33

















.

The matrix








0(s−r)×(s−r) 0(s−r)×(n−s)

S32 S33









is non-invertible, by virtue of Lemma 144. This entails that S−1 is non-invertible by virtue of

Lemma 146. This is a contradiction, since S is assumed invertible, and hence S−1 must also be

invertible. ❑

☞ Albeit the rank of a matrix is unique, the matrices P and Q appearing in Theorem 149 are

not necessarily unique. For example, the matrix

















1 0

0 1

0 0

















has rank 2, the matrix
















1 0 x

0 1 y

0 0 1
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is invertible, and an easy computation shews that
















1 0 x

0 1 y

0 0 1

































1 0

0 1

0 0

























1 0

0 1









=

















1 0

0 1

0 0

















,

regardless of the values of x and y.

150 Corollary Let A ∈ Mm×n(F). Then rank (A) = rank
(

AT
)

.

Proof: Let P,Q,Dm,n,r as in Theorem 149. Observe that PT , QT are invertible. Then

PAQ = Dm,n,r =⇒ QTATPT = DT
m,n,r = Dn,m,r,

and since this last matrix has the same number of 1F’s as Dm,n,r, the corollary is proven. ❑

151 Example Shew that

A =









0 2 3

0 1 0









has rank (A) = 2 and find invertible matrices P ∈ GL2(R) and Q ∈ GL3(R) such that

PAQ =









1 0 0

0 1 0









.

Solution: ◮ We first transpose the first and third columns by effecting









0 2 3

0 1 0

























0 0 1

0 1 0

1 0 0

















=









3 2 0

0 1 0









.

We now subtract twice the second row from the first, by effecting








1 −2

0 1

















3 2 0

0 1 0









=









3 0 0

0 1 0









.

Finally, we divide the first row by 3,








1/3 0

0 1

















3 0 0

0 1 0









=









1 0 0

0 1 0









.

We conclude that









1/3 0

0 1

















1 −2

0 1

















0 2 3

0 1 0

























0 0 1

0 1 0

1 0 0

















=









1 0 0

0 1 0









,
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from where we may take

P =









1/3 0

0 1

















1 −2

0 1









=









1/3 −2/3

0 1









and

Q =

















0 0 1

0 1 0

1 0 0

















.

◭

In practice it is easier to do away with the multiplication by elimination matrices and perform row
and column operations on the augmented (m + n) × (m + n) matrix









In 0n×m

A Im









.

152 Definition Denote the rows of a matrixA ∈ Mm×n(F) by R1, R2, . . . , Rm, and its columns by C1, C2, . . . , Cn.
The elimination operations will be denoted as follows.

• Exchanging the i-th row with the j-th row, which we denote by Ri ↔ Rj, and the s-th column by
the t-th column by Cs ↔ Ct.

• A dilatation of the i-th row by a non-zero scalar α ∈ F \ {0F}, we will denote by αRi → Ri. Similarly,
βCj → Cj denotes the dilatation of the j-th column by the non-zero scalar β.

• A transvection on the rows will be denoted by Ri+αRj → Ri, and one on the columns by Cs+βCt →
Cs.

153 Example Find the Hermite normal form of

A =

























−1 0

0 0

1 1

1 2

























.

Solution: ◮ First observe that rank (A) ≤ min(4, 2) = 2, so the rank can be either 1 or 2 (why
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not 0?). Form the augmented matrix











































1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 0 0 1 0 0

1 1 0 0 1 0

1 2 0 0 0 1











































.

Perform R5 + R3 → R5 and R6 + R3 → R6 successively, obtaining











































1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 0 0 1 0 0

0 1 1 0 1 0

0 2 1 0 0 1











































.

Perform R6 − 2R5 → R6










































1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 0 0 1 0 0

0 1 1 0 1 0

0 0 −1 0 −2 1











































.

Perform R4 ↔ R5










































1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 1 1 0 1 0

0 0 0 1 0 0

0 0 −1 0 −2 1











































.
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Finally, perform −R3 → R3










































1 0 0 0 0 0

0 1 0 0 0 0

1 0 −1 0 0 0

0 1 1 0 1 0

0 0 0 1 0 0

0 0 −1 0 −2 1











































.

We conclude that
























−1 0 0 0

1 0 1 0

0 1 0 0

−1 0 −2 1

















































−1 0

0 0

1 1

1 2

































1 0

0 1









=

























1 0

0 1

0 0

0 0

























.

◭

154 Theorem Let A ∈ Mm×n(F), B ∈ Mn×p(F). Then

rank (AB) ≤ min(rank (A) , rank (B)).

Proof: We prove that rank (A) ≥ rank (AB). The proof that rank (B) ≥ rank (AB) is similar

and left to the reader. Put r = rank (A) , s = rank (AB). There exist matrices P ∈ GLm(F),
Q ∈ GLn(F), S ∈ GLm(F), T ∈ GLp(F) such that

PAQ = Dm,n,r, SABT = Dm,p,s.

Now

Dm,p,s = SABT = SP−1Dm,n,rQ
−1BT,

from where it follows that

PS−1Dm,p,s = Dm,n,rQ
−1BT.

Now the proof is analogous to the uniqueness proof of Theorem 149. Put U = PS−1 ∈ GLm(R)
and V = Q−1BT ∈ Mn×p(F), and partition U and V as follows:

U =









U11 U12

U21 U22









, V =









V11 V12

V21 V22









,

with U11 ∈ Ms(F), V11 ∈ Mr×r(F). Then

UDm,p,s =









U11 U12

U21 U22

















Is 0s×(p−s)

0(m−s)×s 0(m−s)×(p−s)









∈ Mm×p(F),
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and

Dm,p,sV =









Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

















V11 V12

V21 V22









∈ Mm×p(F).

From the equality of these two m × p matrices, it follows that









U11 0s×(p−s)

U21 0(m−s)×(p−s)









=









V11 V12

0(m−r)×r 0(m−r)×(n−r)









.

If s > r then (i) U11 would have at least one row of 0F’s meaning that U11 is non-invertible by

Lemma 144. (ii) U21 = 0(m−s)×s. Thus from (i) and (ii) and from Lemma 146, U is not invertible,

which is a contradiction. ❑

155 Corollary Let A ∈ Mm×n(F), B ∈ Mn×p(F). If A is invertible then rank (AB) = rank (B). If B is
invertible then rank (AB) = rank (A).

Proof: Using Theorem 154, if A is invertible

rank (AB) ≤ rank (B) = rank
(

A−1AB
)

≤ rank (AB) ,

and so rank (B) = rank (AB). A similar argument works when B is invertible.

❑

156 Example Study the various possibilities for the rank of the matrix

A =

















1 1 1

b + c c + a a + b

bc ca ab

















.

Solution: ◮ Performing R2 − (b + c)R1 → R2 and R3 − bcR1 → R3, we find

















1 1 1

0 a − b a − c

0 0 (b − c)(a − c)

















.

Performing C2 − C1 → C2 and C3 − C1 → C3, we find

















1 0 0

0 a − b a − c

0 0 (b − c)(a − c)

















.

We now examine the various ways of getting rows consisting only of 0’s. If a = b = c, the last

two rows are 0-rows and so rank (A) = 1. If exactly two of a, b, c are equal, the last row is a

0-row, but the middle one is not, and so rank (A) = 2 in this case. If none of a, b, c are equal,

then the rank is clearly 3. ◭
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Homework

Problem 2.7.1 On a symmetric matrix A ∈ Mn×n(R) with n ≥ 3,

R3 − 3R1 → R3

successively followed by

C3 − 3C1 → C3

are performed. Is the resulting matrix still symmetric?

Problem 2.7.2 Find the rank of



























a + 1 a + 2 a + 3 a + 4 a + 5

a + 2 a + 3 a + 4 a + 5 a + 6

a + 3 a + 4 a + 5 a + 6 a + 7

a + 4 a + 5 a + 6 a + 7 a + 8



























∈ M5×5(R).

Problem 2.7.3 Let A, B be arbitrary n × n matrices over R. Prove or disprove! rank (AB) = rank (BA) .

Problem 2.7.4 Determine the rank of the matrix



























1 1 0 0

0 0 1 1

2 2 2 2

2 0 0 2



























.

Problem 2.7.5 Suppose that the matrix









4 2

x2 x









∈ M2×2(R) has rank 1. How many possible values can x assume?

Problem 2.7.6 Demonstrate that a non-zero n×n matrix A over a field F has rank 1 if and only if A can be factored
as A = XY , where X ∈ Mn×1(F) and Y ∈ M1×n(F).

Problem 2.7.7 Study the various possibilities for the rank of the matrix



























1 a 1 b

a 1 b 1

1 b 1 a

b 1 a 1



























when (a, b) ∈ R2.
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Problem 2.7.8 Find the rank of



























1 −1 0 1

m 1 −1 −1

1 −m 1 0

1 −1 m 2



























as a function of m ∈ C.

Problem 2.7.9 Determine the rank of the matrix



























a2 ab ab b2

ab a2 b2 ab

ab b2 a2 ab

b2 ab ab a2



























.

Problem 2.7.10 Determine the rank of the matrix



























1 1 1 1

a b a b

c c d d

ac bc ad bd



























.

Problem 2.7.11 Let A ∈ M3×2(R), B ∈ M2×2(R), and C ∈ M2×3(R) be such that ABC =

















1 1 2

−2 x 1

1 −2 1

















. Find x.

Problem 2.7.12 Let B be the matrix obtained by adjoining a row (or column) to a matrix A. Prove that either
rank (B) = rank (A) or rank (B) = rank (A) + 1.

Problem 2.7.13 Let A ∈ Mn×n(R). Prove that rank (A) = rank
(

AAT
)

. Find a counterexample in the case A ∈
Mn×n(C).

Problem 2.7.14 Prove that the rank of a skew-symmetric matrix with real number entries is an even number.

2.8 Rank and Invertibility

157 Theorem A matrix A ∈ Mm×n(F) is left-invertible if and only if rank (A) = n. A matrix A ∈ Mm×n(F)
is right-invertible if and only if rank (A) = m.

Proof: Observe that we always have rank (A) ≤ n. If A is left invertible, then ∃L ∈ Mn×m(F)
such that LA = In. By Theorem 154,

n = rank (In) = rank (LA) ≤ rank (A) ,

whence the two inequalities give rank (A) = n.

Conversely, assume that rank (A) = n. Then rank
(

AT
)

= n by Corollary 150, and so by
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Theorem 149 there exist P ∈ GLm(F), Q ∈ GLn(F), such that

PAQ =









In

0(m−n)×n









, QTATPT =

[

In 0n×(m−n)

]

.

This gives

QTATPTPAQ = In =⇒ ATPTPA = (QT )−1Q−1

=⇒ ((QT )−1Q−1)−1ATPTPA = In,

and so ((QT )−1Q−1)−1ATPTP is a left inverse for A.

The right-invertibility case is argued similarly. ❑

By combining Theorem 157 and Theorem 124, the following corollary is thus immediate.

158 Corollary If A ∈ Mm×n(F) possesses a left inverse L and a right inverse R then m = n and L = R.

We use Gauß-Jordan Reduction to find the inverse of A ∈ GLn(F). We form the augmented matrix

T = [A|In] which is obtained by putting A side by side with the identity matrix In. We perform permissible
row operations on T until instead of A we obtain In, which will appear if the matrix is invertible. The
matrix on the right will be A−1. We finish with [In|A−1].

☞ If A ∈ Mn×n(R) is non-invertible, then the left hand side in the procedure above will not

reduce to In.

159 Example Find the inverse of the matrix B ∈ M3×3(Z7),

B =

















6 0 1

3 2 0

1 0 1

















.
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Solution: ◮ We have

















6 0 1 1 0 0

3 2 0 0 1 0

1 0 1 0 0 1

















R1↔R3

 

















1 0 1 0 0 1

3 2 0 0 1 0

6 0 1 1 0 0

















R3−6R1→R3

 

R2−3R1→R2

















1 0 1 0 0 1

0 2 4 0 1 4

0 0 2 1 0 1

















R2−2R3→R2

 
5R1+R3→R1

















5 0 0 1 0 6

0 2 0 5 1 2

0 0 2 1 0 1

















3R1→R1; 4R3→R3

 

4R2→R2

















1 0 0 3 0 4

0 1 0 6 4 1

0 0 1 4 0 4

















.

We conclude that

















6 0 1

3 2 0

1 0 1

















−1

=

















3 0 4

6 4 1

4 0 4

















.

◭

160 Example Use Gauß-Jordan reduction to find the inverse of the matrix A =



















0 1 −1

4 −3 4

3 −3 4



















. Also,

find A2001.
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Solution: ◮ Operating on the augmented matrix
















0 1 −1 1 0 0

4 −3 4 0 1 0

3 −3 4 0 0 1

















R2−R3→R2

 

















0 1 −1 1 0 0

1 0 0 0 1 −1

3 −3 4 0 0 1

















R3−3R2→R3

 

















0 1 −1 1 0 0

1 0 0 0 1 −1

0 −3 4 0 −3 4

















R3+3R1→R3

 

















0 1 −1 1 0 0

1 0 0 0 1 −1

0 0 1 3 −3 4

















R1+R3→R1

 

















0 1 0 4 −3 4

1 0 0 0 1 −1

0 0 1 3 −3 4

















R1↔R2

 

















1 0 0 0 1 −1

0 1 0 4 −3 4

0 0 1 3 −3 4

















.

Thus we deduce that

A−1 =

















0 1 −1

4 −3 4

3 −3 4

















= A.

From A−1 = A we deduce A2 = In. Hence A2000 = (A2)1000 = I1000n = In and A2001 = A(A2000) =

AIn = A. ◭

161 Example Find the inverse of the triangular matrix A ∈ Mn×n(R),

A =



































1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1

...
...

... · · ·
...

0 0 0 · · · 1



































.
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Solution: ◮ Form the augmented matrix



































1 1 1 · · · 1 1 0 0 · · · 0

0 1 1 · · · 1 0 1 0 · · · 0

0 0 1 · · · 1 0 0 1 · · · 0

...
...

... · · ·
...

...
...

... · · ·
...

0 0 0 · · · 1 0 0 0 · · · 1



































,

and perform Rk − Rk+1 → Rk successively for k = 1, 2, . . . , n − 1, obtaining



































1 0 0 · · · 0 1 −1 0 · · · 0

0 1 0 · · · 0 0 1 −1 · · · 0

0 0 1 · · · 0 0 0 1 · · · 0

...
...

... · · ·
...

...
...

... · · ·
...

0 0 0 · · · 1 0 0 0 · · · 1



































,

whence

A−1 =



































1 −1 0 · · · 0

0 1 −1 · · · 0

0 0 1 · · · 0

...
...

... · · ·
...

0 0 0 · · · 1



































,

that is, the inverse of A has 1’s on the diagonal and −1’s on the superdiagonal. ◭

162 Theorem Let A ∈ Mn×n(F) be a triangular matrix such that a11a22 · · ·ann 6= 0F. Then A is invertible.

Proof: Since the entry akk 6= 0F we multiply the k-th row by a−1
kk and then proceed to subtract

the appropriate multiples of the preceding k − 1 rows at each stage. ❑

163 Example (Putnam Exam, 1969) Let A and B be matrices of size 3× 2 and 2× 3 respectively. Suppose
that their product AB is given by

AB =

















8 2 −2

2 5 4

−2 4 5

















.
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Demonstrate that the product BA is given by

BA =









9 0

0 9









.

Solution: ◮ Observe that

(AB)2 =

















8 2 −2

2 5 4

−2 4 5

































8 2 −2

2 5 4

−2 4 5

















=

















72 18 −18

18 45 36

−18 36 45

















= 9AB.

Performing R3 + R2 → R3, R1 − 4R2 → R2, and 2R3 + R1 → R3 in succession we see that

















8 2 −2

2 5 4

−2 4 5

















 

















0 −18 −18

2 5 4

0 0 0

















 

















0 −18 0

2 5 −1

0 0 0

















 

















0 −18 0

0 5 −1

0 0 0

















,

and so rank (AB) = 2. This entails that rank
(

(AB)2
)

= 2. Now, since BA is a 2 × 2 matrix,

rank (BA) ≤ 2. Also

2 = rank
(

(AB)2
)

= rank (ABAB) ≤ rank (ABA) ≤ rank (BA) ,

and we must conclude that rank (BA) = 2. This means that BA is invertible and so

(AB)2 = 9AB =⇒ A(BA − 9I2)B = 03

=⇒ BA(BA − 9I2)BA = B03A

=⇒ BA(BA − 9I2)BA = 02

=⇒ (BA)−1BA(BA − 9I2)BA(BA)−1 = (BA)−102(BA)−1

=⇒ BA − 9I2 = 02

◭

Homework

Problem 2.8.1 Find the inverse of the matrix

















1 2 3

2 3 1

3 1 2

















∈ M3×3(Z7).
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Problem 2.8.2 Let (A, B) ∈ M3×3(R) be given by

A =

















a b c

1 0 0

0 1 0

















, B =

















0 0 −1

0 −1 a

−1 a b

















.

Find B−1 and prove that AT = BAB−1.

Problem 2.8.3 Let A =

















1 0 0

1 1 0

1 1 x

















where x 6= 0 is a real number. Find A−1.

Problem 2.8.4 If the inverse of the matrix M =

















1 0 1

−1 0 0

0 1 1

















is the matrix M−1 =

















0 −1 0

−1 −1 a

1 1 b

















, find (a, b).

Problem 2.8.5 Let A =

















1 0 0

1 1 0

1 1 1

















and let n > 0 be an integer. Find (An)−1.

Problem 2.8.6 Give an example of a 2 × 2 invertible matrix A over R such that A + A−1 is the zero matrix.

Problem 2.8.7 Find all the values of the parameter a for which the matrix B given below is not invertible.

B =

















−1 a + 2 2

0 a 1

2 1 a

















Problem 2.8.8 Find the inverse of the triangular matrix

















a 2a 3a

0 b 2b

0 0 c

















∈ M3×3(R)

assuming that abc 6= 0.
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Problem 2.8.9 Under what conditions is the matrix

















b a 0

c 0 a

0 c b

















invertible? Find the inverse under these conditions.

Problem 2.8.10 Let A and B be n × n matrices over a field F such that AB is invertible. Prove that both A and B

must be invertible.

Problem 2.8.11 Find the inverse of the matrix

















1 + a 1 1

1 1 + b 1

1 1 1 + c

















Problem 2.8.12 Prove that for the n × n (n > 1) matrix



































0 1 1 . . . 1

1 0 1 . . . 1

1 1 0 . . . 1

...
...

... . . .
...

1 1 1 . . . 0



































−1

=
1

n − 1



































2 − n 1 1 . . . 1

1 2 − n 1 . . . 1

1 1 2 − n . . . 1

...
...

... . . .
...

1 1 1 . . . 2 − n



































Problem 2.8.13 Prove that the n × n (n > 1) matrix



































1 + a 1 1 . . . 1

1 1 + a 1 . . . 1

1 1 1 + a . . . 1

...
...

... . . .
...

1 1 1 . . . 1 + a



































has inverse

−
1

a(n + a)



































1 − n − a 1 1 . . . 1

1 1 − n − a 1 . . . 1

1 1 1 − n − a . . . 1

...
...

... . . .
...

1 1 1 . . . 1 − n − a
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Problem 2.8.14 Prove that


































1 3 5 7 · · · (2n − 1)

(2n − 1) 1 3 5 · · · (2n − 3)

(2n − 3) (2n − 1) 1 3 · · · (2n − 5)

...
...

...
...

...
...

3 5 7 9 · · · 1



































has inverse

1

2n3



































2 − n2 2 + n2 2 2 · · · 2

2 2 − n2 2 + n2 2 · · · 2

2 2 2 − n2 2 + n2 · · · 2

...
...

...
...

...
...

2 + n2 2 2 2 · · · 2 − n2



































.

Problem 2.8.15 Prove that the n × n (n > 1) matrix



































1 + a1 1 1 . . . 1

1 1 + a2 1 . . . 1

1 1 1 + a3 . . . 1

...
...

... . . .
...

1 1 1 . . . 1 + an



































has inverse

−
1

s





































1 − a1s

a2
1

1

a1a2

1

a1a3
. . .

1

a1an

1

a2a1

1 − a2s

a2
2

1

a2a3
. . .

1

a2an

1

a3a1

1

a3a2

1 − a3s

a2
3

. . .
1

a3a1n

...
...

... . . .
...

1

ana1

1

ana2

1

ana3
. . .

1 − ans

a2
n





































,

where s = 1 + 1
a1

+ 1
a2

+ · · · + 1
an

.

Problem 2.8.16 Let A ∈ M5×5(R). Shew that if rank
(

A2
)

< 5, then rank (A) < 5.

Problem 2.8.17 Let p be an odd prime. How many invertible 2 × 2 matrices are there with entries all in Zp?

Problem 2.8.18 Let A,B be matrices of the same size. Prove that rank (A + B) ≤ rank (A) + rank (B).
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Problem 2.8.19 Let A ∈ M3,2(R) and B ∈ M2,3(R) be matrices such that AB =

















0 −1 −1

−1 0 −1

1 1 2

















. Prove that

BA = I2.



Chapter 3
Linear Equations

3.1 Definitions

We can write a system of m linear equations in n variables over a field F

a11x1 + a12x2 + a13x3 + · · · + a1nxn = y1,

a21x1 + a22x2 + a23x3 + · · · + a2nxn = y2,

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = ym,

in matrix form as
























a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

















































x1

x2

...

xn

























=

























y1

y2

...

ym

























. (3.1)

We write the above matrix relation in the abbreviated form

AX = Y, (3.2)

where A is the matrix of coefficients, X is the matrix of variables and Y is the matrix of constants. Most
often we will dispense with the matrix of variables X and will simply write the augmented matrix of the
system as

[A|Y ] =

























a11 a12 · · · a1n y1

a21 a22 · · · a2n y2

...
...

...
...

...

am1 am2 · · · amn ym

























. (3.3)

164 Definition Let AX = Y be as in 3.1. If Y = 0m×1, then the system is called homogeneous, otherwise it
is called inhomogeneous. The set

{X ∈ Mn×1(F) : AX = 0m×1}

is called the kernel or nullspace of A and it is denoted by ker (A).
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☞ Observe that we always have 0n×1 ∈ ker (A) ∈ Mm×n(F).

165 Definition A system of linear equations is consistent if it has a solution. If the system does not have
a solution then we say that it is inconsistent.

166 Definition If a row of a matrix is non-zero, we call the first non-zero entry of this row a pivot for this
row.

167 Definition A matrix M ∈ Mm×n(F) is a row-echelon matrix if

• All the zero rows of M, if any, are at the bottom of M.

• For any two consecutive rows Ri and Ri+1, either Ri+1 is all 0F’s or the pivot of Ri+1 is immediately
to the right of the pivot of Ri.

The variables accompanying these pivots are called the leading variables. Those variables which are not
leading variables are the free parameters.

168 Example The matrices

























1 0 1 1

0 0 2 2

0 0 0 3

0 0 0 0

























,

























1 0 1 1

0 0 0 1

0 0 0 0

0 0 0 0

























,

are in row-echelon form, with the pivots circled, but the matrices

























1 0 1 1

0 0 1 2

0 0 1 1

0 0 0 0

























,

























1 0 1 1

0 0 0 0

0 0 0 1

0 0 0 0

























,

are not in row-echelon form.

☞ Observe that given a matrix A ∈ Mm×n(F), by following Gauß-Jordan reduction à la Theo-

rem 149, we can find a matrix P ∈ GLm(F) such that PA = B is in row-echelon form.

169 Example Solve the system of linear equations

























1 1 1 1

0 2 1 0

0 0 1 −1

0 0 0 2

















































x

y

z

w

























=

























−3

−1

4

−6

























.
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Solution: ◮ Observe that the matrix of coefficients is already in row-echelon form. Clearly every

variable is a leading variable, and by back substitution

2w = −6 =⇒ w = −
6

2
= −3,

z − w = 4 =⇒ z = 4+ w = 4 − 3 = 1,

2y+ z = −1 =⇒ y = −
1

2
−

1

2
z = −1,

x + y + z + w = −3 =⇒ x = −3 − y − z − w = 0.

The (unique) solution is thus
























x

y

z

w

























=

























0

−1

1

−3

























.

◭

170 Example Solve the system of linear equations

















1 1 1 1

0 2 1 0

0 0 1 −1









































x

y

z

w

























=

















−3

−1

4

















.

Solution: ◮ The system is already in row-echelon form, and we see that x, y, z are leading

variables while w is a free parameter. We put w = t. Using back substitution, and operating

from the bottom up, we find

z − w = 4 =⇒ z = 4 + w = 4 + t,

2y + z = −1 =⇒ y = −
1

2
−

1

2
z = −

1

2
− 2 −

1

2
t = −

5

2
−

1

2
t,

x + y + z + w = −3 =⇒ x = −3 − y − z − w = −3 +
5

2
+

1

2
t− 4 − t− t = −

9

2
−

3

2
t.

The solution is thus
























x

y

z

w

























=

























−9
2
− 3

2
t

−5
2
− 1

2
t

4 + t

t

























, t ∈ R.

◭
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171 Example Solve the system of linear equations









1 1 1 1

0 2 1 0

































x

y

z

w

























=









−3

−1









.

Solution: ◮ We see that x, y are leading variables, while z,w are free parameters. We put

z = s, w = t. Operating from the bottom up, we find

2y+ z = −1 =⇒ y = −
1

2
−

1

2
z = −

1

2
−

1

2
s,

x + y + z + w = −3 =⇒ x = −3 − y − z − w = −
5

2
−

3

2
s − t.

The solution is thus
























x

y

z

w

























=

























−5
2
− 3

2
s − t

−1
2
− 1

2
s

s

t

























, (s, t) ∈ R2.

◭

172 Example Find all the solutions of the system

x + 2y + 2z = 0,

y + 2z = 1,

working in Z3.

Solution: ◮ The augmented matrix of the system is









1 2 2 0

0 1 2 1









.

The system is already in row-echelon form and x, y are leading variables while z is a free

parameter. We find

y = 1 − 2z = 1 + 1z,

and

x = −2y − 2z = 1 + 2z.

Thus
















x

y

z

















=

















1 + 2z

1 + 1z

z

















, z ∈ Z3.
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Letting z = 0, 1, 2 successively, we find the three solutions

















x

y

z

















=

















1

1

0

















,

















x

y

z

















=

















0

2

1

















,

and
















x

y

z

















=

















2

0

2

















.

◭

Homework

Problem 3.1.1 Find all the solutions in Z3 of the system

x + y + z + w = 0,

2y + w = 2.

Problem 3.1.2 In Z7, given that

















1 2 3

2 3 1

3 1 2

















−1

=

















4 2 0

2 0 4

0 4 2

















,

find all solutions of the system

1x + 2y + 3z = 5;

2x + 3y + 1z = 6;

3x + 1y + 2z = 0.

Problem 3.1.3 Solve in Z13:

x − 2y + z = 5, 2x + 2y = 7, 5x − 3y + 4z = 1.

Problem 3.1.4 Find, with proof, a polynomial p(x) with
real number coefficients and degree 3 such that

p(−1) = −10, p(0) = −1, p(1) = 2, p(2) = 23.

Problem 3.1.5 This problem introduces Hill block ci-
phers, which are a way of encoding information with an
encoding matrix A ∈ Mn×n(Z26), where n is a strictly
positive integer. Split a plaintext into blocks of n letters,
creating a series of n × 1 matrices Pk, and consider the
numerical equivalent (A = 0, B = 1, C = 2, . . . , Z = 25)
of each letter. The encoded message is the translation to
letters of the n × 1 matrices Ck = APk mod 26.

For example, suppose you want to encode the mes-
sage COMMUNISTS EAT OFFAL with the encoding ma-
trix

A =

















0 1 0

3 0 0

0 0 2

















,

a 3 × 3 matrix. First, split the plaintext into groups of
three letters:

COM MUN IST SEA TOF FAL.

Form 3×1 matrices with each set of letters and find their
numerical equivalent, for example,

P1 =

















C

O

M

















=

















2

14

12

















.
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Find the product AP1 modulo 26, and translate into let-
ters:

AP1 =

















0 1 0

3 0 0

0 0 2

































2

14

12

















=

















14

6

24

















=

















O

G

Y

















,

hence COM is encoded into OGY. Your task is to com-
plete the encoding of the message.

Problem 3.1.6 Find all solutions in Z103, if any, to the

system

x0 + x1 = 0,

x0 + x2 = 1,

x0 + x3 = 2,

...
...

...

x0 + x100 = 99,

x0 + x1 + x2 + · · · + x100 = 4949.

Hints: 0+ 1+ 2+ · · ·+ 99 = 4950, 99 · 77− 103 · 74 = 1.

3.2 Existence of Solutions

We now answer the question of deciding when a system of linear equations is solvable.

173 Lemma Let A ∈ Mm×n(F) be in row-echelon form, and let X ∈ Mn×1(F) be a matrix of variables.
The homogeneous system AX = 0m×1 of m linear equations in n variables has (i) a unique solution if
m = n, (ii) multiple solutions if m < n.

Proof: If m = n then A is a square triangular matrix whose diagonal elements are different

from 0F. As such, it is invertible by virtue of Theorem 162. Thus

AX = 0n×1 =⇒ X = A−10n×1 = 0n×1

so there is only the unique solution X = 0n×1, called the trivial solution.

If m < n then there are n−m free variables. Letting these variables run through the elements of

the field, we obtain multiple solutions. Thus if the field has infinitely many elements, we obtain

infinitely many solutions, and if the field has k elements, we obtain kn−m solutions. Observe

that in this case there is always a non-trivial solution.

❑

174 Theorem Let A ∈ Mm×n(F), and let X ∈ Mn×1(F) be a matrix of variables. The homogeneous system
AX = 0m×1 of m linear equations in n variables always has a non-trivial solution if m < n.

Proof: We can find a matrix P ∈ GLm(F) such that B = PA is in row-echelon form. Now

AX = 0m×1 ⇐⇒ PAX = 0m×1 ⇐⇒ BX = 0m×1.

That is, the systems AX = 0m×1 and BX = 0m×1 have the same set of solutions. But by Lemma

173 there is a non-trivial solution. ❑

175 Theorem (Kronecker-Capelli) LetA ∈ Mm×n(F), Y ∈ Mm×1(F) be constant matrices and X ∈ Mn×1(F)
be a matrix of variables. The matrix equation AX = Y is solvable if and only if

rank (A) = rank ([A|Y ]) .
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Proof: Assume first that AX = Y ,

X =

























x1

x2

...

xn

























.

Let the columns of [A|X] be denoted by Ci, 1 ≤ i ≤ n. Observe that that [A|X] ∈ Mm×(n+1)(F)
and that the (n + 1)-th column of [A|X] is

Cn+1 = AX =

























x1a11 + x2a12 + · · · + xna1n

x1a21 + x2a22 + · · · + xna2n

...

x1an1 + x2an2 + · · · + xnann

























=

n∑

i=1

xiCi.

By performing Cn+1−
∑n

j=1 xjCj → Cn+1 on [A|Y ] = [A|AX]we obtain [A|0n×1]. Thus rank ([A|Y ]) =

rank ([A|0n×1]) = rank (A).

Now assume that r = rank (A) = rank ([A|Y ]). This means that adding an extra column to A
does not change the rank, and hence, by a sequence column operations [A|Y ] is equivalent to

[A|0n×1]. Observe that none of these operations is a permutation of the columns, since the first

n columns of [A|Y ] and [A|0n×1] are the same. This means that Y can be obtained from the

columns Ci, 1 ≤ i ≤ n of A by means of transvections and dilatations. But then

Y =

n∑

i=1

xiCi.

The solutions sought is thus

X =

























x1

x2

...

xn

























.

❑

Problem 3.2.1 Let A ∈ Mn×p(F), B ∈ Mn×q(F) and
put C = [A B] ∈ Mn×(p+q)(F) Prove that rank (A) =

rank (C) ⇐⇒ ∃P ∈ Mp(q) such that B = AP.

3.3 Examples of Linear Systems

176 Example Use row reduction to solve the system

x + 2y + 3z + 4w = 8

x + 2y + 4z + 7w = 12

2x + 4y + 6z + 8w = 16
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Solution: ◮ Form the expanded matrix of coefficients and apply row operations to obtain

















1 2 3 4 8

1 2 4 7 12

2 4 6 8 16

















R3−2R1→R3

 
R2−R1→R2

















1 2 3 4 8

0 0 1 3 4

0 0 0 0 0

















.

The matrix is now in row-echelon form. The variables x and z are the pivots, so w and y are

free. Setting w = s, y = t we have

z = 4 − 3s,

x = 8 − 4w− 3z − 2y = 8 − 4s− 3(4− 3s) − 2t = −4 + 5s − 2t.

Hence the solution is given by
























x

y

z

w

























=

























−4 + 5s− 2t

t

4 − 3s

s

























.

◭

177 Example Find α ∈ R such that the system

x + y − z = 1,

2x+ 3y+ αz = 3,

x + αy + 3z = 2,

posses (i) no solution, (ii) infinitely many solutions, (iii) a unique solution.

Solution: ◮ The augmented matrix of the system is

















1 1 −1 1

2 3 α 3

1 α 3 2

















.

By performing R2 − 2R1 → R2 and R3 − R1 → R3 we obtain

 

















1 1 −1 1

0 1 α+ 2 1

0 α − 1 4 1

















.

By performing R3 − (α − 1)R2 → R3 on this last matrix we obtain

 

















1 1 −1 1

0 1 α+ 2 1

0 0 (α− 2)(α+ 3) α − 2

















.
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If α = −3, we obtain no solution. If α = 2, there is an infinity of solutions

















x

y

z

















=

















5t

1− 4t

t

















, t ∈ R.

If α 6= 2 and α 6= 3, there is a unique solution

















x

y

z

















=



















1

1

α + 3
1

α + 3



















.

◭

178 Example Solve the system
















6 0 1

3 2 0

1 0 1

































x

y

z

















=

















1

0

2

















,

for (x, y, z) ∈ (Z7)
3.

Solution: ◮ Performing operations on the augmented matrix we have

















6 0 1 1

3 2 0 0

1 0 1 2

















R1↔R3

 

















1 0 1 2

3 2 0 0

6 0 1 1

















R3−6R1→R3

 

R2−3R1→R2

















1 0 1 2

0 2 4 1

0 0 2 3

















This gives

2z = 3 =⇒ z = 5,

2y = 1 − 4z = 2 =⇒ y = 1,

x = 2− z = 4.

The solution is thus

(x, y, z) = (4, 1, 5).

◭
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Homework

Problem 3.3.1 Find the general solution to the system



































1 1 1 1 1

1 0 1 0 1

2 1 2 1 2

4 2 4 2 4

1 0 0 0 1





































































a

b

c

d

f



































=



































1

−1

0

0

0



































or shew that there is no solution.

Problem 3.3.2 Find all solutions of the system



































1 1 1 1 1

1 1 1 1 2

1 1 1 3 3

1 1 4 4 4

1 2 3 4 5





































































a

b

c

d

f



































=



































3

4

7

6

9



































,

if any.

Problem 3.3.3 Study the system
x + 2my + z = 4m;

2mx + y + z = 2;

x + y + 2mz = 2m2,

with real parameter m. You must determine, with proof, for which m this system has (i) no solution, (ii) exactly one
solution, and (iii) infinitely many solutions.

Problem 3.3.4 Study the following system of linear equations with parameter a.

(2a − 1)x + ay − (a + 1)z = 1,

ax + y − 2z = 1,

2x + (3 − a)y + (2a − 6)z = 1.

You must determine for which a there is: (i) no solution, (ii) a unique solution, (iii) infinitely many solutions.

Problem 3.3.5 Determine the values of the parameter m for which the system

x + y + (1 − m)z = m + 2

(1 + m)x − y + 2z = 0

2x − my + 3z = m + 2

is solvable.



Examples of Linear Systems 75

Problem 3.3.6 Determine the values of the parameter m for which the system

x + y + z + t = 4a

x − y − z + t = 4b

−x − y + z + t = 4c

x − y + z − t = 4d

is solvable.

Problem 3.3.7 It is known that the system
ay + bx = c;

cx + az = b;

bz + cy = a

possesses a unique solution. What conditions must (a, b, c) ∈ R3 fulfill in this case? Find this unique solution.

Problem 3.3.8 For which values of the real parameter a does the following system have (i) no solutions, (ii) exactly
one solution, (iii) infinitely many solutions?

(1 − a)x + (2a + 1)y + (2a + 2)z = a,

ax + ay = 2a + 2,

2x + (a + 1)y + (a − 1)z = a2 − 2a + 9.

Problem 3.3.9 Find strictly positive real numbers x, y, z such that

x3y2z6 = 1

x4y5z12 = 2

x2y2z5 = 3.

Problem 3.3.10 (Leningrad Mathematical Olympiad, 1987, Grade 5) The numbers 1, 2, . . . , 16 are arranged in
a 4 × 4 matrix A as shewn below. We may add 1 to all the numbers of any row or subtract 1 from all numbers of
any column. Using only the allowed operations, how can we obtain AT?

A =



























1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



























Problem 3.3.11 (International Mathematics Olympiad, 1963) Find all solutions x1, x2, x3, x4, x5 of the system

x5 + x2 = yx1;

x1 + x3 = yx2;

x2 + x4 = yx3;

x3 + x5 = yx4;

x4 + x1 = yx5,

where y is a parameter.



Chapter 4
Vector Spaces

4.1 Vector Spaces

179 Definition A vector space 〈V,+, ·, F〉 over a field 〈F,+, 〉 is a non-empty set V whose elements are
called vectors, possessing two operations + (vector addition), and · (scalar multiplication) which satisfy
the following axioms.

∀(−→a,
−→
b,−→c ) ∈ V3, ∀(α, β) ∈ F2,

VS1 Closure under vector addition :
−→
a +

−→
b ∈ V, (4.1)

VS2 Closure under scalar multiplication
α−→a ∈ V, (4.2)

VS3 Commutativity
−→a +

−→
b =

−→
b +

−→a (4.3)

VS4 Associativity

(
−→a +

−→
b) +

−→c =
−→a + (

−→
b +

−→c ) (4.4)

VS5 Existence of an additive identity

∃ −→
0 ∈ V :

−→a +
−→
0 =

−→a +
−→
0 =

−→a (4.5)

VS6 Existence of additive inverses

∃ −
−→a ∈ V :

−→a + (−
−→a) = (−

−→a) +
−→a =

−→
0 (4.6)

VS7 Distributive Law
α(

−→
a +

−→
b) = α

−→
a + α

−→
b (4.7)

VS8 Distributive Law
(α + β)−→a = α−→a + β−→a (4.8)

VS9
1F

−→
a =

−→
a (4.9)

VS10
(αβ)−→a = α(β−→a) (4.10)

76
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180 Example If n is a positive integer, then 〈Fn,+, ·, F〉 is a vector space by defining

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn),

λ(a1, a2, . . . , an) = (λa1, λa2, . . . , λan).

In particular, 〈Z2
2,+, ·,Z2〉 is a vector space with only four elements and we have seen the two-dimensional

and tridimensional spaces 〈R2,+, ·,R〉 and 〈R3,+, ·,R〉.

181 Example 〈Mm×n(F),+, ·, F〉 is a vector space under matrix addition and scalar multiplication of
matrices.

182 Example If
F[x] = {a0 + a1x + a2x + · · · + anx

n : ai ∈ F, n ∈ N}

denotes the set of polynomials with coefficients in a field 〈F,+, 〉 then 〈F[x],+, ·, F〉 is a vector space,
under polynomial addition and scalar multiplication of a polynomial.

183 Example If
Fn[x] = {a0 + a1x + a2x + · · · + akx

k : ai ∈ F, n ∈ N, k ≤ n}

denotes the set of polynomials with coefficients in a field 〈F,+, 〉 and degree at most n, then 〈Fn[x],+, ·, F〉
is a vector space, under polynomial addition and scalar multiplication of a polynomial.

184 Example Let k ∈ N and let Ck(R[a;b]) denote the set of k-fold continuously differentiable real-valued
functions defined on the interval [a;b]. Then Ck(R[a;b]) is a vector space under addition of functions and
multiplication of a function by a scalar.

185 Example Let p ∈]1; +∞[. Consider the set of sequences {an}
∞
n=0, an ∈ C,

lp =

{

{an}
∞
n=0 :

∞∑

n=0

|an|
p < +∞

}

.

Then lp is a vector space by defining addition as termwise addition of sequences and scalar multiplica-
tion as termwise multiplication:

{an}
∞
n=0 + {bn}

∞
n=0 = {(an + bn)}

∞
n=0,

λ{an}
∞
n=0 = {λan}

∞
n=0, λ ∈ C.

All the axioms of a vector space follow trivially from the fact that we are adding complex numbers,
except that we must prove that in lp there is closure under addition and scalar multiplication. Since∑∞

n=0 |an|
p < +∞ =⇒

∑∞
n=0 |λan|

p < +∞ closure under scalar multiplication follows easily. To prove
closure under addition, observe that if z ∈ C then |z| ∈ R+ and so by the Minkowski Inequality Theorem
405 we have

(∑N
n=0 |an + bn|

p
)1/p

≤
(∑N

n=0 |an|
p
)1/p

+
(∑N

n=0 |bn|
p
)1/p

≤
(∑∞

n=0 |an|
p
)1/p

+
(∑∞

n=0 |bn|
p
)1/p

.

(4.11)

This in turn implies that the series on the left in (4.11) converges, and so we may take the limit as
N → +∞ obtaining

(

∞∑

n=0

|an + bn|
p

)1/p

≤
(

∞∑

n=0

|an|
p

)1/p

+

(

∞∑

n=0

|bn|
p

)1/p

. (4.12)

Now (4.12) implies that the sum of two sequences in lp is also in lp, which demonstrates closure under
addition.
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186 Example The set
V = {a + b

√
2 + c

√
3 : (a, b, c) ∈ Q3}

with addition defined as

(a + b
√
2 + c

√
3) + (a ′ + b ′√2 + c ′√3) = (a + a ′) + (b + b ′)

√
2 + (c+ c ′)

√
3,

and scalar multiplication defined as

λ(a + b
√
2 + c

√
3) = (λa) + (λb)

√
2 + (λc)

√
3,

constitutes a vector space over Q.

187 Theorem In any vector space 〈V,+, ·, F〉,

∀ α ∈ F, α
−→
0 =

−→
0 .

Proof: We have

α
−→
0 = α(

−→
0 +

−→
0 ) = α

−→
0 + α

−→
0 .

Hence

α
−→
0 − α

−→
0 = α

−→
0 ,

or
−→
0 = α

−→
0 ,

proving the theorem. ❑

188 Theorem In any vector space 〈V,+, ·, F〉,

∀ −→v ∈ V, 0F
−→v =

−→
0 .

Proof: We have

0F
−→
v = (0F + 0F)

−→
v = 0F

−→
v + 0F

−→
v .

Therefore

0F
−→
v − 0F

−→
v = 0F

−→
v ,

or
−→
0 = 0F

−→
v ,

proving the theorem. ❑

189 Theorem In any vector space 〈V,+, ·, F〉, α ∈ F, −→
v ∈ V,

α−→v =
−→
0 =⇒ α = 0F ∨

−→v =
−→
0 .

Proof: Assume that α 6= 0F. Then α possesses a multiplicative inverse α−1 such that α−1α =

1F. Thus

α
−→
v =

−→
0 =⇒ α−1α

−→
v = α−1−→0 .

By Theorem 188, α−1−→0 =
−→
0 . Hence

α−1α−→v =
−→
0 .

Since by Axiom 4.9, we have α−1α
−→
v = 1F

−→
v =

−→
v , and so we conclude that

−→
v =

−→
0 . ❑

190 Theorem In any vector space 〈V,+, ·, F〉,

∀α ∈ F, ∀ −→v ∈ V, (−α)−→v = α(−−→v ) = −(α−→v ).
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Proof: We have

0F
−→v = (α + (−α))−→v = α−→v + (−α)−→v ,

whence

−(α−→v ) + 0F
−→v = (−α)−→v ,

that is

−(α
−→
v ) = (−α)

−→
v .

Similarly,
−→
0 = α(−→v −

−→v ) = α−→v + α(−−→v ),

whence

−(α
−→
v ) +

−→
0 = α(−

−→
v ),

that is

−(α−→v ) = α(−−→v ),

proving the theorem. ❑

Homework

Problem 4.1.1 Is R2 with vector addition and scalar
multiplication defined as









x1

x2









+









y1

y2









=









x1 + y1

x2 + y2









, λ









x1

x2









=









λx1

0









a vector space?

Problem 4.1.2 Demonstrate that the commutativity ax-
iom 4.3 is redundant.

Problem 4.1.3 Let V = R+ =]0; +∞[, the positive real
numbers and F = R, the real numbers. Demonstrate that

V is a vector space over F if vector addition is defined as
a ⊕ b = ab, (a, b) ∈ (R+)2 and scalar multiplication is
defined as α ⊗ a = aα, (α, a) ∈ (R,R+).

Problem 4.1.4 Let C denote the complex numbers and
R denote the real numbers. Is C a vector space over R
under ordinary addition and multiplication? Is R a vector
space over C?

Problem 4.1.5 Construct a vector space with exactly 8

elements.

Problem 4.1.6 Construct a vector space with exactly 9

elements.

4.2 Vector Subspaces

191 Definition Let 〈V,+, ·,F〉 be a vector space. A non-empty subset U ⊆ V which is also a vector space
under the inherited operations of V is called a vector subspace of V.

192 Example Trivially, X1 = {
−→
0 } and X2 = V are vector subspaces of V.

193 Theorem Let 〈V,+, ·, F〉 be a vector space. Then U ⊆ V, U 6= ∅ is a subspace of V if and only if

∀α ∈ F and ∀(−→a,
−→
b) ∈ U2 it is verified that

−→a + α
−→
b ∈ U.

Proof: Observe that U inherits commutativity, associativity and the distributive laws from V.

Thus a non-empty U ⊆ V is a vector subspace of V if (i) U is closed under scalar multiplication,

that is, if α ∈ F and
−→
v ∈ U, then α

−→
v ∈ U; (ii) U is closed under vector addition, that is, if

(
−→u,−→v ) ∈ U2, then

−→u +
−→v ∈ U. Observe that (i) gives the existence of inverses in U, for take

α = −1F and so
−→v ∈ U =⇒ −

−→v ∈ U. This coupled with (ii) gives the existence of the zero-vector,

for
−→
0 =

−→
v −

−→
v ∈ U. Thus we need to prove that if a non-empty subset of V satisfies the property
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stated in the Theorem then it is closed under scalar multiplication and vector addition, and vice-

versa, if a non-empty subset of V is closed under scalar multiplication and vector addition, then

it satisfies the property stated in the Theorem. But this is trivial. ❑

194 Example Shew that X = {A ∈ Mn×n(F) : tr (A) = 0F} is a subspace of Mn×n(F).

Solution: ◮ Take A,B ∈ X, α ∈ R. Then

tr (A + αB) = tr (A) + αtr (B) = 0F + α(0F) = 0F.

Hence A + αB ∈ X, meaning that X is a subspace of Mn×n(F). ◭

195 Example Let U ∈ Mn×n(F) be an arbitrary but fixed. Shew that

CU = {A ∈ Mn×n(F) : AU = UA}

is a subspace of Mn×n(F).

Solution: ◮ Take (A,B) ∈ (CU)2. Then AU = UA and BU = UB. Now

(A + αB)U = AU + αBU = UA + αUB = U(A + αB),

meaning that A + αB ∈ CU. Hence CU is a subspace of Mn×n(F). CU is called the commutator
of U. ◭

196 Theorem Let X ⊆ V, Y ⊆ V be vector subspaces of a vector space 〈V,+, ·, F〉. Then their intersection
X ∩ Y is also a vector subspace of V.

Proof: Let α ∈ F and (
−→a,

−→
b) ∈ (X ∩ Y)2. Then clearly (

−→a,
−→
b) ∈ X and (

−→a,
−→
b) ∈ Y . Since X is

a vector subspace,
−→a + α

−→
b ∈ X and since Y is a vector subspace,

−→a + α
−→
b ∈ Y . Thus

−→
a + α

−→
b ∈ X ∩ Y

and so X ∩ Y is a vector subspace of V by virtue of Theorem 193. ❑

☞Wewe will soon see that the only vector subspaces of 〈R2,+, ·,R〉 are the set containing the

zero-vector, any line through the origin, and R2 itself. The only vector subspaces of 〈R3,+, ·,R〉
are the set containing the zero-vector, any line through the origin, any plane containing the origin

and R3 itself.

Homework

Problem 4.2.1 Prove that

X =
































a

b

c

d



























∈ R4
: a − b − 3d = 0






is a vector subspace of R4.

Problem 4.2.2 Prove that

X =








































a

2a − 3b

5b

a + 2b

a



































: a, b ∈ R






is a vector subspace of R5.
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Problem 4.2.3 Let A ∈ Mm×n(F) be a fixed matrix.
Demonstrate that

S = {X ∈ Mn×1(F) : AX = 0m×1}

is a subspace of Mn×1(F).

Problem 4.2.4 Prove that the set X ⊆ Mn×n(F) of upper
triangular matrices is a subspace of Mn×n(F).

Problem 4.2.5 Prove that the set X ⊆ Mn×n(F) of sym-
metric matrices is a subspace of Mn×n(F).

Problem 4.2.6 Prove that the set X ⊆ Mn×n(F) of skew-
symmetric matrices is a subspace of Mn×n(F).

Problem 4.2.7 Prove that the following subsets are not
subspaces of the given vector space. Here you must say
which of the axioms for a vector space fail.

➊






















a

b

0

















: a, b ∈ R, a2
+ b2

= 1






⊆ R3

➋






















a

b

0

















: a, b ∈ R2, ab = 0






⊆ R3

➌














a b

0 0









: (a, b) ∈ R2, a + b2
= 0





⊆ M2×2(R)

Problem 4.2.8 Let 〈V,+, ·, F〉 be a vector space, and let
U1 ⊆ V and U2 ⊆ V be vector subspaces. Prove that if
U1 ∪ U2 is a vector subspace of V, then either U1 ⊆ U2

or U2 ⊆ U1.

Problem 4.2.9 Let V a vector space over a field F. If F is
infinite, show that V is not the set-theoretic union of a
finite number of proper subspaces.

Problem 4.2.10 Give an example of a finite vector space
V over a finite field F such that

V = V1 ∪ V2 ∪ V3,

where the Vk are proper subspaces.

4.3 Linear Independence

197 Definition Let (λ1, λ2, · · · , λn) ∈ Fn. Then the vectorial sum

n∑

j=1

λj
−→a j

is said to be a linear combination of the vectors −→
a i ∈ V, 1 ≤ i ≤ n.

198 Example Any matrix









a b

c d









∈ M2×2(R) can be written as a linear combination of the matrices









1 0

0 0









,









0 1

0 0









,









0 0

1 0









,









0 0

0 1









,

for








a b

c d









= a









1 0

0 0









+ b









0 1

0 0









+ c









0 0

1 0









+ d









0 0

0 1









.

199 Example Any polynomial of degree at most 2, say a + bx + cx2 ∈ R2[x] can be written as a linear
combination of 1, x − 1, and x2 − x + 2, for

a + bx + cx2 = (a − c)(1) + (b + c)(x− 1) + c(x2 − x + 2).
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Generalising the notion of two parallel vectors, we have

200 Definition The vectors −→a i ∈ V, 1 ≤ i ≤ n, are linearly dependent or tied if

∃(λ1, λ2, · · · , λn) ∈ Fn \ {0} such that
n∑

j=1

λj
−→a j =

−→
0 ,

that is, if there is a non-trivial linear combination of them adding to the zero vector.

201 Definition The vectors −→
a i ∈ V, 1 ≤ i ≤ n, are linearly independent or free if they are not linearly

dependent. That is, if (λ1, λ2, · · · , λn) ∈ Fn then

n∑

j=1

λj
−→a j =

−→
0 =⇒ λ1 = λ2 = · · · = λn = 0F.

☞ A family of vectors is linearly independent if and only if the only linear combination of them

giving the zero-vector is the trivial linear combination.

202 Example 




















1

2

3

















,

















4

5

6

















,

















7

8

9






















is a tied family of vectors in R3, since

(1)

















1

2

3

















+ (−2)

















4

5

6

















+ (1)

















7

8

9

















=

















0

0

0

















.

203 Example Let −→u,−→v be linearly independent vectors in some vector space over a field F with charac-
teristic different from 2. Shew that the two new vectors −→

x =
−→
u −

−→
v and −→

y =
−→
u +

−→
v are also linearly

independent.

Solution: ◮ Assume that a(
−→
u −

−→
v ) + b(

−→
u +

−→
v ) =

−→
0 . Then

(a + b)−→u + (a − b)−→v =
−→
0 .

Since
−→u,−→v are linearly independent, the above coefficients must be 0, that is, a + b = 0F and

a− b = 0F. But this gives 2a = 2b = 0F, which implies a = b = 0F, if the characteristic of the field

is not 2. This proves the linear independence of
−→
u −

−→
v and

−→
u +

−→
v . ◭

204 Theorem Let A ∈ Mm×n(F). Then the columns of A are linearly independent if and only the only
solution to the system AX = 0m is the trivial solution.

Proof: Let A1, . . . , An be the columns of A. Since

x1A1 + x2A2 + · · ·+ xnAn = AX,

the result follows. ❑
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205 Theorem Any family
{
−→
0 ,−→u1,

−→u2, . . . ,
−→uk}

containing the zero-vector is linearly dependent.

Proof: This follows at once by observing that

1F
−→
0 + 0F

−→
u1 + 0F

−→
u2 + . . . ,+0F

−→
uk =

−→
0

is a non-trivial linear combination of these vectors equalling the zero-vector. ❑

Homework

Problem 4.3.1 Shew that





















1

0

0

















,

















1

1

0

















,

















1

1

1






















forms a free family of vectors in R3.

Problem 4.3.2 Prove that the set































1

1

1

1



























,



























1

1

−1

−1



























,



























1

−1

1

−1



























,



























1

1

0

1
































is a linearly independent set of vectors in R4 and shew

that X =



























1

2

1

1



























can be written as a linear combination of

these vectors.

Problem 4.3.3 Let (
−→u,−→v ) ∈ (Rn)2. Prove that |

−→u•
−→v | =

∣

∣

∣

∣

−→u
∣

∣

∣

∣

∣

∣

∣

∣

−→v
∣

∣

∣

∣ if and only if −→u and −→v are linearly dependent.

Problem 4.3.4 Prove that













1 0

0 1









,









1 0

0 −1









,









0 1

1 0









,









0 1

−1 0














is a linearly independent family over R. Write









1 1

1 1









as

a linear combination of these matrices.

Problem 4.3.5 Let {
−→
v 1,

−→
v 2,

−→
v 3,

−→
v 4} be a linearly inde-

pendent family of vectors. Prove that the family

{
−→v 1 +

−→v 2,
−→v 2 +

−→v 3,
−→v 3 +

−→v 4,
−→v 4 +

−→v 1}

is not linearly independent.

Problem 4.3.6 Let {−→v 1,
−→v 2,

−→v 3} be linearly independent
vectors in R5. Are the vectors

−→
b1 = 3−→v 1 + 2−→v 2 + 4−→v 3,
−→
b2 =

−→v 1 + 4−→v 2 + 2−→v 3,
−→
b3 = 9−→v 1 + 4−→v 2 + 3−→v 3,
−→
b4 =

−→v 1 + 2−→v 2 + 5−→v 3,

linearly independent? Prove or disprove!

Problem 4.3.7 Is the family {1,
√
2} linearly independent

over Q?

Problem 4.3.8 Is the family {1,
√
2} linearly independent

over R?

Problem 4.3.9 Consider the vector space

V = {a + b
√
2 + c

√
3 : (a, b, c) ∈ Q3

}.

1. Shew that {1,
√
2,

√
3} are linearly independent over

Q.

2. Express
1

1 −
√
2
+

2√
12 − 2

as a linear combination of {1,
√
2,

√
3}.

Problem 4.3.10 Let f, g, h belong to C∞(RR) (the space
of infinitely continuously differentiable real-valued func-
tions defined on the real line) and be given by

f(x) = ex, g(x) = e2x, h(x) = e3x.

Shew that f, g, h are linearly independent over R.

Problem 4.3.11 Let f, g, h belong to C∞(RR) be given by

f(x) = cos2 x, g(x) = sin2 x, h(x) = cos 2x.

Shew that f, g, h are linearly dependent over R.
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4.4 Spanning Sets

206 Definition A family {
−→u1,

−→u2, . . . ,
−→uk, . . . , } ⊆ V is said to span or generate V if every −→v ∈ V can be

written as a linear combination of the −→u j’s.

207 Theorem If {−→u1,
−→u2, . . . ,

−→uk, . . . , } ⊆ V spans V, then any superset

{
−→w,−→u1,

−→u2, . . . ,
−→uk, . . . , } ⊆ V

also spans V.

Proof: This follows at once from

l∑

i=1

λi
−→
u i = 0F

−→
w +

l∑

i=1

λi
−→
u i.

❑

208 Example The family of vectors






−→
i =

















1

0

0

















,
−→
j =

















0

1

0

















,
−→
k =

















0

0

1






















spans R3 since given

















a

b

c

















∈ R3 we may write

















a

b

c

















= a
−→
i + b

−→
j + c

−→
k.

209 Example Prove that the family of vectors






−→
t 1 =

















1

0

0

















,
−→
t 2 =

















1

1

0

















,
−→
t 3 =

















1

1

1






















spans R3.
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Solution: ◮ This follows from the identity

















a

b

c

















= (a − b)

















1

0

0

















+ (b − c)

















1

1

0

















+ c

















1

1

1

















= (a − b)
−→
t 1 + (b − c)

−→
t 2 + c

−→
t 3.

◭

210 Example Since








a b

c d









= a









1 0

0 0









+ b









0 1

0 0









+ c









0 0

1 0









+ d









0 0

0 1









the set of matrices









1 0

0 0









,









0 1

0 0









,









0 0

1 0









,









0 0

0 1









is a spanning set for M2×2(R).

211 Example The set
{1, x, x2, x3, . . . , xn, . . .}

spans R[x], the set of polynomials with real coefficients and indeterminate x.

212 Definition The span of a family of vectors {
−→u1,

−→u2, . . . ,
−→uk, . . . , } is the set of all finite linear combina-

tions obtained from the ui’s. We denote the span of {−→u1,
−→u2, . . . ,

−→uk, . . . , } by

span
(−→u1,

−→u2, . . . ,
−→uk, . . . ,

)

.

213 Theorem Let 〈V,+, ·, F〉 be a vector space. Then

span
(−→
u1,

−→
u2, . . . ,

−→
uk, . . . ,

)

⊆ V

is a vector subspace of V.

Proof: Let α ∈ F and let

−→x =

l∑

k=1

ak
−→uk,

−→y =

l∑

k=1

bk
−→uk,

be in span
(−→
u1,

−→
u2, . . . ,

−→
uk, . . . ,

)

(some of the coefficients might be 0F). Then

−→
x + α

−→
y =

l∑

k=1

(ak + αbk)
−→
uk ∈ span

(−→
u1,

−→
u2, . . . ,

−→
uk, . . . ,

)

,

and so span
(−→u1,

−→u2, . . . ,
−→uk, . . . ,

)

is a subspace of V. ❑

214 Corollary span
(−→u1,

−→u2, . . . ,
−→uk, . . . ,

)

⊆ V is the smallest vector subspace of V (in the sense of set
inclusion) containing the set

{
−→
u1,

−→
u2, . . . ,

−→
uk, . . . , }.

Proof: If W ⊆ V is a vector subspace of V containing the set

{
−→
u1,

−→
u2, . . . ,

−→
uk, . . . , }

then it contains every finite linear combination of them, and hence, it contains span
(−→u1,

−→u2, . . . ,
−→uk, . . . ,

)

.
❑
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215 Example If A ∈ M2×2(R), A ∈ span

















1 0

0 0









,









0 0

0 1









,









0 1

1 0

















then A has the form

a









1 0

0 0









+ b









0 0

0 1









+ c









0 1

1 0









=









a c

c b









,

i.e., this family spans the set of all symmetric 2 × 2 matrices over R.

216 Theorem Let V be a vector space over a field F and let (−→v ,−→w) ∈ V2, γ ∈ F \ {0F}. Then

span
(−→v ,−→w

)

= span
(−→v , γ−→w

)

.

Proof: The equality

a−→v + b−→w = a−→v + (bγ−1)(γ−→w),

proves the statement. ❑

217 Theorem Let V be a vector space over a field F and let (−→v ,−→w) ∈ V2, γ ∈ F. Then

span
(−→v ,−→w

)

= span
(−→w,−→v + γ−→w

)

.

Proof: This follows from the equality

a−→v + b−→w = a(−→v + γ−→w) + (b − aγ)−→w.

❑

Homework

Problem 4.4.1 Let R3[x] denote the set of polynomials with degree at most 3 and real coefficients. Prove that the
set

{1, 1 + x, (1 + x)2, (1 + x)3}

spans R3[x].

Problem 4.4.2 Shew that

















1

1

−1

















6∈ span

































1

0

−1

















,

















0

1

−1

































.

Problem 4.4.3 What is span

















1 0

0 0









,









0 0

0 1









,









0 1

−1 0

















?

Problem 4.4.4 Prove that

span

















1 0

0 1









,









1 0

0 −1









,









0 1

1 0









,









0 1

−1 0

















= M2×2(R).
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Problem 4.4.5 For the vectors in R3,

−→a =

















1

2

1

















,
−→
b =

















1

3

2

















, −→c =

















1

1

0

















,
−→
d =

















3

8

5

















,

prove that

span
(

−→a,
−→
b
)

= span
(

−→c ,
−→
d
)

.

4.5 Bases

218 Definition A family {
−→
u1,

−→
u2, . . . ,

−→
uk, . . .} ⊆ V is said to be a basis of V if (i) they are linearly indepen-

dent, (ii) they span V.

219 Example The family

−→
e i =



















































0F

...

0F

1F

0F

...

0F



















































,

where there is a 1F on the i-th slot and 0F’s on the other n − 1 positions, is a basis for Fn.

220 Theorem Let 〈V,+, ·, F〉 be a vector space and let

U = {
−→u1,

−→u2, . . . ,
−→uk, . . .} ⊆ V

be a family of linearly independent vectors in V which is maximal in the sense that if U ′ is any other
family of vectors of V properly containing U then U ′ is a dependent family. Then U forms a basis for V.

Proof: Since U is a linearly independent family, we need only to prove that it spans V. Take
−→v ∈ V. If

−→v ∈ U then there is nothing to prove, so assume that
−→v ∈ V \ U. Consider the set

U ′ = U∪ {
−→v }. This set properly contains U, and so, by assumption, it forms a dependent family.

There exists scalars α0, α1, . . . , αn such that

α0
−→v + α1

−→u1 + · · ·+ αn
−→un =

−→
0 .

Now, α0 6= 0F, otherwise the
−→
u i would be linearly dependent. Hence α−1

0 exists and we have

−→v = −α−1
0 (α1

−→u1 + · · ·+ αn
−→un),

and so the
−→u i span V. ❑

☞ From Theorem 220 it follows that to shew that a vector space has a basis it is enough to

shew that it has a maximal linearly independent set of vectors. Such a proof requires something

called Zörn’s Lemma, and it is beyond our scope. We dodge the whole business by taking as an

axiom that every vector space possesses a basis.
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221 Theorem (Steinitz Replacement Theorem) Let 〈V,+, ·, F〉 be a vector space and let U = {
−→
u1,

−→
u2, . . .} ⊆

V. Let W = {
−→w1,

−→w2, . . . ,
−→wk} be an independent family of vectors in span (U). Then there exist k of the

−→u i’s, say {
−→u1,

−→u2, . . . ,
−→uk} which may be replaced by the −→wi’s in such a way that

span
(−→w1,

−→w2, . . . ,
−→wk,

−→uk+1, . . .
)

= span (U) .

Proof: We prove this by induction on k. If k = 1, then

−→w1 = α1
−→u1 + α2

−→u2 + · · · + αn
−→un

for some n and scalars αi. There is an αi 6= 0F, since otherwise
−→w1 =

−→
0 contrary to the

assumption that the
−→
wi are linearly independent. After reordering, we may assume that α1 6= 0F.

Hence
−→
u1 = α−1

1 (
−→
w1 − (α2

−→
u2 + · · · + αn

−→
un)),

and so
−→u1 ∈ span

(−→w1,
−→u2, . . . ,

)

and

span
(−→
w1,

−→
u2, . . . ,

)

= span
(−→
u1,

−→
u2, . . . ,

)

.

Assume now that the theorem is true for any set of fewer than k independent vectors. We may

thus assume that that {
−→
u1, . . .} has more than k − 1 vectors and that

span
(−→w1,

−→w2, . . . ,
−→wk−1,

−→uk, , . . .
)

= span (U) .

Since
−→wk ∈ U we have

−→wk = β1
−→w1 + β2

−→w2 + · · · + βk−1
−→wk−1 + γk

−→uk + γk+1
−→uk+1 + γm

−→um.

If all the γi = 0F, then the {
−→w1,

−→w2, . . . ,
−→wk}would be linearly dependent, contrary to assumption.

Thus there is a γi 6= 0F, and after reordering, we may assume that γk 6= 0F. We have therefore

−→
uk = γ−1

k (
−→
wk − (β1

−→
w1 + β2

−→
w2 + · · · + βk−1

−→
wk−1 + γk+1

−→
uk+1 + γm

−→
um)).

But this means that

span
(−→w1,

−→w2, . . . ,
−→wk,

−→uk+1, . . .
)

= span (U) .

This finishes the proof. ❑

222 Corollary Let {−→w1,
−→w2, . . . ,

−→wn} be an independent family of vectors with V = span
(−→w1,

−→w2, . . . ,
−→wn

)

.
If we also have V = span

(−→u1,
−→u2, . . . ,

−→uν

)

, then

1. n ≤ ν,

2. n = ν if and only if the {
−→y1,

−→y2, . . . ,
−→yν} are a linearly independent family.

3. Any basis for V has exactly n elements.

Proof:

1. In the Steinitz Replacement Theorem 221 replace the first n −→u i’s by the
−→wi’s and n ≤ ν

follows.

2. If {
−→
u1,

−→
u2, . . . ,

−→
uν} are a linearly independent family, then we may interchange the rôle of

the
−→wi and

−→u i obtaining ν ≤ n. Conversely, if ν = n and if the
−→u i are dependent, we could

express some
−→
u i as a linear combination of the remaining ν−1 vectors, and thus we would

have shewn that some ν − 1 vectors span V. From (1) in this corollary we would conclude

that n ≤ ν − 1, contradicting n = ν.

3. This follows from the definition of what a basis is and from (2) of this corollary.
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❑

223 Definition The dimension of a vector space 〈V,+, ·, F〉 is the number of elements of any of its bases,
and we denote it by dimV.

224 Theorem Any linearly independent family of vectors

{
−→
x 1,

−→
x 2, . . . ,

−→
x k}

in a vector space V can be completed into a family

{
−→x 1,

−→x 2, . . . ,
−→x k,

−→yk+1,
−→yk+2, . . .}

so that this latter family become a basis for V.

Proof: Take any basis {
−→
u1, . . . ,

−→
uk,

−→
uk+1, . . . , } and use Steinitz Replacement Theorem 221.

❑

225 Corollary If U ⊆ V is a vector subspace of a finite dimensional vector space V then dimU ≤ dimV.

Proof: Since any basis of U can be extended to a basis of V, it follows that the number of

elements of the basis of U is at most as large as that for V. ❑

226 Example Find a basis and the dimension of the space generated by the set of symmetric matrices in
Mn×n(R).

Solution: ◮ Let Eij ∈ Mn×n(R) be the n × n matrix with a 1 on the ij-th position and 0’s

everywhere else. For 1 ≤ i < j ≤ n, consider the
(n

2

)

=
n(n− 1)

2
matrices Aij = Eij + Eji. The

Aij have a 1 on the ij-th and ji-th position and 0’s everywhere else. They, together with the n
matrices Eii, 1 ≤ i ≤ n constitute a basis for the space of symmetric matrices. The dimension of

this space is thus
n(n− 1)

2
+ n =

n(n + 1)

2
.

◭

227 Theorem Let {−→u1, . . . ,
−→un} be vectors in Rn. Then the −→u ’s form a basis if and only if the n× n matrix

A formed by taking the −→
u ’s as the columns of A is invertible.

Proof: Since we have the right number of vectors, it is enough to prove that the
−→u ’s are linearly

independent. But if X =

























x1

x2

...

xn

























, then

x1
−→u1 + · · · + xn

−→un = AX.

If A is invertible, then AX = 0n =⇒ X = A−10n = 0n, meaning that x1 = x2 = · · · xn = 0, so the
−→
u ’s are linearly independent.

Conversely, assume that the
−→u ’s are linearly independent. Then the equation AX = 0n has

a unique solution. Let r = rank (A) and let (P,Q) ∈ (GLn(R))2 be matrices such that A =

P−1Dn,n,rQ
−1, where Dn,n,r is the Hermite normal form of A. Thus
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AX = 0n =⇒ P−1Dn,n,rQ
−1X = 0n =⇒ Dn,n,rQ

−1X = 0n.

Put Q−1X =

























y1

y2

...

yn

























. Then

Dn,n,rQ
−1X = 0n =⇒ y1

−→e 1 + · · · + yr
−→e r = 0n,

where
−→
e j is the n-dimensional column vector with a 1 on the j-th slot and 0’s everywhere else.

If r < n then yr+1, . . . , yn can be taken arbitrarily and so there would not be a unique solution,

a contradiction. Hence r = n and A is invertible. ❑

Homework

Problem 4.5.1 In problem 4.2.2 we saw that

X =








































a

2a − 3b

5b

a + 2b

a



































: a, b ∈ R






is a vector subspace of R5. Find a basis for this subspace.

Problem 4.5.2 Let {−→v 1,
−→v 2,

−→v 3,
−→v 4,

−→v 5} be a basis for a vector space V over a field F. Prove that

{
−→v 1 +

−→v 2,
−→v 2 +

−→v 3,
−→v 3 +

−→v 4,
−→v 4 +

−→v 5,
−→v 5 +

−→v 1}

is also a basis for V.

Problem 4.5.3 Find a basis for the solution space of the system of n + 1 linear equations of 2n unknowns

x1 + x2 + · · · + xn = 0,

x2 + x3 + · · · + xn+1 = 0,

...
...
...

xn+1 + xn+2 + · · · + x2n = 0.

Problem 4.5.4 Prove that the set V of skew-symmetric n × n matrices is a subspace of Mn×n(R) and find its
dimension. Exhibit a basis for V.

Problem 4.5.5 Prove that the set
X = {(a, b, c, d)|b + 2c = 0} ⊆ R4

is a vector subspace of R4. Find its dimension and a basis for X.

Problem 4.5.6 Prove that the dimension of the vector subspace of lower triangular n× n matrices is
n(n + 1)

2
and

find a basis for this space.
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Problem 4.5.7 Find a basis and the dimension of

X = span



























−→v1 =



























1

1

1

1



























, −→v2 =



























1

1

1

0



























, −→v3 =



























2

2

2

1





















































.

Problem 4.5.8 Find a basis and the dimension of

X = span



























−→v1 =



























1

1

1

1



























, −→v2 =



























1

1

1

0



























, −→v3 =



























2

2

2

2





















































.

Problem 4.5.9 Find a basis and the dimension of

X = span









−→v1 =









1 0

0 1









, −→v2 =









1 0

2 0









, −→v3 =









0 1

2 0









, −→v4 =









1 −1

0 0

















.

Problem 4.5.10 Prove that the set

V =






















a b c

0 d f

0 0 g

















∈ M3×3(R) : a + b + c = 0, a + d + g = 0






is a vector space of M3×3(R) and find a basis for it and its dimension.

4.6 Coordinates

228 Theorem Let {
−→v 1,

−→v 2, . . . ,
−→vn} be a basis for a vector space V. Then any −→v ∈ V has a unique

representation
−→
v = a1

−→
v 1 + a2

−→
v 2 + · · ·+ an

−→
v n.

Proof: Let
−→v = b1

−→v 1 + b2
−→v 2 + · · ·+ bn

−→vn

be another representation of
−→
v . Then

−→
0 = (a1 − b1)

−→
v 1 + (a2 − b2)

−→
v 2 + · · ·+ (an − bn)

−→
v n.

Since {
−→v 1,

−→v 2, . . . ,
−→vn} forms a basis for V, they are a linearly independent family. Thus we

must have

a1 − b1 = a2 − b2 = · · · = an − bn = 0F,

that is

a1 = b1;a2 = b2; · · · ;an = bn,

proving uniqueness. ❑
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229 Definition An ordered basis {
−→
v 1,

−→
v 2, . . . ,

−→
vn} of a vector space V is a basis where the order of the −→

v k

has been fixed. Given an ordered basis {
−→v 1,

−→v 2, . . . ,
−→vn} of a vector space V, Theorem 228 ensures that

there are unique (a1, a2, . . . , an) ∈ Fn such that

−→
v = a1

−→
v 1 + a2

−→
v 2 + · · ·+ an

−→
v n.

The ak’s are called the coordinates of the vector −→
v .

230 Example The standard ordered basis for R3 is S = {
−→
i ,

−→
j ,

−→
k }. The vector

















1

2

3

















∈ R3 for example, has

coordinates (1, 2, 3)S . If the order of the basis were changed to the ordered basis S1 = {
−→
i ,

−→
k,

−→
j }, then

















1

2

3

















∈ R3 would have coordinates (1, 3, 2)S1
.

☞ Usually, when we give a coordinate representation for a vector
−→
v ∈ Rn, we assume that

we are using the standard basis.

231 Example Consider the vector

















1

2

3

















∈ R3 (given in standard representation). Since

















1

2

3

















= −1

















1

0

0

















− 1

















1

1

0

















+ 3

















1

1

1

















,

under the ordered basis B1 =






















1

0

0

















,

















1

1

0

















,

















1

1

1






















,

















1

2

3

















has coordinates (−1,−1, 3)B1
. We write

















1

2

3

















=

















−1

−1

3

















B1

.
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232 Example The vectors of

B1 =














1

1









,









1

2














are non-parallel, and so form a basis for R2. So do the vectors

B2 =














2

1









,









1

−1













.

Find the coordinates of









3

4









B1

in the base B2.

Solution: ◮ We are seeking x, y such that

3









1

1









+ 4









1

2









= x









2

1









+ y









1

−1









=⇒









1 1

1 2

















3

4









=









2 1

1 −1

















x

y









B2

.

Thus








x

y









B2

=









2 1

1 −1









−1 







1 1

1 2

















3

4









=









1
3

1
3

1
3

−2
3

















1 1

1 2

















3

4









=









2
3

1

−1
3

−1

















3

4









=









6

−5









B2

.

Let us check by expressing both vectors in the standard basis of R2:









3

4









B1

= 3









1

1









+ 4









1

2









=









7

11









,









6

−5









B2

= 6









2

1









− 5









1

−1









=









7

11









.

◭
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In general let us consider bases B1 , B2 for the same vector space V. We want to convert XB1
to

YB2
. We let A be the matrix formed with the column vectors of B1 in the given order an B be the matrix

formed with the column vectors of B2 in the given order. Both A and B are invertible matrices since the
B’s are bases, in view of Theorem 227. Then we must have

AXB1
= BYB2

=⇒ YB2
= B−1AXB1

.

Also,

XB1
= A−1BYB2

.

This prompts the following definition.

233 Definition Let B1 = {
−→u1,

−→u2, . . . ,
−→un} and B2 = {

−→v 1,
−→v 2, . . . ,

−→vn} be two ordered bases for a vector
space V. Let A ∈ Mn×n(F) be the matrix having the −→u ’s as its columns and let B ∈ Mn×n(F) be the
matrix having the −→

v ’s as its columns. The matrix P = B−1A is called the transition matrix from B1 to B2

and the matrix P−1 = A−1B is called the transition matrix from B2 to B1.

234 Example Consider the bases of R3

B1 =






















1

1

1

















,

















1

1

0

















,

















1

0

0






















,

B2 =






















1

1

−1

















,

















1

−1

0

















,

















2

0

0






















.

Find the transition matrix from B1 to B2 and also the transition matrix from B2 to B1. Also find the

coordinates of

















1

2

3

















B1

in terms of B2.

Solution: ◮ Let

A =

















1 1 1

1 1 0

1 0 0

















, B =

















1 1 2

1 −1 0

−1 0 0

















.
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The transition matrix from B1 to B2 is

P = B−1A

=

















1 1 2

1 −1 0

−1 0 0

















−1 















1 1 1

1 1 0

1 0 0

















=

















0 0 −1

0 −1 −1

1
2

1
2

1

































1 1 1

1 1 0

1 0 0

















=

















−1 0 0

−2 −1 −0

2 1 1
2

















.

The transition matrix from B2 to B1 is

P−1 =

















−1 0 0

−2 −1 0

2 1 1
2

















−1

=

















−1 0 0

2 −1 0

0 2 2

















.

Now,

YB2
=

















−1 0 0

−2 −1 0

2 1 1
2

































1

2

3

















B1

=

















−1

−4

11
2

















B2

.

As a check, observe that in the standard basis for R3

















1

2

3

















B1

= 1

















1

1

1

















+ 2

















1

1

0

















+ 3

















1

0

0

















=

















6

3

1

















,

















−1

−4

11
2

















B2

= −1

















1

1

−1

















− 4

















1

−1

0

















+
11

2

















2

0

0

















=

















6

3

1

















.

◭
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Homework

Problem 4.6.1 1. Prove that the following vectors are
linearly independent in R4

−→a1 =



























1

1

1

1



























, −→a2 =



























1

1

−1

−1



























, −→a3 =



























1

−1

1

−1



























, −→a4 =



























1

−1

−1

1



























.

2. Find the coordinates of



























1

2

1

1



























under the ordered ba-

sis (
−→a1,

−→a2,
−→a3,

−→a4).

3. Find the coordinates of



























1

2

1

1



























under the ordered ba-

sis (
−→a1,

−→a3,
−→a2,

−→a4).

Problem 4.6.2 Consider the matrix

A(a) =



























a 1 1 1

0 1 0 1

1 0 a 1

1 1 1 1



























.

➊ Determine all a for which A(a) is not invertible.

➋ Find the inverse of A(a) when A(a) is invertible.

➌ Find the transition matrix from the basis

B1 =



























1

1

1

1



























,



























1

1

1

0



























,



























1

1

0

0



























,



























1

0

0

0



























to the basis

B2 =



























a

0

1

1



























,



























1

1

0

1



























,



























1

0

a

1



























,



























1

1

1

1



























.



Chapter 5
Linear Transformations

5.1 Linear Transformations

235 Definition Let 〈V,+, ·, F〉 and 〈W,+, ·, F〉 be vector spaces over the same field F. A linear transforma-

tion or homomorphism

L :
V → W

−→a 7→ L(−→a)

,

is a function which is

• Linear: L(−→a +
−→
b) = L(−→a) + L(

−→
b),

• Homogeneous: L(α−→a) = αL(−→a), for α ∈ F.

☞ It is clear that the above two conditions can be summarised conveniently into

L(−→a + α
−→
b) = L(−→a) + αL(

−→
b).

236 Example Let

L :
Mn×n(R) → R

A 7→ tr (A)

.

Then L is linear, for if (A,B) ∈ Mn×n(R), then

L(A + αB) = tr (A + αB) = tr (A) + αtr (B) = L(A) + αL(B).

237 Example Let

L :
Mn×n(R) → Mn×n(R)

A 7→ AT

.

Then L is linear, for if (A,B) ∈ Mn×n(R), then

L(A + αB) = (A + αB)T = AT + αBT = L(A) + αL(B).

97
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238 Example For a point (x, y) ∈ R2, its reflexion about the y-axis is (−x, y). Prove that

R :
R2 → R2

(x, y) 7→ (−x, y)

is linear.

Solution: ◮ Let (x1, y1) ∈ R2, (x2, y2) ∈ R2, and α ∈ R. Then

R((x1, y1) + α(x2, y2)) = R((x1 + αx2, y1 + αy2))

= (−(x1 + αx2), y1 + αy2)

= (−x1, y1) + α(−x2, y2)

= R((x1, y1)) + αR((x2, y2)),

whence R is linear. ◭

239 Example Let L : R2 → R4 be a linear transformation with

L









1

1









=

























−1

1

2

3

























; L









−1

1









=

























2

0

2

3

























.

Find L









5

3









.

Solution: ◮ Since








5

3









= 4









1

1









−









−1

1









,

we have

L









5

3









= 4L









1

1









− L









−1

1









= 4

























−1

1

2

3

























−

























2

0

2

3

























=

























−6

4

6

9

























.

◭

240 Theorem Let 〈V,+, ·, F〉 and 〈W,+, ·, F〉 be vector spaces over the same field F, and let L : V → W be
a linear transformation. Then
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• L(
−→
0V) =

−→
0W.

• ∀−→x ∈ V, L(−
−→
x ) = −L(

−→
x ).

Proof: We have

L(
−→
0V) = L(

−→
0V +

−→
0V) = L(

−→
0V) + L(

−→
0V),

hence

L(
−→
0V) − L(

−→
0V) = L(

−→
0V).

Since

L(
−→
0V) − L(

−→
0V) =

−→
0W,

we obtain the first result.

Now
−→
0W = L(

−→
0V) = L(−→x + (−

−→x )) = L(−→x ) + L(−−→x ),

from where the second result follows. ❑

Homework

Problem 5.1.1 Consider L : R3 → R3,

L

















x

y

z

















=

















x − y − z

x + y + z

z

















.

Prove that L is linear.

Problem 5.1.2 Let A ∈ GLn(R) be a fixed matrix. Prove

that

L :
Mn×n(R) → Mn×n(R)

H 7→ −A−1HA−1

is a linear transformation.

Problem 5.1.3 Let V be a vector space and let S ⊆ V.

The set S is said to be convex if ∀α ∈ [0; 1], ∀x, y ∈ S,
(1 − α)x + αy ∈ S, that is, for any two points in S,
the straight line joining them also belongs to S. Let
T : V → W be a linear transformation from the vector
space V to the vector space W. Prove that T maps con-
vex sets into convex sets.

5.2 Kernel and Image of a Linear Transformation

241 Definition Let 〈V,+, ·, F〉 and 〈W,+, ·, F〉 be vector spaces over the same field F, and

T :
V → W

−→v 7→ T(−→v )

be a linear transformation. The kernel of T is the set

ker (T) = {
−→
v ∈ V : T(

−→
v ) =

−→
0W}.

The image of T is the set

Im (T) = {
−→w ∈ w : ∃−→v ∈ V such that T(−→v ) =

−→w} = T(V).

☞ Since T(
−→
0V) =

−→
0W by Theorem 240, we have

−→
0V ∈ ker (T) and

−→
0W ∈ Im (T).
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242 Theorem Let 〈V,+, ·, F〉 and 〈W,+, ·, F〉 be vector spaces over the same field F, and

T :
V → W

−→
v 7→ T(

−→
v )

be a linear transformation. Then ker (T) is a vector subspace of V and Im (T) is a vector subspace of
W.

Proof: Let (
−→v 1,

−→v 2) ∈ (ker (T))2 and α ∈ F. Then T(−→v 1) = T(−→v 2) =
−→
0V . We must prove that

−→
v 1 + α

−→
v 2 ∈ ker (T), that is, that T(−→v 1 + α

−→
v 2) =

−→
0W. But

T(−→v 1 + α−→v 2) = T(−→v 1) + αT(−→v 2) =
−→
0V + α

−→
0V =

−→
0V

proving that ker (T) is a subspace of V.

Now, let (
−→w1,

−→w2) ∈ (Im (T))2 and α ∈ F. Then ∃(−→v 1,
−→v 2) ∈ V2 such that T(−→v 1) =

−→w1 and

T(−→v 2) =
−→w2. We must prove that

−→w1 + α−→w2 ∈ Im (T), that is, that ∃−→v such that T(−→v ) =
−→
w1 + α

−→
w2. But

−→w1 + α−→w2 = T(−→v 1) + αT(−→v 2) = T(−→v 1 + α−→v 2),

and so we may take
−→
v =

−→
v 1 + α

−→
v 2. This proves that Im (T) is a subspace of W.

❑

243 Theorem Let 〈V,+, ·, F〉 and 〈W,+, ·, F〉 be vector spaces over the same field F, and

T :
V → W

−→v 7→ T(−→v )

be a linear transformation. Then T is injective if and only if ker (T) =
−→
0V .

Proof: Assume that T is injective. Then there is a unique
−→
x ∈ V mapping to

−→
0W:

T(
−→
x ) =

−→
0W.

By Theorem 240, T(
−→
0V) =

−→
0W, i.e., a linear transformation takes the zero vector of one space

to the zero vector of the target space, and so we must have
−→
x =

−→
0V .

Conversely, assume that ker (T) = {
−→
0V}, and that T(−→x ) = T(−→y). We must prove that

−→x =
−→y . But

T(−→x ) = T(−→y) =⇒ T(−→x ) − T(−→y) =
−→
0W

=⇒ T(−→x −
−→y) =

−→
0W

=⇒ (
−→x −

−→y) ∈ ker (T)

=⇒ −→
x −

−→
y =

−→
0V

=⇒ −→
x =

−→
y,

as we wanted to shew. ❑
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244 Theorem (Dimension Theorem) Let 〈V,+, ·,F〉 and 〈W,+, ·, F〉 be vector spaces of finite dimension
over the same field F, and

T :
V → W

−→v 7→ T(−→v )

be a linear transformation. Then

dimker (T) + dim Im (T) = dimV.

Proof: Let {
−→v 1,

−→v 2, . . . ,
−→v k} be a basis for ker (T). By virtue of Theorem 224, we may extend

this to a basis A = {
−→v 1,

−→v 2, . . . ,
−→v k,

−→v k+1,
−→v k+2, . . . ,

−→vn} of V. Here n = dimV. We will now

shew that B = {T(
−→
v k+1), T(

−→
v k+2), . . . , T(

−→
vn)} is a basis for Im (T). We prove that (i) B spans

Im (T), and (ii) B is a linearly independent family.

Let
−→
w ∈ Im (T). Then ∃−→v ∈ V such that T(

−→
v ) =

−→
w. Now since A is a basis for V we can write

−→v =

n∑

i=1

αi
−→v i.

Hence

−→w = T(−→v ) =

n∑

i=1

αiT(
−→v i) =

n∑

i=k+1

αiT(
−→v i),

since T(
−→
v i) =

−→
0V for 1 ≤ i ≤ k. Thus B spans Im (T).

To prove the linear independence of the B assume that

−→
0W =

n∑

i=k+1

βiT(
−→v i) = T

(

n∑

i=k+1

βi
−→v i

)

.

This means that
∑n

i=k+1 βi
−→v i ∈ ker (T), which is impossible unless βk+1 = βk+2 = · · · = βn =

0F.

❑

245 Corollary If dimV = dimW < +∞, then T is injective if and only if it is surjective.

Proof: Simply observe that if T is injective then dimker (T) = 0, and if T is surjective Im (T) =

T(V) = W and Im (T) = dimW. ❑

246 Example Let

L :
M2×2(R) → M2×2(R)

A 7→ AT − A

.

Observe that L is linear. Determine ker (L) and Im (L) .

Solution: ◮ Put A =









a b

c d









and assume L(A) = 02. Then









0 0

0 0









= L(A) =









a c

b d









−









a b

c d









= (c − b)









0 1

−1 0









.
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This means that c = b. Thus

ker (L) =














a b

b d









: (a, b, d) ∈ R3





,

Im (L) =














0 k

−k 0









: k ∈ R





.

This means that dimker (L) = 3, and so dim Im (L) = 4 − 3 = 1. ◭

247 Example Consider the linear transformation L : M2×2(R) → R3[X] given by

L









a b

c d









= (a + b)X2 + (a − b)X3.

Determine ker (L) and Im (L).

Solution: ◮ We have

0 = L









a b

c d









= (a + b)X2 + (a − b)X3
=⇒ a + b = 0, a − b = 0, =⇒ a = b = 0.

Thus

ker (L) =














0 0

c d









: (c, d) ∈ R2





.

Thus dimker (L) = 2 and hence dim Im (L) = 2. Now

(a + b)X2 + (a − b)X3
=⇒ a(X2 + X3) + b(X2 − X3).

Clearly X2 + X3, and X2 − X3 are linearly independent and span Im (L). Thus

Im (L) = span
(

X2 + X3, X2 − X3
)

.

◭

Homework

Problem 5.2.1 In problem 5.1.1 we saw that L : R3 →
R3,

L

















x

y

z

















=

















x − y − z

x + y + z

z

















is linear. Determine ker (L) and Im (L).

Problem 5.2.2 Consider the function L : R4 → R2 given
by

L



























x

y

z

w



























=









x + y

x − y









.
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1. Prove that L is linear.

2. Determine ker (L).

3. Determine Im (L).

Problem 5.2.3 Let

L :
R3 → R4

−→a 7→ L(−→a )

satisfy

L

















1

0

0

















=



























1

0

−1

0



























; L

















1

1

0

















=



























2

−1

0

0



























; L

















0

0

1

















=



























1

−1

1

0



























.

Determine ker (L) and Im (L).

Problem 5.2.4 It is easy to see that L : R2 → R3,

L









x

y









=

















x + 2y

x + 2y

0

















is linear. Determine ker (L) and Im (L).

Problem 5.2.5 It is easy to see that L : R2 → R3,

L









x

y









=

















x − y

x + y

0

















is linear. Determine ker (T) and Im (T).

Problem 5.2.6 It is easy to see that L : R3 → R2,

L

















x

y

z

















=









x − y − z

y − 2z









is linear. Determine ker (L) and Im (L).

Problem 5.2.7 Let

L :
M2×2(R) → R

A 7→ tr (A)

.

Determine ker (L) and Im (L).

Problem 5.2.8 1. Demonstrate that

L :
M2×2(R) → M2×2(R)

A 7→ AT
+ A

is a linear transformation.

2. Find a basis for ker (L) and find dimker (L)

3. Find a basis for Im (L) and find dim Im (L).

Problem 5.2.9 Let V be an n-dimensional vector space,
where the characteristic of the underlying field is differ-
ent from 2. A linear transformation T : V → V is idempo-

tent if T2 = T . Prove that if T is idempotent, then

➊ I − T is idempotent (I is the identity function).

➋ I + T is invertible.

➌ ker (T) = Im (I − T)
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5.3 Matrix Representation

Let V,W be two vector spaces over the same field F. Assume that dimV = m and {
−→v i}i∈[1;m] is an ordered

basis for V, and that dimW = n and A = {
−→
wi}i∈[1;n] an ordered basis for W. Then

L(
−→
v 1) = a11

−→
w1 + a21

−→
w2 + · · ·+ an1

−→
wn =

























a11

a21

...

an1

























A

L(
−→
v 2) = a12

−→
w1 + a22

−→
w2 + · · ·+ an2

−→
wn =

























a12

a22

...

an2

























A

...
...

...
...

...

L(
−→
vm) = a1m

−→
w1 + a2m

−→
w2 + · · ·+ anm

−→
wn =

























a1n

a2n

...

anm

























A

.

248 Definition The n × m matrix

ML =

























a11 a12 · · · a1n

a21 a12 · · · a2n

...
...

...
...

an1 an2 · · · anm

























formed by the column vectors above is called the matrix representation of the linear map L with respect

to the bases {
−→
v i}i∈[1;m], {

−→
wi}i∈[1;n].

249 Example Consider L : R3 → R3,

L

















x

y

z

















=

















x − y − z

x + y + z

z

















.

Clearly L is a linear transformation.

1. Find the matrix corresponding to L under the standard ordered basis.
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2. Find the matrix corresponding to L under the ordered basis

















1

0

0

















,

















1

1

0

















,

















1

0

1

















, for both the domain

and the image of L.

Solution: ◮

1. The matrix will be a 3× 3 matrix. We have L

















1

0

0

















=

















1

1

0

















, L

















0

1

0

















=

















−1

1

0

















, and L

















0

0

1

















=

















−1

1

1

















,

whence the desired matrix is
















1 −1 −1

1 1 1

0 0 1

















.

2. Call this basis A . We have

L

















1

0

0

















=

















1

1

0

















= 0

















1

0

0

















+ 1

















1

1

0

















+ 0

















1

0

1

















=

















0

1

0

















A

,

L

















1

1

0

















=

















0

2

0

















= −2

















1

0

0

















+ 2

















1

1

0

















+ 0

















1

0

1

















=

















−2

2

0

















A

,

and

L

















1

0

1

















=

















0

2

1

















= −3

















1

0

0

















+ 2

















1

1

0

















+ 1

















1

0

1

















=

















−3

2

1

















A

,

whence the desired matrix is
















0 −2 −3

1 2 2

0 0 1

















.

◭

250 Example Let Rn[x] denote the set of polynomials with real coefficients with degree at most n.
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1. Prove that

L :
R3[x] → R1[x]

p(x) 7→ p ′′(x)

is a linear transformation. Here p ′′(x) denotes the second derivative of p(x) with respect to x.

2. Find the matrix of L using the ordered bases {1, x, x2, x3} for R3[x] and {1, x} for R2[x].

3. Find the matrix of L using the ordered bases {1, x, x2, x3} for R3[x] and {1, x + 2} for R1[x].

4. Find a basis for ker (L) and find dimker (L).

5. Find a basis for Im (L) and find dim Im (L).

Solution: ◮

1. Let (p(x), q(x)) ∈ (R3[x])
2 and α ∈ R. Then

L(p(x) + αq(x)) = (p(x) + αq(x)) ′′ = p ′′(x) + αq ′′(x) = L(p(x)) + αL(q(x)),

whence L is linear.

2. We have

L(1) =
d2

dx2
1 = 0 = 0(1) + 0(x) =









0

0









,

L(x) =
d2

dx2
x = 0 = 0(1) + 0(x) =









0

0









,

L(x2) =
d2

dx2
x2 = 2 = 2(1) + 0(x) =









2

0









,

L(x3) =
d2

dx2
x3 = 6x = 0(1) + 6(x) =









0

6









,

whence the matrix representation of L under the standard basis is









0 0 2 0

0 0 0 6









.
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3. We have

L(1) =
d2

dx2
1 = 0 = 0(1) + 0(x + 2) =









0

0









,

L(x) =
d2

dx2
x = 0 = 0(1) + 0(x + 2) =









0

0









,

L(x2) =
d2

dx2
x2 = 2 = 2(1) + 0(x + 2) =









2

0









,

L(x3) =
d2

dx2
x3 = 6x = −12(1) + 6(x + 2) =









−12

6









,

whence the matrix representation of L under the standard basis is









0 0 2 −12

0 0 0 6









.

4. Assume that p(x) = a + bx+ cx2 + dx3 ∈ ker (L). Then

0 = L(p(x)) = 2c+ 6dx, ∀x ∈ R.

This means that c = d = 0. Thus a, b are free and

ker (L) = {a + bx : (a, b) ∈ R2}.

Hence dimker (L) = 2.

5. By the Dimension Theorem, dim Im (L) = 4 − 2 = 2. Put q(x) = α + βx + γx2 + δx3. Then

L(q(x)) = 2γ + 6δ(x) = (2γ)(1) + (6δ)(x).

Clearly {1, x} are linearly independent and span Im (L). Hence

Im (L) = span (1, x) = R1[x].

◭

251 Example

1. A linear transformation T : R3 → R3 is such that

T(
−→
i ) =

















2

1

1

















; T(
−→
j ) =

















3

0

−1

















.

It is known that
Im (T) = span

(

T(
−→
i ), T(

−→
j )
)



108 Chapter 5

and that

ker (T) = span

































1

2

−1

































.

Argue that there must be λ and µ such that

T(
−→
k ) = λT(

−→
i ) + µT(

−→
j ).

2. Find λ and µ, and hence, the matrix representing T under the standard ordered basis.

Solution: ◮

1. Since T(
−→
k ) ∈ Im (T) and Im (T) is generated by T(

−→
i ) and T(

−→
k) there must be (λ, µ) ∈ R2

with

T(
−→
k ) = λT(

−→
i ) + µT(

−→
j ) = λ

















2

1

1

















+ µ

















3

0

−1

















=

















2λ + 3µ

λ

λ − µ

















.

2. The matrix of T is

[

T(
−→
i ) T(

−→
j ) T(

−→
k)

]

=

















2 3 2λ+ 3µ

1 0 λ

1 −1 λ − µ

















.

Since

















1

2

−1

















∈ ker (T) we must have

















2 3 2λ+ 3µ

1 0 λ

1 −1 λ− µ

































1

2

−1

















=

















0

0

0

















.

Solving the resulting system of linear equations we obtain λ = 1, µ = 2. The required matrix

is thus
















2 3 8

1 0 1

1 −1 −1

















.

◭

☞ If the linear mapping L : V → W, dimV = n,dimW = m has matrix representation

A ∈ Mm×n(F), then dim Im (L) = rank (A).
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Homework

Problem 5.3.1 Let T : R4 → R3 be a linear transformations such that

T



























1

1

1

1



























=

















0

0

1

















, T



























1

0

1

0



























=

















1

1

−1

















, T



























1

1

1

0



























=

















0

0

−1

















, T



























−1

−2

0

0



























=

















1

1

1

















.

Find the matrix of T with respect to the canonical bases. Find the dimensions and describe ker (T) and Im (T).

Problem 5.3.2 1. A linear transformation T : R3 → R3 has as image the plane with equation x + y + z = 0 and
as kernel the line x = y = z. If

T

















1

1

2

















=

















a

0

1

















, T

















2

1

1

















=

















3

b

−5

















, T

















1

2

1

















=

















−1

2

c

















.

Find a, b, c.

2. Find the matrix representation of T under the standard basis.

Problem 5.3.3 1. Prove that T : R2 → R3

T









x

y









=

















x + y

x − y

2x + 3y

















is a linear transformation.

2. Find a basis for ker (T) and find dimker (T)

3. Find a basis for Im (T) and find dim Im (T).

4. Find the matrix of T under the ordered bases A =














1

2









,









1

3













of R2 and B =






















1

1

1

















,

















1

0

−1

















,

















0

1

0






















of R3.

Problem 5.3.4 Let

L :
R3 → R2

−→
a 7→ L(

−→
a)

,

where

L

















x

y

z

















=









x + 2y

3x − z









.

Clearly L is linear. Find a matrix representation for L if
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1. The bases for both R3 and R2 are both the standard ordered bases.

2. The ordered basis for R3 is

















1

0

0

















,

















1

1

0

















,

















1

1

1

















and R2 has the standard ordered basis .

3. The ordered basis for R3 is

















1

0

0

















,

















1

1

0

















,

















1

1

1

















and the ordered basis for R2 is A =














1

0









,









1

1













.

Problem 5.3.5 A linear transformation T : R2 → R2 satisfies ker (T) = Im (T), and T









1

1









=









2

3









. Find the matrix

representing T under the standard ordered basis.

Problem 5.3.6 Find the matrix representation for the linear map

L :
M2×2(R) → R

A 7→ tr (A)

,

under the standard basis

A =














1 0

0 0









,









0 1

0 0









,









0 0

1 0









,









0 0

0 1














for M2×2(R).

Problem 5.3.7 Let A ∈ Mn×p(R), B ∈ Mp×q(R), and C ∈ Mq×r(R), be such that rank (B) = rank (AB). Shew that

rank (BC) = rank (ABC) .
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Determinants

6.1 Permutations

252 Definition Let S be a finite set with n ≥ 1 elements. A permutation is a bijective function τ : S → S.
It is easy to see that there are n! permutations from S onto itself.

Since we are mostly concerned with the action that τ exerts on S rather than with the particular names
of the elements of S, we will take S to be the set S = {1, 2, 3, . . . , n}. We indicate a permutation τ by
means of the following convenient diagram

τ =









1 2 · · · n

τ(1) τ(2) · · · τ(n)









.

253 Definition The notation Sn will denote the set of all permutations on {1, 2, 3, . . . , n}. Under this
notation, the composition of two permutations (τ, σ) ∈ S2

n is

τ ◦ σ =









1 2 · · · n

τ(1) τ(2) · · · τ(n)









◦









1 2 · · · n

σ(1) σ(2) · · · σ(n)









=









1 2 · · · n

(τ ◦ σ)(1) (τ ◦ σ)(2) · · · (τ ◦ σ)(n)









.

The k-fold composition of τ is

τ ◦ · · · ◦ τ︸ ︷︷ ︸
k compositions

= τk.

☞We usually do away with the ◦ and write τ◦σ simply as τσ. This “product of permutations”

is thus simply function composition.

Given a permutation τ : S → S, since τ is bijective,

τ−1 : S → S

111
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exists and is also a permutation. In fact if

τ =









1 2 · · · n

τ(1) τ(2) · · · τ(n)









,

then

τ−1 =









τ(1) τ(2) · · · τ(n)

1 2 · · · n









.

1

2 3

Figure 6.1: S3 are rotations and reflexions.

254 Example The set S3 has 3! = 6 elements, which are given below.

1. Id : {1, 2, 3} → {1, 2, 3} with

Id =









1 2 3

1 2 3









.

2. τ1 : {1, 2, 3} → {1, 2, 3} with

τ1 =









1 2 3

1 3 2









.

3. τ2 : {1, 2, 3} → {1, 2, 3} with

τ2 =









1 2 3

3 2 1









.

4. τ3 : {1, 2, 3} → {1, 2, 3} with

τ3 =









1 2 3

2 1 3









.

5. σ1 : {1, 2, 3} → {1, 2, 3} with

σ1 =









1 2 3

2 3 1









.
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6. σ2 : {1, 2, 3} → {1, 2, 3} with

σ2 =









1 2 3

3 1 2









.

255 Example The compositions τ1 ◦ σ1 and σ1 ◦ τ1 can be found as follows.

τ1 ◦ σ1 =









1 2 3

1 3 2









◦









1 2 3

2 3 1









=









1 2 3

3 2 1









= τ2.

(We read from right to left 1 → 2 → 3 (“1 goes to 2, 2 goes to 3, so 1 goes to 3”), etc. Similarly

σ1 ◦ τ1 =









1 2 3

2 3 1









◦









1 2 3

1 3 2









=









1 2 3

2 1 3









= τ3.

Observe in particular that σ1 ◦ τ1 6= τ1 ◦ σ1. Finding all the other products we deduce the following
“multiplication table” (where the “multiplication” operation is really composition of functions).

◦ Id τ1 τ2 τ3 σ1 σ2

Id Id τ1 τ2 τ3 σ1 σ2

τ1 τ1 Id σ1 σ2 τ2 τ3

τ2 τ2 σ2 Id σ1 τ3 τ1

τ3 τ3 σ1 σ2 Id τ1 τ2

σ2 σ2 τ2 τ3 τ1 Id σ1

σ1 σ1 τ3 τ1 τ2 σ2 Id

The permutations in example 254 can be conveniently interpreted as follows. Consider an equilateral
triangle with vertices labelled 1, 2 and 3, as in figure 6.1. Each τa is a reflexion (“flipping”) about
the line joining the vertex a with the midpoint of the side opposite a. For example τ1 fixes 1 and
flips 2 and 3. Observe that two successive flips return the vertices to their original position and so
(∀a ∈ {1, 2, 3})(τ2

a = Id ). Similarly, σ1 is a rotation of the vertices by an angle of 120◦. Three successive
rotations restore the vertices to their original position and so σ3

1 = Id .

256 Example To find τ−1
1 take the representation of τ1 and exchange the rows:

τ−1
1 =









1 3 2

1 2 3









.

This is more naturally written as

τ−1
1 =









1 2 3

1 3 2









.
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Observe that τ−1
1 = τ1.

257 Example To find σ−1
1 take the representation of σ1 and exchange the rows:

σ−1
1 =









2 3 1

1 2 3









.

This is more naturally written as

σ−1
1 =









1 2 3

3 1 2









.

Observe that σ−1
1 = σ2.

6.2 Cycle Notation

We now present a shorthand notation for permutations by introducing the idea of a cycle. Consider in
S9 the permutation

τ =









1 2 3 4 5 6 7 8 9

2 1 3 6 9 7 8 4 5









.

We start with 1. Since 1 goes to 2 and 2 goes back to 1, we write (12). Now we continue with 3. Since 3
goes to 3, we write (3). We continue with 4. As 4 goes 6, 6 goes to 7, 7 goes 8, and 8 goes back to 4, we
write (4678). We consider now 5 which goes to 9 and 9 goes back to 5, so we write (59). We have written
τ as a product of disjoint cycles

τ = (12)(3)(4678)(59).

This prompts the following definition.

258 Definition Let l ≥ 1 and let i1, . . . , il ∈ {1, 2, . . . n} be distinct. We write (i1 i2 . . . il) for the element
σ ∈ Sn such that σ(ir) = ir+1, 1 ≤ r < l, σ(il) = i1 and σ(i) = i for i 6∈ {i1, . . . , il}. We say that
(i1 i2 . . . il) is a cycle of length l. The order of a cycle is its length. Observe that if τ has order l then
τl = Id .

☞ Observe that (i2 . . . il i1) = (i1 . . . il) etc., and that (1) = (2) = · · · = (n) = Id . In fact, we

have

(i1 . . . il) = (j1 . . . jm)

if and only if (1) l = m and if (2) l > 1: ∃a such that ∀k: ik = jk+a mod l. Two cycles (i1, . . . , il)
and (j1, . . . , jm) are disjoint if {i1, . . . , il} ∩ {j1, . . . , jm} = ∅. Disjoint cycles commute and if

τ = σ1σ2 · · ·σt is the product of disjoint cycles of length l1, l2, . . . , lt respectively, then τ has

order

lcm (l1, l2, . . . , lt) .

259 Example A cycle decomposition for α ∈ S9,

α =









1 2 3 4 5 6 7 8 9

1 8 7 6 2 3 4 5 9









is
(285)(3746).

The order of α is lcm (3, 4) = 12.
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260 Example The cycle decomposition β = (123)(567) in S9 arises from the permutation

β =









1 2 3 4 5 6 7 8 9

2 3 1 4 6 7 5 8 9









.

Its order is lcm (3, 3) = 3.

261 Example Find a shuffle of a deck of 13 cards that requires 42 repeats to return the cards to their
original order.

Solution: ◮ Here is one (of many possible ones). Observe that 7 + 6 = 13 and 7 × 6 = 42. We

take the permutation

(1 2 3 4 5 6 7)(8 9 10 11 12 13)

which has order 42. This corresponds to the following shuffle: For

i ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12},

take the ith card to the (i + 1)th place, take the 7th card to the first position and the 13th card

to the 8th position. Query: Of all possible shuffles of 13 cards, which one takes the longest to

restitute the cards to their original position? ◭

262 Example Let a shuffle of a deck of 10 cards be made as follows: The top card is put at the bottom,
the deck is cut in half, the bottom half is placed on top of the top half, and then the resulting bottom
card is put on top. How many times must this shuffle be repeated to get the cards in the initial order?
Explain.

Solution: ◮ Putting the top card at the bottom corresponds to









1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 1









.

Cutting this new arrangement in half and putting the lower half on top corresponds to









1 2 3 4 5 6 7 8 9 10

7 8 9 10 1 2 3 4 5 6









.

Putting the bottom card of this new arrangement on top corresponds to









1 2 3 4 5 6 7 8 9 10

6 7 8 9 10 1 2 3 4 5









= (1 6)(2 7)(3 8)(4 9)(5 10).

The order of this permutation is lcm(2, 2, 2, 2, 2) = 2, so in 2 shuffles the cards are restored to

their original position. ◭

The above examples illustrate the general case, given in the following theorem.

263 Theorem Every permutation in Sn can be written as a product of disjoint cycles.
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Proof: Let τ ∈ Sn, a1 ∈ {1, 2, . . . , n}. Put τk(a1) = ak+1, k ≥ 0. Let a1, a2, . . . , as be the longest

chain with no repeats. Then we have τ(as) = a1. If the {a1, a2, . . . , as} exhaust {1, 2, . . . , n}
then we have τ = (a1 a2 . . . as). If not, there exist b1 ∈ {1, 2, . . . , n} \ {a1, a2, . . . , as}. Again,

we find the longest chain of distinct b1, b2, . . . , bt such that τ(bk) = bk+1, k = 1, . . . , t − 1
and τ(bt) = b1. If the {a1, a2, . . . , as, b1, b2, . . . , bt} exhaust all the {1, 2, . . . , n} we have τ =

(a1 a2 . . . as)(b1 b2 . . . bt). If not we continue the process and find

τ = (a1 a2 . . . as)(b1 b2 . . . bt)(c1 . . .) . . . .

This process stops because we have only n elements. ❑

264 Definition A transposition is a cycle of length 2.1

265 Example The cycle (23468) can be written as a product of transpositions as follows

(23468) = (28)(26)(24)(23).

Notice that this decomposition as the product of transpositions is not unique. Another decomposition is

(23468) = (23)(34)(46)(68).

266 Lemma Every permutation is the product of transpositions.

Proof: It is enough to observe that

(a1 a2 . . . as) = (a1 as)(a1 as−1) · · · (a1 a2)

and appeal to Theorem 263. ❑

Let σ ∈ Sn and let (i, j) ∈ {1, 2, . . . , n}2, i 6= j. Since σ is a permutation, ∃(a, b) ∈ {1, 2, . . . , n}2, a 6= b,
such that σ(j) − σ(i) = b − a. This means that

∣

∣

∣

∣

∣

∣

∏

1≤i<j≤n

σ(i) − σ(j)

i− j

∣

∣

∣

∣

∣

∣

= 1.

267 Definition Let σ ∈ Sn. We define the sign sgn(σ) of σ as

sgn(σ) =
∏

1≤i<j≤n

σ(i) − σ(j)

i − j
= (−1)σ.

If sgn(σ) = 1, then we say that σ is an even permutation, and if sgn(σ) = −1 we say that σ is an odd

permutation.

☞ Notice that in fact

sgn(σ) = (−1)I(σ),

where I(σ) = #{(i, j) | 1 ≤ i < j ≤ n and σ(i) > σ(j)}, i.e., I(σ) is the number of inversions that σ
effects to the identity permutation Id .

268 Example The transposition (1 2) has one inversion.

269 Lemma For any transposition (k l) we have sgn((k l)) = −1.

1A cycle of length 2 should more appropriately be called a bicycle.
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Proof: Let τ be transposition that exchanges k and l, and assume that k < l:

τ =









1 2 . . . k − 1 k k + 1 . . . l − 1 l l + 1 . . . n

1 2 . . . k − 1 l k + 1 . . . l − 1 k l + 1 . . . n









Let us count the number of inversions of τ:

• The pairs (i, j) with i ∈ {1, 2, . . . , k− 1}∪ {l, l+ 1, . . . , n} and i < j do not suffer an inversion;

• The pair (k, j) with k < j suffers an inversion if and only if j ∈ {k + 1, k + 2, . . . , l}, making

l − k inversions;

• If i ∈ {k + 1, k + 2, . . . , l − 1} and i < j, (i, j) suffers an inversion if and only if j = l, giving
l − 1 − k inversions.

This gives a total of I(τ) = (l − k) + (l − 1 − k) = 2(l − k − 1) + 1 inversions when k < l. Since
this number is odd, we have sgn(τ) = (−1)I(τ) = −1. In general we see that the transposition

(k l) has 2|k− l|− 1 inversions. ❑

270 Theorem Let (σ, τ) ∈ S2
n. Then

sgn(τσ) = sgn(τ)sgn(σ).

Proof: We have

sgn(στ) =
∏

1≤i<j≤n
(στ)(i)−(στ)(j)

i−j

=
(∏

1≤i<j≤n
σ(τ(i))−σ(τ(j))

τ(i)−τ(j)

)

·
(∏

1≤i<j≤n
τ(i)−τ(j)

i−j

)

.

The second factor on this last equality is clearly sgn(τ), we must shew that the first factor is

sgn(σ). Observe now that for 1 ≤ a < b ≤ n we have

σ(a) − σ(b)

a − b
=

σ(b) − σ(a)

b − a
.

Since σ and τ are permutations, ∃b 6= a, τ(i) = a, τ(j) = b and so στ(i) = σ(a), στ(j) = b. Thus

σ(τ(i)) − σ(τ(j))

τ(i) − τ(j)
=

σ(a) − σ(b)

a − b

and so
∏

1≤i<j≤n

σ(τ(i)) − σ(τ(j))

τ(i) − τ(j)
=

∏

1≤a<b≤n

σ(a) − σ(b)

a − b
= sgn(σ).

❑

271 Corollary The identity permutation is even. If τ ∈ Sn, then sgn(τ) = sgn(τ−1).

Proof: Since there are no inversions in Id , we have sgn(Id ) = (−1)0 = 1. Since ττ−1 = Id ,

we must have 1 = sgn(Id ) = sgn(ττ−1) = sgn(τ)sgn(τ−1) = (−1)τ(−1)τ
−1

by Theorem 270.

Since the values on the righthand of this last equality are ±1, we must have sgn(τ) = sgn(τ−1).

❑

272 Lemma We have sgn(1 2 . . . l)) = (−1)l−1.

Proof: Simply observe that the number of inversions of (1 2 . . . l) is l− 1. ❑
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273 Lemma Let (τ, (i1 . . . il) ∈ S2
n. Then

τ(i1 . . . il)τ
−1 = (τ(i1) . . . τ(il)),

and if σ ∈ Sn is a cycle of length l then

sgn(σ) = (−1)l−1

.

Proof: For 1 ≤ k < l we have (τ(i1 . . . il)τ
−1)(τ(ik)) = τ((i1 . . . il)(ik)) = τ(ik+1).

On a (τ(i1 . . . il)τ
−1)(τ(il)) = τ((i1 . . . il)(il)) = τ(i1). For i 6∈ {τ(i1) . . . τ(il)} we have

τ−1(i) 6∈ {i1 . . . il} whence (i1 . . . il)(τ
−1(i)) = τ−1(i) etc.

Furthermore, write σ = (i1 . . . il). Let τ ∈ Sn be such that τ(k) = ik for 1 ≤ k ≤ l. Then

σ = τ(1 2 . . . l)τ−1 and so we must have sgn(σ) = sgn(τ)sgn((1 2 . . . l))sgn(τ−1), which

equals sgn((1 2 . . . l)) by virtue of Theorem 270 and Corollary 271. The result now follows by

appealing to Lemma 272 ❑

274 Corollary Let σ = σ1σ2 · · ·σr be a product of disjoint cycles, each of length l1, . . . , lr, respectively.
Then

sgn(σ) = (−1)
∑

r

i=1
(li−1).

Hence, the product of two even permutations is even, the product of two odd permutations is even, and
the product of an even permutation and an odd permutation is odd.

Proof: This follows at once from Theorem 270 and Lemma 273. ❑

275 Example The cycle (4678) is an odd cycle; the cycle (1) is an even cycle; the cycle (12345) is an even
cycle.

276 Corollary Every permutation can be decomposed as a product of transpositions. This decomposition
is not necessarily unique, but its parity is unique.

Proof: This follows from Theorem 263, Lemma 266, and Corollary 274. ❑

277 Example (The 15 puzzle) Consider a grid with 16 squares, as shewn in (6.1), where 15 squares are
numbered 1 through 15 and the 16th slot is empty.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

(6.1)

In this grid we may successively exchange the empty slot with any of its neighbours, as for example

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

. (6.2)
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We ask whether through a series of valid moves we may arrive at the following position.

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

(6.3)

Solution: ◮ Let us shew that this is impossible. Each time we move a square to the empty

position, we make transpositions on the set {1, 2, . . . , 16}. Thus at each move, the permutation

is multiplied by a transposition and hence it changes sign. Observe that the permutation cor-

responding to the square in (6.3) is (14 15) (the positions 14th and 15th are transposed) and

hence it is an odd permutation. But we claim that the empty slot can only return to its original

position after an even permutation. To see this paint the grid as a checkerboard:

B R B R

R B R B

B R B R

R B R B

(6.4)

We see that after each move, the empty square changes from black to red, and thus after an

odd number of moves the empty slot is on a red square. Thus the empty slot cannot return to its

original position in an odd number of moves. This completes the proof. ◭

Homework

Problem 6.2.1 Decompose the permutation









1 2 3 4 5 6 7 8 9

2 3 4 1 5 8 6 7 9









as a product of disjoint cycles and find its order.

6.3 Determinants

There are many ways of developing the theory of determinants. We will choose a way that will allow
us to deduce the properties of determinants with ease, but has the drawback of being computationally
cumbersome. In the next section we will shew that our way of defining determinants is equivalent to a
more computationally friendly one.

It may be pertinent here to quickly review some properties of permutations. Recall that if σ ∈ Sn is a
cycle of length l, then its signum sgn(σ) = ±1 depending on the parity of l − 1. For example, in S7,

σ = (1 3 4 7 6)

has length 5, and the parity of 5 − 1 = 4 is even, and so we write sgn(σ) = +1. On the other hand,

τ = (1 3 4 7 6 5)
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has length 6, and the parity of 6 − 1 = 5 is odd, and so we write sgn(τ) = −1.

Recall also that if (σ, τ) ∈ S2
n, then

sgn(τσ) = sgn(τ)sgn(σ).

Thus from the above two examples

στ = (1 3 4 7 6)(1 3 4 7 6 5)

has signum sgn(σ)sgn(τ) = (+1)(−1) = −1. Observe in particular that for the identity permutation
Id ∈ Sn we have sgn(Id ) = +1.

278 Definition Let A ∈ Mn×n(F), A = [aij] be a square matrix. The determinant of A is defined and
denoted by the sum

detA =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · ·anσ(n).

☞ The determinantal sum has n! summands.

279 Example If n = 1, then S1 has only one member, Id , where Id (1) = 1. Since Id is an even
permutation, sgn(Id ) = (+1) Thus if A = (a11), then

detA = a11

.

280 Example If n = 2, then S2 has 2! = 2 members, Id and σ = (1 2). Observe that sgn(σ) = −1. Thus if

A =









a11 a12

a21 a22









then
detA = sgn(Id )a1Id (1)a2Id (2) + sgn(σ)a1σ(1)a2σ(2) = a11a22 − a12a21.

281 Example From the above formula for 2× 2 matrices it follows that

detA = det









1 2

3 4









= (1)(4) − (3)(2) = −2,

detB = det









−1 2

3 4









(−1)(4) − (3)(2)

= −10,

and

det(A + B) = det









0 4

6 8









= (0)(8) − (6)(4) = −24.

Observe in particular that det(A + B) 6= detA + detB.
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282 Example If n = 3, then S2 has 3! = 6 members:

Id , τ1 = (2 3), τ2 = (1 3), τ3 = (1 2), σ1 = (1 2 3), σ2 = (1 3 2).

. Observe that Id , σ1, σ2 are even, and τ1, τ2, τ3 are odd. Thus if

A =

















a11 a12 a13

a21 a22 a23

a31 a32 a33

















then

detA = sgn(Id )a1Id (1)a2Id (2)a3Id (3) + sgn(τ1)a1τ1(1)a2τ1(2)a3τ1(3)

+sgn(τ2)a1τ2(1)a2τ2(2)a3τ2(3) + sgn(τ3)a1τ3(1)a2τ3(2)a3τ3(3)

+sgn(σ1)a1σ1(1)a2σ1(2)a3σ1(3) + sgn(σ2)a1σ2(1)a2σ2(2)a3σ2(3)

= a11a22a33 − a11a23a32 − a13a22a31

−a13a21a33 + a12a23a31 + a13a21a32.

283 Theorem (Row-Alternancy of Determinants) Let A ∈ Mn×n(F), A = [aij]. If B ∈ Mn×n(F), B = [bij] is
the matrix obtained by interchanging the s-th row of A with its t-th row, then detB = − detA.

Proof: Let τ be the transposition

τ =









s t

τ(t) τ(s)









.

Then στ(a) = σ(a) for a ∈ {1, 2, . . . , n} \ {s, t}. Also, sgn(στ) = sgn(σ)sgn(τ) = −sgn(σ). As σ
ranges through all permutations of Sn, so does στ, hence

detB =
∑

σ∈Sn
sgn(σ)b1σ(1)b2σ(2) · · ·bsσ(s) · · ·btσ(t) · · ·bnσ(n)

=
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · ·ast · · ·ats · · ·anσ(n)

= −
∑

σ∈Sn
sgn(στ)a1στ(1)a2στ(2) · · ·asστ(s) · · ·atστ(t) · · ·anστ(n)

= −
∑

λ∈Sn
sgn(λ)a1λ(1)a2λ(2) · · ·anλ(n)

= − detA.

❑
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284 Corollary If A(r:k), 1 ≤ k ≤ n denote the rows of A and σ ∈ Sn, then

det

























A(r:σ(1))

A(r:σ(2))

...

A(r:σ(n))

























= (sgn(σ)) detA.

An analogous result holds for columns.

Proof: Apply the result of Theorem 283 multiple times. ❑

285 Theorem Let A ∈ Mn×n(F), A = [aij]. Then

detAT = detA.

Proof: Let C = AT . By definition

detAT = detC

=
∑

σ∈Sn
sgn(σ)c1σ(1)c2σ(2) · · · cnσ(n)

=
∑

σ∈Sn
sgn(σ)aσ(1)1aσ(2)2 · · ·aσ(n)n.

But the product aσ(1)1aσ(2)2 · · ·aσ(n)n also appears in detA with the same signum sgn(σ),
since the permutation









σ(1) σ(2) · · · σ(n)

1 2 · · · n









is the inverse of the permutation









1 2 · · · n

σ(1) σ(2) · · · σ(n)









.

❑

286 Corollary (Column-Alternancy of Determinants) Let A ∈ Mn×n(F), A = [aij]. If C ∈ Mn×n(F), C = [cij]
is the matrix obtained by interchanging the s-th column of A with its t-th column, then detC = − detA.

Proof: This follows upon combining Theorem 283 and Theorem 285. ❑

287 Theorem (Row Homogeneity of Determinants) LetA ∈ Mn×n(F), A = [aij] and α ∈ F. If B ∈ Mn×n(F), B =

[bij] is the matrix obtained by multiplying the s-th row of A by α, then

detB = αdetA.

Proof: Simply observe that

sgn(σ)a1σ(1)a2σ(2) · · ·αasσ(s) · · ·anσ(n) = αsgn(σ)a1σ(1)a2σ(2) · · ·asσ(s) · · ·anσ(n).

❑
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288 Corollary (Column Homogeneity of Determinants) If C ∈ Mn×n(F), C = (Cij) is the matrix obtained
by multiplying the s-th column of A by α, then

detC = αdetA.

Proof: This follows upon using Theorem 285 and Theorem 287. ❑

☞ It follows from Theorem 287 and Corollary 288 that if a row (or column) of a matrix consists

of 0Fs only, then the determinant of this matrix is 0F.

289 Example

det

















x 1 a

x2 1 b

x3 1 c

















= x det

















1 1 a

x 1 b

x2 1 c

















.

290 Corollary

det(αA) = αn detA.

Proof: Since there are n columns, we are able to pull out one factor of α from each one. ❑

291 Example Recall that a matrix A is skew-symmetric if A = −AT . Let A ∈ M2001(R) be skew-
symmetric. Prove that detA = 0.

Solution: ◮ We have

detA = det(−AT ) = (−1)2001 detAT = − detA,

and so 2 detA = 0, from where detA = 0. ◭

292 Lemma (Row-Linearity and Column-Linearity of Determinants) Let A ∈ Mn×n(F), A = [aij]. For a
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fixed row s, suppose that asj = bsj + csj for each j ∈ [1; n]. Then

det





























a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1 a(s−1)2 · · · a(s−1)n

bs1 + cs1 bs2 + cs2 · · · bsn + csn

a(s+1)1 a(s+1)2 · · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann





























= det





























a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1 a(s−1)2 · · · a(s−1)n

bs1 bs2 · · · bsn

a(s+1)1 a(s+1)2 · · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann





























+ det





























a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1 a(s−1)2 · · · a(s−1)n

cs1 cs2 · · · csn

a(s+1)1 a(s+1)2 · · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann





























.

An analogous result holds for columns.

Proof: Put

S =





























a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1 a(s−1)2 · · · a(s−1)n

bs1 + cs1 bs2 + cs2 · · · bsn + csn

a(s+1)1 a(s+1)2 · · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann





























,

T =





























a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1 a(s−1)2 · · · a(s−1)n

bs1 bs2 · · · bsn

a(s+1)1 a(s+1)2 · · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann
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and

U =





























a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1 a(s−1)2 · · · a(s−1)n

cs1 cs2 · · · csn

a(s+1)1 a(s+1)2 · · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann





























.

Then

detS =
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · a(s−1)σ(s−1)(bsσ(s)

+csσ(s))a(s+1)σ(s+1) · · · anσ(n)

=
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · a(s−1)σ(s−1)bsσ(s)a(s+1)σ(s+1) · · · anσ(n)

+
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · a(s−1)σ(s−1)csσ(s)a(s+1)σ(s+1) · · · anσ(n)

= det T + detU.

By applying the above argument to AT , we obtain the result for columns.

❑

293 Lemma If two rows or two columns of A ∈ Mn×n(F), A = [aij] are identical, then detA = 0F.

Proof: Suppose asj = atj for s 6= t and for all j ∈ [1;n]. In particular, this means that for any

σ ∈ Sn we have asσ(t) = atσ(t) and atσ(s) = asσ(s). Let τ be the transposition

τ =









s t

τ(t) τ(s)









.

Then στ(a) = σ(a) for a ∈ {1, 2, . . . , n} \ {s, t}. Also, sgn(στ) = sgn(σ)sgn(τ) = −sgn(σ). As

σ runs through all even permutations, στ runs through all odd permutations, and viceversa.

Therefore

detA =
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · ·asσ(s) · · ·atσ(t) · · ·anσ(n)

=
∑

σ∈Sn

sgn(σ)=1

(

sgn(σ)a1σ(1)a2σ(2) · · ·asσ(s) · · ·atσ(t) · · ·anσ(n)

+sgn(στ)a1στ(1)a2στ(2) · · ·asστ(s) · · ·atστ(t) · · ·anστ(n)

)

=
∑

σ∈Sn

sgn(σ)=1
sgn(σ)

(

a1σ(1)a2σ(2) · · ·asσ(s) · · ·atσ(t) · · ·anσ(n)

−a1σ(1)a2σ(2) · · ·asσ(t) · · ·atσ(s) · · ·anσ(n)

)

=
∑

σ∈Sn

sgn(σ)=1
sgn(σ)

(

a1σ(1)a2σ(2) · · ·asσ(s) · · ·atσ(t) · · ·anσ(n)

−a1σ(1)a2σ(2) · · ·atσ(t) · · ·asσ(s) · · ·anσ(n)

)

= 0F.

Arguing on AT will yield the analogous result for the columns. ❑
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294 Corollary If two rows or two columns of A ∈ Mn×n(F), A = [aij] are proportional, then detA = 0F.

Proof: Suppose asj = αatj for s 6= t and for all j ∈ [1;n]. If B is the matrix obtained by pulling

out the factor α from the s-th row then detA = αdetB. But now the s-th and the t-th rows in B
are identical, and so detB = 0F. Arguing on AT will yield the analogous result for the columns.

❑

295 Example

det

















1 a b

1 a c

1 a d

















= adet

















1 1 b

1 1 c

1 1 d

















= 0,

since on the last determinant the first two columns are identical.

296 Theorem (Multilinearity of Determinants) Let A ∈ Mn×n(F), A = [aij] and α ∈ F. If X ∈ Mn×n(F), X =

(xij) is the matrix obtained by the row transvection Rs + αRt → Rs then detX = detA. Similarly,
if Y ∈ Mn×n(F), Y = (yij) is the matrix obtained by the column transvection Cs + αCt → Cs then
det Y = detA.

Proof: For the row transvection it suffices to take bsj = asj, csj = αatj for j ∈ [1;n] in Lemma

292. With the same notation as in the lemma, T = A, and so,

detX = det T + detU = detA + detU.

But U has its s-th and t-th rows proportional (s 6= t), and so by Corollary 294 detU = 0F.
Hence detX = detA. To obtain the result for column transvections it suffices now to also apply

Theorem 285. ❑

297 Example Demonstrate, without actually calculating the determinant that

det

















2 9 9

4 6 8

7 4 1

















is divisible by 13.

Solution: ◮ Observe that 299, 468 and 741 are all divisible by 13. Thus

det

















2 9 9

4 6 8

7 4 1

















C3+10C2+100C1→C3

= det

















2 9 299

4 6 468

7 4 741

















= 13 det

















2 9 23

4 6 36

7 4 57

















,

which shews that the determinant is divisible by 13. ◭

298 Theorem The determinant of a triangular matrix (upper or lower) is the product of its diagonal
elements.
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Proof: Let A ∈ Mn×n(F), A = [aij] be a triangular matrix. Observe that if σ 6= Id then

aiσ(i)aσ(i)σ2(i) = 0F occurs in the product

a1σ(1)a2σ(2) · · ·anσ(n).

Thus

detA =
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · ·anσ(n)

= sgn(Id )a1Id (1)a2Id (2) · · ·anId (n) = a11a22 · · ·ann.

❑

299 Example The determinant of the n× n identity matrix In over a field F is

det In = 1F.

300 Example Find

det

















1 2 3

4 5 6

7 8 9

















.

Solution: ◮ We have

det

















1 2 3

4 5 6

7 8 9

















C2−2C1→C2

C3−3C1→C3

 det

















1 0 0

4 −3 −6

7 −6 −12

















= (−3)(−6) det

















1 0 0

4 1 1

7 2 2

















= 0,

since in this last matrix the second and third columns are identical and so Lemma 293 applies.

◭

301 Theorem Let (A,B) ∈ (Mn×n(F))2. Then

det(AB) = (detA)(detB).

Proof: Put D = AB,D = (dij), dij =
∑n

k=1 aikbkj. If A(c:k), D(c:k), 1 ≤ k ≤ n denote the

columns of A and D, respectively, observe that

D(c:k) =

n∑

l=1

blkA(c:l), 1 ≤ k ≤ n.
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Applying Corollary 288 and Lemma 292 multiple times, we obtain

detD = det(D(c:1), D(c:2), . . . , D(c:n))

=
∑n

j1=1

∑n
j2=1

· · ·∑n
jn=1 b1j1b2j2 · · ·bnjn

· det(A(c:j1), A(c:j2), . . . , A(c:jn)).

By Lemma 293, if any two of the A(c:jl) are identical, the determinant on the right vanishes. So

each one of the jl is different in the non-vanishing terms and so the map

σ :
{1, 2, . . . , n} → {1, 2, . . . , n}

l 7→ jl

is a permutation. Here jl = σ(l). Therefore, for the non-vanishing

det(A(c:j1), A(c:j2), . . . , A(c:jn))

we have in view of Corollary 284,

det(A(c:j1), A(c:j2), . . . , A(c:jn)) = (sgn(σ)) det(A(c:1), A(c:2), . . . , A(c:n))

= (sgn(σ)) detA.

We deduce that

det(AB) = detD

=
∑n

jn=1 b1j1b2j2 · · ·bnjn det(A(c:j1), A(c:j2), . . . , A(c:jn))

= (detA)
∑

σ∈Sn
(sgn(σ))b1σ(1)b2σ(2) · · ·bnσ(n)

= (detA)(detB),

as we wanted to shew. ❑

By applying the preceding theorem multiple times we obtain

302 Corollary If A ∈ Mn×n(F) and if k is a positive integer then

detAk = (detA)k.

303 Corollary If A ∈ GLn(F) and if k is a positive integer then detA 6= 0F and

detA−k = (detA)−k.

Proof: We have AA−1 = In and so by Theorem 301 (detA)(detA−1) = 1F, from where the

result follows. ❑

Homework

Problem 6.3.1 Let

Ω = det

















bc ca ab

a b c

a2 b2 c2

















.
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Without expanding either determinant, prove that

Ω = det

















1 1 1

a2 b2 c2

a3 b3 c3

















.

Problem 6.3.2 Demonstrate that

Ω = det

















a − b − c 2a 2a

2b b − c − a 2b

2c 2c c − a − b

















= (a + b + c)3.

Problem 6.3.3 After the indicated column operations on a 3×3 matrix A with detA = −540, matrices A1, A2, . . . , A5

are successively obtained:

A
C1+3C2→C1→ A1

C2↔C3→ A2
3C2−C1→C2→ A3

C1−3C2→C1→ A4
2C1→C1→ A5

Determine the numerical values of detA1,detA2,detA3, detA4 and detA5.

Problem 6.3.4 Prove, without actually expanding the determinant, that

det



































1 2 3 7 0

6 1 5 14 1

8 6 1 21 3

7 3 8 7 1

2 4 6 0 4



































is divisible by 1722.

Problem 6.3.5 Let A, B, C be 3 × 3 matrices with detA = 3, detB3 = −8,detC = 2. Compute (i) detABC, (ii)
det 5AC, (iii) detA3B−3C−1. Express your answers as fractions.

Problem 6.3.6 Shew that ∀A ∈ Mn×n(R),

∃(X, Y) ∈ (Mn×n(R))
2, (detX)(det Y) 6= 0

such that
A = X + Y.

That is, any square matrix over R can be written as a sum of two matrices whose determinant is not zero.

Problem 6.3.7 Prove or disprove! The set X = {A ∈ Mn×n(F) : detA = 0F} is a vector subspace of Mn×n(F).

6.4 Laplace Expansion

We now develop a more computationally convenient approach to determinants.

Put
Cij =

∑

σ∈Sn

σ(i)=j

(sgn(σ))a1σ(1)a2σ(2) · · ·anσ(n).
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Then

detA =
∑

σ∈Sn
(sgn(σ))a1σ(1)a2σ(2) · · ·anσ(n)

=
∑n

i=1 aij

∑
σ∈Sn

σ(i)=j
(sgn(σ))a1σ(1)a2σ(2)

· · ·a(i−1)σ(i−1)a(i+1)σ(i+1) · · ·anσ(n)

=
∑n

i=1 aijCij,

(6.5)

is the expansion of detA along the j-th column. Similarly,

detA =
∑

σ∈Sn
(sgn(σ))a1σ(1)a2σ(2) · · ·anσ(n)

=
∑n

j=1 aij

∑
σ∈Sn

σ(i)=j
(sgn(σ))a1σ(1)a2σ(2)

· · ·a(i−1)σ(i−1)a(i+1)σ(i+1) · · ·anσ(n)

=
∑n

j=1 aijCij,

is the expansion of detA along the i-th row.

304 Definition Let A ∈ Mn×n(F), A = [aij]. The ij-th minor Aij ∈ Mn−1(R) is the (n− 1)× (n− 1) matrix
obtained by deleting the i-th row and the j-th column from A.

305 Example If

A =

















1 2 3

4 5 6

7 8 9

















then, for example,

A11 =









5 6

8 9









, A12 =









4 6

7 9









, A21 =









2 3

8 9









, A22 =









1 3

7 9









, A33 =









1 2

4 5









.

306 Theorem Let A ∈ Mn×n(F). Then

detA =

n∑

i=1

aij(−1)i+j detAij =

n∑

j=1

aij(−1)i+j detAij.

Proof: It is enough to shew, in view of 6.5 that

(−1)i+j detAij = Cij.

Now,

Cnn =
∑

σ∈Sn

σ(n)=n
sgn(σ)a1σ(1)a2σ(2) · · ·a(n−1)σ(n−1)

=
∑

τ∈Sn−1
sgn(τ)a1τ(1)a2τ(2) · · ·a(n−1)τ(n−1)

= detAnn,
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since the second sum shewn is the determinant of the submatrix obtained by deleting the last

row and last column from A.

To find Cij for general ij we perform some row and column interchanges to A in order to bring aij

to the nn-th position. We thus bring the i-th row to the n-th row by a series of transpositions, first

swapping the i-th and the (i+1)-th row, then swapping the new (i+1)-th row and the (i+2)-th
row, and so forth until the original i-th row makes it to the n-th row. We have made thereby

n − i interchanges. To this new matrix we perform analogous interchanges to the j-th column,

thereby making n − j interchanges. We have made a total of 2n − i − j interchanges. Observe

that (−1)2n−i−j = (−1)i+j. Call the analogous quantities in the resulting matrix A ′, C ′
nn, A

′
nn.

Then

Cij = C ′
nn = detA ′

nn = (−1)i+j detAij,

by virtue of Corollary 284.

❑

☞ It is irrelevant which row or column we choose to expand a determinant of a square matrix.

We always obtain the same result. The sign pattern is given by

























+ − + − · · ·

− + − +
...

+ − + −
...

...
...

...
...

...

























307 Example Find

det

















1 2 3

4 5 6

7 8 9

















by expanding along the first row.

Solution: ◮ We have

detA = 1(−1)1+1 det









5 6

8 9









+ 2(−1)1+2 det









4 6

7 9









+ 3(−1)1+3 det









4 5

7 8









= 1(45 − 48) − 2(36 − 42) + 3(32− 35) = 0.

◭

308 Example Evaluate the Vandermonde determinant

det

















1 1 1

a b c

a2 b2 c2

















.
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Solution: ◮

det

















1 1 1

a b c

a2 b2 c2

















= det

















1 0 0

a b − a c − a

a2 b2 − a2 c2 − a2

















= det









b − a c − a

b2 − c2 c2 − a2









= (b − a)(c − a) det









1 1

b + a c + a









= (b − a)(c − a)(c − b).

◭

309 Example Evaluate the determinant

detA = det











































1 2 3 4 · · · 2000

2 1 2 3 · · · 1999

3 2 1 2 · · · 1998

4 3 2 1 · · · 1997

· · · · · · · · · · · · · · · · · ·

2000 1999 1998 1997 · · · 1











































.

Solution: ◮ Applying Rn − Rn+1 → Rn for 1 ≤ n ≤ 1999, the determinant becomes

det



















































−1 1 1 1 · · · 1 1

−1 −1 1 1 · · · 1 1

−1 −1 −1 1 · · · 1 1

−1 −1 −1 −1 · · · 1 1

· · · · · · · · · · · · · · · · · · · · ·

−1 −1 −1 −1 · · · −1 1

2000 1999 1998 1997 · · · 2 1



















































.



Laplace Expansion 133

Applying now Cn + C2000 → Cn for 1 ≤ n ≤ 1999, we obtain

det



















































0 2 2 2 · · · 2 1

0 0 2 2 · · · 2 1

0 0 0 2 · · · 2 1

0 0 0 0 · · · 2 1

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 0 1

2001 2000 1999 1998 · · · 3 1



















































.

This last determinant we expand along the first column. We have

2001det











































2 2 2 · · · 2 1

0 2 2 · · · 2 1

0 0 2 · · · 2 1

0 0 0 · · · 2 1

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 0 1











































= 2001(21998).

◭

310 Definition Let A ∈ Mn×n(F). The classical adjoint or adjugate of A is the n× n matrix adj (A) whose
entries are given by

[adj (A)]ij = (−1)i+j detAji,

where Aji is the ji-th minor of A.

311 Theorem Let A ∈ Mn×n(F). Then

(adj (A))A = A(adj (A)) = (detA)In.

Proof: We have

[A(adj (A))]ij =
∑n

k=1 aik[adj (A)]kj

=
∑n

k=1 aik(−1)i+k detAjk.

Now, this last sum is detA if i = j by virtue of Theorem 306. If i 6= j it is 0, since then the j-th
row is identical to the i-th row and this determinant is 0F by virtue of Lemma 293. Thus on the

diagonal entries we get detA and the off-diagonal entries are 0F. This proves the theorem. ❑

The next corollary follows immediately.

312 Corollary Let A ∈ Mn×n(F). Then A is invertible if and only detA 6= 0F and

A−1 =
adj (A)

detA
.
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Homework

Problem 6.4.1 Find

det

















1 2 3

4 5 6

7 8 9

















by expanding along the second column.

Problem 6.4.2 Prove that det

















a b c

c a b

b c a

















= a3 + b3 + c3 − 3abc. This type of matrix is called a circulant matrix.

Problem 6.4.3 Compute the determinant

det



























1 0 −1 1

2 0 0 1

666 −3 −1 1000000

1 0 0 1



























.

Problem 6.4.4 Prove that

det

















x + a b c

a x + b c

a b x + c

















= x2
(x + a + b + c).

Problem 6.4.5 If

det



























1 1 1 1

x a 0 0

x 0 b 0

x 0 0 c



























= 0,

and xabc 6= 0, prove that
1

x
=

1

a
+

1

b
+

1

c
.

Problem 6.4.6 Consider the matrix

A =



























a −b −c −d

b a d −c

c −d a b

d c −b a



























.
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➊ Compute ATA.

➋ Use the above to prove that
detA = (a2

+ b2
+ c2

+ d2
)
2.

Problem 6.4.7 Prove that

det



























0 a b 0

a 0 b 0

0 a 0 b

1 1 1 1



























= 2ab(a − b).

Problem 6.4.8 Demonstrate that

det



























a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d



























= (ad − bc)2.

Problem 6.4.9 Use induction to shew that

det











































1 1 1 · · · 1 1

1 0 0
... 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
... · · ·

...
...

0 0 0 · · · 1 0











































= (−1)n+1.

Problem 6.4.10 Let

A =











































1 n n n · · · n

n 2 n n
... n

n n 3 n · · · n

n n n 4 · · · n

...
...

... · · ·
...

n n n n n n











































,

that is, A ∈ Mn×n(R), A = [aij] is a matrix such that akk = k and aij = n when i 6= j. Find detA.

Problem 6.4.11 Let n ∈ N, n > 1 be an odd integer. Recall that the binomial coefficients
(

n
k

)

satisfy
(

n
n

)

=
(

n
0

)

= 1

and that for 1 ≤ k ≤ n,
(

n

k

)

=

(

n − 1

k − 1

)

+

(

n − 1

k

)

.
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Prove that

det



































1
(

n
1

) (

n
2

)

· · ·
(

n
n−1

)

1

1 1
(

n
1

)

· · ·
(

n
n−2

) (

n
n−1

)

(

n
n−1

)

1 1 · · ·
(

n
n−3

) (

n
n−2

)

· · · · · · · · · · · · · · · · · ·
(

n
1

) (

n
2

) (

n
3

)

· · · 1 1



































= (1 + (−1)n)n.

Problem 6.4.12 Let A ∈ GLn(F), n > 1. Prove that det(adj (A)) = (detA)n−1.

Problem 6.4.13 Let (A,B, S) ∈ (GLn(F))3. Prove that

➊ adj (adj (A)) = (detA)n−2A.

➋ adj (AB) = adj (A) adj (B).

➌ adj
(

SAS−1
)

= S(adj (A))S−1.

Problem 6.4.14 If A ∈ GL2(F), , and let k be a positive integer. Prove that det(adj · · · adj
︸ ︷︷ ︸

k

(A)) = detA.

Problem 6.4.15 Find the determinant

det

















(b + c)2 ab ac

ab (a + c)2 bc

ac bc (a + b)2

















by hand, making explicit all your calculations.

Problem 6.4.16 The matrix


























a b c d

d a b c

c d a b

b c d a



























is known as a circulant matrix. Prove that its determinant is (a + b + c + d)(a − b + c − d)((a − c)2 + (b − d)2).

6.5 Determinants and Linear Systems

313 Theorem Let A ∈ Mn×n(F). The following are all equivalent

➊ detA 6= 0F.

➋ A is invertible.

➌ There exists a unique solution X ∈ Mn×1(F) to the equation AX = Y.

➍ If AX = 0n×1 then X = 0n×1.
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Proof: We prove the implications in sequence:

➊ =⇒ ➋: follows from Corollary 312

➋ =⇒ ➌: If A is invertible and AX = Y then X = A−1Y is the unique solution of this equation.

➌ =⇒ ➍: follows by putting Y = 0n×1

➍ =⇒ ➊: Let R be the row echelon form of A. Since RX = 0n×1 has only X = 0n×1 as a solution,

every entry on the diagonal of R must be non-zero, R must be triangular, and hence detR 6= 0F.
Since A = PR where P is an invertible n× n matrix, we deduce that detA = det PdetR 6= 0F.
❑

The contrapositive form of the implications ➊ and ➍ will be used later. Here it is for future reference.

314 Corollary Let A ∈ Mn×n(F). If there is X 6= 0n×1 such that AX = 0n×1 then detA = 0F.

Homework

Problem 6.5.1 For which a is the matrix

















−1 1 1

1 a 1

1 1 a

















singular (non-invertible)?



Chapter 7
Eigenvalues and Eigenvectors

7.1 Similar Matrices

315 Definition We say that A ∈ Mn×n(F) is similar to B ∈ Mn×n(F) if there exist a matrix P ∈ GLn(F)
such that

B = PAP−1.

316 Theorem Similarity is an equivalence relation.

Proof: Let A ∈ Mn×n(F). Then A = InAI−1
n , so similarity is reflexive. If B = PAP−1 (P ∈

GLn(F) ) then A = P−1BP so similarity is symmetric. Finally, if B = PAP−1 and C = QBQ−1

(P ∈ GLn(F) , Q ∈ GLn(F)) then C = QPAP−1Q−1 = QPA(QP)−1 and so similarity is transitive.

❑

Since similarity is an equivalence relation, it partitions the set of n×n matrices into equivalence classes
by Theorem 29.

317 Definition A matrix is said to be diagonalisable if it is similar to a diagonal matrix.

Suppose that

A =

























λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

























.

Then if K is a positive integer

AK =

























λK
1 0 0 · · · 0

0 λK
2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λK
n

























.

138
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In particular, if B is similar to A then

BK = (PAP−1)(PAP−1) · · · (PAP−1)
︸ ︷︷ ︸

K factors

= PAKP−1 = P

























λK
1 0 0 · · · 0

0 λK
2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λK
n

























P−1,

so we have a simpler way of computing BK. Our task will now be to establish when a particular square
matrix is diagonalisable.

7.2 Eigenvalues and Eigenvectors

Let A ∈ Mn×n(F) be a square diagonalisable matrix. Then there exist P ∈ GLn(F) and a diagonal matrix
D ∈ Mn×n(F) such that P−1AP = D, whence AP = DP. Put

D =

























λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

























, P = [P1;P2; · · · ;Pn],

where the Pk are the columns of P. Then

AP = DP =⇒ [AP1;AP2; · · · ;APn] = [λ1P1; λ2P2; · · · ; λnPn],

from where it follows that APk = λkPk. This motivates the following definition.

318 Definition Let V be a finite-dimensional vector space over a field F and let T : V → V be a linear

transformation. A scalar λ ∈ F is called an eigenvalue of T if there is a −→
v 6= −→

0 (called an eigenvector)
such that T(−→v ) = λ−→v .

319 Example Shew that if λ is an eigenvalue of T : V → V, then λk is an eigenvalue of Tk : V → V, for
k ∈ N \ {0}.

Solution: ◮ Assume that T(
−→
v ) = λ

−→
v . Then

T2(
−→
v ) = TT(

−→
v ) = T(λ

−→
v ) = λT(

−→
v ) = λ(λ

−→
v ) = λ2−→v .

Continuing the iterations we obtain Tk(
−→v ) = λk−→v , which is what we want. ◭

320 Theorem Let A ∈ Mn×n(F) be the matrix representation of T : V → V. Then λ ∈ F is an eigenvalue
of T if an only if det(λIn − A) = 0F.

Proof: λ is an eigenvalue of A ⇐⇒ there is
−→
v 6= −→

0 such that A
−→
v = λ

−→
v ⇐⇒ λ

−→
v − A

−→
v =

−→
0

⇐⇒ λIn
−→v − A−→v =

−→
0 ⇐⇒ det(λIn − A) = 0F by Corollary 314.❑

321 Definition The equation
det(λIn − A) = 0F

is called the characteristic equation of A or secular equation of A. The polynomial p(λ) = det(λIn − A) is
the characteristic polynomial of A.
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322 Example Let A =

























1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

























. Find

➊ The characteristic polynomial of A.

➋ The eigenvalues of A.

➌ The corresponding eigenvectors.

Solution: ◮ We have

➊

det(λI4 − A) = det

























λ − 1 −1 0 0

−1 λ− 1 0 0

0 0 λ − 1 −1

0 0 −1 λ − 1

























= (λ − 1) det

















λ− 1 0 0

0 λ− 1 −1

0 −1 λ − 1

















+ det

















−1 0 0

0 λ− 1 −1

0 −1 λ − 1

















= (λ − 1)((λ − 1)((λ − 1)2 − 1)) + (−((λ − 1)2 − 1))

= (λ − 1)((λ − 1)(λ − 2)(λ)) − (λ− 2)(λ)

= (λ − 2)(λ)((λ − 1)2 − 1)

= (λ − 2)2(λ)2

➋ The eigenvalues are clearly λ = 0 and λ = 2.

➌ If λ = 0, then

0I4 − A =

























−1 −1 0 0

−1 −1 0 0

0 0 −1 −1

0 0 −1 −1

























.
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This matrix has row-echelon form

























−1 −1 0 0

0 0 −1 −1

0 0 0 0

0 0 0 0

























,

and if

























−1 −1 0 0

0 0 −1 −1

0 0 0 0

0 0 0 0

















































a

b

c

d

























=

























0

0

0

0

























,

then c = −d and a = −b

Thus the general solution of the system (0I4 − A)X = 0n×1 is

























a

b

c

d

























= a

























1

−1

0

0

























+ c

























0

0

1

−1

























.

If λ = 2, then

2I4 − A =

























1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

























.

This matrix has row-echelon form

























−1 1 0 0

0 0 1 −1

0 0 0 0

0 0 0 0

























,

and if
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1 −1 0 0

0 0 −1 1

0 0 0 0

0 0 0 0

















































a

b

c

d

























=

























0

0

0

0

























,

then c = d and a = b

Thus the general solution of the system (2I4 − A)X = 0n×1 is

























a

b

c

d

























= a

























1

1

0

0

























+ c

























0

0

1

1

























.

Thus for λ = 0 we have the eigenvectors

























1

−1

0

0

























,

























0

0

1

−1

























and for λ = 2 we have the eigenvectors

























1

1

0

0

























,

























0

0

1

1

























.

◭

323 Theorem If λ = 0F is an eigenvalue of A, then A is non-invertible.

Proof: Put p(λ) = det(λIn − A). Then p(0F) = det(−A) = (−1)n detA is the constant term of

the characteristic polynomial. If λ = 0F is an eigenvalue then

p(0F) = 0F =⇒ detA = 0F,

and hence A is non-invertible by Theorem 313. ❑

324 Theorem Similar matrices have the same characteristic polynomial.
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Proof: We have

det(λIn − SAS−1) = det(λSInS−1 − SAS−1)

= det S(λIn − A)S−1

= (det S)(det(λIn − A))(detS−1)

= (det S)(det(λIn − A))

(

1

detS

)

= det(λIn − A),

from where the result follows.❑

Homework

Problem 7.2.1 Find the eigenvalues and eigenvectors of

A =









1 −1

−1 1









Problem 7.2.2 Let A be a 2 × 2 matrix over some some
field F. Prove that the characteristic polynomial of A is

λ2 − (tr (A))λ + detA.

Problem 7.2.3 A matrix A ∈ M2×2(R) satisfies tr (A) =

−1 and detA = −6. Find the value of det(I2 + A).

Problem 7.2.4 A 2 × 2 matrix A with real entries has
characteristic polynomial p(λ) = λ2 + 2λ − 1. Find the
value of det(2I2 + A).

Problem 7.2.5 Let A =

















0 2 −1

2 3 −2

−1 −2 0

















. Find

➊ The characteristic polynomial of A.

➋ The eigenvalues of A.

➌ The corresponding eigenvectors.

Problem 7.2.6 Describe all matrices A ∈ M2×2(R) hav-
ing eigenvalues 1 and −1.

Problem 7.2.7 Let A ∈ Mn×n(R). Demonstrate that A

has the same characteristic polynomial as its transpose.

7.3 Diagonalisability

In this section we find conditions for diagonalisability.

325 Theorem Let {
−→
v 1,

−→
v 2, . . . ,

−→
v k} ⊂ V be the eigenvectors corresponding to the different eigenvalues

{λ1, λ2, . . . , λk} (in that order). Then these eigenvectors are linearly independent.

Proof: Let T : V → V be the underlying linear transformation. We proceed by induction.

For k = 1 the result is clear. Assume that every set of k − 1 eigenvectors that correspond

to k − 1 distinct eigenvalues is linearly independent and let the eigenvalues λ1, λ2, . . . , λk−1

have corresponding eigenvectors
−→v 1,

−→v 2, . . . ,
−→v k−1. Let λ be a eigenvalue different from the

λ1, λ2, . . . , λk−1 and let its corresponding eigenvector be
−→
v . If

−→
v were linearly dependent of the

−→v 1,
−→v 2, . . . ,

−→v k−1, we would have

x
−→
v + x1

−→
v 1 + x2

−→
v 2 + · · · + xk−1

−→
v k−1 =

−→
0 . (7.1)

Now

T(x
−→
v + x1

−→
v 1 + x2

−→
v 2 + · · · + xk−1

−→
v k−1) = T(

−→
0 ) =

−→
0 ,

by Theorem 240. This implies that

xλ
−→
v + x1λ1

−→
v 1 + x2λ2

−→
v 2 + · · ·+ xk−1λk−1

−→
v k−1 =

−→
0 . (7.2)
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From 7.2 take away λ times 7.1, obtaining

x1(λ1 − λ)−→v 1 + x2(λ2
−→v 2 + · · · + xk−1(λk−1 − λ)−→v k−1 =

−→
0 (7.3)

Since λ − λi 6= 0F 7.3 is saying that the eigenvectors
−→
v 1,

−→
v 2, . . . ,

−→
v k−1 are linearly dependent,

a contradiction. Thus the claim follows for k distinct eigenvalues and the result is proven by

induction. ❑

326 Theorem A matrix A ∈ Mn×n(F) is diagonalisable if and only if it possesses n linearly independent
eigenvectors.

Proof: Assume first that A is diagonalisable, so there exists P ∈ GLn(F) and

D =

























λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

























such that

P−1AP =

























λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

























.

Then

[AP1;AP2; · · · ;APn] = AP = P

























λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

























= [λ1P1; λ2P2; · · · ; λnPn],

where the Pk are the columns of P. Since P is invertible, the Pk are linearly independent by

virtue of Theorems 204 and 313.

Conversely, suppose now that
−→v 1, . . . ,

−→vn are n linearly independent eigenvectors, with corre-

sponding eigenvalues λ1, λ2, . . . , λn. Put

P = [
−→v 1; . . . ;

−→vn], D =

























λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

























.
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Since A
−→
v i = λi

−→
v i we see that AP = PD. Again P is invertible by Theorems 204 and 313 since

the
−→v k are linearly independent. Left multiplying by P−1 we deduce P−1AP = D, from where A

is diagonalisable. ❑

327 Example Shew that the following matrix is diagonalisable:
















1 −1 −1

1 3 1

−3 1 −1

















and find a diagonal matrix D and an invertible matrix P such that

A = PDP−1.

Solution: ◮ Verify that the characteristic polynomial of A is

λ3 − 3λ2 − 4λ+ 12 = (λ − 2)(λ+ 2)(λ− 3).

The eigenvector for λ = −2 is
















1

−1

4

















.

The eigenvector for λ = 2 is
















−1

0

1

















.

The eigenvector for λ = 3 is
















−1

1

1

















.

We may take

D =

















−2 0 0

0 2 0

0 0 3

















, P =

















1 −1 4

−1 0 1

−1 1 1

















.

We also find

P−1 =

















1
5

−1 1
5

0 −1 1

1
5

0 1
5

















.

◭
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Homework

Problem 7.3.1 Let A be a 2×2 matrix with eigenvalues 1

and −2 and corresponding eigenvectors









1

0









and









1

−1









,

respectively. Determine A10.

Problem 7.3.2 Consider the matrix A =









9 −4

20 −9









.

1. Find the characteristic polynomial of A.

2. Find the eigenvalues of A.

3. Find the eigenvectors of A.

4. If A20 =









a b

c d









, find a + d.

Problem 7.3.3 Let A ∈ M3×3(R) have characteristic
polynomial

(λ + 1)2(λ − 3).

One of the eigenvalues has two eigenvectors

















1

0

0

















and

















1

1

0

















. The other eigenvalue has corresponding eigenvec-

tor

















1

1

1

















. Determine A.

Problem 7.3.4 Let

A =



























0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



























.

1. Find detA.

2. Find A−1.

3. Find rank (A − I4).
4. Find det(A − I4).
5. Find the characteristic polynomial of A.

6. Find the eigenvalues of A.

7. Find the eigenvectors of A.

8. Find A10.

Problem 7.3.5 Consider the matrix

A =

















1 a 1

0 1 b

0 0 c

















.

➊ Find the characteristic polynomial of A.

➋ Explain whether A is diagonalisable when a =

0, c = 1.

➌ Explain whether A is diagonalisable when a 6=
0, c = 1.

➍ Explain whether A is diagonalisable when c 6= 1.

Problem 7.3.6 Find a closed formula for An, if

A =









−7 −6

12 10









.

Problem 7.3.7 Let U ∈ Mn×n(R) be a square matrix all
whose entries are equal to 1.

1. Demonstrate that U2 = nU.

2. Find detU.

3. Prove that det(λIn − U) = λn−1(λ − n).

4. Shew that dimker (U) = n − 1.

5. Shew that

U = P



























n 0 · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · 0



























P−1,

where

P =











































1 1 0 · · · 0 0

1 0 1 · · · 0 0

1 0 0
. . .

...
...

...
...

...
. . .

...
...

1 0 0 · · · 0 1

1 −1 −1 · · · −1 −1











































.
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7.4 Theorem of Cayley and Hamilton

328 Theorem (Cayley-Hamilton) A matrix A ∈ Mn(F) satisfies its characteristic polynomial.

Proof: Put B = λIn − A. We can write

detB = det(λIn − A) = λn + b1λ
n−1 + b2λ

n−2 + · · · + bn,

as det(λIn − A) is a polynomial of degree n.

Since adj (B) is a matrix obtained by using (n−1)× (n−1) determinants from B, we may write

adj (B) = λn−1Bn−1 + λn−2Bn−2 + · · · + B0.

Hence

det(λIn − A)In = (B)(adj (B)) = (λIn − A)(adj (B)),

from where

λnIn + b1Inλn−1 + b2Inλn−2 + · · · + bnIn = (λIn − A)(λn−1Bn−1 + λn−2Bn−2 + · · · + B0).

By equating coefficients we deduce

In = Bn−1

b1In = −ABn−1 + Bn−2

b2In = −ABn−2 + Bn−3

...

bn−1In = −AB1 + B0

bnIn = −AB0.

Multiply now the k-th row by An−k (the first row appearing is really the 0-th row):

An = AnBn−1

b1A
n−1 = −AnBn−1 + An−1Bn−2

b2A
n−2 = −An−1Bn−2 + An−2Bn−3

...

bn−1A = −A2B1 + AB0

bnIn = −AB0.

Add all the rows and through telescopic cancellation obtain

An + b1A
n−1 + · · · + bn−1A + bnIn = 0n,

from where the theorem follows. ❑
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329 Example From example 327 the matrix

















1 −1 −1

1 3 1

−3 1 −1

















has characteristic polynomial

(λ − 3)(λ − 2)(λ + 2) = λ3 − 3λ2 − 4λ + 12,

hence the inverse of this matrix can be obtained by observing that

A3 − 3A2 − 4A + 12I3 = 03 =⇒ A−1 = −
1

12

(

A2 − 3A − 4I3
)

=





















1/3 1/6 −1/6

1/6 1/3 1/6

−5/6 −1/6 −1/3





















.

Homework

Problem 7.4.1 A 3×3 matrix A has characteristic polynomial λ(λ−1)(λ+2). What is the characteristic polynomial
of A2?
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Linear Algebra and Geometry

8.1 Points and Bi-points in R2

R2 is the set of all points A =









a1

a2









with real number coordinates on the plane, as in figure 8.1. We use

the notation O =









0

0









to denote the origin.

x

y

b

b

A =









a1

a2









O

Figure 8.1: Rectangular coordinates in R2.

Given A =









a1

a2









∈ R2 and B =









b1

b2









∈ R2 we define their addition as

A + B =









a1

a2









+









b1

b2









=









a1 + b1

a2 + b2









. (8.1)
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Similarly, we define the scalar multiplication of a point of R2 by the scalar α ∈ R as

αA = α









a1

a2









=









αa1

αa2









. (8.2)

☞ Throughout this chapter, unless otherwise noted, we will use the convention that a point

A ∈ R2 will have its coordinates named after its letter, thus

A =









a1

a2









.

330 Definition Consider the points A ∈ R2, B ∈ R2. By the bi-point starting at A and ending at B, denoted
by [A,B], we mean the directed line segment from A to B. We define

[A,A] = O =









0

0









.

☞ The bi-point [A, B] can be thus interpreted as an arrow starting at A and finishing, with

the arrow tip, at B. We say that A is the tail of the bi-point [A,B] and that B is its head. Some

authors use the terminology “fixed vector” instead of “bi-point.”

331 Definition Let A 6= B be points on the plane and let L be the line passing through A and B. The
direction of the bi-point [A,B] is the direction of the line L, that is, the angle θ ∈

]

−π
2
; π
2

]

that the line L
makes with the horizontal. See figure 8.2.

332 Definition Let A,B lie on line L, and let C,D lie on line L ′. If L||L ′ then we say that [A, B] has the
same direction as [C,D]. We say that the bi-points [A,B] and [C,D] have the same sense if they have
the same direction and if both their heads lie on the same half-plane made by the line joining their
tails. They have opposite sense if they have the same direction and if both their heads lie on alternative
half-planes made by the line joining their tails. See figures 8.3 and 8.4 .

b θ

A

B

Figure 8.2: Direction of a
bi-point

A

B

C

D

Figure 8.3: Bi-points
with the same sense.

A

B

C

D

Figure 8.4: Bi-points
with opposite sense.
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☞ Bi-point [B,A] has the opposite sense of [A, B] and so we write

[B,A] = −[A, B].

333 Definition Let A 6= B. The Euclidean length or norm of bi-point [A,B] is simply the distance between
A and B and it is denoted by

||[A,B]|| =

√

(a1 − b1)2 + (a2 − b2)2.

We define
||[A,A]|| = ||O|| = 0.

A bi-point is said to have unit length if it has norm 1.

☞ A bi-point is completely determined by three things: (i) its norm, (ii) its direction, and (iii) its

sense.

334 Definition (Chasles’ Rule) Two bi-points are said to be contiguous if one has as tail the head of the
other. In such case we define the sum of contiguous bi-points [A, B] and [B, C] by Chasles’ Rule

[A,B] + [B, C] = [A,C].

See figure 8.5.

335 Definition (Scalar Multiplication of Bi-points) Let λ ∈ R \ {0} and A 6= B. We define

0[A, B] = O

and
λ[A,A] = O.

We define λ[A,B] as follows.

1. λ[A,B] has the direction of [A, B].

2. λ[A,B] has the sense of [A, B] if λ > 0 and sense opposite [A, B] if λ < 0.

3. λ[A,B] has norm |λ|||[A,B]|| which is a contraction of [A,B] if 0 < |λ| < 1 or a dilatation of [A,B] if
|λ| > 1.

See figure 8.6 for some examples.

A

B

C

Figure 8.5: Chasles’ Rule.

[A,B]

1

2
[A, B]

−2[A,B]

Figure 8.6: Scalar multiplication of bi-
points.
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8.2 Vectors in R2

336 Definition (Midpoint) Let A,B be points in R2. We define the midpoint of the bi-point [A, B] as

A + B

2
=









a1+b1

2

a2+b2

2









.

337 Definition (Equipollence) Two bi-points [X, Y ] and [A, B] are said to be equipollent written [X, Y ] ∼

[A, B] if the midpoints of the bi-points [X, B] and [Y, A] coincide, that is,

[X, Y ] ∼ [A, B] ⇔
X + B

2
=

Y + A

2
.

See figure 8.7.

Geometrically, equipollence means that the quadrilateral XYBA is a parallelogram. Thus the bi-points
[X, Y ] and [A,B] have the same norm, sense, and direction.

||
||

−

−

X

Y

A

B

Figure 8.7: Equipollent bi-points.

338 Lemma Two bi-points [X, Y ] and [A, B] are equipollent if and only if









y1 − x1

y2 − x2









=









b1 − a1

b2 − a2









.

Proof: This is immediate, since

[X, Y ] ∼ [A,B] ⇐⇒











a1+y1

2

a2+y2

2











=









b1+x1

2

b2+x2

2









⇐⇒









y1 − x1

y2 − x2









=









b1 − a1

b2 − a2









,

as desired. ❑

☞ From Lemma 338, equipollent bi-points have the same norm, the same direction, and the

same sense.

339 Theorem Equipollence is an equivalence relation.
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Proof: Write [X, Y ] ∼ [A,B] if [X, Y ] if equipollent to [A,B]. Now [X, Y ] ∼ [X, Y ] since









y1 − x1

y2 − x2









=









y1 − x1

y2 − x2









and so the relation is reflexive. Also

[X, Y ] ∼ [A, B] ⇐⇒









y1 − x1

y2 − x2









=









b1 − a1

b2 − a2









⇐⇒









b1 − a1

b2 − a2









=









y1 − x1

y2 − x2









⇐⇒ [A,B] ∼ [X, Y ],

and the relation is symmetric. Finally

[X, Y ] ∼ [A, B]∧ [A, B] ∼ [U, V] ⇐⇒









y1 − x1

y2 − x2









=









b1 − a1

b2 − a2









∧









b1 − a1

b2 − a2









=









v1 − u1

v2 − au2









⇐⇒









y1 − x1

y2 − x2









=









v1 − u1

v2 − u2









⇐⇒ [X, Y ] ∼ [U, V],

and the relation is transitive. ❑

340 Definition (Vectors on the Plane) The equivalence class in which the bi-point [X, Y ] falls is called the

vector (or free vector) from X to Y, and is denoted by
−−→
XY. Thus we write

[X, Y ] ∈ −−→
XY =









y1 − x1

y2 − x2









.

If we desire to talk about a vector without mentioning a bi-point representative, we write, say, −→v , thus
denoting vectors with boldface lowercase letters. If it is necessary to mention the coordinates of −→v we
will write

−→
v =









v1

v2









.
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☞ For any point X on the plane, we have
−−→
XX =

−→
0 , the zero vector. If [X, Y ] ∈ −→v then [Y, X] ∈

−
−→
v .

341 Definition (Position Vector) For any particular point P =









p1

p2









∈ R2 we may form the vector
−−→
OP =









p1

p2









. We call
−−→
OP the position vector of P and we use boldface lowercase letters to denote the equality

−−→
OP =

−→p .

342 Example The vector into which the bi-point with tail at A =









−1

2









and head at B =









3

4









falls is

−−→
AB =









3 − (−1)

4 − 2









=









4

2









.

343 Example The bi-points [A, B] and [X, Y ] with

A =









−1

2









, B =









3

4









,

X =









3

7









, Y =









7

9









represent the same vector

−−→
AB =









3 − (−1)

4 − 2









=









4

2









=









7 − 3

9 − 7









=
−−→
XY.

In fact, if S =









−1 + n

2 + m









, T =









3 + n

4 + m









then the infinite number of bi-points [S, T ] are representatives of

of the vectors
−−→
AB =

−−→
XY =

−→
ST .

Given two vectors −→
u , −→v we define their sum −→

u +
−→
v as follows. Find a bi-point representative

−−→
AB ∈ −→

u

and a contiguous bi-point representative
−−→
BC ∈ −→v . Then by Chasles’ Rule

−→u +
−→v =

−−→
AB+

−−→
BC =

−−→
AC.

Again, by virtue of Chasles’ Rule we then have

−−→
AB =

−−→
AO +

−−→
OB = −

−−→
OA +

−−→
OB =

−→
b −

−→
a (8.3)
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Similarly we define scalar multiplication of a vector by scaling one of its bi-point representatives.We
define the norm of a vector −→

v ∈ R2 to be the norm of any of its bi-point representatives.

Componentwise we may see that given vectors −→u =









u1

u2









, −→v =









v1

v2









, and a scalar λ ∈ R then their

sum and scalar multiplication take the form

−→u +
−→v =









u1

u2









+









v1

v2









, λ−→u =









λu1

λu2









.

A

B

C

−→v−→u

−→u +
−→v

Figure 8.8: Addition of Vectors.

−→u

1

2

−→u

−2−→u

Figure 8.9: Scalar multiplication of vectors.

344 Example Diagonals are drawn in a rectangle ABCD. If
−−→
AB =

−→x and
−−→
AC =

−→y , then
−−→
BC =

−→y −
−→x ,

−−→
CD = −

−→x ,
−−→
DA =

−→x −
−→y , and

−−→
BD =

−→y − 2−→x .

345 Definition (Parallel Vectors) Two vectors −→
u and −→

v are said to be parallel if there is a scalar λ such
that −→u = λ−→v . If −→u is parallel to −→v we write −→u ||

−→v . We denote by R−→v = {α−→v : α ∈ R}, the set of all vectors
parallel to −→v .

☞ −→
0 is parallel to every vector.

346 Definition If −→u =









u1

u2









, then we define its norm as
∣

∣

∣

∣

−→u
∣

∣

∣

∣ =
√

u2
1 + u2

2. The distance between two

vectors −→
u and −→

v is d〈−→u,
−→
v 〉 =

∣

∣

∣

∣

−→
u −

−→
v
∣

∣

∣

∣.

347 Example Let a ∈ R, a > 0 and let −→v 6= −→
0 . Find a vector with norm a and parallel to −→v .

Solution: ◮ Observe that

−→v
∣

∣

∣

∣

−→v
∣

∣

∣

∣

has norm 1 as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−→v
∣

∣

∣

∣

−→v
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

−→v
∣

∣

∣

∣

∣

∣

∣

∣

−→v
∣

∣

∣

∣

= 1.

Hence the vector a

−→v
∣

∣

∣

∣

−→
v
∣

∣

∣

∣

has norm a and it is in the direction of
−→v . One may also take −a

−→v
∣

∣

∣

∣

−→
v
∣

∣

∣

∣

.

◭
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348 Example If M is the midpoint of the bi-point [X, Y ] then
−−→
XM =

−−→
MY from where

−−→
XM = 1

2

−−→
XY . Moreover,

if T is any point, by Chasles’ Rule

−→
TX +

−→
TY =

−−→
TM +

−−→
MX +

−−→
TM +

−−→
MY

= 2
−−→
TM −

−−→
XM +

−−→
MY

= 2
−−→
TM.

349 Example Let △ABC be a triangle on the plane. Prove that the line joining the midpoints of two sides
of the triangle is parallel to the third side and measures half its length.

Solution: ◮ Let the midpoints of [A,B] and [A,C] be MC and MB, respectively. We shew that
−−→
BC = 2

−−−−−−→
MCMB. We have 2

−−−−→
AMC =

−−→
AB and 2

−−−−→
AMB =

−−→
AC. Thus

−−→
BC =

−−→
BA +

−−→
AC

= −
−−→
AB +

−−→
AC

= −2
−−−−→
AMC + 2

−−−−→
AMB

= 2
−−−−→
MCA + 2

−−−−→
AMB

= 2(
−−−−→
MCA +

−−−−→
AMB)

= 2
−−−−−−→
MCMB,

as we wanted to shew. ◭

350 Example In △ABC, let MC be the midpoint of side AB. Shew that

−−−−→
CMC =

1

2

(−−→
CA +

−−→
CB
)

.

Solution: ◮ Since
−−−−→
AMC =

−−−−→
MCB, we have

−−→
CA +

−−→
CB =

−−−−→
CMC +

−−−−→
MCA +

−−−−→
CMC +

−−−−→
MCB

= 2
−−−−→
CMC −

−−−−→
AMC +

−−−−→
MCB

= 2
−−−−→
CMC,

which yields the desired result. ◭

351 Theorem (Section Formula) Let APB be a straight line and λ and µ be real numbers such that

||[A, P]||

||[P, B]||
=

λ

µ
.

With −→a =
−−→
OA,

−→
b =

−−→
OB, and −→p =

−−→
OP, then

−→p =
λ
−→
b + µ−→a

λ+ µ
. (8.4)
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Proof: Using Chasles’ Rule for vectors,

−−→
AB =

−−→
AO +

−−→
OB = −

−→a +
−→
b,

−−→
AP =

−−→
AO +

−−→
OP = −

−→a +
−→p.

Also, using Chasles’ Rule for bi-points,

[A, P]µ = λ([P, B]) = λ([P, A] + [A, B]) = λ(−[A, P] + [A, B]),

whence

[A, P] =
λ

λ + µ
[A,B] =⇒

−−→
AP =

λ

λ + µ

−−→
AB =⇒ −→

p −
−→
a =

λ

λ + µ
(
−→
b −

−→
a).

On combining these formulæ

(λ + µ)(−→p −
−→a) = λ(

−→
b −

−→a) =⇒ (λ+ µ)−→p = λ
−→
b + µ−→a,

from where the result follows. ❑

−→a

−→
b

−→c

Figure 8.10: [A]. Problem
8.2.6.

−→a

−→
b

−→c

Figure 8.11: [B]. Problem
8.2.6.

−→a

−→
b

−→c −→
d

Figure 8.12: [C]. Problem
8.2.6.

−→a

−→
b

−→c −→
d

Figure 8.13: [D]. Problem
8.2.6.

−→a

−→
b

−→c −→
d

Figure 8.14: [E]. Problem
8.2.6.

−→a −→
d

−→
b −→c

−→
f

−→e

Figure 8.15: [F]. Problem
8.2.6.

Homework

Problem 8.2.1 Let a be a real number. Find the dis-

tance between









1

a









and









1 − a

1









.

Problem 8.2.2 Find all scalars λ for which
∣

∣

∣

∣λ−→v
∣

∣

∣

∣ = 1
2
,

where −→
v =









1

−1









.

Problem 8.2.3 Given a pentagon ABCDE, find
−−→
AB +

−−→
BC +

−−→
CD +

−−→
DE +

−−→
EA.
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Problem 8.2.4 For which values of a will the vectors

−→
a =









a + 1

a2 − 1









,
−→
b =









2a + 5

a2 − 4a + 3









will be parallel?

Problem 8.2.5 In △ABC let the midpoints of [A, B] and

[A, C] be MC and MB, respectively. Put
−−−−→
MCB =

−→
x ,

−−−−→
MBC =

−→y , and
−−→
CA =

−→z . Express [A]
−−→
AB+

−−→
BC+

−−−−−−→
MCMB,

[B]
−−−−→
AMC +

−−−−−−→
MCMB +

−−−−→
MBC, [C]

−−→
AC +

−−−−→
MCA −

−−−→
BMB in

terms of −→x , −→y , and −→
z .

Problem 8.2.6 A circle is divided into three, four equal,
or six equal parts (figures 8.10 through 8.15). Find the
sum of the vectors. Assume that the divisions start or
stop at the centre of the circle, as suggested in the fig-
ures.

Problem 8.2.7 Diagonals are drawn in a square (figures

?? through ??). Find the vectorial sum −→a +
−→
b +

−→c .
Assume that the diagonals either start, stop, or pass
through the centre of the square, as suggested by the
figures.

Problem 8.2.8 Prove that the mid-points of the sides of
a skew quadrilateral form the vertices of a parallelogram.

Problem 8.2.9 ABCD is a parallelogram. E is the mid-
point of [B, C] and F is the midpoint of [D,C]. Prove that

−−→
AC +

−−→
BD = 2

−−→
BC.

Problem 8.2.10 Let A, B be two points on the plane.
Construct two points I and J such that

−→
IA = −3

−→
IB,

−→
JA = −

1

3

−→
JB,

and then demonstrate that for any arbitrary point M on
the plane

−−−→
MA + 3

−−→
MB = 4

−−→
MI

and

3
−−−→
MA +

−−→
MB = 4

−−→
MJ.

Problem 8.2.11 You find an ancient treasure map in
your great-grandfather’s sea-chest. The sketch indicates
that from the gallows you should walk to the oak tree,
turn right 90◦ and walk a like distance, putting and x at
the point where you stop; then go back to the gallows,
walk to the pine tree, turn left 90◦, walk the same dis-
tance, mark point Y . Then you will find the treasure at
the midpoint of the segment XY . So you charter a sailing
vessel and go to the remote south-seas island. On ar-
rival, you readily locate the oak and pine trees, but un-
fortunately, the gallows was struck by lightning, burned
to dust and dispersed to the winds. No trace of it re-
mains. What do you do?

8.3 Dot Product in R2

352 Definition Let (−→a,
−→
b) ∈ (R2)2. The dot product

−→a•

−→
b of −→a and

−→
b is defined by

−→a•

−→
b =









a1

a2









•









b1

b2









= a1b1 + a2b2.

The following properties of the dot product are easy to deduce from the definition.

DP1 Bilinearity
(
−→
x +

−→
y)•

−→
z =

−→
x •

−→
z +

−→
y•

−→
z ,

−→
x •(

−→
y +

−→
z ) =

−→
x •

−→
y +

−→
x •

−→
z (8.5)

DP2 Scalar Homogeneity
(α−→x )•

−→y =
−→x •(α−→y) = α(

−→x •
−→y), α ∈ R. (8.6)

DP3 Commutativity
−→x •

−→y =
−→y •

−→x (8.7)

DP4
−→
x •

−→
x ≥ 0 (8.8)

DP5
−→x •

−→x = 0 ⇔ −→x =
−→
0 (8.9)
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DP6
||x|| =

√

−→
x •

−→
x (8.10)

353 Example If we put

−→
i =









1

0









,
−→
j =









0

1









,

then we can write any vector −→a =









a1

a2









as a sum

−→
a = a1

−→
i + a2

−→
j .

The vectors

−→
i =









1

0









,
−→
j =









0

1









,

satisfy
−→
i •

−→
j = 0, and

∣

∣

∣

∣

∣

∣

−→
i
∣

∣

∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

−→
j
∣

∣

∣

∣

∣

∣ = 1.

354 Definition Given vectors −→a and
−→
b , we define the angle between them, denoted by

̂
(
−→a,

−→
b), as the angle

between any two contiguous bi-point representatives of −→a and
−→
b .

355 Theorem
−→a •

−→
b = ||

−→
a ||||

−→
b || cos

̂
(
−→
a,

−→
b).

Proof: Using Al-Kashi’s Law of Cosines on the length of the vectors, we have

||
−→
b −

−→a ||2 = ||
−→a ||2 + ||

−→
b ||2 − 2||−→a ||||

−→
b || cos

̂
(
−→a,

−→
b)

⇔ (
−→
b −

−→a)•(
−→
b −

−→a) = ||
−→a ||2 + ||

−→
b ||2 − 2||−→a ||||

−→
b || cos

̂
(
−→a,

−→
b)

⇔
−→
b•

−→
b − 2−→a•

−→
b +

−→a•
−→a = ||

−→a ||2 + ||
−→
b ||2 − 2||−→a ||||

−→
b || cos

̂
(
−→a,

−→
b)

⇔ ||
−→
b ||2 − 2

−→a •

−→
b + ||

−→
b ||2 = ||

−→
a ||2 + ||

−→
b ||2 − 2||

−→
a ||||

−→
b || cos

̂
(
−→
a,

−→
b)

⇔ −→
a •

−→
b = ||

−→
a ||||

−→
b || cos

̂
(
−→
a,

−→
b),

as we wanted to shew. ❑

Putting
̂
(
−→
a,

−→
b) = π

2
in Theorem 355 we obtain the following corollary.

356 Corollary Two vectors in R2 are perpendicular if and only if their dot product is 0.



160 Chapter 8

−→a

−→
b −

−→a

−→
b

Figure 8.19: Theorem 355.

357 Definition Two vectors are said to be orthogonal if they are perpendicular. If −→a is orthogonal to
−→
b , we

write −→a ⊥ −→
b.

358 Definition If −→a ⊥ −→
b and

∣

∣

∣

∣

−→
a
∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

−→
b
∣

∣

∣

∣

∣

∣ = 1 we say that −→a and
−→
b are orthonormal.

☞ It follows that the vector
−→
0 is simultaneously parallel and perpendicular to any vector!

359 Definition Let −→a ∈ R2 be fixed. Then the orthogonal space to −→
a is defined and denoted by

−→
a

⊥
= {

−→
x ∈ R2 :

−→
x ⊥ −→

a }.

Since | cos θ| ≤ 1 we also have

360 Corollary (Cauchy-Bunyakovsky-Schwarz Inequality)
∣

∣

∣

−→a•

−→
b
∣

∣

∣ ≤
∣

∣

∣

∣

−→a
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−→
b
∣

∣

∣

∣

∣

∣.

361 Corollary (Triangle Inequality)
∣

∣

∣

∣

∣

∣

−→a +
−→
b
∣

∣

∣

∣

∣

∣ ≤
∣

∣

∣

∣

−→a
∣

∣

∣

∣+
∣

∣

∣

∣

∣

∣

−→
b
∣

∣

∣

∣

∣

∣.

Proof:

||
−→
a +

−→
b ||2 = (

−→
a +

−→
b)•(

−→
a +

−→
b)

=
−→a•

−→a + 2−→a•

−→
b +

−→
b•

−→
b

≤ ||
−→a ||2 + 2||−→a ||||

−→
b || + ||

−→
b ||2

= (||
−→a || + ||

−→
b ||)2,

from where the desired result follows. ❑

362 Corollary (Pythagorean Theorem) If −→a ⊥ −→
b then

||
−→a +

−→
b ||2 =

∣

∣

∣

∣

−→a
∣

∣

∣

∣

2
+
∣

∣

∣

∣

∣

∣

−→
b
∣

∣

∣

∣

∣

∣

2

.

Proof: Since
−→a•

−→
b = 0, we have

||
−→a +

−→
b ||2 = (

−→a +
−→
b)•(

−→a +
−→
b)

=
−→a•

−→a + 2−→a•

−→
b +

−→
b•

−→
b

=
−→a•

−→a + 0 +
−→
b•

−→
b

= ||
−→
a ||2 + ||

−→
b ||2,
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from where the desired result follows. ❑

363 Definition The projection of
−→
t onto −→

v (or the −→
v -component of

−→
t ) is the vector

proj
−→
t
−→v = (cos ̂

(
−→
t ,−→v ))

∣

∣

∣

∣

∣

∣

−→
t
∣

∣

∣

∣

∣

∣

1
∣

∣

∣

∣

−→v
∣

∣

∣

∣

−→v ,

where ̂
(
−→
v ,

−→
t ) ∈ [0; π] is the convex angle between −→

v and
−→
t read in the positive sense.

☞ Given two vectors
−→
t and vector

−→v 6= −→
0 , find bi-point representatives of them having a

common tail and join them together at their tails. The projection of
−→
t onto

−→v is the “shadow” of
−→
t in the direction of

−→v . To obtain proj
−→
t
−→
v we prolong

−→v if necessary and drop a perpendicular line

to it from the head of
−→
t . The projection is the portion between the common tails of the vectors

and the point where this perpendicular meets
−→
t . See figure 8.20.

b b

Figure 8.20: Vector Projections.

364 Corollary Let −→a 6= −→
0 . Then

proj
−→
x
−→a = cos ̂(−→x ,−→a)

∣

∣

∣

∣

−→x
∣

∣

∣

∣

1
∣

∣

∣

∣

−→a
∣

∣

∣

∣

−→a =

−→x •
−→a

∣

∣

∣

∣

−→a
∣

∣

∣

∣

2

−→a.

365 Theorem Let −→a ∈ R2 \ {
−→
0 }. Then any −→

x ∈ R2 can be decomposed as

−→
x =

−→
u +

−→
v ,

where −→
u ∈ R−→a and −→

v ∈ −→
a

⊥
.

Proof: We know that proj
−→
x
−→a is parallel to

−→a , so we take
−→u = proj

−→
x
−→a . This means that we must

then take
−→
v =

−→
x − proj

−→x
−→a . We must demonstrate that

−→
v is indeed perpendicular to

−→
a . But this

is clear, as

−→
a•

−→
v =

−→
a•

−→
x −

−→
a•proj

−→x
−→a

=
−→a•

−→x −
−→a•

−→x•
−→a

||−→a ||
2

−→a

=
−→
a•

−→
x −

−→
x •

−→
a

= 0,

completing the proof. ❑

366 Corollary Let −→v ⊥ −→
w be non-zero vectors in R2. Then any vector −→a ∈ R2 has a unique representation

as a linear combination of −→v ,−→w ,
−→
a = s

−→
v + t

−→
w, (s, t) ∈ R2.



162 Chapter 8

Proof: By Theorem 365, there exists a decomposition

−→a = s−→v + s ′−→v
′
,

where
−→v

′
is orthogonal to

−→v . But then −→v
′
||
−→w and hence there exists α ∈ R with

−→v
′
= α−→w. Taking

t = s ′α we achieve the decomposition

−→
a = s

−→
v + t

−→
w.

To prove uniqueness, assume

s−→v + t−→w =
−→a = p−→v + q−→w.

Then (s − p)−→v = (q − t)−→w. We must have s = p and q = t since otherwise
−→v would be parallel

to
−→w. This completes the proof. ❑

367 Corollary Let −→
p,

−→
q be non-zero, non-parallel vectors in R2. Then any vector −→

a ∈ R2 has a unique
representation as a linear combination of −→p,−→q ,

−→a = l−→p + m−→q, (l,m) ∈ R2.

Proof: Consider
−→z =

−→q − proj
−→q
−→p
. Clearly

−→p ⊥ −→z and so by Corollary 366, there exists unique

(s, t) ∈ R2 such that

−→
a = s

−→
p + t

−→
z

= s
−→
p − tproj

−→q
−→p

+ t
−→
q

=

(

s− t
−→q•

−→p

||−→p ||
2

)

−→p + t−→q,

establishing the result upon choosing l = s − t
−→q•

−→p

||−→p ||
2 and m = t. ❑

368 Example Let −→p =









1

1









, −→q =









1

2









. Write −→p as the sum of two vectors, one parallel to −→q and the other

perpendicular to −→q .

Solution: ◮ We use Theorem 365. We know that proj
−→p
−→q

is parallel to
−→q , and we find

proj
−→p
−→q

=

−→
p •

−→
q

∣

∣

∣

∣

−→
q
∣

∣

∣

∣

2

−→
q =

3

5

−→
q =









3
5

6
5









.

We also compute

−→p − proj
−→p
−→q

=









1 − 3
5

1 − 6
5









=









2
5

−1
5









.

Observe that








3
5

6
5









•









2
5

−1
5









=
6

25
−

6

25
= 0,



Dot Product in R2 163

and the desired decomposition is








1

1









=









3
5

6
5









+









2
5

−1
5









.

◭

b

A

bB

b C

b H

Figure 8.21: Orthocentre.

369 Example Prove that the altitudes of a triangle △ABC on the plane are concurrent. This point is
called the orthocentre of the triangle.

Solution: ◮ Put
−→a =

−−→
OA,

−→
b =

−−→
OB,−→c =

−−→
OC. First observe that for any

−→x , we have, upon

expanding,

(
−→x −

−→a)•(
−→
b −

−→c ) + (
−→x −

−→
b)•(

−→c −
−→a) + (

−→x −
−→c )•(

−→a −
−→
b) = 0. (8.11)

Let H be the point of intersection of the altitude from A and the altitude from B. Then

0 =
−−→
AH•

−−→
CB = (

−−→
OH −

−−→
OA)•(

−−→
OB −

−−→
OC) = (

−−→
OH −

−→a)•(
−→
b −

−→c ), (8.12)

and

0 =
−−→
BH•

−−→
AC = (

−−→
OH −

−−→
OB)•(

−−→
OC −

−−→
OA) = (

−−→
OH −

−→
b)•(

−→
c −

−→
a). (8.13)

Putting
−→x =

−−→
OH in (8.11) and subtracting from it (8.12) and (8.13), we gather that

0 = (
−−→
OH −

−→
c )•(

−→
a −

−→
b) =

−−→
CH•

−−→
AB,

which gives the result. ◭

Homework

Problem 8.3.1 Determine the value of a so that









a

1 − a









be perpendicular to









1

−1









.

Problem 8.3.2 Demonstrate that

(
−→
b +

−→c =
−→
0 )∧ (

∣

∣

∣

∣

−→a
∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

−→
b
∣

∣

∣

∣

∣

∣
) ⇐⇒ (

−→a −
−→
b)•(

−→a −
−→c ) = 0.

Problem 8.3.3 Let −→p =









4

5









, −→r =









−1

1









, −→s =









2

1









. Write

−→
p as the sum of two vectors, one parallel to −→

r and the
other parallel to −→s .

Problem 8.3.4 Prove that

∣

∣

∣

∣

−→
a
∣

∣

∣

∣

2
= (

−→
a•

−→
i )2 + (

−→
a•

−→
j )2.

Problem 8.3.5 Let −→a 6= −→
0 6= −→

b be vectors in R2 such that
−→a•

−→
b = 0. Prove that

α−→a + β
−→
b =

−→
0 =⇒ α = β = 0.

Problem 8.3.6 Let (
−→
x ,

−→
y) ∈ (R2)2 with ||

−→
x || = 3

2
||
−→
y ||.

Shew that 2−→x + 3−→y and 2−→x − 3−→y are perpendicular.
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Problem 8.3.7 Let −→a,
−→
b be fixed vectors in R2. Prove

that if
∀−→v ∈ R2,

−→
v •

−→
a =

−→
v •

−→
b,

then −→a =
−→
b .

Problem 8.3.8 Let (−→a,
−→
b) ∈ (R2)2. Prove that

∣

∣

∣

∣

∣

∣

−→
a +

−→
b
∣

∣

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

∣

−→
a −

−→
b
∣

∣

∣

∣

∣

∣

2

= 2
∣

∣

∣

∣

−→
a
∣

∣

∣

∣

2
+ 2

∣

∣

∣

∣

∣

∣

−→
b
∣

∣

∣

∣

∣

∣

2

.

Problem 8.3.9 Let −→u,−→v be vectors in R2. Prove the po-

larisation identity:

−→u • −→v =
1

4

(

||
−→u +

−→v ||2 − ||
−→u −

−→v ||2
)

.

Problem 8.3.10 Let −→x ,−→a be non-zero vectors in R2.
Prove that

proj
proj

−→a
−→x

−→a

= α
−→
a,

with 0 ≤ α ≤ 1.

Problem 8.3.11 Let (λ,−→a) ∈ R × R2 be fixed. Solve the
equation

−→a•
−→x = λ

for −→x ∈ R2.

8.4 Lines on the Plane

370 Definition Three points A, B, and C are collinear if they lie on the same line.

It is clear that the points A, B, and C are collinear if and only if
−−→
AB is parallel to

−−→
AC. Thus we have the

following definition.

371 Definition The parametric equation with parameter t ∈ R of the straight line passing through the

point P =









p1

p2









in the direction of the vector −→v 6= −→
0 is









x − p1

y − p2









= t−→v .

If −→r =









x

y









, then the equation of the line can be written in the form

−→r −
−→p = t−→v . (8.14)

The Cartesian equation of a line is an equation of the form ax + by = c, where a2 + b2 6= 0. We write
(AB) for the line passing through the points A and B.

372 Theorem Let −→v 6= −→
0 and let −→n ⊥ −→v . An alternative form for the equation of the line −→r −

−→p = t−→v is

(
−→r −

−→p)•
−→n = 0.

Moreover, the vector









a

b









is perpendicular to the line with Cartesian equation ax + by = c.

Proof: The first part follows at once by observing that
−→v •

−→n = 0 and taking dot products to both

sides of 8.14. For the second part observe that at least one of a and b is 6= 0. First assume that
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a 6= 0. Then we can put y = t and x = −b
a
t+ c

a
and the parametric equation of this line is









x − c
a

y









= t









−b
a

1









,

and we have








−b
a

1









•









a

b









= −
b

a
· a + b = 0.

Similarly if b 6= 0 we can put x = t and y = −a
b
t + c

b
and the parametric equation of this line is









x

y− c
b









= t









1

−a
b









,

and we have








1

−a
b









•









a

b









= a −
a

b
· b = 0,

proving the theorem in this case. ❑

☞ The vector









a√
a2+b2

b√
a2+b2









has norm 1 and is orthogonal to the line ax + by = c.

373 Example The equation of the line passing through A =









2

3









and in the direction of −→v =









−4

5









is









x − 2

y − 3









= λ









−4

5









.

374 Example Find the equation of the line passing through A =









−1

1









and B =









−2

3









.

Solution: ◮ The direction of this line is that of

−−→
AB =









−2 − (−1)

3 − 1









=









−1

2









.

The equation is thus








x+ 1

y− 1









= λ









−1

2









, λ ∈ R.
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◭

375 Example Suppose that (m,b) ∈ R2. Write the Cartesian equation of the line y = mx+b in parametric
form.

Solution: ◮ Here is a way. Put x = t. Then y = mt + b and so the desired parametric form is









x

y − b









= t









1

m









.

◭

376 Example Let (m1,m2, b1, b2) ∈ R4,m1m2 6= 0. Consider the lines L1 : y = m1x + b1 and L2 : y =

m2x + b2. By translating this problem in the language of vectors in R2, shew that L1 ⊥ L2 if and only if
m1m2 = −1.

Solution: ◮ The parametric equations of the lines are

L1 :









x

y − b1









= s









1

m1









, L2 :









x

y − b2









= t









1

m2









.

Put
−→
v =









1

m1









and
−→
w =









1

m2









. Since the lines are perpendicular we must have
−→
v •

−→
w = 0, which

yields

0 =
−→v •

−→w = 1(1) + m1(m2) =⇒ m1m2 = −1.

◭

377 Theorem (Distance Between a Point and a Line) Let (
−→
r −

−→
a)•

−→
n = 0 be a line passing through the

point A and perpendicular to vector −→n . If B is not a point on the line, then the distance from B to the
line is

∣

∣

∣(
−→
a −

−→
b)•

−→
n
∣

∣

∣

∣

∣

∣

∣

−→
n
∣

∣

∣

∣

.

If the line has Cartesian equation ax + by = c, then this distance is

|ab1 + bb2 − c|
√
a2 + b2

.

Proof: Let R0 be the point on the line that is nearest to B. Then
−−−→
BR0 =

−→
r0 −

−→
b is orthogonal to

the line, and the distance we seek is

||proj
−−−−→
−→r0−

−→
b

−→
n

|| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(
−→r0 −

−→
b)•

−→n
∣

∣

∣

∣

−→n
∣

∣

∣

∣

2

−→n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
|(
−→r0 −

−→
b)•

−→n |
∣

∣

∣

∣

−→
n
∣

∣

∣

∣

.

Since R0 is on the line,
−→
r0•

−→
n =

−→
a•

−→
n, and so

||proj
−−−−→
−→r0−

−→
b

−→
n

|| =
|
−→
r0•

−→
n −

−→
b•

−→
n |

∣

∣

∣

∣

−→
n
∣

∣

∣

∣|
=

|
−→
a •

−→
n −

−→
b•

−→
n |

∣

∣

∣

∣

−→
n
∣

∣

∣

∣

=
|(
−→
a −

−→
b)•

−→
n |

∣

∣

∣

∣

−→
n
∣

∣

∣

∣

,

as we wanted to shew.
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If the line has Cartesian equation ax+by = c, then at least one of a and b is 6= 0. Let us suppose

a 6= 0, as the argument when a = 0 and b 6= 0 is similar. Then ax + by = c is equivalent to

















x

y









−









c
a

0

















•









a

b









= 0.

We use the result obtained above with
−→a =









c
a

0









,
−→n =









a

b









, and B =









b1

b2









. Then
∣

∣

∣

∣

−→n
∣

∣

∣

∣ =

√
a2 + b2 and

|(
−→a −

−→
b)•

−→n | =

∣

∣

∣

∣

∣

∣

∣

∣









c
a
− b1

−b2









•









a

b









∣

∣

∣

∣

∣

∣

∣

∣

= |c − ab1 − bb2| = |ab1 + bb2 − c|,

giving the result. ❑

378 Example Recall that the medians of △ABC are lines joining the vertices of △ABC with the midpoints
of the side opposite the vertex. Prove that the medians of a triangle are concurrent, that is, that they
pass through a common point.

☞ This point of concurrency is called, alternatively, the isobarycentre, centroid, or centre of
gravity of the triangle.

Solution: ◮ Let MA, MB, and MC denote the midpoints of the lines opposite A, B, and C,

respectively. The equation of the line passing through A and in the direction of
−−−−→
AMA is (with

−→r =









x

y









)

−→
r =

−−→
OA + r

−−−−→
AMA.

Similarly, the equation of the line passing through B and in the direction of
−−−−→
BMB is

−→r =
−−→
OB + s

−−−−→
BMA.

These two lines must intersect at a point G inside the triangle. We will shew that
−−→
GC is parallel

to
−−−−→
CMC, which means that the three points G,C,MC are collinear.

Now, ∃(r0, s0) ∈ R2 such that

−−→
OA + r0

−−−−→
AMA =

−−→
OG =

−−→
OB + s0

−−−−→
BMB,

that is

r0
−−−−→
AMA − s0

−−−−→
BMB =

−−→
OB −

−−→
OA,

or

r0(
−−→
AB+

−−−−→
BMA) − s0(

−−→
BA +

−−−−→
AMB) =

−−→
AB.

Since MA and MB are the midpoints of [B, C] and [C,A] respectively, we have 2
−−−−→
BMA =

−−→
BC and

2
−−−−→
AMB =

−−→
AC =

−−→
AB +

−−→
BC. The relationship becomes

r0(
−−→
AB +

1

2

−−→
BC) − s0(−

−−→
AB+

1

2

−−→
AB +

1

2

−−→
BC) =

−−→
AB,
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(r0 +
s0

2
− 1)

−−→
AB = (−

r0

2
+

s0

2
)
−−→
BC.

We must have

r0 +
s0

2
− 1 = 0,

−
r0

2
+

s0

2
= 0,

since otherwise the vectors
−−→
AB and

−−→
BC would be parallel, and the triangle would be degenerate.

Solving, we find s0 = r0 = 2
3
. Thus we have

−−→
OA+ 2

3

−−−−→
AMA =

−−→
OG, or

−−→
AG = 2

3

−−−−→
AMA, and similarly,

−−→
BG = 2

3

−−−−→
BMB.

From
−−→
AG = 2

3

−−−−→
AMA, we deduce

−−→
AG = 2

−−−−→
GMA. Since MA is the midpoint of [B, C], we have

−−→
GB+

−−→
GC = 2

−−−−→
GMA =

−−→
AG, which is equivalent to

−−→
GA +

−−→
GB +

−−→
GC =

−→
0 .

As MC is the midpoint of [A,B] we have
−−→
GA +

−−→
GB = 2

−−−−→
GMC. Thus

−→
0 =

−−→
GA +

−−→
GB +

−−→
GC = 2

−−−−→
GMC +

−−→
GC.

This means that
−−→
GC = −2

−−−−→
GMC, that is, that they are parallel, and so the points G, C and MC

all lie on the same line. This achieves the desired result. ◭

☞ The centroid of △ABC satisfies thus

−−→
GA +

−−→
GB +

−−→
GC =

−→
0 ,

and divides the medians on the ratio 2 : 1, reckoning from a vertex.

Homework

Problem 8.4.1 Find the angle between the lines 2x−y =

1 and x − 3y = 1.

Problem 8.4.2 Find the equation of the line passing

through









1

−1









and in a direction perpendicular to









2

1









.

Problem 8.4.3 △ABC has centroid G, and △A ′B ′C ′

satisfies
−−−→
AA ′

+
−−→
BB ′

+
−−−→
CC ′

=
−→
0 .

Prove that G is also the centroid of △A ′B ′C ′.

Problem 8.4.4 Let ABCD be a trapezoid, with bases
[A, B] and [C,D]. The lines (AC) and (BD) meet at E and
the lines (AD) and (BC) meet at F. Prove that the line
(EF) passes through the midpoints of [A, B] and [C,D] by
proving the following steps.

➊ Let I be the midpoint of [A, B] and let J be the point
of intersection of the lines (FI) and (DC). Prove
that J is the midpoint of [C,D]. Deduce that F, I, J

are collinear.

➋ Prove that E, I, J are collinear.

Problem 8.4.5 Let ABCD be a parallelogram.

➊ Let E and F be points such that

−−→
AE =

1

4

−−→
AC and

−→
AF =

3

4

−−→
AC.

Demonstrate that the lines (BE) and (DF) are par-
allel.

➋ Let I be the midpoint of [A,D] and J be the midpoint
of [B, C]. Demonstrate that the lines (AB) and (IJ)

are parallel. What type of quadrilateral is IEJF?

Problem 8.4.6 ABCD is a parallelogram; point I is the
midpoint of [A, B]. Point E is defined by the relation
−→
IE = 1

3

−→
ID. Prove that

−−→
AE =

1

3

(

−−→
AB +

−−→
AD

)

and prove that the points A,C, E are collinear.

Problem 8.4.7 Put
−−→
OA =

−→
a ,

−−→
OB =

−→
b ,

−−→
OC =

−→
c . Prove

that A,B, C are collinear if and only if there exist real
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numbers α, β, γ, not all zero, such that

α
−→
a + β

−→
b + γ

−→
c =

−→
0 , α + β + γ = 0.

Problem 8.4.8 Prove Desargues’ Theorem: If △ABC

and △A ′B ′C ′ (not necessarily in the same plane) are
so positioned that (AA ′), (BB ′), (CC ′) all pass through
the same point V and if (BC) and (B ′C ′) meet at L, (CA)

and (C ′A ′) meet at M, and (AB) and (A ′B ′) meet at N,
then L,M,N are collinear.

8.5 Vectors in R3

We now extend the notions studied for R2 to R3. The rectangular coordinate form of a vector in R3 is

−→a =

















a1

a2

a3

















.

In particular, if

−→
i =

















1

0

0

















,
−→
j =

















0

1

0

















,
−→
k =

















0

0

1

















then we can write any vector −→
a =

















a1

a2

a3

















as a sum

−→
a = a1

−→
i + a2

−→
j + a3

−→
k.

Given −→a =

















a1

a2

a3

















and
−→
b =

















b1

b2

b3

















, their dot product is

−→a•

−→
b = a1b1 + a2b2 + a3b3,

and
∣

∣

∣

∣

−→a
∣

∣

∣

∣ =

√

a2
1 + a2

2 + a2
3.

We also have
−→
i •

−→
j =

−→
j •

−→
k =

−→
k •

−→
i = 0,

and
∣

∣

∣

∣

∣

∣

−→
i
∣

∣

∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

−→
j
∣

∣

∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

−→
k
∣

∣

∣

∣

∣

∣ = 1.

379 Definition A system of unit vectors
−→
i ,

−→
j ,

−→
k is right-handed if the shortest-route rotation which brings

−→
i to coincide with

−→
j is performed in a counter-clockwise manner. It is left-handed if the rotation is done

in a clockwise manner.
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To study points in space we must first agree on the orientation that we will give our coordinate system.
We will use, unless otherwise noted, a right-handed orientation, as in figure 8.22.

−→
j

−→
k

−→
i

Figure 8.22: Right-handed system.

−→
j

−→
k

−→
i

Figure 8.23: Left-handed system.

☞ The analogues of the Cauchy-Bunyakovsky-Schwarz and the Triangle Inequality also hold

in R3.

We now define the (standard) cross (wedge) product in R3 as a product satisfying the following prop-
erties.

380 Definition Let (
−→x ,−→y,−→z , α) ∈ R3 × R3 × R3 × R. The wedge product × : R3 × R3 → R3 is a closed

binary operation satisfying

CP1 Anti-commutativity:
−→
x×−→

y = −(
−→
y×−→

x ) (8.15)

CP2 Bilinearity:

(
−→
x +

−→
z )×−→

y =
−→
x×−→

y +
−→
z×−→

y,
−→
x×(

−→
z +

−→
y) =

−→
x×−→

z +
−→
x×−→

y (8.16)

CP3 Scalar homogeneity:

(α
−→
x )×−→

y =
−→
x×(α

−→
y) = α(

−→
x×−→

y) (8.17)

CP4
−→x×−→x =

−→
0 (8.18)

CP5 Right-hand Rule:
−→
i ×−→

j =
−→
k,

−→
j ×−→

k =
−→
i ,

−→
k×−→

i =
−→
j (8.19)

381 Theorem Let −→x =

















x1

x2

x3

















and −→y =

















y1

y2

y3

















be vectors in R3. Then

−→x×−→y = (x2y3 − x3y2)
−→
i + (x3y1 − x1y3)

−→
j + (x1y2 − x2y1)

−→
k.
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Proof: Since
−→
i ×−→

i =
−→
j ×−→

j =
−→
k×−→

k =
−→
0 we have

(x1
−→
i + x2

−→
j + x3

−→
k)×(y1

−→
i + y2

−→
j + y3

−→
k) = x1y2

−→
i ×−→

j + x1y3
−→
i ×−→

k

+x2y1
−→
j ×−→

i + x2y3
−→
j ×−→

k

+x3y1
−→
k×−→

i + x3y2
−→
k×−→

j

= x1y2
−→
k − x1y3

−→
j − x2y1

−→
k

+x2y3

−→
i + x3y1

−→
j − x3y2

−→
i ,

from where the theorem follows. ❑

382 Example Find
















1

0

−3

















×

















0

1

2

















.

Solution: ◮ We have

(
−→
i − 3

−→
k)×(

−→
j + 2

−→
k) =

−→
i ×−→

j + 2
−→
i ×−→

k − 3
−→
k×−→

j − 6
−→
k×−→

k

=
−→
k − 2

−→
j − 3

−→
i + 6

−→
0

= −3
−→
i − 2

−→
j +

−→
k.

Hence
















1

0

−3

















×

















0

1

2

















=

















−3

−2

1

















.

◭

383 Theorem The cross product vector −→x×−→y is simultaneously perpendicular to −→x and −→y .

Proof: We will only check the first assertion, the second verification is analogous.

−→x •(
−→x×−→y) = (x1

−→
i + x2

−→
j + x3

−→
k)•((x2y3 − x3y2)

−→
i

+(x3y1 − x1y3)
−→
j + (x1y2 − x2y1)

−→
k )

= x1x2y3 − x1x3y2 + x2x3y1 − x2x1y3 + x3x1y2 − x3x2y1

= 0,

completing the proof. ❑
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384 Theorem
−→
a×(

−→
b×−→

c ) = (
−→a •

−→
c )

−→
b − (

−→a •

−→
b )−→c .

Proof:
−→
a×(

−→
b×−→

c ) = (a1

−→
i + a2

−→
j + a3

−→
k)×((b2c3 − b3c2)

−→
i +

+(b3c1 − b1c3)
−→
j + (b1c2 − b2c1)

−→
k )

= a1(b3c1 − b1c3)
−→
k − a1(b1c2 − b2c1)

−→
j

−a2(b2c3 − b3c2)
−→
k + a2(b1c2 − b2c1)

−→
i

+a3(b2c3 − b3c2)
−→
j − a3(b3c1 − b1c3)

−→
i

= (a1c1 + a2c2 + a3c3)(b1
−→
i + b2

−→
j + b3

−→
i )

+(−a1b1 − a2b2 − a3b3)(c1
−→
i + c2

−→
j + c3

−→
i )

= (
−→a •

−→c )
−→
b − (

−→a •

−→
b)−→c ,

completing the proof. ❑

385 Theorem (Jacobi’s Identity)

−→a×(
−→
b×−→c ) +

−→
b×(

−→c×−→a) +
−→c×(

−→a×−→
b) =

−→
0 .

Proof: From Theorem 384 we have

−→a×(
−→
b×−→c ) = (

−→a •
−→c )

−→
b − (

−→a •

−→
b)−→c ,

−→
b×(

−→c×−→a) = (
−→
b•

−→a)
−→c − (

−→
b•

−→c )−→a,

−→c×(
−→a×−→

b) = (
−→c •

−→
b)

−→a − (
−→c •

−→a)
−→
b,

and adding yields the result. ❑

386 Theorem Let ̂(−→x ,−→y) ∈ [0;π[ be the convex angle between two vectors −→
x and −→

y . Then

||
−→x×−→y || = ||

−→x ||||−→y || sin ̂(−→x ,−→y).

Proof: We have

||
−→x×−→y ||2 = (x2y3 − x3y2)

2 + (x3y1 − x1y3)
2 + (x1y2 − x2y1)

2

= x22y
2
3 − 2x2y3x3y2 + x23y

2
2 + x23y

2
1 − 2x3y1x1y3+

+x21y
2
3 + x21y

2
2 − 2x1y2x2y1 + x22y

2
1

= (x21 + x22 + x23)(y
2
1 + y2

2 + y2
3) − (x1y1 + x2y2 + x3y3)

2

= ||
−→x ||2||−→y ||2 − (

−→x •
−→y)2

= ||
−→x ||2||−→y ||2 − ||

−→x ||2||−→y ||2 cos2 ̂(−→x ,−→y)

= ||
−→
x ||2||

−→y ||2 sin2 ̂(−→x ,−→y),
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whence the theorem follows. The Theorem is illustrated in Figure 8.24. Geometrically it means

that the area of the parallelogram generated by joining
−→
x and

−→
y at their heads is

∣

∣

∣

∣

−→
x×−→

y
∣

∣

∣

∣. ❑
−→
x×−→y

−→
y

−→x

Figure 8.24: Theorem 386.

The following corollaries are now obvious.

387 Corollary Two non-zero vectors −→x ,−→y satisfy −→x×−→y =
−→
0 if and only if they are parallel.

388 Corollary (Lagrange’s Identity)

||
−→
x×−→y ||2 = ||x||2||y||2 − (

−→x •
−→y)2.

389 Example Let −→x ∈ R3, ||x|| = 1. Find

||
−→
x×−→

i ||2 + ||
−→
x×−→

j ||2 + ||
−→
x×−→

k ||2.

Solution: ◮ By Lagrange’s Identity,

||
−→
x×−→

i ||2 =
∣

∣

∣

∣

−→
x
∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

−→
i
∣

∣

∣

∣

∣

∣

2

− (
−→
x •

−→
i )2 = 1 − (

−→x •

−→
i )2,

||
−→
x×−→

k ||2 =
∣

∣

∣

∣

−→
x
∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

−→
j
∣

∣

∣

∣

∣

∣

2

− (
−→
x •

−→
j )2 = 1 − (

−→x •

−→
j )2,

||
−→
x×−→

j ||2 =
∣

∣

∣

∣

−→
x
∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

−→
k
∣

∣

∣

∣

∣

∣

2

− (
−→
x •

−→
k)2 = 1 − (

−→
x •

−→
k)2,

and since (
−→x •

−→
i )2 + (

−→x •

−→
j )2 + (

−→x •

−→
k)2 =

∣

∣

∣

∣

−→x
∣

∣

∣

∣

2
= 1, the desired sum equals 3 − 1 = 2. ◭

Problem 8.5.1 Consider a tetrahedron ABCS. [A] Find
−−→
AB +

−−→
BC +

−−→
CS. [B] Find

−−→
AC +

−−→
CS +

−−→
SA +

−−→
AB.

Problem 8.5.2 Find a vector simultaneously perpendic-

ular to

















1

1

1

















and

















1

1

0

















and having norm 3.

Problem 8.5.3 Find the area of the triangle whose ver-

tices are at P =

















0

0

1

















, Q =

















0

1

0

















, and R =

















1

0

0

















.

Problem 8.5.4 Prove or disprove! The cross product is
associative.

Problem 8.5.5 Prove that −→x×−→x =
−→
0 follows from the

anti-commutativity of the cross product.

Problem 8.5.6 Expand the product (−→a −
−→
b)×(

−→a +
−→
b).

Problem 8.5.7 The vectors −→
a,

−→
b are constant vectors.

Solve the equation −→a×(
−→x×−→

b) =
−→
b×(

−→x×−→a).

Problem 8.5.8 The vectors −→
a,

−→
b,

−→
c are constant vec-

tors. Solve the system of equations

2
−→
x +

−→
y×−→

a =
−→
b, 3

−→
y +

−→
x×−→

a =
−→
c ,
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Problem 8.5.9 Prove that there do not exist three unit
vectors in R3 such that the angle between any two of

them be >
2π

3
.

Problem 8.5.10 Let −→
a ∈ R3 be a fixed vector. Demon-

strate that
X = {

−→x ∈ R3
:
−→a×−→x =

−→
0 }

is a subspace of R3.

Problem 8.5.11 Let (
−→
a,

−→
b) ∈ (R3)2 and assume that

−→a •

−→
b = 0 and that −→a and

−→
b are linearly independent.

Prove that −→a,
−→
b,−→a×−→

b are linearly independent.

Problem 8.5.12 Let (
−→a,

−→
b) ∈ R3 × R3 be fixed. Solve

the equation
−→a×−→x =

−→
b,

for −→x .

Problem 8.5.13 Let
−→
h,

−→
k be fixed vectors in R3. Prove

that

L :
R3 × R3 → R3

(
−→
x ,

−→
y) 7→ −→

x×−→
k +

−→
h×−→

y

is a linear transformation.

8.6 Planes and Lines in R3

390 Definition If bi-point representatives of a family of vectors in R3 lie on the same plane, we will say
that the vectors are coplanar or parallel to the plane.

391 Lemma Let −→v ,−→w in R3 be non-parallel vectors. Then every vector −→u of the form

−→
u = a

−→
v + b

−→
w,

((a, b) ∈ R2 arbitrary) is coplanar with both −→v and −→w. Conversely, any vector
−→
t coplanar with both −→v

and −→
w can be uniquely expressed in the form

−→
t = p−→v + q−→w.

Proof: This follows at once from Corollary 367, since the operations occur on a plane, which

can be identified with R2. ❑

A plane is determined by three non-collinear points. Suppose that A, B, and C are non-collinear

points on the same plane and that R =

















x

y

z

















is another arbitrary point on this plane. Since A, B, and C

are non-collinear,
−−→
AB and

−−→
AC, which are coplanar, are non-parallel. Since

−−→
AR also lies on the plane, we

have by Lemma 391, that there exist real numbers p, q with

−−→
AR = p

−−→
AB+ q

−−→
AC.

By Chasles’ Rule,
−−→
OR =

−−→
OA + p(

−−→
OB −

−−→
OA) + q(

−−→
OC −

−−→
OA),

is the equation of a plane containing the three non-collinear points A, B, and C. By letting −→r =
−−→
OR,

−→a =
−−→
OA, etc., we deduce that

−→
r −

−→
a = p(

−→
b −

−→
a) + q(

−→
c −

−→
a).

Thus we have the following definition.



Planes and Lines in R3 175

392 Definition The parametric equation of a plane containing the point A, and parallel to the vectors −→u
and −→

v is given by
−→r −

−→a = p−→u + q−→v .

Componentwise this takes the form

x − a1 = pu1 + qv1,

y − a2 = pu2 + qv2,

z − a3 = pu3 + qv3.

The Cartesian equation of a plane is an equation of the form ax + by+ cz = d with (a, b, c, d) ∈ R4 and
a2 + b2 + c2 6= 0.

393 Example Find both the parametric equation and the Cartesian equation of the plane parallel to the

vectors

















1

1

1

















and

















1

1

0

















and passing through the point

















0

−1

2

















.

Solution: ◮ The desired parametric equation is

















x

y + 1

z − 2

















= s

















1

1

1

















+ t

















1

1

0

















.

This gives s = z−2, t = y+1−s = y+1−z+2 = y−z+3 and x = s+t = z−2+y−z+3 = y+1.
Hence the Cartesian equation is x − y = 1. ◭

394 Theorem Let −→u and −→
v be non-parallel vectors and let −→r −

−→
a = p

−→
u +q

−→
v be the equation of the plane

containing A an parallel to the vectors −→u and −→v . If −→n is simultaneously perpendicular to −→u and −→v then

(
−→
r −

−→
a)•

−→
n = 0.

Moreover, the vector

















a

b

c

















is normal to the plane with Cartesian equation ax + by + cz = d.

Proof: The first part is clear, as
−→u•

−→n = 0 =
−→v •

−→n . For the second part, recall that at least one

of a, b, c is non-zero. Let us assume a 6= 0. The argument is similar if one of the other letters is

non-zero and a = 0. In this case we can see that

x =
d

a
−

b

a
y −

c

a
z.
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Put y = s and z = t. Then
















x − d
a

y

z

















= s

















−b
a

1

0

















+ t

















− c
a

0

1

















is a parametric equation for the plane. ❑

395 Example Find once again, by appealing to Theorem 394, the Cartesian equation of the plane parallel

to the vectors

















1

1

1

















and

















1

1

0

















and passing through the point

















0

−1

2

















.

Solution: ◮ The vector

















1

1

1

















×

















1

1

0

















=

















−1

1

0

















is normal to the plane. The plane has thus equation

















x

y + 1

z − 2

















•

















−1

1

0

















= 0 =⇒ −x + y + 1 = 0 =⇒ x − y = 1,

as obtained before. ◭

396 Theorem (Distance Between a Point and a Plane) Let (−→r −
−→a)•

−→n = 0 be a plane passing through the
point A and perpendicular to vector −→n . If B is not a point on the plane, then the distance from B to the
plane is

∣

∣

∣(
−→
a −

−→
b)•

−→
n
∣

∣

∣

∣

∣

∣

∣

−→
n
∣

∣

∣

∣

.

Proof: Let R0 be the point on the plane that is nearest to B. Then
−−−→
BR0 =

−→r0 −
−→
b is orthogonal

to the plane, and the distance we seek is

||proj
−−−−→
−→
r0−

−→
b

−→n
|| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(
−→r0 −

−→
b)•

−→n
∣

∣

∣

∣

−→n
∣

∣

∣

∣

2

−→n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
|(
−→r0 −

−→
b)•

−→n |
∣

∣

∣

∣

−→n
∣

∣

∣

∣

.

Since R0 is on the plane,
−→
r0•

−→
n =

−→
a•

−→
n, and so

||proj
−−−−→
−→
r0−

−→
b

−→n
|| =

|
−→r0•

−→n −
−→
b•

−→n |
∣

∣

∣

∣

−→n
∣

∣

∣

∣|
=

|
−→a •

−→n −
−→
b•

−→n |
∣

∣

∣

∣

−→n
∣

∣

∣

∣

=
|(
−→a −

−→
b)•

−→n |
∣

∣

∣

∣

−→n
∣

∣

∣

∣

,

as we wanted to shew. ❑

☞ Given three planes in space, they may (i) be parallel (which allows for some of them to

coincide), (ii) two may be parallel and the third intersect each of the other two at a line, (iii)

intersect at a line, (iv) intersect at a point.
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397 Definition The equation of a line passing through A ∈ R3 in the direction of −→v 6= −→
0 is given by

−→r −
−→a = t−→v , t ∈ R.

398 Theorem Put
−−→
OA =

−→
a ,

−−→
OB =

−→
b , and

−−→
OC =

−→
c . Points (A,B, C) ∈ (R3)3 are collinear if and only if

−→a×−→
b +

−→
b×−→c +

−→c×−→a =
−→
0 .

Proof: If the points A,B, C are collinear, then
−−→
AB is parallel to

−−→
AC and by Corollary 387, we

must have

(
−→
c −

−→
a)×(

−→
b −

−→
a) =

−→
0 .

Rearranging, gives
−→
c×−→

b −
−→
c×−→

a −
−→
a×−→

b =
−→
0 .

Further rearranging completes the proof. ❑

399 Theorem (Distance Between a Point and a Line) Let L :
−→
r =

−→
a + λ

−→
v ,

−→
v 6= −→

0 , be a line and let B be a
point not on L. Then the distance from B to L is given by

||(
−→a −

−→
b)×−→v ||

∣

∣

∣

∣

−→
v
∣

∣

∣

∣

.

Proof: If R0—with position vector
−→
r0—is the point on L that is at shortest distance from B then

−−−→
BR0 is perpendicular to the line, and so

||
−−−→
BR0×−→v || = ||

−−−→
BR0||

∣

∣

∣

∣

−→v
∣

∣

∣

∣ sin
π

2
= ||

−−−→
BR0||

∣

∣

∣

∣

−→v
∣

∣

∣

∣.

The distance we must compute is
∣

∣

∣

∣

∣

∣

−−−→
BR0

∣

∣

∣

∣

∣

∣ = ||
−→r0 −

−→
b ||, which is then given by

||
−→r0 −

−→
b || =

||
−−−→
BR0×−→v ||
∣

∣

∣

∣

−→v
∣

∣

∣

∣

=
||(
−→r0 −

−→
b)×−→v ||

∣

∣

∣

∣

−→v
∣

∣

∣

∣

.

Now, since R0 is on the line ∃t0 ∈ R such that
−→r0 =

−→a + t0
−→v . Hence

(
−→
r0 −

−→
b)×−→

v = (
−→
a −

−→
b)×−→

v ,

giving

||
−→
r0 −

−→
b || =

||(
−→
a −

−→
b)×−→

v ||
∣

∣

∣

∣

−→
v
∣

∣

∣

∣

,

proving the theorem. ❑

☞ Given two lines in space, one of the following three situations might arise: (i) the lines

intersect at a point, (ii) the lines are parallel, (iii) the lines are skew (one over the other, without

intersecting).

Homework

Problem 8.6.1 Find the equation of the plane passing
through the points (a, 0, a), (−a, 1, 0), and (0, 1, 2a) in
R3.

Problem 8.6.2 Find the equation of plane containing
the point (1, 1, 1) and perpendicular to the line x =

1 + t, y = −2t, z = 1 − t.



178 Chapter 8

Problem 8.6.3 Find the equation of plane containing
the point (1,−1,−1) and containing the line x = 2y = 3z.

Problem 8.6.4 Find the equation of the plane perpen-
dicular to the line ax = by = cz, abc 6= 0 and passing
through the point (1, 1, 1) in R3.

Problem 8.6.5 Find the equation of the line perpendic-
ular to the plane ax+ a2y+ a3z = 0, a 6= 0 and passing
through the point (0, 0, 1).

Problem 8.6.6 The two planes

x − y − z = 1, x − z = −1,

intersect at a line. Write the equation of this line in the
form

















x

y

z

















=
−→
a + t

−→
v , t ∈ R.

Problem 8.6.7 Find the equation of the plane passing

through the points

















1

0

−1

















,

















2

1

1

















and parallel to the line

















x

y

z

















=

















−1

−2

0

















+ t

















1

0

1

















..

Problem 8.6.8 Points a, b, c in R3 are collinear and it is
known that −→a×−→c =

−→
i − 2

−→
j and −→a×−→

b = 2
−→
k − 3

−→
i . Find

−→
b×−→

c .

Problem 8.6.9 Find the equation of the plane which is

equidistant of the points

















3

2

1

















and

















1

−1

1

















.

Problem 8.6.10 (Putnam Exam, 1980) Let S be the
solid in three-dimensional space consisting of all points
(x, y, z) satisfying the following system of six conditions:

x ≥ 0, y ≥ 0, z ≥ 0,

x + y + z ≤ 11,

2x + 4y + 3z ≤ 36,

2x + 3z ≤ 24.

Determine the number of vertices and the number of
edges of S.

8.7 Rn

As a generalisation of R2 and R3 we define Rn as the set of n-tuples





























x1

x2

...

xn

























: xi ∈ R






.

The dot product of two vectors in Rn is defined as

−→x •
−→y =

























x1

x2

...

xn

























•

























y1

y2

...

yn

























= x1y1 + x2y2 + · · · + xnyn.

The norm of a vector in Rn is given by
∣

∣

∣

∣

−→
x
∣

∣

∣

∣ =
√

−→
x •

−→
x .
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As in the case of R2 and R3 we have

400 Theorem (Cauchy-Bunyakovsky-Schwarz Inequality) Given (
−→
x ,

−→
y) ∈ (Rn)2 the following inequality

holds
|
−→x •

−→y | ≤
∣

∣

∣

∣

−→x
∣

∣

∣

∣

∣

∣

∣

∣

−→y
∣

∣

∣

∣.

Proof: Put a =

n∑

k=1

x2k, b =

n∑

k=1

xkyk, and c =

n∑

k=1

y2
k. Consider

f(t) =

n∑

k=1

(txk − yk)
2 = t2

n∑

k=1

x2k − 2t

n∑

k=1

xkyk +

n∑

k=1

y2
k = at2 + bt+ c.

This is a quadratic polynomial which is non-negative for all real t, so it must have complex roots.

Its discriminant b2 − 4ac must be non-positive, from where we gather

4

(

n∑

k=1

xkyk

)2

≤ 4

(

n∑

k=1

x2k

)(

n∑

k=1

y2
k

)

.

This gives

|
−→
x •

−→
y |2 ≤

∣

∣

∣

∣

−→
x
∣

∣

∣

∣

2∣
∣

∣

∣

−→
y
∣

∣

∣

∣

2

from where we deduce the result. ❑

401 Example Assume that ak, bk, ck, k = 1, . . . , n, are positive real numbers. Shew that

(

n∑

k=1

akbkck

)4

≤
(

n∑

k=1

a4
k

)(

n∑

k=1

b4
k

)(

n∑

k=1

c2k

)2

.

Solution: ◮ Using CBS on
∑n

k=1(akbk)ck once we obtain

n∑

k=1

akbkck ≤
(

n∑

k=1

a2
kb

2
k

)1/2( n∑

k=1

c2k

)1/2

.

Using CBS again on
(∑n

k=1 a
2
kb

2
k

)1/2
we obtain

∑n
k=1 akbkck ≤

(∑n
k=1 a

2
kb

2
k

)1/2 (∑n
k=1 c

2
k

)1/2

≤
(∑n

k=1 a
4
k

)1/4 (∑n
k=1 b

4
k

)1/4 (∑n
k=1 c

2
k

)1/2
,

which gives the required inequality. ◭

402 Theorem (Triangle Inequality) Given (
−→x ,−→y) ∈ (Rn)2 the following inequality holds

∣

∣

∣

∣

−→x +
−→y
∣

∣

∣

∣ ≤
∣

∣

∣

∣

−→x
∣

∣

∣

∣+
∣

∣

∣

∣

−→y
∣

∣

∣

∣.

Proof: We have

||
−→a +

−→
b ||2 = (

−→a +
−→
b)•(

−→a +
−→
b)

=
−→a•

−→a + 2−→a•

−→
b +

−→
b•

−→
b

≤ ||
−→a ||2 + 2||−→a ||||

−→
b || + ||

−→
b ||2

= (||
−→
a || + ||

−→
b ||)2,
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from where the desired result follows.

❑

We now consider a generalisation of the Euclidean norm. Given p > 1 and −→x ∈ Rn we put

∣

∣

∣

∣

−→x
∣

∣

∣

∣

p
=

(

n∑

k=1

|xk|
p

)1/p

(8.20)

Clearly
∣

∣

∣

∣

−→
x
∣

∣

∣

∣

p
≥ 0 (8.21)

∣

∣

∣

∣

−→x
∣

∣

∣

∣

p
= 0 ⇔ −→x =

−→
0 (8.22)

∣

∣

∣

∣α−→x
∣

∣

∣

∣

p
= |α|

∣

∣

∣

∣

−→x
∣

∣

∣

∣

p
, α ∈ R (8.23)

We now prove analogues of the Cauchy-Bunyakovsky-Schwarz and the Triangle Inequality for ||·||p. For
this we need the following lemma.

403 Lemma (Young’s Inequality) Let p > 1 and put
1

p
+

1

q
= 1. Then for (a, b) ∈ ([0; +∞[)2 we have

ab ≤ ap

p
+

bq

q
.

Proof: Let 0 < k < 1, and consider the function

f :
[0; +∞[ → R

x 7→ xk − k(x − 1)

.

Then 0 = f ′(x) = kxk−1 − k ⇔ x = 1. Since f ′′(x) = k(k − 1)xk−2 < 0 for 0 < k < 1, x ≥ 0, x = 1

is a maximum point. Hence f(x) ≤ f(1) for x ≥ 0, that is xk ≤ 1 + k(x − 1). Letting k =
1

p
and

x =
ap

bq
we deduce

a

bq/p
≤ 1+

1

p

(

ap

bq
− 1

)

.

Rearranging gives

ab ≤ b1+p/q +
apb1+p/q−p

p
−

b1+p/q

p

from where we obtain the inequality. ❑

The promised generalisation of the Cauchy-Bunyakovsky-Schwarz Inequality is given in the following
theorem.

404 Theorem (Hölder Inequality) Given (
−→
x ,

−→
y) ∈ (Rn)2 the following inequality holds

|
−→x •

−→y | ≤
∣

∣

∣

∣

−→x
∣

∣

∣

∣

p

∣

∣

∣

∣

−→y
∣

∣

∣

∣

q
.

Proof: If
∣

∣

∣

∣

−→
x
∣

∣

∣

∣

p
= 0 or

∣

∣

∣

∣

−→
y
∣

∣

∣

∣

q
= 0 there is nothing to prove, so assume otherwise. From the

Young Inequality we have

|xk|
∣

∣

∣

∣

−→
x
∣

∣

∣

∣

p

|yk|
∣

∣

∣

∣

−→
y
∣

∣

∣

∣

q

≤ |xk|
p

∣

∣

∣

∣

−→x
∣

∣

∣

∣

p

p
p

+
|yk|

q

∣

∣

∣

∣

−→y
∣

∣

∣

∣

q

q
q
.
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Adding, we deduce

∑n
k=1

|xk|
∣

∣

∣

∣

−→
x
∣

∣

∣

∣

p

|yk|
∣

∣

∣

∣

−→
y
∣

∣

∣

∣

q

≤ 1
∣

∣

∣

∣

−→x
∣

∣

∣

∣

p

p
p

∑n
k=1 |xk|

p +
1

∣

∣

∣

∣

−→y
∣

∣

∣

∣

q

q
q

∑n
k=1 |yk|

q

=

∣

∣

∣

∣

−→x
∣

∣

∣

∣

p

p

∣

∣

∣

∣

−→x
∣

∣

∣

∣

p

p
p

+

∣

∣

∣

∣

−→y
∣

∣

∣

∣

q

q

∣

∣

∣

∣

−→y
∣

∣

∣

∣

q

q
q

=
1

p
+

1

q

= 1.

This gives
n∑

k=1

|xkyk| ≤
∣

∣

∣

∣

−→x
∣

∣

∣

∣

p

∣

∣

∣

∣

−→y
∣

∣

∣

∣

q
.

The result follows by observing that
∣

∣

∣

∣

∣

n∑

k=1

xkyk

∣

∣

∣

∣

∣

≤
n∑

k=1

|xkyk| ≤
∣

∣

∣

∣

−→
x
∣

∣

∣

∣

p

∣

∣

∣

∣

−→
y
∣

∣

∣

∣

q
.

❑

As a generalisation of the Triangle Inequality we have

405 Theorem (Minkowski Inequality) Let p ∈]1; +∞[. Given (
−→
x ,

−→
y) ∈ (Rn)2 the following inequality holds

∣

∣

∣

∣

−→x +
−→y
∣

∣

∣

∣

p
≤
∣

∣

∣

∣

−→x
∣

∣

∣

∣

p
+
∣

∣

∣

∣

−→y
∣

∣

∣

∣

p
.

Proof: From the triangle inequality for real numbers 1.6

|xk + yk|
p = |xk + yk||xk + yk|

p−1 ≤ (|xk| + |yk|) |xk + yk|
p−1.

Adding
n∑

k=1

|xk + yk|
p ≤

n∑

k=1

|xk||xk + yk|
p−1 +

n∑

k=1

|yk||xk + yk|
p−1. (8.24)

By the Hölder Inequality

∑n
k=1 |xk||xk + yk|

p−1 ≤
(∑n

k=1 |xk|
p
)1/p (∑n

k=1 |xk + yk|
(p−1)q

)1/q

=
(∑n

k=1 |xk|
p
)1/p (∑n

k=1 |xk + yk|
p
)1/q

=
∣

∣

∣

∣

−→x
∣

∣

∣

∣

p

∣

∣

∣

∣

−→x +
−→y
∣

∣

∣

∣

p/q

p

(8.25)

In the same manner we deduce
n∑

k=1

|yk||xk + yk|
p−1 ≤

∣

∣

∣

∣

−→
y
∣

∣

∣

∣

p

∣

∣

∣

∣

−→
x +

−→
y
∣

∣

∣

∣

p/q

p
. (8.26)

Hence (8.24) gives

∣

∣

∣

∣

−→x +
−→y
∣

∣

∣

∣

p

p
=

n∑

k=1

|xk + yk|
p ≤

∣

∣

∣

∣

−→x
∣

∣

∣

∣

p

∣

∣

∣

∣

−→x +
−→y
∣

∣

∣

∣

p/q

p
+
∣

∣

∣

∣

−→y
∣

∣

∣

∣

p

∣

∣

∣

∣

−→x +
−→y
∣

∣

∣

∣

p/q

p
,

from where we deduce the result. ❑

Homework
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Problem 8.7.1 Prove Lagrange’s identity:

(∑
1≤j≤n ajbj

)2

=
(∑

1≤j≤n a2
j

) (∑
1≤j≤n b2

j

)

−
∑

1≤k<j≤n(akbj − ajbk)
2

and then deduce the CBS Inequality in Rn.

Problem 8.7.2 Let −→a i ∈ Rn for 1 ≤ i ≤ n be unit vectors

with
∑n

i=1
−→ai =

−→
0 . Prove that

∑
1≤i<j≤n

−→ai•
−→aj = −

n

2
.

Problem 8.7.3 Let ak > 0. Use the CBS Inequality to
shew that

(

n∑

k=1

a2
k

)(

n∑

k=1

1

a2
k

)

≥ n2.

Problem 8.7.4 Let −→a ∈ Rn be a fixed vector. Demon-
strate that

X = {
−→x ∈ Rn

:
−→a•

−→x = 0}

is a subspace of Rn.

Problem 8.7.5 Let −→
ai ∈ Rn, 1 ≤ i ≤ k (k ≤ n) be k

non-zero vectors such that −→ai•
−→aj = 0 for i 6= j. Prove that

these k vectors are linearly independent.

Problem 8.7.6 Let ak ≥ 0, 1 ≤ k ≤ n be arbitrary.
Prove that

(

n∑

k=1

ak

)2

≤ n(n + 1)(2n + 1)

6

n∑

k=1

a2
k

k2
.



Appendix A
Answers and Hints

1.1.2

x ∈ X \ (X \ A) ⇐⇒ x ∈ X ∧ x 6∈ (X \ A)

⇐⇒ x ∈ X ∧ x ∈ A

⇐⇒ x ∈ X ∩ A.

1.1.3

X \ (A ∪ B) ⇐⇒ x ∈ X ∧ (x 6∈ (A ∪ B))

⇐⇒ x ∈ X ∧ (x 6∈ A ∧ x 6∈ B)

⇐⇒ (x ∈ X ∧ x 6∈ A) ∧ (x ∈ X ∧ x 6∈ B)

⇐⇒ x ∈ (X \ A) ∧ x ∈ (X \ B)

⇐⇒ x ∈ (X \ A) ∩ (X \ B).

1.1.6 One possible solution is
A ∪ B ∪ C = A ∪ (B \ A) ∪ (C \ (A ∪ B)).

1.1.8 We have
|a| = |a − b + b| ≤ |a − b| + |b|,

giving
|a| − |b| ≤ |a − b|.

Similarly,
|b| = |b − a + a| ≤ |b − a| + |a| = |a − b| + |a|,

gives
|b| − |a| ≤ |a − b|.

The stated inequality follows from this.

1.2.1 a ∼ a since a
a

= 1 ∈ Z, and so the relation is reflexive. The relation is not symmetric. For 2 ∼ 1 since 2
1
∈ Z

but 1 ≁ 2 since 1
2
6∈ Z. The relation is transitive. For assume a ∼ b and b ∼ c. Then there exist (m, n) ∈ Z2 such

that a
b

= m, b
c
= n. This gives

a

c
=

a

b
· b
c

= mn ∈ Z,

and so a ∼ c.

1.2.2 Here is one possible example: put a ∼ b ⇔ a2+a
b

∈ Z. Then clearly if a ∈ Z \ {0} we have a ∼ a since
a2+a

a
= a + 1 ∈ Z. On the other hand, the relation is not symmetric, since 5 ∼ 2 as 52+5

2
= 15 ∈ Z but 2 6∼ 5, as

22+2
5

= 6
5
6∈ Z. It is not transitive either, since 52+5

3
∈ Z =⇒ 5 ∼ 3 and 32+3

12
∈ Z =⇒ 3 ∼ 12 but 52+5

12
6∈ Z and so

5 ≁ 12.
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1.2.4 [B] [x] = x +
1

3
Z. [C] No.

1.3.1 Let ω = − 1
2
+ i

√
3

2
. Then ω2 + ω + 1 = 0 and ω3 = 1. Then

x = a3
+ b3

+ c3
− 3abc = (a + b + c)(a + ωb + ω2c)(a + ω2b + cω),

y = u3
+ v3

+ w3
− 3uvw = (u + v + w)(u + ωv + ω2w)(u + ω2v + ωw).

Then
(a + b + c)(u + v + w) = au + av + aw + bu + bv + bw + cu + cv + cw,

(a + ωb + ω2c)(u + ωv + ω2w) = au + bw + cv

+ω(av + bu + cw)

+ω2(aw + bv + cu),

and

(a + ω2b + ωc)(u + ω2v + ωw) = au + bw + cv

+ω(aw + bv + cu)

+ω2(av + bu + cw).

This proves that

xy = (au + bw + cv)3 + (aw + bv + cu)3 + (av + bu + cw)3

−3(au + bw + cv)(aw + bv + cu)(av + bu + cw),

which proves that S is closed under multiplication.

1.3.2 We have
x⊤(y⊤z) = x⊤(y ⊗ a ⊗ z) = (x) ⊗ (a) ⊗ (y ⊗ a ⊗ z) = x ⊗ a ⊗ y ⊗ a ⊗ z,

where we may drop the parentheses since ⊗ is associative. Similarly

(x⊤y)⊤z = (x ⊗ a ⊗ y)⊤z = (x ⊗ a ⊗ y) ⊗ (a) ⊗ (z) = x ⊗ a ⊗ y ⊗ a ⊗ z.

By virtue of having proved
x⊤(y⊤z) = (x⊤y)⊤z,

associativity is established.

1.3.3 We proceed in order.

➊ Clearly, if a, b are rational numbers,

|a| < 1, |b| < 1 =⇒ |ab| < 1 =⇒ −1 < ab < 1 =⇒ 1 + ab > 0,

whence the denominator never vanishes and since sums, multiplications and divisions of rational numbers

are rational,
a + b

1 + ab
is also rational. We must prove now that −1 <

a + b

1 + ab
< 1 for (a, b) ∈] − 1; 1[2. We have

−1 <
a + b

1 + ab
< 1 ⇔ −1 − ab < a + b < 1 + ab

⇔ −1 − ab − a − b < 0 < 1 + ab − a − b

⇔ −(a + 1)(b + 1) < 0 < (a − 1)(b − 1).

Since (a, b) ∈] − 1; 1[2, (a + 1)(b + 1) > 0 and so −(a + 1)(b + 1) < 0 giving the sinistral inequality. Similarly
a − 1 < 0 and b − 1 < 0 give (a − 1)(b − 1) > 0, the dextral inequality. Since the steps are reversible, we have

established that indeed −1 <
a + b

1 + ab
< 1.
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➋ Since a ⊗ b =
a + b

1 + ab
=

b + a

1 + ba
= b ⊗ a, commutativity follows trivially. Now

a ⊗ (b ⊗ c) = a ⊗
(

b + c

1 + bc

)

=

a +

(

b + c

1 + bc

)

1 + a

(

b + c

1 + bc

)

=
a(1 + bc) + b + c

1 + bc + a(b + c)
=

a + b + c + abc

1 + ab + bc + ca
.

One the other hand,

(a ⊗ b) ⊗ c =

(

a + b

1 + ab

)

⊗ c

=

(

a + b

1 + ab

)

+ c

1 +

(

a + b

1 + ab

)

c

=
(a + b) + c(1 + ab)

1 + ab + (a + b)c

=
a + b + c + abc

1 + ab + bc + ca
,

whence ⊗ is associative.

➌ If a⊗ e = a then
a + e

1 + ae
= a, which gives a+ e = a+ ea2 or e(a2 − 1) = 0. Since a 6= ±1, we must have e = 0.

➍ If a ⊗ b = 0, then
a + b

1 + ab
= 0, which means that b = −a.

1.3.4 We proceed in order.

➊ Since a ⊗ b = a + b − ab = b + a − ba = b ⊗ a, commutativity follows trivially. Now

a ⊗ (b ⊗ c) = a ⊗ (b + c − bc)

= a + b + c − bc − a(b + c − bc)

= a + b + c − ab − bc − ca + abc.

One the other hand,

(a ⊗ b) ⊗ c = (a + b − ab) ⊗ c

= a + b − ab + c − (a + b − ab)c

= a + b + c − ab − bc − ca + abc,

whence ⊗ is associative.

➋ If a ⊗ e = a then a + e − ae = a, which gives e(1 − a) = 0. Since a 6= 1, we must have e = 0.

➌ If a ⊗ b = 0, then a + b − ab = 0, which means that b(1 − a) = −a. Since a 6= 1 we find b = −
a

1 − a
.
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+ 0 1 2 3 4 5 6 7 8 9 10

0 0 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10 0

2 2 3 4 5 6 7 8 9 10 0 1

3 3 4 5 6 7 8 9 10 0 1 2

4 4 5 6 7 8 9 10 0 1 2 3

5 5 6 7 8 9 10 0 1 2 3 4

6 6 7 8 9 10 0 1 2 3 4 5

7 7 0 9 10 0 1 2 3 4 5 6

8 8 9 10 0 1 2 3 4 5 6 7

9 9 10 0 1 2 3 4 5 6 7 8

10 10 0 1 2 3 4 5 6 7 8 9

Table A.1: Addition table for Z11.

· 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10

2 0 2 4 6 8 10 1 3 5 7 9

3 0 3 6 9 1 4 7 10 2 5 8

4 0 4 8 1 5 9 2 6 10 3 7

5 0 5 10 4 9 3 8 2 7 1 6

6 0 6 1 7 2 8 3 9 4 10 5

7 0 7 3 10 6 2 9 5 1 8 4

8 0 8 5 2 10 7 4 1 9 6 3

9 0 9 7 5 3 1 10 8 6 4 2

10 0 10 9 8 7 6 5 4 3 2 1

Table A.2: Multiplication table Z11.

1.3.5 We have

x ◦ y = (x ◦ y) ◦ (x ◦ y)

= [y ◦ (x ◦ y)] ◦ x

= [(x ◦ y) ◦ x] ◦ y

= [(y ◦ x) ◦ x] ◦ y

= [(x ◦ x) ◦ y] ◦ y

= (y ◦ y) ◦ (x ◦ x)

= y ◦ x,

proving commutativity.

1.4.1 The tables appear in tables A.1 and A.2.

1.4.2 Observe that

3x2
− 5x + 1 = 0 =⇒ 4(3x2

− 5x + 1) = 40 =⇒ x2
+ 2x + 1 + 3 = 0 =⇒ (x + 1)2 = 8.

We need to know whether 8 is a perfect square modulo 11. Observe that (11−a)2 = a, so we just need to check half
the elements and see that

1
2
= 1; 2

2
= 4; 3

2
= 9; 4

2
= 5; 5

2
= 3,

whence 8 is not a perfect square modulo 11 and so there are no solutions.

1.4.3 From example 50
x2

= 5.

Now, the squares modulo 11 are 0
2
= 0, 1

2
= 1, 2

2
= 4, 3

2
= 9, 4

2
= 5, 5

2
= 3. Also, (11 − 4)2 = 7

2
= 5. Hence the

solutions are x = 4 or x = 7.

1.4.5 Put f(x) = x4 + x3 + x2 + x + 1. Then

f(0) = 1 ≡ 1 mod 11 f(1) = 5 ≡ 5 mod 11 f(2) = 31 ≡ 9 mod 11

f(3) = 121 ≡ 0 mod 11 f(4) = 341 ≡ 0 mod 11 f(5) = 781 ≡ 0 mod 11

f(6) = 1555 ≡ 4 mod 11 f(7) = 2801 ≡ 7 mod 11 f(8) = 4681 ≡ 6 mod 11

f(9) = 7381 ≡ 0 mod 11 f(10) = 11111 ≡ 1 mod 11
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1.5.1 We have
1√

2 + 2
√
3 + 3

√
6

=

√
2 + 2

√
3 − 3

√
6

(
√
2 + 2

√
3)2 − (3

√
6)2

=

√
2 + 2

√
3 − 3

√
6

2 + 12 + 4
√
6 − 54

=

√
2 + 2

√
3 − 3

√
6

−40 + 4
√
6

=
(
√
2 + 2

√
3 − 3

√
6)(−40 − 4

√
6)

402 − (4
√
6)2

=
(
√
2 + 2

√
3 − 3

√
6)(−40 − 4

√
6)

1504

= −
16

√
2 + 22

√
3 − 30

√
6 − 18

376

1.5.2 Since
(−a)b−1

+ ab−1
= (−a + a)b−1

= 0Fb
−1

= 0F,

we obtain by adding −(ab−1) to both sides that

(−a)b−1
= −(ab−1

).

Similarly, from
a(−b−1

) + ab−1
= a(−b−1

+ b−1
) = a0F = 0F,

we obtain by adding −(ab−1) to both sides that

a(−b−1
) = −(ab−1

).

1.6.1 Assume h(b) = h(a). Then

h(a) = h(b) =⇒ a3 = b3

=⇒ a3 − b3 = 0

=⇒ (a − b)(a2 + ab + b2) = 0

Now,

b2
+ ab + a2

=
(

b +
a

2

)2

+
3a2

4
.

This shews that b2 + ab+ a2 is positive unless both a and b are zero. Hence a− b = 0 in all cases. We have shewn
that h(b) = h(a) =⇒ a = b, and the function is thus injective.

1.6.2 We have

f(a) = f(b) ⇐⇒
6a

2a − 3
=

6b

2b − 3

⇐⇒ 6a(2b − 3) = 6b(2a − 3)

⇐⇒ 12ab − 18a = 12ab − 18b

⇐⇒ −18a = −18b

⇐⇒ a = b,

proving that f is injective. Now, if
f(x) = y, y 6= 3,

then
6x

2x − 3
= y,

that is 6x = y(2x − 3). Solving for x we find

x =
3y

2y − 6
.

Since 2y − 6 6= 0, x is a real number, and so f is surjective. On combining the results we deduce that f is bijective.
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2.1.1 A =

















1 1 1

2 4 8

3 9 27

















.

2.1.2 A =

















1 2 3

2 4 6

3 6 9

















.

2.1.3 M + N =

















a + 1 0 2c

a b − 2a 0

2a 0 −2

















, 2M =

















2a −4a 2c

0 −2a 2b

2a + 2b 0 −2

















.

2.1.4 x = 1 and y = 4.

2.1.5 A =









13 −1

15 3









, B =









5 0

6 1









2.1.8 The set of border elements is the union of two rows and two columns. Thus we may choose at most four
elements from the border, and at least one from the central 3× 3 matrix. The largest element of this 3× 3 matrix is
15, so any allowable choice of does not exceed 15. The choice 25, 15, 18,l 23, 20 shews that the largest minimum is
indeed 15.

2.2.1









2 2

0 −2









2.2.2

AB =

















a b c

c + a a + b b + c

a + b + c a + b + c a + b + c

















, BA =

















a + b + c b + c c

a + b + c a + b b

a + b + c c + a a

















2.2.3

















1 2 3

2 3 1

3 1 2

































1 1 1

2 2 2

3 3 3

















=

















14 14 14

11 11 11

11 11 11

















, whence a + b + c = 36.

2.2.4 An easy computation leads to N2 =



























0 0 4 12

0 0 0 4

0 0 0 0

0 0 0 0



























, N3 =



























0 0 0 −8

0 0 0 0

0 0 0 0

0 0 0 0



























and N4 =



























0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



























. Hence

any power—from the fourth on—is the zero matrix.



Answers and Hints 189

2.2.5 AB = 04 and BA =



























0 2 0 3

0 2 0 3

0 2 0 3

0 2 0 3



























.

2.2.6 For the first part, observe that

m(a)m(b) =

















1 0 a

−a 1 −
a2

2

0 0 1

































1 0 b

−b 1 −
b2

2

0 0 1

















=

















1 0 a + b

−a − b 1 −
a2

2
−

b2

2
+ ab

0 0 1

















=

















1 0 a + b

−(a + b) 1 −
(a + b)2

2

0 0 1

















= m(a + b)

For the second part, observe that using the preceding part of the problem,

m(a)m(−a) = m(a − a) = m(0) =

















1 0 0

−0 1 −
02

2

0 0 1

















= I3,

giving the result.

2.2.7 Observe that
A2

= (AB)(AB) = A(BA)B = A(B)B = (AB)B = AB = A.

Similarly,
B2

= (BA)(BA) = B(AB)A = B(A)A = (BA)A = BA = B.

2.2.8 For this problem you need to recall that if |r| < 1, then

a + ar + ar2 + ar3 + · · · + · · · = a

1 − r
.

This gives

1 + 1
4
+ 1

42 + 1
43 + · · · = 1

1 − 1
4

=
4

3
,

1
2
+ 1

23 + 1
25 + · · · =

1
2

1 − 1
4

=
2

3
,

and

1 + 1
2
+ 1

22
+ 1

23
+ · · · = 1

1 − 1
2

= 2.
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By looking at a few small cases, it is easy to establish by induction that for n ≥ 1

A2n−1
=

















0
1

22n−1
0

1

22n−1
0 0

0 0
1

22n−1

















, A2n
=

















1

22n
0 0

0
1

22n
0

0 0
1

22n

















.

This gives

I3 +A+A2 +A3 + · · · =

















1 + 1
4
+ 1

42
+ 1

43
+ · · · 1

2
+ 1

23
+ 1

25
+ · · · 0

1
2
+ 1

23
+ 1

25
+ · · · 1 + 1

4
+ 1

42
+ 1

43
+ · · · 0

0 0 1 + 1
2
+ 1

22
+ 1

23
+ · · ·

















=

















4
3

2
3

0

2
3

4
3

0

0 0 2

















.

2.2.9 Observe that








−4 x

−x 4









2

=









−4 x

−x 4

















−4 x

−x 4









=









16 − x2 0

0 16 − x2









,

and so we must have 16 − x2 = −1 or x = ±
√
17.

2.2.10 Disprove! Take A =









1 0

0 0









and B =









0 1

0 0









. Then AB = B, but BA = 02.

2.2.11 Disprove! Take for example A =









0 0

1 1









and B =









1 0

1 0









. Then

A2
− B2

=









−1 0

0 1









6=









−1 0

−2 1









= (A + B)(A − B).

2.2.12 x = 6.

2.2.14









32 −32

−32 32









.

2.2.15 A2003 =









0 2100131002

2100231001 0









.

2.2.17 The assertion is clearly true for n = 1. Assume that is it true for n, that is, assume

An
=









cos(n)α − sin(n)α

sin(n)α cos(n)α









.
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Then

An+1 = AAn

=









cosα − sinα

sinα cosα

















cos(n)α − sin(n)α

sin(n)α cos(n)α









=









cosα cos(n)α − sinα sin(n)α − cosα sin(n)α − sinα cos(n)α

sinα cos(n)α + cosα sin(n)α − sinα sin(n)α + cosα cos(n)α









=









cos(n + 1)α − sin(n + 1)α

sin(n + 1)α cos(n + 1)α









,

and the result follows by induction.

2.2.18 Let A = [aij], B = [bij] be checkered n × n matrices. Then A + B = (aij + bij). If j − i is odd, then
aij + bij = 0+ 0 = 0, which shows that A+ B is checkered. Furthermore, let AB = [cij] with cij =

∑n
k=1 aikbkj. If i is

even and j odd, then aik = 0 for odd k and bkj = 0 for even k. Thus cij = 0 for i even and j odd. Similarly, cij = 0 for
odd i and even j. This proves that AB is checkered.

2.2.19 Put

J =

















0 1 1

0 0 1

0 0 0

















.

We first notice that

J2 =

















0 0 1

0 0 0

0 0 0

















, J3 = 03.

This means that the sum in the binomial expansion

An
= (I3 + J)n =

n∑

k=0

(

n

k

)

In−kJk

is a sum of zero matrices for k ≥ 3. We thus have

An = In3 + nIn−1
3 J +

(

n
2

)

In−2
3 J2

=

















1 0 0

0 1 0

0 0 1

















+

















0 n n

0 0 n

0 0 0

















+

















0 0
(

n
2

)

0 0 0

0 0 0

















=

















1 n n(n+1)

2

0 1 n

0 0 1

















,

giving the result, since
(

n
2

)

=
n(n−1)

2
and n +

(

n
2

)

=
n(n+1)

2
.
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2.2.20 Argue inductively,

A2B = A(AB) = AB = B

A3B = A(A2B) = A(AB) = AB = B

...

AmB = AB = B.

Hence B = AmB = 0nB = 0n.

2.2.22 Put A =









a b

c d









. Using 2.2.21, deduce by iteration that

Ak = (a + d)k−1A.

2.2.23









a b

c −a









, bc = −a2

2.2.24 ±I2,









a b

c −a









, a2 = 1 − bc

2.2.25 We complete squares by putting Y =









a b

c d









= X − I. Then









a2 + bc b(a + d)

c(a + d) bc + d2









= Y2
= X2

− 2X + I = (X − I)2 =









−1 0

6 3









+ I =









0 0

6 4









.

This entails a = 0, b = 0, cd = 6, d2 = 4. Using X = Y + I, we find that there are two solutions,









1 0

3 3









,









1 0

−3 −1









.

2.2.26 The matrix

A =



























1 −1 1 −1

−1 1 −1 1

−1 1 −1 1

1 −1 1 −1



























clearly satisfies the conditions.
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2.2.27 Put X =









a b

c d









. Then

X2
+ X =









1 1

1 1









⇐⇒






a2 + bc + a = 1

ab + bd + b = 1

ca + dc + c = 1

cb + d2 + d = 1

⇐⇒






a2 + bc + a = 1

b(a + d + 1) = 1

c(a + d + 1) = 1

(d − a)(a + d + 1) = 0

⇐⇒






d = a 6= 1

2

c = b =
1

2a + 1

a2 +
1

(2a + 1)2 + a = 1

The last equation holds

⇐⇒ 4a4
+ 8a3

+ a2
− 3a = 0 ⇐⇒ a ∈ {−

3

2
,−1, 0,

1

2
}.

Thus the set of solutions is

{









−1 −1

−1 −1









,









0 1

1 0









,









1/2 1/2

1/2 1/2









,









−3/2 −1/2

−1/2 −3/2









}

2.2.29 Observe that A = 2I3 − J, where I3 is the 3 × 3 identity matrix and

J =

















1 1 1

1 1 1

1 1 1

















.

Observe that Jk = 3k−1J for integer k ≥ 1. Using the binomial theorem we have

An = (2I3 − J)n

=
∑n

k=0

(

n
k

)

(2I3)n−k(−1)kJk

= 2nI3 +
1

3
J
∑n

k=1

(

n
k

)

2n−k(−1)k3k

= 2nI3 +
1

3
J((−1)n − 2n)

=
1

3

















(−1)n + 2n+1 (−1)n − 2n (−1)n − 2n

(−1)n − 2n (−1)n + 2n+1 (−1)n − 2n

(−1)n − 2n (−1)n − 2n (−1)n + 2n+1

















.

2.3.1 There are infinitely many solutions. Here is one:

A =

















1 2 3

2 3 1

3 1 2

















=

















−9 2 3

2 3 1

3 1 2

















+

















10 0 0

0 0 0

0 0 0

















.

2.3.2 There are infinitely many examples. One could take A =









1 1

1 1









and B =









1 −1

−1 1









. Another set is
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A =









2 0

0 0









and B =









0 0

0 2









.

2.3.3 If such matrices existed, then by the first equation

tr (AC) + tr (DB) = n.

By the second equation and by Theorem 86,

0 = tr (CA) + tr (BD) = tr (AC) + tr (DB) = n,

a contradiction, since n ≥ 1.

2.3.4 Disprove! This is not generally true. Take A =









1 1

1 2









and B =









3 0

0 1









. Clearly AT = A and BT = B. We have

AB =









3 1

3 2









but

(AB)T =









3 3

1 2









.

2.3.6 We have

tr
(

A2
)

= tr

















a b

c d

















a b

c d

















= tr

















a2 + bc ab + bd

ca + cd d2 + cb

















= a2
+ d2

+ 2bc

and








tr

















a b

c d

























2

= (a + d)2.

Thus
tr
(

A2
)

= (tr (A))
2 ⇐⇒ a2

+ d2
+ 2bc = (a + d)2 ⇐⇒ bc = ad,

is the condition sought.

2.3.7

tr
(

(A − I4)2
)

= tr
(

A2 − 2A + I4
)

= tr
(

A2
)

− 2tr (A) + tr (I4)

= −4 − 2tr (A) + 4

= −2tr (A) ,

and tr (3I4) = 12. Hence −2tr (A) = 12 or tr (A) = −6.

2.3.8 Disprove! Take A = B = In and n > 1. Then tr (AB) = n < n2 = tr (A) tr (B).

2.3.9 Disprove! Take A =









1 0

0 0









, B =









0 1

0 0









, C =









0 0

1 0









. Then tr (ABC) = 1 but tr (BAC) = 0.
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2.3.10 We have

(AAT
)
T
= (AT

)
TAT

= AAT .

2.3.11 We have

(AB − BA)
T
= (AB)T − (BA)

T
= BTAT

− ATBT
= −BA − A(−B) = AB − BA.

2.3.13 Let X = [xij] and put XXT = [cij]. Then

0 = cii =

n∑

k=1

x2
ik =⇒ xik = 0.

2.4.1 Here is one possible approach. If we perform C1 ↔ C3 on A we obtain

A1 =



























1 0 1 0

0 1 0 1

1 1 −1 1

1 −1 1 1



























so take P =



























0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1



























.

Now perform 2R1 → R1 on A1 to obtain

A2 =



























2 0 2 0

0 1 0 1

1 1 −1 1

1 −1 1 1



























so take D =



























2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



























.

Finally, perform R1 + 2R4 → R1 on A2 to obtain

B =



























4 −2 4 2

0 1 0 1

1 1 −1 1

1 −1 1 1



























so take T =



























1 0 0 2

0 1 0 0

0 0 1 0

0 0 0 1



























.



196 Appendix A

2.4.2 Here is one possible approach.

















a b c

d e f

g h i

















P:ρ3↔ρ1
 

















g h i

d e f

a b c

















P ′:C1↔C2
 

















h g i

e d f

b a c

















T :C1−C2−→C1
 

















h − g g i

e − d d f

b − a a c

















D:2ρ3−→ρ3
 

















h − g g i

e − d d f

2b − 2a 2a 2c

















Thus we take

P =

















0 0 1

0 1 0

1 0 0

















, P ′
=

















0 1 0

1 0 0

0 0 1

















,

T =

















1 0 0

−1 1 0

0 0 1

















, D =

















1 0 0

0 1 0

0 0 2

















.

2.4.3 Let Eij ∈ Mn×n(F). Then

AEij =



































0 0 . . . a1i . . . 0

0 0
... a2i

... 0

...
...

...
...

...
...

0 0
... an−1i

... 0

0 0
... ani

... 0



































,

where the entries appear on the j-column. Then we see that tr (AEij) = aji and similarly, by considering BEij, we
see that tr (BEij) = bji. Therefore ∀i, j, aji = bji, which implies that A = B.
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2.4.4 Let Est ∈ Mn×n(R). Then

EijA =



































0 0 . . . 0

...
... . . .

...

aj1 aj2 . . . ajn

...
... . . .

...

0 0 . . . 0



































,

where the entries appear on the i-th row. Thus

(EijA)
2
=



































0 0 . . . 0

...
... . . .

...

ajiaj1 ajiaj2 . . . ajiajn

...
... . . .

...

0 0 . . . 0



































,

which means that ∀i, j, ajiajk = 0. In particular, a2
ji = 0, which means that ∀i, j, aji = 0, i.e., A = 0n.

2.5.1 a = 1, b = −2.

2.5.2 Claim: A−1 = In − A + A2 − A3. For observe that

(In + A)(In − A + A2 − A3) = In − A + A2 − A3 − A + A2 − A3 + A4 = In,

proving the claim.

2.5.3 Disprove! It is enough to take A = B = 2In. Then (A + B)−1 = (4In)−1 = 1
4
In but A−1 + B−1 = 1

2
In + 1

2
In = In.

2.5.8 We argue by contradiction. If exactly one of the matrices is not invertible, the identities

A = AIn = (ABC)(BC)
−1

= 0n,

B = InBIn = (A)
−1

(ABC)C−1
= 0n,

C = InC = (AB)−1
(ABC) = 0n,

shew a contradiction depending on which of the matrices are invertible. If all the matrices are invertible then

0n = 0nC
−1B−1A−1 = (ABC)C−1B−1A−1 = In,

also gives a contradiction.

2.5.9 Observe that A,B, AB are invertible. Hence

A2B2 = In = (AB)2 =⇒ AABB = ABAB

=⇒ AB = BA,

by cancelling A on the left and B on the right. One can also argue that A = A−1, B = B−1, and so AB = (AB)−1 =

B−1A−1 = BA.

2.5.10 Observe that A = (a − b)In + bU, where U is the n × n matrix with 1F’s everywhere. Prove that

A2
= (2(a − b) + nb)A − ((a − b)2 + nb(a − b))In.

2.5.11 Compute (A − In)(B − In).
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2.5.12 By Theorem 86 we have tr
(

SAS−1
)

= tr
(

S−1SA
)

= tr (A).

2.7.2 The rank is 2.

2.7.3 If B is invertible, then rank (AB) = rank (A) = rank (BA). Similarly, if A is invertible rank (AB) = rank (B) =

rank (BA). Now, take A =









1 0

0 0









and B =









0 1

0 0









. Then AB = B, and so rank (AB) = 1. But BA =









0 0

0 0









,

and so rank (BA) = 0.

2.7.4 Observe that


























1 1 0 0

0 0 1 1

2 2 2 2

2 0 0 2



























R3−2(R1+R2)→R3
 

R4−2R1→R4



























1 1 0 0

0 0 1 1

0 0 0 0

0 −2 0 2



























,

whence the matrix has three pivots and so rank 3.

2.7.5 The maximum rank of this matrix could be 2. Hence, for the rank to be 1, the rows must be proportional,
which entails

x2

4
=

x

2
=⇒ x2

− 2x = 0 =⇒ x ∈ {0, 2}.

2.7.6 Assume first that the non-zero n× n matrix A over a field F has rank 1. By permuting the rows of the matrix
we may assume that every other row is a scalar multiple of the first row, which is non-zero since the rank is 1.
Hence A must be of the form

A =



























a1 a2 · · · an

λ1a1 λ1a2 · · · λ1an

...
... · · ·

...

λn−1a1 λn−1a2 · · · λn−1an



























=



























a1

a2

...

an



























[

1 λ1 · · · λn−1

]

:= XY,

which means that the claimed factorisation indeed exists.

Conversely, assume that A can be factored as A = XY , where X ∈ Mn×1(F) and Y ∈ M1×n(F). Since A is
non-zero, we must have rank (A) ≥ 1. Similarly, neither X nor Y could be all zeroes, because otherwise A would be
zero. This means that rank (X) = 1 = rank (Y). Now, since

rank (A) ≤ min(rank (X) , rank (Y)) = 1,

we deduce that rank (A) ≤ 1, proving that rank (A) = 1.

2.7.7 Effecting R3 − R1 → R3; aR4 − bR2 → R4 successively, we obtain



























1 a 1 b

a 1 b 1

1 b 1 a

b 1 a 1



























 



























1 a 1 b

a 1 b 1

0 b − a 0 a − b

0 a − b a2 − b2 a − b



























.
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Performing R2 − aR1 → R2; R4 + R3 → R4 we have

 



























1 a 1 b

0 1 − a2 b − a 1 − ab

0 b − a 0 a − b

0 0 a2 − b2 2(a − b)



























.

Performing (1 − a2)R3 − (b − a)R2 → R3 we have

 



























1 a 1 b

0 1 − a2 b − a 1 − ab

0 0 −a2 + 2ab − b2 2a − 2b − a3 + ab2

0 0 a2 − b2 2(a − b)



























.

Performing R3 − R4 → R3 we have

 



























1 a 1 b

0 1 − a2 b − a 1 − ab

0 0 −2a(a − b) −a(a2 − b2)

0 0 a2 − b2 2(a − b)



























.

Performing 2aR4 + (a + b)R3 → R4 we have



























1 a 1 b

0 1 − a2 b − a 1 − ab

0 0 −2a(a − b) −a(a2 − b2)

0 0 0 4a2 − 4ab − a4 + a2b2 − ba3 + ab3



























.

Factorising, this is

=



























1 a 1 b

0 1 − a2 b − a 1 − ab

0 0 −2a(a − b) −a(a − b)(a + b)

0 0 0 −a(a + 2 + b)(a − b)(a − 2 + b)



























.

Thus the rank is 4 if (a+ 2+ b)(a− b)(a− 2+ b) 6= 0. The rank is 3 if a+ b = 2 and (a, b) 6= (1, 1) or if a+ b = −2

and (a, b) 6= (−1,−1). The rank is 2 if a = b 6= 1 and a 6= −1. The rank is 1 if a = b = ±1.

2.7.8 rank (A) = 4 if m3 + m2 + 2 6= 0, and rank (A) = 3 otherwise.

2.7.9 The rank is 4 if a 6= ±b. The rank is 1 is a = ±b 6= 0. The rank is 0 if a = b = 0.

2.7.10 The rank is 4 if (a − b)(c − d) 6= 0. The rank is 2 is a = b, c 6= d or if a 6= b, c = d. The rank is 1 if a = b and
c = d.
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2.7.11 Observe that rank (ABC) ≤ rank (B) ≤ 2. Now,

















1 1 2

−2 x 1

1 −2 1

















R2+2R1→R2
 

R3−R1→R3

















1 1 2

0 x + 2 5

0 −3 −1

















,

has rank at least 2, since the first and third rows are not proportional. This means that it must have rank exactly
two, and the last two rows must be proportional. Hence

x + 2

−3
=

5

−1
=⇒ x = 13.

2.7.13 For the counterexample consider A =









1 i

i −1









.

2.8.1 We form the augmented matrix
















1 2 3 1 0 0

2 3 1 0 1 0

3 1 2 0 0 1

















From R2 − 2R1 → R2 and R3 − 3R1 → R3 we obtain

 

















1 2 3 1 0 0

0 6 2 5 1 0

0 2 0 4 0 1

















.

From R2 ↔ R3 we obtain

 

















1 2 3 1 0 0

0 2 0 4 0 1

0 6 2 5 1 0

















.

Now, from R1 − R2 → R1 and R3 − 3R2 → R3, we obtain

 

















1 0 3 4 0 6

0 2 0 4 0 1

0 0 2 0 1 4

















.

From 4R2 → R2 and 4R3 → R3, we obtain

 

















1 0 3 4 0 6

0 1 0 2 0 4

0 0 1 0 4 2

















.



Answers and Hints 201

Finally, from R1 − 3R3 → R3 we obtain

 

















1 0 0 4 2 0

0 1 0 2 0 4

0 0 1 0 4 2

















.

We deduce that
















1 2 3

2 3 1

3 1 2

















−1

=

















4 2 0

2 0 4

0 4 2

















.

2.8.2 To find the inverse of B we consider the augmented matrix

















0 0 −1 1 0 0

0 −1 a 0 1 0

−1 a b 0 0 1

















.

Performing R1 ↔ R3, −R3 → R3, in succession,

















−1 a b 0 0 1

0 −1 a 0 1 0

0 0 1 −1 0 0

















.

Performing R1 + aR2 → R1 and R2 − aR3 → R2 in succession,

















−1 0 b + a2 0 a 1

0 −1 0 a 1 0

0 0 1 −1 0 0

















.

Performing R1 − (b + a2)R3 → R3, −R1 → R1 and −R2 → R2 in succession, we find

















1 0 0 −b − a2 −a −1

0 1 0 −a −1 0

0 0 1 −1 0 0

















,

whence

B−1
=

















−b − a2 −a −1

−a −1 0

−1 0 0

















.
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Now,

BAB−1 =

















0 0 −1

0 −1 a

−1 a b

































a b c

1 0 0

0 1 0

































−b − a2 −a −1

−a −1 0

−1 0 0

















=

















0 −1 0

−1 a 0

0 0 −c

































−b − a2 −a −1

−a −1 0

−1 0 0

















=

















a 1 0

b 0 1

c 0 0

















= AT ,

which is what we wanted to prove.

2.8.3 First, form the augmented matrix:
















1 0 0 1 0 0

1 1 0 0 1 0

1 1 x 0 0 1

















.

Perform R2 − R1 → R2 and R3 − R1 → R3:

















1 0 0 1 0 0

0 1 0 −1 1 0

0 1 x −1 0 1

















.

Performing R3 − R2 → R3:
















1 0 0 1 0 0

0 1 0 −1 1 0

0 0 x 0 −1 1

















.

Finally, performing
1

x
R3 → R3:

















1 0 0 1 0 0

0 1 0 −1 1 0

0 0 1 0 −
1

x

1

x

















.

2.8.4 Since MM−1 = I3, multiplying the first row of M times the third column of M−1, and again, the third row of
M times the third column of M−1, we gather that

1 · 0 + 0 · a + 1 · b = 0, 0 · 0 + 1 · a + 1 · b = 1 =⇒ b = 0, a = 1.
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2.8.5 It is easy to prove by induction that An =

















1 0 0

n 1 0

n(n + 1)

2
n 1

















. Row-reducing, (An)−1 =

















1 0 0

−n 1 0

(n − 1)n

2
−n 1

















.

2.8.6 Take, for example, A =









0 −1

1 0









= −A−1.

2.8.7 Operating formally, and using elementary row operations, we find

B−1
=

















− a2−1

a2−5+2a

a2+2a−2

a2−5+2a

a−2

a2−5+2a

− 2
a2−5+2a

a+4
a2−5+2a

− 1
a2−5+2a

2a
a2−5+2a

− 2a+5
a2−5+2a

a
a2−5+2a

















.

Thus B is invertible whenever a 6= −1 ±
√
6.

2.8.8 Form the augmented matrix
















a 2a 3a 1 0 0

0 b 2b 0 1 0

0 0 c 0 0 1

















.

Perform
1

a
R1 → R1,

1

b
R2 → R2,

1

a
R3 → R3, in succession, obtaining

















1 2 3 1/a 0 0

0 1 2 0 1/b 0

0 0 1 0 0 1/c

















.

Now perform R1 − 2R2 → R1 and R2 − 2R3 → R2 in succession, to obtain
















1 0 −1 1/a −2/a 0

0 1 0 0 1/b −2/c

0 0 1 0 0 1/c

















.

Finally, perform R1 + R3 → R1 to obtain
















1 0 0 1/a −2/b 1/c

0 1 0 0 1/b −2/c

0 0 1 0 0 1/c

















.

Whence
















a 2a 3a

0 b 2b

0 0 c

















−1

=

















1/a −2/b 1/c

0 1/b −2/c

0 0 1/c

















.
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2.8.9 To compute the inverse matrix we proceed formally as follows. The augmented matrix is

















b a 0 1 0 0

c 0 a 0 1 0

0 c b 0 0 1

















.

Performing bR2 − cR1 → R2 we find
















b a 0 1 0 0

0 −ca ab −c b 0

0 c b 0 0 1

















.

Performing aR3 + R2 → R3 we obtain
















b a 0 1 0 0

0 −ca ab −c b 0

0 0 2ab −c b a

















.

Performing 2R2 − R3 → R2 we obtain

















b a 0 1 0 0

0 −2ca 0 −c b −a

0 0 2ab −c b a

















.

Performing 2cR1 + R2 → R1 we obtain

















2bc 0 0 c b −a

0 −2ca 0 −c b −a

0 0 2ab −c b a

















.

From here we easily conclude that

















b a 0

c 0 a

0 c b

















−1

=

















1
2b

1
2c

− a
2bc

1
2a

− b
2ac

1
2c

− c
2ba

1
2a

1
2b

















as long as abc 6= 0.

2.8.10 Since AB is invertible, rank (AB) = n. Thus

n = rank (AB) ≤ rank (A) ≤ n =⇒ rank (A) = n,

n = rank (AB) ≤ rank (B) ≤ n =⇒ rank (B) = n,

whence A and B are invertible.
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2.8.11 Form the expanded matrix
















1 + a 1 1 1 0 0

1 1 + b 1 0 1 0

1 1 1 + c 0 0 1

















.

Perform bcR1 → R1, abR3 → R3, caR2 → R2. The matrix turns into

















bc + abc bc bc bc 0 0

ca ca + abc ca 0 ca 0

ab ab ab + abc 0 0 ab

















.

Perform R1 + R2 + R3 → R1 the matrix turns into

















ab + bc + ca + abc ab + bc + ca + abc ab + bc + ca + abc bc ca ab

ca ca + abc ca 0 ca 0

ab ab ab + abc 0 0 ab

















.

Perform 1
ab+bc+ca+abc

R1 → R1. The matrix turns into

















1 1 1 bc
ab+bc+ca+abc

ca
ab+bc+ca+abc

ab
ab+bc+ca+abc

ca ca + abc ca 0 ca 0

ab ab ab + abc 0 0 ab

















.

Perform R2 − caR1 → R2 and R3 − abR3 → R3. We get

















1 1 1 bc
ab+bc+ca+abc

ca
ab+bc+ca+abc

ab
ab+bc+ca+abc

0 abc 0 − abc2

ab+bc+ca+abc
ca − c2a2

ab+bc+ca+abc
− a2bc

ab+bc+ca+abc

0 0 abc − ab2c
ab+bc+ca+abc

− a2bc
ab+bc+ca+abc

ab − a2b2

ab+bc+ca+abc

















.

Perform 1
ABC

R2 → R2 and 1
ABC

R3 → R3. We obtain

















1 1 1 bc
ab+bc+ca+abc

ca
ab+bc+ca+abc

ab
ab+bc+ca+abc

0 1 0 − c
ab+bc+ca+abc

1
b
− ca

b(ab+bc+ca+abc)
− a

ab+bc+ca+abc

0 0 1 − b
ab+bc+ca+abc

− a
ab+bc+ca+abc

1
c
− ab

c(ab+bc+ca+abc)

















.

Finally we perform R1 − R2 − R3 → R1, getting

















1 0 0 a+b+bc
ab+bc+ca+abc

− c
ab+bc+ca+abc

− b
ab+bc+ca+abc

0 1 0 − c
ab+bc+ca+abc

1
b
− ca

b(ab+bc+ca+abc)
− a

ab+bc+ca+abc

0 0 1 − b
ab+bc+ca+abc

− a
ab+bc+ca+abc

1
c
− ab

c(ab+bc+ca+abc)

















.
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We conclude that the inverse is
















b+c+bc
ab+bc+ca+abc

− c
ab+bc+ca+abc

− b
ab+bc+ca+abc

− c
ab+bc+ca+abc

c+a+ca
ab+bc+ca+abc

− a
ab+bc+ca+abc

− b
ab+bc+ca+abc

− a
ab+bc+ca+abc

a+b+ab
ab+bc+ca+abc

















2.8.16 Since rank
(

A2
)

< 5, A2 is not invertible. But then A is not invertible and hence rank (A) < 5.

2.8.17 Each entry can be chosen in p ways, which means that there are p2 ways of choosing the two entries of an
arbitrary row. The first row cannot be the zero row, hence there are p2 − 1 ways of choosing it. The second row
cannot be one of the p multiples of the first row, hence there are p2 − p ways of choosing it. In total, this gives
(p2 − 1)(p2 − p) invertible matrices in Zp.

2.8.18 Assume that both A and B are m × n matrices. Let C = [A B] be the m × (2n) obtained by juxtaposing
A to B. rank (C) is the number of linearly independent columns of C, which is composed of the columns of A and
B. By column-reducing the first n columns, we find rank (A) linearly independent columns. By column-reducing
columns n + 1 to 2n, we find rank (B) linearly independent columns. These rank (A) + rank (B) columns are
distinct, and are a subset of the columns of C. Since C has at most rank (C) linearly independent columns, it
follows that rank (C) ≤ rank (A) + rank (B). Furthermore, by adding the n + k-column (1 ≤ k ≤ n) of C to the
k-th column, we see that C is column-equivalent to [A + B B]. But clearly

rank (A + B) ≤ rank ([A + B B]) = rank (C) ,

since [A + B B] is obtained by adding columns to A + B. We deduce

rank (A + B) ≤ rank ([A + B B]) = rank (C) ≤ rank (A) + rank (B) ,

as was to be shewn.

2.8.19 Since the first two columns of AB are not proportional, and since the last column is the sum of the first two,
rank (AB) = 2. Now,

(AB)2 =

















0 −1 −1

−1 0 −1

1 1 2

















2

=

















0 −1 −1

−1 0 −1

1 1 2

















= AB.

Since BA is a 2 × 2 matrix, rank (BA) ≤ 2. Also,

2 = rank (AB) = rank
(

(AB)2
)

= rank (A(BA)B) ≤ rank (BA) ,

whence rank (BA) = 2, which means BA is invertible. Finally,

(AB)2 − AB = 03 =⇒ A(BA − I2)B = 03 =⇒ BA(BA − I2)BA = B03A =⇒ BA − I2 = 02,

since BA is invertible and we may cancel it.

3.1.1 The free variables are z and w. We have

2y + w = 2 =⇒ 2y = 2 − w =⇒ y = 1 + w,

and
x + y + z + w = 0 =⇒ x = −y − z − w = 2y + 2z + 2w.

Hence


























x

y

z

w



























=



























0

1

0

0



























+ z



























0

0

1

0



























+ w



























0

0

0

1



























.

This gives the 9 solutions.
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3.1.2 We have
















1 2 3

2 3 1

3 1 2

































x

y

z

















=

















5

6

0

















,

Hence
















x

y

z

















=

















1 2 3

2 3 1

3 1 2

















−1 















5

6

0

















=

















4 2 0

2 0 4

0 4 2

































5

6

0

















=

















4

3

3

















.

3.1.3 The augmented matrix of the system is
















1 −2 1 5

2 2 0 7

5 −3 4 1

















R3−5R1→R3
 

R2−2R1→R2

















1 −2 1 5

0 6 −2 −3

0 7 −1 2

















6R3−7R2→R3
 

















1 −2 1 5

0 6 −2 −3

0 0 8 7

















Backward substitution yields
8z = 7 =⇒ 5 · 8z = 5 · 7 =⇒ z = 35 = 9,

6y = 2z − 3 = 2 · 9 − 3 = 15 = 2 =⇒ 11 · 6y = 11 · 2 =⇒ y = 22 = 9,

x = 2y − 1z + 5 = 2 · 9 − 1 · 9 + 5 = 14 = 1.

Conclusion :

x = 1, y = 9, z = 9.

Check:
1 − 2 · 9 + 9 = −8

X

= 5,

2 · 1 + 2 · 9 = 20
X

= 7,

5 · 1 − 3 · 9 + 4 · 9 = 14
X

= 1.

3.1.4 We need to solve the system
a − b + c − d = p(−1) = −10,

a = p(0) = −1,

a + b + c + d = p(1) = 2,

a + 2b + 4c + 8d = p(2) = 23.

Using row reduction or otherwise, we find a = −1, b = 2, c = −3, d = 4, and so the polynomial is

p(x) = 4x3
− 3x2

+ 2x − 1.

3.1.5 Using the encoding chart

0 1 2 3 4 5 6 7 8 9 10 11 12

A B C D E F G H I J K L M

13 14 15 16 17 18 19 20 21 22 23 24 25

N O P Q R S T U V W X Y Z
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we find

P2 =

















M

U

N

















=

















12

20

13

















, P3 =

















I

S

T

















=

















8

18

19

















, P4 =

















S

E

A

















=

















18

4

0

















, P5 =

















T

O

F

















=

















19

14

5

















, P6 =

















F

A

L

















=

















5

0

11

















.

Thus

AP2 =

















20

10

0

















=

















U

K

A

















, AP3 =

















18

24

12

















=

















S

Y

M

















, AP4 =

















4

2

0

















=

















E

C

A

















, AP5 =

















14

5

10

















=

















O

F

K

















, AP6 =

















0

15

22

















=

















A

P

W

















.

Finally, the message is encoded into
OGY UKA SYM ECA OFK APW.

3.1.6 Observe that since 103 is prime, Z103 is a field. Adding the first hundred equations,

100x0 + x1 + x2 + · · · + x100 = 4950 =⇒ 99x0 = 4950 − 4949 = 1 =⇒ x0 = 77 mod 103.

Now, for 1 ≤ k ≤ 100,
xk = k − 1 − x0 = k − 78 = k + 25.

This gives
x1 = 26, x2 = 27, . . . , x77 = 102, x78 = 0, x79 = 1, x80 = 2, . . . , x100 = 22.

3.3.1 Observe that the third row is the sum of the first two rows and the fourth row is twice the third. So we have


































1 1 1 1 1 1

1 0 1 0 1 −1

2 1 2 1 2 0

4 2 4 2 4 0

1 0 0 0 1 0



































R3−R1−R2→R3
 

R4−2R1−2R2→R4



































1 1 1 1 1 1

1 0 1 0 1 −1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0



































R2−R5→R2
 

R1−R5→R1



































0 1 1 1 0 1

0 0 1 0 0 −1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0



































Rearranging the rows we obtain


































1 0 0 0 1 0

0 1 1 1 0 1

0 0 1 0 0 −1

0 0 0 0 0 0

0 0 0 0 0 0



































.



Answers and Hints 209

Hence d and f are free variables. We obtain
c = −1,

b = 1 − c − d = 2 − d,

a = −f.

The solution is


































a

b

c

d

f



































=



































0

2

−1

0

0



































+ d



































0

−1

0

1

0



































+ f



































−1

0

0

0

1



































.

3.3.2 The unique solution is



































1

1

−1

1

1



































.

3.3.3 The augmented matrix of the system is

















2m 1 1 2

1 2m 1 4m

1 1 2m 2m2

















.

Performing R1 ↔ R2.
















1 2m 1 4m

2m 1 1 2

1 1 2m 2m2

















.

Performing R2 ↔ R3.
















1 2m 1 4m

1 1 2m 2m2

2m 1 1 2

















.

Performing R2 − R1 → R1 and R3 − 2mR1 → R3 we obtain

















1 2m 1 4m

0 1 − 2m 2m − 1 2m2 − 4m

0 1 − 4m2 1 − 2m 2 − 8m2

















.
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If m = 1
2
the matrix becomes

















1 1 1 2

0 0 0 − 3
2

0 0 0 0

















and hence it does not have a solution. If m 6= 1
2
, by performing 1

1−2m
R2 → R2 and 1

1−2m
R3 → R3, the matrix becomes

















1 2m 1 4m

0 1 −1 2m(m−2)

1−2m

0 1 + 2m 1 2(1 + 2m)

















.

Performing R3 − (1 + 2m)R2 → R3 we obtain

















1 2m 1 4m

0 1 −1 2m(m−2)

1−2m

0 0 2 + 2m 2(1+2m)(1−m2)

1−2m

















.

If m = −1 then the matrix reduces to
















1 −2 1 −4

0 1 −1 2

0 0 0 0

















.

The solution in this case is
















x

y

z

















=

















z

2 + z

z

















.

If m 6= −1,m 6= − 1
2
we have the solutions

















x

y

z

















=

















m−1
1−2m

1−3m
1−2m

(1+2m)(1−m)

1−2m

















.

3.3.4 By performing the elementary row operations, we obtain the following triangular form:

ax + y − 2z = 1,

(a − 1)2y + (1 − a)(a − 2)z = 1 − a,

(a − 2)z = 0.

If a = 2, there is an infinity of solutions:
















x

y

z

















=

















1 + t

−1

t

















t ∈ R.
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Assume a 6= 2. Then z = 0 and the system becomes

ax + y = 1,

(a − 1)2y = 1 − a,

2x + (3 − a)y = 1.

We see that if a = 1, the system becomes
x + y = 1,

2x + 2y = 1,

and so there is no solution. If (a − 1)(a − 2) 6= 0, we obtain the unique solution
















x

y

z

















=

















1
a−1

− 1
a−1

0

















.

3.3.5 The system is solvable if m 6= 0,m 6= ±2. If m 6= 2 there is the solution

















x

y

z

















=

















1
m−2

m+3
m−2

m+2
m−2

















.

3.3.6 There is the unique solution



























x

y

z

t



























=



























a + d + b − c

−c − d − b + a

d + c − b + a

c − d + b + a



























.

3.3.7 The system can be written as
















b a 0

c 0 a

0 c b

































x

y

z

















=

















c

b

a

















.

The system will have the unique solution

















x

y

z

















=

















b a 0

c 0 a

0 c b

















−1 















c

b

a

















=

















1
2b

1
2c

− a
2bc

1
2a

− b
2ac

1
2c

− c
2ba

1
2a

1
2b

































c

b

a

















=

















b2 + c2 − a2

2bc

a2 + c2 − b2

2ac

a2 + b2 − c2

2ab

















,
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as long as the inverse matrix exists, which is as long as abc 6= 0

3.3.8 We first form the augmented matrix,

















1 − a 2a + 1 2a + 2 a

a a 0 2a + 2

2 a + 1 a − 1 a2 − 2a + 9

















R1+R2→R1
 

















1 3a + 1 2a + 2 3a + 2

a a 0 2a + 2

2 a + 1 a − 1 a2 − 2a + 9

















R2−aR1→R2
 

R3−2R1→R3

















1 3a + 1 2a + 2 3a + 2

0 −3a2 −2a2 − 2a −3a2 + 2

0 −5a − 1 −3a − 5 a2 − 8a + 5

















.

After (−5a − 1)R2 + 3a2R3 → R2, this las matrix becomes

















1 3a + 1 2a + 2 3a + 2

0 0 a3 − 3a2 + 2a 3a4 − 9a3 + 18a2 − 10a − 2

0 −5a − 1 −3a − 5 a2 − 8a + 5

















.

Exchanging the last two rows and factoring,

















1 3a + 1 2a + 2 3a + 2

0 −5a − 1 −3a − 5 a2 − 8a + 5

0 0 a(a − 1)(a − 2) (a − 1)(3a3 − 6a2 + 12a + 2)

















.

Thus we must examine a ∈ {1, 2, 3} and a 6∈ {0, 1, 2}.

Clearly, if a(a − 1)(a − 2) 6= 0, then there is the unique solution

{
z =

2 + 12a − 6a2 + 3a3

a (a − 2)
, y = −

2a3 − 3 a2 + 6a + 10

a (a − 2)
, x =

2 a3 − a2 + 4a + 6

a (a − 2)

}
.

If a = 0, the system becomes
x + y + 2z = 0, 0 = 2, 2x + y − z = 0,

which is inconsistent (no solutions).

If a = 1, the system becomes
3y + 4z = 1, x + y = 1, 2x + 2y = 8,

which has infinitely many solutions,
{
y =

1

3
−

4

3
z, x =

2

3
+

4

3
z, z = z

}
.

If a = 2, the system becomes

−x + 5y + 6z = 2, 2x + 2y = 6, 2x + 3y + z = 9,

which is also inconsistent, as can be seen by observing that

(−x + 5y + 6z) − 6(2x + 3y + z) = 2 − 18 =⇒ −13x − 13y = −18,

which contradicts the equation 2x + 2y = 6.
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3.3.9

x = 2−236

y = 2−3312

z = 223−7.

3.3.10 Denote the addition operations applied to the rows by a1, a2, a3, a4 and the subtraction operations to the
columns by b1, b2, b3, b4. Comparing A and AT we obtain 7 equations in 8 unknowns. By inspecting the diagonal
entries, and the entries of the first row of A and AT , we deduce the following equations

a1 = b1,

a2 = b2,

a3 = b3,

a4 = b4,

a1 − b2 = 3,

a1 − b3 = 6,

a1 − b4 = 9.

This is a system of 7 equations in 8 unknowns. We may let a4 = 0 and thus obtain a1 = b1 = 9, a2 = b2 = 6,

a3 = b3 = 3, a4 = b4 = 0.

3.3.11 The augmented matrix of this system is



































−y 1 0 0 1 0

1 −y 1 0 0 0

0 1 −y 1 0 0

0 0 1 −y 1 0

1 0 0 1 −y 0



































.

Permute the rows to obtain



































1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

1 −y 1 0 0 0

−y 1 0 0 1 0



































.

Performing R5 + yR1 → R5 and R4 − R1 → R4 we get



































1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 −y 1 −1 y 0

0 1 0 y 1 − y2 0



































.
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Performing R5 − R2 → R5 and R4 + yR2 → R4 we get


































1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 0 1 − y2 y − 1 y 0

0 0 y y − 1 1 − y2 0



































.

Performing R5 − yR3 → R5 and R4 + (y2 − 1)R3 → R4 we get


































1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 0 0 −y3 + 2y − 1 y2 + y − 1 0

0 0 0 y2 + y − 1 1 − y − y2 0



































.

Performing R5 + R4 → R5 we get


































1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 0 0 −y3 + 2y − 1 y2 + y − 1 0

0 0 0 −y3 + y2 + 3y − 2 0 0



































.

Upon factoring, the matrix is equivalent to


































1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 0 0 −(y − 1)(y2 + y − 1) y2 + y − 1 0

0 0 0 −(y − 2)(y2 + y − 1) 0 0



































.

Thus (y − 2)(y2 + y − 1)x4 = 0. If y = 2 then the system reduces to


































1 0 0 1 −2 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 −5 5 0

0 0 0 0 0 0



































.
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In this case x5 is free and by backwards substitution we obtain


































x1

x2

x3

x4

x5



































=



































t

t

t

t

t



































, t ∈ R.

If y2 + y − 1 = 0 then the system reduces to


































1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 0 0 0 0 0

0 0 0 0 0 0



































.

In this case x4, x5 are free, and


































x1

x2

x3

x4

x5



































=



































yt − s

y2s − yt − s

ys − t

s

t



































, (s, t) ∈ R2.

Since y2s − s = (y2 + y − 1)s − ys, this last solution can be also written as


































x1

x2

x3

x4

x5



































=



































yt − s

−ys − yt

ys − t

s

t



































, (s, t) ∈ R2.

Finally, if (y − 2)(y2 + y − 1) 6= 0, then x4 = 0, and we obtain


































x1

x2

x3

x4

x5



































=



































0

0

0

0

0



































.
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4.1.1 No, since 1F

−→v =
−→v is not fulfilled. For example

1 ·









1

1









=









1 · 1

0









6=









1

1









.

4.1.2 We expand (1F + 1F)(
−→a +

−→
b) in two ways, first using 4.7 first and then 4.8, obtaining

(1F + 1F)(
−→a +

−→
b) = (1F + 1F)

−→a + (1F + 1F)
−→
b =

−→a +
−→a +

−→
b +

−→
b,

and then using 4.8 first and then 4.7, obtaining

(1F + 1F)(
−→a +

−→
b) = 1F(

−→a +
−→
b) + 1F(

−→a +
−→
b) =

−→a +
−→
b +

−→a +
−→
b.

We thus have the equality
−→a +

−→a +
−→
b +

−→
b =

−→a +
−→
b +

−→a +
−→
b.

Cancelling −→a from the left and
−→
b from the right, we obtain

−→a +
−→
b =

−→
b +

−→a,

which is what we wanted to shew.

4.1.3 We must prove that each of the axioms of a vector space are satisfied. Clearly if (x, y, α) ∈ R+ × R+ × R then
x⊕y = xy > 0 and α⊗ x = xα > 0, so V is closed under vector addition and scalar multiplication. Commutativity and
associativity of vector addition are obvious.

Let A be additive identity. Then we need

x ⊕ A = x =⇒ xA = x =⇒ A = 1.

Thus the additive identity is 1. Suppose I is the additive inverse of x. Then

x ⊕ I = 1 =⇒ xI = 1 =⇒ I =
1

x
.

Hence the additive inverse of x is
1

x
.

Now
α ⊗ (x ⊕ y) = (xy)α = xαyα = xα ⊕ yα = (α ⊗ x) ⊕ (α ⊗ y),

and
(α + β) ⊗ x = xα+β

= xαxβ
= (xα

) ⊕ (xβ
) = (α ⊗ x) ⊕ (β ⊗ x),

whence the distributive laws hold.

Finally,
1 ⊗ x = x1

= x,

and
α ⊗ (β ⊗ x) = (β ⊗ x)α = (xβ)α = xαβ = (αβ) ⊗ x,

and the last two axioms also hold.

4.1.4 C is a vector space over R, the proof is trivial. But R is not a vector space over C, since, for example taking
i as a scalar (from C) and 1 as a vector (from R) the scalar multiple i · 1 = i 6∈ R and so there is no closure under
scalar multiplication.

4.1.5 One example is

(Z2)
3
=






















0

0

0

















,

















0

0

1

















,

















0

1

0

















,

















0

1

1

















,

















1

0

0

















,

















1

0

1

















,

















1

1

0

















,

















1

1

1






















.

Addition is the natural element-wise addition and scalar multiplication is ordinary element-wise scalar multiplica-
tion.
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4.1.6 One example is

(Z3)
2
=














0

0









,









0

1









,









0

2









,









1

0









,









1

1









,









1

2









,









2

0









,









2

1









,









2

2













.

Addition is the natural element-wise addition and scalar multiplication is ordinary element-wise scalar multiplica-
tion.

4.2.1 Take α ∈ R and

−→
x =



























a

b

c

d



























∈ X, a − b − 3d = 0,
−→
y =



























a ′

b ′

c ′

d ′



























∈ X, a ′
− b ′

− 3d ′
= 0.

Then

−→
x + α

−→
y =



























a

b

c

d



























+ α



























a ′

b ′

c ′

d ′



























=



























a + αa ′

b + αb ′

c + αc ′

d + αd ′



























.

Observe that

(a + αa ′
) − (b + αb ′

) − 3(d + αd ′
) = (a − b − 3d) + α(a ′

− b ′
− 3d ′

) = 0 + α0 = 0,

meaning that −→x + α−→y ∈ X, and so X is a vector subspace of R4.

4.2.2 Take

−→u =



































a1

2a1 − 3b1

5b1

a1 + 2b1

a1



































,−→v =



































a2

2a2 − 3b2

5b2

a2 + 2b2

a2



































, α ∈ R.

Put s = a1 + αa2, t = b1 + αb2. Then

−→u + α−→v =



































a1 + αa2

2(a1 + αa2) − 3(b1 + αb2)

5(b1 + αb2)

(a1 + αa2) + 2(b1 + αb2)

a1 + αa2



































=



































s

2s − 3t

5t

s + 2t

s



































∈ X,

since this last matrix has the basic shape of matrices in X. This shews that X is a vector subspace of R5.

4.2.7 We shew that some of the properties in the definition of vector subspace fail to hold in these sets.
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➊ Take −→x =

















0

1

0

















, α = 2. Then −→x ∈ V but 2−→x =

















0

2

0

















6∈ V as 02 + 22 = 4 6= 1. So V is not closed under scalar

multiplication.

➋ Take −→x =

















0

1

0

















,−→y =

















1

0

0

















. Then −→x ∈ W,−→y ∈ W but −→x +
−→y =

















1

1

0

















6∈ W as 1 · 1 = 1 6= 0. Hence W is not closed

under vector addition.

➌ Take −→x =









−1 1

0 0









. Then −→x ∈ Z but −−→x = −









−1 1

0 0









=









1 −1

0 0









6∈ Z as 1+(−1)2 = 2 6= 0. So Z is not closed

under scalar multiplication.

4.2.8 Assume U1 * U2 and U2 * U1. Take −→v ∈ U2 \ U1 (which is possible because U2 * U1) and
−→u ∈ U1 \ U2

(which is possible because U1 * U2). If
−→u +

−→v ∈ U1, then—as −
−→u is also in U1—the sum of two vectors in U1 must

also be in U1 giving
−→
u +

−→
v −

−→
u =

−→
v ∈ U1,

a contradiction. Similarly if −→u +
−→v ∈ U2, then—as −

−→v also in U2—the sum of two vectors in U2 must also be in U1

giving
−→u +

−→v −
−→u =

−→u ∈ U2,

another contradiction. Hence either U1 ⊆ U2 or U2 ⊆ U1 (or possibly both).

4.2.9 Assume contrariwise that V = U1

⋃

U2

⋃ · · ·⋃Uk is the shortest such list. Since the Uj are proper subspaces,
k > 1. Choose −→x ∈ U1,

−→x 6∈ U2

⋃ · · ·⋃Uk and choose −→y 6∈ U1. Put L = {
−→y + α−→x |α ∈ F}. Claim: L

⋂

U1 = ∅. For if
−→u ∈ L

⋂

U1 then ∃a0 ∈ F with −→u =
−→y + a0

−→x and so −→y =
−→u − a0

−→x ∈ U1, a contradiction. So L and U1 are disjoint.

We now shew that L has at most one vector in common with Uj, 2 ≤ j ≤ k. For, if there were two elements of F,
a 6= b with −→y + a−→x ,−→y + b−→x ∈ Uj, j ≥ 2 then

(a − b)
−→
x = (

−→
y + a

−→
x ) − (

−→
y + b

−→
x ) ∈ Uj,

contrary to the choice of −→x .

Conclusion: since F is infinite, L is infinite. But we have shewn that L can have at most one element in common
with the Uj. This means that there are not enough Uj to go around to cover the whole of L. So V cannot be a finite
union of proper subspaces.

4.2.10 Take F = Z2, V = F × F. Then V has the four elements









0

0









,









0

1









,









1

0









,









1

1









,

with the following subspaces

V1 =














0

0









,









0

1













, V2 =














0

0









,









1

0













, V3 =














0

0









,









1

1













.

It is easy to verify that these subspaces satisfy the conditions of the problem.
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4.3.1 If

a

















1

0

0

















+ b

















1

1

0

















+ c

















1

1

1

















=
−→
0 ,

then
















a + b + c

b + c

c

















=

















0

0

0

















.

This clearly entails that c = b = a = 0, and so the family is free.

4.3.2 Assume

a



























1

1

1

1



























+ b



























1

1

−1

−1



























+ c



























1

−1

1

−1



























+ d



























1

1

0

1



























=



























0

0

0

0



























.

Then
a + b + c + d = 0,

a + b − c + d = 0,

a − b + c = 0,

a − b − c + d = 0.

Subtracting the second equation from the first, we deduce 2c = 0, that is, c = 0. Subtracting the third equation from
the fourth, we deduce −2c + d = 0 or d = 0. From the first and third equations, we then deduce a + b = 0 and
a − b = 0, which entails a = b = 0. In conclusion, a = b = c = d = 0.

Now, put

x



























1

1

1

1



























+ y



























1

1

−1

−1



























+ z



























1

−1

1

−1



























+ w



























1

1

0

1



























=



























1

2

1

1



























.

Then

x + y + z + w = 1,

x + y − z + w = 2,

x − y + z = 1,

x − y − z + w = 1.

Solving as before, we find

2



























1

1

1

1



























+
1

2



























1

1

−1

−1



























−
1

2



























1

−1

1

−1



























−



























1

1

0

1



























=



























1

2

1

1



























.
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4.3.5 We have
(
−→v 1 +

−→v 2) − (
−→v 2 +

−→v 3) + (
−→v 3 +

−→v 4) − (
−→v 4 +

−→v 1) =
−→
0 ,

a non-trivial linear combination of these vectors equalling the zero-vector.

4.3.7 Yes. Suppose that a + b
√
2 = 0 is a non-trivial linear combination of 1 and

√
2 with rational numbers a and

b. If one of a, b is different from 0 then so is the other. Hence

a + b
√
2 = 0 =⇒

√
2 = −

b

a
.

The sinistral side of the equality
√
2 = −

b

a
is irrational whereas the dextral side is rational, a contradiction.

4.3.8 No. The representation 2 · 1 + (−
√
2)

√
2 = 0 is a non-trivial linear combination of 1 and

√
2.

4.3.9 1. Assume that
a + b

√
2 + c

√
3 = 0, a, b, c,∈ Q, a2

+ b2
+ c2 6= 0.

If ac 6= 0, then

b
√
2 = −a − c

√
3 ⇔ 2b2

= a2
+ 2ac

√
3 + 3c2 ⇔

2b2 − a2 − 3c2

2ac
=
√
3.

The dextral side of the last implication is irrational, whereas the sinistral side is rational. Thus it must be the
case that ac = 0. If a = 0, c 6= 0 then

b
√
2 + c

√
3 = 0 ⇔ −

b

c
=

√

3

2
,

and again the dextral side is irrational and the sinistral side is rational. Thus if a = 0 then also c = 0. We can
similarly prove that c = 0 entails a = 0. Thus we have

b
√
2 = 0,

which means that b = 0. Therefore

a + b
√
2 + c

√
3 = 0, a, b, c,∈ Q, ⇔ a = b = c = 0.

This proves that {1,
√
2,

√
3} are linearly independent over Q.

2. Rationalising denominators,

1

1 −
√
2
+

2√
12 − 2

=
1 +

√
2

1 − 2
+

2
√
12 + 4

12 − 4

= −1 −
√
2 +

1

2

√
3 +

1

2

= −
1

2
−

√
2 +

1

2

√
3.

4.3.10 Assume that
aex

+ be2x
+ ce3x

= 0.

Then
c = −ae−2x

− be−x.

Letting x → +∞, we obtain c = 0. Thus
aex

+ be2x
= 0,

and so
b = −ae−x.

Again, letting x → +∞, we obtain b = 0. This yields

aex
= 0.

Since the exponential function never vanishes, we deduce that a = 0. Thus a = b = c = 0 and the family is linearly
independent over R.

4.3.11 This follows at once from the identity

cos 2x = cos2 x − sin2 x,

which implies
cos 2x − cos2 x + sin2 x = 0.
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4.4.1 Given an arbitrary polynomial
p(x) = a + bx + cx2

+ dx3,

we must shew that there are real numbers s, t, u, v such that

p(x) = s + t(1 + x) + u(1 + x)2 + v(1 + x)3.

In order to do this we find the Taylor expansion of p around x = −1. Letting x = −1 in this last equality,

s = p(−1) = a − b + c − d ∈ R.

Now,
p ′

(x) = b + 2cx + 3dx2
= t + 2u(1 + x) + 3v(1 + x)2.

Letting x = −1 we find
t = p ′

(−1) = b − 2c + 3d ∈ R.

Again,
p ′′

(x) = 2c + 6dx = 2u + 6v(1 + x).

Letting x = −1 we find
u = p ′′

(−1) = c − 3d ∈ R.

Finally,
p ′′′

(x) = 6d = 6v,

so we let v = d ∈ R. In other words, we have

p(x) = a + bx + cx2
+ dx3

= (a − b + c − d) + (b − 2c + 3d)(1 + x) + (c − 3d)(1 + x)2 + d(1 + x)3.

4.4.2 Assume contrariwise that
















1

1

−1

















= a

















1

0

−1

















+ b

















0

1

−1

















.

Then we must have
a = 1,

b = 1,

−a − b = −1,

which is impossible. Thus

















1

1

−1

















is not a linear combination of

















1

0

−1

















,

















0

1

−1

















and hence is not in span

































1

0

−1

















,

















0

1

−1

































.

4.4.3 It is

a









1 0

0 0









+ b









0 0

0 1









+ c









0 1

−1 0









=









a c

−c b









,

i.e., this family spans the set of all skew-symmetric 2 × 2 matrices over R.

4.5.1 We have


































a

2a − 3b

5b

a + 2b

a



































= a



































1

2

0

1

1



































+ b



































0

−3

5

2

0



































,
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so clearly the family 






































1

2

0

1

1



































,



































0

−3

5

2

0








































spans the subspace. To shew that this is a linearly independent family, assume that

a



































1

2

0

1

1



































+ b



































0

−3

5

2

0



































=



































0

0

0

0

0



































.

Then it follows clearly that a = b = 0, and so this is a linearly independent family. Conclusion:








































1

2

0

1

1



































,



































0

−3

5

2

0








































is a basis for the subspace.

4.5.2 Suppose

−→
0 = a(

−→
v 1 +

−→
v 2) + b(

−→
v 2 +

−→
v 3) + c(

−→
v 3 +

−→
v 4) + d(

−→
v 4 +

−→
v 5) + f(

−→
v 5 +

−→
v 1)

= (a + f)−→v 1 + (a + b)−→v 2 + (b + c)−→v 3 + (c + d)−→v 4 + (d + f)−→v 5.

Since {
−→v 1,

−→v 2, . . . ,
−→v 5} are linearly independent, we have

a + f = 0,

a + b = 0

b + c = 0

c + d = 0

d + f = 0.

Solving we find a = b = c = d = f = 0, which means that the

{
−→
v 1 +

−→
v 2,

−→
v 2 +

−→
v 3,

−→
v 3 +

−→
v 4,

−→
v 4 +

−→
v 5,

−→
v 5 +

−→
v 1}

are linearly independent. Since the dimension of V is 5, and we have 5 linearly independent vectors, they must also
be a basis for V.



Answers and Hints 223

4.5.3 The matrix of coefficients is already in echelon form. The dimension of the solution space is n − 1 and the
following vectors in R2n form a basis for the solution space

a1 =













































































−1

1

0

...

0

−1

1

0

...

0













































































, a2 =













































































−1

0

1

...

0

−1

0

1

...

0













































































, . . . , an−1 =





































































−1

0

. . .

1

−1

0

...

0

1





































































.

(The “second” −1 occurs on the n-th position. The 1’s migrate from the 2nd and n + 1-th position on a1 to the
n − 1-th and 2n-th position on an−1.)

4.5.4 Let AT = −A and BT = −B be skew symmetric n × n matrices. Then if λ ∈ R is a scalar, then

(A + λB)T = −(A + λB),

so A + λB is also skew-symmetric, proving that V is a subspace. Now consider the set of

1 + 2 + · · · + (n − 1) =
(n − 1)n

2

matrices Ak, which are 0 everywhere except in the ij-th and ji-spot, where 1 ≤ i < j ≤ n, aij = 1 = −aji and i+ j = k,
3 ≤ k ≤ 2n − 1. (In the case n = 3, they are

















0 1 0

−1 0 0

0 0 0

















,

















0 0 1

0 0 0

−1 0 0

















,

















0 0 0

0 0 1

0 −1 0

















,

for example.) It is clear that these matrices form a basis for V and hence V has dimension
(n − 1)n

2
.

4.5.5 Take (
−→u,−→v ) ∈ X2 and α ∈ R. Then

−→u =



























a

b

c

d



























, b + 2c = 0, −→v =



























a ′

b ′

c ′

d ′



























, b ′ + 2c ′ = 0.
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We have

−→u + α−→v =



























a + αa ′

b + αb ′

c + αc ′

d + αd ′



























,

and to demonstrate that −→u + α
−→
v ∈ X we need to shew that (b + αb ′) + 2(c + αc ′) = 0. But this is easy, as

(b + αb ′
) + 2(c + αc ′

) = (b + 2c) + α(b ′
+ 2c ′

) = 0 + α0 = 0.

Now


























a

b

c

d



























=



























a

−2c

c

d



























= a



























1

0

0

0



























+ c



























0

−2

1

0



























+ d



























0

0

0

1



























It is clear that


























1

0

0

0



























,



























0

−2

1

0



























,



























0

0

0

1



























are linearly independent and span X. They thus constitute a basis for X.

4.5.6 As a basis we may take the
n(n + 1)

2
matrices Eij ∈ Mn(F) for 1 ≤ i ≤ j ≤ n.

4.5.7 dimX = 2, as basis one may take {
−→
v1,

−→
v2}.

4.5.8 dimX = 3, as basis one may take {
−→v1,

−→v2,
−→v3}.

4.5.9 dimX = 3, as basis one may take {
−→v1,

−→v2,
−→v3}.

4.5.10 Let λ ∈ R. Observe that
















a b c

0 d f

0 0 g

















+ λ

















a ′ b ′ c ′

0 d ′ f ′

0 0 g ′

















=

















a + λa ′ b + λb ′ c + λc ′

0 d + λd ′ f + λf ′

0 0 g + λg ′

















and if a + b + c = 0, a + d + g = 0, a ′ + b ′ + c ′ = 0, a ′ + d ′ + g ′ = 0, then

a + λa ′
+ b + λb ′

+ c + λc ′
= (a + b + c) + λ(a ′

+ b ′
+ c ′

) = 0 + λ0 = 0,

and
a + λa ′ + d + λd ′ + g + λg ′ = (a + d + g) + λ(a ′ + d ′ + g ′) = 0 + λ0 = 0,

proving that V is a subspace.

Now, a + b + c = 0 = a + d + g =⇒ a = −b − c, g = b + c − d. Thus
















a b c

0 d f

0 0 g

















=

















−b − c b c

0 d f

0 0 b + c − d

















= b

















−1 1 0

0 0 0

0 0 1

















+ c

















−1 0 1

0 0 0

0 0 1

















+ d

















0 0 0

0 1 0

0 0 −1

















+ f

















0 0 0

0 0 1

0 0 0

















.
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It is clear that these four matrices span V and are linearly independent. Hence, dimV = 4.

4.6.1 1. It is enough to prove that the matrix

A =



























1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



























is invertible. But an easy computation shews that

A2
=



























1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



























2

= 4I4,

whence the inverse sought is

A−1
=

1

4
A =

1

4



























1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



























=



























1/4 1/4 1/4 1/4

1/4 1/4 −1/4 −1/4

1/4 −1/4 1/4 −1/4

1/4 −1/4 −1/4 1/4



























.

2. Since the −→
ak are four linearly independent vectors in R4 and dimR4 = 4, they form a basis for R4. Now, we

want to solve

A



























x

y

z

w



























=



























1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1





















































x

y

z

w



























=



























1

2

1

1



























and so


























x

y

z

w



























= A−1



























1

2

1

1



























=



























1/4 1/4 1/4 1/4

1/4 1/4 −1/4 −1/4

1/4 −1/4 1/4 −1/4

1/4 −1/4 −1/4 1/4





















































1

2

1

1



























=



























5/4

1/4

−1/4

−1/4



























.

It follows that


























1

2

1

1



























=
5

4



























1

1

1

1



























+
1

4



























1

1

−1

−1



























−
1

4



























1

−1

1

−1



























−
1

4



























1

−1

−1

1



























.
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The coordinates sought are
(

5

4
,
1

4
,−

1

4
,−

1

4

)

.

3. Since we have


























1

2

1

1



























=
5

4



























1

1

1

1



























−
1

4



























1

−1

1

−1



























+
1

4



























1

1

−1

−1



























−
1

4



























1

−1

−1

1



























,

the coordinates sought are
(

5

4
,−

1

4
,
1

4
,−

1

4

)

.

4.6.2 [1] a = 1, [2] (A(a))−1 =



























1

a − 1
0 0 −

1

a − 1

−1 1 − a −1 a + 1

−
1

a − 1
−1 0

a

a − 1

1 a 1 −a − 1



























[3]



























0
1

a − 1

1

a − 1

1

a − 1

0 −a − 1 −a −1

0 − −
a

a − 1
−

a

a − 1
−

1

a − 1

1 2 + a a + 1 1



























5.1.1 Let α ∈ R. Then

L

















x + αa

y + αb

z + αc

















=

















(x + αa) − (y + αb) − (z + αc)

(x + αa) + (y + αb) + (z + αc)

z + αc

















=

















x − y − z

x + y + z

z

















+ α

















a − b − c

a + b + c

c

















= L

















x

y

z

















+ αL

















a

b

c

















,

proving that L is a linear transformation.
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5.1.2

L(H + αH ′) = −A−1(H + αH ′)A−1

= −A−1HA−1 + α(−A−1H ′A−1)

= L(H) + αL(H ′),

proving that L is linear.

5.1.3 Let S be convex and let −→a,
−→
b ∈ T(S). We must prove that ∀α ∈ [0; 1], (1 − α)−→a + α

−→
b ∈ T(S). But since −→a,

−→
b

belong to T(S), ∃−→x ∈ S,
−→
y ∈ S with T(

−→
x ) =

−→
a, T(

−→
y) =

−→
b . Since S is convex, (1 − α)

−→
x + α

−→
y ∈ S. Thus

T((1 − α)
−→
x + α

−→
y) ∈ T(S),

which means that
(1 − α)T(−→x ) + αT(−→y) ∈ T(S),

that is,
(1 − α)−→a + α

−→
b ∈ T(S),

as we wished to show.

5.2.1 Assume

















x

y

z

















∈ ker (L). Then

L

















x

y

z

















=

















0

0

0

















,

that is
x − y − z = 0,

x + y + z = 0,

z = 0.

This implies that x − y = 0 and x + y = 0, and so x = y = z = 0. This means that

ker (L) =






















0

0

0






















,

and L is injective.

By the Dimension Theorem 244, dim Im (L) = dimV − dimker (L) = 3 − 0 = 3, which means that

Im (L) = R3

and L is surjective.

5.2.2

1. If a is any scalar,

L





















































x

y

z

w



























+ a



























x ′

y ′

z ′

w ′





















































= L



























x + ax ′

y + ay ′

z + az ′

w + aw ′



























=









(x + ax ′) + (y + ay ′)

(x + ax ′) − (y + ay ′)









=









x + y

x − y









+a









x ′ + y ′

x ′ − y ′









= L



























x

y

z

w



























+aL



























x ′

y ′

z ′

w ′



























,
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whence L is linear.

2. We have,

L



























x

y

z

w



























=









x + y

x − y









=









0

0









=⇒ x = y, x = −y =⇒ x = y = 0 =⇒ ker (L) =
































0

0

z

w



























: z ∈ R, w ∈ R






.

Thus dimker (L) = 2. In particular, the transformation is not injective.

3. From the previous part, dim Im (L) = 4 − 2 = 2. Since Im (L) ⊆ R2 and dim Im (L) = 2, we must have
Im (L) = R2. In particular, the transformation is surjective.

5.2.3 Assume that

















a

b

c

















∈ ker (T),

















a

b

c

















= (a − b)

















1

0

0

















+ b

















1

1

0

















+ c

















0

0

1

















.

Then


























0

0

0

0



























= T

















a

b

c

















= (a − b)T

















1

0

0

















+ bT

















1

1

0

















+ cT

















0

0

1

















= (a − b)



























1

0

−1

0



























+ b



























2

−1

0

0



























+ c



























1

−1

1

0



























=



























a + b + c

−b − c

−a + b + c

0



























.
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It follows that a = 0 and b = −c. Thus

ker (T) =






c

















0

−1

1

















: c ∈ R






,

and so dimker (T) = 1.

By the Dimension Theorem 244,

dim Im (T) = dimV − dimker (T) = 3 − 1 = 2.

We readily see that


























2

−1

0

0



























=



























1

0

−1

0



























+



























1

−1

1

0



























,

and so

Im (T) = span





















































1

0

−1

0



























,



























1

−1

1

0





















































.

5.2.4 Assume that

L









x

y









=

















x + 2y

x + 2y

0

















=

















0

0

0

















.

Then x = −2y and so








x

y









= y









−2

1









.

This means that dimker (L) = 1 and ker (L) is the line through the origin and (−2, 1). Observe that L is not
injective.

By the Dimension Theorem 244, dim Im (L) = dimV − dimker (L) = 2 − 1 = 1. Assume that

















a

b

c

















∈ Im (L).

Then ∃(x, y) ∈ R2 such that

L









x

y









=

















x + 2y

x + 2y

0

















=

















a

b

c

















.
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This means that
















a

b

c

















=

















x + 2y

x + 2y

0

















= (x + 2y)

















1

1

0

















.

Observe that L is not surjective.

5.2.5 Assume that

L









x

y









=

















x − y

x + y

0

















=

















0

0

0

















.

Then x + y = 0 = x − y, that is, x = y = 0, meaning that

ker (L) =














0

0













,

and so L is injective.

By the Dimension Theorem 244, dim Im (L) = dimV − dimker (L) = 2 − 0 = 2. Assume that

















a

b

c

















∈ Im (L).

Then ∃(x, y) ∈ R2 such that

L









x

y









=

















x − y

x + y

0

















=

















a

b

c

















.

This means that
















a

b

c

















=

















x − y

x + y

0

















= x

















1

1

0

















+ y

















−1

1

0

















.

Since
















1

1

0

















,

















−1

1

0

















are linearly independent, they span a subspace of dimension 2 in R3, that is, a plane containing the origin. Observe
that L is not surjective.

5.2.6 Assume that

L

















x

y

z

















=









x − y − z

y − 2z









=









0

0









.
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Then y = 2z; x = y + z = 3z. This means that ker (L) =






z

















3

2

1

















: z ∈ R






. Hence dimker (L) = 1, and so L is not

injective.

Now, if

L

















x

y

z

















=









x − y − z

y − 2z









=









a

b









.

Then








a

b









=









x − y − z

y − 2z









= x









1

0









+ y









−1

1









+ z









−1

−2









.

Now,

−3









1

0









− 2









−1

1









=









−1

−2









and








1

0









,









−1

1









are linearly independent. Since dim Im (L) = 2, we have Im (L) = R2, and so L is surjective.

5.2.7 Assume that

0 = tr

















a b

c d

















= a + d.

Then a = −d and so,








a b

c d









=









−d b

c d









= d









−1 0

0 1









+ b









0 1

0 0









+ c









0 0

1 0









,

and so dimker (L) = 3. Thus L is not injective. L is surjective, however. For if α ∈ R, then

α = tr

















α 0

0 0

















.

5.2.8 1. Let (A,B)2 ∈ M2×2(R), α ∈ R. Then

L(A + αB) = (A + αB)T + (A + αB)

= AT + BT + A + αB

= AT + A + αBT + αB

= L(A) + αL(B),

proving that L is linear.
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2. Assume that A =









a b

c d









∈ ker (L). Then









0 0

0 0









= L(A) =









a b

c d









+









a c

b d









=









2a b + c

b + c 2d









,

whence a = d = 0 and b = −c. Hence

ker (L) = span

















0 −1

1 0

















,

and so dimker (L) = 1.

3. By the Dimension Theorem, dim Im (L) = 4 − 1 = 3. As above,

L(A) =









2a b + c

b + c 2d









= a









2 0

0 0









+ (b + c)









0 1

1 0









+ d









0 0

0 2









,

from where

Im (L) = span

















2 0

0 0









,









0 1

1 0









,









0 0

0 2

















.

5.2.9 ➊ Observe that
(I − T)2 = I − 2T + T2

= I − 2T + T = I − T,

proving the result.

➋ The inverse is I − 1
2
T , for

(I + T)(I −
1

2
T) = I + T −

1

2
T −

1

2
T2

= I + T −
1

2
T −

1

2
T = I,

proving the claim.

➌ We have

−→
x ∈ ker (T) ⇐⇒ −→

x − T(
−→
x ) ∈ ker (T)

⇐⇒ I(−→x ) − T(−→x ) ∈ ker (T)

⇐⇒ (I − T)(−→x ) ∈ ker (T)

⇐⇒ −→x ∈ Im (I − T) .

5.3.1 Observe that


























a

b

c

d



























= d



























1

1

1

1



























+ (2a − c − b)



























1

0

1

0



























+ (−d − 2a + 2c + b)



























1

1

1

0



























+ (−a + c)



























−1

−2

0

0



























.
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Hence

T



























a

b

c

d



























= dT



























1

1

1

1



























+ (2a − c − b)T



























1

0

1

0



























+ (−d − 2a + 2c + b)T



























1

1

1

0



























+ (−a + c)T



























−1

−2

0

0



























= d

















0

0

1

















+ (2a − c − b)

















1

1

−1

















+ (−d − 2a + 2c + b)

















0

0

−1

















+ (−a + c)

















1

1

1

















=

















a − b

a − b

−a + 2d

















.

This gives

T



























1

0

0

0



























=

















1

1

−1

















, T



























0

1

0

0



























=

















−1

−1

0

















, T



























0

0

1

0



























=

















0

0

0

















, T



























0

0

0

1



























=

















0

0

2

















.

The required matrix is therefore
















1 −1 0 0

1 −1 0 0

−1 0 0 2

















.

This matrix has rank 2, and so dim Im (T) = 2. We can use






















1

1

−1

















,

















−1

−1

0






















as a basis for Im (T). Thus by the

dimension theorem dimker (T) = 2. If

















0

0

0

















= T



























a

b

c

d



























=

















a − b

a − b

−a + 2d

















, Hence the vectors in ker (T) have the form



























2d

2d

c

d



























and hence we may take
































2

2

0

1



























,



























0

0

1

0
































as a basis for ker (T).
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5.3.2 1. Since the image of T is the plane x + y + z = 0, we must have

a + 0 + 1 = 0 =⇒ a = −1,

3 + b − 5 = 0 =⇒ b = 2,

−1 + 2 + c = 0 =⇒ c = −1.

2. Observe that

















1

1

1

















∈ ker (T) and so

T

















1

1

1

















=

















0

0

0

















.

Thus

T

















1

0

0

















= T

















2

1

1

















− T

















1

1

1

















=

















3

2

−5

















,

T

















0

1

0

















= T

















1

2

1

















− T

















1

1

1

















=

















−1

2

−1

















,

T

















0

0

1

















= T

















1

1

2

















− T

















1

1

1

















=

















−1

0

1

















.

The required matrix is therefore

















3 −1 −1

2 2 0

−5 −1 1

















.



Answers and Hints 235

5.3.3 1. Let α ∈ R. We have

T

















x

y









+ α









u

v

















= T

















x + αu

y + αv

















=

















x + αu + y + αv

x + αu − y − αv

2(x + αu) + 3(y + αv)

















=

















x + y

x − y

2x + 3y

















+ α

















u + v

u − v

2u + 3v

















= T

















x

y

















+ αT

















u

v

















,

proving that T is linear.

2. We have

T

















x

y

















=

















0

0

0

















⇐⇒

















x + y

x − y

2x + 3y

















=

















0

0

0

















⇐⇒ x = y = 0,

dimker (T) = 0, and whence T is injective.

3. By the Dimension Theorem, dim Im (T) = 2 − 0 = 2. Now, since

T

















x

y

















=

















x + y

x − y

2x + 3y

















= x

















1

1

2

















+ y

















1

−1

3

















,

whence

Im (T) = span

































1

1

2

















,

















1

−1

3

































.

4. We have

T

















1

2

















=

















3

−1

8

















=
11

2

















1

1

1

















−
5

2

















1

0

−1

















−
13

2

















0

1

0

















=

















11/2

−5/2

−13/2

















B

,

and

T

















1

3

















=

















4

−2

11

















=
15

2

















1

1

1

















−
7

2

















1

0

−1

















−
19

2

















0

1

0

















=

















15/2

−7/2

−19/2

















B

.
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The required matrix is
















11/2 15/2

−5/2 −7/2

−13/2 −19/2

















B

.

5.3.4 The matrix will be a 2×3 matrix. In each case, we find the action of L on the basis elements of R3 and express
the result in the given basis for R3.

1. We have

L

































1

0

0

































=









1

3









, L

































0

1

0

































=









2

0









, L

































0

0

1

































=









0

−1









.

The required matrix is








1 2 0

3 0 −1









.

2. We have

L

































1

0

0

































=









1

3









, L

































1

1

0

































=









3

3









, L

































1

1

1

































=









3

2









.

The required matrix is








1 3 3

3 3 2









.

3. We have

L

































1

0

0

































=









1

3









= −2









1

0









+ 3









1

1









=









−2

3









A

,

L

































1

1

0

































=









3

3









= 0









1

0









+ 3









1

1









=









0

3









A

,

L

































1

1

1

































=









3

2









= 1









1

0









+ 2









1

1









=









1

2









A

.

The required matrix is








−2 0 1

3 3 2









.
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5.3.5 Observe that









2

3









∈ Im (T) = ker (T) and so

T









2

3









=









0

0









.

Now

T









1

0









= T









3









1

1









−









2

3

















= 3T









1

1









− T









2

3









=









6

9









,

and

T









0

1









= T

















2

3









− 2









1

1

















= T









2

3









− 2T









1

1









=









−4

−6









.

The required matrix is thus








6 −4

9 −6









.

5.3.6 The matrix will be a 1 × 4 matrix. We have

tr

















1 0

0 0

















= 1,

tr

















0 1

0 0

















= 0,

tr

















0 0

1 0

















= 0,

tr

















0 0

0 1

















= 1.

Thus
ML = (1 0 0 1).

5.3.7 First observe that ker (B) ⊆ ker (AB) since ∀X ∈ Mq×1(R),

BX = 0 =⇒ (AB)X = A(BX) = 0.

Now

dimker (B) = q − dim Im (B)

= q − rank (B)

= q − rank (AB)

= q − dim Im (AB)

= dimker (AB) .
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Thus ker (B) = ker (AB) . Similarly, we can demonstrate that ker (ABC) = ker (BC) . Thus

rank (ABC) = dim Im (ABC)

= r − dimker (ABC)

= r − dimker (BC)

= dim Im (BC)

= rank (BC) .

6.2.1 This is clearly (1 2 3 4)(6 8 7) of order lcm(4, 3) = 12.

6.3.1 Multiplying the first column of the given matrix by a, its second column by b, and its third column by c, we
obtain

abcΩ =

















abc abc abc

a2 b2 c2

a3 b3 c3

















.

We may factor out abc from the first row of this last matrix thereby obtaining

abcΩ = abc det

















1 1 1

a2 b2 c2

a3 b3 c3

















.

Upon dividing by abc,

Ω = det

















1 1 1

a2 b2 c2

a3 b3 c3

















.

6.3.2 Performing R1 + R2 + R3 → R1 we have

Ω = det

















a − b − c 2a 2a

2b b − c − a 2b

2c 2c c − a − b

















= det

















a + b + c a + b + c a + b + c

2b b − c − a 2b

2c 2c c − a − b

















.

Factorising (a + b + c) from the first row of this last determinant, we have

Ω = (a + b + c) det

















1 1 1

2b b − c − a 2b

2c 2c c − a − b

















.
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Performing C2 − C1 → C2 and C3 − C1 → C3,

Ω = (a + b + c) det

















1 0 0

2b −b − c − a 0

2c 0 −c − a − b

















.

This last matrix is triangular, hence

Ω = (a + b + c)(−b − c − a)(−c − a − b) = (a + b + c)3,

as wanted.

6.3.3 detA1 = detA = −540 by multilinearity. detA2 = − detA1 = 540 by alternancy. detA3 = 3 detA2 = 1620

by both multilinearity and homogeneity from one column. detA4 = detA3 = 1620 by multilinearity, and detA5 =

2 detA4 = 3240 by homogeneity from one column.

6.3.5 From the given data, detB = −2. Hence

detABC = (detA)(detB)(detC) = −12,

det 5AC = 53 detAC = (125)(detA)(detC) = 750,

(detA3B−3C−1
) =

(detA)3

(detB)3(detC)
= −

27

16
.

6.3.6 Pick λ ∈ R \ {0, a11, a22, . . . , ann}. Put

X =



































a11 − λ 0 0 · · · 0

a21 a22 − λ 0 · · · 0

a31 a32 a33 − λ · · · 0

...
...

...
...

...

an1 an2 an3 · · · ann − λ



































and

Y =



































λ a12 a13

... a1n

0 λ a23

... a2n

0 0 λ
... a3n

...
...

...
...

...

0 0 0
... λ



































Clearly A = X + Y , detX = (a11 − λ)(a22 − λ) · · · (ann − λ) 6= 0, and det Y = λn 6= 0. This completes the proof.

6.3.7 No.

6.4.1 We have

detA = 2(−1)1+2 det









4 6

7 9









+ 5(−1)2+2 det









1 3

7 9









+ 8(−1)2+3 det









1 3

4 6









= −2(36 − 42) + 5(9 − 21) − 8(6 − 12) = 0.



240 Appendix A

6.4.2 Simply expand along the first row

a det









a b

c a









− b det









c b

b a









+ c det









c a

b c









= a(a2
− bc) − b(ca − b2

) + c(c2
− ab) = a3

+ b3
+ c3

− 3abc.

6.4.3 Since the second column has three 0’s, it is advantageous to expand along it, and thus we are reduced to
calculate

−3(−1)3+2 det

















1 −1 1

2 0 1

1 0 1

















Expanding this last determinant along the second column, the original determinant is thus

−3(−1)3+2
(−1)(−1)1+2 det









2 1

1 1









= −3(−1)(−1)(−1)(1) = 3.

6.4.5 Expanding along the first column,

0 = det



























1 1 1 1

x a 0 0

x 0 b 0

x 0 0 c



























= det

















a 0 0

0 b 0

0 0 c

















− x det

















1 1 1

0 b 0

0 0 c

















+x det

















1 1 1

a 0 0

0 0 c

















− x det

















1 1 1

a 0 0

0 b 0

















= xabc − xbc + x det

















1 1 1

a 0 0

0 0 c

















− x det

















1 1 1

a 0 0

0 b 0

















.
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Expanding these last two determinants along the third row,

0 = abc − xbc + x det

















1 1 1

a 0 0

0 0 c

















− xdet

















1 1 1

a a 0

0 b 0

















= abc − xbc + xc det









1 1

a 0









+ xb det









1 1

a 0









= abc − xbc − xca − xab.

It follows that

abc = x(bc + ab + ca),

whence
1

x
=

bc + ab + ca

abc
=

1

a
+

1

b
+

1

c
,

as wanted.

6.4.7 Expanding along the first row the determinant equals

−a det

















a b 0

0 0 b

1 1 1

















+ b det

















a 0 0

0 a b

1 1 1

















= ab det









a b

1 1









+ abdet









a b

1 1









= 2ab(a − b),

as wanted.

6.4.8 Expanding along the first row, the determinant equals

a det

















a 0 b

0 d 0

c 0 d

















+ b det

















0 a b

c 0 0

0 c d

















.

Expanding the resulting two determinants along the second row, we obtain

ad det









a b

c d









+ b(−c) det









a b

c d









= ad(ad − bc) − bc(ad − bc) = (ad − bc)2,

as wanted.

6.4.9 For n = 1 we have det(1) = 1 = (−1)1+1. For n = 2 we have

det









1 1

1 0









= −1 = (−1)2+1.
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Assume that the result is true for n − 1. Expanding the determinant along the first column

det











































1 1 1 · · · 1 1

1 0 0
... 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
... · · ·

...
...

0 0 0 · · · 1 0











































= 1 det



































0 0
... 0 0

1 0 · · · 0 0

0 1 · · · 0 0

... · · ·
...

...

0 0 · · · 1 0



































−1 det











































1 1 · · · 1 1

1 0 · · ·
... 0

0 1 · · · · · · 0

0 0 · · · · · · 0

...
... · · ·

...

0 0 · · · 1 0











































= 1(0) − (1)(−1)n

= (−1)n+1,

giving the result.

6.4.10 Perform Ck−C1 → Ck for k ∈ [2;n]. Observe that these operations do not affect the value of the determinant.
Then

detA = det











































1 n − 1 n − 1 n − 1 · · · n − 1

n 2 − n 0 0
... 0

n 0 3 − n 0 · · · 0

n 0 0 4 − n · · · 0

...
...

... · · ·
...

n 0 0 0 0 0











































.
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Expand this last determinant along the n-th row, obtaining,

detA = (−1)1+nn det











































n − 1 n − 1 n − 1 · · · n − 1 n − 1

2 − n 0 0
... 0 0

0 3 − n 0 · · · 0 0

0 0 4 − n · · · 0 0

...
... · · ·

...
...

0 0 0 · · · −1 0











































= (−1)1+nn(n − 1)(2 − n)(3 − n)

· · · (−2)(−1) det











































1 1 1 · · · 1 1

1 0 0
... 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
... · · ·

...
...

0 0 0 · · · 1 0











































= −(n!) det











































1 1 1 · · · 1 1

1 0 0
... 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
... · · ·

...
...

0 0 0 · · · 1 0











































= −(n!)(−1)n

= (−1)n+1n!,

upon using the result of problem 6.4.9.

6.4.11 Recall that
(

n
k

)

=
(

n
n−k

)

,

n∑

k=0

(

n

k

)

= 2n

and
n∑

k=0

(−1)k

(

n

k

)

= 0, if n > 0.

Assume that n is odd. Observe that then there are n + 1 (an even number) of columns and that on the same row,
(

n
k

)

is on a column of opposite parity to that of
(

n
n−k

)

. By performing C1 − C2 + C3 − C4 + · · · + Cn − Cn+1 → C1,
the first column becomes all 0’s, whence the determinant if 0 if n is odd.
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6.4.15 I will prove that

det

















(b + c)2 ab ac

ab (a + c)2 bc

ac bc (a + b)2

















= 2abc(a + b + c)3.

Using permissible row and column operations,

det

















(b + c)2 ab ac

ab (a + c)2 bc

ac bc (a + b)2

















= det

















b2 + 2bc + c2 ab ac

ab a2 + 2ca + c2 bc

ac bc a2 + 2ab + b2

















=
C1+C2+C3→C1

 det

















b2 + 2bc + c2 + ab + ac ab ac

ab + a2 + 2ca + c2 + bc a2 + 2ca + c2 bc

ac + bc + a2 + 2ab + b2 bc a2 + 2ab + b2

















= det

















(b + c)(a + b + c) ab ac

(a + c)(a + b + c) a2 + 2ca + c2 bc

(a + b)(a + b + c) bc a2 + 2ab + b2

















Pulling out a factor, the above equals

(a + b + c) det

















b + c ab ac

a + c a2 + 2ca + c2 bc

a + b bc a2 + 2ab + b2

















and performing R1 + R2 + R3 → R1, this is

(a + b + c) det

















2a + 2b + 2c ab + a2 + 2ca + c2 + bc ac + bc + a2 + 2ab + b2

a + c a2 + 2ca + c2 bc

a + b bc a2 + 2ab + b2

















Factoring this is

(a + b + c) det

















2(a + b + c) (a + c)(a + b + c) (a + b)(a + b + c)

a + c a2 + 2ca + c2 bc

a + b bc a2 + 2ab + b2

















,

which in turn is

(a + b + c)2 det

















2 a + c a + b

a + c a2 + 2ca + c2 bc

a + b bc a2 + 2ab + b2
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Performing C2 − (a + c)C1 → C2 and C3 − (a + b)C1 → C3 we obtain

(a + b + c)2 det

















2 −a − c −a − b

a + c 0 −a2 − ab − ac

a + b −a2 − ab − ac 0

















This last matrix we will expand by the second column, obtaining that the original determinant is thus

(a + b + c)2









(a + c) det









a + c −a2 − ab − ac

a + b 0









+ (a2
+ ab + ac) det









2 −a − b

a + c −a2 − ab − ac

















This simplifies to

(a + b + c)2
(

(a + c)(a + b)(a2 + ab + ac)

+(a2 + ab + ac)(−a2 − ab − ac + bc)
)

= a(a + b + c)3((a + c)(a + b) − a2 − ab − ac + bc)

= 2abc(a + b + c)3,

as claimed.

6.4.16 We have
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det



























a b c d

d a b c

c d a b

b c d a



























R1+R2+R3+R4→R1
 
=

det



























a + b + c + d a + b + c + d a + b + c + d a + b + c + d

d a b c

c d a b

b c d a



























= (a + b + c + d) det



























1 1 1 1

d a b c

c d a b

b c d a



























C4−C3+C2−C1→C4
 
=

(a + b + c + d)



























1 1 1 0

d a b c − b + a − d

c d a b − a + d − c

b c d a − d + c − b



























= (a + b + c + d)(a − b + c − d)



























1 1 1 0

d a b 1

c d a −1

b c d 1



























R2+R3→R2, R4+R3→R4
 
=

(a + b + c + d)(a − b + c − d)



























1 1 1 0

d + c a + d b + a 0

c d a −1

b + c c + d a + d 0



























= (a + b + c + d)(a − b + c − d)

















1 1 1

d + c a + d b + a

b + c c + d a + d

















C1−C3→C1, C2−C3→C2
 
=

(a + b + c + d)(a − b + c − d)

















0 0 1

d + c − b − a d − b b + a

b + c − a − d c − a a + d

















= (a + b + c + d)(a − b + c − d)









d + c − b − a d − b

b + c − a − d c − a









= (a + b + c + d)(a − b + c − d)(d + c − b − a)(c − a) − (d − b)(b + c − a − d)

= (a + b + c + d)(a − b + c − d)

((c − a)(c − a) + (c − a)(d − b) − (d − b)(c − a) − (d − b)(b − d))

= (a + b + c + d)(a − b + c − d)((a − c)2 + (b − d)2).
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☞ Since

(a − c)2 + (b − d)2 = (a − c + i(b − d))(a − c − i(b − d)),

the above determinant is then

(a + b + c + d)(a − b + c − d)(a + ib − c − id)(a − ib − c + id).

Generalisations of this determinant are possible using roots of unity.

7.2.1 We have

det(λI2 − A) = det









λ − 1 1

1 λ − 1









= (λ − 1)2 − 1 = λ(λ − 2),

whence the eigenvalues are 0 and 2. For λ = 0 we have

0I2 − A =









−1 1

1 −1









.

This has row-echelon form








1 −1

0 0









.

If








1 −1

0 0

















a

b









=









0

0









then a = b. Thus








a

b









= a









1

1









and we can take









1

1









as the eigenvector corresponding to λ = 0. Similarly, for λ = 2,

2I2 − A =









1 3

1 3









,

which has row-echelon form








1 3

0 0









.

If








1 3

0 0

















a

b









=









0

0









then a = −3b. Thus








a

b









= a









1

−3
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and we can take









1

−3









as the eigenvector corresponding to λ = 2.

7.2.5 ➊ We have

det(λI3 − A) = det

















λ −2 1

−2 λ − 3 2

1 2 λ

















= λ det









λ − 3 2

2 λ









+ 2 det









−2 2

1 λ









+ det









−2 λ − 3

1 2









= λ(λ2 − 3λ − 4) + 2(−2λ − 2) + (−λ − 1)

= λ(λ − 4)(λ + 1) − 5(λ + 1)

= (λ2 − 4λ − 5)(λ + 1)

= (λ + 1)2(λ − 5)

➋ The eigenvalues are −1,−1, 5.

➌ If λ = −1,

(−I3 − A) =

















−1 −2 1

−2 −4 2

1 2 −1

































a

b

c

















=

















0

0

0

















⇐⇒ a = −2b + c

⇐⇒

















a

b

c

















= b

















−2

1

0

















+ c

















1

0

1

















.

We may take as eigenvectors

















−2

1

0

















,

















1

0

1

















, which are clearly linearly independent.

If λ = 5,

(5I3 − A) =

















5 −2 1

−2 2 2

1 2 5

































a

b

c

















=

















0

0

0

















⇐⇒ a = −c, b = −2c,

⇐⇒

















a

b

c

















= c

















−1

−2

1

















.
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We may take as eigenvector

















1

2

−1

















.

7.2.6 The characteristic polynomial of A must be λ2 − 1, which means that tr (A) = 0 and detA = −1. Hence A

must be of the form









a c

b −a









, with −a2 − bc = −1, that is, a2 + bc = 1.

7.2.7 We must shew that det(λIn −A) = det(λIn −A)T . Now, recall that the determinant of a square matrix is the
same as the determinant of its transpose. Hence

det(λIn − A) = det((λIn − A)
T
) = det(λITn − AT

) = det(λIn − AT
),

as we needed to shew.

7.3.1 Put

D =









1 0

0 −2









, , P =









1 0

1 −1









.

We find

P−1
=









1 1

0 −1









.

Since A = PDP−1

A10
= PD10P−1

=









1 0

1 −1

















1 0

0 1024

















1 1

0 −1









=









1 −1023

0 1024









.

7.3.2

1. A has characteristic polynomial det









λ − 9 4

−20 λ + 9









= (λ − 9)(λ + 9) + 80 = λ2 − 1 = (λ − 1)(λ + 1).

2. (λ − 1)(λ + 1) = 0 =⇒ λ ∈ {−1, 1}.

3. For λ = −1 we have








9 −4

20 −9

















a

b









= −1









a

b









=⇒ 10a = 4b =⇒ a =
2b

5
,

so we can take









2

5









as an eigenvector.

For λ = 1 we have








9 −4

20 −9

















a

b









= 1









a

b









=⇒ 8a = 4b =⇒ a =
b

2
,

so we can take









1

2









as an eigenvector.



250 Appendix A

4. We can do this problem in at least three ways. The quickest is perhaps the following.

Recall that a 2 × 2 matrix has characteristic polynomial λ2 − (tr (A))λ + detA. Since A has eigenvalues −1

and 1, A20 has eigenvalues 120 = 1 and (−1)20 = 1, i.e., the sole of A20 is 1 and so A20 has characteristic
polynomial (λ − 1)2 = λ2 − 2λ + 1. This means that −tr

(

A20
)

= −2 and so tr
(

A20
)

= 2.

The direct way would be to argue that

A20 =









2 1

5 2

















−1 0

0 1









20 







2 1

5 2









−1

=









2 1

5 2

















1 0

0 1

















2 1

5 2









−1

=









1 0

0 1









,

and so a + d = 2. One may also use the fact that tr (XY) = tr (YX) and hence

tr
(

A20
)

= tr
(

PD20P−1
)

= tr
(

PP−1D20
)

= tr
(

D20
)

= 2.

7.3.3 Put

D =

















−1 0 0

0 −1 0

0 0 3

















, X =

















1 1 1

0 1 1

0 0 1

















.

Then we know that A = XDX−1 and so we need to find X−1. But this is readily obtained by performing R1−R2 → R1

and R2 − R3 → R3 in the augmented matrix

















1 1 1 1 0 0

0 1 1 0 1 0

0 0 1 0 0 1

















,

getting

X−1
=

















1 −1 0

0 1 −1

0 0 1

















.
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Thus

A = XDX−1

=

















1 1 1

0 1 1

0 0 1

































−1 0 0

0 −1 0

0 0 3

































1 −1 0

0 1 −1

0 0 1

















=

















−1 0 4

0 −1 4

0 0 3

















.

7.3.4 The determinant is 1, A = A−1, and the characteristic polynomial is (λ2 − 1)2.

7.3.6 We find

det(λI2 − A) = det









λ + 7 6

−12 λ − 10









= λ2
− 3λ + 2 = (λ − 1)(λ − 2).

A short calculation shews that the eigenvalue λ = 2 has eigenvector









2

−3









and that the eigenvalue λ = 1 has

eigenvector









3

−4









. Thus we may form

D =









2 0

0 1









, P =









2 −3

3 −4









, P−1
=









4 −3

3 1









.

This gives

A = PDP−1
=⇒ An

= PDnP−1
=









2 −3

3 −4

















2n 0

0 1

















4 −3

3 1









=









−8 · 2n + 9 −6 · 2n + 6

12 · 2n − 12 9 · 2n − 8









.

7.4.1 The eigenvalues of A are 0, 1, and −2. Those of A2 are 0, 1, and 4. Hence, the characteristic polynomial of
A2 is λ(λ − 1)(λ − 4).

8.2.1
√
2a2 − 2a + 1

8.2.2
∣

∣

∣

∣λ−→v
∣

∣

∣

∣ = 1
2

=⇒
√

(λ)2 + (−λ)2 = 1
2

=⇒ 2λ2 = 1
4

=⇒ λ = ± 1√
8
.

8.2.3
−→
0

8.2.4 a = ±1 or a = −8.

8.2.5 [A] 2(−→x +
−→y) − 1

2

−→z , [B] −→x +
−→y − 1

2

−→z , [C] −(
−→x +

−→y +
−→z )

8.2.6 [A].
−→
0 , [B].

−→
0 , [C].

−→
0 , [D].

−→
0 , [E]. 2−→c (= 2

−→
d)

8.2.7 [F].
−→
0 , [G].

−→
b , [H]. 2

−→
0 , [I].

−→
0 .
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8.2.8 Let the skew quadrilateral be ABCD and let P,Q, R, S be the midpoints of [A, B], [B, C], [C,D], [D,A], respec-

tively. Put −→x =
−−→
OX, where X ∈ {A, B, C,D, P,Q, R, S}. Using the Section Formula 8.4 we have

−→
p =

−→a +
−→
b

2
,

−→
q =

−→
b +

−→c
2

,
−→
r =

−→c +
−→
d

2
,

−→
s =

−→
d +

−→a
2

.

This gives
−→p −

−→q =
−→a −

−→c
2

, −→s −
−→r =

−→a −
−→c

2
.

This means that
−−→
QP =

−→
RS and so PQRS is a parallelogram since one pair of sides are equal and parallel.

8.2.9 We have 2
−−→
BC =

−→
BE +

−→
EC. By Chasles’ Rule

−−→
AC =

−−→
AE +

−→
EC, and

−−→
BD =

−→
BE +

−−→
ED. We deduce that

−−→
AC +

−−→
BD =

−−→
AE +

−→
EC +

−→
BE +

−−→
ED =

−−→
AD +

−−→
BC.

But since ABCD is a parallelogram,
−−→
AD =

−−→
BC. Hence

−−→
AC +

−−→
BD =

−−→
AD +

−−→
BC = 2

−−→
BC.

8.2.10 We have
−→
IA = −3

−→
IB ⇐⇒

−→
IA = −3(

−→
IA +

−−→
AB) = −3

−→
IA − 3

−−→
AB. Thus we deduce

−→
IA + 3

−→
IA = −3

−−→
AB ⇐⇒ 4

−→
IA = −3

−−→
AB

⇐⇒ 4
−→
AI = 3

−−→
AB

⇐⇒
−→
AI = 3

4

−−→
AB.

Similarly

−→
JA = − 1

3

−→
JB ⇐⇒ 3

−→
JA = −

−→
JB

⇐⇒ 3
−→
JA = −

−→
JA −

−−→
AB

⇐⇒ 4
−→
JA = −

−−→
AB

⇐⇒
−→
AJ = 1

4

−−→
AB

.

Thus we take I such that
−→
AI = 3

4

−−→
AB and J such that

−→
AJ = 1

4

−−→
AB.

Now
−−−→
MA + 3

−−→
MB =

−−→
MI+

−→
IA + 3

−→
IB

= 4
−−→
MI +

−→
IA + 3

−→
IB

= 4
−−→
MI,

and

3
−−−→
MA +

−−→
MB = 3

−−→
MJ + 3

−→
JA +

−−→
MJ +

−→
JB

= 4
−−→
MJ + 3

−→
JA +

−→
JB

= 4
−−→
MJ.

8.2.11 Let
−→
G,

−→
O and

−→
P denote vectors from an arbitrary origin to the gallows, oak, and pine, respectively. The

conditions of the problem define
−→
X and

−→
Y , thought of similarly as vectors from the origin, by

−→
X =

−→
O + R(

−→
O −

−→
G),

−→
Y =

−→
P −R(

−→
P −

−→
G), where R is the 90◦ rotation to the right, a linear transformation on vectors in the plane; the fact

that −R is 90◦ leftward rotation has been used in writing Y . Anyway, then

−→
X +

−→
Y

2
=

−→
O +

−→
P

2
+

R(
−→
O −

−→
P)

2



Answers and Hints 253

is independent of the position of the gallows. This gives a simple algorithm for treasure-finding: take
−→
P as the

(hitherto) arbitrary origin, then the treasure is at
−→
O + R(

−→
O)

2
.

8.3.1 a = 1
2

8.3.3

−→
p =









4

5









= 2









−1

1









+ 3









2

1









= 2
−→
r + 3

−→
s .

8.3.4 Since a1 =
−→a•

−→
i , a2 =

−→a•

−→
j , we may write

−→
a = (

−→
a•

−→
i )

−→
i + (

−→
a•

−→
j )

−→
j

from where the assertion follows.

8.3.5

α
−→
a + β

−→
b =

−→
0 =⇒ −→

a•(α
−→
a + β

−→
b) =

−→
a•

−→
0

=⇒ α(
−→
a•

−→
a) = 0

=⇒ α
∣

∣

∣

∣

−→a
∣

∣

∣

∣

2
= 0.

Since −→
a 6= −→

0 , we must have
∣

∣

∣

∣

−→
a
∣

∣

∣

∣ 6= 0 and thus α = 0. But if α = 0 then

α−→a + β
−→
b =

−→
0 =⇒ β

−→
b =

−→
0

=⇒ β = 0,

since
−→
b 6= −→

0 .

8.3.6 We must shew that
(2

−→
x + 3

−→
y)•(2

−→
x − 3

−→
y) = 0.

But

(2−→x + 3−→y)•(2−→x − 3−→y) = 4||−→x ||2 − 9||−→y ||
2
= 4(

9

4
||
−→y ||

2
) − 9||−→y ||

2
= 0.

8.3.7 We have ∀−→v ∈ R2,
−→
v •(

−→
a −

−→
b) = 0. In particular, choosing −→

v =
−→
a −

−→
b , we gather

(
−→
a −

−→
b)•(

−→
a −

−→
b) = ||

−→
a −

−→
b ||

2
= 0.

But the norm of a vector is 0 if and only if the vector is the
−→
0 vector. Therefore −→

a −
−→
b =

−→
0 , i.e., −→a =

−→
b .

8.3.8 We have
∣

∣

∣

∣

∣

∣

−→a ± −→
b
∣

∣

∣

∣

∣

∣

2

= (
−→a ± −→

b)•(
−→a ± −→

b)

=
−→
a•

−→
a ± 2

−→
a•

−→
b +

−→
b•

−→
b

=
∣

∣

∣

∣

−→a
∣

∣

∣

∣

2 ± 2−→a•

−→
b +

∣

∣

∣

∣

∣

∣

−→
b
∣

∣

∣

∣

∣

∣

2

,

whence the result follows.

8.3.9 We have

||
−→u +

−→v ||2 − ||
−→u −

−→v ||2 = (
−→u +

−→v )•(−→u +
−→v ) − (

−→u −
−→v )•(−→u −

−→v )

=
−→
u•

−→
u + 2

−→
u•

−→
v +

−→
v •

−→
v − (

−→
u•

−→
u − 2

−→
u•

−→
v +

−→
v •

−→
v )

= 4
−→
u•

−→
v ,

giving the result.
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8.3.10 By definition

proj
proj

−→
a
−→x

−→
a

=
proj

−→a
−→x

•
−→
a

∣

∣

∣

∣

−→
a
∣

∣

∣

∣

2

−→
a

=

−→
a•

−→
x

||−→x ||
2

−→x •
−→a

∣

∣

∣

∣

−→a
∣

∣

∣

∣

2

−→a

=
(
−→a•

−→x )2

||x||2
∣

∣

∣

∣

−→a
∣

∣

∣

∣

2

−→a,

Since 0 ≤ (
−→a•

−→x )2
∣

∣

∣

∣

−→x
∣

∣

∣

∣

2∣
∣

∣

∣

−→a
∣

∣

∣

∣

2
≤ 1 by the CBS Inequality, the result follows.

8.3.11 Clearly, if −→a =
−→
0 and λ 6= 0 then there are no solutions. If both −→

a =
−→
0 and λ = 0, then the solution set is the

whole space R2. So assume that −→a 6= −→
0 . By Theorem 365, we may write −→x =

−→u +
−→v with proj

−→x
−→a =

−→u ||
−→a and −→v ⊥ −→a .

Thus there are infinitely many solutions, each of the form

−→x =
−→u +

−→v =
−→x •

−→a
||a||2

−→a +
−→v =

λ

||a||2
−→a +

−→v ,

where −→v ∈ −→a⊥
.

8.4.1 Since −→a =









2

−1









is normal to 2x − y = 1 and
−→
b =









1

−3









is normal to x − 3y = 1, the desired angle can be

obtained by finding the angle between the normal vectors:

̂
(
−→a,

−→
b) = arccos

−→a•

−→
b

∣

∣

∣

∣

−→a
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−→
b
∣

∣

∣

∣

∣

∣

= arccos
5√

5 ·
√
10

= arccos
1√
2

=
π

4
.

8.4.2 2(x − 1) + (y + 1) = 0 or 2x + y = 1.

8.4.3 By Chasles’ Rule
−−−→
AA ′ =

−−→
AG +

−−−→
GA ′,

−−→
BB ′ =

−−→
BG +

−−−→
GB ′, and

−−−→
CC ′ =

−−→
CG +

−−−→
GC ′. Thus

−→
0 =

−−−→
AA ′ +

−−→
BB ′ +

−−−→
CC ′

=
−−→
AG +

−−−→
GA ′ +

−−→
BG +

−−−→
GB ′ +

−−→
CG +

−−−→
GC ′

= −(
−−→
GA +

−−→
GB +

−−→
GC) + (

−−−→
GA ′ +

−−−→
GB ′ +

−−−→
GC ′)

=
−−−→
GA ′ +

−−−→
GB ′ +

−−−→
GC ′,

whence the result.

8.4.4 We have:

➊ The points F, A,D are collinear, and so
−→
FA is parallel to

−→
FD, meaning that there is k ∈ R \ {0} such that

−→
FA = k

−→
FD. Since the lines (AB) and (DC) are parallel, we obtain through Thales’ Theorem that

−→
FI = k

−→
FJ and

−→
FB = k

−→
FC. This gives

−→
FA −

−→
FI = k(

−→
FD −

−→
FJ) =⇒

−→
IA = k

−→
JD.

Similarly
−→
FB −

−→
FI = k(

−→
FC −

−→
FJ) =⇒

−→
IB = k

−→
JC.

Since I is the midpoint of [A,B],
−→
IA +

−→
IB =

−→
0 , and thus k(

−→
JC +

−→
JD) =

−→
0 . Since k 6= 0, we have

−→
JC +

−→
JD =

−→
0 ,

meaning that J is the midpoint of [C,D]. Therefore the midpoints of [A, B] and [C,D] are aligned with F.
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➋ Let J ′ be the intersection of the lines (EI) and (DC). Let us prove that J ′ = J.

Since the points E,A, C are collinear, there is l 6= 0 such that
−−→
EA = l

−→
EC. Since the lines (ab) and (DC) are

parallel, we obtain via Thales’ Theorem that
−→
EI = l

−−→
EJ ′ and

−→
EB = l

−−→
ED. These equalities give

−−→
EA −

−→
EI = l(

−→
EC −

−−→
EJ ′

) =⇒
−→
IA = l

−−→
J ′C,

−→
EB −

−→
EI = l(

−−→
ED −

−−→
EJ ′

) =⇒
−→
IB = l

−−→
J ′D.

Since I is the midpoint of [A, B],
−→
IA+

−→
IB =

−→
0 , and thus l(

−−→
J ′C+

−−→
J ′D) =

−→
0 . Since l 6= 0, we deduce

−−→
J ′C+

−−→
J ′D =

−→
0 ,

that is, J ′ is the midpoint of [C,D], and so J ′ = J.

8.4.5 We have:

➊ By Chasles’ Rule

−−→
AE = 1

4

−−→
AC ⇐⇒

−−→
AB +

−→
BE = 1

4

−−→
AC ,

and
−→
AF = 3

4

−−→
AC ⇐⇒

−−→
AD +

−→
DF = 3

4

−−→
AC .

Adding, and observing that since ABCD is a parallelogram,
−−→
AB =

−−→
CD,

−−→
AB +

−→
BE +

−−→
AD +

−→
DF =

−−→
AC ⇐⇒

−→
BE +

−→
DF =

−−→
AC −

−−→
AB −

−−→
AD

⇐⇒
−→
BE +

−→
DF =

−−→
AD +

−−→
DC −

−−→
AB −

−−→
AD

⇐⇒
−→
BE = −

−→
DF.

.

The last equality shews that the lines (BE) and (DF) are parallel.

➋ Observe that
−→
BJ = 1

2

−−→
BC = 1

2

−−→
AD =

−→
AI = −

−→
IA . Hence

−→
IJ =

−→
IA +

−−→
AB +

−→
BJ =

−−→
AB,

proving that the lines (AB) and (IJ) are parallel.

Observe that
−→
IE =

−→
IA +

−−→
AE =

1

2

−−→
DA +

1

4

−−→
AC =

1

2

−−→
CB +

−→
FC =

−→
CJ +

−→
FC =

−→
FC +

−→
CJ =

−→
FJ,

whence IEJF is a parallelogram.

8.4.6 Since
−→
IE = 1

3

−→
ID and [I, D] is a median of △ABD, E is the centre of gravity of △ABD. Let M be the midpoint

of [B,D], and observe that M is the centre of the parallelogram, and so 2
−−−→
AM =

−−→
AB +

−−→
AD. Thus

−−→
AE =

2

3

−−−→
AM =

1

3
(2

−−−→
AM) =

1

3
(
−−→
AB +

−−→
AD).

To shew that A,C, E are collinear it is enough to notice that
−−→
AE = 1

3

−−→
AC.

8.4.7 Suppose A, B, C are collinear and that
||[A,B]||

||[B, C]||
=

λ

µ
. Then by the Section Formula 8.4,

−→
b =

λ
−→
c + µ

−→
a

λ + µ
,

whence µ−→a − (λ + µ)
−→
b + λ−→c =

−→
0 and clearly µ − (λ + µ) + λ = 0. Thus we may take α = µ, β = λ + µ, and γ = λ.

Conversely, suppose that

α−→a + β
−→
b + γ−→c =

−→
0 , α + β + γ = 0

for some real numbers α, β, γ, not all zero. Assume without loss of generality that γ 6= 0. Otherwise we simply
change the roles of γ, and α and β Then γ = −(α + β) 6= 0. Hence

α−→a + β
−→
b = (α + β)−→c =⇒ −→c =

α−→a + β
−→
b

α + β
,

and thus [O,C] divides [A, B] into the ratio
β

α
, and therefore, A,B, C are collinear.
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8.4.8 Put
−−→
OX =

−→x for X ∈ {A,A ′, B, B ′, C, C ′, L,M,N, V}. Using problem 8.4.7 we deduce

−→
v + α

−→
a + α ′−→a ′

=
−→
0 , 1 + α + α ′

= 0, (A.1)

−→v + β−→a + β ′−→a ′ =
−→
0 , 1 + β + β ′ = 0, (A.2)

−→v + γ−→a + γ ′−→a ′ =
−→
0 , 1 + γ + γ ′ = 0. (A.3)

From A.2, A.3, and the Section Formula 8.4 we find

β
−→
b − γ

−→
c

β − γ
=

β ′−→b ′ − γ ′−→c ′

β ′ − γ ′ =
−→
l ,

whence (β − γ)
−→
l = β

−→
b − γ

−→
c . In a similar fashion, we deduce

(γ − α)−→m = γ−→c − α−→a,

(α − β)−→n = α−→a − β
−→
b.

This gives

(β − γ)
−→
l + (γ − α)

−→
m + (α − β)

−→
n =

−→
0 ,

(β − γ) + (γ − α) + (α − β) = 0,

and appealing to problem 8.4.7 once again, we deduce that L,M,N are collinear.

8.5.1 [A]
−−→
AS, [B]

−−→
AB.

8.5.2 Put

−→a =

















1

1

1

















×

















1

1

0

















= (
−→
i +

−→
j +

−→
k )×(

−→
i +

−→
j ) =

−→
j −

−→
i =

















−1

1

0

















.

Then either

3−→a
∣

∣

∣

∣

−→a
∣

∣

∣

∣

=
3−→a√
2

=

















− 3√
2

3√
2

0

















,

or

−
3
−→
a

∣

∣

∣

∣

−→
a
∣

∣

∣

∣

=

















3√
2

− 3√
2

0

















will satisfy the requirements.

8.5.3 The desired area is

∣

∣

∣

∣

∣

∣

−−→
PQ×−→

PR
∣

∣

∣

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















0

1

−1

















×

















1

0

−1

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















−1

−1

−1

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
√
3.

8.5.4 It is not associative, since
−→
i ×(

−→
i ×−→

j ) =
−→
i ×−→

k = −
−→
j but (

−→
i ×−→

i )×−→
j =

−→
0×−→

j =
−→
0 .

8.5.5 We have −→x×−→x = −
−→x×−→x by letting −→y =

−→x in 8.15. Thus 2−→x×−→x =
−→
0 and hence −→x×−→x =

−→
0 .

8.5.6 2−→a×−→
b
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8.5.7
−→
a×(

−→
x×−→

b) =
−→
b×(

−→
x×−→

a) ⇐⇒ (
−→
a•

−→
b)

−→
x − (

−→
a•

−→
x )

−→
b = (

−→
b•

−→
a)

−→
x − (

−→
b•

−→
x )

−→
a ⇐⇒ −→

a•
−→
x =

−→
b•

−→
x = 0.

The answer is thus {
−→x :

−→x ∈ R−→a×−→
b }.

8.5.8
−→x =

(
−→a•

−→
b)

−→a + 6
−→
b + 2−→a×−→c

12 + 2
∣

∣

∣

∣

−→a
∣

∣

∣

∣

2

−→y =
(
−→
a•

−→
c )

−→
a + 6

−→
c + 3

−→
a×−→

b

18 + 3
∣

∣

∣

∣

−→a
∣

∣

∣

∣

2

8.5.9 Assume contrariwise that −→a ,
−→
b , −→c are three unit vectors in R3 such that the angle between any two of them

is >
2π

3
. Then −→

a•

−→
b < −

1

2
,
−→
b•

−→
c < −

1

2
, and −→

c •
−→
a < −

1

2
. Thus

∣

∣

∣

∣

∣

∣

−→a +
−→
b +

−→c
∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

−→a
∣

∣

∣

∣

2
+
∣

∣

∣

∣

∣

∣

−→
b
∣

∣

∣

∣

∣

∣

2

+
∣

∣

∣

∣

−→c
∣

∣

∣

∣

2

+2−→a•

−→
b + 2

−→
b•

−→c + 2−→c •
−→a

< 1 + 1 + 1 − 1 − 1 − 1

= 0,

which is impossible, since a norm of vectors is always ≥ 0.

8.5.10 Take (
−→
u,

−→
v ) ∈ X2 and α ∈ R. Then

−→a×(
−→u + α−→v ) =

−→a×−→u + α−→a×−→v =
−→
0 + α

−→
0 =

−→
0 ,

proving that X is a vector subspace of Rn.

8.5.11 Since −→a,
−→
b are linearly independent, none of them is

−→
0 . Assume that there are (α, β, γ) ∈ R3 such that

α
−→
a + β

−→
b + γ

−→
a×−→

b =
−→
0 . (A.4)

Since −→
a•(

−→
a×−→

b) = 0, taking the dot product of A.4 with −→
a yields α

∣

∣

∣

∣

−→
a
∣

∣

∣

∣

2
= 0, which means that α = 0, since

∣

∣

∣

∣

−→
a
∣

∣

∣

∣ 6= 0.

Similarly, we take the dot product with
−→
b and −→

a×−→
b obtaining respectively, β = 0 and γ = 0. This establishes linear

independence.

8.5.12 Since −→a ⊥ −→a×−→x =
−→
b , there are no solutions if −→a •

−→
b 6= 0. Neither are there solutions if −→a =

−→
0 and

−→
b 6= −→

0 . If

both −→a =
−→
b =

−→
0 , then the solution set is the whole of R3. Assume thus that −→a •

−→
b = 0 and that −→a and

−→
b are linearly

independent. Then −→
a,

−→
b,

−→
a×−→

b are linearly independent, and so they constitute a basis for R3. Any −→
x ∈ R3 can be

written in the form
−→x = α−→a + β

−→
b + γ−→a×−→

b.

We then have
−→
b =

−→a×−→x

= β−→a×−→
b + γ−→a×(

−→a×−→
b)

= β−→a×−→
b + γ((−→a •

−→
b)

−→a − (
−→a•

−→a)
−→
b).

= β
−→
a×−→

b − γ(
−→
a •

−→
a
−→
b)

= β
−→
a×−→

b − γ
∣

∣

∣

∣

−→
a
∣

∣

∣

∣

2−→
b,

from where
β−→a×−→

b + (−γ
∣

∣

∣

∣

−→a
∣

∣

∣

∣

2
− 1)

−→
b =

−→
0 ,

which means that β = 0 and γ = − 1

||−→a||
2 , since

−→a,
−→
b,−→a×−→

b are linearly independent. Thus

−→x = α−→a −
1

∣

∣

∣

∣

−→
a
∣

∣

∣

∣

2

−→a×−→
b

in this last case.
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8.5.13 Let −→x ,−→y,−→x ′
,−→y ′

be vectors in R3 and let α ∈ R be a scalar. Then

L((−→x ,−→y) + α(−→x ′
,−→y ′

)) = L(−→x + α−→x ′
,−→y + α−→y ′

)

= (
−→x + α−→x ′

)×−→
k +

−→
h×(

−→y + α−→y ′
)

=
−→x×−→

k + α−→x ′×−→
k +

−→
h×−→y +

−→
h×α−→y ′

= L(
−→
x ,

−→
y) + αL(

−→
x

′
,
−→
y

′
)

8.6.1 The vectors
















a − (−a)

0 − 1

a − 0

















=

















2a

−1

a

















and
















0 − (−a)

1 − 1

2a − 0

















=

















a

0

2a

















are coplanar. A vector normal to the plane is

















2a

−1

a

















×

















a

0

2a

















=

















−2a

−3a2

a

















.

The equation of the plane is thus given by
















−2a

−3a2

a

















•

















x − a

y − 0

z − a

















= 0,

that is,
2ax + 3a2y − az = a2.

8.6.2 The vectorial form of the equation of the line is

−→r =

















1

0

1

















+ t

















1

−2

−1

















.

Since the line follows the direction of

















1

−2

−1

















, this means that

















1

−2

−1

















is normal to the plane, and thus the equation of

the desired plane is
(x − 1) − 2(y − 1) − (z − 1) = 0.
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8.6.3 Observe that (0, 0, 0) (as 0 = 2(0) = 3(0)) is on the line, and hence on the plane. Thus the vector

















1 − 0

−1 − 0

−1 − 0

















=

















1

−1

−1

















lies on the plane. Now, if x = 2y = 3z = t, then x = t, y = t/2, z = t/3. Hence, the vectorial form of the equation of the
line is

−→r =

















0

0

0

















+ t

















1

1/2

1/3

















= t

















1

1/2

1/3

















.

This means that

















1

1/2

1/3

















also lies on the plane, and thus

















1

−1

−1

















×

















1

1/2

1/3

















=

















1/6

−4/3

3/2

















is normal to the plane. The desired equation is thus

1

6
x −

4

3
y +

3

2
z = 0.

8.6.4 Put ax = by = cz = t, so x = t/a;y = t/b; z = t/c. The parametric equation of the line is

















x

y

z

















= t

















1/a

1/b

1/c

















, t ∈ R.

Thus the vector

















1/a

1/b

1/c

















is perpendicular to the plane. Therefore, the equation of the plane is

















1/a

1/b

1/c

















•

















x − 1

y − 1

z − 1

















=

















0

0

0

















,

or
x

a
+

y

b
+

z

c
=

1

a
+

1

b
+

1

c
.

We may also write this as
bcx + cay + abz = ab + bc + ca.
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8.6.5 A vector normal to the plane is

















a

a2

a2

















. The line sought has the same direction as this vector, thus the equation

of the line is
















x

y

z

















=

















0

0

1

















+ t

















a

a2

a2

















, t ∈ R.

8.6.6 We have
x − z − y = 1 =⇒ −1 − y = 1 =⇒ y = −2.

Hence if z = t,
















x

y

z

















=

















t − 1

−2

t

















=

















−1

−2

0

















+ t

















1

0

1

















.

8.6.7 The vector
















2 − 1

1 − 0

1 − (−1)

















=

















1

1

2

















lies on the plane. The vector
















1

0

1

















×

















1

1

2

















=

















1

1

−1

















is normal to the plane. Hence the equation of the plane is
















1

1

−1

















•

















x − 1

y

z + 1

















= 0 =⇒ x + y − z = 2.

8.6.8 We have −→
c×−→

a = −
−→
i + 2

−→
j and −→

a×−→
b = 2

−→
k − 3

−→
i . By Theorem 398, we have

−→
b×−→c = −

−→a×−→
b −

−→c×−→a = −2
−→
k + 3

−→
i +

−→
i − 2

−→
j = 4

−→
i − 2

−→
j − 2

−→
k .

8.6.9 4x + 6y = 1

8.6.10 There are 7 vertices (V0 = (0, 0, 0), V1 = (11, 0, 0), V2 = (0, 9, 0), V3 = (0, 0, 8), V4 = (0, 3, 8), V5 = (9, 0, 2),
V6 = (4, 7, 0)) and 11 edges (V0V1, V0V2, V0V3, V1V5, V1V6, V2V4, V3V4, V3V5, V4V5, and V4V6).

8.7.2 Expand
∣

∣

∣

∣

∑n
i=1

−→ai

∣

∣

∣

∣

2
= 0.

8.7.3 Observe that
∑n

k=1 1 = n. Then we have

n2 =

(

n∑

k=1

1

)2

=

(

n∑

k=1

(ak)

(

1

ak

)

)2

≤
(

n∑

k=1

a2
k

)(

n∑

k=1

1

a2
k

)

,

giving the result.
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8.7.4 Take (
−→u,−→v ) ∈ X2 and α ∈ R. Then

−→
a•(

−→
u + α

−→
v ) =

−→
a•

−→
u + α

−→
a•

−→
v = 0 + 0 = 0,

proving that X is a vector subspace of Rn.

8.7.5 Assume that
λ1

−→a1 + · · · + λk
−→ak =

−→
0 .

Taking the dot product with −→aj and using the fact that −→ai•
−→aj = 0 for i 6= j we obtain

0 =
−→
0 •

−→aj = λj
−→aj•

−→aj = λj||aj||
2.

Since −→aj 6= −→
0 =⇒ ||aj||

2 6= 0, we must have λj = 0. Thus the only linear combination giving the zero vector is the
trivial linear combination, which proves that the vectors are linearly independent.

8.7.6 This follows at once from the CBS Inequality by putting

−→
v =



























a1

1

a2

2

. . .

an

n



























,
−→
u =



























1

2

. . .

n



























and noticing that
n∑

k=1

k2
=

n(n + 1)(2n + 1)

6
.
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GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,

with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants

a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s

overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document
means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies

to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must

enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with

each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
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You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version
as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of

the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name

but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy

that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License

in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright

resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special

permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,

and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE



The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option

of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version

number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

Que a quien robe este libro, o lo tome prestado y no lo devuelva, se le convierta en
una serpiente en las manos y lo venza. Que sea golpeado por la parálisis y todos sus
miembros arruinados. Que languidezca de dolor gritando por piedad, y que no haya
coto a su agonía hasta la última disolución. Que las polillas roan sus entrañas y,
cuando llegue al final de su castigo, que arda en las llamas del Infierno para siempre.
-Maldición anónima contra los ladrones de libros en el monasterio de San Pedro, Barcelona.
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