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1 Introduction

Geometry literally means earth measure. When geometry was developed by
the ancients of various cultures, it was probably for the purposes of surveying,
i.e., measuring the earth. In mathematics, geometry usually refers to a more
general study of curves and surfaces. Different branches of geometry— differ-
ential geometry, algebraic geometry, geometric analysis— are distinguished
in part by the objects of interest and in part by the different sets of tools
brought to bear. In differential geometry, for example, the objects are curves
and surfaces in complex space and the tools arise largely from differential
calculus. Algebraic geometry is the study of objects that can be described
using rational functions. The tools are typically, but not always, of an alge-
braic nature. Some of them are quite elaborate and rarely encountered by
undergraduates, and only encountered by graduate students who will spe-
cialize in algebraic geometry or in an area that relies on algebraic geometry,
for example computer science.

Mathematicians who study geometry usually do not talk much about
similar triangles or alternate interior angles or angles in a circle or most of
the other things you probably think of when you think “geometry.” A part of
Euclidean geometry that does come up in many branches of geometry studied
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today is projective geometry. Although this is not a course in projective
geometry, we will study certain projective planes here. In that sense, this
course forms a bridge from high school geometry to more advanced studies.

The high school geometry course you probably had was primarily a course
in synthetic Euclidean geometry. Synthetic geometry starts from first princi-
ples: definitions, and axioms or postulates, which are truths held to be self-
evident. The heart of the subject is logical synthesis applied to the axioms
in a rigorous way to uncover the facts (theorems) which relate the objects
of the geometry. This remains an attractive subject for students of any age
with any background because all assumptions are, ideally, clearly stated at
the beginning of the program. The objects are familiar and the relations
among them rich. No previous knowledge is necessary.

Planar Euclidean geometry is the geometry of straight edge and compass.
The straight edge is unmarked, so cannot measure length, and the compass
does not stay open once you lift it from the page. The objects and all rela-
tions among them must be produced using only a straight edge and compass
applied to a flat surface. One approach to studying Euclidean geometry is
constructive, and usually a portion of the high school course deals with ac-
tual constructions. You can think of the synthetic approach as supplying
detailed instructions for allowed constructions.

The book that brought synthetic geometry to us in the West was The
Elements of Euclid, a masterwork dating from around the year 300 B.C. Not
only has The Elements been studied more or less continuously since it was
written, it has remained the most important source for the subject since that
time. High school students usually study textbooks based on The Elements,
not The Elements itself. These textbooks are, more or less, the products of
interpretations, corrections, and “improvements” to The Elements— many
of questionable merit — that have been incorporated into the subject since
the time of Euclid. One view of these sorts of textbooks is that they attempt
to provide the elusive “royal road to geometry,”1 fit for schoolchildren.[2], p.
vi.

Our course will start with The Elements itself, in a translation that dates
to the beginning of the last century. Using this as a departure, we explore

1There is a legend that Ptolemy, the king of Egypt, asked Euclid, his tutor, if there
was not a shorter way to learn geometry. Must one go through The Elements? Euclid’s
response was that there was “no royal road to geometry.” Similar stories are attributed
to other mathematicians in response to complaints from other kings trying to learn math-
ematics. See [2], p. 1.
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some developments in Euclidean geometry since the glory days of Greece.
Since a great deal has happened over the last few centuries, what you see
here represents a very small sampling of topics taken from what is available
for study under the heading ‘geometry.’

Well before the twentieth century, mathematicians recognized that The
Elements had gaps and inaccuracies. There were many significant contribu-
tions to rectifying The Elements but David Hilbert’s Grundlagen der Geome-
trie (Foundations of Geometry), dating from the early 1900s, became the de-
finitive correction and essentially closed the matter once and for all. Hilbert
was able to control some of the difficulties with The Elements that had been
recognized but had remained unresolved since antiquity. One of the more
significant contributions of Hilbert was his recognition of the necessity of
leaving certain terms undefined in an axiomatic development. Aristotle, who
predated Euclid, thought a great deal about defining basic geometric objects
and noted that “ ‘the definitions’ of point, line, and surface ... all define the
prior by means of the posterior” [2], p. 155. In other words, for predeccesors
of Euclid through the dawn of the 20th century, it was common but uneasy
practice to work with definitions where, for instance, you might use lines to
define points and points to define lines. Moreover, it was well-known that this
was a logical subversion. Hilbert recognized that the solution to the problem
was to jettison some definitions altogether. One must start with a minimal
set of basic terms that remain undefined: their properties are then detailed
as postulates. For example, we do not define ‘point’, ‘line’, or ‘plane’ but we
understand the nature of these objects through the postulates, for example,
two distinct points determine a unique line, and a line together with a point
not on that line determine a unique plane. All other definitions, for example
‘angle’, are then carefully crafted using this basic set of undefined terms.

Our foray into synthetic geometry includes contributions from the Renais-
sance that amounted to the initiation of the study of the projective plane
through the addition of ideal points to the Euclidean plane. Our study of
Euclid and Hilbert culminates with the nine point circle.

If Euclidean planar geometry derives from straight-edge and compass con-
structions, affine geometry derives from straight-edge constructions alone.
This sounds poorer than Euclidean geometry but we come into a wealth of
ideas when we use linear algebra to develop a model for affine geometry.
This is an extension of the familiar ideas of coordinate geometry and leads
naturally to the three dimensional vector space model for a projective plane,
an important tool in use today.
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Projective geometry dates to the 16th century, thus predates many of the
fundamental ideas that we think of as typical of the modern era in mathemat-
ics, such as sets and functions. Nonetheless, projective geometry has a strong
flavor of modernity as it provides a setting in which curves and surfaces have
few or no exceptional configurations. This gives projective geometry tremen-
dous power which we exhibit with a brief study of plane algebraic curves.
Algebraic curves can be described parametrically with polynomials. Plane
curves, that is, those that lie in R2 or C2, necessitate the introduction of cal-
culations and tools that are manageable but rich enough to give the reader
an appreciation of some of the ideas handled in modern algebraic geometry.
Our goal in this final section of the course is Bezout’s Theorem, which is a
description of the intersection of two curves in a plane.

2 Synthetic Geometry

2.1 Background on Euclid and The Elements

There are no contemporary accounts of Euclid’s life but there are some details
about Euclid that scholars have been able to cobble together indirectly and
about which there is little controversy.

It is generally held that Euclid founded a school of mathematics in Alexan-
dria, Egypt.2 In particular, Archimedes, 287-212 B.C., sometimes described
as the greatest mathematician who ever lived, studied in Alexandria at
Euclid’s school and cited Euclid’s work in his own writing. It is clear then
that Euclid predated Archimedes. On the other hand, The Elements has de-
tailed references to the works of Eudoxus and Theaetetus. To have learned
their work, Euclid would have to have gone to Plato’s Academy.[2], p. 2.
The Academy was established outside Athens around 387 B.C.3 There is
general agreement that Euclid was too young to have studied with Plato at
the Academy, and too old to have taught Archimedes in Alexandria. This
helps narrow down the dates for Euclid which are currently accepted as about
325-265 B.C. [6]

As a student at the Academy, Euclid would have been the product of

2Alexandria is named for Alexander the Great, who, as a child, studied with Aristotle.
3This is the origin of the word academic. Academy is actually the name of the place

where Plato set up his institution. The Academy remained in use until 526, another
astonishingly long-lived force in the intellectual world.
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a rich tradition of careful thought, schooled in the writings and teachings
of Plato, Aristotle, and the other Greek geometers. Aristotle, a student of
Plato himself, suggested in his own writings that his students had sources
which codified the principles of mathematics and science, including geometry,
that were accepted at that time. These sources presumably would have been
available to Euclid as well. In other words, Euclid’s was not the first geom-
etry text, even if we restrict attention to the West. This does not diminish
its greatness but it is important to maintain perspective. One commonly
accepted view of The Elements is that it pulled together what was known in
geometry at the time, with the goal of proving that the five platonic solids
are the only solutions to the problem of constructing a regular solid. There is
room for doubt there, though, as several books of The Elements have nothing
whatever to do with the construction of the platonic solids.[2], p. 2.

The Elements, which is in thirteen books, starts with a set of 23 defini-
tions. We quote from [2], p. 153-154.

1. A point is that which has no part.

2. A line is a breadthless length.

3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

5. A surface is that which has length and breadth only.

6. The extremities of a surface are lines.

7. A plane surface is a surface which lies evenly with the straight lines
on itself.

8. A plane angle is the inclination to one another of two lines in a plane
which meet one another and do not lie in a straight line.

9. When the lines containing the angle are straight, the angle is called
rectilineal.

10. When a straight line set up on a straight line makes the adjacent angles
equal to one another, each of the equal angles is right, and the straight
line standing on the other is called a perpendicular to that on which
is stands.
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11. An obtuse angle is an angle greater than a right angle.

12. An acute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of anything.

14. A figure is that which is contained by any boundary or boundaries.

15. A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure
are equal to one another.

16. And the point is called the center of the circle.

17. A diameter of the circle is any straight line drawn through the center
and terminated in both directions by the circumference of the circle,
and such a straight line also bisects the circle.

18. A semi-circle is the figure contained by the diameter and the circum-
ference cut off by it. And the center of the semi-circle is that of the
circle.

19. Rectilineal figures are those which are contained by straight lines,
trilateral figures being those contained by three, quadrilateral those
contained by four, and multi-lateral those contained by more than
four straight lines.

20. Of trilateral figures, an equilateral triangle is that which has its three
sides equal, an isosceles triangle, that which has two sides equal, and
a scalene triangle that which has its three sides unequal.

21. Further, of trilateral figures, a right-angled triangle is that which
has a right angle, and obtuse-angled triangle that which has an
obtuse angle, and an acute-angled triangle, that which has three
angles acute.

22. Of quadrilateral figures, a square is that which is both equilateral and
right-angled; an oblong that which is not equilateral but right-angled;
a rhombus that which is equilateral but not right-angled; and a rhom-
boid that which has its opposite sides and angles equal to one another
but is neither equilateral nor right-angled. All other quadrilaterals are
called trapezia.
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23. Parallel straight lines are straight lines which, being in the same
plane and being produced indefinitely in both directions, do not meet
one another in either direction.

Mathematicians and philosophers succeeding Euclid left a wealth of com-
mentary on the definitions, especially those of point, line, and plane. The
definition of a line as the shortest distance between two points, for instance,
is due to Legendre,4 and dates to 1794.

The second and fourth definitions indicate a distinction between the no-
tions of line and straight line. What Euclid calls a line, we usually call a
curve. Euclid’s definitions thus contain a classification of curves into three
types: lines, circles, and everything else. That may not be so strange but
it is worthwhile to note that more detailed classifications of curves were of
great interest to geometers through the centuries, Euclid’s predecessors and
contemporaries included.

The definition of angle refers to lines, not necessarily straight lines. We are
used to thinking of an angle as a “rectilineal angle,” in Euclid’s terminology.
When we talk about the angle at which curves intersect, we may get a little
nervous, and think something like, “The angle of intersection of curves at
a point would be defined as the angle of intersection of their tangents at
that point.” Since we are raised from an early age on calculus, we may
feel awkward because we know that curves may or may not have defined
tangents at a particular point. Euclid is not concerned with this problem as,
once again, he directs his energies towards lines and circles, which present
no such ambiguities.

Another note is that Euclid’s definition of a “rectilineal figure” at first
seems to refer to what we would call a “polygon” but closer examination
reveals a distinction. In standard usage today, a triangle is three noncollinear
points and the line segments they determine. Euclid’s definition of triangle
refers to the space enclosed by what we call a triangle. The object Euclid
called a triangle is today called a 2-simplex. What Euclid calls a circle, we
would call a disk. In spite of this nicely detailed dictionary, make sure that
you know what someone means when he says “circle” or “triangle.” Context

4According to The MacTutor History of Mathematics Archive, http://www-
history.mcs.st-andrews.ac.uk/history/index.html, Legendre’s reworking of The Elements,
“Eléments de géométrie ... was the leading elementary text on the topic for around 100
years” and actually formed the basis for most subsequent texts on Euclidean geometry in
Europe and the United States.
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often makes it clear but in any case, it is not a dumb question.
The definition of a circle is not what we are used to.

Exercise
What is the usual definition of a circle? Show that Euclid’s definition is
equivalent to the more familiar definition.

Euclid’s five postulates follow the definitions. [2], p. 154-155

1. A straight line can be drawn from any point to any point.

2. A finite straight line can be produced continuously in a straight line.

3. One may describe a circle with any center and any radius.

4. All right angles are equal to one another.

5. (The Parallel Postulate) Consider a straight line falling on two straight
lines. If the interior angles on the same side are less than two right
angles, then the two straight lines, if produced indefinitely, meet on
that side on which the angles are less than the two right angles.

Much later in The Elements, Euclid reveals that he actually assumes
that there is a unique line determined by each pair of points. [2] p. 195.
The second postulate says that a line segment (finite straight line) can be
extended into a line. There is another hidden assumption there, as well, viz.,
that the line determined by a segment is unique.[2], p. 196.

The Parallel Postulate is not what we are used to seeing.

Exercise
What is the usual formulation for the existence of parallel lines in a plane?
Show that this follows from Euclid’s fourth and fifth postulates. (See [2], p.
220 for other formulations of the parallel postulate and the associated
history.)

The fifth postulate was controversial from Euclid’s time through succeed-
ing centuries. The concern was whether it should really be a theorem, that
is, whether the fifth postulate actually followed from the other four. A brief
history of attempts to prove it is given in [2], p. 202-219. This is an impor-
tant part of the history of mathematics partly because all the fussing over the
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Parallel Postulate led to the development of noneuclidean geometries during
the 19th century. Noneuclidean geometry may seem like an interesting idea
that is of purely academic interest but nothing could be farther from the
truth. Consider, for example, the geometry of the surface of a sphere. You
realize how important this might be to humans when you think about tra-
versing large distances across the surface of the earth. Other noneuclidean
geometries are routinely used in the study of space— as in the cosmos. (See
http://archive.ncsa.uiuc.edu/Cyberia/Cosmos/CosmosShape.html for exam-
ple.)

The development of noneuclidean geometries by Lobachevsky in Russia
and Bolyai in Hungary proved that the parallel postulate is independent of
the other four. In other words, if you keep the other four postulates but excise
or change the parallel postulate, you still get a viable axiomatic system. That
was an enormous breakthrough, settling a controversy that persisted from
Euclid’s time, although it was many years before mathematicians accepted
and understood the significance of noneuclidean geometries.

Euclid states five “common notions” in addition to the definitions and
postulates. These are often referred to as “axioms” in the literature. (See p.
221 in [2].) We quote from [2], p. 155:

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

The common notions look a bit strange because of where we stand in the
history of the subject. To discuss them further, we should pause to discuss
equivalence relations, an idea that is relatively modern.

Let S be a set. A relation ∼ on S is called an equivalence relation provided

1. ∼ is reflexive, i.e., a ∼ a for all a in S;

2. ∼ is symmetric, i.e., a ∼ b implies b ∼ a;

3. ∼ is transitive, i.e., if a ∼ b and b ∼ c, then a ∼ c.
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Equality is the archetype for equivalence relations. Isomorphism is an
algebraic equivalence relation. Homeomorphism is a topological equivalence
relation. Congruence is a geometric equivalence relation. We are so used
to thinking about congruence that it seems strange to have to say much
about it but remember that equivalence relations per se were not familiar to
Euclid and remember that he was working the subject from the most basic
principles.

The first common notion says that equality is transitive. Beware that
in the Heath edition of Euclid, the word equal is used to mean
congruent. In modern English usage, we say angles α and β are equal only
if α and β are different names for the same angle. Different angles that have
the same measure are not equal, but congruent. This may seem like splitting
hairs but in some sense it underlies aspects of The Elements that bothered
Euclid himself.

The evaluation of Euclid’s postulate system was to whether the defined
terms, postulates, and common notions form a set of complete, consistent,
and independent basic notions. We have mentioned Legendre, who was the
most important commentator of his time and possibly for the next hundred
years. The late nineteenth and early twentieth centuries saw major develop-
ments in Euclidean geometry, most notably with the works of Pasch, in 1882;
Veronese, in 1891; and David Hilbert, in 1903 [4]. By the time later editions
of Hilbert’s Grundlagen der Geometrie were published, the stage was set,
if not for a genuine revolution, then for a jump in the evolution of mathe-
matics. The importance of axiomatization and abstraction in mathematics
was explored more deeply than ever before. Hilbert’s work was certainly an
important impetus in this direction. This movement was manifested most ob-
viously in The Principia Mathematica of Russell and Whitehead, who sought
to reduce all of mathematics to formal logic and set theory.[9] Bourbaki, the
name for a group of mathematicians (with changing membership) based in
Paris from the 1930s through the present, initiated an ambitious project of
putting all of mathematics on a firm axiomatic foundation. Whether or not
one prefers this approach to mathematics— some argue that examples rather
than axiomatization should drive the subject and that a focus on abstrac-
tion leads one astray of applications, a level of ‘purity’ that is fundamentally
misguided— it was and remains a profound influence. Regardless of how you
respond to the role of abstraction in mathematics, it has been hugely effective
both in dispatching certain problems that remained intractable through the
ages (for example, Fermat’s Last Theorem) and in bringing certain subjects—
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notably, algebraic geometry— to a better place for further development. (See
[6] for more information about Bourbaki and their project. Texts that re-
sulted from their work are still very much in use.)

We consider some of the results (propositions) Euclid proves in The Ele-
ments and some possible problems with the proofs.

Proposition 1, its proof, and the accompanying figure, we quote from [2],
p. 241.

Proposition 1. On a given finite straight line to construct an equilateral triangle.

Let AB be the given finite straight line.
Thus it is required to construct an equilateral triangle on the straight line AB.
With center A and distance AB let the circle BCD be described; again, with
center B and distance BA let the circle ACE be described; and from the point
C, in which the circles cut one another, to the points A, B let the straight lines
CA, CB be joined.
Now, since the point A is the center of the circle CDB, AC is equal to AB.
Again, since the point B is the center of the circle CAE, BC is equal to BA.
But CA was also proved equal to AB; therefore, each of the straight lines CA,
CB is equal to AB.
And things which are equal to the same thing are also equal to one another;
therefore, CA is also equal to CB.
Therefore the three straight lines CA, AB, BC are equal to one another.
Therefore the triangle ABC is equilateral; and it has been constructed on the
given finite straight line AB.

(Being) what it was required to do.

Early commentators noticed that there is an unarticulated assumption
used in this proof, namely that the circles must intersect. Extensive com-
ments elaborating on this point are in [2], p. 242-3. The correction involves
an assumption about the continuity of a line or curve.

We continue on to Proposition 2, again quoting statement, proof, and
figure from [2], p. 244.

Proposition 2. To place at a given point (as an extremity) a straight line equal
to a given straight line.

Let A be the given point, and BC the given straight line.
Thus it is required to place at the point A (as an extremity) a straight line equal
to the given straight line BC.
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D E

Figure 1: Proposition 1

From the point A to the point B let the straight line AB be joined; and on it let
the equilateral triangle DAB be constructed.
Let the straight lines AE, BF be produced in a straight line with DA, DB; with
center B and distance BC let the circle CGH be described; and again, with
center D and distance DG let the circle GKL be described.
Then, since the point B is the center of the circle CGH, BC is equal to BG.
Again, since the point D is the center of the circle GKL, DL is equal to DG.
And in these DA is equal to DB; therefore the remainder AL is equal to the
remainder BG.
But BC was also proved equal to BG; therefore each of the straight lines AL,
BC is equal to BG.
And things which are equal to the same thing are also equal to one another;
therefore AL is also equal to BC.
Therefore at the given point A the straight line AL is placed equal to the given
straight line BC.

(Being) what it was required to do.

The statement of the proposition is that, given a point A and a line
segment BC, we can construct a line segment AL which is congruent to BC.

Euclid’s first step is to employ Proposition 1 to construct an equilateral
triangle DAB. The points E and F are respectively points on the lines
determined respectively by the segments DA and DB. Euclid is invoking
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Figure 2: Proposition 2

the second postulate here, which says, in our language, that a line segment
is part of a line.

Next, Euclid constructs two circles, the first with center B, radius BC.
G and H are points on this circle, but note that while H is arbitrary, G must
be the point where this circle intersects the line BD, as in the picture. The
second circle has center D, radius DG, and contains points K and � where
� is the intersection point of the line AD and the circle. The circle centered
at B we now call CGH ; the circle centered at D we now call GKL. As
radii of the same circle, BC ∼= BG. Similarly, DL ∼= DG. By construction,
DA ∼= DB. The next step invokes Common Notion 3, which allows us to
subtract line segments, essentially, to get AL ∼= BC.

Try to answer the following questions. Does a correct proof of Propo-
sition 2 depend on the relative positions of the point A and the segment
BC? For instance, if A is on the line determined by BC, does the proof still
apply? Does it change depending on whether A is between B and C? What
if A is an endpoint of the segment? In this case, we ought to be able to
construct a segment extending off the given segment with the same length.
Does Euclid’s proof apply in that case? If the proof needs modification, do
you think Euclid missed something or do you think he made a deliberate
choice?

If you think about constructing a segment of a given length, using a
straight edge and compass, you would probably mark the endpoints of the
given segment with the compass, move the compass to a new location, mark
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Figure 3: Proposition 3

the endpoints of the new segment, and use the straight edge to connect
the dots. This violates the stricture that the compass used for Euclidean
geometry does not stay open when we lift it off the page. Proposition 2
proves that even with a floppy compass, you can transfer information about
length from one location to another. Proposition 3 is a corollary that says we
can cut a given line segment to the match the length of a smaller segment.

We quote from [2], p. 246.

Proposition 3. Given two unequal straight lines, to cut off from the greater a
straight line equal to the smaller.

Let AB, C be the two given unequal straight lines and let AB be the greater of
them. Thus it is required to cut off from AB the greater a straight line equal to C
the less. At the point A let AD be placed equal to the straight line C; and with
center A and distance AD the circle DEF be described. Now, since the point A
is the center of the circle DEF , AE is equal to AD. But C is also equal to AD.
Therefore each of the straight lines AE, C is equal to AD; so that AE is also
equal to C. Therefore, given the two striaght lines AB, C, from AB the greater
AE has been cut off equal to C the less. (Being) what it was required to do.

Again, look for implicit assumptions about the relative positions of ob-
jects and ask if they make a material difference to the proof.

The next two propositions are the first substantial theorems about trian-
gles. Each has spawned much comment through the centuries. Proposition 4
is the familiar side-angle-side criterion for triangle congruence. We quote
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from [2], p. 247-8. This time, we omit Euclid’s figure. You should supply
one as an aid to follow the argument.

Proposition 4. If two triangles have the two sides equal to two sides respectively,
and have the angles contained by the equal straight lines equal, they will also have
the base equal to the base, the triangle will be equal to the triangle, and the remain-
ing angles will be equal to the remaining angles respectively, namely those which
the equal sides subtend.

Let ABC, DEF be two triangles having the two sides AB, AC equal to the two
sides DE, DF respectively, namely AB to DE and AC to DF , and the angle
BAC equal to the angle EDF .
I say that the base BC is also equal to the base EF , the triangle ABC will be
equal to the triangle DEF , and remaining angles will be equal to the remaining
angles respectively, namely those which the equal sides subtend, that is, the
angle ABC to the angle DEF , and the angle ACB to the angle DFE.
For, if the triangle ABC be applied to the triangle DEF , and if the point A be
placed on the point D and the straight line AB on DE, then the point B will
also coincide with E, because AB is equal to DE.
Again, AB coinciding with DE, the straight line AC will also coincied with DF ,
because the angle BAC is equal to the angle EDF ; hence the point C will also
coincide with the point F , because AC is again equal to DF .
But B also coincided with E; hence the base BC will coincide with the base EF .
[For if, when B coincides with E and C with F , the base BC does not coincide
with the base EF , two straight lines will enclose a space: which is impossible.
Therefore the base BC will coincide with EF ] and will be equal to it.
And the remaining angles will also coincide with the remaining angles and will be
equal to them, the angle ABC to the angle DEF , and the angle ACB to the
angle DFE.
Therefore etc.

(Being) what it was required to prove.

The controversy about the proof is to do with the so-called “method of
superposition,” that is, the business of picking up one triangle and dropping
it down onto another for comparison. Heath et. al. aver that Euclid himself
was uncomfortable about employing this argument [2], p. 249. In fact, Heath
argues that Common Notion 4 and the bracketed material in the proof were
added by later commentators to justify this step in Euclid’s proof. [2], p.
225.
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Why is superposition problematic? The argument, which goes back to
the 16th century, is that if superposition is indeed a legitimate method of
proof, one could use it to prove many of the propositions in The Elements
with little trouble. Consider the pains Euclid took to prove Proposition 2.
If superposition were allowed, we could use it there and dispatch the proof
in one line. Using it in this proof and not the others belies a conflict in
the underlying ideas. Hilbert resolves the conflict with a dramatic flourish,
which we take up in the next section. (See [2], pp. 249-250 for more details
regarding this and other difficulties with the proof of Proposition 4.)

We will grant Proposition 4 and proceed to consider Proposition 5, known
famously as pons asinorum, the asses’ bridge.[1], p. 6. The most common
stories behind the name are (1) that it refers to those who cannot follow the
proof , or (2) that it refers to the picture Euclid supplied for his proof. The
actual origin and meaning of the name is lost, but people still enjoy puzzling
over it. [2], p. 415

We quote the statement, proof, and figure from [2], p. 251.

Proposition 5. In isosceles triangles the angles at the base are equal to one an-
other, and, if the equal straight lines be produced further, the angles under the base
will be equal to one another.

Let ABC be an isosceles triangle having the side AB equal to the side AC; and
let the straight lines BD, CE be produced further in a straight line with AB,
AC.
I say that the angle ABC is equal to the angle ACB, and the angle CBD to the
angle BCE.
Let a point F be taken at random on BD; from AE the greater let AG be cut off
equal to AF the less; and let the straight lines FC, GB be joined.
Then, since AF is equal to AG and AB to AC, the two sides FA, AC are equal
to the two sides GA, AB respectively; and they contain a common angle, the
angle FAG.
Therefore the base FC is equal to the base GB, and the triangle AFC is equal
to the triangle AGB, and the remaining angles will be equal to the remaining
angles respectively, namely those which the equal sides subtend, that is, the
angle ACF to the angle ABG, and the angle AFC to the angle AGB. And,
since the whole AF is equal to the whole AG, and in these AB is equal to AC,
the remainder BF is equal to the remainder CG.
But FCwas also proved equal to GB; therefore the two sides BF , FC are equal
to the two sides CG, GB respectively; and the angle BFC is equal to the angle
CGB, while the base BC is common to them; therefore the triangle BFC is also
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Figure 4: Pons Asinorum

equal to the triangle CGB, and the remaining angles will be equal to the
remaining angles respectively, namely those which the equal sides subtend;
therefore the angle FBC is equal to the angle GCB, and the angle BCF to the
angle CBG.
Accordingly, since the whole angle ABG was proved equal to the angle ACF ,
and in these the angle CBG is equal to the angle BCF , the remaining angle
ABC is equal to the remaining angle ACB; and they are at the base of the
triangle ABC. But the angle FBC was also proved equal to the angle GCB; and
they are under the base.
Therefore etc.

Q.E.D.

Pons asinorum is significant for several reasons. First, it can be argued
that this is the board from which a great many of the fundamental theorems
of Euclidean geometry spring. This is, in fact, Coxeter’s approach to teaching
geometry in [1] (cf. Section 1.3.) Second, references in Aristotle indicate
that geometers who preceded Euclid knew pons asinorum but had a different
proof, and indeed, quite a different approach to the subject altogether. This
helps us understand the role of The Elements in history. Euclid was, to a
large extent, pulling together known results but from early on in the program,
he forges his own way through the thicket. See [2], pp. 252-254. Finally,

17



Proclus, a prominent commentator who came around 700 years after Euclid,
relates the proof that Pappus described, which is quite possibly what you
saw in high school. (Compare also [1], Section 1.3.) Here is Pappus’s proof,
as quoted from [2], p. 254. Note that this does not cover the part of the
theorem describing the angles under the base of the triangle.

Let ABC be an isosceles triangle, and AB equal to AC. Let us conceive this one
triangle as two triangles, and let us argue in this way. Since AB is equal to AC,
and AC to AB, the two sides AB, AC are equal to the two side AC, AB. And
the angle BAC is equal to the angle CAB for it is the same. Therefore all the
corresponding parts (in the triangles) are equal, namely BC to BC, the triangle
ABC to the triangle ABC (i.e. ACB), the angle ABC to the angle ACB, and
the angle ACB to the angle ABC, for these are the angles subtended by the
equal sides AB, AC. Therefore in isosceles triangles the angles at the base are
equal.

Pappus’s proof is often presented without attribution and with modifi-
cation, namely, that the triangle is picked up from the page and reflected
across a median or angle or base bisector (none of which have been defined)
and dropped down again upon itself...or upon a trace it has left on the page
after it has been picked up.... In light of previous remarks, this approach
is at best unsettling and Pappus’s original approach, to “conceive this one
triangle as two triangles,” while faintly suspect, seems elegant in comparison.
Before leaving this topic, we invoke a rebuke to commentators who proposed
to improve Euclid’s proof by means such as these. This is a quote of C. L.
Dodgson (a.k.a. Lewis Carroll) from Euclid and His Modern Rivals, as cited
in [1], p. 6: “Minos: It is proposed to prove [pons asinorum] by taking up
the isosceles Triangle, turning it over, and then laying it down again upon
itself.

“Euclid: Surely that has too much of the Irish Bull about it, and reminds
one a little too vividly of the man who walked down his own throat, to deserve
a place in a stricly philosophical treatise?”

Book I of Euclid’s Elements ends with Proposition 48, the theorem that
says that if the squares of two sides of a triangle add up to the square of
the third side, then it is a right triangle. Proposition 47 is the Pythagorean
Theorem. Note that a square here is a geometric figure. In these books of
The Elements, Euclid does not work with numbers. Book II is concerned
with parallelograms and Book III takes up circles. Our goal for this part of
the course is the nine point circle but for now we turn away from Euclid to
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his most successful modern rival, Hilbert, so that we can proceed to our goal
on a more secure foundation.

2.2 Hilbert’s Axioms

Hilbert’s goal in studying The Elements was to sort out the objects Euclid
studied, the assumptions about them, and the relationships among them. His
goal was a description of the foundation of Euclidean geometry that would
yield all the familiar theorems while meeting modern standards of rigor. In
his time, Euclid likely set the standard for rigor but standards change and
Hilbert wanted to bring Euclid’s work up to a modern level of acceptability.

Several of Euclid’s definitions had to be jettisoned. By Hilbert’s time, it
had long been recognized that is was impossible to explain something like a
straight line “by any regular definition which does not introduce words al-
ready containing in themselves, by implication, the notion to be defined.” [2],
p. 168 (cf. Aristotle’s remark about defining the prior with the posterior.)
Predecessors of Hilbert started with material approximations to terms like
point and line. Hilbert was the one responsible for acknowledging the neces-
sity of starting with terms that were and would remain, frankly, undefined.
This may seem like a triviality but it was an important idea in the early
development of logic and set theory and, in some sense, goes back to Kant,
whom Hilbert quotes before the introduction of Foundations of Geometry.
[4], p. 2.

All human knowledge thus begins with intuitions, proceeds thence to concepts
and ends with ideas.

Kant, Critique of Pure Reason, “Elements of Transcendentalism,” Second Part,
II.

Hilbert singled out the following undefined terms referring to objects:
points, denoted A, B, C, etc., lines, denoted a, b, c, etc., planes, denoted
α, β, γ, etc, and space. The points are called the elements of line geometry.
Points and lines are the elements of plane geometry. Points, lines and planes
are the elements of space geometry. The undefined terms referring to relations
among points, lines, planes, and spaces, are lies on, between, and congruent.

Hilbert’s convention, which we follow, is that when we refer to points and
lines with language such as, “A and B are points” it is to be understood that
A and B are distinct.
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Hilbert’s axioms are organized into five subsets: Axioms of Incidence,
Axioms of Order, Axioms of Congruence, Axiom of Parallels, and Axioms of
Continuity. These are not verbatim but are only slightly modified from the
translation of Grundlagen [4] that we are using.

I. Axioms of Incidence

1. Two points A and B determine a line a that contains them.

2. The line determined by two points is unique.

We denote by AB the unique line determined by points A and B.

3. Every line contains at least two points. There exist three points that
do not lie on a single line.

This axiom is a guarantee against triviality, in other words, that points,
lines, and planes are all different sorts of objects. Points that lie on a single
line are collinear. Points that do not lie on a single line are noncollinear.
Hilbert did not use these words in his axioms but did later on in the text.

4. Every set of three noncollinear points is contained in a plane. Every
plane contains at least one point.

5. The plane determined by the three noncollinear points is unique.

6. If two points of a line a lie in a plane α, then all of the points of a lie
in α.

7. If two planes have a point in common, then they have at least one more
point in common.

8. There exist at least four points which do not lie in a plane.

Points that lie in a single plane are coplanar. Points that are not in a
single plane are noncoplanar.

Modern set theory dates from the late 19th century with the work of
Georg Cantor. Hilbert knew set theory but did not use its language and
conventions in the Grundlagen. Although we will not deal with it in a deep
way, we are so used to its basic ideas and notation that it seems natural to
use them here. The underlying idea is that lines and planes are sets. The
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elements of these sets are points. If A is a point lying on the line a or the
plane α, we write A ∈ a or A ∈ α. If the line a lies in the plane α, we think
of a as a subset of α and write a ⊂ α. If the point A belongs to the lines
a and b, the line a and plane α, or the planes α and β, write A ∈ a ∩ b,
A ∈ a ∩ α, or A ∈ α ∩ β.

Exercises
Using only Hilbert’s axioms as stated above, prove the following theorems.

1. The intersection of two lines in a plane is a single point or empty.

2. The intersection of two planes is empty or exactly one line and no
other points.

3. Let α be a plane and a a line that does not lie in α. The intersection
of a and α is empty or a single point.

4. Let a be a line and A a point not on a. There is a exactly one plane
containing a and A.

5. Let a and b be lines with a single point of intersection. There is
exactly one plane containing both a and b.

II. Axioms of Order
Line segments and angles are not undefined terms but the notion of be-

tweenness is and it underlies a great many of the familiar ideas from Euclidean
geometry, in particular, segments and angles. Hilbert attributes this set of
axioms to Pasch, a German mathematician of the late 19th centery. [4]

When the point B lies between points A and C, we write A ∗ B ∗ C.
Designate the line determined by points A and B by AB.

1. If A ∗B ∗ C then A, B, C are collinear and C ∗B ∗ A.

2. If A and C are two points there exists a point B ∈ AC with A ∗C ∗B.

Hilbert defines the line segment AB or BA to be the point A and B
together with the points between A and B. When A ∗C ∗B, C is inside AB
otherwise C is outside AB. A and B are the endpoints of AB. Note that
Hilbert does not use the notion of sensed or directed line segments.
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3. Of any three points on a line, there is no more than one that lies
between the other two.

4. Let A, B, C be noncollinear points and let a be a line in the plane
ABC that does not contain any of A, B, or C but that passes through
AB. Then a must also pass through AC or BC.

The last axiom says that in a plane, the sides of a triangle are like doors
to its interior and if a line enters through one door, it must exit through
another.

Exercise
Use Axioms of Incidence and Betweenness to prove that for any points A
and B there is a point C on AB with A ∗ C ∗B. The argument makes use
of Axiom II.4 and is not as easy as one might expect.

The axioms to this point allow us to prove several things that seem intu-
itively obvious when we talk about space. For us, space typically means Rn,
but remember that neither Euclid nor Hilbert was discussing Rn. Hilbert
in fact remarked famously that his axiom system should be as applicable to
chairs, tables, and bottles of beer, as to points, lines, and planes. [8]

Omitting proofs, we state some of the consequences of the Axioms of
Order.

Theorem 1. Given any finite number of points on a line, it is possible to
order them A,B,C, . . . , K so that A ∗B ∗ C, B ∗ C ∗D, . . . , I ∗ J ∗K.

Theorem 2. Between any two points on a line there exist an infinite number
of points.

Theorem 3. Let a be a line and α a plane containing a. The points of α
that do not belong to a fall into two collections, designated as sides of the
line. For points A and B on the same side of a, the segment AB does not
intersect a. For points A and C on opposite sides of the line, AC intersects
a.

As a line divides a plane into two sets, a point divides a line into two sets,
and a plane divides 3-space into two sets. The Axioms of Order are what
allow us to view polygons as having insides and outsides, for example. They
also give us the notion of a ray.
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Definition 1. Let A, A′, O, B be four points of the line a such that O lies
between A and B but not between A and A′. The points A, A′ are then said
to lie on the line a on one and the same side of O and the points A, B are
said to lie on the line a on different sides of the point O. The totality of
points of a that lie on one and same side of O is called a ray emanating from
O. Thus every point of a line partitions it into two rays.

If we are to have triangles, we need angles and some axioms guiding us
in how to think about the notion of congruence.

III. Axioms of Congruence
When discussing segments and angles we use the words congruent and

equal interchangeably.
The first axiom of congruence allows the possibility of constructing con-

gruent segments. Recall that this was the second proposition in Book I of
The Elements.

1. Given a segment AB on a line a and a line a′ with a point A′ ∈ a′, we
can find a point B′ on either side of A′ so that AB ∼= A′B′.

The second axiom is a form of the first of Euclid’s Common Notions.

2. If AB ∼= CD and EF ∼= CD then AB ∼= EF .

Exercise
Prove that every segment is congruent to itself, i.e., that segment
congruence is reflexive. Prove that segment congruence is also symmetric
and transitive.

3. On the line a let AB and BC be segments which, except for B, have
no point in common. On the same or another line a′ let A′B′ and B′C ′

be two segments which except for B′ also have no point in common. In
that case, if AB ∼= A′B′ and BC ∼= B′C ′ then AC ∼= A′C ′.

This axiom allows the addition of segments, as did Euclid’s Common
Notion 3.

Definition 2. Let α be a plane and h, k any two distinct rays emanating
from O in α and lying on distinct lines. The pair of rays h, k is called an
angle and is denoted ∠(h, k) or ∠(k, h).
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Straight angles and angles that exceed straight angles are excluded by
this definition.5 When necessary, we use a to distinguish a line a from a ray
a contained in a.

An angle partions the points of a plane into the interior of the angle and
the exterior of the angle.

Exercises

1. Give a precise definition of the interior and the exterior of an angle.
Show that neither set is empty.

2. If R is any region of a plane with the property that whenever points
A and B are in R, then the segment AB is entirely contained in R,
then R is convex. Show that the interior of an angle is convex. Is the
exterior convex as well?

3. Let H be a point of ray h and K be a point of the ray k where h and
k form an angle ∠(h, k). Show that HK lies in the interior of ∠(h, k).

4. A ray emanating from O lies either entirely inside or entirely outside
the angle. A ray that lies in the interior intersects HK.

We continue with axioms of congruence.

4. Every angle in a given plane can be constructed on a given side of
a given ray in a uniquely determined way. Moreover, every angle is
congruent to itself.

As with segments, we are not treating angles as having sense or direction.
Thus ∠(h, k) and ∠(k, h) denote the same angle.

5. If ΔABC and ΔA′B′C ′ are triangles with AB ∼= A′B′, AC ∼= A′C ′,
and∠BAC ∼= ∠B′A′C ′, then the congruence ∠ABC ∼= ∠A′B′C ′ is also
satisfied.

Notice that Axiom III.5 also gives us ∠BCA ∼= B′C ′A′.
5In [4], it says that “obtuse angles” are excluded by this definition. This may be an

error in the translation.

24



Exercise
Prove the uniqueness of segment construction, using uniqueness of angle
construction and Axiom III.5. Start with the assumption that a segment
congruent to AB is constructed two ways on a ray emanating from A′ to B′

and to B′′.

Definition 3. Two angles with a common vertex and a common side are
supplementary provided their other sides form a line. A right angle is an
angle congruent to one of its supplements.

Recall that Euclid defined a right angle in terms of lines impinging on one
another. A bit later in Book I, there is a proposition that says a right angle
is congruent to its supplement. Once again, then, we see Hilbert taking one
of Euclid’s propositions as an axiom.

Axiom III.5 does not quite give us the side-angle-side (SAS) criterion
for triangle congruence but it is very close. Before settling the congruence
theorems for triangles, we revisit pons asinorum.

Theorem 4. The base angles of an isosceles triangle are congruent.

Proof. Given isosceles ΔABC with AB ∼= BC, we can write AB ∼= BC,
∠B ∼= ∠B (III.4), BC ∼= AB. By III.5, ∠A ∼= ∠C.

Theorem 5 (SAS or first congruence theorem for triangles). If ΔABC
and ΔA′B′C ′ satisfy AB ∼= A′B′, ∠ABC ∼= ∠A′B′C ′, BC ∼= B′C ′, then
ΔABC ∼= ΔA′B′C ′.

Proof. Axiom III.5 implies ∠BAC ∼= B′A′C ′ and ∠ACB ∼= A′B′C ′. It
remains to show AC ∼= A′C ′.

Choose C ′′ onA′C ′ so that either A′∗C ′∗C ′′ or A′∗C ′′∗C ′ and A′C ′′ ∼= AC.
We have shown that C ′′ is uniquely determined.

Note then that we have SAS for triangles ΔABC and ΔA′B′C ′′ since
AC ∼= A′C ′′, ∠A ∼= ∠A′, and AB ∼= A′B′. Axiom III.5 implies that ∠ABC ∼=
A′B′C ′′. We also have ∠ABC ∼= ∠A′B′C”. This violates uniqueness of angle
construction as given in Axiom III.4, unless C ′ = C ′′.

The next theorem is commonly called angle-side-angle (ASA).

Theorem 6 (ASA or second congruence theorem for triangles). If ∠A ∼=
∠A′, AB ∼= A′B′ and ∠B ∼= ∠B′, then ΔABC ∼= ΔA′B′C ′.
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Figure 5: SAS for triangles

Proof. The picture above applies here as well. Choose C ′′ exactly as in
the last proof and note that this gives us SAS for ΔABC and ΔA′B′C ′′

as AC ∼= A′C ′′, ∠A ∼= ∠A′ and AB ∼= A′B′. The last theorem gives us
ΔABC ∼= ΔA′B′C ′′ which in turn implies that ∠ABC ∼= ∠A′B′C ′′. By
assumption, ∠ABC ∼= ∠A′B′C ′ so that, again, unless C ′ = C ′′, uniqueness
of angle construction is violated. We conclude that AC ∼= A′C ′, thus that
ΔABC ∼= ΔA′B′C ′ by SAS.

Theorem 7. Supplements of congruent angles are congruent.

Proof. Suppose ∠ABC ∼= ∠A′B′C ′. Without loss of generality, we can as-
sume AB ∼= A′B′ and BC ∼= B′C ′. By SAS, ΔABC ∼= A′B′C ′.

Now choose points D, D′ with A ∗ B ∗ D, A′ ∗ B′ ∗ D′, BD ∼= B′D′.
Again by SAS, ΔADC ∼= ΔA′D′C ′. This gives us ∠ADC ∼= ∠A′D′C ′, in
turn implying that CD ∼= C ′D′, thus SAS for ΔCBD and C ′B′D′.

We conclude that ∠DBC ∼= ∠D′B′C ′, as desired.

Corollary 1. Vertical angles are congruent.

Proof. Consider the angles in Figure 7. Each angle marked with double arcs
is supplementary to the one marked with a single arc. The latter is congruent
to itself by Axiom III.4. By the previous theorem, the supplements are
thus congruent. Now notice that we can treat any pair of vertical angles as
supplements to a given angle which is congruent to itself.

The next lemma allows us to add and subtract congruent angles, thus to
prove the side-side-side (SSS) criterion for triangle congruence. The reader
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Figure 6: Supplements of congruent angles are congruent

Figure 7: Vertical angles are congruent.
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should supply a picture to help understand the hypotheses of the result as
well as the proof.

Lemma 1. Let h, k, � be rays emanating from a point O. Let h′, k′, �′ be
rays emanating from a point O′. Suppose that h, k are on the same side
(respectively, different sides) of � and that h′, k′ are on the same side (re-
spectively, different sides) of �′. If ∠(h, k) ∼= ∠(h′, k′) and ∠(k, �) ∼= ∠(k′, �′),
then ∠(h, �) ∼= ∠(h′, �′).

Proof. We complete the proof for the case where h, k are on the same side
of � and h′, k′, the same side of �′. Using congruence of supplements of
congruent angles, the reader can supply details of the other case.

Changing labels if necessary, we can suppose h is interior to ∠(k, �). Pick
K ∈ k, L ∈ � and choose K ′ ∈ k′, L′ ∈ �′ so that OK ∼= O′K ′, OL ∼= O′L′.
Since h is interior to ∠(k, �), KL ∩ h = H , a unique point. Choose H ′ ∈ h′

to satisfy OH ∼= O′H ′. We claim that H ′ ∈ K ′L′.
Note that we have SAS for ΔOKL ∼= ΔO′K ′L′ and for ΔOHL ∼= ΔO′H ′L′.

Following through, we get ∠OLK ∼= ∠O′L′K ′ and ∠OLH = ∠OLK ∼=
∠O′L′H ′. By uniqueness of congruent angles on a given side of a ray,
∠O′L′K ′ ∼= ∠O′L′H ′ implying that L′K ′ = L′H ′, i.e., H ′ ∈ K ′L′ as claimed.
Since KL ∼= K ′L′, HL ∼= H ′L′, it follows that KH ∼= K ′H ′.

Using supplements of ∠OHL ∼= ∠O′H ′L′, KH ∼= K ′H ′ and ∠OKH ∼=
∠O′K ′H ′, we get ASA for ΔOKH ∼= ΔO′K ′H ′, implying that ∠(h, k) ∼=
∠(h′, k′).

Recall that we defined a right angle as one that was congruent to its
supplement. We now have a procedure that allows us to construct a right
angle on a given line.

Theorem 8. We can construct a right angle.

Proof. Fix a point O and a ray h emanating from O. Choose a point B off the
line h and let k be the ray emanating from O passing through B. Construct
an angle congruent to ∠(h, k), by taking a ray k′ emanating from O on the
side of h that does not contain B. Choose B′ on k′ so that OB ∼= OB′. Let
A be the point where h intersects BB′. Consider two cases.

Case 1: A = O. Here ∠(h, k) and ∠(h, k′) are supplements and congruent
so already are right angles.

Case 2: If A �= O then we have SAS for ΔAOB and ΔAOB′ since
AO ∼= AO, ∠AOB ∼= ∠AOB′ by construction, and OB ∼= OB′, also by
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construction. The implication is that ∠OAB ∼= ∠OAB′. Notice that these
are supplements, thus must be right angles.

The next result brings us closer to SSS as well as transitivity for angle
congruence.

Lemma 2. Let a be a line through points A and B. Let C1 and C2 be
on opposite sides of a and suppose AC1

∼= AC2 and BC1
∼= BC2. Then

∠ABC1
∼= ∠ABC2.

Proof. 6 Figure 9 shows one arrangement of points that satisfies the hypothe-
ses of the lemma. Using pons asinorum, we get congruent angles as marked.
We invoke Lemma 1 to subtract congruent angles so that ∠BC1A ∼= ∠BC2A.
Now SAS applies to ΔBC1A ∼= ΔBC2A. As corresponding angles, ∠ABC1

∼=
∠ABC2.

The reader should complete the proof by addressing cases in which C1C2

intersects AB, at an endpoint or otherwise.

We must work around the fact that we do not have transitivity of angle
congruence in the next proof.

6I am indebted to Wilson Stothers for pointing out errors in a previous version of this
proof.
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Figure 9: This is one configuration possible given the hypotheses of Lemma 2.

Theorem 9 (SSS or the third congruence theorem for triangles). If
in triangles ΔABC, ΔA′B′C ′, corresponding sides are congruent, then cor-
responding angles are congruent as well so that the triangles themselves are
congruent.

Proof. Construct one angle congruent to ∠BAC at A′ on each side of the ray
emanating from A′ through C ′. B′ is on same side of A′C ′ as one of the rays
making these angles. On that ray, take the point B1 so that AB ∼= A′B1.
Take B2 on the other ray so that AB ∼= A′B2. We have CA ∼= C ′A′ by
assumption, ∠BAC ∼= ∠B1A

′C ′ and ∠BAC ∼= ∠B2A
′C ′ by construction,

and AB ∼= A′B1
∼= A′B2, also by construction. This gives us SAS for

ΔABC ∼= ΔA′B1C
′ and ΔABC ∼= ΔA′B2C

′. It follows from there that
CB ∼= C ′B1 and CB ∼= C ′B2 implying C ′B1

∼= C ′B2. By Lemma 1, we
have ∠C ′A′B1

∼= ∠C ′A′B2. Lemma 1 also applies to A′B′C ′ and A′B2C
′

so that ∠C ′A′B′ ∼= ∠C ′A′B2. Uniqueness of angle construction implies that
B′ = B1. This gives us ΔABC ∼= ΔA′B1C

′ = ΔA′B′C ′, as desired.
Note that since segment congruence is symmetric, we can also say ΔA′B′C ′ ∼=

ΔABC.

The SSS criterion for triangle congruence implies that angle congruence
is an equivalence relation. The first result in this direction corresponds to
Axiom III.2.

Theorem 10. If ∠(h, k) ∼= ∠(h′′, k′′) and ∠(h′, k′) ∼= ∠(h′′, k′′) then ∠(h, k) ∼=
∠(h′, k′).
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Figure 10: SSS for triangle congruence

Proof. Label the vertices of the angles O, O′, O′′ respectively. On h, choose
a point A. Choose A′ and A′′ on h′, h′′ respectively so that OA ∼= O′A′ ∼=
O′′A′′. Choose a point B on k and B′, B′′ on k′, k′′ respectively so that
OB ∼= O′B′ ∼= O′′B′′. This gives us SAS for ΔAOB ∼= ΔA′′O′′B′′ and
ΔA′O′B′ ∼= ΔA′′O′′B′′, thus SSS. SSS allows us to say ΔAOB ∼= ΔA′O′B′,
implying ∠(h, k) ∼= ∠(h′, k′) as desired.

Corollary 2. Angle congruence is an equivalence relation.

Proof. Since ∠(h′, k′) ∼= ∠(h′, k′), ∠(h, k) ∼= ∠(h′, k′) implies by the theorem
that ∠(h′, k′) ∼= ∠(h, k). Transitivity is now immediate by the theorem.

Our next goal is to establish means for comparing angles. We need two
lemmas.

Lemma 3. Suppose ∠(h, k) ∼= ∠(h′, k′), with ∠(h, k) emanating from vertex
O, ∠(h′k′) emanating from O′. Let � emanate from O interior to ∠(h, k).
The unique ray �′ emanating from O′ on the k′ side of h′ that satisfies
∠(h, �) ∼= ∠(h′, �′) and ∠(�, k) ∼= ∠(�′, k′) is interior to ∠(h, k).

Proof. Let �′ be the unique ray emanating from O′ on the k′ side of h′ with
∠(h, �) ∼= ∠(h′, �′). To show �′ is interior to ∠(h′, k′), we need prove that if
H ′ �= O′ is a point on h′ and K ′ �= O′ is a point on k′, then H ′K ′ intersects
�′.

Let H ′ ∈ h′, K ′ ∈ k′ be different from O′ and choose H ∈ h and K ∈ k
so that OH ∼= O′H ′ and OK ∼= O′K ′. This gives us SAS for ΔOHK ∼=
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ΔO′H ′K ′. Since � is interior to ∠(h, k), we can let L = HK ∩ �. Pick L′ ∈ �
so that OL ∼= O′L′. This gets us SAS for ΔOHL ∼= ΔO′H ′L′. Note now
that ∠OHL = ∠OHK ∼= ∠O′H ′K ′, by the first triangle congruence and
∠OHK = ∠OHL ∼= ∠O′H ′L′ by the second. By uniqueness, ∠O′H ′K ′ =
∠O′H ′L′. We conclude that L′ ∈ H ′K ′, which proves the result.

Theorem 11. Let ∠(h, k) and ∠(h′, �′) be given, ∠(h, k) emanating from O,
∠(h′, �′) emanating from O′. Suppose � is the ray emanating from O on the
k side of h such that ∠(h, �) ∼= ∠(h′, �′). Suppose k′ emanates from O′ on
the �′ side of h′ such that ∠(h, k) ∼= ∠(h′, k′). Then � is interior to ∠(h, k)
if and only if k′ is exterior to ∠(h′, �′).

Proof. Suppose everything is as hypothesized, with � interior to ∠(h, k) but
say that k′ is interior to ∠(h′, �′). By the previous lemma, there is a unique
ray k′′ emanating from O, interior to ∠(h, �) with ∠(h, k′′) ∼= ∠(h′, k′). Since
∠(h′, k′) ∼= ∠(h, k), and both k and k′′ are on the � side of h, that violates
uniqueness of angle construction. We conclude that � interior implies k′

exterior. Changing labels, we get the result in the other direction as well.

Let ∠(h, k) and ∠(h′, �′) be as in the theorem. We write ∠(h, k) < ∠(h′, �′)
provided the construction of an angle congruent to ∠(h, k) using h′ and a ray
emanating from O′ on the �′ side of h′ yields a ray interior to ∠(h′, �′). It is
clear then that for any two angles α and β, one and only one of the following
statements is true: α < β, α ∼= β, α > β.

Theorem 12. All right angles are congruent.

Proof. A right angle is defined as one congruent to its supplement. Let
∠(h, k), emanating from O, and ∠(h′, k′) emanating from O′, be right an-
gles with supplements ∠(h, �) and ∠(h′, �′) respectively. Suppose ∠(h, k) <
∠(h′, k′). Let k′′ emanate from O on the k′ side of h′ so that ∠(h, k) ∼=
∠(h′, k′′). Note that k′′ is interior to ∠(h′, k′) and exterior to its supplement
∠(h′, �′). This gives us

∠(h, �) ∼= ∠(h′, k′′) < ∠(h′, k′) ∼= ∠(h′, �′)

as well as

∠(h, �) ∼= ∠(h′, k′′) > ∠(h′, �′)

which is a contradiction.
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Figure 11: Right angles are congruent

Definition 4. An angle greater than its supplement is obtuse. An angle
smaller than its supplement is acute.

Exterior angles play an important role in The Elements.

Definition 5. Let ΔABC be a triangle. The interior angles of the triangle
are ∠ABC, ∠BCA, and ∠BAC. The exterior angles of the triangle are the
supplements of the interior angles.

Theorem 13. The exterior angle of a triangle is greater than either of the
interior angles that are not adjacent to it.

Proof. Given ΔABC, choose D ∈ AB with A ∗ B ∗ D∗ and AD ∼= CB.
Suppose ∠CAD ∼= ∠ACB. Then ΔACD ∼= ΔACB by SAS, the implication
being that ∠ACD ∼= ∠CAB. By congruence of supplements, ∠ACD would
be congruent to the supplement of ∠ACB, implying that D ∈ BC. Since
D ∈ AB, it follows that D = B which is absurd. We conclude that ∠CAD �∼=
∠ACB.

Suppose next that ∠CAD < ∠ACB. If we construct an angle congruent
to ∠CAD at C on the AB side of C, we get a ray interior to ∠ACB that
intersects AB at a point B′. This gives us a triangle ΔAB′C, though, with
exterior ∠CAD congruent to interior angle ∠ACB′, which, as shown above,
is impossible.

We conclude that ∠CAD > ∠ACB.
To show that ∠CAD > ∠ABC, use the fact that ∠CAD is congruent to

its vertical.

Exercises Prove the following corollaries to Theorem 13.
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1. In every triangle, the greater angle lies opposite the greater side.
(Hint: Start by picking a point on the greater side that cuts off a
segment with the length of a smaller side.)

2. A triangle with two equal angles is isosceles.

3. If AB ∼= A′B′, ∠BAC ∼= B′A′C ′, and ∠BCA ∼= B′C ′A′, then the
triangles are congruent. (This is the angle-angle-side criterion, or
AAS.)

Theorem 14. Every segment can be bisected.

Proof. Let AB be given and let C be a point off AB. Construct an angle
congruent to ∠CAB with vertex B, taking a ray, k, that extends on the
side of AB that does not contain C. Pick the point D on k that satisfies
AC ∼= BD.

Since C and C ′ lie on opposite sides of AB, CC ′ has a nonempty inter-
section with AB. Call that intersection point E. We claim that E cannot
coincide with A or B. If it did coincide with A, say, then ∠BAC is exterior
to ΔBAD. But ∠ABD, which is interior to ΔBAD, was constructed to be
congruent to ∠BAC.

Note now that ΔACE ∼= ΔBDE by AAS: ∠AEC ∼= BED, since they
are vertical angles; ∠EAC ∼= ∠EBD by construction; and AC ∼= BD by
construction. We conclude that AE ∼= EB, thus, that CD bisects AB.

Corollary 3. Every angle can be bisected.

Proof. Let ∠(h, k) emanate from O. Pick A ∈ h and B ∈ k so that OA =
OB. Note that ΔAOB is isosceles. Let AB have midpoint C. Triangles
ΔACO and ΔBCO have SAS by pons asinorum. It follows that ∠AOC ∼=
∠BOC, hence, that OC bisects ∠(h, k).

Axiom IV: Axiom of Parallels

Definition 6. Two lines are parallel provided they lie in the same plane and
do not intersect.

When we define something, it is important to establish that the definition
is not vacuous, that is, that we define something that exists.
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Figure 12: Segments can be bisected

Consider a, a line in a plane, α. Pick two points on a, A and H , and let
B be a point of α not on a. Let c = AB. Using B as the vertex and the side
of c containing H , construct the angle congruent to ∠HAB. Let k be the
constructed ray and take a point K ∈ k.

If a and k had a point of intersection, say D, then A, B, and D would
form the vertices of a triangle. One of its interior angles would be ∠HAB
and the constructed angle at B would be exterior. Since we constructed this
angle congruent to ∠HAB, this is impossible. Thus a and k are parallel.

Can there be more than one parallel to a through B? The Parallel Pos-
tulate says no. It is important to realize that there is nothing in Hilbert’s
system that forces uniqueness.

IV. (Euclid’s Axiom) Let a be any line and A a point not on it.
There there is at most one line in the plane, determined by a and
A, that passes through A and does not intersect a.

The construction we described above thus yields the unique parallel to a
through B.

If the line a is parallel to the line b write a‖b. It is easy to see that this
relation is symmetric.

Exercise Show that the parallel relation is transitive.
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Figure 13: Construct a parallel to a given line

Theorem 15. If two parallels are interesected by a third line then the cor-
responding and alternate angles are congruent and conversely, congruence of
the corresponding or alternate angles implies the lines are parallel.

Proof. Let a and b be parallel lines intersected at points A and B respectively
by a third line, c. Let C be a point on c. Take points A′ ∈ a, B′ ∈ b on the
same side of c. Consider the corresponding angles ∠A′AC and ∠B′BC.

By the discussion above, we can construct a line through B parallel to A
such that the angle at B corresponding to ∠A′AC is congruent to ∠A′AC.
By uniqueness of parallels, b must be that line. Thus ∠B′BC ∼= ∠A′AC.

To get congruence of the other sets of corresponding angles and alternat-
ing angles, use supplements and verticals.

Now suppose that a and b are lines intersected by the line c so that
corresponding and alternating angles are congruent. Let a∩c = A, b∩c = B
and suppose a ∩ b = C, i.e., suppose a and b do intersect. We have ΔABC
then with interior angle ∠CAB congruent to the corresponding angle, which
is exterior to ΔABC, which is absurd.

Theorem 16. The angles of a triangle add up to two right angles.

Proof. Let ΔABC be given. Let c be the parallel to AB through C. Note
that we get congruent angles to ∠A, ∠B, ∠C as shown, the angles congruent
to ∠A and ∠B because of parallels, the one congruent to ∠C as a vertical
angle. The result follows since the constructed angles add up to a straight
angle, that is, two right angles.

36



a

b

A

B B

A

C

Figure 14: Alternate interior angles are congruent, as are corresponding an-
gles.
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Figure 15: Angles in a triangle add up to a straight line.
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It is only at this point that Hilbert introduces circles.

Definition 7. If M is any point in a plane α then the collection of all points
A in α for which the segments MA are congruent to each other is called a
circle. M is the center of the circle.

Besides the results we have about bisecting angles and segments, con-
structing parallels, etc., there are two traditional construction that Hilbert
does not do explicitly that we will want in our arsenal while we pursue the-
orems associated to circles.

Exercises

1. Theorem 8 shows how to construct a right angle to a given line. Give
a construction for dropping a perpendicular from a given point to a
given line.

2. Give a construction for drawing a perpendicular to a line at a given
point on that line.

The last set of Hilbert’s axioms are to do with the geometry of the line.
A thorough treatment of proportion, as in Book V of The Elements, calls for
these sorts of ideas. We state the continuity axioms here and invoke them
later, although we do not discuss the associated results in this part of the
Grundlagen.

V. Axioms of Continuity

1. (Axiom of Measure or Archimedes’s Axiom) If AB and CD are any
segments then there exists a number n such that n segments CD
constructed continguously (end-to-end) from A, along the ray from
A through B, will pass beyond the point B.

2. (Axiom of Completeness) An extension of a set of points on a line with
its order and congruence relations that would preserve the relations
existing among the original elements as well as the fundamental prop-
erties of line order and congruence that follows from Axioms I-III and
V.1 is impossible.

The Axiom of Completeness comes up when we construct the projective
plane by adding points to the Euclidean plane.
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Figure 16: The circumcircle of a triangle is centered where perpendicular
bisectors intersect

2.3 The Nine Point Circle

We use our work on Hilbert’s axioms to prove some of the theorems we need
to discuss the nine point circle, an interesting circle associated to a triangle.
Our main sources now are [1] and [2].

There are several circles associated to a given triangle. We start our dis-
cussion by considering the circumcircle, the circle determined by the vertices
of the triangle.

Theorem 17. Three noncollinear points determine a circle.

Proof. Let A, B, C be noncollinear and consider ΔABC. Bisect AB and
AC and call the midpoints of those segments D and E respectively. Draw
the perpendicular to AB at D, the perpendicular to AC at E and let F be
the point where those two perpendiculars intersect. (Exercise: Why must
they intersect?)

We get SAS for ΔAFE ∼= ΔCFE implying that CF ∼= AF . We also
have SAS for ΔADF ∼= ΔBDF so AF ∼= BF . Since A, B, C are equidistant
from F , they determine the circle centered at F with radius AF .

Definition 8. A parallelogram is formed by 2 pairs of parallel lines. The
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Figure 17: A parallelogram

points where the lines intersect are the vertices of the parallelogram. Line
segments that connect nonadjacent vertices are diagonals.

Parallelograms come up in Book I of The Elements and prove an impor-
tant tool for understanding plane figures in general. Proposition 34 from
Book I describes their basic features.

Theorem 18 (Prop. I.34). The opposite sides of a parallelogram are con-
gruent. Opposite angles of a parallelogram are congruent. The diameters of
a parallelogram bisect one another.

Proof. Since AC cuts parallels AB and CD, alternate interior angles are
congruent giving us ∠CAB ∼= ∠DCA. Also, AC cuts parallels AD and BC
so ∠ACB ∼= ∠CAD. Adding angles we get ∠A ∼= ∠C. Similarly we can get
∠B ∼= ∠D, using the diagonal BD.

Now ΔABC ∼= ΔADC by AAS, since AC is a common side. This gives
us AB ∼= DC and AD ∼= BC.

Let E be the point of intersection of AC and BD. (Why must they
intersect?) We have ASA for ΔAEB ∼= ΔCED with corresponding sides
AE ∼= CE. Similarly, DE ∼= BE.

Exercise Show that adjacent angles in a parallelogram are supplements.

Definition 9. An altitude of a triangle is the perpendicular dropped from
a vertex to the line determined by the opposite side. The feet of a triangle
are the points on the lines determined by the sides of the triangle where
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Figure 18: The orthic triangle

they intersect the altitudes. The orthic triangle of ΔABC is the triangle
determined by the feet.

The nine-point circle, Feuerbach circle, or Euler circle of a triangle ΔABC
is the circumcircle of the orthic circle of ΔABC.

Definition 10. The line segment joining the vertex of a triangle to the mid-
point of the opposite side is a median of the triangle.

You may remember from your high school geometry course that the me-
dians of a triangle intersect in a single point, that is, they are concurrent.
To prove this, we need results about parallels and ratios, starting with a set
of propositions from Book I. In this part of The Elements, Euclid’s reference
to plane figures being equal means not that they are congruent, but that
they enclose equal areas. To avoid confusion, we will paraphrase Euclid, as
translated by Heath. Also, when we write ΔABC = ΔA′B′C ′, it means that
the areas of the two triangles are equal.

Theorem 19 (Prop. I.35, 36, 37, 38, 39). Parallelograms (respectively tri-
angles) on the same base or equal bases that lie on a line have equal areas if
and only if they are in the same parallels.
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Figure 19: Rectangles in the same parallels

The notion of two parallelograms being “in the same parallels” makes
sense: bases form one line and opposite sides form another. Two triangles
are in the same parallels provided their bases form a line parallel to that
formed by the vertices of the opposite sides. Being in the same parallels
amounts to having the same height.

Euclid (Book V) and Hilbert (Axioms of Continuity) both set up the
tools for discussing comparitive lengths and areas. For example, we can
make sense of the idea of multiplying a line segment by 2 to get a new line
segment with double the length of the original. Then we can compare the
lengths of different segments. If there are positive integers m and n such
that m AB ∼= n CD then AB and CD are commensurate and we write
AB/CD = m/n. Area is trickier since it involves the notion of multiplying
line segments instead of adding them but without getting too involved, we can
accept the idea of comparing areas. For example, the area of a parallelogram
is twice the area of a triangle formed by adjacent sides and a diagonal.

When we write ΔABC/ΔEFG we mean the ratio of the areas of the
triangles and when we write AB/CD we mean the ratio of the lengths of line
segments.

We state Proposition 1 from Book VI and Proposition 39 from Book I
without proof.

Proposition 6 (Prop. VI.1). If triangles (respectively, parallelograms) have
the same height, the ratio of their areas is equal to the ratio of their bases.

Proposition 7 (Prop. VI.2). A line parallel to one side of a triangle cuts
the sides it intersects in equal proportions. Conversely, if a line cuts two
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Figure 20: Parallel to the base cuts the other sides in equal proportions

sides of a triangle in equal proportions, it is parallel to the third side of the
triangle.

Proof. Consider ΔABC with DE‖BC, intersecting AB at D and AC at E.
Since ΔBDE and ΔCDE have coincident bases and are in the same paral-
lels, ΔBDE = ΔCDE. It follows that ΔBDE/ΔADE = ΔCDE/ΔADE.
Next, view AD as the base of ΔADE and BD as the base of ΔBDE.
These two triangles have the same height as determined by the perpendicu-
lar to AB from E. By Prop. VI.1, ΔBDE/ΔADE = BD/AD. Similarly,
ΔCDE/ΔADE = CE/EA. It follows that BD/AD = CE/AE, which
proves the first part of the result.

Now let the sides AB, AC be cut so that BD/DA = CE/EA. We need
establish that DE‖BC.

We have ΔBDE/ΔADE = BD/DA. Similarly, ΔCDE/ΔADE =
CE/AE. It follows that ΔBDE/ΔADE = ΔCDE/ΔADE so ΔBDE =
ΔADE. As ΔBDE, ΔCDE have a common base, they must be in the same
parallels (Prop. I.39), which proves the result.

Exercise In reference to the last theorem, show that AB/AD = AC/AE.
This is the way we usually use the theorem.

Definition 11. Two triangles are similar provided corresponding sides are
in equal proportion.

Next is a theorem about similarity. Euclid’s proof uses a construction
in which the two triangles are arranged so that bases lie on a line and one
vertex is shared. The argument we use is maybe a variant on that preferred
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Figure 21: Equiangular triangles have corresponding sides in equal propor-
tions

by De Morgan (see [2], p. 202.) Here we use the results we developed in
Hilbert’s system.

Theorem 20 (Prop. VI.4). In equiangular triangles, corresponding sides
are in equal proportion.

Proof. Given equiangular triangles ΔABC, and ΔA′B′C ′ we can make a copy
of ΔA′′B′′C ′′ ∼= ΔA′B′C ′, as follows. Let A′′ = A, so that if we construct a
copy of ∠A′ using AB for one ray and taking the other ray on the C side of
AB, then by uniqueness of angle construction, the second ray has to coincide
with AC. Let B′′ be on the B side of A′′ so that A′′B′′ ∼= A′B′, and let C ′′

on AC be chosen so that A′′C ′′ ∼= A′C ′. Notice that by SAS, ∠B′′ ∼= ∠B and
∠C ′′ ∼= ∠C.

Hilbert’s one theorem on parallels implies that B′′C ′′‖BC. Now the exer-
cise following Prop. VI.2 above gives us AB/A′′B′′ = AC/A′′C ′′. We can get
another pair of sides in the same ratio by constructing ΔA′′B′′C ′′ starting
with B′′ = B, for example. This implies the result.

Exercise

1. Show that if corresponding sides of two triangles are in equal
proportions, then the triangles are equiangular.

2. Show that if two pairs of sides of two triangles are in equal
proportions, and the angles between are congruent, then the third
pair of sides of the two triangles are in the same portion as the others.

The proof for the following we get from [1], p. 10.
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Theorem 21. The medians of a triangle are concurrent.

Proof. Consider ΔABC and let D be the point where two medians intersect,
say the ones determined by the midpoint E of AC and the midpoint F of
AB. Let G and H be the midpoints respectively of CD and BD. Since
EF cuts the sides of ΔABC into the same proportions, it is parallel to BC.
Similarly, we see GH‖BC, when we consider ΔBCD. This makes EFGH a
parallelogram. Since the diagonals of a parallelogram bisect one another, it
follows that the point D trisects segments EB, FC. Similarly, it must trisect
the third median, which implies the result.

There are several different “centers” associated to a triangle. The point
where the medians intersect is the centroid, which is the center of gravity
of a triangular plate of uniform density. (That was proved by Archimedes.)
The center of the circumcircle is called the circumcenter. We did not prove
this, but it is true that the circle determined by the vertices of a triangle
is unique. This is another way of saying that different circles can intersect
in one or two points, but no more. As a consequence, the circumcenter is
unique, i.e., the perpendicular bisectors of a triangle are concurrent. The
next result gives us one more center of a triangle.

Theorem 22. The altitudes of a triangle are concurrent.

The point of concurrency is the orthocenter of the triangle.
Before we prove the theorem, we consider the Euler line of a triangle.

(The discussion and proof are from [1], p. 17.)
Let O be the circumcenter and G the centroid of the triangle ΔABC.

(Recall that O is the point where perpendicular bisectors of sides of ΔABC
intersect.) If O = G, then the medians of ΔABC are perpendicular to the
sides. (See Figure 22.) This gives us congruent triangles ΔAA′C, ΔBA′A,
implying that AB ∼= AC. Using a different median, we can repeat the
argument to show that the triangle is equilateral.

If the triangle is not equilateral, the Euler line is OG.

Proof. Choose H ∈ OH with O ∗ G ∗ H and OH = 3OG, in other words,
GH = 2OG. Recall that the segment from vertex to centroid, for example
GA, is twice the segment from the midpoint of the opposite side to centroid,
A′G, that is GA = 2A′G. Consider ΔOGA′ and ΔAHG.

Exercise Prove the following variant on Proposition 7, referring to
Figure 23. Show that OA/OA′ = OB/OB′ if and only if AB‖A′B′.
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Figure 22: If medians and perpendicular bisectors coincide, the triangle is
equilateral.
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Figure 23: The triangles are similar if and only if AB‖A′B′.
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Figure 24: The Euler line passes through the centroid G, the circumcenter,
O, and the orthocenter, H .

By the exercise, AH‖OA′. Moreover, OA′ is the perpendicular bisector
of BC. Thus AH is perpendicular to BC. Similarly BH is perpendicular to
CA, and CH to AB. It follows that H is the intersection of the altitudes of
ΔABC.

Corollary 4. The circumcenter, centroid, and orthocenter of a triangle are
collinear.

We have not said much about circles in general and angles associated
with them.

Lemma 4. The circumcenter of a right triangle is the midpoint of its hy-
potenuse so the hypotenuse is a diameter of the circumcircle.

Proof. Let ΔABC be a triangle with ∠C a right angle. The perpendicular
bisector to AB is parallel to CB so intersects AB at its midpoint, C ′, by
Prop. VI.2. The perpendicular bisector to CB is parallel AC so intersects
AB at C ′ as well. It follows that C ′ is the circumcenter for ΔABC. Moreover,
the hypotenuse AB must be a diameter for the circumcircle.

Fix a point on a circle to be the vertex of an angle. When the rays
defining the angle are determined by two other points on the circle, this is an
inscribed angle. If the two other points are opposite ends of a diameter, the
angle thus determined must be a right angle. We can see this by marking
the center of the diameter and joining it to the vertex of the angle. Now
use pons asinorum and supplementary angles to complete the proof. These
observations together with the last lemma prove the following.
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Figure 25: The circumcenter of a right triangle is the midpoint of its hy-
potenuse.

Theorem 23. An angle inscribed in a circle is a right angle if and only if
its sides emanate from points at either end of a diameter.

This was an easy theorem to prove but is an instance of a well-known
theorem that is a bit more work. We leave it as an exercise to prove in just
one case of the reader’s choosing.

Exercise Let α be an angle inscribed in a circle. Let β be the associated
central angle, i.e., the vertex of β is the center of the circle and its sides are
the radii determined by the points where the sides of α intersect the circle.
Prove that β = 2α. Choose a case to make the proof more accessible.

It is an easy step from there to see that a circle is the locus of points
determined by the ends of a diameter, together with the vertices of all the
right angles with sides passing through the endpoints of the diameter.

The proof of the next is from [1], p. 18.

Theorem 24 (The Nine Point Circle). The midpoints of the three sides
of a triangle, the midpoints of the three segments joining the vertices to the
orthocenter, and the feet of the three altitudes of the triangle, all lie on a
circle.
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Figure 26: An inscribed angle is a right angle if and only if its sides are
determined by the endpoints of a diameter.

α

β

Figure 27: The inscribed angle is α. The central angle is β.
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Figure 28: Proof of the nine point circle

Proof. Let ΔABC be given and let A′ be the midpoint of BC, B′ be the
midpoint of AC, and C ′ be the midpoint of AB. Let H be the orthocenter
and let A′′ be the midpoint of AH , B′′ the midpoint of BH , and C ′′ the
midpoint of CH . Since C ′B′ cuts sides AB and AC in half, Prop. VI.2
implies C ′B′‖BC. Next consider ΔBHC and note that since B′′ and C ′′

cut BH and CH in half, B′′C ′′‖BC as well. Considering ΔAHC, we see
that since B′ cuts AC in half and C ′′ cuts CH in half, B′C ′′‖AH . Similarly,
C ′B′′‖AH . This gives us a parallelogram, C ′B′C ′′B′′.

Since C ′B′′ and B′C ′′ are both parallel to AH which is perpendicular to
BC, which is parallel to B′′C ′′, we see that C ′B′C ′′B′′ is actually a rectangle.

We claim that in a rectangle, the diameters are equal. The claim follows
once we notice that ΔC ′B′′C ′′ ∼= ΔB′C ′′B′′, the right triangles formed by
the two different diameters of rectangle C ′B′C ′′B′′.

Next, we turn our attention to the quadrilateral C ′A′′C ′′A′. An argument
similar to the one just advanced shows that this is a rectangle as well. It
shares a diameter with C ′B′C ′′B′′, viz., C ′C ′′. The three diameters C ′C ′′,
A′′A′, B′B′′, are concurrent so are diameters of a circle with center this point
of concurrency.

Finally, let D be the foot of the altitude from A to BC. Notice that
∠A′′DA′ is a right angle, so D must lie on the circle with diameter A′′A′.
The same argument applies to the other three feet. This completes the
proof.
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2.4 The Projective Plane

The material here is taken mostly from [3].
The title of this subsection is a bit misleading: there are many different

types of projective planes. From our point of view right now, though, the
projective plane is what you get when you add ideal points to the Euclidean
plane, as developed via using Hilbert’s axioms. The effect of adding these
points is to remove the special status of parallel lines. In other words, in
a projective plane, any two lines intersect. The formal construction is as
follows.

Allowing that a line in the Euclidean plane is parallel to itself, we make
parallelism an equivalence relation. The lines in the Euclidean plane are thus
partitioned into nonempty, nonintersecting equivalence classes, each class
determined by a direction. All the lines in given class then have the same
direction. Add a single point, called an ideal point, to the Euclidean plane for
each equivalence class of lines. (To distinguish them from the ideal points,
call the points of the original Euclidean plane ordinary points.) Decree that
all the lines in the class contain the associated ideal point. Further decree
that the collection of ideal points comprise a line, the ideal line or the line
at infinity. The resulting collection of points and lines is the real projective
plane.

Theorem 25. Two distinct points determine a unique line.

Proof. If the two points are ordinary points, the theorem is just a restatement
of two of Hilbert’s incidence axioms. If the two points are ideal, they both lie
on the line at infinity. Every ordinary line in the plane contains exactly one
ideal point, so the line at infinity must be the only line containing a given
pair of ideal points. If one point is ordinary and the other ideal, the ideal
point identifies a single parallel class, by construction. We claim that the
ordinary point belongs to exactly one line in that class.

To prove the claim, pick a line out of the parallel class associated to the
ideal point. If the ordinary point is on that line, we are done. If not, construct
a parallel to the chosen line through the ordinary point. By Hilbert’s Parallel
Axiom, there is only such parallel. This proves the claim and the theorem.

Theorem 26. Two distinct lines meet in one and only one point.
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Proof. If the lines are both ordinary, then Hilbert’s Theorem 1 says that
they intersect in exactly one point or they do not intersect. If they do not
intersect, they belong to the same parallel class so intersect in a single ideal
point. If one line is ordinary and the other ideal, the ordinary line belongs
to a single parallel class so intersects the ideal line in the unique ideal point
associated to that parallel class.

The critical nature of these two theorems is that they establish once and
for all that we need not distinguish between ordinary and ideal points, nor
between ordinary lines and the line at infinity. In the projective plane, all
points are created equal and all lines are created equal.

This is a good time to review Hilbert’s axioms with an eye towards which
might apply in this setting. We start with the last set, the axioms of conti-
nuity.

V. Axioms of Continuity

1. (Axiom of Measure or Archimedes’s Axiom) If AB and CD are any
segments then there exists a number n such that n segments CD
constructed continguously (end-to-end) from A, along the ray from
A through B, will pass beyond the point B.

2. (Axiom of Completeness) An extension of a set of points on a line with
its order and congruence relations that would preserve the relations
existing among the original elements as well as the fundamental prop-
erties of line order and congruence that follows from Axioms I-III and
V.1 is impossible.

The Axiom of Completeness is particularly germane. It guarantees that
we cannot add a single point to a line in Euclidean space without losing
fundamental properties. By our choice of ideal points, we know that the
parallel axiom no longer applies. What about the others?

I. Hilbert’s Axioms of Incidence

1. Two points determine a line.

2. The line determined by two points is unique.

3. There exist at least two points on a line. There exist at least three
noncollinear points.

52



4. Three noncollinear points determine a plane. Every plane contains a
point.

5. The plane determined by three noncollinear points is unique.

6. If two points of a line lie in a plane, then every point of that line lies
in that plane.

7. Two planes with nonempty intersection have at least two points in
common.

8. There are at least four noncoplanar points.

Nothing here is violated by the addition of ideal points. We are safe in
assuming that Hilbert’s incidence axioms apply to the projective plane. The
Order Axioms are a different matter.

II. Hilbert’s Axioms of Order

1. If A ∗B ∗ C then A, B, C are distinct points of a line and C ∗B ∗ A.

2. Given A,B ∈ AB, there is C ∈ AB with A ∗B ∗ C.

3. Of any three points on a line there exists no more than one that lies
between the other two.

Putting these together with the axioms of continuity, we get that in a
Euclidean plane, there is a one-to-one correspondence between the points on
a line and the real numbers. (There is actually quite a bit more to this than
we are explicating here. This is part of a course on the real line.) Then when
we write A ∗ B ∗ C, it either means x < y < z or z < y < x, where x, y,
z are the real numbers associated to the points A, B, C. If we add a single
point to a line, it cannot be associated to a number. We could think of an
ideal point as representing ∞ but for the purposes of order, we need to find
a position for it on a line. Think of putting it infinitely far to the right, for
example, on a line containing an ordinary point A. If we hang onto the order
axioms, then we must be able to find B so that A∗∞∗B. This is a logistical
problem that does not seem easily resolved as B would presumably occupy a
position farther to the right than “infinitely far.” A similar problem ensues if
we try planting ∞ infinitely far to the left on an ordinary line. If we persist,
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looking for another location on a line for an ideal point, the only positions
left are between ordinary points. Effectively, those points are already spoken
for by real numbers.

Once we accept that the order axioms have to go, we are stuck with a
world that has no rays, no angles, no segments. The notion of congruence is
now gone.

The reader should be warned here: there are ways of defining metric
systems on the projective plane, in particular, the Fubini-Study metric is a
commonly used device. But there is no natural extension of these concepts
as they apply in Euclidean geometry.

Axioms for the Real Projective Plane

1. There exists a line.

2. Each line has as least three points.

3. There exist four points, no three of which are collinear.

4. Two distinct points determine a unique line.

5. Two distinct lines determine a unique point.

6. There is a one-to-one correspondence between the real numbers and all
but one point of a line.

The last axiom is what make this the real projective plane. Without it,
we get more general projective planes.

Exercise
Verify that the object in Figure 29 represents a projective plane, that is,
that it satisfies the first five axioms above. Identify the points and the lines.
How many of each do we have? This is called the Fano plane.

2.4.1 Duality

The most striking feature of projective geometry is the principle of dual-
ity. This can be illustrated in the projective plane by restating the axioms
switching the words “point” and “line,” and switching the phrases “lie on”
and “meet in.” When we do that we get:
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Figure 29: The Fano Plane

Dual Axioms for the Projective Plane

1. There exists a point.

2. Each point belongs to at least three lines.

3. There are four lines, no three of which are concurrent.

4. Two distinct lines determine a unique point.

5. Two distince points determine a unique line.

6. There is a one-to-one correspondence between the real numbers and all
but one line going through a point.

Note that these could serve equally well to define the real projective plane.

Exercises

1. Prove that the Axioms and Dual Axioms for the Projective Plane are
indeed equivalent.

2. Write the dual of each of the following statements in the projective
plane.

(a) The set of all points on a line

(b) Four points, no three of which are collinear

(c) Two lines, and a point on neither line
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(d) The line determined by a given point and the point of intersection
of two given lines

(e) All lines in the projective plane

(f) Distinct concurrent lines have only one common point.

(g) Given a line and a point not on the line, distinct lines through the
given point meet the given line in distinct points.

Definition 12. A triangle is a set of three noncollinear points (vertices) and
the lines they determine (sides). A trilateral is a set of three nonconcurrent
lines and the points they determine.

It should be clear that triangles are self-dual, in other words, triangles
and trilaterals are the same objects.

Definition 13. A complete quadrangle is a configuration in the projective
plane composed of a set of four points (vertices), no three of which are
collinear, together with the six lines (sides) they determine. Opposite sides
of a complete quadrangle are a pair of sides without a common vertex.

The dual of a complete quadrangle is a complete quadrilateral.

Exercise
Is a complete quadrangle self-dual? Explain.

Desargues’s theorem is major result of projective geometry having to
do with relationships of triangles in a plane or in space. The proof of the
theorem relies on embedding the projective plane in projective space. This is
not a mere device to facilitate the proof of the theorem. It is, in fact, central
to the validity of the theorem. In other words, there are projective planes
that cannot be embedded in space and for these, Desargues’s theorem is not
true. These planes are called nondesarguean. The real projective plane is
desarguean. To prove that, we need some terminology and some information
about the structure of projective space.

2.4.2 Projective Space

We construct real projective three space, RP 3 as follows. Start again by
thinking of the lines of Euclidean three space as partitioned into equivalence
classes determined by direction. Add a point to each parallel class and say
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that point lies on all lines in the associated parallel class and on no line from
any another parallel class. As above, call the new points ideal points and the
points from Euclidean space ordinary points.

The collection of ideal points in a given plane comprises a line at infinity
or an ideal line.

An ideal point P lies in a given plane α if and only if α contains a line
in the parallel class associated to P . If α′ is another plane parallel to α, it
contains lines in the parallel class associated to P so contains P as well. It
follows that we are adding one collection of ideal points associated to each
parallel class of ordinary planes. We decree that this collection of points
comprise an ideal line. Since all the points of this ideal line lie in all the
planes belonging to a given parallel class, the ideal line also lies in all the
planes of the parallel class. Finally, the set of ideal points and lines together
are to comprise an ideal plane, which contains no other points or lines.

Theorem 27. Two distinct planes meet in a unique line.

Proof. Suppose the planes α1 and α2 are nonparallel and ordinary. By
Hilbert’s system, they intersect in a unique ordinary line, �. To this, we
must append the ideal point P that identifies the parallel class of �. While it
is clear that α1 ∩ α2 contains no other ordinary points, maybe it contains a
second ideal point, P ′. If it does, let �1 ∈ α1 and �2 ∈ α2 be ordinary lines in
the parallel class determined by P ′. Since P ′ �∈ �, neither �1 nor �2 is parallel
to � but �1‖�2. Since each of �1 and �2 is coplanar with �, each must meet �
in an ordinary point. Say �1 ∩ � = P1, and �2 ∩ � = P2.

Note that �1 and �2 determine an ordinary plane, α. The unique ordinary
plane determined by � and �1 is α1 and the unique ordinary plane deter-
mined by � and �2 is α2 so α cannot contain �. It follows that the ordinary
intersection � ∩ α is at most one point, implying that P1 = P2, leading us to
a contradiction, namely, that �1 � ‖�2. We conclude that there cannot be a
second ideal point in the intersection of the two planes in this case.

Suppose α1 and α2 are ordinary and parallel. The result follows by our
construction of RP 3 in this case, as well as in the remaining case where α1

is ordinary and α2 is ideal.

Theorem 28. Two distinct points determine a unique line.

Proof. The proof of Theorem 25 is largely valid here. The case we must
speak to is when both points are ideal since there is more than one ideal line
in RP 3.
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Let P and Q be ideal points. By the definition of ideal points, it is clear
that there are no ordinary lines containing both P and Q. Take any ordinary
point O and consider the ordinary lines �, determined by O and P , and m,
determined by O and Q. It is clear that � and m are distinct thus determine
an ordinary plane α. Now P and Q belong to the ideal line in α. If they
belonged to a second ideal line, this line would have to belong to α as well,
contradicting the last result.

Theorem 29. Three noncollinear points determine a unique plane.

Proof. Let A, B, C be the three noncollinear points. If all are ideal, they
determine the unique ideal plane by construction. Suppose A is ordinary.
Let � = AB and m = AC. Since they contain an ordinary point, A, � and
m are ordinary lines and they are distinct since A, B, C are noncollinear
by assumption. Since two ordinary lines determine a unique ordinary plane,
this proves the result.

Theorem 30. Three distinct planes not containing a common line intersect
in a unique point.

Proof. The proof is left as an exercise.

Theorem 31. If two distinct lines meet in a point, they determine a unique
plane.

Proof. If both lines are ordinary, they determine a unique ordinary plane by
Hilbert. If both are ideal, they determine the unique ideal plane by con-
struction. Suppose one is ordinary and one ideal. The ideal line determines
a parallel class of ordinary planes. Since the ordinary line intersects the ideal
line, the ordinary line must belong to one of these parallel planes. But it can
only belong to one so this is the unique plane the two lines determine.

Theorem 32. A line and a plane not containing the line meet in one and
only one point.

Proof. The ideal plane contains all ideal lines so line and plane cannot both be
ideal. If both are ordinary, then the set of ordinary points in their intersection
is either empty or a single point. If empty, then the line is parallel to a single
parallel class of lines in the plane so the line and plane share the single ideal
point associated to that class of parallels. If the intersection contains a single
ordinary point, the given line cannot be parallel to any lines in the plane so
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there can be no more than the single ordinary point in the intersection of the
line and plane.

If the line is ordinary and the plane ideal, the line intersects the plane
in the unique ideal point associated to its parallel class. If the line is ideal
and the plane ordinary, then consider the parallel class of planes associated
to the line. The given plane is not in that parallel class so intersects any of
the planes in it in an ordinary line. This line belongs to a unique parallel
class and the associated ideal point must be the unique point of intersection
of the ideal line and the ordinary plane.

Theorem 33. A line and a point not on the line determine a unique plane.

Proof. If both are ordinary, the result follows by Hilbert. If both are ideal,
they determine the unique ideal plane. If the point P is ideal and the line
� ordinary, consider the ideal line determined by P and the ideal point of
�. This ideal line determines a parallel class of ordinary planes exactly one
of which contains �. This is the unique plane determined by � and P . Now
suppose P is ordinary and � ideal. There is exactly one ordinary plane in the
parallel class determined by � that contains P .

Exercise Prove that if two points lie in a plane, the line they determine
lies in that plane.

Now we see that we need not distinguish between ordinary and ideal
points, lines, and planes in projective 3-space.

2.4.3 Duality in Projective 3-Space

The duality principle applies to all projective spaces, not just real projective
spaces, that is, those based on R, like RP 2 and RP 3. In projective 3-space,
points and planes are dual, while lines are self-dual. If the dimension of
a point is 0, of a line is 1, a plane 2, etc. then duality in projective n-
space allows us to switch points with n − 1-dimensional objects, lines with
n−2-dimensional objects, etc. In other words, the switch is allowed between
objects when the sum of their dimensions is one less than the ambient space.

Exercise

1. Arrange the theorems in the previous subsection in dual pairs.
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2. Write the dual for each of the following, as statements or objects in
projective 3-space.

(a) the set of points on a line

(b) the set of points on a plane

(c) the set of planes containing a given line

(d) the set of lines passing through a common point

(e) the set of lines lying on a given plane

(f) the set of planes in space

(g) the set of lines in space

(h) the set of all points in space

2.4.4 The Theorem of Desargues

Definition 14. Two triangles ΔABC, ΔA′B′C ′ are perspective from a point
O provided AA′, BB′, CC ′ are concurrent at O. In this case, O is a center of
perspectivity. The triangles are perspective from a line � provided the points
AB ∩ A′B′ = P1, AC ∩ A′C ′ = P2, and BC ∩ B′C ′ = P3 are collinear. In
this case, � is an axis of perspectivity.

Theorem 34 (Desargues). In projective 3-space, two triangles are per-
spective from a point if and only if they are perspective from a line.

Proof. For the first part of the proof, we assume that the two triangles are
not coplanar. Say ΔABC determines a plane α and ΔA′B′C ′ determines α′.

If ΔABC and ΔA′B′C ′ are perspective from a point O since AA′ and
BB′ intersect, they determine a plane which contains AB and A′B′ which
thus intersect in a point P1. Note that P1 ∈ α ∩ α′. Similarly, AA′ and
CC ′ determine a plane so that AC ∩ A′C ′ = P2 with P2 ∈ α ∩ α′. Finally,
BC ∩ B′C ′ = P3 ∈ α ∩ α′. It follows that P1, P2, P3 lie on the line α ∩ α′.

Next suppose ΔABC and ΔA′B′C ′ are perspective from a line. As in-
tersecting lines, AB and A′B′ determine a plane π in which AA′ and BB′

intersect. Similarly, AA′ and CC ′ intersect in a plane π′; and BB′ and CC ′

intersect in a third plane π′′. Since A, B, C are noncollinear, the planes
π, π′, π′′ intersect in a point, O. Now AA′ = π ∩ π′, BB′ = π ∩ π′′, and
CC ′ = π′ ∩ π′′. It follows that the three lines AA′, BB′, CC ′ are concurrent
at O.
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Figure 30: The theorem of Desargues is true in Euclidean space as long as
all the intersections occur.

For the second part of the theorem, assume that ΔABC and ΔA′B′C ′

lie in a plane π. Suppose the two triangles are perspective from a point
O ∈ π. Let � be a line through O, not lying in π. Choose P , P ′ distinct
points on �, both different from O. The lines PA and P ′A′ must intersect in
a point A′′ since they lie in the plane determined by intersecting lines AA′

and PP ′. Produce points B′′, C ′′ in a similar manner. Notice that the points
A′′, B′′, C ′′ cannot be collinear: if they were, the planes determined by P
and each of the three sides of the triangle ΔABC would coincide, implying
that A, B, C were collinear. We thus have a new triangle ΔA′′B′′C ′′. By
construction, ΔABC and ΔA′′B′′C ′′ are perspective from P , while ΔA′B′C ′

and ΔA′′B′′C ′′ are perspective from P ′. The line of perspectivity in both
cases is the intersection of π with the plane of ΔA′′B′′C”. This gives us that
A′′B′′ ∩ AB and A′′B′′ ∩ A′B′ fall on this line of intersection. Since A′′B”
meets this line just once, AB and A′B′ intersect there as desired. The other
sides of the two triangles meet on this line as well, for the same reasons.

We leave the last part of the proof to the reader.

Exercise Figure 30 shows what is called a Desarguean configuration, an
arrangement of ten points. Show that any one of the ten points can serve as
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the center of perspectivity for a Desarguean configuration with the same
ten points.

3 Affine Planes

The most familiar algebraic structure is possibly the vector space, in partic-
ular, Rn. In this section, our goal is to understand how we can use vector
spaces to model Euclidean and projective spaces. The first thing is to es-
tablish what points, lines, and planes should be and then, that they satisfy
Hilbert’s axioms.

We take vectors to play the role of points. Playing the role of lines, we
have cosets of one dimensional spaces.

Definition 15. Let V be a vector space, W a subspace of V . Let u ∈ V .
The W -coset determined by u is u+W = {u+ w | w ∈W}.

Denote the span of a set of vectors {v1, . . . , vn} by < v1, . . . , vn >.
The results that follow are from [5], starting with Lemma 3.2.1, p. 101.

Lemma 5. For any vector space V with subspaces W,W ′, and vectors u, u′ ∈
V ,

1. u+W = u′ +W if and only if u− u′ ∈W ;

2. u+W ∩ u′ +W is empty or u+W = u′ +W ;

3. if dimV = 2 and dimW = dimW ′ = 1, u+W ∩u′ +W ′ = if and only
if W = W ′.

Proof. 1. u+W = u′+W if and only if for every w1 ∈W , there is w2 ∈W
with u+ w1 = u′ + w2 which is true if and only if u− u′ ∈W .

2. If v ∈ u+W ∩ u′ +W , then there are w1, w2 ∈ W with v = u+ w1 =
u′ + w2, which is true only if u− u′ ∈W , i.e., u+W = u′ +W .

3. If W =< w > and W ′ =< w′ >, then W �= W ′ means precisely that
{w,w′} is a basis for V . In this case, suppose u = αw + βw′ and u′ =
α′w+β ′w′. Take v = α′w+βw′ and notice that u−v = (α−α′)w ∈W ,
and u′ − v = (β ′ − β)w′ ∈W ′. It follows that v ∈ u+W ∩ u′ +W ′.
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Lemma 6. Two distinct vectors v, v′ determine a unique 1-dimensional
coset in V .

Proof. Let W =< v−v′ >. Since v−v′ ∈W , v′+(v−v′) = v ∈ v′+W so by
Lemma 5.1, v+W = v′+W . Suppose u+W ′ is another one dimensional coset
containing v and v′. The again by Lemma 5.1, v +W ′ = v′ +W ′ = u+W ′,
which implies that v − v′ ∈W ′, thus that W ′ =< v − v′ >= W .

Lemma 7. Two one dimensional cosets intersect in at most one point.

Proof. Suppose v, v′ ∈ u + W ∩ u′ + W . Then v = u + w1, some w1 ∈ W
and v′ = u + w2, some w2 ∈ W so that v − v′ ∈ W . Similarly, v − v′ ∈ W ′

implying either v = v′ or < v − v′ >= W = W ′.

Definition 16. A field is a set F with at least two distinct elements, 0 and
1, together with two commutative and associative binary operations ⊕ and �
such that the following axioms are satisfied.

1. 0 is an identity for ⊕, i.e., 0 ⊕ a = a for all a ∈ F .

2. For every a ∈ F , there is a′ ∈ F such that a⊕ a′ = 0.

3. 1 is an identity for �, i.e., 1 � a = a for all a ∈ F .

4. Every element a ∈ F , except 0, there is â ∈ F such that a� â = 1.

5. For all a, b, c ∈ F , a� (b⊕ c) = (a� b) ⊕ (a� c).

Example 1. R is an example of an ordered field because aside from satisfy-
ing the axioms for a field, it has an ordering that respects the field operations
of addition and multiplication. In particular, a < b implies that a+ c < b+ c
and if 0 < a, then b < c implies that ab < ac.

Our favorite examples of fields besides R are Q, C and the integers modulo
p, as in the next example.

Example 2. Let Zp = {0̄, 1̄, . . . , p− 1} designate the set of residue classes
of integers mod p. That is, 0̄ = {kp | k ∈ Z}, 1̄ = {1 + kp | k ∈ Z},
2̄ = {2 + kp | k ∈ Z}, etc. Let ā⊕ b̄ := a + b and let ā� b̄ = ab. We leave it
as an exercise to verify that ⊕ and � are well-defined and that they satisfy
the axioms for a field.
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Now we are free to consider vector spaces with arbitrary fields of scalars.
Unless noted to the contrary, we assume V is a vector space defined over
some field F .

Consider that if u+W is a one dimensional coset in V and v ∈ u+W , then
v − u ∈ W implies that W =< v − u >. It follows that for any v′ ∈ u+W ,
there is α ∈ F such that v′ = u+α(v−u) = (1−α)u+αv. In other words, we
can coordinatize the points on the line � = u+W by (α, β), where α, β ∈ F
satisfy α + β = 1. These α and β are then the affine line coordinates for
v′ with respect to v and u. On the other hand, for any α ∈ F , there is a
point (1 − α)u+ αv ∈ u+W : the set of points on a line in V has the same
cardinality as F . In particular, since F must have at least two elements,
every line in V must have at least two distinct points.

We have proved the following.

Theorem 35. Let F be a field with at least three elements. Let V be a
two dimensional vector space over F . The collection of vectors and one
dimensional cosets of V form the points and lines of the affine plane Π(F ),
which satisfies Hilbert’s axioms of incidence for a plane.

In the finite fields we have seen, there is k such that

k times︷ ︸︸ ︷
1 ⊕ . . .⊕ 1 = 0.

This also happens for certain infinite fields, the study of which extends be-
yond the scope of this course. When there is one such k, there must be a
minimal value of k for which it is true. That minimal k is called the charac-
teristic of F . When there is no such k, the field is said to have characteristic
0. R, C, and Q all have characteristic zero. Zp has characteristic p. It is not
difficult to verify that the characteristic of a field is either zero or a prime
number.

Assume now that the characteristic of F is not two. Then in F we have
1⊕ 1 = 2 �= 0 so that 2 has an inverse with respect to �, multiplication. For
convenience, designate this inverse 1/2. Let u, v ∈ V = F 2. Then we can
define the midpoint of u and v to be (1/2)(u+ v).

We have u, v ∈ � means � = u+ < v − u > so that αu + βv ∈ � for all
α, β ∈ F with α⊕β = 1. Does 1/2⊕1/2 = 1 in any field F with characteristic
different from 2? To see that the answer is yes, we invoke the distributive
law to get

(1/2 ⊕ 1/2) = 1/2 � (1 ⊕ 1) = 1/2 � 2 = 1.
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Next, we want to verify that in Π(R), (1/2)(u+ v) is the same distance from
u as from v. Writing u = (u1, u2), v = (v1, v2) we have (1/2)(u + v) =
((u1 + v1)/2, (u2 + v2)/2). Using the distance formula to find the distance
from u to (1/2)(u+ v), we get

d(u, (1/2)(u+ v)) =
√

(1/2(u1 + v1) − u1)2 + (1/2(u2 + v2) − u2)2

=
√

(1/2(v1 − u1))2 + (1/2(v2 − u2))2 = 1/2 d(u, v).

By symmetry, the distance is the same from u to (1/2)(u+ v).

Definition 17. A triangle in Π(F ) is a set of 3 noncollinear points and the
lines they determine.

Lemma 8. {u, v, w} ⊂ Π(F ) is a triangle if and only if {v − u, w − u} is a
basis for F 2.

Proof. We leave the proof as an exercise.

Lemma8 shows that if we fix any triangle in Π(F ), {u, v, w}, and an
ordering of its vertices, then for each z ∈ Π(F ), there are unique λ, μ ∈ F
with

z − u = λ(v − u) + μ(w − u).

This gives us z = (1 − (λ + μ))u + λv + μw. It follows that every point of
Π(F ) has a unique triple of scalars (α, β, γ) where z = αu+ βv + γw, where
α+β+γ = 1. These are the affine coordinates of z with respect to {u, v, w}.
Exercise
Check that when Π(F ) = R2 and {u, v, w} = {(0, 0), (1, 0), (0, 1)}, the affine
coordinates of a point (λ, μ) are (1 − (λ+ μ), λ, μ).

We reconsider Theorem 21 in Π(F ).

Exercise
Let {u, v, w} be a triangle in Π(F ). A median of the triangle is a line
determined by one vertex and the midpoint of the line determining the
opposite side. Verify that the medians of the triangle are

m1 = u+ < u− (1/2)v − (1/2)w >
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m2 = v+ < v − (1/2)w − (1/2)u >

m3 = w+ < w − (1/2)u− (1/2)v > .

Now suppose the characteristic of F is 3. To make it easier to think about,
say F = Z3. In F we have 2 ⊕ 1 = 0 so −1 = 2 and 1 = −2. Referring to
the exercise above, let {u, v, w} be a triangle in Π(F ) with medians m1, m2,
m3. Letting z = u+ v+w, we can rewrite m1 = u+ < z >, m2 = v+ < z >,
m3 = w+ < z >. It follows that the medians are either identical or parallel.
We claim they are parallel.

Note that z = u + v + w = −2u + v + w = (v − u) + (w − u). If
m1 = m2, there is α ∈ F with u − v = α(v − u) + α(w − u). Note that
u− v = 2(v− u) + 0(w− u). Since {v− u, w−w} is linearly independent, α
is unique, implying that α = 2 and α = 0, impossible as characteristic of F
is 3. It follows that the medians are distinct and parallel.

Theorem 36. Let F be a field with characteristic not 2 or 3. Then the
medians of a triangle in Π(F ) are concurrent.

Proof. Let {u, v, w} be a triangle in Π(F ). Let z ∈ m1 and say (α, β, γ) are
the unique affine coordinates determined by our triangle with vertices in the
order given. We also have affine line coordinates for z determined by m1:
z = u+ δu− (1/2)δv− (1/2)δw. Note that z = (1+ δ)u− (1/2)δv− (1/2)δw.
Since 1+δ−(1/2)δ−(1/2)δ = 1, it follows by uniqueness of affine coordinates
that α = 1 + δ, β = (−1/2)δ, γ = (−1/2)δ. Similarly, z belongs to m2 if
and only if there is ξ ∈ F with α = (−1/2)ξ, β = 1 + ξ, γ = (−1/2)ξ. We
conclude that m1 and m2 intersect if and only if the following equations can
be solved simultaneously.

(−1/2)ξ = 1 + δ
1 + ξ = (−1/2)δ

(−1/2)ξ = (−1/2)δ

By the last equation, ξ = δ. From the first equation ξ = −2/3 = δ. The
affine coordinates of the unique point of intersection of m1 and m2 is then
(1/3, 1/3, 1/3). We leave the rest of the proof to the reader.
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Exercises

1. Complete the proof of the last theorem by verifying that the point
with affine coordinates (1/3, 1/3, 1/3) lies on m3.

2. Consider the triangle {(0, 0), (1, 0), (0, 1)} ⊂ Π(Z5). What is the point
of concurrency of its medians?

3. Let {u, v, w} be a triangle in Π(F ). Let x, y, z be points in Π(F )
with affine coordinates given respectively by (α1, β1, γ1), (α2, β2, γ2),
(α3, β3, γ3). Show that x, y, z are collinear if and only if

det

⎛
⎝ α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

⎞
⎠ = 0.

3.1 The Affine Group

Definition 18. Let G be a set of mappings on a set S. Suppose e ∈ G is
the identity mapping, that is, e(s) = s for all s ∈ S. If G is closed under
function composition, and if every element in G has an inverse in G then G
is a group.

The most fundamental example of a group is the set of permutations on
any set. The best way to understand this is to write out all the permutations
on a set of three objects {a, b, c} and see what happens if you start composing
them. In some sense, all groups are groups of permutations. This is the
content of Cayley’s Theorem, one of the big theorems you learn in a beginning
course in abstract algebra.

Groups are a critical element in the modern study of geometry.

Example 3. The set of invertible linear transformations on any vector space,
V , is a group designated GL(V ). This is easy to check and the reader is
urged to do so. When dimF V = n, GL(V ) can be identified with the set of
nonsingular n × n matrices with entries in F . In this case we often write
GL(V ) = GLn(F ).

Example 4. A vector space V is a group which we also designate V . In
what sense is a vector space a collection of mappings on a set? For any
v ∈ V , define tv : V → V by tv(u) = v + u, for all u ∈ V . We then have
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tv◦tw(u) = tv(tw(u)) = tv(w+u) = v+w+u = tv+w(u) so that tv ◦tw = tv+w.
The identity mapping is tθ, where θ is the zero vector. The inverse of tv is t−v.
Notice that unlike GL(V ), V is a commutative group, that is, while function
composition is generally not commutative, tv ◦ tu = tv+u = tu+v = tu ◦ tv.
Any group in which the operation is commutative like this is called an abelian
group.

Definition 19. Let V = F 2. Fix T ∈ GL(V ) and v ∈ V . Define A(T, v) :
V → V by A(T, v)(u) = T (u) + v, for all u ∈ V . The affine group Aff(V ) is
the set {A(T, v)| T ∈ GL(V ), v ∈ V }.

As a set, Aff(V ) is the Cartesian product of GL(V ) and V , in other
words, an element of Aff(V ) can be identified with an ordered pair (T, v), T ∈
GL(V ), v ∈ V . There are actually many different ways to define “products”
of groups. The affine group is an example of what is called a semi-direct
product of GL(V ) and V .

Lemma 9. The affine group maps lines to lines in Π(F ).

Proof. Let u + αw ∈ � = u+ < w >. For any T ∈ GL(V ), v ∈ V , we have
A(T, v)(u+αw) = T (u+αw)+v = T (u)+αT (w)+v ∈ v+T (u)+ < T (w) >.
Since T is an invertible linear transformation, T (w) cannot be zero if w �= θ,
thus the image of the line � under A(T, v) is a line v + T (�).

It is clear that if x ∈ � ∩ �′, where � and �′ are lines, then for any affine
transformation A(T, v), A(T, v)(x) ∈ A(T, v)(�) ∩ A(T, v)(�′).

Lemma 10. The affine group maps triangles to triangles in Π(F ).

Proof. By Lemma 8, {x, y, z} is a triangle in Π(F ) if and only if {y−x, z−x}
is a basis for V . Let A(T, v) ∈ Aff(V ). We have A(T, v){x, y, z} = {T (x) +
v, T (y) + v, T (z) + v}, and since T ∈ GL(V ),

{T (y − x), T (z − x)} = {T (y) − T (x), T (z) − T (x)} = {T (y) + v − (T (x) + v), T (z) + v − (T (x) +

is also a basis for V . Lemma 8 implies that A(T, v){x, y, z} is a triangle.

Theorem 37. Let � and �′ be lines in Π(F ). There is an affine transforma-
tion A(T, v) such that A(T, v)(�) = �′. If {x, y, z} and {x′, y′, z′} are trian-
gles, there is a unique A(T, v) ∈ Aff(V ) with A(T, v)({x, y, z}) = {x′, y′, z′}.
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Proof. Let � = x+ < y > and �′ = x′+ < y′ > be distinct lines in Π(F ).
Choose T ∈ GL(V ) so T (y) = y′. Let v = x′ − T (x). Then A(T, v)(x+ <
y >) = T (x) + v+ < T (y) >= x′+ < y′ >.

Given triangles {x, y, z} and {x′, y′, z′}, there is a unique element T ∈
GL(V ) that maps {y − x, z − x} to {y′ − x′, z′ − x′}. Consider that

A(T,−T (x) + x′){x, y, z} = {x′, T (y) − T (x) + x′, T (z) − T (x) + x′} = {x′, y′ − x′ + x′, z′ − x′ + x

If A(T, v)(x) = T (x) + v = x′, then v is uniquely determined. The result
follows.

Going back to our definition of “group,” we see it is easy to verify that
if G is a group of mappings on a set S, and if S ′ ⊂ S, then the set H ⊂ G
of elements in G that map S ′ → S ′ forms a group inside G. Thus, H is a
subgroup of G. Elements of H are said to leave S ′ invariant.

Let H be the subgroup of Aff(V ) that leaves a given triangle invariant,
that is, that maps the triangle to itself with a permutation of its vertices.
The collection of H cosets is {g ◦ h|g ∈ Aff(V ), h ∈ H}. These can actually
serve as triangles. This is typical of the Erlangen Program of Felix Klein, a
hugely influential idea described in a lecture of Klein’s dating to 1872. At
that point in history, geometry was in a state of disarray. The notion that
groups could and should serve as a unifying force in geometry turned out to
be profound. It remains at the heart of a great deal of mathematics being
discovered today.

Exercises

Define a complete quadrilateral in Π(F ) to be a set of four points, no three
of which are collinear, and the lines they determine. The four points are the
vertices of the quadrilateral. A quadrilateral {u, v, w, x} is a parallelogram
provided its vertices can be relabeled if necessary so that
u+ < v − u > ‖x+ < w− x > and u+ < x− u > ‖v+ < w− v >. The lines
u+ < w − u > and v+ < x− v > are the diagonals.

1. Prove that a quadrilateral {u, v, w, x} is a parallelogram if and only if
one of its vertices is the sum of the other two minus the third.

2. Let {u, v, w, x} be a parallelogram in Π(F ), where the characteristic of
F is not two. Show that the diagonals of the parallelogram bisect one
another.
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3. Prove that in an affine plane over a field of characteristic not two,
every parallelogram is the image under some affine transformation of
{(0, 0), (2, 0), (2, 2), (0, 2)}.

4. Consider Π(C), the affine plane over C. Let ϕ(z1, z2) = (z̄1, z̄2), where
z̄ is the complex conjugate. (See below for more details, if this is
unfamiliar.) Prove that ϕ sends lines to lines and triangles to triangles
but that it is not an affine transformation.

4 The Quaternions

This section represents something of a digression. Our objective is to describe
how the quaternions define rotations in R3. By the end of the section, we
should see that it is not as much of a digression as it first appears. The
quaternions as rotations turn out to be an instance of a group acting on the
objects in a geometry. In the next section, we will take up the same topic in
the real projective plane.

Hamilton discovered the quaternions after an arduous search inspired by
the beautiful connection he discovered between the complex numbers and the
geometry of R2. Recall that the complex numbers, C = {a+bi | a, b ∈ R} can
be identified with the points in R2 = {(a, b) | a, b ∈ R}. This is significant
because it allows C and R2 to borrow structure from one another. To see this,
note first that we can multiply elements of C simply using the distributive
law and the definition of i via i2 = −1. Multiplication is commutative (easy
to check) and associative (tedious to check.) Recall further that the complex
conjugate of z = a + bi ∈ C is z̄ = a − bi. We then have zz̄ = a2 + b2, a
nonnegative real number. This gives us the modulus or norm or absolute value
of z ∈ C, ‖z‖ =

√
a2 + b2. Notice that ‖z‖ is the distance from the associated

point in R2 to the origin. We define division in C by z/w = zw̄/‖w‖2. This
makes sense whenever w �= 0 and now we have that C is a field.

Consider the collection of unit complex numbers {z ∈ C | ‖z‖ = 1}. Note
that this is precisely the unit circle in R2, usually designated S1. S1 is the
one sphere, that is, the sphere which is one dimensional. S1 is not flat, it
is not a vector space, so you don’t have a precise idea of what “dimension”
means for such an object. A safe way to think about it is as follows: the
dimension of the object is the dimension of its tangent space. The tangent
space to a circle is a line, which is one dimensional, therefore the dimension
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of S1 is one.
If z ∈ S1, then z = cos θ+ i sin θ for some θ. In fact, it is an easy exercise

in trigonometry to show that if w ∈ C, w = ‖w‖(cosϕ + i sinϕ) . With z
and w in hand, we have

z.w = ‖w‖(cos θ cosϕ− sin θ sinϕ) + i(sin θ cosϕ+ cos θ sinϕ) =

‖w‖(cos(θ + ϕ) + i sin(θ + ϕ)).

We see then that multiplication by a unit complex number effects a rotation
on R2: it does not change the distance from a point to the origin but it does
change its angle.

Hamilton wanted to extend this story to R3 and came up empty handed
until he realized, at a famous moment when he was crossing a bridge in
Dublin, that he needed to view R3 as sitting inside a four dimensional analog
to C, the quaternions H.

Define H = {q = a + bi + cj + dk | a, b, c, d ∈ R} where i, j, k enjoy no
relations among themselves except for the following and their consequences:

i2 = j2 = k2 = −1

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j.
Using these relations and the distributive law, we can define multiplication
of quaternions. Obviously multiplication is not commutative so H is not a
field. It does, however, enjoy all the other properties of a field so is a skew
field.

As in C, we have conjugation in H given by q̄ = a− bi − cj − dk. Then
qq̄ = a2 + b2 + c2 + d2 and the modulus of q is ‖q‖ =

√
qq̄. Again, this allows

us to define division: q/w = qw̄/‖w‖2, for q, w ∈ H.
H can be identified with R4. Making the identification, we write q =

a + bi + cj + dk = (a, b, c, d). The pure quaternions are those of the form
(0, b, c, d). Notice that we can designate any quaternion by (a,v), a ∈ R,
v ∈ R3. This is nice because it lets us write a rather involved looking
formulation that actually helps us prove some results.

If q = (a,v), and w = (b,u) are in H, then using the distributive law you
should have no trouble verifying that

qw = (ab− v · u, au + bv + v × u).
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Here v · u is the usual dot product in R3, that is, for v = (v1, v2, v3) and
u = (u1, u2, u3), v · u = v1u1 + v2u2 + v3u3. v × u is likewise the usual cross
product in R3, where i, j, k now play the roles of the standard unit vectors
in R3.

v × u = det

⎡
⎣ i j k
v1 v2 v3

u1 u2 u3

⎤
⎦

We can identify R3 with the pure quaternions and then the unit pure
quaternions become S2, the 2-sphere, that is, the surface of a ball. The
unit quaternions can be identified with S3, the 3-sphere, an object that has
inspired extensive research for over one hundred years.

Where are the rotations? Let Rθ,v be the rotation of R3 about the axis
determined by the unit vector v, through the angle θ. Notice that there are
two choices for v. If it makes things any easier we can always insist that if
v points “up”, then the rotation is counterclockwise.

The mapping u �→ quq−1 is called conjugation by q. Conjugation comes
up frequently in group theory and in geometry.

Theorem 38. Rθ,v is effected by conjugating any element of R3, viewed as
a pure quaternion, by (cos(θ/2), sin(θ/2).v).

To prove/understand the theorem, the first thing we do is verify that
conjugation maps pure quaternions to pure quaternions. For u = (0,u) and
q = (a,v),

quq−1 = (a,v)(0,u)(a,−v) =

(−v · u, au + v × u)(a,−v) = (−av · u + av · u, . . . ) = (0, . . . )

where it doesn’t matter what . . . is, since we just wanted to show that u is
mapped to another pure quaternion.

An obvious check to whether or not q = (cos(θ/2), sin(θ/2).v) really is
a rotation of R3 with axis < v > is to see what qvq−1 gives us. Bearing in
mind that v is a unit vector, we have v · v = 1. Also, v × v = 0, the zero
vector. Then

qvq−1 = (cos(θ/2), sin(θ/2).v)(0,v)(cos(θ/2),− sin(θ/2).v) =
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(− sin(θ/2), cos(θ/2).v)(cos(θ/2),− sin(θ/2).v) =

(− sin(θ/2) cos(θ/2) + sin(θ/2) cos(θ/2), cos2(θ/2).v + sin2(θ/2)v) = (0,v).

This proves that v is fixed under conjugation by q. This is promising, but
not a proof.

To finish the proof, we think about a matrix representation of Rθ,v. Ma-
trix representations depend on choice of ordered basis. A good basis to use
here would be {v,u,w} where {v,u,w} form a right-handed coordinate sys-
tem of orthonormal vectors. This means that all three basis elements are unit
vectors, that they are orthogonal, in other words, have zero dot product, and
that v × u = w, u × w = v, and w × v = u. In short, we can think of v,
u, w as arranged like the unit vectors in the x, y, z directions in R3. This
allows us to visualize Rθ,v as a counterclockwise rotation in the yz plane.
The matrix representation is then⎡

⎣ 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤
⎦

To see this, think of where the unit vectors in the y and z direction are
mapped under the rotation. In particular, we have

v �→ v, u �→ cos θ.u + sin θ.w, w �→ − sin θ.u + cos θ.w.

Now we check:

quq−1 = (cos(θ/2), sin(θ/2).v)(0,u)(cos(θ/2),− sin(θ/2).v) =

(0, cos(θ/2).u + sin(θ/2).w)(cos(θ/2),− sin(θ/2).v) =

(0, cos2(θ/2)u + cos(θ/2) sin(θ/2)w − sin(θ/2) cos(θ/2).u× v − sin2(θ/2)w × v) =

0, (cos2(θ/2) − sin2(θ/2).u + 2 sin(θ/2) cos(θ/2).w) = (0, cos θ.u + sin θ.w).

We leave it as an exercise to show that conjugation by q maps w �→
− sin θ.u + cos θ.w. That completes the proof of the theorem.
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Exercises

1. Show that conjugation by q ∈ H, q �= 0, defines a linear transformation
on R3.

2. In the proof of Theorem 38, why did we not have to show that every
vector in R3 underwent a rotation?

3. What conditions would we have to impose on q to get that conjugation
by q on pure quaternions preserves norm? In other words, when does
qwq−1 have the same norm as w, for q ∈ H, w pure quaternion?

4. Find the explicit expression for q to effect the rotation in R3 through
30◦, about an axis that is normal to the plane x+ y + z = 0. Take the
rotation that is counterclockwise when viewed along the axis from the
first octant. Use q to determine where the point (−1, 1, 2) is mapped
to under the rotation. Give exact coordinates.

5 The Real Projective Plane

We consider here one model for the real projective plane, RP 2.

Theorem 39. Let F be any field and consider the vector space V = F 3. By
defining a projective point as a 1-dimensional subspace of V , a projective line
as a 2-dimensional subspace of V , and incidence as nonempty intersection,
we get a set, Π(V ), that satisfies the axioms for a projective plane.

Proof. We have four axioms to prove: the two that show nontriviality and
the two incidence axioms. Since F contains at least two elements, 0 and 1,
we have the following distinct points in Π(V ): < (1, 0, 0) >, < (0, 1, 0) >,
< (0, 0, 1) >, and < (1, 1, 1) >. We claim that no three of these are collinear,
that is, incident to the same line.

The line determined by < (1, 0, 0) > and < (0, 1, 0) > is the span of
{(1, 0, 0), (0, 1, 0)}, that is, the set of all vectors in V of the form (α, β, 0),
α, β not both zero in F . Since this set contains neither (0, 0, 1) nor (1, 1, 1),
neither of the latter points is collinear with < (1, 0, 0) > and < (0, 1, 0) >.
A similar argument applies to the other sets of three vectors. This verifies
that Π(F ) has four points, no three of which are collinear.
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Next we consider a line in Π(F ) and verify that it has three points.
Every line in Π(F ) is determined by a linearly independent set of vectors
{u, v} ⊂ F 3. Note that the span of this set contains lines < u >, < v > and
< u+ v >. It is easy to verify that these are distinct, thus, they correspond
to three distinct points on the line determined by u and v.

Next, let � be determined by the span of {u, v} and �′ be determined by
the span of {w, x}. Since planes through the origin in F 3 must intersect in
a unique line through the origin, � and �′ intersect in a unique projective
point. Similarly, if < u > and < v > determine distinct points in Π(F ), then
{u, v} is a linearly independent set, thus spanning a 2-dimensional subspace
of F 3, which determines the unique line in Π(F ) determined by < u > and
< v >.

There are other models for RP 2. One that can be useful for visualization
is the unit sphere, S2, with antipodal points identified. In other words, a
point of RP 2 is realized as the pair of endpoints of a diagonal of the unit
sphere in R3. How is a line realized with this model? To understand this
part, notice that for a pair of nonantipodal points on the sphere, there are
many circles on the surface of the sphere that contain those points but there
is only one great circle that contains those points. A way to think of this is
to realize that you get a circle on the sphere precisely by intersecting S2 with
a plane. When you intersect S2 with a plane through the origin, you get a
great circle. If you pick two nonantipodal points on S2 and the origin, this is
a set of three noncollinear points, thus uniquely determines a plane through
the origin. This plane, in turn, determines a unique great circle on S2, which
must then contain the antipodes of both original points. This great circle
identifies the projective line determined by the two projective points.

This brief discussion shows right away how the S2 model and the subspace
model interact. In particular, a one dimensional subspace of R3 intersects
S2 in a unique pair of antipodal points. This is a bijective correspondence
between points in the two models.

5.1 Homogeneous Coordinates

Designate a projective point now as [u], that is, let [x, y, z] be the projective
point corresponding to the nonzero vector u = (x, y, z). If z �= 0, then
[u] = [x, y, z] = [x/z, y/z, 1]. In particular, the coordinates of [u] are defined
only up to nonzero multiples, so are called homogeneous coordinates.
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Homogeneous coordinates are especially convenient for localizing, that
is, for thinking of points that are somehow “near” one another in RP 2 as
belonging to an affine space.

Definition 20. The line at infinity, �∞ ⊂ Π(F ), is the projective line cor-
responding to the space {(a, b, 0)| a, b ∈ F}.

We leave the verification of the next theorem to the reader.

Theorem 40. The mapping ϕ : Π(F ) → Π(F ) given by ϕ(a, b) = [a, b, 1] is
a bijection onto the set Π(F ) \ �∞.

This gives us a visual aid for understanding Π(F ) as a subset of Π(F ).
The plane z = 1 intersects all lines through the origin in F 3 except those
lying in the xy-plane. In other words, < u >=< (a, b, c) > is a line in F 3 not
lying in the xy-plane if and only if c �= 0. Its intersection with the plane at
z = 1 is the image of the affine point (a/c, b/c) under ϕ. Now we can think
of projective points [a, b, 1] as being near each other in the sense that they
comprise an affine space.

Our choice of projective line to designate �∞ is arbitrary: we can excise
any line from Π(F ) to get a copy of Π(F ), that is a localization.

The first six exercises that follow are taken from [7].

Exercises

1. Describe the line in Π(R), determined by the following pairs of points.

(a) [1, 1, 2] and [2, 3 − 1]

(b) [0, 2, 1] and [−1, 1, 1]

(c) [2, 0, 1] and [−1, 1, 1].

(d) [1, 2, 0] and [2, 3, 4]

(e) [1, 2, 0] and [2, 3, 0]

2. Using the mapping described in the last theorem, find the preimage in
Π(R), if there is one, for each of the following projective points.

(a) [2, 3, 1]

(b) [−2,−3, 1]
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(c) [−2,−3,−1]

(d) [2, 4, 6]

(e) [2,−3,−1]

(f) [−1, 2, 0]

(g) [1/2, 1/3, 6]

(h) [1, 0, 0]

3. The following pairs of equations describe lines in RP 2. Find the pro-
jective point where each pair intersects.

(a) x+ y + z = 0, and −x+ 2y + z = 0

(b) 2x− y + 3z = 0 and −x+ z = 0

(c) x = 0 and y = 0

(d) x = 0 and z = 0

(e) y = 0 and z = 0

(f) −x+ 5y − z = 0 and 2x+ 7y − 3z = 0

4. Find the image of each of the following lines in Π(R) under the mapping
ϕ given in the theorem above.

(a) x = 7

(b) y = 8

(c) x+ y = 4

(d) −x+ 3y + 18 = 0

(e) 2x− 7y = 21

(f) −y + 3x+ 5 = 0

5. Determine whether each of the following sets three projective lines is
concurrent and find the points of concurrency.

(a) x+ y + z = 0, 2x− 3y + z = 0, −x+ 7y − 6z = 0

(b) x+ 2y − z = 0, 4x− y = 0, z = 0

(c) 2x− y + 3z = 0, −4x+ 2y + z = 0, x− (1/2)y + z = 0
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6. Which of the following sets of projective points is collinear? For those
that are, describe the line.

(a) [−1,−1, 1], [3, 3, 3], [1/2, 1/2, 4]

(b) [−2, 3, 0], [1,−2, 1], [2, 0, 0]

(c) [1, 1,−1], [2, 0,−2], [0, 1, 2]

7. Prove that {[u], [v], [w]} ⊂ Π(F ) is a triangle if and only if {u, v, w} is
a basis of F 3.

5.2 The Projective Group

Recall that GL3(F ) is the group of nonsingular linear transformations from
F 3 to itself. GL3(F ) can be identified with 3 × 3 matrices over F with
nonzero determinant. At first blush, GL3(F ) seems a natural choice for a
group of bijections on Π(F ) but we see trouble right away when we notice,
for instance, that both I3 and −I3 fix all projective points. This means that
on Π(F ), I3 and −I3 define the same mapping. Indeed, for any α ∈ F , αI3 is
the identity mapping on Π(F ). This suggests that we consider the following
as the natural group of bijections on Π(F ).

Definition 21. The projective group, PGL3(F ), is the collection of map-
pings T̄ : Π(F ) → Π(F ) where T̄ ([u]) := [T (u)] for T ∈ GL3(F ).

We put the cart before the horse with this definition: it really only makes
any sense after we prove the following theorem.

Theorem 41. If T ∈ GL3(F ), then T̄ defined by T̄ [u] = [T (u)] is a well-
defined bijective mapping on Π(F ). Moreover, Ī3 is the identity mapping on
Π(F ), T̄ ◦ S̄ = T ◦ S, , and T̄−1 = T−1.

Proof. We first must show that if [u] = [v], then T̄ [u] = T̄ [v] but that is
immediate because [u] = [v] if and only if there is nonzero α ∈ F with
v = αu, in which case

T̄ [u] = [T (u)] = [αT (u)] = [T (αu)] = [T (v)] = T̄ [v].

The statement about Ī3 is clear. Let T and S belong to GL3(F ). For any
[u] ∈ Π(F ), we have

T̄ ◦ S̄[u] = T̄ [S(u)] = [T (S(u))] = [T ◦ S(u)] = T ◦ S[u].
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We leave the proof of the last statement to the reader. The fact that T̄ is
bijective follows.

Theorem 42. The projective groups maps lines to lines and triangles to
triangles in Π(F ).

Proof. A line � ∈ Π(F ) corresponds to a two dimensional subspace < u, v >⊂
F 3 and a mapping T̄ ∈ PGL3(F ) corresponds to the collection of mappings
αT ∈ GL3(F ), α nonzero in F , T bijective. T ({u, v}) is a linearly inde-
pendent set of two vectors hence corresponds to a two dimensional subspace
< T (u), T (v) >=< αT (u), αT (v) >, that is, to a projective line �′ ∈ Π(F ).
The argument for triangles is even easier, in light of Exercise 7 at the end of
the last subsection.

Next we consider the relationship between the affine and the projective
groups.

Recall that an element of Aff(V ) is A(T, v), where T ∈ GL(V ), v ∈ V
and A(T, v)(u) = T (u)+ v. Identifying Π(F ) with the plane z = 1 in F 3 lets
us think of the elements of Aff(V ) as matrices with the form

A(T, v) =

⎛
⎝ a b x

c d y
0 0 1

⎞
⎠

where T =

(
a b
c d

)
∈ GL2(F ) and v = (x, y) ∈ F 2. Using block matrix

form, we can write

A(T, v) =

(
T v
00 1

)
.

We then have

A(T, v) ◦ A(T ′, v′) =

(
T v
00 1

) (
T ′ v′

00 1

)
=

(
TT ′ T (v′) + v
00 1

)
.

Turning now to PGL3(F ), we suppose P̄ is a projective transformation
that maps Π(F ) to itself. As usual, we identify Π(F ) with the plane z = 1
in F 3. It is not difficult to verify thatP̄ must be all nonzero scalar multiples
of a matrix of the form

P =

⎛
⎝ T a

b
0 0 1

⎞
⎠
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where detP = detT �= 0. In other words, we can represent P̄ uniquely with
a matrix of this form, that is, by an affine transformation.

Theorem 43. Aff(F 2) can be identified as a subgroup of PGL3(F ) that
maps �∞ to itself and that fixes Π(F ) ⊂ Π(F ).

Exercises

1. Finish the proof of Theorem 41 by showing that T̄−1 = T−1.

2. Let T linear be defined on F 3 by T (1, 0, 0) = (0, 1, 0), T (0, 1, 0) =
(0, 0, 1) and T (0, 0, 1) = (1, 0, 1).

(a) Verify that T ∈ GL3(F ).

(b) Find T̄ [1, 2,−1].

(c) Find T̄ (�∞).

(d) Does T̄ : Π(F ) → Π(F )? If so, prove it. If not, describe T̄ (Π(F )).

3. Complete the proof of Theorem 42 by showing that PGL3(F ) maps
triangles to triangles. Show that if we consider a triangle an ordered
triple of noncollinear points, then there is exactly one element in the
projective group that sends a given triangle to another.

4. Verify thatP̄ ∈ PGL3(F ) maps Π(F ) to itself if and only if P̄ cor-
responds to the set of all nonzero scalar multiples of a matrix of the
form

P =

⎛
⎝ T a

b
0 0 1

⎞
⎠

for some T ∈ GL2(F ).

5. Verify that a mapping of the form given in the last problem fixes �∞.
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5.3 Curves

Curves are a source of much comment in calculus. Typically, in that context,
you study pieces of curves, in particular, the pieces that can be described
as graphs of functions, y = f(x), for example, y =

√
x. More generally, we

define a real algebraic plane curve, that is, a curve in R2, as the zero set of
a polynomial in x and y. Instead of thinking of functions, we are thinking
of polynomial equations. The equation associated to the function y =

√
x

would be y2 = x or x− y2 = 0.
A homogeneous polynomial of degree n is a sum of monomials of degree

n. x − y2 is an example of an inhomogeneous polynomial of degree 2. Note
that the degree of the polynomial is that of the highest degree monomial.

In Π(F ), an algebraic curve is the set of zeroes of a homogeneous poly-
nomial. We can understand curves in F 2 by “lifting” to Π(F ) through the
process of homogenization. To homogenize a polynomial in x and y of degree
n, multiply each monomial by zd−n, where d is the degree of the monomial.
We homogenize a polynomial equation in x and y by first writing it in the
form p(x, y) = 0, then homogenizing p(x, y).

Example 5. If we homogenize x − y2, we get xz − y2. To homogenize y =
x2 − 2, rewrite to get x2 − y − 2 = 0 then homogenize the left hand side to
get x2 − yz − 2z2 = 0.

Exercises

1. Consider the equation 2x+ 3y = 1.

(a) What does this equation describe in Π(R)?

(b) Homogenize the equation.

(c) What does the homogenized equation describe in RP 2?

2. Consider the set of points in R2 given by (t, t2/2).

(a) What does this set of points describe?

(b) Write an equation that gives a relation satisfied by the x and y
coordinates of the points on this curve.

(c) Homogenize the equation.
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(d) Describe the set of points in Π(R) that satisfy the homogeneous
equation using parameters s and t. (Hint: Think of embedding
the points (t, t2/2) into R3 by putting them in the plane z = 1.
Now homogenize the resulting parametric description.)

5.4 Conics

Recall that in R2, we can define a conic section to be the set of zeroes of any
degree two polynomial.

ax2 + by2 + cxy + dx+ ey + f.

When the constant term, f , is not zero, and at least one of a, b, c is not zero,
the conic is nondegenerate, that is, it is a bona fide parabola, hyperbola or
ellipse, as opposed to one or two lines or a single point. If we homogenize
our defining polynomial, we get

ax2 + by2 + cxy + dxz + eyz + fz2

It may be hard to see what this defines. Note that we can get rid of cross
terms by rotations, though. To help you believe that, we note that if we send
x �→ x + y and y �→ x − y then xy �→ x2 − y2. Now look at the xy-plane,
and compare the x axis to the line x + y, and the y axis to the line x − y:
we rotate through an angle of 45◦ to effect the transformation. This lets us
see that we lose no generality if we consider that the defining polynomial for
a conic in RP 2 is given by ax2 + by2 + fz2. Next note that scaling in the x,
y, z directions separately is defined by a diagonal matrix which determines
a projective transformation. To understand how to think of a conic in RP 2,
all we care about are the zeroes of the polynomial. It follows that the only
thing that matters here is the ratio of signs of the coefficients of x2, y2, and
z2. This means that we can think of a conic section in the projective plane as
associated to the surface given by x2 + y2 − z2 = 0, that is, a cone. Different
conic sections then arise via a transformation of the cone that amounts to
a rotation about the origin in R3 or scaling in various directions, neither
of which change the cone into a different type of surface. This makes the
following theorem transparent.

Theorem 44. Under projective transformations, all (nondegenrate) conic
sections are the same. In other words, given any two conic sectionsin RP 2,
there is a projective transformation that sends one to the other.
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5.5 Degree

Our goal here is to show that the degree of a curve in Π̄(F ) is actually a
geometric feature of the curve, not just an attribute of one polynomial that
may define the curve. We need a few results about homogeneous polynomials
to get there. This material draws from Walker’s classic book on algebraic
curves [10].

Theorem 45. The factors of a homogeneous polynomial are homogeneous.

Proof. Suppose F = fg, where F is homogeneous and f is not homogeneous.
Write f and g using homogeneous components as follows:

f = Fi + . . .+ F ′
i+j g = Gk + . . .+Gk+�

where Fi, Fi+j are nonzero,homogeneous with degrees respectively i and i+j,
and Gk, Gk+� are nonzero homogeneous of degrees k and k + �. Attempting
to write fg using homogeneous components we get

fg = FiGk + (FiGk+1 + Fi+1Gk) + . . .+ Fi+jGk+�

where FiGk and Fi+jGk+� are both nonzero with degFiGk = i+k < degFi+jGk+�,
contradicting F homogeneous.

Let Fn designate a homogeneous polynomial of degree n. Fn can have
any number of variables. Say it has k variables, that is, Fn = Fn(x1, . . . , xk).
Let f be the nonhomogeneous polynomial in k − 1 variables that we get by
letting xi = 1, for some i ∈ {1, . . . , k}. We say Fn and f are associates.

The next three results, variations on a theme, follow immediately from
the theorem.

Corollary 5. The factors of Fn are associates of the factors of f where Fn

and f are associates.

Corollary 6. F is irreducible if and only if its associates are irreducible.

A field is algebraically closed provided all polynomials in a single variable
with positive degree factor into linear factors. Our favorite example of an
algebraically closed field is C. Note that R is not algebraically closed as, for
example, x2 + 1 does not factor in linear factors if we restrict to coefficients
in R.
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Corollary 7. Let D be algebraically closed and Fn homogeneous degree n in
D[x0, x1]. There are a �= 0, ai, bi in D with F = aΠn

i=1(aix1− bix0). In other
words, F factors into linear factors.

Now consider an algebraic curve in Π̄(F ). This is the set of projective
points that satisfy Fn(x, y, z) = 0, where Fn(x, y, z) is homogeneous of degree
n. Let � be any line in Π̄(F ). Think of � as determined by a two dimensional
subspace spanned by vectors u and v in F 3. We can think of � as the set of all
nonzero points su+tv, where s, t ∈ F . In other words, [s, t] are homogeneous
coordinates for a point on �.

Consider what it means for a point to lie on both C and �. Because
it lies on �, it is su + tv, for some (s, t) ∈ F 2 \ (0, 0). Because it lies on
C, Fn(su + tv) = 0. A point of intersection of C and � then corresponds
precisely to a solution [s, t] to Fn(su+ tv) = 0. We are now thinking of s and
t as variables so that Fn(su + tv) is homogeneous degree n in two variables.
Our corollary above allows us to say that, counting multiplicity, there are n
solutions to Fn(su + tv) = 0 in Π̄(F ), as long as F is algebraically closed.
This proves the following theorem.

Theorem 46. Assume F is algebraically closed. The degree of a curve in
Π̄(F ) is the number of intersections it has with a line in Π̄(F )

The definition of degree as a geometric property of a curve is the first sub-
plot in the story of intersections and singular points of curves. An important
tool in the telling is resultants. We end these notes with a brief discussion of
this idea.

Definition 22. Let f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n, g(x) = b0 + b1x+
b2x

2 + . . . + bmx
m, ai, bi ∈ F , an, bm �= 0. The resultant, R(f, g) is the

determinant ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an

0 a0 a1 . . . an−1 an

...
b0 b1 . . . bm−1 bm

...
0 b0 . . . bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where there are m rows of ais and n rows of bis.

84



Note that the resultant is the determinant of an m+ n×m+ n matrix.

Example 6. Let f(x) = x2 − 2x+ 1 and let g(x) = x− 1. Then

R(f, g) =

∣∣∣∣∣∣
1 −2 1

−1 1 0
0 −1 1

∣∣∣∣∣∣ = 0.

The resultant of a polynomial and its first derivative is called the discrim-
inant of the polynomial. We are used to seeing the discriminant defined for
a quadratic polynomial f(x) = ax2 + bx+ c as b2 − 4ac. If you think about
what the discriminant gives us, you start to get a sense of what resultants are
good for more generally. In particular, when the discriminant of a quadratic
polynomial is zero, the polynomial has a repeated root, that is, a root in
common with its derivative. A quick calculation reveals that the definition
we have here defines the discriminant of f(x) = ax2 + bx+ c as −a(b2 −4ac).
Obviously, this is zero if and only if b2 − 4ac = 0. As is typically the case
with determinants, we only care whether the resultant is zero or not zero so
for what we need, the two definitions are close enough.

Theorem 47. R(f, g) = 0 if and only if f and g have a common noncon-
stant factor.

Proof. We sketch the proof.
Start by noting that f and g have a nonconstant common factor if and

only if there are ϕ(x) and ψ(x) with degree ϕ(x) < degree g(x), degree ψ(x) <
degree f(x) and fϕ = gψ. Now think of ϕ(x) = α0 + α1x + . . . + αkx

k,
ψ(x) = β0 + β1x + . . . + β�x

�, where αi, βi are unknowns. After doing the
multiplications to write fϕ = gψ, we see that we have equations giving us
a0α0 = b0β0, a0α1 + a1α0 = b0β1 + b1β0, etc. Essentially, the resultant is the
determinant of the (transpose of the) coefficient matrix for this large homo-
geneous system of equations. The system has a nontrivial solution— αis, βis
not all zero— precisely when the determinant of this matrix, the resultant,
is zero.

In the projective plane, an algebraic curve is defined by a homogeneous
polynomial in three variables. Two such polynomials with a nonconstant
common factor define curves with a common component. How can we use
resultants to pick up on these common components?
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Let f(x1, . . . , xk) be a polynomial with coefficients in a field F . We can
think of f as belonging toD[xk], whereD = F [x1, . . . , xk−1]. D is an example
of an algebra, that is, a vector space that is closed under multiplication.

Example 7. Let f(x, y, z) = 2xy − x2 + z2. We can think of f as belonging
to D[x], D = R[y, z]. Then we have f = z2 − (2y)x− x2, so the “constant”
term is z2, the coefficient of x is −2y and the coefficient of x2 is −1.

This idea allows us to define resultants for polynomials in several vari-
ables. A resultant for f(x1, . . . , xk) and g(x1, . . . , xk) is then a polynomial
in k − 1 variables.

Theorem 48. If Fn, Gm are homogeneous of degrees n, m in F [x0, x1], then
R(Fn, Gm) = 0 if and only if Fn and Gm have a common nonconstant factor.

Exercises

1. Find the intesection points of f(x, y, z) = x2 + y2 − z2 and the line
x+ y + z = 0.

2. Find the resultant of the two polynomials from the last exercise. (Note
that there are three possibly different resultants. Find all of them.)

3. Using the definition of discriminant given in the text, find the discrim-
inant of x3 + px+ q.

4. Consider the determinant∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . an−1 an

−λ 1 0 . . . 0 0
0 −λ 1 . . . 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 . . . −λ 1

∣∣∣∣∣∣∣∣∣∣
.

Argue that this must be equal to a0 + a1λ+ a2λ
2 + . . .+ anλ

n.

5. How can you tell, without doing the calculation, what the resultant of
f(x, y) = x2 −2xy+ y2 and g(x, y) = x− y is? Now do the calculation.
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