< Free Open Study >

.Types and Programming Languages
by Benjamin C. Pierce ISBN:0262162091

The MIT Press © 2002(623 pages)

This thorough type-systems reference examines theory, pragmatics, implementation, and
more

Table of Contents

|'|'vpes and Programming Lanquaqesl

Preface
hapter - Introduction

hapter 4 - Mathematical Preliminaries

Part |- Untyped Systems

hapter - Untyped Arithmetic Expressions
- An ML Implementation of Arithmetic Expressions
hapter § - The Untyped Lambda-Calculus

- Nameless Representation of Terms

=y -0
QD s3]
O @)
= =
[©) @
= =
o)) D

hapter - An ML Implementation of the Lambda-Calculus

Part |- Simple Types

- Typed Arithmetic Expressions

- Simply Typed Lambda-Calculus

hapter 1d - An ML Implementation of Simple Types
- Simple Extensions

hapter 14 - Normalization

- References

= = il |y
D Q 18] s3]
(@) o (@) (@)
— —+ — —
9] 5} o ||D
= = = ||=
= = o lla

hapter 14 - Exceptions
Part 1] - Subtyping
- Subtyping
- Metatheory of Subtyping
- An ML Implementation of Subtyping
hapter 1§ - Case Study: Imperative Objects

g S |1z |z
18] D Q Q
(@) (@) (@) o
— — — —+
5} o |lo ||®
= = 1= |5
= = | =
@) (@)) I

- Case Study: Featherweight Java

Part 1\{- Recursive Types

hapter 24 - Recursive Types

hapter 21 - Metatheory of Recursive Types

Part |- Polymorphism

hapter 23 - Type Reconstruction

hapter 23 - Universal Types

hapter 24 - Existential Types

hapter 2§ - An ML Implementation of System F
hapter 2§ - Bounded Quantification

hapter 27 - Case Study: Imperative Objects, Redux

hapter 2§ - Metatheory of Bounded Quantification

v
ﬂ
2
=
<
:
L
«Q
>
)
=

o
=

o
®

=2

(%]
<

»

&
@

=

7

hapter 29 - Type Operators and Kinding
hapter 34 - Higher-Order Polymorphism
hapter 31 - Higher-Order Subtyping

hapter 33 - Case Study: Purely Functional Objects

U
QD
=
!

I| - Appendices

S
O
®)
D
>
=
x

>

- Solutions to Selected Exercises

H - Notational Conventions

S
O
O

eferences

o
D

ID

ist of Figured

< Free Open Study >

< Free Open Study >

Back Cover

A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying
program phrases according to the kinds of values they compute. The study of type systems--and of programming languages
from a type-theoretic perspective--has important applications in software engineering, language design, high-performance
compilers, and security.

This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of
programming languages. The approach is pragmatic and operational; each new concept is motivated by programming
examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by
numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between
chapters are explicity identified, allowing readers to choose a variety of paths through the material.

About the Author

Benjamin C. Pierce is Associate Professor of Computer and Information Science at the University of Pennsylvania.

< Free Open Study >

m < Free Open Study >

Types and Programming Languages

Benjamin C. Pierce

The MIT Press
Cambridge, Massachusetts London, England

Copyright © 2002 Benjamin C. Pierce

All rights reserved. No part of this book may be reproduced in any form by any electronic of mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

ATEX
This book was set in Lucida Bright by the author using the document preparation system.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Pierce, Benjamin C.

Types and programming languages / Benjamin C. Pierce
p. cm.

Includes bibliographical references and index.

ISBN 0-262-16209-1 (hc.:alk. paper)

1. Programming languages (Electronic computers). I. Title.
QA76.7 .P54 2002
005.13—dc21

2001044428

< Free Open Study >

Preface

The study of type systems—and of programming languages from a type-theoretic perspective—has become an
energetic field with major applications in software engineering, language design, high-performance compiler
implementation, and security. This text offers a comprehensive introduction to the fundamental definitions, results, and
techniques in the area.

Audience

The book addresses two main audiences: graduate students and researchers specializing in programming languages
and type theory, and graduate students and mature undergraduates from all areas of computer science who want an
introduction to key concepts in the theory of programming languages. For the former group, the book supplies a
thorough tour of the field, with sufficient depth to proceed directly to the research literature. For the latter, it provides
extensive introductory material and a wealth of examples, exercises, and case studies. It can serve as the main text
for both introductory graduate-level courses and advanced seminars in programming languages.

< Free Open Study >

< Free Open Study >

Goals

A primary aim is coverage of core topics, including basic operational semantics and associated proof techniques, the
untyped lambda-calculus, simple type systems, universal and existential polymorphism, type reconstruction, subtyping,
bounded quantification, recursive types, and type operators, with shorter discussions of numerous other topics.

A second main goal is pragmatism. The book concentrates on the use of type systems in programming languages, at
the expense of some topics (such as denotational semantics) that probably would be included in a more mathematical
text on typed lambda-calculi. The underlying computational substrate is a call-by-value lambda-calculus, which
matches most present-day programming languages and extends easily to imperative constructs such as references
and exceptions. For each language feature, the main concerns are the practical motivations for considering this
feature, the techniques needed to prove safety of languages that include it, and the implementation issues that it
raises—in particular, the design and analysis of typechecking algorithms.

A further goal is respect for the diversity of the field; the book covers numerous individual topics and several
well-understood combinations but does not attempt to bring everything together into a single unified system. Unified
presentations have been given for some subsets of the topics—for example, many varieties of "arrow types" can be
elegantly and compactly treated in the uniform notation of pure type systems—but the field as a whole is still growing
too rapidly to be fully systematized.

The book is designed for ease of use, both in courses and for self-study. Full solutions are provided for most of the
exercises. Core definitions are organized into self-contained figures for easy reference. Dependencies between
concepts and systems are made as explicit as possible. The text is supplemented with an extensive bibliography and
index.

A final organizing principle is honesty. All the systems discussed in the book (except a few that are only mentioned in
passing) are implemented. Each chapter is accompanied by a typechecker and interpreter that are used to check the
examples mechanically. These implementations are available from the book's web site and can be used for
programming exercises, experimenting with extensions, and larger class projects.

To achieve these goals, some other desirable properties have necessarily been sacrificed. The most important of
these is completeness of coverage. Surveying the whole area of programming languages and type systems is probably
impossible in one book—certainly in a textbook. The focus here is on careful development of core concepts; numerous
pointers to the research literature are supplied as starting points for further study. A second non-goal is the practical
efficiency of the typechecking algorithms: this is not a book on industrial-strength compiler or typechecker
implementation.

< Free Open Study >

< Free Open Study >

Structure

of the book discusses untyped systems. Basic concepts of abstract syntax, inductive definitions and proofs,
inference rules, and operational semantics are introduced first in the setting of a very simple language of numbers and
booleans, then repeated for the untyped lambda-calculus. Part || covers the simply typed lambda-calculus and a
variety of basic language features such as products, sums, records, variants, references, and exceptions. A
pre liminary chapter on typed arithmetic expressions provides a gentle introduction to the key idea of type sa|

optional chapter develops a proof of normalization for the simply typed lambda-calculus using Tait's method. Part |I|
addresses the_fundamental mechanism of subtyping; it includes a detailed discussion of metatheory and two extended
case studies. ‘overs recursive types, in both the simple iso-recursive and the trickier equi-recursive
formulations. The second of the two chapters in this part develops the metatheory of a system with equi-recursive
types and subtyping in the mathematical framework of coinduction. takes up polymorphism, with chapters on
ML-style type reconstruction, the more powerful impredicative polymorphism of System F, existential quantification and
its connections with gbstract data types, and the combination of polymorphism and subtyping in systems with bounded
quantification. Part V| deals with type operators. One chapter covers basic concepts; the next develops System F¢and

its metatheory; the next combines type operators and bounded quantification to yield System I ',';; the final chapter is a
closing case study.

The major dependencies between chapters are outlined in . Gray arrows indicate that only part of a later
chapter depends on an earlier one.

6 9
7 1 | 12 |
E 13| [14 4 X3 24
|
6 | 1% 25 19 | | 20 26
A
17] 21
n
.._I—'_

Figure P-1: Chapter Dependencies

The treatment of each language feature discussed in the book follows a common pattern. Motivating examples are
first; then formal definitions; then proofs of basic properties such as type safety; then (usually in a separate chapter) a
deeper investigation of metatheory, leading to typechecking algorithms and their proofs of soundness, completeness,
and termination; and finally (again in a separate chapter) the concrete realization of these algorithms as an OCaml
(Objective Caml) program.

An important source of examples throughout the book is the analysis and design of features for object-oriented
programming. Four case-study H?amg[s dgvelop different approaches in detgil—a simple model of conventional
imperative objects and classes (Chapter 18), a care calculus based on Java (Chapter 19), a more refined account of
imperative objects using bounded quantification (Chapter 27), and a treatment of objects and classes in the purely

functional setting of System F ',';' using existential types (bhagter 33).

To keep the book small enough to be covered in a one-semester advanced course—and light enough to be lifted by
the average graduate student—it was necessary to exclude many interesting and important topics. Denotational and
axiomatic approaches to semantics are omitted completely; there are already excellent books covering these
approaches, and addressing them here would detract from this book's strongly pragmatic, implementation-oriented
perspective. The rich connections between type systems and logic are suggested in a few places but not developed in
detail; while important, these would take us too far afield. Many advanced features of programming lan guages and
type systems are mentioned only in passing, e.g, dependent types, intersection types, and the Curry-Howard
correspondence; short sections on these topics provide starting points for further reading. Finally, except for a brief
excursion into a Java-like core language), the book focuses entirely on systems based on the
lambda-calculus; however, the concepts and mechanisms developed in this setting can be transferred directly to
related areas such as typed concurrent languages, typed assembly languages, and specialized object calculi.

1 FEEWIOUE

< Free Open Study >

Required Background

The text assumes no preparation in the theory of programming languages, but readers should start with a degree of
mathematical maturity—in particular, rigorous undergraduate coursework in discrete mathematics, algorithms, and
elementary logic.

Readers should be familiar with at least one higher-order functional programming language (Scheme, ML, Haskell,
etc.), and with basic concepts of programmlng Ianguages and compilers (abstract syntax, BNF grammars, evaluation,
abstract machines, etc.). This 1 undergraduate texts; | particularly like Essentia

f Programming Languages by and Prog anguage Pragmatics by [Scott
1999). Experience with an object-oriented language such as Java) is useful in several
chapters.

The chapters on concrete implementations of typecheckers present significant code fragments in OCaml (or Objective
Caml), a popular dialect of ML. Prior knowledge of OCaml is helpful in these chapters, but not absolutely necessary;
only a small part of the language is used, and features are explained at their first occurrence. These chapters
constitute a distinct thread from the rest of the book and can be skipped completely if desired.

The best textbook on OCaml at the moment is [Cousineau and Mauny's (1998]. The tutorial materials packaged with
the OCaml distribution (available at http:/caml.inria.ff and http://www.ocaml.org) are also very readable.

Readers familiar with the other major dialect of ML, Standard ML._should have no trouble following the OCaml code
fragments. Popular textbooks on Standard ML include those by Paulson (1996) and Jllman (1997].

< Free Open Study >

http://caml.inria.fr
http://www.ocaml.org

m < Free Open Study >

MEXT F

Course Outlines

An intermediate or advanced graduate course should be able to cover most of the book in a semester.
gives a sample syllabus from an upper- level course for doctoral students at the University of Pennsylvania (two
90-minute lectures a week, assuming minimal prior preparation in programming language theory but moving quickly).

LECTURE Topic READING
1. Course overview; history; administrivia 1, (2}

A Preliminaries: syntax, operational semantics 3, 4

3. Introduction to the lambda-calculus 3.1, 3.2
4, Formalizing the lambda-calculus 5.3,6,7
3. Types; the simply tvped lambda-calculus 89 10
. Simple extensions; derived forms 11

F More extensions L1

8. Mormalization]2

D, References; exceptions 13, 14
1. Subiyvping 15

1. Metatheory of subivping G, 17
12, Imperative obhjects | 8

3. Featherweight Java 1%

14. Recursive Ivpes 20

I 5. Metatheory of recursive ivpes 21

| (5. Metatheory of recursive types 21

17. Type reconstruction 22

18, Universal polymorphism 23

19, Existential polymorphism; ADTs 24, (23)
20, Bounded quantification 26, 27
21. Metatheory of bounded quantification 28

22. Type operators 29

23. Metatheory of Fy, 30

24, Higher-order subtyping 31

25 Purely functional objects 32

20, Overflow lecture

Figure P-2: Sample Syllabus for an Advanced Graduate Course

For an undergraduate or an introductory graduate course, there are a number of possible paths through the material.

A course on type systems in programming would concentrate on the chapters that introduce various typing features

and illustrate their uses and omit most of the metatheory and implementation chapters. Alternatively, a coursTﬂic
Chapter

ory and implementation of type systems would progress through all the early chapters, probably skipping
(and perhaps 18 and 21) and sacrificing the more advanced material toward the end of the book. urses
can also be constructed by selecting particular chapters of interest using the dependency diagram in Eigure P-1

The book is also suitable as the main text for a more general graduate course in theory of programming languages.

Such a course might spend half to two-thirds of a semest

r working through the better pa)

t of the book and devote the

Milner's pi-calculus book (1999

, an introduction to Hoare

rest to, say, a unit on the theory of cqn ency based on
Logic and axiomatic semantics (e.g. Winskel, 1993), or a survey of advanced language features such as continuations

or module systems.

In a course where term projects play a major role, it may be desirable to postpone some of the theoretical material

(e.g., normalization, and perhaps some of the chapters on metatheory) so that a broad range of examples can be
covered before students choose project topics.

< Free Open Study >

Exercises

Most chapters include extensive exercises—some designed for pencil and paper, some involving programming
examples in the calculi under discussion, and some concerning extensions to the ML implementations of these calculi.
The estimated difficulty of each exercise is indicated using the following scale:

? Quick check 30 seconds to 5 minutes
” Easy <1 hour

277 Moderate < 3 hours

2?7?? Challenging > 3 hours

Exercises marked ? are intended as real-time checks of important concepts. Readers are strongly encouraged to
pause for each one of these before moving on to the material that follows. In each chapter, a roughly
homework-assignment-sized set of exercises is labeled RECOMMENDED.

Complete solutions to most of the exercises are provided in . To save readers the frustration of searching
for solutions to the few exercises for which solutions are not available, those exercises are marked ?.

< Free Open Study >

< Free Open Study >

Typographic Conventions

Most chapters introduce the features of some type system in a discursive style, then define the system formally as a
collection of inference rules in one or more figures. For easy reference, these definitions are usually presented in full,
including not only the new rules for the features under discussion at the moment, but also the rest of the rules needed
to constitute a complete calculus. The new parts are set on a gray background to make the "delta" from previous
systems visually obvious.

An unusual feature of the book's production is that all the examples are mechanically typechecked during typesetting:
a script goes through each chapter, extracts the examples, generates and compiles a custom typechecker containing
the features under discussion, applies it to the examples, and inserts the checker's responses in the text. The system
that does the hard parts of this, called TinkerType, was developed by Michael Levin and myself (2001). Funding for
this research was provided by the National Science Foundation, through grants CCR-9701826, Principled Foundations
for Programming with Objects, and CCR-9912352, Modular Type Systems.

< Free Open Study >

< Free Open Study >

Electronic Resources

A web site associated with this book can be found at the following URL.:
m://www.cis.wenn.edu/~bcgierce/tagi

Resources available on this site include errata for the text, suggestions for course projects, pointers to supplemental
material contributed by readers, and a collection of implementations (typecheckers and simple interpreters) of the
calculi covered in each chapter of the text.

These implementations offer an environment for experimenting with the examples in the book and testing solutions to
exercises. They have also been polished for readability and modifiability and have been used successfully by students
in my courses as the basis of both small implementation exercises and larger course projects. The implementations
are written in OCaml. The OCaml compiler is available at no cost through and installs very easily on
most platforms.

Readers should also be aware of the Types Forum, an email list covering all aspects of type systems and their
applications. The list is moderated to ensure reasonably low volume and a high signal-to-noise ratio in announcements
and discussions. Archives and subscription instructions can be found at ttp://www.cis.@enn.edti/~bcpierce/types|.

< Free Open Study >

http://www.cis.upenn.edu/~bcpierce/tapl
http://caml.inria.fr
http://www.cis.upenn.edu/~bcpierce/types

< Free Open Study >

Acknowledgments

Readers who find value in this book owe their biggest debt of gratitude to four mentors—Luca Cardelli, Bob Harper,
Robin Milner, and John Reynolds—who taught me most of what | know about programming languages and types.

The rest | have learned mostly through collaborations; besides Luca, Bob, Robin, and John, my partners in these
investigations have included Martin Abadi, Gordon Plotkin, Randy Pollack, David N. Turner, Didier Rémy, Davide
Sangiorgi, Adriana Compagnoni, Martin Hofmann, Giuseppe Castagna, Martin Steffen, Kim Bruce, Naoki Kobayashi,
Haruo Hosoya, Atsushi Igarashi, Philip Wadler, Peter Buneman, Vladimir Gapeyev, Michael Levin, Peter Sewell,
Jérdme Vouillon, and Eijiro Sumii. These collaborations are the foundation not only of my understanding, but also of
my pleasure in the topic.

The structure and organization of this text have been improved by discussions on pedagogy with Thorsten Altenkirch,
Bob Harper, and John Reynolds, and the text itself by corrections and comments from Jim Alexander, Penny
Anderson, Josh Berdine, Tony Bonner, John Tang Boyland, Dave Clarke, Diego Dainese, Olivier Danvy, Matthew
Davis, Vladimir Gapeyev, Bob Harper, Eric Hilsdale, Haruo Hosoya, Atsushi Igarashi, Robert Irwin, Takayasu lIto,
Assaf Kfoury, Michael Levin, Vassily Litvinov, Pablo Lopez Olivas, Dave MacQueen, Narciso Marti-Oliet, Philippe
Meunier, Robin Milner, Matti Nykanen, Gordon Plotkin, John Prevost, Fermin Reig, Didier Rémy, John Reynolds,
James Riely, Ohad Rodeh, Jirgen Schlegelmilch, Alan Schmitt, Andrew Schoonmaker, Olin Shivers, Perdita Stevens,
Chris Stone, Eijiro Sumii, Val Tannen, Jérdme Vouillon, and Philip Wadler. (I apologize if I've inadvertently omitted
anybody from this list.) Luca Cardelli, Roger Hindley, Dave MacQueen, John Reynolds, and Jonathan Seldin offered
insiders' perspectives on some tangled historical points.

The participants in my graduate seminars at Indiana University in 1997 and 1998 and at the University of Pennsylvania
in 1999 and 2000 soldiered through early versions of the manuscript; their reactions and comments gave me crucial
guidance in shaping the book as you see it. Bob Prior and his team from The MIT Press expertly guided the

(N

manuscript through the many phases of the publication process. The book's design is based on macros

developed by Christopher Manning for The MIT Press.

Proofs of programs are too boring for the social process of mathematics to work. —Richard
DeMillo, Richard Lipton, and Alan Perlis, 1979

... So don't rely on social processes for verification. —David Dill, 1999

Formal methods will never have a significant impact until they can be used by people that don't
understand them. —attributed to Tom Melham

< Free Open Study >

< Free Open Study >

Chapter 1: Introduction

1.1 Types in Computer Science

Modern software engineering recognizes a broad range of formal methods for helping ensure that a system behaves
correctly with respect to some specification, implicit or explicit, of its desired behavior. On one end of the spectrum are
powerful frameworks such as Hoare logic, algebraic specification languages, modal logics, and denotational
semantics. These can be used to express very general correctness properties but are often cumbersome to use and
demand a good deal of sophistication on the part of programmers. At the other end are techniques of much more
modest power—modest enough that automatic checkers can be built into compilers, linkers, or program analyzers and
thus be applied even by programmers unfamiliar with the underlying theories. One well-known instance of this sort of
lightweight formal methods is model checkers, tools that search for errors in finite-state systems such as chip designs
or communication protocols. Another that is growing in popularity is run-time monitoring, a collection of techniques that
allow a system to detect, dynamically, when one of its components is not behaving according to specification. But by
far the most popular and best established lightweight formal methods are type systems, the central focus of this book.

As with many terms shared by large communities, it is difficult to define "type system" in a way that covers its informal
usage by programming language designers and implementors but is still specific enough to have any bite. One
plausible definition is this:

A type system is a tractable syntactic method for proving the absence of certain program
behaviors by classifying phrases according to the kinds of values they compute.

A number of points deserve comment. First, this definition identifies type systems as tools for reasoning about
programs. This wording reflects the orientation of this book toward the type systems found in programming

languages. More generally, the term type systems (or type theory) refers to a much broader field of study in logic,
mathematics, and philosophy. Type systems in this sense were first formalized in the early 1900s as ways of avoiding
the logical paradoxes, such as Russell's (Russell, 1909), that threatened the foundations of mathematics, During the

] tieth century, types have become standard tools in logic, especially in proof theory (see ‘ and

[L997), and have permeated the language of philosophy and science. Major landmarks in this area include Russell's

original ramified theory of types (lNhltehead and Russell, 19ld) Ramseys simple theory of types (1925)—the basis of

EWM) and Berardi,
erlouw 1989; Barendregt, 1992).

Even within computer science, there are two major branches to the study of type systems. The more practical, which
concerns applications to programming languages, is the main focus of this book. The more abstract focuses on

ections between various "pure typed lambda-calculi" and varieties of logic, via the Curry-Howard correspondence
(B9.4). Similar concepts, notations, and techniques are used by both communities, but with some important differences
in orientation. For example, research on typed lambda-calculi is usually concerned with systems in which every
well-typed computation is guaranteed to terminate, whereas most programming languages sacrifice this property for
the sake of features like recursive function definitions.

Church's simply typed lambda-calculus (1940)—Ma
Terlouw, and Barendregt's pure type systems 1

Another important element in the above definition is its emphasis on classification of terms—syntactic
phrases—according to the properties of the values that they will compute when executed. A type system can be
regarded as calculating a kind of static approximation to the run-time behaviors of the terms in a program. (Moreover,
the types assigned to terms are generally calculated compositionally, with the type of an expression depending only on
the types of its subexpressions.)

The word "static" is sometimes added explicitly—we speak of a "statically typed programming language," for
example—to distinguish the sorts of compile-time analyses we are considering here from the dynamic or latent typing

found in languages such as Scheme (lSussman and Steele, 197&; l(elsev, Clinger, and Rees, 1994; bybvig, 199d),
where run-time type tags are used to distinguish different kinds of structures in the heap. Terms like "dynamically
typed" are arguably misnomers and should probably be replaced by "dynamically checked," but the usage is standard.

Being static, type systems are necessarily also conservative: they can categorically prove the absence of some bad
program behaviors, but they cannot prove their presence, and hence they must also sometimes reject programs that
actually behave well at run time. For example, a program like

if <complex test> then 5 else <type error>

will be rejected as ill-typed, even if it happens that the <complex test> will always evaluate to true, because a static
analysis cannot determine that this is the case. The tension between conservativity and expressiveness is a
fundamental fact of life in the design of type systems. The desire to allow more programs to be typed—by assigning
more accurate types to their parts—is the main force driving research in the field.

A related point is that the relatively straightforward analyses embodied in most type systems are not capable of
proscribing arbitrary undesired program behaviors; they can only guarantee that well-typed programs are free from
certain kinds of misbehavior. For example, most type systems can check statically that the arguments to primitive
arithmetic operations are always numbers, that the receiver object in a method invocation always provides the
requested method, etc., but not that the second argument to the division operation is non-zero, or that array accesses
are always within bounds.

The bad behaviors that can be eliminated by the type system in a given language are often called run-time type errors.
It is important to keep in mind that this set of behaviors is a per-language choice: although there is substantial overlap
between the behaviors considered to be run-time type errors in different languages, in principle each type system
comes with a definition of the behaviors it aims to prevent. The safety (or soundness) of each type system must be
judged with respect to its own set of run-time errors.

The sorts of bad behaviors detected by type analysis are not restricted to low-level faults like invoking non-existent
methods: type systems are also used to enforce higher-level modularity properties and to protect the integrity of
user-defined abstractions. Violations of information hiding, such as directly accessing the fields of a data value whose
representation is supposed to be abstract, are run-time type errors in exactly the same way as, for example, treating
an integer as a pointer and using it to crash the machine.

Typecheckers are typically built into compilers or linkers. This implies that they must be able to do their job
automatically, with no manual intervention or interaction with the programmer—i.e., they must embody computationally
tractable analyses. However, there is still plenty of room for requiring guidance from the programmer, in the form of
explicit type annotations in programs. Usually, these annotations are kept fairly light, to make programs easier to write
and read. But, in principle, a full proof that the program meets some arbitrary specification could be encoded in type
annotations; in this case, the typechecker would effectively become a proof checker. Technologies like Extended
Static Checking (Detlefs, Leino, Nelson, and Saxe, 199§) are working to settle this territory between type systems and
full-scale program verification methods, implementing fully automatic checks for some broad classes of correctness
properties that rely only on "reasonably light" program annotations to guide their work.

By the same token, we are most interested in methods that are not just automatable in principle, but that actually come
with efficient algorithms for checking type: t counts as efficient is a matter of debate. Even
widely used type sy i and Milner, 1982) may exhibit huge typechecking times in
pathological cases (Henglein and Mairson, 1991)). There are even languages with typechecking or type reconstruction

problems thatﬁmmggmm:;_m_&:] i i ilab ickly "in most cases of practical
interest" (e.g. Pierce and Turner, 200Q; Nadathur and Miller, 198§; Pfenning, 1994).

|< Free Open Stucy >

< Free Open Study >

1.2 What Type Systems are Good For

Detecting Errors

The most obvious benefit of static typechecking is that it allows early detection of some programming errors. Errors
that are detected early can be fixed immediately, rather than lurking in the code to be discovered much later, when the
programmer is in the middle of something else—or even after the program has been deployed. Moreover, errors can
often be pinpointed more accurately during typechecking than at run time, when their effects may not become visible
until some time after things begin to go wrong.

In practice, static typechecking exposes a surprisingly broad range of errors. Programmers working in richly typed
languages often remark that their programs tend to "just work" once they pass the typechecker, much more often than
they feel they have a right to expect. One possible explanation for this is that not only trivial mental slips (e.qg.,
forgetting to convert a string to a number before taking its square root), but also deeper conceptual errors (e.g.,
neglecting a boundary condition in a complex case analysis, or confusing units in a scientific calculation), will often
manifest as inconsistencies at the level of types. The strength of this effect depends on the expressiveness of the type
system and on the programming task in question: programs that manipulate a variety of data structures (e.g., symbol
processing applications such as compilers) offer more purchase for the typechecker than programs involving just a few

simple types, such as numericgl calculations in scientific applications (though, even here, refined type systems
supporting dimension analysis [Kennedy, 1994] can be quite useful).

Obtaining maximum benefit from the type system generally involves some attention on the part of the programmer,
as well as a willingness to make good use of the facilities provided by the language; for example, a complex program
that encodes all its data structures as lists will not get as much help from the compiler as one that defines a different

datatype or abstract type for each. Expressive type systems offer numerous "tricks" for encoding information about
structure in terms of types.

For some sorts of programs, a typechecker can also be an invaluable maintenance tool. For example, a programmer
who needs to change the definition of a complex data structure need not search by hand to find all the places in a
large program where code involving this structure needs to be fixed. Once the declaration of the datatype has been
changed, all of these sites become type-inconsistent, and they can be enumerated simply by running the compiler and
examining the points where typechecking fails.

Abstraction

Another important way in which type systems support the programming process is by enforcing disciplined
programming. In particular, in the context of large-scale software composition, type systems form the backbone of the
module languages used to package and tie together the components of large systems. Types show up in the
interfaces of modules (and related structures such as classes); indeed, an interface itself can be viewed as "the type of
a module," providing a summary of the facilities provided by the module—a kind of partial contract between
implementors and users.

Structuring large systems in terms of modules with clear interfaces leads to a more abstract style of design, where
interfaces are designed and discussed independently from their eventual implementations. More abstract thinking
about interfaces generally leads to better design.

Documentation

Types are also useful when reading programs. The type declarations in procedure headers and module interfaces
constitute a form of documentation, giving useful hints about behavior. Moreover, unlike descriptions embedded in
comments, this form of documentation cannot become outdated, since it is checked during every run of the compiler.
This role of types is particularly important in module signatures.

Language Safety

The term "safe language" is, unfortunately, even more contentious than "type system." Although people generally feel
they know one when they see it, their notions of exactly what constitutes language safety are strongly influenced by
the language community to which they belong. Informally, though, safe languages can be defined as ones that make it
impossible to shoot yourself in the foot while programming.

Refining this intuition a little, we could say that a safe language is one that protects its own abstractions. Every
high-level language provides abstractions of machine services. Safety refers to the language's ability to guarantee the
integrity of these abstractions and of higher-level abstractions introduced by the programmer using the definitional
facilities of the language. For example, a language may provide arrays, with access and update operations, as an
abstraction of the underlying memory. A programmer using this language then expects that an array can be changed
only by using the update operation on it explicitty—and not, for example, by writing past the end of some other data
structure. Similarly, one expects that lexically scoped variables can be accessed only from within their scopes, that the
call stack truly behaves like a stack, etc. In a safe language, such abstractions can be used abstractly; in an unsafe
language, they cannot: in order to completely understand how a program may (mis)behave, it is necessary to keep in
mind all sorts of low-level details such as the layout of data structures in memory and the order in which they will be
allocated by the compiler. In the limit, programs in unsafe languages may disrupt not only their own data structures but
even those of the run-time system; the results in this case can be completely arbitrary.

Language safety is not the same thing as static type safety. Language safety can be achieved by static checking, but
also by run-time checks that trap nonsensical operations just at the moment when they are attempted and stop the
program or raise an exception. For example, Scheme is a safe language, even though it has no static type system.

Conversely, unsafe languages often provide "best effort" static type checkers that help programmers eliminate at least
the most obvious sorts of slips, but such languages do not qualify as type-safe either, according to our definition, since
they are generally not capable of offering any sort of guarantees that well-typed programs are well
behaved—typecheckers for these languages can suggest the presence of run-time type errors (which is certainly
better than nothing) but not prove their absence.

Statically checked Dynamically checked
Safe ML, Haskell, Java, etc. Lisp, Scheme, Perl, Postscript, etc.
Unsafe C, C++, etc.

The emptiness of the bottom-right entry in the preceding table is explained by the fact that, once facilities are in place
for enforcing the safety of most operations at run time, there is little additional cost to checking all operations. (Actually,
there are a few dynamically checked languages, e.g., some dialects of Basic for microcomputers with minimal
operating systems, that do offer low-level primitives for reading and writing arbitrary memory locations, which can be
misused to destroy the integrity of the run-time system.)

Run-time safety is not normally achievable by static typing alone. For example, all of the languages listed as safe in

the table above actually perform array-bounds checking dynamically.[l] Similarly, statically checked languages

sometimes choose to provide operations (e.g., the down-cast operator in Java—see g15.5) whose typechecking rules
are actually unsound—language safety is obtained by checking each use of such a construct dynamically.

Language safety is seldom absolute. Safe languages often offer programmers "escape hatches," such as foreign
function calls to code written in other, possibly unsafe, languages. Indeed, such escaie hatches are sometimes

provided in a controlled form within the language itself—Obj.magic in OCaml (Leroy, 200Q)), Unsafe.cast in the New

Jersey implementation of Standard ML, etc. Modula-3 (kardelli et al., 19854; l\lelson, 199]]) and C# (Wille, 200d) go yet
further, offering an "unsafe sublanguage" intended for implementing low-level run-time facilities such as garbage
collectors. The special features of this sublanguage may be used only in modules explicitly marked unsafe.

ardelli (1996) articulates a somewhat different perspective on language safety, distinguishing between so-called
trapped and untrapped run-time errors. A trapped error causes a computation to stop immediately (or to raise an

exception that can be handled cleanly within the program), while untrapped errors may allow the computation to
continue (at least for a while). An example of an untrapped error might be accessing data beyond the end of an array
in a language like C. A safe language, in this view, is one that prevents untrapped errors at run time.

Yet another point of view focuses on portability; it can be expressed by the slogan, "A safe language is completely
defined by its programmer's manual." Let the definition of a language be the set of things the programmer needs to
understand in order to predict the behavior of every program in the language. Then the manual for a language like C
does not constitute a definition, since the behavior of some programs (e.g., ones involving unchecked array accesses
or pointer arithmetic) cannot be predicted without knowing the details of how a particular C compiler lays out structures
in memory, etc., and the same program may have quite different behaviors when executed by different compilers. By
contrast, the manuals for Java, Scheme, and ML specify (with varying degrees of rigor) the exact behavior of all
programs in the language. A well-typed program will yield the same results under any correct implementation of these
languages.

Efficiency

The first type systems in computer science, beginning in the 1950s in languages such as Fortran , were
introduced to improve the efficiency of numerical calculations by distinguishing between integer-valued arithmetic
expressions and real-valued ones; this allowed the compiler to use different representations and generate appropriate
machine instructions for primitive operations. In safe languages, further efficiency improvements are gained by
eliminating many of the dynamic checks that would be needed to guarantee safety (by proving statically that they will
always be satisfied). Today, most high-performance compilers rely heavily on information gathered by the typechecker
during optimization and code-generation phases. Even compilers for languages without type systems per se work hard
to recover approximations to this typing information.

Efficiency improvements relying on type information can come from some surprising places. For example, it has
recently been shown that not only code generation decisions but also pointer representation in paralle| scientifi
rograms can be improved using the information generated by type analysis. The Titanium language ‘
[1999) uses type inference techniques to analyze the scopes of pointers and is able to make measurably better
decisions on this basis than programmers explicitly hand-tuning their progr IESI The ML Kit Compiler gﬁs a pgweﬂlul
reqgion 'mIg[gnj algorithm (Gifford. Jouvelot, Lucassen, and Sheldon. 198%; Pouvelot and Gifford, 1991]; [Falpin and
Jouvelot, 1997; [Tofte and Talpin, 1994|, h99ﬂ; hofte and Birkedal, 1999) to replace most (in some programs, all) of the
need for garbage collection by stack-based memory management.

Further Applications

Beyond their traditional uses in programming and language design, type systems are now being applied in many more
specific ways in computer science and related disciplines. We sketch just a few here.

An increasingly important application area for type systems is computer and network securlty Static

core of the security model of Java and of the JINI "plug and play" architecty network (nold etal, 1999),
or e<amp|e and is a critical enabling technology for Proof-Carrying Code (Necula and Lee, 1996, [L99§; Necula,

917). At the same time, many fundamental ideas developed in the security community are being re-explored in IhT
context of piﬁiamm ng Iin n appear as type analyses (e.g., Abadi, Banerjee, Heintze, and
Riecke, 1999; Abadi, 1999; Leroy and Rouaix, 199§; etc.). Conversely, there is growing int ri;s]; in applying
programming language theory directly to problems in the security domain (e.g., Abadi, 1999; [Sumii and Pierce, 2001]).
Typechecking and inference algorithms can be found in many program analysis tools other than compilers. For
example,_AnnoDomini, a Year 2000 conversion utility for Cobol programs, is based on an ML-style type inference

ine (Eidorff et al., 1999). Type inferer&mmmasgabeen used in tools for alias analysis (Q'Callahan and
Eackson 1997) and exception analysis (Leroy and Pessaux, 200d).

In automated theorem proving, type systems—usually very powerful ones based on dependent types—are used t

repres i iti ﬁuﬂ_umh_ﬁeveral popular proof assistants, including Nuprl (Constable et al, 198
Lego (lLuo and Pollack, 199%; Pollack, 1994). Coq (Barras efal, 1997), and Alf (Magnusson and Nordstrom, 1994

are based directly on type theory. [Constable (19981 and Pfenning (1999) discuss the history of these systems.

—

—

Interest in type systems is also on the in in the database community, with the explosion of "web metadata” in
the form of Document Type Definitions (XML 1992) and other kinds of schemas (such as the new XML-Schema

standard [XS 200(]) for describing structured data in XML. New language

Jlating XML provid

>

,m&ngLa,n_c_u](]m op these sch =r.lliJ.a.DQ.U.aQ:j osoya and Pierce, 2000; Hosoya, Vouillon,
and Pierce, 2001; Hosoya and Pierce, 2001; Relax, 200d; Shields, 2001).

A quite different application of type systems appears in the field of computational linguistics

etc.).

,_a.mp_d_a—_gaj_cjlilgmm_mf_hajis for formalisms such as categorial grammar (van Benthem, 1995; pan Benthem andl
Meulen, 199%; Ranta, 1995;

mStatic elimination of array-bounds checking is a long-standing goal for type system designers. In principle, the

necessary mechanisms (based on dependent types—see g30.5) are well understood, but packaging them in a form

that balances expressive power, predictability and tractability of typechecking, and cc_mm_exMLQmmm_an
remains a significant challenge. Some recent advances in the area are described by [Xi and Pfenning (199§,

jons
999).

< Free Open Study >

< Free Open Study >

1.3 Type Systems and Language Design

Retrofitting a type system onto a language not designed with typechecking in mind can be tricky; ideally, language
design should go hand-in-hand with type system design.

One reason for this is that languages without type systems—even safe, dynamically checked languages—tend to offer
features or encourage programming idioms that make typechecking difficult or infeasible. Indeed, in typed languages
the type system itself is often taken as the foundation of the design and the organizing principle in light of which every
other aspect of the design is considered.

Another factor is that the concrete syntax of typed languages tends to be more complicated than that of untyped
languages, since type annotations must be taken into account. It is easier to do a good job of designing a clean and
comprehensible syntax when all the issues can be addressed together.

The assertion that types should be an integral part of a programming language is separate from the question of where
the programmer must physically write down type annotations and where they can instead be inferred by the compiler.
A well-designed statically typed language will never require huge amounts of type information to be explicitly and
tediously maintained by the programmer. There is some disagreement, though, about how much explicit type
information is too much. The designers of languages in the ML family have worked hard to keep annotations to a bare
minimum, using type inference methods to recover the necessary information. Languages in the C family, including
Java, have chosen a somewhat more verbose style.

< Free Open Study >

< Free Open Study >

1.4 Capsule History

In computer science, the earliest type systems were used to make very simple distinctions between integer and
floating point representations of numbers (e.g., in Fortran). In the late 1950s and early 1960s, this classification was
extended to structured data (arrays of records, etc.) and higher-order functions. In the 1970s, a number of even richer
concepts (parametric polymorphism, abstract data types, module systems, and subtyping) were introduced, and type
systems emerged as a field in its own right. At the same time, computer scientists began to be aware of the
connections between the type systems found in programming languages and those studied in mathematical logic,
leading to a rich interplay that continues to the present.

presents a brief (and scandalously incomplete!) chronology of some high points in the history of type
systems in computer science. Related developments in logic are included, in italics, to show the importance of this

field's contributions. Citations in the right-hand column can be found in the bibliography.

THFs eorhatiras o Jowrraal oyl Frege (1 &7
 EXC I UES Pl Lraigan i it el s Wihinehsad anid Bussel (190116
1930 wmymed krbela colowlus Chusrch (1940}
1eiis simply fped brmboda-calfrufies Church {15940, Curry amd Feys (1958)
14950% Eoriran Backus {L951)
Abpol-Gd) Naur et al. (L961)

IHas Aitonsath prafedd e Brumji | | DE0)
Sirmlks Eirtwisthe el &l {1979)
Curry-ovworad correspomibonay | Hcrward { FORO}

gl -GR v aib Wi igeaarden en al, 1975)

170 Pisaal Wik {1971}
Mfarrin [A7 e theary Mnrrin Lo (177%, 1985
Peaemt F, T falrard (1972
polymnrphic lembsda-caloulus Revmiods | L9574

(i Liskoow el 2l (19H1)
pEalymnarpies Ty inference Milmer d 14058, Damas and Milmer | LB Z)

M. Eetir i, SSiliwer, amid Wadsvaat b {1577
Imfersecliom fypes Coppar angd Deseani (19783

Covppes, Mareand, and Salle (19749, Paatinger (1 980)

1980s NulEL praject Constabile oo al. {1 986)
subiypineg Resolds (19800 Cardelli o 0845, hEinckhell {1954a)

A E as exastent il 1vpes Bltcheel] and Pholkin {198E)

catlcalo off Constrn Mo Corfpnamd § 19850, Conpuand and et {1 9EE)

[Fripaar besgii Ceirard (13E7) . dsirard &1 2l (15E5

Dol ed quantilication Carchell and Wegner (1 985)

Ciarbein amd G2 hael0i 15902, O arid el o g, {19

Falinbairgly Lag Lol Framwerk Harper, Homsel, and Plakin 1092)
Forsythe Reymiodds | | S8R

PUFE PV ST Terlow {1689}, Berand) (1986, Barcndreg (19910
dependeni types and modularily Burstall and Lamapsom | 1954, Mac{heeen || 951E

TR Lardelld {LERID)

elledl syslems Lilflord ef al (1R Talpin and Jouvelat (152

e varables exiensilde records Wand (V98T Bdmwy {19801

Cardelli ansd Minchell {1990)

IO hedpheer-asrdber suliyplng Cardbell £ 0500, Card il anmd Lango {1 9900)
fypeed imdermediale langiages Tardild, Moeriseit, of al. {19%56)

iHaject caloulus whidi amd Canchelly {1 9906)
rranslucen vpes and mosdulariny Iharpeer aswd Lallibridge |1 906, Lepdy (] 9r04)

e assdimibly laiduage Mierisaenr & &l (1 F0H)

Figure 1-1: Capsule History of Types in Computer Science and Logic

< Free Open Study >

< Free Open Study >

1.5 Related Reading

While this book attempts to be self contained, it is far from comprehensive; the area is too large, and can be
approached from too many angles, to do it justice in one book. This section lists a few other good entry points.

andbook articles by ICardeIIi (19961 and l\/litchell (1990b1 offer quick introductj 's article
19921 is for the more mathematically inclined. Mitchell's massive textbook on Foundations for Programming
|_anquageq (1996] covers basic lambda-calculus, a range of type systems, and many aspects of semantics. The focus
is on semantic rather than implementation issues. Revnolds‘s]Theories of Programming Languages (1998bi, a

graduate-level survey of the theor mmDstTrphism,
subtyping, and intersection types. [The Structure of Typed Programming Languaged by Schmidt (1994), develop score

concepts of type systems in the context of language design, includjng several chapters on conventional imperative
languages. Hindley's monograph Basic Simple Type Theor\l(1997 is a wonderful compendium of results about the
simply typed lambda-calculus and closely related systems. Its coverage is deep rather than broad.

lAbadi and Cardelli'slA Theory of Obiectsl (1996] develops much of the same material as the present book,

de-emphasizing implementation aspects a ting instead on the application of these ideas in a foundation
treatment of object-oriented programming. Kim Bruce's|Foundations of Object-Oriented Languages: Types and

i ound. Introductory material on object-oriented type systems can also be found in
alsberg and Schwartzbach (1994] and Castagna (1997].
emantic foundations for both untyped and typed languages are covered in depth in the_textbooks of [Gunter (1992,
inskel (1993}, and Mitchell (1996). Operational semantics is also covered in detail by Hennessy (1990). Foundations
for the semantics of types in the mathemati egory[inmmu_ilso be found in many sources,
r

including the books by Jacobs(1999], Asperti and Longg (1991), and [Crole (1994]; a brief primer can be found in Basic
Category Theory for Computer Scientists (Pierce, 19914).

birard, Lafont, and Taylor'sliroofs and Tyge4(1989l treats logical aspects of type systems (the Curry-Howard

correspondence, etc.). It also includes a description of System F from its crea C
ogic. Connections between types and logi eprQ[?d in B ing' { i
Thompson'sifvpe Theory and Functional Programmind] (1991] and [Turner's [Constructive Foundations for Functional
Languageé(lggll focus on connections between functional programming (in the "pure functional programming” sense
of Haskell or Miranda) and con stryctive type theory, viewed from g logical perspective, A number of relevant topics
from proof theory are developed in [Goubault-Larrecg and Mackie's|Proof Theory and Automated Deduction (1997

he history of types i i hilotgphy is described in more detail in articles by [Constable (1998 lNadIe (20001,

uet (1990), and Pfenning (1999), in Laan's doctoral thesis (1997), and in books by [Grattan-Guinness (2001} and

Sommaruga (2000).

It turns out that a fair amount of careful analysis is required to avoid false and embarrassing
claims of type soundness for programming languages. As a consequence, the classification,

description, and study of type systems has emerged as a formal discipline. [2 JLuca Cardell'l
k1996.

< Free Open Study >

< Free Open Study >

Chapter 2: Mathematical Preliminaries

Before getting started, we need to establish some common notation and state a few basic mathematical facts. Most
readers should just skim this chapter and refer back to it as necessary.

2.1 Sets, Relations, and Functions

2.1.1 Definition

We use standard notation for sets: curly braces for listing the elements of a set explicitly ({...}) or showing how to
construct one set from another by "comprehension” ({xTS | ...}), @ for the empty set, and S\ T for the set difference of
S and T (the set of elements of S that are not also elements of T). The size of a set S is written |S|. The powerset of S,
i.e., the set of all the subsets of S, is written P(S).

2.1.2 Definition

The set {0, 1, 2, 3, 4, 5, ...} of natural numbers is denoted by the symbol H A set is said to be countable if its
elements can be placed in one-to-one correspondence with the natural numbers.

2.1.3 Definition

An n-place relation on a collection of sets S1, S2, ..., Snis aset R[] S1 x S2 x ... x Sp of tuples of elements from S1
through Sn. We say that the elements s11S1 through sn1Sn are related by R if (s1,...,5n) is an element of R.

2.1.4 Definition

A one-place relation on a set S is called a predicate on S. We say that P is true of an elements1SifsTP. To
emphasize this intuition, we often write P(s) instead of s1P, regarding P as a function mapping elements of S to truth
values.

2.1.5 Definition

A two-place relation R on sets S and T is called a binary relation. We often write s R t instead of (s,) TR. When S and
T are the same set U, we say that R is a binary relation on U.

2.1.6 Definition

For readability, three- or more place relations are often written using a "mixfix" concrete syntax, where the elements in
the relation are separated by a sequence of symbols that jointly constitute the name of the relation. For example, for
the typing relation for the simply typed lambdacalculus in , we write ? ? s : Tto mean "the triple (2, s, T) is in
the typing relation."

2.1.7 Definition

The domain of a relation R on sets S and T, written dom(R), is the set of elements s1S such that (s, t) TR for somet.
The codomain or range of R, written range(R), is the set of elements t1T such that (s, t) TR for some s.

2.1.8 Definition

A relation R on sets S and T is called a partial function from S to T if, whenever (s, t1) IR and (s, t2) TR, we have t1 =t2.
If, in addition, dom(R) = S, then R is called a total function (or just function) from S to T.

2.1.9 Definition

A partial function R from S to T is said to be defined on an argument siS if sTdom(R), and undefined otherwise. We
write f(x) 1, or f(x) = 1, to mean "fis undefined on x," and f(x)! " to mean "f is defined on x.

n some of the implementation chapters, we will also need to define functions that may fail on some inputs (see, e.g.,
Figure 22-7). It is important to distinguish failure (which is a legitimate, observable result) from divergence; a function
that may fail can be either partial (i.e., it may also diverge) or total (it must always return a result or explicitly

fail)-indeed, we will often be interested in proving totality. We write f(x) = fail when f returns a failure result on the input
X.

Formally, a function from S to T that may also fail is actually a function from S to T n {fail}, where we assume that fail
does not belong to T.

2.1.10 Definition

Suppose R is a binary relation on a set S and P is a predicate on S. We say that P is preserved by R if whenever we
have s R s’ and P(s), we also have P(s').

|< Free Open Study >

< Free Open Study >

2.2 Ordered Sets

2.2.1 Definition

A binary relation R on a set S is reflexive if R relates every element of S to itself—that is, s R s (or (s,s) TR) for all sTS.
Ris symmetricif s Rtimpliest R s, for allsand tin S. R is transitive if s R t and t R u together imply s R u. R is
antisymmetric if s R t and t R s together imply that s =t.

2.2.2 Definition

A reflexive and transitive relation R on a set S is called a preorder on S. (When we speak of "a preordered set S," we
always have in mind some patrticular preorder R on S.) Preorders are usually written using symbols like < or ?. We
write s <t (s is strictly less than t*) to mean s<tUs#t.

A preorder (on a set S) that is also antisymmetric is called a partial order on S. A partial order < is called a total order if
it also has the property that, for each sand tin S, either s<tort<s.

2.2.3 Definition

Suppose that < is a partial order on a set S and s and t are elements of S. An element j1S is said to be a join (or least
upper bound) of s and t if

1. s<jandt<j, and
2. forany element k1S with s<k and t<k, we have j<k.

Similarly, an element m1S is said to be a meet (or greatest lower bound) of s and t if

1. m<sandm<t and
2. forany elementniS withn<sandn<t, we haven<m.
2.2.4 Definition

A reflexive, transitive, and symmetric relation on a set S is called an equivalence on S.
2.2.5 Definition

Suppose R is a binary relation on a set S. The reflexive closure of R is the smallest reflexive relation R’ that contains R.
("Smallest" in the sense that if R" is some other reflexive relation that contains all the pairs in R, then we have R' [J
R".) Similarly, the transitive closure of R is the smallest transitive relation R’ that contains R. The transitive closure of R

is often written R+. The reflexive and transitive closure of R is the smallest reflexive and transitive relation that contains
R. It is often written R*.

2.2.6 Exercise [?? ?]

Suppose we are given a relation R on a set S. Define the relation R’ as follows:

R'=Rn {(s,s)|sTS}

That is, R’ contains all the pairs in R plus all pairs of the form (s, s). Show that R’ is the reflexive closure of R.

2.2.7 Exercise [??,?]

Here is a more constructive definition of the transitive closure of a relation R. First, we define the following sequence of
sets of pairs:

Ro = R

Ri+1 = Ri n {(s, u) | for somet, (s, t) IRj and ¢, u) TRj}

That is, we construct each Rj+1 by adding to R;j all the pairs that can be obtained by "one step of transitivity" from pairs

already in Ri. Finally, define the relation R" as the union of all the Ri:
R*=| K
r
Show that this R is really the transitive closure of R—i.e., that it satisfies the conditions given in Pefinition 2.2.5.

2.2.8 Exercise [??,?]

Suppose R is a binary relation on a set S and P is a predicate on S that is preserved by R. Show that P is also
preserved by R*.

2.2.9 Definition

Suppose we have a preorder < on a setS. A decreasing chain in < is a sequence s1, S2, s3, ... of elements of S such
that each member of the sequence is strictly less than its predecessor: si+1 <sj for every i. (Chains can be either finite
or infinite, but we are more interested in infinite ones, as in the next definition.)

2.2.10 Definition

Suppose we have a set S with a preorder <. We say that < is well founded if it contains no infinite decreasing chains.
For example, the usual order on the natural numbers, with 0 <1 <2 < 3 < ... is well founded, but the same order on the
integers, ... <-3<-2<-1<0<1<2<3<...is not. We sometimes omit mentioning < explicitly and simply speak of S
as a well-founded set.

< Free Open Study >

< Free Open Study >

2.3 Sequences

2.3.1 Definition

A sequence is written by listing its elements, separated by commas. We use comma as both the "cons" operation for
adding an element to either end of a sequence and as the "append" operation on sequences. For example, if a is the
sequence 3, 2, 1 and b is the sequence 5, 6, then 0, a denotes the sequence 0, 3, 2, 1, while a, 0 denotes 3, 2, 1, 0
and b, adenotes 5, 6, 3, 2, 1. (The use of comma for both "cons" and "append" operations leads to no confusion, as
long as we do not need to talk about sequences of sequences.) The sequence of numbers from 1 to n is abbreviated
1..n (with just two dots). We write |a| for the length of the sequence a. The empty sequence is written either as * or as
a blank. One sequence is said to be a permutation of another if it contains exactly the same elements, possibly in a
different order.

< Free Open Study >

< Free Open Study >

2.4 Induction

Proofs by induction are ubiquitous in the theory of programming languages, as in most of computer science. Many of
these proofs are based on one of the following principles.

2.4.1 Axiom [Principle of Ordinary Induction on Natural Numbers]

Suppose that P is a predicate on the natural numbers. Then:

If P(0)
and, for all i, P(i) implies P(i + 1),

then P(n) holds for all n.

2.4.2 Axiom [Principle of Complete Induction on Natural Numbers]

Suppose that P is a predicate on the natural numbers. Then:
If, for each natural number n,

given P(i) for all i <n
we can show P(n),

then P(n) holds for all n.

2.4.3 Definition

The lexicographic order (or "dictionary order") on pairs of natural numbers is defined as follows: (m, n) < (m', n') iff
eitherm<m'orelsem=m"andn<n’.

2.4.4 Axiom [Principle of Lexicographic Induction]

Suppose that P is a predicate on pairs of natural numbers.
If, for each pair (m, n) of natural numbers,

given P(m’, n') for all (m', n") < (m, n)
we can show P(m, n),
then P(m, n) holds for all m, n.

The lexicograpic induction principle is the basis for proofs by nested induction, where some case of an inductive proof
proceeds "by an inner induction.” It can be generalized to lexicographic induction on triples of numbers, 4-tuples, etc.
(Induction on pairs is fairly common; on triples it is occasionally useful; beyond triples it is rare.)

|'I'he0rem 3.3.4 in Chapter CJWiII introduce yet another format for proofs by induction, called structural induction, that is
particularly useful for proofs about tree structures such as terms or typing derivations. The mathematical foundations
of inductive reasoning will be considered in more detail in , where we will see that all these specific
induction principles are instances of a single deeper idea.

< Free Open Study >

L] < Eree Open Study >

2.5 Background Reading

If the material summarized in this chapter is unfamiliar, you may want to start with some background reading. There

are many soyrces for this, butpVinskel's book (1993) is a particularly good choice for intuiti pout induction. The
beginning of Davey and Priestley (19901 has an excellent review of ordered sets. Halmos (1987) is a good introduction

to basic set theory.

A proof is a repeatable experiment in persuasion. -Jim Horning

m < Free Open Study >

Part I: Untyped Systems

Chapter List

Untyped Arithmetic Expressions

An ML Implementation of Arithmetic Expressions
The Untyped Lambda-Calculus

Nameless Representation of Terms

An ML Implementation of the Lambda-Calculus

< Free Open Study >

< Free Open Study >

Chapter 3: Untyped Arithmetic Expressions

To talk rigorously about type systems and their properties, we need to start by dealing formally with some more basic
aspects of programming languages. In particular, we need clear, precise, and mathematically tractable tools for
expressing and reasoning about the syntax and semantics of programs.

This chapter and the next develop the required tools for a small language of numbers and booleans. This language is
so trivial as to be almost beneath consideration, but it serves as a straightforward vehicle for the introduction of several
fundamental concepts-abstract syntax, inductive definitions and proofs, evaluation, and the modeling of run-time
errors. Chapters 5 through 7 elaborate the same story for a much more powerful language, the untyped
lambda-calculus, where we must also deal with name binding and substitution. Looking further ahead,
commences the study of type systems proper, returning to the simple language of the present chapter and using it to
introduce basic concepts of static typing. Chapter extends these concepts to the lambda-calculus.

3.1 Introduction

The language used in this chapter contains just a handful of syntactic forms: the boolean constants true and false,
conditional expressions, the numeric constant 0, the arithmetic operators succ (successor) and pred (predecessor), and
a testing operation iszero that returns true when it is applied to 0 and false when it is applied to some other number.

. . 1
These forms can be summarized compactly by the following grammar. i
to= terms:
true
constant true
false
if tthen t else t constant false
0 conditional
succ t
pred t constant zero
iszero t successor
predecessor
zero test

The conventions used in this grammar (and throughout the book) are close to those of standard BNF (cf. Aho, Sethi,

and Ullman, 1986). The first line (t ::=) declares that we are defining the set of terms, and that we are going to use the
letter t to range over terms. Each line that follows gives one alternative syntactic form for terms. At every point where
the symbol t appears, we may substitute any term. The italicized phrases on the right are just comments.

The symbol t in the right-hand sides of the rules of this grammar is called a metavariable. It is a variable in the sense
that it is a place-holder for some particular term, and "meta" in the sense that it is not a variable of the object
language-the simple programming language whose syntax we are currently describing-but rather of the
metalanguage-the notation in which the description is given. (In fact, the present object language doesn't even have
variables; we'll introduce them in) The prefix meta- comes from meta-mathematics, the subfield of logic
whose subject matter is the mathematical properties of systems for mathematical and logical reasoning (which
includes programming languages). This field also gives us the term metatheory, meaning the collection of true

statements that we can make about some particular logical system (or programming language)-and, by extension, the
study of such statements. Thus, phrases like "metatheory of subtyping” in this book can be understood as, "the formal
study of the properties of systems with subtyping."

Throughout the book, we use the metavariable t, as well as nearby letters such as s, u, and r and variants such as t1
and s', to stand for terms of whatever object language we are discussing at the moment; other letters will be
introduced as we go along, standing for expressions drawn from other syntactic categories. A complete summary of
metavariable conventions can be found in

For the moment, the words term and expression are used interchangeably. Starting in , when we begin
discussing calculi with additional syntactic categories such as types, we will use expression for all sorts of syntactic
phrases (including term expressions, type expressions, kind expressions, etc.), reserving term for the more specialized
sense of phrases representing computations (i.e., phrases that can be substituted for the metavariable t).

A program in the present language is just a term built from the forms given by the grammar above. Here are some
examples of programs, along with the results of evaluating them:

if false then 0 else 1;
?1
iszero (pred (succ 0));

? true

Throughout the book, the symbol ? is used to display the results of evaluating examples. (For brevity, results will be
elided when they are obvious or unimportant.) During typesetting, examples are automatically processed by the
implementation corresponding to the formal system in under discussion (arith here); the displayed responses are the
implementation's actual output.

In examples, compound arguments to succ, pred, and iszero are enclosed in parentheses for readability.@ Parentheses
are not mentioned in the grammar of terms, which defines only their abstract syntax. Of course, the presence or
absence of parentheses makes little difference in the extremely simple language that we are dealing with at the
moment: parentheses are usually used to resolve ambiguities in the grammar, but this grammar is does not have any
ambiguities-each sequence of tokens can be parsed as a term in at most one way. We will return to the discussion of
parentheses and abstract syntax in [Chapter § (p. 52).

For brevity in examples, we use standard arabic numerals for numbers, which are represented formally as nested
applications of succ to 0. For example, succ(succ(succ(0))) is written as 3.

The results of evaluation are terms of a particularly simple form: they will always be either boolean constants or
numbers (nested applications of zero or more instances of succ to 0). Such terms are called values, and they will play a
special role in our formalization of the evaluation order of terms.

Notice that the syntax of terms permits the formation of some dubious-looking terms like succ true and if 0 then 0 else O.
We shall have more to say about such terms later-indeed, in a sense they are precisely what makes this tiny language
interesting for our purposes, since they are examples of the sorts of nonsensical programs we will want a type system
to exclude.

mThe system studied in this chapter is the untyped calculus of booleans and numbe GM on page 41). The
associated OCaml implementation, called arith in the web repository, is described in . Instructions for
downloading and building this checker can be found at Etté://www.cis.wenn.eduhbcierce/ta .

[g]ln fact, the implementation used to process the examples in this chapter (called arith on the book's web site) actually
requires parentheses around compound arguments to succ, pred, and iszero, even though they can be parsed

unambiguously without parentheses. This is for consistency with later calculi, which use similar-looking syntax for
function application.

< Free Open Study >

http://www.cis.upenn.edu/~bcpierce/tapl

< Free Open Study >

3.2 Syntax

There are several equivalent ways of defining the syntax of our language. We have already seen one in the grammar
on page 24. This grammar is actually just a compact notation for the following inductive definition:

3.2.1 Definition [Terms, Inductively]

The set of terms is the smallest set T such that

1. {true, false, 0} T;
2. ifta1T, then {succ t1, pred 11, iszero t1} O T;
3. ift1iT, 21T, and t31T, thenif tg then t2 else t31T.

Since inductive definitions are ubiquitous in the study of programming languages, it is worth pausing for a moment to
examine this one in detail. The first clause tells us three simple expressions that are in T. The second and third
clauses give us rules by which we can judge that certain compound expressions are in T. Finally, the word "smallest"
tells us that T has no elements besides the ones required by these three clauses.

Like the grammar on page 24, this definition says nothing about the use of parentheses to mark compound subterms.
Formally, what's really going on is that we are defining T as a set of trees, not as a set of strings. The use of
parentheses in examples is just a way of clarifying the relation between the linearized form of terms that we write on
the page and the real underlying tree form.

A different shorthand for the same inductive definition of terms employs the two-dimensional inference rule format
commonly used in "natural deduction style" presentations of logical systems:

3.2.2 Definition [Terms, by Inference Rules]

The set of terms is defined by the following rules:

truee T falsec T 0eT
tLeT t1Lh T tLheT
succ tp 7T predt; €T iszerot) €T
t) € el tizeT

1ift; thentxelsetz T

The first three rules here restate the first clause of Definition 3.2.1f; the next four capture clauses (2) and (3). Each rule
is read, "If we have established the statements in the premise(s) listed above the line, then we may derive the
conclusion below the line." The fact that T is the smallest set satisfying these rules is often (as here) not stated
explicitly.

Two points of terminology deserve mention. First, rules with no premises (like the first three above) are often called
axioms. In this book, the term inference rule is used generically to include both axioms and "proper rules" with one or
more premises. Axioms are usually written with no bar, since there is nothing to go above it. Second, to be completely
pedantic, what we are calling "inference rules" are actually rule schemas, since their premises and conclusions may
include metavariables. Formally, each schema represents the infinite set of concete rules that can be obtained by
replacing each metavariable consistently by all phrases from the appropriate syntactic category—i.e., in the rules
above, replacing each t by every possible term.

Finally, here is yet another definition of the same set of terms in a slightly different, more "concrete" style that gives an
explicit procedure for generating the elements of T.

3.2.3 Definition [Terms, Concretely]

For each natural number i, define a set Sj as follows:

So = ?
Si+1 = {true, false, 0}
E {succ t1, pred t1, iszero t1 | t1 1 Si}
E {if t1 then 2 else t3 | t1, t2, t31 Si}.
Finally, let

So is empty; S1 contains just the constants; S2 contains the constants plus the phrases that can be built with constants
and just one succ, pred, iszero, or if; S3 contains these and all phrases that can be built using succ, pred, iszero, and if
on phrases in S2; and so on. S collects together all the phrases that can be built in this way—i.e., all phrases built by
some finite number of arithmetic and conditional operators, beginning with just constants.

3.2.4 Exercise [?7?]

How many elements does S3 have?

3.2.5 Exercise [?7?]

Show that the sets Sj are cumulative—that is, that for each i we have Sj [J Sj+1.

The definitions we have seen characterize the same set of terms from different directions: Refinitions 3.2.1 and Ezj
simply characterize the set as the smallest set satisfying certain "closure properties”; Definition 3.2.3 shows how to
actually construct the set as the limit of a sequence.

To finish off the discussion, let us verify that these two views actually define the same set. We'll do the proof in quite a
bit of detail, to show how all the pieces fit together.

3.2.6 Proposition
T=S.

Proof: T was defined as the smallest set satisfying certain conditions. So it suffices to show (a) that S satisfies these
conditions, and (b) that any set satisfying the conditions has S as a subset (i.e., that S is the smallest set satisfying the
conditions).

For part (a), we must check that each of the three conditions in holds of S. First, since S1 = {true, false,

0}, it is clear that the constants are in S. Second, if t11S, then (since S =Ej Sj) there must be some i such thatt11S;.
But then, by the definition of Sij+1, we must have succ t11Sj+1, hence succ t11S; similarly, we see that pred t1 1S and
iszero t11S. Third, if t11S, t27S, and t31S, then if t1 then t2 else t31S, by a similar argument.

For part (b), suppose that some set S’ satisfies the three conditions in . We will argue, by complete

induction on i, that every Sj O S', from which it clearly follows that S O S'.

Suppose that Sj O S’ for all j <i; we must show that Sj 00 S'. Since the definition of Sj has two clauses (fori = 0 andi >
0), there are two cases to consider. If i = 0, then Sj = ?; but 20 S' trivially. Otherwise, i =j + 1 for some j. Lett be some
element of Sj+1. Since Sj+1 is defined as the union of three smaller sets, t must come from one of these sets; there are

three possibilities to consider. (1) Iftis a constant, then tTS' by condition 1. (2) Ift has the form succ t1, pred t1, or iszero
t1, for some t11S;j then, by the induction hypothesis, t11S', and so, by condition (2), t1S'. (3) If t has the formif t1 then t,

else t3, for some t1, t2, t31S', then again, by the induction hypothesis, t1, t2, and t3 are all in S', and, by condition 3, so is
t.

Thus, we have shown that each Sj J S'. By the definition of S as the union of all the S;j, this gives S [1 S', completing
the argument.

It is worth noting that this proof goes by complete induction on the natural numbers, not the more familiar "base case /
induction case" form. For each i, we suppose that the desired predicate holds for all numbers strictly less thani and
prove that it then holds for i as well. In essence, every step here is an induction step; the only thing that is special
about the case where i = 0 is that the set of smaller values of i, for which we can invoke the induction hypothesis,
happens to be empty. The same remark will apply to most induction proofs we will see throughout the
book—patrticularly proofs by "structural induction."

< Free Open Study >

< Free Open Study >

3.3 Induction on Terms

The explicit characterization of the set of terms T in justifies an important principle for reasoning

about its elements. If t1 T, then one of three things must be true about t: (1) tis a constant, or (2)t has the formsucc t1,
pred t1, or iszero t1 for some smaller term t1, or (3) t has the formif t1 then t2 else t3 for some smaller terms t1, t2, and t3.
We can put this observation to work in two ways: we can give inductive definitions of functions over the set of terms,
and we can give inductive proofs of properties of terms. For example, here is a simple inductive definition of a function
mapping each term t to the set of constants used int.

3.3.1 Definition

The set of constants appearing in a term t, written Consts(t), is defined as follows:

Consts(true) = {true}

Consts(false) = {false}

Consts(0) = {0}

Consts(succ t1) = Consts(t1)

Consts(pred t1) = Consts(t1)

Consts(iszero t1) = Consts(t1)

Consts(if t1 then else t3) = Consts(t1) E Consts(t2) E Consts(t3)

Another property of terms that can be calculated by an inductive definition is their size.

3.3.2 Definition

The size of a term t, written size(t), is defined as follows:

size(true) = 1

size(false) = 1

size(0) = 1

size(succ 1) = size(t)) +1

size(pred t1) = size(ty) +1

size(iszero t1) = size(ty)) + 1

size(if t1 then © else t3) = size(t1) + size(t2) +size(tz) + 1

That is, the size of tis the number of nodes in its abstract syntax tree. Similarly, the depth of a term t, written depth(t),
is defined as follows:

depth(true) = 1
depth(false) = 1
depth(0) = 1
depth(succ t1) = depth(ty) +1

depth(pred t1) depth(tg) + 1

depth(iszero t1) depth(tg) + 1

depth(if t1 then © else t3)

Equivalently, depth(t) is the smallest i such thatt1S;j according to .

Here is an inductive proof of a simple fact relating the number of constants in a term to its size. (The property in itself is
entirely obvious, of course. What's interesting is the form of the inductive proof, which we'll see repeated many times
as we go along.)

max(depth(t1), depth(t2), depth(t3)) + 1

3.3.3Lemma

The number of distinct constants in a term t is no greater than the size of t (i.e., |Consts(t)| < size(t)).

Proof: By induction on the depth of t. Assuming the desired property for all terms smaller than t, we must prove it for t
itself. There are three cases to consider:

Case: tis a constant
Immediate: |[Consts(t)| = [{t}| = 1 = size(t).
Case: t = succ t1, pred t1, oriszero t1

By the induction hypothesis, |Consts(t1)| < size(t1). We now calculate as follows: |Consts(t)| = |Consts(t1)| < size(t1) <
size(t).

Case: t = if t1 then p else t3

By the induction hypothesis, |Consts(t1)| < size(t1), |Consts(t2)| < size(t2), and |Consts(t3)| < size(t3). We now calculate

as follows:
|Consts(t)| = |Consts(t1) E Consts(t2) E Consts(t3)]
< [Consts(t1)| + [Consts(t2)| + [Consts(t3)]
< size(t1) + size(t2) + size(t3)
< size(t).

The form of this proof can be clarified by restating it as a general reasoning principle. For good measure, we include
two similar principles that are often used in proofs about terms.

3.3.4 Theorem [Principles of Induction on Terms]

Suppose P is a predicate on terms.
Induction on depth:
If, for each term s,

given P(r) for all r such that depth(r) < depth(s)
we can show P(s),
then P(s) holds for all s.

Induction on size:
If, for each term s,

given P(r) for all r such that size(r) < size(s)

we can show P(s),
then P(s) holds for all s.

Structural induction:
If, for each term s,

given P(r) for all immediate subtermsr of s
we can show P(s),
then P(s) holds for all s.
Proof: Exercise (??).

Induction on depth or size of terms is analogous to complete induction on_natyral numbers (). Ordinary structural
induction corresponds to the ordinary natural number induction principle [.4.1) where the induction step requires that
P(n + 1) be established from just the assumption P(n).

Like the different styles of natural-number induction, the choice of one term induction principle over another is
determined by which one leads to a simpler structure for the proof at hand—formally, they are inter-derivable. For
simple proofs, it generally makes little difference whether we argue by induction on size, depth, or structure. As a
matter of style, it is common practice to use structural induction wherever possible, since it works on terms directly,
avoiding the detour via numbers.

Most proofs by induction on terms have a similar structure. At each step of the induction, we are given a termt for
which we are to show some property P, assuming that P holds for all subterms (or all smaller terms). We do this by
separately considering each of the possible forms thatt could have (true, false, conditional, 0, etc.), arguing in each
case that P must hold for any t of this form. Since the only parts of this structure that vary from one inductive proof to
another are the details of the arguments for the individual cases, it is common practice to elide the unvarying parts and
write the proof as follows.

Proof: By induction on t.

Case: t = true

... showP(true) ...

Case: t = false

... showP(false) ...

Case: t = if t1 then R else t3

... show P(if t1 then © else t3), using P(t1), P(t2), andP(t3) ...

(And similarly for the other syntactic forms.)

For many inductive arguments (including the proof of 3.3.3), it is not really worth writing even this much detail: in the
base cases (for terms t with no subterms) P(t) is immediate, while in the inductive cases P(t) is obtained by applying
the induction hypothesis to the subterms of t and combining the results in some completely obvious way. It is actually
easier for the reader simply to regenerate the proof on the fly (by examining the grammar while keeping the induction
hypothesis in mind) than to check a written-out argument. In such cases, simply writing "by induction on t' constitutes a
perfectly acceptable proof.

< Free Open Study >

< Free Open Study >

3.4 Semantic Styles

Having formulated the syntax of our language rigorously, we next need a similarly precise definition of how terms are
evaluated-i.e., the semantics of the language. There are three basic approaches to formalizing semantics:

1. Operational semantics specifies the behavior of a programming language by defining a simple
abstract machine for it. This machine is "abstract” in the sense that it uses the terms of the
language as its machine code, rather than some low-level microprocessor instruction set. For
simple languages, a state of the machine is just a term, and the machine's behavior is defined by
a transition function that, for each state, either gives the next state by performing a step of
simplification on the term or declares that the machine has halted. The meaning of a term t can be

taken to be the final state that the machine reaches when started with t as its initial state.@

It is sometimes useful to give two or more different operational semantics for a single
language-some more abstract, with machine states that look similar to the terms that the
programmer writes, others closer to the structures manipulated by an actual interpreter or
compiler for the language. Proving that the behaviors of these different machines correspond in
some suitable sense when executing the same program amounts to proving the correctness of an
implementation of the language.

2. Denotational semantics takes a more abstract view of meaning: instead of just a sequence of
machine states, the meaning of a term is taken to be some mathematical object, such as a
number or a function. Giving denotational semantics for a language consists of finding a collection
of semantic domains and then defining an interpretation function mapping terms into elements of
these domains. The search for appropriate semantic domains for modeling various language
features has given rise to a rich and elegant research area known as domain theory.

One major advantage of denotational semantics is that it abstracts from the gritty details of
evaluation and highlights the essential concepts of the language. Also, the properties of the
chosen collection of semantic domains can be used to derive powerful laws for reasoning about
program behaviors-laws for proving that two programs have exactly the same behavior, for
example, or that a program's behavior satisfies some specification. Finally, from the properties of
the chosen collection of semantic domains, it is often immediately evident that various (desirable
or undesirable) things are impossible in a language.

3. Axiomatic semantics takes a more direct approach to these laws: instead of first defining the
behaviors of programs (by giving some operational or denotational semantics) and then deriving
laws from this definition, axiomatic methods take the laws themselves as the definition of the
language. The meaning of a term is just what can be proved about it.

The beauty of axiomatic methods is that they focus attention on the process of reasoning about
programs. It is this line of thought that has given computer science such powerful ideas as
invariants.

During the '60s and '70s, operational semantics was generally regarded as inferior to the other two styles-useful for
quick and dirty definitions of language features, but inelegant and mathematically weak. But in the '80s, the more

@

operational methods came to seem more and more attractive by comparison-

pments in the area by a number of researchers, beginning with Plotkin's Structural Operational Semantics
1981}, I(ahn's Natural Semantics (1987), and Milner's work on CCS (198d; @ 1999), which introduced more
elegant formalisms and showed how many of the powerful mathematical techniques developed in the context of
denotational semantics could be transferred to an operational setting. Operational semantics has become an energetic
research area in its own right and is often the method of choice for defining programming languages and studying their

abstract methods began to encounter increasingly thorny technical problems,= and the simplicity and flexibility of

properties. It is used exclusively in this book.

E]Strictly speaking, what we are describing here is the Eniﬂ:ﬂj.maﬂ;'ﬁep style of operational semantics, sometimes
called structural operational semantics (Plotkin, 1981)). Exercise 3.5.17 introduces an alternate big-step style,
sometimes called natural semantics (Kahn, 1987), in which a single transition of the abstract machine evaluates a term

to its final result.

H]The béte noire of denotational semantics turned out to be the treatment of nondeterminism and concurrency; for
axiomatic semantics, it was procedures.

< Free Open Study >

< Free Open Study >

3.5 Evaluation

ving numbers aside for the moment, let us begin with the operational semantics of just boolean expressions.
summarizes the definition. We now examine its parts in detail.

By
e o DA i P
LUl T Fratlwation E—F
£ o= fewars
true st froae T trus than b elseta — L AENTRUED
false constaml false
1 h 1 — b3 FFal
e — e if Falze then t: else &, by (EdPFasEl
v oo VTR T I,TI -;h s E-Iek
AF L then Ty &lse iy
& 1 h_._.
Tras EFRE v - it them b, elaet
Falup fialer vafeie =

Figure 3-1: Booleans (B)

The left-hand column of is a grammar defining two sets of expressions. The first is just a repetition (for
convenience) of the syntax of terms. The second defines a subset of terms, called values, that are possible final results
of evaluation. Here, the values are just the constants true and false. The metavariable v is used throughout the book to
stand for values.

The right-hand column defines an evaluation relation[é] on terms, written t — t" and pronounced 't evaluates to t' in one
step.” The intuition is that, ift is the state of the abstract machine at a given moment, then the machine can make a
step of computation and change its state to t'. This relation is defined by three inference rules (or, if you prefer, two
axioms and a rule, since the first two have no premises).

The first rule, E-IFTRUE, says that, if the term being evaluated is a conditional whose guard is literally the constant
true, then the machine can throw away the conditional expression and leave the then part, t2, as the new state of the
machine (i.e., the next term to be evaluated). Similarly, E-IFFALSE says that a conditional whose guard is literally false
evaluates in one step to its else branch, t3. The E- in the names of these rules is a reminder that they are part of the
evaluation relation; rules for other relations will have diMerent prefixes.

The third evaluation rule, E-IF, is more interesting. It says that, if the guard t1 evaluates tot'1, then the whole
conditional if t1 then t2 else t3 evaluates to if t'1 then t2 else t3. In terms of abstract machines, a machine in state if t1 then

t2 else t3 can take a step to state if t'1 then t2 else t3 if another machine whose state is justt] can take a step to state t'1.

What these rules do not say is just as important as what they do say. The constants true and false do not evaluate to
anything, since they do not appear as the left-hand sides of any of the rules. Moreover, there is no rule allowing the
evaluation of a then-or else-subexpression of an if before evaluating the if itself: for example, the term

if true then (if false then false else false) else true

does not evaluate to if true then false else true. Our only choice is to evaluate the outer conditional first, using E-IF. This
interplay between the rules determines a particular evaluation strategy for conditionals, corresponding to the familiar
order of evaluation in common programming languages: to evaluate a conditional, we must first evaluate its guard; if
the guard is itself a conditional, we must first evaluate its guard; and so on. The E-IFTRUE and E-IFFALSE rules tell
us what to do when we reach the end of this process and find ourselves with a conditional whose guard is already fully
evaluated. In a sense, E-IFTRUE and E-IFFALSE do the real work of evaluation, while E-IF helps determine where the
work is to be done. The different character of the rules is sometimes emphasized by referring to E-IFTRUE and
E-IFFALSE as computation rules and E-IF as a congruence rule.

To be a bit more precise about these intuitions, we can define the evaluation relation formally as follows.

3.5.1 Definition

An instance of an inference rule is obtained by consistently replacing each metavariable by the same term in the rule's
conclusion and all its premises (if any).

For example,

if true then true else (if false then false else false) — true

is an instance of E-IFTRUE, where both occurrences of t2 have been replaced by true and t3 has been replaced by if

false then false else false.
3.5.2 Definition

A rule is satisfied by a relation if, for each instance of the rule, either the conclusion is in the relation or one of the
premises is not.

3.5.3 Definition

The one-step evaluation relation — is the smallest binary relation on terms satisfying the three rules in .
When the pair (t, t') is in the evaluation relation, we say that "the evaluation statement (or judgment) t - t' is derivable.

The force of the word "smallest” here is that a statement t - t' is derivable iff it is justified by the rules: either it is an
instance of one of the axioms E-IFTRUE and E-IFFALSE, or else it is the conclusion of an instance of rule E-IF whose
premise is derivable. The derivability of a given statement can be justified by exhibiting a derivation tree whose leaves
are labeled with instances of E-IFTRUE or E-IFFALSE and whose internal nodes are labeled with instances of E-IF.
For example, if we abbreviate

s "' if true then false else false

fef ..
t S if s then true else true

u if false then true else true

to avoid running off the edge of the page, then the derivability of the statement

if t then false else false — if u then false else false
is witnessed by the following derivation tree:

E-lETRUE
5 — false
— E-IF
t—u

E-IF
if t then false else false — if u then false else false

Calling this structure a tree may seem a bit strange, since it doesn't contain any branches. Indeed, the derivation trees
witnessing evaluation statements will always have this slender form: since no evaluation rule has more than one
premise, there is no way to construct a branching derivation tree. The terminology will make more sense when we
consider derivations for other inductively defined relations, such as typing, where some of the rules do have multiple
premises.

The fact that an evaluation statementt — t' is derivable iff there is a derivation tree witht — t' as the label at its root is
often useful when reasoning about properties of the evaluation relation. In particular, it leads directly to a proof
technique called induction on derivations. The proof of the following theorem illustrates this technique.

3.5.4 Theorem [Determinacy of One-Step Evaluation]

Ift st andt - t", thent =t".

Proof: By induction on a derivation oft — t'. At each step of the induction, we assume the desired result for all smaller

derivations, and proceed by a case analysis of the evaluation rule used at the root of the derivation. (Notice that the
induction here is not on the length of an evaluation sequence: we are looking just at a single step of evaluation. We
could just as well say that we are performing induction on the structure of t, since the structure of an "evaluation
derivation" directly follows the structure of the term being reduced. Alternatively, we could just as well perform the
induction on the derivation of t - t" instead.)

If the last rule used in the derivation of t — t' is E-IFTRUE, then we know that t has the formif t1 then t2 else t3, where t1

= true. But now it is obvious that the last rule in the derivation of t — t" cannot be E-IFFALSE, since we cannot have
both t1 =true and t1 =false. Moreover, the last rule in the second derivation cannot be E-IF either, since the premise of

this rule demands that t1 — t'1 for some t'1, but we have already observed that true does not evaluate to anything. So

the last rule in the second derivation can only be E-IFTRUE, and it immediately follows that t' =t".

Similarly, if the last rule used in the derivation of t - t' is E-IFFALSE, then the last rule in the derivation of t - t" must
be the same and the result is immediate.

Finally, if the last rule used in the derivation of t - t' is E-IF, then the form of this rule tells us that t has the formif t1 then
t2 else t3, where t1 — t'1 for some t'1. By the same reasoning as above, the last rule in the derivation of t - t" can only
be E-IF, which tells us that t has the formif t1 then t2 else t3 (which we already know) and thatt1 — t"1 for some t"1. But
now the induction hypothesis applies (since the derivations oft1 — t'1 and t1 — t"1 are subderivations of the original
derivations of t — t' and t — t"), yielding t'1 =t"1. This tells us that t' =if 1 then t2 else t3 =if "1 then t2 else t3 =t", as
required.

3.5.5 Exercise [?]

Spell out the induction principle used in the preceding proof, in the style of .

Our one-step evaluation relation shows how an abstract machine moves from one state to the next while evaluating a
given term. But as programmers we are just as interested in the final results of evaluation—i.e., in states from which
the machine cannot take a step.

3.5.6 Definition

A term tis in normal form if no evaluation rule applies to it—i.e., if there is no t' such thatt — t'. (We sometimes say "t is
a normal form" as shorthand for "t is a term in normal form.")

We have already observed that true and false are normal forms in the present system (since all the evaluation rules
have left-hand sides whose outermost constructor is an if, there is obviously no way to instantiate any of the rules so
that its left-hand side becomes true or false). We can rephrase this observation in more general terms as a fact about
values:

3.5.7 Theorem
Every value is in normal form.

When we enrich the em with arithmetic expressions (and, in later chapters, other constructs), we will always
arrange that remains valid: being in normal form is part of what itis to be a value (i.e., a fully evaluated

result), and any language definition in which this is not the case is simply broken.

In the present system, the converse of is also true: every normal form is a value. This will not be the
case in general; in fact, normal forms that are not values play a critical role in our analysis of run-time errors, as we
shall see when we get to arithmetic expressions later in this section.

3.5.8 Theorem

If tis in normal form, thentis a value.

Proof: Suppose thatt is not a value. It is easy to show, by structural induction on t, that it is not a normal form.

Since tis not a value, it must have the form if t1 then t2 else t3 for some t1, t2, and t3. Consider the possible forms of t1.
If t1 =true, then clearly tis not a normal form, since it matches the left-hand side of E-IFTRUE. Similarly if t1 =false.

If t1 is neither true nor false, then it is not a value. The induction hypothesis then applies, telling us that t1 is not a normal
form—that is, that there is some t'1 such thatt1 — t'1. But this means we can use E-IF to derive t — if t'1 then t2 else t3,
sotis not a normal form either.

It is sometimes convenient to be able to view many steps of evaluation as one big state transition. We do this by
defining a multi-step evaluation relation that relates a term to all of the terms that can be derived from it by zero or
more single steps of evaluation.

3.5.9 Definition

The multi-step evaluation relation - * is the reflexive, transitive closure of one-step evaluation. That is, it is the smallest
relation such that (1) ift - t' thent -*t, (2) t >*tforallt, and (3) ift -*t andt —*1t", thent - *t".

3.5.10 Exercise [?]

Rephrase Pefinition 3.5.9 as a set of inference rules.

Having an explicit notation for multi-step evaluation makes it easy to state facts like the following:
3.5.11 Theorem [Uniqueness of Normal Forms]

Ift ~*uandt »* u, where uand u' are both normal forms, thenu =u'.
Proof: Corollary of the determinacy of single-step evaluation (3.5.4).

The last property of evaluation that we consider before turning our attention to arithmetic expressions is the fact that
every term can be evaluated to a value. Clearly, this is another property that need not hold in richer languages with
features like recursive function definitions. in situations where it does hold, its proof is generally much more
subtle than the one we are about to see. In :Eha-glter 12 we will return to this point, showing how a type system can be
used as the backbone of a termination proof for certain languages.

Most termination proofs in computer science have the same basic form:@ First, we choose some well-founded set S
and give a function f mapping "machine states" (here, terms) into S. Next, we show that, whenever a machine state t
can take a step to another state t', we have f(t') < f(t). We now observe that an infinite sequence of evaluation steps
beginning from t can be mapped, via f, into an infinite decreasing chain of elements of S. Since S is well founded, there
can be no such infinite decreasing chain, and hence no infinite evaluation sequence. The function fis often called a
termination measure for the evaluation relation.

3.5.12 Theorem [Termination of Evaluation]

For every term t there is some normal form t' such thatt —* t'.

Proof: Just observe that each evaluation step reduces the size of the term and that size is a termination measure
because the usual order on the natural numbers is well founded.

3.5.13 Exercise [Recommended, ?7?]

1. Suppose we add a new rule
if true then tz else t3 — t3 (E-FunmNyY1)

to the ones in . Which of the above theorems (lB.S.A‘, l%Sﬂ l%Sd l%.S.lJI, and E.S.li)

remain valid?

2. Suppose instead that we add this rule:

t; — t,

. , < (E-FUNNY2)
if t; then tz else tz — if t; then t) else t3

Now which of the above theorems remain valid? Do any of the proofs need to change?

Our next job is to extend the definition of evaluation to arithmetic expressions. summarizes the new parts of
the definition. (The notation in the upper-right corner of 3-2 reminds us to regard this figure as an extension of 3-1, not
a free-standing language in its own right.)

¥ M fmabvpeed) Ixfends B od =40

T n

N nyrlactc forms Mirw veahaa o rufes T L |
E om Terena: -
i} Lowstanl 2ure L Femi] {F-S)
Succ t ST LN O Riafd §) — BE T
pred t ek ENor d o
1szera k R pred 0 —0 {E-PRE B R
pred (JUCE Av)] — fvy | L-PREDSUCC)
L T valns
my R T Vel P,
L IL-I"RIETRI
prad §, — pired €
e = rurs valies
o furo vellue igzera b — Lrus E-lsrenind Eresl
DT M TR RS F Vil e

1szaro (suce nwy) == Falsa (E-lsPeno®occl

thh— K

Elsd ERex]
isnero T i 50

Figure 3-2: Arithmetic Expressions (NB)

Again, the definition of terms is just a repetition of the syntax we saw in . The definition of values is a little more
interesting, since it requires introducing a new syntactic category of numeric values. The intuition is that the final result
of evaluating an arithmetic expression can be a number, where a number is either 0 or the successor of a number (but
not the successor of an arbitrary value: we will want to say that succ(true) is an error, not a value).

The evaluation rules in the right-hand column of follow the same pattern as we saw in . There are

four computation rules (E-PREDZERO, E-PREDSUCC, E-ISZEROZERO, and E-ISZEROSUCC) showing how the
operators pred and iszero behave when applied to numbers, and three congruence rules (E-SUCC, E-PRED, and
E-ISZERO) that direct evaluation into the "first" subterm of a compound term.

Strictly speaking, we should now repeat ("the one-step ev: tion relation on arithmetic expressions is
the smallest relation satisfying all instances of the rules in figures 3-1andB-4..."). To avoid wasting space on this kind
of boilerplate, it is common practice to take the inference rules as constituting the definition of the relation all by
themselves, leaving "the smallest relation containing all instances..." as understood.

The syntactic category of numeric values (nv) plays an important role in these rules. In E-PREDSUCC, for example, the
fact that the left-hand side is pred (succ nv1) (rather than pred (succ t1), for example) means that this rule cannot be
used to evaluate pred (succ (pred 0)) to pred 0, since this would require instantiating the metavariable nv1 with pred 0,
which is not a numeric value. Instead, the unique next step in the evaluation of the term pred (succ (pred 0)) has the
following derivation tree:

———————— E-PREDZERO
predd — 0

E-Succ
succ (pred 0) — succ 0
E-PRED

pred (succ (pred0)) — pred (succ 0)

3.5.14 Exercise [?7?]

Show that is also valid for the evaluation relation on arithmetic expressions: ift - t andt - t, thent =

t".

Formalizing the operational semantics of a language forces us to_specify the behavior of all terms, including, in the
case at hand, terms like pred 0 and succ false. Under the rules in Eigure 3-3, the predecessor of 0 is defined to be 0.
The successor of false, on the other hand, is not defined to evaluate to anything (i.e., it is a normal form). We call such
terms stuck.

3.5.15 Definition

A closed term is stuck if it is in normal form but not a value.

"Stuckness" gives us a simple notion of run-time error for our simple machine. Intuitively, it characterizes the situations
where the operational semantics does not know what to do because the program has reached a "meaningless state."
In a more concrete implementation of the language, these states might correspond to machine failures of various
kinds: segmentation faults, execution of illegal instructions, etc. Here, we collapse all these kinds of bad behavior into
the single concept of "stuck state."

3.5.16 Exercise [Recommended, ??7]

A different way of formalizing meaningless states of the abstract machine is to introduce a new term called wrong and
augment the operational semantics with rules that explicitly generate wrong in all the situations where the present
semantics gets stuck. To do this in detail, we introduce two new syntactic categories

badnat ::= non-numeric normal forms:
wron .
9 run-time error
true
false constant true
badbool ::= constant false
wrong
nv non-boolean normal forms:

run-time error

numeric value

and we augment the evaluation relation with the following rules:

if badbool then t; else t; — wrong (E-IF-WRONG)
succ badnat — wrong (E-SUCC-WRONG)

pred badnat — wrong (E-PRED-WRONG)
iszero badnat — wrong (E-ISZERO-WRONG)

Show that these two treatments of run-time errors agree by (1) finding a precise way of stating the intuition that "the
two treatments agree," and (2) proving it. As is often the case when proving things about programming languages, the
tricky part here is formulating a precise statement to be proved—the proof itself should be straightforward.

3.5.17 Exercise [Recommended, ??7?]

Two styles of operational semantics are in common use. The one used in this book is called the small-step style,
because the definition of the evaluation relation shows how individual steps of computation are used to rewrite a term,
bit by bit, until it eventually becomes a value. On top of this, we define a multi-step evaluation relation that allows us to
talk about terms evaluating (in many steps) to values. An alternative style, called big-step semantics (or sometimes
natural semantics), directly formulates the notion of "this term evaluates to that final value," written t Cv. The big-step
evaluation rules for our language of boolean and arithmetic expressions look like this:

VoW (B-VALUE)

T + True tz 4 vo -
(R-IFTRUIE]

if t) then £t else t3 U vo

T, false Tty 4wy

if T thEi'l > alse t3 ‘J'"-'"_'i

t1 % mvy

Succ t) & SUCC nvy

t, 40
pred ty; 4+ 0

t) + SUCc nv
pred t; I nwv

ty 4+ 0

t|_ I} succ I"I"n.l'|

iszero t; ¥ false

(B-1FF ALSE)

(B-5UcCc)

(B-PREDAERO)

(B-PREDSUCC)

(B-ISZEROSERD)

(B=lszEROSUCT)

Show that the small-step and big-step semantics for this language coincide, i.e. t -»* vifft [v.

3.5.18 Exercise [?? ?]

Suppose we want to change the evaluation strategy of our language so that the then and else branches of an if
expression are evaluated (in that order) before the guard is evaluated. Show how the evaluation rules need to change
to achieve this effect.

erts prefer to use the term reduction for this relation, reserving evaluation for the "big-step” variant
, which maps terms directly to their final values.

@In we will see a termination proof with a somewhat more complex structure.

E]Some exp
described in

< Free Open Study >

m < Free Open Study >

3.6 Notes

The ideas of abstract and concrete syntax, parsing, etc., are explained in dozens of textbooks on compilers, Inductive

efinitions. systems of inference rules, and proofs by induction are covered in more detail by and
Hennessy (1990).
The style of operational semantics that we are using here goes back o a technica [ggiort b@the
big-step style (Exercise 3.5.17) was developed by Kahn (1987). See Astesiano (1991] and Hennessy (1990] for more
detailed developments.

Structural induction was introduced to computer science by Burstall (1969].

1. Why bother doing proofs about programming languages? They are almost always boring if the
definitions are right. -

Answers

1. The definitions are almost always wrong—Anonymous

m < Free Open Study >

< Free Open Study >

Chapter 4: An ML Implementation of Arithmetic Expressions

Overview

Working with formal definitions such as those in the is often easier when the intuitions behind the

definitions are "grounded" by a connection to a concrete implementation. We describe here the key components of an
implementation of our language of booleans and arithmetic expressions. (Readers who do not intend to work with the
implementations of the type-checkers described later can skip this chapter and all later chapters with the phrase "ML
Implementation" in their titles.)

The code presented i i i ons throughout the book) is written in a popu, 2]
rom the ML family (Gordon Milner, and Wadsworth, 1979) called Objective Caml, or OCaml for short (tero§ 2000;
Cousineau and Mauny, 1994). Only a small subset of the full OCaml language is used,; it should be easy to translate
the examples here into most other languages. The most important requirements are automatic storage management
(garbage collection) and easy facilities for defining i i i r structured data type
[r functional languages such as Stapndard ML (Milner, Tofte, Harper, and MacQueen, 1997), Haskell ‘
E; Thompson, 1999), and Scheme (Kelsey, Clinger, and Rees, 199d; Dybvig 199d) (with some pattern-matching
fffflf?) :[f f?j choices. Languages with garbage collection but without pattern matching, such as Java (fArnold

pnd Gosling, 1994) and pure Scheme, are somewhat heavy for the sorts of programming we'll be doing. Languages

12

with neither, such as C (I<erniqhan and Ritchie, 1985]), are even less suitable.

[l]Of course, tastes in languages vary and good programmers can use whatever tools come to hand to get the job
done; you are free to use whatever language you prefer. But be warned: doing manual storage management (in
particular) for the sorts of symbol processing needed by a typechecker is a tedious and error-prone business.

QThe code in this chapter can be found in the arith implementation in the web repository,
ﬁp://www.cis.wenn.edgﬁbcpierce/@d, along with instructions on downloading and building the implementations.

< Free Open Study >

http://www.cis.upenn.edu/~bcpierce/tapl

< Free Open Study >

4.1 Syntax

Our first job is to define a type of OCaml values representing terms. OCaml's datatype definition mechanism makes
this easy: the following declaration is a straightforward transliteration of the grammar on page 24.
type term =
TmTrue of info
| TmFalse of info
| Tmlf of info * term * term * term
| TmZero of info
| TmSucc of info * term
| TmPred of info * term
| TmlsZero of info * term

The constructors TmTrue to TmisZero name the different sorts of nodes in the abstract syntax trees of type term; the
type following of in each case specifies the number of subtrees that will be attached to that type of node.

Each abstract syntax tree node is annotated with a value of type info, which describes where (what character position
in which source file) the node originated. This information is created by the parser when it scans the input file, and it is
used by printing functions to indicate to the user where an error occurred. For purposes of understanding the basic
algorithms of evaluation, typechecking, etc., this information could just as well be omitted,; it is included here only so
that readers who wish to experiment with the implementations themselves will see the code in exactly the same form
as discussed in the book.

In the definition of the evaluation relation, we'll need to check whether a term is a numeric value:

let rec isnumericval t = match t with
TmZero(_) — true
| TmSucc(_,t1) — isnumericval t1

| _ — false

This is a typical example of recursive definition by pattern matching in OCaml: isnumericval is defined as the function
that, when applied to TmZero, returns true; when applied to TmSucc with subtree t1 makes a recursive call to check
whether t1 is a numeric value; and when applied to any other term returns false. The underscores in some of the
patterns are "don't care" entries that match anything in the term at that point; they are used in the first two clauses to
ignore the info annotations and in the final clause to match any term whatsoever. The rec keyword tells the compiler that
this is a recursive function definition—i.e., that the reference to isnumericval in its body refers to the function now being
defined, rather than to some earlier binding with the same name.

Note that the ML code in the above definition has been "prettified" in some small ways during typesetting, both for
ease of reading and for consistency with the lambda-calculus examples. For instance, we use a real arrow symbol (-)
instead of the two-character sequence ->. A complete list of these prettifications can be found on the book's web site.

The function that checks whether a term is a value is similar:
let rec isval t = match t with
TmTrue() - true
| TmFalse() — true
| t when isnumericval t — true

| _ - false

The third clause is a "conditional pattern™: it matches any term t, but only so long as the boolean expression
isnumericval t yields true.

1 FEEWIOUE

< Free Open Study >

4.2 Evaluation

The implementation of the evaluation relation closely follows the single-step evaluation rules in and Q As
we have seen, these rules define a partial function that, when applied to a term that is not yet a value, yields the next
step of evaluation for that term. When applied to a value, the result of the evaluation function yields no result. To
translate the evaluation rules into OCaml, we need to make a decision about how to handle this case. One
straightforward approach is to write the single-step evaluation function evall so that it raises an exception when none
of the evaluation rules apply to the term that it is given. (Another possibility would be to make the single-step evaluator
return a term option indicating whether it was successful and, if so, giving the resulting term; this would also work fine,
but would require a little more bookkeeping.) We begin by defining the exception to be raised when no evaluation rule
applies:

exception NoRuleApplies

Now we can write the single-step evaluator itself.

let rec evall t = match t with
Tmlf(_,TmTrue(),t2,t3) —

t2

| TmIf(_, TmFalse(),t2,t3) —
t3

| Tmif(fi,t1,t2,t3) —
lettl'=evalltlin
Tmlf(fi, t1', t2, t3)

| TmSucc(fi,tl) —
lettl'=evall tlin
TmSucc(fi, t1%)

| TmPred(_,TmZero()) —
TmZero(dummyinfo)

| TmPred(_,TmSucc(_,nv1)) when (isnumericval nvl) —
nvl

| TmPred(fi,t1) —
lettl'=evall tlin
TmPred(fi, t1')

| TmlsZero(_,TmZero()) —
TmTrue(dummyinfo)

| TmisZero(_,TmSucc(_,nv1)) when (isnumericval nvl) —
TmFalse(dummyinfo)

| TmisZero(fi,t1) —
lettl'=evall tlin
TmlsZero(fi, t1")

|_ -

raise NoRuleApplies

Note that there are several places where we are constructing terms from scratch rather than reorganizing existing
terms. Since these new terms do not exist in the user's original source file, their info annotations are not useful. The
constant dummyinfo is used as the info annotation in such terms. The variable name fi (for "file information") is
consistently used to match info annotations in patterns.

Another point to notice in the definition of evall is the use of explicit when clauses in patterns to c re the eMect of
metavariable names like v and nv in the presentation of the evaluation relation in and B-4. In the clause for
evaluating TmPred(_, TmSucc(_,nv1)), for example, the semantics of OCaml patterns will allow nv1 to match any term

whatsoever, which is not what we want; adding when (isnumericval nv1) restricts the rule so that it can fire only when the
term matched by nv1 is actually a numeric value. (We could, if we wanted, rewrite the original inference rules in the

same style as the ML patterns, turning the implicit constraints arising from metavariable names into explicit side
conditions on the rules

t; is a numeric value : :
(E-PREDSUCC)
pred (succ t1) — 1)

at some cost in compactness and readability.)

Finally, the eval function takes a term and finds its normal form by repeatedly calling evall. Whenever evall returns a
new term t', we make a recur sive call to eval to continue evaluating fromt'. When evall finally reaches a point where
no rule applies, it raises the exception NoRuleApplies, causing eval to break out of the loop and return the final term in

the sequence.@

letrec evalt=
try lett' = evall t
in eval t'

with NoRuleApplies — t

Obviously, this simple evaluator is tuned for easy comparison with the mathematical definition of evaluation, not for
finding normal forms as quickly as possible. A hat more eHcient algorithm can be obtained by starting instead
from the "big-step" evaluation rules in .

4.2.1 Exercise [?7?]
Why not? What is a better way to write eval?
4.2.2 Exercise [Recommended, ??? ?]

Change the definition of the eval function in the arith implementation to the big-step style introduced in .

E]We write eval this way for the sake of simplicity, but putting a try handler in a recursive loop is not actually very good
style in ML.

< Free Open Study >

4.3 The Rest of the Story

Of course, there are many parts to an interpreter or compiler—even a very simple one—besides those we have
discussed explicitly here. In reality, terms to be evaluated start out as sequences of characters in files. They must be
read from the file system, processed into streams of tokens by a lexical analyzer, and further processed into abstract
syntax trees by a parser, before they can actually be evaluated by the functions that we have seen. Further-more, after
evaluation, the results need to be printed out.

|T|Iur 110 | ﬁ-—l]exinp, L--| |.I'-ill'!'-"lll,|.=.'] [i'_;\'u.lual-i-::t.l;: = | printing |

Interested readers are encouraged to have a look at the on-line OCaml code for the whole interpreter.

< Free Open Study >

Chapter 5: The Untyped Lambda-Calculus

Overview

This chapter reviews the definition and some basic properties of the untyped or pure lambda-calculus, the underlying
"computational substrate” for most of the type systems described in the rest of the book.

In the mid 1960s, Peter Landin observed that a complex programming language can be understood by formulating it
as a tiny core calculus capturing the language's essential mechanisms ith a callection of COHVG.?'L_“.T ijt_jived
whose behavior is understood by translating them into the core (Landin 1964, [L964, [L964; also see [Tennent

re language used by Landin was the lambda-calculus, a formal system invented in the 1920s by Alonzo
941)), in which all computation is reduced to the basic operations of function definition and application.
Following Landin's insight, as well as the pioneering work of , 981)), the lambda-calculus
has seen widespread use in the specification of programming language features, in language design and
implementation, and in the study of type systems. Its importance arises from the fact that it can be viewed
simultaneously as a simple programming language in which computations can be described and as a mathematical
object about which rigorous statements can be proved.

The Iambda-c,MWLaJ@mg_mmj r of core calculi that have been used for similar purposes. The
pi-calculus of Milner, Parrow, and Walker (1994, [L997]) has become a popular core language for defining the
semantics of message-based concurrent languages, while IAbadi and Cardelli'sjpbject calculud (1996] distills the core

features of object-oriented languages. Most of the concepts and techniques that we will develop for the
lambda-calculus can be transferred quite directly to these other calculi. One case study along these lines is developed

in Chapter 19, &

The lambda-calculus can be enriched in a variety of ways. First, it is often convenient to add special concrete syntax
for features like numbers, tuples, records, etc., whose behavior can already be simulated in the core language. More
interestingly, we can add more complex features such as mutable reference cells or nonlocal exception handling,
which can be modeled in trLe core language only by using [athei heavy translations. Such extensions lead eventu
0 languages such as ML (ISordon, Milner, and Wadsworth, 1979: Milner, Tofte. and Harper,_1990: Weis, Aponte,
|_aville, Maunv. and Suarez 198d' ilner, Tofte. Harper, and MacQueen, 1997|), Haskell d—|udak et al., 1999), or

Scheme (Sussman and Steele, 1975; Kelsey, Clinger, and Rees, 1999). As we shall see in later chapters, extensions
to the core language often involve extensions to the type system as well.

ly

[l]The examples in this chapter are terms of the pure untyped lambda-calculus, A), or of the
lambda-calculus extended with booleans and arithmetic operations, ANB (3-2). The associated OCaml implementation
is fulluntyped.

< Free Open Study >

< Free Open Study >

5.1 Basics

Procedural (or functional) abstraction is a key feature of essentially all programming languages. Instead of writing the
same calculation over and over, we write a procedure or function that performs the calculation generically, in terms of
one or more named parameters, and then instantiate this function as needed, providing values for the parameters in
each case. For example, it is second nature for a programmer to take a long and repetitive expression like

(5+4*3+2*1) + (7*6*5*4*3*2*1) - (3*2*1)

and rewrite it as factorial(5) + factorial(7) - factorial(3), where:

factorial(n) = if n=0 then 1 else n * factorial(n-1).

For each nonnegative number n, instantiating the function factorial with the argument n yields the factorial of n as result.
If we write "" as a shorthand for "the function that, for each n, yields...," we can restate the definition of factorial as:

factorial = M. if n=0 then 1 else n * factorial(n-1)

Then factorial(0) means "the function (. if n=0 then 1 else ...) applied to the argument0," that is, "the value that results
when the argument variable n in the function body (). if n=0 then 1 else ...) is replaced by 0," that is, "if 0=0 then 1 else
..., thatis, 1.

The lambda-calculus (or Acalculus) embodies this kind of function definition and application in the purest possible
form. In the lambda-calculus everything is a function: the arguments accepted by functions are themselves functions
and the result returned by a function is another function.

The syntax of the lambda-calculus comprises just three sorts of terms.[g] A variable x by itself is a term; the abstraction
of a variable x from a term t1, written Xx.t 1, is a term; and the application of a term t1 to another term t2, written t1 t2, is a
term. These ways of forming terms are summarized in the following grammar.

t = terms:
X
variable
Xt
tt abstraction
application

The subsections that follow explore some fine points of this definition.

Abstract and Concrete Syntax

When discussing the syntax of programming languages, it is useful to distinguish two Ievels@ of structure. The
concrete syntax (or surface syntax) of the language refers to the strings of characters that programmers directly read
and write. Abstract syntax is a much simpler internal representation of programs as labeled trees (called abstract
syntax trees or ASTs). The tree rep-resentation renders the structure of terms immediately obvious, making it a natural
fit for the complex manipulations involved in both rigorous language definitions (and proofs about them) and the
internals of compilers and interpreters.

The transformation from concrete to abstract syntax takes place in two stages. First, a lexical analyzer (or lexer)
converts the string of characters written by the programmer into a sequence of tokens—identifiers, keywords,
constants, punctuation, etc. The lexer removes comments and deals with issues such as whitespace and capitalization
conventions, and formats for numeric and string constants. Next, a parser transforms this sequence of tokens into an
abstract syntax tree. During parsing, various conventions such as operator precedence and associativity reduce the
need to clutter surface programs with parentheses to explicitly indicate the structure of compound expressions. For
example, * binds more tightly than +, so the parser interprets the unparen thesized expression 1+2*3 as the abstract

syntax tree to the left below rather than the one to the right:
5 k|
/ N\ /N
1 . + 3
Je% /\
2 3 1 2

The focus of attention in this book is on abstract, not concrete, syntax. Grammars like the one for lambda-terms above
should be understood as describing legal tree structures, not strings of tokens or characters. Of course, when we write
terms in examples, definitions, theorems, and proofs, we will need to express them in a concrete, linear notation, but
we always have their underlying abstract syntax trees in mind.

To save writing too many parentheses, we adopt two conventions when writing lambda-terms in linear form. First,
application associates to the left—that is, s t u stands for the same tree as (s t) u:

apply

/N

apply U
s t

Second, the bodies of abstractions are taken to extend as far to the right as possible, so that, for example, X. ¥. x y x
stands for the same tree as Xx. (. ((x y) X)) :

AX

Ay

apply

/ N\

apply o

X b J
Variables and Metavariables

Another subtlety in the syntax definition above concerns the use of metavariables. We will continue to use the

metavariable t (as well as s, and u, with or without subscripts) to stand for an arbitrary term.[é] Similarly, x (as well asy

and z) stands for an arbitrary variable. Note, here, that x is a metavariable ranging over variables! To make matters
worse, the set of short names is limited, and we will also want to use x, y, etc. as object-language variables. In such
cases, however, the context will always make it clear which is which. For example, in a sentence like "The term Xx. N.
xy has the formx.s, where z=x and s = . x y " the names z and s are metavariables, whereas x and y are
object-language variables.

Scope
A final point we must address about the syntax of the lambda-calculus is the scopes of variables.

An occurrence of the variable x is said to be bound when it occurs in the body t of an abstraction x.t. (More precisely, it
is bound by this abstraction. Equivalently, we can say that x is a binder whose scope is t.) An occurrence of x is free if
it appears in a position where it is not bound by an enclosing abstraction on x. For example, the occurrences of x inxy
and . xy are free, while the ones in x.x and x. x. . x (y z2) are bound. In (x.x) x, the first occurrence of x is bound
and the second is free.

A term with no free variables is said to be closed; closed terms are also called combinators. The simplest combinator,
called the identity function,

id = X.x;

does nothing but return its argument.

Operational Semantics

In its pure form, the lambda-calculus has no built-in constants or primitive operators—no numbers, arithmetic
operations, conditionals, records, loops, sequencing, I/O, etc. The sole means by which terms "compute” is the
application of functions to arguments (which themselves are functions). Each step in the computation consists of
rewriting an application whose left-hand component is an abstraction, by substituting the right-hand component for the
bound variable in the abstraction's body. Graphically, we write

X t12)12 - [x ? t2]t12,

where [x ? t2]t12 means "the term obtained by replacing all free occurrences of x int12 by t2." For example, the term
(X.x)y evaluatestoy and the term (x. x (x.x)) (ur) evaluates tour (x.x) . Following Church, a term of the form (Xx.
t12) t2 is called a redex ("reducible expression™), and the operation of rewriting a redex according to the above rule is
called beta-reduction.

Several different evaluation strategies for the lambda-calculus have been studied over the years by programming
language designers and theorists. Each strategy defines which redex or redexes in a term can fire on the next step of
evaluation.@
B yUnder full beta-reduction, any redex may be reduced at any time. At each step we pick some redex,
anywhere inside the term we are evaluating, and reduce it. For example, consider the term

(x.x) (x-x) (k2. (Xx.X) 2)),

which we can write more readably as id (id (k. id z)) . This term contains three redexes:
id (id (. id z))
id ((id (. id z)))
id (id (k. id 2))

Under full beta-reduction, we might choose, for example, to begin with the innermost redex, then do
the one in the middle, then the outermost:
id (id (. id 2))
= id (id (.2))
- id (k.2)
- Rz
?
|
Under the normal order strategy, the leftmost, outermost redex is always reduced first. Under this

The choice of ev
motivate various

strategy, the term above would be reduced as follows:
id (id (. id 2))
- id(z.id 2)
- k. idz
- Rz
?

Under this strategy (and the ones below), the evaluation relation is actually a partial function: each
term t evaluates in one step to at most one termt'.

The call by name strategy is yet more restrictive, allowing no reductions inside abstractions. Starting
from the same term, we would perform the first two reductions as under normal-order, but then stop
before the last and regard . id z as a normal form:

id (id (. id 2))

- id (k. id 2)

- k.idz

?
Variants of call by name have been used i - n programming languages, notably
Algol-60 (Naur et al., 1963) and t Il actually uses an optimized

version known as call by need (Wadsworth, 1977; Ariola et al., 1995) that, instead of re-evaluating an
argument each time it is used, overwrites all occurrences of the argument with its value the first time it
is evaluated, avoiding the need for subsequent re-evaluation. This strategy demands that we maintain

some sharing in the run-time representation of terms—in effect, it is a reduction relation on abstract
syntax graphs, rather than syntax trees.

Most languages use a call by value strategy, in which only outermost redexes are reduced and where
a redex is reduced only when its right-hand side has already been reduced to a value—a term that is

finished computing and cannot be reduced any further.@] Under this strategy, our example term
reduces as follows:
id (id (. id 2))
~ id (e id 2)
- Xk.idz
?

The call-by-value strategy is strict, in the sense that the arguments to functions are always evaluated,
whether or not they are used by the body of the function. In contrast, non-strict (or lazy) strategies
such as call-by-name and call-by-need evaluate only the arguments that are actually used.

aluation strategy actually makes little difference when discussing type systems. The issues that
typing features, and the techniques used to address them, are much the same for all the strategies.

In this book, we use call by value, both because it is found in most well-known languages and because it is the easiest
to enrich with features such as exceptions (Chapter 14) and references (Chapter 13).

QThe phrase lambda-term is used to refer to arbitrary terms in the lambda-calculus. Lambda-terms beginning with a A

are often called lambda-abstractions.

@Definitions of f

ull-blown languages sometimes use even more levels. For example, following Landin, it is often useful

to define the behaviors of some languages constructs as derived forms, by translating them into combinations of other,
more basic, features. The restricted sublanguage containing just these core features is then called the internal

language (or IL),
transformation fr
are discussed in

while the full language including all derived forms is called the external language (EL). The
is (at least conceptually) performed in a separate pass, following parsing. Derived forms
ection 11.3

[&]Naturally, in this chapter, t ranges over lambda-terms, not arithmetic expressions. Throughout the book, t will always
range over the terms of calculus under discussion at the moment. A footnote on the first page of each chapter
specifies which system this is.

E]Some people use the terms "reduction" and "evaluation" synonymously. Others use "evaluation" only for strategies
that involve some notion of "value" and "reduction" otherwise.

6 . . L
UIn the present bare-bones calculus, the only values are lambda-abstractions. Richer calculi will include other values:
numeric and boolean constants, strings, tuples of values, records of values, lists of values, etc.

< Free Open Study >

< Free Open Study >

5.2 Programming in the Lambda-Calculus

The lambda-calculus is much more powerful than its tiny definition might suggest. In this section, we develop a number
of standard examples of programming in the lambda-calculus. These examples are not intended to suggest that the
lambda-calculus should be taken as a full-blown programming language in its own right-all widely used high-level
languages provide clearer and more efficient ways of accomplishing the same tasks-but rather are intended as
warm-up exercises to get the feel of the system.

Multiple Arguments

To begin, observe that the lambda-calculus provides no built-in support for multi-argument functions. Of course, this
would not be hard to add, but it is even easier to achieve the same effect using higher-order functions that yield
functions as results. Suppose that s is a term involving two free variables x and y and that we want to write a function f
that, for each pair (v,w) of arguments, yields the result of substituting v forx and w fory in s. Instead of writing f=
Xx,y).s , as we might in a richer programming language, we write f = x.).s . That is, fis a function that, given a value v
for x, yields a function that, given a value w fory, yields the desired result. We then apply f to its arguments one at a
time, writing f v w (i.e., (f v) w), which reduces to ((y.[x ? v]s) w)and thence to [y ? w][x ? v]s. This transformation of
multi-argument functions into higher-order functions is called currying in honor of Haskell Curry, a contemporary of
Church.

Church Booleans

Another language feature that can easily be encoded in the lambda-calculus is boolean values and conditionals.
Define the terms tru and fls as follows:

tru=X. X. t;
fls=Xx. X. f;

(The abbreviated spellings of these names are intended to help avoid confusion with the primitive boolean constants
true and false from .)

The terms tru and fls can be viewed as representing the boolean values "true" and "false," in the sense that we can use
these terms to perform the operation of testing the truth of a boolean value. In particular, we can use application to
define a combinator test with the property thattest b v w reduces to v when b is tru and reduces to w when b is fls.

test=X.)Jm. . Imn;

The test combinator does not actually do much: test b v w just reduces to b v w. In effect, the boolean b itself is the
conditional: it takes two arguments and chooses the first (if it is tru) or the second (if it is fls). For example, the term test
tru v w reduces as follows:

testtruvw
= A m.n.Imn)tru vw by definition
5 (m. . trumn)v w reducing the underlined redex
o (n.truvnw reducing the underlined redex
. tru v w reducing the underlined redex
= AXD)V w by definition

- X \Vw reducing the underlined redex

- v reducing the underlined redex

We can also define boolean operators like logical conjunction as functions:

and = X. k. b cfls;

That is, and is a function that, given two boolean values b and c, returns c if b is tru and fls if b is fls; thus and b c yields
tru if both b and c are tru and fls if either b or c is fls.

and tru tru;

206 X 1)

and tru fls;
?2(X1

5.2.1 Exercise [?]

Define logical or and not functions.

Pairs

Using booleans, we can encode pairs of values as terms.
pair=X»s.X%.bfs;
fst =Xp. p tru;
snd =Xp. pfls;

That is, pair v wis a function that, when applied to a boolean value b, applies b to v and w. By the definition of booleans,
this application yields v if b is tru and w if b is fls, so the first and second projection functions fst and snd can be
implemented simply by supplying the appropriate boolean. To check that fst (pair vw) - * v, calculate as follows:

fst (pair v w)

= fst((X. . 0.bfs)v w) by definition

R fst((s. . bvs)w) reducing the underlined redex
. fst (Ob. b v w) reducing the underlined redex
= (p. p tru) (b. b vw) by definition

- (M. bvw)tru reducing the underlined redex
. truvw reducing the underlined redex
* v as before.

Church Numerals

Representing numbers by lambda-terms is only slightly more intricate than what we have just seen. Define the Church
numerals co, c1, c2, etc., as follows:

co=%%.%.2

c1=X%.x.s72

c2=%.%x.5(s2);

c3=%.%X.5(s(s2);

etc.

That is, each number n is represented by a combinator cn that takes two arguments, s and z (for "successor" and
"zero"), and applies s, n times, to z. As with booleans and pairs, this encoding makes numbers into active entities: the
number n is represented by a function that does something n times-a kind of active unary numeral.

(The reader may already have observed that co and fls are actually the same term. Similar "puns" are common in
assembly languages, where the same pattern of bits may represent many different values-an int, a float, an address,

four characters, etc.-depending on how it is interpreted, and in low-level languages such as C, which also identifies 0
and false.)

We can define the successor function on Church numerals as follows:

scc=M.%..%2.s(nsz);

The term scc is a combinator that takes a Church numeral n and returns another Church numeral-that is, it yields a
function that takes arguments s and z and applies s repeatedly to z. We get the right number of applications of s to z by
first passing s and z as arguments to n, and then explicitly applying s one more time to the result.

5.2.2 Exercise [?7?]

Find another way to define the successor function on Church numerals.

Similarly, addition of Church numerals can be performed by a term plus that takes two Church numerals, m and n, as
arguments, and yields another Church numeral-i.e., a function-that accepts arguments s and z, applies s iterated n
times to z (by passing s and z as arguments to n), and then applies s iterated m more times to the result:

plus=Xm. . %. 2. ms(nsz),;

The implementation of multiplication uses another trick: since plus takes its arguments one at a time, applying it to just
one argument n yields the function that adds n to whatever argument it is given. Passing this function as the first
argument to m and co as the second argument means "apply the function that adds n to its argument, iterated m times,
to zero," i.e., "add together m copies of n.

times = dm. . m (plus n) c (;

5.2.3 Exercise [?7?]

Is it possible to define multiplication on Church numerals without using plus?

5.2.4 Exercise [Recommended, ?7?]

Define a term for raising one number to the power of another.

To test whether a Church numeral is zero, we must find some appropriate pair of arguments that will give us back this
information-specifically, we must apply our numeral to a pair of terms zz and ss such that applying ss to zz one or more
times yields fls, while not applying it at all yields tru. Clearly, we should take zz to be justtru. For ss, we use a function
that throws away its argument and always returns fls:

iszro =Xxm. m (X. fls) tru;

iszroc1;
? (kX1

iszro (times cQ c2);
? XX

Surprisingly, subtraction using Church numerals is quite a bit more difficult than addition. It can be done using the
following rather tricky "predecessor function," which, given co as argument, returns co and, given cj+1, returns c;:

Zz = pair cQ cQ;

ss =p. pair (snd p) (plus ¢ 1 (snd p));
prd = m. fst (m ss zz);

This definition works by using m as a function to apply m copies of the function ss to the starting valye zz. Each copy of
ss takes a pair of numerals pair ¢j ¢j as its argument and yields pair ¢j cj+1 as its result (see figure 5-1). So applying ss,

m times, to pair co coyields pair co co when m = 0 and pair cm-1 cm when m is positive. In both cases, the predecessor of
m is found in the first component.

pair cg Co

55

55

55

55

ol T W
s

pair C3 Cy4

L
Ll

L

Figure 5-1: The Predecessor Function's "Inner Loop"

5.2.5 Exercise [?7?]

Use prd to define a subtraction function.

5.2.6 Exercise [?7?]

Approximately how many steps of evaluation (as a function of n) are required to calculate prd cn?

5.2.7 Exercise [?7?]

Write a function equal that tests two numbers for equality and returns a Church boolean. For example,
equal c3c3;
2k X 1)

equal c3c2;
?2M X1

Other common datatypes like lists, trees, arrays, and variant records can be encoded using similar techniques.
5.2.8 Exercise [Recommended, ??7?]
A list can be represented in the lambda-calculus by its fold function. (OCaml's name for this function is fold_left; it is

also sometimes called reduce.) For example, the list [x,y,z] becomes a function that takes two arguments ¢ and n and
returns ¢ x (c y (c z n))). What would the representation of nil be? Write a function cons that takes an element h and a list

(that is, a fold function) t and returns a similar representation of the list formed by prepending h to t. Write isnil and head
functions, each taking a list parameter. Finally, write a tail function for this representation of lists (this is quite a bit
harder and requires a trick analogous to the one used to define prd for numbers).

Enriching the Calculus

We have seen that booleans, numbers, and the operations on them can be encoded in the pure lambda-calculus.
Indeed, strictly speaking, we can do all the programming we ever need to without going outside of the pure system.
However, when working with examples it is often convenient to include the primitive booleans and numbers (and
possibly other data types) as well. When we need to be clear_about precisely which system we are working in, we will

use the symbol Afor the pure lambda- s as defined in and ANB for the enriched system with booleans
and arithmetic expressions from Eigures 3-1 and B-3.

In ANB, we actually have two different implementations of booleans and two of numbers to choose from when writing
programs: the real ones and the encodings we've developed in this chapter. Of course, it is easy to convert back and
forth between the two. To turn a Church boolean into a primitive boolean, we apply it to true and false:

realbool = . b true false;

To go the other direction, we use an if expression:

churchbool =). if b then tru else fls;

We can build these conversions into higher-level operations. Here is an equality function on Church numerals that
returns a real boolean:

realeq = ‘m. . (equal m n) true false;

In the same way, we can convert a Church numeral into the corresponding primitive number by applying it to succ and
(03

realnat = dm. m (X. succ x) 0;

We cannot apply m to succ directly, because succ by itself does not make syntactic sense: the way we defined the
syntax of arithmetic expressions, succ must always be applied to something. We work around this by packaging succ
inside a little function that does nothing but return the succ of its argument.

The reasons that primitive booleans and numbers come in handy for examples have to do primarily with evaluation
order. For instance, consider the term scc c1. From the discussion above, we might expect that this term should
evaluate to the Church numeral c2. In fact, it does not:

scc c1;
?0s. ks (8. X.s'2)s2)

This term contains a redex that, if we were to reduce it, would bring us (in two steps) to c2, but the rules of
call-by-value evaluation do not allow us to reduce it yet, since it is under a lambda-abstraction.

There is no fundamental problem here: the term that results from evaluation of scc c1 is obviously behaviorally
equivalent to c2, in the sense that applying it to any pair of arguments v and w will yield the same result as applying c2
to v and w. Still, the leftover computation makes it a bit diffcult to check that our scc function is behaving the way we
expect it to. For more complicated arithmetic calculations, the diffculty is even worse. For example, times c2 c2
evaluates not to c4 but to the following monstrosity:

times c2 c2;
? (.
Xx.
(».Xx.s'(s'2))s
(0s.
X'
(s". x".s"(s"z") s
((s". X".2") s'Z')

One way to check that this term behaves like c4 is to test them for equality:

equal ¢4 (times c2 c2);
XX

But it is more direct to take times c2 c2 and convert it to a primitive number:

realnat (times c2 c2);

?4

The conversion has the effect of supplying the two extra arguments that times c2 c¢2 is waiting for, forcing all of the
latent computation in its body.

Recursion

Recall that a term that cannot take a step under the evaluation relation is called a normal form. Interestingly, some
terms cannot be evaluated to a normal form. For example, the divergent combinator

omega = (X. X X) (X. X X);

contains just one redex, and reducing this redex yields exactly omega again! Terms with no normal form are said to
diverge.

The omega combinator has a useful generalization called the fixed-point combinator,m which can be used to help
define recursive functions such as factorial.[g]

fix =X (. fy. xxy)) (. f Q. xxy));

Like omega, the fix combinator has an intricate, repetitive structure; it is difficult to understand just by reading its
definition. Probably the best way of getting some intuition about its behavior is to watch how it works on a specific

example.E Suppose we want to write a recursive function definition of the form h = <body containing h>-i.e., we want
to write a definition where the term on the right-hand side of the = uses the very function that we are defining, as in the
definition of factorial on page 52. The intention is that the recursive definition should be "unrolled" at the point where it
occurs; for example, the definition of factorial would intuitively be

if n=0 then 1
else n * (if n-1=0 then 1
else (n-1) * (if (n-2)=0 then 1
else (n-2) * ...))

or, in terms of Church numerals:

if realeq n co then c1
else times n (if realeq (prd n) co then c1
else times (prd n)
(if realeq (prd (prd n)) co then c1
else times (prd (prd n)) ...))

This effect can be achieved using the fix combinator by first defining g =X . <body containing f> and then h =fix g. For
example, we can define the factorial function by

g = Xct. \n. if realeq n ¢ Qthen c1 else (times n (fct (prd n)));
factorial = fix g;

shows what happens to the term factorial c3 during evaluation. The key fact that makes this calculation work

is thatfctn —* g fctn. That is, fctis a kind of "self-replicator" that, when applied to an argument, suppliesitself and n as
arguments to g. Wherever the first argument to g appears in the body of g, we will get another copy of fct, which, when
applied to an argument, will again pass itself and that argument to g, etc. Each time we make a recursive call using fct,
we unroll one more copy of the body of g and equip it with new copies of fct that are ready to do the unrolling again.

factorial cj
fix g ¢z
— h h gy

where h = Ax, g (Ay. x x y)

- g fct o3
where fet = Av. h h
= (Adn. if realegq n cp

¥

glse times n (fct (prd n)))

then c;
Cy
- if realeq c3 o
then ¢

else times c¢3 (fct (prd c3))
—* times c3 (fct (prd c3))

—" times c3 (fct ci)

where ¢, is behaviorally equivalent to

- times c3 (g fcr c;)

< times c3 (times c; (g fet c;)).
where ¢, is behaviorally equivalent 1o ¢,
iby repeating the same calculation forg fet ¢h)
—" times c3 (times ¢ (times ¢; (g fcr c3)l)d.
where ¢, is behaviorally equivalent 1o cg

(similarly)

—" times ¢; (times ¢; (times ¢; (if realeq ¢, ¢y then ¢,

else ...)))

—" times c3 (times ¢, (times c; c))

-

where c;; is behaviorally equivalent to cg.

Figure 5-2: Evaluation of factorial c3

5.2.9 Exercise [?]

Why did we use a primitive if in the definition of g, instead of the Church-boolean test function on Church booleans?
Show how to define the factorial function in terms of test rather than if.

5.2.10 Exercise [?7?]

Define a function churchnat that converts a primitive natural number into the corresponding Church numeral.

5.2.11 Exercise [Recommended, ?7?]

Use fix and the encoding of lists from to write a function that sums lists of Church numerals.

Representation

Before leaving our examples behind and proceeding to the formal definition of the lambda-calculus, we should pause
for one final question: What, exactly, does it mean to say that the Church numerals represent ordinary numbers?

To answer, we first need to remind ourselves
define them; the one we have chosen here (in

B 3 constanto,

f what th

Figure 3-

ordinary numbers are. There are many (equivalent) ways to
is to give:

B an operation iszero mapping numbers to booleans, and

B two operations, succ and pred, mapping numbers to numbers.

The behavior of the arithmetic operations is defined by the evaluation rules in . These rules tell us, for
example, that 3 is the successor of 2, and that iszero 0 is true.

The Church encoding of numbers represents each of these elements as a lambda-term (i.e., a function):
B The term co represents the number 0.

As we saw on page 64, there are also "non-canonical representations" of numbers as terms. For
example, . . (k. x) z , which is behaviorally equivalent to co, also represents 0.

B The terms scc and prd represent the arithmetic operations succ and pred, in the sense that, if tis a
representation of the number n, then scc t evaluates to a representation of n + 1 and prd t evaluates to
a representation of n - 1 (or of 0, if nis 0).

B The term iszro represents the operation iszero, in the sense that, if t is a representation of 0, then iszro t

evaluates to true,[l—O] and if t represents any number other than 0, then iszro t evaluates to false.

Putting all this together, suppose we have a whole program that does some complicated calculation with numbers to
yield a boolean result. If we replace all the numbers and arithmetic operations with lambda-terms representing them
and evaluate the program, we will get the same result. Thus, in terms of their effects on the overall results of
programs, there is no observable difference between the real numbers and their Church-numeral representation.

mlt is often called the call-by-value Y-combinator. Plotkin (1975] called it Z.

@]Note that the simpler call-by-name fixed point combinator
Y = X (. f(x X)) (. f (X X))

is useless in a call-by-value setting, since the expression Y g diverges, for any g.

EIt is also possible to derive the definition of fix from first principles (e.g., i:riedman and Felleisen, 1996'. Chapter 9),
but such derivations are also fairly intricate.

@]Strictly speaking, as we defined it, iszro t evaluates to a representation of true as another term, but let's elide that
distinction to simplify the present discussion. An analogous story can be given to explain in what sense the Church
booleans represent the real ones.

< Free Open Study >

< Free Open Study >

5.3 Formalities

For the rest of the chapter, we consider the syntax and operational semantics of the lambda-calculus in more detail.
Most of the structure we need is closely analogous to what we saw in [Chapter J (to avoid repeating that structure
verbatim, we address here just the pure lambda-calculus, unadorned with booleans or numbers). However, the
operation of substituting a term for a variable involves some surprising subtleties.

Syntax

As in , the abstract grammar defining terms (on page 53) should be read as shorthand for an inductively
defined set of abstract syntax trees.

5.3.1 Definition [Terms]

Let V be a countable set of variable names. The set of terms is the smallest set T such that

1. x1T foreveryx1V;
2. iftaiTandx1V, then xt11T;
3. iftaiTand 21T, thent1t21T.

The size of a term t can be defined exactly as we did for arithmetic expressions in Definition 3.3.2. More interestingly,
we can give a simple inductive definition of the set of variables appearing free in a lambda-term.

5.3.2 Definition

The set of free variables of a term t, written FV(t), is defined as follows:

FV(x) = {x}
FV(X.t1) = FV(t1) \ &}
FV(t1 t2) = FV(t1) EFV(t2)

5.3.3 Exercise [?7?]
Give a careful proof that |[FV(t)| < size(t) for every term t.

Substitution

The operation of substitution turns out to be quite tricky, when examined in detail. In this book, we will actually use two
different definitions, each optimized for a different purpose. The first, introduced in this section, is compact and
intuitive, and works well for examples and in mathematical definitions and proofs. The second, developed in ,
is notationally heavier, depending on an alternative "de Bruijn presentation” of terms in which named variables are
replaced by numeric indices, but is more convenient for the concrete ML implementations discussed in later chapters.

It is instructive to arrive at a definition of substitution via a couple of wrong attempts. First, let's try the most naive
possible recursive definition. (Formally, we are defining a function [x ? s] by induction over its argument t.)

[x ? s]x = S

[x?sly = y ifx#zy

x?sly.t1) N.Ix ?s]t1

x?s](t1t2) (Ix ? st1) ([x ? s]t2)

This definition works fine for most examples. For instance, it gives

xX? & zw)]V.x)=N.z. zw,

which matches our intuitions about how substitution should behave. However, if we are unlucky with our choice of
bound variable names, the definition breaks down. For example:

X 2 yI(x.x) = X.y

This conflicts with the basic intuition about functional abstractions that the names of bound variables do not matter-the
identity function is exactly the same whether we write it x.x or ;.y or Xranz.franz . If these do not behave exactly the
same under substitution, then they will not behave the same under reduction either, which seems wrong.

Clearly, the first mistake that we've made in the naive definition of substitution is that we have not distinguished
between free occurrences of a variable x in a term t (which should get replaced during substitution) and bound ones,
which should not. When we reach an abstraction binding the name x inside of t, the substitution operation should stop.
This leads to the next attempt:

[% — 5]x = 5

[x ~ sly y iy + x
Ay. ty ify =X

|K"5](.-"'|}".t|::| _.I'I,}I'_ [:l'.' 'S]tl ir}".l'x

[x — s](t] t2) = ([x~s5]t;) ([x — s]t2)

This is better, but still not quite right. For example, consider what happens when we substitute the term z for the
variable x in the term x.x:

X ?2z](e.x) = k.2

This time, we have made essentially the opposite mistake: we've turned the constant function x.x into the identity
function! Again, this occurred only because we happened to choose z as the name of the bound variable in the
constant function, so something is clearly still wrong.

This phenomenon of free variables in a term s becoming bound when s is naively substituted into a term tis called
variable capture. To avoid it, we need to make sure that the bound variable names of t are kept distinct from the free
variable names of s. A substitution operation that does this correctly is called capture-avoiding substitution. (This is
almost always what is meant by the unqualified term "substitution."”) We can achieve the desired eMect by adding
another side condition to the second clause of the abstraction case:

[x% — 5]x = 5
[x — 5]y y ify # x
J.Ill.:,"a t] i'I‘-}r_}:
[x — s](Ay. 1) Ay. [x — 5]t ify + xandy ¢ FVis)
[= s]Ct1 t2) = ([x~ s]ty ([x = s]t2)

Now we are almost there: this definition of substitution does the right thing when it does anything at all. The problem
now is that our last fix has changed substitution into a partial operation. For example, the new definition does not give
any result at all for [x ? y z](y. x y): the bound variable y of the term being substituted into is not equal to x, but it does
appear free in (y z), so none of the clauses of the definition apply.

One common fix for this last problem in the type systems and lambda-calculus literature is to work with terms "up to
renaming of bound variables." (Church used the term alpha-conversion for the operation of consistently renaming a
bound variable in a term. This terminology is still common-we could just as well say that we are working with terms "up
to alpha-conversion.")

file:///C:/DOCUME~1/ADMINI~1/CONFIG~1/Temp/Mit%20Press%20-%20Types%20And%20Programming%20Languages%20(Ml,%20Functional%20Languages)%20-%202002%20!%20-%20(By%20Laxxuss).chm/3447/images/fig93%5F01%2Ejpg

5.3.4 Convention

Terms that differ only in the names of bound variables are interchangeable in all contexts.

What this means in practice is that the name of any A-bound variable can be changed to another name (consistently
making the same change in the body of the A), at any point where this is convenient. For example, if we want to
calculate [x ? y Z](y. xy) , we first rewrite (). x y) as, say, (w. x w) . We then calculate [x ? y z](w. x w) , giving (W. y z w).

This convention renders the substitution operation "as good as total," since whenever we find ourselves about to apply
it to arguments for which it is undefined, we can rename as necessary, so that the side conditions are satisfied.
Indeed, having adopted this convention, we can formulate the definition of substitution a little more tersely. The first
clause for abstractions can be dropped, since we can always assume (renaming if necessary) that the bound variable
y is different from both x and the free variables of s. This yields the final form of the definition.

5.3.5 Definition [Substitution]

[x ? s]x = s
[x?sly = y ify #x

[x ? sJOy.t 1) = y. [x ? sl ify #x andy [FV(s)
x?s](t1t2) = [x ?s]t1 [x ? s

Operational Semantics

The operational semantics of lambda-terms is summarized in . The set of values here is more interesting
than we saw in the case of arithmetic expressions. Since (call-by-value) evaluation stops when it reaches a lambda,
values can be arbitrary lambda-terms.

LA el

Wik

ol i oy [—=T1
E IF T >
= varlats, 1 Bl L (E-Arm)
Ag ¥ L A PO] By B —T; T2
tE apap el
| SR o
- S (E- A
L vialipes: it ¥ T
AK.E b frarciien vialuy
CAR.Eja) we — [x = va]tjz [E-AriAuss)

Figure 5-3: Untyped Lambda-Calculus (

The evaluation relation appears in the right-hand column of the figure. As in evaluation for arithmetic expressions,
there are two sorts of rules: the computation rule E-APPABS and the congruence rules E-APP1 and E-APP2.

Notice how the choice of metavariables in these rules helps control the order of evaluation. Since v2 ranges only over
values, the left-hand side of rule E-APPABS can match any application whose right-hand side is a value. Similarly, rule
E-APP1 applies to any application whose left-hand side is not a value, since t1 can match any term whatsoever, but the
premise further requires that t1 can take a step. E-APP2, on the other hand, cannot fire until the left-hand side is a
value so that it can be bound to the value-metavariable v. Taken together, these rules completely determine the order
of evaluation for an application t1 t2: we first use E-APP1 to reduce tj to a value, then use E-APP2 to reduce t2 to a
value, and finally use E-APPABS to perform the application itself.

5.3.6 Exercise [?7?]

Adapt these rules to describe the other three strategies for evaluation-full beta-reduction, normal-order, and lazy
evaluation.

Note that, in the pure lambda-calculus, lambda-abstractions are the only possible values, so if we reach a state where
E-APP1 has succeeded in reducing t1 to a value, then this value must be a lambda-abstraction. This observation

fails, of course, when we add other constructs such as primitive booleans to the language, since these introduce
forms of values other than abstractions.

5.3.7 Exercise [?? ?]

xercise 3.5.1¢ gave an alternative presentation of the operational semantics of booleans and arithmetic expressions

in which stuck terms are defined to evaluate to a special constant wrong. Extend this semantics to ANB.

5.3.8 Exercise [?7?]

introduced a "big-step" style of evaluation for arithmetic expressions, where the basic evaluation

relation is "term t evaluates to final result v." Show how to formulate the evaluation rules for lambda-terms in the
big-step style.

< Free Open Study >

< Free Open Study >

5.4 Notes

The untyped lambda-calculus was developed by Church and his co-workers i E_a@).
The standard text for all aspects of the untyped lambda-calculus_is B ; Hindley and Seldin (1986) is
less comprehensive, but more accessible. Barendregt's article ‘) in the Handbook of Theoretical Computer
Science is a compact survey. Material on lambda-calculus can also be found in many textbooks Tr, i

rogramming languages (e.g. Abelson and Sussman, 198%: Friedman. Wand, and Havnes, 2001 Pevion Jones and
ester, 19927) and programming language semantics (e.g. lSchmidt, 198d; bunter, 1992{; Winskel, 1993; Mitchell |

99d) A systematic method for encoding a wide variety of data structures as lambda-terms can be found in Béhm angl
Berarducci (1985).

Despite its name, Curry denied inventing the idea of currying. It is commonly credited to Echdnfinkel (1924], but the
underlying idea was familiar to a number of 19th-century mathematicians, including Frege and Cantor.

There may, indeed, be other applications of the system than its use as a logic.
—Alonzo Church, 1932

< Free Open Study >

< Free Open Study >

Chapter 6: Nameless Representation of Terms

Overview

In the , we worked with terms "up to renaming of bound variables," introducing a general convention

that bound variables can be renamed, at any moment, to enable substitution or because a new name is more
convenient for some other reason. In effect, the "spelling" of a bound variable name is whatever we want it to be. This
convention works well for discussing basic concepts and for presenting proofs cleanly, but for building an
implementation we need to choose a single representation for each term; in particular, we must decide how
occurrences of variables are to be represented. There is more than one way to do this:

1. We can represent variables symbolically, as we have done so far, but replace the convention
about implicit renaming of bound variables with an operation that explicitly replaces bound
variables with "fresh” names during substitution as necessary to avoid capture.

2. We can represent variables symbolically, but introduce a general condition that the names of all
bound variables must all be different from each other and from any free variables we may use.
This convention (sometimes called the Barendregt convention) is more stringent than ours, since
it does not allow renaming “on the fly" at arbitrary moments. However, it is not stable under
substitution (or beta-reduction): since substitution involves copying the term being substituted, it is
easy to construct examples where the result of substitution is a term in which some A-abstractions
have the same bound variable name. This implies that each evaluation step involving substitution
must be followed by a step of renaming to restore the invariant.

3. We can devise some "canonical" representation of variables and terms that does not require

renaming. i

4.\ i jtuti introducing mechanisms such as explicit substitutions
(Abadi, Cardelli, Curien, and Lévy, 19914).

5. We can avoid variables altogether by working in a language based directly on combinators, such

as combinatory logic (kurrv and Feys, 19581 Barendregt, 1984)-variant of the lambda-calculus

ﬁi on combinators instead of procedural abstraction-or Backus' functional language FP
1979).

Each scheme has its proponents, and choosing between them is somewhat a matter of taste (in serious compiler
implementations, there are also performance considerations, but these do not concern us here). We choose the third,
which, in our experience, scales better when we come to some of the more complex implementations later in the book.
The main reason for this is that it tends to fail catastrophically rather than subtly when it is implemented wrong,
allowing mistakes to be detected and corrected sooner rather than later. Bugs in implementations using named
variables, by contrast, have been known to manifest months or years after they are introduced. Our formulation uses a
well-known technique due to Nicolas de Bruijn (1972].

[l]The system studied in this chapter is the pure untyped lambda-calculus, A). The associated OCaml
implementation is fulluntyped.

< Free Open Study >

< Free Open Study >

6.1 Terms and Contexts

De Bruijn's idea was that we can represent terms more straightforwardly—if less readably—by making variable
occurrences point directly to their binders, rather than referring to them by name. This can be accomplished by
replacing named variables by natural numbers, where the number k stands for "the variable bound by the k'th
enclosing A." For example, the ordinary term x.x corresponds to the nameless term A0 , while X.y. x (y X) corresponds
to AA 1 (0 1) . Nameless terms are also sometimes called de Bruijn terms, and the numeric variables in them are called

de Bruijn indices@ Compiler writers use the term "static distances" for the same concept.

6.1.1 Exercise [?]

For each of the following combinators
c0=%.%.7
c2=%.%.5(s2);
plus=m.n.%. 2. ms(nzs),

fix =X. X FOy. Xx)y)) X. fQy. (XX)Y));
foo = (X. (X. X)) (X. X);

write down the corresponding nameless term.

Formally, we define the syntax of nameless terms almost exactly like the syntax of ordinary terms (). The only
difference is that we need to keep careful track of how many free variables each term may contain. That is, we
distinguish the sets of terms with no free variables (called the 0-terms), terms with at most one free variable (1-terms),
and so on.

6.1.2 Definition [Terms]

Let T be the smallest family of sets {To, T1, T2,...} such that

1. kiTnwhenever0<k<n;
2. ift1TTnand n >0, thenAt11Tn-1;
3. iftaTThand 21 Tn, then (t1t2) T Tn

(Note that this is a standard inductive definition, except that what we are defining is a family of sets indexed by
numbers, rather than a single set.) The elements of each Tn are called n-terms.

The elements of Tn are terms with at most n free variables, numbered between 0 andn - 1: a given element of Tn need
not have free variables with all these numbers, or indeed any free variables at all. When t is closed, for example, it will
be an element of Tn for every n.

Note that each (closed) ordinary term has just one de Bruijn representation, and that two ordinary terms are equivalent
modulo renaming of bound variables iff they have the same de Bruijn representation.

To deal with terms containing free variables, we need the idea of a naming context. For example, suppose we want to
represent Xx.y x as a hameless term. We know what to do with x, but we cannot see the binder for y, so it is not clear
how "far away" it might be and we do not know what number to assign to it. The solution is to choose, once and for all,
an assignment (called a naming context) of de Bruijn indices to free variables, and use this assignment consistently
when we need to choose numbers for free variables. For example, suppose that we choose to work under the
following naming context:

? = x?4
y?3
2?2
a?l

b?0
Then x (y z) would be represented as 4 (3 2), while w. yw would be represented asA 4 0 and w.Ja.x asiA6 .

Since the order in which the variables appear in ? determines their numerical indices, we can write it compactly as a
sequence.

6.1.3 Definition

Suppose xo through xn are variable names from ?. The naming context ? = xn, Xn-1, ... X1, X0 assigns to each xj the de
Bruijn index i. Note that the rightmost variable in the sequence is given the index 0; this matches the way we count A
binders—from right to left—when converting a named term to nameless form. We write dom(?) for the set {xn, ..., xo} of
variable names mentioned in ?.

6.1.4 Exercise [??7? ?]

Give an alternative construction of the sets of n-terms in the style of Definition 3.2.3, and show (as we did in

Proposition 3.2.4) that it is equivalent to the one above.

6.1.5 Exercise [Recommended, ??7?]

1. Define a function removenames? (t) that takes a naming context ? and an ordinary term t (with

FV(t) O dom(?)) and yields the corresponding nameless term.

2. Define a function restorenames? (t) that takes a nameless term t and a naming context ? and
produces an ordinary term. (To do this, you will need to "make up" names for the variables bound
by abstractions in t. You may assume that the names in ? are pairwise distinct and that the set ?
of variable names is ordered, so that it makes sense to say "choose the first variable name that is
not already in dom(?).")

This pair of functions should have the property that

removenames? (restorenames? (t)) =t

for any nameless term t, and similarly

restorenames? (removenames? (t)) = t,
up to renaming of bound variables, for any ordinary term t.

Strictly speaking, it does not make sense to speak of "some t1T"—we always need to specify how many free variables
t might have. In practice, though, we will usually have some fixed naming context ? in mind; we will then abuse the
notation slightly and write tTT to mean t1Tn, where n is the length of 2.

@Note on pronunciation: the nearest English approximation to the second syllable in "de Bruijn" is "brown," not
"broyn."

< Free Open Study >

< Free Open Study >

6.2 Shifting and Substitution

Our next job is defining a substitution operation ([k ? s]f) on nameless terms. To to this, we need one auxiliary
operation, called "shifting," which renumbers the indices of the free variables in a term.

When a substitution goes under a A-abstraction, as in [1 ? s](A2) (i.e., [x ? s](V.x) , assuming that 1 is the index of x in
the outer context), the context in which the substitution is taking place becomes one variable longer than the original;
we need to increment the indices of the free variables in s so that they keep referring to the same names in the new
context as they did before. But we need to do this carefully: we can't just shift every variable index in s up by one,
because this could also shift bound variables within s. For example, ifs =2 (A\0) (i.e.,s =z (w.w), assuming 2 is the
index of z in the outer context), we need to shift the 2 but not the 0. The shifting function below takes a "cutoff"
parameter c that controls which variables should be shifted. It starts off at 0 (meaning all variables should be shifted)

d ()

and gets incremented by one every time the shifting function goes through a binder. So, when calculating F ,we

know that the term t comes from inside c-many binders in the original argument to * d. Therefore all identifiers k <cint
are bound in the original argument and should not be shifted, while identifiers k = c in t are free and should be shifted.

6.2.1 Definition [Shifting]

The d-place shift of a term t above cutoff c, written L :I it ! is defined as follows:
(k) [k . ks
: ik rd ifkzc
Md.ty) = A 19, (1)
|:r|:t|_ 2] = .ill‘i.t|_| “:_J[t_'ll'

We write 19 (t) for i3]
6.2.2 Exercise [?]

1. Whatis 12\ 1(02))?
2. Whatis 12010 012))?

6.2.3 Exercise [?? ?]

gl
Show that if tis an n-term, then « ' t) is an (n+d)-term.

Now we are ready to define the substitution operator [j ? st When we use substitution, we will usually be interested in
substituting for the last variable in the context (i.e., j = 0), since that is the case we need in order to define the operation
of beta-reduction. However, to substitute for variable 0 in a term that happens to be a A-abstraction, we need to be
able to substitute for the variable number numbered 1 in its body. Thus, the definition of substitution must work on an
arbitrary variable.

6.2.4 Definition [Substitution]
The substitution of a term s for variable number j in a termt, written [j ? s]t, is defined as follows:

(4 = lk = 55 k=1

i f_k otherwise
[§ — s]{A.t;) A [G+1 —~1H(s)]ty
[j-—'S]l:t| T2) = i[j"E]tL [j'_'E]t_"-l

6.2.5 Exercise [?]

Convert the following uses of substitution to nameless form, assuming the global context is ? = a,b, and calculate their
results usin@ above definition. Do the answers correspond to the original definition of substitution on ordinary
?

terms from

1.

[b ?a] (b (x.y.b))
[b ? a (e.a)] (b (x.b))
[b?a] (b.ba)

[b?a] (a.ba)

6.2.6 Exercise [?? ?]

Show that if s and t are n-terms and j < n, then [j ? s]tis an n-term.

6.2.7 Exercise [? ?]

Take a sheet of paper and, without looking at the definitions of substitution and shifting above, regenerate them.

6.2.8 Exercise [Recommended, ??7?]

The definition of substitution on nameless terms should agree with our informal definition of substitution on ordinary
terms. (1) What theorem needs to be proved to justify this correspondence rigorously? (2) Prove it.

|< Free Open Study >

< Free Open Study >

6.3 Evaluation

To define the evaluation relation on nameless terms, the only thing we need to change (because it is the only place
where variable names are mentioned) is the beta-reduction rule, which must now use our new nameless substitution
operation.

The only slightly subtle point is that reducing a redex "uses up" the bound variable: when we reduce ((x.t 12) v2) to [x ?
v2]t12, the bound variable x disappears in the process. Thus, we will need to renumber the variables of the result of
substitution to take into account the fact that x is no longer part of the context. For example:

(AL02) 0\0) — 0(0)1 (not 1 (A0) 2)..

Similarly, we need to shift the variables in v2 up by one before substituting into t12, since t12 is defined in a larger
context than v2. Taking these points into account, the beta-reduction rule looks like this:

(A.tiz) va — 1710 =11 (v2)]ti2) (E-APPARS)
The other rules are identical to what we had before).

6.3.1 Exercise [?]

Should we be worried that the negative shift in this rule might create ill-formed terms containing negative indices?

6.3.2 Exercise [??7]

De Bruijn's original article actually contained two different proposals for nameless representations of terms: the
deBruijn indices presented here, which number lambda-binders "from the inside out," and de Bruijn levels, which
number binders "from the outside in." For example, the term Xx. (y. x y) x is represented using deBruijn indices asA (A
1 0) 0 and using deBruijn levels as A (A 0 1) 0 . Define this variant precisely and show that the representations of a term
using indices and levels are isomorphic (i.e., each can be recovered uniquely from the other).

|< Free Open Study >

< Free Open Study >

Chapter 7: An ML Implementation of the Lambda-Calculus

In this chapter uct an interpreter for the untyped lambda-calculus, based on the intergreter for arithmetic
expressions in Chapter 4 and on the treatment of variable binding and substitution in .
An executable evaluator for yntyped lambda-terms can be obtained by a straightforward translation of the foregoing

definitions into OCaml. As in [Chapter 4, we show just the core algorithms, ignoring issues of lexical analysis, parsing,
printing, and so forth.

7.1 Terms and Contexts

We can obtain a datatype representing abstract syntax trees for terms by directly transliterating Definition 6.1.2:

type term =
TmVar of int
| TmADbs of term
| TmApp of term * term

The representation of a variable is a number-its de Bruijn index. The representation of an abstraction carries just a
subterm for the abstraction's body. An application carries the two subterms being applied.

The definition actually used in our implementation, however, will carry a little bit more information. First, as before, it is
useful to annotate every term with an element of the type info recording the file position where that term was originally
found, so that error printing routines can direct the user (or even the user's text editor, automatically) to the precise

point where the error occurred. [

type term =
TmVar of info * int
| TmADbs of info * term
| TmApp of info * term * term

Second, for purposes of debugging, it is helpful to carry an extra number on each variable node, as a consistency
check. The convention will be that this second number will always contain the total length of the context in which the
variable occurs.

type term =
TmVar of info * int * int
| TmADbs of info * term
| TmApp of info * term * term

Whenever a variable is printed, we will verify that this number corresponds to the actual size of the current context; if it
does not, then a shift operation has been forgotten someplace.

One last refinement also concerns printing. Although terms are represented internally using de Bruijn indices, this is
obviously not how they should be presented to the user: we should convert from the ordinary representation to
nameless terms during parsing, and convert back to ordinary form during printing. There is nothing very hard about
this, but we should not do it completely naively (for example, generating completely fresh symbols for the names of
variables), since then the names of the bound variables in the terms that are printed would have nothing to do with the
names in the original program. This can be fixed by annotating each abstraction with a string to be used as a hint for
the name of the bound variable.

type term =
TmVar of info * int * int
| TmADs of info * string * term
| TmApp of info * term * term

The basic operations on terms (substitution in particular) do not do anything fancy with these strings: they are simply
carried along in their original form, with no checks for name clashes, capture, etc. When the printing routine needs to
generate a fresh name for a bound variable, it tries first to use the supplied hint; if this turns out to clash with a name
already used in the current context, it tries similar names, adding primes until it finds one that is not currently being
used. This ensures that the printed term will be similar to what the user expects, modulo a few primes.

The printing routine itself looks like this:

let rec printtm ctx t = match t with
TmADbs(fi,x,t1) —
let (ctx',x’) = pickfreshname ctx x in
pr “(lambda "; pr x'; pr ". "; printtm ctx' t1; pr ")"
| TmApp(fi, t1, t2) —
pr "("; printtm ctx t1; pr " "; printtm ctx t2; pr *)"
| TmVar(fi,x,n) —
if ctxlength ctx = n then
pr (index2name fi ctx x)
else
pr “[bad index]"

It uses the datatype context,

type context = (string * binding) list

which is just a list of strings and associated bindings. For the moment, the bindings themselves are completely trivial

type binding = NameBind

carrying no interesting information. Later on (in), we'll introduce other clauses of the binding type that will
keep track of the type assumptions associated with variables and other similar information.

The printing function also relies on several lower-level functions: pr sends a string to the standard output stream;
ctxlength returns the length of a context; index2name looks up the string name of a variable from its index. The most
interesting one is pickfreshname, which takes a context ctx and a string hint x, finds a name x' similar to x such thatx’ is
not already listed in ctx, adds x' to ctx to form a new context ctx’, and returns both ctx’ and x' as a pair.

The actual printing function found in the untyped implementation on the book's web site is somewhat more complicated
than this one, taking into account two additional issues. First, it leaves out as many parentheses as possible, following
the conventions that application associates to the left and the bodies of abstractions extend as far to the right as
possible. Second, it generates formatting instructions for a low-level pretty printing module (the OCaml Format library)
that makes decisions about line breaking and indentation.

mThe system studied in most of this chapter is the pure untyped lambda-calculus (). The associated
implementation is untyped. The fulluntyped implementation includes extensions such as numbers and booleans.

< Free Open Study >

< Free Open Study >

7.2 Shifting and Substitution

The l:iefinition of shifting (6.2.11 can be translated almost symbol for symbol into OCaml.

let termShiftd t =
let rec walk ¢ t = match t with
TmVar(fi,x,n) — if x>=c then TmVar(fi,x+d,n+d)
else TmVar(fi,x,n+d)
| TmAbs(fi,x,t1) — TmAbs(fi, x, walk (c+1) t1)
| TmApp(fi,t1,t2) - TmApp(fi, walk c t1, walk c t2)
inwalk 0 t

pid
The internal shifting '« 1this here represented by a call to the inner function walk c t. Since d never changes, there is
no need to pass it along to each call to walk: we just use the outer binding of d when we need it in the variable case of

walk. The top-level shift 1 d (t) is represented by termShift d t. (Note that termShift itself is not marked recursive, since all
it does is call walk once.)

Similarly, the substitution function comes almost directly from Pefinition 6.2.4:

let termSubstjst=
let rec walk c t = match t with
TmVar(fi,x,n) — if x=j+c then termShift c s else TmVar(fi,x,n)
| TmADbs(fi,x,t1) - TmAbs(fi, X, walk (c+1) t1)
| TmApp(fi,t1,t2) - TmApp(fi, walk c t1, walk c t2)
inwalk O t

The substitution [j ? s]t of term s for the variable numbered j in term t is written as termSubst j s t here. The only
difference from the original definition of substitution is that here we do all the shifting of s at once, in the TmVar case,
rather than shifting s up by one every time we go through a binder. This means that the argument j is the same in
every call to walk, and we can omit it from the inner definition.

The reader may note that the definitions of termShift and termSubst are very similar, differing only in the action that is
taken when a variable is reached. The untyped implementation available from the book's web site exploits this
observation to express both shifting and substitution operations as special cases of a more general function called
tmmap. Given a term t and a function onvar, the result of tmmap onvar t is a term of the same shape as t in which every
variable has been replaced by the result of calling onvar on that variable. This notational trick saves quite a bit of
tedious repetition in some of the larger calculi; E25.2 explains it in more detail.

In the operational semantics of the lambda-calculus, the only place where substitution is used is in the beta-reduction
rule. As we noted before, this rule actually performs several operations: the term being substituted for the bound
variable is first shifted up by one, then the substitution is made, and then the whole result is shifted down by one to
account for the fact that the bound variable has been used up. The following definition encapsulates this sequence of
steps:
let termSubstTop st =
termShift (-1) (termSubst 0 (termShift 1 s) t)

|< Free Open Study >

m < Free Open Study >

7.3 Evaluation

Asin , the evaluation function depends on an auxiliary predicate isval:
let rec isval ctx t = match t with
TmAbs(_,_,_) true

| _ — false

The single-step evaluation function is a direct transcription of the evaluation rules, except that we pass a context ctx
along with the term. This argument is not used in the present evall function, but it is needed by some of the more
complex evaluators later on.

let rec evall ctx t = match t with

TmApp(fi, TmAbs(_,x,t12),v2) when isval ctx v2 —
termSubstTop v2 t12

| TmApp(fi,v1,t2) when isval ctx vl —
let t2' = evall ctx t2 in
TmApp(fi, v1, t2')
| TmApp(fi,t1,t2) —
lettl' = evall ctx t1 in
TmApp(fi, t1', t2)
|_ -

raise NoRuleApplies

The multi-step evaluation function is the same as before, except for the ctx argument:

letrec eval ctx t =
try lett' = evall ctx t
ineval ctx t'

with NoRuleApplies — t

7.3.1 Exercise [Recommended, ??? 7]

Change this implementation to use the "big-step” style of evaluation introduced in .

m |< Free Open Study >

< Free Open Study >

7.4 Notes

The treatment of substitution presented in this chapter, though sufficient for our purposes in this book, is far from the
final word on the subject. In particular, the beta-reduction rule in our evaluator "eagerly" substitutes the argument
value for the bound variable in the function's body. Interpreters (and compilers) for functional languages that are tuned
for speed instead of simplicity use a different strategy: instead of actually performing the substitution, we simply record
an association between the bound variable name and the argument value in an auxiliary data structure called the
environment, which is carried along with the term being evaluated. When we reach a variable, we look up its value in
the current environment. This strategy can be modeled by regarding the environment as a kind of explicit
substitution—i.e., by moving the mechanism of substitution from the meta-language into the object language, making it
a part of the syntax of the terms rllfn'|pu ated by the evaluator, rather than gn external operation on terms. Explicit
substitutions were first studied by Abadi, Cardelli, Curien, and Lévy (1991a) and have since become an active

research area.

Just because you've implemented something doesn't mean you understand it.
—Brian Cantwell Smith

< Free Open Study >

Part Il: Simple Types

Chapter List

Typed Arithmetic Expressions

Simply Typed Lambda-Calculus

An ML Implementation of Simple Types
Simple Extensions

Normalization

References

Exceptions

< Free Open Study >

Chapter 8: Typed Arithmetic Expressions

In , we used a simple language of boolean and arithmetic expressions to introduce basic tools for the
precise description of syntax and evaluation. We now return to this simple language and augment it with static types.
Again, the type system itself is nearly trivial, but it provides a setting in which to introduce concepts that will recur
throughout the book.

8.1 Types

Recall the syntax for arithmetic expressions:

to= terms:
true
constant true
false
if tthentelse t constant false
0 conditional
succt
pred t constant zero
iszerot successor
predecessor
zero test
We saw in [Chapter J that evaluating a term can either result in a value...
V= values:
true
true value
false
nv false value
numeric value
nv .=
numeric values:
succ nv zero value

successor value

il

or else get stuck at some stage, by reaching a term like pred false, for which no evaluation rule applies.

Stuck terms correspond to meaningless or erroneous programs. We would therefore like to be able to tell, without
actually evaluating a term, that its evaluation will definitely not get stuck. To do this, we need to be able to distinguish
between terms whose result will be a numeric value (since these are the only ones that should appear as arguments to
pred, succ, and iszero) and terms whose result will be a boolean (since only these should appear as the guard of a
conditional). We introduce two types, Nat and Bool, for classifying terms in this way. The metavariables S, T, U, etc. will
be used throughout the book to range over types.

Saying that "a term t has type T" (or "t belongs to T," or "t is an element of T") means that t "obviously" evaluates to a
value of the appropriate form-where by "obviously" we mean that we can see this statically, without doing any

evaluation of t. For example, the term if true then false else true has type Bool, while pred (succ (pred (succ 0))) has type
Nat. However, our analysis of the types of terms will be conservative, making use only of static information. This
means that we will not be able to conclude that terms like if (iszero 0) then 0 else false or even if true then 0 else false
have any type at all, even though their evaluation does not, in fact, get stuck.

mThe system studied in this chapter is the typed calculus of booleans and numbers). The corresponding
OCaml implementation is tyarith.

< Free Open Study >

8.2 The Typing Relation

The typing relation for arithmetic expressions, writte Q' . T", is defined by a set of inference rules assigning types to
terms, summarized in and ﬁAs in , we give the rules for booleans and those for numbers in

two different figures, since later on we will sometimes want to refer to them separately.

B invpeds Fetemds B 720
M avrlae Tl forrns M P Fulies | £t 0

T o= Fyaaes:
Boal ivpw o henleans True ; Boxl L1-ThUE)
false z Bool (T-FaLsed

t; & Bool tasT ta =T
iF €y Ehen £ @180 E5 2 T

Figure 8-1: Typing Rules for Booleans (B)

B MOinaed) Exrerils NB (3-2F qiid &1
Mw gyrlac T Jovms by & Mat ——
——— B T M. A
T 2= .) i SUCE Ty & Mat
Nat Bywe of martane nmambers
E & HAE B
Neéw DG raales g mrm {1-FHELF
02 Nax {T-FEmO)
L

(Il nRm
isrera) @ Bool

Figure 8-2: Typing Rules for Numbers (NB)

The rules T-TRUE and T-FALSE in assign the type Bool to the boolean constants true and false. Rule T-IF
assigns a type to a conditional expression based on the types of its subexpressions: the guard t1 must evaluate to a
boolean, while t2 and t3 must both evaluate to values of the same type. The two uses of the single metavariable T
express the constraint that the result of the if is the type of the then- and else- branches, and that this may be any type
(either Nat or Bool or, when we get to calculi with more interesting sets of types, any other type).

The rules for numbers in have a similar form. T-ZERO gives the type Nat to the constant 0. T-SUCC gives a
term of the form succ t1 the type Nat, as long as t1 has type Nat. Likewise, T-PRED and T-ISZERO say that pred yields
a Nat when its argument has type Nat and iszero yields a Bool when its argument has type Nat.

8.2.1 Definition

Formally, the typing relation for arithmetic expressions is the smallest binary relation between terms and types
satisfying all instances of the rules in Eigures 8- and B-4. A term tis typable (or well typed) if there is some T such that
t:T.

When reasoning about the typing relation, we will often make statements like "If a term of the form succ t1 has any type
at all, then it has type Nat. The following lemma gives us a compendium of basic statements of this form, each
following immediately from the shape of the corresponding typing rule.

8.2.2 Lemma [Inversion of the Typing Relation]

1. Iftrue : R, then R = Bool.
2. Iffalse: R, then R = Bool.
3. Ififtithent2else t3: R, thent1: Bool, t2: R, and t3: R.
4. If0:R, then R = Nat.
5. Ifsucct1:R, then R=Natand t1: Nat.
6. Ifpredti:R, then R = Natandt1: Nat.
7. Ifiszerot1: R, then R = Bool and t1 : Nat.
Proof: Immediate from the definition of the typing relation.

The inversion lemma is sometimes called the generation lemma for the typing relation, since, given a valid typing
statement, it shows how a proof of this statement could have been generated. The inversion lemma leads directly to a
recursive algorithm for calculating the types of terms, since it tells us, for a term of each syntactic fo,ﬁ Eff Ej;
calculate its type (if it has one) from the types of its subterms. We will return to this point in detail in Chapter 9.

8.2.3 Exercise [? ?]

Prove that every subterm of a well-typed term is well typed.

In we introduced the concept of evaluation derivations. Similarly, a typing derivation is a tree of instances of the
typing rules. Each pair (t, T) in the typing relation is justified by a typing derivation with conclusion t: T. For example,
here is the derivation tree for the typing statement "if iszero 0 then 0 else pred 0 : Nat":

—_— | <L ERY —_— | =L BRI
0 : Nat 0 : Nat
. =I5 EERC —_— T-EER T-PRED
iszero 0 : Bool 0 : Nat pred 0 : Nat
T-IF
ifiszero 0 then D else pred 0 : Nat

In other words, statements are formal assertions about the typing of programs, typing rules are implications between
statements, and derivations are deductions based on typing rules.

8.2.4 Theorem [Uniqueness of Types]

Each term t has at most one type. That is, if t is typable, then ifs type is unique. Moreover, there is just one derivation of
this typing built from the inference rules in and B-4.

Proof: Straightforward structural induction ont, using the appropriate clause of the inversion lemma (plus the induction
hypothesis) for each case.

In the simple type system we are dealing with in this chapter, every term has a single type (if it has any type at all), and
there is always just one derivation tree witnessing this fact. Later on—e.g., when we get to type systems with
subtyping in both of these properties will be relaxed: a single term may have many types, and there may
in general be many ways of deriving the statement that a given term has a given type.

Properties of the typing relation will often be proved by induction on derivation trees, just as properties of the

evaluation relation are typically proved on evaluation derivations. We will see many examples of induction

on typing derivations, beginning in the pext section.

E]The symbol 1 is often used instead of .

file:///C:/DOCUME~1/ADMINI~1/CONFIG~1/Temp/Mit%20Press%20-%20Types%20And%20Programming%20Languages%20(Ml,%20Functional%20Languages)%20-%202002%20!%20-%20(By%20Laxxuss).chm/3447/images/fig116%5F01%2Ejpg

1 FEEWIOUE

< Free Open Study >

8.3 Safety = Progress + Preservation

The most basic property of this type system or any other is safety (also called soundness): well-typed terms do not "go
wrong." ave already chosen how to formalize what it means for a term to go wrong: it means reaching a "stuck
state" (Definition 3.5.15) that is not designated as a final value but where the evaluation rules do not tell us what to do
next. What we want to know, then, is that well-typed terms do not get stuck. We show this in two steps, commonly

known as the progress and preservation theorems.@]

Progress: A well-typed term is not stuck (either it is a value or it can take a step according to the
evaluation rules).

Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also well

typed.w
These properties together tell us that a well-typed term can never reach a stuck state during evaluation.

For the proof of the progress theorem, it is convenient to record a couple of facts about the possible shapes of the
canonical forms of types Bool and Nat (i.e., the well-typed values of these types).

8.3.1 Lemma [Canonical Forms]

1. Ifvis avalue of type Bool, then v is either true or false.
2. Ifvis avalue of type Nat, then v is a numeric value according to the grammar in .

Proof: For part (1), according to the grammar in and Q values in this language can have four forms: true,
false, 0, and succ nv, where nv is a numeric value. The first two cases give us the desired result immediately. The last
two cannot occur, since we assumed that v has type Bool and cases 4 and 5 of the inversion lemma tell us that 0 and
succ nv can have only type Nat, not Bool. Part (2) is similar.

8.3.2 Theorem [Progress]

Suppose tis a well-typed term (that is, t : T for some T). Then either tis a value or else there is some t' witht - t'.

Proof: By induction on a derivation oft: T. The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these
cases is a value. For the other cases, we argue as follows.

Case T-IF: t=ift1 then R else t3
t1: Bool ©0:T t3:T
t) :

By the induction hypothesis, either t1 is a value or else there is some I such that T =T t1 is a value, then the
canonical forms lemma) assures us that it must be either true or false, in which case either E-IFTRUE or
E-IFFALSE applies to t. On the other hand, if 1~ %1, then, by T-IF, t - if “Ithen t2 else t3.

Case T-Succ: t=succtl t1: Nat
By the induction hypothesis, either t1 is a value or else there is some i suchthat ™ Bigf t1 is a value, then, by
the canonical forms lemma, it must be a numeric value, in which case so is t. On the other hand, if *! ~ 1, then, by

E-SUCC, SUEE Ty — SucE &

Case T-PRED: t=pred t1: Nat

By the induction hypothesis, either t1 is a value or else there is some Y1 such that Bt~ T iftgis a value, then, by
the canonical forms lemma, it must be a numeric value, i.e., either 0 or succ nv1 for some nv1, and one of the rules

E-PREDZERO or E-PREDSUCC applies to t. On the other hand, if T — T , then, by E-PRED,
pred ty — pred €

Case T-ISZERO: t=iszero t1: Nat

Similar.

The proof that types are preserved by evaluation is also quite straightforward for this system.

8.3.3 Theorem [Preservation]

Ift:Tandt - t',thent : T.

Proof: By induction on a derivation oft: T. At each step of the induction, we assume that the desired property holds for
all subderivations (i.e., thatifs: Sands - s', thens': S, whenever s : S is proved by a subderivation of the present
one) and proceed by case analysis on the final rule in the derivation. (We show only a subset of the cases; the others
are similar.)

Case T-TRUE: t = true T = Bool

If the last rule in the derivation is T-TRUE, then we know from the form of this rule that t must be the constant true and
T must be Bool. But then tis a value, so it cannot be the case thatt — t' for any t', and the requirements of the theorem
are vacuously satisfied.

Case T-IF: t = if t1 then R else t3 t1: Bool t2:T t3: T

If the last rule in the derivation is T-IF, then we know from the form of this rule that t must have the formif t1 then t2 else
t3, for some t1, t2, and t3. We must also have subderivations with conclusions t1: Bool, t2: T, and t3: T. Now, looking at

the evaluation rules with if on the left-hand side), we find that there are three rules by which t — t' can be
derived: E-IFTRUE, E-IFFALSE, and E-IF. We consider each case separately (omitting the E-FALSE case, which is
similar to E-TRUE).

Subcase E-IFTRUE: t1 = true =t

Ift - t'is derived using E-IFTRUE, then from the form of this rule we see that t1 must be true and the
resulting term t' is the second subexpression t2. This means we are finished, since we know (by the
assumptions of the T-IF case) that t2: T, which is what we need.

Subcase E-IF: T — T ¢ =it Lithen p else t3

From the assumptions of the T-IF case, we have a subderivation of the original typing derivation
whose conclusion is t1 : Bool. We can apply the induction hypothesis to this subderivation, obtaining

L1 Bool. Combining this with the facts (from the assumptions of the T-IF case) thatt2: Tand t3: T, we

can apply rule T-IF to conclude that if L1 then to else t3: T, thatist' : T.

Case T-ZERO: t=0 T = Nat

Can't happen (for the same reasons as T-TRUE above).

Case T-SUCC: t=succ t1 T = Nat t1: Nat

By inspecting the evaluation rules in , we see that there is just one rule, E-SUCC, that can be used to derive
t - t. The form of this rule tells us that ¥~ 1. Since we also know t1: Nat, we can apply the induction hypothesis

to obtain ©1 * Ha"‘, from which we obtain *4&€ L - Nﬂt, i.e., t': T, by applying rule T-SUCC.

8.3.4 Exercise [?? ?]
Restructure this proof so that it goes by induction on evaluation derivations rather than typing derivations.

The preservation theorem is often called subject reduction (or subject evaluation)-the intuition being that a typing
statementt: T can be thought of as a sentence, 't has type T." The term t is the subject of this sentence, and the
subject reduction property then says that the truth of the sentence is preserved under reduction of the subject.

Unlike uniqueness of types, which holds in some type systems and not in others, progress and preservation will be

basic requirements for all of the type systems that we consider.@

8.3.5 Exercise [?]

The evaluation rule E-PREDZERO) is a bit counterintuitive: we might feel that it makes more sense for the
predecessor of zero to be undefined, rather than being defined to be zero. Can we achieve this simply by removing the
rule from the definition of single-step evaluation?

8.3.6 Exercise [??, Recommended]

Having seen the subject reduction property, it is reasonable to wonder whether the opposite property-subject
expansion-also holds. Is it always the case that, if t - t and t': T, thent: T? If so, prove it. If not, give a
counterexample.

8.3.7 Exercise [Recommended, ?7?]

Suppose our evaluation relation is defined in the big-step style, as in Exercise 3.5.17. How should the intuitive property
of type safety be formalized?

8.3.8 Exercise [Recommended, ?7?]

Suppose our evaluation relation is augmented with rules for reducing nonsensical terms to an explicit wrong state, as
in Exercise 3.5.16. Now how should type safety be formalized?

The road from untyped to typed universes has been followed many times, in many different fields,
and largely for the same reasons.
-Luca Cardelli and Peter Wegner (19851

E]The slogan "safety is progress plus preservation” (using a canonical forms lemma) was articulated by Harper; a
variant was proposed by MWright and Felleisen (1994].

H]In most of the type systems we will consider, evaluation preserves not only well-typedness but the exact types of

terms. In some systems, however, types can change during evaluation. For example, in systems with subtyping
(), types can become smaller (more informative) during evaluation.

@There are languages where these properties do not hold, but which can nevertheleﬁs be considered to be type-safe.
or example, if TIQ[malize the operational semantics of Java in a small-step style (Elatt, Krishnamurthi, and

elleisen, 19984; Jgarashi, Pierce, and Wadler, 1999), type preservation in the form we have given it here fails (see
Chapter 19 for details). However, this should be considered an artifact of the formalization, rather than a defect in the
language itself, since it disappears, for example, in a big-step presentation of the semantics.

4 FREEWIOUE

< Free Open Study >

Chapter 9: Simply Typed Lambda-Calculus

This chapter introduces the most elementary member ily of type that we shall be studying for the
rest of the book: the simply typed lambda-calculus of Church (1940] and [Curry (1958).

9.1 Function Types

In , we introduced a simple static type system for arithmetic expressions with two types: Bool, classifying
terms whose evaluation yields a boolean, and Nat, classifying terms whose evaluation yields a number. The "ill-typed"
terms not belonging to either of these types include all the terms that reach stuck states during evaluation (e.g., if 0
then 1 else 2) as well as some terms that actually behave fine during evaluation, but for which our static classification is
too conservative (like if true then 0 else false).

Suppose we want to construct a similar type system for a language combining booleans (for the sake of brevity, we'll
ignore numbers in this chapter) with the primitives of the pure lambda-calculus. That is, we want to introduce typing
rules for variables, abstractions, and applications that (a) maintain type safety—i.e., satisfy the type preservation and

progress theorems, .3.2{ and l%.S. and (b) are not too conservative—i.e., they should assign types to most of the
programs we actually care about writing.

Of course, since the pure lambda-calculus is Turing complete, there is no hope of giving an exact type analysis for
these primitives. For example, there is no way of reliably determining whether a program like

if <long and tricky computation> then true else (x.x)

yields a boolean or a function without actually running the long and tricky computation and seeing whether it yields true

or false. But, in general, the H long and tricky computation might even diverge, and any typechecker that tries to
predict its outcome precisely will then diverge as well.

= (e Based om X §5-10
r 1
1 e HE Frafraation E— ¢ I
r - T FITas i
g — &
W PRI - {E=Arr1)
ATt alrsiractiun nh=n%
o i i £ — &
- (AP
Wy & -y &
[T (31, ~ - y
AT sbhsiragtion vl CAEETRL - Trad We — [x = ValRye (E-APRARS)
Iypuiisg | =
h o= [iiWeE rel
; T e
T==T P af e T - R
Fe=w:T

r := TR

- I”I FoasTikng s Ty -
TR e i Hi%l
U= Azl gp 5 Typ=T;

"

=
E]
-

R valFda By eI

[tg & To—=Tiz M-tz : T
=% 822 Tz

R

Figure 9-1: Pure Simply Typed Lambda-Calculus (A —)

To extend the type system for booleans to include functions, we clearly need to add a type classifying terms whose
evaluation results in a function. As a first approximation, let's call this type —. If we add a typing rule

Xt: >

giving every A-abstraction the type —, we can classify both simple terms like x.x and compound terms like if true then
(X.true) else (x.».y) as yielding functions.

But this rough analysis is clearly too conservative: functions like x.true and x.y.y are lumped together in the same
type -, ignoring the fact that applying the first to true yields a boolean, while applying the second to true yields another
function. In general, in order to give a useful type to the result of an application, we need to know more about the
left-hand side than just that it is a function: we need to know what type the function returns. Moreover, in order to be
sure that the function will behave correctly when it is called, we need to keep track of what type of arguments it
expects. To keep track of this information, we replace the bare type — by an infinite family of types of the form T1 -T2,
each classifying functions that expect arguments of type T1 and return results of type T2.

9.1.1 Definition

The set of simple types over the type Bool is generated by the following grammar:

T:= types:
Bool

T-T

type of booleans

type of functions
The type constructor — is right-associative—that is, the expression T1 -T2 - T3 stands for T1 - (T2 - T3).

For example Bool - Bool is the type of functions mapping boolean arguments to boolean results.
(Bool - Bool) - (Bool — Bool)—or, equivalently, (Bool - Bool) — Bool - Bool—is the type of functions that take
boolean-to-boolean functions as arguments and return them as results.

mThe system studied in this chapter is the simply typed lambda-calculus) with booleans @) The
associated OCaml implementation is fullsimple.

< Free Open Study >

< Free Open Study >

9.2 The Typing Relation

In order to assign a type to an abstraction like x.t, we need to calculate what will happen when the abstraction is
applied to some argument. The next question that arises is: how do we know what type of arguments to expect? There
are two possible responses: either we can simply annotate the A-abstraction with the intended type of its arguments,
or else we can analyze the body of the abstraction to see how the argument is used and try to deduce, from this, what
type it should have. For now, we choose the first alternative. Instead of just x.t, we will write x:T 1.t2, where the
annotation on the bound variable tells us to assume that the argument will be of type T1.

In general, languages in which type annotations in terms are used to help guide the typechecker are called explicitly
typed. Languages in which we ask the typechecker to infer or reconstruct this information are called implicitly typed. (In

the A-calculus literature, the term type-assignment systems is also used.) Most of this book will concentrate on
explicitly typed languages; implicit typing is explored in .
Once we know the type of the argument to the abstraction, it is clear that the type of the function's result will be just the

type of the body t2, where occurrences of x in t2 are assumed to denote terms of type T1. This intuition is captured by
the following typing rule:

¥tz i T;

(T-Ags)
FAX:T).t2 : T1=Ts

Since terms may contain nested A-abstractions, we will need, in general, to talk about several such assumptions. This
changes the typing relation from a two-place relation, t: T, to a three-place relation, ? ?t: T, where ? is a set of
assumptions about the types of the free variables in t.

Formally, a typing context (also called atype environment) ? is a sequence of variables and their types, and the
"comma" operator extends ? by adding a new binding on the right. The empty context is sometimes written /, but
usually we just omit it, writing ? t : T for "The closed term t has type T under the empty set of assumptions."

To avoid confusion between the new binding and any bindings that may already appear in ?, we require that the name
x be chosen so that it is distinct from the variables bound by ?. Since our convention is that variables bound by
A-abstractions may be renamed whenever convenient, this condition can always be satisfied by renaming the bound
variable if necessary. ? can thus be thought of as a finite function from variables to their types. Following this intuition,
we write dom(?) for the set of variables bound by 2.

The rule for typing abstractions has the general form
x:Ti-t2: T2 o
(T-ABS)
M= Ax:Ty.t2 : T =Tz
where the premise adds one more assumption to those in the conclusion.

The typing rule for variables also follows immediately from this discussion: a variable has whatever type we are
currently assuming it to have.

x:TeT -~
e — (T-YAR)
lE=x:1

The premise x:T17? is read "The type assumed for x in ?is T.

Finally, we need a typing rule for applications.

[+t : Ti—=Ti2 [~ t2 : Ty

e a -

- L1-APP)
't t2 2Ty

If t1 evaluates to a function mapping arguments in T11 to results in T12 (under the assumption that the values
represented by its free variables have the types assumed for them in ?), and if t2 evaluates to a result in T11, then the
result of applying t1 to t2 will be a value of type T12.

The typing rules for the boolean constants and conditional expressions are the same as before). Note,
though, that the metavariable T in the rule for conditionals

'~ 1t; : Bool Ttz :T M=tz :1

: (T-1F)
[~ift; then tzelsety : T

2

can now be instantiated to any function type, allowing us to type conditionals whose branches are functions:

if true then (X:Bool. x) else (Xx:Bool. not x);
? (x:Bool. x) : Bool — Bool

These typing rules are summarized in (along with the syntax and evaluation rules, for the sake of
completeness). The highlighted regions in the figure indicate material that is new with respect to the untyped
lambda-calculus-both new rules and new bits added to old rules. As we did with booleans and numbers, we have split
the definition of the full calculus into two pieces: the pure simply typed lambda-calculus with ng base types at all,
shown in this figure, and a separate set of rules for booleans, which we have already seen in figure 8-1 (we must add
a context ? to every typing statement in that figure, of course).

We often use the symbol A - to refer to the simply typed lambda-calculus (we use the same symbol for systems with
different sets of base types).

9.2.1 Exercise [?]

The pure simply typed lambda-calculus with no base types is actually degenerate, in the sense that it has no
well-typed terms at all. Why?

Instances of the typing rules for A » can be combined into derivation trees, just as we did for typed arithmetic
expressions. For example, here is a derivation demonstrating that the term (x:Bool.x) true has type Bool in the empty
context.

¥x:Bool € x:Boo]

T-Var
x:Bool - x : Bool

T-ABS T-TRUE
— Ax:Bool.x : Bool—Bool ~ true : Bool

T-APP
(Ax:Bool.x) true : Bool

9.2.2 Exercise [? ?]

Show (by drawing derivation trees) that the following terms have the indicated types:

1. f:Bool-Bool ? f (if false then true else false) : Bool
2. f:Bool-Bool ? x:Bool. f (if x then false else x) : Bool — Bool
9.2.3 Exercise [?]

Find a context ? under which the termf x y has type Bool. Can you give a simple description of the set of all such
contexts?

QExampIes showing sample interactions with an implementation will display both results and their types from now on
(when they are obvious, they will be sometimes be elided).

4 FREEWIOUE

< Free Open Study >

9.3 Properties of Typing

Asin , we need to develop a few basic lemmas before we can prove type safety. Most of these are similar to
what we saw before-we just need to add contexts to the typing relation and add clauses to each proof for

XMabstractions. applications, and variables. The only significant new requirement is a substitution lemma for the typing
relation (|

First off, an inversion lemma records a collection of observations about how typing derivations are built: the clause for
each syntactic form tells us "if a term of this form is well typed, then its subterms must have types of these forms..."

9.3.1 Lemma [Inversion of the Typing Relation]
1. If??x:R, thenxRI1?.
2. If?2?XxT1.t2:R, then R =T1-R2 for some R2 with 2, x:T1? t2: R2.
3. If??1t1t2:R, then there is some type T11 such that??t1: T11-Rand ?? t2: T11.
4. 1f ?2?true : R, then R = Bool.
5. If??false: R, then R = Bool.
6. If??iftrthent2elset3: R, then??t1:Booland ?? t2, t3: R.

Proof: Immediate from the definition of the typing relation.

9.3.2 Exercise [Recommended, ??7?]

Is there any context ? and type T such that? ? x x : T? If so, give ? and T and show a typing derivation for ? ? x x : T; if
not, prove it.

In , we chose an explicitly typed presentation of the calculus to simplify the job of typechecking. This involved
adding type annotations to bound variables in function abstractions, but nowhere else. In what sense is this "enough"?
One answer is provided by the "uniqueness of types" theorem, which tells us that well-typed terms are in one-to-one
correspondence with their typing derivations: the typing derivation can be recovered uniquely from the term (and, of
course, vice versa). In fact, the correspondence is so straight-forward that, in a sense, there is little difference between
the term and the derivation.

9.3.3 Theorem [Uniqueness of Types]

In a given typing context ?, a term t (with free variables all in the domain of ?) has at most one type. That is, if a term is
typable, then its type is unique. Moreover, there is just one derivation of this typing built from the inference rules that
generate the typing relation.

Proof: Exercise. The proof is actually so direct that there is almost nothing to say; but writing out some of the details is
good practice in "setting up" proofs about the typing relation.

For many of the type systems that we will see later in the book, this simple correspondence between terms and
derivations will not hold: a single term will be assigned many types, and each of these will be justified by many typing
derivations. In these systems, there will often be significant work involved in showing that typing derivations can be
recovered effectively from terms.

Next, a canonical forms lemma tells us the possible shapes of values of various types.

9.3.4 Lemma [Canonical Forms]

1. Ifvis avalue of type Bool, then v is either true or false.
2. Ifvisavalue of type T1 -T2, then v =XxT 1.t2.
Proof: Straightforward. (Similar to the proof of the canonical forms lemma for arithmetic expressions, .)

Using the canonical forms lemma, we can prove a progress theorem analogous to . The statement of
the theorem needs one small change: we are interested only in closed terms, with no free variables. For open terms,
the progress theorem actually fails: a term like f true is a normal form, but not a value. However, this failure does not
represent a defect in the language, since complete programs-which are the terms we actually care about
evaluating-are always closed.

9.3.5 Theorem [Progress]

Suppose tis a closed, well-typed term (that is, ? t : T for some T). Then either tis a value or else there is some t' with t

- t.

Proof: Straightforward induction on typing derivations. The cases f olean constants and conditions are exactly the
same as in the proof of progress for typed arithmetic expressions (B.3.4). The variable case cannot occur (because tis
closed). The abstraction case is immediate, since abstractions are values.

The only interesting case is the one for application, where t = t1 t2 with ?t1: T11 -~ T12 and ? t2: T11. By the induction
hypothesis, either t1 is a value or else it can make a step of evaluation, and likewise t2. If t1 can take a step, then rule
E-APP1 applies to t. If t1 is a value and t2 can take a step, then rule E-APP2 applies. Finally, if both t1 and t2 are
values, then the canonical forms lemma tells us that t1 has the form x:T 11.t12, and so rule E-APPABS applies to t.

Our next job is to prove that evaluation preserves types. We begin by stating a couple of "structural lemmas" for the
typing relation. These are not particularly interesting in themselves, but will permit us to perform some useful
manipulations of typing derivations in later proofs.

The first structural lemma tells us that we may permute the elements of a context, as convenient, without changing the
set of typing statements that can be derived under it. Recall (from page 101) that all the bindings in a context must
have distinct names, and that, whenever we add g hinding to a context, we tacitly assume that the bound name is
different from all the names already bound (using [Convention 5.3.4 to rename the new one if needed).

9.3.6 Lemma [Permutation]

If??t: T and ? is a permutation of ?, then ? ? t: T. Moreover, the latter derivation has the same depth as the former.

Proof: Straightforward induction on typing derivations.
9.3.7 Lemma [Weakening]

If?2?t: Tandx[dom(?), then ?, x:S?t: T. Moreover, the latter derivation has the same depth as the former.
Proof: Straightforward induction on typing derivations.

Using these technical lemmas, we can prove a crucial property of the typing relation: that well-typedness is preserved
when variables are substituted with terms of appropriate types. Similar lemmas play such a ubiquitous role in the
safety proofs of programming languages that it is often called just "the substitution lemma."”

9.3.8 Lemma [Preservation of Types Under Substitution]

If?,xS?t:Tand??s:S,then?? [x?s]t: T.

Proof: By induction on a derivation of the statement?, x:S ? t : T. For a given derivation, we proceed by cases on the

final typing rule used in the proof.@ The most interesting cases are the ones for variables and abstractions.

Case T-VAR: t=z

withz:TT(?, x:9)

There are two sub-cases to consider, depending on whether z is x or another variable. If z = x, then [x ? s]z=s. The

required result is then ? ? s : S, which is among the assumptions of the lemma. Otherwise, [x ? s]z = z, and the desired
result is immediate.

Case T-ABS: t=NT2t1
T=T2-T1
?2,xS,yT2?2t1:T1

By , we may assume x #y and y ? FV(s). Using permutation on the given subderivation, we obtain [,

y: T2, x:S ? t1: T1. Using weakening on the other given derivation (? ? s : S), we obtain ?, y:T2 ? s : S. Now, by the
induction hypothesis, ?, y:T2 ? [x ? s]t1: T1. By T-ABS, ? ? ¥:T 2. [x ? s]t1 : T2 T1. But this is precisely the needed result,
since, by the definition of substitution, [x ? s]t= Ay:T1. [x ? s]t1.

Case T-APP: t=t11t2
?2,xS?t1:T2-T1
2,xS?10:T2
T=T1

By the induction hypothesis, ?? [x ? s]t1: T2-T1and ?? [x ? s]t2: T2. By T-APP, 2 ? [x?slt1 [x ? s T, i.e., ? ? [x ? s|(t1
t2):T.

Case T-TRUE: t =true
T = Bool

Then [x ? s]t = true, and the desired result, ? ? [x ? s]t : T, is immediate.

Case T-FALSE: t = false
T = Bool
Similar.
Case T-IF: t=ift1 thent2 else t3

?,x:S ?t1: Bool
2,xS?t02: T
2,xS?13: T

Three uses of the induction hypothesis yield
??[x ? s]t1: Bool
??x?slt2: T
?2?[x?st3: T,

from which the result follows by T-IF.

Using the substitution lemma, we can prove the other half of the type safety property-that evaluation preserves
well-typedness.

9.3.9 Theorem [Preservation]
If??t:Tandt - t, then??¢t: T.

Proof: Exercise [Recommended, ???]. The structure is very similar to the proof of the type preservation theorem for

arithmetic expressions), except for the use of the substitution lemma.

9.3.10 Exercise [Recommended, ??7?]

In we investigated the subject expansion property for our simple calculus of typed arithmetic
expressions. Does it hold for the "functional part" of the simply typed lambda-calculus? That is, suppose t does not
contain any conditional expressions. Dot — t and ??t : Timply 2 ?t: T?

E]Or, equivalently, by cases on the possible shapes of t, since for each syntactic constructor there is exactly one
typing rule.

< Free Open Study >

< Free Open Study >

9.4 The Curry-Howard Correspondence

The "-" type constructor comes with typing rules of two kinds:

1. anintroduction rule (T-ABS) describing how elements of the type can be created, and
2. an elimination rule (T-APP) describing how elements of the type can be used.

When an introduction form ()) is an immediate subterm of an elimination form (application), the result is a redex—an
opportunity for computation.

The terminology of introduction and elimination forms is frequently useful in discussing type systems. When we come
to more complex systems later in the book, we'll see a similar pattern of linked introduction and elimination rules for
each type constructor we consider.

9.4.1 Exercise [?]

Which of the ryles for the type Bool in are introduction rules and which are elimination rules? What about the
rules for Nat in Figure 8-4?

The introduction/elimination terminology arises from a connection between type the. rta,n_d_lggjg_mjwn as the
Curry-Howard correspondence or Curry-Howard isomorphism (Curry and Feys, 195g; Howard, 1980). Briefly, the idea

is that, in constructive logics, a proof of a proposition P consists of concrete evidence forP.[il] What Curry and Howard
noticed was that such evidence has a strongly computational feel. For example, a proof of a proposition P [Q can be
viewed as a mechanical procedure that, given a proof of P, constructs a proof of Q—or, if you like, a proof of Q
abstracted on a proof of P. Similarly, a proof of P [1Q consists of a proof of P together with a proof of Q. This
observation gives rise to the following correspondence:

LOGIC PROGRAMMING LANGUAGES
propositions types

proposition P [Q typeP-Q

proposition P 0 Q type P x Q (see)

proof of propositionP termt of typeP

proposition P is provable type P is inhabited (by some term)

On this view, a term of the simply typed lambda-calculus is a proof of a logical proposition corresponding to its type.
Computation—reduction of lambda-terms—corresponds to the logical operation of proof simplification by cut

elimination. The Curry-Howard correspondence is also called tkmmmmwmmﬁTﬂgmnﬂstsions
mmmmggmu_ml und in many places, including Girard, Lafont, and Tavlor (19891, Gallier (1993],
Sfrensen and Urzyczyn (1998)|, Pfenning (2001), [Goubault-Larrecg and Mackie (1997), and lSimmons (20001.

The beauty of the Curry-Howard correspondence is that it is not limited to a particular type system and one related

—h

logic—on the contrary, it can be extended to a huge variety of type systems and logics. For example, System F

(Chapter 23), whose parametric polymorphism involves quantification over types, correspon i toa
second-order constructive logic, which permits quantification over propositions. System F¢ (ICha ter 3Q) corresponds

to a higher-order_logic, Indeed. the correspondence has often been exploited to transfer ‘Wﬁnﬁmq
the fields. Thus,birard‘s inear logid) (1987] gives rise to the idea of linear type systems (Wadler, 199Q, Wadler, 1991,

sin, 199 L!odas 199j Mackle 1995’ bhlrlmarl Gunter, and Riecke 199d Igobayashll
pPierce, and Turner, 199€, and many others), ﬁ]ﬂimmmnm&b.ﬁ Jﬁﬂ.&hﬂﬂﬁlﬂﬂ.&&mﬂ&mﬁ_&mmjl
evaluation and run-time code generation (see Davies and Pfenning, 1994, Wickline, Lee, Pfenning, and Davies, 1994,

and other sources cited there).

H]The characteristic difference between classical and constructive logics is the omission from the latter of proof rules
like the law of the excluded middle, which says that, for every proposition Q, either Q holds or -Q does. To prove Q V
=-Q in a constructive logic, we must provide evidence either for Q or for -Q.

< Free Open Study >

< Free Open Study >

9.5 Erasure and Typability

In , we defined the evaluation relation directly on simply typed terms. Although type annotations play no role
in evaluation—we don't do any sort of run-time checking to ensure that functions are applied to arguments of
appropriate types—we do carry along these annotations inside of terms as we evaluate them.

Most compilers for full-scale programming languages actually avoid carrying annotations at run time: they are used
during typechecking (and during code generation, in more sophisticated compilers), but do not appear in the

compiled form of the program. In effect, programs are converted back to an untyped form before they are evaluated.
This style of semantics can be formalized using an erasure function mapping simply typed terms into the
corresponding untyped terms.

9.5.1 Definition

The erasure of a simply typed termtis defined as follows:

erase(x) = X

erase(XxT 1. 12) X. erase(t2)

erase(t1t2) erase(t1) erase(t2)

Of course, we expect that the two ways of presenting the semantics of the simply typed calculus actually coincide: it
doesn't really matter whether we evaluate a typed term directly, or whether we erase it and evaluate the underlying
untyped term. This expectation is formalized by the following theorem, summarized by the slogan "evaluation
commutes with erasure" in the sense that these operations can be performed in either orde—we reach the same term
by evaluating and then erasing as we do by erasing and then evaluating:

9.5.2 Theorem

1. Ift - t under the typed evaluation relation, then erase(t) — erase(t').

2. Iferase(t) — m' under the typed evaluation relation, then there is a simply typed termt' such thatt
- t and erase(t) = m'.

Proof: Straightforward induction on evaluation derivations.

Since the "compilation” we are considering here is so straightforward, is obvious to the point of triviality.

For more interesting languages and more interesting compilers, however, it becomes a quite important property: it tells
us that a "high-level" semantics, expressed directly in terms of the language that the programmer writes, coincides with
an alternative, lower-level evaluation strategy actually used by an implementation of the language.

Another interesting question arising from the erasure function is: Given an untyped lambda-term m, can we find a
simply typed term t that erases to m?

9.5.3 Definition

A term m in the untyped lambda-calculus is said to be typable in A - if there are some simply typed term t, type T, and
context ? such thaterase(t) =mand ??t: T.

We will return to this point in more detail in , when we consider the closely related topic of type
reconstruction forA —.

1 FEEWIOUE

< Free Open Study >

9.6 Curry-Style vs. Church-Style

We have seen two different styles in which the semantics of the simply typed lambda-calculus can be formulated: as
an evaluation relation defined directly on the syntax of the simply typed calculus, or as a compilation to an untyped
calculus plus an evaluation relation on untyped terms. An important commonality of the two styles is that, in both, it
makes sense to talk about the behavior of a term t, whether or not t is actually well typed. This form of language
definition is often called Curry-style. We first define the terms, then define a semantics showing how they behave, then
give a type system that rejects some terms whose behaviors we don't like. Semantics is prior to typing.

A rather different way of organizing a language definition is to define terms, then identify the well-typed terms, then
give semantics just to these. In these so-called Church-style systems, typing is prior to semantics: we never even ask
the question "what is the behavior of an ill-typed term?" Indeed, strictly speaking, what we actually evaluate in
Church-style systems is typing derivations, not terms. (See E15.§ for an example of this.)

Historically, implicitly typed presentations of lambda-calculi are often given in the Curry style, while Church-style
presentations are common only for explicitly typed systems. This has led to some confusion of terminology:
"Church-style" is sometimes used when describing an explicitly typed syntax and "Curry-style" for implicitly typed.

< Free Open Study >

9.7 Notes

The simply typed lambda-calculus is studied in l—iindlev and Seldin (19861, and in even greater detail in Hindley's
monograph (1997).

Well-typed programs cannot “go wrong." -hobin Milner (1978]

< Free Open Study >

Chapter 10: An ML Implementation of Simple Types

The concrete realization of A, as an ML program follows the same lines as our implementation of the untyped

lambda-calculus in .. The main addition is a function typeof for calculating the type of a given term in a given
context. Before we get to it, though, we need a little low-level machinery for manipulating contexts.

10.1 Contexts

Recall from (p. 85) that acontext is just a list of pairs of variable names and bindings:

type context = (string * binding) list

In , we used contexts just for converting between named and nameless forms of terms during parsing and
printing. For this, we needed to know just the names of the variables; the binding type was defined as a trivial
one-constructor datatype carrying no information at all:

type binding = NameBind

To implement the typechecker, we will need to use the context to carry typing assumptions about variables. We
support this by adding a new constructor called VarBind to the binding type:
type binding =
NameBind
| VarBind of ty

[

Each VvarBind constructor carries a typing assumption for the corresponding variable. We keep the old NameBind
constructor in addition to VarBind, for the convenience of the printing and parsing functions, which don't care about
typing assumptions. (A different implementation strategy would be to define two completely different context
types—one for parsing and printing and another for typechecking.)

The typeof function uses a function addbinding to extend a context ctx with a new variable binding (x,bind); since
contexts are represented as lists, addbinding is essentially just cons:

let addbinding ctx x bind = (x,bind)::ctx

Conversely, we use the function getTypeFromContext to extract the typing assumption associated with a particular
variable i in a context ctx (the file information fi is used for printing an error message ifi is out of range):
let getTypeFromContext fi ctx i =
match getbinding fi ctx i with
VarBind(tyT) — tyT
| _ — errorfi
("getTypeFromContext: Wrong kind of binding for variable "

[(index2name fi ctx i)

The match provides some internal consistency checking: under normal circumstances, getTypeFromContext should

always be called with a context where the ith binding is in fact a VarBind. In later chapters, though, we will add other
forms of bindings (in particular, bindings for type variables), and it is possible that getTypeFromContext will get called
with the wrong kind of variable. In this case, it uses the low-level error function to print a message, passing it an info so
that it can report the file position where the error occurred.

val error : info - string — 'a

The result type of the error function is the variable type 'a, which can be instantiated to any ML type (this makes sense

because it is never going to return anyway: it prints a message and halts the program). Here, we need to assume that
the result of error is a ty, since that is what the other branch of the match returns.

Note that we look up typing assumptions by index, since terms are represented internally in nameless form, with
variables represented as numerical indices. The gethinding function simply looks up the ith binding in the given context:

val getbinding : info — context — int — binding

Its definition can be found in the simplebool implementation on the book's web site.

i e implementation described here corresponds to the simply typed lambda-calculus (with booleans
(B-1). The code in this chapter can be found in the simplebool implementation in the web repository.

< Free Open Study >

10.2 Terms and Types

The syntax of types is transcribed directly into an ML datatype from the abstract syntax in and Q

type ty =
TyBool
| TyArr of ty * ty

The representation of terms is the same as we used for the untyped lambda-calculus (p. 84), just adding a type
annotation to the TmAbs clause.

type term =
TmTrue of info
| TmFalse of info
| Tmif of info * term * term * term
| TmVar of info * int * int
| TmADbs of info * string * ty * term
| TmApp of info * term * term

m < Free Open Study >

< Free Open Study >

10.3 Typechecking

The typechecking function typeof can be viewed as a direct translation of the typing rules for A _, and Q),
or, more accurately, as a transcription of the inversion lemma . The second view is more accurate because it is
the inversion lemma that tells us, for every syntactic form, exactly what conditions must hold in order for a term of this
form to be well typed. The typing rules tell us that terms of certain forms are well typed under certain conditions, but by
looking at an individual typing rule, we can never conclude that some term is not well typed, since it is always possible
that another rule could be used to type this term. (At the moment, this may appear to be a difference without a
distinction, since the inversion lemma follows so directly from the typing rules. The difference becomes important,
though, in later systems where proving the inversion lemma requires more work than in A_,.)

let rec typeof ctx t =
match t with
TmTrue(fi) —
TyBool
| TmFalse(fi) —
TyBool
| Tmif(fi,t1,t2,t3) —
if (=) (typeof ctx t1) TyBool then
let tyT2 = typeof ctx t2 in
if (=) tyT2 (typeof ctx t3) then tyT2
else error fi "arms of conditional have different types"
else error fi "guard of conditional not a boolean"
| TmVar(fi,i,_) — getTypeFromContext fi ctx i
| TmAbs(fi,x,tyT1,t2) —
let ctx' = addbinding ctx x (VarBind(tyT1)) in
let tyT2 = typeof ctx' t2 in
TyArr(tyT1, tyT2)
| TmApp(fi,t1,t2) —
let tyT1 = typeof ctx t1 in
let tyT2 = typeof ctx t2 in
(match tyT1 with
TyArr(tyT11,tyT12) —
if (=) tyT2 tyT11 then tyT12
else error fi "parameter type mismatch"

| _ — error fi "arrow type expected")

A couple of details of the OCaml language are worth mentioning here. First, the OCaml equality operator = is written in
parentheses because we are using it in prefix position, rather than its normal infix position, to facilitate comparison with
later versions of typeof where the operation of comparing types will need to be something more refined than simple
equality. Second, the equality operator computes a structural equality on compound values, not a pointer equality. That
is, the expression

lett = TmApp(t1,t2) in

lett' = TmApp(t1,t2) in

=tt

is guaranteed to yield true, even though the two instances of TmApp bound tot and t' are allocated at different times
and live at different addresses in memory.

< Free Open Study >

< Free Open Study >

Chapter 11: Simple Extensions

The simply typed lambda-calculus has enough structure to make its theoretical properties interesting, but it is not yet
much of a programming language. In this chapter, we begin to close the gap with more familiar languages by
introducing a number of familiar features that have straightforward treatments at the level of typing. An important
theme throughout the chapter is the concept of derived forms.

11.1 Base Types

Every programming language provides a variety of base types—sets of simple, unstructured values such as numbers,
booleans, or characters—plus appropriate primitive operations for manipulating these values. We have already
examined natural numbers and booleans in detail; as many other base types as the language designer wants can be
added in exactly the same way.

Besides Bool and Nat, we will occasionally use the base types String (with elements like "hello”) and Float (with elements
like 3.14159) to spice up the examples in the rest of the book.

For theoretical purposes, it is often useful to abstract away from the details of particular base types and their
operations, and instead simply suppose that our language comes equipped with some set A of uninterpreted or
unknown base types, with no primitive operations on them at all. This is accomplished simply by including the
elements of A (ranged over by the metavariable A) in the set of types, as shown in . We use the letter A for

base types, rather than B, to avoid confusion with the symbol E which we have used to indicate the presence of

booleans in a given system. A can be thought of as standing for atomic types—another name that is often used for

il

base types, because they have no internal structure as far as the type system

- A Emtimely N d5-T)
T 1
v Lvnifaclic foreis
T == Ivpes
& Fiase Mypwe

Figure 11-1: Uninterpreted Base Types

is concerned. We will use A, B, C, etc. as the names of base types. Note that, as we did before with variables and type
variables, we are using A both as a base type and as a metavariable ranging over base types, relying on context to tell
us which is intended in a particular instance.

Is an uninterpreted type useless? Not at all. Although we have no way of naming its elements directly, we can still bind
variables that range over the elements of a base type. For example, the function[g]

XA, X;

?<fun>:A S5 A

is the identity function on the elements of A, whatever these may be. Likewise,

X:B. x;

?<fun>:B - B

is the identity function on B, while

XA - A XA. f(f(x));

? <fun>: (A—>A) - A > A

is a function that repeats two times the behavior of some given function f on an argument x.

mThe systems studied in this chapter are various extensions of the pure typed lambda-calculus (. The
associated OCaml implementation, fullsimple, includes all the extensions.

[g]From now on, we will save space by eliding the bodies of A-abstractions—writing them as just <fun>—when we
display the results of evaluation.

< Free Open Study >

< Free Open Study >

11.2 The Unit Type

, Is the singleton type Unit described in

, this type is interpreted in the simplest

Another useful base type, found especially in languages in the ML fa
. In contrast to the uninterpreted base types of the
possible way: we explicitly introduce a single element-the term constant unit (written with a small u)-and a typing rule
making unit an element of Unit. We also add unit to the set of possible result values of computations-indeed, unit is the

only possible result of evaluating an expression of type Unit.

Lintr Pt A {0
r v
v synfa Gl o New by s] i l'
T == lermes
unit coredant und 'y @i - Unde (1-Linm
e e rne [orTes
] waline € Al g
. nnaant mmie it = CAx:UAiE. E2) &y
where x & Flits)
T & au INTAT
Uait srul e

1 i
Figure 11-2: Unit Type

Even in a purely functional language, the type Unit is not completely without interest,@ but its main application is in

languages with side effects, such as assignments to reference cells-a topic we will return to in [Chapter 13. In such
languages, it is often the side effect, not the result, of an expression that we care about; Unit is an appropriate result
type for such expressions.

This use of Unit is similar to the role of the vojd type in languages like C and Java. The name void suggests a
connection with the empty type Bot (cf. E15.4)), but the usage of void is actually closer to our Unit.

11.2.1 Exercise [??7?]

Is there a way of constructing a sequence of terms t1, t2, ..., in the simply typed lambda-calculus with only the base

type Unit, such that, for each n, the term tn has size at most O(n) but requires at least O(2n) steps of evaluation to
reach a normal form?

E]The reader may enjoy the following little puzzle:

< Free Open Study >

< Free Open Study >

11.3 Derived Forms: Sequencing and Wildcards

In languages with side effects, it is often useful to evaluate two or more expressions in sequence. The sequencing
notation t1 ; t2 has the effect of evaluating t1, throwing away its trivial result, and going on to evaluate t2.

There are actually two different ways to formalize sequencing. One is to follow the same pattern we have used for
other syntactic forms: add t1 ; t2 as a new alternative in the syntax of terms, and then add two evaluation rules

t| 2 tl| g
: (E-SE0)
Lty — T;it2
unit;tz — t2 (E-SEQNEXT)
and a typing rule
[t :Unit [-t2: T2
(T-SE0Q)

I S R b
capturing the intended behavior of ;.

An alternative way of formalizing sequencing is simply to regard t1 ; t2 as an abbreviation for the term (x:Unit.t 2) t1,

where the variable x is chosen fresh—i.e., different from all the free variables of t2.

It is intuitively fairly clear that these two presentations of sequencing add up to the same thing as far as the
programmer is concerned: the high-level typing and evaluation rules for sequencing can be derived from the
abbreviation of t1 ; t2 as (x:Unit.t 2) t1. This intuitive correspondence is captured more formally by arguing that typing
and evaluation both "commute" with the expansion of the abbreviation.

11.3.1 Theorem [Sequencing is a Derived Form]

Write)\E ("E" for external language) for the simply typed lambda-calculus with the Unit type, the sequencing construct,
and the rules E-SEQ, E-SEQNEXT, and T-SEQ, and)\I ("I" for internal language) for the simply typed lambda-calculus
with Unit only. Lete i)\E -)\I be the elaboration function that translates from the external to the internal language by

replacing every occurrence of t1 ; t2 with (x:Unit.t 2) t1, where x is chosen fresh in each case. Now, for each term t of AE,
we have

B riffe(t) - e(t)

B ooF iRl T

where the evaluation and typing relations of)\E and Al are annotated with E and |, respectively, to show which is which.
Proof: Each direction of each "iff* proceeds by straightforward induction on the structure oft.

justifies our use of the term derived form, since it shows that the typing and evaluation behavior of the
sequencing construct can be derived from those of the more fundamental operations of abstraction and application.
The advantage of introducing features like sequencing as derived forms rather than as full-fledged language
constructs is that we can extend the surface syntax (i.e., the language that the programmer actually uses to write
programs) without adding any complexity to the internal language about which theorems such as type safety must be

R i od of factoring the descriptions of language features can already be found in the Algol 60 report
(Naur et al., 1963), and it is heavily used in many more recent language definitions, notably the Definition of Standard

ML (i\/lilner, Tofte, and Harper, 199d; Milner, Tofte, Harper, and MacQueen, 1997|).

Derived forms are often called syntactic sugar, following Landin. Replacing a derived form with its lower-level definition
is called desugaring.

Another derived form that will be useful in examples later on is the "wild-card" convention for variable binders. It often
happens (for example, in terms created by desugaring sequencing) that we want to write a "dummy"
lambda-abstraction in which the parameter variable is not actually used in the body of the abstraction. In such cases, it
is annoying to have to explicitly choose a name for the bound variable; instead, we would like to replace it by a
wildcard binder, written _. That is, we will write A :S.t to abbreviate x:S.t, where x is some variable not occurring in t.

11.3.2 Exercise [?]

Give typing and evaluation rules for wildcard abstractions, and prove that they can be derived from the abbreviation
stated above.

< Free Open Study >

< Free Open Study >

11.4 Ascription

Another simple feature that will frequently come in handy later is the ability to explicitly ascribe a particular type to a
given term (i.e., to record in the text of the program an assertion that this term has this type). We write "t as T" for "the
term t, to which we ascribe the type T." The typing rule T-ASCRIBE for this construct (cf. figure 11-3) simply verifies
that the ascribed type T is, indeed, the type of t. The evaluation rule E-ASCRIBE is equally straightforward: it just
throws away the ascription, leaving t free to evaluate as usual.

s Frterls A d- T
I 1
W SV I R Wi Fereme rues '| TR 1
T == ... It s g = '
; | ST
tazT R T o : (=A% IR
F-%, asT:T -
P Wk e Falies I r'i
wy a8 T — vy E-ASCminE
By — &)
— _' CE-Asd Hina
LT — L as T

Figure 11-3: Ascription

There are a number of situations where ascription can be useful in programming. One common one is documentation.
It can sometimes become difficult for a reader to keep track of the types of the subexpressions of a large compound
expression. Judicious use of ascription can make such programs much easier to follow. Similarly, in a particularly
complex expression, it may not even be clear to the writer what the types of all the subexpressions are. Sprinkling in a
few ascriptions is a good way of clarifying the programmer's thinking. Indeed, ascription is sometimes a valuable aid
in pinpointing the source of puzzling type errors.

Another use of ascription is for controlling the printing of complex types. The typecheckers used to check the examples
shown in this book—and the accompanying OCaml implementations whose names begin with the prefix full—provide
a simple mechanism for introducing abbreviations for long or complex type expressions. (The abbreviation mechanism
is omitted from the other implementations to make them easier to read and modify.) For example, the declaration

UU = Unit - Unit;

makes UU an abbreviation for Unit — Unit in what follows. Wherever UU is seen, Unit— Unit is understood. We can write,
for example:

(%:UU. f unit) (x:Unit. x);

During type-checking, these abbreviations are expanded automatically as necessary. Conversely, the typecheckers
attempt to collapse abbreviations whenever possible. (Specifically, each time they calculate the type of a subterm, they
check whether this type exactly matches any of the currently defined abbreviations, and if so replace the type by the
abbreviation.) This normally gives reasonable results, but occasionally we may want a type to print differently, either
because the simple matching strategy causes the typechecker to miss an opportunity to collapse an abbreviation (for
example, in systems where the fields of record types can be permuted, it will not recognize that {a:Bool,b:Nat} is
interchangeable with {b:Nat,a:Bool}), or because we want the type to print differently for some other reason. For
example, in

X:Unit - Unit. f;
? <fun> : (Unit- Unit) - UU

the abbreviation UU is collapsed in the result of the function, but not in its argument. If we want the type to print as
UU - UU, we can either change the type annotation on the abstraction

X:UU. f;

? <fun>:UU - UU

or else add an ascription to the whole abstraction:

(X:Unit — Unit. f) as UU - UU;

? <fun>:UU - UU

When the typechecker processes an ascription t as T, it expands any abbreviations in T while checking that t has type
T, but then yields T itself, exactly as written, as the type of the ascription. This use of ascription to control the printing of
types is somewhat particular to the way the implementations in this book have been engineered. In a full-blown
programming language, mechanisms for abbreviation and type printing will either be unnecessary (as in Java, for

example, where by construction all types are represented by short names—cf. [Chapter 19) or else much more tightly

integrated into the language (as in OCaml—cf. Rémy and Vouillon, 199§; [Vouillon, 200d).

A final use of ascription that will be discussed in more detail in is as a mechanism for abstraction. In systems
where a given term t may have many different types (for example, systems with subtyping), ascription can be used to
"hide" some of these types by telling the typecheck reatt as if it had only a smaller set of types. The relation
between ascription and casting is also discussed in%

11.4.1 Exercise [Recommended, ?7?]

(1) Show how to formulate ascription as a derived form. Prove that the "official" typing and evaluation rules given here
correspond to your definition in a suitable sense. (2) Suppose that, instead of the pair of evaluation rules E-ASCRIBE
and E-ASCRIBEL1, we had given an "eager" rule

tpasl — 1t (E-ASCRIBEEAGER)

that throws away an ascription as soon as it is reached. Can ascription still be considered as a derived form?

< Free Open Study >

< Free Open Study >

11.5 Let Bindings

When writing a complex expression, it is often useful-both for avoiding repetition and for increasing readability-to give
names to some of its subexpressions. Most languages provide one or more ways of doing this. In ML, for example, we
write let x=t1 in t2 to mean "evaluate the expression t1 and bind the name x to the resulting value while evaluating t2.

Our let-binder (summarized in) follows ML's in choosing a call-by-value evaluation order, where the
let-bound term must be fully evaluated before evaluation of the let-body can begin. The typing rule T-LET tells us that
the type of a let can be calculated by calculating the type of the let-bound term, extending the context with a binding
with this type, and in this enriched context calculating the type of the body, which is then the type of the whole let
expression.

Tot Fwiermdy X @2 Ti
L) 1
M syl furens

ogifag - t—k (LLEY
i wrie lor ¥=t; A0 T3 — loT w=ry im T s
Ter x=t in t det Eand g

Wit MR Fule Fi-e:T
B v v e fies o I:'I Fiit: =T Ttz T
¥ 1 =1 o 3 = F

{I-LET)

Tar x=w; in Ty — |X == % |L3 {E-LETY I let =ty Inty ! T; .

Figure 11-4: Let Binding

11.5.1 Exercise [Recommended, ??7]

The letexercise typechecker (available at the book's web site) is an incomplete implementation of let expressions: basic
parsing and printing functions are provided, but the clauses for TmLet are missing from the evall and typeof functions
(in their place, you'll find dummy clauses that match everything and crash the program with an assertion failure). Finish
it.

Can let also be defined as a derived form? Yes, as Landin showed; but the details are slightly more subtle than what
we did for sequencing and ascription. Naively, it is clear that we can use a combination of abstraction and application
to achieve the effect of a let-binding:

let x=t; in t2 = CAx:Ty.t2) 1y

But notice that the right-hand side of this abbreviation includes the type annotation T1, which does not appear on the
left-hand side. That is, if we imagine derived forms as being desugared during the parsing phase of some compiler,
then we need to ask how the parser is supposed to know that it should generate T1 as the type annotation on the A in
the desugared internal-language term.

The answer, of course, is that this information comes from the typechecker! We discover the needed type annotation
simply by calculating the type of t1. More formally, what this tells us is that the let constructor is a slightly different sort
of derived form than the ones we have seen up till now: we should regard it not as a desugaring transformation on
terms, but as a transformation on typing derivations (or, if you prefer, on terms decorated by the typechecker with the
results of its analysis) that maps a derivation involving let

Tt : T [Tt :T2

- I-LET
[+~ Tet Xx=t; intz : T2

to one using abstraction and application:

"
a

Mx:Ti-t2: T2 :
T-ARS —
- Ax:T).t2 : T) —T2 -1t : T

[(AX:T).t2) £t : T2

T-ApP

Thus, letis "a little less derived" than the other derived forms we have seen: we can derive its evaluation behavior by
desugaring it, but its typing behavior must be built into the internal language.

In we will see another reason not to treat let as a derived form: in languages with Hindley-Milner (i.e.,
unification-based) polymorphism, the let construct is treated specially by the typechecker, which uses it for generalizing
polymorphic definitions to obtain typings that cannot be emulated using ordinary A-abstraction and application.

11.5.2 Exercise [?7?]

Another way of defining let as a derived form might be to desugar it by "executing" it immediately-i.e., to regard let x=t1
in t2 as an abbreviation for the substituted body [x ? t1]t2. Is this a good idea?

|< Free Open Study >

m < Free Open Study >

11.6 Pairs

Most programming languages provide a variety of ways of building compound data structures. The simplest of these is
pairs, or more generally tuples, of values. We treat pairs in this section, then do the more general cases of tuples and

labeled records in and .[A]

The formalization of pairsi 00 simple to be worth discussing-by this point in the book, it should be about as
easy to read the rules in Eigure 11-5 as to wade through a description in English conveying the same information.
However, let's look briefly at the various parts of the definition to emphasize the common pattern.

. B Fotgrachs X _ §5-T)
Seerr it firsi Eyo—
1]
E == I e P S {E-Priapz
L O G
{t.1} peir
.l firel projection Ty — T
t.2 secennd prapction [T Tz} — (T .t (ka1
W - P 15, - ['
{w, v} i verlese ey g e EPaimz|
] - I Wi [Fule _| (B |
wrrachiec T st
Ti®Ts prrchiecT Ry Fet tTh Figs!Ts s
ik
T {rg,) 1 Ty=T; :
e PRl R Pl L F
fepowadd —awy E-PAIRRETAL [K & Tia KT PRI
FkTydl T
{¥pava} 2 — v {E-FaanBEET Az
[Eq & Tpg % Tz
T e Ltk [T-Fragz)
B —1 EPRoy FETi.d 5 Taz
t.l—rx.l ' ;

Figure 11-5: Pairs

Adding pairs to the simply typed lambda-calculus involves adding two new forms of term-pairing, written {t1,t2}, and

projection, written t.1 for the first projection from t and t.2 for the second projection-plus one new type constructor, T1 X

T2, called the product (or sometimes the cartesian product) of T1 and T2. Pairs are written with curly braces@ to

emphasize the connection to records in the g11.9.

For evaluation, we need several new rules specifying how pairs and projection behave. E-PAIRBETA1 and
E-PAIRBETAZ2 specify that, when a fully evaluated pair meets a first or second projection, the result is the appropriate
component. E-PROJ1 and E-PROJ2 allow reduction to proceed under projections, when the term being projected from

has not yet been fully evaluated. E-PAIR1 and E-PAIR2 evaluate the parts of pairs: first the left part, and then-when a
value appears on the left-the right part.

The ordering arising from the use of the metavariables v and t in these rules enforces a left-to-right evaluation strategy
for pairs. For example, the compound term

{pred 4, if true then false else false}.1

evaluates (only) as follows:
{pred 4, if true then false else false}.1
— {3, if true then false else false}.1
— {3, false}.1
-3

We also need to add a new clause to the definition of values, specifying that {v1,v2} is a value. The fact that the
components of a pair value must themselves be values ensures that a pair passed as an argument to a function will be
fully evaluated before the function body starts executing. For example:
(X:Nat x Nat. x.2) {pred 4, pred 5}

— (X:Nat x Nat. x.2) {3, pred 5}
(X:Nat x Nat. x.2) {3,4}
{3,4}.2
- 4

!

i

The typing rules for pairs and projections are straightforward. The introduction rule, T-PAIR, says that {t1,t2} has type
T1 xT2if t1 has type T1 and t2 has type T2. Conversely, the elimination rules T-PROJ1 and T-PROJ2 tell us that, if t1
has a product type T11 x T12 (i.e., if it will evaluate to a pair), then the types of the projections from this pair are T11
and T12.

wThe fullsimple implementation does not actually provide the pairing syntax described here, since tuples are more
general anyway.

E]The curly brace notation is a little unfortunate for pairs and tuples, since it suggests the standard mathematical
notation for sets. It is more common, both in popular languages like ML and in the research literature, to enclose pairs
and tuples in parentheses. Other notations such as square or angle brackets are also used.

< Free Open Study >

11.7 Tuples

It is easy to generalize the binary products of the to n-ary products, often called tuples. For example,

{1,2,true} is a 3-tuple containing two numbers and a boolean. Its type is written {Nat,Nat,Bool}.

The only cost of this generalization is that, to formalize the system, we need to invent notations for uniformly
describing structures of arbitrary arity; such notations are always a bit problematic, as there is some inevitable tension

between rigor and readability. We write {tj II1"'n} for a tuple of n terms, t1 through tn, and {Ti'll"n} for its type. Note thatn

here is allowed to be O; in this case, the range 1..n is empty and{ti'll”n} is {}, the empty tuple. Also, note the difference

between a bare value like 5 and a one-element tuple like {5}: the only operation we may legally perform on the latter is
projecting its first component.

formalizes tuples. The definition is similar to the definition of products l , except that each rule

for pairing has been generalized to the n-ary case, and each pair of rules for first and second projections has become
a single rule for an arbitrary projection from a tuple. The only rule_that deserves special comment is E-TUPLE, which
combines and generalizes the rules E-PAIR1 and E-PAIR2 from Eigure 11-5. In English, it says that, if we have a
tuple in which all the fields to the left of field j have already been reduced to values, then that field can be evaluated

one step, from {j to t)j. Again, the use of metavariables enforces a left-to-right evaluation strategy.

] Frotuermady A i 1)
| =1
Mot STl fowms o=t I
t i=m fermnss T {E-Fedanl
o T e |
{1y feia) T |
L. wia ke T o
o e B! (E-TupLel
Tor ™t g
W on= Imlm--' Ly e, el
Loy e Jel e vlin®
S g rufios IFP-x:T
T == F———
" .:[T'""]' fa :r..': Reewch! Cr-tsT TUPLE]
L e [l-Tup
' : T 16§ =)
et Fulfri i rraket E o—= F [ty = {T;05)
- = [H |
[y =) .4 — vy (EPEOITUPLE) F-t3.5: T,
L '}

Figure 11-6: Tuples

< Free Open Study >

11.8 Records

The generalization from n-ary tuples to labeled records is equally straightforward. We simply annotate each field tj with
a labellj drawn from some predetermined set L. For example, {x=5} and {partno=5524,cost=30.27} are both record

values; their types are {x:Nat} and {partno:Nat,cost:Float}. We require that all the labels in a given record term or type be
distinct.

The rules for records are given in . The only one worth noting is E-PROJRCD, where we rely on a slightly

informal convention. The rule is meant to be understood as follows: If {Ii:vi”l”n} is a record and lj is the label of itsjth

field, then {Ii=vi”1"n}.|j evaluates in one step to thejth value, vj. This convention (and the similar one that we used in
E-PROJTUPLE) could be eliminated by rephrasing the rule in a more explicit form; however, the cost in terms of
readability would be fairly high.

Il Fxignis A - (]

Serwr spntacilc forms

Ly — T, (E-PRos))
T o= _ s ——f {E-1"Ri
.1 = .1
{T=k ==} roond ; :
t.l v TR + .t
" {E-H{Te]
p { Uy =0 f] -tllr.ll.-l:l.l g |
N LRI S B RPN TR IR e eI
Ly oy w i i
{ W=y ==} redoel vialee J
"ot g Frbes I | |
s o Tyt
i foreachi -t :T,;
{12 T; =P} vee of redoreds . T-Rem
Fie e == 1T =)
S il iow roafes !_I:__r_ Fe £y 2 {127 —
- I -I"RCk
{li=wy 210 — wy (E-PRogRC) Fetyalp 2T

i I
Figure 11-7: Records

11.8.1 Exercise [? ?]

Write E-PROJRCD more explicitly, for comparison.

Note that the same "feature symbol," {}, appears in the list of features on the upper-left corner of the definitions of both
tuples and products. Indeed, we can obtain tuples as a special case of records, simply by allowing the set of labels to

include both alphabetic identifiers and natural numbers. Then when the ith field of a record has the label i, we omit the
label. For example, we regard {Bool,Nat,Bool} as an abbreviation for {1:Bool,2:Nat,3:Bool}. (This convention actually
allows us to mix named and positional fields, writing {a:Bool,Nat,c:Bool} as an abbreviation for {a:Bool,2:Nat,c:Bool},
though this is probably not very useful in practice.) In fact, many languages keep tuples and records notationally
distinct for a more pragmatic reason: they are implemented differently by the compiler.

Programming languages differ in their treatment of the order of record fields. In many languages, the order of fields in
both record values and record types has no affect on meaning—i.e., the terms {partno=5524,cost=30.27} and
{cost=30.27,partno=5524} have the same meaning and the same type, which may be written either {partno:Nat,cost:Float}
or {cost:Float, partno:Nat}. Our presentation chooses the other alternative: {partno=5524,cost=30.27} and
{cost=30.27,partno=5524} are different record values, with types {partno:Nat,cost:Float} and {cost:Float, partno:Nat},
respectively. In, we will adopt a more liberal view of ordering, introducing a subtype relation in which the
types {partno:Nat,cost:Float} and {cost:Float,partno:Nat} are equivalent—each is a subtype of the other—so that terms of

one type can be used in any context where the other type is expected. (In the presence of subtyping, the choic
between ordered and unordered records has important effects on performance; these are discussed further in ;15 a

Once we have decided on unordered records, though, the choice of whether to consider records as unordered from
the beginning or to take the fields primitively as ordered and then give rules that allow the ordering to be ignored is
purely a question of taste. We adopt the latter approach here because it allows us to discuss both variants.)

11.8.2 Exercise [??7?]

In our presentation of records, the projection operation is used to extract the fields of a record one at a time. Many
high-level programming languages provide an alternative pattern matching syntax that extracts all the fields at the
same time, allowing some programs to be expressed much more concisely. Patterns can also typically be nested,
allowing parts to be extracted easily from complex nested data structures.

We can add a simple form of pattern matching to an untyped lambda calculus with records by adding a new syntacti
@gory of patterns, plus one new case (for the pattern matching construct itself) to the syntax of terms. (See

)

| Tet @ iumiveed Eaditrds 1 -7 amd P
T 1
[TH , ST
W AP TR o : Tor exch | matohilpy, i) = o Ty
: T LTI 5 - 3 L il
JE T virkible pICE | g 1w 5, (1w 021
1 1=y] Ul panrern =y
T oo T Soew va feation feled E— 1t
st E=tint oL R U e p=w, in t mchip, vl T (ELETY
Matching rarfes b=t i I
[[}4 L) 1Nt v | @ £; 10T
matchin, wl = |1 = v Y AR} c ol Bt

L]

Figure 11-8: (Untyped) Record Patterns

The computation rule for pattern matching generalizes the let-binding rule from . It relies on an auxiliary
"matching" function that, given a pattern p and a value v, either fails (indicating that v does not match p) or else yields a
substitution that maps variables appearing in p to the corresponding parts of v. For example, match({x,y}, {5,true})
yields the substitution [x ? 5, y ? true] and match(x, {5,true}) yields [x ? {5,true}], while match({x}, {5,true}) fails. E-LETV
uses match to calculate an appropriate substitution for the variables in p.

The match function itself is defined by a separate set of inference rules. The rule M-VAR says that a variable pattern
always succeeds, returning a substitution mapping the variable to the whole value being matched against. The rule

M-RCD says that, to match a record pattern {l i:pi”l"n} against a record value {Ii:villl"n} (of the same length, with the
same labels), we individually match each sub-pattern pi against the corresponding value vj to obtain a substitution aj,

and build the final result substitution by composing all these substitutions. (We require that no variable should appear
more than once in a pattern, so this composition of substitutions is just their union.)

Show how to add types to this system.
1. Give typing rules for the new constructs (making any changes to the syntax you feel are

necessary in the process).

2. Sketch a proof of type preservation and progress for the whole calculus. (You do not need to
show full proofs—just the statements of the required lemmas in the correct order.)

< Free Open Study >

< Free Open Study >

11.9 Sums

Many programs need to deal with heterogeneous collections of values. For example, a node in a binary tree can be
either a leaf or an interior node with two children; similarly, a list cell can be either nil or a cons cell carrying a head and

a tail,[g] a node of an abstract syntax tree in a compiler can represent a variable, an abstraction, an application, etc.
The type-theoretic mechanism that supports this kind of programming is variant types.

Before introducing variants in full generality (in), let us consider the simpler case of binary sum types. A sum
type describes a set of values drawn from exactly two given types. For example, suppose we are using the types

PhysicalAddr = {firstlast:String, addr:String};
VirtualAddr = {name:String, email:String};

to represent different sorts of address-book records. If we want to manipulate both sorts of records uniformly (e.g., if
we want to make a list containing records of both kinds), we can introduce the sum typem

Addr = PhysicalAddr + VirtualAddr;
each of whose elements is either a PhysicalAddr or a VirtualAddr.

We create elements of this type by tagging elements of the component types PhysicalAddr and VirtualAddr. For
example, if pa is a PhysicalAddr, then inl pa is an Addr. (The names of the tags inl and inr arise from thinking of them as
functions

inl : PhysicalAddr — PhysicalAddr+VirtualAddr
inr : VirtualAddr — PhysicalAddr+VirtualAddr

that "inject" elements of PhysicalAddr or VirtualAddr into the left and right components of the sum type Addr. Note,
though, that they are not treated as functions in our presentation.)

In general, the elements of a type T1+T2 consist of the elements of T1, tagged with the token inl, plus the elements of
T2, tagged with inr.

To use elements of sum types, we introduce a case construct that allows us to distinguish whether a given value comes
from the left or right branch of a sum. For example, we can extract a name from an Addr like this:
getName = Ja:Addr.
case a of
inl x [xfirstlast

|inry O y.name;

When the parameter a is a PhysicalAddr tagged with inl, the case expression will take the first branch, binding the
variable x to the PhysicalAddr; the body of the first branch then extracts the firstlast field from x and returns it. Similarly, if
ais a VirtualAddr value tagged with inr, the second branch will be chosen and the name field of the VirtualAddr returned.
Thus, the type of the whole getName function is Addr — String.

The foregoing intuitions are formalized in . To the syntax of terms, we add the left and right injections and
the case construct; to types, we add the sum constructor. For evaluation, we add two "beta-reduction" rules for the
case construct-one for the case where its first subterm has been reduced to a value vo tagged with inl, the other for a
value vo tagged with inr; in each case, we select the appropriate body and substitute vg for the bound variable. The
other evaluation rules perform evaluation in the first subterm of case and under the inl and inr tags.

Fvremds A, @1
[]
MWW YU TR T

Ls — Ta

e il) il case o of 1nl xy=1; | farx; =1
:“]1 GHITRGE rhey L — case tyof inl x;=t; | inFx=t;
T s Tihaaitiay il L -
cate £ of inl st | Ar st dn
Ty —= ti _
v o vaalines: T E— e i
inl % tapgead vl (hefis
inrw tagpgeaf valoe (rphip T1 — T . (B
e — fne e
| [[T
T+l Eiw Ve e feping rules Fre=t: 7|
S ol 0 (T Telset)
N vl E T ke t—t’ [=1n1 1) 2 Tj+Ty)
case {inl va ¥ ity 2 Ts

of inl xy=t; | inF X2t E-LadadnL) i e Nt 115K
« [y — wylty
[k s Tyl
FexysTy =€ 2T FascTei-23a2T
[~ case toof inl xy=t; | inrxe=t: 5T

case {ine v}
of anl x;=t; | inF =t 1B s nm]
— [z = wy]t3z

{1 ASED

L J

Figure 11-9: Sums

The typing rules for tagging are straightforward: to show that inl t1 has a sum type T1+T2, it suffices to show that t1
belongs to the left summand, T1, and similarly for inr. For the case construct, we first check that the first subterm has a
sum type T1+T2, then check that the bodies t1 and t2 of the two branches have the same result type T, assuming that
their bound variables x1 and x2 have types T1 and T2, respectively; the result of the whole case is then T. Following our
conventions from previous definitions, does not state explicitly that the scopes of the variables x1 and x2
are the bodies t1 and t2 of the branches, but this fact can be read off from the way the contexts are extended in the
typing rule T-CASE.

11.9.1 Exercise [?7?]

Note the similarity between the typing rule for case and the rule for if in : if can be regarded as a sort of
degenerate form of case where no information is passed to the branches. Formalize this intuition by defining true, false,
and if as derived forms using sums and Unit.

Sums and Uniqueness of Types

Most of the properties of the typing relation of pure A _, (cf.) extend to the system with sums, but one important

one fails: the Uniqueness of Types theorem (0.3.3). The difficulty arises from the tagging constructs inl and inr. The
typing rule T-INL, for example, says that, once we have shown that t1 is an element of T1, we can derive thatinl t1 is an
element of T1+T2for any type T2. For example, we can derive both inl 5 : Nat+Nat and inl 5 : Nat+Bool (and infinitely many
other types). The failure of uniqueness of types means that we cannot build a typechecking algorithm simply by
"reading the rules from bottom to top," as we have done for all the features we have seen so far. At this point, we have
various options:

1. We can complicate the typechecking algorithm so that it somehow "guesses" a value for T2.
Concretely, we hold T2 indeterminate at this point and try to discover later what its value should
rfff Eff? Such techniques will be explored in detail when we consider type reconstruction

(Chapter 27).

2. We can refine the language of types to allow all possible values for T2 to somehow be
represented uniformly. This option will be explored when we discuss subtyping ().

We can demand that the programmer provide an explicit annotation to indicate which type T2 is
intended. This alternative is the simplest-and it is not actually as impractical as it might at first
appear, since, in full-scale language designs, these explicit annotations can often be
"piggybacked" on other language constructs and so made essentially invisible (we'll come back to

this point in the following section). We take this option for now.

shows the needed extensions, relative to . Instead of writing just inl t orinr t, we write inltas T

orinrtas T, where T specifies the whole sum type to which we want the injected element to belong. The typing rules
T-INL and T-INR use the declared sum type as the type of the injection, after checking that the injected term really
belongs to the appropriate branch of the sum. (To avoid writing T1+T2 repeatedly in the rules, the syntax rules allow
any type T to appear as an annotation on an injection. The typing rules ensure that the annotation will always be a
sum type, if the injection is well typed.) The syntax for type annotations is meant to suggest the ascription construct
from B11.4: in effect these annotations can be viewed as syntactically required ascriptions.

Fxrerufe & fF F-0p
S Syl o case {inrvs a8 Tn ¥
T o= . e ofF iml xp=t) | inr Xt {E-C =g lwind
inlt as T ! rcautenr ihefi - %z = gt
inr t a5 T toagapirg (gl .
- = = [E=l2)
e vl inlg; as Ty —inl ¢, as Tz
wiil v &5 10 Fatpadatal vealind (il ity o
ine v as T tanpaedd valse irqghie inrt, asTy — inrt, a5 Ty (ENR
T T TR T T R R P el P (Fping FERET ! Erl :
case (1Al vo @S Ty e Bt (T-iLd
of inl xy=t; | inr 2=t E-CasednL] = 101 by ASTi#Tz & TisTs
&y = v It -y 1 T2 .
{1-I%R)

M fnre; a8 TyaTe 2 TieTs
L J

Figure 11-10: Sums (With Unique Typing)

@These examples, like most real-world uses of variant types, also involve recursive types-the tail of a list is itself a list,
etc. We will return to recursive types in

mThe fullsimple implementation does not actually support the constructs for binary sums that we are describing
here-just the more general case of variants described below.

< Free Open Study >

< Free Open Study >

MEXT F

11.10 Variants

Binary sums generalize to labeled variants just as products generalize to labeled records. Instead of T1+T2, we write

<I1:T1, 12:T2>, where |1 and 12 are field labels. Instead of inl t as T1+T2, we write <l1=t> as <I1:T1, 12:T2>. And instead of

labeling the branches of the case with inl and inr, we use the same labels as the corresponding sum type. With these
generalizations, the getAddr example from the becomes:

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;
a = <physical=pa> as Addr;
?a:Addr

getName = Ja:Addr.
case a of

<physical=x> [] x.firstlast

| <virtual=y> [] y.name;

? getName : Addr — String

The formal definition of variants is given in . Note that, as with records in , the order of labels in a

variant type is significant here.

r A Froleracds & . §9-T)
b LT L T T e T to — . o .
[i a . ZE]
i T ! ;""' £aLe ty OF <= aty " -
«l=t> a5 L :]
5 + CSE g OF €l pmim sty 000
case tof al=mmg - i t i i
by — 1)
- e . (LA AR AT
[e li=t A8 T — <l;=t,> 28 T S
Wi Ty ity Ve o vaFkd R
S Fyirg rufio !I =t T
New arvetfariion rrakes £t —1 g
= S Mo i SR
Ca%e (<lpmivr 03 T) OF <l jmgmmt; =" I <lj=tp> a8 <12T =% 1 <l T ==
= [xj = wjlt; TV ARIANT]
CASEY
L HEVARLANT) Tl kg & 11T =tay
loreachi [Tt :T
(T-CARE]

i case to oF <1 =Kt = : T

Figure 11-11: Variants

Options

One very useful idiom involving variants is optional values. For example, an element of the type

OptionalNat = <none:Unit, some:Nat>;

is either the trivial unit value with the tag none or else a number with the tag some—in other words, the type OptionalNat
is isomorphic to Nat extended with an additional distinguished value none. For example, the type

Table = Nat — OptionalNat;

represents finite mappings from numbers to numbers: the domain of such a mapping is the set of inputs for which the

result is <some=n> for some n. The empty table

emptyTable = :Nat. <none=unit> as OptionalNat;

? emptyTable : Table

is a constant function that returns none for every input. The constructor

extendTable =
X:Table. m:Nat. M:Nat.
n:Nat.
if equal n m then <some=v> as OptionalNat
elsetn;

? extendTable : Table » Nat — Nat — Table

takes a table and adds (0
defined in the solution to|

overwrites) an entry mapping the input m to the output <some=v>. (The equal function is

xercise 11.11.1 on page 510.)

We can use the result that we get back from a Table lookup by wrapping a case around it. For example, iftis our table
and we want to look up its entry for 5, we might write

x = case t(5) of
<none=u> [] 999

| <some=v>[] v;
providing 999 as the default value of x in case t is undefined on 5.

Many languages provide built-in support for options. OCaml, for example, predefines a type constructor option, and
many functions in typical OCaml programs yield options. Also, the null value in languages like C, C++, and Java is
actually an option in disguise. A variable of type T in these languages (where T is a "reference type'—i.e., something
allocated in the heap) can actually contain either the special value null or else g pointer to a T value. That is, the type
of such a variable is really Ref(Option(T)), where Option(T) = <none:Unit,some: T>. discusses the Ref
constructor in detail.

Enumerations

Two "degenerate cases" of variant types are useful enough to deserve special mention: enumerated types and
single-field variants.

An enumerated type (or enumeration) is a variant type in which the field type associated with each label is Unit. For
example, a type representing the days of the working week might be defined as:

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,
thursday:Unit, friday:Unit>;

The elements of this type are terms like <monday=unit> as Weekday. Indeed, since the type Unit has only unit as a
member, the type Weekday is inhabited by precisely five values, corresponding one-for-one with the days of the week.
The case construct can be used to define computations on enumerations.
nextBusinessDay = Ww:Weekday.
case w of <monday=x> [] <tuesday=unit> as Weekday
| <thursday=x> [0 <wednesday=unit> as Weekday
| <wednesday=x> [] <thursday=unit> as Weekday
| <tuesday=x> [I <friday=unit> as Weekday

| <friday=x> [<monday=unit> as Weekday;

Obviously, the concrete syntax we are using here is not well tuned for making such programs easy to write or read.
some languages (beginning with Pascal) provide special syntax for declaring and using enumerations. Others—such
as ML, cf. page 141—make enumerations a special case of the variants.

Single-Field Variants

The other interesting special case is variant types with just a single label I:

V =<IT>;

Such a type might not seem very useful at first glance: after all, the elements of V will be in one-to-one correspondence
with the elements of the field type T, since every member of V has precisely the form <I=t> for some t: T. What's
important, though, is that the usual operations on T cannot be applied to elements of v without first unpackaging them:
a V cannot be accidentally mistaken for a T.

For example, suppose we are writing a program to do financial calculations in multiple currencies. Such a program
might include functions for converting between dollars and euros. If both are represented as Floats, then these
functions might look like this:

dollars2euros = X:Float. timesfloat d 1.1325;

? dollars2euros : Float — Float

euros2dollars = e:Float. timesfloat e 0.883;

? euros2dollars : Float — Float

(where timesfloat : Float — Float — Float multiplies floating-point numbers). If we then start with a dollar amount

mybankbalance = 39.50;

we can convert it to euros and then back to dollars like this:

euros2dollars (dollars2euros mybankbalance);

?39.49990125 : Float

All this makes perfect sense. But we can just as easily perform manipulations that make no sense at all. For example,
we can convert my bank balance to euros twice:

dollars2euros (dollars2euros mybankbalance);

? 50.660971875 : Float

Since all our amounts are represented simply as floats, there is no way that the type system can help prevent this sort
of nonsense. However, if we define dollars and euros as different variant types (whose underlying representations are
floats)

DollarAmount = <dollars:Float>;
EuroAmount = <euros:Float>;

then we can define safe versions of the conversion functions that will only accept amounts in the correct currency:
dollars2euros =
X:DollarAmount.

case d of <dollars=x> [J
<euros = timesfloat x 1.1325> as EuroAmount;

? dollars2euros : DollarAmount — EuroAmount
euros2dollars =
Je:EuroAmount.

case e of <euros=x> [
<dollars = timesfloat x 0.883> as DollarAmount;

? euros2dollars : EuroAmount — DollarAmount

Now the typechecker can track the currencies used in our calculations and remind us how to interpret the final results:

mybankbalance = <dollars=39.50> as DollarAmount;
euros2dollars (dollars2euros mybankbalance);

? <dollars=39.49990125> as DollarAmount : DollarAmount

Moreover, if we write a nonsensical double-conversion, the types will fail to match and our program will (correctly) be
rejected:

dollars2euros (dollars2euros mybankbalance);

? Error: parameter type mismatch

Variants vs. Datatypes

A variant type T of the form <Ii:Tii”"n> is roughly analogous to the ML datatype defined by:@

type T=110f T1
|12 0f T2

| Inof Tn

But there are several differences worth noticing.

1. One trivial but potentially confusing point is that the capitalization conventions for identifiers that
we are assuming here are different from those of OCaml. In OCaml, types must begin with
lowercase letters and datatype constructors (labels, in our terminology) with capital letters, so,
strictly speaking, the datatype declaration above should be written like this:

typet=Lgoft1]...| Lnoftn

To avoid confusion between terms t and types T, we'll ignore OCaml's conventions for the rest of
this discussion and use ours instead.

2. The most interesting difference is that OCaml does not require a type annotation when a
constructor lj is used to inject an element of Tj into the datatype T: we simply write li(t). The way
OCaml gets away with this (and retains unique typing) is that the datatype T must be declared
before it can be used. Moreover, the labels in T cannot be used by any other datatype declared in
the same scope. So, when the typechecker sees li(t), it knows that the annotation can only be T.
In effect, the annotation is "hidden" in the label itself.

This trick eliminates a lot of silly annotations, but it does lead to a certain amount of grumbling
among users, since it means that labels cannot be shared between different datatypes—at least,
not within the same module. In Chapter 15 we will see another way of omitting annotations that
avoids this drawback.

3. Another convenient trick used by OCaml is that, when the type associated with a label in a
datatype definition is just Unit, it can be omitted altogether. This permits enumerations to be
defined by writing

type Weekday = monday | tuesday | wednesday | thursday | friday

for example, rather than:
type Weekday = monday of Unit
| tuesday of Unit
| wednesday of Unit
| thursday of Unit
| friday of Unit

Similarly, the label monday all by itself (rather than monday applied to the trivial value unit) is
considered to be a value of type Weekday.

4. Finally, OCaml datatypes actually bundle variant types together with several additional features
that we will be examining, individually, in later chapters.

B A datatype definition may be recursive—i.e., the type being defined is allowed to
appear in the body of the definition. For example, in the standard definition of
lists of Nats, the value tagged with cons is a pair whose second element is a
NatList.

type NatList = nil

cons of Nat * NatList

B An OCaml datatype can be [parametric data type]parameterizedparametric!data
type on a type variable, as in the general definition of the List datatype:

type 'a List = nil
| cons of 'a * 'a List

Type-theoretically, List can be viewed as a kind of function—called a type

operator—that maps each choice of cte datatype... Nat to NatList,
etc. Type operators are the subject of Chapter 29.

Variants as Disjoint Unions

Sum and variant types are sometimes called disjoint unions. The type T1+T2 is a "union" of T1 and T2 in the sense that
its elements include all the elements from T1 and T2. This union is disjoint because the sets of elements of T1 or T2 are
tagged with inl or inr, respectively, before they are combined, so that it is always clear whether a given element of the
union comes from T1 or T2. The phrase union type is also used to refer to untagged (non-disjoint) union types,
described in B15.

Type Dynamic

Even in statically typed languages, there is often the need to deal with data whose type cannot be determined at
compile time. This occurs in particular when the lifetime of the data spans multiple machines or many runs of the
compiler—when, for example, the data is stored in an external file system or database, or communicated across a
network. To handle such situations safely, many languages offer facilities for inspecting the types of values at run time.

One attractive way of accomplishing this is to add a type Dynamic whose values are pairs of a value v and a type tag T
where v has type T. Instances of Dynam|c are built with an epr|C|t tagglng construct and inspected with a type safe

[Gordon (circa 1982]) Ijvcroft (1983), Abadi. Cardelli. Pierce, and Plotkin (1991b}, [erov and Mauny (199ll ﬁbadl |

Cardelli, Pierce, and Rémy (1995}, and Henglein (1994).

@]This section uses OCaml's concrete syntax for datatypes, for consistency with implementation chapters elsewhere in
the book, but they originated in early dialects of ML and can be found, in essentially the same form, in Standard ML as
well as in ML relatives such as Haskell. Datatypes and pattern matching are arguably one of the most useful
advantages of these languages for day to day programming.

< Free Open Study >

< Free Open Study >

11.11 General Recursion

Aﬁcility found in most programming languages is the ability to define recursive functions. We have seen
(Ehapter §, p. 65) that, in the untyped lambda-calculus, such functions can be defined with the aid of the fix
combinator.

Recursive functions can be defined in a typed setting in a similar way. For example, here is a function iseven that
returns true when called with an even argument and false otherwise:
ff = Xe:Nat — Bool.
X:Nat.
if iszero x then true
else if iszero (pred x) then false
else ie (pred (pred x));

? ff: (Nat—Bool) - Nat — Bool
iseven = fix ff;
? iseven : Nat — Bool

iseven 7;

? false : Bool

The intuition is that the higher-order function ff passed to fix is a generator for the iseven function: if ff is applied to a
function ie that approximates the desired behavior of iseven up to some number n (that is, a function that returns
correct results on inputs less than or equal to n), then it returns a better approximation to iseven—a function that
returns correct results for inputs up to n + 2. Applying fix to this generator returns its fixed point—a function that gives
the desired behavior for all inputs n.

However, there is one important difference from the untyped setting: fix itself cannot be defined in the simply typed
lambda-calculus. Indeed, we will see in Chapter 17 that no expression that can lead to non-terminating computations

can be typed using only simple types.E So, instead of defining fix as a term in the language, we simply add it as a new
primitive, with evaluation rules mimicking the behavior of the untyped fix combinator and a typing rule that captures its
intended uses. These rules are written out in figure 11-17. (The letrec abbreviation will be discussed below.)

Fix Erolimely X d-T)
1 1
Mo SETAlR TR e s e g s Fre-e:T
terems : :
Fixt fined prosint of ¢ M+ t: Tty T-F1x)
F-FMue 2T,
L LT | T LT W P E—T Sewe dirived formi
Fix (Am:Ty. 1) letrec « 2T, =t 1n £

iE-FIxHrTA)

- [e (FAn QA Ty g2 0L M erx s Fix (AT) A

T — I
fixty — Fix b,

Figure 11-12: General Recursion

The simply typed lambda-calculus with numbers and fix has long been a favorite experimental subject for programming

language refﬁﬁ&ﬁnﬁmmm?famwmmwmnmomena such as full
abstraction (Plotkin, 1977, Hyland and Ong, 2000, Abramsky, Jagadeesan, and Malacaria, 200() arise. It is often

called PCF.

11.11.1 Exercise [?7?]

Define equal, plus, times, and factorial using fix.

The fix construct is typically used to build functions (as fixed points of functions from functions to functions), but it is
worth noticing that the type T in rule T-FIX is not restricted to function types. This extra power is some-times handy.
For example, it allows us to define a record of mutually recursive functions as the fixed point of a function on records
(of functions). The following implementation of iseven uses an auxiliary function isodd; the two functions are defined as
fields of a record, where the definition of this record is abstracted on a record ieio whose components are used to
make recursive calls from the bodies of the iseven and isodd fields.

ff = Aeio:{iseven:Nat — Bool, isodd:Nat — Bool}.
{iseven = x:Nat.
if iszero x then true
else ieio.isodd (pred x),
isodd = Xx:Nat.
if iszero x then false
else ieio.iseven (pred x)};

? ff : {iseven:Nat — Bool,isodd:Nat — Bool} —

{iseven:Nat — Bool, isodd:Nat — Bool}

Forming the fixed point of the function ff gives us a record of two functions

r = fix ff;

? r: {iseven:Nat - Bool, isodd:Nat — Bool}

and projecting the first of these gives us the iseven function itself:

iseven = r.iseven;

? iseven : Nat — Bool

iseven 7;

? false : Bool

The ability to form the fixed point of a function of type T — T for any T has some surprising consequences. In particular,
it implies that every type is inhabited by some term. To see this, observe that, for every type T, we can define a
function divergeT as follows:

divergeT = A_:Unit. fix (x:T.x);

? divergeT : Unit - T

Whenever divergeT is applied to a unit argument, we get a non-terminating evaluation sequence in which E-FIXBETA
is applied over and over, always yielding the same term. That is, for every type T, the term divergeT unit is an undefined
element of T.

One final refinement that we may consider is introducing more convenient concrete syntax for the common case
where what we want to do is to bind a variable to the result of a recursive definition. In most high-level languages, the
first definition of iseven above would be written something like this:

letrec iseven : Nat— Bool =
X:Nat.
if iszero x then true
else if iszero (pred x) then false
else iseven (pred (pred x))
in

iseven 7;

? false : Bool

The recursive binding construct letrec is easily defined as a derived form:

bl

letrec x:Ti=t; in ta Tet x=Ffix (Ax:Ti.t1) in t2

11.11.2 Exercise [?]

Rewrite your definitions of plus, times, and factorial from Exercise 11.11.7 using letrec instead of fix.
Further information on fixed point operators can be found in Iglog (1980i and l/_VinskeI 51993i.

@In later chapters—l:hapter 14 and khapter Zd—we will see some extensions of simple types that recover the power
to define fix within the system.

< Free Open Study >

< Free Open Study >

11.12 Lists

The typing features we have seen can be classified into base types like Bool and Unit, and type constructors like — and
x that build new types from old ones. Another useful type constructor is List. For every type T, the type List T describes
finite-length lists whose elements are drawn from T.

summarizes the syntax, semantics, and typing rules for lists. Except for syntactic differences (List T

instead of T list, etc.) and the explicit type annotations on all the syntactic forms in our presentation,@] these lists are
essentially identical to those found in ML and other functional languages. The empty list (with elements of type T) is
written nil[T]. The list formed by adding a new element t1 (of type T) to the front of a list t2 is written cons[T] t1 t2. The

head and tail of a list t are written head[T] t and tail[T] t. The boolean predicate isnil[T] t yields true iff t is empty.@

B List Eclemas - (510 will Poadlons 18-
L) 1
Newr spntdclic forms 7
L == fernns TenilIT L :': T |E-1SM1L)
o= . i P 13
nil[T]) ey sl =111 & L LR
EEI'I$[1 Itt Hsr cows i head[5] fcons[T] v w2 —
1snil[T] £ tied fior ernply sl EHEADC D85
head[T] © haead aof a st et
taf 1Tl t tardl o ar disi Ei—T E-HEAIR
head[T] t;, — head[T] t) 3
[T vl s
ni1[T] A] tad 1 (5] Ceons[T] va wvad — vz
cons[T] vw Is¢ oSt for {ET AL D)
I = hpes: L i’ (ETAN)
LASET tyme of Msts caillT] vy — cailiT] ¢,
Fevw Dy refes Fr=t:T
Sverer evarluetion rufes t—t 5 .
Femil [Ty] @ List T, {T-Miid
L e |,'| [S5 USRS
cons[T) Uy € — cons(T) ¢ & Cet il PetrsUsth .00
[i- coms[Ty] Ty t2 2 List Ty
Ly = t;
cons[T] vy £x — cons[T] vy &5 Vel O} Ity 2 Lisgt Ty (5K
I §=nf1[Ti;] £ & Beol
PsAiN[5] {Ail[T]) — true (LBl
Ity 3 LIEE Thy v aimary
1sni1[5] (cons[T] v vz) = false I+ head{Tuln & Ti i
(B Bainoassi
=ty 3 List T
El-DAlL)

Fi- 2281 [Tie] £ & LISE Ty

Figure 11-13: Lists
11.12.1 Exercise [?7?7]

Verify that the progress and preservation theorems hold for the simply typed lambda-calculus with booleans and lists.

11.12.2 Exercise [?7?]

The presentation of lists here includes many type annotations that are not really needed, in the sense that the typing
rules can easily derive the annotations from context. Can all the type annotations be deleted?

wMost of these explicit annotations could actually be omitted (Exercise [?, ?]: which cannot); they are retained here

to ease comparison with the encoding of lists in .

@We adopt the "head/ailfisnil presentation” of lists here for simplicity. from the perspective of language design, it is
arguably better to treat lists as a datatype and use case expressions for destructing them, since more programming
errors can be caught as type errors this way.

< Free Open Study >

< Free Open Study >

Chapter 12: Normalization

Overview

In this chapter, we consider another fundamental theoretical property of the pure simply typed lambda-calculus: the
fact that the evaluation of a well-typed program is guaranteed to halt in a finite number of steps—i.e., every well-typed
term is normalizable.

Unlike the type-safety properties we have considered so far, the normalization property does not extend to full-blown
programming languages, because these languages nearly always extend the simply typed lambda-calculus with
constructs such as general recursion) or recursive types (Chapter 20) that can be used to write nonterminating
programs. However, the issue of normalization will reappear at the level of types when we discuss the metatheory of
System Fin §30-3: in this system, the language of types effectively contains a copy of the simply typed

lambda-calculus, and the termination of the typechecking algorithm will hinge on the fact that a "normalization"
operation on type expressions is guaranteed to terminate.

Another reason for studying normalization proofs is that they are some of the most beautiful—and
mind-blowing—mathematics to be found in the type theory literature, often (as here) involving the fundamental proof
technique of logical relations.

Some readers may prefer to skip this chapter on a first reading; doing so will not cause any problems in later chapters.
(A full table of chapter dependencies appears on page xvi.)

|< Free Open Study >

< Free Open Study >

12.1 Normalization for Simple Types

The calculus we shall consider here is the simply typed lambda-calculus over a single base type A. Normalization for

this calculus is not entirely trivial to prove, since each reduction of a term can duplicate redexes in subterms. i

12.1.1 Exercise [?]

Where do we fail if we attempt to prove normalization by a straightforward induction on the size of a well-typed term?

The key issue here (as in many proofs by induction) is finding a strong enough induction hypothesis. To this end, we
begin by defining, for each type T, a set RT of closed terms of type T. We regard these sets as predicates and write

RT(0) for t1RT.2

12.1.2 Definition
B RA(1) iff t halts.

B Ry 10T iff¢ halts and, whenever FTi'%! e have 1. 1T 5}

This definition gives us the strengthened induction hypothesis that we need. Our primary goal is to show that all
programs-i.e., all closed terms of base type-halt. But closed terms of base type can contain subterms of functional
type, so we need to know something about these as well. Moreover, it is not enough to know that these subterms halt,
because the application of a normalized function to a normalized argument involves a substitution, which may enable
more evaluation steps. So we need a stronger condition for terms of functional type: not only should they halt
themselves, but, when applied to halting arguments, they should yield halting results.

The form of Definition 12.1.2 is characteristic of the logical relations proof technique. (Since we are just dealing with

unary relations here, we should more properly say logical predicates.) If we want to prove some property P of all
closed terms of type A, we proceed by proving, by induction on types, that all terms of type A possess property P, all
terms of type A— A preserve property P, all terms of type (A - A) - (A - A) preserve the property of preserving property
P, and so on. We do this by defining a family of predicates, indexed by types. For the base type A, the predicate is just
P. For functional types, it says that the function should map values satisfying the predicate at the input type to values
satisfying the predicate at the output type.

We use this definition to carry out the proof of normalization in two steps. First, we observe that every element of every
set RT is normalizable. Then we show that every well-typed term of type T is an element of RT.

The first step is immediate from the definition of RT:

12.1.3 Lemma

If RT(t), then t halts.

The second step is broken into two lemmas. First, we remark that membership in RT is invariant under evaluation.

12.1.4 Lemma
Ift: Tandt - t, then RT(t) iff RT(t).

Proof: By induction on the structure of the type T. Note, first, that it is clear that t halts iff t' does. If T = A, there is
nothing more to show. Suppose, on the other hand, that T=T1 — T2 for some T1 and T2. For the "only if" direction (?)

Ry, (5]

suppose that RT(t) and that for some arbitrary s : T1. By definition we have Rr.lt 5) Butts — t's, from which

the induction hypothesis for type T2 gives us R0t 5] since this holds for an arbitrary s, the definition of RT gives us
RT(t"). The argument for the "if* direction (?) is analogous.

Next, we want to show that every term of type T belongs to RT. Here, the induction will be on typing derivations (it
would be surprising to see a proof about well-typed terms that did not somewhere involve induction on typing
derivations!). The only technical dfficulty here is in dealing with the A-abstraction case. Since we are arguing by

induction, the demonstration that a term x:T 1.tobelongs to Rr,

R

“T: should involve applying the induction hypothesis to

show that t2 belongs to "7+, But R1. is defined to be a set of closed terms, while t2 may contain x free, so this does not

make sense.

This problem is resolved by using a standard trick to suitably generalize the induction hypothesis: instead of proving a
statement involving a closed term, we generalize it to cover all closed instances of an open term t.

12.1.5Lemma

. i .
Ifx1;T1, ..., xn: Tn?t: Tandvi ..., vn are closed values of types T1...Tn with Rr,twvi) for each i, then RT([x1 ? v1] --- [xn
? Vn]t).

Proof: By induction on a derivation ofx1: T1, ..., xn: Tn ? t: T. (The most interesting case is the one for abstraction.)

Case T-VAR: t=xj T=Ti
Immediate.
Case T-ABS: t=xS1.s2 X1:TL, o Xn: T, x:S1 2521 S2
T=S1- S2

Obviously, [x1 ? v1] -+ [xn ? vn]t evaluates to a value, since it is a value already. What remains to show is that

R, (([x1 = va)=» - [xn = valth Shgo, any's : S1 such that **1'5! 5o suppose s is such a term. By ,
we have s —* v for somev. By , H5,1%) Now, by the induction hypothesis,

Re, (%) = il - [%a = vnllx — v]sz) gy

(xS1.Kx1?v1] - kn?vnls2) s

. [x1?v1] -+ kn ? vn][x ? v]s2,
from which gives us

HS_-{(:"-K:EI- [%; — wvil«: [Xn — ¥n]S2) S),

that is, Fs: (1CLL = Wy Do e D o i JLAR S 5200 81 gince s was chosen arbitrarily, the definition of Rs, -5,
gives us

Re s ([x1 — vi] -« [%n — val(Ax:5). 52)).

Case T-APP: t=t1t2
X1:T1, 0 Xn:Tn?t1:T11 > T12

X1:T1, e Xn: Tn?212: T11

T=T12

The induction hypothesis gives us Bryamiz (1% = Wi]- -« (% = Valti) g Bry (0% — val - - - [%n — vl t2)

By the definition of #7171,

Rr (0% = wvil---[%p = vnlty) ([x3 = vi]---[%n = vn]ta)),

ie. Ry, ([= v1] = [%n = vallx t_ﬂ],_

We now obtain the normalization property as a corollary, simply by taking the term t to be closed in and
then recalling that all the elements of RT are normalizing, for every T.

12.1.6 Theorem [Normalization]

If 2t: T, then tis normalizable.

Proof: RT(t) by ; tis therefore normalizable by .

12.1.7 Exercise [Recommended, ??7]

Extend the proof techniq s chapter to show that the simply typed lambda-calculus remains normalizing when
extended with booleans (Eigure 3-1) and products (Eigure 11-5).

k) he language studied in this chapter is the simply typed lambda-calculus (with a single base type A
(L1

E]The sets RT are sometimes called saturated sets or reducibility candidates.

< Free Open Study >

< Free Open Study >

12.2 Notes

Normalization properties are most commonly formulated in the theoretical literature as s alization for calculi
ait (1967), generalized to

with full (non- inistic) beta- ion.] tandard proof method was invented by

System F (cf. Ehagter 23) by Girard :1973, @ and later simplified by . The presentation used here is an
adaptation of Tait's method to the call-by-value setting, due to Martin Hofmann (private communicatjo sical
eferences i elations echnique are , , ‘, Elotkin ;1973.,
98d), and Statman (1982, 119854, [L985H). It is also discussed in many texts on semantics, for example those by

Mitchell (1996) and bunter (19921.

Tait's strong normalization proof corresponds exactly to an algQri ',Iﬁllug;imﬂjtyped terms,_known a
ormalization by evaluatjon ortvoe-dir=t§d_umi_aj_wixl ation (Berger, 1993; Panvy, 199§); also see
Schwichtenberg (1991{, Filinski (1999), Eilinski (2001), Reynolds (1998a].

|< Free Open Study >

< Free Open Study >

Chapter 13: References

Overview

So far, we have considered a variety of pure language features, including functional abstraction, basic types such as
numbers and booleans, and structured types such as records and variants. These features form the backbone of most
programming languages—including purely functional languages such as Haskell, "mostly functional" languages such
as ML, imperative languages such as C, and object-oriented languages such as Java.

Most practical programming languages also include various impure features that cannot be described in the simple
semantic framework we have used so far. In particular, besides just yielding results, evaluation of terms in these
languages may assign to mutable variables (reference cells, arrays, mutable record fields, etc.), perform input and
output to files, displays, or network connections, make non-local transfers of control via exceptions, jumps, or
continuations, engage in inter-process synchronization and communication, and so on. In the literature on
programming languages, such "side effects" of computation are more generally referred to as computational effects.

In this chapter, we'll see how one sort of computational effect—mutable references—can be added to the calculi we
have studied. The main extension will be dealing explicitly with a store (or heap). This extension is straightfory

define; the most interesting part is the refinement we need to make to the statement of the type preservation | heoreml
{13.5.3 . We consider another kind of effect—exceptions and non-local transfer of control—in Ehaéter 14.

< Free Open Study >

< Free Open Study >

13.1 Introduction

[

Nearly every programming language= provides some form of assignment operation that changes the contents of a

previously allocated piece of storage. (2 In some languages-notably ML and its relatives-the mechanisms for
name-binding and those for assignment are kept separate. We can have a variable x whose value is the number5, or a
variable y whose value is areference (or pointer) to a mutable cell whose current contents is 5, and the difference is
visible to the programmer. We can add x to another number, but not assign to it. We can use y directly to assign a new
value to the cell that it points to (by writing y:=84), but we cannot use it directly as an argument to plus. Instead, we
must explicitly dereference it, writing !y to obtain its current contents. In most other languages-in particular, in all
members of the C family, including Java-every variable name refers to a mutable cell, and the operation of

dereferencing a variable to obtain its current contents is implicit.@

» Unit Ref Extenos X~ vtk Prd & f00 ared TH-2)
L} 1
HPTHE Frafuation JFTESS

t Us TP .
X VirLhLe : t | t: “:"_ : (E-ArF]
AT ik T Tz == T T3
te dAficertiom I — o
wnit wonsdant und o _v' T (E-APiz]
rieef FifEnence coeation | ! B 248
It dereferenwe | Ttz velp — [w e~ weltizl p
T] AiAA R [E-AFrABS]
I AAFS LTk
[& ohiuraipe)
= [E-REFY]
ref vy g — T {pad = wyd
¥ vaahres:
Aucl .t ahstraciian valie = t; |
ERE R 't T IE-RiF]
it wendont waft reft) I —reft, o
I sl hovarkair
i =w
T i nypes: - F.I-" — (E-Denreslon]
T-=T frrar o fiencifons
it wrnl bvpwr tlpg—tly .
Bef T Ivpe af roferenve oolfe Tt |p— Ity | {E-DERES
I 5= vl fimwy I — @i | [— Wl (E Aseiian]
x WP R
T TeF T Vi T lp—t g
[H e VT g 11F : H : (E-Assicn]
Riamtz |0 — &=tz |0
] = Ll
. . = . ta — 5 | '
] T 2l H 2 | M - [—
wil=w frocartive Irciivar wyZety | g ==y Iets | p
E U= AR TV
& I STOFE NN
T facie Iow yaoresr

v

Iiplmg ME-t:T TN=T

[oy 1L
aiTel FXe]:RefT
- - 1% A}
NEE-x:7T FIErty i T, (TR
FaTilE - Ty ' [Ee=reft; : BefFT; '
- Hs)
T = ATtz - Ty=T; :
[E=r ! Raf Ty o p—
v - g riE - g "
MEE -y & T —=Tas | E i vy 2Ty FXeig:T
FE -t & 3T
T AP TIE-1 : Ref Ty TIEk %33 Ty
rE . umit : Unit iTim FIZe T =tz S UME
{I-AssnGad)
I ']
Figure 13-1: References
4

For purposes of formal study, it is useful to keep these mechanisms separate; = our development in this chapter will
closely follow ML's model. Applying the lessons learned here to C-like languages is a straightforward matter of
collapsing some distinctions and rendering certain operations such as dereferencing implicit instead of explicit.

Basics

The basic operations on references are allocation, dereferencing, and assignment. To allocate a reference, we use the
ref operator, providing an initial value for the new cell.

r=refb5;

?r: Ref Nat

The response from the typechecker indicates that the value of r is a reference to a cell that will always contain a
number. To read the current value of this cell, we use the dereferencing operator !.

Ir;

?5: Nat

To change the value stored in the cell, we use the assignment operator.
r:=71;

? unit : Unit

(The result the assignment is the trivial unit value; see .) If we dereference r again, we see the updated value.
Ir;

? 7 : Nat

Side Effects and Sequencing

The fact that the result of an assignment expression is the trivial value unit fits nicely with the sequencing notation
defined in E11.3, allowing us to write

(r:=succ(!r); In);

? 8 : Nat

instead of the equivalent, but more cumbersome,

(A_:Unit. Ir) (r := succ('n));

?9: Nat

to evaluate two expressions in order and return the value of the second. Restricting the type of the first expression to
Unit helps the typechecker to catch some silly errors by permitting us to throw away the first value only if it is really
guaranteed to be trivial.

Notice that, if the second expression is also an assignment, then the type of the whole sequence will be Unit, so we
can validly place it to the left of another ; to build longer sequences of assignments:

(r:=succ(!r); r:=succ(!r); r:=succ('r); r:=succ('r); 'r);
? 13 : Nat

References and Aliasing

It is important to bear in mind the difference between the reference that is bound to r and the cell in the store that is
pointed to by this reference.

" =

13

If we make a copy of r, for example by binding its value to another variable s,

sS=1

? s : Ref Nat

what gets copied is only the reference (the arrow in the diagram), not the cell:

r = s =

13

We can verify this by assigning a new value into s

s :=82;

? unit : Unit

and reading it out via r:

Ir;
? 82 : Nat
The references r and s are said to be aliases for the same cell.

13.1.1 Exercise [?]

Draw a similar diagram showing the effects of evaluating the expressions a = {ref 0, ref 0} and b = (x:Ref Nat. {x,x}) (ref
0).

Shared State

The possibility of aliasing can make programs with references quite tricky to reason about. For example, the

expression (r:=1; r:=!s), which assigns 1 to r and then immediately overwrites it with s's current value, has exactly the
same effect as the single assignment r:=!s, unless we write it in a context where r and s are aliases for the same cell.

Of course, aliasing is also a large part of what makes references useful. In particular, it allows us to set up "implicit
communication channels"-shared state-between different parts of a program. For example, suppose we define a
reference cell and two functions that manipulate its contents:

c =ref0;

? c: Ref Nat

incc = X:Unit. (c := succ (Ic); lc);
?incc : Unit —» Nat
decc = x:Unit. (c := pred (Ic¢); lc);

? decc : Unit - Nat

Calling incc

incc unit;

?1:Nat

results in changes to c that can be observed by calling decc:

decc unit;

?0: Nat

If we package incc and decc together into a record
o ={i =incc, d = decc};

? 0 : {i:Unit > Nat, d:Unit - Nat}

then we can pass this whole structure around as a unit and use its components to perform incrementing and
decrementing operations on the shared piece of state in c. In effect, we have constructed a simple kind of object. This
idea is developed in detail in Chapter 19.

References to Compound Types

A reference cell need not contain just a number: the primitives above allow us to create references to values of any
type, including functions. For example, we can use references to functions to give a (not very efficient) implementation
of arrays of numbers, as follows. Write NatArray for the type Ref (Nat — Nat).

NatArray = Ref (Nat — Nat);

To build a new array, we allocate a reference cell and fill it with a function that, when given an index, always returns 0.

newarray = A :Unit. ref (n:Nat.0);

? newarray : Unit — NatArray

To look up an element of an array, we simply apply the function to the desired index.

lookup = ’a:NatArray. m:Nat. ('a) n;
? lookup : NatArray — Nat — Nat

The interesting part of the encoding is the update function. It takes an array, an index, and a new value to be stored at
that index, and does its job by creating (and storing in the reference) a new function that, when it is asked for the value
at this very index, returns the new value that was given to update, and on all other indices passes the lookup to the

function that was previously stored in the reference.

update = Ja:NatArray. m:Nat. &:Nat.
let oldf =lain
a = (n:Nat. if equal m n then v else oldf n);

? update : NatArray — Nat — Nat — Unit

13.1.2 Exercise [?7?]

If we defined update more compactly like this

update = Xa:NatArray. ‘m:Nat. &:Nat.
a := (n:Nat. if equal m n then v else ('a) n);

would it behave the same?

References to values containing other references can also be very useful, allowing us to define data structures such
as mutable lists and trees. (Such structures generally also involve recursive types, which we introduce in .)
Garbage Collection

A last issue that we should mention before we move on formalizing references is storage deallocation. We have not
provided any primitives for freeing reference cells when they are no longer needed. Instead, like many modern
languages (including ML and Java) we rely on the run-time system to perform garbage collection, collecting and
reusing cells that can no longer be reachedby the program. This is not just a question of taste in language design: it is
extremely difficult to achieve type safety in the presence of an explicit deallocation operation. The reason for this is the
familiar dangling reference problem: we allocate a cell holding a number, save a reference to it in some data structure,
use it for a while, then deallocate it and allocate a new cell holding a boolean, possibly reusing the same storage. Now
we can have two names for the same storage cell-one with type Ref Nat and the other with type Ref Bool.

13.1.3 Exercise [?7?]

Show how this can lead to a violation of type safety.
[l]Even "purely functional" languages such as Haskell, via extensions such as monads.

QThe system studied in this chapter is the simply typed lambda-calculus with Unit and references). The
associated OCaml implementation is fullref.

@Strictly speaking, most variables of type T in C or Java should actually be thought of as pointers to cells holding
values of type Option(T), reflecting the fact that the contents of a variable can be either a proper value or the special
value null.

[&]There are also good arguments that this separation is desirable from the perspective of language design. Making the
use of mutable cells an explicit choice rather than the default encourages a mostly functional programming style where
references are used sparingly; this practice tends to make programs significantly easier to write, maintain, and reason
about, especially in the presence of features like concurrency.

< Free Open Study >

< Free Open Study >

MEXT F

13.2 Typing

The typing rules for ref, :=, and ! follow straightforwardly from the behaviors we have given them.

F=t; : Ty
[~ reft; : Ref T,
l-1t; : Ref T,
Tl ' Ty
-1, : RefT, -tz i 14
[tp:=tz : Unit

(T-REF)

(T-DEREF)

(T-ASSIGN)

< Free Open Study >

MEXT F

< Free Open Study >

13.3 Evaluation

A more subtle aspect of the treatment of references appears when we consider how to formalize their operational
behavior. One way to see why is to ask, "What should be the values of type Ref T?" The crucial observation that we
need to take into account is that evaluating a ref operator should do something-namely, allocate some storage-and the
result of the operation should be a reference to this storage.

What, then, is a reference?

The run-time store in most programming language implementations is essentially just a big array of bytes. The
run-time system keeps track of which parts of this array are currently in use; when we need to allocate a new
reference cell, we allocate a large enough segment from the free region of the store (4 bytes for integer cells, 8 bytes
for cells storing Floats, etc.), mark it as being used, and return the index (typically, a 32- or 64-bit integer) of the start of
the newly allocated region. These indices are references.

For present purposes, there is no need to be quite so concrete. We can think of the store as an array of values, rather
than an array of bytes, abstracting away from the different sizes of the run-time representations of different values.
Furthermore, we can abstract away from the fact that references (i.e., indexes into this array) are numbers. We take
references to be elements of some uninterpreted set L of store locations, and take the store to be simply a partial
function from locations | to values. We use the metavariable p to range over stores. A reference, then, is a location-an
abstract index into the store. We'll use the word location instead of reference or pointer from now on to emphasize this

abstract quality.[é]

Next, we need to extend our operational semantics to take stores into account. Since the result of evaluating an
expression will in general depend on the contents of the store in which it is evaluated, the evaluation rules should take
not just a term but also a store as argument. Furthermore, since the evaluation of a term may cause side effects on
the store that may affect the evaluation of other terms in the future, the evaluation rules need to return a new store.
Thus, the shape of the single-step evaluation relation changes fromt - t tot|u - t | W', where pand W' are the
starting and ending states of the store. In effect, we have enriched our notion of abstract machines, so that a machine
state is not just a program counter (represented as a term), but a program counter plus the current contents of the
store.

To carry through this change, we first need to augment all of our existing evaluation rules with stores:

CAX: Ttz vl g — [X —v2)t2l (E-APPARS)
t -ty |

L0 it L (E-App1)

Ty Tzl — X, Tzl M
tal w— tol

. o (E-Arpz)
VI G| g —v) Ll

Note that the first rule here returns the store p unchanged: function application, in itself, has no side effects. The other
two rules simply propagate side effects from premise to conclusion.

Next, we make a small addition to the syntax of our terms. The result of evaluating a ref expression will be a fresh
location, so we need to include locations in the set of things that can be results of evaluation-i.e., in the set of values:

(VAR values:
X Tt
unit
| unit value

abstraction value

store location

Since all values are also terms, this means that the set of terms should include locations.

t = terms:
X
variable
XTit
tt abstraction
unit application
reft
It constant unit
t=t reference creation
|
dereference
assignment

store location

Of course, making this extension to the syntax of terms does not mean that we intend programmers to write terms
involving explicit, concrete locations: such terms will arise only as intermediate results of evaluation. In effect, the term
language in this chapter should be thought of as formalizing an intermediate language, some of whose features are
not made available to programmers directly.

In terms of this expanded syntax, we can state evaluation rules for the new constructs that manipulate locations and
the store. First, to evaluate a dereferencing expression !'t1, we must first reduce t1 until it becomes a value:

[-tiﬁ

- (E-DEREF)
g lp— 1L | ¢

r

Once t1 has finished reducing, we should have an expression of the form !l, where | is some location. A term that

attempts to dereference any other sort of value, such as a function or unit, is erroneous. The evaluation rules simply
get stuck in this case. The type safety properties in assure us that well-typed terms will never misbehave in this
way.
uil) =v ;
(E-DEREFLOC)

|y —vlu

Next, to evaluate an assignment expression t1 :=t2, we must first evaluate t1 until it becomes a value (i.e., a location),
tylp—t) Iy
, - (E-ASSIGN1)
tiiste | — £ =tz |

and then evaluate t2 until it becomes a value (of any sort):

p—ts |
vit=te | g — vpi=ts |y

=]

t
(E-ASSIGN2)
t

Once we have finished with t1 and t2, we have an expression of the form l:=v2, which we execute by updating the store
to make location | contain v2:

Ii=va | g —unmit | [= v2]u (E-ASSIGN)

(The notation [l ? v2]u here means "the store that maps | to v2 and maps all other locations to the same thing as p."
Note that the term resulting from this evaluation step is just unit; the interesting result is the updated store.)

Finally, to evaluate an expression of the form ref t1, we first evaluate t1 until it becomes a value:

tilpy—1t |y

, (E-REF)
reft) |py—reft; |pu
Then, to evaluate the ref itself, we choose a fresh location | (i.e., a location that is not already part of the domain of p)
and yield a new store that extends p with the new binding | ? v1.

[¢ domip)
(E-REFY)
refwv) | p—1|{ud—~wv)

The term resulting from this step is the name | of the newly allocated location.

Note that these evaluation rules do not perform any kind of garbage collection: we simply allow the store to keep
growing without bound as evaluation proceeds. This does not affect the correctness of the results of evaluation (after
all, the definition of "garbage" is precisely parts of the store that are no longer reachable and so cannot play any
further role in evaluation), but it means that a naive implementation of our evaluator will sometimes run out of memory
where a more sophisticated evaluator would be able to continue by reusing locations whose contents have become
garbage.

13.3.1 Exercise [??7]

How might our evaluation rules be refined to model garbage collection? What theorem would we then need to prove,
to argue that this refinement is correct?

ETreating locations abstractly in this way will prevent us from modeling the pointer arithmetic found in low-level
languages such as C. This limitation is intentional. While pointer arithmetic is occasionally very useful (especially for
implementing low-level components of run-time systems, such as garbage collectors), it cannot be tracked by most
type systems: knowing that location n in the store contains a Float doesn't tell us anything useful about the type of
location n + 4. In C, pointer arithmetic is a notorious source of type safety violations.

< Free Open Study >

< Free Open Study >

13.4 Store Typings

Having extended our syntax and evaluation rules to accommodate references, our last job is to write down typing rules
for the new constructs-and, of course, to check that they are sound. Naturally, the key question is, "What is the type of
a location?"

When we evaluate a term containing concrete locations, the type of the result depends on the contents of the store
that we start with. For example, if we evaluate the term !I2 in the store (11 ? unit, 12 ? unit), the result is unit; if we
evaluate the same term in the store (I1 ? unit, 12 ? x:Unit.x), the result is x:Unit.x . With respect to the former store, the
location 12 has type Unit, and with respect to the latter it has type Unit— Unit. This observation leads us immediately to a
first attempt at a typing rule for locations:

Ce=pll) : Ty
[—1:RefT,

That is, to find the type of a location |, we look up the current contents of | in the store and calculate the type T1 of the
contents. The type of the location is then Ref T1.

Having begun in this way, we need to go a little further to reach a consistent state. In effect, by making the type of a

term depend on the store, we have changed the typing relation from a three-place relation (between contexts, terms,
and types) to a four-place relation (between contexts, stores, terms, and types). Since the store is, intuitively, part of
the context in which we calculate the type of a term, let's write this four-place relation with the store to the left of the

turnstile: ? | w0 ? t: T. Our rule for typing references now has the form

F - uill i T)
[|pe=1:RefT,

and all the rest of the typing rules in the system are extended similarly with stores. The other rules do not need to do
anything interesting with their stores-just pass them from premise to conclusion.

However, there are two problems with this rule. First, typechecking is rather inefficient, since calculating the type of a
location | involves calculating the type of the current contents v of I. If | appears many times in a termt, we will
re-calculate the type of v many times in the course of constructing a typing derivation for t. Worse, if v itself contains
locations, then we will have to recalculate their types each time they appear. For example, if the store contains

(I1? x:Nat. 999,

I2? x:Nat. (!11) x,

I13? Xx:Nat. (!12) x,

l4? Xx:Nat. (!13) x,

I5? X:Nat. (! 14) x),

then calculating the type of |5 involves calculating those of I4, 13, 12, and |1.

Second, the proposed typing rule for locations may not allow us to derive anything at all, if the store contains a cycle.
For example, there is no finite typing derivation for the location 12 with respect to the store

(I1? x:Nat. (! 12) x,
I2 ? x:Nat. (! 11) x),

since calculating a type for 12 requires finding the type ofl1, which in turn involves I1, etc. Cyclic reference structures do
arise in practice (e.g., they can be used for building doubly linked lists), and we would like our type system to be able
to deal with them.

13.4.1 Exercise [?]

Can you find a term whose evaluation will create this particular cyclic store?

Both of these problems arise from the fact that our proposed typing rule for locations requires us to recalculate the
type of a location every time we mention it in a term. But this, intuitively, should not be necessary. After all, when a
location is first created, we know the type of the initial value that we are storing into it. Moreover, although we may
later store other values into this location, those other values will always have the same type as the initial one. In other
words, we always have in mind a single, definite type for every location in the store, which is fixed when the location is
allocated. These intended types can be collected together as a store typing-a finite function mapping locations to
types. We'll use the metavariable X to range over such functions.

Suppose we are given a store typing Z describing the storep in which some term t will be evaluated. Then we can use
% to calculate the type of the result oft without ever looking directly at p. For example, if Z is (1 ? Unit, I2 ? Unit— Unit),
then we may immediately infer that !l2 has type Unit— Unit. More generally, the typing rule for locations can be
reformulated in terms of store typings like this:

I =T (T-L
T -LoC)
[|E+1 : RefT,
Typing is again a four-place relation, but it is parameterized on a store typing rather than a concrete store. The rest of
the typing rules are analogously augmented with store typings.
Of course, these typing rules will accurately predict the results of evaluation only if the concrete store used during
evaluation actually conforms to the store typing that we assume for purposes of typechecking. This proyiso exa
parallels the situation with free variables in all the calculi we have seen up to this point: the substitution
promises us that, if ? ? t: T, then we can replace the fr i in t with values of the types listed in ? to obtain a
closed term of type T, which, by the fype preservation fheorem (9.3.9)] will evaluate to a final result of type T if it yields

any result at all. We will see in E13.5 how to formalize an analogous intuition for stores and store typings.

Finally, note that, for purposes of typechecking the terms that programmers actually write, we do not need to do
anything tricky to guess what store typing we should use. As we remarked above, concrete location constants arise
only in terms that are the intermediate results of evaluation; they are not in the language that programmers write.
Thus, we can simply typecheck the programmer's terms with respect to the empty store typing. As evaluation
proceeds and new locations are created, we will always be able to see how to extend the store typing by looking at the
type of the initial values being_placed in newly allocated cells; this intuition is formalized in the statement of the type
preservation theorem below ([L3.5.3).

Now that we have dealt with locations, the typing rules for the other new syntactic forms are quite straightforward.
When we create a reference to a value of type T3, the reference itself has type Ref T1.

121 ¢ T T-RE
[1= reft; : Ref Ty v
Notice that we do not need to extend the store typing here, since the name of the new location will not be determined
until run time, while X records only the association between already-allocated storage cells and their types.
Conversely, if t1 evaluates to a location of type Ref T11, then dereferencing t1 is guaranteed to yield a value of type T11.
X+t : Ref Ty
M EZ- 1t : T

(I-DEREF)

Finally, if t1 denotes a cell of type Ref T11, then we can store t2 into this cell as long as the type oft2 is also T11:

FE-1t; : RefTy [E=1t2: Ty

x (T-ASSIGN)
N Xe=typ:i=tz : Nt

summarizes the typing rules (and the syntax and evaluation rules, for easy reference) for the simply typed
lambda-calculus with references.

< Free Open Study >

13.5 Safety

Our final job in this chapter is to check that standard type safety properties continue to hold for the calculus with
eferences. The progress theorem (“well-typed terms are not stuck") can be stated and proved almost as before (cf.
[13.5.7); we just need to add a few straightforward cases to the proof, dealing with the new constructs. The
preservation theorem is a bit more interesting, so let's look at it first.

Since we have extended both the evaluation relation (with initial and final stores) and the typing relation (with a store
typing), we need to change the statement of preservation to include these parameters. Clearly, though, we cannot
just add stores and store typings without saying anything about how they are related.

f?2]Z?t:Tandt|p - t' | W, then?| Z?¢t: T. (Wrong!)
If we typecheck with respect to some set of assumptions about the types of the values in the store and then evaluate

with respect to a store that violates these assumptions, the result will be disaster. The following requirement expresses
the constraint we need.

13.5.1 Definition
A store [is said to be well typed with respect to a typing context ? and a store typing Z, written? | £ ? , if dom(u) =
dom(Z) and? | = ? u(l) : = () for every | Tdom().
Intuitively, a store | is consistent with a store typing X if every value in the store has the type predicted by the store
typing.

13.5.2 Exercise [?7?]

Can you find a context ?, a store y, and two different store typings 1 and 22 such that both ? | Z1? pand ? | £2? pu?
We can now state something closer to the desired preservation property:

If
212?26 T
tlpu -t
?2|1Z?u
then?|Z?t:T. (Lesswrong.)

This statement is fine for all of the evaluation rules except the allocation rule E-REFV. The problem is that this rule
yields a store with a larger domain than the initial store, which falsifies the conclusion of the above statement: if y'

includes a binding for a fresh location I, then | cannot be in the domain of X, and it will not be the case thatt' (which
definitely mentions 1) is typable under .

Evidently, since the store can increase in size during evaluation, we need to allow the store typing to grow as well.
This leads us to the final (correct) statement of the type preservation property:

13.5.3 Theorem [Preservation]

r|z?e.T
r|z?p
tip -t

then, for some ' 0 %,

C22¢:T
rz2u.

Note that the preservation theorem merely asserts that there is some store typing & 01 (i.e., agreeing with on the
values of all the old locations) such that the new term t' is well typed with respect to Z' jt does not tell us exactly what
Y’ is. It is intuitively clear, of course, that ' is either X or else it is exactly {1, | ? T1), where | is a newly allocated
location (the new element of the domain of ') and T1 is the type of the initial value bound to in the extended store (y, |
?v1), but stating this explicitly would complicate the statement of the theorem without actually making it any more
useful: the weaker version above is already in the right form (because its conclusion implies its hypothesis) to "turn the
crank" repeatedly and conclude that every sequence of evaluation steps preserves well-typedness. Combining this
with the progress property, we obtain the usual guarantee that "well-typed programs never go wrong."

%‘ervaﬂon, we need a few technical lemmas. The first is an easy extension of the standard substitution
emma (9.3.8

13.5.4 Lemma [Substitution]

If2,xS|Z?t:Tand?|Z?s:S,then?|Z?[x?s]t: T.
Proof: Justlike.

The next states that replacing the contents of a cell in the store with a new value of appropriate type does not change
the overall type of the store.

13.5.5Lemma

If
?2|1Z?H
=T
?2|1Z?2v:T
then? | Z? [? v]u.
Proof: Immediate from the definition of 7 | Z? p.

Finally, we need a kind of weakening lemma for stores, stating that, if a store is extended with a new location, the
extended store still allows us to assign types to all the same terms as the original.

13.5.6 Lemma

If?2]Z?t:TandX' 0 X, then?|Z' ?t:T.
Proof: Easy induction.
Now we can prove the main preservation theorem.

Proof of : Straightforward induction on evaluation derjyvations, using the lemmas above and the inversion
property of the typing rules (a straight-forward extension of P.3.1).

The statement of the progress fheorem (9.3.5] must also be extended to take stores and store typings into account:

13.5.7 Theorem [Progress]

Suppose tis a closed, well-typed term (thatis, @ | Z?t: T for some T and X). Then eithert is a value or else, for any
store p such that@ | £ ? p, there is some term t' and store ' witht | p — t' | p'.

] . Straightforward induction on typing derivations, following the pattern of. (The canonical forms
P.3.4, needs two additional cases stating that all values of type Ref T are locations and similarly for Unit.)

13.5.8 Exercise [Recommended, ??7]

Is the evaluation relation in this chapter normalizing on well-typed terms? If so, prove it. If not, write a well-typed
factorial function in the present calculus (extended with numbers and booleans).

|< Free Open Study >|

< Free Open Study >

13.6 Notes

The presentation in this chapter is adapted from a treatment by l—iarper (1994‘, I199d). An account in a similar style is

given by MWright and Felleisen (1994].

The combination of references (or other computational effects) with ML-style polymorphic type inference rai

mmmmm&jns (cf. B22.7) and has receivatammm&nmnﬁk See [[ofte (19901,
gangetal (1993 l]ouvelot and Gifford (1991}, [Talpin and Jouvelot (1992), Leroy and Weis (1991}, Wright (1992],

Harper (1994, Il996i, and the references cited there.

Static prediction of possible aliasing is a long-standing problem both in compiler im%e_m_anmigu_ﬂm it is called
alias analysis) and in programming language theory. An influential early attempt by Reynolds (197§, [1989) coined the

Mﬁyntazﬁmmmunmuarence. These ideas have recently seen a burst of new activity—s
1995) and Bmith et al, (2000). More general reasoning techniques for aliasing are discussed in

shtiag and O'Hearn (2001] and other references cited there.

ce D'Hearp et al
eynolds (1981] and

A comprehensi i i arbage collection can be found in bones and Lins (1996i. A more semantic treatment

is given by Morrisett et al. (1995].

Find out the cause of this effect, Or rather say, the cause of this defect, For this effect defective

comes by cause. —Hamlet Il, ii, 101

The finger pointing at the moon is not the moon. —Buddhist saying

< Free Open Study >

Chapter 14: Exceptions

Overview

In we saw how to extend the simple operational semantics of the pure simply typed lambda-calculus with
mutable references and considered the effect of this extension on the typing rules and type safety proofs. In this
chapter, we treat another extension to our original computational model: raising and handling exceptions.

Real-world programming is full of situations where a function needs to signal to its caller that it is unable to perform its
task for some reason—because some calculation would involve a division by zero or an arithmetic overflow, a lookup
key is missing from a dictionary, an array index went out of bounds, a file could not be found or opened, some
disastrous event occurred such as the system running out of memory or the user killing the process, etc.

of these exceptional conditions can be signaled by making the function return a variant (or option), as we saw in
. But in situations where the exceptional conditions are truly exceptional, we may not want to force every caller
of our function to deal with the possibility that they may occur. Instead, we may prefer that an exceptional condition

causes a direct transfer of control to an exception handler defined at some higher-level in the program—or indeed (if
the exceptional condition is rare enough or if there is nothing that the caller can do anyway to recover from it) simply
aborts the program. We first consider the latter case (here an exception is a whole-program abort, then add a
mechanism for trapping and recovering from exceptions (| 14.2|), and finally refine both of these mechanisms to allow

extra programmer-specified data to be passed between exception sites and handlers). [

-+ BFFOF Fxlirnds X 1)
| | 1

S Syl el T fearres mnwr Fypig ruhies .-: TR]
t o= .. Litrmss :

— (S R— M #8FPar @ T IT-ERENE
New anvafaunifon rrakes 4 i

Errar By — error E-ArrEER1)

W §FQr — @rrgr (E-ArrEREZ]

Figure 14-1: Errors

- errar iy Extenads A with ervors (14-1)

Mewr spntaclic furmes

t o= - o T = THY)
try Ty with Ttz
with EFF GFETH z b
Tryt (4 ¥ ¥ ey U, with s
Svewr vl fow rules L= New [yping rufes E_I'_: LN T.I
Ly Wy with B — %) 1L TeyY =t =T Pz 1

Ne=gry tywithigs =T
Ty arroE with T
¥ e - {E-TRYERROER

Figure 14-2: Error Handling

Erbimedy X dfk-Fi

v g oLy
B 1
Mo ot fovrms P i
T om . dermmn:
raise t i X try rafse v, with b .
try twitht hirndle excepitons ;A dE-TevEase]
Mew evafuation rrbes f — b —) E-TeY]

EFy Ly with ts — try ¢, mitht
Crafdse vid Ty — ralse v dE-APPRAISED) ’ e) :

. R [rufos [Tre:T
wy (raisa vep) — ralse vo (E-ArrRasEs
L= E) Taw
; : l_' B iT-Fxw)
t — K) [-rafiset; 1T
= 7 QE-HANSE)
raise t) — raise t;
Tt T ety Tan=T G
(T- Ty
i h ;| . y 2
SRR IR (E:Rarss Rkl retrytimehe: o T

- i g vy

i
Figure 14-3: Exceptions Carrying Values

mThe systems studied in this chapter are the sim| ped lambda-calculus extended with various
primitives for exceptions and exception handling (and [l4-2). The OCaml implementation of the first

extension is fullerror. The language with exceptions carrying values (Eigure 14-3) is not implemented.

m < Free Open Study >

< Free Open Study >

14.1 Raising Exceptions

Let us start by enriching the simply typed lambda-calculus with the simplest possible mechanism for signalij
exceptions: a term error that, when evaluated, completely aborts evaluation of the term in which it appears. Fi;ure 14-5]
details the needed extensions.

The main design decision in writing the rules for error is how to formalize "abnormal termination” in our operational
semantics. We adopt the simple expedient of letting error itself be the result of a program that aborts. The rules
E-APPERR1 and E-APPERR2 capture this behavior. E-APPERRL1 says that, if we encounter the term error while trying
to reduce the left-hand side of an application to a value, we should immediately yield error as the result of the
application. Similarly, E-APPERR2 says that, if we encounter an error while we are working on reducing the argument
of an application to a value, we should abandon work on the application and immediately yield error.

Observe that we have not included error in the syntax of values-only the syntax of terms. This guarantees that there
will never be an overlap between the left-hand sides of the E-APPABS and E-APPERR?2 rules-i.e., there is no
ambiguity as to whether we should evaluate the term

(X:Nat.0) error

by performing the application (yielding 0 as result) or aborting: only the latter is possible. Similarly, the fact that we
used the metavariable v1 (rather than t1, ranging over arbitrary terms) in E-APPERR2 forces the evaluator to wait until
the left-hand side of an application is reduced to a value before aborting it, even if the right-hand side is error. Thus, a
term like

(fix (X:Nat.x)) error
will diverge instead of aborting. These conditions ensure that the evaluation relation remains deterministic.

The typing rule T-ERROR is also interesting. Since we may want to raise an exception in any context, the term error
form is allowed to have any type whatsoever. In

(X:Bool.x) error;

it has type Bool. In

(X:Bool.x) (error true);
it has type Bool — Bool.

This flexibility in error's type raises some difficulties in implementing mpﬂhﬂ]ﬂnj algorithm, since it breaks the
property that every typable term in the language has a unique type ([Theorem 9.3.3). Thjs can be dealt with in various

ways. In a language with subtyping, we can assign error the minimal type Bot (s e|515). which can be promoted to
any other type as necessary. In a language with parametric polymorphism (see [Chapter 23), we can give error the
polymorphic type "X.X, which can be instantiated to any other type. Both of these tricks allow infinitely many possible
types for error to be represented compactly by a single type.

14.1.1 Exercise [?]

Wouldn't it be simpler just to require the programmer to annotate error with its intended type in each context where it is
used?

The type preservation property for the language with exceptions is the same as always: if a term has type T and we let
it evaluate one step, the result still has type T. The progress property, however, needs to be refined a little. In its
original form, it said that a well-typed program must evaluate to a value (or diverge). But now we have introduced a
non-value normal form, error, which can certainly be the result of evaluating a well-typed program. We need to restate
progress to allow for this.

14.1.2 Theorem [Progress]

Suppose tis a closed, well-typed normal form. Then eithertis a value or t = error.

m < Free Open Study >

< Free Open Study >

14.2 Handling Exceptions

The evaluation rules for error can be thought of as "unwinding the call stack," discarding pending function calls until the
error has propagated all the way to the top level. In real implementations of languages with exceptions, this is exactly
what happens: the call stack consists of a set of activation records, one for each active function call; raising an
exception causes activation records to be popped off the call stack until it becomes empty.

In most languages with exceptions, it is also possible to install exception handlers in the call stack. When an exception
is raised, activation recordsare popped off the call stack until an exception handler is encountered, and evaluation then
proceeds with this handler. In other words, the exception functions as a non-local transfer of control, whose target is
the most recently installed exception handler (i.e., the nearest one on the call stack).

Our formulation of exception handlers, summarized in , is similar to both ML and Java. The expression try
t1 with t2 means "return the result of evaluating t1, unless it aborts, in which case evaluate the handler t2 instead.” The
evaluation rule E-TRYV says that, when t1 has been reduced to a value vi, we may throw away the try, since we know
now that it will not be needed. E-TRYERROR, on the other hand, says that, if evaluating t1 results in error, then we
should replace the try with t2 and continue evaluating from there. E-TRY tells us that, until t1 has been reduced to
either a value or error, we should just keep working on it and leave t2 alone.

The typing rule for try follows directly from its operational semantics. The result of the whole try can be either the result
of the main body t1 or else the result of the handler t2; we simply need to require that these have the same type T,
which is also the type of the try.

The type safety property and its proof remain essentially unchanged from the .

RO S

< Free Open Study >

14.3 Exceptions Carrying Values

The mechanisms introduced in and allow a function to signal to its caller that "something unusual
happened.” It is generally useful to send back some extra information about which unusual thing has happened, since
the action that the handler needs to take—either to recover and try again or to present a comprehensible error
message to the user—may depend on this information.

shows how our basic exception handling constructs can be enriched so that each exception carries a
value. The type of this value is written Texn. For the moment, we leave the precise nature of this type open; below, we
discuss several alternatives.

The atomic term error is replaced by a term constructor raise t, where t is the extra information that we want to pass to
the exception handler. The syntax of try remains the same, but the handler t2 in try t1 with t2 is now interpreted as a
function that takes the extra information as an argument.

The evaluation rule E-TRYRAISE implements this behavior, taking the extra information carried by a raise from the
body t1 and passing it to the handler t2. E-APPRAISE1 and E-APPRAISE2 propagate exceptions through applications,
just like E-APPERRL1 and E-APPERR2 in ‘. Note, however, that these rules are allowed to propagate only
exceptions whose extra information is a value; if we attempt to evaluate a raise with extra information that itself
requires some evaluation, these rules will block, forcing us to use E-RAISE to evaluate the extra information first.
E-RAISERAISE propagates exceptions that may occur while we are evaluating the extra information that is to be sent
along in some other exception. E-TRYYV tells us that we can throw away a try once its main body has reduced to a
value, just as we did in. E-TRY directs the evaluator to work on the body of a try until it becomes either a value

or araise.

The typing rules reflect these changes in behavior. In T-RAISE we demand that the extra information has type Texn;
the whole raise can then be given any type T that may be required by the context. In T-TRY we check that the handler
t2 is a function that, given the extra information of type Texn, yields a result of the same type as t1.

Finally, let us consider some alternatives for the type Texn.

1. We can take Texn to be justNat. This corresponds to the errno convention used, for example, by
Unix operating system functions: each system call returns a numeric "error code," with 0 signaling
success and other values reporting various exceptional conditions.

2. We can take Texn to be String, which avoids looking up error numbers in tables and allows
exception-raising sites to construct more descriptive messages if they wish. The cost of this extra
flexibility is that error handlers may now have to parse these strings to find out what happened.

3. We can keep the ability to pass more informative exceptions while avoiding string parsing if we
define Texn to be a variant type:

Texn = <divideByZero: Unit,
overflow: Unit,
fileNotFound: String,
fileNotReadable: String,
>

This scheme allows a handler to distinguish between kinds of exceptions using a simple case
expression. Also, different exceptions can carry different types of additional information:
exceptions like divideByZero need no extra baggage, fileNotFound can carry a string indicating
which file was being opened when the error occurred, etc.

The problem with this alternative is that it is rather inflexible, demanding that we fix in advance the

complete set of exceptions that can be raised by any program (i.e., the set of tags of the variant
type Texn). This leaves no room for programmers to declare application-specific exceptions.

The same idea can be refined to leave room for user-defined exceptions by taking Texn to be an
extensible variant type. ML adopts this idea, providing a single extensible variant type called

exn.@ The ML declaration exception | of T can be understood, in the present setting, as "make sure

that | is different from any tag already present in the variant type Texn,@ and from now on let Texn
be <1 :T1...Initn,:T>, where 11:T1 through In:th were the possible variants before this declaration.”

The ML syntax for raising exceptions is raise I(t), where | is an exception tag defined in the current
scope. This can be understood as a combination of the tagging operator and our simple raise:

raise 1(t) L raise (<l=t> as Texn)

Similarly, the ML try construct can be desugared using our simple try plus acase.

def

try twith 1(x) - h try t with
Ae:Tewp. case e of
<]=x> = h
| _ = raisee

The case checks whether the exception that has been raised is tagged with I. If so, it binds the
value carried by the exception to the variable x and evaluates the handler h. If not, it falls through
to the else clause, which re-raises the exception. The exception will keep propagating (and
perhaps being caught and re-raised) until it either reaches a handler that wants to deal with it, or
else reaches the top level and aborts the whole program.

Java uses classes instead of extensible variants to support user-defined exceptions. The
language provides a built-in class Throwable; an instance of Throwable or any of its subclasses can
be used in a throw (same as our raise) or try...catch (same as our try...with) statement. New
exceptions can be declared simply by defining new subclasses of Throwable.

There is actually a close correspondence between this exception-handling mechanism and that of
ML. Roughly speaking, an exception object in Java is represented at run time by a tag indicating
its class (which corresponds directly to the extensible variant tag in ML) plus a record of instance

variables (corresponding to the extra information labeled by this tag).

Java exceptions go a little further than ML in a couple of respects. One is that there is a natural
partial order on exception tags, generated by the subclass ordering. A handler for the exception|
will actually trap all exceptions carrying an object of class | or any subclass of I. Another is that
Java distinguishes between exceptions (subclasses of the built-in class Exception—a subclass of
Throwable), which application programs might want to catch and try to recover from, and errors
(subclasses of Error—also a subclass of Throwable), which indicate serious conditions that should
normally just terminate execution. The key difference between the two lies in the typechecking
rules, which demand that methods explicitly declare which exceptions (but not which errors) they
might raise.

14.3.1 Exercise [??7]

The explanation of extensible variant types in alternative 4 above is rather informal. Show how to make it precise.

14.3.2 Exercise [??7?7]

We noted above that Java exceptions (those that are sub-classes of Exception) are a bit more strictly controlled than

exceptions in ML (or the ones we have defined here):
declared in the method's type. Extend your solution to

ery exception that might be raised by a method must be
so that the type of a function indicates not only

its argument and result types, but also the set of exceptions that it may raise. Prove that your system is typesafe.

14.3.3 Exercise [??7]

Many other control constructs can be formalized using technigues similar to the ones we }E;wnmmm_amer
eaders familiar with the "call with current continuation" (call/cc) operator of Scheme (see Clinger, Friedman, and
Wand, 1985; Kelsey, Clinger, and Rees, 1994; Dvbvig, 199€; Eriedman, Wand, and Haynes, 200]]) may enjoy trying to

formulate typing rules based on a type Cont T of T-continuations—i.e., continuations that expect an argument of type T.

@One can go further and provide extensible variant types as a general language feature, but the designers of ML
have chosen to simply treat exn as a special case.

E]Since the exception form is a binder, we can always ensure that | is different from the tags already used in Texn by
alpha-converting it if necessary.

< Free Open Study >

Part Ill: Subtyping

Chapter List

Subtyping

Metatheory of Subtyping

An ML Implementation of Subtyping
Case Study: Imperative Objects
Case Study: Featherweight Java

m < Free Open Study >

Chapter 15: Subtyping

We have spent the last several chapters studying the typing behavior of a variety of language features within the
framework of the simply typed lambda-calculus. This chapter addresses a more fundamental extension: subtyping
(sometimes called subtype polymorphism). Unlike the features we have studied up to now, which could be formulated
more or less orthogonally to each other, subtyping is a cross-cutting extension, interacting with most other language
features in non-trivial ways.

Subtyping is characteristically found in object-oriented language i en considered an essential feature of the

object-oriented style. We will explore this connection in detail in Eha:ter 19; for now, though, we present subtypjng i

a more economical setting with just functions and records, where most of the interesting issues already appear. ﬁ
iscusses the combination of subtyping with some of the other features we have seen in previous chapters. In the final

Eection (15.6] we consider a more refined semantics for subtyping, in which the use of suptyping corresponds to the

insertion of run-time coercions.

15.1 Subsumption

Without subtyping, the rules of the simply typed lambda-calculus can be annoyingly rigid. The type system's insistence
that argument types exactly match the domain types of functions will lead the typechecker to reject many programs
that, to the programmer, seem obviously well-behaved. For example, recall the typing rule for function application:

=11 : Tyy=Ti2 IN=1t2: Tn

: (T-Arr)
[=% £ 35 Ti2
[

» wi Top Barserdd o N 78-1)
[1
Tynha Tubyrime ST

[T HPFRHA
= p———— 5% i5-REFL
ATt inisl Tl fcu uaT
£t dpylicetiin '17 15T HAmMsb
W RiF LTSS
he:T.T arhEirad st vl L G Tur
Ty =2 5 5 <1 Ts X
T & e W E5-ARELIWH
Top TR dy e = e
T-T e of flmcilons | yping Ce 2T
Tl)
I u= CHT TR | | {T-Vamh
- K 5
e eerply Lol
row:T T vatriinbe himclirg Ny - e i T AR
[~ dx:Tyots ! Ty=T 3
‘l-\||;_-_|rJ:||r E = Lt r I‘| s T|| _.:.” | £y T
By — g e T-Arw
- ! (E-AFF1] Fetite:
ty 17 == E; Lz
: r-t:5 ST —
ta 4 — <1
- F-APPTi N S
Wi Tr — Wi B
T e e vy — |3 = wylege IL-AFPARS

Figure 15-1: Simply Typed Lambda-Calculus with Subtyping (A<:)

According to this rule, the well-behaved term

(x:{x:Nat}. r.x) {x=0,y=1}

is not typable, since the type of the argument is {x:Nat,y:Nat}, whereas the function accepts {x:Nat}. But, clearly, the
function just requires that its argument is a record with a field x; it doesn't care what other fields the argument may or
may not have. Moreover, we can see this from the type of the function-we don't need to look at its body to verify that it
doesn't use any fields besides x. It is always safe to pass an argument of type {x:Nat,y:Nat} to a function that expects
type {x:Nat}.

The goal of subtyping is to refine the typing rules so that they can accept terms like the one above. We accomplish this
by formalizing the intuition that some types are more informative than others: we say that S is a subtype of T, written S
<: T, to mean that any term of type S can safely be used in a context where a term of type T is expected. This view of
subtyping is often called the principle of safe substitution.

A simpler intuition is to read S <: T as "every v escribed by S is also described by T," that is, "the elements of S are
a subset of the elements of T. We shall see in E15.6 that other, more refined, interpretations of subtyping are
sometimes useful, but this subset semantics suffices for most purposes.

The bridge between the typing relation and this subtype relation is provided by adding a new typing rule-the so-called
rule of subsumption:

Fr'=t:5% St T
. (T-SuR)
't

This rule tells us that, if S <: T, then every element t of S is also an element of T. For example, if we define the subtype
relation so that {x:Nat,y:Nat} <: {x:Nat}, then we can use rule T-SUB to derive ? {x=0,y=1} : {x:Nat}, which is what we need
to make our motivating example typecheck.

mThe calculus studied in this chapter is A<:, the simply typed lambda-calculus with subtyping) and
records); the corresponding OCaml implementation is rcdsub. (Some of the examples also use numbers; fullsub is
needed to check these.)

< Free Open Study >

< Free Open Study >

15.2 The Subtype Relation

The subtype relation is formalized as a collection of inference rules for deriving statements of the form S <: T,
pronounced "S is a subtype of T" (or "T is a supertype of S"). We consider each form of type (function types, record
types, etc.) separately; for each one, we introduce one or more rules formalizing situations when it is safe to allow
elements of one type of this form to be used where another is expected.

Before we get to the rules for particular type constructors, we make two general stipulations: first, that subtyping
should be reflexive,

S< 5 (S-REFL)

and second, that it should be transitive:

S< U U< T

iS-TRANS
S< T :

These rules follow directly from the intuition of safe substitution.

Now, for record types, we have already seen that we want to consider the type S = {k1:S1...km:Sm} to be a subtype of T
={l1:T1...In :Tn} if T has fewer fields than S. In particular, it is safe to "forget" some fields at the end of a record type. The
so-called width subtyping rule captures this intuition:

;e ettt gz {)Ty} (S-RCOWIDTH)

It may seem surprising that the "smaller" type-the subtype-is the | ith more fields. The easiest way to understand
this is to adopt a more liberal view of record types than we did in ﬁ regarding a record type {x:Nat} as describing
"the set of all records with at least a field x of type Nat." Values like {x=3} and {x=5} are elements of this type, and so are
values like {x=3,y=100} and {x=3,a=true,b=true}. Similarly, the record type {x:Nat,y:Nat} describes records with at least the
fields x and y, both of type Nat. Values like {x=3,y=100} and {x=3,y=100,z=true} are members of this type, but {x=3} is not,
and neither is {x=3,a=true,b=true}. Thus, the set of values belonging to the second type is a proper subset of the set

belonging to the first type. A longer record constitutes a more demanding-i.e., more informative-specification, and so
describes a smaller set of values.

The width subtyping rule applies only to record types where the common fields are identical. It is also safe to allow the
types of individual fields to vary, as long as the types of each corresponding field in the two records are in the subtype
relation. The depth subtyping rule expresses this intuition:

foreachi 5;< T; (5-RCDD)
e e ST i i SRepDEPTH
{-II:SI i J.II} <" _['Ir:TII|-|'..I|}

The following subtyping derivation uses S-RCDWIDTH and S-RCDDEPTH together to show that the nested record
type {x:{a:Nat,b:Nat},y:{m:Nat}} is a subtype of {x:{a:Nat},y:{}}:

S-RCnDWIDTH SRCoWIinTH
fa:Mat,b:MNat} < {a:Mat} {m:MNat} < {}

S-RenDEFTH

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},v:{}}

If we want to use S-RCDDEPTH to refine the type of just a single record field (instead of refining every field, as we did
in the example above), we can use S-REFL to obtain trivial subtyping derivations for the other fields.

file:///C:/DOCUME~1/ADMINI~1/CONFIG~1/Temp/Mit%20Press%20-%20Types%20And%20Programming%20Languages%20(Ml,%20Functional%20Languages)%20-%202002%20!%20-%20(By%20Laxxuss).chm/3447/images/fig205%5F04%2Ejpg
file:///C:/DOCUME~1/ADMINI~1/CONFIG~1/Temp/Mit%20Press%20-%20Types%20And%20Programming%20Languages%20(Ml,%20Functional%20Languages)%20-%202002%20!%20-%20(By%20Laxxuss).chm/3447/images/fig205%5F05%2Ejpg

S-RCDWIDTH S KEFL
{a:Nat,b:Mat} < {a:MNat} {m:Nat} <: {m:MNat}

S-RCDDEFTH

{x:{a:Nat,b:Nat},y:{m:Nat}} <! {x:{a:Mat},y:{m:Nat}}

We can also use the transitivity rule, S-TRANS, to combine width and depth subtyping. For example, we can obtain a
supertype by promoting the type of one field while dropping another:

SRCDWIDTH
{a:Nat,b:Nat}

<: {a:Nat}
H-RCDWIDTH 5-RCDDEFTH
{x:{a:Nat,b:Nat},y:{m:Nat}} {w:{a:Nar,b:Nat}}
<: {x:{a:Mat,b:Nat}} <: {x:{a:Nat}}

S-ThAaNS

{x:{a:MNat,b:Nat},y:im:Nat}} <! {x:{a:MNat}}

Our final record subtyping rule arises from the observation that the order of fields in a record does not make any
difference to how we can safely use it, since the only thing that we can do with records once we've built them-i.e.,
projecting their fields-is insensitive to the order of fields.

fk;:5; %"} is a permutation of {1;:T; “"}
{k_lll‘_:,.', palay g2 {1;:T; ="}

(5-RCDPERM)

For example, S-RCDPERM tells us that {c:Top,b:Bool,a:Nat} is a subtype of {a:Nat,b:Bool,c:Top}, and vice versa. (This
implies that the subtype relation will not be anti-symmetric.)

S-RCDPERM can be used in combination with S-RCDWIDTH and S-TRANS to drop fields from anywhere in a record
type, not just at the end.

15.2.1 Exercise [?]

Draw a derivation showing that {x:Nat,y:Nat,z:Nat} is a subtype of {y:Nat}.

S-RCDWIDTH, S-RCDDEPTH, and S-RCDPERM each embody a different sort of flexibility in the use of records. For
purposes of discussion, it is useful to present them as three separate rules. In particular, there are languages that
allow some of them but not others; for example, most variants of Abadi and Cardelli's object calculus (1996) omit width

subtyping. However, for purposes of implementation it is more convenient to combine them into a single macro-rule
that does all three things at once. This rule is discussed in the (cf. page 211).

Since we are working in a higher-order language, where not only numbers and records but also functions can be
passed as arguments to other functions, we must also give a subtyping rule for function types-i.e., we must specify

under what circumstances it is safe to use a function of one type in a context where a different function type is
expected.

Ty < & Sa<i 1o

(S-ARROW)
Si=S < T=—12

Notice that the sense of the subtype relation is reversed (contravariant) for the argument types in the left-hand
premise, while it runs in the same direction (covariant) for the result types as for the function types themselves. The
intuition is that, if we have a function f of type S1 — S2, then we know that f accepts elements of type S1; clearly, f will
also accept elements of any subtype T1 of S1. The type of f also tells us that it returns elements of type S2; we can also
view these results belonging to any supertype T2 of S2. That is, any function f of type S1 — S2 can also be viewed as

having type T1 - T2.

An alternative view is that it is safe to allow a function of one type S1 — S2 to be used in a context where another type

file:///C:/DOCUME~1/ADMINI~1/CONFIG~1/Temp/Mit%20Press%20-%20Types%20And%20Programming%20Languages%20(Ml,%20Functional%20Languages)%20-%202002%20!%20-%20(By%20Laxxuss).chm/3447/images/fig205%5F05%2Ejpg
file:///C:/DOCUME~1/ADMINI~1/CONFIG~1/Temp/Mit%20Press%20-%20Types%20And%20Programming%20Languages%20(Ml,%20Functional%20Languages)%20-%202002%20!%20-%20(By%20Laxxuss).chm/3447/images/fig206%5F01%2Ejpg

T1 — T2is expected as long as none of the arguments that may be passed to the function in this context will surprise it

(T1<: S1) and none of the results that it returns will surprise the context (S2 <: T2).

Finally, it is convenient to have a type that is a supertype of every type. We introduce a new type constant Top, plus a
rule that makes Top a maximum element of the subtype relation.

5 < Top

discusses the Top type further.

(5-Top)

orma he subtype relation is the least relation closed under the rules we have given. For easy reference,
15, 154, and f15-3

and

recapitulate the full definition of the simply typed lambda-calculus with records and subtyping,

highlighting the syntactic forms and rules we have added in this chapter. Note that the presence of the reflexivity and
transitivity rules means that the subtype relation is clearly a preorder; however, because of the record permutation
rule, it is not a partial order: there are many pairs of distinct types where each is a subtype of the other.

i Pigisde & . ol
bV R ST TR R T r — T,
. [EFHIE g {E-FRii)
[V=ny “} Fetrl
E.1 e e Bj=* {E-Hem
[Vpaity 0]y, 1=ty o Ft]
v o= valnes - LNty e 1=t Tymty)
= =] RO VRl | ey nyting Frilkes Fi- ' T
T == _ T I'.:u:q.'.nll'u . _L"T'” [T-Hete
[V:Tyreie) ey of rewovals M [Tt =] & {1 }
ety 2 {1,270 e
N evarluadiow reales | iE—t Fi- B0 T \iERON
[0 gy 202} T W (F-Peigki i
L 1
Figure 15-2: Records (Same as Figure 11-7)
"R - Exteails A, (0510 aragd sirragfe record railes 1 520
¥ i
Biew suibdpping ruakes [5=T {5 ="} is a pormeuiational {1,:T; ="~}
{10aT == e {07 ==} (5-RopWianma LLTEE TRt RS & T Rt |
{vEonPErRMi

foreachi S < T,

(1018 == < {1,T, =) 15RO L PTRID

Figure 15-3: Records and Subtyping

To finish the discussion of the subtype relation, let us verify that the example at the beginning of the chapter now
typechecks. Using the following abbreviations to avoid running off the edge of the page,

def

xy = {x=0,y=l}

Ar:{x:Nat}. r.x

L fx:Nat}

Rx
1 {x:Nat,y:Nat}

Rxy ef

and assuming the usual typing rules for numeric constants, we can construct a derivation for the typing statement ? f xy

: Nat as follows:

0@ Mat

13 HNat
S-RCDWIDTH

T-Rro

: Xy

Hxy Bxy < Bx

=T : Rx—Nat

T-5UR
= xyv I Rx
T-App

~ f xy : Nat

file:///C:/DOCUME~1/ADMINI~1/CONFIG~1/Temp/Mit%20Press%20-%20Types%20And%20Programming%20Languages%20(Ml,%20Functional%20Languages)%20-%202002%20!%20-%20(By%20Laxxuss).chm/3447/images/fig207%5F03%2Ejpg

15.2.2 Exercise [?]

Is this the only derivation of the statement ? f xy : Nat?

15.2.3 Exercise [?]

(1) How many different supertypes does {a:Top,b:Top} have? (2) Can you find an infinite descending chain in the
subtype relation-that is, an infinite sequence of types So, S1, etc. such that each Sj+1 is a subtype of Sj? (3) What about
an infinite ascending chain?

15.2.4 Exercise [?]

Is there a type that is a subtype of every other type? Is there an arrow type that is a supertype of every other arrow
type?

15.2.5 Exercise [?7?]

Suppose we extend the calculus with the product type constructor T1 x T2 described in 8§11.6. It is natural to add a

subtyping rule
51 <t T R HEE "
(S-PRODDEPTH)
5| .J-t.S:l ol T| .A.T::-

corresponding to S-RCDDEPTH for records. Would it be a good idea to add a width subtyping rule for products
Ty =Tz =2 Ty (S-PRODWIIXTH)

as well?

< Free Open Study >

< Free Open Study >

15.3 Properties of Subtyping and Typing

Having decided on the definition of the lambda-calculus with subtyping, we now have some work to do to verify that it
makes sense—in particular, that the preservation and progress theorems of the simply typed lambda-calculus
continue to hold in the presence of subtyping.

15.3.1 Exercise [Recommended, ??]

Before reading on, try to predict where difficulties might arise. In particular, suppose we had made a mistake in
defining the subtype relation and included a bogus subtyping rule in addition to those above. Which properties of the
system can fail? On the other hand, suppose we omit one of the subtyping rules—can any properties then break?

We begin by recording one key property of the subtype relation—an analog of the inversion lemma for the typing
relation in the simply typed lambda-calculus (Lemma 9.3.1). If we know that some type S is a subtype of an arrow type,
then the subtyping inversion lemma tells us that S itself must be an arrow type; moreover, it tells us that the left-hand
sides of the arrows must be (contravariantly) related, and so (covariantly) must the right-hand sides. Similar
considerations apply when S is known to be a subtype of a record type: we know that S has more fields
(S-RCDWIDTH) in some order (S-RCDPERM), and that the types of common fields are in the subtype relation
(S-RCDDEPTH).

15.3.2 Lemma [Inversion of the Subtype Relation]

1. IfS<:T1 - T2, then S has the formS1 — S2, with T1<: S1 and S2 <: T2.

2. Ifs« {Ii:Ti”l“n}, then S has the form {kj :Sj“l“m}, with at least the labels {Ii'll”n}—i.e., {Ii”l"n} O

{kj”l"m}—and with Sj <: Tj for each common label li =kj.

Proof: EXERCISE [RECOMMENDED, ?7].

0 prove that types are preserved during evaluation, we begin with an inversion lemma for the typing relation (cf.
for the simply typed lambda-calculus). Rather than stating the lemma in its most general form, we give
here just the cases that are actually needed in the proof of the preservation theorem below. (The general form can be
read off from the algorithmic subtype relation in the next chapter, .)

15.3.3Lemma

1. If??7XxS1.s2:T1 > T2, thenT1<:S1and?, x:S17 S2:T2.

if1..n

2. If?2? {ka:saall”nﬁ : {Ii:Tilll"n}, then {i 1O {kaall..m} and ? ? sa: Tj for each common label ka = I;.

Proof: Straightforward induction on typing derivations, using for the T-SUB case.

Next, we need a substitution lemma for the typing relation. The statement of this lemma is unchanged from the simply
typed lambda-calculus (Lemma 9.3.9), and its proof is nearly identical.

15.3.4 Lemma [Substitution]

If?2,xS?t:Tand??s:S,then?? [x?s]t: T.

Proof: By induction on typing derivations. We need new cases for T-SUB and for the record typing rules T-RCD and

T-PROJ, making straightforward use of the induction hypothesis. The rest is just like the proof of.

Now, the preservation theorem has the same statement as before. Its proof, though, is somewhat complicated by
subtyping at several points.

15.3.5 Theorem [Preservation]
If?2?t: Tandt - t,then??t:T.

Proof: Straightforward inductio yping derivations. Most of the cases are similar to the proof of preservation for the
simply typed lambda-calculus @). We need new cases for the record typing rules and for subsumption.

Case T-VAR: t=Xx
Can't happen (there are no evaluation rules for variables).
Case T-ABS: t=xT1.2

Can't happen (t is already a value).

Case T-APP: t=titz ??t1:T11-T12 ??t2:T11 T=T12

From the evaluation rules in and , we see that there are three rules by which t - t can be derived:

E-Appl, E-App2, and E-AppAbs. Proceed by cases.

Subcase E-APP1: ti — =gt

The result follows from the induction hypothesis and T-App.

Subcase E-App2: Ty = v tr — 13 L =1 &t
Similar.
Subcase E-APPABS: t1=xS11.112 ©=v2 t=[x?v2t2
By Lemma 15.3.3(1), T11 <: S11 and ?,x:S11 ?t12: T12. By T-SUB, ? ?t2: S11. From this and the
substitution femma (15.3.4], we obtain ? ?t' : T12.
Case T-RCD: t=0i= """ 224:7Ti foreachi
T={i:T il I..n}

The only evaluation rule whose left-hand side is a record is E-RCD. From the premise of this rule, we see that
Y57 %4 for some field tj. The result follows from the induction hypothesis (applied to the corresponding assumption ?
?1:Tj) and T-RCD.

Case T-PROJ: 11.n

t=t i 22w Ty T=T

From the evaluation rules in and , we see that there are two rules by which t - t can be derived:

E-PROJ, E-PROJRCD.

Subcase E-PROJ: thi—1t, t=r.1

The result follows from the induction hypothesis and T-PROJ.

Subcase E-PROJRCD: 1= {ka=va al I..m} =k t=vb

BY (2), we have {li L I..n} 0O {ka a I..m} and ? ? va: Tj for each ka =li. In particular, ?? vp:
Tj, as desired.

Case T-SUB: t:S S<T

By the induction hypothesis, ??t : S. By T-SUB,??t: T.

To prove that well-typed terms cannot get stuck, we begin (as in) with a canonical forms lemma, which tells
us the possible shapes of values belonging to arrow and record types.

15.3.6 Lemma [Canonical Forms]

1. Ifvis aclosed value of type T1 -T2, then v has the form x:S 1 .t2.

2. Ifvis aclosed value of type {li :T i L |"n}, then v has the form {kj =vj a |"m}, with {li
I..m}

il I..n} 0 {kaal
Proof: EXERCISE [RECOMMENDED, ??7].

The progress theorem and its proof are now quite close to what we saw in the simply typed lambda-calculus. Most of
the burden of dealing with subtyping has been pushed into the canonical forms lemma, and only a few small changes
are needed here.

15.3.7 Theorem [Progress]

If tis a closed, well-typed term, then either t is a value or else there is some t' witht — t'.

Proof: By straightforward induction on typing derivations. The variable case cannot occur (becauset is closed). The
case for lambda-abstractions is immediate, since abstractions are values. The remaining cases are more interesting.

Case T-APP: t=tity ?t1:T11 > T12 ?2:T11 T=T12

By the induction hypothesis, either t1 is a value or else it can make a step of evaluation; likewise t2. If t1 can take a
step, then rule E-Appl applies to t. If t1 is a value and t2 can take a step, then rule E-App2 applies. Finally, if both t1

and t2 are values, then the canonical forms Jemma (15.3.6] tells us that t1 has the form x:S 11 . t12, so rule E-AppAbs

applies to t.

Case T-RCD: 11.n

t={|i=tii } foreachiil.n, 2 : T

By the induction hypothesis, each tj either is already a value or can make a step of evaluation. If all of them are values,
then tis a value. On the other hand, if at least one can make a step, then rule E-RCD applies to t.

Case T-PROJ: t=t1. 20 i T il I..n} T=T|

By the induction hypothesis, either t1 is a value or it can make an evaluation step. If t1 can make a step, then (by

E-PROJ) so can t. If t1 is a value, then by the canonical forms Jemma (15.3.6]t1 has the form {ka=vj a I..m}, with {lj L I..n}

U {ka al I..m} and with ? vj : Tj for each li =kj. In particular, lj is among the labels {ka al I"m} of t1, from which rule

E-PROJRCD tells us that t itself can take an evaluation step.

4 FREWIOUZE

< Free Open Study >

15.4 The Top and Bottom Types

The maximal type Top is not a necessary part of the simply typed lambda-calculus with subtyping; it can be removed
without damaging the properties of the system. However, it is included in most presentations, for several reasons.
First, it corresponds to the type Object found in most object-oriented languages. Second, Top is a convenient technical
device in more sophisticated systems combining subtyping and parametric polymorphism. For example, in System F<:

(Ehapters 24 and Rg), the presence of Top allows us to recover ordinary unbounded quantification from bounded
quantification, streamlining the system. Indeed, even records can be encoded in F<:, further streamlining the

presentation (at least for purposes of formal study); this encoding critically depends on Top. Finally, since Top's
behavior is straightforward and it is often useful in examples, there is little reason not to keep it.

It is natural to ask whether we can also complete the subtype relation with a minimal element—a type Bot that is a
subtype of every type. The answer is that we can: this extension is formalized in figure 15-4.

- «i Bot Exfenls A, (13-1F
r 1

Mt SR e Mol RIRIHVER G PRI Gt T
T == R

Rat AT D Bot « | ST

Figure 15-4: Bottom Type

The first thing to notice is that Bot is empty—there are no closed values of type Bot. If there were onei safv then the

subsumption rule plus S-Bot would allow us to derive ? v : Top— Top, from which the canonical forms Jemma (15.3.4,
which still holds under the extension) tells us that v must have the form x:S 1..t2 for some S1 and t2. On the other hand,

by subsumption, we also have ? v : {}, from which the canonical forms lemma tells us that v must be a record. The

syntax makes it clear that v cannot be both a function and a record, and so assuming that ? v : Bot has led us to a
contradiction.

The emptiness of Bot does not make it useless. On the contrary: Bot provides a very convenient way of expressing the
fact that some operations (in particular, throwing an exception or invoking a continuation) are not intended to return.
Giving such expressions the type Bot has two good effects: first, it signals to the programmer that no result is expected
(since if the expression did return a result, it would be a value of type Bot); second, it signals to the typechecker that

such an expres afely be used in a context expecting any type of value. For example, if the exception-raising
term error from Ehagter 14 is given type Bot, then a term like

XxT.
if <check that x is reasonable> then
<compute result>
else
error

will be well typed because, no matter what the type of the normal result is, the term error can always be given the
same type by subsumption, so the two branches of the if are compatible, as required by T-If.[g]
Unfortunately, the presence of Bot significantly complicates the problem of building a typechecker for the system. A

simple typechecking algorithm for a language with subtyping needs to rely on inferences like "if an application t1 t2 is
well typed, then t1 must have an arrow type." In the presence of Bot, we must refine this to "if t1 t2 is well typed, then t1

must have either an arrow type or type Bot"; this point is expanded in §16.4. The complications are magnified further in
systems with bounded quantification; see g28.9.

These complications show that adding Bot is a more serious step than adding Top. We shall omit it from the systems

we consider in the remainder of the book.

Q]In languages with polymorphism, such as ML, we can also use "X.X as a result type for error and similar constructs.
This achieves the same effect as Bot by different means: instead of giving error a type that can be promoted to any
type, we give it a type scheme that can be instantiated to any type. Though they rest on different foundations, the two
solutions are quite similar: in particular, the type "X.X is also empty.

< Free Open Study >

< Free Open Study >

15.5 Subtyping and Other Features

As we extend our simple calculus with subtyping toward a full-blown programming language, each new feature must
be examined carefully to see how it interacts with subtyping. In this section we consider some of the features we have

seen at this point.[g] Later chapters will take ignificantly more complex) interactions betweep subtyping and
features such as parametric polymorphism (Chapters 2¢ and R8), recursive types (Chapters 24 and R1)), and type
operators (Chapter 31)).

Ascription and Casting

The ascription operator t as T was introduced in as a form of checked documentation, allowing the programmer
to record in the text of the program the assertion that some subterm of a complex expression has some particular type.
In the examples in this book, ascription is also used to control the way in which types are printed, forcing the
typechecker to use a more readable abbreviated form instead of the type that it has actually calculated for a term.

In languages with subtyping such as Java and C++, ascription becomes quite a bit more interesting. It is often called
casting in these languages, and is written (T)t. There are actually two quite different forms of casting-so-called up-casts
and down-casts. The former are straightforward; the latter, which involve dynamic type-testing, require a significant
extension.

Up-casts, in which a term is ascribed a supertype of the type that the typechecker would naturally assign it, are
instances of the standard ascription operator. We give a termt and a type T at which we intend to "view"t. The
typechecker verifies that T is indeed one of the types of t by attempting to build a derivation

Fr't:5 S<: T
Fr=t:T

T-5UE

T-ASCRIBE
MN-tasT:T

using the "natural” typing of t, the subsumption rule T-SUB, and the ascription rule from :
M-ty =T

e {T-ASCRIBE)
F~tyasT:T

Up-casts can be viewed as a form of abstraction-a way of hiding the existence of some parts of a value so that they
cannot be used in some surrounding context. For example, if tis a record (or, more generally, an object), then we can
use an up-cast to hide some of its fields (methods).

A down-cast, on the other hand, allows us to assign types to terms that the typechecker cannot derive statically. To
allow down-casts, we make a somewhat surprising change to the typing rule for as:

(I S -
- (T-DOWNCAST)
[=tyasT:T

That is, we check that t1 is well typed (i.e., that it has some type S) and then assign it type T, without making any
demand about the relation between S and T. For example, using down-casting we can write a function f that takes any
argument whatsoever, casts it down to a record with an a field containing a number, and returns this number:

f=Xx:Top) (x as {a:Nat}).a;

In effect, the programmer is saying to the typechecker, "I know (for reasons that are too complex to explain in terms of
the typing rules) that f will always be applied to record arguments with numeric a fields; | want you to trust me on this

one.

Of course, blindly trusting such assertions will have a disastrous effect on the safety of our language: if the
programmer somehow makes a mistake and applies f to a record that does not contain an a field, the results might
(depending on the details of the compiler) be completely arbitrary! Instead, our motto should be "trust, but verify." At
compile time, the typechecker simply accepts the type given in the down-cast. However, it inserts a check that, at run
time, will verify that the actual value does indeed have the type claimed. In other words, the evaluation rule for
ascriptions should not just discard the annotation, as our original evaluation rule for ascriptions did,

vias [— v {E-ASCRIBE)

but should first compare the actual (run-time) type of the value with the declared type:
vy = T .
: (E-DXOWNCAST)

viasT — v

For example, if we apply the function f above to the argument {a=5,b=true}, then this rule will check (successfully) that ?
{a=5,b=true} : {a:Nat}. On the other hand, if we apply f to {b=true}, then the E-DOWNCAST rule will not apply and
evaluation will get stuck at this point. This run-time check recovers the type preservation property.

15.5.1 Exercise [?? ?]

Prove this.
Of course, we lose progress, since a well-typed program can certainly get stuck by attempting to evaluate a bad
down-cast. Languages that provide down-casts normally address this in one of two ways: either by making a failed
down-cast raise a dynamic exception that can be caught and handled by the program (cf.) or else by
replacing the down-cast operator by a form of dynamic type test:
-t 15 [,xiTFTz: U -tz : U
F'=1ift; inT then x—~t: elsety : U
vy i T

ifwvyinT then x—t> else ty — [x — v]tz

(T-TYPETEST)

(E-TYPETESTL)

vy ¢ T
(E-TYPETESTZ2)

ifv,inT then x—t; else t3 — T3

Uses of down-casts are actually quite common in languages like Java. In particular, down-casts support a kind of
"poor-man's polymorphism." For example, "collection classes" such as Set and List are monomorphic in Java: instead
of providing a type List T (lists containing elements of type T) for every type T, Java provides just List, the type of lists
whose elements belong to the maximal type Object. Since Object is a supertype of every other type of objects in Java,
this means that lists may actually contain anything at all: when we want to add an element to a list, we simply use
subsumption to promote its type to Object. However, when we take an element out of a list, all the typechecker knows
about it is that it has type Object. This type does not warrant calling most of the methods of the object, since the type
Object mentions only a few very generic methods for printing and such, which are shared by all Java objects. In order
to do anything useful with it, we must first downcast it to some expected type T.

t has been argued-for example, by the designers of Pizza (bdersky and Wadler, 199 Zl)(ﬁj_w
Stoutamire, and Wadler, 199§), PolyJ ers, Bank, and Liskov, 1997), and NextGen wright and Steele

[199d)-that it is better to extend the Java type system with real polymorphism (cf. Chapter 23) which is both safer and
more efficient than the down-cast idiom, requiring no run-time tests. On the other hand, such extensions add
significant complexity to an already-large language, interacting with many other features of the language and type

system (seelgarashi Pierce, and Wadler 199d, lgarashi Pierce, and Wadler 200]|, for example); this fact supports a

view that the down-cast idiom offers a reasonable pragmatic compromise between safety and complexity.

Down-casts also play a critical role in Java's facilities for reflection. Using reflection, the programmer can tell the Java
run-time system to dynamically load a bytecode file and create an instance of some class that it contains. Clearly,
there is no way that the typechecker can statically predict the shape of the class that will be loaded at this point (the
bytecode file can be obtained on demand from across the net, for example), so the best it can do is to assign the
maximal type Object to the newly created instance. Again, in order to do anything useful, we must downcast the new
object to some expected type T, handle the run-time exception that may result if the class provided by the bytecode file
does not actually match this type, and then go ahead and use it with type T.

To close the discussion of down-casts, a note about implementation is in order. It seems, from the rules we have
given, that including down-casts to a language involves adding all the machinery for typechecking to the run-time
system. Worse, since values are typically represented differently at run time than inside the compiler (in particular,
functions are compiled into byte-codes or native machine instructions), it appears that we will need to write a different
typechecker for calculating the types needed in dynamic checks. To avoid this, real languages combine down-casts
with type tags-single-word tags (similar in some ways to ML's datatype constructors and the variant tags in §11.10)
hat capture a run-time "residue" of compile-time types and that are sufficient to perform dynamic subtype tests.
Chapter 19 develops one instance of this mechanism in detail.

Variants

The subtyping rules for variants (cf.) are nearly identical to the ones for records; the only difference is that the
width rule S-VARIANTWIDTH allows new variants to be added, not dropped, when moving from a subtype to a

supertype. The intuition is that a tagged expression <I=t> belongs to a variant type <Ii:Ti”1"n> if its labell is one of the
possible labels {Ti} listed in the type; adding more labels to this set decreases the information it gives us about its
elements. A singleton variant type <I1 :T1> tells us precisely what label its elements are tagged with; a two-variant type
<l1:T1,12:T2> tells us that its elements have either label I1 or label 12, etc. Conversely, when we use variant values, it

is always in the context of a case statement, which must have one branch for each variant listed by the type-listing
more variants just means forcing case statements to include some unnecessary extra branches.

oy Eadvirmads A (1510 gl cdivpisde wilrigdel canke (T 1-F I
i]
Mo pTiCTRC e M spabiHag Fules S T
L8 T e
zl=t= (No As) daajiplifip <1paTi =f &2 <05 Eets

=N A RIARTI DT

Mo TG Pk e=m:T foreachi S« T

ety T <15 =y ol Ty

I
T L% AN 5 ARLANTDEFTH]

i« =ty
2l 15y 0 s A permiation of <1, =T, " "=

E T I =) [T Ll
15 VARIANTFIERM]

L]

Figure 15-5: Variants and Subtyping

Another consequence of combining subtyping and variants is that we can drop the annotation from the tagging

construct, writing just <I=t> instead of <I=t> as <I; :Ti'll"n>, as we did in , and changing the typing rule for tagging
so that it assigns <l1=t1> the precise type <l1 :T1>. We can then use subsumption plus S-VARIANTWIDTH to obtain
any larger variant type.

Lists

We have seen a number of examples of covariant type constructors (records and variants, as well as function types,
on their right-hand sides) and one contravariant constructor (arrow, on the left-hand side). The List constructor is also
covariant: if we have a list whose elements have type S1, and S1 <: T1, then we can safely regard our list as having
elements of type T1.

2] =5 1]

- : (S-L1sT)
List 5y <: List T,

References

Not all type constructors are covariant or contravariant. The Ref constructor, for example, must be taken to be invariant
in order to preserve type safety.

S1 <1 Ty Ty < 5

S-REF
Ref 5, < Ref T, [}

For Ref S1 to be a subtype of Ref T1, we demand that S1 and T1 be equivalent under the subtype relation-each a
subtype of the other. This gives us the flexibility to reorder the fields of records under a Ref constructor-for example,
Ref {a:Bool,b:Nat} <: Ref {b:Nat,a:Bool}-but nothing more.

The reason for this very restrictive subtyping rule is that a value of type Ref T1 can be used in a given context in two
different ways: for both reading (!) and writing (:=). When it is used for reading, the context expects to obtain a value of
type T3, so if the reference actually yields a value of type S1 then we need S1 <: T1 to avoid violating the context's
expectations. On the other hand, if the same reference cell is used for writing, then the new value provided by the
context will have type T1. If the actual type of the reference is Ref S1, then someone else may later read this value and
use it as an Sy; this will be safe only if T1 <: S1.

15.5.2 Exercise [? ?]

(1) Write a short program that will fail with a run-time type error (i.e., its evaluation will get stuck) if the first premise of
S-REF is dropped. (2) Write another program that will fail if the second premise is dropped.
Arrays

Clearly, the motivations behind the invariant subtyping rule for references also apply to arrays, since the operations on
arrays include forms of both dereferencing and assignment.

S| <. T| T| <. 5|

(5-ARRAY)
Array 5) <: Array T

Interestingly, Java actually permits covariant subtyping of arrays:

< T

. . (S-ARRAY]JAVA)
Array 5 <: Array T,

(in Java syntax, S1[] <: T1[]). This feature was originally introduced to compensate for the lack of parametric

polymorphism in the typing of some basic operations such as copying parts of arrays, but is now generally considered

a flaw in the language design, since it seriously affects the performance of programs involving arrays. The reason is

that the unsound subtyping rule must be compensated with a run-time check on every assignment to any array, to
make sure the value being written belongs to (a subtype of) the actual type of the elements of the array.

15.5.3 Exercise [??7? 7]

Write a short Java program involving arrays that type-checks but fails (by raising an ArrayStoreException) at run time.

References Again

A more refined analysis of references, first explored by l?evnolds in the language Forsythe (19881, can be obtained by
introducing two new type constructors, Source and Sink. Intuitively, Source T is thought of as a capability to read values

of type T from a cell (but which does not permit assignment), while Sink T is a capability to write to a cell. Ref Tis a
combination of these two capabilities, giving permission both to read and to write.

The typing rules for dereferencing and assignment) are modified so that they demand only the
appropriate capability.

X+ t; : Source Ty,

(T-DEREF
FrZXZe= 1ty : Ty }

FNErt; 2 Sink Ty FrNE-t
FNXEr =tz : Unit

» T

(T-ASSIGN)

Now, if we have only the capability to read values from a cell and if these values are guaranteed to have type Si, then
it is safe to "downgrade" this to a capability to read values of type T1, as long as Si is a subtype of T1. That is, the
Source constructor is covariant.

51 < T

. i . . (5-SOURCE)
Source 5 <: Source Ty

Conversely, a capability to write values of type S1 to a given cell can be downgraded to a capability to write values of
some smaller type T1: the Sink constructor is contravariant.

Ty <2 5 :
Toep— ; (S5-SINK)
S51nk 5; <2 51nk T,

Finally, we express the intuition that Ref T1 is a combination of read and write capabilities by two subtyping rules that
permit a Ref to be downgraded to either a Source or a Sink.

Ref T; =: Source T, (S-REFSOURCE)

Ref T; < 5ink T, (S-REFSINK)

Channels
recent

The same intuitions (and identical subtyping rules) form the basis for the I(ie ment of channel types in

concurrent programming languages such as Pict (Pierce and Turner, 2000;). The key
observation is that, from the point of view of typing, a communication channel behaves exactly like a reference cell: it
can be used for both reading and writing, and, since it is difficult to determine statically which reads correspond to
which writes, the only simple way to ensure type safety is to require that all the values passed along the channel must
belong to the same type. Now, if we pass someone only the capability to write to a given channel, then it is safe for

them to pass this capability to someone else who promises to write values of a smaller type-the "output channel” type
constructor is contravariant. Similarly, if we pass just the capability to read from a channel, then this capability can
safely be downgraded to a capability for reading values of any larger type-the "input channel" constructor is covariant.

Base Types

In a full-blown language with a rich set of base types, it is often convenient to introduce primitive subtype relations
among these types. For example, in many languages the boolean values true and false are actually represented by the
numbers 1 and 0. We can, if we like, expose this fact to the programmer by introducing a subtyping axiom Bool <: Nat.
Now we can write compact expressions like 5*b instead of if b then 5 else 0.

E]Most of the extensions discussed in this section are not implemented in the fullsub checker.

1 FEEWIOUE

< Free Open Study >

15.6 Coercion Semantics for Subtyping

Throughout this chapter, our intuition has been that subtyping is "semantically insignificant." The presence of
subtyping does not change the way programs are evaluated; rather, subtyping is just a way of obtaining additional
flexibility in typing terms. This interpretation is simple and natural, but it carries some performance
penalties-particularly for numerical calculations and for accessing record fields-that may not be acceptable in
high-performance implementations. We sketch here an alternative coercion semantics and discuss some new issues
that it, in its turn, raises. This section can be skipped if desired.

Problems with the Subset Semantics

As we saw in , it can be convenient to allow subtyping between different base types. But some "intuitively
reasonable" inclusions between base types may have a detrimental effect on performance. For example, suppose we
introduce the axiom Int <: Float, so that integers can be used in floating-point calculations without writing explicit
coercions-allowing us to write, for example, 4.5 + 6 instead of 4.5 + intToFloat(6). Under the subset semantics, this
implies that the set of integer values must literally be a subset of the set of floats. But, on most real machines, the
concrete representations of integers and floats are entirely different: integers are usually represented in
twos-complement form, while floats are divided up into mantissa, exponent, and sign, plus some special cases such as
NaN (not-a-number).

To reconcile these representational differences with the subset semantics of subtyping, we can adopt a common
tagged (or boxed) representation for numbers: an integer is represented as a machine integer plus a tag (either in a
separate header word or in the high-order bits of the same word as the actual integer), and a float is represented as a
machine float plus a different tag. The type Float then refers to the entire set of tagged numbers (floats and ints), while
Int refers just to the tagged ints.

This scheme is not unreasonable: it corresponds to the representation strategy actually used in many modern
language implementations, where the tag bits (or words) are also needed to support garbage collection. The downside
is that every primitive operation on numbers must actually be implemented as a tag check on the arguments, a few
instructions to unbox the primitive numbers, one instruction for the actual operation, and a couple of instructions for
re-boxing the result. Clever compiler optimizations can eliminate some of this overhead, but, even with the best
currently available techniques, it significantly degrades performance, especially in heavily numeric code such as
graphical and scientific calculations.

A different performance problem arises when records are combined with subtyping-in particular, with the permutation
rule. Our simple evaluation rule for field projection

{li=v; "} 1 — v (E-PrROJRCD)

can be read as "search for Ij among the labels of the record, and yield the associated value vj." But, in a real
implementation, we certainly do not want to perform a linear search at run time through the fields of the record to find
the desired label. In a language without subtyping (or with subtyping but without the permutation rule), we can do
much better: if the label Ij appears third in the type of the record, then we know statically that all run-time values with
this type will have lj as their third field, so at run time we do not need to look at the labels at all (in fact, we can omit
them completely from the run-time representation, effectively compiling records into tuples). To obtain the value of the
lj field, we generate an indirect load through a register pointing to the start of the record, with a constant offset of 3
words. The presence of the permutation rule foils this technique, since knowing that some record value belongs to a
type where lj appears as the third field tells us nothing at all, now, about where the |j field is actually stored in the
record. Again, clever optimizations and run-time tricks can palliate this problem, but in general field projection can

. . 4]
require some form of search at run tlme.[-]

Coercion Semantics

We can address both of these problems by adopting a different semantics, in which we "compile away" subtyping by
replacing it with run-time coercions. If an Int is promoted to a Float during typechecking, for example, then at run time
we physically change this number's representation from a machine integer to a machine float. Similarly, a use of the

record permutation subtyping rule will be compiled into a piece of code that literally rearranges the order of the fields.
Primitive numeric operations and field accesses can now proceed without the overhead of unboxing or search.

Intuitively, the coercion semantics for a language with subtyping is expressed as a function that transforms terms from
this language into a lower-level language without subtyping. Ultimately, the low-level language might be machine code
for some concrete processor. For purposes of illustration, however, we can keep the discussion on a more abstract
level. For the source language, we choose the one we have been using for most of the chapter-the simply typed
lambda-calculus with subtyping and records. For the low-level target language, we choose the pure simply typed
lambda-calculus with records and a Unit type (which we use to interpret Top).

Formally, the compilation consists of three translation functions-one for types, one for subtyping, and one for typing.
For types, the translation just replaces Top with Unit. We write this function as o -0 .

0 Topo = Unit
0T1-~T20 = 0T10 -0 T20
0 {Ii:Ti”l"n}o = {ii0 Tio |||..n}

For example, 0 Top —{a:Top,b:Top}o = Unit— {a:Unit,b:Unit}. (The other translations will also be written o0 -0 ; the context
will always make it clear which one we are talking about.)

To translate a term, we need to know where subsumption is used in typechecking it, since these are the places where
run-time coercions will be inserted. One convenient way of formalizing this observation is to give the translation as a
function on derivations of typing statements. Similarly, to generate a coercion function transforming values of type S to
type T, we need to know not just that S is a subtype of T, but also why. We accomplish this by generating coercions
from subtyping derivations.

A little notation for naming derivations is needed to formalize the translations. Write C :: S <: Tto mean "Cis a
subtyping derivation tree whose conclusion is S <: T." Similarly, write D :: ?? t : T to mean "D is a typing derivation
whose conclusionis??t: T.

Let us look first at the function that, given a derivation C for the subtyping statement S <: T, generates a coercion o Co .
This coercion is nothing but a function (in the target language of the translation, A) from type 0 So to type o To . The
definition goes by cases on the final rule used in C.

T T = Ax:[T]. x
TTDD {5-Tuwrk = Ax: [ES]] L unit
(Cins<aU CGau<aT :
e s< T = s = Aax:[s]. DC:IMIC T %)
ToxTi<s Grs:<T:
- |51—5-l> =T s = AF:[S—So0. Ax:[T,1.
o ') [CDFIC T %))
e Tt d = SR Tl = Ar:{1;:[T;] elnrt},
-IJ:Tl feln+k = 1|:T;"|' iR 1T I I
- P e Qpmr. 2y 0}
foreachi oS < T ;
R T T B TR T Rk w"’""ﬂ = Ar:{1;: 051 """},

file:///C:/DOCUME~1/ADMINI~1/CONFIG~1/Temp/Mit%20Press%20-%20Types%20And%20Programming%20Languages%20(Ml,%20Functional%20Languages)%20-%202002%20!%20-%20(By%20Laxxuss).chm/3447/images/fig225%5F01%2Ejpg

| 3 G T | T 11 _[-[l_:IIEIIHr..'l‘].'.J..n}

{k_r:S'J "I'F"“} E.'I'I:.'l"l"l'fl. Uf {-!r:T| il n} . . =l
'IJ: '_r.:J..n : -lr:TI E] 1‘“‘“'”“""“]] ﬂr'{kJ'uslﬂJ }"'
[{ S } - { } {-I.I_=r-.-1‘ |-\.'-]-|'J}

15.6.1Lemma
IfC::S<:T,then?0Co :0So -0 To.
Proof: Straightforward induction on C.
Typing derivations are translated in a similar way. If D is a derivation of the statement? ? t: T, then its translation o Do
is a target-language term of type o To . This trantaﬂgnmmm&enmwmmﬂjr the group at
the University of Pennsylvania that first studied it (Breazu-Tannen, Coguand, Gunter, and Scedrov, 1991J).

x:Tel B
r| T T-Vagl = x

(DT -t i Ta
F=Ax:Ty : Ty =Tz

(1 Ams = Ax:[Ti]. [D:]

-111 st Ti=Ti =Tt ! Tu -
T | - ez

foreachi T aTl+-1 T,
r‘ [{-Ij=tr [I'= |'..r| . {'Ir I'TI' (= F..n}

T-Reml — {'|J=I]'-I}r_]] -—'n'..n]_

Iy el b {1 T; =)
Ce=ty.0; 0T,

AT Pungy = I]:ﬂi]]-]j

[D:r-t:s cCcus<T
r-t:T

fI-5ums

[Ch il

15.6.2 Theorem

IfD:??t:T,theno 20 ?0 Do :0 To,where o 20 is the point-wise extension of the type translation to contexts: 0 @o
=gando? xTo =070 ,x:0To0.

Proof: Straightforward induction on D, using for the T-SUB case.

Having defined these translations, we can drop the evaluation rules for the high-level language with subtyping, and
instead evaluate terms by typechecking them (using the high-level typing and subtyping rules), translating their typing
derivations to the low-level target language, and then using the evaluation relation of this Ianguage to obtain their
operational behavior. This strategy is actually used in some high-performa wh
| eague

F;mp_lng_mh_ag_mﬂjxle compiler group's experimental Java compiler (League, Shao, and Trifonov, 1999;
rifonov, and Shao, 2001).

15.6.3 Exercise [??77? 7]

Modify the translation
language. Check that

above to use simply typed lambda-calculus with tuples (instead of records) as a target

10
heorem 15.6.4 still holds.

Coherence

When we give a coercion semantics for a language with subtyping, there is a potential pitfall that we need to be careful
to avoid. Suppose, for example, that we extend the present language with the base types Int, Bool, Float, and String.
The following primitive coercions might all be useful:

file:///C:/DOCUME~1/ADMINI~1/CONFIG~1/Temp/Mit%20Press%20-%20Types%20And%20Programming%20Languages%20(Ml,%20Functional%20Languages)%20-%202002%20!%20-%20(By%20Laxxuss).chm/3447/images/fig225%5F01%2Ejpg
file:///C:/DOCUME~1/ADMINI~1/CONFIG~1/Temp/Mit%20Press%20-%20Types%20And%20Programming%20Languages%20(Ml,%20Functional%20Languages)%20-%202002%20!%20-%20(By%20Laxxuss).chm/3447/images/fig226%5F01%2Ejpg

0 Bool <: Into = J:Bool. if b then 1 else 0

0 Int <: Stringo = intToString
0 Bool <: Floato = b:Bool. if b then 1.0 else 0.0
0 Float <: Stringo = floatToString

The functions intToString and floatToString are primitives that construct string representations of numbers. For the sake
of the example, suppose that intToString(1) = "1", while floatToString(1.0) = "1.000".

Now, suppose we are asked to evaluate the term
(X:String.x) true;

using the coercion semantics. This term is typable, given the axioms above for the primitive types. In fact, it is typable
in two distinct ways: we can either use subsumption to promote Bool to Int and then to String, to show that true is an
appropriate argument to a function of type String — String, or we can promote Bool to Float and then to String. But if we
translate these derivations into A _,, we get different behaviors. If we coerce true to type Int, we get 1, from which
intToString yields the string "1". But if we instead coerce true to a float and then, using floatToString, to a String (following
the structure of a typing derivation in which true : String is proved by going via Float), we obtain "1.000". But "1" and
"1.000" are very different strings: they do not even have the same length. In other words, the choice of how to prove ?
(X:String. x) true : String affects the way the translated program behaves! But this choice is completely internal to the
compiler-the programmer writes only terms, not derivations-so we have designed a language in which programmers
cannot control or even predict the behavior of the programs they write.

The appropriate response to such problems is to impose an additional requirement, called coherence, on the definition
of the translation functions.

15.6.4 Definition

A translationo -0 from typing derivations in one language to terms in another is coherent if, for every pair of
derivations D1 and D2 with the same conclusion ? ? t : T, the translations 0 D10 and o D2o are behaviorally equivalent
terms of the target language.

In particular, the translations given above (with no base types) are coherent. To recover coherence when we consider
base types (with the axioms above), it suffices to change the definition of the floatToString primitive so that
floatToString(0.0) = "0" and floatToString(1.0) = "1".

roving coherence, especiall ages,ﬁaumm;)usiness. See Reynolds (1980},
eynolds (1991].

Breazu-Tannen et al. (1991], Curien and Ghelli (1992}, and

H]Similar observations apply to accessing fields and methods of objects, in languages where object subtyping allows
permutation. This is the reason that Java, for example, restricts subtyping between classes so that new fields can only
be added at the end. Subtyping between interfaces (and between classes and interfaces) does allow permutation-if it
did not, interfaces would be of hardly any use-and the manual explicitly warns that looking up a method from an
interface will in general be slower than from a class.

< Free Open Study >

< Free Open Study >

15.7 Intersection and Union Types

mmmmwmmﬁ ppo. Dezani, Sallé
Coppo. Dezani-Ciancaalini. and Sallé,_1979: Pottinger, 1980
1984, |l998d), Ijindley (19921, and Pierce (1991b}).

The inhabitants of the intersection type T1 [T2 are terms belonging to both S and T-that is, T1 [J T2 is an

order-theoretic meet (greatest lower bound) of T1 and T2. This intuition is captured by three new subtyping rules.

hihalag T, (S-INTER1)
Tialz T2 (S-INTER2Z)
S<i T S< T,

ol il (S-INTERZ)
S<i Ty AT ?

One additional rule allows a natural interaction between intersection and arrow types.
=Ty A 5=Tz2 < 5~ (T1AT2) (S-INTER4)

The intuition behind this rule is that, if we know a term has the function types S—T1 and S T2, then we can certainly
pass it an S and expect to get back both aT1 and aT2.

The power of intersection types is illustrated by the fact that, in a call-by-name variant of the simply typed
lambda-calculus with subtyping and intersections, the set of untyped lambda-terms that can be assigned types is
exactly the set of normalizing terms-j m is typable iff its evaluation terminates! This immediately implies that the
type reconstruction problem (see .Cha;ter 23) for calculi with intersections is undecidable.

More pragmatically, the interest of intersection types is that they support a form of finitary overloading. For example,
we might assign the type (Nat - Nat— Nat) [(Float— Float — Float) to an addition operator that can be used on both
natural numbers and floats (using tag bits in the runtime representation of its arguments, for example, to select the
correct instruction).

Unfortunately, the power of intersection types raise ne difficult pragmatic issues for language designers. So far,
only one full-scale language, Forsythe (Reynolds, 1989), has included intersections in their most gen rﬁ_ﬂm__A_l
d form known as refinement types may prove more manageable (Ereeman and Pfenning, 1991; Pfenning,

_19933; avies, 199

The dual notion of union types, T1 V T2, also turns out to be quite useful. Unlike sum and variant types (which,

—t

confusingly, are sometimes also called "unions"), T1 V T2 denotes the ordinary union of the set of values belonging to
T1 and the set of values belonging to T2, with no added tag to identify the origin of a given element. Thus, Nat V Natis

actually just another name for Nat. Non-disjoint union types have long played an important role in program analysis
alsbera and Paviopoulou, 1999), but have featured in few programming languages (notably Algol 68; cf. H

Wiingaarden et al., 1975); recently, though, they are increasingly being applied in the contex
rocessing of "semistructured" database formats such as XML (Buneman and Pierce, 1999; Hosoya, Vouillon, and
pierce, 2001)).

The main formal difference between disjoint and non-disjoint union types is that the latter lack any kind of case
construct: if we know only that a value v has type T1 V T2, then the only operations we can safely perform on v are
ones that make sense for both T1 and T2. (For example, if T1 and T2 are records, it makes sense to project v on their
common fields.) The untagged union type in C is a source of type safety violations precisely because it ignores this
restriction, allowing any operation on an element of T1 V T2 that makes sense for either T1 or T2.

4 FREEWIOUE

< Free Open Study >

15.8 Notes

i btyping in programming languages goes back to the 1960s, in Simula (l3i twistle,_Dahl_Mvhrhaug, andl
aard, 1979) and its relatives. The first formal treatments are due to l?evnolds (1980] and [Cardelli (19841

The typing and-especially-subtyping rules dealing with records are somewhat heavier than most of the other rules we
have seen, involving either variable numbers of premises (one for each field) or additional mechanisms like
permutations on the indices of fields. There are many other ways of writing these rules, but all either suffer from similar
complexity or else avoid it by introducing informal conventions (e.g., ellipsis: "I1:T1 ... In:Tn". Frustration with this state
of affairs led Cardelli and Mitchell to develop their calculus of Operations on Records (1991), in which the macro
operation of creating a multi-field record is broken down into a basic empty record value plus an opiﬁargn for adding a
ingle field at a time. Additional operations such as in-place field update and record concatenation (Harper and Pierce,
can also be considered in this setting. The typing rules for these operations be come rather subtle, especially in
the presence of parametric polymorphism, so most language designers prefer to stick with ordinary records.
Nevertheless, Cardelli and Mitchell's system remains an important conceptual lan ﬁ ﬁmﬂj ative treatm
984, 11989

ecords based on row-variable polymorphism has been developed by (Wand 19871), Rémyv (199 98

994), and others, and forms the basis for the object-oriented features of OCaml (hémv and Vouillon, 199d; ouillon,
P00d).

=

The fundamental problem addressed by a type theory is to insure that programs have meaning.
The fundamental problem caused by a type theory is that meaningful programs may not have
meanings ascribed to them. The quest for richer type systems results from this tension. -Mark

Mannasse

< Free Open Study >

< Free Open Study >

Chapter 16: Metatheory of Subtyping

Overview

The definition in the of the simply typed lambda-calculus with subtyping is not immediately suitable

for implementation. Unlike the other calculi we have seen, the rules of this system are not syntax directed—they
cannot just be "read from bottom to top" to yield a typechecking algorithm. The main culprits are the rules of
subsumption (T-SUB) in the typing relation and transitivity (S-TRANS) in the subtype relation.

The reason T-SUB is problematic is that the term in its conclusion is specified as a bare metavariable t:
B ST

(T-5UR)
B o |
Every other typing rule specifies a term of some specific form—T-ABS applies only to lambda-abstractions, T-VAR
only to variables, etc.—while T-SUB can be applied to any kind of term. This means that, if we are given a term t
whose type we are trying to calculate, it will always be possible to apply either T-SUB or the other rule whose
conclusion matches the shape of t.

S-TRANS is problematic for the same reason—its conclusion overlaps with the conclusions of all the other rules.

S< U U< T

i5-TRANS)
S« T

Since S and T are bare metavariables, we can potentially use S-TRANS as the final rule in a derivation of any
subtyping statement. Thus, a naive "bottom to top" implementation of the subtyping rules would never know whether to
try using this rule or whether to try another rule whose more specific conclusion also matches the two types whose

membership in the subtype relation we are trying to check. E

There is one other problem with S-TRANS. Both of its premises mention the metavariable U, which does not appear in
the conclusion. If we read the rule naively from bottom to top, it says that we should guess a type U and then attempt
to show that S <: U and U <: T. Since there are an infinite number of Us that we could guess, this strategy has little
hope of success.

The S-REFL rule also overlaps the conclusions of the other subtyping rules. This is less severe than the problems with
T-SUB and S-TRANS: the reflexivity rule has no premises, so if it matches a subtyping statement we are trying to
prove, we can succeed immediately. Still, it is another reason why the rules are not syntax directed.

The solution to all of these problems is to replace the ordinary (or declarative) subtyping and typing relations by two
new relations, called the algorithmic subtyping and algorithmic typing relations, whose sets of inference rules are
syntax directed. We then justify this switch by showing that the original subtyping and typing relations actually coincide
with the algorithmic presentations: the statement S <: T is derivable from the algorithmic subtyping rules iff it is
derivable from the declarative rules, and a term is typable by the algorithmic typing rules iff it is typable under the
declarative rules.

We develop the algorithmic subtype relation in and the algorithmic typing relation in . addresses the

special typechecking problems of multi-branch constructs like if...t Ise, which require additional structure (the
existence of least upper bounds, or joins, in the subtype relation). E16.4 considers the minimal type Bot.

mThe calculus studied in this chapter is the simply typed lambda-calculus with subtyping () and records

(). The corresponding OCaml implementation is rcdsub. also deals with booleans and conditionals (Q); the
OCaml implementation for this section is joinsub. E16.4 extends the discussions to Bot; the corresponding
implementation is bot.

< Free Open Study >

< Free Open Study >

16.1 Algorithmic Subtyping

A crucial element of any implementation of a language with subtyping is an algorithm for checking whether one type is
a subtype of another. This subtype checker will be called by the typechecker when, for example, it encounters an

application t1 t2 where t1 has type T — U and t2 has type S. Its function is to decide whether the statement S <: Tis
derivable from the subtyping rules in and . It accomplishes this by checking whether (S, T) belongs to

another relation, written e S < T ("S is algorithmically a subtype of T"), which is defined in such a way that
membership can be decided simply by following the structure of the types, and which contains the same pairs of types
as the ordinary subtype relation. The significant difference between the declarative and algorithmic relations is that the
algorithmic relation drops the S-TRANS and S-REFL rules.

To begin with, we need to reorganize the declarative system a little. As we saw on page 184, we need to use
transitivity to