Information Theory and Statistics ## SOLOMON KULLBACK, Ph.D Professor of Statistics Chairman, Department of Statistics The George Washington University GLOUCESTER, MASS. PETER SMITH 1978 Copyright © 1959 by Solomon Kullback. Copyright © 1968 by Dover Publications, Inc. This Dover edition, first published in 1968, is an unabridged republication of the work originally published in 1959 by John Wiley & Sons, Inc., with a new preface and numerous corrections and additions by the author. Library of Congress Catalog Card Number: 68-12910 Manufactured in the United States of America Reprinted, 1978, by Permission of Solomon Kullback ISBN 0-8446-5625-9 # To Minna 26 September 1908–16 November 1966 ## Preface to the Dover Edition This Dover edition differs from the original edition in certain details. A number of misprints have been corrected, some tables have been revised because of computer recalculation and certain erroneous statements have been corrected. Major additions include theorem 2.2 in chapter 3, theorem 2.1a and lemma 2.2 in chapter 4, and table 8.6 in chapter 12. Section 5.4 of chapter 12 has been greatly revised, as have been examples 5.4 and 5.5 of that section. Some of these changes have been incorporated into the body of the text; others are to be found in the appendix, which begins on page 389. I am grateful to colleagues and correspondents who expressed interest in the work and raised pertinent questions about certain statements or numerical values in the original edition. I must also express my appreciation for the partial support by the National Science Foundation under Grant GP-3223 and the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force under Grant AF-AFOSR 932-65 in the revision of the original edition and further research. Finally, I am grateful to Dover Publications, Inc. for their interest and preparation of this edition. SOLOMON KULLBACK The George Washington University November 1967 ## Preface to the First Edition Information in a technically defined sense was first introduced in statistics by R. A. Fisher in 1925 in his work on the theory of estimation. Fisher's definition of information is well known to statisticians. Its properties are a fundamental part of the statistical theory of estimation. Shannon and Wiener, independently, published in 1948 works describing logarithmic measures of information for use in communication theory. These stimulated a tremendous amount of study in engineering circles on the subject of information theory. In fact, some erroneously consider information theory as synonymous with communication theory. Information theory is a branch of the mathematical theory of probability and mathematical statistics. As such, it can be and is applied in a wide variety of fields. Information theory is relevant to statistical inference and should be of basic interest to statisticians. Information theory provides a unification of known results, and leads to natural generalizations and the derivation of new results. The subject of this book is the study of logarithmic measures of information and their application to the testing of statistical hypotheses. There is currently a heterogeneous development of statistical procedures scattered through the literature. In this book a unification is attained by a consistent application of the concepts and properties of information theory. Some new results are also included. The reader is assumed to have some familiarity with mathematical probability and mathematical statistics. Since background material is available in a number of published books, it has been possible here to deal almost exclusively with the main subject. That this also covers classical results and procedures is not surprising. The fundamentals of information theory have been known and available for some time and have crystallized in the last decade. That these fundamentals should furnish new approaches to known results is both useful and necessary. The applications in this book are limited to the analysis of samples of fixed size. Applications to more general stochastic processes, including sequential analysis, will make a natural sequel, but are outside the scope of this book. In some measure this book is a product of questions asked by students and the need for a presentation avoiding special approaches for problems that are essentially related. It is my hope that the experienced statistician will see in this book familiar things in a unified, if unfamiliar, way, and that the student will find this approach instructive. In chapter 1, the measures of information are introduced and defined. In chapter 2, I develop the properties of the information measures and examine their relationship with Fisher's information measure and sufficiency. In chapter 3, certain fundamental inequalities of information theory are derived, and the relation with the now classic inequality associated with the names of Fréchet, Darmois, Cramér, and Rao is examined. In chapter 4, some limiting properties are derived following the weak law of large numbers. In chapter 5, the asymptotic distribution theory of estimates of the information measures is examined. The developments in these first five chapters use measure theory. The reader unfamiliar with measure theory should nevertheless be able to appreciate the theorems and follow the argument in terms of the integration theory familiar to him by considering the integrals as though in the common calculus notation. The rest of the book consists of applications. In chapters 6, 7, and 8, the analysis of multinomial samples and samples from Poisson populations is studied. The analysis of contingency tables in chapter 8 depends on the basic results developed in chapter 6. Chapter 9 is essentially an introduction to various ideas associated with multivariate normal populations. In chapter 10, the analysis of samples from univariate normal populations under the linear hypothesis is studied and provides the transition to the generalizations in chapter 11 to the multivariate linear hypothesis. In chapter 12, the analysis of samples from multivariate normal populations for hypotheses other than the linear hypothesis is developed. The familiar results of the single-variate normal theory are contained in the multivariate analyses as special cases. In chapter 13, some general questions on linear discriminant functions are examined and raised for further investigation. The book contains numerous worked examples. I hope that these will help clarify the discussion and provide simple illustrations. Problems at the end of each chapter and in the text provide a means for the reader to expand and apply the theory and to anticipate and develop some of the needed background. The relevance of information theory to statistical inference is the unifying influence in the book. This is made clear by the generalizations that information theory very naturally provides. Chapters 8, 11, and 12 demonstrate this. In section 4 of chapter 11, it is concluded that the test statistic for the multivariate generalization of the analysis of variance is a form of Hotelling's generalized Student ratio (Hotelling's T^2). The basic facts on which this conclusion rests have been known for some time. Information theory brings them together in the proper light. Sections are numbered serially within each chapter, with a decimal notation for subsections and sub-subsections; thus, section 4.5.1 means section 4, subsection 5, sub-subsection 1. Equations, tables, figures, examples, theorems, and lemmas are numbered serially within each section with a decimal notation. The digits to the left of the decimal point represent the section and the digits to the right of the decimal point the serial number within the section; for example, (9.7) is the seventh equation in section 9. When reference is made to a section, equation, table, figure, example, theorem, or lemma within the same chapter, only the section number or equation, etc., number is given. When the reference is to a section, equation, etc., in a different chapter, then in addition to the section or equation, etc., number, the chapter number is also given. References to the bibliography are by the author's name followed by the year of publication in parentheses. Matrices are in boldface type. Upper case letters are used for square or rectangular matrices and lower case letters for one-column matrices (vectors). The transpose of a matrix is denoted by a prime; thus one-row matrices are denoted by primes. A subscript to a matrix implies that the subscript also precedes the subscripts used to identify the elements within a matrix, for example, $A = (a_{ij})$, $A_2 = (a_{2ij})$, $\mathbf{x}' = (x_1, x_2, \dots, x_k)$. There are some exceptions to these general rules, but the context will be clear. An abbreviated notation is generally used, in the sense that multiple integrals are expressed with only a single integral sign, and single letters stand for multidimensional variables or parameters. When it is considered particularly important to stress this fact, explicit mention is made in the text. A glossary is included and is intended to supplement the reader's background and, with the index, to provide easy access to definitions, symbols, etc. SOLOMON KULLBACK The George Washington University February 1958 ## Acknowledgment Critical comments and questions from friends, colleagues, and referees have improved the exposition in this work. Its shortcomings are mine alone. Thanks are due my students and colleagues at The George Washington University for their interest, understanding, and encouragement. The full and hearty support of Professor Frank M. Weida is gratefully acknowledged. Mr. Harry M. Rosenblatt practically prepared most of sections 2 through 8 of chapter 10. Mr. Samuel W. Greenhouse has practically prepared chapter 13. Dr. Morton Kupperman and Mr. Austin J. Bonis have read versions of the
manuscript most carefully and critically, and their remarks, although not always adopted, were invariably helpful. Other contributions are acknowledged in the text. The careful and uniformly excellent typing of Mrs. Frances S. Brown must be mentioned, since it lightened the problems of preparing the manuscript. S. K. ## Contents | CHAPT | PAGE | | | |-------|----------------------------------|---|--| | 1 D | 1 DEFINITION OF INFORMATION | | | | 1 | | | | | 2 | Definition | | | | 3 | Divergence | | | | 4 | Examples | | | | | Problems | | | | 2 PI | OPERTIES OF INFORMATION | | | | 1 | Introduction | | | | 2 | Additivity | | | | 3 | Convexity | | | | 4 | | | | | | Divergence | | | | (| Fisher's information | | | | 7 | Information and sufficiency | | | | 8 | Problems | | | | 3 IN | EQUALITIES OF INFORMATION THEORY | | | | 1 | | , | | | | | | | | | | | | | 4 | | | | | | - Exponential laminy | | | | | Troighboring parameters | | | | | Problems | | | | , | 1100icins | | | | 4 L | MITING PROPERTIES | | | | | Introduction | | | | | Limiting properties | | | | | B Type I and type II errors | - | | | | 4 Problems | į | | #### CONTENTS | CHA | PTE | PA | GE | |-----|------|--|-----| | 5 | INF | ORMATION STATISTICS | | | | 1. | Estimate of $I(*:2)$ | 81 | | | 2 | Classification | 83 | | | 3 | Testing hypotheses | 85 | | | 4 | Discussion | 94 | | | 5 | Asymptotic properties | 97 | | | 6 | | 06 | | | 7 | | 07 | | | | | | | 6 | MUI | LTINOMIAL POPULATIONS | | | | 1 | Introduction | 09 | | | 2 | | 10 | | | 3 | Conjugate distributions | 11 | | | 4 | | 12 | | | | | 12 | | | | | 14 | | | | | 17 | | | | | 19 | | | | | 21 | | | | | 25 | | | | | 25 | | | 5 | | 28 | | | J | | 28 | | | | | 31 | | | 6 | | 34 | | | U | - | 34 | | | | | | | | | | 36 | | | 7 | | 39 | | | 7 | Problems | 40 | | 7 | POIS | SSON POPULATIONS | | | | 1 | Background | 42 | | | 2 | | 43 | | | 3 | - · J · · O · · · · · · · · · · · · · · · | 44 | | | Ŭ | • • | 44 | | | | The state of s | 146 | | | 4 | | 148 | | | 5 | | 151 | | | 6 | and drawer my positions, and an approximation of the second secon | 153 | | | U | TIODICIUS | IJ | | 8 | CON | ITINGENCY TABLES | | | | 1 | Introduction | 155 | | | - | introduction | 155 | | CONTENTS | X111 | |----------|------| | | | | CHAPTE | R | PA | |--------|--|-----| | 3 | Three-way tables | . 1 | | | 3.1 Independence of the three classifications | . 1 | | | 3.2 Row classification independent of the other classifications. | . 1 | | | 3.3 Independence hypotheses | . 1 | | | 3.4 Conditional independence | | | | 3.5 Further analysis | | | 4 | Homogeneity of two-way tables | | | 5 | Conditional homogeneity | . 1 | | 6 | Homogeneity | . 1 | | 7 | Interaction | . 1 | | 8 | Negative interaction | | | 9 | Partitions | . 1 | | 10 | Parametric case | | | 11 | Symmetry | . 1 | | 12 | Examples | . : | | 13 | Problems | | | _ | | | | | LTIVARIATE NORMAL POPULATIONS | | | 1 | Introduction | | | 2 | Components of information | | | 3 | Canonical form | | | 4 | Linear discriminant functions | | | 5 | Equal covariance matrices | | | 6 | Principal components | | | 7 | Canonical correlation | | | 8 | Covariance variates | | | 9 | General case | | | 10 | Problems | | | 10 тн | T I WANT I D THE POST OF P | | | | E LINEAR HYPOTHESIS | | | 1 2 | | • | | 3 | 3 - | • | | _ | | | | 4
5 | | • | | 3 | Subhypotheses | • | | | * - · · · · · · · · · · · · · · · · · · | | | 4 | | - | | 5 | , and the second | | | 7 | I we put the first positions in the first part of o | | | | 7.1 One-way classification, k categories | _ | | | 7.2 Carter's regression case | | | 8 | • | | | ç | | • | | | 9.1 Hypotheses not of full rank | | xiv CONTENTS | CHA | PTER | | PAGE | |-----|------|--|-------| | | 10 | Analysis of regression, two-way classification | 239 | | | 11 | Problems | | | 11 | MUL | TIVARIATE ANALYSIS; THE MULTIVARIATE LINEAR HYPOTHESIS | | | | 1 | Introduction | 253 | | | 2 | Background | | | | 3 | The multivariate linear hypothesis | 253 | | | | 3.1 Specification | 253 | | | | 3.2 Linear discriminant function | 254 | | | 4 | The minimum discrimination information statistic | 255 | | | 5 | Subhypotheses | 257 | | | | 5.1 Two-partition subhypothesis | | | | | 5.2 Three-partition subhypothesis | 260 | | | 6 | Special cases | 261 | | | | 6.1 Hotelling's generalized Student ratio (Hotelling's T^2) | | | | | 6.2 Centering | | | | | 6.3 Homogeneity of r samples | 264 | | | | 6.4 r samples with covariance | | | | | 6.4.1 Test of regression | 268 | | | | 6.4.2 Test of homogeneity of means and regression | 272 | | | | 6.4.3 Test of homogeneity, assuming regression | 273 | | | 7 | Canonical correlation | 275 | | | 8 | Linear discriminant functions | | | | | 8.1 Homogeneity of r samples | | | | | 8.2 Canonical correlation | . 277 | | | | 8.3 Hotelling's generalized Student ratio (Hotelling's T^2) | | | | 9 | Examples | | | | | 9.1 Homogeneity of sample means | 280 | | | | 9.2 Canonical correlation | | | | | 9.3 Subhypothesis | | | | 10 | Reparametrization | | | | | 10.1 Hypotheses not of full rank | | | | | 10.2 Partition | . 294 | | | 11 | Remark | | | | 12 | Problems | | | 12 | MUI | LTIVARIATE ANALYSIS: OTHER HYPOTHESES | | | | 1 | Introduction | . 29 | | | 2 | Background | | | | 3 | Single sample | | | | • | 3.1 Homogeneity of the sample | | | | | 3.2 The hypothesis that a k -variate normal population has a | | | | | specified covariance matrix | | | | | 3.3 The hypothesis of independence | | | | | 3.4 Hypothesis on the correlation matrix | | | | | O.T. 11) bossions on the contract that | | | CONTENTS | xv | |----------|----| |----------|----| | CHA | PTER | | PAGE | |-----|------|--|------------| | | | 3.5 Linear discriminant function | 304 | | | | 3.6 Independence of sets of variates | 306 | | | | 3.7
Independence and equality of variances | 307 | | | 4 | Homogeneity of means | 309 | | | | 4.1 Two samples | 309 | | | | 4.2 Linear discriminant function | 311 | | | | 4.3 r samples | 311 | | | 5 | Homogeneity of covariance matrices | 315 | | | | 5.1 Two samples | 315 | | | | 5.2 Linear discriminant function | 317 | | | | 5.3 r samples | 318 | | | | 5.4 Correlation matrices | 320 | | | 6 | Asymptotic distributions | 324 | | | _ | 6.1 Homogeneity of covariance matrices | 324 | | | | 6.2 Single sample | 328 | | | | 6.3 The hypothesis of independence | 329 | | | | 6.4 Roots of determinantal equations | 330 | | | 7 | Stuart's test for homogeneity of the marginal distributions in a | 000 | | | • | two-way classification | 333 | | | | 7.1 A multivariate normal hypothesis | 333 | | | | 7.2 The contingency table problem | 334 | | | 8 | Problems | 334 | | | - | | JJT | | 13 | | EAR DISCRIMINANT FUNCTIONS | 240 | | | 1 | Introduction | 342 | | | 2 | Iteration | 342 | | | 3 | Example | 344 | | | 4 | Remark | 347 | | | 5 | Other linear discriminant functions | 348 | | | 6 | Comparison of the various linear discriminant functions | 350 | | | 7 | Problems | 352 | | | | | 252 | | | REF | ERENCES | 333 | | | TAR | LE I. $\log_e n$ and $n \log_e n$ for values of n from 1 through 1000. | 367 | | | | | | | | TAB | LE II. $F(p_1, p_2) = p_1 \log \frac{p_1}{p_2} + q_1 \log \frac{q_1}{q_2}$ | | | | | p_2 q_2 | 270 | | | | $p_1+q_1=1=p_2+q_2 \ldots \ldots \ldots \ldots \ldots \ldots$ | 3/8 | | | | LE III. Noncentral χ ² | 380 | | | TAE | LE III. Noncentral X | | | | GLO | OSSARY | 381 | | | | | | | | API | ENDIX | 389 | | | INI | EX | 393 | ## Definition of Information #### 1. INTRODUCTION Information theory, as we shall be concerned with it, is a branch of the mathematical theory of probability and statistics. As such, its abstract formulations are applicable to any probabilistic or statistical system of observations. Consequently, we find information theory applied in a variety of fields, as are probability and statistics. It plays an important role in modern communication theory, which formulates a communication system as a stochastic or random process. Tuller (1950) remarks that the statistical theory of communications is often called information theory. Rothstein (1951) has defined information theory as "abstract mathematics dealing with measurable sets, with choices from alternatives of an unspecified nature." Pierce (1956, p. 243) considers communication theory and information theory as synonyms. Gilbert (1958, p. 14) says, "Information will be a measure of time or cost of a sort which is of particular use to the engineer in his role of designer of an experiment." The essential mathematical and statistical nature of information theory has been reemphasized by three men largely responsible for its development and stimulation, Fisher (1956), Shannon (1956), Wiener (1956). In spirit and concepts, information theory has its mathematical roots in the concept of disorder or entropy in thermodynamics and statistical mechanics. [See Fisher (1935, p. 47) and footnote 1 on p. 95 of Shannon and Weaver (1949).] An extensive literature exists devoted to studies of the relation between the notions and mathematical form of entropy and information. Stumpers (1953) devotes pp. 8-11 of his bibliography to such references, and some others are added here: Bartlett (1955, pp. 208-220), Brillouin (1956), Cherry (1957, pp. 49-51; 212-216), Fisher (1935, p. 47), Grell (1957, pp. 117-134), Joshi (1957), Khinchin (1953, 1956, 1957), Kolmogorov (1956), McMillan (1953), Mandelbrot (1953, 1956), Powers (1956), Quastler (1953, pp. 14-40). R. A. Fisher's (1925b) measure of the amount of information supplied by data about an unknown parameter is well known to statisticians. This measure is the first use of "information" in mathematical statistics, and was introduced especially for the theory of statistical estimation. Hartley (1928) defined a measure of information, the logarithm of the number of possible symbol sequences, for use in communication engineering. Interest in, and various applications of, information theory by communication engineers, psychologists, biologists, physicists, and others, were stimulated by the work of Shannon (1948) and Wiener (1948), particularly by Wiener's (1948, p. 76) statement that his definition of information could be used to replace Fisher's definition in the technique of statistics. However, note that Savage (1954, p. 50) remarks: "The ideas of Shannon and Wiener, though concerned with probability, seem rather far from statistics. It is, therefore, something of an accident that the term 'information' coined by them should be not altogether inappropriate in statistics." Powers (1956, pp. 36-42) reviews the fundamental contributions of Wiener, Shannon, and Woodward as an introduction to his development of a unified theory of the information associated with a stochastic process. Indeed, Stumpers (1953) lists 979 items in his bibliography and only 104 of these were published prior to 1948. Although Wald (1945a, 1945b, 1947) did not explicitly mention information in his treatment of sequential analysis, it should be noted that his work must be considered a major contribution to the statistical applications of information theory. [See Good (1950, pp. 64-66), Schützenberger (1954, pp. 57-61).] For extensive historical reviews see Cherry (1950, 1951, 1952, 1957). A most informative survey of information theory in the U.S.S.R. is given by Green (1956, 1957), who takes information theory to mean "the application of statistical notions to problems of transmitting information." The current literature on information theory is voluminous. Some references are listed that will give the reader who scans through them an idea of the wide variety of interest and application: Ashby (1956), Bell (1953), Bradt and Karlin (1956), Brillouin (1956), de Broglie (1951), Castañs Camargo (1955), Cherry (1955, 1957), Davis (1954), Elias (1956), Fano (1954), Feinstein (1958), Gilbert (1958), Goldman (1953), Good (1952, 1956), Jackson (1950, 1952), Jaynes (1957), Kelly (1956), Lindley (1956, 1957), McCarthy (1956), McMillan et al., (1953), Mandelbrot (1953), Quastler (1953, 1955), Schützenberger (1954), Shannon and Weaver (1949), Wiener (1948, 1950), Woodward (1953). We shall use information in the technical sense to be defined, and it should not be confused with our semantic concept, though it is true that the properties of the measure of information following from the technical definition are such as to be reasonable according to our intuitive notion of information. For a discussion of "semantic information" see Bar-Hillel (1955), Bar-Hillel and Carnap (1953). Speaking broadly, whenever we make statistical observations, or design and conduct statistical experiments, we seek information. How much can we infer from a particular set of statistical observations or experiments about the sampled populations? [Cf. Cherry (1957, p. 61).] We propose to consider possible answers to this question in terms of a technical definition of a measure of information and its properties. We shall define and derive the properties of the measure of information at a mathematical level of generality that includes both the continuous and discrete statistical populations and thereby avoid the necessity for parallel considerations of these two common practical situations [Fraser (1957, pp. 1-16), Powers (1956)]. #### 2. DEFINITION Consider the probability spaces $(\mathcal{X}, \mathcal{S}, \mu_i)$, i = 1, 2, that is, a basic set of elements $x \in \mathcal{X}$ and a collection \mathcal{S} of all possible events (sets) made up of elements of the sample space \mathscr{X} for which a probability measure μ_i , i = 1, 2, has been defined. \mathcal{S} is a σ -algebra of subsets of \mathcal{X} , a Borel field, or an additive class of measurable subsets of \mathscr{X} . The pair $(\mathscr{X},\mathscr{S})$, that is, the combination of the sample space ${\mathscr X}$ and the σ -algebra ${\mathscr S}$ of subsets of \mathcal{X} , is called a measurable space [Fraser (1957, p. 2)]. The elements of ${\mathscr X}$ may be univariate or multivariate, discrete or continuous, qualitative or quantitative [Fraser (1957, pp. 1-2)]. For an engineer, the elements of $\hat{\mathscr{X}}$ may be the occurrence or nonoccurrence of a signal pulse, \mathscr{S} may be a collection of possible sequences of a certain length of pulse and no pulse, and μ_1 and μ_2 may define the probabilities for the occurrence of these different sequences under two different hypotheses. For a statistician, the elements of ${\mathscr X}$ may be the possible samples from a univariate normal population, \mathcal{S} may be the class of Borel sets of \mathbb{R}^n , n-dimensional Euclidean space (if we are concerned with samples of n independent observations), and μ_1 and μ_2 may define the probabilities of the different samples for different values of the parameters of the populations. We assume that the probability measures μ_1 and μ_2 are absolutely continuous with respect to one another, or in symbols, $\mu_1 \equiv \mu_2$; that is, there exists no set (event) $E \in \mathcal{S}$ for which $\mu_1(E) = 0$ and $\mu_2(E) \neq 0$, or $\mu_1(E) \neq 0$ and $\mu_2(E) = 0$. [μ_1 is absolutely continuous with respect to μ_2 , $\mu_1 \ll \mu_2$, if $\mu_1(E) = 0$ for all $E \in \mathcal{S}$ for which $\mu_2(E) = 0$; μ_2 is absolutely continuous with respect to μ_1 , $\mu_2 \ll \mu_1$, if $\mu_2(E) = 0$ for all $E \in \mathcal{S}$ for which $\mu_1(E) = 0$.] Since there is no essential problem in the rejection of statistical hypotheses that may have been possible prior to the observations but are impossible after the observations, our mathematical assumption is such as to exclude this contingency. According to Savage (1954, p. 127), "···
definitive observations do not play an important part in statistical theory, precisely because statistics is mainly concerned with uncertainty, and there is no uncertainty once an observation definitive for the context at hand has been made." For further study of absolute continuity see Fraser (1957, p. 12), Halmos (1950, pp. 124–128), Halmos and Savage (1949), Loève (1955, pp. 129–132). Let λ be a probability measure such that $\lambda \equiv \mu_1$, $\lambda \equiv \mu_2$; for example, λ may be μ_1 , or μ_2 , or $(\mu_1 + \mu_2)/2$. By the Radon-Nikodym theorem [Fraser (1957, p. 13), Halmos (1950, pp. 128–132), Loève (1955, pp. 132–134)], there exist functions $f_i(x)$, i = 1, 2, called generalized probability densities, unique up to sets of measure (probability) zero in λ , measurable λ , $0 < f_i(x) < \infty$ [λ], i = 1, 2, such that (2.1) $$\mu_{i}(E) = \int_{E} f_{i}(x) \, d\lambda(x), \qquad i = 1, 2,$$ for all $E \in \mathcal{S}$. The symbol $[\lambda]$, pronounced "modulo λ ," following an assertion concerning the elements of \mathcal{X} , means that the assertion is true except for a set E such that $E \in \mathcal{S}$ and $\lambda(E) = 0$ [Halmos and Savage (1949)]. The function $f_i(x)$ is also called the Radon-Nikodym derivative, and we write $d\mu_i(x) = f_i(x) d\lambda(x)$ and also $f_i(x) = d\mu_i/d\lambda$. In example 7.1 of chapter 2 is an illustration of a probability measure μ_1 absolutely continuous with respect to a probability measure μ_2 , but not conversely. If the probability measure μ is absolutely continuous with respect to the probability measure ν is absolutely continuous with respect to the probability measure μ , then the probability measure ν is also absolutely continuous with respect to the probability measure λ , and the Radon-Nikodym derivatives satisfy $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\lambda} [\lambda]$ [Halmos (1950, p. 133), Halmos and Savage (1949)]. If H_i , i = 1, 2, is the hypothesis that X (we use X for the generic variable and x for a specific value of X) is from the statistical population with probability measure μ_i , then it follows from Bayes' theorem, or the theorems on conditional probability [Feller (1950), Fraser (1957, pp. 13-16), Good (1950), Kolmogorov (1950), Loève (1955)], that (2.2) $$P(H_i|x) = \frac{P(H_i)f_i(x)}{P(H_1)f_1(x) + P(H_2)f_2(x)} [\lambda], \qquad i = 1, 2,$$ from which we obtain (2.3) $$\log \frac{f_1(x)}{f_2(x)} = \log \frac{P(H_1|x)}{P(H_2|x)} - \log \frac{P(H_1)}{P(H_2)} [\lambda],$$ where $P(H_i)$, i = 1, 2, is the prior probability of H_i and $P(H_i|x)$ is the posterior probability of H_i , or the conditional probability of H_i given X = x. See Good (1956, p. 62), Savage (1954, pp. 46-50). The base of the logarithms in (2.3) is immaterial, providing essentially a unit of measure; unless otherwise indicated we shall use natural or Naperian logarithms (base e). (See the end of example 4.2.) The right-hand side of (2.3) is a measure of the difference between the logarithm of the odds in favor of H_1 after the observation of X = x and before the observation. This difference, which can be positive or negative, may be considered as the information resulting from the observation X = x, and we define the logarithm of the likelihood ratio, $\log [f_1(x)/f_2(x)]$, as the information in X = x for discrimination in favor of H_1 against H_2 . [Cf. Good (1950, p. 63), who describes it also as the weight of evidence for H_1 given x.] The mean information for discrimination in favor of H_1 against H_2 given $x \in E \in \mathcal{S}$, for μ_1 , is (2.4) $$I(1:2; E) = \frac{1}{\mu_1(E)} \int_E \log \frac{f_1(x)}{f_2(x)} d\mu_1(x)$$ $$= \frac{1}{\mu_1(E)} \int_E f_1(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x), \qquad \mu_1(E) > 0,$$ $$= 0, \qquad \mu_1(E) = 0,$$ with $$d\mu_1(x) = f_1(x) \ d\lambda(x).$$ When E is the entire sample space \mathcal{X} , we denote by I(1:2), rather than by $I(1:2;\mathcal{X})$, the mean information for discrimination in favor of H_1 against H_2 per observation from μ_1 , that is, omitting the region of integration when it is the entire sample space, (2.5) $$I(1:2) = \int \log \frac{f_1(x)}{f_2(x)} d\mu_1(x) = \int f_1(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x)$$ $$= \int \log \frac{P(H_1|x)}{P(H_2|x)} d\mu_1(x) - \log \frac{P(H_1)}{P(H_2)}.$$ Note that the last member in (2.5) is the difference between the mean value, with respect to μ_1 , of the logarithm of the posterior odds of the hypotheses and the logarithm of the prior odds of the hypotheses. Following Savage (1954, p. 50) we could also call I(1:2) the information of μ_1 with respect to μ_2 . Note that the integrals in (2.4) or (2.5) always exist, even though they may be $+\infty$, since the minimum value of the integrand for its negative values is $-\frac{1}{e}$. A necessary condition (but not sufficient) that I(1:2) be finite is $\mu_1 \equiv \mu_2$. As an example in which the mean information I(1:2) is infinite, take $\mathscr{X} = (0, 1)$, $\mu_1 =$ Lebesgue measure, $f_2(x)/f_1(x) = ke^{-1/x}$, $k^{-1} = \int_0^1 e^{-1/t} dt$. It may be verified that I(1:2) is infinite [Hardy, Littlewood, and Pólya (1934, p. 137)]. See problem 5.7. #### 3. DIVERGENCE Following section 2, we may define (3.1) $$I(2:1) = \int f_2(x) \log \frac{f_2(x)}{f_1(x)} d\lambda(x)$$ as the mean information per observation from μ_2 for discrimination in favor of H_2 against H_1 , or $$-I(2:1) = \int f_2(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x)$$ as the mean information per observation from μ_2 for discrimination in favor of H_1 against H_2 . Our previous assumption about the mutual absolute continuity of μ_1 and μ_2 ensures the existence of the integral in the definition of I(2:1), even though it may be $+\infty$. We now define the divergence J(1, 2) by (3.2) $$J(1,2) = I(1:2) + I(2:1)$$ $$= \int (f_1(x) - f_2(x)) \log \frac{f_1(x)}{f_2(x)} d\lambda(x)$$ $$= \int \log \frac{P(H_1|x)}{P(H_2|x)} d\mu_1(x) - \int \log \frac{P(H_1|x)}{P(H_2|x)} d\mu_2(x).$$ The middle version of the above expressions for J(1, 2) was introduced by Jeffreys (1946, 1948, p. 158), but he was mainly concerned with its use, because of invariance under transformation of parameters, as providing a prior probability density for parameters. J(1, 2) is a measure of the divergence between the hypotheses H_1 and H_2 , or between μ_1 and μ_2 , and is a measure of the difficulty of discriminating between them. [Cf. Chernoff (1952), Huzurbazar (1955), Jeffreys (1948, p. 158), Kullback (1953), Sakaguchi (1955), Suzuki (1957).] Note that J(1, 2) is symmetric with respect to μ_1 and μ_2 , and the prior probabilities $P(H_i)$, i=1,2, do not appear. The divergence J(1,2) (as will be seen) has all the properties of a distance (or metric) as defined in topology except the triangle inequality property and is therefore not termed a distance. The information measures I(1:2) and I(2:1) may in this respect be considered as directed divergences. (See problem 5.9.) For other measures of distances between probability distributions see Adhikari and Joshi (1956), Bhattacharyya (1943, 1946a), Bulmer (1957), Fraser (1957, p. 127), Rao (1945, 1952, pp. 351-352). #### 4. EXAMPLES Before we consider properties resulting from the definition of information and divergence, and supporting the use of "information" as a name, it may be useful to examine some instances of (2.3), (2.5), and (3.2) for illustration and background. Example 4.1. As an extreme case, suppose that H_2 represents a set of hypotheses, one of which must be true, and that H_1 is a member of the set of hypotheses H_2 ; then $P(H_2) = 1$, $P(H_2|x) = 1$, and the right-hand side of (2.3) yields as the information in x in favor of H_1 the value $\log P(H_1|x) - \log P(H_1) = \log [P(H_1|x)/P(H_1)]$. When is this value zero? If the observation x proves that H_1 is true, that is, $P(H_1|x) = 1$, then the information in x about H_1 is $-\log P(H_1)$ [Good (1956)]. Note that when H_1 is initially of small probability the information resulting from its verification is large, whereas if its probability initially is large the information is small. Is this intuitively reasonable? Example 4.2. To carry this notion somewhat further, suppose a set of mutually exclusive and exhaustive hypotheses H_1, H_2, \dots, H_n exists and that from an observation we can infer which of the hypotheses is true. For example, we may have a communication system in which the hypotheses are possible messages, there is no garbling of the transmitted message, and there is no uncertainty about the inference after receiving the message. Or we may be dealing with an experiment for which the outcome may be one of n categories, there are no errors of observation, and there is no uncertainty about the inference of the category after making the observation. Here, the mean information in an observation about the hypotheses is the mean value of $-\log P(H_i)$, $i = 1, 2, \dots, n$, that is, $$(4.1) -P(H_1) \log P(H_1) - P(H_2) \log P(H_2) - \cdots - P(H_n) \log P(H_n).$$ The expression in (4.1) is also called the entropy of the H_i 's. See Bell (1953), Brillouin (1956), Goldman (1953), Good (1950, 1956), Grell (1957), Joshi (1957), Khinchin (1953, 1956, 1957), McMillan (1953), Quastler (1956), Shannon (1948), Woodward (1953). When logarithms to base 2 are used, the unit of the (selective) information in (4.1) is called a "bit" (binary digit), and it turns out that one bit of information is the capability of resolving the uncertainty in a situation with two equally probable hypotheses or alternatives. Thus, in a "yes" or "no" selection with a probability of $\frac{1}{2}$ for each alternative, $-\frac{1}{2}\log_2\frac{1}{2}-\frac{1}{2}\log_2\frac{1}{2}=\log_22=1$ "bit." When
the *n* hypotheses are equally probable, so that $P(H_i)=1/n$, $i=1,\dots,n$, we find that $-\sum_{i=1}^n P(H_i)\log P(H_i)$ $= \log n$, Hartley's information measure. It has been suggested that when logarithms to base 10 are used, the unit of information in (4.1) be called a "Hartley" [Tuller (1950)], and when natural logarithms to base e are used, the unit of information be called a "nit" [MacDonald (1952)]. Example 4.3. As another area of illustration, suppose that the sample space \mathcal{Z} is the Euclidean space R^2 of two dimensions with elements X = (x, y), and that under H_1 the variables x and y are dependent with probability density f(x, y), but that under H_2 , x and y are independent, with respective probability densities g(x) and h(y). Now (2.5) may be written as (4.2) $$I(1:2) = \int \int f(x,y) \log \frac{f(x,y)}{g(x)h(y)} dx dy,$$ which has also been defined as the mean information in x about y, or in y about x. See Gel'fand, Kolmogorov, and Iaglom (1956), Good (1956), Kolmogorov (1956), Lindley (1956), Shannon (1948), Woodward (1953, pp. 53-54). Since, as will be shown in theorem 3.1 of chapter 2, I(1:2) in (4.2) is nonnegative, and is zero if and only if f(x, y) = g(x)h(y) [λ], the mean information in (4.2) may also serve as a measure of the relation between x and y. [Cf. Castañs Camargo and Medina e Isabel (1956), Féron (1952a, p. 1343), Linfoot (1957).] In particular, if H_1 implies the bivariate normal density $$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y(1-\rho^2)^{1/2}} \exp\left[-\frac{1}{2(1-\rho^2)} \left(\frac{x^2}{\sigma_x^2} - 2\rho \frac{xy}{\sigma_x\sigma_y} + \frac{y^2}{\sigma_y^2}\right)\right],$$ and H_2 the product of the marginal normal densities $$g(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma_x^2}\right), \quad h(y) = \frac{1}{\sigma_y \sqrt{2\pi}} \exp\left(-\frac{y^2}{2\sigma_y^2}\right),$$ we find that (4.3) $$I(1:2) = \iiint f(x,y) \log \frac{f(x,y)}{g(x)h(y)} dx dy = -\frac{1}{2} \log (1-\rho^2),$$ so that I(1:2) is a function of the correlation coefficient ρ only, and ranges from 0 to ∞ as $|\rho|$ ranges from 0 to 1. Corresponding multivariate values are given in (6.12) and (7.4) of chapter 9. Example 4.4. As a specific illustration of J(1, 2) let f_1 and f_2 be the normal densities used in (4.3). We find that $$(4.4) J(1,2) = \int \int (f(x,y) - g(x)h(y)) \log \frac{f(x,y)}{g(x)h(y)} dx dy = \rho^2/(1-\rho^2),$$ so that J(1, 2) is a function of the correlation coefficient ρ only, and ranges from 0 to ∞ as $|\rho|$ ranges from 0 to 1. Note that Pearson (1904) showed that if a bivariate normal distribution is classified in a two-way table, the contingency and the correlation are related by the expression $\phi^2 = \chi^2/N = \rho^2/(1 - \rho^2)$, when it is assumed that the number of observations N is large and the class intervals are very narrow [Lancaster (1957)]. The corresponding k-variate value is given in (6.13) of chapter 9, but differs from the value of ϕ^2 as given by Pearson (1904). See also (7.5) of chapter 9. Example 4.5. To illustrate a result in communication theory, suppose that in (4.2) x is a transmitted signal voltage and y the received signal voltage which is taken to be the transmitted signal with noise added, that is, y = x + n, where n is the noise voltage. The noise and transmitted signal may be taken as independent, so that (4.5) $$f(x,y) = g(x)h(y|x) = g(x)h(y-x).$$ I(1:2) in (4.2), a measure of the relation between the received and transmitted signals, is then a characteristic property of the transmission channel. If we assume normal distributions, since the bivariate normal density f(x, y) in example 4.3 may be written as $$(4.6) \quad \frac{1}{\sigma_x \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma_x^2}\right) \cdot \frac{1}{\sigma_y \sqrt{2\pi(1-\rho^2)}} \times \exp\left[-\frac{1}{2\sigma_y^2(1-\rho^2)} \left(y - \frac{\rho\sigma_y}{\sigma_x}x\right)^2\right],$$ we see from a comparison of (4.6) and (4.5) that h(y|x) = h(y-x) if $$\rho \frac{\sigma_{\nu}}{\sigma_{x}} = 1, \qquad \rho^{2} = \frac{\sigma_{x}^{2}}{\sigma_{\nu}^{2}} = \frac{S}{S+N},$$ where $S = E(x^2)$ is the mean transmitted signal power and $N = E(n^2)$ the noise power [Lawson and Uhlenbeck (1950, p. 55), Woodward and Davies (1952)]. With the value of ρ^2 from (4.7) substituted in (4.3) and (4.4), we find that the mean information in the received signal about the transmitted signal and the divergence between dependence and independence of the signals are respectively (4.8) $$I(1:2) = -\frac{1}{2} \log \left(1 - \frac{S}{S+N} \right) = \frac{1}{2} \log \left(1 + \frac{S}{N} \right),$$ (4.9) $$J(1,2) = \frac{S/(S+N)}{1-S/(S+N)} = \frac{S}{N}.$$ We shall show in chapter 2 that I(1:2) and J(1, 2) are additive for independent observations. The sampling theorem [Shannon (1949), Whittaker (1915)] states that 2WT independent sample values are required to specify a function of duration T and bandwidth W. We thus have (4.10) $$I(1:2; W, T) = 2WTI(1:2) = WT \log \left(1 + \frac{S}{N}\right)$$ $$(4.11) \quad J(1, 2; W, T) = 2WTJ(1, 2) = 2WTS/N = 2TS/N_0 = 2E/N_0,$$ where $N = WN_0$, with N_0 the mean noise power per unit bandwidth, and E the total transmitted signal energy. The interpretation of (4.10) as channel capacity is well known in communication theory [Bell (1953), Goldman (1953), Shannon (1948), Woodward (1953)]. The signal-to-noise ratio has long been used by engineers to specify the performance of communication channels. Example 4.6. To illustrate a less general form of Lindley's (1956) definition of the information provided by an experiment, take y in (4.2) as a parameter θ ranging over a space Θ , so that $f(x, \theta)$ is the joint probability density of x and x and x and x density of x given x and the marginal probability density of x is $g(x) = \int_{\mathbb{R}} g_1(x|\theta)h(\theta) d\theta$. An experiment \mathscr{E} is defined as the ordered quadruple $\mathscr{E} = (\mathscr{X}, \mathscr{S}, \Theta, g_1(x|\theta))$, and the information provided by the experiment \mathscr{E} , with prior knowledge $h(\theta)$, is $$I(1:2) = \iiint f(x, \theta) \log \frac{f(x, \theta)}{g(x)h(\theta)} dx d\theta.$$ These illustrations will suffice for the present. In chapter 2 we consider the properties of I(1:2) and J(1,2). #### 5. PROBLEMS - 5.1. How many "bits" of information (in the mean) are there in a dichotomous choice (a) with probabilities p = 0.99, q = 1 - p = 0.01; (b) p = 1, q = 1 - p = 0? - **5.2.** Compute the value of I(1:2) and J(1, 2) for: - (a) Prob $(x = 0|H_i) = q_i$, Prob $(x = 1|H_i) = p_i$, $p_i + q_i = 1$, i = 1, 2. - (b) The binomial distributions $B(p_i, q_i, n)$, $p_i + q_i = 1$, i = 1, 2. (c) The Poisson distributions with parameters m_i , i = 1, 2. - (d) The normal distributions $N(\mu_i, \sigma^2)$, i = 1, 2, that is, the normal distributions with mean μ_i and variance σ^2 . - (e) The normal distributions $N(\mu, \sigma_i^2)$, i = 1, 2. - (f) The normal distributions $N(\mu_i, \sigma_i^2)$, i = 1, 2. - **5.3.** Derive the result given in (4.3). - **5.4.** Derive the result given in (4.4). - **5.5.** Let 1 + x be the number of independent trials needed to get a success. when the probability of a success is constant for each trial. If $$P_i(x) = \text{Prob}(X = x | H_i) = p_i q_i^x, \quad x = 0, 1, 2, \dots; \quad q_i = 1 - p_i, \quad i = 1, 2,$$ then $$I(1:2) = E(1 + x|H_1) \left(p_1 \log \frac{p_1}{p_2} + q_1 \log \frac{q_1}{q_2} \right),$$ that is, the mean information for discrimination is the product of the expected number of trials and the mean information per trial. **5.6.** Let $f_i(x) = \exp(u(\theta_i)v(x) + a(x) + b(\theta_i)), i = 1, 2$, where u and b are functions of θ_i , i = 1, 2, and v and a are functions of x, with $\iint_i (x) dx = 1$. Show that $J(1, 2) = (u(\theta_1) - u(\theta_2))(E_1(v(x)) - E_2(v(x)))$, where $E_i(v(x))$ is the expected value of v(x) in the distribution with $f_i(x)$, i = 1, 2. [See Huzurbazar (1955) for the multivariate, multiparameter, distributions admitting sufficient 5.7. Let $$k_1 = \sum_{n=2}^{\infty} \frac{1}{n(\log n)^2} < \infty$$, $k_2 = \sum_{n=2}^{\infty} \frac{1}{n^2(\log n)^2} < \infty$, $p_1(x = n) = \frac{1}{k_1 n(\log n)^2}$, $p_2(x = n) = \frac{1}{k_2 n^2(\log n)^2}$, $n = 2, 3, \cdots$ Show that $I(1:2) = \sum_{n=2}^{\infty} p_1(x=n) \log \frac{p_1(x=n)}{p_2(x=n)} = \infty$, and that $I(2:1) = \sum_{n=2}^{\infty} p_2(x=n) \log \frac{p_2(x=n)}{p_1(x=n)} < \infty$. [See Joshi (1957), who credits this to Schützenberger.] - **5.8.** Compute the value of I(1:2) and J(1, 2) for the discrete bivariate distributions defined by $\text{Prob}\,(x=0,\ y=0|H_1)=\text{Prob}\,(x=1,\ y=1|H_1)=q/2,$ $\text{Prob}\,(x=0,\ y=1|H_1)=\text{Prob}\,(x=1,\ y=0|H_1)=p/2,\ p+q=1,$ $\text{Prob}\,(x=0,\ y=0|H_2)=\text{Prob}\,(x=0,\ y=1|H_2)=\text{Prob}\,(x=1,\ y=0|H_2)=\text{Prob}\,(x=1,\ y=1|H_2)=\frac{1}{4}.$ - **5.9.** Show that $\iint f_1(x)f_2(y) \log \frac{f_1(x)f_2(y)}{f_2(x)f_1(y)} dx dy$ may be written as $\int (f_1(x) f_2(x)) \log \frac{f_1(x)}{f_2(x)} dx$, where f_1 and f_2 are probability densities, and x, y are random variables over the same range. [Cf. Barnard (1949), Girshick (1946, pp. 123–127).] - **5.10.** Let $N = \frac{n!}{n_1! n_2! \cdots n_k!}$, $n = n_1 + n_2 + \cdots + n_k$. Use Stirling's approximation to show that when n_i , $i = 1, 2, \cdots, k$, is large, approximately, $$\log N = -n \sum_{i=1}^{k} \hat{p}_i \log \hat{p}_i,$$ where $\hat{p}_i = n_i/n$. [Cf. Brillouin (1956, pp. 7-8).] - **5.11.** Consider sequences of k different symbols. Show that the observation that a sequence of n symbols contains respectively n_1, n_2, \dots, n_k , of the k symbols is approximately an information value of $n \sum_{i=1}^{k} p_i \log p_i + n \log k$, where p_i is defined in problem 5.10. - **5.12.** Let $P(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! n_2!
\cdots n_k!} p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}, n = n_1 + n_2 + \cdots + n_k, p_1 + p_2 + \cdots + p_k = 1, p_i > 0, i = 1, 2, \cdots, k.$ - (a) Show that, as in problem 5.10, approximately $\log \frac{1}{P(n_1, n_2, \dots, n_k)} = n \sum_{i=1}^k \hat{p}_i \log \frac{\hat{p}_i}{p_i}$ - (b) Show that $\log \frac{1}{P(n_1, n_2, \dots, n_k)}$ for $p_1 = p_2 = \dots = p_k = 1/k$, is the information value in problem 5.11. [Cf. Chernoff (1952, p. 497), Sanov (1957, p. 13).] - **5.13.** Compute the value of I(1:2) for the discrete bivariate distributions defined by Prob $(x=x_i, y=y_i|H_1)=p_i>0$, $i=1,2,\cdots,n$, Prob $(x=x_i, y=y_j|H_1)=0$, $i\neq j$, Prob $(x=x_i, y=y_j|H_2)=\operatorname{Prob}(x=x_i|H_2)\cdot\operatorname{Prob}(y=y_j|H_2)=p_ip_j$, $i,j=1,2,\cdots,n$ (0 log 0 is defined as 0). # Properties of Information #### 1. INTRODUCTION We shall now study the properties of the measure of information that we have defined and examine the implications of these properties [cf. Kullback and Leibler (1951)]. We use the notation I(1:2; E), $I(2:1; \mathcal{X})$, I(1,2; X, Y), etc., when it is deemed necessary to indicate explicitly sets, spaces, variables, etc., that are concerned. Where necessary for clarity, we shall use X, Y, etc., for generic variables and x, y, etc., for observed values of the generic variables. We shall also generally use only one integral sign even when there is more than one variable. #### 2. ADDITIVITY THEOREM 2.1. I(1:2) is additive for independent random events; that is, for X and Y independent under H_i , i = 1, 2 $$I(1:2; X, Y) = I(1:2; X) + I(1:2; Y).$$ Proof. $$I(1:2; X, Y) = \int f_1(x, y) \log \frac{f_1(x, y)}{f_2(x, y)} d\lambda(x, y)$$ $$= \int g_1(x) h_1(y) \log \frac{g_1(x) h_1(y)}{g_2(x) h_2(y)} d\mu(x) d\nu(y)$$ $$= \int g_1(x) \log \frac{g_1(x)}{g_2(x)} d\mu(x) + \int h_1(y) \log \frac{h_1(y)}{h_2(y)} d\nu(y)$$ $$= I(1:2; X) + I(1:2; Y),$$ where, because of the independence, $f_i(x, y) = g_i(x)h_i(y)$, i = 1, 2, $d\lambda(x, y) = d\mu(x) d\nu(y)$, $\int g_i(x) d\mu(x) = 1$, $\int h_i(y) d\nu(y) = 1$, i = 1, 2. Additivity of information for independent events is intuitively a fundamental requirement, and is indeed postulated as a requisite property in most axiomatic developments of information theory [Barnard (1951), Fisher (1935, p. 47), Good (1950, p. 75), Lindley (1956), MacKay (1950), Reich (1951), Schützenberger (1954), Shannon (1948), Wiener (1950, pp. 18-22)]. Additivity is the basis for the logarithmic form of information. A sample of n independent observations from the same population provides n times the mean information in a single observation. Fisher's measure of the amount of information for the estimation of a parameter also has this additive property [Fisher (1925b, 1956, pp. 148-150), Savage (1954, pp. 235-237)]. In section 6 we shall study the relation between Fisher's measure and the discrimination information measure in (2.5) of chapter 1. If X and Y are not independent, an additive property still exists, but in terms of a conditional information defined below. To simplify the argument and avoid the measure theoretic problems of conditional probabilities [see, for example, Fraser (1957, p. 16)], we shall deal with probability density functions and Lebesgue measure. We leave it to the reader to carry out the corresponding development for discrete variables. With this understanding, we then have, $$I(1:2; X, Y) = \int f_1(x, y) \log \frac{f_1(x, y)}{f_2(x, y)} dx dy$$ $$= \int g_1(x) \log \frac{g_1(x)}{g_2(x)} dx + \int g_1(x) \left[\int h_1(y|x) \log \frac{h_1(y|x)}{h_2(y|x)} dy \right] dx,$$ where $g_i(x) = \int f_i(x, y) dy$, $h_i(y|x) = f_i(x, y)/g_i(x)$, i = 1, 2. $$I(1:2; Y|X=x) = \int h_1(y|x) \log \frac{h_1(y|x)}{h_2(y|x)} dy,$$ and $$I(1:2; Y|X) = E_1(I(1:2; Y|X=x)) = \int g_1(x)I(1:2; Y|X=x) dx,$$ where I(1:2; Y|X=x) may be defined as the conditional information in Y for discrimination in favor of H_1 against H_2 when X=x, under H_1 , and I(1:2; Y|X) is the mean value of the conditional discrimination information I(1:2; Y|X=x) under H_1 . [Cf. Barnard (1951), Feinstein (1958, p. 12), Féron (1952a), Féron and Fourgeaud (1951), Good (1950), Lindley (1956), Powers (1956, pp. 54-62), Shannon (1948).] We may obtain similar results by an interchange of the procedure with respect to X and Y, so that we state: THEOREM 2.2. $$I(1:2; X, Y) = I(1:2; X) + I(1:2; Y|X)$$ $$= I(1:2; Y) + I(1:2; X|Y).$$ Example 2.1. Consider the bivariate normal densities $$f_{i}(x,y) = \frac{1}{2\pi\sigma_{x}\sigma_{y}\sqrt{1-\rho_{i}^{2}}} \exp\left[-\frac{1}{2(1-\rho_{i}^{2})} \left(\frac{(x-\mu_{ix})^{2}}{\sigma_{x}^{2}}\right) - 2\rho_{i} \frac{(x-\mu_{ix})(y-\mu_{iy})}{\sigma_{x}\sigma_{y}} + \frac{(y-\mu_{iy})^{2}}{\sigma_{y}^{2}}\right],$$ so that $$g_i(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp\left(-\frac{(x - \mu_{ix})^2}{2\sigma_x^2}\right)$$ and $$h_i(y|x) = \frac{1}{\sigma_v \sqrt{2\pi}(1-\rho_i^2)^{1/2}} \exp\left[-\frac{[y-\mu_{iy}-\beta_i(x-\mu_{ix})]^2}{2\sigma_v^2(1-\rho_i^2)}\right],$$ where $\beta_i = \rho_i \sigma_y / \sigma_x$. Note that the variances are the same for i = 1, 2. With these densities we find [or by substitution in (1.2) of chapter 9], $$I(1:2; X) = \frac{(\mu_{2x} - \mu_{1x})^2}{2\sigma_x^2},$$ $$I(1:2; Y|X = x) = \frac{1}{2} \log \frac{1 - \rho_2^2}{1 - \rho_1^2} - \frac{1}{2} + \frac{1}{2} \frac{1 - \rho_1^2}{1 - \rho_2^2} + \frac{1}{2} \frac{1 - \rho_1^2}{1 - \rho_2^2} + \frac{1}{2} \frac{[\mu_{2y} + \beta_2(x - \mu_{2x}) - \mu_{1y} - \beta_1(x - \mu_{1x})]^2}{\sigma_y^2(1 - \rho_2^2)},$$ $$I(1:2; Y|X) = \frac{1}{2} \log \frac{1 - \rho_2^2}{1 - \rho_1^2} - \frac{\rho_1^2 - \rho_2^2}{2(1 - \rho_2^2)} + \frac{[(\mu_{2y} - \mu_{1y}) - \beta_2(\mu_{2x} - \mu_{1x})]^2}{2\sigma_y^2(1 - \rho_2^2)} + \frac{(\rho_2 - \rho_1)^2}{2(1 - \rho_2^2)},$$ $$I(1:2; X, Y) = \frac{1}{2} \log \frac{1 - \rho_2^2}{1 - \rho_1^2} + \frac{\rho_2(\rho_2 - \rho_1)}{1 - \rho_2^2} + \frac{1}{2(1 - \rho_2^2)} \left[\frac{(\mu_{2x} - \mu_{1x})^2}{\sigma_x^2} - 2\rho_2 \frac{(\mu_{2x} - \mu_{1x})(\mu_{2y} - \mu_{1y})}{\sigma_x\sigma_y} + \frac{(\mu_{2y} - \mu_{1y})^2}{\sigma_y^2} \right].$$ Note that I(1:2; X, Y) = I(1:2; X) + I(1:2; Y|X). If $\rho_1 = \rho_2 = 0$, so that X and Y are independent under H_1 and H_2 , $I(1:2; Y|X) = (\mu_{2y} - \mu_{1y})^2/2\sigma_y^2$ = I(1:2; Y) and $I(1:2; X, Y) = \frac{(\mu_{2x} - \mu_{1x})^2}{2\sigma_x^2} + \frac{(\mu_{2y} - \mu_{1y})^2}{2\sigma_y^2} = I(1:2; X) + I(1:2; Y)$. #### 3. CONVEXITY THEOREM 3.1. I(1:2) is almost positive definite; that is, $I(1:2) \ge 0$, with equality if and only if $f_1(x) = f_2(x)$ [λ]. *Proof.* Let $g(x) = f_1(x)/f_2(x)$. Then (3.1) $$I(1:2) = \int f_2(x)g(x) \log g(x) d\lambda(x)$$ $$= \int g(x) \log g(x) d\mu_2(x),$$ with $d\mu_2(x) = f_2(x) d\lambda(x)$. Setting $\phi(t) = t \log t$, since $0 < g(x) < \infty$ [λ], we may write [cf. Hardy, Littlewood, and Pólya (1934, p. 151)], (3.2) $$\phi(g(x)) = \phi(1) + [g(x) - 1]\phi'(1) + \frac{1}{2}[g(x) - 1]^2\phi''(h(x)) [\lambda],$$ where h(x) lies between g(x) and 1, so that $0 < h(x) < \infty$ [λ]. Since $\phi(1) = 0$, $\phi'(1) = 1$, and (3.3) $$\int g(x) d\mu_2(x) = \int f_1(x) d\lambda(x) = 1,$$ we find (3.4) $$\int \phi(g(x)) d\mu_2(x) = \frac{1}{2} \int [g(x) - 1]^2 \phi''(h(x)) d\mu_2(x),$$ where $\phi''(t) = 1/t > 0$ for t > 0. We see from (3.4) that (3.5) $$\int g(x) \log g(x) d\mu_2(x) = \int f_1(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x) \ge 0,$$ with equality if and only if $g(x) = f_1(x)/f_2(x) = 1[\lambda]$. Theorem 3.1 tells us that, in the mean, discrimination information obtained from statistical observations is positive [cf. Fisher (1925b)]. There is no discrimination information if the distributions of the observations are the same $[\lambda]$ under both hypotheses. Theorem 3.1 may be verified with the values of I(1:2) computed in example 2.1. COROLLARY 3.1. $$\int_{E} f_{1}(x) \log \frac{f_{1}(x)}{f_{2}(x)} d\lambda(x) \ge \left(\int_{E} f_{1}(x) d\lambda(x) \right) \log \frac{\int_{E} f_{1}(x) d\lambda(x)}{\int_{E} f_{2}(x) d\lambda(x)}$$ $$= \mu_{1}(E) \log \frac{\mu_{1}(E)}{\mu_{2}(E)},$$ for $$\lambda(E) > 0$$, with equality if and only if $\frac{f_1(x)}{f_2(x)} = \frac{\mu_1(E)}{\mu_2(E)} [\lambda]$ for $x \in E$. *Proof.* If the left-hand member of the inequality in the corollary is ∞ , the result is trivial. Otherwise truncate the distributions to the set E \bigcirc and write $g_1(x) = f_1(x)/\mu_1(E)$, $g_2(x) = f_2(x)/\mu_2(E)$. From theorem 3.1 we now have $$\int_{E} g_{1}(x) \log \frac{g_{1}(x)}{g_{2}(x)} d\lambda(x) \geq 0,$$ with equality if and only if $g_1(x) = g_2(x)$ [λ], and the corollary follows. Defining $t \log t = 0$ for t = 0, the equality in corollary 3.1 is trivially satisfied for $\lambda(E) = 0$. COROLLARY 3.2. If $E_i \in \mathcal{S}$, $i = 1, 2, \dots, E_i \cap E_j = 0$, $i \neq j$, and $\mathcal{X} = \bigcup_i E_i$, that is, for the partitioning of \mathcal{X} into pairwise disjoint E_1, E_2, \dots , $$I(1:2) \ge \sum_{i} \mu_1(E_i) \log \frac{\mu_1(E_i)}{\mu_2(E_i)}$$ with equality if and only if $\frac{f_1(x)}{f_2(x)} = \frac{\mu_1(E_i)}{\mu_2(E_i)} [\lambda]$, for $x \in E_i$, $i = 1, 2, \cdots$. Proof. Use corollary 3.1 and (see problem 8.37) $$I(1:2) = \int f_1(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x) = \sum_i \int_{E_i} f_1(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x).$$ The properties in theorem 3.1 and corollaries 3.1 and 3.2 [cf. Lindley (1956), Savage (1954, p. 235)] are convexity properties related to the fact that $t \log t$ is a convex function and are in essence Jensen's inequality [Jensen (1906)]. [See problem 8.31. For details on convex functions the reader may see Blackwell and Girshick (1954, pp. 30-42), Fraser (1957, pp. 52-55), Hardy, Littlewood, and Pólya (1934)]. We also see from corollary 3.1 that the grouping of observations generally causes a loss of information [cf. Fisher (1925b),
Wiener (1948, p. 79)]; the left-hand side of the inequality of corollary 3.1 is the discrimination information in the elements of the set E, whereas the right-hand member of the inequality is the discrimination information in the set E. The necessary and sufficient condition of corollary 3.1 that the information not be diminished by the grouping may also be written as $\frac{f_1(x)}{\mu_1(E)} = \frac{f_2(x)}{\mu_2(E)}$ [λ] for $x \in E$, which states that the conditional density of x given E, is the same under both hypotheses. We may treat all $x \in E$ for which the condition for equality in corollary 3.1 is satisfied as equivalent for the discrimination. As illustrations of theorem 3.1 and corollaries 3.1 and 3.2, we have the following: Example 3.1. (See example 4.2 in chapter 1 and theorem 3.1.) (3.6) $$p_1 \log \frac{p_1}{1/n} + p_2 \log \frac{p_2}{1/n} + \cdots + p_n \log \frac{p_n}{1/n} \ge 0,$$ where $p_i > 0$, $i = 1, 2, \dots, n$, $p_1 + p_2 + \dots + p_n = 1$. It follows that $\log n \ge -\sum p_i \log p_i$, with equality if and only if $p_i = 1/n$, $i = 1, 2, \dots, n$, corresponding to the fact that the greatest uncertainty in a situation with n alternatives occurs when all the alternatives are equally probable [Shannon (1948)]. Example 3.2. (See corollary 3.1.) $$(3.7) \quad p_{11} \log \frac{p_{11}}{p_{21}} + p_{12} \log \frac{p_{12}}{p_{22}} + \cdots + p_{1n} \log \frac{p_{1n}}{p_{2n}}$$ $$\geq (p_{11} + p_{12} + \cdots + p_{1n}) \log \frac{p_{11} + p_{12} + \cdots + p_{1n}}{p_{21} + p_{22} + \cdots + p_{2n}},$$ for $p_{ij} > 0$, $i = 1, 2, j = 1, 2, \dots, n$, with equality if and only if $$\frac{p_{11}}{p_{21}} = \frac{p_{12}}{p_{22}} = \cdot \cdot \cdot = \frac{p_{1n}}{p_{2n}} = \frac{p_{11} + p_{12} + \cdot \cdot \cdot + p_{1n}}{p_{21} + p_{22} + \cdot \cdot \cdot + p_{2n}}$$ Example 3.3. (See corollary 3.2.) For Poisson populations with parameters λ_1 and λ_2 we have, $$\begin{split} \sum_{x=0}^{\infty} e^{-\lambda_1} \frac{\lambda_1^x}{x!} \log \frac{e^{-\lambda_1} \lambda_1^x / x!}{e^{-\lambda_2} \lambda_2^x / x!} &= e^{-\lambda_1} \log \frac{e^{-\lambda_1}}{e^{-\lambda_2}} + e^{-\lambda_1} \lambda_1 \log \frac{e^{-\lambda_1} \lambda_1}{e^{-\lambda_2} \lambda_2} \\ &+ \sum_{x=2}^{\infty} \frac{e^{-\lambda_1} \lambda_1^x}{x!} \log \frac{e^{-\lambda_1} \lambda_1^x / x!}{e^{-\lambda_2} \lambda_2^x / x!} \\ &\geq e^{-\lambda_1} (\lambda_2 - \lambda_1) + e^{-\lambda_1} \lambda_1 (\lambda_2 - \lambda_1) + e^{-\lambda_1} \lambda_1 \log \frac{\lambda_1}{\lambda_2} \\ &+ (1 - e^{-\lambda_1} - \lambda_1 e^{-\lambda_1}) \log \frac{1 - e^{-\lambda_1} - \lambda_1 e^{-\lambda_1}}{1 - e^{-\lambda_2} - \lambda_2 e^{-\lambda_2}}, \end{split}$$ with equality if and only if $$\frac{e^{-\lambda_1}\lambda_1^x}{e^{-\lambda_2}\lambda_2^x} = \frac{1 - e^{-\lambda_1} - \lambda_1 e^{-\lambda_1}}{1 - e^{-\lambda_2} - \lambda_2 e^{-\lambda_2}}, \quad x = 2, 3, \cdots.$$ A numerical illustration, grouping values $x \ge 4$, is in table 2.1 of example 2.2 of chapter 4. Example 3.4. (See corollary 3.1.) (3.8) $$\iint f_1(x, y) \log \frac{f_1(x, y)}{f_2(x, y)} dx dy \ge \int dx \int f_1(x, y) dy \log \frac{\int f_1(x, y) dy}{\int f_2(x, y) dy}$$ $$= \int g_1(x) \log \frac{g_1(x)}{g_2(x)} dx,$$ with equality if and only if $\frac{f_1(x,y)}{f_2(x,y)} = \frac{g_1(x)}{g_2(x)}$ where $g_i(x)$, i = 1, 2, are the marginal densities of x. The necessary and sufficient condition for equality may also be written as $f_1(x, y)/g_1(x) = f_2(x, y)/g_2(x)$ or $h_1(y|x) = h_2(y|x)$, with $h_i(y|x)$, i = 1, 2, a conditional density of y given x. As a matter of fact, (3.8) is also an illustration of: COROLLARY 3.3. (a) $I(1:2; X, Y) \ge I(1:2; X)$ with equality if and only if I(1:2; Y|X) = 0; (b) $I(1:2; X, Y) \ge I(1:2; Y)$ with equality if and only if I(1:2; X|Y) = 0; (c) $I(1:2; X, Y) \ge I(1:2; Y|X)$ with equality if and only if I(1:2; X) = 0; (d) $I(1:2; X, Y) \ge I(1:2; X|Y)$ with equality if and only if I(1:2; Y) = 0 [cf. Lindley (1956)]. *Proof.* Use theorem 3.1 in conjunction with theorem 2.2. #### 4. INVARIANCE If the partitioning of the space \mathcal{X} in corollary 3.2 is such that the necessary and sufficient condition for equality is satisfied, that is, if the conditional density of x given E_i is the same under both hypotheses for all E_i of the partitioning, we may designate the partitioning $\mathscr{X} = \bigcup_i E_i$ as a sufficient partitioning for the discrimination. Note that the coarser grouping of a sufficient partitioning is as informative for discrimination as the finer grouping of the space \mathscr{X} . In terms of the concept that a statistic is a partitioning of \mathcal{X} into sets of equivalent x's [Lehmann (1950b, pp. 6-7)], we may say that the statistic defined by the partitioning $\mathscr{X} = \bigcup_i E_i$ is sufficient for the discrimination if the necessary and sufficient condition for the equality to hold in corollary 3.2 is satisfied. This is consistent with the original criterion of sufficiency introduced by R. A. Fisher (1922b, p. 316): "the statistic chosen should summarise the whole of the relevant information supplied by the sample," and further developments, for example, by Fisher (1925a, b), Neyman (1935), Dugué (1936a, b), Koopman (1936), Pitman (1936), Darmois (1945), Halmos and Savage (1949), Lehmann and Scheffé (1950), Savage (1954), Blackwell and Girshick (1954, pp. 208-223), Bahadur (1954). [Cf. Fraser (1957, pp. 16–22).] To continue the study of the relation between "information" and "sufficiency," let Y = T(x) be a statistic, that is, T(x) is a function with domain \mathcal{X} and range \mathcal{Y} , and let \mathcal{T} be an additive class of subsets of \mathcal{Y} . We assume that T(x) is measurable, that is, for every set $G \in \mathcal{T}$, the inverse image set $T^{-1}(G) = \{x: T(x) \in G\}$ $[T^{-1}(G)$ is the set of elements x such that $T(x) \in G$ is a member of the class \mathcal{Y} of measurable subsets of \mathcal{X} (see section 2 of chapter 1). The class of all such sets of the form $T^{-1}(G)$ is denoted by $T^{-1}(\mathcal{T})$. We thus have a measurable transformation T of the probability spaces $(\mathcal{X}, \mathcal{S}, \mu_i)$ onto the probability spaces $(\mathcal{Y}, \mathcal{T}, \nu_i)$, where by definition $\nu_i(G) = \mu_i(T^{-1}(G))$, i = 1, 2 [Fraser (1957, pp. 1-16), Halmos and Savage (1949), Kolmogorov (1950, pp. 21-22), Loève (1955, p. 166)]. If we define $\gamma(G) = \lambda(T^{-1}(G))$, then $\nu_1 \equiv \nu_2 \equiv \gamma$ (the measures are absolutely continuous with respect to one another), and as in section 2 of chapter 1, the Radon-Nikodym theorem permits us to assert the existence of the generalized probability density $g_i(y)$, i = 1, 2, where (4.1) $$\nu_i(G) = \int_G g_i(y) \, d\gamma(y), \qquad i = 1, 2, \qquad G \in \mathcal{F},$$ for all $G \in \mathcal{F}$. The function value $g_i(y)$ is the conditional expectation of $f_i(x)$ given that T(x) = y and is denoted by $E_{\lambda}(f_i|y)$ [Fraser (1957, p. 15), Halmos and Savage (1949), Kolmogorov (1950, pp. 47-50), Loève (1955, pp. 337-344)]. In terms of the probability spaces $(\mathcal{Y}, \mathcal{T}, \nu_i)$, i = 1, 2, the discrimination information is [cf. (2.4) of chapter 1] (4.2) $$I(1:2;G) = \frac{1}{\nu_1(G)} \int_G g_1(y) \log \frac{g_1(y)}{g_2(y)} d\gamma(y), \qquad \nu_1(G) > 0,$$ $$= 0, \qquad \nu_1(G) = 0,$$ and [cf. (2.5) of chapter 1] (4.3) $$I(1:2; \mathscr{Y}) = \int g_1(y) \log \frac{g_1(y)}{g_2(y)} d\gamma(y).$$ We shall need the following lemma for the proof of theorem 4.1. Following the notation of Halmos and Savage (1949), if g is a point function on \mathcal{Y} , then gT is the point function on \mathcal{X} defined by gT(x) = g(T(x)). LEMMA 4.1. If g is a real-valued function on \mathcal{Y} , then $$\int_{G} g(y) \ d\nu_{i}(y) = \int_{T^{-1}(G)} gT(x) \ d\mu_{i}(x), \qquad i = 1, 2,$$ for every $G \in \mathcal{F}$, in the sense that if either integral exists, then so does the other and the two are equal. *Proof.* See Halmos (1950, p. 163), lemma 3 of Halmos and Savage (1949), Loève (1955, p. 342). THEOREM 4.1. $I(1:2;\mathcal{X}) \geq I(1:2;\mathcal{Y})$, with equality if and only if $f_1(x)/f_2(x) = g_1(T(x))/g_2(T(x))$ [λ]. *Proof.* If $I(1:2; \mathcal{X}) = \infty$, the result is trivial. Using lemma 4.1 above, $$I(1:2;\mathscr{Y}) = \int d\nu_1(y) \log \frac{g_1(y)}{g_2(y)} = \int d\mu_1(x) \log \frac{g_1T(x)}{g_2T(x)},$$ and therefore $$\begin{split} I(1:2;\mathcal{X}) - I(1:2;\mathcal{Y}) &= \int \! d\mu_1(x) \left[\log \frac{f_1(x)}{f_2(x)} - \log \frac{g_1 T(x)}{g_2 T(x)} \right] \\ &= \int \! f_1(x) \log \frac{f_1(x) g_2 T(x)}{f_2(x) g_1 T(x)} \, d\lambda(x). \end{split}$$ Setting $$g(x) = \frac{f_1(x)g_2T(x)}{f_2(x)g_1T(x)}$$, (4.4) $$I(1:2; \mathcal{X}) - I(1:2; \mathcal{Y}) = \int \frac{f_2(x)g_1T(x)}{g_2T(x)} g(x) \log g(x) d\lambda(x)$$ $$= \int g(x) \log g(x) d\mu_{12}(x),$$ where $$\mu_{12}(E) = \int_{E} \frac{f_2(x)g_1T(x)}{g_2T(x)} d\lambda(x)$$, for all $E \in \mathcal{S}$. Since $$\int g(x) d\mu_{12}(x) = \int \frac{f_1(x)g_2T(x)}{f_2(x)g_1T(x)} \cdot \frac{f_2(x)g_1T(x)}{g_2T(x)} d\lambda(x) = 1,$$ the method of theorem 3.1 leads to the conclusion that $$I(1:2; \mathcal{X}) - I(1:2; \mathcal{Y}) \ge 0$$, with equality if and only if (4.5) $$\frac{f_1(x)}{f_2(x)} = \frac{g_1T(x)}{g_2T(x)} = \frac{g_1(T(x))}{g_2(T(x))} [\lambda].$$ The necessary and sufficient condition for the equality to hold in theorem 4.1 may also be written as [see (4.1)] $$\frac{f_1(x)}{g_1(y)} = \frac{f_2(x)}{g_2(y)} [\lambda], \quad \text{or} \quad \frac{f_1(x)}{E_{\lambda}(f_1|y)} = \frac{f_2(x)}{E_{\lambda}(f_2|y)} [\lambda],$$ that is, the conditional density of x, given T(x) = y, is the same under both hypotheses. A statistic satisfying the condition for equality in theorem 4.1 is called a sufficient statistic for the discrimination. [Cf. Mourier (1951).] Suppose now
that the two probability measures μ_1 and μ_2 are members of a set m of measures, for example, a set with all members of the same functional form, but differing values of one or more parameters. We assume that the set m of measures is homogeneous, that is, any two members of the set are absolutely continuous with respect to each other. By means of the Radon-Nikodym theorem, we may represent each member of the homogeneous set by a generalized probability density with respect to a common measure [Fraser (1957, p. 21), Halmos and Savage (1949)]. THEOREM 4.2. If μ_1 and μ_2 are any two members of a homogeneous set m of measures, then $I(1:2;\mathcal{X}) \geq I(1:2;\mathcal{Y})$, with equality if and only if the statistic Y = T(x) is sufficient for the homogeneous set m. **Proof.** The necessary and sufficient condition given by (4.5) is now equivalent to the condition that the generalized conditional density of x, given T(x) = y, is the same $[\lambda]$ for all measures of the homogeneous set m or the defining condition for T(x) to be a sufficient statistic [Fisher (1922b), Neyman (1935), Darmois (1936), Doob (1936), Halmos and Savage (1949), Lehmann and Scheffé (1950), Rao (1952), Savage (1954), Blackwell and Girshick (1954), Bahadur (1954), Loève (1955, p. 346), Fraser (1957, p. 17)]. LEMMA 4.2. If f is a real-valued function on \mathcal{X} , then a necessary and sufficient condition that there exist a measurable function g on \mathcal{Y} such that f = gT is that f be measurable $T^{-1}(\mathcal{T})$; if such a function g exists, then it is unique. Proof. See lemma 2 of Halmos and Savage (1949). COROLLARY 4.1. $I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y})$ if Y = T(x) is a nonsingular transformation. *Proof.* If T is nonsingular, $T^{-1}(\mathcal{T})$ is \mathcal{S} and therefore $f_i(x)$, i=1,2, is measurable $T^{-1}(\mathcal{T})$, and the conclusion follows from lemma 4.2 and theorem 4.2. Note that an alternative proof follows from the successive application of theorem 4.1 for the transformation from \mathcal{X} to \mathcal{Y} and the inverse transformation from \mathcal{Y} to \mathcal{X} . COROLLARY 4.2. $I(1:2; T^{-1}(G)) = I(1:2; G)$ for all $G \in \mathcal{F}$ if and only if $I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y})$; that is, if and only if Y = T(x) is a sufficient statistic. *Proof.* Let $\chi_E(x)$ be the characteristic function of the set E, that is, $\chi_E(x) = 1$ if $x \in E$, and $\chi_E(x) = 0$ if $x \notin E$. We have $$I(1:2;G) = \int_{G} \frac{d\nu_{1}(y)}{\nu_{1}(G)} \log \frac{g_{1}(y)}{g_{2}(y)} = \int \chi_{G}(y) \frac{d\nu_{1}(y)}{\nu_{1}(G)} \log \frac{g_{1}(y)}{g_{2}(y)}$$ $$= \int \chi_{T^{-1}(G)}(x) \frac{d\mu_{1}(x)}{\mu_{1}(T^{-1}(G))} \log \frac{g_{1}T(x)}{g_{2}T(x)}$$ $$= \int_{T^{-1}(G)} \frac{d\mu_{1}(x)}{\mu_{1}(T^{-1}(G))} \log \frac{g_{1}T(x)}{g_{2}T(x)},$$ $$I(1:2;T^{-1}(G)) = \int_{T^{-1}(G)} \frac{d\mu_{1}(x)}{\mu_{1}(T^{-1}(G))} \log \frac{f_{1}(x)}{f_{2}(x)}.$$ application of the method of theorem 4.1 to $I(1:2;T^{-1}(G))$ An application of the method of theorem 4.1 to $I(1:2; T^{-1}(G)) - I(1:2; G)$ and use of theorem 4.2 completes the proof. We may "randomize" corollary 4.2 by introducing the function $\psi(y)$ such that $0 \le \psi(y) \le 1$, for example, $\psi(y)$ may represent the probability for a certain action if y is observed. From the definition of conditional expectation [Fraser (1957, p. 15), Halmos (1950, p. 209), Halmos and Savage (1949), Kolmogorov (1950, p. 53), Loève (1955, p. 340)] we have (4.6) $$\int \phi(x) \ d\lambda(x) = \int \psi(y) \ d\gamma(y),$$ $$\int \phi(x) f_i(x) \ d\lambda(x) = \int \psi(y) g_i(y) \ d\gamma(y), \qquad i = 1, 2,$$ where $\phi(x) = \psi T(x) = \psi(T(x))$, $\psi(y) = E_{\lambda}(\phi(x)|T(x) = y)$, that is, $\psi(y)$ is the conditional expectation (using the measure λ) of $\phi(x)$ given T(x) = y. (See lemmas 3.1 and 3.2 in chapter 3.) COROLLARY 4.3. $$\int \phi(x)f_1(x)\log \frac{f_1(x)}{f_2(x)}d\lambda(x) \ge \int \psi(y)g_1(y)\log \frac{g_1(y)}{g_2(y)}d\gamma(y),$$ with equality if and only if Y = T(x) is a sufficient statistic. *Proof.* An application of the method of proof of theorems 4.1 and 4.2 yields the result. The preceding theorems and corollaries show that the grouping, condensation, or transformation of observations by a statistic will in general result in a loss of information. If the statistic is sufficient, there is no loss of information [cf. Fisher (1925b, 1935, 1956, pp. 150-152)]. There can be no gain of information by statistical processing of data. A numerical illustration of this loss of information is in section 2 of chapter 4. [Cf. Feinstein (1958, pp. 70-71).] Corollaries 4.2 and 4.3 show that the sufficiency of a statistic for a set of distributions is not affected by truncation or by selection according to the function $\phi(x) = \psi(T(x))$ [cf. Bartlett (1936), Pitman (1936), Tukey (1949)]. Averaging, on the other hand, is a statistical procedure or transformation that will generally result in a loss of information. A transformation that considers only a marginal distribution in a multivariate situation (ignores some of the variates) also is one that will generally result in a loss of information. (See corollary 3.3; also section 8 of chapter 9.) #### 5. DIVERGENCE In view of our assumption in section 2 of chapter 1 that the probability measures μ_1 and μ_2 are absolutely continuous with respect to one another, I(2:1), defined in (3.1) of chapter 1, satisfies theorems and corollaries similar to those thus far developed for I(1:2). Since J(1, 2) = I(1:2) + I(2:1), we also have a similar set of results for J(1, 2) that we shall state, using the notation and symbols of sections 2, 3, and 4, leaving the proofs to the reader. THEOREM 5.1. J(1, 2) is additive for independent random events; that is, for X and Y independent J(1, 2; X, Y) = J(1, 2; X) + J(1, 2; Y). THEOREM 5.2. $$J(1, 2; X, Y) = J(1, 2; X) + J(1, 2; Y|X)$$ = $J(1, 2; Y) + J(1, 2; X|Y)$. THEOREM 5.3. J(1, 2) is almost positive definite; that is, $J(1, 2) \ge 0$, with equality if and only if $f_1(x) = f_2(x) [\lambda]$. COROLLARY 5.1. $$\int_{E} (f_{1}(x) - f_{2}(x)) \log \frac{f_{1}(x)}{f_{2}(x)} d\lambda(x)$$ $$\geq \left(\int_{E} f_{1}(x) d\lambda(x) - \int_{E} f_{2}(x) d\lambda(x) \right) \log \frac{\int_{E} f_{1}(x) d\lambda(x)}{\int_{E} f_{2}(x) d\lambda(x)}$$ $$= (\mu_{1}(E) - \mu_{2}(E)) \log \frac{\mu_{1}(E)}{\mu_{2}(E)},$$ for $\lambda(E) > 0$, with equality if and only if $f_1(x)/f_2(x) = \mu_1(E)/\mu_2(E)$ [λ] for $x \in E$. COROLLARY 5.2. If $E_i \in \mathcal{S}$, $i = 1, 2, \dots, E_i \cap E_j = 0$, $i \neq j$, and $\mathcal{X} = \bigcup_i E_i$, $$J(1, 2) \ge \sum_{i} (\mu_{1}(E_{i}) - \mu_{2}(E_{i})) \log \frac{\mu_{1}(E_{i})}{\mu_{2}(E_{i})},$$ with equality if and only if $f_1(x)/f_2(x) = \mu_1(E_i)/\mu_2(E_i)$ [λ] for $x \in E_i$, $i = 1, 2, \cdots$. COROLLARY 5.3. (a) $J(1, 2; X, Y) \ge J(1, 2; X)$, with equality if and only if J(1, 2; Y|X) = 0; (b) $J(1, 2; X, Y) \ge J(1, 2; Y)$, with equality if and only if J(1, 2; X|Y) = 0; (c) $J(1, 2; X, Y) \ge J(1, 2; Y|X)$, with equality if and only if J(1, 2; X) = 0; (d) $J(1, 2; X, Y) \ge J(1, 2; X|Y)$, with equality if and only if J(1, 2; Y) = 0. THEOREM 5.4. $J(1,2;\mathcal{X}) \geq J(1,2;\mathcal{Y})$, with equality if and only if $f_1(x)/f_2(x) = g_1(T(x))/g_2(T(x))$ [λ]. THEOREM 5.5. If μ_1 and μ_2 are any two members of a homogeneous set m of measures, then $J(1, 2; \mathcal{X}) \ge J(1, 2; \mathcal{Y})$, with equality if and only if the statistic Y = T(x) is sufficient for the homogeneous set m. COROLLARY 5.4. $J(1, 2; \mathcal{X}) = J(1, 2; \mathcal{Y})$ if Y = T(x) is a nonsingular transformation. COROLLARY 5.5. $J(1,2;T^{-1}(G)) = J(1,2;G)$ for all $G \in \mathcal{T}$ if and only if $J(1,2;\mathcal{X}) = J(1,2;\mathcal{Y})$; that is, if and only if Y = T(x) is a sufficient statistic. COROLLARY 5.6. $$\int \phi(x)(f_1(x) - f_2(x)) \log \frac{f_1(x)}{f_2(x)} d\lambda(x) \ge \int \psi(y)(g_1(y) - g_2(y)) \log \frac{g_1(y)}{g_2(y)} d\gamma(y),$$ with equality if and only if Y = T(x) is a sufficient statistic. At this point it may be appropriate to describe the problem of discrimination between two hypotheses H_1 and H_2 in terms of the language of communication theory, and to derive a result that may throw further light on the meaning of J(1, 2). We shall consider a model consisting of a source that generates symbols, a channel that transmits the symbols imperfectly (a noisy channel), and a receiver which will ultimately act on the basis of the message it has received (or thinks it has received). For general models of the communication problem and the basis for the terms used see Shannon (1948), Shannon and Weaver (1949), McMillan (1953), Khinchin (1957), Joshi (1957), Feinstein (1958). Suppose the source, or input space, is a state of nature characterized by the hypotheses H_1 and H_2 , with $P(H_1) = p$ and $P(H_2) = q = 1 - p$. The input space then consists of only two symbols H_{θ} , $\theta = 1, 2$. These symbols are transmitted by some discrete random process with probabilities p and q, successive symbols being independently selected. The receiver, or output space, is the sample space \mathscr{X} of elements x in section 2 of chapter 1. The noisy channel is the observation procedure described by the generalized probability densities $f_{\theta}(x)$, $\theta = 1, 2$, of section 2 of chapter 1, such that $\mu_{\theta}(E)$ is the conditional probability that the transmitted symbol H_{θ} is received as $x \in E \in \mathcal{S}$. This communication system may be denoted by $(p; f_1, f_2)$, and the channel by (f_1, f_2) . The rate $R(p; f_1, f_2)$ of transmission of information by the communication system $(p; f_1, f_2)$ is defined by Shannon (1948) as the difference between the entropy (see section 4 of chapter 1) of the source,
or input entropy (the prior uncertainty), and the mean conditional entropy of the input symbols at the output (the posterior uncertainty), that is, $$R(p; f_1, f_2) = \mathcal{H}(\theta) - \mathcal{H}(\theta|X),$$ where $\mathcal{H}(\theta)$, the prior uncertainty, and $\mathcal{H}(\theta|X)$, the posterior uncertainty, are given by (5.1) $$\mathscr{H}(\theta) = -P(H_1) \log P(H_1) - P(H_2) \log P(H_2)$$ = $-p \log p - q \log q$, $$(5.2) \mathcal{H}(0|X) = E(-P(H_1|x) \log P(H_1|x) - P(H_2|x) \log P(H_2|x))$$ $$= -\int (P(H_1|x) \log P(H_1|x) + P(H_2|x) \log P(H_2|x)) f(x) d\lambda(x),$$ with $f(x) = pf_1(x) + qf_2(x)$. [Cf. Lindley (1956, pp. 986-990).] The rate of transmission of information by the communication system is also a measure of the relation between the input and output symbols. Using the values for $\mathcal{H}(\theta)$ and $\mathcal{H}(\theta|X)$ in (5.1) and (5.2) above gives (5.3), $$R(p; f_1, f_2) = \sum_{\theta=1}^{2} \int P(H_{\theta}, x) \log \frac{P(H_{\theta}, x)}{P(H_{\theta})f(x)} d\lambda(x)$$ $$= \int \left(pf_1(x) \log \frac{f_1(x)}{f(x)} + qf_2(x) \log \frac{f_2(x)}{f(x)} \right) d\lambda(x)$$ $$\geq 0,$$ where $P(H_{\theta}, x) d\lambda(x) = P(H_{\theta}|x)f(x) d\lambda(x)$ is the joint probability of H_{θ} and x. Note that $\sum_{\theta=1}^{2} \int P(H_{\theta}, x) \log \frac{P(H_{\theta}, x)}{P(H_{\theta})f(x)} d\lambda(x)$ may be defined [cf. (4.2) of chapter 1] as the mean information in X about H_{θ} . The capacity $C(f_1, f_2)$ of the channel (f_1, f_2) is defined by Shannon (1948) as $\max_{0 \le p \le 1} R(p; f_1, f_2)$, that is, the maximum rate of transmission for all choices of the source. Denoting the maximum of $C(f_1, f_2)/J(1, 2)$ over all f_1 and f_2 that are generalized densities with respect to a common measure by $\max_{(f_1, f_2)} \frac{C(f_1, f_2)}{J(1, 2)}$, we can state [cf. Sakaguchi (1955, 1957a)]: THEOREM 5.6. $$\max_{(f_1,f_2)} \frac{C(f_1,f_2)}{J(1,2)} \le \frac{1}{4}.$$ *Proof.* Note that as a function of p, $0 \le p \le 1$, $R(p; f_1, f_2)$ in (5.3) is concave (the second derivative is never positive); $R(0; f_1, f_2) = R(1; f_1, f_2) = 0$; and R' denoting the derivative with respect to p, $R'(0; f_1, f_2) = I(1:2)$ defined in (2.5) of chapter 1, $R'(1; f_1, f_2) = -I(2:1)$ defined in (3.1) of chapter 1; $R(p; f_1, f_2)$ is a maximum for p such that $$\int f_1(x) \log \frac{f_1(x)}{f(x)} d\lambda(x) = \int f_2(x) \log \frac{f_2(x)}{f(x)} d\lambda(x).$$ Next, by writing $f_i(x) = pf_i(x) + qf_i(x)$, i = 1, 2, and using the convexity property as in example 3.2, we have $$\int f_1(x) \log \frac{f_1(x)}{f(x)} d\lambda(x) = \int (pf_1(x) + qf_1(x)) \log \frac{pf_1(x) + qf_1(x)}{pf_1(x) + qf_2(x)} d\lambda(x)$$ $$\leq \int pf_1(x) \log \frac{pf_1(x)}{pf_1(x)} d\lambda(x) + \int qf_1(x) \log \frac{qf_1(x)}{qf_2(x)} d\lambda(x)$$ $$= qI(1:2).$$ Similarly, $\int f_2(x) \log \frac{f_2(x)}{f(x)} d\lambda(x) \leq pI(2:1)$, so that $R(p; f_1, f_2) \leq pq(I(1:2) + I(2:1))$, or $C(f_1, f_2) = \max_{0 \leq p \leq 1} R(p; f_1, f_2) \leq \frac{1}{4}J(1, 2)$, from which we finally get the inequality in the theorem. #### 6. FISHER'S INFORMATION The information measures that we have been studying are related to Fisher's information measure. Consider the parametric case where the members of the set m of theorem 4.2 are of the same functional form but differ according to the values of the k-dimensional parameter $\theta = (\theta_1, \theta_2, \dots, \theta_k)$. Suppose that θ and $\theta + \Delta \theta$ are neighboring points in the k-dimensional parameter space which is assumed to be an open convex set in a k-dimensional Euclidean space, and $f_1(x) = f(x, \theta)$, $f_2(x) = f(x, \theta + \Delta \theta)$. We shall show in this section that $I(\theta: \theta + \Delta \theta)$ and $I(\theta, \theta + \Delta \theta)$ can be expressed as quadratic forms with coefficients defined by Fisher's information matrix. [Cf. Savage (1954, pp. 235-237).] We may write $$J(\theta, \theta + \Delta\theta) = \int (f(x, \theta) - f(x, \theta + \Delta\theta)) \log \frac{f(x, \theta)}{f(x, \theta + \Delta\theta)} d\lambda(x)$$ $$= \int f(x, \theta) \frac{\Delta f(x, \theta)}{f(x, \theta)} \Delta \log f(x, \theta) d\lambda(x),$$ and $$I(\theta:\theta+\Delta\theta)=-\int f(x,\theta)\Delta\log f(x,\theta)\,d\lambda(x),$$ where $\Delta f(x, \theta) = f(x, \theta + \Delta \theta) - f(x, \theta)$ and $\Delta \log f(x, \theta) = \log f(x, \theta + \Delta \theta) - \log f(x, \theta)$. Suppose that the generalized density $f(x, \theta)$ satisfies the following regularity conditions [cf. Cramér (1946a, pp. 500-501), Gurland (1954)]: 1. For all $$x[\lambda]$$, the partial derivatives $\frac{\partial \log f}{\partial \theta_{\alpha}}$, $\frac{\partial^2 \log f}{\partial \theta_{\alpha} \partial \theta_{\beta}}$, $\frac{\partial^3 \log f}{\partial \theta_{\alpha} \partial \theta_{\beta}}$ exist, for all α , β , $\gamma = 1, 2, \dots, k$, for every $\theta' = (\theta_1', \theta_2', \dots, \theta_k')$ belonging to the nondegenerate interval $A = (\theta_{\alpha} < \theta_{\alpha}' < \theta_{\alpha} + \Delta \theta_{\alpha})$, $\alpha = 1, 2, \dots, k$. 2. For every $\theta' \in A$, $\left| \frac{\partial f}{\partial \theta_{\alpha}} \right| < F(x)$, $\left| \frac{\partial^2 f}{\partial \theta_{\alpha} \partial \theta_{\beta}} \right| < G(x)$, $\left| \frac{\partial^3 \log f}{\partial \theta_{\alpha} \partial \theta_{\beta} \partial \theta_{\gamma}} \right| < H(x)$, for all α , β , $\gamma = 1, 2, \cdots$, k, where F(x) and G(x) are integrable $[\lambda]$ over for all α , β , $\gamma = 1, 2, \dots, k$, where F(x) and G(x) are integrable $[\lambda]$ over the whole space and $\int f(x, \theta) H(x) d\lambda(x) < M < \infty$, where M is independent of $\theta = (\theta_1, \theta_2, \dots, \theta_k)$. 3. $$\int \frac{\partial f}{\partial \theta_{\alpha}} d\lambda(x) = 0, \int \frac{\partial^{2} f}{\partial \theta_{\alpha} \partial \theta_{\beta}} d\lambda(x) = 0, \text{ for all } \alpha, \beta = 1, 2, \cdots, k.$$ We may now use the Taylor expansion about θ and obtain (6.1) $$\log f(x, \theta + \Delta \theta) - \log f(x, \theta)$$ $$= \sum_{\alpha=1}^{k} \Delta \theta_{\alpha} \frac{\partial \log f}{\partial \theta_{\alpha}} + \frac{1}{2!} \sum_{\alpha=1}^{k} \sum_{\beta=1}^{k} \Delta \theta_{\alpha} \Delta \theta_{\beta} \frac{\partial^{2} \log f}{\partial \theta_{\alpha} \partial \theta_{\beta}}$$ $$+ \frac{1}{3!} \sum_{\alpha=1}^{k} \sum_{\beta=1}^{k} \sum_{\gamma=1}^{k} \Delta \theta_{\alpha} \Delta \theta_{\beta} \Delta \theta_{\gamma} \left(\frac{\partial^{3} \log f}{\partial \theta_{\alpha} \partial \theta_{\beta} \partial \theta_{\gamma}} \right)_{\theta + t \Delta \theta}$$ where in the last term θ is replaced by $\theta + t \Delta \theta = (\theta_1 + t_1 \Delta \theta_1, \theta_2 + t_2 \Delta \theta_2, \dots, \theta_k + t_k \Delta \theta_k)$, $0 < t_{\alpha} < 1$, $\alpha = 1, 2, \dots, k$. We also have (6.2) $$\frac{\partial \log f}{\partial \theta_{\alpha}} = \frac{1}{f} \frac{\partial f}{\partial \theta_{\alpha}}; \quad \frac{\partial^{2} \log f}{\partial \theta_{\alpha} \partial \theta_{\beta}} = \frac{1}{f} \frac{\partial^{2} f}{\partial \theta_{\alpha} \partial \theta_{\beta}} - \frac{1}{f^{2}} \frac{\partial f}{\partial \theta_{\alpha}} \frac{\partial f}{\partial \theta_{\beta}}$$ We may therefore write $$(6.3) \quad I(\theta:\theta + \Delta\theta) = \int f(x,\theta) \log \frac{f(x,\theta)}{f(x,\theta + \Delta\theta)} d\lambda(x)$$ $$= -\int \left(\sum_{\alpha=1}^{k} \Delta\theta_{\alpha} f \cdot \frac{\partial \log f}{\partial \theta_{\alpha}}\right) d\lambda(x)$$ $$-\frac{1}{2!} \int \left(\sum_{\alpha=1}^{k} \sum_{\beta=1}^{k} \Delta\theta_{\alpha} \Delta\theta_{\beta} f \cdot \frac{\partial^{2} \log f}{\partial \theta_{\alpha} \partial \theta_{\beta}}\right) d\lambda(x)$$ $$-\frac{1}{3!} \int \left[\sum_{\alpha=1}^{k} \sum_{\beta=1}^{k} \sum_{\gamma=1}^{k} \Delta\theta_{\alpha} \Delta\theta_{\beta} \Delta\theta_{\gamma} f \cdot \left(\frac{\partial^{3} \log f}{\partial \theta_{\alpha} \partial \theta_{\beta} \partial \theta_{\gamma}}\right)_{\theta + t\Delta\theta}\right] d\lambda(x)$$ $$= -\sum_{\alpha=1}^{k} \Delta\theta_{\alpha} \int \frac{\partial f}{\partial \theta_{\alpha}} d\lambda(x)$$ $$-\frac{1}{2!} \sum_{\alpha=1}^{k} \sum_{\beta=1}^{k} \sum_{\gamma=1}^{k} \Delta\theta_{\alpha} \Delta\theta_{\beta} \int \left(\frac{\partial^{2} f}{\partial \theta_{\alpha} \partial \theta_{\beta}} - \frac{1}{f} \frac{\partial f}{\partial \theta_{\alpha}} \frac{\partial f}{\partial \theta_{\beta}}\right) d\lambda(x)$$ $$-\frac{1}{3!} \sum_{\alpha=1}^{k} \sum_{\beta=1}^{k} \sum_{\gamma=1}^{k} \Delta\theta_{\alpha} \Delta\theta_{\beta} \Delta\theta_{\gamma} \int f \cdot \left(\frac{\partial^{3} \log f}{\partial \theta_{\alpha} \partial \theta_{\beta} \partial \theta_{\gamma}}\right)_{\theta + t\Delta\theta} d\lambda(x).$$ Accordingly, because of the regularity conditions, to within secondorder terms, we have (6.4) $$I(\theta:\theta + \Delta\theta) = \frac{1}{2} \sum_{\alpha=1}^{k} \sum_{\beta=1}^{k} g_{\alpha\beta} \, \Delta\theta_{\alpha} \, \Delta\theta_{\beta},$$ with $$g_{\alpha\beta} = \int f(x,\,\theta) \, \left(\frac{1}{f(x,\,\theta)} \, \frac{\partial f(x,\,\theta)}{\partial \theta_{\alpha}}\right) \left(\frac{1}{f(x,\,\theta)} \, \frac{\partial f(x,\,\theta)}{\partial \theta_{\beta}}\right) \, d\lambda(x),$$ and $G = (g_{\alpha\beta})$ the positive definite Fisher information matrix [Bartlett (1955, p. 222), Doob (1934), Fisher (1956, p. 153), Huzurbazar (1949), Jeffreys (1948, p. 158), Mandelbrot (1953, pp. 34-35), Rao (1952, p. 144), Savage (1954, pp. 235-238), Schützenberger (1954, p. 54)]. We shall sketch the proof of the related result for $J(\theta, \theta + \Delta\theta)$: $$\Delta \log f(x, \theta) = \log \left(1 + \frac{\Delta f(x, \theta)}{f(x, \theta)} \right)
\approx \frac{\Delta f(x, \theta)}{f(x, \theta)},$$ $$J(\theta, \theta + \Delta \theta) \approx \int f(x, \theta) \left(\frac{\Delta f(x, \theta)}{f(x, \theta)} \right)^2 d\lambda(x)$$ $$\approx \int f(x, \theta) \left(\frac{1}{f} \frac{\partial f}{\partial \theta_1} \Delta \theta_1 + \dots + \frac{1}{f} \frac{\partial f}{\partial \theta_k} \Delta \theta_k \right)^2 d\lambda(x)$$ $$= \sum_{\alpha=1}^k \sum_{\beta=1}^k g_{\alpha\beta} \Delta \theta_\alpha \Delta \theta_\beta.$$ ### 7. INFORMATION AND SUFFICIENCY In the definition of I(1:2) in section 2 of chapter 1 we assumed that the probability measures μ_1 and μ_2 were absolutely continuous with respect to each other. The essential reason for this was the desire that the integrals in I(1:2) and I(2:1) be well defined, so that J(1,2) could exist. If we do not concern ourselves with J(1,2), but limit our attention only to I(1:2), we may modify somewhat the initial assumptions, as well as the assumption about the homogeneous set of measures in theorem 4.2. If we re-examine the integrals in (2.4) and (2.5) of chapter 1, we see that they are still well defined if $f_1(x) = 0$, $x \in E$, but $f_2(x) \neq 0$, $x \in E$, $\lambda(E) \neq 0$, since 0 log 0 is defined as zero. Thus, limiting ourselves only to I(1:2), we need assume simply that the probability measure μ_1 is absolutely continuous with respect to the probability measure μ_2 ; that is, $\mu_1(E) = 0$ for every measurable set E for which $\mu_2(E) = 0$. According to the Radon-Nikodym theorem (see section 2 of chapter 1, and references there): A necessary and sufficient condition that the probability measure μ_1 be absolutely continuous with respect to the probability measure μ_2 is that there exist a nonnegative function f(x) on $\mathcal X$ such that (7.1) $$\mu_1(E) = \int_E f(x) \, d\mu_2(x),$$ for every E in \mathcal{S} . The function f(x), the Radon-Nikodym derivative, is unique in the sense that if (7.2) $$\mu_1(E) = \int_E g(x) d\mu_2(x),$$ for every E in \mathcal{S} , then $f(x) = g(x) [\mu_2]$. We write $d\mu_1(x) = f(x) d\mu_2(x)$ and also $f(x) = d\mu_1/d\mu_2$. The properties in sections 2 and 3 are valid if the probability measure μ_1 is absolutely continuous with respect to the probability measure μ_2 , since with f(x) defined as in (7.1) we have [compare with (3.1), noting that $$f_1(x) = f(x), f_2(x) = 1, \text{ since } \mu_2(E) = \int_E d\mu_2(x) d$$ (7.3) $$I(1:2) = \int \log f(x) \ d\mu_1(x) = \int f(x) \log f(x) \ d\mu_2(x).$$ Note that according to corollary 3.1 a set E provides no information for discrimination in favor of H_1 if $\mu_1(E) = 0$ but $\mu_2(E) \neq 0$. Theorem 4.2 also holds if the requirement that the probability measures μ_1 and μ_2 are members of a homogeneous set of probability measures is modified so that they are members of a dominated set of probability measures; a set M of measures on $\mathcal S$ is called dominated if there exists a measure λ on $\mathcal S$, λ not necessarily a member of M, such that every member of the set M is absolutely continuous with respect to λ . [See Fraser (1957, p. 19), Halmos and Savage (1949).] The Radon-Nikodym theorem can then be applied in the form where for every μ_i of the set of dominated measures, we have $$\mu_i(E) = \int_E f_i(x) \ d\lambda(x), \quad \text{for all } E \in \mathcal{S}.$$ Example 7.1. Suppose that the populations under H_1 and H_2 are respectively rectangular populations with $0 \le x \le \theta_1$, $0 \le x \le \theta_2$, $\theta_1 < \theta_2$, and $$f_1(x) = \frac{1}{\theta_1}, \ 0 \le x \le \theta_1, \qquad f_2(x) = \frac{1}{\theta_2}, \ 0 \le x \le \theta_2,$$ $$= 0, \text{ elsewhere,} \qquad = 0, \text{ elsewhere,}$$ $$\mu_1(E) = \int_E \frac{dx}{\theta_1}, \qquad \mu_2(E) = \int_E \frac{dx}{\theta_2}.$$ Note that $$\mu_1(E) = \int_{\theta_1}^{\theta_2} f_1(x) dx = 0$$, but that $\mu_2(E) = \int_{\theta_1}^{\theta_2} f_2(x) dx = (\theta_2 - \theta_1)/\theta_2$ \neq 0, when $E = \{x: \theta_1 \leq x \leq \theta_2\}$. We see that μ_2 is not absolutely continuous with respect to μ_1 , but that μ_1 is absolutely continuous with respect to μ_2 , since $\mu_1 = 0$ whenever $\mu_2 = 0$. Both μ_1 and μ_2 are absolutely continuous with respect to Lebesgue measure. Now (7.4) $$I(1:2) = \int_0^{\theta_1} \frac{1}{\theta_1} \log \frac{1/\theta_1}{1/\theta_2} dx + \int_{\theta_1}^{\theta_2} 0 \log \frac{0}{1/\theta_2} dx,$$ or in the notation of (7.3), $$I(1:2) = \int_0^{\theta_2} f(x) \log f(x) \cdot \frac{dx}{\theta_2},$$ with $f(x) = \theta_2/\theta_1$ for $0 \le x \le \theta_1$, and f(x) = 0 for $\theta_1 < x \le \theta_2$, so that (7.5) $$I(1:2) = \left(\frac{\theta_2}{\theta_1} \log \frac{\theta_2}{\theta_1}\right) \frac{\theta_1}{\theta_2} = \log \frac{\theta_2}{\theta_1},$$ and therefore for a random sample O_n of n independent observations $I(1:2; O_n) = n \log (\theta_2/\theta_1)$. If \mathcal{X} is the space of n independent observations, and $Y = T(x) = \max (x_1, x_2, \dots, x_n)$, it is known that $g_i(y) = ny^{n-1}/\theta_i^n$, $0 \le y \le \theta_i$, and zero elsewhere, i = 1, 2 [Wilks (1943, p. 91)]. We thus have (7.6) $$I(1:2; \mathcal{Y}) = \int_0^{\theta_1} \frac{ny^{n-1}}{\theta_1^n} \log \frac{\theta_2^n}{\theta_1^n} dy = n \log \frac{\theta_2}{\theta_1}$$ Since $n \log (\theta_2/\theta_1) = I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y})$, we conclude from theorem 4.2 that the largest value in a sample from a rectangular population, with lower value of the range at zero, is a sufficient statistic. [Cf. Lehmann (1950a, p. 3-3).] Example 7.2. Consider the exponential populations defined by $f_i(x) = e^{-(x-\theta_i)}$, $\theta_i \le x < \infty$, $f_i(x) = 0$, $-\infty < x < \theta_i$, i = 1, 2, $\theta_1 > \theta_2$. We find that (7.7) $$I(1:2) = \int_{\theta_1}^{\infty} e^{-(x-\theta_1)} (\theta_1 - \theta_2) dx = \theta_1 - \theta_2,$$ and for a random sample O_n of n independent observations $I(1:2; O_n) = nI(1:2; O_1) = n(\theta_1 - \theta_2)$. If \mathcal{X} is the space of n independent observations and $Y = T(x) = \min(x_1, x_2, \dots, x_n)$, then it is known that $g_i(y) = ne^{-n(y-\theta_i)}$, $\theta_i \leq y < \infty$, and zero elsewhere, i = 1, 2 [Wilks (1943, p. 91)]. We thus have (7.8) $$I(1:2; \mathcal{Y}) = \int_{\theta_1}^{\infty} ne^{-n(y-\theta_1)} (n\theta_1 - n\theta_2) dy = n(\theta_1 - \theta_2).$$ Since $n(\theta_1 - \theta_2) = I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y})$, we conclude from theorem 4.2 that the smallest value in a sample from populations of the type $e^{-(x-\theta)}$, $\theta \le x < \infty$, zero elsewhere, is a sufficient statistic. Example 7.3. Consider the Poisson populations with parameters λ_1 , λ_2 . We find that $$I(1:2) = \sum_{x=0}^{\infty} \frac{e^{-\lambda_1} \lambda_1^x}{x!} \log \frac{e^{-\lambda_1} \lambda_1^x}{e^{-\lambda_2} \lambda_2^x} = \lambda_1 \log \frac{\lambda_1}{\lambda_2} + (\lambda_2 - \lambda_1),$$ and for a random sample O_n of n independent observations $I(1:2; O_n) = nI(1:2; O_1) = n\lambda_1 \log(\lambda_1/\lambda_2) + n(\lambda_2 - \lambda_1)$. If \mathcal{X} is the space of n independent observations, and $Y = T(x) = \sum_{i=1}^{n} x_i$, then it is known that $$g_i(y) = e^{-n\lambda_i}(n\lambda_i)^y/y!, y = 0, 1, 2, \cdots; i = 1, 2$$ [Cramér (1946a, p. 205)]. We thus have $$(7.10) \quad I(1:2; \mathscr{Y}) = \sum_{y=0}^{\infty} \frac{e^{-n\lambda_1}(n\lambda_1)^y}{y!} \log \frac{e^{-n\lambda_1}(n\lambda_1)^y}{e^{-n\lambda_2}(n\lambda_2)^y} = n\lambda_1 \log \frac{\lambda_1}{\lambda_2} + n(\lambda_2 - \lambda_1).$$ Since $I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y})$, we conclude from theorem 4.2 that $\sum_{i=1}^{n} x_i$ is a sufficient statistic for Poisson populations. [Cf. Lehmann (1950a, p. 3-3).] Example 7.4. Consider the Poisson populations in example 7.3 so that I(1:2) is given by (7.9). Suppose \mathcal{X} is the space of nonnegative integers and Y = T(x) is 0, 1, 2, according as x is 0, 1, or ≥ 2 . In example 3.3 we saw that $I(1:2;\mathcal{X}) > I(1:2;\mathcal{Y})$ and therefore Y is not a sufficient statistic for the Poisson populations. [Cf. Lehmann (1950a, p. 3-4).] #### 8. PROBLEMS - **8.1.** Compute I(1:2; X), I(1:2; Y|X = x), I(1:2; Y|X), I(1:2; X, Y) in example 2.1: (a) when $\rho_1^2 = \rho_2^2 = \rho^2$; (b) when $\mu_{1x} = \mu_{2x}$; (c) when $\mu_{1x} = \mu_{2x}$, $\mu_{1y} = \mu_{2y}$. - 8.2. Verify corollary 3.3, using appropriate cases of example 2.1. - **8.3.** Show that the equality holds in example 3.4 if x is a sufficient statistic. - **8.4.** If $f_1(x)$, $f_2(x)$, f(x) are generalized densities of a homogeneous set of measures, then $$\int f_1(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x) \ge \int f_1(x) \log \frac{f(x)}{f_2(x)} d\lambda(x).$$ When does the equality hold? - 8.5. Prove the theorems and corollaries in section 5. - **8.6.** What is the maximum value of $R(p; f_1, f_2)$ in (5.3) for variations of p? - **8.7.** In the notation of section 6, what is the value of $I(\theta + \Delta\theta; \theta)$ as a quadratic form? - 8.8. Show that for the populations and statistics in examples 7.1 and 7.2, the conditions for equality in theorem 4.1 are satisfied. - **8.9.** In (7.5) take $\theta_2 = \theta + \Delta \theta$, $\theta_1 = \theta$. Compare with the results according to section 6. - **8.10.** In (7.7) take $\theta_1 = \theta + \Delta \theta$, $\theta_2 = \theta$. Compare with the results according to section 6. - **8.11.** Derive the values for $g_i(y)$ given in examples 7.1, 7.2, and 7.3. - 8.12. Show that the number of "successes" observed in a sample of n independent observations is a sufficient statistic for binomial populations. - 8.13. Show that the sample average is a sufficient statistic for normal populations with a common variance. - **8.14.** Let f(x) be a probability density with mean μ and
finite variance σ^2 , and such that $f(x) \log f(x)$ is summable ($t \log t$ is defined to be zero if t = 0). Show that $$\int_{-\infty}^{\infty} f(x) \log f(x) dx \ge \log (1/\sigma \sqrt{2\pi e})$$ with equality if and only if f(x) is equal almost everywhere to the normal probability density $\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$. [Cf. Shannon (1948, pp. 629–630), Woodward (1953, p. 25), Am. Math. Monthly, Vol. 64 (1957, pp. 511–512).] - **8.15.** Generalize the result in problem 8.14 to multivariate probability densities. - **8.16.** Compute J(1, 2; X), J(1, 2; Y | X = x), J(1, 2; Y | X), and J(1, 2; X, Y) for the populations in example 2.1. - **8.17.** Compute the value of I(1:2; X, Y) in example 2.1 for $\rho_1 = \rho_2 = \rho$, $\mu_{1x} = \mu_{1y}$, $\mu_{2x} = \mu_{2y}$, $\sigma_x^2 = \sigma_y^2$. Compare the value you get with 2I(1:2; X), as ρ varies from -1 to +1. - **8.18.** Compute J(1, 2), $J(1, 2; O_n)$, $J(1, 2; \mathcal{Y})$ for the populations in example 7.3. What are the corresponding values for the populations in examples 7.1 and 7.2? - **8.19.** In (5.3) take $f_{\theta}(x) = \mu_{\theta}(E_i)$, $x \in E_i$, $i = 1, 2, \theta = 1, 2$, where $\mathcal{X} = E_1 \cup E_2$, $E_1 \cap E_2 = 0$, $\mu_1(E_1) = \mu_2(E_2)$, and $p = q = \frac{1}{2}$. Show that with these values $R(p; f_1, f_2) = \mu_1(E_1) \log 2\mu_1(E_1) + \mu_1(E_2) \log 2\mu_1(E_2)$, which is the same as the value of I(1; 2) for the binomial distributions with N = 1, $p_1 = \mu_1(E_1)$, $q_1 = 1 p_1 = \mu_1(E_2)$, $p_2 = q_2 = \frac{1}{2}$. [See your answer to problems 5.2(a) and 5.8 in chapter 1.] What is the value of $R(p; f_1, f_2)$ if $\mu_1(E_1) = \mu_2(E_2) = 1$? - **8.20.** Compute the values of I(1:2; X), I(1:2; Y|x=0), I(1:2; Y|X) for the distributions in problem 5.8 of chapter 1. Do your values confirm corollary 3.3(c)? - **8.21.** Suppose that in $I(1:2) = \int f_1(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x)$, $f_2(x) = \chi_A(x)/\lambda(A)$, $f_1(x) = \chi_{A \cap B}(x)/\lambda(A \cap B)$, where $A \in \mathcal{S}$, $B \in \mathcal{S}$, $\lambda(A) \neq 0$, $\lambda(A \cap B) \neq 0$, and $\chi_A(x)$ is the characteristic function of the set A. Show that, for any set $E \in \mathcal{S}$, (a) $$\mu_1(E) = \lambda(E \cap A \cap B)/\lambda(A \cap B), \ \mu_1(B) = 1.$$ (b) $\mu_2(E) = \lambda(E \cap A)/\lambda(A), \ \mu_2(B) = \lambda(B \cap A)/\lambda(A).$ - (c) If $\lambda(E) = 0$, then $\mu_1(E) = \mu_2(E) = 0$. - (d) If $\mu_2(E) = 0$, then $\mu_1(E) = 0$. - (e) If $f_2(x) = 0$, then $f_1(x) = 0$. (f) $$I(1:2) = \log \frac{\lambda(A)}{\lambda(A \cap B)} = -\log \mu_2(B)$$. Note that (f) yields Wiener's definition of the information resulting from the additional knowledge that $x \in B$ when it is known that $x \in A$ [Powers (1956, pp. 44-45)]. - **8.22.** With the data in problem 5.8 of chapter 1, show that the partitioning $\mathscr{X} = E_1 \cup E_2$, where $E_1 = (x = 0, y = 0) \cup (x = 1, y = 1)$ and $E_2 = (x = 0, y = 1) \cup (x = 1, y = 0)$ is a sufficient partitioning, or the statistic T(x, y) = 0 for x = y, T(x, y) = 1 for $x \neq y$, is a sufficient statistic. - **8.23.** With the data in problem 5.8 of chapter 1, show that the statistic T(x, y) = x is not a sufficient statistic. - 8.24. Let $f_i(x)$, $i = 1, 2, \dots, n$, be generalized densities of a homogeneous set of probability measures, and $p_i \ge 0$, $i = 1, 2, \dots, n$, such that $p_1 + p_2 + \dots + p_n = 1$. If $f(x) = p_1 f_1(x) + p_2 f_2(x) + \dots + p_n f_n(x)$, show that the maximum value of $R(p_i; f_i) = \int \left(\sum_{i=1}^n p_i f_i(x) \log \frac{f_i(x)}{f(x)}\right) d\lambda(x)$ for variations of the p_i occurs when the p_i are such that $$\int f_1(x) \log \frac{f_1(x)}{f(x)} d\lambda(x) = \int f_2(x) \log \frac{f_2(x)}{f(x)} d\lambda(x) = \cdots = \int f_n(x) \log \frac{f_n(x)}{f(x)} d\lambda(x)$$ and that $\max_{0 \le p_i \le 1} R(p_i; f_i)$ is then this common value. Show that $R(p_i; f_i) \le 1$ $\sum_{i < j} p_i p_j J(i, j)$. Describe the related communication model as in the last part of section 5. **8.25.** Let $f_i(x)$, p_i , $i = 1, 2, \dots, n$, and f(x) be defined as in problem 8.24, and suppose that g(x) is also a generalized density of the same homogeneous set of probability measures. Show that $$\sum_{i=1}^{n} p_{i} \int f_{i}(x) \log \frac{f_{i}(x)}{g(x)} d\lambda(x) \geq \int f(x) \log \frac{f(x)}{g(x)} d\lambda(x),$$ with equality if and only if $f_1(x) = f_2(x) = \cdots = f_n(x)$ [λ]. [Note that this implies that for discrimination against g(x) the "mixture" of $f_1(x)$, \cdots , $f_n(x)$ given by f(x) provides less information than the mean of the information of the components of the mixture. See example 2.1 of chapter 3.] - **8.26.** Let f(x) be the probability density of a random variable limited to a certain volume V in its space and such that $f(x) \log f(x)$ is summable $(t \log t)$ is defined to be zero if t = 0). Show that $\int_{V} f(x) \log f(x) dx \ge \log (1/V)$, with equality if and only if f(x) is equal almost everywhere to the constant 1/V in the volume. [Cf. Shannon (1948, p. 629).] - **8.27.** Let f(x) be the probability density of a nonnegative random variable with mean μ , and such that $f(x) \log f(x)$ is summable $(t \log t)$ is defined to be zero if t = 0). Show that $\int_0^\infty f(x) \log f(x) dx \ge -\log \mu e$, with equality if and only if f(x) is equal almost everywhere to $(1/\mu)e^{-x/\mu}$, $x \ge 0$. [Cf. Shannon (1948, pp. 630-631).] **8.28.** Consider the discrete random variable x that takes the values x_1, x_2, \dots, x_n , and has the mean value μ , that is, $p_j = \text{Prob}(x = x_j), \sum_{j=1}^n x_j p_j = \mu$. Show that $\sum_{j=1}^n p_j \log p_j \ge \beta \mu - \log M(\beta)$, with equality if and only if $p_j = \frac{e^{\beta x_j}}{M(\beta)}$, where $M(\beta) = \sum_{j=1}^n e^{\beta x_j}$, $\mu = \sum_{j=1}^n x_j p_j = \sum_{j=1}^n \frac{x_j e^{\beta x_j}}{M(\beta)} = \frac{d}{d\beta} \log M(\beta)$. (See problem 8.36.) [Cf. Brillouin (1956, pp. 41–43), Jaynes (1957, pp. 621–623).] **8.29.** Show that I(1:2; Y|X) = 0, if and only if $h_1(y|x) = h_2(y|x)$ for almost all x (see theorem 2.2 and corollary 3.3). **8.30.** Consider the discrete random variables x, y, where $p_{ij} = \operatorname{Prob}(x = x_i, y = y_j)$, $i = 1, 2, \dots, m$, $j = 1, 2, \dots, n$, $p_{i.} = \sum_{j=1}^{n} p_{ij}$, $p_{.j} = \sum_{i=1}^{m} p_{ij}$, $p_{ij} > 0$, $\sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij} = \sum_{i=1}^{m} p_{i.} = \sum_{j=1}^{n} p_{.j} = 1$, and the entropies defined by $\mathcal{H}(x, y) = -\sum_{i} \sum_{j} p_{ij} \log p_{ij}$, $\mathcal{H}(x) = -\sum_{i} p_{i.} \log p_{i.}$, $\mathcal{H}(y) = -\sum_{j} p_{.j} \log p_{.j}$, $\mathcal{H}(y|x_i) = -\sum_{j} \frac{p_{ij}}{p_i} \log \frac{p_{ij}}{p_i}$. Show that (a) $\mathcal{H}(x, y) = \mathcal{H}(x) + \mathcal{H}(y|x)$. (b) $\mathcal{H}(x, y) \leq \mathcal{H}(x) + \mathcal{H}(y)$. (c) $\mathcal{H}(y) \geq \mathcal{H}(y|x)$. [Cf. Shannon (1948, pp. 392-396).] **8.31.** A real-valued function f(x) defined for all values of x in an interval $a \le x \le b$ is said to be *convex* if for every pair $a \le (x_1, x_2) \le b$ and all $\lambda_1 + \lambda_2 = 1$, $\lambda_i \ge 0$, i = 1, 2, $\lambda_1 f(x_1) + \lambda_2 f(x_2) \ge f(\lambda_1 x_1 + \lambda_2 x_2)$. The function is said to be *concave* if $\lambda_1 f(x_1) + \lambda_2 f(x_2) \le f(\lambda_1 x_1 + \lambda_2 x_2)$. The function is strictly convex or strictly concave if the equalities hold only when $x_1 = x_2$. Show that (a) If $\frac{d^2f(x)}{dx^2}$ exists at every point in $a \le x \le b$, a necessary and sufficient condition for f(x) to be convex is that $\frac{d^2f(x)}{dx^2} \ge 0$. (b) If f(x) is a convex function and $a \leq (x_1, x_2, \dots, x_n) \leq b$, then $\lambda_1 f(x_1) + \dots + \lambda_n f(x_n) \geq f(\lambda_1 x_1 + \dots + \lambda_n x_n), \lambda_1 + \lambda_2 + \dots + \lambda_n = 1$, $\lambda_i \geq 0$, $i = 1, 2, \dots, n$. (c) If f(x) is a convex function, $p(x) \ge 0$, $\int_a^b p(x) dx = 1$, then $\int_a^b f(x)p(x) dx \ge f\left(\int_a^b xp(x) dx\right).$ **8.32.** Suppose $p_{i1} + p_{i2} + \cdots + p_{ic} = 1$, $p_{ij} > 0$, i = 1, 2; $j = 1, 2, \cdots$, c, and $q_{ij} = a_{j1}p_{i1} + a_{j2}p_{i2} + \cdots + a_{jc}p_{ic}$, i = 1, 2; $j = 1, 2, \cdots$, c, with $a_{j1} + a_{j2} + \cdots + a_{jc} = 1$, $j = 1, 2, \cdots$, c, and $a_{1k} + a_{2k} + \cdots + a_{ck} = 1$, $k=1,2,\cdots,c,a_{jk}\geq 0.$ Show that $I(1:2; p) = \sum_{j=1}^{c} p_{1j} \log \frac{p_{1j}}{p_{2j}} \ge \sum_{j=1}^{c} q_{1j} \log \frac{q_{1j}}{q_{2j}} = I(1:2; q)$, with equality if and only if $p_{1j}/p_{2j} = p_{1k}/p_{2k}$, $j, k = 1, 2, \cdots, c$. **8.33.** Suppose that x_1, x_2, \dots, x_n is a random sample of a discrete random variable, $Y = Y(x_1, x_2, \dots, x_n)$ is a statistic, and Prob $(x_1, x_2, \dots, x_n | H_i)$ $\neq 0$, i = 1, 2. Show that $$E\left(\log \frac{\text{Prob}(x_1, x_2, \dots, x_n | H_1)}{\text{Prob}(x_1, x_2, \dots, x_n | H_2)} \middle| H_1, Y = y\right) \ge \log \frac{\text{Prob}(Y = y | H_1)}{\text{Prob}(Y = y | H_2)}$$ When does the equality hold? [Cf. Savage (1954, p. 235).] - **8.34.** Consider the Poisson populations with parameters $m_1 = 1$, $m_2 = 2$, $m_3 = 3$. Show that [see problem 5.2(c) of chapter 1 and the last paragraph of section 3 of chapter 1] - (a) J(1,3) > J(1,2) + J(2,3). (b) $\sqrt{J(1,3)} > \sqrt{J(1,2)} + \sqrt{J(2,3)}$. - **8.35.** Show that $F(p_1, p_2) = p_1 \log \frac{p_1}{p_2} + q_1 \log \frac{q_1}{q_2}$, $0 \le p_i \le 1$, $p_i + q_i = 1$, i = 1, 2 is a convex function of $p_1(p_2)$ for fixed $p_2(p_1)$. - **8.36.** Suppose that in problem 8.28 the x_i 's are positive integers, and $\beta_1 > 0$ such that $\sum_{j=1}^{n} e^{-\beta_1 x_j} = 1$. Show that $\mu \ge \mathcal{H}(p)/\beta_1$, where $\mathcal{H}(p) = -\sum_{j=1}^{n} p_j \log
p_j$. In particular, if $x_j = j$, $n = \infty$, find β_1 and the values of p_j and μ for equality. [Note that this is related to the noiseless coding theorem. See, for example, Feinstein (1958, pp. 17-20), Shannon (1948, pp. 401-403).] - 8.37. Let $0 \le \phi(a_i|x) \le 1$, $\sum \phi(a_i|x) = 1$ for all $x \in \mathcal{X}[\lambda]$, $p_i(a_i) = 0$ $\int \phi(a_i|x)f_j(x) d\lambda(x)$, that is, $\phi(a_i|x)$ is the probability for "action" a_i given x, and $p_j(a_i)$ is the probability for "action" a_i under H_j , j=1, 2. Show that $$\int f_1(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x) \ge \sum_i p_1(a_i) \log \frac{p_1(a_i)}{p_2(a_i)},$$ and give the necessary and sufficient condition for equality. Derive corollary 3.2 as a particular case of this problem. # Inequalities of Information Theory #### 1. INTRODUCTION The Cramér-Rao inequality, which provides, under certain regularity conditions, a lower bound for the variance of an estimator, is well known to statisticians from the theory of estimation. Savage (1954, p. 238) has recommended the name "information inequality" since results on the inequality were given by Fréchet (1943) and Darmois (1945), as well as by Rao (1945) and Cramér (1946a, 1946b). Various extensions have been made by Barankin (1949, 1951), Bhattacharyya (1946b, 1947, 1948), Chapman and Robbins (1951), Chernoff (1956, with an acknowledgment to Charles Stein and Herman Rubin), Fraser and Guttman (1952), Kiefer (1952), Seth (1949), Wolfowitz (1947). We shall derive in theorem 2.1 an inequality for the discrimination information that may be considered a generalization of the Cramér-Rao or information inequality (using the name recommended by Savage). [Cf. Kullback (1954).] Theorem 2.1 will play an important part in subsequent applications to testing statistical hypotheses. We relate theorem 2.1 (and its consequences) and the classical information inequality of the theory of estimation in sections 5 and 6. #### 2. MINIMUM DISCRIMINATION INFORMATION Suppose that $f_1(x)$ and $f_2(x)$ are generalized densities of a dominated set of probability measures on the measurable space $(\mathcal{X}, \mathcal{S})$, so that (see sections 2, 4, and 7 of chapter 2) $$\mu_i(E) = \int_E f_i(x) \ d\lambda(x), \qquad E \in \mathcal{S}, \ i = 1, 2.$$ For a given $f_2(x)$ we seek the member of the dominated set of probability measures that is "nearest" to or most closely resembles the probability measure μ_2 in the sense of smallest directed divergence (see the last part of section 3 of chapter 1) $$I(1:2) = \int f_1(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x).$$ Since $I(1:2) \ge 0$, with equality if and only if $f_1(x) = f_2(x)$ [λ] (see theorem 3.1 of chapter 2), it is clear that we must impose some additional restriction on $f_1(x)$ if the desired "nearest" probability measure is to be some other than the probability measure μ_2 itself. We shall require $f_1(x)$ to be such that I(1:2) is a minimum subject to $\int T(x)f_1(x) d\lambda(x) = \theta$, where θ is a constant and Y = T(x) a measurable statistic (see section 4 of chapter 2). In most cases, θ is a multidimensional parameter of the populations. It may also represent some other desired characteristic of the populations. In chapter 5 we examine in detail the relation of θ to observed sample values and the implications for the testing of statistical The underlying principle is that $f_2(x)$ will be associated with the set of populations of the null hypothesis and $f_1(x)$ will range over the set of populations of the alternative hypothesis. The sample values will be used to determine the "resemblance" between the sample, as a possible member of the set of populations of the alternative hypothesis, and the closest population of the set of populations of the null hypothesis by an estimate of the smallest directed divergence or minimum discrimination information. The null hypothesis will be rejected if the estimated minimum discrimination information is significantly large. We remark that the approach here is very similar to Shannon's rate for a source relative to a fidelity evaluation [Kolmogorov (1956, p. 104), Shannon (1948, pp. 649-650)]. [Compare with the concept of "least favorable" distribution (Fraser (1957, p. 79)), and "maximum-entropy" estimates (Jaynes (1957)).] The requirement is then equivalent to minimizing (2.1) $$\int \left(f_1(x) \log \frac{f_1(x)}{f_2(x)} + kT(x)f_1(x) + lf_1(x) \right) d\lambda(x),$$ with k and l arbitrary constant multipliers. Following a procedure similar to that in section 3 of chapter 2, set $g(x) = f_1(x)/f_2(x)$ so that (2.1) may be written as (2.2) $$\int (g(x) \log g(x) + kT(x)g(x) + lg(x)) d\mu_2(x).$$ If we write $\phi(t) = t \log t + kTt + lt$, $t_0 = e^{-kT-l-1}$, then $\phi(t) = \phi(t_0)$ $+(t-t_0)\phi'(t_0)+\frac{1}{2}(t-t_0)^2\phi''(t_1)$, where t_1 lies between t and t_0 . But, as may be verified, $\phi(t_0) = -t_0$, $\phi'(t_0) = 0$, $\phi''(t_1) = 1/t_1 > 0$, so that (2.3) $$\int \phi(g(x)) d\mu_{2}(x) = -\int e^{-kT(x)-l-1} d\mu_{2}(x) + \frac{1}{2} \int (g(x) - e^{-kT(x)-l-1})^{2} \frac{d\mu_{2}(x)}{h(x)},$$ where h(x) lies between g(x) and $e^{-kT(x)-l-1}$. We see then from (2.3) that (2.4) $$\int \phi(g(x)) d\mu_2(x) \ge - \int e^{-kT(x)-l-1} d\mu_2(x),$$ with equality if and only if (2.5) $$g(x) = e^{-kT(x)-l-1} [\lambda].$$ The minimum value of (2.1) thus occurs for (2.6) $$f_1(x) = f^*(x) = f_2(x)e^{-kT(x)-l-1} [\lambda],$$ in which case (2.1) and (2.4) yield (2.7) $$I(*:2) + k\theta + l = -\int f_2(x)e^{-kT(x)-l-1} d\lambda(x).$$ If we replace -k by τ , for notational convenience, and set $M_2(\tau) = \int f_2(x)e^{+\tau T(x)} d\lambda(x)$, $M_2(\tau) < \infty$, we see from (2.6) that $1 = e^{-l-1}M_2(\tau)$, and from (2.7) that the minimum discrimination information is (2.8) $$I(*:2) = \theta \tau - \log M_2(\tau),$$ where (2.9) $$\theta = \int T(x) f^*(x) d\lambda(x) = \int \frac{T(x) f_2(x) e^{\tau T(x)} d\lambda(x)}{M_2(\tau)} = \frac{(d/d\tau) M_2(\tau)}{M_2(\tau)},$$ for all τ in the interior of the interval in which $M_2(\tau)$ is finite. Hereafter we shall denote τ by $\tau(\theta)$ when it is important to indicate τ as a function of θ . We can now state [cf. Kullback (1954), Sanov (1957, pp. 23-24)]: THEOREM 2.1.† If $f_1(x)$ and a given $f_2(x)$ are generalized densities of a dominated set of probability measures, Y = T(x) is a measurable statistic such that $\theta = \int T(x)f_1(x) d\lambda(x)$ exists, and $M_2(\tau) = \int f_2(x)e^{\tau T(x)} d\lambda(x)$ exists for τ in some interval; then (2.10) $$I(1:2) \ge \theta \tau - \log M_2(\tau) = I(*:2), \qquad \theta = \frac{d}{d\tau} \log M_2(\tau),$$ with equality in (2.10) if and only if (2.11) $$f_1(x) = f^*(x) = e^{\tau T(x)} f_2(x) / M_2(\tau) [\lambda].$$ We remark that $f^*(x) = f_2(x)e^{\tau T(x)}/M_2(\tau)$ is said to generate an exponential family of distributions, the family of exponential type determined by $f_2(x)$, as τ ranges over its values. The exponential family † see Appendix page 389 is a slight extension of that introduced by Koopman (1936) and Pitman (1936) in the investigation of sufficient statistics. Many of the common distributions of statistical interest such as the normal, χ^2 , Poisson, binomial, multinomial, negative binomial, etc., are of exponential type. [Cf. Aitken and Silverstone (1941), Blackwell and Girshick (1954), Brunk (1958), Girshick and Savage (1951).] For $f^*(x)$ defined in (2.11), it is readily calculated that $$(2.12) J(*,2) = \int (f^*(x) - f_2(x)) \log \frac{f^*(x)}{f_2(x)} d\lambda(x) = (\theta - E_2(T(x)))\tau,$$ where $E_2(T(x)) = \int T(x) f_2(x) d\lambda(x)$. In subsequent applications of theorem 2.1, we shall have occasion to limit the populations in the dominated set over which $f^*(x)$ may range. We shall call such $f^*(x)$, and the corresponding values of τ , admissible. If there is no admissible value of τ satisfying the equation $\theta = (d/d\tau) \log M_2(\tau)$, the minimum discrimination information value is zero. Before we look at some examples illustrating theorem 2.1, we want to examine the following results that are also related to theorem 2.1. [Cf. Chernoff (1952, 1956, pp. 17-18), Kullback (1954).] Suppose $f_1(x)$, $f_2(x)$, f(x) are generalized densities of a homogeneous set of probability measures. Using theorem 3.1 of chapter 2, we have (see problem 8.4 in chapter 2) (2.13) $$\int f(x) \log \frac{f(x)}{f_2(x)} d\lambda(x) + \int f(x) \log \frac{f_2(x)}{f_1(x)} d\lambda(x)$$ $$= \int f(x) \log \frac{f(x)}{f_1(x)} d\lambda(x) \ge 0,$$ or (2.14) $$\int f(x) \log \frac{f(x)}{f_2(x)} d\lambda(x) \ge \int f(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x),$$ with equality if and only if $f(x) = f_1(x)$ [λ]. If in theorem 2.1 we take $T(x) = \log [f_1(x)/f_2(x)]$, the minimum value of $I(f:f_2) = \int f(x) \log \frac{f(x)}{f_2(x)} d\lambda(x)$, subject to $\theta = \int T(x)f(x) d\lambda(x) = \int f(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x)$, is (2.15) $$\min I(f:f_2) = \theta \tau - \log M_2(\tau),$$ (2.16) $$M_2(\tau) = \int f_2(x) \exp\left(\tau \log \frac{f_1(x)}{f_2(x)}\right) d\lambda(x) = \int (f_1(x))^{\tau} (f_2(x))^{1-\tau} d\lambda(x),$$ (2.17) $$\theta = \frac{d}{d\tau} \log M_2(\tau) = \frac{\int (f_1(x))^{\tau} (f_2(x))^{1-\tau} \log \frac{f_1(x)}{f_2(x)} d\lambda(x)}{\int (f_1(x))^{\tau} (f_2(x))^{1-\tau} d\lambda(x)},$$ (2.18) $$f(x) = \frac{\exp\left(\tau \log \frac{f_1(x)}{f_2(x)}\right) f_2(x)}{M_2(\tau)} = \frac{(f_1(x))^{\tau} (f_2(x))^{1-\tau}}{M_2(\tau)}.$$ We remark that if $f_1(x)$ and $f_2(x)$ are members of a family of exponential type determined by the same generalized density, then f(x) is a member of the same family. We note the following values, from (2.15)-(2.18): Anticipating the discussion in section 4 [cf. Chernoff (1952), Sanov (1957, p. 18)], we now state that: - (a) as θ varies from
-I(2:1) to I(1:2), τ varies continuously and strictly monotonically from 0 to 1; - (b) $M_2(\tau)$, $\log M_2(\tau)$ are strictly convex functions of τ ; - (c) for θ and τ satisfying (2.17), $\theta\tau \log M_2(\tau)$ varies continuously and strictly monotonically from 0 to I(1:2) as τ varies from 0 to 1; (d) $$0 \le M_2(\tau) \le 1$$, for $0 \le \tau \le 1$. When $\theta = 0$ there is therefore a value τ_0 , $0 < \tau_0 < 1$, such that (2.19) $$f_0(x) = \frac{(f_1(x))^{\tau_0} (f_2(x))^{1-\tau_0}}{M_2(\tau_0)},$$ $$(2.20) I(f_0:f_2) = -\log M_2(\tau_0) = -\log m_2, m_2 = \inf_{0 < \tau < 1} M_2(\tau),$$ $$0 = \int f_0(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x) = \int f_0(x) \log \frac{f_0(x)}{f_2(x)} d\lambda(x) + \int f_0(x) \log \frac{f_1(x)}{f_0(x)} d\lambda(x),$$ or (2.21) $$I(f_0:f_2) = \int f_0(x) \log \frac{f_0(x)}{f_2(x)} d\lambda(x) = \int f_0(x) \log \frac{f_0(x)}{f_1(x)} d\lambda(x) = I(f_0:f_1).$$ Bhattacharyya (1943, 1946a) considered $M_2(\tau)$ in (2.16) for $\tau = \frac{1}{2}$ as a measure of divergence between the populations. Chernoff (1952, 1956) proposes $-\log$ (inf $E(e^{\tau x})$) as a measure of the information in an experiment. Chernoff points out that this information measure is such that the information derived from n independent observations on a chance variable is n times the information from one observation, whereas the information derived from observations on several independent chance variables is less than or equal to the sum of the corresponding information measures. It is interesting to note that Schützenberger (1954, p. 65) defines the logarithm of the moment generating function (the cumulant generating function) as a pseudo information because it does not have all the properties of an information measure. Example 2.1. We illustrate theorem 2.1 with a simple numerical example. Let $f_2(x) = {N \choose x} p^x q^{N-x}$, the binomial distribution for N=2, p=0.4, and T(x)=x. Since $M_2(\tau)=\sum_{x=0}^2 e^{\tau x} f_2(x)=(pe^{\tau}+q)^2$, $f^*(x)=e^{\tau x} f_2(x)/M_2(\tau)={2 \choose x} (p^*)^x (q^*)^{2-x}$, where $p^*=pe^{\tau}/(pe^{\tau}+q)$, $q^*=q/(pe^{\tau}+q)$. Note that $f^*(x)$ is also a binomial distribution. If we want $E_1(x)=\theta=1$, then $1=2pe^{\tau}/(pe^{\tau}+q)=2p^*$ and $p^*=\frac{1}{2}$. As possible distributions with $E_1(x)=1$, we shall take the hypergeometric distribution $f_1(x)={np \choose x}{nq \choose N-x}/{n \choose N}$, n=4, $p=\frac{1}{2}=q$, N=2; the discrete uniform distribution $f_3(x)=\frac{1}{3}$, x=0,1,2; the discrete uniform distribution $f_4(x)=\frac{1}{2}$, x=0,2, $f_4(x)=0$, x=1; the distribution $f_5(x)=1$, x=1, $f_5(x)=0$, x=0, 2. The appropriate numerical values are given in table 2.1. TABLE 2.1 | <i>x</i> | f_1 | f_3 | f_4 | f_5 | f* | f_2 | $f_1 \log \frac{f_1}{f_2}$ | $f_3 \log \frac{f_3}{f_2}$ | $f_4 \log \frac{f_4}{f_2}$ | $f_5 \log \frac{f_5}{f_2}$ | $f^* \log \frac{f^*}{f_2}$ | |----------|-------|-------|---------------|-------|--------------|-------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------| | 0 | 1 | 1 | 1 | 0 | } | 0.36 | -0.12835 | -0.02565 | 0.16425 | 0 | -0.09116 | | 1 | 2 | į | Õ | 1 | 1 | 0.48 | 0.21900 | -0.12155 | 0 | 0.73397 | 0.02041 | | 2 | 18 | 13 | $\frac{1}{2}$ | 0 | į | 0.16 | 0.00680 | -0.02565
-0.12155
0.24466 | 0.56972 | 0 | 0.11157 | | | | | | | | | 0.09745 | 0.09746 | 0.73397 | 0.73397 | 0.04082 | Note that I(*:2) is the smallest value in table 2.1, and that $\tau = \log(q/p) = \log 1.5$, $\log M_2(\tau) = 2 \log (pe^{\tau} + q) = 2 \log 2q = 2 \log 1.2$, $\theta = 1$, $\theta \tau - \log M_2(\tau) = \log 1.5 - 2 \log 1.2 = 0.405465 - 0.364643 = 0.04082 = <math>I(*:2)$. This example also illustrates problem 8.25 of chapter 2 with $f^*(x) = \frac{1}{2}f_4(x) + \frac{1}{2}f_5(x)$ and $g(x) = f_2(x)$. Example 2.2. Using the statistic $Y = \min(x_1, x_2, \dots, x_n)$ and the populations and results in example 7.2 of chapter 2, we find that $$M_{2}(\tau) = \int_{\theta_{2}}^{\infty} ne^{-n(y-\theta_{2})+\tau y} dy = \frac{e^{\tau \theta_{2}}}{1-\tau/n}, \quad n > \tau,$$ $$g^{*}(y) = (n-\tau)e^{-(n-\tau)(y-\theta_{2})}, \quad \theta_{2} \le y < \infty.$$ Since $$\int_{\theta}^{\infty} ny e^{-n(y-\theta)} dy = \theta + 1/n, I(*:2; \mathscr{Y}) = \left(\theta_1 + \frac{1}{n}\right)\tau - \tau\theta_2 + \log\left(1 - \frac{\tau}{n}\right),$$ with $\theta_1 + \frac{1}{n} = \theta_2 + \frac{1}{n(1 - \tau/n)}$, or $\tau = \frac{n(\theta_1 - \theta_2)}{(\theta_1 - \theta_2) + 1/n} < n$, and $I(*:2; \mathscr{Y}) = n(\theta_1 - \theta_2) - \log\left(1 + n(\theta_1 - \theta_2)\right)$. Since $\theta_1 > \theta_2$ and $x \ge \log\left(1 + x\right)$ for $x > -1$, with equality if and only if $x = 0$ [Hardy, Littlewood, and Pólya $I(1:2; \mathcal{X}) = n(\theta_1 - \theta_2) \ge I(*:2; \mathcal{Y}) = n(\theta_1 - \theta_2) - \log(1 + n(\theta_1 - \theta_2)) \ge 0$, with equality for finite n if and only if $\theta_1 = \theta_2$. Example 2.3. We take [cf. Fraser (1957, p. 145)] $T(x) = \chi_E(x)$, where $\chi_E(x) = 1$ for $x \in E$ and $\chi_E(x) = 0$ for $x \in \mathcal{X} - E = E$; that is, $\chi_E(x)$ is the characteristic function or indicator of the set $E \in \mathcal{S}$, and $$\int \chi_E(x) f_1(x) \ d\lambda(x) = \int_E f_1(x) \ d\lambda(x) = \mu_1(E) = \theta.$$ We now have (1934, theorem 142, p. 103)], we see that $$M_{2}(\tau) = \int e^{\tau \chi_{E}(x)} f_{2}(x) \, d\lambda(x) = \int_{E} e^{\tau} f_{2}(x) \, d\lambda(x) + \int_{\bar{E}} f_{2}(x) \, d\lambda(x)$$ $$= e^{\tau} \mu_{2}(E) + \mu_{2}(\bar{E}),$$ $$f^{*}(x) = \frac{e^{\tau \chi_{E}(x)} f_{2}(x)}{M_{2}(\tau)} = \frac{e^{\tau} f_{2}(x)}{e^{\tau} \mu_{2}(E) + \mu_{2}(\bar{E})}, \quad x \in E,$$ $$= \frac{f_{2}(x)}{e^{\tau} \mu_{2}(E) + \mu_{2}(\bar{E})}, \quad x \in \bar{E},$$ $$\theta = \mu_{1}(E) = \frac{e^{\tau} \mu_{2}(E)}{e^{\tau} \mu_{2}(E) + \mu_{2}(\bar{E})}, \quad \tau = \log \frac{\mu_{1}(E) \mu_{2}(\bar{E})}{\mu_{2}(E) \mu_{1}(\bar{E})},$$ $$I(*:2) = \mu_{1}(E) \tau - \log (e^{\tau} \mu_{2}(E) + \mu_{2}(\bar{E}))$$ $$= \mu_{1}(E) \log \frac{\mu_{1}(E) \mu_{2}(\bar{E})}{\mu_{2}(E) \mu_{1}(\bar{E})} - \log \frac{\mu_{2}(\bar{E})}{\mu_{1}(\bar{E})}$$ $$= \mu_{1}(E) \log \frac{\mu_{1}(E)}{\mu_{2}(E)} + \mu_{1}(\bar{E}) \log \frac{\mu_{1}(\bar{E})}{\mu_{2}(\bar{E})}.$$ We thus have $$I(1:2) \ge \mu_1(E) \log \frac{\mu_1(E)}{\mu_2(E)} + \mu_1(\bar{E}) \log \frac{\mu_1(\bar{E})}{\mu_2(\bar{E})}$$ with equality if and only if $$f_{1}(x) = f^{*}(x) = \frac{\mu_{1}(E)}{\mu_{2}(E)} f_{2}(x) [\lambda], \qquad x \in E,$$ $$= \frac{\mu_{1}(\bar{E})}{\mu_{2}(\bar{E})} f_{2}(x) [\lambda], \qquad x \in \bar{E}.$$ Note that the foregoing is a special case of corollary 3.2 of chapter 2, with $E_1 = E$, $E_2 = \bar{E}$. (See problem 7.19.) We remark here that the techniques of sequential analysis [Wald (1947)] in effect determine such a partitioning of the space \mathcal{X} , with $\mu_1(E) = 1 - \beta$, $\mu_2(E) = \alpha$, and with no loss of information, since the partitioning is sufficient. ## 3. SUFFICIENT STATISTICS We shall show that T(x) is a sufficient statistic for the family of exponential type determined by $f_2(x)$. We follow the notation and concepts of section 4 of chapter 2 and shall need the following lemmas. LEMMA 3.1. If λ is a measure on \mathcal{S} , if g is a nonnegative function on \mathcal{G} , integrable with respect to $\lambda T^{-1} = \gamma$, and if μ is the measure on \mathcal{S} defined by $d\mu = gT d\lambda$, then $d\mu T^{-1} = d\nu = g d\lambda T^{-1} = g d\gamma$, or equivalently, $E_{\lambda}(gT|y) = g(y)[\gamma]$. *Proof.* From $\mu(E) = \int_E gT(x) \, d\lambda(x)$ and lemma 4.1 of chapter 2, it follows that $\nu(G) = \mu T^{-1}(G) = \mu(T^{-1}(G)) = \int_G g(y) \, d\gamma(y)$. [See Halmos (1950, p. 209), Halmos and Savage (1949), Kolmogorov (1950, p. 53), Loève (1955, p. 340).] LEMMA 3.2. If λ is a measure on \mathcal{S} , if f and h are nonnegative functions on \mathcal{X} and \mathcal{Y} respectively, and if f, hT, and $f \cdot hT$ are all integrable with respect to λ , then $E_{\lambda}(f \cdot hT|y) = E_{\lambda}(f|y) \cdot h(y)$ [γ]. *Proof.* If $d\mu = f d\lambda$, then $\nu(G) = \int_G E_{\lambda}(f|y) d\gamma(y)$. From lemma 3.1 above and lemma 4.1 in chapter 2, we have $$\int_{G} E_{\lambda}(f|y)h(y) d\gamma(y) = \int_{G} h(y) d\nu(y) = \int_{T^{-1}(G)} hT(x) d\mu(x)$$ $$= \int_{T^{-1}(G)} f(x)hT(x) d\lambda(x) = \int_{G} E_{\lambda}(f \cdot hT|y) d\gamma(y),$$ and the conclusion (uniqueness) follows from the Radon-Nikodym theorem. [See Halmos and Savage (1949), Kolmogorov (1950, p. 56), Loève (1955, p. 350).] LEMMA 3.3. The distribution of the statistic Y = T(x) for values of x from the respective populations $\mu^*(E) = \int_E f^*(x) \ d\lambda(x)$, $\mu_2(E) = \int_E f_2(x) \ d\lambda(x)$, for $E \in \mathcal{S}$, $f^*(x) = e^{\tau T(x)} f_2(x) / M_2(\tau)$ is given respectively by (3.1) $$v^*(G) = \int_G g^*(y) \, d\gamma(y), \qquad v_2(G) = \int_G g_2(y) \, d\gamma(y), \qquad G \in \mathcal{F},$$ where $g^*(y) = e^{\tau y} g_2(y) / M_2(\tau) [\gamma]$. Proof. Since $$d\mu^* = f^* d\lambda = \frac{e^{\tau T(x)} f_2(x)}{M_2(\tau)} d\lambda$$, $\nu^*(G) = \int_G E_\lambda \left(\frac{e^{\tau T(x)} f_2(x)}{M_2(\tau)} | y\right) d\gamma(y)$ $$= \int_G E_{\lambda}(f_2(x)|y) \frac{e^{\tau y}}{M_2(\tau)} d\gamma(y) = \int_G \frac{g_2(y)e^{\tau y}}{M_2(\tau)} d\gamma(y), \text{ by lemma 3.2 above, and}$$ the conclusion (uniqueness) follows from the Radon-Nikodym theorem. Note that the generalized density $g^*(y)$ of the distribution of the statistic Y = T(x) generates an exponential family, the family of exponential type determined by $g_2(y)$. Hereafter, T(x) will be understood to be a measurable function without further comment. THEOREM 3.1.
The statistic Y = T(x) is a sufficient statistic for the family of exponential type generated by $f_2(x)$. *Proof.* Let τ_1 and τ_2 be any values in the range of τ for which $M_2(\tau)$ is finite and let $f_i^*(x)$ and $g_i^*(y)$ be the generalized densities corresponding to τ_i , i = 1, 2. From lemma 3.3 we see that (3.2) $$\frac{f_1^*(x)}{f_2^*(x)} = \frac{e^{\tau_1 T(x)}}{e^{\tau_2 T(x)}} \cdot \frac{M_2(\tau_2)}{M_2(\tau_1)} = \frac{g_1^*(T(x))}{g_2^*(T(x))} [\lambda],$$ or (3.3) $$\frac{f_1^*(x)}{g_1^*(T(x))} = \frac{f_2^*(x)}{g_2^*(T(x))} [\lambda],$$ the necessary and sufficient condition (4.5) of chapter 2 that Y = T(x) be a sufficient statistic. Fixing μ_2 in the homogeneous set of measures in theorem 4.2 of chapter 2, and letting μ_1 range over the homogeneous set, the necessary and sufficient condition (4.5) of chapter 2 that Y = T(x) be a sufficient statistic may be written as [cf. Fraser (1957, p. 20), Rao (1952, p. 135)] (3.4) $$f_1(x) = \frac{g_1(T(x))}{g_2(T(x))} f_2(x) = h_{12}(T(x)) f_2(x) [\lambda],$$ with $h_{12}(T(x)) = g_1(T(x))/g_2(T(x))$ a function of T(x). We see that $f^*(x)$ has the form for $f_1(x)$ in (3.4). Hence we have an alternative proof of theorem 3.1. Note that (3.4) by itself is not sufficient for T(x) to be a sufficient statistic. The condition that μ_1 and μ_2 are measures of a homogeneous set, or, more strictly, that μ_1 is absolutely continuous with respect to μ_2 , is essential for this criterion for a sufficient statistic, known as the Neyman criterion. Since $h_{12} = f_1/f_2$, unless $f_1 = 0$ whenever $f_2 = 0$, h_{12} is not defined, and if, always for some set E, $f_1 = 0$ whenever $f_2 = 0$, then $\mu_1(E) = \int_E f_1 d\lambda = 0$, whenever $\mu_2(E) = \int_E f_2 d\lambda = 0$, or μ_1 is absolutely continuous with respect whenever $\mu_2(E) = \int_E f_2 d\lambda = 0$, or μ_1 is absolutely continuous with respect to μ_2 . An illustration with rectangular distributions may be helpful. (See example 7.1 of chapter 2.) Example 3.1. Let $$f_1(x) = 1/\theta_1$$, $0 \le x \le \theta_1$, $f_2(x) = 1/\theta_2$, $0 \le x \le \theta_2$. Suppose that $\theta_1 < \theta_2$, and set T(x) = 1, $0 \le x \le \theta_1$, T(x) = 0, x < 0, $x > \theta_1$. Now $f_1(x) = 0$ whenever $f_2(x) = 0$ so that μ_1 is absolutely continuous with respect to μ_2 . It is clear that $f_1(x) = h_{12}(T(x))f_2(x)$, where $h_{12}(T(x)) = (\theta_2/\theta_1) \cdot 1$, $0 \le x \le \theta_1$, $h_{12}(T(x)) = (\theta_2/\theta_1) \cdot 0$, x < 0, $x > \theta_1$. Hence T(x) is a sufficient statistic (cf. example 2.3). However, when $\theta_1 > \theta_2$, $f_1(x)$ is not zero whenever $f_2(x) = 0$, μ_1 is not absolutely continuous with respect to μ_2 , and we cannot write $f_1(x) = h_{12}(T(x))f_2(x)$ for $\theta_2 < x \le \theta_1$. COROLLARY 3.1. If $$I(\tau_1: \tau_2; \mathcal{X}) = \int f_1^*(x) \log \frac{f_1^*(x)}{f_2^*(x)} d\lambda(x)$$, and $I(\tau_1: \tau_2; \mathcal{Y}) = \int g_1^*(y) \log \frac{g_1^*(y)}{g_2^*(y)} d\gamma(y)$, then $I(\tau_1: \tau_2; \mathcal{X}) = I(\tau_1: \tau_2; \mathcal{Y})$. *Proof.* A consequence of theorem 3.1 above and theorem 4.2 of chapter 2. $$\begin{aligned} \text{Corollary 3.2.} \ \ &If \theta(\tau_i) = \int \! T(x) f_i^*(x) \ d\lambda(x) = E(T(x) \big| \tau_i), \ i = 1, \ 2, \ then \\ &I(\tau_1 : \tau_2) = \theta(\tau_1) (\tau_1 - \tau_2) - \log \frac{M_2(\tau_1)}{M_2(\tau_2)} \ and \ &J(\tau_1, \tau_2) = (\theta(\tau_1) - \theta(\tau_2)) (\tau_1 - \tau_2). \end{aligned}$$ *Proof.* Verified by straightforward computation. (Cf. problem 5.6 of chapter 1.) # 4. EXPONENTIAL FAMILY We now want to investigate the behavior of $I(*:2) = \theta \tau - \log M_2(\tau)$ as τ and θ vary. [See Blackwell and Girshick (1954), Blanc-Lapierre and Tortrat (1956), Brunk (1958), Chernoff (1952), Girshick and Savage (1951), Khinchin (1949, pp. 76-81), Kullback (1954), Le Cam (1956).] Proofs of the following lemmas are left to the reader. Lemma 4.1. For all τ in the interval of finite existence of $M_2(\tau)$, $M_2(\tau)$ is nonnegative, analytic, and (4.1) $$\frac{dM_2(\tau)}{d\tau} = \int T(x)e^{\tau T(x)}f_2(x) \ d\lambda(x) = \int ye^{\tau y}g_2(y) \ d\gamma(y),$$ (4.2) $$\frac{d^2M_2(\tau)}{d\tau^2} = \int (T(x))^2 e^{\tau T(x)} f_2(x) \ d\lambda(x) = \int y^2 e^{\tau y} g_2(y) \ d\gamma(y) \ge 0,$$ with equality if and only if $\mu_2(x:T(x)=0)=1$. LEMMA 4.2. $$\theta(\tau) = \int T(x) f^*(x) \ d\lambda(x) = \int y g^*(y) \ d\gamma(y) = \frac{d}{d\tau} \log M_2(\tau)$$ $$= \frac{M_2'(\tau)}{M_2(\tau)}, \text{ where } f^*(x) \text{ and } g^*(y) \text{ are defined in lemma 3.3.}$$ We shall also indicate by $\tau(\theta)$ the value of τ for which $\theta = \frac{d}{d\tau} \log M_2(\tau)$ $$=\frac{M_2'(\tau(\theta))}{M_2(\tau(\theta))}$$ Lemma 4.3. $$E((T(x) - \theta)^2|\tau) = E((y - \theta)^2|\tau) = \text{var } (y|\tau) = \int f^*(x) \left(\frac{1}{f^*(x)} \frac{\partial f^*(x)}{\partial \tau}\right)^2 d\lambda(x) = \int g^*(y) \left(\frac{1}{g^*(y)} \frac{\partial g^*(y)}{\partial \tau}\right)^2 d\gamma(y) = \theta'(\tau) = \frac{d\theta(\tau)}{d\tau} = \frac{d^2}{d\tau^2} \log M_2(\tau) = \frac{M_2''(\tau)}{M_2(\tau)} - \left(\frac{M_2'(\tau)}{M_2(\tau)}\right)^2.$$ Lemma 4.4. $$\int (T(x)-\theta)^2 f^*(x)\,d\lambda(x)\cdot \int f^*(x) \left(\frac{1}{f^*(x)}\frac{\partial f^*(x)}{\partial \theta}\right)^2 d\lambda(x) = 1.$$ LEMMA 4.5. If $\mu_2(x:T(x)=\theta)\neq 1$, then $\theta(\tau)$ is a strictly increasing function of τ and $\log M_2(\tau)$ is strictly convex. For a fixed value of θ , $\theta\tau-\log M_2(\tau)$ is a concave function of τ , with maximum value $\theta\tau(\theta)-\log M_2(\tau(\theta))$, which is a convex function of θ . Lemma 4.6. If $\theta(0) = \int T(x)f_2(x) \ d\lambda(x) = \int yg_2(y) \ d\gamma(y)$, then $\theta(0) = M_2'(0)$, $M_2(0) = 1$, $\theta'(0) = E((y - \theta(0))^2 | \tau = 0) = \text{var}(y | \tau = 0)$. LEMMA 4.7. If $$\theta = \frac{M_2'(\tau(\theta))}{M_2(\tau(\theta))}$$ and $\mu_2(x:T(x) = \theta) \neq 1$, then $$\tau'(\theta) = \frac{d\tau(\theta)}{d\theta} = \frac{1}{\frac{M_2''(\tau(\theta))}{M_2(\tau(\theta))} - \left(\frac{M_2'(\tau(\theta))}{M_2(\tau(\theta))}\right)^2} = \frac{1}{\frac{d^2}{d\tau^2} \log M_2(\tau(\theta))} > 0,$$ and $\tau(\theta)$ is a strictly increasing function of θ . LEMMA 4.8. $I(*:2) = \theta \tau(\theta) - \log M_2(\tau(\theta)) \ge 0$, with equality if and only if $\tau(\theta) = 0$, that is, $\theta = \theta(0) = \int yg_2(y) d\gamma(y)$. LEMMA 4.9. $I(*:2) = \theta \tau(\theta) - \log M_2(\tau(\theta))$ is monotonically increasing for $\theta \ge \theta(0)$ and monotonically decreasing for $\theta \le \theta(0)$. THEOREM 4.1. $I(*:2) = (\theta(\tau) - \theta(0))^2/2 \text{ var } (y|\tau(\xi)), \xi \text{ between } \theta(\tau) \text{ and } \theta(0).$ Proof. Let $$I(*:2) = m(\theta) = \theta \tau(\theta) - \log M_2(\tau(\theta))$$; then $m'(\theta) = \frac{d}{d\theta} m(\theta)$ = $\tau(\theta)$, $m''(\theta) = \frac{d^2}{d\theta^2} m(\theta) = \tau'(\theta)$, $m(\theta(0)) = 0$, $m'(\theta(0)) = 0$, and $m(\theta) = m(\theta(0)) + (\theta(\tau) - \theta(0))m'(\theta(0)) + \frac{1}{2}(\theta(\tau) - \theta(0))^2 m''(\xi)$, from which the desired conclusion follows. In view of theorem 2.1, and theorem 4.1 of chapter 2, we may now state: COROLLARY 4.1. $I(1:2;\mathcal{X}) \geq I(1:2;\mathcal{Y}) \geq (E_1(y) - E_2(y))^2/2 \text{ var } (y|\tau(\xi)),$ where $\text{var } (y|\tau(\xi))$ is the variance of y in the distribution defined by $e^{y\tau(\xi)}g_2(y)/M_2(\tau(\xi)),$ and ξ lies between $E_1(y)$ and $E_2(y),$ with equality between the first pair if and only if Y = T(x) is sufficient, and with equality between the second pair if and only if $g_1(y) = e^{\tau y}g_2(y)/M_2(\tau)$ [λ]. In particular, if $y = \alpha_1 y_1 + \alpha_2 y_2 + \cdots + \alpha_k y_k$, where the y_i , i = 1, $2, \dots, k$, are linearly independent, λ -measurable functions of $x \in \mathcal{X}$, and $\delta_i = E_1(y_i) - E_2(y_i)$, $i = 1, 2, \dots, k$, and $\operatorname{cov}(y_i, y_j | \tau(\xi))$ is the covariance of y_i and y_j , $i, j = 1, 2, \dots, k$, in the distribution defined by $\tau = \tau(\xi)$, then in terms of the matrices (and usual matrix notation) $\Sigma(\tau(\xi)) = (\operatorname{cov}(y_i, y_j | \tau(\xi)))$, $\alpha' = (\alpha_1, \alpha_2, \dots, \alpha_k)$, $\delta' = (\delta_1, \delta_2, \dots, \delta_k)$, $(E_1(y) - E_2(y))^2 = \alpha'\delta\delta'\alpha$, $\operatorname{var}(y | \tau(\xi)) = \alpha'\Sigma(\tau(\xi))\alpha$. It can be shown (see section 5 of chapter 9) that $\max(\alpha'\delta\delta'\alpha/\alpha'\Sigma(\tau(\xi))\alpha)$ for possible values of the α_i , $i = 1, 2, \dots, k$, is $\delta'\Sigma^{-1}(\tau(\xi))\delta$. We can therefore state: COROLLARY 4.2. $$I(1:2; \mathcal{X}) \geq I(1:2; \mathcal{Y}) \geq \frac{1}{2} \delta' \Sigma^{-1}(\tau(\xi)) \delta$$. We remark that the right-hand member in corollary 4.2 is the discrimination information measure for two multivariate normal populations with respective means $E_1(y_i)$, $E_2(y_i)$, $i = 1, 2, \dots, k$, and common covariance matrix $\Sigma(\tau(\xi))$ (see section 1 of chapter 9). COROLLARY 4.3. $J(*, 2) = (\theta(\tau) - \theta(0))^2 / \text{var}(y | \tau(\xi))$. *Proof.* Apply the procedure in the proof of theorem 4.1 to $J(*, 2) = (\theta(\tau) - \theta(0))\tau(\theta)$. COROLLARY 4.4. $I(\tau_1:\tau_2)=(E(y|\tau_1)-E(y|\tau_2))^2/2 \text{ var } (y|\tau(\xi)), \text{ where } \xi \text{ lies between } \theta(\tau_1) \text{ and } \theta(\tau_2).$ Proof. Apply the procedure in the proof of theorem 4.1 to corollary 3.2. COROLLARY 4.5. $J(\tau_1, \tau_2) = (E(y|\tau_1) - E(y|\tau_2))^2/\text{var}(y|\tau(\xi))$, where ξ lies between $\theta(\tau_1)$ and $\theta(\tau_2)$. *Proof.* Apply the procedure in
the proof of theorem 4.1 to corollary 3.2. It should be remarked that the preceding results are not only multi-dimensional in the variates but also in the parameters, that is, $\theta = (\theta_1, \theta_2, \dots, \theta_k)$, $\tau = (\tau_1, \tau_2, \dots, \tau_k)$, $Y = (Y_1, Y_2, \dots, Y_k) = (T_1(x), T_2(x), \dots, T_k(x)) = T(x)$, and $\theta \tau$, $\tau T(x)$, and τY are to be understood as $\theta_1 \tau_1 + \theta_2 \tau_2 + \dots + \theta_k \tau_k$, $\tau_1 T_1(x) + \tau_2 T_2(x) + \dots + \tau_k T_k(x)$, and $\tau_1 Y_1 + \tau_2 Y_2 + \dots + \tau_k Y_k$ respectively. It will be useful to rewrite some of the preceding in an appropriate matrix notation. Let us write $$g_{ij}^{*}(\pi) = \int f^{*}(x) \left(\frac{1}{f^{*}(x)} \frac{\partial f^{*}(x)}{\partial \pi_{i}}\right) \left(\frac{1}{f^{*}(x)} \frac{\partial f^{*}(x)}{\partial \pi_{j}}\right) d\lambda(x),$$ $$h_{ij}^{*}(\pi) = \int g^{*}(y) \left(\frac{1}{g^{*}(y)} \frac{\partial g^{*}(y)}{\partial \pi_{i}}\right) \left(\frac{1}{g^{*}(y)} \frac{\partial g^{*}(y)}{\partial \pi_{i}}\right) d\gamma(y),$$ and define the nonsingular matrices $$G^*(\pi) = (g_{ij}^*(\pi)), \qquad H^*(\pi) = (h_{ij}^*(\pi)),$$ where π represents any appropriate set of parameters and i, j range over the number of components of π , for example, $i, j = 1, 2, \dots, k$, when π is τ or θ . Since $$\frac{\partial f^*(x)}{\partial \tau_j} = \frac{\partial f^*(x)}{\partial \theta_1} \frac{\partial \theta_1}{\partial \tau_j} + \frac{\partial f^*(x)}{\partial \theta_2} \frac{\partial \theta_2}{\partial \tau_j} + \cdots + \frac{\partial f^*(x)}{\partial \theta_k} \frac{\partial \theta_k}{\partial \tau_j}, \quad j = 1, 2, \cdots, k,$$ setting $a_{ij} = \partial \theta_i / \partial \tau_j$, the nonsingular matrix $A = (a_{ij}), i, j = 1, 2, \dots, k$, $$\left(\frac{1}{f^*}\frac{\partial f^*}{\partial \tau}\right)' = \left(\frac{1}{f^*}\frac{\partial f^*}{\partial \tau_1}, \frac{1}{f^*}\frac{\partial f^*}{\partial \tau_2}, \cdots, \frac{1}{f^*}\frac{\partial f^*}{\partial \tau_k}\right),$$ similarly, the matrix $\left(\frac{1}{f^*} \frac{\partial f^*}{\partial \theta}\right)'$, we have $$\left(\frac{1}{f^*}\frac{\partial f^*}{\partial \tau}\right) = A'\left(\frac{1}{f^*}\frac{\partial f^*}{\partial \theta}\right), \\ \left(\frac{1}{f^*}\frac{\partial f^*}{\partial \tau}\right)\left(\frac{1}{f^*}\frac{\partial f^*}{\partial \tau}\right)' = A'\left(\frac{1}{f^*}\frac{\partial f^*}{\partial \theta}\right)\left(\frac{1}{f^*}\frac{\partial f^*}{\partial \theta}\right)'A,$$ and taking expected values $G^*(\tau) = A'G^*(\theta)A$. In a similar fashion we also have $H^*(\tau) = A'H^*(\theta)A$. Lemma 4.3 may now be written as LEMMA 4.10. $\Sigma(\tau(\theta)) = G^*(\tau) = H^*(\tau) = A$, and lemma 4.4 as LEMMA 4.11. $\Sigma(\tau(\theta)) \cdot \mathbf{G}^*(\theta) = \mathbf{I} = \mathbf{G}^*(\tau)\mathbf{G}^*(\theta)$. Since $$d\theta_{i} = \frac{\partial \theta_{i}}{\partial \tau_{1}} d\tau_{1} + \frac{\partial \theta_{i}}{\partial \tau_{2}} d\tau_{2} + \cdots + \frac{\partial \theta_{i}}{\partial \tau_{k}} d\tau_{k}, \qquad i = 1, 2, \cdots, k,$$ setting the matrix $(d\theta)' = (d\theta_1, d\theta_2, \dots, d\theta_k)$, similarly, the matrix $(d\tau)'$, we have $(d\theta) = A(d\tau)$ or $(d\tau) = A^{-1}(d\theta)$. Since $$d\tau_{i} = \frac{\partial \tau_{i}}{\partial \theta_{1}} d\theta_{1} + \frac{\partial \tau_{i}}{\partial \theta_{2}} d\theta_{2} + \cdots + \frac{\partial \tau_{i}}{\partial \theta_{k}} d\theta_{k}, \qquad i = 1, 2, \cdots, k,$$ we may write $a^{ij} = \partial \tau_i / \partial \theta_j$, $i, j = 1, 2, \dots, k$, and $(a^{ij}) = A^{-1}$. Thus lemma 4.7 may now be written as LEMMA 4.12. $$(a^{ij}) = A^{-1} = \Sigma^{-1}(\tau(\theta))$$. As was noted in section 6 of chapter 2, the matrices $G^*(\pi)$, $H^*(\pi)$ are Fisher information matrices. [Cf. Fisher (1956, p. 155).] We illustrate the foregoing with a number of examples. Example 4.1. \mathcal{X} is the space of n independent observations O_n on the two-valued variate success or failure, Y = T(x) is the number of successes in the n observations, and p_i , $q_i = 1 - p_i$, i = 1, 2, are the respective probabilities of success corresponding to H_i , i = 1, 2. It is found that [cf. problem 5.2(b) of chapter 1 and problem 8.12 of chapter 2] (4.3) $$I(1:2; O_n) = nI(1:2; O_1) = n \left(p_1 \log \frac{p_1}{p_2} + q_1 \log \frac{q_1}{q_2} \right),$$ (4.4) $$I(1:2; \mathscr{Y}) = \sum_{y=0}^{n} \frac{n!}{y!(n-y)!} p_1^{y} q_1^{n-y} \log \frac{p_1^{y} q_1^{n-y}}{p_2^{y} q_2^{n-y}}$$ $$= n \left(p_1 \log \frac{p_1}{p_2} + q_1 \log \frac{q_1}{q_2} \right),$$ $$(4.5) g^*(y) = \frac{e^{\tau y}g_2(y)}{M_2(\tau)} = \frac{n!}{y!(n-y)!} (p^*)^y (q^*)^{n-y}, \qquad M_2(\tau) = (p_2e^{\tau} + q_2)^n,$$ $$p^* = \frac{p_2 e^{\tau}}{p_2 e^{\tau} + q_2}, \quad q^* = \frac{q_2}{p_2 e^{\tau} + q_2}, \quad \tau(p_2) = 0, \quad \tau(p_1) = \log \frac{p_1 q_2}{q_1 p_2},$$ $$(4.6) \quad I(*:2) = np_1\tau(p_1) - n\log(p_2e^{\tau(p_1)} + q_2) = n\left(p_1\log\frac{p_1}{p_2} + q_1\log\frac{q_1}{q_2}\right)$$ $$= (np_1 - np_2)^2/2npq = n(p_1 - p_2)^2/2pq,$$ where $$p = \frac{p_2 e^{\tau}}{p_2 e^{\tau} + q_2}$$, $q = \frac{q_2}{p_2 e^{\tau} + q_2}$, for some value of τ between $\tau(p_2) = 0$ and $\tau(p_1) = \log \frac{p_1 q_2}{q_1 p_2}$; that is, p lies between p_1 and p_2 . Note that in this example $I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y}) = I(*:2)$. Example 4.2. \mathscr{X} is the space of n independent observations O_n from the normal populations $N(\theta_i, \sigma_i^2)$, i = 1, 2, $Y = T(x) = \bar{x}$, the average of the n observations. It is found that [cf. problem 5.2(f) of chapter 1 and problem 8.13 of chapter 2] (4.7) $$I(1:2; O_n) = nI(1:2; O_1) = \frac{n}{2} \left(\log \frac{\sigma_2^2}{\sigma_1^2} - 1 + \frac{\sigma_1^2}{\sigma_2^2} + \frac{(\theta_1 - \theta_2)^2}{\sigma_2^2} \right),$$ (4.8) $$I(1:2; \vec{x}) = \frac{1}{2} \log \frac{\sigma_2^2}{\sigma_1^2} - \frac{1}{2} + \frac{\sigma_1^2}{2\sigma_2^2} + \frac{n(\theta_1 - \theta_2)^2}{2\sigma_2^2},$$ (4.9) $$g^{*}(\bar{x}) = \frac{e^{\tau \bar{x}} g_{2}(\bar{x})}{M_{2}(\tau)} = \frac{\exp\left[-\frac{n}{2\sigma_{2}^{2}} \left(\bar{x} - \theta_{2} - \frac{\tau\sigma_{2}^{2}}{n}\right)^{2}\right]}{\sigma_{2}\sqrt{2\pi/\sqrt{n}}},$$ $$M_{2}(\tau) = \exp\left(\tau\theta_{2} + \frac{\tau^{2}\sigma_{2}^{2}}{2n}\right), \quad \theta^{*} = \theta_{2} + \frac{\tau\sigma_{2}^{2}}{n},$$ where $\theta^* = (d/d\tau) \log M_2(\tau)$ is the mean of the distribution with density $g^*(\bar{x})$, the values of τ for $\theta^* = \theta_2$ and $\theta^* = \theta_1$ are respectively $$\tau(\theta_2) = 0, \qquad \tau(\theta_1) = n(\theta_1 - \theta_2)/\sigma_2^2,$$ $$(4.10) \qquad I(*:2) = \theta_1 \tau(\theta_1) - \theta_2 \tau(\theta_1) - \frac{\tau^2(\theta_1)\sigma_2^2}{2n} = \frac{n(\theta_1 - \theta_2)^2}{2\sigma_2^2}.$$ Note that in this example $I(1:2; \mathcal{X}) > I(1:2; \mathcal{Y}) > I(*:2)$. (See problem 7.21.) Example 4.3. \mathscr{X} is the same as in example 4.2, $Y = T(x) = (\bar{x}, s^2)$, where \bar{x} is the average and $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ is the unbiased sample variance of the *n* observations. It is found that (4.11) $$I(1:2; \mathcal{X})$$ is the same as in (4.7), (4.12) $$I(1:2; \bar{x})$$ is the same as in (4.8), (4.13) $$I(1:2; s^2) = \frac{n-1}{2} \left(\log \frac{\sigma_2^2}{\sigma_1^2} - 1 + \frac{\sigma_1^2}{\sigma_2^2} \right),$$ (4.14) $$I(1:2; \mathcal{Y}) = I(1:2; \bar{x}) + I(1:2; s^2)$$ (cf. theorem 2.1 in chapter 2), (4.15) $$g^{*}(y) = \frac{\exp(\tau_{1}\bar{x} + \tau_{2}s^{2})g_{2}(\bar{x}, s^{2})}{M_{2}(\tau_{1}, \tau_{2})}$$ $$= \frac{\exp[-n(\bar{x} - \theta^{*})^{2}/2\sigma_{2}^{2}]}{\sigma_{2}\sqrt{2\pi/\sqrt{n}}} \cdot \frac{(n-1)}{2\sigma_{*}^{2}\Gamma\left(\frac{n-1}{2}\right)} \left(\frac{(n-1)s^{2}}{2\sigma_{*}^{2}}\right)^{\frac{n-3}{2}}$$ $$\times \exp\left(-\frac{(n-1)s^{2}}{2\sigma_{*}^{2}}\right),$$ $$M_{2}(\tau_{1}, \tau_{2}) = \left[\exp\left(\theta_{2}\tau_{1} + \frac{\tau_{1}^{2}\sigma_{2}^{2}}{2n}\right)\right] \left(1 - \frac{2\tau_{2}\sigma_{2}^{2}}{n-1}\right)^{-\frac{n-1}{2}},$$ $$\theta^{*} = \frac{\partial}{\partial \tau_{1}}\log M_{2}(\tau_{1}, \tau_{2}) = \theta_{2} + \tau_{1}\sigma_{2}^{2}/n,$$ $$\sigma_{*}^{2} = \frac{\partial}{\partial \tau_{2}}\log M_{2}(\tau_{1}, \tau_{2}) = \sigma_{2}^{2}/[1 - 2\tau_{2}\sigma_{2}^{2}/(n-1)],$$ the values of τ_1 and τ_2 for $\theta^* = \theta_2$, $\theta^* = \theta_1$, $\sigma_*^2 = \sigma_2^2$, and $\sigma_*^2 = \sigma_1^2$ are respectively $$\tau_{1}(\theta_{2}) = 0, \quad \tau_{1}(\theta_{1}) = n(\theta_{1} - \theta_{2})/\sigma_{2}^{2}, \quad \tau_{2}(\sigma_{2}^{2}) = 0, \ \tau_{2}(\sigma_{1}^{2}) = \frac{n-1}{2} \left(\frac{1}{\sigma_{2}^{2}} - \frac{1}{\sigma_{1}^{2}}\right),$$ $$(4.16) \quad I(*:2) = \theta_{1}\tau_{1}(\theta_{1}) - \theta_{2}\tau_{1}(\theta_{1}) - \sigma_{2}^{2}\tau_{1}^{2}(\theta_{1})/2n + \sigma_{1}^{2}\tau_{2}(\sigma_{1}^{2}) + \frac{n-1}{2}\log\left(1 - \frac{2\sigma_{2}^{2}\tau_{2}(\sigma_{1}^{2})}{n-1}\right)$$ $$= \frac{n(\theta_{1} - \theta_{2})^{2}}{2\sigma_{2}^{2}} + \frac{n-1}{2}\left(\log\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} - 1 + \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\right)$$ $$= \frac{n(\theta_{1} - \theta_{2})^{2}}{2\sigma_{2}^{2}} + \frac{(\sigma_{1}^{2} - \sigma_{2}^{2})^{2}}{2\sigma_{2}^{2}} \frac{n-1}{2\sigma_{1}^{4}} = \frac{1}{2}\delta'\Sigma^{-1}(\tau(\xi))\delta,$$ where σ^2 lies between σ_1^2 and σ_2^2 , and $$\Sigma(\tau(\xi)) = \begin{pmatrix} \sigma_2^2/n & 0 \\ 0 & 2\sigma^4/(n-1) \end{pmatrix}, \quad \delta' = ((\theta_1 - \theta_2), (\sigma_1^2 - \sigma_2^2)).$$ Note that in this example $I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y}) > I(*:2)$, and that the statistic $Y = T(x) = (\bar{x}, s^2)$ is sufficient. Example 4.4. \mathscr{X} is the space of n independent observations
O_n from the normal populations $N(0, \sigma_i^2)$, i = 1, 2, $Y = T(x) = s^2$, where $(n-1)s^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2$. It is found that (4.17) $$I(1:2; O_n) = nI(1:2; O_1) = \frac{n}{2} \left(\log \frac{\sigma_2^2}{\sigma_1^2} - 1 + \frac{\sigma_1^2}{\sigma_2^2} \right),$$ (4.18) $$I(1:2; s^2)$$ is the same as in (4.13), $$(4.19) \quad g^{*}(s^{2}) = e^{\tau s^{2}} g_{2}(s^{2}) / M_{2}(\tau)$$ $$= \frac{(n-1)}{2\sigma_{*}^{2} \Gamma\left(\frac{n-1}{2}\right)} \left(\frac{(n-1)s^{2}}{2\sigma_{*}^{2}}\right)^{\frac{n-3}{2}} \exp\left(-\frac{(n-1)s^{2}}{2\sigma_{*}^{2}}\right),$$ $$M_{2}(\tau) = \left(1 - \frac{2\tau\sigma_{2}^{2}}{n-1}\right)^{-\frac{n-1}{2}},$$ $$\sigma_{*}^{2} = \frac{\partial}{\partial \tau} \log M_{2}(\tau) = \sigma_{2}^{2} / (1 - 2\tau\sigma_{2}^{2} / (n-1)),$$ $$\tau(\sigma_{2}^{2}) = 0, \quad \tau(\sigma_{1}^{2}) = \frac{n-1}{2} \left(\frac{1}{\sigma_{2}^{2}} - \frac{1}{\sigma_{1}^{2}}\right),$$ (4.20) $$I(*:2) = \sigma_1^2 \tau(\sigma_1^2) + \frac{n-1}{2} \log \left(1 - \frac{2\sigma_2^2 \tau(\sigma_1^2)}{n-1} \right)$$ $$= \frac{n-1}{2} \left(\log \frac{\sigma_2^2}{\sigma_1^2} - 1 + \frac{\sigma_1^2}{\sigma_2^2} \right)$$ $$= \frac{(\sigma_1^2 - \sigma_2^2)^2}{2} \cdot \frac{n-1}{2\sigma^4},$$ where σ^2 lies between σ_1^2 and σ_2^2 . Note that in this example $I(1:2; \mathcal{X}) > I(1:2; \mathcal{Y}) = I(*:2)$, and that s^2 is not a sufficient statistic. Example 4.5. \mathscr{X} is the same as in example 4.4, $Y = T(x) = \frac{1}{n} \sum_{i=1}^{n} x_i^2$. It is found that (4.21) $$I(1:2; \mathcal{X})$$ is the same as in (4.17), (4.22) $$I(1:2; \mathscr{Y}) = \frac{n}{2} \left(\log \frac{\sigma_2^2}{\sigma_1^2} - 1 + \frac{\sigma_1^2}{\sigma_2^2} \right),$$ (4.23) $$g^{*}(y) = e^{\tau y} g_{2}(y) / M_{2}(\tau)$$ $$= \frac{n}{2\sigma_{*}^{2} \Gamma\left(\frac{n}{2}\right)} \left(\frac{ny}{2\sigma_{*}^{2}}\right)^{\frac{n-2}{2}} \exp\left(-\frac{ny}{2\sigma_{*}^{2}}\right)^{*}$$ $$M_{2}(\tau) = (1 - 2\tau\sigma_{2}^{2}/n)^{-n/2},$$ $$\sigma_{*}^{2} = \frac{\partial}{\partial \tau} \log M_{2}(\tau) = \sigma_{2}^{2} / (1 - 2\tau\sigma_{2}^{2}/n),$$ $$\tau(\sigma_{2}^{2}) = 0, \qquad \tau(\sigma_{1}^{2}) = \frac{n}{2} \left(\frac{1}{\sigma_{2}^{2}} - \frac{1}{\sigma_{1}^{2}}\right)^{*},$$ $$I(^{*}:2) = \sigma_{1}^{2} \tau(\sigma_{1}^{2}) + \frac{n}{2} \log\left(1 - \frac{2\sigma_{2}^{2} \tau(\sigma_{1}^{2})}{n}\right)$$ $$= \frac{n}{2} \left(\log\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} - 1 + \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\right)$$ $$= \frac{(\sigma_{1}^{2} - \sigma_{2}^{2})^{2}}{2\sigma_{1}^{2}} \cdot \frac{n}{2\sigma_{1}^{2}},$$ where σ^2 lies between σ_1^2 and σ_2^2 . Note that in this example $I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y}) = I(*:2)$, and that $\frac{1}{n} \sum_{i=1}^{n} x_i^2$ is a sufficient statistic. Example 4.6. \mathcal{X} is the space of n independent observations O_n from bivariate normal populations. We shall consider bivariate normal populations with zero means, unit variances, and correlation coefficients ρ_1 and ρ_2 respectively. It is found that (see example 2.1 in chapter 2) $$(4.25) I(1:2; O_n) = nI(1:2; O_1) = n\left(\frac{1}{2}\log\frac{1-\rho_2^2}{1-\rho_1^2} + \frac{\rho_2^2-\rho_1\rho_2}{1-\rho_2^2}\right).$$ The nonsingular transformation $$(4.26) u = x_1 - x_2, v = x_1 + x_2$$ transforms the bivariate normal density (4.27) $$\frac{1}{2\pi(1-\rho^2)^{1/2}}\exp\left(-\frac{1}{2(1-\rho^2)}(x_1^2-2\rho x_1x_2+x_2^2)\right)$$ into a product of independent normal densities with zero means and variances $2(1 - \rho)$ and $2(1 + \rho)$, (4.28) $$\frac{1}{\sqrt{2\pi}(2(1-\rho))^{1/2}} \exp\left(-\frac{u^2}{4(1-\rho)}\right) \times \frac{1}{\sqrt{2\pi}(2(1+\rho))^{1/2}} \exp\left(-\frac{v^2}{4(1+\rho)}\right).$$ It is found [the derivation of (4.17) and the fact that I(1:2; u, v) = I(1:2; u) + I(1:2; v) are applicable] that $$(4.29) \quad I(1:2; u, v)$$ $$= \frac{1}{2} \left(\log \frac{1 - \rho_2}{1 - \rho_1} - 1 + \frac{1 - \rho_1}{1 - \rho_2} \right) + \frac{1}{2} \left(\log \frac{1 + \rho_2}{1 + \rho_1} - 1 + \frac{1 + \rho_1}{1 + \rho_2} \right)$$ $$= \frac{1}{2} \log \frac{1 - \rho_2^2}{1 - \rho_1^2} + \frac{\rho_2^2 - \rho_1 \rho_2}{1 - \rho_2^2},$$ illustrating the additivity for independent random variables (see section 2 of chapter 2) and the invariance under nonsingular transformations (see corollary 4.1 of chapter 2). We now take $Y = T(x) = (y_1, y_2)$, where $$(4.30) \quad y_1 = \frac{1}{n} \sum_{i=1}^n u_i^2 = \frac{1}{n} \sum_{i=1}^n (x_{1i} - x_{2i})^2, \qquad y_2 = \frac{1}{n} \sum_{i=1}^n v_i^2 = \frac{1}{n} \sum_{i=1}^n (x_{1i} + x_{2i})^2,$$ and find that (cf. example 4.5) $$(4.31) I(1:2; \mathcal{Y}) = nI(1:2; u, v) = I(1:2; \mathcal{X}),$$ $$(4.32) \quad g^{*}(y) = e^{\tau_{1}y_{1} + \tau_{2}y_{2}}g_{2}(y_{1}, y_{2})/M_{2}(\tau_{1}, \tau_{2})$$ $$= \frac{n}{4(1 - \rho^{*}) \Gamma\left(\frac{n}{2}\right)} \left(\frac{ny_{1}}{4(1 - \rho^{*})}\right)^{\frac{n-2}{2}} \exp\left(-\frac{ny_{1}}{4(1 - \rho^{*})}\right)$$ $$\times \frac{n}{4(1 + \rho^{*}) \Gamma\left(\frac{n}{2}\right)} \left(\frac{ny_{2}}{4(1 + \rho^{*})}\right)^{\frac{n-2}{2}} \exp\left(-\frac{ny_{2}}{4(1 + \rho^{*})}\right),$$ $M_2(\tau_1, \tau_2) = (1 - 4(1 - \rho_2)\tau_1/n)^{-n/2}(1 - 4(1 + \rho_2)\tau_2/n)^{-n/2},$ $$\theta_{1}^{*} = 2(1 - \rho^{*}), \qquad \theta_{2}^{*} = 2(1 + \rho^{*}), \qquad \theta_{1}^{*} = \frac{\partial}{\partial \tau_{1}} \log M_{2}(\tau_{1}, \tau_{2}),$$ $$\theta_{2}^{*} = \frac{\partial}{\partial \tau_{2}} \log M_{2}(\tau_{1}, \tau_{2}),$$ $$2(1 - \rho^{*}) = \frac{2(1 - \rho_{2})}{1 - 4(1 - \rho_{2})\tau_{1}/n}, \qquad 2(1 + \rho^{*}) = \frac{2(1 + \rho_{2})}{1 - 4(1 + \rho_{2})\tau_{2}/n},$$ $$\tau_{1}(\rho_{2}) = 0, \qquad \tau_{1}(\rho_{1}) = \frac{n}{4} \left(\frac{1}{1 - \rho_{2}} - \frac{1}{1 - \rho_{1}} \right),$$ $$\tau_{2}(\rho_{2}) = 0, \qquad \tau_{2}(\rho_{1}) = \frac{n}{4} \left(\frac{1}{1 + \rho_{2}} - \frac{1}{1 + \rho_{1}} \right),$$ $$(4.33) \qquad I(*:2) = 2(1 - \rho_{1})\tau_{1}(\rho_{1}) + \frac{n}{2} \log \left(1 - \frac{4(1 - \rho_{2})\tau_{1}(\rho_{1})}{n} \right)$$ $$+ 2(1 + \rho_{1})\tau_{2}(\rho_{1}) + \frac{n}{2} \log \left(1 - \frac{4(1 + \rho_{2})\tau_{2}(\rho_{1})}{n} \right)$$ $$= n \left(\frac{1}{2} \log \frac{1 - \rho_{2}^{2}}{1 - \rho_{1}^{2}} + \frac{\rho_{2}^{2} - \rho_{1}\rho_{2}}{1 - \rho_{2}^{2}} \right)$$ $$= \frac{n}{2} (\rho_{1} - \rho_{2})^{2} \cdot \frac{1 + \rho^{2}}{(1 - \rho^{2})^{2}},$$ where ρ lies between ρ_1 and ρ_2 . Note that in this example $I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y}) = I(*:2)$, and that $Y = T(x) = (y_1, y_2)$ is sufficient. Example 4.7. We shall use results derived in example 7.2 of chapter 2 and example 2.2. In order to use an unbiased estimate, let us consider the statistic $Y = T(x) = \min(x_1, x_2, \dots, x_n) - 1/n$. We find that $$g_{2}(y) = n \exp(-n(y + 1/n - \theta_{2})), \quad \theta_{2} - 1/n \le y < \infty,$$ $$I(1:2; \mathcal{Y}) = n(\theta_{1} - \theta_{2}), \quad \theta_{1} \ge \theta_{2} \quad \text{(as in example 7.2 of chapter 2)},$$ $$g^{*}(y) = e^{\tau y} g_{2}(y) / M_{2}(\tau), \quad \theta_{2} - 1/n \le y < \infty,$$ $$= (n - \tau) \exp(-(n - \tau)(y + 1/n - \theta_{2})), \text{ if } n > \tau,$$ $$M_{2}(\tau) = (\exp(\tau \theta_{2} - \tau/n)) / (1 - \tau/n), n > \tau,$$ $$\frac{\partial}{\partial \tau} \log M_{2}(\tau) = \theta^{*} = \theta_{2} - 1/n + 1/(n - \tau), \quad \tau(\theta_{2}) = 0,$$ and $$\tau(\theta_{1}) = \frac{n(\theta_{1} - \theta_{2})}{(\theta_{1} - \theta_{2}) + 1/n} < n, \text{ as required},$$ $$I(^{*}:2) = \theta_{1}\tau(\theta_{1}) - \theta_{2}\tau(\theta_{1}) + \tau(\theta_{1})/n + \log(1 - \tau(\theta_{1})/n)$$ $$= n(\theta_{1} - \theta_{2}) - \log(1 + n(\theta_{1} - \theta_{2})) \quad \text{(as in example 2.2)},$$ $$= \frac{(\theta_{1} - \theta_{2})^{2}}{2} \frac{n^{2}}{(1 + n(\theta - \theta_{2}))^{2}} = (\theta_{1} - \theta_{2})^{2}/2 \text{ var } (y | \tau(\theta)),$$ where θ lies between θ_1 and θ_2 , $\theta_1 \ge \theta \ge \theta_2$. Note that in this example $I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y}) > I(*:2)$. #### 5. NEIGHBORING PARAMETERS In section 6 of chapter 2 we examined the relation between Fisher's information measure and those we have been studying. We now continue that examination to study the relation between the inequality of theorem 2.1 and its consequences and the classical information inequality of the theory of estimation. Let us suppose that y_i , $i = 1, 2, \dots, k$, in corollary 4.2 are unbiased estimators of the parameters. We saw in section 6 of chapter 2 that under suitable regularity conditions, to within terms of higher order, $$(5.1) 2I(\theta + \Delta\theta; \theta; \mathcal{X}) = (\Delta\theta)'G(\theta)(\Delta\theta) = J(\theta + \Delta\theta, \theta; \mathcal{X}),$$ where $(\Delta \theta)' = (\Delta \theta_1, \ \Delta \theta_2, \cdots, \Delta \theta_k)$, and $G(\theta)$ is the positive definite matrix $(g_{ii}(\theta))$, (5.2) $$g_{ij}(\theta) = \int f(x) \left(\frac{\partial}{\partial \theta_i} \log f(x) \right) \left(\frac{\partial}{\partial \theta_j} \log f(x) \right) d\lambda(x),$$ $$i, j = 1, 2, \dots, k.$$ Similarly, we also have (5.3) $$2I(\theta + \Delta\theta : \theta; \mathscr{Y}) = (\Delta\theta)'H(\theta)(\Delta\theta) = J(\theta + \Delta\theta, \theta; \mathscr{Y}),$$ where $(\Delta \theta)'$ is defined above, and $\mathbf{H}(\theta)$ is the positive definite matrix $(h_{ij}(\theta))$, (5.4) $$h_{ij}(\theta) = \int g(y) \left(\frac{\partial}{\partial \theta_i} \log g(y) \right) \left(\frac{\partial}{\partial \theta_j} \log g(y) \right) d\gamma(y),$$ $$i, j = 1, 2, \dots, k.$$ We can now state [cf. Barankin (1951), Cramér (1946b), Darmois (1945)]: THEOREM 5.1. Under suitable regularity conditions (5.5) $$(\Delta \theta)' \mathbf{G}(\theta)(\Delta \theta) \ge (\Delta \theta)' \mathbf{H}(\theta)(\Delta \theta) \ge (\Delta \theta)'
\mathbf{\Sigma}^{-1}(\Delta \theta),$$ where $(\Delta \theta)$, $G(\theta)$, $H(\theta)$ are defined in (5.1)–(5.4) and Σ is the covariance matrix of the unbiased estimators. The first two members are equal if and only if the unbiased estimators are sufficient and the last two members are equal if and only if g(y) in (5.4) is of the form $e^{\tau(\theta)y}h(y)/M(\tau(\theta))$, where h(y) does not contain θ and $M(\tau(\theta)) = \int e^{\tau(\theta)y}h(y) d\gamma(y)$. Proof. Use corollaries 4.1, 4.2, 4.4. Certain useful results about quadratic forms will be needed and are given in the following lemmas. [Cf. Barankin and Gurland (1951, pp. 109-110), Fraser (1957, pp. 55-56), Kullback (1954, p. 749), Roy and Bose (1953, p. 531).] LEMMA 5.1. If both x'Ax and x'Cx are positive definite quadratic forms (matrix notation) such that $x'Ax \ge x'Cx$, then - (a) the roots of $|\mathbf{A} \lambda \mathbf{C}| = 0$ are real and ≥ 1 ; - (b) $|\mathbf{A}| \geq |\mathbf{C}|$; - (c) any principal minor of A is not less than the corresponding principal minor of C (determinant or quadratic form); - (d) $y'C^{-1}y \ge y'A^{-1}y$; - (e) any principal minor of C^{-1} is not less than the corresponding principal minor of A^{-1} (determinant or quadratic form). *Proof.* Statements (a), (b), and (c) are immediate corollaries of known theorems on positive definite quadratic forms, for example, theorems 44 and 48 in Ferrar (1941). Since $A^{-1} = C^{-1}CA^{-1}$ and $C^{-1} = C^{-1}AA^{-1}$, there exists a nonsingular matrix **B** such that [Bôcher (1924, p. 301)] $C^{-1} = B'AB$ and $A^{-1} = B'CB$. Thus, applying the transformation x = By gives $x'Ax = y'B'ABy = y'C^{-1}y$, $x'Cx = y'B'CBy = y'A^{-1}y$, and (d) and (e) then follow. We remark that $A \ge C$ may be defined as meaning that $x'Ax \ge x'Cx$ for all real vectors (matrices) $x \ne 0$. LEMMA 5.2. If $A = (a_{ij})$, $i, j = 1, 2, \dots, k$, is a positive definite matrix, then $a^{11} \ge a^{11.2} \ge a^{11.23} \ge \dots \ge a^{11.23 \dots (k-1)} \ge 1/a_{11}$, where $a^{11.23 \dots j}$ is the element in the first row and first column of the inverse of the matrix obtained by deleting rows and columns 2, 3, \dots , j, in A. Proof. Consider two multivariate normal populations with common covariance matrix A and difference of means $\alpha' = (\alpha_1, \alpha_2, \dots, \alpha_k)$. As already noted in connection with corollary 4.2, and shown in chapter 9, the discrimination information measure for the two multivariate populations is $I(1:2;\mathcal{X}) = \frac{1}{2}\alpha' A^{-1}\alpha$. The variates $y_1 = x_1$, $y_2 = x_3$, $y_3 = x_4$, \dots , $y_{k-1} = x_k$ are also multivariate normal with covariance matrix B, where B is the matrix A with the second row and second column deleted [Wilks (1943, p. 68)]. For the distributions of the y's we then have $I(1:2;\mathcal{Y}) = \frac{1}{2}\beta' B^{-1}\beta$, where $\beta' = (\beta_1, \beta_2, \dots, \beta_{k-1})$, $\beta_1 = \alpha_1, \beta_2 = \alpha_3$, \dots , $\beta_{k-1} = \alpha_k$. But according to section 4 of chapter 2, $I(1:2;\mathcal{X}) \ge I(1:2;\mathcal{Y})$, or $\alpha' A^{-1}\alpha \ge \beta' B^{-1}\beta$ for all $\alpha_1, \alpha_2, \dots, \alpha_k$, and therefore in particular for $\alpha_2 = 0$, $\beta' C\beta \ge \beta' B^{-1}\beta$, where C is the matrix A^{-1} with the second row and second column deleted. From lemma 5.1 we can then conclude that $a^{11} \ge a^{11.2}$. Successive application of the procedure then leads to the desired conclusion. LEMMA 5.3. If A is a $k \times k$ positive definite matrix, and U an $r \times k$ matrix, $r \leq k$, of rank r, then $\alpha' A^{-1} \alpha \geq \alpha' U'(UAU')^{-1} U \alpha$, where $\alpha' = (\alpha_1, \alpha_2, \dots, \alpha_k)$. *Proof.* Consider the two multivariate normal populations in lemma 5.2 for which $I(1:2;\mathcal{X}) = \frac{1}{2}\alpha' A^{-1}\alpha$. The variates y_1, y_2, \dots, y_r , defined by y = Ux, with $y' = (y_1, y_2, \dots, y_r)$, $x' = (x_1, x_2, \dots, x_k)$, and U the $r \times k$ matrix of the lemma, are also multivariate normal with a common covariance matrix UAU' and difference of means $U\alpha$ [Wilks (1943, p. 71)]. For the distributions of the y's we then have $I(1:2;\mathcal{Y}) = \frac{1}{2}\alpha'U'(UAU')^{-1}U\alpha$. But according to section 4 of chapter 2, $I(1:2;\mathcal{X}) \ge I(1:2;\mathcal{Y})$ and the desired conclusion follows. LEMMA 5.4. If **B** is a $k \times k$ positive definite matrix, **U** an $r \times k$ matrix, $r \leq k$, of rank r, and **C** a $k \times m$ matrix of rank $m \leq k$, then $\beta'C'BC\beta \geq \beta'C'U'(UB^{-1}U')^{-1}UC\beta$, where $\beta' = (\beta_1, \beta_2, \dots, \beta_m)$. *Proof.* In lemma 5.3 set $B = A^{-1}$ and $\alpha = C\beta$. COROLLARY 5.1. For arbitrary $\alpha' = (\alpha_1, \alpha_2, \dots, \alpha_k), \alpha_i, i = 1, 2, \dots, k$, real, $\alpha'G(\theta)\alpha \ge \alpha'H(\theta)\alpha \ge \alpha'\Sigma^{-1}\alpha$, $\alpha'\Sigma\alpha \ge \alpha'H^{-1}(\theta)\alpha \ge \alpha'G^{-1}(\theta)\alpha$, where $G(\theta)$, $H(\theta)$, Σ , and the conditions for equality are given in theorem 5.1. **Proof.** $G(\theta)$, $H(\theta)$, Σ are positive definite since they are covariance matrices of linearly independent variables. The first set of inequalities is simply a repetition of theorem 5.1 and the second set of inequalities follows by applying lemma 5.1. COROLLARY 5.2. If y_i is an unbiased estimator of θ_i , then $\sigma_{y_i}^2 \ge h^{ii}(\theta) \ge g^{ii}(\theta)$, $i = 1, 2, \dots, k$, where $h^{ii}(\theta)$ and $g^{ii}(\theta)$ are respectively the elements in the ith row and ith column of $\mathbf{H}^{-1}(\theta)$ and $\mathbf{G}^{-1}(\theta)$. Proof. Use corollary 5.1 and lemma 5.1. COROLLARY 5.3. If y_1 is an unbiased estimator of θ_1 , then $\sigma_{y_1}^2 \ge h^{11}(\theta) \ge g^{11}(\theta) \ge g^{11,2}(\theta) \ge g^{11,23}(\theta) \ge \cdots \ge g^{11,23\cdots(k-1)} \ge \frac{1}{g_{11}(\theta)}$, where $g^{11,23\cdots j}$ is the element in the first row and first column of the inverse of the matrix obtained by deleting rows and columns 2, 3, \cdots , j, in $G(\theta)$. A similar result holds for unbiased estimators of the other parameters. *Proof.* Use corollary 5.1 and lemma 5.2. Note that $g^{ii}(\theta) = 1/g_{ii}(\theta)$ when $G(\theta)$ is a diagonal matrix. Example 5.1. In example 4.1 set $p_1 = p + \Delta p$, $p_2 = p$. The lower bound for the variance of an unbiased estimator of p, pq/n, is attained for the estimator $\hat{p} = y/n$. Example 5.2. In example 4.2 set $\theta_1 = \theta + \Delta \theta$, $\theta_2 = \theta$, $\sigma_1^2 = \sigma^2 + \Delta \sigma^2$, $$\sigma_2^2 = \sigma^2$$. We find that $\mathbf{G} = \begin{pmatrix} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{2\sigma^4} \end{pmatrix}$, $\mathbf{H} = \begin{pmatrix} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{1}{2\sigma^4} \end{pmatrix}$, and the lower bound for the variance of an unbiased estimator of θ , σ^2/n , is attained for the estimator $\hat{\theta} = \bar{x}$. Example 5.3. In example 4.3 set $\theta_1 = \theta + \Delta \theta$, $\theta_2 = \theta$, $\sigma_1^2 = \sigma^2 + \Delta \sigma^2$, $$\sigma_2^2 = \sigma^2$$. We find that $\mathbf{G} = \begin{pmatrix} \frac{n}{\sigma^2} & 0\\ 0 & \frac{n}{2\sigma^4} \end{pmatrix}$, $\mathbf{H} = \begin{pmatrix} \frac{n}{\sigma^2} & 0\\ 0 & \frac{n}{2\sigma^4} \end{pmatrix}$, and $\mathbf{\Sigma} = \begin{pmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^4}{n-1} \end{pmatrix}$. The lower bound for the variance of an unbiased estimator of σ^2 , $2\sigma^4/n$, that is, g^{22} , is not attained by the estimator s^2 with a variance $2\sigma^4/(n-1)$. From examples 4.4 and 4.5 we see that when the population mean is known (we used the mean zero) the lower bound for the variance of an unbiased estimator of σ^2 is attained for the estimator $\frac{1}{n}\sum_{i=1}^n x_i^2$. Example 5.4. In example 4.6 set $\rho_1 = \rho + \Delta \rho$, $\rho_2 = \rho$. We find that $G(\rho) = \left(\frac{n(1+\rho^2)}{(1-\rho^2)^2}\right) = H(\rho)$ and the lower bound for the variance of an unbiased estimator of ρ is $(1-\rho^2)^2/n(1+\rho^2)$. [Cf. Kendall (1946, pp. 33-34).] We shall now change the assumption that the y_i , $i=1, 2, \dots, k$, are unbiased estimators of the parameters. Instead suppose that $E(y_i)=\theta_i(\phi_1, \phi_2, \dots, \phi_r)$, $i=1, 2, \dots, k$, $k \ge r$, that is, the parameters are $\phi_1, \phi_2, \dots, \phi_r$, and the y's are no longer unbiased estimates of these parameters, which may be fewer in number than the y's. We now define (5.6) $$\mu_{ij} = \frac{\partial \theta_i}{\partial \phi_i}$$, $\mathbf{U} = (\mu_{ij})$, $i = 1, 2, \cdots, k, j = 1, 2, \cdots, r$, where the matrix U is assumed to be of rank r. The differences of the expected values of the y_i for neighboring values of the parameters are now given by $\Delta\theta_i = \theta_i(\phi + \Delta\phi) - \theta_i(\phi) = \mu_{i1} \Delta\phi_1 + \cdots + \mu_{ir} \Delta\phi_r + o(\Delta\phi)$, or in matrix notation, neglecting terms of higher order, (5.7) $$(\Delta \theta) = \mathbf{U}(\Delta \phi).$$ We also have (5.8) $$\frac{\partial}{\partial \phi_j} \log f(x) = \mu_{1j} \frac{\partial}{\partial \theta_1} \log f(x) + \cdots + \mu_{kj} \frac{\partial}{\partial \theta_k} \log f(x),$$ $$j = 1, 2, \cdots, r,$$ or in matrix notation (5.9) $$\left(\frac{\partial}{\partial \phi} \log f(x)\right) = U'\left(\frac{\partial}{\partial \theta} \log f(x)\right).$$ Similarly, we have (5.10) $$\left(\frac{\partial}{\partial \phi} \log g(y)\right) = U'\left(\frac{\partial}{\partial \theta} \log g(y)\right).$$ We thus have $$(5.11) \quad \left(\frac{\partial}{\partial \phi} \log f(x)\right) \left(\frac{\partial}{\partial \phi} \log f(x)\right)' = U' \left(\frac{\partial}{\partial \theta} \log
f(x)\right) \left(\frac{\partial}{\partial \theta} \log f(x)\right)' U,$$ and taking expected values [cf. Fisher (1956, p. 155), also section 4] (5.12) $$\mathbf{G}(\phi) = \mathbf{U}'\mathbf{G}(\theta)\mathbf{U},$$ where $G(\theta)$ is the matrix defined in (5.2) and $G(\phi) = (g_{ij}(\phi))$ is the matrix with $$(5.13) \quad g_{ij}(\phi) = \int f(x) \left(\frac{\partial}{\partial \phi_i} \log f(x) \right) \left(\frac{\partial}{\partial \phi_j} \log f(x) \right) d\lambda(x),$$ $$i, j = 1, 2, \cdots, r.$$ Similarly, we have (5.14) $$\mathbf{H}(\phi) = \mathbf{U}'\mathbf{H}(\theta)\mathbf{U},$$ where $\mathbf{H}(\theta)$ is the matrix defined in (5.4) and $\mathbf{H}(\phi) = (h_{ij}(\phi))$ is the matrix with $$(5.15) h_{ij}(\phi) = \int g(y) \left(\frac{\partial}{\partial \phi_i} \log g(y) \right) \left(\frac{\partial}{\partial \phi_j} \log g(y) \right) d\gamma(y),$$ $$i, j = 1, 2, \dots, r.$$ We now state: THEOREM 5.2. Under suitable regularity conditions $$(5.16) \qquad (\Delta \phi)' G(\phi)(\Delta \phi) \ge (\Delta \phi)' H(\phi)(\Delta \phi) \ge (\Delta \phi)' U' \Sigma^{-1} U(\Delta \phi),$$ where U, $(\Delta \phi)$, $G(\phi)$, $H(\phi)$ are defined in (5.6), (5.7), (5.12), (5.14) and $\Sigma = (\sigma_{ij})$, i, j = 1, $2, \dots, k$, is the covariance matrix with $\sigma_{ij} = E(y_i - \theta_i(\phi_1, \phi_2, \dots, \phi_r))(y_j - \theta_j(\phi_1, \phi_2, \dots, \phi_r))$. The first two members are equal if and only if the statistics y_1, y_2, \dots, y_k are sufficient. The last two members are equal if (5.25) below is satisfied. *Proof.* Use (5.6), (5.7), (5.12), (5.14) in (5.5) to obtain (5.16) and the condition for equality of the first two members. We now consider conditions for equality of the last two members in (5.16). Suppose there exist functions $z_i(x)$, $i = 1, 2, \dots, r$, such that $$z = Cy,$$ where (5.18) $$\mathbf{z} = \begin{pmatrix} z_1 - \phi_1 \\ \cdot \\ \cdot \\ z_r - \phi_r \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 - \theta_1 \\ \cdot \\ \cdot \\ \cdot \\ y_k - \theta_k \end{pmatrix}, \quad \mathbf{C} = (c_{ij}), \quad i = 1, 2, \dots, r, \\ j = 1, 2, \dots, k,$$ and C is of rank r. The expected value of zz' = Cyy'C' yields $$\mathbf{\Sigma}_{1} = \mathbf{C}\mathbf{\Sigma}\mathbf{C}',$$ where Σ_1 is the covariance matrix of the z's, which are unbiased estimators of the ϕ 's. Letting $\mathbf{R} = (\mathbf{U}'\mathbf{\Sigma}^{-1}\mathbf{U})^{-1}$, lemmas 5.4 and 5.1 yield $$\alpha' \mathbf{C} \mathbf{\Sigma} \mathbf{C}' \alpha \geq \alpha' \mathbf{C} \mathbf{U} \mathbf{R} \mathbf{U}' \mathbf{C}' \alpha,$$ $$|\mathbf{C}\mathbf{\Sigma}\mathbf{C}'| \ge |\mathbf{C}\mathbf{U}\mathbf{R}\mathbf{U}'\mathbf{C}'| = |\mathbf{C}\mathbf{U}|^2|\mathbf{R}|,$$ $$|\mathbf{C}\mathbf{U}|^2 \leq |\mathbf{C}\mathbf{\Sigma}\mathbf{C}'| \cdot |\mathbf{U}'\mathbf{\Sigma}^{-1}\mathbf{U}|.$$ If CU = I, then from (5.20) and corollary 5.4, (5.23) $$\alpha' \mathbf{C} \mathbf{\Sigma} \mathbf{C}' \alpha \geq \alpha' \mathbf{R} \alpha \geq \alpha' \mathbf{H}^{-1}(\phi) \alpha \geq \alpha' \mathbf{G}^{-1}(\phi) \alpha.$$ Note that when the matrix C in (5.17) consists of constants independent of the parameters, (5.24) $$(\Delta \phi) = C(\Delta \theta) = CU(\Delta \phi),$$ using (5.7), or CU = I. When the generalized density of the y's is $g(y) = e^{\tau(\phi)y}h(y)/M_2(\tau(\phi))$, with $\tau(\phi)y = \sum_{i=1}^k y_i\tau_i(\theta_1(\phi_1, \phi_2, \cdots, \phi_r), \cdots, \theta_k(\phi_1, \phi_2, \cdots, \phi_r))$, h(y) independent of the parameters (cf. theorem 5.1), and the matrix $\mathbf{B} = (b_{ij})$, $b_{ij} = \partial \tau_i/\partial \phi_i$, $i = 1, 2, \cdots, r$, $j = 1, 2, \cdots, k$, of rank r, that is, if (5.25) $$\left(\frac{\partial}{\partial \phi} \log g(y)\right) = By,$$ where y is defined in (5.18), then (5.26) $$\mathbf{H}(\phi) = \mathbf{B}\mathbf{\Sigma}\mathbf{B}'.$$ Since $\left(\frac{\partial}{\partial \phi} \log g(y)\right) \left(\frac{\partial}{\partial \phi} \log g(y)\right)' = Byy'B'$, (5.26) follows by taking expected values. Since $a_{ij} = \partial \theta_i / \partial \tau_j$, $i, j = 1, 2, \dots, k$, and $A = (a_{ij})$, we have AB' = U and, by lemma 4.10, this is the same as $$\mathbf{\Sigma}\mathbf{B}'=\mathbf{U}.$$ From (5.26) and (5.27) we then have (5.28) $$H^{-1}(\phi)BU = I$$. With $H^{-1}(\phi)B$ as the matrix C in (5.23), we have (5.29) $$\alpha' \mathbf{H}^{-1}(\phi) \mathbf{B} \mathbf{\Sigma} \mathbf{B}' \mathbf{H}^{-1}(\phi) \alpha \ge \alpha' \mathbf{R} \alpha \ge \alpha' \mathbf{H}^{-1}(\phi) \alpha.$$ Using (5.26) in (5.29) yields (5.30) $$\alpha' H^{-1}(\phi) \alpha \ge \alpha' R \alpha \ge \alpha' H^{-1}(\phi) \alpha,$$ or $\mathbf{H}(\phi) = \mathbf{U}' \mathbf{\Sigma}^{-1} \mathbf{U}$, and we have equality in the last two members of (5.16). COROLLARY 5.4. For arbitrary $\alpha' = (\alpha_1, \alpha_2, \dots, \alpha_r), \alpha_i, i = 1, 2, \dots, r$, real, $\alpha' G(\phi) \alpha \geq \alpha' H(\phi) \alpha \geq \alpha' U' \Sigma^{-1} U \alpha$, $\alpha' (U' \Sigma^{-1} U)^{-1} \alpha \geq \alpha' H^{-1}(\phi) \alpha \geq \alpha' G^{-1}(\phi) \alpha$, where the matrices U, $G(\phi)$, $H(\phi)$, Σ and the conditions for equality are given in theorem 5.2. Proof. Proceed as in corollary 5.1. Example 5.5. This example is a continuation of example 5.4. Take the generalized density $g^*(y)$ in (4.32) to be g(y) by letting $\rho^* = \rho_2 = \rho$. Since $E(y_1) = 2(1 - \rho)$, $E(y_2) = 2(1 + \rho)$, we have $\theta_1 = 2(1 - \rho)$, $\theta_2 = 2(1 + \rho)$, $\phi_1 = \rho$, k = 2, r = 1, U' = (-2, 2). With $\rho_1 = \rho + \Delta \rho$, $\rho_2 = \rho$, $1 - \rho_2 = \theta_1/2$, $1 + \rho_2 = \theta_2/2$, $1 - \rho_1 = (\theta_1 + \Delta \theta_1)/2$, $1 + \rho_1 = (\theta_2 + \Delta \theta_2)/2$, we see from the first version in (4.29) that $$I(\theta + \Delta\theta; \theta; \mathcal{Y}) = \frac{n}{2} \left(\log \frac{\theta_1}{\theta_1 + \Delta\theta_1} - 1 + \frac{\theta_1 + \Delta\theta_1}{\theta_1} \right) + \frac{n}{2} \left(\log \frac{\theta_2}{\theta_2 + \Delta\theta_2} - 1 + \frac{\theta_2 + \Delta\theta_2}{\theta_2} \right),$$ and to within terms of higher order $$I(\theta + \Delta\theta : \theta; \mathscr{Y}) = \frac{n}{2} \left(\frac{(\Delta\theta_1)^2}{2\theta_1^2} + \frac{(\Delta\theta_2)^2}{2\theta_2^2} \right).$$ We thus have, since y is a sufficient statistic, $$G(\theta) = \begin{pmatrix} \frac{n}{2\theta_1^2} & 0\\ 0 & \frac{n}{2\theta_2^2} \end{pmatrix} = H(\theta),$$ $$G(\phi) = (-2, 2) \begin{pmatrix} \frac{n}{2\theta_1^2} & 0\\ 0 & \frac{n}{2\theta_2^2} \end{pmatrix} \begin{pmatrix} -2\\ 2 \end{pmatrix} = H(\phi) = \frac{2n}{\theta_1^2} + \frac{2n}{\theta_2^2}$$ $$= \frac{2n}{4(1-\rho)^2} + \frac{2n}{4(1+\rho)^2} = \frac{n(1+\rho^2)}{(1-\rho^2)^2},$$ the value derived in example 5.4. Since var $(y_1) = 2\theta_1^2/n$, var $(y_2) = 2\theta_2^2/n$, and cov $(y_1, y_2) = 0$, we find here that $G(\phi) = H(\phi) = U'\Sigma^{-1}U$. Corresponding to (5.17) we have $z_1 - \rho = -\frac{1}{4}(y_1 - \theta_1) + \frac{1}{4}(y_2 - \theta_2)$, that is, $$C = (-\frac{1}{4}, +\frac{1}{4})$$ and $$\Sigma_{1} = \left(-\frac{1}{4}, +\frac{1}{4}\right) \begin{pmatrix} \frac{2\theta_{1}^{2}}{n} & 0\\ 0 & \frac{2\theta_{2}^{2}}{n} \end{pmatrix} \begin{pmatrix} -\frac{1}{4}\\ +\frac{1}{4} \end{pmatrix} = \frac{\theta_{1}^{2} + \theta_{2}^{2}}{8n} = \frac{1+\rho^{2}}{n}.$$ Note that CU = 1. We see that the variance of the unbiased estimator of ρ , $z_1 = (y_2 - y_1)/4 = \frac{1}{n} \sum_{i=1}^{n} x_{1i} x_{2i}$, is $(1 + \rho^2)/n > (1 - \rho^2)^2/n(1 + \rho^2)$, the lower bound for an unbiased estimator of ρ [cf. Stuart (1955b, p. 528)]. The estimate z_1 , the product moment form with the population means and variances, may take values that exceed 1 in absolute value. From (4.32) we see that the matrix **B** of (5.25) is $$\mathbf{B} = \left(-\frac{n}{4(1-\rho)^2}, \frac{n}{4(1+\rho)^2}\right),$$ since $\tau_1 = -n/4(1-\rho)$, $\tau_2 = -n/4(1+\rho)$, and therefore that $$\Sigma \mathbf{B}' = \begin{pmatrix} \frac{8(1-\rho)^2}{n} & 0 \\ 0 & \frac{8(1+\rho)^2}{n} \end{pmatrix} \begin{pmatrix} -\frac{n}{4(1-\rho)^2} \\ \frac{n}{4(1+\rho)^2} \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} = \mathbf{U},$$ verifying (5.27). We find that $$\mathbf{H}^{-1}(\phi)\mathbf{B} = \frac{(1-\rho^2)^2}{n(1+\rho^2)} \left(-\frac{n}{4(1-\rho)^2}, \frac{n}{4(1+\rho)^2} \right) = \left(-\frac{(1+\rho)^2}{4(1+\rho^2)}, \frac{(1-\rho)^2}{4(1+\rho^2)} \right),$$ and with $H^{-1}(\phi)B$ as the matrix C in (5.17) we have $$\begin{split} z_1 - \rho &= -\frac{(1+\rho)^2}{4(1+\rho^2)} (y_1 - \theta_1) + \frac{(1-\rho)^2}{4(1+\rho^2)} (y_2 - \theta_2) \\ &= \left(-\frac{1}{4} - \frac{\rho \cdot}{2(1+\rho^2)} \right) (y_1 - 2(1-\rho)) + \left(\frac{1}{4} - \frac{\rho}{2(1+\rho^2)} \right) (y_2 - 2(1+\rho)) \\ &= \frac{y_2 - y_1}{4} - \rho - \frac{\rho}{2(1+\rho^2)} (y_1 + y_2 - 4). \end{split}$$ Since $E(y_1)=2(1-\rho)$ and $E(y_2)=2(1+\rho)$, so that $E(y_1+y_2)=4$, let us consider the estimator $r(y_1,y_2)=(y_2-y_1)/(y_2+y_1)$. Since $|r(y_1,y_2)|\leq 1$, and $r(y_1,y_2)$ is continuous and has continuous derivatives of the first and second order with respect to y_1 and y_2 in a neighborhood of the point $(E(y_1), E(y_2))$, we may apply the result on p. 354 of Cramér (1946a), that is, $E(r(y_1, y_2))=r(E(y_1), E(y_2))+O(1/n)$, var $(r(y_1, y_2))=a^2$ var $(y_1)+2ab$ cov $(y_1,y_2)+b^2$ var $(y_2)+O(1/n^{3/2})$, where a and b are respectively $\frac{\partial}{\partial y_1}r(y_1,y_2)$, $\frac{\partial}{\partial y_2}r(y_1,y_2)$, evaluated at the point $(E(y_1), E(y_2))$. Since $a=-(1+\rho)/4$, $b=(1-\rho)/4$, we find that $E(r(y_1,y_2))=\rho+O(1/n)$ and var $(r(y_1,y_2))=(1-\rho^2)^2/n+O(1/n^{3/2})$. The estimate $r(y_1,y_2)$ is consistent [Wilks (1943, Theorem (A), p. 134)] and its variance, which is less than var $((y_2-y_1)/4)$, does not attain the lower bound.
Taking the bivariate normal population with the five parameters $(\theta_1, \theta_2, \sigma_1^2, \sigma_2^2, \rho)$, we find [cf. Kendall (1946, p. 38) who considers the parameters as $(\theta_1, \theta_2, \sigma_1, \sigma_2, \rho)$] $$G = n \begin{pmatrix} \frac{1}{\sigma_1^2(1-\rho^2)} - \frac{\rho}{\sigma_1\sigma_2(1-\rho^2)} & 0 & 0 & 0 \\ -\frac{\rho}{\sigma_1\sigma_2(1-\rho^2)} & \frac{1}{\sigma_2^2(1-\rho^2)} & 0 & 0 & 0 \\ 0 & 0 & \frac{2-\rho^2}{4\sigma_1^4(1-\rho^2)} - \frac{\rho^2}{4\sigma_1^2\sigma_2^2(1-\rho^3)} - \frac{\rho}{2\sigma_1^2(1-\rho^3)} \\ 0 & 0 & -\frac{\rho^2}{4\sigma_1^2\sigma_2^2(1-\rho^2)} & \frac{2-\rho^2}{4\sigma_2^4(1-\rho^2)} - \frac{\rho}{2\sigma_2^2(1-\rho^3)} \\ 0 & 0 & -\frac{\rho}{2\sigma_1^2(1-\rho^2)} - \frac{\rho}{2\sigma_2^2(1-\rho^2)} & \frac{1+\rho^2}{(1-\rho^2)^2} \end{pmatrix}$$ We find that $g^{55}=(1-\rho^2)^2/n=g^{55.1}=g^{55.12},\ g^{55.123}=(2-\rho^2)(1-\rho^2)^2/2n,\ g^{55.1234}=1/g_{55}=(1-\rho^2)^2/n(1+\rho^2),\ \text{verifying corollary 5.3.}$ Note that $\operatorname{var}(r(y_1,y_2))$ approaches the lower bound g^{55} (the greatest lower bound for the variance of an unbiased estimator of ρ) as $n\to\infty$. We also see that $g^{11}=\sigma_1^2/n$ and $g^{11.2}=g^{11.23}=g^{11.234}=g^{11.2345}=1/g_{11}=\sigma_1^2(1-\rho^2)/n$, verifying corollary 5.3. We also see that $g^{33}=\frac{2\sigma_1^4}{n}=g^{33.1}=g^{33.12},\ g^{33.124}=2\sigma_1^4(1-\rho^4)/n,\ g^{33.1245}=1/g_{33}=2\sigma_1^4(1-\rho^2)/n(1-\rho^2/2)$, verifying corollary 5.3. ### 6. EFFICIENCY We define the discrimination efficiency of the statistic Y = T(x) by the ratio $I(1:2;\mathcal{Y})/I(1:2;\mathcal{X})$. From the properties discussed in chapter 2, this ratio is nonnegative and ≤ 1 with equality if and only if Y = T(x) is a sufficient statistic. When the generalized densities of the populations are of the same functional form but differ according to the values of the k-dimensional parameter $\theta = (\theta_1, \theta_2, \dots, \theta_k)$, we define the discrimination efficiency of the statistic Y = T(x) at the point θ in the k-dimensional parameter space by $\lim_{\Delta \theta \to 0} (I(\theta + \Delta \theta : \theta; \mathcal{Y})/I(\theta + \Delta \theta : \theta; \mathcal{X})$. The discrimination efficiency of the unbiased estimators y_i , $i = 1, 2, \cdots$, k, of theorem 5.1, at a point $\theta = (\theta_1, \theta_2, \cdots, \theta_k)$ in the k-dimensional parameter space may therefore be defined by (6.1) $$\lambda = (\mathbf{d}\boldsymbol{\theta})'\mathbf{H}(\boldsymbol{\theta})(\mathbf{d}\boldsymbol{\theta})/(\mathbf{d}\boldsymbol{\theta})'\mathbf{G}(\boldsymbol{\theta})(\mathbf{d}\boldsymbol{\theta}).$$ We take $(d\theta)'G(\theta)(d\theta)$ as the basis of the metric of the parameter space [cf. Rao (1945)]. The $g_{ij}(\theta)$ in (5.2) are the components of a covariant tensor of the second order, the fundamental tensor of the metric [Eisenhart (1926, p. 35)]. Since $(\mathbf{d}\theta)'\mathbf{H}(\theta)(\mathbf{d}\theta) \leq (\mathbf{d}\theta)'\mathbf{G}(\theta)(\mathbf{d}\theta)$, and both quadratic forms are positive definite, the roots of $|\mathbf{H}(\theta) - \lambda \mathbf{G}(\theta)| = 0$ are real, positive, and all ≤ 1 . (See lemma 5.1.) Accordingly, there exists a real transformation of the θ 's such that at a point θ in the parameter space the quadratic forms in (6.1) may be written as (6.2) $$\lambda = (\lambda_1 d\psi_1^2 + \cdots + \lambda_k d\psi_k^2)/(d\psi_1^2 + \cdots + d\psi_k^2),$$ and λ_1 , λ_2 , \cdots , λ_k are the roots of $|\mathbf{H}(\theta) - \lambda \mathbf{G}(\theta)| = 0$ [Eisenhart (1926, p. 108)]. Writing (6.3) $$\cos^2 \alpha_i = d\psi_i^2/(d\psi_1^2 + \cdots + d\psi_k^2), \quad i = 1, 2, \cdots, k,$$ (6.2) may be written as (6.4) $$\lambda = \lambda_1 \cos^2 \alpha_1 + \lambda_2 \cos^2 \alpha_2 + \cdots + \lambda_k \cos^2 \alpha_k.$$ The directions at the point θ determined by $\cos \alpha_1 = 1$, $\cos \alpha_2 = 1$, \cdots , are known as the *principal directions* determined by the tensor $h_{ij}(\theta)$ [Eisenhart (1926, p. 110)]. Furthermore, at the point θ , the finite maxima and minima of λ defined by (6.1) are given for the principal directions at the point and are indeed the roots of $|\mathbf{H}(\theta) - \lambda \mathbf{G}(\theta)| = 0$. Since $(\mathbf{d}\theta)'\mathbf{G}(\theta)(\mathbf{d}\theta)$ is positive definite, λ is finite for all directions [Eisenhart (1926, par. 33)]. The estimation efficiency [cf. Fisher (1956, pp. 145-152)] of the unbiased estimators y_1, y_2, \dots, y_k is defined as the product of the discrimination efficiencies for the principal directions at the point θ , that is (see lemma 5.1), (6.5) Eff. = $$\lambda_1 \lambda_2 \cdot \cdot \cdot \lambda_k = |\mathbf{H}(\theta)|/|\mathbf{G}(\theta)| \le 1$$. This is invariant for all nonsingular transformations of the parameters, with equality holding if and only if the estimators are sufficient. Suppose we have n independent observations from an l-variate population with k parameters. The asymptotic discrimination efficiency of the unbiased estimators y_i , $i = 1, 2, \dots, k$, of theorem 5.1 at a point θ in the parameter space is defined by (6.6) $$\lambda = (\mathbf{d}\theta)' \mathbf{\Sigma}^{-1}(\mathbf{d}\theta)/n(\mathbf{d}\theta)' \mathbf{G}(\theta)(\mathbf{d}\theta), \quad n \text{ large,}$$ where the elements of $G(\theta)$ are computed for a single observation from the *l*-variate population. Since $(d\theta)'\Sigma^{-1}(d\theta) \leq n(d\theta)'G(\theta)(d\theta)$, and both forms are positive definite, the roots of $$\left|\mathbf{\Sigma}^{-1} - \lambda n\mathbf{G}(\theta)\right| = 0$$ are real, positive, and ≤ 1 . (See lemma 5.1.) The roots of (6.7) are the finite maxima and minima of (6.6) and are given for the principal directions determined by the tensor σ^{ij} at the point θ , where $\Sigma^{-1} = (\sigma^{ij})$. The asymptotic estimation efficiency of the unbiased estimators y_1, y_2, \dots, y_k [cf. Cramér (1946a, pp. 489, 494)] is defined as the product of the asymptotic discrimination efficiencies for the principal directions at the point θ , that is, (6.8) Asymp. eff. $$= \lambda_1 \lambda_2 \cdot \cdot \cdot \lambda_k = |\mathbf{\Sigma}^{-1}|/|n\mathbf{G}(\theta)| \le 1$$, $n \text{ large}$ the equality holding for all n if the conditions for equality in theorem 5.1 are satisfied. If $|\Sigma||G(\theta)| \to n^{-k}$, the asymptotic estimation efficiency approaches unity and the roots of (6.7) approach 1. The discrimination efficiency of the biased estimators y_i , $i=1, 2, \cdots$, k, of theorem 5.2, at a point $\phi=(\phi_1, \phi_2, \cdots, \phi_r)$ in the r-dimensional parameter space may be defined by (6.9) $$\lambda = (\mathbf{d}\phi)'\mathbf{H}(\phi)(\mathbf{d}\phi)/(\mathbf{d}\phi)'\mathbf{G}(\phi)(\mathbf{d}\phi),$$ where the matrices $G(\phi)$, $H(\phi)$ are defined in (5.12) and (5.14) respectively. A discussion similar to that covering (6.1)–(6.4) permits us to state that λ defined by (6.9) is finite for all directions, the finite maxima and minima of λ are the roots of $|H(\phi) - \lambda G(\phi)| = |U'H(\theta)U - \lambda U'G(\theta)U| = 0$, and are given for the principal directions at the point ϕ determined by the tensor $h_{ij}(\phi)$, with $(\mathbf{d}\phi)'G(\phi)(\mathbf{d}\phi)$ as the basis of the metric of the parameter space. Note from theorem 5.2 that if the statistic $Y = T(x) = (y_1, y_2, \dots, y_k)$ is sufficient, the discrimination efficiency is 1. The estimation efficiency of the biased estimators y_i , $i = 1, 2, \dots, k$, of theorem 5.2, at a point $\phi = (\phi_1, \phi_2, \dots, \phi_r)$ in the r-dimensional parameter space, may be defined as the product of the discrimination efficiencies for the principal directions at the point, that is, (6.10) Eff. = $$\lambda_1 \lambda_2 \cdot \cdot \cdot \lambda_r = |\mathbf{H}(\phi)|/|\mathbf{G}(\phi)| = |\mathbf{U}'\mathbf{H}(\theta)\mathbf{U}|/|\mathbf{U}'\mathbf{G}(\theta)\mathbf{U}| \le 1$$, with equality if and only if the statistics are sufficient. The asymptotic discrimination efficiency at a point $\phi = (\phi_1, \phi_2, \dots, \phi_r)$ in the r-dimensional parameter space is defined by (see theorem 5.2) (6.11) $$\lambda = (\mathbf{d}\phi)'\mathbf{U}'\mathbf{\Sigma}^{-1}\mathbf{U}(\mathbf{d}\phi)/n(\mathbf{d}\phi)'\mathbf{G}(\phi)(\mathbf{d}\phi), \qquad n \text{ large,}$$ where the elements of $G(\phi)$ are computed for a single observation from the population. The value of λ in (6.11) is finite for all directions and the finite maxima and minima of λ are given by the roots of (6.12) $$|\mathbf{U}'\mathbf{\Sigma}^{-1}\mathbf{U} - \lambda n\mathbf{G}(\phi)| = |\mathbf{U}'\mathbf{\Sigma}^{-1}\mathbf{U} - \lambda n\mathbf{U}'\mathbf{G}(\theta)\mathbf{U}| = 0,$$ that is, for the principal directions determined by the tensor with components those of the matrix $U'\Sigma^{-1}U$. The asymptotic estimation efficiency of the biased estimators y_1, y_2, \cdots , y_k of theorem 5.2 is defined as the product of the asymptotic discrimination efficiencies for the principal directions at the point $\phi = (\phi_1, \phi_2, \cdots, \phi_r)$, that is, (6.13) Asymp. eff. = $$\lambda_1 \cdot \cdot \cdot \lambda_r = |\mathbf{U}'\mathbf{\Sigma}^{-1}\mathbf{U}|/|n\mathbf{G}(\phi)|$$ = $|\mathbf{U}'\mathbf{\Sigma}^{-1}\mathbf{U}|/|n\mathbf{U}'\mathbf{G}(\theta)\mathbf{U}| \leq 1$, $n \text{ large}$ For unbiased estimators of $(\phi_1, \phi_2, \dots, \phi_r)$ with covariance matrix $\mathbb{C}\Sigma\mathbb{C}'$ such that $\mathbb{C}U = \mathbb{I}$, we see from (5.22) that $|(\mathbb{C}\Sigma\mathbb{C}')^{-1}| \leq |\mathbb{U}'\Sigma^{-1}\mathbb{U}|$ and therefore such unbiased estimators are not more efficient asymptotically than the biased estimators we have been
considering. Furthermore, if (5.25) is satisfied, and $Y = T(x) = (y_1, y_2, \dots, y_k)$ is a sufficient statistic, the asymptotic efficiency in (6.13) is 1 for all n. Example 6.1. From example 5.3 we see that the discrimination efficiency of (\bar{x}, s^2) is unity, as is also the estimation efficiency. However, since the roots of $$|\mathbf{\Sigma}^{-1} - \lambda n\mathbf{G}| = \begin{vmatrix} \frac{n}{\sigma^2} - \lambda \frac{n}{\sigma^2} & 0\\ 0 & \frac{n-1}{2\sigma^4} - \lambda \frac{n}{2\sigma^4} \end{vmatrix} = 0 \text{ are } \lambda_1 = 1, \ \lambda_2 = \frac{n-1}{n}, \text{ the}$$ asymptotic discrimination efficiency for σ^2 fixed, that is, in the direction of the mean, is unity, whereas the asymptotic discrimination efficiency for θ fixed, that is, in the direction of the variance, is (n-1)/n, and the asymptotic estimation efficiency is (n-1)/n. Example 6.2. From example 5.5 we see that the discrimination efficiency of (y_1, y_2) is unity, as is also the estimation efficiency, with similar values for the asymptotic discrimination efficiency and the asymptotic estimation efficiency. The asymptotic discrimination efficiency and the asymptotic estimation efficiency of the unbiased estimator $z_1 = (y_2 - y_1)/4$ are both $(n/(1 + \rho^2))/(n(1 + \rho^2)/(1 - \rho^2)^2) = (1 - \rho^2)^2/(1 + \rho^2)^2$, which is less than 1 unless $\rho^2 = 0$. The consistent estimator $r(y_1, y_2)$ has an asymptotic discrimination efficiency, as well as an asymptotic estimation efficiency, $(n/(1 - \rho^2)^2)/(n(1 + \rho^2)/(1 - \rho^2)^2) = 1/(1 + \rho^2)$, which is less than 1 unless $\rho^2 = 0$. $r(y_1, y_2)$ is more efficient than $(y_2 - y_1)/4$. The results in the last part of example 5.5 and corollary 5.3 indicate that there cannot exist an unbiased estimator of ρ with asymptotic estimation efficiency greater than that of $r(y_1, y_2)$. Note, however, that for $z = (y_2 - y_1)/4 - \rho(y_1 + y_2 - 4)/2(1 + \rho^2)$, $E(z) = \rho$, $V(z) = (1 - \rho^2)^2/(n(1 + \rho^2))$. #### 7. PROBLEMS - 7.1. Prove the statement (attributed to Chernoff) about the behavior of $-\log(\inf_{0<\tau<1} E(e^{\tau x}))$ (as an information measure) in the remarks following (2.21). - 7.2. Prove corollary 3.2. - 7.3. Prove the lemmas in section 4. - 7.4. Show that $I(1:2; \mathcal{X}) = I(1:2; \mathcal{Y}) = I(*:2)$, for Poisson distributions, when $Y = T(x) = x_1 + x_2 + \cdots + x_n$. - 7.5. Prove corollary 4.3. - 7.6. Prove theorem 5.1. - 7.7. Prove corollary 5.4. - 7.8. In the related examples 4.6, 5.4, and 5.5 we discuss a sufficient statistic. Is there a sufficient estimate for the parameter ρ ? - 7.9. Prove the invariance of the efficiency defined in (6.5). - 7.10. Express (6.6) as the limit of a ratio involving I(*:2) and $I(1:2; \mathcal{X})$. - 7.11. Can we determine the discrimination efficiency and the estimation efficiency for the statistic and populations of example 4.7? - 7.12. Compare the results in example 4.7 with those obtained using the sample average as the statistic. - **7.13.** Compute J(*, 2) for example 2.3. - 7.14. Compute $J(1, 2; O_n)$, J(*, 2): (a) for example 4.1; (b) for example 4.2; (c) for example 4.3; (d) for example 4.4; (e) for example 4.7. - 7.15. Consider the minimum value of $I(f:f_1) = \int f(x) \log \frac{f(x)}{f_1(x)} d\lambda(x)$, subject to $\theta = \int T(x)f(x) d\lambda(x) = \int f(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x)$. Show that for $\theta = 0$, min $I(f:f_1)$ satisfies (2.21). [Cf. example 3.1 of chapter 5; Chernoff (1952, p. 504).] - 7.16. Show that $\int_{E} (f_1(x))^{\tau} (f_2(x))^{1-\tau} d\lambda(x) \le (\mu_1(E))^{\tau} (\mu_2(E))^{1-\tau}$, for $E \in \mathscr{S}$ and $0 < \tau < 1$. [Cf. Adhikari and Joshi (1956), Joshi (1957).] - 7.17. Show that $2(p_1 p_2)^2 + \frac{4}{3}(p_1 p_2)^4 \le p_1 \log \frac{p_1}{p_2} + q_1 \log \frac{q_1}{q_2} \le \frac{(p_1 p_2)^2}{2pq}$, with pq the smaller of $p_i q_i$, $q_i = 1 p_i$, i = 1, 2. [Cf. Schützenberger (1954, pp. 58-59).] - 7.18. Show that $J(f_0, f_2) = \tau_0 I(2:1)$, with τ_0 and $f_0(x)$ defined in (2.19). - 7.19. Extend the procedure of example 2.3 to derive corollary 3.2 of chapter 2. - **7.20.** Consider the discrete random variable x that takes the values x_1, x_2, \dots, x_n , with Prob $(x = x_j | H_1) = p_j$, Prob $(x = x_j | H_2) = 1/n$. With T(x) = x, show how problem 8.28 of chapter 2 follows from theorem 2.1. - 7.21. Re-examine example 4.2 when $\sigma_1^2 = \sigma_2^2$. 7.22. If $$\mu^*(E) = \int_E f^*(x) \ d\lambda(x)$$, $\mu_2(E) = \int_E f_2(x) \ d\lambda(x)$, $E \in \mathscr{S}$ with $f^*(x)$ defined in (2.11), show that $$\tau \max_{x \in E} T(x) - \log M_2(\tau) \ge \log \frac{\mu^*(E)}{\mu_2(E)} \ge \tau \min_{x \in E} T(x) - \log M_2(\tau), \qquad \tau > 0,$$ $$\tau \min_{x \in E} T(x) - \log M_2(\tau) \ge \log \frac{\mu^*(E)}{\mu_2(E)} \ge \tau \max_{x \in E} T(x) - \log M_2(\tau), \quad \tau < 0.$$ [Cf. Chernoff (1952, 1956), Kolmogorov (1950, p. 42).] 7.23. In problem 7.22 let $f_2(x) = \binom{n}{x} \left(\frac{1}{2}\right)^n$, $x = 0, 1, 2, \dots, n$, and T(x) = x, then: (a) $$M_2(\tau) = (\frac{1}{2} + \frac{1}{2}e^{\tau})^n$$. (b) $$f^*(x) = \binom{n}{x} (p^*)^x (q^*)^{n-x}, x = 0, 1, \dots, n, p^* = \frac{e^{\tau}}{1+e^{\tau}}, q^* = 1-p^*.$$ (c) $$n \log 2q^* \ge \log \frac{\sum_{x=0}^{r} \binom{n}{x} (p^*)^x (q^*)^{n-x}}{\sum_{x=0}^{r} \binom{n}{x} \left(\frac{1}{2}\right)^n} \ge r \log 2p^* + (n-r) \log 2q^*, p^* < \frac{1}{2}.$$ (d) $r \log 2p^* + (n-r) \log 2q^* \ge \log \frac{\sum_{x=0}^{r} \binom{n}{x} (p^*)^x (q^*)^{n-x}}{\sum_{x=0}^{r} \binom{n}{x} \left(\frac{1}{2}\right)^n} \ge n \log 2q^*, p^* > \frac{1}{2}.$ (d) $$r \log 2p^* + (n-r) \log 2q^* \ge \log \frac{\sum_{x=0}^r \binom{n}{x} (p^*)^x (q^*)^{n-x}}{\sum_{x=0}^r \binom{n}{x} \left(\frac{1}{2}\right)^n} \ge n \log 2q^*,$$ $$p^* > \frac{1}{2}.$$ (e) $$\log \frac{\sum\limits_{x=0}^{r} \binom{n}{x} p^x q^{n-x}}{\sum\limits_{x=0}^{r} \binom{n}{x} \binom{1}{2}^n} \ge n \left[\frac{r}{n} \log \frac{2r}{n} + \left(1 - \frac{r}{n} \right) \log 2 \left(1 - \frac{r}{n} \right) \right], p < \frac{r}{n} < \frac{1}{2}$$ 7.24. In problem 7.22 let $f_2(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$, $-\infty < x < \infty$, and T(x) = x, then: (a) $$M_2(\tau) = e^{\tau^2/2}$$. (b) $$f^*(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\tau)^2/2}$$. $$(c) \log \frac{\int_{a-\tau}^{\infty} e^{-y^2/2} dy}{\int_{a}^{\infty} e^{-y^2/2} dy} \ge a\tau - \frac{\tau^2}{2}, \tau > 0.$$ 7.25. Show that $|G(\theta)| \cdot |\Sigma| \ge 1$, where Σ and $G(\theta)$ are defined in theorem 5.1. When does the equality hold? 7.26. Show that $|G(\phi)| \cdot |U'\Sigma^{-1}U|^{-1} \ge 1$, where Σ , $G(\phi)$, and U are defined in theorem 5.2. When does the equality hold? 7.27. Find the value of $f^*(x) = e^{\tau T(x)} f_2(x) / M_2(\tau)$, and I(*:2) when T(x) = 1 + x, $f_2(x) = p_2 q_2^x$, $x = 0, 1, 2, \dots, q_2 = 1 - p_2$, $E_1(T(x)) = \theta = 1/p_1$. (Cf. problem 5.5 in chapter 1.) 7.28. Show that for $M_2(\tau)$ defined in (2.16), m_2 defined in (2.20), $$E_1 = \left\{ x : \frac{f_1(x)}{f_2(x)} \ge \frac{p}{q} \right\}, E_2 = \left\{ x : \frac{f_1(x)}{f_2(x)} < \frac{p}{q} \right\}, p + q = 1, p > 0$$: - (a) $M_2(\tau) \ge (p/q)^{\tau} \mu_2(E_1) + (q/p)^{1-\tau} \mu_1(E_2)$. - (b) $p\mu_2(E_1) + q\mu_1(E_2) \leq m_2$. 7.29. Show that $I(1:2) \ge -2 \log \int (f_1(x)f_2(x))^{1/2} d\lambda(x)$. When does the equality hold? **7.30.** Show that $\int (f_1(x)f_2(x))^{1/2}d\lambda(x) \le 1$. When does the equality hold? 7.31. Show that $-2 \log \int (f_1(x)f_2(x))^{\frac{1}{2}}d\lambda(x) \ge 2(1 - \int (f_1(x)f_2(x))^{\frac{1}{2}}d\lambda(x))$ = $\int ((f_1(x))^{\frac{1}{2}} - (f_2(x))^{\frac{1}{2}})^2 d\lambda(x)$. When does the equality hold? 7.32. Show that $\frac{1}{4}(\int |f_1(x) - f_2(x)| d\lambda(x))^2 \le \int ((f(x))^{\frac{1}{2}} - (f_2(x))^{\frac{1}{2}})^2 d\lambda(x)$. When does the equality hold? # Limiting Properties ### 1. INTRODUCTION The fundamental properties (other than additivity) of the information measures discussed in the preceding chapters are described by inequalities. The law of large numbers and the central limit theorem make it possible to derive good approximations for large-sample results. The asymptotic behavior is often illuminating for smaller size samples also. In this chapter we shall consider some limiting properties and in the next chapter we shall study asymptotic distribution properties of estimates of the information measures. These ideas will also be applied by the reader in solving a number of problems set for him at the end of several of the succeeding chapters. ### 2. LIMITING PROPERTIES The following theorem 2.1 is essentially a continuation of theorem 4.1 of chapter 2. Consider the measurable transformations $T_N(x)$ of the probability spaces $(\mathcal{X}, \mathcal{S}, \mu_i)$ onto the probability spaces $(\mathcal{Y}, \mathcal{T}, \nu_i^{(N)})$, where $T_N^{-1}(G) = \{x: T_N(x) \in G\}$, $\nu_i^{(N)}(G) = \mu_i(T_N^{-1}(G))$, for $G \in \mathcal{T}$, i = 1, 2; that is, $T_N(x)$ is a statistic and N may be the sample size. THEOREM 2.1.† If the $T_N(x)$ are such that (2.1) $$\lim_{N\to\infty} v_i^{(N)}(G) = v_i(G), \qquad i = 1, 2, \qquad G \in \mathcal{F},$$ where $v_i(G)$ is a probability measure, then $$I(1:2; \mathcal{X}) \ge \liminf_{N \to \infty} I(1^{(N)}: 2^{(N)}; \mathcal{Y}) \ge I(1:2; \mathcal{Y}).$$ The expression $I(1^{(N)}:2^{(N)};\mathcal{Y})$ is the discrimination information measure corresponding to $v_i^{(N)}(G)$, $G \in \mathcal{F}$, i = 1, 2. † see Appendix page 389 *Proof.* We first derive a result that is similar to a lemma used by Doob (1936). From corollary 3.2 of chapter 2, we have (2.2) $$I(1^{(N)}:2^{(N)};\mathscr{Y}) \ge \sum_{j} \nu_{1}^{(N)}(G_{j}) \log \frac{\nu_{1}^{(N)}(G_{j})}{\nu_{2}^{(N)}(G_{j})},$$ where the sum is taken over any set of pairwise disjoint G_j such that $\mathcal{Y} = \bigcup_j
G_j$. Accordingly, (2.3) $$\liminf_{N\to\infty} I(1^{(N)}; 2^{(N)}; \mathcal{Y}) \ge \sum_{j} \nu_1(G_j) \log \frac{\nu_1(G_j)}{\nu_2(G_j)},$$ and therefore (2.4) $$\liminf_{N\to\infty} I(1^{(N)}:2^{(N)};\mathscr{Y}) \geq I(1:2;\mathscr{Y}),$$ since the right-hand member of (2.4) is the l.u.b. (sup) of the right-hand member of (2.3) over all such partitions of \mathcal{Y} . Combining theorem 4.1 of chapter 2 and (2.4) completes the proof [cf. Gel'fand, Kolmogorov, and Iaglom (1956), Kullback (1954)]. As a particular case of the foregoing, take the probability measure spaces $(\mathcal{X}, \mathcal{S}, \mu_1^{(N)}, \mu_1, \mu_2)$, and assume that $\lim_{N\to\infty} \mu_1^{(N)}(E) = \mu_1(E)$ for all $E \in \mathcal{S}$. We have: COROLLARY 2.1. $$\liminf_{N\to\infty} I(1^{(N)}:2) \ge I(1:2)$$. *Proof.* The proof is similar to that of theorem 2.1. We list some of the steps primarily to clarify the symbols. For any partition of \mathcal{X} into pairwise disjoint E_j , $$I(1^{(N)}:2) \ge \sum_{j} \mu_{1}^{(N)}(E_{j}) \log \frac{\mu_{1}^{(N)}(E_{j})}{\mu_{2}(E_{j})},$$ $$\liminf_{N \to \infty} I(1^{(N)}:2) \ge \sum_{j} \mu_{1}(E_{j}) \log \frac{\mu_{1}(E_{j})}{\mu_{2}(E_{j})},$$ $$\liminf_{N \to \infty} I(1^{(N)}:2) \ge I(1:2).$$ Consider again the probability measure spaces of corollary 2.1 with the generalized densities $$\mu_1^{(N)}(E) = \int_E f_1^{(N)}(x) \, d\lambda(x), \qquad \mu_i(E) = \int_E f_i(x) \, d\lambda(x), \qquad i = 1, 2,$$ $$E \in \mathcal{S}.$$ We have: Lemma 2.1. $$\lim_{N\to\infty} I(1^{(N)}:1) = 0$$, if $\lim_{N\to\infty} (f_1^{(N)}(x)/f_1(x)) = 1$ [λ], uniformly. *Proof.* Letting $g^{(N)}(x) = f_1^{(N)}(x)/f_1(x)$, then, as in theorem 3.1 of chapter 2, (2.5) $$I(1^{(N)}:1) = \int f_1^{(N)}(x) \log \frac{f_1^{(N)}(x)}{f_1(x)} d\lambda(x)$$ $$= \frac{1}{2} \int (g^{(N)}(x) - 1)^2 \frac{1}{h^{(N)}(x)} d\mu_1(x),$$ where $h^{(N)}(x)$ lies between $g^{(N)}(x)$ and 1. For sufficiently large N, for all $x [\lambda]$, $|g^{(N)}(x) - 1| < \epsilon$, $\frac{1}{h^{(N)}(x)} < \frac{1}{1 - \epsilon}$, $\epsilon > 0$, so that $0 \le I(1^{(N)}:1) < \frac{1}{2} \frac{\epsilon^2}{1 - \epsilon}$ and therefore $\lim_{N \to \infty} I(1^{(N)}:1) = 0$. LEMMA 2.2. If $\lim_{N\to\infty} I(1^{(N)}:1) = 0$, then $f_1^{(N)}(x) \to f_1(x)$ in the mean with respect to the measure λ , or $\mu_1^{(N)}(E) \to \mu_1(E)$ uniformly in $E \in \mathcal{S}$, or $f_1^{(N)}(x) \to f_1(x)$ in probability. \dagger THEOREM 2.2. If $\lim_{N\to\infty} \frac{f_1^{(N)}(x)}{f_1(x)} = 1$ [λ], uniformly, then $\lim_{N\to\infty} I(1^{(N)}:2) = I(1:2)$ if I(1:2) is finite. Proof. $$I(1^{(N)}:2) = \int f_1^{(N)}(x) \log \frac{f_1^{(N)}(x)}{f_2(x)} d\lambda(x)$$ $$= \int f_1^{(N)}(x) \log \frac{f_1^{(N)}(x)}{f_1(x)} d\lambda(x) + \int f_1^{(N)}(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x),$$ $$I(1^{(N)}:2) - I(1:2) = \int f_1^{(N)}(x) \log \frac{f_1^{(N)}(x)}{f_1(x)} d\lambda(x)$$ $$+ \int (f_1^{(N)}(x) - f_1(x)) \log \frac{f_1(x)}{f_2(x)} d\lambda(x).$$ For sufficiently large N, $$|I(1^{(N)}:2) - I(1:2)| \le |I(1^{(N)}:1)| + \epsilon \int f_1(x) \left| \log \frac{f_1(x)}{f_2(x)} \right| d\lambda(x),$$ and therefore $\lim_{N\to\infty} I(1^{(N)}:2) = I(1:2)$. (See problem 4.17.) Example 2.1. As an illustration of theorem 2.1, consider N independent observations from binomial distributions with parameters p_i , $q_i = 1 - p_i$, i = 1, 2. As $N \to \infty$, $p_i \to 0$, $Np_i \to m_i < \infty$, the binomial distributions \uparrow see Appendix page 390 approach as limits the Poisson distributions with parameters $m_i = Np_i$, i = 1, 2. We find that (2.6) $$I(1^{(N)}:2^{(N)}) = \sum_{y=0}^{N} \frac{N!}{y!(N-y)!} p_1^y q_1^{N-y} \log \frac{p_1^y q_1^{N-y}}{p_2^y q_2^{N-y}}$$ $$= N \left(p_1 \log \frac{p_1}{p_2} + q_1 \log \frac{q_1}{q_2} \right),$$ (2.7) $$I(1:2) = \sum_{y=0}^{\infty} \frac{m_1^y e^{-m_1}}{y!} \log \frac{m_1^y e^{-m_1}}{m_2^y e^{-m_2}}$$ $$= (m_2 - m_1) + m_1 \log \frac{m_1}{m_2}$$ From the inequality $x_1 \log (x_1/x_2) \ge x_1 - x_2$ (the right-hand member of (2.7) is nonnegative) and $m_i = Np_i$, i = 1, 2, it follows that (2.8) $$Np_1 \log \frac{p_1}{p_2} + Nq_1 \log \frac{q_1}{q_2} = m_1 \log \frac{m_1}{m_2} + N \left(1 - \frac{m_1}{N}\right) \log \frac{1 - m_1/N}{1 - m_2/N}$$ $$\geq m_1 \log \frac{m_1}{m_2} + N \left(\frac{m_2}{N} - \frac{m_1}{N}\right)$$ $$= m_1 \log \frac{m_1}{m_2} + (m_2 - m_1),$$ or $\liminf_{N\to\infty} I(1^{(N)}:2^{(N)}) \ge I(1:2)$. As a matter of fact, as may be seen from the first two members of (2.8), it is true here that $\lim_{N\to\infty} I(1^{(N)}:2^{(N)}) = I(1:2)$. Example 2.2. As an illustration of corollary 2.1, take for μ_1 and μ_2 the Poisson distributions with respective parameters $m_1 = 1$ and $m_2 = 1.5$ and for $\mu_1^{(N)}$, the negative binomial distribution $(\Gamma(N+x)/x!\Gamma(N))p^xq^{-N-x}$, q = 1 + p, p > 0, N > 0, x = 0, $1, 2, \cdots$. As $N \to \infty$, $p \to 0$, $Np \to m < \infty$, the negative binomial distribution approaches as a limit the Poisson distribution with parameter m [cf. Wilks (1943, pp. 54-55)]. In table 2.1 are listed the values of the negative binomial for N = 2, p = 0.5, q = 1.5, those for the Poisson distributions, and the computations for $I(1^{(N)}:2)$ and I(1:2). The numerical values for the negative binomial are taken from Cochran (1954, Table 1, p. 419). TABLE 2.1 | x | $p_1^{(N)}(x)$ | $p_1(x)$ | $p_2(x)$ | $p_1^{(N)} \log (p_1^{(N)}/p_2)$ | $p_1\log\left(p_1/p_2\right)$ | |----|----------------|----------|----------|----------------------------------|-------------------------------| | 0 | 0.4444 | 0.3679 | 0.2231 | 0.30624 | 0.18402 | | 1 | 0.2963 | 0.3679 | 0.3347 | -0.03611 | 0.03479 | | 2 | 0.1482 | 0.1839 | 0.2510 | -0.07813 | -0.05720 | | 3 | 0.0658 | 0.0613 | 0.1255 | -0.04249 | -0.04392 | | 4+ | 0.0453 | 0.0190 | 0.0657 | -0.01678 | -0.02357 | | | 1.0000 | 1.0000 | 1.0000 | 0.13273 | 0.09412 | All the values $x \ge 4$ were grouped in computing table 2.1. Note that $I(1^{(N)}:2) = 0.13273 > 0.09412 = I(1:2)$, and that 0.09412 is smaller than the value obtained from $$(m_2 - m_1) + m_1 \log (m_1/m_2) = 1.5 - 1 + 1 \log (1/1.5) = 0.09453,$$ illustrating the statement in sections 3 and 4 of chapter 2 that grouping loses information. (See problem 4.3.) ### 3. TYPE I AND TYPE II ERRORS Suppose that the space \mathscr{X} is partitioned into the disjoint sets E_1 and E_2 , that is, $E_1 \cap E_2 = 0$, $\mathscr{X} = E_1 \cup E_2$, with \mathscr{X} the sample space of n independent observations. Assume a test procedure such that if the sample point $x \in E_1$ we accept the hypothesis H_1 (reject H_2), and if the sample point $x \in E_2$ we accept the hypothesis H_2 (reject H_1). We treat H_2 as the null hypothesis. E_1 is called the critical region. The probability of incorrectly accepting H_1 , the type I error, is $\alpha = \text{Prob}(x \in E_1 | H_2) = \mu_2(E_1)$, and the probability of incorrectly accepting H_2 , the type II error, is $\beta = \text{Prob}(x \in E_2 | H_1) = \mu_1(E_2)$. [Cf. Hoel (1954, pp. 30-35).] We now state: THEOREM 3.1. (a) $$I(1:2; O_n) = nI(1:2; O_1) \ge \beta \log \frac{\beta}{1-\alpha} + (1-\beta) \log \frac{1-\beta}{\alpha}$$, (b) $$I(2:1; O_n) = nI(2:1; O_1) \ge \alpha \log \frac{\alpha}{1-\beta} + (1-\alpha) \log \frac{1-\alpha}{\beta}$$, where O_n indicates a sample of n independent observations and O_1 a single observation. *Proof.* A consequence of the additivity property (theorem 2.1 of chapter 2), corollary 3.2 of chapter 2, and $1 - \alpha = \mu_2(E_2)$, $1 - \beta = \mu_1(E_1)$. (Cf. example 2.3 of chapter 3.) Note that the right-hand sides of the inequalities in theorem 3.1 are the values of I(1:2) and I(2:1) for binomial distributions with $p_1 = \beta$, $q_1 = 1 - \beta$, $p_2 = 1 - \alpha$, $q_2 = \alpha$ [see (2.6), for example, with N = 1]. These values also appear in Wald's theorem on the efficiency of sequential tests [Wald (1947, pp. 196-199)]. We remark that (see problem 8.35 in chapter 2) $F(p_1, p_2) = p_1 \log (p_1/p_2) + q_1 \log (q_1/q_2)$ is a convex function of p_2 for fixed p_1 , $F(p_1, p_2) = 0$ for $p_2 = p_1$, and $F(p_1, p_2)$ is monotonically decreasing for $0 \le p_2 \le p_1$ and monotonically increasing for $p_1 \le p_2 \le 1$. Table 3.1 lists illustrative values of $F(p_1, p_2)$ for $p_1 = 0.05$. (For a more extensive table see Table II on pages 378-379.) | TABLE 3.1. | $F(p_1, p_2),$ | $p_1 = 0.05$ | |------------|----------------|--------------| |------------|----------------|--------------| | P ₂ | | P ₂ | | p ₂ | | P2 . | | |-----------------------|---------|-----------------------|---------|-----------------------|---------|-------------|---------| | 0.01 | 0.04129 | 0.20 | 0.09394 | 0.55 | 0.58996 | 0.90 | 1.99422 | | 0.02 | 0.01628 | 0.25 | 0.14410 | 0.60 | 0.69751 | 0.95 | 2.65000 | | 0.03 | 0.00575 | 0.30 | 0.20052 | 0.65 | 0.82036 | 0.96 | 2.86147 | | 0.04 | 0.00121 | 0.35 | 0.26322 | 0.70 | 0.96309 | 0.97 | 3.13424 | | 0.05 | 0.00000 | 0.40 | 0.33259 | 0.75 | 1.13285 | 0.98 | 3.51892 | | 0.10 | 0.01671 | 0.45 | 0.40936 | 0.80 | 1.34161 | 0.99 | 4.17690 | | 0.15 | 0.05074 | 0.50 | 0.49464 | 0.85 | 1.61188 | | | For a fixed value of α , say α_0 , $0 < \alpha_0 < 1$, a lower bound to the minimum possible β , say β_n^* , is obtained from $$(3.1) I(2:1; O_1) \ge \frac{1}{n} \left(\alpha_0 \log \frac{\alpha_0}{1 - \beta_n^*} + (1 - \alpha_0) \log \frac{1 - \alpha_0}{\beta_n^*} \right),$$ by using theorem 3.1(b). Similarly, for a fixed value of β , say β_0 , $0 < \beta_0 < 1$, a lower bound to the minimum possible α , say α_n^* , is obtained from $$(3.2) I(1:2; O_1) \ge \frac{1}{n} \left(\beta_0 \log \frac{\beta_0}{1 - \alpha_n^*} + (1 - \beta_0) \log \frac{1 - \beta_0}{\alpha_n^*} \right).$$ Thus, for example, if $nI(1:2; O_1) = 4.17690$ and $\beta_0 = 0.05$, we see from
table 3.1 that $\alpha_n^* \ge 0.01$. To examine the behavior of (3.1) and (3.2) for $n \to \infty$ we shall make use of the weak law of large numbers or Khintchine's theorem [see, for example, Cramér (1946a, p. 253), Feller (1950, p. 191)]. If $I(1:2; O_1)$ is finite, and we have a sample of n independent observations from the population under H_1 , then $$\frac{1}{n}\left(\log\frac{f_1(x_1)}{f_2(x_1)}+\cdots+\log\frac{f_1(x_n)}{f_2(x_n)}\right),$$ converges in probability to $I(1:2; O_1)$, that is, for any $\epsilon > 0$, $\delta > 0$, and $\beta > 0$, for sufficiently large n (3.3) $$\operatorname{Prob}\left\{\frac{1}{n}\log\frac{f_{1}(x_{1})\cdot\cdot\cdot f_{1}(x_{n})}{f_{2}(x_{1})\cdot\cdot\cdot f_{2}(x_{n})} < I(1:2;O_{1}) - \epsilon|H_{1}\right\} < \beta,$$ $$\operatorname{Prob}\left\{\frac{1}{n}\log\frac{f_{1}(x_{1})\cdot\cdot\cdot f_{1}(x_{n})}{f_{2}(x_{1})\cdot\cdot\cdot f_{2}(x_{n})} > I(1:2;O_{1}) + \epsilon|H_{1}\right\} < \delta,$$ or (3.4) $$\operatorname{Prob}\left\{e^{n(I(1:2;\,O_1)-\epsilon)} \leq \frac{f_1(x_1)\cdot\cdot\cdot f_1(x_n)}{f_2(x_1)\cdot\cdot\cdot f_2(x_n)}\,|H_1\right\} \geq 1-\beta.$$ We may therefore classify the samples under H_1 into two disjoint groups, E_1 and E_2 , such that the samples of E_1 satisfy the inequality $$(3.5) f_1(x_1) \cdot \cdot \cdot f_1(x_n) \ge e^{n(I(1:2; O_1) - \epsilon)} f_2(x_1) \cdot \cdot \cdot f_2(x_n),$$ and the samples of E_2 occur with a probability (under H_1) less than β for sufficiently large n. Integrating (3.5) over E_1 , we get $$(3.6) 1 \ge \operatorname{Prob}(E_1|H_1) \ge e^{n(I(1:2;O_1)-\epsilon)}\operatorname{Prob}(E_1|H_2),$$ or, for any value of β , say β_0 , $0 < \beta_0 < 1$, (3.7) $$\lim_{n\to\infty} \frac{1}{n} \log \frac{1}{\alpha_n^*} \ge I(1:2; O_1).$$ Combining (3.7) with the value that may be derived from (3.2), we have (3.8) $$\lim_{n\to\infty} \frac{1}{n} \log \frac{1}{\alpha_n^*} \ge I(1:2; O_1) \ge \lim_{n\to\infty} \frac{1}{n} \left((1-\beta_0) \log \frac{1-\beta_0}{\alpha_n^*} + \beta_0 \log \frac{\beta_0}{1-\alpha_n^*} \right).$$ We now state: Theorem 3.2. For any value of β , say β_0 , $0 < \beta_0 < 1$, $$\lim_{n\to\infty} (\alpha_n^*)^{1/n} = e^{-I(1:2;O_1)}, \quad or \quad \lim_{n\to\infty} \left(\frac{1}{n}\log\frac{1}{\alpha_n^*}\right) = I(1:2;O_1).$$ *Proof.* Let E_3 denote the samples satisfying (3.9) $$e^{n(I(1:2; O_1) - \epsilon)} \leq \frac{f_1(x_1) \cdot \cdot \cdot f_1(x_n)}{f_2(x_1) \cdot \cdot \cdot f_2(x_n)} \leq e^{n(I(1:2; O_1) + \epsilon)}.$$ We see from (3.3) that Prob $(E_3|H_1) \ge 1 - \beta - \delta$. Integrating the right-hand inequality in (3.9) over E_3 , we find that (3.10) Prob $$(E_3|H_1) \le e^{n(I(1:2;O_1)+\epsilon)} \operatorname{Prob}(E_3|H_2)$$. Since $E_3 \subset E_1$, where E_1 is defined by (3.5), Prob $(E_3|H_2) \leq \text{Prob } (E_1|H_2)$, and (3.10) yields $$(3.11) 1 - \beta - \delta \leq e^{n(I(1:2; O_1) + \epsilon)} \alpha_n^*.$$ Combining (3.6) and (3.11), we now have [cf. Joshi (1957)], $$(3.12) (1 - \beta - \delta)e^{-n(I(1:2; O_1) + \epsilon)} \leq \alpha_n^* \leq e^{-n(I(1:2; O_1) - \epsilon)}.$$ The desired result follows from (3.8) and (3.12). Similarly, we may derive: THEOREM 3.3. For any value of α , say α_0 , $0 < \alpha_0 < 1$, $$\lim_{n\to\infty} (\beta_n^*)^{1/n} = e^{-I(2:1; O_1)}, \quad or \quad \lim_{n\to\infty} \left(\frac{1}{n} \log \frac{1}{\beta_n^*}\right) = I(2:1; O_1).$$ Chernoff (1956) derived theorems 3.2 and 3.3 by using an extension of the central limit theorem given by Cramér (1938). Chernoff attributes the results to unpublished work of C. Stein. [Cf. Sanov (1957, p. 40).] Note that from theorems 3.2 and 3.3, at least for large samples, the ratios $$I(1:2; X)/I(1:2; Y)$$ and $I(2:1; X)/I(2:1; Y)$ may be used as measures of the relative efficiencies of competitive variables X and Y in the sense that $$\frac{I(1:2; X)}{I(1:2; Y)} = \frac{n_y}{n_x}, \qquad \frac{I(2:1; X)}{I(2:1; Y)} = \frac{N_y}{N_x},$$ where n_y , n_x , and N_y , N_x are respectively the sample sizes needed to attain for given β_0 the same α_n^* , and for given α_0 the same β_n^* [cf. Chernoff (1956)]. Discussions that express the type I and type II errors asymptotically in terms of J(1, 2), were given by Mourier (1946, 1951), and Sakaguchi (1955). Mourier and Sakaguchi show that if the region E_1^* is defined by $$\frac{1}{n}\left(\log\frac{f_1(x_1)}{f_2(x_1)} + \cdots + \log\frac{f_1(x_n)}{f_2(x_n)}\right) > \frac{\sigma_2I(1:2; O_1) - \sigma_1I(2:1; O_1)}{\sigma_1 + \sigma_2},$$ where $$\sigma_1^2 = \int \left(\log \frac{f_1(x)}{f_2(x)}\right)^2 d\mu_1(x) - (I(1:2; O_1))^2$$, $$\sigma_2^2 = \int \left(\log \frac{f_1(x)}{f_2(x)}\right)^2 d\mu_2(x) - (I(2:1; O_1))^2,$$ so that $\alpha_n^* = \text{Prob}(O_n \in E_1^* | H_2), 1 - \beta_n^* = \text{Prob}(O_n \in E_1^* | H_1), \text{ then}$ $$\lim_{n\to\infty}\frac{\min\max(\alpha_n,\beta_n)}{\max(\alpha_n^*,\beta_n^*)}=1,$$ $$\lim_{n\to\infty}\frac{\max(\alpha_n^*,\beta_n^*)}{\phi(\sqrt{n}J(1,2;O_1)/(\sigma_1+\sigma_2))}=1,$$ and $$\lim_{n\to\infty}\frac{\min\max(\alpha_n,\beta_n)}{\phi(\sqrt{n}J(1,2;O_1)/(\sigma_1+\sigma_2))}=1,$$ with $\phi(x) = \int_{x}^{\infty} \frac{e^{-t^{2}/2} dt}{\sqrt{2\pi}}$ and α_{n} , β_{n} the errors for any other region E_{1} . ### 4. PROBLEMS - **4.1.** Consider the probability measure spaces $(\mathcal{X}, \mathcal{S}, \mu_2^{(N)}, \mu_1, \mu_2)$ and assume that $\lim_{N\to\infty} \mu_2^{(N)}(E) = \mu_2(E)$ for all $E\in\mathcal{S}$. Prove that $\liminf_{N\to\infty} I(1:2^{(N)}) \geq 0$ I(1:2). - **4.2.** Show that for the negative binomial distributions $(\Gamma(N+x)/x!\Gamma(N))$ $p_i^x q_i^{-N-x}$, $q_i = 1 + p_i$, $p_i > 0$, N > 0, $x = 0, 1, 2, \cdots$, i = 1, 2, I(1:2) = 0 $Np_1 \log(p_1/p_2) - Nq_1 \log(q_1/q_2).$ - **4.3.** As $N \to \infty$, $p_i \to 0$, $Np_i \to m_i < \infty$, the negative binomial distributions in problem 4.2 approach the Poisson distributions with parameters m_i , i = 1, 2, as a limit. Show - (a) That theorem 2.1 is satisfied. - (b) That $\lim I(1^{(N)}:2^{(N)}) = I(1:2)$. - (c) That corollary 2.1 is satisfied. - 4.4. Show that the distributions in example 2.1 satisfy lemma 2.1. - 4.5. Show that the distributions in problem 4.3 satisfy lemma 2.1. - **4.6.** Show that the distributions in example 2.1 satisfy theorem 2.2. - 4.7. Show that the distributions in problem 4.3 satisfy theorem 2.2. - 4.8. Compute the results for table 2.1 grouping - (a) All values $x \geq 3$. - (b) All values $x \geq 2$. - (c) All values $x \ge 1$. - **4.9.** (a) Show that for a sample of n independent observations from the normal populations $N(\mu_i, \sigma^2)$, $i = 1, 2, J(1, 2; O_n) = n(\mu_1 - \mu_2)^2/\sigma^2$. (b) Consider the quantizing transformation (or grouping) of the normal variables in (a) above, y = 1 for x < g and y = 0 for $x \ge g$, so that y is a binomial variable with $p_i, q_i = 1 - p_i, p_i = \int_{-\infty}^{g} \frac{e^{-(x-\mu_i)^2/2\sigma^2}}{\sigma\sqrt{2\pi}} dx$, i = 1, 2. Show that $J(1, 2; \mathcal{Y}) = n((p_1 - p_2) \log (p_1/p_2) + (q_1 - q_2) \log (q_1/q_2)).$ (c) Show that $J(1, 2; \mathcal{Y})$ is a maximum when $g = (\mu_1 + \mu_2)/2$, and that $$\max J(1, 2; \mathscr{Y}) = 2n(\hat{p}_1 - \hat{q}_1) \log \frac{\hat{p}_1}{\hat{q}_1}, \text{ with } \hat{p}_1 = \int_{-\infty}^{\frac{\mu_2 - \mu_1}{2\sigma}} \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt.$$ - (d) Show that max $J(1, 2; \mathcal{Y})/J(1, 2; O_n) \rightarrow 2/\pi$ as $(\mu_2 \mu_1)/\sigma \rightarrow 0$. - (e) Show that $\max J(1, 2; \mathcal{Y})/J(1, 2; O_n) \to \frac{1}{4}$ as $(\mu_2 \mu_1)/\sigma \to \infty$. [See Questions and Answers, Am. Statistician, Vol. 7 (1953, pp. 14-15).] - **4.10.** If in theorem 2.1 T(x) is a sufficient statistic, with $v_i(G) = \mu_i(T^{-1}(G))$, for $G \in \mathcal{F}$, i = 1, 2, and $T^{-1}(G) = \{x : T(x) \in G\}$, then $\liminf_{N \to \infty} I(1^{(N)} : 2^{(N)}; \mathcal{Y}) = I(1:2; \mathcal{Y})$. - 4.11. In the notation of theorem 3.1, show that $$\begin{split} J(1,2;O_n) &= nJ(1,2;O_1) \geq (1-\alpha-\beta)\log\frac{(1-\alpha)(1-\beta)}{\alpha\beta} \\ &\geq 2\left[\frac{\alpha+\beta}{2}\log\frac{(\alpha+\beta)/2}{1-(\alpha+\beta)/2} + \left(1-\frac{\alpha+\beta}{2}\right)\log\frac{1-(\alpha+\beta)/2}{(\alpha+\beta)/2}\right]. \end{split}$$ **4.12.** If $I(2:1; O_1)$ is finite, show that for any value of α , say α_0 , $0 < \alpha_0 < 1$, $$\lim_{n \to \infty} \frac{1}{n} \log \frac{1}{\beta_n^*} \ge I(2:1; O_1) \ge \lim_{n \to \infty} \frac{1}{n} \left((1 - \alpha_0) \log \frac{1 - \alpha_0}{\beta_n^*} + \alpha_0 \log \frac{\alpha_0}{1 - \beta_n^*} \right).$$ - **4.13.** Prove theorem 3.3. - **4.14.** Show that $n(I(1:2; O_1) \epsilon) \le I(1:2; O_n, E_3) \le n(I(1:2; O_1) + \epsilon)$, with the region E_3 defined in (3.9) and $I(1:2; O_n, E_3)$ defined in accordance with (2.4) of chapter 1. [Cf. Joshi (1957).] - **4.15.** In the notation of theorem 3.2, show that $\text{Prob}(E_3|H_2) \le e^{-n(I(1:2;O_1)-\epsilon)}$, and thus that $\lim_{n\to\infty} \text{Prob}(E_3|H_2) = 0$ if $I(1:2;O_1) > \epsilon$. [Cf. Joshi (1957), Savage (1954, pp. 46-50).] - **4.16.** Show that $\lim_{\substack{n \to \infty \\ \frac{r}{n} \to p}} \frac{1}{n} \log \frac{2^n}{\sum_{x=0}^r \binom{n}{x}} = p \log \frac{p}{\frac{1}{2}} + q \log \frac{q}{\frac{1}{2}}, p < \frac{r}{n} < \frac{1}{2}, q = 1 p.$ (Cf. problem 7.23 in chapter 3.) - 4.17. If $\lim_{N\to\infty} \frac{f_2^{(N)}(x)}{f_2(x)} = 1$ [λ] uniformly, then $\lim_{N\to\infty} I(1:2^{(N)}) = I(1:2)$ if I(1:2) is finite. - **4.18.** Let $\mathscr{X} = E_1 \cup E_2 = E_1^* \cup E_2^*$, with \mathscr{X} the sample space in section 3, $E_1 \cap E_2 = 0 = E_1^* \cap E_2^*$, $\alpha = \mu_2(E_1) = \mu_2(E_1^*)$, $\beta = \mu_1(E_2)$, and $\beta^* = \mu_1(E_2^*)$. Show that for $\beta^* < \beta < 1 \alpha$: (a)
$$(1-\alpha)\log\frac{1-\alpha}{\beta^*} > (1-\alpha)\log\frac{1-\alpha}{\beta}$$ (b) $$\alpha \log \frac{\alpha}{1-\beta^*} < \alpha \log \frac{\alpha}{1-\beta}$$ (c) $$\alpha \log \frac{\alpha}{1-\beta^*} + (1-\alpha) \log \frac{1-\alpha}{\beta^*} > \alpha \log \frac{\alpha}{1-\beta} + (1-\alpha) \log \frac{1-\alpha}{\beta}$$ **4.19.** In the notation of problem 4.18, show that for $1 - \alpha < \beta^* < \beta$: (a) $$(1-\alpha)\log\frac{1-\alpha}{\beta^*} > (1-\alpha)\log\frac{1-\alpha}{\beta}$$ (b) $$\alpha \log \frac{\alpha}{1-\beta^*} < \alpha \log \frac{\alpha}{1-\beta}$$ (c) $$\alpha \log \frac{\alpha}{1-\beta^*} + (1-\alpha) \log \frac{1-\alpha}{\beta^*} < \alpha \log \frac{\alpha}{1-\beta} + (1-\alpha) \log \frac{1-\alpha}{\beta}$$ 4.20. In the notation of problem 4.18, show that if $$\alpha \log \frac{\alpha}{1-\beta^*} + (1-\alpha) \log \frac{1-\alpha}{\beta^*} > \alpha \log \frac{\alpha}{1-\beta} + (1-\alpha) \log \frac{1-\alpha}{\beta},$$ then $\beta^* < \beta < 1 - \alpha$, or $1 - \alpha < \beta < \beta^*$. **4.21.** Suppose $$p_{10} + p_{20} + \cdots + p_{c0} = 1$$, $p_{i0} > 0$, $p_{ij} = a_{i1}p_{1,j-1} + a_{i2}p_{2,j-1} + \cdots + a_{ic}p_{c,j-1}$, $a_{i1} + a_{i2} + \cdots + a_{ic} = 1$, $a_{1k} + a_{2k} + \cdots + a_{ck} = 1$, $a_{jk} \ge 0$, $i, k = 1, 2, \cdots$, $c; j = 1, 2, \cdots$, show that $\lim_{N \to \infty} \sum_{i=1}^{c} p_{iN} \log \frac{p_{iN}}{1/c} = 0$. (Cf. problem 8.32 in chapter 2.) **4.22.** If the sample space in problem 7.28 of chapter 3 is that of n independent observations, and we write $\alpha = \mu_2(E_1)$, and $\beta = \mu_1(E_2)$, where the regions E_1 and E_2 are defined in problem 7.28 of chapter 3, then $\lim_{n\to\infty} (p\alpha + q\beta) = 0$. [Cf. Joshi (1957).] ## Information Statistics ### 1. ESTIMATE OF I(*:2) We have thus far studied the information measures as parameters or functionals of the populations. We shall now examine estimators of these measures, information statistics, and investigate the general asymptotic distribution theory of these estimators (statistics). We shall obtain exact distributions, or better approximations than given by the general theory, in particular applications in the chapters following. In chapter 3 we introduced the minimum discrimination information I(*:2) as the minimum value of $$I(1:2) = \int f_1(x) \log \frac{f_1(x)}{f_2(x)} d\lambda(x),$$ for a given $f_2(x)$, and all $f_1(x)$ such that $$\theta = \int T(x)f_1(x) \ d\lambda(x).$$ The minimum value $I(*:2) = \theta \tau(\theta) - \log M_2(\tau(\theta))$ [see the remark following (2.9) in chapter 3] occurs for the conjugate distribution [to use a term introduced by Khinchin (1949, p. 79)] with generalized density given by [cf. Cramér (1938)] $$f^*(x) = \frac{e^{\tau T(x)} f_2(x)}{M_2(\tau)}, \qquad M_2(\tau) = \int e^{\tau T(x)} f_2(x) \ d\lambda(x), \qquad \theta = \frac{d}{d\tau} \log M_2(\tau).$$ When $f_2(x)$ is the generalized density of n independent observations, we shall estimate I(*:2) by using the observed value of T(x) in a sample O_n as an estimate of θ , $\hat{\theta}(x)$, and a related estimate of τ , $\hat{\tau}(x) = \tau(\hat{\theta}(x))$, such that (1.1) $$T(x) = \hat{\theta}(x) = \left[\frac{d}{d\tau} \log M_2(\tau)\right]_{\tau = \tau(x) = \tau(\theta(x))}.$$ Note that (1.1) is $T(x) = [E(T(x))]_{\tau=t}$. [Cf. Barton (1956), Kupperman (1958, p. 573).] If there are several different functions of x that are unbiased estimators of θ , we shall use as $\hat{\theta}(x)$ the one yielding the largest value of I(*:2). The estimate of I(*:2) is then $$(1.2) \ \hat{I}(*:2; O_n) = \hat{\theta}(x)\hat{\tau}(x) - \log M_2(\hat{\tau}(x)) = \hat{\theta}\tau(\hat{\theta}) - \log M_2(\tau(\hat{\theta})).$$ $\hat{I}(*:2;O_n)$ in (1.2) is the minimum discrimination information between a population with generalized density of the form $f^*(x)$ above, with the value of the parameter θ the same as the value $\hat{\theta}$ of the sample, and the population with generalized density $f_2(x)$. Since $\hat{I}(*:2;O_n) \geq 0$, with equality if and only if $\hat{\tau} = 0$, that is, when $\hat{\theta}$ is equal to the value of the parameter in the population with generalized density $f_2(x)$, $\hat{I}(*:2;O_n)$ is a measure of the directed divergence (cf. section 3 of chapter 1) between the sample and $f_2(x)$. The larger the value of $\hat{I}(*:2;O_n)$, the worse is the "resemblance" between the sample and the population with generalized density $f_2(x)$. Samples yielding the same value of $\hat{I}(*:2;O_n)$ are therefore equivalent insofar as directed divergence is concerned. Note that equivalent samples do not necessarily imply the same value of $\hat{\theta}$. [Cf. Bulmer (1957).] Before continuing the argument we shall illustrate the foregoing by another look at some of the examples in chapter 3. Example 1.1. In example 4.1 of chapter 3, $\theta = np_1$, so that $$\begin{split} T(x) &= y = \hat{\theta} = n\hat{p}_1, \qquad \hat{\tau}(x) = \tau(\hat{p}_1) = \log \frac{yq_2}{(n-y)p_2}, \\ \hat{I}(*:2;O_n) &= y \log \frac{y}{np_2} + (n-y) \log \frac{n-y}{nq_2} = n \left(\hat{p}_1 \log \frac{\hat{p}_1}{p_2} + \hat{q}_1 \log \frac{\hat{q}_1}{q_2} \right). \end{split}$$ We see from the values of $F(p_1, p_2)$ in Table II, pages 378-379, that only when $p_2 = 0.5$ do equivalent samples have values \hat{p}_1 such that $|p_2 - \hat{p}_1| = \text{constant}$. Example 1.2. In example 4.2 of chapter 3, $\theta = \theta_1$, $T(x) = \bar{x} = \hat{\theta}$, $\hat{\tau}(x) = \tau(\hat{\theta}) = n(\bar{x} - \theta_2)/\sigma_2^2$, and $\hat{I}(*:2; O_n) = n(\bar{x} - \theta_2)^2/2\sigma_2^2$. Note that equivalent values of \bar{x} are situated symmetrically about θ_2 . Example 1.3. In example 4.3 of chapter 3, $\theta = (\theta_1, \sigma_1^2)$, so that $$T(x) = (\bar{x}, s^2) = (\hat{\theta}_1, \hat{\sigma}_1^2),$$ $$\tau_1(\hat{\theta}_1) = \frac{n(\bar{x} - \theta_2)}{\sigma_2^2}, \qquad \tau_2(\hat{\sigma}_1^2) = \frac{n - 1}{2} \left(\frac{1}{\sigma_2^2} - \frac{1}{s^2}\right),$$ $$\hat{I}(*:2; O_n) = \frac{n(\bar{x} - \theta_2)^2}{2\sigma_2^2} + \frac{n - 1}{2} \left(\log \frac{\sigma_2^2}{s^2} - 1 + \frac{s^2}{\sigma_2^2}\right).$$ Note that here equivalent samples are those for which the values of \bar{x} and s^2 lie on the curve in the (\bar{x}, s^2) -plane for which $\hat{I}(*:2; O_n) = \text{constant}$. Example 1.4. In examples 4.4 and 4.5 of chapter 3 we saw that $y = (1/n) \sum_{i=1}^{n} x_i^2$ provided an unbiased estimator of $\theta = \sigma_1^2$ with a larger value of I(*:2) than the unbiased estimator s^2 , where $(n-1)s^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2$, when the hypotheses specified the normal distributions $N(0, \sigma_i^2)$. From example 4.5 we see that $$\tau(\hat{\theta}) = \frac{n}{2} \left(\frac{1}{\sigma_2^2} - \frac{1}{y} \right) \quad \text{and} \quad \hat{I}(*:2; O_n) = \frac{n}{2} \left(\log \frac{\sigma_2^2}{y} - 1 + \frac{y}{\sigma_2^2} \right).$$ Note that equivalent values of y are not situated symmetrically about σ_2^2 . Example 1.5. In example 4.6 of chapter 3, for the transformed variates u and v defined in (4.26) of that example, $\theta = (2(1 - \rho_1), 2(1 + \rho_1))$, so that $$T(x) = (y_1, y_2) = (2(1 - \hat{\rho}_1), 2(1 + \hat{\rho}_1)),$$ $$\tau_1(2(1 - \hat{\rho}_1)) = \frac{n}{4} \left(\frac{1}{1 - \rho_2} - \frac{2}{y_1} \right), \quad \tau_2(2(1 + \hat{\rho}_1)) = \frac{n}{4} \left(\frac{1}{1 + \rho_2} - \frac{2}{y_2} \right),$$ $$\tilde{I}(*:2; O_n) = \frac{n}{2} \left(\log \frac{2(1 - \rho_2)}{y_1} - 1 + \frac{y_1}{2(1 - \rho_2)} + \log \frac{2(1 + \rho_2)}{y_2} - 1 + \frac{y_2}{2(1 + \rho_2)} \right).$$ Note that equivalent samples are those for which y_1 and y_2 lie on the curve in the (y_1, y_2) -plane for which $I(*:2; O_n) = \text{constant}$. Example 1.6. In example 4.7 of chapter 3, $\theta = \theta_1 \ge \theta_2$ and $\hat{\theta}_1 = L - 1/n$, where $L = \min(x_1, x_2, \dots, x_n)$, $\tau(\hat{\theta}_1) = n(L - 1/n - \theta_2)/(L - \theta_2)$, and $$\hat{I}(*:2; O_n) = n(L - 1/n - \theta_2) - \log(1 + n(L - 1/n - \theta_2)) = n(L - \theta_2) - 1 - \log n(L - \theta_2).$$ Note that $\hat{I}(*:2; O_n)$ is not defined for $L < \theta_2$. For any value $n(L - \theta_2) > 1$ there is an equivalent value L' such that $n(L' - \theta_2) < 1$; also $\hat{I}(*:2; O_n) = 0$ if and only if $n(L - \theta_2) = 1$. ### 2. CLASSIFICATION We shall introduce the problem of classifying or assigning a sample to one of several possible populations with a result essentially due to Kupperman (1957, 1958), relating a priori and a posteriori probabilities of hypotheses with information statistics. Suppose that a sample O_n can occur only if one of the set of r exhaustive and mutually exclusive events H_1, H_2, \dots, H_r occurs. The a priori probabilities of these latter events (which we may call hypotheses) are denoted by $P(H_1), P(H_2), \dots, P(H_r)$ respectively, where $P(H_m) > 0$ and $\sum_{m=1}^{\infty} P(H_m) = 1$. The conditional probabilities for O_n to occur are denoted by $P(O_n|H_m), m = 1, 2, \dots, r$. The a posteriori probability of H_m , given that O_n has occurred, is denoted by $P(H_m|O_n)$. From Bayes' theorem (cf. section 2 of chapter 1), we have that (2.1) $$P(H_m|O_n) = P(H_m)P(O_n|H_m) / \sum_{j=1}^r P(H_j)P(O_n|H_j),$$ $$m = 1, 2, \dots, r.$$ Suppose now that the conditional probabilities for O_n to occur are the probability measures of an exponential family (see section 4 of chapter 3) with respective generalized densities for a given H_i (2.2) $$f_i(x) = e^{\tau_i T(x)} f(x) / M(\tau_i), \qquad M(\tau_i) = \int e^{\tau_i T(x)} f(x) \, d\lambda(x),$$ $i = 1, 2, \cdots, m$ For any pair of the generalized densities (2.2), say $f_1(x)$ and $f_2(x)$, we have by corollary 3.2 of chapter 3, $$(2.3) \quad I(1:2; O_n) = I(\tau_1:\tau_2; O_n) = \theta_1\tau_1 - \theta_1\tau_2 - \log M(\tau_1)
+ \log M(\tau_2),$$ where $\theta_1 = E_1(T(x)) = \int T(x)f_1(x) d\lambda(x)$. The estimate defined in (1.2) therefore is (2.4) $$\hat{I}(*:2; O_n) = \hat{\tau}T(x) - \log M(\hat{\tau}) - \tau_2 T(x) + \log M(\tau_2),$$ where $T(x) = (d/d\tau) \log M(\tau)|_{\tau=t}$. Similarly, the directed divergence between the sample and the population defined by $f_m(x)$, $m = 1, 2, \dots, r$, is (2.5) $$\hat{I}(*:m; O_n) = \hat{\tau}T(x) - \log M(\hat{\tau}) - \tau_m T(x) + \log M(\tau_m),$$ $m = 1, 2, \dots, r,$ where $T(x) = (d/d\tau) \log M(\tau)|_{\tau=t}$. The difference between any pair of the estimates in (2.5) accordingly is, using (2.2), (2.6) $$\hat{I}(*:i; O_n) - \hat{I}(*:j; O_n) = \tau_j T(x) - \tau_i T(x) - \log M(\tau_j) + \log M(\tau_i)$$ $$= \log (f_j(x)/f_i(x)),$$ $$i \neq j, \qquad i, j = 1, 2, \dots, m.$$ But from (2.1) [cf. (2.3) in chapter 1], (2.7) $$\log \frac{f_j(x)}{f_i(x)} = \log \frac{P(H_j|O_n)}{P(H_i|O_n)} - \log \frac{P(H_j)}{P(H_i)},$$ or, using (2.6), (2.8) $$f(*:i; O_n) - f(*:j; O_n) = \log \frac{P(H_j|O_n)}{P(H_i|O_n)} - \log \frac{P(H_j)}{P(H_i)}$$ If we assign the sample to the population which it best resembles, that is, for which $\hat{I}(*:j; O_n)$ is smallest, then we see from (2.8) that (2.9) $$f(*:i; O_n) - f(*:j; O_n) = \log \frac{P(H_j|O_n)}{P(H_i|O_n)} - \log \frac{P(H_j)}{P(H_i)} \ge 0,$$ or (2.10) $$\log \frac{P(H_i|O_n)}{P(H_i)} \ge \log \frac{P(H_i|O_n)}{P(H_i)}, \quad i \ne i, \quad i = 1, 2, \cdots, r.$$ The procedure thus selects the exponential population for which the ratio of the a posteriori probability of H_i , to the a priori probability of H_i , is greatest. (See problem 7.11.) We remark that the conclusion is true for multivariate exponential populations with parameters in an h-dimensional Euclidean parameter space. This is the same as a maximum-likelihood procedure. [Cf. Good (1950, pp. 62-64, 68-73, 82-83), Savage (1954, pp. 46-50, 134-135, 234-235).] (See section 4.) Note that the left-hand side of (2.10) is the information in O_n in favor of H_j (see example 4.1 in chapter 1). In many problems of interest to the statistician, the generalized density $f_2(x)$ implicit in the definition of $\hat{I}(*:2; O_n)$ in (1.2), ranges over a family of populations we denote by the symbol H. Let $\hat{I}(*:H)$ represent the minimum of $\hat{I}(*:2; O_n)$ as $f_2(x)$ ranges over the populations of H, that is, $\hat{I}(*:H) = \min_{x \in H} \hat{I}(*:2; O_n)$. The value of $\hat{I}(*:H)$ is thus a measure of the directed divergence between the sample and that member of the family of populations H that the sample most closely resembles. If the value of $\hat{\theta}$ in the sample is the same as the value of the parameter θ for one of the members of the family of populations H, then of course $\hat{I}(*:H) = 0$, that is, the sample yields no information for discrimination against H. When there are two or more groups of populations, for convenience denoted by H_1 , H_2 , H_3 , \cdots , we shall assign the sample to the group with the smallest value among $\hat{I}(*:H_1)$, $\hat{I}(*:H_2)$, $\hat{I}(*:H_3)$, \cdots . This means that we shall assign the sample to that group of populations among which there is one that the sample best resembles, or against which the sample provides least information for discrimination. (See the remarks at the end of section 3 of chapter 1.) ### 3. TESTING HYPOTHESES We shall call $\hat{I}(*:H)$ the minimum discrimination information statistic, and test a null hypothesis H_2 against an alternative hypothesis H_1 by rejecting H_2 if Prob $\{\hat{I}(*:H_2) - \hat{I}(*:H_1) \ge c | H_2 \} \le \alpha$. By appropriate choice of the constant c by which we require $\hat{I}(*:H_2)$ to exceed $\hat{I}(*:H_1)$ before we reject the hypothesis H_2 , we can control the magnitude of the type I error (the probability of rejecting the null hypothesis H_2 when the sample is from a population of H_2). We shall see that this procedure also provides a test with desirable properties so far as the magnitude of the type II error is concerned (the probability of accepting the null hypothesis when the sample is from a population of H_1). [For the theory of hypothesis testing see, for example, Fraser (1957, pp. 69–108), Hoel (1954, pp. 30–38, 182–196).] Before we examine the properties of the minimum discrimination information statistic it may be helpful to illustrate the procedure. In the following examples we shall ignore the probabilities involved and consider only the expression $I(*:H_2) - I(*:H_1) \ge c$, that is, the critical region or the sample values on the basis of which we reject the null hypothesis. Example 3.1. Suppose we have an observation x, which may indeed be a sample of n independent observations, and we want to test a simple null hypothesis H_2 , the observation is from a population with generalized density $f_2(x)$, against the simple alternative hypothesis H_1 , the observation is from a population with generalized density $f_1(x)$. With the statistic $T(x) = \log (f_1(x)/f_2(x))$, we have in accordance with the estimation procedure mentioned in section 1, $\hat{\theta} = \log (f_1(x)/f_2(x))$. From (2.16) and (2.17) of chapter 3 and (1.1) and (1.2) of this chapter, defining $N_2(\hat{\tau}_2)$ and $N_1(\hat{\tau}_1)$ below by context, we have $$\begin{split} \hat{I}(*:H_2) &= \hat{\tau}_2 \log \frac{f_1(x)}{f_2(x)} - \log M_2(\hat{\tau}_2), \qquad M_2(\tau) = \int (f_1(x))^{\tau} (f_2(x))^{1-\tau} d\lambda(x), \\ \log \frac{f_1(x)}{f_2(x)} &= \frac{\int (f_1(x))^{\ell_2} (f_2(x))^{1-\ell_2} \log \frac{f_1(x)}{f_2(x)} d\lambda(x)}{\int (f_1(x))^{\ell_2} (f_2(x))^{1-\ell_2} d\lambda(x)} = \frac{N_2(\hat{\tau}_2)}{M_2(\hat{\tau}_2)}. \end{split}$$ Similarly, we have $$\begin{split} \hat{I}(*:H_1) &= \hat{\tau}_1 \log \frac{f_1(x)}{f_2(x)} - \log M_1(\hat{\tau}_1), \qquad M_1(\tau) = \int (f_1(x))^{1+\tau} (f_2(x))^{-\tau} \, d\lambda(x), \\ \log \frac{f_1(x)}{f_2(x)} &= \frac{\int (f_1(x))^{1+\tau_1} (f_2(x))^{-\tau_1} \log \frac{f_1(x)}{f_2(x)} \, d\lambda(x)}{\int (f_1(x))^{1+\tau_1} (f_2(x))^{-\tau_1} \, d\lambda(x)} = \frac{N_1(\hat{\tau}_1)}{M_1(\hat{\tau}_1)}. \end{split}$$ Since $N_2(\hat{\tau}_2)/M_2(\hat{\tau}_2) = N_1(\hat{\tau}_1)/M_1(\hat{\tau}_1) = \log(f_1(x)/f_2(x))$, we have, as shown by Chernoff (1952, p. 504), $\hat{\tau}_2 = \hat{\tau}_1 + 1$, $M_2(\hat{\tau}_2) = M_1(\hat{\tau}_1)$. Accordingly, $$\hat{I}(*:H_2) - \hat{I}(*:H_1) = \hat{\tau}_2 \log \frac{f_1(x)}{f_2(x)} - \log M_2(\hat{\tau}_2) - (\hat{\tau}_2 - 1) \log \frac{f_1(x)}{f_2(x)} + \log M_1(\hat{\tau}_1) = \log \frac{f_1(x)}{f_2(x)}$$ and the critical region is therefore of the form $\log \frac{f_1(x)}{f_2(x)} \ge c$. This is the most powerful critical region, as yielded by the fundamental lemma of Neyman and Pearson (1933). [Cf. Fraser (1957, p. 73).] Example 3.2. We shall need some of the results in example 1.1 of this chapter and example 4.1 of chapter 3. Suppose the hypothesis H_1 specifies the binomial distribution with $p = p_1$, $q_1 = 1 - p_1$, and the hypothesis H_2 specifies the binomial distribution with $p = p_2$, $q_2 = 1 - p_2$. We estimate $\theta = np^*$ by $n\hat{p}$, where $n\hat{p} = y$, $\hat{q} = 1 - \hat{p}$, and y = T(x) is the number of observed successes in a sample of n independent observations O_n . From the results in example 1.1 we see that $$\hat{I}(*:H_1) = n\left(\hat{p}\log\frac{\hat{p}}{p_1} + \hat{q}\log\frac{\hat{q}}{q_1}\right), \qquad \hat{I}(*:H_2) = n\left(\hat{p}\log\frac{\hat{p}}{p_2} + \hat{q}\log\frac{\hat{q}}{q_2}\right).$$ We therefore reject H_2 if (merging constants as they occur so that c is not necessarily the same constant throughout) $$n\left(\hat{p}\log\frac{\hat{p}}{p_2}+\hat{q}\log\frac{\hat{q}}{q_2}\right)-n\left(\hat{p}\log\frac{\hat{p}}{p_1}+\hat{q}\log\frac{\hat{q}}{q_1}\right)\geq c,$$ or $$\hat{p}\log\frac{p_1}{p_2}+\hat{q}\log\frac{q_1}{q_2}\geq c,$$ or $$\hat{p}\log\frac{p_1q_2}{p_2q_1}\geq c.$$ When $p_1 > p_2$, $\log(p_1q_2/p_2q_1) > 0$ and we reject H_2 if $\hat{p} \ge c$. On the other hand, when $p_1 < p_2$, $\log(p_1q_2/p_2q_1) < 0$ and we reject H_2 if $\hat{p} \le c$. (This example is a special case of example 3.1.) See figure 3.1. Figure 3.1 Figure 3.2 Example 3.3. We continue example 3.2, but now the hypothesis H_2 specifies the binomial distribution with $p=p_2$, $q_2=1-p_2$, and the hypothesis H_1 specifies the binomial distribution with $p>p_2$, q=1-p. As before, we estimate $\theta=np^*$ by $n\hat{p}=y$, and $\hat{I}(*:H_2)=n(\hat{p}\log{(\hat{p}/p_2)}+\hat{q}\log{(\hat{q}/q_2)})$. In section 3 of chapter 4 we noted that $F(\hat{p},p)=\hat{p}\log{(\hat{p}/p)}+\hat{q}\log{(\hat{q}/q)}$ is a convex function of p for given \hat{p} , $F(\hat{p},p)=0$ for $p=\hat{p}$, and $F(\hat{p},p)$ is monotonically decreasing for $0 \le p \le \hat{p}$ and monotonically increasing for $\hat{p} \le p \le 1$; therefore $\hat{I}(*:H_1)=0$, if $\hat{p}>p_2$, and $\hat{I}(*:H_1)=n(\hat{p}\log{(\hat{p}/p_2)}+\hat{q}\log{(\hat{q}/q_2)})$, if $\hat{p}< p_2$. We therefore reject H_2 if $\hat{p}>p_2$ and $\hat{p}\log{(\hat{p}/p_2)}+\hat{q}\log{(\hat{q}/q_2)}\ge c$, that is, if $\hat{p}\ge c>p_2$. See figure 3.2. Here we have a uniformly most powerful critical region. [Cf. Neyman (1950, p. 325, pp. 326-327).] Example 3.4. Continuing examples 3.2 and 3.3, H_2 now specifies the family of binomial distributions with $p \ge p_2$, q = 1 - p, and H_1 specifies the family of binomial distributions with $p \le p_1 < p_2$. As before, we estimate $\theta = np^*$ by $n\hat{p} = y$. From the behavior of $F(\hat{p}, p)$ described in example 3.3, $\hat{I}(*:H_1)$ and $\hat{I}(*:H_2)$ are as follows: $$\hat{f}(*:H_1) \qquad \hat{I}(*:H_2)$$ $$\hat{p} > p_2 \qquad n\left(\hat{p}\log\frac{\hat{p}}{p_1} + \hat{q}\log\frac{\hat{q}}{q_1}\right) \qquad 0$$ $$p_1 \le \hat{p} \le p_2 \qquad n\left(\hat{p}\log\frac{\hat{p}}{p_1}
+ \hat{q}\log\frac{\hat{q}}{q_1}\right) \qquad n\left(\hat{p}\log\frac{\hat{p}}{p_2} + \hat{q}\log\frac{\hat{q}}{q_2}\right)$$ $$\hat{p} < p_1 \qquad 0 \qquad n\left(\hat{p}\log\frac{\hat{p}}{p_2} + \hat{q}\log\frac{\hat{q}}{q_2}\right)$$ We therefore assign the sample to the family of populations H_2 if $\hat{p} > p$, where p (q = 1 - p) satisfies $p \log \frac{p}{p_1} + q \log \frac{q}{q_1} = p \log \frac{p}{p_2} + q \log \frac{q}{q_2}$, that is, $p = \left(\log \frac{q_2}{q_1}\right) / \log \frac{p_1 q_2}{p_2 q_1}$. [Cf. Chernoff (1952, p. 502).] If $\hat{p} = p$, $\hat{I}(*: H_2) = \hat{I}(*: H_1)$. See figure 3.3. Example 3.5. Suppose we have a random sample O_n of n independent observations and we take the set E in example 2.3 of chapter 3 as the interval $0 \le x < \infty$ and its complement \tilde{E} as the interval $-\infty < x < 0$. Consider the null hypothesis H_2 that $f_2(x)$ is the generalized density of an absolutely continuous distribution such that $\mu_2(E) = \mu_2(\tilde{E}) = \frac{1}{2}$. We shall use $\hat{p} = y/n$ as an estimate of $\mu_1(E)$ (here $\mu_1(E)$ is θ), where $y = \sum_{i=1}^n T(x_i) = \sum_{i=1}^n \chi_E(x_i)$, that is, y is the number of nonnegative observations in the sample, and $\hat{q} = 1 - \hat{p}$. If the alternative hypothesis H_1 is that $f_2(x)$ is the generalized density of any absolutely continuous distribution such that $\mu_2(E) = p \ne \frac{1}{2}$, $\mu_2(\tilde{E}) = q = 1 - p$, then $\hat{I}(*:H_2) = n(\hat{p} \log 2\hat{p} + \hat{q} \log 2\hat{q})$ and $\hat{I}(*:H_1) = 0$. We therefore reject H_2 if $\hat{p} \log 2\hat{p} + \hat{q} \log 2\hat{q} \ge c$, or $\hat{p} \log \hat{p} + \hat{q} \log \hat{q} \ge c$, that is, if $|\hat{p} - \frac{1}{2}| \ge c$. See figure 3.4. [Cf. Fraser (1957, pp. 167-169).] Example 3.6. We shall need some of the results in example 1.4 above and examples 4.4 and 4.5 of chapter 3. Suppose the hypothesis H_i specifies the normal distribution $N(0, \sigma_i^2)$, i = 1, 2. We shall estimate $\theta = \sigma^{*2}$ by the statistic $y = T(x) = (1/n)\sum x_i^2$ of example 4.5 (rather than by the statistic s^2 of example 4.4). From example 1.4, we see that $$\hat{I}(*:H_1) = \frac{n}{2} \left(\log \frac{\sigma_1^2}{y} - 1 + \frac{y}{\sigma_1^2} \right), \qquad \hat{I}(*:H_2) = \frac{n}{2} \left(\log \frac{\sigma_2^2}{y} - 1 + \frac{y}{\sigma_2^2} \right).$$ We therefore reject H_2 if $$\frac{n}{2}\left(\log\frac{\sigma_2^2}{y}-1+\frac{y}{\sigma_2^2}\right)-\frac{n}{2}\left(\log\frac{\sigma_1^2}{y}-1+\frac{y}{\sigma_1^2}\right)\geq c,$$ or $$\frac{y}{\sigma_2^2}-\frac{y}{\sigma_1^2}\geq c,$$ or $$(\sigma_1^2-\sigma_2^2)\Sigma x_i^2\geq c,$$ or $$\Sigma x_i^2\geq c \text{ if } \sigma_1^2>\sigma_2^2, \qquad \Sigma x_i^2\leq c \text{ if } \sigma_1^2<\sigma_2^2.$$ ### See figure 3.5. This is a special case of example 3.1. Example 3.7. We continue example 3.6, but now H_2 specifies the family of normal distributions $N(0, \sigma^2)$, $\sigma^2 \ge \sigma_2^2$, and H_1 specifies the family of normal distributions $N(0, \sigma^2)$, $\sigma^2 \le \sigma_1^2 < \sigma_2^2$. Note that $F(y, \sigma^2) = \log(\sigma^2/y) - 1 + y/\sigma^2$ is a convex function of $1/\sigma^2$ for given y, $F(y, \sigma^2) = 0$ for $\sigma^2 = y$, $F(y, \sigma^2)$ is monotonically decreasing for $0 < \sigma^2 \le y$, and monotonically increasing for $y \le \sigma^2 < \infty$. $\hat{I}(*:H_1)$ and $\hat{I}(*:H_2)$ are therefore as follows: $\hat{I}(*:H_2)$ $\hat{I}(*:H_1)$ $$y > \sigma_2^2 \qquad \frac{n}{2} \left(\log \frac{\sigma_1^2}{y} - 1 + \frac{y}{\sigma_1^2} \right) \qquad 0$$ $$\sigma_1^2 \le y \le \sigma_2^2 \qquad \frac{n}{2} \left(\log \frac{\sigma_1^2}{y} - 1 + \frac{y}{\sigma_1^2} \right) \qquad \frac{n}{2} \left(\log \frac{\sigma_2^2}{y} - 1 + \frac{y}{\sigma_2^2} \right)$$ $$y < \sigma_1^2 \qquad 0 \qquad \frac{n}{2} \left(\log \frac{\sigma_2^2}{y} - 1 + \frac{y}{\sigma_2^2} \right)$$ We therefore assign the sample to the family of populations H_2 if $y > \sigma^2$, where σ^2 satisfies $\log \frac{{\sigma_2}^2}{\sigma^2} - 1 + \frac{\sigma^2}{{\sigma_2}^2} = \log \frac{{\sigma_1}^2}{\sigma^2} - 1 + \frac{\sigma^2}{{\sigma_1}^2}$, that is, $$\sigma^2 = (\log (\sigma_2^2/\sigma_1^2))/(1/\sigma_1^2 - 1/\sigma_2^2).$$ [Cf. Chernoff (1952, p. 502).] If $y = \sigma^2$, $\hat{I}(*: H_2) = \hat{I}(*: H_1)$. See figure 3.6. Example 3.8. We continue examples 3.6 and 3.7, but now the null hypothesis H_2 specifies the normal distributions $N(0, \sigma^2)$, $\sigma^2 \ge \sigma_2^2$, and the alternative hypothesis H_1 specifies the normal distributions $N(0, \sigma^2)$, $\sigma^2 < \sigma_2^2$. $\hat{I}(*:H_1)$ and $\hat{I}(*:H_2)$ are therefore as follows: $$\hat{I}(*:H_1) \qquad \hat{I}(*:H_2)$$ $$y \ge \sigma_2^2 \qquad \frac{n}{2} \left(\log \frac{\sigma_2^2}{y} - 1 + \frac{y}{\sigma_2^2} \right) \qquad 0$$ $$y < \sigma_2^2 \qquad 0 \qquad \frac{n}{2} \left(\log \frac{\sigma_2^2}{y} - 1 + \frac{y}{\sigma_2^2} \right)$$ We therefore reject H_2 if $y < \sigma_2^2$ and $\log{(\sigma_2^2/y)} - 1 + y/\sigma_2^2 \ge c$, that is, if $y \le c < \sigma_2^2$. Here we have a uniformly most powerful critical region. [Cf. Fraser (1957, p. 84).] Symmetrically, if we treat H_1 as the null hypothesis and H_2 as the alternative hypothesis, we reject H_1 if $y \ge \sigma_2^2$ and $\log{(\sigma_2^2/y)} - 1 + y/\sigma_2^2 \ge c$, that is, if $y \ge c > \sigma_2^2$. If σ_2^2 is not specified, this suggests a confidence interval for the parameter σ^2 determined by $\log{(\sigma^2/y)} - 1 + y/\sigma^2 \le c$, with confidence coefficient Prob $[\log{(\sigma^2/y)} - 1 + y/\sigma^2 \le c|\sigma^2] = 1 - \alpha$. We may also say that the sample provides less than a desired amount of information for discriminating against a hypothetical value of σ^2 falling within the confidence interval. See figure 3.7. Example 3.9. We continue examples 3.6 through 3.8, but now we must assign the sample either to: H_1 , the family of normal distributions $N(0, \sigma^2)$, $\sigma^2 < \sigma_1^2$; H_2 , the family of normal distributions $N(0, \sigma^2)$, $\sigma_1^2 \le \sigma^2 \le \sigma_2^2$; or H_3 , the family of normal distributions $N(0, \sigma^2)$, $\sigma^2 > \sigma_2^2$. $\hat{I}(*:H_1)$, $\hat{I}(*:H_2)$, and $\hat{I}(*:H_3)$ are as follows: $$\frac{\hat{I}(*:H_1)}{y > \sigma_2^2} \frac{\hat{I}(*:H_2)}{\frac{n}{2} \left(\log \frac{\sigma_1^2}{y} - 1 + \frac{y}{\sigma_1^2} \right) \frac{n}{2} \left(\log \frac{\sigma_2^2}{y} - 1 + \frac{y}{\sigma_2^2} \right)}{0}$$ $$\sigma_1^2 \le y \le \sigma_2^2 \frac{n}{2} \left(\log \frac{\sigma_1^2}{y} - 1 + \frac{y}{\sigma_1^2} \right) \qquad 0 \qquad \frac{n}{2} \left(\log \frac{\sigma_2^2}{y} - 1 + \frac{y}{\sigma_2^2} \right)$$ $$y < \sigma_1^2 \qquad 0 \qquad \frac{n}{2} \left(\log \frac{\sigma_1^2}{y} - 1 + \frac{y}{\sigma_1^2} \right) \frac{n}{2} \left(\log \frac{\sigma_2^2}{y} - 1 + \frac{y}{\sigma_2^2} \right)$$ We therefore assign the sample to the family H_i , i = 1, 2, 3, for which $l(*: H_i) = 0$. See figure 3.8. Example 3.10. Let us reconsider example 3.9 but with a null hypothesis H_2 specifying the family H_2 , and an alternative hypothesis H_4 specifying the family H_1 or H_3 , that is, $H_4 = H_1 \cup H_3$. We see that $\hat{I}(^*:H_4) = 0$ for $y > \sigma_2^2$ or $y < \sigma_1^2$, and $\hat{I}(^*:H_4) = \min(\hat{I}(^*:H_1), \hat{I}(^*:H_3))$ for $\sigma_1^2 \le y \le \sigma_2^2$ (see example 3.9). We therefore reject H_2 if $y > \sigma_2^2$ and $\log(\sigma_2^2/y) - 1 + y/\sigma_2^2 \ge c$, that is, if $y \ge c > \sigma_2^2$; or if $y < \sigma_1^2$ and $\log(\sigma_1^2/y) - 1 + y/\sigma_1^2 \ge c$, that is, if $y \le c < \sigma_1^2$. The constants are to be determined by the significance level desired. See figure 3.9. Figure 3.9 Example 3.11. We shall need the results of example 1.2. Suppose the alternative hypothesis H_1 specifies the normal distribution $N(\mu, 1)$, $\mu = \mu_1 > \mu_2$, and the null hypothesis H_2 specifies the normal distribution $N(\mu, 1)$, $\mu \leq \mu_2$. We estimate θ by $\hat{\theta} = \bar{x}$ and $\hat{I}(*:\mu) = n(\bar{x} - \mu)^2/2$. $\hat{I}(*:H_1)$ and $\hat{I}(*:H_2)$ are as follows: | | $\hat{I}(*:H_1)$ | $\hat{I}(*:H_2)$ | |-------------------------|--------------------------------|--------------------------------| | $ar{x} \leq \mu_2$ | $\frac{n(\bar{x}-\mu_1)^2}{2}$ | 0 | | $\mu_2 < ar{x} < \mu_1$ | $\frac{n(\bar{x}-\mu_1)^2}{2}$ | $\frac{n(\bar{x}-\mu_2)^2}{2}$ | | $\mu_1 \leq \bar{x}$ | 0 | $\frac{n(\bar{x}-\mu_2)^2}{2}$ | We therefore reject H_2 if $\mu_2 < \bar{x} < \mu_1$ and $n(\bar{x} - \mu_2)^2/2 - n(\bar{x} - \mu_1)^2/2 \ge c$, or if $\mu_1 \le \bar{x}$ and $n(\bar{x} - \mu_2)^2/2 \ge c$, that is, if $\bar{x} \ge c > \mu_2$. See figure 3.10. Lehmann (1949, p. 2-17) shows that this critical region is uniformly most powerful. Figure 3.10 Example 3.12. We continue example 3.11 but now the alternative hypothesis H_1 specifies the normal distribution $N(\mu, 1)$, $\mu = 0$, and the null hypothesis H_2 specifies the normal distribution $N(\mu, 1)$, $\mu \le -\mu_2$, $\mu \ge \mu_2$. $\hat{I}(*:H_1)$ and $\hat{I}(*:H_2)$ are as follows: | | $\hat{I}(*:H_1)$ | $\hat{I}(*:H_2)$ | |-----------------------------|------------------|------------------------| | $\bar{x} \le -\mu_2$ | $nar{x}^2/2$ | 0 | | $-\mu_2 < ilde{x} < \mu_2$ | $n\bar{x}^2/2$ | $n(\bar{x}-\mu_2)^2/2$ | | $ar{x} \geq \mu_2$ | $nar{x}^2/2$ | 0 | We therefore reject H_2 if $-\mu_2 < \bar{x} < \mu_2$ and $n(\bar{x} - \mu_2)^2/2 - n\bar{x}^2/2 \ge c$, that is, if $|\bar{x}| \le c$. See figure 3.11. Lehmann (1949, p. 2-18) shows this to be a most powerful critical region, or test procedure. Figure 3.11 ### 4. DISCUSSION The reader may have noted that $\hat{\tau}(x)$ is the maximum-likelihood estimate of τ as a parameter of the generalized
density $f^*(x)$ [cf. Barton (1956)]. In fact, since $$\frac{d}{d\tau}\log f^*(x) = T(x) - \frac{d}{d\tau}\log M_2(\tau),$$ with $(d/d\tau) \log M_2(\tau)$ a strictly increasing function of τ (see lemmas 4.2 and 4.5 of chapter 3), the value of τ for which $(d/d\tau) \log f^*(x) = 0$ is unique and given in (1.1). [Cf. Khinchin (1949, pp. 79-81).] Furthermore, as might be expected from the general argument, the minimum discrimination information statistic is related to the likelihood-ratio test of Neyman and Pearson (1928). As a matter of fact, we may write [cf. Barnard (1949), Fisher (1956, pp. 71-73)] (4.1) $$\tilde{I}(*:2; O_n) = \hat{\theta}\tau(\hat{\theta}) - \log M_2(\tau(\hat{\theta})) = \log \frac{\max f^*(x)}{f_2(x)},$$ where we recall that $f_2(x) = f^*(x)$ for $\tau = 0$, and (4.2) $$\tilde{I}(*:H) = \min_{f_2 \in H} \log \frac{\max f^*(x)}{f_2(x)}$$ If the populations of H are members of the exponential family over which $f^*(x)$ ranges, and we denote the range of values of τ by Ω , and the range of values of τ corresponding to H by ω , then $\max_{f_* \in H} f_*(x) = \max_{\tau \in \omega} f^*(x)$ and (4.3) $$f(*:H) = \log \frac{\max_{\tau \in \Omega} f^*(x)}{\max_{\tau \in \omega} f^*(x)} = -\log \lambda,$$ where λ is the Neyman-Pearson likelihood ratio [see, for example, Hoel (1954, pp. 189–192), Wilks (1943, p. 150)], (4.4) $$\lambda = \frac{P^*(\max \omega)}{P^*(\max \Omega)} = \frac{\max_{\tau \in \omega} f^*(x)}{\max_{\tau \in \Omega} f^*(x)}.$$ If H_2 implies that $\tau \in \omega_2$ and H_1 that $\tau \in \omega_1$, then (4.5) $$l(*:H_2) = \log \frac{\max_{\tau \in \Omega} f^*(x)}{\max_{\tau \in \omega_2} f^*(x)},$$ (4.6) $$\tilde{I}(*:H_1) = \log \frac{\max_{\tau \in \Omega} f^*(x)}{\max_{\tau \in \omega_1} f^*(x)},$$ and (4.7) $$\hat{I}(*:H_2) - \hat{I}(*:H_1) = \log \frac{\max_{\tau \in \omega_1} f^*(x)}{\max_{\tau \in \omega_2} f^*(x)}$$ $$= \log \frac{\max_{\tau \in \omega_1} f^*(x)}{f_2(x)} - \log \frac{\max_{\tau \in \omega_2} f^*(x)}{f_2(x)} .$$ We remark that here $\hat{I}(*:H_2) - \hat{I}(*:H_1) = -\log \lambda^*$, where likelihood ratios of the form $$\lambda^* = \max_{\tau \in \omega_2} f^*(x) / \max_{\tau \in \omega_1} f^*(x)$$ have been studied by Chernoff (1954) for certain hypotheses. If H_2 implies that $\tau \in \omega$ and H_1 that $\tau \in \Omega - \omega$, then $\hat{I}(*:H_1) = 0$ if $\hat{I}(*:H_2) > 0$, since $\hat{I}(*:2;O_n)$ is convex and nonnegative. The test of the null hypothesis H_2 now depends only on the value of $\hat{I}(*:H_2)$, because when $\hat{I}(*:H_2) = 0$ we accept the null hypothesis H_2 with no further test. Some simple examples follow. We shall apply these notions to a wider variety of important statistical problems in subsequent chapters. Example 4.1. Suppose we want to test a null hypothesis of homogeneity that n independent observations in a sample O_n are from the same normal population, with specified variance σ^2 , against an alternative hypothesis that the observations are from normal populations with different means but the same specified variance σ^2 . We denote the null hypothesis by $H_2(\mu|\sigma^2)$ or $H_2(\cdot|\sigma^2)$ according as the common mean is, or is not, specified, and the alternative hypothesis by $H_1(\mu_i|\sigma^2)$ or $H_1(\cdot|\sigma^2)$ according as the different means are, or are not, specified. With $$T(x) = (x_1, x_2, \dots, x_n)$$ and $f_2(x) = \prod_{i=1}^n \frac{\exp[-(x_i - \mu)^2/2\sigma^2]}{\sigma\sqrt{2\pi}}$, we have (4.8) $$\hat{I}(*:2; O_n) = \sum_{i=1}^n (x_i \hat{\tau}_i - \mu \hat{\tau}_i - \frac{\sigma^2}{2} \hat{\tau}_i^2),$$ where $\hat{\tau}_i$ satisfies $x_i = \mu + \sigma^2 \hat{\tau}_i$. We thus have (4.9) $$\hat{I}(*:H_2(\mu|\sigma^2)) = \sum_{i=1}^n (x_i - \mu)^2 / 2\sigma^2.$$ If μ is not specified, $\hat{I}(*:H_2(\cdot|\sigma^2)) = \min_{\mu} \hat{I}(*:H_2(\mu|\sigma^2))$ is $$(4.10) \quad \hat{I}(*: H_2(\cdot | \sigma^2)) = \sum_{i=1}^n (x_i - \bar{x})^2 / 2\sigma^2, \qquad \bar{x} = (x_1 + x_2 + \cdots + x_n) / n.$$ On the other hand, with $T(x) = (x_1, x_2, \dots, x_n)$ but $$f_2(x) = \prod_{i=1}^n \frac{\exp[-(x_i - \mu_i)^2/2\sigma^2]}{\sigma^{\sqrt{2\pi}}},$$ we have (4.11) $$\hat{I}(*:2; O_n) = \sum_{i=1}^n (x_i \hat{\tau}_i - \mu_i \hat{\tau}_i - \frac{\sigma^2}{2} \hat{\tau}_i^2),$$ where $\hat{ au}_i$ satisfies $x_i = \mu_i + \sigma^2 \hat{ au}_i$. We thus have (4.12) $$\hat{I}(*:H_1(\mu_i|\sigma^2)) = \sum_{i=1}^n (x_i - \mu_i)^2 / 2\sigma^2.$$ If the μ_i are not specified, $\hat{I}(^*\!:\!H_1(\,\cdot\,|\sigma^2))=\min \hat{I}(^*\!:\!H_1(\mu_i|\sigma^2))$ is $$\hat{I}(*:H_1(\cdot|\sigma^2)) = 0.$$ If we require that the conjugate distribution in (4.8), that is, $$f^*(x) = \frac{f_2(x) \exp(\tau_1 x_1 + \cdots + \tau_n x_n)}{M_2(\tau_1, \tau_2, \cdots, \tau_n)} = \prod_{i=1}^n \frac{\exp[-(x_i - \mu - \sigma^2 \tau_i)^2/2\sigma^2]}{\sigma \sqrt{2\pi}},$$ range over normal populations with a common mean, then $\mu_1^* = \mu_2^* = \cdots$ $= \mu_n^*$ implies that $\mu + \sigma^2 \tau_1 = \mu + \sigma^2 \tau_2 = \cdots = \mu + \sigma^2 \tau_n$, or only values $\tau_1 = \tau_2 = \cdots = \tau_n = \tau$ are admissible. With this restriction, (4.8) yields (4.14) $$\hat{I}(H_2(\cdot | \sigma^2):2; O_n) = n\bar{x}\hat{\tau} - n\mu\hat{\tau} - n\frac{\sigma^2}{2}\hat{\tau}^2,$$ where $\hat{\tau}$ satisfies $\bar{x} = \mu + \sigma^2 \hat{\tau}$, and (4.14) becomes (4.15) $$\hat{I}(H_2(\cdot | \sigma^2):2; O_n) = n(\bar{x} - \mu)^2 / 2\sigma^2.$$ Note that if $\omega_1 = \Omega$ is the *n*-dimensional space of $\tau_1, \tau_2, \cdots, \tau_n$, then (4.9) is $\log (\max_{\tau \in \omega_1} f^*(x) | f_2(x))$, and that if ω_2 is the subspace of Ω with $\tau_1 = \tau_2 = \cdots = \tau_n$, then (4.15) is $\log (\max_{\tau \in \omega_2} f^*(x) | f_2(x))$. From (4.10), (4.13), and the foregoing we see that (4.7) becomes (4.16) $$\sum_{i=1}^{n} (x_i - \bar{x})^2 / 2\sigma^2 = \sum_{i=1}^{n} (x_i - \mu)^2 / 2\sigma^2 - n(\bar{x} - \mu)^2 / 2\sigma^2.$$ The hypothesis $H_2(\mu|\sigma^2)$ is the intersection of two hypotheses, (i) that the sample is homogeneous, and (ii) that the mean of the homogeneous sample is μ . Rewriting (4.16) as (4.17) $$\sum_{i=1}^{n} (x_i - \mu)^2 / 2\sigma^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 / 2\sigma^2 + n(\bar{x} - \mu)^2 / 2\sigma^2$$ or $$\hat{I}(*: H_2(\mu|\sigma^2)) = \hat{I}(*: H_2(\cdot|\sigma^2)) + \hat{I}(H_2(\cdot|\sigma^2): 2; O_n)$$ reflects the fact that the first term on the right is the minimum discrimination information statistic to test the homogeneity and the second term on the right is the minimum discrimination information statistic to test the value of the mean for a homogeneous sample. Example 4.2. Suppose we have a homogeneous random sample O_n , namely, one from the same normal population, and we want to test a hypothesis about the mean with no specification of the variance. Let the hypothesis $H_2(\mu, \sigma^2)$ imply that the sample is from a specified normal population $N(\mu, \sigma^2)$, and the hypothesis $H_2(\mu)$ imply that the sample is from a normal population with specified mean μ and unspecified variance. Suppose the alternative hypothesis H_1 implies that the sample is from an unspecified normal population. With $T(x) = (\bar{x}, s^2)$, where s^2 is the unbiased sample variance, and $$f_2(x) = \prod_{i=1}^n (1/\sigma\sqrt{2\pi}) \exp[-(x_i - \mu)^2/2\sigma^2],$$ we see from example 1.3 in this chapter and example 4.3 in chapter 3 that $$\hat{I}(^*: H_2(\mu, \sigma^2)) = \hat{\tau}_1 \bar{x} - \hat{\tau}_1 \mu - \frac{\sigma^2}{2n} \hat{\tau}_1^2 + \frac{n-1}{2} \log \left(1 - \frac{2\sigma^2 \hat{\tau}_2}{n-1}\right) + s^2 \hat{\tau}_2,$$ with $\vec{x} = \mu + \hat{\tau}_1(\sigma^2/n)$, $s^2 = \sigma^2/(1 - 2\hat{\tau}_2\sigma^2/(n-1))$, or (4.18) $$\hat{I}(*: H_2(\mu, \sigma^2)) = \frac{n(\bar{x} - \mu)^2}{2\sigma^2} + \frac{n-1}{2} \left(\log \frac{\sigma^2}{s^2} - 1 + \frac{s^2}{\sigma^2} \right)$$ We note from examples 4.2 and 4.3 in chapter 3 that if the normal populations have the same variances under H_1 and H_2 , that is, $\sigma_1^2 = \sigma_2^2 = \sigma_*^2$, then $\tau_2 = 0$ is the only admissible value. We reach the same conclusion by requiring that in the generalized density $g^*(y)$ in (4.15) of chapter 3 the variance parameters in the distribution of \bar{x} and s^2 be the same. Accordingly, for $\hat{I}(*:H_2(\mu))$ we have the same expression as above for $\hat{I}(*:H_2(\mu,\sigma^2))$ except that $\bar{x}=\mu+\hat{\tau}_1(\sigma^2/n)$ and $\hat{\tau}_2=0$, or $s^2=\sigma^2$, so that (4.19) $$\hat{I}(*: H_2(\mu)) = n(\bar{x} - \mu)^2 / 2s^2.$$ We see that $\hat{I}(*: H_1) = 0$, and the test of the hypothesis $H_2(\mu)$ depends only on the value of $\hat{I}(*: H_2(\mu))$. This is the familiar Student t-test. (See problem 7.8.) Example 4.3. Suppose we want to test a null hypothesis about the variance of a normal population from which a random sample O_n has been drawn. Let the hypothesis $H_2(\sigma^2)$ imply that the sample is from a normal population with specified variance σ^2 . We see from (4.18) that $$\hat{I}(*: H_2(\sigma^2)) = \min_{\mu} \hat{I}(*: H_2(\mu, \sigma^2)),$$ or (4.20) $$\hat{I}(*:H_2(\sigma^2)) = \frac{n-1}{2} \left(\log \frac{\sigma^2}{s^2} - 1 + \frac{s^2}{\sigma^2} \right).$$ The hypothesis $H_2(\mu, \sigma^2)$ in example 4.2 is the intersection of two hypotheses, (i) that the mean of the homogeneous sample is μ , given σ^2 , and (ii) $H_2(\sigma^2)$. Rewriting (4.18) as (4.21) $$\hat{I}(*:H_2(\mu,\sigma^2)) = \hat{I}(H_2(\cdot|\sigma^2):2;O_n) + \hat{I}(*:H_2(\sigma^2))$$ reflects this because of (4.17). #### 5. ASYMPTOTIC PROPERTIES The asymptotic distribution of the likelihood ratio λ is known for certain cases. Wilks (1938a) showed that, under suitable regularity conditions, $-2 \log \lambda$ is asymptotically
distributed as χ^2 with (k-r) degrees of freedom, under the null hypothesis that a (vector) parameter lies on an r-dimensional hyperplane of k-dimensional space. Wald (1943) generalized Wilks' theorem to more general subsets of the parameter space than linear subspaces and showed that the likelihood-ratio test has asymptotically best average power and asymptotically best constant power over certain families of surfaces in the parameter space and that it is an asymptotically most stringent test. [For the concept of stringency see, for example, Fraser (1957, pp. 103-107).] Wald (1943) also showed that under the alternative hypothesis the distribution of $-2 \log \lambda$ asymptotically approaches that of noncentral χ^2 . Chernoff (1954) derived, under suitable regularity conditions, the asymptotic distribution of $-2 \log \lambda^*$ [see the remark following (4.7)]. In many cases $-2 \log \lambda^*$ behaves like a random variable that is sometimes zero and sometimes χ^2 . [See, for example, Bartlett (1955, pp. 225-226), Fraser (1957, pp. 196-200), Hoel (1954, pp. 189-196), Wilks (1943, pp. 150-152), for the likelihood-ratio test and its asymptotic χ^2 properties.] Kupperman (1957) showed that for a random sample of n observations, under regularity conditions given below, (5.1) $$2n\hat{I} = 2n \left[\int f(x, \boldsymbol{\theta}) \log \frac{f(x, \boldsymbol{\theta})}{f(x, \boldsymbol{\theta}_2)} d\lambda(x) \right]_{\boldsymbol{\theta} = \boldsymbol{\theta}}$$ is asymptotically distributed as χ^2 with k degrees of freedom [k] is the number of components of the (vector) parameter] under the null hypothesis, where $f(x, \theta)$ is the generalized density of a multivariate, multiparameter population, the random vector $\hat{\theta}$ is any consistent, asymptotically multivariate normal, efficient estimator of θ , and the vector θ_2 is specified by the null hypothesis. The regularity conditions are (cf. section 6 of chapter 2): - 1. $\theta = (\theta_1, \theta_2, \dots, \theta_k)$ is a point of the parameter space Θ , which is assumed to be an open convex set in a k-dimensional Euclidean space. - 2. The family of populations defined by $f(x, \theta)$, $\theta \in \Theta$, is homogeneous. - 3. $f(x, \theta)$ has continuous first- and second-order partial derivatives with respect to the θ 's in Θ , for $x \in \mathcal{X}[\lambda]$. - 4. For all $\theta \in \Theta$, $$\int \frac{\partial f(x, \mathbf{\theta})}{\partial \theta_i} d\lambda(x) = 0, \qquad \int \frac{\partial^2 f(x, \mathbf{\theta})}{\partial \theta_i \partial \theta_j} d\lambda(x) = 0, \qquad i, j = 1, 2, \cdots, k.$$ 5. The integrals $$c_{ij}(\boldsymbol{\theta}) = \int \frac{\partial \log f(x,\boldsymbol{\theta})}{\partial \theta_i} \cdot \frac{\partial \log f(x,\boldsymbol{\theta})}{\partial \theta_j} f(x,\boldsymbol{\theta}) d\lambda(x), \qquad i,j = 1, 2, \cdots, k,$$ are finite for all $\theta \in \Theta$. 6. For all $\theta \in \Theta$, the matrix $C(\theta) = (c_{ij}(\theta))$ is positive-definite. If instead of a single sample, as above, we have r independent samples of size n_i , $i = 1, 2, \dots, r$, and each with a consistent, asymptotically multivariate normal, efficient estimator $\hat{\theta}_i = (\hat{\theta}_{i1}, \hat{\theta}_{i2}, \dots, \hat{\theta}_{ik})$, $i = 1, 2, \dots, r$, then under the regularity conditions above, Kupperman (1957) showed that $$2\sum_{i=1}^{r}n_{i}I_{i}(\boldsymbol{\theta}) = 2\sum_{i=1}^{r}n_{i}\left[\int f(x,\boldsymbol{\theta}_{i})\log\frac{f(x,\boldsymbol{\theta}_{i})}{f(x,\boldsymbol{\theta})}d\lambda(x)\right]_{\boldsymbol{\theta}_{i}=\boldsymbol{\theta}_{i}}$$ is asymptotically distributed as χ^2 with rk degrees of freedom under the null hypothesis that the r samples are all from the same population specified by $f(x, \theta)$. Kupperman (1957) showed that under the null hypothesis that the r samples are from the same population whose functional form is known, but with unspecified parameters, (5.2) $$2\sum_{i=1}^{r} n_i l_i = 2\sum_{i=1}^{r} n_i \left[\int f(x, \boldsymbol{\theta}_i) \log \frac{f(x, \boldsymbol{\theta}_i)}{f(x, \boldsymbol{\theta})} d\lambda(x) \right]_{\substack{\boldsymbol{\theta}_i = \boldsymbol{\hat{\theta}}_i \\ \boldsymbol{\theta} = \boldsymbol{\hat{\theta}}} }$$ is asymptotically distributed as χ^2 with (r-1)k degrees of freedom, where n_i is the number of independent observations in the *i*th sample, $\hat{\theta}_i$ is a consistent, asymptotically multivariate normal, efficient estimator of the k parameters for the *i*th sample, and $n\hat{\theta} = n_1\hat{\theta}_1 + n_2\hat{\theta}_2 + \cdots + n_r\hat{\theta}_r$, $n = n_1 + n_2 + \cdots + n_r$. When the null hypothesis is not true, Kupperman (1957) showed that 2nl, $2\sum_{i=1}^r n_i l_i(\theta)$, and $2\sum_{i=1}^r n_i l_i$ converge in probability to an indefinitely large number and that the large-sample distribution may be approximated by a distribution related to the noncentral χ^2 -distribution with a large noncentrality parameter and the same number of degrees of freedom as the χ^2 -distribution under the null hypothesis. Kupperman (1957) also showed that, under the same regularity conditions as above, similar results hold for the estimates of the divergence. Thus, with the same notation as above, $$n\mathbf{\hat{J}} = n \left[\int (f(x, \mathbf{\theta}) - f(x, \mathbf{\theta}_2)) \log \frac{f(x, \mathbf{\theta})}{f(x, \mathbf{\theta}_2)} d\lambda(x) \right]_{\mathbf{\theta} = \mathbf{\hat{\theta}}}$$ is asymptotically distributed as χ^2 with k degrees of freedom when the sample is from the population specified by $f(x, \theta_2)$; $$\sum_{i=1}^{r} n_i \hat{J}_i(\boldsymbol{\theta}) = \sum_{i=1}^{r} n_i \left[\int (f(x, \boldsymbol{\theta}_i) - f(x, \boldsymbol{\theta})) \log \frac{f(x, \boldsymbol{\theta}_i)}{f(x, \boldsymbol{\theta})} d\lambda(x) \right]_{\boldsymbol{\theta}_i = \boldsymbol{\theta}_i}$$ is asymptotically distributed as χ^2 with rk degrees of freedom if the r samples are from the population specified by $f(x, \theta)$; $$\sum_{i=1}^{r} n_i \hat{J}_i = \sum_{i=1}^{r} n_i \left[\int (f(x, \boldsymbol{\theta}_i) - f(x, \boldsymbol{\theta})) \log \frac{f(x, \boldsymbol{\theta}_i)}{f(x, \boldsymbol{\theta})} d\lambda(x) \right]_{\substack{\boldsymbol{\theta}_i = \boldsymbol{\theta}_i \\ \boldsymbol{\theta} = \boldsymbol{\theta}}}$$ is asymptotically distributed as χ^2 with (r-1)k degrees of freedom if the r samples are from the same population. For two samples, Kupperman (1957) showed that $$\frac{n_1n_2}{n_1+n_2}\left[\int (f(x,\,\boldsymbol{\theta}_1)\,-f(x,\,\boldsymbol{\theta}_2))\,\log\frac{f(x,\,\boldsymbol{\theta}_1)}{f(x,\,\boldsymbol{\theta}_2)}\,d\lambda(x)\right]_{\substack{\boldsymbol{\theta}_1=\boldsymbol{\theta}_1\\\boldsymbol{\theta}_1=\boldsymbol{\theta}_2\\\boldsymbol{\theta}_2=\boldsymbol{\theta}_2}}$$ is asymptotically distributed as χ^2 with k degrees of freedom when the two independent samples are from the same population with unspecified vector parameter θ . The behavior of the estimates of the divergence when the null hypothesis is not true is similar to that of the estimates of the discrimination information. These tests are consistent, the power tends to 1 for large samples. [See, for example, Fraser (1957, p. 108).] Example 5.1. We may infer that $2\hat{I}(*:H_2(\mu|\sigma^2)) = \sum_{i=1}^n (x_i - \mu)^2/\sigma^2$, in (4.9), asymptotically has a χ^2 distribution with n degrees of freedom. (It can of course be shown that this is true for all n.) We may reach this conclusion by Wilks' theorem, since there are n parameters $\tau_1, \tau_2, \cdots, \tau_n$, and the null hypothesis specifies the point $\tau_1 = \tau_2 = \cdots = \tau_n = 0$. Example 5.2. We may infer that $2\hat{I}(*:H_2(\cdot|\sigma^2)) = \sum_{i=1}^n (x_i - \bar{x})^2/\sigma^2$, in (4.10), asymptotically has a χ^2 distribution with (n-1) degrees of freedom. (It can of course be shown that this is true for all n.) We may reach this conclusion by Kupperman's result in (5.2), since $2I(1:2) = (\mu_1 - \mu_2)^2/\sigma^2$ for normal distributions with different means and the same variance, and each observation is a sample of size 1, so that $\hat{\mu}_i = x_i$, $\mu_2 = \bar{x}$, k = 1, and r = n. Example 5.3. We may infer that $$2\hat{I}(*:H_2(\mu,\sigma^2)) = n(\bar{x}-\mu)^2/\sigma^2 + (n-1)(\log(\sigma^2/s^2) - 1 + s^2/\sigma^2),$$ in (4.18), asymptotically has a χ^2 distribution with 2 degrees of freedom. We may reach this conclusion by using Wilks' theorem, since there are two parameters τ_1 , τ_2 and the null hypothesis implies $\tau_1 = \tau_2 = 0$. Example 5.4. Suppose we have a sample of n independent observations from a normal population with zero mean and unknown variance. From example 3.8, and the asymptotic properties, we may determine a confidence interval for the parameter σ^2 with asymptotic confidence coefficient $(1 - \alpha)$ from (5.3) $$n(\log (\sigma^2/y) - 1 + y/\sigma^2) \leq \chi_{\alpha}^2,$$ where $y = (1/n) \sum_{i=1}^{n} x_i^2$ and χ_{α}^2 is the tabulated value of χ^2 for 1 degree of freedom at the 100α % significance level. Since the left-hand side of (5.3) is a convex function of $1/\sigma^2$ for given y, the equality in (5.3) is satisfied for two values of σ^2 . (See examples 3.8 and 5.6.) We shall supplement the preceding statements by a more detailed examination of the asymptotic behavior of $2\hat{I}(*:H)$. First, let us examine more explicitly the relation between $T(x) = \hat{\theta}$ and the estimate of τ , $\hat{\tau}(x) = \tau(\hat{\theta})$, in (1.1). Since $$(5.4) \quad \left[\frac{d}{d\tau}\log M_2(\tau)\right]_{\tau=\tau(\hat{\theta})} = \left[\frac{d}{d\tau}\log M_2(\tau)\right]_{\tau=\tau(\theta)} + (\tau(\hat{\theta}) - \tau(\theta)) \left[\frac{d^2}{d\tau^2}\log
M_2(\tau)\right]_{\tau=\tau(\hat{\theta})},$$ where $\tau(\bar{\theta})$ lies between $\tau(\hat{\theta})$ and $\tau(\theta)$, with $\theta = [(d/d\tau) \log M_2(\tau)]_{\tau = \tau(\theta)}$, we get from lemma 4.3 of chapter 3, (1.1), and (5.4) the relation (5.5) $$\hat{\theta} - \theta = (\tau(\hat{\theta}) - \tau(\theta)) \operatorname{var}(\hat{\theta} | \tau(\bar{\theta})).$$ We recall to the reader's attention the inherent multidimensionality of the variables and the parameters, as already mentioned for lemmas 4.10 through 4.12 of chapter 3. In terms of the matrices (vectors) $\mathbf{\theta}' = (\theta_1, \ \theta_2, \cdots, \theta_k), \ \hat{\mathbf{\theta}}' = (\hat{\theta}_1, \ \hat{\theta}_2, \cdots, \hat{\theta}_k), \ \boldsymbol{\tau}' = (\tau_1, \ \tau_2, \cdots, \tau_k), \ \hat{\boldsymbol{\tau}}' = (\hat{\tau}_1, \ \hat{\tau}_2, \cdots, \hat{\tau}_k),$ we may write instead of (5.5): (5.6) $$\hat{\boldsymbol{\theta}} - \boldsymbol{\theta} = \boldsymbol{\Sigma}(\tau(\bar{\theta}))(\hat{\boldsymbol{\tau}} - \boldsymbol{\tau}),$$ or (5.7) $$\hat{\tau} - \tau = \Sigma^{-1}(\tau(\bar{\theta}))(\hat{\theta} - \theta),$$ where $\Sigma(\tau(\bar{\theta}))$ is the covariance matrix of the $\hat{\theta}$'s in the conjugate distribution with parameter $\tau(\bar{\theta})$. We may also derive (5.7) directly from $\tau(\hat{\theta}) = \tau(\theta) + (\hat{\theta} - \theta)[d\tau(\theta)/d\theta]_{\theta=\hat{\theta}}$ and lemmas 4.7 and 4.12 of chapter 3. If we write $\hat{I}(*:2; O_n) = m(\hat{\theta}) = \hat{\theta}\tau(\hat{\theta}) - \log M_2(\tau(\hat{\theta}))$ and follow the procedure in the proof of theorem 4.1 of chapter 3, we see that (5.8) $$\hat{I}(*:2; O_n) = I(*:2; O_n) + (\hat{\theta} - \theta)\tau(\theta) + (\hat{\theta} - \theta)^2/2 \operatorname{var}(\hat{\theta}|\tau(\bar{\theta})),$$ where $\bar{\theta}$ lies between $\hat{\theta}$ and θ . In terms of the matrices defined above for (5.6), we have (5.9) $$\hat{I}(*:2; O_n) = I(*:2; O_n) + (\hat{\theta} - \theta)'\tau + \frac{1}{2}(\hat{\theta} - \theta)'\Sigma^{-1}(\tau(\bar{\theta}))(\hat{\theta} - \theta).$$ If $\hat{\mathbf{\theta}}$ is of the form (1/n) times the sum of n independent, identically distributed random vectors with finite covariance matrix $\Sigma_1(\tau(\theta))$, then by the central limit theorem [Cramér (1937, pp. 112–113; 1955, pp. 114–116)], the distribution of $\sqrt{n}(\hat{\mathbf{\theta}} - \mathbf{\theta})$ tends to the multivariate normal distribution with zero means and covariance matrix $\Sigma_1(\tau(\theta)) = n\Sigma(\tau(\theta))$, and in particular $\hat{\mathbf{\theta}}$ converges to $\mathbf{\theta}$ in probability. [See, for example, Fraser (1957, pp. 208–215).] We see from lemma 4.7 in chapter 3 that $\tau(\theta)$ is a continuous function of θ for all τ in the interval of finite existence of $M_2(\tau)$. We may therefore apply a theorem of Mann and Wald (1943) on stochastic limits, to conclude that the convergence in probability of $\hat{\theta}$ to θ implies the convergence in probability of $\tau(\hat{\theta})$ to $\tau(\theta)$. [Cf. Cramér (1946a, pp. 252–255).] Since $\tau(\bar{\theta})$ lies between $\tau(\hat{\theta})$ and $\tau(\theta)$ [that is, each component of $\tau(\bar{\theta})$ lies between the corresponding component of $\tau(\hat{\theta})$ and $\tau(\theta)$], $\tau(\bar{\theta})$ converges in probability to $\tau(\theta)$, and from lemmas 4.3 and 4.10 in chapter 3 and the Mann and Wald (1943) theorem, $\Sigma(\tau(\bar{\theta}))$ converges in probability to $\Sigma(\tau(\theta))$. From (5.7) we see that the distribution of $\hat{\tau} - \tau$ tends to the multivariate normal distribution with zero means and covariance matrix $G^*(\theta) = G^{*-1}(\tau) = \Sigma^{-1}(\tau(\theta))$, where the matrices are defined in lemmas 4.10 and 4.11 of chapter 3. This is a well-known classical property of maximum-likelihood estimates. At this point it is appropriate to remind the reader that the results in (5.6), (5.7), (5.9), and the previous paragraph are in terms of the parameters of the distribution of $\hat{\theta}$, and not explicitly in terms of the parameters for a single observation. We must therefore remember that (5.10) $$\Sigma(\tau(\theta)) = O(1/n), \quad \mathbf{G}^*(\theta) = O(n).$$ If the sample O_n is from the population with generalized density $f_2(x)$, then $\theta = \theta(0)$, $\tau = 0$, $I(*:2; O_n) = 0$, and $2\hat{I}(*:2; O_n)$, as may be seen from (5.9), is asymptotically the quadratic form of the exponent of a multivariate normal distribution and therefore is distributed as χ^2 with k degrees of freedom [cf. Rao (1952, p. 55), problem 10.21 in chapter 9]. Note the similarity between (5.9) with $\tau = 0$ and (6.4) of chapter 2 with $\hat{\theta} - \theta$ as ($\Delta\theta$). We may now determine a confidence region with asymptotic confidence coefficient $1 - \alpha$ for the parameters of $f_2(x)$ from the inequality (5.11) $$2\hat{I}(*:2; O_n) \le \chi^2(\alpha, k),$$ where $\chi^2(\alpha, k)$ is the value for which the χ^2 -distribution with k degrees of freedom yields Prob ($\chi^2 \ge \chi^2(\alpha, k)$) = α . Since $2\hat{I}(*:2; O_n)$ is a convex function, the inequality (5.11) yields two limiting values for a single parameter, values within a closed curve for two parameters, values within a closed surface for three parameters, etc. We shall give some examples before we take up the distribution under the alternative hypothesis. Example 5.5. We saw in example 1.1 that for the binomial distribution, $2\hat{l}(*:2; O_n) = 2n(\hat{p} \log{(\hat{p}/p_2)} + \hat{q} \log{(\hat{q}/q_2)})$, where $y = n\hat{p}$ is the observed number of successes. We thus have a 95% confidence interval for p_2 determined by the inequality (5.12) $$2n \left(\hat{p} \log \frac{\hat{p}}{p_2} + \hat{q} \log \frac{\hat{q}}{q_2} \right) \le 3.84.$$ In table 5.1 are some 95% confidence intervals for the binomial computed by Howard R. Roberts. [See Roberts (1957) for a chart of confidence belts.] TABLE 5.1 | p | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |------|---------------------|----------------|-------------------------|----------------|-------------------------|----------------|-------------------------|-------------------------|-------------------------|----------------|------------------------| | 10 | 0
0.174 | 0.006
0.372 | 0.036
0.499 | 0.085
0.607 | 0.146
0.700 | 0.217
0.783 | 0.300
0.854 | 0.393
0.915 | 0.501
0.964 | | 0.826
1. 000 | | 20 | 0
0.091 | 0.017
0.278 | 0.067
0.405 | 0.132
0.516 | | 0.291
0.709 | 0.383
0.793 | 0.484
0.868 | 0.595
0.933 | 0.722
0.983 | 0.909
1. 000 | | 30 | 0
0.062 | 0.025
0.240 | 0.085
0.364 | | 0.238
0.578 | | 0.422
0.762 | | 0.636
0.915 | | 0.938
1. 000 | | 50 | 0
0.038 | 0.037 | | 0.185 | 0.272
0.538 | 0.364 | 0.462 | 0.565 | | 0.797 | 0.962
1.000 | | 100 | 0.019 | 0.051 | 0.130 | 0.216 | 0.307
0.498 | 0.403 | 0.502
0.693 | 0.606 | 0.715
0.870 | 0.831 | 0.981
1.000 | | 250 | 0 | 0.067
0.141 | 0.154
0.253 | 0.246 | 0.450
0.341
0.462 | 0.438 | 0.538 | 0.641 | 0.747 | 0.859 | 0.992
1.000 | | 1000 | 0.008
0
0.002 | 0.082 | 0.233
0.176
0.226 | 0.272 | 0.370 | 0.469 | 0.639
0.570
0.630 | 0.736
0.671
0.728 | 0.846
0.774
0.824 | | 0.998
1.000 | Example 5.6. We saw in example 1.4 that for a sample from a normal distribution with zero mean, $2\hat{I}(*:2; O_n) = n(\log (\sigma_2^2/y) - 1 + y/\sigma_2^2)$, where $y = (1/n) \sum_{i=1}^n x_i^2$. We thus have a 95% confidence interval for σ_2^2 determined by the inequality (cf. example 3.8) (5.13) $$n\left(\log\frac{\sigma_2^2}{y} - 1 + \frac{y}{\sigma_2^2}\right) \le 3.84.$$ For n = 10 we get $y/2.15 \le \sigma_2^2 \le y/0.359$, and for n = 100 we get $y/1.303 \le \sigma_2^2 \le y/0.748$. Example 5.7. We get from example 1.5 that for samples from a bivariate normal distribution with zero means and unit variances $$2\hat{I}(*:2;O_n) = n \left(\log \frac{4(1-\rho_2^2)}{y_1 y_2} - 2 + \frac{y_1 + y_2 - \rho_2 (y_2 - y_1)}{2(1-\rho_2^2)} \right),$$ where $y_1 = \frac{1}{n} \sum_{i=1}^{n} (x_{1i} - x_{2i})^2$, $y_2 = \frac{1}{n} \sum_{i=1}^{n} (x_{1i} + x_{2i})^2$. We thus have a 95% confidence interval for ρ_2 determined by the inequality $$(5.14) n\left(\log\frac{4(1-\rho_2^2)}{y_1y_2}-2+\frac{y_1+y_2-\rho_2(y_2-y_1)}{2(1-\rho_2^2)}\right)\leq 3.84.$$ We remark here that according to section 3.4 of chapter 12, for a sample O_n from a bivariate normal distribution with no specification of the means and variances, a 95% confidence interval for ρ is determined by the inequality $$(5.15) (n-1)\left(\log\frac{1-\rho^2}{1-r^2}-2+\frac{2(1-r\rho)}{1-\rho^2}\right)\leq 3.84,$$ where r is the usual sample product-moment correlation coefficient. Example 5.8. We saw in example 5.3 that $2\hat{l}(*:H_2(\mu,\sigma^2)) = n(\bar{x}-\mu)^2/\sigma^2 + (n-1)(\log(\sigma^2/s^2)-1+s^2/\sigma^2)$, with s^2 the unbiased sample variance, is asymptotically distributed as χ^2 with 2 degrees of freedom if the normal population parameters are μ and σ^2 . Accordingly, for a sample O_n from a normal distribution, a 95% confidence region for (μ, σ^2) is determined by the inequality (5.16) $$\frac{n(\bar{x}-\mu)^2}{\sigma^2} + (n-1)\left(\log\frac{\sigma^2}{s^2} - 1 + \frac{s^2}{\sigma^2}\right) \le 5.99.$$ Example 5.9. We saw in example 1.6 that $$2\hat{I}(*:2; O_n) = 2(n(L - \theta_2) - 1 - \log n(L - \theta_2)),$$ with $L=\min{(x_1,x_2,\cdots,x_n)}$, for a sample from the population defined by $f_2(x)=\exp{[-(x-\theta_2)]}$, $\theta_2\leq x<\infty$. Accordingly, for a sample O_n from the population defined by the density $f_2(x)$, a 95% confidence interval for θ_2 is determined by the inequality (5.17) $$n(L -
\theta_2) - 1 - \log n(L - \theta_2) \le 1.92.$$ We find that $0.057 \le n(L - \theta_2) \le 4.40$, that is, $L - 4.40/n \le \theta_2 \le L - 0.057/n$. On the other hand, if the sample O_n is not from the population with generalized density $f_2(x)$, then, as may be seen from (5.9), asymptotically, (5.18) $$E(2\hat{I}(*:2;O_n)) = 2I(*:2;O_n) + k = O(n) + k,$$ and (5.19) $$2\hat{I}(*:2; O_n) - 2I(*:2; O_n) - 2(\hat{\theta} - \theta)'\tau$$ is distributed as χ^2 with k degrees of freedom. We shall now show that (5.19) is twice the logarithm of a likelihood ratio. Since $$\begin{split} I(*:2;O_n) + (\hat{\theta} - \theta)\tau(\theta) &= \theta\tau(\theta) - \log M_2(\tau(\theta)) + (\hat{\theta} - \theta)\tau(\theta) \\ &= \hat{\theta}\tau(\theta) - \log M_2(\tau(\theta)) = \log (f^*(x)/f_2(x)), \end{split}$$ we may write [see (5.9)] (5.20) $$2\hat{I}(*:2; O_n) - 2I(*:2; O_n) - 2(\hat{\theta} - \theta)'\tau$$ $= 2\hat{I}(*:2; O_n) - 2(\hat{\theta}'\tau - \log M_2(\tau'))$ $= 2\log \frac{\tau}{f_2(x)} - 2\log \frac{f^*(x)}{f_2(x)} = 2\log \frac{\tau}{f^*(x)}$ $= (\hat{\theta} - \theta)'\Sigma^{-1}(\tau(\bar{\theta}))(\hat{\theta} - \theta) = (\hat{\tau} - \tau)'\Sigma(\tau(\bar{\theta}))(\hat{\tau} - \tau).$ The test that rejects the null hypothesis [the sample is from the population with generalized density $f_2(x)$] if the value of $2I(*:2; O_n)$ is large is consistent (has a power that tends to 1 as the sample size increases indefinitely). We see this by noting that if the sample is from the population with generalized density $f_2(x)$, then for large samples $\operatorname{Prob}\left[2I(*:2;O_n) \geq \chi^2(\alpha,k)\right] = \alpha$, where $\chi^2(\alpha,k)$ depends only on α and the degrees of freedom k. On the other hand, if the sample is not from the population with generalized density $f_2(x)$, then from the weak law of large numbers, or Khintchine's theorem [cf. section 3 of chapter 4; Cramér (1946a, p. 253), Feller (1950, p. 191)], for any $\epsilon > 0$, $\beta > 0$, for sufficiently large n [see (5.18)]: Prob $[2I(*:2;O_n) \geq 2I(*:2;O_n) + k - \epsilon] \geq 1 - \beta$. Note that for large enough n, $2I(*:2;O_n) + k - \epsilon \geq \chi^2(\alpha,k)$, even for alternatives very close to the null hypothesis, close in the sense of small $I(*:2;O_1)$, since $I(*:2;O_n) = nI(*:2;O_1)$. In order to derive a more useful statement about the asymptotic distribution under the alternative hypothesis than that about the expression in (5.19), we proceed as follows. Since $$(5.21) \quad (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta} + \boldsymbol{\Sigma}(\tau(\bar{\boldsymbol{\theta}}))\boldsymbol{\tau})'\boldsymbol{\Sigma}^{-1}(\tau(\bar{\boldsymbol{\theta}}))(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta} + \boldsymbol{\Sigma}(\tau(\bar{\boldsymbol{\theta}}))\boldsymbol{\tau})$$ $$= (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})'\boldsymbol{\Sigma}^{-1}(\tau(\bar{\boldsymbol{\theta}}))(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}) + 2(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})'\boldsymbol{\tau} + \boldsymbol{\tau}'\boldsymbol{\Sigma}(\tau(\bar{\boldsymbol{\theta}}))\boldsymbol{\tau},$$ we have from (5.6), (5.9), and (5.21): (5.22) $$2\hat{I}(*:2; O_n) - 2I(*:2; O_n) + \tau' \Sigma(\tau(\bar{\theta})) \tau$$ $$= (\hat{\theta} - \theta + \Sigma(\tau(\bar{\theta})) \tau)' \Sigma^{-1}(\tau(\bar{\theta})) (\hat{\theta} - \theta + \Sigma(\tau(\bar{\theta})) \tau)$$ $$= \hat{\tau}' \Sigma(\tau(\bar{\theta})) \hat{\tau}.$$ We saw by the *central limit theorem* that the distribution of $\sqrt{n}(\hat{\theta} - \theta)$ tends to a multivariate normal distribution with zero means and covariance matrix $\Sigma_1(\tau(\theta)) = n\Sigma(\tau(\theta))$. Consequently, asymptotically (cf. section 3 in chapter 12), (5.23) $$\hat{I}(*:2; O_n) = \hat{\boldsymbol{\theta}}'\hat{\boldsymbol{\tau}} - \boldsymbol{\theta}(0)'\hat{\boldsymbol{\tau}} - \frac{1}{2}\hat{\boldsymbol{\tau}}'\boldsymbol{\Sigma}(0)\hat{\boldsymbol{\tau}},$$ where $\hat{\boldsymbol{\theta}} = \boldsymbol{\theta}(0) + \boldsymbol{\Sigma}(0)\hat{\boldsymbol{\tau}}$ [cf. (5.6) with $\boldsymbol{\tau} = \boldsymbol{0}$], so that $$(5.24) 2\hat{I}(*:2; O_n) = (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}(0))'\boldsymbol{\Sigma}^{-1}(0)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}(0))$$ $$= n(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}(0))'\boldsymbol{\Sigma}_1^{-1}(0)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}(0)) = \hat{\boldsymbol{\tau}}'\boldsymbol{\Sigma}(0)\hat{\boldsymbol{\tau}},$$ and similarly, (5.25) $$2I(*:2; O_n) = (\theta(\tau) - \theta(0))'\Sigma^{-1}(0)(\theta(\tau) - \theta(0))$$ = $n(\theta(\tau) - \theta(0))'\Sigma_1^{-1}(0)(\theta(\tau) - \theta(0)) = \tau'\Sigma(0)\tau$. We conclude from (5.22), (5.24), and (5.25) that $\Sigma(\tau(\bar{\theta})) = \Sigma(0)$ and therefore that $2\tilde{I}(*:2; O_n)$ asymptotically is distributed as noncentral χ^2 with k degrees of freedom and noncentrality parameter $2I(*:2; O_n)$. Note that this is consistent with (5.18) since the expected value of noncentral χ^2 is the sum of the noncentrality parameter and the degrees of freedom. (See problem 10.22 in chapter 9 and section 6.1 in chapter 12.) Accordingly, whenever $f_2(x)$ is itself a member of an exponential family, as will be the case in most of the applications in the subsequent chapters, we see that (5.26) $$2\hat{I}(^*: H_2) = 2 \log \frac{\max_{\tau \in \Omega} f^*(x)}{\max_{\tau \in \omega_2} f^*(x)} = \min_{\tau \in \omega_2} (\hat{\tau} - \tau)' \Sigma(0)(\hat{\tau} - \tau),$$ where Ω is the k-dimensional space of the τ 's and ω_2 is the subspace of Ω for which $f^*(x)$ ranges over the populations of H_2 . If ω_2 is an r-dimensional subspace of Ω , we may then infer from Wilks (1938a) and Wald (1943) that $2f(*:H_2)$ is distributed asymptotically as χ^2 with k-r degrees of freedom if the sample is from a population belonging to those specified by H_2 , and that $2f(*:H_2)$ is asymptotically distributed as noncentral χ^2 with k-r degrees of freedom and noncentrality parameter $2f(*:H_2)$ in the contrary case. [Cf. Bartlett (1955, pp. 225-226), Bateman (1949), Cramér (1946a, pp. 424-434, 506), Fisher (1922a, 1924), Neyman (1949), Rao (1952, pp. 55-62), Weibull (1953).] We compare the exact probabilities that may be computed with the approximations from the asymptotic theory for particular illustrations in section 4 of chapter 6 and section 4 of chapter 7. We remark that for many of the subsequent applications exact distributions are available, or better approximations may be found than those provided by the general theory. In each instance the asymptotic behavior agrees with the conclusions from the general theory. ### 6. ESTIMATE OF J(*, 2) For the conjugate distribution $f^*(x) = e^{\tau T(x)} f_2(x) / M_2(\tau)$ defined in section 1, we find that (6.1) $$J(*, 2) = \int (f^*(x) - f_2(x)) \log \frac{f^*(x)}{f_2(x)} d\lambda(x)$$ $$= (\theta - \theta(0))\tau(\theta).$$ Note that this is corollary 3.2 of chapter 3 with $\tau_1 = \tau$, $\tau_2 = 0$. We estimate J(*, 2) by (6.2) $$\hat{J}(*,2) = (\hat{\theta} - \theta(0))\tau(\hat{\theta}),$$ where $$T(x) = \hat{\theta} = \left[\frac{d}{d\tau} \log M_2(\tau)\right]_{\tau = \tau(\hat{\theta})}$$. (See section 1.) The implicit multidimensionality may be exhibited by writing (6.3) $$\hat{J}(*,2) = (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}(0))'\hat{\boldsymbol{\tau}},$$ where the matrices are defined in (5.6). By proceeding as in section 5, we see that if the sample is from the population $f_2(x)$ specified by the null hypothesis, asymptotically (6.4) $$\hat{J}(*,2) = (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}(0))'\boldsymbol{\Sigma}^{-1}(0)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}(0))$$ is distributed as χ^2 with k degrees of freedom. On the other hand, from (5.23) (6.5) $$\hat{J}(*,2) = \hat{\tau}' \Sigma(0) \hat{\tau},$$ that is, asymptotically $\hat{J}(*,2)$ is equal to $2\hat{I}(*:2)$ and therefore the conclusions about the asymptotic behavior of $\hat{J}(*,2)$ are the same as for $2\hat{I}(*:2)$. Note the similarity with the relation between $J(\theta, \theta + \Delta\theta)$ and $2I(\theta:\theta + \Delta\theta)$ in section 6 of chapter 2. We shall denote the minimum value of $\hat{J}(*, 2)$ as f_2 ranges over the populations of H_2 by $\hat{J}(*, H_2)$. The asymptotic behavior of $\hat{J}(*, H_2)$ is the same as that of $2\hat{I}(*: H_2)$. #### 7. PROBLEMS - 7.1. Consider the normal distributions $N(\mu_i, \sigma^2)$, $i = 1, 2, \mu_1 < \mu_2$. Show that for all regions A for which $\int_A f_1(x) dx = 1 \alpha$, the maximum of $\int_A f_1(x) \log \frac{f_1(x)}{f_2(x)} dx$ occurs for the region $A = \{x : -\infty < x < g\}$. - 7.2. Show that the critical region in example 3.3 is uniformly most powerful. - 7.3. If in example 3.4 $p_1 = 0.20$, $p_2 = 0.80$, what is the critical value p? If n = 25, what are the errors of classification? - 7.4. Show that the critical region in example 3.8 is uniformly most powerful. - 7.5. Show that the critical region in example 3.11 is uniformly most powerful. - 7.6. Show that the critical region in example 3.12 is most powerful. - 7.7. Sketch the confidence region of (5.16) for n = 100, $\mu = 0$, $\sigma^2 = 1$. - 7.8. Show that the unrestricted minimum of (4.18) with respect to σ^2 is $\frac{n-1}{2}\log\left(1+\frac{n(\bar{x}-\mu)^2}{(n-1)s^2}\right)$ which for large *n* is approximately $\frac{n(\bar{x}-\mu)^2}{2s^2}$. - 7.9. Prove the statement at the end of example 1.1. - 7.10. Suppose the hypothesis H_i specifies the normal distribution $N(\mu_i, \sigma_i^2)$, i = 1, 2. Develop the test for the null hypothesis H_2 paralleling the procedures in the examples in section 3. [Cf. Kupperman (1957, pp. 94-96).] - 7.11. Show that the classification procedure described in the first half of
section 2, when r = 2, is such that the probability of misclassification tends to zero as the sample size tends to infinity. (Cf. problem 7.28 in chapter 3 and problem 4.22 in chapter 4.) # Multinomial Populations #### 1. INTRODUCTION We shall now undertake the application of the principles and results developed and derived in the preceding chapters to the analysis of samples for tests of statistical hypotheses. In this chapter we take up the analysis of one or more samples from multinomial populations and in the next chapter the analysis for Poisson populations. The analyses in this chapter provide the basic structure for the analyses of contingency tables in chapter 8. We shall see that the analyses in chapters 6, 7, and 8 are in many respects similar to those of the analysis of variance. Indeed, we shall see in chapters 10 and 11 that the same basic technique applied to the analysis of samples from normal populations for the general linear hypothesis leads to the analysis of variance and its multivariate generalization. We shall use the minimum discrimination information statistic obtained by replacing population parameters in the expression for the minimum discrimination information by best unbiased estimates under the various hypotheses. For the special type of multinomial distribution that arises when sampling words or species of animals, an approximately unbiased estimate of entropy is given by Good (1953, p. 247). Miller and Madow (1954) give the maximum-likelihood estimate, and its asymptotic distribution, of the Shannon-Wiener measure of information for a multinomial. All the formulas in chapters 6, 7, and 8 may be expressed in terms of the form $n \log n$ or $m \log n$ (all logarithms herein are to the Naperian base e). Table I on pages 367-377 gives values of $\log n$ and $n \log n$ for n = 1 through 1000. I am indebted to Sheldon G. Levin for the computation of the table of $n \log n$. Tables of $n \log n$ to base 2 and base 10 for n = 1 through 1000 may be found in a technical report by Miller and Ross (1954). Fisher (1956, pp. 137-138) lists $n \log n$ to base 10 for n = 1 through 150. Bartlett (1952) lists values, all to the Naperian base e, of $-\log p$, $-p \log p$, for p = 0.00, 0.01, \cdots , 0.99, 1.00, and $-(p \log p)$ $+ q \log q$), p + q = 1, p = 0.00, 0.01, $\cdot \cdot \cdot$, 0.50. Klemmer, in an article on pages 71-77 of Quastler (1955), gives, all to the base 2, a table of $\log n$, n = 1 through 999, and a table of $-p \log p$ for p = 0.001 through 0.999. He also refers to AFCRC-TR 54-50 which contains, all to the base 2, a table of $\log n$ to 5 decimal places, n = 1 through 1000, a table of $n \log n$ to 5 decimal places, n = 1 through 500, and a table of $-p \log p$, $p \le 0.2500$ to 4 decimal places and $p \ge 0.251$ to 3 decimal places. Dolanský and Dolanský (1952) have tabulated, all to the base 2, $-\log p$, $-p \log p$, and $-(p \log p + q \log q)$, p + q = 1. #### 2. BACKGROUND Suppose two simple statistical hypotheses, say H_1 and H_2 , specify the probabilities of two hypothetical c-valued populations (c categories or classes), $$(2.1) Hi: pi1, pi2, \cdot \cdot \cdot, pic, pi1 + pi2 + \cdot \cdot \cdot + pic = 1, i = 1, 2.$$ The mean information per observation from the population hypothesized by H_1 , for discriminating for H_1 against H_2 , is (see section 2 of chapter 1 for the general populations, of which this is a special case) $$(2.2) I(1:2) = p_{11} \log \frac{p_{11}}{p_{21}} + p_{12} \log \frac{p_{12}}{p_{22}} + \cdots + p_{1c} \log \frac{p_{1c}}{p_{2c}}$$ The mean information per observation from the population hypothesized by H_2 , for discriminating for H_2 against H_1 , is (see section 3 of chapter 1) $$(2.3) I(2:1) = p_{21} \log \frac{p_{21}}{p_{11}} + p_{22} \log \frac{p_{22}}{p_{12}} + \cdots + p_{2c} \log \frac{p_{2c}}{p_{1c}}$$ The divergence between H_1 and H_2 , a measure of the difficulty of discriminating between them, is (see section 3 of chapter 1) $$(2.4) J(1,2) = I(1:2) + I(2:1) = (p_{11} - p_{21}) \log \frac{p_{11}}{p_{21}} + (p_{12} - p_{22}) \log \frac{p_{12}}{p_{22}} + \cdots + (p_{1c} - p_{2c}) \log \frac{p_{1c}}{p_{2c}}$$ According to the general conclusions in chapter 2, $$(2.5) I(1:2) \ge 0, I(2:1) \ge 0, J(1,2) \ge 0,$$ where the equality in (2.5) is satisfied in each case, if and only if $p_{1i} = p_{2i}$, $i = 1, 2, \dots, c$, that is, the hypotheses imply the same population. The mean discrimination information and divergence for a random sample of N independent observations, O_N , are, (2.6) $$I(1:2; O_N) = NI(1:2) = N \sum_{i=1}^{c} p_{1i} \log (p_{1i}/p_{2i}),$$ (2.7) $$I(2:1; O_N) = NI(2:1) = N \sum_{i=1}^{c} p_{2i} \log (p_{2i}/p_{1i}),$$ (2.8) $$J(1,2; O_N) = NJ(1,2) = N \sum_{i=1}^{c} (p_{1i} - p_{2i}) \log (p_{1i}/p_{2i}).$$ #### 3. CONJUGATE DISTRIBUTIONS Consider the N-total multinomial distribution on a c-valued population (c categories or classes), (3.1) $$p(x) = p(x_1, x_2, \cdots, x_c) = \frac{N!}{x_1! \cdots x_c!} p_1^{x_1} p_2^{x_2} \cdots p_c^{x_c},$$ where $p_i > 0$, $i = 1, 2, \dots, c$, $p_1 + p_2 + \dots + p_c = 1$, $x_1 + x_2 + \dots + x_c = N$. Suppose that $p^*(x)$ is any distribution on the c-valued population such that every possible observation from $p^*(x)$ is also a possible observation from p(x). This is to avoid the contingency that $p^*(x) \neq 0$ and p(x) = 0. (See section 7 of chapter 2.) Theorem 2.1 of chapter 3 permits us to assert: LEMMA 3.1. The least informative distribution on the c-valued population, with given expected values, for discrimination against the multinomial distribution p(x) in (3.1), namely the distribution $p^*(x)$ such that $E^*(x_i) = \theta_i$ and $$\sum_{x_1+\cdots+x_c=N} p^*(x) \log \frac{p^*(x)}{p(x)}$$ is a minimum, is the distribution (3.2) $$p^*(x) = e^{\tau_1 x_1 + \cdots + \tau_c x_c} p(x) / (p_1 e^{\tau_1} + \cdots + p_c e^{\tau_c})^N$$ $$= \frac{N!}{x_1! \cdots x_c!} (p_1^*)^{x_1} \cdots (p_c^*)^{x_c},$$ where $p_i^* = p_i e^{\tau_i} / (p_1 e^{\tau_1} + \cdots + p_c e^{\tau_c})$, $i = 1, 2, \cdots, c$, the τ 's are real parameters, and $\theta_i = (\partial/\partial \tau_i) \log (p_1 e^{\tau_1} + \cdots + p_c e^{\tau_c})^N$. Note that the least informative distribution $p^*(x)$ here is a multinomial distribution. A simple numerical illustration of lemma 3.1 is in example 2.1 of chapter 3. The multinomial distribution $p^*(x)$ in (3.2) is the conjugate distribution (see section 1 of chapter 5) of the multinomial distribution p(x). The following are derived by the procedures exemplified in chapter 3: (3.3) $$\theta_i = Np_i^* = Np_i e^{\tau_i}/(p_1 e^{\tau_1} + \cdots + p_c e^{\tau_c}), \quad i = 1, 2, \cdots, c,$$ (3.4) $$\theta_i/\theta_j = p_i e^{\tau_i}/p_j e^{\tau_j}, \quad i, j = 1, 2, \cdots, c,$$ (3.5) $$\tau_{i} = \log (\theta_{i}/Np_{i}) + \log k, \quad i = 1, 2, \cdots, c,$$ $$k = p_{1}e^{\tau_{1}} + \cdots + p_{c}e^{\tau_{c}} > 0,$$ (3.6) $$I(*:2; O_N) = \sum_{x_1 + \dots + x_c = N} p^*(x) \log \frac{p^*(x)}{p(x)}$$ $$= \tau_1 \theta_1 + \dots + \tau_c \theta_c - N \log (p_1 e^{\tau_1} + \dots + p_c e^{\tau_c})$$ $$= \theta_1 \log \frac{\theta_1}{Np_1} + \dots + \theta_c \log \frac{\theta_c}{Np_c},$$ (3.7) $$J(*, 2; O_N) = \sum_{x_1 + \dots + x_c = N} (p^*(x) - p(x)) \log \frac{p^*(x)}{p(x)}$$ $$= \tau_1(\theta_1 - Np_1) + \dots + \tau_c(\theta_c - Np_c)$$ $$= (\theta_1 - Np_1) \log \frac{\theta_1}{Np_1} + \dots + (\theta_c - Np_c) \log \frac{\theta_c}{Np_c}$$ Since the value of k in (3.5) is arbitrary, we shall take k = 1 for convenience so that in a homogeneous notation (3.8) $$\tau_i = \log (\theta_i/Np_i), \quad i = 1, 2, \cdots, c.$$ On the other hand, since $x_c = N - x_1 - x_2 - \cdots - x_{c-1}$, we may also set $\tau_c = 0$, or $\log k = -\log (\theta_c/Np_c)$, in which case (3.9) $$\tau_i = \log \frac{\theta_i p_c}{p_i \theta_c}, \quad i = 1, 2, \cdots, c - 1,$$ $$\tau_c = 0.$$ For applications to problems of tests of hypotheses about multinomial populations, the basic distribution in (3.1) will be that of the null hypothesis H_2 , whereas the conjugate distribution will range over the populations of the alternative hypothesis H_1 . #### 4. SINGLE SAMPLE #### 4.1. Basic Problem Suppose we have a random sample of N independent observations, $x_1, x_2, \dots, x_c, x_1 + x_2 + \dots + x_c = N$, with a multinomial distribution on a c-valued population (c categories or classes), and we want to test the null hypothesis H_2 that the sample is from the population specified by $$(4.1) H_2:(p) = (p_1, p_2, \cdots, p_c), p_1 + p_2 + \cdots + p_c = 1,$$ against the alternative hypothesis H_1 that the sample is from any possible c-valued multinomial population. We take for the conjugate distribution (3.2) the one with parameters the same as the observed best unbiased sample estimates, that is, $\hat{\theta}_i = N\hat{p}_i^* = x_i$, $i = 1, 2, \dots, c$. From (3.8) (4.2) $$\hat{\tau}_i = \log \frac{x_i}{Np_i}, \quad i = 1, 2, \cdots, c,$$ and the minimum discrimination information statistic is (4.3) $$f(*:2; O_N) = x_1 \log \frac{x_1}{Np_1} + \cdots + x_c \log \frac{x_c}{Np_c},$$ and the corresponding estimate of the divergence is (4.4) $$\hat{J}(*, 2; O_N) = N\left[\left(\frac{x_1}{N} - p_1\right) \log \frac{x_1}{Np_1} + \cdots + \left(\frac{x_c}{N} - p_c\right) \log \frac{x_c}{Np_c}\right].$$ Note that (4.3) is (2.6) with the substitution of x_i/N for p_{1i} and p_i for p_{2i} , and that (4.4) is (2.8) with the same substitutions. (See problem 7.15.) Under the null hypothesis H_2 of (4.1), it follows from sections 5 and 6 of chapter 5 that $2I(*:2; O_N)$ and $J(*, 2; O_N)$ are asymptotically distributed as χ^2 with (c-1) degrees of freedom. Under an alternative, $2I(*:2; O_N)$ and $J(*, 2; O_N)$ are asymptotically distributed as noncentral χ^2 with (c-1) degrees of freedom and noncentrality parameters $2I(*:2; O_N)$ and $J(*, 2; O_N)$ respectively, where $I(*:2; O_N)$ and
$J(*, 2; O_N)$ are (4.3) and (4.4) with x_i/N , $i=1,2,\cdots$, c, replaced by the alternative probability. [See the last member of (3.6).] Note that we may also write (4.3) as $$f(*:2; O_N) = \sum_{i=1}^{c} x_i \log x_i - \sum_{i=1}^{c} x_i \log p_i - N \log N,$$ for computational convenience with the table of $n \log n$. Since $\log x \le x - 1$, x > 0, and the equality holds if and only if x = 1 [see Hardy, Littlewood, and Pólya (1934, p. 106, th. 150), or the statement following (2.7) in chapter 4], it follows that $(a - b)/a \le \log(a/b) \le (a - b)/b$, a/b > 0, and the equalities hold if and only if a = b. We may therefore use as a first approximation to $\log(a/b)$ the mean of its upper and lower bounds, that is, $\log (a/b) \approx \frac{1}{2}[(a-b)/a + (a-b)/b] = (a^2 - b^2)/2ab$, the approximation being better the closer a/b is to 1. This approximation in (4.3) and (4.4) yields (4.5) $$2I(*:2; O_N) \approx \sum_{i=1}^{c} \frac{(x_i - Np_i)^2}{Np_i} = \chi^2,$$ $$(4.6) \quad \hat{J}(*,2;O_N) \approx \frac{1}{2} \sum_{i=1}^{c} \frac{(x_i - Np_i)^2}{Np_i} + \frac{1}{2} \sum_{i=1}^{c} \frac{(x_i - Np_i)^2}{x_i} = \frac{1}{2} (\chi^2 + \chi'^2),$$ where the first sum in (4.6) is K. Pearson's χ^2 , and the second sum in (4.6) is Neyman's χ'^2 [Haldane (1955), Jeffreys (1948, pp. 170–173), Neyman (1929)]. We remark that $2I(*:2; O_N)$ is $-2 \log \lambda$, with λ the likelihood-ratio test [see, for example, Fisher (1922b, pp. 357-358), Good (1957, p. 863), Wilks (1935a, p. 191)]. It is interesting to recall that Wilks (1935a) remarked that there was no theoretical reason why χ^2 should be preferred to $-2 \log \lambda$ and that $-2 \log \lambda$ can be computed with fewer operations than χ^2 . Good (1957, p. 863) remarks that (I use the notation of this section) (i) $2I(*:2; O_N)$ more closely puts the possible samples in order of their likelihoods under the null hypothesis, as compared with χ^2 , for given N, c, p_1 , p_2 , \cdots , p_c , (ii) the calculation of $2I(*:2; O_N)$ can be done by additions, subtractions, and table-lookups only, when tables of $2n \log n$ (to base e) are available, but the calculation is less "well-conditioned" than for χ^2 , in the sense that more significant figures must be held, (iii) χ^2 is a simpler mathematical function of the observations and it should be easier to approximate closely to its distribution, given the null hypothesis. # 4.2. Analysis of $\hat{I}(*:2; O_N)$ Significant values of $\hat{I}(*:2; O_N)$ may imply groupings of the categories as suggested by the nature of the data. $\hat{I}(*:2; O_N)$ in (4.3) can be additively analyzed to check such hypothetical groupings. We consider first an analysis into (c-1) dichotomous comparisons of each category with the pool of all its successor categories. [Cf. Cochran (1954), Lancaster (1949).] Let us define $$N_i = N - x_1 - x_2 - \cdots - x_i,$$ $i = 1, 2, \cdots, c - 1,$ $q_i = 1 - p_1 - p_2 - \cdots - p_i,$ $i = 1, 2, \cdots, c - 1.$ The analysis in table 4.1 is derived in a straightforward fashion from these definitions and the properties of the logarithm. The convexity property $$a_1 \log \frac{a_1}{b_1} + \cdots + a_n \log \frac{a_n}{b_n} \ge (a_1 + \cdots + a_n) \log \frac{a_1 + \cdots + a_n}{b_1 + \cdots + b_n}$$ where $a_i > 0$, $b_i > 0$, $i = 1, \dots, n$, and the equality holds if and only if $a_i | b_i = \text{constant}$, $i = 1, 2, \dots, n$ [see Hardy et al. (1934, p. 97, th. 117); also example 3.2 of chapter 2], ensures that the dichotomous comparisons are made with the minimum discrimination information statistic, that is, each "between component" is the minimum value of the "within component" below it in table 4.1 for the given grouping. TABLE 4.1 | Component due to | Information | | | | |--|--|--|---|--| | Within categories $c-1$ to $c x_1$, \cdots , x_{c-2} | $2\left(x_{c-1}\log\frac{x_{c-1}q_{c-2}}{N_{c-2}p_{c-1}}+x_{c}\right)$ | $\log \frac{x_c q_{c-2}}{N_{c-2} p_c} \bigg)$ | 1 | | | Between category $c-2$ and categories $(c-1)+c x_1, \cdots, x_{c-3}$ | $2\left(x_{c-2}\log\frac{x_{c-2}q_{c-3}}{N_{c-3}p_{c-2}}+(N_{c-3}q_{c-2})\right)$ | $(x_{c-3} - x_{c-2}) \log \frac{(N_{c-3} - x_{c-2})}{N_{c-3}}$ | $-\frac{x_{c-2})q_{c-3}}{-3q_{c-2}}$ 1 | | | | • | | | | | | • | • | • | | | Within categories 3 to $c x_1, x_2$ | $2\left(x_3\log\frac{x_3q_2}{N_2p_3}+x_4\log\frac{x_3}{N_2}\right)$ | $\frac{x_4q_2}{y_2p_4}+\cdots+x_c\log\frac{x_p}{y_p}$ | $\left(\frac{c_c q_2}{\sqrt{2p_c}}\right) \qquad c-3$ | | | Between category 2 and categories $3 + \cdots + c x_1 $ | $2\left(x_2\log\frac{x_2q_1}{N_1p_2}+(N_1-x_1)\right)$ | $(x_2) \log \frac{(N_1 - x_2)q_1}{N_1 q_2}$ | 1 | | | Within categories 2 to $c x_1$ | $2\left(x_{2}\log\frac{x_{2}q_{1}}{N_{1}p_{2}}+x_{3}\log\frac{x_{2}q_{1}}{N_{1}}\right)$ | $\frac{x_3q_1}{\sqrt{1p_3}} + \cdots + x_c \log \frac{x}{N}$ | $\left(\frac{cq_1}{r_1p_c}\right) \qquad c-2$ | | | Between category 1 and categories $2 + \cdots + c$ | $2\left(x_1\log\frac{x_1}{Np_1}+(N-x_1)\right)$ | $\log \frac{N-x_1}{N(1-p_1)}$ | 1 | | | Total, $2\hat{I}(*:2; O_N)$ | $2\left(x_1\log\frac{x_1}{Np_1}+\cdots+x_n\right)$ | $\frac{x_c \log \frac{x_c}{Np_c}}{}$ | c - 1 | | We remark that the analysis in table 4.1 is a reflection of two facts: 1. A multinomial distribution may be expressed as the product of a marginal binomial distribution and a conditional multinomial distribution of the other categories (cf. section 2 of chapter 2), for example, $$\frac{N!}{x_{1}!x_{2}!\cdots x_{c}!}p_{1}^{x_{1}}\cdots p_{c}^{x_{c}} = \frac{N!}{x_{1}!(N-x_{1})!}p_{1}^{x_{1}}(1-p_{1})^{N-x_{1}}$$ $$\times \frac{(N-x_{1})!}{x_{2}!\cdots x_{c}!}\left(\frac{p_{2}}{q_{1}}\right)^{x_{2}}\cdots \left(\frac{p_{c}}{q_{1}}\right)^{x_{c}},$$ $$\frac{(N-x_{1})!}{x_{2}!\cdots x_{c}!}\left(\frac{p_{2}}{q_{1}}\right)^{x_{2}}\cdots \left(\frac{p_{c}}{q_{1}}\right)^{x_{c}} = \frac{(N-x_{1})!}{x_{2}!(N-x_{1}-x_{2})!}\left(\frac{p_{2}}{q_{1}}\right)^{x_{2}}\left(1-\frac{p_{2}}{q_{1}}\right)^{N-x_{1}-x_{2}},$$ $$\times \frac{(N-x_{1}-x_{2})!}{x_{3}!\cdots x_{c}!}\left(\frac{p_{3}}{q_{2}}\right)^{x_{3}}\cdots \left(\frac{p_{c}}{q_{2}}\right)^{x_{c}},$$ $$\vdots$$ where $$N_1 = N - x_1$$, $N_2 = N - x_1 - x_2$, \cdots , $q_1 = 1 - p_1$, $q_2 = 1 - p_1 - p_2 = q_1 - p_2$, \cdots , $p_2/q_1 + \cdots + p_c/q_1 = 1$, $p_3/q_2 + \cdots + p_c/q_2 = 1$, \cdots . 2. The hypothesis H_2 is equivalent to the intersection of c-1 hypotheses $H_{21}, \dots, H_{2(c-1)}, H_2 = H_{21} \cap H_{22} \cap \dots \cap H_{2(c-1)}$, where H_{21} is the hypothesis that the probability of occurrence of the first category is p_1 , H_{22} is the hypothesis that the probability of occurrence of the second category is p_2 given that the probability of the first category is p_1 , H_{23} is the hypothesis that the probability of occurrence of the third category is p_3 given that those of the first two categories are p_1 and p_2 respectively, etc. The degrees of freedom in table 4.1 are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (4.1). We leave to the reader the estimation of the corresponding divergences. Note that the divergence in (4.4) does not permit a corresponding additive analysis. We next consider a grouping or partitioning of the categories into two sets, say categories 1 to i, and i + 1 to c. Let us define $$y_1 = x_1 + x_2 + \cdots + x_i,$$ $y_2 = x_{i+1} + x_{i+2} + \cdots + x_c,$ $p_{11} = p_1 + p_2 + \cdots + p_i,$ $p_{22} = p_{i+1} + p_{i+2} + \cdots + p_c.$ The analysis in table 4.2 is derived in a straightforward fashion from these definitions and the properties of the logarithm. The degrees of freedom in table 4.2 are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (4.1). We leave to the reader the estimation of the corresponding divergences. Note that the convexity property ensures that the "between component" is the minimum value of $2\hat{I}(*:2; O_N)$ for the given partitioning. Without repeating all the details as for table 4.1, we note, for example, that in "within categories 1 to i," y_1 is the total (corresponding to N of the multinomial), and the conditional probabilities are p_1/p_{11} , \cdots , p_i/p_{11} . TABLE 4.2 | Component due to | Information | D.F. | |---|--|--------------| | Between categories $1 + \cdots + i$ and categories $(i + 1) + \cdots + c$ | $2\left(y_{1}\log\frac{y_{1}}{Np_{11}}+y_{2}\log\frac{y_{2}}{Np_{22}}\right)$ | 1 | | Within categories $(i + 1)$ to c | $2\left(x_{i+1}\log\frac{x_{i+1}p_{22}}{y_{2}p_{i+1}}+\cdots+x_{c}\log\frac{x_{c}p_{22}}{y_{2}p_{c}}\right)$ | c - i - 1 | | Within categories 1 to i | $2\left(x_{1}\log\frac{x_{1}p_{11}}{y_{1}p_{1}}+\cdots+x_{i}\log\frac{x_{i}p_{11}}{y_{1}p_{i}}\right)$ | <i>i</i> – 1 | | Total, $2\hat{I}(*:2; O_N)$ | $2\left(x_1\log\frac{x_1}{Np_1}+\cdot\cdot\cdot+x_c\log\frac{x_c}{Np_c}\right)$ | c - 1 | #### 4.3. Parametric Case Let us now consider an analysis of $\tilde{I}(*:2; O_N)$ assuming that p_1, \dots, p_c are known functions of independent parameters $\phi_1, \phi_2, \dots, \phi_k, k < c$, and "fitting" the multinomial distribution by estimating the ϕ 's. Suppose we have estimates $\tilde{\phi}_j(x_1, x_2, \dots, x_c), j = 1, 2, \dots, k$ (by some procedure to be determined), and we write $\tilde{p}_i = p_i(\tilde{\phi}_1, \tilde{\phi}_2, \dots, \tilde{\phi}_k), i = 1, 2, \dots, c$, $\tilde{p}_1 + \tilde{p}_2 + \dots + \tilde{p}_c = 1$. We
may write (4.3) as (4.7) $$\hat{I}(*:2; O_N) = \sum_{i=1}^{c} x_i \log \frac{x_i}{N\tilde{p}_i} + N \sum_{i=1}^{c} \tilde{p}_i \log \frac{\tilde{p}_i}{p_i} + N \sum_{i=1}^{c} \left(\frac{x_i}{N} - \tilde{p}_i\right) \log \frac{\tilde{p}_i}{p_i}$$ For the decomposition of $I(*:2; O_N)$ in (4.7) to be additive informationwise, that is, all terms to be of the form (2.2), the last term in (4.7) should be zero. We therefore require that the $\tilde{\phi}$'s be such that identically in the ϕ 's (4.8) $$\sum_{i=1}^{c} x_i \log \frac{\tilde{p}_i}{p_i} = N \sum_{i=1}^{c} \tilde{p}_i \log \frac{\tilde{p}_i}{p_i}.$$ Note that the left-hand side of (4.8) is the observed value, $\log (\tilde{p}(x)/p(x))$, and the right-hand side of (4.8) is the expected value of the information in a sample of N observations from a population (\tilde{p}) for discriminating for (\tilde{p}) against (p). [Cf. (1.1) in chapter 5.] From (4.8), which is an identity in the ϕ 's, we get (4.9) $$\sum_{i=1}^{c} \frac{x_i}{p_i} \frac{\partial p_i}{\partial \phi_i} = N \sum_{i=1}^{c} \frac{p_i}{p_i} \frac{\partial p_i}{\partial \phi_i}, \quad i = 1, 2, \cdots, k,$$ and in particular when $(\phi) = (\vec{\phi})$, $$(4.10) \sum_{i=1}^{c} \frac{x_i}{\tilde{p}_i} \left(\frac{\partial p_i}{\partial \phi_i} \right)_{\phi_i = \tilde{\phi}_i} = N \sum_{i=1}^{c} \frac{\tilde{p}_i}{\tilde{p}_i} \left(\frac{\partial p_i}{\partial \phi_i} \right)_{\phi_i = \tilde{\phi}_i} = 0, \quad j = 1, 2, \cdots, k,$$ since $\sum_{i=1}^{c} \left(\frac{\partial p_i}{\partial \phi_j} \right)_{\phi_j = \phi_j} = 0$, or the $\tilde{\phi}$'s are the solutions of (4.11) $$\sum_{i=1}^{c} \frac{x_i}{p_i} \frac{\partial p_i}{\partial \phi_i} = 0, \quad j = 1, 2, \cdots, k.$$ The equations (4.11) are the maximum-likelihood equations for estimating the ϕ 's, and are also those which solve the problem of finding the ϕ 's for which $I(*:2:O_N)$ in (4.3) is a minimum. (See section 4 of chapter 5.) The properties of the estimates may be found, for example, in Cramér (1946a, pp. 426-434). (See problem 7.14.) With estimates of the ϕ 's satisfying (4.11), we have the analysis of $2I(*:2; O_N)$ into additive components summarized in table 4.3. The degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 in (4.1) with $p_i = p_i(\phi_1, \phi_2, \dots, \phi_k)$, $i = 1, 2, \dots, c$. [Cf. (4.17) in chapter 5.] The divergences do not provide a similar additive analysis (with these estimates), but the estimate of the divergence corresponding to the error component is (4.12) $$J(*,\tilde{p}) = N \sum_{i=1}^{c} \left(\frac{x_i}{N} - \tilde{p}_i \right) \log \frac{x_i}{N\tilde{p}_i}.$$ TABLE 4.3 | Component due to | Information | D.F. | |--|--|-------| | $\tilde{\phi}$'s or (\tilde{p}) against (p) , $2\tilde{I}(\tilde{p}:p)$ | $2N\sum_{i=1}^{c}\tilde{p}_{i}\log\frac{\tilde{p}_{i}}{p_{i}}$ | k | | Error, (x/N) against (\tilde{p}) , $2\tilde{l}(*:\tilde{p})$ | $2\sum_{i=1}^{c} x_i \log \frac{x_i}{N\tilde{p}_i}$ | c-k-1 | | Total, $2\hat{I}(*:p)$ | $2\sum_{i=1}^{c} x_i \log \frac{x_i}{Np_i}$ | c — 1 | Under the null hypothesis H_2 of (4.1), $2\hat{l}(*:\tilde{p})$ and $\hat{J}(*,\tilde{p})$ are asymptotically distributed as χ^2 with c-k-1 degrees of freedom. [For notational convenience we write $2\hat{l}(*:p) = 2\hat{l}(*:2; O_n)$.] An example of this procedure is given by Fisher (1950), who considers a series of observations in which the number i occurs x_i times with a null hypothesis that the probabilities are given by the Poisson values $p_i = e^{-m}m^i/i!$. (Here m plays the role of the parameter ϕ .) The equation corresponding to (4.11) is $\sum_i x_i(-1+i/m) = 0$, or $\tilde{m} = \sum_i ix_i/\sum_i x_i = \bar{i}$. The particular values [Fisher (1950, p. 18)] are: | i | x_i | $N \widetilde{p}_i$ | $\tilde{m}=11/70,$ | |----|-------|---------------------|-----------------------------------| | 0 | 124 | 119.6415 | | | 1 | 12 | 18.8008 | | | 2 | 2 | 1.4772 | $2\hat{l}(*:\tilde{p}) = 12.318,$ | | 3 | 2 | 0.0774 | c-k-1=2. | | 4+ | 0 | 0.0031 | · | | | | | | | | 140 | 140.0000 | | Fisher compares this test, the usual χ^2 procedure, and the test for discrepancy of the variance, with the exact probabilities calculated from the conditional distribution for samples of the same size and average as the one in question. He concludes that [Fisher (1950, p. 24)] (in the notation of this section) $2\hat{I}(*:\tilde{p})$ "which is essentially the logarithmic difference in likelihood between the most likely Poisson series and the most likely theoretical series" is a measure that "seems well fitted to take the place of the conventional χ^2 , when class expectations are small." [Cf. Cramér (1946a, pp. 434-437).] ### 4.4. "One-Sided" Binomial Hypothesis We shall now examine a problem which is in some respects a special case of section 4.1, and is in some important respects different. Specifically, we want to test a "one-sided" hypothesis about a sample from a binomial population. Suppose we have a random sample of x "successes" and N-x "failures" from a binomial population. We are interested in testing the two hypotheses: (4.13) H_1 : the binomial population probability of success is $p_1 > p$, H_2 : the binomial population probability of success is equal to p. See example 3.3 of chapter 5. The results in section 3 apply to the binomial if we set c=2, $p_1=p$, $p_2=q=1-p$, $x_1=x$, $x_2=N-x$, $\tau_1=\tau$, $\tau_2=0$. The conjugate distribution [cf. (3.2)] ranges over the binomial distributions of H_1 in (4.13), if $p^* = (pe^\tau/(pe^\tau + q)) > p$. Only values of $\tau > 0$ are therefore admissible [see the paragraph following (2.12) in chapter 3]. With the value of the observed best unbiased sample estimate as the parameter of the conjugate distribution, that is, $\hat{\theta} = N\hat{p}^* = x$, we have (4.14) $$f(p^*:p) = \hat{\tau}x - N \log (pe^t + q),$$ $$\hat{\tau} = \log (xq/p(N-x)).$$ If x > Np, $\hat{\tau} = \log(xq/p(N-x)) > 0$ is admissible. If x < Np, $\hat{\tau} < 0$ is not admissible. We thus have the minimum discrimination information statistic (see example 3.3 of chapter 5, also the discussion following theorem 2.1 in chapter 3), (4.16) $$\hat{I}(H_1: H_2; O_N) = x \log \frac{x}{Np} + (N-x) \log \frac{N-x}{Nq}, \quad x > Np,$$ = 0, $x \le Np.$ Asymptotically, $2I(H_1:H_2; O_N)$ has a χ^2 distribution with 1 degree of freedom under the null hypothesis H_2 of (4.13), but the α significance level must be taken from the usual χ^2 tables at the 2α level, since we do not consider values of x < Np for which $I(H_1:H_2; O_N)$ is the same as for some value of x > Np. Instead of the simple null hypothesis H_2 of (4.13), let us consider the composite null hypothesis H_2' : (4.17) H_1 : the binomial population probability of success is $p_1 > p_0$, H_2' : the binomial population probability of success is $p \le p_0$. It may be verified from the behavior of $F(\hat{p}, p)$ in section 3 of chapter 4 and example 3.3 of chapter 5 that (see problem 7.17) (4.18) $$\inf_{p \le p_0} \left(x \log \frac{x}{Np} + (N - x) \log \frac{N - x}{Nq} \right)$$ $$= x \log \frac{x}{Np_0} + (N - x) \log \frac{N - x}{Nq_0}, \qquad x > Np_0.$$ The minimum discrimination information statistic for the least informative distribution against the distributions of the composite null hypothesis is therefore (4.19) $$\hat{I}(H_1: H_2'; O_N) = x \log \frac{x}{Np_0} + (N-x) \log \frac{N-x}{Nq_0}, \quad x > Np_0,$$ = 0, $x \le Np_0.$ Under the null hypothesis H_2' of (4.17), asymptotically, Prob $$\{2\hat{I}(H_1:H_2';O_N) \geq \chi_{2\alpha}^2\} \leq \alpha$$, where $\chi_{2\alpha}^2$ is the usual χ^2 value at the 2α level for 1 degree of freedom. Similarly, for the hypotheses (4.20) H_3 : the binomial population probability of success is $p_1 < p_0$, H_2'' : the binomial population probability of success is $p \ge p_0$, we have (4.21) $$\hat{I}(H_3: H_2''; O_N) = x \log \frac{x}{Np_0} + (N-x) \log \frac{N-x}{Nq_0}, \quad x < Np_0,$$ = 0, $x \ge Np_0.$ Under the null hypothesis H_2'' of (4.20), asymptotically, Prob $$\{2\hat{I}(H_3:H_2'';O_N)\geq \chi_{2\alpha}^2\}\leq \alpha$$, where $\chi_{2\alpha}^2$ is as above. The two-sided hypothesis (4.22) H_4 : the binomial population probability of success is $p_1 \neq p_0$, H_2 : the binomial population probability of success is $p = p_0$, is a special case of section 4.1, and (4.23) $$2I(H_4: H_2; O_N) = 2\left(x \log \frac{x}{Np_0} + (N-x) \log \frac{N-x}{Nq_0}\right)$$ is asymptotically distributed as χ^2 with 1 degree of freedom under the null hypothesis H_2 of (4.22). Note that H_2 , H_2' , and H_2'' , respectively of (4.22), (4.17), and (4.20), satisfy $H_2 \rightleftharpoons H_2' \cap H_2''$, that is, $(p = p_0)$ if and only if $(p \le p_0)$ and $(p \ge p_0)$; also H_4 , H_1 , and H_3 , respectively of (4.22), (4.17), and (4.20), satisfy $H_4 \rightleftharpoons H_1 \cup H_3$, that is, $(p \ne p_0)$ if and only if $(p_1 > p_0)$ or $(p_1 < p_0)$. The region of acceptance common to the hypotheses H_2' and H_2'' , (4.24) $$x \log (x/Np_0) + (N-x) \log ((N-x)/Nq_0) \le \text{constant},$$ is also the region of acceptance of H_2 . ## 4.5. "One-Sided" Multinomial Hypotheses We now examine "one-sided" hypotheses for some problems on a c-valued population (c mutually exclusive categories). The first problem tests a hypothesis H_1 that the first category occurs with a probability greater than 1/c, against the null hypothesis H_2 of uniformity, that is, (4.25) $$H_1: p_1 > 1/c, \quad p_1 + p_2 + \cdots + p_c = 1, \\ H_2: p_1 = p_2 = \cdots = p_c = 1/c.$$ Suppose we have a random sample of N independent observations as in
section 4.1. From section 3, we see that the conjugate distribution ranges over the populations of H_1 in (4.25) if $p_1^* = e^{\tau_1}/(e^{\tau_1} + e^{\tau_2} + \cdots + e^{\tau_c}) > 1/c$. Only values of the τ_i , $i = 1, 2, \cdots, c$, such that $(c - 1)e^{\tau_1} > e^{\tau_2} + \cdots + e^{\tau_c}$ are therefore admissible. With the values of the observed best unbiased sample estimates as the parameters of the conjugate distribution, that is, $\hat{\theta}_i = N\hat{p}_i^* = x_i$, we have (4.26) $$I(p^*:p) = \hat{\tau}_1 x_1 + \hat{\tau}_2 x_2 + \cdots + \hat{\tau}_c x_c \\ - N \log ((e^{\hat{\tau}_1} + e^{\hat{\tau}_2} + \cdots + e^{\hat{\tau}_c})/c),$$ $$(4.27) \qquad x_i = \frac{Ne^{\hat{\tau}_i}}{e^{\hat{\tau}_1} + e^{\hat{\tau}_2} + \cdots + e^{\hat{\tau}_c}}, \quad i = 1, 2, \cdots, c.$$ Since $e^{t_i} = x_i/N$, $i = 1, 2, \dots, c$ [we take ck = 1 in (3.5)], the $\hat{\tau}_i$ are in the admissible region if (4.28) $$(c-1)\frac{x_1}{N} > \frac{x_2 + x_3 + \cdots + x_c}{N} = \frac{N - x_1}{N},$$ that is, if $x_1 > N/c$. If $x_1 \le N/c$, we must find the value of $f(p^*:p)$ along the boundary of the admissible region, $(c-1)e^{t_1} = e^{t_2} + \cdots + e^{t_c}$, the only other possible region for which $f(p^*:p)$ may differ from zero, in which case [cf. Brunk (1958, p. 438)] $$(4.29) \ \hat{I}(p^*:p) = x_1 \log \frac{e^{\hat{\tau}_2} + \dots + e^{\hat{\tau}_c}}{c-1} + x_2 \hat{\tau}_2 + \dots + x_c \hat{\tau}_c - N \log e^{\hat{\tau}_1}$$ $$= x_2 \hat{\tau}_2 + \dots + x_c \hat{\tau}_c - (N-x_1) \log \frac{e^{\hat{\tau}_2} + \dots + e^{\hat{\tau}_c}}{c-1}$$ The last expression is that for an $(N-x_1)$ -total multinomial distribution over a (c-1)-valued population [by analogy with (4.26)]. We have, therefore, (4.30) $$\hat{I}(H_1: H_2; O_N) = \sum_{i=1}^c x_i \log \frac{cx_i}{N}, \quad x_1 > \frac{N}{c},$$ (4.31) $$f(H_1: H_2; O_N) = \sum_{i=2}^{c} x_i \log \frac{(c-1)x_i}{N-x_1}, \quad x_1 \leq \frac{N}{c},$$ that is, when $x_1 \leq N/c$, the rejection of the null hypothesis depends on the conditional values of x_2, \dots, x_c . If we set $p_i = 1/c$, $i = 1, 2, \dots, c$, in table 4.1, the last three rows yield table 4.4, where the degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (4.25). TABLE 4.4 | Component due to | Information | D.F. | |--|--|-------| | Within categories 2 to $c x_1$ | $2\left(x_{2}\log\frac{(c-1)x_{2}}{N-x_{1}}+\cdots+x_{c}\log\frac{(c-1)x_{c}}{N-x_{1}}\right)$ | c - 2 | | Between category 1 and categories $(2 + \cdots + c)$ | $2\left(x_{1}\log\frac{cx_{1}}{N} + (N-x_{1})\log\frac{c(N-x_{1})}{N(c-1)}\right)$ | 1 | | Total, $2\hat{I}(*:2; O_N)$ | $2\left(x_1\log\frac{cx_1}{N}+\cdots+x_c\log\frac{cx_c}{N}\right)$ | c-1 | Note that twice (4.30) is the total in table 4.4, and twice (4.31) is the component due to within categories 2 to c, given x_1 , in table 4.4. The α significance level must be taken from the usual χ^2 tables at the 2α level. The second problem restricts the hypothesis H_1 of (4.25) to equal probabilities of occurrence for all categories but the first, that is, (4.32) $$H_1': p_1 = p > \frac{1}{c}, \quad p_2 = p_3 = \cdots = p_c = \frac{1-p}{c-1},$$ $H_2: p_1 = p_2 = \cdots = p_c = 1/c.$ The conjugate distribution ranges over the populations of H_1' in (4.32) if $$p_1^* = \frac{e^{\tau_1}}{e^{\tau_1} + \dots + e^{\tau_c}} > \frac{1}{c}, \quad p_2^* = \frac{e^{\tau_2}}{e^{\tau_1} + \dots + e^{\tau_c}}$$ $$= \dots = p_c^* = \frac{e^{\tau_c}}{e^{\tau_1} + \dots + e^{\tau_c}},$$ or $\tau_2 = \tau_3 = \cdots = \tau_c = \tau$, $\tau_1 > \tau$, are the only admissible values, and (4.26) is now $$(4.33) \quad \hat{I}(p^*:p) = \hat{\tau}_1 x_1 + (N - x_1)\hat{\tau} - N \log \frac{e^{\hat{\tau}_1} + (c - 1)e^{\hat{\tau}}}{c},$$ (4.34) $$x_1 = \frac{Ne^{t_1}}{e^{t_1} + (c-1)e^{t'}}, \quad N - x_1 = \frac{N(c-1)e^{t}}{e^{t_1} + (c-1)e^{t'}}.$$ Since $$e^{t_1} = \frac{x_1}{N} (e^{t_1} + (c - 1)e^t)$$, $e^t = \frac{N - x_1}{N(c - 1)} (e^{t_1} + (c - 1)e^t)$, the $\hat{\tau}$'s are in the admissible region if $x_1 > N/c$ and we find that $$(4.35) \ \hat{I}(H_1': H_2; O_N) = x_1 \log \frac{cx_1}{N} + (N - x_1) \log \frac{(N - x_1)c}{N(c - 1)}, \quad x_1 > \frac{N}{c}.$$ If $x_1 \leq N/c$ we must find the value of $\hat{I}(p^*:p)$ along the boundary $\hat{\tau}_1 = \hat{\tau}$ of the admissible region, in which case $\hat{I}(p^*:p) = \hat{\tau}x_1 + (N-x_1)\hat{\tau} - N\log e^{\hat{\tau}} = 0$. Note that twice the value in (4.35) is the component due to between category 1 and categories $(2 + \cdots + c)$ in table 4.4. The test of the hypotheses (4.32) by the minimum discrimination information statistic (4.35) is a special case of the test of the hypotheses (4.13) by the statistic (4.16). This is not surprising since the hypotheses in (4.32) differ only in the specification of p_1 , both H_1' and H_2 in (4.32) specifying equality for the other probabilities. The third problem tests a null hypothesis H_2' that all categories but the first have equal probabilities of occurrence, against an alternative hypothesis H_1'' of any c-valued population, that is, (4.36) $$H_1'': p_1, p_2, \cdots, p_c, \qquad p_1 + p_2 + \cdots + p_c = 1,$$ $$H_2': p_1 = p, \qquad p_2 = \cdots = p_c = \frac{1 - p}{c - 1}.$$ This is a special case of the hypotheses in (4.1) and we get the analysis in table 4.5 from that in table 4.1. The null hypothesis H_2' in (4.36) does not usually specify the value of p, and we test with the component due to within categories 2 to c given x_1 , which asymptotically is distributed as χ^2 with (c-2) degrees of freedom under the null hypothesis H_2' of (4.36). Note that the within component in table 4.5 is the minimum value of the total for variations of p, that is, over the populations of H_2' . TABLE 4.5 | Component due to | Information | D.F. | |--|--|-------| | Within categories 2 to $c x_1$ | $2\left(x_2\log\frac{x_2(c-1)}{N-x_1}+\cdots+x_c\log\frac{x_c(c-1)}{N-x_1}\right)$ | c - 2 | | Between category 1 and categories $(2 + \cdots + c)$ | $2\left(x_1\log\frac{x_1}{Np}+(N-x_1)\log\frac{N-x_1}{N(1-p)}\right)$ | 1 | | Total, $2\hat{I}(*: H_2'; O_N)$ | $2\left(x_1\log\frac{x_1}{Np} + x_2\log\frac{x_2(c-1)}{N(1-p)} + \cdots + x_c\log\frac{x_c(c-1)}{N(1-p)}\right)$ | c — 1 | 4.5.1. Summary. The hypotheses in (4.25), (4.32), and (4.36) satisfy $H_1' \subset H_1 \subset H_1''$, and $H_2 \subset H_2'$ ($H_2 \subset H_2'$ means that H_2 is contained in H_2'). It therefore seems appropriate to summarize the preceding results in table 4.6 to facilitate comparison. The information statistics in table 4.6 are asymptotically distributed as χ^2 with degrees of freedom as indicated under the corresponding null hypothesis, but for all but the last two the α significance level must be taken from the usual χ^2 tables at the 2α level, because of the limitation on the values of x_1 . TABLE 4.6 | Hypotheses | Information | | | | | | |-----------------------------------|--|-------|--|--|--|--| | H_1', H_2 | $0, x_1 \leq N/c$ | | | | | | | (4.32) | $2\left(x_{1}\log\frac{cx_{1}}{N}+(N-x_{1})\log\frac{(N-x_{1})c}{N(c-1)}\right), x_{1}>\frac{N}{c}$ | 1 | | | | | | H_1, H_2 | $2\sum_{i=2}^{c} x_i \log \frac{(c-1)x_i}{N-x_1}, \qquad x_1 \leq \frac{N}{c}$ | c – 2 | | | | | | (4.25) | $2\sum_{i=1}^{c} x_i \log \frac{cx_i}{N}, \qquad x_1 > \frac{N}{c}$ | c — 1 | | | | | | $H_1^{\prime\prime},H_2^{\prime}$ | $2\sum_{i=2}^{c} x_{i} \log \frac{(c-1)x_{i}}{N-x_{1}}, \qquad p = \frac{x_{1}}{N}$ | c — 2 | | | | | | (4.36) | $2x_1 \log \frac{x_1}{Np_0} + 2 \sum_{i=2}^{c} x_i \log \frac{x_i(c-1)}{N(1-p_0)}, p = p_0$ | c — 1 | | | | | 4.5.2. Illustrative Values. We computed exact probabilities for the information statistics for the hypotheses H_1' , H_2 of (4.32) for c=5, 10, and some convenient values of N and p using Tables of the Binomial Probability Distribution (1949). We can compare type I and type II errors, as well as exact and asymptotic probabilities given by the χ^2 and noncentral χ^2 -distributions. (See section 5 of chapter 5.) The probabilities are given in tables 4.7, 4.8, and 4.11. In table 4.8, x_1' was selected to get a probability near 0.01 under H_2 . The information parameter in table 4.9 is the noncentrality parameter λ of the noncentral χ^2 -distribution. The (corrected) χ_0^2 in table 4.10 is obtained by taking consecutive values of $2\hat{I}(H_1': H_2; O_N)$ as the mid-points of adjacent class intervals and using the lower class limit as the corrected value. [See Cochran (1952).] The central probabilities in table 4.11 were obtained from the upper tail only of χ_0 as a normal variate N(0, 1). The noncentral probabilities in table 4.11 TABLE 4.7 $H_1': p_1 = p > \frac{1}{c}, \quad p_2 = p_3 = \cdots = p_c = \frac{1-p}{c-1}$ $H_2: p_1 = p_2 = \cdots = p_c = 1/c$ | | | Prob $(x_1 \le N/c) = \text{Prob } (2\hat{I}(H_1': H_2) = 0)$ | | | | | | | | |----|----|---|-------|---------------|----------|----------|----------|----------|----------| | c | N | N/c | H_2 | $H_1':p=0.15$ | p = 0.20 | p = 0.25 | p = 0.30 | p = 0.35 | p = 0.40 | | 5 | 5 | 1 | 0.74 | | | 0.63 | 0.53 | 0.43 | 0.34 | | 5 | 10 | 2 | 0.68 | | | 0.53 | 0.38 | 0.26 | 0.17 | | 5 | 15 | 3 | 0.65 | | | 0.46 | 0.30 | 0.17 | 0.09 | | 5 | 20 | 4 | 0.63 | | | 0.41 | 0.24 | 0.12 | 0.05 | | 5 | 25 | 5 | 0.62 | | | 0.38 | 0.19 | 0.08 | 0.03 | | 5 | 30 | 6
 0.61 | | | 0.35 | 0.16 | 0.06 | 0.02 | | 5 | 35 | 7 | 0.60 | _ | | 0.32 | 0.13 | 0.04 | 0.01 | | 5 | 40 | 8 | 0.59 | _ | | 0.30 | 0.11 | 0.03 | 0.01 | | 5 | 45 | 9 | 0.59 | | | 0.28 | 0.09 | 0.02 | 0.004 | | 10 | 10 | 1 | 0.74 | 0.54 | 0.38 | 0.24 | 0.15 | 0.09 | 0.05 | | 10 | 20 | 2 | 0.68 | 0.40 | 0.21 | 0.09 | 0.04 | 0.01 | 0.004 | | 10 | 30 | 3 | 0.65 | 0.32 | 0.12 | 0.04 | 0.01 | 0.002 | 0.0003 | | 10 | 40 | 4 | 0.63 | 0.26 | 0.08 | 0.02 | 0.003 | 0.0003 | 0.00003 | TABLE 4.8 Prob $(x_1 \ge x_1')$ | c | N | x_1' | H_2 | $H_1':p=0.15$ | p = 0.20 | p = 0.25 | p = 0.30 | p = 0.35 | p = 0.40 | |----|----|--------|--------|---------------|----------|----------|----------|----------|----------| | 5 | | 4 | 0.0067 | | | 0.0156 | 0.0308 | 0.0540 | 0.0870 | | 5 | 15 | 7 | 0.0181 | | | 0.0566 | 0.1311 | 0.2452 | 0.3902 | | 5 | 25 | 10 | 0.0173 | | | 0.0713 | 0.1894 | 0.3697 | 0.5754 | | 5 | 35 | 13 | 0.0142 | | | 0.0756 | 0.2271 | 0.4577 | 0.6943 | | 5 | 45 | 16 | 0.0110 | | | 0.0753 | 0.2538 | 0.5248 | 0.7751 | | 10 | 10 | 4 | 0.0128 | 0.0500 | 0.1209 | 0.2241 | 0.3504 | 0.4862 | 0.6177 | | 10 | 20 | 6 | 0.0113 | 0.0673 | 0.1958 | 0.3828 | 0.5836 | 0.7546 | 0.8744 | | 10 | 30 | 8 | 0.0078 | 0.0698 | 0.2392 | 0.4857 | 0.7186 | 0.8762 | 0.9565 | | 10 | 40 | 9 | 0.0155 | 0.1354 | 0.4069 | 0.7002 | 0.8890 | 0.9697 | 0.9939 | were obtained from the noncentral χ^2 -distribution with 1 degree of freedom [see (6.9) in chapter 12]: Prob $$(\chi^2 \ge \chi_0^2) = \frac{1}{\sqrt{2\pi}} \left[\int_{\chi_0}^{\infty} e^{-\frac{1}{2}(t-\sqrt{\lambda})^2} dt + \int_{\chi_0}^{\infty} e^{-\frac{1}{2}(t+\sqrt{\lambda})^2} dt \right].$$ Note that Prob $(x_1 \ge x_1')$ is supposed to be the same as Prob $(\chi^2 \ge \chi_0^2)$. Indeed, χ_0^2 was selected, with a correction for continuity, to correspond TABLE 4.9 $2N\left(p\log cp + q\log\frac{cq}{c-1}\right) = 2I(H_1':H_2;O_N)$ | c | N | p = 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | | |----|----|----------|--------|--------|---------|---------|---------|--| | 5 | 5 | | | 0.0738 | 0.2817 | 0.6090 | 1.0465 | | | 5 | 15 | | | 0.2215 | 0.8450 | 1.8270 | 3.1395 | | | 5 | 25 | | | 0.3691 | 1.4084 | 3.0450 | 5.2325 | | | 5 | 35 | | | 0.5167 | 1.9717 | 4.2630 | 7.3255 | | | 5 | 45 | | | 0.6644 | 2.5351 | 5.4810 | 9.4185 | | | 10 | 10 | 0.2447 | 0.8881 | 1.8466 | 3.0733 | 4.5388 | 6.2248 | | | 10 | 20 | 0.4894 | 1.7761 | 3.6933 | 6.1465 | 9.0777 | 12.4495 | | | 10 | 30 | 0.7341 | 2.6642 | 5.5399 | 9.2198 | 13.6165 | 18.6743 | | | 10 | 40 | 0.9788 | 3.5522 | 7.3865 | 12.2931 | 18.1554 | 24.8991 | | | | | | | | | | | | **TABLE 4.10** $$2\hat{I}(H_1': H_2; O_N) = 2\left(x_1 \log \frac{cx_1}{N} + (N - x_1) \log \frac{(N - x_1)c}{N(c - 1)}\right), \quad x_1 > \frac{N}{c}$$ | c | N | x_1 | 2 <i>Î</i> | $2I(\text{corrected}) = \chi_0^2$ | c | N | x_1 | 2Î | $2\tilde{I}$ (corrected) = χ_0^2 | |---|-----------|-------|------------|-----------------------------------|----|----|-------|-------|---------------------------------------| | 5 | | 3 | 3.819 | | 10 | 10 | 3 | 3.073 | | | 5 | 5 | 4 | 8.318 | 6.068 | 10 | 10 | 4 | 6.225 | 4.649 | | 5 | 15 | 6 | 3.139 | | 10 | 20 | 5 | 3.693 | | | 5 | 15 | 7 | 5.375 | 4.257 | 10 | 20 | 6 | 6.147 | 4.920 | | 5 | 25 | 9 | 3.440 | | 10 | 30 | 7 | 4.486 | | | 5 | 25 | 10 | 5.232 | 4.336 | 10 | 30 | 8 | 6.682 | 5.584 | | 5 | 35 | 12 | 3.887 | | 10 | 40 | 8 | 3.552 | | | 5 | 35 | 13 | 5.484 | 4.686 | 10 | 40 | 9 | 5.326 | 4.439 | | 5 | 45 | 15 | 4.385 | | | | | | | | 5 | 45 | 16 | 5.871 | 5.128 | | | | | | to x_1' . Table 4.7 gives the probability of incorrectly accepting H_2 when $x_1 \leq N/c$ under various members of H_1' . Even for the small values of N the approximation is good. **TABLE 4.11** | | | | | H | | | ${H_1}'$ | | | |------|----|--------|------------|------------------------------|-----------------------|------|----------|---|-----------------------| | | | | | Central | Binomial | | | Noncentral | Binomia! | | c | N | x_1' | χ_0^2 | Prob $(\chi^2 \ge \chi_0^2)$ | Prob $(x_1 \ge x_1')$ | P | λ | $ \begin{array}{c} \text{Prob} \\ (\chi^2 \ge \chi_{\vartheta}^2) \end{array} $ | Prob $(x_1 \ge x_1')$ | | 5 | 5 | 4 | 6.068 | 0.0069 | 0.0067 | 0.25 | 0.0738 | 0.0175 | 0.0156 | | 5 | 15 | 7 | 4.257 | 0.0196 | 0.0181 | 0.30 | 0.8450 | 0.1285 | 0.1311 | | 5 | 25 | 10 | 4.336 | 0.0187 | 0.0173 | 0.35 | 3.0450 | 0.3670 | 0.3697 | | 5 | 35 | 13 | 4.686 | 0.0152 | 0.0142 | 0.40 | 7.3255 | 0.7088 | 0.6943 | | 5 | 45 | 16 | 5.128 | 0.0118 | 0.0110 | 0.25 | 0.6644 | 0.0759 | 0.0753 | | 10 | 10 | 4 | 4.649 | 0.0155 | 0.0128 | 0.15 | 0.2447 | 0.0526 | 0.0500 | | · 10 | 10 | 4 | 4.649 | | | 0.35 | 4.5388 | 0.4920 | 0.4862 | | 10 | 20 | 6 | 4.920 | 0.0133 | 0.0113 | 0.20 | 1.7761 | 0.1869 | 0.1958 | | 10 | 30 | 8 | 5.584 | 0.0091 | 0.0078 | 0.25 | 5.5399 | 0.4960 | 0.4857 | | 10 | 40 | 9 | 4.439 | 0.0176 | 0.0155 | 0.15 | 0.9788 | 0.1324 | 0.1354 | | 10 | 40 | 9 | 4.439 | | | 0.40 | 24.8991 | 0.9980 | 0.9939 | #### 5. TWO SAMPLES #### 5.1. Basic Problem Suppose we have two independent random samples of N_1 and N_2 independent observations with multinomial distributions on a c-valued population. We denote the samples by $$(x) = (x_1, x_2, \dots, x_c), \qquad \sum_{i=1}^{c} x_i = N_1,$$ and $$(y) = (y_1, y_2, \cdot \cdot \cdot, y_c), \qquad \sum_{i=1}^{c} y_i = N_2.$$ We want to test a null hypothesis of homogeneity H_2 , the samples are from the same population, against the hypothesis H_1 , the samples are from different populations, that is, (5.1) H₁: the samples are from different populations $(p_1) = (p_{11}, p_{12}, \cdots, p_{1c}), (p_2) = (p_{21}, p_{22}, \cdots, p_{2c}),$ H₂: the samples are from the same population $(p) = (p_1, p_2, \cdots, p_c), p_{1i} = p_{2i} = p_i, i = 1, 2, \cdots, c.$ Since the samples are independent, we have in the notation of (3.1) (we omit indication of sample size, etc., except where confusion might otherwise result): (5.2) $$I(1:2) = \sum_{(x),(y)} p_1(x)p_2(y) \log \frac{p_1(x)p_2(y)}{p(x)p(y)}$$ $$= N_1 \sum_{i=1}^c p_{1i} \log \frac{p_{1i}}{p_i} + N_2 \sum_{i=1}^c p_{2i} \log \frac{p_{2i}}{p_i}$$ (5.3) $$J(1, 2) = \sum_{(x),(y)} (p_1(x)p_2(y) - p(x)p(y)) \log \frac{p_1(x)p_2(y)}{p(x)p(y)}$$ $$= N_1 \sum_{i=1}^{c} (p_{1i} - p_i) \log \frac{p_{1i}}{p_i} + N_2 \sum_{i=1}^{c} (p_{2i} - p_i) \log \frac{p_{2i}}{p_i}$$ The conjugate distributions are (see section 3 and section 1 in chapter 5), (5.4) $$p_1^*(x) = \frac{p(x)e^{\tau_{11}x_1 + \cdots + \tau_{1c}x_c}}{(p_1e^{\tau_{11}} + \cdots + p_ce^{\tau_{1c}})^{N_1}},$$ $$(5.5) p_2^*(y) = \frac{p(y)e^{\tau_{21}y_1 + \tau_{22}y_2 + \cdots + \tau_{2c}y_c}}{(p_1e^{\tau_{21}} + \cdots + p_ce^{\tau_{2c}})^{N_2}}$$ We find (5.6) $$I(p^*:p) = \sum p_1^*(x)p_2^*(y)\log\frac{p_1^*(x)p_2^*(y)}{p(x)p(y)}$$ $$= \sum_{i=1}^c (\tau_{1i}E_1^*(x_i) + \tau_{2i}E_2^*(y_i)) - N_1\log(p_1e^{\tau_{11}} + \cdots + p_ce^{\tau_{1c}}) - N_2\log(p_1e^{\tau_{21}} + \cdots + p_ce^{\tau_{2c}}),$$ where $E_i^*()$ denotes expected values from the population $p_i^*()$. Set $$E_1^*(x_i) = N_1 p_{1i}^*$$, $E_2^*(y_i) = N_2 p_{2i}^*$, where $p_{ji}^* = p_{ji} e^{r_{ji}} / (p_{j1} e^{r_{j1}} + \cdots + p_{jc} e^{r_{jc}})$, $j = 1, 2; i = 1, 2, \cdots, c$, and (5.6) is (5.7) $$I(p^*:p) = N_1 \sum_{i=1}^{c} p_{1i}^* \log \frac{p_{1i}^*}{p_i} + N_2 \sum_{i=1}^{c} p_{2i}^* \log \frac{p_{2i}^*}{p_i}.$$ We take the conjugate distributions as those with parameters the same as the respective observed sample best unbiased estimates, that is, $\hat{p}_{1i}^* = x_i/N_1$, and $\hat{p}_{2i}^* = y_i/N_2$, $i = 1, 2, \dots, c$, and (5.8) $$f(p^*:p) = \sum_{i=1}^{c} \left(x_i \log \frac{x_i}{N_1 p_i} + y_i \log \frac{y_i}{N_2 p_i} \right)$$ The null hypothesis H_2 of (5.1) usually does not specify the p_i , i = 1, $2, \dots, c$. We can analyze $\tilde{I}(p^*:p)$ in (5.8) into two additive components, one due to the deviations between the p_i and their best unbiased estimates from the pooled samples, and the other due to what may be termed error within the samples. The analysis is summarized in table 5.1. The degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (5.1). Note that the within component in table 5.1 is the minimum value of the total for variations of the p_i , $\sum_{i=1}^{c} p_i = 1$, that is, over the populations H_2 . We remark that the analysis in table 5.1 is a reflection of the fact that the hypothesis H_2 in (5.1) is the intersection of the hypotheses $H_2(\cdot)$, the samples are homogeneous, and $H_2(\cdot|(p))$, the homogeneous samples are from the population $(p) = (p_1, p_2, \dots, p_c)$, that is, $H_2 = H_2(\cdot) \cap H_2(\cdot|(p))$. The between component in table 5.1, $2\hat{l}(\hat{p}:p)$, is a test for the hypothesis $H_2(\cdot|(p))$, and the within component in table 5.1, $2\hat{l}(p^*:\hat{p})$ or $2\hat{l}(H_1:H_2)$, is a conditional test for the hypothesis $H_2(\cdot)$, subject to the observed values of $\hat{p}_i = (x_i + y_i)/(N_1 + N_2)$, $i = 1, 2, \dots, c$. TABLE 5.1 | Component due to | Information | D.F. | |--|--|-----------------------------------| | $\hat{p}_i = (x_i + y_i)/(N_1 + N_2)$ (Between), $2\hat{I}(\hat{p}:p)$ | $2\sum_{i=1}^{c}(x_i+y_i)\log\frac{(x_i+y_i)}{(N_1+N_2)p_i}$ | c — 1 | | Error, $2\hat{I}(p^*:\hat{p})$ (Within) | $2\sum_{i=1}^{c} \left(x_i \log \frac{(N_1 + N_2)x_i}{N_1(x_i + y_i)} + y_i \log \frac{(N_1 + N_2)x_i}{N_2(x_i + y_i)} \right)$ | $\left(\frac{y_i}{y_i}\right)c-1$ | | Total, $2\hat{I}(p^*:p)$ | $2\sum_{i=1}^{c} \left(x_i \log \frac{x_i}{N_1 p_i} + y_i \log \frac{y_i}{N_2 p_i}\right)$ | 2(c-1) | The error component in table 5.1 may also be expressed as $$(5.9)
\quad f(p^*:\hat{p}) = f(H_1:H_2) = \sum x_i \log x_i + \sum y_i \log y_i - \sum (x_i + y_i) \log (x_i + y_i) + (N_1 + N_2) \log (N_1 + N_2) - N_1 \log N_1 - N_2 \log N_2,$$ for computational convenience with the table of $n \log n$. The divergences do not provide a similar additive analysis (with these estimates), but the estimate of the divergence corresponding to the error component is (5.10) $$\hat{J}(p^*, \hat{p}) = \hat{J}(H_1, H_2) = N_1 \Sigma \left(\frac{x_i}{N_1} - \frac{x_i + y_i}{N_1 + N_2} \right) \log \frac{(N_1 + N_2)x_i}{N_1(x_i + y_i)}$$ $$+ N_2 \Sigma \left(\frac{y_i}{N_2} - \frac{x_i + y_i}{N_1 + N_2} \right) \log \frac{(N_1 + N_2)y_i}{N_2(x_i + y_i)}$$ $$= \frac{N_1 N_2}{N_1 + N_2} \Sigma \left(\frac{x_i}{N_1} - \frac{y_i}{N_2} \right) \log \frac{N_2 x_i}{N_1 y_i}$$ Note that $\hat{I}(H_1: H_2) = \hat{I}(p^*: \hat{p})$ in table 5.1 is (5.2) with the substitution of x_i/N_1 for p_{1i} , y_i/N_2 for p_{2i} , and $(x_i + y_i)/(N_1 + N_2)$ for p_i , and that (5.10) is (5.3) with the same substitutions. $2\hat{I}(H_1: H_2)$ and $\hat{J}(H_1, H_2)$ are asymptotically distributed as χ^2 with (c-1) degrees of freedom under the hypothesis H_2 of (5.1) (the samples are from the same population). With the approximations used in (4.5) and (4.6), we find [cf. Pearson (1911)] (5.11) $$2I(H_1: H_2) \approx \frac{1}{N_1 N_2} \sum \frac{(N_2 x_i - N_1 y_i)^2}{x_i + y_i} = \chi^2$$ $$\hat{J}(H_1, H_2) \approx \frac{1}{2N_1 N_2} \sum \frac{(N_2 x_i - N_1 y_i)^2}{x_i + y_i}$$ $$+ \frac{1}{2(N_1 + N_2)^2} \sum \frac{(N_2 x_i - N_1 y_i)^2 (x_i + y_i)}{x_i y_i}$$ # 5.2. "One-Sided" Hypothesis for the Binomial We now consider a "one-sided" hypothesis about two binomial distributions. Suppose we have two independent random binomial samples of N_1 and N_2 independent observations, of which, respectively, x and y are "successes." We want to test the two hypotheses: (5.12) H_1' : the samples are from different binomial populations with respective probabilities of success p_1 , p_2 , $p_1 > p_2$, H_2 : the samples are from the same binomial population, $p_1 = p_2 = p$. From the analogues of (5.4), (5.5), and (5.6) for binomial distributions (cf. section 4.4), we see that the conjugate distributions range over the binomial populations of H_1' in (5.12) if $$p_1^* = \frac{pe^{\tau_1}}{pe^{\tau_1} + (1-p)} > p_2^* = \frac{pe^{\tau_2}}{pe^{\tau_2} + (1-p)}$$ Only values $\tau_1 > \tau_2$ are therefore admissible. We take the conjugate distributions as those with parameters the same as the respective observed sample best unbiased estimates, that is, $\hat{p}_1^* = x/N_1$, $\hat{p}_2^* = y/N_2$, and [cf. (5.6)] (5.13) $$\hat{I}(p^*:p) = \hat{\tau}_1 x - N_1 \log(pe^{\hat{\tau}_1} + (1-p)) + \hat{\tau}_2 y - N_2 \log(pe^{\hat{\tau}_2} + (1-p)),$$ (5.14) $$x = \frac{N_1 p e^{t_1}}{p e^{t_1} + (1-p)}, \quad y = \frac{N_2 p e^{t_2}}{p e^{t_2} + (1-p)},$$ or (5.15) $$\hat{\tau}_1 = \log \frac{(1-p)x}{p(N_1-x)}, \qquad \hat{\tau}_2 = \log \frac{(1-p)y}{p(N_2-y)}.$$ If $x/N_1 > y/N_2$, then $\hat{\tau}_1 > \hat{\tau}_2$, and the $\hat{\tau}$'s are admissible. However, if $x/N_1 \le y/N_2$, then $\hat{\tau}_1 \le \hat{\tau}_2$, the $\hat{\tau}$'s are not admissible, and we must find the value of $\hat{I}(p^*:p)$ along the boundary $\hat{\tau}_1 = \hat{\tau}_2$ of the admissible area. With $\hat{\tau} = \hat{\tau}_2 = \hat{\tau}_1$ in (5.13) we have (5.16) $$x + y = \frac{(N_1 + N_2)pe^t}{pe^t + (1 - p)}, \quad \text{or} \quad \hat{\tau} = \log \frac{(1 - p)(x + y)}{p(N_1 + N_2 - x - y)}$$ We thus have (5.17) $$f(p^*:p) = x \log \frac{x}{N_1 p} + (N_1 - x) \log \frac{N_1 - x}{N_1 (1 - p)}$$ $$+ y \log \frac{y}{N_2 p} + (N_2 - y) \log \frac{N_2 - y}{N_2 (1 - p)}, \qquad \frac{x}{N_1} > \frac{y}{N_2},$$ (5.18) $$f(p^*:p) = (x + y) \log \frac{x + y}{(N_1 + N_2)p}$$ $$+ (N_1 + N_2 - x - y) \log \frac{N_1 + N_2 - x - y}{(N_1 + N_2)(1 - p)}, \qquad \frac{x}{N_1} \le \frac{y}{N_2}.$$ Table 5.2 gives the analysis of table 5.1 for binomial distributions, for the two-sided hypotheses: (5.19) H_1 : the samples are from binomial populations with respective probabilities of success p_1 , p_2 , $p_1 \neq p_2$, H_2 : the samples are from the same binomial population, $p_1 = p_2 = p$. We see therefore that $2I(p^*:p)$ in (5.17) is the total of table 5.2 when $x/N_1 > y/N_2$, and $2I(p^*:p)$ in (5.18) is the between component of table 5.2 when $x/N_1 \le y/N_2$. The hypothesis H_2 of (5.12) usually does not specify the value of p, and the minimum values of the total and between component respectively (with respect to variations of p, that is, over the populations H_2) are then (5.20) $$2I(H_1': H_2) = \text{error component of table 5.2}, \quad x/N_1 > y/N_2,$$ = 0, $x/N_1 \le y/N_2.$ Asymptotically, $2I(H_1':H_2)$ in (5.20) is distributed as χ^2 with 1 degree of freedom under the null hypothesis H_2 of (5.12), but the α significance level must be taken from the usual χ^2 tables at the 2α level. Similarly, for testing the two hypotheses H_1'' : the samples are from different binomial populations with respective probabilities of success p_1 , p_2 , $p_1 < p_2$, (5.21) H_2 : the samples are from the same binomial population, $p_1 = p_2 = p$, we have $l(p^*:p)$ in (5.17) when $x/N_1 < y/N_2$ and $l(p^*:p)$ in (5.18) when $x/N_1 \ge y/N_2$. The hypothesis H_2 of (5.21) usually does not specify the value of p, and then (5.22) $$2\hat{I}(H_1'': H_2) = \text{error component of table 5.2,} \quad x/N_1 < y/N_2,$$ = 0, $x/N_1 \ge y/N_2.$ Asymptotically, $2I(H_1'':H_2)$ in (5.22) is distributed as χ^2 with 1 degree of freedom under the null hypothesis H_2 of (5.21), but the α significance level must be taken from the usual χ^2 tables at the 2α level. Note that H_1 , H_1' , and H_1'' of (5.19), (5.12), and (5.21) respectively satisfy $H_1 \rightleftharpoons H_1' \cup H_1''$, that is, $(p_1 \ne p_2)$ if and only if $(p_1 > p_2)$ or $(p_1 < p_2)$. We remark that in table 5.2 when $x/N_1 = y/N_2$ the total becomes equal to the between component and the within component vanishes. In any TABLE 5.2 | Component due to | Information | D.F. | |--|---|------| | $\hat{p} = \frac{x+y}{N_1 + N_2}$ $2\hat{I}(\hat{p}:p),$ (Between) | $2\left((x+y)\log\frac{x+y}{(N_1+N_2)p} + (N_1+N_2-x-y)\log\frac{N_1+N_2-x-y}{(N_1+N_2)(1-p)}\right)$ | 1 | | Error,
2 <i>Î</i> (<i>p</i> *: <i>p̂</i>)
(Within) | $2\left(x\log\frac{(N_1+N_2)x}{N_1(x+y)} + (N_1-x)\log\frac{(N_1+N_2)(N_1-x)}{N_1(N_1+N_2-x-y)} + y\log\frac{(N_1+N_2)y}{N_2(x+y)} + (N_2-y)\log\frac{(N_1+N_2)(N_2-y)}{N_2(N_1+N_2-x-y)}\right)$ | 1 | | Total,
2Î(p*:p) | $2\left(x\log\frac{x}{N_{1}p} + (N_{1} - x)\log\frac{(N_{1} - x)}{N_{1}(1 - p)} + y\log\frac{y}{N_{2}p} + (N_{2} - y)\log\frac{N_{2} - y}{N_{2}(1 - p)}\right)$ | 2 | case, the alternative hypotheses H_1' , H_1'' , or H_1 will be accepted if the minimum discrimination information statistic exceeds some constant. We summarize the preceding in table 5.3, the entries describing for the different hypotheses when the test statistic is the total, within, or between component in table 5.2. For example, in the test of $H_1':(p_1>p_2)$ against $H_2:(p_1=p_2=p)$, when $p=p_0$ is specified, use the total $2\hat{I}(p^*:p)$ when $x/N_1>y/N_2$, the between $2\hat{I}(\hat{p}:p)$ when $x/N_1\leq y/N_2$. However, when p is not specified, use the within $2\hat{I}(p^*:\hat{p})$ when $x/N_1>y/N_2$, accept the null hypothesis H_2 when $x/N_1\leq y/N_2$. TABLE 5.3 | | $H_1': H_2$ (5.12) | $H_1'':H_2$ (5.21) | $H_1: H_2$ (5.19) | |--|--|---|---------------------------------------| | Between, $2\hat{I}(\hat{p}:p)$ | $\frac{x}{N_1} \leq \frac{y}{N_2}, \qquad p = p_0$ | $\frac{x}{N_1} \ge \frac{y}{N_2}, \qquad p = p_0$ | $p = p_0$ | | Within, 2 <i>Î</i> (<i>p</i> *: <i>β̂</i>) | $\frac{x}{N_1} > \frac{y}{N_2},$ $p = \hat{p} = \frac{x+y}{N_1 + N_2}$ $0, \qquad \frac{x}{N_1} \le \frac{y}{N_2}$ | $p = \hat{p} = \frac{x+y}{N_1 + N_2}$ | $p = \hat{p} = \frac{x+y}{N_1 + N_2}$ | | Total, $2\hat{I}(p^*:p)$ | $\frac{x}{N_1} > \frac{y}{N_2}, \qquad p = p_0$ | $\frac{x}{N_1} < \frac{y}{N_2}, \qquad p = p_0$ | $p = p_0$ | #### 6. r SAMPLES ## 6.1. Basic Problem Suppose we have r independent random samples with multinomial distributions on a c-valued population, and we are interested in a test of the null hypothesis that the samples are homogeneous. We denote the samples by $$(x_i)=(x_{i1},x_{i2},\cdots,x_{ic}), \ x_{i1}+x_{i2}+\cdots+x_{ic}=N_i, \ i=1,2,\cdots,r,$$ and consider the two hypotheses, (6.1) H₁: the samples are from different populations $(p_{i1}, p_{i2}, \dots, p_{ic})$, $i = 1, 2, \dots, r$, H₂: the samples are from the same population (p_1, p_2, \dots, p_c) , namely, $p_{ij} = p_j > 0$, $i = 1, 2, \dots, r$, $j = 1, 2, \dots, c$. Without repeating the detailed argument, which is similar to that already used, we find here that, (6.2) $$I(1:2) = \sum_{i=1}^{r} N_i \sum_{j=1}^{c} p_{ij} \log \frac{p_{ij}}{p_i},$$ (6.3) $$J(1, 2) = \sum_{i=1}^{r} N_{i} \sum_{j=1}^{c} (p_{ij} - p_{j}) \log \frac{p_{ij}}{p_{j}}$$ For the conjugate distributions with parameters the same as the respective observed sample best unbiased estimates, we have (6.4) $$f(p^*:p) = \sum_{i=1}^r \sum_{j=1}^c x_{ij} \log \frac{x_{ij}}{N_i p_j}.$$ The hypothesis H_2 of (6.1) usually does not specify the p_j , $j=1,2,\cdots$, c. We can analyze $\hat{I}(p^*:p)$ in (6.4) into two additive components, one due
to the deviations between the p_j and their best unbiased estimates from the pooled samples, and the other due to what may be termed error within the samples. Letting $x_j = \sum_{i=1}^r x_{ij}$, $N = N_1 + N_2 + \cdots + N_r$, the analysis is summarized in table 6.1. The degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (6.1). Note that $\hat{I}(p^*:\hat{p})$ in table 6.1 is the minimum value of (6.4) for variations of the p_j , $\sum_{j=1}^c p_j = 1$, that is, over the populations of H_2 , and by the convexity property (see section 4.2, and section 3 of chapter 2), $\sum_{i=1}^r \sum_{j=1}^c x_{ij} \log \frac{x_{ij}}{N_i p_j} \ge \sum_{j=1}^c x_j \log \frac{x_j}{N p_j}$. We shall write $\hat{I}(H_1:H_2) = \hat{I}(p^*:\hat{p})$. We remark that the analysis in table 6.1 is a reflection of the fact that the hypothesis H_2 in (6.1) is the intersection of the hypotheses $H_2(\cdot)$, the TABLE 6.1 Component due to Information D.F. $\hat{p}_{j} = x_{j}/N, 2\hat{l}(\hat{p}:p) \qquad 2\sum_{j=1}^{c} x_{j} \log \frac{x_{j}}{Np_{j}} \qquad c-1$ Error, $2\hat{l}(p^{*}:\hat{p}) \qquad 2\sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij} \log \frac{Nx_{ij}}{N_{i}x_{j}} \qquad (r-1)(c-1)$ Total, $2\hat{l}(p^{*}:p) \qquad 2\sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij} \log \frac{x_{ij}}{N_{i}n_{i}} \qquad r(c-1)$ samples are homogeneous, and $H_2(\cdot|(p))$, the homogeneous samples are from the population $(p) = (p_1, p_2, \dots, p_c)$, that is, $H_2 = H_2(\cdot) \cap H_2(\cdot|(p))$. The between component in table 6.1, $2\hat{l}(\hat{p}:p)$, tests the hypothesis $H_2(\cdot|(p))$, and the within component in table 6.1, $2\hat{l}(p^*:\hat{p})$ or $2\hat{l}(H_1:H_2)$, conditionally tests the hypothesis $H_2(\cdot)$, subject to the observed values of $\hat{p}_j = x_j/N$, $j = 1, 2, \dots, c$. The error component in table 6.1 may also be expressed as (6.5) $$\hat{I}(p^*:\hat{p}) = \hat{I}(H_1:H_2) = \sum_{i=1}^r \sum_{j=1}^c x_{ij} \log x_{ij} - \sum_{j=1}^c x_j \log x_j + N \log N - \sum_{i=1}^r N_i \log N_i,$$ for computational convenience with the table of $n \log n$. The divergences do not provide a similar additive analysis (with these estimates) but the estimate of the divergence corresponding to the error component is (6.6) $$\hat{J}(p^*, \hat{p}) = \hat{J}(H_1, H_2) = \sum_{i=1}^r N_i \sum_{j=1}^c \left(\frac{x_{ij}}{N_i} - \frac{x_j}{N}\right) \log \frac{Nx_{ij}}{N_i x_i}$$ Note that $I(p^*:\hat{p})$ of table 6.1 is (6.2) with the substitution of x_{ij}/N_i for p_{ij} and x_i/N for p_i and that (6.6) is (6.3) with the same substitutions. $2I(H_1:H_2)$ and $J(H_1, H_2)$ are asymptotically distributed as χ^2 with (r-1)(c-1) degrees of freedom under the null hypothesis H_2 of (6.1) (the samples are from the same population). With the approximations used in (4.5) and (4.6), we find that [cf. Hsu (1949, pp. 397–398)] (see problem 7.18) $$2I(H_1: H_2) \approx \sum_{i=1}^{r} \sum_{j=1}^{c} N \left(x_{ij} - \frac{N_i x_j}{N} \right)^2 / N_i x_j.$$ ### 6.2. Partition The error component in table 6.1 can be analyzed into (r-1) comparisons, each of (c-1) degrees of freedom, between each sample and the pooled sample of all its predecessors. This permits an assessment of each sample as it is added, to test for an abrupt change. [Cf. Cochran (1954, pp. 422-423), Lancaster (1949).] For partitioning within the categories see section 4.2. To indicate the successive pooling of the samples, we define, (6.7) $$y_{ij} = x_{1j} + x_{2j} + \cdots + x_{ij}, \quad i = 2, \cdots, r-1, \quad j = 1, 2, \cdots, c,$$ $y_{i1} + y_{i2} + \cdots + y_{ic} = N_1 + N_2 + \cdots + N_i = M_i.$ The analysis in table 6.2 is derived in a straightforward fashion from the definitions in (6.7) and the properties of the logarithm. Note that the convexity property (see section 4.2, and section 3 of chapter 2) ensures that each between component is the minimum value of the within component below it in table 6.2 for the given pooling. TABLE 6.2 | Component due to | Information | D.F. | |---|--|------------| | Within samples 1 and 2 | $2\sum_{i=1}^{2}\sum_{j=1}^{c}x_{ij}\log\frac{M_{2}x_{ij}}{N_{i}y_{2j}}$ | c - 1 | | Between sample 3
and samples 1
and 2 | $2\sum_{j=1}^{c} \left(x_{3j} \log \frac{M_3 x_{3j}}{N_3 y_{3j}} + y_{2j} \log \frac{M_3 y_{2j}}{M_2 y_{3j}} \right)$ | c - 1 | | | · · · · · · · · · · · · · · · · · · · | | | Within samples 1 to $r-2$ | $2\sum_{i=1}^{r-2}\sum_{j=1}^{c}x_{ij}\log\frac{M_{r-2}x_{ij}}{N_{i}y_{r-2,j}}$ | (r-3)(c-1) | | Between sample $(r-1)$ and samples 1 to $r-2$ | $2\sum_{j=1}^{c} \left(x_{r-1,j} \log \frac{M_{r-1} x_{r-1,j}}{N_{r-1} y_{r-1,j}} + y_{r-2,j} \log \frac{M_{r-1} y_{r-2,j}}{M_{r-2} y_{r-1,j}} \right)$ | c — 1 | | Within samples 1 to $r-1$ | $2\sum_{i=1}^{r-1}\sum_{j=1}^{c}x_{ij}\log\frac{M_{r-1}x_{ij}}{N_{i}y_{r-1,j}}$ | (r-2)(c-1) | | Between sample r and samples 1 to $r-1$ | $2\sum_{j=1}^{c} \left(x_{rj} \log \frac{Nx_{rj}}{N_{r}x_{j}} + y_{r-1,j} \log \frac{Ny_{r-1,j}}{M_{r-1}x_{j}} \right)$ | c - 1 | | 2Î(H ₁ :H ₂)
(Within) | $2\sum_{i=1}^{r}\sum_{j=1}^{c}x_{ij}\log\frac{Nx_{ij}}{N_{i}x_{j}}$ | (r-1)(c-1) | We remark that (see the remark about the analysis in table 4.1) the analysis in table 6.2 is a reflection of two facts: 1. The hypothesis of homogeneity H_2 in (6.1) is equivalent to the intersection of (r-1) hypotheses $H_2(1,2)$, $H_2(1+2,3)$, \cdots , $H_2(1+2+\cdots+r-1,r)$, $H_2=H_2(1,2)\cap H_2(1+2,3)\cap\cdots\cap$ $H_2(1+2+\cdots+r-1,r)$, where $H_2(1,2)$ is the hypothesis that samples 1 and 2 are homogeneous, $H_2(1+2,3)$ is the hypothesis that sample 3 is homogeneous with the pooled homogeneous samples 1 and 2, $H_2(1+2+3,4)$ is the hypothesis that sample 4 is homogeneous with the pooled homogeneous samples 1, 2, and 3, etc. 2. The distribution of two independent samples may be expressed as the product of a marginal distribution of the pooled samples and a conditional distribution of the individual samples given the pooled sample, that is, in the notation of (6.7), $$\frac{N_{1}!}{x_{11}! \cdots x_{1c}!} p_{1}^{x_{11}} \cdots p_{c}^{x_{1c}} \cdot \frac{N_{2}!}{x_{21}! \cdots x_{2c}!} p_{1}^{x_{21}} \cdots p_{c}^{x_{2c}} \\ = \frac{(N_{1} + N_{2})!}{y_{21}! \cdots y_{2c}!} p_{1}^{y_{21}} \cdots p_{c}^{y_{2c}} \cdot \frac{N_{1}! N_{2}!}{(N_{1} + N_{2})!} \frac{y_{21}! \cdots y_{2c}!}{x_{11}! \cdots x_{1c}! x_{21}! \cdots x_{2c}!}$$ with similar results for 3, 4, · · · samples. [Cf. Bartlett (1937).] The degrees of freedom in table 6.2 are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (6.1). We leave to the reader the estimate of the divergences, as well as the expression in terms of the form $n \log n$ for computational convenience. There may be some basis for considering a partitioning of the r samples into two or more sets. We shall indicate the analysis for a partitioning into two sets to illustrate the procedure which is easily extended to more than two sets. For convenience we take samples 1 to r_1 as set 1, samples $r_1 + 1$ to r as set 2, and define (6.8) $$z_{1j} = x_{1j} + x_{2j} + \cdots + x_{r_1j},$$ $$j = 1, 2, \cdots, c,$$ $$z_{2j} = x_{r_1+1,j} + \cdots + x_{r_j},$$ $$T_1 = \sum_{j=1}^{c} z_{1j}, \qquad T_2 = \sum_{j=1}^{c} z_{2j}, \qquad N = T_1 + T_2.$$ The analysis in table 6.3 is derived in a straightforward fashion from the definitions in (6.8) and the properties of the logarithm. Note that the convexity property (see section 4.2) ensures that the between component in table 6.3 is the minimum value of $2I(H_1:H_2)$ for the given partitioning. (Cf. table 4.2.) We leave to the reader the details of remarks about the analysis of the null hypothesis and the distributions that are similar to those for table 6.2. The degrees of freedom in table 6.3 are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (6.1). We leave to the reader the estimate of the divergences as well as the expression in terms of the form $n \log n$ for computational convenience. | | TABLE 6.3 | |--------|-------------| | dua to | Information | | Component due to | Information | D.F. | |---|--|------------------| | Between set 1 and set 2 | $2\sum_{j=1}^{c} \left(z_{1j} \log \frac{Nz_{1j}}{T_1 x_j} + z_{2j} \log \frac{Nz_{2j}}{T_2 x_j} \right)$ | c — 1 | | Within set 2 | $2\sum_{i=r_1+1}^{r}\sum_{j=1}^{c}x_{ij}\log\frac{T_2x_{ij}}{N_iz_{2j}}$ | $(r-r_1-1)(c-1)$ | | Within set 1 | $2\sum_{i=1}^{r_1}\sum_{j=1}^{c}x_{ij}\log\frac{T_1x_{ij}}{N_iz_{1j}}$ | $(r_1-1)(c-1)$ | | 2Î(H ₁ : H ₂) Within r samples | $2\sum_{i=1}^r\sum_{j=1}^c x_{ij}\log\frac{Nx_{ij}}{N_ix_i}$ | (r-1)(c-1) | # 6.3. Parametric Case We now assume that p_1, p_2, \dots, p_c of table 6.1 are known functions of independent parameters $\phi_1, \phi_2, \dots, \phi_k, k < c$. Suppose we "fit" the multinomial distribution using estimates (by some procedure to be determined) $\tilde{\phi}_l, l = 1, 2, \dots, k$, of the ϕ 's. We write $\tilde{p}_j = p_j(\tilde{\phi}_1, \tilde{\phi}_2, \dots, \tilde{\phi}_k), j = 1, 2, \dots, c, \tilde{p}_1 + \tilde{p}_2 + \dots + \tilde{p}_c = 1$. If the \tilde{p}_i , or the $\tilde{\phi}_i$, are such that identically in the ϕ 's (6.9) $$\sum_{j=1}^{c} \frac{x_j}{N} \log \frac{\tilde{p}_j}{p_j} = \sum_{j=1}^{c} \tilde{p}_j \log \frac{\tilde{p}_j}{p_j},$$ we get the further analysis of table 6.1 summarized in table 6.4. The condition (6.9) is to ensure that the analysis in table 6.4 is additive informationwise, and is analogous to (4.8). Table 6.4 includes a further analysis of table 5.1 when r=2.
We see [cf. (4.8)-(4.11)] that (6.9) implies that the $\tilde{\phi}_i$'s are the solutions of (6.10) $$\sum_{j=1}^{c} \frac{x_j}{p_j} \frac{\partial p_j}{\partial \phi_l} = 0, \qquad l = 1, 2, \cdots, k.$$ The equations (6.10) are the maximum-likelihood equations for estimating the ϕ 's, and are also those which solve the problem of finding the ϕ 's that minimize the between component or the total in table 6.1. We leave to the reader the estimate of the divergences, as well as the expression in terms of the form $n \log n$ for computational convenience. The degrees of freedom in table 6.4 are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (6.1), the p's being taken as functions of the ϕ 's. (See problem 7.16.) TABLE 6.4 | Component due to | Information | D.F. | |--|--|------------| | Between $\hat{p}_j = x_j/N$ and $\tilde{p}_j = p_j(\tilde{\phi}_1, \cdots, \tilde{\phi}_k)$, $2\hat{I}(\hat{p}; \tilde{p})$ | $2\sum_{j=1}^{c} x_{j} \log \frac{x_{j}}{N\tilde{p}_{j}}$ | c - k - 1 | | Error, 2Î(p*:p̂) (Within) | $2\sum_{i=1}^{r}\sum_{j=1}^{c}x_{ij}\log\frac{Nx_{ij}}{N_{i}x_{j}}$ | (r-1)(c-1) | | $2\hat{I}(p^*:\tilde{p})$ or between x_{ij}/N_i and \tilde{p} | $2\sum_{i=1}^{r}\sum_{j=1}^{c}x_{ij}\log\frac{x_{ij}}{N_{i}\tilde{p}_{j}}$ | r(c-1)-k | | $\tilde{\phi}$'s, $2\hat{l}(\tilde{p}:p)$
(\tilde{p}) against (p) | $2N\sum_{j=1}^{c}\tilde{p}_{j}\log\frac{\tilde{p}_{j}}{p_{j}}$ | k | | Total, $2\hat{I}(p^*:p)$ | $2\sum_{i=1}^r\sum_{j=1}^c x_{ij}\log\frac{x_{ij}}{N_i p_j}$ | r(c-1) | ## 7. PROBLEMS - 7.1. Estimate the divergences corresponding to the information components in table 4.1. - 7.2. Estimate the divergences corresponding to the information components in table 4.2. - 7.3. Estimate the divergences corresponding to the within components in table 6.2. - 7.4. Express the information components in table 6.2 in terms of the form $n \log n$. - 7.5. Complete the details of the discussion of the analysis of the null hypothesis and the distributions for table 6.3. - 7.6. Estimate the divergences corresponding to the information components in table 6.3. - 7.7. Express the information components in table 6.3 in terms of the form $n \log n$. - 7.8. Estimate the divergences corresponding to the information components in table 6.4. - 7.9. Express the within component in table 6.4 in terms of the form $n \log n$. - 7.10. Fisher (1956, p. 144) defines a consistent statistic as: "a function of the observed frequencies which takes the exact parametric value when for these frequencies their expectations are substituted." Which of the information statistics in chapter 6 are *Fisher consistent*, that is, consistent in the sense of the foregoing definition? [Cf. Fisher (1922b, p. 316).] - 7.11. Are the following six independent multinomial samples homogeneous? 7.12. Are the following four independent multinomial samples homogeneous? 7.13. Are the following test results for five manufacturers homogeneous? | | Manufacturer | | | | | |--------|--------------|-----|-----|----|-----| | | A | В | C | D | E | | Failed | 26 | 72 | 61 | 29 | 135 | | Passed | 172 | 169 | 142 | 36 | 542 | | Total | 198 | 241 | 203 | 65 | 677 | - 7.14. From the analysis in table 4.3 and the properties of the discrimination information, show that for $N \to \infty$, if $x_i/N \to p_i$ with probability 1, then $x_i/N \to \tilde{p}_i$ with probability 1 and $\tilde{p}_i \to p_i$ with probability 1, $i = 1, 2, \dots, c$. [Cf. Rao (1957).] (See lemma 2.1 of chapter 4.) - 7.15. What is the relation, if any, between (4.3) and problem 5.12 in chapter 1? - 7.16. From the analysis in table 6.4 and the properties of the discrimination information, show that for $N_i \to \infty$, if $x_{ij}/N_i \to p_j$ with probability 1, then $x_{ij}/N_i \to \tilde{p}_j$ with probability 1, $\tilde{p}_j \to p_j$ with probability 1, and $x_j/N \to \tilde{p}_j$ with probability 1, $i = 1, 2, \dots, r$; $j = 1, 2, \dots, c$. (See problem 7.14.) 7.17. Show that $$\inf_{p \le p_0} \left(x \log \frac{x}{Np} + (N - x) \log \frac{N - x}{Nq} \right) = x \log \frac{x}{Np_0} + (N - x) \log \frac{N - x}{Nq_0}, x > Np_0.$$ [See (4.18).] 7.18. Find the approximate value of $\hat{J}(H_1, H_2)$ in (6.6) using the procedure for (4.5) and (4.6). # Poisson Populations ## 1. BACKGROUND Suppose two simple statistical hypotheses, say H_1 and H_2 , specify respectively the Poisson populations $$(1.1) \quad p(x, m_i) = \frac{e^{-m_i}m_i^x}{x!}, \qquad x = 0, 1, 2, \cdots; \qquad i = 1, 2, m_i > 0.$$ The mean information per observation from the population hypothesized by H_1 , for discriminating for H_1 against H_2 , is (see section 2 of chapter 1) (1.2) $$I(1:2) = \sum_{x=0}^{\infty} p(x, m_1) \log \frac{p(x, m_1)}{p(x, m_2)}$$ $$= m_1 \log \frac{m_1}{m_2} + m_2 - m_1.$$ The divergence between H_1 and H_2 , a measure of the difficulty of discriminating between them, is (see section 3 of chapter 1) (1.3) $$J(1, 2) = \sum_{x=0}^{\infty} (p(x, m_1) - p(x, m_2)) \log \frac{p(x, m_1)}{p(x, m_2)}$$ $$= (m_1 - m_2) \log \frac{m_1}{m_2}.$$ The mean discrimination information and divergence for a random sample of n independent observations O_n are $$I(1:2; O_n) = n \left(m_1 \log \frac{m_1}{m_2} + m_2 - m_1 \right) = nI(1:2),$$ $$J(1, 2; O_n) = n(m_1 - m_2) \log \frac{m_1}{m_2} = nJ(1, 2).$$ These may be calculated directly or derived from the additivity property (see section 2 in chapter 2). # 2. CONJUGATE DISTRIBUTIONS Suppose that every possible observation from $p^*(x)$, any distribution on the nonnegative integers, is also a possible observation from the Poisson distribution $p(x, m) = e^{-m}m^x/x!$, $x = 0, 1, 2, \cdots$. This is to avoid the contingency that $p^*(x) \neq 0$ and p(x, m) = 0. (See section 7 of chapter 2.) Theorem 2.1 of chapter 3 permits us to assert: LEMMA 2.1. The least informative distribution on the nonnegative integers, with given expected value, for discrimination against the Poisson distribution $p(x, m) = e^{-m}m^x/x!$, namely, the distribution $p^*(x)$ such that $E^*(x) = \theta$ and $\sum_{x=0}^{\infty} p^*(x) \log (p^*(x)/p(x, m))$ is a minimum, is the distribution (2.1) $p^*(x) = e^{\tau x}p(x, m)/e^{-m+me^{\tau}} = e^{-me^{\tau}}(me^{\tau})^x/x! = e^{-m^{\bullet}}(m^{\bullet})^x/x!$, where $\sum_{x=0}^{\infty} e^{\tau x}p(x, m) = e^{-m+me^{\tau}}$, $m^* = me^{\tau} = \theta = \frac{d}{d\tau}\log e^{-m+me^{\tau}}$, and τ is a real parameter. Note that the least informative distribution $p^*(x)$ here is a Poisson distribution. [Cf. Sanov (1957, p. 25).] We illustrate lemma 2.1 with a numerical example (cf. example 2.1 of chapter 3). Table 2.1 gives the negative binomial distribution $p_1^*(x) = (\Gamma(n+x)/x!\Gamma(n))p^xq^{-n-x}$, n=2, p=0.5, q=1.5, mean = 1; the Poisson distribution $p_2^*(x) = e^{-m}m^x/x!$, m=1; and the Poisson distribution $p(x) = e^{-m}m^x/x!$, m=1.5, which is taken as the distribution p(x) of the lemma. The other two are distributions with $E^*(x) = 1$. [The numerical values of the negative binomial are taken from Cochran (1954, p. 419). See example 2.2 in chapter 4.] TABLE 2.1 | <i>x</i> | $p_1^*(x)$ | $p_2^*(x)$ | p(x) | $p_1^*(x)\log\frac{p_1^*(x)}{p(x)}$ | $p_2^*(x)\log\frac{p_2^*(x)}{p(x)}$ | |----------|------------|------------|--------|-------------------------------------|-------------------------------------| | 0 | 0.4444 | 0.3679 | 0.2231 | 0.30624 | 0.18402 | | 1 | 0.2963 | 0.3679 | 0.3347 | -0.03611 | 0.03479 | | 2 | 0.1482 | 0.1839 | 0.2510 | 0.07813 | -0.05720 | | 3 | 0.0658 | 0.0613 | 0.1255 | -0.04249 | -0.04392 | | 4+ | 0.0453 | 0.0190 | 0.0657 | -0.01678 | -0.02357 | | | | | | | | | | 1.0000 | 1.0000 | 1.0000 | 0.13273 | 0.09412 | Note that the Poisson distribution does provide the smaller value of $\Sigma p^*(x) \log (p^*(x)/p(x))$, and [see (1.2)] that $1 \log (1/1.5) + 1.5 - 1 = 0.09453$. The difference between 0.09412 in table 2.1 and 0.09453 computed from the formula for I(1:2) is due to the grouping for $x \ge 4$, illustrating the statement that grouping loses information (see sections 3 and 4 of chapter 2, example 2.2 of chapter 4, and problem 6.6). The Poisson distribution $p^*(x)$ in (2.1) is the conjugate distribution (see section 1 of chapter 5) of the Poisson distribution p(x, m). We thus have (2.2) $$I(p^*:p) = \sum_{x=0}^{\infty} p^*(x) \log \frac{p^*(x)}{p(x,m)}$$ $$= \theta \tau + m - me^{\tau} = \theta \log \frac{\theta}{m} + m - \theta,$$ $$J(p^*,p) = \sum_{x=0}^{\infty} (p^*(x) - p(x,m)) \log \frac{p^*(x)}{p(x,m)}$$ $$= \tau(\theta - m) = (\theta - m) \log \frac{\theta}{m}.$$ For applications to testing hypotheses about Poisson distributions, the basic Poisson distribution p(x, m) will be that of the null hypothesis H_2 , whereas the conjugate distribution will range over the populations of the alternative hypothesis H_1 . #### 3. r SAMPLES # 3.1. Basic Problem Suppose we have r independent samples of n_1, n_2, \dots, n_r independent observations from Poisson populations. We want to test the hypotheses: (3.1) H_1 : the Poisson population parameters are m_1, m_2, \dots, m_r , H_2 : the Poisson population parameters are $m_1 = m_2 = \dots = m_r = m$, that is, a null hypothesis of homogeneity H_2 , the samples are from the same Poisson population. From the additivity property (see section 2 in chapter 2), or by direct evaluation for the r samples, we have (3.2) $$I(H_1: H_2) = \sum_{i=1}^r n_i \left(m_i \log \frac{m_i}{m} + m - m_i \right),$$ (3.3) $$J(H_1, H_2) = \sum_{i=1}^{r} n_i (m_i - m) \log \frac{m_i}{m}$$ With the observed sample best unbiased estimates, the respective sample averages, as the θ_i of the conjugate distributions we have (3.4) $$\hat{I}(m^*:m)
= \sum_{i=1}^{r} (\hat{\tau}_i n_i \bar{x}_i + n_i (m - me^{\hat{\tau}_i})),$$ where [see (2.1)] $\hat{\tau}_i = \log(\bar{x}_i/m)$, $i = 1, 2, \dots, r$, and [see (2.2)] (3.5) $$\hat{I}(m^*:m) = \sum_{i=1}^{r} n_i \left(\bar{x}_i \log \frac{\bar{x}_i}{m} + m - \bar{x}_i \right).$$ The hypothesis H_2 of (3.1) usually does not specify m. We can analyze $\hat{I}(m^*:m)$ into two additive components, one due to the deviation between m and its best unbiased estimate from the pooled samples, the other due to what may be termed error within the samples. Letting $n\bar{x} = n_1\bar{x}_1 + \cdots + n_r\bar{x}_r$, $n = n_1 + n_2 + \cdots + n_r$, we have the analysis summarized in table 3.1. The degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (3.1). Note that $\hat{I}(m^*:\hat{m})$ ($\hat{I}(H_1:H_2)$) in table 3.1 is the minimum value of $\hat{I}(m^*:m)$ in (3.5) for variations of m > 0, that is, over the populations H_2 , and that by the convexity property (see section 3 of chapter 2) $$\sum_{i=1}^r \left(n_i \bar{x}_i \log \frac{\bar{x}_i}{m} + n_i (m - \bar{x}_i) \right) \ge n \bar{x} \log \frac{\bar{x}}{m} + n (m - \bar{x}).$$ We remark that the analysis in table 3.1 is a reflection of the fact that the hypothesis H_2 in (3.1) is the intersection of the hypotheses $H_2(\cdot)$, the samples are homogeneous, and $H_2(\cdot|m)$, the parameter of the homogeneous samples is m, that is, $H_2 = H_2(\cdot) \cap H_2(\cdot|m)$. The between component in table 3.1, $2\hat{l}(\hat{m}:m)$, is a test for the hypothesis $H_2(\cdot|m)$, and the within component in table 3.1, $2\hat{l}(m^*:\hat{m})$ or $2\hat{l}(H_1:H_2)$, is a conditional test for the hypothesis $H_2(\cdot)$, subject to the observed $n\bar{x} = n_1\bar{x}_1 + \cdots + n_r\bar{x}_r$. The error component in table 3.1 may be expressed as (3.6) $$\hat{I}(H_1: H_2) = \sum_{i=1}^r n_i \bar{x}_i \log \bar{x}_i - n\bar{x} \log \bar{x} = \sum_{i=1}^r n_i \bar{x}_i \log n_i \bar{x}_i - \sum_{i=1}^r \bar{x}_i n_i \log n_i - n\bar{x} \log n\bar{x} + \bar{x}n \log n,$$ for computational convenience with the table of $n \log n$, since $n_i \bar{x}_i$, i = 1, $2, \dots, r$, and $n\bar{x}$ are integral. The divergences do not provide a similar additive analysis (with these estimates), but the estimate of the divergence corresponding to the error component is (3.7) $$\hat{J}(m^*, \hat{m}) = \hat{J}(H_1, H_2) = \sum_{i=1}^r n_i(\bar{x}_i - \bar{x}) \log \frac{\bar{x}_i}{\bar{x}}.$$ Note that $I(H_1: H_2) = I(m^*: \hat{m})$ in table 3.1 is (3.2) with the substitution of \bar{x}_i for m_i and \bar{x} for m_i and that (3.7) is (3.3) with the same substitutions. TABLE 3.1 | Component due to | Information | D.F. | |---|---|-------| | Between $\hat{m} = \bar{x}$ and m , $2\hat{l}(\hat{m}:m)$ | $2\left(n\bar{x}\log\frac{\bar{x}}{m}+n(m-\bar{x})\right)$ | 1 | | Error, 2Î(m*: m̂) (Within) | $2\sum_{i=1}^r n_i \bar{x}_i \log \frac{\bar{x}_i}{\bar{x}}$ | r - 1 | | Total, $2\hat{I}(m^*:m)$ | $2\sum_{i=1}^{r} \left(n_i \bar{x}_i \log \frac{\bar{x}_i}{m} + n_i (m - \bar{x}_i) \right)$ | r | Under the null hypothesis H_2 of (3.1) (the samples are from the same population), $2\hat{I}(H_1:H_2)$ and $\hat{J}(H_1,H_2)$ are asymptotically distributed as χ^2 with (r-1) degrees of freedom. Under the alternative hypothesis H_1 of (3.1), $2\hat{I}(H_1:H_2)$ and $\hat{J}(H_1,H_2)$ are asymptotically distributed as noncentral χ^2 with (r-1) degrees of freedom and respective noncentrality parameters $2\sum_{i=1}^r n_i m_i \log(m_i/m)$ and $\sum_{i=1}^r n_i (m_i-m) \log(m_i/m)$, $nm = \sum_{i=1}^r n_i m_i$, corresponding to $n\bar{x} = \sum_{i=1}^r n_i \bar{x}_i$. With the approximation used in (4.5) and (4.6) of chapter 6, we find [cf. Cochran (1954), Fisher (1950), Rao and Chakravarti (1956)] (3.8) $$2\tilde{I}(H_1: H_2) \approx \sum \frac{n_i (\bar{x}_i - \bar{x})^2}{\bar{x}} = \chi^2,$$ $$\tilde{J}(H_1, H_2) \approx \frac{1}{2} \sum \frac{n_i (\bar{x}_i - \bar{x})^2}{\bar{x}} + \frac{1}{2} \sum \frac{n_i (\bar{x}_i - \bar{x})^2}{\bar{x}_i}.$$ ## 3.2. Partition The error component in table 3.1 can be analyzed into (r-1) comparisons, each of 1 degree of freedom, between each sample and the pooled sample of all its predecessors. (Compare the analysis of the error component in section 6.2 of chapter 6. We leave the comparable details to the reader.) This permits an assessment of each sample as it is added, for changes that may have occurred. [See Cochran (1954), Lancaster (1949).] To indicate the successive pooling of the samples, we define $$N_i y_i = n_1 \bar{x}_1 + n_2 \bar{x}_2 + \cdots + n_i \bar{x}_i, \quad i = 2, \cdots, r-1,$$ and $$N_i = n_1 + n_2 + \cdot \cdot \cdot + n_i.$$ The analysis in table 3.2 is derived in a straightforward fashion from these definitions and the properties of the logarithm. Note that the TABLE 3.2 | Component due to | Information | D.F. | |--|---|-------| | Within samples 1 and 2 | $2\sum_{i=1}^{2}n_{i}\bar{x}_{i}\log\frac{\bar{x}_{i}}{y_{2}}$ | 1 | | Between sample 3 and pooled samples 1 and 2 | $2\left(n_3\bar{x}_3\log\frac{\bar{x}_3}{y_3}+N_2y_2\log\frac{y_2}{y_3}\right)$ | 1 | | • | • | • | | Within samples 1 to $(r-2)$ | $2\sum_{i=1}^{r-2} n_i \bar{x}_i \log \frac{\bar{x}_i}{y_{r-2}}$ | r – 3 | | Between sample $(r-1)$
and pooled samples 1
to $(r-2)$ | $2\left(n_{r-1}\bar{x}_{r-1}\log\frac{\bar{x}_{r-1}}{y_{r-1}}+N_{r-2}y_{r-2}\log\frac{y_{r-2}}{y_{r-1}}\right)$ | 1 | | Within samples 1 to $r-1$ | $2\sum_{i=1}^{r-1} n_i \bar{x}_i \log \frac{\bar{x}_i}{y_{r-1}}$ | r – 2 | | Between sample r and pooled samples 1 to $r-1$ | $2\left(n_{r}\bar{x}_{r}\log\frac{\bar{x}_{r}}{\bar{x}}+N_{r-1}y_{r-1}\log\frac{y_{r-1}}{\bar{x}}\right)$ | 1 | | Error, $2\hat{l}(H_1: H_2)$
(Within r samples) | $2\sum_{i=1}^{r}n_{i}\bar{x}_{i}\log\frac{\bar{x}_{i}}{\bar{x}}$ | r-1 | convexity property (see section 3 of chapter 2) ensures that each between component is the minimum value of the within component below it in table 3.2 for the given pooling. The degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (3.1). We leave to the reader the estimation of the divergences, as well as the expression in terms of the form $n \log n$ for computational convenience. # 4. "ONE-SIDED" HYPOTHESIS, SINGLE SAMPLE (Cf. section 4.4 of chapter 6.) It is also of interest to examine a "one-sided" hypothesis. Suppose we have a random sample of n independent observations from a Poisson population, and we want to test the hypotheses: (4.1) H_1 : the Poisson population parameter is $m_1 > m$, H_2 : the Poisson population parameter is equal to m. The conjugate distribution (2.1) ranges over the Poisson populations H_1 in (4.1) if $m^* = me^{\tau} > m$. Only values of $\tau > 0$ are therefore admissible. With the value of the observed sample best unbiased estimate (the sample average \bar{x}) as $\hat{\theta}$ of the conjugate distribution, we have [cf. (3.4)], $$(4.2) f(m^*:m) = \hat{\tau}n\bar{x} + n(m - me^{\hat{\tau}}), \hat{\tau} = \log(\bar{x}/m).$$ If $\bar{x} > m$, then $\hat{\tau} > 0$ is admissible. If $\bar{x} \le m$, then $\hat{\tau} \le 0$ is not admissible. On the boundary $\hat{\tau} = 0$ of the admissible region, $\hat{I}(m^*:m) = 0$. We thus have: (4.3) $$\hat{I}(H_1: H_2) = n\bar{x} \log \frac{\bar{x}}{m} + n(m - \bar{x}), \quad \bar{x} > m,$$ = 0, $\bar{x} \le m.$ Asymptotically, $2\hat{I}(H_1: H_2)$ has a χ^2 -distribution with 1 degree of freedom under the null hypothesis H_2 of (4.1), but the α significance level must be taken from the usual χ^2 tables at the 2α level, since we do not consider values of $\bar{x} < m$ for which $\hat{I}(H_1: H_2)$ is the same as for some value of $\bar{x} > m$. Instead of the simple null hypothesis H_2 of (4.1), let us consider the composite null hypothesis H_2' : (4.4) H_1 : the Poisson population parameter is $m_1 > m_0$, H_2' : the Poisson population parameter is $m \le m_0$. It may be shown that [cf. (4.18) of chapter 6] (see problem 6.7) (4.5) $$\inf_{m \le m_0} \left(n\bar{x} \log \frac{\bar{x}}{m} + n(m - \bar{x}) \right) = n\bar{x} \log \frac{\bar{x}}{m_0} + n(m_0 - \bar{x}), \quad \bar{x} > m_0,$$ and therefore (4.6) $$\hat{I}(H_1: H_2') = n\bar{x} \log \frac{\bar{x}}{m_0} + n(m_0 - \bar{x}), \qquad \bar{x} > m_0,$$ $$= 0, \qquad \bar{x} \le m_0.$$ Under the null hypothesis H_2' of (4.4), asymptotically, Prob $[2I(H_1:H_2') \ge \chi_{2\alpha}^2] \le \alpha$, where $\chi_{2\alpha}^2$ is the entry in the usual χ^2 tables at the 2α level for 1 degree of freedom. Similarly, for the hypotheses (4.7) H_3 : the Poisson population parameter is $m_1 < m_0$, H_2'' : the Poisson population parameter is $m \ge m_0$, we have (4.8) $$\hat{I}(H_3: H_2'') = n\bar{x} \log \frac{\bar{x}}{m_0} + n(m_0 - \bar{x}), \qquad \bar{x} < m_0,$$ $$= 0, \qquad \bar{x} \ge m_0.$$ Under the null hypothesis H_2'' of (4.7), asymptotically, Prob $[2\hat{I}(H_3:H_2'') \ge \chi_{2\alpha}^2] \le \alpha$ where $\chi_{2\alpha}^2$ is as above. The two-sided hypothesis (4.9) H_4 : the Poisson population parameter is $m_1 \neq m_0$, H_2 : the Poisson population parameter is $m = m_0$, is a special case of section 3.1, and (4.10) $$2\hat{l}(H_4: H_2) = 2\left(n\bar{x}\log\frac{\bar{x}}{m_0} + n(m_0 - \bar{x})\right)$$ is asymptotically distributed as χ^2 with 1 degree of freedom under the null hypothesis H_2 of (4.9). A $100(1 - \alpha)$ % asymptotic confidence interval for m_0 is given by (4.11)
$$2n\bar{x}\log\frac{\bar{x}}{m_0} + 2n(m_0 - \bar{x}) \leq \chi^2(\alpha, 1),$$ where $\chi^2(\alpha, 1)$ is the value for which the χ^2 -distribution with 1 degree of freedom yields Prob $[\chi^2 \ge \chi^2(\alpha, 1)] = \alpha$. (Cf. section 5 of chapter 5.) (See problem 6.4.) Note that H_2 , H_2' , and H_2'' , respectively of (4.9), (4.4), and (4.7), satisfy $H_2 \rightleftharpoons H_2' \cap H_2''$, that is, $(m = m_0)$ if and only if $(m \le m_0)$ and $(m \ge m_0)$; also H_4 , H_1 , and H_3 , respectively of (4.9), (4.4), and (4.7), satisfy $H_4 \rightleftharpoons H_1 \cup H_3$, that is $(m_1 \ne m_0)$ if and only if $(m_1 > m_0)$ or $(m_1 < m_0)$. The region of acceptance common to the hypotheses H_2' and H_2'' , $n\bar{x} \log (\bar{x}/m_0) + n(m_0 - \bar{x}) \le \text{constant}$, is also the region of acceptance of H_2 . For illustration we take $nm_0 = 50$ and compute for (4.6) some probabilities under H_2 and H_1 from Molina's tables (1942) for the exact Poisson values (see tables 4.1 and 4.2), and the χ^2 - and noncentral χ^2 -distributions for approximating values (see table 4.3). (Cf. section 4.5 of chapter 6.) TABLE 4.1 Prob $(n\bar{x} \le 50)$, Poisson | | | P | $\operatorname{Prob}\left(n\bar{x}\leq5\right)$ | 0), Poisson | | | |----|-----------|-------------|---|-------------|--------|--------| | nm | $H_2^{'}$ | | | H_1 | | | | 40 | 0.9474 | $nm_1 = 55$ | 60 | 65 | 70 | 80 | | 45 | 0.7963 | | | | | | | 50 | 0.5375 | 0.2768 | 0.1077 | 0.0321 | 0.0075 | 0.0002 | | | | | TABLE 4.2 | | | | | | | P | $\operatorname{rob}(n\bar{x} \geq 6$ | 3), Poisson | | | | nm | $H_2{'}$ | | | H_1 | | | | 40 | 0.0005 | $nm_1 = 55$ | 60 | 65 | 70 | 80 | | 45 | 0.0065 | | | | | | | 50 | 0.0424 | 0.1559 | 0.3662 | 0.6146 | 0.8140 | 0.9781 | $$2(62\log\frac{62}{50} + 50 - 62) = 2.67381$$ $$2(63 \log \frac{63}{50} + 50 - 63) = 3.12007$$ $2I(H_1: H_2')$ (corrected) = 2.90 (cf. section 4.5.2 of chapter 6). The central value in table 4.3 was computed from $\frac{1}{\sqrt{2\pi}} \int_{1.70}^{\infty} e^{-x^2/2} dx$ and the noncentral values from $\frac{1}{\sqrt{2\pi}} \left(\int_{1.70}^{\infty} e^{-(x-\mu)^2/2} dx + \int_{1.70}^{\infty} e^{-(x+\mu)^2/2} dx \right)$ where $\mu^2 = 2 \left(n m_1 \log \frac{n m_1}{50} + 50 - n m_1 \right)$. [Cf. section 4.5.2 of chapter 6 and (6.9) in chapter 12.] TABLE 4.3 Prob ($\chi^2 \ge 2.90$), Upper Tail Only | Central | Noncentral | | | | |---------|-----------------|---|--------|--| | 0.0443 | nm ₁ | $2\left(nm_1\log\frac{nm_1}{50}+50-nm_1\right)$ | | | | | 55 | 0.48412 | 0.1652 | | | | 60 | 1,87859 | 0.3710 | | | | 80 | 15.20058 | 0.9860 | | We summarize comparable values in table 4.4, that is, the exact and approximate probabilities of rejecting H_2 when it is true, and when one of the indicated alternatives is true. TABLE 4.4 | | ${H_2}'$ | H_1 | | | |----------|----------|-------------|--------|--------| | | | $nm_1 = 55$ | 60 | 80 | | Poisson | 0.0424 | 0.1559 | 0.3662 | 0.9781 | | χ^2 | 0.0443 | 0.1652 | 0.3710 | 0.9860 | # 5. "ONE-SIDED" HYPOTHESIS, TWO SAMPLES (Cf. section 5.2 of chapter 6.) We now test a "one-sided" hypothesis for two samples. Suppose we have two independent samples of n_1 and n_2 independent observations each, from Poisson populations. We want to test the hypotheses: (5.1) H_1' : the Poisson population parameters are $m_1 > m_2$, H_2 : the Poisson population parameters are $m_1 = m_2 = m$. The conjugate distributions [cf. (2.1)] range over the Poisson populations of H_1' in (5.1) if $$m_1^* = me^{\tau_1} > m_2^* = me^{\tau_2}.$$ Only values $\tau_1 > \tau_2$ are therefore admissible. For r = 2, we get from (3.4) $$(5.2) \hat{I}(m^*:m) = \hat{\tau}_1 n_1 \bar{x}_1 + n_1 (m - me^{\hat{\tau}_1}) + \hat{\tau}_2 n_2 \bar{x}_2 + n_2 (m - me^{\hat{\tau}_2}),$$ $$(5.3) n_1 \bar{x}_1 = n_1 m e^{\hat{\tau}_1}, n_2 \bar{x}_2 = n_2 m e^{\hat{\tau}_2},$$ or (5.4) $$\hat{\tau}_1 = \log \frac{\bar{x}_1}{m}, \qquad \hat{\tau}_2 = \log \frac{\bar{x}_2}{m}.$$ If $\bar{x}_1 > \bar{x}_2$, then $\hat{\tau}_1 > \hat{\tau}_2$ are admissible. However, if $\bar{x}_1 \leq \bar{x}_2$, then $\hat{\tau}_1 \leq \hat{\tau}_2$ are not admissible, and we must find the value of $\hat{I}(m^*:m)$ along the boundary $\hat{\tau}_2 = \hat{\tau}_1 = \hat{\tau}$ of the admissible area. For $\hat{\tau}_2 = \hat{\tau}_1 = \hat{\tau}$ in (5.2), we have (5.5) $$n\bar{x} = nme^{\hat{\tau}}$$, or $\hat{\tau} = \log \frac{\bar{x}}{m}$, $n\bar{x} = n_1\bar{x}_1 + n_2\bar{x}_2$, $n = n_1 + n_2$, and consequently, (5.6) $$f(m^*:m) = \sum_{i=1}^{2} \left(n_i \bar{x}_i \log \frac{\bar{x}_i}{m} + n_i (m - \bar{x}_i) \right), \quad \bar{x}_1 > \bar{x}_2,$$ (5.7) $$\hat{I}(m^*:m) = n\bar{x}\log\frac{\bar{x}}{m} + n(m-\bar{x}), \quad \bar{x}_1 \leq \bar{x}_2.$$ If we examine the analysis in table 3.1 for r = 2, corresponding to the two-sided hypothesis (5.8) H_1 : the Poisson population parameters are $m_1 \neq m_2$, H_2 : the Poisson population parameters are $m_1 = m_2 = m$, we see that $2I(m^*:m)$ in (5.6) is the total of table 3.1 when $\bar{x}_1 > \bar{x}_2$, and $2I(m^*:m)$ in (5.7) is the between component of table 3.1 when $\bar{x}_1 \leq \bar{x}_2$. The hypothesis H_2 of (5.1) usually does not specify the value of m, and we then have (5.9) $$2f(H_1':H_2) = \text{error component of table 3.1}, \quad r=2, \quad \bar{x}_1 > \bar{x}_2,$$ = 0, $\bar{x}_1 \leq \bar{x}_2.$ Asymptotically, $2I(H_1':H_2)$ in (5.9) has a χ^2 -distribution with 1 degree of freedom under the null hypothesis H_2 of (5.1), but the α significance level must be taken from the usual χ^2 tables at the 2α level. Similarly, for testing the hypotheses (5.10) H_1'' : the Poisson population parameters are $m_1 < m_2$, H_2 : the Poisson population parameters are $m_1 = m_2 = m$, we have $l(m^*:m)$ in (5.6) when $\bar{x}_1 < \bar{x}_2$ and $l(m^*:m)$ in (5.7) when $\bar{x}_1 \ge \bar{x}_2$. The hypothesis H_2 of (5.10) usually does not specify the value of m, and we then have (5.11) $$2\hat{I}(H_1'': H_2) = \text{error component of table 3.1}, \quad r = 2, \quad \bar{x}_1 < \bar{x}_2, \\ = 0, \quad \bar{x}_1 \ge \bar{x}_2.$$ Asymptotically, $2I(H_1'': H_2)$ in (5.11) is distributed as χ^2 with 1 degree of freedom under the null hypothesis H_2 of (5.10), but the α significance level must be taken from the usual χ^2 tables at the 2α level. Note that H_1 , H_1' , and H_1'' of (5.8), (5.1), and (5.10) respectively, satisfy $H_1 \rightleftharpoons H_1' \cup H_1''$, that is, $(m_1 \ne m_2)$ if and only if $(m_1 > m_2)$ or $(m_1 < m_2)$. We summarize the preceding in table 5.1. (See table 5.3 of chapter 6.) TABLE 5.1 $H_{1}':H_{2} \qquad H_{1}'':H_{2} \qquad H_{1}'':H_{2} \qquad H_{1}:H_{2} \qquad (5.8)$ Between $2\left(n\bar{x}\log\frac{\bar{x}}{m_{0}}+n(m_{0}-\bar{x})\right) \qquad \bar{x}_{1} \leq \bar{x}_{2}, \qquad \bar{x}_{1} \geq \bar{x}_{2}, \qquad m=m_{0}$ $Within \qquad \bar{x}_{1} > \bar{x}_{2}, \qquad \bar{x}_{1} < \bar{x}_{2}, \qquad m=\hat{m}=\bar{x}$ $2\sum_{i=1}^{2}n_{i}\bar{x}_{i}\log\frac{\bar{x}_{i}}{\bar{x}} \qquad 0, \quad \bar{x}_{1} \leq \bar{x}_{2} \qquad 0, \quad \bar{x}_{1} \geq \bar{x}_{2}$ $\sum_{i=1}^{2}n_{i}\left(\bar{x}_{i}\log\frac{\bar{x}_{i}}{m_{0}}+(m_{0}-\bar{x}_{i})\right) \qquad \bar{x}_{1} > \bar{x}_{2}, \qquad \bar{x}_{1} < \bar{x}_{2}, \qquad m=m_{0}$ $\bar{x}_{1} > \bar{x}_{2}, \qquad \bar{x}_{1} < \bar{x}_{2}, \qquad m=m_{0}$ $2\sum_{i=1}^{2}n_{i}\left(\bar{x}_{i}\log\frac{\bar{x}_{i}}{m_{0}}+(m_{0}-\bar{x}_{i})\right) \qquad \bar{x}_{1} > \bar{x}_{2}, \qquad \bar{x}_{1} < \bar{x}_{2}, \qquad m=m_{0}$ #### 6. PROBLEMS - 6.1. Complete the details of the analysis in table 3.2. - **6.2.** Estimate the divergences corresponding to the information components in table 3.2. - 6.3. Express the within components in table 3.2 in terms of the form $n \log n$. - 6.4. Compute the confidence interval for m_0 from (4.11) for $\bar{x} = 10$, n = 10, 100. - 6.5. The following represent the totals of successive samples of the same size from Poisson populations: 427, 440, 494, 422, 409, 310, 302 [from Lancaster (1949, p. 127)]. Are the successive samples homogeneous? If not, where does the change in homogeneity occur? (Lancaster gives the data derived from successive plates of bacterial culture mixed with disinfectant.) 6.6. Compute $$\sum p_3^*(x) \log \frac{p_3^*(x)}{p(x)}$$ with $p(x)$ given in table 2.1 and $p_3^*(x) = \frac{n!}{x!(n-x)!} p^x q^{n-x}$, $n = 10$, $p = 0.1$, $q = 1 - p$, and compare with table 2.1. 6.7. Show that $\inf_{m \le m_0} \left(n\bar{x} \log \frac{\bar{x}}{m} + n(m-\bar{x}) \right) = n\bar{x} \log \frac{\bar{x}}{m_0} + n(m_0 - \bar{x})$, $\bar{x} > m_0$. [See (4.5).] 6.8. Show that with the approximation used in (4.5) and (4.6) of chapter 6 the between component and the total in table 3.1 yield: (a) $$2\hat{I}(\hat{m}:m) \approx n(\bar{x}-m)^2/m$$, (b) $$2\hat{I}(m^*:m) \approx \sum_{i=1}^{7} n_i(\bar{x}_i - m)^2/m$$. ## CHAPTER 8 # Contingency Tables ## 1. INTRODUCTION A contingency table is essentially a sample from a multivalued population with the various probabilities and partitions of the categories subject to restrictions in addition to those of the multinomial distribution. The analyses of contingency tables in this chapter are therefore closely related to those of multinomial samples in chapter 6. Studies and applications of contingency tables have a long history in statistical theory. See, for example, Pearson (1904), Fisher (1925a, all editions), Yule and Kendall (1937), Kendall (1943), Wilks (1943), Cramér (1946a), Rao (1952), Mitra (1955), Roy and Kastenbaum (1955, 1956), Roy and Mitra (1956), Roy (1957). McGill (1954) has applied the communication theory measure of transmitted information to the analysis of contingency tables.
McGill's approach, though somewhat different from ours, employs closely related concepts, and we derive similar results for contingency tables. Garner and McGill (1954, 1956) have pointed out some of the parallels that exist among the analysis of variance, correlation analysis, and an information measure they call uncertainty, as methods of analyzing component variation [cf. the article by McGill on pp. 56-62 in Quastler (1955)]. We shall study two-way and three-way tables in detail. The extension of the procedures to higher order tables poses no new conceptual problems, only algebraic complexities of detail, and we leave this to the reader. ## 2. TWO-WAY TABLES We first study a two-factor or two-way table. Suppose we have N independent observations, each characterized by a value of two classifications, row and column, distributed among r row-categories and c column-categories. Let x_{ij} be the frequency of occurrence in the *i*th row and *j*th column, and $$x_{i\cdot} = \sum_{j=1}^{c} x_{ij}, \qquad x_{\cdot j} = \sum_{i=1}^{r} x_{ij},$$ $$N = \sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij} = \sum_{i=1}^{r} x_{i\cdot} = \sum_{j=1}^{c} x_{\cdot j}.$$ We denote the probabilities by p's with corresponding subscripts. We are first concerned with testing a null hypothesis H_2 , the row and column classifications are independent, that is, Without repeating the detailed argument (similar to that for a sample of N independent observations from a multinomial population with rc categories), we have [cf. (2.6) and (2.8) of chapter 6] (2.2) $$I(H_1: H_2) = N \sum_{i=1}^r \sum_{j=1}^c p_{ij} \log \frac{p_{ij}}{p_i \cdot p_{\cdot j}},$$ (2.3) $$J(H_1, H_2) = N \sum_{i=1}^{r} \sum_{j=1}^{c} (p_{ij} - p_{i\cdot} p_{\cdot j}) \log \frac{p_{ij}}{p_{i\cdot} p_{\cdot j}}.$$ Note that $I(H_1: H_2)/N$ in (2.2) is a measure of the relation between the row- and column-categories and has also been defined as the mean information in the row-categories about the column-categories or vice versa (see examples 4.3 and 4.4 of chapter 1). For the conjugate distribution (see section 3 of chapter 6) with parameters the same as the observed sample best unbiased estimates, we have (2.4) $$f((p)^*:(p)) = \sum_{i=1}^r \sum_{j=1}^c x_{ij} \log \frac{x_{ij}}{Np_{i\cdot}p_{\cdot j}}$$ The null hypothesis of independence H_2 in (2.1) usually does not specify p_i , $i=1, 2, \cdots, r$, and $p_{\cdot j}$, $j=1, 2, \cdots, c$. We can analyze $f((p)^*:(p))$ of (2.4) into three additive components: a marginal component due to the deviations between the p_i and their best unbiased estimates from the row totals, a marginal component due to the deviations between the $p_{\cdot j}$, and their best unbiased estimates from the column totals, and a conditional component due to the independence hypothesis. These components correspond respectively to a hypothesis $H_2(R)$ specifying the values of the $p_{\cdot j}$, and a hypothesis $H_2(R \times C)$ of independence, that is, H_2 in (2.1) is the intersection $H_2(R) \cap H_2(C) \cap H_2(R \times C)$. The analysis summarized in table 2.1 is an analogue of that in table 4.3 of chapter 6. Here there are (r-1) independent parameters p_1 , p_2 , \cdots , $p_{(r-1)}$, and (c-1) independent parameters p_1 , p_2 , \cdots , $p_{(c-1)}$. The equations (4.11) of chapter 6 are here $$\sum_{j=1}^{c} \left(\frac{x_{ij}}{p_{ij}} \, p_{\cdot j} - \frac{x_{rj}}{p_{rj}} \, p_{\cdot j} \right) = 0, \qquad i = 1, \, 2, \, \cdots, \, r - 1,$$ $$\sum_{i=1}^{r} \left(\frac{x_{ij}}{p_{ij}} \, p_{i\cdot} - \frac{x_{ic}}{p_{ic}} \, p_{i\cdot} \right) = 0, \qquad j = 1, \, 2, \, \cdots, \, c - 1.$$ Since $p_{ij} = p_i p_{.j}$, these equations reduce to $$\frac{x_{i\cdot}}{p_{i\cdot}} = \frac{x_{r\cdot}}{p_{r\cdot}}, \qquad i = 1, 2, \cdots, r-1, \qquad \frac{x_{\cdot j}}{p_{\cdot j}} = \frac{x_{\cdot c}}{p_{\cdot c}}, \qquad i = 1, 2, \cdots, c-1,$$ yielding $$\tilde{p}_{i\cdot} = \frac{x_{i\cdot}}{N}, \qquad \tilde{p}_{\cdot j} = \frac{x_{\cdot j}}{N}, \qquad \tilde{p}_{ij} = \frac{x_{i\cdot}}{N} \frac{x_{\cdot j}}{N},$$ $$i = 1, 2, \cdots, r, \qquad j = 1, 2, \cdots, c.$$ [Cf. Cramér (1946a, pp. 442-443).] Note that the independence component in table 2.1 is the minimum value of the total for variations of the p_i , and p_{ij} , $$\sum_{i=1}^{r} p_{i\cdot} = 1 = \sum_{j=1}^{c} p_{\cdot j},$$ that is, over the populations of H_2 with the given marginal values, and that by the convexity property (see section 3 of chapter 2) $$\sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij} \log \frac{x_{ij}}{Np_{i\cdot}p_{\cdot j}} \ge \sum_{i=1}^{r} x_{i\cdot} \log \frac{x_{i\cdot}}{Np_{i\cdot}},$$ $$\sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij} \log \frac{x_{ij}}{Np_{i\cdot}p_{\cdot j}} \ge \sum_{j=1}^{c} x_{\cdot j} \log \frac{x_{\cdot j}}{Np_{\cdot i}}.$$ The degrees of freedom in table 2.1 are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (2.1). [Cf. Wilks (1935a).] The independence component in table 2.1 may also be expressed as (2.5) $$f(H_1: H_2) = \sum_{i=1}^r \sum_{j=1}^c x_{ij} \log x_{ij} - \sum_{i=1}^r x_i \cdot \log x_i \cdot - \sum_{j=1}^c x_{.j} \log x_{.j} + N \log N,$$ for computational convenience with the table of $n \log n$. The divergences do not provide a similar additive analysis (with these estimates), but the estimate of the divergence corresponding to the independence component in (2.5) is [cf. (4.12) of chapter 6] (2.6) $$\hat{J}(H_1, H_2) = N \sum_{i=1}^{r} \sum_{j=1}^{c} \left(\frac{x_{ij}}{N} - \frac{x_i}{N} \frac{x_{.j}}{N} \right) \log \frac{N x_{ij}}{x_i . x_{.j}}$$ $$= \sum_{i=1}^{r} \sum_{j=1}^{c} \left(x_{ij} - \frac{x_i . x_{.j}}{N} \right) \log \frac{N x_{ij}}{x_i . x_{.j}}$$ TABLE 2.1 | Component due to | Information | D.F. | |--|--|------------| | Rows, $H_2(R)$
$\tilde{p}_i = x_i/N$ | $2\sum_{i=1}^{r} x_i \cdot \log \frac{x_i}{Np_i}.$ | r – 1 | | Columns, $H_2(C)$
$\tilde{p}_{ij} = x_{ij}/N$ | $2\sum_{j=1}^{c} x_{.j} \log \frac{x_{.j}}{Np_{.j}}$ | c — 1 | | Independence, $H_2(R \times C)$
$2\hat{I}(H_1: H_2) = 2\hat{I}((p)^*: (\hat{p}))$ | $2\sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij} \log \frac{Nx_{ij}}{x_{i}.x_{.j}}$ | (r-1)(c-1) | | Total, $2\hat{I}((p)^*:(p))$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}x_{ij}\log\frac{x_{ij}}{Np_{i\cdot}p_{\cdot,j}}$ | rc - 1 | Note that the independence component $I(H_1: H_2)$ in table 2.1 is (2.2) with the substitution of x_{ij}/N for p_{ij} , $x_{i.}/N$ for $p_{i.}$, and $x_{.j}/N$ for $p_{.j}$, and that (2.6) is (2.3) with the same substitutions. If the row and column classifications are independent, $2I(H_1: H_2)$ and $J(H_1, H_2)$ are asymptotically distributed as χ^2 with (r-1)(c-1) degrees of freedom. Under the alternative hypothesis H_1 of (2.1), $2I(H_1: H_2)$ and $J(H_1, H_2)$ are asymptotically distributed as noncentral χ^2 with (r-1)(c-1) degrees of freedom and respective noncentrality parameters $2I(H_1: H_2)$ and $J(H_1, H_2)$ as given by (2.2) and (2.3) with $$p_{i\cdot} = \sum_{j=1}^{c} p_{ij}, \qquad p_{\cdot j} = \sum_{i=1}^{r} p_{ij}.$$ (See problem 13.11.) With the approximations in (4.5) and (4.6) of chapter 6, we find that [cf. Cramér (1946a, pp. 441-445), Hsu (1949, pp. 367-369), Roy (1957, p. 128)] (2.7) $$2\hat{I}(H_1: H_2) \approx \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(x_{ij} - \frac{x_{i}.x_{.j}}{N}\right)^2}{\frac{x_{i}.x_{.j}}{N}} = \chi^2,$$ (2.8) $$f(H_1, H_2) \approx \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(x_{ij} - \frac{x_i \cdot x_{\cdot j}}{N}\right)^2}{\frac{x_i \cdot x_{\cdot j}}{N}} + \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(x_{ij} - \frac{x_i \cdot x_{\cdot j}}{N}\right)^2}{x_{ij}}$$ The reader now should express (2.2) in terms of the entropies defined in problem 8.30 of chapter 2. The test of homogeneity for r samples in section 6.1 of chapter 6 may also be viewed as that for a two-way contingency table with the hypotheses in (6.1) in chapter 6 subject to fixed row totals, that is, for given N_i , $i = 1, \dots, r$. We leave it to the reader to relate the components in table 2.1 and table 6.1 of chapter 6. [Cf. Good (1950, pp. 97-101).] ## 3. THREE-WAY TABLES The possible combinations of hypotheses of interest become more numerous for three-way and higher order contingency tables. We shall examine several cases for a three-way table to illustrate the general procedure. [Cf. McGill (1954), Mitra (1955), Roy and Mitra (1956), Roy (1957, pp. 116–120).] Suppose we have N independent observations, each characterized by a value of three classifications, row, column, and depth, distributed among r row-categories, c column-categories, and d depth-categories. Let x_{ijk} be the frequency of occurrence in the ith row, jth column, kth depth, and $$\sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{d} x_{ijk} = N, \qquad x_{i..} = \sum_{j=1}^{c} \sum_{k=1}^{d} x_{ijk},$$ $$x_{.j.} = \sum_{i=1}^{r} \sum_{k=1}^{d} x_{ijk}, \qquad x_{..k} = \sum_{i=1}^{r} \sum_{j=1}^{c} x_{ijk}, \qquad x_{ij.} = \sum_{k=1}^{d} x_{ijk},$$ $$x_{i\cdot k} = \sum_{j=1}^{c} x_{ijk}, \qquad x_{.jk} = \sum_{i=1}^{r} x_{ijk}, \qquad \sum_{j=1}^{c} \sum_{k=1}^{d} x_{.jk} = N,$$ $$\sum_{i=1}^{r} x_{i..} = \sum_{j=1}^{c} x_{.j.} = \sum_{k=1}^{d} x_{..k} = N.$$ We denote the probabilities by p's with corresponding subscripts. # 3.1. Independence of the Three Classifications Consider a three-way table and the hypotheses: $$H_1: p_{ijk} \neq p_{i..}p_{.j.}p_{..k}$$, for at least one (i, j, k) , $\Sigma\Sigma\Sigma p_{ijk} = 1$, $p_{ijk} > 0$, (3.1) $$H_2: p_{ijk} = p_{i\cdots}p_{\cdot j\cdot}p_{\cdot \cdot k}, \quad i = 1, 2, \cdots, r, \quad j = 1, 2, \cdots, c,$$ $$k = 1, 2, \cdots, d, \quad p_{1\cdots} + p_{2\cdots} + \cdots + p_{r\cdots} = p_{\cdot 1} + p_{\cdot 2} + \cdots + p_{\cdot c} = p_{\cdot 1} + p_{\cdot 2} + \cdots +
p_{\cdot d} = 1,$$ $$p_{i\cdots} > 0, \quad p_{\cdot j\cdot} > 0, \quad p_{\cdot k} > 0.$$ Without repeating the detailed argument (similar to that for a sample of N independent observations from a multinominal population with rcd categories), we have [cf. (2.6) and (2.8) of chapter 6] (3.2) $$I(H_1:H_2) = N \sum \sum p_{ijk} \log \frac{p_{ijk}}{p_{i\cdots}p_{\cdot j\cdot}p_{\cdot \cdot k}},$$ (3.3) $$J(H_1, H_2) = N \sum \sum (p_{ijk} - p_{i..} p_{..j}, p_{..k}) \log \frac{p_{ijk}}{p_{i..} p_{.j}, p_{..k}}$$ Note that $I(H_1: H_2)/N$ in (3.2) is a measure of the joint relation among the row-, column-, and depth-categories [see the remarks following (2.3)]. For the conjugate distribution (see section 3 of chapter 6) with parameters the same as the observed sample best unbiased estimates, we have (3.4) $$\tilde{I}((p^*):(p)) = \sum_{i=1}^r \sum_{j=1}^c \sum_{k=1}^d x_{ijk} \log \frac{x_{ijk}}{Np_{i\cdots}p_{\cdot j\cdot}p_{\cdot k}}$$ The null hypothesis of independence H_2 in (3.1) usually does not specify $p_i..., p_{...k}$, $i=1, 2, \cdots, r, j=1, 2, \cdots, c, k=1, 2, \cdots, d$. We can analyze $I((p)^*:(p))$ of (3.4) into several additive components. These components correspond to a hypothesis $H_2(R)$ specifying the values of the $p_{i...}$, a hypothesis $H_2(C)$ specifying the values of the $p_{...k}$, and a hypothesis $H_2(R) \times C \times D$ of independence, that is, H_2 in (3.1) is the intersection $H_2(R) \cap H_2(C) \cap H_2(D) \cap H_2(R \times C \times D)$. The analysis summarized in table 3.1 is an analogue of that in table 4.3 of chapter 6. Here there are (r-1) independent parameters $p_{i...}$, $i=1, 2, \cdots, r-1$, (c-1) independent parameters $p_{i...}$, $i=1, 2, \cdots, c-1$, and (d-1) independent parameters $p_{i...}$, $i=1, 2, \cdots, d-1$. The equations (4.11) of chapter 6 are here $$\sum_{j=1}^{c} \sum_{k=1}^{d} \left(\frac{x_{ijk}}{p_{ijk}} p_{\cdot j \cdot p_{\cdot \cdot k}} - \frac{x_{rjk}}{p_{rjk}} p_{\cdot j \cdot p_{\cdot \cdot k}} \right) = 0, \quad i = 1, 2, \dots, r-1,$$ $$\sum_{i=1}^{r} \sum_{k=1}^{d} \left(\frac{x_{ijk}}{p_{ijk}} p_{i..} p_{..k} - \frac{x_{ick}}{p_{ick}} p_{i..} p_{..k} \right) = 0, \quad j = 1, 2, \dots, c - 1,$$ $$\sum_{i=1}^{r} \sum_{j=1}^{c} \left(\frac{x_{ijk}}{p_{ijk}} p_{i..} p_{.j.} - \frac{x_{ijd}}{p_{ijd}} p_{i..} p_{.j.} \right) = 0, \quad k = 1, 2, \dots, d - 1.$$ Since $p_{ijk} = p_{i..}p_{.j.}p_{..k}$, these equations reduce to $$\frac{x_{i..}}{p_{i..}} = \frac{x_{r..}}{p_{r..}}, \quad i = 1, 2, \dots, r - 1, \quad \frac{x_{.j.}}{p_{.j.}} = \frac{x_{.c.}}{p_{.c.}},$$ $$j = 1, 2, \dots, c - 1, \frac{x_{..k}}{p_{..k}} = \frac{x_{..d}}{p_{..d}}, \quad k = 1, 2, \dots, d - 1,$$ yielding $$\hat{p}_{i..} = \frac{x_{i..}}{N}, \qquad \hat{p}_{.j.} = \frac{x_{.j.}}{N}, \qquad \hat{p}_{..k} = \frac{x_{..k}}{N}, \qquad \hat{p}_{ijk} = \frac{x_{i..}}{N} \cdot \frac{x_{.j.}}{N} \cdot \frac{x_{..k}}{N},$$ $$i = 1, 2, \dots, r, \qquad j = 1, 2, \dots, c, \qquad k = 1, 2, \dots, d.$$ (We write \hat{p} here rather than \tilde{p} because we shall need \tilde{p} for different estimates in the analysis in section 10.) Note that the independence component in table 3.1 is the minimum value of the total for variations of the $p_{i...}$, $p_{...}$, $p_{...}$, $$\sum_{i=1}^{r} p_{i..} = \sum_{j=1}^{c} p_{.j.} = \sum_{k=1}^{d} p_{..k} = 1,$$ that is, over the populations of H_2 with the given marginal values, and that by the convexity property (see section 3 of chapter 2) the total is not less than the row, column, or depth component. The degrees of freedom in table 3.1 are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (3.1). The independence component in table 3.1 may also be expressed as (3.5) $$f(H_1: H_2) = \sum \sum x_{ijk} \log x_{ijk} - \sum x_{i...} \log x_{i...} - \sum x_{...} \log x_{...} - \sum x_{...} \log x_{...} + 2N \log N$$ for computational convenience with the table of $n \log n$. The divergences do not provide a similar additive analysis (with these estimates), but the estimate of the divergence corresponding to the independence component in table 3.1 is [cf. (4.12) of chapter 6] (3.6) $$\hat{J}(H_1, H_2) = N \sum \sum \left(\frac{x_{ijk}}{N} - \frac{x_{i..}}{N} \frac{x_{.j.}}{N} \frac{x_{..k}}{N} \right) \log \frac{N^2 x_{ijk}}{x_{i..} x_{.j.} x_{..k}}$$ Note that the independence component $I(H_1: H_2)$ in table 3.1 is (3.2) with the substitution of x_{ijk}/N for p_{ijk} , $x_{i..}/N$ for $p_{i..}$, $x_{.j.}/N$ for $p_{.j.}$, and $x_{..k}/N$ for $p_{..k}$ and that (3.6) is (3.3) with the same substitutions. TABLE, 3.1 | Component due to | Information | D.F. | |---|---|----------------| | Rows, $H_2(R)$
$\hat{p}_{i} = x_{i}/N$ | $2\sum_{i=1}^{r} x_{i} \log \frac{x_{i}}{Np_{i}}$ | r – 1 | | Columns, $H_2(C)$
$\hat{p}_{.j.} = x_{.j.}/N$ | $2\sum_{j=1}^{c} x_{.j.} \log \frac{x_{.j.}}{Np_{.j.}}$ | c - 1 | | Depths, $H_2(D)$ $\hat{\rho}_{k} = x_{k}/N$ | $2\sum_{k=1}^{d} x_{\cdot \cdot \cdot k} \log \frac{x_{\cdot \cdot \cdot k}}{Np_{\cdot \cdot \cdot k}}$ | d — 1 | | Independence,
$H_2(R \times C \times D)$
$2\hat{I}(H_1: H_2)$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{N^{2}x_{ijk}}{x_{i}x_{.j.}x_{k}}$ | rcd-r-c-d+2 | | Total, $2\hat{l}((p^*):(p))$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{x_{ijk}}{Np_{i}p_{.j.}p_{k}}$ | <i>rcd</i> — 1 | If the row, column, and depth classifications are independent, $2\hat{I}(H_1: H_2)$ and $\hat{J}(H_1, H_2)$ are asymptotically distributed as χ^2 with (rcd - r - c - d + 2) degrees of freedom. Under the alternative hypothesis H_1 of (3.1), $2\hat{I}(H_1: H_2)$ and $\hat{J}(H_1, H_2)$ are asymptotically distributed as noncentral χ^2 with (rcd - r - c - d + 2) degrees of freedom and respective noncentrality parameters $2I(H_1: H_2)$ and $J(H_1, H_2)$ as given by (3.2) and (3.3) with $$p_{i\cdots} = \sum_{j} \sum_{k} p_{ijk}, \qquad p_{\cdot j\cdot} = \sum_{i} \sum_{k} p_{ijk}, \qquad p_{\cdot \cdot k} = \sum_{i} \sum_{j} p_{ijk}.$$ (See problem 13.8.) ## 3.2. Row Classification Independent of the Other Classifications Consider a three-way table and the hypotheses $$H_1: p_{ijk} \neq p_{i\cdots}p_{\cdot jk}$$, for at least one (i, jk) , $\Sigma\Sigma\Sigma p_{ijk} = 1$, $p_{ijk} > 0$, (3.7) $$H_{2}:p_{ijk} = p_{i..}p_{.jk}, \quad i = 1, 2, \cdots, r, \quad j = 1, 2, \cdots, c,$$ $$k = 1, 2, \cdots, d, \quad p_{1..} + p_{2..} + \cdots + p_{r..} = 1$$ $$= \sum_{j=1}^{c} \sum_{k=1}^{d} p_{.jk}, \quad p_{i..} > 0, \quad p_{.jk} > 0.$$ Note that H_2 in (3.7) implies $$p_{ij} = \sum_{k=1}^{d} p_{ijk} = p_{i} \cdot \sum_{k=1}^{d} p_{\cdot jk} = p_{i} \cdot p_{\cdot j},$$ and $$p_{i \cdot k} = \sum_{j=1}^{c} p_{ijk} = p_{i \cdot \cdot} \sum_{j=1}^{c} p_{\cdot jk} = p_{i \cdot \cdot} p_{\cdot \cdot k},$$ that is, the row and column classifications are independent and the row and depth classifications are independent. [Is the converse true? See Feller (1950, pp. 87-88), Kolmogorov (1950, p. 11).] Without repeating the detailed argument (similar to that already used), we have [cf. (2.6) and (2.8) of chapter 6], (3.8) $$I(H_1: H_2) = N \sum \sum p_{ijk} \log \frac{p_{ijk}}{p_{i..}p_{.jk}},$$ (3.9) $$J(H_1, H_2) = N \sum \sum (p_{ijk} - p_{i..} p_{.jk}) \log \frac{p_{ijk}}{p_{i..} p_{.jk}}$$ Note that $I(H_1: H_2)/N$ in (3.8) is a measure of the relation between the row- and (column, depth)-categories and may be defined as the information in the row-categories about the (column, depth)-categories or vice versa [see the remarks following (2.3)]. For the conjugate distribution (see section 3 of chapter 6) with parameters the same as the observed sample best unbiased estimates, we have (3.10) $$\hat{I}((p)^*:(p)) = \sum_{i=1}^r \sum_{j=1}^c \sum_{k=1}^d x_{ijk} \log \frac{x_{ijk}}{Np_{i..}p_{.ik}}$$ The null hypothesis H_2 of (3.7) usually does not specify $p_i..., p_{\cdot jk}, i=1$, $2, \cdots, r, j=1, 2, \cdots, c, k=1, 2, \cdots, d$. We can analyze $I((p)^*:(p))$ of (3.10) into several additive components. These components correspond to a hypothesis $H_2(R)$ specifying the values of the $p_{i...}$, a hypothesis $H_2(CD)$ specifying the values of the $p_{\cdot jk}$, and a hypothesis $H_2(R \times CD)$ of independence, that is, H_2 in (3.7) is the intersection $H_2(R) \cap H_2(CD) \cap H_2(R \times CD)$. The analysis summarized in table 3.2 is an analogue of that in table 4.3 of chapter 6. Here there are (r-1) independent parameters $p_{\cdot jk}$, $j=1, 2, \cdots, c, k=1, 2, \cdots, d$, omitting the combination j=c and k=d. The equations (4.11) of chapter 6 are here $$\sum_{j=1}^{c} \sum_{k=1}^{d} \left(\frac{x_{ijk}}{p_{ijk}} p_{\cdot jk} - \frac{x_{rjk}}{p_{rjk}} p_{\cdot jk} \right) = 0, \qquad i = 1, 2, \dots, r-1,$$ $$\sum_{i=1}^{r} \left(\frac{x_{ijk}}{p_{ijk}} p_{i \cdot \cdot \cdot} - \frac{x_{icd}}{p_{icd}} p_{i \cdot \cdot \cdot} \right) = 0, \qquad j = 1, 2, \dots, c, \qquad k = 1, 2, \dots, d,$$ omitting $j = c$ and $k = d$. Since $p_{ijk} = p_{i..}p_{.jk}$, these equations reduce to $$\frac{x_{i\cdots}}{p_{i\cdots}} = \frac{x_{r\cdots}}{p_{r\cdots}}, \quad i = 1, 2, \cdots, r-1, \quad \frac{x_{\cdot jk}}{p_{\cdot jk}} = \frac{x_{\cdot cd}}{p_{\cdot cd}}, \quad j = 1, 2, \cdots, c,$$ $$k = 1, 2, \cdots, d, \text{ omitting } j = c \text{ and } k = d,$$ yielding $$\tilde{p}_{i\cdots} = \frac{x_{i\cdots}}{N}, \qquad \tilde{p}_{\cdot jk} = \frac{x_{\cdot jk}}{N}, \qquad \tilde{p}_{ijk} = \frac{x_{i\cdots}}{N} \frac{x_{\cdot jk}}{N}, \qquad i = 1, 2, \cdots, r,$$ $$j = 1, 2, \cdots, c, \qquad k = 1, 2, \cdots, d.$$ Note that the independence component in table 3.2 is the minimum value of the total for variations of the $p_{i...}$ and p_{ijk} , $$\sum_{i=1}^{r} p_{i..} = 1 = \sum_{j=1}^{c}
\sum_{k=1}^{d} p_{.jk},$$ that is, over the populations of H_2 with the given row and (column, depth) marginal values, and that by the convexity property (see section 3 of chapter 2) the total is not less than the row or (column, depth) component. The degrees of freedom in table 3.2 are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (3.7). TABLE 3.2 | Component due to | Information | D.F. | |--|--|----------------| | Rows, $H_2(R)$
$\tilde{p}_{i} = x_{i}/N$ | $2\sum_{i=1}^{r} x_{i}\log \frac{x_{i}}{Np_{i}}$ | r — 1 | | Column, depth, $H_2(CD)$
$\tilde{p}_{.jk} = x_{.jk}/N$ | $2\sum_{j=1}^{c}\sum_{k=1}^{d}x_{\cdot jk}\log\frac{x_{\cdot jk}}{Np_{\cdot jk}}$ | cd-1 | | Rows × (column, depth)
Independence, $H_2(R \times CD)$
$2\hat{I}(H_1: H_2)$ | $2\sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{d} x_{ijk} \log \frac{Nx_{ijk}}{x_{i}x_{.jk}}$ | (r-1)(cd-1) | | Total, $2\hat{I}((p^*):(p))$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{x_{ijk}}{Np_{i}p_{.jk}}$ | <i>rcd</i> — 1 | The independence component in table 3.2 may also be expressed as (3.11) $f(H_1: H_2) = \sum \sum x_{ijk} \log x_{ijk} - \sum x_{i...} \log x_{i...} - \sum \sum x_{.jk} \log x_{.jk} + N \log N$ for computational convenience with the table of $n \log n$. The divergences do not provide a similar additive analysis (with these estimates), but the estimate of the divergence corresponding to the independence component in table 3.2 is [cf. (4.12) of chapter 6] (3.12) $$\hat{J}(H_1, H_2) = N \sum \sum \left(\frac{x_{ijk}}{N} - \frac{x_{i..}}{N} \frac{x_{.jk}}{N} \right) \log \frac{N x_{ijk}}{x_{i..} x_{.jk}}.$$ Note that $f(H_1: H_2)$ in table 3.2 is (3.8) with the substitution of x_{ijk}/N for p_{ijk} , $x_{i..}/N$ for $p_{i..}$, and $x_{.jk}/N$ for $p_{.jk}$ and that (3.12) is (3.9) with the same substitutions. If the row classification is independent of the other two classifications, $2\hat{I}(H_1:H_2)$ of (3.11) and $\hat{J}(H_1,H_2)$ of (3.12) are asymptotically distributed as χ^2 with (r-1)(cd-1) degrees of freedom. Under the alternative hypothesis H_1 of (3.7), $2\hat{I}(H_1:H_2)$ and $\hat{J}(H_1,H_2)$ are asymptotically distributed as noncentral χ^2 with (r-1)(cd-1) degrees of freedom and respective noncentrality parameters $2I(H_1:H_2)$ and $J(H_1,H_2)$ given by (3.8) and (3.9) with $p_{i\cdot\cdot\cdot} = \sum_{j} \sum_{k} p_{ijk}$, $p_{\cdot jk} = \sum_{i} p_{ijk}$. (See problem 13.9.) Similar analyses are of course possible if the independence hypothesis is that either the column or depth classification is independent of the other two classifications. We leave the details to the reader. # 3.3. Independence Hypotheses The independence component in table 3.1 is analyzed into additive components in table 3.3. This is a reflection of the fact that $H_2(R \times C \times D) \rightleftharpoons H_2(R \times CD) \cap H_2(C \times D)$, that is, the three classifications are independent if and only if the row classification is independent of the (column, depth) classifications and the column and depth classifications Component due to Information D.F. $\frac{Column \times \text{depth}}{H_2(C \times D)} \quad 2 \sum_{j=1}^{c} \sum_{k=1}^{d} x_{.jk} \log \frac{Nx_{.jk}}{x_{.j}.x_{..k}} \qquad (c-1)(d-1)$ Row × (column, depth) $2 \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{d} x_{ijk} \log \frac{Nx_{ijk}}{x_{i..}x_{.jk}} \qquad (r-1)(cd-1)$ Independence, $H_2(R \times C \times D) \quad 2 \sum_{i=1}^{c} \sum_{j=1}^{c} \sum_{k=1}^{d} x_{ijk} \log \frac{N^2x_{ijk}}{x_{i..}x_{.jk}} \qquad rcd-r-c-d+2$ are independent, since $p_{ijk} = p_{i..}p_{.jk}$ and $p_{.jk} = p_{.j.}p_{..k}$ imply that $p_{ijk} = p_{i..}p_{.j.}p_{..k}$; and $p_{ijk} = p_{i..}p_{.j.}p_{..k}$ implies $\sum_{i=1}^{r} p_{ijk} = p_{.jk} = p_{.j.}p_{..k}$ or $p_{ijk} = p_{i..}p_{.jk}$. It is of course also true that $H_2(R \times C \times D) \rightleftharpoons H_2(C \times RD) \cap H_2(R \times D)$ and $H_2(R \times C \times D) \rightleftharpoons H_2(RC \times D) \cap H_2(R \times C)$, but we leave the details to the reader. Note that the convexity property (see section 3 of chapter 2) ensures that the $H_2(C \times D)$ component is the minimum value of the $H_2(R \times C \times D)$ component for the given grouping. (See example 12.3 and problem 8.30 in chapter 12.) # 3.4. Conditional Independence Suppose for some category, say the kth, of the depth classification we want to test a null hypothesis that the row and column classifications are independent. The argument here parallels that for the two-way contingency table. We shall follow it with the notation introduced for the three-way contingency table, our basic problem. We want to test the hypotheses: $$H_{1}: p_{ijk} \neq \frac{p_{i \cdot k} p_{\cdot jk}}{p_{\cdot \cdot k}}, \quad \text{for at least one } (i, j), \quad \sum_{i=1}^{r} \sum_{j=1}^{c} p_{ijk} = p_{\cdot \cdot k}, \quad p_{ijk} > 0,$$ $$(3.13)$$ $$H_{2}: p_{ijk} = \frac{p_{i \cdot k} p_{\cdot jk}}{p_{\cdot \cdot k}}, \quad i = 1, 2, \cdots, r, \quad j = 1, 2, \cdots, c, \quad \sum_{i=1}^{r} \sum_{j=1}^{c} p_{ijk}$$ $$= p_{\cdot \cdot \cdot k}, \quad \sum_{j=1}^{r} p_{i \cdot k} = p_{\cdot \cdot \cdot k} = \sum_{j=1}^{c} p_{\cdot jk}, \quad p_{i \cdot k} > 0, \quad p_{\cdot jk} > 0, \quad p_{\cdot \cdot k} > 0.$$ Note that we are dealing with conditional probabilities $p_{ijk}|p_{..k}$, $p_{i\cdot k}|p_{..k}$, and $p_{.jk}|p_{..k}$. The analysis in table 3.4 is derived from that in table 2.1. We shall denote a conditional hypothesis about the rows for the kth category of the depth classification by $H_2(R|k)$ and the corresponding hypothesis for any category of the depth classification by $H_2(R|D)$; similarly for the columns. If H_2 in (3.13) is true for all k, that is, the row and column classifications are conditionally independent given the depth classification, the appropriate analysis corresponds to that in table 3.4 with each information component now summed over $k = 1, 2, \dots, d$, and each degree of freedom multiplied by d. In particular, the information component for a null hypothesis of conditional independence $H_2((R|D) \times (C|D))$ is (3.14) $$2I(H_1: H_2) = 2 \sum_{i=1}^r \sum_{j=1}^c \sum_{k=1}^d x_{ijk} \log \frac{x_{ijk}}{x_{i\cdot k} x_{\cdot jk} / x_{\cdot \cdot k}},$$ with d(r-1)(c-1) degrees of freedom for the asymptotic χ^2 -distribution under the null hypothesis of conditional independence. TABLE 3.4 | Component due to | Information | D.F. | |---|--|--------------| | Rows, $H_2(R k)$
$\tilde{p}_{i\cdot k}/\tilde{p}_{\cdot \cdot k} = x_{i\cdot k}/x_{\cdot \cdot k}$ | $2\sum_{i=1}^{r} x_{i\cdot k} \log \frac{x_{i\cdot k}}{x_{\cdot \cdot k}(p_{i\cdot k}/p_{\cdot \cdot k})}$ | r — 1 | | Columns, $H_2(C k)$
$\tilde{p}_{.jk}/\tilde{p}_{k} = x_{.jk}/x_{k}$ | $2\sum_{j=1}^{c} x_{.jk} \log \frac{x_{.jk}}{x_{k}(p_{.jk}/p_{k})}$ | <i>c</i> – 1 | | Conditional independence, $H_2((R k) \times (C k))$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}x_{ijk}\log\frac{x_{ijk}}{x_{i\cdot k}x_{\cdot jk}/x_{\cdot \cdot k}}$ | (r-1)(c-1) | | Total, $2\hat{I}((p^*):(p))$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}x_{ijk}\log\frac{x_{ijk}}{x_{k}(p_{i\cdot k} p_{k})(p_{.jk} p_{k})}$ | rc — 1 | # 3.5. Further Analysis The $H_2(R \times CD)$ component in table 3.3 [the test for the hypothesis that the row and (column, depth) classifications are independent] is analyzed into additive components in table 3.5. This is a reflection of the fact that $H_2(R \times CD) \rightleftharpoons H_2((R|D) \times (C|D)) \cap H_2(R \times D)$, that is, the row classification is independent of the (column, depth) classifications if and only if the row and column classifications are conditionally independent given the depth classification and the row and depth classifications are independent, since $p_{ijk} = p_{i \cdot k} p_{\cdot jk} |p_{\cdot \cdot k}|$ and $p_{i \cdot k} = p_{i \cdot \cdot p_{\cdot \cdot jk}}$ implies $\sum_{j=1}^{c} p_{ijk} = p_{i \cdot \cdot p_{\cdot \cdot jk}}$ or $p_{ijk} = p_{i \cdot \cdot p_{\cdot \cdot jk}} |p_{\cdot \cdot \cdot k}|$ Note that the convexity property (see section 3 of chapter 2) TABLE 3.5 | Component due to | Information | D.F. | |---|--|-------------| | Row \times depth $H_2(R \times D)$ | $2\sum_{i=1}^{r}\sum_{k=1}^{d}x_{i\cdot k}\log\frac{Nx_{i\cdot k}}{x_{i\cdot k}x_{i\cdot k}}$ | (r-1)(d-1) | | (Row, depth) \times (column, depth) $H_2((R D) \times (C D))$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{x_{ijk}}{x_{i\cdot k}x_{\cdot jk}}$ | d(r-1)(c-1) | | Row × (column, depth) $H_2(R \times CD)$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{Nx_{ijk}}{x_{i}x_{.jk}}$ | (r-1)(cd-1) | ensures that the $H_2(R \times D)$ component is the minimum value of the $H_2(R \times CD)$ component for the given grouping. (See example 12.3 and problem 8.31 in chapter 12.) Similar analyses follow if the conditional independence hypothesis is applied to other combinations of the classifications. We leave the details to the reader. ## 4. HOMOGENEITY OF TWO-WAY TABLES We may treat r independent samples of a c \times d table as an r \times c \times d three-way table with suitable hypotheses and restrictions. Thus, suppose we want to test a null hypothesis that r samples of a c \times d table are homogeneous, subject to a fixed total for each c \times d table. With the three-way table notation, the hypotheses are [cf.
(6.1) of chapter 6]: (4.1) $$H_{1}: p_{ijk} \neq p_{\cdot jk}, \qquad \sum_{j=1}^{c} \sum_{k=1}^{d} p_{ijk} = 1, \qquad i = 1, 2, \cdots, r,$$ $$H_{2}: p_{ijk} = p_{\cdot jk}, \qquad i = 1, 2, \cdots, r, \qquad j = 1, 2, \cdots, c,$$ $$k = 1, 2, \cdots d, \qquad \sum_{j=1}^{c} \sum_{k=1}^{d} p_{\cdot jk} = 1.$$ The analysis in table 4.1 is derived from that in table 6.1 of chapter 6 for the basic problem of the homogeneity of r samples from multinomial populations with cd categories. Component due to Information D.F. $\hat{p}_{.jk} = x_{.jk}/N$ (Between) $2 \sum_{j=1}^{c} \sum_{k=1}^{d} x_{.jk} \log \frac{x_{.jk}}{Np_{.jk}}$ cd - 1Error, $2\hat{l}(H_1: H_2)$ (Within, homogeneity) $2 \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{d} x_{ijk} \log \frac{Nx_{ijk}}{x_{i..}x_{.jk}}$ (r - 1)(r - 1) $2 \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{d} x_{ijk} \log \frac{x_{ijk}}{x_{i..}x_{.jk}}$ (r - 1)(r - 1) The degrees of freedom in table 4.1 are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (4.1). Note that the error or within or homogeneity component in table 4.1 is the minimum value of the total for variations of the $p_{\cdot,jk}$, $\sum_{j=1}^{c} \sum_{k=1}^{d} p_{\cdot,jk} = 1$, given the c \times d table totals, that is, over the populations of H_2 , and that by the convexity property (see section 3 of chapter 2) the total is not less than the between component. As might be expected, the analysis in table 4.1 is related to that in table 3.2 for the hypothesis of independence of the row classification and the other two classifications. In fact, the total of table 4.1 is the total minus the row component of table 3.2, the between component of table 4.1 is the (column, depth) component of table 3.2, and the within or homogeneity component in table 4.1 is the independence component of table 3.2. (See problem 13.10.) ## 5. CONDITIONAL HOMOGENEITY Suppose we have the r samples of section 4, and for some category, say the jth, of the column classification we want to test a null hypothesis that the r samples of the depth classification are homogeneous. The argument here parallels that in section 6.1 of chapter 6 for the basic problem of the homogeneity of r samples. We shall follow it with the notation for the three-way contingency table. We want to test the hypotheses: (5.1) $$H_{1}:p_{ijk} \neq p_{\cdot jk}, \qquad \sum_{k=1}^{d} p_{ijk} = p_{ij}, \qquad i = 1, 2, \cdots, r, \\ H_{2}:p_{ijk} = p_{\cdot jk}, \qquad i = 1, 2, \cdots, r, \qquad k = 1, 2, \cdots, d, \\ \sum_{k=1}^{d} p_{\cdot jk} = p_{\cdot j}..$$ The analysis in table 5.1 is derived from that in table 6.1 of chapter 6. TABLE 5.1 Component due to Information D.F. $\hat{p}_{.jk}/\hat{p}_{.j.} = x_{.jk}/x_{.j.}$ (Between) $2 \sum_{k=1}^{d} x_{.jk} \log \frac{x_{.jk}}{x_{.j.}(p_{.jk}/p_{.j.})}$ d - 1Error, $2\hat{l}(H_1: H_2)$, (Within) $2 \sum_{i=1}^{r} \sum_{k=1}^{d} x_{ijk} \log \frac{x_{ijk}}{(x_{ij}.x_{.jk})/x_{.j.}}$ (r - 1)(d - 1) Total, $2\hat{l}((p^*):(p))$ $2 \sum_{i=1}^{r} \sum_{k=1}^{d} x_{ijk} \log \frac{x_{ijk}}{x_{ij.}(p_{.jk}/p_{.j.})}$ r(d - 1) If H_2 in (5.1) is true for all j, that is, the depth classification is conditionally homogeneous given the column classification, the appropriate analysis corresponds to that in table 5.1 with each information component now summed over $j = 1, 2, \dots, c$, and each degree of freedom multiplied by c. In particular, the information component for a null hypothesis of conditional homogeneity $p_{ijk}/p_{ij} = p_{\cdot jk}/p_{\cdot j}$, $i = 1, 2, \dots, r$, $j = 1, 2, \dots, c$, $k = 1, 2, \dots, d$, is (5.2) $$2\mathbf{I}(H_1:H_2) = 2\sum_{i=1}^r \sum_{j=1}^c \sum_{k=1}^d x_{ijk} \log \frac{x_{ijk}}{(x_{ij}.x_{.jk})/x_{.j}},$$ with c(r-1)(d-1) degrees of freedom for the asymptotic χ^2 -distribution under the null hypothesis of conditional homogeneity. Note that $2I(H_1:H_2)$ in (5.2) is similar to the component for the test of a null hypothesis of conditional independence $H_2((R|C) \times (D|C))$ (cf. table 3.5). #### 6. HOMOGENEITY The homogeneity component in table 4.1 is analyzed into additive components in table 6.1 (cf. table 3.5). TABLE 6.1 | Component due to | Information | D.F. | |----------------------------------|--|-------------| | (C)-homogeneity | $2\sum_{i=1}^{r}\sum_{j=1}^{c}x_{ij}.\log\frac{Nx_{ij}.}{x_{i}x_{.j}.}$ | (r-1)(c-1) | | Conditional homogeneity- $(D C)$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{x_{ijk}}{(x_{ij.}x_{.jk})/x_{.j.}}$ | c(r-1)(d-1) | | (C, D)-homogeneity | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{Nx_{ijk}}{x_{i}x_{.jk}}$ | (r-1)(cd-1) | The analysis in table 6.1 is a reflection of the fact that (C, D)-homogeneity \rightleftharpoons conditional homogeneity- $(D|C) \cap (C)$ -homogeneity, that is, the two-way (column, depth) tables are homogeneous if and only if the depth classifications are conditionally homogeneous given the column classification, and the column classifications are homogeneous, since $p_{ijk}/p_{ij} = p_{\cdot jk}/p_{\cdot j}$, $i = 1, 2, \cdots, r, j = 1, 2, \cdots, c, k = 1, 2, \cdots, d$, and $p_{ij} = p_{\cdot j}$ imply $p_{ijk} = p_{\cdot jk}$, $i = 1, 2, \cdots, r, j = 1, 2, \cdots, c$, $k=1,\ 2,\ \cdots,\ d;$ and $p_{ijk}=p_{\cdot jk},\ i=1,\ 2,\ \cdots,\ r,\ j=1,\ 2,\ \cdots,\ c,$ $k=1,\ 2,\ \cdots,\ d,$ implies $p_{ij\cdot}=p_{\cdot j\cdot},\ i=1,\ 2,\ \cdots,\ r,\ j=1,\ 2,\ \cdots,\ c,$ and $p_{ijk}|p_{ij\cdot}=p_{\cdot jk}|p_{\cdot j\cdot}$. Note that the convexity property (see section 3 of chapter 2) ensures that the (C)-homogeneity component is the minimum value of the (C, D)-homogeneity component for the given grouping (see examples 12.2 and 12.4). #### 7. INTERACTION Since the information component for conditional homogeneity in table 6.1 is a convex function (see section 3 of chapter 2), (7.1) $$\sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{d} x_{ijk} \log \frac{x_{ijk}}{\underline{x_{ij}.x_{\cdot jk}}} \ge \sum_{i=1}^{r} \sum_{k=1}^{d} x_{i \cdot k} \log \frac{x_{i \cdot k}}{\sum_{j=1}^{c} \frac{x_{ij}.x_{\cdot jk}}{x_{\cdot j}.}},$$ with equality in (7.1) if and only if (cf. example 3.2 of chapter 2) $$\frac{x_{ijk}}{x_{ij}.x_{.jk}} = \frac{x_{imk}}{x_{im}.x_{.mk}}, i = 1, 2, \dots, r, k = 1, 2, \dots, d; j, m = 1, 2, \dots, c.$$ We may therefore analyze the conditional homogeneity component in table 6.1 into two additive components as shown in table 7.1, with $y_{i\cdot k} = \sum_{j=1}^{c} x_{ij}.x_{\cdot jk}/x_{\cdot j}$. Note that $y_{i\cdot \cdot \cdot} = \sum_{k=1}^{d} y_{i\cdot \cdot k} = x_{i\cdot \cdot \cdot}$ and that $y_{\cdot \cdot \cdot k} = \sum_{i=1}^{r} y_{i\cdot \cdot k} = x_{\cdot \cdot \cdot k}$. (See example 12.4.) The analysis in table 7.1 is TABLE 7.1 | Component due to | Information | D.F. | |----------------------------------|---|-----------------| | (RD)-interaction | $2\sum_{i=1}^{r}\sum_{k=1}^{d}x_{i\cdot k}\log\frac{x_{i\cdot k}}{y_{i\cdot k}}$ | (r-1)(d-1) | | (RD, C)-interaction | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{x_{ijk}}{x_{i\cdot k}x_{ij\cdot}x_{\cdot jk}}\frac{y_{i\cdot k}x_{ij\cdot}x_{\cdot jk}}{y_{i\cdot k}x_{\cdot j\cdot}}$ | (r-1)(c-1)(d-1) | | Conditional homogeneity- $(D C)$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{x_{ijk}}{x_{ij}.x_{.jk}}$ | c(r-1)(d-1) | a reflection of the fact that $$p_{i \cdot k} = \sum_{j=1}^{c} \frac{p_{ij \cdot} p_{\cdot jk}}{p_{\cdot j \cdot}}$$ and $p_{ijk} = \frac{p_{i \cdot k} p_{ij \cdot} p_{\cdot jk}}{\left(\sum_{j=1}^{c} \frac{p_{ij \cdot} p_{\cdot jk}}{p_{\cdot j \cdot}}\right) p_{\cdot j \cdot}}$ imply the null hypothesis of conditional homogeneity $p_{ijk}|p_{ij} = p_{\cdot jk}|p_{\cdot j}$; and $p_{ijk}|p_{ij} = p_{\cdot jk}|p_{\cdot j}$, implies $p_{i\cdot k} = \sum_{j=1}^{c} \frac{p_{ij\cdot}p_{\cdot jk}}{p_{\cdot j}}$ and $p_{ijk} = \frac{p_{i\cdot k}p_{ij\cdot}p_{\cdot jk}}{\left(\sum_{i=1}^{c} \frac{p_{ij\cdot}p_{\cdot jk}}{p_{\cdot j}}\right)p_{\cdot j}}$ The degrees of freedom in table 7.1 are those of the asymptotic χ^2 -distributions under the null hypothesis of conditional homogeneity. [Cf. Roy and Kastenbaum (1956).] ## 8. NEGATIVE INTERACTION It is true that the conditional homogeneity component of table 7.1 may also be analyzed algebraically as shown in table 8.1. However, the (D)-homogeneity component is not necessarily smaller than the conditional homogeneity component. The interaction component in table 8.1 may therefore have to be negative. This is illustrated in example 12.4. The contrary is illustrated in example 12.2. Note that if $x_{ij} = x_{i}..x_{.j}./N$, that is, the (C, D)-homogeneity component is the same as the conditional homogeneity-(D|C) component, then $y_{i\cdot k} = \sum_{j=1}^{c} \frac{x_{ij}.x_{.jk}}{x_{.j}} = x_{i}..x_{.k}/N$ and the (RD)-interaction component in table 7.1 becomes the (D)-homogeneity component of table 8.1, and the (RD, C)-interaction component in table 7.1 becomes the RCD-interaction component in table 8.1. [Cf. McGill (1954, p. 108), Sakaguchi (1957b, p. 26).] TABLE 8.1 | Component due to | Information | | | |----------------------------------|--|--|--| | (D)-homogeneity | $2\sum_{i=1}^{r}\sum_{k=1}^{d}x_{i\cdot k}\log\frac{Nx_{i\cdot k}}{x_{i\cdot k}x_{i\cdot k}}$ | | | | RCD-interaction | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{x_{ijk}}{Nx_{ij}.x_{i.k}x_{.jk}}$ | | | | Conditional homogeneity- $(D C)$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{x_{ijk}}{x_{ij}.x_{.jk}}$ | | | ## 9. PARTITIONS The independence component in table 2.1 can be
analyzed into components depending on partitions of the $r \times c$ contingency table [cf. Cochran (1954), Irwin (1949), Kimball (1954), Lancaster (1949)]. The partitionings correspond to possible dependence between subsets of the row and column classifications. See section 3.6 of chapter 12 for the analogous problem for a multivariate normal population. Suppose, for example, we partition a two-way contingency table into four parts by grouping the rows into two sets of r_1 , r_2 rows respectively, $r_1 + r_2 = r$, and the columns into two sets of c_1 , c_2 columns respectively, $c_1 + c_2 = c$. We supplement the notation by defining $$\begin{split} N_{\alpha\beta} &= \Sigma \Sigma x_{ij}, \qquad \alpha = 1 = \beta \text{ for } i = 1, 2, \cdots, r_1, \quad j = 1, 2, \cdots, c_1, \\ \alpha &= 2 = \beta \text{ for } i = r_1 + 1, \cdots, r_1 + r_2, \\ j &= c_1 + 1, \cdots, c_1 + c_2, \\ x_{i\cdot}^{\alpha\beta} &= \sum_j x_{ij}, \qquad x_{\cdot j}^{\alpha\beta} &= \sum_i x_{ij}, \qquad x_{i\cdot}^{\alpha} &= x_{i\cdot}^{\alpha1} + x_{i\cdot}^{\alpha2}, \qquad x_{\cdot j}^{\beta} &= x_{\cdot j}^{1\beta} + x_{\cdot j}^{2\beta}, \\ N_{\alpha\cdot} &= N_{\alpha1} + N_{\alpha2}, \qquad N_{\cdot\beta} &= N_{1\beta} + N_{2\beta}, \qquad \alpha = 1, 2, \qquad \beta = 1, 2, \\ N &= N_{11} + N_{12} + N_{21} + N_{22} &= N_1 + N_2 = N_{\cdot 1} + N_{\cdot 2}. \end{split}$$ The components of the analysis are those for the four subcontingency tables, the pair of row subtotals, the pair of column subtotals, and the 2×2 table of the partitioned total. The analysis in table 9.1 follows in a straightforward fashion from the definitions of the notation and the properties of the logarithm. The degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of (2.1). The same procedure will apply for any partitioning of the original contingency table into subtables either *ab initio* or by further partitioning of the subtables. This procedure is applicable when there is reason to test for possible dependence between subsets of the row classifications and subsets of the column classifications, after finding a significantly large independence component in table 2.1. Similarly, partitioning of three-way and higher order contingency tables leads to analysis of the independence components. Thus the independence component in table 3.1 can be further analyzed in addition to the analysis in table 3.3. Suppose, for example, we partition a three-way contingency table into eight parts by grouping the rows into two sets r_1 , r_2 respectively, $r_1 + r_2 = r$, the columns into two sets c_1 , c_2 respectively, $c_1 + c_2 = c$, and the depth into two sets d_1 , d_2 respectively, $d_1 + d_2 = d$. TABLE 9.1 | Component due to | Information | D.F. | |--|--|------------------| | Partition totals | $2\sum_{\alpha=1}^{2}\sum_{\beta=1}^{2}N_{\alpha\beta}\log\left(NN_{\alpha\beta}/N_{\alpha}.N_{\cdot\beta}\right)$ | 1 | | Partition column totals | $2\sum_{j=c_1+1}^{c_1+c_2} \left(x_{\cdot j}^{12} \log \frac{N_{\cdot 2} x_{\cdot j}^{12}}{N_{12} x_{\cdot j}^{2}} + x_{\cdot j}^{22} \log \frac{N_{\cdot 2} x_{\cdot j}^{22}}{N_{22} x_{\cdot j}^{2}} \right)$ | $c_2 - 1$ | | Partition column totals | $2\sum_{j=1}^{c_1} \left(x_{\cdot j}^{11} \log \frac{N_{\cdot 1} x_{\cdot j}^{11}}{N_{11} x_{\cdot j}^{11}} + x_{\cdot j}^{21} \log \frac{N_{\cdot 1} x_{\cdot j}^{21}}{N_{21} x_{\cdot j}^{11}} \right)$ | $c_1 - 1$ | | Partition row totals | $2 \sum_{i=r_1+1}^{r_1+r_2} \left(x_{i\cdot}^{21} \log \frac{N_2 \cdot x_{i\cdot}^{21}}{N_{21} x_{i\cdot}^{2}} + x_{i\cdot}^{22} \log \frac{N_2 \cdot x_{i\cdot}^{22}}{N_{22} x_{i\cdot}^{2}} \right)$ | $r_2 - 1$ | | Partition row totals | $2\sum_{i=1}^{r_1} \left(x_{i\cdot}^{11} \log \frac{N_1.x_{i\cdot}^{11}}{N_{11}x_{i\cdot}^{1\cdot}} + x_{i\cdot}^{12} \log \frac{N_1.x_{i\cdot}^{12}}{N_{12}x_{i\cdot}^{1\cdot}} \right)$ | $r_1 - 1$ | | Subcontingency table | $2\sum_{i=r_1+1}^{r_1+r_2}\sum_{j=c_1+1}^{c_1+c_2}x_{ij}\log\frac{N_{22}x_{ij}}{x_{i}^{22}x_{ij}^{22}}$ | $(r_2-1)(c_2-1)$ | | Subcontingency table | $2\sum_{i=r_1+1}^{r_1+r_2}\sum_{j=1}^{c_1}x_{ij}\log\frac{N_{21}x_{ij}}{x_{i\cdot}^{21}x_{\cdot j}^{21}}$ | $(r_2-1)(c_1-1)$ | | Subcontingency table | $2\sum_{i=1}^{r_1}\sum_{j=c_1+1}^{c_1+c_2}x_{ij}\log\frac{N_{12}x_{ij}}{x_{i\cdot}^{12}x_{\cdot j}^{12}}$ | $(r_1-1)(c_2-1)$ | | Subcontingency table | $2\sum_{i=1}^{r_1}\sum_{j=1}^{c_1}x_{ij}\log\frac{N_{11}x_{ij}}{x_{i\cdot}^{11}x_{\cdot j}^{11}}$ | $(r_1-1)(c_1-1)$ | | Independence, $H_2(R \times C)$ $2\hat{I}(H_1: H_2)$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}x_{ij}\log\frac{Nx_{ij}}{x_{i}.x_{.j}}$ | (r-1)(c-1) | We supplement the notation by defining $$\begin{split} N_{\alpha\beta\gamma} &= \Sigma\Sigma\Sigma x_{ijk}, & \alpha = \beta = \gamma = 1 \text{ for } i = 1, 2, \cdot \cdot \cdot, r_1, \\ j &= 1, 2, \cdot \cdot \cdot, c_1, \ k = 1, 2, \cdot \cdot \cdot, d_1, \\ \alpha &= \beta = \gamma = 2 \text{ for } i = r_1 + 1, \cdot \cdot \cdot, r_1 + r_2, \\ j &= c_1 + 1, \cdot \cdot \cdot, c_1 + c_2, \ k = d_1 + 1, \cdot \cdot \cdot, d_1 + d_2, \\ x_{i\cdots}^{\alpha\beta\gamma} &= \sum_{j} \sum_{k} x_{ijk}, & x_{\cdot j}^{\alpha\beta\gamma} &= \sum_{i} \sum_{k} x_{ijk}, & x_{\cdot \cdot k}^{\alpha\beta\gamma} &= \sum_{i} \sum_{j} x_{ijk}, \\ x_{i\cdots}^{\alpha\cdots} &= \sum_{\beta} \sum_{\gamma} x_{i\cdots}^{\alpha\beta\gamma}, & x_{\cdot j}^{\beta\cdot} &= \sum_{\alpha} \sum_{\gamma} x_{ij}^{\alpha\beta\gamma}, & x_{\cdot \cdot k}^{\alpha\gamma} &= \sum_{\alpha} \sum_{\beta} x_{\cdot \cdot k}^{\alpha\beta\gamma}, \\ N_{\alpha\cdots} &= \sum_{\beta} \sum_{\gamma} N_{\alpha\beta\gamma}, & N_{\cdot\beta} &= \sum_{\alpha} \sum_{\gamma} N_{\alpha\beta\gamma}, & N_{\cdot\gamma} &= \sum_{\alpha} \sum_{\beta} N_{\alpha\beta\gamma}, \\ N &= \sum_{\alpha} \sum_{\beta} \sum_{\gamma} N_{\alpha\beta\gamma} &= \sum_{\alpha} N_{\alpha\cdots} &= \sum_{\beta} N_{\cdot\beta}. &= \sum_{\gamma} N_{\cdot\gamma}. \end{split}$$ The components of the analysis are those for the eight three-way subtables, two sets each of row, column, and depth subtotals with four elements per set, and the $2 \times 2 \times 2$ table of the partitioned total. The analysis in table 9.2 follows in a straightforward fashion from the definitions of the notation and the properties of the logarithm. | | TABLE 9.2 | | |--|---|---| | Component due to | Information | D.F. | | Partition totals | $2\sum_{\alpha=1}^{2}\sum_{\beta=1}^{2}\sum_{\gamma=1}^{2}$ $N_{\alpha\beta\gamma}\log\frac{N^{2}N_{\alpha\beta\gamma}}{N_{\alpha}N{\beta}.N.}$ | _ 4
~ | | Two partition depth totals
for $\gamma = 1$, 2 and $k = 1$,
2, \cdots , d_1 for $\gamma = 1$,
$k = d_1 + 1, \cdots, d_1 + d_2$
for $\gamma = 2$ | $2\sum_{\alpha}\sum_{\beta}\sum_{k}x_{\cdot\cdot k}^{\alpha\beta\gamma}\log\frac{N_{\cdot\cdot\cdot\gamma}x_{\cdot\cdot j}^{\alpha\beta}}{N_{\alpha\beta\gamma}x_{\cdot\cdot}}$ | $\frac{3c}{2} \qquad 3(d_1 - 1) \\ 3(d_2 - 1)$ | | Two partition column to-
tals for $\beta = 1$, 2 and $j = 1, 2, \dots, c_1$ for $\beta = 1$, $j = c_1 + 1, \dots, c_1 + c_2$ for $\beta = 2$ | $2\sum_{\alpha}\sum_{\gamma}\sum_{j}x_{\cdot j}^{\alpha\beta\gamma}\log\frac{N_{\cdot\beta}.x_{\cdot j}^{\alpha\beta}}{N_{\alpha\beta\gamma}x_{\cdot j}}$ | $\frac{3\gamma}{\beta}$ | | Two partition row totals
for $\alpha = 1, 2$ and $i = 1, 2, \dots, r_1$ for $\alpha = 1, i = r_1 + 1, \dots, r_1 + r_2$ for $\alpha = 2$ | $2\sum_{\beta}\sum_{\gamma}\sum_{i}x_{i}^{\alpha\beta\gamma}\log\frac{N_{\alpha}.x_{i}^{\alpha\beta}}{N_{\alpha\beta\gamma}x_{i}^{\alpha}}$ | $\frac{3r}{5}$ | | Eight three-way subcontingency tables for α , β , γ = 1, 2 with $i = 1, 2, \cdots$, r_1 for $\alpha = 1$, $i = r_1 + 1$, \cdots , $r_1 + r_2$ for $\alpha = 2$, etc. | $2 \sum_{i} \sum_{j} \sum_{k} x_{ijk} \log \frac{N_{\alpha\beta\gamma}^2 x_{ijk}}{x_{i}}^{\alpha\beta\gamma} x_{ijk}^{\alpha\beta\gamma} x_{ik}^{\alpha\beta\gamma}$ | $r_1c_1d_1 - r_1 - c_1 - d_1 + 2$ $r_1c_1d_2 - r_1 - c_1 - d_2 + 2$ $r_1c_2d_1 - r_1 - c_2 - d_1 + 2$ $r_1c_2d_2 - r_1 - c_2 - d_2 + 2$ $r_2c_1d_1 - r_2 - c_1 - d_1 + 2$ $r_2c_1d_2 - r_2 - c_1 - d_2 + 2$ $r_2c_2d_1 - r_2 - c_2 - d_1 + 2$ $r_2c_2d_2 - r_2 - c_2 - d_2 + 2$ | | Independence, | 2 T C d | | Independence, $$2 \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{d}$$ $$x_{ijk} \log \frac{N^2 x_{ijk}}{x_{i...} x_{.j.} x_{..k}} rcd - r - c - d + 2$$ The partitioning procedure can also be applied to any of the subtables, but we leave the details to the reader. The degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis H_2 of independence in (3.1). For tables 9.1 and 9.2 we leave to the reader the estimation of the corresponding divergences, as well as the expression in terms of the form $n \log n$ for computational convenience. (See problem 8.26 in chapter 12 for the analogous problem for a multivariate normal sample.) #### 10. PARAMETRIC CASE If the $\tilde{p}_{i...}$, $\tilde{p}_{...k}$, or the $\tilde{\alpha}$'s,
$\tilde{\beta}$'s, $\tilde{\gamma}$'s, are such that identically in the α 's, β 's, γ 's, (10.1) $$\sum_{i=1}^{r} \frac{x_{i\cdots}}{N} \log \frac{\tilde{p}_{i\cdots}}{p_{i\cdots}} + \sum_{j=1}^{c} \frac{x_{\cdot j\cdot}}{N} \log \frac{\tilde{p}_{\cdot j\cdot}}{p_{\cdot j\cdot}} + \sum_{k=1}^{d} \frac{x_{\cdot \cdot k}}{N} \log \frac{\tilde{p}_{\cdot \cdot k}}{p_{\cdot \cdot k}}$$ $$= \sum_{i=1}^{r} \tilde{p}_{i\cdots} \log \frac{\tilde{p}_{i\cdots}}{p_{i\cdots}} + \sum_{j=1}^{c} \tilde{p}_{\cdot j\cdot} \log \frac{\tilde{p}_{\cdot j\cdot}}{p_{\cdot j\cdot}} + \sum_{k=1}^{d} \tilde{p}_{\cdot \cdot k} \log \frac{\tilde{p}_{\cdot \cdot k}}{p_{\cdot \cdot k}},$$ we have a further analysis of table 3.1 in table 10.1. We see (cf. (4.8)–(4.11) of chapter 6) that (10.1) implies the $\tilde{\alpha}$'s, $\tilde{\beta}$'s, $\tilde{\gamma}$'s are the solutions of (10.2) $$\sum_{i=1}^{r} \frac{x_{i..}}{p_{i..}} \frac{\partial p_{i..}}{\partial \alpha_{a}} = 0, \qquad a = 1, 2, \cdots, m,$$ $$\sum_{j=1}^{c} \frac{x_{.j.}}{p_{.j.}} \frac{\partial p_{.j.}}{\partial \beta_{b}} = 0, \qquad b = 1, 2, \cdots, n,$$ $$\sum_{k=1}^{d} \frac{x_{..k}}{p_{..k}} \frac{\partial p_{..k}}{\partial \gamma_{g}} = 0, \qquad g = 1, 2, \cdots, s.$$ These are the maximum-likelihood equations for estimating the α 's, β 's, γ 's, or minimizing the total in table 3.1. We leave to the reader the estimation of the divergences, as well as the expression in terms of the form $n \log n$ for computational convenience. The degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis of independence H_2 in (3.1), the p_i ...'s, $p_{\cdot j}$.'s, $p_{\cdot k}$'s understood as functions respectively of the α 's, β 's, γ 's. (See problem 13.12.) **TABLE 10.1** | Component due to | Information | D.F. | |---|--|---------------------| | Between $\hat{p}_{i} = x_{i}/N$ and \tilde{p}_{i} | $2\sum_{i=1}^{r} x_{i} \log \frac{x_{i}}{N\tilde{p}_{i}}$ | r - m - 1 | | Between $\hat{p}_{.j.} = x_{.j.}/N$ and $\tilde{p}_{.j.}$ | $2\sum_{j=1}^{c} x_{\cdot j} \cdot \log \frac{x_{\cdot j}}{N\tilde{p}_{\cdot j}}$ | c - n - 1 | | Between $\hat{p}_{k} = x_{k}/N$ and \tilde{p}_{k} | $2\sum_{k=1}^{d} x_{k} \log \frac{x_{k}}{N\tilde{p}_{k}}$ | d-s-1 | | Independence,
$H_2(R \times C \times D)$
$2\hat{I}(H_1: H_2)$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{N^{2}x_{ijk}}{x_{i}x_{.j.}x_{k}}$ | rcd - r - c - d + 2 | | $2\hat{I}(\tilde{\alpha},\tilde{eta},\tilde{\gamma})$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{x_{ijk}}{N\tilde{p}_{i}\tilde{p}_{.j.}\tilde{p}_{k}}$ | rcd - m - n - s - 1 | | $ ilde{p}_{i}$'s | $2N\sum_{i=1}^{r} \tilde{p}_{i} \log \frac{\tilde{p}_{i}}{p_{i}}$ | m | | $ ilde{p}_{.j}$.'s | $2N\sum_{j=1}^{c}\tilde{p}_{\cdot j}\cdot\log\frac{\tilde{p}_{\cdot j}}{p_{\cdot j}}$ | n | | <i>p̃</i> _k 's −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− | $2N\sum_{k=1}^{d} \tilde{p}_{\cdot \cdot k} \log \frac{\tilde{p}_{\cdot \cdot k}}{p_{\cdot \cdot k}}$ | s | | Total, $2\hat{l}((p^*):(p))$ | $2\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{d}x_{ijk}\log\frac{x_{ijk}}{Np_{i}p_{.j.}p_{k}}$ | rcd — 1 | ## 11. SYMMETRY For two-way contingency tables with the same number of rows and columns arising from related classifications, it is often of interest to test a null hypothesis of symmetry H_2 , the events in cells symmetrically situated about the main diagonal have the same probability of occurrence, that is, the hypotheses [see Bowker (1948)], $$H_1: p_{ij} \neq p_{ji}, \quad i = 1, 2, \cdots, c, \quad j = 1, 2, \cdots, c, \quad i \neq j, \text{ for at least one } (i, j),$$ $$H_2: p_{ij} = p_{ji}.$$ For the conjugate distribution (see section 3 of chapter 6) with parameters the same as the observed sample best unbiased estimates, we have (11.2) $$\mathbf{I}(p^*:p) = \sum_{i=1}^{c} \sum_{j=1}^{c} x_{ij} \log \frac{x_{ij}}{Np_{ij}}, \quad p_{ij} = p_{ji}.$$ The null hypothesis H_2 of (11.1) usually does not specify the p_{ij} , i=1, $2, \dots, c$, $j=1, 2, \dots, c$. We analyze $\hat{I}(p^*:p)$ of (11.2) into several additive components in table 11.1. The degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis of symmetry H_2 in (11.1). Note that the convexity property (see section 3 of chapter 2) ensures that the component due to \hat{p}_{ij} is the minimum value of the total for the symmetric grouping, and the symmetry component is the sum of all but the diagonal terms of the total with p_{ij} replaced by \hat{p}_{ij} . **TABLE 11.1** | Component due to | Information | D.F. | |---|---|----------------------| | Diagonal terms | $2\sum_{i=1}^{c} x_{ii} \log \frac{x_{ii}}{Np_{ii}} + 2(N - \sum x_{ii}) \log \frac{N - \sum x_{ii}}{N(1 - \sum p_{ii})}$ | c | | $\hat{p}_{ij} = \frac{x_{ij} + x_{ji}}{2N}$ | $2\sum_{i < j} (x_{ij} + x_{ji}) \log \frac{(x_{ij} + x_{ji})(1 - \sum p_{ii})}{2p_{ij}(N - \sum x_{ii})}$ | $\frac{c(c-1)}{2}-1$ | | Symmetry, $2\hat{l}(H_1: H_2)$ | $2\sum_{i\neq j} \sum_{x_{ij}} \log \frac{2x_{ij}}{x_{ij} + x_{ji}}$ | $\frac{c(c-1)}{2}$ | | Total, $2\hat{l}(p^*:p)$ | $2\sum_{i=1}^{c}\sum_{j=1}^{c}x_{ij}\log\frac{x_{ij}}{Np_{ij}}, p_{ij}=p_{ji}$ | $c^2 - 1$ | The symmetry component in table 11.1 may also be expressed as (11.3) $$I(H_1: H_2) = \sum_{i \neq j} x_{ij} \log x_{ij}$$ $$- \sum_{i < j} (x_{ij} + x_{ji}) \log (x_{ij} + x_{ji}) + (\log 2) \sum_{i \neq j} x_{ij}$$ for computational convenience with the table of $n \log n$. The divergences do not provide a similar additive analysis (with these estimates), but the estimate of the divergence corresponding to the symmetry component in (11.3) is (11.4) $$\hat{J}(H_1, H_2) = N \sum_{i \neq j} \left(\frac{x_{ij}}{N} - \frac{x_{ij} + x_{ji}}{2N} \right) \log \frac{2x_{ij}}{x_{ij} + x_{ji}}$$ $$= \frac{1}{2} \sum_{i \neq j} (x_{ij} - x_{ji}) \log \frac{2x_{ij}}{x_{ij} + x_{ji}}.$$ Under the null hypothesis H_2 of (11.1) (the events in the cells symmetrically situated about the main diagonal have the same probability of occurrence), $2l(H_1:H_2)$ and $J(H_1, H_2)$ are asymptotically distributed as χ^2 with c(c-1)/2 degrees of freedom. With the approximations used in (4.5) and (4.6) of chapter 6, we find [cf. Bowker (1948, p. 573)]: (11.5) $$2I(H_1:H_2) \approx \sum_{i < j} \frac{(x_{ij} - x_{ji})^2}{x_{ij} + x_{ij}} = \chi^2,$$ (11.6) $$f(H_1, H_2) \approx \frac{1}{2} \sum_{i < j} \frac{(x_{ij} - x_{ji})^2}{x_{ij} + x_{ij}} + \frac{1}{2} \sum_{i \neq j} \frac{(x_{ij} - x_{ji})^2}{4x_{ij}}$$ If $p_{ij} = p_{ji}$, $i = 1, 2, \dots, c$, $j = 1, 2, \dots, c$, $i \neq j$, the marginal distributions for the row and column classifications are the same, that is, $p_{i\cdot} = p_{i1} + p_{i2} + \dots + p_{ic} = p_{\cdot i} = p_{1i} + p_{2i} + \dots + p_{ci}$, $i = 1, 2, \dots, c$. The weaker hypothesis of equality of marginal distributions is also of interest, especially in the absence of symmetry. For the test of the weaker hypothesis see Stuart (1955a) and section 7 of chapter 12. #### 12. EXAMPLES Example 12.1. As an example of the test for symmetry consider the data in table 12.1 for 3242 men aged 30-39 with unaided distance vision [taken from Stuart (1953, p. 109)]. From (11.3) and the table of $n \log n$ we find $$\sum_{i \neq j} x_{ij} \log x_{ij} = 4622.580, \qquad \sum_{i < j} (x_{ij} + x_{ji}) \log (x_{ij} + x_{ji}) = 5322.353,$$ $$\sum_{i \neq j} x_{ij} \log x_{ij} = 4622.580, \qquad \sum_{i < j} (x_{ij} + x_{ji}) \log (x_{ij} + x_{ji}) = 5322.353,$$ $$\sum_{i \neq j} x_{ij} = 1013, \quad 1013 \log 2 = 702.158, \quad \text{and } 2\hat{I}(H_1: H_2) = 4.770,$$ which as a χ^2 with 6 degrees of freedom is not significant. We therefore accept the null hypothesis of symmetry of vision in the left eye and right eye of the population from which the sample was drawn. | TABLE 12.1. | 3242 Men Aged 30-39; Unaid | ed Distance Vision | |-------------|----------------------------|--------------------| |-------------|----------------------------|--------------------| | Left Eye
Right Eye | Highest
Grade | Second
Grade | Third
Grade | Lowest
Grade | Total | |-----------------------|------------------|-----------------|----------------|-----------------|-------| | Highest Grade | 821 | 112 | 85 | 35 | 1053 | | Second Grade | 116 | 494 | 145 | 27 | 782 | | Third Grade | 72 | 151 | 583 | 87 | 893 | | Lowest Grade | 43 | 34 | 106 | 331 | 514 | | Total | 1052 | 791 | 919 | 480 | 3242 | Example 12.2. The data in table 12.2 represent the number of items passing, P, or failing, F, two tests, T_1 , T_2 , on certain manufactured products from manufacturers A, B, C, D. With tests as the row classification, manufacturers as the column classification, and result as the depth classification, we find $$\sum_{i=1}^{2} \sum_{j=1}^{4} \sum_{k=1}^{2} x_{ijk} \log x_{ijk} = 2893.819, \qquad \sum_{i=1}^{2} \sum_{j=1}^{4} x_{ij} \log x_{ij} = 3215.410,$$ $$\sum_{i=1}^{2} \sum_{k=1}^{2} x_{i \cdot k} \log x_{i \cdot k} = 3829.547, \qquad \sum_{j=1}^{4} \sum_{k=1}^{2} x_{\cdot jk} \log x_{\cdot jk} = 3376.470,$$ $$\sum_{i=1}^{2} x_{i \cdot k} \log x_{i \cdot k} = 4158.008, \qquad \sum_{j=1}^{4} x_{\cdot j} \log x_{\cdot j} = 3701.858,$$ $$\sum_{k=1}^{2} x_{\cdot k} \log x_{\cdot k} = 4317.737, \qquad N \log N = 4646.210.$$ **TABLE 12.2** | | | T_1 | | | T_2 | | |---|-----|-------|-------|-----|-------|-------| | | P | F | Total | P | F | Total | | A | 112 | 32 | 144 | 84 | 24 | 108 | | В | 76 | 20 | 96 | 86 | 10 | 96 | | C | 87 | 9 | 96 | 58 | 14 | 72 | | D | 41 | 7 | 48 | 40 | 8 |
48 | | - | 316 | 68 | 384 | 268 | 56 | 324 | These values and the analysis in table 6.1 yield table 12.3 to test the homogeneity of the results and manufacturers over the tests. **TABLE 12.3** | Component due to | Information | D.F. | |---|-------------|------| | Manufacturer homogeneity | 3.508 | 3 | | Conditional homogeneity, results given manufacturer | 7.594 | 4 | | Manufacturer, result homogeneity | 11.102 | 7 | Since the 5% values of χ^2 for 3, 4, 7 degrees of freedom are, respectively, 7.81, 9.49, 14.07, we accept the null hypothesis that the results for the different manufacturers over the tests are homogeneous. We also illustrate table 8.1 in table 12.4. In view of the values in table 12.4, we may accept the null hypothesis that the failure rate is the same for the two tests. **TABLE 12.4** | Component due to | Information | D.F. | |---|-------------|------| | Result homogeneity | 0.024 | 1 | | Test, manufacturer, result, interaction | 7.570 | 3 | | Conditional homogeneity, results given manufacturer | 7.594 | 4 | Example 12.3. In table 12.5 the 124 failures of table 12.2 are also classified by the defects, D_1 , D_2 . For the $4 \times 2 \times 2$ table 12.5(a), we test the hypotheses of (3.1) with i = A, B, C, D, $j = T_1$, T_2 , $k = D_1$, D_2 , that is, the null hypothesis of independence among manufacturers, tests, and defects. From the data we find $$\sum_{i=1}^{4} \sum_{j=1}^{2} \sum_{k=1}^{2} x_{ijk} \log x_{ijk} = 280.642, \qquad \sum_{i=1}^{4} \sum_{j=1}^{2} x_{ij} \log x_{ij} = 357.097,$$ $$\sum_{i=1}^{4} \sum_{k=1}^{2} x_{i\cdot k} \log x_{i\cdot k} = 359.061, \qquad \sum_{j=1}^{2} \sum_{k=1}^{2} x_{\cdot jk} \log x_{\cdot jk} = 429.705,$$ $$\sum_{i=1}^{4} x_{i\cdot \cdot i} \log x_{i\cdot \cdot i} = 440.193, \qquad \sum_{j=1}^{2} x_{\cdot j} \log x_{\cdot j} = 512.347,$$ $$\sum_{k=1}^{2} x_{\cdot \cdot k} \log x_{\cdot \cdot k} = 512.023, \qquad N \log N = 597.715.$$ These values and the analysis in table 3.3 yield table 12.6. **TABLE 12.5** | | | | | _ | |---|-------|-------|-------|---------------------| | | | T_1 | T_2 | | | A | D_1 | 24 | 11 | $x_{4} = 56$ | | | D_2 | 8 | 13 | x_A = 56 | | B | D_1 | 7 | 2 | $x_{\rm B} = 30$ | | | D_2 | 13 | 8 | $x_{B} = 30$ | | C | D_1 | 7 | 7 | $x_{C} = 23$ | | | D_2 | 2 | 7 | w _C – 25 | | D | D_1 | 5 | 3 | $x_{\rm p} = 15$ | | | D_2 | 2 | 5 | $x_{D} = 15$ | | | | 68 | 56 | N = 124 | | | | | (a) | | | | | <i>T</i> ₁ | | | |---|-------|-----------------------|-------------------------------|----------------| | | D_1 | 43 | 23 | $x_{D_1} = 66$ | | - | D_2 | 25 | 33 | $x_{D_2} = 58$ | | , | | $x_{\cdot T_1} = 68$ | $x_{\cdot T_2^{\prime}} = 56$ | | | | | | (b) | <u>'</u> | **TABLE 12.6** | Component due to | Information | D.F. | |--|-------------|------| | H_2 (Test × defect) | 6.100 | 1 | | H_2 (Manufacturer × (test, defect)) | 16.918 | 9 | | H_2 (Manufacturer \times test \times defect) | 23.018 | 10 | Since the 5% values of χ^2 for 1, 9, 10 degrees of freedom are, respectively, 3.84, 16.92, 18.31, and the 1% values are 6.63, 21.67, 23.21, we reject the hypothesis of independence between test and defect and also of course the three-way independence and examine further the hypothesis of independence between manufacturer and the pair, test, defect. The analysis for conditional independence in table 3.5 applied to the H_2 (Manufacturer \times (test, defect)) component in table 12.6 yields tables 12.7 and 12.8. Since the 5% values of χ^2 for 3, 6 degrees of freedom are, respectively, 7.81, 12.59, and the 1% values are 11.34, 16.81, we infer from tables 12.6, 12.7, 12.8 that manufacturer and test are independent but not defect and test, and defect and manufacturer, with the manufacturers and defects conditionally independent given the test. **TABLE 12.7** | Component due to | Information | D.F. | |--|-------------|------| | H_2 (Manufacturer × test) | 4.544 | 3 | | Conditional independence, manufacturer and defect given test | 12.374 | 6 | | H_2 (Manufacturer × (test, defect)) | 16.918 | 9 | **TABLE 12.8** | Component due to | Information | D.F. | | |--|-------------|------|--| | H_2 (Manufacturer × defect) | 9.120 | 3 | | | Conditional independence, manufacturer and test given defect | 7.798 | 6 | | | H_2 (Manufacturer × (test, defect)) | 16.918 | 9 | | Example 12.4. Table 12.9, taken from Campbell, Snedecor, and Simanton (1939, p. 64), gives the distribution of 1397 houseflies by sex and mortality among 12 successive tests with a standard insecticide [also discussed by Norton (1945)]. The problem here is to test the homogeneity of the sex, mortality results over the 12 successive tests. With level as the row classification, sex as the column classification, and mortality as the depth classification, we find $$\sum_{i=1}^{12} \sum_{j=1}^{2} \sum_{k=1}^{2} x_{ijk} \log x_{ijk} = 5118.828, \qquad \sum_{i=1}^{12} \sum_{j=1}^{2} x_{ij} \log x_{ij} = 5713.331,$$ $$\sum_{i=1}^{12} \sum_{k=1}^{2} x_{i \cdot k} \log x_{i \cdot k} = 5766.322, \qquad \sum_{j=1}^{2} \sum_{k=1}^{2} x_{\cdot jk} \log x_{\cdot jk} = 8554.522,$$ $$\sum_{i=1}^{12} x_{i \cdot \cdot \cdot} \log x_{i \cdot \cdot \cdot} = 6652.973, \qquad \sum_{j=1}^{2} x_{\cdot j} \log x_{\cdot j} = 9159.110,$$ $$\sum_{k=1}^{2} x_{\cdot \cdot \cdot k} \log x_{\cdot \cdot k} = 9215.809, \qquad N \log N = 10117.189.$$ These values and the analysis in table 6.1 yield table 12.10. TABLE 12.9. Mortality of Male and Female Houseflies in 12 Successive Tests of a Standard Insecticide | | Males | | | Females | | | | | | |-------|-------|------|-------|---------|------|-------|------|----------------|-----| | Level | Alive | Dead | Total | Alive | Dead | Total | | Total
Alive | | | 1 | 17 | 40 | 57 | 46 | 6 | 52 | 109 | 63 | 46 | | 2 | 14 | 44 | 58 | 44 | 5 | 49 | 107 | 58 | 49 | | 3 | 19 | 42 | 61 | 48 | 5 | 53 | 114 | 67 | 47 | | 4 | 21 | 33 | 54 | 41 | 4 | 45 | 99 | 62 | 37 | | 5 | 9 | 39 | 48 | 68 | 8 | 76 | 124 | 77 | 47 | | 6 | 21 | 38 | 59 | 70 | 5 | 75 | 134 | 91 | 43 | | 7 | 19 | 40 | 59 | 56 | 4 | 60 | 119 | 75 | 44 | | 8 | 15 | 32 | 47 | 51 | 8 | 59 | 106 | 66 | 40 | | 9 | 20 | 35 | 55 | 73 | 9 | 82 | 137 | 93 | 44 | | 10 | 15 | 29 | 44 | 78 | 5 | 83 | 127 | 93 | 34 | | 11 | 12 | 19 | 31 | 69 | 2 | 71 | 102 | 81 | 21 | | 12 | 12 | 29 | 41 | 75 | 3 | 78 | 119 | 87 | 32 | | | 194 | 420 | 614 | 719 | 64 | 783 | 1397 | 913 | 484 | **TABLE 12.10** | Component due to | Information | D.F. | | |--|-------------|------|--| | Homogeneity, sexes | 36.874 | | | | Conditional homogeneity, mortality given sex | 20.170 | 22 | | | Male | 8.906 | 11 | | | Female | 11.264 | 11 | | | Homogeneity, sex, mortality | 57.044 | 33 | | | Homogeneity, mortality | 29.458 | 11 | | | Conditional homogeneity, sex given mortality | 27.586 | 22 | | | Alive | 21.340 | 11 | | | Dead | 6.246 | 11 | | Campbell, Snedecor, and Simanton (1939), with the classical χ^2 , found 8.6 and 10.5, respectively, for the conditional homogeneity for the males and for the females; 36.5 for the homogeneity of sexes; and 28.7 for the homogeneity of mortality. We accept a null hypothesis of conditional homogeneity for mortality given the sex. Since the 1% values of χ^2 for 11, 22, 33 degrees of freedom are, respectively, 24.72, 40.29, approximately 55, we infer that the mortality results are not homogeneous, the results for the sexes are not homogeneous, and the sex, mortality results are not homogeneous, although there is conditional homogeneity for mortality given the sex and for the sex given the mortality. Note that the homogeneity component for mortality is greater than the conditional homogeneity for mortality given sex, also the homogeneity component for the sexes is greater than the conditional homogeneity for sex given mortality, so that here the analysis in table 8.1 would lead to a negative interaction component. To apply the analysis in table 7.1 we compute $$y_{ij} = \sum_{k=1}^{2} \frac{x_{i \cdot k} x_{\cdot jk}}{x_{\cdot \cdot k}}, \quad i = 1, 2, \cdot \cdot \cdot, 12, \quad j = 1, 2,$$ and $$y_{i\cdot k} = \sum_{j=1}^{2} \frac{x_{ij} \cdot x_{\cdot jk}}{x_{\cdot j}}, \quad i = 1, 2, \cdots, 12, \quad k = 1, 2,$$ getting table 12.11. We also find $$\sum_{i=1}^{12} \sum_{k=1}^{2} x_{i \cdot k} \log y_{i \cdot k} = 5762.541, \qquad \sum_{i=1}^{12} \sum_{j=1}^{2} x_{ij} \cdot \log y_{ij} = 5707.284.$$ **TABLE 12.11** | | y_i | 3 - | y_i | ·k | |----|-------|---------------|-------|-------| | | j | | K | 5 | | i | 1 | 2 | 1 | 2 | | 1 | 53.30 | 55.70 | 65.76 | 43.24 | | 2 | 54.84 | 52.16 | 63.32 | 43.68 | | 3 | 55.02 | 58.98 | 67.94 | 46.06 | | 4 | 45.28 | 53.72 | 58.38 | 40.62 | | 5 | 57.15 | 66.85 | 84.95 | 39.05 | | 6 | 56.65 | 77.35 | 87.51 | 46.49 | | 7 | 54.12 | 64 .88 | 73.74 | 45.26 | | 8 | 48.73 | 57.27 | 69.03 | 36.97 | | 9 | 57.94 | 79.06 | 92.68 | 44.32 | | 10 | 49.27 | 77.73 | 90.12 | 36.88 | | 11 | 35.43 | 66.57 | 74.99 | 27.01 | | 12 | 46.25 | 72.75 | 84.58 | 34.42 | The analysis of the conditional homogeneity terms in table 7.1 yields tables 12.12 and 12.13. We infer that table 12.9 is homogeneous, those factors that differed from level to level affected the two sexes similarly as to mortality. [Cf. Norton (1945), who makes the same inference by a different approach and interaction.] **TABLE 12.12** | Component due to | Information | D.F. | | |--|-------------|------|--| | (Level, mortality)-interaction | 7.562 | 11 . | | | ((Level, mortality), sex)-interaction | 12.608 | 11 | | | Conditional homogeneity, mortality given sex | 20.170 | 22 | | **TABLE 12.13** | Component due to |
Information | D.F. | |--|-------------|------| | (Level, sex)-interaction | 12.094 | 11 | | ((Level, sex), mortality)-interaction | 15.492 | 11 | | Conditional homogeneity, sex given mortality | 27.586 | 22 | ## 13. PROBLEMS - 13.1. Relate the components in table 2.1 and table 6.1 of chapter 6. - 13.2. Derive the equivalent of table 3.5 for the null hypothesis that the column and (row, depth) classifications are independent. - 13.3. Estimate the divergences corresponding to the information components in tables 9.1 and 9.2. - 13.4. Express the information components in tables 9.1 and 9.2 in terms of the form $n \log n$. - 13.5. Are the two sets of data given in table 13.1 homogeneous? **TABLE 13.1** | | Process | | | Pro | cess | |--------|---------|-----|--------|-----|------| | | A | В | | A | В | | Failed | 68 | 38 | Failed | 76 | 17 | | Passed | 450 | 413 | Passed | 365 | 82 | 13.6. Table 13.2, from Cochran (1954, Table 8, p. 442), gives the distribution of mothers of children in the Baltimore schools who had been referred by their teachers as presenting behavior problems, and mothers of a comparable group of control children who had not been so referred. For each mother it was recorded whether she had suffered any infant losses (for example, stillbirths) previous to the birth of the child in the study. The data are further classified into three birth-order classes. The comparison is part of a study of possible associations between behavior problems in children and complications of pregnancy of the mother. Analyze the data. **TABLE 13.2** | | Problems | | Controls | | | | |-------------|----------|------|----------|--------|------|-------| | Birth Order | Losses | None | Total | Losses | None | Total | | 2 | 20 | 82 | 102 | 10 | 54 | 64 | | 3–4 | 26 | 41 | 67 | 16 | 30 | 46 | | 5+ | 27 | 22 | 49 | 14 | 23 | 37 | | | 73 | 145 | 218 | 40 | 107 | 147 | 13.7. Table 13.3 [from Bartlett (1935, p. 249), who refers to data from Hoblyn and Palmer] is the result of an experiment designed to investigate the propagation of plum root stocks from root cuttings. There were 240 cuttings for each of the four treatments. Analyze the data. **TABLE 13.3** | | Alive | | | Dead | | | |-------------------|------------------|-----------|----------|------------------|-----------|---------| | Length of Cutting | Time of Planting | | - Total | Time of Planting | | - Total | | | * | In Spring | · 1 Otal | At Once | In Spring | lotai | | Long | 156 | 84 | 240 | 84 | 156 | 240 | | Short | 107 | 31 | 138 | 133 | 209 | 342 | | Total | 263 | 115 | 378 | 217 | 365 | 582 | 13.8. From the analysis in table 3.1, and the properties of the discrimination information, show that for $N \to \infty$, if $x_{ijk}/N \to p_{i..}p_{.j.}p_{..k}$ with probability 1, then $\frac{x_{ijk}}{N} \to \frac{x_{i..}}{N} \times \frac{x_{.j.}}{N} \times \frac{x_{..k}}{N}$, $\hat{p}_{i..} \to p_{i..}$, $\hat{p}_{.j.} \to p_{.j.}$, $\hat{p}_{..k} \to p_{..k}$ with probability 1, $i=1,2,\cdots,r,\ j=1,2,\cdots,c,\ k=1,2,\cdots,d.$ (See problems 7.14 and 7.16 in chapter 6.) - 13.9. From the analysis in table 3.2, and the properties of the discrimination information, show that for $N \to \infty$, if $x_{ijk}/N \to p_{i...}p_{.jk}$ with probability 1, then $\frac{x_{ijk}}{N} \to \frac{x_{i...}}{N} \frac{x_{.jk}}{N}$, $\tilde{p}_{i...} \to p_{i...}$, $\tilde{p}_{.jk} \to p_{.jk}$ with probability 1, $i = 1, 2, \dots, r$, $j = 1, 2, \dots, c$, $k = 1, 2, \dots, d$. (See problem 13.8 above and problems 7.14 and 7.16 in chapter 6.) - 13.10. Brownlee, in Quastler (1955, p. 63), gives the data shown in table 13.4 on the numbers of defective fertilizer drums of two different types in two different locations. Show that quality \times type is not homogeneous over the location (see section 4) and should therefore not be pooled over location. (Brownlee raises the question of pooling over location because "it is usually assumed that pooling is permissible when second-order interaction is absent" [he refers to Snedecor (1946)]. Absence of second-order interaction is defined as equality of the ratios of the products of the diagonal terms. Here there is no second-order interaction in this sense because $\frac{72 \times 180}{48 \times 420} = \frac{18 \times 720}{42 \times 480}$. **TABLE 13.4** | |] | Location A | A | Location B | | | |------------|--------|--------------|-------|--------------|-----|-------| | Quality - | Туре о | Type of Drum | | Type of Drum | | Total | | | I | 11 | Total | I | II | Total | | Defective | 72 | 48 | 120 | 18 | 42 | 60 | | Acceptable | 420 | 180 | 600 | 480 | 720 | 1200 | | Total | 492 | 228 | 720 | 498 | 762 | 1260 | - 13.11. From the analysis in table 2.1, and the properties of the discrimination information, show that for $N \to \infty$, if $x_{ij}/N \to p_{ij}$, $x_{i.}/N \to p_{i.}$, $x_{.j}/N \to p_{.j}$ with probability 1, then $2\hat{I}(H_1:H_2)/N \to 2I(H_1:H_2)/N$, with probability 1, $i=1,2,\cdots,r,\ j=1,2,\cdots,c$, where $I(H_1:H_2)$ is given in (2.2). (See problems 13.8 and 13.9 above.) - 13.12. From the analysis in table 10.1, and the properties of the discrimination information, show that for $N \to \infty$, if $x_{ijk}/N \to p_{i..}p_{.j.}p_{..k}$ with probability 1, then $\tilde{p}_{i..} \to p_{i..}$, $\tilde{p}_{.j.} \to p_{.j.}$, $\tilde{p}_{..k} \to p_{..k}$, $N^2x_{ijk}/x_{i..}x_{.j.}x_{..k} \to 1$, $x_{i..}/N\tilde{p}_{i..} \to 1$, $x_{.j.}/N\tilde{p}_{.j.} \to 1$, $x_{..k}/N\tilde{p}_{..k} \to 1$, with probability 1. On the other hand, what do you infer if $x_{ijk}/N \to p_{ijk}$, $x_{i..}/N \to p_{i..}$, $x_{.j.}/N \to p_{.j.}$, $x_{..k}/N \to p_{..k}$? (See problems 13.8, 13.9, and 13.11 above.) # Multivariate Normal Populations #### 1. INTRODUCTION We continue in the spirit of the preceding chapters, especially 6, 7, and 8, and now take up the analysis of one or more samples from multivariate normal populations for tests of statistical hypotheses. Before we consider questions of estimation, distribution, and testing, it will be helpful to derive in this chapter certain values as parameters of the populations. Matrix notation and theory are used. Matrices are denoted by upper case boldface type, for example, $A = (a_{ij})$, $X_1 = (x_{1ij})$, etc., $i = 1, 2, \cdots$, m; $j = 1, 2, \cdots$, n. One-row or one-column matrices (vectors) are denoted by lower case boldface type, for example, $\mathbf{x}' = (x_1, x_2, \cdots, x_k)$, $\mu_1' = (\mu_{11}, \mu_{12}, \cdots, \mu_{1p})$, etc. (\mathbf{x}' is the transpose of the one-column matrix \mathbf{x} , etc.) Suppose we have two k-variate normal populations $N(\mu_i, \Sigma_i)$, with $\mu_i' = (\mu_{i1}, \mu_{i2}, \dots, \mu_{ik})$, i = 1, 2, the one-row matrices (vectors) of mean values, and $\Sigma_i = (\sigma_{irs})$, i = 1, 2; $r, s = 1, 2, \dots, k$, the covariance matrices. Denoting the respective population densities by [cf. Anderson (1958, p. 17), Roy (1957, p. 15)] $$f_i(x_1, x_2, \cdot \cdot \cdot, x_k) = \frac{1}{|2\pi \Sigma_i|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_i)' \Sigma_i^{-1}(\mathbf{x} - \mu_i)\right)$$ we find (see problem 10.1) (1.1) $$\log \frac{f_1(x_1, x_2, \dots, x_k)}{f_2(x_1, x_2, \dots, x_k)} = \frac{1}{2} \log \frac{|\Sigma_2|}{|\Sigma_1|} - \frac{1}{2} \operatorname{tr} \Sigma_1^{-1}(x - \mu_1)(x - \mu_1)' + \frac{1}{2} \operatorname{tr} \Sigma_2^{-1}(x - \mu_2)(x - \mu_2)',$$ from which we get (1.2) $$I(1:2) = \int f_1(x_1, \dots, x_k) \log \frac{f_1(x_1, \dots, x_k)}{f_2(x_1, \dots, x_k)} dx_1 \dots dx_k$$ $$= \frac{1}{2} \log \frac{|\Sigma_2|}{|\Sigma_1|} + \frac{1}{2} \operatorname{tr} \Sigma_1(\Sigma_2^{-1} - \Sigma_1^{-1}) + \frac{1}{2} \operatorname{tr} \Sigma_2^{-1}(\mu_1 - \mu_2) (\mu_1 - \mu_2)',$$ (1.3) $$J(1, 2) = \int (f_1(x_1, \dots, x_k) - f_2(x_1, \dots, x_k)) \log \frac{f_1(x_1, \dots, x_k)}{f_2(x_1, \dots, x_k)} dx_1 \dots dx_k$$ $$= \frac{1}{2} \operatorname{tr} (\mathbf{\Sigma}_1 - \mathbf{\Sigma}_2)(\mathbf{\Sigma}_2^{-1} - \mathbf{\Sigma}_1^{-1}) + \frac{1}{2} \operatorname{tr} (\mathbf{\Sigma}_1^{-1} + \mathbf{\Sigma}_2^{-1}) (\mu_1 - \mu_2)(\mu_1 - \mu_2)'.$$ Assuming equal population covariance matrices, $\Sigma_1 = \Sigma_2 = \Sigma$, (1.2) and (1.3) become, respectively, (1.4) $$I(1:2; \mu) = \frac{1}{2} \operatorname{tr} \Sigma^{-1} (\mu_1 - \mu_2) (\mu_1 - \mu_2)'$$ $$= \frac{1}{2} \operatorname{tr} \Sigma^{-1} \delta \delta' = \frac{1}{2} \delta' \Sigma^{-1} \delta,$$ (1.5) $$J(1, 2; \mu) = \operatorname{tr} \Sigma^{-1}(\mu_1 - \mu_2)(\mu_1 - \mu_2)'$$ $$= \delta' \Sigma^{-1} \delta,$$ where $\delta = \mu_1 - \mu_2$. Mahalanobis' generalized distance is $k\delta'\Sigma^{-1}\delta$ [Mahalanobis (1936)]. [See section 3 of chapter 1 and Anderson (1958, p. 135).] Assuming equal population means, $\mu_1 = \mu_2$, $\delta = \mu_1 - \mu_2 = 0$ (or variables centered at their respective means), (1.2) and (1.3) become, respectively, (1.6) $$I(1:2; \Sigma) = \frac{1}{2} \log \frac{|\Sigma_2|}{|\Sigma_1|} + \frac{1}{2} \operatorname{tr} \Sigma_1(\Sigma_2^{-1} - \Sigma_1^{-1})$$ $$= \frac{1}{2} \log \frac{|\Sigma_2|}{|\Sigma_1|} - \frac{k}{2} + \frac{1}{2} \operatorname{tr} \Sigma_1 \Sigma_2^{-1},$$ (1.7) $$J(1, 2; \mathbf{\Sigma}) = \frac{1}{2} \operatorname{tr} (\mathbf{\Sigma}_{1} - \mathbf{\Sigma}_{2}) (\mathbf{\Sigma}_{2}^{-1} - \mathbf{\Sigma}_{1}^{-1})$$ $$= \frac{1}{2} \operatorname{tr} \mathbf{\Sigma}_{1} \mathbf{\Sigma}_{2}^{-1} + \frac{1}{2} \operatorname{tr} \mathbf{\Sigma}_{2} \mathbf{\Sigma}_{1}^{-1} - k.$$ The corresponding values for $$I(2:1) = \int f_2(x_1, \cdot \cdot \cdot, x_k) \log \frac{f_2(x_1, \cdot \cdot \cdot, x_k)}{f_1(x_1, \cdot \cdot \cdot, x_k)} dx_1 \cdot \cdot \cdot dx_k$$ are easily derived from the fact that I(1:2) + I(2:1) = J(1, 2). Note that the general values for the mean discrimination information and divergence in (1.2) and (1.3) are expressible as the sum of two components, one due to the
difference in means, the other due to the difference in variances and covariances; these may also be characterized respectively as differences in size and shape. For single-variate normal populations, k = 1, corresponding to (1.4)-(1.7) respectively, we have (1.8) $$I(1:2; \mu) = \frac{1}{2} \frac{\delta^2}{\sigma^2} = \frac{1}{2} \frac{(\mu_1 - \mu_2)^2}{\sigma^2},$$ (1.9) $$J(1, 2; \mu) = \frac{\delta^2}{\sigma^2}$$ (1.10) $$I(1:2; \sigma^2) = \frac{1}{2} \log \frac{\sigma_2^2}{\sigma_1^2} - \frac{1}{2} + \frac{1}{2} \frac{\sigma_1^2}{\sigma_2^2},$$ (1.11) $$J(1, 2; \sigma^2) = \frac{1}{2} \frac{\sigma_1^2}{\sigma_2^2} + \frac{1}{2} \frac{\sigma_2^2}{\sigma_1^2} - 1.$$ ## 2. COMPONENTS OF INFORMATION Since I(1:2) and J(1, 2) are additive for independent random variables, we have for a random sample of n observations, O_n , $I(1:2; O_n) = nI(1:2)$ and $J(1, 2; O_n) = nJ(1, 2)$ where I(1:2) and J(1, 2) are respectively (1.2) and (1.3). (See sections 2 and 5 of chapter 2.) The averages and the variances and covariances in a sample O_n from a multivariate normal population, $N(\mu, \Sigma)$, are independently distributed. The averages are normally distributed, $N(\mu, (1/n)\Sigma)$, and the variances and covariances are distributed according to the Wishart distribution. [See Anderson (1958, pp. 53, 154), Kendall (1946, pp. 330-335), Rao (1952, pp. 66-74), Wilks (1943, pp. 120, 226-233).] Since the averages are normally distributed (1.2) and (1.3) yield (2.1) $$I(1:2; \bar{\mathbf{x}}) = \frac{1}{2} \log \frac{|\mathbf{\Sigma}_2|}{|\mathbf{\Sigma}_1|} + \frac{1}{2} \operatorname{tr} \mathbf{\Sigma}_1(\mathbf{\Sigma}_2^{-1} - \mathbf{\Sigma}_1^{-1}) + \frac{n}{2} \operatorname{tr} \mathbf{\Sigma}_2^{-1} \delta \delta',$$ (2.2) $$J(1:2; \bar{\mathbf{x}}) = \frac{1}{2} \operatorname{tr} (\mathbf{\Sigma}_1 - \mathbf{\Sigma}_2) (\mathbf{\Sigma}_2^{-1} - \mathbf{\Sigma}_1^{-1}) + \frac{n}{2} \operatorname{tr} (\mathbf{\Sigma}_1^{-1} + \mathbf{\Sigma}_2^{-1}) \delta \delta'.$$ Note that the sample size appears in (2.1) and (2.2) as a factor only in the components due to the difference in means. Designating the density of the Wishart distribution by $$W(s_{11}, \cdot \cdot \cdot, s_{kk}) = \frac{{\binom{N}{2}}^{kN/2} |\mathbf{S}|^{(N-k-1)/2} \exp(-\frac{1}{2} \operatorname{tr} N \mathbf{S} \mathbf{\Sigma}^{-1})}{\pi^{k(k-1)/4} |\mathbf{\Sigma}|^{N/2} \prod_{\alpha=1}^{k} \Gamma(N+1-\alpha)/2},$$ we find (see problem 10.5) (2.3) $$\log \frac{W_1(s_{11}, \dots, s_{kk})}{W_2(s_{11}, \dots, s_{kk})} = \frac{N}{2} \log \frac{|\Sigma_2|}{|\Sigma_1|} - \frac{N}{2} \operatorname{tr} \Sigma_1^{-1} S + \frac{N}{2} \operatorname{tr} \Sigma_2^{-1} S,$$ (2.4) $$I(1:2;S) = \frac{N}{2} \left(\log \frac{|\Sigma_2|}{|\Sigma_1|} + \operatorname{tr} \Sigma_1(\Sigma_2^{-1} - \Sigma_1^{-1}) \right),$$ (2.5) $$J(1, 2; S) = \frac{N}{2} \operatorname{tr} (\Sigma_1 - \Sigma_2) (\Sigma_2^{-1} - \Sigma_1^{-1}),$$ where S is the sample covariance matrix of unbiased estimates and N = n - 1 degrees of freedom. We thus see from the preceding, and theorems 2.1 and 5.1 of chapter 2, that $$(2.6) I(1:2; O_n) = nI(1:2) = I(1:2; \bar{\mathbf{x}}) + I(1:2; \mathbf{S}) = I(1:2; \bar{\mathbf{x}}, \mathbf{S}),$$ $$(2.7) J(1,2;O_n) = nJ(1,2) = J(1,2;\bar{\mathbf{x}}) + J(1,2;S) = J(1,2;\bar{\mathbf{x}},S).$$ Assuming that the population covariance matrices differ only in the values of the correlation coefficients, that is, $\Sigma_1 = D_{\sigma}P_1D_{\sigma}$, $\Sigma_2 = D_{\sigma}P_2D_{\sigma}$, where P_1 and P_2 are matrices of correlation coefficients and $$\mathbf{D}_{\sigma} = \begin{pmatrix} \sigma_{1} \cdot \cdots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{k} \end{pmatrix} \text{ is a diagonal matrix of standard deviations, (2.4)}$$ and (2.5) become respectively, (2.8) $$I(1:2; S) = \frac{N}{2} \left(\log \frac{|\mathbf{P}_2|}{|\mathbf{P}_1|} + \operatorname{tr} \mathbf{P}_1 (\mathbf{P}_2^{-1} - \mathbf{P}_1^{-1}) \right),$$ (2.9) $$J(1, 2; S) = \frac{N}{2} \operatorname{tr} (P_1 - P_2)(P_2^{-1} - P_1^{-1}).$$ We now deal with several samples. Suppose we have r independent samples, respectively, of n_1, n_2, \dots, n_r independent observations each, with $n = n_1 + n_2 + \dots + n_r$. We may treat the r samples as one large sample from populations with means and covariance matrices given by (the n_i indicate the number of occurrences of the corresponding term): (2.10) $$\mu_{i}' = (\mu_{i1}' \cdot \cdot \cdot, \mu_{i2}' \cdot \cdot \cdot, \cdot \cdot, \mu_{ir}' \cdot \cdot \cdot), \quad i = 1, 2,$$ $$n_{1} \quad n_{2} \quad n_{r}$$ (2.11) $$\boldsymbol{\Sigma}_{i} = \begin{pmatrix} \boldsymbol{\Sigma}_{i1} & \cdots & \boldsymbol{0} & \cdots & \boldsymbol{0} & \cdots \\ \boldsymbol{0} & \cdots & \boldsymbol{\Sigma}_{i2} & \cdots & \boldsymbol{0} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \boldsymbol{0} & \cdots & \boldsymbol{0} & \cdots & \boldsymbol{\Sigma}_{ir} & \cdots \end{pmatrix} \quad \begin{array}{c} n_{1} \\ n_{2} \\ \vdots \\ n_{r} \\ n_{r} \\ \end{array}$$ (2.12) $$\delta' = \mu_{1}' - \mu_{2}' = (\delta_{1}' \cdot \cdot \cdot, \delta_{2}' \cdot \cdot \cdot, \cdot \cdot, \delta_{r}' \cdot \cdot \cdot),$$ $$n_{1} \qquad n_{2} \qquad n_{r}$$ $$\delta_{j}' = \mu_{1j}' - \mu_{2j}'.$$ With the preceding (or from the additivity property), we find for the r samples, $$(2.13) \quad I(1:2;O_n) = \sum_{j=1}^r \frac{n_j}{2} \left(\log \frac{|\mathbf{\Sigma}_{2j}|}{|\mathbf{\Sigma}_{1j}|} + \operatorname{tr} \mathbf{\Sigma}_{1j} (\mathbf{\Sigma}_{2j}^{-1} - \mathbf{\Sigma}_{1j}^{-1}) + \operatorname{tr} \mathbf{\Sigma}_{2j}^{-1} \mathbf{\delta}_j \mathbf{\delta}_j' \right),$$ $$(2.14) J(1,2;O_n) = \sum_{j=1}^{r} \frac{n_j}{2} (\operatorname{tr} (\boldsymbol{\Sigma}_{1j} - \boldsymbol{\Sigma}_{2j}) (\boldsymbol{\Sigma}_{2j}^{-1} - \boldsymbol{\Sigma}_{1j}^{-1}) + \operatorname{tr} (\boldsymbol{\Sigma}_{1j}^{-1} + \boldsymbol{\Sigma}_{2j}^{-1}) \boldsymbol{\delta}_{i} \boldsymbol{\delta}_{i}'),$$ (2.15) $$I(1:2; O_n) = \sum_{i=1}^r I(1:2; \bar{\mathbf{x}}_i) + \sum_{i=1}^r I(1:2; S_i),$$ (2.16) $$J(1, 2; O_n) = \sum_{j=1}^r J(1, 2; \bar{\mathbf{x}}_j) + \sum_{j=1}^r J(1, 2; S_j),$$ where $I(1:2; \bar{\mathbf{x}}_j)$, $I(1:2; \mathbf{S}_j)$, $J(1, 2; \bar{\mathbf{x}}_j)$, $J(1, 2; \mathbf{S}_j)$ are (2.1), (2.4), (2.2), (2.5), respectively, for the jth sample. When the r samples are from populations with common covariance matrices, $\Sigma_{ij} = \Sigma$, $i = 1, 2, j = 1, 2, \dots, r$, we find (2.17) $$I(1:2; O_n) = \sum_{j=1}^r I(1:2; \bar{\mathbf{x}}_j) = \frac{1}{2} \operatorname{tr} \mathbf{\Sigma}^{-1} (n_1 \delta_1 \delta_1' + \cdots + n_r \delta_r \delta_r')$$ $$= \frac{1}{2} \operatorname{tr} \mathbf{\Sigma}^{-1} \mathbf{\Sigma}^* = \frac{1}{2} \sum_{j=1}^r J(1, 2; \bar{\mathbf{x}}_j),$$ where $\Sigma^* = n_1 \delta_1 \delta_1' + \cdots + n_r \delta_r \delta_r'$. [Cf. Hotelling (1951).] When the r samples are from populations with common means (or the variables are centered at their respective means), $\delta_j = 0$, $j = 1, 2, \dots, r$, we find (2.18) $$I(1:2; O_n) = \sum_{j=1}^r I(1:2; S_j)$$ $$= \sum_{j=1}^r \frac{N_j}{2} \left(\log \frac{|\Sigma_{2j}|}{|\Sigma_{1j}|} + \operatorname{tr} \Sigma_{1j} (\Sigma_{2j}^{-1} - \Sigma_{1j}^{-1}) \right),$$ (2.19) $$J(1, 2; O_n) = \sum_{j=1}^r J(1, 2; S_j) = \sum_{j=1}^r \frac{N_j}{2} \operatorname{tr} (\Sigma_{1j} - \Sigma_{2j}) (\Sigma_{2j}^{-1} - \Sigma_{1j}^{-1}),$$ where N_j is the number of degrees of freedom in the jth sample for the estimates S_i . #### 3. CANONICAL FORM I(1:2) and J(1, 2) are functions of the population parameters under H_1 and H_2 . According to corollary 4.1 in chapter 2, I(1:2) and J(1, 2) are invariant for nonsingular transformations of the random variables, and therefore in particular for nonsingular linear transformations. An important connection exists between the invariant properties and linear discriminant functions, and we now examine this in some detail. (This will also reflect itself in invariant properties of the subsequent tests.) If the random matrix x is subjected to the nonsingular linear transformation y = Ax, the means and covariance matrix of the y's are respectively $\mu_{\nu} = A\mu_{x}$, $\Sigma_{\nu} = A\Sigma A'$. If the x's are normally distributed, the y's are normally distributed and (see Anderson (1958, pp. 19-27), problems 10.5, 10.10) (3.1) $$I(1:2; \mathbf{y}) = \frac{1}{2} \log \frac{|\mathbf{A}\boldsymbol{\Sigma}_{2}\mathbf{A}'|}{|\mathbf{A}\boldsymbol{\Sigma}_{1}\mathbf{A}'|} + \frac{1}{2} \operatorname{tr} \mathbf{A}\boldsymbol{\Sigma}_{1}\mathbf{A}' (\mathbf{A}'^{-1}\boldsymbol{\Sigma}_{2}^{-1}\mathbf{A}^{-1} - \mathbf{A}'^{-1}\boldsymbol{\Sigma}_{1}^{-1}\mathbf{A}^{-1}) + \frac{1}{2} \operatorname{tr} \mathbf{A}'^{-1}\boldsymbol{\Sigma}_{2}^{-1}\mathbf{A}^{-1}\mathbf{A}\delta\delta'\mathbf{A}'$$ $$= \frac{1}{2} \log \frac{|\boldsymbol{\Sigma}_{2}|}{|\boldsymbol{\Sigma}_{1}|} + \frac{1}{2} \operatorname{tr} \boldsymbol{\Sigma}_{1}(\boldsymbol{\Sigma}_{2}^{-1} - \boldsymbol{\Sigma}_{1}^{-1}) + \frac{1}{2} \operatorname{tr} \boldsymbol{\Sigma}_{2}^{-1}\delta\delta'$$ $$= I(1:2; \mathbf{x}),$$ (3.2) $$J(1, 2; \mathbf{y}) = \frac{1}{2} \operatorname{tr} (\mathbf{A} \mathbf{\Sigma}_{1} \mathbf{A}' - \mathbf{A} \mathbf{\Sigma}_{2} \mathbf{A}') (\mathbf{A}'^{-1} \mathbf{\Sigma}_{2}^{-1} \mathbf{A}^{-1} - \mathbf{A}'^{-1} \mathbf{\Sigma}_{1}^{-1} \mathbf{A}^{-1})$$ $+ \frac{1}{2} \operatorname{tr} (\mathbf{A}'^{-1} \mathbf{\Sigma}_{1}^{-1} \mathbf{A}^{-1} + \mathbf{A}'^{-1} \mathbf{\Sigma}_{2}^{-1} \mathbf{A}^{-1}) \mathbf{A} \mathbf{\delta} \mathbf{\delta}' \mathbf{A}'$ $= \frac{1}{2} \operatorname{tr} (\mathbf{\Sigma}_{1} - \mathbf{\Sigma}_{2}) (\mathbf{\Sigma}_{2}^{-1} - \mathbf{\Sigma}_{1}^{-1}) + \frac{1}{2} \operatorname{tr} (\mathbf{\Sigma}_{1}^{-1} + \mathbf{\Sigma}_{2}^{-1}) \mathbf{\delta} \mathbf{\delta}'$ $= J(1, 2; \mathbf{x}).$ Since
Σ_1 and Σ_2 are positive definite, there exists a real nonsingular matrix A such that [see Anderson (1958, pp. 337-341), Ferrar (1941, pp. 151-153), Rao (1952, pp. 25-27)] (3.3) $$\mathbf{A}\mathbf{\Sigma}_{1}\mathbf{A}' = \mathbf{\Lambda}, \quad \mathbf{A}\mathbf{\Sigma}_{2}\mathbf{A}' = \mathbf{I},$$ where Λ is the diagonal matrix with real and positive elements $\lambda_1, \lambda_2, \dots, \lambda_k$, and I is the identity matrix; in fact, the λ 's are the roots of the determinantal equation $$|\mathbf{\Sigma}_1 - \lambda \mathbf{\Sigma}_2| = 0.$$ The matrix A in (3.3) defines a linear transformation of the x's such that the y's are independent with variances $\lambda_1, \lambda_2, \dots, \lambda_k$ in the population under H_1 and unit variances in the population under H_2 . Letting $A' = (\alpha_1, \alpha_2, \dots, \alpha_k)$, that is, the one-row matrix (vector) α_i' is the *i*th row of the matrix A, (3.3) and (3.4) yield (3.5) $$\alpha_{i}' \Sigma_{1} \alpha_{i} = \lambda_{i}, \qquad \alpha_{i}' \Sigma_{2} \alpha_{i} = 1, \qquad i = 1, 2, \cdots, k,$$ $$\alpha_{i}' \Sigma_{1} \alpha_{j} = 0, \qquad \alpha_{i}' \Sigma_{2} \alpha_{j} = 0, \qquad i \neq j,$$ $$\Sigma_{1} \alpha_{i} = \lambda_{i} \Sigma_{2} \alpha_{i}, \qquad i = 1, 2, \cdots, k,$$ $$|\Sigma_{1} \Sigma_{2}^{-1}| = |\Sigma_{1}|/|\Sigma_{2}| = \lambda_{1} \lambda_{2} \cdots \lambda_{k},$$ $$\operatorname{tr} \Sigma_{1} \Sigma_{2}^{-1} = \lambda_{1} + \lambda_{2} + \cdots + \lambda_{k},$$ $$\operatorname{tr} \Sigma_{2} \Sigma_{1}^{-1} = \frac{1}{\lambda_{1}} + \frac{1}{\lambda_{2}} + \cdots + \frac{1}{\lambda_{k}},$$ $$\delta' A' = (\delta' \alpha_{1}, \delta' \alpha_{2}, \cdots, \delta' \alpha_{k}).$$ In terms of the *characteristic roots*, the λ 's, and the *characteristic vectors*, the α_i , we have: (3.6) $$I(1:2) = -\frac{1}{2} \log \lambda_{1} \lambda_{2} \cdot \cdot \cdot \lambda_{k} + \frac{1}{2} (\lambda_{1} + \lambda_{2} + \cdot \cdot \cdot + \lambda_{k}) - k/2 + \frac{1}{2} [(\alpha_{1}' \delta)^{2} + \cdot \cdot \cdot + (\alpha_{k}' \delta)^{2}],$$ $$= \sum_{i=1}^{k} \frac{1}{2} [-\log \lambda_{i} + \lambda_{i} - 1 + (\alpha_{i}' \delta)^{2}],$$ $$(3.7) \quad J(1, 2) = \frac{1}{2} (\lambda_{1} + \cdot \cdot \cdot + \lambda_{k}) + \frac{1}{2} \left(\frac{1}{\lambda_{1}} + \frac{1}{\lambda_{2}} + \cdot \cdot \cdot + \frac{1}{\lambda_{k}} \right) - k + \frac{1}{2} \left(\frac{1}{\lambda_{1}} + 1 \right) (\alpha_{1}' \delta)^{2} + \cdot \cdot \cdot + \frac{1}{2} \left(\frac{1}{\lambda_{k}} + 1 \right) (\alpha_{k}' \delta)^{2}$$ $$= \sum_{i=1}^{k} \frac{1}{2} \left[\lambda_{i} + \frac{1}{\lambda_{i}} - 2 + \left(\frac{1}{\lambda_{i}} + 1 \right) (\alpha_{i}' \delta)^{2} \right].$$ (See sections 5 and 6 of chapter 3.) # 4. LINEAR DISCRIMINANT FUNCTIONS The right-hand side of (1.1) is an optimum, or sufficient discriminant function for assigning an observation to one of two multivariate normal populations. This in general is quadratic. [Cf. Neyman and Pearson (1933), Welch (1939).] However, we may prefer to work with one or more linear functions for the convenience they offer. How do we find the best linear function? Which properties of the linear function do we optimize? For the present we shall examine the consequences of maximizing the discrimination information or divergence for the linear function. A more detailed discussion and application will take place later. Consider the linear discriminant function $$(4.1) y = \alpha_1 x_1 + \cdots + \alpha_k x_k = \alpha' x,$$ where the x's are k-variate normal $N(\mu_i, \Sigma_i)$, i = 1, 2. The linear function y is consequently normally distributed, with parameters $$(4.2) \quad E_1(y) = \alpha' \mu_1, \quad E_2(y) = \alpha' \mu_2, \quad \operatorname{var}_1(y) = \alpha' \Sigma_1 \alpha, \quad \operatorname{var}_2(y) = \alpha' \Sigma_2 \alpha.$$ We consider how to determine α under certain assumptions about the populations. ## 5. EQUAL COVARIANCE MATRICES When $\Sigma_1 = \Sigma_2 = \Sigma$, (1.4) and (1.5) yield (5.1) $$2I(1:2) = J(1,2) = \text{tr } \Sigma^{-1}\delta\delta', \quad \delta = \mu_1 - \mu_2.$$ For the linear discriminant function $y = \alpha' x$, (5.2) $$2I(1:2;y) = J(1,2;y) = \alpha'\delta\delta'\alpha/\alpha'\Sigma\alpha.$$ The value of α for which $\lambda = \alpha' \delta \delta' \alpha / \alpha' \Sigma \alpha$ is a maximum satisfies (by the usual calculus procedures, see problems 10.2, 10.4) $\delta \delta' \alpha = \lambda \Sigma \alpha$, where λ is the largest root of $|\delta \delta' - \lambda \Sigma| = 0$. Here, since $\delta \delta'$ is of rank 1, there is only one nonzero root, $\lambda = \delta' \Sigma^{-1} \delta = \text{tr } \Sigma^{-1} \delta \delta'$. The linear discriminant function with $\Sigma \alpha = \delta$, or $\alpha = \Sigma^{-1} \delta$, is sufficient, since, (5.3) $$2I(1:2;y) = J(1,2;y) = \frac{\alpha'\delta\delta'\alpha}{\alpha'\Sigma\alpha} = \frac{\delta'\Sigma^{-1}\delta\delta'\Sigma^{-1}\delta}{\delta'\Sigma^{-1}\Sigma\Sigma^{-1}\delta}$$ $$= \delta'\Sigma^{-1}\delta = \operatorname{tr}\Sigma^{-1}\delta\delta'$$ $$= 2I(1:2) = J(1,2).$$ For r samples from populations with common covariance matrices, but different means, (2.17) is (5.4) $$2I(1:2; O_n) = J(1, 2; O_n)$$ = $\operatorname{tr} \Sigma^{-1}\Sigma^* = \operatorname{tr} \Sigma^{-1}(n_1\delta_1\delta_1' + \cdots + n_r\delta_r\delta_r').$ If we propose to use the same linear discriminant function, $y = \alpha' x$, for all the samples, (5.4) yields for the linear discriminant function: (5.5) $$2I(1:2; O_n, y) = J(1, 2; O_n, y) = \frac{n_1(\alpha'\delta_1\delta_1'\alpha) + \cdots + n_r(\alpha'\delta_r\delta_r'\alpha)}{\alpha'\Sigma\alpha}$$ $$= \frac{\alpha'\Sigma^*\alpha}{\alpha'\Sigma\alpha}.$$ The value of α for which $\lambda = \alpha' \Sigma^* \alpha / \alpha' \Sigma \alpha$ is a maximum satisfies (by the usual calculus procedures) $\Sigma^* \alpha = \lambda \Sigma \alpha$, where λ is the largest root of $|\Sigma^* - \lambda \Sigma| = 0$. From its definition, the rank of Σ^* is not greater than r. The determinantal equation has $p \leq \min(k, r)$ nonzero roots, designated in descending order as $\lambda_1, \lambda_2, \dots, \lambda_p$. Each root λ_i is associated with a one-column matrix (vector) $\alpha_i, \Sigma^* \alpha_i = \lambda_i \Sigma \alpha_i$, and a linear discriminant function $y_i = \alpha_i' x$. Since tr $\Sigma^* \Sigma^{-1} = \lambda_1 + \lambda_2 + \dots + \lambda_p$, (5.4) and (5.5) yield (5.6) $$J(1, 2; O_n) = \operatorname{tr} \mathbf{\Sigma}^* \mathbf{\Sigma}^{-1}$$ = $J(1, 2; O_n, y_1) + J(1, 2; O_n, y_2) + \cdot \cdot \cdot + J(1, 2; O_n, y_n)$. The discrimination efficiency of the linear discriminant function y_1 can be measured by the ratio $\lambda_1/(\lambda_1+\cdots+\lambda_p)$ or $J(1,2;O_n,y_1)/J(1,2;O_n)$; the discrimination efficiency of the pair of linear discriminant functions y_1 and y_2 can be measured by the ratio $(\lambda_1+\lambda_2)/(\lambda_1+\lambda_2+\cdots+\lambda_p)$ or $[J(1,2;O_n,y_1)+J(1,2;O_n,y_2)]/J(1,2;O_n)$; etc. (See section 6 of chapter 3.) The vectors α_i associated with different roots λ_i have the property that $\alpha_i' \mathbf{\Sigma}^* \alpha_j = 0 = \alpha_i' \mathbf{\Sigma} \alpha_j$, $i \neq j$, and the corresponding linear discriminant functions y_i are independent, with a diagonal covariance matrix of elements $\alpha_i' \mathbf{\Sigma} \alpha_i$. There will be one, two, etc., distinct λ_i , and corresponding distinct linear discriminant functions according as the population means are collinear, coplanar, etc. [Cf. Williams (1952, 1955).] #### 6. PRINCIPAL COMPONENTS Assuming that the k-variate normal populations are centered at their means, or that $\delta = 0$, the linear discriminant function $y = \alpha' x$ is normally distributed, and (6.1) $$E_1(y) - E_2(y) = 0$$, $\operatorname{var}_1(y) = \alpha' \Sigma_1 \alpha$, $\operatorname{var}_2(y) = \alpha' \Sigma_2 \alpha$, (6.2) $$I(1:2;y) = \frac{1}{2} \log \frac{\alpha' \Sigma_2 \alpha}{\alpha' \Sigma_1 \alpha} - \frac{1}{2} + \frac{\alpha' \Sigma_1 \alpha}{2\alpha' \Sigma_2 \alpha'}$$ (6.3) $$J(1,2;y) = \frac{1}{2} \frac{\alpha' \Sigma_1 \alpha}{\alpha' \Sigma_2 \alpha} + \frac{1}{2} \frac{\alpha' \Sigma_2 \alpha}{\alpha' \Sigma_1 \alpha} - 1.$$ The value of α for which I(1:2; y) is a maximum satisfies (by the usual calculus procedures) $$\Sigma_1 \alpha = \lambda \Sigma_2 \alpha,$$ where λ is a root of the determinantal equation $$|\mathbf{\Sigma}_1 - \lambda \mathbf{\Sigma}_2| = 0,$$ all roots of which are real and positive. Designate these roots in ascending order as $\lambda_1, \lambda_2, \dots, \lambda_k$. Seeking α for which J(1, 2; y) is a maximum, we find the same conditions, (6.4) and (6.5), as for maximizing I(1:2; y). Each root λ_i is associated with a vector α_i and the linear discriminant function $y_i = \alpha_i' \mathbf{x}$. We thus have for the linear discriminant function y_i , (6.6) $$I(1:2; y_i) = -\frac{1}{2} \log \lambda_i - \frac{1}{2} + \frac{\lambda_i}{2},$$ (6.7) $$J(1, 2; y_i) = \frac{\lambda_i}{2} + \frac{1}{2\lambda_i} - 1,$$ and from (3.6) and (3.7), with $\delta = 0$, (6.8) $$I(1:2) = I(1:2; y_1) + I(1:2; y_2) + \cdots + I(1:2; y_k),$$ (6.9) $$J(1,2) = J(1,2;y_1) + J(1,2;y_2) + \cdots + J(1,2;y_k).$$ We determine the value of λ_i for which (6.6) is a maximum (the most informative linear discriminant function) as follows. Since the function $g(\lambda) = -\frac{1}{2} \log \lambda - \frac{1}{2} + (\lambda/2)$ is convex [see problem 8.31(a) in chapter 2], nonnegative, and equal to zero for $\lambda = 1$, the maximum of (6.6) occurs for λ_1 or λ_k according as $g(\lambda_1) > g(\lambda_k)$, or $g(\lambda_1) < g(\lambda_k)$, that is, (6.10) $$\log \frac{\lambda_k}{\lambda_1} > \lambda_k - \lambda_1$$ or
$\log \frac{\lambda_k}{\lambda_1} < \lambda_k - \lambda_1$. We determine the value of λ_i for which (6.7) is a maximum (the most divergent linear discriminant function) as follows. Since the function $f(\lambda) = (\lambda/2) + (1/2\lambda) - 1$, $\lambda > 0$, is convex [see problem 8.31(a) in chapter 2], nonnegative, equal to zero for $\lambda = 1$, and $f(\lambda) = f(1/\lambda)$, the maximum of (6.7) occurs for λ_1 or λ_k according as $$(6.11) \lambda_1 \lambda_k < 1 \text{or} \lambda_1 \lambda_k > 1.$$ Note that the linear discriminant functions of this section define the transformation with matrix A in section 3. The "best" linear discriminant function is not necessarily associated with the largest λ . Assuming that $\Sigma_1 = D_{\sigma}PD_{\sigma}$, $\Sigma_2 = D_{\sigma}D_{\sigma}$, where P is a matrix of correlation coefficients and D_{σ} a diagonal matrix of standard deviations, $A\Sigma_1A' = \Lambda = AD_{\sigma}PD_{\sigma}A' = BPB'$, and $A\Sigma_2A' = I = AD_{\sigma}D_{\sigma}A' = BB'$. $B = AD_{\sigma}$ is an orthogonal matrix, (6.5) becomes $|P - \lambda I| = 0$, and (6.4) becomes $PD_{\sigma}\alpha = \lambda D_{\sigma}\alpha$, or $P\beta = \lambda \beta$, with $\beta = D_{\sigma}\alpha$, that is, $B' = (\beta_1, \beta_2, \dots, \beta_k) = D_{\sigma}A' = (D_{\sigma}\alpha_1, D_{\sigma}\alpha_2, \dots, D_{\sigma}\alpha_k)$. The linear discriminant functions y_1, y_2, \dots, y_k such that y = Bx are called principal components by Hotelling (1933) [cf. Anderson (1958, pp. 272-279), Girshick (1936)]. Since tr $P = \lambda_1 + \dots + \lambda_k = k$, here (see problem 10.7) (6.12) $$I(1:2) = -\frac{1}{2} \log |\mathbf{P}|$$ $$= -\frac{1}{2} \log (1 - \rho_{1 \cdot 23 \cdot \cdot \cdot k}^2) (1 - \rho_{2 \cdot 3 \cdot \cdot \cdot k}^2) \cdot \cdot \cdot (1 - \rho_{k-1,k}^2)$$ $$= -\frac{1}{2} \log \lambda_1 - \frac{1}{2} \log \lambda_2 - \cdot \cdot \cdot - \frac{1}{2} \log \lambda_k,$$ (6.13) $$J(1, 2) = \frac{1}{2} \operatorname{tr} \mathbf{P}^{-1} - \frac{k}{2} = \frac{1}{2} \sum_{i=1}^{k} \frac{\rho_{i \cdot 12 \cdot \dots (i-1)(i+1) \cdot \dots k}^{2}}{1 - \rho_{i \cdot 12 \cdot \dots (i-1)(i+1) \cdot \dots k}^{2}}$$ $$= \frac{1 - \lambda_{1}}{2\lambda_{1}} + \dots + \frac{1 - \lambda_{k}}{2\lambda_{k}},$$ where $\rho_{i\cdot 12\cdot \dots (i-1)(i+1)\dots k}$, $i=1,2,\dots,k$, $\rho_{j\cdot j+1\dots k}$, $j=1,2,\dots,k-1$, are multiple correlation coefficients in the population under H_1 , and the λ 's are the roots of $|\mathbf{P} - \lambda \mathbf{I}| = 0$. Note that I(1:2) in (6.12) is a measure of the joint relation among the k variates (see the remarks following (3.3) in chapter 8). For bivariate populations in particular, we have (6.14) $$\mathbf{P} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix},$$ (6.15) $$I(1:2) = -\frac{1}{2} \log(1 - \rho^2), \quad J(1, 2) = \frac{\rho^2}{(1 - \rho^2)},$$ (6.16) $$|\mathbf{P} - \lambda \mathbf{I}| = \lambda^2 - 2\lambda + 1 - \rho^2 = 0,$$ (6.17) $$\lambda_1 = 1 - \rho, \quad \lambda_2 = 1 + \rho, \quad \rho > 0,$$ (6.18) $$\beta_{1}' = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \quad \beta_{2}' = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \quad \mathbf{B} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix},$$ (6.19) $$y_1 = (x_1 - x_2)/\sqrt{2}, \quad y_2 = (x_1 + x_2)/\sqrt{2},$$ (6.20) $$I(1:2; y_1) = -\frac{1}{2} \log (1 - \rho) - (\rho/2),$$ $$I(1:2; y_2) = -\frac{1}{2} \log (1 + \rho) + (\rho/2),$$ (6.21) $$J(1, 2; y_1) = \rho^2/2(1 - \rho), \quad J(1, 2; y_2) = \rho^2/2(1 + \rho).$$ Note that for $\rho > 0$, the most informative and most divergent linear discriminant function is $y_1 = (x_1 - x_2)/\sqrt{2}$, since $\log [(1 + \rho)/(1 - \rho)] > 2\rho$ and $\lambda_1 \lambda_2 = 1 - \rho^2 < 1$ [or see (6.20) and (6.21)]. # 7. CANONICAL CORRELATION [Cf. Anderson (1958, pp. 288-298).] We now want to examine a partitioning of the k variates into two sets, $\mathbf{x}' = (\mathbf{x}_1', \mathbf{x}_2'), \mathbf{x}_1' = (x_1, x_2, \dots, x_{k_1}), \mathbf{x}_2' = (x_{k_1+1}, x_{k_1+2}, \dots, x_{k_1+k_2})$. For a partitioning into more than two sets see problem 10.13 and section 3.6 of chapter 12. Assume that the populations are centered at their means, or $\delta = 0$, and that (7.1) $$\Sigma_1 = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}, \qquad \Sigma_2 = \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{pmatrix},$$ where $$\Sigma_{11} = (\sigma_{ij})$$, $i, j = 1, 2, \dots, k_1$, $\Sigma_{22} = (\sigma_{rs})$, $r, s = k_1 + 1, \dots, k_1 + k_2 = k$, $\Sigma_{12} = (\sigma_{is})$, $\Sigma_{21} = \Sigma_{12}'$, that is, the two sets are independent in the population under H_2 . Since, as may be verified $(I_{k_1}$ is the identity matrix of order k_1 , etc.), $$(7.2) \ \begin{pmatrix} \mathbf{I}_{k_1} & \mathbf{0} \\ -\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1} & \mathbf{I}_{k_2} \end{pmatrix} \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{k_1} - \boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12} \\ \mathbf{0} & \mathbf{I}_{k_2} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22 \cdot 1} \end{pmatrix},$$ where $\mathbf{\Sigma}_{22\cdot 1} = \mathbf{\Sigma}_{22} - \mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1}\mathbf{\Sigma}_{12}$, we have Note that the matrix $\begin{pmatrix} \mathbf{I}_{k_1} & \mathbf{0} \\ -\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1} & \mathbf{I}_{k_2} \end{pmatrix}$ in (7.2) is that of a nonsingular linear transformation, and (7.2) implies that in the population under H_1 , \mathbf{x}_1 and $\mathbf{x}_2 - \mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1}\mathbf{x}_1$ are independent with covariance matrix the right-hand side of (7.2) (see section 3). We thus have (see problems 10.6 and 10.11) $$(7.4) I(1:2) = \frac{1}{2} \log \frac{\begin{vmatrix} \Sigma_{11} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22} \end{vmatrix}}{\begin{vmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{vmatrix}} + \frac{1}{2} \operatorname{tr} \left(\frac{\Sigma_{11}}{\Sigma_{21}} & \frac{\Sigma_{12}}{\Sigma_{22}} \right) \left[\begin{pmatrix} \Sigma_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22}^{-1} \end{pmatrix} - \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}^{-1} \right]$$ $$= \frac{1}{2} \log \frac{|\Sigma_{11}| |\Sigma_{22}|}{|\Sigma_{11} & \Sigma_{12}|} = \frac{1}{2} \log \frac{|\Sigma_{22}|}{|\Sigma_{22} \cdot 1|},$$ a measure of the relation between the sets x_1' and x_2' , or the mean information in x_1' about x_2' , or in x_2' about x_1' (see example 4.3 of chapter 1), $$(7.5)$$ $J(1, 2)$ $$\begin{split} &= \frac{1}{2} \operatorname{tr} \left[\begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} - \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{pmatrix} \right] \left[\begin{pmatrix} \Sigma_{11}^{-1} & 0 \\ 0 & \Sigma_{21}^{-1} \end{pmatrix} - \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}^{-1} \right] \\ &= \frac{1}{2} \operatorname{tr} \begin{pmatrix} 0 & \Sigma_{12} \\ \Sigma_{21} & 0 \end{pmatrix} \begin{pmatrix} -\Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1} & \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \\ \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1} & \Sigma_{22}^{-1} - \Sigma_{22}^{-1} \end{pmatrix} \\ &= \frac{1}{2} \operatorname{tr} \begin{pmatrix} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1} & (\cdot) \\ (\cdot) & \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \end{pmatrix} \\ &= \operatorname{tr} \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} = \operatorname{tr} \Sigma_{22} \Sigma_{22}^{-1} - k_2, \end{split}$$ where (·) indicates matrices whose values are not needed. To highlight the partition of the variates, we write the linear discriminant function $y = \alpha' x$ as (7.6) $$y = \beta_1 x_1 + \cdots + \beta_{k_1} x_{k_1} + \gamma_1 x_{k_1+1} + \cdots + \gamma_{k_2} x_{k_1+k_2}$$ $$= \beta' x_1 + \gamma' x_2,$$ where $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ are respectively the one-column matrices of $\beta_1, \dots, \beta_{k_1}$, and $\gamma_1, \dots, \gamma_{k_2}$, $\alpha' = (\boldsymbol{\beta}', \boldsymbol{\gamma}')$, $\mathbf{x}' = (\mathbf{x}_1', \mathbf{x}_2')$. Now, (6.4) and (6.5) are (7.7) $$\begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{\beta} \\ \mathbf{\gamma} \end{pmatrix} = \lambda \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{\beta} \\ \mathbf{\gamma} \end{pmatrix},$$ (7.8) $$\begin{vmatrix} (1-\lambda)\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & (1-\lambda)\Sigma_{22} \end{vmatrix} = 0.$$ Since (7.7) is equivalent to (7.9) $$\Sigma_{11}\beta + \Sigma_{12}\gamma = \lambda \Sigma_{11}\beta$$ $$\Sigma_{21}\beta + \Sigma_{22}\gamma = \lambda \Sigma_{22}\gamma,$$ or (7.10) $$\beta = -\frac{1}{1-\lambda} \Sigma_{11}^{-1} \Sigma_{12} \gamma$$ $$0 = -\frac{1}{1-\lambda} \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \gamma + (1-\lambda) \Sigma_{22} \gamma,$$ (7.8) is equivalent to (7.11) $$|\mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1}\mathbf{\Sigma}_{12} - \rho^2\mathbf{\Sigma}_{22}| = 0,$$ where $\rho^2 = (1 - \lambda)^2$. The roots of (7.8) [see (6.5)] are real and positive. If $k_2 \le k_1$, since $k = k_1 + k_2$, and the determinant of (7.11) is of order k_2 , (7.12) $$\lambda_{i} = 1 - \rho_{i}, \quad \lambda_{k_{1}+i} = 1 + \rho_{k_{2}+1-i}, \quad i = 1, 2, \dots, k_{2},$$ $$\lambda_{k_{2}+1} = \dots =
\lambda_{k_{2}+(k_{1}-k_{2})} = 1,$$ where $\rho_1 \ge \rho_2 \ge \cdots \ge \rho_{k_2}$. Note that $-1 \le \rho_i \le 1$ since the λ 's cannot be negative. Hotelling (1936) called the ρ_i canonical correlations. For the associated linear discriminant functions [see (6.6) and (6.7)], we now have $$(7.13) I(1:2; y_i) = -\frac{1}{2} \log (1 - \rho_i) - \frac{\rho_i}{2},$$ $$I(1:2; y_{k_1+i}) = -\frac{1}{2} \log (1 + \rho_{k_2+1-i}) + \frac{\rho_{k_2+1-i}}{2},$$ $$I(1:2; y_j) = 0, i = 1, 2, \cdots, k_2, j = k_2 + 1, \cdots, k_2 + (k_1 - k_2),$$ $$(7.14) J(1, 2; y_i) = \frac{1 - \rho_i}{2} + \frac{1}{2(1 - \rho_i)} - 1 = \frac{1}{2} \frac{\rho_i^2}{1 - \rho_i},$$ $$J(1, 2; y_{k_1+i}) = \frac{1}{2}(1 + \rho_{k_2+1-i}) + \frac{1}{2(1 + \rho_{k_2+1-i})} - 1 = \frac{\rho_{k_2+1-i}^2}{2(1 + \rho_{k_2+1-i})},$$ $$J(1, 2; y_j) = \frac{1}{2} + \frac{1}{2} - 1 = 0, i = 1, 2, \cdots, k_2,$$ $$j = k_2 + 1, \cdots, k_2 + (k_1 - k_2),$$ from which we see that $$(7.15) \quad I(1:2;y_i) + I(1:2;y_{k+1-i}) = -\frac{1}{2}\log(1-\rho_i^2), \quad i = 1, 2, \cdots, k_2,$$ $$J(1,2;y_i) + J(1,2;y_{k+1-i}) = \rho_i^2/(1-\rho_i^2),$$ and $$(7.16) I(1:2) = \frac{1}{2} \log \frac{\left| \Sigma_{11} \right| \left| \Sigma_{22} \right|}{\left| \Sigma_{11} \Sigma_{12} \right|} = -\frac{1}{2} \log (1 - \rho_1^2) (1 - \rho_2^2) \cdots (1 - \rho_{k_2}^2),$$ $$J(1,2) = \operatorname{tr} \Sigma_{22} \Sigma_{22\cdot 1}^{-1} - k_2 = \frac{\rho_1^2}{1 - \rho_1^2} + \frac{\rho_2^2}{1 - \rho_2^2} + \cdots + \frac{\rho_{k_2}^2}{1 - \rho_{k_2}^2}$$ Since $\log [(1+\rho_1)/(1-\rho_1)] > 2\rho_1$ and $\lambda_1 \lambda_k = (1-\rho_1)(1+\rho_1) = 1-\rho_1^2 < 1$, the most informative and most divergent linear discriminant function (7.6) is associated with the root λ_1 or the largest canonical correlation. Note that for bivariate populations, k = 2, $k_1 = k_2 = 1$, (7.11) becomes $(\sigma_{21}\sigma_{12}/\sigma_{11} - \rho^2\sigma_{22}) = 0$, or the canonical correlation is the simple correlation between the variates, and [see (6.15)] (7.17) $$I(1:2) = -\frac{1}{2} \log (1 - \rho^2),$$ $$J(1, 2) = \frac{\rho^2}{(1 - \rho^2)}.$$ For k-variate populations with $k_1=k-1$, $k_2=1$, (7.11) yields the canonical correlation $\rho^2=\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}/\sigma_{kk}$. But now $\Sigma_{21}=(\sigma_{k1},\,\sigma_{k2},\,\cdot\,\cdot\,\cdot,\,\sigma_{k\,k-1})$ or $\rho^2=1-\frac{|\Sigma_1|}{\sigma_{kk}|\Sigma_{11}|}$ [see (7.1)], and thus the canonical correlation is the multiple correlation between x_k and the other variates [cf. Cramér (1946a), pp. 109, 308)], and (7.18) $$I(1:2) = -\frac{1}{2} \log (1 - \rho_{k-12\cdots(k-1)}^2),$$ $$J(1,2) = \rho_{k-12\cdots(k-1)}^2 / (1 - \rho_{k-12\cdots(k-1)}^2).$$ Instead of a single linear discriminant function, suppose we examine the pair of linear discriminant functions (7.19) $$\begin{cases} u = \beta_1 x_1 + \cdots + \beta_{k_1} x_{k_1} = \beta' \mathbf{x}_1 \\ v = \gamma_1 x_{k_1+1} + \cdots + \gamma_{k_2} x_{k_1+k_2} = \gamma' \mathbf{x}_2. \end{cases}$$ We have $$\operatorname{var}_{i}(u) = \boldsymbol{\beta}' \boldsymbol{\Sigma}_{11} \boldsymbol{\beta}, \quad \operatorname{var}_{i}(v) = \boldsymbol{\gamma}' \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}, \quad i = 1, 2,$$ $$\operatorname{cov}_{1}(u, v) = \boldsymbol{\beta}' \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}, \quad \operatorname{cov}_{2}(u, v) = 0,$$ (7.20) $$I(1:2; u, v) = \frac{1}{2} \log \frac{\beta' \Sigma_{11} \beta \gamma' \Sigma_{22} \gamma}{\left| \beta' \Sigma_{11} \beta \beta' \Sigma_{12} \gamma \right|} = -\frac{1}{2} \log (1 - \rho_{uv}^{2}),$$ $$J(1, 2; u, v) = \frac{(\beta' \Sigma_{12} \gamma)^{2}}{(\beta' \Sigma_{11} \beta)(\gamma' \Sigma_{22} \gamma) - (\beta' \Sigma_{12} \gamma)^{2}} = \frac{\rho_{uv}^{2}}{1 - \rho_{uv}^{2}}.$$ The values of β and γ which maximize I(1:2; u, v) [or J(1, 2; u, v)] in (7.20) satisfy (by the usual calculus procedures) (7.9), where $(1 - \lambda)^2 = \rho_{uv}^2$. The canonical correlations are thus the correlations of the pair of linear discriminant functions (7.19). From (7.15) we have $$(7.21) \quad I(1:2; u_i, v_i) = I(1:2; y_i) + I(1:2; y_{k+1-i}), \qquad i = 1, 2, \cdots, k_2,$$ $$J(1, 2; u_i, v_i) = J(1, 2; y_i) + J(1, 2; y_{k+1-i}).$$ The discrimination information and divergence for the pairs of linear discriminant functions thus define an ordering according to the values of the canonical correlations. #### 8. COVARIANCE VARIATES Two k-variate normal populations with the same covariance matrices may differ only in the means of the last k_2 variates. The first $k - k_2 = k_1$ variates are then called the covariance variates, and we shall now find the discrimination information provided by using the covariance variates also, compared with that provided by using only the last k_2 variates [cf. Cochran and Bliss (1948)]. We have the partition $\mathbf{x}'=(\mathbf{x_1}',\mathbf{x_2}'),\ \mu_1'-\mu_2'=\delta'=(\delta_1',\delta_2'),$ with $\delta_1=0,$ and $\Sigma_1=\Sigma_2=\Sigma=\begin{pmatrix}\Sigma_{11}&\Sigma_{12}\\\Sigma_{21}&\Sigma_{22}\end{pmatrix}$. From (5.1) and (7.3) we now have (8.1) $$2I(1:2; \mathbf{x}') = J(1, 2; \mathbf{x}') = \operatorname{tr} \mathbf{\Sigma}^{-1} \delta \delta'$$ $$= \operatorname{tr} \left(\sum_{11}^{1} \sum_{12}^{1} \sum_{22}^{-1} \binom{0}{\delta_{2}} (0 \quad \delta'_{2}) \right)$$ $$= \operatorname{tr} \mathbf{\Sigma}_{22,1}^{-1} \delta_{2} \delta'_{2} = \delta'_{2} \mathbf{\Sigma}_{22,1}^{-1} \delta_{2}.$$ On the other hand, with the last k_2 variates only: (8.2) $$2I(1:2; \mathbf{x}_2') = J(1, 2; \mathbf{x}_2') = \operatorname{tr} \mathbf{\Sigma}_{22}^{-1} \mathbf{\delta}_2 \mathbf{\delta}_2' = \mathbf{\delta}_2' \mathbf{\Sigma}_{22}^{-1} \mathbf{\delta}_2.$$ Since $I(1:2; \mathbf{x}') > I(1:2; \mathbf{x}'_2)$ (see sections 3 and 4 of chapter 2), the contribution of the covariance variates is (8.3) $$\delta_2' \Sigma_{22,1}^{-1} \delta_2 - \delta_2' \Sigma_{22}^{-1} \delta_2,$$ and the gain ratio is (8.4) $$\lambda = \frac{\delta_2' \Sigma_{22\cdot 1}^{-1} \delta_2}{\delta_2' \Sigma_{22\cdot 1}^{-2} \delta_2},$$ where λ lies between the smallest and largest root of the determinantal equation (8.5) $$\left|\Sigma_{22\cdot 1}^{-1} - \lambda \Sigma_{22}^{-1}\right| = 0 = \left|\Sigma_{22} - \lambda \Sigma_{22\cdot 1}\right|,$$ (8.6) $$|\mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1}\mathbf{\Sigma}_{12} - \rho^2\mathbf{\Sigma}_{22}| = 0,$$ where $\rho^2 = (\lambda - 1)/\lambda$. The roots of (8.6) are the canonical correlations [see (7.11)]; hence the largest value of λ in (8.4) cannot exceed $1/(1 - \rho_1^2)$, where ρ_1 is the largest canonical correlation. We now study the linear discriminant functions with and without the covariance variates. Since the covariance matrices in the populations are equal, a unique sufficient linear discriminant function exists (see section 5). For all the k variates with the partitioning of the coefficients of the linear discriminant function as in $(7.6), \alpha = \Sigma^{-1}\delta$ becomes [see (7.3)] (8.7) $$\begin{pmatrix} \boldsymbol{\beta} \\ \boldsymbol{\gamma} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix}^{-1} \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{\delta}_{2} \end{pmatrix} = \begin{pmatrix} -\boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22 \cdot 1}^{-1} \boldsymbol{\delta}_{2} \\ \boldsymbol{\Sigma}_{-21}^{-1} \boldsymbol{\delta}_{2} \end{pmatrix} \cdot$$ If the covariance variates are ignored, the coefficients of the linear discriminant function are (8.8) $$\beta = 0, \quad \gamma = \Sigma_{22}^{-1} \delta_2.$$ For bivariate populations, k=2, $k_1=k_2=1$, the canonical correlation is the simple correlation between the variates, $\Sigma_{22\cdot 1}=\sigma_2^2(1-\rho^2)$, and (8.4) becomes $\lambda=1/(1-\rho^2)$. For k-variate populations with $k_2=1$, $k_1=k-1$, there is only one canonical correlation (the multiple correlation of x_k with x_1, x_2, \dots, x_{k-1}), $\Sigma_{22\cdot 1}=\sigma_k^2(1-\rho_{k\cdot 12\cdot \dots (k-1)}^2)$, and (8.4) becomes $\lambda=1/(1-\rho_{k\cdot 12\cdot \dots (k-1)}^2)$. (See problem 10.9.) #### 9. GENERAL CASE [Cf. Greenhouse (1954).] With no restrictive assumptions about the means and covariance matrices of the k-variate normal populations under H_1 and H_2 , the parameters of the normal distributions of the linear discriminant function $y = \alpha' x$ are: (9.1) $$E_1(y) = \alpha' \mu_1$$, $E_2(y) = \alpha' \mu_2$, $var_1(y) = \alpha' \Sigma_1 \alpha$, $var_2(y) = \alpha' \Sigma_2 \alpha$, and $$(9.2) \quad I(1:2;y) = \frac{1}{2} \log \frac{\alpha' \Sigma_2 \alpha}{\alpha' \Sigma_1 \alpha} - \frac{1}{2} + \frac{1}{2} \frac{\alpha' \Sigma_1 \alpha}{\alpha' \Sigma_2 \alpha} + \frac{1}{2} \frac{\alpha' \delta \delta' \alpha}{\alpha' \Sigma_2 \alpha'}$$ $$(9.3) \quad I(2:1;y) = \frac{1}{2} \log \frac{\alpha' \Sigma_1 \alpha}{\alpha' \Sigma_2 \alpha} - \frac{1}{2} + \frac{1}{2} \frac{\alpha' \Sigma_2 \alpha}{\alpha' \Sigma_1 \alpha} + \frac{1}{2} \frac{\alpha' \delta \delta' \alpha}{\alpha' \Sigma_1 \alpha},$$ $$(9.4) \quad J(1,2;y) = \frac{1}{2} \frac{\alpha' \Sigma_2 \alpha}{\alpha' \Sigma_1 \alpha} + \frac{1}{2} \frac{\alpha' \Sigma_1 \alpha}{\alpha' \Sigma_2 \alpha} - 1 + \frac{1}{2} \left(\frac{1}{\alpha' \Sigma_1 \alpha} + \frac{1}{\alpha' \Sigma_2 \alpha} \right) \alpha' \delta \delta' \alpha.$$ For a given y it is true that J(1, 2; y) = I(1:2; y) + I(2:1; y). It is not true, however, that the same y will yield the maximum value for I(1:2; y), I(2:1; y), I(1, 2; y). The value of α for which I(1:2;y) in (9.2) is a maximum satisfies (by the usual calculus procedures) $$(9.5) \Sigma_1 \alpha - \lambda \Sigma_2 \alpha = \gamma \delta,$$ where $$\lambda = \frac{\alpha' \Sigma_1 \alpha}{\alpha' \Sigma_2 \alpha} \left(1 - \frac{(\alpha'
\delta)^2}{\alpha' \Sigma_2 \alpha - \alpha' \Sigma_1 \alpha} \right), \qquad \gamma = \frac{(\alpha' \delta)(\alpha' \Sigma_1 \alpha)}{\alpha' \Sigma_2 \alpha - \alpha' \Sigma_1 \alpha}.$$ Since γ is a proportionality factor, we may set $\gamma = 1$, and α satisfies $$(9.6) \Sigma_1 \alpha - \lambda \Sigma_2 \alpha = \delta,$$ where λ , given in (9.5), must not be a root of $|\Sigma_1 - \lambda \Sigma_2| = 0$. The value of α for which I(2:1;y) in (9.3) is a maximum satisfies (by the usual calculus procedures) an equation of the same form as (9.5) but with $$(9.7) \ \lambda = \frac{\alpha' \Sigma_1 \alpha(\alpha' \Sigma_1 \alpha - \alpha' \Sigma_2 \alpha)}{\alpha' \Sigma_2 \alpha(\alpha' \Sigma_1 \alpha - \alpha' \Sigma_2 \alpha - (\alpha' \delta)^2)}, \quad \gamma = \frac{(\alpha' \Sigma_1 \alpha)(\alpha' \delta)}{\alpha' \Sigma_2 \alpha - \alpha' \Sigma_1 \alpha + (\alpha' \delta)^2}.$$ Again setting the proportionality factor $\gamma = 1$, α must satisfy an equation of the form (9.6) where λ , given in (9.7), must not be a root of $|\Sigma_1 - \lambda \Sigma_2| = 0$. The value of α for which J(1, 2; y) in (9.4) is a maximum satisfies (by the usual calculus procedures) an equation of the same form as (9.5) but with (9.8) $$\lambda = \frac{\alpha' \Sigma_{1} \alpha ((\alpha' \Sigma_{2} \alpha)^{2} - (\alpha' \Sigma_{1} \alpha)^{2} - (\alpha' \delta)^{2} (\alpha' \Sigma_{1} \alpha))}{\alpha' \Sigma_{2} \alpha ((\alpha' \Sigma_{2} \alpha)^{2} - (\alpha' \Sigma_{1} \alpha)^{2} + (\alpha' \delta)^{2} (\alpha' \Sigma_{2} \alpha))},$$ $$\gamma = \frac{(\alpha' \delta) (\alpha' \Sigma_{1} \alpha) (\alpha' \Sigma_{1} \alpha + \alpha' \Sigma_{2} \alpha)}{(\alpha' \Sigma_{2} \alpha)^{2} - (\alpha' \Sigma_{1} \alpha)^{2} + (\alpha' \delta)^{2} (\alpha' \Sigma_{2} \alpha)}.$$ Again setting the proportionality factor $\gamma = 1$, α must satisfy an equation of the form (9.6) where λ , given in (9.8), must not be a root of $|\Sigma_1 - \lambda \Sigma_2| = 0$. Note that here we find three types of linear discriminant functions. Since λ depends on α , an iterative procedure must be employed to solve for α . This is studied in chapter 13. ### 10. PROBLEMS 10.1. Show that $x'\Sigma^{-1}x = \operatorname{tr} \Sigma^{-1}xx'$. 10.2. If $$\frac{\mathbf{d}}{\mathbf{d}\alpha} = \begin{pmatrix} \frac{\partial}{\partial \alpha_1} \\ \vdots \\ \frac{\partial}{\partial \alpha_k} \end{pmatrix}$$, show that $\frac{\mathbf{d}}{\mathbf{d}\alpha} \alpha' \mathbf{\Sigma} \alpha = 2\mathbf{\Sigma} \alpha$, where $\mathbf{\Sigma}$ is a symmetric $k \times k$ matrix and $\alpha' = (\alpha_1, \alpha_2, \dots, \alpha_k)$. [Cf. Anderson (1958, p. 347).] 10.3. If dA denotes the matrix each element of which is the differential of the corresponding element of the matrix A, show that - (a) $d \operatorname{tr} \Sigma = \operatorname{tr} d\Sigma$. - (b) $d\Sigma^{-1} = -\Sigma^{-1} d\Sigma\Sigma^{-1}$. - (c) $d \log |\Sigma| = \operatorname{tr} \Sigma^{-1} d\Sigma$. [Cf. Dwyer and MacPhail (1948).] 10.4. Show that (see section 5) $$\left|1 - \frac{1}{\lambda} \delta' \Sigma^{-1} \delta \right| \cdot |\lambda \Sigma| = \left| \begin{matrix} 1 & \delta' \\ \delta & \lambda \Sigma \end{matrix} \right| = |\lambda \Sigma - \delta \delta'|.$$ **10.5.** Show that $\operatorname{tr} \mathbf{AB}' = \operatorname{tr} \mathbf{B}' \mathbf{A} = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij} b_{ij}$, $\mathbf{A} = (a_{ij})$, $\mathbf{B} = (b_{ij})$, $i, j = 1, 2, \dots, k$. 10.6. Show that (see section 7) $$\begin{vmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{vmatrix} = |\boldsymbol{\Sigma}_{11}| \cdot |\boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}|.$$ 10.7. (a) Show that $\rho_{1\cdot 23\cdot \cdot \cdot \cdot k}^2 = 1 - 1/\rho^{11}$, where **P** is the matrix of correlation coefficients, $P^{-1} = (\rho^{ij})$, and $\rho_{1\cdot 23\cdot \cdot \cdot \cdot k}$ is the multiple correlation coefficient of x_1 with $x_2, x_3, \cdot \cdot \cdot \cdot , x_k$. (b) Show that $|\mathbf{P}| = (1 - \rho_{1 \cdot 23 \cdot \ldots k}^2)(1 - \rho_{2 \cdot 3}^2 \cdot \ldots k) \cdot \cdots (1 - \rho_{k-1,k}^2)$, where $\rho_{j \cdot j+1} \cdot \ldots k$ is the multiple correlation coefficient of x_j with $x_{j+1}, x_{j+2}, \cdots, x_k, j = 1, 2, \cdots, k-1$. 10.8. Show that a necessary and sufficient condition for the independence of the k variates of a multivariate normal population is that the k multiple correlation coefficients of each x with the other x's are all zero, or that $\rho^{11} = \rho^{22} = \cdots = \rho^{kk} = 1$. 10.9. Suppose that in section 8 [cf. Cochran and Bliss (1948, p. 157)] $$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \begin{pmatrix} 2351 & 1259 & 1340 \\ 1259 & 3223 & 1200 \\ 1340 & 1200 & 3137 \end{pmatrix},$$ $$\delta' = (0, \delta_2') = (0, -1197.2, -844.3).$$ Verify that: - (a) $\rho_{1.23}^2 = 0.33$. - (b) tr $\Sigma^{-1}\delta\delta' = 729.556$. - (c) tr $\Sigma_{22}^{-1}\delta_2\delta_2' = 503.845$. - (d) The canonical correlation is $\rho_1^2 = 0.33$. - (e) The gain ratio does not exceed $1/(1 \rho_1^2)$. - 10.10. Let x_1, x_2, \dots, x_n be distributed with the multivariate normal density $\frac{1}{|2\pi\Sigma|^{1/2}} \exp\left(-\frac{1}{2}x'\Sigma^{-1}x\right)$, where $x' = (x_1, x_2, \dots, x_n)$. If y = Ax, $y' = (y_1, y_2, \dots, y_m)$, $A = (a_{ij})$, $i = 1, 2, \dots, m$, $j = 1, 2, \dots, n$, m < n, A of rank m, show that the y's are normally distributed $N(0, A\Sigma A')$, that is, with zero means and covariance matrix $A\Sigma A'$ of rank m < n. - 10.11. Let y = Ax, z = Bx, where x, y, A are defined in problem 10.10 and $z' = (z_1, z_2, \dots, z_{n-m})$, $B = (b_{ij})$, $i = 1, 2, \dots, n m$, $j = 1, 2, \dots, n$, B of rank n m. Show that the set of y's is independent of the set of z's if $A\Sigma B' = 0 = B\Sigma A'$. - 10.12. Show that a necessary and sufficient condition for the independence of the k variates of a multivariate normal population is that $\rho_{1.23...k}^2 = \rho_{2.3...k}^2 = \cdots = \rho_{k-1.k}^2 = 0$, where $\rho_{j.j+1...k}$ is the multiple correlation coefficient of x_j with x_{j+1}, \cdots, x_k . - 10.13. Partition k variates into $m \le k$ sets, $\mathbf{x}' = (\mathbf{x}'_1, \mathbf{x}'_2, \cdots, \mathbf{x}'_m)$, $\mathbf{x}'_i = (x_{k_1+k_2+\cdots+k_{i-1}+1}, \cdots, x_{k_1+k_2+\cdots+k_i})$. Assume that the multivariate normal populations under H_1 and H_2 (see section 7) are centered at their means, or $\delta = 0$, and $$egin{aligned} oldsymbol{\Sigma}_1 = egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} & \cdots & oldsymbol{\Sigma}_{1m} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} & \cdots & oldsymbol{\Sigma}_{2m} \ \ddots & \ddots & \ddots & \ddots & \ddots \ oldsymbol{\Sigma}_{m1} & oldsymbol{\Sigma}_{m2} & \cdots & oldsymbol{\Sigma}_{mm} \end{pmatrix}, & oldsymbol{\Sigma}_2 = egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{0} & \cdots & \ddots & 0 \ 0 & oldsymbol{\Sigma}_{22} & \cdots & 0 \ 0 & \ddots & \ddots & \ddots & \ddots \ 0 & oldsymbol{0} & \cdots & \ddots & oldsymbol{\Sigma}_{mm} \end{pmatrix}, \end{aligned}$$ where $\Sigma_{ii} = (\sigma_{\alpha\beta}), \alpha, \beta = k_1 + k_2 + \cdots + k_{i-1} + 1, \cdots, k_1 + k_2 + \cdots + k_i$, and $\Sigma'_{ji} = \Sigma_{ij} = (\sigma_{rs}), r = k_1 + k_2 + \cdots + k_{i-1} + 1, \cdots, k_1 + k_2 + \cdots + k_i$, $s = k_1 + k_2 + \cdots + k_{j-1} + 1, \cdots, k_1 + k_2 + \cdots + k_j, k_1 + k_2 + \cdots + k_m = k$. Show that $$I(1:2) = \frac{1}{2} \log \frac{\left| \begin{array}{c|c} \boldsymbol{\Sigma}_{11} \middle| \cdot \middle| \boldsymbol{\Sigma}_{22} \middle| \cdot \cdot \cdot \middle| \boldsymbol{\Sigma}_{mm} \\ \hline \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} & \cdot \cdot \cdot \boldsymbol{\Sigma}_{1m} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} & \cdot \cdot \cdot \boldsymbol{\Sigma}_{2m} \\ \hline \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ \boldsymbol{\Sigma}_{m1} & \boldsymbol{\Sigma}_{m2} & \cdot \cdot \cdot \boldsymbol{\Sigma}_{mm} \end{array} \right|}.$$ 10.14. Show that (see problem 10.6) $$\begin{vmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} & \cdot & \cdot & \boldsymbol{\Sigma}_{1m} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} & \cdot & \cdot & \boldsymbol{\Sigma}_{2m} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \boldsymbol{\Sigma}_{m1} & \boldsymbol{\Sigma}_{m2} & \cdot & \cdot & \boldsymbol{\Sigma}_{mm} \end{vmatrix} = |\boldsymbol{\Sigma}_{11}| \cdot |\boldsymbol{\Sigma}_{22 \cdot 1}| \cdot |\boldsymbol{\Sigma}_{33 \cdot 12}| \cdot |\boldsymbol{\Sigma}_{44 \cdot 123}| \cdot \cdot \cdot |\boldsymbol{\Sigma}_{mm \cdot 12 \cdot \cdot \cdot m-1}|,$$ where $$\begin{split} \boldsymbol{\Sigma}_{ij\cdot 1} &= \boldsymbol{\Sigma}_{ij} - \boldsymbol{\Sigma}_{i1} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{1j}, \ \boldsymbol{\Sigma}_{ij\cdot 12} = \boldsymbol{\Sigma}_{ij\cdot 1} - \boldsymbol{\Sigma}_{i2\cdot 1} \boldsymbol{\Sigma}_{22\cdot 1}^{-1} \boldsymbol{\Sigma}_{2j\cdot 1}, \\ \boldsymbol{\Sigma}_{ij\cdot 123} &= \boldsymbol{\Sigma}_{ij\cdot 12} - \boldsymbol{\Sigma}_{i3\cdot 12} \boldsymbol{\Sigma}_{33\cdot 12}^{-1} \boldsymbol{\Sigma}_{3j\cdot 12}, \quad \boldsymbol{\Sigma}_{mm\cdot 12\cdot \cdots m-1} = \boldsymbol{\Sigma}_{mm\cdot 12\cdot \cdots m-2} \\ &- \boldsymbol{\Sigma}_{mm-1\cdot 12\cdot \cdots m-2} \boldsymbol{\Sigma}_{m-1\ m-1\cdot 12\cdot \cdots m-2}^{-1} \boldsymbol{\Sigma}_{m-1\ m-1\cdot 12\cdot \cdots m-2} \boldsymbol{\Sigma}_{m-1\ m\cdot 12\cdot \cdots m-2}. \end{split}$$ 10.15. Suppose the k variates of a multivariate normal population have been partitioned into the $m \le k$ sets of problem 10.13. Show
that a necessary and sufficient condition for the sets to be mutually independent is that $|\Sigma_{22}| = |\Sigma_{22\cdot 1}|$, $|\Sigma_{22}| = |\Sigma_{33\cdot 12}|$, $|\Sigma_{44}| = |\Sigma_{44\cdot 123}|$, $\cdot \cdot \cdot$, $|\Sigma_{mm}| = |\Sigma_{mm\cdot 12\cdot \dots m-1}|$, where the matrices are defined in problems 10.13 and 10.14 above. 10.16. Show that [cf. (7.4) and problem 10.17], $$\frac{\left|\begin{array}{cccc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} & \cdots & \boldsymbol{\Sigma}_{1r-1} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} & \cdots & \boldsymbol{\Sigma}_{2r-1} \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \boldsymbol{\Sigma}_{r-11} & \boldsymbol{\Sigma}_{r-12} & \cdots & \boldsymbol{\Sigma}_{r-1} & r-1 \end{array}\right| \cdot \left|\boldsymbol{\Sigma}_{rr}\right|}{\left|\begin{array}{ccccc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} & \cdots & \boldsymbol{\Sigma}_{1r} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} & \cdots & \boldsymbol{\Sigma}_{2r} \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \boldsymbol{\Sigma}_{r1} & \boldsymbol{\Sigma}_{r2} & \cdots & \boldsymbol{\Sigma}_{rr} \end{array}\right|} = \frac{\left|\boldsymbol{\Sigma}_{rr}\right|}{\left|\boldsymbol{\Sigma}_{rr \cdot 12 \cdot \cdots r-1}\right|},$$ where the matrices are defined in problems 10.13 and 10.14 above. 10.17. Partition k variates into the $m \le k$ sets of problem 10.13. Assume that the multivariate normal populations under H_1 and H_2 (see section 7) are centered at their means, or $\delta = 0$, and $$\Sigma_{1} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1m} \\ \Sigma_{21} & \Sigma_{22} & \cdots & \Sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \Sigma_{m1} & \Sigma_{m2} & \cdots & \Sigma_{mm} \end{pmatrix}, \quad \Sigma_{2} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1m-1} & 0 \\ \Sigma_{21} & \Sigma_{22} & \cdots & \Sigma_{2m-i} & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \Sigma_{m-11} & \Sigma_{m-12} & \cdots & \Sigma_{m-1} & m-1 & 0 \\ 0 & 0 & \cdots & 0 & \Sigma_{mm} \end{pmatrix},$$ where the matrices are defined in problem 10.13 above. Show that $$I(1:2) = \frac{1}{2} \log \frac{|\mathbf{\Sigma}_{mm}|}{|\mathbf{\Sigma}_{mm\cdot 12\cdot \cdot \cdot \cdot m-1}|},$$ and that for $k_m = 1$, I(1:2) is given in (7.18). 10.18. Suppose the k variates of a multivariate normal population have been partitioned into the $m \le k$ sets of problem 10.13. Show that a necessary and sufficient condition that the mth set be independent of the preceding m-1 sets is that $|\Sigma_{mm}| = |\Sigma_{mm\cdot 12\cdot \dots m-1}|$, where the matrices are defined in problems 10.13 and 10.14 above. - 10.19. Show that the I(1:2)'s in (7.4), problem 10.13, and problem 10.17 are unchanged when the covariance matrices are replaced by the corresponding correlation matrices. Show that the equalities in problems 10.14, 10.15, 10.16, and 10.18 are also unchanged when the covariance matrices are replaced by the corresponding correlation matrices. - 10.20. Partition k variates into the $m \le k$ sets of problem 10.13. Assume that the multivariate normal populations under H_1 and H_2 are centered at their means, or $\delta = 0$, and $$\begin{split} \boldsymbol{\Sigma}_1 &= \begin{pmatrix} \boldsymbol{\Sigma}_{m-1 \ m-1 \cdot 12 \cdot \cdots m-2} & \boldsymbol{\Sigma}_{m-1 \ m \cdot 12 \cdot \cdots m-2} \\ \boldsymbol{\Sigma}_{mm-1 \cdot 12 \cdot \cdots m-2} & \boldsymbol{\Sigma}_{mm \cdot 12 \cdot \cdots m-2} \end{pmatrix}, \\ \boldsymbol{\Sigma}_2 &= \begin{pmatrix} \boldsymbol{\Sigma}_{m-1 \ m-1 \cdot 12 \cdot \cdots m-2} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{mm \cdot 12 \cdot \cdots m-2} \end{pmatrix}, \end{split}$$ where the matrices are defined in problem 10.14 above. Show that $$I(1:2) = \frac{1}{2} \log \frac{|\mathbf{\Sigma}_{mm \cdot 12 \cdot \dots m-2}|}{|\mathbf{\Sigma}_{mm \cdot 12 \cdot \dots m-1}|} = \frac{1}{2} \log \frac{|\mathbf{P}_{mm \cdot 12 \cdot \dots m-2}|}{|\mathbf{P}_{mm \cdot 12 \cdot \dots m-1}|}$$ and that for $k_m = k_{m-1} = 1$, $I(1:2) = -\frac{1}{2} \log (1 - \rho_{mm-1 \cdot 12 \cdot \dots m-2}^2)$, where $\rho_{mm-1 \cdot 12 \cdot \dots m-2}$ is a partial correlation coefficient. - 10.21. Show that the characteristic function of the distribution of $y = x' \Sigma^{-1} x$, where x is k-variate normal $N(0, \Sigma)$, is $E(\exp itx' \Sigma^{-1} x) = (1 2it)^{-k/2}$, the characteristic function of the χ^2 -distribution with k degrees of freedom. - 10.22. Show that when x in problem 10.21 is k-variate normal $N(\mu, \Sigma)$, $E(\exp itx'\Sigma^{-1}x) = \exp \left[it\mu'\Sigma^{-1}\mu/(1-2it)\right](1-2it)^{-k/2}$, the characteristic function of the noncentral χ^2 -distribution with k degrees of freedom and noncentrality parameter $\mu'\Sigma^{-1}\mu$. (See section 6.1 in chapter 12.) ### The Linear Hypothesis ### 1. INTRODUCTION In this chapter we pick up again the general line of reasoning in chapters 6, 7, and 8 to examine the analysis of samples from normal populations in order to test the general linear hypothesis [Kolodziejczyk (1935)]. The analyses of this chapter may be derived as special cases of those on the multivariate linear hypothesis in chapter 11. Nevertheless, the development and study of the linear hypothesis first is thought to be worth while for its own sake as well as an aid in the exposition. The treatment is not intended to be exhaustive, and has wider applicability than to the specific cases considered. ### 2. BACKGROUND* Suppose two simple statistical hypotheses, say H_1 and H_2 , specify respectively the *n*-variate normal populations $N(\mu_i, \Sigma)$, i = 1, 2, where $\mu'_i = (\mu_{i1}, \mu_{i2}, \dots, \mu_{in})$, i = 1, 2, are the one-row matrices (vectors) of means, an $\Sigma = (\sigma_{rs})$, $r, s = 1, 2, \dots, n$, is the common matrix of variances and covariances, so that [see (1.4) and (1.5) in chapter 9]: (2.1) $$2I(1:2) = J(1,2) = (\mu_1 - \mu_2)' \Sigma^{-1}(\mu_1 - \mu_2).$$ If the variates are independent, $\sigma_{rs} = 0$, $r \neq s$, $\Sigma^{-1} = (\sigma^{rs})$, with $\sigma^{rs} = 0$, $r \neq s$, $\sigma^{rr} = 1/\sigma_{rr}$, $r = 1, 2, \cdots, n$, and (2.1) becomes, writing $\sigma_{rr} = \sigma_r^2$, $$(2.2) 2I(1:2) = J(1, 2)$$ $$=\frac{(\mu_{11}-\mu_{21})^2}{\sigma_1^2}+\frac{(\mu_{12}-\mu_{22})^2}{\sigma_2^2}+\cdot\cdot\cdot+\frac{(\mu_{1n}-\mu_{2n})^2}{\sigma_n^2}.$$ If the variates are also identically distributed, as well as independent, that * Sections 2-8 are mainly taken from an article by Kullback and Rosenblatt, which appeared in *Biometrika*, Vol. 44 (1957), pp. 67-83, and are reprinted with the permission of the editor. is, $\mu_{ij} = \mu_i$, $i = 1, 2, j = 1, 2, \dots, n$, and $\sigma_r^2 = \sigma^2$, $r = 1, 2, \dots, n$, then (cf. example 4.2 of chapter 3) (2.3) $$J(1, 2) = n(\mu_1 - \mu_2)^2/\sigma^2 = 2I(1:2).$$ ### 3. THE LINEAR HYPOTHESIS We now consider $$z = y - X\beta,$$ where $$\mathbf{z}' = (z_1, z_2, \dots, z_n), \ \mathbf{y}' = (y_1, y_2, \dots, y_n), \ \mathbf{\beta}' = (\beta_1, \beta_2, \dots, \beta_p), \ \mathbf{X} = (x_{ir}), \ i = 1, 2, \dots, n, \ r = 1, 2, \dots, p; \ p < n, \ \text{such that:}$$ - (a) the z's are independent, normally distributed random variables with zero means and common variance σ^2 , - (b) the x_{ir} 's are assumed to be known, - (c) X is of rank p, - (d) $\beta = \beta^1$ and $\beta = \beta^2$ are one-column parameter matrices (vectors) specified respectively by the hypotheses H_1 and H_2 , and - (e) $E_1(y) = X\beta^1$ and $E_2(y) = X\beta^2$. We find that (2.1) yields here (3.2) $$J(1, 2) = (\mathbf{X}\boldsymbol{\beta}^{1} - \mathbf{X}\boldsymbol{\beta}^{2})'(\sigma^{2}\mathbf{I})^{-1}(\mathbf{X}\boldsymbol{\beta}^{1} - \mathbf{X}\boldsymbol{\beta}^{2})$$ $$= (\boldsymbol{\beta}^{1} - \boldsymbol{\beta}^{2})'\mathbf{X}'\mathbf{X}(\boldsymbol{\beta}^{1} - \boldsymbol{\beta}^{2})/\sigma^{2}$$ $$= (\boldsymbol{\beta}^{1} - \boldsymbol{\beta}^{2})'\mathbf{S}(\boldsymbol{\beta}^{1} - \boldsymbol{\beta}^{2})/\sigma^{2},$$ where S = X'X is a $p \times p$ matrix of rank p and I is the $n \times n$ identity matrix. We remark that J(1, 2) [2I(1:2)] in (3.2) is equivalent to the divergence between two multivariate normal populations with respective means β^1 , β^2 and common covariance matrix $\sigma^2 S^{-1}$. Suitable specification of the matrices X and β provides the appropriate model for many statistical problems of interest. [Cf. Kolodziejczyk (1935), Rao (1952, p. 119), Tocher (1952), Wilks (1938b; 1943, pp. 176–199), Zelen (1957, p. 312).] # 4. THE MINIMUM DISCRIMINATION INFORMATION STATISTIC We first state some facts about estimates of the parameters β and σ^2 of section 3. The classical least squares procedure of minimizing $z'z = (y - X\beta)'(y - X\beta)$ leads to the normal equations $$\mathbf{S}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}.$$ It is shown in section 9 that the $\hat{\beta}_i$'s [solutions of (4.1)] are minimum variance, unbiased, sufficient estimates of the β_i 's. [Cf. Durbin and Kendall (1951), Kempthorne (1952), Kolodziejczyk (1935), Plackett (1949), Rao (1952).] It is a known result in regression theory that the components of $\hat{\beta}$ (linear functions of the z's) are normally distributed with covariance matrix $\sigma^2 S^{-1}$. An unbiased estimate of σ^2 with (n-p) degrees of freedom is obtained from $(n-p)\hat{\sigma}^2 = \hat{z}'\hat{z} = (y-X\hat{\beta})'(y-X\hat{\beta}) = y'y-\hat{\beta}'S\hat{\beta}$. [Cf. Kempthorne (1952, pp. 54-59), Rao (1952, pp. 58-62).] (See problems 4.1-4.6 at the end of this section.) In accordance with chapter 5, and as illustrated in the analyses in chapters 6, 7, and 8, the minimum discrimination information statistic is obtained by replacing the population parameters in I(1:2)
by the best unbiased estimates under the hypotheses. (See examples 4.1 and 4.2 in chapter 5 for the analysis of the conjugate distribution for single-variate normal populations. The multivariate normal generalizations of these examples are in sections 2 and 3.1 of chapter 12.) The remark at the end of section 3 and the behavior of the least squares estimates imply that the analyses are essentially dependent on the implications of the hypotheses for the distributions of the estimates of β . Suppose the hypothesis H_1 imposes no restriction on β and the null hypothesis H_2 specifies $\beta = \beta^2$. Writing β^1 to indicate the solution of (4.1) under H_1 , we have (cf. example 4.2 of chapter 5, section 3.1 of chapter 12) (4.2) $$2\hat{I}(H_1:H_2) = \hat{J}(H_1, H_2) = (\hat{\beta}^1 - \beta^2)'S(\hat{\beta}^1 - \beta^2)/\hat{\sigma}^2.$$ In particular, for the common null hypothesis $H_2: \beta^2 = 0$, (4.2) becomes (hereafter we shall just use J) $$\hat{J}(H_1, H_2) = \hat{\beta}^{1'} \hat{S} \hat{\beta}^{1} / \hat{\sigma}^2.$$ Note that under the null hypothesis $H_2: \boldsymbol{\beta}^2 = 0$, $\hat{J}(H_1, H_2)$ in (4.3) is the quadratic form in the exponent of the multivariate normal distribution of the $\hat{\beta}_i$'s with the covariance matrix replaced by an unbiased estimate with (n-p) degrees of freedom. $\hat{J}(H_1, H_2)$ is therefore Hotelling's generalized Student ratio (Hotelling's T^2) and $$\mathbf{J}(H_1, H_2) = pF,$$ where F has the analysis of variance distribution (the F-distribution) with $n_1 = p$ and $n_2 = n - p$ degrees of freedom. [Cf. Anderson (1958, pp. 101-107), Hotelling (1951, p. 25), Hsu (1938), Kendall (1946, pp. 335-337), Rao (1952, p. 73), Simaika (1941), Wijsman (1957), Wilks (1943, p. 238).] This approach, in contrast to the now classic method of derivation as a ratio of independent χ^2 's divided by their degrees of freedom, is especially important for the generalizations in chapter 11. [See section 4 of chapter' 11, particularly (4.5).] We need not appeal here to the general asymptotic distribution theory which is consistent with the conclusions above. We summarize in the usual analysis of variance table 4.1, where $\hat{\beta}^{1'}S\hat{\beta}^{1} = \hat{\beta}^{1'}X'y = y'XS^{-1}X'y$ [cf. Kempthorne (1952, p. 42), Rao (1952, p. 105)]. TABLE 4.1 | Variation due to | Sum of Squares $\hat{\boldsymbol{\beta}}^{1'}\mathbf{S}\hat{\boldsymbol{\beta}}^{1} = \mathbf{y}'\mathbf{X}\mathbf{S}^{-1}\mathbf{X}'\mathbf{y} = \hat{\sigma}^{2}\hat{\boldsymbol{J}}(H_{1}, H_{2})$ | | |---|---|-----| | Linear regression | | | | Difference $\mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}^{1'}\mathbf{S}\hat{\boldsymbol{\beta}}^{1} = \mathbf{y}'(\mathbf{I} - \mathbf{X}\mathbf{S}^{-1}\mathbf{X}')\mathbf{y} = (n-p)\hat{\sigma}^{2}$ | | n-p | | Total | y'y | n | For the null hypothesis H_2 : $\beta = \beta^2 \neq 0$, (4.4) still holds, with $J(H_1, H_2)$ given by (4.2). **Problem 4.1.** Show that $\hat{\beta} = S^{-1}X'z + \beta$ and therefore $E_1(\hat{\beta}) = \beta^1$, $E_2(\hat{\beta}) = \beta^2$. **Problem 4.2.** Show that $E_1(\hat{\beta}^1 - \beta^1)(\hat{\beta}^1 - \beta^1)' = \sigma^2 S^{-1}$. **Problem 4.3.** Show that $(I - XS^{-1}X')(XS^{-1}X') = 0$. What does this imply about the quadratic forms $y'XS^{-1}X'y$ and $y'(I - XS^{-1}X')y$? **Problem 4.4.** Show that $J(1, 2; \hat{\beta}) = J(1, 2)$ given by (3.2). Why does this imply that $\hat{\beta}$ is sufficient? **Problem 4.5.** Use lemma 5.3 of chapter 3 to show that $y'y \ge y'XS^{-1}X'y$. Problem 4.6. Show that $$(n-p)\hat{\sigma}^2 = \frac{\begin{vmatrix} \mathbf{y}'\mathbf{y} & \mathbf{y}'\mathbf{X} \\ \mathbf{X}'\mathbf{y} & \mathbf{X}'\mathbf{X} \end{vmatrix}}{|\mathbf{X}'\mathbf{X}|}$$. ### 5. SUBHYPOTHESES ### 5.1. Two-Partition Subhypothesis [See Grundy (1951), Kempthorne (1952).] Suppose we partition the parameters into two sets, and instead of (3.1) we now consider (5.1) $$z = y - (X_1, X_2) \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix},$$ where $$\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2) = \begin{pmatrix} x_{11}, & \cdots, & x_{1q} \\ \vdots & & & \vdots \\ x_{n1}, & \cdots, & x_{nq} \\ \end{pmatrix}, \qquad \mathbf{\beta} = \begin{pmatrix} \mathbf{\beta}_1 \\ \mathbf{\beta}_2 \end{pmatrix}$$ with X_1 and X_2 respectively of ranks q and p-q, and $\beta_1'=(\beta_1,\beta_2,\cdots,\beta_q)$, $\beta_2'=(\beta_{q+1},\cdots,\beta_p)$. The z's are still assumed to be independent, normally distributed random variables with zero means and common variance σ^2 , and under H_1 and H_2 , (5.2) $$E_{1}(y) = X_{1}\beta_{1}^{1} + X_{2}\beta_{2}^{1}$$ $$E_{2}(y) = X_{1}\beta_{1}^{2} + X_{2}\beta_{2}^{2}.$$ We also write (5.3) $$S = X'X = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix},$$ where $$S_{11} = X_1'X_1, \qquad S_{12} = X_1'X_2 = S_{21}', \qquad S_{22} = X_2'X_2.$$ Now (3.2) becomes (5.4) $$J(1, 2) = (\beta_1^1 - \beta_1^2, \beta_2^1 - \beta_2^2)' \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} \beta_1^1 - \beta_1^2 \\ \beta_2^1 - \beta_2^2 \end{pmatrix} / \sigma^2.$$ The normal equations (4.1) under H_1 become (5.5) $$\begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix} \begin{pmatrix} \hat{\boldsymbol{\beta}}_{1}^{1} \\ \hat{\boldsymbol{\beta}}_{2}^{1} \end{pmatrix} = \begin{pmatrix} \mathbf{X}_{1}' \\ \mathbf{X}_{2}' \end{pmatrix} \mathbf{y},$$ or (5.6) $$S_{11}\hat{\beta}_{1}^{1} + S_{12}\hat{\beta}_{2}^{1} = X'_{1}y$$ $$S_{21}\hat{\beta}_{1}^{1} + S_{22}\hat{\beta}_{2}^{1} = X'_{2}y,$$ and $$(n-p)\hat{\sigma}^2 = y'y - (\hat{\beta}_1^{1'}, \hat{\beta}_2^{1'}) \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} \hat{\beta}_1^1 \\ \hat{\beta}_2^1 \end{pmatrix}.$$ Letting $$\begin{split} S_{22\cdot 1} &= S_{22} - S_{21} S_{11}^{-1} S_{12}, & X_{2\cdot 1}' &= X_2' - S_{21} S_{11}^{-1} X_1', \\ S_{11\cdot 2} &= S_{11} - S_{12} S_{22}^{-1} S_{21}, & X_{1\cdot 2}' &= X_1' - S_{12} S_{22}^{-1} X_2', \end{split}$$ (5.6) yields (5.7) $$\hat{\beta}_2^1 = S_{22\cdot 1}^{-1} X_{2\cdot 1}' y,$$ (5.8) $$\hat{\beta}_1^1 = S_{11}^{-1} X_1' y - S_{11}^{-1} S_{12} \hat{\beta}_2^1 = S_{11 \cdot 2}^{-1} X_{1 \cdot 2}' y.$$ It is useful to note [see, for example, Frazer, Duncan, and Collar (1938, para. 4.9); also section 7 of chapter 9] that $$\mathbf{S}^{-1} = \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{S}_{11 \cdot 2}^{-1} & \mathbf{M} \\ \mathbf{M}' & \mathbf{S}_{22 \cdot 1}^{-1} \end{pmatrix},$$ where the $q \times (p - q)$ matrix $$M = -S_{11}^{-1}S_{12}S_{22\cdot 1}^{-1} = -S_{11\cdot 2}^{-1}S_{12}S_{22}^{-1},$$ so that in the applications the elements of the matrix $S_{11\cdot 2}^{-1}$ or $S_{22\cdot 1}^{-1}$ are available once the matrix S^{-1} is obtained. Suppose now that in particular we want to test the null hypothesis $H_2: \beta = \beta^2 = {\beta_1^2 \choose 0}$, that is, $\beta_2^2 = 0$, with no restrictions on β_1^2 , against the alternative hypothesis $H_1: \beta = \beta^1 = {\beta_1^1 \choose \beta_2^1}$ with no restrictions on the parameters. Again we estimate J(1, 2) by replacing the parameters by the best unbiased estimates under the hypotheses. Under H_1 we have (5.8), (5.7), (5.6) for $\hat{\beta}_1^1$, $\hat{\beta}_2^1$, and $\hat{\sigma}^2$. Under H_2 the normal equations (4.1) now yield $$\hat{\beta}_1^2 = S_{11}^{-1} X_1' y.$$ From (5.4), (5.8), and (5.9) we have $$(5.10) \quad \hat{\sigma}^2 \hat{J}(H_1, H_2) = \left(- \hat{\beta}_2^{1'} S_{21} S_{11}^{-1}, \hat{\beta}_2^{1'} \right) \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} -S_{11}^{-1} S_{12} \hat{\beta}_2^{1} \\ \hat{\beta}_2^{1} \end{pmatrix}$$ $$= \hat{\beta}_2^{1'} S_{22,1} \hat{\beta}_2^{1}.$$ It may be verified that (5.11) $$XS^{-1}X' = X_{2\cdot 1}S_{22\cdot 1}^{-1}X'_{2\cdot 1} + X_1S_{11}^{-1}X'_{1},$$ that is (5.12) $$\hat{\beta}^{1} \hat{S} \hat{\beta}^{1} = \hat{\beta}_{2}^{1} \hat{S}_{22 \cdot 1} \hat{\beta}_{2}^{1} + \hat{\beta}_{1}^{2} \hat{S}_{11} \hat{\beta}_{1}^{2},$$ or $$\hat{\beta}^{1'}X'y = \hat{\beta}_{2}^{1'}X'_{2\cdot 1}y + \hat{\beta}_{1}^{2'}X'_{1}y,$$ and (5.13) $$\hat{\sigma}^2 \hat{J}(H_1, H_2) = \hat{\beta}^1 \hat{S} \hat{\beta}^1 - \hat{\beta}_1^2 \hat{S}_{11} \hat{\beta}_1^2.$$ The foregoing is summarized in the analysis of variance table 5.1. $\hat{J}(H_1, H_2) = (\hat{\beta}_2^{1/2} S_{22 \cdot 1} \hat{\beta}_2^{1/2})/\hat{\sigma}^2 = (p - q)F$, where F has the analysis of TABLE 5.1 | Variation due to | Sum of Squares | | |---|--|-----| | $H_2: \boldsymbol{\beta}^{2'} = (\boldsymbol{\beta}_1^{2'}, 0')$ | $\hat{\beta}_{1}^{2'}S_{11}\hat{\beta}_{1}^{2} = y'X_{1}S_{11}^{-1}X_{1}'y$ | q | | Difference | $\hat{\beta}_{2}^{1'}S_{22\cdot 1}\hat{\beta}_{2}^{1} = y'X_{2\cdot 1}S_{22\cdot 1}^{-1}X_{2\cdot 1}'y = \hat{\sigma}^{2}\hat{J}(H_{1}, H_{2})$ | p-q | | $\overline{H_1: \boldsymbol{\beta}^{1'} = (\boldsymbol{\beta}_1^{1'}, \boldsymbol{\beta}_2^{1'})}$ | $\hat{\beta}^{1'}S\hat{\beta}^{1} = y'XS^{-1}X'y$ | p | | Difference | $\mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}^{1'}\mathbf{S}\hat{\boldsymbol{\beta}}^{1} =
\mathbf{y}'(\mathbf{I} - \mathbf{X}\mathbf{S}^{-1}\mathbf{X}')\mathbf{y} = (n - p)\hat{\sigma}^{2}$ | n-p | | Total | у′у | n | variance distribution with $n_1 = p - q$ and $n_2 = n - p$ degrees of freedom, under the null hypothesis H_2 : $\beta_2^2 = 0$. We may center the y's about constants (their means) by letting (5.14) $$X = (X_1, X_2) = \begin{pmatrix} 1 & x_{12} \cdot \cdot \cdot x_{1p} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & x_{n2} \cdot \cdot \cdot x_{np} \end{pmatrix}.$$ It may be verified that (5.15) $$X'X = S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} = \begin{pmatrix} \frac{n}{n\bar{x}_2} & \frac{n\bar{x}_2 \cdot \cdot \cdot n\bar{x}_p}{n\bar{x}_2} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ n\bar{x}_p & & \end{pmatrix},$$ $$(5.16) S_{22\cdot 1} = S_{22} - \begin{pmatrix} n\bar{x}_2 \\ \vdots \\ n\bar{x}_p \end{pmatrix} \frac{1}{n} (n\bar{x}_2 \cdot \cdot \cdot n\bar{x}_p) = S_{22} - \begin{pmatrix} n\bar{x}_2\bar{x}_2 \cdot \cdot \cdot n\bar{x}_2\bar{x}_p \\ \vdots \\ n\bar{x}_p\bar{x}_2 \cdot \cdot \cdot n\bar{x}_p\bar{x}_p \end{pmatrix}$$ $$= \left(\sum_{i=1}^n (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k)\right), \quad j, k = 2, \dots, p,$$ (5.17) $$X_{2\cdot 1} = X_2 - X_1 S_{11}^{-1} S_{12} = X_2 - \begin{pmatrix} 1 \\ \cdot \\ \cdot \\ 1 \end{pmatrix} \frac{1}{n} (n\bar{x}_2 \cdot \cdot \cdot n\bar{x}_p)$$ $$= \mathbf{X}_{2} - \begin{pmatrix} \bar{x}_{2} \cdot \cdot \cdot \bar{x}_{p} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \bar{x}_{2} \cdot \cdot \cdot \bar{x}_{p} \end{pmatrix} = \begin{pmatrix} x_{ij} - \bar{x}_{j} \\ \end{pmatrix}, \quad i = 1, 2, \cdots, n, \\ j = 2, \cdots, p,$$ $$\mathbf{X}_{1}'\mathbf{y} = n\bar{\mathbf{y}},$$ $$\hat{\boldsymbol{\beta}}_1^2 = \bar{y}.$$ The analysis of variance table 5.1 now becomes table 5.2. TABLE 5.2 | Variation due to | Sum of Squares | D.F. | |--|--|-------| | $H_2: \beta^{2'} = (\beta_1^{2'}, 0')$ | nỹ² | 1 | | Difference (linear regression) | $y'X_{2\cdot 1}S_{22\cdot 1}^{-1}X'_{2\cdot 1}y = \hat{\sigma}^2\hat{J}(H_1, H_2)$ | p - 1 | | $H_1: \beta^{1'} = (\beta_1^{1'}, \beta_2^{1'})$ | y'XS ⁻¹ X'y | P | | Difference | $y'y - y'XS^{-1}X'y = (n - p)\hat{\sigma}^2$ | n-p | | Total | у′у | n | **Problem 5.1.** Show that $X'_{2\cdot 1}X_{2\cdot 1} = S_{22\cdot 1}$. **Problem 5.2.** Show that $\hat{\beta}_2^1 = S_{22\cdot 1}^{-1} X_{2\cdot 1}' z + \beta_2^1$. **Problem 5.3.** Show that $E_1(\hat{\beta}_2^1 - \beta_2^1)(\hat{\beta}_2^1 - \beta_2^1)' = \sigma^2 S_{22:1}^{-1}$. **Problem 5.4.** Show that $X'_{2\cdot 1}X_1 = 0$. **Problem 5.5.** Show that $X'_{2\cdot 1}X_2 = S_{22\cdot 1}$. **Problem 5.6.** Show that $E_1(\hat{\beta}_1^1 - \beta_1^1)(\hat{\beta}_1^1 - \beta_1^1)' = \sigma^2 S_{11\cdot 2}^{-1}$. **Problem 5.7.** Show that $\hat{\beta}_{1}^{2} = S_{11}^{-1}X_{1}'z + \beta_{1}^{2}$. **Problem 5.8.** Show that $E_2(\hat{\beta}_1^2 - \beta_1^2)(\hat{\beta}_1^2 - \beta_1^2)' = \sigma^2 S_{11}^{-1}$. **Problem 5.9.** Show that $S_{11\cdot 2}^{-1} = S_{11}^{-1} + S_{11}^{-1} S_{12} S_{22\cdot 1}^{-1} S_{21} S_{11}^{-1}$. **Problem 5.10.** Show that $X_{2\cdot 1}S_{22\cdot 1}^{-1}X'_{2\cdot 1}(I-XS^{-1}X')=0$. ### 5.2. Three-Partition Subhypothesis If the subhypothesis requires partitioning the matrices β and X into three submatrices $$\beta' = (\beta'_1, \beta'_2, \beta'_3)$$ and $X = (X_1, X_2, X_3),$ we obtain from $S\hat{\beta} = X'y$ the solutions (5.20) $$\hat{\beta}_{3} = S_{33\cdot12}^{-1} X_{3\cdot12}' y,$$ $$\hat{\beta}_{2} = S_{22\cdot1}^{-1} (X_{2\cdot1}' y - S_{23\cdot1} \hat{\beta}_{3}),$$ $$\hat{\beta}_{1} = S_{11}^{-1} (X_{1}' y - S_{12} \hat{\beta}_{2} - S_{13} \hat{\beta}_{3}),$$ where $$S = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{22} \end{pmatrix}, \qquad S_{tu} = X_t' X_u, \qquad t, u = 1, 2, 3,$$ and $$\begin{split} S_{33\cdot 12} &= S_{33\cdot 1} - S_{32\cdot 1} S_{22\cdot 1}^{-1} \ S_{23\cdot 1}, \\ S_{33\cdot 1} &= S_{33} - S_{31} S_{11}^{-1} S_{13}, & S_{32\cdot 1} &= S_{32} - S_{31} S_{11}^{-1} S_{12} = S_{23\cdot 1}, \\ S_{22\cdot 1} &= S_{22} - S_{21} S_{11}^{-1} S_{12}, & X_{2\cdot 1}' y &= (X_2' - S_{21} S_{11}^{-1} X_1') y, \\ X_{3\cdot 12}' y &= (X_{3\cdot 1}' - S_{32\cdot 1} S_{22\cdot 1}^{-1} X_{2\cdot 1}') y, & X_{3\cdot 1}' y &= (X_3' - S_{31} S_{11}^{-1} X_1') y; \\ \text{also [cf. (5.12)]} \end{split}$$ (5.21) $$\hat{\beta}' S \hat{\beta} = y' X_1 S_{11}^{-1} X_1' y + y' X_{2 \cdot 1} S_{22 \cdot 1}^{-1} X_{2 \cdot 1}' y + \hat{\beta}_3' S_{33 \cdot 12} \hat{\beta}_3.$$ Using (5.20) and collecting terms, we obtain other useful forms of (5.21), for example, (5.22) $$\hat{\beta}' S \hat{\beta} = y' X_1 S_{11}^{-1} X_1' y + \hat{\beta}_2' X_{2\cdot 1}' y + \hat{\beta}_3' X_{3\cdot 1}' y.$$ This is convenient when the data are raw observations and $x_{i1} = 1$ for all i, so that the first partition includes the x_{i1} and β_{i1} and obtains deviations about averages for basically a two-partition problem, and (5.23) $$\hat{\beta}' S \hat{\beta} = \hat{\beta}'_1 X'_1 y + \hat{\beta}'_2 X'_2 y + \hat{\beta}'_3 X'_3 y$$ for a three-partition problem where the variables are already centered about their averages. The above can be extended by induction to any number of partitions as required. ## 6. ANALYSIS OF REGRESSION: ONE-WAY CLASSIFICATION, k CATEGORIES For p = 1, also identified as the analysis of covariance, see Federer (1955, p. 485), Kempthorne (1952, p. 48), Kendall (1946, p. 237), Smith (1957), Welch (1935). For p general, see also Kullback and Rosenblatt (1957), Rosenblatt (1953). Suppose we have k categories each with n_i observations on (y, x_1, \cdots, x_p) for which the general linear regression for each category is (6.1) $$z_{ji} = y_{ji} - (\beta_{j1}x_{ji1} + \cdots + \beta_{jr}x_{jir} + \cdots + \beta_{jp}x_{jip}),$$ where $j = 1, 2, \cdots, k$ categories, $$i = 1, 2, \cdots, n_j \text{ observations for category } j,$$ $$r = 1, 2, \cdots, p \text{ independent variables } (p < n_j),$$ the z_{ji} are independent, normally distributed random variables with zero means and common variance σ^2 , and the x_{jir} are known. The linear regressions for each category can be written as $$\mathbf{z}_{j} = \mathbf{y}_{j} - \mathbf{X}_{j} \mathbf{\beta}_{j},$$ where for $$j = 1, 2, \dots, k$$, $\mathbf{z}'_{j} = (z_{j1}, z_{j2}, \dots, z_{jn_{j}}), \quad \mathbf{y}'_{j} = (y_{j1}, y_{j2}, \dots, y_{jn_{j}}),$ $\mathbf{X}_{j} = (\mathbf{x}_{j1}, \mathbf{x}_{j2}, \dots, \mathbf{x}_{jp}), \quad \mathbf{x}'_{jr} = (x_{j1r}, x_{j2r}, \dots, x_{jn_{jr}}),$ and $\mathbf{\beta}'_{j} = (\beta_{j1}, \beta_{j2}, \dots, \beta_{jp}).$ We may write the k sets of regression equations (6.2) for k categories combined as $$\mathbf{z} = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$$ by defining By the preceding definitions we treat β in (6.3) as a parameter matrix of all kp regression coefficients β_{jr} whether or not any of them are equal, or have a particular value including zero, under any hypothesis. Suppose we specify a null hypothesis with regard to certain groups or sets of the kp parameters β_{jr} among the k categories, and wish to estimate the parameters and test the null hypothesis against some alternative. To distinguish between matrices or parameter vectors under various hypotheses H_{α} , $\alpha = 1, 2, \cdots$, we shall use, where desirable for clarity or emphasis, the notation X^{α} , β^{α} , and $S^{\alpha} = X^{\alpha'}X^{\alpha}$. Where this notation is not used, the applicable hypothesis and definition of the matrices should be clear from the context. For any hypothesis H_{α} , we shall represent the linear regressions for the k categories combined, under H_{α} , as $$\mathbf{z} = \mathbf{y} - \mathbf{X}^{\alpha} \mathbf{\beta}^{\alpha},$$ where z and y are defined in (6.3). However, we now define β^{α} as the matrix of distinct regression coefficients specified by the hypothesis H_{α} , and X^{α} as the matrix of x_{jir} with distinct regression effects, specified according to the regression model defined by the hypothesis H_{α} for the k categories combined. With the representation (6.4) of the k-category regression under H_{α} , the normal equations (4.1) become (6.5) $$S^{\alpha} \hat{\beta}^{\alpha} = X^{\alpha'} y$$ $$\hat{\beta}^{\alpha} = S^{\alpha^{-1}} X^{\alpha'} y,$$ where the elements of $S^{\alpha} = X^{\alpha}X^{\alpha}$ will, of course, depend on the particular specification of the matrix X^{α} . Also, equivalent to (4.2) and (5.13) we have, for a null hypothesis H_2 , and an alternative hypothesis H_1 [cf. (4.7) in chapter 5], (6.6) $$\hat{J}(H_1, H_2) = (\hat{\beta}^1 - \hat{\beta}^2)'S(\hat{\beta}^1 - \hat{\beta}^2)/\hat{\sigma}^2 = (\hat{\beta}^1'S^1\hat{\beta}^1 - \hat{\beta}^2'S^2\hat{\beta}^2)/\hat{\sigma}^2$$, where (6.7) $$(n - pk)\hat{\sigma}^2 = y'y - \hat{\beta}^{1'}S^1\hat{\beta}^1,$$ $$n = n_1 + n_2 + \cdots + n_k,$$ and $S = X'X = S^1$ for X defined in (6.3). Thus, for any particular hypothesis on the sets of regression coefficients in k-category regression, the estimates of the coefficients and the test of the hypothesis are readily obtained solely by proper specification of the matrices X^{α} and β^{α} in (6.4). Consider the two hypotheses (6.8) $$H_1: \beta_{ir} = \beta_{ir}, \quad j = 1, 2, \cdots, k, \quad r = 1, 2, \cdots, p,$$ that is, the β_{jr} are different for all categories and for each $r=1, 2, \cdots, p$, and the null hypothesis of homogeneity (6.9) $$H_2: \beta_{ir} = \beta_{rr}, \quad j = 1, 2, \cdots, k, \quad r = 1, 2, \cdots, p,$$ or equivalently, $\beta'_j = \beta'_. = (\beta_{.1}, \beta_{.2}, \dots,
\beta_{.p}), j = 1, 2, \dots, k$, that is, the regression coefficients are the same for the different categories for each $r = 1, 2, \dots, p$. Under H_1 in (6.8) the best unbiased estimate of β is derived from (6.5), where β^{α} and X^{α} in (6.4), defining the k-category regression model, are the same as β and X in (6.3), or (6.10) $$\begin{pmatrix} \mathbf{S}_{1} \cdot \cdot \cdot \cdot \mathbf{0} \\ \cdot \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \cdot \\ \mathbf{0} \cdot \cdot \cdot \cdot \mathbf{S}_{k} \end{pmatrix} \begin{pmatrix} \hat{\boldsymbol{\beta}}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \hat{\boldsymbol{\beta}}_{k} \end{pmatrix} = \begin{pmatrix} \mathbf{X}'_{1}\mathbf{y}_{1} \\ \cdot \\ \cdot \\ \mathbf{X}'_{k}\mathbf{y}_{k} \end{pmatrix}, \quad \mathbf{S}_{j} = \mathbf{X}'_{j}\mathbf{X}_{j}.$$ This yields k sets of normal equations (6.11) $$S_{j}\hat{\beta}_{j} = X'_{j}y_{j}, \quad j = 1, 2, \cdots, k,$$ from which $$\hat{\boldsymbol{\beta}}_i = \mathbf{S}_i^{-1} \mathbf{X}_i' \mathbf{y}_i.$$ Under H_2 in (6.9), however, the matrices X^2 and β^2 of (6.4), defining the k-category regression model, are $$\mathbf{X}^{\mathbf{2}'} = (\mathbf{X}'_1, \cdots, \mathbf{X}'_k), \qquad \boldsymbol{\beta}^{\mathbf{2}'} = (\beta_{\cdot 1}, \beta_{\cdot 2}, \cdots, \beta_{\cdot p}).$$ Thus, $$S^{2} = X^{2'}X^{2} = \sum_{j=1}^{k} X'_{j}X_{j} = \sum_{j=1}^{k} S_{j},$$ $$X^{2'}y = \sum_{j=1}^{k} X'_{j}y_{j},$$ and the best unbiased estimate of β under H_2 is derived from (6.5) as $$\hat{\beta}^{2} = S^{2^{-1}}X^{2}'y.$$ We also have, under H_1 , corresponding to (6.7), (6.13) $$(n - pk)\hat{\sigma}^2 = y'y - \hat{\beta}^{1'}S^1\hat{\beta}^1 = \sum_{j=1}^k (y_j'y_j - \hat{\beta}_j'S_j\hat{\beta}_j).$$ Corresponding to (6.6), we therefore have (6.14) $$\hat{\sigma}^2 \hat{J}(H_1, H_2) = \hat{\beta}^{1'} S^1 \hat{\beta}^1 - \hat{\beta}^{2'} S^2 \hat{\beta}^2 = \sum_{j=1}^k \hat{\beta}_j' S_j \hat{\beta}_j - \hat{\beta}_j^{2'} S^2 \hat{\beta}_j^2$$ a direct generalization of S_2 in para. 24.30 of Kendall (1946). TABLE 6.1 | Variation due to | Sum of Squares | D.F. | |-----------------------------|--|----------------| | $H_2: \beta^2 = \beta^2.$ | β̂²′S²β̂² | P | | Difference | $\hat{\beta}^{1'}S^{1}\hat{\beta}^{1} - \hat{\beta}^{2'}S^{2}\hat{\beta}^{2} = \hat{\sigma}^{2}\hat{J}(H_{1}, H_{2})$ | p(k-1) | | H_1 : $\beta^1 = \beta^1$ | $\hat{\boldsymbol{\beta}}^{1'}\mathbf{S}^{1}\hat{\boldsymbol{\beta}}^{1} = \sum_{j=1}^{k} \hat{\boldsymbol{\beta}}_{j}'\mathbf{S}_{j}\hat{\boldsymbol{\beta}}_{j}$ | pk | | Difference | $\mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}^{1'}\mathbf{S}^{1}\hat{\boldsymbol{\beta}}^{1} = (n - pk)\hat{\sigma}^{2}$ | n-pk | | Total | у′у | $n = \sum n_j$ | We summarize in the analysis of variance table 6.1. $J(H_1, H_2) = p(k-1)F$, where F has the analysis of variance distribution with p(k-1) and (n-pk) degrees of freedom under the null hypothesis H_2 of (6.9). In particular, for testing a null hypothesis of homogeneity H_2 , the means of k samples are the same, p = 1, $x_{ji1} = 1$, and for the alternative hypothesis H_1 , the population means are different, $$(6.15) \quad \mathbf{X}^{1} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \quad \begin{matrix} n_{1} \\ n_{2}, & X'_{j} = (1, \cdots, 1), \\ n_{j} \\ \vdots \\ n_{k} \\ n_{k} \\ \end{matrix}$$ (6.16) $$X^{1'}X^{1} = S^{1} = \begin{pmatrix} n_{1} & 0 & \cdots & 0 \\ 0 & n_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \ddots & n_{k} \end{pmatrix}, \quad S_{j} = n_{j},$$ (6.17) $$X'_{i}y_{j} = y_{i1} + y_{i2} + \cdots + y_{in_{j}} = n_{i}\bar{y}_{j},$$ and (6.11) yields as the estimates of the population means under H_1 , $$\hat{\boldsymbol{\beta}}_{i} = \bar{y}_{i}.$$ For the null hypothesis of homogeneity H_2 , (6.19) $$X^{2'} = (1, \dots, 1, 1, \dots, 1, \dots, 1, \dots, 1), \\ n_1 \qquad n_2 \qquad n_k$$ (6.20) $$X^{2}X^{2} = S^{2} = n_{1} + n_{2} + \cdots + n_{k} = n,$$ (6.21) $$X^{2'}y = n_1\bar{y}_1 + \cdots + n_k\bar{y}_k = n\bar{y},$$ and (6.12) yields as the estimate of the population mean under H_2 $$\hat{\boldsymbol{\beta}}. = \bar{y}.$$ From (6.13) and (6.14) we find that (6.23) $$(n-k)\hat{\sigma}^2 = \sum_{j=1}^k \left(\sum_{i=1}^{n_j} y_{ij}^2 - n_j \bar{y}_j^2 \right) = \sum_{j=1}^k \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2,$$ (6.24) $$\hat{\sigma}^2 \hat{J}(H_1, H_2) = \sum_{j=1}^k n_j \bar{y}_j^2 - n\bar{y}^2 = \sum_{j=1}^k n_j (\bar{y}_j - \bar{y})^2.$$ The analysis of variance table 6.1 becomes now the analysis of variance table 6.2. TABLE 6.2 | Variation due to | Sum of Squares | D.F. | |--------------------------------|---|--------------------------------| | H ₂ : Homogeneity | $nar{y}^2$ | 1 | | Difference | $\sum_{j=1}^{k} n_{j}(\bar{y}_{j} - \bar{y})^{2} = \hat{\sigma}^{2}\hat{J}(H_{1}, H_{2})$ | k — 1 | | H ₁ : Heterogeneity | $\sum_{j=1}^k n_j \bar{y}_j^2$ | k | | Difference | $\sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2 = (n-k)\hat{\sigma}^2$ | n-k | | Total | $\sum_{j=1}^k \sum_{i=1}^{n_j} y_{ij}^2$ | $n = n_1 + n_2 + \cdots + n_k$ | The analysis in table 6.2 is more commonly found as in table 6.3. $J(H_1, H_2) = (k-1)F$, where F has the analysis of variance distribution with (k-1) and (n-k) degrees of freedom under the null hypothesis of homogeneity. TABLE 6.3 | Variation due to | Sum of Squares | D.F. | |------------------|---|-------| | Between samples | $\sum_{j=1}^{k} n_{j} (\bar{y}_{j} - \bar{y})^{2} = \hat{\sigma}^{2} \hat{J}(H_{1}, H_{2})$ | k-1 | | Within samples | $\sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2 = (n-k)\hat{\sigma}^2$ | n-k | | Total | $\sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y})^2$ | n — 1 | ### 7. TWO-PARTITION SUBHYPOTHESIS ### 7.1. One-Way Classification, k Categories Partition the parameters of the matrix β_j , for each category $j = 1, 2, \cdots, k$, into two sets [see (6.2)] $$\beta'_{i1} = (\beta_{i1}, \cdots, \beta_{iq})$$ and $\beta'_{i2} = (\beta_{iq+1}, \cdots, \beta_{ip})$ of q and p-q parameters respectively, q < p, so that $\beta'_j = (\beta'_{j1}, \beta'_{j2})$. Consider a null subhypothesis H_2 , for $j = 1, 2, \dots, k$, the β_{jr} are different for $r = 1, 2, \dots, q$, but for $r = q + 1, q + 2, \dots, p$, there is a common value β_{r} for the β_{jr} , that is, (7.1) $$H_2: \beta_{jr} = \beta_{jr}, \quad j = 1, 2, \dots, k, \quad r = 1, 2, \dots, q,$$ $\beta_{jr} = \beta_{rr}, \quad j = 1, 2, \dots, k, \quad r = q + 1, q + 2, \dots, p,$ or equivalently $$H_{2}: \beta'_{j1} = \beta'_{j1} = (\beta_{j1}, \cdots, \beta_{jq})$$ $$\beta'_{j2} = \beta'_{\cdot 2} = (\beta_{\cdot q+1}, \cdots, \beta_{\cdot p}).$$ Let H_1 remain as in (6.8), that is, the β_{jr} are different for all j and r. Under H_1 we have the same matrix definitions and results as in section 6. However, for H_2 in (7.1), the matrices X^2 and β^2 for the k-category regression model are $$\beta^{2'} = (\beta'_1, \beta'_2), \qquad X^2 = (X_1, X_2),$$ where $$X_{j1} = (\mathbf{x}_{j1}, \mathbf{x}_{j2}, \cdots, \mathbf{x}_{jq}),$$ $$X_{j2} = (\mathbf{x}_{jq+1}, \mathbf{x}_{jq+2}, \cdots, \mathbf{x}_{jp}), \quad j = 1, 2, \cdots, k, \quad r = 1, 2, \cdots, p.$$ $$\mathbf{x}'_{jr} = (x_{j1r}, x_{j2r}, \cdots, x_{jn,r}),$$ Thus under H_2 , $$S^2 = X^{2'}X^2 = \begin{pmatrix} X_1' \\ X_2' \end{pmatrix} (X_1, X_2) = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix},$$ where $$S_{11} = X'_1 X_1, S_{12} = X'_1 X_2, S_{21} = S'_{12} = X'_2 X_1, S_{22} = X'_2 X_2,$$ $$S_{11} = \begin{pmatrix} S_{111} & \cdots & 0 \\ & \cdot & \\ & \cdot & \\ & \cdot & \\ & 0 & \cdots & S_{k11} \end{pmatrix}, S_{12} = \begin{pmatrix} S_{112} \\ \cdot & \\$$ $$S_{j11} = X'_{j1}X_{j1}, \qquad S_{j12} = X'_{j1}X_{j2} = S'_{j21}, \qquad S_{j22} = X'_{j2}X_{j2}.$$ From the normal equations (6.5) we now obtain (7.2) $$S_{11}\hat{\beta}_1 + S_{12}\hat{\beta}_2 = X_1'y$$ $$S_{21}\hat{\beta}_1 + S_{22}\hat{\beta}_2 = X_2'y,$$ so that [see (5.7)] (7.3) $$\hat{\beta}_2 = S_{22\cdot 1}^{-1} X_{2\cdot 1}' y,$$ where $$S_{22\cdot 1} = (S_{22} - S_{21}S_{11}^{-1}S_{12}) = \sum_{j=1}^{k} (S_{j22} - S_{j21}S_{j11}^{-1}S_{j12}) = \sum_{j=1}^{k} S_{j22\cdot 1},$$ $$X'_{2\cdot 1} = (X'_{12\cdot 1}, \cdot \cdot \cdot \cdot, X'_{k2\cdot 1}), \qquad X'_{2\cdot 1}y = \sum_{j=1}^{k} X'_{j2\cdot 1}y_{j},$$ $$X'_{2\cdot 1} = X'_{2} - S_{21}S_{11}^{-1}X'_{1}, \qquad X'_{j2\cdot 1} = X'_{j2} - S_{j21}S_{j11}^{-1}X'_{j1}.$$ From the definition of the matrices under H_2 we have [see (5.8)] $$(7.4) \begin{pmatrix} \hat{\beta}_{11} \\ \vdots \\ \hat{\beta}_{k1} \end{pmatrix} = \begin{pmatrix} S_{111}^{-1} & \cdots & \mathbf{0} \\ \vdots \\ 0 & \cdots & S_{k11}^{-1} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} X'_{11} & \cdots & \mathbf{0} \\ \vdots \\ 0 & \cdots & X'_{k1} \end{pmatrix} \begin{pmatrix} y_{1} \\ \vdots \\ y_{k} \end{pmatrix} - \begin{pmatrix} S_{112} \\ \vdots \\ S_{k12} \end{pmatrix} \hat{\beta}_{\cdot 2} \\ \vdots \\ S_{k11}^{-1} X'_{11} y_{1} \\ \vdots \\ S_{k11}^{-1} X'_{k1} y_{k} \end{pmatrix} - \begin{pmatrix} S_{111}^{-1} S_{112} \hat{\beta}_{\cdot 2} \\ \vdots \\ S_{k11}^{-1} S_{k12} \hat{\beta}_{\cdot 2} \end{pmatrix}.$$ Thus under H_2 of (7.1), we have the following estimates of the
regression coefficients: (7.5) $$\hat{\boldsymbol{\beta}}_{j1} = \mathbf{S}_{j11}^{-1} (\mathbf{X}_{j1}' \mathbf{y}_{j} - \mathbf{S}_{j12} \hat{\boldsymbol{\beta}}_{.2}) = \hat{\boldsymbol{\beta}}_{j1}^{2}, \quad j = 1, 2, \dots, k,$$ $$\hat{\boldsymbol{\beta}}_{.2} = \left(\sum_{j=1}^{k} \mathbf{S}_{j22 \cdot 1}\right)^{-1} \sum_{j=1}^{k} \mathbf{X}_{j2 \cdot 1}' \mathbf{y}_{j} = \hat{\boldsymbol{\beta}}_{.2}^{2},$$ where $$\hat{\beta}'_{i} = (\hat{\beta}^{2'}_{i1}, \hat{\beta}^{2'}_{i2}) = \hat{\beta}^{2'}_{i1}$$ If under H_1 of (6.8) we also define $\beta'_j = (\beta'_{j1}, \beta'_{j2})$ but rearrange and partition the submatrices of β and X so that $$\beta' = (\beta'_1, \beta'_2), \quad X = (X_1, X_2),$$ where $X_{j1} = (\mathbf{x}_{j1}, \mathbf{x}_{j2}, \cdots, \mathbf{x}_{jq}), \quad X_{j2} = (\mathbf{x}_{jq+1}, \mathbf{x}_{jq+2}, \cdots, \mathbf{x}_{jp}), \quad j = 1, 2, \cdots, k,$ then $$X_2'X_2 = S_{22} = \begin{pmatrix} S_{122} \cdot \cdot \cdot \cdot & 0 \\ \cdot & \cdot \\ \cdot & \cdot \\ 0 \cdot \cdot \cdot \cdot S_{k22} \end{pmatrix}, \quad X'X = S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix},$$ $$S_{j11} = X'_{j1}X_{j1},$$ $S_{j12} = X'_{j1}X_{j2} = S'_{j21},$ $S_{j22} = X'_{j2}X_{j2},$ $j = 1, 2, \cdot \cdot \cdot, k.$ We then obtain the same estimate of β_j , $j = 1, 2, \dots, k$, as in section 6, by the procedure of section 5; that is, from (6.5) we have (see problem 11.10), (7.6) $$S_{11}\hat{\beta}_{1} + S_{12}\hat{\beta}_{2} = X'_{1}y,$$ $$S_{21}\hat{\beta}_{1} + S_{22}\hat{\beta}_{2} = X'_{2}v.$$ $$\hat{\beta}_1 = S_{11}^{-1}(X_1'y - S_{12}\hat{\beta}_2),$$ (7.8) $$\hat{\beta}_2 = S_{22,1}^{-1} X_{2,1}' y,$$ where $$\mathbf{S}_{22\cdot 1} = (\mathbf{S}_{22} - \mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{S}_{12}) = \begin{pmatrix} \mathbf{S}_{122\cdot 1} \cdot \cdot \cdot & \mathbf{0} \\ \cdot & \cdot \\ & \cdot \\ & \mathbf{0} & \cdot \cdot \cdot \mathbf{S}_{k22\cdot 1} \end{pmatrix},$$ $$S_{j22\cdot 1} = (S_{j22} - S_{j21}S_{j11}^{-1}S_{j12}), \quad j = 1, 2, \cdot \cdot \cdot, k,$$ $$X'_{2\cdot 1} = X'_2 - S_{21}S_{11}^{-1}X'_1 = \begin{pmatrix} X'_{12\cdot 1} \cdot \cdot \cdot & 0 \\ \cdot & \cdot \\ \cdot & \cdot \\ 0 \cdot \cdot \cdot X'_{k2\cdot 1} \end{pmatrix},$$ $$X'_{j2:1} = X'_{j2} - S_{j21}S_{j11}^{-1}X'_{j1}, \quad j = 1, 2, \cdots, k.$$ From (7.7) we obtain under H_1 for each category $j = 1, 2, \dots, k$, (7.9) $$\hat{\beta}_{j1} = S_{j11}^{-1}(X'_{j1}Y_j - S_{j12}\hat{\beta}_{j2}) = \hat{\beta}_{j1}^1,$$ (7.10) $$\hat{\beta}_{j2} = S_{j22\cdot 1}^{-1} X'_{j2\cdot 1} Y_j = \hat{\beta}_{j2}^1,$$ and $$\hat{\beta}'_{j} = (\hat{\beta}'_{j1}, \, \hat{\beta}'_{j2}) = \hat{\beta}^{1'}_{j}.$$ With these estimates of the parameters under H_1 of (6.8) and H_2 of (7.1) and noting after some reduction that [cf. (5.11), (5.12)] (7.11) $$\hat{\boldsymbol{\beta}}^{\alpha'} \mathbf{S}^{\alpha} \hat{\boldsymbol{\beta}}^{\alpha} = \mathbf{y}' \mathbf{X}_{1} \mathbf{S}_{11}^{-1} \mathbf{X}_{1}' \mathbf{y} + \hat{\boldsymbol{\beta}}_{2}^{\alpha'} \mathbf{S}_{22 \cdot 1}^{\alpha} \hat{\boldsymbol{\beta}}_{2}^{\alpha}, \quad \alpha = 1, 2,$$ we obtain [cf. (5.13)] $$(7.12) \quad \hat{\sigma}^2 \hat{J}(H_1, H_2) = \hat{\beta}_2^{1'} S_{22 \cdot 1}^1 \hat{\beta}_2^1 - \hat{\beta}_2^{2'} S_{22 \cdot 1}^2 \hat{\beta}_2^2 = \sum_{j=1}^k \hat{\beta}_{j2}^{1'} S_{j22 \cdot 1} \hat{\beta}_{j2}^1 - \hat{\beta}_2^{2'} S_{22 \cdot 1}^2 \hat{\beta}_2^2,$$ where for computational convenience we may write (7.13) $$\hat{\beta}_{2}^{1'}S_{22\cdot 1}^{1}\hat{\beta}_{2}^{1} = \hat{\beta}_{2}^{1'}X_{2\cdot 1}^{1'}y = \sum_{j=1}^{k} \hat{\beta}_{j2}^{1'}X_{j2\cdot 1}^{\prime}y,$$ (7.14) $$\hat{\beta}_2^{2'} S_{22\cdot 1}^2 \hat{\beta}_2^2 = \hat{\beta}_2^{2'} X_{2\cdot 1}^{2'} y.$$ We summarize in the analysis of variance table 7.1. $J(H_1, H_2) = (p-q)(k-1)F$, where F has the analysis of variance distribution with (p-q)(k-1) and n-pk degrees of freedom under the null hypothesis H_2 of (7.1). TABLE 7.1 | Variation due to | Sum of Squares | D.F. | |---|---|--------------------------------| | $\overline{H_2:\!oldsymbol{eta}_{j1}^2,oldsymbol{eta}_{\cdot 2}^2}$ | β̂²′S²β̂² | qk + p - q | | Difference | $\hat{\boldsymbol{\beta}}^{1} \hat{\boldsymbol{S}}^{1} \hat{\boldsymbol{\beta}}^{1} - \hat{\boldsymbol{\beta}}^{2} \hat{\boldsymbol{S}}^{2} \hat{\boldsymbol{\beta}}^{2}$ | | | | $= \sum_{j=1}^{k} \hat{\beta}_{j2}^{1'} S_{j22\cdot 1} \hat{\beta}_{j2}^{1} - \hat{\beta}_{2}^{2'} S_{22\cdot 1}^{2} \hat{\beta}_{2}^{2}$ | | | | $= \hat{\sigma}^2 \hat{J}(H_1, H_2)$ | (p-q)(k-1) | | $H_1: \boldsymbol{\beta_{j1}^1, \beta_{j2}^1}$ | $\hat{\boldsymbol{\beta}}^{1'} \mathbf{S}^{1} \hat{\boldsymbol{\beta}}^{1}$ | pk | | Difference | $\mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}^{1}\mathbf{S}^{1}\hat{\boldsymbol{\beta}}^{1} = (n - pk)\hat{\sigma}^{2}$ | n-pk | | Total | у́у | $n = n_1 + n_2 + \cdots + n_k$ | ### 7.2. Carter's Regression Case Carter (1949) considers the case of a correlation effect among the *i*th observations $i = 1, 2, \dots, n$ in each of k samples. His regression model can be written as (7.15) $$z_{ji} = y_{ji} - \sum_{r=1}^{q} \beta_{jr} x_{jir} - \alpha_{i},$$ where the correlation effect among samples is due to α_i , an element common to the *i*th observation in each sample, $j = 1, 2, \dots, k$. Stochastic dependence among categories is included in the multivariate linear hypothesis in chapter 11. It can be seen that this model is a particular case of the subhypothesis analysis where the matrices β and X are $$\beta'=(\beta_1',\,\beta_2'),\qquad X=(X_1,\,X_2),$$ and the submatrices are where X_2 is a $k \times 1$ matrix of submatrices I, the identity matrix of order $n \times n$. With these definitions of β and X, the normal equations for estimating the β 's given by Carter [1949, eq. (3.3)] follow directly from the normal equations (7.2) by obtaining (7.16) $$S_{11\cdot 2}\hat{\beta}_1 = X'_{1\cdot 2}y,$$ where $$S_{11\cdot 2} = S_{11} - S_{12}S_{22}^{-1}S_{21}$$ Here we obtain Here we obtain $$S_{11\cdot 2} = \begin{pmatrix} \left(1 - \frac{1}{k}\right) X_{11}' X_{11} & -\frac{1}{k} X_{11}' X_{21} & \cdots & -\frac{1}{k} X_{11}' X_{k1} \\ -\frac{1}{k} X_{21}' X_{11} & \left(1 - \frac{1}{k}\right) X_{21}' X_{21} & \cdots & -\frac{1}{k} X_{21}' X_{k1} \\ & \ddots & & \ddots & & \ddots \\ & -\frac{1}{k} X_{k1}' X_{11} & -\frac{1}{k} X_{k1}' X_{21} & \cdots & \left(1 - \frac{1}{k}\right) X_{k1}' X_{k1} \end{pmatrix},$$ and $$\begin{pmatrix} \left(1 - \frac{1}{k}\right) X_{11}' & -\frac{1}{k} X_{11}' & \cdots & -\frac{1}{k} X_{11}' \\ -\frac{1}{k} X_{21}' & \left(1 - \frac{1}{k}\right) X_{21}' & \cdots & -\frac{1}{k} X_{21}' \\ & \ddots & & \ddots \\ & -\frac{1}{k} X_{k1}' & -\frac{1}{k} X_{k1}' & \cdots & \left(1 - \frac{1}{k}\right) X_{k1}' \end{pmatrix}$$ As before, $$S_{11} = X_{1}' X_{1}, \quad S_{12} = X_{1}' X_{2} = S_{21}', \quad S_{22} = X_{2}' X_{2}.$$ The estimates of the correlation effects α_{i} are not given specifically by and $$\mathbf{X}'_{1\cdot 2} = \begin{pmatrix} \left(1 - \frac{1}{k}\right) \mathbf{X}'_{11} & -\frac{1}{k} \mathbf{X}'_{11} & \cdots & -\frac{1}{k} \mathbf{X}'_{11} \\ -\frac{1}{k} \mathbf{X}'_{21} & \left(1 - \frac{1}{k}\right) \mathbf{X}'_{21} & \cdots & -\frac{1}{k} \mathbf{X}'_{21} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{k} \mathbf{X}'_{k1} & -\frac{1}{k} \mathbf{X}'_{k1} & \cdots & \left(1 - \frac{1}{k}\right) \mathbf{X}'_{k1} \end{pmatrix}.$$ As before, $$S_{11} = X_1'X_1, \qquad S_{12} = X_1'X_2 = S_{21}', \qquad S_{22} = X_2'X_2.$$ The estimates of the correlation effects α_i are not given specifically by Carter (1949). The solution $$\hat{\alpha}_i = \bar{z}_i, \qquad i = 1, 2, \cdots, n,$$ where $$\bar{z}_i = \frac{1}{k} \sum_{j=1}^k \hat{z}_{ji} = \frac{1}{k} \sum_{j=1}^k \left(y_{ji} - \sum_{r=1}^q \hat{\beta}_{jr} x_{jir} \right),$$ follows directly from (7.18) $$S_{22}\hat{\beta}_2 = X_2'y - S_{21}\hat{\beta}_1.$$ ### 8. EXAMPLE [See Kullback and Rosenblatt (1957).] As an example of sections 5, 6, and 7, we examine the performance data of a manufactured product tested under three environmental conditions (categories) each involving three independent variables. In the equation $$(8.1) z_{ji} = y_{ji} - \beta_{j1}x_{ji1} - \beta_{j2}x_{ji2} - \beta_{j3}x_{ji3} - \beta_{j4}x_{ji4},$$ the data y_{ji} and x_{jir} , r=2, 3, 4, are raw observations so that $x_{ji1}=1$ for all j=1, 2, 3, and $i=1, 2, \cdots, n_j$. In this example k=3, p=4, $n_1=16$, $n_2=15$, and $n_3=16$. The matrices S_j and $X_j'y_j$, j=1, 2, 3, of the computed sums of squares and products about the origin are $$\mathbf{S_1} = \begin{pmatrix} 16.0 & 286.8 & 139.0 & 4,835.0 \\ 286.8 & 5,340.4 & 2,452.2 & 86,849.0 \\ 139.0 & 2,452.2 & 1,307.0 & 41,990.0 \\ 4,835.0 & 86,849.0 & 41,990.0 & 1,465,575.0 \end{pmatrix}, \quad \mathbf{X_1'y_1} = \begin{pmatrix} 97,500 \\ 1,788,052 \\ 838,010 \\ 29,484,809 \end{pmatrix},$$ $$\mathbf{S_2} = \begin{pmatrix} 15.0 & 244.6 & 236.0 & 4,625.0 \\ 244.6 & 4,181.6 & 3,869.0 & 75,318.0 \\ 236.0 & 3,869.0 & 3,824.0 & 72,500.0 \\ 4,625.0 & 75,318.0 & 72,500.0 & 1,427,425.0 \end{pmatrix}, \quad \mathbf{X_2'y_2} = \begin{pmatrix} 83,470 \\ 1,404,814 \\ 1,320,100 \\ 25,727,050 \end{pmatrix},$$ $$\mathbf{S}_{3} = \begin{pmatrix} 16.0 & 256.0 & 97.0 & 2,995.0 \\ 256.0 & 4,221.7 & 1,619.2 & 47,897.0 \\ 97.0 & 1,619.2 & 785.0 & 17,840.0 \\ 2,995.0 & 47,897.0 & 17,840.0 & 580,475.0 \end{pmatrix}, \quad \mathbf{X}_{3}'\mathbf{y}_{3} = \begin{pmatrix} 89,280 \\ 1,456,596 \\ 554,650 \\ 16,743,450 \end{pmatrix},$$ where $$S_{j} = (s_{jrt}), s_{jrt} = \sum_{i=1}^{n_{j}} x_{jir} x_{jit}, r, t = 1, 2, 3, 4,$$ $$X'_{j} y_{j} = (s_{jyx_{r}}),
s_{jyx_{r}} = \sum_{i=1}^{n_{j}} y_{ji} x_{jir}.$$ Note that above the element $s_{111} = n_1$, $s_{211} = n_2$, and $s_{311} = n_3$. The multiple regression equation for all three categories combined is given by (6.4) where, it will be remembered, specification of the matrices X^{α} and β^{α} depends on the model prescribed by hypothesis. The data in the above matrices can be suitably arranged for analysis according to hypothesis. To illustrate the statistical method seven hypotheses are considered and tested. The hypothesis H_1 imposes no restriction on the β 's, so that $$H_1: \beta_{j1} = \beta_{j1}, \quad \beta_{jr} = \beta_{jr}, \quad r = 2, 3, 4.$$ TABLE 8.1. Analysis of Variance Table for Tests of Various Null Hypotheses H_{α} , Alternative Hypothesis H_1 | Variation due to Sum of Squares | | | | |---|---|---------------------------------------|---------------------| | $H_2: \beta_{i1} = \beta_{i1} \beta_{ir} = 0, r = 2, 3, 4$ | | 1,556,805,752 | | | β^2 Diff.: H_1 , H_2 | | 24,993,036 | | | $H_3: \beta_{i1} = \beta_{\cdot 1}$
$\beta_{jr} = \beta_{\cdot r}, r = 2, 3, 4$ | | 1,553,937,500
27,030,350 | | | $ \frac{\beta^3}{\text{Diff.: } H_1, H_3} $ | | 1,580,967,850
830,938 | | | $H_4: \beta_{j_1} = \beta_{j_1}$
$\beta_{j_r} = \beta_{r}, r = 2, 3, 4$ | | 1,556,805,752
24,328,284 | | | β4 | | 1,581,134,036 | p + | | Diff.: H_1 , H_4 | | 664,752 | (p - 1) | | $H_5: \beta_{j1} = \beta_{j1}$
$\beta_{jr} = \beta_{jr}, r = 2$
$= \beta_{r}, r = 3, 4$ | $egin{align*} & \mathbf{y'} \mathbf{X_1} \mathbf{S_{11}^{-1}} \mathbf{X_1'} \mathbf{y} \\ & \mathbf{\hat{\beta}_2'} \mathbf{X_{2\cdot 1}'} \mathbf{y} \\ & \mathbf{\hat{\beta}_3'} \mathbf{X_{3\cdot 1}'} \mathbf{y} \\ \end{aligned}$ | 1,556,805,752
24,333,415
65,381 | | | $ \begin{array}{c} \overline{\beta^5} \\ \text{Diff.: } H_1, H_5 \end{array} $ | $ \frac{\hat{\boldsymbol{\beta}}^{5'} \mathbf{S}^{5} \hat{\boldsymbol{\beta}}^{5}}{\hat{\boldsymbol{\beta}}^{1'} \mathbf{S}^{1} \hat{\boldsymbol{\beta}}^{1} - \hat{\boldsymbol{\beta}}^{5'} \mathbf{S}^{5} \hat{\boldsymbol{\beta}}^{5} = \hat{\sigma}^{2} \hat{\boldsymbol{J}}(H_{1}, H_{5})} $ | 1,581,204,548
594,240 | $\frac{p+2}{(p-2)}$ | ### TABLE 8.1 (continued) | $H_6:\beta_{f1}=\beta_{f1}$ | | 1,556,805,752 | | |--|---|--|--------------------------------| | $\beta_{jr} = \beta_{jr}, r = 2$
= 0, $r = 3, 4$ | | 24,352,124 | | | $\frac{-6, 7-3, 4}{\beta^6}$ Diff.: H_1, H_6 | | 1,581,157,876
640,912 | (<i>p</i> | | $H_7: \beta_{i1} = \beta_{i1}$ $\beta_{ir} = \beta_{.r}, r = 2$ $= \beta_{ir}, r = 3, 4$ | | 1,556,805,752
22,464,483
2,450,665 | 2(| | $\overline{\beta^7}$ Diff.: H_1, H_7 | | 1,581,720,900
77,888 | $\frac{2p+1}{2p+1}$ $p(k-2)-($ | | $H_1: \beta_{i1} = \beta_{i1}$
$\beta_{ir} = \beta_{ir}, r = 2, 3, 4$ | $y'X_1S_{11}^{-1}X_1'y$
$\hat{eta}_2'X_{2\cdot 1}'y$ | 1,556,805,752
24,993,036 | p. | | β¹
Difference | $ \frac{\hat{\boldsymbol{\beta}}^{1'} \mathbf{S}^{1} \hat{\boldsymbol{\beta}}^{1}}{\mathbf{y}' \mathbf{y} - \hat{\boldsymbol{\beta}}^{1'} \mathbf{S}^{1} \hat{\boldsymbol{\beta}}^{1} = (n - pk)\hat{\sigma}^{2}} $ | 1,581,798,788
1,004,912 | n | | Total | | 1,582,803,700 | $n = n_1 + n_2$ | ^{*} Significance at 0.01 probability level. All other hypotheses, suggested by the nature of the data, are compared as null hypotheses against H_1 : $$H_{2}:\beta_{j1} = \beta_{j1}, \qquad \beta_{jr} = 0, \qquad \stackrel{\pi}{r} = 2, 3, 4,$$ $$H_{3}:\beta_{j1} = \beta_{\cdot 1}, \qquad \beta_{jr} = \beta_{\cdot r}, \qquad r = 2, 3, 4,$$ $$H_{4}:\beta_{j1} = \beta_{j1}, \qquad \beta_{jr} = \beta_{\cdot r}, \qquad r = 2, 3, 4,$$ $$H_{5}:\beta_{j1} = \beta_{j1}, \qquad \beta_{jr} = \beta_{jr}, \qquad r = 2, \qquad \beta_{jr} = \beta_{\cdot r}, \qquad r = 3, 4,$$ $$H_{6}:\beta_{j1} = \beta_{j1}, \qquad \beta_{jr} = \beta_{jr}, \qquad r = 2, \qquad \beta_{jr} = 0, \qquad r = 3, 4,$$ $$H_{7}:\beta_{j1} = \beta_{j1}, \qquad \beta_{jr} = \beta_{\cdot r}, \qquad r = 2, \qquad \beta_{jr} = \beta_{jr}, \qquad r = 3, 4.$$ The statements above of the various hypotheses all apply for j=1, 2, 3. In stating these hypotheses we have specified β_{j1} separately, for convenience, since in this example it represents the constant term which depends on the mean values. Table 8.1 presents the complete summary of the analysis of variance data and the tests of significance of the various hypotheses. Table 8.2 presents the estimated regression coefficients under the various hypotheses. (The computations were carried out by H. M. Rosenblatt, Fred Okano, and the computing staff at the Naval Proving Ground, Dahlgren, Va.) The specification of the matrices X^{α} and β^{α} for H_1 and H_5 is also given, following table 8.2; those for the other hypotheses follow on the same lines. (These are left to the reader.) Using the 0.01 probability level for significance, and the 0.05 probability level for caution, it is concluded, from table 8.1, that: - 1. The regression is real; reject H_2 . - 2. One set of regression coefficients, including equality of means, cannot adequately represent all three categories; reject H_3 . - 3. One set of regression coefficients is not adequate even after allowing for differences in the mean value for each category; reject H_4 . - 4. One set of regression coefficients for variables x_3 and x_4 for all three categories cannot be used; reject H_5 . - 5. The regression coefficients for x_3 and x_4 cannot be ignored; reject H_6 . However, - 6. the use of one regression coefficient for the variable x_2 and different ones for x_3 and x_4 and for the constant term is adequate; accept H_7 . For the hypotheses H_1 and H_5 considered in the example, the matrix of parameters β and the matrix of observations X are given below. Note that, since we are dealing with raw observations in the example, the regression coefficients β_{j1} of β and the matrix (vector) \mathbf{x}_{j1} of \mathbf{X} , j=1,2,3, TABLE 8.2. Estimates of Regression Coefficients Under Various Hypotheses | | , | Potmoods | | | |----------------------------|------------------|-----------------------------|-----------------------------|------------------| | Hypothesis | \hat{eta}_{i1} | $\hat{oldsymbol{eta}}_{j2}$ | $oldsymbol{\hat{eta}_{j3}}$ | \hat{eta}_{i4} | | $\overline{H_1}$ | | | | | | j = 1 | 3,587 | 203.4 | -10.69 | -3.46 | | j=2 | -7,186 | 231.1 | 79.02 | 25.10 | | j=3 | 1,654 | 227.7 | -6.93 | 1.73 | | H_2 | | | | | | j = 1 | 6,094 | | | | | j = 2 | 5,565 | | | | | j=3 | 5,580 | | | | | H_3 | | | | | | j = 1, 2, 3 | 2,009 | 219.8 | -11.19 | 0.646 | | H_4 | | | | | | j = 1 | 1,803 | 216.0 | 3.70 | 1.28 | | j=2 | 1,589 | 216.0 | 3.70 | 1.28 | | j=3 | 1,862 | 216.0 | 3.70 | 1.28 | | H_5 | | | | | | j = 1 | 2,071 | 201.2 | .563 | 1.36 | | j = 2 | 1,432 | 227.1 | .563 | 1.36 | | j = 3 | 1,743 | 223.7 | .563 | 1.36 | | H_6 | 0.46 | 202.2 | | | | j=1 | 2,467 | 202.3 | | | | j=2 | 1,872 | 226.5 | | | | j = 3 | 2,001 | 223.7 | | | | H_7 | 3,431 | 219.8 | -4.27 | -4.10 | | $ j = 1 \\ i = 2 $ | - 6,768 | 219.8 | 79.26 | 24.33 | | $ j = 2 \\ i = 3 $ | 1,758 | 219.8 | -4.16 | 1.77 | | /== 3 | 1,730 | 417.0 | -7.10 | 4.77 | have been partitioned for every hypothesis. This provides for the usual practice of obtaining sums of squares and products of deviations about average values to simplify further calculations by reducing by one the rank of the matrix S (of sums of squares and products) whose inverse must be obtained. $$H_{1}:\beta_{j1} = \beta_{j1}, \quad \beta_{jr} = \beta_{jr}, \quad r = 2, 3, 4, \quad j = 1, 2, 3,$$ $$\beta' = (\beta'_{1}, \beta'_{2}), \quad X = (X_{1}, X_{2}),$$ $$\beta'_{1} = (\beta_{11}, \beta_{21}, \beta_{31}), \quad \beta'_{2} = (\beta'_{12}, \beta'_{22}, \beta'_{32}), \quad \beta'_{j2} = (\beta_{j2}, \beta_{j3}, \beta_{j4}),$$ $$X_{1} = \begin{pmatrix} x_{11} & \cdots & 0 \\ \vdots & x_{21} & \vdots \\ 0 & \cdots & x_{31} \end{pmatrix}, \quad X_{2} = \begin{pmatrix} X_{12} & \cdots & 0 \\ \vdots & X_{22} & \vdots \\ 0 & \cdots & X_{32} \end{pmatrix},$$ $$x'_{j1} = (1, 1, \cdots, 1), \quad X_{j2} = (x_{j2}, x_{j3}, x_{j4}),$$ $$\text{order } 1 \times n_{j} \quad x'_{jr} = (x_{j1r}, x_{j2r}, \cdots, x_{jnjr}).$$ $$H_{5}:\beta_{j1} = \beta_{j1}, \quad \beta_{jr} = \beta_{jr}, \quad r = 2, \quad \beta_{jr} = \beta_{rr}, \quad r = 3, 4, \quad j = 1, 2, 3,$$ $$\beta' = (\beta'_{11}, \beta'_{22}, \beta'_{33}), \quad X = (X_{1}, X_{2}, X_{3}),$$ $$\beta'_{1} = (\beta_{11}, \beta_{21}, \beta_{31}), \quad \beta'_{2} = (\beta_{12}, \beta_{22}, \beta_{32}), \quad \beta'_{3} = (\beta_{\cdot 3}, \beta_{\cdot 4}),$$ $$X_{1} = \begin{pmatrix} x_{11} & \cdots & 0 \\ \vdots & x_{21} & \vdots \\ 0 & \cdots & x_{31} \end{pmatrix}, \quad X_{2} = \begin{pmatrix} x_{12} & \cdots & 0 \\ \vdots & x_{22} & \vdots \\ 0 & \cdots & x_{32} \end{pmatrix}, \quad X'_{j3} = (X'_{13}, X'_{23}, X'_{33}),$$ $$X'_{j3} = (x_{j3}, x_{j4}),$$ \mathbf{x}_{i1} and \mathbf{x}_{ir} , r=2, 3, 4, are defined as under H_1 . In the foregoing example each hypothesis on the parameters applies to all categories, j = 1, 2, 3. It should be clear, however, that this need
not be the case, for the theory and method are equally applicable for any assertion of the hypotheses about the parameters. For example, we might have an analysis where part of the hypothesis concerned equality of the parameters for certain of the categories but not for all, for example, $$H_8: \beta_{jr} = \beta_{.r}, \quad j = 1, 3, \quad r = 1,$$ $\beta_{jr} = \beta_{jr}, \quad j = 2, \quad r = 1,$ $\beta_{jr} = \beta_{.r}, \quad j = 1, 2, 3, \quad r = 2,$ $\beta_{jr} = \beta_{jr}, \quad j = 1, 2, 3, \quad r = 3, 4,$ and analysis by the three-partition subhypothesis procedure of section 5 would apply. ### 9. REPARAMETRIZATION ### 9.1. Hypotheses Not of Full Rank [Cf. Kempthorne (1952, section 6.2).] Suppose that the components of β in (3.1) are not linearly independent, but satisfy (p-r) linear relations. This implies that the matrix X in (3.1) is of rank r < p (and conversely), and that $$\beta = G\gamma,$$ where $\gamma' = (\gamma_1, \gamma_2, \dots, \gamma_r)$, $G = (g_{ij})$, $i = 1, \dots, p$, $j = 1, 2, \dots, r$, and G is of rank r < p. The matrix S = X'X is now a positive (not positive definite) matrix of rank r, is therefore singular and has no inverse, so that we must re-examine the solution of (4.1) for β . We may, however, write (3.1) as $$(9.2) z = y - XG\gamma = y - A\gamma,$$ where A = XG is an $n \times r$ matrix of rank r. The least squares estimate of γ is derived from the normal equations (9.3) $$A'A\hat{\gamma} = A'y$$ or $G'SG\hat{\gamma} = G'X'y$. The estimate of β is obtained from $\hat{\beta} = G\hat{\gamma}$, or $$\hat{\beta} = \mathbf{G}(\mathbf{G}'\mathbf{S}\mathbf{G})^{-1} \mathbf{G}'\mathbf{X}'\mathbf{y}.$$ As in section 4, $\hat{\gamma}$ is a minimum variance, unbiased, sufficient estimate of γ and the components of $\hat{\gamma}$ are normally distributed with covariance matrix $\sigma^2(A'A)^{-1} = \sigma^2(G'SG)^{-1}$. Also, $\hat{\beta} = G\hat{\gamma}$ is an unbiased estimate of β and the components of $\hat{\beta}$ are normally distributed with covariance matrix $\sigma^2G(G'SG)^{-1}G'$. Corresponding to (4.2) we have (9.5) $$\hat{J}(H_1, H_2) = \frac{(\hat{\gamma}^1 - \gamma^2)' A' A(\hat{\gamma}^1 - \gamma^2)}{\hat{\sigma}^2} = \frac{(\hat{\gamma}^1 - \gamma^2)' G' S G(\hat{\gamma}^1 - \gamma^2)}{\hat{\sigma}^2}$$ $$= \frac{(\hat{\beta}^1 - \beta^2)' S(\hat{\beta}^1 - \beta^2)}{\hat{\sigma}^2},$$ where $$(n-r)\hat{\sigma}^2 = \mathbf{y}'\mathbf{y} - \hat{\mathbf{y}}^{1'}\mathbf{A}'\mathbf{A}\hat{\mathbf{y}}^{1} = \mathbf{y}'\mathbf{y} - \hat{\mathbf{y}}^{1'}\mathbf{G}'\mathbf{S}\mathbf{G}\hat{\mathbf{y}}^{1} = \mathbf{y}'\mathbf{y} - \hat{\mathbf{\beta}}^{1'}\mathbf{S}\hat{\mathbf{\beta}}^{1}.$$ Note that $G'S\hat{\beta} = G'X'y$ [see (9.3)] represents r linear functions of the y's that are also linear functions of the $\hat{\beta}$'s. These are unbiased estimates of the same linear functions of the β 's. Since $G'S\hat{\beta} = G'X'y = G'SG\hat{\gamma}$, we may make similar statements about the γ 's and their estimates. Consider now any other set of r linear functions of the y's, say Ly, where L is an $r \times n$ matrix of rank r. Since (9.6) $$E(Ly) = E(L(X\beta + z)) = LX\beta = LXG\gamma,$$ Ly is an unbiased estimate of γ if LXG = I_r , the $r \times r$ identity matrix. The covariance matrix of the components of Ly is seen to be $\sigma^2 LL'$. From lemma 5.4 of chapter 3 with k = n, $B = \sigma^2 I_n$, where I_n is the $n \times n$ identity matrix, L = C', U' = XG, $C'U' = LXG = I_r$, (9.7) $$\sigma^2 \mathbf{L} \mathbf{L}' \ge \sigma^2 (\mathbf{G}' \mathbf{S} \mathbf{G})^{-1},$$ where (9.7) means that any quadratic form with matrix $\sigma^2 LL'$ is greater than or equal to the quadratic form with matrix $\sigma^2 (G'SG)^{-1}$. Since the covariance matrix of the components of $\hat{\gamma}$ is $\sigma^2 (G'SG)^{-1}$, we confirm by (9.7) and lemma 5.1(c) of chapter 3 the statement that the variances of the components of $\hat{\gamma}$ are the smallest among all linear functions of the y's that are unbiased estimates of γ . Similarly, GLy is an unbiased estimate of β if LXG = I_r . From lemma 5.4 of chapter 3 we may conclude that (9.8) $$\sigma^2 \mathbf{GLL'G'} \ge \sigma^2 \mathbf{G} (\mathbf{G'SG})^{-1} \mathbf{G'},$$ from which we infer that the variances of the components of $\hat{\beta}$ are the smallest among all linear functions of the y's that are unbiased estimates of β . The value of J(1, 2) and its estimate is the same for any reparametrization as is indicated in (9.5). Since there are only r linearly independent linear functions of the β 's, any one set of r linearly independent functions of the β 's may be derived from any other such set by a nonsingular linear transformation. The information functions are invariant under non-singular transformations (see section 4 of chapter 2, also section 3 of chapter 9), hence our conclusion. [Cf. Kempthorne (1952).] Examples of the application of this procedure to the two-way classification with no replication and with no interaction; the two-way classification with missing observations; the two-way classification with replication and interaction; the two-way classification with replication (unequal cell frequencies), interaction, and missing observations; the latin square; and the latin square with missing observations may be found in McCall (1957). See also Anderson and Bancroft (1952), Kempthorne (1952). ### 9.2. Partition When the hypotheses call for a partitioning of the parameters into two sets, for example as in (5.1), it is possible that linear relations may exist among the parameters in one of the partitioned sets only. Here it is necessary to apply the procedures of section 9.1 only to the partitioned set not of full rank. Thus, suppose that in (5.1) the $n \times q$ matrix X_1 is of rank m < q. This implies [cf. (9.1)] that $$\beta_1 = G_1 \gamma_1,$$ where $\gamma_1' = (\gamma_1, \gamma_2, \dots, \gamma_m)$, $G_1 = (g_{ij})$, $i = 1, 2, \dots, q, j = 1, 2, \dots$, m, and G_1 is of rank m < q. The results of section 5.1 are applicable if β_1 and $\hat{\beta}_1$ are replaced in the various formulas by γ_1 and $\hat{\gamma}_1$ respectively, X_1 by X_1G_1 , and (n-q) degrees of freedom by (n-m) degrees of freedom. The estimate $\hat{\beta}_1$ is obtained from $\hat{\beta}_1 = G_1\hat{\gamma}_1$. Thus, for example, S_{11} in (5.3) is to be replaced by $G_1'S_{11}G_1$, where $S_{11} = X_1'X_1$, and S_{12} by $G_1'S_{12}$, where $S_{12} = X_1'X_2$. Similar remarks also apply for a partitioning into three sets as in section 5.2, when one of the sets may not be of full rank. ## 10. ANALYSIS OF REGRESSION, TWO-WAY CLASSIFICATION To illustrate section 9, and for its own interest, suppose we have a two-way classification with r row-categories and c column-categories, with one observation per cell and no interaction. Suppose furthermore that there are p independent variables x_1, x_2, \dots, x_p . We want to test a null hypothesis that there are no column effects (the column classification is not significant), against an alternative hypothesis that the column classification is significant. For p = 1, also identified as the analysis of covariance, see Federer (1955, p. 487), Kempthorne (1952, p. 98). For p = 2, also designated as multiple covariance, see Snedecor (1946, section 13.7). For p general, see Anderson and Bancroft (1952, section 21.4). The general linear regression model for each cell is (10.1) $$z_{ij} = y_{ij} - \mu - \rho_i - \tau_j - \beta_1 x_{ij1} - \beta_2 x_{ij2} - \cdots - \beta_p x_{ijp},$$ where $i = 1, 2, \cdots, r$ row-categories, $$j = 1, 2, \cdots, c \text{ column-categories},$$ $$\rho_i \text{ is the } i \text{th row effect},$$ $$\tau_j \text{ is the } j \text{th column effect},$$ $$\mu \text{ is the over-all mean},$$ the z_{ij} are independent, normally distributed random variables with zero means and common variance σ^2 , and the x_{ijk} , $i = 1, 2, \dots, r$, $j j = 1, Enumerating the cells from left to right and top to bottom, the linear regressions may be written as (10.2) $$z = y - X\beta = y - X_1\beta_1 - X_2\beta_2 - X_3\beta_3,$$ where $$\mathbf{z}' = (z_{11}, z_{12}, \dots, z_{rc}), \qquad \mathbf{y}' = (y_{11}, y_{12}, \dots, y_{rc}),$$ $$\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3), \qquad \mathbf{\beta}' = (\mathbf{\beta}_1', \mathbf{\beta}_2', \mathbf{\beta}_3'),$$ $$X_{1} = \begin{pmatrix} 1 \\ 1 \\ \cdot \\ \cdot \\ 1 \end{pmatrix}, \quad X_{2} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 1 \end{pmatrix},$$ $$\mathbf{X}_{3} = \begin{pmatrix} \mathbf{x}_{11}' \\ \mathbf{x}_{12}' \\ \vdots \\ \vdots \\ \mathbf{x}_{rc}' \end{pmatrix}, \qquad \mathbf{x}_{ij}' = (x_{ij1}, x_{ij2}, \cdot \cdot \cdot, x_{ijp}),$$ $$\begin{aligned} \boldsymbol{\beta}_1' &= (\boldsymbol{\mu}), & \boldsymbol{\beta}_2' &= (\boldsymbol{\rho}', \boldsymbol{\tau}'), & \boldsymbol{\rho}' &= (\rho_1, \rho_2, \cdots, \rho_r), \\ \boldsymbol{\tau}' &= (\tau_1, \tau_2, \cdots, \tau_c), & \boldsymbol{\beta}_3' &= (\beta_1, \beta_2, \cdots, \beta_p), \end{aligned}$$ that is, X_1 is $rc \times 1$, X_2 is $rc \times (r+c)$, X_3 is $rc \times p$, x'_{ij} is $1 \times p$, β'_1 is 1×1 , β'_2 is $1 \times (r+c)$, ρ' is $1 \times r$, τ' is $1 \times c$, β'_3 is $1 \times p$. We want to test the hypothesis (10.3) $$H_1: \beta' = \beta^{1'} = (\beta_1^{1'}, \beta_2^{1'}, \beta_3^{1'}), \quad \beta_2^{1'} = (\rho^{1'}, \tau^{1'}),$$
that is, no restrictions on the parameters, and the null hypothesis (10.4) $$H_2: \beta' = \beta^{2'} = (\beta_1^{2'}, \beta_2^{2'}, \beta_3^{2'}), \quad \beta_2^{2'} = (\rho^{2'}, 0), \quad \text{or} \quad \tau^{2'} = 0,$$ that is there are no column effects. Note that the $rc \times (r+c)$ matrix X_2 is of rank r+c-2, since the row and column effects are essentially restricted to satisfy [cf. Anderson and Bancroft (1952), Kempthorne (1952)] (10.5) $$\rho_1 + \rho_2 + \cdots + \rho_r = 0, \quad \tau_1 + \tau_2 + \cdots + \tau_c = 0.$$ The new parameters for the second set of the partition, taking (10.5) into account, are given by (10.6) $$\beta_2 = \begin{pmatrix} \rho \\ \tau \end{pmatrix} = G\gamma = \begin{pmatrix} G_1 & 0 \\ 0 & G_2 \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix},$$ where $\gamma_1' = (\gamma_{11}, \cdots, \gamma_{1(r-1)}), \ \gamma_2' = (\gamma_{21}, \cdots, \gamma_{2(c-1)}), \ \text{and} \ G_1 \ \text{and} \ G_2$ are respectively the $r \times (r-1)$ and $c \times (c-1)$ matrices $$G_{1} = \begin{pmatrix} 1 & 0 \cdot \cdot \cdot & 0 \\ 0 & 1 \cdot \cdot \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 \cdot \cdot & 1 \\ -1 & -1 \cdot \cdot \cdot & -1 \end{pmatrix}, \qquad G_{2} = \begin{pmatrix} 1 & 0 \cdot \cdot \cdot & 0 \\ 0 & 1 \cdot \cdot \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 \cdot \cdot & 1 \\ -1 & -1 \cdot \cdot \cdot & -1 \end{pmatrix}.$$ For the second set of the partition, we find $$(10.7) \quad \mathbf{X_{2}G} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & -1 & -1 & \cdots & -1 \\ 0 & 1 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 1 & \cdots & 0 & -1 & -1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ -1 & -1 & \cdots & -1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ -1 & -1 & \cdots & -1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ -1 & -1 & \cdots & -1 & -1 & -1 & \cdots & -1 \\ \hline & r & -1 & \cdots & -1 & -1 & -1 & \cdots & -1 \\ \hline & r & -1 & \cdots & -1 & -1 & -1 & \cdots & -1 \\ \hline \end{pmatrix}$$ where X_2G has rc rows and r-1+c-1 columns, (10.9) $$X_1'X_2G = S_{12}G = (0, 0, \dots, 0), \quad 1 \times (r-1+c-1),$$ (10.10) $$X_3'X_2G = S_{32}G = (x_1 - x_r, x_2 - x_r, \cdots, x_{r-1} - x_r, x_{r-1} - x_r, x_{r-1} - x_r, x_{r-1} - x_r, x_{r-1} - x_{r-1} - x_r, x_{r-1} - x_{r-1} - x_{r-1} - x_{r-1} - x_{r-1} - x_{r-1} - x_{r-1})$$ where $\mathbf{x}_{i.} = \mathbf{x}_{i1} + \mathbf{x}_{i2} + \cdots + \mathbf{x}_{ic}$, $\mathbf{x}_{.j} = \mathbf{x}_{1j} + \mathbf{x}_{2j} + \cdots + \mathbf{x}_{rj}$, and $S_{32}G$ is a $p \times (r-1+c-1)$ matrix. We also find that (10.11) $$X_1'X_1 = S_{11} = rc, \quad X_1'X_3 = S_{13} = x_1',$$ where $\mathbf{x}'_{..} = \mathbf{x}'_{11} + \mathbf{x}'_{12} + \cdots + \mathbf{x}'_{ij} + \cdots + \mathbf{x}'_{rc}$, and $\mathbf{x}'_{..}$ is a $1 \times p$ matrix, (10.12) $$X_3'X_3 = S_{33} = \sum_{i=1}^r \sum_{j=1}^c x_{ij}x'_{ij},$$ where S_{33} is a $p \times p$ matrix, (10.13) $$X_1'y = y...$$ where $y_{..} = y_{11} + y_{12} + \cdots + y_{ij} + \cdots + y_{rc}$ where $$y_{i.} = y_{i1} + y_{i2} + \cdots + y_{ic}, y_{\cdot j} = y_{1j} + y_{2j} + \cdots + y_{rj},$$ $y'_{row} = (y_{1.} - y_{r.} \cdots y_{r-1.} - y_{r.}), y'_{col} = (y_{\cdot 1} - y_{\cdot c} \cdots y_{\cdot c-1} - y_{\cdot c}),$ $$(10.15) \quad Y'_{col} = (y_{\cdot 1} - y_{\cdot c} \cdots y_{\cdot c-1} - y_{\cdot c}),$$ $(10.15) X_3'y = X_{11}y_{11} + X_{12}y_{12} + \cdots + X_{ij}y_{ij} + \cdots + X_{rc}y_{rc},$ where X_3' y is a $p \times 1$ matrix. Since under H_1 the estimates of the parameters are given in (5.20), we proceed to find the other matrices needed: (10.16) $$S_{22\cdot 1} = G'S_{22}G - G'S_{21}S_{11}^{-1}S_{12}G = \begin{pmatrix} C & 0 \\ 0 & R \end{pmatrix},$$ where C is the $(r-1) \times (r-1)$ matrix $\begin{pmatrix} 2c & c & \cdots & c \\ c & 2c & \cdots & c \\ \vdots & \vdots & \ddots & \vdots \\ c & c & \cdots & 2c \end{pmatrix}$ and R is the $$(c-1) \times (c-1)$$ matrix $\begin{pmatrix} 2r & r & \cdots & r \\ r & 2r & \cdots & r \\ \vdots & \vdots & \ddots & \vdots \\ r & r & \cdots & 2r \end{pmatrix}$ (10.17) $$\mathbf{S}_{33\cdot 1} = \mathbf{S}_{33} - \mathbf{S}_{31}\mathbf{S}_{11}^{-1}\mathbf{S}_{13} = \sum_{i=1}^{r} \sum_{j=1}^{c} \mathbf{x}_{ij}\mathbf{x}'_{ij} - \mathbf{x}... \frac{1}{rc}\mathbf{x}'..$$ $$= \sum_{i=1}^{r} \sum_{j=1}^{c} (\mathbf{x}_{ij} - \bar{\mathbf{x}})(\mathbf{x}_{ij} - \bar{\mathbf{x}})',$$ where $\bar{\mathbf{x}} = \frac{1}{rc} \mathbf{x}_{...}$ (10.18) $$S_{32\cdot 1} = S_{32}G - S_{31}S_{11}^{-1}S_{12}G = (x_1 - x_r, x_2 - x_r, \cdot \cdot \cdot , x_{r-1} - x_r, x_{r-1} - x_r, x_{r-1} - x_{r-1}, x_{r-1}$$ $$(10.19) S_{32\cdot 12} = S_{33\cdot 1} - S_{32\cdot 1} S_{22\cdot 1}^{-1} S_{23\cdot 1}$$ $$= \sum_{i=1}^{r} \sum_{j=1}^{c} \mathbf{d}_{ij} \mathbf{d}'_{ij} - \mathbf{X}'_{\text{row}} \mathbf{C}^{-1} \mathbf{X}_{\text{row}} - \mathbf{X}'_{\text{col}} \mathbf{R}^{-1} \mathbf{X}_{\text{col}},$$ where $$\mathbf{d}_{ij} = \mathbf{x}_{ij} - \bar{\mathbf{x}}, \, \mathbf{d}_{i\cdot} = \mathbf{x}_{i\cdot} - \mathbf{x}_{r\cdot}, \, \mathbf{d}_{\cdot j} = \mathbf{x}_{\cdot j} - \mathbf{x}_{\cdot c},$$ $$\mathbf{X}'_{\text{row}} = (\mathbf{d}_{1\cdot} \cdot \cdot \cdot \mathbf{d}_{r-1\cdot}), \, \mathbf{X}'_{\text{col}} = (\mathbf{d}_{\cdot 1} \cdot \cdot \cdot \cdot \mathbf{d}_{\cdot c-1}),$$ (10.20) $$\mathbf{X}'_{2\cdot 1}\mathbf{y} = \mathbf{G}'\mathbf{X}'_{2}\mathbf{y} - \mathbf{G}'\mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{X}'_{1}\mathbf{y} = \begin{pmatrix} y_{1\cdot} - y_{r\cdot} \\ \vdots \\ y_{r-1\cdot} - y_{r\cdot} \\ y_{\cdot 1} - y_{\cdot c} \end{pmatrix} = \begin{pmatrix} y_{\text{row}} \\ y_{\text{col}} \end{pmatrix},$$ (10.21) $$X'_{3-1}y = X'_{3}y - S_{31}S_{11}^{-1}X'_{1}y$$ $$= \sum_{i=1}^{r} \sum_{j=1}^{c} \mathbf{x}_{ij} y_{ij} - \mathbf{x} ... \frac{1}{rc} y_{..} = \sum_{i=1}^{r} \sum_{j=1}^{c} \mathbf{x}_{ij} (y_{ij} - \bar{y}),$$ where $rc\bar{y} = y...$ (10.22) $$X'_{3\cdot 12}y = X'_{3\cdot 1}y - S_{32\cdot 1}S_{22\cdot 1}^{-1}X'_{2\cdot 1}y = \sum_{i=1}^{r}\sum_{j=1}^{c}x_{ij}(y_{ij} - \bar{y})$$ $$- (\mathbf{d}_{1} \cdot \cdot \cdot \cdot \mathbf{d}_{r-1} \cdot \mathbf{d}_{\cdot 1} \cdot \cdot \cdot \cdot \mathbf{d}_{\cdot c-1}) \begin{pmatrix} \mathbf{C}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}^{-1} \end{pmatrix} \begin{pmatrix} y_{1} \cdot - y_{r} \\ \cdot \\ y_{r-1} \cdot - y_{r} \\ y_{\cdot 1} - y_{\cdot c} \\ \cdot \\ \cdot \\ y_{\cdot c-1} - y_{\cdot c} \end{pmatrix}$$ $$= \sum_{i=1}^{r} \sum_{j=1}^{c} \mathbf{x}_{ij} (y_{ij} - \bar{y}) - (\mathbf{d}_{1} \cdot \cdot \cdot \cdot \mathbf{d}_{r-1}) \mathbf{C}^{-1} \begin{pmatrix} y_{1} - y_{r} \\ \cdot \\ \cdot \\ y_{r-1} - y_{r} \end{pmatrix}$$ $$- (\mathbf{d}_{\cdot 1} \cdot \cdot \cdot \mathbf{d}_{\cdot c-1}) \mathbf{R}^{-1} \begin{pmatrix} y_{\cdot 1} - y_{\cdot c} \\ \cdot \\ \cdot \\ y_{\cdot c-1} - y_{\cdot c} \end{pmatrix}$$ $$= \sum_{i=1}^{r} \sum_{j=1}^{c} \mathbf{x}_{ij} (y_{ij} - \bar{y}) - \mathbf{X}'_{row} \mathbf{C}^{-1} \mathbf{y}_{row} - \mathbf{X}'_{col} \mathbf{R}^{-1} \mathbf{y}_{col}.$$ It may be shown that (see problem 11.4) (10.23) $$C^{-1} = \begin{pmatrix} \frac{r-1}{cr} & -\frac{1}{cr} & \cdots & -\frac{1}{cr} \\ -\frac{1}{cr} & \frac{r-1}{cr} & \cdots & -\frac{1}{cr} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{cr} & -\frac{1}{cr} & \cdots & \frac{r-1}{cr} \end{pmatrix},$$ $$\mathbf{R}^{-1} = \begin{pmatrix} \frac{c-1}{cr} & -\frac{1}{cr} & -\frac{1}{cr} \\ -\frac{1}{cr} & \frac{c-1}{cr} & -\frac{1}{cr} \\ -\frac{1}{cr} & -\frac{1}{cr} & -\frac{1}{cr} \\ \end{pmatrix},$$ $$\mathbf{X}'_{\text{row}} \mathbf{C}^{-1} \mathbf{X}_{\text{row}} = \frac{1}{c} \sum_{i=1}^{r} \mathbf{x}_{i} \cdot \mathbf{x}'_{i} \cdot -\frac{1}{rc} \mathbf{x} \cdot \mathbf{x}'_{...},$$ $$\mathbf{X}'_{\text{col}} \mathbf{R}^{-1} \mathbf{X}_{\text{col}} = \frac{1}{r} \sum_{j=1}^{c} \mathbf{x}_{.j} \mathbf{x}'_{.j} - \frac{1}{rc} \mathbf{x} \cdot \mathbf{x}'_{...},$$ $$\mathbf{X}'_{\text{row}} \mathbf{C}^{-1} \mathbf{y}_{\text{row}} = \frac{1}{c} \sum_{i=1}^{r} \mathbf{x}_{i} \cdot \mathbf{y}_{i} \cdot -\frac{1}{rc} \mathbf{x} \cdot \mathbf{y}_{...},$$ $$\mathbf{X}'_{\text{col}} \mathbf{R}^{-1} \mathbf{y}_{\text{col}} = \frac{1}{r} \sum_{i=1}^{c} \mathbf{x}_{.j} \mathbf{y}_{.j} - \frac{1}{rc} \mathbf{x} \cdot \mathbf{y}_{...},$$ $$\mathbf{X}'_{\text{col}} \mathbf{R}^{-1} \mathbf{y}_{\text{col}} = \frac{1}{r} \sum_{i=1}^{c} \mathbf{x}_{.j} \mathbf{y}_{.j} - \frac{1}{rc} \mathbf{x} \cdot \mathbf{y}_{...},$$ where C^{-1} and R^{-1} are respectively $(r-1) \times (r-1)$ and $(c-1) \times (c-1)$ matrices. Thus, under H_1 , we get from (5.20) the estimates $$\hat{\beta}_3 = S_{33\cdot 12}^{-1} X_{3\cdot 12}' y,$$ where $S_{33\cdot 12}$ is given in (10.19) and $X'_{3\cdot 12}y$ is given in (10.22), $$(10.25) \quad \hat{\mathbf{\gamma}} = \begin{pmatrix} \mathbf{C}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}^{-1} \end{pmatrix} \begin{bmatrix} y_{1\cdot} - y_{r\cdot} \\ \vdots \\ y_{r-1\cdot} - y_{r\cdot} \\ y_{\cdot 1} - y_{\cdot c} \\ \vdots \\ y_{\cdot c-1} - y_{\cdot c} \end{pmatrix} - \begin{pmatrix} \mathbf{d}'_{1\cdot} \\ \vdots \\ \vdots \\ \mathbf{d}'_{r-1\cdot} \\ \mathbf{d}'_{1\cdot} \\ \vdots \\ \vdots \\ \mathbf{d}'_{c-1} \end{pmatrix} \hat{\boldsymbol{\beta}}_{3},$$ that is $$\hat{\mathbf{\gamma}}_1 = \mathbf{C}^{-1} \begin{bmatrix} \begin{pmatrix} y_1 & -y_r & \\ & \cdot & \\ & \cdot & \\ y_{r-1} & -y_r \end{pmatrix} - \begin{pmatrix} \mathbf{d}_1' & \\ & \cdot & \\ & \cdot & \\ \mathbf{d}_{r-1}' & \end{pmatrix} \hat{\boldsymbol{\beta}}_3 \end{bmatrix},$$ $$\hat{\gamma}_{2} = \mathbf{R}^{-1} \begin{bmatrix} \begin{pmatrix} y_{\cdot 1} - y_{\cdot c} \\ \vdots \\ y_{\cdot c-1} -
y_{\cdot c} \end{pmatrix} - \begin{pmatrix} \mathbf{d}'_{\cdot 1} \\ \vdots \\ \mathbf{d}'_{\cdot c-1} \end{pmatrix} \hat{\beta}_{3} \end{bmatrix},$$ $$\hat{\gamma}_{1} = \mathbf{C}^{-1} (\mathbf{y}_{row} - \mathbf{X}_{row} \hat{\beta}_{3}), \qquad \hat{\gamma}_{2} = \mathbf{R}^{-1} (\mathbf{y}_{col} - \mathbf{X}_{col} \hat{\beta}_{3}),$$ $$\hat{\beta}_{1} = \frac{1}{rc} (y_{\cdot \cdot} - \mathbf{x}'_{\cdot \cdot} \hat{\beta}_{3}).$$ $$(10.26)$$ We now have [see (5.21)] (10.27) $\hat{\beta}^{1'}S^{1}\hat{\beta}^{1} = y'X_{1}S_{11}^{-1}X_{1}'y + y'X_{2\cdot 1}S_{22\cdot 1}^{-1}X_{2\cdot 1}'y + \hat{\beta}_{3}^{1'}S_{33\cdot 12}\hat{\beta}_{3}^{1}$, where $y'X_{1}S_{11}^{-1}X_{1}'y = (y..)^{2}/rc$, $$y'X_{2\cdot 1}S_{22\cdot 1}^{-1}X'_{2\cdot 1}y = (y_{1\cdot} - y_{r\cdot} \cdot y_{r-1\cdot} - y_{r\cdot})C^{-1}\begin{pmatrix} y_{1\cdot} - y_{r\cdot} \\ \vdots \\ y_{r-1\cdot} - y_{r\cdot} \end{pmatrix} + (y_{\cdot 1} - y_{\cdot c} \cdot y_{\cdot c-1} - y_{\cdot c})R^{-1}\begin{pmatrix} y_{\cdot 1} - y_{\cdot c} \\ \vdots \\ y_{\cdot c-1} - y_{\cdot c} \end{pmatrix}$$ $$= y'_{row}C^{-1}y_{row} + y'_{col}R^{-1}y_{col},$$ and $\hat{\beta}_3^1$ is given by (10.24) and $S_{33\cdot 12}$ by (10.19). [See (10.46).] The original row and column effect parameters are estimated by (10.28) $$\hat{\rho}^1 = G_1 \hat{\gamma}_1, \qquad \hat{\tau}^1 = G_2 \hat{\gamma}_2,$$ where G_1 and G_2 are defined in (10.6) and $\hat{\gamma}_1$ and $\hat{\gamma}_2$ in (10.25). Under H_2 , instead of the matrix G in (10.6) we have only the matrix G_1 , and the matrix X_2 is now given by the $rc \times r$ matrix (10.29) $$\mathbf{X}_{2}^{2} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$ Instead of (10.7), under H_2 we have (10.30) $$\mathbf{X}_{2}^{2}\mathbf{G}_{1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & -1 \end{pmatrix},$$ where $X_2^2G_1$ has rc rows and (r-1) columns; instead of (10.8), under H_2 we have (10.31) $$G_1'X_2^2X_2^2G_1 = G_1'S_{22}^2G_1 = \begin{pmatrix} 2c & c & \cdot & \cdot & c \\ c & 2c & \cdot & \cdot & c \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ c & c & \cdot & \cdot & 2c \end{pmatrix} r - 1;$$ instead of (10.9), under H_2 we have (10.32) $$X_1'X_2^2G_1 = S_{12}^2G_1 = (0, 0, \cdots, 0), \quad 1 \times (r-1);$$ instead of (10.10), under H_2 we have $$(10.33) \quad X_3' X_2^2 G_1 = S_{32}^2 G_1 = (\mathbf{x}_1 - \mathbf{x}_r \cdot \cdot \cdot \mathbf{x}_{r-1} - \mathbf{x}_r) = X_{row}'$$ where $S_{32}^2G_1$ is a $p \times (r-1)$ matrix; instead of (10.14), under H_2 we have (10.34) $$G_1'X_2^{2'}y = \begin{pmatrix} y_1 - y_r \\ \cdot \\ \cdot \\ y_{r-1} - y_r \end{pmatrix} = y_{row};$$ instead of (10.16), under H_2 we have (10.35) $$S_{22\cdot 1}^2 = C;$$ instead of (10.18), under H_2 we have (10.36) $$S_{32\cdot 1}^2 = (\mathbf{x}_1 - \mathbf{x}_r \cdot \cdot \cdot \mathbf{x}_{r-1} - \mathbf{x}_r) = \mathbf{X}'_{row};$$ instead of (10.19), under H_2 we have instead of (10.20), under H_2 we have (10.38) $$X_{2\cdot 1}^{2'} y = \begin{pmatrix} y_1 \cdot - y_r \cdot \\ \cdot \\ \cdot \\ y_{r-1} \cdot - y_r \end{pmatrix} = y_{row};$$ instead of (10.22), under H_2 we have (10.39) $$X_{3\cdot 12}^{2'} \mathbf{y} = \sum_{i=1}^{r} \sum_{j=1}^{c} \mathbf{x}_{ij} (y_{ij} - \bar{y}) - (\mathbf{d}_{1} \cdot \cdot \cdot \cdot \mathbf{d}_{r-1}) \mathbf{C}^{-1} \begin{pmatrix} y_{1} \cdot - y_{r} \\ \cdot \\ \cdot \\ y_{r-1} \cdot - y_{r} \end{pmatrix}$$ $$= \sum_{i=1}^{r} \sum_{j=1}^{c} \mathbf{x}_{ij} (y_{ij} - \bar{y}) - \mathbf{X}'_{row} \mathbf{C}^{-1} \mathbf{y}_{row}.$$ Thus, under H_2 , we get as the estimates of the parameters, instead of (10.24), (10.40) $$\hat{\beta}_3^2 = S_{33\cdot 12}^{2^{-1}} X_{3\cdot 12}^{2'} y,$$ where $S_{33\cdot 12}^2$ is given in (10.37) and $X_{3\cdot 12}^{2'}y$ in (10.39); instead of (10.25), (10.41) $$\hat{\mathbf{y}}^2 = \begin{pmatrix} \hat{\mathbf{Y}}_1^2 \\ 0 \end{pmatrix},$$ where $\hat{\mathbf{Y}}_1^2 = \mathbf{C}^{-1} \begin{bmatrix} y_1 - y_r \\ \vdots \\ y_n - y_r \end{bmatrix} - \begin{pmatrix} \mathbf{d}_1' \\ \vdots \\ \mathbf{d}_1' \end{pmatrix} \hat{\boldsymbol{\beta}}_3^2 = \mathbf{C}^{-1}(\mathbf{y}_{\text{row}} - \mathbf{X}_{\text{row}}\hat{\boldsymbol{\beta}}_3^2);$ instead of (10.26), (10.42) $$\hat{\beta}_1^2 = \frac{1}{r_C} (y_{..} - \mathbf{x}'_{..} \hat{\beta}_3^2);$$ instead of (10.27), (10.43) $$\hat{\beta}^{2'}S^{2}\hat{\beta}^{2} = y'X_{1}^{2}S_{11}^{2^{-1}}X_{1}^{2'}y + y'X_{2\cdot 1}^{2}S_{22\cdot 1}^{2^{-1}}X_{2\cdot 1}^{2'}y + \hat{\beta}_{3}^{2'}S_{33\cdot 12}^{2}\hat{\beta}_{3}^{2}$$, where $y'X_{1}^{2}S_{11}^{2^{-1}}X_{1}^{2'}y = (y..)^{2}/rc$, $$\mathbf{y}'\mathbf{X}_{2\cdot 1}^{2}\mathbf{S}_{22\cdot 1}^{2^{-1}}\mathbf{X}_{2\cdot 1}^{2'}\mathbf{y} = (y_{1\cdot} - y_{r\cdot} \cdot \cdot \cdot y_{r-1\cdot} - y_{r\cdot})\mathbf{C}^{-1}\begin{pmatrix} y_{1\cdot} - y_{r\cdot} \\ \cdot \\ \cdot \\ y_{r-1\cdot} - y_{r\cdot} \end{pmatrix}$$ $= y_{row}'C^{-1}y_{row},$ and $\hat{\beta}_3^2$ is given by (10.40) and $S_{33\cdot 12}^2$ by (10.37). The original row and column effect parameters, under H_2 , are estimated by (10.44) $$\hat{\rho}^2 = G_1 \hat{\gamma}_1^2, \qquad \tau^2 = 0.$$ With the foregoing values, we now have (10.45) $$\hat{\sigma}^2 \hat{J}(H_1, H_2) = \hat{\beta}^{1'} S^1 \hat{\beta}^1 - \hat{\beta}^{2'} S^2 \hat{\beta}^2$$ where $(rc - 1 - r + 1 - c + 1 - p)\hat{\sigma}^2 = y'y - \hat{\beta}^{1'} S^1 \hat{\beta}^1$ $$= ((r - 1)(c - 1) - p)\hat{\sigma}^2.$$ We summarize the foregoing in the analysis of variance table 10.1. $\hat{J}(H_1, H_2) = (c - 1)F$, where F has the analysis of variance distribution with $n_1 = c - 1$ and $n_2 = (r - 1)(c - 1) - p$ degrees of freedom under the null hypothesis H_2 in (10.4). **TABLE 10.1** | Variation due to | Sum of Squares | D.F. | |------------------------|---|--------------| | H ₂ :(10.4) | $\hat{\beta}^{2'}S^{2}\hat{\beta}^{2} = \frac{(y_{})^{2}}{rc} + y'_{row}C^{-1}y_{row} + \hat{\beta}_{3}^{2'}S_{33\cdot12}^{2}\hat{\beta}_{3}^{2}$ | r + p | | Difference | $y'_{col}R^{-1}y_{col} + \hat{\beta}_{3}^{1'}S_{33\cdot12}^{1}\hat{\beta}_{3}^{1} - \hat{\beta}_{3}^{2'}S_{33\cdot12}^{2}\hat{\beta}_{3}^{2}$ $= \hat{\sigma}^{2}\hat{J}(H_{1}, H_{2})$ | c — 1 | | H ₁ :(10.3) | $\hat{\beta}^{1'}S^{1}\hat{\beta}^{1} = \frac{(y_{})^{2}}{rc} + y'_{row}C^{-1}y_{row} + y'_{col}R^{-1}y_{col} + \hat{\beta}_{3}^{1'}S_{33\cdot 12}^{1}\hat{\beta}_{3}^{1}$ | r+c-1+p | | Difference | $y'y - \hat{\beta}^{1'}S^{1}\hat{\beta}^{1} = ((r-1)(c-1) - p)\hat{\sigma}^{2}$ | (r-1)(c-1)-p | | Total | y'y | rc | In particular, for the usual two-way table with no regression, that is, $\beta_3^1 = \beta_3^2 = 0$, table 10.1 yields the analysis summarized in the analysis of variance table 10.2. TABLE 10.2 | Variation due to | Sum of Squares | D.F. | |------------------|---|------------| | Mean | $(y)^2/rc = \hat{\sigma}^2 \hat{J}(H_{\mu}, H_2)$ | 1 | | Rows | $\mathbf{y}_{\text{row}}^{\prime}\mathbf{C}^{-1}\mathbf{y}_{\text{row}} = \hat{\sigma}^{2}\hat{J}(H_{R}, H_{2})$ | r-1 | | Columns | $\mathbf{y}_{\text{col}}^{\prime}\mathbf{R}^{-1}\mathbf{y}_{\text{col}} = \hat{\sigma}^{2}\mathbf{J}(H_{C}, H_{2})$ | c — 1 | | H_1 | $\frac{(y_{})^2}{rc} + y'_{row}C^{-1}y_{row} + y'_{col}R^{-1}y_{col} = \hat{\sigma}^2 \hat{J}(H_1, H_2)$ | r+c-1 | | Difference | $y'y - \frac{(y_{})^2}{rc} - y'_{row}C^{-1}y_{row} - y'_{col}R^{-1}y_{col}$
= $(r-1)(c-1)\hat{\sigma}^2$ | (r-1)(c-1) | | Total | y'y | rc | It may be shown that [see (10.23) and problem 11.5] (10.46) $$\mathbf{y}_{\text{row}}^{\prime} \mathbf{C}^{-1} \mathbf{y}_{\text{row}} = \sum_{i=1}^{r} \frac{y_{i}^{2}}{c} - \frac{y_{\cdot \cdot}^{2}}{rc},$$ $$\mathbf{y}_{\text{col}}^{\prime} \mathbf{R}^{-1} \mathbf{y}_{\text{col}} = \sum_{j=1}^{c} \frac{y_{\cdot j}^{2}}{r} - \frac{y_{\cdot \cdot}^{2}}{rc}.$$ Note that here the alternative hypothesis H_1 may be expressed as the intersection of three independent hypotheses, $H_1 = H_{\mu} \cap H_R \cap H_C$, where H_{μ} is the hypothesis that $\mu \neq 0$, H_R is the hypothesis that $\rho \neq 0$, and H_C is the hypothesis that $\tau \neq 0$. Against a null hypothesis H_2 , $\mu = 0$, $\rho = 0$, $\tau = 0$, we see that $$\begin{split} f(H_1,\,H_2) &= f(H_\mu,\,H_2) + f(H_R,\,H_2) + f(H_C,\,H_2),\\ \text{where} \quad f(H_\mu,\,H_2) &= F(n_1=1,\,n_2=(r-1)(c-1)),\\ f(H_R,\,H_2) &= (r-1)F(n_1=r-1,\,n_2=(r-1)(c-1)),\\ f(H_C,\,H_2) &= (c-1)F(n_1=c-1,\,n_2=(r-1)(c-1)),\\ f(H_1,\,H_2) &= (r+c-1)F(n_1=r+c-1,\,n_2=(r-1)(c-1)), \end{split}$$ where $F(n_1, n_2)$ has the analysis of variance distribution with n_1 and n_2 degrees of freedom under the null hypothesis. For p = 1, we get from (10.23), (10.19), (10.24), (10.37), and (10.40) the following values for use in table 10.1 in addition to those in (10.46) (see problem 11.6): (10.47) $$X'_{row}C^{-1}X_{row} = \sum_{i=1}^{r} \frac{x_{i}^{2}}{c} - \frac{x_{i}^{2}}{rc},$$ $$X'_{col}R^{-1}X_{col} = \sum_{j=1}^{c} \frac{x_{i}^{2}y_{i}}{r} - \frac{x_{i}^{2}y_{i}}{rc},$$ $$X'_{row}C^{-1}y_{row} = \sum_{i=1}^{r} \frac{x_{i}y_{i}}{r} - \frac{x_{i}y_{i}}{rc},$$ $$X'_{col}R^{-1}y_{col} = \sum_{j=1}^{c} \frac{x_{i}y_{ij}}{r} - \frac{x_{i}y_{i}}{rc},$$ $$S^{1}_{33\cdot12} = \sum_{i=1}^{r} \sum_{j=1}^{c}
x_{ij}^{2} - \frac{x_{i}^{2}}{rc} - \sum_{i=1}^{r} \frac{x_{i}^{2}}{c} + \frac{x_{i}^{2}}{rc} - \sum_{j=1}^{c} \frac{x_{i}^{2}y_{ij}}{r} + \frac{x_{i}^{2}y_{i}}{rc},$$ $$\beta^{1}_{3} = \frac{\sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij}y_{ij} - \sum_{i=1}^{r} \frac{x_{i}y_{i}}{c} - \sum_{j=1}^{c} \frac{x_{i}y_{ij}}{r} + \frac{x_{i}y_{i}}{rc},$$ $$S^{2}_{33\cdot12} = \sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij}^{2} - \sum_{i=1}^{r} \frac{x_{i}^{2}}{c},$$ $$\beta^{2}_{3} = \frac{\sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij}y_{ij} - \sum_{i=1}^{r} \frac{x_{i}y_{i}}{c}}{\sum_{i=1}^{r} \frac{x_{i}y_{i}}{c} - \sum_{i=1}^{r} \frac{x_{i}^{2}}{c}}.$$ #### 11. PROBLEMS - 11.1. What is the distribution of $\hat{J}(H_1, H_2)$ in (4.3) if the null hypothesis is not satisfied? [Cf. Anderson (1958, p. 107).] - 11.2. Show that $S_{11}^{-1}S_{12}S_{22\cdot 1}^{-1} = S_{11\cdot 2}^{-1}S_{12}S_{22}^{-1}$, where the matrices are defined in (5.6), (5.7), (5.8). - 11.3. Give the specification of the matrices X^{α} , β^{α} for the hypotheses H_{α} , $\alpha = 2, 3, 4, 6, 7$, in section 8. - 11.4. Confirm the results given in (10.23). - 11.5. Confirm the results given in (10.46). - 11.6. Confirm the results given in (10.47). - 11.7. Verify that the asymptotic behavior of the minimum discrimination information statistics in chapter 10 is in accordance with the results of chapter 5. - **11.8.** Show that - (a) $\hat{J}(H_1, H_2)$ in table 5.2 is equal to $(n-p)r_{y\cdot 2\cdot \dots p}^2/(1-r_{y\cdot 2\cdot \dots p}^2)$, where $r_{y\cdot 2\cdot \dots p}$ is the multiple correlation of y with x_2, \dots, x_p . - (b) $\hat{J}(H_1, H_2)$ is an estimate of J(1, 2) in (7.18) of chapter 9 for a sample of n observations. - 11.9. Suppose that table 5.1 applies to a sample of n+1 observations, that is, the y's and x's are centered about their respective sample averages, and that q=p-1. Show that here $\hat{J}(H_1, H_2)=(n-p)r_{v1\cdot 23\cdot \dots p}^2/(1-r_{v1\cdot 23\cdot \dots p}^2)$, where $r_{v1\cdot 23\cdot \dots p}$ is the partial correlation of y with x_1 . - 11.10. Show that $\hat{\beta}_1$ in (7.7) may also be expressed as $\hat{\beta}_1 = S_{11\cdot 2}^{-1}X_{1\cdot 2}'y$, where $S_{11\cdot 2} = S_{11} S_{12}S_{22}^{-1}S_{21}$ and $X_{1\cdot 2}' = X_1' S_{12}S_{22}^{-1}X_2'$. # Multivariate Analysis; # The Multivariate Linear Hypothesis #### 1. INTRODUCTION In this chapter we examine tests of linear hypotheses for samples from multivariate normal populations, thus extending the analyses of the previous chapter. In the next chapter we apply the general ideas to the analysis of samples from multivariate normal populations under hypotheses on the covariance matrices and on the means other than those included in the linear hypothesis. The treatment in this chapter is not intended to be exhaustive, and has wider applicability than to the specific cases considered. #### 2. BACKGROUND Suppose two simple statistical hypotheses, say H_1 and H_2 , specify respectively the means of n k-variate normal populations with common covariance matrix $\Sigma = (\sigma_{ij})$, $i, j = 1, 2, \dots, k$. For n independent observations (1 \times k matrices or vectors), one from each of the populations, (2.17) in chapter 9 becomes $(n_1 = n_2 = \dots = n_r = 1, r = n)$ (2.1) $$2I(1:2; O_n) = J(1, 2; O_n) = \operatorname{tr} \Sigma^{-1}(\delta_1 \delta_1' + \cdots + \delta_n \delta_n'),$$ where $\delta_i = \mu_i^1 - \mu_i^2$, with μ_i^{α} , $\alpha = 1$, 2, the one-column matrices (vectors) of means of the *i*th population under H_{α} , and $\mu_i' = (\mu_{i1}, \mu_{i2}, \dots, \mu_{ik})$, $i = 1, 2, \dots, n$. (This was still further specialized in section 2 of chapter 10.) #### 3. THE MULTIVARIATE LINEAR HYPOTHESIS #### 3.1. Specification For the ith observation, we have the regression model $$\mathbf{z}_i = \mathbf{y}_i - \mathbf{B}\mathbf{x}_i, \qquad i = 1, 2, \cdots, n,$$ where $\mathbf{z}_i' = (z_{i1}, z_{i2}, \dots, z_{ik_2})$, $\mathbf{y}_i' = (y_{i1}, y_{i2}, \dots, y_{ik_2})$, $\mathbf{x}_i' = (x_{i1}, x_{i2}, \dots, x_{ik_1})$, $\mathbf{B} = (\beta_{rs})$, $r = 1, 2, \dots, k_2$, $s = 1, 2, \dots, k_1$, $k_1 < n$, $k_2 < n$, \mathbf{B} of rank min (k_1, k_2) . We may also express the *n* regressions in (3.1) as the one over-all regression model $$\mathbf{Z} = \mathbf{Y} - \mathbf{X}\mathbf{B}',$$ where $Z' = (z_1, z_2, \dots, z_n)$, $Y' = (y_1, y_2, \dots, y_n)$, $X' = (x_1, x_2, \dots, x_n)$, with Z' and Y' $k_2 \times n$ matrices and X' a $k_1 \times n$ matrix. We assume that: - (a) the z_i are independent normal random $k_2 \times 1$ matrices (vectors) with zero means and common covariance matrix Σ , - (b) the x_{ij} , $i = 1, 2, \dots, n, j = 1, 2, \dots, k_1$, are known, - (c) X is of rank k_1 , - (d) $\mathbf{B} = \mathbf{B}^1$ and $\mathbf{B} = \mathbf{B}^2$ are parameter matrices specified respectively by the hypotheses H_1 and H_2 , - (e) the y_i are stochastic $k_2 \times 1$ matrices, and $E_1(Y) = XB^{1'}$, $E_2(Y) = XB^{2'}$. Under the foregoing assumptions (2.1) becomes (3.3) $$2I(1:2; O_n) = J(1, 2; O_n) = \operatorname{tr} \Sigma^{-1}((\mathbf{B}^1\mathbf{x}_1 - \mathbf{B}^2\mathbf{x}_1)(\mathbf{B}^1\mathbf{x}_1 - \mathbf{B}^2\mathbf{x}_1)' + \cdots + (\mathbf{B}^1\mathbf{x}_n - \mathbf{B}^2\mathbf{x}_n)(\mathbf{B}^1\mathbf{x}_n - \mathbf{B}^2\mathbf{x}_n)')$$ $= \operatorname{tr} \Sigma^{-1}(\mathbf{B}^1 - \mathbf{B}^2)(\mathbf{x}_1\mathbf{x}_1' + \cdots + \mathbf{x}_n\mathbf{x}_n')(\mathbf{B}^1 - \mathbf{B}^2)'$ $= \operatorname{tr} \Sigma^{-1}(\mathbf{B}^1 - \mathbf{B}^2)X'X(\mathbf{B}^1 - \mathbf{B}^2)'.$ As in chapter 10, we shall see that suitable specification of the matrices X and B provides the appropriate model for many statistical problems of interest. [Cf. Anderson (1958, pp. 211-212; 215-216), Roy (1957, p. 82), Wilks (1943, pp. 245-252).] #### 3.2. Linear Discriminant Function We generalize here the presentation in section 5 of chapter 9. Suppose we take $w_i = \alpha' y_i = \alpha_1 y_{i1} + \alpha_2 y_{i2} + \cdots + \alpha_{k_i} y_{ik_i}$, $i = 1, 2, \cdots, n$, the same linear compound of the y's for each observation. Since the w's are normally distributed with $\sigma_{w_i}^2 = \alpha' \Sigma \alpha$, (3.3) yields for the w's [cf. (5.2) in chapter 9] (3.4) $$J(1, 2; w)$$ $$= \frac{\alpha'(B^{1}x_{1} - B^{2}x_{1})(B^{1}x_{1} - B^{2}x_{1})'\alpha + \cdots + \alpha'(B^{1}x_{n} - B^{2}x_{n})(B^{1}x_{n} - B^{2}x_{n})'\alpha}{\alpha'\Sigma\alpha}$$ $$= \frac{\alpha'(B^{1} - B^{2})X'X(B^{1} - B^{2})'\alpha}{\alpha'\Sigma\alpha}$$ For the linear compound maximizing J(1, 2; w), we find (by the usual calculus procedures) that α satisfies $(\mathbf{B}^1 - \mathbf{B}^2)\mathbf{X}'\mathbf{X}(\mathbf{B}^1 - \mathbf{B}^2)'\alpha = \lambda \Sigma \alpha$, where λ is the largest root of the determinantal equation $$|(\mathbf{B}^1 - \mathbf{B}^2)\mathbf{X}'\mathbf{X}(\mathbf{B}^1 - \mathbf{B}^2)' - \lambda \mathbf{\Sigma}| = 0.$$ The rank of $(\mathbf{B}^1 - \mathbf{B}^2)\mathbf{X}'\mathbf{X}(\mathbf{B}^1 - \mathbf{B}^2)'$ is not greater than min (k_1, k_2) ; thus the determinantal equation has $p \leq \min(k_1, k_2)$ nonzero roots designated in descending order as $\lambda_1, \lambda_2, \dots, \lambda_p$. We thus have (3.5) $$J(1, 2; O_n) = \operatorname{tr} \Sigma^{-1}(\mathbf{B}^1 - \mathbf{B}^2)\mathbf{X}'\mathbf{X}(\mathbf{B}^1 - \mathbf{B}^2)' = \lambda_1 + \lambda_2 + \cdots + \lambda_p$$ = $J(1, 2; \lambda_1) + \cdots + J(1, 2; \lambda_p)$, where $\lambda_i = J(1, 2; \lambda_i)$ is the value of (3.4) for α associated with $\lambda = \lambda_i$. # 4. THE MINIMUM DISCRIMINATION INFORMATION STATISTIC We first state some facts about estimates of the parameters **B** and Σ of section 3.1. [Cf. Anderson (1951, pp. 103-104; 1958, pp. 179-183), Lawley (1938, pp. 185-186), Wilks (1943, pp. 245-250).] The classical least squares procedure of minimizing tr $\mathbf{Z}'\mathbf{Z} = \text{tr}(\mathbf{Y}' - \mathbf{B}\mathbf{X}')(\mathbf{Y} - \mathbf{X}\mathbf{B}')$ with respect to the β_{rs} leads to the normal equations: (4.1) $$X'X\hat{B}' = X'Y$$, or $\hat{B}X'X = Y'X$, $\hat{B} = (\hat{\beta}_{rs}) = Y'X(X'X)^{-1}$. The $\hat{\beta}_{rs}$, $r=1, 2, \cdots, k_2$, $s=1, 2, \cdots, k_1$, $(k_1k_2 \text{ linear functions of the } y's)$, are normal, minimum variance, unbiased, sufficient estimates of the β_{rs} . These properties are derived in section 10, as is also the fact that the covariance matrix of the k_1k_2 values of $\hat{\beta}_{rs}$ ordered as $\hat{\beta}_{11}$, $\hat{\beta}_{12}$, \cdots , $\hat{\beta}_{1k_1}$, $\hat{\beta}_{21}$, \cdots , $\hat{\beta}_{2k_1}$, \cdots , $\hat{\beta}_{k_2k_1}$ is the $k_2k_1 \times k_2k_1$ matrix, where $(\Sigma) \times (X'X)^{-1}$ means the Kronecker or direct product of the matrices [MacDuffee (1946, pp. 81-88), see also Anderson (1958, pp. 347-348), Cornish (1957)]. An unbiased estimate of Σ with $(n-k_1)$ degrees of freedom is obtained from $$(n - k_1)\hat{\Sigma} = \hat{Z}'\hat{Z} = (Y - X\hat{B}')'(Y - X\hat{B}') = Y'Y - \hat{B}X'X\hat{B}'$$ = Y'Y - (Y'X)(X'X)⁻¹(X'Y). (See problems 12.15 and 12.16.) The minimum discrimination information statistic is obtained by replacing the population parameters in I(1:2) by best unbiased estimates under the hypotheses. (Details on the conjugate distribution of a multivariate normal distribution are in sections 2 and 3.1 of chapter 12.) Suppose the hypothesis H_1 imposes no restriction on **B** and the null hypothesis H_2 specifies $\mathbf{B} = \mathbf{B}^2$. Writing $\hat{\mathbf{B}}^1$ to indicate the solution of (4.1) under H_1 , we have (4.3) $2\hat{I}(H_1: H_2; O_n) = \hat{J}(H_1, H_2; O_n) = \text{tr } \hat{\Sigma}^{-1}(\hat{\mathbf{B}}^1 - \mathbf{B}^2)\mathbf{X}'\mathbf{X}(\hat{\mathbf{B}}^1 - \mathbf{B}^2)',$ where $$(n - k_1)\hat{\Sigma} = \hat{Z}'\hat{Z} = (Y - X\hat{B}^{1'})'(Y -
X\hat{B}^{1'}) = Y'Y - \hat{B}^{1}X'X\hat{B}^{1'}$$ = Y'Y - (Y'X)(X'X)⁻¹(X'Y). Statistics of the form in (4.3) were introduced by Lawley (1938), Hotelling (1947). In section 10, we also show that (4.4) $$\operatorname{tr} \hat{\mathbf{\Sigma}}^{-1}(\hat{\mathbf{B}} - \mathbf{B})\mathbf{X}'\mathbf{X}(\hat{\mathbf{B}} - \mathbf{B})' = (\hat{\beta}_{11} - \beta_{11}, \dots, \hat{\beta}_{1k_1} - \beta_{1k_1}, \dots, \hat{\beta}_{11} - \beta_{11})$$ $$\hat{\beta}_{11} - \beta_{11}$$ $$\hat{\beta}_{1k_1} - \beta_{1k_1}$$ $$\hat{\beta}_{1k_1} - \beta_{1k_1}$$ $$\hat{\beta}_{1k_1} - \beta_{1k_1}$$ $$\hat{\beta}_{k_21} - \beta_{k_21}$$ $$\hat{\beta}_{k_21} - \beta_{k_21}$$ $$\hat{\beta}_{k_2k_1} - \beta_{k_2k_1}$$ Since the inverse of the covariance matrix in (4.2) is the direct product of the inverses of the matrices, that is, $((\Sigma) \times \cdot (X'X)^{-1})^{-1} = (\Sigma^{-1}) \times \cdot (X'X)$, [MacDuffee (1946, p. 82)], we see from (4.4) that - (a) The divergence $[2I(1:2; O_n)]$ in (3.3) is equivalent to that between two k_1k_2 -variate normal populations with respective means $(\beta_{11}^{\alpha}, \dots, \beta_{1k_1}^{\alpha}, \dots, \beta_{k_2k_1}^{\alpha}, \dots, \beta_{k_2k_1}^{\alpha})$, $\alpha = 1, 2$, and common covariance matrix $(\Sigma) \times (X'X)^{-1}$ (see the remark at the end of section 3 of chapter 10). - (b) The right-hand side of (4.4) is the quadratic form in the exponent of the k_1k_2 -variate normal distribution of the $\hat{\beta}_{rs}$, $r=1, 2, \cdots, k_2$, $s=1, 2, \cdots, k_1$, with the covariance matrix replaced by an unbiased estimate with $(n - k_1)$ degrees of freedom. $\hat{J}(H_1, H_2; O_n)$ in (4.3) is therefore a form of Hotelling's generalized Student ratio (Hotelling's T^2). Lawley (1938) has essentially shown that for $k_1 \neq 1$, $k_2 \neq 1$, and n large, approximately, (4.5) $$\hat{J}(H_1, H_2; O_n) = \operatorname{tr} \hat{\Sigma}^{-1}(\hat{\mathbf{B}}^1 - \mathbf{B}^2)\mathbf{X}'\mathbf{X}(\hat{\mathbf{B}}^1 - \mathbf{B}^2)' = \frac{k_1k_2(n - k_1)}{n - k_1 - k_2 + 1}F,$$ where F has the analysis of variance distribution under the null hypothesis H_2 with degrees of freedom $n_1 = [(1+c)k_1k_2]$ and $n_2 = [(1+c)(n-k_1-k_2+1)]$, where $c = (k_1-1)(k_2-1)/(n-k_1)$, and [] means to the nearest integer. When $k_1 = 1$, or $k_2 = 1$, (4.5) is exact. [In (4.4) of chapter 10, $k_2 = 1$, $k_1 = p$.] Pillai (1955) has shown that, approximately, (4.6) $$\hat{J}(H_1, H_2; O_n) = \operatorname{tr} \hat{\mathbf{\Sigma}}^{-1}(\hat{\mathbf{B}}^1 - \mathbf{B}^2)\mathbf{X}'\mathbf{X}(\hat{\mathbf{B}}^1 - \mathbf{B}^2)'$$ $$= \frac{k_1k_2(n - k_1)}{n - k_1 - k_2 - 1 + 2/k_2} F,$$ where F has the analysis of variance distribution under the null hypothesis H_2 with $n_1 = k_1 k_2$ and $n_2 = k_2 (n - k_1 - k_2 - 1) + 2$ degrees of freedom. In accordance with the asymptotic theory, $J(H_1, H_2; O_n)$ is asymptotically distributed as χ^2 with $k_1 k_2$ degrees of freedom. [Cf. Anderson (1958, p. 224).] On the other hand, under one of the alternatives, (4.5) still holds but F now has the noncentral analysis of variance distribution, with the same degrees of freedom as under the null hypothesis, and noncentrality parameter $J(H_1, H_2) = \text{tr } \Sigma^{-1}(\mathbf{B}^1 - \mathbf{B}^2)\mathbf{X}'\mathbf{X}(\mathbf{B}^1 - \mathbf{B}^2)'$. In accordance with the asymptotic theory, $\hat{J}(H_1, H_2; O_n)$ is asymptotically distributed as noncentral χ^2 with k_1k_2 degrees of freedom and noncentrality parameter $J(H_1, H_2)$ when the null hypothesis is not true. [For the noncentral distributions see, for example, Anderson (1958, pp. 112–115), Fisher (1928), Fix (1949), Hsu (1938), Kempthorne (1952, pp. 219–222), Patnaik (1949), Pearson and Hartley (1951), Rao (1952, p. 50), Simaika (1941), Tang (1938), Weibull (1953), Wijsman (1957), and section 6.1 of chapter 12.] #### 5. SUBHYPOTHESES #### 5.1. Two-Partition Subhypothesis Suppose we partition the parameters into two sets, and instead of (3.1) we now consider (5.1) $$\mathbf{z}_i = \mathbf{y}_i - \mathbf{B}_1 \mathbf{x}_{1i} - \mathbf{B}_2 \mathbf{x}_{2i}, \quad i = 1, 2, \cdots, n,$$ where $\mathbf{x}_i' = (\mathbf{x}_{1i}', \mathbf{x}_{2i}')$, $\mathbf{x}_{1i}' = (x_{i1}, x_{i2}, \dots, x_{iq_1})$, $\mathbf{x}_{2i}' = (x_{iq_1+1}, \dots, x_{iq_1+q_2})$, $q_1 + q_2 = k_1$, $\mathbf{B} = (\mathbf{B}_1, \mathbf{B}_2)$, with \mathbf{B}_1 and \mathbf{B}_2 respectively $k_2 \times q_1$ and $k_2 \times q_2$ matrices. We may also express the *n* regressions in (5.1) as the one over-all regression model (5.2) $$Z = Y - X_1 B_1' - X_2 B_2',$$ where Y, Z are defined as in (3.2), and $$\mathbf{X}' = (\mathbf{x}_1, \cdot \cdot \cdot, \mathbf{x}_n) = \begin{pmatrix} \mathbf{x}_{11}, \cdot \cdot \cdot, \mathbf{x}_{1n} \\ \mathbf{x}_{21}, \cdot \cdot \cdot, \mathbf{x}_{2n} \end{pmatrix} = \begin{pmatrix} \mathbf{X}'_1 \\ \mathbf{X}'_2 \end{pmatrix},$$ with $X_1' = (\mathbf{x}_{11}, \mathbf{x}_{12}, \dots, \mathbf{x}_{1n}), \ X_2' = (\mathbf{x}_{21}, \mathbf{x}_{22}, \dots, \mathbf{x}_{2n}), \ \text{and} \ X_1 \ \text{and} \ X_2 \ \text{respectively of ranks} \ q_1 \ \text{and} \ q_2 = k_1 - q_1.$ With the same assumptions about the z_i as in section 3.1, we now consider the hypotheses: (5.3) $$H_1: E_1(\mathbf{Y}) = \mathbf{X}_1 \mathbf{B}_1^{1'} + \mathbf{X}_2 \mathbf{B}_2^{1'} H_2: E_2(\mathbf{Y}) = \mathbf{X}_1 \mathbf{B}_1^{2'} + \mathbf{X}_2 \mathbf{B}_2^{2'}.$$ Now (3.3) yields (5.4) $$2I(1:2; O_n) = J(1, 2; O_n)$$ = $\operatorname{tr} \Sigma^{-1}(B_1^1 - B_1^2, B_2^1 - B_2^2) \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} (B_1^1 - B_1^2)' \\ (B_2^1 - B_2^2)' \end{pmatrix},$ where $$X'X = \begin{pmatrix} X'_1 \\ X'_2 \end{pmatrix} (X_1 \quad X_2) = \begin{pmatrix} X'_1X_1 & X'_1X_2 \\ X'_2X_1 & X'_2X_2 \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} = S.$$ The normal equations (4.1) under H_1 become (5.5) $$(\hat{\mathbf{B}}_{1}^{1}, \hat{\mathbf{B}}_{2}^{1}) \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix} = (\mathbf{Y}'\mathbf{X}_{1}, \mathbf{Y}'\mathbf{X}_{2}),$$ or (5.6) $$\hat{\mathbf{B}}_{1}^{1}\mathbf{S}_{11} + \hat{\mathbf{B}}_{2}^{1}\mathbf{S}_{21} = \mathbf{Y}'\mathbf{X}_{1}$$ $$\hat{\mathbf{B}}_{1}^{1}\mathbf{S}_{12} + \hat{\mathbf{B}}_{2}^{1}\mathbf{S}_{22} = \mathbf{Y}'\mathbf{X}_{2}.$$ From (5.6) we find [cf. (5.7) and (5.8) of chapter 10] $$(5.7) \hat{\mathbf{B}}_{2}^{1} = \mathbf{Y}' \mathbf{X}_{2,1} \mathbf{S}_{22,1}^{-1}, \hat{\mathbf{B}}_{1}^{1} = \mathbf{Y}' \mathbf{X}_{1} \mathbf{S}_{11}^{-1} - \hat{\mathbf{B}}_{2}^{1} \mathbf{S}_{21} \mathbf{S}_{11}^{-1},$$ where $$X_{2\cdot 1} = X_2 - X_1 S_{11}^{-1} S_{12}$$, $S_{22\cdot 1} = S_{22} - S_{21} S_{11}^{-1} S_{12}$. For the estimate of Σ we have from (4.3) (5.8) $$(n-k_1)\hat{\mathbf{\Sigma}} = \mathbf{Y}'\mathbf{Y} - (\hat{\mathbf{B}}_1^1, \hat{\mathbf{B}}_2^1) \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{B}}_1^{1'} \\ \hat{\mathbf{B}}_2^{1'} \end{pmatrix}.$$ Suppose, now, that in particular we want to test the null hypothesis (5.9) $$H_3: \mathbf{B} = \mathbf{B}^3 = (\mathbf{B}_1^3, \mathbf{0}),$$ that is, $B_2^3 = 0$, with no restrictions on B_1^3 , against the alternative hypothesis (5.10) $$H_1: \mathbf{B} = \mathbf{B}^1 = (\mathbf{B}_1^1, \mathbf{B}_2^1),$$ with no restrictions on the parameters. Under H_1 we have (5.7) and (5.8). Under H_3 the normal equations (4.1) now yield (5.11) $$\hat{\mathbf{B}}_{1}^{3}\mathbf{S}_{11} = \mathbf{Y}'\mathbf{X}_{1}, \quad \hat{\mathbf{B}}_{1}^{3} = \mathbf{Y}'\mathbf{X}_{1}\mathbf{S}_{11}^{-1}.$$ We estimate $J(1, 2; O_n)$ in (5.4) by replacing the parameters by best unbiased estimates under the hypotheses, so that $$(5.12) \quad \hat{J}(H_1, H_3) = \operatorname{tr} \hat{\mathbf{\Sigma}}^{-1}(\hat{\mathbf{B}}_1^1 - \hat{\mathbf{B}}_1^3, \hat{\mathbf{B}}_2^1) \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix} \begin{pmatrix} (\hat{\mathbf{B}}_1^1 - \hat{\mathbf{B}}_1^3)' \\ \hat{\mathbf{B}}_2^{1'} \end{pmatrix}.$$ From (5.7) and (5.11), we find [cf. (5.10)-(5.13) in chapter 10] $$(5.13) \quad (\hat{\mathbf{B}}_{1}^{1}, \hat{\mathbf{B}}_{2}^{1}) \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{B}}_{1}^{1'} \\ \hat{\mathbf{B}}_{2}^{1'} \end{pmatrix} = \hat{\mathbf{B}}_{1}^{3'} \mathbf{S}_{11} \hat{\mathbf{B}}_{1}^{3'} + \hat{\mathbf{B}}_{2}^{1} \mathbf{S}_{22 \cdot 1} \hat{\mathbf{B}}_{2}^{1'}$$ $$= \mathbf{Y}' \mathbf{X}_{1} \mathbf{S}_{11}^{-1} \mathbf{X}_{1}' \mathbf{Y} + \mathbf{Y}' \mathbf{X}_{2,1} \mathbf{S}_{22}^{-1} \mathbf{X}_{2,1}' \mathbf{Y},$$ $$(5.14) \qquad (\hat{\mathbf{B}}_{1}^{1} - \hat{\mathbf{B}}_{1}^{3}, \hat{\mathbf{B}}_{2}^{1}) \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix} \begin{pmatrix} (\hat{\mathbf{B}}_{1}^{1} - \hat{\mathbf{B}}_{1}^{3})' \\ \hat{\mathbf{B}}_{2}^{1'} \end{pmatrix} = \hat{\mathbf{B}}_{2}^{1} \mathbf{S}_{22 \cdot 1} \hat{\mathbf{B}}_{2}^{1'},$$ (5.15) $$\hat{J}(H_1, H_3) = \operatorname{tr} \hat{\Sigma}^{-1} \hat{B}^1 S \hat{B}^{1'} - \operatorname{tr} \hat{\Sigma}^{-1} \hat{B}^3 S_{11} \hat{B}_1^{3'}.$$ It may be verified that $$(5.16) X_1 S_{11}^{-1} X_1' X_{2\cdot 1} S_{22\cdot 1}^{-1} X_{2\cdot 1}' = 0,$$ and since $X'_{2\cdot 1}X_{2\cdot 1} = S_{22\cdot 1}$, $$(5.17) (I_n - X_1 S_{11}^{-1} X_1' - X_{2 \cdot 1} S_{22 \cdot 1}^{-1} X_{2 \cdot 1}') X_{2 \cdot 1} S_{22 \cdot 1}^{-1} X_{2 \cdot 1}' = 0,$$ where I_n is the $n \times n$ identity matrix, that is, the two factors in $J(H_1, H_3)$ are independent. The foregoing is summarized in tables 5.1 and 5.2. TABLE 5.1 | Variation due to | Generalized Sum of Squares | D.F. |
--|---|---------| | $H_3: \mathbf{B}^3 = (\mathbf{B}_1^3, 0)$ | $\hat{B}_{1}^{3}S_{11}\hat{B}_{1}^{3'} = Y'X_{1}S_{11}^{-1}X_{1}'Y$ | q_1 | | Difference | $\hat{\mathbf{B}}_{2}^{1}\mathbf{S}_{22\cdot 1}\hat{\mathbf{B}}_{2}^{1'} = \mathbf{Y}'\mathbf{X}_{2\cdot 1}\mathbf{S}_{22\cdot 1}^{-1}\mathbf{X}_{2\cdot 1}'\mathbf{Y}$ | q_2 | | $H_1: \mathbf{B}^1 = (\mathbf{B}_1^1, \mathbf{B}_2^1)$ | $\hat{\mathbf{B}}^{1}\mathbf{X}'\mathbf{X}\hat{\mathbf{B}}^{1'} = \mathbf{Y}'\mathbf{X}_{1}\mathbf{S}_{11}^{-1}\mathbf{X}_{1}'\mathbf{Y} + \mathbf{Y}'\mathbf{X}_{2\cdot 1}\mathbf{S}_{22\cdot 1}^{-1}\mathbf{X}_{2\cdot 1}'\mathbf{Y}$ | k_1 | | Difference | $\mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}^{1}\mathbf{X}'\mathbf{X}\hat{\mathbf{B}}^{1'} = (n - k_1)\hat{\mathbf{\Sigma}}$ | $n-k_1$ | | Total | Y'Y | n | TABLE 5.2 | Test | Distribution on the | Null Hypothesis | |---|--|--| | $ \frac{\hat{J}(H_1, H_2)}{= \operatorname{tr} \hat{\Sigma}^{-1} \hat{B}^1 X' X \hat{B}^{1'}} $ | $f(H_1, H_2) = \frac{k_1 k_2 (n - k_1)}{n - k_1 - k_2 + 1} F,$ | $B = B^2 = 0$, i.e.,
$B_1^2 = 0$, $B_2^2 = 0$ | | | $n_1 = [k_1 k_2 (1 + c_1)]$ | | | | $n_2 = [(n - k_1 - k_2 + 1)(1 + c_1)]$ | | | | $c_1 = (k_1 - 1)(k_2 - 1)/(n - k_1)$ | | | | $J(H_1, H_3) = \frac{q_2 k_2 (n - k_1)}{n - k_1 - k_2 + 1} F,$ | $B = B^3 = (B_1^3, 0),$
i.e., $B_2^3 = 0$ | | . . | $n_1 = [q_2 k_* (1 + c_2)]$ | | | | $n_2 = [(n - k_1 - k_2 + 1)(1 + c_2)]$ | | | | $c_2 = (q_2 - 1)(k_2 - 1)/(n - k_1)$ | | ## 5.2. Three-Partition Subhypothesis (Cf. section 5.2 of chapter 10.) When the subhypothesis requires partitioning the matrices X and B into three submatrices, $X = (X_1, X_2, X_3)$, $B = (B_1, B_2, B_3)$, we obtain from (4.1) the solutions (5.18) $$\hat{\mathbf{B}}_{3} = \mathbf{Y}'\mathbf{X}_{3\cdot 12}\mathbf{S}_{33\cdot 12}^{-1}$$ $$\hat{\mathbf{B}}_{2} = (\mathbf{Y}'\mathbf{X}_{2\cdot 1} - \hat{\mathbf{B}}_{3}\mathbf{S}_{32\cdot 1})\mathbf{S}_{22\cdot 1}^{-1}$$ $$\hat{\mathbf{B}}_{1} = (\mathbf{Y}'\mathbf{X}_{1} - \hat{\mathbf{B}}_{2}\mathbf{S}_{21} - \hat{\mathbf{B}}_{3}\mathbf{S}_{31})\mathbf{S}_{11}^{-1},$$ where $$\mathbf{S} = \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} & \mathbf{S}_{13} \\ \mathbf{S}_{21} & \mathbf{S}_{22} & \mathbf{S}_{23} \\ \mathbf{S}_{21} & \mathbf{S}_{32} & \mathbf{S}_{33} \end{pmatrix}, \qquad \mathbf{S}_{tu} = \mathbf{X}_{t}' \mathbf{X}_{u}, \qquad t, u = 1, 2, 3,$$ and $$\begin{split} S_{33\cdot 12} &= S_{33\cdot 1} - S_{32\cdot 1} S_{22\cdot 1}^{-1} S_{23\cdot 1}, \\ S_{33\cdot 1} &= S_{33} - S_{21} S_{11}^{-1} S_{13}, & S_{32\cdot 1} &= S_{32} - S_{31} S_{11}^{-1} S_{12} = S_{23\cdot 1}, \\ S_{22\cdot 1} &= S_{22} - S_{21} S_{11}^{-1} S_{12}, & Y' X_{2\cdot 1} &= Y' (X_2 - X_1 S_{11}^{-1} S_{12}), \\ Y' X_{3\cdot 12} &= Y' (X_{3\cdot 1} - X_{2\cdot 1} S_{22\cdot 1}^{-1} S_{23\cdot 1}), & Y' X_{3\cdot 1} &= Y' (X_3 - X_1 S_{11}^{-1} S_{13}). \end{split}$$ We also have [cf. (5.21) in chapter 10] (5.19) $$\hat{\mathbf{B}}\hat{\mathbf{S}}\hat{\mathbf{B}}' = \mathbf{Y}'\mathbf{X}_{1}\mathbf{S}_{11}^{-1}\mathbf{X}_{1}'\mathbf{Y} + \mathbf{Y}'\mathbf{X}_{2\cdot 1}\mathbf{S}_{22\cdot 1}^{-1}\mathbf{X}_{2\cdot 1}'\mathbf{Y} + \hat{\mathbf{B}}_{3}\mathbf{S}_{33\cdot 12}\hat{\mathbf{B}}_{3}'$$ = $\mathbf{Y}'\mathbf{X}_{1}\mathbf{S}_{11}^{-1}\mathbf{X}_{1}'\mathbf{Y} + \mathbf{Y}'\mathbf{X}_{2\cdot 1}\hat{\mathbf{B}}_{2}' + \mathbf{Y}'\mathbf{X}_{3\cdot 1}\hat{\mathbf{B}}_{3}'$, where the last version is convenient when the data are raw observations and $x_{i1} = 1$ for all i. (See problems 12.11, 12.12, 12.13.) #### 6. SPECIAL CASES To illustrate sections 3, 4, and 5 we examine several interesting special cases. ### 6.1. Hotelling's Generalized Student Ratio (Hotelling's T^2) Suppose we have a random sample of n independent observations from a multivariate normal population, and we want to test a null hypothesis H_2 , specifying the population means, against an alternative hypothesis H_1 , that the population means are not as specified. (See section 3.1 of chapter 12.) The matrices in the regression models (3.1) and (3.2) are specified by (6.1) $$H_{1}: \mathbf{B} = \mathbf{B}^{1} = \begin{pmatrix} \beta_{11} \\ \beta_{21} \\ \vdots \\ \beta_{k_{2}1} \end{pmatrix}, \quad H_{2}: \mathbf{B} = \mathbf{B}^{2} = \begin{pmatrix} \beta_{11}^{2} \\ \beta_{21}^{2} \\ \vdots \\ \beta_{k_{2}1}^{2} \end{pmatrix},$$ $$\mathbf{x}_{1} = (1), \quad \mathbf{X}' = (1, 1, \dots, 1),$$ $$\mathbf{x}_i = (1), \quad \mathbf{X}' = (1, 1, \cdot \cdot \cdot, 1),$$ with X' a 1 \times n matrix. We find that X'X = n, $$\mathbf{Y}'\mathbf{X} = \mathbf{y}_1 + \mathbf{y}_2 + \cdots + \mathbf{y}_n = n\mathbf{\bar{y}} = \begin{pmatrix} n\bar{y}_1 \\ n\bar{y}_2 \\ \vdots \\ n\bar{y}_{k_2} \end{pmatrix},$$ $$n\bar{y}_{i} = y_{1i} + y_{2i} + \cdots + y_{ni}, \qquad i = 1, 2, \cdots, k_{2}.$$ The normal equations (4.1) thus yield (6.2) $$\hat{\mathbf{B}}^{1} = \begin{pmatrix} \hat{\beta}_{11} \\ \hat{\beta}_{21} \\ \vdots \\ \vdots \\ \hat{\beta}_{k,1} \end{pmatrix} = \begin{pmatrix} \bar{y}_{1} \\ \bar{y}_{2} \\ \vdots \\ \vdots \\ \bar{y}_{k_{2}} \end{pmatrix} = \bar{\mathbf{y}},$$ and [see (4.3)] (6.3) $$(n-1)\hat{\Sigma} = \mathbf{Y}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}' = \left(\sum_{i=1}^{n} (y_{ij} - \bar{y}_{j})(y_{il} - \bar{y}_{l})\right)$$ $$= N\mathbf{S}_{yy}, \qquad N = n-1, \qquad j, \ l = 1, \ 2, \cdots, k_{2},$$ where S_{yy} is the $k_2 \times k_2$ unbiased covariance matrix of the y's. Since B² is specified, (4.3) yields (6.4) $$\hat{J}(H_1, H_2) = \operatorname{tr} \hat{\Sigma}^{-1}(\bar{y} - B^2)n(\bar{y} - B^2)' = n(\bar{y} - B^2)'\hat{\Sigma}^{-1}(\bar{y} - B^2).$$ Note that $\hat{J}(H_1, H_2)$ is Hotelling's generalized Student ratio (Hotelling's T^2) (see section 4 in this chapter and section 4 in chapter 10), or from (4.5) with $k_1 = 1$, (6.5) $$\hat{J}(H_1, H_2) = \frac{(n-1)k_2}{n-k_2} F,$$ where F has the analysis of variance distribution with $n_1 = k_2$ and $n_2 = n - k_2$ degrees of freedom under the null hypothesis H_2 in (6.1). [Cf. Anderson (1958, p. 107), Rao (1952, p. 243).] #### 6.2. Centering [Cf. (5.14)–(5.19) in chapter 10.] We may explicitly introduce the mean value of y_i in (3.1) by taking $x_{i1} = 1$, $i = 1, 2, \dots, n$, so that the matrix X' of (5.2) is partitioned as (6.6) $$\mathbf{X}' = \begin{pmatrix} \frac{1}{x_{12}} & \frac{1}{x_{22}} & \cdots & x_{n2} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ x_{1k_1} & x_{2k_1} & \cdots & x_{nk_1} \end{pmatrix} = \begin{pmatrix} \mathbf{X}'_1 \\ \mathbf{X}'_2 \end{pmatrix}, \mathbf{X}'_1 = (1, 1, \cdots, 1), 1 \times n.$$ As in (5.14)–(5.17) in chapter 10, we have then that (6.7) $$\mathbf{X}'\mathbf{X} = \begin{pmatrix} \mathbf{X}'_1 \\ \mathbf{X}'_2 \end{pmatrix} (\mathbf{X}_1 \quad \mathbf{X}_2) = \begin{pmatrix} \frac{n}{n\bar{x}_2} & n\bar{x}_2 & \cdots & n\bar{x}_{k_1} \\ \vdots & \vdots & \ddots & \vdots \\ n\bar{x}_{k_1} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$ $$\mathbf{S}_{11} = n, \quad \mathbf{S}_{12} = (n\bar{x}_2, \cdots, n\bar{x}_{k_1}),$$ $$\mathbf{S}_{22\cdot 1} = \left(\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{il} - \bar{x}_l)\right) = N\mathbf{S}_{xx},$$ $$j, l = 2, \cdots, k_1, \quad N = n - 1,$$ (S_{xx}) is the $(k_1 - 1) \times (k_1 - 1)$ unbiased covariance matrix of the x's) $$\mathbf{X}_{2\cdot 1} = \mathbf{X}_2 - \mathbf{X}_1 \mathbf{S}_{11}^{-1}
\mathbf{S}_{12} = ((x_{ij} - \bar{x}_j)), \quad i = 1, 2, \dots, n, \ j = 2, 3, \dots, k_1.$$ We also find, as in (6.1), and from (5.11), that [cf. (5.18) and (5.19) in chapter 10] $$(6.8) \mathbf{Y}'\mathbf{X}_{1} = (\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{n}) \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \vdots \\ \vdots \\ \mathbf{1} \end{pmatrix} = n\bar{\mathbf{y}} = n \begin{pmatrix} \bar{y}_{1} \\ \bar{y}_{2} \\ \vdots \\ \bar{y}_{k_{2}} \end{pmatrix},$$ $$\hat{\mathbf{B}}_{1}^{2} = \bar{\mathbf{y}},$$ $$\mathbf{Y}'\mathbf{X}_{2} \cdot \mathbf{1} = \mathbf{Y}'\mathbf{X}_{2} - n \begin{pmatrix} \bar{y}_{1} \\ \bar{y}_{2} \\ \vdots \\ \bar{y}_{k_{2}} \end{pmatrix} (\bar{x}_{2}, \bar{x}_{3}, \cdots, \bar{x}_{k_{1}})$$ $$= \left(\sum_{i=1}^{n} (y_{ij} - \bar{y}_{j})(x_{il} - \bar{x}_{l}) \right) = N\mathbf{S}_{yx},$$ $$j = 1, 2, \cdots, k_{2}, \qquad l = 2, 3, \cdots, k_{1},$$ $(S_{yx} \text{ is the } k_2 \times (k_1 - 1) \text{ unbiased covariance matrix of the } y$'s with the x's, with $S'_{yx} = S_{xy}$. For the partitioning given by (6.6) the analysis summarized in table 5.1 becomes table 6.1. TABLE 6.1 | Variation due to | Generalized Sum of Squares | D.F. | |--|---|-----------| | Means $H_2: \mathbf{B}^2 = (\mathbf{B_1^2}, 0)$ | $\mathbf{\hat{B}}_{1}^{2}\mathbf{S}_{11}\mathbf{\hat{B}}_{1}^{2'}=n\mathbf{\bar{y}}\mathbf{\bar{y}}'$ | 1 | | Difference | $\mathbf{\hat{B}}_{2}^{1}S_{22\cdot 1}\mathbf{\hat{B}}_{2}^{1'} = \mathbf{Y}'\mathbf{X}_{2\cdot 1}S_{22\cdot 1}^{-1}\mathbf{X}_{2\cdot 1}'\mathbf{Y}$ | $k_1 - 1$ | | $H_1: \mathbf{B}^1 = (\mathbf{B}_1^1, \mathbf{B}_2^1)$ | $\hat{\mathbf{B}}^{1}\mathbf{X}'\mathbf{X}\hat{\mathbf{B}}^{1'} = n\bar{\mathbf{y}}\bar{\mathbf{y}}' + \mathbf{Y}'\mathbf{X}_{2\cdot 1}\mathbf{S}_{22\cdot 1}^{-1}\mathbf{X}_{2\cdot 1}'\mathbf{Y}$ | k_1 | | Difference | $\mathbf{Y}'\mathbf{Y} - \mathbf{\hat{B}}^{1}\mathbf{X}'\mathbf{X}\mathbf{\hat{B}}^{1'} = (n - k_1)\mathbf{\hat{\Sigma}}$ | $n-k_1$ | | Total | Y'Y | n | If we center the y's and x's about their respective sample averages, the analysis in table 6.1 may be condensed into table 6.2. $J(H_1, H_2) = N \operatorname{tr} \hat{\Sigma}^{-1} S_{yx} S_{xx}^{-1} S_{xy} = \frac{(k_1 - 1)k_2(n - k_1)}{n - k_1 - k_2 + 1} F$, where F has the analysis of variance distribution with $[(k_1-1)k_2(1+c)]$ and $[(n-k_1-k_2+1)(1+c)]$ degrees of freedom, $c=(k_1-2)(k_2-1)/(n-k_1)$, under the null hypothesis $\mathbf{B}=\mathbf{B}^2=\mathbf{0}$. $[J(H_1,H_2)]$ is asymptotically distributed as χ^2 with $(k_1-1)k_2$ degrees of freedom.] TABLE 6.2 | Variation due to | Generalized Sum of Squares | D.F. | |-------------------------|---|-----------| | Multivariate regression | $N\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$ | $k_1 - 1$ | | Difference | $(n-k_1)\hat{\Sigma}$ | $n-k_1$ | | Total | NS_{yy} | n-1 | More generally, if we center the y's and x's about their respective sample averages, the analysis in table 5.1, for what is essentially a three-partition subhypothesis, would be similar except that n would be replaced by n-1 and k_1 by k_1-1 and of course $q_1+q_2=k_1-1$. #### 6.3. Homogeneity of r Samples Suppose we have r independent samples respectively of n_i , i = 1, $2, \dots, r$, independent observations, from multivariate normal populations with a common covariance matrix. We want to test a null hypothesis H_2 , the r population mean matrices (vectors) are equal, against an alternative hypothesis H_1 , the population mean matrices are not all equal. [Cf. (6.15)–(6.24) in chapter 10.] For the *i*th sample the regression model is [cf. (3.2)] $$\mathbf{Z}_i = \mathbf{Y}_i - \mathbf{X}_i \mathbf{B}_i',$$ where $$\begin{split} \mathbf{Z}_{i}' &= (\mathbf{z}_{i1}, \, \mathbf{z}_{i2}, \, \cdots, \, \mathbf{z}_{in_{i}}), & \mathbf{z}_{ij}' &= (z_{ij1}, \, z_{ij2}, \, \cdots, \, z_{ijk_{2}}), \\ \mathbf{Y}_{i}' &= (\mathbf{y}_{i1}, \, \mathbf{y}_{i2}, \, \cdots, \, \mathbf{y}_{in_{i}}), & \mathbf{y}_{ij}' &= (y_{ij1}, \, y_{ij2}, \, \cdots, \, y_{ijk_{2}}), \\ \mathbf{X}_{i}' &= (1, 1, \cdots, 1), \quad 1 \times n_{i}, & \mathbf{B}_{i}' &= (\beta_{i1}, \, \beta_{i2}, \, \cdots, \, \beta_{ik_{2}}), \\ i &= 1, \, 2, \, \cdots, \, r \text{ samples}, & j &= 1, \, 2, \, \cdots, \, n_{i} \text{ observations}. \end{split}$$ The alternative hypothesis is (6.10) $$H_1: \mathbf{B}_i^{1'} = (\beta_{i1}, \beta_{i2}, \cdots, \beta_{ik_2}), \quad i = 1, 2, \cdots, r,$$ and the null hypothesis of homogeneity is (6.11) $$H_2: \mathbf{B}_i^{2'} = \mathbf{B}_i' = (\beta_{\cdot 1}, \beta_{\cdot 2}, \cdots, \beta_{\cdot k}), \quad i = 1, 2, \cdots, r.$$ We may write the regression model for the r samples combined, under H_1 , as $$\mathbf{Z} = \mathbf{Y} - \mathbf{X}^{1}\mathbf{B}^{1},$$ where $$Z' = (Z'_1, Z'_2, \cdots, Z'_r), \qquad Y' = (Y'_1, Y'_2, \cdots, Y'_r)$$ $$X^{1'} = \begin{pmatrix} X'_1 & 0 & \cdots & 0 \\ 0 & X'_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & X'_r \end{pmatrix}, \qquad B^1 = (B_1, B_2, \cdots, B_r).$$ Under H_2 , the regression model for the r samples combined is $$\mathbf{Z} = \mathbf{Y} - \mathbf{X}^2 \mathbf{B}^2,$$ where **Z** and **Y** are defined as in (6.12) and $X^{2'} = (X'_1, X'_2, \dots, X'_r)$, $B^2 = B$.. We thus have under H_1 (6.15) $$\mathbf{Y}'\mathbf{X}^1 = (\mathbf{Y}_1'\mathbf{X}_1, \mathbf{Y}_2'\mathbf{X}_2, \cdots, \mathbf{Y}_r'\mathbf{X}_r) = (n_1\bar{\mathbf{y}}_1, n_2\bar{\mathbf{y}}_2, \cdots, n_r\bar{\mathbf{y}}_r),$$ 'where $$\bar{y}'_{i} = (\bar{y}_{i1}, \bar{y}_{i2}, \cdots, \bar{y}_{ik}), n_{i}\bar{y}_{il} = y_{i1l} + y_{i2l} + \cdots + y_{in_{i}l}$$ The normal equations (4.1) are (6.16) $$\hat{\mathbf{B}}^{1} \begin{pmatrix} n_{1} & 0 & \cdots & 0 \\ 0 & n_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n_{r} \end{pmatrix} = (n_{1}\overline{\mathbf{y}}_{1}, n_{2}\overline{\mathbf{y}}_{2}, \cdots, n_{r}\overline{\mathbf{y}}_{r}),$$ or $$(n_1\hat{\mathbf{B}}_1, n_2\hat{\mathbf{B}}_2, \cdot \cdot \cdot, n_r\hat{\mathbf{B}}_r) = (n_1\bar{\mathbf{y}}_1, n_2\bar{\mathbf{y}}_2, \cdot \cdot \cdot, n_r\bar{\mathbf{y}}_r).$$ that is, $\hat{\mathbf{B}}_i = \bar{\mathbf{y}}_i$. From (4.3) the estimate of Σ is $$(6.17) \quad (n-r)\hat{\Sigma} = \mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}^{1}\mathbf{X}^{1}\mathbf{X}^{1}\hat{\mathbf{B}}^{1}'$$ $$= \mathbf{Y}'_{1}\mathbf{Y}_{1} + \cdots + \mathbf{Y}'_{r}\mathbf{Y}_{r}$$ $$- (\bar{\mathbf{y}}_{1}, \bar{\mathbf{y}}_{2}, \cdots, \bar{\mathbf{y}}_{r}) \begin{pmatrix} n_{1} \cdots 0 \\ \vdots & \ddots & \vdots \\ 0 \cdots n_{r} \end{pmatrix} \begin{pmatrix} \bar{\mathbf{y}}'_{1} \\ \vdots \\ \bar{\mathbf{y}}'_{r} \end{pmatrix}$$ $$= \mathbf{Y}'_{1}\mathbf{Y}_{1} - n_{1}\bar{\mathbf{y}}_{1}\bar{\mathbf{y}}'_{1} + \cdots + \mathbf{Y}'_{r}\mathbf{Y}_{r} - n_{r}\bar{\mathbf{y}}_{r}\bar{\mathbf{y}}'_{r}$$ $$= N_{1}\mathbf{S}_{1} + \cdots + N_{r}\mathbf{S}_{r} = N\mathbf{S},$$ where $N_i = n_i - 1$, $n = n_1 + n_2 + \cdots + n_r$, $N = N_1 + N_2 + \cdots + N_r = n - r$, and S_i is the unbiased covariance matrix of the y's within the *i*th sample. Under H_2 we have (6.18) $$X^{2}X^{2} = X_{1}X_{1} + \cdots + X_{r}X_{r} = n_{1} + n_{2} + \cdots + n_{r} = n_{r}$$ (6.19) $$\mathbf{Y}'\mathbf{X}^{2} = \mathbf{Y}_{1}'\mathbf{X}_{1} + \mathbf{Y}_{2}'\mathbf{X}_{2} + \cdots + \mathbf{Y}_{r}'\mathbf{X}_{r} = n_{1}\bar{\mathbf{y}}_{1} + n_{2}\bar{\mathbf{y}}_{2} + \cdots + n_{r}\bar{\mathbf{y}}_{r}$$ $$= n\bar{\mathbf{y}},$$ $$\bar{\mathbf{y}}' = (\bar{\mathbf{y}}_{\cdot 1}, \bar{\mathbf{y}}_{\cdot 2}, \cdots, \bar{\mathbf{y}}_{\cdot k_{1}}), \qquad n\bar{\mathbf{y}}_{\cdot l} = n_{1}\bar{\mathbf{y}}_{1l} + n_{2}\bar{\mathbf{y}}_{2l} + \cdots + n_{r}\bar{\mathbf{y}}_{rl},$$ $$l = 1, 2, \cdots, k_{2}.$$ The normal equations (4.1) now yield $$(6.20) n\hat{\mathbf{B}}_{\cdot} = n\bar{\mathbf{y}}_{\cdot}$$ We therefore have [cf. (2.17) in chapter 9] (6.21) $$\hat{J}(H_1, H_2)$$ $$=\operatorname{tr} \hat{\mathbf{\Sigma}}^{-1}(\hat{\mathbf{B}}_{1} - \hat{\mathbf{B}}_{.}, \hat{\mathbf{B}}_{2} - \hat{\mathbf{B}}_{.}, \cdots, \hat{\mathbf{B}}_{r} - \hat{\mathbf{B}}_{.}) \begin{pmatrix} n_{1} & 0 & \cdots & 0 \\ 0 & n_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n_{r} \end{pmatrix} \begin{pmatrix} (\mathbf{B}_{1} - \mathbf{B}_{.})' \\ (\hat{\mathbf{B}}_{2} - \hat{\mathbf{B}}_{.})' \\ \vdots \\ (\hat{\mathbf{B}}_{r} - \hat{\mathbf{B}}_{.})' \end{pmatrix}$$ = tr $$\hat{\Sigma}^{-1}(n_1\mathbf{d}_1\mathbf{d}_1' + \cdots + n_r\mathbf{d}_r\mathbf{d}_r')$$ = tr $S^{-1}S^*$, where $\mathbf{d}_i = \bar{\mathbf{y}}_i - \bar{\mathbf{y}}$, S is defined in (6.17), and $\mathbf{S}^* = n_1 \mathbf{d}_1 \mathbf{d}_1' + \cdots + n_r \mathbf{d}_r \mathbf{d}_r'$ is (r-1) times the unbiased covariance matrix of the \bar{y} 's between samples. Note that $$(6.22) \qquad (\hat{\mathbf{B}}_{1} - \hat{\mathbf{B}}_{.}, \dots, \hat{\mathbf{B}}_{r} - \hat{\mathbf{B}}_{.}) \begin{pmatrix} n_{1} & 0 \dots & 0 \\ & \ddots & \ddots & \ddots \\ 0 & 0 \dots & n_{r} \end{pmatrix} \begin{pmatrix} (\hat{\mathbf{B}}_{1} - \hat{\mathbf{B}}_{.})' \\ & \ddots & \\ (\hat{\mathbf{B}}_{r} - \hat{\mathbf{B}}_{.})' \end{pmatrix}$$ $$= (\hat{\mathbf{B}}_{1}, \dots, \hat{\mathbf{B}}_{r}) \begin{pmatrix} n_{1} & 0 \dots & 0 \\ & \ddots & \ddots & \ddots \\ 0 & 0 \dots & n_{r} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{B}}_{1}' \\ & \ddots \\ & \ddots \\ & \hat{\mathbf{B}}_{r}' \end{pmatrix} - n\hat{\mathbf{B}}_{.}\hat{\mathbf{B}}'.$$ $$= \hat{\mathbf{B}}^{1}\mathbf{X}^{1}\mathbf{X}^{1}\hat{\mathbf{B}}^{1} - \hat{\mathbf{B}}^{2}\mathbf{X}^{2}\mathbf{X}^{2}\hat{\mathbf{B}}^{2}'.$$ We may
write [cf. (6.6) in chapter 10] (6.23) $$\hat{J}(H_1, H_2) = \operatorname{tr} \hat{\Sigma}^{-1} \hat{B}^1 X^1 X^1 \hat{B}^{1'} - \operatorname{tr} \hat{\Sigma}^{-1} \hat{B}^2 X^2 X^2 \hat{B}^{2'}.$$ The foregoing is summarized in table 6.3 (cf. table 6.2 in chapter 10). TABLE 6.3 | Variation due to | Generalized Sum of Squares | D.F. | |------------------------|--|-------| | H_2 :B. | $nar{\mathbf{y}}ar{\mathbf{y}}'$ | 1 | | Difference,
between | $n_1\mathbf{d}_1\mathbf{d}_1' + \cdots + n_r\mathbf{d}_r\mathbf{d}_r' = \mathbf{S}^*$ | r — 1 | | H_1 : \mathbf{B}_i | $n_1\bar{\mathbf{y}}_1\bar{\mathbf{y}}_1'+\cdot\cdot\cdot+n_r\bar{\mathbf{y}}_r\bar{\mathbf{y}}_r'$ | r | | Difference, within | $\mathbf{Y}'\mathbf{Y} - n_1 \mathbf{\bar{y}}_1 \mathbf{\bar{y}}_1' - \cdots - n_r \mathbf{\bar{y}}_r \mathbf{\bar{y}}_r' = N_1 \mathbf{S}_1 + \cdots + N_r \mathbf{S}_r = N \mathbf{S}$ | n — r | | Total | Y'Y | n | Writing table 6.3 in the usual analysis of variance form, we have table 6.4. $\hat{J}(H_1, H_2) = \text{tr } S^{-1}S^* = \frac{(r-1)k_2(n-r)}{n-r-k_2+1} F$, where F has the analysis of variance distribution with $[(r-1)k_2(1+c)]$ and $[(n-r-k_2+1)(1+c)]$ degrees of freedom, $c = (r-2)(k_2-1)/(n-r)$, under the null hypothesis H_2 of (6.11). Asymptotically, $\hat{J}(H_1, H_2)$ is distributed as χ^2 with $k_2(r-1)$ degrees of freedom. [Cf. the direct derivation in Kullback (1956, section 5).] For r = 2 see problem 12.14 and Anderson (1958, pp. 108-109), Rao (1952, pp. 73-74). TABLE 6.4 | Variation due to | Generalized Sum of Squares | D.F. | |------------------|---|------| | Between | $n_1\mathbf{d}_1\mathbf{d}_1' + \cdots + n_r\mathbf{d}_r\mathbf{d}_r' = \mathbf{S}^*$ | r-1 | | Within | $N_1 \mathbf{S}_1 + \cdot \cdot \cdot + N_r \mathbf{S}_r = N \mathbf{S}$ | n-r | | Total | $Y'Y - n\bar{y}\bar{y}'$ | n-1 | Statistics of the form tr $S^{-1}S^*$ were first introduced by Lawley (1938) and Hotelling (1947, 1951). The asymptotic behavior of the distribution of this statistic was investigated by Ito (1956), who gives the percentage points of the distribution as an asymptotic expression in terms of the corresponding percentage points of the χ^2 -distribution with $(r-1)k_2$ degrees of freedom. ## 6.4. r Samples with Covariance Suppose we have r independent samples, respectively, of n_i , $i = 1, 2, \cdots, r$, independent observations, from multivariate normal populations with a common covariance matrix. We shall examine some hypotheses more general than those of section 6.3. 6.4.1. Test of Regression. Suppose we want to test a null hypothesis H_2 , there is no linear regression, against an alternative hypothesis H_1 , there is a common linear regression in the r samples. For the *i*th sample the regression model is [cf. (3.2), (6.9)], (6.24) $$Z_i = Y_i - X_{i1}B'_{i1} - X_{i2}B'_{2},$$ where Z_i , Y_i are defined in (6.9), $$\mathbf{X}'_{i1} = (1, 1, \dots, 1), \quad 1 \times n_i, \quad \mathbf{B}'_{i1} = (\beta_{i11}, \beta_{i21}, \dots, \beta_{ik_21}),$$ $$\mathbf{X}'_{i2} = (\mathbf{x}_{i1}, \mathbf{x}_{i2}, \dots, \mathbf{x}_{in_i}), \quad \mathbf{x}'_{ij} = (x_{ij2}, \dots, x_{ijk_1}),$$ $$i = 1, 2, \dots, r \text{ samples}, \quad j = 1, 2, \dots, n_i \text{ observations},$$ $$\mathbf{B}_{\cdot 2} = (\beta_{pq}), \quad p = 1, 2, \dots, k_2, \quad q = 2, 3, \dots, k_1.$$ The alternative hypothesis of a common linear regression is (6.25) $$H_1: \mathbf{B}_{i1}^{1'} = (\beta_{i11}^1, \beta_{i21}^1, \dots, \beta_{ik_21}^1), \quad \mathbf{B}_{\cdot 2}^1 = (\beta_{pq}),$$ $$p = 1, 2, \dots, k_2, \quad q = 2, 3, \dots, k_1,$$ and the null hypothesis of no regression is (6.26) $$H_2: \mathbf{B}_{i1}^{2'} = (\beta_{i11}^2, \beta_{i21}^2, \dots, \beta_{ik,1}^2), \quad \mathbf{B}_{2}^{2} = \mathbf{0}.$$ We may write the regression model for the r samples combined, under H_1 , as (6.27) $$Z = Y - X_1^1 B_1^{1'} - X_2^1 B_2^{1'},$$ where Z and Y are defined in (6.12), Under H_2 , the regression model for the r samples combined is $$(6.28) Z = Y - X_1^2 B_1^{2'},$$ where **Z** and **Y** are defined in (6.27), $X_1^2 = X_1^{1'}$, and $B_1^2 = (B_{11}^2, B_{21}^2, \cdots, B_{r1}^2)$. We thus have [cf. (6.14)] (6.29) $$X_1^{1'}X_1^1 = X_1^{2'}X_1^2 = \begin{pmatrix} n_1 & 0 & \cdots & 0 \\ 0 & n_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n_r \end{pmatrix} = S_{11}^1 = S_{11}^2,$$ (6.30) $$X_{1}^{1'}X_{2}^{1} = \begin{pmatrix} X'_{11}X_{12} \\ X'_{21}X_{22} \\ \vdots \\ \vdots \\ X'_{r1}X_{r2} \end{pmatrix} = \begin{pmatrix} n_{1}\bar{\mathbf{x}}'_{1} \\ n_{2}\bar{\mathbf{x}}'_{2} \\ \vdots \\ \vdots \\ n_{r}\bar{\mathbf{x}}'_{r} \end{pmatrix} = \mathbf{S}_{12}^{1},$$ where $n_i \bar{\mathbf{x}}'_i = \mathbf{x}'_{i1} + \mathbf{x}'_{i2} + \cdots + \mathbf{x}'_{in_i} = (x_{i \cdot 2}, x_{i \cdot 3}, \cdots, x_{i \cdot k_1}), \ x_{i \cdot p} = x_{i1p} + x_{i2p} + \cdots + x_{in_ip},$ (6.31) $$\mathbf{Y}'\mathbf{X}_{1}^{1} = (\mathbf{Y}_{1}'\mathbf{X}_{11}, \mathbf{Y}_{2}'\mathbf{X}_{21}, \cdots, \mathbf{Y}_{r}'\mathbf{X}_{r1}) = (n_{1}\mathbf{\bar{y}}_{1}, n_{2}\mathbf{\bar{y}}_{2}, \cdots, n_{r}\mathbf{\bar{y}}_{r}) = \mathbf{Y}'\mathbf{X}_{1}^{2}$$ where $\mathbf{\bar{y}}_{1}$ is defined in (6.15), (6.32) $$\mathbf{Y}'\mathbf{X}_{2}^{1} = (\mathbf{Y}_{1}'\mathbf{X}_{12} + \mathbf{Y}_{2}'\mathbf{X}_{22} + \cdots + \mathbf{Y}_{r}'\mathbf{X}_{r2}) = \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} \mathbf{y}_{ij}\mathbf{x}_{ij}'$$ $$= \left(\sum_{i=1}^{r} \sum_{j=1}^{n_{i}} \mathbf{y}_{ijt}\mathbf{x}_{iju}\right), \quad t = 1, 2, \cdots, k_{2}, \quad u = 2, 3, \cdots, k_{1},$$ (6.33) $$\begin{split} X_{2\cdot 1}^1 &= X_1^2 - X_1^1 S_{11}^{1-1} S_{12}^1 \\ &= \begin{pmatrix} X_{12} \\ X_{22} \\ \vdots \\ X_{r2} \end{pmatrix} - \begin{pmatrix} X_{11} & 0 & \cdots & 0 \\ 0 & X_{21} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & X_{r1} \end{pmatrix} \begin{pmatrix} \bar{x}_1' \\ \bar{x}_2' \\ \vdots \\ \bar{x}_{r}' \end{pmatrix} \\ &= \begin{pmatrix} X_{12} - X_{11} \bar{x}_1' \\ X_{22} - X_{21} \bar{x}_2' \\ \vdots \\ X_{r2} - X_{r1} \bar{x}_r' \end{pmatrix} \\ &= \begin{pmatrix} X_{12} - X_{11} \bar{x}_1' \\ X_{22} - X_{21} \bar{x}_2' \\ \vdots \\ X_{r2} - \bar{x}_{12} & x_{113} - \bar{x}_{13} & \cdots & x_{11k_1} - \bar{x}_{1k_1} \\ \vdots & \vdots & \vdots \\ x_{1n_12} - \bar{x}_{12} & x_{1n_13} - \bar{x}_{13} & \cdots & x_{1n_1k_1} - \bar{x}_{1k_1} \\ x_{212} - \bar{x}_{22} & x_{213} - \bar{x}_{23} & \cdots & x_{21k_1} - \bar{x}_{2k_1} \\ \vdots & \vdots & \vdots \\ x_{2n_12} - \bar{x}_{22} & x_{2n_23} - \bar{x}_{23} & \cdots & x_{2n_2k_1} - \bar{x}_{2k_1} \\ \vdots & \vdots & \vdots \\ x_{r12} - \bar{x}_{r2} & x_{r13} - \bar{x}_{r3} & \cdots & x_{r1k_1} - \bar{x}_{rk_1} \\ \vdots & \vdots & \vdots \\ x_{rn,2} - \bar{x}_{r2} & x_{rn,3} - \bar{x}_{r3} & \cdots & x_{rn,k_1} - \bar{x}_{rk_1} \end{pmatrix}, n \times (k_1 - 1) \end{split}$$ that is, $X_{2\cdot 1}^1$ is an $n \times (k_1 - 1)$ matrix of the x's centered about their respective sample averages. From (6.33) and (6.31) we have (6.34) $$\mathbf{Y}'\mathbf{X}_{2\cdot 1}^{1} = \mathbf{Y}_{1}'\mathbf{X}_{12} - \mathbf{Y}_{1}'\mathbf{X}_{11}\bar{\mathbf{x}}_{1}' + \cdots + \mathbf{Y}_{r}'\mathbf{X}_{r2} - \mathbf{Y}_{r}'\mathbf{X}_{r1}\bar{\mathbf{x}}_{r}'$$ $$= \mathbf{Y}_{1}'\mathbf{X}_{12} - n_{1}\bar{\mathbf{y}}_{1}\bar{\mathbf{x}}_{1}' + \cdots + \mathbf{Y}_{r}'\mathbf{X}_{r2} - n_{r}\bar{\mathbf{y}}_{r}\bar{\mathbf{x}}_{r}'$$ $$= N_{1}\mathbf{S}_{1yx} + \cdots + N_{r}\mathbf{S}_{ryx} = N\mathbf{S}_{yx},$$ where $N_i = n_i - 1$, $N = N_1 + N_2 + \cdots + N_r$, S_{iyx} is the $k_2 \times (k_1 - 1)$ unbiased covariance matrix of the y's and x's within the ith sample, and $S'_{yx} = S_{xy}$, (6.35) $$S_{22}^{1} = X_{2}^{1'}X_{2}^{1} = X_{12}'X_{12} + X_{22}'X_{22} + \cdots + X_{r2}'X_{r2}$$ $$= S_{122} + S_{222} + \cdots + S_{r22},$$ where $S_{i22} = X'_{i2}X_{i2}$, $i = 1, 2, \cdot \cdot \cdot , r$, $$(6.36) \quad \mathbf{S}_{22\cdot 1}^{1} = \mathbf{S}_{21}^{1} - \mathbf{S}_{21}^{1} \mathbf{S}_{11}^{1-1} \mathbf{S}_{12}^{1} = \mathbf{S}_{22}^{1} - (n_{1} \bar{\mathbf{x}}_{1}, n_{2} \bar{\mathbf{x}}_{2}, \cdot \cdot \cdot, n_{r} \bar{\mathbf{x}}_{r}) \begin{pmatrix} \bar{\mathbf{x}}_{1}' \\ \bar{\mathbf{x}}_{2}' \\ \vdots \\ \bar{\mathbf{x}}_{r}' \end{pmatrix}$$ $$= (\mathbf{S}_{122} - n_{1} \bar{\mathbf{x}}_{1} \bar{\mathbf{x}}_{1}') + \cdot \cdot \cdot + (\mathbf{S}_{r22} - n_{r} \bar{\mathbf{x}}_{r} \bar{\mathbf{x}}_{r}'),$$ $$= N_{1} \mathbf{S}_{1xx} + \cdot \cdot \cdot + N_{r} \mathbf{S}_{rxx} = N \mathbf{S}_{2x},$$ where S_{ixx} is the unbiased covariance matrix of the x's within the ith sample. From (5.7) and (5.11) we have (6.37) $$\hat{\mathbf{B}}_{2}^{1} = \mathbf{Y}'\mathbf{X}_{2\cdot 1}^{1}\mathbf{S}_{22\cdot 1}^{1^{-1}}, \qquad \hat{\mathbf{B}}_{1}^{1} = (\bar{\mathbf{y}}_{1}, \, \bar{\mathbf{y}}_{2}, \, \cdots, \, \bar{\mathbf{y}}_{r}) - \hat{\mathbf{B}}_{2}^{1}(\bar{\mathbf{x}}_{1}, \, \bar{\mathbf{x}}_{2}, \, \cdots, \, \bar{\mathbf{x}}_{r}), \\ \hat{\mathbf{B}}_{1}^{2} = (\bar{\mathbf{y}}_{1}, \, \bar{\mathbf{y}}_{2}, \, \cdots, \, \bar{\mathbf{y}}_{r}).$$ From (5.8) and (5.13) we have (6.38) $$(n - k_1 + 1 - r) \hat{\Sigma} = Y'Y - n_1 \bar{y}_1 \bar{y}_1' - \cdots - n_r \bar{y}_r \bar{y}_r' - \hat{B}_2^1 S_{22 \cdot 1}^1 \hat{B}_2^{1'}$$ $$= N S_{nn} - \hat{B}_2^1 S_{22 \cdot 1}^1 \hat{B}_2^{1'},$$ where $NS_{yy} = N_1S_{1yy} + \cdots + N_rS_{ryy}$, and S_{iyy} is the unbiased covariance matrix of the y's within the *i*th sample [cf. (6.17)]. TABLE 6.5 | Variation due to | ariation due to Generalized Sum of Squares | | |------------------------
---|-------------| | H ₂ :(6.26) | $n_1\bar{\mathbf{y}}_1\bar{\mathbf{y}}_1'+\cdot\cdot\cdot+n_r\bar{\mathbf{y}}_r\bar{\mathbf{y}}_r'$ | r | | Difference | $\hat{\mathbf{B}}_{2}^{1}\mathbf{S}_{22\cdot 1}^{1}\hat{\mathbf{B}}_{2}^{1'} = N\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$ | $k_1 - 1$ | | H ₁ :(6.25) | $n_1\bar{\mathbf{y}}_1\bar{\mathbf{y}}_1' + \cdots + n_r\bar{\mathbf{y}}_r\bar{\mathbf{y}}_r' + \hat{\mathbf{B}}_2^1S_{22\cdot 1}^1\hat{\mathbf{B}}_2^{1'}$ | k_1-1+r | | Difference | $NS_{yy} - \hat{B}_2^1 S_{22\cdot 1}^1 \hat{B}_2^{1'} = (n - k_1 + 1 - r)\hat{\Sigma}$ | $n-k_1+1-r$ | | Total | Y'Y | n | We summarize the preceding analysis in table 6.5 (cf. table 5.1). $\hat{J}(H_1, H_2) = \operatorname{tr} \hat{\Sigma}^{-1} \hat{B}_2^1 S_{22 \cdot 1}^1 \hat{B}_2^{1'} = \frac{(k_1 - 1)k_2(n - k_1 + 1 - r)}{n - k_1 + 1 - r - k_2 + 1} F, \text{ where } F$ has the analysis of variance distribution with $[(k_1 - 1)k_2(1 + c)]$ and $[(n - k_1 - k_2 - r + 2)(1 + c)]$ degrees of freedom, $c = (k_1 - 2)(k_2 - 1)/(n - k_1 + 1 - r)$, under the null hypothesis H_2 of (6.26). Asymptotically, $\hat{J}(H_1, H_2)$ is distributed as χ^2 with $k_2(k_1 - 1)$ degrees of freedom. 6.4.2. Test of Homogeneity of Means and Regression. If instead of the null hypothesis H_2 , there is no regression [see (6.26)], we want to test a null hypothesis that there is no regression and the means are homogeneous, against the alternative hypothesis H_1 in (6.25), then we must examine the null hypothesis H_3 (6.39) $$H_3: \mathbf{B}_{i1}^{3'} = \mathbf{B}_{\cdot 1}' = (\beta_{\cdot 11}, \beta_{\cdot 21}, \cdot \cdot \cdot, \beta_{\cdot k, 1}), \quad \mathbf{B}_{\cdot 2}^3 = \mathbf{0}.$$ The results under H_1 are those derived in section 6.4.1. The results under H_3 are similar to those in section 6.3 under H_2 , that is, (6.40) $$X_{1}^{3'} = (X'_{11}, X'_{21}, \dots, X'_{r1}),$$ $$S_{11}^{3} = X_{1}^{3'}X_{1}^{3} = X'_{11}X_{11} + \dots + X'_{r1}X_{r1} = n_{1} + \dots + n_{r} = n,$$ $$Y'X_{1}^{3} = Y'_{1}X_{11} + \dots + Y'_{r}X_{r1} = n_{1}\bar{y}_{1} + n_{2}\bar{y}_{2} + \dots + n_{r}\bar{y}_{r} = n\bar{y},$$ $$n\hat{B}_{.1} = n\bar{y}.$$ We summarize the analysis covering H_1 , H_2 , H_3 in table 6.6, where S_{yy}^* is the matrix S^* in table 6.3 (to show its relation to the y's). $\hat{J}(H_1, H_3) =$ TABLE 6.6 | Variation due to | Generalized Sum of Squares | D.F. | |------------------------|---|---------------| | H ₃ :(6.39) | nÿÿ' | 1 | | Difference | $n_1\mathbf{d}_1\mathbf{d}_1' + \cdots + n_r\mathbf{d}_r\mathbf{d}_r' = \mathbf{S}_{\nu\nu}^*$ | r-1 | | H ₂ :(6.26) | $n_1\bar{\mathbf{y}}_1\bar{\mathbf{y}}_1'+\cdot\cdot\cdot+n_r\bar{\mathbf{y}}_r\bar{\mathbf{y}}_r'$ | r | | Difference | $\hat{\mathbf{B}}_{2}^{1}\mathbf{S}_{22\cdot 1}^{1}\hat{\mathbf{B}}_{2}^{1'} = N\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$ | $k_1 - 1$ | | H ₁ :(6.25) | $n_1\bar{y}_1\bar{y}_1' + \cdots + n_r\bar{y}_r\bar{y}_r' + \hat{B}_2^1S_{22\cdot 1}^1\hat{B}_2^{1'}$ | $k_1 - 1 + r$ | | Difference | $NS_{yy} - \hat{B}_{2}^{1}S_{22\cdot 1}^{1}\hat{B}_{2}^{1'} = (N - k_{1} + 1)\hat{\Sigma}$ | $N-k_1+1$ | | Total | Y'Y | n | tr $\hat{\Sigma}^{-1}(S_{yy}^* + \hat{B}_2^1S_{22\cdot 1}^1\hat{B}_2^{1'}) = \frac{(k_1+r-2)k_2(N-k_1+1)}{(N-k_1+1-k_2+1)} F$, where F has the analysis of variance distribution with $[(k_1+r-2)k_2(1+c)]$ and $[(N-k_1-k_2+2)(1+c)]$ degrees of freedom, $c=(k_1+r-3)(k_2-1)/(N-k_1+1)$, under the null hypothesis H_3 of (6.39). Asymptotically, $\hat{J}(H_1, H_3)$ is distributed as χ^2 with $(k_1+r-2)k_2$ degrees of freedom, tr $\hat{\Sigma}^{-1}\hat{S}_{yy}^*$, with $(r-1)k_2$ degrees of freedom, is a test of the homogeneity, and tr $\hat{\Sigma}^{-1}\hat{B}_2^1S_{22\cdot 1}^1\hat{B}_2^{1'}$, with $(k_1-1)k_2$ degrees of freedom, is a test of the regression. 6.4.3. Test of Homogeneity, Assuming Regression. Suppose we assume that there is a common linear regression in the r samples. We want to test a null hypothesis of homogeneity of the sample means. The alternative hypothesis is H_1 in (6.25), and the null hypothesis is (6.41) $$H_4: \mathbf{B}_{i1}^{4'} = \mathbf{B}_{\cdot 1}' = (\beta_{\cdot 11}, \beta_{\cdot 21}, \cdots, \beta_{\cdot k_2 1}), \quad \mathbf{B}_{\cdot 2}^{4} = (\beta_{pq}^{4}),$$ $$p = 1, \cdots, k_2, \quad q = 2, \cdots, k_1.$$ The results under H_1 are those derived in section 6.4.1. Under H_4 we see that [cf. (6.27) and (6.40)] $$(6.42) \quad X_1^{4'} = (X'_{11}, X'_{21}, \cdots, X'_{r1}), \qquad X_2^{4'} = (X'_{12}, X'_{22}, \cdots, X'_{r2}),$$ so that [cf. (6.40)] (6.43) $$S_{11}^4 = n, \quad Y'X_1^4 = n\overline{y}$$ and [cf. (6.32), (6.35)] (6.44) $$S_{22}^4 = S_{122} + S_{222} + \cdots + S_{r22}, \qquad Y'X_2^4 = \left(\sum_{i=1}^r \sum_{j=1}^{n_i} y_{ijr} x_{iju}\right),$$ $$t = 1, 2, \cdots, k_2, \qquad u = 2, 3, \cdots, k_1.$$ We also find that [cf. (6.30)] (6.45) $$X_{1}^{4'}X_{2}^{4} = S_{12}^{4} = X_{11}'X_{12} + X_{21}'X_{22} + \cdots + X_{r1}'X_{r2}$$ $$= n_{1}\bar{x}_{1}' + n_{2}\bar{x}_{2}' + \cdots + n_{r}\bar{x}_{r}' = n\bar{x}'.$$ We thus have [cf. (6.33)] (6.46) $$X_{2\cdot 1}^4 = X_2^4 - X_1^4 S_{11}^{4^{-1}} S_{12}^4 = \begin{pmatrix} X_{12} \\ X_{22} \\ \vdots \\ X_{r2} \end{pmatrix} - \begin{pmatrix} X_{11} \\ X_{21} \\ \vdots \\ X_{r1} \end{pmatrix} \bar{\mathbf{x}}' = \begin{pmatrix} X_{12} - X_{11} \bar{\mathbf{x}}' \\ X_{22} - X_{21} \bar{\mathbf{x}}' \\ \vdots \\ X_{r2} - X_{r1} \bar{\mathbf{x}}' \end{pmatrix},$$ that is, $X_{2\cdot 1}^4$ is an $n \times (k_1 - 1)$ matrix of the x's centered about their respective combined sample averages, and [cf. (6.34)] $$(6.47) \quad \mathbf{Y}'\mathbf{X}_{2\cdot 1}^{4} = \mathbf{Y}_{1}'\mathbf{X}_{12} - \mathbf{Y}_{1}'\mathbf{X}_{11}\bar{\mathbf{x}}' + \cdots + \mathbf{Y}_{r}'\mathbf{X}_{r2} - \mathbf{Y}_{r}'\mathbf{X}_{r1}\bar{\mathbf{x}}'$$ $$= \mathbf{Y}_{1}'\mathbf{X}_{12} - n_{1}\bar{\mathbf{y}}_{1}\bar{\mathbf{x}}' + \cdots + \mathbf{Y}_{r}'\mathbf{X}_{r2} - n_{r}\bar{\mathbf{y}}_{r}\bar{\mathbf{x}}'$$ $$= \mathbf{Y}_{1}'\mathbf{X}_{12} + \cdots + \mathbf{Y}_{r}'\mathbf{X}_{r2} - n\bar{\mathbf{y}}\bar{\mathbf{x}}'$$ $$= \mathbf{Y}_{1}'\mathbf{X}_{12} - n_{1}\bar{\mathbf{y}}_{1}\bar{\mathbf{x}}_{1}' + \cdots + \mathbf{Y}_{r}'\mathbf{X}_{r2} - n_{r}\bar{\mathbf{y}}_{r}\bar{\mathbf{x}}_{r}'$$ $$+ n_{1}\bar{\mathbf{y}}_{1}\bar{\mathbf{x}}_{1}' + \cdots + n_{r}\bar{\mathbf{y}}_{r}\bar{\mathbf{x}}_{r}' - n\bar{\mathbf{y}}\bar{\mathbf{x}}'$$ $$= N\mathbf{S}_{yx} + \mathbf{S}_{yx}^{*},$$ where S_{yx} is defined in (6.34), $S_{yx}^* = \sum_{i=1}^r n_i (\bar{y}_i - \bar{y}) (\bar{x}_i - \bar{x})'$ with $S_{yx}^{*'} = S_{xy}^*$, S_{yx}^* is a $k_2 \times (k_1 - 1)$ matrix proportional to the between unbiased covariance matrix of the y's with the x's, and [cf. (6.36)] $$(6.48) S_{22\cdot 1}^{4} = S_{22}^{4} - S_{21}^{4} S_{11}^{4^{-1}} S_{12}^{4} = S_{22}^{4} - n\bar{x}\bar{x}' = S_{122} + \cdots + S_{r22} - n\bar{x}\bar{x}'$$ $$= S_{122} - n_{1}\bar{x}_{1}\bar{x}'_{1} + \cdots + S_{r22} - n_{r}\bar{x}_{r}\bar{x}'_{r} + n_{1}\bar{x}_{1}\bar{x}'_{1} + \cdots$$ $$+ n_{r}\bar{x}_{r}\bar{x}'_{r} - n\bar{x}\bar{x}'$$ $$= NS_{xx} + S_{xx}^{*} = S_{22\cdot 1}^{1} + S_{xx}^{*},$$ where S_{xx} is defined in (6.36) and $S_{xx}^* = \sum_{i=1}^r n_i (\bar{\mathbf{x}}_i - \bar{\mathbf{x}})(\bar{\mathbf{x}}_i - \bar{\mathbf{x}})'$. From (5.7) we then have (6.49) $$\hat{\mathbf{B}}_{2}^{4} = \mathbf{Y}' \mathbf{X}_{2 \cdot 1}^{4} \mathbf{S}_{22 \cdot 1}^{4^{-1}}, \qquad \hat{\mathbf{B}}_{1}^{4} = \bar{\mathbf{y}} - \hat{\mathbf{B}}_{2}^{4} \bar{\mathbf{x}},$$ where $Y'X_{2\cdot 1}^4$ and $S_{22\cdot 1}^4$ are given respectively in (6.47) and (6.48). TABLE 6.7 | Variation due to | Generalized Sum of Squares | D.F. | |------------------------|---|---------------| | H ₄ :(6.41) | $n\bar{y}\bar{y}' + \hat{B}_{2}^{4}S_{22\cdot 1}^{4}\hat{B}_{2}^{4'}$ | k_1 | | Difference | $S_{yy}^* + \hat{B}_2^1 S_{22\cdot 1}^1 \hat{B}_2^{1'} - \hat{B}_2^4 S_{22\cdot 1}^4 \hat{B}_2^{4'}$ | r - 1 | | H_1 :(6.25) | $n_1\bar{y}_1\bar{y}_1' + \cdots + n_r\bar{y}_r\bar{y}_r' + \hat{B}_2^1S_{22\cdot 1}^1\hat{B}_2^{1'}$ | $k_1 - 1 + r$ | | Difference | $NS_{yy} - \hat{\mathbf{B}}_{2}^{1}S_{22\cdot 1}^{1}\hat{\mathbf{B}}_{2}^{1'} = (N - k_{1} + 1)\hat{\mathbf{\Sigma}}$ | $N - k_1 + 1$ | | Total | Y'Y | n | We summarize the analysis covering H_1 and H_4 in table 6.7. $\hat{J}(H_1, H_4) = \text{tr } \hat{\Sigma}^{-1}(\mathbf{S}_{yy}^* + \hat{\mathbf{B}}_2^1 \mathbf{S}_{22 \cdot 1}^1 \hat{\mathbf{B}}_2^{1'} - \hat{\mathbf{B}}_2^4 \mathbf{S}_{22 \cdot 1}^4 \hat{\mathbf{B}}_2^{4'}) = \frac{(r-1)k_2(N-k_1+1)}{(N-k_1+1-k_2+1)} F$, where F has the analysis of variance distribution with $[(r-1)k_2(1+c)]$ and $[(N-k_1-k_2+2)(1+c)]$ degrees of freedom, $c=(r-2)(k_2-1)/(N-k_1+1)$, under the null hypothesis H_4 of (6.41). Asymptotically, $\hat{J}(H_1, H_4)$ is distributed as χ^2 with $k_2(r-1)$ degrees of freedom. Note that in the usual analysis of variance relation for sums of squares, total = within + between, we may write (6.50) $$Y'Y - n\bar{y}\bar{y}' = S_{yy}^{**} = NS_{yy} + S_{yy}^{*},$$ $$S_{xx}^{**} = NS_{xx} + S_{xx}^{*},$$ $$S_{yx}^{**} = NS_{yx} + S_{yx}^{*}.$$ $(N - k_1 + 1)\hat{\Sigma} = NS_{yy} - NS_{yx}S_{xx}^{-1}S_{xy}$ is computed in terms of within values, and $$\mathbf{S}_{yy}^* + \hat{\mathbf{B}}_{2}^{1} \mathbf{S}_{22 \cdot 1}^{1} \hat{\mathbf{B}}_{2}^{1'} - \hat{\mathbf{B}}_{2}^{4} \mathbf{S}_{22 \cdot 1}^{4} \hat{\mathbf{B}}_{2}^{4'} = \mathbf{S}_{yy}^* - (\mathbf{S}_{yx}^{**} \mathbf{S}_{xx}^{***}^{-1}
\mathbf{S}_{xy}^{**} - N \mathbf{S}_{yx} \mathbf{S}_{xx}^{-1} \mathbf{S}_{xy})$$ is computed in terms of between values and the difference between an expression in total values and within values. #### 7. CANONICAL CORRELATION We shall now examine tests of hypotheses associated with the canonical correlations defined in section 7 of chapter 9. We shall need the analysis summarized in table 6.2. For the y's and x's centered about their respective sample averages, we have, according to the analysis in table 6.2, (7.1) $$\hat{J}(H_1, H_2) = (n - k_1) \operatorname{tr} (S_{yy} - S_{yx} S_{xx}^{-1} S_{xy})^{-1} S_{yx} S_{xx}^{-1} S_{xy}.$$ Suppose that, as in section 7 of chapter 9, we take the y's as the second set of k_2 variates and the x's as the first set of $(k_1 - 1)$ variates into which a population of $(k_1 - 1) + k_2$ variates has been partitioned. If we write, in accordance with the notation in section 7 of chapter 9, $S_{yy} = S_{22}$, $S_{yx} = S_{21}$, $S_{xx} = S_{11}$, $S_{yy} - S_{yx}S_{xx}^{-1}S_{xy} = S_{22} - S_{21}S_{11}^{-1}S_{12} = S_{22\cdot 1}$, then (7.1) becomes (7.2) $$\hat{J}(H_1, H_2) = (n - k_1) \operatorname{tr} \mathbf{S}_{22\cdot 1}^{-1} \mathbf{S}_{21} \mathbf{S}_{11}^{-1} \mathbf{S}_{12},$$ an estimate for the parametric value in (7.5) of chapter 9. We may also express $J(H_1, H_2)$ as $(n - k_1)$ times the sum of the k_2 roots (almost everywhere positive) of the determinantal equation (7.3) $$\left| \mathbf{S}_{21} \mathbf{S}_{11}^{-1} \mathbf{S}_{12} - l \mathbf{S}_{22 \cdot 1} \right| = 0,$$ where we have assumed that $k_2 \le k_1 - 1$ so that the rank of the $k_2 \times k_2$ matrix $S_{21}S_{11}^{-1}S_{12}$ is k_2 . Replacing $S_{22\cdot 1}$ in (7.3) by $S_{22} - S_{21}S_{11}^{-1}S_{12}$, we find $$|S_{21}S_{11}^{-1}S_{12} - lS_{22\cdot 1}| = 0 = |S_{21}S_{11}^{-1}S_{12} - r^2S_{22}|,$$ where $l = r^2/(1 - r^2)$, $r^2 = l/(1 + l)$. The r's thus defined are the observed values of Hotelling's canonical correlation coefficients [Hotelling (1936); cf. (7.11) in chapter 9]. Accordingly, we may also write (7.2) as [cf. (7.16) in chapter 9] (7.5) $$\hat{J}(H_1, H_2) = (n - k_1) \operatorname{tr} \mathbf{S}_{22 \cdot 1}^{-1} \mathbf{S}_{21} \mathbf{S}_{11}^{-1} \mathbf{S}_{12}$$ $$= (n - k_1)(l_1 + l_2 + \cdots + l_{k_2})$$ $$= (n - k_1) \left(\frac{r_1^2}{1 - r_1^2} + \frac{r_2^2}{1 - r_2^2} + \cdots + \frac{r_{k_2}^2}{1 - r_{k_2}^2} \right).$$ Under the null hypothesis H_2 : $\mathbf{B}^2 = \mathbf{0}$, the results are equivalent to those under the null hypothesis that in a $((k_1 - 1) + k_2)$ -variate normal population the set of the first $(k_1 - 1)$ variates is independent of the set of the last k_2 variates, the hypothesis considered in section 7 of chapter 9. [Cf. Anderson (1958, p. 242), Hsu (1949, pp. 391-392).] (See section 3.6 in chapter 12.) Note that the terms in (7.5) depend only on the sample correlation coefficients, for if the elements of the matrices S_{11} , S_{12} , S_{22} are expressed in terms of the standard deviations and correlation coefficients, it may be shown (this is left to the reader) that the standard deviations divide out and (7.6) $$\hat{J}(H_1, H_2) = (n - k_1) \operatorname{tr} \mathbf{R}_{22 \cdot 1}^{-1} \mathbf{R}_{21} \mathbf{R}_{11}^{-1} \mathbf{R}_{12},$$ in terms of the related correlation matrices. #### 8. LINEAR DISCRIMINANT FUNCTIONS # 8.1. Homogeneity of r Samples The samples and hypotheses are those specified in section 6.3. We want to examine the analysis of the linear discriminant function described in section 5 of chapter 9 with population parameters. We seek the linear discriminant function (8.1) $$w_{ij} = \alpha' y_{ij} = \alpha_1 y_{ij1} + \alpha_2 y_{ij2} + \cdots + \alpha_{k_2} y_{ijk_2},$$ $i = 1, 2, \dots, r, j = 1, 2, \dots, n_i$, where y_{ij} is defined in (6.9), that is, the same linear compound of the y's for each sample. [Cf. Binet and Watson (1956), Roy (1957, pp. 95-104).] We thus get for the w's, as the estimate of the parameter in (5.5) of chapter 9, and corresponding to (6.21), (8.2) $$\hat{J}(H_1, H_2; w) = \frac{\alpha' S^* \alpha}{\alpha' S \alpha}$$ The value of α for which $\hat{J}(H_1, H_2; w)$ is a maximum satisfies (by the usual calculus procedures) $$\mathbf{S}^* \mathbf{\alpha} = l \mathbf{S} \mathbf{\alpha},$$ where l is the largest root of the determinantal equation $$|\mathbf{S}^* - l\mathbf{S}| = 0,$$ which has (almost everywhere) p positive and $(k_2 - p)$ zero roots, with $p \le \min(k_2, r - 1)$. Denoting the positive roots in descending order as l_1, l_2, \dots, l_p , (8.5) $$\hat{J}(H_1, H_2) = \operatorname{tr} \mathbf{S}^{-1} \mathbf{S}^* = l_1 + l_2 + \cdots + l_p$$ $$= \hat{J}(H_1, H_2; l_1) + \cdots + \hat{J}(H_1, H_2; l_p),$$ where $\hat{J}(H_1, H_2; l_i) = l_i$ is (8.2) for α satisfying (8.3) with $l = l_i$. The discrimination efficiency of the linear compound associated with l_i may be defined as (see section 6 of chapter 3 and section 5 of chapter 9) (8.6) Eff. $$(l_i) = \frac{\hat{J}(H_1, H_2; l_i)}{\hat{J}(H_1, H_2)} = \frac{l_i}{l_1 + l_2 + \cdots + l_p}$$ Asymptotically, under the null hypothesis of homogeneity H_2 in (6.11), we have the χ^2 decomposition [cf. Rao (1952, p. 373)] (8.7) $$\hat{J}(H_1, H_2; l_p) = l_p \qquad |k_2 - (r - 1)| + 1 \text{ d.f.}$$ $$\hat{J}(H_1, H_2; l_{p-1}) = l_{p-1} \qquad |k_2 - (r - 1)| + 3 \text{ d.f.}$$ $$\vdots \qquad \vdots \vdots$$ $$\hat{J}(H_1, H_2) = l_1 + l_2 + \cdots + l_p = \text{tr } S^{-1}S^* \qquad k_2(r - 1) \qquad \text{d.f.}$$ This is to be taken in the sense that $l_{m+1} + \cdots + l_p$ is distributed asymptotically as χ^2 with $(k_2 - m)(r - 1 - m)$ degrees of freedom, not that l_{m+1}, \cdots, l_p have asymptotic independent χ^2 -distributions. (See section 6.4 of chapter 12.) #### 8.2. Canonical Correlation [Cf. Marriott (1952).] The sample and hypotheses are those specified in section 7. We want to examine the analysis of the linear discriminant function described in section 3.2 with population parameters. We seek the linear discriminant function $$(8.8) \quad w_i = \alpha' y_i = \alpha_1 y_{i1} + \alpha_2 y_{i2} + \cdots + \alpha_k y_{ik}, \qquad i = 1, 2, \cdots, n,$$ that is, the same linear compound of the y's for each observation. We thus get for the w's, as the estimate of the parameter in (3.4), corresponding to the hypotheses and notation of (7.2), (8.9) $$\hat{J}(H_1, H_2; w) = \frac{\alpha' \hat{B}^1 X' X \hat{B}^{1'} \alpha}{\alpha' \hat{\Sigma} \alpha} = (n - k_1) \frac{\alpha' S_{21} S_{11}^{-1} S_{12} \alpha}{\alpha' S_{22\cdot 1} \alpha}$$ The value of α for which $J(H_1, H_2; w)$ in (8.9) is a maximum satisfies (by the usual calculus procedures) [cf. (7.10) in chapter 9] (8.10) $$S_{21}S_{11}^{-1}S_{12}\alpha = lS_{22\cdot 1}\alpha,$$ where l is the largest root of the determinantal equation (8.11) $$|S_{21}S_{11}^{-1}S_{12} - lS_{22\cdot 1}| = 0.$$ Note that (8.11) is the same as (7.4), and (8.10) is the same as $S_{21}S_{11}^{-1}S_{12}\alpha = r^2S_{22}\alpha$. Denoting the k_2 (almost everywhere) positive roots in descending order as l_1, l_2, \dots, l_{k_2} , we may also write the decomposition in (7.5) as (8.12) $$\hat{J}(H_1, H_2) = \hat{J}(H_1, H_2; l_1) + \cdots + \hat{J}(H_1, H_2; l_{k_2}),$$ where $J(H_1, H_2; l_i) = (n - k_1)l_i = (n - k_1)r_i^2/(1 - r_i^2)$ is (8.9) for α satisfying (8.10) with $l = l_i$. The discrimination efficiency of the linear compound associated with l_i may be defined as in (8.6). Asymptotically, under the null hypothesis H_2 : $\mathbf{B} = \mathbf{B}^2 = \mathbf{0}$, we have the χ^2 decomposition $$(8.13) \hat{J}(H_1, H_2; l_{k_2}) = (n - k_1)l_{k_2} = (n - k_1)r_{k_2}^2/(1 - r_{k_2}^2) \qquad k_1 - k_2 \quad \text{d.f.}$$ $$\hat{J}(H_1, H_2; l_{k_2-1}) = (n - k_1)l_{k_2-1} = (n - k_1)r_{k_2-1}^2/(1 - r_{k_2-1}^2) \qquad k_1 - k_2 + 2 \quad \text{d.f.}$$ $$\hat{J}(H_1, H_2; l_1) = (n - k_1)l_1 = (n - k_1)r_1^2/(1 - r_1^2) \qquad k_1 + k_2 - 2 \quad \text{d.f.}$$ $$\hat{J}(H_1, H_2; l_1) = (n - k_1)\sum_{i=1}^{k_2} l_i = (n - k_1)\sum_{i=1}^{k_2} r_i^2/(1 - r_i^2) \qquad (k_1 - 1)k_2 \quad \text{d.f.}$$ As in (8.7), this is to be taken in the sense that $(n-k_1)(l_{m+1}+\cdots+l_{k_2})$ is asymptotically distributed as χ^2 with $(k_1-1-m)(k_2-m)$ degrees of freedom, not that $(n-k_1)l_{m+1}, \cdots, (n-k_1)l_{k_2}$ have asymptotic independent χ^2 -distributions. (See section 6.4 of chapter 12.) # 8.3. Hotelling's Generalized Student Ratio (Hotelling's T^2) The sample and hypotheses are those specified in section 6.1. We want to examine the analysis of the linear discriminant function described in (5.2) of chapter 9 with population parameters. We may treat this as a special case of that in section 8.2 by specifying H_2 in (6.1) with $\mathbf{B}^2 = \mathbf{0}$ and denoting the values in (6.1), (6.2), (6.3) as $$X'X = nS_{11} = n,$$ $Y'X = nS_{21} = n\bar{y},$ $Y'Y = nS_{22},$ $S_{22\cdot 1} = \frac{1}{n}Y'Y - \bar{y}\bar{y}' = \frac{n-1}{n}\hat{\Sigma} = \frac{N}{n}S_{yy},$ so that the coefficients of the linear discriminant function (8.8) must satisfy, as in (8.10) and (8.11), (8.14) $$\bar{\mathbf{y}}\bar{\mathbf{y}}'\alpha = l\frac{N}{n}\mathbf{S}_{\nu\nu}\alpha,$$ where l is the largest root of (8.15) $$|\bar{y}\bar{y}' - l\frac{N}{n}S_{\nu\nu}| = 0 = |\bar{y}\bar{y}' - r^2\frac{1}{n}Y'Y|.$$ Here there is just a single root [cf. Anderson (1958, p. 108)] $$l = \frac{n}{N} \bar{y}' S_{\nu\nu}^{-1} \bar{y}, \qquad \hat{J}(H_1, H_2) = (n-1)l = n\bar{y}' S_{\nu\nu}^{-1} \bar{y} = n \text{ tr } S_{\nu\nu}^{-1} \bar{y} \bar{y}',$$ the canonical correlation squared is $$r^{2} = n\overline{\mathbf{y}}'(\mathbf{Y}'\mathbf{Y})^{-1}\overline{\mathbf{y}} = n \operatorname{tr} (\mathbf{Y}'\mathbf{Y})^{-1}\overline{\mathbf{y}}\overline{\mathbf{y}}' = \frac{\frac{n}{N}\overline{\mathbf{y}}'\mathbf{S}_{\nu\nu}^{-1}\overline{\mathbf{y}}}{1 +
\frac{n}{N}\overline{\mathbf{y}}'\mathbf{S}_{\nu\nu}^{-1}\overline{\mathbf{y}}},$$ and the coefficients of the linear discriminant function are $\alpha = S_{\nu\nu}^{-1}\bar{y}$. [Cf. the discussion following (5.2) in chapter 9.] The linear discriminant function is thus $w = \alpha' y = \bar{y}' S_{\nu\nu}^{-1} y$, and the coefficient vector of the linear function of the x's, whose correlation with $w = \alpha' y$ yields the canonical correlation r above, is proportional to $\alpha' \hat{B} = \bar{y}' S_{\nu\nu}^{-1} \bar{y}$. [Cf. Fisher (1938).] #### 9. EXAMPLES We shall illustrate some of the particulars in the preceding sections with numerical examples. The aim is the illustration of the computational procedure, not the complete analysis per se of the problem from which the data may have arisen. ### 9.1. Homogeneity of Sample Means Pearson and Wilks (1933) give some data from Shewhart (1931) for five samples of 12 observations each on tensile strength, y_1 , and hardness, y_2 , in aluminum die-castings. It is desired to test whether the sample averages are homogeneous. (A test for the homogeneity of the covariance matrices, to be discussed in chapter 12, leads us to accept a null hypothesis that the covariance matrices are the same.) This corresponds to the analysis in table 6.3 with $k_2 = 2$, r = 5, $n_1 = n_2 = \cdots = n_5 = 12$, n = 60. The five sample averages are [Pearson and Wilks (1933, p. 356)]: | Strength | Hardness | | |-------------------------|------------------------|--| | $\bar{y}_{11} = 33.399$ | $\bar{y}_{12} = 68.49$ | | | $\bar{y}_{21} = 28.216$ | $\bar{y}_{22} = 68.02$ | | | $\bar{y}_{31} = 30.313$ | $\bar{y}_{32} = 66.57$ | | | $\bar{y}_{41} = 33.150$ | $\bar{y}_{42} = 76.12$ | | | $\bar{y}_{51} = 34.269$ | $\bar{y}_{52} = 69.92$ | | The elements of the matrices corresponding to the generalized sums of squares are: | | D.F. | $oldsymbol{y_1^2}$ | $oldsymbol{y_2^2}$ | y_1y_2 | |---------|--------|--------------------|--------------------|-----------------| | Between | r-1=4 | 306.089 | 662.77 | 214.86 | | Within | n-r=55 | 636.165 | 7653.42 | 1697 .52 | | Total | n-1=59 | 942.254 | 8316.19 | 1912.38 | that is, $$\mathbf{S} = \frac{1}{55} \begin{pmatrix} 636.165 & 1697.52 \\ 1697.52 & 7653.42 \end{pmatrix} = \begin{pmatrix} 11.5666 & 30.9004 \\ 30.9004 & 139.153 \end{pmatrix},$$ $$\mathbf{S}^* = \begin{pmatrix} 306.089 & 214.86 \\ 214.86 & 662.77 \end{pmatrix}.$$ $$J(H_1, H_2) = \text{tr } S^{-1}S^* = 56.3 = \frac{4 \times 2 \times 55}{55 - 2 + 1} F \text{ or } F = 6.91$$, exceeding the 0.001 point of the F-distribution for $n_1 = 8$ and $n_2 = 57$ degrees of freedom. For $4 \times 2 = 8$ degrees of freedom, we find from tables of the χ^2 -distribution that Prob ($\chi^2 \ge 56.3$) < 0.00001. We therefore reject the null hypothesis of homogeneity. (Pearson and Wilks use a different statistic, denoted by L_2 , with observed value 0.6896 and for which Prob $(L_2 < 0.6896) = 0.0000019$.) To find the linear discriminant functions for this example, the determinantal equation (8.4) is $$\begin{vmatrix} 306.089 - 11.5666l & 214.86 - 30.9004l \\ 214.86 & -30.9004l & 662.77 - 139.153l \end{vmatrix} = 0,$$ and the quadratic equation yields the roots $l_1 = 51.702$, $l_2 = 4.614$. The decomposition corresponding to (8.7) is therefore $$\hat{J}(H_1, H_2; l_2) = 4.6 \quad 3 \text{ d.f.}$$ $$\hat{J}(H_1, H_2; l_1) = 51.7 \quad 5 \text{ d.f.}$$ $$\hat{J}(H_1, H_2) = 56.3 \quad 8 \text{ d.f.}$$ The root l_2 is not significant and we proceed to find the coefficients of the linear discriminant function associated with l_1 . With $l = 51.7 = l_1$, the equations (8.3) become $$\begin{pmatrix} -291.906 & -1380.809 \\ -1380.809 & -6531.445 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = 0,$$ that is, $$291.906\alpha_1 + 1380.809\alpha_2 = 0$$ $$1380.809\alpha_1 + 6531.445\alpha_2 = 0$$ yielding $\alpha_2/\alpha_1 = -0.211$. Thus, the only significant linear discriminant function, that associated with the root $l_1 = 51.7$, is $w = y_1 - 0.211y_2$. # 9.2. Canonical Correlation Hotelling (1936) considered the following data, given by Kelley (1928, p. 100) for a sample of 140 seventh-grade school children, in which x_1 and x_2 refer to reading speed and reading power respectively, and y_1 and y_2 to arithmetic speed and arithmetic power respectively. The data have been normalized and the correlation matrix of the 140 observations is* $$\mathbf{R} = \begin{pmatrix} 1.0000 & 0.6328 & 0.2412 & 0.0586 \\ 0.6328 & 1.0000 & -0.0553 & 0.0655 \\ 0.2412 & -0.0553 & 0.0655 & 1.0000 & 0.4248 \\ 0.0586 & 0.0655 & 0.4248 & 1.0000 \end{pmatrix} = \begin{pmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ \mathbf{R}_{21} & \mathbf{R}_{22} \end{pmatrix}.$$ We find that $$\mathbf{R_{21}R_{11}^{-1}R_{12}} = \begin{pmatrix} 0.1303 & 0.0043 \\ 0.0043 & 0.0048 \end{pmatrix},$$ * Reprinted from Crossroads in the Mind of Man by Truman L. Kelley with the permission of the publishers, Stanford University Press. Copyright 1928 by the Board of Trustees of Leland Stanford Junior University. and the determinantal equation corresponding to (7.4), $$\begin{vmatrix} 0.1303 - r^2 & 0.0043 - 0.4248r^2 \\ 0.0043 - 0.4248r^2 & 0.0048 - r^2 \end{vmatrix} = 0,$$ yields the roots $r_1^2 = 0.1556$, $r_2^2 = 0.0047$. The decomposition corresponding to (8.13) is therefore $$\hat{J}(H_1, H_2; r_2^2) = 137 \frac{r_2^2}{1 - r_2^2} = 0.6439 \quad 1 \text{ d.f.}$$ $$\hat{J}(H_1, H_2; r_1^2) = 137 \frac{r_1^2}{1 - r_1^2} = 25.2491 \quad 3 \text{ d.f.}$$ $$\hat{J}(H_1, H_2) = 25.8930 \quad 4 \text{ d.f.}$$ $J(H_1, H_2)$ and $J(H_1, H_2; r_1^2)$ are significant at the 0.005 level. There is thus only one significant canonical correlation and the coefficients of the associated linear discriminant function must satisfy (8.10), or the equivalent $$\begin{pmatrix} 0.1303 - 0.1556 & 0.0043 - 0.1556 & (0.4248) \\ 0.0043 - 0.1556 & (0.4248) & 0.0048 - 0.1556 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \mathbf{0},$$ that is, $$-0.0253\alpha_1 - 0.0618\alpha_2 = 0$$ $$-0.0618\alpha_1 - 0.1508\alpha_2 = 0,$$ or $\alpha_1/\alpha_2 = -2.44$. The linear discriminant function is $w = -2.44y_1 + y_2$. [This corresponds to the second of the pair of linear discriminant functions in (7.19) of chapter 9.] We reject the null hypothesis that the y's (arithmetic speed and arithmetic power) are independent of the x's (reading speed and reading power). We now test the subhypothesis that reading power is not relevant, that is, the coefficient of x_2 in the regressions of y_1 and y_2 on x_1 and x_2 is zero. We therefore compute the values needed for the analysis of table 5.1, keeping in mind the remark at the end of section 6.2. In the notation of section 5.1 we have $$\mathbf{Y'Y} = \begin{pmatrix} 1.0000 & 0.4248 \\ 0.4248 & 1.0000 \end{pmatrix}, \qquad \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix} = \begin{pmatrix} 1.0000 & 0.6328 \\ 0.6328 & 1.0000 \end{pmatrix},$$ $$\mathbf{Y'X}_{1} = \begin{pmatrix} 0.2412 \\ 0.0586 \end{pmatrix}, \qquad \mathbf{Y'X}_{2} = \begin{pmatrix} -0.0553 \\ 0.0655 \end{pmatrix},$$ $$\mathbf{S}_{22\cdot 1} = 1.0000 - (0.6328)^{2} = 0.599564,$$ $$\begin{split} \mathbf{\tilde{B}^{1}} &= (\mathbf{Y'X})(\mathbf{X'X})^{-1} = \begin{pmatrix} 0.2412 & -0.0553 \\ 0.0586 & 0.0655 \end{pmatrix} \begin{pmatrix} 1.0000 & 0.6328 \\ 0.6328 & 1.0000 \end{pmatrix}^{-1} \\ &= \begin{pmatrix} 0.2412 & -0.0553 \\ 0.0586 & 0.0655 \end{pmatrix} \begin{pmatrix} 1.667878 & -1.055433 \\ -1.055433 & 1.667878 \end{pmatrix} \\ &= \begin{pmatrix} 0.460658 & -0.346804 \\ 0.028607 & 0.047398 \end{pmatrix}, \\ \mathbf{\tilde{B}^{1}}(\mathbf{X'X})\mathbf{\tilde{B}^{1'}} &= (\mathbf{Y'X})(\mathbf{X'X})^{-1}(\mathbf{XY'}) \\ &= \begin{pmatrix} 0.2412 & -0.0553 \\ 0.0586 & 0.0655 \end{pmatrix} \begin{pmatrix} 1.0000 & 0.6328 \\ 0.6328 & 1.0000 \end{pmatrix}^{-1} \begin{pmatrix} 0.2412 & 0.0586 \\ -0.0553 & 0.0655 \end{pmatrix} \\ &= \begin{pmatrix} 0.1303 & 0.0043 \\ 0.0043 & 0.0048 \end{pmatrix}, \\ \mathbf{\tilde{B}^{2}_{1}} &= \mathbf{Y'X_{1}S_{11}^{-1}} &= \begin{pmatrix} 0.2412 \\ 0.0586 \end{pmatrix}, \quad \mathbf{\tilde{B}^{2}_{1}S_{11}\tilde{B}^{2'}_{1}} &= \begin{pmatrix} 0.2412 \\ 0.0586 \end{pmatrix} (0.2412, & 0.0586) \\ &= \begin{pmatrix} 0.0582 & 0.0141 \\ 0.0141 & 0.0034 \end{pmatrix}. \end{split}$$ Table 9.1 corresponds to table 5.1 and provides the appropriate analysis. We find that tr 137 $$\begin{pmatrix} 0.8697 & 0.4205 \\ 0.4205 & 0.9952 \end{pmatrix}^{-1} \begin{pmatrix} 0.1303 & 0.0043 \\ 0.0043 & 0.0048 \end{pmatrix}$$ = tr 137 $\begin{pmatrix} 1.4450 & -0.6106 \\ -0.6106 & 1.2628 \end{pmatrix} \begin{pmatrix} 0.1303 & 0.0043 \\ 0.0043 & 0.0048 \end{pmatrix} = 25.8930,$ TABLE 9.1 | Variation due to | Generalized Sum of Squares | D.F. | |--|---|------| | $H_2: \mathbf{B}^2 = (\mathbf{B}_1^2, 0)$ | $\mathbf{\hat{B}_{1}^{2}S_{11}\hat{B}_{1}^{2'}} = \begin{pmatrix} 0.0582 & 0.0141 \\ 0.0141 & 0.0034 \end{pmatrix}$ | 1 | | Difference | $\mathbf{\hat{B}_{2}^{1}S_{22\cdot1}\hat{B}_{2}^{1'}} = \begin{pmatrix} 0.0721 & -0.0098 \\ -0.0098 & 0.0014 \end{pmatrix}$ | 1 | | $H_1: \mathbf{B}^1 = (\mathbf{B}_1^1, \mathbf{B}_2^1)$ | $\hat{\mathbf{B}}^{1}\mathbf{X}'\mathbf{X}\hat{\mathbf{B}}^{1'} = \begin{pmatrix} 0.1303 & 0.0043 \\ 0.0043 & 0.0048 \end{pmatrix}$ | 2 | | Difference | $137\hat{\Sigma} = \begin{pmatrix} 0.8697 & 0.4205 \\ 0.4205 & 0.9952 \end{pmatrix}$ | 137 | | Total | $\mathbf{Y'Y} = \begin{pmatrix} 1.0000 & 0.4248 \\ 0.4248 & 1.0000 \end{pmatrix}$ | 139 | which is of course the value already found in terms of the canonical correlations, and tr 137 $$\begin{pmatrix} 0.8697 & 0.4205 \\ 0.4205 & 0.9952 \end{pmatrix}^{-1} \begin{pmatrix}
0.0721 & -0.0098 \\ -0.0098 & 0.0014 \end{pmatrix}$$ = $16.16 = \frac{1 \times 2 \times 137}{137 - 2 + 1} F$ or $F = 8.02$, exceeding the 0.001 point of the F-distribution for $n_1 = 2$ and $n_2 = 136$ degrees of freedom. We therefore reject the null subhypothesis that x_2 is not relevant. A similar test can be made of a subhypothesis with respect to x_1 , but we leave this to the reader. The coefficient vector of the linear function of the x's whose correlation with the linear function of the y's, $w = -2.44y_1 + y_2$, yields the canonical correlation r_1 , is proportional to $\alpha'\hat{\mathbf{B}}$, that is [cf. (7.10) in chapter 9], $$(-2.44, 1)$$ $\begin{pmatrix} 0.460658 & -0.346804 \\ 0.028607 & 0.047398 \end{pmatrix} = (-1.095, 0.894),$ or $$v = -1.095x_1 + 0.894x_2$$. # 9.3. Subhypothesis Consider the following correlation matrix used by Thomson (1947, p. 30) to illustrate the computation of canonical correlations and by Bartlett (1948) to illustrate the relevant significance tests, assuming n = 20: $$\mathbf{R} = \begin{pmatrix} 1.0 & 0.1 & 0.6 & 0.7 & 0.2 \\ 0.1 & 1.0 & 0.4 & 0.3 & 0.8 \\ 0.6 & 0.4 & 1.0 & 0.5 & 0.3 \\ 0.7 & 0.3 & 0.5 & 1.0 & 0.4 \\ 0.2 & 0.8 & 0.3 & 0.4 & 1.0 \end{pmatrix} = \begin{pmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ \mathbf{R}_{21} & \mathbf{R}_{22} \end{pmatrix}.$$ We associate the first three rows with x_1 , x_2 , x_3 , and the last two rows with y_1 , y_2 . Because of the relatively large values of the correlation of x_3 with x_1 (0.6) and with x_2 (0.4), we want to test a null subhypothesis that x_3 does not contribute significantly, in addition to x_1 and x_2 , in the regression of the y's on the x's. The determinantal equation corresponding to (7.4) is $$\begin{vmatrix} 0.5434 - r^2 & 0.3210 - 0.4r^2 \\ 0.3210 - 0.4r^2 & 0.6693 - r^2 \end{vmatrix} = 0,$$ and yields the roots $r_1^2 = 0.6850$, $r_2^2 = 0.4530$. The decomposition corresponding to (8.13) is $$\hat{J}(H_1, H_2; r_2^2) = 16 \frac{r_2^2}{1 - r_2^2} = 13.28 \quad 2 \text{ d.f.}$$ $$\hat{J}(H_1, H_2; r_1^2) = 16 \frac{r_1^2}{1 - r_1^2} = 34.72 \quad 4 \text{ d.f.}$$ $$\hat{J}(H_1, H_2) = 48.00 \quad 6 \text{ d.f.}$$ Here all values are significant at the 0.005 level, both canonical correlations are significant, and there are two significant linear discriminant functions. In the notation of section 5.1 we have $$\mathbf{Y'Y} = \begin{pmatrix} 1.0 & 0.4 \\ 0.4 & 1.0 \end{pmatrix}, \qquad \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix} = \begin{pmatrix} 1.0 & 0.1 \\ 0.1 & 1.0 \\ 0.6 & 0.4 \end{pmatrix},$$ $$\mathbf{Y'X}_{1} = \begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{pmatrix}, \qquad \mathbf{Y'X}_{2} = \begin{pmatrix} 0.5 \\ 0.3 \end{pmatrix},$$ $$\mathbf{S}_{22\cdot 1} = 1.0 - (0.6, \quad 0.4) \begin{pmatrix} 1.0 & 0.1 \\ 0.1 & 1.0 \end{pmatrix}^{-1} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = 0.523232,$$ $$\hat{\mathbf{B}}^{1}(\mathbf{X'X})\hat{\mathbf{B}}^{1'} = (\mathbf{Y'X})(\mathbf{X'X})^{-1}(\mathbf{X'Y})$$ $$= \begin{pmatrix} 0.7 & 0.3 & 0.5 \\ 0.2 & 0.8 & 0.3 \end{pmatrix} \begin{pmatrix} 1.0 & 0.1 & 0.6 \\ 0.1 & 1.0 & 0.4 \\ 0.6 & 0.4 & 1.0 \end{pmatrix}^{-1} \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \\ 0.5 & 0.3 \end{pmatrix}$$ $$= \begin{pmatrix} 0.5434 & 0.3210 \\ 0.3210 & 0.6693 \end{pmatrix},$$ $$\hat{\mathbf{B}}_{1}^{2}\mathbf{S}_{11}\hat{\mathbf{B}}_{1}^{2'} = \mathbf{Y'X}_{1}\mathbf{S}_{11}^{-1}\mathbf{X}_{1}^{\prime}\mathbf{Y} = \begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{pmatrix} \begin{pmatrix} 1.0 & 0.1 \\ 0.1 & 1.0 \end{pmatrix}^{-1} \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix}$$ $$= \begin{pmatrix} 0.5434 & 0.3212 \\ 0.3212 & 0.6545 \end{pmatrix}.$$ Table 9.2 corresponds to table 5.1 and provides the appropriate analysis. $$\operatorname{tr} 16 \begin{pmatrix} 0.4566 & 0.0790 \\ 0.0790 & 0.3307 \end{pmatrix}^{-1} \begin{pmatrix} 0.5434 & 0.3210 \\ 0.3210 & 0.6693 \end{pmatrix}$$ $$= \operatorname{tr} 16 \begin{pmatrix} 2.2845 & -0.5457 \\ -0.5457 & 3.1543 \end{pmatrix} \begin{pmatrix} 0.5434 & 0.3210 \\ 0.3210 & 0.6693 \end{pmatrix}$$ $$= 48.00 = \frac{3 \times 2 \times 16}{16 - 2 + 1} F \quad \text{or} \quad F = 7.50,$$ exceeding the 0.001 point of the F-distribution for $n_1 = 7$ and $n_2 = 17$ degrees of freedom. $J(H_1, H_2) = 48.00$ is also the value obtained by the use of the canonical correlations. tr 16 $$\begin{pmatrix} 0.4566 & 0.0790 \\ 0.0790 & 0.3307 \end{pmatrix}^{-1} \begin{pmatrix} 0.0000 & -0.0002 \\ -0.0002 & 0.0148 \end{pmatrix}$$ = $0.75 = \frac{1 \times 2 \times 16}{16 - 2 + 1} F$ or $F = 0.35$, not exceeding 3.683, the 0.05 point of the F-distribution for $n_1 = 2$ and $n_2 = 15$ degrees of freedom. We therefore accept the null subhypothesis that the x_3 variate contributes no significant information. TABLE 9.2 | Variation due to | Generalized Sum of Squares | D.F. | |--|---|------| | $H_2: \mathbf{B}^2 = (\mathbf{B}_1^2, 0)$ | $\mathbf{\hat{B}_{1}^{2}S_{11}\hat{B}_{1}^{2'} = \begin{pmatrix} 0.5434 & 0.3212 \\ 0.3212 & 0.6545 \end{pmatrix}$ | 2 | | Difference | $\mathbf{\hat{B}_{2}^{1}S_{22\cdot 1}\hat{B}_{2}^{1'} = \begin{pmatrix} 0.0000 & -0.0002 \\ -0.0002 & 0.0148 \end{pmatrix}$ | 1 | | $H_1: \mathbf{B}^1 = (\mathbf{B}_1^1, \mathbf{B}_2^1)$ | $\mathbf{\hat{B}}^{1}\mathbf{X}'\mathbf{X}\mathbf{\hat{B}}^{1'} = \begin{pmatrix} 0.5434 & 0.3210 \\ 0.3210 & 0.6693 \end{pmatrix}$ | 3 | | Difference | $16\hat{\mathbf{\Sigma}} = \begin{pmatrix} 0.4566 & 0.0790 \\ 0.0790 & 0.3307 \end{pmatrix}$ | 16 | | Total | $Y'Y = \begin{pmatrix} 1.0 & 0.4 \\ 0.4 & 1.0 \end{pmatrix}$ | 19 | To carry out the test of a similar subhypothesis on the pair of variables x_2 , x_3 , we have: $$\begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix} = \begin{pmatrix} 1.0 & 0.1 & 0.6 \\ 0.1 & 1.0 & 0.4 \\ 0.6 & 0.4 & 1.0 \end{pmatrix}, \quad \mathbf{Y}'\mathbf{X}_{1} = \begin{pmatrix} 0.7 \\ 0.2 \end{pmatrix}, \quad \mathbf{Y}'\mathbf{X}_{2} = \begin{pmatrix} 0.3 & 0.5 \\ 0.8 & 0.3 \end{pmatrix},$$ $$\mathbf{S}_{22 \cdot 1} = \begin{pmatrix} 1.0 & 0.4 \\ 0.4 & 1.0 \end{pmatrix} - \begin{pmatrix} 0.1 \\ 0.6 \end{pmatrix} (0.1, \ 0.6) = \begin{pmatrix} 0.99 & 0.34 \\ 0.34 & 0.64 \end{pmatrix},$$ $$\hat{\mathbf{B}}_{1}^{2}\mathbf{S}_{11}\hat{\mathbf{B}}_{1}^{2'} = \mathbf{Y}'\mathbf{X}_{1}\mathbf{S}_{11}^{-1}\mathbf{X}_{1}'\mathbf{Y} = \begin{pmatrix} 0.7 \\ 0.2 \end{pmatrix} (0.7, \ 0.2) = \begin{pmatrix} 0.49 & 0.14 \\ 0.14 & 0.04 \end{pmatrix}.$$ Table 9.3 corresponds to table 5.1 and provides the appropriate analysis. | | | TABLE 9.3 | | |-------|--|--|-----------------| | | Variation due to | Generalized Sum of Squares | D.F. | | • | H_2 : $\mathbf{B}^2 = (\mathbf{B}_1^2, 0)$ | $\hat{\mathbf{B}}_{1}^{2}\mathbf{S}_{11}\hat{\mathbf{B}}_{1}^{2'} = \begin{pmatrix} 0.49 & 0.14 \\ 0.14 & 0.04 \end{pmatrix}$ | 1 | | | Difference | $\mathbf{\hat{B}}_{2}^{1}\mathbf{S}_{22\cdot 1}\mathbf{\hat{B}}_{2}^{1'} = \begin{pmatrix} 0.0534 & 0.1810 \\ 0.1810 & 0.6293 \end{pmatrix}$ | 2 | | · | $H_1: \mathbf{B}^1 = (\mathbf{B}_1^1, \mathbf{B}_2^1)$ | $\mathbf{\hat{B}}^{1}\mathbf{X}'\mathbf{X}\mathbf{\hat{B}}^{1'} = \begin{pmatrix} 0.5434 & 0.3210 \\ 0.3210 & 0.6693 \end{pmatrix}$ | 3 | | | Difference | $16\hat{\Sigma} = \begin{pmatrix} 0.4566 & 0.0790 \\ 0.0790 & 0.3307 \end{pmatrix}$ | 16 | | · | Total | $Y'Y = \begin{pmatrix} 1.0 & 0.4 \\ 0.4 & 1.0 \end{pmatrix}$ | 19 | | tr 16 | $5\begin{pmatrix} 0.4566 & 0.0790 \\ 0.0790 & 0.3307 \end{pmatrix}^{-1}$ | $\begin{pmatrix} 0.0534 & 0.1810 \\ 0.1810 & 0.6293 \end{pmatrix}$ | | | | | $= 30.54 = \frac{2 \times 2 \times 16}{16 - 2 + 1} F$ | or $F = 7.15$, | between 4.772 and 7.944, the 0.01 and 0.001 points of the \vec{F} -distribution for $n_1 = 4$ and $n_2 = 16$ degrees of freedom. We therefore reject the null subhypothesis that both x_2 and x_3 are not relevant. Finally, if we consider a three-partition subhypothesis on the x's, then in the notation of section 5.2 we have: $$\begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{pmatrix} = \begin{pmatrix} 1.0 & 0.1 & 0.6 \\ 0.1 & 1.0 & 0.4 \\ 0.6 & 0.4 & 1.0 \end{pmatrix}, S_{33\cdot 1} = 1.0 - (0.6)^2 = 0.64,$$ $$S_{32\cdot 1} = 0.4 - (0.6)(0.1) = 0.34, S_{22\cdot 1} = 1.0 - (0.1)^2 = 0.99,$$ $$S_{33\cdot 12} = 0.64 - \frac{(0.34)(0.34)}{0.99} = 0.523232,$$ $$Y'X_{2\cdot 1} = \begin{pmatrix} 0.3 \\ 0.8 \end{pmatrix} - \begin{pmatrix} 0.7 \\ 0.2 \end{pmatrix} (0.1) = \begin{pmatrix} 0.23 \\ 0.78 \end{pmatrix},$$ $$Y'X_{3\cdot 1} = \begin{pmatrix} 0.5 \\ 0.3 \end{pmatrix} - \begin{pmatrix} 0.7 \\ 0.2 \end{pmatrix} (0.6) = \begin{pmatrix} 0.08 \\ 0.18 \end{pmatrix},$$ $$\begin{split} \mathbf{Y}'\mathbf{X}_{3\cdot 12} &= \begin{pmatrix} 0.08 \\ 0.18 \end{pmatrix} - \begin{pmatrix} 0.23 \\ 0.78 \end{pmatrix} \frac{1}{0.99} (0.34) = \begin{pmatrix} 0.0010 \\ -0.0879 \end{pmatrix}, \\ \mathbf{Y}'\mathbf{X}_{1}\mathbf{S}_{11}^{-1}\mathbf{X}_{1}'\mathbf{Y} &= \begin{pmatrix} 0.7 \\ 0.2 \end{pmatrix} (0.7, 0.2) = \begin{pmatrix} 0.49 & 0.14 \\ 0.14 & 0.04 \end{pmatrix}, \\ \mathbf{Y}'\mathbf{X}_{2\cdot 1}\mathbf{S}_{22\cdot 1}^{-1}\mathbf{X}_{2\cdot 1}'\mathbf{Y} &= \begin{pmatrix} 0.23 \\ 0.78 \end{pmatrix} \frac{1}{0.99} (0.23, 0.78) = \begin{pmatrix} 0.0534 & 0.1812 \\ 0.1812 & 0.6145 \end{pmatrix}, \\ \mathbf{Y}'\mathbf{X}_{3\cdot 12}\mathbf{S}_{33\cdot 12}^{-1}\mathbf{X}_{3\cdot 12}'\mathbf{Y} &= \begin{pmatrix} 0.0010 \\ -0.0879 \end{pmatrix} \frac{1}{0.5232} (0.0010, -0.0879) \\ &= \begin{pmatrix} 0.0000 & -0.0002 \\ -0.0002 &
0.0148 \end{pmatrix}. \end{split}$$ Because of (5.19) we summarize these results and tables 9.2 and 9.3 in table 9.4. TABLE 9.4 | Variation due to | Generalized Sum of Squares | D.F. | |--|--|------| | x_1 | $\mathbf{Y}'\mathbf{X}_{1}\mathbf{S}_{11}^{-1}\mathbf{X}_{1}'\mathbf{Y} = \begin{pmatrix} 0.49 & 0.14 \\ 0.14 & 0.04 \end{pmatrix}$ | 1 | | $x_{2\cdot 1}$ | $\mathbf{Y}'\mathbf{X}_{2\cdot 1}\mathbf{S}_{22\cdot 1}^{-1}\mathbf{X}_{2\cdot 1}'\mathbf{Y} = \begin{pmatrix} 0.0534 & 0.1812 \\ 0.1812 & 0.6145 \end{pmatrix}$ | 1 | | $x_{3\cdot 12}$ | $Y'X_{3\cdot12}S_{33\cdot12}^{-1}X'_{3\cdot12}Y = \begin{pmatrix} 0.0000 & -0.0002\\ -0.0002 & 0.0148 \end{pmatrix}$ | 1 | | \mathbf{B}_1 | $\mathbf{Y}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \begin{pmatrix} 0.5434 & 0.3210 \\ 0.3210 & 0.6693 \end{pmatrix}$ | 3 | | Difference | $16\hat{\mathbf{\Sigma}} = \begin{pmatrix} 0.4566 & 0.0790 \\ 0.0790 & 0.3307 \end{pmatrix}$ | 16 | | Total | $\mathbf{Y'Y} = \begin{pmatrix} 1.0 & 0.4 \\ 0.4 & 1.0 \end{pmatrix}$ | 19 | | tr | $16 \begin{pmatrix} 0.4566 & 0.0790 \\ 0.0790 & 0.3307 \end{pmatrix}^{-1} \begin{pmatrix} 0.49 & 0.14 \\ 0.14 & 0.04 \end{pmatrix} = 17.46 2 \text{ d}.$ | f. | | tr 16 (| | f. | | tr 16 $\begin{pmatrix} 0.45 \\ 0.07 \end{pmatrix}$ | $ \begin{pmatrix} 66 & 0.0790 \\ 90 & 0.3307 \end{pmatrix}^{-1} \begin{pmatrix} 0.0000 & -0.0002 \\ -0.0002 & 0.0148 \end{pmatrix} = 0.75 2 \text{ d.} $ | f. | #### 10. REPARAMETRIZATION # 10.1. Hypotheses Not of Full Rank (Cf. section 9 of chapter 10.) Suppose that the components of the rows of **B** in (3.1) are not linearly independent, but, for each row are linear functions of the same $p < k_1$ parameters, that is, $$\mathbf{B} = \mathbf{\Gamma}\mathbf{G}',$$ where $\Gamma = (\gamma_{ij})$, $G' = (g_{jk})$, $i = 1, 2, \dots, k_2$, $j = 1, 2, \dots, p$, $k = 1, 2, \dots, k_1$, G' is of rank $p < k_1$, and Γ of rank min (p, k_2) . This implies that the matrix X in (3.2) is of rank $p < k_1$, and conversely, so that X'X is now a positive (not positive definite) matrix of rank $p < k_1$, is therefore singular and has no inverse, so that we must re-examine the solution for \hat{B} in (4.1). We may write (3.2) as (10.2) $$Z = Y - XG\Gamma' = Y - A\Gamma',$$ where A = XG is an $n \times p$ matrix of rank p. The least squares estimate of Γ is derived from the normal equations [cf. (4.1)] (10.3) $$\mathbf{\hat{\Gamma}}\mathbf{A}'\mathbf{A} = \mathbf{Y}'\mathbf{A}$$ or $\mathbf{\hat{\Gamma}}\mathbf{G}'\mathbf{X}'\mathbf{X}\mathbf{G} = \mathbf{Y}'\mathbf{X}\mathbf{G}$. The estimate of **B** is obtained from $\hat{\mathbf{B}} = \hat{\mathbf{\Gamma}}\mathbf{G}'$, or $$\hat{\mathbf{B}} = \mathbf{Y}'\mathbf{X}\mathbf{G}(\mathbf{G}'\mathbf{X}'\mathbf{X}\mathbf{G})^{-1}\mathbf{G}'.$$ From (10.2) and (10.3), we see that $$\hat{\Gamma} = Y'A(A'A)^{-1} = (Z' + \Gamma A')A(A'A)^{-1},$$ so that $E(\hat{\Gamma}) = \Gamma$ and $E(\hat{B}) = E(\hat{\Gamma})G' = \Gamma G' = B$, that is, $\hat{\Gamma}$ and \hat{B} are unbiased estimates of Γ and B respectively. Corresponding to (4.3), we have (10.5) $$\hat{J}(H_1, H_2; O_n) = \operatorname{tr} \hat{\mathbf{\Sigma}}^{-1}(\hat{\mathbf{\Gamma}}^1 - \mathbf{\Gamma}^2) \mathbf{A}' \mathbf{A}(\hat{\mathbf{\Gamma}}^1 - \mathbf{\Gamma}^2)'$$ $$= \operatorname{tr} \hat{\mathbf{\Sigma}}^{-1}(\hat{\mathbf{\Gamma}}^1 - \mathbf{\Gamma}^2) \mathbf{G}' \mathbf{X}' \mathbf{X} \mathbf{G}(\hat{\mathbf{\Gamma}}^1 - \mathbf{\Gamma}^2)'$$ $$= \operatorname{tr} \hat{\mathbf{\Sigma}}^{-1}(\hat{\mathbf{B}}^1 - \mathbf{B}^2) \mathbf{X}' \mathbf{X}(\hat{\mathbf{B}}^1 - \mathbf{B}^2)'$$ where $$(n-p)\hat{\Sigma} = Y'Y - \hat{\Gamma}^1A'A\hat{\Gamma}^{1'} = Y'Y - \hat{B}^1X'X\hat{B}^{1'}$$. Note from (10.3) that $\mathbf{\hat{B}X'XG} = \mathbf{Y'XG}$ represents k_2p linear functions of the y's that are normally distributed and that are also linear functions of the $\hat{\beta}$'s. These are unbiased estimates of the same linear functions of the β 's. Since $\mathbf{\hat{B}X'XG} = \mathbf{Y'XG} = \mathbf{\hat{\Gamma}G'X'XG}$, we may make similar statements about the γ 's and their estimates. Consider now any other set of k_2p linear functions of the y's, say Y'L, where L is an $n \times p$ matrix of rank p. Since (10.6) $$E(\mathbf{Y}'\mathbf{L}) = E(\mathbf{Z}' + \mathbf{B}\mathbf{X}')\mathbf{L} = \mathbf{B}\mathbf{X}'\mathbf{L} = \mathbf{\Gamma}\mathbf{G}'\mathbf{X}'\mathbf{L},$$ Y'L is an unbiased estimate of Γ if $G'X'L = I_p$, the $p \times p$ identity matrix. To obtain the covariance matrix of the linear functions of the y's we proceed as follows. Instead of the partitioning of the matrix Y' given for (3.2), consider the partitioning (10.7) $$\mathbf{Y}' = \begin{pmatrix} \zeta_{1}' \\ \zeta_{2}' \\ \vdots \\ \zeta_{k}' \end{pmatrix}, \qquad \zeta_{j}' = (y_{1j}, y_{2j}, \cdots, y_{nj}), \\ \zeta_{k}' \end{pmatrix}$$ so that (10.8) $$\mathbf{Y'L} = \begin{pmatrix} \zeta_1' \mathbf{L} \\ \zeta_2' \mathbf{L} \\ \vdots \\ \zeta_{k_*}' \mathbf{L} \end{pmatrix}$$ with ζ_i' L a 1 \times p matrix representing p linear functions of the n observed values of the jth y variable. Considering the $pk_2 \times 1$ matrix (10.9) $$\begin{pmatrix} \mathbf{L}'\zeta_1 \\ \mathbf{L}'\zeta_2 \\ \vdots \\ \vdots \\ \mathbf{L}'\zeta_k \end{pmatrix},$$ the covariance matrix of the pk_2 linear functions in (10.8) is $$(10.10) \quad \begin{pmatrix} \mathbf{L}' \cos (\zeta_{1}\zeta_{1}')\mathbf{L} & \mathbf{L}' \cos (\zeta_{1}\zeta_{2}')\mathbf{L} & \cdots & \mathbf{L}' \cos (\zeta_{1}\zeta_{k_{2}}')\mathbf{L} \\ \mathbf{L}' \cos (\zeta_{2}\zeta_{1}')\mathbf{L} & \mathbf{L}' \cos (\zeta_{2}\zeta_{2}')\mathbf{L} & \cdots & \mathbf{L}' \cos (\zeta_{2}\zeta_{k_{2}}')\mathbf{L} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \mathbf{L}' \cos (\zeta_{k_{2}}\zeta_{1}')\mathbf{L} & \mathbf{L}' \cos (\zeta_{k_{2}}\zeta_{2}')\mathbf{L} & \cdots & \mathbf{L}' \cos (\zeta_{k_{2}}\zeta_{k_{2}}')\mathbf{L} \end{pmatrix}$$ $$= \begin{pmatrix} \mathbf{L}'\sigma_{11}\mathbf{I}_{n}\mathbf{L} & \mathbf{L}'\sigma_{12}\mathbf{I}_{n}\mathbf{L} & \cdots & \mathbf{L}'\sigma_{1k_{2}}\mathbf{I}_{n}\mathbf{L} \\ \mathbf{L}'\sigma_{21}\mathbf{I}_{n}\mathbf{L} & \mathbf{L}'\sigma_{22}\mathbf{I}_{n}\mathbf{L} & \cdots & \mathbf{L}'\sigma_{2k_{2}}\mathbf{I}_{n}\mathbf{L} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \mathbf{L}'\sigma_{k_{2}1}\mathbf{I}_{n}\mathbf{L} & \mathbf{L}'\sigma_{k_{2}2}\mathbf{I}_{n}\mathbf{L} & \cdots & \mathbf{L}'\sigma_{k_{2}k_{2}}\mathbf{I}_{n}\mathbf{L} \end{pmatrix}$$ $$= \begin{pmatrix} \sigma_{11}\mathbf{L}'\mathbf{L} & \sigma_{12}\mathbf{L}'\mathbf{L} & \cdots & \sigma_{1k_{2}}\mathbf{L}'\mathbf{L} \\ \sigma_{21}\mathbf{L}'\mathbf{L} & \sigma_{22}\mathbf{L}'\mathbf{L} & \cdots & \sigma_{2k_{2}}\mathbf{L}'\mathbf{L} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \sigma_{k_{2}1}\mathbf{L}'\mathbf{L} & \sigma_{k_{2}2}\mathbf{L}'\mathbf{L} & \cdots & \sigma_{k_{2}k_{2}}\mathbf{L}'\mathbf{L} \end{pmatrix}$$ $$= (\mathbf{\Sigma}) \times \cdot (\mathbf{L}'\mathbf{L}),$$ with I_n the $n \times n$ identity matrix and Σ the covariance matrix of the y's. The notation $(\Sigma) \times \cdot (L'L)$ means the Kronecker or direct product of matrices [defined by the last two members of the equality, MacDuffee (1946, pp. 81–88), see also Anderson (1958, p. 347), Cornish (1957)], and $(\Sigma) \times \cdot (L'L)$ is a $pk_2 \times pk_2$ matrix. Similarly, writing $$(10.11) \quad \hat{\mathbf{\Gamma}} = \begin{pmatrix} \hat{\mathbf{\gamma}}_{1}' \\ \hat{\mathbf{\gamma}}_{2}' \\ \vdots \\ \vdots \\ \hat{\mathbf{\gamma}}_{k_{s}}' \end{pmatrix} = \begin{pmatrix} \zeta_{1}' \mathbf{A} (\mathbf{A}' \mathbf{A})^{-1} \\ \zeta_{2}' \mathbf{A} (\mathbf{A}' \mathbf{A})^{-1} \\ \vdots \\ \zeta_{k_{s}}' \mathbf{A} (\mathbf{A}' \mathbf{A})^{-1} \end{pmatrix} = \mathbf{Y}' \mathbf{A} (\mathbf{A}' \mathbf{A})^{-1}, \quad \hat{\mathbf{\gamma}}_{i} = (\hat{\gamma}_{i1}, \hat{\gamma}_{i2}, \dots, \hat{\gamma}_{ip}), \dots, \hat{\gamma}_{ip}), \quad \hat{\mathbf{\gamma}}_{i} = (\hat{\gamma}_{i1}, \dots, \hat{\gamma}_{ip}), \quad \hat{\mathbf{\gamma}}_{i} = (\hat{\gamma}_{i1}, \dots, \hat{\gamma}_{ip}), \quad \hat{\mathbf{\gamma}_{i} = (\hat{\gamma}_{$$ and considering the pk_2 elements of $\hat{\Gamma}$ in their order in the $1 \times pk_2$ matrix $(\hat{\gamma}'_1, \hat{\gamma}'_2, \dots, \hat{\gamma}'_{k_2})$, we have for the estimates in $\hat{\Gamma}$ the covariance matrix (10.12) $$\begin{pmatrix} (\mathbf{A}'\mathbf{A})^{-1}\mathbf{A}'\sigma_{11}\mathbf{I}_{n}\mathbf{A}(\mathbf{A}'\mathbf{A})^{-1} & \cdot & \cdot & (\mathbf{A}'\mathbf{A})^{-1}\mathbf{A}'\sigma_{1k_{1}}\mathbf{I}_{n}\mathbf{A}(\mathbf{A}'\mathbf{A})^{-1} \\ (\mathbf{A}'\mathbf{A})^{-1}\mathbf{A}'\sigma_{21}\mathbf{I}_{n}\mathbf{A}(\mathbf{A}'\mathbf{A})^{-1} & \cdot & \cdot & (\mathbf{A}'\mathbf{A})^{-1}\mathbf{A}'\sigma_{2k_{1}}\mathbf{I}_{n}\mathbf{A}(\mathbf{A}'\mathbf{A})^{-1} \\ & \cdot \\ (\mathbf{A}'\mathbf{A})^{-1}\mathbf{A}'\sigma_{k_{1}}\mathbf{I}_{n}\mathbf{A}(\mathbf{A}'\mathbf{A})^{-1} & \cdot & \cdot & (\mathbf{A}'\mathbf{A})^{-1}\mathbf{A}'\sigma_{k_{2}k_{1}}\mathbf{I}_{n}\mathbf{A}(\mathbf{A}'\mathbf{A})^{-1} \end{pmatrix}$$ $$= \begin{pmatrix} \sigma_{11}(\mathbf{A}'\mathbf{A})^{-1} & \sigma_{12}(\mathbf{A}'\mathbf{A})^{-1} & \cdot & \cdot & \sigma_{1k_{1}}(\mathbf{A}'\mathbf{A})^{-1} \\ \sigma_{21}(\mathbf{A}'\mathbf{A})^{-1} & \sigma_{22}(\mathbf{A}'\mathbf{A})^{-1} & \cdot & \cdot & \sigma_{2k_{1}}(\mathbf{A}'\mathbf{A})^{-1} \\ & \cdot \\ \sigma_{k_{2}1}(\mathbf{A}'\mathbf{A})^{-1} & \sigma_{k_{2}2}(\mathbf{A}'\mathbf{A})^{-1} & \cdot & \cdot & \sigma_{k_{1}k_{2}}(\mathbf{A}'\mathbf{A})^{-1}
\end{pmatrix} = (\mathbf{\Sigma}) \times \cdot (\mathbf{A}'\mathbf{A})^{-1}$$ $$= (\mathbf{\Sigma}) \times \cdot (\mathbf{G}'\mathbf{X}'\mathbf{X}\mathbf{G})^{-1},$$ a $pk_2 \times pk_2$ matrix. Similarly, writing (10.13) $$\hat{\mathbf{B}} = \begin{pmatrix} \hat{\boldsymbol{\beta}}_1' \\ \hat{\boldsymbol{\beta}}_2' \\ \vdots \\ \hat{\boldsymbol{\beta}}_{k_1}' \end{pmatrix}, \quad \hat{\boldsymbol{\beta}}_j' = (\hat{\beta}_{j1}, \, \hat{\beta}_{j2}, \, \cdot \, \cdot \, \cdot, \, \hat{\beta}_{jk_1}),$$ we get for the k_1k_2 elements of $\hat{\mathbf{B}}$ the covariance matrix (10.14) $$(\Sigma) \times (G(G'X'XG)^{-1}G').$$ From lemma 5.4 of chapter 3 with k = n, r = p, $\mathbf{B} = \sigma_{ii}\mathbf{I}_n$, i = 1, $2, \dots, k_2$, \mathbf{I}_n the $n \times n$ identity matrix, $\mathbf{C} = \mathbf{L}$, $\mathbf{U} = \mathbf{G}'\mathbf{X}'$, $\mathbf{UC} = \mathbf{G}'\mathbf{X}'\mathbf{L} = \mathbf{I}_p$, (10.15) $$\sigma_{ii} \mathbf{L}' \mathbf{L} \geq \sigma_{ii} (\mathbf{G}' \mathbf{X}' \mathbf{X} \mathbf{G})^{-1},$$ where (10.15) means that any quadratic form with matrix $\sigma_{ii}\mathbf{L}'\mathbf{L}$ is greater than or equal to the quadratic form with matrix $\sigma_{ii}(\mathbf{G}'\mathbf{X}'\mathbf{X}\mathbf{G})^{-1}$. From (10.15), (10.12), (10.10), and lemma 5.1 of chapter 3 we conclude that the variances of the components of $\hat{\mathbf{\Gamma}}$ are the smallest among all linear functions of the y's that are unbiased estimates of $\mathbf{\Gamma}$. Similarly, $\mathbf{Y}'\mathbf{L}\mathbf{G}'$ is an unbiased estimate of \mathbf{B} if $\mathbf{G}'\mathbf{X}'\mathbf{L} = \mathbf{I}_p$, and as above, we may conclude that (10.16) $$\sigma_{ii}GL'LG' \ge \sigma_{ii}G(G'X'XG)^{-1}G',$$ from which we infer that the variances of the components of $\hat{\mathbf{B}}$ are the smallest among all linear functions of the y's that are unbiased estimates of \mathbf{B} . The value of $J(1, 2; O_n)$ and its estimate is the same for any reparametrization, as is indicated in (10.5). Since there are only p linearly independent linear functions of the elements of a row of \mathbf{B} , any one such set of p linearly independent functions may be derived from any other such set by a nonsingular linear transformation. The information functions are invariant under nonsingular transformations (see section 4 of chapter 2, and also section 3 of chapter 9), hence our conclusion. We show that the elements of $\hat{\Gamma}$ are sufficient estimates as follows. For the model in (10.2), take $\Gamma^2 = 0$ for convenience; then (10.17) $$J(1, 2; O_n) = \operatorname{tr} \mathbf{\Sigma}^{-1} \mathbf{\Gamma} \mathbf{A}' \mathbf{A} \mathbf{\Gamma}'.$$ We have seen that $(\hat{\gamma}_1', \hat{\gamma}_2', \dots, \hat{\gamma}_{k_2}')$ are normally distributed with mean $(\gamma_1', \gamma_2', \dots, \gamma_{k_2}')$ and covariance matrix $(\Sigma) \times (A'A)^{-1}$. Since the inverse of a direct product of matrices is the direct product of the inverses of the matrices [MacDuffee (1946, p. 82)], we have (10.18) $$J(1, 2; \mathbf{\hat{\Gamma}}) = \operatorname{tr} ((\mathbf{\Sigma}^{-1}) \times \cdot (\mathbf{A}'\mathbf{A})) \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_{k_2} \end{pmatrix} (\gamma_1', \gamma_2', \cdots, \gamma_{k_2}')$$ $$= \sum_{i=1}^{k_2} \sum_{j=1}^{k_2} \sigma^{ij} \operatorname{tr} \mathbf{A}' \mathbf{A} \gamma_i \gamma_j' = \sum_{i=1}^{k_2} \sum_{j=1}^{k_2} \sigma^{ij} \gamma_j' \mathbf{A}' \mathbf{A} \gamma_i.$$ But $$\begin{split} \mathbf{\Gamma}\mathbf{A}'\mathbf{A}\mathbf{\Gamma}' &= \begin{pmatrix} \gamma_1' \\ \gamma_2' \\ \vdots \\ \gamma_{k_2}' \end{pmatrix} \mathbf{A}'\mathbf{A}(\gamma_1, \gamma_2, \cdots, \gamma_{k_2}) \\ &= \begin{pmatrix} \gamma_1'\mathbf{A}'\mathbf{A}\gamma_1 & \gamma_1'\mathbf{A}'\mathbf{A}\gamma_2 & \cdots & \gamma_1'\mathbf{A}'\mathbf{A}\gamma_{k_2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma_{k_2}'\mathbf{A}'\mathbf{A}\gamma_1 & \gamma_{k_2}'\mathbf{A}'\mathbf{A}\gamma_2 & \cdots & \gamma_{k_2}'\mathbf{A}'\mathbf{A}\gamma_{k_2} \end{pmatrix}, \end{split}$$ so that (10.19) $$\operatorname{tr} \mathbf{\Sigma}^{-1} \mathbf{\Gamma} \mathbf{A}' \mathbf{A} \mathbf{\Gamma}' = \sum_{i=1}^{k_2} \sum_{j=1}^{k_2} \sigma^{ij} \mathbf{\gamma}'_i \mathbf{A}' \mathbf{A} \mathbf{\gamma}_j,$$ and since $\sigma^{ij} = \sigma^{ji}$, we have from (10.19) and (10.18), (10.20) $$J(1, 2; O_n) = J(1, 2; \hat{\Gamma}).$$ From theorem 4.2 of chapter 2 we conclude that $\hat{\Gamma}$ is a sufficient estimate. Example 10.1. Using the data in section 9.2, that is, $$\mathbf{\hat{\Sigma}}^{-1} = 137 \begin{pmatrix} 1.4450 & -0.6106 \\ -0.6106 & 1.2628 \end{pmatrix}, \quad \mathbf{X'X} = \begin{pmatrix} 1.0000 & 0.6328 \\ 0.6328 & 1.0000 \end{pmatrix},$$ we have $$(\hat{\Sigma}^{-1}) \times \cdot (X'X)$$ $$= 137 \begin{pmatrix} 1.4450 \begin{pmatrix} 1.0000 & 0.6328 \\ 0.6328 & 1.0000 \end{pmatrix} -0.6106 \begin{pmatrix} 1.0000 & 0.6328 \\ 0.6328 & 1.0000 \end{pmatrix} \\ -0.6106 \begin{pmatrix} 1.0000 & 0.6328 \\ 0.6328 & 1.0000 \end{pmatrix} & 1.2628 \begin{pmatrix} 1.0000 & 0.6328 \\ 0.6328 & 1.0000 \end{pmatrix} \end{pmatrix}$$ $$= 137 \begin{pmatrix} 1.44500000 & 0.91439600 & -0.61060000 & -0.38638768 \\ 0.91439600 & 1.44500000 & -0.38638768 & -0.61060000 \\ -0.61060000 & -0.38638768 & 1.26280000 & 0.79909984 \\ -0.38638768 & -0.61060000 & 0.79909984 & 1.26280000 \end{pmatrix}$$ We find that 137(0.460658, -0.346804, 0.028607, 0.047398) $$\begin{pmatrix} 1.44500000 & 0.91439600 & -0.61060000 & -0.38638768 \\ 0.91439600 & 1.44500000 & -0.38638768 & -0.61060000 \\ -0.61060000 & -0.38638768 & 1.26280000 & 0.79909984 \\ -0.38638768 & -0.61060000 & 0.79909984 & 1.26280000 \end{pmatrix} \begin{pmatrix} 0.460658 \\ -0.346804 \\ 0.028607 \\ 0.047398 \end{pmatrix}$$ $$= 137 \text{ tr} \begin{pmatrix} 1.4450 & -0.6106 \\ -0.6106 & 1.2628 \end{pmatrix} \begin{pmatrix} 0.1303 & 0.0043 \\ 0.0043 & 0.0048 \end{pmatrix} = 25.8930,$$ verifying (10.19). #### 10.2. Partition When the hypotheses call for a partitioning of the parameters into two sets, for example as in (5.2), it is possible that linear relations exist among the rows of the parameter matrix in one of the partitioned sets only. Here it is necessary to apply the procedures of section 10.1 only to the partitioned set not of full rank. Thus, suppose that in (5.2) the $n \times q_1$ matrix X_1 is of rank $m < q_1$. This implies [cf. (10.1)] that $$\mathbf{B}_{1} = \mathbf{\Gamma}_{1}\mathbf{G}_{1}',$$ where $\Gamma_1 = (\gamma_{ij})$, $G'_1 = (g_{jk})$, $i = 1, 2, \dots, k_2$, $j = 1, 2, \dots, m$, k = 1, $2, \dots, q_1$, G'_1 is of rank $m < q_1$, and Γ_1 of rank min (m, k_2) . The results of section 5.1 are applicable if B_1 and \tilde{B}_1 are replaced in the various formulas by Γ_1 and $\tilde{\Gamma}_1$ respectively, X_1 by X_1G_1 , and $(n - q_1)$ degrees of freedom by (n - m) degrees of freedom. The estimate \tilde{B}_1 is obtained from $\tilde{B}_1 = \tilde{\Gamma}_1G'_1$. Thus, for example, S_{11} in (5.6) is to be replaced by $G'_1S_{11}G_1$, where $S_{11} = X'_1X_1$, and S_{12} by G'_1S_{12} , where $S_{12} = X'_1X_2$. Similar remarks also apply for a partitioning into three sets as in section 5.2, when one of the sets may not be of full rank. #### 11. REMARK The reader doubtlessly has noted the similarities between the argument and results in chapters 10 and 11. As a matter of fact, we shall now indicate how the multivariate analogue of an analysis of variance table may be derived from that corresponding to appropriate specification of the linear regression model in (3.1) of chapter 10. Consider the multivariate regression model (3.2), $\mathbf{Z} = \mathbf{Y} - \mathbf{X}\mathbf{B}'$. With $\alpha' = (\alpha_1, \alpha_2, \dots, \alpha_{k_2})$ any real $1 \times k_2$ matrix such that at least one of the α 's is not zero, (11.1) $$Z\alpha = Y\alpha - XB'\alpha,$$ derived from (3.2), is equivalent to the regression model in (3.1) of chapter 10, by setting (11.2) $$z = Z\alpha, \quad y = Y\alpha, \quad \beta = B'\alpha.$$ Replace y by $Y\alpha$, and any specification of $\hat{\beta}$ by the corresponding $\hat{B}'\alpha$, in any of the sum of squares columns in the analyses tabulated in chapter 10, or derived by the methods of chapter 10. The results are quadratic forms in the α 's. Since the relations among these quadratic forms are identically true in the α 's, we have the corresponding generalized sums of squares columns for the multivariate analogue with the matrices of the quadratic forms of the α 's. This is evident if we compare table 5.1 in chapter 10 and table 5.1 in chapter 11, recalling that k_1 in chapter 11 is p in chapter 10 and q_1 in chapter 11 is q in chapter 10. Similar remarks apply to the reparametrization, since from (10.2) we have (11.3) $$Z\alpha = Y\alpha - XG\Gamma'\alpha,$$ which is equivalent to (9.2) of chapter 10 by setting, (11.4) $$z = Z\alpha$$, $y = Y\alpha$, $\gamma = \Gamma'\alpha$, $A = XG$. # 12. PROBLEMS - 12.1. Derive the normal equations (4.1). - 12.2. Verify (5.16) and (5.17). - 12.3. Verify (5.18) and (5.19). - **12.4.** Verify (7.6). - 12.5. In section 9.2 test the null subhypothesis that the coefficient of x_1 in the regressions of y_1 and y_2 on x_1 and x_2 is zero. - 12.6. Consider the following data from a problem discussed by Bartlett (1947, p. 177); here r = 8, $k_2 = 2$, $n = n_1 + \cdots + n_8 = 57$, $$49S = \begin{pmatrix} 136,972.6 & 58,549.0 \\ 58,549.0 & 71,496.1 \end{pmatrix}, \qquad S^* = \begin{pmatrix} 12,496.8 & -6,786.6 \\ -6,786.6 & 32,985.0 \end{pmatrix}.$$ - (a) Are the eight samples homogeneous? - (b) Compute the value(s) for the significant linear discriminant function(s), if any. - 12.7. Consider the following correlation matrix, assuming n = 20: $$\mathbf{R} = \begin{pmatrix} 1.0 & 0.5 & 0.3 & 0.8 & 0.8 \\ 0.5 & 1.0 & 0.4 & 0.7 & 0.3 \\ 0.3 &
0.4 & 1.0 & 0.2 & 0.1 \\ \hline 0.8 & 0.7 & 0.2 & 1.0 & 0.5 \\ 0.8 & 0.3 & 0.1 & 0.5 & 1.0 \end{pmatrix} = \begin{pmatrix} \mathbf{R_{11}} & \mathbf{R_{12}} \\ \mathbf{R_{21}} & \mathbf{R_{22}} \end{pmatrix}.$$ Carry out an analysis similar to that of section 9.3. 12.8. Foster and Rees (1957, p. 241) give the following sample unbiased covariance matrix based on 82 degrees of freedom: $$\mathbf{S} = 10^{-4} \begin{pmatrix} 13.03 & 5.77 & 4.90 & 3.83 & -1.95 \\ 5.77 & 12.36 & 8.33 & 39.14 & -44.75 \\ 4.90 & 8.33 & 11.88 & 28.38 & -30.95 \\ \hline 3.83 & 39.14 & 28.38 & 229.36 & -261.52 \\ -1.95 & -44.75 & -30.95 & -261.52 & 388.31 \end{pmatrix} = \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix}.$$ If the first three rows are associated with x_1 , x_2 , x_3 and the last two rows with y_1 , y_2 , are the regressions of y_1 and y_2 on x_1 , x_2 , x_3 significant? - 12.9. Verify (4.4) with the data in section 9.3 assuming $\mathbf{B} = \mathbf{0}$. - 12.10. Cornish (1957, p. 25) gives the following matrices [I have redesignated them according to the notation in (4.4); this does not imply the same interpretation for Cornish's problem]: $$\mathbf{B} = \mathbf{0}, \qquad \mathbf{\hat{B}} = \begin{pmatrix} 0.072948 & -0.000524 \\ 0.022898 & 0.000619 \\ -0.089651 & -0.001473 \end{pmatrix},$$ $$\mathbf{X'X} = \begin{pmatrix} 175.2654 & -722.3850 \\ -722.3850 & 19855.5000 \end{pmatrix},$$ $$\mathbf{\hat{\Sigma}}^{-1} = \begin{pmatrix} 1138.265050 & -161.151320 & 215.304630 \\ -161.151320 & 534.296632 & -125.495288 \\ 215.304630 & -125.495288 & 199.183242 \end{pmatrix}.$$ Cornish (1957) computed the value of the right-hand side of (4.4) as 950.06. Verify by computing the value of the left-hand side of (4.4). - 12.11. In the notation of section 5, show that: - (a) $X_1'X_{2\cdot 1} = 0$. (b) $X_{2}^{2}X_{2\cdot 1} = S_{22\cdot 1} = X_{2\cdot 1}^{\prime}X_{2\cdot 1}$. (c) $\hat{B}_{2}^{1} = Y^{\prime}X_{2\cdot 1}S_{22\cdot 1}^{-1} = Z^{\prime}X_{2\cdot 1}S_{22\cdot 1}^{-1} + B_{2}^{1}$. (d) The covariance matrix of the $k_{2}q_{2}$ elements of \hat{B}_{2}^{1} is $(\Sigma) \times (S_{22\cdot 1}^{-1})$. (e) $X'_{3\cdot 12}X_{3\cdot 12} = S_{33\cdot 12}$. (f) $\hat{B}_3 = Y'X_{3\cdot 12}S_{33\cdot 12}^{-1} = Z'X_{3\cdot 12}S_{33\cdot 12}^{-1} + B_3$. (g) The covariance matrix of the k_2q_3 elements of \hat{B}_3 is $(\Sigma) \times (S_{33\cdot 12}^{-1})$. $|\tilde{h}| |S| = |S_{11}| \cdot |S_{22 \cdot 1}| \cdot |S_{33 \cdot 12}|.$ (i) $X'_{2\cdot 1}X_{3\cdot 12}=0$. - 12.12. Summarize section 5.2 in a table similar to table 5.1, with $H_1: \mathbf{B}^1 =$ $(\mathbf{B}_1^1, \mathbf{B}_2^1, \mathbf{B}_3^1), H_2: \mathbf{B}^2 = (\mathbf{B}_1^2, \mathbf{B}_2^2, 0), H_3: \mathbf{B}^3 = (\mathbf{B}_1^3, 0, 0).$ - 12.13. Develop the results corresponding to section 5.2 for a four-partition subhypothesis. - **12.14.** In section 6.3, for two samples r = 2, show that: (a) $$S^* = \frac{n_1 n_2}{n_1 + n_2} (\bar{y}_1 - \bar{y}_2)(\bar{y}_1 - \bar{y}_2)'.$$ (b) $$\hat{J}(H_1, H_2) = \text{tr } S^{-1}S^* = \frac{n_1 n_2}{n_1 + n_2} (\bar{y}_1 - \bar{y}_2)' S^{-1} (\bar{y}_1 - \bar{y}_2).$$ - (c) $\frac{(n_1 + n_2 k_2 1)n_1n_2}{k_2(n_1 + n_2 2)(n_1 + n_2)}(\bar{y}_1 \bar{y}_2)'S^{-1}(\bar{y}_1 \bar{y}_2) = F, \text{ where } F \text{ has the analysis of variance distribution with } k_2 \text{ and } n_1 + n_2 k_2 1 \text{ degrees of analysis of variance distribution}$ freedom. [Cf. Anderson (1958, pp. 108-109), Rao (1952, pp. 73-74, 246-248).] - 12.15. Use lemma 5.4 of chapter 3 to show that $Y'Y \ge (Y'X)(X'X)^{-1}(X'Y)$, where X, Y are defined in section 3. (Note the remark following lemma 5.1 of chapter 3.) - 12.16. Show that (see section 4) $|(n-k_1)\hat{\Sigma}| = \frac{\begin{vmatrix} \mathbf{Y}'\mathbf{Y} & \mathbf{Y}'\mathbf{X} \\ \mathbf{X}'\mathbf{Y} & \mathbf{X}'\mathbf{X} \end{vmatrix}}{|\mathbf{X}'\mathbf{X}|}$. (Cf. problem 4.6 in chapter 10.) # Multivariate Analysis: # Other Hypotheses #### 1. INTRODUCTION In the preceding chapter, we studied tests of linear hypotheses for samples from multivariate normal populations, with the underlying assumption that all populations had a common covariance matrix. We shall now drop the assumption about common covariance matrices, and also consider certain hypotheses on the covariance matrices themselves. #### 2. BACKGROUND In sections 1 and 2 of chapter 9 we saw that for two k-variate normal populations $N(\mu_i, \Sigma_i)$, i = 1, 2, $$(2.1) I(1:2; O_n) = nI(1:2) = I(1:2; \bar{\mathbf{x}}) + I(1:2; \mathbf{S}),$$ where I(1:2), $I(1:2; \overline{x})$, and I(1:2; S) are given respectively in (1.2), (2.1), and (2.4) in chapter 9. Consider a sample O_n of n independent observations from a k-variate normal population $N(\mu, \Sigma)$, with mean $\mu' = (\mu_1, \mu_2, \dots, \mu_k)$ and covariance matrix $\Sigma = (\sigma_{ij})$, $i, j = 1, 2, \dots, k$. The moment generating function of the sample averages $\bar{x}' = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k)$ and the elements of the sample unbiased covariance matrix $S = (s_{ij})$, $i, j = 1, 2, \dots, k$, with N degrees of freedom, is known to be [Anderson (1958, pp. 36, 53, 160), Wilks (1943, p. 121)] (2.2) $$M(\tau, T) = \left| \mathbf{I}_k - 2\frac{1}{N} \mathbf{\Sigma} \mathbf{T} \right|^{-N/2} \exp\left(\tau' \mu + \frac{1}{2} \tau' \frac{1}{n} \mathbf{\Sigma} \tau \right),$$ where $\tau' = (\tau_1, \tau_2, \cdot \cdot \cdot, \tau_k)$, $T = (\tau_{ij})$, $i, j = 1, 2, \cdot \cdot \cdot, k$. For the conjugate distribution of $N(\mu_2, \Sigma_2)$, with mean μ^* (see section 4 of chapter 3), (2.3) $$I(*:2; \bar{x}) = \tau' \mu^* - \tau' \mu_2 - \frac{1}{2} \tau' \frac{1}{n} \Sigma_2 \tau,$$ where (cf. example 4.2 in chapter 3), (2.4) $$\mu^* = \mu_2 + \frac{1}{n} \Sigma_2 \tau.$$ [For the matrix differentiation needed for (2.4) and (2.7) see problems 10.2 and 10.3 in chapter 9, Deemer and Olkin (1951, p. 364).] From (2.4), $\tau = n\Sigma_2^{-1}(\mu^* - \mu_2)$, and (2.3) yields (2.5) $$I(*:2; \bar{\mathbf{x}}) = \frac{n}{2} (\mu^* - \mu_2)' \Sigma_2^{-1} (\mu^* - \mu_2).$$ Note that $I(1:2; \bar{\mathbf{x}}) > I(*:2; \bar{\mathbf{x}})$ for $\mu^* = \mu_1$ and $\Sigma_1 \neq \Sigma_2$, and that the conjugate distribution is a k-variate normal distribution $N(\mu^*, \Sigma_2)$. For the conjugate distribution of $N(\mu_2, \Sigma_2)$, with covariance matrix Σ^* , (2.6) $$I(*:2; \mathbf{S}) = \operatorname{tr} \mathbf{T} \mathbf{\Sigma}^* + \frac{N}{2} \log \left| \mathbf{I}_k - 2 \frac{1}{N} \mathbf{\Sigma}_2 \mathbf{T} \right|,$$ where (cf. example 4.4 in chapter 3, see problem 10.3 in chapter 9) (2.7) $$\boldsymbol{\Sigma}^* = \left(\mathbf{I}_k - 2\frac{1}{N}\boldsymbol{\Sigma}_2\mathbf{T}\right)^{-1}\boldsymbol{\Sigma}_2.$$ From (2.7), $T = \frac{N}{2} (\Sigma_2^{-1} - \Sigma^{*-1})$, and (2.6) yields (2.8) $$I(*:2; \mathbf{S}) = \frac{N}{2} \left(\log \frac{|\mathbf{\Sigma}_2|}{|\mathbf{\Sigma}^*|} - k + \operatorname{tr} \mathbf{\Sigma}^* \mathbf{\Sigma}_2^{-1} \right).$$ Note that I(1:2; S) = I(*:2; S) for $\Sigma^* = \Sigma_1$. Because of the independence of \bar{x} and S in a sample from a multivariate normal population, we have (cf. example 4.3 in chapter 3) (2.9) $$I(*:2; \bar{\mathbf{x}}, \mathbf{S}) = \tau' \mu^* - \tau' \mu_2 - \frac{1}{2} \tau' \frac{1}{n} \mathbf{\Sigma}_2 \tau + \operatorname{tr} \mathbf{T} \mathbf{\Sigma}^* + \frac{N}{2} \log \left| \mathbf{I}_k - 2 \frac{1}{N} \mathbf{\Sigma}_2 \mathbf{T} \right|,$$ where τ and T are given in (2.4) and (2.7) respectively, or (2.10) $$I(*:2; \bar{\mathbf{x}}, \mathbf{S}) = I(*:2; \bar{\mathbf{x}}) + I(*:2; \mathbf{S})$$ $$= \frac{n}{2} (\mu^* - \mu_2)' \mathbf{\Sigma}_2^{-1} (\mu^* - \mu_2)$$ $$+ \frac{N}{2} \left(\log \frac{|\mathbf{\Sigma}_2|}{|\mathbf{\Sigma}^*|} - k + \operatorname{tr} \mathbf{\Sigma}^* \mathbf{\Sigma}_2^{-1} \right).$$ #### 3. SINGLE SAMPLE Suppose we have a random sample of n independent observations from k-variate normal populations. Let $\bar{\mathbf{x}}' = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k)$ and $\mathbf{S} = (s_{ij}),$ $i, j = 1, 2, \dots, k$, respectively, be the sample averages and sample unbiased variances and covariances with N degrees of freedom. We now examine tests of certain hypotheses on the normal populations from which the sample was drawn. # 3.1. Homogeneity of the Sample Suppose we want to test a null hypothesis of homogeneity, the observations in the sample are from the same k-variate normal population with specified covariance matrix Σ , against an alternative hypothesis, the observations are from k-variate normal populations with different means but the same specified covariance matrix Σ (cf. example 4.1 in chapter 5). We denote the null hypothesis by (3.1) $$H_2(\boldsymbol{\mu}|\boldsymbol{\Sigma}), \quad \text{or} \quad H_2(\cdot|\boldsymbol{\Sigma}),$$ according as the common mean is, or is not, specified, and the alternative hypothesis by (3.2) $$H_1(\mu_i|\Sigma)$$, or $H_1(\cdot|\Sigma)$, according as the different means are, or are not, specified. With the sample values as the statistic T(x) and $$f_2(x) = \prod_{i=1}^n \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}_i - \mu)'\Sigma^{-1}(\mathbf{x}_i - \mu)\right),$$ we have [cf. (4.8) in chapter 5 and (2.3) and (2.4) in this chapter] (3.3) $$\hat{I}(*:2; O_n) = \sum_{i=1}^{n} (\hat{\tau}_i' \mathbf{x}_i - \hat{\tau}_i' \mu - \frac{1}{2} \hat{\tau}_i' \Sigma \hat{\tau}_i),$$ where $\hat{\tau}_i$ satisfies $\mathbf{x}_i = \mathbf{\mu} + \mathbf{\Sigma} \hat{\tau}_i$. We thus have (3.4) $$f(*:H_2(\mu|\Sigma)) = \sum_{i=1}^n \frac{1}{2} (x_i - \mu)' \Sigma^{-1}(x_i - \mu).$$ If μ is not specified, $\hat{I}(*: H_2(\cdot|\Sigma)) = \min_{n} \hat{I}(*: H_2(\mu|\Sigma))$ is (3.5) $$\hat{I}(*: H_2(\cdot | \Sigma)) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i - \bar{\mathbf{x}})' \Sigma^{-1} (\mathbf{x}_i -
\bar{\mathbf{x}}),$$ where $\bar{\mathbf{x}}' = (\bar{x}_1, \bar{x}_2, \cdot \cdot \cdot, \bar{x}_k)$. On the other hand, with the same statistic T(x) but with $$f_2(x) = \prod_{i=1}^n \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}_i - \mu_i)'\Sigma^{-1}(\mathbf{x}_i - \mu_i)\right),$$ we have [cf. (4.11) in chapter 5 and (2.3) and (2.4) in this chapter] (3.6) $$\hat{I}(*:2; O_n) = \sum_{i=1}^{n} (\hat{\tau}_i' \mathbf{x}_i - \hat{\tau}_i' \mu_i - \frac{1}{2} \hat{\tau}_i' \mathbf{\Sigma} \hat{\tau}_i),$$ where $\hat{\tau}_i$ satisfies $\mathbf{x}_i = \mu_i + \Sigma \hat{\tau}_i$. We thus have (3.7) $$\hat{I}(*: H_1(\mu_i | \Sigma)) = \sum_{i=1}^n \frac{1}{2} (\mathbf{x}_i - \mu_i)' \Sigma^{-1}(\mathbf{x}_i - \mu_i).$$ If the μ_i are not specified, $f(*:H_1(\cdot|\Sigma)) = \min_{\mu_i} f(*:H_1(\mu_i|\Sigma))$ is $$f(*:H_1(\cdot|\mathbf{\Sigma})) = 0.$$ If the conjugate distribution in (3.3) is to range over k-variate normal populations with a common mean, then $\mu_1^* = \cdots = \mu_n^*$ implies that $\mu + \Sigma \tau_1 = \cdots = \mu + \Sigma \tau_n$, or only values $\tau_1 = \cdots = \tau_n = \tau$ are admissible. With this restriction, (3.3) yields (3.9) $$\hat{I}(H_2(\cdot | \mathbf{\Sigma}):2; O_n) = n\hat{\mathbf{\tau}}'\bar{\mathbf{x}} - n\hat{\mathbf{\tau}}'\boldsymbol{\mu} - \frac{n}{2}\hat{\mathbf{\tau}}'\boldsymbol{\Sigma}\hat{\boldsymbol{\tau}},$$ where $\hat{\tau}$ satisfies $\bar{x} = \mu + \Sigma \hat{\tau}$, and (3.9) becomes (3.10) $$f(H_2(\cdot | \mathbf{\Sigma}): 2; O_n) = \frac{n}{2} (\bar{\mathbf{x}} - \mathbf{\mu})' \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}} - \mathbf{\mu}).$$ Note that [cf. (4.17) in chapter 5] (3.11) $$\sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}) = \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}}) + n(\bar{\mathbf{x}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu})$$ that is, (3.12) $$\hat{I}(*:H_2(\mu|\Sigma)) = \hat{I}(*:H_2(\cdot|\Sigma)) + \hat{I}(H_2(\cdot|\Sigma):2;O_n).$$ The hypothesis $H_2(\mu|\Sigma)$ is the intersection of two hypotheses: (i) the sample is homogeneous; and (ii) the mean for the homogeneous sample is μ . $2\hat{I}(*:H_2(\cdot|\Sigma)) = \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})' \Sigma^{-1}(\mathbf{x}_i - \bar{\mathbf{x}})$, which is distributed as χ^2 with (n-1)k degrees of freedom under the null hypothesis, tests the homogeneity. $2\hat{I}(H_2(\cdot|\Sigma):2;O_n) = n(\bar{\mathbf{x}} - \mu)' \Sigma^{-1}(\bar{\mathbf{x}} - \mu)$, which is distributed as χ^2 with k degrees of freedom under the null hypothesis, tests the specified mean given a homogeneous sample. Suppose we assume now that the sample is homogeneous, namely, all the observations are from the same k-variate normal population, and we want to test a hypothesis about the mean, with no specification of the covariance matrix (cf. example 4.2 in chapter 5). Let the hypothesis $H_2(\mu, \Sigma)$ imply that the sample is from a specified k-variate normal population $N(\mu, \Sigma)$, and the hypothesis $H_2(\mu)$ imply that the sample is from a k-variate normal population with specified mean μ but unspecified covariance matrix. Suppose the alternative hypothesis H_1 implies that the sample is from an unspecified k-variate normal population. With $T(x) = (\bar{x}, S)$, where \bar{x} and S are defined in section 2, and $$f_2(x) = \prod_{i=1}^{n} \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}_i - \mu)'\Sigma^{-1}(\mathbf{x}_i - \mu)\right)$$ we have [cf. (2.9)] $$\hat{I}(*:H_2(\mu, \Sigma)) = \hat{\tau}'\bar{x} - \hat{\tau}'\mu - \frac{1}{2}\hat{\tau}'\frac{1}{n}\Sigma\hat{\tau} + \operatorname{tr}\hat{T}S + \frac{N}{2}\log\left|I_k - 2\frac{1}{N}\Sigma\hat{T}\right|,$$ with $$\bar{\mathbf{x}} = \boldsymbol{\mu} + \frac{1}{n} \boldsymbol{\Sigma} \hat{\mathbf{t}}, \mathbf{S} = \left(\mathbf{I}_k - 2 \frac{1}{N} \boldsymbol{\Sigma} \hat{\mathbf{T}}\right)^{-1} \boldsymbol{\Sigma}$$, or $$\hat{I}(*:H_2(\mu, \Sigma)) = \frac{n}{2}(\bar{\mathbf{x}} - \mu)'\Sigma^{-1}(\bar{\mathbf{x}} - \mu) + \frac{N}{2}\left(\log\frac{|\Sigma|}{|S|} - k + \operatorname{tr} S\Sigma^{-1}\right).$$ In accordance with the general asymptotic theory, under the null hypothesis $H_2(\mu, \Sigma)$, $2\hat{l}(*:H_2(\mu, \Sigma))$ is asymptotically distributed as χ^2 with k + k(k + 1)/2 degrees of freedom [cf. Anderson (1958, p. 268), Hoyt (1953)]. If the k-variate normal populations have the same covariance matrix under H_1 and H_2 , we see from (2.7) that $\Sigma^* = \Sigma_2$ implies that $\mathbf{T} = \mathbf{0}$ is the only admissible value. This is equivalent to requiring that for samples from the conjugate distribution the covariance matrix parameters in the distribution of $\bar{\mathbf{x}}$ and \mathbf{S} are the same. Accordingly, for $I(*:H_2(\mu))$, $\vec{x} = \mu + \frac{1}{n} \Sigma \hat{\tau}$ and $\hat{T} = 0$ or $S = \Sigma$, and we have instead of $\hat{I}(*: H_2(\mu, \Sigma))$: $$\hat{I}(*: H_2(\mu)) = \frac{n}{2} (\bar{\mathbf{x}} - \mu)' \mathbf{S}^{-1} (\bar{\mathbf{x}} - \mu).$$ Note that this is (2.10) for $\mu_2 = \mu$ and $\Sigma_2 = \Sigma^* = S$. We see that $\hat{I}(^*:H_1) = 0$, and the test of the hypothesis $H_2(\mu)$ depends only on the value of $2\hat{I}(^*:H_2(\mu))$, Hotelling's generalization of Student's *t*-test. (See section 6.1 of chapter 11.) # 3.2. The Hypothesis that a k-Variate Normal Population Has a Specified Covariance Matrix We now examine the test for a null hypothesis H_2 that specifies the population covariance matrix, with no specification of the mean, against an alternative hypothesis H_1 that does not specify the covariance matrix or the mean, that is, $$(3.13) H1: \Sigma, \mu; H2: \Sigma = \Sigma2, \mu.$$ We take the conjugate distribution with parameters the same as the observed best unbiased sample estimates, that is, $\mu^* = \bar{x}$, $\Sigma^* = S$, and (2.10) becomes (3.14) $$\hat{I}(*:2) = \frac{n}{2}(\bar{x} - \mu)'\Sigma_2^{-1}(\bar{x} - \mu) + \frac{N}{2}\left(\log\frac{|\Sigma_2|}{|S|} - k + \operatorname{tr} S\Sigma_2^{-1}\right).$$ Since the null hypothesis does not specify the mean, writing $I(H_1:H_2) = \min_{\mu} I(*:2)$, we find that the minimum discrimination information statistic is (3.15) $$2\hat{I}(H_1:H_2) = N\left(\log\frac{|\Sigma_2|}{|S|} - k + \operatorname{tr} S\Sigma_2^{-1}\right).$$ (See problems 8.32 and 8.33.) In accordance with the general asymptotic theory, under the null hypothesis H_2 in (3.13), $2I(H_1:H_2)$ in (3.15) is asymptotically distributed as χ^2 with k(k+1)/2 degrees of freedom. Using the characteristic function of the distribution of $2I(H_1:H_2)$, it may be shown (see section 6.2) that a better approximation to the distribution is R. A. Fisher's B-distribution [Fisher (1928, p. 665)], the noncentral χ^2 -distribution, where for Fisher's distribution $\beta^2 = (2k^3 + 3k^2 - k)/12N$, $B^2 = 2I(H_1:H_2)$, with k(k+1)/2 degrees of freedom [cf. Hoyt (1953)]. The table computed by Fisher in terms of β and B has been recalculated for convenience, in terms of β^2 and β^2 and is Table III, on page 380. For degrees of freedom greater than 7, the largest tabulated, instead of the noncentral χ^2 -distribution, $2I(H_1:H_2)(1-(2k^3+3k^2-k)/6Nk(k+1))$ may be treated as a χ^2 with k(k+1)/2 degrees of freedom. (See section 6.2.) For tests of significance in factor analysis, Bartlett (1950, 1954), using a "homogeneous" likelihood function, and Rippe (1951), using the likelihood-ratio procedure for the test of significance of components in matrix factorization, arrived at the statistic $2I(H_1: H_2)$ and the same conclusion as to its asymptotic χ^2 -distribution. [Cf. Anderson (1958, pp. 264–267).] # 3.3. The Hypothesis of Independence When the null hypothesis H_2 implies that the variates are independent, that is, (3.16) $$H_2: \Sigma_2 = (\sigma_{ij}), \quad \sigma_{ij} = 0, \quad i \neq j, \quad i, j = 1, 2, \dots, k,$$ so that $P = (\rho_{ij}) = I_k$, where P is the matrix of population correlation coefficients, we may write (3.15) as (3.17) $$2\hat{I}(H_1: H_2) = -N \log |\mathbf{R}| + N \sum_{i=1}^{k} \left(\frac{s_{ii}}{\sigma_{ii}} + \log \frac{\sigma_{ii}}{s_{ii}} - 1 \right),$$ with **R** the matrix of sample correlation coefficients. The hypothesis H_2 in (3.16) is the intersection of two hypotheses, $H_2 = H_2' \cap H_2''$, with H_2' the hypothesis of independence that $P = I_k$, and H_2'' the hypothesis specifying the variances. We may thus write (3.17) as $$(3.18) 2\hat{l}(H_1:H_2) = 2\hat{l}(H_1:H_2') + 2\hat{l}(H_1:H_2''),$$ with $2\hat{I}(H_1: H_2') = -N \log |\mathbf{R}|$ the minimum discrimination information statistic for the test of independence [see (6.12) in chapter 9], and $$2\tilde{l}(H_1:H_2'') = N \sum_{i=1}^k \left(\frac{s_{ii}}{\sigma_{ii}} + \log \frac{\sigma_{ii}}{s_{ii}} - 1 \right) \quad \text{the minimum discrimination}$$ information statistic for the test of specified variances. [Note that $2\tilde{l}(H_1:H_2'')$ is the sum of k single-variate statistics.] It is known that, under (3.16), the s_{ii} and r_{ij} are independent [Wilks (1932)], so that $2\hat{I}(H_1:H_2')$ and $2\hat{I}(H_1:H_2'')$ are independent. In accordance with the general asymptotic theory, under the null hypothesis H_2 of (3.16), $2f(H_1:H_2')$ is asymptotically distributed as χ^2 with k(k-1)/2 degrees of freedom and $2I(H_1: H_2'')$ is asymptotically distributed as χ^2 with k degrees of freedom. It may be shown (see section 6.3) that a better approximation to the distribution of $2I(H_1: H_2')$ is Fisher's B-distribution [Fisher (1928, p. 665)] with $\beta^2 = k(k-1)(2k+5)/12N$, $\beta^2 = 2\hat{l}(H_1: H_2')$, with k(k-1)/2 degrees of freedom [cf. Bartlett (1950, 1951b, 1954), Lawley
(1940)] and a better approximation to the distribution of $2I(H_1:H_2'')$ is Fisher's B-distribution with $\beta^2 = k/3N$, $B^2 = 2\hat{I}(H_1: H_2'')$, with k degrees of freedom. Note that the degrees of freedom and the values of β^2 for the distributions of the three terms in (3.18) are additive, that is, k(k+1)/2 = k(k-1)/2 + k and $(2k^3 + 3k^2 - k)/12N = k(k-1)(2k+5)$ /12N + k/3N, a property of the noncentral χ^2 [cf. Bateman (1949), Laha (1954)]. (See problems 8.21 and 8.22.) Example 3.1. In section 9.2 of chapter 11, we had the correlation matrix $$\mathbf{R} = \begin{pmatrix} 1.0000 & 0.6328 & 0.2412 & 0.0586 \\ 0.6328 & 1.0000 & -0.0553 & 0.0655 \\ 0.2412 & -0.0553 & 1.0000 & 0.4248 \\ 0.0586 & 0.0655 & 0.4248 & 1.0000 \end{pmatrix}$$ from a sample of 140 observations. To test a null hypothesis that the four variates are independent we compute $2\hat{I}(H_1:H_2') = -N\log|\mathbf{R}| = -139\log$ 0.4129 = 139(0.88431) = 122.92, k(k-1)(2k+5)/12N = 4(3)(13)/12(139) = 0.0935. For 6 degrees of freedom the 5% points for B^2 corresponding to $\beta^2 = 0.04$ and 0.16 are respectively 12.6750 and 12.9247, and the observed value of $2\hat{I}(H_1:H_2')$ is clearly significant. We reject the null hypothesis of independence, as we should, in view of the conclusions in section 9.2 of chapter 11. ## 3.4. Hypothesis on the Correlation Matrix When the null hypothesis $H_2''': \Sigma_2 = (\sigma_{ij}) = \mathbf{D}_{\sigma} \mathbf{P}_2 \mathbf{D}_{\sigma}$ specifies the matrix of correlation coefficients \mathbf{P}_2 , but not the diagonal matrix of standard deviations $$\mathbf{D}_{\sigma} = \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{pmatrix}, \text{ using } \mathbf{D}_{\hat{\sigma}^2} = \mathbf{D}_{s^2} = \begin{pmatrix} s_1^2 & 0 & \cdots & 0 \\ 0 & s_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_k^2 \end{pmatrix},$$ we have from (3.15) (3.19) $$2I(H_1: H_2''') = N\left(\log \frac{|\mathbf{P}_2|}{|\mathbf{R}|} - k + \operatorname{tr} \mathbf{R} \mathbf{P}_2^{-1}\right).$$ $2l(H_1: H_2''')$ in (3.19), asymptotically, is distributed as χ^2 with k(k-1)/2 degrees of freedom under the null hypothesis H_2''' . Note that (3.19) is (2.8) of chapter 9, with $P_1 = \mathbb{R}$, and yields $2l(H_1: H_2')$ when $P_2 = I_k$. For bivariate populations, k = 2, (3.19) yields (3.20) $$2I(H_1:H_2''')$$ $$= N \left[\log \frac{1 - \rho_2^2}{1 - r^2} - 2 + \operatorname{tr} \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{1 - \rho_2^2} & -\frac{\rho_2}{1 - \rho_2^2} \\ -\frac{\rho_2}{1 - \rho_2^2} & \frac{1}{1 - \rho_2^2} \end{pmatrix} \right]$$ $$= N \left(\log \frac{1 - \rho_2^2}{1 - r^2} + \frac{2\rho_2(\rho_2 - r)}{1 - \rho_2^2} \right),$$ which is asymptotically distributed as χ^2 with 1 degree of freedom. Note that (3.20) is (4.33) in example 4.6 of chapter 3, with N for n, and r for ρ_1 . See the remark in example 5.7 of chapter 5 about a confidence interval for ρ . #### 3.5. Linear Discriminant Function The estimates of the linear discriminant functions in section 6 of chapter 9 may be derived by the same procedure as for the information statistics. There is some tutorial value, however, in paralleling the discussion with the appropriate sample values. We first examine the null hypothesis that specifies Σ_2 . [See (3.15).] We want the linear discriminant function $$(3.21) y = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k = \alpha' x,$$ the same linear compound for each observation. We seek the α 's so as to maximize (3.22) $$2I(H_1: H_2; y) = N \left(\log \frac{\alpha' \Sigma_2 \alpha}{\alpha' S \alpha} - 1 + \frac{\alpha' S \alpha}{\alpha' \Sigma_2 \alpha} \right),$$ the equivalent of (3.15) for y. We are thereby led to conclusions similar to (6.4) and (6.5) in chapter 9, namely, that α must satisfy $$(3.23) S\alpha = F\Sigma_2\alpha,$$ where F is a root of the determinantal equation $$|\mathbf{S} - F\mathbf{\Sigma}_2| = 0 = |N\mathbf{S} - I\mathbf{\Sigma}_2|, \qquad F = I/N,$$ with roots almost everywhere real and positive. (See section 6.4 for the distribution of these roots.) Designating these roots as F_1, F_2, \dots, F_k in descending order, the discussion in section 6 of chapter 9 is applicable (taking suitable account of the ordering). In particular, we have the decomposition of (3.15) (3.25) $$2\hat{I}(H_1: H_2) = N\left(\log \frac{|\Sigma_2|}{|S|} - k + \operatorname{tr} S\Sigma_2^{-1}\right)$$ $$= 2\hat{I}(H_1: H_2; y_1) + \cdots + 2\hat{I}(H_1: H_2; y_k),$$ where y_i is the linear discriminant function associated with F_i . From (3.22) we see that (3.26) $$2\hat{I}(H_1: H_2; y_i) = N(-\log F_i - 1 + F_i) \\ = N \log N - N - N \log I_i + I_i.$$ When the values of $2I(H_1: H_2; y_i)$ are arranged in descending order of magnitude, under the null hypothesis that the sample is from a normal population with covariance matrix Σ_2 , the sum of the last (k-m) of the $2I(H_1: H_2; y_i)$ asymptotically is distributed as χ^2 with (k-m)(k-m+1)/2 degrees of freedom. (See section 6.4.) A better approximation to the distribution is R. A. Fisher's B-distribution [Fisher (1928, p. 665)], the noncentral χ^2 -distribution, where for Fisher's distribution $\beta^2 = ((2k^3 + 3k^2 - k) - (2m^3 + 3m^2 - m))/12N$, β^2 is the sum of the last (k - m) of the $2l(H_1: H_2; y_i)$, with (k - m)(k - m + 1)/2 degrees of freedom. # 3.6. Independence of Sets of Variates † [Cf. Anderson (1958, pp. 230-245), Hsu (1949, pp. 373-376), Wald and Brookner (1941), Wilks (1935b, 1943, pp. 242-245).] Suppose we partition the variates of a k-variate normal population into m sets of k_1, k_2, \dots, k_m variates, $k_1 + k_2 + \dots + k_m = k$. We now want to test a null hypothesis H_2 , the sets of variates are mutually independent, against an alternative hypothesis H_1 , the sets are not independent, with no specification of the means, that is, (3.27) $$H_1: \Sigma = (\sigma_{ij}), \quad i, j = 1, 2, \cdots, k,$$ (3.28) $$H_2: \mathbf{\Sigma} = \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{22} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{\Sigma}_{mm} \end{pmatrix}, \quad \mathbf{\Sigma}_{ii} = (\sigma_{\alpha\beta}),$$ $$\alpha, \beta = k_1 + k_2 + \cdots + k_{i-1} + 1, \cdots, k_1 + k_2 + \cdots + k_i.$$ The discussion in section 7 of chapter 9 is for two sets, m = 2. (See problems 10.13-10.19 in chapter 9.) Denoting the hypothesis of (3.28) by $H_2(\Sigma_{ii})$ when $\Sigma_{11}, \dots, \Sigma_{mm}$ are specified, we get from (3.15), $$(3.29) \quad 2\hat{I}(H_1: H_2(\Sigma_{ii})) = N\left(\log \frac{|\Sigma_{11}||\Sigma_{22}| \cdot \cdot \cdot |\Sigma_{mm}|}{|S|} - k + \operatorname{tr}\left(S_{11}\Sigma_{11}^{-1} + \cdot \cdot \cdot + S_{mm}\Sigma_{mm}^{-1}\right)\right),$$ with S_{ii} the best unbiased sample covariance matrix of the variates in the *i*th set. Denoting the hypothesis of (3.28) with no specification of the matrices Σ_{ii} , $i = 1, 2, \dots, m$, by $H_2(\cdot)$, we find that (3.29) is a minimum for $\hat{\Sigma}_{ii} = S_{ii}$, and $$(3.30) \ 2f(H_1:H_2(\cdot)) = N \log \frac{|S_{11}| \cdot \cdot \cdot |S_{mm}|}{|S|} = N \log \frac{|R_{11}| \cdot \cdot \cdot |R_{mm}|}{|R|},$$ with \mathbf{R}_{ii} and \mathbf{R} respectively the sample correlation matrices of the variates in the *i*th set and the entire set. The last member in (3.30) is obtained by factoring out the standard deviations in the numerator and denominator terms. In accordance with the general asymptotic theory, under the null hypothesis, $2\hat{l}(H_1:H_2(\cdot))$ is asymptotically distributed as χ^2 with \uparrow see Appendix page 390 $k(k+1)/2 - \sum_{i=1}^{m} k_i(k_i+1)/2 = \sum_{i < j} k_i k_j$ degrees of freedom. It may be shown (see section 6.3) that a better approximation to the distribution of $2I(H_1: H_2(\cdot))$ is R. A. Fisher's B-distribution [Fisher (1928, p. 665)], the noncentral χ^2 -distribution, where for Fisher's distribution $\beta^2 = \left((2k^3 + 3k^2 - k) - \sum_{i=1}^{m} (2k_i^3 + 3k_i^2 - k_i)\right)/12N$, $B^2 = 2I(H_1: H_2(\cdot))$, with $\sum_{i < j} k_i k_j$ degrees of freedom. We summarize the analysis of the minimum discrimination information statistic of (3.29) in table 3.1. Note that the degrees of freedom and the values of the noncentrality arameter β^2 in table 3.1 are additive, properties of the χ^2 -distribution, central and noncentral. We remark that when $k_1 = \cdots = k_m = 1$, $2\hat{I}(H_1: H_2(\cdot)) = 2\hat{I}(H_1: H_2')$ of section 3.3, the "between" component in table 3.1 is $2\hat{I}(H_1: H_2'')$ of section 3.3, and the degrees of freedom and the values of β^2 are those given in section 3.3. (See problems 8.19, 8.25–8.29, 8.34.) Example 3.2. Consider the correlation matrix in example 3.1, with the partitioning of the four variates into two sets as in section 9.2 of chapter 11. To test a null hypothesis that the sets are independent, we compute, $|\mathbf{R}_{11}| = 0.5996$, $|\mathbf{R}_{22}| = 0.8195$, $2\hat{l}(H_1:H_2(\cdot)) = 139 \log ((0.5996)(0.8195)/0.4129) = 24.16$, $\sum_{i < j} k_i k_j = 4$, $\beta^2 = (172 - 26 - 26)/12(139) = 0.0719$. For 4 degrees of freedom, the 5% points for B^2 corresponding to $\beta^2 = 0.04$ and $\beta^2 = 0.16$ are respectively 9.5821 and 9.8627. The observed value of $2\hat{l}(H_1:H_2(\cdot)) = 24.16$ is clearly significant, and we reject the null hypothesis, as we should, in view of the conclusions in section 9.2 of chapter 11. [Cf. Kullback (1952, pp. 98–99).] ### 3.7. Independence and Equality of Variances [Cf. Anderson (1958, pp. 259-261), Hsu (1949, pp. 376-378).] We want to test the null hypothesis in (3.16), with the specification that $\sigma_{11} =
\sigma_{22} = \cdot \cdot \cdot = \sigma_{kk} = \sigma^2$. Denote by $H_2''(\sigma^2)$ the hypothesis H_2'' in (3.18) with the common variance σ^2 specified, and denote by $H_2''(\cdot)$ the hypothesis of equality of the variances. From (3.17) and (3.18) (with the more common notation $s_{ii} = s_i^2$ for the variance) we see that (3.31) $$2\hat{I}(H_1: H_2''(\sigma^2)) = N \sum_{i=1}^k \left(\frac{s_i^2}{\sigma^2} + \log \frac{\sigma^2}{s_i^2} - 1 \right).$$ Since the minimum of (3.31) is given for $\hat{\sigma}^2 = (s_1^2 + \cdots + s_k^2)/k = s^2$, we have that $\hat{I}(H_1: H_2''(\cdot)) = \min_{\sigma^2} \hat{I}(H_1: H_2''(\sigma^2))$ is (3.32) $$2\hat{I}(H_1: H_2''(\cdot)) = N \sum_{i=1}^k \log \frac{s^2}{s_i^2}.$$ TABLE 3.1 | Component due to | Information | D.F. | | |---|--|---------------------------------------|------------------| | Between S_{ii} against Σ_{ii} | $N \sum_{i=1}^{m} \left(\log \frac{ \mathbf{\Sigma}_{ii} }{ \mathbf{S}_{ii} } - k_i + \operatorname{tr} \mathbf{S}_{ii} \mathbf{\Sigma}_{ii}^{-1} \right)$ | $\sum_{i=1}^{m} \frac{k_i(k_i+1)}{2}$ | $\sum_{i=1}^{m}$ | | Within $2\hat{I}(H_1:H_2(\cdot))$ | $N\log\frac{ \mathbf{S}_{11} \cdot\cdot\cdot \mathbf{S}_{mm} }{ \mathbf{S} }=N\log\frac{ \mathbf{R}_{11} \cdot\cdot\cdot \mathbf{R}_{mm} }{ \mathbf{R} }$ | $\sum_{i < j} k_i k_j$ | 2k | | Total $2\hat{I}(H_1:H_2(\mathbf{\Sigma}_{ii}))$ | $N\left(\log\frac{ \mathbf{\Sigma}_{11} \cdot\cdot\cdot \mathbf{\Sigma}_{mm} }{ \mathbf{S} }-k+\sum_{i=1}^{m}\operatorname{tr}\mathbf{S}_{ii}\mathbf{\Sigma}_{ii}^{-1}\right)$ | $\frac{k(k+1)}{2}$ | | A summary of the analysis of $2\hat{I}(H_1:H_2''(\sigma^2))$, with the appropriate degrees of freedom and noncentrality parameters, is given in table 3.2. | TABLE 3.2 | | | | |---|---|-------|---------------| | Component due to | Information | D.F. | eta^2 | | Between, s^2 against σ^2 | $Nk\left(\frac{s^2}{\sigma^2} + \log\frac{\sigma^2}{s^2} - 1\right)$ | 1 | 1/3 <i>Nk</i> | | Within, $2\hat{I}(H_1:H_2''(\cdot))$ | $N\sum_{i=1}^{k}\log\frac{s^2}{s_i^2}$ | k — 1 | $(k^2-1)/3Nk$ | | Total, $2\hat{I}(H_1: H_2''(\sigma^2))$ | $N\sum_{i=1}^{k} \left(\frac{s_i^2}{\sigma^2} + \log \frac{\sigma^2}{s_i^2} - 1\right)$ | k | k/3N | Under the null hypothesis, $2\hat{I}(H_1:H_2''(\cdot))$ is asymptotically distributed as χ^2 with k-1 degrees of freedom. A better approximation to the distribution is R. A. Fisher's B-distribution [Fisher (1928, p. 665)], the noncentral χ^2 -distribution, with $\beta^2 = (k^2 - 1)/3Nk$, $B^2 = 2\hat{I}(H_1:H_2''(\cdot))$, and k-1 degrees of freedom. We remark that $2\hat{I}(H_1:H_2''(\cdot))$ above is a special case of the more general result to be derived in section 5.3, and is (5.16) with r = k, $N_1 = \cdots = N_r = N$. [Note that in (5.16) $N = N_1 + N_2 + \cdots + N_r$ is Nk here.] (See problem 8.35.) #### 4. HOMOGENEITY OF MEANS We now want to consider the problem of testing a hypothesis about the equality of r means for each of k variates for r k-variate normal samples, but with no assumption that the population covariance matrices are equal. We first deal with two samples, r = 2, for its intrinsic interest and expository value. #### 4.1. Two Samples Suppose we have two independent samples of n_1 and n_2 independent observations from k-variate normal populations with covariance matrices Σ_1 and Σ_2 . We want to test the null hypothesis H_2 , the population mean vectors (matrices) are equal, with no specification about Σ_1 and Σ_2 , against the alternative hypothesis H_1 , the means are not equal, that is, (4.1) $$H_2: \mu_1 = \mu_2 = \mu, \Sigma_1, \Sigma_2, H_1: \mu_1, \mu_2, \Sigma_1, \Sigma_2.$$ For the conjugate distribution with $\theta^* = (\bar{x}_1, \bar{x}_2, S_1, S_2)$, and with the notation in section 2, we have (4.2) $$\hat{I}(*:2) = \hat{\tau}_1' \bar{\mathbf{x}}_1 - \hat{\tau}_1' \mu - \frac{1}{2} \hat{\tau}_1' \frac{1}{n_1} \Sigma_1 \hat{\tau}_1 + \operatorname{tr} \hat{\mathbf{T}}_1 \mathbf{S}_1$$ $$+ \frac{N_1}{2} \log |\mathbf{I}_k - \frac{2}{N_1} \Sigma_1 \hat{\mathbf{T}}_1| + \hat{\tau}_2' \bar{\mathbf{x}}_2 - \hat{\tau}_2' \mu - \frac{1}{2} \hat{\tau}_2' \frac{1}{n_2} \Sigma_2 \hat{\tau}_2$$ $$+ \operatorname{tr} \hat{\mathbf{T}}_2 \mathbf{S}_2 + \frac{N_2}{2} \log |\mathbf{I}_k - \frac{2}{N_2} \Sigma_2 \hat{\mathbf{T}}_2|.$$ Following the procedure in section 2, we find that [cf. (2.4) and (2.7)] (4.3) $$\hat{\tau}_1 = n_1 \Sigma_1^{-1} (\bar{x}_1 - \mu), \qquad \hat{\tau}_2 = n_2 \Sigma_2^{-1} (\bar{x}_2 - \mu),$$ $$\hat{T}_1 = \frac{N_1}{2} (\Sigma_1^{-1} - S_1^{-1}), \qquad \hat{T}_2 = \frac{N_2}{2} (\Sigma_2^{-1} - S_2^{-1}),$$ and (4.2) becomes $$(4.4) \quad f(*:2) = \frac{n_1}{2} (\bar{\mathbf{x}}_1 - \boldsymbol{\mu})' \boldsymbol{\Sigma}_1^{-1} (\bar{\mathbf{x}}_1 - \boldsymbol{\mu}) + \frac{n_2}{2} (\bar{\mathbf{x}}_2 - \boldsymbol{\mu})' \boldsymbol{\Sigma}_2^{-1} (\bar{\mathbf{x}}_2 - \boldsymbol{\mu}) + \frac{N_1}{2} \left(\log \frac{|\boldsymbol{\Sigma}_1|}{|\mathbf{S}_1|} - k + \operatorname{tr} \mathbf{S}_1 \boldsymbol{\Sigma}_1^{-1} \right) + \frac{N_2}{2} \left(\log \frac{|\boldsymbol{\Sigma}_2|}{|\mathbf{S}_2|} - k + \operatorname{tr} \mathbf{S}_2 \boldsymbol{\Sigma}_2^{-1} \right).$$ The null hypothesis H_2 specifies equality of the means with no specification on the covariance matrices. For variations of Σ_1 and Σ_2 , $\hat{I}(*:2)$ is a minimum for $\hat{\Sigma}_1 = S_1$, $\hat{\Sigma}_2 = S_2$, and for $\hat{\mu}$ satisfying (4.5) $$0 = n_1 S_1^{-1}(\bar{\mathbf{x}}_1 - \hat{\boldsymbol{\mu}}) + n_2 S_2^{-1}(\bar{\mathbf{x}}_2 - \hat{\boldsymbol{\mu}}),$$ or (4.6) $$\hat{\mu} = (n_1 S_1^{-1} + n_2 S_2^{-1})^{-1} (n_1 S_1^{-1} \bar{x}_1 + n_2 S_2^{-1} \bar{x}_2).$$ For convenience let $\mathbf{d} = \bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2$, $\mathbf{A} = n_1 \mathbf{S}_1^{-1}$, $\mathbf{B} = n_2 \mathbf{S}_2^{-1}$, and substituting in (4.4) we get (4.7) $$2\hat{I}(H_1: H_2) = \text{tr} [(\mathbf{B}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{A}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{B} + \mathbf{A}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{B}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{A})\mathbf{d}\mathbf{d}'].$$ But $$\mathbf{B}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{A} = (\mathbf{A}^{-1}(\mathbf{A} + \mathbf{B})\mathbf{B}^{-1})^{-1} = (\mathbf{B}^{-1} + \mathbf{A}^{-1})^{-1}$$ and $$A(A + B)^{-1}B = (B^{-1}(A + B)A^{-1})^{-1} = (B^{-1} + A^{-1})^{-1},$$ so that finally (4.8) $$2\hat{I}(H_1: H_2) = \text{tr} \left[(\mathbf{B}^{-1} + \mathbf{A}^{-1})^{-1} \mathbf{d} \mathbf{d}' \right]$$ $$= \mathbf{d}' (\mathbf{B}^{-1} + \mathbf{A}^{-1})^{-1} \mathbf{d}$$ $$= (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)' \left(\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2 \right)^{-1} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2).$$ We find that here $\hat{J}(H_1, H_2) = 2\hat{I}(H_1: H_2)$. [For single-variate populations cf. Fisher (1939a), Gronow (1951), Welch (1938). For the multivariate Behrens-Fisher problem, cf. Anderson (1958, pp. 118-122), James (1954, pp. 37-38).] The distribution of $2\hat{l}(H_1:H_2)$ is given for r samples in section 4.3. #### 4.2. Linear Discriminant Function Consider $y = \alpha' x = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k$, the same linear compound for each sample. Since y is normally distributed, we seek α maximizing (4.9) $$2\hat{I}(H_1:H_2;y) = \frac{\alpha' \mathrm{dd}'\alpha}{\alpha' \left(\frac{1}{n_1} S_1 + \frac{1}{n_2} S_2\right)\alpha}$$ As may be determined (cf. section 5 of chapter 9), the maximum occurs for $\alpha = \left(\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2\right)^{-1}\mathbf{d}$ and $2\hat{l}(H_1: H_2; y) = 2\hat{l}(H_1: H_2)$. #### 4.3. r Samples Suppose we have r independent samples of n_i , $i = 1, 2, \dots, r$, independent observations from k-variate normal populations with covariance matrices Σ_i , $i = 1, 2, \dots, r$. We want to test the null hypothesis H_2 , the population mean vectors (matrices) are equal, with no specification about the Σ_i , against the alternative hypothesis H_1 , the means are not equal, that is, $$(4.10) \quad H_2: \mu_1 = \mu_2 = \cdot \cdot \cdot = \mu_r = \mu, \, \Sigma_1, \, \Sigma_2, \, \cdot \cdot \cdot, \, \Sigma_r,$$ $$H_1: \mu_1, \, \cdot \cdot \cdot, \, \mu_r, \, \Sigma_1, \, \cdot \cdot \cdot, \, \Sigma_r.$$ Without repeating the details, we find here that (4.11) $$2\hat{I}(*:H_2) = \sum_{i=1}^r n_i(\bar{x}_i - \mu)' S_i^{-1}(\bar{x}_i - \mu).$$ As in other tests of homogeneity for several samples, here too the null hypothesis can be expressed as the intersection of two hypotheses, one specifying the homogeneity and the other specifying the common parameters of the populations. Let $H_2(\cdot)$ be the null hypothesis specifying homogeneity, and $H_2(\mu)$ the null hypothesis specifying the population means of the homogeneous samples, in each case with no specification of the covariance matrices, so that $H_2 = H_2(\cdot) \cap H_2(\mu)$. Since the minimum of $2I(*:H_2)$ in (4.11) is given for $$\hat{\boldsymbol{\mu}} = \left(\sum_{i=1}^r n_i \mathbf{S}_i^{-1}\right)^{-1} \left(\sum_{i=1}^r n_i \mathbf{S}_i^{-1} \mathbf{\bar{x}}_i\right) = \hat{\mathbf{x}},$$ we have that $f(H_1:H_2(\cdot)) = \min f(*:H_2)$ is (4.12) $$2I(H_1: H_2(\cdot)) = \sum_{i=1}^{r} n_i (\bar{\mathbf{x}}_i - \hat{\mathbf{x}})' \mathbf{S}_i^{-1} (\bar{\mathbf{x}}_i - \hat{\mathbf{x}})$$ $$= \sum_{i=1}^{r} n_i \bar{\mathbf{x}}_i' \mathbf{S}_i^{-1} \bar{\mathbf{x}}_i - \hat{\mathbf{x}}' \left(\sum_{i=1}^{r} n_i \mathbf{S}_i^{-1} \right) \hat{\mathbf{x}}.$$ From
(4.11) and (4.12), we have $$(4.13) 2\hat{I}(*: H_2) = \sum_{i=1}^{r} n_i (\bar{\mathbf{x}}_i - \boldsymbol{\mu})' \mathbf{S}_i^{-1} (\bar{\mathbf{x}}_i - \boldsymbol{\mu})$$ $$= \sum_{i=1}^{r} n_i (\bar{\mathbf{x}}_i - \hat{\mathbf{x}})' \mathbf{S}_i^{-1} (\bar{\mathbf{x}}_i - \hat{\mathbf{x}}) + (\hat{\mathbf{x}} - \boldsymbol{\mu})' \left(\sum_{i=1}^{r} n_i \mathbf{S}_i^{-1} \right) (\hat{\mathbf{x}} - \boldsymbol{\mu})$$ $$= 2\hat{I}(H_1: H_2(\cdot)) + 2\hat{I}(H_2(\cdot): H_2(\boldsymbol{\mu})),$$ with $2\hat{I}(H_1:H_2(\cdot))$ a test for the homogeneity and $2\hat{I}(H_2(\cdot):H_2(\mu))$ a test for the means of the homogeneous samples. This analysis is summarized in table 4.1. TABLE 4.1 | Component due to | Information | D.F. | |-------------------------------------|--|--------| | Between, \hat{x} against μ | $(\hat{\mathbf{x}} - \boldsymbol{\mu})' \left(\sum_{i=1}^r n_i \mathbf{S}_i^{-1} \right) (\hat{\mathbf{x}} - \boldsymbol{\mu})$ | k | | Within, $2\hat{I}(H_1; H_2(\cdot))$ | $\sum_{i=1}^r n_i(\bar{\mathbf{x}}_i - \hat{\mathbf{x}})' \mathbf{S}_i^{-1}(\bar{\mathbf{x}}_i - \hat{\mathbf{x}})$ | (r-1)k | | Total, $2\tilde{I}(*:H_2)$ | $\sum_{i=1}^r n_i(\bar{\mathbf{x}}_i - \boldsymbol{\mu})' \mathbf{S}_i^{-1}(\bar{\mathbf{x}}_i - \boldsymbol{\mu})$ | rk | The degrees of freedom in table 4.1 are those of the asymptotic χ^2 -distributions under the null hypothesis. [Cf. Hsu (1949, pp. 394–396), James (1954, pp. 39–40).] James (1954) has shown that a better approximation to the distribution is obtained by comparing $2\hat{I}(H_1:H_2(\cdot))$, for a $100\alpha\%$ significance level, with $\chi_{\alpha}^2(A+B\chi_{\alpha}^2)$, rather than with χ_{α}^2 , where $$(4.14) A = 1 + \frac{1}{2k(r-1)} \sum_{i=1}^{r} \frac{1}{(n_i-1)} \left[\operatorname{tr} \left(\mathbf{I}_k - \left(\sum_{i=1}^{r} n_i \mathbf{S}_i^{-1} \right)^{-1} n_i \mathbf{S}_i^{-1} \right) \right]^2,$$ $$B = \frac{1}{k(r-1)(k(r-1)+2)} \left[\sum_{i=1}^{r} \frac{1}{(n_i-1)} \operatorname{tr} \left(\mathbf{I}_k - \left(\sum_{i=1}^{r} n_i \mathbf{S}_i^{-1} \right)^{-1} n_i \mathbf{S}_i^{-1} \right)^2 + (A-1)k(r-1) \right].$$ Example 4.1. Kossack (1945) discussed the problem of classifying an A.S.T.P. (Army Specialized Training Program) pre-engineering trainee as to whether he would do unsatisfactory or satisfactory work in his first-term mathematics course. The three variables are x_1 , a mathematics placement test score; x_2 , a high-school mathematics score; x_3 , the Army General Classification Test score. There were 96 trainees who did unsatisfactory work and 209 who performed satisfactory work. We shall find the linear discriminant function as in section 4.2. Here k = 3, $n_1 = 96$, $n_2 = 209$. Kossack (1945, p. 96) gives the following data: $$\mathbf{d}' = (-17.5972, -1.7997, -5.3308),$$ $$\mathbf{S_1} = \begin{pmatrix} 133.8592 & 7.0572 & 2.0717 \\ 7.0572 & 4.1288 & -2.0109 \\ 2.0717 & -2.0109 & 27.7016 \end{pmatrix}, \quad \mathbf{S_2} = \begin{pmatrix} 217.1505 & 14.0692 & 35.7085 \\ 14.0692 & 3.9820 & 0.4031 \\ 35.7085 & 0.4031 & 72.7206 \end{pmatrix}.$$ We now calculate (the computations were carried out by J. H. Kullback) $$\frac{1}{n_1}S_1 = \begin{pmatrix} 1.39436676 & 0.073512939 & 0.021580263 \\ 0.073512939 & 0.043008772 & -0.020946382 \\ 0.021580263 & -0.020946382 & 0.288558772 \end{pmatrix},$$ $$\frac{1}{n_2}S_2 = \begin{pmatrix} 1.038997768 & 0.067316709 & 0.170853859 \\ 0.067316709 & 0.019052470 & 0.001928528 \\ 0.170853859 & 0.001928528 & 0.347945253 \end{pmatrix},$$ $$\begin{pmatrix} \frac{1}{n_1}S_1 + \frac{1}{n_2}S_2 \end{pmatrix}^{-1} = \begin{pmatrix} 0.493634948 & -1.176664865 & -0.184397647 \\ -1.176664865 & 19.066796354 & 0.925430152 \\ -0.184397647 & 0.925430152 & 1.654481546 \end{pmatrix},$$ $$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0.493634948 & -1.176664865 & -0.184397647 \\ -1.176664865 & 19.066796354 & 0.925430152 \\ -0.184397647 & 0.925430152 & 1.654481546 \end{pmatrix} \begin{pmatrix} -17.5972 \\ -1.7997 \\ -5.3308 \end{pmatrix}$$ $$= \begin{pmatrix} -5.58596 \\ -18.54179 \\ -7.24032 \end{pmatrix},$$ $$2\hat{I}(H_1: H_2; y) = 2\hat{I}(H_1: H_2) = (-17.5972, -1.7997, -5.3308) \begin{pmatrix} -5.58596 \\ -18.54179 \\ -7.24032 \end{pmatrix}$$ $$= 170.2637.$$ The linear discriminant function may be expressed as $y = x_1 + 3.32x_2 + 1.29x_3$ with the ratios of the α 's to α_1 as coefficients. Kossack (1945) obtained the coefficients of a linear discriminant function from $\alpha = S^{-1}d$, where $NS = N_1S_1 + N_2S_2$, $N = N_1 + N_2$. [Cf. Fisher (1936).] This is the procedure, for r = 2, discussed in section 8.1 of chapter 11, when the population covariance matrices are assumed to be equal. The linear discriminant function obtained by Kossack (1945) may be written as $y = x_1 + 3.69x_2 + 0.93x_3$. Using Kossack's pooling procedure and his result that $\mathbf{d'}S^{-1}\mathbf{d} = 1.9890$, we compute $$2\hat{I}(H_1: H_2) = \frac{n_1 n_2}{n_1 + n_2} \mathbf{d'} \mathbf{S}^{-1} \mathbf{d} = \frac{96 \times 209}{305} 1.9890 = 130.8637,$$ a smaller value than that computed above when the covariance matrices were not pooled. (We shall see in example 5.2 that the null hypothesis that the population covariance matrices are equal should be rejected.) Example 4.2. To illustrate the test for the null hypothesis of homogeneity of means, we use the following data and computations from James (1954, pp. 42-43). (I have expressed the results in the notation of section 4.3.) There are three bivariate samples, with $n_1 = 16$, $n_2 = 11$, $n_3 = 11$: $$\bar{\mathbf{x}}_{1} = \begin{pmatrix} 9.82 \\ 15.06 \end{pmatrix}, \quad \bar{\mathbf{x}}_{2} = \begin{pmatrix} 13.05 \\ 22.57 \end{pmatrix}, \quad \bar{\mathbf{x}}_{3} = \begin{pmatrix} 14.67 \\ 25.17 \end{pmatrix},$$ $$\mathbf{S}_{1} = \begin{pmatrix} 120.0 & -16.3 \\ -16.3 & 17.8 \end{pmatrix}, \quad \mathbf{S}_{2} = \begin{pmatrix} 81.8 & 32.1 \\ 32.1 & 53.8 \end{pmatrix}, \quad \mathbf{S}_{3} = \begin{pmatrix} 100.3 & 23.2 \\ 23.2 & 97.1 \end{pmatrix},$$ $$n_{1}\mathbf{S}_{1}^{-1} = \begin{pmatrix} 0.1523 & 0.1396 \\ 0.1396 & 1.0272 \end{pmatrix}, \quad n_{2}\mathbf{S}_{2}^{-1} = \begin{pmatrix} 0.1756 & -0.1048 \\ -0.1048 & 0.2670 \end{pmatrix},$$ $$n_{3}\mathbf{S}_{3}^{-1} = \begin{pmatrix} 0.1161 & -0.0277 \\ -0.0277 & 0.1199 \end{pmatrix},$$ $$\sum_{i=1}^{3} n_{i}\mathbf{S}_{i}^{-1} = \begin{pmatrix} 0.4440 & 0.0071 \\ 0.0071 & 1.4141 \end{pmatrix}, \quad \begin{pmatrix} \sum_{i=1}^{3} n_{i}\mathbf{S}_{i}^{-1} \end{pmatrix}^{-1} = \begin{pmatrix} 2.2524 & -0.0113 \\ -0.0113 & 0.7072 \end{pmatrix},$$ $$n_{1}\mathbf{S}_{1}^{-1}\bar{\mathbf{x}}_{1} = \begin{pmatrix} 3.5980 \\ 16.8405 \end{pmatrix}, \quad n_{2}\mathbf{S}_{2}^{-1}\bar{\mathbf{x}}_{2} = \begin{pmatrix} -0.0738 \\ 4.6586 \end{pmatrix}, \quad n_{3}\mathbf{S}_{3}^{-1}\bar{\mathbf{x}}_{3} = \begin{pmatrix} 1.0060 \\ 2.6115 \end{pmatrix},$$ $$\sum_{i=1}^{3} n_{i}\mathbf{S}_{i}^{-1}\bar{\mathbf{x}}_{i} = \begin{pmatrix} 4.5302 \\ 24.1106 \end{pmatrix}, \quad \hat{\mathbf{x}} = \begin{pmatrix} 2.2524 & -0.0113 \\ -0.0113 & 0.7072 \end{pmatrix} \begin{pmatrix} 4.5302 \\ 24.1106 \end{pmatrix} = \begin{pmatrix} 9.9314 \\ 16.9998 \end{pmatrix},$$ $$2\hat{I}(H_{1}:H_{2}(\cdot)) = (9.82, 15.06) \begin{pmatrix} 3.5980 \\ 16.8405 \end{pmatrix} + (13.05, 22.57) \begin{pmatrix} -0.0738 \\ 4.6586 \end{pmatrix}$$ $$+ (14.67, 25.17) \begin{pmatrix} 1.0060 \\ 2.6115 \end{pmatrix} - (9.9314, 16.9998) \begin{pmatrix} 0.4440 & 0.0071 \\ 0.0071 & 1.4141 \end{pmatrix} \begin{pmatrix} 9.9314 \\ 16.9998 \end{pmatrix}$$ $$= 18.75.$$ Asymptotically, $2\hat{I}(H_1:H_2(\cdot)) = 18.75$ is a χ^2 with (r-1)k = 4 degrees of freedom. For a better approximation to the significance levels, we find $$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 2.2524 & -0.0113 \\ -0.0113 & 0.7072 \end{pmatrix} \begin{pmatrix} 0.1523 & 0.1396 \\ 0.1396 & 1.0272 \end{pmatrix} = \begin{pmatrix} 0.6585 & -0.3028 \\ -0.0970 & 0.2751 \end{pmatrix},$$ $$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 2.2524 & -0.0113 \\ -0.0113 & 0.7072 \end{pmatrix} \begin{pmatrix} 0.1756 & -0.1048 \\ -0.1048 & 0.2670 \end{pmatrix} = \begin{pmatrix} 0.6033 & 0.2391 \\ 0.0761 & 0.8100 \end{pmatrix},$$ $$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 2.2524 & -0.0113 \\ -0.0113 & 0.7072 \end{pmatrix} \begin{pmatrix} 0.1161 & -0.0277 \\ -0.0277 & 0.1199 \end{pmatrix} = \begin{pmatrix} 0.7382 & 0.0637 \\ 0.0209 & 0.9149 \end{pmatrix},$$ $$\operatorname{tr} \left(\begin{array}{ccc} 0.6585 & -0.3028 \\ -0.0970 & 0.2751 \end{array} \right)^2 = 0.5680, & \operatorname{tr} \left(\begin{array}{ccc} 0.6033 & 0.2391 \\ 0.0761 & 0.8100 \end{array} \right)^2 = 1.0565,$$ $$\operatorname{tr} \left(\begin{array}{ccc} 0.7382 & 0.0637 \\ 0.0209 & 0.9149 \end{array} \right)^2 = 1.3846, & \left[\operatorname{tr} \left(\begin{array}{ccc} 0.6585 & -0.3028 \\ -0.0970 & 0.2751 \end{array} \right) \right]^2 = 0.8716,$$ $$\left[\operatorname{tr} \left(\begin{array}{ccc} 0.6033 & 0.2391 \\ 0.0761 & 0.8100 \end{array} \right) \right]^2 = 1.9974, & \left[\operatorname{tr} \left(\begin{array}{ccc} 0.7382 & 0.0637 \\ 0.0209 & 0.9149 \end{array} \right) \right]^2 = 2.7327,$$ $$\frac{0.5680}{15} + \frac{1.0565}{10} + \frac{1.3846}{10} = 0.2820, & \frac{0.8716}{15} + \frac{1.9974}{10} + \frac{2.7327}{10} = 0.5311,$$ $$A = 1 + \frac{1}{8}(0.5311) = 1.0664, & B = \frac{1}{24}(0.2820 + \frac{1}{2}(0.5311)) = 0.02281.$$ The appropriate comparison value for the 5%, 1%, 0.1% significance level is then obtained from: | Significance Level | χ^2 , 4 d.f. | $A + B\chi^2$ | $\chi^2(A + B\chi^2)$ | |--------------------|-------------------|---------------|-----------------------| | 5% | 9.488 | 1.283 | 12.17 | | 1% | 13.277 | 1.369 |
18.18 | | 0.1% | 18.467 | 1.488 | 27.48 | that is, the corrected comparison value for the 5% level is 12.17, for the 1% level is 18.18, and for the 0.1% level is 27.48. The null hypothesis of homogeneity would be rejected at the 1% level. #### 5. HOMOGENEITY OF COVARIANCE MATRICES We shall now examine the test for the null hypothesis of equality of the covariance matrices of r k-variate normal populations. For its own interest, and as an introduction, we consider two samples first and then r samples. #### 5.1. Two Samples Suppose we have two independent samples with n_1 and n_2 independent observations from k-variate normal populations with no specification about the means. For the population covariance matrices we have the two hypotheses $H_1: \Sigma_1 \neq \Sigma_2$ and $H_2: \Sigma_1 = \Sigma_2 = \Sigma$. For the conjugate distribution with $\theta^* = (\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2, \mathbf{S}_1, \mathbf{S}_2)$, and with the notation in section 2, we have [cf. (4.2)] (5.1) $$\hat{I}(*:2) = \hat{\tau}_{1}'\bar{x}_{1} - \hat{\tau}_{1}'\mu_{1} - \frac{1}{2}\hat{\tau}_{1}'\frac{1}{n_{1}}\Sigma\hat{\tau}_{1} + \operatorname{tr}\hat{T}_{1}S_{1}$$ $$+ \frac{N_{1}}{2}\log\left|\mathbf{I}_{k} - \frac{2}{N_{1}}\Sigma\hat{T}_{1}\right| + \hat{\tau}_{2}'\bar{x}_{2} - \hat{\tau}_{2}'\mu_{2} - \frac{1}{2}\hat{\tau}_{2}'\frac{1}{n_{2}}\Sigma\hat{\tau}_{2}$$ $$+ \operatorname{tr}\hat{T}_{2}S_{2} + \frac{N_{2}}{2}\log\left|\mathbf{I}_{k} - \frac{2}{N_{2}}\Sigma\hat{T}_{2}\right|.$$ Using the same procedure as for (4.2), we find that [cf. (4.3)] (5.2) $$\hat{\tau}_1 = n_1 \Sigma^{-1} (\bar{x}_1 - \mu_1), \qquad \hat{\tau}_2 = n_2 \Sigma^{-1} (\bar{x}_2 - \mu_2),$$ $$\hat{T}_1 = \frac{N_1}{2} (\Sigma^{-1} - S_1^{-1}), \qquad \hat{T}_2 = \frac{N_2}{2} (\Sigma^{-1} - S_2^{-1}),$$ and (5.1) becomes [cf. (4.4)] (5.3) $$f(*:2) = \frac{n_1}{2} (\bar{\mathbf{x}}_1 - \boldsymbol{\mu}_1)' \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}}_1 - \boldsymbol{\mu}_1) + \frac{n_2}{2} (\bar{\mathbf{x}}_2 - \boldsymbol{\mu}_2)' \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}}_2 - \boldsymbol{\mu}_2)$$ $$+ \frac{N_1}{2} \left(\log \frac{|\boldsymbol{\Sigma}|}{|\mathbf{S}_1|} - k + \operatorname{tr} \mathbf{S}_1 \boldsymbol{\Sigma}^{-1} \right) + \frac{N_2}{2} \left(\log \frac{|\boldsymbol{\Sigma}|}{|\mathbf{S}_2|} - k + \operatorname{tr} \mathbf{S}_2 \boldsymbol{\Sigma}^{-1} \right).$$ For variations of μ_1 , μ_2 , and Σ , $\hat{I}(*:2)$ will be a minimum for $\hat{\mu}_1$, $\hat{\mu}_2$, and $\hat{\Sigma}$ satisfying [see problems 10.2, 10.3 in chapter 9, Deemer and Olkin (1951), for the matrix differentiation] $$(5.4) \quad n_{1}\hat{\Sigma}^{-1}(\bar{\mathbf{x}}_{1} - \hat{\boldsymbol{\mu}}_{1}) = 0, \qquad n_{2}\hat{\Sigma}^{-1}(\bar{\mathbf{x}}_{2} - \hat{\boldsymbol{\mu}}_{2}) = 0,$$ $$0 = -\frac{n_{1}}{2}(\bar{\mathbf{x}}_{1} - \hat{\boldsymbol{\mu}}_{1})'\hat{\Sigma}^{-1}(d\Sigma)\hat{\Sigma}^{-1}(\bar{\mathbf{x}}_{1} - \hat{\boldsymbol{\mu}}_{1}) - \frac{n_{2}}{2}(\bar{\mathbf{x}}_{2} - \hat{\boldsymbol{\mu}}_{2})'\hat{\Sigma}^{-1}(d\Sigma)\hat{\Sigma}^{-1}(\bar{\mathbf{x}}_{2} - \hat{\boldsymbol{\mu}}_{2})$$ $$+ \frac{N_{1}}{2}\operatorname{tr}\hat{\Sigma}^{-1}(d\Sigma) - \frac{N_{1}}{2}\operatorname{tr}S_{1}\hat{\Sigma}^{-1}(d\Sigma)\hat{\Sigma}^{-1}$$ $$+ \frac{N_{2}}{2}\operatorname{tr}\hat{\Sigma}^{-1}(d\Sigma) - \frac{N_{2}}{2}\operatorname{tr}S_{2}\hat{\Sigma}^{-1}(d\Sigma)\hat{\Sigma}^{-1}.$$ We find that (5.5) $$\hat{\mu}_1 = \bar{\mathbf{x}}_1$$, $\hat{\mu}_2 = \bar{\mathbf{x}}_2$, $(N_1 + N_2)\hat{\Sigma} = N_1S_1 + N_2S_2 = NS$, where $N = N_1 + N_2$, and consequently [cf. Wilks (1932, p. 489)] (5.6) $$2\hat{I}(H_1:H_2) = N_1 \log \frac{|S|}{|S_1|} + N_2 \log \frac{|S|}{|S_2|}.$$ It is found that the estimate $\hat{J}(H_1, H_2)$ is [cf. Kullback (1952, p. 91), and equation (1.7) in chapter 9] (5.7) $$\hat{J}(H_1, H_2) = \frac{N_1 N_2}{2(N_1 + N_2)} (\operatorname{tr} S_1 S_2^{-1} + \operatorname{tr} S_2 S_1^{-1} - 2k).$$ In accordance with the general asymptotic theory, under the null hypothesis H_2 , $2\hat{l}(H_1:H_2)$ in (5.6) asymptotically is distributed as χ^2 with k(k+1)/2 degrees of freedom. Using the characteristic function of the distribution of $2\hat{l}(H_1:H_2)$, it may be shown (see section 6.1) that a better approximation to the distribution is R. A. Fisher's *B*-distribution [Fisher (1928, p. 665)], the noncentral χ^2 -distribution, where for Fisher's distribution $\beta^2 = \frac{(2k^3 + 3k^2 - k)}{12} \left(\frac{1}{N_1} + \frac{1}{N_2} - \frac{1}{N}\right)$, $B^2 = 2\hat{I}(H_1: H_2)$, with k(k+1)/2 degrees of freedom. #### 5.2. Linear Discriminant Function (Cf. section 3.5.) We seek a linear compound, the same for both samples, $y = \alpha' \mathbf{x} = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k$, that maximizes [see (5.7)] (5.8) $$\hat{J}(H_1, H_2; y) = \frac{N_1 N_2}{2(N_1 + N_2)} \left(\frac{\alpha' \mathbf{S}_1 \alpha}{\alpha' \mathbf{S}_2 \alpha} + \frac{\alpha' \mathbf{S}_2 \alpha}{\alpha' \mathbf{S}_1 \alpha} - 2 \right).$$ We find (by the usual calculus procedures) that α satisfies $S_1\alpha = FS_2\alpha$, where F is a root of the determinantal equation $|S_1 - FS_2| = |N_1S_1 - lN_2S_2| = 0$, and $F = N_2l/N_1$ (cf. section 6 of chapter 9). The same linear function results from maximizing [see (5.6)] (5.9) $$\hat{I}(H_1: H_2; y) = \frac{N_1}{2} \log \frac{\alpha' S \alpha}{\alpha' S_1 \alpha} + \frac{N_2}{2} \log \frac{\alpha' S \alpha}{\alpha' S_2 \alpha}$$ If the roots of the determinantal equation, which are almost everywhere positive, are F_1, F_2, \dots, F_k arranged in ascending order, then, as was shown in section 6 of chapter 9, the maximum of $J(H_1, H_2; y)$ occurs for the linear compound associated with F_1 or F_k according as $F_1F_k < 1$ or $F_1F_k > 1$. It may also be shown that (5.10) $$\hat{I}(H_1: H_2) = \hat{I}(H_1: H_2; I_1) + \hat{I}(H_1: H_2; I_2) + \cdots + \hat{I}(H_1: H_2; I_k),$$ $$\hat{J}(H_1, H_2) = \hat{J}(H_1, H_2; F_1) + \hat{J}(H_1, H_2; F_2) + \cdots + \hat{J}(H_1, H_2; F_k),$$ where (5.11) $$\hat{I}(H_1: H_2; l_i) = \frac{N_1}{2} \log \frac{N_1}{N_1 + N_2} \frac{1 + l_i}{l_i} + \frac{N_2}{2} \log \frac{N_2}{N_1 + N_2} (1 + l_i)$$ $$= \frac{N_1}{2} \log \frac{N_1}{N_1 + N_2} + \frac{N_2}{2} \log \frac{N_2}{N_1 + N_2}$$ $$+ \frac{N_1 + N_2}{2} \log (1 + l_i) - \frac{N_1}{2} \log l_i,$$ $$\hat{J}(H_1, H_2; F_i) = \frac{N_1 N_2}{2(N_1 + N_2)} \frac{(F_i - 1)^2}{F_i}$$ Asymptotically, when the population parameters have the null hypothesis values, $2I(H_1:H_2;l_{m+1})+\cdots+2I(H_1:H_2;l_k)$ (the summands arranged in descending order of magnitude) is distributed as χ^2 with (k-m)(k-m+1)/2 degrees of freedom. A better approximation is R. A. Fisher's B-distribution [Fisher (1928, p. 665)], the noncentral χ^2 -distribution, where for Fisher's distribution $$\beta^2 = \frac{(2k^3 + 3k^2 - k) - (2m^3 + 3m^2 - m)}{12} \left(\frac{1}{N_1} + \frac{1}{N_2} - \frac{1}{N} \right),$$ $N = N_1 + N_2$, $B^2 = \sum_{i=m+1}^{k} 2\hat{I}(H_1: H_2; l_i)$, with (k - m)(k - m + 1)/2 degrees of freedom. (See section 6.4.) [Cf. Anderson (1958, p. 259).] #### 5.3. r Samples Suppose we have r independent samples of n_1, n_2, \dots, n_r independent observations from k-variate normal populations with no specification about the means. For the population covariance matrices we have the two hypotheses $H_1: \Sigma_1, \Sigma_2, \dots, \Sigma_r$ and $H_2: \Sigma_1 = \Sigma_2 = \dots = \Sigma_r = \Sigma$. Without repeating the details, as in section 5.1, we find that for the conjugate distribution with $\theta^* = (\bar{\mathbf{x}}_1, \dots, \bar{\mathbf{x}}_r, \mathbf{S}_1, \dots, \mathbf{S}_r)$ (5.12) $$f(*:2) = \sum_{i=1}^{r} \frac{n_i}{2} (\bar{\mathbf{x}}_i - \boldsymbol{\mu}_i)' \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}}_i - \boldsymbol{\mu}_i)$$ $$+ \sum_{i=1}^{r} \frac{N_i}{2} \left(\log \frac{|\boldsymbol{\Sigma}|}{|\mathbf{S}_i|} - k + \operatorname{tr} \mathbf{S}_i \boldsymbol{\Sigma}^{-1} \right).$$ When the null hypothesis $H_2(\Sigma)$ specifies Σ , the minimum of I(*:2) in (5.12) for variations of the μ_i , $i = 1, 2, \dots, r$, is (5.13) $$\tilde{I}(*:H_2(\Sigma)) = \sum_{i=1}^r \frac{N_i}{2} \left(\log \frac{|\Sigma|}{|S_i|} - k + \operatorname{tr} S_i \Sigma^{-1} \right) .$$ This is (2.18) in chapter 9 with Σ for Σ_{2j} and S_j for Σ_{1j} , $j=1, 2, \dots, r$. When the null hypothesis $H_2(\cdot)$ does not specify Σ but only the homogeneity, the minimum of $\hat{I}(*:H_2(\Sigma))$ in (5.13) for variations of Σ is given for $N\hat{\Sigma} = N_1S_1 + \dots + N_rS_r = NS$, $N = N_1 + N_2 + \dots + N_r$, and $\hat{I}(H_1:H_2(\cdot)) = \min \hat{I}(*:H_2(\Sigma))$ is (5.14) $$f(H_1: H_2(\cdot)) = \sum_{i=1}^r \frac{N_i}{2} \left(\log \frac{|S|}{|S_i|} - k + \operatorname{tr} S_i S^{-1} \right)$$ $$= \sum_{i=1}^r \frac{N_i}{2} \log \frac{|S|}{|S_i|} .$$ [Cf. Anderson (1958, p. 249), Box (1949), Wilks (1932, p. 489).] Note that the estimate of $J(H_1, H_2(\cdot))$ may be obtained from (2.19) of chapter 9 by replacing Σ_{1j} by S_j and Σ_{2j} by $S, j = 1, 2, \dots, r$, yielding (5.15) $$\hat{J}(H_1, H_2(\cdot)) = \sum_{i=1}^{r} \frac{N_i}{2} (\operatorname{tr} \mathbf{S}_i \mathbf{S}^{-1} + \operatorname{tr} \mathbf{S} \mathbf{S}_i^{-1}) - kN$$ $$= \sum_{i=1}^{r} \frac{N_i}{2} \operatorname{tr} \mathbf{S} \mathbf{S}_i^{-1} - \frac{kN}{2}$$ $$= \sum_{i < j} \frac{N_i N_j}{2N} (\operatorname{tr} \mathbf{S}_i \mathbf{S}_j^{-1} + \operatorname{tr} \mathbf{S}_j \mathbf{S}_i^{-1} - 2k).$$ In accordance with the general asymptotic theory, under the null hypothesis H_2 , $2\hat{l}(H_1:H_2(\cdot))$ in (5.14) asymptotically is distributed as χ^2 with (r-1)k(k+1)/2 degrees of freedom. Using the characteristic function of the distribution of $2\hat{l}(H_1:H_2(\cdot))$, it may be shown (see section 6.1) that a better approximation to the
distribution is R. A. Fisher's B-distribution [Fisher (1928, p. 665)], the noncentral χ^2 -distribution, where for Fisher's distribution $\beta^2 = \frac{2k^3 + 3k^2 - k}{12} \left(\sum_{i=1}^r 1/N_i - 1/N\right)$, $B^2 = 2\hat{l}(H_1:H_2(\cdot))$, with (r-1)k(k+1)/2 degrees of freedom. For degrees of freedom greater than 7 (the largest tabulated by Fisher), $$2\hat{I}(H_1: H_2(\cdot))(1 - 2\beta^2/(r-1)k(k+1))$$ may be treated as a χ^2 with (r-1)k(k+1)/2 degrees of freedom. For the single-variate case, k=1, we have (5.16) $$2\tilde{I}(H_1: H_2(\cdot)) = \sum_{i=1}^r N_i \log \frac{s^2}{s_i^2},$$ where $Ns^2 = N_1s_1^2 + \cdots + N_rs_r^2$, $N = N_1 + N_2 + \cdots + N_r$, $\beta^2 = \frac{1}{3} \left(\sum_{i=1}^r \frac{1}{N_i} - \frac{1}{N} \right)$, and $\frac{2\beta^2}{(r-1)k(k+1)} = \frac{1}{3(r-1)} \left(\sum_{i=1}^r \frac{1}{N_i} - \frac{1}{N} \right)$. These are the results for Bartlett's test for the homogeneity of variances [Bartlett (1937, 1954), Box (1949), Kempthorne (1952, p. 21), Lawley (1956)]. See the remark at the end of section 3.7. We summarize the analysis of the discrimination information statistic in (5.13) in table 5.1. Note that the between component in table 5.1 is the discrimination information statistic for the test of the null hypothesis $H_2(\cdot|\Sigma)$, the covariance matrix of homogeneous samples is Σ . The analysis in table 5.1 is a reflection of the fact that $H_2(\Sigma) = H_2(\cdot) \cap H_2(\cdot | \Sigma)$, and may be written as $2f(*: H_2(\Sigma)) = 2f(H_1: H_2(\cdot)) + 2f(H_2(\cdot): H_2(\cdot | \Sigma))$. The degrees of freedom are those of the asymptotic χ^2 -distribution or those of the better approximation given by Fisher's *B*-distribution, the noncentral χ^2 -distribution with noncentrality parameter β^2 . TABLE 5.1 Component due to Information D.F. β^2 Between S against Σ $N\left(\log \frac{|\Sigma|}{|S|} - k + \operatorname{tr} S\Sigma^{-1}\right)$ $\frac{k(k+1)}{2}$ $\frac{2k^3 + 3k^2 - k}{12N}$ Within $2\tilde{I}(H_1: H_2(\cdot))$ $\sum_{i=1}^{r} N_i \log \frac{|S|}{|S_i|}$ $\frac{(r-1)k(k+1)}{2}$ $\frac{2k^3 + 3k^2 - k}{12}$ $\left(\sum_{i=1}^{r} \frac{1}{N_i} - \frac{1}{N}\right)$ Total $2\tilde{I}(*: H_2(\Sigma))$ $\sum_{i=1}^{r} N_i \left(\log \frac{|\Sigma|}{|S_i|} - k + \operatorname{tr} S_i \Sigma^{-1}\right)$ $\frac{rk(k+1)}{2}$ $\frac{2k^3 + 3k^2 - k}{12}$ $\sum_{i=1}^{r} \frac{1}{N_i}$ #### 5.4. Correlation Matrices By using the minimum discrimination information statistic in (3.19) and the convexity property we may derive a test for the null hypothesis that the correlation matrices of m populations are equal. Suppose there are m independent samples of $n_1 = N_1 + 1$, $n_2 = N_2 + 1$, \cdots , $n_m = N_m + 1$ independent observations each from k-variate normal populations. Denote the sample correlation matrices by $\mathbf{R}_1, \mathbf{R}_2, \cdots, \mathbf{R}_m$ and the corresponding population correlation matrices by $\mathbf{P}_1, \mathbf{P}_2, \cdots, \mathbf{P}_m$. Let H_1 denote the alternative hypothesis that the population correlation matrices are not all equal, that is, $$(5.17) H_1: \mathbf{P}_1, \mathbf{P}_2, \cdots, \mathbf{P}_m;$$ let $H_2(\mathbf{P})$ denote the null hypothesis that the population correlation matrices are equal to \mathbf{P} , that is, (5.18) $$H_2(\mathbf{P}): \mathbf{P}_1 = \mathbf{P}_2 = \cdots = \mathbf{P}_m = \mathbf{P};$$ and let $H_2(\cdot)$ denote the null hypothesis of homogeneity that the population covariance matrices are equal but unspecified. Since $H_2(\mathbf{P})$ is equivalent to the intersection of two hypotheses, (i) the observed correlation matrices are homogeneous and (ii) the common value of the population correlation matrix is \mathbf{P} , we may set up the analysis in table 5.2. TABLE 5.2 | Component due | to Information | D.F. | |-------------------|---|-------------------------| | P | $N(\log\frac{ \mathbf{P} }{ \mathbf{R} }-k+\mathrm{tr}\mathbf{R}\mathbf{P}^{-1})$ | $\frac{k(k-1)}{2}$ | | $H_2(ullet)$ | $\sum_{i=1}^{m} N_i \log \frac{ \mathbf{R} }{ \mathbf{R}_i }$ | $\frac{(m-1)k(k-1)}{2}$ | | $H_2(\mathbf{P})$ | $\sum_{i=1}^{m} N_i \left(\log \frac{ \mathbf{P} }{ \mathbf{R}_i } - k + \operatorname{tr} \mathbf{R}_i \mathbf{P}^{-1} \right)$ | $\frac{mk(k-1)}{2}$ | In table 5.2, (5.19) $N = N_1 + N_2 + \cdots + N_m$, $N\mathbf{R} = N_1\mathbf{R}_1 + N_2\mathbf{R}_2 + \cdots + N_m\mathbf{R}_m$, and the degrees of freedom are those of the asymptotic χ^2 -distributions under the null hypothesis. The convexity property insures that $$(5.20) \quad N \sum_{i=1}^{m} \frac{N_i}{N} \left(\log \frac{|\mathbf{P}|}{|\mathbf{R}_i|} - k + \operatorname{tr} \mathbf{R}_i \mathbf{P}^{-1} \right)$$ $$\geq N \left(\log \frac{|\mathbf{P}|}{|\mathbf{R}|} - k + \operatorname{tr} \mathbf{R} \mathbf{P}^{-1} \right).$$ For bivariate populations, k = 2, we have (5.21) $$2I(H_1.H_2(\cdot)) = \sum_{i=1}^m N_i \log \frac{1-r_{12}^2}{1-r_{112}^2}$$ where $Nr_{12} = \sum_{i=1}^{m} N_i r_{i12}$ and r_{i12} is the correlation coefficient in the *i*-th sample. The degrees of freedom for $2\hat{I}(H_1: H_2(\cdot))$ in (5.21) are m-1. Example 5.1. We illustrate the test of a null hypothesis of homogeneity of covariance matrices with data given by Smith (1947, Table 2, p. 277) to calculate a linear discriminant function for a group of 25 normal persons and 25 psychotics. Here k=2, r=2, $N_1=N_2=24$, N=48, $$S_{1} = \begin{pmatrix} 6.92 & -5.27 \\ -5.27 & 40.89 \end{pmatrix}, \qquad S_{2} = \begin{pmatrix} 36.75 & 13.92 \\ 13.92 & 287.92 \end{pmatrix}, \qquad S = \begin{pmatrix} 21.83 & 4.33 \\ 4.33 & 164.40 \end{pmatrix},$$ $$|S_{1}| = 255.1859, \qquad |S_{2}| = 10387.2936, \qquad |S| = 3570.1031,$$ $$2\hat{I}(H_{1}: H_{2}(\cdot)) = 24 \log (3570.1031/255.1859) + 24 \log (3570.1031/10387.2936) = 37.7019 = B^{2},$$ $$\beta^{2} = \frac{16 + 12 - 2}{12} \left(\frac{2}{24} - \frac{1}{48} \right) = 0.135416,$$ $$\frac{(2 - 1)2 \times 3}{2} = 3 \text{ degrees of freedom.}$$ In Fisher's B^2 table, Table III on page 380, the 5% values for n=3 and $\beta^2=0.04$ and 0.16 are respectively 7.9186 and 8.2254. We therefore reject the null hypothesis of equality of the population covariance matrices. Smith (1947) does remark that the correlations are not significant, but that the variances of the psychotics are significantly greater than those of the normals. Example 5.2. We now justify the comment at the end of example 4.1. In addition to S_1 and S_2 in example 4.1, we also have $$S = \begin{pmatrix} 191.04 & 11.871 & 25.162 \\ 11.871 & 4.0280 & -0.35378 \\ 25.162 & -0.35378 & 58.606 \end{pmatrix},$$ $$|S_1| = 13313, \quad |S_2| = 43779, \quad |S| = 34053,$$ $$2\hat{I}(H_1:H_2(\cdot)) = 95 \log \frac{34053}{13313} + 208 \log \frac{34053}{43779} = 36.96 = B^2,$$ $$\beta^2 = \frac{54 + 27 - 3}{12} \left(\frac{1}{95} + \frac{1}{208} - \frac{1}{303} \right) = 0.0782,$$ $$\frac{(2 - 1)3 \times 4}{2} = 6 \text{ degrees of freedom.}$$ In Fisher's B^2 table, Table III on page 380, the 5% values for n=6 and $\beta^2=0.04$ and 0.16 are respectively 12.6750 and 12.9247. We therefore reject the null hypothesis of equality of the population covariance matrices. Example 5.3. We use data given by Pearson and Wilks (1933) for five samples of 12 observations each on the strength and hardness in aluminum die-castings. (See section 9.1 of chapter 11.) Based on their data (note that they did not use the unbiased estimates), details not being repeated here, k = 2, r = 5, $N_1 = \cdots = N_5 = 11$, N = 55, $$\log |S_1| = 5.82588$$, $\log |S_2| = 6.63942$, $\log |S_3| = 5.31904$, $\log |S_4| = 6.66973$, $\log |S_5| = 5.35937$, $\log |S| = 6.13953$, $2\hat{I}(H_1: H_2(\cdot)) = 55(6.13953) - 11(29.81344) = 9.726 = B^2$, $$\beta^2 = \frac{16 + 12 - 2}{12} \left(\frac{5}{11} - \frac{1}{55} \right) = 0.945454,$$ $$n = \frac{(5 - 1)2 \times 3}{2} = 12 \text{ degrees of freedom.}$$ In Fisher's B^2 table, Table III on page 380, the 5% values for n = 7 (the largest there tabulated) and $\beta^2 = 0.64$ and 1.0 are respectively 15.3225 and 16.0040. Since the tabulated values increase with increasing n for a fixed β^2 , here we do not reject the null hypothesis of equality of population covariance matrices. not reject the null hypothesis of equality of population covariance matrices. We could also test $9.726 \left(1 - \frac{0.945454}{12}\right) = 8.96$ as a χ^2 with 12 degrees of freedom, with the same conclusion, accept the null hypothesis of equality of the population covariance matrices. This agrees with Pearson and Wilks (1933). [Cf. Anderson (1958, p. 256).] Example 5.4. To illustrate section 5.4, we shall compute $2\hat{I}(H_1: H_2(\cdot))$ in (5.21) for the five samples of example 5.3, so that k = 2, r = 5, $N_1 = \cdots = N_5 = 11$, N = 55. From the data given by Pearson and Wilks (1933, p. 370) we make the computations shown in table 5.3. TABLE 5.3 | i | r_{i12} | $1-r_{i12}^2$ | |---|-----------|---------------| | 1 | 0.68257 | 0.534106 | | 2 | 0.87601 | 0.232617 | | 3 | 0.71372 | 0.490595 | | 4 | 0.71496 | 0.488835 | | 5 | 0.80505 | 0.351891 | $1 - r_{12}^2 = 0.424735$, n = 4 degrees of freedom, $$2\hat{I}(H_1:H_2(\cdot)) = 11 \log \frac{0.424735}{0.534106} + \cdots + 11 \log \frac{0.424735}{0.351891} = 3.0498.$$ The 5% value for chi-square for 4 degrees of freedom is 9.4877 so that, consistent with example 5.3, we accept the null hypothesis of homogeneity of the correlation coefficients. Example 5.5. As another illustration of section 5.4, let us consider the data given by Pearson and Wilks (1933, pp. 372-375) consisting of standard measurements of length and breadth of skull in millimeters obtained for 20 adult males from each of 30 different races or groups, so that k = 2, r = 30, $N_1 = \cdots = N_{30} = 19$, N =
570. From the data given by Pearson and Wilks (1933, p. 373) we make the computations shown in table 5.4. | T | Δ | R | LE | 5 | 4 | |---|---|---|----|---|---| | | | | | | | | i | r_{i12} | $1-r_{i12}^2$ | i | r_{i12} | $1-r_{i12}^2$ | i | r_{i12} | $1-r_{i12}^2$ | |----|-----------|---------------|----|-----------|---------------|----|-----------|---------------| | 1 | 0.097 | 0.990591 | 11 | 0.219 | 0.952039 | 21 | 0.178 | 0.968316 | | 2 | 0.198 | 0.960796 | 12 | -0.152 | 0.976896 | 22 | 0.763 | 0.417831 | | 3 | 0.576 | 0.668224 | 13 | 0.319 | 0.898239 | 23 | 0.101 | 0.989799 | | 4 | -0.015 | 0.999775 | 14 | 0.310 | 0.903900 | 24 | 0.449 | 0.798399 | | 5 | 0.173 | 0.970071 | 15 | 0.019 | 0.999639 | 25 | 0.245 | 0.939975 | | 6 | 0.764 | 0.416304 | 16 | 0.445 | 0.801975 | 26 | 0.360 | 0.870400 | | 7 | -0.037 | 0.998631 | 17 | 0.410 | 0.831900 | 27 | 0.592 | 0.649536 | | 8 | 0.667 | 0.555111 | 18 | 0.946 | 0.105084 | 28 | -0.515 | 0.734775 | | 9 | 0.014 | 0.999804 | 19 | 0.018 | 0.999676 | 29 | 0.023 | 0.999471 | | 10 | -0.112 | 0.987456 | 20 | 0.160 | 0.974400 | 30 | 0.254 | 0.935484 | $1 - r_{12}^2 = 0.937999$, n = 29 degrees of freedom, $$2\hat{I}(H_1: H_2(\bullet)) = 19 \log \frac{0.937999}{0.990591} + \cdots + 19 \log \frac{0.937999}{0.935484} = 98.$$ Since 98 as a chi-square with 29 degrees of freedom is significant, we reject the null hypothesis of homogeneity of the correlation coefficients, a conclusion consistent with that reached by Pearson and Wilks using an ad hoc approach not generalizable to the k-variate case. For this data Pearson and Wilks (1933, p. 374), using Fisher's z-test [Fisher (1921)], computed $\chi^2 = \sum_{i=1}^{30} (n_i - 3)(z_i - \bar{z})^2, \text{ where } z_i = \frac{1}{2}[\log_e(1 + r_{i12}) - \log_e(1 - r_{i12})] \text{ and } \bar{z} = \sum_{i=1}^{30} z_i/30, \text{ obtaining } \chi^2 = 96.01 \text{ with 29 degrees of freedom.}$ #### 6. ASYMPTOTIC DISTRIBUTIONS In this section we shall justify the statements made about the asymptotic behavior of the statistics in the previous sections of this chapter. #### 6.1. Homogeneity of Covariance Matrices Under the hypothesis H_2 of section 5.3, we let (6.1) $$N_i S_i = \Sigma^{1/2} V_i \Sigma^{1/2}$$, $NS = \Sigma^{1/2} V \Sigma^{1/2}$, $i = 1, 2, \dots, r$, which define transformations linear in the elements of the matrices S_i , S_i respectively by V_i , V. The Jacobians of these transformations are [cf. Anderson (1958, p. 162), Deemer and Olkin (1951)] $$\left| \frac{1}{N_i} \Sigma \right|^{\frac{k+1}{2}}$$ and $\left| \frac{1}{N} \Sigma \right|^{\frac{k+1}{2}}$. The Wishart distributions of the elements of S_i , S are thereby transformed into the respective probability densities of the elements of V_i , V (6.2) $$\frac{\frac{(\frac{1}{2})^{\frac{kN_i}{2}}e^{-1/2\text{tr}\nabla_i|\mathbf{V}_i|}}{\frac{k(k-1)}{4}\prod_{\alpha=1}^k\Gamma(N_i+1-\alpha)/2} \quad \text{and} \quad \frac{\frac{(\frac{1}{2})^{\frac{kN}{2}}e^{-1/2\text{tr}\nabla|\mathbf{V}|}}{\frac{k(k-1)}{4}\prod_{\alpha=1}^k\Gamma(N+1-\alpha)/2}}{\pi^{\frac{k(k-1)}{4}\prod_{\alpha=1}^k\Gamma(N+1-\alpha)/2}}.$$ Applying the transformations in (6.1) to $I(H_1: H_2(\cdot))$ in (5.14), we get (6.3) $$f(H_1:H_2(\cdot)) = \sum_{\beta=1}^r \frac{N_\beta}{2} \left(\log \frac{|\mathbf{V}|}{|\mathbf{V}_\beta|} + k \log \frac{N_\beta}{N} \right).$$ Since the r samples are independent, the characteristic function of the distribution of $$\sum_{\beta=1}^{r} N_{\beta} \log \frac{|\mathbf{V}|}{|\mathbf{V}_{\beta}|} = N \log |\mathbf{V}| - \sum_{\beta=1}^{r} N_{\beta} \log |\mathbf{V}_{\beta}|$$ is [cf. Box (1949, p. 321)] $$(6.4) \ \phi(t) = \int \left(\prod_{\beta=1}^{r} \frac{\left(\frac{1}{2}\right)^{\frac{N_{\beta}}{2}} e^{-\frac{1}{2} \operatorname{tr} \nabla_{\beta}} |V_{\beta}|}{\pi^{\frac{k(k-1)}{4}} \prod_{\alpha=1}^{k} \Gamma(N_{\beta}+1-\alpha)/2} \right) |V|^{Nit} \prod_{\beta=1}^{r} \prod_{\gamma,\delta=1}^{k} dv_{\beta\gamma\delta}$$ $$= \left(\prod_{\beta=1}^{r} \prod_{\alpha=1}^{k} \frac{\Gamma(N_{\beta}(1-2it)+1-\alpha)/2}{\Gamma(N_{\beta}+1-\alpha)/2} \right) \times \int_{\frac{k(k-1)}{4}}^{\frac{kN}{2}} e^{-\frac{1}{2} \operatorname{tr} \nabla} |V|^{\frac{N(1-2it)-k-1}{2}+Nit} \prod_{\gamma,\delta=1}^{k} dv_{\gamma\delta}$$ $$= \prod_{\alpha=1}^{k} \left(\frac{\Gamma(N+1-\alpha)/2}{\Gamma(N(1-2it)+1-\alpha)/2} \prod_{\beta=1}^{r} \frac{\Gamma(N_{\beta}(1-2it)+1-\alpha)/2}{\Gamma(N_{\beta}+1-\alpha)/2} \right),$$ where the middle result follows from the reproductive property of the Wishart distribution [Anderson (1958, p. 162), Wilks (1943, p. 232)]. We use Stirling's approximation, $$\log \Gamma(p) = \frac{1}{2} \log 2\pi + (p - \frac{1}{2}) \log p - p + \frac{1}{12p} - \frac{1}{360p^3} + O(1/p^5),$$ to get an approximate value for large N_{β} in (6.4). We have (6.5) $$\log \frac{\Gamma(N_{\beta}(1-2it)+1-\alpha)/2}{\Gamma(N_{\beta}+1-\alpha)/2}$$ $$= \frac{N_{\beta}(1-2it)-\alpha}{2}\log \frac{N_{\beta}(1-2it)+1-\alpha}{2} - \frac{N_{\beta}(1-2it)+1-\alpha}{2}$$ $$+ \frac{1}{6(N_{\beta}(1-2it)+1-\alpha)} - \frac{1}{45(N_{\beta}(1-2it)+1-\alpha)^{3}}$$ $$- \frac{N_{\beta}-\alpha}{2}\log \frac{N_{\beta}+1-\alpha}{2} + \frac{N_{\beta}+1-\alpha}{2}$$ $$- \frac{1}{6(N_{\beta}+1-\alpha)} + \frac{1}{45(N_{\beta}+1-\alpha)^{3}} + O(1/N_{\beta}^{5}),$$ and after some algebraic manipulation the right-hand member of (6.5) may be written as $$-itN_{\beta}\log\frac{N_{\beta}}{2} + \frac{N_{\beta}(1-2it) - \alpha}{2}\log(1-2it) + N_{\beta}it + \frac{(3\alpha^2 - 1)2it}{12N_{\beta}(1-2it)} + O(1/N_{\beta}^2).$$ We therefore have (6.6) $$\log \phi(t) = \sum_{\alpha=1}^{k} \left(itN \log \frac{N}{2} - \frac{N(1-2it) - \alpha}{2} \log (1-2it) - Nit \right)$$ $$- \frac{(3\alpha^2 - 1)it}{6N(1-2it)} - O(1/N^2) + \sum_{\alpha=1}^{k} \sum_{\beta=1}^{r} \left(-it N_{\beta} \log \frac{N_{\beta}}{2} + \frac{N_{\beta}(1-2it) - \alpha}{2} \log (1-2it) + N_{\beta}it + \frac{(3\alpha^2 - 1)it}{6N_{\beta}(1-2it)} + O(1/N_{\beta}^2) \right)$$ $$= -it \sum_{\beta=1}^{r} k N_{\beta} \log \frac{N_{\beta}}{N} - \frac{(r-1)k(k+1)}{4} \log (1-2it)$$ $$+ \frac{it(2k^3 + 3k^2 - k)}{12(1-2it)} \left(\sum_{\beta=1}^{r} \frac{1}{N_{\beta}} - \frac{1}{N} \right) + \sum_{\beta=1}^{r} O(1/N_{\beta}^2) - O(1/N^2).$$ Neglecting the last term in (6.6), we have (6.7) $$\phi(t) = (1 - 2it)^{-(r-1)k(k+1)/4} \exp\left(-it\sum_{\beta=1}^{r} kN_{\beta} \log \frac{N_{\beta}}{N} + \frac{cit}{1 - 2it}\right),$$ where $c = (2k^3 + 3k^2 - k) \left(\sum_{\beta=1}^{r} 1/N_{\beta} - 1/N\right)/12.$ Because of (6.3) and (6.4), writing $\zeta = 2I(H_1: H_2(\cdot))$, the probability density of ζ is (6.8) $$D(\zeta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\exp\left(-it\zeta + cit/(1-2it)\right) dt}{(1-2it)^{(r-1)k(k+1)/4}}.$$ If we neglect the term with c, it follows that $D(\zeta)$ is the probability density of the χ^2 -distribution with (r-1)k(k+1)/2 degrees of freedom; otherwise, by integrating (6.8) [see Laha (1954), McLachlan (1939, p. 86)] we get, since ζ is real and positive and (r-1)k(k+1)/4 > 0, (6.9) $$D(\zeta) = \frac{1}{2}e^{-c/2-\zeta/2} \left(\frac{\zeta}{c}\right)^{(n-1)/2} I_{n-1}(\sqrt{c\zeta}),$$ where n = (r-1)k(k+1)/4 and $I_{n-1}(\sqrt{c\zeta})$ is the Bessel function of purely imaginary argument [Watson (1944)] $$I_{n-1}(\sqrt{c\zeta}) = \sum_{j=0}^{\infty} \frac{\left(\frac{1}{2}\right)^{\frac{n-1}{2}+j} \left(\frac{c\zeta}{2}\right)^{\frac{n-1}{2}+j}}{j!\Gamma(n+j)}.$$ The probability density (6.9) is that of the noncentral χ^2 -distribution with 2n degrees of freedom and noncentrality parameter c, and is Fisher's B-distribution [Fisher (1928, p. 665)] with $c = \beta^2$, $\zeta = B^2$, $2n = n_1$. The approximation to the logarithm of the characteristic function of ζ , that is, $-n \log (1 - 2it) + \frac{cit}{1 - 2it}$, corresponds to that of Box (1949, formula 29, p. 323), retaining only the first term in his sum; that is, his $\frac{\alpha_1}{\mu} \left(\frac{1}{1 - 2it} - 1 \right)$ (there is a misprint in the formula) is $\frac{cit}{1 - 2it}$ here, as may be verified by using the appropriate formulas with $\beta = 0$ given by Box (1949, pp. 324-325). For large n we may approximate $I_{n-1}(\sqrt{c\zeta})$ in (6.9) by writing $$I_{n-1}(\sqrt{c\zeta}) = \frac{(c\zeta/4)^{(n-1)/2}}{\Gamma(n)} \sum_{j=0}^{\infty} \frac{(c\zeta/4)^{j}\Gamma(n)}{j!\Gamma(n+j)}$$ $$\approx \frac{(c\zeta/4)^{(n-1)/2}}{\Gamma(n)} \sum_{j=0}^{\infty} \frac{1}{j!} \left(\frac{c\zeta}{4n}\right)^{j}$$ $$= \frac{(c\zeta/4)^{(n-1)/2}}{\Gamma(n)} e^{c\zeta/4n},$$ thereby getting (6.10) $$D(\zeta) \approx \frac{1}{2} \frac{\exp\left(-c/2 - \zeta\left(1 - \frac{c}{2n}\right)/2\right)}{\Gamma(n)} \left(\frac{\zeta}{2}\right)^{n-1}$$ Setting $$\zeta\left(1-\frac{c}{2n}\right)=\chi^2$$, (6.10) yields (6.11) $$D(\chi^{2})d\chi^{2} = \frac{e^{-c/2}}{\left(1 - \frac{c}{2n}\right)^{n}} \cdot \frac{e^{-\chi^{2}/2}}{\Gamma(n)} \left(\frac{\chi^{2}}{2}\right)^{n-1} d\frac{\chi^{2}}{2}$$ $$\approx \frac{e^{-\chi^{2}/2} (\chi^{2}/2)^{n-1} d\chi^{2}/2}{\Gamma(n)},$$ or $$\zeta\left(1-\frac{c}{2n}\right)$$ asymptotically is distributed as χ^2 with $2n=(r-1)k(k+1)/2$ degrees of freedom. It may be verified that $1 - \frac{c}{2n} = \rho$, the scale factor in the χ^2 approximation by Box (1949, p. 329). [Cf. Anderson (1958, p. 255).] For other approximations to the noncentral χ^2 -distribution see Abdel-Aty (1954), Tukey (1957). ## 6.2. Single Sample For a single sample, we derived the value $2I(H_1: H_2)$ in (3.15). With the same transformation as in (6.1), that is, $NS = \Sigma_2^{1/2} V \Sigma_2^{1/2}$, with Jacobian $\left|\frac{1}{N}\Sigma_2\right|^{(k+1)/2}$, the probability density of the Wishart distribution of the elements of S is transformed into that in the right-hand member of the pair in (6.2) and (6.12) $$2I(H_1: H_2) = N\left(\log \frac{|\Sigma_2|}{|S|} - k + \operatorname{tr} S\Sigma_2^{-1}\right)$$ $$= Nk \log N - N \log |V| - Nk +
\operatorname{tr} V.$$ The characteristic function of the distribution of $2l(H_1: H_2)$ is therefore $$(6.13) \quad \phi(t) = \int \frac{\left(\frac{kN}{2}\right)^{\frac{kN}{2}} |V|^{\frac{N(1-2it)-k-1}{2}} \exp\left(-\frac{1}{2}\operatorname{tr}(1-2it)V + itNk\log N - itNk\right) \prod_{\gamma,\delta=1}^{k} dv_{\gamma\delta}}{\pi^{k(k-1)/4} \prod_{i=1}^{k} \Gamma(N+1-\alpha)/2}$$ $$= \frac{(\frac{1}{2})^{itNk} \exp{(itNk \log N - itNk)}}{(1 - 2it)^{Nk(1 - 2it)/2}} \prod_{\alpha=1}^{k} \frac{\Gamma(N(1 - 2it) + 1 - \alpha)/2}{\Gamma(N + 1 - \alpha)/2}$$ Using (6.5), we derive (6.14) $$\log \phi(t) = -\frac{k(k+1)}{4} \log(1-2it) + \frac{it(2k^3 + 3k^2 - k)}{12(1-2it)N} + O(1/N^2)$$ from which the conclusions stated in the preceding sections follow as in section 6.1. ## 6.3. The Hypothesis of Independence It is known that the logarithm of the characteristic function of the distribution of $2\hat{l}(H_1:H_2') = -N\log|\mathbf{R}|$ [see (3.18)] is [see Bartlett (1950), Wilks (1932, p. 492)]: (6.15) $$\log \phi(t) = (k-1) \log \frac{\Gamma(N/2)}{\Gamma(N(1-2it)/2)} + \sum_{\alpha=1}^{k-1} \log \frac{\Gamma(N(1-2it)-\alpha)/2}{\Gamma(N-\alpha)/2}$$ Employing Stirling's approximation as in (6.5), and retaining comparable terms as in (6.7), we have (6.16) $$\log \phi(t) = -\frac{k(k-1)}{4} \log (1-2it) + \frac{cit}{1-2it}$$ where c = k(k-1)(2k+5)/12N. The statement at the end of section 3.3 then follows from (6.16), (6.8), and (6.9). From (6.11) we may also deduce that $$2\tilde{I}(H_1: H_2') \left(1 - \frac{k(k-1)(2k+5)}{6Nk(k-1)}\right) = -(N - \frac{1}{6}(2k+5)) \log |\mathbf{R}|$$ asymptotically is distributed as χ^2 with k(k-1)/2 degrees of freedom. The last result is given by Bartlett (1950). The logarithm of the characteristic function of the distribution of $2I(H_1: H_2(\cdot)) = N \log \frac{|\mathbf{R}_{11}| \cdot \cdot \cdot |\mathbf{R}_{mm}|}{|\mathbf{R}|}$ [see (3.30)] is [Wald and Brookner (1941), Wilks (1932, p. 493, 1943, p. 244)]: (6.17) $$\log \phi(t) = \sum_{\beta=1}^{m} \sum_{\alpha=1}^{k_{\beta}} \log \frac{\Gamma(N+1-\alpha)/2}{\Gamma(N(1-2it)+1-\alpha)/2} + \sum_{\gamma=1}^{k} \log \frac{\Gamma(N(1-2it)+1-\gamma)/2}{\Gamma(N+1-\gamma)/2}$$ Employing Stirling's approximation as in (6.5), and retaining comparable terms as in (6.7), we have (6.18) $$\log \phi(t) = -\frac{k(k+1) - \sum_{\beta=1}^{m} k_{\beta}(k_{\beta}+1)}{4} \log (1-2it) + \frac{cit}{1-2it}$$ where $c = \left((2k^3 + 3k^2 - 1) - \sum_{\beta=1}^{m} (2k_{\beta}^3 + 3k_{\beta}^2 - k_{\beta}) \right) / 12N$, from which the results in table 3.1 follow. Note that for $k_{\beta} = 1$, $\beta = 1, \dots, m$, so that m = k, (6.17) becomes (6.15), and (6.18) becomes (6.16). # 6.4. Roots of Determinantal Equations From results derived by Fisher (1939b), Girshick (1939), Hsu (1939, 1941a, 1941b, 1941-42). Roy (1939, 1957) [see Anderson (1951, 1958, pp. 307-329), Mood (1951), Wilks (1943, pp. 260-270)], it is known that the probability density of the distribution of the roots of $|S^* - IS| = 0$ [see (8.4) in chapter 11], for (n - r) large, is (6.19) $$\frac{(\frac{1}{2})^{(r-1)p/2}\pi^{p/2}}{\prod_{\alpha=1}^{p}\Gamma(r-\alpha)/2\Gamma(p+1-\alpha)/2} (l_1 \cdot \cdot \cdot l_p)^{(r-p-2)/2} \times e^{-l/s(l_1+\cdots+l_p)} \prod_{i>j} (l_j-l_i),$$ and that of the roots of $|S_{21} S_{11}^{-1} S_{12} - l S_{22 \cdot 1}| = 0$ [see (7.4) in chapter 11], for $(n - k_1)$ large, is (6.20) $$\frac{(\frac{1}{2})^{(k_1-1)k_1/2}\pi^{k_1/2}}{\prod_{\alpha=1}^{k_2}\Gamma(k_1-\alpha)/2\Gamma(k_2+1-\alpha)/2} (v_1\cdot \cdot \cdot v_{k_2})^{(k_1-k_2-2)/2} \times e^{-1/2(v_1+\cdots+v_{k_2})}\prod_{i>j}(v_j-v_i),$$ where $v_i = (n - k_1)l_i$. The characteristic functions of the asymptotic distributions of $\hat{J}(H_1, H_2)$ in (8.5) of chapter 11 and (7.5) of chapter 11 may be derived from (6.19) and (6.20) as, respectively, $(1-2it)^{-(r-1)p/2}$ and $(1-2it)^{-(k_1-1)k_2/2}$, hence the conclusion as to their χ^2 distributions. The χ^2 decompositions in sections 8.1 and 8.2 in chapter 11 follow from the fact that, asymptotically, the distributions of l_{m+1}, \dots, l_p of (6.19) and v_{m+1}, \dots, v_{k_2} of (6.20), assuming the corresponding population parameters have the null hypothesis values, are independent of the distribution of the remaining roots and with probability densities given respectively by $$(6.21) \frac{(\frac{1}{2})^{(r-1-m)(p-m)/2} \pi^{(p-m)/2}}{\prod_{\alpha=1}^{p-m} \Gamma(r-m-\alpha)/2 \Gamma(p-m+1-\alpha)/2} (l_{m+1} \cdot \cdot \cdot l_p)^{(r-p-2)/2} \times e^{-1/2(l_{m+1}+\cdots+l_p)} \prod_{i>j} (l_j-l_i),$$ $$(6.22) \frac{(\frac{1}{2})^{(k_1-1-m)(k_2-m)/2} \pi^{(k_2-m)/2}}{\prod_{\alpha=1}^{k_2-m} \Gamma(k_1-m-\alpha)/2 \Gamma(k_2-m+1-\alpha)/2} (v_{m+1} \cdot \cdot \cdot v_{k_2})^{(k_1-k_2-2)/2} \times e^{-1/2(v_{m+1}+\cdots+v_{k_2})} \prod_{i>j} (v_j-v_i).$$ When S_1 and S_2 are independent, unbiased estimates of the same covariance matrix with N_1 and N_2 degrees of freedom respectively, the probability density of the distribution of the roots of $|N_1S_1 - lN_2S_2| = 0$ is (6.23) $$\pi^{k/2} \left(\prod_{\alpha=1}^{k} \frac{\Gamma(N_1 + N_2 + 1 - \alpha)/2}{\Gamma(N_1 + 1 - \alpha)/2\Gamma(N_2 + 1 - \alpha)/2\Gamma(k + 1 - \alpha)/2} \right) \times \frac{(l_1 \cdot \cdot \cdot l_k)^{(N_1 - k - 1)/2} \prod_{i > j} (l_j - l_i)}{((1 + l_1) \cdot \cdot \cdot (1 + l_k))^{(N_1 + N_2)/2}}$$ When S is an unbiased estimate of Σ with N degrees of freedom, the probability density of the distribution of the roots of $|NS - I\Sigma| = 0$ is (6.24) $$\frac{\pi^{k/2}(\frac{1}{2})^{Nk/2}}{\prod_{\alpha=1}^{k} \Gamma(N+1-\alpha)/2\Gamma(k+1-\alpha)/2} (l_1 \cdot \cdot \cdot l_k)^{(N-k-1)/2} \times e^{-l_k(l_1+\cdots+l_k)} \prod_{i>j} (l_j-l_i).$$ The distribution of l_{m+1}, \dots, l_k in (6.24), assuming the corresponding population parameters have the null hypothesis values, is independent of the distribution of the remaining roots, with probability density (6.25) $$\frac{\pi^{(k-m)/2}(\frac{1}{2})^{(N-m)(k-m)/2}}{\prod_{\alpha=1}^{k-m}\Gamma(N-m+1-\alpha)/2\Gamma(k-m+1-\alpha)/2} \times (l_{m+1}\cdot \cdot \cdot l_k)^{(N-k-1)/2}e^{-l_2(l_{m+1}+\cdots+l_k)}\prod_{i>j}(l_j-l_i).$$ In section 3.5 we were concerned with the distribution of $$N \sum_{i=m+1}^{k} (-\log F_i - 1 + F_i) = (k - m)N \log N - (k - m)N + \sum_{i=m+1}^{k} (-N \log l_i + l_i),$$ where the *l*'s are roots of $|NS - I\Sigma_2| = 0$. We find that the characteristic function of the desired distribution is [using (6.25)] (6.26) $$\phi(t) = \frac{(\frac{1}{2})^{N(k-m)it} \exp(it(k-m)N\log N - (k-m)Nit)}{(1-2it)^{(k-m)(N(1-2it)-m)/2}} \times \prod_{m=1}^{k-m} \frac{\Gamma(N(1-2it)-m+1-\alpha)/2}{\Gamma(N-m+1-\alpha)/2}$$ Note that when m = 0 the sum in question is $2I(H_1: H_2)$ in (6.12), and the characteristic function derived in (6.13) is (6.26) for m = 0. By using Stirling's approximation as in (6.5) and retaining comparable terms as in (6.7), we find that the logarithm of the characteristic function in (6.26) is (6.27) $$\log \phi(t) = -\frac{(k-m)(k-m+1)}{2} \log (1-2it) + \frac{cit}{1-2it}$$ where $c = (2k^3 + 3k^2 - k - (2m^3 + 3m^2 - m))/12N$, from which the statement about the distribution made in section 3.5 follows. The distribution of l_{m+1}, \dots, l_k in (6.23), assuming the corresponding population parameters have the null hypothesis values, is independent of the distribution of the remaining roots, with probability density $$(6.28) \quad \pi^{(k-m)/2} \times$$ $$\left(\prod_{\alpha=1}^{k-m} \frac{\Gamma(N-m+1-\alpha)/2}{\Gamma(N_1-m+1-\alpha)/2\Gamma(N_2-m+1-\alpha)/2\Gamma(k-m+1-\alpha)/2} \right) \times \frac{(l_{m+1} \cdot \cdot \cdot l_k)^{(N_1-k-1)/2} \prod_{i>j} (l_j-l_i)}{((1+l_{m+1}) \cdot \cdot \cdot (1+l_k))^{(N_1+N_2)/2}}$$ where $N = N_1 + N_2$. In section 5.2 we were concerned with the distribution of $$(k-m)N_1\log\frac{N_1}{N_1+N_2}+(k-m)N_2\log\frac{N_2}{N_1+N_2} + \sum_{i=m+1}^k ((N_1+N_2)\log(1+l_i)-N_1\log l_i),$$ where the l_i are the roots of $|N_1S_1 - lN_2S_2| = 0$. We find that the characteristic function of the desired distribution is [using (6.28)] (6.29) $$\phi(t) = \exp\left(it(k-m)\sum_{j=1}^{2} N_{j} \log \frac{N_{j}}{N}\right) \prod_{\alpha=1}^{k-m} \frac{\Gamma(N-m+1-\alpha)/2}{\Gamma(N(1-2it)-m+1-\alpha)/2} \times \frac{\Gamma(N_{1}(1-2it)-m+1-\alpha)/2}{\Gamma(N_{1}-m+1-\alpha)/2} \times \frac{\Gamma(N_{2}(1-2it)-m+1-\alpha)/2}{\Gamma(N_{2}-m+1-\alpha)/2}.$$ Similarly, as in (6.5), (6.6), and (6.7), we find (6.30) $$\log \phi(t) = -\frac{(k-m)(k-m+1)}{2}(1-2it) + \frac{cit}{1-2it}$$ where $$c = \frac{(2k^3 + 3k^2 - k) - (2m^3 + 3m^2 - m)}{12} \left(\frac{1}{N_1} + \frac{1}{N_2} - \frac{1}{N}\right)$$, from which the statement about the distribution made in section 5.2 follows. # 7. STUART'S TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION We return to the test of the null hypothesis of equality of marginal distributions mentioned at the end of section 11 of chapter 8 and indicate Stuart's (1955a) procedure. ## 7.1. A Multivariate Normal Hypothesis Consider the following alternative hypothesis H_1 and null hypothesis H_2 for the means and covariance matrices of multivariate normal populations: (7.1) $$H_1: \mu_1 = n\Delta, \qquad \Sigma_1 = n\Sigma - n\Delta\Delta',$$ $$H_2: \mu_2 = 0, \qquad \Sigma_2 = n\Sigma.$$ From (1.2) of chapter 9 we then have (7.2) $$I(1:2) = \frac{1}{2}n\Delta'\Sigma^{-1}\Delta + \frac{1}{2}\log\frac{|n\Sigma|}{|n\Sigma - n\Delta\Delta'|} - \frac{k}{2}$$ $$+ \frac{1}{2}\operatorname{tr}(n\Sigma - n\Delta\Delta')\frac{1}{n}\Sigma^{-1}$$ $$= \frac{1}{2}n\Delta'\Sigma^{-1}\Delta - \frac{1}{2}\log(1 - \Delta'\Sigma^{-1}\Delta) - \frac{1}{2}\Delta'\Sigma^{-1}\Delta,$$ using the fact that [cf. Wilks (1943, pp. 237-238), problems 10.4 and 10.6 in chapter 9] (7.3) $$\frac{1}{n} |n\Sigma - n\Delta\Delta'| = \begin{vmatrix} \frac{1}{n} & \Delta' \\ \Delta & n\Sigma \end{vmatrix} = \frac{1}{n} |n\Sigma| (1 -
\Delta'\Sigma^{-1}\Delta).$$ Accordingly, for large n, we may use $$(7.4) 2I(1:2) = n\Delta' \Sigma^{-1} \Delta = (n\Delta')(n\Sigma)^{-1}(n\Delta),$$ equivalent to that under hypotheses specifying a common covariance matrix $n\Sigma$ and differences of means $n\Delta$. # 7.2. The Contingency Table Problem With the notation for a two-way contingency table in section 2 of chapter 8, since $x_1 + \cdots + x_r = x_1 + \cdots + x_{cr} = n$, this is a (c-1)-variate problem. and Stuart (1955a) defines the statistics of interest as $$(7.5) d_i = x_{i,i} - x_{i,j}, l = 1, 2, \cdots, c-1.$$ It is known that the multinomial distribution tends to the multivariate normal distribution [Cramér (1946a, pp. 318, 418), Kendall (1943, pp. 290-291)], and Stuart (1955a, pp. 413-414) shows that (7.6) $$E(d_i) = n(p_i - p_{ii}), \quad \text{var}(d_i) = n[(p_i + p_{ii} - 2p_{ii}) - (p_i - p_{ii})^2],$$ $$\operatorname{cov}(d_i, d_j) = -n[(p_{ij} + p_{ji}) + (p_{i.} - p_{.i})(p_{j.} - p_{.j})],$$ so that with $p_{i.} - p_{.i} = \Delta_{i.}$ the matrix Σ in (7.1) is $\Sigma = (\sigma_{ij})$, $\sigma_{ii} = p_{i.} + p_{.i} - 2p_{ii}$, $\sigma_{ij} = -(p_{ij} + p_{ji})$, $i, j = 1, 2, \dots, c - 1$. The test statistic, the estimate of 2I(1:2), is $$(7.7) 2I(H_1:H_2) = d'S^{-1}d,$$ where $\mathbf{d}' = (d_1, d_2, \dots, d_{c-1})$, the d's defined in (7.5), and $\mathbf{S} = (s_{ij})$, $s_{ii} = x_{i.} + x_{.i} - 2x_{ij}$, $s_{ij} = -(x_{ij} + x_{ji})$, $i, j = 1, 2, \dots, c-1$. Under the null hypothesis H_2 . $2I(H_1: H_2)$ is asymptotically distributed as χ^2 with (c-1) degrees of freedom. As in reparametrization, the conclusion is independent of which c-1 of the c-d's are used. #### 8. PROBLEMS - 8.1. Considering (3.18), what can be said about the range of values of |R|? - **8.2.** What is the formal relation between (3.26) and the value in (3.5) of chapter 7 for r = 1? - 8.3. Develop section 4.1 when the null hypothesis (insofar as the means are concerned) is changed to $H_2: \mu_1 = \mu + \delta$, $\mu_2 = \mu$, with δ specified, that is, the null hypothesis specifies that the difference of the means is δ . - **8.4.** What is the asymptotic distribution of $2\hat{l}(H_1:H_2(\cdot))$ in table 4.1 if the null hypothesis is not satisfied? - **8.5.** Show that $2\hat{I}(H_1:H_2(\cdot))$ in (4.12) yields $2\hat{I}(H_1:H_2)$ in (4.8) for r=2. - 8.6. Test the first and third samples in example 4.2 for homogeneity of the population means. - 8.7. If you were to compute a linear discriminant function for the second and third samples in example 4.2 by the procedure of section 4.2 and by the procedure of section 8.1 of chapter 11, would you get different results? - **8.8.** What is the asymptotic distribution of $2\hat{I}(H_1: H_2(\cdot))$ in (5.14) if the null hypothesis is not satisfied? - 8.9. Test the three covariance matrices in example 4.2 for homogeneity. - 8.10. Develop the analysis of the data in example 5.1 according to table 5.2 and confirm Smith's (1947) remark that the correlations are not significant. - **8.11.** Complete the analysis of the data in examples 4.1 and 5.2 in accordance with table 5.2. - **8.12.** Discuss the similarities and differences of the test for the independence of two sets of variates in section 3.6 and the test in section 7 of chapter 11. - **8.13.** Write the probability densities in (6.2) for k = 1. - 8.14. Verify the "algebraic manipulation" for (6.5). - **8.15.** Write the probability density in (6.19) for p = 1, that in (6.20) for $k_2 = 1$, and that in (6.23) for k = 1. - 8.16. Wilks (1935b, p. 325) considered the following correlation matrix, given by Kelley (1928, p. 114), for a sample of 109 seventh-grade school children, in which the five variables are respectively arithmetic speed, arithmetic power, intellectual interest, social interest, activity interest:* $$\mathbf{R} = \begin{pmatrix} 1 & 0.4249 & -0.0552 & -0.0031 & 0.1927 \\ 0.4249 & 1 & -0.0416 & 0.0495 & 0.0687 \\ -0.0552 & -0.0416 & 1 & 0.7474 & 0.1691 \\ -0.0031 & 0.0495 & 0.7474 & 1 & 0.2653 \\ 0.1927 & 0.0687 & 0.1691 & 0.2653 & 1 \end{pmatrix}$$ Would you accept a null hypothesis that the set of the first two variables is independent of the set of the last three variables? **8.17.** Bartlett and Rajalakshman (1953, p. 119) concluded that the observed correlation matrix \mathbf{R} , with N=29, is significantly different from the hypothetical correlation matrix \mathbf{P}_2 , where $$\mathbf{P_2} = \begin{pmatrix} 1 & 0.7071 & 0.7071 & 0.5000 \\ 0.7071 & 1 & 0.5000 & 0.7071 \\ 0.7071 & 0.5000 & 1 & 0.7071 \\ 0.5000 & 0.7071 & 0.7071 & 1 \end{pmatrix},$$ $$\mathbf{R} = \begin{pmatrix} 1 & 0.2676 & 0.5931 & 0.1269 \\ 0.2676 & 1 & 0.3753 & 0.5941 \\ 0.5931 & 0.3753 & 1 & 0.6796 \\ 0.1269 & 0.5941 & 0.6796 & 1 \end{pmatrix}.$$ Verify this conclusion. * Reprinted from Crossroads in the Mind of Man by Truman L. Kelley with the permission of the publishers, Stanford University Press. Copyright 1928 by the Board of Trustees of Leland Stanford Junior University. 8.18. Box (1950, p. 387) gives the following covariance matrices for three treatment groups on growth data for rats: $$9S_{1} = \begin{pmatrix} 210.5 & 13.5 & -7.5 & -13.5 \\ 13.5 & 202.5 & 224.5 & 110.5 \\ -7.5 & 224.5 & 310.9 & 117.5 \\ -13.5 & 110.5 & 117.5 & 258.5 \end{pmatrix},$$ $$6S_{2} = \begin{pmatrix} 111.4 & 83.0 & 78.4 & 39.7 \\ 83.0 & 246.0 & 292.0 & 157.0 \\ 78.4 & 292.0 & 473.4 & 264.7 \\ 39.7 & 157.0 & 264.7 & 174.9 \end{pmatrix},$$ $$9S_{3} = \begin{pmatrix} 260.4 & -54.0 & -126.4 & -100.8 \\ -54.0 & 160.5 & 110.0 & 77.0 \\ -126.4 & 110.0 & 262.4 & 76.8 \\ -100.8 & 77.0 & 76.8 & 419.6 \end{pmatrix}.$$ Box concludes that there is no reason to doubt the homogeneity of the covariance matrices. Verify this conclusion. - **8.19.** Suppose that in the analysis in table 3.1 there are only two sets, with $k_1 = 1$, $k_2 = k 1$. Show that $2\hat{I}(H_1: H_2(\cdot)) = -N \log (1 r_{1 \cdot 23 \cdot ... \cdot k}^2)$, with k 1 degrees of freedom and $\beta^2 = (k^2 1)/2N$, where $r_1 \cdot 23 \cdot ... \cdot k$ is the observed multiple correlation of x_1 with x_2, x_3, \cdots, x_k . [See (7.18) in chapter 9.] - 8.20. Show that problem 10.12 in chapter 9 is equivalent to $$H_2' \rightleftharpoons H_2'(\rho_{1\cdot 23\cdot \cdot \cdot k}^2 = 0) \cap H_2'(\rho_{2\cdot 3\cdot \cdot \cdot k}^2 = 0) \cap \cdot \cdot \cdot \cap H_2'(\rho_{k-1\cdot k}^2 = 0),$$ where H_2' is the hypothesis of independence in (3.18) and $H_2'(\rho_{j,j+1,\ldots,k}^2=0)$ is the hypothesis that the multiple correlation of x_j with x_{j+1}, \cdots, x_k is zero, $j=1,2,\cdots,k-1$. - 8.21. Show that $-N \log |\mathbf{R}| = -N \log (1 r_{1 \cdot 23 \cdot ... k}^2) N \log (1 r_{2 \cdot 3 \cdot ... k}^2) N \log (1 r_{k-1 \cdot k}^2)$, that is, $2\hat{l}(H_1: H_2') = 2\hat{l}(H_1: H_2'(\rho_{1 \cdot 23 \cdot ... k}^2) + \cdots + 2\hat{l}(H_1: H_2'(\rho_{k-1 \cdot k}^2 = 0))$, where $2\hat{l}(H_1: H_2')$ is given in (3.18) and $2\hat{l}(H_1: H_2'(\rho_{j \cdot j+1 \cdot ... k}^2) = -N \log (1 r_{j \cdot j+1 \cdot ... k}^2)$. - **8.22.** Show that table 8.1 is an analysis of $2\hat{l}(H_1:H_2')$ in (3.18). - **8.23.** Show that $-N \log (1 r_{1 \cdot 2 \cdot ... \cdot k}^2) = -N \log (1 r_{1k \cdot 23 \cdot ... \cdot k-1}^2) N \log (1 r_{1k-1 \cdot 23 \cdot ... \cdot k-2}^2) \cdots N \log (1 r_{13 \cdot 2}^2) N \log (1 r_{12}^2)$, where $r_{1j \cdot 23 \cdot ... \cdot j-1}$, $j = 2, \cdots, k$, is a partial correlation coefficient. - **8.24.** Show that table 8.2 is an analysis of $2\tilde{I}(H_1: H'_2(\rho^2_{1\cdot 23\cdot \cdot \cdot \cdot k}=0))$. - 8.25. Show that problem 10.15 in chapter 9 is equivalent to $H_2(\Sigma_{ii}) \rightleftharpoons H_2(|\Sigma_{22}| = |\Sigma_{22,1}|) \cap H_2(|\Sigma_{33}| = |\Sigma_{33\cdot12}|) \cap \cdots \cap H_2(|\Sigma_{mm}| = |\Sigma_{mm\cdot12\cdot \dots m-1}|)$, where $H_2(\Sigma_{ii})$ is the hypothesis in (3.28) and $H_2(|\Sigma_{jj}| = |\Sigma_{jj\cdot12\cdot \dots j-1}|)$ is the hypothesis that $|\Sigma_{jj}| = |\Sigma_{jj\cdot12\cdot \dots j-1}|, j = 2, \cdots, m$. - **8.26.** Show that table 8.3 is an analysis of $2\hat{I}(H_1: H_2(\cdot))$ of table 3.1. TABLE 8.1 | Component due to | Information | D.F. | $oldsymbol{eta^2}$ | |-------------------------------------|---|--------------------|-----------------------------| | $\rho_{k-1\cdot k}^2=0$ | $-N\log(1-r_{k-1\cdot k}^2)$ | 1 | $\frac{3}{2N}$ | | $\rho_{j\cdot j+1,\ldots,k}^2=0$ | $-N\log\left(1-r_{j\cdot j+1,\cdot \cdot \cdot \cdot,k}^2\right)$ | k-j | $\frac{(k-j)^2+2(k-j)}{2N}$ | | $\rho_{1\cdot 2\cdot \ldots k}^2=0$ | $-N\log\left(1-r_{1\cdot 2\cdot \ldots k}^{2}\right)$ | k-1 | $\frac{k^2-1}{2N}$ | | H_2' | $-N\log \mathbf{R} $ | $\frac{k(k-1)}{2}$ | $\frac{k(k-1)(2k+5)}{12N}$ | TABLE 8.2 | Component due to | Information | D.F. | eta^2 | |---|---|-------|--------------------| | $\rho_{12}^2=0$ | $-N\log\left(1-r_{12}^2\right)$ | 1 | $\frac{3}{2N}$ | | $\rho_{13\cdot 2}^2 = 0$ | $-N\log(1-r_{13\cdot 2}^2)$ | 1 | $\frac{5}{2N}$ | | | | | | | $\rho_{1j.23}^2, \ldots_{j-1} = 0$ | $-N\log(1-r_{1j\cdot 23\cdot \cdot \cdot j-1}^2)$ | 1 | $\frac{2j-1}{2N}$ | | | | • • • | | | $\rho^2_{1k\cdot 23}, \ldots_{k-1} = 0$ | $-N \log (1-r_{1k\cdot 23\cdotk-1}^2)$ | 1 | $\frac{2k-1}{2N}$ | | $\rho_{1\cdot 2\cdot \ldots k}^2=0$ | $-N\log\left(1-r_{1\cdot2}^2\ldots_k\right)$ | k-1 | $\frac{k^2-1}{2N}$ | - **8.27.** Show that the analysis in table 8.3 (problem 8.26) for $k_1 = k_2 = \cdots = k_m = 1$ is similar to that in table 8.1 (problem 8.22). - **8.28.** Show that an analysis of the information component due to $|\Sigma_{jj-12...j-1}|$ in table 8.3 (problem 8.26) is given by table 8.4, with $l = k_1 + k_2 + \cdots + k_j$. - **8.29.** Show that for $k_j = k_{j-1} = 1$ the partial independence component
in table 8.4 (problem 8.28) reduces to that for the hypothesis $\rho_{jj-1\cdot 12...j-2}^2 = 0$, as would be given by a result similar to that in table 8.2 (problem 8.24). (Cf. problem 10.20 of chapter 9.) - **8.30.** Relate the analysis in table 8.1 (problem 8.22) for k = 3 with that in table 3.3 of chapter 8. - **8.31.** Relate the analysis in table 8.2 (problem 8.24) for k = 3 with that in table 3.5 of chapter 8. - 8.32. Let the random vector x be subjected to the nonsingular linear transformation y = Ax. Show that (see section 3 in chapter 9): - (a) $\mu_y = A\mu_x$. - (b) $\Sigma_u = A\Sigma_x A'$. - (c) $\bar{y} = A\bar{x}$. - $(d) S_y = AS_xA'.$ - (e) $\hat{I}(*:2)$ in (3.14) is equal to $$\frac{n}{2}(\bar{y} - \mu_{\nu})' \Sigma_{\nu 2}^{-1}(\bar{y} - \mu_{\nu}) + \frac{N}{2} \left(\log \frac{|\Sigma_{\nu 2}|}{|S_{\nu}|} - k + \operatorname{tr} S_{\nu} \Sigma_{\nu 2}^{-1} \right).$$ 8.33. In problem 8.32 let $$\Sigma_x = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}, \qquad S_x = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix}, \qquad A = \begin{pmatrix} I_{k_1} & 0 \\ -\Sigma_{21}\Sigma_{11}^{-1} & I_{k_2} \end{pmatrix}.$$ Show that (see section 7 in chapter 9): (a) $$A^{-1} = \begin{pmatrix} I_{k_1} & 0 \\ \Sigma_{21} \Sigma_{11}^{-1} & I_{k_2} \end{pmatrix}$$. (b) $$\Sigma_{\nu} = \begin{pmatrix} \Sigma_{\nu 11} & \Sigma_{\nu 12} \\ \Sigma_{\nu 21} & \Sigma_{\nu 22} \end{pmatrix}$$, $\Sigma_{\nu 11} = \Sigma_{11}$, $\Sigma_{\nu 12} = 0 = \Sigma_{\nu 21}'$, $\Sigma_{\nu 22} = \Sigma_{22} - \Sigma_{21} - \Sigma_{11} - \Sigma_{12} = \Sigma_{22 \cdot 1}$. (d) $$S_{\nu 22 \cdot 1} = S_{\nu 22} - S_{\nu 21} S_{\nu 11}^{-1} S_{\nu 12} = S_{22 \cdot 1} = S_{22} - S_{21} S_{11}^{-1} S_{12}$$. (e) $2\hat{I}(H_1:H_2)$ in (3.15) is equal to $$N\left(\log\frac{|\Sigma_{\nu11}|}{|S_{\nu11}|} - k_1 + \operatorname{tr} S_{\nu11}\Sigma_{\nu11}^{-1} + \log\frac{|\Sigma_{\nu22}|}{|S_{\nu22}|} - k_2 + \operatorname{tr} S_{\nu22}\Sigma_{\nu22}^{-1} + \log\frac{|S_{\nu11}||S_{\nu22}|}{|S_{\nu}|}\right).$$ TABLE 8.3 | Component due to | Information | D.F. | | |--|---|------------------------------------|--| | $ \mathbf{\Sigma}_{22\cdot 1} $ | $N \log \frac{ \mathbf{S}_{22} }{ \mathbf{S}_{22 \cdot 1} } = N \log \frac{ \mathbf{R}_{22} }{ \mathbf{R}_{22 \cdot 1} }$ | k_1k_2 | | | | | | | | $\left \mathbf{\Sigma}_{jj\cdot 12}.\ .\{j-1} ight $ | $N \log \frac{ \mathbf{S}_{jj} }{ \mathbf{S}_{jj\cdot 12\cdot \cdot \cdot \cdot j-1} } = N \log \frac{ \mathbf{R}_{jj} }{ \mathbf{R}_{jj\cdot 12\cdot \cdot \cdot \cdot j-1} }$ | $(k_1+\cdot\cdot\cdot+k_{j-1})k_j$ | $(k_1 + \cdots$ | | | | | | | $\left \sum_{mm\cdot 12\cdot \ldots m-1} \right $ | $N\log \frac{ S_{mm} }{ S_{mm\cdot 12\cdot \cdot \cdot \cdot m-1} } = N\log \frac{ R_{mm} }{ R_{mm\cdot 12\cdot \cdot \cdot \cdot m-1} }$ | $(k_1+\cdot\cdot\cdot+k_{m-1})k_m$ | $(k_1 + \cdots $ | | $2\hat{I}(H_1:H_2(\cdot))$ | $N\log\frac{ \mathbf{S}_{11} \cdots \mathbf{S}_{mm} }{ \mathbf{S} }=N\log\frac{ \mathbf{R}_{11} \cdots \mathbf{R}_{mm} }{ \mathbf{R} }$ | $\sum_{i < j} k_i k_j$ | $2k^3 + 1$ | TABLE 8.4 | Component due to | Information | D.F. | |---|---|----------------------| | $ \mathbf{\Sigma}_{ij\cdot 12\cdot \ \cdot \ \cdot j-2} $ | $N \log \frac{ \mathbf{S}_{jj} }{ \mathbf{S}_{jj\cdot 12\cdot \cdot \cdot \cdot j-2} } = N \log \frac{ \mathbf{R}_{jj} }{ \mathbf{R}_{jj\cdot 12\cdot \cdot \cdot \cdot j-2} }$ | $(l-k_j-k_{j-1})k_j$ | | Partial independence | $N\log\frac{ S_{jj\cdot 12\cdot \cdot \cdot \cdot j-2} }{ S_{jj\cdot 12\cdot \cdot \cdot \cdot j-1} } = N\log\frac{ \mathbf{R}_{jj\cdot 12\cdot \cdot \cdot \cdot j-2} }{ \mathbf{R}_{jj\cdot 12\cdot \cdot \cdot \cdot j-1} }$ | $k_{j-1}k_j$ | | $ \mathbf{\Sigma}_{jj\cdot 12\cdot \ \cdot \ \cdot j-1} $ | $N\log\frac{ S_{jj} }{ S_{jj\cdot 12\cdot \cdot \cdot j-1} } = N\log\frac{ R_{jj} }{ R_{jj\cdot 12\cdot \cdot \cdot j-1} }$ | $(l-k_i)k_i$ | **8.34.** Show that table 8.5 is an analysis of $2\hat{I}(H_1: H_2)$ in (3.15) (see problems 8.32 and 8.33, and table 3.1, $k = k_1 + k_2$). TABLE 8.5 | Component due to | Information . | D.F. | $oldsymbol{eta^2}$ | |---|---|------------------------|-------------------------------------| | Σ_{11} | $N\left(\log\frac{ \Sigma_{11} }{ S_{11} }-k_1+\operatorname{tr} S_{11}\Sigma_{11}^{-1}\right)$ | $\frac{k_1(k_1+1)}{2}$ | $\frac{2k_1^3 + 3k_1^2 - k_1}{12N}$ | | $\Sigma_{22\cdot 1}$ | $N\left(\log\frac{ \Sigma_{22\cdot 1} }{ S_{y22} } - k_2 + \operatorname{tr} S_{y22}\Sigma_{22\cdot 1}^{-1}\right)$ | $\frac{k_2(k_2+1)}{2}$ | $\frac{2k_2^3 + 3k_2^2 - k_2}{12N}$ | | $\boldsymbol{\Sigma_{21}\Sigma_{11}^{-1}}$ | $N\log\frac{ \mathbf{S}_{\nu22} }{ \mathbf{S}_{22\cdot 1} }$ | k_1k_2 | $\frac{k_1k_2(k+1)}{2N}$ | | $ \begin{array}{c} \hline 2\hat{I}(H_1:H_2) \\ (3.15) \end{array} $ | $N\left(\log\frac{ \mathbf{\Sigma}_2 }{ \mathbf{S} }-k+\operatorname{tr}\mathbf{S}\mathbf{\Sigma}_2^{-1}\right)$ | $\frac{k(k+1)}{2}$ | $\frac{2k^3+3k^2-k}{12N}$ | **8.35.** In (3.13) let $\Sigma_2 = \sigma^2 \Sigma_3$ and denote the null hypothesis with σ^2 and Σ_3 specified by $H_3(\sigma^2)$, and the null hypothesis with Σ_3 specified, but σ^2 not specified, by $H_3(\cdot)$. Show that [cf. Anderson (1958, p. 262), Mauchly (1940)]: (a) $$2\hat{I}(H_1: H_3(\sigma^2)) = N\left(\log \frac{|\Sigma_3|}{|S|} + k \log \sigma^2 - k + \frac{1}{\sigma^2} \operatorname{tr} S\Sigma_3^{-1}\right).$$ (b) $$\min_{\sigma^2} 2\hat{I}(H_1: H_3(\sigma^2))$$ is given for $\hat{\sigma}^2 = \frac{1}{k} \operatorname{tr} S \Sigma_3^{-1}$. (c) $$2\hat{I}(H_1: H_3(\cdot)) = \min_{\sigma^2} 2\hat{I}(H_1: H_3(\sigma^2)) = N \log \frac{|\Sigma_3|}{|S_3|}$$, where $S = \hat{\sigma}^2 S_3$. # Linear Discriminant Functions #### 1. INTRODUCTION In this chapter we shall continue the discussion initiated in section 9 of chapter 9. We have already studied linear discriminant functions, with assumptions of equality about the means or covariance matrices, in section 8 of chapter 11, section 3.5 of chapter 12, section 4.2 of chapter 12, and section 5.2 of chapter 12. For these linear discriminant functions, we obtained the same coefficient matrix (vector) α of $y = \alpha'x$ whether we determined α to maximize I(1:2;y) or I(1,2;y). However, in section 9 of chapter 9 we saw that different linear discriminant functions arise according as we maximize I(1:2;y), I(2:1;y), or I(1,2;y). #### 2. ITERATION In section 9 of chapter 9 we formulated the equations to be solved for the coefficients of the linear discriminant function as (9.5) of chapter 9, that is, $$\Sigma_1 \alpha - \lambda \Sigma_2 \alpha = \gamma \delta,$$ where λ and γ are defined in section 9 of chapter 9 according as it is I(1:2;y), I(2:1;y), or J(1,2;y) which is to be maximized. We remark that in the derivation of (9.5) in chapter 9, dividing by an appropriate factor, we might also have formulated the equations as (2.2) $$\Sigma_2 \alpha - \lambda' \Sigma_1 \alpha = \gamma' \delta,$$ where for maximizing I(1:2; y), (2.3) $$\lambda' = \frac{\alpha' \Sigma_2 \alpha (\alpha' \Sigma_2 \alpha - \alpha' \Sigma_1 \alpha)}{\alpha' \Sigma_1 \alpha (\alpha' \Sigma_2 \alpha - \alpha' \Sigma_1 \alpha - (\alpha' \delta)^2)},$$ $$\gamma' = \frac{(\alpha' \Sigma_2 \alpha) (\alpha' \delta)}{\alpha' \Sigma_1 \alpha - \alpha' \Sigma_2 \alpha + (\alpha' \delta)^2};$$ for maximizing I(2:1;y), (2.4) $$\lambda' = \frac{\alpha' \Sigma_2 \alpha (\alpha' \Sigma_1 \alpha - \alpha' \Sigma_2 \alpha - (\alpha' \delta)^2)}{\alpha' \Sigma_1 \alpha (\alpha' \Sigma_1 \alpha - \alpha' \Sigma_2 \alpha)}, \qquad \gamma' = \frac{(\alpha' \Sigma_2 \alpha) (\alpha' \delta)}{\alpha' \Sigma_1 \alpha - \alpha' \Sigma_2 \alpha}.$$ and for maximizing J(1, 2; y), (2.5) $$\lambda' = \frac{\alpha' \Sigma_2 \alpha((\alpha' \Sigma_2 \alpha)^2 - (\alpha' \Sigma_1 \alpha)^2 + (\alpha' \delta)^2 (\alpha' \Sigma_2 \alpha))}{\alpha' \Sigma_1 \alpha((\alpha' \Sigma_2 \alpha)^2 - (\alpha' \Sigma_1 \alpha)^2 - (\alpha' \delta)^2 (\alpha' \Sigma_1 \alpha))},$$ $$\gamma' = \frac{(\alpha' \delta)(\alpha' \Sigma_2 \alpha)(\alpha' \Sigma_1 \alpha + \alpha' \Sigma_2 \alpha)}{(\alpha' \Sigma_1 \alpha)^2 - (\alpha' \Sigma_2 \alpha)^2 + (\alpha' \delta)^2 (\alpha' \Sigma_1 \alpha)}.$$ For convenience, setting the proportionality factors γ and γ' equal to 1, (2.1) and (2.2) are (2.6) $$\Sigma_1 \alpha - \lambda \Sigma_2 \alpha = \delta, \quad \Sigma_2 \alpha - \lambda' \Sigma_1 \alpha = \delta,$$ where $\lambda = 1/\lambda'$ for each case. When λ , λ' are not solutions of $|\Sigma_1 - \lambda \Sigma_2| = 0$, $|\Sigma_2 - \lambda' \Sigma_1| = 0$ respectively, (2.6) yields the following implicit solution for α : (2.7) $$\alpha = (\Sigma_1 - \lambda \Sigma_2)^{-1} \delta, \qquad \alpha = (\Sigma_2 - \lambda' \Sigma_1)^{-1} \delta.$$ If λ is a known number, (2.7) yields directly the value of α . However λ , λ' in all instances are functions of α . Initial or entering values of α are therefore required to begin an iterative procedure. The entering value for α is taken to be,
respectively, as (2.8) $$\alpha_0 = \Sigma_1^{-1}\delta, \quad \alpha_0 = \Sigma_2^{-1}\delta.$$ It should be clear that the same initial value of α will serve each of the iterations necessary to maximize either I(1:2;y), I(2:1;y), or I(1,2;y). With α_0 determined, values for $\alpha_0'\delta$, $\alpha_0'\Sigma_1\alpha_0$, $\alpha_0'\Sigma_2\alpha_0$ are found and then λ_0 or λ_0' . Cycle 1 is begun by entering with λ_0 or λ_0' to find a new set of α 's from (2.9) $$\alpha_1 = (\Sigma_1 - \lambda_0 \Sigma_2)^{-1} \delta, \quad \alpha_1 = (\Sigma_2 - \lambda_0' \Sigma_1)^{-1} \delta,$$ and then determining $\alpha_1'\delta$, $\alpha_1'\Sigma_1\alpha_1$, $\alpha_1'\Sigma_2\alpha_1$, and then λ_1 or λ_1' , thus completing the first cycle. This procedure is continued until the difference in successive α 's, or more appropriately in successive α_i/α_1 , is as small as desired. We shall replace population parameters by the best unbiased sample estimates. #### 3. EXAMPLE We shall illustrate the procedures described with data from Smith (1947) (see example 5.1 of chapter 12). The computations were performed by S. W. Greenhouse. The pertinent values are: $$\begin{split} \tilde{\mathbf{x}}_1 &= \begin{pmatrix} 20.80 \\ 12.32 \end{pmatrix}, \qquad \tilde{\mathbf{x}}_2 &= \begin{pmatrix} 12.80 \\ 36.40 \end{pmatrix}, \qquad \mathbf{d} &= \begin{pmatrix} 8.00 \\ -24.08 \end{pmatrix}, \\ \mathbf{S}_1 &= \begin{pmatrix} 6.92 & -5.27 \\ -5.27 & 40.89 \end{pmatrix}, \qquad \mathbf{S}_2 &= \begin{pmatrix} 36.75 & 13.92 \\ 13.92 & 287.92 \end{pmatrix}, \qquad |\mathbf{S}_1| = 255.1859, \\ |\mathbf{S}_2| &= 10387.2936, \qquad \mathbf{S}_1^{-1} &= \begin{pmatrix} 0.16023613 & 0.02065161 \\ 0.02065161 & 0.02711749 \end{pmatrix}, \\ \mathbf{S}_2^{-1} &= \begin{pmatrix} 0.02771848 & -0.00134010 \\ -0.00134010 & 0.00353798 \end{pmatrix}, \\ f(1:2) &= \frac{1}{2} \left(\log \frac{|\mathbf{S}_2|}{|\mathbf{S}_1|} - 2 + \operatorname{tr} \mathbf{S}_1 \mathbf{S}_2^{-1} \right) + \frac{1}{2} \mathbf{d}' \mathbf{S}_2^{-1} \mathbf{d} \\ &= 1.028432 + 2.170861 = 3.199293, \\ f(2:1) &= 4.282444 + 9.010994 = 13.293438, \\ \hat{J}(1,2) &= 5.310876 + 11.181855 = 16.492731. \end{split}$$ We shall find the linear discriminant function $y = a_1x_1 + a_2x_2$, $a_1 = 1$, $a_2 = \alpha_2/\alpha_1$, maximizing $\hat{I}(1:2;y)$; similar steps occur for the procedure leading to the linear discriminant function maximizing $\hat{I}(2:1;y)$ and $\hat{J}(1,2;y)$. We obtain the initial value from (2.8), that is, (3.1) $$\alpha_0 = S_2^{-1} d = \begin{pmatrix} 0.02771848 & -0.00134010 \\ -0.00134010 & 0.00353798 \end{pmatrix} \begin{pmatrix} 8.00 \\ -24.08 \end{pmatrix}$$ $$= \begin{pmatrix} 0.25401745 \\ -0.09591536 \end{pmatrix},$$ so that $a_{01} = 1.000000$, $a_{02} = -0.377594$. From these we get, $$\mathbf{a_0'd} = (1, -0.377594) \binom{8.00}{-24.08} = 17.092464,$$ $$\mathbf{a_0'S_1a_0} = (1, -0.377594) \binom{6.92}{-5.27} \binom{-5.27}{40.89} \binom{1}{-0.377594} = 16.729814,$$ $$\mathbf{a_0'S_2a_0} = (1, -0.377594) \binom{36.75}{13.92} \binom{13.92}{287.92} \binom{1}{-0.377594} = 67.288553,$$ and from (2.3), $$\lambda_0' = \frac{(67.288553)(67.288553 - 16.729814)}{16.729814(67.288553 - 16.729814 - (17.092464)^2)} = -0.8417.$$ # Cycle 1 $$(\mathbf{S_2} + 0.8417\mathbf{S_1}) = \begin{pmatrix} 42.574564 & 9.484241 \\ 9.484241 & 322.337113 \end{pmatrix},$$ $$|\mathbf{S_2} + 0.8417\mathbf{S_1}| = 13633.4112,$$ $$\boldsymbol{\alpha_1} = (\mathbf{S_2} + 0.8417\mathbf{S_1})^{-1}\mathbf{d} = \begin{pmatrix} 0.02364317 & -0.00069566 \\ -0.00069566 & 0.00312281 \end{pmatrix} \begin{pmatrix} 8.00 \\ -24.08 \end{pmatrix}$$ $$= \begin{pmatrix} 0.20589685 \\ -0.08076254 \end{pmatrix},$$ $$\boldsymbol{a_{11}} = 1, \quad \boldsymbol{a_{12}} = -0.392248,$$ $$\mathbf{a_{1}'d} = (1, -0.392248) \begin{pmatrix} 8.00 \\ -24.08 \end{pmatrix} = 17.445332,$$ $$\mathbf{a_{1}'S_{1}a_{1}} = (1, -0.392248) \begin{pmatrix} 6.92 & -5.27 \\ -5.27 & 40.89 \end{pmatrix} \begin{pmatrix} 1 \\ -0.392248 \end{pmatrix} = 17.345548,$$ $$\mathbf{a_{1}'S_{2}a_{1}} = (1, -0.392248) \begin{pmatrix} 36.75 & 13.92 \\ 13.92 & 287.92 \end{pmatrix} \begin{pmatrix} 1 \\ -0.392248 \end{pmatrix} = 70.128611,$$ and from (2.3), $$\lambda_1' = \frac{70.128611(70.128611 - 17.345548)}{17.345548(70.128611 - 17.345548 - (17.445332)^2)} = -0.848333.$$ # Cycle 2 $$\begin{split} (\mathbf{S_2} + 0.8483\mathbf{S_1}) &= \begin{pmatrix} 42.620236 & 9.449459 \\ 9.449459 & 322.606987 \end{pmatrix}, \\ |\mathbf{S_2} + 0.8483\mathbf{S_1}| &= 13660.2936, \\ \boldsymbol{\alpha_2} &= (\mathbf{S_2} + 0.8483\mathbf{S_1})^{-1}\mathbf{d} = \begin{pmatrix} 0.02361640 & -0.00069175 \\ -0.00069175 & 0.00312001 \end{pmatrix} \begin{pmatrix} 8.00 \\ -24.08 \end{pmatrix} \\ &= \begin{pmatrix} 0.20558854 \\ -0.08066384 \end{pmatrix}, \\ \boldsymbol{a_{21}} &= 1, \quad \boldsymbol{a_{22}} = -0.392356, \\ \boldsymbol{a_{2}}'\mathbf{d} &= (1, -0.392356) \begin{pmatrix} 8.00 \\ -24.08 \end{pmatrix} = 17.447932, \end{split}$$ $$\mathbf{a_2'S_1a_2} = (1, -0.392356) \begin{pmatrix} 6.92 & -5.27 \\ -5.27 & 40.89 \end{pmatrix} \begin{pmatrix} 1 \\ -0.392356 \end{pmatrix} = 17.350162,$$ $$\mathbf{a_2'S_2a_2} = (1, -0.392356) \begin{pmatrix} 36.75 & 13.92 \\ 13.92 & 287.92 \end{pmatrix} \begin{pmatrix} 1 \\ -0.392356 \end{pmatrix} = 70.150078,$$ and from (2.3), $$\lambda_{2}' = \frac{70.150078(70.150078 - 17.350162)}{17.350162(70.150078 - 17.350162 - (17.447932)^{2})} = -0.848388.$$ A third cycle was computed, although two cycles would seem to be sufficient in view of the negligible change in λ' . The value of $$\hat{I}(1:2;y) = \frac{1}{2} \left(\log \frac{\alpha' S_2 \alpha}{\alpha' S_1 \alpha} - 1 + \frac{\alpha' S_1 \alpha}{\alpha' S_2 \alpha} + \frac{(\alpha' \mathbf{d})^2}{\alpha' S_2 \alpha} \right)$$ was also computed for the initial value and cycle 3. The various values are summarized in table 3.1. TABLE 3.1 | i | 0 | 1 | 2 | 3 | |---|-----------------|-----------|-----------|------------| | λ_i | -0 .8417 | -0.848333 | -0.848388 | -0.8483901 | | a_{i2} | -0.377594 | -0.392248 | -0.392356 | -0.392357 | | $\mathbf{a_i'S_1a_i}$ | 16.729814 | 17.345548 | 17.350162 | 17.350213 | | $\mathbf{a}_i'\mathbf{S}_2\mathbf{a}_i$ | 67.288553 | 70.128611 | 70.150078 | 70.150338 | | a,′d | 17.092464 | 17.445332 | 17.447932 | 17.447957 | | $\hat{I}(1:2; y)$ | 2.4911 | 2.492030 | 2.492031 | 2.492031 | When the basis for the iteration is $\alpha = (\Sigma_1 - \lambda \Sigma_2)^{-1} \delta$, the corresponding values are summarized in table 3.2. TABLE 3.2 | i | 0 | 1 | 2 | 3 | |---|------------|-----------|-----------|------------------| | λ_i | -0.9409 | -1.1763 | -1.1787 | —1.178703 | | a_{i2} | -0.621689 | -0.395810 | -0.392385 | -0.392357 | | $\mathbf{a}_{i}^{\mathbf{T}}\mathbf{S}_{1}\mathbf{a}_{i}$ | 29.276464 | 17.497910 | 17.351408 | 17.350213 | | $\mathbf{a}_i'\mathbf{S}_2\mathbf{a}_i$ | 130.722394 | 70.837924 | 70.155892 | 70.150338 | For this example, note that both procedures yield the same a_{32} and exactly reciprocal λ 's after only 3 cycles. This number of cycles need not be 3 in general. We remark that the values across the rows of each table are monotonic. The values for the linear discriminant function maximizing $\hat{I}(2:1;y)$ are summarized in table 3.3. TABLE 3.3 | i | 0 | 1 | 2 | 3 | |--|------------|------------|-------------------|------------| | λ_i | 0.0361 | 0.036582 | 0.036596 | 0.036597 | | a_{i2} | -0.621689 | -0.843193 | -0 .848904 | -0.849072 | | $\mathbf{a}_{i}^{'}\mathbf{S}_{1}\mathbf{a}_{i}$ | 29.276464 | 44.878981 | 45.334336 | 45.347760 | | $\mathbf{a}_i'\mathbf{S}_2\mathbf{a}_i$ | 130.722394 | 217.979141 | 220.602606 | 220.679986 | | $\hat{I}(2:1;y)$ | 9.9956 | 10.063654 | 10.063671 | 10.063678 | The values for the linear discriminant function maximizing $\hat{J}(1, 2; y)$ are summarized in table 3.4. TABLE 3.4 | i | 0 | 1 | 2 | 3 | |---|------------|------------|------------|------------| | λ_i | 0.00206 | 0.00231 | 0.0023397 | 0.0023435 | | a_{i2} | -0.621689 | -0.628501 | -0.629353 | -0.629456 | | $\mathbf{a}_{i}'\mathbf{S}_{1}\mathbf{a}_{i}$ | 29.276464 | 29.696523 | 29.749296 | 29.755698 | | $\mathbf{a}_{i}'\mathbf{S}_{2}\mathbf{a}_{i}$ | 130.722394 | 132.984963 | 133.269606 | 133.304168 | | $\hat{J}(1,2;y)$ | 12,3739 | 12.37405 | 12.37406 | 12.37406 | We thus have the three linear discriminant functions: (3.2) $$\max \hat{I}(1:2;y): \quad y = x_1 - 0.3924x_2,$$ $$\max \hat{I}(2:1;y): \quad y = x_1 - 0.8491x_2,$$ $$\max \hat{J}(1,2;y): \quad y = x_1 - 0.6295x_2.$$ #### 4. REMARK Although it is clear that the procedure, including that for obtaining the initial values, did converge, we have no general proof that this procedure converges, or that a solution yielded by this procedure is the only one satisfying (2.6). For any two-variate problem however, I(1:2; y), I(2:1; y), and I(1, 2; y) are essentially functions of one unknown, the ratio α_2/α_1 . The maximizing condition is a polynomial in this ratio and the properties of the roots can be studied. For $\hat{I}(1:2;y)$ and $\hat{I}(2:1;y)$ the polynomial is quartic, and for $\hat{J}(1,2;y)$ it is of the sixth degree. In each instance in section 3, there were only two real roots, a negative root yielding maximum $\hat{I}(1:2;y)$, $\hat{I}(2:1;y)$, and $\hat{J}(1,2;y)$ and a positive root yielding the minimum value in each case. The equations were solved by Newton's method and the negative roots maximizing $\hat{I}(1:2;y)$, $\hat{I}(2:1;y)$, and $\hat{J}(1,2;y)$ respectively were -0.392357, -0.849083, and -0.629468. Reference to tables 3.2, 3.3, and 3.4 clearly indicates that the
iteration is converging to these values and that the values obtained at the end of 2 cycles are correct to 4 decimals. #### 5. OTHER LINEAR DISCRIMINANT FUNCTIONS Smith (1947) computed a linear discriminant function for these data by assuming the covariance matrix to be the same in both populations. The solution for α is then $$\alpha = S^{-1}d,$$ where $NS = N_1S_1 + N_2S_2$, $N = N_1 + N_2$. (See the last part of example 4.1 in chapter 12 and section 8.1 of chapter 11.) Smith's values, reduced to a basis comparable to (3.2), that is, so that $\alpha_1 = 1$, yield the discriminant function $$(5.2) y = x_1 - 0.3947x_2.$$ Since the two samples are of equal size, the linear discriminant function computed in accordance with section 4.2 of chapter 12, that is, the value of α satisfying (5.3) $$\alpha = \left(\frac{1}{n_1}S_1 + \frac{1}{n_2}S_2\right)^{-1}d,$$ yields the linear discriminant function in (5.2). Note that the linear discriminant function in (5.2) is almost the same here as the one in (3.2) resulting from maximizing I(1:2; y). The discriminant function is often used to classify an individual on the basis of the observational vector (x_1, x_2, \dots, x_k) and a given linear compound $y = \gamma_1 x_1 + \dots + \gamma_k x_k$ into one of two populations. [We use the matrix $\gamma' = (\gamma_1, \gamma_2, \dots, \gamma_k)$ to avoid confusion with the error probability α below.] The classification usually proceeds according to some rule such as: if y falls into the region A^* , classify into population π_1 , say, and if y does not fall into A^* , classify into population π_2 . It is clear that associated with this or any other classification scheme are two kinds of errors, namely, assigning y to population π_1 when it is in fact from population π_2 , and assigning y to population π_2 when it is in fact from population π_1 . Denote the probability of the first error by α and that of the second error by β . We can then form a minimum error criterion for finding a linear discriminant function, namely, for a given β , what linear function of the x's will minimize α ? Since α and β are monotone functions of the normal deviates t_{α} and t_{β} respectively, it is simpler to work with the latter. It may be shown that, for a given β , α will be minimized by maximizing $$t_{\alpha} = \frac{\gamma' \delta - t_{\beta} (\gamma' \Sigma_{1} \gamma)^{1/2}}{(\gamma' \Sigma_{2} \gamma)^{1/2}}.$$ The usual calculus procedures lead to the equation $$(5.4) [t_{\beta}(\boldsymbol{\gamma}'\boldsymbol{\Sigma}_{2}\boldsymbol{\gamma})^{1/2}\boldsymbol{\Sigma}_{1} + t_{\alpha}(\boldsymbol{\gamma}'\boldsymbol{\Sigma}_{1}\boldsymbol{\gamma})^{1/2}\boldsymbol{\Sigma}_{2}]\boldsymbol{\gamma} = (\boldsymbol{\gamma}'\boldsymbol{\Sigma}_{1}\boldsymbol{\gamma})^{1/2}(\boldsymbol{\gamma}'\boldsymbol{\Sigma}_{2}\boldsymbol{\gamma})^{1/2}\boldsymbol{\delta},$$ which is nonlinear in the γ 's. (The same equation is obtained if α is given and β minimized.) The solution here is best carried out, as in sections 2 and 3, by an iterative procedure on an equation of the form $$(5.5) (\Sigma_1 + \lambda \Sigma_2) \gamma = \delta,$$ where $\lambda = t_{\alpha}(\gamma' \Sigma_1 \gamma)^{1/2} / t_{\beta}(\gamma' \Sigma_2 \gamma)^{1/2}$. The iteration follows the identical steps given in section 2. The initial values of γ are obtained from $\gamma = \Sigma_1^{-1} \delta$, which in turn determine $\gamma' \Sigma_1 \gamma$, $\gamma' \Sigma_2 \gamma$, and for a fixed t_{β} , t_{α} , these determine λ so that (5.5) becomes an explicit equation in γ . The cycles can be continued until changes in t_{α} become as small as desired. In this manner, two functions were found; one for $\beta = 0.05$ ($t_{\beta} = 1.645$) and the other for $\beta = 0.16$ ($t_{\beta} = 1.000$), (5.6) $$\max t_{\alpha}(t_{\beta} = 1.645)$$: $y = x_1 - 0.4173x_2$ (5.7) $$\max t_{\alpha}(t_{\beta} = 1.000)$$: $y = x_1 - 0.3990x_2$. Although the linear discriminant function derived from the minimum error criterion is of interest in its own right, our interest in it at this point is to provide a base line for errors of classification with which the corresponding errors of the other linear discriminant functions may be compared. Note that the minimum error criterion does not provide a unique function, but yields a different discriminant for each t_{β} . Furthermore, the criterion used here gives only an approximation (although a very good one) to the actual linear function minimizing α for a fixed β . This is because the procedure assumes that the region for assigning to π_1 , say $y > y_0$ (or $y < y_0$), is optimal when $\Sigma_1 \neq \Sigma_2$ as it is when $\Sigma_1 = \Sigma_2$. It is known that this is not so [see, for example, Penrose (1947) and section 2 of chapter 5]. # 6. COMPARISON OF THE VARIOUS LINEAR DISCRIMINANT FUNCTIONS Before comparing the different linear discriminant functions obtained in sections 3 and 5, we present in table 6.1 the discrimination information values for the original x variables for x_1 and x_2 separately and jointly. Note that the values for x_2 are larger than the values for x_1 in all three measures; that is, an observation on the x_2 characteristic from either population has greater discrimination information in distinguishing between the two populations than does an observation on the x_1 characteristic. Reference to the lower portion of table 6.1, which presents the error made in classifying an observation from $\pi_2(\alpha)$ for a given error in classifying an observation from $\pi_1(\beta)$, indicates that x_2 also does better under an error criterion than does x_1 . | _ | | - |
_ | _ | | |---|---|---|----------|---|---| | 1 | Δ | R | — | h | 1 | | Information Measures | x_1 | x_2 | x_1 and x_2 Jointly | |-----------------------------|--------|---------|-------------------------| | Î(1:2) | 1.2997 | 1.5539 | 3.1993 | | Î(2:1) | 5.9448 | 9.1351 | 13.2934 | | <i>J</i> (1, 2) | 7.2445 | 10.6890 | 16.4927 | | Errors | | | | | α for $\beta = 0.01$ | 0.3782 | 0.2937 | | | α for $\beta = 0.05$ | 0.2723 | 0.2123 | | | α for $\beta = 0.16$ | 0.1879 | 0.1486 | | | $\min (\alpha + \beta)$ | 0.3154 | 0.2580 | | | β | 0.0738 | 0.0553 | | | ø. | 0.2416 | 0.2027 | | The last column in table 6.1 gives I(1:2), I(2:1), and I(1,2) for x_1 and x_2 assumed to have a bivariate normal distribution in each of the two populations. To compute the efficiencies of the linear discriminant functions of x_1 and x_2 , we note that the maximum I(1:2; y), I(2:1; y), and I(1,2; y) each can attain is 3.1993, 13.2934, and 16.4927 respectively. One last point of interest in table 6.1 is that in this example x_1 and x_2 jointly yield a value of $\hat{I}(1:2)$ which exceeds the sum of the value of $\hat{I}(1:2)$ for x_1 and for x_2 . This is not true for $\hat{I}(2:1)$ and $\hat{J}(1, 2)$. In table 6.2 are the data on six linear functions of x_1 and x_2 , three obtained by maximizing the information measures, two obtained under an error principle, and one found by pooling variances and covariances between the two samples and proceeding as if the covariance matrices were the same. The upper portion of table 6.2 relates to the information measures in the linear compounds and the lower portion presents various error combinations in classifying observations, including the minimum total error that could be made with each function. TABLE 6.2 Linear Discriminant Function Obtained by | - | max f(1:2; y) | max f(2:1; y) | $\max \hat{J}(1,2;y)$ | Pooling
Covariance
Matrices | min α for $\beta = 0.05$ | min α for $\beta = 0.16$ | |--|--|--|--|--|--|--| | υ | $x_1 - 0.3924x_2$ | $x_1 - 0.8491x_2$ | $x_1 - 0.6295x_2$ | $x_1 - 0.3947x_2$ | $x_1 - 0.4173x_2$ | $x_1 - 0.3990x_2$ | | f(1:2; y) $f(1:2; y)/f(1:2)$ $f(2:1; y)$ $f(2:1; y)/f(2:1)$ $f(1, 2; y)$ $f(1, 2; y)/f(1, 2)$ | 2.4920
0.779
9.5962
0.722
12.0882
0.733 | 2.2272
0.696
10.0637
0.757
12.2909
0.745 | 2.3728
0.742
10.0012
0.752
12.3741
0.750 | 2.4920
0.779
9.6040
0.722
12.0960
0.733 | 2.4897
0.778
9.6711
0.728
12.1608
0.737 | 2,4918
0,779
9,6172
0,723
12,1090
0,734 | | Errors | | | | | | | | α for $\beta = 0.01$
α for $\beta = 0.05$
α for $\beta = 0.16$
min $(\alpha + \beta)$
β | 0.1771
0.1029
0.0564
0.1525
0.0438
0.1087 | 0.1948
0.1212
0.0719
0.1708
0.0446
0.1262 | 0.1823
0.1096
0.0626
0.1591
0.0434
0.1157 | 0.1770
0.1029
0.0564
0.1525
0.0438
0.1087 | 0.1764
0.1027
0.0564
0.1522
0.0435
0.1087 | 0.1769
0.1028
0.0564
0.1523
0.0437
0.1086 | It is clear that the four linear discriminant functions obtained by (a) maximizing $\hat{I}(1:2;y)$, (b) pooling variances and covariances, (c) minimizing α for $\beta=0.05$, and (d) minimizing α for $\beta=0.16$, are very much alike with regard to discrimination information, divergence, and errors of classification. Maximizing $\hat{I}(2:1;y)$ and $\hat{J}(1,2;y)$ yields linear discriminant functions which have greater efficiencies than the other four with regard to $\hat{I}(2:1,y)$ and $\hat{J}(1,2;y)$, but have
smaller efficiencies with regard to $\hat{I}(1:2;y)$, and have larger errors of classification than the other four. From the point of view of information theory, the most interesting feature when the covariance matrices are not equal is the fact that $\hat{I}(1:2;y) \neq \hat{I}(2:1;y)$ and therefore maximizing these two measures, and the divergence measure $\hat{J}(1,2;y)$, yields three different linear functions. The example does suggest that at least one of the discriminant functions so obtained, in addition to having optimum properties associated with the information measure leading to it, will also possess optimum properties associated with an error criterion for finding a linear discriminant function. An interesting problem that arises is the investigation of the properties of max f(1:2;y), max f(2:1;y), and max $\hat{J}(1,2;y)$ to determine the conditions that will make one of them the best from the error point of view in numerical applications. It is conjectured that if π_1 is always taken as the population with the smaller covariance matrix (see the remark following lemma 5.1 in chapter 3), the linear discriminant function resulting from maximizing f(1:2;y) will always give smaller errors than the other two. Note also that although max $\hat{I}(2:1;y)$ and max $\hat{J}(1,2;y)$ do not do as well as the other functions on an error basis, they differ most from the linear discriminants derived from a basis other than the information measures. Further study of these two linear discriminants may elicit important properties within the information theory approach. Of general interest is the fact that the linear discriminant function obtained by pooling the covariance matrices does so well. Whether this would continue to be true in other examples, or is peculiar to this one, remains to be investigated. #### 7. PROBLEMS - 7.1. Derive (2.2), (2.3), (2.4), (2.5). - 7.2. Derive the values in table 3.2. - 7.3. Derive the values in table 3.3. - 7.4. Derive the values in table 3.4. - 7.5. Derive the two quartic and the sixth-degree polynomials mentioned in section 4. - 7.6. Derive (5.4) and (5.5). - 7.7. Derive the values in (5.7). - 7.8. Derive (5.4) by minimizing β for a given α . ### References - S. H. Abdel-Aty (1954), "Approximate formulae for the percentage points and the probability integral of the non-central χ^2 distribution," *Biometrika*, Vol. 41, pp. 538-540. - B. P. Adhikari and D. D. Joshi (1956), "Distance-Discrimination et résumé exhaustif," *Publs. inst. statist. univ. Paris*, Vol. 5, Fasc. 2, pp. 57-74. - A. C. Aitken and H. Silverstone (1941-43), "On the estimation of statistical parameters," *Proc. Roy. Soc. Edinburgh*, Vol. 61, pp. 186-194. (Issued separately Apr. 2, 1942.) - R. L. Anderson and T. A. Bancroft (1952), Statistical Theory in Research, McGraw-Hill Book Co., New York. - T. W. Anderson (1951), "The asymptotic distribution of certain characteristic roots and vectors," *Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability*, Univ. Calif. Press, pp. 103-130. - ——— (1958), An Introduction to Multivariate Statistical Analysis, John Wiley & Sons, New York. - W. R. Ashby (1956), An Introduction to Cybernetics, John Wiley & Sons, New York. - R. R. Bahadur (1954), "Sufficiency and statistical decision functions," Ann. Math. Statist., Vol. 25, pp. 423-462. - E. W. Barankin (1949), "Locally best unbiased estimates," Ann. Math. Statist., Vol. 20, pp. 477-501. - (1951), "Concerning some inequalities in the theory of statistical estimation," Skand. Aktuar. Tidskr., Vol. 34, pp. 35-40. - —— and J. Gurland (1951), "On asymptotically normal, efficient estimators: I," Univ. Calif. Publ. Statist., Vol. 1, No. 6, pp. 89-130. - Y. Bar-Hillel (1955), "An examination of information theory," *Philos. Sci.*, Vol. 22, pp. 86–105. - and R. Carnap (1953), "Semantic information," *Brit. J. Phil. Sci.*, Vol. 4, pp. 147-157; also appears with a discussion in *Communication Theory*, W. Jackson (ed.), Academic Press, New York, 1953, pp. 503-512. - G. A. Barnard (1949), "Statistical inference," J. Roy. Statist. Soc., Ser. B, Vol. 11, pp. 115-149. - (1951), "The theory of information," J. Roy. Statist. Soc., Ser. B, Vol. 13, pp. 46-64. - M. S. Bartlett (1935), "Contingency table interactions," J. Roy. Statist. Soc., Suppl., Vol. 2, pp. 248-252. - ——— (1936), "Statistical information and properties of sufficiency," *Proc. Roy. Soc.*, Ser. A, Vol. 154, pp. 124-137. - M. S. Bartlett (1937), "Properties of sufficiency and statistical tests," *Proc. Roy. Soc.*, Ser. A, Vol. 160, pp. 268-282. - (1947), "Multivariate analysis," J. Roy. Statist. Soc., Suppl., Vol. 9, pp. 176-197. - (1948), "Internal and external factor analysis," Brit. J. Psychol., Vol. 1, pp. 73-81. - ——— (1950), "Tests of significance in factor analysis," Brit. J. Psychol., Stat. Sec., Vol. 3, pp. 77-85. - (1954), "A note on the multiplying factors for various χ^2 approximations," J. Roy. Statist. Soc., Ser. B, Vol. 16, pp. 296-298. - ---- (1955), An Introduction to Stochastic Processes, Cambridge Univ. Press. - and D. V. Rajalakshman (1953), "Goodness of fit tests for simultaneous autoregressive series," J. Roy. Statist. Soc., Ser. B, Vol. 15, pp. 107-124. - D. E. Barton (1956), "A class of distributions for which the maximum-likelihood estimator is unbiased and of minimum variance for all sample sizes," *Biometrika*, Vol. 43, pp. 200-202. - G. I. Bateman (1949), "The characteristic function of a weighted sum of non-central squares of normal variates subject to s linear restraints," *Biometrika*, Vol. 36, pp. 460-462. - D. A. Bell (1953), Information Theory and its Engineering Applications (1st ed.), Sir Isaac Pitman & Sons, London; 2nd ed., 1956. - A. Bhattacharyya (1943), "On a measure of divergence between two statistical populations defined by their probability distributions," *Bull. Calcutta Math. Soc.*, Vol. 35, pp. 99-109. - ———— (1946a), "On a measure of divergence between two multinomial populations," Sankhyā, Vol. 7, pp. 401–406. - (1946b, 1947, 1948), "On some analogues of the amount of information and their use in statistical estimation," Sankhyā, Vol. 8, pp. 1-14; pp. 201-218; pp. 315-328. - F. E. Binet and G. S. Watson (1956), "Algebraic theory of the computing routine for tests of significance on the dimensionality of normal multivariate systems," J. Roy. Statist. Soc., Ser. B, Vol. 18, pp. 70-78. - D. Blackwell and M. A. Girshick (1954), Theory of Games and Statistical Decisions, John Wiley & Sons, New York. - A. Blanc-Lapierre and A. Tortrat (1956), "Statistical mechanics and probability theory," Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Univ. Calif. Press, Vol. III, pp. 145-170. - M. Bôcher (1924), Introduction to Higher Algebra, The Macmillan Co., New York. - A. H. Bowker (1948), "A test for symmetry in contingency tables," J. Am. Statist. Assoc., Vol. 43, pp. 572-574. - G. E. P. Box (1949), "A general distribution theory for a class of likelihood criteria," Biometrika, Vol. 36, pp. 317-346. - (1950), "Problems in the analysis of growth and wear curves," *Biometrics*, Vol. 6, pp. 362-389. - R. N. Bradt and S. Karlin (1956), "On the design and comparison of certain dichotomous experiments," Ann. Math. Statist., Vol. 27, pp. 390-409. - L. Brillouin (1956), Science and Information Theory, Academic Press, New York. - L. de Broglie (chairman) (1951), La Cybernétique, Éditions de la Revue d'Optique Théorique et Instrumentale, Paris. - H. D. Brunk (1958), "On the estimation of parameters restricted by inequalities," Ann. Math. Statist., Vol. 29, pp. 437-453. - M. G. Bulmer (1957), "Confirming statistical hypotheses," J. Roy. Statist. Soc., Ser. B, Vol. 19, pp. 125-132. - F. L. Campbell, G. W. Snedecor, and W. A. Simanton (1939), "Biostatistical problems involved in the standardization of liquid household insecticides," *J. Am. Statist. Assoc.*, Vol. 34, pp. 62-70. - A. H. Carter (1949), "The estimation and comparison of residual regressions where there are two or more related sets of observations," *Biometrika*, Vol. 36, pp. 26-46. - M. Castañs Camargo (1955), "Una teoria de la certidumbre," Anales real soc. españ. fís. y quím., Ser. A, Vol. 51, pp. 215-232. - and M. Medina e Isabel (1956), "The logarithmic correlation," Anales real soc. españ. fís. y quím., Ser. A, Vol. 52, pp. 117-136. - D. G. Chapman and H. Robbins (1951), "Minimum variance estimation without regularity assumptions," *Ann. Math. Statist.*, Vol. 22, pp. 581-586. - H. Chernoff (1952), "A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations," Ann. Math. Statist., Vol. 23, pp. 493-507. - (1954), "On the distribution of the likelihood ratio," Ann. Math. Statist., Vol. 25, pp. 573-578. - ——— (1956), "Large-sample theory: parametric case," Ann. Math. Statist., Vol. 27, pp. 1-22. - C. Cherry (ed.) (1955), Information Theory, Papers Read at a Symposium on 'Information Theory,' Royal Institution, London, Sept. 1955; Academic Press, New York, 1956. - ——— (1957), On Human Communication, John Wiley & Sons, New York. - E. C. Cherry (1950), "An history of the theory of information," *Proceedings of a Symposium on Information Theory*, W. Jackson (ed.), Royal Society, London, 1950, published by Ministry of Supply, and subsequently by the IRE, Feb. 1953, pp. 161-168. - (1951), "An history of the theory of information," *Proc. I.E.E.* (*London*), Vol. 98, Part III, pp. 383-393. - ——— (1952), "The communication of information," Am. Scientist, Vol. 40, pp. 640–664. - W. G. Cochran (1952), "The χ^2 test of goodness of fit," Ann. Math. Statist., Vol. 23, pp. 315-345. - ——— (1954), "Some methods for strengthening the common χ^2 tests," Biometrics, Vol. 10, pp. 417-451. - and C. I. Bliss (1948), "Discriminant functions with covariance," Ann. Math. Statist., Vol. 19, pp. 151-176. - E. A. Cornish (1957), "An application of the Kronecker product
of matrices in multiple regression," *Biometrics*, Vol. 13, pp. 19-27. - H. Cramér (1937), Random Variables and Probability Distributions, Cambridge Tracts in Mathematics, No. 36, Cambridge. - (1938), "Sur un nouveau théorème-limite de la théorie des probabilités," Actualités sci. et ind., No. 736. - H. Cramér (1946a), Mathematical Methods of Statistics, Princeton Univ. Press. - ——— (1946b), "Contributions to the theory of statistical estimation," Skand. Aktuar. Tidskr., Vol. 29, pp. 85-94. - ——— (1955), The Elements of Probability Theory and Some of its Applications, John Wiley & Sons, New York. - G. Darmois (1936), Méthodes d'Estimation, Actualités sci. et ind. No. 356. - (1945), "Sur les limites de la dispersion de certaines estimations," Rev. Inst. intern. Statist., Vol. 13, pp. 9-15. - H. Davis (chairman) (1954), Symposium on statistical methods in communication engineering, Berkeley, California, August 1953, Trans. IRE, PGIT-3, Mar. - W. L. Deemer and I. Olkin (1951), "The Jacobians of certain matrix transformations useful in multivariate analysis," *Biometrika*, Vol. 38, pp. 345–367. - L. Dolanský and M. P. Dolanský (1952), "Table of $\log_2 \frac{1}{p}$, $p \log_2 \frac{1}{p}$ and $p \log_2 \frac{1}{p}$ + $(1-p) \log_2 \frac{1}{1-p}$," Tech. Rept. No. 227, R.L.E., M.I.T., Jan. 2. - J. L. Doob (1934), "Probability and statistics," Trans. Am. Math. Soc., Vol. 36, pp. 759-775. - ——— (1936), "Statistical estimation," Trans. Am. Math. Soc., Vol. 39, pp. 410-421. - D. Dugué (1936a), "Sur le maximum de précision des lois limites d'estimation," Compt. Rend., Vol. 202, p. 452. - J. Durbin and M. G. Kendall (1951), "The geometry of estimation," *Biometrika*, Vol. 38, pp. 150-158. - P. S. Dwyer and M. S. MacPhail (1948), "Symbolic matrix derivatives," Ann. Math. Statist., Vol. 19, pp. 517-534. - L. P. Eisenhart (1926), Riemannian Geometry, Princeton Univ. Press. - P. Elias (chairman) (1956), 1956 Symposium on Information Theory, M.I.T., September 1956, IRE Trans. on Inform. Theory, Vol. 1T-2, No. 3. - R. M. Fano (chairman) (1954), 1954 Symposium on Information Theory, M.I.T., September 1954, *Trans. IRE*, *PGIT-4*. - W. T. Federer (1955), Experimental Design, The Macmillan Co., New York. - A. Feinstein (1958), Foundations of Information Theory, McGraw-Hill Book Co., New York. - W. Feller (1950), An Introduction to Probability Theory and its Applications (1st ed.), John Wiley & Sons, New York. - R. Féron (1952a), "Information et corrélation," Compt. Rend., Vol. 234, pp. 1343-1345. (1952b), "Convexité et information," Compt. Rend., Vol. 234, pp. 1840-1841. - and C. Fourgeaud (1951), "Information et régression," Compt. Rend., Vol. 232, pp. 1636-1638. - W. L. Ferrar (1941), Algebra, Oxford Univ. Press. - R. A. Fisher (1921), "On the 'probable error' of a coefficient of correlation deduced from a small sample," *Metron*, Vol. 1, pp. 3-32. - (1922a), "On the interpretation of χ^2 from contingency tables, and the calculation of P," J. Roy. Statist. Soc., Vol. 85, pp. 87-94; Contributions to Mathematical Statistics, John Wiley & Sons, New York, 1950, paper 5. - Trans. Roy. Soc. London, Ser. A, Vol. 222, pp. 309-368; Contributions to Mathematical Statistics, John Wiley & Sons, New York, 1950, paper 10. - R. A. Fisher (1924), "The conditions under which χ² measures the discrepancy between observation and hypothesis," J. Roy. Statist. Soc., Vol. 87, pp. 442–450; Contributions to Mathematical Statistics, John Wiley & Sons, New York, 1950, paper 8. - ——— (1925a), Statistical Methods for Research Workers (1st ed.), Oliver & Boyd, London; 10th ed., 1948. - pp. 700-725; Contributions to Mathematical Statistics, John Wiley & Sons, New York, 1950, paper 11. - ——— (1928), "The general sampling distribution of the multiple correlation coefficient," Proc. Royal Soc., Ser. A, Vol. 121, pp. 654-673; Contributions to Mathematical Statistics, John Wiley & Sons, New York, 1950, paper 14. - (1935), "The logic of inductive inference," J. Roy. Statist. Soc., Vol. 98, pp. 39-54; Contributions to Mathematical Statistics, John Wiley & Sons, New York, 1950, paper 26. - (1938), "The statistical utilization of multiple measurements," Ann. Eugenics, Vol. 8, pp. 376-386; Contributions to Mathematical Statistics, John Wiley & Sons, New York, 1950, paper 33. - ——— (1939a), "The comparison of samples with possibly unequal variances," Ann. Eugenics, Vol. 9, pp. 174–180; Contributions to Mathematical Statistics, John Wiley & Sons, New York, 1950, paper 35. - ---- (1939b), "The sampling distribution of some statistics obtained from non-linear equations," Ann. Eugenics, Vol. 9, pp. 238-249; Contributions to Mathematical Statistics, John Wiley & Sons, New York, 1950, paper 36. - ——— (1956), Statistical Methods and Scientific Inference, Oliver & Boyd, London. - E. Fix (1949), "Tables of noncentral χ^2 ," Univ. Calif. Publ. Statist., Vol. 1, No. 2, pp. 15-19. - F. G. Foster and D. H. Rees (1957), "Upper percentage points of the generalized Beta distribution. I," *Biometrika*, Vol. 44, pp. 237-247. - D. A. S. Fraser (1957), Nonparametric Methods in Statistics, John Wiley & Sons, New York. - and I. Guttman (1952), "Bhattacharyya bounds without regularity assumptions," Ann. Math. Statist., Vol. 23, pp. 629-632. - R. A. Frazer, W. J. Duncan, and A. R. Collar (1938), *Elementary Matrices*, Cambridge Univ. Press. - M. Fréchet (1943), "Sur l'extension de certaines évaluations statistiques au cas de petits échantillons," Rev. Inst. intern. Statist., Vol. 11, pp. 183-205. - W. R. Garner and W. J. McGill (1954), "Relation between uncertainty, variance, and correlation analyses," Rep. No. 166-I-192, ONR Contract NSori-166, Johns Hopkins Univ. - (1956), "The relation between information and variance analyses," *Psychometrika*, Vol. 21, pp. 219-228. - I. M. Gel'fand, A. N. Kolmogorov, and A. M. Iaglom (1956), "On the general definition of the quantity of information," *Doklady Akad. Nauk S.S.S.R.*, Vol. 111, No. 4, pp. 745-748. (Translation by E. Kelly, Lincoln Laboratory.) - E. N. Gilbert (1958), "An outline of information theory," Am. Statistician, Vol. 12, pp. 13-19. - M. A. Girshick (1936), "Principal components," J. Am. Statist. Assoc., Vol. 31, pp. 519-528. - ——— (1939), "On the sampling theory of the roots of determinantal equations," Ann. Math. Statist., Vol. 10, pp. 203-224. - and L. J. Savage (1951), "Bayes and minimax estimates for quadratic loss functions," *Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability*, Univ. of Calif. Press, pp. 53-73. - S. Goldman (1953), Information Theory, Prentice-Hall, New York. - 1. J. Good (1950), Probability and the Weighing of Evidence, Charles Griffin, London. - ——— (1952), "Rational decisions," J. Roy. Statist. Soc., Ser. B, Vol. 14, pp. 107-114. - ——— (1953), "The population frequencies of species and the estimation of population parameters," *Biometrika*, Vol. 40, pp. 237–264. - (1957), "Saddle-point methods for the multinomial distribution," Ann. Math. Statist., Vol. 28, pp. 861-881. - P. E. Green, Jr. (1956), "A bibliography of Soviet literature on noise, correlation, and information theory," *IRE Trans. on Inform. Theory*, Vol. IT-2, pp. 91-94. - ——— (1957), "Information theory in the U.S.S.R." IRE WESCON Convention Record, Part 2, pp. 67-83. - S. W. Greenhouse (1954), "On the problem of discrimination between statistical populations," M.A. Thesis, George Washington Univ. - H. Grell (ed.) (1957), Arbeiten zur Informationstheorie I, Deutscher Verlag der Wissenschaften, Berlin. (Translations from Russian and Hungarian.) - D. G. C. Gronow (1951), "Test for the significance of the difference between means in two normal populations having unequal variances," *Biometrika*, Vol. 38, pp. 252-256. - P. M. Grundy (1951), "A general technique for the analysis of experiments with incorrectly treated plots," J. Roy. Statist. Soc., Ser. B, Vol. 13, pp. 272-283. - J. Gurland (1954), "On regularity conditions for maximum likelihood estimators," Skand. Aktuar. Tidskr., Vol. 37, pp. 71-76. - J. B. S. Haldane (1955), "Substitutes for χ^2 ," Biometrika, Vol. 42, pp. 265-266. - P. R. Halmos (1950), Measure Theory, D. Van Nostrand Co., New York. - and L. J. Savage (1949), "Applications of the Radon-Nikodym theorem to the theory of sufficient statistics," Ann. Math. Statist., Vol. 20, pp. 225-241. - G. H. Hardy, J. E. Littlewood, and G. Pólya (1934), *Inequalities* (1st ed.), Cambridge Univ. Press; 2nd ed., 1952. - R. V. L. Hartley (1928), "Transmission of information," Bell System Tech. J., Vol. 7, pp. 535-563. - P. G. Hoel (1947), Introduction to Mathematical Statistics (1st ed.), John Wiley & Sons, New York; 2nd ed., 1954. - H. Hotelling (1933), "Analysis of a complex of statistical variables into principal components," J. Educ. Psych., Vol. 24, pp. 417-441; 498-520. - (1936), "Relations between two sets of variates," *Biometrika*, Vol. 28, pp. 321-377. - (1947), "Multivariate quality control, illustrated by the air testing of sample - bombsights," Techniques of Statistical Analysis, McGraw-Hill Book Co., New York, pp. 111-184. - H. Hotelling (1951), "A generalized T test and measure of multivariate dispersion," Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. of Calif. Press, pp. 23-41. - J. P. Hoyt (1953), "Estimates and asymptotic distributions of certain statistics in information theory," *Dissertation*, Graduate Council of George Washington Univ. - P. L. Hsu (1938), "Notes on Hotelling's generalized T," Ann. Math. Statist., Vol. 9, pp. 231-243. - (1939), "On the distribution of roots of certain determinantal equations," Ann. Eugenics, Vol. 9, pp. 250-258. - (1941a), "On the problem of rank and the limiting distribution of Fisher's test function," Ann. Eugenics, Vol. 11, pp. 39-41. - (1949), "The limiting distribution of functions of sample means and application to testing hypotheses," *Proceedings of the Berkeley Symposium on
Mathematical Statistics and Probability*, Univ. of Calif. Press, pp. 359-402. - V. S. Huzurbazar (1949), "On a property of distributions admitting sufficient statistics," *Biometrika*, Vol. 36, pp. 71-74. - ---- (1955), "Exact forms of some invariants for distributions admitting sufficient statistics," *Biometrika*, Vol. 42, pp. 533-537. - J. O. Irwin (1949), "A note on the subdivision of χ^2 into components," *Biometrika*, Vol. 36, pp. 130–134. - K. Ito (1956), "Asymptotic formulae for the distribution of Hotelling's generalized T_0^2 statistic," Ann. Math. Statist., Vol. 27, pp. 1091-1105. - W. Jackson (ed.) (1950), *Proceedings of a Symposium on Information Theory*, Royal Society, London, 1950, published by Ministry of Supply, and subsequently by the IRE, Feb. 1953. - ——— (ed.) (1952), Communication Theory, Papers Read at a Symposium on "Applications of Communication Theory," IEE, London, Sept. 1952; Academic Press, New York, 1953 - G. S. James (1954), "Tests of linear hypotheses in univariate and multivariate analysis when the ratios of the population variances are unknown," *Biometrika*, Vol. 41, pp. 19-43. - E. T. Jaynes (1957), "Information theory and statistical mechanics," *Phys. Rev.*, Vol. 106, pp. 620-630. - H. Jeffreys (1946), "An invariant form for the prior probability in estimation problems," *Proc. Roy. Soc. (London)*, Ser. A, Vol. 186, pp. 453-461. - (1948), Theory of Probability (2nd ed.), Oxford Univ. Press. - J. L. W. V. Jensen (1906), "Sur les fonctions convexes et les inégalités entre les valeurs moyennes," Acta Math., Vol. 30, pp. 175-193. - D. D. Joshi (1957), "L'information en statistique mathématique et dans la théorie des communications," Thèse, Faculté des Sciences de l'Université de Paris, June. - T. L. Kelley (1928), Crossroads in the Mind of Man, Stanford Univ. Press. - J. L. Kelley, Jr. (1956), "A new interpretation of information rate," Bell System Tech. J., Vol. 35, pp. 917-926. - O. Kempthorne (1952), The Design and Analysis of Experiments, John Wiley & Sons, New York. - M. G. Kendall (1943, 1946), *The Advanced Theory of Statistics*, Charles Griffin, London, Vol. I, 1943; Vol. II, 1946. - A. I. Khinchin (1949), Mathematical Foundations of Statistical Mechanics, Dover Publications, New York. - ——— (1953), "The entropy concept in probability theory," *Uspekhi Matematicheskikh Nauk*, Vol. 8, No. 3 (55), pp. 3-20 (Russian). - ——— (1956), "On the fundamental theorems of information theory," *Uspekhi Mate-maticheskikh Nauk*, Vol. 11, No. 1 (67), pp. 17-75 (Russian). - J. Kiefer (1952), "On minimum variance estimators," Ann. Math. Statist., Vol. 23, pp. 627-629. - A. W. Kimball (1954), "Short-cut formulas for the exact partition of χ^2 in contingency tables," *Biometrics*, Vol. 10, pp. 452-458. - A. N. Kolmogorov (1950), Foundations of the Theory of Probability, Chelsea Publishing Co., New York. - (1956), "On the Shannon theory of information transmission in the case of continuous signals," *IRE Trans. on Inform. Theory*, Vol. IT-2, pp. 102-108. - S. Kolodziejczyk (1935), "On an important class of statistical hypotheses," *Biometrika*, Vol. 27, pp. 161–190. - B. O. Koopman (1936), "On distributions admitting a sufficient statistic," Trans. Am. Math. Soc., Vol. 39, pp. 399-409. - C. F. Kossack (1945), "On the mechanics of classification," Ann. Math. Statist., Vol. 16, pp. 95-98. - S. Kullback (1952), "An application of information theory to multivariate analysis," Ann. Math. Statist., Vol. 23, pp. 88-102. - ——— (1953), "A note on information theory," J. Appl. Phys., Vol. 24, pp. 106-107. - ——— (1954), "Certain inequalities in information theory and the Cramér-Rao inequality," Ann. Math. Statist., Vol. 25, pp. 745-751. - ——— (1956), "An application of information theory to multivariate analysis, II," Ann. Math. Statist., Vol. 27, pp. 122-145; correction p. 860. - and R. A. Leibler (1951), "On information and sufficiency," Ann. Math. Statist., Vol. 22, pp. 79-86. - S. Kullback and H. M. Rosenblatt (1957), "On the analysis of multiple regression in k categories," *Biometrika*, Vol. 44, pp. 67-83. - M. Kupperman (1957), "Further applications of information theory to multivariate analysis and statistical inference," *Dissertation*, Graduate Council of George Washington Univ. - ——— (1958), "Probabilities of hypotheses and information-statistics in sampling from exponential-class populations," Ann. Math. Statist., Vol. 29, pp. 571-574. - R. G. Laha (1954), "On some properties of the Bessel function distributions," Bull. Calcutta Math. Soc., Vol. 46, pp. 59-72. - H. O. Lancaster (1949), "The derivation and partition of χ^2 in certain discrete distributions," *Biometrika*, Vol. 36, pp. 117-129. - (1957), "Some properties of the bivariate normal distribution considered in the form of a contingency table," *Biometrika*, Vol. 44, pp. 289-292. - D. N. Lawley (1938), "A generalization of Fisher's z test," Biometrika, Vol. 30, pp. 180-187; correction, pp. 467-469. 361 - D. N. Lawley (1940), "The estimation of factor loadings by the method of maximum likelihood," *Proc. Roy. Soc. Edinburgh*, Vol. 9, p. 64. - ---- (1956), "A general method for approximating to the distribution of likelihood ratio criteria," *Biometrika*, Vol. 43, pp. 295-303. - J. L. Lawson and G. E. Uhlenbeck (1950), Threshold Signals, McGraw-Hill Book Co., New York. - L. Le Cam (1956), "On the asymptotic theory of estimation and testing hypotheses," Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Univ. of Calif. Press, Vol. I, pp. 129-156. - E. L. Lehmann (1949), *Theory of Testing Hypotheses*, Notes recorded by Colin Blyth, Associated Students Store, Univ. of Calif., Berkeley, Calif. - ———(1950a), Notes on the Theory of Estimation, Notes recorded by Colin Blyth, Associated Students Store, Univ. of Calif., Berkeley, Calif., Sept. - ———(1950b), "Some principles of the theory of testing hypotheses," Ann. Math. Statist., Vol. 21, pp. 1–26. - and H. Scheffé (1950), "Completeness, similar regions and unbiased estimation, Part I," Sankhyā, Vol. 10, pp. 305-340. - D. V. Lindley (1956), "On a measure of the information provided by an experiment," Ann. Math. Statist., Vol. 27, pp. 986-1005. - ——— (1957), "Binomial sampling schemes and the concept of information," Biometrika, Vol. 44, pp. 179-186. - E. H. Linfoot (1957), "An informational measure of correlation," *Information and Control*, Vol. 1, pp. 85-89. - M. Loève (1955), Probability Theory, D. Van Nostrand Co., New York. - C. H. McCall, Jr. (1957), "The linear hypothesis, information, and the analysis of variance," *Dissertation*, Graduate Council of George Washington Univ. - J. McCarthy (1956), "Measures of the value of information," Proc. Nat. Acad. Sci., U.S., Vol. 42, pp. 654-655. - D. K. C. MacDonald (1952), "Information theory and its application to taxonomy," J. Appl. Physics, Vol. 23, pp. 529-531. - C. C. MacDuffee (1946), The Theory of Matrices, Chelsea Publishing Co., New York. - W. J. McGill (1954), "Multivariate information transmission," *Psychometrika*, Vol. 19, pp. 97–116. - D. M. MacKay (1950), "Quantal aspects of scientific information," *Phil. Mag.*, Vol. 41, Seventh Series, No. 314, pp. 289-311. - N. W. McLachlan (1939), Complex Variable and Operational Calculus with Technical Applications, Cambridge Univ. Press. - B. McMillan (1953), "The basic theorems of information theory," Ann. Math. Statist., Vol. 24, pp. 196-219. - ——, D. A. Grant, P. M. Fitts, F. C. Frick, W. S. McCulloch, G. A. Miller, and H. W. Brosin (1953), Current Trends in Information Theory, Univ. of Pittsburgh Press. - P. C. Mahalanobis (1936), "On the generalized distance in statistics," *Proc. Nat. Inst. Sci. India*, Vol. 12, pp. 49-55. - B. Mandelbrot (1953), "Contribution a la théorie mathématique des jeux de communication," Publs. Inst. statist. univ. Paris, Vol. 2, Fasc. 1 et 2, pp. 3-124. - dynamics: I. Canonical ensembles," *IRE Trans. on Inform. Theory*, Vol. IT-2, pp. 190-203. - H. B. Mann and A. Wald (1943), "On stochastic limit and order relationships," Ann. Math. Statist., Vol. 14, pp. 217-226. - F. H. C. Marriott (1952), "Tests of significance in canonical analysis," *Biometrika*, Vol. 39, pp. 58-64. - J. W. Mauchly (1940), "Significance test for sphericity of a normal *n*-variate distribution," *Ann. Math. Statist.*, Vol. 11, pp. 204-209. - G. A. Miller and W. G. Madow (1954), "On the maximum likelihood estimate of the Shannon-Wiener measure of information," AFCRC-TR-54-75, Air Force Cambridge Research Center, Air Research and Development Command, Bolling Air Force Base, Washington D.C., Aug. - G. A. Miller and P. M. Ross (1954), "Tables of $n \log_2 n$ and $n \log_{10} n$ for n from 1 to 1000," Tech. Rep. No. 60, Lincoln Laboratory, M.I.T., Feb. 10. - S. K. Mitra (1955), "Contributions to the statistical analysis of categorical data," N. C. Inst. of Statist. Mimeo Series No. 142, Dec. - E. C. Molina (1942), Tables of Poisson's Exponential Limit, D. Van Nostrand Co., New York. - A. M. Mood (1951), "On the distribution of the characteristic roots of normal second-moment matrices," Ann. Math. Statist., Vol. 22, pp. 266-273. - E. Mourier (1946), "Étude du choix entre deux lois de probabilité," Compt. Rend., Vol. 223, pp. 712-714. - J. Neyman (1929), "Contribution to theory of certain test criteria," XVIII Session de l'Institut International de Statistique, Varsovie, pp. 1-48. - ——— (1935), "Su un teorema concernente le cosiddette statistiche sufficienti," Giorn. Ist. ital. Attuari, Vol. 6, p. 320-334. - ——— (1949), "Contribution to the theory of the χ^2 test," Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, Univ. of Calif. Press, pp. 239–273. - ——— (1933), "On the problem of the most efficient tests of statistical hypotheses," *Phil. Trans. Roy. Soc. London, Ser. A*, Vol. 231, pp. 289–337. - H. W. Norton (1945), "Calculation of chi-square for complex contingency tables," J. Am. Statist.
Assoc., Vol. 40, pp. 251-258. - P. B. Patnaik (1949), "The non-central χ^2 and F distributions and their applications," Biometrika, Vol. 36, pp. 202–232. - E. S. Pearson and H. O. Hartley (1951), "Charts of the power function for analysis of variance tests, derived from the non-central F-distribution," *Biometrika*, Vol. 38, pp. 112–130. - E. S. Pearson and S. S. Wilks (1933), "Methods of statistical analysis appropriate for k samples of two variables," *Biometrika*, Vol. 25, pp. 353-378. - K. Pearson (1904), "Mathematical contributions to the theory of evolution, XIII, on the theory of contingency and its relation to association and normal correlation," *Drap. Co. Mem. Biom. Ser.*, No. 1. - really samples from the same population," Biometrika, Vol. 8, pp. 250-253. - L. S. Penrose (1947), "Some notes on discrimination," Ann. Eugenics, Vol. 13, pp. 228-237. - J. R. Pierce (1956), Electrons, Waves and Messages, Hanover House, New York. - K. C. S. Pillai (1955), "Some new test criteria in multivariate analysis," Ann. Math. Statist., Vol. 26, pp. 117-121. REFERENCES 363 - E. J. G. Pitman (1936), "Sufficient statistics and intrinsic accuracy," *Proc. Camb. Phil. Soc.*, Vol. 32, pp. 567-579. - R. L. Plackett (1949), "A historical note on the method of least squares," *Biometrika*, Vol. 36, pp. 458-460. - K. H. Powers (1956), "A unified theory of information," Tech. Rept. No. 311, R.L.E., M.I.T., Feb. 1. - H. Quastler (ed.) (1953), Information Theory in Biology, Univ. of Illinois Press, Urbana. (ed.) (1955), Information Theory in Psychology, The Free Press, Glencoe, Ill. - ——— (1956), "A Primer on Information Theory," *Tech. Memo. 56-1*, Office of Ordnance Research, Box CM, Duke Station, Durham, N.C., Jan. - C. R. Rao (1945), "Information and the accuracy attainable in the estimation of statistical parameters," Bull. Calcutta Math. Soc., Vol. 37, pp. 81-91. - ——— (1952), Advanced Statistical Methods in Biometric Research, John Wiley & Sons, New York, - ———— (1957), "Maximum likelihood estimation for the multinomial distribution," Sankhyā, Vol. 18, pp. 139-148. - and I. M. Chakravarti (1956), "Some small sample tests of significance for a Poisson distribution," *Biometrics*, Vol. 12, pp. 264-282. - E. Reich (1951), "On the definition of information," J. Math. and Phys., Vol. 30, pp. 156-161. - D. D. Rippe (1951), "Statistical rank and sampling variation of the results of factorization of covariance matrices," *Doctoral Thesis*, on file at the Univ. of Michigan. - H. R. Roberts (1957), "On estimation and information," M.S. Thesis, George Washington Univ. - H. M. Rosenblatt (1953), "On a k sample multivariate regression problem," *Master's Thesis*, George Washington Univ. - J. Rothstein (1951), "Information, measurement, and quantum mechanics," Science, Vol. 114, pp. 171-175. - S. N. Roy (1939), "p-statistics, or some generalizations in analysis of variance appropriate to multivariate problems," Sankhyā, Vol. 4, pp. 381-396. - S. N. Roy and M. A. Kastenbaum (1955), "A generalization of analysis of variance and multivariate analysis to data based on frequencies in qualitative categories or class intervals," N. C. Inst. of Statist. Mimeo Series No. 131, June 1. - S. N. Roy and S. K. Mitra (1956), "An introduction to some non-parametric generalizations of analysis of variance and multivariate analysis," *Biometrika*, Vol. 43, pp. 361-376. - M. Sakaguchi (1952, 1955, 1957a), "Notes on statistical applications of information theory," Repts. Statist. Appli. Research Union Japan. Scientists and Engineers, Vol. 1, No. 4, pp. 27-31; "II," Vol. 4, No. 2, pp. 21-68; "III," Vol. 5, No. 1, pp. 9-16. - (1957b), "Notes on information transmission in multivariate probability distributions," Rep. Univ. of Electro-Communications, No. 9, Dec., pp. 25-31. - N. Sanov (1957), "On the probability of large deviations of random variables," *Mat. Sbornik (Moscow)*, Vol. 42, No. 1 (84), pp. 11-44 (Russian). (Translation, N.C. Inst. of Statist. Mimeo Series No. 192, Mar. 1958.) - L. J. Savage (1954), The Foundations of Statistics, John Wiley & Sons, New York. - M. P. Schützenberger (1954), "Contribution aux applications statistiques de la - théorie de l'information," Publs. inst. statist. univ. Paris, Vol. 3, Fasc. 1-2, pp. 3-117. - G. R. Seth (1949), "On the variance of estimates," Ann. Math. Statist., Vol. 20, pp. 1-27. - C. E. Shannon (1948), "A mathematical theory of communication," *Bell System Tech.* J., Vol. 27, pp. 379–423; 623–656. - (1956), "The bandwagon," IRE Trans. on Inform. Theory, Vol. IT-2, p. 3. - and W. Weaver (1949), The Mathematical Theory of Communication, Univ. of Illinois Press, Urbana. - W. A. Shewhart (1931), Economic Control of Manufactured Product, The Macmillan Co., New York. - J. B. Simaika (1941), "On an optimum property of two important statistical tests," *Biometrika*, Vol. 32, pp. 70-80. - C. A. B. Smith (1947), "Some examples of discrimination," Ann. Eugenics, Vol. 13, pp. 272-282. - H. F. Smith (1957), "Interpretation of adjusted treatment means and regressions in analysis of covariance," *Biometrics*, Vol. 13, pp. 282-308. - G. W. Snedecor (1946), Statistical Methods (4th ed.), Collegiate Press of Iowa State College, Ames. - A. Stuart (1953), "The estimation and comparison of strengths of association in contingency tables," *Biometrika*, Vol. 40, pp. 105-110. - (1955a), "A test for homogeneity of the marginal distributions in a two-way classification," *Biometrika*, Vol. 42, pp. 412-416. - ——— (1955b), "A paradox in statistical estimation," Biometrika, Vol. 42, pp. 527-529. - F. L. H. M. Stumpers (1953), "A bibliography of information theory; communication theory-cybernetics" (R.L.E., M.I.T., Feb. 2, 1953); IRE Trans., PGIT-2, Nov. 1953; First suppl., IT-1, Sept. 1955, pp. 31-47; Second suppl., IT-3, June 1957, pp. 150-166. - K. Suzuki (1956), "On 'amount of information'," Proc. Japan Acad., Vol. 32, pp. 726-730. - ———— (1957), "On the écart between two 'amounts of information'," *Proc. Japan Acad.*, Vol. 33, pp. 25-28. - Tables of the Binomial Probability Distribution (1949), Nat. Bur. Standards (U.S.), Applied Math. Series 6, Washington. - P. C. Tang (1938), "The power function of the analysis of variance tests with tables and illustrations of their use," Statistical Research Memoirs, Vol. 2, pp. 126-149. - G. Thomson (1947), "The maximum correlation of two weighted batteries," Brit. J. Psychol., Stat. Sec., Vol. 1, pp. 27-34. - K. D. Tocher (1952), "The design and analysis of block experiments," J. Roy. Statist. Soc., Ser. B, Vol. 14, pp. 45-100. - J. W. Tukey (1949), "Sufficiency, truncation and selection," Ann. Math. Statist., Vol. 20, pp. 309-311. - (1957), "Approximations to the upper 5% points of Fisher's B distribution and non-central χ^2 ," Biometrika, Vol. 44, pp. 528-530. - W. G. Tuller (1950), "Information theory applied to system design," Trans. AIEE, Vol. 69, Part II, pp. 1612-1614. - A. Wald (1943), "Tests of statistical hypotheses concerning several parameters when the number of observations is large," Trans. Am. Math. Soc., Vol. 54, pp. 426-482. - (1945a), "Sequential tests of statistical hypotheses," Ann. Math. Statist., Vol. 16, pp. 117-186. 365 - A. Wald (1945b), "Sequential method of sampling for deciding between two courses of action," J. Am. Statist. Assoc., Vol. 40, pp. 277-306. - ---- (1947), Sequential Analysis, John Wiley & Sons, New York. - and R. J. Brookner (1941), "On the distribution of Wilks' statistic for testing the independence of several groups of variates," *Ann. Math. Statist.*, Vol. 12, pp. 137-152. - G. N. Watson (1944), Bessel Functions (2nd ed.), The Macmillan Co., New York. - M. Weibull (1953), "The distributions of t- and F-statistics and of correlation and regression coefficients in stratified samples from normal populations with different means," Skand. Aktuar. Tidskr., Vol. 36, 1-2 Suppl., pp. 1-106. - B. L. Welch (1935), "Problems in the analysis of regression among k samples," Biometrika, Vol. 27, pp. 145-160. - (1939), "Note on discriminant functions," Biometrika, Vol. 31, pp. 218-219. - E. T. Whittaker (1915), "On the functions which are represented by the expansions of the interpolatory theory," *Proc. Roy. Soc. Edinburgh*, Vol. 35, pp. 181-194. - N. Wiener (1948), Cybernetics, John Wiley & Sons, New York. - ——— (1950), The Human Use of Human Beings, Houghton Mifflin Co., Boston. - (1956), "What is information theory?" IRE Trans. on Inform. Theory, Vol. IT-2, p. 48. - R. A. Wijsman (1957), "Random orthogonal transformations and their use in some classical distribution problems in multivariate analysis," *Ann. Math. Statist.*, Vol. 28, pp. 415-423. - S. S. Wilks (1932), "Certain generalizations in the analysis of variance," *Biometrika*, Vol. 24, pp. 471–494. - ——— (1935a), "The likelihood test of independence in contingency tables," Ann. Math. Statist., Vol. 6, pp. 190-196. - (1935b), "On the independence of k sets of normally distributed statistical variables," *Econometrica*, Vol. 3, pp. 309-326. - (1938a), "The large-sample distribution of the likelihood ratio for testing composite hypotheses," Ann. Math. Statist., Vol. 9, pp. 60-62. - ——— (1943), Mathematical Statistics, Princeton Univ. Press. - E. J. Williams (1952), "Some exact tests in multivariate analysis," *Biometrika*, Vol. 39, pp. 17-31. - ——— (1955), "Significance tests for discriminant functions and linear functional relationships," *Biometrika*, Vol. 42, pp. 360–381. - J. Wolfowitz (1947), "The efficiency of sequential estimates and Wald's equation for sequential processes," Ann. Math. Statist., Vol. 18, pp. 215–230. - P. M. Woodward (1953), Probability and Information Theory, with Applications to Radar, McGraw-Hill Book Co., New York. - and I. L. Davies (1952), "Information theory and inverse probability in telecommunications," *Proc. I.E.E.*, Part III, Vol. 99, pp. 37-44. - G. U. Yule and M. G. Kendall (1937), An Introduction to the Theory of Statistics (11th ed.), Charles
Griffin, London. - M. Zelen (1957), "The analysis of covariance for incomplete block designs," *Biometrics*, Vol. 13, pp. 309-332. TABLES 367 TABLE 1. Log_e n and $n \log_e n$ for Values of n from 1 through 1000 | n | log _e n | n log, n | n | log, n | $n \log_e n$ | |-----|--------------------|-----------------|------------|--------------|-----------------| | 01 | 0.0000000000 | 0000,0000000000 | 47 | 3.8501476017 | 0180.9569372804 | | 02 | 0.6931471805 | 0001.3862943611 | 48 | 3.8712010109 | 0185.8176485236 | | 03 | 1.0986122886 | 0003.2958368660 | 49 | 3.8918202981 | 0190.6991946074 | | 04 | 1.3862943611 | 0005.5451774445 | 50 | 3.9120230054 | 0195.6011502714 | | 05 | 1.6094379124 | 0008.0471895622 | 51 | 3.9318256327 | 0200.5231072689 | | 06 | 1.7917594692 | 0010.7505568154 | 52 | 3.9512437185 | 0205.4646733662 | | 07 | 1.9459101490 | 0013.6213710434 | 53 | 3.9702919135 | 0210.4254714183 | | 08 | 2.0794415416 | 0016.6355323334 | 54 | 3.9889840465 | 0215.4051385145 | | 09 | 2.1972245773 | 0019.7750211960 | 55 | 4.0073331852 | 0220.4033251878 | | 10 | 2.3025850929 | 0023.0258509299 | 5 6 | 4.0253516907 | 0225.4196946812 | | 11 | 2.3978952727 | 0026.3768480008 | 57 | 4.0430512678 | 0230.4539222666 | | 12 | 2.4849066497 | 0029.8188797975 | 58 | 4.0604430105 | 0235.5056946117 | | 13 | 2.5649493574 | 0033.3443416470 | 59 | 4.0775374439 | 0240.5747091904 | | 14 | 2.6390573296 | 0036,9468026146 | 60 | 4.0943445622 | 0245.6606737333 | | 15 | 2.7080502011 | 0040,6207530165 | 61 | 4.1108738641 | 0250.7633057146 | | 16 | 2.7725887222 | 0044.3614195558 | 62 | 4.1271343850 | 0255.8823318728 | | 17 | 2.8332133440 | 0048.1646268490 | 63 | 4.1431347263 | 0261.0174877627 | | 18 | 2.8903717578 | 0052.0266916421 | 64 | 4.1588830833 | 0266.1685173350 | | 19 | 2.9444389791 | 0055.9443406042 | 6 5 | 4.1743872698 | 0271.3351725432 | | 20 | 2.9957322735 | 0059.9146454711 | 66 | 4.1896547420 | 0276.5172129737 | | 21 | 3.0445224377 | 0063.9349711922 | 67 | 4.2046926193 | 0281.7144054992 | | 22 | 3.0910424533 | 0068.0029339739 | 68 | 4.2195077051 | 0286.9265239520 | | 23 | 3.1354942159 | 0072,1163669664 | 6 9 | 4.2341065045 | 0292,1533488172 | | 24 | 3.1780538303 | 0076.2732919284 | 70 | 4,2484952420 | 0297.3946669435 | | 25 | 3.2188758248 | 0080.4718956217 | 71 | 4,2626798770 | 0302.6502712699 | | 26 | 3.2580965380 | 0084.7105099886 | 72 | 4.2766661190 | 0307.9199605692 | | 27 | 3.2958368660 | 0088.9875953821 | 73 | 4,2904594411 | 0313.2035392038 | | 28 | 3.3322045101 | 0093.3017262849 | 74 | 4.3040650932 | 0318.5008168971 | | 29 | 3.3672958299 | 0097.6515790696 | 75 | 4.3174881135 | 0323.8116085152 | | 30 | 3.4011973816 | 0102.0359214499 | 76 | 4.3307333402 | 0329.1357338618 | | 31 | 3.4339872044 | 0106.4536033390 | 77 | 4.3438054218 | 0334.4730174827 | | 32 | 3.4657359027 | 0110.9035488896 | 78 | 4.3567088266 | 0339.8232884818 | | 33 | 3.4965075614 | 0115.3847495284 | 79 | 4.3694478524 | 0345.1863803449 | | 34 | 3.5263605246 | 0119.8962578369 | 80 | 4.3820266346 | 0350.5621307739 | | 35 | 3.5553480614 | 0124.4371821521 | 81 | 4.3944491546 | 0355.9503815285 | | 36 | 3.5835189384 | 0129.0066817844 | 82 | 4.4067192472 | 0361.3509782757 | | 37 | 3,6109179126 | 0133.6039627678 | 83 | 4.4188406077 | 0366.7637704471 | | 38 | 3.6375861597 | 0138.2282740696 | 84 | 4.4308167988 | 0372.1886111028 | | 39 | 3.6635616461 | 0142.8789041991 | 85 | 4,4426512564 | 0377.6253568017 | | 40 | 3.6888794541 | 0147.5551781646 | 86 | 4.4543472962 | 0383.0738674778 | | 41 | 3.7135720667 | 0152.2564547349 | 87 | 4.4659081186 | 0388.5340063229 | | 42 | 3.7376696182 | 0156.9821239679 | 88 | 4.4773368144 | 0394.0056396741 | | 43 | 3.7612001156 | 0161.7316049748 | 89 | 4.4886363697 | 0399.4886369062 | | 44 | 3.7841896339 | 0166.5043438924 | 90 | 4.4998096703 | 0404.9828703297 | | 45 | 3.8066624897 | 0171.2998120397 | 91 | 4.5108595065 | 0410.4882150930 | | 46 | 3.8286413964 | 0176.1175042385 | 92 | 4.5217885770 | 0416.0045490885 | | . • | 2.020011370T | | | | | TABLE I (continued) | n | log, n | n log _e n | n | log _e n | n log _e n | |------------|--------------|----------------------|-----|-------------------------------|--| | 93 | 4.5325994931 | 0421.5317528633 | 139 | 4.9344739331 | 0685.8918767052 | | 94 | 4.5432947822 | 0427.0697095334 | 140 | 4.9416424226 | 0691.8299391653 | | 95 | 4.5538768916 | 0432.6183047021 | 141 | 4.9487598903 | 0697.7751445433 | | 9 6 | 4.5643481914 | 0438.1774263809 | 142 | 4.9558270576 | 0703.7274421794 | | 97 | 4.5747109785 | 0443.7469649148 | 143 | 4.9628446302 | 0709.6867821272 | | 98 | 4.5849674786 | 0449.3268129097 | 144 | 4.9698132995 | 0715.6531151389 | | 99 | 4.5951198501 | 0454.9168651633 | 145 | 4.9767337424 | 0721.6263926510 | | 100 | 4.6051701859 | 0460.5170185988 | 146 | 4.9836066217 | 0727.6065667694 | | 101 | 4.6151205168 | 0466.1271722010 | 147 | 4.9904325867 | 0733.5935902565 | | 102 | 4.6249728132 | 0471.7472269550 | 148 | 4.9972122737 | 0739.5874165171 | | 103 | 4.6347289882 | 0477.3770857877 | 149 | 5.0039463059 | 0745,5879995859 | | 104 | 4.6443908991 | 0483.0166535107 | 150 | 5.0106352940 | 0751.5952941144 | | 105 | 4.6539603501 | 0488.6658367665 | 151 | 5.0172798368 | 0757.6092553591 | | 106 | 4.6634390941 | 0494.3245439759 | 152 | 5.0238805208 | 0763.6298391686 | | 107 | 4.6728288344 | 0499.9926852874 | 153 | 5.0304379213 | 0769.6570019730 | | 108 | 4.6821312271 | 0505.6701725294 | 154 | 5.0369526024 | 0775.6907007717 | | 109 | 4.6913478822 | 0511.3569191630 | 155 | 5.0434251169 | 0781.7308931225 | | 110 | 4.7004803657 | 0517.0528402372 | 156 | 5.0498560072 | 0787,7775371309 | | 111 | 4.7095302013 | 0522.7578523457 | 157 | 5.0562458053 | 0793.8305914397 | | 112 | 4.7184988712 | 0528.4718735851 | 158 | 5.0625950330 | 0799.8900152183 | | 113 | 4,7273878187 | 0534.1948235145 | 159 | 5.0689042022 | 0805.9557681530 | | 114 | 4.7361984483 | 0539.9266231170 | 160 | 5.0751738152 | 0812.0278104374 | | 115 | 4.7449321283 | 0545.6671947618 | 161 | 5.0814043649 | 0818.1061027625 | | 116 | 4.7535901911 | 0551.4164621683 | 162 | 5.0875963352 | 0824.1906063076 | | 117 | 4,7621739347 | 0557.1743503713 | 163 | 5.0937502008 | 0830.2812827315 | | 118 | 4.7706846244 | 0562.9407856869 | 164 | 5.0998664278 | 0836.3780941632 | | 119 | 4.7791234931 | 0568.7156956803 | 165 | 5.1059454739 | 0842.4810031936 | | 120 | 4.7874917427 | 0574.4990091338 | 166 | 5.1119877883 | 0848.5899728672 | | 121 | 4.7957905455 | 0580.2906560172 | 167 | 5.1179938124 | 0854.7049666736 | | 122 | 4.8040210447 | 0586.0905674575 | 168 | 5.1239639794 | 0860.8259485397 | | 123 | 4.8121843553 | 0591.8986757108 | 169 | 5.1298987149 | 0866.9528828220 | | 124 | 4.8202815656 | 0597.7149141350 | 170 | 5.1357984370 | 0873.0857342985 | | 125 | 4.8283137373 | 0603.5392171628 | 171 | 5.1416635565 | 0879.2244681620 | | 126 | 4.8362819069 | 0609.3715202759 | 172 | 5.1474944768 | 0885.3690500119 | | 127 | 4.8441870864 | 0615.2117599802 | 173 | 5.1532915944 | 0891.5194458481 | | 128 | 4.8520302639 | 0621.0598737817 | 174 | 5.1590552992 | 0897.6756220633 | | 129 | 4.8598124043 | 0626.9158001627 | 175 | 5.1647859739 | 0903.8375454366 | | 130 | 4.8675344504 | 0632.7794785592 | 176 | 5.1704839950 | 0910.0051831267 | | 131 | 4.8751973232 | 0638.6508493394 | 177 | 5.1761497325 | 09 16.178 5 02 6 6 5 6 | | 132 | 4.8828019225 | 0644.5298537814 | 178 | 5.1817835502 | 0922.3574719520 | | 133 | 4.8903491282 | 0650.4164340535 | 179 | 5.1873858058 | 0928.5420592455 | | 134 | 4.8978397999 | 0656.3105331934 | 180 | 5.1929568508 | 0934.7322331602 | | 135 | 4.9052747784 | 0662.2120950892 | 181 | 5.1984970312 | 0940.9279626591 | | 136 | 4.9126548857 | 0668,1210644601 | 182 | 5.2040066870 | 0947.1292170480 | | 137 | 4.9199809258 | 0674.0373868385 | 183 | 5.2094 861 52 8 | 0953.3359659700 | | 138 | 4.9272536851 | 0679.9610085517 | 184 | 5.2149357576 | 0959.5481794001 | | n | log₄ n | n log ₄ n | n | log, n | n log ₄ n | |-----|--------------|----------------------|-----|-----------------------|----------------------| | 185 | 5.2203558250 | 0965.7658276395 | 231 | 5.4424177105 | 1257.1984911305 | | 186 | 5.2257466737 | 0971.9888813107 | 232 | 5.4467373716 | 1263.6430702266 | | 187 | 5.2311086168 | 0978.2173113518 | 233 | 5.4510384535 | 1270.0919596808 | | 188 | 5.2364419628 | 0984.4510890120 | 234 | 5.4553211153 | 1276.5451409937 | | 189 | 5.2417470150 | 0990.6901858463 | 235 | 5.4595855141 | 1283.0025958239 | | 190 | 5.2470240721 | 0996.9345737105 | 236 | 5.4638318050 | 1289.4643059860 | | 191 | 5.2522734280 | 1003.1842247569 | 237 | 5.4680601411 | 1295.9302534490 | | 192 | 5.2574953720 | 1009.4391114293 | 238 | 5.4722706736 | 1302.4004203338 | | 193 | 5.2626901889 | 1015.6992064586 | 239 | 5.4764635519 | 1308.8747889116 | | 194 | 5.2678581590 | 1021.9644828583 | 240 | 5.4806389233 | 1315.3533416021 | | 195 | 5.2729995585 | 1028.2349139199 | 241 | 5.4847969334 | 1321.8360609712 | | 196 | 5.2781146592 | 1034.5104732092 | 242 | 5.4889377261 | 1328.3229297299 | | 197 | 5.2832037287 | 1040.7911345614 | 243 | 5.4930614433 | 1334.8139307318 | | 198 | 5.2882670306 | 1047.0768720775 | 244 | 5,4971682252 | 1341.3090469715 | | 199 | 5.2933048247 | 1053.3676601202 | 245 | 5.5012582105 | 1347.8082615835 | | 200 | 5.2983173665 | 1059,6634733096 | 246 | 5.5053315359 | 1354.3115578394 | | 201 | 5.3033049080 | 1065.9642865199 | 247 | 5.5093883366 | 1360.8189191471 | | 202 | 5.3082676974 | 1072.2700748750 | 248 | 5.5134287461 | 1367.3303290489 | | 203 | 5.3132059790 | 1078,5808137455 | 249 | 5.5174528964 | 1373.8457712197 | | 204 | 5.3181199938 | 1084.8964787442 | 250 | 5.5214609178 | 1380.3652294656 | | 205 | 5.3230099791 | 1091.2170457234 | 251 | 5.5254529391 | 1386.8886877221 | | 206 | 5.3278761687 | 1097.5424907707 | 252 | 5.5294290875 | 1393.4161300529 | | 207 | 5.3327187932 | 1103.8727902059 | 253 | 5.5333894887 | 1399.9475406481 | | 208 | 5.3375380797 | 1110.2079205779 | 254 |
5.5373342670 | 1406.4829038227 | | 209 | 5.3423342519 | 1116.5478586606 | 255 | 5.5412635451 | 1413.0222040154 | | 210 | 5.3471075307 | 1122.8925814507 | 256 | 5.5451774444 | 1419.5654257868 | | 211 | 5.3518581334 | 1129.2420661635 | 257 | 5.5490760848 | 1426.1125538181 | | 212 | 5.3565862746 | 1135.5962902305 | 258 | 5.5529595849 | 1432.6635729098 | | 213 | 5.3612921657 | 1141.9552312961 | 259 | 5.5568280616 | 1439.2184679802 | | 214 | 5.3659760150 | 1148.3188672147 | 260 | 5.5606816310 | 1445.7772240640 | | 215 | 5.3706380281 | 1154.6871760474 | 261 | 5.5645204073 | 1452.3398263112 | | 216 | 5.3752784076 | 1161.0601360598 | 262 | 5.5683445037 | 1458.9062599854 | | 217 | 5.3798973535 | 1167.4377257183 | 263 | 5.5721540321 | 1465.4765104628 | | 218 | 5.3844950627 | 1173.8199236880 | 264 | 5.5759491031 | 1472.0505632306 | | 219 | 5.3890717298 | 1180.2067088298 | 265 | 5.5797298259 | 1478.6284038863 | | 220 | 5.3936275463 | 1186,5980601975 | 266 | 5.5834963087 | 1485.2100181359 | | 221 | 5.3981627015 | 1192.9939570354 | 267 | 5.5872486584 | 1491.7953917929 | | 222 | 5.4026773818 | 1199.3943787756 | 268 | 5.5909869805 | 1498.3845107769 | | 223 | 5.4071717714 | 1205.7993050356 | 269 | 5.5 94 7113796 | 1504.9773611129 | | 224 | 5.4116460518 | 1212.2087156155 | 270 | 5.5984219589 | 1511.5739289296 | | 225 | 5.4161004022 | 1218.6225904960 | 271 | 5.6021188208 | 1518.1742004584 | | 226 | 5.4205349992 | 1225.0409098355 | 272 | 5.6058020662 | 1524.7781620325 | | 227 | 5.4249500174 | 1231.4636539683 | 273 | 5. 6094 717951 | 1531.3858000855 | | 228 | 5.4293456289 | 1237.8908034016 | 274 | 5.6131281063 | 1537.9971011503 | | 229 | 5.4337220035 | 1244.3223388139 | 275 | 5.6167710976 | 1544.6120518583 | | 230 | 5.4380793089 | 1250.7582410523 | 276 | 5.6204008657 | 1551.2306389379 | | | | | | | | | n | log, n | n log _e n | n | log _e n | n log _e n | |-----|--|----------------------|-----|---------------------|--------------------------| | 277 | 5.6240175061 | 1557.8528492139 | 323 | 5.7776523232 | 1866.1817004009 | | 278 | 5.6276211136 | 1564.4786696060 | 324 | 5.7807435157 | 1872.9608991167 | | 279 | 5.6312117818 | 1571.1080871282 | 325 | 5.7838251823 | 1879.7431842572 | | 280 | 5.6347896031 | 1577.7410888874 | 326 | 5.7868973813 | 1886.5285463255 | | 281 | 5.6383546693 | 1584.3776620828 | 327 | 5.7899601708 | 1893.3169758834 | | 282 | 5.6419070709 | 1591.0177940045 | 328 | 5.7930136083 | 1900.1084635500 | | 283 | 5.6454468976 | 1597.6614720330 | 329 | 5.7960577507 | 1906.9030000018 | | 284 | 5.6489742381 | 1604.3086836378 | 330 | 5.7990926544 | 1913.7005759720 | | 285 | 5.6524891802 | 1610.9594163766 | 331 | 5.8021183753 | 1920.5011822498 | | 286 | 5.6559918108 | 1617.6136578945 | 332 | 5.8051349689 | 1927.3048096803 | | 287 | 5.6594822157 | 1624.2713959230 | 333 | 5.8081424899 | 1934.1114491635 | | 288 | 5.6629604801 | 1630.9326182792 | 334 | 5.8111409929 | 1940.9210916542 | | 289 | 5.6664266881 | 1637.5973128645 | 335 | 5.8141305318 | 1947.7337281614 | | 290 | 5.6698809229 | 1644.2654676644 | 336 | 5.8171111599 | 1954.5493497476 | | 291 | 5.6733232671 | 1650.9370707469 | 337 | 5.8200829303 | 1961.3679475287 | | 292 | 5.6767538022 | 1657.6121102623 | 338 | 5.8230458954 | 1968.1895126733 | | 293 | 5.6801726090 | 1664.2905744420 | 339 | 5.8260001073 | 1975.0140364020 | | 294 | 5.6835797673 | 1670.9724515976 | 340 | 5.8289456176 | 1981.841 50 99875 | | 295 | 5.6869753563 | 1677.6577301202 | 341 | 5.8318824772 | 1988.6719247537 | | 296 | 5.6903594543 | 1684.3463984799 | 342 | 5.8348107370 | 1995.5052720754 | | 297 | 5.6937321388 | 1691.0384452244 | 343 | 5.8377304471 | 2002.3415433779 | | 298 | 5.6970934865 | 1697.7338589786 | 344 | 5.8406416573 | 2009.1807301364 | | 299 | 5.7004435733 | 1704.4326284438 | 345 | 5.8435444170 | 2016.0228238758 | | 300 | 5.7037824746 | 1711.1347423969 | 346 | 5.8464387750 | 2022.8678161700 | | 301 | 5.7071102647 | 1717.8401896894 | 347 | 5.8493247799 | 2029.7156986416 | | 302 | 5.7104270173 | 1724.5489592472 | 348 | 5.8522024797 | 2036.5664629615 | | 303 | 5.7137328055 | 1731.2610400693 | 349 | 5.8550719222 | 2043.4201008486 | | 304 | 5.7170277014 | 1737.9764212275 | 350 | 5.8579331544 | 2050.2766040692 | | 305 | 5.7203117766 | 1744.6950918653 | 351 | 5.8607862234 | 2057.1359644365 | | 306 | 5.7235851019 | 1751.4170411974 | 352 | 5.8636311755 | 2063.9981738105 | | 307 | 5.7268477475 | 1758.1422585093 | 353 | 5.8664680569 | 2070.8632240975 | | 308 | 5.7300997829 | 1764.8707331559 | 354 | 5.8692969131 | 2077.7311072494 | | 309 | 5.7333412768 | 1771.6024545614 | 355 | 5.8721177894 | 2084.6018152638 | | 310 | 5.7365722974 | 1778.3374122185 | 356 | 5.8749307308 | 2091.4753401833 | | 311 | 5.7397929121 | 1785.0755956877 | 357 | 5.8777357817 | 2098.3516740953 | | 312 | 5.7430031878 | 1791.8169945966 | 358 | 5.8805329864 | 2105.2308091315 | | 313 | 5.7462031905 | 1798.5615986391 | 359 | 5.8833223884 | 2112.1127374673 | | 314 | 5.7493929859 | 1805.3093975752 | 360 | 5.8861040314 | 2118.9974513221 | | 315 | 5.7525726388 | 1812.0603812301 | 361 | 5.8888779583 | 2125.8849429582 | | 316 | 5.7557422135 | 1818.8145394935 | 362 | 5.8916442118 | 2132.7752046809 | | 317 | 5.7589017738 | 1825.5718623191 | 363 | 5.8944028342 | 2139.6682288381 | | 318 | 5.7620513827 | 1832.3323397241 | 364 | 5.8971538676 | 2146.5640078198 | | 319 | 5.7651911027 | 1839.0959617884 | 365 | 5.8998973535 | 2153.4625340576 | | 320 | 5.7683209957 | 1845.8627186540 | 366 | 5.9026333334 | 2160.3638000249 | | 321 | 5.7714411231 | 1852.6326005247 | 367 | 5.9053618480 | 2167.2677982360 | | 322 | 5.7745515455 | 1859.4055976653 | 368 | 5.9080829381 | 2174.1745212462 | | 344 | J. 1 1 J J J J J J J J J J J J J J J J J | 100711000710000 | 300 | - •- • | - | **TABLES** | n | log _e n | n log, n | n | log _e n | n log _e n | |-----|--------------------|-----------------|-----|--------------------|------------------------------------| | 369 | 5.9107966440 | 2181.0839616510 | 415 | 6.0282785202 | 2501.7355858957 | | 370 | 5.9135030056 | 2187.9961120862 | 416 | 6.0306852602 | 2508.7650682687 | | 371 | 5.9162020626 | 2194.9109652274 | 417 | 6.0330862217 | 2515.7969544901 | | 372 | 5.9188938542 | 2201.8285137896 | 418 | 6.0354814325 | 2522.8312387953 | | 373 | 5.9215784196 | 2208.7487505271 | 419 | 6.0378709199 | 2529.8679154474 | | 374 | 5.9242557974 | 2215.6716682330 | 420 | 6.0402547112 | 2536.9069787365 | | 375 | 5.9269260259 | 2222.5972597389 | 421 | 6.0426328336 | 2543.9484229803 | | 376 | 5.9295891433 | 2229.5255179146 | 422 | 6.0450053140 | 2550.9922425232 | | 377 | 5.9322451874 | 2236.4564356679 | 423 | 6.0473721790 | 2558.0384317366 | | 378 | 5.9348941956 | 2243.3900059442 | 424 | 6.0497334552 | 2565.0869850184 | | 379 | 5.9375362050 | 2250.3262217262 | 425 | 6.0520891689 | 2572.1378967929 | | 380 | 5.9401712527 | 2257.2650760338 | 426 | 6.0544393462 | 2579.1911615108 | | 381 | 5.9427993751 | 2264.2065619233 | 427 | 6.0567840132 | 2586.2467736486 | | 382 | 5.9454206086 | 2271.1506724877 | 428 | 6.0591231955 | 2593.3047277090 | | 383 | 5.9480349891 | 2278.0974008562 | 429 | 6.0614569189 | 2600.3650182201 | | 384 | 5.9506425525 | 2285.0467401937 | 430 | 6.0637852086 | 2607.4276397357 | | 385 | 5.9532433342 | 2291.9986837008 | 431 | 6.0661080901 | 2614.4925868347 | | 386 | 5.9558373694 | 2298.9532246134 | 432 | 6.0684255882 | 2621.5598541215 | | 387 | 5.9584246930 | 2305.9103562025 | 433 | 6.0707377280 | 2628.6294362251 | | 388 | 5.9610053396 | 2312.8700717738 | 434 | 6.0730445341 | 2635.7013277996 | | 389 | 5.9635793436 | 2319.8323646676 | 435 | 6.0753460310 | 2642.7755235236 | | 390 | 5.9661467391 | 2326.7972282582 | 436 | 6.0776422433 | 2649.8520181002 | | 391 | 5.9687075599 | 2333.7646559543 | 437 | 6.0799331950 | 2656.9308062568 | | 392 | 5.9712618397 | 2340.7346411979 | 438 | 6.0822189103 | 2664.0118827449 | | 393 | 5.9738096118 | 2347.7071774646 | 439 | 6.0844994130 | 2671.0952423400 | | 394 | 5.9763509092 | 2354.6822582634 | 440 | 6.0867747269 | 2678.1808798414 | | 395 | 5.9788857649 | 2361.6598771359 | 441 | 6.0890448754 | 2685.2687900721 | | 396 | 5.9814142112 | 2368.6400276568 | 442 | 6.0913098820 | 2692.3589678783 | | 397 | 5.9839362806 | 2375.6227034328 | 443 | 6.0935697700 | 2699.4514081300 | | 398 | 5.9864520052 | 2382.6078981032 | 444 | 6.0958245624 | 2706.5461057199 | | 399 | 5.9889614168 | 2389.5956053391 | 445 | 6.0980742821 | 2713.6430555640 | | 400 | 5.9914645471 | 2396.5858188432 | 446 | 6.1003189520 | 2720.7422526009 | | 401 | 5.9939614273 | 2403.5785323499 | 447 | 6.1025585946 | 2727.8436917923 | | 402 | 5.9964520886 | 2410.5737396248 | 448 | 6.1047932324 | 2734.9473681219 | | 403 | 5.9989365619 | 2417.5714344645 | 449 | 6.1070228877 | 2742.0532765963 | | 404 | 6.0014148779 | 2424.5716106963 | 450 | 6.1092475827 | 2749.1614122440 | | 405 | 6.0038870671 | 2431.5742621781 | 451 | 6.1114673395 | 2756.2717701157 | | 406 | 6.0063531596 | 2438.5793827983 | 452 | 6.1136821798 | 2763.3843452842 | | 407 | 6.0088131854 | 2445.5869664751 | 453 | 6.1158921254 | 2770.4991328438 | | 408 | 6.0112671744 | 2452.5970071569 | 454 | 6.1180971980 | 2777.6161279108
2784.7353256227 | | 409 | 6.0137151560 | 2459.6094988215 | 455 | 6.1202974189 | 2784.7353236227 | | 410 | 6.0161571596 | 2466.6244354763 | 456 | 6.1224928095 | 2798.9803096387 | | 411 | 6.0185932144 | 2473.6418111580 | 457 | 6.1246833908 | 2806.1060863243 | | 412 | 6.0210233493 | 2480.6616199320 | 458 | 6.1268691841 | 2813.2340464178 | | 413 | 6.0234475929 | 2487.6838558929 | 459 | 6.1290502100 | 2820.3641851622 | | 414 | 6.0258659738 | 2494.7085131637 | 460 | 6.1312264894 | 2020.30 7 1031022 | | 478 6.1696107324 2949.0739301309 524 6.2614916843 3281.0216425842 479 6.1717005974 2956.2445861598 525 6.2633982625 3288.2840878606 480 6.1737861039 2963.4173298729 526 6.2653012127 3295.5484379000 | n | log _e n | n log _e n | n | log _e n | n log, n |
---|-----|-----------------------|----------------------|-----|--------------------|---------------------------------------| | 4626.13556489102834.63097967985086.23048144753165.08457536994636.13772705402841.76762604195096.23244801653172.31604042424646.13988455222848.90643223305106.23441072573179.54947011644656.14203740552856.04739359815116.23636959023186.78486059414666.14418563412863.19050550265126.23832462503194.02220802024676.14632925762870.33576333145136.24027584513201.26150857264686.14846829592877.48316248955146.24222326543208.50275844404696.15060276842884.63269840135156.24416690063215.74595384184706.15273269472891.78436651095166.24610676543222.99109098854716.15485809402898.93816228175176.24804287453230.23816612094726.15697898552906.09408119645186.24997524223237.48717549044736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.2445861598525 </td <td>461</td> <td>6.1333980429</td> <td>2827.4964978215</td> <td>507</td> <td>6 22851 10035</td> <td>3157 8550788207</td> | 461 | 6.1333980429 | 2827.4964978215 | 507 | 6 22851 10035 | 3157 8550788207 | | 4636.13772705402841.76762604195096.23244801653172.31604042424646.13988455222848.90643223305106.23441072573179.54947011644656.14203740552856.04739359815116.23636959023186.78486059414666.14418563412863.19050550265126.23832462503194.02220802024676.14632925762870.33576333145136.24027584513201.26150857264686.14846829592877.48316248955146.24222326543208.50275844404696.15060276842884.63269840135156.24416690063215.74595384184706.15273269472891.78436651095166.24610676543222.99109098854716.15485809402898.93816228175176.24804287453230.23816612094726.15697898552906.09408119645186.24997524223237.48717549044736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.4173298729526 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | 4646.13988455222848.90643223305106.23441072573179.54947011644656.14203740552856.04739359815116.23636959023186.78486059414666.14418563412863.19050550265126.23832462503194.02220802024676.14632925762870.33576333145136.24027584513201.26150857264686.14846829592877.48316248955146.24222326543208.50275844404696.15060276842884.63269840135156.24416690063215.74595384184706.15273269472891.78436651095166.24610676543222.99109098854716.15485809402898.93816228175176.24804287453230.23816612094726.15697898552906.09408119645186.24997524223237.48717549044736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26330121273295.5484379000 | | | | | | | | 4656.14203740552856.04739359815116.23636959023186,78486059414666.14418563412863.19050550265126.23832462503194.02220802024676.14632925762870.33576333145136.24027584513201.26150857264686.14846829592877.48316248955146.24222326543208.50275844404696.15060276842884.63269840135156.24416690063215.74595384184706.15273269472891.78436651095166.24610676543222.99109098854716.15485809402898.93816228175176.24804287453230.23816612094726.15697898552906.09408119645186.24997524223237.48717549044736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.41732987295266.26530121273295.5484379000 | | | | | | · · · · · · · · · · · · · · · · · · · | | 4666.14418563412863.19050550265126.23832462503194.02220802024676.14632925762870.33576333145136.24027584513201.26150857264686.14846829592877.48316248955146.24222326543208.50275844404696.15060276842884.63269840135156.24416690063215.74595384184706.15273269472891.78436651095166.24610676543222.99109098854716.15485809402898.93816228175176.24804287453230.23816612094726.15697898552906.09408119645186.24997524223237.48717549044736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.41732987295266.26530121273295.5484379000 | | | | | | | | 4676.14632925762870.33576333145136.24027584513201.26150857264686.14846829592877.48316248955146.24222326543208.50275844404696.15060276842884.63269840135156.24416690063215.74595384184706.15273269472891.78436651095166.24610676543222.99109098854716.15485809402898.93816228175176.24804287453230.23816612094726.15697898552906.09408119645186.24997524223237.48717549044736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.41732987295266.26530121273295.5484379000 | | | | | | | | 4686.14846829592877.48316248955146.24222326543208.50275844404696.15060276842884.63269840135156.24416690063215.74595384184706.15273269472891.78436651095166.24610676543222.99109098854716.15485809402898.93816228175176.24804287453230.23816612094726.15697898552906.09408119645186.24997524223237.48717549044736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.41732987295266.26530121273295.5484379000 | | | | | | | | 4696.15060276842884.63269840135156.24416690063215.74595384184706.15273269472891.78436651095166.24610676543222.99109098854716.15485809402898.93816228175176.24804287453230.23816612094726.15697898552906.09408119645186.24997524223237.48717549044736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.41732987295266.26530121273295.5484379000 | | | | | | | | 4706.15273269472891.78436651095166.24610676543222.99109098854716.15485809402898.93816228175176.24804287453230.23816612094726.15697898552906.09408119645186.24997524223237.48717549044736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.41732987295266.26530121273295.5484379000 | | | | | | | |
4716.15485809402898.93816228175176.24804287453230.23816612094726.15697898552906.09408119645186.24997524223237.48717549044736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.41732987295266.26530121273295.5484379000 | | | | | | | | 472 6.1569789855 2906.0940811964 518 6.2499752422 3237.4871754904 473 6.1590953884 2913.2521187567 519 6.2519038831 3244.7381153631 474 6.1612073216 2920.4122704835 520 6.2538288115 3251.9909820192 475 6.1633148040 2927.5745319165 521 6.2557500417 3259.2457717535 476 6.1654178542 2934.7388986142 522 6.2576675878 3266.5024808747 477 6.1675164908 2941.9053661537 523 6.2595814640 3273.7611057060 478 6.1696107324 2949.0739301309 524 6.2614916843 3281.0216425842 479 6.1717005974 2956.2445861598 525 6.2633982625 3288.2840878606 480 6.1737861039 2963.4173298729 526 6.2653012127 3295.5484379000 | | | | | | | | 4736.15909538842913.25211875675196.25190388313244.73811536314746.16120732162920.41227048355206.25382881153251.99098201924756.16331480402927.57453191655216.25575004173259.24577175354766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.41732987295266.26530121273295.5484379000 | | | | | | | | 475 6.1633148040 2927.5745319165 521 6.2557500417 3259.2457717535 476 6.1654178542 2934.7388986142 522 6.2576675878 3266.5024808747 477 6.1675164908 2941.9053661537 523 6.2595814640 3273.7611057060 478 6.1696107324 2949.0739301309 524 6.2614916843 3281.0216425842 479 6.1717005974 2956.2445861598 525 6.2633982625 3288.2840878606 480 6.1737861039 2963.4173298729 526 6.2653012127 3295.5484379000 | 473 | 6.1590953884 | 2913.2521187567 | 519 | 6.2519038831 | | | 4756.16331480402927.57453191655216.25575004173259.24577175354766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.41732987295266.26530121273295.5484379000 | | | 2920.4122704835 | 520 | 6.2538288115 | | | 4766.16541785422934.73889861425226.25766758783266.50248087474776.16751649082941.90536615375236.25958146403273.76110570604786.16961073242949.07393013095246.26149168433281.02164258424796.17170059742956.24458615985256.26339826253288.28408786064806.17378610392963.41732987295266.26530121273295.5484379000 | | 6.1633148040 | | | 6.2557500417 | | | 477 6.1675164908 2941.9053661537 523 6.2595814640 3273.7611057060 478 6.1696107324 2949.0739301309 524 6.2614916843 3281.0216425842 479 6.1717005974 2956.2445861598 525 6.2633982625 3288.2840878606 480 6.1737861039 2963.4173298729 526 6.2653012127 3295.5484379000 | | 6.1654178542 | 2934,7388986142 | 522 | 6.2576675878 | | | 478 6.1696107324 2949.0739301309 524 6.2614916843 3281.0216425842 479 6.1717005974 2956.2445861598 525 6.2633982625 3288.2840878606 480 6.1737861039 2963.4173298729 526 6.2653012127 3295.5484379000 | | 6.1675164908 | 2941.9053661537 | 523 | 6.2595814640 | 3273.7611057060 | | 480 6.1737861039 2963.4173298729 526 6.2653012127 3295.5484379000 | | 6.1696107324 | 2949.0739301309 | 524 | 6.2614916843 | | | | 479 | 6.1717005974 | 2956.2445861598 | 525 | 6.2633982625 | 3288.2840878606 | | 401 (1750/70701 3070 50315/0000 537 / 0/7005405 3303 04/000040 | 480 | 6.1737861039 | 2963.4173298729 | 526 | 6.2653012127 | 3295.5484379000 | | 481 0.1/380/2/U1 29/U.39213092U9 32/ 6.26/2UU3483 33U2.8146890813 | 481 | 6.1758672701 | 2970.5921569209 | 527 | 6.2672005485 | 3302.8146890813 | | 482 6.1779441140 2977.7690629724 528 6.2690962837 3310.0828377969 | 482 | 6.1779441140 | 2977.7690629724 | 528 | 6.2690962837 | 3310.0828377969 | | 483 6.1800166536 2984.9480437142 529 6.2709884318 3317.3528804530 | 483 | 6.1800166536 | 2984.9480437142 | 529 | 6.2709884318 | 3317.3528804530 | | 484 6.1820849067 2992.1290948508 530 6.2728770065 3324.6248134695 | 484 | 6.1820849067 | 2992.1290948508 | 530 | 6.2728770065 | 3324.6248134695 | | 485 6.1841488909 2999.3122121047 531 6.2747620212 3331.8986332795 | 485 | 6.18414889 0 9 | 2999.3122121047 | 531 | 6.2747620212 | 3331.8986332795 | | 486 6.1862086239 3006.4973912156 532 6.2766434893 3339.1743363298 | 486 | 6.1862086239 | 3006.4973912156 | 532 | 6.2766434893 | 3339.1743363298 | | 487 6.1882641230 3013.6846279412 533 6.2785214241 3346.4519190804 | 487 | 6.1882641230 | 3013.6846279412 | 533 | 6.2785214241 | 3346.4519190804 | | 488 6.1903154058 3020.8739180563 534 6.2803958389 3353.7313780047 | 488 | 6.1903154058 | 3020.8739180563 | 534 | 6.2803958389 | 3353.7313780047 | | 489 6.1923624894 3028.0652573532 535 6.2822667468 3361.0127095894 | 489 | 6.1923624894 | 3028.0652573532 | 535 | 6.2822667468 | 3361.0127095894 | | 490 6.1944053911 3035.2586416413 536 6.2841341610 3368.2959103339 | 490 | 6.1944053911 | 3035.2586416413 | 536 | 6.2841341610 | 3368.2959103339 | | 491 6.1964441277 3042.4540667471 537 6.2859980945 3375.5809767513 | 491 | 6.1964441277 | 3042.4540667471 | 537 | 6.2859980945 | 3375.5809767513 | | 492 6.1984787164 3049.6515285142 538 6.2878585601 3382.8679053670 | 492 | 6.1984787164 | 3049.6515285142 | | | 3382.8679053670 | | 493 6.2005091740 3056.8510228030 539 6.2897155709 3390.1566927199 | 493 | 6.2005091740 | 3056.8510228030 | 539 | 6.2897155709 | 3390.1566927199 | | 494 6.2025355171 3064.0525454908 540 6.2915691395 3397.4473353615 | 494 | 6.2025355171 | | | | | | 495 6.2045577625 3071.2560924715 541 6.2934192788 3404.7398298559 | 495 | 6.2045577625 | 3071.2560924715 | | | | | 496 6.2065759267 3078.4616596556 542 6.2952660014 3412.0341727803 | 496 | 6.2065759267 | 3078.4616596556 | | | | | 497 6.2085900260 3085.6692429700 543 6.2971093199 3419.3303607241 | 497 | 6.2085900260 | | | | | | 498 6.2106000770 3092.8788383583 544 6.2989492468 3426.6283902896 | 498 | 6.2106000770 | | | | | | 499 6.2126060957 3100.0904417800 545 6.3007857946 3433.9282580915 | 499 | 6.2126060957 | 3100.0904417800 | | • | | | 500 6.2146080984 3107.3040492111 546 6.3026189757 3441.2299607567 | 500 | 6.2146080984 | = | | | | | | 501 | | | | • | 3448.5334949248 | | 502 0.2100001170 5121707200002 | | | = : | | | 3455.8388572475 | | 0.2203701700 01207700011 | 503 | 6.2205901700 | | | | 3463.1460443887 | | 0.2225702000 | 504 | | | | | 3470.4550530246 | | | | | | | | 3477.7658798433 | | 506 6.2265366692 3150.6275546595 552 6.3135480462 3485.0785215450 | 506 | 6.2265366692 | 3150.6275546595 | 552 | 6.3135480462 | 3485.0785215450 | TABLE I (continued) | n | log _e n | n log _e n | n | log _e n | n log _e n | |-----|--------------------|----------------------|-----|--------------------|----------------------| | 553 | 6.3153580015 | 3492.3929748419 | 599 | 6.3952615981 | 3830.7616972712 | | 554 | 6.3171646867 | 3499.7092364580 | 600 | 6.3969296552 | 3838.1577931297 | | 555 | 6.3189681137 | 3507.0273031293 | 601 | 6.3985949345 | 3845.5555556557 | | 556 | 6.3207682942 | 3514.3471716033 | 602 | 6.4002574453 | 3852.9549820759 | | 557 | 6.3225652399 | 3521.6688386395 | 603 | 6.4019171967 | 3860.3560696265 | | 558 | 6.3243589623 | 3528.9923010088 | 604 | 6.4035741979 | 3867.7588155526 | | 559 | 6.3261494731 | 3536.3175554937 | 605 | 6.4052284580 | 3875.1632171087 | | 560 | 6.3279367837 | 3543.6445988883 | 606 | 6.4068799860 | 3882.5692715580 | | 561 | 6.3297209055 | 3550.9734279982 | 607 | 6.4085287910 | 3889.9769761731 | | 562 | 6.3315018498 | 3558.3040396403 | 608 | 6.4101748819 | 3897.3863282354 | | 563 | 6.3332796281 | 3565.6364306426 | 609 | 6.4118182677 | 3904.7973250353 | | 564 | 6.3350542514 | 3572.9705978449 | 610 | 6.4134589571 | 3912.2099638721 | | 565 | 6.3368257311 | 3580.3065380977 | 611 | 6.4150969591 | 3919.6242420538 | | 566 | 6.3385940782 | 3587.6442482630 | 612 | 6.4167322825 | 3927.0401568975 | | 567 | 6.3403593037 | 3594.9837252136 | 613 | 6.4183649359 | 3934.4577057289 | | 568 | 6.3421214187 | 3602.3249658336 | 614 | 6.4199949281 | 3941.8768858823 | | 569 | 6.3438804341 | 3609.6679670179 | 615 | 6.4216222678 | 3949.2976947010 | | 570 | 6.3456363608 | 3617.0127256723 | 616 | 6.4232469635 | 3956.7201295366 | | 571 | 6.3473892096 | 3624.3592387136 | 617 | 6.4248690239 | 3964.1441877496 | | 572 | 6.3491389913 | 3631.7075030692 | 618 | 6.4264884574 | 3971.5698667089 | | 573 | 6.3508857167 | 3639.0575156775 | 619 | 6.4281052726 | 3978.9971637918 | | 574 | 6.3526293963 | 3646.4092734874 | 620 | 6.4297194780 | 3986.4260763843 | | 575 | 6.3543700407 | 3653.7627734585 | 621 | 6.4313310819 | 3993.8566018807 | | 576 | 6.3561076606 | 3661.1180125608 | 622 | 6.4329400927 | 4001.2887376838 | | 577 | 6.3578422665 | 3668.4749877752 | 623 | 6.4345465187 | 4008.7224812046 | | 578 | 6.3595738686 | 3675.8336960926 | 624 | 6.4361503683 | 4016.1578298625 | | 579 | 6.3613024775 | 3683.1941345148 | 625 | 6.4377516497 | 4023.5947810853 | | 580 | 6.3630281035 | 3690.5563000535 | 626 | 6.4393503711 | 4031.0333323087 | | 581 | 6.3647507568 | 3697.9201897310 | 627 | 6.4409465406 | 4038.4734809768 | | 582 | 6.3664704477 | 3705.2858005797 | 628 | 6.4425401664 | 4045.9152245420 | | 583 | 6.3681871863 | 3712.6531296423 | 629 | 6.4441312567 | 4053.3585604646 | | 584 | 6.3699009828 | 3720.0221739717 | 630 | 6.4457198193 | 4060.8034862129 | | 585 | 6.3716118472 | 3727.3929306306 | 631 | 6.4473058625 | 4068.2499992635 | | 586 | 6.3733197895 | 3734.7653966921 | 632 | 6.4488893941 | 4075.6980971008 | | 587 | 6.3750248198 | 3742.1395692391 | 633 | 6.4504704221 | 4083.1477772173 | | 588 | 6.3767269478 | 3749.5154453644 | 634 |
6.4520489544 | 4090.5990371132 | | 589 | 6.3784261836 | 3756.8930221708 | 635 | 6.4536249988 | 4098.0518742969 | | 590 | 6.3801225368 | 3764.2722967709 | 636 | 6.4551985633 | 4105.5062862843 | | 591 | 6.3818160174 | 3771.6532662870 | 637 | 6.4567696555 | 4112.9622705995 | | 592 | 6.3835066348 | 3779.0359278513 | 638 | 6.4583382833 | 4120.4198247740 | | 593 | 6.3851943989 | 3786.4202786057 | 639 | 6.4599044543 | 4127.8789463472 | | 594 | 6.3868793193 | 3793.8063157014 | 640 | 6.4614681763 | 4135.3396328664 | | 595 | 6.3885614055 | 3801.1940362996 | 641 | 6.4630294569 | 4142.8018818861 | | 596 | 6.3902406670 | 3808.5834375709 | 642 | 6.4645883036 | 4150.2656909690 | | 597 | 6.3919171133 | 3815.9745166954 | 643 | 6.4661447242 | 4157.7310576848 | | 598 | 6.3935907539 | 3823.3672708625 | 644 | 6.4676987261 | 4165.1979796112 | | | | | | | | | n | log _e n | n log _e n | n | log _e n | n log _e n | |------|--------------------|----------------------|-------------|--------------------|----------------------| | 645 | 6.4692503167 | 4172.6664543333 | 691 | 6.5381398237 | 4517.8546182235 | | 646 | 6.4707995037 | 4180.1364794436 | 692 | 6.5395859556 | 4525.3934812874 | | 647 | 6.4723462945 | 4187.6080525421 | 693 | 6.5410299991 | 4532.9337894386 | | 648 | 6.4738906963 | 4195.0811712363 | 694 | 6.5424719605 | 4540.4755405917 | | 649 | 6.4754327167 | 4202.5558331410 | 695 | 6.5439118455 | 4548.0187326675 | | 650 | 6.4769723628 | 4210.0320358783 | 69 6 | 6.5453496603 | 4555.5633635928 | | 651 | 6.4785096422 | 4217.5097770778 | 697 | 6.5467854107 | 4563.1094313001 | | 652 | 6.4800445619 | 4224.9890543762 | 698 | 6.5482191027 | 4570.6569337281 | | 653 | 6.4815771292 | 4232.4698654175 | 699 | 6.5496507422 | 4578.2058688214 | | 654 | 6.4831073514 | 4239.9522078530 | 700 | 6.5510803350 | 4585.7562345304 | | 655 | 6.4846352356 | 4247.4360793411 | 701 | 6.5525078870 | 4593.3080288112 | | 656 | 6.4861607889 | 4254.9214775473 | 702 | 6.5539334040 | 4600.8612496261 | | 657 | 6.4876840184 | 4262.4084001444 | 703 | 6.5553568918 | 4608.4158949429 | | 658 | 6.4892049313 | 4269.8968448121 | 704 | 6.5567783561 | 4615.9719627353 | | 659 | 6.4907235345 | 4277.3868092372 | 705 | 6.5581978028 | 4623.5294509826 | | 660 | 6.4922398350 | 4284.8782911135 | 706 | 6.5596152374 | 4631.0883576702 | | 661 | 6.4937538398 | 4292.3712881420 | 707 | 6.5610306658 | 4638.6486807889 | | 662 | 6.4952655559 | 4299.8657980303 | 70 8 | 6.5624440936 | 4646.2104183352 | | 663 | 6.4967749901 | 4307.3618184932 | 70 9 | 6.5638555265 | 4653.7735683113 | | 664 | 6.4982821494 | 4314.8593472524 | 710 | 6.5652649700 | 4661.3381287251 | | 665 | 6.4997870406 | 4322.3583820361 | 711 | 6.5666724298 | 4668.9040975901 | | 666 | 6.5012896705 | 4329.8589205799 | 712 | 6.5680779114 | 4676.4714729253 | | 667 | 6.5027900459 | 4337,3609606257 | 713 | 6.5694814204 | 4684.0402527554 | | 668 | 6.5042881735 | 4344.8644999225 | 714 | 6.5708829623 | 4691.6104351105 | | 669 | 6.5057840601 | 4352,3695362258 | 715 | 6.5722825426 | 4699.1820180262 | | 670 | 6,5072777123 | 4359.8760672980 | 716 | 6.5736801669 | 4706.7549995438 | | 671 | 6.5087691369 | 4367.3840909080 | 717 | 6.5750758405 | 4714.3293777099 | | 672 | 6.5102583405 | 4374.8936048316 | 718 | 6.5764695690 | 4721.9051505766 | | 673 | 6.5117453296 | 4382.4046068509 | 719 | 6.5778613577 | 4729.4823162014 | | 674 | 6.5132301109 | 4389.9170947549 | 720 | 6.5792512120 | 4737.0608726473 | | 675 | 6.5147126908 | 4397.4310663390 | 721 | 6.5806391372 | 4744.6408179824 | | 676 | 6.5161930760 | 4404.9465194050 | 722 | 6.5820251388 | 4752.2221502806 | | 677 | 6.5176712729 | 4412.4634517616 | 723 | 6.5834092221 | 4759.8048676208 | | 678 | 6.5191472879 | 4419.9818612236 | 724 | 6.5847913923 | 4767.3889680873 | | 679 | 6.5206211275 | 4427.5017456124 | 725 | 6.5861716548 | 4774.9744497696 | | 680 | 6.5220927981 | 4435.0231027557 | 726 | 6.5875500148 | 4782.5613107628 | | 681 | 6.5235623061 | 4442.5459304878 | 727 | 6.5889264775 | 4790.1495491669 | | 682 | 6.5250296578 | 4450.0702266492 | 728 | 6.5903010481 | 4797.7391630872 | | 683 | 6.5264948595 | 4457.5959890868 | 729 | 6.5916737320 | 4805.3301506343 | | 684 | 6.5279579176 | 4465.1232156538 | 730 | 6.5930445341 | 4812.9225099240 | | 685 | 6.5294188382 | 4472.6519042096 | 731 | 6.5944134597 | 4820.5162390771 | | 686 | 6.5308776277 | 4480.1820526200 | 732 | 6.5957805139 | 4828.1113362197 | | 687 | 6.5323342922 | 4487.7136587568 | 733 | 6.5971457018 | 4835.7077994829 | | 688 | 6.5337888379 | 4495.2467204981 | 734 | 6.5985090286 | 4843.3056270031 | | 689 | 6.5357666379 | 4502.7812357284 | 735 | 6.5998704992 | 4850.9048169214 | | 690 | 6.5366915975 | 4510.3172023380 | 736 | 6.6012301187 | 4858.5053673845 | | 0,70 | 0.5500715775 | .510.51.202550 | | | -
- | TABLE I (continued) | n | log _e n | n log _e n | n | log _e n | n log _e n | |-----|------------------------------|----------------------|--------------------|--------------------|------------------------------| | 737 | 6.6025878921 | 4866.1072765435 | 783 | 6.6631326959 | 5217.2329009608 | | 738 | 6.6039438246 | 4873.7105425551 | 784 | 6.6644090203 | 5224.8966719547 | | 739 | 6.6052979209 | 4881.3151635807 | 785 | 6.6656837177 | 5232.5617184592 | | 740 | 6. 606650 1861 | 4888.9211377867 | 786 | 6.6669567924 | 5240.2280388494 | | 741 | 6.6080006252 | 4896.5284633444 | 787 | 6.6682282484 | 5247.8956315045 | | 742 | 6.6093492431 | 4904.1371384302 | 788 | 6.6694980898 | 5255.5644948080 | | 743 | 6.6106960447 | 4911.7471612253 | 789 | 6.6707663208 | 5263.2346271474 | | 744 | 6.6120410348 | 4919.3585299158 | 790 | 6.6720329454 | 5270.9060269142 | | 745 | 6.6133842183 | 4926.9712426928 | 791 | 6.6732979677 | 5278.5786925042 | | 746 | 6.6147256002 | 4934.5852977520 | 792 | 6.6745613918 | 5286.2526223170 | | 747 | 6.616 065185 1 | 4942.2006932942 | 793 | 6.6758232216 | 5293.9278147564 | | 748 | 6.6174029779 | 4949.8174275249 | 794 | 6.6770834612 | 5301,6042682302 | | 749 | 6.6187389835 | 4957.4354986544 | 795 | 6.6783421146 | 5309.2819811502 | | 750 | 6.6200732065 | 4965.0549048978 | 796 | 6.6795991858 | 5316.9609519321 | | 751 | 6.6214056517 | 4972.6756444749 | 797 | 6.6808546787 | 5324.6411789958 | | 752 | 6.6227363239 | 4980.2977156103 | 798 | 6.6821085974 | 5332.3226607649 | | 753 | 6.6240652277 | 4987.9211165333 | 799 | 6.6833609457 | 5340.0053956673 | | 754 | 6.6253923680 | 4995.5458454780 | 800 | 6.6846117276 | 5347.6893821343 | | 755 | 6.6267177492 | 5003.1719006830 | 801 | 6.6858609470 | 5355.3746186018 | | 756 | 6.6280413761 | 5010.7992803917 | 802 | 6.6871086078 | 5363.0611035089 | | 757 | 6.6293632534 | 5018.4279828521 | 803 | 6.6883547139 | 5370.7488352992 | | 758 | 6.6306833856 | 5026.0580063169 | 804 | 6.6895992691 | 5378.4378124199 | | 759 | 6.6320017773 | 5033.6893490433 | 805 | 6.6908422774 | 5386.1280333219 | | 760 | 6.6333184332 | 5041.3220092931 | 806 | 6.6920837425 | 5393.8194964603 | | 761 | 6.6346333578 | 5048.9559853327 | 807 | 6.6933236682 | 5401.5122002938 | | 762 | 6.6359465556 | 5056.5912754332 | 808 | 6.6945620585 | 5409.2061432850 | | 763 | 6.6372580312 | 5064.2278778700 | 809 | 6.6957989170 | 5416.9013239003 | | 764 | 6.6385677891 | 5071.8657909232 | 810 | 6.6970342476 | 5424.5977406099 | | 765 | 6.6398758338 | 5079.5050128773 | 811 | 6.6982680541 | 5432.2953918876 | | 766 | 6.6411821697 | 5087.1455420213 | 812 | 6.6995003401 | 5439.9942762113 | | 767 | 6.6424868013 | 5094.7873766487 | 813 | 6.7007311095 | 5447.6943920624 | | 768 | 6.6437897331 | 5102.4305150574 | 814 | 6.7019603660 | 5455.3957379261 | | 769 | 6.6450909695 | 5110.0749555498 | 815 | 6.7031881132 | 5463.0983122913 | | 770 | 6.6463905148 | 5117.7206964328 | 816 | 6.7044143549 | 5470.8021136507 | | 771 | 6.6476883735 | 5125.3677360173 | 817 | 6.7056390948 | 5478.5071405006 | | 772 | 6.6489845500 | 5133.0160726191 | 818 | 6.7068623366 | 5486.2133913410 | | 773 | 6.6502790485 | 5140.6657045581 | 819 | 6.7080840838 | 5493.9208646757 | | 774 | 6.6515718735 | 5148.3166301584 | 820 | 6.7093043402 | 5501.6295590118 | | | | 5155.9688477488 | 821 | 6.7105231094 | 5509,3394728604 | | 775 | 6.6528630293
6.6541525201 | 5163.6223556622 | 822 | 6.7117403950 | 5517.0506047362 | | 776 | | 5171.2771522357 | 823 | 6.7129562006 | 5524.7629531572 | | 777 | 6.6554403503
6.6567265241 | 5178.9332358108 | 823
824 | 6.7141705299 | 5532.4765166454 | | 778 | | 5186.5906047333 | 82 4
825 | 6.7153833863 | 5540.1912937261 | | 779 | 6.6580110458 | 5194.2492573532 | 825
826 | 6.7165947735 | 5547.9072829283 | | 780 | 6.6592939196 | | 820
827 | 6.7178046950 | 5555.6244827846 | | 781 | 6.6605751498 | 5201.9091920248 | | 6.7190131543 | 5563.3428918310 | | 782 | 6.6618547405 | 5209.5704071064 | 828 | 0./170131343 | JJUJ.J T LU/10J1V | | n | log _e n | n log _e n | n | log _e n | n log _e n | |-----|--------------------|----------------------|-----|--------------------|----------------------| | 829 | 6.7202201551 | 5571.0625086072 | 875 | 6.7742238863 | 5927.4459005629 | | 830 | 6.7214257007 | 5578,7833316562 | 876 | 6.7753660909 | 5935.2206956603 | | 831 | 6.7226297948 | 5586.5053595249 | 877 | 6.7765069923 | 5942.9966323104 | | 832 | 6.7238324408 | 5594,2285907632 | 878 | 6.7776465936 | 5950.7737092116 | | 833 | 6.7250336421 | 5601.9530239250 | 879 | 6.7787848976 | 5958.5519250653 | | 834 | 6.7262334023 | 5609.6786575672 | 880 | 6.7799219074 | 5966.3312785756 | | 835 | 6.7274317248 | 5617.4054902505 | 881 | 6.7810576259 | 5974.1117684498 | | 836 | 6.7286286130 | 5625,1335205388 | 882 | 6.7821920560 | 5981.8933933980 | | 837 | 6.7298240704 | 5632.8627469997 | 883 | 6.7833252006 | 5989.6761521333 | | 838 | 6.7310181004 | 5640.5931682040 | 884 | 6.7844570626 | 5997.4600433717 | | 839 | 6.7322107064 | 5648.3247827260 | 885 | 6.7855876450 | 6005.2450658320 | | 840 | 6.7334018918 | 5656.0575891434 | 886 | 6.7867169506 | 6013.0312182361 | | 841 | 6.7345916599 | 5663.7915860372 | 887 | 6.7878449823 | 6020.8184993086 | | 842 |
6.7357800142 | 5671.5267719920 | 888 | 6.7889717429 | 6028.6069077770 | | 843 | 6.7369669580 | 5679.2631455956 | 889 | 6.7900972355 | 6036.3964423719 | | 844 | 6.7381524945 | 5687.0007054390 | 890 | 6.7912214627 | 6044.1871018263 | | 845 | 6.7393366273 | 5694.7394501168 | 891 | 6.7923444274 | 6051.9788848765 | | 846 | 6.7405193596 | 5702.4793782269 | 892 | 6.7934661325 | 6059.7717902614 | | 847 | 6.7417006946 | 5710.2204883703 | 893 | 6.7945865808 | 6067.5658167227 | | 848 | 6.7428806357 | 5717.9627791515 | 894 | 6.7957057751 | 6075.3609630051 | | 849 | 6.7440591863 | 5725.7062491783 | 895 | 6.7968237182 | 6083.1572278560 | | 850 | 6.7452363494 | 5733.4508970617 | 896 | 6.7979404129 | 6090.9546100255 | | 851 | 6.7464121285 | 5741.1967214159 | 897 | 6.7990558620 | 6098.7531082667 | | 852 | 6.7475865268 | 5748.9437208586 | 898 | 6.8001700683 | 6106.5527213354 | | 853 | 6.7487595474 | 5756.6918940104 | 899 | 6.8012830344 | 6114.3534479900 | | 854 | 6.7499311937 | 5764.4412394954 | 900 | 6.8023947633 | 6122.1552869919 | | 855 | 6.7511014689 | 5772.1917559409 | 901 | 6.8035052576 | 6129.9582371051 | | 856 | 6.7522703761 | 5779.9434419773 | 902 | 6.8046145200 | 6137.7622970965 | | 857 | 6.7534379185 | 5787.6962962383 | 903 | 6.8057225534 | 6145.5674657355 | | 858 | 6.7546040994 | 5795.4503173607 | 904 | 6.8068293603 | 6153.3737417945 | | 859 | 6.7577689219 | 5803.2055039845 | 905 | 6.8079349436 | 6161.1811240484 | | 860 | 6.7569323892 | 5810.9618547529 | 906 | 6.8090393060 | 6168.9896112749 | | 861 | 6.7580945044 | 5818.7193683123 | 907 | 6.8101424501 | 6176.7992022544 | | 862 | 6.7592552706 | 5826.4780433121 | 908 | 6.8112443786 | 6184.6098957700 | | 863 | 6.7604146910 | 5834.2378784050 | 909 | 6.8123450941 | 6192.4216906073 | | 864 | 6.7615727688 | 5841.9988722467 | 910 | 6.8134445995 | 6200.2345855549 | | 865 | 6.7627295069 | 5849.7610234961 | 911 | 6.8145428972 | 6208.0485794038 | | 866 | 6.7638849085 | 5857.5243308151 | 912 | 6.8156399900 | 6215.8636709478 | | 867 | 6.7650389767 | 5865.2887928687 | 913 | 6.8167358805 | 6223.6798589832 | | 868 | 6.7661917146 | 5873.0544083252 | 914 | 6.8178305714 | 6231.4971423091 | | 869 | 6.7673431252 | 5880.8211758556 | 915 | 6.8189240652 | 6239.3155197271 | | 870 | 6.7684932116 | 5888.5890941343 | 916 | 6.8200163646 | 6247.1349900415 | | 871 | 6.7696419768 | 5896.3581618385 | 917 | 6.8211074722 | 6254.9555520592 | | 872 | 6.7707894239 | 5904.1283776486 | 918 | 6.8221973906 | 6262.7772045896 | | 873 | 6.7719355558 | 5911.8997402480 | 919 | 6.8232861223 | 6270.5999464449 | | 874 | 6.7730803756 | 5919.6722483229 | 920 | 6.8243736700 | 6278.4237764396 | TABLE I (continued) | n | log _e n n log _e n | | n | log _e n | n log _e n | |-----|---|-----------------|-------------|--------------------|----------------------| | 921 | 6.8254600362 | 6286.2486933911 | 961 | 6.8679744089 | 6600.1234070205 | | 922 | 6.8265452235 | 6294.0746961192 | 962 | 6.8690144506 | 6607.9919015404 | | 923 | 6.8276292345 | 6301.9017834461 | 963 | 6.8700534117 | 6615.8614355616 | | 924 | 6.8287120716 | 6309.7299541969 | 964 | 6.8710912946 | 6623.7320080046 | | 925 | 6.8297937375 | 6317.5592071990 | 965 | 6.8721281013 | 6631.6036177921 | | 926 | 6.8308742346 | 6325.3895412824 | 966 | 6.8731638342 | 6639.4762638493 | | 927 | 6.8319535655 | 6333.2209552795 | 967 | 6.8741984954 | 6647.3499451033 | | 928 | 6.8330317327 | 6341.0534480256 | 968 | 6.8752320872 | 6655.2246604837 | | 929 | 6.8341087388 | 6348.8870183581 | 969 | 6.8762646118 | 6663.1004089222 | | 930 | 6.8351845861 | 6356.7216651170 | 970 | 6.8772960714 | 6670.9771893525 | | 931 | 6.8362592772 | 6364.5573871449 | 971 | 6.8783264682 | 6678.8550007109 | | 932 | 6.8373328146 | 6372.3941832870 | 972 | 6.8793558044 | 6686.7338419355 | | 933 | 6.8384052008 | 6380.2320523906 | 973 | 6.8803840821 | 6694.6137119670 | | 934 | 6.8394764382 | 6388.0709933057 | 974 | 6.8814113036 | 6702.4946097478 | | 935 | 6.8405465292 | 6395.9110048849 | 975 | 6.8824374709 | 6710.3765342229 | | 936 | 6.8416154764 | 6403.7520859830 | 976 | 6.8834625864 | 6718.2594843392 | | 937 | 6.8426832822 | 6411.5942354574 | 977 | 6.8844866520 | 6726.1434590458 | | 938 | 6.8437499490 | 6419.4374521678 | 978 | 6.8855096700 | 6734.0284572941 | | 939 | 6.8448154792 | 6427.2817349766 | 979 | 6.8865316425 | 6741.9144780374 | | 940 | 6.8458798752 | 6435.1270827482 | 980 | 6.8875525716 | 6749.8015202313 | | 941 | 6.8469431395 | 6442.9734943498 | 981 | 6.8885724595 | 6757.6895828336 | | 942 | 6.8480052745 | 6450.8209686509 | 982 | 6.8895913083 | 6765.5786648041 | | 943 | 6.8490662826 | 6458.6695045234 | 983 | 6.8906091201 | 6773.4687651047 | | 944 | 6.8501261661 | 6466.5191008414 | 984 | 6.8916258970 | 6781.3598826994 | | 945 | 6.8511849274 | 6474.3697564816 | 985 | 6.8926416411 | 6789.2520165545 | | 946 | 6.8522425690 | 6482.2214703231 | 986 | 6.8936563546 | 6797.1451656382 | | 947 | 6.8532990931 | 6490.0742412472 | 987 | 6.8946700394 | 6805.0393289208 | | 948 | 6.8543545022 | 6497.9280681378 | 988 | 6.8956826977 | 6812.9345053749 | | 949 | 6.8554087986 | 6505.7829498808 | 989 | 6.8966943316 | 6820.8306939749 | | 950 | 6.8564619845 | 6513.6388853649 | 990 | 6.8977049431 | 6828.7278936973 | | 951 | 6.8575140625 | 6521.4958734807 | 991 | 6.8987145343 | 6836.6261035210 | | 952 | 6.8585650347 | 6529.3539131214 | 992 | 6.8997231072 | 6844.5253224266 | | 953 | 6.8596149036 | 6537.2130031825 | 993 | 6.9007306640 | 6852.4255493969 | | 954 | 6.8606636714 | 6545.0731425617 | 9 94 | 6.9017372066 | 6860.3267834166 | | 955 | 6.8617113404 | 6552.9343301591 | 995 | 6.9027427371 | 6868.2290234728 | | 956 | 6.8627579130 | 6560.7965648771 | 996 | 6.9037472575 | 6876.1322685543 | | 957 | 6.8638033914 | 6568.6598456205 | 997 | 6.9047507699 | 6884.0365176520 | | 958 | 6.8648477779 | 6576.5241712961 | 998 | 6.9057532763 | 6891.9417697588 | | 959 | 6.8658910748 | 6584.3895408132 | 999 | 6.9067547786 | 6899.8480238699 | | 960 | 6.8669332844 | 6592.2559530834 | 1000 | 6.9077552789 | 6907.7552789821 | | | | | | | | TABLE II.* $F(p_1, p_2) = p_1 \log \frac{p_1}{p_2} + q_1 \log \frac{q_1}{q_2}, p_1 + q_1 = 1 = p_2 + q_2$ | _ | <i>p</i> ₂ | | | | | | | | | | | |-------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | ` | p ₂ | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.10 | 0.15 | | | | | | 10.0 | 0.0000000 | 0.0031170 | 0.0092198 | 0.0165994 | 0.0247332 | 0.0713311 | 0.1238648 | | | | | | 0.02 | 0.0039160 | 0.0000000 | 0.0019456 | 0.0063448 | 0.0121424 | 0.0512682 | 0.0991756 | | | | | | 0.03 | 0.0131606 | 0.0022116 | 0.0000000 | 0.0014188 | 0.0048802 | 0.0365339 | 0.0798150 | | | | | | 0.04 | 0.0259124 | 0.0079304 | 0.0015616 | 0.0000000 | 0.0011252 | 0.0253068 | 0.0639616 | | | | | | 0.05 | 0.0412940 | 0.0162790 | 0.0057530 | 0.0012110 | 0.0000000 | 0.0167095 | 0.0507380 | | | | | | 0.10 | 0.1444790 | 0.0842990 | 0.0529870 | 0.0335430 | 0.0206510 | 0.0000000 | 0.0108970 | | | | | | 0.15 | 0.2766080 | 0.1812630 | 0.1291650 | 0.0948190 | 0.0702460 | 0.0122345 | 0.0000000 | | | | | | 0.20 | 0.4286740 | 0.2981640 | 0.2252800 | 0.1760320 | 0.1397780 | 0.0444060 | 0.0090400 | | | | | | 0.25 | 0.5964975 | 0.4308225 | 0.3371525 | 0.2730025 | 0.2250675 | 0.0923350 | 0.0338375 | | | | | | 0.30 | 0.7777260 | 0.5768860 | 0.4624300 | 0.3833780 | 0.3237620 | 0.1536690 | 0.0720400 | | | | | | 0.35 | 0.9708980 | 0.7348930 | 0.5996510 | 0.5056970 | 0.4344000 | 0.2269465 | 0.1221860 | | | | | | 0.40 | 1.1750840 | 0.9039140 | 0.7478860 | 0.6390300 | 0.5560520 | 0.3112380 | 0.1833460 | | | | | | 0.45 | 1.3897125 | 1.0833775 | 0.9065635 | 0.7828055 | 0.6881465 | 0.4059720 | 0.2549485 | | | | | p_1 | 0.50 | 1.6144600 | 1.2729600 | 1.0753600 | 0.9367000 | 0.8303600 | 0.5108250 | 0.3366700 | | | | | | 0.55 | 1.8492245 | 1.4725595 | 1.2541735 | 1.1006115 | 0.9825905 | 0.6256950 | 0.4284085 | | | | | | 0.60 | 2.0941080 | 1.6822780 | 1.4431060 | 1.2746420 | 1.1449400 | 0.7506840 | 0.5302660 | | | | | | 0.65 | 2.3494340 | 1.9024390 | 1.6424810 | 1.4591150 | 1.3177320 | 0.8861155 | 0.6425660 | | | | | | 0.70 | 2.6157740 | 2.1336140 | 1.8528700 | 1.6546020 | 1.5015380 | 1.0325610 | 0.7658800 | | | | | | 0.75 | 2.8940575 | 2.3767325 | 2.0752025 | 1.8620325 | 1.6972875 | 1.1909500 | 0.9011375 | | | | | | 0.80 | 3.1857460 | 2.6332560 | 2.3109400 | 2.0828680 | 1.9064420 | 1.3627440 | 1.0498000 | | | | | | 0.85 | 3.4931920 | 2.9055370 | 2.5624350 | 2.3194610 | 2.1313640 | 1.5502955 | 1.2142200 | | | | | | 0.90 | 3.8205750 | 3.1977550 | 2.8338670 | 2.5759910 | 2.3762030 | 1.7577840 | 1.3985770 | | | | | | 0.95 | 4.1769020 | 3.5189170 | 3.1342430 | 2.8614650 | 2.6499960 | 1.9942165 | 1.6118780 | | | | | | 0.96 | 4.2534228 | 3.5884048 | 3.1995736 | 2.9238152 | 2.7100100 | 2.0467584 | 1.6597936 | | | | | | 0.97 | 4.3325734 | 3.6605224 | 3.2675340 | 2.9887952 | 2.7726538 | 2.1019301 | 1.7103390 | | | | | | 0.98 | 4.4152312 | 3.7361472 | 3.3390016 | 3.0572824 | 2.8388048 | 2.1606090 | 1.7643916 | | | | | | 0.99 | 4.5032176 | 3.8171006 | 3.4157978 | 3.1310982 | 2.9102844 | 2.2246165 | 1.8237728 | | | | | | | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.10 | 0.15 | | | | ^{*} For values of $p_1 \log \frac{p_1}{p_2} + q_1 \log \frac{q_1}{q_2}$ for $p_2 > 0.50$, enter the table using (q_1, q_2) as though they were (p_1, p_2) . TABLES 379 TABLE II (continued) p_2 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | p_2 | |--------------|-----------|-----------|-----------|-----------|-----------|-----------|----------| | | | | | | | | <u> </u> | | 0.1810018 | 0.2426649 | 0.3091418 | 0.3809692 | 0.4588834 | 0.5438455 | 0.6371488 | 0.01 | | 0.1528296 | 0.2116158 | 0.2755796 | 0.3451244 | 0.4209028 | 0.5038170 | 0.5951136 | 0.02 | | 0.1299860 | 0.1858953 | 0.2473460 | 0.3146082 | 0.3882508 | 0.4691171 | 0.5584070 | 0.03 | | 0.1106496 | 0.1636820 | 0.2226196 | 0.2875992 | 0.3591060 | 0.4379244 | 0.5252076 | 0.04 | | 0.0939430 | 0.1440985 | 0.2005230
 0.2632200 | 0.3325910 | 0.4093615 | 0.4946380 | 0.05 | | 0.0366870 | 0.0724580 | 0.1163170 | 0.1676010 | 0.2262930 | 0.2928240 | 0.3680670 | 0.10 | | 0.0083750 | 0.0297615 | 0.0610550 | 0.1009260 | 0.1489390 | 0.2052305 | 0.2704400 | 0.15 | | 0.0000000 | 0.0070020 | 0.0257300 | 0.0541880 | 0.0915220 | 0.1375740 | 0.1927500 | 0.20 | | 0.0073825 | 0.0000000 | 0.0061625 | 0.0232075 | 0.0498625 | 0.0856750 | 0.1308175 | 0.25 | | 0.0281700 | 0.0064030 | 0.0000000 | 0.0056320 | 0.0216080 | 0.0471810 | 0.0822900 | 0.30 | | 0.0609010 | 0.0247495 | 0.0057810 | 0.0000000 | 0.0052970 | 0.0206305 | 0.0457060 | 0.35 | | 0.1046460 | 0.0541100 | 0.0225760 | 0.0053820 | 0.0000000 | 0.0050940 | 0.0201360 | 0.40 | | 0.1588335 | 0.0939130 | 0.0498135 | 0.0212065 | 0.0051455 | 0.0000000 | 0.0050085 | 0.45 | | 0.2231400 | 0.1438350 | 0.0871700 | 0.0471500 | 0.0204100 | 0.0050250 | 0.0000000 | 0.50 | | 0.2974635 | 0.2037740 | 0.1345435 | 0.0831105 | 0.0456915 | 0.0200670 | 0.0050085 | 0.55 | | 0.3819060 | 0.2738320 | 0.1920360 | 0.1291900 | 0.0810920 | 0.0452280 | 0.0201360 | 0.60 | | 0.4767910 | 0.3543325 | 0.2599710 | 0.1857120 | 0.1269350 | 0.0808315 | 0.0457060 | 0.65 | | 0.5826900 | 0.4458470 | 0.3389200 | 0.2532480 | 0.1837920 | 0.1274490 | 0.0822900 | 0.70 | | 0.7005325 | 0.5493050 | 0.4298125 | 0.3327275 | 0.2525925 | 0.1860100 | 0.1308175 | 0.75 | | 0.8317800 | 0.6661680 | 0.5341100 | 0.4256120 | 0.3347980 | 0.2579760 | 0.1927500 | 0.80 | | 0.9787850 | 0.7987885 | 0.6541650 | 0.5342540 | 0.4327610 | 0.3456995 | 0.2704400 | 0.85 | | 1.1457270 | 0.9513460 | 0.7941570 | 0.6628330 | 0.5506610 | 0.4533600 | 0.3680670 | 0.90 | | 1.3416130 | 1.1328475 | 0.9630930 | 0.8203560 | 0.6975050 | 0.5899645 | 0.4946380 | 0.95 | | 1.3860456 | 1.1744032 | 1.0021356 | 0.8571160 | 0.7321292 | 0.6225408 | 0.5252076 | 0.96 | | 1.4331080 | 1.2185887 | 1.0438080 | 0.8965058 | 0.7693832 | 0.6577469 | 0.5584070 | 0.97 | | 1.4836776 | 1.2662814 | 1.0889876 | 0.9394028 | 0.8101444 | 0.6964602 | 0.5951136 | 0.98 | | 1.5395758 | 1.3193027 | 1.1394958 | 0.9876284 | 0.8562342 | 0.7405021 | 0.6371488 | 0.99 | | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | | TABLE III. Noncentral χ^2 Table of 5% points of the distribution of Fisher's B^2 | Values of | | Value of n, Degrees of Freedom | | | | | | | |-----------|---------|--------------------------------|---------|---------|---------|---------|---------|--| | eta^2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 0 | 3.8415 | 5.9915 | 7.8147 | 9.4877 | 11.0705 | 12.5916 | 14.0671 | | | 0.04 | 3.9940 | 6.1108 | 7.9186 | 9.5821 | 11.1589 | 12.6750 | 14.1474 | | | 0.16 | 4.4394 | 6.4613 | 8.2254 | 9.8627 | 11.4217 | 12.9247 | 14.3868 | | | 0.36 | 5.1320 | 7.0209 | 8.7220 | 10.3202 | 11.8515 | 13.3349 | 14.7802 | | | 0.64 | 6.0050 | 7.7590 | 9.3881 | 10.9402 | 12.4383 | 13.8965 | 15.3225 | | | 1.00 | 7.0018 | 8.6424 | 10.2023 | 11.7073 | 13.1704 | 14.6000 | 16.0040 | | | 1.44 | 8.0946 | 9.6466 | 11.1462 | 12.6061 | 14.0340 | 15.4363 | 16.8166 | | | 1.96 | 9.2714 | 10.7558 | 12.2045 | 13.6242 | 15.0203 | 16.3952 | 17.7527 | | | 2.56 | 10.5294 | 11.9605 | 13.3671 | 14.7517 | 16.1186 | 17.4691 | 18.8035 | | | 3.24 | 11.8673 | 13.2569 | 14.6276 | 15.9824 | 17.3222 | 18.6486 | 19.9639 | | | 4.00 | 13.2853 | 14.6406 | 15.9808 | 17.3089 | 18.6261 | 19.9318 | 21.2281 | | | 4.84 | 14.7833 | 16.1098 | 17.4248 | 18.7299 | 20.0256 | 21.3130 | 22.5920 | | | 5.76 | 16.3612 | 17.6627 | 18.9564 | 20.2410 | 21.5185 | 22.7892 | 24.0522 | | | 6.76 | 18.0192 | 19.3002 | 20,5744 | 21.8416 | 23.1024 | 24.3572 | 25.6066 | | | 7.84 | 19.7571 | 21.0195 | 22.2775 | 23.5283 | 24.7745 | 26.0161 | 27.2526 | | | 9.00 | 21.5751 | 22.8216 | 24.0639 | 25.3019 | 26.5349 | 27.7634 | 28.9875 | | | 10.24 | 23.4731 | 24,7059 | 25.9346 | 27.1597 | 28.3801 | 29.5980 | 30.8114 | | | 11.56 | 25,4510 | 26.6710 | 27.8879 | 29.1017 | 30.3116 | 31.5192 | 32.7230 | | | 12.96 | 27.5090 | 28.7178 | 29.9242 | 31.1275 | 32.3272 | 33.5253 | 34.7204 | | | 14.44 | 29.6469 | 30.8458 | 32.0424 | 33.2352 | 34.4276 | 35.6158 | 36.8024 | | | 16.00 | 31.8649 | 33.0545 | 34.2412 | 35.4275 | 36.6098 | 37.7918 | 38.9701 | | | 17.64 | 34.1629 | 35.3442 | 36.5227 | 37.7008 | 38.8765 | 40.0499 | 41.2215 | | | 19.36 | 36.5408 | 37.7143 | 38.8864 | 40.0562 | 41.2241 | 42.3918 | 43.5574 | | | 21.16 | 38.9988 | 40.1652 | 41.3295 | 42.4934 | 43.6551 | 44.8163 | 45.9752 | | | 23.04 | 41.5367 | 42.6958 | 43.8549 | 45.0120 | 46.1679 | 47.3234 | 48.4764 | | | 25.00 | 44.1547 | 45.3077 | 46.4606 | 47.6128 | 48.7637 | 49.9128 | 51.0610 | | Entries in this table are the squares of the values of B and the values of β^2 are the squares of β_1 in the table on p. 665 of R. A. Fisher (1928). ## Glossary var Variance **Implies** Approaches = If and only if Union N Intersection Is contained in Contains Is asymptotically equal to Is approximately equal to Such that $\{x:C\}$ Set of x's satisfying the condition C Belongs to $[\lambda]$ Modulo λ , or except for sets of λ -measure 0 cov Covariance $E_i()$ Expectation with respect to the probability measure μ_i O(n) Is at most of order n o(n) Is of smaller order than n g.l.b. Greatest lower bound, infimum, inf l.u.b. Least upper bound, supremum, sup lim Limit superior, lim sup lim Limit inferior, lim inf lim Limit Trace tr Absolute Continuity: A measure μ is said to be absolutely continuous with respect to a second measure ν if for every set E for which $\nu(E) = 0$ it is true that $\mu(E) = 0$. For μ absolutely continuous with respect to ν , we write $\mu \ll \nu$. [μ and ν are defined on the same measurable space $(\mathcal{X}, \mathcal{S})$.] Additive Class of Sets—a Field: Sometimes called "simply" additive to distinguish it from a "completely" additive class which is a Borel field. In other words, additive or simply additive refer to properties essentially dealing with a finite number of terms whereas completely additive refers to a denumerable number (finite or infinite). Admissible: That which is regarded as a priori possible. Generally the property of belonging to a particular subset. For example, a parameter point is called an admissible point if it belongs to a set of the parameter space corresponding to a given hypothesis. Asymptotic Confidence Interval: A confidence interval whose limits are statistics based on arbitrarily large samples. Asymptotic Distribution Function: If the distribution function F(c; n) of a random variable x depends upon a parameter n, then the distribution function (if any) to which F(c; n) tends as $n \to \infty$ is called the asymptotic distribution function of the random variable. Axiomatic Development: That development of a science which begins with the creation of a clearly defined set of axioms from which all theorems are deduced. The theorems are then applied to explain and predict the results of experiments—the "facts." Inductive development, by contrast, proceeds from a body of observed "facts" from which the theorems are obtained by a process of generalization. If then a set of axioms can be found which enables the theorems to be "proved," the two approaches produce equivalent results. Basis: A set of linearly independent vectors such that every other vector of the space is a linear combination of the vectors of the set. Best Estimate: That estimate of a parameter having minimum attainable variance. Bias: The difference between the expected value of an estimate and the estimated parameter. Biased Estimate: An estimate whose expected value is not the estimated parameter. Binary Digit: A digit of a binary system of numbers. Bit: Abbreviation for binary digit. Borel Field: A field $\mathcal S$ such that the union of any denumerable number of sets of $\mathcal S$ is a set of $\mathcal S$. Borel Set: A set of a Borel field. In an *n*-dimensional Euclidean space R^n a Borel set is one that is obtained by taking a finite or a denumerable number of unions, differences, and intersections of half-open intervals $(a_i < x_i \le b_i)$, $i = 1, 2, \dots, n$. Characteristic Equation (of a square matrix A): The determinantal equation in λ , $|\mathbf{A} - \lambda \mathbf{I}| = 0$, where I is the identity matrix (same order as A). Characteristic Function of a Set: The point function which is equal to 1 for any point of the set and which is 0 elsewhere. Characteristic Vector (corresponding to a characteristic root of a characteristic equation for a square matrix A): The vector x which satisfies the matrix equation $Ax = \lambda x$ for the particular characteristic root λ of the characteristic equation. Class: Set of sets. Communication Theory: Mathematics applied to communication processes. Complement of One Set with Respect to Another: Set of all points of the second set which are not in the first. The complement of a set E with respect to the space $\mathscr X$ in which it is contained is the set of all points of $\mathscr X$ not in E. Confidence Coefficient: The probability associated with a confidence interval. Confidence Interval: An interval limited by two statistics such that the probability of a parameter value being covered by the interval is known. Confidence Limits: The upper and lower limits of a confidence interval. Consistent Estimate: One that converges in probability to the estimated parameter. Converge Stochastically or Converge in Probability: Let f(x), $f_1(x)$, $f_2(x)$, \cdots be random variables on an x-space. The sequence $f_n(x)$ is said to converge stochastically, or in probability, to f(x) if $\lim \text{Prob}\{|f_n(x) - f(x)| \ge \epsilon\} = 0$. Converge with Probability 1: Let f(x), $f_1(x)$, $f_2(x)$, \cdots be random variables on an x-space. If $\lim_{n\to\infty} f_n(x) = f(x)$ for almost all x, we say that $f_n(x)$ converges to f(x) with probability 1. GLOSSARY 383 Convex Set: A set such that the entire line segment connecting any two points of the set is contained in the set. Cramér-Rao Inequality:
See Information Inequality. Denumerable: The property of being able to be placed in one-to-one correspondence with the set of positive integers. Diagonal Element (of a square matrix): An element in the same row as column. Disjoint Sets: Two sets having no common elements. Distance (Function): A real-valued function d of points x, y, z such that $d(x, y) \ge 0$, d(x, y) = 0, if and only if x = y, d(x, y) = d(y, x), and $d(x, y) \le d(x, z) + d(z, y)$. The last relation is called the triangular inequality. Dominated Set of Measures: A set M of measures μ_i defined on the measurable space $(\mathcal{X}, \mathcal{S})$ for which there exists a finite measure ν such that μ_i is absolutely continuous with respect to $\nu(\mu_i \ll \nu)$ for every μ_i belonging to M. ν need not be a member of M. Efficient Estimate: An estimate of minimum possible variance. Equivalent Measures: Two measures μ and ν such that μ is absolutely continuous with respect to ν (written $\mu \ll \nu$) and such that ν is absolutely continuous with respect to μ ($\nu \ll \mu$). To indicate that two measures are equivalent we write $\mu \equiv \nu$. Equivalent Set of Measures: A set of measures μ_i defined on the measurable space $(\mathcal{X}, \mathcal{S})$ for which there exists a measure ν such that each measure μ_i is equivalent to ν (written $\mu_i \equiv \nu$). This means that each μ_i is absolutely continuous with respect to ν and vice versa. Estimator: A statistic selected to approximate (or to estimate) a given parameter (or function of such parameter). Euclidean Space R^n of n Dimensions: A metric space made up of points (vectors) $x = (x_1, x_2, \dots, x_n)$, where the x_i for $i = 1, 2, \dots, n$ are real numbers and where for two points $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$, the "distance" between x and y is defined as $\left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$ Event: A set of the probability space $(\mathcal{X}, \mathcal{S}, \mu)$ belonging to \mathcal{S} . Field: A class $\mathscr S$ of sets of a space $\mathscr X$ such that the union of any two sets in $\mathscr S$ is in $\mathscr S$, the intersection of any two sets in $\mathscr S$ is in $\mathscr S$, and the complement of any set in $\mathscr S$ with respect to $\mathscr X$ is in $\mathscr S$. Finite Measure: A measure μ such that $\mu(\mathcal{X}) < \infty$ for a measurable space $(\mathcal{X}, \mathcal{S})$. Fisher's Information Matrix: The $k \times k$ matrix whose element in the *i*th row and jth column is $\int f(x, \theta) \left[\frac{\partial}{\partial \theta_i} \log f(x, \theta) \right] \left[\frac{\partial}{\partial \theta_j} \log (fx, \theta) \right] d\lambda(x)$, where $\lambda(x)$ is a probability measure and $f(x, \theta)$, the generalized density is a function of x and a k-dimensional ability measure and $f(x, \theta)$, the generalized density, is a function of x and a k-dimensional parameter θ . Generalized Probability Density: Let μ be a probability measure which is absolutely continuous with respect to λ on a probability space $(\mathcal{X}, \mathcal{S}, \lambda)$. Then the generalized probability density function corresponding to μ is that function f(x), unique, positive, and finite except for sets of λ -measure zero, such that $\mu(E) = \int_E f(x) d\lambda(x)$ for all E belonging to \mathcal{S} . Greatest Lower Bound (Abbreviated g.l.b., or called "the" lower bound): The largest of the lower bounds of a set (of real numbers). Homogeneous Samples: Samples from populations with the same parameter values. If only some of the parameters are alike, the samples are said to be homogeneous with respect to these parameters only. Homogeneous Set of Measures: A set of measures such that any two members of the set are absolutely continuous with respect to each other. Hyperplane (of n dimensions): The set of all points in \mathbb{R}^n which satisfy a single linear function $l(x_1, x_2, \dots, x_n) = 0$. (See Linear Set.) Hypothesis: A statement that a point of the parameter space belongs to a specified set of the parameter space. Identity Matrix $(n \times n)$: The matrix with all n diagonal elements equal to 1 and all other elements equal to 0. Indicator of a Set: Same as characteristic function of a set. Infimum (inf): Greatest lower bound. Information Inequality: Consider $f(x, \theta)$ a density function corresponding to an absolutely continuous distribution function with parameter θ for a random variable X. Let T(X) be any unbiased estimate of $\phi(\theta)$, a function of θ . Then the inequality variance of $$T \ge \frac{(d\phi/d\theta)^2}{I}$$, where I is the variance of $\frac{1}{f}\frac{df}{d\theta}$, is called the information inequality. Note: The range of X must be independent of θ and f must be differentiable with respect to θ under the integral sign. As defined by R. A. Fisher, I is the information on θ supplied by a sample of n observations. Intersection of Two Sets: The set of points belonging to both sets. The intersection of sets A and B is written $A \cap B$. Inverse Image of a Set: If a set G belongs to a space \mathscr{Y} corresponding to a space \mathscr{X} under a transformation T(x), then the set of all points x of \mathscr{X} whose transforms under T(x) are in G is called the inverse image of G. It is denoted by $T^{-1}(G) = \{x: T(x) \in G\}$. Inverse of a Matrix: An $n \times n$ square nonsingular matrix A is said to have an inverse A^{-1} if $AA^{-1} = A^{-1}A = I$, where I is the $n \times n$ identity matrix. Jacobian of a Transformation: If $y_i = f_i(x_1, \dots, x_k)$ for $i = 1, 2, \dots, k$ is a transformation, then the determinant whose element in the *i*th row and *j*th column is $\partial f_i/\partial x_j$ is called the Jacobian of the transformation. Khintchine's Theorem: Let X_1, X_2, \cdots be identically distributed independent random variables with finite mean m. Then $X = \frac{1}{n} \sum_{i=1}^{n} X_i$ converges in probability to m. Least Upper Bound (Abbreviated l.u.b., or called "the" upper bound): The smallest of the upper bounds of a set (of real numbers). Likelihood Ratio (at X = x): The ratio of $f_1(x)$ to $f_2(x)$, where $f_i(x)$ for i = 1, 2 is the generalized probability density for the observation X = x under the hypothesis that the random variable X is from the population having the generalized probability density $f_i(X)$. Limit Inferior (lim inf): The smallest limit point of a sequence (of real numbers bounded below). ($\lim x = a$ if $x > a - \epsilon$ but never ultimately $> a + \epsilon$.) ($\lim x_n = \frac{1}{n \to \infty}$) $\lim_{n\to\infty} m_n$, where m_1 is the lower bound of $x_1, x_2, x_3, \cdots, m_2$ is the lower bound of x_2, x_3, \cdots, m_3 is the lower bound of x_3, x_4, \cdots , etc.) ($\lim_{n\to\infty} x_n = \sup_{n\to\infty} \inf_{k} x_m$.) Limit Point (of a sequence of real numbers): A point every neighborhood of which contains infinitely many points of the sequence. Limit Superior (lim sup): The greatest limit point of a sequence (of real numbers GLOSSARY 385 bounded above). $(\overline{\lim} x = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ $(\overline{\lim} x_n = A \text{ if } x < A + \epsilon \text{ but never ultimately } < A - \epsilon.)$ x_2, x_3, \cdots, M_3 is the upper bound of x_3, x_4, \cdots ,
etc.) ($\limsup_{n \to \infty} x_n = \inf_{k} \sup_{m \ge k} x_m$.) Linear Set of n-p Dimensions: A set of points in a space R^n each of whose coordinates can be expressed as a linear function of n-p arbitrary parameters. For p=1 this set is a hyperplane and for p=n-1, a straight line. Also: the set of points in R^n common to p linearly independent hyperplanes is a set of n-p dimensions. Linear Transformation: $\mathbf{y} = \mathbf{A}\mathbf{x}$ with $\mathbf{y}' = (y_1, y_2, \dots, y_m), \mathbf{x}' = (x_1, x_2, \dots, x_n),$ $\mathbf{A} = (a_{ij}), i = 1, 2, \dots, m, j = 1, 2, \dots, n.$ Linearly Independent Functions (on R^n): A set of functions $f_i(x)$ defined on R^n such that no one of them can be expressed as a linear combination of the others with real numbers not all zero for coefficients. Linearly Independent Vectors: A set of vectors is said to be linearly independent if none of them can be expressed as a linear combination of the rest. Lower Bound (of a set E of real numbers): A real point c such that for every point x of E, $x \ge c$. Matrix $(m \times n)$: A set of numbers arranged rectangularly in m rows and n columns. Measurable Function: A real-valued function f(x) of the points x of the measurable space $(\mathcal{X}, \mathcal{S})$ such that for every real number c, the set $\{x: f(x) < c\}$ belongs to \mathcal{S} . Such a function is called an \mathcal{S} -measurable function. Measurable Set: Any subset of a measurable space $(\mathcal{X}, \mathcal{S})$ belonging to the Borel field \mathcal{S} defined on the space \mathcal{X} . Measurable Space: A space \mathscr{X} on which is defined a Borel field \mathscr{S} of subsets of \mathscr{X} . We denote this type of space by $(\mathscr{X}, \mathscr{S})$. Measurable Transformation: A transformation T(x) of the elements of a measurable space $(\mathcal{X}, \mathcal{S})$ into those of another measurable space $(\mathcal{Y}, \mathcal{F})$ such that for every set G belonging to the Borel field \mathcal{F} , the inverse image of G, $T^{-1}(G)$, belongs to the Borel field \mathcal{S} , where $T^{-1}(G) = \{x: T(x) \in G\}$. Measure: A nonnegative, completely additive set function defined on a Borel field \mathcal{S} of a measurable space $(\mathcal{X}, \mathcal{S})$. Minor (of a matrix A): The determinant of any square submatrix of A. Moment Generating Function (of a random variable X): A function of a real variable t equal to the expected value of e^{tX} with respect to the distribution function of X. Most Powerful Test: That test among all tests of a given size giving the largest possible value to the probability of rejecting the null hypothesis when an alternative hypothesis is true. Neighborhood of a Point: The neighborhood of a point \mathbf{a} is the set of points \mathbf{x} which satisfy an inequality of the form $|\mathbf{x} - \mathbf{a}| < \epsilon$, where $\epsilon > 0$ and $|\mathbf{x} - \mathbf{a}|$ means the distance between \mathbf{x} and \mathbf{a} . (See Euclidean Space.) Nonsingular Linear Transformation: A linear transformation with a nonsingular matrix. Nonsingular Matrix: A square matrix A such that its determinant $|A| \neq 0$. If |A| = 0 the matrix is said to be singular. Nonsingular Transformation: A one-to-one transformation which has an inverse. One-sided Hypothesis: A hypothesis which places the value of a parameter as always greater than, or as always less than, some fixed constant. One-to-One Transformation T: A transformation such that $T(x_1) = T(x_2)$ when and only when $x_1 = x_2$. Open Set of R^n : A set all of whose points are interior points, that is, points such that a neighborhood of the point belongs entirely to the set. Orthogonal Matrix: A matrix C such that CC' = I, where C' is the transpose of C and I is the identity matrix. Parameter Space: The space of all admissible parameter points. *Point*: Any element of a space \mathcal{X} . Generally a vector (x_1, x_2, \dots, x_k) for a vector space of k dimensions. Point Function: A function defined (having a value) for every point of a space. Contrast is usually with set function. Positive Definite Matrix: The matrix of a positive definite quadratic form. Positive Definite Quadratic Form: A quadratic form which is never negative for real values of the variables and is zero only for all values of the variables equal to zero. Positive Matrix: The matrix of a positive quadratic form. Positive Quadratic Form: A quadratic form which is nonnegative and which may be zero for real values of the variables not all zero. Power (of a test): The power of a test (of a given size) is the probability of rejecting the null hypothesis when an alternative hypothesis is true. Principal Minor (of a square matrix): A minor whose diagonal elements are diagonal elements of the matrix. Probability Measure: A measure μ such that $\mu(\mathcal{X}) = 1$ for the space \mathcal{X} [which is a measurable space $(\mathcal{X}, \mathcal{S})$]. Probability Measure Space: Same as probability space. **Probability Space:** A measurable space $(\mathcal{X}, \mathcal{S})$ on which a probability measure μ is defined. Designated as $(\mathcal{X}, \mathcal{S}, \mu)$. Quadratic Form: An expression of the form $x'Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j}$, with $x' = \sum_{i=1}^{n} a_{ij}x_{i}x_{i}$ (x_1, x_2, \dots, x_n) and the matrix $A = (a_{ij})$ of the quadratic form symmetric. R^n : Symbol for the Euclidean space of n dimensions. Radon-Nikodym Theorem: If μ and ν are two σ -finite measures on the measurable space $(\mathcal{X}, \mathcal{S})$ such that ν is absolutely continuous with respect to μ , then there exists an \mathcal{S} -measurable function f(x) such that $0 < f(x) < +\infty$, and for every set $E \in \mathscr{S}$ $\nu(E) = \int_{E} f(x) d\mu(x)$. The function f(x) is unique in the sense that if there exists another function g(x) with the same properties as f(x), then $\mu(x:f(x) \neq g(x)) = 0$. Random Variable: Any \mathscr{S} -measurable function f(x) defined on a measurable space $(\mathscr{X}, \mathscr{S})$. Rank of a Matrix: A matrix is of rank r if r is the largest integer such that at least one minor of the matrix of order r is not zero. Region of Acceptance (Rejection): A set of the sample space such that if a sample point (or function thereof) falls inside (outside) the set we accept (reject) a given hypothesis. Set: Any subset of a given set (space) \mathcal{X} . (The words set, subset, and space are among the "undefined elements" of the science, theory, or geometry of measure.) Set Function: A function whose domain of definition is a class of sets. σ -Algebra: Same as Borel field. A nonempty class of sets closed under (that is, contains the result of) the formation of complements and denumerable unions. σ -Finite Measure: A measure μ for which a finite or denumerable sequence of measurable sets E_i can be found such that the union $\bigcup E_i = \mathcal{X}$ (the whole space) and $\mu(E_i) < \infty$ for every i. GLOSSARY 387 Size (of a test): The probability of rejecting the null hypothesis when it is true. Space: Any collection or set of elements x of any nature. Denoted by \mathcal{X} . (An "undefined" element of our science.) Statistic: Any function of a sample not depending on any parameter. Itself a random variable. Supremum (sup): Least upper bound. Theory: A set of axioms and all logical deductions (theorems) therefrom. Synonyms: Science, geometry. Trace (of a square matrix): The sum of the diagonal elements. Transformation: A function T(x) = y of the elements x of a space \mathcal{X} which establishes a correspondence between those elements and the elements of a space \mathcal{Y} . Transformation Matrix: The matrix $A = (a_{ij})$ of a linear transformation. Transpose (of a matrix A): The matrix A' with the rows and columns of A interchanged. Truncation: A process by which all observations outside a given interval are discarded. The remaining cases then yield a truncated distribution with the distribution function $$F(x|a < \xi \le b) = \frac{F(x) - F(a)}{F(b) - F(a)} \quad \text{for } a < x \le b$$ $$1 \quad \text{for } x > b.$$ where $F(x|a < \xi \le b)$ is the conditional distribution function of the random variable ξ on the assumption that ξ lies on the interval (a, b] (half open) and where F(x) is the original distribution function of ξ on the whole x-space of ξ . Type I Error: The error made in rejecting the null hypothesis when it is true. Type II Error: The error made in accepting the null hypothesis when it is false. Unbiased Estimate: An estimate whose expected value is the estimated parameter. Uniformly Most Powerful Test: The test among all tests of a given size that is most powerful for all admissible alternative hypotheses. Union of Two or More Sets: The set of all those points of a space \mathscr{X} which belong to at least one of the sets. If E_i denotes the sets, for $i=1,2,\cdots,n$, then $\bigcup_{i=1}^n E_i$ denotes the union. Upper Bound (of a set E of real numbers): A real point d such that for every point x of E, $x \le d$. Vector: A matrix consisting of a single row or of a single column. # Appendix ## Note to page 38 Anticipating lemma 4.9 in section 4 we also state: THEOREM 2.2. If $f_1(x)$ and $f_2(x)$ are generalized densities of a dominated set of probability measures, Y = T(x) is a measurable statistic such that $\int T(x)f_1(x)d\lambda(x)$ exists, and $M_2(\tau) = \int f_2(x)e^{\tau T(x)} d\lambda(x)$ exists for τ in some interval; then $$I(1:2) \geq \theta \tau - \log M_2(\tau) = I(*:2), \ \theta = \frac{d}{d\tau} \log M_2(\tau),$$ for $f_1(x)$ ranging over the generalized densities for which $\int T(x)f_1(x)d\lambda(x) \ge \theta$ and $\int T(x)f_2(x) d\lambda(x) < \theta$, with equality if and only if $$f_1(x) = f^*(x) = e^{\tau T(x)} f_2(x) / M_2(\tau) [\lambda].$$ # Note
to page 70 THEOREM 2.1a. Suppose that the probability measures in theorem 2.1 are such that $$\nu_{i}^{(N)}(G) = \int_{G} g_{i}^{(N)}(y) \, d\gamma(y), \, \nu_{i}(G) = \int_{G} g_{i}(y) \, d\gamma(y), \quad i = 1, 2, G \in \mathcal{F}.$$ If $\lim_{N\to\infty} (g_1^{(N)}/g_1) = 1$ [γ], uniformly and $\lim_{N\to\infty} \log (g_1^{(N)}/g_2^{(N)}) = \log (g_1/g_2)[\gamma]$, uniformly, then $\lim_{N\to\infty} I(1^{(N)}:2^{(N)}; \mathcal{Y}) = I(1:2; \mathcal{Y})$, if $I(1:2; \mathcal{Y})$ is finite. Proof. $$|I(1:2;\mathscr{Y}) - I(1^{(N)}:2^{(N)};\mathscr{Y})| = \left| \int \left(g_1 \log \frac{g_1}{g_2} - g_1^{(N)} \log \frac{g_1^{(N)}}{g_2^{(N)}} \right) d\gamma \right|$$ $$\leq \int \left| g_1 \log \frac{g_1}{g_2} - g_1^{(N)} \log \frac{g_1}{g_2} \right| d\gamma + \int \left| g_1^{(N)} \log \frac{g_1}{g_2} - g_1^{(N)} \log \frac{g_1^{(N)}}{g_2^{(N)}} \right| d\gamma$$ $$\leq \int \left| 1 - \frac{g_1^{(N)}}{g_1} \right| g_1 \left| \log \frac{g_1}{g_2} \right| d\gamma + \int \left| \log \frac{g_1}{g_2} - \log \frac{g_1^{(N)}}{g_2^{(N)}} \right| \frac{g_1^{(N)}}{g_1} g_1 d\gamma.$$ 389 For sufficiently large $$N$$, $\left|1 - \frac{g_1^{(N)}}{g_1}\right| < \epsilon_1$ $$\left|\log \frac{g_1}{g_2} - \log \frac{g_1^{(N)}}{g_2^{(N)}}\right| < \epsilon_2, \frac{g_1^{(N)}}{g_1} < 1 + \epsilon_1$$ so that $$|I(1:2; \mathscr{Y}) - I(1^{(N)}:2^{(N)}:\mathscr{Y})|$$ $$\leq \epsilon_1 \int g_1 \left| \log \frac{g_1}{g_2} \right| d\gamma + \epsilon_2 (1 + \epsilon_1)$$ and since ϵ_1 and ϵ_2 are arbitrarily small the assertion is proven. (See S. Ikeda (1960), "A remark on the convergence of Kullback-Leibler's mean information", *Annals of the Institute of Statistical Mathematics*, Vol. 12, No. 1, pp. 81–88.) Note that if $I(1^{(N)}:2^{(N)};\mathscr{Y})$ in theorem 2.1, page 70, is a monotonically increasing function of N and $I(1^{(N)}:2^{(N)};\mathscr{Y}) \leq I(1:2;\mathscr{Y})$, then $\lim_{N\to\infty} I(1^{(N)}:2^{(N)};\mathscr{Y}) = I(1:2;\mathscr{Y})$. Since $\lim_{N\to\infty} \inf I(1^{(N)}:2^{(N)};\mathscr{Y}) \geq I(1:2;\mathscr{Y})$, if $I(1:2;\mathscr{Y}) = \infty$, then $\lim_{N\to\infty} I(1^{(N)}:2^{(N)};\mathscr{Y}) = \infty$. #### Note to page 72 The following is the proof of lemma 2.2, page 72. In problems 7.29, 7.31, 7.32 on page 69 it is shown that $$I(1:2) \ge -2 \log \int (f_1(x)f_2(x))^{\frac{1}{2}} d\lambda(x) \ge 2(1 - \int (f_1(x)f_2(x))^{\frac{1}{2}} d\lambda(x)$$ $$= \int ((f_1(x))^{\frac{1}{2}} - (f_2(x))^{\frac{1}{2}})^2 d\lambda(x) \ge \frac{1}{4} \int |f_1(x) - f_2(x)| d\lambda(x))^2.$$ (see S. Kullback (1966), "An information-theoretic derivation of certain limit relations for a stationary Markov Chain," SIAM Journal on Control, Vol. 4, No. 3.) Accordingly $\frac{1}{4}(\int |f_1^{(N)}(x) - f_1(x)|d\lambda(x))^2 \le I(1^{(N)}:1) < \epsilon$ for sufficiently large N, that is $\int |f_1^{(N)}(x) - f_1(x)|d\lambda(x) \to 0$ as $N \to \infty$. The last assertions follow from Loève (1955, p. 140, problem 16 and page 158). ### Note to page 306 In problem 8.34, page 341, table 8.5, the component due to $\Sigma_{21} \Sigma_{11}^{-1}$ reduces to the independence test for $\Sigma_{21} = 0$. The component in table 8.5 is then also a test for specified $\Sigma_{21} \Sigma_{11}^{-1}$ other than 0. The analysis for independence may also be set up as in table 8.6. TABLE 8.6 | Component due to | Information | D.F. | eta^2 | |---------------------------|--|------------------------|---| | Independence within set 1 | $-N\log R_{11} $ | $\frac{k_1(k_1-1)}{2}$ | $\frac{k_1(k_1-1)(2k_1+5)}{12N}$ | | Independence within set 2 | $-N\log R_{22} $ | $\frac{k_2(k_2-1)}{2}$ | $\frac{k_2(k_2-1)(2k_2+5)}{12N}$ | | ••• | • • • | | ••• | | Independence within set m | $-N\log R_{mm} $ | $\frac{k_m(k_m-1)}{2}$ | $\frac{k_m(k_m-1)(2k_m+5)}{12N}$ | | Independence between sets | $\frac{-N\log R }{ R_{11} \cdots R_{mm} }$ | $\sum_{i < j} k_i k_j$ | $\frac{(2k^3+3k^2-k-\sum_{i}(2k_i^3+3k_i^2-k_i))}{12N}$ | | Total independence | - N log R | $\frac{k(k-1)}{2}$ | $\frac{k(k-1)(2k+5)}{12N}$ | Note that when $$R_{11}$$ contains all but the last variable $$-N\log|R| = -N\log|R_{11}| - N\log\frac{|R|}{|R_{11}|}$$ and $$\log\frac{|R|}{|R_{11}|} = \log\left(1 - r_{m.12}^2 \dots_{m-1}\right).$$ (See table 8.1, page 337.) # Index Absolute continuity, 3, 29, 381 Additive class, 3, 381 Admissible, 39, 381 Analysis of covariance, 219, 239 Analysis of samples, 109 Analysis of variance, 109 multivariate analogue, 294 multivariate generalization, 109 Asymptotic confidence interval, 382 Asymptotic distribution, 70, 97, 324, 382 Averages, distribution of, 191 moment generating function of, 297 Axiomatic development, 12, 382 Bartlett, M. S., 302, 329 Bartlett's test for the homogeneity of Bartlett, M. S., 302, 329 Bartlett's test for the homogeneity of variances, 319 Basis, 382 Bayes' theorem, 4, 84 Behrens-Fisher problem, 311 Bessel function, 327 Best estimate, 109, 382 Bhattacharyya, A., 41 Bias, 382 Biased estimate, 58, 382 Binary digit, 7, 382 Bit, 7, 382 Borel field, 3, 382 Borel set, 3, 382 Box, G. E. P., 327 Brownlee, K. A., 188 Canonical correlation, 202-204, 275, 277, 279, 281 discrimination efficiency, 278 test for, 276, 278, 282 Canonical form, 194 Carter, A. H., 229 Categories, grouping, 114, 116 Centering, 217, 262 Central limit theorem, 101, 105 Channel, capacity, 9, 25 noisy, 24 Characteristic equation, 382 Characteristic function, 325, 328, 329 χ^2 -distribution, 210, 327, 330 noncentral χ^2 -distribution, 210, 327 Characteristic function of a set, 21, 42, 382 Characteristic roots, 195 Characteristic vectors, 195, 382 Chernoff, H., 41, 77, 86, 95, 98 Cherry, E. C., 2, 3 Class, 3, 382 Classification procedure, 85, 348 Column effect, 239, 240 Communication, system, 24 theory, 1, 8, 24, 382 Comparisons, dichotomous, 114, 115 pooling, 136, 147 Complement of one set with respect to another, 42, 382 Components, principal, 197 Concave function, 34 Conditional discrimination information, 13 Conditional entropy, 24 Conditional expectation, 19 Conditional homogeneity, analysis of, 171, 181, 184 null hypothesis of, 170 Conditional independence, 166, 170, 182 Conditional information, 13 Conditional probability, 4, 83, 117, 166 Confidence coefficient, 102, 382 Confidence interval, 91, 103, 149, 382 binomial, 103 Confidence limits, 102, 382 Confidence region, 102 Conjecture, 352 Conjugate distribution, 81, 106, 111, 143, 297, 298, 310, 315, 318 Consistent estimate, 98, 382 Consistent test, 100, 105 Converge in probability, 75, 102, 382 Converge with probability 1, 141, 187, 382 Convex function, 16, 34, 171 Convex set, 98, 383 Convexity property, 16, 114, 135, 145, 157, 171 Correlation, canonical, 200, 275, 277, 279, 281 multiple, 203 simple, 205 Correlation coefficients, test of homogeneity, 321, 323 Correlation matrices, 192 null hypothesis of homogeneity, 320 Correlation matrix, null hypothesis specifying, 304 Covariance, analysis of, 219, 239 multiple, 239 Covariance matrices, homogeneity of, 315, 324 test of homogeneity, 322 Covariance matrix, 189 null hypothesis specifying, 302 of estimates, 213, 237, 255, 291 of linear functions, 290 unbiased sample, 192 Covariance variates, 204 Cramér-Rao inequality, 36, 383 Critical region, 74, 86 Cumulant generating function, 41 Denumerable, 383 Denumerable, 383 Determinantal equation, 195, 197, 382 roots of, 330 Diagonal element, 383 Diagonal matrix, 192, 195 Digit, binary, 7, 382 Directed divergence, 7, 82, 85 Discriminant function, linear, 196, 203. 205, 254, 276, 305, 311, 317, 342 sufficient, 196 Discrimination efficiency, 63, 64, 65, 197, Discrimination information, 5, 19, 70, 85, 196 conditional, 13 minimum, 37, 38, 81, 85, 94, 109, 213, 256, 302, 303 Disjoint sets, 383 Distance, 6, 383 generalized, 190 Distribution, asymptotic, 324, 382 conjugate, 81, 106, 111, 143, 297, 298. 310, 315, 318 Fisher's B-, 327 least informative, 111, 120, 143 multivariate normal, 189 noncentral, 257 noncentral χ^2 -, 327, 328 roots of determinantal equation, 330 Wishart, 191, 325 Divergence, 6, 22, 41, 110, 142, 190, 212, 254 directed, 7, 82, 85 Dominated set of measures, 29, 383 Efficiency, discrimination, 63, 64, 65, 197, 277 estimation, 64, 65, 66 relative, 77 Efficient estimate, 383 Entropy, 1, 7, 34 conditional, 24 Equivalent measures, 383 Equivalent samples, 82 Equivalent x's, sets of, 18 Error, type I (II), 74, 77, 86, 125, 387 Estimate, consistent, 98, 382 efficient, 383 maximum-likelihood, 94, 102 Estimation efficiency, 64, 65, 66 Estimator, 81, 383 unbiased, 57, 387 Euclidean space, 3, 383 Event, 3, 383 Evidence, weight of, 5 Expectation, conditional, 19 Experiment, 10 Experiment, designer of, 1 Exponential family, 38, 84 Exponential type, 39, 44 Factor analysis, 302 Field, 383 Finite measure, 5, 383 Fisher, R. A., 1, 2, 13, 18, 119, 141 Fisher consistent, 141 Fisher information matrix, 28, 49, 383 Fisher's B-distribution, 327 Fisher's B², table of, 380 Fisher's information, 13, 26, 55 Fisher's z-test, 324 Garner, W. R., 155 Generalized distance, 190 Generalized probability density, 4, 383 Generalized Student ratio, see Hotelling's T² Generating function, cumulant, 41 moment, 41, 297, 385 Gilbert, E. N., 1 Good, I. J., 5, 114 Greatest lower bound, 383 Green, P. E., Jr., 2 Greenhouse, S. W., 344 gT(x), definition of, 19 Halmos, P. R., 19 Hartley, R. V. L., 2, 7 Homogeneity, conditional, 169 correlation matrices, 320 covariance matrices, 315, 318 marginal distributions, 179, 333 means, multivariate samples, 264, 276, 309, 311 means, single-variate samples, 223 means and regressions, 272, 273 multinomial samples, 128, 134, 159 multivariate normal sample, 299 normal sample, 95 null subhypothesis of, 225 Poisson samples, 144 regression coefficients, 221 sample averages, 280 two-way contingency table, 168 variances, Bartlett's test, 319 Homogeneous sample,
hypothesis about mean of, 301 Homogeneous samples, 383 Homogeneous set of measures, 20, 384 Hotelling, H., 199, 202, 256, 268 Hotelling's canonical correlation coefficients, 276 Hotelling's generalization of Student's t-test, 301 Hotelling's T², 213, 257, 262, 279 Hyperplane, 98, 384 Hypotheses, rejection of, 3, 37, 85 testing, 85, 109 Hypothesis, 384 conditional, 166 multivariate normal, 333 one-sided, 119, 121, 131, 148, 151, 385 $\hat{I}(*:H)$, 85 I(*:2), 38I(1:2), 5Identity matrix, 384 Independence, conditional, 166 multivariate, 303 sets of variates, 276, 282, 306 three-way contingency table, 160, 162, two-way contingency table, 156 Independence components, analysis of, 173 Independence hypotheses, 165, 182 Indicator of a set, 42, 384 Inequality, Cramér-Rao, 36 information, 36, 55, 384 Jensen's, 16 Infimum (inf), 384 Information, additivity of, 12 bit of, 7 Chernoff's, 41 conditional, 13 definition of, 3, 5 discrimination, 5, 19, 70, 85, 196 experiment, 10 Fisher's, 13, 26, 55 Hartley's, 7 in a set, 16 in a variable about another variable, 8 in a vector about another vector, 201 in row-categories about columncategories, 156 in row-categories about (column, depth)-categories, 163 396 INDEX | Information, in the elements of a set, 16 | Lehmann, E. L., 93 | | |---|--|--| | infinite, 6 | Levin, S. G., 109 | | | logarithmic form of, 13
loss of, 16, 22, 74, 144 | Likelihood ratio, 5, 94, 95, 97, 104, 114, 384 | | | $\sqrt{\text{mean}}$, 8, 142, 156, 201 | Limit inferior (lim inf), 71, 384 | | | pseudo, 41 | Limit point, 384 | | | Savage's, 5 | Limit superior (lim sup), 384 | | | selective, 7 | Lindley, D. V., 9 | | | semantic, 2 | Linear compound, 254, 276, 278, 317, | | | Shannon's, 2, 7, 8 | 348 | | | transmission of, 25 | Linear discriminant functions, compari- | | | unit of, 5, 7, 8 | son of, 351 | | | Wiener's, 2, 33 | minimum error criterion, 349 | | | Information inequality, 36, 55, 384 | most divergent, 198, 200, 203, 347 | | | Information statistic, 81, 83, 85, 113, 120, | most informative, 198, 200, 203, 347 | | | 124 | pair of, 204 | | | Information theory, 1, 2 | Linear estimates, minimum variance, | | | Input space, 24 | unbiased, 238, 255, 292 | | | Interaction, 171, 186, 238 | Linear hypothesis, 109, 211, 212, 253 | | | negative, 172, 185 | Linear regression, common, 268 | | | second-order, 188 | k categories, 219 | | | Intersection of two sets, 384 | test of, 214 | | | Invariant properties 64 104 202 | two-way classification, 239 | | | Invariant properties, 64, 194, 292 Inverse image set, 18, 384 | Linear regression model, 294 | | | Inverse of a matrix, 384 | Linear set, 385 Linear transformation, 385 | | | Iteration, 343, 349 | nonsingular, 194, 385 | | | Ito, K., 268 | Linearly independent functions, 385 | | | 110, 14., 200 | Linearly independent renetions, 385 | | | J(1, 2), 6 | Log n, tables of, 109, 110, 367 | | | Jacobian, 325, 328, 384 | Lower bound, 75, 385 | | | Jeffreys, H., 6 | 20,000 200 | | | Jensen's inequality, 16 | McCall, C. H., Jr., 238 | | | | MacDonald, D. K. C., 8 | | | Khintchine's theorem, 75, 105, 384 | McGill, W. J., 155 | | | Klemmer, E. T., 110 | Mahalanobis, P. C., 190 | | | Knowledge, prior, 10 | Mann, H. B., 102 | | | Kolodziejczyk, S., 211 | Marginal distributions, homogeneity of, | | | Koopman, B. O., 39 | 179, 333 | | | Kossack, C. F., 313 | Matrices, 189 | | | Kronecker product of matrices, 255, 291 | direct product of, 255, 291, 293 | | | Kullback, J. H., 313 | inverse of direct product of, 256, 292 | | | Kupperman, M., 83, 98 | Matrix, 385 | | | | diagonal, 192, 195 | | | [λ], 4 | nonsingular, 385 | | | Latin square, 238 | orthogonal, 199, 386 | | | Lawley, D. N., 256, 257, 268 | positive, 237, 289, 386 | | | Least informative distribution, 111, 120, | positive definite, 386 | | | 143 Least upper bound 71 384 | rank of, 386 Matrix differentiation, 298 | | | Least upper bound, 71, 384 | , matrix difficientiation, 270 | | INDEX 397 Matrix factorization, 302 Matrix inequality, 56, 292 Maximum likelihood, 85, 94 equations, 118, 139, 176 estimate, 94, 102 Means, homogeneity of, 223, 264, 272, 273, 276, 309, 311 Measurable function, 4, 385 Measurable set, 1, 3, 385 Measurable space, 3, 385 Measurable statistic, 18 Measurable transformation, 18, 70, 385 Measure, 385 probability, 3, 386 σ-finite, 386 Minor, 56, 385 principal, 386 Modulo λ, 4 Moment generating function, 41, 297, 385 Most powerful test, 385 Mourier, E., 77 Multinomial distribution, conditional, 116 fitting, 117, 139 Multinomial populations, tests of, 112 Multiple correlation, 203 Multiple covariance, 239 Multivalued population, 155 Multivariate normal density, 189 Multivariate regression, test of, 264 $N(\mu_i, \Sigma_i)$, 189 n log n, tables of, 109, 110, 367 Neighborhood of a point, 385 Neyman, J., 87, 94, 114 Neyman criterion, sufficient statistic, 45 Neyman's χ'^2 , 114 Nit, 8 Noise power, 9 Noncentral χ^2 , 105, 106, 127, 210, 257 distribution, 327, 328 table of, 380 Noncentral distributions, 257 Noncentrality parameter, 105, 106, 125, 146, 158, 162, 165, 210, 257, 327 Nonsingular linear transformation, 385 Nonsingular matrix, 385 Nonsingular transformation, 21, 385 Normal density, 8, 14, 189 Normal equations, 212, 215, 216, 220, 221, 226, 230, 237, 255, 258, 289 Notation, matrix, 189 under various hypotheses, 220 Observations, definitive, 4 grouping of, 16, 22 missing, 238 probabilistic, 1 raw, 219, 231, 234, 260 statistical, 3, 15 Odds, posterior, 5 prior, 5 Okano, F., 234 One-sided hypothesis, 119, 121, 131, 148, 151, 385 One-to-one transformation, 385 Open set, 386 Orthogonal matrix, 199, 386 Output space, 24 Parameter matrix, 220, 254 partitioning of, 214, 294 sufficient estimate of, 293 unbiased estimate of, 289 Parameter space, 98, 386 Partial correlation, 210 Partitioning, of samples, 138 of tables, 173 sufficient, 18 Pearson, E. S., 87, 94, 322 Pearson, K., 8 Pearson's χ^2 , 114 Pierce, J. R., 1 Pillai, K. C. S., 257 Pitman, E. J. G., 39 Point, 386 Point function, 386 Pooling, of samples, 147, 188 Positive definite, 14 matrix, 386 quadratic form, 386 Positive matrix, 237, 289, 386 Positive quadratic form, 386 Power, noise, 9 of a test, 386 signal, 9 Powers, K. H., 2, 13, 33 Principal components, 199 Principal direction, 64 Principal minor, 386 Probability, conditional, 4, 24, 83 posterior, 5 prior, 5 theory of, 1 Probability density, generalized, 4, 383 Probability measure, 3, 386 Probability space, 3, 386 Quadratic form, 56, 386 positive, 386 positive definite, 386 R^n , 3, 386 Radon-Nikodym, derivative, 4, 29 theorem, 29, 386 Random variable, 386 Rank of a matrix, 386 Rate of transmission, 24, 25 Region of acceptance (rejection), 74, Regression, null hypothesis of no, 269 test of, 268, 273 test of subhypothesis, 282, 286, 287 two-way classification, analysis of, 239 Regression model, 294 Carter's, 229 k-category, 221, 222, 225 multivariate, 253, 254, 258, 265, 269 Regularity conditions, 26, 98 Relation, measure of, 8, 9, 25, 156, 160, 163, 199, 201 Reparametrization, 238, 289 Replication, 238 "Resemblance," 37, 82 Rippe, D. D., 302 Roberts, H. R., 103 Rosenblatt, H. M., 234 Rothstein, J., 1 Row effect, 239, 240 Sakaguchi, M., 77 Sample averages, moment generating function of, 297 Sample space, 3 Sample unbiased covariance matrix, mo- ment generating function of, 297 Samples, equivalent, 82 multivariate normal, 191 Sampling theorem, 9 Savage, L. J., 2, 3, 5, 19, 36 Scale factor in χ^2 approximation, 328 Schützenberger, M. P., 41 Semantic information, 2 Sequential analysis, 2, 43 Set, 3, 386 Set function, 386 Set of measures, dominated, 29 homogeneous, 20 Shannon, C. E., 1, 2, 24, 25, 37 Shannon's information, 2, 7, 8 σ -algebra, 3, 386 σ-finite measure, 386 Signal power, 9 Size (of a test), 387 Smith, C. A. B., 321, 344, 348 Space, 387 Euclidean, 3, 383 input, 24 measurable, 3, 385 output, 24 parameter, 98, 386 probability, 3, 386 sample, 3 Specified mean, test of, 300 Statistic, 18, 70, 387 sufficient, 18, 20, 21, 22, 24, 44, 59 Statistics, mathematical, 1 Stein, C., 77 Stirling's approximation, 326 Stuart, A., 334 Stuart's test, 333 Student's t-test, 97, 301 Stumpers, F. L. H. M., 1, 2 Subhypothesis, 214, 258 test of, 216, 260 Sufficiency, criterion of, 18, 45 Sufficient partitioning, 18 Sufficient statistic, 18, 20, 21, 22, 24, 44, Supremum (sup), 387 Symmetry, null hypothesis of, 177, 178 test for, 179 $T^{-1}(G)$, definition of, 18 Table, contingency, 155 Fisher's B^2 , 380 log n, 109, 110, 367 n log n, 109, 110, 367 noncentral χ^2 , 380 Tensor, fundamental, 64 Test, consistent, 100, 105 most powerful, 385 power of, 386 size of, 387 uniformly most powerful, 387 Theory, 387 communication, 1, 24, 382 information, 1, 2 Three-partition subhypothesis, test of, 288 Trace, 387 Transformation, 18, 22, 387 Jacobian of, 325, 328, 384 linear, 385 matrix, 387 nonsingular, 21, 385 one-to-one, 385 Transpose, 387 Truncation, 15, 22, 387 Tuller, W. G., 1, 7 Two-way table with no regression, 250 Two-way tables, homogeneity of, 168 Type I (II) error, 74, 77, 86, 125, 387 Unbiased estimator, 57, 387 Uncertainty, 4, 7, 17, 155 posterior, 24 prior, 24 Uniformly most powerful test, 387 Union of two or more sets, 387 Upper bound, 387 Variance, unbiased, 50 Variances, Bartlett's test for homogeneity of, 319 independence and equality of, 307 Variates, covariance, 204 Vector, 189, 387 Wald, A., 2, 74, 98, 102 Wiener, N., 1, 2 Wiener's information, 2, 33 Wilks, S. S., 97, 114, 322 Wilks' theorem, 98 Wishart distribution, 191, 325 reproductive property, 325 Woodward, P. M., 2