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Preface to the First Edition

Information in a technically defined sense was first introduced in
statistics by R. A. Fisher in 1925 in his work on the theory of estima-
tion. Fisher’s definition of information is well known to statisticians.
Its properties are a fundamental part of the statistical theory of esti-
mation. ‘

Shannon and Wiener, independently, published in 1948 works de-
scribing logarithmic measures of information for use in communication
theory. These stimulated a tremendous amount of study in engi-
neering circles on the subject of information theory. In fact, some
erroneously consider information theory as synonymous with com-
munication theory.

Information theory is a branch of the mathematical theory of
probability and mathematical statistics. As such, it can be and is
applied in a wide variety of fields. Information theory is relevant to
statistical inference and should be of basic interest to statisticians.
Information theory provides a unification of known results, and leads
to natural generalizations and the derivation of new results.

The subject of this book is the study of logarithmic measures of
information and their application to the testing of statistical hypothe-
ses. There is currently a heterogeneous development of statistical
procedures scattered through the literature. In this book a unification
is attained by a consistent application of the concepts and properties
of information theory. Some new results are also included.

The reader is assumed to have some familiarity with mathematical
probability and mathematical statistics. Since background material
is available in a number of published books, it has been possible here
to deal almost exclusively with the main subject. That this also covers
classical results and procedures is not surprising. The fundamentals
of information theory have been known and available for some time and
have crystallized in the last decade. That these fundamentals should
furnish new approaches to known results is both useful and necessary.

vil



viii PREFACE TO THE FIRST EDITION

The applications in this book are limited to the analysis of samples
of fixed size. Applications to more general stochastic processes, includ-
ing sequential analysis, will make a natural sequel, but are outside the
scope of this book.

In some measure this book is a product of questions asked by stu-
dents and the need for a presentation avoiding special approaches for
problems that are essentially related. It is my hope that the experi-
enced statistician will see in this book familiar things in a unified, if un-
familiar, way, and that the student will find this approach instructive.

In chapter 1, the measures of information are introduced and de-
fined. In chapter 2, I develop the properties of the information
measures and examine their relationship with Fisher’s information
measure and sufficiency. In chapter 3, certain fundamental inequali-
ties of information theory are derived, and the relation with the now
classic inequality associated with the names of Fréchet, Darmois,
Cramér, and Rao is examined. In chapter 4, some limiting properties
are derived following the weak law of large numbers. In chapter 5,
the asymptotic distribution theory of estimates of the information
measures is examined. .

The developments in these first five chapters use measure theory.
The reader unfamiliar with measure theory should nevertheless be able
to appreciate the theorems and follow the argument in terms of the
integration theory familiar to him by considering the integrals as
though in the common calculus notation.

The rest of the book consists of applications. In chapters 6, 7, and
8, the analysis of multinomial samples and samples from Poisson popu-
lations is studied. The analysis of contingency tables in chapter 8
depends on the basic results developed in chapter 6. Chapter 9 is es-
sentially an introduction to various ideas associated with multivariate
normal populations. In chapter 10, the analysis of samples from
univariate normal populations under the linear hypothesis is studied
and provides the transition to the generalizations in chapter 11 to the
multivariate linear hypothesis. In chapter 12, the analysis of samples
from multivariate normal populations for hypotheses other than the
linear hypothesis is developed. The familiar results of the single-
variate normal theory are contained in the multivariate analyses as
special cases. In chapter 13, some general questions on linear dis-
criminant functions are examined and raised for further investigation.

The book contains numerous worked examples. I hope that these
will help clarify the discussion and provide simple illustrations. Prob-
lems at the end of each chapter and in the text provide a means for the
reader to expand and apply the theory and to anticipate and develop
some of the needed background.



PREFACE TO THE FIRST EDITION ix

The relevance of information theory to statistical inference is the
unifying influence in the book. This is made clear by the generaliza-
tions that information theory very naturally provides. Chapters 8, 11,
and 12 demonstrate this. In section 4 of chapter 11, it is concluded
that the test statistic for the multivariate generalization of the analysis
of variance is a form of Hotelling’s generalized Student ratio (Hotel-
ling’s T2). The basic facts on which this conclusion rests have been
known for some time. Information theory brings them together in the
proper light.

Sections are numbered serially within each chapter, with a decimal
notation for subsections and sub-subsections; thus, section 4.5.1 means
section 4, subsection 5, sub-subsection 1. Equations, tables, figures,
examples, theorems, and lemmas are numbered serially within each
section with a decimal notation. The digits to the left of the decimal
point represent the section and the digits to the right of the decimal
point the serial number within the section; for example, (9.7) is the
seventh equation in section 9. When reference is made to a section,
equation, table, figure, example, theorem, or lemma within the same
chapter, only the section number or equation, etc., number is given.
When the reference is to a section, equation, etc., in a different chapter,
then in addition to the section or equation, etc., number, the chapter
number is also given.

References to the bibliography are by the author’s name followed by
the year of publication in parentheses.

Matrices are in boldface type. Upper case letters are used for square
or rectangular matrices and lower case letters for one-column matrices
(vectors). The transpose of a matrix is denoted by a prime; thus one-
row matrices are denoted by primes. A subscript to a matrix implies
that the subscript also precedes the subscripts used to identify the ele-
ments within a matrix, for example, A = (a;;), A2 = (ag;), X' = (x1,
Xg, -+, xx). There are some exceptions to these general rules, but the
context will be clear. '

An abbreviated notation is generally used, in the sense that multiple
integrals are expressed with only a single integral sign, and single
letters stand for multidimensional variables or parameters. When it
is considered particularly important to stress this fact, explicit men-
tion is made in the text.

A glossary is included and is intended to supplement the reader’s
background and, with the index, to provide easy access to definitions,
symbols, etc.

SoLomMoN KULLBACK

The George Washington University
February 1958



Acknowledgment

Critical comments and questions from friends, colleagues, and ref-
erees have improved the exposition in this work. Its shortcomings
are mine alone. Thanks are due my students and colleagues at The
George Washington University for their interest, understanding, and
encouragement. The full and hearty support of Professor Frank M.
Weida is gratefully acknowledged. Mr. Harry M. Rosenblatt prac-
tically prepared most of sections 2 through 8 of chapter 10. Mr.
Samuel W. Greenhouse has practically prepared chapter 13. Dr.
Morton Kupperman and Mr. Austin J. Bonis have read versions
of the manuscript most carefully and critically, and their remarks,
although not always adopted, were invariably helpful. Other con-
tributions are acknowledged in the text. The careful and uniformly
excellent typing of Mrs. Frances S. Brown must be mentioned, since
it lightened the problems of preparing the manuscript.

S. K.




Contents

CHAPTER
1 DEFINITION OF INFORMATION

1 Introduction. . . . .
Definition . .
Divergence
Examples . .
Problems

o LN

2 PROPERTIES OF INFORMATION

1 Introduction. . . . . .

Additivity . . . .
Convexity . .
Invariance
Divergence
Fisher’s information

00~ WLk Wi

Problems

-----
.......
------

......

.......

------
.......
-------
. s e

Information and sufficiency

---------

................

......

................

................

..............

................

................

---------------

..............

3 INEQUALITIES OF INFORMATION THEORY

1 Introduction. . . . . . .

SO W N

Problems

.....

4 LIMITING PROPERTIES

1 Introduction . . . . . .

Limiting properties . .

2
3 TypeI and type II errors
4

Problems

-------

DI . .

----------------

Minimum discrimination information . . . . . . . . . . . .
Sufficient statistics . . . .
Exponential family . . . .
Neighboring parameters . .
Efficiency . . . . . . .

----------------

........

......

----------

..............

................

................

.....

PO
------------

12
12
14
18
22
26
28
31

36
36
43
45
55
63
66

70
70
74
78



Xii CONTENTS

CHAPTER PAGE
S INFORMATION STATISTICS
1. Estimateof J(*:2) . . . . . . . . . . . . ... ... 81
2 Classification . . . . . . . . .. .. e 83
3 Testing hypotheses . . . . . . . . . . . ... ... ... 85
4 Discussion. . . . . . . . . . .0 e 94
S Asymptotic properties . . . . . . . . . . . . . ... .. 97
6 Estimateof J(*,2) . . . . . . . . . . ... ... ... 106
7 Problems . . . . . . . . . .. e 107
6 MULTINOMIAL POPULATIONS
1 Introduction. . . . . . . . . . . . . . . ..., 109
2 Background . . . . . . . . ..o 0oL 110
3 Conjugate distributions . . . . . . . . . . ... ... .. 111
4 Singlesample . . . .. . ... ... ... 112
41 Basicproblem. . . . . . . . . . .. ... . .... 112
4.2 Analysisof f(*:2;0x8) . . . . . . . .. ... .. .. 114
43 Parametriccase . . . . . . . . .. ..o ... 117
44 “One-sided” binomial hypothesis . . . . . . . . . . . 119
4.5 ‘“One-sided” multinomial hypotheses . . . . . . . . . . 121
451 Summary. . . . . . . . ..., 125
4.5.2 Illustrativevalues . . . . . . . . . . . .. .. 125
S Twosamples . . . . . . . . . . . . . ... ... 128
5.1 Basicproblem. . . . . . .. ... ... ... ... 128
5.2 “One-sided” hypothesis for the binomial . . . . . ., . . 131
6 rsamples . . . . . . . . ..o e 134
6.1 Basicproblem . . . . . . . . .. . ... ... ... 134
6.2 Partition . . . . . . . . .. e e e 136
6.3 Parametriccase . . . . . . . . .. ..o 139
7 Problems . . . . . . . . . . . ... .00 140

7 POISSON POPULATIONS

1 Background . . . . . . . . . . .. .00 142
2 Conjugate distributions . . . . . . . . . . ... oL L. 143
3 rsamples . . . . . .. ..o 144

3.1 Basicproblem . . . . . . . . . . .. ... ... .. 144

3.2 Partition . . . . . . . . . e e e e e 146
4 “One-sided” hypothesis, single sample . . . . . . . . . .. 148
5 “One-sided” hypothesis, twosamples . . . . . . . . . . .. 151
6 Problems . . . .. ... . ... e e e e e e e 153

8 CONTINGENCY TABLES

1 Introduction . . . . . . « « v v v v e e e e e e e 155
2 Two-waytables . . . . . . . . . . . . ... .. ... 155



CONTENTS xiii

CHAPTER PAGE
3 Three-way tables. . . . . . . . . . ... . ... .... 159
3.1 Independence of the three classifications . . . . . . . . 160

3.2 Row classification independent of the other classifications . 162

3.3 Independence hypotheses . . . . . . . . . . . . . .. 165

3.4 Conditional independence . . . . . . . . . .. . . .. 166

3.5 Furtheranalysis. . . . . . . . . . . ... .. ... 167

4 Homogeneity of two-way tables . . . . . . . . . .. ... 168
5 Conditional homogeneity . . . . . . . . . . . ... ... 169
6 Homogeneity . . . . . . . . . . . . .. ... ... .. 170
7 Interaction . . . . . . . . . . . ... ... 171
8 Negative interaction . . . . . . . . . . . . . ... ... 172
9 Partitions . . . . . . . . . ... e 173
10 Parametriccase . . . . . . . . . . . . ... 176
11 Symmetry . . . . . . . . . . . . . 177

12 Examples . . . . . . . . . . . . . 0o 179
13 Problems

........................ 186
9 MULTIVARIATE NORMAL POPULATIONS

1 Introduction. . . . . . . . . . . . .« . . ... 189

2 Components of information . . . . . . . . . . .. .. .. 191

3 Canonicalform . . . . . . . . ... .. ... ..., 194

4 Linear discriminant functions . . . . . . . . . . . .. .. 196

5 Equal covariance matrices . . . . . . . . . . . . .. ... 196

6 Principal components . . . . . . . . . . . . . ... ... 197

7 Canonical correlation . . . . . . . . . . ... ... ... 200

8 Covariance variates . . . . . . . . . ... ... .. 204

9 Generalcase . . . . . . . . . . . .0 00 s e e 205

10 Problems . . . . . . . . . . . ... .. ... 207

10 THE LINEAR HYPOTHESIS

1 Introduction. . . . . . . . . . . . . . . ... 211

2 Background . . . . . . . . .. L0000 211

3 Thelinear hypothesis . . . . . . . . . . . ... .. ... 212

4 The minimum discrimination information statistic . . . . . . 212

S Subhypotheses . . . . . . . . .. . ... 0. 214

5.1 Two-partition subhypothesis . . . . . . . . . . . .. 214

5.2 Three-partition subhypothesis . . . . . . . . . . . .. 218

6 Analysis of regression: one-way classification, % categories . . . 219

7 Two-partition subhypothesis . . . . . . . . .. . . . ... 225

7.1 One-way classification, 2 categories . . . . . . . . . . 225

7.2 Carter'sregressioncase . . . . . . . . . ... ... 229

8 Example . . . . . . . . . .. oo 231

9 Reparametrization . . . . . . . . . . . .. 0oL 236

9.1 Hypothesesnotof fullrank . . . . . . . . . . . . .. 236

0.2 Partition . . . . . . . v v e e e e e e e e e e e s 238



Xiv CONTENTS
CHAPTER
10 Analysis of regression, two-way classification . . . . . . . . .
11 Problems . . . . . . . . . . ... .. I
11 MULTIVARIATE ANALYSIS; THE MULTIVARIATE LINEAR HYPOTHESIS
1 Introduction . . . . . « « v vt
2 Background . . . . . . . . ... .. e e e e
3 The multivariate linear hypothesis . . . . . . . . . . . . .
3.1 Specification. . . . . . . . . ... L,
3.2 Linear discriminant function . . . . . . . . . . . . .
4 The minimum discrimination information statistic . . . . . .
S Subhypotheses . . . . . . . . . ... ... ... ..
5.1 Two-partition subhypothesis . . . . . . . . . . . ..
5.2 Three-partition subhypothesis . . . . . . . . . . . . .
6 Specialcases. . . . . . . . . . . . ..
6.1 Hotelling's generalized Student ratio (Hotelling's 7%) . . .
6.2 Centering. . . . . . . . . . .. .
6.3 Homogeneity of rsamples . . . . . . . . . . . . ..
6.4 rsamples with covariance. . . . . . . . . . . . ...
6.4.1 Testofregression . . . . . . . . . . . .. ..
6.4.2 Test of homogeneity of means and regression . . .
6.4.3 Test of homogeneity, assuming regression . . . . .
7 Canonical correlation . . . . . . . . . . . . ... . ...
8 Linear discriminant functions . . . . . . . . . . . . . ..
8.1 Homogeneity of r samples . . . . . . . . . . .. ..
8.2 Canonical correlation . . . . . . . . . . . .. .. ..
8.3 Hotelling's generalized Student ratio (Hotelling’s T2) . . .
9 Examples . . . . . . . . . . ..o
9.1 Homogeneity of samplemeans . . . . . . . . . . ..
9.2 Canonical correlation . . . . . . . . . . . .. . ...
9.3 Subhypothesis. . . . . . . . . . .. .. ... ...
10 Reparametrization . . . . . . . . . . . . . . .. .. ..
10.1 Hypothesesnotof fullrank . . . . . . . . . . . ..
10.2 Partition . . . . . . . . . . . ..o
11 Remark . . . . . . . . . . . . .. ... ..., .
12 Problems . . . . . . . . . . . .. . 00
12 MULTIVARIATE ANALYSIS: OTHER HYPOTHESES
1 Introduction. . . . . . . . . . . ..o
2 Background . . . . . . .. . ..o
3 Singlesample . . . . . . . . . . ..o
3.1 Homogeneity of thesample . . . . . . . . . . . . ..

3.2 The hypothesis that a k-variate normal population has a

specified covariance matrix . . . . . . . . . . . . ..
3.3 The hypothesis of independence . . . . . . . . . . ..
3.4 Hypothesis on the correlation matrix . . . . . . . . . .

PAGE

239
251

253
253
253
253
254
255
257
257
260
261
261
262
264
268
268
272
273
275
276
276
277
279
279
280
281
284
289
289
294
294
295



CONTENTS Xv

CHAPTER PAGE
3.5 Linear discriminant function . . . . . . . . . . . . . 304
3.6 Independence of sets of variates . . . . . . . . . . . . 306
3.7 Independence and equality of variances . . . . . . . . 307

4 Homogeneityofmeans . . . . . . . . . . ... .. ... 309
41 Twosamples . . . . . . . . . . . . .. .. .... 309
4.2 Linear discriminant function . . . . . . . . . . . .. 311
43 rsamples . . . . . . ... ... ... 311

5 Homogeneity of covariance matrices . . . . . . . . . . . . 315
51 Twosamples . . . . . . . . . . .. ... .... 315
5.2 Linear discriminant function . . . . . . . . . . . . . 317
53 rsamples . . . . . . .. .. ..o 318
5.4 Correlation matrices . . . . . . . . . . . ... ... 320

6 Asymptotic distributions . . . . . . . .. .. ... ... 324
6.1 Homogeneity of covariance matrices . . . . . . . . . . 324
6.2 Singlesample . . . . . . . . ... ... e e e 328
6.3 The hypothesis of independence . . . . . . . . . . .. 329
6.4 Roots of determinantal equations . . . . . . . . . . . 330

7 Stuart's test for homogeneity of the marginal distributions in a
two-way classification . . . . . . . . . . . .. ... ... 333
7.1 A multivariate normal hypothesis . . . . . . . . . . . 333
7.2 The contingency table problem . . . . . . . . .. .. 334

8 Problems . . . . .. ... ... .... e e e e e 334

13 LINEAR DISCRIMINANT FUNCTIONS

1 Introduction. . . . . . . . . « . o . oo e 342

2 Iteration . . . . . . . . e e e e e e e e e e e e 342

3 Example . . . . . . . .o e e e e e 344

4 Remark . . . . v v v i e e e e e e e e e e e e e 347

5 Other linear discriminant functions . . . . . . . . . . . . . 348

6 Comparison of the various linear discriminant functions . . . . 350

7 Problems . . . . . . o e e e e e e e e e e e e 352

REFERENCES . . + + o o o v o o o v e e e e e e e s e e e e 353

1ABLE I. Log, 7 and # log, % for values of # from 1 through 1000 . . 367

TABLE II. F(py1, p2) = p1 log%: + q1 log %.

prta=1=ps4+q . . . . e 378
TaBLE III. Noncentral x2 . . . . . . . . « « « v o o o v v 380
GLOSSARY . . .« + + « v v v o v e e e e e e e e e e 381
APPENDIX . . « « & & v o v v e o e e e e e e e e e e e 389



CHAPTER 1

Definition of Information

1. INTRODUCTION

Information theory, as we shall be concerned with it, is a branch of the
mathematical theory of probability and statistics. As such, its abstract
formulations are applicable to any probabilistic or statistical system of
observations. Consequently, we find information theory applied in a
variety of fields, as are probability and statistics. It plays an important
role in modern communication theory, which formulates a communication
system as a stochastic or random process. Tuller (1950) remarks that the
statistical theory of communications is often called information theory.
Rothstein (1951) has defined information theory as “abstract mathematics
dealing with measurable sets, with choices from alternatives of an un-
specified nature.” Pierce (1956, p. 243) considers communication theory
and information theory as synonyms. Gilbert (1958, p. 14) says, “In-
formation will be a measure of time or cost of a sort which is of particular
use to the engineer in his role of designer of an experiment.” The essential
mathematical and statistical nature of information theory has been re-
emphasized by three men largely responsible for its development and
stimulation, Fisher (1956), Shannon (1956), Wiener (1956).

In spirit and concepts, information theory has its mathematical roots
in the concept of disorder or entropy in thermodynamics and statistical
mechanics.  [See Fisher (1935, p. 47) and footnote 1 on p. 95 of Shannon
and Weaver (1949).] An extensive literature exists devoted to studies of
the relation between the notions and mathematical form of entropy and
information. Stumpers (1953) devotes pp. 8-11 of his bibliography to
such references, and some others are added here: Bartlett (1955, pp.
208-220), Brillouin (1956), Cherry (1957, pp. 49-51; 212-216), Fisher
(1935, p. 47), Grell (1957, pp. 117-134), Joshi (1957), Khinchin (1953,
1956, 1957), Kolmogorov (1956), McMillan (1953), Mandelbrot (1953,
1956), Powers (1956), Quastler (1953, pp. 14-40).

R. A. Fisher’s (1925b) measure of the amount of information supplied
by data about an unknown parameter is well known to statisticians.
This measure is the first use of “information” in mathematical statistics,

1



2 INFORMATION THEORY AND STATISTICS

and was introduced especially for the theory of statistical estimation.
Hartley (1928) defined a measure of information, the logarithm of the
number of possible symbol sequences, for use in communication engineer-
ing. Interest in, and various applications of, information theory by
communication engineers, psychologists, biologists, physicists, and
others, were stimulated by the work of Shannon (1948) and Wiener (1948),
particularly by Wiener’s (1948, p. 76) statement that his definition of
information could be used to replace Fisher’s definition in the technique
of statistics. However, note that Savage (1954, p. 50) remarks: ‘“The
ideas of Shannon and Wiener, though concerned with probability, seem
rather far from statistics. It is, therefore, something of an accident that
the term ‘information’ coined by them should be not altogether inappro-
priate in statistics.” Powers (1956, pp. 36-42) reviews the fundamental
contributions of Wiener, Shannon, and Woodward as an introduction to
his development of a unified theory of the information associated with a
stochastic process. Indeed, Stumpers (1953) lists 979 items in his biblio-
graphy and only 104 of these were published prior to 1948. Although
Wald (1945a, 1945b, 1947) did not explicitly mention information in his
treatment of sequential analysis, it should be noted that his work must be
considered a major contribution to the statistical applications of infor-
mation theory. [See Good (1950, pp. 64-66), Schiitzenberger (1954,
pp- 57-61).]

For extensive historical reviews see Cherry (1950, 1951, 1952, 1957).
A most informative survey of information theory in the U.S.S.R. is given
by Green (1956, 1957), who takes information theory to mean “the
application of statistical notions to problems of transmitting information.”
The current literature on information theory is voluminous. Some
references are listed that will give the reader who scans through them an
idea of the wide variety of interest and application: Ashby (1956), Bell
(1953), Bradt and Karlin (1956), Brillouin (1956), de Broglie (1951),
Castafis Camargo (1955), Cherry (1955, 1957), Davis (1954), Elias (1956),
Fano (1954), Feinstein (1958), Gilbert (1958), Goldman (1953), Good
(1952, 1956), Jackson (1950, 1952), Jaynes (1957), Kelly (1956), Lindley
(1956, 1957), McCarthy (1956), McMillan et al., (1953), Mandelbrot
(1953), Quastler (1953, 1955), Schiitzenberger (1954), Shannon and Weaver
(1949), Wiener (1948, 1950), Woodward (1953).

We shall use information in the technical sense to be defined, and it
should not be confused with our semantic concept, though it is true that
the properties of the measure of information following from the technical
definition are such as to be reasonable according to our intuitive notion
of information. For a discussion of ‘“semantic information” see Bar-
Hillel (1955), Bar-Hillel and Carnap (1953).
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Speaking broadly, whenever we make statistical observations, or design
and cenduct statistical experiments, we seek information. How much
can we infer from a particular set of statistical observations or experiments
about the sampled populations? [Cf. Cherry (1957, p. 61).] We propose
tc consider possible answers to this question in terms of a technical
definiticn of a measure of information and its properties. We shall
define and derive the properties of the measure of information at a
mathematical level of generality that includes both the continuous and
discrete statistical populations and thereby avoid the necessity for parallel
considerations of these two common practical situations [Fraser (1957,
pp- 1-16), Powers (1956)].

2. DEFINITION

Censider the probability spaces (%, <, p;), i = 1, 2, that is, a basic set
of elements x € Z" and a collection & of all possible events (sets) made up
of elements of the sample space Z for which a probability measure y;,
i = 1, 2, has been defined. & is a o-algebra of subsets of Z', a Borel field,
er an additive class of measurable subsets of Z. The pair (Z, &), that
is, the combination of the sample space Z and the g-algebra & of subsets
of Z, is called a measurable space [Fraser (1957, p. 2)]. The elements of
Z may be univariate cr multivariate, discrete or continuous, qualitative or
quantitative [Fraser (1957, pp. 1-2)]. Fer an engineer, the elements of
Z may be the occurrence or nonoccurrence of a signal pulse, & may be a
collection of possible sequences of a certain length of pulse and no pulse,
and y, and u, may define the probabilities for the occurrence of these
different sequences under two different hypotheses. For a statistician, the
elements of Z may be the possible samples from a univariate normal
population, ¥ may be the class of Borel sets of R", n-dimensional Eucli-
dean space (if we are concerned with samples of n independent observa-
tions), and u, and u, may define the probabilities of the different samples
for different values of the parameters of the populations.

We assume that the probability measures u; and u, are absolutely
continuous with respect to one another, or in symbols, u; = u,; that is,
there exists no set (event) E € & for which y;(E) = 0 and uy(E) # 0, or
ta(E) # 0 and uy(E) = 0. [y, is absolutely continuous with respect to
Yoy iy L fg, if wy(E) =0 for all E€ S for which uy(E) = 0; u, is
absolutely continuous with respect to uy, sy < py, if py(E) = 0 for all
E e & for which u,(E) = 0.] Since there is no essential problem in the
rejection of statistical hypotheses that may have been possible prior to the
observations but are impossible after the observations, our mathematical
assumption is such as to exclude this contingency. According to Savage
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(1954, p. 127), - - - definitive observations do not play an important
part in statistical theory, precisely because statistics is mainly concerned
with uncertainty, and there is no uncertainty once an observation definitive
for the context at hand has been made.” For further study of absolute
continuity see Fraser (1957, p. 12), Halmos (1950, pp. 124-128), Halmos
and Savage (1949), Loéve (1955, pp. 129-132). Let A be a probability
measure such that 1 = u;, 4 = u,; for example, 4 may be y,, or u,, or
(u; + py)2. By the Radon-Nikodym theorem [Fraser (1957, p. 13),
Halmos (1950, pp. 128-132), Loéve (1955, pp. 132-134)], there exist
functions f(x), i = 1, 2, called generalized probability densities, unique up
to sets of measure (probability) zero in A, measurable 4, 0 < fy(x) < o
[A), i = 1, 2, such that

@1 uiE) = L f@dE), =12

for all E€&. The symbol [4], pronounced “modulo 4,” following an
assertion concerning the elements of Z’, means that the assertion is true
except for a set E such that E €& and A(E) = 0 [Halmos and Savage
(1949)]. The function f(z) is also called the Radon-Nikodym derivative,
and we write du(x) = f{(*) dA(x) and also f,(x) = du,/dA. In example 7.1
of chapter 2 is an illustration of a probability measure u; absolutely
continuous with respect to a probability measure u,, but not conversely.
If the probability measure u is absolutely continuous with respect to the
probability measure 4, and the probability measure » is absolutely con-
tinuous with respect to the probability measure u, then the probability
measure » is also absolutely continuous with respect to the probability
. .. . dv dv du
measure 4, and the Radon-Nikodym derivatives satisfy i 2 i [A]
[Halmos (1950, p. 133), Halmos and Savage (1949)].

If H;, i = 1, 2, is the hypothesis that X (we use X for the generic variable
and z for a specific value of X) is from the statistical population with
probability measure u,, then it follows from Bayes’ theorem, or the
theorems on conditional probability [Feller (1950), Fraser (1957, pp.
13-16), Good (1950), Kolmogorov (1950), Loéve (1955)], that

1, i=1,2
P(H)@) + P(Hz)fz(x)[ b

2.2) P(H|2) =

from which we obtain

f@) PG . P(H)
7@ = 8 payn) T 8 By

(2.3) log [4],
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where P(H,), i =1, 2, is the prior probability of H, and P(H,|z) is the
posterior probability of H;, or the conditional probability of H; given
X =x. See Good (1956, p. 62), Savage (1954, pp. 46-50). The base of
the logarithms in (2.3) is immaterial, providing essentially a unit of
measure; unless otherwise indicated we shall use natural or Naperian
logarithms (base €). (See the end of example 4.2.)

The right-hand side of (2.3) is a measure of the difference between the
logarithm of the odds in favor of H, after the observation of X = x and
before the observation. This difference, which can be positive or negative,
may be considered as the information resulting from the observation
X = z, and we define the logarithm of the likelihood ratio, log [ f;(x)/f(2)],
as the information in X = x for discrimination in favor of H, against H,.
[Cf. Good (1950, p. 63), who describes it also as the weight of evidence
for H; given x.] The mean information for discrimination in favor of
H, against H, given x € E€ &, for y,, is

l Si@)
4) I1:2;E) = log d,
@4) K1:2;E) I(E) 8 @

= E) f Si(@) 1 g;‘( di(z),  w(E) >0,

= 0’ lul(E) = 09
with
din(®) = £,@) dA(@).

When E is the entire sample space Z', we denote by /(1:2), rather than
by I(1:2; Z), the mean information for discrimination in favor of H,
against H, per observation from u,, that is, omitting the region of inte-
gration when it is the entire sample space,

@) Si(@)
. Az
@ 10D = [10g 22 g = | s 10g B2 are
I LAY (. )
“f log B ) %1 ~ 18 py

Note that the last member in (2.5) is the difference between the mean value,
with respect to y,, of the logarithm of the posterior odds of the hypotheses
and the logarithm of the prior odds of the hypotheses. Following
Savage (1954, p. 50) we could also call I(1:2) the information of u; with
respect to u,. Note that the integrals in (2.4) or (2.5) always exist, even
though they may be +o, since the minimum value of the integrand for
its negative values is —}%. A necessary condition (but not sufficient)
that I(1:2) be finite is Uy = Uo. As an example in which the mean
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information /(1:2) is infinite, take 2" = (0, 1), u, = Lebesgue measure,
Li@[f(@) = ke V=, k1 —f ~Vtdt. It may be verified that I(1:2) is
infinite [Hardy, Littlewood, and Pdlya (1934, p. 137)]. See problem 5.7.

3. DIVERGENCE

Following section 2, we may define

(.1) 12:1) = f fi() 1og§2§ ;dl(x)
1

as the mean information per observation from u, for discrimination in
favor of H, against H;, or

—12:1) =ff2(x) logﬁi ;dZ( )

as the mean information per observation from u, for discrimination in
favor of H, against H,.  Our previous assumption about the mutual
absolute continuity of u; and u, ensures the existence of the integral in
the definition of J(2:1), even though it may be + co.

We now define the divergence J(1, 2) by

(.2)  JX1,2) =I(1:2) + I2:1)
Si(2)

- f (@) — fta log 23

(o PERD (PR
—f 8 Pyl 1) f '8 By 1)

di(x)

The middle version of the above expressions for J(1,2) was introduced
by Jeffreys (1946, 1948, p. 158), but he was mainly concerned with its use,
because of invariance under transformation of parameters, as providing
a prior probability density for parameters. J(1,2) is a measure of the
divergence between the hypotheses H; and H,, or between y; and u,, and
is a measure of the difficulty of discriminating between them. [Cf.
Chernoff (1952), Huzurbazar (1955), Jeffreys (1948, p. 158), Kullback
(1953), Sakaguchi (1955), Suzuki (1957).] Note that J(1, 2) is symmetric
with respect to u; and u,, and the prior probabilities P(H)), i = 1, 2, do
not appear. The divergence J(1, 2) (as will be seen) has all the properties
of a distance (or metric) as defined in topology except the triangle
inequality property and is therefore not termed a distance. The informa-
tion measures /(1:2) and /(2:1) may in this respect be considered as
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directed divergences. (See problem 5.9.) For other measures of distances
between probability distributions see Adhikari and Joshi (1956), Bhatta-
charyya (1943, 1946a), Bulmer (1957), Fraser (1957, p. 127), Rao (1945,
1952, pp- 351-352).

4. EXAMPLES

Before we consider properties resulting from the definition of information
and divergence, and supporting the use of “information” as a name, it
may be useful to examine some instances of (2.3), (2.5), and (3.2) for
illustration and background.

Example 4.1. As an extreme case, suppose that H, represents a set of
hypotheses, one of which must be true, and that H, is a member of the set of
hypotheses H,; then P(H,) = 1, P(H,|z) = 1, and the right-hand side of (2.3)
yields as the information in z in favor of H, the value log P(H,|x) — log P(Hy) =
log [P(H,|%)/P(H})). When is this value zero? If the observation z proves
that H, is true, that is, P(H;|x) = 1, then the information in z about H, is
— log P(H}) [Good (1956)]. Note that when Hj is initially of small probability
the information resulting from its verification is large, whereas if its probability
initially is large the information is small. Is this intuitively reasonable?

Example 4.2. To carry this notion somewhat further, suppose a set of
mutually exclusive and exhaustive hypotheses H,, H,, - * *, H, exists and that
from an observation we can infer which of the hypotheses is true. For example,
we may have a communication system in which the hypotheses are possible
messages, there is no garbling of the transmitted message, and there is no
uncertainty about the inference after receiving the message. Or we may be
dealing with an experiment for which the outcome may be one of n categories,
there are no errors of observation, and there is no uncertainty about the inference
of the category after making the observation. Here, the mean information in
an observation about the hypotheses is the mean value of —logP(H)),
i=1,2,- " - n,thatis,

[}

(4.1) —P(H,) log P(H,) — P(H,) log P(Hy) — - - - —P(H,) log P(H,).

The expression in (4.1) is also called the entropy of the H’s. See Bell (1953),
Brillouin (1956), Goldman (1953), Good (1950, 1956), Grell (1957), Joshi
(1957), Khinchin (1953, 1956, 1957), McMillan (1953), Quastler (1956), Shannon
(1948), Woodward (1953). When logarithms to base 2 are used, the unit of the
(selective) information in (4.1) is called a “bit” (binary digit), and it turns out
that one bit of information is the capability. of resolving the uncertainty in a
situation with two equally probable hypotheses or alternatives. Thus, in a
“yes” or “no” selection with a probability of 4 for each alternative,
—%log, 4 — 3log, 4 =log, 2 =1 “bit.” When the n hypotheses are equally

n

probable, so that P(H) = 1/n,i =1, * -, n, we find that —.ZIP(H,-) log P(H)
1=

= log n, Hartley’s information measure. )
It has been suggested that when logarithms to base 10 are used, the unit of
information in (4.1) be called a “Hartley” [Tuller (1950)], and when natural
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logarithms to base e are used, the unit of information be called a “nit”
[MacDonald (1952)].

Example 4.3.  As another area of illustration, suppose that the sample space
Z is the Euclidean space R? of two dimensions with elements X = (z, y), and
that under H, the variables x and y are dependent with probability density
f(@, y), but that under H,, x and y are independent, with respective probability
densities g(x) and #(y). Now (2.5) may be written as

) — S,y

“4.2) 1(1:2) f f fx,y) logg——————(x)h @ dx dy,

which has also been defined as the mean information in x about y, or in ¥
about x. See Gel'fand, Kolmogorov, and Iaglom (1956), Good (1956),
Kolmogorov (1956), Lindley (1956), Shannon (1948), Woodward (1953, pp.
53-54). Since, as will be shown in theorem 3.1 of chapter 2, /(1:2) in (4.2) is
nonnegative, and is zero if and only if f(z,y) = g(@)h(y) [A], the mean informa-
tion in (4.2) may also serve as a measure of the relation between x and y. [Cf.
Castaiis Camargo and Medina e Isabel (1956), Féron (1952a, p. 1343), Linfoot
(1957).] In particular, if H, implies the bivariate normal density

1 1 x? xy y?
S ) = el = g P [ 30 =5 (0—5 ~¥5at 72)]
and H, the product of the marginal normal densities

1 22 1 y
e G~ B Y =had (- 523)

we find that

-~ f@,y) - _ 9
43 1:2)= f f fe ) log T¥ do dy = ~410g.1 — g,

so that /(1:2) is a function of the correlation coefficient p only, and ranges from
0 to o as |p| ranges from 0 to I. Corresponding multivariate values are given
in (6.12) and (7.4) of chapter 9.

Example 4.4. As a specific illustration of J(1, 2) let f; and f, be the normal
densities used in (4.3). We find that

- SEYD oty = 21 —
@4 JQ1,2) = f f (@) = g@hyY log 2l dwdy = (L = )

so that J(1, 2) is a function of the correlation coefficient p only, and ranges from
0 to o as |p| ranges from O to 1.

Note that Pearson (1904) showed that if a bivariate normal distribution is
classified in a two-way table, the contingency and the correlation are related by
the expression ¢ = y2/N = p*(1 — p?), when it is assumed that the number of
observations N is large and the class intervals are very narrow [Lancaster (1957)].
The corresponding k-variate value is given in (6.13) of chapter 9, but differs
from the value of ¢? as given by Pearson (1904). See also (7.5) of chapter 9.

Example 4.5. To illustrate a result in communication theory, suppose that
in (4.2) z is a transmitted signal voltage and y the received signal voltage which
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is taken to be the transmitted signal with noise added, that is, y =2 + n,
where n is the noise voltage. The noise and transmitted signal may be taken

as independent, so that
4.5) [, 9) = g@h(ylz) = g@h(y — 2).

I(1:2) in (4.2), a measure of the relation between the received and transmitted
signals, is then a characteristic property of the transmission channel. If we
assume normal distributions, since the bivariate normal density f(z,y) in
example 4.3 may be written as

46) —— ex (_ xz). 1
* oV 2m P\™ 252 0,V2n(1 — pd)

- (,_e%. N
X exp [ 20'1,2(1 — P2) (y o, x) }s

we see from a comparison of (4.6) and (4.5) that A(y|z) = Ay — 2) if

@7 Po. o2 S+ N

where S = E(z?) is the mean transmitted signal power and N = E(n?) the noise
power [Lawson and Uhlenbeck (1950, p. 55), Woodward and Davies (1952)].
With the value of p? from (4.7) substituted in (4.3) and (4.4), we find that the
mean information in the received signal about the transmitted signal and the
divergence between dependence and independence of the signals are respectively

S S
4.8) I(1:2) = —3} log (1 — §+—1°v) =} log (1 + N),

SIS+N) _ S

4.9 J1,2) = T— SIS+ N) A

We shall show in chapter 2 that I(1:2) and J(1, 2) are additive for independent
observations. The sampling theorem [Shannon (1949), Whittaker (1915)]
states that 2WT independent sample values are required to specify a function
of duration T and bandwidth W. We thus have

(4.10) I(1:2; W, T)=2WTI(1:2) = WTlog (1 + -i—,),

(4.11) JQ,2; W, T)=2WTJ(1,2) = 2WT SN = 2T S|N, = 2E|[N,,

where N = WN,, with N, the mean noise power per unit bandwidth, and E the
total transmitted signal energy. The interpretation of (4.10) as channel capacity
is well known in communication theory [Bell (1953), Goldman (1953), Shannon
(1948), Woodward (1953)]. The signal-to-noise ratio has long been used by
engineers to specify the performance of communication channels.

Example 4.6. To illustrate a less general form of Lindley’s (1956) definition
of the information provided by an experiment, take y in (4.2) as a parameter
0 ranging over a space ©, so that f(z, f) is the joint probability density of =
and 6, h(6) is the prior probability density of 6, g,(x|6) is the conditional
probability density of z given 6, and the marginal probability density of z is
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g(x) gl(xlﬂ)h(ﬂ) df. An experiment & is defined as the ordered quadruple

(.?8” &, 0, g(z|6)), and the information provided by the experiment &,
wnth prior knowledge A(0), is

o~ @, 6)
11:2) _fff(x,e)lo 8 i) 2 4P

These illustrations will suffice for the present. In chapter 2 we consider
the properties of I(1: 2) and J(1, 2).

5. PROBLEMS

5.1. How many “bits” of information (in the mean) are there in a dichoto-
mous choice (a) with probabilities p =099, ¢=1—p=001; ) p=1,
g=1-p=0?

5.2. Compute the value of I(1:2) and J(1, 2) for:

(@) Prob(x = O|H) =g, Prob@ = 1|H) =p, pi +q:=1,i= 1,2

(b) The binomial distributions B(p,, q;, n), p; + q: = 1,i =1, 2.

(¢) The Poisson distributions with parameters myi=1,2,

(d) The normal distributions N(u;, 6%), i = 1, 2, that is, the normal distri-

butions with mean g, and variance o2

(¢) The normal distributions M(u, 0%, i = 1, 2.
(/) The normal distributions N(u;, 0, i = 1, 2.

5.3. Derive the result given in (4.3).
5.4. Derive the result given in (4.4).

55. Let1 4+ x be the number of independent trials needed to get a success,
when the probability of a success is constant for each trial. If

Pi(x) PrOb(X—x‘Hi)—Piqts .’L'—O, 1323 ) qz—l = P i=1,2,
then
K(1:2) = E(1 + z|H,) (pl logﬁl +q logg )

that is, the mean information for discrimination is the product of the expected
number of trials and the mean information per trial.

5.6. Let f{x) = exp (u(0)v(x) + a(x) + b(0,)), i = 1,2, where u and b are
functions of 6;, i = 1,2, and v and a are functions of x, with jf(x)dx = 1.
Show that J(1,2) = (u(ﬂl) — u(0))(E,(u(x)) — Ey(v(x))), where E(v(x)) is the
expected value of v(z) in the distribution with fi(x), i = 1, 2. [See Huzurbazar
(1955) for the multivariate, multiparameter, distributions admitting sufficient
statistics.]

5-7- Let kl =

«© 1 2]
2

1
— s ky= Q2 —s
,.Zg n(log n)? < T & iiog n)
n=273,-"-

<, px=n)=

Ll ==
Kn(log nft ¥ kar(log
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”n— S = pE=n - 1) =
Show that I(1:2) ”Zz pi@ = n) 1ogp2(x=n) oo, and that I(2:1) =
S pue=m10gP2Z=" o [See Joshi (1957), who credits this to
n=2 Pz =n)
Schiitzenberger.]

5.8. Compute the value of I(1:2) and J(1, 2) for the discrete bivariate distri-
butions defined by Prob(zx =0, y = 0|H,) = Prob(z = 1, y = 1|H,) = ¢/2,
Prob(x =0, y=1|H)=Prob(x =1, y=0|H) =p/2, p+q=1, Prob
(=0, y=0{Hy) =Prob (x =0, y=1|Hy) =Prob (x =1, y = 0|H,) =
Prob(x =1,y = 1|Hy) = }

5.9. Show that f f f@)f(y) log ;;é:;f:g; drdy may be written as
f (/@) — fo(@) log?—g—; dz, where f, and f, are probability densities, and z, y
2

are random variables over the same range. [Cf. Barnard (1949), Girshick
(1946, pp. 123-127).]
'
510. Let N=———, p= m+ng+- -+ n. Use Stirling’s
nylng! « o my!
approximation to show that when n,, i = 1,2, - -, k, is large, approximately,

k
logN = —n > p;log p;
i=1
where f; = n;/n. [Cf. Brillouin (1956, pp. 7-8).]

5.11. Consider sequences of k different symbols. Show that the observation
that a sequence of n symbols contains respectively ny, ny, - * *, ny, of the k
k

symbols is approximately an information value of n Y p;logp; + nlogk,
i=1

where p; is defined in problem 5.10.
!
512, Let P(ny, ny,* * *ymp) = S L E— pimp s pt, n=n+np +
nylngle - > my!
T .+nksp1+p2+. ' .+pk= lspi>osi=1323° ) ’,k.
(@) Show that, as in problem 5.10, approximately log PG
1s
3
n log =-
iglpi gpi
1
() Show that log Pla -

g, * s M)

—— for py=py ="+ - = p=1/k, is the
information value in problem 5.11.’
[Cf. Chernoff (1952, p- 497), Sanov (1957, p. 13).]

5.13. Compute the value of I(1:2) for the discrete bivariate distributions
defined by Prob (zx = z;, y = ys|H)) = p; > 0,i= 1,2, - -,n, Prob(z = z,,
y=y|H) =0, i#j, Prob( =z, y=y,|Hp = Prob(z = z,|H,) - Prob
(y = y;|H) = pipj, i,j = 1,2, + -, n (01log 0 is defined as 0).



CHAPTER 2

Properties of Information

1. INTRODUCTION

We shall now study the properties of the measure of information that
we have defined and examine the implications of these properties [cf.
Kullback and Leibler (1951)]. We use the notation /(1:2; E), I(2:1; Z),
J(1,2; X, Y), etc., when it is deemed necessary to indicate explicitly sets,
spaces, variables, etc., that are concerned. Where necessary for clarity,
we shall use X, Y, etc., for generic variables and z, y, etc., for observed
values of the generic variables. We shall also generally use only one
integral sign even when there is more than one variable.

2. ADDITIVITY

THEOREM 2.1. I(1:2) is additive for independent random events; that is,
for X and Y independent under H,, i = 1, 2

I1:2; X, Y)=1(1:2; X)+ I(1:2; Y).

Proof.
I1:2; X, Y) =] Silx, y) log %((-2-’-% di(z, y)
i h
- | sih) o £ due) vy
| &) h(y)
= [a@108 22 dute) + [ 0 108 70 vt

= I(1:2; X) + I(1:2; Y),

where, because of the independence, f,(z,¥) = g{x)h(y), i=1,2,
diz, y) = du() dly), [gx) du(@) = 1, fhiy) dy) = 1,i=1,2.
Additivity of information for independent events is intuitively a

fundamental requirement, and is indeed postulated as a requisite property
in most axiomatic developments of information theory [Barnard (1951),

12

-
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Fisher (1935, p. 47), Good (1950, p. 75), Lindley (1956), MacKay (1950),
Reich (1951), Schiitzenberger (1954), Shannon (1948), Wiener (1950, pp.
18-22)].  Additivity is the basis for the logarithmic form of information.
A sample of n independent observations from the same population
provides » times the mean information in a single observation. Fisher’s
measure of the amount of information for the estimation of a parameter
also has this additive property [Fisher (1925b, 1956, pp. 148-150), Savage
(1954, pp. 235-237)]. In section 6 we shall study the relation between
Fisher’s measure and the discrimination information measure in (2.5) of
chapter 1.

If X and Y are not independent, an additive property still exists, but in
terms of a conditional information defined below. To simplify the
argument and avoid the measure theoretic problems of conditional
probabilities [see, for example, Fraser (1957, p. 16)], we shall deal with
probability density functions and Lebesgue measure. We leave it to the
reader to carry out the corresponding development for discrete variables.
With this understanding, we then have,

K1:2; X, Y) =ff1(x, y) log 2?;’ yi dx dy
_ £1(2) 1(3/‘ )
_fgl(x) log 0@ )dx +f81(x)[fh1(y|x) log ——— ho(y[7) y:l x,

where g(x) = [fx, y) dy, h{y|x) = fi(x, y)[gfx), i = 1, 2.
We now set
hl(ylx)

I1:2; y|x_x)_fhl(y| ?)log;

and

dy

I(1:2; Y|X) = Ey(I(1:2; Y| X = x)) =fg1(x)l(l :2; Y| X = 2) d,

where I(1:2; Y|X = ) may be defined as the conditional information
in Y for discrimination in favor of H, against H, when X = z, under H,,
and I(1:2; Y|X) is the mean value of the conditional discrimination
information I(1:2; Y|X = z) under H,. [Cf. Barnard (1951), Feinstein
(1958, p. 12), Féron (1952a), Féron and Fourgeaud (1951), Good (1950),
Lindley (1956), Powers (1956, pp. 54-62), Shannon (1948). ]

We may obtain similar results by an interchange of the procedure with
respect to X and Y, so that we state:

THEOREM 2.2.
I(1:2; %, Y)=11:2; X) + I(1:2; Y|X)- _
= I(1:2; Y) + I(1:2; X|Y).
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Example 2.1. Consider the bivariate normal densities

_ 1 ex - 1 ( (x — ,u'i:r:)2
ooVl —pi P T2 =pD | o

— 2p; (@ — Uy — piy) + Yy — /"iu)z)]’

f{z,y)

0.0y o,?
so that

(x - t':t)2
&40 = \/217 P (— 20:z )

and

h.(?/|x) == [y Piy — ﬂ'(x — 'uw)]z]

1
_— exp | —
0, V2r(l — p2)2 P I: 20,1 — p»

where j; == p;0,/0,. Note that the variances are the same for i = 1, 2.
With these densities we find [or by substitution in (1.2) of chapter 9],

me vy (Hee — a)?

101:2; X) = R e,
1(1:2; Y|X-x)—'-l-lo 1_p22_1+11—P12
o - —2 gl—p12 2 21—p22

+ 1 [ey + Bo(@ — pox) — py — Pu(x — qu)]z,

2 a, X1 —

. _ 1 1=p?  p?®—p?

I(1:2; Y| X) = 5 log ;— o T A= o)
+ [(oy — t1y) — Po(pter — o)l + (pe — p)?
26,1 — p;) 2(1 — )

11:2; x, Y)——log ”2 +”2(”2 £y
1 - 1= py?
1 (Uoz — /m) oy ee — i) (poy — tay) | Mgy — thy)?
+ 2(1 — pf)l: 02 22 0.0, + 0,2 ]

Note that I(1:2; X, ¥) = I(1:2; X)+ I(1:2; Y|X). If p, = pp = 0, so that
X and Y are independent under H, and H,, I(l 2; Y|x)= (,uz,, ry)?20,2

= I(1:2; Y) and I(1:2; X, Y)=("2”‘2 f“) +("2"20 M’ _ i2: x) +
11:2; Y). ’

3. CONVEXITY

THEOREM 3.1.  I(1:2) is almost positive definite; that is, I(1:2) = 0, with
equality if and only if f,(x) = fo(2) [1].
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Proof. Let g(x) = fi(x)/f,(x). Then

3.1) 1:2) = f /@)@ log g(x) di(z)

- f £(@) log g(z) duy(2),

with duy(x) = fo(x) dA(x).
Setting () = ¢ log ¢, since 0 < g(x) < oo [4], we may write [cf. Hardy,
Littlewood, and Pdlya (1934, p. 151)],

(-2 $(g@) =4(1) + [g) — 1) + $[g@) — 1P () [2],

where h(x) lies between g(x) and 1, so that 0 < A(x) < oo [1]. Since
#(1) =0, ¢'(1) =1, and

3.3) f £(@) duug() = f £ di@) = 1,

we find

(3.4) f H6@) i@ = } [ 16@) — 114040 dig),
where ¢"(1) = 1/t > 0 for t > 0. We see from (3.4) that

69 5010850 dus@) = [ ) 10g 2

with equality if and only if g(z) = fi(z)/f,(x) = 1[4].

Theorem 3.1 tells us that, in the mean, discrimination information
obtained from statistical observations is positive [cf. Fisher (1925b)].
There is no discrimination information if the distributions of the observa-
tions are the same [1] under both hypotheses. Theorem 3.1 may be
verified with the values of /(1:2) computed in example 2.1.

di(x) = 0,

COROLLARY 3.1.

a6 = ( [ A i) g %
() di(x

A(x)
fo(®)

|, 78

,“1(
= w(E) log ( E)

E

Jor M(E) > 0, with equality if and only if A® _ m(E)

7@~ m(B) .

Proof. 1f the left-hand member of the inequality in the corollary is <o,

the result is trivial. Otherwise truncate the distributions to the set E
)

[A] for x € E.
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and write g,(x) = fi(x)/u1(E), go(x) = fo(x)/pe(E). - From theorem 3.1

we now have
&1()
() Io
ng T @)

with equality if and only if g,(x) = gy(%) [4], and the corollary follows.
Defining ¢ log ¢ = 0 for ¢ = 0, the equality in corollary 3.1 is trivially
satisfied for A(E) = 0.

CorOLLARY 3.2. If E;e¥,i=1,2,: - ENE;=0,i#j, and¥ =
U;E;, that is, for the partitioning of Z into pairwise disjoint E,, E,, - - -,

11:2) 2 SiE) 1022

us(E)
Si@) /‘I(Ei) o o
f:@  po(Ey) [4), forz e E;, i = 1,2,

Proof. Use corollary 3.1 and (see problem 8.37)
H(®)

:2) = [ i@ 1og f e = 3 [, soos 5

The properties in theorem 3.1 and corollaries 3.1 and 3.2 [cf. Lindley
(1956), Savage (1954, p. 235)] are convexity properties related to the fact
that ¢ log ¢ is a convex function and are in essence Jensen’s inequality
[Jensen (1906)]. [See problem 8.31. For details on convex functions the
reader may see Blackwell and Girshick (1954, pp. 30-42), Fraser (1957,
pp. 52-55), Hardy, Littlewood, and Pdlya (1934)]. We also see from
corollary 3.1 that the grouping of observations generally causes a loss of
information [cf. Fisher (1925b), Wiener (1948, p. 79)]; the left-hand side
of the inequality of corollary 3.1 is the discrimination information in the
elements of the set E, whereas the right-hand member of the inequality is
the discrimination information in the set E. The necessary and sufficient
condition of corollary 3.1 that the information not be diminished by the
4@ _ fi@)
pE)  uo(E)
that the conditional density of x given E, is the same under both hypotheses.
We may treat all z € E for which the condition for equality in corollary 3.1
is satisfied as equivalent for the discrimination.

As illustrations of theorem 3.1 and corollaries 3.1 and 3.2, we have the
following:

Example 3.1. (See example 4.2 in chapter 1 and theorem 3.1.)

with equality if and only if

di(z).

[A] for x € E, which states

grouping may also be written as

(3.6 pllog” +p210g” ~~+p,,log” =0,
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where p; >0, i=1,2,- - ,n, pp+pe+- - +p.=1 It follows that
logn = — Ep, log p;, with equallty if and only if pp=1/n, i=12---,n,
corresponding to the fact that the greatest uncertainty in a situation thh n
alternatives occurs when all the alternatives are equally probable [Shannon
(1948)].

Example 3.2. (See corollary 3.1.)

3. pn log -l + Pz log p 12 “+ Pia log p 1

+ Pzt P
2 (py +put -+ pr) log 2R ’
(Pu + P12 P1n) log Pt Pt F Pum

for p;; >0,i=1,2,j=1,2,- + -, n, with equality if and only if

Pu_Pz_ ... _Pu_Putpet  +p.
Pz P2 Pen  Patpet -+ Pon

Example 3.3. (See corollary 3.2.) For Poisson populations with parameters
A, and 4, we have,
-4 11

Yy

"‘13. i e~ %A% !

+ z -—l,lzz/x!

—A17 2]t
ze“ -—lo g; ‘:j.,’jx' =e h log—-—-+ e~44, log

2 e My — A) + e~ MA(Ay — 4) + e~ M4, log%

e~* — Lie~h

e — e

+ (0 —e*h—AeM)log : :

with equality if and only if
e—llzlz _ 1 - e—ll _— Ale—ll
e“‘z},,zz - 1 — e“‘z —_ },.ze“lx,

A numerical illustration, grouping values x > 4, is in table 2.1 of example 2.2
of chapter 4.

Example 3.4. (See corollary 3.1.)

r=2,3,°"

| ffl(x, y)dy
09 [[repighEBima = [e] peaman 1ogm
) z,y)ay

- frerentin

with equality if and only if ﬁg :; - :: :g; where g{2), i = 1,2, are the
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marginal densities of z. The necessary and sufficient condition for equality

may also be written as fi(z, ¥)/g,(%) = fo(z, ¥)[g2(x) or hy(y|z) = hy(y|z), with
h(y|), i = 1,2, a conditional density of ¥ given z.

As a matter of fact, (3.8) is also an illustration of:

CorOLLARY 3.3. (a) I(1:2; X, Y) = I(1:2; X) with equality if and only
if (1:2; Y|X)=0; (b) I(1:2; X, Y) 2 I(1:2; Y) with equality if and
only if I(1:2; X|Y) =0; (c) I(1:2; X, Y) =2 I(1:2; Y|X) with equality
ifandonly ifI(1:2; X) = 0; (d) I(1:2; X, Y) = I(1:2; X|Y) with equality
if and only if I(1:2; Y) = 0 [cf. Lindley (1956)].

Proof. Use theorem 3.1 in conjunction with theorem 2.2.

4. INVARIANCE

If the partitioning of the space Z in corollary 3.2 is such that the
necessary and sufficient condition for equality is satisfied, that is, if the
conditional density of z given E; is the same under both hypotheses for
all E; of the partitioning, we may designate the partitioning & = y,E; as
a sufficient partitioning for the discrimination. Note that the coarser
grouping of a sufficient partitioning is as informative for discrimination
as the finer grouping of the space Z. In terms of the concept that a
statistic is a partitioning of £ into sets of equivalent 2’s [Lehmann (1950b,
pp- 6-7)], we may say that the statistic defined by the partitioning Z" = U, E,
is sufficient for the discrimination if the necessary and sufficient condition
for the equality to hold in corollary 3.2 is satisfied. This is consistent
with the original criterion of sufficiency introduced by R. A. Fisher
(1922b, p. 316): “the statistic chosen should summarise the whole of the
relevant information supplied by the sample,” and further developments,
for example, by Fisher (1925a, b), Neyman (1935), Dugué (1936a, b),
Koopman (1936), Pitman (1936), Darmois (1945), Halmos and Savage
(1949), Lehmann and Scheffé (1950), Savage (1954), Blackwell and
Girshick (1954, pp. 208-223), Bahadur (1954). [Cf. Fraser (1957, pp.
16-22).]

To continue the study of the relation between “information” and
“sufficiency,” let Y = T(x) be a statistic, that is, 7() is a function with
domain Z and range %, and let J be an additive class of subsets of %.
We assume that 7(x) is measurable, that is, for every set GeJ, the
inverse image set T-Y(G) = {x:T(x) € G} [T-Y(G) is the set of elements *
such that T(x) € G] is a member of the class & of measurable subsets of
Z (see section 2 of chapter 1). The class of all such sets of the form
T-YG) is denoted by T-(77). We thus have a measurable transformation
T of the probability spaces (Z,%, u;) onto the probability spaces
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(%,T, v;), where by definition v(G) = u(T-XG)), i = 1, 2 [Fraser (1957,
pp- 1-16), Halmos and Savage (1949), Kolmogorov (1950, pp. 21-22),
Loéve (1955, p. 166)]. If we define »(G) = A(T-YG)), then », = v, =y
(the measures are absolutely continuous with respect to one another), and
as in section 2 of chapter 1, the Radon-Nikodym theorem permits us to
assert the existence of the generalized probability density g,(y), i = 1, 2,
where

4.1 v(G) =Lgi(?/) dy(y), i=1,2, Ged,

for all GeJ. The function value g,(y) is the conditional expectation of
/i) given that T(x) = y and is denoted by E,(f;|y) [Fraser (1957, p. 15),
Halmos and Savage (1949), Kolmogorov (1950, pp. 47-50), Loéve (1955,
pp- 337-344)].

In terms of the probability spaces (%, 7, »)), i = 1, 2, the discrimination
information is [cf. (2.4) of chapter 1]

@) 11:2:6) = — | e 18P ay), ) >0,

»(G) Je 8y)
=0, (G =0,
and [cf. (2.5) of chapter 1]
9. _ gl(?/)
(4.3) 1(1:2; %) _fgl(y) log === 2.9) dy(y).

We shall need the following lemma for the proof of theorem 4.1.
Following the notation of Halmos and Savage (1949), if g is a point
function on #, then gT is the point function on Z defined by gT(z) =

g(T(x)).
LemMa 4.1.  If g is a real-valued function on %, then

f waw=[  goa@ =12
G o (%))

for every G €T, in the sense that if either integral exists, then so does
the other and the two are equal.

Proof. See Halmos (1950, p. 163), lemma 3 of Halmos and Savage
(1949), Loéve (1955, p. 342).

THEOREM 4.1. I(1:2;%) = I(1:2;%), with equality if and only if
h(@)[fo(2) = gy(T(x))/go(T(@)) [A].

Proof. IfI(1:2; %) = oo, the result is trivial. Using lemma 4.1 above,
gl(!/

gy

101:2:9) = [ a6 10g &2 = | dus(@) og &

82 T(x)
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and therefore

I1:2; 7)) — I(1:2,%) =fdﬂ1(x) [log;lg ; lo g?;ﬁg]
o( 2

fz( ). 1T( )
Sz )ng(x)
Setting g(x) = fz @e T (x)
@44)  11:2;7) — I(1:2:9) = f PTG g(x) log g(@) di(z)
&:T(x)
= f g(@) log g(x) du,,(x),
where p,(E) = f G )‘;I(T)(x) di(x), for all E€ . Since
2
f1(@)g.T(®) fo(x)g, T(x)
() = : =
fg(x) U12(%) F@aT®  gT@ di(x) = 1

the method of theorem 3.1 leads to the conclusion that I(1:2;%) —
I(1:2; %) = 0, with equality if and only if

@) _ aiT@) _ g(T@))
@) gT@  g(T@)

The necessary and sufficient condition for the equality to hold in
theorem 4.1 may also be written as [see (4.1)]

£@) _ fi@) @ _ @
a® g Efily)  E(fly

that is, the conditional density of z, given T(x) = y, is the same under
both hypotheses. A statistic satisfying the condition for equality in
theorem 4.1 is called a sufficient statistic for the discrimination. [Cf.
Mourier (1951).]

Suppose now that the two probability measures u, and u, are members
of a set m of measures, for example, a set with all members of the same
functional form, but differing values of one or more parameters. We
assume that the set m of measures is homogeneous, that is, any two mem-
bers of the set are absolutely continuous with respect to each other. By
means of the Radon-Nikodym theorem, we may represent each member
of the homogeneous set by a generalized probability density with respect
to a common measure [Fraser (1957, p. 21), Halmos and Savage (1949)].

(4.5) [4].

[4], [4],
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THEOREM 4.2.  If u, and p, are any two members of a homogeneous set
m of measures, then I(1:2; &) = I(1:2; %), with equality if and only if the
statistic Y = T(x) is sufficient for the homogeneous set m.

Proof. The necessary and sufficient condition given by (4.5) is now
equivalent to the condition that the generalized conditional density of ,
given T(x) = y, is the same [A] for all measures of the homogeneous set
m or the defining condition for T(x) to be a sufficient statistic [Fisher
(1922b), Neyman (1935), Darmois (1936), Doob (1936), Halmos and
Savage (1949), Lehmann and Scheffé (1950), Rao (1952), Savage (1954),
Blackwell and Girshick (1954), Bahadur (1954), Loéve- (1955, p: 346),
Fraser (1957, p. 17)].

LEMMA 4.2. If f is a real-valued function on &, then a necessary and
sufficient condition that there exist a measurable function g on % such that
f = gT is that f be measurable T-X(J"); if such a function g exists, then it
is unique.

Proof. See lemma 2 of Halmos and Savage (1949).

CoROLLARY 4.1. I(1:2; %) = I(1:2;%) if Y = T(x) is a nonsingular
transformation.

Proof. If T is nonsingular, 7-Y(7") is % and therefore f(z), i = 1, 2,
is measurable 7-%(9"), and the conclusion follows from lemma 4.2 and
theorem 4.2. Note that an alternative proof follows from the successive
application of theorem 4.1 for the transformation from £ to % and the
inverse transformation from % to Z.

COROLLARY 4.2. I(1:2; T7XG)) = I(1:2; G) for all G €7 if and only
if (1:2;%) = I(1:2;%); that is, if and only if Y = T(x) is a sufficient
statistic.

Proof. Let yu(x) be the characteristic function of the set E, that is,
1) =1ifxeE, and yz(xr) =0if x ¢ E. We have

v W), sy an(y) ., &)
101:2;6) = [ S8 o 03 = [ ) S5 o8 5
_ du,(x) & 1)
= [0 iy s
o[ e 8T
7-36) i(THG))  ~ g.T()
o e dn@ | fi@)
nar@=[ wT0) @)
An application of the method of theorem 4.1 to /(1:2; T7Y(G)) —
I(1:2; G) and use of theorem 4.2 completes the proof.
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We may “randomize” corollary 4.2 by introducing the function w(y)
such that 0 < y(y) < 1, for example, y(y) may represent the probability
for a certain action if y is observed. From the definition of conditional
expectation [Fraser (1957, p. 15), Halmos (1950, p. 209), Halmos and
Savage (1949), Kolmogorov (1950, p. 53), Loéve (1955, p. 340)] we have

(4.6) f $(z) di(z) = f ¥) dY(w),
f (@) () dM(z) = f g d),  i=1,2,
where $(z) = pT(z) = WT(@), ¥(y) = Ex@(®)|T(@) = y), that is, v(y) is

the conditional expectation (using the measure 1) of ¢(x) given T(z) =
(See lemmas 3.1 and 3.2 in chapter 3.)

COROLLARY 4.3.
f‘f’(x)fl(x) log G &1y)

fo(%) &)

with equality if and only if Y = T(x) is a sufficient statistic.
Proof. An application of the method of proof of theorems 4.1 and 4.2
yields the result.

@) 2 [vo)e) g 2L ),

The preceding theorems and corollaries show that the grouping,
condensation, or transformation of observations by a statistic will in
general result in a loss of information. If the statistic is sufficient, there is
no loss of information [cf. Fisher (1925b, 1935, 1956, pp. 150-152)].
There can be no gain of information by statistical processing of data.
A numerical illustration of this loss of information is in section 2 of
chapter 4. [Cf. Feinstein (1958, pp. 70-71).]

_Corollaries 4.2 and 4.3 show that the sufficiency of a statistic for a set
of distributions is not affected by truncation or by selection according to
the function ¢(x) = y(T(x)) [cf. Bartlett (1936), Pitman (1936), Tukey
(1949)]. Averaging, on the other hand, is a statistical procedure or
transformation that will generally result in a loss of information. A trans-
formation that considers only a marginal distribution in a multivariate
situation (ignores some of the variates) also is one that will generally result
in a loss of information. (See corollary 3.3; also section 8 of chapter 9.)

5. DIVERGENCE

In view of our assumption in section 2 of chapter 1 that the probability
measures &, and u, are absolutely continuous with respect to one another,
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I(2:1), defined in (3.1) of chapter 1, satisfies theorems and corollaries
similar to those thus far developed for I(1:2). Since J(1,2) = I(1:2) +
I(2:1), we also have a similar set of results for J(1, 2) that we shall state,

using the notation and symbols of sections 2, 3, and 4, leaving the proofs
to the reader.

THEOREM 5.1. J(1,2) is additive.for independent random events; that is,
for X and Y independent J(1,2; X, Y) =J(1,2; X) + J(1,2; Y).
THEOREM 5.2.
J1,2; X, Y) =J1,2; X) + J1, 2; Y|X)
=J(1,2;Y) + J(1,2; X|Y).
THEOREM 5.3. J(1,2) is almost positive definite; that is, J(1,2) =0,
with equality if and only if fi(x) = fy(z) [A].
COROLLARY 3.1.

;@ - s 10 B2 a1
| S aa@
> ( f fi() di(@) — f @) dm)) log 22—
" . [ s @i

w(E)
u(E)

for A(E) > 0, with equality if and only if f,()[fy(x) = w(E)Juy(E) [AY for
zekE.

= (m(E) — polE)) log

COROLLARY 5.2. If E;e¥, i=1,2,- - ENE =0, i#j, ad
X = U,E,,
pe(Ey)
with equality if and only if fi@Ifs®@) = p(E)wE) W] for € E,
i=12+--.

COROLLARY 5.3. (a) J(1,2; X, Y) = J(1,2; X), with equality if and
only if J(1,2; Y|X)=0; (b) J(1,2; X, Y) =J(1,2;Y), with equality.if
and only if J(1,2; X|Y)=0; (¢) J(1,2; X, Y) =2J(1,2; Y|X), with
equality if and only if J(1,2; X) = 0; d) J1,2; X, V) =J1,2; X|Y),
with equality if and only ifX1,2;Y)=0.

TuEOREM 5.4. J(1,2;%) = J(1,2; %), with equality if and only if
L@)[fo(2) = g((T(@))[g(T()) [A]-

J(1, 2) Z 3(m(E) — poE)) log
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THEOREM 5.5. If u, and p, are any two members of a homogen« sus set
m of measures, then J(1,2; Z) = J1,2;%), with equality if and only if
the statistic Y = T(x) is sufficient for the homogeneous set m.

CoroLLARY 5.4. J(1,2; %) =J(1,2;%) if Y = T(z) is a nonsingular
transformation.

CoROLLARY 5.5. J(1,2; T7XG)) = J(1,2; G) for all G € T if and only
ifX1,2;Z)=U01,2;%); that is, if and only if Y = T(x) is a sufficient
statistic.

COROLLARY 5.6.
S1i(@)
[p@e — s og o

with equality if and only if Y = T(x) is a sufficient statistic.

i) 2 [ v)e®) — 2:0) 10g8Y 4
2:1)

YY)

At this point it may be appropriate to describe the problem of dis-
crimination between two hypotheses H, and H, in terms of the language of
communication theory, and to derive a result that may throw further light
on the meaning of J(I,2). We shall consider a model consisting of a
source that generates symbols, a channel that transmits the symbols
imperfectly (a noisy channel), and a receiver which will ultimately act on
the basis of the message it has received (or thinks it has received). For
general models of the communication problem and the basis for the terms
used see Shannon (1948), Shannon and Weaver (1949), McMillan (1953),
Khinchin (1957), Joshi (1957), Feinstein (1958).

Suppose the source, or input space, is a state of nature characterized by
the hypotheses H, and H,, with P(H)) =p and P(H,) =g =1 — p.
The input space then consists of only two symbols H,, 6 = 1,2. These
symbols are transmitted by some discrete random process with proba-
bilities p and g, successive symbols being independently selected. The
receiver, or output space, is the sample space Z of elements x in section 2
of chapter 1. The noisy channel is the observation procedure described
by the generalized probability densities fy(x), 6 = 1, 2, of section 2 of
chapter 1, such that u,(E) is the conditional probability that the trans-
mitted symbol H, is received as x € E € &. This communication system
may be denoted by (p;f,f;), and the channel by (f,f;). The rate
R(p; f1. f2) of transmission of information by the communication system
(p; f1.f2) is defined by Shannon (1948) as the difference between the
entropy (see section 4 of chapter 1) of the source, or input entropy (the
prior uncertainty), and the mean conditional entropy of the input symbols
at the output (the posterior uncertainty), that is,

R(p; fu f) = H(6) —H#(6] X),
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where J#'(0), the prior uncertainty, and 5#°(6| X), the posterior uncertainty,
are given by

(5.1)  H#(6)=—P(Hy) log P(Hy)— P(Hy) log P(Hy)
=—plogp —qlogyg,
(5.2) (0] X) =E(—P(H,|x) log P(H,|x)— P(H,|x) log P(H,|z))

= — f (P(H,|z) log P(H,|x) + P(H,|x) log P(H,|x))f(x) dA(x),

with f{z) = pfi(x) + qf;(x). [Cf. Lindley (1956, pp. 986-990).] The
rate of transmission of information by the communication system is also
a measure of the relation between the input and output symbols. Using
the values for 5#(0) and (6] X) in (5.1) and (5.2) above gives

( (3] )
x)logP(H,,)j()

= f (pﬁ(x) log =~ LD

f(@)
=0,
where P(H,, x) dA(x) = P(Hy|x)f(x) dA(x) is the joint probability of H,
2 P(Hp, x
and . Note that P(H,, x) lo dlx may be defined [cf.
(4.2) of chapter 1] as the mean mformatlon in X about H,.

The capacity C(f}, f5) of the channel (£, f;) is defined by Shannon (1948)

as max R(p; f,f,), that is, the maximum rate of transmission for all
0sps1
choices of the source. Denoting the maximum of C(f,, f;)//(1, 2) over all

/1 and f, that are generalized densities with respect to a common measure by

Chfe)

' 2
(5.3), Rp;fif?) =o§1 P(H,, d(x)

L)

+ qf5(z) log )

) di(x)

max ——==, we can state [cf. Sakaguchi (1955, 1957a)}:
sy J(1,2)
THEOREM 5.6.
max ——=- Chetfo) < <L
sy J(1,2) 4

‘Proof. Note that as a function of p, 0 <p =<1, R(p;f,.f?) in
(5.3) is concave (the second derivative is never positive); R(0; f,, f2)
= R(1; f1,./;) =0; and R’ denoting the derivative with respect to p,
R'(0; f,, f») = I(1:2) defined in (2.5) of chapter 1, R'(1; f;, fo) = — 1(2:1)
defined in (3.1) of chapter 1; R(p; f;,/2) is a maximum for p such that

£ @
[f@ee L2 e - | r@ 10g B2 i



26 INFORMATION THEORY AND STATISTICS

Next, by writing f{() = pfi(x) + qf(x), i = 1, 2, and using the convexity
property as in example 3.2, we have

ffl(x) log dl(x) f (pfi@) + qf1(®)) log

ph(x)
ph)

ph(®) + qfi(2) 1
o@ + gfi@

dNZ) + f qf,@) log 22 =) di(z)

lo
= f Ph(x) log=—— 2@

= ql(1:2).
Similarly, f Jo(x) log ?(( )) dMz) < pl(2:1), so that R(p; f,, ;) < pg(I(1:2)
+ 1(2:1)), or C(f1,fo) = max R(p;fi,f2) < 3J(1,2), from which we
0<p<l1
finally get the inequality in thlé theorem.

6. FISHER’S INFORMATION

The information measures that we have been studying are related to
Fisher’s information measure. Consider the parametric case where the
members of the set m of theorem 4.2 are of the same functional
form but differ according to the values of the k-dimensional parameter
6 = (6,, 6, - - -, 6,). Suppose that 6 and 6 + A6 are neighboring points
in the k-dimensional parameter space which is assumed to be an open
convex set in a k-dimensional Euclidean space, and fi(x) = f(z, 0),
fz(x) flz, 6 + AB). We shall show in this section that /(6:0 + Af)
and J(6, 6 + A6) can be expressed as quadratic forms with coefficients
defined by Fisher’s information matrix. [Cf. Savage (1954, pp. 235-237).]
We may write

S, 0)

- [re0F
and

I6:6 + AG) = —ff(x, 6)A log fiz, 6) dA(x),

where Af(z, 6) = f(z, 6 + A6) — f(z, 6) and Alog f(z, 6) = log flz, 0 + A)

— log flz, 6).
Suppose that the generalized density f{z, 6) satisfies the following

regularity conditions [cf. Cramér (1946a, pp. 500-501), Gurland (1954)]:

dlogf Plogf o®logf
26, 90,86, a6, 80,0,

V2

A log f(z, 6) dA(x),

1. For all z[1], the partial derivatives
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gexist, for all «, 8, y=1,2, -+, k, for every 6’ = (6,, 6y, - - -, 6,))
‘belonging to the nondegenerate interval 4 = (0, < 6,’ < 0, + AG,),
=12 "k

Ko
2, 26,

Slog f

2. F & iV
2. Forevery 6 € A, 30, 36, o0,

< F), < G(x), < H(x),

30

foralla, B,y =1,2,- - -, k, where F(x) and G(z) are integrable [A] over

the whole space and jf(x, 0)H(x) dA(x) < M < oo, where M is independent
Of 0 = (01’ 02’ HRN ek)'

o pos—o [ =
3. féadz(x) =0, 30, 40, di(zx) =0, forall «, 8 =1, 2, k.

We may now use the Taylor expansion about 6 and obtain
(6.1) logflz, 6 + Af) — log flz, 0)

d log f f @ log f
= A6,
agl Ae“ 30 agl ﬁg AGB 30 30ﬁ

?logf )
A6, AfBg A6, (———— ,
021 p§1 ,,21 g 00, 00500,/ 0+ta0
where in the last term 6 is replaced by 0 + ¢t A6 = (6, + 1, A6,
6, + t, Al - - -, 0, +1,A6), 0<t, <1, a=1, 2,k We also
have

62) dlogf 10f logf 1 & 1 of of

= ) et e e e e

%, [0, 86,00, fo0,06, f* 26,06,

We may therefore write

(6.3) I6:6 + A6) = ff(x 6) 1og7(-—f%"’—+9r ()
(g
108 4 s 5230
f Ll 3 yZlAea A6, Ae., 12 (J;_—%%%)omo] dA(z)
- agl A6 f a0, @
- '21"21 él A0, Aeﬁf (aeaZGﬁ _fl%é%) aAz)
- 31_’2 él ygl A6, Af; AB f A (5—:—3——%@—)0%” dA(x)-
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Accordingly, because of the regularity conditions, to within second-
order terms, we have

(6.4) 10:6 + AB) =

with

k k
2 3 800, 00,

8up = f Sz, 6) ( f(a:, 5 afga;,a@)) ( f(xl’ 5) afg;,ﬂo)) di(z),

and G = (g,s) the positive definite Fisher information matrix [Bartlett
(1955, p. 222), Doob (1934), Fisher (1956, p. 153), Huzurbazar (1949),
Jeffreys (1948, p. 158), Mandelbrot (1953, pp. 34-35), Rao (1952, p. 144),
Savage (1954, pp. 235-238), Schiitzenberger (1954, p. 54)].

We shall sketch the proof of the related result for J(6, 6 + A6):

NI»--

Sz, 0) f(x 0)
Afiz, 6
JO,0 + A) ~ f fiz, 6) ( f{(x 0))) di(z)
9
(f( 0) (lf 30f A6 + - - - + 7 5301 Aok) di(z)

7. INFORMATION AND SUFFICIENCY

In the definition of J(1:2) in section 2 of chapter 1 we assumed that the
probability measures u; and u, were absolutely continuous with respect
to each other. The essential reason for this was the desire that the
integrals in /(1:2) and 1(2:1) be well defined, so that J(1,2) could exist.
If we do not concern ourselves with J(1, 2), but limit our attention only to
I(1:2), we may modify somewhat the initial assumptions, as well as the
assumption about the homogeneous set of measures in theorem 4.2. If
we re-examine the integrals in (2.4) and (2.5) of chapter 1, we see that
they are still well defined if fi(xz) = 0,z € E, but fy(x) # 0,z € E, A(E) # 0,
since 0 log O is defined as zero. Thus, limiting ourselves only to /(1:2),
we need assume simply that the probability measure u, is absolutely
continuous with respect to the probability measure u,; thatis, u,(E) =0
for every measurable set E for which uy(E) = 0. According to the
Radon-Nikodym theorem (see section 2 of chapter 1, and references
there):
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A necessary and sufficient condition that the probability measure u, be
absolutely continuous with respect to the probability measure u, is that there
exist a nonnegative function f(x) on % such that

@) B = | S diot@),

for every E in . The function f(x), the Radon-Nikodym derivative, is
unique in the sense that if

12) (B = [ 8@ dus@)

Jor every E in &, then f(x) = g(x) [u;]. We write duy(x) = f(x) duy(x)
and also f(x) = du,[/du,.

The properties in sections 2 and 3 are valid if the probability measure
4y is absolutely continuous with respect to the probability measure u,,
since with f(z) defined as in (7.1) we have [compare with (3.1), noting that

Si@) = fiz), fo(x) = 1, since uy(E) =Ldy2(x)]

03 105 = [108@) die) = [ @) log /i) duate).

Note that according to corollary 3.1 a set E provides no information for
discrimination in favor of H, if u,(E) = 0 but u,(E) % 0. Theorem 4.2
also holds if the requirement that the probability measures x4, and u, are
members of a homogeneous set of probability measures is modified so
that they are members of a dominated set of probability measures; a set
M of measures on .¥ is called dominated if there exists a measure A on .%,
A not necessarily a member of M, such that every member of the set M
is absolutely continuous with respéct to A. [See Fraser (1957, p. 19),
Halmos and Savage (1949).] The Radon-Nikodym theorem can then be

- applied in the form where for every u; of the set of dominated measures,
we have

uAE) =Lfi(x) d(z), for all E € .%.

Example 7.1. Suppose that the populations under H, and H, are respectively
rectangular populations with 0 <z < 6,,0 <z < 0, 6, < 0,, and

1 1
fl(x)=0—1,03x§01, fg(x)=0—2,03x302,

= 0, elsewhere, =0, elseWhere,
dx dx
F— —y 1 E) = —
lul(E) 01 / 2( 02

E I
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0y Oy
Note that u,(E) = | f(*)dz = 0, but that uy(E) = | f3(2) dz = (6, — 6,)/9,
0y 0

# 0, when £ = {z: 0, <z < 6,}. We see that u, is not absolutely continuous
with respect to u,, but that 4, is absolutely continuous with respect to u,, since
#1 = 0 whenever u, = 0. Both x4, and u, are absolutely continuous with

respect to Lebesgue measure.
Now

1. 1/0 6y 0
7.4 :2) = —log -2 —_—
(7.4) 1(1:2) J; X og 16, dx +.£1 0log 170, dz,

or in the notation of (7.3),

2
I1(1:2) =J. f(@) log f(x) - %a:',
0 2

with f(x) = 0,/6, for 0 < x < 6,, and f(x) = 0 for 6, < z < 0,, so that

(7.5) I(1:2) = (% log %) %
1 1/ Vg

and therefore for a random sample O, of n independent observations
I(1:2; 0,) = nlog (0,/6,). If Z is the space of n independent observations,
and Y = T(x) = max (z,, Z,,* - *,%,), it is known that gd{y) = ny»1/6,»,
0 <y < 0,, and zero elsewhere, i = 1,2 [Wilks (1943, p. 91)].
We thus have
6, n—1 n
(7.6) I1(1:2; %) =f ln_ggT loggz—ndy = nlog %
0 1 1 1 .
Since nlog (0,/0,) = 1(1:2; ) = I(1:2; %), we conclude from theorem 4.2
that the largest value in a sample from a rectangular population, with lower
value of the range at zero, is a sufficient statistic. [Cf. Lehmann (1950a, p. 3-3).]
Example 7.2. Consider the exponential populations defined by f(z) =
e=@=0) f, <z < o0, filx®) =0, —0 <z <0, i=1,2, 0, >0, We find
that

o
.7 1(1:2) =f e—@=0) (0, — 0,) dx = 0, — 0,,
el
and for a random sample O, of n independent observations I(1:2; 0,) =
nl(1:2; 0,) = n(6, — 0,). If Z is the space of n independent observations
and Y = T(x) = min (x,, %,, * * *, %,), then it is known that g(y) = ne—™v—=0),
6, <y < o, and zero elsewhere, i = 1, 2 [Wilks (1943, p. 91)].
We thus have

o

(7.8) 11:2; %) =f ne="w—8) (nf, — nb,) dy = n(6; — 6,).
ol

Since n(6, — 0,) = I(1:2; ¥) = I(1:2; %), we conclude from theorem 4.2

that the smallest value in a sample from populations of the type e=(#=9, 6 <

x < oo, zero elsewhere, is a sufficient statistic.
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Example 7.3. Consider the Poisson populations with parameters A;, 4,, We

find that
© e~hA T e=hAf

|
79 = 3 —+ log =7z = A log 7 + (& — M),

and for a random sample O, of n independent observations I(1:2; O,) =
nl(1:2; 0y) = nkylog (44/4y) + n(A, — A)). If Z is the space of n independent

observations, and Y = T(¥) = Y z,, then it is known that
=1

gl(y) = e_nli(n}‘i)y/y!, y = 0, l’ 2, ° ot b i = l, 2
[Cramér (1946a, p. 205)]. We thus have

® o—ni(pi. )V YA A
(110) I1:2; %) = ¥ & y(!" ) ogi_ng:l:;y = nhylog 7 + (A = h).

y=0

”
Since I(1:2; &) = I(1:2; %), we conclude from theorem 4.2 that Zx,- is a
=1

=
sufficient statistic for Poisson populations. [Cf. Lehmann (1950a, p. 3-3).]

Example 7.4. Consider the Poisson populations in example 7.3 so that
I(1:2) is given by (7.9). Suppose Z is the space of nonnegative integers and
Y=T(x)is 0, 1, 2, accordingas x is 0, 1, or =2. In example 3.3 we saw that
I(1:2; ) > I(1:2; %) and therefore Y is not a sufficient statistic for the
Poisson populations. [Cf. Lehmann (1950a, p. 3-4).]

8. PROBLEMS

8.1. Compute I(1:2; X), I(1:2; Y|X=x), I(1:2; Y|X), I1:2; X, Y) in
example 2.1: (a) when p)® = p,* = p?; (b) when u;, = y.; () when iy, = iy,
M1y = oy

8.2. Verify corollary 3.3, using appropriate cases of example 2.1.
8.3. Show that the equality holds in example 3.4 if x is a sufficient statistic.

84. If fi(2), f(x), f(x) are generalized densities of a homogeneous set of
measures, then
fi®@) Sf(x)

f A1) log ﬁ(—ﬂs di(x) = f fi(@) log j—,z(—-ﬁ dA(x).

When does the equality hold ?
8.5. Prove the theorems and corollaries in section 5.
8.6. What is the maximum value of R(p; f1, f2) in (5.3) for variations of p?

8.7. In the notation of section 6, what is the value of /(8 + A6:6) as a quad-
ratic form?

8.8. Show that for the populations and statistics in examples 7.1 and 7.2,
the conditions for equality in theorem 4.1 are satisfied.

8.9. In (7.5) take 6, = 0 + A0, 6, = 6. Compare with the results according
to section 6.



32 INFORMATION THEORY AND STATISTICS

8.10. In (7.7) take 6, = 6 + AG,0; = 6. Compare with the results according
to section 6.

8.11. Derive the values for g (%) given in examples 7.1, 7.2, and 7.3.

8.12. Show that the number of “successes™ observed in a sample of » inde-
pendent observations is a sufficient statistic for binomial populations.

8.13. Show that the sample average is a sufficient statistic for normal
populations with a common variance.

8.14. Let f(x) be a probability density with mean x and finite variance o2,
and such that f(x) log f(x) is summable (7 log  is defined to be zero if r = 0).
Show that

J‘w f(@) log f(x) dz = log (1/aV 2me)

with equality if and only if f(z) is equal almost everywhere to the normal

— 2
probability density —L—_ exp( _@ 2’“ ) ) [Cf. Shannon (1948, pp. 629-
oV2n 20

630), Woodward (1953, p. 25), Am. Math. Monthly, Vol. 64 (1957, pp. 511-512).]

8.15. Generalize the result in problem 8.14 to multivariate probability
densities.

8.16. Compute J(1, 2; X), J(1, 2; Y|X ==x), J(1,2; Y|X), and J(l 2;X,7Y)
for the populations in example 2.1.

8.17. Compute the value of I(1:2; X, Y) in example 2.1 for p, = p, = p,

M =y, Hog = gy, 02 = 0,2, Compare the value you get with 21(1:2; X),

as p varies from —1 to +1.

8.18. Compute J(1, 2), J(1, 2; 0,), J(1, 2; %) for the populations in example
7.3. What are the corresponding values for the populations in examples 7.1
and 7.2?

8.19. In (5.3) take fy(x) = ue(E), x€E; i=1,2, 0 =1,2, where Z =

EVE,ENE=0,u(E)=u(E),andp=q= % Show that with these
values R(p; f1, fo) = uy(Ey) log 2u,(Ey) + uy(Ey) log 2u,(E,y), which is the same
as the value of I(1;2) for the binomial distributions with N = 1, p, = u,(E,),

gr=1~p = (B, P2 = gz = %- [See your answer to problems 5.2(a) and

5.8 in chapter 1.] What is the value of R(p; f1, fo) if uy(Ey) = ue(Ey) = 1?

8.20. Compute the values of I(1:2; X), I(1:2; Y|x = 0), I(1:2; Y|X) for the
distributions in problem 5.8 of chapter 1. Do your values confirm corollary
3.3(0)?

8.21. Suppose that in I(1:2) = f fi(®@) log% di(x), fi@ =y A(x)/l(A),

J2
£i@) = y4np@A(ANB), where A€¥,BeS, MA) %0, AA4NB) +#0,
and y_4(x) is the characteristic function of the set 4. Show that, for any set
Ee,

(@) py(E) = MEN AN B)AAN B), uy(B) = 1.
(5) plE) = ME N A)MA), ulB) = A(BN A)AA).
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(c) If A(E) =0, then u,(E) = uy(E) = 0.
(d) If uE) = 0, then u,(E) = 0.
(e) If fo(x) = 0, then fi(x) = 0.

MA
(f) I(1:2) = log I(—Z(—ﬁléi = —log uyB).

Note that (f) yields Wiener’s definition of the information resulting from the
additional knowledge that x € B when it is known that z € 4 [Powers (1956,
pp- 44-45)].

8.22. With the data in problem 5.8 of chapter 1, show that the partitioning
& =EUE, where E, =(x=0,y=0U(z=1l,y=1) and E, = (z =0,
y = D U(z =1, y =0) is a sufficient partitioning, or the statistic 7(z,y) = 0
forx =y, T(z,y) = 1 for x # y, is a sufficient statistic.

8.23. With the data in problem 5.8 of chapter 1, show that the statistic
T(x,y) = x is not a sufficient statistic.

8.24. Let fi(x), i = 1,2, - -, n, be generalized densities of a homogeneous
set of probability measures, and p; =0, i= 1,2, - -, n, such that p, + p, +
ot pa=1 If flx) = Pifi@) + pafol®) + - - - + pfu(7), show that the

maximum value of R(p;; f)) = f ( i pifix) log %3) dA(z) for variations of
i=1
the p; occurs when the p; are such that
5@ oo 5@ g £
f (@) log 12 i) = f fie) og A2 iy = - - - = f 12108 52 12y
and that max R(p;; f;) is then this common value. Show that R(p;; f}) <
0=<p;=<1

> pipil(, ). Describe the related communication model as in the last part
i<y )

of section §.

8.25. Let fi(x), p;, i = 1,2, - -, n, and f(x) be defined as in problem 8.24,
and suppose that g(x) is also a generalized density of the same homogeneous
set of probability measures. Show that

iglp ‘ffi(x) log 2@ di(x) ZJ‘f (€9 logg @ dA(z),
with equality if and only if fy(x) = f() = - - = f,(*) [A]. [Note that this

implies that for discrimination against g(z) the “mixture” of fi(x), - - -, fu(*)
given by f(x) provides less information than the mean of the information of the
components of the mixture. See example 2.1 of chapter 3]

8.26. Let f(z) be the probability density of a random variable limited to a
certain volume V in its space and such that f(x) log f(x) is summable (¢ log ¢ is

defined to be zero if + = 0). Show that J‘ f(@) log f(x) dx = log (1/V), with

V .
equality if and only if f(x) is equal almost everywhere to the constant 1/V in
the volume. [Cf. Shannon (1948, p. 629).]

8.27. Let f(x) be the probability density of a nonnegative random variable
with mean 4, and such that f(x) log f(z) is summable (slog # is defined to be
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zero if t = 0). Show that f /(@) log f(x) dx = —log ue, with equality if and
0

only if f(x) is equal almost everywhere to (1/u)e~=l¥, x 2 0. [Cf. Shannon
(1938, pp. 630-631).]

8.28. Consider the discrete random variable « that takes the values z,, z,,
n
* * *, &, and has the mean value yu, that is, p; = Prob (x = z)), > zjp; = p.
. I1=1 eﬂZi
M@B)
here M(B) = S ez 3 $ a4 e M(B). (See probl
where = 5y o= > XD, = = — lo . (See pr
(ﬂ) ]Zl M P} Pi P M(ﬂ) dﬂ g probiem
8.36) [CE. Brillouin (1956, pp. 41-43), Jaynes (1957, pp. 621-623).]

8.29. Show that I(1:2; Y|X) = 0, if and only if A (y|x) = h(y|x) for almost
all z (see theorem 2.2 and corollary 3.3).

n
Show that ; pilogp; = fu — log M(B), with equality if and only if p; =
j-

8.30. Consider the discrete random variables x, y, where p;; = Prob (z = x,,
m

n
y=y i=12m j=1L2n pi=23 pu ps=2 pinpy >0,
,= =

m n

21 zlpi, = % pi- = i ps=1, and the entropies defined by #(r,y) =
i=1j= i=1 i=1

-2 2 pulogpy, K@) = — 3 p.logp;., K (Y) = — ij.g- log p.;, # (ylz;) =

t 2
- ng__"]oggﬂ, ‘%(ylx) = zpaf(ylx;) = "‘Z ;pii log %{’ Show that

(a) H(x,y) = H(x) + H(y|x).
®) Hx,y) < H(x) + H(y).
(o) H@) = H(y|x).

[CE. Shannon (1948, pp. 392-396).]

8.31. A real-valued function f(x) defined for all values of z in an interval
a<z <bis said to be convex if for every pair a < (z;,%;) < b and all
M+Ah=11420i=12 l1f(x1) + Ay f(xp) 2f(11x1 + A,xp).

The function is said to be concave if 4, f(x)) + Af(x;) < f(Ax; + Ayxy).

The function is strictly convex or strictly concave if the equalities hold only
when x; = x,. Show that

d*(z)
(@) I =2

condition for f(x) to be convex is that

exists at every point in @ < x < b, a necessary and sufficient
d*f(x)
rroale 0.

(®) If f(x) is a convex function and a < (%}, %, " * *, xz,) < b, then
Mf@) + - df@) 2 fAzy + -+ Ax), M+ o+t =1,
A, 20,i=1,2,- - n

b
(¢) If f(x) is a convex function, p(x) = 0,f p(x)dr = 1, then
a

J;b f@)px)de = f (J;bxp(x) dx) .
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8.32. Supposepiy + pis+ -+ pie=1,py;>0,i=1,2;j=12,"" ¢,
and ¢y =aupy + appa+ - -+ apie, i=1,2; j=12,-" ¢ with
a,1+a,2+"'+a,,,==l,j=l,2,"',c,anda1k+a2k+---+ack=1,
k=12"""ca; =20.

Show that I(1:2; p) = 2 pislog £2 TD— > Z g15 log Z” = I(1:2; g), with equality

if and Only ifpljlpﬂ Plk/sz,j, k = 1 2

8.33. Suppose that x,, z,,* * -, x, is a random sample of a discrete random
variable, Y = Y(x,, x,- * -, 2,) is a statistic, and Prob (zy, 2, * *, Z,|H)
#0,i=1,2. Show that

El1o Prob (2, 2, * * -, x| Hy) Prob (Y = y|H,)
Prob (z,, 2y, - * *, Z,|Hy) Prob (Y = y|Hy)

When does the equality hold? [Cf. Savage (1954, p. 235).]

Hy, Y= y)z log

8.34. Consider the Poisson populations with parameters m; =1, m, = 2,
my = 3. Show that [see problem 5.2(c) of chapter 1 and the last paragraph of
section 3 of chapter 1]

(@) J(,3) >J(1,2) +J2,3).
®) vJQ,3) > vJQ1,2) + VIQ2,3).

8.35. Show that F(py, po) = py logﬁ1 +q logq 0=p;<1, ps+q:.=1,
i = 1,2 is a convex function of p,(p,) for fixed p(p,).

8.36. Suppose that in problem 8.28 the x;’s are positive integers, and 8, > 0
such that/i e—F7 = 1. Show thatu = #(p)/B,, where ' (p) = -jgp, log p;.

In particular, if Z;=j, n= oo, find 8, and the values of p; and u for equality.
[Note that this is related to the noiseless coding theorem. See, for example,
Feinstein (1958, pp. 17-20), Shannon (1948, pp. 401-403).] |

8.37. Let 0 < d(a o) < 1, qu(a,]x) =1 for all zeZ[A), pfa)=
j'gb(a,lx)f,(:c) dA(z), that is, gb(a,lx) is the probability for “‘action” a; given z,
and p,(a;) is the probability for “action” a; under Hj, j = 1, 2. Show that

f(®) Pi@d)
f fi(@) log f = )dl(x) = Z pi(a) log 2= @ 3

and give the necessary and sufficient condition for equality. Derive corollary
3.2 as a particular case of this problem.



CHAPTER 3

Inequalities of Information Theory

1. INTRODUCTION

The Cramér-Rao inequality, which provides, under certain regularity
conditions, a lower bound for the variance of an estimator, is well known
to statisticians from the theory of estimation. Savage (1954, p. 238) has
recommended the name “information inequality” since results on the
inequality were given by Fréchet (1943) and Darmois (1945), as well as
by Rao (1945) and Cramér (1946a, 1946b). Various extensions have been
made by Barankin (1949, 1951), Bhattacharyya (1946b, 1947, 1948),
Chapman and Robbins (1951), Chernoff (1956, with an acknowledgment
to Charles Stein and Herman Rubin), Fraser and Guttman (1952),
Kiefer (1952), Seth (1949), Wolfowitz (1947).

We shall derive in theorem 2.1 an inequality for the discrimination
information that may be considered a generalization of the Cramér-Rao
or information inequality (using the name recommended by Savage).
[Cf. Kullback (1954).] Theorem 2.1 will play an important part in
subsequent applications to testing statistical hypotheses. We relate
theorem 2.1 (and its consequences) and the classical information inequality
of the theory of estimation in sections 5 and 6.

2. MINIMUM DISCRIMINATION INFORMATION

Suppose that f(x) and f;() are generalized densities of a dominated set
of probability measures on the measurable space (Z, &), so that (see
sections 2, 4, and 7 of chapter 2)

HAE) =Lf,(x) di(), Ee& i=1,2.

For a given fy(x) we seek the member of the dominated set of probability
measures that is “nearest” to or most closely resembles the probability
measure U, in the sense of smallest directed divergence (see the last part
of section 3 of chapter 1)

I1:2) = f (@) log 28 ().

36
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Since /(1:2) = 0, with equality if and only if fi(x) = fo(x) [A] (see
theorem 3.1 of chapter 2), it is clear that we must impose some additional
restriction on f,(x) if the desired “‘nearest” probability measure is to be
some other than the probability measure u, itself. We shall require
fi(x) to be such that /(1:2) is a minimum subject to [7(x)f,(x) dA(x) = 0,
where 0 is a constant and Y = T(x) a measurable statistic (see section 4
of chapter 2). In most cases, 6 is a multidimensional parameter of the
populations. It may also represent some other desired characteristic of
the populations. In chapter 5 we examine in detail the relation of 6 to
observed sample values and the implications for the testing of statistical
hypotheses. The underlying principle is that fy(x) will be associated with
the set of populations of the null hypothesis and f;(x) will range over the
set of populations of the alternative hypothesis. The sample values will
be used to determine the “resemblance” between the sample, as a possible
member of the set of populations of the alternative hypothesis, and the
closest population of the set of populations of the null hypothesis by an
estimate of the smallest directed divergence or minimum discrimination
information. The null hypothesis will be rejected if the estimated mini-
mum discrimination information is significantly large. We remark that
the approach here is very similar to Shannon’s rate for a source relative
to a fidelity evaluation [Kolmogorov (1956, p. 104), Shannon (1948, pp.
649-650)]. [Compare with the concept of “least favorable” distribution
(Fraser (1957, p. 79)), and “maximum-entropy” estimates (Jaynes (1957)).]

The requirement is then equivalent to minimizing

@1 [ (A 1og fﬁ:ﬁ + K@@ + 1)) di@),

with k& and / arbitrary constant multipliers. Following a procedure
similar to that in section 3 of chapter 2, set g(z) = f1(2)/f3() so that (2.1)
may be written as

(2.2) f(g(x) log g(x) + kT(z)g(x) + Ig(%)) duy().
If we write ¢(t) = tlogt + kTt + It, t, = e ¥T~1=1 then ¢(1) = ¢(t,)

+ (t — to)d'(ty) + Lt — to)%4"(t,), where ¢, lies between ¢ and £,. But, as
may be verified, ¢(to) = — fo, ¢'(to) = 0, $"(t;) = 1/t; > 0, so that

23) f B(g(@)) dus(z) = — f e F D=1 ()

_kmny -1 —1y2 Ge(®)
+ 1 [(gta) — ety B,
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where A(z) lies between g(z) and e *T®) =1 We see then from (2.3) that

24) f¢(g(x)) dpy() = —fe‘m“"’ ! dus(@),
with equality if and only if

25) g(z) = eT@-1-1 ),

The minimum value of (2.1) thus occurs for

(2.6) [1(@) = f*(x) = fo(x)e ¥T@=1-1 (3],
in which case (2.1) and (2.4) yield

2.7) I*:2) + k6 + [ = — f fu@)e=FT@ =11 di(),

If we replace —k by 7, for notational convenience, and set My(7)
= [fyx)e*"T® dj(x), My(r) < oo, we see from (2.6) that | = e~! "I My(7),
and from (2.7) that the minimum discrimination information is

(2.8) I(*:2) = 01 — log My(7),

where

7T(zx) A -
29) 6= f Py(e) dae) = | TEEE™ B) _ @ldnyer)

My(7) T My(r)

for all 7 in the interior of the interval in which My(7) is finite. Hereafter
we shall denote = by 7(6) when it is important to indicate = as a function
of 6.

We can now state [cf. Kullback (1954), Sanov (1957, pp. 23-24)]:

THeorReM 2.1.T If fi(x) and a given f,(x) are generalized densities of a
dominated set of probability measures, Y = T(x) is a measurable statistic
such that 0 = [T(x)f,(x) dA(x) exists, and My(7) = [fy(x)e’™® dA(x) exists
for T in some interval; then

(2.10) I(1:2) = 67 — log My(r) = I(*:2), = ‘% log M,(r),

with equality in (2.10) if and only if
(2.11) (@) = [*@) = 7L @) My(r) [A].

We remark that f*(x) = fy(x)e’T®@/My(r) is said to generate an
exponential family of distributions, the family of exponential type
determined by fy(x), as T ranges over its values. The exponential family

t see Appendix page 389
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is a slight extension of that introduced by Koopman (1936) and Pitman
(1936) in the investigation of sufficient statistics. Many of the common
distributions of statistical interest such as the normal, »2, Poisson, binomial,
multinomial, negative binomial, etc., are of exponential type. [Cf.
Aitken and Silverstone (1941), Blackwell and Girshick (1954), Brunk
(1958), Girshick and Savage (1951).]

For f*(x) defined in (2.11), it is readily calculated that

f*(=)
fo(®)

2.12) J(*, 2) —fU *(@) — fex)) log di(z) = (0 — EXT@),
where E)(T(2)) = [T(x)fy(x) dA(z).

In subsequent applications of theorem 2.1, we shall have occasion to
limit the populations in the dominated set over which f*(x) may range.
We shall call such f*(x), and the corresponding values of 7, admissible.
If there is no admissible value of 7 satisfying the equation 6 = (d/dr)
log M,(), the minimum discrimination information value is zero.

Before we look at some examples illustrating theorem 2.1, we want to
examine the following results that are also related to theorem 2.1. [Cf.
Chernoff (1952, 1956, pp. 17-18), Kullback (1954).] Suppose fi(x),
Jo(x), flx) are generalized densities of a homogeneous set of probability
measures. Using theorem 3.1 of chapter 2, we have (see problem 8.4 in
chapter 2) |

So)
(2.13) ff(x) log @ )d}.(x) +ff( ) lo gf1( )d}.(x)
Sx)
fﬂx) logfl( )d}.(x) =0,
or
fi(@)
(2.14) ff(x) logfz( )d}.(x) Zfﬂ z) lo gf( )d}.( )

with equality if and only if f{xr) = fi(x) [A]. If in theorem 2.1 we take

T(x) = log [f1(x)/fz(%)], the minimum value of I(f:fp) = f Jix)log fz)d}.(x),

subject to 6 -fT(x)/(x) di(x) —f fiz) log ?E ; di(z), is

(2.15) min I(f:f;) = 07 — log My(7),

(2.16) My(r) = f fo(@) exp (-r log j::E ;) dA(x) —f(ﬂ(x))f(ﬁ(x))l—f di(z),
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Si(#)
Jo(®)

ﬂmmwwww

) @ er-10e 2D i

(2.17) 6 = — log My(7) =
dr

A@
_wbmmﬂm’mwmww
@1y fe)= M) =T M)

We remark that if f;(z) and f;(x) are members of a family of exponential
type determined by the same generalized density, then f{x) is a member of
the same family.

We note the following values, from (2.15)—(2.18):

d
T M,(7) fx) 7] e My(7) 67 — log My(7)
0 1 fz(x) —12:1) —-12:1) 0
1 1 (@) 1(1:2) 1(1:2) 1(1:2)

Anticipating the discussion in section 4 [cf. Chernoff (1952), Sanov
(1957, p. 18)], we now state that:

(@) as 0 varies from —/(2:1) to /(1:2), r varies continuously and strictly
monotonically from 0 to 1;

(b) My(7), log My(7) are strictly convex functions of 7;

(c) for 6 and 7 satisfying (2.17), 67 — log M,(7) varies continuously and
strictly monotonically from 0 to /(1:2) as 7 varies from 0 to 1;

@os=M()=1lfor0<r<1.

When 6 = 0 there is therefore a value 7y, 0 < 7, < 1, such that

@)@ ™

(2.19) fol@) = e
(220)  I(f:fy) = —log My(ry) = —logm,,  my = . 22 1M2(7-),
_ fi(@) _ So®@) fix)
0 —fﬁ,(x) log @ di(x) -j Sfol@) log @ @)
or )
, fo@) Jo(x .
.21) I(fy: f‘;(x) dix) = fﬁ,( ) lo gfl( )dl(x) = I(fy:/)-
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Bhattacharyya (1943, 1946a) considered My(7) in (2.16) for r =} as a
measure of divergence between the populations. Chernoff (1952, 1956)

proposes —log ( inf E(e™)) as a measure of the information in an
0<r<1

experiment. Chernoff points out that this information measure is such
that the information derived from n independent observations on a chance
variable is n times the information from one observation, whereas the
information derived from observations on several independent chance
variables is less than or equal to the sum of the corresponding information
measures. It is interesting to note that Schiitzenberger (1954, p. 65)
defines the logarithm of the moment generating function (the cumulant
generating function) as a pseudo information because it does not have all
the properties of an information measure.

Example 2.1. We illustrate theorem 2.1 with a simple numerical example.
N ~ I T
Let ;@) = (V) p#g*=, the binomial distribution for N =2, p = 0.4, and

2
T(x) = x. Since My(7) =x§08’“’fz(x) = (pe* + 9, [*@) = e™f(2)My(7) =

(i) (p*)(g*)*-", where p* = pe'/(pe” +q), q* = ql(pe” +q). Note that

f*(z) is also a binomial distribution. If we want E(x) =0 =1, then

1 = 2pe”/(pe” + q) = 2p* and p* = }- As possible distributions with E(z) =
e aee el s n n n
1, we shall take the hypergeometric distribution f(x) = ( Qf )( N _q x) / ( N)’
n=4, p=}=gq, N=2; the discrete uniform distribution f,(z) = >
xz =0,1,2; the discrete uniform distribution fy(x) = }, x = 0,2, fy(x) =0,
z = 1; the distribution f;(z) = 1,z = 1, fy(x) = 0,2 = 0,2. The appropriate
numerical values are given in table 2.1.

TABLE 2.1
A fa fa fs *
z * log = log = log= f;log= [*log—
fl f3f4 f5f f2 fl gf2 ﬁi gf2 f4 gf2 f5 gfzf gfz
0 % % % 0 J; 0.36 —0.12835 —0.02565 0.16425 0 -0.09116
1 § % 01 % 0.48 021900 —0.12155 0 0.73397 0.02041
2 % ?; % 0 J; 0.16 0.00680 0.24466 0.56972 0 0.11157

0.09745  0.09746 0.73397 0.73397 0.04082

Note that I(*:2) is the smallest value in table 2.1, and tllxazt -re= logl qlp) =
log 1.5, log My(r) = 2log(pe” + q) = 2log2g = 2log 12, U =1, U7 —
log My(7) = log 1.5 — 2log 1.2 = 0.405465 — 0.364643 = 0.04082 = I(*:2).

This example also illustrates problem 8.25 of chapter 2 with f*(z) = 3 fy(x)
+ 3 f5(x) and @) = f(2).
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Example 2.2. Using the statistic ¥ = min (z;, 25, * - *, x,) and the popula-
tions and results in example 7.2 of chapter 2, we find that

e
1 —7/n
&) = (n — T)e~(n—Xy—6), 6, <y < co.

o) L4
My(7) =f ne="MV=8)+v dy = v n>T,
o’

[}
Sincef nye~"V=0dy =0 + 1/n,I(*:2; %) = (01 + ,lz)’ — 70, + log(l ~ ;l)
/]

. 1 1 __n6, -6 ...
with 6, + ~= 6, + o orr = G =0T Un <n,and I(*:2; %) =
n(@, — 0y — log (1 + n(6, — 6,). Since 6, >0, and z =log(l + z) for
z > —1, with equality if and only if z = 0 [Hardy, Littlewood, and Pélya
(1934, theorem 142, p. 103)], we see that
1(1:2; &) = n(6, — 0) = 1(*:2; ¥) = n(6, — 0,) — log (1 + n(6, — 6y)) = 0,
with equality for finite » if and only if 6, = 0,.

Example 2.3. We take [cf. Fraser (1957, p. 145)] T(x) = yg(x), where

1e@) = 1forx€ E and ygx) =0 forx€ Z — E = E; thatis, y(x) is the
characteristic function or indicator of the set E € .%, and

f 2@ () dia) = fE £i@) di@) = py(E) = .
We now have

My7) = fe’*"“yz(x) dA(z) = Leﬁ(x) di(z) + f fo(x) dA(z)
E

= e"uy(E) + us(E),

exe@)fy(z) e/o(@)
* = = =’ E
f'@ == eulB) + B
R /) E
e"us(E) + u(E) TES
_ _ e"uy(E) , =] ’IM,
6 = m(B) euE) + p(E) %% i Eyn(E)

I(*:2) = uy(E)yr — log (e"ux(E) + ux(E))

. :u1(E),u2(E) -1 Uo(E)
= tE) I8 L By (B) %8 (B

_ H(E) :ul(E)..
= uy(E)log pT3) + w,(F)log olE)

We thus have

. Hy(E) .u'l(E),
I(1:2) 2 uy(E) log 1lB) + w(E)log 1io(E)
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with equality if and only if

* = lul(E)

f@ =@ =S o U, zek,
= ,u1(E)

,u—z( 3 fo(=) [A, zek.

Note that the foregoing is a special case of corollary 3.2 of chapter 2, with
E, = E, E, = E. (See problem 7.19.) We remark here that the techniques of
sequential analysis [Wald (1947)] in effect determine such a partitioning of the
space Z, with i(E) = 1 — i, uy(E) = «, and with no loss of information,
since the partitioning is sufficient.

3. SUFFICIENT STATISTICS

We shall show that T(x) is a sufficient statistic for the family of
exponential type determined by fo(x). We follow the notation and concepts
of section 4 of chapter 2 and shall need the following lemmas.

LemMa 3.1, If A is a measure on &, if g is a nonnegative function on %,
integrable with respect to AT-' = y, and if u is the measure on & defined
by du=gTdl, then duT-!=dv=_gdiT™! =gdy, or equivalently,
E(gTly) = g(») [)-

Proof. From u(E) = f gT(x) dA(x) and lemma 4.1 of chapter 2, it
E

follows that »(G) = uTXG) = W(T-XG)) =L g(y) dy(y). [See Halmos

(1950, p. 209), Halmos and Savage (1949), Kolmogorov (1950, p. 53),
Loeve (1955, p. 340).]

LemMa 3.2, If A is a measure on &, if f and h are nonnegative functions
on X and ¥ respectively, and if f, hT, and f+ hT are all integrable with

respect to A, then Ey(f+ hTly) = EXf|y) - h(y) [¥].
Proof. If du = fdi, then ¥(G) ==J E(fly) dv(y). From lemma 3.1
e

above and lemma 4.1 in chapter 2, we have

[EG e ) = [ 1) dt) = [ 176 duto
G G Y&
= [ . fhre) ai) = [ B w7l avewy,

(e
and the conclusion (uniqueness) follows from the Radon-Nikodym
theorem. [See Halmos and Savage (1949), Kolmogorov (1950, p. 56),
Loéve (1955, p. 350).]
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LEMMA 3.3. The distribution of the statistic Y = T(x) for values of x from
the respective populations u*(E) =L S*(x) dA(x), p(E) =J;} Sfolx) dA(x),
for E€ &, f¥x) = 7@ fy(x)| My(7) is given respectively by

Bl  »(6) = L @ dy),  #(G) = L s dy), Ged,

where g*(y) = Vg (y)[M(7) [¥].

e T (a)
Proof. Sincedu*=f*dA= M) ——==—dA,v*(G)= sz( M) ly)dy(y)

= L E(fi@)|y) MT(ZIT) dv(y) = f 3125:2 ; dy(y), by lemma 3.2 above, and

the conclusion (uniqueness) follows from the Radon-Nikodym theorem.

Note that the generalized density g*(y) of the distribution of the statistic
Y = T(x) generates an exponential family, the family of exponential type
determined by g,(y). Hereafter, T(x) will be understood to be a measur-
able function without further comment.

THEOREM 3.1. The statistic Y = T(x) is a sufficient statistic for the
Sfamily of exponential type generated by fy(x).

Proof. Let ; and 7, be any values in the range of = for which M,(7)
is finite and let f;*(x) and g,*(y) be the generalized densities corresponding
tor, i=1,2. From lemma 3.3 we see that

fi*(x) enT® Mz("z) gl*(T(x))

3.2 Al,
G2 fo* @) T ed® My(y) gz*(T(x)) 4
or

g*Tw)  g*(Tk)

the necessary and sufficient condition (4.5) of chapter 2 that Y = T(z)
be a sufficient statistic.

Fixing u, in the homogeneous set of measures in theorem 4.2 of chapter
2, and letting u, range over the homogeneous set, the necessary and suffi-
cient condition (4.5) of chapter 2 that Y = T(x) be a sufficient statistic
may be written as [cf. Fraser (1957, p. 20), Rao (1952, p. 135)]

&:(T(z)
£:T(x))
with A,,(T(x)) = gl(T(x))/gz(T(x)) a function of T(x). We see that f*(x)

has the form for fi(z) in (3.4). Hence we have an alternative proof of
theorem 3.1.

(€X) fike) = f@) = hy(T@)H@) (4],
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Note that (3.4) by itself is not sufficient for T(x) to be a sufficient statistic.
The condition that x, and u, are measures of a homogeneous set, or, more
strictly, that u, is absolutely continuous with respect to u,, is essential for
this criterion for a sufficient statistic, known as the Neyman criterion.
Since Ay, = fi/fp, unless f; = 0 whenever f, = 0, Ay, is not defined, and if,

always for some set E, f; = 0 whenever f, = 0, then u,(E) = f f1dA =0,
E

whenever u,(E) =f fodA =0, or y, is absolutely continuous with respect
£

to u,. An illustration with rectangular distributions may be helpful.
(See example 7.1 of chapter 2.)

Example 3.1. Letfy(x) =1/0,,0 <z <0,, fio(®) =1/0,,0 <z <0,
=0,2<0,z>0, =0,z<0,z >0,

Suppose that 6, < 0,, and set T(x) = 1,0 <z < 0,, T(x) =0, z < 0, z > 0.
Now fi(x) = 0 whenever fy(x) = 0 so that y, is absolutely continuous with
respect to u,. It is clear that fi(x) = hy(T(x))fo(x), where (T (2)) = (04/6)) - 1,
0 <2< 0, hy(Tx)) = (0,/6)) -0, x < 0, x > 0,. Hence T(x) is a sufficient
statistic (cf. example 2.3). However, when 6, > 0,, fi(z) is not zero whenever

fox) = 0, u, is not absolutely continuous with respect to u,, and we cannot

write f1(%) = hy(T(x))fo(x) for 0, < z < 6;.

CoRrOLLARY 3.1. IfI(): 79; %) = f fi*(@) log%%dl(x), and I(1,:79; %)
2
=fgﬁ(y) logg-i-r((z; av(y), then I(1: 175; X) = I(71: 79, Y).

Proof. A consequence of theorem 3.1 above and theorem 4.2 of
chapter 2. :

CoRrOLLARY 3.2. IfO(z;) =fT(x)ff(x) di(x) = E(T(@)|r,), i =1, 2, then
My(7y)
M 2(7'2)

Proof. Verified by straightforward computation. (Cf. problem 5.6
of chapter 1.)

I(1y 2 79) = 0(7)(7y — 7o) — lOg and J(ry, m9) = (6(m1) — 6(r)) (1 — 7o)

4. EXPONENTIAL FAMILY ‘

We now want to investigate the behavior of /(*:2) = 07 — log M,y(7)
as r and 6 vary. [See Blackwell and Girshick (1954), Blanc-Lapierre and
Tortrat (1956), Brunk (1958), Chernoff (1952), Girshick and Savage (1951),
Khinchin (1949, pp. 76-81), Kullback (1954), Le Cam (1956).] Proofs of
the following lemmas are left to the reader.
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LEMMA 4.1.  For all 7 in the interval of finite existence of My(r), M,(7)
is nonnegative, analytic, and

dM, 2(7')

4.1) =fT(x)e’T")fz(x) di(z) =f3/€’”gz(3/) any),

a? M 2(7')

@2 - [ e a1 = [eein) dvi) 2 o,

with equality if and only if py(x:T(x) = 0) = 1.

Lewun 42, 06) = [T *(e) dha) = [15%) dve) = L 10g b1,

M, (7)

= ( ) ———= where [*(x) and g*(y) are defined in lemma 3.3.
o\7

We shall also indicate by v(0) the value of = for which 6 = d%log My(7)

_ M)
T My((0))
LEMMA 4.3. E((T(x) — 0§|7) = E((y — 0)217) = var (y|r) =

M(r) (Mz (T>)

7 08 M) = M)\

1 of*x)\?
@) 20 ) di(z) = 1.

LEMMA 4.5. If py(x:T(x) = 0) # 1, then 0(7) is a strictly increasing
Sunction of v and log My(7) is strictly convex. For a fixed value of 0,
O+ — log My(7) is a concave function of +, with maximum value 06+(0)
— log My(+(0)), which is a convex function of 6.

LEmMMA 4.6. If 60) = [T@)fs(@) dA@@) = [ygo(y) d¥(y), then H(0) =
M, (0), My(©0) = 1, 0(0) = E((y — 6(0))%|r = 0) = var (y|r = 0).

LEMMA 4.4, f(T(x) — 0¥ *(x) dA(x) - f [ *(x)(

LEmMmA 4.7. If 0 = %ig(-g)%)- and puy(x:T(x) = 0) # 1, then
2
v dr(0) 1 1 .
"O="0 = mwE) _ (O - "
M0) ~ \M=0)) ar 2

and (0) is a strictly increasing function of 0.
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LEMMA 4.8. 1(*:2) = 67(6) — log My(=(0)) = 0, with equality if and
only if 7(0) = 0, that is, 0 = 0(0) = [yg.(y) dy(y).

LEMMA 4.9. I(*:2) = 07(0) — log My(+(0)) is monotonically increasing
for 6 = 6(0) and monotonically decreasing for 6 < 6(0).

THEOREM 4.1.  I(*:2) = (6(r) — 6(0))/2 var (y|~(§)), & between 6(r) and
6(0).

Proof. Let I(*:2) = m(0) = 0+(6) — log My(7(6)); then m'(6) = ‘-;%m(ﬁ)

2

d
= 7(6), m"(6) = 25;"1(0) = 7'(6), m(6(0)) =0, m’'(6(0)) =0, and m(6)

= m(6(0)) + (6(=) — 6(0)m’'(6(0)) + $(6(=) — 6(0))°>m" (&), from which the
desired conclusion follows.

In view of theorem 2.1, and theorem 4.1 of chapter 2, we may now
state:

CoroLLARY4.1. [(1:2;2) = I(1:2;%) = (Ey(y) — Ex¥))*[2 var (y|=(&)),
where var (y|r(8)) is the variance of y in the distribution defined by
g ()| My(7(&)), and & lies between E,(y) and Ey(y), with equality
between the first pair if and only if Y = T(2) is sufficient, and with equality
between the second pair if and only if g,(y) = €™ g (y)[My(7) [A].

In particular, if ¥ = ¥, + ®%¥Y, + * - - + %Y, where the y,, i= 1,
2, - -, k, are linearly inderendent, A-measurable functions of x € Z, and
0, = E\(y) — Ef{y), i=1,2,- - -, k, and cov (y,, y;|=(&)) is the covari-
ance of y; and y;, i, j=1, 2,- - -, k, in the distribution defined by
7 = 7(§), then in terms of the matrices (and usual matrix notation)
Z(r(E)) = (cov ¥, Y5|TEN, o = (@, * * -, @), 8 = (8, 8, - * *, b)),
(E(y) — EXy))? = a'88'a, var (y|r(§)) = a’Z(+(£))x. It can be shown
(see section 5 of chapter 9) that max (a'8d’a/a’Z((£))a) for possible values
ofthea;, i=1,2,- - -, k, is ¥Z-1(7(£))8. We can therefore state:

COROLLARY 4.2. [(1:2; %) = I(1:2; %) = }8'Z-Y+(£))s.

We remark that the right-hand member in corollary 4.2 is the dis-
crimination information measure for two multivariate normal populations
with respective means E(y,), E(y,), i=1, 2,- + -k, and common
covariance matrix Z(r(£)) (see section 1 of chapter 9).

COROLLARY 4.3. J(*,2) = (6(7) — 6(0))*/var (y|=(8)).
Proof. Apply the procedure in the proof of theorem 4.1 to J(*,2)
= (6(r) — 6(0)(6).
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COROLLARY 4.4. I(ry:7s) = (E(y|ry) — E(y|r2))*/2 var (y|7(&)), where
& lies between 0(r;) and 0(7,).
Proof. " Apply the procedure in the proof of theorem 4.1 to corollary 3.2.

COROLLARY 4.5. J(7y,7y) = (E(lel) — E(y l'rz))zlvar (3/]7'(5))’. where &
lies between 06(r,) and 0(rs).
Proof. Apply the procedure in the proof of theorem 4.1 to corollary 3.2.

It should be remarked that the preceding results are not only multi-
dimensional 'in the variates but also in the parameters, that is, § = (6,,
ozs R ok)s 7= (T, Ty, " STy Y =(Yy, Yo+ 5, ¥p) = (Tl(x)s Ty(),
-+ +, T(2)) = T(z), and O, 7T(z), and 7Y are to be understood as 0,7,
+ Oy + ¢ ¢ - + O, V@) + 7. T@) + - - - + 7 T(@), and 7Y, +
19Yy + - -+ + 7. Y, respectively. It will be useful to rewrite some of the
preceding in an appropriate matrix notation. Let us write

8"(m) = f f *(x)(f*ix) 3];"(2:)) (f’:(x) afaf )) &),

I 1 og*y)\({ 1 0dg*()
et = [0 552 (55 22 v
and define the nonsingular matrices
G*(7) = (g*(™),  H*@) = (h;*()),

where 7 represents any appropriate set of parameters and /, j range over
the number of components of =, for example, i, j =1, 2,- - -, k, when
m is T or 6.

Since
I*@) _ of*(x) 86, , of*(x)26, o* )06, |
37',- - 301 5’;‘; + 302 -a';: + + aok a—;;’ j - ls 2’ ’ ks

setting a,; = 00,/0r;, the nonsingular matrix A = (a;,), i, j = 1,2, - -, k,
(1 af*)’__ ( 19/* 10/ o _1_3_12)
ror) \fror from [*on)
t 3

1 14
imilarly, th X {——1,
similarly, the matrix (f*BO) we have

(50 (5 ) -+ ()R
rx/ T \rroe) \rax/\rrax/ " T 't*0/\f*00)

and taking expected values G*(r) = A’G*(6)A. In a similar fashion we
also have H*(r) = A'H*(f)A. Lemma 4.3 may now be written as
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LeMMA 4.10. Z((0)) = G*(7) = H*(r) =
and lemma 4.4 as

LemMA 4.11.  Z((6)) - G*(6) = I = G*(z)G*(0).

Since
0, 7] X
deia?—'ld’fl'*'ald’fz'}' "+?gid’fk, i=1,2,"',k,
31'1 3 31‘,,
setting the matrix (d0)" = (db,, db,, - - -, d0,), similarly, the matrix
(dt)’, we have (d0) = A(dx) or (dt) = A‘l(dﬂ) Since
or; o, o,
_ idl. 4 gt - ...
d’ft 30 del + 302 d 2 + + aok dok, 1 1, 2, s k,

we may write ¢ = 07,/00,, i, j=1, 2, - -, k, and (a”) = A-1. Thus
lemma 4.7 may now be written as

LeMMA 4.12. (a¥) = A1 = Z-Y(=(0)).

As was noted in section 6 of chapter 2, the matrices G*(w), H*(rr) are
Fisher information matrices. [Cf. Fisher (1956, p. 155).]
We illustrate the foregoing with a number of examples.

Example 4.1. Z is the space of n independent observations O,, on the two-
valued variate success or failure, ¥ = T(x) is the number of successes in the n
observations, and p;, g; = 1 — p;, i = 1, 2, are the respective probabilities of
success corresponding to H;, i = 1,2. It is found that {cf. problem 5.2() of
chapter 1 and problem 8.12 of chapter 2]

43) 1(1:2;0,) = ni(1:2;0) = n (pl 1ogf-,l + g, log gi),
@4) I1:2; ¥) = 2 _'(_;2_'__).'. piayV log f:vzl:*:
=n(pllogp + gy log — )
@3) g*y = e’:i‘ﬁl)) = y!(nn ! EH @Y, My(7) = (p” + g7,
Pl el =0 =gl

(4.6) I(*:2) = np;7(py) — nlog (pe™®) + g,) = n (Pl logf’ +q logzl)

= (np, — np)*[2npq = n(p, — p)*I2pq;

where p = P » g = 92 __, for some value of 7 between (py) =0
Pt 2 pe” + 4
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and 7(p,) = log 5—1}?—2; that is, p lies between p, and p,. Note that in this
1P2
example /(1:2; &) = I1(1:2; &) = I(*:2).

Example 4.2. % is the space of n independent observations O,, from the
normal populations N@®;,63, i=1,2, Y =T(x) = %, the average of the n
observations. It is found that [cf. problem 5.2(f) of chapter 1 and problem
8.13 of chapter 2]

2:0,) = nl(1:2; 0) = % (1og % — 1 + %L 4 G = 0’
@.7) 1(1.2,0,,)-711(1.2,01)-2(log012 L+ 25+ )

ey 1y 0 1, 6 (0, — 6,)°
4.8) I(1:2; %) = 5 log oi T3 + 307 + o
n - 7022 2
@.9) o4& = T8 _ I S A
M) o2V
2.2 . 2
M2(T) = exp (’7‘62 + 20';2 ), 0* = 02 + 1'-—0""3‘7

where 0* = (d|dr) log M,(7) is the mean of the distribution with density g*(Z),
the values of 7 for 6* = 0, and 6* = 0, are respectively

"(02) =0, 7(0,) = n(6, — 0y)/0?,
7'2(01)0'22 = ”(01 — 0,)
2n 20,2

Note that in this example I(1:2; &) > I(1:2; %) > I(*:2). (Seec problem 7.21.)
Example 4.3. % is the same as in example 4.2, ¥ = T(2) = (&, 5%, where &

> (z; — &) is the unbiased sample variance of
=1

4.10) I(*:2) = 17(01) - 027(01) -

is the average and s® =

n—1 i
the n observations. It is found that
4.11) I(1:2; &) is the same as in (4.7),
4.12) I(1:2; Z) is the same as in (4.8),
.. _ n—1 0'22 gli
(4.13) I1:2; 5% = 5 (log o 14 Py ’

(4.14) I(1:2; %) = I(1:2; &) + I(1:2; 5*) (cf. theorem 2.1 in chapter 2),
= XP (1% + 755%)g:(%, 5°)

My(7y, 7o) .
_exp[—n& —0*?20]1 (n—1) (n — 1)32)'.‘_2‘_

02\/-277.7\/;, 20'*2F (n; 1) ( 20’*2

@4.15) g*)

. (n — 1)s?
X €xp ——2—&?—— ’

\
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20,2 V7GR _n-1
My(7y, 7o) = {CXP (02”'1 + lznz )} (1 - n——-——Ti_zl) z,

7]
= log My(ry, 7)) = 6, + 7109%/n,
T1

7,
O4? = 5= log M7y, 72) = 07?/[l — 2ry0%/(n — D],
2
the values of 7, and 7, for 6* = 0,, 0* = 0,, 0,2 = 0,2, and 04% = 0,% are
respectively
-1/1 1
7(02) =0, 710D = n(0; — 0)/0y%,  75(02%) =0, 79(07%) = 3 ("‘ - "")’
2

(4.16)  I(*:2) = 6,71(0,) — O,71(6,) — 0,21,%(0)/2n + a;275(01D)

n— 1 202272(012)
+ 3 log (1 Ea—)

— 0,2 -
"(01262209 + n 5 1 (l 8532 -14—= )
_ 2 2 22, ]
- n(0120 2202) + (01 5 02 ):n = -}8'2—1(7(5))8’

where o2 lies between 0,2 and 0,2, and
= o 2/ n 0 = — 2 . .
o) = (5 S ) 8 =@ = o)

Note that in this example I(1:2; %) = I(1:2; %) > I(*:2), and that the
statistic Y = T'(x) = (&, s?) is sufficient.

Example 4.4. Z is the space of n mdependent observations O, from the
normal populations N(0,6%), i =1,2, Y = T(x) = s?, where (n - 1)s? =
n

> (x; — ©)? It is found that
=1

2
@.17) 1(1:2; 0,) = n(1:2; 0;) = (log —1+3 )

(4.18) I(1:2; s*) is the same as in (4.13),
(4.19)  g*(s®) = e™gy(sDMy(7)

n—3
(n-(— 1) ) ((n - l)sz)-z—'exp ( (nz; lz)sz)’

Miy(r) = ( ?—-‘5*—)

n—1

—

Ol = a%log My(7) = a2/(1 — 2762 /(n — 1)),

n—1/(1 1
0) =0, 7(0y%) = —— (— - ;;E)’
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(4.20) I(*:2) = 0y°7(0,”) + - -2- 1 log (1 - 20:2:(0;12))

(0,2 — 0,%)? n- 1

2 204

where o2 lies between 0,2 and ¢,2. Note that in this example I(1:2; &) >
I(1:2; %) = I(*:2), and that s? is not a sufficient statistic.

n
Example 4.5. Z is the same as in example 4.4, Y = T'(z) = ;1; 2 xd Itis

t=1
found that

4.21) I(1:2; Z) is the same as in (4.17),
2@y =" (1o % _ 1 4+ 9
4.22) 11:2; %) 3 (log o 1+ 022),
(4.23) &*(Y) = eTg(Y)[My(7)
n-—2
_ n ( ny \=5- ny
20'*2P (g) . *

My(7) = (1 — 2710,%n)~"12,

0,2 = a?;log My(1) = 6,.%/(1 — 2710,%/n),

(0% =0, 0% = g ( : "L)’

5'-23 B o?
2
(4.24) I(*:2) = o270, + glog ( 1-— 3‘!2-;3‘—12)

(100 %2 _ 1 o O
_2(log0_12 1+0'22)

_ (0% = 0 .
2 20

where 02 lies between 0,2 and 6,2. Note that in this example I(1:2; %) =
n

I(1:2; %) = I(*:2), and that rlz > z2is a sufficient statistic.
i1

Example 4.6. % is the space of n independent observations O, from
bivariate normal populations. We shall consider bivariate normal populations
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with zero means, unit variances, and correlation coefficients p, and p, respec-
tively. It is found that (see example 2.1 in chapter 2)

425 1(1:2;0,) = nl(1:2;0) = n (‘ log L= P22 4 P2 -Plpz)
1 —p? 1 —ps?

The nonsingular transformation
(4'26) u=x —2,, V=2 + Z,

transforms the bivariate normal density
1 1
—_— — e (2
4.27) Il — P exp ( D) (2,2 — 2pzy2, + xzz))

into a product of independent normal densities with zero means and variances
2(1 — p) and 2(1 + p),

1 s
B T (=)

1 ?
X — ex —_ .
V2r(2(1 + p)/2 P ( 41 + P))
It is found [the derivation of (4.17) and the fact that I(1:2; u, v) = I(1:2; u) +
I(1:2; v) are applicable] that
@429 I(1:2;uv)
! 1 —p, l—p\ 1 + e 1+p
= ~{[log —= — 1] —_— - —1 —_—t
2(°g1—p1 +1—p2)+2(°g1+p Y
1 — p,? +P2 _P1P2
1 —p? 1 —p?

illustrating the additivity for independent random variables (see section 2 of
chapter 2) and the invariance under nonsingular transformations (see corollary
4.1 of chapter 2). We now take Y = T(x) = (v, ¥5), Where

(430) y, = L i“iz =1 i(xu — 2% Y= L iviz =1 i(xu + z5,)%,
ni=1 ni;=1 n;=1 n =1

and find that (cf. example 4.5)

(4.31) I1:2; %) = nl(1:2;u,v)y = I(1:2; Z),

4.32) g*(y) = et +"2y"g2(yl9 yz)/MZ(Tb T2)
2

n ( ny, )1" R exp (_ ny, )
| — o* 1 — o*
41 — p*) F( ) 4 P*) 4« P*)

2

n nyYs = nYo
X ( #) exp(—-———————*),
4(1+*)I‘() 41 + p*) 41 + p*)
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My(1, ) = (1 — &1 — pImi[n)™ %1 — &1 + py)ro/n)~"12,

0
= 2(1 — p*), 0:* = 2(1 + p*). = 5 log My(7y, 75),'

0
b,* = 5;_; log My(1y, ),

oo 21 —p) 0= 2Lt Py
S B ey ey R ey
1 1
Tl(P2) = 0, Tl(Pl) = g (1 — p2 - 1— pl)’

n 1 1
mlpd =0, mlp) = 4 (1 + po 1+ Pl)’

(4.33) I(*:2) = 2(1 — pPmi(py + glog (l - Al — /:lz)Tl(Pi))

+ 201 + py)malpy) + glog (1 - 4_(_1__1_/:;2_)12_(_’11_2)

1 —p | P — Ple)
lo s +
( g 1—p® 1 —pg?
1 + p?
=5 (p! P2)2 p2)2

where p lies between p; and p,. Note that in this example I(1:2; ¥) =
I(1:2; %) = I(*:2), and that Y = T(z) = (¥, ¥2) is sufficient.

Example 4.7. We shall use results derived in example 7.2 of chapter 2 and
example 2.2. In order to use an unbiased estimate, let us consider the statistic
Y =T(x) = min(z}, %5, * * *,x,) — 1/n. We find that

gy) =nexp(—nly+ 1n—0y)), 0,—1/n<y< oo,

I(1:2; %) = n6, — 0,), 6, 20, (asin example 7.2 of chapter 2),

&*(Y) = egy(y)|My(7), 6, —1/n <y < o,
=@m—7exp(—(n—7Ny + 1/n—0y)),if n>n,
My(7) = (exp (18, — 7[n))[(1 — 7[n), n > T,
a?;log Myr)=0*=0,—1ljn+ 1/n—17), =0 =0,

”(01 - 02)
6, —0) + 1/n
I(*:2) = 0,7(6,) — 6,7(6,) + 7(6;)/n + log (1 — ~(6,)/n)

= n(0, — 0,) — log (1 + n(6, — 6;)) (as in example 22),

_ 6, - 6,)? n? _
== Gt G RGO,

and 6, = { < n, as required,
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where 0 lies between 6, and 0,, 6, =0 = 0,. Note that in this example
11:2; %) = K(1:2; %) > I(*:2).

5. NEIGHBORING PARAMETERS

In section 6 of chapter 2 we examined the relation between Fisher’s
information measure and those we have been studying. We now con-
tinue that examination to study the relation between the inequality of
theorem 2.1 and its consequences and the classical information inequality
of the theory of estimation. Let us suppose that y,, i= 1,2, - -, k, in
corollary 4.2 are unbiased estimators of the parameters. We saw in
section 6 of chapter 2 that under suitable regularity conditions, to within
terms of higher order, .

(5.1) 2006 + A6:0; %) = (A8 G(O)(AB) = J(6 + A6, 6; Z),

where (A8) = (Af;, Af,,- - -, AG,), and G() is the positive definite
matrix (g;40)),

6D 80 = [ 1) (5 og o) (3 108 o) i),

L, j=12+"+ k.
Similarly, we also have '

(5.3) 216 + A6:0;%) = (A8)H(0)(AB) = J(6 + A6, 0;%),
where (A8)’ is defined above, and H() is the positive definite matrix
(h:40)),
0 0
69 1 =[50 (- logsw) (s logs) v,
i,j= 1,2,- - - k.

We can now state [cf. Barankin (1951), Cramér (1946b), Darmois
(1945)]:

THEOREM 5.1.  Under suitable regularity conditions
(%)) (A8)' G(6)(A8) = (ABYH(6)(A0) = (AB)Z(AB),

where (A8), G(6), H(0) are defined in (5.1)~(5.4) and Z is the covariance
matrix of the unbiased estimators. The first two members are equal if and
only if the unbiased estimators are sufficient and the last two members are

equal if and only if g(y) in (5.4) is of the form €™h(y)| M(r(0)), where h(y)
does not contain 0 and M(+(0)) =fe’“”yh(y) dy(y).

Proof. Use corollaries 4.1, 4.2, 4.4.



56 INFORMATION THEORY AND STATISTICS

Certain useful results about quadratic forms will be needed and are
given in the following lemmas. [Cf. Barankin and Gurland (1951, pp.
109-110), Fraser (1957, pp. 55-56), Kullback (1954, p. 749), Roy and Bose
(1953, p. 531).]

LeEmMMA 5.1.  If both x'Ax and x'Cx are positive definite quadratic forms
(matrix notation) such that x'Ax = x'Cx, then

(@) the roots of |A — AC| = 0 are real and = 1;

®) (Al 2|C[;

(c) any principal minor of A is not less than the corresponding principal
minor of C (determinant or quadratic form);

d) yCly = yA'ly;

(e) any principal minor of C! is not less than the corresponding principal
minor of A~ (determinant or quadratic form).

Proof. Statements (a), (b), and (c) are immediate corollaries of known
theorems on positive definite quadratic forms, for example, theorems 44
and 48 in Ferrar (1941). Since A1 = C-!CA-! and C1 = C-1AA-],
there exists a nonsingular matrix B such that [Bocher (1924, p. 301)]

- C1=PB'AB and A~!=B'CB. Thus, applying the transformation

x = By gives x’AX = y'B’ABy = y'C-1y, x'Cx = y’'B'CBy = y’A-ly, and
(d) and (e) then follow.

We remark that A = C may be defined as meaning that x’Ax = x'Cx
for all real vectors (matrices) x 7~ 0.

LEMMA 5.2. If A=(ay), i, j=1, 2, - -, k, is a positive definite
matrix, then a1 = q'22 g1 > . . > o128 "*®-D > 1/g, = where
a1 "3 s the element in the first row and first column of the inverse
of the matrix obtained by deleting rows and columns 2, 3,- - -, j, in A.

Proof. Consider two multivariate normal populations with common
covariance matrix A and difference of means &’ = (e, g, * * -, &;). As
already noted in connection with corollary 4.2, and shown in chapter 9,
the discrimination information measure for the two multivariate popu-
lations is /(1:2; %) == 3a’AYa. The variates y; = &;, Yp = T3, Y5 = 2,
* * Y3 = Z, are also multivariate normal with covariance matrix B,
where B is the matrix A with the second row and second column deleted
[Wilks (1943, p. 68)]. For the distributions of the y’s we then have
I(1:2;%) = }'B7B, where B' = (B, B, * =, 1), b1 =y, By = a3,
- - -, Br1 = o But according to section 4 of chapter 2, /(1:2;%)
=K1:2;%), or a’A~a = B'B1B for all o, &, * °, @, and therefore in
particular for «y = 0, 8'C8 = 8'B~'B, where C is the matrix A-! with the
second row and second column deleted. From lemma 5.1 we can then
conclude that ¢! = g''%.  Successive application of the procedure then
leads to the desired conclusion.
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LemMMA 5.3. If A is a k X k positive definite matrix, and U an r X k
matrix, r <k, of rank r, then a’A-'a = a'U'(UAU'Y Ua, where o
= (al, a2, : ., ak)‘

Proof. Consider the two multivariate normal populations in lemma
5.2 for which J(1:2; Z) = $a’A"2a. The variates y,, ¥5, - * *, ¥,, defined
byy=Ux, withy =, ¥ ' * %) X' = (2, 2, - * -, 23), and U the
r X k matrix of the lemma, are also multivariate normal with a common
covariance matrix UAU’ and difference of means Ua [Wilks (1943, p. 71)].
For the distributions of they’s we then have I(1:2; %) = 4a'U’'(UAU’)'Ua.
But according to section 4 of chapter 2, J(1:2; %) = I(1:2; %) and the
desired conclusion follows.

LEMMA 5.4. If Bis a k X k positive definite matrix, U an r X k matrix,
r < k, of rank r, and C a k x m matrix of rank m < k, then 3'C'BCB =
B'C’'U'(UB-1U’)-1 UCB, where B’ = (B,, Bs,* * *» Bm)-

Proof. Inlemma 5.3 set B =A"1and a = CB.

COROLLARY S.1. For arbitrary &' = (o), &5 * *, ), &; i=1,
2,- -k, real, dG(0)a = aH)a = a'Zla, a'Za = a H(O)a =
o' G Y(O)a, where G(0), H(0), Z, and the conditions for equality are given in
theorem 5.1,

Proof. G(6), H(0), X are positive definite since they are covariance
matrices of linearly independent variables. The first set of inequalities is
simply a repetition of theorem 5.1 and the second set of inequalities
follows by applying lemma 3.1.

COROLLARY 5.2. If y; is an unbiased estimator of 0, then ¢,? =
h'(0) = g(6), i =1, 2, - -, k, where h*'(0) and g**(6) are respectively
the elements in the ith row and ith column of H=Y(0) and G™1(6).

Proof. Use corollary 5.1 and lemma 5.1.

COROLLARY 5.3. If y, is an unbiased estimator of 0,, then o,? =

1
1{g) > Il 11.2 11 S ... > G128 k-1 > ,
HYO) 2 g%0) 2 g0 2 PR =2 g 2 —5
where g'23 " '3 s the element in the first row and first column of the
inverse of the matrix obtained by deleting rows and columns 2, 3,- - -, j,
in G(0). A similar result holds for unbiased estimators of the other
parameters.

Proof. Use corollary 5.1 and lemma 5.2. Note that g*(6) = 1/g.:(6)
when G(6) is a diagonal matrix.

Example 5.1. In example 4.1 set p; = p + Ap, p, = p. The lower bound
for the variance of an unbiased estimator of p, pg/n, is attained for the estimator
P =yln.
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Example 5.2. In example 4.2 set 6, =0 + A, 0, =0, 0,2 = 0 + Ac?,

n n
2 0 = 0

o = 0% We find that G = | ¢ n b H= o 1 |> and the lower
0 75 0 75

bound for the variance of an unbiased estimator of 8, o%/n, is attained for the
estimator - Z.

Example 5.3. In example 4.3 set 6, =0 + A6, 6, =0, 0,2 —a2+Aa2

n n o?

2 0 ez 0 n
0,2 = ¢®. Wefind thatG = n PH= n |pandZ = n 254

0 204 0 204 0 n—1

The lower bound for the variance of an unbiased estimator of 6%, 2¢4/n, that
is, g%, is not attained by the estimator s% with a variance 20*/(n — 1). From
examples 4.4 and 4.5 we see that when the population mean is known (we
used the mean zero) the lower bound for the variance of an unbiased estimator

. . . 1 &
of o% is attained for the estimator ~ Y z2
=1

Example 54. In example 4.6 set p, =p+ Ap, p, =p. We find that

G(p) = (r(z_g_-t_%_g) = H(p) and the lower bound for the variance of an

unbiased estimator of p is (1 — p??/n(1 + p?). [Cf. Kendall (1946, pp. 33-34).]

We shall now change the assumption that they,, i=1,2,- - -, k, are
unbiased estimators of the parameters. Instead suppose that E(y,) =
0y, b0« d,), i=1,2,- - - k, k =r, that is, the parameters are
&1, b2, *, P, and the y’s are no longer unbiased estimates of these
parameters, which may be fewer in number than the y’s. 'We now define

20,
(5.6) ”"’:5(';’ U=(u,), i=12"--kj=12"--r
7

where the matrix U is assumed to be of rank r. The differences of the
expected values of the y, for neighboring values of the parameters are

now given by Af; = 0(¢ + Ad) — 048) = p;y Ady + - - - + u;, Ad, +
o(A¢), or in matrix notation, neglecting terms of higher order,

(5.7 (A6) = U(Ad).

We also have

(5.8) ’ = log flz) = py; = ’ log fle) +- - - + uk;ilog flo),
o, 706, 00,

j= 1,2,' Py £
or in matrix notation

(5.9) (a 5108 f(x)) (; log f(x)).



INEQUALITIES OF INFORMATION THEORY 59

Similarly, we have

(5.10) (% log g(y)) =U (5% log g(y)).
We thus have

(5.11) (a 3108 f(x)) (a 5102 f(x)) (:e log f(x)) ( 0 log f(x)),

and taking expected values [cf. Fisher (1956, p. 155), also section 4]
(5.12) G(¢) = U'GOU,

where G(6) is the matrix defined in (5.2) and G(¢) = (g,{(#)) is the matrix
with

513 848 = ff(x)( l0g /@) - ok @) i),

Lj=12,-

O

Similarly, we have
(5.149) H(¢é) = UH(O)U,

where H(0) is the matrix defined in (5.4) and H(¢) = (h,(¢)) is the matrix
with

6519 hid) =[50 (35 o680 (57 108 50) G

hj=1,2,- - r
We now state:

THEOREM 5.2. Under suitable regularity conditions
(5.16)  (Ad)'G(4)(Ad) = (Ad)'H($)(Ad) = (Ag)'U'Z-U(A¢),

where U, (A¢), G(¢), H(p) are defined in (5.6), (5.7), (5.12), (5.14) and
Z=(oy), i, j=1, 2, - -k, is the covariance matrix with o, =
E(yi - ei(qsla ¢2’ ) ¢r))@/: - 0;’(951’ ¢2a R ¢r)) TheﬁrSt two members
are equal if and only if the statistics Yy, Y, = * *, Y, are sufficient. The last
two members are equal if (5.25) below is satisfied.

Proof. Use (5.6), (5.7), (5.12), (5.14) in (5.5) to obtain (5.16) and the
condition for equality of the first two members.

We now consider conditions for equality of the last two members in
(5.16).

Suppose there exist functions z(z), i = 1, 2, + -, r, such that

(5.17) z = Cy,
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where

(5.18)
2 — ¢ h—6

= ’ y= ’ C=(Cu)a i=1,2,’ 5 T

. . J=12-"- "k

2y — ¢r Yr — ek

and C is of rank r. The expected value of zz’ = Cyy'C’ yields

(5.19) Z, =CZC,

where Z, is the covariance matrix of the 2’s, which are unbiased estimators
of the ¢’s. Letting R = (U'Z-1U)7L, lemmas 5.4 and 5.1 yield

(5.20) a'CEC'a = a'CURU'C'a,

(5.21) |CEZC’| = |CURU'C’| = |CU|¥R|,
(5.22) |CcUj2 < |cEC| - Uzt

If CU = I, then from (5.20) and corollary 5.4,

(5.23) a'CEC'a = a'Ra = a’'H Y (d)a = a'G(d)a.

Note that when the matrix C in (5.17) consists of constants independent
of the parameters,

(5.24) (Ag) = C(A6) = CU(A9),
using (5.7), or CU = L.
When the generalized density of the y’s is g(y) = ’("”"h(y)/Mz(T((ﬁ)),

with r(d)y = Z Yrd01(br, doc c b, s Oldy, P, ), h(y)

independent of the parameters (cf. theorem 5.1), and the matrix B = (b;,),
byy=0r;/0d;, i=1,2,---,r,j=1,2,-- - k, of rank r, that is, if

0
(5.25) (a 3 log g(y)) = By,
where y is defined in (5.18), then
(5.26) H(¢) = BZB'.

K
Since (-a—‘;logg(y))( ¢log g(y)) = Byy'B’, (5.26) follows by taking

expected values. Since a,; = 00,/07;, i, j=1,2,- - -, k, and A = (a;,),
we have AB’ = U and, by lemma 4.10, this is the same as

(5.27) SB = U.
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From (5.26) and (5.27) we then have

(5.28) H-(¢)BU = I.
With H-1(¢)B as the matrix C in (5.23), we have
(5.29) a'H1(¢)BEB'H(¢)a = a'Ra = a'H(¢)a.

Using (5.26) in (5.29) yields
(5.30) a'H(d)a = a'Ra = a’' H(P)a,

or H(¢) = U'Z-1U, and we have equality in the last two members of (5.16).

COROLLARY 5.4. Forarbitrarya’ = (o), 09,° * *, ), ;i = 1,2, * -, r,
real, a'G(¢)a = a’'H(p)a = a'U'Z-Ua, a'(UZ-U)ta = a'H(d)a =
oa'GYp)x, where the matrices U, G(¢), H($), Z and the conditions for
equality are given in theorem 5.2.

Proof. Proceed as in corollary 5.1.

Example 5.5. This example is a continuation of example 54. Take the
generalized density g*(y) in (4.32) to be g(¥) bg letting p* = p2 = p. Since
E(y) = 21 — p), E(yp) = 2(1 + p), we have 0; = 2(1 —p), 0, = 2(1 + p),
b=p, k=2,r=1, U =(=2,2). Withp,=p+ Ap, p, = p, 1 —p,=
012, 1+ pp=0,/2, 1 —p; =0 + A8)[2, 1 4+ py = 0, + A0y)[2, we see
from the first version in (4.29) that

, 0. _ n 01 01 + Ael
1(0+A0.0,?/)—5(10gm—1 +"—'—""‘01 )
n 0, 6, + A6,
+§(logm—l+ B, ),
and to within terms of higher order
(AB)? = (AB,)?
16 + A8:6; F) = (202 + 202)
We thus have, since ¥ is a sufficient statistic,
w0
GO =| " , | =HO),
\ 0 579-2'2'
6z 9} [2 2 20
G =(-22 | %" ( ) H@) =73 + 3
0 2 2y

26,
2n + 2n n(l+p’)
TH—pE Ml +pP U—pF
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the value derived in example 5.4. Since var (y) = 26,%/n, var (y,) = 20,%/n,
and cov (¥, ) = 0, we find here that G(¢) = H(¢) = ’Z'lU Correspond-
ing to (5.17) we have 2, — p = —}(y, — 6,) + }(y, — 0,), that is,

C=(C5b+9D
and \
20,
— 0\ [=}\ 62462 1+4p2
Z=bL+h| " 2( )=‘ 2 =
1 0 ?1’911 +1 8n n

Note that CU = 1. We see that the variance of the unbiased estimator of p,
1 & .
n=0-ypHh=- D iy, is (1 + p¥n > (1 — p?)%n(1 + p?), the lower
i=1

bound for an unbiased estimator of p [cf. Stuart (1955b, p. 528)]. The estimate
z), the product moment form with the population means and variances, may
take values that exceed 1 in absolute value. From (4.32) we see that the
matrix B of (5.25) is ‘

B = n n
—\ 7T a0 —pP 1+ pP
since 7, = —n/4(1 — p), 7, = —nf4(1 + p), and therefore that

— )2
=0\ FatE| (7
IB = P = =,
0 8(1 + p)? n 5
41 + py®

verifying (5.27). We find that '
n(1 + p%) 4(1 — p)* 41 + p)? 41 + p? 40 + p?H
and with H-(¢)B as the matrix C in (5. 17) we have

(1 + p)? ¢
H—p= T 2)(?/1—01)+4(1+ 2)(?/2 6,)

=(_1 1 p _
_(—4 2(1+ 2))(3/1 p))+(4 2(1_*_p2))(3/2 21 + p))

“Y¥2=%__ _P -
Since E(y,) = 2(1 — p) and E(yy) = 2(1 + p), so that E(y, + y,) =4, let us
consider the estimator r(y,,¥%s) = (¥ — ¥)/(¥. + y,). Since |r(y,,y)| < 1,
and r(y,,y,) is continuous and has continuous derivatives of the first and
second order with respect to % and y, in a neighborhood of the pomt
(E(vy), E(y,)), we may apply the result on p. 354 of Cramér (1946a), that is,
E(r(yy, ¥2)) = r(E(yy), E(yp)) + O(1/n), var (r(y;, Y»)) = a®var (y,) <+ 2ab cov

(%, yo) + b? var (y,) + O(1/n*?), where a and b are respecuvely r(yl, Y2)»

'd%r(yl’ ¥,), evaluated at the point (E(y,), E(y,)). Since a = —(1 + p)/4,
2
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b= (1 —p)4, we find that E(r(yy,¥,)) = p + O(1/n) and var (r(yy, ¥2) =
(1 — p??/n + O(1/n*?). The estimate r(y,,y,) is consistent [Wilks (1943,
Theorem (A), p. 134)] and its variance, which is less than var ((y, — ¥,)/4), does
not attain the lower bound. Taking the bivariate normal population with the
five parameters (6,, 0,, 0,%, 05% p), we find [cf. Kendall (1946, p. 38) who con-
siders the parameters as (6,, 0,, 0,, 0,, p)]

1 P
o,%(1 — p?) 010y(1 — p% 0 0 0
——F ! 0 0
ool —p) a1 —p) 0
G=n 0 0 2—p* pt _ p
4041 — p?) dofay¥(1 — p?) 20,1 —p?)
0 0 R — 2—p P
40120"2(1 - p2) 40"‘(1 -_— p2) 20’,’(1 - p’)
0 0 _r P 1+ 0
A —p)  Zoi—p)  (A—pO

We find that g55 — (1 -— P2)2/” =g55.1 =g55.12’ 855.128 — (2 -— p2)(1 — P2)2/2n’
812 = g = (1 — pD¥In(1 + p?), verifying corollary 5.3. Note that
var (r(y,, ¥»)) approaches the lower bound g (the greatest lower bound for the
variance of an unbiased estimator of p) as n — ©. We also see that ¢! = a,%/n

and gll? = gll28 — lL234 — S112US — |/ = G,%(1 — p?)/n, verifying corollary
4

5.3. We also see that g% = 2—%‘- = g8l = pBR JBIA = 25,41 — p¥)/n,

GBS = 1/geg = 207*(1 — p?)[n(l — p*(2), verifying corollary 5.3.

6. EFFICIENCY

We define the discrimination efficiency of the statistic ¥ = T(x) by the
ratio J(1:2;%)[K1:2; ¥). From the properties discussed in chapter 2,
this ratio is nonnegative and < 1 with equality if and only if ¥ = T() is
a sufficient statistic. When the generalized densities of the populations
are of the same functional form but differ according to the values of the
k-dimensional parameter 6 = (0, 6, * - °, 6,), we define the discrimination
efficiency of the statistic ¥ = T(z) at the point 6 in the k-dimensional
parameter space by lim (/(0 4+ A0:0; %)/I(6 + A6:6; X)).

A6-0

The discrimination efficiency of the unbiased estimatorsy,,i = 1,2, - -,
k, of theorem 5.1, at a point § = (6, 0,,° - *, ;) in the k-dimensional
parameter space may therefore be defined by
(6.1) 2 = (d6)"H(6)(d6)/(d6)' G(6)(d6).

We take (d6)'G(0)(d0) as the basis of the metric of the parameter space
[cf. Rao (1945)]. The g;,(6) in (5.2) are the components of a covariant




64 INFORMATION THEORY AND STATISTICS

tensor of the second order, the fundamental tensor of the metric [Eisenhart
(1926, p. 35)]. Since (d6)'H(6)(d6) < (d6)'G(6)(d6), and both quadratic
forms are positive definite, the roots of |H(f) — AG(6)] = O are real,
positive, and all < 1. (See lemma 5.1.) Accordingly, there exists a real
transformation of the 8’s such that at a point 6 in the parameter space the
quadratic forms in (6.1) may be written as

(6.2) A= (ydp?+- - -+ hdpd@pl + - - - + dpd),

and A,, Ay, * * +, A are the roots of [H(6) — AG(f)| = O [Eisenhart (1926,
p. 108)]. Writing

(6.3) cos?a; = dypl2/(dp2 4+ - - + dpd), i=12-"- -k,
(6.2) may be written as
(6.4) A= 2Acos?a; 4+ A,cos?ay+ - -+ + 4, cos? .

The directions at the point 6 determined by cos «; = I, cos ay = 1, - -,
are known as the principal directions determined by the tensor 4,(0)
[Eisenhart (1926, p. 110)].  Furthermore, at the point 6, the finite maxima
and minima of 1 defined by (6.1) are given for the principal directions at
the point and are indeed the roots of |H(6) — AG(9)| = 0. Since
(d6)'G(6)(d6) is positive definite, A is finite for all directions [Eisenhart
(1926, par. 33)]. ‘

The estimation efficiency [cf. Fisher (1956, pp. 145-152)] of the unbiased
estimators ¥, ¥a, * * *, ¥, is defined as the product of the discrimination
efficiencies for the principal directions at the point §, that is (see lemma 5.1),

(6.5) Eff = Ly - - & = [HO)|/|GO)| < 1.

This is invariant for all nonsingular transformations of the parameters,
with equality holding if and only if the estimators are sufficient.

Suppose we have n independent observations from an /-variate popu-
lation with k parameters. The asymptotic discrimination efficiency of the
unbiased estimators g, i =1, 2, - -, k, of theorem 5.1 at a point 6 in
the parameter space is defined by

(6.6) = (d0)’'Z-1(d6)/n(d6)'G(6)(d6),  n large,

where the elements of G(6) are computed for a single observation from
the /-variate population. Since (d6)'Z-1(d0) < n(d@)'G(6)(d6), and both
forms are positive definite, the roots of

(6.7) |21 — nG(B)] =0

are real, positive, and <1. (See lemma 5.1.) The roots of (6.7) are the
finite maxima and minima of (6.6) and are given for the principal directions
determined by the tensor o¥ at the point 6, where Z-1 = (o¥).
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The asymprotic estimation efficiency of the unbiased estimators
Y Yoo * ° > Yy [cf. Cramér (1946a, pp. 489, 494)] is defined as the product
of the asymptotic discrimination efficiencies for the principal directions
at the point 0, that is,

(6.8) Asymp. eff. = 4,4+ + - 4, = |ZY/|nG(6)] <1, nlarge,

the equality holding for all » if the conditions for equality in theorem 5.1
are satisfied. If |Z||G(6)| —n~*, the asymptotic estimation efficiency
approaches unity and the roots of (6.7) approach 1.

The discrimination efficiency of the biased estimators y,, i = 1,2, - * -,
k, of theorem 5.2, at a point ¢ = (¢;, ¢y, * * -, ¢,) in the r-dimensional
parameter space may be defined by

(6.9) | = (d9)'H(¢)(d9)/(d8) G($)(d$),

where the matrices G(¢), H(¢) are defined in (5.12) and (5.14) respectively.
A discussion similar to that covering (6.1)~(6.4) permits us to state that
A defined by (6.9) is finite for all directions, the finite maxima and minima
of A are the roots of |H(¢) — 1G(¢)| = |[UH(O)U — AU'G()U| = 0, and
are given for the principal directions at the point ¢ determined by the
tensor 4,,(¢), with (d$)' G(¢)(d®) as the basis of the metric of the parameter
space. Note from theorem 5.2 that if the statistic Y = T(x) = (v,
Y2, * * *, Yy) is sufficient, the discrimination efficiency is 1.

The estimation efficiency of the biased estimators y,, i =1, 2,- * -, k,
of theorem 5.2, at a point ¢ = (¢, ¢,,* * *, $,) in the r-dimensional
parameter space, may be defined as the product of the discrimination
efficiencies for the principal directions at the point, that is,

(6.10) Eff. =44, - - 4, = [H@)|/|G@)| = |UHOU|/|UGOU] <1,

with equality if and only if the statistics are sufficient.
The asymprotic discrimination efficiency at a point ¢ = (¢y, o, * *, ¢,)
in the r-dimensional parameter space is defined by (see theorem 5.2)

(6.11) A = (d¢)U'ZU(dp)/n(ddp)' G(d)(d),  n large,

where the elements of G(¢) are computed for a single observation from
the population. The value of 4 in (6.11) is finite for all directions and the
finite maxima and minima of 1 are given by the roots of

(6.12) |UZEU — nG@)| = |[U'ZWU — 1nU'GH)U| = 0,

that is, for the principal directions determined by the tensor with com-
ponents those of the matrix UZ-1U.
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The asymptotic estimation efficiency of the biased estimators yy, g5, * - -,
Y of theorem 5.2 is defined as the product of the asymptotic discrimination
efficiencies for the principal directions at the point ¢ = By, b2, - - -, P,
that is,

(6.13) Asymp. eff. = 4 - - 4, = [UZ-'U[/|nG($)|
= |U'Z-U|/|nU'GO)U| <1, n large.

For unbiased estimators of (¢;, &,, * * -, ¢,) with covariance matrix CEC’
such that CU = I, we see from (5.22) that [(CEC’)~!| < |U’Z-1U| and
therefore such unbiased estimators are not more efficient asymptotically
than the biased estimators we have been considering. Furthermore, if
(5.25) is satisfied, and Y = T(x) = (¥, ¥», * * *, ¥) is a sufficient statistic,
the asymptotic efficiency in (6.13) is 1 for all n.

Example 6.1. From example 5.3 we see that the discrimination efficiency of

(%, s® is unity, as is also the estimation efficiency. However, since the roots of

n n

a2 iz 0
|&1 — AnG| = =0are A, =1, 4, =

n-—1 n
0 A A3

asymptotic discrimination efficiency for o® fixed, that is, in the direction of the
mean, is unity, whereas the asymptotic discrimination efficiency for 0 fixed, that
is, in the direction of the variance, is (# — 1)/n, and the asymptotic estimation
efficiency is (n — 1)/n.

Example 6.2. From example 5.5 we see that the discrimination efficiency of
(%, ¥2) is unity, as is also the estimation efficiency, with similar values for the
asymptotic discrimination efficiency and the asymptotic estimation efficiency.
The asymptotic discrimination efficiency and the asymptotic estimation efficiency
of the unbiased estimator z, = (¥, — ¥,)/4 are both (n/(1 + p?)/(n(1 + p2)/
A = p»®) =1 — p?»*/(1 + p»? which is less than 1 unless p® =0. The
consistent estimator r(¥;,ys) has an asymptotic discrimination efficiency, as
well as an asymptotic estimation efficiency, (n/(1 — p??)/(n(1 + p»)/(1 — p?)?» =
1/(1 + p?), which is less than 1 unless p> = 0. r(¥,,¥,) is more efficient than
(¥, — y,)/4. The results in the last part of example 5.5 and corollary 5.3
indicate that there cannot exist an unbiased estimator of p with asymptotic
estimation efficiency greater than that of r(y,y,). Note, however, that
for z = (4 — y/4 — pth + Y2 — 921 + ), E@) = p, var (2) = (1 — p?/
n(l + p?).

n= 1, the

7. PROBLEMS

7.1. Prove the statement (attributed to Chernoff) about the behavior of
—log (_inf E(e™®)) (as an information measure) in the remarks following (2.21).
0<r<1

7.2. Prove corollary 3.2.

7.3. Prove the lemmas in section 4.
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7.4. Show that I(1:2; &) = I(1:2; %) = I(*:2), for Poisson distributions,
when Y=T@) =z, + 2,4+ * - + x,.

71.5. Prove corollary 4.3.
7.6. Prove theorem 5.1.
7.7. Prove corollary 5.4.

7.8. In the related examples 4.6, 5.4, and 5.5 we discuss a sufficient statistic.
Is there a sufficient estimate for the parameter p?

7.9. Prove the invariance of the efficiency defined in (6.5).
7.10. Express (6.6) as the limit of a ratio involving I(*:2) and I(1:2; Z).

7.11. Can we determine the discrimination efficiency and the estimation
efficiency for the statistic and populations of example 4.7?

7.12. Compare the results in example 4.7 with those obtained using the
sample average as the statistic.

7.13. Compute J(*, 2) for example 2.3.

7.14. Compute J(1, 2; O,), J(*, 2): (a) for example 4.1; (b) for example 4.2;
(c) for example 4.3; (d) for example 4.4; (e) for example 4.7.

7.15. Consider the minimum value of I(f:f)) = f f(x) log f@ dA(x),

f (%)
subject to 0 = f T(z) f(x) dA(x) = f f(z) log %—g—;-dl(x). Show that for § = 0,

min I(f: fy) satisfies (2.21). [Cf. example 3.1 of chapter 5; Chernoff (1952,
p. 504).]

7.16. Show that f @Y (@)™ dix) < (u(E)(u(E)-7, for E€ S
and 0 <+ < 1. [Cf. Adhikari and Joshi (1956), Joshi (1957).]
7.17. Show that 2(p, — p* + (P — p* < p» logp +qlog <P 2; : (P — P2,

with pg the smaller of p,g;, ¢; =1 — p;, i =1,2. [Cf. Schutzenberger (1954,
pp- 58-59).]

7.18. Show that J(fy, fo) = 7ol(2:1), with 7 and f(x) defined in (2.19).

7.19. Extend the procedure of example 2.3 to derive corollary 3.2 of chapter 2.

7.20. Consider the discrete random variable = that takes the values z,, z,,
‘, Z,,, with Prob (z = z;| H,) = p;, Prob (z = x,;|Hy) = 1/n. With T(zx) =

show how problem 8.28 of chapter 2 follows from theorem 2.1.

7.21. Re-examine example 4.2 when ¢;* = 0%
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722. If p%E) = f *x) dA@), uoE) = f f@) diz), E€ & with f*@)
E E

defined in (2.11), show that
U*(E)
Uo(E)

7 max T(x) — log My(7) = log =T mi};l T(x) — log My(7), T>0,
zeE ze.

*®
T T‘lg T(x) — log My(7) = log Z2((§)) =T ngx Tx) — log My(r), t<0O.
[Cf. Chernoff (1952, 1956), Kolmogorov (1950, p. 42).]

n
7.23. In problem 7.22 let fy(z) = (2) (l) ,x=0,1,2,- - *, n,and T(z) = 2,

2
then:
(@ My =G + )™

()] f*(x) = (:) (P*)z(q#)n—z’x =0,1,",n, P* = 1+ e-r’ q* =1 _P*-
zo(:)(l,t)z(qt)n—z
(o) nlong"'Zlogw= — Tow = rlog 2p*
55)6) + (= r)log2q%, p* < }
Eo-; o [ O
(@) rlog2p* + (n — r)log 2¢* = 1ogz= 2 nlog 2¢*,
7' {n l " *
A0 e
S n n—x
zgo(x)p“q r.2r r r r 1
26 ‘
7.24. In problem 7.22 let fy(x) = \/li— e 712 —o0 <2< ,and TNx) ==,
v

then:
(@) My(r) = ™2,

1
* = — _(3_7)2'/2‘
) [ ==

Loo]
f e~ V2 dy
(c) log-'-'—;:;-f-—————-Zaf—-z—,T > 0.
f e~ V12 dy
a

7.25. Show that |G(6)] - {Z| = 1, where Z and G(f) are defined in theorem
5.1.  When does the equality hold?
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7.26. Show that |G(#)| - [U'Z'U|~! 2 1, where Z, G(¢), and U are defined
in theorem 5.2. When does the equality hold?

7.27. Find the value of f*(z) = e'T®) fy(@)/My(r), and I(*:2) when T(z) =
1 + z, f2(x) = quzz, = 09 19 29 R qz =1 —Pz, E]_(T(x)) = 6 = l/Pl- (Cf.
problem 5.5 in chapter 1.)

7.28. Show that for My(7) defined in (2.16), m, defined in (2.20),

h@ _p  A@ _ .
E, = { A(x)Z}E2 { fz(x) }p+q Lp>o:

(@) My(7) = (pl)"ulE) + (g/p)—"uy(Ey).
®) puE) + qui(Ey) < m,.

7.29. Show that I(1:2) = —2log | (fi(2)f,(*))*:dA(x). When does the
equality hold ?

7.30. Show that | (f1(z)/3(%))%dA(z) < 1. When does the equality hold ?

7.31. Show that —2log | (fi(2)f3()%dA(z) 2 2(1 — | (fi(2)f,(2))%:d A(z))
= [ (fi(z)*% ~ (fp())*%)? dA(x). When does the equality hold?

7.32. Show that 1(J |/1(2) — f(@)dA@))* = [ (f(@))% ~ (fy(2))%)? dA(z).
When does the equality hold ?



CHAPTER 4

Limiting Properties

1. INTRODUCTION

The fundamental properties (other than additivity) of the information
measures discussed in the preceding chapters are described by inequalities.
The law of large numbers and the central limit theorem make it possible
to derive good approximations for large-sample results. The asymptotic
behavior is often illuminating for smaller size samples also. In this
chapter we shall consider some limiting properties and in the next chapter
we shall study asymptotic distribution properties of estimates of the
information measures. These ideas will also be applied by the reader in
solving a number of problems set for him at the end of several of the
succeeding chapters.

2. LIMITING PROPERTIES

The following theorem 2.1 is essentially a continuation of theorem 4.1
of chapter 2. Consider the measurable transformations Tn(z) of the
probability spaces (%, &%, u,;) onto the probability spaces (%, 7, »¥)),
where Ty G) = {z:Ty(z) e G}, %"(G) = p Ty X(G)), for GeT,
i=1,2; thatis, Tn(z) is a statistic and N may be the sample size.

THEOREM 2.1.T If the T\(z) are such that

@.1) lim ¥ (G) =v(G), i=12  GeJ,

N—w
where v,(G) is a probability measure, then

I1:2; Z) = lim inf (1M : 2N, %) = I(1:2; ¥).

N—o
The expression I(1™):2%); %y s the discrimination information measure
corresponding to V¥ (G), Ge T ,i=1, 2.

t see Appendix page 389
70
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Proof. We first derive a result that is similar to a lemma used by
Doob (1936). From corollary 3.2 of chapter 2, we have

HY(G))

(N).»(N). (N) ey
2.2) 120 %) = JZ W (G log 1,(:‘;‘v')((;j)

where the sum is taken over any set of pairwise disjoint G; such that
% = U,G;. Accordingly,

(2.3) lim inf (1) : 2N, %) = z v,(G,) log 1’1((;;')’
N vo(G))
and therefore
(2.4) lim inf JQAY): 2N, &) > [(1:2; %),
N—wo

since the right-hand member of (2.4) is the L.u.b. (sup) of the right-hand
member of (2.3) over all such partitions of . Combining theorem 4.1 of
chapter 2 and (2.4) completes the proof [cf. Gel’fand, Kolmogorov, and
Taglom (1956), Kullback (1954)].

As a particular case of the foregoing, take the probability measure
spaces (Z', &, ™, uy, 1), and assume that lim u{*(E) = p,(E) for all

N—wx
Ee%. We have:

COROLLARY 2.1. lim inf I(1™:2) = I(1:2).

N—o

Proof. The proof is similar to that of theorem 2.1. We list some of
the steps primarily to clarify the symbols. For any partition of Z into
pairwise disjoint E;,

UIE)
Ha(E3)

;“1( )
#oAE)

10:2) 2 3 iE) log FL—=2

N—o©

lim inf J(1™:2) 2 X ‘R(E) log 2%
lim inf J(1™:2) = I(1:2).
N—w®

Consider again the probability measure spaces of corollary 2.1 with the
generalized densities

WE) = [ ) die), ) = [roaw. =12

Ee .
We have:

LemMA 2.1, lim IA®™:1) = 0, if lim (ffM()/fi(x)) = 1 [A], uniformly.

N—+®© N—
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Proof. Letting g™(x) = fi¥(x)/fy(z), then, asin theorem 3.1 of

chapter 2,
M@
M.1) = | A
2.5 IaM:1) —ffl‘ () log @

—-f(g‘N’( ) = 12—~

dA(x)

h(N)( )dl‘l( x),

where h¥)(x) lies between g™ (x) and 1. For sufficiently large N, for all
1 1
M) — : < J(1,
z [, [gM) - 1] < e <17 >0, so that 0 < J(1™:1) <

1

and therefore lim /(1'":1) =0.
- € N—w

LemmaA 2.2. If ;im IAM:1) = 0, then f{¥N(z) — f(z) in the mean

with respect to the measure 2, or uM(E) — u,(E) uniformly in E€ &, or
fiM(x) - f,(2) in probability. t

(N)
THEOREM 2.2. If limf1 @ )-- 1 [A], uniformly, then lim I(1¥):2) =
N~ fi(x) N—w
I(1:2) if I(1:2) is finite.

Proof.

I(1%:2) = f‘N Xx) log =——

V@)
J4®)

(@) N Si@)
= | () |
df‘ (x) log fl()dl()+jf ()ogfz()dl(x),

IA%:2) — I(1:2) = r.fl(N’(af:) lo f;z)()) di(x)
J i

+ f (@) — fi(=)) log

——— dA(x)

fHi®)
J®)

For sufficiently large N,

II(I(A) 2) —I(1:2)| < A1) + fﬁ(x) fl( x)

fo()
and therefore lim J(1‘M:2) = I(1:2). (See problem 4.17.)

N

log — | dA(x),

Example 2.1. As an illustration of theorem 2.1, consider N independent
observations from binomial distributions with parameters p;, ¢, =1 — p;,
i=12 As N—>ow, p,—~0, Np,—m; < «, the binomial distributions

t see Appendix page 390
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approach as limits the Poisson distributions with parameters m; = Np,, i = 1, 2,
We find that

¥ N! YN~y
2.6) (1) 20y =y§0 S = g~V log PiYqi

palgi v
P 91
=N log“= 4 g, log =}
(P1 ng n ng)
< mle™ mle ™
.7 . =
(2 ) 1(1 2) ygo y! M2ve%

m
=(mg —my) + m ]og;n—i-

From the inequality z,; log (x;/2;) = 2; — 2, (the right-hand member of (2.7) is
nonnegative) and m; = Np;, i = 1, 2, it follows that
P

2% % o -
(2.8) Np1 log e + Nq, log P my log oy + N (1 N) log

1-— ml/N
1 — my/N

2 my log =% + N(”ﬁ—%l)
2

= m log g‘:' + (my — my),

or lim inf J(1(¥:2(M) > [(1:2). As a matter of fact, as may be seen from the

N—o©

first two members of (2.8), it is true here that lim J(1(¥:2(M) = [(1:2).

N-—»®

Example 2.2. As an illustration of corollary 2.1, take for u; and u, the
Poisson distributions with respective parameters m; = 1 and my = 1.5 and
for ™, the negative binomial distribution (I'(V + z)/z!T\(N)peg—¥-2,
q=14+p,p>0,N>0,2=0,1,2,- - . ASN—>0,p—>0,Np—+m < o,
the negative binomial distribution approaches as a limit the Poisson distribution
with parameter m [cf. Wilks (1943, pp. 54-55)]. In table 2.1 are listed the
values of the negative binomial for N = 2, p = 0.5, ¢ = 1.5, thoce for the
Poisson distributions, and the computations for I(1‘¥):2) and I(1:2). The
numerical values for the negative binomial are taken from Cochran (1954,
Table 1, p. 419).

TABLE 2.1

z M) p@ p® Mg (pPIp)  pilog (pilpe)
0 0.4444 03679  0.2231 0.30624 0.18402
1 02963 03679  0.3347 —0.03611 0.03479
2 0.1482 01839  0.2510 —0.07813 —0.05720
3 0.0658 00613  0.1255 —0.04249 —0.04392
4+ 00453 00190  0.0657 —0.01678 —0.02357

1.0000 1.0000 1.0000 0.13273 0.09412
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All the values x = 4 were grouped in computing table 2.1. Note that
I(14:2) = 0.13273 > 0.09412 = I(1:2), and that 0.09412 is smaller than the
value obtained from

(my — my) + my log (m/my) = 1.5 — 1 + 1 log (1/1.5) = 0.09453,

illustrating the statement in sections 3 and 4 of chapter 2 that grouping loses
information. (See problem 4.3.)

3. TYPE 1 AND TYPE II ERRORS

Suppose that the space 2’ is partitioned into the disjoint sets E, and E,,
that is, E; N E, = 0, Z = E; U E,, with £ the sample space of n independ-
ent observations. Assume a test procedure such that if the sample
point x € E; we accept the hypothesis H, (reject Hy), and if the sample
point x € E, we accept the hypothesis H, (reject H;). We treat H, as the
null hypothesis. E; is called the critical region. The probability of
incorrectly accepting H,, the type I error, is o = Prob (x € Ey|Hy) = u,(E,),
and the probability of incorrectly accepting H,, the type II error, is
B = Prob (x € E,|Hy) = uy(E,). [Cf. Hoel (1954, pp. 30-35).]

We now state:

THEOREM 3.1.
2 = (129 B 1—8
(@ X(1:2;0,) = ni(1:2; 0;) 2 flog —— + (1 = Hlog —
o l—a
(b) I(2:];0,,)=n](2:1;01)gmlogl ﬁ+(l—a)log ; s

where O, indicates a sample of n independent observations and O, a single
observation.

Proof. A consequence of the additivity property (theorem 2.1 of
chapter 2), corollary 3.2 of chapter 2, and 1 — a = ux(E,), | — 8 = uy(Ey).
(Cf. example 2.3 of chapter 3.)

Note that the right-hand sides of the inequalities in theorem 3.1 are the
values of I(1:2) and I(2:1) for binomial distributions with p, = g,
G1=1—=0 p,=1—a, go= o [see (2.6), for example, with N = 1].
These values also appear in Wald’s theorem on the efficiency of sequential
tests [Wald (1947, pp. 196-199)]. We remark that (see problem 8.35 in
chapter 2) F(p,, p,) = p; log (p1/ps) + g1 108 (41/¢2) is a convex function
of p, for fixed p,, F(p;, py) = O for p, = p;, and F(p;, p,) is monotonically
decreasing for 0 < p, < p, and monotonically increasing for p; < p, < 1.
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Table 3.1 lists illustrative values of F(p,, p,) for p, = 0.05. (For a more
extensive table see Table II on pages 378-379.)

TABLE 3.1. F(p,, pp), p1 = 0.05
P2 P2 P2 P2

0.01 0.04129 0.20 0.09394 0.55 0.58996 0.90 1.99422
0.02 0.01628 0.25 0.14410 0.60 0.69751 095 2.65000
0.03 0.00575 0.30 0.20052 0.65 0.82036 096 2.86147
0.04 0.00121 0.35 0.26322 0.70  0.96309 0.97 3.13424
0.05  0.00000 0.40 0.33259 0.75 1.13285 098 3.51892
0.10 0.01671 0.45 0.40936 0.80 1.34161 099 4.17690
0.15 0.05074 0.50 0.49464 0.85 1.61188

For a fixed value of «, say %9, 0 < ®y < 1, alowerbound to the minimum
possible B, say §,*, is obtained from

@D 1Q:1; 01)>1(°‘o10g + (1 — aplog 7 “")

1 —8,*
by using theorem 3.1(b). Similarly, for a fixed value of §, say f,,
0 < B, < 1, alower bound to the minimum possible «, say «,*, is obtained
from

Bo

(G2 K1:2;0) =- (ﬁologl +(1—/30)log ‘3°)

Thus, for example, if nI(1:2; 0,) = 4.17690 and 8, = 0.05, we see from
table 3.1 that «,* = 0.01.

To examine the behavior of (3.1) and (3.2) for n — 0 we shall make
use of the weak law of large numbers or Khintchine’s theorem [see, for
example, Cramér (1946a, p. 253), Feller (1950, p. 191)]. If I(1:2; Oy) is
finite, and we have a sample of n independent observations from the
population under H,, then

! (1og 222 ),

Bhay T 1o 8 @)

converges in probability to I(1:2; O,), that is, for any € >0, 6 > 0, and
B >0, for sufficiently large n

L&) - - - filxn)
fo®@) © - fol@n)

L) - - - L)
fol@) - - )

(33)  Prob { log <I(1:2; 0y — flﬂl} <85,

Prob {1 log > I(1:2; 0y + e]Hi} <4,
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or

w0y - J1@) A,
. n(I(1:2; 0,) —e¢) <
64 Prob e = @) fu@

We may therefore classify the samples under H, into two disjoint groups,
E, and E,, such that the samples of E, satisfy the inequality

(.5) L@ filw,) Z BTN - - fi(),

and the samples of E, occur with a probability (under H,) less than § for
sufficiently large n. Integrating (3.5) over E,, we get

lHl gl—ﬁ.

(.6) 1 = Prob (E,|H,) = e™I1:2: 00=9Prob (E, | Hy),
or, for any value of 8, say f,, 0 < f, < 1,
1 1
3.7 lim - n log — 2 I(1:2; 0y).
N 0

Combining (3.7) with the value that may be derived from (3.2), we have

(3.8) Ilim llog -—1—— = I1(1:2; 0,) = lim - ((1 — Bo) log ﬁ°

n—s O 7n~» O n
Bo
+ lo [N A X
Bo log T — o
We now state:

THEOREM 3.2. For any value of B, say o, 0 < f, < 1,

o .2 .1 1
lim (x,*)V" = e~ 113300 or  lim (_ log _—;) = I(1:2; 0,).
an

n-—» 0 n—» O

Proof. Let E; denote the samples satisfying

3.9 e 1(1:2;0))—¢) < fl(xl) - fl(x") < M I(1:250)+€)
¢ @) S

We see from (3.3) that Prob (E5|H;) = 1 — § — 6. Integrating the right-
hand inequality in (3.9) over Ej;, we find that

(3.10) Prob (E,|Hy) < e™11:2:00+9 Prop (E;| Hy).

Since E; < E,, where E, is defined by (3.5), Prob (E3|H,) < Prob (&,|H,),
and (3.10) yields

3.11) 1—p—-6< en(I(l:2;01)+¢)a”*
Combining (3.6) and (3.11), we now have [cf. Joshi (1957)],

(3.12) (1 _ /3 _ 6)e—n(I(l:2;0,)+e) < an* < e—n(I(l:2;O,)—e).
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The desired result follows from (3.8) and (3.12).
Similarly, we may derive:

THEOREM 3.3.  For any value of «, say a5, 0 < o9 < 1,

1 1
lim (B,*)V" = e~ I®:10)  or lim (r_z log B—;) = I(2:1; Op.
Chernoff (1956) derived theorems 3.2 and 3.3 by using an extension of
the central limit theorem given by Cramér (1938). Chernoff attributes
the results to unpublished work of C. Stein. [Cf. Sanov (1957, p. 40).]
Note that from theorems 3.2 and 3.3, at least for large samples, the

ratios
I1:2; X)/I1:2;Y) and  IQ2:1; X)[IQ2:1; Y)

may be used as measures of the relative efficiencies of competitive variables
X and Y in the sense that

I1:2;X) n, IK2:1;X) N,
I1:2;Y) n, 12:1;Y) N,

where n,, n,, and N,, N, are respectively the sample sizes needed to attain
for given B, the same «,*, and for given «, the same f,* [cf. Chernoff
(1956)].

Discussions that express the type I and type Il errors asymptotically
in terms of J(1, 2), were given by Mourier (1946, 1951), and Sakaguchi
(1955). Mourier and Sakaguchi show that if the region E;* is defined by

1 hHl) H(=,) 0pl(1:2; 0) — 0l(2:1; 0y)
n ('°g fap Tt o8 fz(x») ~ o + o ’

where 0,2 = j (log ;:g;

2
) duy(x) — (I(1:2; 0y))?,

2
0g? =f(log 223) dug(x) — (I2:1; 0y))3

so that a,* = Prob (0, € E;*|H,), | — B,* = Prob (0, € E;*|H,), then

. min max (&
lim f L f") = 1,
n—o Max (a,*, f,*)
max (an*’ ﬁn*)

li =
v V(1 2; 0l(0; + 03)
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and
lim min max («,, £,) _
n>® 96(‘\/;](1, 2; 0)/(oy + 0y))
© e—t’/2 dt
with ¢(x) = f —— and «,, f, the errors for any other region E,.
s \V2x

4. PROBLEMS

4.1. Consider the probability measure spaces (%, %, us™, uy, ts) and

assume that lim u{¥X(E) = u,(E) for all E € &. Prove that lim inf I(1:2) >
N—w N-»®

I1(1:2).

4.2. Show that for the negative binomial distributions (I'(N + z)/z!I'(\V))
pizq;'-N-'za q: = 1 +P:’:P:’>Oa N >0, x=0a L,2,--- i=12, 1(1:2) =
Npy log (py[p2) — Nqy log (q1/g2)-

4.3. As N— o, p;,—0, Np; —m; < o, the negative binomial distributions
in problem 4.2 approach the Poisson distributions with parameters m,, i = 1, 2,
as a limit. Show

(a) That theorem 2.1 is satisfied.
(b) That lim I(1(¥):2¥)) = [(1:2).

(¢) That corollary 2.1 is satisfied.
4.4. Show that the distributions in example 2.1 satisfy lemma 2.1.
4.5. Show that the distributions in problem 4.3 satisfy lemma 2.1.
4.6. Show that the distributions in example 2.1 satisfy theorem 2.2.
4.7. Show that the distributions in problem 4.3 satisfy theorem 2.2.

4.8. Compute the results for table 2.1 grouping

(a) All values z = 3.
(b) All values z = 2.
(c) All valuesz = 1.

4.9. (a) Show that for a sample of » independent observations from the
normal populations N(u;, 69, i = 1,2, J(1, 2; O,) = n(u, — u)?/c>.

(b) Consider the quantizing transformation (or grouping) of the normal
variables in (a) above, y =1 forz<gand y =0 forz =g, so that y is a

. 14 e"(flf-»“i)’/m”z
binomial variable with p;, ¢, = 1 — p,, p; =J ———————dx, i = 1,2. Show
- oV2n
that J(1, 2; %) = n((p; — p2) log (py/p2) + (g1 — 92) 10g (91/92)).
(c) Show that J(1,2; %) is a maximum when g = (u; + 4,)/2, and that

My —Hy :
%0 e~ t/2

a1 - V2n
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(d) Show that max J(1, 2; %)/J(1, 2; O,) —2[m as (uy — u,)/c —0.
(e) Show that maxJ(l,2; #)/J(1,2;0,)—% as (u, — w)joc— . [See
Questions and Answers, Am. Statistician, Vol. 7 (1953, pp. 14-15).]

4.10. If in theorem 2.1 T(z) is a sufficient statistic, with v(G) = u(T-XG)),
forGeJ ,i=1,2,and T-XG) = {x:T(x) € G}, then lim inf I(1(M:2("; ¥) =

N—>w®
I(1:2; %).

4.11. In the notation of theorem 3.1, show that

J(1,2;0,) = nJ(1,2;0) 2 (1 — a — fylog ==L = P

B
x+ B (@ + p)2 «+p 1 —(@+p)2
2 LN I oL o bl B
= [ 2 ‘°g1—(a+ﬂ>/z+(‘ 2 )‘°g @+ P2 ]
4.12. If I(2:1; 0,) is finite, show that for any value of «, say &, 0 < g < 1,

.1 1 . .1 1 — oy %
lim - log -:; =212:1;0;) = lim o ((1 —ao)log—EF—+ ®, log 1——-——-)

n—>co N n—> © - ﬂn‘
4.13. Prove theorem 3.3.

4.14. Show that n(I(1:2; Op) — €) < I(1:2; O,,, Ep) < n(I(1:2; 0,) + ¢€), with
the region Ej defined in (3.9) and I(1:2; O,, E;) defined in accordance with
(2.4) of chapter 1. [Cf. Joshi (1957).]

4.15. In the notation of theorem 3.2, show that Prob (E,| H) < e~™(1:2;0) —€)
and thus that lim Prob (E|H,) = 0 if I(1:2;0,) > €. [Cf. Joshi (1957),

n-— ©

Savage (1954, pp. 46-50).]

n -

4.16. Show that lim -l-log

n—co N i n
T
n P =0\

(Cf. problem 7.23 in chapter 3.)

. f5(z) : . .
4.17. If lim =——— = 1 [A] uniformly, then lim I(1:2™) = [(1:2) if I(1:2)
N—w [fo(®) N—wo

r 1
=plog§+qlog%,p<'—l<-2-,q=l—p.

is finite.
4.18. Let & = E, UE, = E;* U E,*, with & the sample space in section 3,

E\NE, =0=E*NE*a= u(E) = u(E*), B = uy(Ey, and B* = u,(E,*).
Show thatforf* < f <1 — a:

@ (1 —-a logl——B——,‘-‘-q-t > (1 — a) logl:ﬂ—-g-

(b) “logf—_iﬁ: <or.loglfﬂ-

- -
(o) alog-l-—;g—ﬁ;+(l —a)logl—l—?—;—g>alogi—§-—/§+(l—a;)1og ﬂ“.
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4.19. In the notation of problem 4.18, show that for 1 — a < f* < f:

— &

B

(@ (1 —oc)logl—B—;g>(l —oc)log1

(b)ozlog1 ﬂ‘<or.log-l——-f—-3-

— &

(c)ar.logl ﬂ"‘+(1 oc)log /3"‘ <oclog1 /3+(1 oz)log B

4.20. In the notation of problem 4.18, show that if

o

o l—a o 1 —
or.logl——:——ﬁ-,;+(l —a)log——ﬂ7->alogr—_——3+(l —or.)log-—ﬂ—-—,
thenf* <f<l—a,orl —a<f<pf*

4.21. Suppose pyg+ pog + -+ poo =1, pig > 0, pi; = ai1P1.:'—1 + aiypy i
+ - - '+aicPc.j-1a ag+ap+ -+ a.=1, a1k+a2k+ tag=1,
a3 =20, k=1,2-"¢c;j=12,- - -, show that lim Zp,vlog P;V 0.

N—owi=1
(Cf. problem 8.32 in chapter 2.)

4.22. If the sample space in problem 7.28 of chapter 3 is that of # independent
observations, and we write & = u,(E)), and g = y,(E,), where the regions E,
and E, are defined in problem 7.28 of chapter 3, then lim (px + ¢f) =

n-—»

[Cf. Joshi (1957).]



CHAPTER 5

Information Statistics

1. ESTIMATE OF I(*:2)

We have thus far studied the information measures as parameters or
functionals of the populations. We shall now examine estimators of these
measures, information statistics, and investigate the general asymptotic
distribution theory of these estimators (statistics). We shall obtain exact
distributions, or better approximations than given by the general theory,
in particular applications in the chapters following.

In chapter 3 we introduced the minimum discrimination information
I(*:2) as the minimum value of

5@

A
@) dA(z),

I(1:2) = f f,@) log

for a given f,(x), and all f,(z) such that

6 = JT @)f1(x) dA(z).

The minimum value I(*:2) = 07(6) — log My(7(0)) [see the remark
following (2.9) in chapter 3] occurs for the conjugate distribution [to use
a term introduced by Khinchin (1949, p. 79)] with generalized density
given by [cf. Cramér (1938)]

7T(2) d
[*x) = i—-@{—j_—gx—)a My(7) =fe'T(‘V2(x) di(z), 6 = p log My(7).

When f,(z) is the generalized density of n independent observations, we
shall estimate J(*:2) by using the observed value of 7(z) in a sample O,
as an estimate of 6, 6(z), and a related estimate of 7, #(zx) = 7(6(x)), such
that

(1.1) T(@) = f) = B‘; log Mz(T):l

81

r=4(x) =-r(9(.‘c))‘
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Note that (1.1) is T(zx) = [E(T(z))],—+ [Cf. Barton (1956), Kupperman
(1958, p. 573).] If there are several different functions of z that are
unbiased estimators of 6, we shall use as 6(x) the one yielding the largest
value of I(*:2). The estimate of I(*:2) is then

(1.2) f(*:2; 0,) = b@)#(x) — log My(#(x)) = () — log My(+()).

f(*:2;0,) in (1.2) is the minimum discrimination information between
a population with generalized density of the form f*(x) above, with the
value of the parameter 0 the same as the value 6§ of the sample, and the
population with generalized density fy(z). Since [(*:2;0,) =0, with
equality if and only if # = 0, that is, when 6 is equal to the value of the
parameter in the population with generalized density f5(z), f(*:2; 0,) is
a measure of the directed divergence (cf. section 3 of chapter 1) between
the sample and f,(z). The larger the value of f(*:2; 0,), the worse is the
“resemblance” between the sample and the population with. generalized
density f,(z). Samples yielding the same value of f(*:2; O,) are therefore
equivalent insofar as directed divergence is concerned. Note that
equivalent samples do not necessarily imply the same value of §. [Cf.
Bulmer (1957).] Before continuing the argument we shall illustrate the
foregoing by another look at some of the examples in chapter 3.

Example 1.1. In example 4.1 of chapter 3, 6 = np,, so that

T@)=y=0=np, #)=r(p)=log (;_zg;_)l,;,

n

*:2:0) = Y - =Y {5 1082t + 6. 108 2).
I(*:2;0,) =ylog e + (n—y)log Pk n (p1 logp2 + ¢, log (h)

We see from the values of F( py, p,) in Table 11, pages 378-379, that only when
p. = 0.5 do equivalent samples have values p, such that |p, — p;| = constant.

Example 1.2. In example 4.2 of chapter 3, 0 =0, T(z) = £ = 6, (x) =
m(0) = n(& — 6,)/0,2, and I(*:2; 0,) = n(Z — 0,)%/26,%. Note that equivalent
values of £ are situated symmetrically about 8,.

Example 1.3. In example 4.3 of chapter 3, 0 = (6,, 0,%), so that

T@) = (%, 5% = 6,, &%),

z—0 a n—1/1 1
70 = al o 2, 61" = —5— (;—2 - ;2)’
-, _nmZ—0) n—1 Oy s2\
I(*:2;0,) = 50 +— (log -1+ ——022)

Note that here equivalent samples are those for which the values of Z and s*
lie on the curve in the (Z, s?)-plane for which I(*:2; O,) = constant.
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n
Example 1.4. Inexamples 4.4 and 4.5 of chapter 3 we saw thaty = (1/n) > 22
i=1
provided an unbiased estimator of 6 = ¢,* with a larger value of I(*:2) than
n
the unbiased estimator s?, where (n — 1)s* = Y (z; — %)%, when the hypotheses
i1
specified the normal distributions N(0, 6%). From example 4.5 we see that
1 1 , n o2 y
6 — 2 —— —— - ‘: . - e -.-2- — 3 K
7(0) 5 ” and  I(*:2;0,) 3 logy 1+022

Oy2

Note that equivalent values of y are not situated symmetrically about o,2.

Example 1.5. In example 4.6 of chapter 3, for the transformed variates «
and v defined in (4.26) of that example, 6 = (2(1 — p,), 2(1 + py)), so that

T@) = (4, 9 = QL — B), A1 + B),
@1~ ) =7 ( =) e+ =] (r- +)

l—ps Y% L4+p2 Y
2(1 = py) Y
I*:2; 0 =f(1 _
(*:2; 0n) = 5 {lo8—; 3 —p)
2(1 + py) Y2 )
+log=——2 _ 1 4 22\
%y, 21 + py)

Note that equivalent samples are those for which y; and y, lie on the curve
in the (y,, y,)-plane for which I(*:2; 0,) = constant.
Example 1.6. In example 4.7 of chapter 3, 6 = 6, = 6, and 6, = L — 1/n,
where L = min (2;, %, " * *, Z,), 1-(61) =n(L — 1/n — 6){(L — 6,), and
I(*:2;0,) = w(L — 1/n — 6,) — log (1 + n(L — 1/n — 6,))
=n(L — 6;) — 1 — logn(L — 6,).
Note that [(*:2; O,) is not defined for L < 0,. For any value n(L — 6,) > 1

there is an equivalent value L' such that n(L’' — 6,) < 1; also [(*:2;0,) =0
if and only if (L — 6,) = 1.

2. CLASSIFICATION

We shall introduce the problem of classifying or assigning a sample to
one of several possible populations with a result essentially due to Kupper-
man (1957, 1958), relating a priori and a posteriori probabilities of
hypotheses with information statistics. Suppose that a sample O, can
occur only if one of the set of r exhaustive and mutually exclusive events
H,, H,,- - -, H, occurs. The a priori probabilities of these latter events
(which we may call hypotheses) are denoted by P(H,), P(H,),* * *, P(H,)

respectively, where P(H,)>0 and ¥ P(H,) = 1. The conditional

m=l

probabilities for O,, to occur are denoted by P(O,|H,),m=1,2,- - -, .
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The a posteriori probability of H,, given that O, has occurred, is denoted
by P(H,|0,). From Bayes’ theorem (cf. section 2 of chapter 1), we have
that

(2.1) P(H,|0,) = P(H,)P(O,|H,)/ ZIP(H,)P(O,‘IH,.),
=
m=1,2+"-r.
Suppose now that the conditional probabilities for O, to occur are the

probability measures of an exponential family (see section 4 of chapter 3)
with respective generalized densities for a given H;

22 fi@) = TR M), M) = f ST dia),
i=1,2,-+-m

For any pair of the generalized densities (2.2), say fi(x) and fy(z), we
have by corollary 3.2 of chapter 3,

(2.3) I(1:2;0,) = K7y:75; 0,) = Oy7, — b7, — log M(7y) + log M(zy),

where 6, = E(T(x)) =fT (@)fi(x) dA(x). The estimate defined in (1.2)
therefore is
24 [(*:2; 0,) = #T(x) — log M(?) — 7,T(xz) + log M(=,),

where 7T(x) = (d/dr) log M(7)|,., Similarly, the directed divergence
between the sample and the population defined by f,,(z), m = 1,2,- - -, r,
is

(2.5) f*:m;0,) = +T(x) — log M(%) — 7,,T(x) + log M(z,,),
m=1,2,---r,

where T(x) = (d/dr)log M(7)|,-s. The difference between any pair of
the estimates in (2.5) accordingly is, using (2.2),

@.6) I(*:i;0,) — [*+j; 0,) = 7,T(@) — 7.T(@) — log M(r;) + log M(r,)
= log (fi(2)/f i),
i 5 J, Lj=1,2, - m.
But from (2.1) [cf. (2.3) in chapter 1],

) _ oo PENOD) | PCH)

@7 log 72 = 8 pajo,) ~ 8 F@y
or, using (2.6),
PH)0,) . P(H)

28)  {(*:i;0,) — f*:j;0,) = log PHJ0,) ~ BPMH)
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If we assign the sample to the population which it best resembles, that
is, for which f(*:j; 0,) is smallest, then we see from (2.8) that

@9) K*:;0,) — I+ 0,.)=1°gﬁ'(7{j|‘0‘5“ BpH)="

or
i ._._____621 — il £ § = N
(210) log P(H) = °% ~P(H,) PEL =12y

The procedure thus selects the exponential population for which the
ratio of the a posteriori probability of H, to the a priori probability of H;
is greatest. (See problem 7.11.) We remark that the conclusion is true
for multivariate exponential populations with parameters in an A-
dimensional Euclidean parameter space. This is the same as a maximum-
likelihood procedure. [Cf. Good (1950, pp. 62-64, 68-73, 82-83),
Savage (1954, pp. 46-50, 134135, 234-235).] (See section 4.)

Note that the left-hand side of (2.10) is the information in O, in favor
of H, (see example 4.1 in chapter 1).

In many problems of interest to the statistician, the generalized density
fo(x) implicit in the definition of {(*:2; 0,) in (1.2), ranges over a family of
populations we denote by the symbol H. Let f(*: H) represent the minimum
of [(*:2; 0,) as fy(x) ranges over the populations of H, that is, {(*: H) =

min f(*:2;0,). The value of [(*: H) is thus a measure of the directed
JyeH
divergence between the sample and that member of the family of popu-

lations H that the sample most closely resembles. If the value of § in
the sample is the same as the value of the parameter 6 for one of the
members of the family of populations H, then of course f*:H) =0,
that is, the sample yields no information for discrimination against H.

When there are two or more groups of populations, for convenience
denoted by H,, H,, H,,* - -, we shall assign the sample to the group with
the smallest value among f(*:H,), (*:H,), [(*:H,),- - -. This means
that we shall assign the sample to that group of populations among which
there is one that the sample best resembles, or against which the sample
provides least information for discrimination. (See the remarks at the
end of section 3 of chapter 1.)

3. TESTING HYPOTHESES

We shall call f(*: H) the minimum discrimination information statistic,
and test a null hypothesis H, against an alternative hypothesis H; by
rejecting H, if Prob {{*:H,) — [(*: H;) = c|H,} < «. By appropriate
choice of the constant ¢ by which we require f(*:H,) to exceed I(*: Hy)
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before we reject the hypothesis H,, we can control the magnitude of the
type I error (the probability of rejecting the null hypothesis H, when the
sample is from a population of H,). We shall see that this procedure also
provides a test with desirable properties so far as the magnitude of the
type II error is concerned (the probability of accepting the null hypothesis
when the sample is from a population of ;). [For the theory of hypoth-
esis testing see, for example, Fraser (1957, pp. 69-108), Hoel (1954, pp.
30-38, 182-196).]

Before we examine the properties of the minimum discrimination
information statistic it may be helpful to illustrate the procedure. In the
following examples we shall ignore the probabilities involved and consider
only the expression f(*: Hy) — [(*: H,) 2 c, that is, the critical region or
the sample values on the basis of which we reject the null hypothesis. ‘

Example 3.1. Suppose we have an observation z, which may indeed be a
sample of n independent observations, and we want to test a simple null
hypothesis Hj, the observation is from a population with generalized density
fo(x), against the simple alternative hypothesis H;, the observation is
from a population with generallzed density fi(z). With the statistic
T(x) = log (fi(@)[fy(x)), we have in accordance with the estimation procedure
mentioned in section 1, 6= log (f1()/f«(x)). From (2.16) and (2.17) of chapter
3and (1.1) and (1.2) of this chapter defining N,(7,) and N,(7,) below by context,
we have

Jo:Hy = 7,108 29 _1og M5, M) = f F@ @)= @),

e
4 1—%, fl(x)
[serasarogiGaw

 MyF)

hH(@) _
f@)

log
f @Y fy(@)—" di(z)

Similarly, we have

filz

Iy = 4 log B0~ tog M, M) = [Py )
@
Lty f(z) 1 d
f - LN

log
ﬁz( ) f @yt di@ M

Since Ny(Fy)/My(Fy) = Ny(7))|My(7;) = log (f/1(x)/fo(%)), we have, as shown
by Chernoff (1952, p. 504), 7, = 7, + 1, My(7)) = My(#)). Accordingly,

L) Si(=)
f7) f)

+ log MI(TI)— lOg

I(*:Hy — I(*:H) = 7, log === — log My(7y) — (2 — 1) log =—

L@
(@)
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h(2)
1)

owerful critical region, as yielded by the fundamental lemma of Neyman and
Pearson (1933). [Cf. Fraser (1957, p. 73).]

Example 3.2. We shall need some of the results in example 1.1 of this
chapter and example 4.1 of chapter 3. Suppose the hypothesis H; specifies the
binomial distribution with p = p;, ¢; = 1 — p,, and the hypothesis H, specifies
the binomial distribution with p = p,, g, =1 — p,. We estimate 6 = np* by
np, where np =y, § = 1 — p, and y = T(2) is the number of observed successes
in a sample of » independent observations O,. From the results in example
1.1 we see that

p 14

I(*:H) = log —~ £
(*:Hy) ”(ﬁogpl P

We therefore reject H, if (merging constants as they occur so that ¢ is not
necessarily the same constant throughout)

= ¢. This is the most

and the critical region is therefore of the form log

+q‘logqq), f(‘:H2)=n(ﬁlog +¢?logqi)-

1

P ‘7) ( 14 ‘7)
log = +glog L) —n{plogt + glog L) = ¢,
n(ﬁ ogp2+4? ogq2 n /3ogp1 47ogq1 c
or
P 9
log—= +4dlog* = ¢,
ﬁogp2 ?ong c
or

P19:
log == = c.
4 ngql

When p; > p,, log(p14a/pagy) > 0 and we reject H, if p = ¢. On the other
hand, when p; < p,, log(pig:/p.q1) <O and we reject H, if p <c. (This
example is a special case of example 3.1.) See figure 3.1.

Ry ——
e:Hy) ———
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Example 3.3. We continue example 3.2, but now the hypothesis H, specifies
the binomial distribution with p = p,, g, =1 — p,, and the hypothesis H,
specifies the binomial distribution with p > p,, g =1 — p. As before, we
estimate § = np* by np =y, and J(*:H,) = n(plog (pp») + §log (4/g»). In
section 3 of chapter 4 we noted that F(p, p) = plog (p/p) + §log(§/q) is a
convex function of p for given P, F(p, p) = 0 for p = p, and F(p, p) is monotoni-
cally decreasing for 0 < p < p and monotonically increasing for p < p < 1;
therefore I(*: Hy) = 0, if p > p,, and J(*:Hy) = n(p log (P|p,) + § log (§/gz)),
if p < p,. We therefore reject H, if p > p, and plog (p/p.) + §log (§/gy) = c,
thatis,if p = ¢ > p,. Seefigure3.2. Here we have a uniformly most powerful
critical region. [Cf. Neyman (1950, p. 325, pp. 326-327).]

Example 3.4. Continuing examples 3.2 and 3.3, H, now specifies the family
of binomial distributions with p = p,, ¢ = 1 — p, and H; specifies the family
of binomial distributions with p < p; < p,. As before, we estimate 0 = np*
by np = y. From the behavior of F(p, p) described in example 3.3, f(*: H;)
and /(*: H,) are as follows:

I*:H) I(*:H,)
P> pe n(ﬁlog£+q‘logi) 0
P21 U1

P ‘7) ( p q‘)
<p < log = + §log — log — + §log =
PLSPpsp, n(ﬁ 8 - qogql nﬁogp2 qogq2
)4 g
P<p 0 n|plog= + §log =
P2 9>

We therefore assign the sample to the family of populations H, if p > p,
where p (9 = 1 — p) satisfies p logﬁ + g log 1= P logﬁ + g log 4, that is,
P N P2 92

p= (10;;‘3) / log 2292 [Cf. Chernoff (1952, p. 502)]
% P

If p=p, I(*:H,) = I(*:H,). See figure 3.3.

Example 3.5. Suppose we have a random sample O, of n independent
observations and we take the set E in example 2.3 of chapter 3 as the interval
0 <z < o and its complement E as the interval —co <z < 0. Consider
the null hypothesis H, that f(x) is the generalized density of an absolutely
continuous distribution such that u,(E) = uy(E) = 3- We shall use p = y/n

as an estimate of u,(E) (here u,(E) is 6), where y = > T(x;) = Y yu(x), that
| =1

is, ¥ is the number of nonnegative observations in the sample, and § =1 — }p.
If the alternative hypothesis H, is that fy(x) is the generalized density of any
absolutely continuous distribution such that uy(E) = p # 4 ito(E) =g =1 — p,
then [(*:H,) = n(plog2p + §log2§) and ; *:H,) = 0. We therefore reject
H, if plog2p + Glog2§ = c,or plogp + §log§ = c, thatis, if [f — 3| 2 c.
See figure 3.4. [Cf. Fraser (1957, pp. 167-169).]
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A‘. A
I(*:Hy) —— I(*:Hy) ——

I(‘:Hl)———— I(#:Hl)......_

/
/
/
/
/
/

~>

Figure 3.3 Figure 3.4

Example 3.6. We shall need some of the results in example 1.4 above and
examples 4.4 and 4.5 of chapter 3. Suppose the hypothesis H; specifies the
normal distribution N(0,02), i =1,2. We shall estimate § = ¢*2 by the
statistic y = T(z) = (1/m)Zx;% of example 4.5 (rather than by the statistic s* of
example 4.4). From example 1.4, we see that

0,2

iy = " (100 20 _ YN, jeemy=" %* _ ¥\
I :H) =3 (log L1+ 012) I(+:H) =% (log L1+
We therefore reject H, if

Plog% 14+ L) —2(log 2 14+ L
(logy 1+022) z(logy 1+ )Zc,

2 0,2
or

g _ _Q_2 2 ¢,

02 0y
or

(02 — oP)Zal? 2 ¢,
or

x> cifo? >0,2 x2S cifo? <o’
See figure 3.5.

This is a special case of example 3.1.

Example 3.7. We continue example 3.6, but now H, specifies the family of
normal distributions N(0, 6?), 0% = 0,2 and H, specifies the family of normal
distributions N(0, 02), 62 < 6,2 < 6,2. Note that F(y, 6% = log(c?/y) — 1 + y/o®
is a convex function of 1/0? for given y, F(y, 6% = 0 for o® =y, F(y, o? is
monotonically decreasing for 0 < ¢® <y, and monotonically increasing for
Y <o0? < . I(*:H,) and I(*: H,) are therefore as follows:
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I*:Hy) I*: Hy)
Yy > oyl f(loggf—l+-—q- 0
2 2 Yy 0,?
02y <o, 2 {10 2_1_3_1+y il B9 022_1+y
1 y 2 2 g y 0,12 2 g y 0_22
y <o, 0 "(lo % _ .Y
1 2 g y 0_22
We therefore assign the sample to the family of populations H, if y > o2,
2 ati % 4% 10e % 14 O thati
where ¢° satisfies log = 1+ o2 log p 1+ 012, that is,
o= (log (05%/01%)/(1/0y® — 1]03P).

[Cf. Chernoff (1952, p. 502).]
Ify = o, [(*:Hy) = I(*:Hy). See figure 3.6.

\ A
\\ I(*:H,)

\

,I\(‘:Hz) \\

~>

Figure 3.6

Figure 3.5

Example 3.8. We continue examples 3.6 and 3.7, but now the null hypothesis
H, specifies the normal distributions N(0, %), 0% = 0,%, and the alternative
hypothesis H, specifies the normal distributions N(0, %), 0* < g% f(‘:Hl)
and f(*: H,) are therefore as follows:

i(‘:Hl) i(‘3H2)
e P(10p% g +—q_) 0
Y 20, 5 (og ” o
n 0y’ Yy
2 0 g —14+ L
y=oa 2 (og Y 0'22)
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We therefore reject H, if ¥ < 0,2 and log (6,2/y) — 1 + y/o,? = ¢, that is,
if y <c <o’ Here we have a uniformly most powerful critical region.
[Cf. Fraser (1957, p. 84).] Symmetrically, if we treat H, as the null hypothesis
and H, as the alternative hypothesis, we reject H, if y = 0,2 and log (02?/y) —
1 +ylo® 2 ¢, thatis, if y 2 ¢ > 0,2, If ;% is not specified, this suggests a
confidence interval for the parameter ¢* determined by log (02/y) — 1 + y/e? < c,
with confidence coefficient Prob [log (6%ly) — 1 + y/o® < clo?] =1 —a. We
may also say that the sample provides less than a desired amount of information
for discriminating against a hypothetical value of ¢ falling within the confidence
interval. See figure 3.7.

;("':Hz)

~D>

0'22 oy 2 2N 2

Figure 3.7 Figure 3.8

Example 3.9. We continue examples 3.6 through 3.8, but now we must
assign the sample either to: H,, the family of normal distributions N(0, 6%),
0% < 6,%; H,, the family of normal distributions N(0, 63, 0,2 < 0® < g,%; or
Hj, the family of normal distributions N(0, 0%), 6% > 6,2, I(*:Hy), I(*: Hy),
and I(*: H,) are as follows:

I*:H) I*:Hp I(*:Hy
>o2 Mgl 14+ L) i ‘lﬁ—1+1’-—) 0
y : 2 gy 0% 2 gy S
ol<y<o? -(lo -0—12—1+-‘7-/.- 0 'l]ogf&z_1+_-'!.
1 SYs0; 3 gy o2 2 y 0,2
< 0,® 0 o 21_2_1+_?_/__ f(loggz—z—l-}-i.

We therefore assign the sample to the family H;, i=1,2,3, for which
f(*:H,) = 0. See figure 3.8.
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Example 3.10. Let us reconsider example 3.9 but with a null hypothesis H,
specifying the family H,, and an alternative hypothesis H, specifying the family
H, or Hy, that is, Hy = H, U H,. We see that I(*:H,) =0 for y > 0,2 or
y < 0, and I(*:H) = min (J(*: Hy), I(*:H})) for 0,2 < y < 63* (see example
3.9).

We therefore reject H, if y > 0,% and log (6.2/y) — 1 + y/o,® = ¢, that is, if
y=c>0,2 or if y<o,® and log(o®ly) — 1 + y/oy®2 2 ¢, that is, if
¥y < c¢ < o0,% The constants are to be determined by the significance level

desired. See figure 3.9.
A
I(*:Hy) :
A
I*:H,)
AN
// \\
0,2 0y2 '

y
Figure 39

~>

Example 3.11. We shall need the results of example 1.2. Suppose the
alternative hypothesis H, specifies the normal distribution N(u, 1), u = u; > u,,
and the null hypothesis H, specifies the normal distribution N(u, 1), u < u,.
We estimate 6 by § = £ and J(*:p) = n(Z — p)?2. I(*:H,) and I(*:H,) are
as follows:

j(‘3H1) j(‘in)
= N2
£< u, nE — ) 0
2
- n(& — u,)? n(Z — u,)?
Uy < < 1y zﬂl) 2#2
= _ )2

We therefore reject Hy if p, < £ < py and n(Z — up)*2 — n( — p1y)*2 2 ¢,
or if u; < & and n(& — uy)?2 2 ¢, that is, if £ = ¢ > u,. See figure 3.10.
Lehmann (1949, p. 2-17) shows that this critical region is uniformly most
powerful.
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Figure 3.10

Example 3.12. We continue example 3.11 but now the alternative hypothesis
H, specifies the normal distribution N(u, 1), 4 = 0, and the null hxpothesis H,
specifies the normal distribution N(u, 1), u < —uy, pu 2 u,. I(*:H) and
I(*: H,) are as follows:

I(*:H) I(*: H,)
TS —Uy nz?/2 0
—lUy < T < Uy n¥?[2 nx — py)? 2
T = Uy ni?[2 0

We therefore reject H, if —u, < & < u, and n(€ — uy)%2 — ni?2 2 c,
that is, if |£| < c. See figure 3.11. Lehmann (1949, p. 2-18) shows this to be
a most powerful critical region, or test procedure.
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4. DISCUSSION

The reader may have noted that #(z) is the maximum-likelihood
estimate of 7 as a parameter of the generalized density f*(x) [cf. Barton
(1956)). In fact, since

d d
2 log /*@) = T(@) — — log My(n),

with (d/dr) log My(7) a strictly increasing function of = (see lemmas 4.2
and 4.5 of chapter 3), the value of = for which (d/dr) log f*(z) = 0 is
unique and given in (1.1). [Cf. Khinchin (1949, pp. 79-81).]

Furthermore, as might be expected from the general argument, the
minimum discrimination information statistic is related to the likelihood-
ratio test of Neyman and Pearson (1928). As a matter of fact, we may
write [cf. Barnard (1949), Fisher (1956, pp. 71-73)]

max S*x)
@.1) I*:2; 0,) = 6+(6) — log My(+(6)) = log — T
where we recall that f(x) = f*(z) for r = 0, and ’
max ¥ (=)
*.
4.2 I*:H) = ;1:3 log ——— )

If the populations of H are members of the exponential family over which
S*(x) ranges, and we denote the range of values of = by (, and the range

of values of = corresponding to H by w, then max f;(x) = max f*(z) and
JeH €W

max f*@
f @

where 1 is the Neyman-Pearson hkehhood ratio [see, for example, Hoel
(1954, pp. 189-192), Wilks (1943, p. 150)],

Prmaxa) _ "
- P*(max ) ~ max f *x)
0

@4.3) I*:H) = log — log 4,

4.4

If H, implies that 7 € w, and H, that v € w;, then

max [*=)
4.5) I(*:H,) = log f* T

max f *@)
(4.6) I*:H) = log

f *@)
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and
max f*(x)

@) AtiHy) = IC:Hy = log S

TEW,

max f*(x) max f*(x)

TEWy — log 'rewz. .

We remark that here f(*:H,) — [(*:H,) = — log A*, where likelihood
ratios of the form

= log

A* = max f*(x)/max f*(x)
€W, €W,
have been studied by Chernoff (1954) for certain hypotheses.

If H, implies that r € w and H, that 7 € Q — w, then [(*: H,) = 0 if
[(*:H,) > 0, since [(*:2;0,) is convex and nonnegative. The test of
the null hypothesis H, now depends only on the value of [(*: H,), because
when [(*: H,) = 0 we accept the null hypothesis H, with no further test.

Some simple examples follow. We shall apply these notions to a
wider variety of important statistical problems in subsequent chapters.

Example 4.1. Suppose we want to test a null hypothesis of homogeneity
that n independent observations in a sample O, are from the same normal
population, with specified variance ¢?, against an alternative hypothesis that the
observations are from normal populations with different means but the same
specified variance g2 We denote the null hypothesis by Hy(u|o%) or Hy(-|o®)
according as the common mean is, or is not, specified, and the alternative
hypothesis by Hl(,u,-|o2) or Hy(-|6? according as the different means are, or
are not, specified.

Seexp [—(x; — w2267

With T(x) = (23, %, * * *, %,) and f(@) = [T ot » we have
i1 oV 2w
< L A A 02 A
4.8) 1(*:2;0,) = 21 @F; — ut; — 77‘{"),
,f=

where 7; satisfies z; = u + 0°7;. We thus have

49) I¢*: Hy(u|o?) = i;ﬁl @, — 120"

If u is not specified, I(*: Hy(-|0%) = min I(*: Hy(u|oY) is

@.10)  I(*:Hy(-|0?) = ig (@, — D202, E=@ +%+" " +z)n
On the other hand, with T(x) = (2,, Z,, * * *, ¥,) but

n exp [—(x; — p9)?20%]
@ =11 P oV i ’

1=1
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we have
n n n 0-2 n
(411) i(‘:Z; O'n) = 'Zl (xi'ri — U7 — 7 7'1:2),
=
where 7, satisfies x; = u; + 027,. We thus have
n
4.12) I*: Hy(ulo%) = _21 @; = w)*20%

If the y; are not specified, I(*: Hy(- [0%) = min I(*: H(1;]0?)) is
Ky

(4.13) I(*:H(-|6%) = 0.
If we require that the conjugate distribution in (4.8), that is,

@) exp (e, +° - -+ 7,2,) 2 exp [— (@ — pu — 6%7)? 207
‘ — — ——— bl
f (x) M2(TI’ Toy* " % T'n) zl=_-']; 0'\/27T

range over normal populations with a common mean, then y* = p,* = - -
= u,* implies that u + o®>ry = u + 6%, = - - - = u + o®7,, or only values
Ty =Ty ="' =7,=7 are admissible. With this restriction, (4.8) yields

2

4.14) ICH(-0%:2; O) = n3f — mut — n 222,

where 7 satisfies £ = u + 027, and (4.14) becomes
4.15) IH(-[0%):2; 0,) = n(& — ppf20%

Note that if w; = Q'is the n-dimensional space of 7y, 7y, * * *, 7,,, then (4.9) is
log (max f*(2)/fy(2)), and that if w, is the subspace of Q with ) =7, = - - -
TEW .

=Ty, tilen (4.15) is log (max f*(x)/fy(x)). From (4.10), (4.13), and the fore-

TEW,

going we see that (4.7) becomes
(4.16) i (z; — £)?/20% = i (@; — w?20% — n(Z — w)*/202.
i=1 i=1

The hypothesis Hy(1|6?) is the intersection of two hypotheses, (i) that the sample
is homogeneous, and (ii) that the mean of the homogeneous sample is u.
Rewriting (4.16) as

@1 3 - et = 3 - @Yot + @ — pie®

or
I(*: Hy(p|0®) = I(*: Hy(- |0%) + I(Hy(-|0%):2; 0,)

reflects the fact that the first term on the right is the minimum discrimination
information statistic to test the homogeneity and the second term on the right
is the minimum discrimination information statistic to test the value of the mean
for a homogeneous sample.

Example 4.2. Suppose we have a homogeneous random sample O,,, namely,
one from the same normal population, and we want to test a hypothesis about
the mean with no specification of the variance. Let the hypothesis Hy(u, 0®)
imply that the sample is from a specified normal population N(u, 6%), and the
hypothesis Hy(u) imply that the sample is from a normal population with
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specified mean u and unspecified variance. Suppose the alternative hypothesis
H, implies that the sample is from an unspecified normal population.
With T(x) = (Z, 5%, where s? is the unbiased sample variance, and

fo@) = TT (/o V2m) exp [—(x; — p)?[20%,

=1

we see from example 1.3 in this chapter and example 4.3 in chapter 3 that

I b, o) = 8 = = 5 50+ " og (1= 22) + %

with & = p + +,(0%/n), s* = a?/(1 — 27,0%/(n ~ 1)), or

nZ—w?: n-—1 a® 52
@18)  IiHyp, oty = " 4 1o (log; ~ 1+ ;)

We note from examples 4.2 and 4.3 in chapter 3 that if the normal populations
have the same variances under H; and H,, that is, 0,2 = 0,2 = 0,% then 7, = 0
is the only admissible value. We reach the same conclusion by requiring that
in the generalized density g*(y) in (4.15) of chapter 3 the variance parameters
in the distribution of £ and s be the same. Accordingly, for I(*:Hy(u)) we
have the same expression as above for I(*: Hy(u, 0?) except that & = u + 7,(6%/n)
and 7, = 0, or 52 = ¢?, so that

4.19) I Hyw) = n(& — p)?f2s%.
We see that [(*: H,) = 0, and the test of the hypothesis Hy(x) depends only on
the value of I(*: Hy(u)). This is the familiar Student ¢-test. (See problem 7.8.)

Example 4.3. Suppose we want to test a null hypothesis about the variance
of a normal population from which a random sample O, has been drawn. Let
the hypothesis Hy(0%) imply that the sample is from a normal population with
specified variance 02. We see from (4.18) that

I(*: Hy(0®) = min [(*: Hy(u, 0?)),
"

or
— 2 2
(4.20) I+ Hfom) = 22 (‘08 w1 s_)'

The hypothesis H,(u, %) in example 4.2 is the intersection of two hypotheses,
(i) that the mean of the homogeneous sample is u, given o2, and (ii) Hy(0?).
Rewriting (4.18) as

4.21) I Hy(u, 0%) = I(H(-|0%):2; 0,) + I(*: Hy(o?)
reflects this because of (4.17).

5. ASYMPTOTIC PROPERTIES

The asymptotic distribution of the likelihood ratio 4 is known for
certain cases. Wilks (1938a) showed that, under suitable regularity
conditions, —2log 4 is asymptotically distributed as x? with (k —r)
degrees of freedom, under the null hypothesis that a (vector) parameter
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lies on an r-dimensional hyperplane of k-dimensional space. Wald (1943)
generalized Wilks’ theorem to more general subsets of the parameter space
than linear subspaces and showed that the likelihood-ratio test has
asymptotically best average power and asymptotically best constant power
over certain families of surfaces in the parameter space and that it is an
asymptotically most stringent test. [For the concept of stringency see,
for example, Fraser (1957, pp. 103-107).] Wald (1943) also showed that
under the alternative hypothesis the distribution of —2 log 4 asymptotically
approaches that of noncentral y2.. Chernoff (1954) derived, under suitable
regularity conditions, the asymptotic distribution of —2 log A* [see the
remark following (4.7)]. In many cases —2 log * behaves like a random
variable that is sometimes zero and sometimes 2. [See, for example,
Bartlett (1955, pp. 225-226), Fraser (1957, pp. 196-200), Hoel (1954, pp.
189-196), Wilks (1943, pp. 150-152), for the likelihood-ratio test and its
asymptotic y® properties.]

Kupperman (1957) showed that for a random sample of n observations,
under regularity conditions given below,

.1 2nl = 2n [ff(x, 0) log

z,0)
flz, 6,)

is asymptotically distributed as y® with k degrees of freedom [k is the
number of components of the (vector) parameter] under the null
hypothesis, where f(z,0) is the generalized density of a multivariate,
multiparameter population, the random vector 8 is any consistent,
asymptotically multivariate normal, efficient estimator of 6, and the
vector 0, is specified by the null hypothesis. The regularity conditions
are (cf. section 6 of chapter 2):

dl(x):'

1. 0 = (6, 6, - -, 6,) is a point of the parameter space ®, which is
assumed to be an open convex set in a k-dimensional Euclidean space.

2. The family of populations defined by fiz, 8), 6 € ©, is homogeneous.

3. f{z, 8) has continuous first- and second-order partial derivatives with
respect to the 6’s in ©, for x € Z [2].

4. Forall@e0,

iz, 6) *f(x, 8) ..
- = i=1,2- -k
f 76, di(z) = 0, 36,96, di(z) =0, i,j

5. The integrals
,0) 01 ,0 o
cii(e) =fa logaé(x ) : oga-g(x )ﬂx’ e) dl(x)y L, ]= 1, 2, c oty k,
i i

are finite for all @ € O.
6. For all 8 € ©, the matrix C®) = (c,;0)) is positive-definite.
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If instead of a single sample, as above, we have r independent samples of
sizen;, i =1,2,- - -, r, and each with a consistent, asymptotlcally multl-
variate normal, efﬁcrent estimator §, = 6,60, - -, 00),i=1,2,-
then under the regularity condmons above, Kupperman (1957) showed
that

ﬂx9 et)
2z§1n 10) =2 z n; l: f flz,0,) log 7z 9) dl(x):’
is asymptotically distributed as y% with rk degrees of freedom under the
null hypothesis that the r samples are all from the same population
specified by flz,0). Kupperman (1957) showed that under the null
hypothesis that the r samples are from the same population whose
functional form is known, but with unspecified parameters,

(52) Zél”"" =23n [ f fz, 8) 1ogff((’ ')) di(z )J

is asymptotlcally distributed as x® with (r — 1)k degrees of freedom,
where n, is the number of independent observations in the ith sample, 8;
is a consistent, asymptotically multivariate normal, efficient estimator of
the k parameters for the ith sample, and n® = n,8, + n,8, + - - - + n,8,,
n=mn + ny,+- -+ n. When thenull hypothesxs is not true, Kupper-

man (1957) showed that 2af, 2 z n(8), and 2 z n,I; converge in proba-

i=1
bility to an indefinitely large number and that the large-sample distribution
may be approximated by a distribution related to the noncentral x2-
distribution with a large noncentrality parameter and the same number
of degrees of freedom as the y2-distribution under the null hypothesis.
Kupperman (1957) also showed that, under the same regularity conditions
as above, similar results hold for the estimates of the divergence. Thus,
with the same notation as above,
[z, 9)

nf=n l:f( fiz,0) — fiz, 0,)) log I dl( )]

is asymptotically distributed as x® with k degrees of freedom when the
sample is from the population specified by fiz, 8,);

é;niji(e) =é:1n,- l:f(/(x, 0,) — flz, 0)) logﬂ 8,

8, =4,

&

7.9) dl(x)]

is asymptotically distributed as x2 with rk degrees of freedom if the r
samples are from the population specified by fiz, 6);

< - < : ﬂ ’ t)
i§1niji —igln,- [f(/(x, 08.) — f(z, 0)) log 7. 0) di(x )]

8, =8,

%8
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is asymptotically distributed as x® with (r — 1)k degrees of freedom if the
r samples are from the same population.
For two samples, Kupperman (1957) showed that

flz, 8))
ﬂ 2) g: :51

is asymptotically distributed as x2 with k degrees of freedom when the two
independent samples are from the same population with unspecified
vector parameter 6.

The behavior of the estimates of the divergence when the null hypothesis
is not true is similar to that of the estimates of the discrimination
information.

These tests are consistent, the power tends to 1 for large samples. [See,
for example, Fraser (1957, p. 108).]

n
Example 5.1. We may infer that 2J(*: Hy(u|0?) =igl(:c,- — w?a?, in (4.9),

asymptotically has a x2 distribution with n degrees of freedom. (It can of
course be shown that this is true for all n.) We may reach this conclusion by
Wilks’ theorem, since there are n parameters 7,,7p,* * *, Ty, and the null
hypothesis specifies the point 7y =7, =+ - =17, =

n
Example 5.2. We may infer that 2[(*: Hy(-|0?) = zl(:c,- — %)?/0?, in (4.10),

==
asymptotically has a x? distribution with (n — 1) degrees of freedom. (It can
of course be shown that this is true for all n.) We may reach this conclusion
by Kupperman’s result in (5.2), since 2I(1:2) = (u; — Ug)?lo* for normal
distributions with different means and the same variance, and each observation
is a sample of size 1, so that ji;, = z;,, uy, =%,k =1,and r = n.
Example 5.3. We may infer that

2I(*: Hy(u, 6%) = n(& — p)*/o® + (n — 1)(log (6%/s®) — 1 + s%/o?),

in (4.18), asymptotically has a y? distribution with 2 degrees of freedom. We
may reach this conclusion by using Wilks’ theorem, since there are two
parameters 7,, 7, and the null hypothesis implies 7, = 7, = 0.

Example 54. Suppose we have a sample of n independent observations
from a normal population with zero mean and unknown variance. From
example 3.8, and the asymptotic properties, we may determine a confidence
interval for the parameter o with asymptotic confidence coefficient (1 — o)
from

(5.3) n(log (6*y) — 1 + ylo®) < x°,
n
where y = (1/n) zx? and 7,2 is the tabulated value of x? for 1 degree of

n1n2
n + hp

l: f (flz, 8,) — f(z, 0,)) log ——= dl(x)]

freedom at the lOOa % s1gmﬁcance level. Since the left-hand side of (5.8) is
a convex function of 1/0? for given y, the equality in (5.3) is satisfied for two
values of g2, (See examples 3.8 and 5.6.)
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We shall supplement the preceding statements by a more detailed
examination of the asymptotic behavior of 2/(*: H). First, let us examine
more explicitly the relation between T(z) = § and the estimate of =,
#(x) = 7(6), in (1.1). Since

(5.4) l:;% log Mz(—r):’ = l:‘% log Mz(—r):’

r=(8) r=27(0)

d2
+ ((6) = ~(6)) [‘7; log Mz<r)l=f(6),
where 7(6) lies between 7(6) and +(6), with 6 = [(d/dr) log My(T)}. _ 0y
we get from lemma 4.3 of chapter 3, (1.1), and (5.4) the relation

(5.5) 6 — 6 = (v(6) — ~(6)) var (6]=(H)).

We recall to the reader’s attention the inherent multidimensionality of
the variables and the parameters, as already mentioned for lemmas 4.10
through 4.12 of chapter 3. In terms of the matrices (vectors) 6’ =
(01, Oz -+, 00, 0 = (éls 62’ T ék)’ T =(T, Ty T ¥ =4
74, * *, Tr), We may write instead of (5.5):

(5.6) 6 — 6 =3()%r —r),
or ,
(5.7) 2 —1=XY0))6 —0),

where Z(+(f)) is the covariance matrix of the &s in the conjugate distri-
bution with parameter 7(§). We may also derive (5.7) directly from
7(6) = 7(0) + (6 — 6)[d=(6)/d6),_5and lemmas 4.7 and 4.12 of chapter 3.
If we write /(*:2; 0,) = m(8) = 6+(6) — log M,(r(6)) and follow the
procedure in the proof of theorem 4.1 of chapter 3, we see that

(58) (*:2; 0,) = I(*:2;0,) + (6 — 6)7(6) + (8 — 6)*/2 var (6]=(D)),

where 0 lies between 6 and 6. In terms of the matrices defined above for
(5.6), we have

(5.9) f(*:2;0,) = 1(*:2;0,) + (6 — 6)t + 1(6 — 6y =-1(=(§))(® — 0).

If 8 is of the form (1/n) times the sum of n independent, identically
distributed random vectors with finite covariance matrix Z,(7(6)), then by
the central limit theorem [Cramér (1937, pp. 112-113; 1955, pp. 114~
116)], the distribution of Vn(® — 0) tends to the multivariate normal
distribution with zero means and covariance matrix Z,(7(0)) = nZ(+(0)),
and in particular 8 converges to 8 in probability. [See, for example,
Fraser (1957, pp. 208-215).}

We see from lemma 4.7 in chapter 3 that 7() is a continuous function
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of 6 for all 7 in the interval of finite existence of My(7). We may therefore
apply a theorem of Mann and Wald (194}) on stochastic limits, to conclude
that the convergence in probability of 8 to 6 implies the convergence in
probability of ©(6) to ©(6). [Cf. Cramér (1946a, pp. 252-255).] Since
v(6) lies between <(6) and =(6) [that is, each component of () lies between
the corresponding component of v(6) and <(6)], <(6) converges in proba-
bility to ©(6), and from lemmas 4.3 and 4.10 in chapter 3 and the Mann
and Wald (1943) theorem, Z(7(f)) converges in probability to Z(+(0)).
From (5.7) we see that the distribution of £ — =t tends to the multivariate
normal distribution with zero means and covariance matrix G*(0) =
G*1(7) = Z-1(7(6)), where the matrices are defined in lemmas 4.10 and
4.11 of chapter 3. This is a well-known classical property of maximum-
likelihood estimates.

At this point it is appropriate to remind the reader that the results in
(5.6), (5.7), (5.9), and the previous paragraph are in terms of the para-
meters of the distribution of 8, and not explicitly in terms of the parameters
for a single observation. We must therefore remember that

(5.10) Z(7(6)) = O(1/n), G*(6) = O(n).

If the sample O,, is from the population with generalized density fy(x),
then 8 = 6(0), T = 0, /(*:2; 0,) = 0, and 2/(*:2; O,), as may be seen
from (5.9), is asymptotically the quadratic form of the exponent of a
multivariate normal distribution and therefore is distributed as x2 with

-k degrees of freedom [cf. Rao (1952, p. 55), problem 10.2]1 in chapter

9]. Note the similarity between (5.9) with T = 0 and (6.4) of chapter 2
with 6 — 0 as (A6).

We may now determine a confidence region with asymptotic confidence
coefficient 1 — « for the parameters of f,(x) from the inequality

G.11) 21(*:2; 0,) < x¥ (=, k),

where y%(«, k) is the value for which the y2-distribution with k degrees of
freedom yields Prob (% = y2(«, k)) = «. Since 2[(*:2; 0,) is a convex
function, the inequality (5.11) yields two limiting values for a single
parameter, values within a closed curve for two parameters, values
within a closed surface for three parameters, etc. We shall give some
examples before we take up the distribution under the alternative hypothesis.

Example 5.5. We saw in example 1.1 that for the binomial distribution,
21(*:2; 0,) = 2n(p log (plps) + §log(§/q)), where y = np is the observed
number of successes. We thus have a 95%; confidence interval for p, determined
by the inequality

.12) 2n (p log 2 + g log i) < 3.84.
P2 9.
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In table 5.1 are some 959, confidence intervals for the binomial computed
by Howard R. Roberts. [See Roberts (1957) for a chart of confidence belts.]

INFORMATION STATISTICS

TABLE 5.1

A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10

20

30

50

100

250

1000

0
0.174
0
0.091
0
0.062
0
0.038
0
0.019
0
0.008
0
0.002

0.006 0.036

0.372
0.017
0.278
0.025
0.240
0.037
0.203
0.051
0.169
0.067
0.141
0.082
0.120

0.499
0.067
0.405
0.085
0.364
0.106
0.324
0.130
0.285
0.154
0.253
0.176
0.226

0.085
0.607
0.132
0.516
0.157
0.476
0.185
0.435
0.216
0.394
0.246
0.359
0.272
0.329

0.146
0.700
0.207
0.617
0.238
0.578
0.272
0.538
0.307
0.498
0.341
0.462
0.370
0.430

0.217
0.783
0.291
0.709
0.327
0.673
0.364
0.636
0.403
0.597
0.438
0.562
0.469
0.531

0.300
0.854
0.383
0.793
0.422
0.762
0.462
0.728
0.502
0.693
0.538
0.659
0.570
0.630

0.393
0.915
0.484
0.868
0.524
0.843
0.565
0.815
0.606
0.784
0.641
0.756
0.671
0.728

0.501
0.964
0.595
0.933
0.636
0.915
0.676
0.894
0.715
0.870
0.747
0.846
0.774
0.824

0.628
0.994
0.722
0.983
0.760
0.975
0.797
0.963
0.831
0.949
0.859
0.933
0.880
0918

0.826
1.000
0.909
1.000
0.938
1.000
0.962
1.000
0.981
1.000
0.992
1.000
0.998
1.000

Example 5.6. We saw in example 1.4 that for a sample from a normal

distribution with zero mean, 2I(*:2; 0,) = n(log (c5%/y) — 1 + y/o,?), where
n
y=(/n) zx,-z. We thus have a 95% confidence interval for o,?> determined
i=1

by the inequality (cf. example 3.8)

2
(5.13) n (log ‘1;- —1+ -y—) < 3.84.

0,2
For n = 10 we get /2.15 < 6,2 < ¥/0.359, and for n = 100 we get %/1.303 <
0'22 < y/0.748.

Example 5.7. We get from example 1.5 that for samples from a bivariate
normal distribution with zero means and unit variances

4(1 — p,d) %+ Yo — Py — ?/1))’
%Yo 2(1 = ps?

2[(*:2;0,) =n (log -2+

n n
where ¥, =% z (@ — %20)% Y2 =% z (2,; + ;). We thus have a 9574
i=1 i=1 .
confidence interval for p, determined by the inequality

W=ph) _ , htth—pll— yl)) <384,
YiY2 201 — p?)

(5.19) n (log
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We remark here that according to section 3.4 of chapter 12, for a sample O,,
from a bivariate normal distribution with no specification of the means and
variances, a 95%; confidence interval for p is determined by the inequality

2 2(1 —rp)

(5.15) (-1 (log e .

= ) < 3.84,

where r is the usual sample product-moment correlation coefficient.

Example 5.8. We saw in example 5.3 that 2/(*: Hy(i, 6%) = n(# — u)*/a® +
(n — 1)(log (6%/s*) — 1 + s*[o?), with s* the unbiased sample variance, is
asymptotically distributed as y? with 2 degrees of freedom if the normal popula-
tion parameters are u and ¢%. Accordingly, for a sample O,, from a normal
distribution, a 9574 confidence region for (u, 6®) is determined by the inequality

n(& — u)? o? 52
(5.16) proamt n—1 (log = 1+ =)= 5.99.

Example 5.9. We saw in example 1.6 that
2[(*:2; 0,) = 2(n(L — 6,) — 1 — log n(L — 6,)),

with L = min (z,,%,," - -, ,), for a sample from the population defined by
fi(x) = exp [—(x — 6,)], 0, < x < . Accordingly, for a sample O,, from the
population defined by the density f(x), a 95%; confidence interval for 0, is
determined by the inequality

(5.17) nL — 06y —1—logn(L —6,) < 1.92.
We find that 0.057 < n(L — 0,) < 4.40, thatis,L — 4.40/n < 6, < L — 0.057/n.

On the other hand, if the sample O, is not from the population with
generalized density f,(x), then, as may be seen from (5.9), asymptotically,

(5.18) EQI*:2;0,) = 2I(*:2; 0,) + k = O(n) + k,
and
(5.19) 2f(*:2; 0,) — 2I(*:2; 0,) — 2(0 — 0)'x

is distributed as x? with k degrees of freedom.
We shall now show that (5.19) is twice the logarithm of a likelihood
ratio. Since
I*:2; 0,) + (6 — 6)7(6) = 67(8) — log My(r(8)) + (6 — 6)7(6)
= 67(6) — log My(r(9)) = log (f*(@)/fa(x)),
we may write [see (5.9)]
(5.20) 2f(*:2;0,) — 2I(*:2; 0,) — 2(6 — 0)'t
= 2/(*:2; 0,) — 2(6't — log My(x")
max f*(x) @) max f*(x)

— A — =2log —uu-—
2log =y ~ 2loe Ty TR T A

= (6 - 8yZ(=(5))® — 8) = (# — VEE(E)(* — 7).




INFORMATION STATISTICS 105

The test that rejects the null hypothesis [the sample is from the
population with generalized density f,()] if the value of 2/(*:2; 0,)
is large is consistent (has a power that tends to 1 as the sample size
increases indefinitely). We see this by noting that if the sample is from
the population with generalized density f,(x), then for large samples
Prob [2/(*:2; 0,) = x¥(a, k)] = «, where x*(«, k) depends only on « and
the degrees of freedom k. On the other hand, if the sample is not from
the population with generalized density f,(z), then from the weak law of
large numbers, or Khintchine’s theorem [cf. section 3 of chapter 4;
Cramér (1946a, p. 253), Feller (1950, p. 191)], for any € > 0, # > 0, for
sufficiently large n [see (5.18)]: Prob [2/(*:2; 0,) = 2I(*:2; 0,) + k — €]
=1 — f. Note that for large enough n, 2I(*:2; 0,) + k — € = x*(«, k),
even for alternatives very close to the null hypothesis, close in the sense of
small I(*:2; O,), since I(*:2; O0,) = nl(*:2; O,).

In order to derive a more useful statement about the asymptotic
distribution under the alternative hypothesis than that about the expression
in (5.19), we proceed as follows. Since

(5:21) @ — 0 + Z(r(G)T)y =1 =(6))® — 6 + Z(r(H)7)
= (0 — 6Y=(+(6))(® — 6) + 2(8 — 0)'t + T'=(=(f))v,

we have from (5.6), (5.9), and (5.21):
(5.22) 2[(*:2;0,) — 2I(*:2; 0,) + (=)=

= (8 — 0 + Z(=()r)=-(=(0))(® — 8 + =(=(§))7)

= v E(r(H))r.

We saw by the central limit theorem that the distribution of V/ n® —0)

tends to a multivariate normal distribution with zero means and covariance

matrix Z,(7(6)) = nZ(7()). Consequently, asymptotically (cf. section 3
in chapter 12),

(5.23) f*:2; 0,) = 8% — 8(0)'% — 34'=(0)%,
where 6 = 8(0) + Z(0)% [cf. (5.6) witht = 0], so that
(5.24) 2[(*:2; 0,) = (B — 6(0))’=-1(0)(6 — 6(0))
= n(d — 6(0))’Z,(0)(® — 6(0)) = #¥Z(0)%,
and similarly,
(5.25) 2I(*:2; 0,) = (8(r) — 6(0)) Z-*(0)(8(r) — 6(0))
= n(8(r) — 6(0))’Z,~(0)(8(r) — 8(0))= v'Z(0)~.
We conclude from (5.22), (5.24), and (5.25) that Z((f)) = Z(0) and

therefore that 2f(*:2; 0,) asymptotically is distributed as noncentral x2
with k degrees of freedom and noncentrality parameter 21(*:2; 0,).
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Note that this is consistent with (5.18) since the expected value of non-
central x* is the sum of the noncentrality parameter and the degrees of
freedom. (See problem 10.22 in chapter 9 and section 6.1 in chapter 12.)

Accordingly, whenever f,(x) is itself a member of an exponential
family, as will be the case in most of the applications in the subsequent
chapters, we see that

max f*(z)
(5.26) 2[(*:H,) =2log %—7—;(;) = r:;n (& — T ZO0)& — 1),

TE€W,
where Q is the k-dimensional space of the 7’s and w, is the subspace of
Q for which f*(x) ranges over the populations of H,. If w, is an r-
dimensional subspace of €2, we may then infer from Wilks (1938a) and
Wald (1943) that 2/(*: H,) is distributed asymptotically as ¥ with k — r
degrees of freedom if the sample is from a population belonging to those
specified by H,, and that 2/(*: H,) is asymptotically distributed as non-
central x? with k — r degrees of freedom and noncentrality parameter
2I(*: H,) in the contrary case. [Cf. Bartlett (1955, pp. 225-226), Bateman
(1949), Cramér (1946a, pp. 424-434, 506), Fisher (1922a, 1924), Neyman
(1949), Rao (1952, pp. 55-62), Weibull (1953).] We compare the exact
probabilities that may be computed with the approximations from the
asymptotic theory for particular illustrations in section 4 of chapter 6 and
section 4 of chapter 7.

We remark that for many of the subsequent applications exact distri-
butions are available, or better approximations may be found than those
provided by the general theory. In each instance the asymptotic behavior
agrees with the conclusions from the general theory.

6. ESTIMATE OF J(*,2)
For the conjugate distribution f*(z) = e™7'@f(x)/ My() deﬁned in
section 1, we find that
(6.1) J(*, 2) =f(f (@) — fo(x)) log
= (6 — 6(0))r(8).

Note that this is corollary 3.2 of chapter 3 with 7, =7, 7, =0. We
estimate J(*, 2) by

(62) J(*, 2) = (6 — 6(0))~(9),

@)
J*)

dl(x)r

where T(z) = 6 = [% log Mz(T)] @ (See section 1.)

r=
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The implicit multidimensionality may be exhibited by writing
(6.3) J(*,2) = (6 — 8(0))'%,
where the matrices are defined in (5.6).

By proceeding as in section 5, we see that if the sample is from the
population f,(x) specified by the null hypothesis, asymptotically

(6.4) J(*,2) = (8 — 8(0)y=-1(0)(® — 6(0))

is distributed as y2 with k degrees of freedom.
On the other hand, from (5.23)

(6.5) J(*, 2) = ¥'Z(0)R,

that is, asymptotically J(*, 2) is equal to 2f(*:2) and therefore the con-
clusions about the asymptotic behavior of J(*, 2) are the same as for
2f(*:2). Note the similarity with the relation between J(6, 6 + A6) and
21(6:0 + AB) in section 6 of chapter 2.

We shall denote the minimum value of J(*, 2) as £, ranges over the
populations of H, by J(*, H,). The asymptotic behavior of J(*, H,) is
the same as that of 2/(*: H,).

7. PROBLEMS

7.1. Consider the normal distributions N(u,, 0%), i = 1,2, u; < py. Show
that for all regions A for which fl(x) dr =1 — «, the maximum of

ffl( x) log ?E ;dx occurs for the reglon A={r:—0 <x<g}

7.2. Show that the critical region in example 3.3 is uniformly most powerful.

7.3. If in example 3.4 p, = 0.20, p, = 0.80, what is the critical value p?
If n = 25, what are the errors of classification ?

7.4. Show that the critical region in example 3.8 is uniformly most powerful.
7.5. Show that the critical region in example 3.11 is uniformly most powerful.
7.6. Show that the critical region in example 3.12 is most powerful.

7.7. Sketch the confidence region of (5.16) for n = 100, & = 0, 0% = 1.

7.8. Show that the unrestricted minimum of (4.18) with respect to o? is
n—1 n( — p)? n(% — ,u)z.
2 log (l + (n — 1)s? 25°

7.9. Prove the statement at the end of example 1.1.

) which for large » is approximately
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7.10. Suppose the hypothesis H; specifies the normal distribution N(u;, 0.%),
i=1,2. Develop the test for the null hypothesis H, paralleling the procedures
in the examples in section 3. [Cf. Kupperman (1957, pp. 94-96).]

7.11. Show that the classification procedure described in the first half of
section 2, when r = 2, is such that the probability of misclassification tends to
zero as the sample size tends to infinity. (Cf. problem 7.28 in chapter 3 and
problem 4.22 in chapter 4.)




CHAPTER 6

Multinomial Populations

1. INTRODUCTION

We shall now undertake the application of the principles and results
developed and derived in the preceding chapters to the analysis of samples
for tests of statistical hypotheses.

In this chapter we take up the analysis of one or more samples from
multinomial populations and in the next chapter the analysis for Poisson
populations. The analyses in this chapter provide the basic structure for
the analyses of contingency tables in chapter 8. We shall see that the
analyses in chapters 6, 7, and 8 are in many respects similar to those of the
analysis of variance. Indeed, we shall see in chapters 10 and 11 that the
same basic technique applied to the analysis of samples from normal
populations for the general linear hypothesis leads to the analysis of variance
and its multivariate generallzatlon

We shall use the minimum discrimination information statistic obtained
by replacing population parameters in the expression for the minimum
discrimination information by best unbiased estimates under the various
hypotheses.

For the special type of multinomial distribution ihat arises when
sampling words or species of animals, an approximately unbiased estimate
of entropy is given by Good (1953, p. 247). Miller and Madow (1954)
give the maximume-likelihood estimate, and its asymptotic distribution,
of the Shannon-Wiener measure of information for a multinomial.

All the formulas in chapters 6, 7, and 8 may be expressed in terms of
the form nlogn or mlogn (all logarithms herein are to the Naperian
base €). Table I on pages 367-377 gives values of logn and nlogn for
n = 1 through 1000. I am indebted to Sheldon G. Levin for the com-
putation of the table of nlogn. Tables of nlogn to base 2 and base
10 for n = 1 through 1000 may be found in a technical report by Miller
and Ross (1954). Fisher (1956, pp. 137-138) lists n log n to base 10 for
n = 1 through 150. Bartlett (1952) lists values, all to the Naperian base
e, of —log p, —p log p, for p = 0.00, 0.01, - - -, 0.99, 1.00, and —(p log p

109
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+qglogg),p+qg=1,p=000001,- - - 050. Klemmer, in an article
on pages 71-77 of Quastler (1955), gives, all to the base 2, a table of log n,
n = 1 through 999, and a table of —p log p for p = 0.001 through 0.999.
He also refers to AFCRC-TR 54-50 which contains, all to the base 2, a
table of log n to 5 decimal places, n = 1 through 1000, a table of n logn
to 5 decimal places, n =1 through 500, and a table of —plogp,
p =0.2500 to 4 decimal places and p = 0.251 to 3 decimal places.
Dolansky and Dolansky (1952) have tabulated, all to the base 2, —log p,

—plog p,and —(plogp +qlogq),p+q=1.
2. BACKGROUND

Suppose two simple statistical hypotheses, say H, and H,, specify the
probabilities of two hypothetlcal c-valued populations (¢ categories or
classes)

1) Hipa,pigs® * s Piev  Pa+ P+ F+pe.=1 i=12.

The mean information per observation from the population hypothesized

-by H,, for discriminating for H, against H,, is (see section 2 of chapter 1

for the general populations, of which this is a special case)

@2)  I(1:2) = py log 51—1 +pulog” ‘-”i”- 4+ prlog 2o
21

The mean information per observation from the population hypothesized
by H,, for discriminating for H, against H,, is (see section 3 of chapter 1)

P22

@3)  IQ2:1) = py log Pu + plog B4+ pylog e Poc,

1c

The divergence between H; and H,, a measure of the difficulty of
discriminating between them, is (see section 3 of chapter 1)

(4) J0,D) = I(1:2) + 1Q:1) = (pu — pu) log 2 Pu

P12 Pic

2c

+ (P12 — P22 108 * + (Prc — P2o) log

According to the general conclusions in chapter 2,
2.5) I(1:2) =0, I2:1) = 0, J(1,2) 20,

where the equality in (2.5) is satisfied in each case, if and only if py; = pq;,
i=1,2,- -, c, that is, the hypotheses imply the same population.
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The mean discrimination information and divergence for a random
sample of N independent observations, Oy, are,

@6 K1:20) = NI1:2) = N 3 puclog (il
@7 IQ:1;0y) = NI2:1) = sz log (Pailp),
@8)  J(1,2;0y) = NJ(1,2) = Nzl (Prs — P20 108 (Prelpad-

3. CONJUGATE DISTRIBUTIONS

Consider the N-total multinomial distribution on a ¢-valued population
(c categories or classes),

N!
(3.1 () = p(xy, Ty, * -+ Z) = = P - - p e,

!
where p; >0, i=1, 2,- ¢, pp+pe+- - +p.=1 2, +2,+
*+ -4+ x, = N. Suppose that p*(x) is any distribution on the c-valued
population such that every possible observation from p*(x) is also a
possible observation from p(x). This is to avoid the contingency that
p*(x) # 0 and p(x) = 0. (See section 7 of chapter 2.)
Theorem 2.1 of chapter 3 permits us to assert:

LeMMA 3.1.  The least informative distribution on the c-valued population,
with given expected values, for discrimination against the multinomial
distribution p(z) in (3.1), namely the distribution p*(x) such that E*(x,) = 0;

*
and > p*() log Pr@ is @ minimum, is the distribution
B+ z,=N p(@)
(2 PH@) = €TV Ip@) (pre™ + ¢ - - + pe™)”
N!
IR (P - - (P

where p* = peif(pet+ - - -+ pe€e), i=1,2,- -, c, the T's are real

parameters, and 0, = (0/0r)) log (pye + * * - + p.e)~.

Note that the least informative distribution p*(x) here is a multinomial
distribution. A simple numerical illustration of lemma 3.1 is in example
2.1 of chapter 3.

The multinomial distribution p*(z) in (3.2) is the conjugate distribution
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(see section 1 of chapter 5) of the multinomial distribution p(x). The
following are derived by the procedures exemplified in chapter 3:

(3:3) 6,=Np* = Npeil(pre* +- - - +pe),  i=12--"q

(3.4) 0,6, = pilpse, Lj=1,2-- "¢
(3-5) 7; = log (6,/Np,) + log k, i=12-"-"¢,
k=p1e71+...+Pce'r¢>0,
*:2: . P*@)
(3.6) I( -2, O‘V) = z (x) log
z‘+ . '+zc=N p( )

= 7101 + 0+ 7c0c - Nlog (Ple.r1 +- +Pce7¢)

6 6
= Ollog—j’j-+ R +0610g-]v7f-,
1

(B.7) J(*,2;0p) = > (p*(@) — p() log P

R . £

=70, — Np) + - - - + 76 — Np.)

= (6, — Npy) log"e‘l" +-- -+ (6. — Np)log _ﬂc__
Np, Np,

Since the value of k in (3.5) is arbitrary, we shall take k =1 for
convenience so that in a homogeneous notation

(3.8) 7; = log (6,/Np)), i=1,2,---¢
On the other hand, since xt,= N — 2, — 2y, —* - * — x,_,;, we may
also set 7, = 0, or log k = —log (6,/Np,), in which case
6.
(3.9) -r,-=log;’i§f, i=1,2-c—1,
T, =

For applications to problems of tests of hypotheses about multinomial
populations, the basic distribution in (3.1) will be that of the null hypothesis
H,, whereas the conjugate distribution will range over the populations of
the alternative hypothesis H,.

4. SINGLE SAMPLE

4.1. Basic Problem

Suppose we have a random sample of N independent observations,
Xy, g, ¢ *, XXy + Ty + + + + + x, = N, with a multinomial distribution
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on a c-valued population (c categories or classes), and we want to test
the null hypothesis H, that the sample is from the population specified by

4.1) Hy:(p) = Pr Pos” * 5Py Pr+pa+- - +p.=1,

against the alternative hypothesis H, that the sample is from any possible
c-valued multinomial population.

We take for the conjugate distribution (3.2) the one with parameters
the same as the observed best unbiased sample estimates, that is,
6,=Np*==x,i=1,2,---,c. From (3.8)

4.2) 2, = 1og-£3—i, i=1,2---c

and the minimum discrimination information statistic is

L.

Npc’

x
4.3 *:2;0y) =z log ==+ - - + 1z,
(4.3) I(*:2;0y) = 1y ongl"‘ + z log
and the corresponding estimate of the divergence is
4.4) J*, 2, 0,) = [(x__ )1 B (zc_ ) _xi].
( ) ( 2’ O‘V) N N Pl og Npl + + N pc log Npc

Note that (4.3) is (2.6) with the substitution of z,/N for p,, and p; for p,,,
- and that (4.4) is (2.8) with the same substitutions. (See problem 7.15.)

Under the null hypothesis H, of (4.1), it follows from sections 5 and 6
of chapter 5 that 2f(*:2; Oy) and J(*, 2; Oy) are asymptotically distributed
as y® with (c — 1) degrees of freedom. Under an alternative, 2/(*:2; Oy)
‘and J(*,2; Oy) are asymptotically distributed as noncentral x* with
(c — 1) degrees of freedom and noncentrality parameters 2I(*:2; Oy)
and J(*, 2; Oy) respectively, where I(*:2; Oy) and J(*,2; Oy) are (4.3)
and (4.4) withz,/N,i = 1,2, - -, c, replaced by the alternative probability.
[See the last member of (3.6).]

Note that we may also write (4.3) as

f(*:2;0y) =D =;logzx, — Y x,log p; — Nlog N,
i=1 i=1

for computational convenience with the table of n log n.

Since logz <z — 1, £ >0, and the equality holds if and only if
x = 1 [see Hardy, Littlewood, and Pdlya (1934, p. 106, th. 150), or the
statement following (2.7) in chapter 4], it follows that (@ — b)fa =
log (a/b) < (a — b)/b, a/b >0, and the equalities hold if and only if
a=>. We may therefore use as a first approximation to log (a/b) the
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mean of its upper and lower bounds, that is, log (a/b) ~ 4[(a — b)/a +
(a — b)/b] = (a® — b®)[2ab, the approximation being better the closer afb
is to 1. This approximation in (4.3) and (4.4) yields

& (z; — Np)? — 2

4. *¥:2:0\) ~
5 20(4:2; 09) ~ 5 LTS =
1 &, — Np)?2 1 &z, — Npy)?

@46 J*209~3 3

NI of. 7 2 2
2 +5 ,Zl P 3G+ 1),
where the first sum in (4.6) is K. Pearson’s % and the second sum in (4.6)
is Neyman’s yx'¢ [Haldane (1955), Jeffreys (1948, pp. 170-173), Neyman
(1929)].

We remark that 2/(*:2; Op) is —2log 4, with A the likelihood-ratio
test [see, for example, Fisher (1922b, pp. 357-358), Good (1957, p. 863),
Wilks (1935a, p. 191)]. It is interesting to recall that Wilks (1935a)
remarked that there was no theoretical reason why x* should be preferred
to —21log 4 and that —2]og A can be computed with fewer operations
than x% Good (1957, p. 863) remarks that (I use the notation of this
section) (i) 2f(*:2; Oy) more closely puts the possible samples in order of
their likelihoods under the null hypothesis, as compared with yx2, for
given N, ¢, py, P, * *» P, (i) the calculation of 2/(*:2; Oy) can be done
by additions, subtractions, and table-lookups only, when tables of 2n log n
(to base e) are available, but the calculation is less ‘“‘well-conditioned”
than for x2, in the sense that more significant figures must be held, (iii) x®
is a simpler mathematical function of the observations and it should be
easier to approximate closely to its distribution, given the null hypothesis.

4.2. Analysis of 1(*:2; 0,)

Significant values of [(*:2; Oy) may imply groupings of the categories
as suggested by the nature of the data. [(*:2;0y) in (4.3) can be
additively analyzed to check such hypothetical groupings.

We consider first an analysis into (¢ — 1) dichotomous comparisons of
each category with the pool of all its successor categories. [Cf. Cochran
(1954), Lancaster (1949).] Let us define

Ni=N_x1—x2—"'—xi, i=1,2,”‘,C—1,
qi=1_P1_P2_“'_[’i’ i=1929..;9c_1-

The analysis in table 4.1 is derived in a straightforward fashion from
these definitions and the properties of the logarithm. The convexity

property
G, ... In ot ta

n
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where a; > 0,b,>0,i=1," * -, n, and the equality holds if and only if
a,/b; = constant, i = 1, 2, - -, n [see Hardy et al. (1934, p. 97, th. 117);
also example 3.2 of chapter 2], ensures that the dichotomous comparisons
are made with the minimum discrimination information statistic, that is,
each “between component” is the minimum value of the “within com-
ponent” below it in table 4.1 for the given grouping.

TABLE 4.1
Component due to Information D.F.
Within  categories - .
c—1 to clxl, 2 (xc_l Iog _.c_'];&__z. + z, IOg e c-2 ) )
* %y Loy c—2Pe-1 Ne_ap.

Between category
¢ —2 and cate- , (x
gories (¢ —~ 1) +
cloy o oy

- N o ~—
2] Iog ;Ll’ﬂ + (N 3 ™ xc_z) Iog( c-3 xc—a)‘]c—s) 1

c~3Pc-2 Nesges

Within categories 92 192 ol £
2 1 . s 1 ——— -—
3to clzy, 2, (xs og + 2, log Nops + + z log szc) c—3
Between category z
2 and categories 2 (xz log X;Jl + (N — xp) Iog( 1N z)fh) 1
34+ 1Pz 192
Within categories Zaqh Z3q1 Zeq1
2|2, log —— 4+ x5 log —— + - - - 4z, log —— -2
2 to cla, ( 28 Npe 8 Nps ¢ 8 Nch) ¢

Between category z N —z
1 and categories 2 (xl Iog-A-,-— + N - --—-————-) 1
2 + o e e + c Pl

Total, 2[(*:2; 0y) 2 (“’1 log Ni;- o elos 73.5-) o
1 (]

We remark that the analysis in table 4.1 is a reflection of two facts:

1. A multinomial distribution may be expressed as the product of a
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marginal binomial distribution and a conditional multinomial distribution
of the other categories (cf. section 2 of chapter 2), for example,

N! N!

z

= !plzl. . e -pc c !plzl(l _pl)N—zl

« Moz ()", (2T,

x2!° * 'xc! ql ql

' (gf)%: Zy !(z(vN__xf li!xz)! (gf)z’(l - %)N-"*”

< Womoml () (2,

xs!' ° 'xc! q2 a

! -

Zyle -zt \qy

where Ny=N—2,, Ng=N—2,—2,* - ",y =1—p;, gg=1—
I P+ +plgy=1, polga+ - -+ pelge

2. The hypothesis H, is equivalent to the intersection of ¢ — 1 hypoth-
eses Hy, * * *, Hyo_1y, Hy = Hyy N Hpa N+ - - N Hy, 4y, Where Hy, is the
hypothesis that the probability of occurrence of the first category is p,,
H,, is the hypothesis that the probability of occurrence of the second
category is p, given that the probability of the first category is p;, Hag is the
hypothesis that the probability of occurrence of the third category is p;
given that those of the first two categories are p, and p, respectively, etc.

The degrees of freedom in table 4.1 are those of the asymptotic x2-
distributions under the null hypothesis H, of (4.1). 'We leave to the reader
the estimation of the corresponding divergences. Note that the divergence
in (4.4) does not permit a corresponding additive analysis.

We next consider a grouping or partitioning of the categories into two
sets, say categories 1 to i, and i + 1 to ¢. Let us define

h=2+2,+"° - +=zx, Yo=Tiy +Zipa+° - + 2,
pn=p+p.+- - +p; Pog = Pis1 + Pirs + -+ Pe

The analysis in table 4.2 is derived in a straightforward fashion from
these definitions and the properties of the logarithm. The degrees of
freedom in table 4.2 are those of the asymptotic y*-distributions under the
null hypothesis H, of (4.1). We leave to the reader the estimation of the
corresponding divergences. Note that the convexity property ensures
that the “between component” is the minimum value of 2[(*:2; 0y) for
the given partitioning.
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Without repeating all the details as for table 4.1, we note, for example,
that in “within categories 1 to i,” ¥, is the total (corresponding to N of
the multinomial), and the conditional probabilities are p,/py,, - * *, pi/p1r-

TABLE 4.2
Component due to Information D.F.
Between categories 1 + Y
-+ i and categories 2 log — + Y2 log X,'z“) 1
(+D+---+c Pz

xi P Ze .
0 c T log =222 4 - - -y log ‘”22) c—i—1

Within categories (i + 1) , (
Y2Pir1 YaPe

Within categories 1 toi 2 {x, log 2P 4 . .. 4o, log ZiP11 “) i—1

A Y1p:
Total, 2/(*:2; oyN) Z(xllogﬁl_.*.. .. +xclog3-"-) c—1
Npy Np,

4.3. Parametric Case

Let us now consider an analysis of [(*:2; Oy) assuming that p,, - - -, p,
are known functions of independent parameters ¢,, ¢y, * -, ¢, k < ¢,
and “fitting”’ the multinomial distribution by estimating the ¢’s. Suppose
we have estimates J,.(xl, Xy, * * vy x,),j=1,2, -+, k(by some procedure
to be determined), and we write p; = p,.(Jl, Fos s wd)i=1,2,- ¢,
P+ D+ -+ p.=1. Wemay write (4.3) as

@.7 I*:2;0y) = z x; log + N z P log&

For the decomposition of f(*:2; Oy) in (4.7) to be additive 1nformatlon-
wise, that is, all terms to be of the form (2.2), the last term in (4.7) should
be zero. We therefore require that the ¢’s be such that identically in
the ¢’s

< p c P:
4.8 z;lo log —-
(4.8) igl g P g Pilog 7;
Note that the left-hand side of (4.8) is the observed value, log (p(x)/p(x)),
and the right-hand side of (4.8) is the expected value of the information
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in a sample of N observations from a population (5) for discriminating
for (p) against (p). [Cf. (1.1) in chapter 5] From (4.8), which is an
identity in the ¢’s, we get

- Z; apz Pi ap,

4.9 —'—=N —- = i=12-- -k,
) .le,- 0; i=1 p; O,

and in particular when (¢) = (¢),

S x; (Op; Ps (9p; :
410 i( ‘) _N ( t) O, =l’ 29. - .9k,
( ) tgl Pz a¢,' b;=d; tzl p g a¢i é;m=d; /

since i (é&) = 0, or the §’s are the solutions of
i=1 \0g;/ ;=4
x; 0p;
4.11) =0, j=1,2,-- k.
z P a¢)’ /

t=1

The equations (4.11) are the maximum-likelihood equations for esti-
mating the ¢’s, and are also those which solve the problem of finding the
¢’s for which /(*:2: Oy) in (4.3) is a minimum. (See section 4 of chapter
5.) The properties of the estimates may be found, for example, in
Cramér (1946a, pp. 426-434). (See problem 7.14.)

With estimates of the ¢’s satisfying (4.11), we have the analysis of
2[(*:2; 0y) into additive components summarized in table 4.3. The
degrees of freedom are those of the asymptotic y*-distributions under the
null hypothesis Hj in (4.1) with p; = p{d;, b, - * ), i=1,2,- - -, ¢
[Cf. (4.17) in chapter 5.]

The divergences do not provide a similar additive analysis (with these
estimates), but the estimate of the divergence corresponding to the
error component is

xX.
4.12 J(*, N (- — ) log —-
(4.12) I(*, P) = Zl P:) log 7.
TABLE 4.3
Component due to Information D.F.
&'s or (p) against (p), 21(5:p) 2N z Pi log k
t=1 i
Error, (z/N) against (p), 2I(*: p) 2 z z; log c—k—1
i=1
Total, 21(*:p) 2 z x; log—— c—1

t=1 '
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Under the null hypothesis H, of (4.1), 2/(*: ) and J(*, p) are asymptoti-
cally distributed as y* with ¢ — k — 1 degrees of freedom. [For notational
convenience we write 2/(*:p) = 2K(*:2; 0,).]

An example of this procedure is given by Fisher (1950), who considers
a series of observations in which the number i occurs z; times with a null
hypothesis that the probabilities are given by the Poisson values p, =
e™m'fi!. (Here m plays the role of the parameter ¢.) The equation
corresponding to (4.11) is z:c,( 14+ilm)=0,0orm= Zw/z:c =1

The particular values [Flsher (1950, p. 18)] are:

i z; Np; m = 11/70,

0 124  119.6415

1 12 18.8008

2 2 14772 2[(*:p) = 12.318,
3 2 00774 c—k—1=2.
44 0 0.0031

140 140.0000

Fisher compares this test, the usual y* procedure, and the test for dis-
crepancy of the variance, with the exact probabilities calculated from the
conditional distribution for samples of the same size and average as the
one in question. He concludes that [Fisher (1950, p. 24)] (in the notation
of this section) 2/(*:p) “which is essentially the logarithmic difference in
likelihood between the most likely Poisson series and the most likely
theoretical series” is a measure that “seems well fitted to take the place
of the conventional y2, when class expectations are small.” [Cf. Cramér
(1946a, pp. 434-437).]

4.4. ‘‘One-Sided’’ Binomial Hypothesis

We shall now examine a problem which is in some respects a special
case of section 4.1, and is in some important respects different. Specifi-
cally, we want to test a “one-sided” hypothesis about a sample from a
binomial population. Suppose we have a random sample of z “successes”
and N — z “failures” from a binomial population. We are interested in
testing the two hypotheses:

H,: the binomial population probability of success is p; > p,

4.13 .
(.13 H,: the binomial population probability of success is equal to p.

See example 3.3 of chapter 5.
The results in section 3 apply to the binomial if we set ¢ = 2, p=pr
pp=q=1—p 2, =2, 25=N—2, 7, =1, 7,=0. The conjugate



120 INFORMATION THEORY AND STATISTICS

distribution [cf. (3.2)] ranges over the binomial distributions of H, in
(4.13), if p* = (pe’/(pe” + q)) > p. Only values of 7 > 0 are therefore
admissible {see the paragraph following (2.12) in chapter 3]. With the
value of the observed best unbiased sample estimate as the parameter of
the conjugate distribution, that is, 6 = Np* = x, we have

(4.19) Kp*:p) = 7z — Nlog (pe’ + ¢),
(4.15) 7 = log (xq/p(N — 2)).

If x> Np, #=log(xg/p(N —x)) >0 is admissible. If x < Np,
# < 0 is not admissible. We thus have the minimum discrimination
information statistic (see example 3.3 of chapter 5, also the discussion
following theorem 2.1 in chapter 3),

N

—Z x > N|
Ng ’ P

(4.16) [(H,:H,;0\) =z log]—:; + (N — 2) log

=0, zx<Np.

Asymptotically, 2/(H,: H,; Oy) has a x? distribution with 1 degree of
freedom under the null hypothesis H, of (4.13), but the « significance
level must be taken from the usual y2 tables at the 2« level, since we do
not consider values of x < Np for which [(H,: H,; O\) is the same as for
some value of > Np.

Instead of the simple null hypothesis H, of (4.13), let us consider the
composite null hypothesis Hy':

@17 H,: the binomial population probability of success is p, > p,

’ H,': the binomial population probability of success is p < p,.

It may be verified from the behavior of F(p, p) in section 3 of chapter 4
and example 3.3 of chapter 5 that (see problem 7.17)

N—x)
Ng

N —
=xlog-;z+(N—x)log ~ nd

(4.18) inf (:c log ﬁxﬁ + (N — 2)log

j 6 N

’ x > Npo.
0
The minimum discrimination information statistic for the least informative
distribution against the distributions of the composite null hypothesis is
therefore

, z N-—=z
4.19) I(H,:H,'; 0\) =z log e + (N — ) log v

9o

’ x > Np,,

=0, zx = Np,.
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Under the null hypothesis H, of (4.17), asymptotically,
Prob 2((H,:H,'; Oy) = 15,3 < «,

where y,.% is the usual x* value at the 2« level for 1 degree of freedom.
Similarly, for the hypotheses

Hj: the binomial population probability of success is p; < p,,

4.20
(4.20) H,": the binomial population probability of success is p = p,,
we have
N —=x
(4.21) (H;:H,"; 0y) =z log il + (N —2)log L 2 < Np,,
Npo 9o

=0, x = Np,.
Under the null hypothesis H," of (4.20), asymptotically,
Prob {2KH;:H,”; 0\) = 25,3 < «,

where y,.2 is as above.
The two-sided hypothesis

@.22) H,: the binomial population probability of success is p; # p,,

H,: the binomial population probability of success is p = p,,

is a special case of section 4.1, and

(423) 2[H,:H,; 0y) =2 (:c log—&% + (N — ) log NN; :c)
0 0

is asymptotically distributed as x* with 1 degree of freedom under the null
hypothesis H, of (4.22).

Note that H,, H,’, and H,", respectively of (4.22), (4.17), and (4.20),
satisfy H, = H,’ n H,", that is, (p = p,) if and only if (p < p,) and
(p = po); also H,, H,, and Hj, respectively of (4.22), (4.17), and (4.20),
satisfy H, = H, U Hj, thatis,(p # p,) if and only if (p; > p,) or (p, < po)-
The region of acceptance common to the hypotheses H,' and H,’,

(4.24) =zlog(x/Npy) + (N — z) log (N — x)/Ng,) < constant,
is also the region of acceptance of H,.

4.5. ‘‘One-Sided’’ Multinomial Hypotheses

We now examine ‘“‘one-sided” hypotheses for some problems on a
c-valued population (¢ mutually exclusive categories).
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The first problem tests a hypothesis H, that the first category occurs
with a probability greater than 1/c, against the null hypothesis H, of
uniformity, that is,

Hy:p>1le, p+p+---+p=1
Hy:pi=p,=---=p, =l

Suppose we have a random sample of N independent observations as in
section 4.1. From section 3, we see that the conjugate distribution ranges
over the populations of H, in (4.25) if p,* = e/(e* + € + - - - + €7)
> 1/c. Only values of the 7,,i=1,2,- - -, ¢, such that (¢ — 1)’ > ™
<+ - - - 4 ¢™ are therefore admissible. With the values of the observed
best unbiased sample estimates as the parameters of the conjugate distri-
bution, that is, 6, = Np;* = z,, we have
(4.26) Kp*:p)=%2, + o+ -+ - + 72,

— Nlog((¢" + e + - - - + e™)fe),

(4.25)

Ne'i
T et - - F el
Since et = z,/N,i= 1, 2,- - -, ¢ [we take ck = 1 in (3.5)], the #, are in
the admissible region if

i=12---c¢.

4.27) z

T Tyt+rz3+-c-+2, N-—x
28 —_pasnhts cN—n
(4.28) (c—1) N> N m
that is, if &, > Njc. If z; < Njc, we must find the value of f(p*:p)
along the boundary of the admissible region, (¢ — 1)et = €™ + - - - 4 €',

the only other possible region for which [ p*:p) may differ from zero, in
which case [cf. Brunk (1958, p. 438)]

e'i'z+...+e"¢:
c—1

+ 2,7y + - - '+x,,"r‘c—Nloge*'
ettt

c—1

4.29) Hp*:p) = x, log

=z,5H+° - -+ 25 — (N—ux)log

The last expression is that for an (N — z;)-total multinomal distribution
over a (¢ — 1)-valued population [by analogy with (4.26)]. We have,
therefore,

° cx; N
(4.30) [(H,:Hy; 0y) = x,log - m> 7
i1

¢ (c — D, N
(431) i(Hlin; ON) =i§2 x; lOg _IV—::'EI—’ x; < ?9

that is, when 2, < N/c, the rejection of the null hypothesis depends on
the conditional values of z,, - - -, z,.
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If we set p, =1/c,i=1,2,- - -, ¢, in table 4.1, the last three rows
yield table 4.4, where the degrees of freedom are those of the asymptotic
x2-distributions under the null hypothesis H, of (4.25).

TABLE 4.4

Component due to Information D.F.

Within categories 2 (c—=Nx, (c — Dz, _
to ¢z, 2 (a:z log = z, + + % log N —z, ¢=?2

Between category ox
1 and categories 2 (z'l logWl + (N — ) log

C(N—IL'I)) 1
2+---+0

N —1)

Note that twice (4.30) is the total in table 4.4, and twice (4.31) is the
component due to within categories 2 to c, given z,, in table 4.4. The «
significance level must be taken from the usual y? tables at the 2« level.

The second problem restricts the hypothesis H; of (4.25) to equal
probabilities of occurrence for all categories but the first, that is,

’ 1 l—p
HI:pl=P>;9 p2=p3=---=pc=c—l,

(4.32)
Hy: py=py=-+ " =p.=l/c.
The conjugate distribution ranges over the populations of H, in (4.32)
if

en 1 e

* — - * =
pl —e-rl+,,,+e'rc>c’ p2 e‘rl_i_..._i_e'rc
e’
— cr=p* = ,
- pc e‘rl+. . .+e'rc
Of Ty =T73="-"++=71,=1, 7> T, are the only admissible values, and

(4.26) is now
(4.33) Kp*:p) = #12, + (N — 2,)7 — Nlog

et + (c — 1)é
c b

3 Ne' Nz = N(c — 1)é
Tt (c— D Pt (e — 1)

(4.34) x,
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N —
Since et = %(e*' +(c—=1)), ¢ = N(_z'_—f;—) (€' + (c — 1)é), the s
are in the admissible region if , > N/c and we find that

, cx (N — x))c
(4.35) I(H,:H,;0y) =z, log -171 + (N — z,) log —Nfc——_lﬁ 7> —

If z; < N/c we must find the value of /(p*:p) along the boundary #, = #
of the admissible region, in which case [p*:p) =2, + (N — 2,7 —
Nlog e = 0. Note that twice the value in (4.35) is the component due
to between category 1 and categories (2 + - - - + ¢) in table 4.4.

The test of the hypotheses (4.32) by the minimum discrimination
information statistic (4.35) is a special case of the test of the hypotheses
(4.13) by the statistic (4.16). This is not surprising since the hypotheses
in (4.32) differ only in the specification of p;, both H,’ and H, in (4.32)
specifying equality for the other probabilities.

The third problem tests a null hypothesis H, that all categories but
the first have equal probabilities of occurrence, against an alternative
hypothesis H,” of any c-valued population, that is,

Hl”: P1,P2,'°',Pc, P1+Pz+"‘+pc=l,

(4.36) , 1—
HY: py=p, pa=---=p=—=>

c—1.

This is a special case of the hypotheses in (4.1) and we get the analysis
in table 4.5 from that in table 4.1.

The null hypothesis H,' in (4.36) does not usually specify the value of
p» and we test with the component due to within categories 2 to ¢ given z,,
which asymptotically is distributed as y* with (¢ — 2) degrees of freedom
under the null hypothesis H, of (4.36). Note that the within component
in table 4.5 is the minimum value of the total for variations of p, that is,
over the populations of H,'.

TABLE 4.5

Component due to Information D.F.
Within categories 2 Zole =1 zlc — 1)

to ¢z, Z(x,log N =z, + + x.log N—z, c—2
Between category 1 2, N -z

and categories 2 |, log o + (N —z,) log NG = 1

@+ +0 7
Total,

+- 4z log

ac = 1) zdc = 1)) o
N =p) NI —p)

2 (2 log =2 + a,1
2[(*:H2,; O‘V) 1 og NP xz Og
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4.5.1. Summary. The hypotheses in (4.25), (4.32), and (4.36) satisfy
H)' < H, < H)", and H, < H,’ (H, < H, means that H, is contained
in H,’). It therefore seems appropriate to summarize the preceding
results in table 4.6 to facilitate comparison.

The information statistics in table 4.6 are asymptotically distributed as
x* with degrees of freedom as indicated under the corresponding null
hypothesis, but for all but the last two the « significance level must be
taken from the usual y® tables at the 2« level, because of the limitation on
the values of z,.

TABLE 4.6
Hypotheses Information D.F.
H), H, 0, x, = Nc
cx (N — xy))c N
4.32 2 |z, log =X + (N — z)) log —-2" N 1
(4.32) ("71 OgN+( ) ogN(c—l))’ 3’71>c
C — .
Hy, H, 23 z10g D% L <N c—2
g cx; N
4.25 2 log —, > — -1
(4.25) igl z; log ~ x . c
” ’ c (C - l)x, 2
H,’, H. 2 z; 1 s =_ c—2
z < z(c—1)
4.36 2z, log -~ +2 Y z;log - —7, = c—1
(4.36) log o> 2 % BNa =y PP

4.5.2. lllustrative Values. We computed exact probabilities for the
information statistics for the hypotheses H,’, H, of (4.32) for ¢ = 5, 10,
and some convenient values of N and p using Tables of the Binomial
Probability Distribution (1949). We can compare type I and type II
errors, as well as exact and asymptotic probabilities given by the x* and
noncentral y2-distributions. (See section 5 of chapter 5.) The proba-
bilities are given in tables 4.7, 4.8, and 4.11. In table 4.8, z,’ was selected
to get a probability near 0.01 under H,. The information parameter in
table 4.9 is the noncentrality parameter 4 of the noncentral y2-distribution.
The (corrected) y,2 in table 4.10 is obtained by taking consecutive values of
2J(H,':H,; Oy) as the mid-points of adjacent class intervals and using
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the lower class limit as the corrected value.
central probabilities in table 4.11 were obtained from the upper tail only of
%o as a normal variate N(0, 1). The noncentral probabilities in table 4.11

, 1
H, fP1=P>'c”

Hypy=pp="- -

TABLE 4.7

P2=pP3s="

=Pc= l/C

=P =

_1-=p

c—1

[See Cochran (1952).] The

Prob (z; < N/c) = Prob QI(H,':H,) = 0)

¢ N Nlc H, Hy''p=015p=020 p=0.25 p=0.30 p=0.35 p=0.40

551 074 — — 0.63 053 043 0.34
510 2 0.68 — — 0.53 038 026 0.17
515 3 0.65 — — 0.46 030 017 0.09
520 4 0.63 —_ — 0.41 0.24 0.12 0.05
525 5 062 — — 0.38 0.19 0.08 0.03
530 6 0.61 — — 0.35 016 006 0.02
535 7 0.60 — — 0.32 013 004 0.01
540 8 0.59 — — 0.30 0.11 003  0.01
545 9 0.59 -_ —_ 0.28 0.09 0.02 0.004
1010 1 0.74 0.54 0.38 0.24 0.15 0.09 0.05
1020 2 0.68 0.40 0.21 0.09 004 0.0t 0.004
10 30 3 0.65 0.32 0.12 0.04 0.01 0.002  0.0003
10 40 4 0.63 0.26 0.08 0.02 0.003  0.0003 0.00003
TABLE 4.8
Prob (z, = ;")

¢ Nz H, H/:;p=015p=020p=025p=030 p=035 p=0.40
5 5 4 0.0067 — — 0.0156 0.0308 0.0540 0.0870
515 70.0181 — — 0.0566 0.1311 0.2452  0.3902
5 25 10 0.0173 — — 0.0713 0.1894 0.3697 0.5754
5 35 13 0.0142 — — 0.0756 02271 0.4577 0.6943
5 45 16 0.0110 — — 0.0753 0.2538 0.5248 0.7751
10 10 4 0.0128  0.0500 0.1209 0.2241 0.3504 04862 0.6177
10 20 6 0.0113  0.0673 0.1958 0.3828 0.5836 0.7546 0.8744
10 30 8 0.0078  0.0698 0.2392 04857 0.7186 0.8762 0.9565
10 40 9 0.0155  0.1354 0.4069 0.7002 0.8890 0.9697 0.9939
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were obtained from the noncentral y*-distribution with 1 degree of freedom
[see (6.9) in chapter 12]:

Prob (x* = 1) = :/_1_2; { f Cemte=VI gy 4 f " e -kt ViR dt].
X Xo

T 0

Note that Prob (z; = z,’) is supposed to be the same as Prob (32 = x,?.
Indeed, yx,® was selected, with a correction for continuity, to correspond

TABLE 4.9

2N (p log cp + qlogc c_q 1) = 2I/(H,":H,; Op)

c N p=015 020 0.25 0.30 0.35 0.40

5 5 0.0738 0.2817 0.6090 1.0465
5 15 0.2215 0.8450 1.8270 3.1395
5 25 0.3691 1.4084 3.0450 5.2325
5 35 0.5167 1.9717 4.2630 7.3255
5 45 0.6644 2.5351 5.4810 9.4185

10 10 0.2447 0.8881 1.8466 3.0733 4.5388 6.2248
10 20 0.48% 1.7761 3.6933 6.1465 9.0777 12.4495
10 30 0.7341 26642  5.5399 9.2198 13.6165 18.6743
10 40 09788 3.5522 7.3865 12.2931 18.1554  24.8991

TABLE 4.10

{ = N
20(Hy":Hy; Oy) = 2 (xl log =2 + (N — ;) log W x‘)"), -

Ne—1) >

o

N z; 2I 2f(corrected) = 5,2 ¢ N =z, 2I 2I(corrected) = y,?

5 5 3 3819 10 10 3 3.073

5 5 4 8318 6.068 10 10 4 6.225 4.649
5 15 6 3.139 10 20 5 3.693

5 15 7 5.375 4.257 10 20 6 6.147 4.920
5 25 9 3440 10 30 7 4.486

5 25 10 5232 4.336 10 30 8 6.682 5.584
5 35 12 3.887 10 40 8 3.552

5 35 13 5484 4.686 10 40 9 5.326 4.439
5 45 15 4.385

5 45 16 5.871 5.128



128 INFORMATION THEORY AND STATISTICS

tox,’. Table 4.7 gives the probability of incorrectly accepting H, when
Z; = N/c under various members of H,. Even for the small values of N
the approximation is good.

TABLE 4.11
H2 H l'
Central Binomial Noncentral Binomia}l
c N z g Prob Prob P A Prob Prob
(1 2 x0) (@ 22, = xd (@ =22))

5 5 4 6068 00069 0.0067 0.25 0.0738 0.0175 0.0156
5 15 7 4257 00196 0.0181 0.30 0.8450 0.1285 0.1311
5 25 10 4336 0.0187 0.0173 0.35 3.0450 0.3670 0.3697
5 35 13 4686 00152 0.0142 0.40 7.3255 0.7088 0.6943

5 45 16 5.128 0.0118 0.0110 0.25 0.6644 0.0759 0.0753
10 10 4 4649 0.0155 0.0128 0.15 0.2447 0.0526 0.0500
‘10 10 4 4.649 0.35 4.5388 0.4920 0.4862
10 20 6 4920 0.0133 0.0113 020 1.7761 0.1869 0.1958
10 30 8 5584 0.0091 0.0078 0.25 5.5399 0.4960 0.4857
10 40 9 4439 0.0176 0.0155 0.15 09788 0.1324 0.1354
10 40 9 4439 0.40 24.8991  0.9980 0.9939

5. TWO SAMPLES

5.1. Basic Problem
Suppose we have two independent random samples of N, and N,
independent observations with multinomial distributions on a c-valued
population. We denote the samples by
[
(x) = (xl”xz’ <. xc)’ .21 X, = Nl’
1=
and

@) =@ Y2 " * Y0, 21 Yi = Ny

We want to test a null hypothesis of homogeneity H,, the samples are
from the same population, against the hypothesis H,, the samples are
from different populations, that is,

H,: the samples are from different populations (p,) = (py;, P12
© 5 P1s (P) = (Pars Pass * * * Paoks

H,: the samples are from the same population (p) = (py, pa,* - *,
PhPui=pu=psi=12"""c

(5.1
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Since the samples are independent, we have in the notation of (3.1)
(we omit indication of sample size, etc., except where confusion might
otherwise result):

5.2 I(1:2) = log P2EP:Y)
(5-2) (1:2) Z Pl(x)Pz(?/) 0g @)
=M 2 prlog 2+ N, 3 pylog 22,
P i=1 pi

53)  J1,2) = log P1@P:Y)
63 J1,2 (zgw (P @Pay) — px)p(y)) log L2 e

= N '21 (p1i — p) log I;h + N, Z (p2i — p:) log %

The conjugate distributions are (see section 3 and section 1 in chapter 5),

p(x) un1it e

5.4 ‘@) = ’
( ) Pl (x) (P en [P +Pce"1c)N1
P (y) a1t Tl t 0 0 +Tacl,
5.5 * )
55 R
We find
Pt @)p*(Y)

56) I(p*:p) = Zp,*@)p.*([¥) |
(5.6) I(p*:p) = Zp,*(x)ps*(y) log @)

= Z (riEr* (@) + 79:E5*(y)) — Ny log (pye™ +
+Pce"lc —_— N2 log (Ple"'u + « o +Pce":c)’
where E;*( ) denotes expected values from the population pi*().

Set E*(x,) = N,pi*, E*(y) = Nyp,;*, where p;* = Pi€*(pire™ +
c+ pi€i), j=1,2; i=1,2,-- - c,and (5.6) is

67 Ip*:p =N 2 pu* log PP‘ + N, Z pai* log ;’

1 1

We take the conjugate distributions as those with parameters the same
as the respective observed sample best unbiased estimates, that is,
ﬁli* = xi/Nl, and ﬁzi* = yi/Nz, i= 1, 2, AR 48 and

(5.8) Kp*:p) = Z (x log'ﬁl'; +y;lo gI\Z:D)

The null hypothesis H, of (5.1) usually does not specify the p;, i =
2,- - -,c. Wecan analyze [(p*:p) in (5.8) into two additive components
one due to the deviations between the p; and their best unbiased estimates
from the pooled samples, and the other due to what may be termed error
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within the samples. The analysis is summarized in table 5.1.  The degrees
of freedom are those of the asymptotic y>-distributions under the null
hypothesis H, of (5.1). Note that the within component in table 5.1 is

the minimum value of the total for variations of the p;, Z p: = 1, that is,
over the populations H.,.

We remark that the analysis in table 5.1 is a reflection of the fact that
the hypothesis H, in (5.1) is the intersection of the hypotheses H,(-), the
samples are homogeneous, and Hz(-l(p)), the homogeneous samples are
from the population (p) = (py, ps, = - -, Po), thatis, Hy = Hy() n Hy(-|(p)).
The between component in table 5.1, 2[(p: :p), is a test for the hypothesis
H,(:|(p)), and the within component in table 5.1, 2/(p*:5) or 2[(H,: H,),
is a conditional test for the hypothesis Hz() subject to the observed
values of jg; = (z; + y,)/((N; + Np), i=1,2,-

TABLE 5.1
Component due to Information D.F.
bi=@:+y)/[(Ny+ Ny 2 +v)lo @ + ¥.) -1
(Between), 21(p:p) 2 @+ 9 o8 o T Ny ¢
Error, 2[(p*:p) : ( (N + Nz (N, + Nz)?/i)
s 2 ilog ————— +y,log————) c—1
(Within) Z t0 Ny(z; + y2) ML N, (r; + y) ¢
(4
Total, 21(p*:p) Z (a: log — + ¥ log ) 2(c—1)
i=1 lpz 2P1

The error component in table 5.1 may also be expressed as
(5.9) Kp*:p)=I(H,: Hy) =Zz;logz;, + Ty, logy, — X(z; +Y,) log (2, +¥,)
+ (N1 + Np) log (N, + N,) — N, log Ny — Nplog Ny,
for computational convenience with the table of n log n.
The divergences do not provide a similar additive analysis (with these

estimates), but the estimate of the divergence corresponding to the error
component is

(5.10) J(p*, p) = J(H,, H,) = N, (

Z; z; + Y, ) lo (N; + Ny,

N, Nl + N, Ny(z; + )
Y; z; + Y, (N1 + Noly;
N2 ( ) lo
+ Nz N, + N, Ny(z; + y,)
N; + N, N, N2 le,
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Note that f(H,: H,) = (p*:p) in table 5.1 is (5.2) with the substitution
of z,/N, for p,,, y,/N, for p,, and (x; 4+ y,)/(N, + N) for p,, and that
(5.10) 1s (5.3) with the same substitutions.

2K(H,: Hy) and J(H,, Hy) are asymptotically distributed as 3 with (¢ — 1)
degrees of freedom under the hypothesis H, of (5.1) (the samples are from
the same population).

With the approximations used in (4.5) and (4.6), we find [cf. Pearson
191n)]

l (Nozx; — Nyy,)?
511) 2KH,:H,) ~ 3 o= g2
( (H, : Hy) NN, x; + Y; X

~ 1 (N i — lez)z
J(Hy, Hy) ~ L
(H, Hy) 2N, N, T, + v,

1 Z (No; — Ny )¥z; + ¥,)

+
2(N; + Nypy? TYq

5.2. ““‘One-Sided”’ Hypothesis for the Binomial

We now consider a “one-sided” hypothesis about two binomial distri-
butions. Suppose we have two independent random binomial samples
of N, and N, independent observations, of which, respectively,  and y
are “‘successes.” We want to test the two hypotheses:

H': the samples are from different binomial populations with

respective probabilities of success p;, py, p; > ps,
(5.12) T .
H,: the samples are from the same binomial population,

Pr=Pp: =P.
From the analogues of (5.4), (5.5), and (5.6) for binomial distributions

(cf. section 4.4), we see that the conjugate distributions range over the
binomial populations of H,’ in (5.12) if

pe™
pet+ (1 —p)

- per
per + (1 —p)

p* > pe* =

Only values 7, > 7, are therefore admissible. We take the conjugate
distributions as those with parameters the same as the respective observed
sample best unbiased estimates, that is, j,* = z/N,, p,* = y/N,, and
[cf. (5.6)] '

(5.13) K p*:p)=+#2x— N,log(pe™ + (1 — p)) +75y — Nplog(pe™ + (1 — p)),

= N, pe" y = Nppe™
pe" + (1 —p) pe’: + (1 — p)

(5.19) x
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or

(d=px - p)y
(5.15 #=1Io Ty = log ———
) ' & oV, — ) PN, — x) 2 P(Nz
If /N; > y[N,, then #; > 7,, and the #’s are admissible. However, if
Z[N; < y[N,, then 7, < 7,, the #’s are not admissible, and we must find
the value of f(p*:p) along the boundary #; = 7, of the admissible area.
With # = 7, = %, in (5.13) we have

(5.16) z +y (A: :(frz)”;) or #=log p(]f,;_:?:x_'iyi ”
We thus have
617 fp*p) == 1og-;1—p + (N, — 2) 1ogﬁ%}%
+ylog——p+(N2 y)log—ﬁz—(zl—_:__—gp—)’ %>7Vy—2,
619 Ip*p) =@+ p)log v
+(N1+N2—x—y)logNl+N2—x—y, <Y

(M + N)(1 — p) N, N,

Table 5.2 gives the analysis of table 5.1 for binomial distributions, for
the two-sided hypotheses:

H;: the samples are from binomial populations with respective

(5.19) probabilities of success p;, ps, p; # ps,
' H,: the samples are from the same binomial population, p; =

Pz =p-

We see therefore that 2/(p*:p) in (5.17) is the total of table 5.2 when
x/N; > y/N,, and 2/(p*:p) in (5.18) is the between component of table
5.2 when z/N; < y/N,.

The hypothesis H, of (5.12) usually does not specify the value of p, and
the minimum values of the total and between component respectively
(with respect to variations of p, that is, over the populations H,) are then

(5.20) 2K(H,':H,) = error component of table 5.2,  z/N, > y/N,,
= O, x/Nl é y/Nz.
Asymptotically, 2/(H,’: H,) in (5.20) is distributed as y2 with 1 degree

of freedom under the null hypothesis H, of (5.12), but the « significance
level must be taken from the usual 42 tables at the 2« level.
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Similarly, for testing the two hypotheses

H,": the samples are from different binomial populations with

(5.21) respective probabilities of success p,, p,, p; < P,
' H,: the samples are from the same binomial population,

41 ="'"P2=P’

we have J(p*:p) in (5.17) when z/N; < y/N, and I(p*:p) in (5.18) when
z/N; = y[N,. The hypothesis H, of (5.21) usually does not specify the
value of p, and then

(5.22) 2KH,": H,) = error component of table 5.2,  z/N, < y/N,,
=0, /N, 2Y/N,

Asymptotically, 2/(H,": H,) in (5.22) is distributed as 2 with 1 degree
of freedom under the null hypothesis H, of (5.21), but the « significance
level must be taken from the usual x? tables at the 2a« level.

Note that H,, H,’, and H," of (5.19), (5.12), and (5.21) respectively
satisfy H, = H," U H,", that is, (p, # p,) if and only if (p, > p,) or
(p1 < P2

We remark that in table 5.2 when x/N; = y/N, the total becomes equal
to the between component and the within component vanishes. In any

TABLE 5.2
Co(r;:llzotr;ent Information D.F.
r+y r+y
h = | ——
2[(p:p), L M + Nz—x—y)
(Between) + N+ Ny —2—ylog (N; + Ny)(1 — p)
(N + Npx (N; + N)(N; — x)
2?{? rﬁ;) i (x ‘o8 NGE+y (o= log NN + N, —z—y) 1
p*:
(Within) (M + Nyy (N + No)(N, — y) )
log ———— -l
+ylog Ny(z+y) + =y ogNz(Nl""Nz—x—?/)
Total, x (N, — )
2i(p* ) 2 (x log N.p + (N, — 2) log -——-——Nl(l )

Ny—y )

Y _
+ ylog Nop + (N; — y) log NJl = p)
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case, the alternative hypotheses H,’, H,", or H, will be accepted if the
minimum discrimination information statistic exceeds some constant.

We summarize the preceding in table 5.3, the entries describing for the
different hypotheses when the test statistic is the total, within, or between
component in table 5.2. For example, in the test of H,":(p, > p,)
against H,:(p, = p, = p), when p = p, is specified, use the total 2[(p*:p)
when z/N, > y|N,, the between 2K j:p) when z/N; < y/N,. However,
when p is not specified, use the within 2/(p*:5) when z/N; > y/N,, accept
the null hypothesis H, when z/N; < y/N,.

TABLE 5.3
' H,:H, H,":H, H,:H,
(5.12) (5.21) (5.19)
Between, =« <Y x S Y _
2[(p:p) FI='A72’ P =P 'N_I—':’ P =Po P=Po
x Y r Yy
NN, N, <N,
Within, _,_ Tty —p= z+y s Tty
20(p*:p) F N+N, P Nn+N, F N, + N,
r _Y T Y
0, —=-— 0, —=-+
N, 2 N N
Total, x Y x Y _
2Adp*p) N,” N, FP=P FN <N P=h P="ro
6. r SAMPLES

6.1. Basic Problem

Suppose we have r independent random samples with multinomial
distributions on a c-valued population, and we are interested in a test of
the null hypothesis that the samples are homogeneous. We denote the
samples by

@) = @i, Tis” * 5 %ie), T+ Tp+ - -+ T, =N, i=12,---7,
and consider the two hypotheses,

H,: the samples are from different populations (p;;, pis, - * -, pic)s
i=1,2,---r,

6.1)

H,: the samples are from the same population (p, ps, - - -, p.),
name]y’pij=p1'>0’i= ]’ 2’. ) .’r’j= ]’2’. RPN 4
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Without repeating the detailed argument, which is similar to that
already used, we find here that,

6.2) 11:2) = SN, 2 pi;log 22,
i=1 j=1 Pi

6.3) J(1,2) = 21"' 3 (pis — py) log ’;
i=1 j=1 i

For the conjugate distributions with parameters the same as the
respective observed sample best unbiased estimates, we have

x
(6.4) Kp*:p) = z,; log —2
p*:p .21 JZ i log 37
The hypothesis H, of (6.1) usually does not specify the p;, j = 1,2, * -,
c. We can analyze [(p*:p) in (6.4) into two additive components, one
due to the deviations between the p, and their best unbiased estimates
from the pooled samples, and the other due to what may be termed error

.
within the samples. Letting ;= >z;;, N=N,+ Ny, +- - -+ N,,
i1

the analysis is summarized in table 6.1. The degrees of freedom are those
of the asymptotic y2-distributions under the null hypothesis H, of (6.1).
Note that i(p* :p) in table 6.1 is the minimum value of (6.4) for variations

of the p;, z p; = 1, that is, over the populations of H,, and by the con-
vexity property (see section 4.2, and section 3 of chapter 2), Z Z
t=1 j=1
Ty log L > Zx, log ﬁ—' We shall write {(H,: Hy) = [p*:p).
Pi

sz Jj=1
We remark that the analysls in table 6.1 is a reflection of the fact that

the hypothesis H, in (6.1) is the intersection of the hypotheses Hy(-), the

TABLE 6.1
Component due to Information - D.F.
E"?&if}’:% :p) 2; ,é- %5 log = Dc—1)
Total, 2/(p*: p) 2 2 2 x;; log 2 ric—1)

t=]1 j=1
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samples are homogeneous, and Hz( |(p)), the homogeneous samples are
from the population (p) = (pl, P2 ° %> Pe)s thatis, Hy = Hy(") N Hy(*|(p)).
The between component in table 6.1, 2/(5:p), tests the hypothesis
H,(*|(p)), and the within component in table 6.1, 2/(p*:5) or 2[(H,: H,),
conditionally tests the hypothesis Hy("), subject to the observed values of
Pi=%IN,j=12,-+ ¢

The error component in table 6.1 may also be expressed as

(6.5 H(p*:p) = (Hy:H)) =Y 3 x;logz,; — lef log =,
J=

i=1j=1

+ Nlog N — > N,log N,,
iZ1

for computational convenience with the table of n log n.

The divergences do not provide a similar additive analysis (with these
estimates) but the estimate of the divergence corresponding to the error
component is

* Tij % Nz,

(6.6) J(p*, p) = J(H,, Hy) = E NEI (N N) log Na,

Note that f(p*:p) of table 6.1 is (6.2) with the substitution of z,,/N; for
P and z;/N for p, and that (6.6) is (6.3) with the same substitutions.

2[(H,:H,) and J(H,, H,) are asymptotically distributed as y2 with
(r — I)(c — 1) degrees of freedom under the null hypothesis H, of (6.1)
(the samples are from the same population).

With the approximations used in (4.5) and (4.6), we find that [cf. Hsu
(1949, pp. 397-398)] (see problem 7.18)

2UH:HY)~S SN (x,., —~ ]-%’)2 / Nz,

i=14=1
6.2. Partition

The error comporent in table 6.1 can be analyzed into (» — 1) com-
parisons, each of (¢ — 1) degrees of freedom, between each sample and
the pooled sample of all its predecessors. This permits an assessment
of each sample as it is added, to test for an abrupt change. [Cf. Cochran
(1954, pp. 422-423), Lancaster (1949).] For partitioning within the
categories see section 4.2.

To indicate the successive pooling of the samples, we define,

(67) yij=x1i+x21'+' ' '+xi1" i=2" : "r—l’ j= 1’2" Y 4
yi1+yi2+. : ‘+in=Nl+N2+‘ * '+Ni=M1'.

The analysis in table 6.2 is derived in a straightforward fashion from
the definitions in (6.7) and the properties of the logarithm. Note that the
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convexity property (see section 4.2, and section 3 of chapter 2) ensures
that each between component is the minimum value of the within com-
ponent below it in table 6.2 for the given pooling.

TABLE 6.2

Component due to Information D.F.
o, - 2 c .

Within samples 1 S S z,log Myx,; c—1
and 2 51551 Nys;

Between sample 3 c M. Ml
and samples 1 2 > (xaj log 333 + y,; log 3y2,> c—1
and 2 i=1 N3Ys; Myyy,

Within samples 1 2 Z z x;; log r—2xu (r — 3)(6‘ — l)
tor —2 i=1j=1 NYr_s,;
Between sample 2 Ec: ( s log M %1
r—
(r — 1) and j r—1Yr-1,5
samples 1 to M_1Yre, z)
+ Yr_pjlo c—1
r—2 e g M, 2Yr i
Within samples. 1 L M, 2,
2 z;;lo r—=2(c—1
tor — 1 zg JZ]. ’ g NiYr_1.5
Between sample r c Yr—1.4
2 z,, log —= _.ilo0 - -1
:rf slamples 1to Jg ( ri og Nz, =+ Y1510 Mr—lx) ¢
2I(H,:H))
— -1
(Within) 2,; E % lo g ¢-be=b

We remark that (see the remark about the analysis in table 4.1) the
analysis in table 6.2 is a reflection of two facts:

1. The hypothesis of homogeneity H, in (6.1) is equivalent to
the intersection of (r — 1) hypotheses Hy(1,2), Hy(l1+2,3)," - -,
H(+2+---4+r—=1n, Hi=H(1,2)nH(14+2,3)n---n
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H(l +24---4r—1,r), where Hyl,2) is the hypothesis that
samples 1 and 2 are homogeneous, Hy(1 + 2, 3) is the hypothesis that
sample 3 is homogeneous with the pooled homogeneous samples 1 and 2,
Hy(1 4+ 2 + 3, 4) is the hypothesis that sample 4 is homogeneous with
the pooled homogeneous samples 1, 2, and 3, etc.

2. The distribution of two independent samples may be expressed as
the product of a marginal distribution of the pooled samples and a
conditional distribution of the individual samples given the pooled sample,
that is, in the notation of (6.7),

Ny! . . N,!
e o . 16 ¢ comereereemrameee. 1) 21 ¢ o« p T2¢
x]_]_!. R 'x]_c!pl Pc le!' R 'xzc!pl pc
= M Yar. . -p Yee o Nl!Nz! yzl' e .y2c!
Yl *  Y,! ! © (N Nty ! s oz lwg e - " Ty, !

with similar results for 3, 4, - - - samples. [Cf. Bartlett (1937).]

The degrees of freedom in table 6.2 are those of the asymptotic y3-
distributions under the null hypothesis H, of (6.1).

We leave to the reader the estimate of the divergences, as well as the
expression in terms of the form 7 log n for computational convenience.

There may be some basis for considering a partitioning of the r samples
into two or more sets. We shall indicate the analysis for a partitioning
into two sets to illustrate the procedure which is easily extended to more
than two sets.

For convenience we take samples 1 to r, as set 1, samples r; + 1 to
r as set 2, and define

(6.8) 2y =%+ T+ T
j=1,2,. R &%

Zoy =Tyt 0 0+ Ty
I, = ,lem Tz=.21zz,-, N=T + T,
j= j= :

The analysis in table 6.3 is derived in a straightforward fashion from
the definitions in (6.8) and the properties of the logarithm. Note that
the convexity property (see section 4.2) ensures that the between com-
ponent in table 6.3 is the minimum value of 2/(H,:H,) for the given
partitioning. (Cf. table 4.2.) We leave to the reader the details of
remarks about the analysis of the null hypothesis and the distributions
that are similar to those for table 6.2.

The degrees of freedom in table 6.3 are those of the asymptotic x>
distributions under the null hypothesis H, of (6.1).
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We leave to the reader the estimate of the divergences as well as the
expression in terms of the form n log n for computational convenience.

TABLE 6.3
Component due to Information D.F.
Between set 1 and < Nz,; \
et 2 2j§1(zl,- log —’1:1;, + 2,10 g——J) c—1
r
Within set 2 2 > Z x;; log Ty r—=ri—Dc—-1
i=nr+1j=1 zzZJ
Within set 1 2 Z Z 2,5 log (r, — De — 1)
=19=1
2I(H,: H,)
Within r 2 Z 2 T log r—1c—1
samples =ts=1

6.3. Parametric Case

We now assume that p,, p,, - - *, p, of table 6.1 are known functions of
independent parameters ¢;, ¢y, - *, by, k < c. Suppose we “fit” the
multinomial distribution using estimates (by some procedure to be
determined),, / = 1,2, - -, k, of the ¢’s. We write f;, = p(&y, Fa, - * *,
ﬁgk)’J: L2,--e,p+ppe+- - +b=1

If the j;, or the §,, are such that identically in the ¢’s

(6.9) > ﬂlog& = }c: p; log ;i,
: T A .

we get the further analysis of table 6.1 summarized in table 6.4. The
condition (6.9) is to ensure that the analysis in table 6.4 is additive
informationwise, and is analogous to (4.8). Table 6.4 includes a further
analysis of table 5.1 when r =2. We see [cf. (4.8)-(4.11)] that (6.9)
implies that the §,’s are the solutions of

c x:l ap:

6.10
( ) .121 Pi a‘ﬁl

The equations (6.10) are the maximum-likelihood equations for estimating
the ¢’s, and are also those which solve the problem of finding the ¢’s that
minimize the between component or the total in table 6.1. We leave to

=0, I=12,-"k
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the reader the estimate of the divergences, as-well as the expression in
terms of the form nlogn for computational convenience. The degrees
of freedom in table 6.4 are those of the asymptotic x®-distributions under
the null hypothesis H, of (6.1), the p’s being taken as functions of the ¢’s.
(See problem 7.16.)

TABLE 6.4
Component due to Information D.F.
Between p; = z,/N and c .
ﬁi:l’f@v' A% 2,2leog1—\;:’.j c—k—-1
Error, 2/(p*: p) r& Nz
(Within) 2% 2 wilog r=De—1
2J(p*:p) or between Tl z,;
= 2 z;;log —= -1 —
z;;/N; and p igl j§=:1 i 108 N, rle—1)—k
¢, 2l(5:p) & oo B
o 2N log &
(D) against (p) J.Z:IP: of ) k
Total, 2f(p*: ro ,.
ota p*:p) 2 E E z,;log Zis, rc—1)
t=1 j=1 N,'Pj

7. PROBLEMS

7.1. Estimate the divergences corresponding to the information components
in table 4.1.

7.2. Estimate the divergences corresponding to the information components
in table 4.2.

7.3. Estimate the divergences corresponding to the within components in
table 6.2.

7.4. Express the information components in table 6.2 in terms of the form
nlogn.

7.5. Complete the details of the discussion of the analysis of the null
hypothesis and the distributions for table 6.3.

7.6. Estimate the divergences corresponding to the information components
in table 6.3.

7.7. Express the information components in table 6.3 in terms of the foym
nlogn.

7.8. Estimate the divergences corresponding to the information components
in table 6.4.
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7.9. Express the within component in table 6.4 in terms of the form n log n.

7.10. Fisher (1956, p. 144) defines a consistent statistic as: *‘a function of the
observed frequencies which takes the exact parametric value when for these
frequencies their expectations are substituted.” Which of the information
statistics in chapter 6 are Fisher consistent, that is, consistent in the sense of the
foregoing definition? [Cf. Fisher (1922b, p. 316).]

7.11. Are the following six independent multinomial samples homogeneous?

2, 7, 8 4, 9
8, 10, 8, 13, 4
6, 6, 5, 10, 12
5, 6, 4, 6, 4
5, 7, 4, 2, 14
4, 8, 12, 7, S

7.12. Are the following four independent multinomial samples homogeneous?

2, 8 5 1, 2
8 2, 5 2,1
3, 5,7, 2, 1
3, 2, 7, 3, 3

7.13. Are the following test results for five manufacturers homogeneous ?

Manufacturer

A B C D E

Failed 26 72 61 29 135
Passed 172 169 142 36 542

Total 198 241 203 65 677

7.14. From the analysis in table 4.3 and the properties of the discrimination
information, show that for N— oo, if z;/N-— p; with probability 1, then
z;/N — p; with probability 1 and p; — p; with probability 1, i =1,2,- - -, c.
[Cf. Rao (1957).] (See lemma 2.1 of chapter 4.)

7.15. What is the relation, if any, between (4.3) and problem 5.12 in chapter 1?

7.16. From the analysis in table 6.4 and the properties of the discrimination
information, show that for N;-— o, if z;/N;— p, with probability 1, then
xy,/N; — p; with probablllty 1, p,—-» p; with probability 1, and z;/N — p; with
probability 1, i = 1,2, * -,r; j=1,2,- - -,c. (See problem 7.14.)

—x)-xlo +
Ng & Npo Np,

7.17. Show that inf (x log — + (N —2)log
PSP P

(N — ) log N N“ %, 2> Np,. [See (4.18).]

0

7.18. Find the approximate value of J(H;, H,) in (6.6) using the procedure for
(4.5) and (4.6).




CHAPTER 7

Poisson Populations

1. BACKGROUND

Suppose two simple statistical hypotheses, say H, and H,, specify
respectively the Poisson populations

e—mimi.‘t . ) . '
(1L.1) plx,m) = - *=0L2--4 i=12m>0.

The mean information per observation fromthe population hypothesized
by H,, for discriminating for H, against H,, is (see section 2 of chapter 1)

(1.2) 11:2) =3 pa, my log 25

z=0 ( mz)

m
=m log— + my — m,.
my

The divergence between H; and H,, a measure of the difficulty of
discriminating between them, is (see section 3 of chapter 1)

P( m;)
px, my)

(1.3) X1,2) = So(p(x, my) — pla, my) log B2 T

my
= (1 — m.) log 2.
(my — my) log oy

The mean discrimination information and divergence for a random -
sampleé of n independent observations O,, are

I(1:2; 0,) = n(m1 log%1 + my, — ml) = nl(1:2),
2
m,
J(1,2; 0,) = n(my — my) log — = nJ(1, 2).
2
These may be calculated directly or derived from the additivity property

(see section 2 in chapter 2).
142
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2. CONJUGATE DISTRIBUTIONS

Suppose that every possible observation from p*(z), any distribution
on the nonnegative integers, is also a possible observation from the

Poisson distribution p(x,m) = e™m*/x!, x =0, 1, 2,- - -. This is to
avoid the contingency that p*(z) # 0 and p(z, m) = 0. (See section 7
of chapter 2.)

Theorem 2.1 of chapter 3 permits us to assert:

"LeMMA 2.1. The least informative distribution on the nonnegative
integers, with given expected value, for discrimination against the Poisson
distribution p(x, m) = e "m®[x!, namely, the distribution p*(x) such that

E*(x) = 6 and i p¥(@) log (p*(x)/p(x, m)) is a minimum., is the distribution
=0
(2.1) p*@) = e™p(x, m)fe ™™ = e~ (me")[x! = =™ (m*)¥|x),

® d
where > e™p(x,m) = e ™ ™ m* = me’ = = ;log e~™™ andr is
=0 T

a real parameter.

Note that the least informative distribution p*(x) here is a Poisson
distribution. [Cf. Sanov (1957, p. 25).]

We illustrate lemma 2.1 with a numerical example (cf. example 2.1 of
chapter 3). Table 2.1 gives the negative binomial distribution p,*(z) =
(I'(n + 2)/x'T(m))p*g ™=, n=2, p=0.5 g=15 mean=1; the
Poisson distribution p,*(x) = e™m*[x!, m = 1; and the Poisson dis-
tribution p(x) = e-™m"[x!, m = 1.5, which is taken as the distribution
p(x) of the lemma. The other two are distributions with E*(x) = 1.
[The numerical values of the negative binomial are taken from Cochran
(1954, p. 419). See example 2.2 in chapter 4.]

TABLE 2.1
r pr@  pr@  p@ pr@log LD pe@)log LD
P p()
0 0.4444 0.3679 0.2231 0.30624 0.18402
1 0.2963 0.3679 0.3347 —0.03611 0.03479
2 0.1482 0.1839 0.2510 —0.07813 —0.05720
3 0.0658 0.0613 0.1255 —0.04249 —0.04392
44 0.0453 0.0190 0.0657 —0.01678 —0.02357

1.0000 1.0000 1.6000 0.13273 0.09412
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Note that the Poisson distribution does provide the smaller value of
Zp*(z) log (p*(x)/p(x)), and [see (1.2)] that 1log(1/1.5) +1.5—1=
0.09453. The difference between 0.09412 in table 2.1 and 0.09453
computed from the formula for J(1:2) is due to the grouping for z = 4,
illustrating the statement that grouping loses information (see sections 3
and 4 of chapter 2, example 2.2 of chapter 4, and problem 6.6).

The Poisson distribution p*(z) in (2.1) is the conjugate distribution (see
section 1 of chapter 5) of the Poisson distribution p(x, m). We thus have

.. . p*(x)
2.2) Kp*:p) = Z p*@) log —— 2@, m)
=0»r+m—me’=010g%+m—0,

p*)

px, m)

J(p*, p) =§36 (p*) — p(z, m)) log

=70 —m) = (0 — m) log -

For applications to testing hypotheses about Poisson distributions, the
basic Poisson distribution p(x, m) will be that of the null hypothesis H,,
whereas the conjugate distribution will range over the populations of the
alternative hypothesis H.

3. r SAMPLES

3.1. Basic Problem

Suppose we have r independent samples of n;, n,, - - -, n, independent
observations from Poisson populations. We want to test the hypotheses:

H,: the Poisson population parameters are my, m,, * - *, m,,

3.1 . .
G-1) H,: the Poisson population parameters arem, =my=-+-=m,=m,
that is, a null hypothesis of homogeneity H,, the samples are from the
same Poisson population.

From the additivity property (see section 2 in chapter 2), or by direct
evaluation for the r samples, we have

(3.2) KHy:Hy =3 n,.(m,. log % +m— m)
=1
(3.3) J(Hy, Hy) = 3 nom, — m) log =

=1
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With the observed sample best unbiased estimates, the respective sample
averages, as the'6, of the conjugate distributions we have

(3.4) Jm*:m) = 3 G, + nm — me"),

i=1

where [see (2.1)] 7, = log (£,/m), i = 1,2, - -, r, and [see (2.2)]
(3.5) fm*:m) = ﬁn,.(:i,. log-‘;—" +m— x)
t=1

The hypothesis H, of (3.1) usually does not specify m. We can analyze
f(m*:m) into two additive components, one due to the deviation between
m and its best unbiased estimate from the pooled samples, the other due
to what may be termed error within the samples. Letting n¥ = n&; +
- *+nx,n=n+n,+- - -+ n, we have the analysis summarized
in table 3.1. The degrees of freedom are those of the asymptotic x2-
distributions under the null hypothesis H, of (3.1). Note that {(m*: )
(f(H,: H,)) in table 3.1 is the minimum value of f(m*:m) in (3.5) for
variations of m > 0, that is, over the populations H,, and that by the
convexity property (see section 3 of chapter 2)

> (n,.a':,- log i + n(m — a':,-)) = nZ log z + n(m — ).
i=1 m m

We remark that the analysis in table 3.1 is a reflection of the fact that
the hypothesis H, in (3.1) is the intersection of the hypotheses Hy("), the
samples are homogeneous, and Hz("lm), the parameter of the homo-
geneous samples is m, that is, H, = Hy() N Hy(|m). The between
component in table 3.1, 2f(;71:m), is a test for the hypothesis Hz(-lm), and
the within component in table 3.1, 2m*: i) or 2I(H, : Hy), is a conditional
test for the hypothesis Hy(*), subject to the observed nz = m&, + - - * +
nx,.

The error component in table 3.1 may be expressed as

t=1 t=1

T
— > &n;log n; — ni logn + Enlogn,
i=1
for computational convenience with the table of nlog n, since n;&;, i = 1,
2, - -, r, and nZ are integral.
The divergences do not provide a similar additive analysis (with these
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estimates), but the estimate of the divergence corresponding to the error
component is

3.7) Jom*, i) = J(H,, Hy) = é:lni(a':i — &) log z_

Note that f(H,: Hy) = I(m*:rh) in table 3.1 is (3.2) with the substitution
of &, for m; and & for m, and that (3.7) is (3.3) with the same substitutions.

TABLE 3.1
Component due to Information D.F.
Between 1 = & and m, 21(r:m) Z(na': log Z 4+ n(m — a':)) 1
m
Error, 21(m*: ) < = Z;
(Within) 2 2 nidlog = r—1
r _ ii _
Total, 2f(m*:m) 2y (n,-a:,- log = + ny(m — a:,-)) r
=1 m

Under the null hypothesis H, of (3.1) (the samples are from the same
population), 2/(H,: H,) and J(H,, H,) are asymptotically distributed as y
with (r — 1) degrees of freedom. Under the alternative hypothesis H,
of (3.1), 2/(H,: H,) and J(H,, H,) are asymptotically distributed as non-
central x2® with (r — 1) degrees of freedom and respective noncentrality

parameters 2 > n,;m; log (m,/m)and > n(m; — m) log (m;/m), nm = :Y_n,-m,-,
i=1 i=1 i=1

corresponding to n¥ = > n&;.
i=1
With the approximation used in (4.5) and (4.6) of chapter 6, we find
[cf. Cochran (1954), Fisher (1950), Rao and Chakravarti (1956)]

(3.8) 2f(H:Hy) ~ Y _7.__}__. =2,

1
f(Hl‘, H,) ~ 3
3.2. Partition

| . .
The error component in table 3.1 can be analyzed into (r — 1) compari-
sons, each of 1 degree of freedom, between each sample and the pooled
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sample of all its predecessors. (Compare the analysis of the error
component in section 6.2 of chapter 6. We leave the comparable details
to the reader.) This permits an assessment of each sample as it is added,
for changes that may have occurred. [See Cochran (1954), Lancaster
(1949).]

To indicate the successive pooling of the samples, we define

Niyi=nljl+n2i2+"'+nijia i=2a.‘.ar_l’
and

Ni=n+n+---+n,

The analysis in table 3.2 is derived in a straightforward fashion from
these definitions and the properties of the logarithm. Note that the

TABLE 3.2
Component due to Information D.F.
2 z
Within samples 1 and 2 2 Y n,&; log = 1
i=1 Yo
Between sample 3 and - Ya
=2 log == 1
pooled samples 1and 2 2 (n3x3 log Ya + Nap log ya)
el ¢ r—2 .
Within samples 1 to 2'S n; log Z; r—3
(r - 2) " =] r—9

Between sample (r — 1)
2 (n

- Z,_ _
and pooled samples 1 r—1Zr_1 log == + N, oy, log '1-/-5-—2) 1

to(r —2) 1 1
Within samples 1 to S - z;
2 ) ni;log — r—2
r—1 t'gl o gyr-—l
Between sample r and 7
- r Yy 1
pooled samples 1 to 2 ( nZ, log 7 + N,_1Y,— log 7 )
r—1
Error, 2[(H,: H,) S = g T r—1
(Within r samples) - 2. log = ,
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convexity property (see section 3 of chapter 2) ensures that each between
component is the minimum value of the within component below it in
table 3.2 for the given pooling. The degrees of freedom are those of the
asymptotic y2-distributions under the null hypothesis H, of (3.1). We
leave to the reader the estimation of the divergences, as well as the expres-
sion in terms of the form » log n for computational convenience.

4. ““ONE-SIDED”’ HYPOTHESIS, SINGLE SAMPLE

(Cf. section 4.4 of chapter 6.)

It is also of interest to examine a “one-sided” hypothesis. Suppose we
have a random sample of »n independent observations from a Poisson
population, and we want to test the hypotheses:

H,: the Poisson population parameter is m;, > m,

4.1

H,: the Poisson population parameter is equal to m.

The conjugate distribution (2.1) ranges over the Poisson populations
H, in (4.1) if m* = me” > m. Only values of 7 > 0 are therefore admis-
sible. With the value of the observed sample best unbiased estimate (the
sample average &) as § of the conjugate distribution, we have [cf. (3.4)],

4.2) Km*:m) = #ni + n(m — me®), % = log (&/m).

If £ > m, then+ > Oisadmissible. If £ < m,then# < 0is not admissible.
On the boundary # = 0 of the admissible region, f(m*:m) = 0. We thus
have:

4.3) I(H,: H,) = ni 1og£ +nm—%, &>m,

IIA

=0, s m.

Asymptotically, 2/(H, : H,) has a y2-distribution with 1 degree of freedom
under the null hypothesis H, of (4.1), but the « significance level must be
taken from the usual 2 tables at the 2« level, since we do not consider
values of £ < m for which (H,: H,) is the same as for some value of
> m. .

Instead of the simple null hypothesis H, of (4.1), let us consider the
composite null hypothesis H,':

H,: the Poisson population parameter is m; > m,,
(4'4) ’ . . .
H,': the Poisson population parameter is m < mj,.
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It may be shown that [cf. (4.18) of chapter 6] (see problem 6.7)

@4.5) inf (n:z log = + n(m — oz)) = nElog — + n(my — &), &> m,
m<my m my

and therefore
4.6) KH,:Hy) = ni log 5‘ + nmy — E), &> m,
0

= 0, z = m,

Under the null hypothesis H,’ of (4.4), asymptotically, Prob [2/(H,: H,) =
Xz2o'] < @, where y,,2 is the entry in the usual y2 tables at the 2« level for
1 degree of freedom.

Similarly, for the hypotheses

Hg: the Poisson population parameter is m; < my,

4.7
@7 H,": the Poisson population parameter is m = m,,
we have
z
(4.8) I(H;:H,") = nZ log —+ nimy — &), &< my,
0

=0, jgmo-

Under the null hypothesis H,” of (4.7), asymptotically, Prob [2/(H,: H,")
= X2l = « where y,,2 is as above.
The two-sided hypothesis
H,: the Poisson population parameter is m; % mj,

4.9 ) )
“.9) H,: the Poisson population parameter is m = mj,

is a special case of section 3.1, and
(4.10) 2(H,:H,) =2 (ni log —’g— + n(m, — i))
0
is asymptotically distributed as y* with 1 degree of freedom under the

null hypothesis H, of (4.9).
A 100(1 — «) 9; asymptotic confidence interval for m, is given by

@.11) 2n log — + 2n(my — 3) = (s, 1)
0
where y*(a, 1) is the value for which the y2-distribution with 1 degree of

freedom yields Prob [x2 = y*(«, 1)] = «. (Cf. section 5 of chapter 5.)
(See problem 6.4.) ‘
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Note that H,, H,', and H,’, respectively of (4.9), (4.4), and (4.7), satisfy
H, = H,’ n Hy’, that is, (m = my) if and only if (m = m,) and (m = m,);
also H,, H,, and Hj, respectively of (4.9), (4.4), and (4.7), satisfy H, = H,
U H,, that is (m; % my) if and only if (m; > mgy) or (my < mg). The
region of acceptance common to the hypotheses H,” and H,’, n¥ log (&/m,)
+ n(m, — %) < constant, is also the region of acceptance of H,.

For illustration we take nmy, = 50 and compute for (4.6) some proba-
bilities under H,” and H, from Molina’s tables (1942) for the exact Poisson
values (see tables 4.1 and 4.2), and the x2- and noncentral y2-distributions
for approximating values (see table 4.3). (Cf. section 4.5 of chapter 6.)

TABLE 4.1
Prob (nz =< 50), Poisson

nm Hy H,

40 0.9474 nmy = 55 60 65 70 80

45 0.7963

50 0.5375 0.2768 0.1077 0.0321 0.0075 0.0002
TABLE 4.2

Prob (nz = 63), Poisson

nm H, H,

40 0.0005 nm; = 55 60 65 70 80
45 0.0065

50 0.0424 0.1559 0.3662 0.6146 0.8140 0.9781

2(62 log $8 + 50 — 62) = 2.67381
2(63 log $% + 50 — 63) = 3.12007
2[(H,: H,") (corrected) = 2.90 (cf. section 4.5.2 of chapter 6).

1 [>]
The central value in table 4.3 was computed from —J e "R dr

v/ 27 J1.70
1 ([~ ® ve s
and the noncentral values from —— e @M gy 4 | e~@+a 2 gy
V2rx\J170 1.70
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where u? =2 (nm1 log E;n—o-l + 50 — nml). [Cf. section 4.5.2 of chapter

6 and (6.9) in chapter 12.]

TABLE 4.3
Prob (3% = 2.90), Upper Tail Only

Central Noncentral

0.0443 nm, 2 (nm1 log'—ls'—:;-! + 50 — nml)
55 0.48412 0.1652
60 1.87859 0.3710
80 .~ 15.20058 0.9860

We summarize comparable values in table 4.4, that is, the exact and
approximate probabilities of rejecting H,” when it is true, and when one
of the indicated alternatives is true.

TABLE 4.4
H,' H,
nmy=55 60 80
Poisson 0.0424 0.1559 0.3662 0.9781
22 0.0443 0.1652 0.3710 0.9860

5. ““ONE-SIDED’’ HYPOTHESIS, TWO SAMPLES

(Cf. section 5.2 of chapter 6.)

We now test a “one-sided” hypothesis for two samples. Suppose we
have two independent samples of n; and n, independent observations each,
from Poisson populations. We want to test the hypotheses:

H,': the Poisson population parameters are m;, > my,

(5.1)

H,: the Poisson population parameters are m; = my = m.

The conjugate distributions [cf. (2.1)] range over the Poisson populations
of H," in (5.1) if
m* = me™ > my* = me™.
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Only values 7, > 7, are therefore admissible. For r = 2, we get from
3.4

(52)  f(m*:m) = #,m%; + ny(m — me™) + #on,%, + ny(m — me™),

(5.3) nE; = mme",  nyZ, = nyme™,
or

z 7
5-4 F —_— l —1, £ ] l —2-
54 7, = log - 7o = log -

If Z, > &,, then 7, > #, are admissible. However, if &, < Z,, then
#, < #, are not admissible, and we must find the value of f(m*:m) along
the boundary 7, = %, = # of the admissible area. For f, =% =% in
(5.2), we have

S

(5.5) nZ =nme*, or 7=log nt = m&, + nyy, N =ny + n,,

m
and consequently,
. -

5.6) fm*m)=3 (n,-i,- log-x';f + n{m — ii)), Ty > Iy,

i=

67  fem*:m) = nz log'% +nm— %), &<

If we examine the analysis in table 3.1 for r = 2, corresponding to the
two-sided hypothesis
58) H,: the Poisson population parameters are m, # m,,
' H,: the Poisson population parameters are m; = m, = m,
we see that 2/(m*:m) in (5.6) is the total of table 3.1 when &, > &,, and
2/(m*:m) in (5.7) is the between component of table 3.1 when %, < Z,.
The hypothesis H, of (5.1) usually does not specify the value of m, and
we then have

(5.9) 2f(H,':H,) = error component of table 3.1, r=2, &, > &,
=0, & <4,

Asymptotically, 2f(H,': H,) in (5.9) has a y-distribution with 1 degree
of freedom under the null hypothesis H, of (5.1), but the « significance
level must be taken from the usual y2 tables at the 2« level.

Similarly, for testing the hypotheses

(5.10) H,": the Poisson population parameters are m;, < m,,
' H,: the Poisson population parameters are m; = m, = m,
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we have f(m*:m) in (5.6) when #; < %, and f(m*:m) in (5.7) when &, = &,.
The hypothesis H, of (5.10) usually does not specify the value of m, and
we then have

(5.11) 2[(H,":H,) = error component of table 3.1, r =2, & < &,
=0, & =4

Asymptotically, 2/(H,": H,) in (5.11) is distributed as x2 with 1 degree
of freedom under the null hypothesis H, of (5.10), but the « significance
level must be taken from the usual x? tables at the 2« level.

Note that H,, H,’, and H,” of (5.8), (5.1), and (5.10) respectively,
satisfy H, = H," U H,", that is, (m, # m,) if and only if (m; > m,) or
(m, < my).

We summarize the preceding in table 5.1. (See table 5.3 of chapter 6.)

TABLE 5.1
Hy':H, H,":H, H,:H,
(5.1) (5.10) (5.8)
Bf.tween T, = I, T, = T, m = my
z
2 (na': log — + n(my — a':)) m = m, m = m,
my
2Within i T, > T, T, < T, m=nm=2
= Z; m=m=3zx m=m==zx
2 2 nilog 0, {5 O, =4

Total - - - -
2 271 > 272, 271 < 272, m= f"o
- x; -
23 n (a:,- log — + (my — ,-)) m= my, m = ny
. mq

=

6. PROBLEMS

6.1. Complete the details of the analysis in table 3.2.

6.2. Estimate the divergences corresponding to the information components
in table 3.2. ‘

6.3. Express the within components in table 3.2 in terms of the form » log n.

6.4. Compute the confidence interval for m, from (4.11) for Z = 10,
n = 10, 100.

6.5. The following represent the totals of successive samples of the same size
from Poissen populations: 427, 440, 494, 422, 409, 310, 302 [from Lancaster
(1949, p. 127)]. :
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Are the successive samples homogeneous? 1f not, where does the change in
homogeneity occur? (Lancaster gives the data derived from successive plates
of bacterial culture mixed with disinfectant.)

*®
6.6. Compute Zp,*(x) log P;(g) with p(x) given in table 2.1 and pg*(x) =

1
n_. x)!P,q,,_x, n=10, p=0.1,¢g =1 — p, and compare with table 2.1.

xi(n )
6.7. Show that inf ( nx log% + n(m — a':)) = nZ log mi + n(my, — ),
o

m Sm-o

£>mgy [See (4.5)]

6.8. Show that with the approximation used in (4.5) and (4.6) of chapter 6
the between component and the total in table 3.1 yield:

(@) 2[(ri:m) ~ n(Z — m)*m,
() 2lm*:m) ~ Y nfE; — m)*m.
=1




)

CHAPTER 8

Contingency Tables

1. INTRODUCTION

A contingency table is essentially a sample from a multivalued popula-
tion with the various probabilities and partitions of the categories subject to
restrictions in addition to those of the multinomial distribution. The
analyses of contingency tables in this chapter are therefore closely related
to those of multinomial samples in chapter 6. Studies and applications
of contingency tables have a long history in statistical theory. See, for
example, Pearson (1904), Fisher (1925a, all editions), Yule and Kendall
(1937), Kendall (1943), Wilks (1943), Cramér (1946a), Rao (1952), Mitra
(1955), Roy and Kastenbaum (1955, 1956), Roy and Mitra (1956), Roy
(1957).

McGill (1954) has applied the communication theory measure of
transmitted information to the analysis of contingency tables. McGill’s
approach, though somewhat different from ours, employs closely related
concepts, and we derive similar results for contingency tables. Garner
and McGill (1954, 1956) have pointed out some of the parallels that
exist among the analysis of variance, correlation analysis, and an
information measure they call uncertainty, as methods of analyzing
component variation [cf. the article by McGill on pp. 56-62 in Quastler
(1955)].

We shall study two-way and three-way tables in detail. The extension
of the procedures to higher order tables poses no new conceptual problems,
only algebraic complexities of detail, and we leave this to the reader.

2. TWO-WAY TABLES

We first study a two-factor or two-way table. Suppose we have N
independent observations, each characterized by a value of two classifi-
cations, row and column, distributed among r row-categories and ¢

155
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column-categories. Let x,; be the frequency of occurrence in the ith row
and jth column, and

x;.

8
3
I

™M

8

=z
I

M- Mo
Il Ma :

I
M,

S .

L]

I Ld
M,

H

.
Il

Pt
-,

We denote the probabilities by p’s with correspondmg subscripts.
We are first concerned with testing a null hypothesis H,, the row and
column classifications are independent, that is,

lepiJ’ ¢pi-p-j9 i= 19 29' P £ j— 1 2 ' Cy for at

least one (i, ), Z Zp,, =1, p,;>0,
@.n =12
Hyipys=pepsy Prtpt tp=l=pi+ps+---
+p.. p.>0 p,>0.
Without repeating the detailed argument (similar to that for a sample of
N independent observations from a multinomial population with rc
categories), we have [cf. (2.6) and (2.8) of chapter 6]

22) KHy:H) =N3 Zp,, log -ZiL_,
t=1j=1 PipP-j
2.3) J(H,, Hy) = N Z Z (pis — pep.) log £

t=1j=1 iPj
Note that I(H,: H,)/N in (2.2) is a measure of the relation between the
row- and column-categories and has also been defined as the mean infor-
mation in the row-categories about the column-categories or vice versa’
(see examples 4.3 and 4.4 of chapter 1).
For the conjugate distribution (see section 3 of chapter 6) with param-
eters the same as the observed sample best unbiased estimates, we have

(2.4) Py () =3 Z% log =
i=1j= Pz P 4 ,

The null hypothesis of independence H, in (2.1) usually does not specify
pis i=1, 2,---r, and p, j=1, 2,---c We can analyze
I(p)*:(p)) of (2.4) into three additive components: a marginal component
due to the deviations between the p,. and their best unbiased estimates
from the row totals, a marginal component due to the deviations between
the p., and their best unbiased estimates from the column totals, and a
conditional component due to the independence hypothesis. These
components correspond respectively to a hypothesis Hy(R) specifying the
values of the p;., a hypothesis Hy(C) specifying the values of the p.,, and
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a hypothesis Hy(R x C) of independence, that is, H, in (2.1) is the
intersection Hy(R) N Hy(C) N Hy(R X C). The analysis summarized in
table 2.1 is an analogue of that in table 4.3 of chapter 6. Here there are
(r — 1) independent parameters p;., ps..* * *, p,_y).» and (¢ — 1) inde-
pendent parameters p.;, p.o,* * *, p.c—1)- The equations (4.11) of chapter
6 are here

C (x.. X .
Z(—l.{p'j_ﬁp'j)=0’ i=l’2’---’r_l’

i=1\Py; Pri

r (x.. .,

Z(-i’— i.—£p,-.)=0, f=1,2,- -, ¢c—1.
i=1 Piip pic j

Since p;; = p;.p.;, these equations reduce to

e T g2, r=1, =2Ze 12 e—1,
pi- pr' p‘f p-c
yielding

-~

i =% = ot T

pi°_W’ p‘J'_ N Pij N N
i=1929"'9r9 j=1929'

[Cf. Cramér (1946a, pp. 442-443).] Note that the independence com-

ponent in table 2.1 is the minimum value of the total for variations of the
pi.and p.,,

2p.=1=3p,
=1 ji=1

that is, over the populations of H, with the given marginal values, and
that by the convexity property (see section 3 of chapter 2)

z Zx,,long ’>Zx log-———,

1=1j pt
z,; lo =D x;lo
2: Jz & Np..p NP P~f z vy NP ¥

The degrees of freedom in table 2.1 are those of the asymptotic y*-distri-
butions under the null hypothesis H, of (2.1). [Cf. Wilks (1935a).]
The independence component in table 2.1 may also be expressed as

(2.5 [f(H,:H,) = Z in, log z,; — éx,-. log z;.
i=1

t=1j=

- .le°’ logz.; + Nlog N,
J=

for computational convenience with the table of n log n.
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The divergences do not provide a similar additive analysis (with these
estimates), but the estimate of the divergence corresponding to the
independence component in (2.5) is [cf. (4.12) of chapter 6]

z; x. Nz,
2.6 J(H, H) = N (——— ’) 4
(2.6) (Hy, Hy) El El N NN %zz,
o3 +Z. Nz,
= i — ——— log —=-
tglggl( d N ) gx .
TABLE 2.1
Component due to - Information DF.
Rows, Hy(R) 2 ¥z, log —= -1
Pi. =z [N z2:1 & Np, d
Columns, H,(C) 5 < z.;log L c—1
p.i =N PR s
Independence, Hy(R x C) 25 Sl — Do — 1
20(H,: Hy) = 2(p)*:(§) PAPRE °g ¢=De=1
Total, 2[((p)*: 2 z; lo c—1
, (@*:(p) zgl jz 17 108 NP, P y r

Note that the independence component f(H,: H,) in table 2.1 is (2.2)
with the substitution of x,,/N for p,;, z,./N for p,., and x.,/N for p.,, and
that (2.6) is (2.3) with the same substitutions.

If the row and column.classifications are independent, 2/(H;: H,) and
J(H,, H,) are asymptotically distributed as 2 with (r — 1)(c — 1) degrees
of freedom. Under the alternative hypothesis H; of (2.1), 2/(H,: Hy)
and J(H,, H,) are asymptotically distributed as noncentral y2 with
(r — 1)(c — 1) degrees of freedom and respective noncentrality param-
eters 2/(H,: H,) and J(H,, H,) as given by (2.2) and (2.3) with

Pr=2 Py  Py=2Pi
ji=1 tm=1l

(See problem 13.11.)
_ With the approximations in (4.5) and (4.6) of chapter 6, we find that
[cf. Cramér (1946a, pp. 441-445), Hsu (1949, pp. 367-369), Roy (1957,

p- 128)]
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r,.2.5\*
2

r [4
2.7 2fH:H)y~3 Y = x5
i=1j=1 ZiX.j
N
(x xi.x.,)z - X;.Z.; 2
17 ¢ ij_Nvlr c(ij_N)
2.8 J(H,, Hy) ~ = + =
( ) ( 1 2) 2,'_1 j=1 ;. X.; 2;'21 jzl Tz
N

The reader now should express (2.2) in terms of the entropies defined in
problem 8.30 of chapter 2.

The test of homogeneity for r samples in section 6.1 of chapter 6 may
also be viewed as that for a two-way contingency table with the hypotheses
in (6.1) in chapter 6 subject to fixed row totals, that is, for given N,
i==1,---r. We leave it to the reader to relate the components in
table 2.1 and table 6.1 of chapter 6. [Cf. Good (1950, pp. 97-101).]

3. THREE-WAY TABLES

The possible combinations of hypotheses of interest become more
numerous for three-way and higher order contingency tables. We shall
examine several cases for a three-way table to illustrate the general
procedure. [Cf. McGill (1954), Mitra (1955), Roy and Mitra (1956),
Roy (1957, pp. 116-120).]

Suppose we have N independent observations, each characterized by a
value of three classifications, row, column, and depth, distributed among
r row-categories, ¢ column-categories, and d depth-categories. Let z,;
be the frequency of occurrence in the ith row, jth column, kth depth, and

r 4 d ¢ d
S > Sxp=N, z..=2 DTy

i=1j=1k=1 j=1k=1
r d r ¢ ' d
Z.j. = Z me, Lop = Z zxijk’ Tiye = zxijb
i=l k=l tm=] j=1 k=1
c r [ d
Lo = 2 Tizeo T = D Tyjno > dx.; =N,
j=1 i=1 j=1 k=1
r c d
. =2 = L=
i=1 i=1 E=1

We denote the probabilities by p’s with corresponding subscripts.
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3.1. Independence of the Three Classifications
Consider a three-way table and the hypotheses:

Hy:piy # pe-Pj-Peir for at least one (i, j, k), ZXZp =1,
Piir > 0’

(3.1 Hz’P,',-k = Pi.PjoPokes i=1,2,+--r, j=12++¢
k=1,2,--+d  p..4+pp.+"" " +p..=p,
+po+Fpo=patpet- - +pa=1,
pi.>0, p;.>0,  p,>0.

Without repeating the detailed argument (similar to that for a sample of
N independent observations from a multinominal population with rcd
categories), we have [cf. (2.6) and (2.8) of chapter 6]

Piik
(3.2) I(H,:Hy) = NXXXp,, log ——+—,
v P gPi--P-:'-P--k

(33) J(Hl, Hz) = NZZZ(puk —_ Pi--p-j-P~-k) ]og ...__pi’.k___
Piw-Pi-Pek

Note that I(H,: H,)/N in (3.2) is a measure of the joint relation among
the row-, column-, and depth-categories [see the remarks following (2.3)].
For the conjugate distribution (see section 3 of chapter 6) with param-
eters the same as the observed sample best unbiased estimates, we have

1 k=1 i Pei Pk

The null hypothesis of independence H, in (3.1) usually does not
specify pis Pojs P i=1,2,- - 1, j=1,2,- + ;e k=1,2,- - -, d.
We can analyze i((p)*:(p)) of (3.4) into several additive components.
These components correspond to a hypothesis Hy(R) specifying the values
of the p;.., a hypothesis Hy(C) specifying the values of the p.;., a hypothesis
- Hy(D) specifying the values of the p..;, and a hypothesis Hy(R x C x D)
of independence, that is, H, in (3.1) is the intersection Hy(R) N Hy(C) N
Hy(D) N Hy(R X C x D). The analysis summarized in table 3.1 is an
analogue of that in table 4.3 of chapter 6. Here there are (r — 1) inde-
pendent parameters p,..,i=1,2,* - -, r — 1,(c — 1) independent param-
eters p.;., j=1, 2, - -, ¢c— 1, and (d — 1) independent parameters
pwk=12+--d—1. The equations (4.11) of chapter 6 are here

d
zz(ljkpjpk__—p,p )=0’ i=l’2’...’r_1’

j=1k=1 Pk Prix

r ¢ d
(3.4) () =2 3 3 ainlog _ﬁﬁ_f_—.
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< Zx; Z;. .
> > (—ﬁ PePoi — -—-'fp,-..p..k) =0, j=12+¢—1,

i=1k=1 \Pij Pick

roo¢ (o x
2 2 (—’ﬂ‘ PiPese — —”i'pi.-p-j-) =0, k=12 -d—1
i=1j=1 Pijx Piia

—_ e I i=1,2,",r—1, e
Pi-w Pr.. P P
Z.p Xy
j=12, ,c—l,———p—, k=1,2, ,d—1,
k -d
yielding
~ xi-- - x.j. - x-.k - .’II,-.. xr ] .’II..k

Pi.. =—ﬁ’ Y Y ='—N—'9 Py = 79 pijk=—N—--—N—-.-—N—-,
i=12"-"-r j=1,2,"',c, k=1,2,"',d.

(We write p here rather than j because we shall need j for different
estimates in the analysis in section 10.) Note that the independence
component in table 3.1 is the minimum value of the total for variations

of the p,.., p.s., P
r c d
_ZPi-- = ,ZP-f- =23 pa=1
t=1 i=1 k=1

that is, over the populations of H, with the given marginal values, and that
by the convexity property (see section 3 of chapter 2) the total is not less
than the row, column, or depth component. The degrees of freedom in
table 3.1 are those of the asymptotic y2-distributions under the null
hypothesis H, of (3.1).

The independence component in table 3.1 may also be expressed as

(3.5) I(H,:H,) = IZ3Zx,, logx;; — Zx,. logz,. — Zx.;. logx.,.
-~ 2z, logx.., + 2N log N,
for computational convenience with the table of n log n.
The divergences do not provide a similar additive analysis (with these

estimates), but the estimate of the divergence corresponding to the
independence component in table 3.1 is [cf. (4.12) of chapter 6]

z; ;.. %.;.% N2,
3.6 _ Tine _ T T _--_k) log T
(3.6) J(H,, H)) = NIZZ ( v R
Note that the independence component f(H;:H,) in table 3.1 is (3.2)
with the substitution of z,4/N for p, z;../N for p,.., z.;.[N for p.;., and
x.../N for p.., and that (3.6) is (3.3) with the same substitutions. .




162 : INFORMATION THEORY AND STATISTICS

TABLE, 3.1
Component due to Information D.F.
Rows, H,(R) . z;.
Pi = TN 22 % log - r—1
Columns, H,(C) c z.;.
poi =7, IN 2 3 2.5 log Noo, c—1
Depths, H,(D) a Z.p
e =N ZLle..k log Npo d—1
Independence, r e d Nz,
Hz(RXCX D) 22 z ljklog_—_——_ I'Cd_r_c_d+2
2i(H1:H2) =1j=14%=1 X:;.Z.;.%..5
Total, 20(p*):(p) 23 S 3 2 log —2* d—1
R : O =i red —
P P i=1j=1k=1 T 108 NPlPJPL

If the row, column, and depth classifications are mdependent 2f(H,: H,)
and J(H,, Hz) are asymptotically distributed as x* with (rcd — r — ¢ —
d + 2) degrees of freedom. Under the alternative hypothesis H, of (3.1),
2/(H,: H,) and J(H,, H,) are asymptotically distributed as noncentral y2
with (red — r — ¢ — d + 2) degrees of freedom and respective non-
centrality parameters 2/(H,: H,) and J(H,, H,) as given by (3.2) and (3.3)
with

= jzg Piixs Pi = ZLZ Piir> Pax= ZjZ Pisx
(See problem 13.8.)
3.2. Row Classification Independent of the Other Classifications

Consider a three-way table and the hypotheses

Hy:p.y # pi.p.yx  for at least one (i, jk), ZZZp;, =1,
P > 0,

(37) H2Puk pzpjb i=1929.‘.9r9 j=1929‘. s Cy
k=12"'""d, p..+pp.+ " "+p..=1

d
= z zp')'b pi-- > 09 P.,‘k > 0.

j=1k=1
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Note that H, in (3.7) implies

d d
Pii- = zpiik = Pi-. ZP-jk = Pi-P-jos
k=1 k=1
and
[4 4
Pirx = ,ZPijk = Pi--zp-jk =Pi-P-w
j=1 i=1
that is, the row and column classifications are independent and the row
and depth classifications are independent. [Is the converse true? See
Feller (1950, pp. 87-88), Kolmogorov (1950, p. 11).]

Without repeating the detailed argument (similar to that already used),
we have [cf. (2.6) and (2.8) of chapter 6],

(3.8) I(H,:H,) = NEZZp,,, log L2,
Pi--P-sx
(39) J(Hy, Hy) = NEEZ(pige — pi.p-a) log 22—

Pi--P-ik
Note that I(H,: H,)/N in (3.8) is a measure of the relation between the
row- and (column, depth)-categories and may be defined as the informa-
tion in the row-categories about the (column, depth)-categories or vice
versa [see the remarks following (2.3)].
For the conjugate distribution (see section 3 of chapter 6) with param-
eters the same as the observed sample best unbiased estimates, we have

r ¢ d
(3.10) kp:(p)=3 > Zl%-

x 10g -
i=1j=1k= Np;..p.ix

The null hypothesis H, of (3.7) usually does not specify p;.., p.g, i = 1,
2,- - nj=12-"+¢k=12"+-+d Wecan analyze {(p)*:(p))
of (3.10) into several additive components. These components correspond
to a hypothesis Hy(R) specifying the values of the p,.., a hypothesis Hy(CD)
specifying the values of the p.,, and a hypothesis Hy(R x CD) of
independence, that is, H, in (3.7) is the intersection Hy(R) N Hy(CD)n
Hy(R x CD). The analysis summarized in table 3.2 is an analogue of
that in table 4.3 of chapter 6. Here there are (r — 1) independent
parameters p,.., i=1,2,- - r—1,and (¢d — 1) independent param-
eters pu, j=1,2," -, ¢, k=1, 2,- -4, omitting the combination
j=cand k =d. The equations (4.11) of chapter 6 are here

c 4 ) )
z z (@Pdk_m—"’,ﬁpdk)":q i=1929‘ ¢ .9r_19
j=1 k=1 \Pijk Prix

. (x x,
Z(-ﬂp'—ﬂpt-')=09 j=1,29‘.‘9c9 k=1929...’d9
i=1 \Pijk ! Pica omittingj = cand k =d.
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Since p,j; = p...p.;» these equations reduce to

&=&:9 i=l,29."9r'_l, — = j=1929'.'9c9
Pi Pr Pix  Peca
k=1,2---d omitting j = cand k = d,
yielding
- Z;. - Z.jx o Zi. Loy

j=1,2+ ¢ k=1,2---d

Note that the independence component in table 3.2 is the minimum value
of the total for variations of the p,.. and p.;,

r

c d
Z pi=1= Z 2. Psis
t=1 i=1k=1

that is, over the populations of H, with the given row and (column, depth)
marginal values, and that by the convexity property (see section 3 of
chapter 2) the total is not less than the row or (column, depth) component.
The degrees of freedom in table 3.2 are those of the asymptotic y2-dis-
tributions under the null hypothesis H, of (3.7).

TABLE 3.2

Component due to Information D.F.
Rows, Hy(R) z oo
o~ 2 ) x,.. log— r—1
Pi.. =i [N igl i~ 0B Np;..
Column, depth, H,(CD) & & Z.jx
- ’ 2 Z.j lo ced— 1
Poix = %[N 521 12:1 s* 108 Np.jx: :

Rows X (column, depth) r ¢ d Nz
Independence, Hy(R x CD) 22 3 3 ziplog—— (r— 1ed—1)

2i(H1:H2) t=1 j=1 k=1 xi..x.,‘k
. T [ d X;ik
Total, 21((p*): (p)) 2> > > xgplog ——— red — 1
i=1j=11k=1 Np;..p.ix

The independence component in table 3.2 may also be expressed as

(3.11) [(H,: Hy) = XZZx; logzy — X2,..logz;.. — 23Xz 4 logz.,, + Nlog N
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for computational convenience with the table of nlog n. The divergences
do not provide a similar additive analysis (with these estimates), but the
estimate of the divergence corresponding to the independence component
in table 3.2 is [cf. (4.12) of chapter 6]

(G12) I, Hy) = NEET (T T T op Mo

Note that f(H: H,) in table 3.2 is (3.8) with the substitution of Z;;/N
for pi, x,../N for p;.., and z.;/N for p.; and that (3.12) is (3.9) with the
same substitutions.

If the row classification is independent of the other two classifications,
21(H1 H,) of (3.11) and J(H,, H,) of (3.12) are asymptotically distributed
as x® with (r — I)(cd — 1) degrees of freedom. Under the alternative
hypothesis H,- of (3.7), 2/(H,:H,) and J(H,, H,) are asymptotically
distributed as noncentral y2 with (r — 1)(cd — 1) degrees of freedom and
respective noncentrality parameters 2/(H,:H,) and J(H,, H,) given by
(3.8) and (3.9) with p,.. = 3> p.s, P = 2. pis-  (See problem 13.9.)

ik 5

Similar analyses are of course possible if the independence hypothesis is
that either the column or depth classification is independent of the other
two classifications. We leave the details to the reader.

3.3. Independence Hypotheses

The independence component in table 3.1 is analyzed into additive
components in table 3.3. This is a reflection of the fact that Hy(R X
C X D) = Hy(R X CD) N Hy(C x D), that is, the three classifications
are independent if and only if the row classification is independent of the
(column, depth) classifications and the column and depth classifications

‘TABLE 3.3
Component due to Information D.F.
Column x depth &3 Nz,
2 z. lo c—NhHd-1)
Hy(C x D) ,-Zl ,LZ.I " gx.,.x..k ( X
Row X (column, depth) C X . -
4 d 2, .
Independence, 23 S S log Nz, red—r—c—d+2

Hz(R X Cx D) i=1j=1 k=1 X, 2.;%..
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are independent, since p;;; = p,..p.; and p.,. = p.;.p., imply that p,, =

pi-P-sPx; and pgy = p,.p.p., implies le,.,k = P.x = P.jp.q OF

Pise=Pi--P-n- Itis of course also true that Hy(R X C X D) = H, (C x RD)
N Hy(R x D) and Hy(R X C X D)= Hy(RC x D)N HyR x C), but
we leave the details to the reader.. Note that the convexity property (see
section 3 of chapter 2) ensures that the Hy(C x D) component is the
minimum value of the Hy(R X C x D) component for the given grouping.
(See example 12.3 and problem 8.30 in chapter 12.)

3.4. Conditional Independence

Suppose for some category, say the kth, of the depth classification we
want to test a null hypothesis that the row and column classifications are
independent.

The argument here parallels that for the two-way contingency table. We
shall follow it with the notation introduced for the three-way contingency
table, our basic problem. We want to test the hypotheses:

Hy:piu o PikPik e ot least one () 21 le,,k—p & Pige >0,
nnk 1= j=
(.13)
Hypw=P20% o2, r j=12-"4¢ 3 3 pa
P-x f=1 =1

r 4
= PDecps izlpi.k = Py = .zlp.,’k, Pik > 0, P-ix > 0, Pk > 0.
= j=

Note that we are dealing with conditional probabilities p;/p...s pislp. ks
and p_,/p..,. The analysis in table 3.4 is derived from that in table 2.1.
We shall denote a conditional hypothesis about the rows for the kth
category of the depth classification by H,(R|k) and the corresponding
hypothesis for any category of the depth classification by Hy(R|D);
similarly for the columns.

If H, in (3.13) is true for all k, that is, the row and column classifications
are conditionally independent given the depth classification, the appro-
priate analysis corresponds to that in table 3.4 with each information
component now summed over k=1, 2, - -, d, and each degree of
freedom multiplied by d. In particular, the information component for
a null hypothesis of conditional independence H,y((R| D) x (C|D)) is

r c d X
(3.14) 2f(H:H,) =2 ., log —&—,
(Hy: 1) igl jgl kgl * gxi-kx-jk/x"k

with d(r — 1)(c — 1) degrees of freedom for the asymptotic y>-distribution
under the null hypothesis of conditional independence.
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TABLE 3.4

Component due to Information D.F.

Rows, Hy(R|k) T

. 2 ) z;; log ————— —1
DialPoe = Ziylx..p, iZI x 18 Z. 4 (Pirlp.i> ’
Columns, Hy(Clk) < Z.jk
SO 23z, log ——% —1
PiklP-x = T4 jgl i* 108 Z..4p.silp--1) ¢
Conditional
independence, 2 z z s log (r—1(c—1)

Hz((le) x (Clk)) i=1j=1 z;. kxzk/x ok

- X:s
Total, 2I((p*):(p)) 2 T 10 ik re—1

PP zZ ng jk g Z. o pirlp I Posrlp-x)

3.5. Further Analysis

The Hy(R x CD) component in table 3.3 [the test for the hypothesis
that the row and (column, depth) classifications are independent] is
analyzed into additive components in table 3.5. This is a reflection of the
fact that H,(R x CD) = H,(R|D) x (C|D)) n Hy(R x D), that is, the
row classification is independent of the (column, depth) classifications if
and only if the row and column classifications are conditionally inde-
pendent given the depth classification and the row and depth classifications

are independent, since p;;. = piap-sul/P.i and piy = p;..p. imply p,y =
(4

pipw; and p = p,..p.; implies zl Piixk = Pix = Pi--P-k OF Pis =
J==

DixP-ilp-x Note that the convexity property (see section 3 of chapter 2)

TABLE 3.5

Component due to Information D.F.

Row x depth - ¢ Nzi.x _
2 Zixlo r—Dd—1)

HyR x D) 521 kZ1 i-k 108 ;. Xk
(Row, depth) x 23 %3 10 dir — (e — 1)

(column, depth) .21 le Z T 0B 2 Z;. ;c”"' %1% ik
Hy(R|D) x (C|D)) Z..x
Row x (column, depth)  , i z z Zige log ¢ — )ed — 1)

Hz(R X CD) 1=1 J=1
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ensures that the Hy(R X D) component is the minimum value of the
Hy(R x CD) component for the given grouping. (See example 12.3 and
problem 8.31 in chapter 12.)

Similar analyses follow if the conditional independence hypothesis is
applied to other combinations of the classifications. We leave the
details to the reader.

4. HOMOGENEITY OF TWO-WAY TABLES

We may treat r independent samples of a ¢ x d table asanr x ¢ x d
three-way table with suitable hypotheses and restrictions. Thus, suppose
we want to test a null hypothesis that r samples of a ¢ x d table are
homogeneous, subject to a fixed total for each ¢ x d table. With the
three-way table notation, the hypotheses are [cf. (6.1) of chapter 6]:

¢ d
Hy:pipe # Poges '21 LZI P =1, i=12---r
j=1k=

4.1)
Hz:p"jk=p‘jk’ i=1’2’...’r’ j=1,2’.."c’
¢ d
=12--+d 3 2pa=I
i=1 k=

the basic problem of the homogeneity of r samples from multinomial
populations with cd categories.

TABLE 4.1
Component due to Information D.F.
Pojr = TN 23 s 2.0 log L3k d— 1
(Between) 521 k§1 108 Np. jx ‘
Error, 2I(H,: H,) r ¢ d Nz..
(Within, 23 3 3 alog—% (r = 1)ed = 1)
homogeneity) i=17=1k=1 e sk
r ¢ d Zyix
Total, 21((p*): (p)) 23 > ;s log —=— r(cd — 1)
i=1j=1 k=1 Zy..P-jk

The degrees of freedom in table 4.1 are those of the asymptotic x*-
distributions under the null hypothesis H, of (4.1). Note that the error
or within or homogeneity component in table 4.1 is the minimum value
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[ d

of the total for variations of the p.;;,, > D p.;, = |, giventhe ¢ X d table
j=1 k=1

totals, that is, over the populations of H,, and that by the convexity
property (see section 3 of chapter 2) the total is not less than the between
component. As might be expected, the analysis in table 4.1 is related to
that in table 3.2 for the hypothesis of independence of the row classifi-
cation and the other two classifications. In fact, the total of table 4.1 is
the total minus the row component of table 3.2, the between component
of table 4.1 1s the (column, depth) component of table 3.2, and the within
or homogeneity component in table 4.1 is the independence component of
table 3.2. (See problem 13.10.)

5. CONDITIONAL HOMOGENEITY

Suppose we have the r samples of section 4, and for some category, say
the jth, of the column classification we want to test a null hypothesis that
the r samples of the depth classification are homogeneous. The argument
here parallels that in section 6.1 of chapter 6 for the basic problem of the
homogeneity of r samples. We shall follow it with the notation for the
three-way contingency table. We want to test the hypotheses:

d
Hiipin # Pier D Pie =Piss  i=12,++1r,
k=1
(5.1)
szpiik =p'ik’ i= 1, 2,- coer, k = 1’ 2,. . .’d’
d «
Z Pix = P+
k=1

The analysis in table 5.1 is derived from that in table 6.1 of chapter 6.

TABLE 5.1

Component due to ~ Information D.F.
Pirlp.s. = Tl ’ i 2. log .2 d—1

(Between) =1 z.5.(p.ixlp.1.)

. r 4 .
Erro(rv,v 2“il(1ﬁ1) tHy), 2;; kzl 2352 log (_x',"%)%? r—1Dd-1)
2 L3 Lijk

Total, 21((p*):(p)) 2:';1 k§1 T lgg m;—) rd—1)
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If H, in (5.1) is true for all j, that is, the depth classification is condition-
ally homogeneous given the column classification, the appropriate analysis
corresponds to that in table 5.1 with each information component now
summed over j =1, 2, - -, ¢, and each degree of freedom multiplied by
¢. In particular, the information component for a null hypothesis of
conditional homogeneity pyu/pi;. = p.lp.j, i=1, 2,5 - -, r, j=1, 2,

o k=1,2,---dis

r ¢ d X,
5.2 2(H,:Hy) = 2 i log
(53:2) (H,: Hy) igl .7;1 k§1 108 (%:5.2. 5[ 5.

with c¢(r — 1)(d — 1) degrees of freedom for the asymptotic y3-distribution
under the null hypothesis of conditional homogeneity.

Note that 2f(H,: H,) in (5.2) is similar to the component for the test
of a null hypothesis of conditional independence Hy((R|C) x (D|C))
(cf. table 3.5).

6. HOMOGENEITY

The homogeneity component in table 4.1 is analyzed into additive
components in table 6.1 (cf. table 3.5).

TABLE 6.1
Component due to Information _ D.F.
s ¢ Nzx..
(C)-homogeneity 2 3 =, log —= r— -1
i=1 j=1 X, 2.;
Conditional homo- C o~ ..
. 2 Z: 1o cr—1)d—1
geneity-(D|C) ,zl _,21 z Sy @z 0.5 ) )
r
(C, D)-homogeneity 2 Z Z Z Zijn log r—1)cd=1)

t=1 j=11k

The analysis in table 6.1 is a reflection of the fact that (C, D)-homo-
geneity = conditional homogeneity-(D|C) n (C)-homogeneity, that is, the
two-way (column, depth) tables are homogeneous if and only if the
depth classifications are conditionally homogeneous given the column
classification, and the column classifications are homogeneous, since
Pijk/Pi5~ =P~:’k/}’~5-a i= ], 2, R r,j= 1, 2, c s C, k= 1, 2, c vy d,
and p;;. = p,. imply pp=pg i = 1,2, - - r, j=1,2, - ¢
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k=1,2,--d; and pjo=pjp i=1,2, -+ - r,j=1,2-+¢
k=12---d implies py =p.;,i=12+- " r,j=1,2--- ¢,
and p,u/pi;. = p.s/p.;.. Note that the convexity property (see section 3 of
chapter 2) ensures that the (C)-homogeneity component is the minimum
value of the (C, D)-homogeneity component for the given grouping (see
examples 12.2 and 12.4).

7. INTERACTION

Since the information component for conditional homogeneity in table
6.1 is a convex function (see section 3 of chapter 2),

(7.1) Z Z qu‘klog

i=1j=1 k=1 L. ik
x.,.

2 Z thklog
i= Z ti‘x'ik
j=1 x.,.
with equality in (7.1) if and only if (cf. example 3.2 of chapter 2)
Tie _  X;

= i=1,2rk=1,2"--d;j,m=1,2,---¢
Ty Loy Lig X

.. x.

me

We may therefore analyze the conditional homogeneity component
in table 6.1 into two additive components as shown in table 7.1,
d

[4
with y..= >z, ,2.,/x,. Note that y,.= Yy, =2,. and that
i=1 k=1

¥ = 2 Yir =7=%., (See example 12.4) The analysis in table 7.1 is

=1

TABLE 7.1
Component due to Information D.F.
r d Zip
(RD)-interaction 2y >z log-tE r—Dd-1
i=1 k= Yir
r [ d Ziik
(RD, C)interaction 23> Y Y zplog———=20m (r—De— 1A= 1)
t=1 j=1 k=1 1k Lije L jke
Yia®.s
Conditional homo- LA Zijx
. 2 X 10 cr—NDd—-1)
gchlt)"(DIC) igl jgl kgl o gxij.x.jk
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a reflection of the fact that p,., = Zp____ﬁ.p % and p,; = PiwPis-P-p
j=1 p-;’- (ipij.p.jk)p
) =1 pg. 7
imply the null hypothesis of conditional homogeneity p,./p.;. = PolPs;
and p,./p.;. = P.lp.;. implies p,, = Z Pii-P-ie andp,;, = PixPisPsx
1 P ( ZPu P. jk)p
j=1 p.;. 7

The degrees of freedom in table 7.1 are those of the asymptotic y2-distri-
butions under the null hypothesis of conditional homogeneity. [Cf. Roy
and Kastenbaum (1956).]

8. NEGATIVE INTERACTION

It is true that the conditional homogeneity component of table 7.1 may
also be analyzed algebraically as shown in table 8.1. However, the
(D)-homogeneity component is not necessarily smaller than the conditional
homogeneity component. The interaction component in table 8.1 may
therefore have to be negative. This is illustrated in example 12.4. The
contrary is illustrated in example 12.2.

Note that if z;;. = z;..2.;./N, that is, the (C, D)-homogeneity component
is the same as the conditional homogeneity-(D|C) component, then

&y, .
Yie = z-—’;—-’—" = x;.x.,/N and the (RD)-interaction component in
j=1 .j.
table 7.1 becomes the (D)-homogeneity component of table 8.1, and the
(RD, C)-interaction component in table 7.1 becomes the RC D-interaction

component in table 8.1. [Cf. McGill (1954, p. 108), Sakaguchi (1957b,
p- 26).]

TABLE 8.1
Component due to Information
r d Nz:
(D)-homogeneity 2> >z log —=k
i=1 k=1 X X
< < ¢ ik
RCD-interaction 2 Z; lo
i§1 jgl' kgl uk ngi,.x,-_kx,k
xi..‘x.j.x k
Conditional homogeneity- L& ¢ Zijk
2 Ly 10f e
(D|O) 1;1 j; k§1 e gx,-,-.x.jk
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9. PARTITIONS

The independence component in table 2.1 can be analyzed into com-
ponents depending on partitions of the r X c contingency table [cf.
Cochran (1954), Irwin (1949), Kimball (1954), Lancaster (1949)]. The
partitionings correspond to possible dependence between subsets of the
row and column classifications. See section 3.6 of chapter 12 for the
analogous problem for a multivariate normal population. Suppose, for
example, we partition a two-way contingency table into four parts by
grouping the rows into two sets of r,, r, rows respectively, r, + r, = r,
and the columns into two sets of ¢,, ¢, columns respectively, ¢; + ¢, = c.

We supplement the notation by defining

Naﬁ=22xii’ a=1=,3fori=1,2,-",r1, j=1,2,“‘,(.‘1,
a=2=f8fori=r +1,---r+r,
J=a+ L0+ 6
ol =3z, @ =3z, =o'+ f=2f+4
j

[}
[
Na_ = Nal + NG'Z’ Nﬁ = Nlﬁ + N'Zﬁ’ oL = 1, 2, ﬁ = 1, 2,
N = Nll + le + N21 + N22 = Nl' + Nz. = N'l + N.z.

The components of the analysis are those for the four subcontingency
tables, the pair of row subtotals, the pair of column subtotals, and the
2 X 2 table of the partitioned total.

The analysis in table 9.1 follows in a straightforward fashion from the
definitions of the notation and the properties of the logarithm. The
degrees of freedom are those of the asymptotic y2-distributions under the
null hypothesis H, of (2.1).

The same procedure will apply for any partitioning of the original
contingency table into subtables either ab initio or by further partitioning
of the subtables. This procedure is applicable when there is reason to test
for possible dependence between subsets of the row classifications and
subsets of the column classifications, after finding a significantly large
independence component in table 2.1.

Similarly, partitioning of three-way and higher order contingency
tables leads to analysis of the independence components. Thus the
independence component in table 3.1 can be further analyzed in addition
to the analysis in table 3.3. Suppose, for example, we partition a three-
way contingency table into eight parts by grouping the rows into two sets
ry, ry respectively, r, + r, = r, the columns into two sets c;, c, respectively,
¢; + ¢; = ¢, and the depth into two sets d,, d, respectively, d, + d, = d.
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x‘:ﬁy = Z;xiﬂc’
7E

gl =222,
B v

= ZZNaﬂ'/’
By

N= ZzzNaﬁ‘/ =

a By

j= Cl + 1, °
= Z%xijk’

N. B = ZZ afy

ZNa" = ;Nﬁ = %N},

2y = zzxijk’
i
zi =232,

',C1+C2,k=dl+l,°",

TABLE 9.1
Component Information D.F.
due to
2 2
Partition totals 2 Z Z Naﬁ log (NN,4/N,.N.p) 1
Partition column 22 z“"l 4 zx""2
1 2% 1 -
totals ,=§+1( 8 a2 T8 =1
Partition column 2 z 2o 1” + fll N, 332; o —1
totals = g i s 1
Partition row nirn ( 1 2~ﬁ1 2, Npal )
2 2 lo > + 2% log -1
totals ,-,,%H Sy, Ny 2% zzxz
Partition row 1 N2 2
totals 2,21 (xl log Nux1 +azif ) 1
Subcontingency nEn alk .. lo NeTis
o log 228 ry — (e, — 1
table il jet j gxzzxzz ( 2 )( 2 )
Subcontingency ndrn g NoyZys _ _
table 2 2 2Faloe (2 = ey — 1)
Subcontingency Loagh N _ _
tablc 2 igl j-cl+1x" log 2?122?1,'2 (rl 1)(02 1)
Subcontingency NuZij _ _
table 2; gx,, log ar a7 (= e = 1)
Independence,
HyR x C) 2 Z zx,, log (r—D—-1
2[(H,: Hy) i=1j=1 i x,
We supplement the notation by defining
Ngp, = ZXZxy, a=f=y=lfori=12-""n,
j=1’2’. : .’clyk=1’2’. : .’dp
a=f=y=2fori=r+ 1, +r,

d1 + dz:

ZZ afy?
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The components of the analysis are those for the eight three-way sub-
tables, two sets each of row, column, and depth subtotals with four
elements per set, and the 2 x 2 x 2 table of the partitioned total.

The analysis in table 9.2 follows in a straightforward fashion from the
definitions of the notation and the properties of the logarithm.

TABLE 9.2
Component due to Information D.F.
2 2 2
Partition totals 2y >
a=1 f=1 y=1
2
Naﬂ‘y ]og _.__]..v__&l'_ 4
N,.NgN..,

Two partition depth totals
fory=l,2andk=1, _
2, dy for y=1, zzz xﬁiy logN"yzﬁ?’ 3d,—1)
k=dy+1,--,d, + d, « Bk Napy®.} 3d; - 1)

fory =2
Two partition column to-
tals for § = 1, 2 and . N.ox%B?
. ’ B4 e —1
j=12,¢cforf=1, ZZZZWIOgN Jﬁ_ 3(c1— 1;
j=ca+1, e +c « v j apy¥-j- 2
forf=2
Two partition row totals
fore =1,2andi=1,2 aBy
’ » Ng.xf 3(r, — 1
re+ 1,0 -+, rg 4+ r, for By by 2
x=2
. rad—ri—e—d+2
Eight three-way subcontin- redy—ry—c;—dy+2
gency tables for «, 8, ¥ 2 >y ricody —ry—cy—dy +2
=1,ZWithi=l,2,'.., i j k rIC2d2_r1_C2_d2+2
rnfora=1,i=r+1, NZsy%is rocydy—ry—c;—dy+2
cr Iy + ry fOI‘ o = 2, xijk longxag?xggv rzcldz—rz—cl_d2+2
etc. o roCedy —ry—cp—dy +2
roCody —ro—co—dy+2
Independence & &4
> 2
HyR x C x D) i§1 jgl kgl

2.
Z log N % red—r—c—d+2

2 %
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The partitioning procedure can also be applied to any of the subtables,
but we leave the details to the reader. The degrees of freedom are those
of the asymptotic g3-distributions under the null hypothesis H, of
independence in (3.1). For tables 9.1 and 9.2 we leave to the reader the
estimation of the corresponding divergences, as well as the expression in
terms of the form n log n for computational convenience. (See problem
8.26 in chapter 12 for the analogous problem for a multivariate normal

sample.)

10. PARAMETRIC CASE

Suppose that in table 3.1, the p,..,i =1, 2,- - -, r, are known functions
of independent parameters oy, o, * * *, &, m < r,thep.,,j=1,2,- - - ¢,
are known functions of independent parameters f;, fB5,° * *, B, 1 < ¢,
thep.,, k=12, -,d,are known functions of independent parameters
Y VYo"t Ve 8 < d. We “fit” the contingency table with estimates
(by some procedure to be determined) &, * &m By * B
P * * P Of the o’s, B’s, ¢°s, letting p;.. = p;..(&y, * * *,&p)y i =1,2,- - ¢,
rs Py =p-:‘-(/§1’ R ﬁn)’ J=1 2,--¢; Pa=paPn" 7
—12 “dy pro.+po.+ FPp.=pg. P+ F P =

1+Paet -+ ha=1
If the p,.., B.,., P..» Or the &’s, B’s, $’s, are such that ldentlcally in the

«’s, B’s, ¥’s,

?v'

L4 Z;.. ﬁi" ¢ z.;. ﬁ.j. d x % ﬁ..k
10.1 — log — + —-—lo — 4+ 2 —log—
(10.h) 2:1 N gp,-.. Z gp Z1 Pk
=3 p;. log 2 4 log 2= + 3 5., log 22,
21 8o ™, ij 8, Z +log =

we have a further analysis of table 3.1 in table 10.1. We see (cf. (4.8)-
(4.11) of chapter 6) that (10.1) implies the &'s, f’s, $’s are the solutions of

Ef—'—'ap""=0, a=12--°m,
i=1 P 0o,
S Z.;.0p.;
10.2) =22 =0, b=1,2-""n,
( :igl P aﬂb
d
‘aﬂap..k=o, g=1,2"" s
k=1 p"k ay,

These are the maximum-likelihood equations for estimating the «’s, f’s,
y’s, or minimizing the total in table 3.1. We leave to the reader the
estimation of the divergences, as well as the expression in terms of the
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form n log n for computational convenience. The degrees of freedom are
those of the asymptotic y>-distributions under the null hypothesis of
independence H, in (3.1), the p,.’s, p.;.’s, p...’s understood as functions
respectively of the «’s, fi’s, y’s. (See problem 13.12.)

TABLE 10.1
Component due to Information D.F.
Between §;.. = < ;.. — -
z,./N and p,. 2{§1 z;.. log Np,. r—m-1
Between p;. = < x.;
~ 2 z..1 —-n-1
z.;.[Nand j.;. jgl i+ 108 Np.; o
Between j.., = & Z.. _
o 2 ) x.,log— d—s—1
Z.x/N and p.... k§1 k108 Np....
Independence, r ¢ d N2z..
HRxCxD) 23 3 3 aplog2% g r—c—d+2
Zi(HI:Hz) i=1j=1 k=1 Z;..%.;.%. ;.
21G, B, 9) 22 2 %x lo Tt red—m—n—s—1
ik 555 " 8 Np paba '
r ﬁ '
ﬁg’..’s 2N z ﬁi-- log = m
=1 Pi.-
~ < )4
P.i’s 2N > j.;. log=L n
j=1 J
< p
ﬁ k’s 2N Z ﬁ ke log £k S
k=1 P-x
Total, 2I((p*):(p)) 2 i i i T 1o Tisk red — 1
P SRR S ses ng,-..p.,-.p..k
11. SYMMETRY

For two-way contingency tables with the same number of rows and
columns arising from related classifications, it is often of interest to test a
null hypothesis of symmetry H,, the events in cells symmetrically situated
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about the main diagonal have the same probability of occurrence, that is,
the hypotheses [seec Bowker (1948)],

Hx’Pu # P> i=1,2-"4¢ j=12,-¢ i # J, for at
(LD least one (i, j),
Hy'py = Py
For the conjugate distribution (see section 3 of chapter 6) with param-
eters the same as the observed sample best unbiased estimates, we have

(11.2) Ip*:p) = z > z;log %, Pis = Py
i=1j=1 Pis

The null hypothesis H, of (11.1) usually does not specify the p,,, i = 1,
2"+ ¢ j=1,2,+ - -, c. We analyze f(p*:p) of (11.2) into several
additive components in table 11.1. The degrees of freedom are those of
the asymptotic y*-distributions under the null hypothesis of symmetry H,
in (11.1). Note that the convexity property (see section 3 of chapter 2)
ensures that the component due to j; is the minimum value of the total
for the symmetric grouping, and the symmetry component is the sum of all
but the diagonal terms of the total with p,; replaced by j,;.

TABLE 11.1
Component due to Information D.F.
Diagonal terms 2 z z;, log —_ +2(N Tz;) log ]\f—{l—_jz-%%'—) c
Tis + T (=i + zp)(1 = X pi) ee = 1)

O Mt | 2 s+ z; j ¥ % de—-b_
P 2N Zqz (i + %50 log N - S 7 3 1
Symmetry, 2/(H,: Hy) 2 z z 2,5 10g - de—1

Li; + xjx 2
Total, 21(p*: p) 2 z z z,; log —P-, Pii = Pit -1
i=]1 =]

The symmetry component in table 11.1 may also be expressed as
(11.3) K(Hy:H,) = 3>z, logz,,

i#)

- zz(xu + x:z) log (xd + sz) + (log 2) zzxzj

1<j 1#]

for computational convenience with the table of 7 log n.
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The divergences do not provide a similar additive analysis (with these
estimates), but the estimate of the divergence corresponding to the
symmetry component in (11.3) is

- x4+, 2x.
(11.4) J(H, H) =N ( i ) lo i
b zzg 2N gxij + z;

=3 zz(x:) ) log

i#j s + Tji

Under the null hypothesis H, of (11.1) (the events in the cells sym-
metrically situated about the main diagonal have the same probability of
occurrence), 2/(H,: H,) and J(H,, H,) are asymptotically distributed as y?
with ¢(c — 1)/2 degrees of freedom.

With the approximations used in (4.5) and (4.6) of chapter 6, we find
[cf. Bowker (1948, p. 573)]:

’

(115)  2/(H;:H) ~ 33 (————-—-x" Zn o

i<j Xy + Ty

(11.6) J(H,, Hy) ~ = zz M ZZ (i — 250

i<j Ty + %y 254 4z,

Ifp,=pui=12--¢j=1,2,- ¢, i+#]j the marginal dis-
tributions for the row and column classifications are the same, that is,
Pi-=pPa+tps+ - +pe=pi=putpu+ - +p,i=12 "¢
The weaker hypothesis of equality of marginal distributions is also of
interest, especially in the absence of symmetry. For the test of the weaker
hypothesis see Stuart (1955a) and section 7 of chapter 12.

12. EXAMPLES

Example 12.1. As an example of the test for symmetry consider the data in
table 12.1 for 3242 men aged 30-39 with unaided distance vision [taken from
Stuart (1953, p. 109)]. From (11.3) and the table of nlog n we find

Zz x;log 2, = 4622.580, 33 (xi; + %) log (x5 + ;) = 5322.353,

1<)

z;ez x; = 1013, 1013log2 = 702.158,  and 2/(H,: H,) = 4.770,
1¥)

which as a »? with 6 degrees of freedom is not significant. We therefore accept
the null hypothesis of symmetry of vision in the left eye and right eye of the
population from which the sample was drawn.




180 INFORMATION THEORY AND STATISTICS
TABLE 12.1. 3242 Men Aged 30-39; Unaided Distance Vision
LeftEYe | ighest  Second  Third  Lowest Total

Right Eye Grade Grade Grade Grade

Highest Grade 821 112 85 35 1053

Second Grade 116 494 145 27 782

Third Grade 72 151 583 87 893

Lowest Grade 43 34 106 331 514

Total 1052 791 919 480 3242

Example 12.2. The data in table 12.2 represent the number of items passing,
P, or failing, F, two tests, T}, T,, on certain manufactured products from manu-
facturers A, B, C, D. With tests as the row classification, manufacturers as the
column classiﬁcation, and result as the depth classification, we find

333

t=1 j=1 °=

MN

z x;.. log z;.. = 4158.008,
S

2
Z z.; logx.., = 4317.737,
=1

Z;j log x5 = 2893.819,

4
D z.;. logz.;. = 3701.858,
j=1

Nlog N = 4646.210.

Z Z 4. log . = 3215.410,

2 4 2
Z ;. log ;. = 3829.547, Z Z x.; log x5 = 3376.470,

TABLE 12.2
T, T,
P F Total P F Total
A 112 32 144 84 24 108
B 76 20 96 86 10 96
C 87 9 96 58 14 72
D 4] 7 48 40 8 48
316 68 384 268 56 324
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These values and the analysis in table 6.1 yield table 12.3 to test the homogeneity
of the results and manufacturers over the tests.

TABLE 12.3
Component due to Information D.F.
Manufacturer homogeneity 3.508 3
Conditional homogeneity, results given 7.594 4
manufacturer
Manufacturer, result homogeneity 11.102 7

Since the 59 values of 2 for 3, 4, 7 degrees of freedom are, respectively,
7.81, 9.49, 14.07, we accept the null hypothesis that the results for the different
manufacturers over the tests are homogeneous. We also illustrate table 8.1 in
table 12.4. In view of the values in table 12.4, we may accept the null hypothesis
that the failure rate is the same for the two tests.

TABLE 12.4
Component due to Information D.F.
Result homogeneity 0.024 1
Test, manufacturer, result, interaction . 7.570 3
Conditional homogeneity, results given 7.594 4

manufacturer

Example 12.3. 1In table 12.5 the 124 failures of table 12.2 are also classified
by the defects, D,, D,. For the4 x 2 x 2 table 12.5(a), we test the hypotheses
of 3.1) withi = 4, B, C, D, j = T,, T,, k = D,, D,, that is, the null hypothesis
of independence among manufacturers, tests, and defects. From the data we
find

2 4 2
> xlog ;= 280.642, > D x.logxy = 357.097,
1k=1 i=] j=1

M-

™.

) ']]'MN

2
2.4 l0g 7.5 = 359.061, Z Zx,klogx,k = 429.705,
j_

M-

.

?‘
II

—

;.. log ;.. = 440.193, Zx.,, log z.;. = 512.347,
i=1

-,

EMN} lM.»

Z.xlogx., = 512.023, Nlog N = 597.715.

These values and the analysis in table 3.3 yield table 12.6.
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TABLE 125
Tl T2
D, |24 11
A xA" = 56
D,| 813
T T
D | 7] 2 2 ! 2
B Zg.. = D 43 23 =
D, |13] 8 ! %..p, = 66
D 25 33 =
Dl 71 7 ” 2 X D, 58
C Zc.. = Zp. =68 | 2. =56
D,| 2| 7 i s
b
D, | 5|3 ®)
D xD . = 15
D,| 2|5
68[S6| N =124
(@)
TABLE 12.6
Component due to Information D.F.
H, (Test X defect) 6.100 1
H, (Manufacturer x (test, defect)) 16.918 9
H, (Manufacturer X test X defect) 23.018 10

Since the 59; values of x2 for 1, 9, 10 degrees of freedom are, respectively,
3.84, 16.92, 18.31, and the 19; values are 6.63, 21.67, 23.21, we reject the
hypothesis of independence between test and defect and also of course the
three-way independence and examine further the hypothesis of independence
between manufacturer and the pair, test, defect.

The analysis for conditional independence in table 3.5 applied to the H,
(Manufacturer x (test, defect)) component in table 12.6 yields tables 12.7 and
12.8.

Since the 5%, values of 2 for 3, 6 degrees of freedom are, respectively, 7.81,
12.59, and the 194 values are 11.34, 16.81, we infer from tables 12.6, 12.7, ]2.8
that manufacturer and test are independent but not defect and test, and defect
and manufacturer, with the manufacturers and defects conditionally independent
given the test.
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TABLE 12.7
Component due to Information D.F.
H, (Manufacturer X test) 4.544 3
Conditional independence, manu-
facturer and defect given test 12.374 6
H, (Manufacturer x (test, defect)) 16.918 9
TABLE 12.8
Component due to Information D.F.
H, (Manufacturer x defect) 9.120 3
Conditional independence, manu-
facturer and test given defect 7.798 6
H, (Manufacturer x (test, defect)) 16.918 9

Example 12.4. Table 12.9, taken from Campbell, Snedecor, and Simanton
(1939, p. 64), gives the distribution of 1397 houseflies by sex and mortality
among 12 successive tests with a standard insecticide [also discussed by Norton
(1945)). The problem here is to test the homogeneity of the sex, mortality
results over the 12 successive tests. With level as the row classification, sex as
the column classification, and mortality as the depth classification, we find

12 2 12

i=] j=1 k=1 1=] j=1

12 2 2
S Y ;. log ., = 5766322,
=1 =1 <

i=1

=1 k=1

12 2
D % logx;. = 6652973, Y z.;. logz,. = 9159.110,

t=] i=1

2

>z, logz., = 9215809, NlogN = 10117.189.
k=1

These values and the analysis in table 6.1 yield table 12.10.

2
D> i logxy, = 5118828, > B =z logay. = 5713331,

2
z Z.jk IOg X5 = 8554.522,




184 ' INFORMATION THEORY AND STATISTICS

TABLE 12.9. Mortality of Male and Female Houseflies in 12 Successive
Tests of a Standard Insecticide

Males Females

Level Total Total
Level Alive Dead Total Alive Dead Total Total Alive Dead

1 17 40 57 46 6 | 52 109 63 46
2 14 4 58 44 5 49 107 58 49
3 19 42 61 48 5 53 114 67 47
4 21 33 54 41 4 45 9 62 37
5 9 39 48 68 8 76 124 77 47
6 21 38 59 70 5 75 134 91 43
7 19 40 59 56 4 60 119 75 44
8 15 32 47 51 8 59 106 66 40
9 20 35 55 73 9 82 137 93 44
10 15 29 44 78 5 83 127 93 34
11 12 19 31 69 2 71 102 81 21
12 12 29 41 75 3 78 119 87 32
194 420 | 614 719 64 | 783 1397 913 484
TABLE 12.10
Component due to Information D.F.
Homogeneity, sexes 36.874 11
Conditional homogeneity, mortality 20.170 22
given sex
Male 8.906 11
Female 11.264 11
Homogeneity, sex, mortality 57.044 33
Homogeneity, mortality 29.458 11
Conditional homogeneity, sex given 27.586 22
mortality
Alive 21.340 11
Dead 6.246 11

Campbell, Snedecor, and Simanton (1939), with the classical x2, found 8.6
and 10.5, respectively, for the conditional homogeneity for the males and for
the females; 36.5 for the homogeneity of sexes; and 28.7 for the homogeneity
of mortality. We accept a null hypothesis of conditional homogeneity for
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mortality given the sex. Since the 194 values of y2 for 11, 22, 33 degrees of
freedom are, respectively, 24.72, 40.29, approximately 55, we infer that the
mortality results are not homogeneous, the results for the sexes are not homo-
geneous, and the sex, mortality results are not homogeneous, although there is
conditional homogeneity for mortality given the sex and for the sex given the
mortality.

Note that the homogeneity component for mortality is greater than the
conditional homogeneity for mortality given sex, also the homogeneity com-
ponent for the sexes is greater than the conditional homogeneity for sex given
mortality, so that here the analysis in table 8.1 would lead to a negative
interaction component. To apply the analysis in table 7.1 we compute

2 2
o= 3 R =120 12, j=1,2

and

getting table 12.11. We also find

12 2
z x,a,-, log yz']'- = 5707.284.
1 fe=1

t=]1j=

12 2
S S 2. logyis = 5762.541,

TABLE 12.11
Yis. \ Yir
j k
i 1 2 1 2
1 53.30 55.70 65.76 43.24
2 54.84 52.16 63.32 43,68
3 55.02 58.98 67.94 46.06
4 45.28 53.72 58.38 40.62
5 57.15 66.85 84.95 39.05
6 56.65 77.35 87.51 46.49
7 54.12 64.88 73.74 45.26
8 48.73 57.27 69.03 36.97
9 57.94 79.06 92.68 44.32
10 49.27 77.73 90.12 36.88
11 3543 66.57 74.99 27.01
12 46.25 72.75 84.58 34.42

The analysis of the conditional homogeneity terms in table 7.1 yields tables
12.12 and 12.13. We infer that table 12.9 is homogeneous, those factors that
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differed from level to level affected the two sexes similarly as to mortality.
[Cf. Norton (1945), who makes the same inference by a different approach and
interaction.]

TABLE 12.12
Component due to Information D.F.
(Level, mortality)-interaction 7.562 11 .
((Level, mortality), sex)-interaction 12.608 11
Conditional homogeneity, mortality 20.170 22
given sex
TABLE 12.13
Component due to Information D.F.
(Level, sex)-interaction 12.094 11
((Level, sex), mortality)-interaction 15.492 11
Conditional homogeneity, sex given 27.586 22
mortality

13. PROBLEMS

13.1. Relate the components in table 2.1 and table 6.1 of chapter 6.

13.2. Derive the equivalent of table 3.5 for the null hypothesis that the
column and (row, depth) classifications are independent.

13.3. Estimate the divergences corresponding to the information components
in tables 9.1 and 9.2.

13.4. Express the information components in tables 9.1 and 9.2 in terms of
the form n log n.

13.5. Are the two sets of data given in table 13.1 homogeneous ?

TABLE 13.1
Process Process
A B A B
Failed 68 38 Failed 76 17

Passed 450 413 Passed 365 82
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13.6. Table 13.2, from Cochran (1954, Table 8, p. 442), gives the distribution
of mothers of children in the Baltimore schools who had been referred by their
teachers as presenting behavior problems, and mothers of a comparable group
of control children who had not been so referred. For each mother it was
recorded whether she had suffered any infant losses (for example, stillbirths)
previous to the birth of the child in the study. The data are further classified
into three birth-order classes. The comparison is part of a study of possible
associations between behavior problems in children and complications of
pregnancy of the mother. Analyze the data.

TABLE 13.2
Problems Controls
Birth Order  Losses None Total Losses None Total
2 20 82 102 10 54 64
34 ' 26 41 67 16 30 46
54 27 22 49 14 23 37
73 145 218 40 107 147

13.7. Table 13.3 [from Bartlett (1935, p. 249), who refers to data from
Hoblyn and Palmer] is the result of an experiment designed to investigate the
propagation of plum root stocks from root cuttings. There were 240 cuttings
for each of the four treatments. Analyze the data.

TABLE 13.3
Alive Dead
Time of Planting Time of Planting
Length of Cutting : Total Total
At Once In Spring At Once In Spring
Long 156 84 240 84 156 240
Short 107 31 138 133 209 342
Total 263 115 378 217 365 582

13.8. From the analysis in table 3.1, and the properties of the discrimination
information, show that for N — o, if Z;;,/N — p;..p.;.p.., With probability 1,
then Ziik _, Ti-: Lo ok

~ — == bi.. = pivs s = p.jes Pk — p. With probability 1,
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i=1,2-"-r j=1,2,-+¢c k=1,2,---,d. (See problems 7.14 and
7.16 in chapter 6.)

13.9. From the analysis in table 3.2, and the properties of the discrimination
information, show that for N — oo, if 2,3/N — p;..p.;. with probability 1, then
it X:.. X.i1 - -~ . aye .

-Ni»—> ;N'N_ﬂ’ Pi. = pis P~ P With probability 1, i=1,2,-- - r,
J=1,2-*4¢ k=1,2,"+-,d. (See problem 13.8 above and problems

7.14 and 7.16 in chapter 6.)

13.10. Brownlee, in Quastler (1955, p. 63), gives the data shown in table 13.4
on the numbers of defective fertilizer drums of two different types in two
different locations. Show that quality X type is not homogeneous over the
location (see section 4) and should therefore not be pooled over location.
(Brownlee raises the question of pooling over location because “it is usually
assumed that pooling is permissible when second-order interaction is absent”
[he refers to Snedecor (1946)]. Absence of second-order interaction is defined
as equality of the ratios of the products of the diagonal terms. Here there is

72 x 180 18 x 720

48 x 420 42 x 480

no second-order interaction in this sense because

TABLE 13.4
Location A Location B
Type of Drum Type of Drum
Quality Total Total
I II I II

Defective 72 48 120 18 42 60
Acceptable 420 180 600 480 720 1200
Total 492 228 720 498 762 1260

13.11. From the analysis in table 2.1, and the properties of the discrimination
information, show that for N — oo, if z;/N—p;, 2, [N—p,, ;N — p.,
with probability 1, then 2[(H,:H,)/N— 2I(H,:H,)/N, with probability 1,
i=1,2,*4r j=1,2,+-c where I(H,:H,) is given in (2.2). (See
problems 13.8 and 13.9 above.)

13.12. From the analysis in table 10.1, and the properties of the discrimination
information, show that for N — cc, if z;3/N — p;..p.;.p.., with probability 1,
then p,.. = Pivs ﬁ, = P ﬁ..k = Pob Nzxijk/xi..x.j.x..k — 1, x,/Nﬁ, — 1,
z.;.INp.;. — 1, £ 4/Np., — 1, with probability 1. On the other hand, what
do you infer if Z;/N — pijx, Tii[N— pivs TN —>pjy Tt/ N> p.,7 (See
problems 13.8, 13.9, and 13.11 above.)




CHAPTER 9

Multivariate Normal Populations

1. INTRODUCTION

We continue in the spirit of the preceding chapters, especially 6, 7, and
8, and now take up the analysis of one or more samples from multivariate
normal populations for tests of statistical hypotheses. Before we con-
sider questions of estimation, distribution, and testing, it will be helpful
to derive in this chapter certain values as parameters of the populations.
Matrix notation and theory are used. Matrices are denoted by upper
case boldface type, for example, A = (a,)), X; = (2y;), etc., i= 1,2, - -,
m; j=1,2, -+, n Onerow or one-column matrices (vectors) are
denoted by lower case boldface type, for example, x' = (2, z,, * * *, 2}),
By = (U, fige, * * °s fia,)s €tc. (X' is the transpose of the one-column
matrix x, etc.)

Suppose we have two k-variate normal populations N(w.,, &Z,), with
B = (Uigs ises * * s fia), | = 1, 2, the one-row matrices (vectors) of mean
values, and Z; = (0;,,), i=1,2; r,s=1,2,- - k, the covariance
matrices. Denoting the respective population densities by [cf. Anderson
(1958, p. 17), Roy (1957, p. 15)]

1 o
Sy, Ty - 7)) = m exp (—3(x — w)'E,7(x — @)

we find (see problem 10.1)

(L1 log L % %logl Z — Ftr 2 (x — p)(x — @)’

fz( 1 Lo ° ’xk) |E|
+ 3 tr 27X — (X — ),
from which we get

(1.2) I1:2) =ff1(x1,- .2, 1ogj::§ i ~ ;3 do, - - - da,

— }log }?I FIUEE - B 4
3t 2oy — ) (11 — H2)

189
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(1.3) J1,2) = f(fl(xp' L

Sy, - - o x)
L@y, * 0 5 )

f2(x1’ Tt xk)) lOg dxl © o dxk

=$tr(E, - )& - ) +
1 (B + 27 (g — (e — o)

Assuming equal population covariance matrices, &, = Z, = Z, (1.2)
and (1.3) become, respectively,

(1.4) 1:2; ) = 3 tr 27 — po)(pa — M)’
= } tr 188’ = 1§'S-15,

(1.5) J(1, 25 ) = tr Z Ny — p)(iy — )’
= §'Z-1§,

where 8§ = p, — p,. Mahalanobis’ generalized distance is k8'Z-18
[Mahalanobis (1936)]. [See section 3 of chapter 1 and Anderson (1958,

p- 135).]
Assuming equal population means, p; = Wy, 8 = p; — @, =0 (or
variables centered at their respective means), (1.2) and (1.3) become,

respectively,

(1.6) I(1:2;2) = %log:—:—% +itr &1 - ZY)

k
= %log-l—% -3 +ir

.7 J1,2;8) = b r (B — Z)E — E7)
=4trZ 1+ 4trT,2 -1 -k

The corresponding values for

12:1) = f il T logj::g:: i:; dz, - - - da,

are easily derived from the fact that I(1:2) + I(2:1) = J(1,2). Note
that the general values for the mean discrimination information and
divergence in (1.2) and (1.3) are expressible as the sum of two components,
one due to the difference in means, the other due to the difference in
variances and covariances; these may also be characterized respectively
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as differences in size and shape. For single-variate normal populations,
k = 1, corresponding to (1.4)—(1.7) respectively, we have

(1.8) K1:2; ) = 5= >

(52
(1.9) J(1, 2; p) = pry
1 g2 1  1g,2
1.10 A = ~ -—2——— _..._1_
(1.10) I(1:2; 6% zlog(712 2t 353
lo2  1o,?
1.11 0% = -+ 4 -2 _1.
(L.11) | J(1,2; o) 358 T 253 !

2. COMPONENTS OF INFORMATION

Since I(1:2) and J(1, 2) are additive for independent random variables,
we have for a random sample of n observations, O, I(1:2; 0,) = nI(1:2)
and J(1, 2; 0,) = nJ(1, 2) where I(1:2) and J(1, 2) are respectively (1.2)
and (1.3). (See sections 2 and 5 of chapter 2.)

The averages and the variances and covariances in a sample O, from a
multivariate normal population, N(u, Z), are independently distributed.
The averages are normally distributed, N(w, (1/n)Z), and the variances and
covariances are distributed according to the Wishart distribution. [See
Anderson (1958, pp. 53, 154), Kendall (1946, pp. 330-335), Rao (1952,
pp. 66-74), Wilks (1943, pp. 120, 226-233).] Since the averages are
normally distributed (1.2) and (1.3) yield

(2.1) K1:2;%) = }log = Igl +3tr &, —-2) + gtr Z,168,
22) J1:2;%) = tr (B, — ZE! — 1) + gtr &, + =,-1)58".
Note that the sample size appears in (2.1) and (2.2) as a factor only in the

components due to the difference in means.
Designating the density of the Wishart distribution by

(N)LN/lel(N —k-1)/2 CXp( %tl‘ NSE—I)
HE-DH|E YR T TN + 1 — @)f2

a=1

Wisi,® * s Suw) =
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we find (see problem 10.5)

Wi(sy, « - -, slrk) N Izzl N N
(2.3) log —= —log et — = tr 2,718 + — tr £,71S,
& Walsn, = - Skk) . 2 Izll 2 ' 2

(2.4) I(1:2;8) = ( }g} + tr Zy(Z, — Ef‘)),

@.5) 11,2:8) = 3 tr By — B)E — E,

where S is the sample covariance matrix of unbiased estimates and
N = n — 1 degrees of freedom.

We thus see from the preceding, and theorems 2.1 and 5.1 of chapter 2,
that

2.6) IK1:2;0,) =ni1:2) = I1:2;%X) + I(1:2;S) = I(1:2; X, S),
2.7 J(1,2;0,)=nJ1,2)=J1,2;%) + J1,2;S)=J(, 2; X, S).

Assuming that the population covariance matrices differ only in the

values of the correlation coefficients, that is, Z, = D ,P,D_, Z, = D _P,D,,
where P, and P, are matrices of correlation coefficients and

01 * 0
D,=|. . .| is a diagonal matrix of standard deviations, (2.4)
0 * Oy

and (2.5) become respectively,

N
(2.8) I1:2;8) = ( gIle + tr PP, _pl-l)),

N
(2.9 J(1,2;8) = > tr (P, — Po)(P, — PY).

We now deal with several samples. Suppose we have r independent
samples, respectively, of ny, n,, - - -, n, independent observations each,
with n=n, +n, + - - - 4+ n,.. We may treat the r samples as one
large sample from populations with means and covariance matrices given
by (the n, indicate the number of occurrences of the corresponding term):
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(2.10) l“'i, = (l“'il, R | PYLILIL AR Bir © ° %) i=1,2,
n ny n,
(E,l 0 - 0 ny
0 Zn- 0 \ ny
(2.11) zi = . . ' : ’ = 1, 29
\ 0 « + . 0 « o e Elr } nr
(2.12) 81 — l-‘rl, — p‘z/ — (81' RN 82' S e e e srl . . .),
' n ny n,
8 = )" — Moy’

With the preceding (or from the additivity property), we find for the r
samples,

@13) I1:2;0)=3 %f(log|zw|
i=1

=, +tr 2y (Zy 7 — EI,—1)+tr22,.—18,-8j'),

r
n;

.19 11,200 = 3 Bt By — Z)Es - By +
j=
tr (2,7 + Z,,718,8,),
@15) [1:2;0) =3 I1:2;%) + 3 1(1:2;8,),
i=1 j=1

(2.16) J(1,2;0,) = 3J(1,2;%) + 3J(1,2;S),
§=1 j=1

where I(1:2; X,), I(1:2;S)), J(1, 2; %), J(1, 2; S;) are (2.1), (2.4), (2.2),
(2.5), respectively, for the jth sample.

When the r samples are from populations with common covariance
matrices, 2, =X,i=1,2,j=1,2,- - -, r, we find

@.17) I(1:2;0,) = S I1:2;%) = } tr 8,8, + - - - + n,8,8,)
i=1
=} tr Z12* = 1 Y J(1, 2; X)),
i=1

where Z* = n,6,8," + - - - + n,5,8,'. [Cf. Hotelling (1951).]
When the r samples are from populations with common means (or the
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variables are centered at their respective means), §; =0, j=1,2,- - -, r,
we find

(2.18) I(1:2; 0,) =jz'11(1 :2;'S))

r N;
= Z "2"(108 Izzl + tr 2,8y, — Xy 1)>’

(2.19) J(1, 2; 0,) =ﬁlJ(1, 2;8) —jZ 5 tr By — Zp) (B — By,
i S

where N, is the number of degrees of freedom in the jth sample for the
estimates S,.

3. CANONICAL FORM

I(1:2) and J(1, 2) are functions of the population parameters under H,
and H,. According to corollary 4.1 in chapter 2, I(1:2) and J(1, 2) are
invariant for nonsingular transformations of the random variables, and
therefore in particular' for nonsingular linear transformations. An
important connection exists between the invariant properties and linear
discriminant functions, and we now examine this in some detail. (This
will also reflect itself in invariant properties of the subsequent tests.)

If the random matrix x is subjected to the nonsingular linear transfor-
mationy = Ax, the means and covariance matrix of the y’s are respectively
B, = Ap,, &, = AZA'. If the 2’s are normally distributed, the y’s are
normally distributed and (see Anderson (1958, pp. 19-27), problems 10.5,
10.10)

(3.1) I(1:2;y) =} log I-f—-;::—:l + 3 tr AZ,A'(A1Z, 1AL — A-IE CIACY)
+ 3 tr A'1Z,1AIASE'A’
= %log%ﬁl +itr 2@, - E7Y) + Ftr Z,7188
= I(1:2; x),

(32)J(1,2;y) =3 tr(AZ, A’ — AZ,A)(AIZ, 1A — AF1Z 1AY)
+ 3 tr(A1Z, 1A  AIE,1A-)ASS A’
= }tr (@ — E)E, — 7Y + tr (B + Z, )88
= J(1, 2; x).

Since Z, and Z, are positive definite, there exists a real nonsingular
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matrix A such that [see Anderson (1958, pp. 337-341), Ferrar (1941, Pp-
151-153), Rao (1952, pp. 25-27)]

3.3 AZA ' =A, AZA =1,

where A is the dlagonal matrix with real and positive elements
Ap A9+ * +, &y, and 1 is the identity matrix; in fact, the A’s are the roots
of the determinantal equation

34) |2, — 1Z,| =o.

The matrix A in (3.3) defines a linear transformation of the 2’s such that
the y’s are independent with variances ;, A,, - - -, A, in the population
under H, and unit variances in the populatxon under H2 Letting

= (&, &, * - -, &), that is, the one-row matrix (vector) &, is the ith
row of the matrix A, (3.3) and (3.4) yield
(3.5 o/ B, =4, «Zeo=1 i=12""-k,

a/Za; =0, a,/Z.a;, =0, i #J,
zlai = j'izzai, i=12,-" » k,
BB = (BBl = Ay -

tl' 2122_1 = 11 + 12 + M + j’k’

1 1 1
_1—.— — o s —y
tr Z,X, —1+1+ +}~k

A" = (8o, 8'a,,- - -, 8a,).

In terms of the characteristic roots, the A’s, and the characteristic vectors,
the a,, we have:

(3:6) I1:2) = —%loghdy: A+ 3h+ A+ -+ 1) — k2
+ (82 + - - - + (a,'8)3,

—2%[ —log 4; + 4; — 1 + (a,/8)3],

i=]1

1
BT) J,2) =3y +- -+ A) + 1+ (11+12+ +1)

—k+= (11+1)(u1’8)2 +%(1 1)(«;8)2
éj [1 +}—1—2+(1 +l)(a'8)2

(See sections 5 and 6 of chapter 3.)
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4. LINEAR DISCRIMINANT FUNCTIONS

The right-hand side of (1.1) is an optimum, or sufficient discriminant
function for assigning an observation to one of two multivariate normal
populations. This in general is quadratic. [Cf. Neyman and Pearson
(1933), Welch (1939).] However, we may prefer to work with one or more
linear functions for the convenience they offer. How do we find the best
linear function? Which properties of the linear function do we optimize?
For the present we shall examine the consequences of maximizing the
discrimination information or divergence for the linear function. A more
detailed discussion and application will take place later.

Consider the linear discriminant function

4.1 y=o2 +° -+ ax, = ax,

where the 2’s are k-variate normal N(w.,, Z,),i = 1,2. The linear function
y is consequently normally distributed, with parameters

(42) E(y) = o'y, E(y) = a'py, var (y) = a’Zja, var, (y) = a'Z,a.

We consider how to determine a under certain assumptions about the
populations.

5. EQUAL COVARIANCE MATRICES
When Z;, = 2, = Z, (1.4) and (1.5) yield
(&N)) 2I(1:2) = J(1,2) = tr Z-188', & = p; — WMo
For the linear discriminant function y = a'x,
(5.2) 2I(1:2;y) = K1, 2;y) = a8’ a/a'Za.

The value of a for which 4 = «'88’a/a’Za is a maximum satisfies (by the
usual calculus procedures, see problems 10.2, 10.4) §8’a = AXa, where
A is the largest root of |88’ — AZ| = 0. Here, since 88’ is of rank I,
there is only one nonzero root, A = 8§'Z-18 = tr Z-188’. The linear
discriminant function with Za = §, or a = Z-1§, is sufficient, since,

a'88’a §'Z-188'Z-18

.3 2XK(1:2; = : = =
(5 ) ( 2’ 3/) J(19 2 ’ 3/) alza slz_lzz_]_s
= §'Z-1§ = tr Z-18%’

= 21(1:2) = X1, 2).
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For r samples from populations with common covariance matrices, but
different means, (2.17) is

(.4)  20(1:2;0,) = X1,2;0,)
= tr E_lz* = tr E—-l(nlslsl, + T + n,srsr').

If we propose to use the same linear discriminant function, ¥y = a'x, for
all the samples, (5.4) yields for the linear discriminant function:

ny(a'd,8,'a) + + - - + n('8,8, o)
o'Za

(5.5) 21(1:2; 0,,9) = X(1,2; O, y) =
_ a'Z*a
T «'Za

The value of a for which 1 = a’Z*a/a’Za is a maximum satisfies (by the
usua] calculus procedures) Z*a = AZa, where 1 is the largest root of
|Z* — AZ| = 0. From its definition, the rank of Z* is not greater than r.
The determinantal equation has p < min (k, r) nonzero roots, designated
in descending order as 4,, 4, -+, 4,. Each root 4, is associated with a
one-column matrix (vector) a,, Z*a, = A, Za;, and a linear discriminant
functiony; = a,/x. SincetrZ*Z-1= 1, + 4, + - - + + 4,,(5.4) and (5.5)
yield

(5.6) J1,2;0,) = tr Z*Z-1
=J1,2;0,vy) +J1,2;0,,y) +* + -+ J1,2;0,,9,).

The discrimination efficiency of the linear discriminant function y; can be
measured by the ratio 4,/(4, + - - - + 4,) or J(1,2; 0,,y,)//(1,2; 0,);
the discrimination efficiency of the pair of linear discriminant functions
¥, and y, can be measured by the ratio (4; + A)/(4;, + A, + - - -+ 4,)
or [X1,2;0,,y) + J{1,2;0,,y)1/J(1,2;0,); etc. (See section 6 of
chapter 3.)

The vectors a, associated with different roots 4, have the property that
a/Z*a; =0 = a/Za, i % j, and the corresponding linear discriminant
functions y; are independent, with a diagonal covariance matrix of
elements a,/Za,. There will be one, two, etc., distinct 4,, and correspond-
ing distinct linear discriminant functions according as the population
means are collinear, coplanar, etc. [Cf. Williams (1952, 1955).]

6. PRINCIPAL COMPONENTS

Assuming that the k-variate normal populations are centered at their
means, or that § = 0, the linear discriminant functiony = a«'x is normally
distributed, and
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(6.1) E(y) — Ey(y) =0, var (y) = a'Zia, vary,(y) = a'Z,a,
: Zoa 1 + "Zla
aZa 2 2a Zza
1 a'Zya
20’20 2 a'Za

1
(6.2) I(1:2;9) = 5 log

l a'Za

(6.3) J1,2;9) =5 -1

The value of « for which I(1:2; y) is a maximum satisfies (by the usual
calculus procedures)

6.4) Za = AZ,a,
where 1 is a root of the determinantal equation
(6.5) ) |zl - 122' = 0,

all roots of which are real and positive. Designate these roots in ascending
order as A, A, * * *, 4. Seeking & for which J(1, 2; ¥) is a maximum, we
find the same conditions, (6.4) and (6.5), as for maximizing I(1:2;y).
Each root A, is associated with a vector «; and the linear discriminant
function y, = a,/x. We thus have for the linear discriminant function y,,

I 1A,
6.6) 11:2;9) = — 5log A — 5 + 3
6.7) J1,2: ) = 1+1—1
‘ (’ ’yi 21 ’

and from (3.6) and (3.7), with & = 0,
(6.8) I(1:2) = I(1:2;y) + 1(1:25y5) + - - - + I(1:2;9,),
(6'9) J(l’ 2) = J(l’ Z;yl) + J(l’ 22?/2) + t e + J(l’ z;yk)'

We determine the value of A, for which (6.6) is a maximum (the most
informative linear discriminant function) as follows. Since the function
g(2) = —3%log 1 — % + (4/2) is convex [see problem 8.31(a) in chapter 2],
nonnegative, and equal to zero for 4 = 1, the maximum of (6.6) occurs
for 4, or J, according as g(4,) > g(4,), or g(4)) < g(4), that is,

Yl A
(6.10) log==> 4 — 4 or log= <l — A
j'1 j'1

We determine the value of A, for which (6.7) is a maximum (the most
divergent linear discriminant function) as follows. Since the function
fid) =(@4/2) + (1/22) — 1, A> 0, is convex [see problem 8. 31(a) in
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chapter 2], nonnegative, equal to zero for A = 1, and f{A) = f(1/4), the
maximum of (6.7) occurs for 4; or 4, according as

6.11) WMy <1 or A >1.

Note that the linear discriminant functions of this section define the
transformation with matrix A in section 3. The “‘best” lincar discriminant
function is not necessarily associated with the largest A.

Assuming that Z, = D,PD,, Z, = D,D,, where P is a matrix of
correlation coefficients and D, a diagonal matrix of standard deviations,
AZ,A’ = A = AD,PD,A’ = BPB,, and AZ,A' =1 = AD,D,A’ = BB’
B = AD, is an orthogonal matrix, (6.5) becomes |P — AI| = 0, and (6.4)
becomes PD,a = AD,a, or P@ = AB, with B = D,a, that is, B" = (§,,
By -, B)=D,A"=(D,q,;, Do, - * -, D,e,). The linear discriminant
functions y;, ¥, * *, ¥, such that y = Bx are called principal com-
ponents by Hotelling (1933) [cf. Anderson (1958, pp. 272-279), Girshick
(1936)]. Since trP =4, + - - + + A, = k, here (see problem 10.7)

(6.12) I(1:2) = —} log |P|

= —}log(l — P%-zs-- o1 = Pra. ) (1 — P12c—1,k)
= —}logl, —}logd, —- -+ — }logh,

where Pi12e - (i=1)(i+1)+ * k> = l, 2, t ey k, Pijs1. - .k,j = l, 2, RN k — l,
are multiple correlation coefficients in the population under H,, and the
A’s are the roots of |P — AI| = 0.

Note that /(1:2) in (6.12) is a measure of the joint relation among the
k variates (see the remarks following (3.3) in chapter 8).

For bivariate populations in particular, we have

(6.14) P= (; ';’)

6.15)  K1:2)= —}log(1 —p?),  J(1,2) = p¥(1 — p?),
(6.16) P—A|=a—21+1—p*=0,

(6.17) L=1—=p, A=1+p, p>0,
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1 1
(L, L (L1 ._[v2 V2
(6.18) ﬂl—(ﬁ, ﬁ), B, (ﬁﬁ) - )
V2 V2
(6.19) h=(x, — xz)/‘/z Y = (2, +x2)/\/2_,

(6.20) 1(1:2; ) = —%log (1 — p) — (p/2),
I(1:2;y,) = —%log (1 + p) + (p/2),
(6.21) J(1,2;y) = p%2(1 — p),  J(1,2;5) = p¥2(1 + p).

Note that for p > 0, the most informative and most divergent linear

discriminant function is ¥, = (x; — #,)/V2, since log [(1 + p)/(1 — p)]
> 2pand 4,4, = 1 — p? < 1 [or see (6.20) and (6.21)].

7. CANONICAL CORRELATION

[Cf. Anderson (1958, pp. 288-298).] We now want to examine a
partitioning of the k variates into two sets, X' = (x,’, X,'), X, = (z;,
Ty, * * %), Xp = (Tyy1 Tugar® ° > Tagk,)- FOT a partitioning into
more than two sets see problem 10.13 and section 3.6 of chapter 12.
Assume that the populations are centered at their means, or § = 0, and
that

z, = z 0
7.1 b =( 11 12), b =( 11 )’
.1 ! Zn 2y 2 0 Z,

where Zy; = (0,), i, j= 1,2, - -, ky,
Zp=(0,)rs=k+1,- kg +k,=k,
= (0), By = Z}y,

that is, the two sets aré independent in the population under H,.
Since, as may be verified (I, is the identity matrix of order k;, etc.),

(7.2) ( Ilcl 0 )(zll z12) (Ilc, _zﬁlzlz) — (211 0 )
-2, 25 L/ \Zy Z5/\0 I, 0 Z,)

where Z,,, = Z,, — I, Z;'Z,, we have

(1.3) (211 z12)_1 — (Ik, —zﬁlzlz) (zﬁl 0 )( L, 0 )
Ly Zy, 0 I, 0 Z5i/\-Z,Z;t L,

— (21_11 + 21‘11;212223,1122121‘11 —zﬁlzmzz_z}l).
—Z5 1825 T3
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Note that the matrix ( L, _1 0) in (7.2) is that of a nonsingular
—ZnZn Ik,

linear transformation, and (7.2) implies that in the population under H,
x; and X, — X, Z5;!x; are independent with covariance matrix the right-

hand side of (7.2) (see section 3). We thus have (see problems 10.6 and
10.11)

(7.9) I(1:2) = %log

Izlll |222| 1 |222|

Z, Z,|=3log
2 z,,.
z, I, | 2.4

]

log

a measure of the relation between the sets x," and x,’, or the mean infor-
mation in x,’ about x,’, or in x,” about x, (see example 4.3 of chapter 1),

(7.5) X(1,2)

1[0 B)-C 2 )2 2

1 ( 0 z:12)(—21_1121222_2~1122121_11 211121 221)
2

Z, 0 T T 25t R —Z5h
= 1t (zlzzzzl1z T ) )
2 ) DI S S M)

= tr Z,E5'ELEn) = tr Tl — ky,

where () indicates matrices whose values are not needed.
To highlight the partition of the variates, we write the linear discriminant
function y = a'x as

(7.6) y=px +-- -+ ﬁk,xk, + M+ 0+ VT,

= B’xl + Y'xz,

where B and y are respectively the one-column matrices of §,, - -, B,
and y5,- - 5, 9, @ = (B, Y), X' = (x/, x;). Now, (6.4) and (6.5) are

@ G =) =A% =)()
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A=HZ; I
7.8 = 0.
@9 | Zn (- DE
Since (7.7) is equivalent to
(7.9) ZuB + Zpy = 25,p
ZnP + Zpy = AZpy,

or

1 -1
(7.10) B=— 1—2 Zh Ty

1

0=— =3 ZnZh Ty + (1 — HZyy,

(7.8) is equivalent to
(7.11) | B 25T, — p*Zps| = 0,

where p? = (1 — A)%. The roots of (7.8) [see (6.5)] are real and positive.
If k, < k,, since k = k; + k,, and the determinant of (7.11) is of order k,,

(7.12) Ay=1—p, 1k,+i =14 Pr,+1-1> i=12-" -k,

}*k,+1 =0 TS Mty = 1,

where py >p, >- - =p,. Note that —1<p,<1 since the A’s
cannot be negative. Hotelling (1936) called the p; canonical correlations.
'For the associated linear discriminant functions [see (6.6) and (6.7)), we
now have

(.13)  K(1:2;9) = —}log(1 —p) — 55

1:2;90) = —}log (1 + pyas) + 2225

2
1(1'2’y5)=0’ i=1,2’. ' ',kz, j=k2+71’. %
. k2+(k1_k2)’
1—0p; 1 1 o
714 J1,2;y) = : -1 =- )
(7.14)  JQ1,2;y) 7 +2(1—p,~) 2T—p
I, 2; Y 40) = 3 + prega-0) + —""L——" —1= P2,+1—i ’
' * 2(1 + py1-4) 2(1 + pea-o)
J(l,z;yj)=%+%—l=0, '=1,2,'°',k2,

j=k2+1’. ' "k2+(k1_k2)’
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from which we see that

(7‘15) 1(1:2;3/;) + I(l:z;yk+1—i) = _% log (1 _P?)’ i= 1’ 2’ Y k2’

J(1,2;9) + I, 2; Y1) = pFl(1 — p?)
and

(7.16) K(1:2) = };_log ZulZnl _ —$log(1 —p) —pd) -+ (1 — p3),

z11 z12
Zy Zp
2 2 p2
J(1,2)=tr2222{2.11—k2=1 2+1_P2+ +1—_"s;,?-

Since log [(1 +py)/(1 —py)] >2p, and 14, =(1 —p))(1 +p) =1—pi <1,
the most informative and most divergent linear discriminant function
(7.6) is associated with the root 4, or the largest canonical correlation.

Note that for bivariate populations, k =2, k;, = k, =1, (7.11)
becomes (04,0,5/0y; — p?0,e) = 0, or the canonical correlation is the simple
correlation between the variates, and [see (6.15)]

(1.17) I(1:2) = —}log (1 — p?),

J(1,2) = pl(1 — pb.

For k-variate populations with k;, =k — 1, k, =1, (7.11) yields the
canonical correlation p? = Z, Z'Z,,/0,. But now Z,; = (04, Ose, * *

z . .
O Orpt=1— |21:1 | [see (7.1)], and thus the canonical correlation
kk 1

is the multiple correlation between x; and the other variates [cf. Cramér
(1946a), pp. 109, 308)], and

(7.18) I1:2) = —}log (1 — ppaz.- k-1

J{1,2) = Pi-lz-- -(k-—l)/(l - P:-lz- . -(k—l))-

Instead of a single linear discriminant function, suppose we examine the
pair of linear discriminant functions

u=px +- -+ BT, =Bx

(7.19) ,
V=Ygt VT, = Y Xo

We have
var, (u) = p'zllp’ var, (U) = Y'zﬂY’ = 1’ 2’
covy (1, v) = B'Zy,y, covy (4, v) = 0,
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B'Z,B Y Ty
B'Z,B B'Zpy
YZ58 YZny

(p'212Y)2 — Ptzw
B'ZuB) Y ZsY) — B'Zpy) 1 -0,

The values of B and y which maximize /(1:2; u, v) [or J(1, 2; «, v)] in
(7.20) satisfy (by the usual calculus procedures) (7.9), where (1 — 1) = p2,.
The canonical correlations are thus the correlations of the pair of linear
discriminant functions (7.19). From (7.15) we have

(.20 1:20,0) = 1 log = —Llog(1 — g2,

J(1,2; u,0) =

(7.21) I(A:25u,0) = 1(1:2;y) + I(1:2; Y1), i=1,2,- - ky,
J{1, 2 u, v) = J1, 2; ) + J1, 2; Yiia-0)-

The discrimination information and divergence for the pairs of linear
discriminant functions thus define an ordering according to the values of
the canonical correlations.

8. COVARIANCE VARIATES

Two k-variate normal populations with the same covariance matrices
may differ only in the means of the last k, variates. The firstk — k, = k,
variates are then called the covariance variates, and we shall now find the
discrimination information provided by using the covariance variates also,
compared with that provided by using only the last k, variates [cf. Cochran
and Bliss (1948)].

We have the partition X' = (x{, X;), g, — o’ =& = (8,, §,"), with

Z, =
8 =0, andz =z =z = ( 11 12)'
1 1 2 221 222

From (5.1) and (7.3) we now have

B.1) 2I1:2;x)=J(,2;x') = tr Z-18%’

— Z,; Z,p\o ’
=u (221 Zpp 5, © 2

On the other hand, with the last k, variates only:

(8.2 2I(1:2; x3) = J(1, 2; x3) = tr £3,18,8; = §,Z,'5,.
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Since I(1:2; x") > I(1:2; x3) (see sections 3 and 4 of chapter 2), the
contribution of the covariance variates is

(8.3) 825218, — 8:Z55'5,,
and the gain ratio is
8;22215,
8.4 = =
&9 * = S,
where A lies between the smallest and largest root of the determinantal
equation

(8.6) | 225 2y, — p*Ey| = 0,

where p? = (A — 1)/A. The roots of (8.6) are the canonical correlations
[see (7.11)]; hence the largest value of A in (8.4) cannot exceed 1/(1 — p,?),
where p, is the largest canonical correlation.

We now study the linear discriminant functions with and without the
covariance variates. Since the covariance matrices in the populations
are equal, a unique sufficient linear discriminant function exists (see
section 5). For all the k variates with the partitioning of the coefficients
of the linear discriminant function as in (7.6),6 = Z~18 becomes [see (7.3)]

on  (8) = (3 B)(Q) - ()
Y Zyn ) \, 5aid,

If the covariance variates are ignored, the coefficients of the linear
discriminant function are

@®8) B=0, y=Z3%,

For bivariate populations, k = 2, k; = k, = 1, the canonical correla-
tion is the simple correlation between the variates, Z,,.; = o3(1 — p?),
and (8.4) becomes A =1/(1 —p?). For k-variate populations with
ky = 1, k; = k — 1, there is only one canonical correlation (the multiple
correlation of x, with ;, Zo, * * *, Ty_y), Zagy = G2(1 — pr.sa. . .(e_))> and
(8.4) becomes 1 = 1/(1 — pi.1s. . .u—1)- (See problem 10.9.)

9. GENERAL CASE

[Cf. Greenhouse (1954).] With no restrictive assumptions about the
means and covariance matrices of the k-variate normal populations under
H, and H,, the parameters of the normal distributions of the linear
discriminant function y = a'x are:

9.1) E(y) = o'y, Ey(y) = &'py, var, (y) = a’Zia, var, (y) = a'Zya,
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and

1 | aZa | + l1a'Z o + 1’88’
02 I:2y) =3l s 3 398 T 20

0.1 | aZa |1 + 1 a'Za + 1 a8
03 IRy =3l s e T3 T aEa 2 asa

la'Za 1 a'Za 1 ( 1 1

v = - —_1 4=
04 JA,2;9) 2a'Za + 2 a'Za + 2 \od'Za + a'Z,

) a'$d a.
o

For a given y it is true that J(1,2;y) = I(1:2;y) + 1(2:1;y). It is
not true, however, that the same y will yield the maximum value for
I(1:2;y), 12:1; ), J(1, 25 9).

The value of a for which (1:2;¥) in (9.2) is a maximum satisfies (by
the usual calculus procedures)

9.5) Za— AZa = 9,
where
1= a'Za ( q (a')? ) (') (' Zya)
T a'Za a0 — S0/ C a e — oS
Since y is a proportionality factor, we may set y = 1, and a satisfies
(9.6) Za— AZ,a =39,

where 4, given in (9.5), must not be a root of |Z, — AZ,| = 0.

The value of & for which /(2:1;y) in (9.3) is a maximum satisfies (by
the usual calculus procedures) an equation of the same form as (9.5) but
with

©0.7) A= a'Z e’z a— a'Z,0) _ («'Z, &) (')
| o' Za(a’E a— a'S,a — («'8)?) 4 a'Z,0—a'Z a4 (a'5)?

Again setting the proportionality factor y = 1, a must satisfy an
equation of the form (9.6) where 4, given in (9.7), must not be a root of

%, — 15, = 0.

The value of & for which J(1, 2; y) in (9.4) is a maximum satisfies (by
the usual calculus procedures) an equation of the same form as (9.5) but
with

o B a((@ Zy0)? — («'Ey ) — (@8)X(e Eyar))
9.8) A= y - y - ’
o E (' 0) — (A0 + (o 8)H(a Z,))

(a8 (o' Ea)(a'Za + a'Zya) .

V= @20 — (0 E,0) + («8) o Z,a)
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Again setting the proportionality factor y = 1, @ must satisfy an equation
of the form (9.6) where A, given in (9.8), must not be a root of
|Z, — AZ,| = 0.

Note that here we find three types of linear discriminant functions.
Since A depends on a, an iterative procedure must be employed to solve
for a. This is studied in chapter 13.

10. PROBLEMS

10.1. Show that x’Z-1x = tr Z1xx’.

2
ooy
d - ’ d , . .
10.2. If — = | - |, show that — a’Za = 2Za, where Z is a symmetric
doa . da
2 |
8otk

k x k matrix and &’ = (&, &%, * * *, ;). [Cf. Anderson (1958, p. 347).]

10.3. If dA denotes the matrix each element of which is the differential of
the corresponding element of the matrix A, show that

(@) dtrZ = trdZ.
(b) dZl = —Z-14dZZ1,
(c) dlog |Z| = tr Z1 dZ.
[Cf. Dwyer and MacPhail (1948).]
10.4. Show that (see section 5)

1 FA ~ 1 8’ ’
-ll—zsz 15 -|).Z|=l8 12|=|/12—551o

kk
10.5. Show that tr AB'= tr B = Dayby A=(ay), B=(by), i,j=
1’ 2’ . k. t=1 j=1

10.6. Show that (see section 7)
Zn gm = |Zy| |y — By Z'Ey,|.

1 22

10.7. (a) Show that p§.23. ..t = 1 — 1/p'*, where P is the matrix of correla-
tion coefficients, P~ = (p¥), and p,.,3. . . is the multiple correlation coefficient
of z, with zy, 75, * - *, Z;.

() Show that |P| = (1 — p.os. . . )(1 — pig. . ) = - (1 — pi_1.4), Where
P;- ,+1 & 1s the multiple correlatlon coefficient of z; w1th Zir1s Tivas' * s Tks
j= 2 ek — 1,

10.8. Show that a necessary and sufficient condition for the independence of
the k variates of a multivariate normal population is that the k multiple
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correlation coefficients of each x with the other 2’s are all zero, or that
P11=P22=. . .=pkk= 1.

10.9. Suppose that in section 8 [cf. Cochran and Bliss (1948, p. 157)]
sz 2351 | 1259 1340
2=E“zﬂ= 1259 | 3223 1200}
21 22 !
1340 : 1200 3137
8" = (0, §;) = (0, — 1197.2, —844.3).
Verify that:
(a) P%.zz = 0.33.
(b) tr 27188’ = 729.556.
(c) tr Z;26,6] = 503.845.
(d) The canonical correlation is p} = 0.33.
(¢) The gain ratio does not exceed 1/(1 — p}).

10.10. Let z;, 7y, * - -, x, be distributed with the muitivariate normal density
1- ’ ’ ’
——-—I iR exp (—#x'Z-1x), where x' = (2, 25, * * *, 7,). If y = AX, Y = (41, %,

N Ym A=(ay), i=1,2,: - m j=1,2,-- - n, m<n, A of rank m,
show that the y’s are normally distributed N(0, AZA"), that is, with zero means
and covariance matrix AXA’ of rank m < n.

10.11. Let y = Ax, z = Bx, where x, y, A are defined in problem 10.10 and
z' = (zl9z29‘ : .9zn—m)9 B= (bij)9 i= 1929' R —m9j= 1929. TN, B Of
rank n — m. Show that the set of y’s is independent of the set of z’s if
AZB = 0 = BZA'

10.12. Show that a necessary and sufficient condition for the independence
of the k variates of a multivariate normal population is that pfe. ... =
Pis..x="--=ph 1, =0, where p;;,... is the multiple correlation
coefficient of z; with z;,,, - - -, z;.

10.13. Partition k& variates into m < k sets, X" = (X{, X3,* * *, Xb), X; =
(xk1+,,,+... etk © * s Tkptkyte - -4k,).  Assume that the multivariate normal
populations under H; and H, (see section 7) are centered at their means, or

8=0,and
Ty Ty Zy, Z, 0 ---0
zl= zﬂ 222...22m ’ 22= 0 2220
zml zmz"'zmm 0 0 zm.m

where 2y, = (0,0), 0, B=ky + ko +- + -+ ki  + 1, - kit ke 4+ - -+ kK,
andz;i=zi:‘=(0'n)af=k1+k2+"'+ki—1+1,"',k1+k2+"‘+kiy
s=kitke+-ccdhk 1kt ket kk k- +
kn = k. Show that

10:2) = j tog | gul- el Fm |
Zy - -E.

Zpy Bt B
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10.14. Show that (see problem 10.6)
g:i Zyy v gm
.. zu . . 2'." = lzul : Izzzll : lzaa-ml : lzu.ml v Izmm-m- « em-1ls
Zm Tt Zm
where
zi:‘-l = zﬁ - 2:uzl—ll 21,-, zimz = zim - 212-122_21-1221-1,
zﬁ-m = zﬁ-n - zia-1zz§31 -1223:-12’ zmm-lz- come1 = Spme1: - -mo2

- zﬂlm—l-lz' i -m—2z:n{-1 m-1:12. - .m_zzm_l m-12: « m-2-

10.1S. Suppose the k variates of a multivariate normal opulation have been
partitioned into the m < k sets of problem 10.13. Show that a necessary and
sufficient condition for the sets to be mutuall independent is that | Zpg| =

1Ze01ls | Za0] = |Zgg.1l, || = 1ZBw1zals * ) [Zmm| = |Zmmare. . .ma|> Where
the matrices are defined in problems 10.13 and 10.14 above.

10.16. Show that [cf. (7.4) and problem 10.17],
2:11 212 vt zlr—l
zﬂ 222 .« e .

Ba Ze B |y

zf:l_lr gfi"._?_fir—l = |Z,.|
zll z12”‘211' Izﬂ-lz--'r—ll,
Zn Ent By
z, 2, %,

where the matrices are defined in problems 10.13 and 10.14 above.

10.17. Partition k variates into the m < k sets of problem 10.13. Assume
that the multivariate normal populations under H, and H, (see section 7) are
centered at their means, or § = 0, and

EZy Iy, Zu  Zu zlm—l 0
N 11 2 Bmama 0
zml zmz"'zmm 0 zva « . » 0 zmm

where the matrices are defined in problem 10.13 above. Show that

102 =3 log e

and that for k,, = 1, I(1:2) is given in (7.18).

10.18. Suppose the k variates of a multivariate normal population have been
partitioned into the m < k sets of problem 10.13. Show that a necessary and
sufficient condition that the mth set be independent of the preceding m — 1
sets is that || = |Zum.12. - -m—1], Where the matrices are defined in problems
10.13 and 10.14 above.
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10.19. Show that the I(1:2)’s in (7.4), problem 10.13, and problem 10.17 are
unchanged when the covariance matrices are replaced by the corresponding
correlation matrices. Show that the equalities in problems 10.14, 10.15, 10.16,
and 10.18 are also unchanged when the covariance matrices are replaced by the
corresponding correlation matrices.

10.20. Partition k variates into the m < k sets of problem 10.13. Assume
that the multivariate normal populations under H, and H, are centered at their
means, or § = 0, and

z = ( gmmq mo112: - moz  Sm-1m-12- - -m—2)’

m—1-12: - -m-2 m-12. - -m—2

where the matrices are defined in problem 10.14 above. Show that

1 Izmm-lz- - -m—2| 1 |Pmm-12- . -m—2|
I1:2)==lo = —log i—mm12 - m—2
( ) 2 g Izmm-m- . -m—ll 2 g IPmm'lz- . -m—ll

and that for ky =k, =1, I(1:2) = —} log (1 — pZn_1.12. . .m—2), Where
Pmm—1-12. - -m—g i @ partial correlation coefficient.

10.21. Show that the characteristic function of the distribution of y = x'Z-1x,
where x is k-variate normal N(0, Z), is E(exp itx'Z1x) = (1 — 2ir)™*/2, the
characteristic function of the y2-distribution with k degrees of freedom.

10.22. Show that when x in problem 10.21 is k-variate normal N(u, Z),
E(exp itx'Z-1x) = exp [itt' T /(1 — 2iN)(1 — 2ir)~*/%, the characteristic func-
tion of the noncentral y2-distribution with k degrees of freedom and non-
centrality parameter p.'Z 1. (See section 6.1 in chapter 12.)




CHAPTER 10

The Linear Hypothesis

1. INTRODUCTION

In this chapter we pick up again the general line of reasoning in chapters
6, 7, and 8 to examine the analysis of samples from normal populations
in order to test the general linear hypothesis [Kolodziejczyk (1935)].
The analyses of this chapter may be derived as special cases of those on
the multivariate linear hypothesis in chapter 11. Nevertheless, the
development and study of the linear hypothesis first is thought to be
worth while for its own sake as well as an aid in the exposition. The
treatment is not intended to be exhaustive, and has wider applicability
than to the specific cases considered.

2. BACKGROUND*

Suppose two simple statistical hypotheses, say H; and H,, specify
respectively the n-variate normal populations N(w,, Z), i = 1, 2, where
i = (Wis Mys, * * *, Min), § = 1, 2, are the one-row matrices (vectors) of
means, ani Z=(q,,), r,5=1,2,- - ,n, is the common matrix of
variances and covariances, so that [see (1.4) and (1.5) in chapter 9}:

2.1 21(1:2) = J(1, 2) = (1 — o) 272y — 10)-

If the variates are independent, g,, = 0, r #~ 5, 21 = (¢™), with ¢™ = 0,
r#s, 0" =1/o,,r=1,2,- - -, n, and (2.1) becomes, writing g,, = o7,

Q2) 2[(1:2) = J(1,?2)

— (41 —2/‘21)2 + (t12 0—2 Hzs)? b+ (#10 —2/‘271)2.
2

o3 o

n

If the variates are also identically distributed, as well as independent, that

* Sections 2-8 are mainly taken from an article by Kullback and Rosenblatt, which

appeared in Biometrika, Vol. 44 (1957), pp. 67-83, and are reprinted with the permission
of the editor.

211
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is, gy = i=1,2, j=1,2,-+n and c?=0% r=1,2, - - n,
then (cf. example 4.2 of chapter 3)

(2.3) J(1,2) = n(py — pp)?lo® = 2I(1:2).

3. THE LINEAR HYPOTHESIS

We now consider

where z' = (21, 2oyttt Zy), y, = (yla Yz * * *s Yn)s B, = (131’ ﬂz’ T ﬂp)’
X=(@,),i=12-"-nr=12-"-p; p<n,such that:

(a) the 2’s are independent, normally distributed random variables with
zero means and common variance o2,

(b) the z,,’s are assumed to be known,

(¢) Xis of rank p,

(d) B = B! and B = P2 are one-column parameter matrices (vectors)
specified respectively by the hypotheses H, and H,, and

(e) Ex(y) = XB! and E,(y) = Xp2.

We find that (2.1) yields here
(32 J(1,2) = (X! — XBY (WD (XB* — XP?)

= (B — PYX'X(B — p?)/o*

= (B — B*)'S(B* — B?)/c?
where S = X'X is a p X p matrix of rank p and I is the n X n identity
matrix.

We remark that J(1, 2) [2/(1:2)] in (3.2) is equivalent to the divergence
between two multivariate normal populations with respective means @,
B? and common covariance matrix ¢2S-1,

Suitable specification of the matrices X and @ provides the appropriate
model for many statistical problems of interest. [Cf. Kolodziejczyk
(1935), Rao (1952, p. 119), Tocher (1952), Wilks (1938b; 1943, pp.
176-199), Zelen (1957, p.'312).]

4. THE MINIMUM DISCRIMINATION INFORMATION
STATISTIC
We first state some facts about estimates of the parameters 8 and o? of

section 3. The classical least squares procedure of minimizing z'z =
(y — XB)(y — XB) leads to the normal equations

4.1 SB = X'y.
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It is shown in section 9 that the f§;’s [solutions of (4.1)] are minimum
variance, unbiased, sufficient estimates of the 8,’s. [Cf. Durbin and Ken-
dall (1951), Kempthorne (1952), Kolodziejczyk (1935), Plackett (1949),
Rao (1952).]

It is a known result in regression theory that the components of 8
(linear functions of the 2z’s) are normally distributed with covariance
matrix 62S~1.  An unbiased estimate of o® with (n — p) degrees of freedom
is obtained from (n — p)&® =7z = (y — XP)'(y — XB) = y'y — f'SE.
[Cf. Kempthorne (1952, pp. 54-59), Rao (1952, pp. 58-62).] (See
problems 4.1-4.6 at the end of this section.)

In accordance with chapter 5, and as illustrated in the analyses in
chapters 6, 7, and 8, the minimum discrimination information statistic
is obtained by replacing the population parameters in /(1:2) by the best
unbiased estimates under the hypotheses. (See examples 4.1 and 4.2 in
chapter 5 for the analysis of the conjugate distribution for single-variate
normal populations. The multivariate normal generalizations of these
examples are in sections 2 and 3.1 of chapter 12.)

The remark at the end of section 3 and the behavior of the least squares
estimates imply that the analyses are essentially dependent on the
implications of the hypotheses for the distributions of the estimates of B.

Suppose the hypothesis H, imposes no restriction on  and the null
hypothesis H, specifies f = B2. Writing 8! to indicate the solution of
(4.1) under H,, we have (cf. example 4.2 of chapter 5, section 3.1 of
chapter 12)

4.2) 21(H1:H2) = j(Hp Hy) = (Bl - Bz)'S(Bl — B3/

In particular, for the common null hypothesis H,: 2 = 0, (4.2) becomes
(hereafter we shall just use J)

4.3) J(H,, H,) = B¥SpY/ée.

Note that under the null hypothesis H,:B% = 0, J(H,, Hy) in (4.3) is
the quadratic form in the exponent of the multivariate normal distribution
of the f;’s with the covariance matrix replaced by an unbiased estimate
with (n — p) degrees of freedom. J(H,, H,) is therefore Hotelling’s
generalized Student ratio (Hotelling’s 7%) and

@44 J(H,, Hy) = pF,

where F has the analysis of variance distribution (the F-distribution) with
n, = p and n, = n — p degrees of freedom. [Cf. Anderson (1958, pp.
101-107), Hotelling (1951, p. 25), Hsu (1938), Kendall (1946, pp. 335-337),
Rao (1952, p. 73), Simaika (1941), Wijsman (1957), Wilks (1943, p. 238).]

This approach, in contrast to the now classic method of derivation as
a ratio of independent y%'s divided by their degrees of freedom, is especially
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important for the generalizations in chapter 11. [See section 4 of chapter'
11, particularly (4.5).] 'We need not appeal here to the general asymptotic
distribution theory which is consistent with the conclusions above. We
summarize in the usual analysis of variance table 4.1, where BYSB! =
B'X’y = yXS-1X'y [cf. Kempthorne (1952, p. 42), Rao (1952, p. 105)].

TABLE 4.1
Variation due to Sum of Squares D.F.
Linear regression Brsp! = yXS-IX'y = 6%/(H,, Hy) P
Difference Yy —BrSfl=yd - XSX)y=(n—p)é* n—p
Total Yy n

For the null hypothesis H,: B = B2 # 0, (4.4) still holds, with J(H,, H,)
given by (4.2).

Problem 4.1. Showthat 8 = S-2X’z + @ and therefore E,(8) = B, E,(f) = 2.
Problem 4.2. Show that E,(f! — B)(! — B’ = 0?1,

Problem 4.3. Show that (I — XS-1X')(XS~1X) = 0. What does this imply
about the quadratic forms y’XS-X'y and y'(I — XS-1X")y?
Problem 4.4. Show that J(1, 2; B) = J(1, 2) given by (3.2). Why does this
imply that B is sufficient? A
Problem 4.5. Use lemma 5.3 of chapter 3 to show that y'y = y'’XS-'X'y.
y’y y:X
Problem 4.6. Show that (n — p)c’}2 = —)-(—!-I-x—,iTx——)E-

5. SUBHYPOTHESES

5.1. Two-Partition Subhypothesis

[See Grundy (1951), Kempthorne (1952).] Suppose we partition the
parameters into two sets, and instead of (3.1) we now consider

(5.1) 2=y — (%, Xy (gz)
where
Z11, " " Ty Xyq % xla+1’ Tt xlzl
X=X =" | o= (®)
Lnls © " % xn’l an+1’ © "xnm




THE LINEAR HYPOTHESIS 215

with X, and X, respectlvely of ranks g and p — ¢, and B; = (1, Bs,* * -,
Bo), Bz = (Boss, - -, B,). The 2’s are still assumed to be independent,
normally dlstrlbuted random variables with zero means and common
variance o2, and under H, and H,,

(5.2) E1(.Y) = lei + xzpé
Exy) = Xif} + X,PB3.
We also write
—wx— [Su S
G s=xx= (g 1),
where

Sy = XiX,, S12 = X1X; = Sy, See = XX,
Now (3.2) becomes

4 0,2 =@ - eiei- ey (g o2) (B 2B /o

The normal equations (4.1) under H; become

6 (& () - ()

or
(5-6) Snm + S1zB% = X{y
SaB1 + SaaB} = Xiy,
and B
,._/_1'1'511512 1)
(n — p)a® =y'y (Bn Bz) (Sm 22) (B
Letting

Sz21 = Sz2 — Su1S1i'S1e, X1 =X; — Sz1SnIX1,
Si12 = Sy — S1:552'Say, Xi2 = X; — $;,8;2 X,

(5.6) yields . _
(3:8) Bl = Si'Xiy — Sii"S1B2 = SiaXiay.

It is useful to note [see, for example, Frazer, Duncan, and Collar (1938,
para. 4.9); also section 7 of chapter 9] that

S-1 = Si S\t _ Sii M)
N M Szi)

Sy1 Se
where the ¢ x (p — ¢) matrix
M = — S;i’S1;85%1 = — Si15S1:52",
so that in the applications the elements of the matrix S} or Sg} are
available once the matrix S—! is obtained.
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Suppose now that in particular we want to test the null hypothesis

2
H,:B=p2= (%1), that is, B2 = 0, with no restrictions on %, against
the alternative hypothesis H,:f = B! = (g}) with no restrictions on the
2
parameters. Again we estimate J(1, 2) by replacing the parameters by the
best unbiased estimates under the hypotheses. Under H, we have (5.8),
(5.7), (5.6) for B, B}, and 6. Under H, the normal equations (4.1) now
yield
(5.9) B? = S5'Xjy.
From (5.4), (5.8), and (5.9) we have
_q-1 1
(510 G, H) = (- fsasa B (3 3)(S54R)
2

Sp1 See
= B; Szzﬁ%
It may be verified that
(5.11) XSIX' = X,.,S5»1X5: + X,Si'X,,
that is '
(5.12) BUSR! = B}'S;.,R: + BISuB,
or
B'X'y = BiXz.y + BIXyy,
and
(5-13) 62J(Hy, Hy) = BVSP! — BY'S,P1.

The foregoing is summarized in the analysis of variance table 5.1.
J(H,, Hy) = (B1'S;:.181)/62 = (p — q)F, where F has the analysis of

TABLE 5.1
Variation due to Sum of Squares D.F.
Hy:p¥ = B, 0) 1SuBt = yX:S'Xjy q
Difference BlSp1Bl = yX, S iXi y = 6(H, Hy) p—gq
HypY=@1.B))  BVSP' = yXSXYy | P
Difference Yy — BUSf! = y'@ — XS~ X)y = (n — P n—p

Total Yy n
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variance distribution with n, = p — g and n, = n — p degrees of freedom,
under the null hypothesis H,: B2 = 0.
We may center the y’s about constants (their means) by letting

] Z1g Z1p
(5.14) X=X)= | | - '
1 , Zng Znyp
It may be verified that
n nZ,: * - ni,
nit,
(5.15) xx=s=@z§@==' s,, ,
,
n, NZyZy ¢+ - NT,HT,
(5.16) Sy, = S,y — %(na?2 © e nx,) =S, — .
n:%:, nZ, &, * - nI,x,

=(ZEi-aea-m) jk=2--p

i=1
1
. 1 ) i
(5.17) X2.1 = X2 - XISﬁlslz = Xz - . ;z(nxz-' e nx?) :
1
iz ¢ 'E’
. . = 1= 1’ 2’ s Ny
= - =\|\ry —2x;9, .
%= (=) 23205
- - F,
(5.18) X1y = n7,

(5.19) 2=y
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The analysis of variance table 5.1 now becomes table 5.2.

TABLE 5.2
Variation due to Sum of Squares D.F
H,:¥ = B, 0) ny® 1
Difference (linear regression) V'X, 1Seh X5,y = 63(H,, Hy) p—1
Hy:fY = @B, B2) yXS~X'y P
Difference Yy — YXS- X'y = (n — p)&* n—p
Total Yy n

Problem 5.1. Show that X;;X,.; = Sep.;.

Problem 5.2. Show that 8} = Sz!,X; .z + BL.

Problem 5.3. Show that E; (2 — BL(B! — BY = 0?Sg.,.
Problem 5.4. Show that X;,X; = 0.

Problem 5.5. Show that X; X, = S,p.;.

Problem 5.6. Show that E,(81 — BI)(B] — BlY = o®Sgl,.
Problem 5.7. Show that 82 = S;!X}z + Bi.

Problem 5.8. Show that E,(3} — Bi(B? — B’ = o?Sil.
Problem 5.9. Show that Sii'; = Sii! + Si!S;,S54S, Sk
Problem 5.10. Show that X, ,Sz! X5 (I — XS-1X') = 0.

5.2. Three-Partition Subhypothesis

If the subhypothesis requires partitioning the matrices 8 and X into

three submatrices

B’ = (B]’., Bé’ Bé) and X= (xl’ xz, xa),

we obtain from S = X'y the solutions

(5.20) B; = Saa12X3-12Y
B, = Sai(Xs.y — Ses1B3),

B, = Sin'Xiy — S1aB: — Si3By),
where

Sll Slz S1a
S =

S21 S22 823)! Stu = xt’xu, t, u= 1, 2, 3,

Sa1 S32 S33




THE LINEAR HYPOTHESIS 219

and
S312 = Sg3.1 — S39.18521 Sez1,
Sa3.1 = Sg — S3,5{1'Sys, S3z.1 = S3p — S581'Se = Sg3.4,
See1 = Sg — Su1S11'Sss, Xz1y = (X; — SuSH'XYy,

Xé-my = (x:;-1 - Saz-1sz—2-11x£-1)y, Xé.ly = (X;; - Sa1s1—11x{)y s
also [cf. (5.12)]
(5.21) B'SB = y'X,Sii'Xiy + y 'X,.IS{JIX;,Iy + B:gssa-maa-

Using (5.20) and collecting terms, we obtain other useful forms of (5.21),
for example,

(5.22) BSp=y 'X;Sa' Xy + Béxé-ly + B:iX3.1y-

This is convenient when the data are raw observations and x; = 1 for
all i, so that the first partition includes the x,, and B, and obtains
deviations about averages for basically a two-partition problem, and

(3.23) B'SB = BiXiy + B:Xiy + BiXgy

for a three-partition problem where the variables are already centered
about their averages.

The above can be extended by induction to any number of partitions as
required.

6. ANALYSIS OF REGRESSION: ONE-WAY
CLASSIFICATION, k& CATEGORIES

For p = 1, also identified as the analysis of covariance, see Federer
(1955, p. 485), Kempthorne (1952, p. 48), Kendall (1946, p. 237), Smith
(1957), Welch (1935). For p general, sce also Kullback and Rosenblatt
(1957), Rosenblatt (1953). ’ '

Suppose we have k categories each with n; observations on (y, z,, - - ,
x,) for which the general linear regression for each category is

(6.1) 2 =Y — Bpsn + -+ 0+ B + 0 0 0 Bi®iiy),
where j=1,2, - - k categories,
i=1,2, - -, n; observations for category j,

r=1,2,- - -, pindependent variables (p < n,),

the z;; are independent, normally distributed random variables with zero
means and common variance ¢, and the z,;, are known.
The linear regressions for each category can be written as

(6.2) z; =y, — X8,
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where for j=1,2,- - - k,
zZ; = (21, 22" " "5 Zn )y Yi = Y * > Yin)s

’ — . L] .
X, = (xﬂ’ X2 " " % xjp), X;r = (xﬂr’ Ls2rs ’ xjn,r),

B; = (ﬂ:’l’ ﬂ;z, Y ﬂjp)'

We may write the k sets of regression equations (6.2) for k categories
combined as

and

(6.3) z=y—XB
by defining
X1 ¢ 0
X,
x=|' . | ®=@LB B
0 o e e xk
2 =z, 23" * ", %), Y =@0nYyz" Y-

By the preceding definitions we treat 8 in (6.3) as a parameter matrix of
all kp regression coefficients j,, whether or not any of them are equal, or
have a particular value including zero, under any hypothesis.

Suppose we specify a null hypothesis with regard to certain groups or
sets of the kp parameters ;. among the k categories, and wish to estimate
the parameters and test the null hypothesis against some alternative. To
distinguish between matrices or parameter vectors under various hypotheses
H, a=1,2, - - we shall use, where desirable for clarity or emphasis,
the notation X%, % and S* = X*X* Where this notation is not used,
the applicable hypothesis and definition of the matrices should be clear
from the context. For any hypothesis H,, we shall represent the linear
regressions for the k categories combined, under H,, as

(6.4) z=y— Xf°

where z and y are defined in (6.3). However, we now define B* as the
matrix of distinct regression coefficients specified by the hypothesis H,
and X* as the matrix of z;, with distinct regression effects, specified
according to the regression model defined by the hypothesis H, for the
k categories combined.

With the representation (6.4) of the k-category regression under H,
the normal equations (4.1) become

(6.5) S*R* = X*y
Ba — Sa“’xa'y,
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where the elements of S* = X*X* will, of course, depend on the particular
specification of the matrix X*.

Also, equivalent to (4.2) and (5.13) we have, for a null hypothesis H,,
and an alternative hypothesis H, [cf. (4.7) in chapter 5],

(6.6) J(H,, Hy) = (B* — P2YS(B* — ¥/é2 = (B'S'@! — p¥S’BY)/6",

where

6.7 (n — pk)é? =y'y — BVS'f?,
n=n-+n+---+mn,

and S = X'X = S! for X defined in (6.3).

Thus, for any particular hypothesis on the sets of regression coefficients
in k-category regression, the estimates of the coefficients and the test of
the hypothesis are readily obtained solely by proper specification of the
matrices X* and 8% in (6.4).

Consider the two hypotheses

(6.8) H:B,=8 j=12,--k, r=1,2"-"-p,

that is, the 8, are different for all categories and foreachr =1, 2,- - -, p,
and the null hypothesis of homogeneity

69 Hyfy=B, Jj=L2--k r=12""-p,

or equivalently, B; = B/ = (8., B.9,* * ", B J=1,2," - -, k, that is,
the regression coefficients are the same for the different categories for each
r=12---p

Under H, in (6.8) the best unbiased estimate of $ is derived from (6.5),
where 8* and X* in (6.4), defining the k-category regression model, are the
same as 8 and X in (6.3), or

Sy - 0\ [B X1

(6.10) . = s S, =XiX,.
0---S,/ \ XiYi

This yields k sets of normal equations

(6.11) SR =Xy, Jj=L2" "k

from which
B, = $; Xy,
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Under H, in (6.9), however, the matrices X2 and B2 of (6.4), defining
the k-category regression model, are

X¥ = (X{, Y XL,)’ Bz' = (ﬂ-l’ /3-2, Tt ﬂ-p)-
Thus,

k k
S*=X'X?=YX/X,=3S,
i=1

i=1
ke
X¥y = 3 Xiys,
ji=1
and the best unbiased estimate of § under Hj is derived from (6.5) as
(6.12) f? = S*X%y.
We also have, under H;, corresponding to (6.7),
k
(6.13)  (n—ph)st=yy— f's'f! = 2 Oy = B;S;8)).
=
Corresponding to (6.6), we therefore have
k
(6.14) 8(H,, Hy) = PUS'f — B¥S°R = 3 B/S,B, — PI'S’RY,
i=1

a direct generalization of S, in para. 24.30 of Kendall (1946).

TABLE 6.1
Variation due to Sum of Squares D.F.
H,:B% = p? p¥s*p? p
Difference frsifr — Brszfz = §2(H,, Hy) plk — 1)
H:pl =Bl prsift =j§::1‘§;s B, pk
Difference Yy — BUSIB! = (n — pk)é® n — pk
Total A Yy n = Xn;

We summarize in the analysis of variance table 6.1. J(H,, H,) =
p(k — 1)F, where F has the analysis of variance distribution with p(k — 1)
and (n — pk) degrees of freedom under the null hypothesis H, of (6.9).
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In particular, for testing a null hypothesis of homogeneity H,, the means
of k samples are the same, p =1, x;; = 1, and for the alternative

hypothesis H,, the population means are different,

1 0 0--:0
n
1 0:---0
01 0---0
(6.15 X'= LR n, Xj=(,---1,
. . . . nj
010--:0
0 00 1
ny
0 00 1
nl 0' 0
(6.16) xixt=gt= (0 ™ 0 5 -n,
0 cotrem
(6.17) Xi;=Yn+Yn+ -+ Ym =1

and (6.11) yields as the estimates of the population means under H,

(6.18) B, =9,
For the null hypothesis of homogeneity H,,

(6’19) x2'=(1’. * .’ 1’ 1’. : .’ 1’. * .’ 1’. * .’ 1)’

n ny ny
(6.20) X¥X2=St=n+n+--"+n=mn,
(6.21) Xz'y =mj+- " + nY, = ng,

and (6.12) yields as the estimate of the population mean under H,

(6.22) B.=4.
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From (6.13) and (6.14) we find that

k n; k ny
62 @-be=3 (3 -ng) =3 30—

i=1\i=1 j=1i=1
k
(6.24) &2j(H1, Hz) = zl n,y, - ny = z n,(}/; g)z-
J=

The analysis of variance table 6.1 becomes now the analysis of variance
table 6.2.

TABLE 6.2
Variation due to Sum of Squares D.F.
H,: Homogeneity ny?* 1
k
Difference > ni(g; — 9 = 63(H,y, Hy) k—1
i=1
k
H,: Heterogeneity Y n;j} k
=1
k n;
Difference Y D @y — F)% = (n— k)6? n—k
i=14=1
k n;
Total > Dy n=n+n+---+n,
i=1i=1

The analysis in table 6.2 is more commonly found as in table 6.3.
J(H,, H,) = (k — 1)F, where F has the analysis of variance distribution
with (k — 1) and (n — k) degrees of freedom under the null hypothesis of
homogeneity.

TABLE 6.3
Variation due to Sum of Squares D.F.
2 ,
Between samples > nyg; — 4@ = 63J(H,, Hy k-1
i=1
Within samples z z Wy — 92 = (n — k)62 n—k
j=1li=1
Total 2 2 W, — 9)? n—1

Je=1¢=1
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7. TWO-PARTITION SUBHYPOTHESIS

7.1. One-Way Classification, k¥ Categories

Partition the parameters of the matrix 8,, for each category j = 1, 2,
+ + -, k, into two sets [see (6.2)]

Bir=Bu," " " Bw) and Bia = Bisr» " * * Bin)

of ¢ and p — ¢ parameters respectively, ¢ < p, so that 8; = (B}, Bjp)-

Consider a null subhypothesis H,, for j=1,2,- - -, k, the §,, are
different forr =1,2,- - -,q,butforr=q+ 1,9+ 2,- - -, p, there is a
common value §., for the §,,, that is,

(7.1) Hz:ﬂﬂ'=ﬁjr’ j= 1, 2,- 3 -,k, r = 1, 2’. . .,q’
ﬁ!r=ﬂ-r’ =12,k "=q+1,q+2,"’a17,

or equivalently
Hy:Bn =Bn=0Bn"" B4
Bie =B =B " "By
Let H,; remain as in (6.8), that is, the g, are different for all j and r.
Under H, we have the same matrix definitions and results as in section 6.

However, for H, in (7.1), the matrices X? and @2 for the k-category
regression model are

B2' = (Bl’.’ Bé)’ x2 = (xla xz)’

where
B = (Bl B B, Bi = Barss Brn B = Bl
X, 0 X,
X, = . . , X, = . ,
0. X, 3

xﬂ = (ij Xjo0° ° X,q),
Xjo = Kjgrr» Xjgpor " * 5 Xsp)y Jj=12,"°k, r=12,---p.

4
X;p = (x;_[lr’ Liop * ° % xjn,r)’

Thus under H,,
. X1 Su S )
2 _ Y2'y2 — (M = 1 2
S=X= (xé)(xl’ X (Su Sge/’
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where
Su = XiXy, S12 = XX, Sg1 = S1p = XoX,, Se2 = Xe X,
S 0 Sne
Sy = . » Spp=1 |, Su=(m+" -+ S
0 - -Su k12

Sm = x;lxﬂ’ Sﬂz = X;lez = ngv Sm = X;zxfz-
From the normal equations (6.5) we now obtain
(7.2) Sual + Slzez = Xiy

_ Sufy + Sy, = XY,
so that [see (5.7)]

(7.3) B: = Sz1X5y,

where

k k
Saz-1 = (S — SuSii'Sp) = _Zl(Sm — S;2:871S00) = zlsm-n
i= i=

k
Xs1 = Xierr* * - Xin)y Xy = zlx;m)'p
i=

Xz = X5 — Sg:S7'X{, Xjg1 = Xz — S S71 X0
From the definition of the matrices under H, we have [see (5.8)]
By St O\ [[X;--- 0 " S119 ]
(7.4) = - B..

By 0 ---SaifL\0o - -Xul Siz i
ShiXiy {Sﬁ}sma-z

Sai X \Sk_ﬁskme-z
Thus under H, of (7.1), we have the following estimates of the regression
coefficients:

(7.5) Bn=Sul(Xny; — S =8h j=12"" 1k
X -1k
B.= ( Sm~1) Z Xiz1y; = Bl
j=1 j=1
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where
B !i’ ) = Bz'

If under H, of (6.8) we also define B = (Bj1» Bjo) but rearrange and
partition the submatrices of 8 and X so that

= (Bv B2), X = (xh xz),

where

B1= (Bi Ba - v Br Bh = (Ba» Bis* * s ﬁfa)’
B = (B1s Bazs® - -, Bre)s B = (ﬂ5q+1’ ﬂ:’q+2’ Y ﬁ;, ’

xll c = 0 xl?. + v 0
Xl = : ’ Xz = * ’
0 . e xkl 0 . e e xk2

Xpn = (X, Xp9,* * +,Xy0), Xj2 = (Xjou1s X4, * * 5 Xypp), j=1, 2,: -k,
then

St 0 Siz* -+ 0
xixl = Su = ’ xixz =S, = ' = Sép
0 - S,y 0 - - S,
Sppe- - 0
X:X, =Sy = - , XX=S= (211 212)
. 21 22
0 : - S

Sm = x;lxﬂ’ Sm = lelsz = S§31,
Sjs = XpoXse, =12,k

We then obtain the same estimate of Byj=1,2, -k, as in section 6,
by the procedure of section 5; that is, from (6. 5) we have (see problem
11.10),

(7.6) Suf; + SyB; = X1y,
521(31 + Szzez = Xéy ’
(1.7) Br = Si'(Xiy — SR,

(7.8) B = SziXs.y,
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where
Sipeq° 0

Ses1 = (Sz2 — SuSii'S1o) = : ’
0o - * Syeo1
Spe1 = Sjpe — SmSaiSnd),  j=1,2,- * +k
Xipgs - > 0
X5 =X; — S, S1i'X; = . ’
0 - -Xi,

x;g.l = X;z - szlSH]]:X;l, j = l, 2, ey k.

From (7.7) we obtain under H, for each categoryj=1,2,- - - k,

(7.9 Bn = Sai(X/1ys — Spafso) = Bl
(7.10) Qiz = S;321X/21Y; = Q}za
and

B = Bn B = 7.

With these estimates of the parameters under H; of (6.8) and H, of
(7.1) and noting after some reduction that [cf. (5.11), (5.12)]

(1) RSP =y X, Su'Xiy + B5Shafs =12,
we obtain [cf. (5.13)]
k
(7.12) & j(Hp Hp) = Q;'S;zqeé - 33'532-132 = ,Zlﬁ}zsm-lﬁ}z - 93'522-193,
j=

where for computational convenience we may write

k

(7.13) By ki = BiXahy = 2 BiXGy,
J=

(7.14) B3'S5.1B5 = BEXZLy.

We summarize in the analysis of variance table 7.1. J(H,, H,) =
(p — 9)(k — 1)F, where F has the analysis of variance distribution with
(p — g)(k — 1) and n — pk degrees of freedom under the null hypothesis
H, of (7.1).
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TABLE 7.1
Variation Sum of Squares D.F.
due to
Hy:B5,B%  prs*pe gk+p—q

Difference BrsifL — BrszfAe

L
= _Zl Q}és:‘zz-lmﬁ - Qg’sg2-lﬁg
=

= §*J(H,, H,) (p—qk—1)
Hy:Bh, B Arsipt Pk
Difference yy — QI'SIQI = (n — pk)d® n — pk
Total Yy n=n+n,+- - +n

7.2. Carter’s Regression Case
Carter (1949) considers the case of a correlation effect among the ith

observations i = 1, 2, - - -, nin each of k samples. His regression model
can be written as
q
(7.15) Zji =Y — Zlﬂirxm - %
=

where the correlation effect among samples is due to «,, an element
common to the ith observation in each sample, j=1,2,- - - k.
Stochastic dependence among categories is included in the multivariate
linear hypothesis in chapter 11.

It can be seen that this model is a particular case of the subhypothesis
analysis where the matrices 8 and X are

p’ = (pi’ pé)a X = (xla Xz)a
and the submatrices are

Bi =B Bas - 5 Bia)s Bih = (1311’ Bies* * ﬂjq),

pé = (ab &Koy ™ 7y an)a

X, 0 Zjnin " Zjae
X, = ’ Xn = ’
0 ---X, Zin1® * "Zjng
I 1--°0
X, = , I= - )
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where X; is a k X 1 matrix of submatrices I, the identity matrix of order
n X n. With these definitions of B and X, the normal equations for
estimating the §’s given by Carter [1949, eq. (3.3)] follow directly from
the normal equations (7.2) by obtaining

(7.16) 511-261 = Xj.2¥,

where
Sii2 = Sy — S1555'Sy.
Here we obtain

1 4 1 ’ 1 4
/ (1 - ];) xuxu - Exule tre — ',; Xllxkl
1 4 1 ’ 1 4
— ,'; X1 Xy1 1 — -IE X0 X ¢ - ic- X1 X0
Sn-z = . . . ’
1, 1 1 ,
— = XuXn — = XX =7 XaXa
and
1\ o, 1o, 1o,
(l—z)xn —',;Xn e —',;Xn
1 ’ 1 4 1 ’
’ —’szzl (l—z)xm"' —I-cle
X1 = . .
1 ’ 1 4 1 ’
—I;Xkl —'k"xkl v °(1—]:)Xk1
As before,

S = Xin, S = Xixz = Sév S, = xéxz'

The estimates of the correlation effects «; are not given specifically by
Carter (1949). The solution

(7.17) 8, =%, i=12-""n,
where
1 & 1 X
= szt =7 z (yu zﬁjr‘xm‘)’

follows directly from
(7.18) Szz@z = Xpy — S21@1-
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8. EXAMPLE

[See Kullback and Rosenblatt (1957).] As an example of sections §,
6, and 7, we examine the performance data of a manufactured product
tested under three environmental conditions (categories) each involving
three independent variables. In the equation

3.1 2j; = Yis — Bin%ian — Bio%iie — Bis%ia — BisTiias

the data y,; and z;,,, r = 2, 3, 4, are raw observations so that z,;; = 1 for
all j=1,2,3 and i=1,2,-+ -, n. In this example k =3, p = 4,
m = 16, n, = 15, and n; = 16. The matrices S, and XJy;, j =1, 2, 3, of
the computed sums of squares and products about the origin are

16.0 286.8 139.0 4,835.0 97,500

S = 286.8 5,340.4 2,452.2 86,849.0 X'v. = 1,788,052
1= 139.0 2,452.2 1,307.0 41,990.0 |’ = 838,010 |’

4,835.0 86,849.0 41,990.0 1,465,575.0 29,484,809

150 2446 236.0 4,625.0 83,470

S, = 2446 4,181.6 3,869.0 75,318.0 X'y = 1,404,814
L 236.0 3,869.0 3,824.0 72,5000 |’ Y2 = 1,320,100 §’

4,625.0 75,318.0 72,500.0 1,427,425.0 25,727,050

160 256.0 97.0 2,995.0 89,280

S. = 256.0 4,221.7 1,619.2 47,8970 X'y, = 1,456,596
3 97.0 1,619.2 785.0 17,8400 |’ 3Ys = 554,650 |’

2,995.0 47,897.0 17,840.0 580,475.0 16,743,450

where

n;
S, = (S;r4) Sjpe = ijirxjit’ r,t=1,234,
t=1

ny
X;y i= (sivz,)’ Sjyz, =izlyjzmjir-

Note that above the element s;;, = n,, Sp; = Ny, and s3; = n3. The
multiple regression equation for all three categories combined is given by
(6.4) where, it will be remembered, specification of the matrices X* and
B* depends on the model prescribed by hypothesis. The data in the above
matrices can be suitably arranged for analysis according to hypothesis.

To illustrate the statistical method seven hypotheses are considered and
tested. The hypothesis H, imposes no restriction on the §’s, so that

Hy:B4 = Bis Bir = Birs r=2134



TABLE 8.1. Analysis of Variance Table for Tests of Various Null Hypotheses H,
Alternative Hypothesis H,

Variation due to

Sum of Squares

Hy:Bi = ﬂil
ﬂ,-,.=0,r=2,3,4
B2

Diff.: H,, H,

Hy:py = B4
ﬁir = ﬂ-ra r= 21 314
g2

Diff.: H;, H,

Hy:f; = ﬂn
ﬁjr = ﬂ-ra r= 21 314
g4

Diff.: H;, H,

Hy:fn = B
Bir = Birnr=2

=f.,r=134

ps

Diff.: H,, Hy

Y'xlsl_llxiy
B3x3-1y
sG55
Ql'slﬁl - Qs'ssﬁs =42 j( H,, Hy)

1,556,805,752

24,993,036

1,553,937,500
27,030,350

1,580,967,850

830,938

1,556,805,752
24,328,284
1,581,134,036
664,752
1,556.805,752

24,333,415
65,381

1,581,204,548

594,240

(p— 2



TABLE 8.1 (continued)

yX:Sn Xy
szmy

Hg:fpn = Pn
ﬂir = ﬂ:’n r=2
=0, r=3,4
e
Diff.: H,, Hg
Hy:, = Ba
ﬂir =fpr=2
= ﬂjra r= 31 4
B’
Diff.: H,, H,
Hy:B4 = Ba
ﬂjr = ﬂm r=23,4
B
Difference
Total

Ql’slél
vy — PUSIfl = (n — p)é®

’

yy

* Significance at 0.01 probability level.

1,556,805,752
24,352,124

1,581,157,876
640,912

1,556,805,752
22,464,483
2,450,665

1,581,720,900
71,888

1,556,805,752
24,993,036

1,581,798,788
1,004,912

1,582,803,700

n=n; + n,
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All other hypotheses, suggested by the nature of the data, are compared
as null hypotheses against H,:

Hy:Bn =81, Bir=0, =234,

Hs:ﬂjl = /3-17 ﬂjr = ﬂ-r’ r=2,3,4,

Hy:By = Bas Bir = B.m r=2134,

H5:ﬂ11 =l ﬂjr = ﬂjr’ r= 2a ﬂjr = ﬂ-ra r = 3, 4’
Hs:ﬂﬂ = ﬂjl’ ﬂif = ﬂjr’ r= 27 ﬂjr = 01 L r= 3, 41
H7:ﬂ11 = ﬂﬂ’ ﬂjr = ﬂ-r’ r=2, ﬂjr = ﬂjn r= 3, 4,

The statements above of the various hypotheses all apply for j = 1, 2, 3.
In stating these hypotheses we have specified 8; separately, for con-
venience, since in this example it represents the constant term which
depends on the mean values. Table 8.1 presents the complete summary
of the analysis of variance data and the tests of significance of the various
hypotheses. Table 8.2 presents the estimated regression coefficients under
the various hypotheses. (The computations were carried out by H. M.
Rosenblatt, Fred Okano, and the computing staff at the Naval Proving
Ground, Dahlgren, Va.) The specification of the matrices X* and B
for H, and Hj is also given, following table 8.2; those for the other
hypotheses follow on the same lines. (These are left to the reader.)

Using the 0.01 probability level for significance, and the 0.05 proba-
bility level for caution, it is concluded, from table 8.1, that:

1. The regression is real; reject H,.

2. One set of regression coefficients, including equality of means,
cannot adequately represent all three categories; reject Hj.

3. One set of regression coefficients is not adequate even after allowing
for differences in the mean value for each category; reject H,.

4. One set of regression coefficients for variables z; and z, for all three
categories cannot be used; reject H.

5. The regression coefficients for x; and z, cannot be xgnored reject Hy.

However,

6. the use of one regression coefficient for the variable z, and different
ones for z, and z, and for the constant term is adequate; accept H.,.

For the hypotheses H; and Hj considered in the example, the matrix
of parameters § and the matrix of observations X are given below.
Note that, since we are dealing with raw observations in the example, the
regression coefficients 8, of B and the matrix (vector) x;; of X,j =1, 2, 3,
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TABLE 8.2. Estimates of Regression Coefficients Under Various

Hypotheses
Hypothesis B B Bis Bia
H,
Jj=1 3,587 203.4 —10.69 —3.46
j=2 —7,186 231.1 79.02 25.10
j=3 1,654 227.7 —6.93 1.73
H,
j=1 6,094
j=2 5,565
j= 5,580
H,
j=123 2,009 219.8 —11.19 0.646
H,
j=1 1,803 216.0 3.70 1.28
Jj=2 1,589 216.0 3.70 1.28
j= 1,862 216.0 3.70 1.28
H; )
Jj=1 2,071 201.2 .563 1.36
j=2 1,432 227.1 .563 1.36
j=3 1,743 223.7 .563 1.36
Hg
j=1 2,467 202.3
j=2 1,872 226.5
j=3 2,001 223.7
H,
j=1 3,431 219.8 —-4.27 —4.10
j=2 —6,768 219.8 79.26 24.33
i=3 1,758 219.8 —4.16 1.77

have been partitioned for every hypothesis. This provides for the usual
practice of obtaining sums of squares and products of deviations about
average values to simplify further calculations by reducing by one the
rank of the matrix S (of sums of squares and products) whose inverse
must be obtained.
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Hy:Bn=08r Br=08rn r=234  j=123,
9’ = (BL pé)7 X = (Xla Xz)a
ﬂi = (B11, Bars Bar)s pé = (piza péza péz)a p;z = (/3:2’ Bis» 13:4),

Xy 0 X * " 0

o P x31 o P X32
x;l = (11 11 Y 1)1 ij = (_sz, X3, x“),
order 1 X n, Xir = @q1r Tjars * * s Tpme)-
Hg:Bn=Bn, Biw=208y r=2, Pyp=4, r=34 j=123,
B =(B1 Bz By, X =(X;,XpXy),
pi = (/3117 /3211 /331)7 p; = ({3121 /3221 /332)7 p; = (ﬂ°3’ 13-4)a

X5, C 0 X" " 0
N o ) X O X XG0,
=1: % : ) X=X X3 = (X, X;4),
0o :.-- X3 0o--- X329

x;; and x,,, r = 2, 3, 4, are defined as under H;.

In the foregoing example each hypothesis on the parameters applies
to all categories, j = 1, 2, 3. It should be clear, however, that this need
not be the case, for the theory and method are equally applicable for any
assertion of the hypotheses about the parameters. For example, we might
have an analysis where part of the hypothesis concerned equality of the
parameters for certain of the categories but not for all, for example,

HS:ﬂjr= ﬂ.,., j = 1, 3, r= 1,
Bir=10iw J=2 r=1,
By=Fm Jj=1,23 r=2
ﬂjr=ﬂ5r’ ]= 1,23, r=3,4,

and analysis by the three-partition subhypothesis procedure of section 5
would apply.

9. REPARAMETRIZATION

9.1. Hypotheses Not of Full Rank

[Cf. Kempthorne (1952, section 6.2).] Suppose that the components
of B in (3.1) are not linearly independent, but satisfy (p — r) linear
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relations. This implies that the matrix X in (3.1) is of rank r < p (and
conversely), and that

O.1 B =Gy,

where Y’ = (7’1’ Yo't V) G= (gij)a i=1,-- P J=1 2, r,
and G is of rank r < p. The matrix S = X'X is now a positive (not
positive definite) matrix of rank r, is therefore singular and has no inverse,
so that we must re-examine the solution of (4.1) for . We may, however,
write (3.1) as

9.2) z=y— XGy =y — Ay,

where A = XG is ann X r matrix of rank r. The least squares estimate of
v is derived from the normal equations

9.3) A'Ay=Ay or G'SG{ = GXlYy.
The estimate of 8 is obtained from 8 = G¥, or
(9.4) B = G(G'SG)1 G'Xly.

As in section 4, ¥ is a minimum variance, unbiased, sufficient estimate
of y and the components of ¥ are normally distributed with covariance
matrix 02(A’A)! = ¢%(G’'SG)L. Also, f = G¥ is an unbiased estimate
of B and the components of (3 are normally distributed with covariance
matrix 02G(G’'SG)'G’. Corresponding to (4.2) we have

Al_ IAIA A — 2 Al_ 2IGISG Al—
0.5 JH, Hy=0—1 x #-vy_GE -7 L # -
(B — py'S(B — By
= = :

where
(n — & =yy — §'A'A* = y'y — $'G'SG{* = y'y — V'SP

Note that G’SP = G'X'y [see (9.3)] represents r linear functions of the
y’s that are also linear functions of the f’s. These are unbiased estimates
of the same linear functions of the f’s. Since G'SB = G'X'y = G'SG¥,
we may make similar statements about the »’s and their estimates.
Consider now any other set of r linear functions of the y’s, say Ly, where
L is an r X n matrix of rank r. Since

9.6) E(Ly) = E(L(XB + 2)) = LXp = LXGy,

Ly is an unbiased estimate of y if LXG = I,, the r X r identity matrix.
The covariance matrix of the components of Ly is seen to be ¢?LL’.
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From lemma 5.4 of chapter 3 with k = n, B = ¢%I,, where I, is the n x n
identity matrix, L = C’, U" = XG, C'U’ = LXG =1,

9.7) o)LL’ = 0% (G'SG)7,

where (9.7) means that any quadratic form with matrix o®LL’ is greater
than or equal to the quadratic form with matrix ¢*(G’SG)™ . Since the
covariance matrix of the components of ¥ is 0%(G'SG)~, we confirm by
(9.7) and lemma 5.1(c) of chapter 3 the statement that the variances of the
components of ¥ are the smallest among all linear functions of the y’s
that are unbiased estimates of y. Similarly, GLy is an unbiased estimate
of B if LXG =I,, From lemma 5.4 of chapter 3 we may conclude that

(9.8) ®GLL'G’ = 0®°G(G'SG)"'G/,

from which we infer that the variances of the components of f are the
smallest among all linear functions of the y’s that are unbiased estimates
of B.

The value of J(1, 2) and its estimate is the same for any reparametri-
zation as is indicated in (9.5). Since there are only r linearly independent
linear functions of the §’s, any one set of r linearly independent functions
of the f’s may be derived from any other such set by a nonsingular linear
transformation. The information functions are invariant under non-
singular transformations (see section 4 of chapter 2, also section 3 of
chapter 9), hence our conclusion. [Cf. Kempthorne (1952).]

Examples of the application of this procedure to the two-way classi-
fication with no replication and with no interaction; the two-way classi-
fication with missing observations; the two-way classification with
replication and interaction; the two-way classification with replication
(unequal cell frequencies), interaction, and missing observations; the
latin square; and the latin square with missing observations may be found
in McCall (1957). See also Anderson and Bancroft (1952), Kempthorne
(1952).

9.2. Partition

When the hypotheses call for a partitioning of the parameters into two
sets, for example as in (5.1), it is possible that linear relations may exist
among the parameters in one of the partitioned sets only. Here it is
necessary to apply the procedures of section 9.1 only to the partitioned
set not of full rank. Thus, suppose that in (5.1) the n x ¢ matrix X, is
of rank m < ¢. This implies [cf. (9.1)] that

9.9) B, = GiYy,
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where Y1 = (7, 72" * 5 V) GL=(g) i=1,2,- - ~,¢,j=1,2,- -,
m, and G, is of rank m <<g. The results of section 5.1 are applicable if
B, and {3, are replaced in the various formulas by y,; and ¢, respectively,
X; by X,G,, and (n — ¢q) degrees of freedom by (n — m) degrees of
freedom. The estimate {3, is obtained from 3, = G,§;. Thus, for
example, S,, in (5.3) is to be replaced by G;S,,G,, where S;; = X;X,, and
Sz by G;S,,, where S,y = X;X,.

Similar remarks also apply for a partitioning into three sets as in section
5.2, when one of the sets may not be of full rank.

10. ANALYSIS OF REGRESSION, TWO-WAY
CLASSIFICATION

To illustrate section 9, and for its own interest, suppose we have a two-
way classification with r row-categories and ¢ column-categories, with one
observation per cell and no interaction. Suppose furthermore that there
are p independent variables x;, ,,- - -,2,. We want to test a null
hypothesis that there are no column effects (the column classification is not
significant), against an alternative hypothesis that the column classification
is significant. For p = 1, also identified as the analysis of covariance,
see Federer (1955, p. 487), Kempthorne (1952, p. 98). For p = 2, also
designated as multiple covariance, see Snedecor (1946, section 13.7).
For p general, see Anderson and Bancroft (1952, section 21.4).

The general linear regression model for each cell is

(10.1) Zij =Y — B — pi — T; — Pi¥in — BoTup — -+ — By,

where i = 1,2, - -, r row-categories,
j=12 - - c column-categories,
p; is the ith row effect,
7;1s the jth column effect,
1 1s the over-all mean,

the z,; are independent, normally distributed random variables with zero
means and common variance o2, and the z;5, i=1,2,- - -,r, j=1,
2,--¢k=1,2,-- - p,are known.

Enumerating the cells from left to right and top to bottom, the linear
regressions may be written as

(10.2) z=y—XB=y—XB; — XoB; — X3Bs,
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where

z' = (233, 213, * " ) %o)s Y = W Y2 ° % Yro)s

X = (xla x2’ xs)’ p, = (pi’ Bé’ p:;)’

1 0...0 1 0...0
1 1 O0---0 0 0---1
X, = : , X, = e e e e e S B
0 0---1 1 -0
i 0 0---1 0 1---0

’
X1
X2

: ’
X=1.1 Xig = (@isn Zigas* " 5 Tz,

Xye
p;. = ([l), pé = (P,’ TI)’ P, = (Pl’ P2" " s Pr)’
v = (71’ Tos " * %5 Te)s Bs = (ﬂl’ /32’ Tt /31;),

that is, X, is re X 1, Xpis re x (r + ¢), Xgis re X p, xj; is 1 x p, By is
I x1,BisI X (r+c)p'isl xr,visl x ¢, Bsgis 1 X p.
We want to test the hypothesis

(10.3) Hy:p'=P" = (B, B%, B), B2 = (", %),

that is, no restrictions on the parameters, and the null hypothesis
(104) Hy:p' = PB* = (B}, B, B5), BZ =(p*,0), or +¥=0,
that is there are no column effects.

Note that the rc X (r 4+ ¢) matrix X, is of rank r 4+ ¢ — 2, since the
row and column effects are essentially restricted to satisfy [cf. Anderson
and Bancroft (1952), Kempthorne (1952)]

(10.5) pr+pet+--+p=0, 7T t+7m+---+7.=0.

The new parameters for the second set of the partition, taking (10.5)
into account, are given by

0o me(f)=or=(§ 22
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where v, = s * * 5 7-n) Y2 = (as” % Vace-n), and Gy and G,
are respectively the r X (r — 1) and ¢ X (¢ — 1) matrices

1 0--- 0 1 0--- 0

0 1--- 0 0 1--- 0

G, = R B G, = e e e
0 0... 1 0 0...

_1 _1..._1 _1 _1..._1

For the second set of the partition, we find

1 0--- 0 1 0--+« 0
1 0--- 0 0 1--- 0

. - c
1 0--- 0 -1 -1 —1
0 I--- 0 1
0 I--- 0 0 1 0 c
(10.7) X,G = 0 I--- 0 -1 —=1----=1 ,
-1 -1 -1 1 0 0
-1 -1 —1 0 1 0 c
-1 =1 -1 -1 -1 -1
S —~— g N— — -
r—1 c—1 ;
where X,G has rc rows and r — 1 + ¢ — 1 columns,
2c ¢*++¢c O O0---0
c 2¢-+-+¢ 0 0---0
- - . . - ] . . - - - r—l
c C"'zc 0 ...0
P ’ {0 0---0 2r r---r
(10.8) G'X5X,G = G'SyG = 0 0--+0 r 20 +-r o
0 0---0 r r---2r

e’ e e’
r—1 c—1
109) XX,G=85,6=00,0,0, 1x@—1+c=—1D
(10'10) x:;xzc = S32G = (x1~ — X,., Xo. — Xp, " " 5 Xpp T X,.5
Xy — X Xg— X "% Xy X.c)s

where X, = X; + X+ * * + Xipo Xy =Xy; + X5+~ + Xp and
SpGisap X (r — 1 + ¢ — 1) matrix.
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We also find that
(10.11) Xixl = Sll = rC, Xixs = Sls = X_'_,

where X =x;; + Xjp+ -+ X+ +X,, and x| is a 1 xp
matrix,

r [/
(10.12) X3X3 = Sy = _21 jZl XiXij»
4= -
where Sg; is a p X p matrix,
(10.13) Xl'_y = ..,
wherey. =y + ¥+ -+ ¥+ + Yo
Y. — Y,
Yo — Y.
Nl o Yra. — Yr yrow)
10.14 G'Xoy = = ,
( ) o Ya—Y. (ycol
Yo — Y.
Y1 — Y-c

where ¥, =yn + Yo+ "+ Yo Yi=Yi+ Yoi+ " "+ Y
y;ow = (yl‘ — Y Yy — ?/r‘)’ y;ol = (y-l =Y " Y —y-c)’
(10.15) Xy =Xp¥nu + XY + -+ X+ 0+ X

where X3y is a p X 1 matrix.
Since under H, the estimates of the parameters are given in (5.20), we
proceed to find the other matrices needed:

(10.16) Sﬁ'l = G,SZ2G -— G,82ISﬁ1812G = (?) g)’
2c ¢---¢

where C is the (r — 1) x (- — 1) matrix | € 27" "¢ | and R is the
c ¢ -2

2r r---r

=1 x—=Dmtrix| " ¥ 7",
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r C 1 ,
(10.17) S:B,l = S33 —_ SmSﬁlSls =.Z1 .leiix:'i - X. ;.-Z.x"
t=19=
= Z Z (x;; — X)(x;; — X'

t=1 =

.1
where X = — x.,,
re

(10.18) 532'1 = SazG — S:nSﬁISlzG = (Xl. -— X,.., X2. -— X,.., sy
Xpo1o = Xpoy Xog = Xogy Xog — Xopp * ° 5 Xopg — X)),
(10.19) Sgg.1p = Sz3.; — S321S5215m1

S -1 ’
=2 2 ddy—(ddy o d, 1)(Co Rgl) d._,.

d;. d;
r e . .

= Z zdz‘:d:':'"(dl-' - +d,,.)C? - |—-@dy - cd PR

i=1j=1

[4 [4
dr—-l- d'c—l
r ¢

= .zl z zidzi rowC~1xrow - XéolR‘IXCOI,
i=1j=1
where d; =x; — X, d,. =x,. — x,.,d;, =Xx; — X,
Xow =18 -d ), X =0, -d.y)

Y. — Yr.

(]O 2()) x2 Wy = G’ x2y G Szlsl lxly — yr—l-: Y, —_ (;:ro:v)’

=1 — Y-e
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(10.21) X3,y = Xiy — SuS5* X}y

r ¢ 1 r ¢
= Z D Xy — X.—y..= 2 3 XYy — §),
i=1j=1 re

i=1j=1
where rcj = y..,

(10.22) X3...Y = X3.0Y — Sa2.1S2uXoaY = 2 D XY — 7)

Y. — Y, \

t=1j=1
cC1t 0 Yoy = Y-

—d."‘d,.,_.d."'d.c- ( ~) 1 ?
(1 1 ¥-1 1) 0 R Yoy — Yo

-1 — Y.e

Y1 — Y
=i§1 chlxﬁ(?/ii -9 —@@.---d.,)C
1~ Y
Y1 = Y-
—(dy- - rd R ‘
Yer1 = Y-

r ¢
= .zl .zlxii(yi:‘ -9 - x;owC~IYrow - X',:olR_ly col*
i=1j=

It may be shown that (see problem 11.4)

r—1 11
o er _27\
1 r—-1 1
(10.23) =V " o T}




where C! and R-! are respectively (r — 1) x (r — 1) and (¢ — 1) X

(¢ — 1) matrices.
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c—1 11
cr cr cr \

1 ec—1 1
-1 _—— —_——
R = cr cr cr ’
1 1 c—1
cr cr cr
1 < 1
’ — — ’ ’
xrowc xrow == .zl X; X;. ——X.X..,
1=
c
’ -1 ’
colR xcol—- z X X.; — —X.X.,,
j=1
o L5 1
xrow " Yrow = = XY —— XY,
Ci=1 re

, 1 1
xcolR~IYcol = ; z XY.i— ";X..y..,

j=1

Thus, under H;, we get from (5.20) the estimates

(10.24)

B; = Ssa12X3.12Y5

where Sg.1, is given in (10.19) and Xj3.,,y is given in (10.22),

i /yl- ~ Y. / d;.
. _(C* 0 Y- — Y | — r—1-

(102) ¥= ( 0 R_l) Ya =Y d,
L -1 Y- dfc“l

that is '

VERE2 d. \ ]

H=C1 . -1 - 18
i \yr_l- - Y, ST

Bs

-
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[ [ y1—Y.. ' Y
Y. =R : -1 - |8}
L Y1 — Yee deaf
1= C W ¥row — XrowPs), ¥2 = R (Yoot — Xealfy),
(10.26) B, = ric(y.. — x..B3y).

We now have [see (5.21)]
(10.27) A¥SP! = y'X,S;'Xqy + yX29S2iXzay 4 B3Suse B,
where y'X;S5:'X1y = (y..)*/rc,

Y = Y» \
Y X21S2nXsay = @1 — Yr* * *Yr1. — ¥, )C?
Y. — ?/r-)
{ Ya _ Yee
+ W1 =Y " Yo — Y IR
\y'c—l — Y.

= Y1owC Yrow + YeorR ™ Yeots
and f is given by (10.24) and Sys.15 by (10.19). [See (10.46).)
The original row and column effect parameters are estimated by
(10.28) =G, A =G.y¥,,
where G, and G, are defined in (10.6) and ¥, and ¥, in (10.25).
Under H,, instead of the matrix G in (10.6) we have only the matrix
G,, and the matrix X, is now given by the rc X r matrix
1 0---0
1 0---0

1 0...0
0 10
0 1...0
(10.29) X=f - - - -
0 1---0
0 0---1
0 0---1
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Instead of (10.7), under H, we have

1 0--- 0
1 0- 0
0 1- 0
(10.30) xie, =] ° U 0]
—1 —1---—]
-1 —=1---—=1

where X2G, has rc rows and (r — 1) columns; instead of (10.8), under H,
we have

2c ¢ "¢

(1031) GXIXIG, = GS&G, =| ¢ %€ "¢ r—1;

r—1
instead of (10.9), under H, we have
(10.32) X;X2G, = S%,G, = (0,0, - -, 0), 1 X (r—1);

instead of (10.10), under H, we have

(10.33) XiX3G, = S»G; = (X;. — X,.* * "X 1. — X,.) = X[o»

where S3,G, isa p x (r — 1) matrix; instead of (10.14), under H, we have
Y1- =Y

(10.34) G X%y = - = Yrows
r1- = Y

instead of (10.16), under H, we have

(10.35) S2,.1 = C;

instead of (10.18), under H, we have

(10.36) S, = (X. — X,.* * Xpp. — X)) = X5
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instead of (10.19), under H, we have

d..
(10.37) S§3-12 = .Zl jZl dd;, — (dy.- - -4, )C?
d_,.

= z z diid:'J - xl"owc—lxrow;

i=1 j=1

instead of (10.20), under H, we have

Yi- — Y-
(10.38) XZ.y = . = Yrows
Yra1- — Yr.
instead of (10.22), under H, we have
Y- — Y,
(10.39) X% 12y = Zl Zl XYy —F) — (@dy. -+ -d;)C?
1 J= .
Yr1. — Y-
r [
=z z zj(yu x;owc-ly row*
t=1 j=1
Thus, under H,, we get as the estimates of the parameters, instead of
(10.29),
(10.40) B3 = S331:X3 1Y,
where S%.,, is given in (10.37) and X% ,,y in (10.39); instead of (10.25),
(1041) | g = (%),
[ Y. — Y, d:’l ]
where Yl c1 . - : Bizi = C—l(yrow _erWBg);
L Yr1- — Y d;'-—l .J

instead of (10.26),
(10.42) 3= "“(3/ - x pa),
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instead of (10.27),
(1043) R¥s?f? = y'XIST'XYy + y'X3,S50XEy + B2SE...62
where yYXiSH X}y = (y..)%/re,
Y. — Y.

Y X31551 X531y = 1. — ¥, - "Ypa. — Y, )CH

, Yra1. — Y
= ¥1owC Yrow
and B is given by (10.40) and S,.,, by (10.37).
The original row and column effect parameters, under H,, are estimated
by

(10.44) pP=Gf}, =0
With the foregoing values, we now have
(10.45) G J(H,, Hy = B'S'A! — p¥s?pe

where (rc — 1 —r+ 1 —c+ 1 — p)é® = y'y — f*S'f3!
=((r — )(c— 1) — p)é*
We summarize the foregoing in the analysis of variance table 10.1.
J(H,, Hy) = (¢ — 1)F, where F has the analysis of variance distribution

with ny = ¢ — 1 and n, = (r — 1)(c — 1) — p degrees of freedom under
the null hypothesis H, in (10.4).

TABLE 10.1
V::ea:loon Sum of Squares _ D.F.
Hi104)  prsge= YL 4y couy, 4 EShf r+p
Difference  y Ry, + 9:1;'533-129:13 - 93' Sga-mﬁg c—1
= G2J(H,, H,)
1'qlAl (y )2 — —1
H,:(10.3) B S Q = == + ViowC Wrow + YeaRYeo1 r+c +p
+ Bi'Shs12f}
Difference y'y — BUS'A' = (¢ — 1)(c — 1) — p)&* r—1c—1)—p

Total Yy re
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In particular, for the usual two-way table with no regression, that is,
@3 = B2 = 0, table 10.1 yields the analysis summarized in the analysis of
variance table 10.2. :

TABLE 10.2
V:;iea:ioon Sum of Squares D.F.
Mean (y.)frc = *J(H,, Hp 1
Rows YiowC Wrow = *N(Hp, Hy r—1
Columns  y, Ry = 6%/(Hg, Hy) c—1
B (yr:-)z Yrow + YoolR oot = 63J(H, HY)  r+c—1

2
, o

Difference y'y —

— YrowC ¥row — YoolR Yeor (r=c-1
= (r — D(c — 1)é*

rc

Total Yy rc

It may be shown that [see (10.23) and problem 11.5]

, LY ¥
(1046) YiowC Ypoy = 3 7 — T,
. Sy Y
YeaR ly col =j§1 "r—’ — ';;

Note that here the alternative hypothesis H, may be expressed as the
intersection of three independent hypotheses, H, = H, N HgyN Hg,
where H, is the hypothesis that x4 # 0, Hpg is the hypothe51s that p # 0,
and Hg is the hypothesis that ¥ # 0. Against a null hypothesis H,,
p=0,p=0tv=0 wesee that

J(H,, Hy) = J(H,, Hy) + J(Hg, H,) + J(H¢, Hy),
where J(H,, Hy) = F(my = 1, n, = (r — 1)(c — 1)),
f(HR, H)=@—DFn=r—1,n=(—)c=—1),
J(Hy, Hy) = (¢ — DF(ny = ¢ — 1, ny = (r — D(c — 1)),
JH, H)Y=@F+c—DFmy=r+c—1,n,=( — 1)c — 1)),

where F(n,, n,) has the analysis of variance distribution with »n, and n,
degrees of freedom under the null hypothesis.



THE LINEAR HYPOTHESIS 251

For p =1, we get from (10.23), (10.19), (10.24), (10.37), and (10.40)
the following values for use in table 10.1 in addition to those in (10.46)
(see problem 11.6):

’ 1 - i .o
(10.47) X[, C X o = 3= — =2
i=1C rc
¢ A2 2
- Z, x..
XeaR X g = ==,
j=17T re
x’ C_l - ixi- g x..
TOW row -~ - = T
i=1 C rc
x x
’ -1 _ iS5 .
xcolR ycol_z — T
j=1 T rc
r ¢ 272 r xz 2 ¢ xz xz
1 -— 2 . i oF
Shu=3 S - -3T4Z 3R
i=1j=1 rc i=1C re j=17T rc
r [ r
z Z z xz yz < xjyj z y
LY i - Z -
91 — i=14=1 i=1 C j=1 T rc
r ¢ r A2 2 2
Z 2 x;. ¢ x.; x
S Sat-3t_$hig T
i=1j=1 i=1C j=17r rc
r [ r x?.
S2 = xz -—_ __z_’
33-12 )
r [ r xy
J1
D 2Ty — 2
g2 __i=lj=1 i=1 C
3= 2
r [4 r x
2 i
> dah—3—
i=1j=1 i=1C

11. PROBLEMS
11.1. What is the distribution of J(H;, H,) in (4.3) if the null hypothesis is
not satisfied? [Cf. Anderson (1958, p. 107).]

11.2. Show that S§!S;,Sz}, = Sii'sS1:Sz, where the matrices are defined in
(5.6), (5.7), (5.8).

11.3. Give the specification of the matrices X*, #* for the hypotheses H,,
x=23,4,6,7, in section 8.

11.4. Confirm the results given in (10.23).
11.5. Confirm the results given in (10.46).
11.6. Confirm the results given in (10.47).
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11.7. Verify that the asymptotic behavior of the minimum discrimination
information statistics in chapter 10 is in accordance with the results of
chapter 5.

11.8. Show that
(@) J(Hy, Hy) in table 5.2 is equal to (n — p)r2,. . /(1 — r.,. ..,), where
ry.2. . .p is the multiple correlation of ¥ with z,, - - -, z,.

(b) J(H,, Hy) is an estimate of J(1,2) in (7.18) of chapter 9 for a sample
of n observations.

11.9. Suppose that table 5.1 applies to a sample of n + 1 observations, that
is, the ¥’s and 2’s are centered about their respective sample averages, and that
g=p—1. Show that here J(Hy, Hy) = (n — p)ri.os. . .p[(1 — r2os. . .0),
where r;.04. . ., is the partial correlation of ¥ with z,.

11.10. Show that Bl in (7.7) may also be expressed as Ql = SiitoX1. -2y, Where
Su.2 = Sy — S158%'Sy and X1, = Xj — S;,:85'Xs.



CHAPTER 11

Multivariate Analysis;
The Multivariate Linear Hypothesis

1. INTRODUCTION

In this chapter we examine tests of linear hypotheses for samples from
multivariate normal populations, thus extending the analyses of the
previous chapter. In the next chapter we apply the general ideas to the
analysis of samples from multivariate normal populations under hypotheses
on the covariance matrices and on the means other than those included in
the linear hypothesis. The treatment in this chapter is not intended to be
exhaustive, and has wider applicability than to the specific casesconsidered.

2. BACKGROUND

Suppose two simple statistical hypotheses, say H, and H,, specify
respectively the means of n k-variate normal populations with common
covariance matrix £ = (o), i,j=1,2,- * -, k. For n independent
observations (1 X k matrices or vectors), one from each of the populations,
(2.17) in chapter 9 becomes (n, =ny =+ - -=n, = 1,r = n)

@) 2K1:2;0,)=J(1,2;0,) =tr Z7(8,8; + - - - +3,8)),

where §; = u! — p?, with 2, « = 1, 2, the one-column matrices (vectors)
of means of the ith population under H,, and @} = (@, M2 * *» Bz
i=1,2,-+-,n (This was still further specialized in section 2 of
chapter 10.)

3. THE MULTIVARIATE LINEAR HYPOTHESIS
3.1. Specification
For the ith observation, we have the regression model

3.1 z; =y, — Bx, i=1,2--n,
253
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where Z:- = (zz'l’ iy " " % zz’k,); y: = (yﬂ’ Yior * * % yikz)’ X:- = (xz'la Li2»

* "xikx)’B = (ﬂn)’r= ]’ 2’. : "k2’s = l’ 2’° - "kl’ kl < n, k2 <n’
B of rank min (ky, k,). We may also express the n regressions in (3.1) as
the one over-all regression model

(3.2) Z=Y — XB,

Where Z’ = (zl’ Zz, R zn)’ Y’ = ()'1, Yz, v .’ yn)’ x’ = (xla xz’ "t ', xn),
with Z' and Y’ k, X n matrices and X’ a k; X n matrix.
We assume that:

(@) the z, are independent normal random k, X 1 matrices (vectors)
with zero means and common covariance matrix Z,

) thex,;;i=1,2,--+nj=1,2,-"- - k), are known,

(¢) X is of rank k,,

(d) B = B! and B = B? are parameter matrices specified respectively

by the hypotheses H, and H,,
(e) the y; are stochastic k, X 1 matrices, and E\(Y) = XBY, E(Y) =
XB¥.

Under the foregoing assumptions (2.1) becomes

(3.3) 2/(1:2; 0,) = A1, 2; 0,) = tr Z7Y((B'x, — B?x,)(B'x; — B%,)’
+ - - - 4+ (Bix, — Bx,)(B'x, — B%x,))
= tr Z-}(B! — B)(x;x; + * * * + x,x, }(B! — B%’
= tr Z-1(B! — B>)X'X(B! — B?)'.
As in chapter 10, we shall see that suitable specification of the matrices
X and B provides the appropriate model for many statistical problems of

interest. [Cf. Anderson (1958, pp. 211-212; 215-216), Roy (1957, p. 82),
Wilks (1943, pp. 245-252).]

3.2. Linear Discriminant Function

We generalize here the presentation in section 5 of chapter 9. Suppose
we take w; = @'y, = o)y + Y+ - F 4 Yu,i=1,2,- - -, n, the
same linear compound of the y’s for each observation. Since the w’s are
normaly distributed with o}, = a'Za, (3.3) yields for the w’s [cf. (5.2) in
chapter 9]

34) J1,2;w
_ a/(Blx; — B?x,)(B'x, — B*x;)a + - - - + «'(B'x,— B%x,)(B'x,— Bx,) a
- a'Za

_ o/(B! — BI)X'X(B! — B%)'a
- a'Za
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For the linear compound maximizing J(1, 2; w), we find (by the usual
calculus procedures) that a satisfies (B! — B)X'X(B! — B?)a = 1Za,
where 4 is the largest root of the determinantal equation

(B! — BYX'X(B! — B2’ — AZ| =

The rank of (B! — B)X'X(B! — B?)’ is not greater than min (k,, k,);

thus the determinantal equation has p < min (k,;, k,) nonzero roots

designated in descending order as 4, 45, - - -, 4,. We thus have

(35 J1,2;0)=tr Z (B —B)X'X(B' — B =1, + A4, +- - -+ 4,
= J(l’ 2; )'1) + - - +J(l’ 2; )'p)

where 4; = J(1, 2; 4,) is the value of (3.4) for a associated with 4 = 4,.

4. THE MINIMUM DISCRIMINATION INFORMATION
STATISTIC

We first state some facts about estimates of the parameters B and Z of
section 3.1. [Cf. Anderson (1951, pp. 103-104; 1958, pp. 179-183),
Lawley (1938, pp. 185-186), Wilks (1943, pp. 245-250).] The classical
least squares procedure of minimizing tr Z'Z = tr (Y’ — BX'Y(Y — XB')
with respect to the f,, leads tc the normal equations:

4.1) XXB' =X'Y, or BXX=YYX, B=(@4,)=YXXXL

The B,, r=1,2,- - -, kg, s =1, 2, - -, ky, (kyk, linear functions of the

¥’s), are normal, minimum variance, unbiased, sufficient estimates of the
B..- These properties are derived in section 10, as is also the fact that the
covariance matrix of the k k2 values of f,, ordered as fyy, s, * -, P,

ﬂ21’ : szl ﬂk,l’ ‘ ﬂk,k is the k2k1 X k2k1 matrlx

X' X)?  gp(XX) - - - oy (X'X) T
42 @ x-@x)yt = | aEPT onXX)T oy XX

O'k,1(x X)™! O'k,z(x’x) de. Gk,k,(x’x)_l

where (Z) x -(X’X)~! means the Kronecker or direct product of the
matrices [MacDuffee (1946, pp. 81-88), see also Anderson (1958, pp.
347-348), Cornish (1957)]. An unbiased estimate of £ with (n — k;)
degrees of freedom is obtained from
(n— k) =22 = (Y — XBY(Y — XB) = YY — BX'XB'
=YY — (Y'X)X'X)(X'Y).
(See problems 12.15 and 12.16.)

’
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The minimum discrimination information statistic is obtained by
replacing the population parameters in I(1:2) by best unbiased estimates
under the hypotheses. (Details on the conjugate distribution of a
multivariate normal distribution are in sections 2 and 3.1 of chapter 12.)

Suppose the hypothesis H; imposes no restriction on B and the null
hypothesis H, specifies B = B%. Writing B! to indicate the solution of

(4.1) under H,, we have
(4.3) 2[(H,:H,; 0,) = J(H,, H,; 0,) = tr Z-{(B! — B)X'X(B' — B?,
where
(n—k)& =212 = (Y - XBY(Y - XB") = Y'Y — BIX'XBY
=YY — (YX)X'X)"{(X'Y).
Statistics of the form in (4.3) were introduced by Lawley (1938), Hotelling

(1947).
In section 10, we also show that

44 tr z_l(B - B)X’X(B —B) = (311 el STTRIRIEN Blk, - ﬂu,’ T

311 - ﬂn
311:, = P,
31:,1 — B " Bk,k, - ﬂk,k,)((z_l) X -(X'X))
Bk,l — Bra
6 - ﬁk,k,

Since the inverse of the covariance matrix in (4.2) is the direct product of
the inverses of the matrices, that is, (@ x - XX))l= (27 x-X'X),
[MacDuffee (1946, p. 82)], we see from (4.4) that

(@) The divergence [2I(1:2; O,)] in (3.3) is equivalent to that between
two k kz-variate normal populations with respective means (£3;,- - -,
By - »Biw 5 Pix), «=1,2, and common covariance matrix
(&) x - (X’X)-1 (see the remark at the end of section 3 of chapter 10).

(b) The right-hand side of (4.4) is the quadratic form in the exponent
of the k,k,-variate normal distribution of the 8,,, r = 1,2,- - -, ky, s = 1,
2, - -, k,, with the covariance matrix replaced by an unblased estimate
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with (n — k,) degrees of freedom. J(H;, H,; 0,) in (4.3) is therefore a
form of Hotelling’s generalized Student ratio (Hotelling’s T2).

Lawley (1938) has essentially shown that for k; # 1, k, # 1, and n
large, approximately,
klkz(n - kl)

(4.5) J(Hy, Hy; 0,) = tr 27(B! — BOX'X(B! — By = —LE— Fi
4 TRy T Re

where F has the analysis of variance distribution under the null hypothesis
H, with degrees of freedom n, = [(1 + c)kk,] and n, = [(1 + c)}n — k,
— ks + 1)}, where ¢ = (k; — 1)k, — 1)/(n — k;), and [ ] means to the
nearest integer. When k; = 1, or k, = 1, (4.5) is exact. [In (4.4) of
chapter 10, k, = 1, k, = p.] Pillai (1955) has shown that, approximately,

(4.6) J(H,, H,; 0,) = tr £-1(B! — B)X'X(B! — B

— kyko(n — ky)
n'—kl'_kz'—l+2/k2 ’

where F has the analysis of variance distribution under the null hypothesis
H, with ny = kk,and n, = ky(n — ky — k, — 1) + 2 degrees of freedom.
In accordance with the asymptotic theory, J(H,, H,; O,) is asymptotically
distributed as y® with k,k, degrees of freedom. [Cf. Anderson (1958,
p- 224).]

On the other hand, under one of the alternatives, (4.5) still holds but F
now has the noncentral analysis of variance distribution, with the same
degrees of freedom as under the null hypothesis, and noncentrality
parameter J(H,, H,) = tr Z-Y(B! — B)X'X(B! — B?)’. In accordance
with the asymptotic theory, J(H,, H,; 0,) is asymptotically distributed as
noncentral y2 with k,k, degrees of freedom and noncentrality parameter
J(H,, Hy) when the null hypothesis is not true. [For the noncentral
distributions see, for example, Anderson (1958, pp. 112-115), Fisher
(1928), Fix (1949), Hsu (1938), Kempthorne (1952, pp. 219-222), Patnaik
(1949), Pearson and Hartley (1951), Rao (1952, p. 50), Simaika (1941),
Tang (1938), Weibull (1953), Wijsman (1957), and section 6.1 of chapter 12.]

5. SUBHYPOTHESES

5.1. Two-Partition Subhypothesis
Suppose we partition the parameters into two sets, and instead of (3.1)
we now consider

-1y z;=y; — BX —BXp, i=12,"1n,
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where X} = (Xy;; X3:), X33 = @, Tiy * * * Tig)s Xoe = @iy~ 5 Zigyia):
q1 + g2 = k;, B = (B;, By, with B, and B, respectively k, x ¢, and
ks x g, matrices. We may also express the n regressions in (5.1) as the
one over-all regression model
(5:2) Z=Y - XB —X;B,
where Y, Z are defined as in (3.2), and
X, * %, X ). ¢
X = e = (5750 = (),
(XI xn) (xﬂ’ T ‘xzn X2

with X] = (Xy;, X33, * * *, X3n)» X3 = (Xaz, Xp9,* * *, Xa,,), and X; and X,
respectively of ranks ¢, and g, = &, — ¢;.

With the same assumptions about the z; as in section 3.1, we now
consider the hypotheses:

Hy:E(Y) = X,B} + X,B}

G Hy: E(Y) = X,BY + X,BY.

Now (3.3) yields
(54) 211:2;0,)=J1,2;0,)

- () - (% )~ (2 ) -»

The normal equations (4.1) under H; become

where

53) LBD (0 5%) = (%, YX,),
or
(5.6) Bllsu + Bészl = Y'XI

BiS). + B3Sy = Y'X,.

From (5.6) we find [cf. (5.7) and (5.8) of chapter 10]
(5.7 B = Y'X,,Szh  Bi=YXSi' - BiSxSih,
where X,., = X, — X,;S;'S:2, S221 = Sz2 — SuS1'She-

For the estimate of Z we have from (4.3)
(5.8) (n— k)E = Y'Y — (B, B;)(gz g:) (g%)

Suppose, now, that in particular we want to test the null hypothesis
(5.9) Hy:B = B® = (B, 0),
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that is, B} = 0, with no restrictions on B}, against the alternative hypothesis
(5.10) H,:B = B! = (B}, B)),

with no restrictions on the parameters.
Under H, we have (5.7) and (5.8). Under Hj the normal equations
(4.1) now yield

(5.11) BiS, =YX, B=YXS;L

We estimate J(1, 2; 0,) in (5.4) by replacing the parameters by best
unbiased estimates under the hypotheses, so that

1 __ B3y
(5.12) J(H,, Hy = tr £-1(B! — B2, BY) (2 212:) ((B1 B;’Bl))'

From (5.7) and (5.11), we find [cf. (5.10)<(5.13) in chapter 10]
ll
513 @, 8y(Se Sue)(BY) _ prg gy L pis, By
Sm Sz,/ \ B}
= Y'X,S;:'X1Y + Y'X,.,SzLX;.,Y,

(5.14) (B! — B2 B (521 g:)((ﬁiﬁ—gﬁg)') = BIS,,,B}

(5.15) J(H,, Hy) = tr £1B1SBY — tr £-1835, BY.
It may be verified that
(5.16) X,S5' X X,.,85%4 X5, = 0,

and since X3.,X,., = Sy.;,
(5.17) @, — XiSii'X] — X318%1X2.0X218%1X2q1 = 0,

where I, is the n x n identity matrix, that is, the two factors in J(H,, H,)
are independent.
The foregoing is summarized in tables 5.1 and 5.2.

TABLE 5.1
Variation due to Generalized Sum of Squares D.F.
HyB*= (B}, 00  B{S,Bf = YX,S;'X]Y @
Difference BlS,.. B = Y'X,,S:X;.,Y 92
Hy;:B'= (B}, B)  B'X'XB' = Y'X,S;/X{Y + Y'X,,S5 X;.,Y ky
Difference Y'Y — BIX'XBY = (n — k)2 n—ky

Total Y'Y n
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TABLE 5.2
Test Distribution on the Null Hypothesis

J(H,, H, __ kikon —ky) B = £
=1tr£)‘131X'XBr j(Hl’Hg)—”—kl—kz'i'lF’ Bi =0,B;=0
m = [kiky(1 + ¢))]
ny= [(n — ky — ky+ D(1 + ¢yl
¢, = (ky — Dky — Df(n — kp

j(H 5 Ha) = qzkz(” - kl) B=RB= (Bgs 0),
=1 tr £-181S,, B’ i, By n—k —k,+ 1 F ie,Bi=0
n = [goks(1 + cp)]
ny = [(n — ky — ky + 1)1 + c)]
Cg = (g2 — Dy — D/(n — ky)

5.2. Three-Partition Subhypothesis

(Cf. section 5.2 of chapter 10.) When the subhypothesis requires
partitioning the matrices X and B into three submatrices, X = (X;, X,, Xj),
B = (B,, B,, B;), we obtain from (4.1) the solutions

(5. 18) Ba = Y'X3 .125:;5.112

B, = (Y'X;, — B3S;5,0)S54
Bl = (Y'XI - stzl - Basal)sl_lls

where
1 Siz Sis
S = Sm 822 S% N Stu = X;Xu, t, u= l, 2, 3,
1 S S
and
Sys2 = Sszn — S3215215e1,
Sszq = Sss — SuSii'S1a Sse1 = Sgz — SuSi1'S1 = Sizas
Sez1 = Sz — $u811'She, Y'X,, =YX — X;8;'Sw),

Y'X3'12 = Y,(x3-1 - X2-lsz—2}lsz3-l)s lea-l = Y,(x3 - Xlsl—.ilsla)
We also have [cf. (5.21) in chapter 10]

(5.19)  BSB' = Y'X,S;X;Y + Y'X;,854X5.Y + BsSss10B;
= Y'X,S5X.Y + Y'X,..B; + Y'X5.,83,

where the last version is convenient when the data are raw observations
and z,; = 1 for all i. (See problems 12.11, 12.12, 12.13.)
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6. SPECIAL CASES

To illustrate sections 3, 4, and 5 we examine several interesting special
cases.

6.1. Hotelling’s Generalized Student Ratio (Hotelling’s T%)

Suppose we have a random sample of n independent observations from
a multivariate normal population, and we want to test a null hypothesis
H,, specifying the population means, against an alternative hypothesis H,,
that the population means are not as specified. (See section 3.1 of
chapter 12.) ‘

The matrices in the regression models (3.1) and (3.2) are specified by

nBll ﬂzl

Bu i
(6.1) H:B=B'=| |, H:B=B=| |,

/37.-,1 /312:,1

xi=(l)s X,=(ls ls' ST l)s
with X’ a 1 x n matrix. We find that X'X = n,
ny,
ni,

YX=y3+Yy+  +Y.=ny=| |}

ny=Yu+Y+ e i=L2 ke
The normal equations (4.1) thus yield

B}l %
_ .BZI g2

(6.2) =1 =] |=7
Bia Fr,

and [see (4.3)] ‘
63 m—-DE=YY —njy = (gl(y,-,- — 7)) W — 37,))

=NSm,, N=n—ls j31=1323"'sk2s

where S,, is the k, X k, unbiased covariance matrix of the y's.
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Since B? is specified, (4.3) yields
(6.4) J(H, H,) = tr £ — Bn(y — BY)' = n(j — B'S-Y§ — BY).

Note that J(H,, H,) is Hotelling’s generalized Student ratio (Hotelling’s
T?) (see section 4 in this chapter and section 4 in chapter 10), or from
(4.5) with k; = 1,

(n— Dk

7 _ 2
(6.5) Ty, H) = S 2 F

where F has the analysis of variance distribution with n, = &, and
n, = n — k, degrees of freedom under the null hypothesis H, in (6.1).
[Cf. Anderson (1958, p. 107), Rao (1952, p. 243).]

6.2. Centering

[Cf. (5.14)<5.19) in chapter 10.] We may explicitly introduce the
mean value of y; in (3.1) by takingzy =1,i=1, 2, - -, n, so that the
matrix X’ of (5.2) is partitioned as

l l PR .l
Tig Top * ° "Ly ,

66) X' =1 ' ’ = (x}),xi= 4L, 1 xXn
. . . X,

Tike, Tor, " ° * Lok,

As in (5.14)-(5.17) in chapter 10, we have then that

n nZy: * - nZ
nt,
67 XX = (xi)(x X,) =
. = x; 1 2] = S22 ’
nZ,
Sll = ns Slz = (ans Tt njkl)s

Spey = ( :l(x,-,- — )z, — :7:,)) = NS,

=2k, N=n—1,

)

(S, is the (k; — 1) X (k; — 1) unbiased covariance matrix of the z’s)

X;1 =X, — X;S5'S;, = ((xii - 5’:'))’ i=1,2-"n j=2,3"" k.
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We also find, as in (6.1), and from (5.11), that [cf. (5.18) and (5.19) in
chapter 10]

h
Ys
(6'8) Y,XI = (yls Yo, - yn) : = ny =n : ,
1 Yr,
Bl =7,
h
9.

Y'Xz-l p— Y'Xz — . (3’;2, ja, RN ikl)

Y,
= (zl(llij — Jlx, — 531)) = NS,
j=l,2,..'sk23 1=2,3,“‘,k1,

(S, is the k, X (k; — 1) unbiased covariance matrix of the y’s with the
x'’s, with S, = S, ).

For the partitioning given by (6.6) the analysis summarized in table 5.1
becomes table 6.1.

TABLE 6.1
Variation due to Generalized Sum of Squares D.F.
]N{I:aans = (B2, 0) BiS,BY = nyy’ 1
Difference BlS,, B} = Y'X,,S::X;.Y ky — 1
H,:B! = (B}, B) B'X'XBY = n§¥’ + Y'X3,5%1X51Y k,
Difference Y'Y — BIX'XBY = (n — kD2 n—ky
Total Y'Y n

If we center the &’s and «’s about their respective sample averages, the
analysis in table 6.1 may be condensed into table 6.2. J(H,, Hy =

_ (ky — Dkgo(n — ky)

Ntr£-1§ S-S, = e S F, where F has the analysis of




264 INFORMATION THEORY AND STATISTICS

variance distribution with [(k; — 1)ky(1 4 ¢)] and [(n —ky — k, 4+ 1)(1 4 ¢)]
degrees of freedom, c = (k;, — 2)(k, — 1)/(n — k,), under the .null
hypothesis B = B? = 0. [J(H,, H,) is asymptotically distributed as »2
with (k, — 1)k, degrees of freedom.]

TABLE 6.2
Variation due to Generalized Sum of Squares D.F.
Multivariate regression NS,.S;lS,, ky — 1
Difference (n— kl)z n—k,
Total NS, n—1

More generally, if we center the ’s and z’s about their respective sample
averages, the analysis in table 5.1, for what is essentially a three-partition
subhypothesis, would be similar except that n would be replaced by n — 1
and k, by k; — 1 and of course ¢, + ¢, = k; — 1.

6.3. Homogeneity of r Samples

Suppose we have r independent samples respectively of n, i=1,
2, - -, r,independent observations, from multivariate normal populations
with a common covariance matrix. We want to test a null hypothesis
H,, the r population mean matrices (vectors) are equal, against an alter-
native hypothesis H,, the population mean matrices are not all equal.
[Cf. (6.15)-(6.24) in chapter 10.]

For the ith sample the regression model is [cf. (3.2)]

(6.9) 2,=Y,—XB,
where
Z; = (Zy, Zigy " "5 Zin,)s 2 = (Zi1s Zijes* " s Ziieghs
Yi=as Yoo * %5 Yins Yis = Wis Yires* > Y
;=11 I xn,  Bi=(u B Ba)
i=12,+" -, rsamples, j=12,- -, n; observations.

The alternative hypothesis is

(610) HI:B]{' = (ﬂil’ nBiZ’ Tt .Bikz)’ i = ls 23 YA
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and the null hypothesis of homogeneity is
(6.11) H,:BY =B = B Bos® ﬂ-k,), i=1,2-+-r

We may write the regression model for the r samples combined, under
H,, as

(6.12) Z=Y —X'B',
where
Z' = (Z,, Z;’ c 2y, Y = (Y}, Yo, r - 5, YY),
X, 0---0
0 X'z. « -0
Xt = ’ B! = (B, B, - -, B,).
0 0---X

Under H,, the regression model for the r samples combined is
(6.13) Z =Y — X*B?,

where Z and Y are defined as in (6.12) and X¥ = (X}, X5, - -, X)),
B2 = B..
We thus have under H,

X;X, « e 0 ny 0--:0
X; X, .. .
614 xXxt={ - - = - -}
0 c .. XX, 0 O0---n,
(6.15)  Y'X!' = (YiX,, YoX,,* - -, VX)) = (mFy, no¥e0 -+ 5 ¥,
‘where §; = (§a, Figo * * > Tue) ni¥u =Y + Y+ * + Ying-
The normal equations (4.1) are

n, 0---0
6.16) |0 ™0 ) = g e nFD
0 0---n,

or

(nlﬁl’ ”zﬁm A nrﬁr = (ndl’ noYs, © ° °» n.y.)
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that is, B, = §,, From (4.3) the estimate of X is

6.17) (n — N = Y'Y — BIX'X'BY
=Y:,I.Y1+. : '+Y;'Yr

n - - -0
_(yl,yz,. . .,yr)(. . )
0::-n

=7

b1

=/

Yr
=YY, — 3§ + - - - + VY, — n33,
= NS, +-* -+ NS, = NS,
where N;=n;~ 1, n=m+n+---+n, N=N+N,+- - -+
N, = n — r,and S, is the unbiased covariance matrix of the %’s within the

ith sample.
Under H, we have

(6.18) Xz'X2=X1X1+‘”+X,'.x,=n1+n2+"'+n,.=n,
(619 YX*=Y:iX; +Y;X,+- - -+ Y X, =n§, +n¥, +- - - +nJ,

= ny,
Y =017 - "g-k,)’ nj.. = mby + ny, + -+ - -+ ngy,
I= 1,2,' . ‘,k2.
The normal equations (4.1) now yield
(6.20) nB. = ny.
We therefore have [cf. (2.17) in chapter 9]
6.21) J(H,, Hy)
B, - B
nl 0"'0 (Bz—B.),
.. .0 .
~tr &8, —B,8,~ B, - B, —B)[° "7
0 0 « o . nr .
(Br - B-),
= tr £1(n,d,d; + - - - + ndd})
= tr S7IS*,
where d; = §;, — ¥, S is defined in (6.17), and §* = ndd; + - - - +ndd,
is (r — 1) times the unbiased covariance matrix of the 7’s between samples.
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Note that
B, — By
n 0---0 .
(6.22) (BI—B,,---,B,_B')(-
0 0--+n, :
B, — By
B
n 0---0 .
=(Bl,...,Br)(. . . ) . —nB.Bf
0 0---n, ;
B;

= BX"XIBY — BIXEX2BY.
We may write [cf. (6.6) in chapter 10]
(6.23) J(H,, H,) = tr 21BXVX'BY — tr £-1B2X¥X2B?.

The foregoing is summarized in table 6.3 (cf. table 6.2 in chapter 10).

TABLE 6.3
Variation Generalized Sum of Squares DE.
due to
Hz:B' nyy/ 1
Difference, , ,
between md,d, + - - -+ ndd, =S* r—1
H]_:Bi n]_i]_y],_ + « o o + nryry; -
Difference, YY—ng§ — - —ngy.=NS -+ +NS,=NS n—r
within 1¥1)1 5.5,
Total vy .

Writing table 6.3 in the usual analysis of variance form, we have table
(r — Dky(n — 1)
— tr S-1§* =
6.4. J(H,, Hy =trS7IS — s
of variance distribution with [(r — Dk,(1 +¢)} and [(n—r —k, +1)(1 + c?]
degrees of freedom, ¢ = (r — 2)(k, — 1)/(n — r), under the nu}l hypothesis
H, of (6.11). Asymptotically, J(H,, H,) is distributed as y* with ky(r — 1)

F, where F has the analysis
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degrees of freedom. [Cf. the direct derivation in Kullback (1956, section
5).] For r = 2 see problem 12.14 and Anderson (1958, pp. 108-109),
Rao (1952, pp. 73-74).

TABLE 6.4
Variation due to Generalized Sum of Squares D.F.
Between ndd + - - -+ ndd, =S* r—1
Within NS;+ '+ 4+ N,S,=NS n—r
Total Y'Y ~ nyy’ n-—1

Statistics of the form tr S=1S* were first introduced by Lawley (1938)
and Hotelling (1947, 1951). The asymptotic behavior of the distribution
of this statistic was investigated by Ito (1956), who gives the percentage
points of the distribution as an asymptotic expression in terms of the
corresponding percentage points of the y*-distribution with (r — 1)k,
degrees of freedom.

6.4. r Samples with Covariance

Suppose we have r independent samples, respectively, of n;, i = 1, 2,

+ -, r, independent observations, from multivariate normal populations
with a common covariance matrix. We shall examine some hypotheses
more general than those of section 6.3.

6.4.1. Test of Regression. Suppose we want to test a null hypothesis H,,
there is no linear regression, against an alternative hypothesis H,, there
is a common linear regression in the r samples.

For the ith sample the regression model is [cf. (3.2), (6.9)],

(6.24) Z, =Y, - X;B; — X,B,,
where Z,, Y, are defined in (6.9), ‘
Xo=00,1,--51, I1xn, By=0BaBa By
X = (X5 Xip, " * 5, Xin,)s X = @y * - 7, xia’k,),
i=1,2,- - -, rsamples, j=1,2,-+ -, n; observations,
Bo=0Bx)» P=12"" "k, ¢=23 "k
The alternative hypothesis of a common linear regression is

(6'25) HI'B];I’I. = (ﬁ}ll’ ﬂ:::21a Y ﬂ}kzl)’ B12 = (ﬂm)a
’ P=la2"'.ak2a q=2’3a..'ak1’



THE MULTIVARIATE LINEAR HYPOTHESIS 269
and the null hypothesis of no regression is
(6.26) H z:Bﬁ = (ﬂ?n, ﬂ?zp T ﬂ?kg), B% = 0.

We may write the regression model for the r samples combined, under
H,, as

(6.27) Z =Y — X'BY — XIBl,
where Z and Y are defined in (6.12),
X, 0---0
0 X, 0
X{=| o X = (X Xae L X0,

0 0 - X,

B{ = (Bila Bély R Bll ’ Bé = B-2'
Under H,, the regression model for the r samples combined is
(6.28) Z =Y — X!B?,

where Z and Y are defined in (6.27), X =X}, and BZ = (B3, B3,,: - -,B2).
We thus have [cf. (6.14)]

np 0---0

1'yv1 2'y2 0 ny---0 1 2

(6.29) XXiXxi=XiXxj={. .° . . |= Su = St
0 0---n,
X1 X1, mX;
X1 Xo0 nyXs

(6.30) XX = : =| |=5skL

XX nX,

where nX;=Xj; + Xig + - * * + X, = (@i Tiz 0 Tik)y Tip = Ty
+ Ty + 0 0 Ty

(6:31) Y'Xi = (YiXy, YXa, - + - YiX,) = (mFy, maFo,* + > m§) = Y'X5,
where ¥, is defined in (6.15),

(632) YX;=(Y X+ YXe+"- +YXy)= Z

i=1j=

=(Z Sytfﬂi;u), t=1,2,- kg u=2,3,:" "k

i=1j=1

ng
7
YiiX;
1
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(6.33)

xéq = X; - XiS};ISiz
X;2 Xy, O
Xo0 0 Xo
X, 0 0

- f
X2 — XX

Xz — XuXo

- f
xr2 - xrlxr

T112 — Ty

Tine — T12 ZTypg — T3 °
To13 — Zog

Ta12 — Zag

Tz — T3 *

© Tak, — Tax,

T xl"lkl - xlkx

ZTonz — Tag Topg — Tog* °

Lri2g — Tpp

xr”rz—x’? xr"ra—x,a"

L1z — Zpg *

* Ton, — Ty,
X (k,—1)
) xz”zkl - xzkl

* Zpk, — Tk,

’ xrn,.kl = Ty,

that is, X3., is an n X (k; — 1) matrix of the z’s centered about their

respective sample averages.

(6.34)

From (6.33) and (6.31) we have
Y'Xz1 =YXy, — YiXu% + -« - + Y X, — VX, %,

- =/

= Y],.x12 - nlyli],. +: -+ Y;xrz - nY.X,
= lelvx + ctt + Nrsr'yx = NS‘VZ’
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Whel'CNi =ni - 1,N= Nl + N2 + D + Nf’siﬂzisthek2 X (kl - 1)
unbiased covariance matrix of the y’s and z’s within the ith sample, and
Sy = Sey
(6.35) Sk = X2 X = X1oXps + X5 Xoo + - - - + XX,

' = Syss + Sgee +* * * + Sy,

where Sizz = x:‘2xi2a i=1, 2, YL

X3
%2
(6.36) Sk., = SL, — SLSL'SL = SL — (n,%,, m%,, - * - nx)|
%,

= (Size — Mm% X) + * - + (S — nX,X)),
=lel:w+ -+ NS, = NS,

where S, is the unbiased covariance matrix of the z’s within the ith
sample.
From (5.7) and (5.11) we have

(6~37) Bi = Y,xé-lségl’ Bi = (5'1, Ym Tt yr) - é(il’ ’-‘2’ Tt ir)a
B? = (yl’ yz, R yr)
From (5.8) and (5.13) we have
638) n—k+1—-nNE =YY —nyji —- - - —njJ§, — BiSL. B
= Nsw - B%ngl ga
where NS,, = N;S,,, + * - * + N,S,,,,and S,,, is the unbiased covariance
matrix of the y’s within the ith sample [cf. (6.17)].

TABLE 6.5
Variation due to Generalized Sum of Squares D.F.
H,:(6.26) my ¥, + - - -+ n3.y, r
Difference BiS,l.Bl = NS,S_’S., ky—1
H,:(6.25) myi§y + + * -+ n 5, + BiSpaBy kh—1+r
Difference NS, — 2Bt = (1 —ky; + 1 — ng n- kh+1—r

Total Y'Y n
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We summarize the preceding analysis in table 6.5 (cf. table 5.1).
. (kg — Dkyo(n — — '
J(H,, H,) = tr £-1BISL, Bl = (nl— kll)_:(’; — /:1—+k: m ;) F, where F
has the analysis of variance distribution with {[(k;, — D)kx(1 + ¢)] and
[(n — ky — kg — r + 2)(1 4+ c)] degrees of freedom, ¢ = (k; — 2)(ky, — 1)/
(n — ky + 1 — r), under the null hypothesis H, of (6.26). Asymptotically,
J(H,, H,) is distributed as y2 with k,(k, — 1) degrees of freedom.

6.4.2. Test of Homogeneity of Means and Regression. If instead of the
null hypothesis H,, there is no regression [see (6.26)], we want to test a
null hypothesis that there is no regression and the means are homogeneous,
against the alternative hypothesis H; in (6.25), then we must examine the

null hypothesis Hj
(6.39) Ha:B?i = Bfl = (ﬂ’ll’ 6.21, st ﬂ-k,l)’ B'32 = 0'

The results under H, are those derived in section 6.4.1. The results
under H, are similar to those in section 6.3 under H,, that is,
(6'40) Xi’ = (xila xél_a Y x:'l)a
Sh=X{X{=XuXu+ " +XXpy=m+- - -+n=n,
YIXi = Yixn + ¢ + Y:.x,.l == nlyl + nzyz + e + n,.y,. = ny,
nB.; = ny.
We summarize the analysis covering H;, H,, Hj in table 6.6, where S},
is the matrix S* in table 6.3 (to show its relation to the ¥’s). J(H,, Hy) =

TABLE 6.6

Variation due to Generalized Sum of Squares D.F.
Hy:(6.39) nyy’ 1
Difference mdd; + - - -+ ndd, =S} r—1
H,:(6.26) my ¥y + ¢ - -+ 3§, r
Difference BiSL, Bl = NS,.S_’S., ky— 1
H,:(6.25) my, ¥, + - © - + ny,5, + BiSh, B ky—1+4r
Difference NS,, — BISL Bl = (N — k; + & N—k +1

Total Y'Y n
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—_1Q 1c1 @1y _ (ko +r—2)ky(N — ky + 1)
tr £-1(S*, + BiSL Bl = e p——
the analysis of variance distribution with [(k; 4+ r — 2)ky(1 + ¢)] and
(N — ky — ky + 2)(1 4 ¢)] degrees of freedom, ¢ = (ky + r — 3)(k; — 1)/
(N — ky + 1), under the null hypothesis H; of (6.39). Asymptotically,
J(H,, H,) is distributed as y2 with (k, + r — 2)k, degrees of freedom,
tr £-1S%,, with (r — 1)k, degrees of freedom, is a test of the homogeneity,
and tr £BISL, B, with (k; — 1)k, degrees of freedom, is a test of the
regression.

6.4.3. Test of Homogeneity, Assuming Regression. Suppose we assume
that there is a common linear regression in the r samples. We want to
test a null hypothesis of homogeneity of the sample means. The alterna-
tive hypothesis is H, in (6.25), and the null hypothesis is

6.41) H4:Bﬁ = Bf1 = (ﬂ-n’ ﬂ-zp Tt ﬂ-k,l)’ B‘-iz = (ﬁ:q)’
p=1,"-,k2, q=2,"',k1-

F, where F has

The results under H, are those derived in section 6.4.1.
Under H, we see that [cf. (6.27) and (6.40)]

(642) X{ =Xy Xon© * 5 X0 Xo = (Xip Xap,© © -, XD),
so that [cf. (6.40)]

(6.43) Sh=n  YXi{=ny

and [cf. (6.32), (6.35)]

(6.44) S3, = Syps + Saepz +* - - + Sy, Y'X; =( > 2 yiitxiiu)’

i=1j=1
t=1,2,- - ky, u=273,---k.
We also find that [cf. (6.30)]
(6.45) XiX3 = Sh, = XuXpe + X0 X + ¢ ¢ - + XX,
= mX; + nX, + - * - + nX, = nx'.

We thus have [cf. (6.33)]
X2 Xu Xy — xu’:‘:
Xos Xn Xz — XX

646) Xi,=xi—-x8st7st, =1 | -] &K= f ’

X X X,z — XX
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that is, X3., is an n x (k; — 1) matrix of the 2’s centered about their
respective combined sample averages, and [cf. (6.34)]
(6.47) YX3, =YX, — YiX, X' +- - -+ YX,— VX, %
=YXy —mpX +- - -+ Y X, —nyX
= YiXpp+- o+ YX, — ny%’
=YiXp—mfi% +- - -+ YV X, —ny X
+myik +- -+ n§ X — nyx

’

= Nsva: + S:a:’
where S, is defined in (6.34), S}, = X n(¥; — P(&; — X)’ with S¥, = S*

x¥?
i=1
St is a ky X (k; — 1) matrix proportional to the between unbiased
covariance matrix of the y’s with the 2’s, and [cf. (6.36)]

(6.48) ng'l = S;z fad Sg:lSiI ng = ng nad nii, = 8122 + c + 87'22 nad nii,

- =/

- e/ - o
= Sjgp — mX;X; +* * -+ Sppp — XX, + X)X + - -
+ nX X, — nXx’
—_ —Ql *
- Nsa:a: + S::c - S22'1 + Sa:a:’

r

where S, is defined in (6.36) and S*, = > n(X; — X)(X, — X)".

1=

From (5.7) we then have
(6.49) Bg = YIXé‘qs‘é;p B% =¥y - éi,
where Y'X3., and S3,., are given respectively in (6.47) and (6.48).

TABLE 6.7
Variation due to Generalized Sum of Squares D.F.
H,:(6.41) nyy’ + BiS3, BY ky
Difference S* + B;S},,B) — Bis}, BY r—1
H,:(6.25) my, ¥, + -+ + n§,5 + BIS}, B} ky—1+4r
Difference NS,, — BisL, Bl = (W — k, + D& N—k +1
Total Y'Y n |

We summarize the analysis covering H, and H, in table 6.7. J(H,, H,)

. o (r=Dky(N—k;+1)
=tr£-Y(S}, + B85, By —B2S%.B2) = N klfH_ k: +1) > here F
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has the analysis of variance distribution with [(r — I)ky(1 + ¢)] and
(N—ky —ky+2)(1 +¢)] degrees of freedom, c=(r— 2)(ky — 1)/
(N — ky + 1), under the null hypothesis H, of (6.41). Asymptotically,
J(H,, Hy) is distributed as y2 with ky(r — 1) degrees of freedom.

Note that in the usual analysis of variance relation for sums of squares,
total = within + between, we may write

(6.50) Y'Y — njy =S} = NS,, + 8],

S::I:* = NSZ:I: + S:a:’
S;s = NS,, + S§.

(N —k, + D& = NS,, — NS,.S;'S,, is computed in terms of within
values, and

S}, + BiShBY — BiSL.BY = S}, — (SIrSLTSY — NS,.SL'S.,)

is computed in terms of between values and the difference between an
expression in total values and within values.

7. CANONICAL CORRELATION

We shall now examine tests of hypotheses associated with the canonical
correlations defined in section 7 of chapter 9. We shall need the analysis
summarized in table 6.2.

For the y’s and z’s centered about their respective sample averages, we
have, according to the analysis in table 6.2,

(71) j (H ) 8 Hz) = (n - kl) tr (va - szsa:_zlszv)_lsvzsa:_zlszv'

Suppose that, as in section 7 of chapter 9, we take the y’s as the second
set of k, variates and the 2’s as the first set of (k;, — 1) variates into which
a population of (k; — 1) + k, variates has been partitioned. If we write,
in accordance with the notation in section 7 of chapter 9, S, = S,,,
Sye = Sa1, Sio =Su, S,, — w:s:l:_a:lsa:v = Sy — Szlsﬁlslz = Sy,.,, then
(7.1) becomes

(7.2) J(Hy, Hy) = (n — ky) tr S54,8::S11"S10,

an estimate for the parametric value in (7.5) of chapter 9.
We may also express J(H;, H,) as (n — k) times the sum of the k,
roots (almost everywhere positive) of the determinantal equation

(7.3) |S21S11'S12 — 18524 = 0,

where we have assumed that k, < k; — 1 so that the rank of the k, X k,
matrix S,,S;7'S,, is k,.
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Replacing S,,., in (7.3) by Sy, — S,,S13S;,, we find
(7.4) |S2lsl_llsl2 — I8y, =0= ISZISﬁlslz — r2S,,|,

where /= r?/(1 —r?), r*=1/(1 +1). The r’s thus defined are the
observed values of Hotelling’s canonical correlation coefficients [Hotelling
(1936); cf. (7.11) in chapter 9].

Accordingly, we may also write (7.2) as [cf. (7.16) in chapter 9]

(7.5) J(Hy, Hy) = (n — ky) tr S51,8,S1,'Sy,
=Mn—-k)h+5L+-- '+1k2)

r 2
==k (2t o)

2
1 —r; ri,

Under the null hypothesis H,: B? = 0, the results are equivalent to
those under the null hypothesis that in a ((k; — 1) + kj)-variate normal
population the set of the first (k; — 1) variates is independent of the set of
the last k, variates, the hypothesis considered in section 7 of chapter 9.
[Cf. Anderson (1958, p. 242), Hsu (1949, pp. 391-392).] (See section
3.6 in chapter 12.)

Note that the terms in (7.5) depend only on the sample correlation
coefficients, for if the elements of the matrices S,;, S,,, S,, are expressed in
terms of the standard deviations and correlation coefficients, it may be
shown (this is left to the reader) that the standard deviations divide out and

(7.6) J(Hy, H,) = (n — k) tr Rz45R R 'Ry,

in terms of the related correlation matrices.

8. LINEAR DISCRIMINANT FUNCTIONS

8.1. Homogeneity of r Samples

The samples and hypotheses are those specified in section 6.3. We
want to examine the analysis of the linear discriminant function described
in section 5 of chapter 9 with population parameters. We seek the linear
discriminant function

(8.1) Wi = a,yia' = Y + %Y+ 0 -+ G Y,

i=1,2--rj=12-"- " n, where y,; is defined in (6. 9), that is,
the same lmear compound of the y’s for each sample.
[Cf. Binet and Watson (1956), Roy (1957, pp. 95-104).]
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We thus get for the w’s, as the estimate of the parameter in (5.5) of
chapter 9, and corresponding to (6.21),
oa'S*a

8.2 Ji -
8.2) (Hy, Hy; w) = ' Sat

The value of & for which J(H,, H,; w) is a maximum satisfies (by the
usual calculus procedures)
(8.3) S*a = /Sa,

where / is the largest root of the determinantal equation
(8.4) |S* — IS| =0,

which has (almost everywhere) p positive and (k, — p) zero roots, with
p < min (k;, r — 1). Denoting the positive roots in descending order as
11’ 12’ T /p’
8.5) JH, Hy) =tr S IS* =L+ L+ - -+ 1,

= J(Hy, Hy; 1) + - - - + J(H,, Hy; 1),
where J(H,, Hy; 1)) = I, is (8.2) for a satisfying (8.3) with / = /,.

The discrimination efficiency of the linear compound associated with /;
may be defined as (see section 6 of chapter 3 and section S of chapter 9)

J(Hy, Hy 1) _ s
j(Hl,Hz) —/1+12+' R o

(8.6) Eff. (/) =

Asymptotically, under the null hypothesis of homogeneity H, in (6 11),
we have the y2 decomposition [cf. Rao (1952, p. 373)]

8.7 JH,H;t) =1, ke — (=D +1 df.
J(Hy, Hy; 1) = 1,4 lke = (r = D] +3 df.
J(H,, Hy) =L +lL+- - +1,=trSS* ko(r — 1) d.f.

This is to be taken in the sense that /., + - - - 4+ /, is distributed
asymptotically as y% with (k, — m)(r — 1 — m) degrees of freedom, not
that /,.,,- - -, [, have asymptotic independent x2-distributions. (See
section 6.4 of chapter 12.)

8.2. Canonical Correlation

[Cf. Marriott (1952).] The sample and hypotheses are those specified
in section 7. We want to examine the analysis of the linear discriminant
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function described in section 3.2 with population parameters. We seek
the linear discriminant function

_(8.8) w, = a'yl_ = Y + Yo +4+ -4 U‘k,yik,’ i= 1, 2, -« . n,

that is, the same linear compound of the y’s for each observation.
We thus get for the w’s, as the estimate of the parameter in (3.4),
corresponding to the hypotheses and notation of (7.2),

 o/BX'XBYa a’S,,S;!S,,a
R . 1) o e———————. T — k 21 1 12
(8.9) j(Hn Hy; w) o So (n 1) a’Szz.la

The value of & for which J(H,, H,; w) in (8.9) is a maximum satisfies
(by the usual calculus procedures) [cf. (7.10) in chapter 9]

(8-10) Szlsﬁlslza = 1522.1a,
where / is the largest root of the determinantal equation
(8.11) ISzlsﬁlslz b 1522.1| = 0.

Note that (8.11) is the same as (7.4), and (8.10) is the same as
S21S1i'Spe = r*Sya.  Denoting the k, (almost everywhere) positive
roots in descending order as /, 1/, - " b, we may also write the
decomposition in (7.5) as

(8.12) J(Hy, Hy) = J(Hy, Hy3 b)) + -+ - + J(Hy, Hy; le,)s

where J(H,, Hp; 1) = (n — k)l = (n — k)ri/(1 — r¥) is (8.9) for a satis-
fying (8.10) with / = /..

The discrimination efficiency of the linear compound associated with /;
may be defined as in (8.6).

Asymptotically, under the null hypothesis H,: B = B?* = 0, we have

. the ¥* decomposition

(8.13) J(Hy, Hys b)) = (n — kphy, = (n — krEJ(1 = r2) ky —k, df.
JHy, Hys by y) = (0 = khyy = (n—kdri /(1 —rE_) kg — ko +2 df.
JH, Hy 1) = (n— k)l =(n— k)31 = rd) ky + ky — 2 d.f.
l‘g k!
JH,, Hy) =(n—- kl)_zll,- =@n- kl)_zlr,?/(l - =Dk df.

Asin (8.7), this is to be taken in the sense that (n — k)(p4a + - * * + )
is asymptotically distributed as y? with (k; — 1 — m)(k;, — m) degrees of
freedom, not that (n — ky)l,,.1, * = *, (n — ky)l;,_have asymptotic independ-
ent y2-distributions. (See section 6.4 of chapter 12.)
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8.3. Hotelling’s Generalized Student Ratio (Hotelling’s 7%)

The sample and hypotheses are those specified in section 6.1. We
want to examine the analysis of the linear discriminant function described
in (5.2) of chapter 9 with population parameters. We may treat this as
a special case of that in section 8.2 by specifying H, in (6.1) with B2 = 0
and denoting the values in (6.1), (6.2), (6.3) as

XX=nS,=n  YX=nS,=ny, YY=nS,,
n—1

1, - N
Spa=-YY—§y =—2==5,,

so that the coefficients of the linear discriminant function (8.8) must
satisfy, as in (8.10) and (8.11),

(8.14) 7o = 1%[ S,,%

where / is the largest root of

815 55 — 128, = 0= [5§ = 12~ Y'Y

Here there is just a single root [cf. Anderson (1958, p. 108)]
I=2¥S5Y,  JH, H) =@ — DI = ny'S5y = ntr S5,

the canonical correlation squared is

n _, . 1. .
Nyswly

= (V) = e (Y)Y = =
14+ Ni’S,,‘,,ly

and the coefficients of the linear discriminant function are @ = S.}'y.
[Cf. the discussion following (5.2) in chapter 9.] The linear discriminant
function is thus w = a’y = §'S;;'y, and the coefficient vector of the
linear function of the x’s, whose correlation with w = a'y yields the
canonical correlation r above, is proportional to a'B = §'S;;'y. [Cf.
Fisher (1938).]

9. EXAMPLES

We shall illustrate some of the particulars in the preceding sections with
numerical examples. The aim is the illustration of the computational
procedure, not the complete analysis per se of the problem from which
the data may have arisen.
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9.1. Homogeneity of Sample Means

Pearson and Wilks (1933) give some data from Shewhart (1931) for five
samples of 12 observations each on tensile strength, y,, and hardness, y,,
in aluminum die-castings. It is desired to test whether the sample averages
are homogeneous. (A test for the homogeneity of the covariance matrices,
to be discussed in chapter 12, leads us to accept a null hypothesis that the
covariance matrices are the same.) This corresponds to the analysis in
table 6.3 withk, =2, r=5n=n=---=n;=12,n = 60.

The five sample averages are [Pearson and Wilks (1933, p. 356)]:

Strength Hardness
¥, = 33.399 #12 = 68.49
Foy = 28216 oy = 68.02
¥3 = 30.313 Jag = 66.57
Fa1 = 33.150 Py = 76.12
¥51 = 34.269 Pse = 69.92

The elements of the matrices corresponding to the generalized sums of
squares are:

D.F. Yy A NYe
Between r—1= 4 306.089 662.77 214.86
Within n—r=55 636165 765342  1697.52
Total n—1=159 942254 831619  1912.38
that is,
S = _1_ 636.165 1697.52) _ 11.5666  30.9004
T 5511697.52  7653.42) ~ \30.9004 139.153 ’
g — (306089 214.86
—\214.86 662.77)°
4 X 2% 55

J(Hy, Hy) = tr S71S* = 56.3 = For F = 691, exceeding the

55—-2+1
0.001 point of the F-distribution for n, = 8 and n, = 57 degrees of
freedom. For 4 x 2 = 8 degrees of freedom, we find from tables of the
x2-distribution that Prob (y* = 56.3) < 0.00001. We therefore reject the
null hypothesis of homogeneity. (Pearson and Wilks use a different
statistic, denoted by L,, with observed value 0.6896 and for which Prob
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(L, < 0.6896) = 0.0000019.) To find the linear discriminant functions
for this example, the determinantal equation (8.4) is

306.089 — 11.5666/ 214.86 — 30.9004/| _

214.86 — 30.9004/ 662.77 — 139.153 | = %

and the quadratic equation yields the roots /; = 51.702, /, = 4.614.
The decomposition corresponding to (8.7) is therefore

J(Hy, Hy; L) = 4.6 3df.
J(H,, Hy; 1) =517 5d.f.

J(H, H,) =563 84d.f.

The root /, is not significant and we proceed to find the coefficients of the
linear discriminant function associated with /;. With / = 51.7 =/, the
equations (8.3) become

( —291.906 —1380.809)(a1) —o

—1380.809 —6531.445)\«,
that is, .
291.906, + 1380.809x, =0
1380.809«, + 6531.445a, = 0
yielding ay/a, = —0.211. Thus, the only significant linear discriminant

function, that associated with the root /; = 51.7, is w = y; — 0.211y,.

9.2. Canonical Correlation

Hotelling (1936) considered the following data, given by Kelley (1928,
p. 100) for a sample of 140 seventh-grade school children, in which z, and
z, refer to reading speed and reading power respectively, and %, and ¥,
to arithmetic speed and arithmetic power respectively. The data have
been normalized and the correlation matrix of the 140 observations is*

1.0000  0.6328 |  0.2412 0.0586
R 08328 10000 | 00553 006551 _ (Ru Rm)
~ 102412 —0.0553 |  1.0000 0.4248 Ry Ryn/
0.0586  0.0655 |  0.4248 1.0000
We find that

- 0.1303 0.0043
R21R111R12 = ( )’

0.0043 0.0048

* Reprinted from Crossroads in the Mind of Man by Truman L. Kelley with the
permission of the publishers, Stanford University Press. Copyright 1928 by the Board
of Trustees of Leland Stanford Junior University.
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and the determinantal equation corresponding to (7.4),

0.1303 — 12 0.0043 — 0.4248r%| _
0.0043 — 0.4248r% 0.0048 — r2 =9

yields the roots rf = 0.1556, r3 = 0.0047.
The decomposition corresponding to (8.13) is therefore

2

JHy, Hy; 1) = 137 —2— = 0.6439 1d.f.

l - rz
2
JHy, Hy; rf) = 137 - £ 5 = 252491 3d.f
- n
J(H,, Hy) =25.8930 4d.f.

J(H,, H,) and J(H,, H,; r}) are significant at the 0.005 level. There is thus
only one significant canonical correlation and the coefficients of the
associated linear discriminant function must satisfy (8.10), or the equivalent

0.1303 — 0.1556 0.0043 — 0.1556 (0.4248)\ (| _ 0
0.0043 — 0.1556 (0.4248) 0.0048 — 0.1556 ay)

that is,
—0.0253a; — 0.0618x, = 0

—0.0618a; — 0.15080, = 0,

oro,/ay = —2.44. The linear discriminant functionis w = —2.44y, + y,.
[This corresponds to the second of the pair of linear discriminant functions
in (7.19) of chapter 9.] We reject the null hypothesis that the ’s (arith-
metic speed and arithmetic power) are independent of the x’s (reading
speed and reading power). We now test the subhypothesis that reading
power is not relevant, that is, the coefficient of z, in the regressions of ¥,
and ¥, on x; and x, is zero. We therefore compute the values needed for
the analysis of table 5.1, keeping in mind the remark at the end of section
6.2.
In the notation of section 5.1 we have

y'y — (10000 0.4248 (su sm\) _ (1.0000 0.6328
= 104248 1.0000° \S, S,/ = \0.6328 1.0000)°

~ _ (02412 ~ _ {—0.0553

Y'X, = (0.0586)’ sz‘( 0.0655)’

S5, = 1.0000 — (0.6328)2 = 0.599564,
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0.2412 —0.0553) (1.0000 0.6328)!
1 = ! Xy 1 =
B = (VX)X'X) (0.0586 0.0655) (0.6328 1.0000)

_(0.2412 —0.0553 1.667878 —1.055433
~ 10.0586 0.0655/\ —1.055433 1.667878

_ (0.460658 —0.346804)
= 10.028607 0.047398)"
BI(X'X)B! = (Y'X)(X'X)-{(XY")
_ (0.2412 —0.0553) (1.0000 0.6328)—1( 0.2412 0.0586)
0.0586 0.0655)10.6328 1.0000) | —0.0553 0.0655
_ (0.1303 0.0043),

0.0043 0.0048
0.2412 . {02412 .
2 ’ -1 2 2’ __
B2 = Y'X,S;' = (0.0586)’ 2g, B — (0.0586)(0.2412, 0.0586)
_{0.0582 0.0141
= l0.0141 0.0034)"

Table 9.1 corresponds to table 5.1 and provides the appropriate
analysis. We find that
0.8697 0.4205)‘1(0.1303 0.0043)

tr 137 (0.4205 0.9952) 10.0043 0.0048

o (50 01%) (01203 0000) _
TABLE 9.1
Variation due to Generalized Sum of Squares D.F.
HB=@0 BB = (004 oons) !
Difference BlS,, Bl = (__83(7;; _883?3) 1
P D
Difference 1378 = (gﬁgg; g:‘;gg;) 137

139

.0000 0.4248
Tota? YY = (l 0.424 )

0.4248 1.0000
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which is of course the value already found in terms of the canonical
correlations, and

-1 _
tr 137 (0.8697 0.4205) ( 0.0721 0.0098)

0.4205 0.9952 —0.0098  0.0014

1 X2 x 137

=l =t

F or F=28.02,

exceeding the 0.001 point of the F-distribution for n, = 2 and n, = 136
degrees of freedom. We therefore reject the null subhypothesis that «,
is not relevant. A similar test can be made of a subhypothesis with
respect to &,, but we leave this to the reader. ’

The coefficient vector of the linear function of the x’s whose correlation
with the linear function of the y’§, w = —2.44y, + v,, yields the canonical
correlation r,, is proportional to a’B, that is [cf. (7.10) in chapter 9],

0.460658 —0.346804

(=244, 1) (0.028607 0.047398) = (=109, 0.894),

or v = —1.095z; 4+ 0.89%4x,.

9.3. Subhypothesis

Consider the following correlation matrix used by Thomson (1947,
p. 30) to illustrate the computation of canonical correlations and by
Bartlett (1948) to illustrate the relevant significance tests, assuming n = 20:

1.0 0.1 0.6 | 0.7 0.2

0.1 1.0 04 | 03 08

0.6 04 1.0 | 0.5 03 _(Rn Rm)
: R21 R22 .

................................................

We associate the first three rows with x,, z,, z;, and the last two rows
with y,, y,. Because of the relatively large values of the correlation of z,
with z, (0.6) and with x, (0.4), we want to test a null subhypothesis that x,
does not contribute significantly, in addition to x, and x,, in the regression
of the ¥’s on the z’s.

The determinantal equation corresponding to (7.4) is

05434 —r* 03210 — 04r%| _
0.3210 — 0.4 0.6693 —r2 |~



THE MULTIVARIATE LINEAR HYPOTHESIS 285

and yields the roots r} = 0.6850, r3 = 0.4530. The decomposition
corresponding to (8.13) is
2

J(Hy, HyiF) = 16 - L2 5=1328 2df.
- e

i

]l —rf

J(Hy, H,) = 48.00 6d.f.

Here all values are significant at the 0.005 level, both canonical correlations
are significant, and there are two significant linear discriminant functions.
In the notation of section 5.1 we have

10 0.1 © 06
Y’Y=<l'0 0.4)’ (Su Sl2)= 01 10 | 0,4)’

0.4 1.0 Sy S, ) =\ B
2720 N6 04 | 10
 _ (0.7 03  _ (05
YX = (o.z 0.8)’ ¥X, = (0.3)’
-1
Sppq = 1.0 — (0.6, 0.4) ((1)'(1’ (1"(1)) (8'2) = 0.523232,

B(X'X)BY = (YX)(X'X)}(X'Y)
-1
07 03 o5\ (L0 01 0.6\-1/0.7 02
=02 o0& o03){01 10 04) {03 o038
= 00 P9 \06 04 10/ \os5 03

_(0.5434 0.3210
= 103210 0.6693)°

, 0.7 0.3\/1.0 0.1\71/0.7 02
2 2 _ vy -ly'y
BiSuBY = YX,Si'X;Y = (0.2 0.8) (0.1 1.0) (0.3 0.8)

_ (05434 0.3212
= 103212 0.6545)°

Table 9.2 corresponds to table 5.1 and provides the appropriate analysis.

tr 16 0.4566 0.0790)\71/0.5434 0.3210
0.0790 0.3307 0.3210 0.6693

—0.5457 3.1543)10.3210 0.6693

Ix2x16
=4800="1°""__F F = 17.50,
48.00 6341 or

2.2845 —0.5457\/0.5434 0.3210
=trlé
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exceeding the 0.001 point of the F-distribution for n, = 7 and n, = 17
degrees of freedom. J(H,, H,) = 48.00 is also the value obtained by the
use of the canonical correlations.

tr 16 '0.4566 0.0790\-'/ 0.0000 —0.0002
(0.0790 0.3307 —0.0002 0.0148
1 X2 %16
=075 = ————e = 0.
16—2+1F or F=0.35,

not exceeding 3.683, the 0.05 point of the F-distribution for n, = 2 and
ny, = 15 degrees of freedom. We therefore accept the null subhypothesis
that the x, variate contributes no significant information.

TABLE 9.2
Variation due to Generalized Sum of Squares D.F.
mwoaie  mesi- (0002
Difference BiS,, B} = (_8% _83(1)2‘;') 1
R
Difference 162 = (8338(6) gg;gg) 16
Total Yy = ((‘):g ‘1’13) 19

To carry out the test of a similar subhypothesis on the pair of variables
Z,, X3, WE have:

1.0 { 0.1 06
Sn Slz) _ ~ (0.7) ~ (0.3 0.5)
(Szl S, \ 0.1 1.0 04) Y'X, = 0.2) Y'X,= 0.8 03)°
0604 1.0
1.0 04 0.1 0.99 0.34
Sepr = (0.4 1.0) - (0.6) 0.1, 0.6) = (0.34 0.64)’

e e 0.7 0.49 0.14
stll % = Y Xlslllle = (0.2) (0.7, 0.2) = (0'14 0.04)-
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Table 9.3 corresponds to table 5.1 and provides the appropriate analysis.

TABLE 9.3
Variation due to Generalized Sum of Squares D.F.
H,:B? = (B, 0) B3S,,BY = (gﬁ g:é:) 1
Difference BIS,,..B} = (8?;?3 gég;g) 2
- @By BXXE = ((h0 o) 3
Difference 162 = (83;2(6) 82;(9)(7)) 16
Total YY = ((l)g ?3) 19

tr 16 (0.4566 0.0790\)‘1 (0.0534 0.1810)

0.0790 0.3307 0.1810 0.6293

= 30.54 = %32(:2_5)—(-}_-1—? F or F=1.15,

between 4.772 and 7.944, the 0.01 and 0.001 points of the Ig'-distribution
for n; = 4 and n, = 16 degrees of freedom. We therefore reject the null
subhypothesis that both x, and x; are not relevant.

Finally, if we consider a three-partition subhypothesis on the 2’s, then
in the notation of section 5.2 we have:

Su Sz Su 1.0 0.1 06
Sa Sz S| ={01 10 04), Sy, =10—(0.6)?=0.64,

Sy S; S, 0.6 04 1.0
532.1 = 0.4 -_— (0.6)(0.1) = 0.34, 522'1 = 1.0 — (0.1)2 = 0.99,
0.34)(0.34
.533.12 = 0.64 - S%a—_) = 0.523232,

{03\ (07). .. _ (023
Y'Xz1 = (o.s) - (0.2)(0'1) = (0.78)’

Y, = (g:g) - (8})(0-6) = (g:(l)g)’
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o (008 [(023) 1 0.0010
Y X512 = (0.18) - (0.78) 095 039 = (—0.0879)’

0.7 049 0.14
’ -1y’ —
Y'X,SiXjY = )(0.7, 0.2) = (0'1 1 0.04),
0.0534 0.1812)

’ -1y —_
Y'X,,SzhXz,Y = (0.78 0.1812 0.6145)’

555 023, 0.78) = (

0.0010\ 1
0.0879) 0.5232
_( 0.0000 —0.0002
= \—00002 0.0148)

Because of (5.19) we summarize these results and tables 9.2 and 9.3 in
table 9.4.

o
0.23)
(-

Y'X;.1.S52:X5.,Y = (0.0010, —0.0879)

TABLE 9.4
Variation due to Generalized Sum of Squares D.F.
v otore (049 0.14
% YX Sy XY = (0.14 o.04) 1
el 0.0534 0.1812
Tz Y'X51Sp21XpY = (0.1812 0.6145) ‘
ool 0.0000 —0.0002
T3.12 YX3-128331-12X3-12Y = (_00002 00148) 1
o roron_rore _ {0-5434 03210
B YXXX)XY = (0.3210 0.6693) 3
. 0.4566 0.0790
Difference 162 = (0.0790 0.3307) 16
(10 04
Total Y'Y = (0.4 1.0) 19
0.4566 0.0790\-1/0.49 0.14) _
tr 16 (0.0790 0.3307) (0.14 0.04) = 1746 2d.f.
0.4566 0.0790\~1{0.0534 (0.1812
= 29. d.f.
tr 16 (0.0790 0.3307) (0.1812 0.6145) 2.1 2
0.4566 0.0790\~1/ 0.0000 —0.0002
= 0.75 2d.f.
tr 16 (0.0790 0.3307) (—o.oooz 0.0148) 0
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10. REPARAMETRIZATION

10.1. Hypotheses Not of Full Rank

(Cf. section 9 of chapter 10.) Suppose that the components of the rows
of B in (3.1) are not linearly independent, but, for each row are linear
functions of the same p < k, parameters, that is,

(10.1) B =TIG,

where I' = (yij)’ Gl = (gjk)’ i= 1’ 2,"',kz, .]= 1’ 2" : ',P, k= 1’
2,+ - -, ky, G'is of rank p < k;, and T of rank min (p, k;). This implies
that the matrix X in (3.2) is of rank p < k;, and conversely, so that X’'X
is now a positive (not positive definite) matrix of rank p < ky, is therefore
singular and has no inverse, so that we must re-examine the solution for
B in (4.1). We may write (3.2) as

(10.2) Z=Y —-XGI'=Y — AT,

where A = XG is an n X p matrix of rank p. The least squares estimate
of T is derived from the normal equations [cf. (4.1)]

(10.3) FPAA=YA o TPGXXG=YXG
The estimate of B is obtained from B = I'G’, or
(10.4) B = YXG(G'X'XG)G'.
From (10.2) and (10.3), we see that
' = YAA'A)! = (Z + TAYA(A’A),

so that E(f') = T and EB) = E()G’' = I'G’ = B, that is, I’ and B are
unbiased estimates of I and B respectively.
Corresponding to (4.3), we have

(10.5) J(H,, H,; 0,) = tr £1(I" — THA’A — T2y
= tr &Y — M)G'X'XGI" — I?Y
= tr 2B — B)X'X(B! — B?)

where (n — p)£ = Y'Y — [MA’ATY = Y'Y — BIX'XBY.

Note from (10.3) that BX'XG = Y'XG represents k,p linear functions
of the y’s that are normally distributed and that are also linear functions
of the f’s. These are unbiased estimates of the same linear functions of
the f’s. Since BX'XG = Y'XG = I'G'X'XG, we may make similar
statements about the »’s and their estimates. Consider now any other
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set of kyp linear functions of the y’s, say Y'L, where L is an n X p matrix
of rank p. Since

(10.6) E(Y'L) = E(Z' + BX')L = BX'L = TG'X'L,

Y'L is an unbiased estimate of I' if G'’X'L = I,, the p X p identity matrix.
To obtain the covariance matrix of the linear functions of the y’s we
proceed as follows. Instead of the partitioning of the matrix Y’ given
for (3.2), consider the partitioning

&
44
(107) Y, = . ’ c; = (yu" !/.:,, T ynj)?
G,
so that
gL
LL
(10.8) YL=|
&L

with §JL a 1 x p matrix representing p linear functions of the » observed
values of the jth y variable. Considering the pk, X 1 matrix

L'g,
B R e
(10.9) B

LG,

the covariance matrix of the pk, linear functions in (10.8) is

L cov (§EL L' cov (§E5L - - - L' cov (§4; )L
1010) | LoV EEIL L cov(BLIL - - - L cov (G, )L

L' cov (GEL L' cov (GGIL - - - L' cov (§.8)L

L'oyl,L LoglL - - - Loy LL
LIOZII"L L,0221nL ot LIOM’I"L

Llok’II,,L L’Ok!c_,l,,L s Llok,k,InL
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OnL'L olzL,L ot Olk’L'L
oglL'L ozzL'L + - oy L'L
0paL'L 04 L'L- * - 03, L'L
= (&) x-(L'L),
with I, the n X » identity matrix and Z the covariance matrix of the y’s.
The notation (Z) x -(L'L) means the Kronecker or direct product of
matrices [defined by the last two members of the equality, MacDuffee

(1946, pp. 81-88), see also Anderson (1958, p. 347), Cornish (1957)], and
(&) x -(L'L) is a pk, X pk, matrix. Similarly, writing

et GAA'A)
{2 CA(A'A)
(o.1y P=f.|= : = Y'A(A’A),
=G Pin 5 P0)
., G AAA)
and con51dermg the pk, elements of I in their order in the 1 x pk, matrix
(f1- ¥ * *» §1,), we have for the estimates in I' the covariance matrix

(A A Ao LAA'A) - - - (A'A) A0y, LLA(A'A)™?

(10.12) (.A’ )—IA'ole A(A' )—1 . .- (A A)—IA'oz,, I A(A A)—1
(A'A)‘IA'o,‘ aln A(A'A)—1 - (A A)—IA'a,r xJnA(A’ A)"1
on(A'A) op(ATA)T - - s oy (ATA)T
' A)-1 IR 'A)1
021(A A) 0. (A ) o 0.21(,(.A é) ] — (2) X '(A'A)_l

Ga(NAYT Gy AAT T - - oy (A
= (@ x-(GX'XG)7,
a pk, X pk, matrix. Similarly, writing

B1
B2

(10.13) B= ’ Q; = (Bn’ ,3;2, M) Bik,)’
B,

we get for the k,k, elements of B the covariance matrix

(10.14) (2) % -(G(G'’X’XG)1G).
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From lemma 54 of chapter 3 with k =n, r=p, B=g,1,, i=1,
2, + -, kg, I, the n X n identity matrix, C = L, U = G'X’, UC = G'X'L
=1

P

(10.15) 0,L'L = 0,(G'X'’XG),

where (10.15) means that any quadratic form with matrix o, L'L is greater
than or equal to the quadratic form with matrix 0,(G’X'’XG)~). From
(10.15), (10.12), (10.10), and lemma 5.1 of chapter 3 we conclude that the
variances of the components of I' are the smallest among all linear
functions of the y’s that are unbiased estimates of I'. Similarly, Y'LG’
is an unbiased estimate of B if G'X'L = I, and as above, we may conclude
that

(10.16) 0,GL'LG’ = 0,,G(G'X'’XG)"'G/,

from which we infer that the variances of the components of B are the
smallest among all linear functions of the y’s that are unbiased estimates
of B.

The value of J(1, 2; 0,) and its estimate is the same for any repara-
metrization, as is indicated in (10.5). Since there are only p linearly
independent linear functions of the elements of a row of B, any one such
set of p linearly independent functions may be derived from any other
such set by a nonsingular linear transformation. The information
functions are invariant under nonsingular transformations (see section 4
of chapter 2, and also section 3 of chapter 9), hence our conclusion.

We show that the elements of I are sufficient estimates as follows.
For the model in (10.2), take I'* = 0 for convenience; then

(10.17) J(,2;0,) = tr S1TA'AT".

We have seen that (¥, ¥, © * -, ¥&,) are normally distributed with mean
(Y Y2 * > Yx) and covariance matrix (Z) X - (A’A)~%. Since the
inverse of a direct product of matrices is the direct product of the inverses
of the matrices [MacDuffee (1946, p. 82)], we have

Y1
Yz

(1018) J(1,2;B) =t (&) x- @A) b ve o vi)
Y,

ky ka by Rk . ,
=3 YoitrA’Ay,Y;=2 2 o'yA’Ay.

i=1j=1 i=1j=1
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But
n
Y
TAAT = | JAAK, Yo' - 5 V)
Y,
Y1IA'AY; YiA'AY: - - - Y A'AY,,
Y AAY Y A'AY: 0 YA'AY,
so that
N
(10.19) trZ-'TA'AT" = ) 3 olyiA’Ay,,

i=1j=1

and since ¢/ = ¢’*, we have from (10.19) and (10.18),
(10.20) J1,2;0) =J1,2; D).

From theorem 4.2 of chapter 2 we conclude that I' is a sufficient estimate.

Example 10.1. Using the data in section 9.2, that is,

£t = 37 (L4450 —05106)

v _ (1.0000 0.6328
—0.6106 12628 XX = ( )

.0.6328 1.0000
we have

E x -(X'’X)

'1.0000 0.6328 1.0000 0.6328
l°4450(0.6328 1.0000) —0-6106(0.6328 1.0000)

_ 1.0000 0.6328 1.0000 0.6328
0.6106 (0.6328 l.0000) 12628 (0.6328 1.0000)

1.44500000  0.91439600 —0.61060000 —0.38638768

— 137 0.91439600 1.44500000 —0.38638768 —0.61060000
- —0.61060000 —0.38638768 1.26280000 0.79909984 |-

—0.38638768 —0.61060000 0.79909984 1.26280000

We find that

137(0.460658, —0.346804, 0.028607, 0.047398)

1.44500000  0.91439600 —0.61060000 —0.38638768 0.460658
0.91439600 1.44500000 —0.38638768 —0.61060000 } § —0.346804
—0.61060000 —0.38638768 1.26280000  0.79909984 0.028607
—0.38638768 —0.61060000 = 0.79909984 1.26280000/ \ 0.047398

1.4450 —0.6106)(0.1303 0.0043) _
—0.6106 |.2628) (0.0043 0.0048) = 25.8930,

= 137

= 137tr (
verifying (10.19).




294 INFORMATION THEORY AND STATISTICS

10.2. Partition

When the hypotheses call for a partitioning of the parameters into two
sets, for example as in (5.2), it is possible that linear relations exist among
the rows of the parameter matrix in one of the partitioned sets only.
Here it is necessary to apply the procedures of section 10.1 only to the
partitioned set not of full rank. Thus, suppose that in (5.2) the n x ¢,
matrix X, is of rank m < ¢g,. This implies [cf. (10.1)] that

(10.21) B, = I'G},

-where Ty = (y;;), G1=(gu), i=1,2, + ko j=1,2,-+ \,m k =1,
2,* * ¢, Gyis of rank m < ¢q,, and ', of rank min (m, k,). The results
of section 5.1 are applicable if B, and B, are replaced in the various
formulas by I'; and '] respectively, X, by X,G,, and (n — g,) degrees of
freedom by (n — m) degrees of freedom. The estimate B, is obtained
from B, = £,G;. Thus, for example, S;, in (5.6) is to be replaced by
G;:S1,G,, where S;; = XiX,, and S,, by G;S,,, where S, = X;X,.

Similar remarks also apply for a partitioning into three sets as in section
5.2, when one of the sets may not be of full rank.

11. REMARK

The reader doubtlessly has noted the similarities between the argument
and results in chapters 10 and 11. As a matter of fact, we shall now
indicate how the multivariate analogue of an analysis of variance table
may be derived from that corresponding to appropriate specification of the
linear regression model in (3.1) of chapter 10.

Consider the multivariate regression model (3.2), Z =Y — XB'".
With &’ = (g, @, * - 7, a,,’) any real 1 X k, matrix such that at least one
of the «’s is not zero,

(11.D Za = Ya — XB'a,

derived from (3.2), is equivalent to the regression model in (3.1) of chapter
10, by setting

(11.2) 7= Za, y = Ya, B =Ba.

Replace y by Ya, and any specification of 8 by the corresponding B'a,
in any of the sum of squares columns in the analyses tabulated in chapter
10, or derived by the methods of chapter 10. The results are quadratic
forms in the «’s. Since the relations among these quadratic forms are
identically true in the o’s, we have the corresponding generalized sums of
squares columns for the multivariate analogue with the matrices of the
quadratic forms of the a’s. This is evident if we compare table 5.1 in
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chapter 10 and table 5.1 in chapter 11, recalling that k, in chapter 11 is
p in chapter 10 and ¢, in chapter 11 is g in chapter 10.

Similar remarks apply to the reparametrization, since from (10.2) we
have

(11.3) Za =Ya — XGI'a,
which is equivalent to (9.2) of chapter 10 by setting,
(11.4) z=12Za, y = Ya, Yy =Ta, A = XG.

12. PROBLEMS

12.1. Derive the normal equations (4.1).
12.2. Verify (5.16) and (5.17).

12.3. Verify (5.18) and (5.19).

12.4. Verify (7.6).

12.5. In section 9.2 test the null subhypothesis that the coefficient of z, in
the regressions of ¥, and ¥, on z; and z, is zero.

12.6. Consider the following data from a problem discussed by Bartlett
(1947, p. 177); herer =8, k; =2, n=n + - - - + ng = 57,

498 = ( 136,972.6 58,549.0) S* = ( 12,496.8 —6,786.6)
58,549.0 71,496.1/° ~ \—6,786.6 32,985.0/°

(a) Are the eight samples homogeneous?
(b) Compute the value(s) for the significant linear discriminant function(s),
if any.

12.7. Consider the following correlation matrix, assuming n = 20:

1.0 05 03 ; 08 08
0.5 1.0 04 | 07 03
R=[03 04 10 | 02 01 =(Ru Rn)_
! Ry Ry
0.8 07 02 | 10 0.5
08 03 0.1 | 05 10

Carry out an analysis similar to that of section 9.3.

12.8. Foster and Rees (1957, p. 241) give the following sample unbiased
covariance matrix based on 82 degrees of freedom:

1303 577 490 | 383  —1.95
577 1236 833 | 3914 —44.75

s=10+| 4% 833 1188 | 2838 -3095) ~ (Su Su)
383 39.14 2838 | 22936 —261.52 2
—195 —4475 —3095 | —261.52 38831

If the first three rows are associated with x,, x,, z3 and the last two rows with
%1, Yo, are the regressions of ¥, and y, on z,, Z,, % significant?
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12.9. Verify (4.4) with the data in section 9.3 assuming B = 0.

12.10. Cornish (1957, p. 25) gives the following matrices [I have redesignated
them according to the notation in (4.4); this does not imply the same interpre-
tation for Cornish’s problem]:

B=0, B=| 0.022898 0.000619
—0.089651 —0.001473

~ _ ( 1752654 —7223850
XX = (—722.3850 19855.5000)’

( 1138.265050 —161.151320 215.304630)
-1 — .

( 0.072948 —0.000524)

—161.151320 534.296632 —125.495288
215.304630 —125.495288 199.183242

Cornish (1957) computed the value of the right-hand side of (4.4) as 950.06.
Verify by computing the value of the left-hand side of (4.4).

12.11. In the notation of section 5, show that:

(@ XiXy, = 0. ,

(b) XzXz.l ? 522.1 = Xz.IIX2.1. L

() B} = Y'X,.,S3} = Z'X,,5% + B

" (d) The covariance matrix of the kg, elements of B} is (Z) x -(Sz2,).
(e) x:’;-xzxa-,xz =Sgp .

(f)Bs=Y X3.128512 = Z'X34,S5.12 + B,

(g) The covariance matrix of the k,g; elements of B; is (Z) X - (Sz10).
(h) ISJ = lsul ) lSzz-xl : lssa-le-
() X3.,X3.42 = 0.

12.12. Summarize section 5.2 in a table similar to table 5.1, with H,:B! =
(B}, By, BY), H,:B? = (B, B}, 0), H;:B* = (B}, 0, 0).

12.13. Develop the results corresponding to section 5.2 for a four-partition
subhypotbhesis.

12.14. In section 6.3, for two samples r = 2, show that:

n«n - - - -\’
(@) S* = Py ;_2”2 5y — 92)F — §2)-
() J(H,, Hy) = tr S-18* = —22_ (5, — §,)'SXF, — ¥»).
ny + ny

(ny + ny — ky — Dmyny = Va—le -\
() Koz ¥ 1y = 2 F n) (¥; — ¥2)'S~X§, — §») = F, where F has the

analysis of variance distribution with &k, and n; + n, — k; — 1 degrees of
freedom. [Cf. Anderson (1958, pp. 108-109), Rao (1952, pp. 73-74, 246-
248).]

12.15. Use lemma 5.4 of chapter 3 to show that Y'Y = (Y'X)X'X)"(X"Y),
where X, Y are defined in section 3. (Note the remark following lemma 5.1 of

chapter 3.)
YY YX
XY XX

IX'X|

12.16. Show that (see section 4) |[(n — k)& =
4.6 in chapter 10.)

(Cf. problem




CHAPTER 12

Multivariate Analysis:
Other Hypotheses

1. INTRODUCTION

In the preceding chapter, we studied tests of linear hypotheses for
samples from multivariate normal populations, with the underlying
assumption that all populations had a common covariance matrix. We
shall now drop the assumption about common covariance matrices, and
also consider certain hypotheses on the covariance matrices themselves.

2. BACKGROUND

In sections 1 and 2 of chapter 9 we saw that for two k-variate normal
populations N, Z,), i = 1, 2,

(2.1) I(1:2; 0,) = nI(1:2) = K1:2; %) + I(1:2;S),

where I(1:2), I(1:2; X), and I(1:2; S) are given rcspectlvely in (1.2), (2.1),
and (2.4) in chapter 9.

Consider a sample O, of n independent observations from a k-variate
normal population N(w, Z), with mean @' = (g, pg,- - *, ) and
covariance matrix & = (0,;), i, j = 1, 2,* - -, k. The moment generating
function of the sample averages X’ = (xl, Zy, * * *, T;) and the elements of
the sample unbiased covariance matrix S = (s;;), i, j = 1, 2, - - +, k, with
N degrees of freedom, is known to be [Anderson (1958, pp. 36, 53, 160),
Wilks (1943, p. 121)]

—NR , 1,1
exp (‘l‘p. -+ -2-1: ;21:),

2) M@, T) =1, — 2%ZT

where v = (15, 70 - * &), T = () by j=1,2,- - ~, k.
For the conjugate distribution of N(u,, Z,), with mean p.* (see section 4
of chapter 3),
1,1
(2.3 I(*:2;%) = v'p* — vy, — 3 < ~ Z,7,

297




298 INFORMATION THEORY AND STATISTICS

where (cf. example 4.2 in chapter 3),
1
(2.4 p* =, + - Z,7.

[For the matrix differentiation needed for (2.4) and (2.7) see problems
10.2 and 10.3 in chapter 9, Deemer and Olkin (1951, p. 364).] From (2.4),
T = nZ&,"}(u* — W@y, and (2.3) yields

2.5) I(:2;%) = 5 (% — g Z7p* — ).
Note that I(1:2; X) > I(*:2;X) for p* =, and Z, #* X,, and that

the conjugate distribution is a k-variate normal distribution N(u*, Z,).
For the conjugate distribution of N(u,, Z,), with covariance matrix Z*,

N
(2.6) I(*:2;S) = tr TE* + = log |T, — 2%}:21‘ ,

where (cf. example 4.4 in chapter 3, see problem 10.3 in chapter 9)
1 ~1
2.7 Z* = (Ik -2 N ZzT) =,
N .
From 2.7), T = 3 (8,71 — Z*-1), and (2.6) yields
(2.8) I(*:2;S) = -]X( gl d — k 4+ tr Z*Z -1)

|2

Note that I(1:2; S) = I(*:2;S) for Z* = Z,.
Because of the independence of X and S in a sample from a multivariate
normal population, we have (cf. example 4.3 in chapter 3)

1,1
29) I(*:2;%,S)=7"p* — 7', — 3 <’ - Z,7 + tr TZ*

1
Ik - 2&22’1‘ ’

+Nlo
2 g

where © and T are given in (2.4) and (2.7) respectively, or

(2.10) I(*:2;%,S) = I(*:2; %) + I(*:2;S)
= '2—1(9* — ) T — o)

+ = (lo -I-i%‘—l—k+tr2*2—1)
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3. SINGLE SAMPLE

Suppose we have a random sample of # independent observations from
k-variate normal populations. Let X' = (&,, &, * -, &) and S = (s,),
i,j=1,2,- - - k, respectively, be the sample averages and sample
unbiased variances and covariances with N degrees of freedom. We now
examine tests of certain hypotheses on the normal populations from which
the sample was drawn.

3.1. Homogeneity of the Sample

Suppose we want to test a null hypothesis of homogeneity, the
observations in the sample are from the same k-variate normal population
with specified covariance matrix Z, against an alternative hypothesis, the
observations are from k-variate normal populations with different means
but the same specified covariance matrix Z (cf. example 4.1 in chapter 5).
We denote the null hypothesis by

(3.1) Hy(p|Z), or Hy(:|Z),

according as the common mean is, or is not, specified, and the alternative
hypothesis by

(3.2) Hy(n,|Z), or  H(|Z),

according as the different means are, or are not, specified. With the
sample values as the statistic 7(x) and

@ =TI |—2;§:—,— exp (— 3% — Y E1(x — W)

i=1

we have [cf. (4.8) in chapter 5 and (2.3) and (2.4) in this chapter]
(3.3) i*:2; 0,) =§1(-*c,.'x,. — &' — 34/ER),

where #%; satisfies x; = g + Z#;. We thus have

(3.4) ¢+ D) = 3 30x — 0/ Ex — )

If @ is not specified, f(*: H,(-|Z)) = m“in I(*: Hy(p|Z)) is

(3.5 I Hi12) = 3 40 — /20— ),

where X' = (&, Z,,* * -, &)
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On the other hand, with the same statistic 7(z) but with

./.2(x) 1—.[ |2 zll/z exp( %(x l"‘l 'z_l(x - p‘t))
we have [cf. (4.11) in chapter 5 and (2.3) and (2.4) in this chapter]

(3'6) i(*:z; On) = z (‘% x i - %%i'z’%i),

where %, satisfies x, = w; + Z%;,. We thus have
(37) (* Hl(l“‘z'z)) = z ‘%(X - pz)’z_l(x - l"‘:)

t=1

If the p, are not specified, f(*: Hy(-|Z)) = min f(*: Hy(u,|Z)) is
My

(3.8) f*:Hy(-|Z)) = 0.

If the conjugate distribution in (3.3) is to range over k-variate normal
populations with a common mean, then p,* =+ - - = p,* implies that
p+Ztr=---=pn+ Zr, or only values v, =" - - =1, =1 are

admissible. With this restriction, (3.3) yields
3.9) I(Hy(-|2):2; 0,) = n¥'x — nt'p — ’2-’4'}:.%,
where % satisfies X = p 4+ Z4, and (3.9) becomes
n_ e
(3.10) Ik |2):2; 0,) = 5 (& — py'E(x — ).
Note that [cf. (4.17) in chapter 5]

(3.11) z(x —wWEYx;, —p) = z(x — X)ZYx; — X)

+ n(X — p)EYX — p)
that is,

(3.12)  (*:Hy|E) = [*: Hy(-|D) + KHy(-|E):2; 0,).

The hypothesis Hy(p|Z) is the intersection of two hypotheses: (i) the
sample is homogeneous; and (ii) the mean for the homogeneous sample is
B 2[(*:Hy(-|Z)) = 3 (x; — X)’ZYx,; — X), which is distributed as x2
i=1

with (n — 1)k degrees of freedom under the null hypothesis, tests the
homogeneity. 2/(Hy(-|Z):2; 0,) = n(X — uyZ-1(X — @), which is dis-
tributed as y? with k degrees of freedom under the null hypothesis, tests
the specified mean given a homogeneous sample.
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Suppose we assume now that the sample is homogeneous, namely, all
the observations are from the same k-variate normal population, and we
want to test a hypothesis about the mean, with no specification of the
covariance matrix (cf. example 4.2 in chapter 5). Let the hypothesis
Hy(w, Z) imply that the sample is from a specified k-variate normal
population N(w., Z), and the hypothesis Hy(w) imply that the sample is
from a k-variate normal population with specified mean w but unspecified
covariance matrix. Suppose the alternative hypothesis H, implies that
the sample is from an unspecified k-variate normal population. With
T(x) = (X, S), where X and S are defined in section 2, and

fé(x) 1—.[ |2 zll/z exp (—%(xi - p‘)’z_l(xi - l"‘))
we have [cf. (2.9)]

}.‘.1: +tr TS + — log

|
I*: Hy, B)) = #% — #¥'p — 5 &'

als|
iy = 1 1 -1
with =p +-2%,S= (|, —2=ZT} Z, or

n N

[(*:Hyp., 2)) = g-(i —wWEX— )+ -]21, (log%'-l- —k+tr SZ“).

In accordance with the general asymptotic theory, under the null
hypothesis Hy(w, Z), 2f(*: Hy(w., L)) is asymptotically distributed as x>
with k 4+ k(k + 1)/2 degrees of freedom [cf. Anderson (1958, p. 268),
Hoyt (1953)].

If the k-variate normal populations have the same covariance matrix
under H, and H,, we see from (2.7) that Z* = Z, implies that T = 0 is
the only admissible value. This is equivalent to requiring that for samples
from the conjugate distribution the covariance matrix parameters in the
distribution of X and S are the same. Accordingly, for f(*:H,(w)),

XR=p+ -’1-12‘.% and T = 0 or S = I, and we have instead of /(*: Hy(, Z)):

0+ o) = 5 (® — W'S7HE — ).

Note that this is (2.10) for g, = @ and Z, = E* =S. We see that
I(*:H;) = 0, and the test of the hypothesis i7,(i) depends only on the
value of 2/(*:H,(w)), Hotelling’s generalization of Student’s t-test.
(See section 6.1 of chapter 11.)
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3.2. The Hypothesis that a k-Variate Normal Population Has a Specified
Covariance Matrix

We now examine the test for a null hypothesis H, that specifies the
population covariance matrix, with no specification of the mean, against
an alternative hypothesis H, that does not specify the covariance matrix
or the mean, that is,

(3.13) Hy:Z w; Hp:Z=Z, .

We take the conjugate distribution with parameters the same as the
observed best unbiased sample estimates, that is, u* = X, Z* = S, and
(2.10) becomes

N
(3.14) f(*:2) = g (X — p)& (X — )+ 3 (log li%l-l —k+tr S}.‘.z-l).
Since the null hypothesis does not specify the mean, writing /(H,: H,) =

min f(*:2), we find that the minimum discrimination information statistic
113
is

(3.15) 2[(H,:H,) = N (log I—E-zll — k4 tr Szz‘l).
(See problems 8.32 and 8.33.)

In accordance with the general asymptotic theory, under the null
hypothesis H, in (3.13), 2/(H,: H,) in (3.15) is asymptotically distributed
as y* with k(k 4 1)/2 degrees of freedom. Using the characteristic
function of the distribution of 2/(H,: H,), it may be shown (see section
6.2) that a better approximation to the distribution is R. A. Fisher’s B-
distribution [Fisher (1928, p. 665)], the noncentral y2-distribution, where
for Fisher’s distribution g% = (2k® + 3k% — k)/12N, B2 = 2[(H,:H,),
with k(k + 1)/2 degrees of freedom [cf. Hoyt (1953)]. The table com-
puted by Fisher in terms of § and B has been recalculated for convenience,
in terms of 8% and B% and is Table I1I, on page 380. Fordegrees of freedom
greater than 7, the largest tabulated, instead of the noncentral y2-
distribution, 2/(H,: Hp)(1 — (2k® + 3k® — k)/6Nk(k + 1)) may be treated
as a y® with k(k + 1)/2 degrees of freedom. (See section 6.2.)

For tests of significance in factor analysis, Bartlett (1950, 1954), using
a ‘‘homogeneous” likelihood function, and Rippe (1951), using the
likelihood-ratio procedure for the test of significance of components in
matrix factorization, arrived at the statistic 2/{(H,: H,) and the same
conclusion as to its asymptotic y-distribution. [Cf. Anderson (1958,
pp. 264-267).]
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3.3. The Hypothesis of Independence

When the null hypothesis H, implies that the variates are independent,
that is,

(3.16) Hy:Zy = (0y), o;; =0, [ #J, hj=1,2+" "k,
so that P = (p;;) = I,, where P is the matrix of population correlation

cocfficients, we may write (3.15) as
(3.17)  2i(H:Hy) = —Nlog |R| + N ¥ (f—;‘-’- + log-(-r-’-‘ — 1)’

i=1\0y; Sii
with R the matrix of sample correlation coefficients. The hypothesis H,
in (3.16) is the intersection of two hypotheses, H, = H,' n H,", with H,’
the hypothesis of independence that P =1I,, and H,” the hypothesis
specifying the variances. We may thus write (3.17) as

(3.18) 2[(H,:H,) = 2[(H,:H,") + 2[(H,: H,"),

with 2/(H,: H,’) = —N log |R| the minimum discrimination information
statistic for the test of independence [see (6.12) in chapter 9], and

%
2f(H\:Hy") = NY (fﬁf + log gﬁ - 1) the minimum discrimination
t=1 i i

information statistic for the test of specified variances. [Note that
2/(H,:H,") is the sum of k single-variate statistics.] It is known that,
under (3.16), the s,; and r,; are independent [Wilks (1932)], so that
2f(H,:H,) and 2[(H,:H,") are independent. In accordance with the
general asymptotic theory, under the null hypothesis H, of (3.16),
2f(H,: H,') is asymptotically distributed as y2 with k(k — 1)/2 degrees of
freedom and 2f(H,: H,") is asymptotically distributed as y* with k degrees
of freedom. It may be shown (see section 6.3) that a better approximation
to the distribution of 2/(H,: H,') is Fisher’s B-distribution [Fisher (1928,
p.- 665)] with g2 = k(k — 1)(2k + 5)/12N, B2 = 2[(H,:H,’), with
k(k — 1)/2 degrees of freedom [cf. Bartlett (1950, 1951b, 1954), Lawley
(1940)] and a better approximation to the distribution of 2/(H,: H,") is
Fisher’s B-distribution with f2 = k/3N, B? = 2f(H,: H,"), with k degrees
of freedom. Note that the degrees of freedom and the values of 2 for
the distributions of the three terms in (3.18) are additive, that is,
k(k + 1)/2 = k(k — 1)/2 + k and (2k3 + 3k® — k)/12N = k(k — 1)(2k + 5)
/12N + k[3N, a property of the noncentral x* [cf. Bateman (1949), Laha
(1954)]. (See problems 8.21 and 8.22.)

Example 3.1. In section 9.2 of chapter 11, we had the correlation matrix

1.0000  0.6328 0.2412 0.0586
0.6328 1.0000 —0.0553 0.0655 |
0.2412 -0.0553 1.0000 0.4248
0.0586 0.0655 0.4248 1.0000

R=
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from a sample of 140 observations. To test a null hypothesis that the four
variates are independent we compute 2[(H,:H,) = —Nlog |R| = —139 o
0.4129 = 139(0.88431) = 122.92, k(k — 1)(2k + 5)[12N = 4(3)(13)/12(139) =
0.0935. For 6 degrees of freedom the 57, points for B? corresponding to
2 = 0.04 and 0.16 are respectively 12.6750 and 12.9247, and the observed value
of 2I(H,: H,') is clearly significant. We reject the null hypothesis of independ-
ence, as we should, in view of the conclusions in section 9.2 of chapter 11.

3.4. Hypothesis on the Correlation Matrix

When the null hypothesis H,”: &, = (o;;) = D_P,D, specifies the matrix
of correlation coefficients P,, but not the diagonal matrix of standard
deviations

0-10...0 3120...0
e . 2. ..
D= % 0 ) wingDp=pa= |7 F0 )
0 0 SR 0 0 o . .sk2
we have from (3.15)
| P
(3.19) 2[H,:H,"y =N (loglizll —k+tr RPz‘l)-

2f(H,: H,") in (3.19), asymptotically, is distributed as y* with k(k — 1)/2
degrees of freedom under the null hypothesis H,”. Note that (3.19) is
(2.8) of chapter 9, with P, = R, and yields 2(H,: H,’) when P, = I,.

For bivariate populations, k = 2, (3.19) yields

(3.20) 2/(H,:H,")

= N |log

1 —p,

2

1—r

2

—2+tr(

1

r

r

1

)

1 —

P2

Pz2

l“Pz
1

2

1 —

P22

l—‘pz

2

[ 1 P2 |

-l

1 —p® | 2p(p; — ’))
= 1 ’
N(og 1—1r® + 1 — p,?
which is asymptotically distributed as y® with 1 degree of freedom. Note
that (3.20) is (4.33) in example 4.6 of chapter 3, with N for n, and r for p,.
See the remark in example 5.7 of chapter 5 about a confidence interval
for p.

3.5. Linear Discriminant Function

The estimates of the linear discriminant functions in section 6 of
chapter 9 may be derived by the same procedure as for the information
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statistics. There is some tutorial value, however, in paralleling the
discussion with the appropriate sample values.

We first examine the null hypothesis that specifies Z,. [See (3.15).]
We want the linear discriminant function

(3.21) Y= + oty + - 0+ qx, = a'x,

the same linear compound for each observation. We seek the «’s so as
to maximize

a'Zoa a'Sa
3.22 :H,;y) = —_— )
(.22 2U(Hy:Hyy) = N (log a'Sa I+ a'Zza)
the equivalent of (3.15) for y. We are thereby led to conclusions similar
to (6.4) and (6.5) in chapter 9, namely, that a must satisfy

(3.23) Sa = FZ,a,
where Fis a root of the determinantal equation
(3.24) |S — FZ,| =0=|NS —IZ,|, F=IN,

with roots almost everywhere real and positive. (See section 6.4 for the
distribution of these roots.) Designating these roots as Fy, Fy,* - *, F;
in descending order, the discussion in section 6 of chapter 9 is applicable
(taking suitable account of the ordering). In particular, we have the
decomposition of (3.15)

(325) 2[(Hy:H) =N (log |_|z§z|l —k+tr Szz—l)

= 2[(Hy:Hy; y) + + - + + 2[(H,: Hy; 4,

where y; is the linear discriminant function associated with F;,. From
(3.22) we see that

(3.26) 2[(Hy: Hy;y) = N(—log F; — 1 + F))
= NlogN — N—Nlogl, + I.

When the values of 2f(H,:H,;y;) are arrapged in descending order
“of magnitude, under the null hypothesis that the sample is from a
normal population with covariance matrix Z,, the sum of the last
(k — m) of the 2[(H,:H,;y;) asymptotically is' distributed as x* with
(k — m)k — m + 1)]2 degrees of freedom. (See section 64.) A
better approximation to the distribution is R. A. Fisher’s B-distribution
[Fisher (1928, p. 665)], the noncentral y*-distribution, where for Fisher’s
distribution 2 = ((2k3 + 3k% — k) — (2m® + 3m* — m))[12N, B? is the
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sum of the last (k — m) of the 2/(H,: Hy; y,), with (k — m)(k — m + 1)/2
degrees of freedom.

3.6. Independence of Sets of Variates 1

[Cf. Anderson (1958, pp. 230-245), Hsu (1949, pp. 373-376), Wald and
Brookner (1941), Wilks (1935b, 1943, pp. 242-245).] Suppose we
partition the variates of a k-variate normal population into m sets of
ky, kg, - - *, k,, variates, k; + k; + -+ -+ k,, = k. We now want to
test a null hypothesis H,, the sets of variates are mutually independent,
against an alternative hypothesis H,, the sets are not independent, with
no specification of the means, that is,

3.27) H:Z = (0,), j=12"" "k,
Z, 0 ---0
(3.28) Hy:Z = ‘_’ . 222 0 , Zy = (0y),
o o ---Z
o, =k +ky+- k. g+, ki+k+-+k,

The discussion in section 7 of chapter 9 is for two sets, m = 2. (See
problems 10.13-10.19 in chapter 9.)

Denoting the hypothesis of (3.28) by Hy(Z;,) when Z,,,- - -, X, are
specified, we get from (3.15),

(329) 2/(H,:HyEZ,)) =

DINN 1S IEEEEN P
N(logl 11” 22||S| I mml —k + tr (Sllzﬁ1+ R o Smmzr;#t )’

with S,; the best unbiased sample covariance matrix of the variates in the
ith set. Denoting the hypothesis of (3.28) with no specification of the
matrices 2, i = 1, 2, - -, m, by Hy("), we find that (3.29) is a minimum
for£,=S,, and

(330) Zi(HI:Hz(')) — NlOg ISIII ISI Ismml — NlOg IRIII IRI IRmml,
with R;; and R respectively the sample correlation matrices of the variates
in the ith set and the entire set. The last member in (3.30) is obtained by
factoring out the standard deviations in the numerator and denominator
terms. In accordance with the general asymptotic theory, under the
null hypothesis, 2/(H,: Hy(-)) is asymptotically distributed as »* with
T see Appendix page 390
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k(k + 1)/2 — 3 kyk; + 1)/2 = 3 kk; degrees of freedom. It may be
“~ ~

1= <<
shown (see section 6.3) that a better approximation to the distribu-
tion of 2f(H,:H,(-)) is R. A. Fisher’s B-distribution [Fisher (1928,
p. 665)], the noncentral y*-distribution, where for Fisher’s distribution

g = (@0 + 38 = b = 3 2k + 302 = ) 12N, B2 = 2 Hi(),
=1

with 3 k.,k; degrees of freedom. We summarize the analysis of the
1<

minimqu discrimination information statistic of (3.29) in table 3.1. Note
that the degrees of freedom and the values of the noncentrali:, -arameter
B? in table 3.1 are additive, properties of the y*-distributi., central
and noncentral. R

We remark that when k; = - - - =k, = 1, 2[(H,: Hy(")) = 2[(H,: Hy')
of section 3.3, the “between” component in table 3.1 is 2/(H,:H,") of
section 3.3, and the degrees of freedom and the values of f? are those
given in section 3.3. (See problems 8.19, 8.25-8.29, 8.34.)

Example 3.2. Consider the correlation matrix in example 3.1, with the par-
titioning of the four variates into two sets as in section 9.2 of chapter 11.  To test
a null hypothesis that the sets are independent, we compute, |R;;| = 0.5996,
[Rep| = 0.8195, 2[(H,:H,(-)) = 139 log ((0.5996)(0.8195)/0.4129) = 24.16,

D kik; =4, f2 = (172 — 26 — 26)/12(139) = 0.0719. For 4 degrees of free-
<]
dom, the 5% points for B* corresponding to % = 0.04 and f* = 0.16 are

respectlvely 9. 582] and 9.8627. The observed value of 2I(H,: H,(-)) = 24.16
is clearly significant, and we reject the null hypothesis, as we should, in view of
the conclusions in section 9.2 of chapter 11. [Cf. Kullback (1952, pp. 98-99).]

3.7. Independence and Equality of Variances

[Cf. Anderson (1958, pp. 259-261), Hsu (1949, pp. 376-378).] We
want to test the null hypothesis in (3.16), with the specification that
01 = Oy = * + - = 0y, = 0% Denote by H,"(¢?) the hypothesis H," in
(3.18) with the common variance ¢* specified, and denote by H,"(:) the
hypothesis of equality of the variances. From (3.17) and (3.18) (with the
more common notation s,; = s, for the variance) we see that

2
(3.31) 2[(H,: Hy"(0%) = Nz( + log-- — 1)
Since the minimum of (3.31) is glven for 2= (s24+ - -+ 53k = %,

we have that f(H,: H,’(-)) = min [(H,: H,"(c?)) is

2

k
(3.32) 2[(H,: Hy'(") = N‘leog SS_

2
i




TABLE 3.1

Component Information D.F.
due to
Be;‘::ezzainst pIJy Né:l(log '}"Szf‘ll — ki +tr Siizii_l) ii::lki(kiz-l- 2 én:l.
MY Bal. 5 Bunl _ pv10g Rul. R P PR l
@y ('°g =l 5 R e
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A summary of the analysis of 2/(H,: H,"(a?)), with the appropriate
degrees of freedom and noncentrality parameters, is given in table 3.2.

TABLE 3.2
Component due to Information D.F. p?
) 52 o?
Between, s® against 6> Nk (—-2- + log — — l) 1 1/3Nk
s s
. - k s?
Within, 2I(H;: H,'(-)) N Y log — k—1  (k*— 1)/3Nk
i=1 S
) kg2 o2
Total, 2/(Hy: H,"(¢®) N (—5 + log = — 1) k k/3N

Under the null hypothesis, 2/(#,: H,'(*)) is asymptotically distributed
as x% with k — 1 degrees of freedom. A better approximation to the
distribution is R. A. Fisher’s B-distribution [Fisher (1928, p. 665)], the
noncentral y2-distribution, with 82 = (k® — 1)/3Nk, B% = 2/(H,: H,"(")),
and k — 1 degrees of freedom. We remark that 2/(H,: H,"(-)) above is a
special case of the more general result to be derived in section 5.3, and is
(5.16) with r=4k, Ny=--+-= N,=N. [Note that in (5.16) N =
Ny, + N, + - - - + N, is Nk here.]

(See problem 8.35.)

4. HOMOGENEITY OF MEANS

We now want to consider the problem of testing a hypothesis about
the equality of » means for each of k variates for r k-variate normal
samples, but with no assumption that the population covariance matrices
are equal. We first deal with two samples, r = 2, for its intrinsic interest
and expository value.

4.1. Two Samples

Suppose we have two independent samples of n, and n, independent
observations from k-variate normal populations with covariance matrices
X, and Z,. We want to test the null hypothesis H,, the population mean
vectors (matrices) are equal, with no specification about Z, and Z,,
against the alternative hypothesis H,, the means are not equal, that is,

@.1) Hyippg = o = i, 2y, By, Hytpg, oy Zy, T
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For the conjugate distribution with 0% = (%, X, S;, S,), and with the
notation in section 2, we have

‘AI lAIl A
(4-2) i(*:2)=%1,i1 _Tll.l._'i 1 n—zl‘l'1+tr TISI
1
' 2 1,,1
"""'l I—"—'ET Al A ___Ar_zA
+ 3 og (I, N, 1 |+ 2% — e 5 2n2 2T

N, 2
+ tr Tzsz + "'E log lIk —_——— zszl.
2 N,

Following the procedure in section 2, we find that [cf. (2.4) and (2.7)]
(4.3) T = mEZ, (% — w), Ry = mZy U — 1),
N, N,
T, = ’51 & =-S5, T, = _52 & =S,

and (4.2) becomes

@9 152 =2 - WEEG - W+ 5 &~ WEE - w

Nl( |12, —1) Nz( 22|
+ 3 log IS,] k+trS;&,7') + 3 log S,]

The null hypothesis H, specifies equality of the means with no specifi-
cation on the covariance matrices. For variations of Z; and Z,, {*:2)
is a minimum for £, = S,, £, = S,, and for { satisfying

- k + tl' 8222_1).

4.5) 0 = mS, (%, — &) + 1S, (X, — ),
or
(4.6) p=mS,*+ n,Sy~ )1 (m S, 1%, + n;S,1%,).

For convenience let d =%, —%,, A =nS~!, B=nS,7, and
substituting in (4.4) we get

4.7) 2/(H,:H,) = tr [(B(A + B)"'A(A + 3)"'B
+ A(A + B)IB(A + B)'A)dd’].
But
B(A + B)'A = (A"¥A + B)B )~ = (B1 + A7)

and
A(A + BB = (BY(A + B)AT) ! = (B + A,
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so that finally

(4.8) 2(H,: Hy) = tr [(B! + A-1)-1dd’]
=d' (B! + A1) 4
=G w18+ 28 & - %)
=X 2n11n22 X1 — Xg).

We find that here J(H,, H,) = 2/(H,: H,).

[For single-variate populations cf. Fisher (1939a), Gronow (1951),
Welch (1938). For the multivariate Behrens—Fisher problem, cf. Ander-
son (1958, pp. 118-122), James (1954, pp. 37-38).]

The distribution of 2/(H,: H,) is given for r samples in section 4.3.

4.2. Linear Discriminant Function

Consider y = a'x = a,2; + o5% + * * - + o, the same linear com-
pound for each sample. Since y is normally distributed, we seek a
maximizing

4.9) 2[(H,:H,;y) =

As may be determined (cf. section 5 of chapter 9), the maximum occurs

1 1 -1
2

n

4.3. r Samples'

Suppose we have r independent samples of n,i=12,---r,
independent observations from k-variate normal populations with
covariance matrices X, i=1,2,- - -,r. We want to test the null

hypothesis H,, the population mean vectors (matrices) are equal, with no
specification about the Z,, against the alternative hypothesis Hj, the
means are not equal, that is,

4.10) Hypggy=pog=""°" "=, =, Z, 22’ s B,
lel'l‘la' % l"'r’ zlo' R 2,.

Without repeating the details, we find here that

r

(4.11) 2[(*:Hy) = 3 nf%; — w)’S; (% — @)-
i=1
As in other tests of homogeneity for several samples, here too the
null hypothesis can be expressed as the intersection of two hypotheses,
one specifying the homogeneity and the other specifying the common
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parameters of the populations. Let Hy(-) be the null hypothesis specifying
homogeneity, and Hy(w) the null hypothesis specifying the population
means of the homogeneous samples, in each case with no specification of
the covariance matrices, so that H, = Hy(-) N Hy(w.).

Since the minimum of 2/(*: H,) in (4.11) is given for

r -1 r
p= ( Z nz‘si—l) ( znz‘si_lii) = g,
i=1 i=1

we have that [(H,: Hy(")) = min [(*: H,) is
[

r

(4.12) 20(Hy: Hy()) = 3 n®; — 1)'S,7\(%; — %)

i=1
r r
_ o IQ -1z ’ —1la
=>nx/SI%, — & (Zn,S,- l)x.
i=1 i=1

From (4.11) and (4.12), we have

(4.13) 20(*: Hy) = 3 nf%, — w'SAE: — )

t=1
= ﬁln.-(i.- —R)SX -+ R—w) (éln,s,-‘l) (&—w)

= 2/(H,: Hy(")) + 2/(Hy("): Hyw)),

with 2/(H,: Hy(")) a test for the homogeneity and 2/(H,(*): Hy(w)) a test
for the means of the homogeneous samples. This analysis is summarized
in table 4.1.

TABLE 4.1
Component due to Information D.F.
r
Between, X against & (k — ) ( Zn,.s,.—l) & - k
i=1
Within, 2/(H,: Hy(-)) > n®; — 2)'S7E; — %) (r— Dk
i=1 [ ]
H r.oo_ ree 1y
Total, 21(*: Hy) > n(X; — 'S & — W rk
i=1

The degrees of freedom in table 4.1 are those of the asymptotic x>
distributions under the null hypothesis. [Cf. Hsu (1949, pp. 394-396),

James (1954, pp. 39-40).]
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James (1954) has shown that a better approximation to the distribution
is obtained by comparing 2/(H,: Hy(")), for a 100a %, significance level,
with y,%(4 + By,>2), rather than with 3,2, where

lhd=1+ 2k(r1— 52 =7 e (1. - (Z"fs‘_l)—l”‘s"—l)r’

B=r= l)(k(lr D +2) Lél o, - n " (I" -
(i__iln,.s,.—l)—ln,.s,.—l)2+ (A — Dk(r — 1)].

Example 4.1. Kossack (1945) discussed the problem of classifying an
AS.T.P. (Army Specialized Training Program) pre-engineering trainee as to
whether he would do unsatisfactory or satisfactory work in his first-term mathe-
matics course. The three variables are x;, a mathematics placement test score;
%y, a high-school mathematics score; 3, the Army General Classification Test
score, There were 96 trainees who did unsatisfactory work and 209 who
performed satisfactory work. We shall find the linear discriminant function as
in section 4.2. Here k = 3, n; = 96, n, = 209. Kossack (1945, p. 96) gives
the following data:

d = (—17.5972, —1.7997, —5.3308),
(133.8592 7.0572 2.0717) (217.1505 14.0692 35.7085)
, S,= .

7.0572 4.1288 —2.0109 14.0692 3.9820 0.4031
2.0717 —2.0109 27.7016 35.7085 0.4031 72.7206

We now calculate (the computations were carried out by J. H. Kullback)
1 (1.39436676 0.073512939 0.021580263)

Sl=

— S, = {0.073512939  0.043008772 —0.020946382
m 0.021580263 —0.020946382  0.288558772

1 1.038997768 0.067316709 0.170853859
— S, = {0.067316709 0.019052470 0.001928528 |,
2 0.170853859 0.001928528 0.347945253

i 1 -1 0.493634948 —1.176664865 —0.184397647
(— S, +— Sg) = | —1.176664865 19.066796354  0.925430152 |,
N2 —0.184397647  0.925430152  1.654481546

ny

% 0.493634948 — 1.176664865 —0.184397647\ [ —17.5972
(acz) = ( —1.176664865 19.066796354 0.925430152)( —1.7997)
g —0.184397647 0925430152  1.654481546/ \ —5.3308

—5.58596
= (—18.54179),
—7.24032
—5.58596
20(H,: Hys y) = 20(Hy: Hy) = (—17.5972, —1.7997, —5.3308) (—18.54179)
—7.24032

= 170.2637.
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The linear discriminant function may be expressed asy = x, + 3.32x, + 1.29z,
with the ratios of the «’s to «; as coefficients.

Kossack (1945) obtained the coefficients of a linear discriminant function
from a = S~1d, where NS = NS, + N,S,, N= N, + N,. [Cf. Fisher (1936).]
This is the.procedure, for 7 = 2, discussed in section 8.1 of chapter 11, when the
population covariance matrices are assumed to be equal. The linear discrimi-
nant function obtained by Kossack (1945) may be written as y = z; + 3.69z, +
0.93z,. Using Kossack’s pooling procedure and his result thatd’'S~d = 1.9890,
we compute

o _oomny o 96 X 209
20(Hy: Hy) = —s nzds d=

a smaller value than that computed above when the covariance matrices were
not pooled. (We shall see in example 5.2 that the null hypothesis that the
population covariance matrices are equal should be rejected.)

Example 4.2. To illustrate the test for the null hypothesis of homogeneity
of means, we use the following data and computations from James (1954, pp.
42-43). (I have expressed the results in the notation of section 4.3.) There
are three bivariate samples, with n; = 16, n, = 11, ny = 11:

2= (50) %=(n9) %==(%")

si=(_7e3 “153) s=(%1 a3 s=(93 23

0.1523 0.1396 0.1756 —0.1048
-1 _. -1 _.
mS;~ = (0.1396 1.0272)’ Sy = (-—0.1048 0.2670)’

1.9890 = 130.8637,

it = (305 3
Sosr= (i 180) (o) = (G5 S
nscisi= (35 mson= (TR nsin= (109),
Snson= (AT 5= (537 ~0%R) (ATe) - (12550)
20(Hy: H(-)) = 982, 15.06) 33980} 4 (13,05, 2257 ( ~5.9738)
s, 25 (3605) — osne tosom (33880 O471)(2553)

= 18.75.
Asymptotically, 2/(H,: Hy(-)) = 18.75 is a y* with (r — 1)k = 4 degrees of
freedom. For a better approximation to the significance levels, we find

(1 0) ( 2.2524 —0.0113)(0.1523 0.1396)__( 0.6585 ——0.3028)
0 1t/ \—-00113 0.7072. —0.0970 0.2751/°

0.1396 1.0272/
(l 0) _ ( 2.2524 -—0.0113)( 0.1756 ——0.1048) _ ( )
0 1 . —0.0113 0.7072/\ —0.1048  0.2670 .0.0761 0.8100/’

1 0 ( 2.2524 —0.0113 ( 0.1161 ——0.0277)__ (0.7382 0.0637)
(0 1) ~ \—0.0113 0.7072) —0.0277  0.1199 .0.0209 0.9149/°

_{0.6033 0.2391
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0.6585 —0.30282 _ (0.6033 0.2391
tr(—0.0970 02751) = 05680, tr(gom el

) : _ 2
r (07382 0063TYE_ | g [oo (OS85 —0308)7_ 7y

2
) = 1.0565,

0.0209 0.9149 —0.0970 02751
0.6033 0.2391 ]2_ [ 0.7382 0.0637)]2__ _
[“(omsl 0.8100) = 1.9974, tr(0.0209 0.9149) ] = 27321,
0.5680 1.0565 1.3846 0.8716 1.9974 27327
= (.282 = 0.
5t 0o t 0 =0%%0 5 T ot 10 =931

A =14 3(0.5311) = 1.0664, B = +5(0.2820 + 1(0.5311)) = 0.02281.

The appropriate comparison value for the 574, 194, 0.19; significance level
is then obtained from:

Significance Level %, 4d.f. A4+ By® %4 + By?»

5% 9.488 1.283 12.17
1% 13.277 1.369 18.18
0.1%, 18.467 1.488 27.48

that is, the corrected comparison value for the 5% level is 12.17, for the 19,
level is 18.18, and for the 0.194 level is 27.48. The null hypothesis of homo-
geneity would be rejected at the 197 level.

5. HOMOGENEITY OF COVARIANCE MATRICES

We shall now examine the test for the null hypothesis of equality of the
covariance matrices of r k-variate normal populations. For its own

interest, and as an introduction, we consider two samples first and then
r samples.

5.1. Two Samples

Suppose we have two independent samples with 7, and n, independent
observations from k-variate normal populations with no specification
about the means. For the population covariance matrices we have the
two hypotheses H,:Z, # Z, and H,:Z, = Z, = Z.

For the conjugate distribution with 6* = (&,, X, S;, S,), and with the
notation in section 2, we have [cf. (4.2)]

. 1,1,
G f*:2) =4% — Hw —sH —ZH +u TS,
1

r= .4 lAll A
+%2x2_725"2_572 ;22"'2

N, 2

N, 2
+ trTzsz+—i‘2“]0g Ik_‘&\";z’rz .
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Using the same procedure as for (4.2), we find that [cf. (4.3))
(5.2) % = &R, — w), %, = nd (X, — o),

f=2@i-sy =@,
and (5.1) becomes [cf. (4.4)]

(5.3) f(*:2)= %‘-(il — w) TR, — @) + %(’_‘2 — B) TR, — )
= =
+ — M (log llS ll —k+tr SIE“I) + = (log llS ll —k+tr Szz—l).
1 2

For variations of ,, p5, and Z, f(*:2) will be a minimum for f;, fi,, and
2 satisfying [see problems 10.2, 10.3 in chapter 9, Deemer and Olkin
(1951), for the matrix differentiation]

(5.4 mEN%, —fy) =0 nEYX, —f,) =0,
0=— 3 (t— ) EHIDEE — ) — F (%~ ) B HEDIER, — )
+ %’l tr £-1(dZ) — ivz-l- tr S,&-1(dZ)E1
+ -];? tr £-YdZ) — % tr S,=-YdZ)8-1,

We find that
(5:5) 0y =%, by = X, (M + Nz)z = MS, + N,S, = NS,
where N = N; 4+ N,, and consequently [cf. Wilks (1932 p- 489)]

(5.6) 2[(H,: H,) = N, log +— ISJ s i

+ N, log — |
It is found that the estimate J(H,, H,) is [cf. Kullback (1952, p. 91), and
equation (1.7) in chapter 9]

NN,

. J(Hy. Hy) = —2—(tr §;S,”! + tr S,S,7! — 2k
67 Ty Hy) = 5 (S, ).

In accordance with the general asymptotic theory, under the null
hypothesis H,, 2{(H,: H,) in (5.6) asymptotically is distributed as y* with
k(k + 1)/2 degrees of freedom. Using the characteristic function of the
distribution of 2f(H,: H,), it may be shown (see section 6.1) that a better
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approximation to the distribution is R. A. Fisher’s B-distribution [Fisher
(1928, p. 665)], the noncentral y3-distribution, where for Fisher’s
(k3 4+ 3k2 — k) (1 1 1 o afrgr .

> tN o n) 8= H:H,

N, N
with k(k + 1)/2 degrees of freedom.

distribution 2 =

5.2. Linear Discriminant Function

(Cf. section 3.5.) We seek a linear compound, the same for both
samples,y = a'x = o) + %%, + * * * + «,2,, that maximizes [see (5.7)]

NN, (a’Sla a'S,a 2)

5.8
(5-8) J(Hy, Hyiy) = AN, + N,) \a'S,a - a'Sa

We find (by the usual calculus procedures) that a satisfies S,a = FS,a,
where F is a root of the determinantal equation |S; — FS,| =
|NiS; — IN,S,| =0, and F = N,I/N, (cf. section 6 of chapter 9). The
same linear function results from maximizing [see (5.6)]
aSa N, a'Sa

a'Sa + 2 log a’S,x

N.
(5.9) I(H,: Hy3 y) = = log

If the roots of the determinantal equation, which are almost everywhere
positive, are Fy, F,,- + -, F, arranged in ascending order, then, as was
shown in section 6 of chapter 9, the maximum of J(H,, H,;y) occurs for
the linear compound associated with F; or Fy according as FyF, <1 or
FF. > 1

It may also be shown that

(5.10) F(H,:H,) = [(Hy: Hy; 1) + [(Hy:Hys b)) + + + - + [(Hy:Hys 1),
j(Hh Hy) = j(Hl’ Hy; Fy) + j(Hp Hy, Fp)+- - -+ j(Hb H,; F,),
where

M 14k N

1 4+/
gN1+N2 /; 2 gNl"‘Nz( )

(5.11)  {(Hy:Hy 1) = -2—‘10

M N

i + X N,
=2 %N+ N,

2
— ]
2 OgN1+N2

N
+ 1_"_1_:;__”.’3 log (1 + /) — 5 log L,

NN, (F.—17
Z(Nl + Ng) Fi

J(H,, Hy; F) =
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Asymptotically, when the population parameters have the null hy-
pothesis values, 20(H,Hy; 1) + - - + 2K(H,:H,; ) (the summands
arranged in descending order of magnitude) is distributed as y® with
(k — m)(k — m + 1)/2 degrees of freedom. A better approximation is
R. A. Fisher’s B-distribution [Fisher (1928, p. 665)], the noncentral y2-
distribution, where for Fisher’s distribution

ﬂz_(2k3+3k2—k)—(2m3+3m2—m)(1 + 1 1)
B 12 N, N, N/
k
N=N,+ N,, B = > 2[H,:H,;l,), with (k —m)k —m + 1)/2

t=m+1

degrees of freedom. (See section 6.4.) [Cf. Anderson (1958, p. 259).]

5.3. r Samples

Suppose we have r independent samples of n;, ny, - - -, n, independent
observations from k-variate normal populations with no specification
about the means. For the population covariance matrices we have the

two hypotheses H;:Z;, 5, - . T, and Hy:Z =2, =- - - =2Z = Z.
Without repeating the details, as in section 5.1, we find that for the
conjugate distribution with 6* = (X}, + -, X, S, - -, S,)
< M , -
(5.12) I(*:2) = ,21 5 & — w)EHR — 1)
& Vi (100 12
+ 2 = (lo = —k 4 tr S,E‘l).

When the null hypothesis Hy(Z) specifies Z, the minimum of f(*:2) in
(5.12) for variations of the p;, i = 1,2, - -, r, is
r N, z
(5.13) f*:HyZ) = > -55 (log%-gll —k+tr S,.E—l)-

i=1

This is (2.18) in chapter 9 with Z for Z,; and S, for Z,,, j=1,2,- - -, r.
When the null hypothesis Hy(-) does not specify Z but only the homo-
geneity, the minimum of f(*: Hy(Z)) in (5.13) for variations of Z is given
for NE=NS,+ "+ NS,=NS, N=N, + Ny+- - - + N,, and
K(Hy: Ho(")) = min J(*: Hy(Z)) is
x
' N; S

(5.14) IH:H) =3 — (logll—s—ll —k+tr SzS‘l)

t=1 i
_ LN S|

-1 2 : S|
[Cf. Anderson (1958, p. 249), Box (1949), Wilks (1932, p. 489).]

lo
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Note that the estimate of J(H;, Hy(*)) may be obtained from (2.19) of
chapter 9 by replacing Z,, by S;and Z,, by S, j =1, 2, - -, r, yielding

- A
(5.15) J(Hy, Hy()) = 2 'j (tr 87! 4 tr SS,71) — kN
i=1
r N. kN

= —trSS;7! — —

2SS —
N;N;

=Y 21N) (tr S8,/ + tr S;S;7! — 2k).

i<j

In accordance with the general asymptotic theory, under the null
hypothesis H,, 2/(H,: Hy(")) in (5.14) asymptotically is distributed as 2
with (r — Dk(k + 1)/2 degrees of freedom. Using the characteristic
function of the distribution of 2/(H, : Hy(*)), it may be shown (see section
6.1) that a better approximation to the distribution is R. A. Fisher’s B-
distribution [Fisher (1928, p. 665)], the noncentral y>distribution, where

2k3+3k2—k [
+12 (zl/N,-—l/N), B2 =
i=1
2f(H,: Hy(")), with (r — Dk(k + 1)/2 degrees of freedom. For degrees of
freedom greater than 7 (the largest tabulated by Fisher),

for Fisher’s distribution 82 =

2i(Hy: HyO)(1 — 28%/(r — Dk(k + 1)

may be treated as a x% with (r — 1)k(k + 1)/2 degrees of freedom.
For the single-variate case, k = 1, we have

, , 52
(5.16) 2[(H,: Hy(’)) =__21Ni log Py

Where N32=N1S12+"'+Nr¥,?, N=N1+N2+'°°+N'., ﬁ2=

121 1 i 1 ( &1 l)
3 (,-,137; - Tv)’ and Tk + 1) 3G =1 EIN, w) These
are the results for Bartlett’s test for the homogeneity of variances [Bartlett
(1937, 1954), Box (1949), Kempthorne (1952, p. 21), Lawley (1956)]. See
the remark at the end of section 3.7. .

We summarize the analysis of the discrimination information statistic in
(5.13) in table 5.1. o

Note that the between component in table 5.1 is the discrimination
information statistic for the test of the null hypothesis Hy(-|Z), the




320 INFORMATION THEORY AND STATISTICS

covariance matrix of homogeneous samples is Z. The analysis in table
5.1 is a reflection of the fact that Hy(Z) = Hy(") N Hy(-|Z), and may be
written as 2/(*: Hy(Z)) = 2[(H,: Hy(")) + 2[(H("): Hy(- |Z)).

The degrees of freedom are those of the asymptotic x>-distribution or
those of the better approximation given by Fisher’s B-distribution, the
noncentral y2-distribution with noncentrality parameter 2.

TABLE 5.1
Cog:llzt')trcn,em Information D.F. B2
Between 1] k(k + 1) 268 4 3k — k
S againstz N ('°8 B k+1r S}:-‘) — e
Within L IS r—Dktk+1) 2834+3E—k( L 1 1
A1y = Nilog gy ) 12 DY
t=1 : 1=1 V¢
Total L4 1Z] - rktk + 1) A+ 32—k I 1
2dem@Ey (I ('°8 s " ktusEl] /S R
1= 1=

5.4. Correlation Matrices

By using the minimum discrimination information statistic in (3.19) and
the convexity property we may derive a test for the null hypothesis that
the correlation matrices of m populations are equal. Suppose there are m
independent samples of n;, = Ny + 1,ny =N+ 1,- - -,n, =N, +1
independent observations each from k-variate normal populations. De-
note the sample correlation matrices by R;, Ry, - - -, R,, and the corres-
ponding population correlation matrices by Py, P,,- - -, P,. Let H;
denote the alternative hypothesis that the population correlation matrices
are not all equal, that is,

(5.17) H1:P]a P2a Y Pm;

let H,(P) denote the null hypothesis that the population correlation
matrices are equal to P, that is, )

(5.18) Hz(P):Pl = P2 == Pm = P;

and let H,(-) denote the null hypothesis of homogeneity that the popula-
tion covariance matrices are equal but unspecified. Since Hy(P) is
equivalent to the intersection of two hypotheses, (i) the observed correla-
tion matrices are homogeneous and (i) the common value of the popula-
tion correlation matrix is P, we may set up the analysis in table 5.2.
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TABLE 5.2
Component due to Information DF.
P N(logt—ll:—,l — k + trRP-1) k(k = 1)
S - Dk(k -1
Hy(+) 2 N;log H (m )2( )
=]
Hx(P) _2 N,-(log % -k + trR._-P—l) mk(kz— 1))

In table 5.2,

(519) N=N;+ Ny + ---+ N,,NR=NR, +NR, + - - - +N,R,,
and the degrees of freedom are those of the asymptotic y2-distributions
under the null hypothesis. The convexity property insures that

t=1 N lRtl
=N (log %— k + trRP‘l)‘
For bivariate populations, k = 2, we have
3 1-r%
(5.21) 20(H, . Hy(+)) = gl N; log 1 .

z . . . .
where Nr;; = 3 Nyriy, and ry, is the correlation coefficient in the i-th
i=1

sample. The d:,grees of freedom for 2f(H,: Hy(+)) in (5.21) are m — 1.

Example 5.1. We illustrate the test of a null hypothesis of homogeneity of
covariance matrices with data given by Smith (1947, Table 2, p. 277) to calculate
a linear discriminant function for a group of 23 normal persons and 25 psy-
chotics. Here k = 2,r =2, N = N, = 24, N = 48,
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5, = (692 —527) 2183 433),
1= 527 4089/ 433 164.40

Sy| = 255.1859,  |S,| = 10387.2936,  |S| = 3570.1031,

2/(H,: Hy(-)) = 24 log (3570.1031/255.1859)
+ 24 log (3570.1031/10387.2936) = 37.7C19 = B2,

5, = (375 1B%2)

1392 287.92 S = (

16+12—-2/2 1
~ 1)2
(.2_.__2)_._)_(_}. = 3 degrees of freedom.

In Fisher’s B? table, Table I1I on page 380, the 5%; values for n = 3 and
p? = 0.04 and 0.16 are respectively 7.9186 and 8.2254. We therefore reject the
null hypothesis of equality of the population covariance matrices. Smith (1947)
does remark that the correlations are not significant, but that the variances of
the psychotics are significantly greater than those of the normals.

Example 5.2. We now justify the comment at the end of example 4.1. In
addition to S, and S, in example 4.1, we also have

11.871 4.0280 —0.35378

(191.04 11.871 25.162 )
S = s
25.162 —0.35378 58.606

S| = 13313, S| = 43779,  [S| = 34053,

. _ 34053 34053 e
2I(H,:Hy(+)) = 95 log 3373 + 208108 3555 = 36.96 = B,
54 +27-3/1 1 1
ﬂz‘_ﬁ“'—(%“Li'()"z; "3?)3) = 0.0782,
@-I3x4_g degrees of freedom.

2

In Fisher’s B? table, Table III on page 380, the 59 values for n = 6 and
p* = 0.04 and 0.16 are respectively 12.6750 and 12.9247. We therefore reject
the null hypothesis of equality of the population covariance matrices.

Example 5.3. We use data given by Pearson and Wilks (1933) for five
samples of 12 observations each on the strength and hardness in aluminum
die-castings. (See section 9.1 of chapter 11.) Based on their data (note that
they did not use the unbiased estimates), details not being repeated here,
k=2r=5N=-°+=N;=11,N=55

log [S,| = 5.82588,  log |S,| = 6.63942,  log |Ss| = 5.31904,
log |S| = 6.66973,  log|S;| = 5.35937,  log|S| = 6.13953,
2H(H,: Hy(-)) = 55(6.13953) — 11(29.81344) = 9.726 = B?,
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16+12—-2/5 1
fr = 1 (-1-1- - gg) = 0.945454,
n= 9__"__1_2)2_5_} = 12 degrees of freedom.

In Fisher’s B? table, Table 111 on page 380, the 5%, values for n = 7 (the largest
there tabulated) and % = 0.64 and 1.0 are respectively 15.3225 and 16.0040.
Since the tabulated values increase with increasing » for a fixed B2, here we do
not reject the null hypothesis of equality of population covariance matrices.

We could also test 9.726 (1 - (—)—-9::-523—5-"—‘) = 8.96 as a x® with 12 degrees of

freedom, with the same conclusion, accept the null hypothesis of equality of the
population covariance matrices. This agrees with Pearson and Wilks (1933).
[Cf. Anderson (1958, p. 256).]

Example 5.4. To illustrate section 5.4, we shall compute 2I(H,: H,(+)) in
(5.21) for the five samples of example 5.3, so that k =2, r =5, N, = --- =
N; = 11, N = 55. From the data given by Pearson and Wilks (1933, p. 370) we
make the computations shown in table 5.3.

TABLE 5.3
i riie 1 - rde
0.68257 0.534106
0.87601 0.232617

0.71372 0.490595
0.71496 0.488835
0.80505 0.351891

W B W N

1 —r}; = 0424735,  n = 4 degrees of freedom,

0.424735 0.424735
22(H11H2(°)) =11 logm + -+ 11 logm = 3.0498.

The 5% value for chi-square for 4 degrees of freedom is 9.4877 so that, con-
sistent with example 5.3, we accept the null hypothesis of homogeneity of the
correlation coefficients.

Example 5.5. As another illustration of section 5.4, let us consider the data
given by Pearson and Wilks (1933, pp. 372-375) consisting of standard measure-
ments of length and breadth of skull in millimeters obtained fot 20 adult males
from each of 30 different races or groups, so that k = 2,r =30, Ny =+ - - =
Ny, = 19, N = 570. From the data given by Pearson and Wilks (1933, p. 373)
we make the computations shown in table 5.4.



324 INFORMATION THEORY AND STATISTICS

TABLE 5.4

2 ; 2 .
1 - rig i riz 1 —rig i raz 1 —r3s

"~

Fi2
0.097 0.990591 11 0.219 0.952039 21 0.178 0.968316
0.198 0.960796 12 —-0.152 0.976896 22 0.763 0.417831
0.576 0.668224 13 0.319 0.898239 23 0.101 0.989799

—-0.015 0.999775 14 0.310 0.903900 24 0.449 0.798399
0.173 0.970071 15 0.019 0.999639 25 0.245 0.939975
0.764 0.416304 16 0.445 0.801975 26 0.360 0.870400

—-0.037 0.998631 17 0.410 0.831900 27 0.592 0.649536
0.667 0.555111 18 0.946 0.105084 28 —0.515 0.734775
0.014 0.999804 19 0.018 0.999676 29 0.023 0.999471

—-0.112 0.987456 20 0.160 0.974400 30 0.254 0.935484

QO O o~V nH WK =

ot

1 — rf, = 0.937999, n = 29 degrees of freedom,

0.937999 . .. . 191000937999 _ oo

2[(H,: Ho(+)) = 19 logm 3‘0_935484 =

Since 98 as a chi-square with 29 degrees of freedom is significant, we reject the
null hypothesis of homogeneity of the correlation coefficients, a conclusion
consistent with that reached by Pearson and Wilks using an ad hoc
approach not generalizable to the k-variate case. For this data Pearson
and Wilks (1933, p. 374), using Fisher’s z-test [Fisher (1921)], computed

30
X2 = Z (ni - 3)(z‘i - 2-)2’ where Z; = %[]Oge(l + rilg) - loge (1 - rilZ)] and
=1
30
£ =) z/30, obtaining x> = 96.01 with 29 degrees of freedom.

1=1

6. ASYMPTOTIC DISTRIBUTIONS

~In this section we shall justify the statements made about the asymptotic
behavior of the statistics in the previous sections of this chapter.

6.1. Homogeneity of Covariance Matrices
Under the hypothesis H, of section 5.3, we let

6.1) NS,=ZhvE": NS=Z"Eh i=12---r,

which define transformations linear in the elements of the matrices S, S
respectively by V,, V. The Jacobians of these transformations are {cf.
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Anderson (1958, p. 162), Deemer and Olkin (1951)]

k+1 k+l

¢ [

The Wishart distributions of the elements of S,, S are thereby transformed
into the respective probability densities of the elements of V,, V

kN Ni—k~1 kN N-k=1
2, —1/,trV; V. 2 2 —’/2trv v 2
62) B eV and () V|
kk~-1) k(k — Mk—-1)
m * JITWV, + 1 — a)/2 ™ % HF(N+1—a)/2
a=1 -

Applying the transformations in (6.1) to f(H,: Hy(*)) in (5.14), we get

H() =3 ﬁ’_e( I Ng).
(6.3) I(H,: H)(')) ﬁél 5 loglvpl + k log N)

Since the r samples are independent, the characteristic function of the
distribution of

2 Nplog Wi _ Nlog [V| — 3 Nylog [V
A=1 [Vl =1
is [cf. Box (1949, p. 321)]

Ng(l—2i)—k—-1

3 —lltrVg \Ys 2
(6.4) ¢(t) f (%)k(k 1) & I ﬂ' IVINdH H dvﬁw’

7 ¥ TITWN; + 1 = @)2 P=1po=i
a=1

T(Ng(l —2it) + 1 — a)/2)
(‘l_:_-[;l_'[:-_l I‘(Np+1—a)/2
kN N2 k-1 +Ni _k
@ eV F 11 dv,s

y,d=1
Bk—1) 2

x ¥ I TN —2it) + 1 — )2
a=1
b ( T(N + 1 — )2 r TNl — 2it) + 1 — a)/2)’
I;I TV(L — 2it) + 1 — @252 DWNp+ 1 —a)2

where the middle result follows from the reproductive property of the
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Wishart distribution [Anderson (1958, p. 162), Wilks (1943, p. 232)]. We
use Stirling’s approximation,

1 1 ;
logF(P)=&10g21r+(P—%)1°gP—P+E;—3‘6—07)§+ o(1/p9),

to get an approximate value for large Ny in (6.4). We have

P(N,(1 — 2if) + 1 — 22
TN, + 1 — )2
Nyl —2if) —a. Nf1—2i0+1—oa Nyl —=2it)+1—a
= lo —
2 2 2
N I ~ 1
6N —2in) + 1 — ) 4SN(I — 2i1) + 1 — a)°

Np—a Np+l—a+Np+l—a

— Ty e 2

(6.5) log

1
—6(Np+l—a)+45(Nﬁ+l—a)3

and after some algebraic manipulation the right-hand member of (6.5)
may be written as

+ O(1/Np%),

log (I — 2it) + Nyt

(3o® — 1)2it
12N,(1 — 2ir)

Ny Ng(1 — 2ir) —
—ithlog—-2£+ L 22”)

+ O(1/Np).

We therefore have

d N N —2it) —
68 g =2 (itNlogE -= ;lt) ® log (1 — 2ir) — Nit
a=1
(3&2 -— l)lt o k r . Np
~ v — 2~ 2N ) +3, ,Zl("' Ny log =
— 2it) —
+ Ny(1 : it) — « log (1 — 2ir)y + Niit
(Ba® — 1)it

— 2
+ 6N (1 — 2it) + O0/N, ))

Ny _ (= Dkk+1)
N 4 ©

= —it ﬁ: kNglog g (1 — 2ir)
F=1

it(2k3+3k2—k)( ro] 1) ,
¥ % O(1/Ng?) — O(1/N?).
12(1 = 2it)  \éS1N, N"‘ﬁ; (I/Ng*) — O(1/N*)
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Neglecting the last term in (6.6), we have

r N 't
(6.7)  $(r) = (1 — 2iry =P+l exp (—it S kNylog =L + — )
p=1 N " 1-2

where ¢ = (2k® + 3k — k) ( > 1/Ny — l'/N)/l2.
F=1

Because of (6.3) and (6.4), writing { = 2/(H,: Hy(*)), the probability
density of { is

1 [ exp (—itl + cit/(1 — 2it)) dt
(6.8) D) = '2—’f P (1 — 2ir)T—DRE+1V/A ’

If we neglect the term with ¢, it follows that D({) is the probability
density of the y2-distribution with (r — 1)k(k + 1)/2 degrees of freedom;
otherwise, by integrating (6.8) [see Laha (1954), McLachlan (1939, p. 86)]
we get, since { is real and positive and (r — 1)k(k + 1)/4 > 0,

C(”—l)/2 —_
©9) b = gem-se ()" _vap,

where n = (r — 1)k(k + 1)/4 and I,,_l(\/EZ) is the Bessel function of
purely imaginary argument [Watson (1944)]

(1)’-‘-;—1+f (EE)”—;JH
© \2 2
I (Vel) = . .
Ve = 2 = e 1)
The probability density (6.9) is that of the noncentral y*-distribution with
2n degrees of freedom and noncentrality parameter c, and is Fisher’s B-
distribution [Fisher (1928, p. 665)] with ¢ = 2, { = B2, 2n = n,.

The approximation to the logarithm of the characteristic function of {,

t
that is, —nlog (1 — 2ir) + 7 “ T corresponds to that of Box (1949,

formula 29, p. 323), retaining only the first term in his sum; that is, his

here, as

1 . . t
% (1 S 1) (there is a misprint in the formula) is 7 iIZit

may be verified by using the appropriate formulas with § = 0 given by
Box (1949, pp. 324-325).
For large n we may approximate I,_(Vcl) in (6.9) by writing
= (CC/4)"“”’2 2 (c§/4)YT'(n)
I (Vel) = S
(c€/4)(n—1)/2 o | ( C)
~ I'm) <o j! j! \4n
_ e
I'(n)
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ihereby getting
ha
6.10) D)~ %"P (—C/Z _anfl - Zn) / 2) ( _zz_)n—l
Setting [ ( 1 — 2%) = 22, (6.10) yields
R L
2n
_ ey g2
T'(n) ’

orl ( | 2-%) asymptotically is distributed as 22 with2n=(r—Dk(k+1)/2

degrees of freedom. It may be verified that 1 — 2—6’—1- = p, the scale factor in

the y* approximation by Box (1949, p. 329). [Cf. Anderson (1958, p. 255).]
For other approximations to the noncentral y2-distribution see Abdel-
Aty (1954), Tukey (1957).

6.2. Single Sample
For a single sample, we derived the value 2[(H,:H,)in (3.15). With the

same transformation as in (6.1), that is, NS = X,sVE,"2 with Jacobian
1 (k+1)/2

]—Vz._,l , the probability density of the Wishart distribution of the

elements of S is transformed into that in the right-hand member of the
pair in (6.2) and

(6.12) ZI(HI:Hz) = (]og |[§2l‘ —k +tr Szz-—l)

= Nklog N — Nlog|V| — Nk + tr V.

The characteristic function of the distribution of' 2f(H,: H,) is therefore

(6.13) &(r)
KN N(-2i)~k-—1 k
(_%) 2 Ivl 2 exp(—%tr(l - 211)V+ ilNklOgN— ilNk) H dv,,,,

yo=1

_f AE-D8 TIT(N + 1 — )2
a=1

(4)"*exp (itNk log N — itNk) I‘_I P(N(1 —2in) 4+ 1 — )2
- (I — 220 o5 (N +1—a)2
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Using (6.5), we derive

(6.14) logg(t) = — "E+ 1)

log (1 — 2it)

it(2k® + 3k — k)
12(1 — 2ir)N

+ O(1/N?

from which the conclusions stated in the preceding sections follow as in
section 6.1.

6.3. The Hypothesis of Independence

It is known that the logarithm of the characteristic function of the
distribution of 2/(H,:H,) = —Nlog |R| [see (3.18)] is [see Bartlett
(1950), Wilks (1932, p. 492)]:

I'(N/2)
6.15) 1 =k -—-1DI
k=l D(N(1 — 2it) — o)f2
t 2T T —ap

Employing Stirling’s approximation as in (6.5), and retaining comparable
terms as in (6.7), we have

(6.16) log $(t) = —

where ¢ = k(k — 1)(2k + 5)/12N.
The statement at the end of section 3.3 then follows from (6.16), (6.8),
and (6.9). From (6.11) we may also deduce that

k(k — 1)(2k + 5)
6Nk(k — 1)
asymptotically is distributed as x* with k(k — 1)/2 degrees of freedom.

The last result is given by Bartlett (1950). o
The logarithm of the characteristic function of the distribution of

2[(H,: H,(")) = Nlog [Rul lili (R [see (3.30)] is [Wald and Brookner

(1941), Wilks (1932, p. 493, 1943, p. 244)]:

log (1 — 2it) +

’
o

k(k — 1) cit
4 1 —2it

2[(H,: H,)) (1 — ) = —(N — 32k + 5)) log |R|

- (N + 1 — )2
(617 logd) =2 > BTHT—2i) + 1 — A2
E TN —2i)+1—9p)2
+ 28—y T -2

=1




330 INFORMATION THEORY AND STATISTICS

Employing Stirling's approximation as in (6.5), and retaining comparable
terms as in (6.7), we have

kk + 1) = 3 kylles + D cit

1 — 2it >
4 log ( l)+1—2it

(618) log (1) m —

where ¢ = ((Zk‘ + 38— ]) = i(Zkﬁ3 + 3k — kp))/lZN, from which
p=1

the results in table 3.1 follow.
Note that for kywm 1, B, m, sothat m =k, (6.17) becomes

(6.15), and (6.18) becomes (6.16).

6.4. Roots of Determinantal Equations

From results derived by Fisher (1939b), Girshick (1939), Hsu (1939,
1941a, 1941b, 1941-42), Roy (1939, 1957) [see Anderson (1951, 1958, pp.
307-329), Mood (1951), Wilks (1943, pp. 260-270)], it is known that the
probability density of the distribution of the roots of |S* — /S| =0
[see (8.4) in chapter 11], for (n — r) large, is

(D(r -1 )9/2"?/2
Ii T — 02N (p + 1 — @2

(6.19) (h- - - L)r—P-DI2

et T T (1, — 1),
>3 ’
and that of the roots of |S;; S;;'S;y — ISgs,| = 0 [see (7.4) in chapter 11],
for (n — k) large, is
(ky = Dk /2 k12
(6.20) I @) (- - vk’)(k,—k,—z)/z %
TI Dk, — )2T(ky + 1 — @)/2

a=1

e‘llz(”1+' B +vk’) H(vi - vi)’
>3
where v, = (n — k).

The characteristic functions of the asymptotic distributions of J(H,, H,)
in (8.5) of chapter 11 and (7.5) of chapter 11 may be derived from (6.19)
and (6.20) as, respectively, (I — 2i1)"" V"2 and (1 — 2if)~®*1~Dk/2 hence
the conclusion as to their »* distributions. The y2 decompositions in
sections 8.1 and 8.2 in chapter 11 follow from the fact that, asymptotically,
the distributions of /pyy,* * > /5 Of (6.19) and vy, - -, v, of (6.20),
assuming the corresponding population parameters have the null hypoth-
esis values, are independent of the distribution of the remaining roots

and with probability densities given respectively by
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(%)(r—l—m)(p—m)/2.,,(p—m)/2 -
(6.21) ;= (hpyy * =+ L) P=212 x

IIT¢—m—)2l(p —m+1 — )2
a=1
e~ llmurt+- - +1y) I’I a4 —=1),

>3

(%)(k1 —1—-m)k, —m)/2,n,(l', —m)/2

(622) =
[T Tky = m — )2T(ky — m + 1 — 2)/2
a=1

e mut e +oy) IT @; —v).
i>j

(vm+l « o a vk’)(kl—kt—z)/z

When S, and S, are independent, unbiased estimates of the same
covariance matrix with N, and N, degrees of freedom respectively, the
probability density of the distribution of the roots of |N;S; — IN,S,| = 0
is

k (N + Ny + 1 — )2
6.23 ﬂw( 2
(6.25) 1;II‘(N1 + 1 —a)2lNy+ 1 — 2Tk + 1 — )2
(h- - R EDRTT A — 1)
1>] .
@ + 1) - - (@ + ok
When S is an unbiased estimate of Z with N degrees of freedom, the
probability density of the distribution of the roots of [NS — /Z| = 0 is
/2 L\NkI2
624) @ - - - b= x
TITWwW+ 1 —o)2T'k+ 1 — 2)/2
a=1 e_l/'(11+ cee 4l H(lj _ i).

i>j

The distribution of /.., - * -, /; in (6.24), assuming the corresponding
population parameters have the null hypothesis values, is independent
of the distribution of the remaining roots, with probability density

,n,(k —m)/'l(%)(N —m)(k—m)/2 9

(625) —
TIT(N —m+1— )20k —m + 1 — )2

= YN k=Dl =Nttt W TT (1, — 1)),

(1m+1 i>j

In section 3.5 we were concerned with the distribution of

k
N 3 (—IOgF,-—l+F,~)=(k—m)NlogN—(k—m)N

i=m41

k
+ X (=Nlogl, +1),

f=m+1
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where the I’s are roots of |[NS — /E,| = 0. We find that the characteristic
function of the desired distribution is [using (6.25)]
NE=mXtexp (it(k Nlog N — (k — m)Nit)
(6:26) ¢(r) = 2 p l'") m?gza) m)/(2
(1 — 2ir)k—mxX

k-wm D(N(1 —2it) —m + 1 — a)[2

a=1 F(N_m+1_“)/2
Note that when m = 0 the sum in question is 2/(H,: H,) in (6.12), and the
characteristic function derived in (6.13) is (6.26) for m = 0.

By using Stirling’s approximation as in (6.5) and retaining comparable

terms as in (6.7), we find that the logarithm of the characteristic function

in{6.26) is
(627) log(t) = — (e = ”’sz_ m+ D, og (I —2it) + 7 -—t2t

where ¢ = (2k3 + 3k%2 — k — (2m3 + 3m2® — m))/12N, from which the
statement about the distribution made in section 3.5 follows.

The distribution of /,,, - *, /; in (6.23), assuming the corresponding
population parameters have the null hypothesis values, is independent of
the distribution of the remaining roots, with probability density

(6.28) A*—mIZ x
(‘ﬁ" P(N—m+1—a)2 )
et TNy —m+1—)2(Ny—m+1—a)2l'tk —m+1 — a)/2

gy * =+ B =¥= 1)/2[[(11 - 1)
i>j

(D + L) - - (1 F L))y Matdar’

where N = N, + N,. In section 5.2 we were ¢oncerned with the distri-
bution of

N.
(k — m)N, log m + (k — m)N, log

2

N, + N,

+ z (M + Ny)log(1 + 1)) — N log 1)),
t=m+1

where the /;, are the roots of |N;S, — IN,S;| =0. We find that the
characteristic function of the desired distribution is [using (6.28)]

2 N. k-m
(6.29) ¢(t) = exp (it(k —m) Y N,log —]\7’) I_Il
i=1 a=
I(N—m+1—a)2 LM = 2i) —m+ 1 —a)2 -

TNO —2i) —m T =2« T —m+1—a)2
P(Ny(1 =2it) =m+1 — a)/2
TN, —m+1—a)2
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Similarly, as in (6.5), (6.6), and (6.7), we find

_ tk—mk—m+1) . cit
(6.30) logd(t) = — 3 (1 —2it) + Ty
3 2 — 3 2 1
where ¢ = (2K7 + 3k ©) 12(2m + 3m m) (—1\% + 7\’1; - —]\7)’ from

which the statement about the distribution made in section 5.2 follows.

7. STUART’S TEST FOR HOMOGENEITY OF THE
MARGINAL DISTRIBUTIONS IN A TWO-WAY
CLASSIFICATION

We return to the test of the null hypothesis of equality of marginal
distributions mentioned at the end of section 11 of chapter 8 and indicate
Stuart’s (1955a) procedure.

7.1. A Multivariate Normal Hypothesis

Consider the following alternative hypothesis H; and null hypothesis H,
for the means and covariance matrices of multivariate normal populations:

(7.1) Hyi:p,=nA, I, =nZ —nAA,
Hy:py, =0, Z, = nZ.

From (1.2) of chapter 9 we then have

nZ k
(7.2) 1(1 .2) = %IIA’Z_]‘A + %— lOg TIEHKE - -2-

1
4+ 1 tr (nZ — nAA") ~ z-1
= inA’Z1A — Llog (1 — A'Z-1A) — JA'ZIA,

using the fact that [cf. Wilks (1943, pp. 237-238), problems 10.4 and 10.6
in chapter 9]

LN
n

(7.3) ! |nZ — nAA'| =
" A nZ

= _1- anl(l - A’Z_IA).
n

Accordingly, for large n, we may use
(74) 21(1:2) = nA’ZIA = (nA'Y(nZ)Hnh),

equivalent to that under hypotheses specifying a common covariance
matrix nZ and differences of means 7A.
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7.2. The Contingency Table Problem

With the notation for & two-way contingency table in section 2 of
chapter 8, since z,. 4 - -4, mz 4+ FT =0 this is a
(c — I)-variate problem. and Stuart (1955a) defines the statistics of
interest as

(7.5) d;=-l'“——2'_,, [-].2’.-"(,'—'].

It is known that the multinomial distribution tends to the multivariate
normal distribution [Cramér (1946, pp. 318, 418), Kendall (1943,
pp. 290-291)], and Stuart (19554, pp. 413-414) shows that

(7.6) Ed)=n(p,, —p.), var(d) = nl(p, + p.. — 2p:)
— (p.. — p.)4,

cov (d,, d;)' = —nl(p,, + /’n) <+ (P(. - P.t)(Pj. - P.j)],

so that with p,, — p., = A, the matrix Z in (7.1) is B = (o)), 0;; =
Piitpi—2pu 0iy==(p,+p) i jm1,2, - c—1
The test statistic, the estimate of 2/(1:2), is

(1.7) 20(H,: Hy) = d'S—Nd,

where d' = (d,, d,,* * *,d.-,), the d’s defined in (7.5), and S = (s,)),
Sy =& +x,;— 2 8y=—(@, +x,),i,j=12,-++¢c— 1. Under
the null hypothesis H,. 2f(H,: H,) is asymptotically distributed as 42 with
(c — 1) degrees of freedom. As in reparametrization, the conclusion is
independent of which ¢ — 1 of the ¢ d’s are used.

8. PROBLEMS

8.1. Considering (3.18), what can be said about the range of values of |R|?
8.2. What is the formal relation between (3.26) and the value in (3.5) of
chapter 7 forr = 1?

8.3. Develop section 4.1 when the null hypothesis (insofar as the means are

concerned) is changed to Hy:py = pt + 8,y = 1, with 8 specified, that is,
the null hypothesis specifies that the difference of the means is 8.

8.4. What is the asymptotic distribution of 2I(H,:Hx-)) in table 4.1 if the
null hypothesis is not satisfied?

8.5. Show that 2I(H,: Hy(-)) in (4.12) yields 2I(H,: H,) in (4.8) for r = 2.

8.6. Test the first and third samples in example 4.2 for homogeneity of the
population means.
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8.7. If you were to compute a linear discriminant function for the second and
third samples in example 4.2 by the procedure of section 4.2 and by the procedure
of section 8.1 of chapter 11, would you get different results ?

8.8. What is the asymptotic distribution of 2[(H,: Hy(-)) in (5.14) if the null
hypotbhesis is not satisfied ?

8.9. Test the three covariance matrices in example 4.2 for homogeneity.

8.10. Develop the analysis of the data in example 5.1 according to table 5.2
and confirm Smith’s (1947) remark that the correlations are not significant.

8.11. Complete the analysis of the data in examples 4.1 and 5.2 in accordance
with table 5.2.

8.12. Discuss the similarities and differences of the test for the independence
of two sets of variates in section 3.6 and the test in section 7 of chapter 11.

8.13. Write the probability densities in (6.2) for k = 1.
8.14. Verify the “algebraic manipulation” for (6.5).

8.15. Write the probability density in (6.19) for p = 1, that in (6.20) for
k, = 1, and that in (6.23) fork = 1.

8.16. Wilks (1935b, p. 325) considered the following correlation matrix,
given by Kelley (1928, p. 114), for a sample of 109 seventh-grade school
children, in which the five variables are respectively arithmetic speed, arithmetic
power, intellectual interest, social interest, activity interest:*

1 (.4249 —0.0552 —0.0031 0.1927

0.4249 1 —0.0416 0.0495 0.0687

R =1} —0.0552 —0.0416 1 0.7474 0.1691
—0.0031 0.0495 0.7474 1 0.2653

0.1927 0.0687 0.1691 0.2653 1

Would you accept a null hypothesis that the set of the first two variables is
independent of the set of the last three variables ?

8.17. Bartlett and Rajalakshman (1953, p. 119) concluded that the observed
correlation matrix R, with' N = 29, is significantly different from the hypothetical
correlation matrix P,, where

1 0.7071 0.7071 0.5000
0.7071 1 0.5000 0.7071
0.7071 0.5000 1 0.7071
0.5000 0.7071 0.7071 1

1 0.2676 0.5931 0.1269

02676 1 03753 0.5941 |
R=105031 03753 1 0.6796

0.1269 0.5941 0.6796 I

Verify this conclusion.
* Reprinted from Crossroads in the Mind of Man by Truman L. Kelley with the

permission of the publishers, Stanford University Press. Copynght 1928 by the Board
of Trustees of Leland Stanford Junior University.
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8.18. Box (1950, p. 387) gives the following covariance matrices for three
treatment groups on growth data for rats:

2105 135 —-7.5 —135

9S. = 13.5 2025 224.5 110.5
1 —7.5 2245 3109 1175)
—13.5 1105 117.5 258.5

1114 830 784 39.7
6S. = 83.0 246.0 2920 157.0
27| 784 2920 4734 264.7)

39.7 157.0 264.7 1749

2604 —54.0 —1264 —100.8

—540 1605 110.0 77.0
—1264 110.0 262.4 768 |

—100.8 77.0 76.8 419.6

9S,

Box concludes that there is no reason to doubt the homogeneity of the covariance
matrices. Verify this conclusion.

8.19. Suppose that in the analysis in table 3.1 there are only two sets, with
ky=1, ky =k — 1. Show that 2I(H,: H-)) = —Nlog (1 — r}... . .»), with
k — 1 degrees of freedom and % = (k* — 1)/2N, where ry.o5. . . is the observed
multiple correlation of ;, with x,, 23, * *, 2;. [See (7.18) in chapter 9.]

8.20. Show that problem 10.12 in chapter 9 is equivalent to
Hé '-F‘Hé(ﬂ%.zs. .o = 0) n Hé(p§3 k= 0) n---n Hé(Plzc—lk = 0),

where H is the hypothesis of independence in (3.18) and Hg(p%;,,. .. .1 = 0)
is the hypothesis that the multiple correlation of z; with z;,,, - -, z; is zero,
j=1,2,-- k-1

-821. Show that —Nlog |R| = —Nlog(l — rfes. .0 — Nlog(1 — ris. . .0
— - =Nlog(l —ri_.p), that is, 2[(Hy:H3) = 2I(H,:Hy(p.ps. . .x = 0)) +
< oo 4 2[(Hy:Hyp_1.c = 0)), where Zf(HI:HQ) is given in (3.18) and
20(H,: H{p}.51, - - e = 0)) = —Nlog (1 — r} . .. .0-

8.22. Show that table 8.1 is an analysis of 2(H,: H3) in (3.18).

8.23. Show that —Nlog (1 —rf.s...) = —Nlog (1 —riees.. k) —
Nlog(1 — rdeyes.. 6 —° - — Nlog(l —ri3®) — Nlog(1 — rip, where

-, k, is a partial correlation coefficient.

r15.28. - -i—l’j =2,
824. Show that table 8.2 is an analysis of 2J(H, : H3(p} 5. . .x = 0)).

8.25. Show that problem 10.15 in chapter 9 is equivalent to Hy(Z;) =

Hl|Zos| = |Z1) N Hl(|Zg| = [Bspa) N - * - N Hl|Bps| = [Bernrz. . -mna))s
whlre II‘I,(}:,-,-) 1; the hypothesis in (§f28) and Hy(|Z;| = |Zj.,5. . .,_lil) is the
hypothCSiS that Izﬁl = Zﬁ.n. . .,’_1‘,]' =2, ,m

8.26. Show that table 8.3 is an analysis of 2J(H,:Hy(-)) of table 3.1.
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TABLE 8.1
Component .
due to Information D.F. B2
Prrx=0 —Nlog (I = ri-1.0) 1 2
=1k 4 k-1-k N
. k—j¥+ 2k —j)
P?-j e =0 —Nlog (- "3.5.,.1,. e k —J ( '/)2 5N J
2 x=0 _Nlog(l — 2, . ) k=1 k=1
Pr2- - -k g 12 -k N
, k(k — 1) k(k — D2k + 5)
H —Nlog [R
: Nlog [R| 2 12N
TABLE 8.2
Co:lr:gotr:) ent Information D.F. B
2 2 3
P12=0 —~Nlog(l —r}) 1 =
2 2 J
Piz.2 = 0 ""NlOg (1- )’13.2) 1 ﬁ
| 2j—1
Pliog .1 =0  —Nlog(l = rfiss. . .jm2) 1 SN
. 2k — 1
pfk.”. « kel = 0 —Nlog (- k.23- - -k—l) 1 —Z-I'V—_
k2 — 1
Pg.z.. £r=0 —Nlog(l —rg.g...);) k—1 2N
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8.27. Show that the analysis in table 8.3 (problem 8.26) for k; = k, = - - -
= k,, = 1 is similar to that in table 8.1 (problem 8.22).

8.28. Show that an analysns of the information component due to lZ,, 12 il
in table 8.3 (problem 8.26) is given by table 8.4, with / = k; + k3 + - - - + k.

8.29. Show that for k; = k;_; = 1 the partial mdependence component in
table 8.4 (problem 8.28) reduces to that for the hypothesis p%;_;.45. . .;_o = 0,
as would be given by a result similar to that in table 8.2 (problem 8.24). (Cf

problem 10.20 of chapter 9.)

8.30. Relate the analysis in table 8.1 (problem 8.22) for & = 3 with that in
table 3.3 of chapter 8.

8.31. Relate the analysis in table 8.2 (problem 8.24) for k = 3 with that in
table 3.5 of chapter 8.

8.32. Let the random vector x be subjected to the nonsingular linear trans-
formation y = Ax. Show that (see section 3 in chapter 9):

(@) py = AP
(b) T, = AZA".
(c) ¥y = Ax.

(d) S, = AS,A".

(€) I(*:2) in (3.14) is equal to
n, _ 1V _ 1 - N Izvzl -1
50 — W)ZRE — ) + 5 (log S k + tr S, Tt ).

8.33. In problem 8.32 let
z, = Su S I 0
T = 11 12 S, 11 12 A= ky _ .
¥ (221 222)’ (S21 Sza) (-2212111 Ik,)

Show that (see section 7 in chapter 9):

=1 —_ ILl 0 .
@ A (221211 Ikg)
) Z, = (gm gﬂlz)a Zu=2Z Z,,=0=2Z,, Zin=Zp —

21 22

221211 z12 222 1

(o) §, = (g:: Sg)’ Sun =Su, Sye = S;; — SuEGE,, = Sy,
S,z = Sgy — Z Bl S1e — SaZi'Z,e + Ty XS LT,
(d) Sy20.1 = Syz2 — S,215711S12 = Sz = Sg — Sy SiH'Spe.
(¢) 2i(H,:H,) in (3.15) is equal to
|21
W (1og g

Izmi —- k2
+ tr S,,”Z,‘ml + lOg—'——E-‘——
v




TABLE 8.3

Component

Information D.F.
due to
|Seel |Rgo| -
... Nlo = N log .—— k.k
Bzl B[Szl 8 Rzl v
S R ky + -
sz:i'lz- . -J'—-ll Nlog—__l—ﬂl—_— = Nlo ———L—:’L'—' i+ -+ k,'_.l)kj AL SLENEY
|Ssi12. - il IRjia2. . |
ISmmI IRmmI (kl + -
m1e --m-1] Nlo = Nlogm——""—— (ky+* * *+ kp Dk ———
Bomar - mal Nloggg = Nlog ] 1
S R Smm R - Rmm 2k3+
2i(H,: Hy(+)) Nlog'—i‘—l—l—s—l—l———l = Nlog| ul |R|| | S kik;

1<j




TABLE 8.4

Component due to Information D.F.
[Z5502. -+ =2l Nlog I—S—;gﬂ;i = Nlog ﬁ% (I — k; — k;_k;
Partial independence Nlo !—g—;—f—i———:—:—:—: = Nlog :-:—:—:f—:—:—-—fj k;_1k;
1Zs52. -« il Nlog "’S_j% = Nlog rﬁ;;ll'?ﬂ‘—j_—ll (I — kjk;



MULTIVARIATE ANALYSIS: OTHER HYPOTHESES 341

8.34. Show that table 8.5 is an analysis of 2/(H,:H,) in (3.15) (see problems
8.32 and 8.33, and table 3.1, k = k; + k).

TABLE 8.5
Cog:}: otr:) ent Information D.F. p?
kyk, + 1) 243+ 3ki—k
z og 12l _ &, 4 trs Db 1 1 1
" (ogl Sl T 2 12N
| - ) kolks + 1) 2k3 + 3k — ks,
R lo — ky+trS
T ( -y l v22| r rzzzzzl > N
-1 Sz kokyk + 1)
Nlog === k. k e
z21211 Og lSzg.]_l 12 2N

ktk +1) 2k3+ 3k —k
2 12N

2[(H,: H,) N (

[Z,]
3.15) log =2 — k + tr ST;!

8.35. In (3.13) let &, = ¢2X, and denote the null hypothesis with ¢% and Z,
specified by Hy(o?), and the null hypothesis with Z; specified, but ¢% not
specified, by Hy(-). Show that [cf. Anderson (1958, p. 262), Mauchly (1940)]:

(@) 2I(H,: Hy(0%) = (log lle:Tl + klogo® — k + Bl‘;tr SZ;‘).

) min 2[(H,: Hy(o?) is given for 62 = ];tr SX;l

(©) 2I(Hy: Hy()) = min 21(H,: Hy(0%) = Nlog ‘IZS::II’ where S = 4°S,.



CHAPTER 13

Linear Discriminant Functions

1. INTRODUCTION

In this chapter we shall continue the discussion initiated in section 9
of chapter 9. We have already studied linear discriminant functions, with
assumptions of equality about the means or covariance matrices, in section
8 of chapter 11, section 3.5 of chapter 12, section 4.2 of chapter 12, and
section 5.2 of chapter 12. For these linear discriminant functions, we
obtained the same coefficient matrix (vector) a of ¥y = a’x whether we
determined a to maximize /(1:2;y) or J(1, 2;y). However, in section 9
of chapter 9 we saw that different linear discriminant functions arise
according as we maximize /(1:2;y), /(2:1;y), or J(1,2; y).

2. ITERATION

In section 9 of chapter 9 we formulated the equations to be solved for
the coefficients of the linear discriminant function as (9.5) of chapter 9,

that is,
2.1 ~ Z,a — AZ,a = 99,

where 7 and y are defined in section 9 of chapter 9 according as it is
I(1:2;y), 1Q2:1;y), or J(1,2; y) which is to be maximized. We remark
that in the derivation of (9.5) in chapter 9, dividing by an appropriate
factor, we might also have formulated the equations as

2.2) | T,a — VEa =y,

where for maximizing /(1:2; y),
, aZ,a(a'Za — a'Z o)
(2.3) A= o' a(a'Ba — a'Za — (a'd)?)
. (a'Zyo)('S) )
VT — «Za + (a8
342
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for maximizing /(2:1;y),

aZa(a’Za — a'Z,a — (a'd)?) , _ (a'Ba)(a’d)

2.4 ;ul = ] = .
24) o Z (el a — a'Z,a) «Za — aZ,a

and for maximizing J(1, 2; y),
2.5) = YE(@Ew)? — (@Zja) + («8)Ha' )
' «Z,a((a T, — (@) — (dB)H(d Z,a)

, (@ 8)(a'Za)a'ZEia + a'Za)
7 T (0E0) — (0 Z0) + (a8 (aZ,a)

For convenience, setting the proportionality factors y and y’ equal to 1,
(2.1) and (2.2) are

(2.6) Za—iZa=958  Zu—Ta=3,

where A = 1/3’ for each case. When 4, 1’ are not solutions of |, — 1Z,|
=0, |Z, — 'Z;| = 0 respectively, (2.6) yields the following implicit
solution for a:

@.7) a=(Z — )8, a=(E,— VT

If 4 is a known number, (2.7) yields directly the value of . However
A, 2’ in all instances are functions of a. Initial or entering values of a
are therefore required to begin an iterative procedure.

The entering value for a is taken to be, respectively, as

(2.8) 0 =18, ay =X,

It should be clear that the same initial value of a will serve each of the
iterations necessary to maximize either J(1:2;y), /(2:1;y), or J(1, 2, y).

With «, determined, values for ay'8, a'Z;ay, oZyay are found and
then A, or 4,. Cycle 1 is begun by entering with 4, or 4y’ to find a new
set of «’s from

(2.9) a, = (B, — LZ)7S, a = (B, — H'E)S,

and then determining '8, a'Za;, a'Ta;, and then %1 or %1’, thus
completing the first cycle. This procedure is continued until the difference
in successive a’s, or more appropriately in successive /e, is as small as

desired. .
We shall replace population parameters by the best unbiased sample

estimates.
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3. EXAMPLE

We shall illustrate the procedures described with data from Smith (1947)
(see example 5.1 of chapter 12). The computations were performed by
S. W. Greenhouse. The pertinent values are:

% — 20.80 % — 12.80 4= 8.00
17 112.32)° 2™ 136.40)° — \—24.08)°
S — 6.92 —5.27 S. — 36.75 13.92
17 1—=5.27 40.89)° 27 \13.92 287.92

S-1 = 0.16023613 0.02065161
17 10.02065161 0.02711749)°

S ( 0.02771848 —0.00134010)
2 = ’

), |S,| = 255.1859,

IS,| = 10387.2936,

—0.00134010  0.00353798

R ¥ P
1:2) = 5 (1og@

\ = 1.028432 + 2.170861 = 3.199293,
f(2:1) = 4.282444 + 9.010994 = 13.293438,
J(1,2) = 5.310876 + 11.181855 = 16.492731.

We shall find the linear discriminant function y = a,x;, + ax,, q;, = 1,
a, = ay/a;, maximizing [(1:2;y); similar steps occur for the procedure
leading to the linear discriminant function maximizing f(2:1 ;y) and
JQ,2; ).

We obtain the initial value from (2.8), that is,

21 _go1g— 002771848 —0.00134010 8.00
G1)  a=8,7d=1{_,00134010 000353798 )| —24.08
_ [ 0.25401745
= 1 —0.09591536)
so that a5 = 1.000000, ap, = —0.377594. From these we get,

8.00

agd = (1, —0.377594)( 2408

) = 17.092464,

, 692 —527\( 1 _
2,'S,8, = (1, -0.377594)(_ o7 40'89)(_0.37759 4) = 16.729814,

, 3675 13.92\( 1 _
2,S,a, = (1, _0.377594)(13.92 287’92)(_0.37759 4) = 67.288553,
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and from (2.3),

i = (67.288553)(67.288553 — 16.729814)
16.729814(67.288553 — 16.729814 — (17.092464)2)

= —0.8417.

Cycle 1

(S, + 0.8417S)) = (42574564 9.484241)’

9.484241 322.337113
IS, + 0.8417S,| = 13633.4112,

0.02364317 —0.00069566 8.00
= -4 = '
% = (S, + 0.8417S)7d (—0.00069566 0.00312281)(—24.08)

( 0.20589685)

—0.08076254
an = 1, (112 = _0-392248,
a’d =1, _0'392248)(—2‘81.8(8)) = [7.445332,
S a 692 —527\( 1 _
a,'Smy = (1, —0.392248)( Iy 40.89)(_0.3922 48) = 17.345548,
, 36.75 13.92 1
a,/S;a, = (1, —0.392248)(l v o 287.92)(_0.3922 48) = 70.128611,

and from (2.3),

, 70.128611(70.128611 — 17.345548)

A= = —0.848333.
1 17.345548(70.128611 — 17.345548 — (17.445332)2)

Cycle 2

42.620236  9.449459
9.449459 322.606987)’

|S, + 0.8483S,| = 13660.2936,

0.02361640 —0.00069175 8.00
—0.00069175 0.00312001 / \ —24.08

_ ( 0.20558854)

@, = (S, + 0.8483S,)1d = (

—0.08066384
ay =1, @y = —0.392356,
, 8.00\ _
a,d = (1, —0.392356)(_2 4.08) = 17.447932,
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6.92 —5.27)( 1

2,'S,a, = (I, —0.392356)( ) = 17.350162,

—527 4089\ —0.392356
, 3675 1392)( 1 _
25,8 = (1, "0'392356)(13.92 287.92)(—0.392356) = 70.15007,

and from (2.3),

, 70.150078(70.150078 — 17.350162)

% = 17350162(70.150078 — 17.350162— (17-247932)) — _ O-348388.

A third cycle was computed, although two cycles would seem to be
sufficient in view of the negligible change in ’. The value of

a'S,a 1 a’Sa (a’d)z)
a'Sa a'S,a  a'S,a

1
I1:2;9) = E(log

was also computed for the initial value and cycle 3. The various values
are summarized in table 3.1.

TABLE 3.1
\ 0 1 2 3
A; —0.8417 —0.848333 —0.848388 —0.8483901
a;y —0.377594 —0.392248 —0.392356 —0.392357
a;'S;a; 16.729813 17.345548 17.350162 17.350213
a;/S,a, 67.288553 70.128611 70.150078 70.150338
a/d 17.092464 17.445332 17.447932 17.447957
Ia:2;y) 24911 2.492030 2.492031 2.492031

When the basis for the iteration is a = (Z;, — AZ,)~18, the corresponding
values are summarized in table 3.2.

TABLE 3.2
\ 0 1 2 3
A; —0.9409 —1.1763 —1.1787 —1.178703
a; —0.621689 —0.395810 —0.392385 —0.392357
a/Sa; 29.276464 17.497910 17.351408 17.350213
a,/S.a; 130.722394 70.837924 70.155892 70.150338

For this example, note that both procedures yield the same a,, and
exactly reciprocal 7’s after only 3 cycles. This number of cycles need
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not be 3 in general. We remark that the values across the rows of each
table are monotonic.

The values for the linear discriminant function maximizing i(2:l;y)
are summarized in table 3.3.

TABLE 3.3
A; 0.0361 0.036582 0.036596 0.036597
a, —0.621689 ~0.843193 —0.848904 —0.849072
a;/S,a, 29.276464 44878981 45.334336 45.347760
a,'S,a, 130.722394 217.979141 220.602606 220.679986
Ie:1;y) 9.9956 10.063654 10.063671 10.063678

The values for the linear discriminant function maximizing J{1,2;y)

are summarized in table 3.4.

TABLE 3.4
A 0.00206 0.00231 0.0023397 0.0023435
a; —0.621689  —0.628501  —0.629353 —0.629456
a,/Sa, 29.276464 29.696523 29.749296 29.755698
a,'S,a; 130.722394  132.984963  133.269606 133.304168
J(1,2;y) 12.3739 12.37405 12.37406 12.37406

We thus have the three linear discriminant functions:

(3.2 max {(1:2;y): y =z, —0.3924x,,
max [(2:1;y): y =z, —0.8491x,,
max J(1,2;¥): y = x; —0.6295x,.

4. REMARK

Although it is clear that the procedure, including that for o‘btaining the
initial values, did converge, we have no general proof that this procedure
converges, or that a solution yielded by this procedure is the only one
satisfying (2.6). For any two-variate problem however, i(1:2;y),
I2:1;y), and J(1,2;y) are essentially functions of one unknown, the
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ratio ay/a;. The maximizing condition is a polynomial in this ratio and
the properties of the roots can be studied. For /(1:2;y) and /2:1;y)
the polynomial is quartic, and for J(1, 2; y) it is of the sixth degree. In
each instance in section 3, there were only two real roots, a negative root
yielding maximum f(1:2;y), [2:1;y), and J(1,2;y) and a positive root
yielding the minimum value in each case. The equations were solved by
Newton’s method and the negative roots maximizing f(1:2;y), [2:1;y),
and J(1, 2; y) respectively were —0.392357, —0.849083, and —0.629468.
Reference to tables 3.2, 3.3, and 3.4 clearly indicates that the iteration is
converging to these values and that the values obtained at the end of 2
cycles are correct to 4 decimals.

5. OTHER LINEAR DISCRIMINANT FUNCTIONS

Smith (1947) computed a linear discriminant function for these data by
assuming the covariance matrix to be the same in both populations. The
solution for a is then

(5.1) a = S,

where NS = N;S; + N,S,, N = N, 4+ N,. (See the last part of example
4.1 in chapter 12 and section 8.1 of chapter 11.) Smith’s values, reduced
to a basis comparable to (3.2), that is, so that o; = 1, yield the discriminant
function

(5.2) y = x; — 0.3947z,.

Since the two samples are of equal size, the linear discriminant function
computed in accordance with section 4.2 of chapter 12, that is, the value
of a satisfying
-1
(5.3) a= (—1- S, + 1 Sz) d,
hy ny
yields the linear discriminant function in (5.2).

Note that the linear discriminant function in (5.2) is almost the same
here as the one in (3.2) resulting from maximizing f(1:2; ).

The discriminant function is often used to classify an individual on the
basis of the observational vector (z,,Z,, - - -,z,) and a given linear
compound y = ¥&; + * * * + %, into one of two populations. [We
use the matrix ¥ = (¥1, ¥2* * *, ¥ to avoid confusion with the error
probability « below.] The classification usually proceeds according to
some rule such as: if y falls into the region A*, classify into population
my, say, and if y does not fall into A*, classify into population m,. It is
clear that associated with this or any other classification scheme are two
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kinds of errors, namely, assigning ¥ to population 7, when it is in fact
from population m,, and assigning y to population 7, when it is in fact
from population 7;. Denote the probability of the first error by « and
that of the second error by f. We can then form a minimum error
criterion for finding a linear discriminant function, namely, for a given §,
what linear function of the z’s will minimize «? Since « and f are
monotone functions of the normal deviates f, and t, respectively, it is
simpler to work with the latter.

It may be shown that, for a given f, « will be minimized by maximizing

R Rl VEN 11
: (Y Zqy)"
The usual calculus procedures lead to the equation
54 B EY)"E + LY B By = (YE¥) (Y Z,7) "8,

which is nonlinear in the »’s. (The same equation is obtained if « is
given and B minimized.) The solution here is best carried out, as in
sections 2 and 3, by an iterative procedure on an equation of the form

(5.5) 1 + AZ)y =5,

where 1 = t,(Y'Z,Y)"/ty(y'Z;y)":. The iteration follows the identical
steps given in section 2. The initial values of y are obtained from y =
Z,715, which in turn determine y'Z,y, Y'Z,Y, and for a fixed t;, ¢,, these
determine A so that (5.5) becomes an explicit equation in y. The cycles
can be continued until changes in ¢, become as small as desired.

In this manner, two functions were found; one for § = 0.05 (¢; = 1.645)
and the other for 8 = 0.16 (t; = 1.000),

(5.6) max 1,(t; = 1.645): y = z; —0.4173x,,
5.7 max t(ts = 1.000): y =z, —0.3990z,.

Although the linear discriminant function derived from the minimum
error criterion is of interest in its own right, our interest in it at this point
is to provide a base line for errors of classification with which the corre-
sponding errors of the other linear discriminant functions may be compared.
Note that the minimum error criterion does not provide a unique function,
but yields a different discriminant for each ;. Furthermore, the criterion
used here gives only an approximation (although a very good one) to the
actual linear function minimizing « for a fixed f. This is because the
procedure assumes that the region for assigning to m, say y > y, (or
y < Yo), is optimal when Z, # Z, as it is when &, = Z,. It is known
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that this is not so [see, for example, Penrose (1947) and section 2 of
chapter 5].

6. COMPARISON OF THE VARIOUS LINEAR DISCRIMINANT
- FUNCTIONS

Before comparing the different linear discriminant functions obtained
in sections 3 and 5, we present in table 6.1 the discrimination information
values for the original = variables for x; and z, separately and jointly.
Note that the values for x, are larger than the values for x; in all three
measures; that is, an observation on the x, characteristic from either
population has greater discrimination information in distinguishing
between the two populations than does an observation on the z,
characteristic. Reference to the lower portion of table 6.1, which presents
the error made in classifying an observation from my() for a given error in
classifying an observation from m;(f), indicates that x, also does better
under an error criterion than does x;.

TABLE 6.1
Information Measures x z, z; and z, Jointly
J(1:2) 1.2997 1.5539 3.1993
Ie:1) 5.9448 9.1351 13.2934
J1,2) 7.2445 10.6890 16.4927
Errors
a for 8 = 0.01 0.3782 0.2937
a for B = 0.05 0.2723 0.2123
« for # = 0.16 0.1879 0.1486
min (¢ + B) 0.3154 0.2580
)i} 0.0738 0.0553
o 0.2416 0.2027

The last column in table 6.1 gives [(1:2), [(2:1), and J(1, 2) for z; and
x, assumed to have a bivariate normal distribution in each of the two
populations. To compute the efficiencies of the linear discriminmant
functions of x, and x,, we note that the maximum /(1:2;y), f(2:1;y), and
J(1, 2; y) each can attain is 3.1993, 13.2934, and 16.4927 respectively.
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One last point of interest in table 6.1 is that in this example x; and x,
jointly yield a value of f(1:2) which exceeds the sum of the value of f(1:2)
for , and for x,. This is not true for /(2:1) and J(1, 2).

In table 6.2 are the data on six linear functions of x, and z,, three
obtained by maximizing the information measures, two obtained under
an error principle, and one found by pooling variances and covariances
between the two samples and proceeding as if the covariance matrices
were the same. The upper portion of table 6.2 relates to the information
measures in the linear compounds and the lower portion presents various
error combinations in classifying observations, including the minimum
total error that could be made with each function.

TABLE 6.2
Linear Discriminant Function Obtained by
. Pooling
max f(1:2;) max f2:1;%) maxJ(1.2:» Covariance ?i: % 1(')05:' ';;“:_, 0:)506'
Matrices :
v ry — 0.3924r, z; — 0.8491z, =, — 0.6295x, x; — 0.3947r, z, — 0.4173zy x; — 0.3990r,
Ja:2; 2.4920 2.2272 2,3728 2.4920 2.,4897 2.4918
Ia:2:pfa:2 0.779 0.696 0.742 0,779 0.778 0.779
2:1; ) 9.5962 10,0637 10.0012 9.6040 9.6711 9.6172
!(2: Lp/i2:n 0.722 0.757 0.752 0.722 0.728 0.723
J, 23 12.0882 12.2909 12,3741 12.0960 12.1608 12,1090
J(, 2: /0, 2) 0.733 0.745 0.750 0,733 0.737 0.734
Errors
« for 8 = 0.01 0.1771 0.1948 0.1823 0.1776 0.1764 0.1769
e for B = 0,05 0.1029 0.1212 0.1096 0.1029 0.1027 0.1028
« for § = 0.16 0.0564 0.0719 0.0626 0.0564 0.0564 0.0564
min (x + 8 0.1525 0.1708 0.1591 0.1525 0.1522 0.1523
B 0.0438 0.0446 0.0434 0.0438 0.0435 0.0437
o« 0,1087 0.1262 0.1157 0,1087 0,1087 0.1086

It is clear that the four linear discriminant functions obtained by (a)
maximizing f(1:2;y), (b) pooling variances and covariances, (¢) mini-
mizing « for § = 0.05, and (d) minimizing « for § = 0.16, are very much
alike with regard to discrimination information, divergence, and errors of
classification. Maximizing /2:1;y) and J(1, 2; ) yields linear discrimi-
nant functions which have greater efficiencies than the other four with
regard to f(2:1, y) and J(1, 2; y), but have smaller efficiencies with regard
to /(1:2;y), and have larger errors of classification than the other four.

From the point of view of information theory, the most interesting
feature when the covariance matrices are not equal is the fact that
(1:2;y) # I(2:1;y) and therefore maximizing these two measures, and
the divergence measure J(1, 2; y), yields three different li{lear functions.
The example does suggest that at least one of the discriminant functions
so obtained, in addition to having optimum properties associated with the
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information measure leading to it, will also possess optimum properties
associated with an error criterion for finding a linear discriminant function.

An interesting problem that arises is the investigation of the properties

of max K1:2;y), max f(2:1;y), and max J(I,2;y) to determine the
conditions that will make one of them the best from the error point of
view in numerical applications. It is conjectured that if = is always
taken as the population with the smaller covariance matrix (see the remark
following lemma 5.1 in chapter 3), the linear discriminant function resulting
from maximizing f(1:2;y) will always give smaller errors than the other
two. -
Note also that although max f(2:1; y) and max J(1,2;y) do not do as
well as the other functions on an error basis, they differ most from the
linear discriminants derived from a basis other than the information
measures. Further study of these two linear discriminants may elicit
important properties within the information theory approach.

Of general interest is the fact that the linear discriminant function
obtained by pooling the covariance matrices does so well. Whether this
would continue to be true in other examples, or is peculiar to this one,
remains to be investigated.

7. PROBLEMS

7.1. Derive (2.2), (2.3), (2.4), (2.5).
7.2. Derive the values in table 3.2.
7.3. Derive the values in table 3.3.
7.4. Derive the values in table 3.4.

7.5. Derive the two quartic and the sixth-degree polynomials mentioned in
section 4.

7.6. Derive (5.4) and (5.5).
7.7. Derive the values in (5.7).
7.8. Derive (5.4) by minimizing f for a given «.



R eferences

S. H. Abdel-Aty (1954), “*Approximate formulae for the percentage points and the
probability integral of the non-central y? distribution,” Biometrika, Vol. 41, pp.
538-540.

B. P. Adhikari and D. D. Joshi (1956), “Distance-Discrimination et résumé exhaustif,”
Publs. inst. statist. univ. Paris, Vol. 5, Fasc. 2, pp. 57-74.

A.C. Aitken and H. Silverstone (1941-43), “On the estimation of statistical parameters,”
Proc. Roy. Soc. Edinburgh, Vol. 61, pp. 186-194. (Issued separately Apr. 2,
1942.)

R. L. Anderson and T. A. Bancroft (1952), Statistical Theory in Research, McGraw-Hill
Book Co., New York.

T. W. Anderson (1951), “The asymptotic distribution of certain characteristic roots
and vectors,” Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, Univ. Calif. Press, pp. 103-130.

(1958), An Introduction to Multivariate Statistical Analysis, John Wiley & Sons,
New York. '

W. R. Ashby (1956), An Introduction to Cybernetics, John Wiley & Sons, New York.

R. R. Bahadur (1954), “Sufficiency and statistical decision functions,” Ann. Math.
Statist., Vol. 25, pp. 423-462.

E. W. Barankin (1949), “‘Locally best unbiased estimates,” Ann. Math. Statist., Vol. 20,
pp. 477-501.

——— (1951), “Concerning some inequalities in the theory of statistical estimation,”
Skand. Aktuar. Tidskr., Vol. 34, pp. 35-40.

and J. Gurland (1951), “On asymptotically normal, efficient estimators: I,”
Univ. Calif. Publ. Statist., Vol. 1, No. 6, pp. 89-130.

Y. Bar-Hillel (1955), “An examination of information theory,” Philos. Sci., Vol. 22
pp- 86-105.

and R. Carnap (1953), “Semantic information,” Brit. J. Phil. Sci., Vol. 4, pp.
147-157; also appears with a discussion in Comrnunication Theory, W. Jackson
(ed.), Academic Press, New York, 1953, pp. 503-512.

G. A. Barnard (1949), “Statistical inference,” J. Roy. Statist. Soc., Ser. B, Vol. 11,
pp. 115-149.

——— (1951), “The theory of information,” J. Roy. Statist. Soc., Ser. B, Vol. 13, pp.
46-64.

M. S. Bartlett (1935), “Contingency table interactions,” J. Roy. Statist. Soc., Suppl.,
Vol. 2, pp. 248-252.

(1936), “Statistical information and properties of sufficiency,” Proc. Roy. Soc.,

Ser. A, Vol. 154, pp. 124-137.

353



354 INFORMATION THEORY AND STATISTICS

M. S. Bartlett (1937), “Properties of sufficiency and statistical tests,” Proc. Roy. Soc.,
Ser. A, Vol. 160, pp. 268-282.

(1947), “Multivariate analysis,” J. Roy. Statist. Soc., Suppl., Vol. 9, pp. 176-

197.

(1948), “Internal and external factor analysis,” Brit. J. Psychol., Vol. 1, Pp-

73-81.

(1950), “Tests of significance in factor analysis,” Brit. J. Psychol., Stat. Sec.,
Vol. 3, pp. 77-85.

——— (1951a), “An inverse matrix adjustment arising in discriminant analysis,” Ann.
Math. Statist., Vol. 22, pp. 107-111.

(1951b), “The effect of standardization on a y* approximation in factor

analysis,” Biometrika, Vol. 38, pp. 337-344.

(1952), “The statistica] significance of odd bits of information,” Biomerrika,

Vol. 39, pp. 228-237.

(1954), “A note on the multiplying factors for various ;* approximations,” J,

Roy. Statist. Soc., Ser. B, Vol. 16, pp. 296-298.

(1955), An Introduction to Stochastic Processes, Cambridge Univ. Press.

and D. V. Rajalakshman (1953), “Goodness of fit tests for simultaneous auto-
regressive series,” J. Roy. Statist. Soc., Ser. B, Vol. 15, pp. 107-124.

D. E. Barton (1956), ““A class of distributions for which the maximum-likelihood
estimator is unbiased and of minimum variance for all sample sizes,” Biometrika,
Vol. 43, pp. 200-202.

G. 1. Bateman (1949), “The characteristic function of a weighted sum of non-central
squares of normal variates subject to s linear restraints,” Biometrika, Vol. 36, pp.

. 460462,

D. A. Bell (1953), Information Theory and its Engineering Applications (Ist ed.), Sir
Isaac Pitman & Sons, London; 2nd ed., 1956.

A. Bhattacharyya (1943), “On a measure of divergence between two statistical popula-
tions defined by their probability distributions,” Bull. Calcutta Math. Soc., Vol. 35,
pp- 99-109.

(1946a), “On a measure of divergence between two multinomial populations,”

Sankhya, Vol. 7, pp. 401-406.

(1946b, 1947, 1948), “‘On some analogues of the amount of information and
their use in statistical estimation,” Sankhya, Vol. 8, pp. 1-14; pp. 201-218; pp.
315-328.

F. E. Binet and G. S. Watson (1956), “Algebraic theory of the computing routine for
tests of significance on the dimensionality of normal multivariate systems,” J. Roy.
Statist. Soc., Ser. B, Vol. 18, pp. 70-78.

D. Blackwell and M. A. Girshick (1954), Theory of Games and Statistical Decisions,
John Wiley & Sons, New York.

A. Blanc-Lapierre and A. Tortrat (1956), “Statistical mechanics and probability
theory,” Proceedings of the Third Berkeley Symposium on Mathematical Statistics
and Probability, Univ. Calif. Press, Vol. III, pp. 145-170.

M. Bocher (1924), Introduction to Higher Algebra, The Macmillan Co., New York.

A. H. Bowker (1948), “A test for symmetry in contingency tables,” J. Am. Statist.
Assoc., Vol. 43, pp. 572-574.

G. E. P. Box (1949), “A general distribution theory for a class of likelihood criteria,”
* Biometrika, Vol. 36, pp. 317-346.

(1950), “Problems in the analysis of growth and wear curves,” Biometrics, Vol.

6, pp- 362-389.




REFERENCES 355

R. N. Bradt and S. Karlin (1956), “‘On the design and comparison of certain dichoto-
mous experiments,” Ann. Math. Statist., Vol. 27, pp. 390-409.

L. Brillouin (1956), Science and Information Theory, Academic Press, New York.

L. de Broglie (chairman) (1951), La Cybernétique, Editions de la Revue d’Optique
Théorique et Instrumentale, Paris.

H. D. Brunk (1958), “‘On the estimation of parameters restricted by inequalities,” Ann.
Math. Statist., Vol. 29, pp. 437-453.

M. G. Bulmer (1957), ““Confirming statistical hypotheses,” J. Roy. Statist. Soc., Ser. B,
Vol. 19, pp. 125-132.

F. L. Campbell, G. W. Snedecor, and W. A. Simanton (1939), *Biostatistical problems
involved in the standardization of liquid household insecticides,” J. 4m. Statist.
Assoc., Vol. 34, pp. 62-70.

A. H. Carter (1949), “The estimation and comparison of residual regressions where
there are two or more related sets of observations,” Biometrika, Vol. 36, pp. 26-46.

M. Castaiis Camargo (1955), ““Una teoria de la certidumbre,” Anales real soc. espaf.
fis. y quim., Ser. A, Vol. 51, pp. 215-232.

and M. Medina e Isabel (1956), “The logarithmic correlation,” Anales real soc.
espai. fis. y quim., Ser. A, Vol. 52, pp. 117-136.

D. G. Chapman and H. Robbins (1951), “Minimum variance estimation without regu-
larity assumptions,” Ann. Math. Statist., Vol. 22, pp. 581-586.

H. Chernoff (1952), “A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations,” Ann. Math. Statist., Vol. 23, pp. 493-507.

(1954), “On the distribution of the likelihood ratio,” 4Ann. Math. Statist., Vol.

25, pp. 573-578.

(1956), ““Large-sample theory: parametric case,” Ann. Math. Statist., Vol. 27,
pp. 1-22.

C. Cherry (ed.) (1955), Information Theory, Papers Read at a Symposium on ‘Information
Theory, Royal Institution, London, Sept. 1955; Academic Press, New York,
1956.

(1957), On Human Communication, John Wiley & Sons, New York.

E. C. Cherry (1950), “An history of the theory of information,” Proceedings of a
Symposium on Information Theory, W. Jackson (ed.), Royal Society, London,
1950, published by Ministry of Supply, and subsequently by the IRE, Feb. 1953,
pp. 161-168.

(1951), ““An history of the theory of information,” Proc. 1.E.E. (London), Vol.

98, Part III, pp. 383-393.

(1952), ““The communication of information,” Am. Scientist, Vol. 40, pp. 640-
664,

W. G. Cochran (1952), “The x? test of goodness of fit,” 4nn. Math. Statist., Vol. 23,
pp- 315-345.

(1954), “Some methods for strengthening the common x? tests,” Biometrics,

Vol. 10, pp. 417-451.

and C. I. Bliss (1948), “Discriminant functions with covariance,” Ann. Math.
Statist., Vol. 19, pp. 151-176. o )

E. A. Cornish (1957), “An application of the Kronecker product of matrices in multiple
regression,” Biometrics, Vol. 13, pp. 19-27. )

H. Cramér (1937), Random Variables and Probability Distributions, Cambridge Tracts
in Mathematics, No. 36, Cambridge. _

(1938), “Sur un nouveau théoréme-limite de la théorie des probabilités,”

Actualités sci. et ind., No. 736.




356 INFORMATION THEORY AND STATISTICS

H. Cramér (1946a), Mathematical Methods of Statistics, Princeton Univ. Press.

(1946b), “Contributions to the theory of statistical estimation,” Skand. Aktuar.

Tidskr., Vol. 29, pp. 85-94.

(1955), The Elements of Probability Theory and Some of its Applications, John
Wiley & Sons, New York.

G. Darmois (1936), Méthodes d’Estimation, Actualités sci. et ind. No. 356.

(1945), “Sur les limites de la dispersion de certaines estimations,” Rev. Inst.
intern. Statist., Vol. 13, pp. 9-15.

H. Davis (chairman) (1954), Symposium on statistical methods in communication
engineering, Berkeley, California, August 1953, Trans. IRE, PGIT-3, Mar.

W. L. Deemer and 1. Olkin (1951), ‘“The Jacobians of certain matrix transformations
useful in multivariate analysis,” Biometrika, Vol. 38, pp. 345-367.

/ , l
L. Dolansky and M. P. Dolansky (1952), “Table of log, - p Iog,ll, and p Ing.l. +
P P

(1 - p) log, » ”* Tech. Rept. No. 227, R.L.E., M.L.T., Jan. 2.

1—p

J. L. Doob (1934), “Probability and statistics,” Trans. Am. Math. Soc., Vol. 36, pp.
759-775.

(1936), “Statistical estimation,” Trans. Am. Math. Soc., Vol. 39, pp. 410-421.

D. Dugué (1936a), ‘Sur le maximum de précision des lois limites d’estimation,”” Comp.
Rend., Vol. 202, p. 452.

(1936b), *“Sur le maximum de précision des estimations gaussiennes a la limite,”
Compt. Rend., Vol. 202, p. 193.

J. Durbin and M. G. Kendall (1951), “The geometry of estimation,” Biometrika, Vol.
38, pp. 150-158.

P. S. Dwyer and M. S. MacPhail (1948), “Symbolic matrix derivatives,” Ann. Math.
Statist., Vol. 19, pp. 517-534.

L. P. Eisenhart (1926), Riemannian Geometry, Princeton Univ. Press.

P. Elias (chairman) (1956), 1956 Symposium on Information Theory, M.L.T., September
1956, IRE Trans. on Inform. Theory, Vol. 1T-2, No. 3.

R. M. Fano (chairman) (1954), 1954 Symposium on Information Theory, M.LT.,
September 1954, Trans. IRE, PGIT-4.

W. T. Federer (1955), Experimental Design, The Macmillan Co., New York.

A. Feinstein (1958), Foundations of Information Theory, McGraw-Hill Book Co.,
New York.

W. Feller (1950), An Introduction to Probability Theory and its Applications (Ist ed.),
John Wiley & Sons, New York.

R. Féron (1952a), “Information et corrélation,” Compt. Rend., Vol. 234, pp. 1343-1345.

(1952b), “Convexité et information,” Compt. Rend., Vol. 234, pp. 1840-1841.

and C. Fourgeaud (1951), “Information et régression,” Compt. Rend., Vol. 232,
pp. 1636-1638.

W. L. Ferrar (1941), Algebra, Oxford Univ. Press.

R. A. Fisher (1921), “*On the ‘probable error’ of a coefficient of correlation deduced
from a small sample,” Metron, Vol. 1, pp. 3-32.

, (1922a), “On the interpretation of x? from contingency tables, and the calculation
of P, J. Roy. Statist. Soc., Vol. 85, pp. 87-94; Contributions to Mathematical
Statistics, John Wiley & Sons, New York, 1950, paper 5.

(1922b), “On the mathematical foundations of theoretical statistics,” Phil.

Trans. Roy. Soc. London, Ser. A, Vol. 222, pp. 309-368; Contributions to Mathe-

matical Statistics, John Wiley & Sons, New York, 1950, paper 10.




REFERENCES 357

R. A. Fisher (1924), “The conditions under which ;? measures the discrepancy
between observation and hypothesis,” J. Roy. Statist. Soc., Vol. 87, pp. 442-450;
Contributions to Mathematical Statistics, John Wiley & Sons, New York, 1950,
paper 8.

(1925a), Statistical Methods for Research Workers (Ist ed.), Oliver & Boyd,

London; 10th ed., 1948.

(1925b), *“‘Theory of statistical estimation,” Proc. Camb. Phil. Soc., Vol. 22,

pp. 700-725; Contributions to Mathematical Statistics, John Wiley & Sons, New

York, 1950, paper 11.

(1928), “The general sampling distribution of the multiple correlation coeffi-

cient,” Proc. Royal Soc., Ser. A, Vol. 121, pp. 654-673; Contributions to Mathe-

matical Statistics, John Wiley & Sons, New York, 1950, paper 14.

(1935), “The logic of inductive inference,” J. Roy. Statist. Soc., Vol. 98, pp.

39-54; Contributions to Mathematical Statistics, John Wiley & Sons, New York,

1950, paper 26.

(1936), “The use of multiple measurements in taxonomic problems,” Ann.

Eugenics, Vol. 7, pp. 179-188; Contributions to Mathematical Statistics, John

Wiley & Sons, New York, 1950, paper 32.

(1938), “The statistical utilization of multiple measurements,” Ann. Eugenics,

Vol. 8, pp. 376-386; Contributions to Mathematical Statistics, John Wiley & Sons,

New York, 1950, paper 33.

(1939a), “The comparison of samples with possibly unequal variances,” Ann.

Eugenics, Vol. 9, pp. 174-180; Contributions to Mathematical Statistics, John

Wiley & Sons, New York, 1950, paper 35.

(1939b), “The sampling distribution of some statistics obtained from non-linear

equations,” Ann. Eugenics, Vol. 9, pp. 238-249; Contributions to Mathematical

Statistics, John Wiley & Sons, New York, 1950, paper 36.

(1950), *“The significance of deviations from expectation in a Poisson series,”

Biometrics, Vol. 6, pp. 17-24.

(1956), Statistical Methods and Scientific Inference, Oliver & Boyd, London.

E. Fix (1949), “Tables of noncentral %2,” Univ. Calif. Publ. Statist., Vol. 1, No. 2, pp.
15-19.

F. G. Foster and D. H. Rees (1957), “*Upper percentage points of the generalized Beta
distribution. 1,” Biometrika, Vol. 44, pp. 237-247.

D. A. S. Fraser (1957), Nonparametric Methods in Statistics, John Wiley & Sons,
New York.

and I. Guttman (1952), **Bhattacharyya bounds without regularity assumptions,”
Ann. Math. Statist., Vol. 23, pp. 629-632.

R. A. Frazer, W. J. Duncan, and A. R. Collar (1938), Elementary Matrices, Cambridge
Univ. Press.

M. Fréchet (1943), “*Sur I’extension de certaines évaluations statistiques au cas de petits
échantillons,” Rev. Inst. intern. Statist., Vol. 11, pp. 183-205.

W. R. Garner and W. J. McGill (1954), “Relation between uncertainty, variance, and
correlation analyses,” Rep. No. 166-1-192, ONR Contract N5ori-166, Johns
Hopkins Univ.

(1956), “The relation between information and variance analyses,” Psycho-
metrika, Vol. 21, pp. 219-228. -

I. M. Gel'fand, A. N. Kolmogorov, and A. M. Iaglom (1956), *"On the general definition
of the quantity of information,” Doklady Akad. Nauk S.5.S.R., Vol. 111, No. 4,
pp. 745-748. ~(Translation by E. Kelly, Lincoln Laboratory.)




358 INFORMATION THEORY AND STATISTICS

E. N. Gilbert (1958), “An outline of information theory,” Am. Statistician, Vol. 12,
. 13-19.

M. XP Girshick (1936), “Principal components,” J. Am. Statist. Assoc., Vol. 31, PP-
519-528.

(1939), *On the sampling theory of the roots of determinantal equations,” Ann.

Math. Statist., Vol. 10, pp. 203-224.

(1946), “Contributions to the theory of sequential analysis, I, 1I, III,” Ann.

Math. Statist., Vol. 17, pp. 123-143; 282-298.

and L. J. Savage (1951), “Bayes and minimax estimates for quadratic loss
functions,” Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, Univ. of Calif. Press, pp. 53-73.

S. Goldman (1953), Information Theory, Prentice-Hall, New York.

1. J. Good (1950), Probability and the Weighing of Evidence, Charles Griffin, London.

(1952), “Rational decisions,” J. Roy. Statist. Soc., Ser. B, Vol. 14, pp. 107-114.

(1953), “The population frequencies of species and the estimation of. population

parameters,” Biometrika, Vol. 40, pp. 237-264.

(1956), “Some terminology and notation in information theory,” Proc. I.E.E.,

Part C, Vol. 103, pp. 200-204.

(1957), “‘Saddle-point methods for the multinomial distribution,” Ann. Math.
Statist., Vol. 28, pp. 861-88I.

P. E. Green, Jr. (1956), “A bibliography of Soviet literature on noise, correlation, and
information theory,” IRE Trans. on Inform. Theory, Vol. IT-2, pp. 91-94.

(1957), “Information theory in the U.S.S.R.” IRE WESCON Convention
Record, Part 2, pp. 67-83.

S. W. Greenhouse (1954), *“On the problem of discrimination between statistical popu-
lations,” M.A. Thesis, George Washington Univ.

H. Grell (ed.) (1957), Arbeiten zur Informationstheorie I, Deutscher Verlag der Wissen-
schaften, Berlin. (Translations from Russian and Hungarian.)

D. G. C. Gronow (1951), “Test for the significance of the difference between means in
two normal populations having unequal variances,” Biometrika, Vol. 38, pp.
252-256,

P. M. Grundy (1951), “A general technique for the analysis of experiments with in-
correctly treated plots,” J. Roy. Statist. Soc., Ser. B, Vol. 13, pp. 272-283.

J. Gurland (1954), “On regularity conditions for maximum likelihood estimators,”
Skand. Aktuar. Tidskr., Vol. 37, pp. 71-76.

J. B. S. Haldane (1955), “Substitutes for »%,” Biometrika, Vol. 42, pp. 265-266.

P. R. Halmos (1950), Measure Theory, D. Van Nostrand Co., New York.

and L. J. Savage (1949), “‘Applications of the Radon-Nikodym theorem to the
theory of sufficient statistics,” Ann. Math. Statist., Vol. 20, pp. 225-241.

G. H. Hardy, J. E. Littlewood, and G. Pdlya (1934), Inequalities (1st ed.), Cambridge
Univ. Press; 2nd ed., 1952.

R. V. L. Hartley (1928), “Transmission of information,” Bell System Tech. J., Vol. 7,
pp- 535-563.

P. G. Hoel (1947), Introduction to Mathematical Statistics (1st ed.), John Wiley & Sons,
New York; 2nd ed., 1954,

H. Hotelling (1933), ‘‘Analysis of a complex of statistical variables into principal
components,” J. Educ. Psych., Vol. 24, pp. 417-441; 498-520.

(1936), “Relations between two sets of variates,” Biometrika, Vol. 28, pp.

321-377.

(1947), “Multivariate quality control, illustrated by the air testing of sample




REFERENCES 359

bombsights,” Techniques of Statistical Analysis, McGraw-Hill Book Co., New
York, pp. 111-184.

H. Hotelling (1951), ‘A generalized T test and measure of multivariate dispersion,”
Proceedings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, Univ. of Calif. Press, pp. 23-41.

J. P. Hoyt (1953), “Estimates and asymptotic distributions of certain statistics in
information theory,” Dissertation, Graduate Council of George Washington
Univ.

P. L. Hsu (1938), ““Notes on Hotelling’s generalized 7, Ann. Math. Statist., Vol. 9,
pp- 231-243.

(1939), *“On the distribution of roots of certain determinantal equations,” 4nn.

Eugenics, Vol. 9, pp. 250-258.

(1941a), “*On the problem of rank and the limiting distribution of Fisher’s test

function,” Ann. Eugenics, Vol. 11, pp. 39-41.

(1941b), “*On the limiting distribution of roots of a determinantal equation,”

J. London Math. Soc., Vol. 16, pp. 183-194.

(1941-42), “On the limiting distribution of the canonical correlations,” Bio-

metrika, Vol. 32, pp. 38-45.

(1949), “‘The limiting distribution of functions of sample means and application
to testing hypotheses,” Proceedings of the Berkeley Symposium on Mathematical
Statistics and Probability, Univ. of Calif. Press, pp. 359-402.

V. S. Huzurbazar (1949), “On a property of distributions admitting sufficient statistics,”
Biometrika, Vol. 36, pp. 71-74.

(1955), “Exact forms of some invariants for distributions admitting sufficient
statistics,” Biometrika, Vol. 42, pp. 533-537.

J. O. Irwin (1949), “A note on the subdivision of x? into components,” Biometrika,
Vol. 36, pp. 130-134.

K. Ito (1956), “ Asymptotic formulae for the distribution of Hotelling’s generalized 7,?
statistic,” Ann. Math. Statist., Vol. 27, pp. 1091-1105.

W. Jackson (ed.) (1950), Proceedings of a Symposium on Information Theory, Royal
Society, London, 1950, published by Ministry of Supply, and subsequently by the
IRE, Feb. 1953.

(ed.) (1952), Communication Theory, Papers Read at a Symposium on * Applica-
tions of Communication Theory,” 1EE, London, Sept. 1952; Academic Press, New
York, 1953.

G. S. James (1954), “Tests of linear hypotheses in univariate and multivariate analysis
when the ratios of the population variances are unknown,” Biometrika, Vol. 41,
pp. 19-43.

E. T. Jaynes (1957), “Information theory and statistical mechanics,”” Phys. Rev., Vol.
106, pp. 620-630.

H. Jeffreys (1946), *‘An invariant form for the prior probability in estimation problems,”
Proc. Roy. Soc. (London), Ser. A, Vol. 186, pp. 453461,

(1948), Theory of Probability (2nd ed.), Oxford Univ. Press.

J. L. W. V. Jensen (1906), “Sur les fonctions convexes et les inégalités entre les valeurs
moyennes,” Acta Math., Vol. 30, pp. 175-193. ]

D. D. Joshi (1957), “L’information en statistique mathématique et dans la théorie des
communications,” Thése, Faculté des Sciences de I’Université de Paris, June.

T. L. Kelley (1928), Crossroads in the Mind of Man, Stanford Univ. Press.

J. L. Kelley, Jr. (1956), ““A new interpretation of information rate,” Bell System Tech,
J., Vol. 35, pp. 917-926.




360 INFORMATION THEORY AND STATISTICS

0. Kempthorne (1952), The Design and Analysis of Experiments, John Wiley & Sons,
New York.

M. G. Kendall (1943, 1946), The Advanced Theory of Statistics, Charles Griffin, London,
Vol. 1, 1943; Vol. II, 1946.

A. L Khinchin (1949), Mathematical Foundations of Statistical Mechanics, Dover
Publications, New York.

(1953), “The entropy concept in probability theory,” Uspekhi Matematicheskikh

Nauk, Vol. 8, No. 3 (55), pp. 3-20 (Russian).

(1956), “On the fundamental theorems of information theory,” Uspekhi Mate-

maticheskikh Nauk, Vol. 11, No. 1 (67), pp. 17-75 (Russian).

(1957), Mathematical Foundations of Information Theory, Dover Publications,
New York. (English translation of the preceding two papers.)

J. Kiefer (1952), “On minimum variance estimators,” Ann. Math. Statist., Vol. 23, pp.
627-629.

A. W. Kimball (1954), ““Short-cut formulas for the exact partition of x* in contingency
tables,” Biometrics, Vol. 10, pp. 452-458.

A. N. Kolmogorov (1950), Foundations of the Theory of Probability, Chelsea Publishing
Co., New York.

~——— (1956), “On the Shannon theory of information transmission in the case of
continuous signals,” IRE Trans. on Inform. Theory, Vol. IT-2, pp. 102-108.

S. Kolodziejczyk (1935), “On an important class of statistical hypotheses,”” Biometrika,
Vol. 27, pp. 161-190.

B. O. Koopman (1936), “‘On distributions admitting a sufficient statistic,” Trans. Am.
Math. Soc., Vol. 39, pp. 399-409.

C. F. Kossack (1945), “On the mechanics of classification,” Ann. Math. Statist., Vol.
16, pp. 95-98.

S. Kullback (1952), “An application of information theory to multivariate analysis,”
Ann. Math. Statist., Vol. 23, pp. 88-102.

(1953), “A note on information theory,” J. Appl. Phys., Vol. 24, pp. 106-107.

(1954), ““Certain inequalities in information theory and the Cramér-Rao

inequality.” Ann. Math. Statist., Vol. 25, pp. 745-751.

(1956), “An application of information theory to multivariate analysis, II,”

Ann. Math. Statist., Vol. 27, pp. 122-145; correction p. 860.

and R. A. Leibler (1951), “On information and sufficiency,” Ann. Math. Statist.,
Vol. 22, pp. 79-86.

S. Kullback and H. M. Rosenblatt (1957), “On the analysis of multiple regression in
k categories,” Biometrika, Vol. 44, pp. 67-83.

M. Kupperman (1957), “Further applications of information theory to multivariate
analysis and statistical inference,” Dissertation, Graduate Council of George
Washington Univ.

(1958), ““Probabilities of hypotheses and information-statistics in sampling from
exponential-class populations,” Ann. Math. Statist., Vol. 29, pp. 571-574.

R. G. Laha (1954), “On some properties of the Bessel function distributions,” Bull.
Calcutta Math. Soc., Vol. 46, pp. 59-72.

H. O. Lancaster (1949), “The derivation and partition of %% in certain discrete distribu-
tions,” Biometrika, Vol. 36, pp. 117-129.

(1957), ““Some properties of the bivariate normal distribution considered in the
form of a contingency table,” Biometrika, Vol. 44, pp. 289-292.

D. N. Lawley (1938), “A generalization of Fisher’s 2 test,”” Biometrika, Vol. 30, pp-
180-187; correction, pp. 467-469.




REFERENCES 361

D. N. Lawley (1940), “The estimation of factor loadings by the method of maximum
likelihood,” Proc. Roy. Soc. Edinburgh, Vol. 9, p. 64,

(1956), “A general method for approximating to the distribution of likelihood
ratio criteria,” Biometrika, Vol. 43, pp. 295-303.

J. L. Lawson and G. E. Uhlenbeck (1950), Threshold Signals, McGraw-Hill Book Co.,
New York.

L.Le Cam (1956), “On the asymptotic theory of estimation and testing hypotheses,”
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Proba-
biliry, Univ. of Calif. Press, Vol. I, pp. 129-156.

E. L. Lehmann (1949), Theory of Testing Hypotheses, Notes recorded by Colin Blyth,
Associated Students Store, Univ. of Calif., Berkeley, Calif.

(1950a), Notes on the Theory of Estimation, Notes recorded by Colin Blyth,
Associated Students Store, Univ. of Calif., Berkeley, Calif., Sept.

———(1950b), “Some principles of the theory of testing hypotheses,” Ann. Math.
Statist., Vol. 21, pp. 1-26.

and H. Scheffé (1950), “Completeness, similar regions and unbiased estimation,
Part 1,” Sankhyd, Vol. 10, pp. 305-340.

D. V. Lindley (1956), “On a measure of the information provided by an experiment,”
Ann. Math, Statist., Vol. 27, pp. 986-1005.

(1957), “Binomial sampling schemes and the concept of information,” Bio-
metrika, Vol. 44, pp. 179-186.

E. H. Linfoot (1957), “An informational measure of correlation,” Information and
Control, Vol. 1, pp. 85-89.

M. Logve (1955), Probability Theory, D. Van Nostrand Co., New York.

C. H. McCall, Jr. (1957), “The linear hypothesis, information, and the analysis of
variance,” Dissertation, Graduate Council of George Washington Univ.

J. McCarthy (1956), “Measures of the value of information,” Proc. Nat. Acad. Sci.,
U.S., Vol. 42, pp. 654-655.

D. K. C. MacDonald (1952), “Information theory and its application to taxonomy,”
J. Appl. Physics, Vol. 23, pp. 529-531.

C. C. MacDuffee (1946), The Theory of Matrices, Chelsea Publishing Co., New York.

W. J. McGill (1954), “Multivariate information transmission,” Psychometrika, Vol. 19,
pp. 97-116.

D. M. MacKay (1950), “Quantal aspects of scientific information,” Phil. Mag., Vol. 41,
Seventh Series, No. 314, pp. 289-311.

N. W. McLachlan (1939), Complex Variable and Operational Calculus with Technical
Applications, Cambridge Univ. Press.

B. McMillan (1953), “The basic theorems of information theory,” Ann. Math. Statist.,
Yol. 24, pp. 196-219.

, D. A. Grant, P. M. Fitts, F. C. Frick, W. S. McCulloch, G. A. Miller, and H.
W. Brosin (1953), Current Trends in Information Theory, Univ. of Pittsburgh Press.

P. C. Mahalanobis (1936), “On the generalized distance in statistics,” Proc. Nat. Inst.
Sci. India, Vol. 12, pp. 49-55. ‘

B. Mandelbrot (1953), “Contribution a la théorie mathématique des jeux de communi-
cation,” Publs. Inst. statist. univ. Paris, Vol. 2, Fasc. 1 et 2, pp- 3—1%4._

(1956), “An outline of a purely phenomenological theory of statistical thermo-
dynamics: 1. Canonical ensembles,” IRE Trans. on Inform. Theory, Vol. IT-2,
pp. 190-203. ] N

H. B. Mann and A. Wald (1943), “On stochastic limit and order relationships,” Ann.
Marh. Statist., Vol. 14, pp. 217-226.




362 INFORMATION THEORY AND STATISTICS

F. H. C. Marriott (1952), “Tests of significance in canonical analysis,” Biometrika,
Vol. 39, pp. 58-64.

J. W. Mauchly (1940), “Significance test for sphericity of a normal n-variate distribu-
tion,” Ann. Math. Statist., Vol. 11, pp. 204-209.

G. A. Miller and W. G. Madow (1954), “‘On the maximum likelihood estimate of the
Shannon-Wiener measure of information,” AFCRC-TR-54-75, Air Force Cam-
bridge Research Center, Air Research and Development Command, Bolling Air
Force Base, Washington D.C., Aug.

G. A. Miller and P. M. Ross (1954), “Tables of n log, n and n log,, n for n from | to
1000,” Tech. Rep. No. 60, Lincoln Laboratory, M.I.T., Feb. 10.

S. K. Mitra (1955), “Contributions to the statistical analysis of categorical data,” N. C.
Inst. of Statist. Mimeo Series No. 142, Dec.

E. C. Molina (1942), Tables of Poisson’s Exponential Limit, D. Van Nostrand Co., New
York.

A. M. Mood (1951), ““On the distribution of the characteristic roots of normal second-
moment matrices,” Ann. Math. Statist., Vol. 22, pp. 266-273.

E. Mourier (1946), “Etude du choix entre deux lois de probabilité,” Compt. Rend.,
Vol. 223, pp. 712-714.

(1951), “Tests de choix entre diverses lois de probabilité,” Trabajos Estadistica,
Vol. 2, pp. 233-260.

J. Neyman (1929), “Contribution to theory of certain test criteria,” XVIII Session de
Ulnstitut International de Statistique, Varsovie, pp. 1-48.

(1935), *‘Su un teorema concernente le cosiddette statistiche sufficienti,” Giorn.

Ist. ital. Attuari, Vol. 6, p. 320-334.

(1949), “Contribution to the theory of the y* test,” Proceedings of the Berkeley

Symposium on Mathematical Statistics and Probability, Univ. of Calif. Press, pp.

239-273.

(1950), First Course in Probability and Statistics, Henry Holt and Co., New York.

and E. S. Pearson (1928), “‘On the use and interpretation of certain test criteria

for purposes of statistical inference,” Biometrika, Vol. 20A, pp. 175-240; 263-294.

(1933), “On the problem of the most efficient tests of statistical hypotheses,”
Phil. Trans. Roy. Soc. London, Ser. A, Vol. 231, pp. 289-337.

H. W. Norton (1945), “Calculation of chi-square for complex contingency tables,”
J. Am. Statist. Assoc., Vol. 40, pp. 251-258.

P. B. Patnaik (1949), “The non-central x%and F distributions and their applications,”
Biometrika, Vol. 36, pp. 202-232.

E. S. Pearson and H. O. Hartley (1951), *‘Charts of the power function for analysis of
variance tests, derived from the non-central F-distribution,”” Biometrika, Vol. 38,
pp. 112-130.

E. S. Pearson and S. S. Wilks (1933), ““Methods of statistical analysis appropriate for
k samples of two variables,” Biometrika, Vol. 25, pp. 353-378.

K. Pearson (1904), “‘Mathematical contributions to the theory of evolution, XIII, on
the theory of contingency and its relation to association and normal correlation,”
Drap. Co. Mem. Biom. Ser., No. 1.

(1911), “On the probability that two independent distributions of frequency are
really samples from the same population,” Biometrika, Vol. 8, pp. 250-253.

L. S. Penrose (1947), “Some notes on discrimination,” Ann. Eugenics, Vol. 13, pp.
228-237.

J. R. Pierce (1956), Electrons, Waves and Messages, Hanover House, New York.

K. C. S. Pillai (1955), “‘Some new test criteria in multivariate analysis,” 4Ann. Math.

Statist., Vol. 26, pp. 117-121.




REFERENCES 363

E. J. G. Pitman (1936), “Sufficient statistics and intrinsic accuracy,” Proc. Camb. Phil.
Soc., Vol. 32, pp. 567-579.

R. L. Plackett (1949), “A historical note on the method of least squares,” Biometrika,
Vol. 36, pp. 458-460.

K. H. Powers (1956), ““A unified theory of information,”” Tech. Rept. No. 311, R.L.E.,
M.IL.T., Feb. 1.

H. Quastler (ed.) (1953), Information Theory in Biology, Univ. of Illinois Press, Urbana.

(ed.) (1955), Information Theory in Psychology, The Free Press, Glencoe, Ill.

(1956), “A Primer on Information Theory,” Tech. Memo. 56-1, Office of
Ordnance Research, Box CM, Duke Station, Durham, N.C., Jan.

C. R. Rao (1945), “Information and the accuracy attainable in the estimation of
statistical parameters,” Bull. Calcutta Math. Soc., Vol. 37, pp. 81-91.

(1952), Advanced Statistical Methods in Biometric Research, John Wiley & Sons,

New York,

(1957), “Maximum likelihood estimation for the multinomial distribution,”

Sankhya, Vol. 18, pp. 139-148.

and I. M. Chakravarti (1956), “Some small sample tests of significance for a
Poisson distribution,” Biometrics, Vol. 12, pp. 264-282.

E. Reich (1951), “On the definition of information,” J. Math. and Phys., Vol. 30, pp.
156-161. '

D. D. Rippe (1951), “Statistical rank and sampling variation of the results of factoriza-
tion of covariance matrices,” Docroral Thesis, on file at the Univ. of Michigan.

H. R. Roberts (1957), “On estimation and information,” M.S. Thesis, George Washing-
ton Uniy.

H. M. Rosenblatt (1953), “On a k sample multivariate regression problem,” Master’s
Thesis, George Washington Univ.

J. Rothstein (1951), “Information, measurement, and quantum mechanics,” Science,
Vol. 114, pp. 171-175.

S. N. Roy (1939), “p-statistics, or some generalizations in analysis of variance appro-

 priate to multivariate problems,” Sankhyd, Vol. 4, pp. 381-396.

(1957), Some Aspects of Multivariate Analysis, John Wiley & Sons, New York.

and R. C. Bose (1953), “Simultaneous confidence interval estimation,” Ann.
Math. Statist., Vol. 24, pp. 513-536.

S. N. Roy and M. A. Kastenbaum (1955), “A generalization of analysis of variance
and multivariate analysis to data based on frequencies in qualitative categories or
class intervals,” N. C. Inst. of Statist. Mimeo Series No. 131, June 1.

(1956), ““On the hypothesis of no ‘interaction’ in a multi-way contingency table,”
Ann. Math, Statist., Vol. 217, pp. 749-757. .

S.N. Roy and S. K. Mitra (1956), “An introduction to some non-parametric generaliza-
tions of analysis of variance and multivariate analysis,” Biometrika, Vol. 43, pp.
361-376.

M. Sakaguchi (1952, 1955, 1957a), “Notes on statistical applications of i?formation
theory,” Repts. Statist. Appli. Research Union Japan. Scie’rftists and Engineers, Vol,
1, No. 4, pp. 27-31; “IL,” Vol. 4, No. 2, pp. 21-68; “III,. V.ol. 5, No. lZ Pp- 9.—16_.

(1957b), “Notes on information transmission in multivariate probability distri-
butions,” Rep. Univ. of Electro-Communications, No. 9, Dec., pp. 25-31. . .

I. N. Sanov (1957), “On the probability of large deviations of fandom varnablc?s,
Mat. Shornik (Moscow), Vol. 42, No. 1 (84), pp- 11-44 (Russian). (Translation,
N.C. Inst. of Statist. Mimeo Series No. 192, Mar. 1958.) .

L. J. Savage (1954), The Foundations of Statistics, John Wilf:y & Sons, Nefv York.

M. P. Schiitzenberger (1954), “Contribution aux applications statistiques de la




364 INFORMATION THEORY AND STATISTICS

théorie de I'information,” Publs. inst. statist. univ. Paris, Vol. 3, Fasc. 1-2, pp.
3-117.

G. R. Seth (1949), “On the variance of estimates,”” Ann. Math. Statist., Vol. 20, pp. 1-27.

C. E. Shannon (1948), ““A mathematical theory of communication,” Bell System Tech.
J., Vol. 27, pp. 379-423; 623-656. '

(1949), “*‘Communication in the presence of noise,” Proc. IRE, Vol. 37, PP-
10-21.

——— (1956), “The bandwagon,” IRE Trans. on Inform. Theory, Vol. IT-2, p. 3.

and W. Weaver (1949), The Mathematical Theory of Communication, Univ. of
Illinois Press, Urbana.

W. A. Shewhart (1931), Economic Control of Manufactured Product, The Macmillan
Co., New York.

J. B. Simajka (1941), “‘On an optimum property of two important statistical tests,”
Biometrika, Vol. 32, pp. 70-80.

C. A. B. Smith (1947), ““‘Some examples of discrimination,” Ann. Eugenics, Vol. 13,
pp- 272-282.

H. F. Smith (1957), “Interpretation of adjusted treatment means and regressions in
analysis of covariance,” Biometrics, Vol. 13, pp. 282-308.

G. W. Snedecor (1946), Statistical Methods (4th ed.), Collegiate Press of Iowa State
College, Ames.

A. Stuart (1953), “The estimation and comparison of strengths of association in con-
tingency tables,” Biometrika, Vol. 40, pp. 105-110.

(1955a), ““A test for homogeneity of the marginal distributions in a two-way

classification,” Biometrika, Vol. 42, pp. 412-416.

(1955b), ““A paradox in statistical estimation,” Biometrika, Vol. 42, pp. 527-529.

F. L. H. M. Stumpers (1953), “A bibliography of information theory; communication
theory—cybernetics” (R.L.E., M.L.T., Feb. 2, 1953); IRE Trans., PGIT-2, Nov.
1953; First suppl., IT-1, Sept. 1955, pp. 31-47; Second suppl., IT-3, June 1957,
pp- 150-166.

K. Suzuki (1956), “On ‘amount of information’,” Proc. Japan Acad., Vol. 32, pp.
726-730.

(1957), “On the écart between two ‘amounts of information’,” Proc. Japan
Acad., Vol. 33, pp. 25-28.

Tables of the Binomial Probability Distribution (1949), Nat. Bur. Standards (U.S.),
Applied Math. Series 6, Washington.

P. C. Tang (1938), “The power function of the analysis of variance tests with tables and
illustrations of their use,” Statistical Research Memoirs, Vol. 2, pp. 126-149.

G. Thomson (1947), “The maximum correlation of two weighted batteries,” Brir. J.
Psychol., Stat. Sec., Vol. 1, pp. 27-34.

K. D. Tocher (1952), “The design and analysis of block experiments,” J. Roy. Statist.
Soc., Ser. B, Vol. 14, pp. 45-100.

J. W. Tukey (1949), “Sufficiency, truncation and selection,” Ann. Math. Statist., Vol.
20, pp. 309-311. )

(1957), “Approximations to the upper 5% points of Fisher’s B distribution and
non-central y2,” Biometrika, Vol. 44, pp. 528-530.

W. G. Tuller (1950), “Information theory applied to system design,” Trans. AIEE,
Vol. 69, Part II, pp. 1612-1614. .

A. Wald (1943), “Tests of statistical hypotheses concerning several parameters when
the number of observations is large,” Trans. Am. Math. Soc., Vol. 54, pp. 426-482.

(1945a), ““Sequential tests of statistical hypotheses,” Ann. Math. Statist., Vol.

16, pp. 117-186.




REFERENCES 365

A. Wald (1945b), ‘“Sequential method of sampling for deciding between two courses of
action,” J. Am. Statist. Assoc., Vol. 40, pp. 277-306.

——— (1947), Sequential Analysis, John Wiley & Sons, New York.

and R. J. Brookner (1941), “On the distribution of Wilks’ statistic for testing
the independence of several groups of variates,” Ann. Math. Statist., Vol. 12, pp.
137-152.

G. N. Watson (1944), Bessel Functions (2nd ed.), The Macmillan Co., New York.

M. Weibull (1953), “The distributions of - and F-statistics and of correlation and
regression coefficients in stratified samples from normal populations with different
means,” Skand. Aktuar. Tidskr., Vol. 36, 1-2 Suppl., pp. 1-106.

B. L. Welch (1935), “Problems in the analysis of regression among k samples,”
Biometrika, Vol. 27, pp. 145-160.

(1938), “The significance of the difference between two means when the popula-

tion variances are unequal,” Biometrika, Vol. 29, pp. 350-362.

(1939), “Note on discriminant functions,” Biometrika, Vol. 31, pp. 218-219.

E. T. Whittaker (1915), “On the functions which are represented by the expansions of
the interpolatory theory,” Proc. Roy. Soc. Edinburgh, Vol. 35, pp. 181-194.

N. Wiener (1948), Cybernetics, John Wiley & Sons, New York.

(1950), The Hurnan Use of Human Beings, Houghton Mifflin Co., Boston.

(1956), “What is information theory?” IRE Trans. on Inform. Theory, Vol.
IT-2, p. 48.

R. A. Wijsman (1957), “Random orthogonal transformations and their use in some
classical distribution problems in multivariate analysis,” Ann. Math. Statist., Vol.
28, pp. 415-423.

S. S. Wilks (1932), “Certain generalizations in the analysis of variance,” Biometrika,
Vol. 24, pp. 471-494.

(1935a), “The likelihood test of independence in contingency tables,” Ann.

Math. Statist., Vol. 6, pp. 190-196.

(1935b), “On the independence of k sets of normally distributed statistical

variables,” Econometrica, Vol. 3, pp. 309-326.

(1938a), “The large-sample distribution of the likelihood ratio for testing

composite hypotheses,” Ann. Marh. Statist., Vol. 9, pp. 60-62.

(1938b), “The analysis of variance and covariance in non-orthogonal data,”

Metron, Vol. 13, pp. 141-158.

(1943), Mathematical Statistics, Princeton Univ. Press.

E. J. Williams (1952), ““‘Some exact tests in multivariate analysis,” Biometrika, Vol. 39,
pp. 17-31.

P (1955), “‘Significance tests for discriminant functions and linear functional
relationships,” Biometrika, Vol. 42, pp. 360-381.

J. Wolfowitz: (1947), “The efficiency of sequential estimates and Wald’s equation for
sequential processes,” Ann. Math. Statist., Vol. 18, pp. 215-230.

P. M. Woodward (1953), Probability and Information Theory, with Applications to
Radar, McGraw-Hill Book Co., New York.

and I. L. Davies (1952), “Information theory and inverse probability in tele-
communications,” Proc. 1.E.E., Part 111, Vol. 99, pp. 37-44.

G. U. Yule and M. G. Kendall (1937), An Introduction to the Theory of Statistics (11th
ed.), Charles Griffin, London.

M. Zelen (1957), ““The analysis of covariance for incomplete block designs,” Biometrics,
Vol. 13. pp. 309-332.




TABLES

367

TABLE 1. Log, n and n log, n for Values of n from | through 1000

n log, n nlog, n n log, n nlog, n

01  0.0000000000  0000.0000000000 47 3.8501476017 0180.9569372804
02 0.6931471805 0001.3862943611 48 3.8712010109 0185.8176485236
03 1.0986122886 0003.2958368660 49  3.8918202981 0190.6991946074
04  1.3862943611 0005.5451774445 50 3.9120230054 0195.6011502714
05 1.6094379124 0008.0471895622 51 3.9318256327 0200.5231072689
06 1.7917594692 0010.7505568154 52 3.9512437185 0205.4646733662
07 1.9459101490 0013.6213710434 53 3.9702919135 0210.4254714183
08 2.0794415416 0016.6355323334 54 3.9889840465 0215.4051385145
09  2.1972245773 0019.7750211960 55 4.0073331852 0220.4033251878
10 2.3025850929 0023.0258509299 56 4.0253516907 0225.4196946812
Il 2.3978952727 0026.3768480008 57 4.0430512678 0230.4539222666
12 2.4849066497 0029.8188797975 58 4.0604430105 0235.5056946117
13 2.5649493574 0033.3443416470 59 4.0775374439 0240.5747091904
14 2.6390573296 0036.9468026146 60 4.0943445622 0245.6606737333
15 2.7080502011 0040.6207530165 61 4.1108738641 0250.7633057146
16 2.7725887222 0044.3614195558 62 4.1271343850 0255.8823318728
17 2.8332133440 (0048.1646268490 63 4.1431347263 0261.0174877627
18 2.8903717578 0052.0266916421 64 4.1588830833 0266.1685173350
19 2.9444389791  0055.9443406042 65 4.1743872698 0271.3351725432
20 2.9957322735 0059.9146454711 66 4.1896547420 0276.5172129737
21 3.0445224377 0063.9349711922 67 4.2046926193 0281.7144054992
22 3.0910424533 0068.0029339739 68 4.2195077051 0286.9265239520
23 3.1354942159 0072.1163669664 69 4.2341065045 0292.1533488172
24 3.1780538303 0076.2732919284 70 4.2484952420 0297.3946669435
25 3.2188758248 0080.4718956217 71  4.2626798770  0302.6502712699
26 3.2580965380 0084.7105099886 72 4.2766661190  0307.9199605692
27 3.2958368660  0088.9875953821 73 4.2904594411 0313.2035392038
28  3.3322045101 0093.3017262849 74  4.3040650932 0318.5008168971

29  3.3672958299 €097.6515790696 75 4.3174881135 0323.8116085152
30 3.4011973816 0102.0359214499 76  4.3307333402 0329.1357338618
31 3.4339872044 0106.4536033390 77 4.3438054218 0334.4730174827
32 3.4657359027 0110.9035488896 78 4.3567088266 0339.8232884818
33 3.4965075614 0115.3847495284 79 4.3694478524 0345.1863803449
34 3.5263605246 0119.8962578369 80 4,3820266346 0350.5621307739
35 3.5553480614 0124.4371821521 81 4.3944491546 0355.9503815285
36 3.5835189384 0129.0066817844 82 4.4067192472 0361.3509782757
37 3.6109179126 0133.6039627678 83 4.4188406077 0366.7637704471

38 3.6375861597 0138.2282740696 84 4.4308167988 0372.1886111028
39  3.6635616461 0142.8789041991 85 4.4426512564 0377.6253568017
40 3.6888794541 0147.5551781646 86 4.4543472962 0383.0738674778
41 3.7135720667 0152.2564547349 87 4.4659081186 0388.5340063229
42  3.7376696182  0156.9821239679 88 4.4773368144 0394.0056396741

43  3.7612001156 0161.7316049748 89 4.4886363697 0399.4886369062
44  3.7841896339 0166.5043438924 90 4.4998096703  0404.9828703297
45 3.8066624897 0171.2998120397 91 4.5108595065 0410.4882150930
46  3.8286413964 0176.1175042385 92  4.5217885770  0416.0045490885
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TABLE 1 (continued)

n log, n nlog.n n log. n nlog,n
93  4.5325994931 0421.5317528633 139 49344739331 0685.8918767052
94  4.5432947822 0427.0697095334 140  4.9416424226 0691.8299391653
95 4.5538768916  0432.6183047021 141  4.9487598903  0697.7751445433
96 4.5643481914  0438.1774263809 142 49558270576 0703.7274421794
97 4.5747109785 0443.7469649148 143 4.9628446302 0709.6867821272
98 4.5849674786  0449.3268129097 144 49698132995 0715.6531151389
99  4.5951198501 0454.9168651633 145 49767337424  0721.6263926510
100  4.6051701859 0460.5170185988 146 4.9836066217 0727.6065667694
101  4.6151205168 0466.1271722010 147 49904325867 0733.5935902565
102 4.6249728132 0471.7472269550 148 49972122737 0739.5874165171
103 4.6347289882 0477.3770857877 149  5.0039463059 0745.5879995859
104  4.6443908991 0483.0166535107 150 5.0106352940 0751.5952941144
105 4.6539603501  0488.6658367665 151  5.0172798368  0757.6092553591
106  4.6634390941 0494.3245439759 152 5.0238805208 0763.6298391686
107 4.6728288344  0499.9926852874 153  5.0304379213  0769.6570019730
108  4.6821312271 0505.6701725294 154 5.0369526024 0775.6907007717
109 4.6913478822 0511.3569191630 155 5.0434251169 0781.7308931225
110  4.7004803657 0517.0528402372 156  5.0498560072 0787.7775371309
111 47095302013  0522.7578523457 157 5.0562458053 0793.8305914397
112 4.7184988712 0528.4718735851 158  5.0625950330 0799.8900152183
113 4.7273878187 0534.1948235145 159  5.0689042022 0805.9557681530
114  4.7361984483  0539.9266231170 160 5.0751738152 0812.0278104374
115 4.7449321283 0545.6671947618 161  5.0814043649 0818.1061027625
116  4.7535901911 0551.4164621683 162 5.0875963352 0824.1906063076
117 47621739347 0557.1743503713 163  5.0937502008 0830.2812827315
118  4.7706846244  0562.9407856869 164  5.0998664278 0836.3780941632
119 4.7791234931 0568.7156956803 165 5.1059454739 0842.4810031936
120 4.7874917427 0574.4990091338 166  5.1119877883  0848.5899728672
121 4.7957905455 0580.2906560172 167  5.1179938124  0854.7049666736
122 4.8040210447 0586.0905674575 168  5.1239639794  0860.8259485397
123 4.8121843553 0591.8986757108 169  5.1298987149  0866.9528828220
124  4.8202815656 0597.7149141350 170  5.1357984370  0873.0857342985
125 4.8283137373  0603.5392171628 171  5.1416635565  0879.2244681620
126 4.8362819069  0609.3715202759 172 5.1474944768  0885.3690500119
127 4.8441870864 0615.2117599802 173 5.1532915944 0891.5194458481
128  4.8520302639 0621.0598737817 174  5.1590552992 0897.6756220633
129  4.8598124043  0626.9158001627 175 5.1647859739  (0903.8375454366
130  4.8675344504  0632.7794785592 176  5.1704839950  0910.0051831267
131 4.8751973232  0638.6508493394 177  5.1761497325  0916.1785026656
132 4.8828019225 0644.5298537814 178  5.1817835502  0922.3574719520
133 4.8903491282  0650.4164340535 179  5.1873858058  0928.5420592455
134 4.8978397999 0656.3105331934 180 5.1929568508  0934.7322331602
135 4.9052747784  0662.2120950892 181  5.1984970312  0940.9279626591
136 4.9126548857 0668.1210644601 182 52040066870  0947.1292170480
137  4.9199809258 0674.0373868385 183  5.2094861528  0953.3359659700
138 4.9272536851  0679.9610085517 184  5.2149357576  0959.5481794001
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n log, n nlog,n n log, n nlog, n
185 5.2203558250 0965.7658276395 231  5.4424177105 1257.1984911305
186  5.2257466737 0971.9888813107 232 5.4467373716  1263.6430702266
187 5.2311086168 0978.2173113518 233 5.4510384535 1270.0919596808
188 5.2364419628 0984.4510890120 234 5.4553211153  1276.5451409937
189  5.2417470150 0990.6901858463 235 5.4595855141  1283.0025958239
190 5.2470240721  0996.9345737105 236  5.4638318050 1289.4643059860
191  5.2522734280 1003.1842247569 237 5.4680601411  1295.9302534490
192 5.2574953720  1009.4391114293 238  5.4722706736  1302.4004203338
193 5.2626901889  1015.6992064586 239  5.4764635519 1308.8747889116
194  5.2678581590 1021.9644828583 240 5.4806389233  1315.3533416021
195 5.2729995585  1028.2349139199 241  5.4847969334  1321.8360609712
196  5.2781146592 1034.5104732092 242  5.4889377261  1328.3229297299
197  5.2832037287 1040.7911345614 243 5.4930614433  1334.8139307318
198  5.2882670306 1047.0768720775 244 5,4971682252  1341.3090469715
199 5.2933048247 1053.3676601202 245 5.5012582105 1347.8082615835
200 5.2983173665 1059.6634733096 246  5.5053315359 1354.3115578394
201  5.3033049080 1065.9642865199 247 5.5093883366 1360.8189191471
202 5.3082676974 1072.2700748750 248  5.5134287461  1367.3303290489
203  5.3132059790 1078.5808137455 249 5.5174528964 1373.8457712197
204  5.3181199938 1084.8964787442 250 5.5214609178  1380.3652294656
205  5.3230099791 1091.2170457234 251  5.5254529391 1386.8886877221
206 5.3278761687 1097.5424907707 252 5.5294290875 1393.4161300529
207 5.3327187932  1103.8727902059 253  5.5333894887  1399.9475406481
208 5.3375380797 1110.2079205779 254 5.5373342670  1406.4829038227
209 5.3423342519 1116.5478586606 255 5.5412635451 1413.0222040154
210  5.3471075307 1122.8925814507 256 5.5451774444  1419.5654257868
211 5.3518581334  1129.2420661635 257 5.5490760848 1426.1125538181
212 5.3565862746  1135.5962902305 258 5.5529595849  1432.6635729098
213 5.3612921657 1141.9552312961 259  5.5568280616 1439.2184679802
214  5.3659760150 1148.3188672147 260 5.5606816310 1445.7772240640
215 5.3706380281 1154.6871760474 261  5.5645204073 1452.3398263112
216  5.3752784076 1161.0601360598 262 5.5683445037 1458.9062599854
217 5.3798973535 1167.4377257183 263  5.5721540321  1465.4765104628
218  5.3844950627 1173.8199236880 264  5.5759491031  1472.0505632306
219 5.3890717298 1180.2067088298 265 5.5797298259  1478.6284038863
220 5.3936275463  1186.5980601975 266 5.5834963087  1485.2100181359
221  5.3981627015  1192.9939570354 267 5.5872486584  1491.7953917929
222 5.4026773818  1199.3943787756 268  5.5909869805 1498.3845107769
223 5.4071717714  1205.7993050356 269 5.5947113796 1504.9773611129
224 5.4116460518 1212.2087156155 270  5.5984219589  1511.5739289296
225 5.4161004022  1218.6225904960 271 5.6021188208  1518.1742004584
226 5.4205349992  1225.0409098355 272  5.6058020662  1524.7781620325
227 5.4249500174  1231.4636539683 273  5.6094717951  1531.3858000855
228  5.4293456289  1237.8908034016 274 5.6131281063  1537.9971011503
229 5.4337220035  1244.3223388139 275 5.6167710976  1544.6120518583
230 5.4380793089  1250.7582410523 276 5.6204008657 1551.2306389379
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277 5.6240175061  1557.8528492139 323  5.7776523232  1866.1817004009
278 5.6276211136  1564.4786696060 324 5.7807435157 1872.9608991167
279 5.6312117818 1571.1080871282 325 5.7838251823  1879.7431842572
280 5.6347896031 1577.7410888874 326 5.7868973813  1886.5285463255
281 5.6383546693 1584.3776620828 327 5.7899601708 1893.3169758834
282  5.6419070709 1591.0177940045 328 5.7930136083  1900.1084635500
283  5.6454468976 1597.6614720330 329 5.7960577507  1906.9030000018
284 5.6489742381 1604.3086836378 330 5.7990926544  1913.7005759720
285 5.6524891802 1610.9594163766 331 5.8021183753 1920.5011822498
286 5.6559918108 1617.6136578945 332 5.8051349689  1927.3048096803
287 5.6594822157 1624.2713959230 333 5.8081424899 1934.1114491635
288  5.6629604801  1630.9326182792 334 5.8111409929 1940.9210916542
289  5.6664266881  1637.5973128645 335 5.8141305318 1947.7337281614
290 5.6698809229 1644.2654676644 336 5.8171111599  1954.5493497476
291  5.6733232671 1650.9370707469 337 5.8200829303 1961.3679475287
292 5.6767538022 1657.6121102623 338 5.8230458954 1968.1895126733
293 5.6801726090  1664.2905744420 339 5.8260001073  1975.0140364020
294 5.6835797673 1670.9724515976 340 5.8289456176  1981.8415099875
295 5.6869753563 1677.6577301202 341 5.8318824772 1988.6719247537
296  5.6903594543  1684.3463984799 342 5.8348107370  1995.5052720754
297 5.6937321388 1691.0384452244 343  5.8377304471 2002.3415433779
298 5.6970934865 1697.7338589786 344 5.8406416573  2009,1807301364
299 5.7004435733  1704.4326284438 345 5.8435444170  2016.0228238758
300 5.7037824746 1711.1347423969 346  5.8464387750 2022.8678161700
301 5.7071102647 1717.840189689%4 347 5.8493247799  2029.7156986416
302 5.7104270173  1724.5489592472 348  5.8522024797 2036.5664629615
303 5.7137328055 1731.2610400693 349 5.8550719222  2043.4201008486
304 5.7170277014  1737.9764212275 350 5.8579331544  2050.2766040692
305 5.7203117766  1744.6950918653 351 5.8607862234 2057.1359644365
306 5.7235851019 1751.4170411974 352 5.8636311755 2063.9981738105
307 5.7268477475  1758.1422585093 353 5.8664680569 2070.8632240975
308 5.7300997829 1764.8707331559 354 5.8692969131 2077.7311072494
309 5.7333412768  1771.6024545614 355 5.8721177894 2084.6018152638
310 5.7365722974  1778.3374122185 356 5.8749307308  2091.4753401832
311 5.7397929121  1785.0755956877 357 5.8777357817 2098.3516740953
312 5.7430031878  1791.8169945966 358 5.8805329864 2105.2308091315
313 5.7462031905  1798.5615986391 359 5.8833223884 2112.1127374673
314  5.7493929859  1805.3093975752 360 5.8861040314 2118.9974513221
315 5.7525726388  1812.0603812301 361 5.8888779583  2125.8849429582
316 5.7557422135 1818.8145394935 362 5.8916442118  2132.7752046809
317 5.7589017738  1825.5718623191 363 5.8944028342 2139.6682288381
318 5.7620513827  1832.3323397241 364 5.8971538676 2146.5640078198
319 5.7651911027  1839.0959617884 365 5.8998973535  2153.4625340576
320 5.7683209957 1845.8627186540 366 5.9026333334  2160.3638000249
321 5.7714411231  1852.6326005247 367 5.9053618480 2167.2677982360
322 5.7745515455  1859.4055976653 368  5.9080829381  2174.1745212462
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369 5.9107966440 2181.0839616510 415 6.0282785202 2501.7355858957
370  5.9135030056 2187.9961120862 416 6.0306852602 2508.7650682687
371  5.9162020626 2194.9109652274 417 6.0330862217 2515.7969544901

372 5.9188938542 2201.8285137896 418  6.0354814325 2522.8312387953
373  5.9215784196 2208.7487505271 419 6.0378709199  2529.8679154474
374 5.9242557974 2215.6716682330 420 6.0402547112 2536.9069787365
375 5.9269260259 2222.5972597389 421 6.0426328336 2543.9484229803
376  5.9295891433  2229.5255179146 422  6.0450053140 2550.9922425232
377 5.9322451874 2236.4564356679 423  6.0473721790 2558.0384317366
378  5.9348941956  2243.3900059442 424  6.0497334552 2565.0869850184
379  5.9375362050 2250.3262217262 425 6.0520891689  2572.1378967929
380 5.9401712527 2257.2650760338 426  6.0544393462 2579.1911615108
381  5.9427993751 2264.2065619233 427 6.0567840132 2586.2467736486
382 5.9454206086 2271.1506724877 428  6.0591231955 2593.3047277090
383  5.9480349891  2278.0974008562 429 6.0614569189 2600.3650182201

384 5.9506425525 2285.0467401937 430 6.0637852086 2607.4276397357
385 5.9532433342  2291.9986837008 431  6.0661080901 2614.4925868347
386 5.9558373694 2298.9532246134 432  6.0684255882 2621.5598541215
387 5.9584246930 2305.9103562025 433  6.0707377280 2628.6294362251

388 5.9610053396 2312.8700717738 434  6.0730445341 2635.7013277996
389  5.9635793436 2319.8323646676 435 6.0753460310 2642.7755235236
390 5.9661467391  2326.7972282582 436 6.0776422433  2649.8520181002
391  5.9687075599 2333.7646559543 437  6.0799331950 2656.9308062568

392 59712618397 2340.7346411979 438  6.0822189103 2664.0118827449
393  5.9738096118 2347.7071774646 439  6.0844994130 2671.0952423400
394 5.9763509092 2354.6822582634 440 6.0867747269 2678.1808798414
395 5.9788857649  2361.6598771359 441  6.0890448754  2685.2687900721

396 5.9814142112  2368.6400276568 442  6.0913098820 2692.3589678783

397 5.9839362806 2375.6227034328 443 6.0935697700  2699.4514081300
398 5.9864520052 2382.6078981032 444  6.0958245624 2706.5461057199

399 5.9889614168 2389.5956053391 445 6.0980742821 2713.6430555640
400 5.9914645471 2396.5858188432 446  6.1003189520  2720.7422526009
401 5.9939614273  2403.5785323499 447 6.1025585946  2727.8436917923

402 5.9964520886 2410.5737396248 448  6.1047932324  2734.9473681219
403 5.9989365619 2417.5714344645 449  6.1070228877 2742.0532765963

404 6.0014148779 2424.5716106963 450 6.1092475827 2749.1614122440
405 6.0038870671 2431.5742621781 451 6.1114673395 2756.2717701157
406 6.0063531596 2438.5793827983 452 6.1136821798  2763.3843452842
407 6.0088131854 2445.5869664751 453  6.1158921254  2770.4991328438
408 6.0112671744  2452.5970071569 454 6.1180971980 2777.6161279108
409 6.0137151560 2459.6094988215 455 6.1202974189  2784.7353256227
410 6.0161571596 2466.6244354763 456 6.1224928095 2791.8567211386
411 6.0185932144 2473.6418111580 457 6.1246833908  2798.9803096387
412 6.0210233493  2480.6616199320 458 6.1268691841  2806.1060863243
413 6.0234475929 2487.6838558929 459 6.1290502100 2813.2340464178
414 6.0258659738 2494.7085131637 460 6.1312264894  2820.3641851622
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461 6.1333980429 2827.4964978215 507 6.2285110035 3157.8550788207
462 6.1355648910 2834.6309796798 508 6.2304814475 3165.0845753699
463 6.1377270540 2841.7676260412 509 6.2324480165 3172.3160404242
464 6.1398845522 2848.9064322330 510 6.2344107257 3179.5494701164
465 6.1420374055 2856.047393598! 511  6.2363695902 3186.7848605941
466 6.1441856341 2863.1905055026 512 6.2383246250 3194.0222080202
467 6.1463292576 2870.3357633314 513 6.2402758451 3201.2615085726
468 6.1484682959 2877.4831624895 514  6.2422232654 3208.5027584440
469 6.1506027684 2884.6326984013 515 6.2441669006 3215.7459538418
470 6.1527326947 2891.7843665109 516 6.2461067654 3222.9910909885
471 6.1548580940 2898.9381622817 517 6.2480428745 3230.2381661209
472  6.1569789855 2906.0940811964 518 6.2499752422  3237.4871754904
473  6.1590953884 2913.2521187567 519 6.2519038831 3244.7381153631
474 6.1612073216  2920.4122704835 520 6.2538288115 3251.9909820192
475 6.1633148040 2927.5745319165 521 6.2557500417  3259.2457717535
476  6.1654178542 2934.7388986142 522 6.2576675878  3266.5024808747
477 6.1675164908 2941.9053661537 523  6.2595814640 3273.7611057060
478 6.1696107324  2949.0739301309 524 6.2614916843  3281.0216425842
479 6.1717005974  2956.2445861598 525 6.2633982625  3288.2840878606
480 6.1737861039 2963.4173298729 526 6.2653012127  3295.5484379000
481 6.1758672701  2970.5921569209 527 6.2672005485 3302.8146890813
482 6.1779441140  2977.7690629724 528 6.2690962837 3310.0828377969
483 6.1800166536 2984.9480437142 529 6.2709884318 3317.3528804530
484  6.1820849067 2992.1290948508 530 6.2728770065  3324.6248134695
485 6.1841488909 2999.3122121047 531 6.2747620212  3331.8986332795
486 6.1862086239 3006.4973912156 532 6.2766434893  3339.1743363298
487 6.1882641230 3013.6846279412 533  6.2785214241 3346.4519190804
488 6.1903154058 3020.8739180563 534 6.2803958389  3353.7313780047
489  6.1923624894  3028.0652573532 535 6.2822667468 3361.0127095894
490 6.1944053911  3035.2586416413 536 6.2841341610 3368.2959103339
491 6.1964441277 3042.4540667471 537 6.2859980945 3375.5809767513
492 6.1984787164 3049.6515285142 538 6.2878585601 3382.8679053670
493  6.2005091740 3056.8510228030 539 6.2897155709  3390.1566927199
494 6.2025355171  3064.0525454908 540 6.2915691395 3397.4473353615
495 6.2045577625 3071.2560924715 541 6.2934192788  3404.7398298559
496  6.2065759267 3078.4616596556 542  6.2952660014 3412.0341727803
497 6.2085900260 3085.6692429700 543  6.2971093199  3419.3303607241
498 6.2106000770 3092.8788383583 544  6.2989492468 3426.6283902896
499  6.2126060957 3100.0904417800 545 6.3007857946  3433.9282580915
500 6.2146080984 3107.3040492111 546 6.3026189757 3441.2299607567
501 6.2166061010 3114.5196566435 547 6.3044488024  3448.5334949248
502 6.2186001196 3121.7372600852 548 6.3062752869 3455.8388572475
503  6.2205901700 3128.9568555602 549 6.3080984415 3463.1460443887
504 6.2225762680 3136.1784391080 550 6.3099182782  3470.4550530246
505 6.2245584292  3143.4020067841 551 6.3117348091 3477.7658798433
506 6.2265366692 3150.6275546595 552  6.3135480462 3485.0785215450
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553 6.3153580015  3492.3929748419 599 6.3952615981  3830.7616972712
554 6.3171646867 3499.7092364580 600 6.3969296552  3838.1577931297
555 6.3189681137 3507.0273031293 601  6.3985949345  3845.5555556557
556 6.3207682942 3514.3471716033 602 6.4002574453  3852.9549820759
557 6.3225652399  3521.6688386395 603 6.4019171967 3860.3560696265
558 6.3243589623  3528.9923010088 604 6.4035741979 3867.7588155526
559 6.3261494731 3536.3175554937 605 6.4052284580 3875.1632171087
560 6.3279367837 3543.6445988883 606 6.4068799860  3882.5692715580
561  6.3297209055 3550.9734279982 607 6.4085287910 3889.9769761731
562 6.3315018498  3558.3040396403 608 6.4101748819  3897.3863282354
563 6.3332796281 3565.6364306426 609 6.4118182677 3904.7973250353
564  6.3350542514 3572.9705978449 610 6.4134589571 3912.2099638721
565 6.3368257311 3580.3065380977 611 6.4150969591  3919.6242420538
566 6.3385940782  3587.6442482630 612 6.4167322825 3927.0401568975
567 6.3403593037 3594.9837252136 613 6.4183649359 3934.4577057289
568 6.3421214187 3602.3249658336 614  6.4199949281 3941.8768858823
569 6.3438804341 3609.6679670179 615 6.4216222678 3949.2976947010
570 6.3456363608 3617.0127256723 616 6.4232469635 3956.7201295366
571  6.3473892096 3624.3592387136 617 6.4248690239 3964.1441877496
572 6.3491389913  3631.7075030692 618 6.4264884574 3971.5698667089
573 6.3508857167 3639.0575156775 619 6.4281052726 3978.9971637918
574 6.3526293963 3646.4092734874 620 6.4297194780 3986.4260763843
575 6.3543700407 3653.7627734585 621 6.4313310819  3993.8566018807
576 6.3561076606 3661.1180125608 622  6.4329400927 4001.2887376838
577 6.3578422665 3668.4749877752 623 6.4345465187 4008.7224812046
578 6.3595738686 3675.8336960926 624 6.4361503683 4016.1578298625
579 6.3613024775 3683.1941345148 625 6.4377516497 4023.5947810853
580 6.3630281035 3690.5563000535 626  6.4393503711  4031.0333323087
581 6.3647507568 3697.9201897310 627 6.4409465406 4038.4734809768
582 6.3664704477 3705.2858005797 628  6.4425401664  4045.9152245420
583 6.3681871863 3712.6531296423 629 6.4441312567 4053.3585604646
584  6.3699009828 3720.0221739717 630 6.4457198193  4060.8034862129
585 6.3716118472 3727.3929306306 631 6.4473058625 4068.2499992635
586 6.3733197895 3734.7653966921 632 6.4488893941  4075.6980971008
587 6.3750248198  3742.1395692391 633 6.4504704221 4083.1477772173
588 6.3767269478  3749.5154453644 634 6.4520489544  4090.5990371132
589 6.3784261836 3756.8930221708 635 6.4536249988  4098.0518742969
590 6.3801225368 3764.2722967709 636 6.4551985633 4105.5062862843
591 6.3818160174 3771.6532662870 637 6.4567696555 4112.9622705995
592 6.3835066348 3779.0359278513 638 6.4583382833  4120.4198247740
593 6.3851943989  3786.4202786057 639 6.4599044543  4127.8789463472
594 6.3868793193  3793.8063157014 640 6.4614681763  4135.3396328664
595 6.3885614055 3801.1940362996 641  6.4630294569 4142.8018818861
596 6.3902406670 3808.5834375709 642 6.4645883036 4150.2656909690
597 6.3219171133  3815.9745166954 643 6.4661447242 4157.7310576848
598 6.3935907539  3823.3672708625 644 6.4676987261 4165.1979796112
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645  6.4692503167 4172.6664543333 691  6.5381398237 4517.8546182235
646  6.4707995037 4180.1364794436 692  6.5395859556  4525.3934812874
647 6.4723462945 4187.6080525421 693  6.5410299991  4532.9337894386
648  6.4738906963  4195.0811712363 694  6.5424719605  4540.4755405917
649  6.4754327167 4202.5558331410 695 6.5439118455  4548.0187326675
650 6.4769723628 4210.0320358783 696  6.5453496603  4555.5633635928
651  6.4785096422 4217.5097770778 697 6.5467854107  4563.1094313001
652  6.4800445619  4224.9890543762 698  6.5482191027  4570.6569337281
653  6.4815771292  4232.4698654175 699  6.5496507422  4578.2058688214
654 6.4831073514  4239.9522078530 700 6.5510803350 4585.7562345304
655 6.4846352356 4247.4360793411 701 6.5525078870  4593.3080288112
656 6.4861607889  4254.9214775473 702 6.5539334040  4600.8612496261
657 6.4876840184  4262.4084001444 703  6.5553568918  4608.4158949429
658  6.4892049313  4269.8968448121 704  6.5567783561  4615.9719627353
659  6.4907235345  4277.3868092372 705 6.5581978028  4623.5294509826
660  6.4922398350 4284.8782911135 706  6.5596152374  4631.0883576702
661 6.4937538398 4292.3712881420 707 6.5610306658  4638.6486807889
662  6.4952655559  4299.8657980303 708  6.5624440936  4646.2104183352
663  6.4967749901  4307.3618184932 709  6.5638555265 4653.7735683113
664 6.4982821494 4314.8593472524 710  6.5652649700  4661.3381287251
665 6.4997870406 4322.358382036!1 711 6.5666724298  4668.9040975901
666 6.5012896705  4329.8589205799 712 6.5680779114  4676.4714729253
667  6.5027900459  4337.3609606257 713 6.5694814204  4684.0402527554
668 6.5042881735  4344.8644999225 714  6.5708829623  4691.6104351105
669  6.5057840601 4352.3695362258 715 6.5722825426  4699.1820180262
670  6.5072777123  4359.8760672980 716  6.5736801669  4706.7549995438
671  6.5087691369  4367.3840909080 717 6.5750758405  4714.3293777099
672  6.5102583405 4374.8936048316 718  6.5764695690  4721.9051505765
673  6.5117453296  4382.4046068509 719 6.5778613577  4729.4823162014
674 6.5132301109  4389.9170947549 720  6.5792512120  4737.0608726473
675 6.5147126908  4397.4310663390 721 6.5806391372  4744.6408179824
676  6.5161930760  4404.9465194050 722 6.5820251388  4752.2221502806
677 6.5176712729 4412.4634517616 723 6.5834092221  4759.8048676208
678 6.5191472879 4419.9818612236 724  6.5847913923  4767.3889680873
679  6.5206211275  4427.5017456124 725 6.5861716548  4774.9744497696
680  6.5220927981  4435.0231027557 726  6.5875500148 4782.5613107628
681  6.5235623061  4442.5459304878 727  6.5889264775  4790.1495491669
682  6.5250296578  4450.0702266492 728 6.5903010481  4797.7391630872
683  6.5264948595  4457.5959890868 729  6.5916737320  4805.3301506343
684 6.5279579176  4465.1232156538 730  6.5930445341  4812.9225099240
685 6.5294188382  4472.6519042096 731 6.5944134597  4820.5162390771
686  6.5308776277  4480.1820526200 732 6.5957805139  4828.1113362197
687  6.5323342922  4487.7136587568 733 6.5971457018  4835.7077994829
688 6.5337888379  4495.246720498!1 734  6.5985090286  4843.3056270031
689  6.5352412710  4502.7812357284 735  6.5998704992  4850.9048169214
690 6.5366915975 4510.3172023380 736  6.6012301187  4858.5053673845
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n log, n nlog, n n log. n nlog, n
737  6.6025878921  4866.1072765435 783 6.6631326959  5217.2329009608
738  6.6039438246  4873.7105425551 784  6.6644090203  5224.8966719547
739 6.6052979209  4881.3151635807 785  6.6656837177  5232.5617184592
740  6.6066501861  4888.9211377867 786  6.6669567924  5240.2280388494
741  6.6080006252  4896.5284633444 787  6.6682282484  5247.8956315045
742 6.6093492431  4904.1371384302 788  6.6694980898  5255.5644948080
743 6.6106960447 4911.7471612253 789  6.6707663208  5263.2346271474
744  6.6120410348  4919.3585299158 790  6.6720329454  5270.9060269142
745  6.6133842183  4926.9712426928 791  6.6732979677  5278.5786925042
746  6.6147256002  4934.5852977520 792 6.6745613918  5286.2526223170
747  6.6160651851  4942.2006932942 793 6.6758232216  5293.9278147564
748  6.6174029779  4949.8174275249 794  6.6770834612  5301.6042682302
749  6.6187389835 4957.4354986544 795 6.6783421146  5309.2819811502
750  6.6200732065  4965.0549048978 796  6.6795991858  5316.9609519321
751 6.6214056517 4972.6756444749 797  6.6808546787  5324.6411789958
752 6.6227363239  4980.2977156103 798  6.6821085974  5332.3226607649
753 6.6240652277  4987.9211165333 799  6.6833609457  5340.0053956673
754 6.6253923680  4995.5458454780 800 6.6846117276  5347.6893821343
755 6.6267177492  5003.1719006830 801 6.6858609470  5355.3746186018
756  6.6280413761  5010.7992803917 802 6.6871086078  5363.0611035089
757  6.6293632534  5018.4279828521 803  6.6883547139  5370.7488352992
758  6.6306833856  5026.0580063169 804 6.6895992691  5378.4378124199
759  6.6320017773  5033.6893490433 805 6.6908422774  5386.1280333219
760  6.6333184332  5041.3220092931 806 6.6920837425  5393.8194964603
761  6.6346333578  5048.9559853327 807 6.6933236682  5401.5122002938
762 6.6359465556  5056.5912754332 808  6.6945620585  5409.2061432850
763  6.6372580312  5064.2278778700 809 6.6957989170  5416.9013239003
764  6.6385677891  5071.8657909232 810 6.6970342476  5424.5977406099
765  6.6398758338  5079.5050128773 811 6.6982680541  5432.2953918876
766  6.6411821697  5087.1455420213 812  6.6995003401  5439.9942762113
767  6.6424868013  5094.7873766487 813  6.7007311095  5447.6943920624
768  6.6437897331  5102.4305150574 814 6.7019603660  5455.3957379261
769  6.6450909695 5110.0749555498 815 6.7031881132  5463.0983122913
770  6.6463905148  5117.7206964328 816 6.7044143549  5470.8021136507
771  6.6476883735  5125.3677360173 817 6.7056390948  5478.5071405006
772 6.6489845500 5133.0160726191 818 6.7068623366  5486.2133913410
773 6.6502790485  5140.6657045581 819  6.7080840838  5493.9208646757
774  6.6515718735 5148.3166301584 820 6.7093043402  5501.6295590118
775  6.6528630293  5155.9688477488 821 6.7105231094  5509.3394728604
776 6.6541525201  5163.6223556622 822 6.7117403950 5517.0506047362
777  6.6554403503  5171.2771522357 823  6.7129562006  5524.7629531572
778  6.6567265241  5178.9332358108 824 6.7141705299  5532.4765166454
779  6.6580110458  5186.5906047333 825 6.7153833863  5540.1912937261
780  6.6592939196  5194.2492573532 826 6.7165947735  5547.9072829283
781  6.6605751498  5201.9091920248 827 6.7178046950  5555.6244827846
782  6.6618547405  5209.5704071064 828 6.7190131543  5563.3428918310
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TABLE I (continued)

n log, n nlog, n n log. n nlog, n
829 6.7202201551 5571.0625086072 875 6.7742238863  5927.4459005629
830 6.7214257007 5578.7833316562 876 6.7753660909  5935.2206956603
831 6.7226297948 5586.5053595249 877 6.7765069923  5942.9966323104
832 6.7238324408 5594.2285907632 878 6.7776465936  5950.7737092116
833 6.7250336421 5601.9530239250 879 6.7787848976 5958.5519250653
834 6.7262334023 5609.6786575672 880 6.7799219074 5966.3312785756
835 6.7274317248 5617.4054902505 881 6.7810576259 5974.1117684498
836 6.7286286130 5625.1335205388 882 6.7821920560 5981.8933933980
837 6.7298240704 5632.8627469997 883 6.7833252006 5989.6761521333
838 6.7310181004 5640.5931682040 884 6.7844570626 5997.4600433717
839 6.7322107064 5648.3247827260 885 6.7855876450 6005.2450658320
840 6.7334018918 5656.0575891434 886 6.7867169506 6013.0312182361
841 6.7345916599 5663.7915860372 887 6.7878449823  6020.8184993086
842 6.7357800142 5671.5267719920 888 6.7889717429 6028.6069077770
843 6.7369669580 5679.2631455956 889 6.7900972355 6036.3964423719
844 6.7381524945 5687.0007054390 890 6.7912214627 6044.1871018263
845 6.7393366273 5694.7394501168 891  6.7923444274 6051.9788848765
846 6.7405193596 5702.4793782269 892 6.7934661325 6059.7717902614
847 6.7417006946 5710.2204883703 893 6.7945865808 6067.5658167227
848 6.7428806357 5717.9627791515 894 6.7957057751 6075.3609630051
849 6.7440591863 5725.7062491783 895 6.7968237182 6083.1572278560
850 6.7452363494 5733.4508970617 896 6.7979404129 6090.9546100255
851 6.7464121285 5741.1967214159 897 6.7990558620 6098.7531082667
852 6.7475865268 5748.9437208586 898 6.8001700683 6106.5527213354
853 6.7487595474 5756.6918940104 899 6.8012830344 6114.3534479900
854 6.7499311937 5764.4412394954 900 6.8023947633 6122.1552869919
855 6.7511014689 5772.1917559409 901 6.8035052576 6129.9582371051
856 6.7522703761 5779.9434419773 902 6.8046145200 6137.7622970965
857 6.7534379185 5787.6962962383 903 6.8057225534 6145.5674657355
858 6.7546040994 5795.4503173607 904 6.8068293603 6153.3737417945
859 6.7577689219  5803.2055039845 905 6.8079349436 6161.1811240484
860 6.7569323892 5810.9618547529 906 6.8090393060 6168.9896112749
861 6.7580945044 5818.7193683123 907 6.8101424501 6176.7992022544
862 6.7592552706 5826.4780433121 908 6.8112443786 6184.6098957700
863 6.7604146910 5834.2378784050 909 6.8123450941 -6192.4216906073
864 6.7615727688  5841.9988722467 910 6.8134445995 6200.2345855549
865 6.7627295069 5849.7610234961 911 6.8145428972 6208.0485794038
866 6.7638849085 5857.5243308151 912 6.8156399900 6215.8636709478
867 6.7650389767 5865.2887928687 913 6.8167358805 6223.6798589832
868 6.7661917146 5873.0544083252 914 6.8178305714 6231.4971423091
869 6.7673431252 5880.8211758556 915 6.8189240652 6239.3155197271
870 6.7684932116 5888.5890941343 916 6.8200163646 6247.1349900415
871 6.7696419768 5896.3581618385 917 6.8211074722 6254.9555520592
872 6.7707894239  5904.1283776486 918 6.8221973906 6262.7772045896
873  6.7719355558 5911.8997402480 919 6.8232861223  6270.5999464449
874 6.7730803756 5919.6722483229 920 6.8243736700  6278.4237764396
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n log, n nlog, n n log, n nlog, n

921  6.8254600362 6286.2486933911 961 6.8679744089  6600.1234070205
922  6.8265452235 6294.0746961192 962 6.8690144506 6607.9919015404
923  6.8276292345 6301.9017834461 963 6.8700534117 6615.8614355616
924  6.8287120716  6309.7299541969 964 6.8710912946  6623.7320080046
925 6.8297937375  6317.5592071990 965 6.8721281013 6631.6036177921
926 6.8308742346  6325.3895412824 966 6.8731638342 6639.4762638493
927 6.8319535655  6333.2209552795 967 6.8741984954 6647.3499451033
928  6.8330317327 6341.0534480256 968  6.8752320872  6655.2246604837
929 6.8341087388  6348.8870183581 969 6.8762646118  6663.1004089222
930 6.8351845861 6356.7216651170 970  6.8772960714 6670.9771893525
931 6.8362592772  6364.5573871449 971  6.8783264682 6678.8550007109
932  6.8373328146  6372.3941832870 972  6.8793558044  6686.7338419355
933  6.8384052008  6380.2320523906 973  6.8803840821 6694.6137119670
934  6.8394764382  6388.0709933057 974 6.8814113036 6702.4946097478
935 6.8405465292  6395.9110048849 975 6.8824374709 6710.3765342229
936 6.8416154764  6403.7520859830 976 6.8834625864 6718.2594843392
937 6.8426832822 6411.5942354574 977 6.8844866520 6726.1434590458
938  6.8437499490 6419.4374521678 978  6.8855096700 6734.0284572941

939  6.8448154792  6427.2817349766 979 6.8865316425 6741.9144780374
940  6.8458798752  6435.1270827482 980 6.8875525716 6749.8015202313
941  6.8469431395 6442.9734943498 981  6.8885724595 6757.6895828336
942  6.8480052745  6450.8209686509 982 6.8895913083  6765.5786648041

943  6.8490662826  6458.6695045234 983  6.8906091201 6773.4687651047
944 6.8501261661 6466.5191008414 984 6.8916258970 6781.3598826994
945 6.8511849274 6474.3697564816 985 6.8926416411 6789.2520165545
946  6.8522425690  6482.2214703231 986 6.8936563546 6797.1451656382
947  6.8532990931  6490.0742412472 987 6.8946700394  6805.0393289208
948  6.8543545022 6497.9280681378 988  6.8956826977 6812.9345053749
949  6.8554087986  6505.7829498808 989  6.8966943316  6820.8306939749
950 6.8564619845 6513.6388853649 990 6.8977049431 6828.7278936973
951 6.8575140625 6521.4958734807 991  6.8987145343  6836.6261035210
952  6.8585650347  6529.3539131214 992 6.8997231072  6844.5253224266
953  6.8596149036  6537.2130031825 993  6.9007306640  6852.4255493969
954 6.8606636714 6545.0731425617 994 6.9017372066  6860.3267834166
955 6.8617113404 6552.9343301591 995 6.9027427371  6868.2290234728
956  6.8627579130  6560.7965648771 996 6.9037472575 6876.1322685543
957 6.8638033914  6568.6598456205 997  6.9047507699  6884.0365176520
958  6.8648477779  6576.5241712961 998  6.9057532763  6891.9417697588
959 6.8658910748  6584.3895408132 999  6.9067547786  6899.8480238699
960 6.8669332844  6592.2559530834 1000 6.9077552789  6907.7552789821
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TABLEIL*  F(py, pp) = py 1°g,€1 +ta logg“l’ nta=1=p+gq
2 2

143
P2
0.01 0,02 0.03 0.04 0.05 0.10 0.15

141

0.01 0.0000000 0.0031170 0.0092198 0.0165994 0.0247332 0.0713311 0.1238648
0.02 0.0039160 0.0000000 0.0019456 0.0063448 0.0121424 0.0512682 0.0991756
0.03 0.0131606 0.0022116 0.0000000 0.0014188 0.0048802 0.0365339 0.0798150
0.04 0.0259124 0.0079304 0.0015616 0.0000000 0.0011252 0.0253068 0.0639616
0.05 0.0412940 0.0162790 0.0057530 0.0012110 0.0000000 0.0167095 0.0507380
0.10 0.1444790 0.0842990 0.0529870 0.0335430 0.0206510 0.0000000 0.0108970
0.15 0.2766080 - 0.1812630 0.1291650 0.0948190 0.0702460 0.0122345 0.0000000
0.20 0.4286740 0.2981640 0.2252800 0.1760320 0.1397780 0.0444060 0.0090400
0.25 0.5964975 0.4308225 0.3371525 0.2730025 0.2250675 0.0923350 0.0338375
0.30 0.7777260 0.5768860 0.4624300 0.3833780 0.3237620 0.1536690 0.0720400
0.35 0.9708980 0.7348930 0.5996510 0.5056970 0.4344000 0.2269465 0.1221860
0.40 1.1750840 0.9039140 0.7478860 0.6390300 0.5560520 0.3112380 0.1833460
0.45 1.3897125 1.0833775 0.9065635 0.7828055 0.6881465 0.4059720 0.2549485
0.50 1.6144600 1.2729600 1.0753600 0.9367000 0.8303600 0.5108250 0.3366700
0.55 1.8492245 1.4725595 1.2541735 1.1006115 0.9825905 0.6256950 0.4284085
0.60 2.0941080 1.6822780 1.4431060 1.2746420 1.1449400 0.7506840 0.5302660
0.65 2.3494340 1.9024390 1.6424810 1.4591150 1.3177320 0.8861155 0.6425660
0.70 2.6157740 2.1336140 1.8528700 1.6546020 1.5015380 1.0325610 0.7658800
0.75 2.8940575 2.3767325 2.0752025 1.8620325 1.6972875 1.1909500 0.9011375
0.80 3.1857460 2.6332560 2.3109400 2.0828680 1.9064420 1.3627440 1.0498000
0.85 3.4931920 2.9055370 2.5624350 2.3194610 2.1313640 1.5502955 1.2142200
0.90 3.8205750 3.1977550 2,8338670 2.5759910 2.3762030 1.7577840 1.3985770
0.95 4.1769020 3.5189170 3.1342430 2.8614650 2.6499960 1.99421 65 1.6118780
0.96 4.2534228 3.5884048 3.1995736 2.9238152 2.7100100 2.0467584 1.6597936
0.97 4.3325734 3.6605224 3.2675340 2,9887952 2.7726538 2.1019301 1.7103390
0.98 4.4152312 3.7361472 3.3390016 3.0572824 2.8388048 2,1606090 1.7643916
0.99 4.5032176 3.8171006 3.4157978 3.1310982 29102844 2.2246165 1.8237728

0.01 0.02 0.03 0.04 0.05 0.10 0.15
) 21

* For values of p, logp
P

2 g2

24 q logq—x for p, > 0.50, enter the table using (g,, ¢.) as though they were (p,, p,).
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P2
0.20 0.25 0.30 0.35 0.40 0.45 0.50 P g
1
0.1810018  0.2426649  0.3091418  0.3809692  0.4588834  0.5438455  0.6371488 | 0.01
0.1528296 02116158 02755796 03451244  0.4209028  0.5038170  0.5951136 | 0.02
0.1299860  0.1858953  0.2473460  0.3146082  0.3882508  0.4691171  0.5584070 | 0.03
0.1106496  0.1636820  0.2226196  0.2875992  0.3591060  0.4379244  0.5252076 | 0.04
0.0939430  0.1440985  0.2005230  0.2632200  0.3325910  0.4093615  0.4946380 | 0.05
0.0366870  0.0724580  0.1163170  0.1676010  0.2262930  0.2928240  0.3680670 | 0.10
00083750  0.0297615  0.0610550  0.1009260  0.1489390  0.2052305  0.2704400 | 0.15
0.0000000  0.0070020  0.0257300  0.0541880  0.0915220  0.1375740  0.1927500 | 0.20
0.0073825  0.0000000  0.0061625  0.0232075  0.0498625  0.0856750  0.1308175 | 0.25
0.0281700  0.0064030  0.0000000  0.0056320  0.0216080  0.0471810  0.0822900 | 0.30
0.0609010  0.0247495  0.0057810  0.0000000  0.0052970  0.0206305  0.0457060 | 0.35
0.1046460  0.0541100  0.0225760  0.0053820  0.0000000  0.0050940  0.0201360 | 0.40
0.1588335  0.0939130  0.0498135  0.0212065  0.0051455  0.0000000  0.0050085 | 0.45
02231400  0.1438350  0.0871700  0.0471500  0.0204100  0.0050250  0.0000000 | 0.50
02974635  0.2037740  0.1345435  0.0831105  0.0456915  0.0200670  0.0050085 | 0.55
03819060  0.2738320  0.1920360  0.1291900  0.0810920  0.0452280  0.0201360 | 0.60
04767910  0.3543325  0.2599710  0.1857120  0.1269350  0.0808315  0.0457060 | 0.65
0.5826900  0.4458470  0.3389200  0.2532480  0.1837920  0.1274490  0.0822900 | 0.70
0.7005325  0.5493050  0.4298125  0.3327275  0.2525925  0.1860100  0.1308175 | 0.75
0.8317800  0.6661680  0.5341100  0.4256120  0.3347980  0.2579760  0.1927500 | 0.80
0.9787850  0.7987885  0.6541650  0.5342540  0.4327610  0.3456995  0.2704400 | 0.85
1.1457270 09513460  0.7941570  0.6628330  0.5506610  0.4533600  0.3680670 | 0.90
13416130  1.1328475  0.9630930  0.8203560  0.6975050  0.5899645  0.4946380 | 0.95
1.3860456  1.1744032  1.0021356  0.8571160  0.7321292  0.6225408  0.5252076 | 0.96
1.4331080  1.2185887  1.0438080  0.3965058  0.7693832  0.6577469  0.5584070 | 0.97
1.4836776  1.2662814  1.0889876  0.9394028  0.8101444  0.6964602  0.5951136 | 0.98
1.5395758  1.3193027  1.1394958  0.9876284  0.8562342  0.7405021  0.6371488 | 0.99
0.20 0.25 0.30 0.35 0.40 0.45 0.50

P1
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TABLE 111

Noncentral x2

Table of 59 points of the distribution of Fisher's B2

Values of Value of n, Degrees of Freedom
B* 1 2 3 4 5 6 7
0 3.8415 59915 7.8147 9.4877 11.0705 12.5916 14.0671
0.04 39940 6.1108 7.9186 9.5821 11.1589 12.6750 14.1474
0.16 44394 6.4613 8.2254 9.8627 11.4217 12.9247 14.3868
0.36 5.1320 7.0209 8.7220 10.3202 11.8515 13.3349 14.7802
0.64 6.0050 7.7590 9.3881 10,9402 12.4383 13.8965 15.3225
1.00 7.0018 8.6424 10.2023 11.7073 13.1704 14.6000 16.0040
1.44 8.0946 9.6466 11.1462 12.6061 14.0340 154363 16.8166
1.96 9.2714 10.7558 12.2045 13.6242 15.0203 16.3952 17.7527
2.56 10.5294 11.9605 13.3671 14.7517 16.1186 17.4691 18.803S
3.24 11.8673 13.2569 14.6276 15.9824 17.3222 18.6486 19.9639
4.00 13.2853 14.6406 15.9808 17.3089 18.6261 19.9318 21.2281
4.84 14,7833 16.1098 17.4248 18.7299 20.0256 21.3130 22.5920
5.76 16.3612 17.6627 18.9564 20.2410 21.5185 22.7892 24.0522
6.76 18.0192 19.3002 20.5744 21.8416 23.1024 24.3572 25.6066
7.84 19.7571 21.0195 22.2775 23.5283 24.7745 26.0161 27.2526
9.00 21.5751 22.8216 24.0639 25.3019 26.5349 27.7634 28.9875
10.24 23.4731 24.7059 259346 27.1597 28.3801 29.5980 30.8114
11.56 25.4510 26.6710 27.8879 29.1017 30.3116 31.5192 32.7230
12.96 27.5090 28.7178 29.9242 31.1275 32.3272 33.5253 34.7204
14.44 29.6469 30.8458 32.0424 33.2352 34.4276 35.6158 36.8024
16.00 31.8649 33.0545 34.2412 35.4275 36.6098 37.7918 38.9701
17.64 34.1629 35.3442 36.5227 37.7008 38.8765 40.0499 412215
19.36 36.5408 37.7143 38.8864 40.0562 41.2241 42.3918 43.5574
21.16 38.9988 40.1652 41.3295 42.4934 43.6551 44.8163 45.9752
23.04 41.5367 42.6958 43.8549 45.0120 46.1679 47.3234 48.4764
25.00 44.1547 45.3077 46.4606 47.6128 48.7637 49.9128 51.0610

Entries in this table are the squares of the values of B and the values of f2
are the squares of f3, in the table on p. 665 of R. A. Fisher (1928).
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Implies

Approaches

If and only if

Union

Intersection

Is contained in

Contains

Is asymptotically equal to

Is approximately equal to

: Such that

{z: C} Set of «’s satisfying the condition C
Belongs to

Modulo 4, or except for sets of 1-measure 0
Covariance

E{ ) Expectation with respect to the probability measure u,
O(n) Is at most of order n

o(n) Is of smaller order than n

g.l.b. Greatest lower bound, infimum, inf

Lu.b. Least upper bound, supremum, sup

2l UnNocy ¢

gz
<

lim  Limit superior, lim sup
lim  Limit inferior, lim inf

lim Limit
tr Trace
var Variance

Absolute Continuity: A measure u is said to be absolutely continuous with respect
to a second measure v if for every set E for which »(E) = 0 it is true that u(E) = 0.
For u absolutely continuous with respect to », we write # < ». [ and v are defined on
the same measurable space (Z', ).]

Additive Class of Sets—a Field: Sometimes called “simply” additive to distinguish
it from a *‘completely’additive class which is a Borel field. In other words, additive or
simply additive refer to properties essentially dealing with a finite number of terms
whereas completely additive refers to a denumerable number (finite or infinite).

Admissible: That which is regarded as a priori possible. Generally the property of
belonging to a particular subset. For example, a parameter point is called an admis-
sible point if it belongs to a set of the parameter space corresponding to a given
hypothesis.

381
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Asymptotic Confidence Interval: A confidence interval whose limits are statistics
based on arbitrarily large samples.

Asymptotic Distribution Function: 1f the distribution function F(c; n) of a random
variable .- depends upon a parameter », then the distribution function (if any) to which
F(c; n) tends as n— oo is called the asymptotic distribution function of the random
variable.

Axiomatic Development: That development of a science which begins with the
creation of a clearly defined set of axioms from which all theorems are deduced. The
theorems are then applied to explain and predict the resuits of experiments—the
“facts.” Inductive development, by contrast, proceeds from a body of observed
“facts” from which the theorems are obtained by a process of generalization. If then
a set of axioms can be found which enables the theorems to be “‘proved,” the two
approaches produce equivalent results.

Basis: A set of linearly independent vectors such that every other vector of the space
is a linear combination of the vectors of the set.

Best Estimate: That estimate of a parameter having minimum attainable variance.

Bias: The difference between the expected value of an estimate and the estimated
parameter.

Biased Estimate: An estimate whose expected value is not the estimated parameter.

Binary Digit: A digit of a binary system of numbers.

Bit: Abbreviation for binary digit.

Borel Field: A field & such that the union of any denumerable number of sets of
& is a set of &,

Borel Set: A set of a Borel field. In an n-dimensional Euclidean space R” a Borel
set is one that is obtained by taking a finite or a denumerable number of unions,
differences, and intersections of half-open intervals (a; < x; <by),i=1,2,* - -, n.

Characteristic Equation (of a square matrix A): The determinantal equation in 4,
[A — 21| = 0, where L is the identity matrix (same order as A).

Characteristic Function of a Set: The point function which is equal to 1 for any
point of the set and which is 0 elsewhere.

Characteristic Vector (corresponding to a characteristic root of a characteristic
equation for a square matrix A): The vector x which satisfies the matrix equation
Ax = /x for the particular characterlstlc root 2 of the characteristic equation.

Class: Set of sets.

Communication Theory: Mathematics applied to communication processes.

Complement of One Set with Respect to Another: Set of all points of the second set
which are not in the first. The complement of a set E with respect to the space Z in
which it is contained is the set of all points of Z not in E.

Confidence Coefficient: The probability associated with a confidence interval.

Confidence Interval: An interval limited by two statistics such that the probability
of a parameter value being covered by the interval is known.

Confidence Limits: The upper and lower limits of a confidence interval.

Consistent Estimate: One that converges in probability to the estimated parameter.

Converge Stochastically or Converge in Probability: Let f(z), fi(z), folx), -+ - be
random variables on an z-space. The sequence f,(z) is said to converge stochastically,
or in probability, to f(x) if lim Prob{|f,(z) — f(x)| = ¢} = 0.

n—

Converge with Probability 1: Let f(z), fi(x), fx(), * - - be random variables om an

z-space. If lim fi(x) = f(x) for almost all z, we say that [x(x) converges to f(z) with
n—

probability 1.
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Convex Set: A set such that the entire line segment connecting any two points of the
set is contained in the set.

Cramér-Rao Inequality: See Information Inequality.

Denumerable: The property of being able to be placed in one-to-one correspondence
with the set of positive integers.

Diagonal Element (of a square matrix): An element in the same row as column.

Disjoint Sets: Two sets having no common elements.

Distance (Function): A real-valued function 4 of points x, y, z such that d(x, y) > 0,
d(x,y) =0, if and only if x =y, d(z,y) = d(y,z), and d(x,y) < d(x, 2) + d(z, v).
The last relation is called the triangular inequality.

Dominated Set of Measures: A set M of measures u; defined on the measurable
space (Z, &) for which there exists a finite measure » such that u; is absolutely con-
tinuous with respect to »(u; < v) for every u, belonging to M. » need not be a member
of M..

Efficient Estimate: An estimate of minimum possible variance.

Equivalent Measures: Two measures 4 and » such that u is absolutely continuous
with respect to » (written u < v) and such that » is absolutely continuous with respect
to u (v < u). To indicate that two measures are equivalent we write u =v.

Equivalent Set of Measures: A set of measures u; defined on the measurable space
(Z, &) for which there exists a measure » such that each measure g, is equivalent to »
(written u, = ). This means that each u, is absolutely continuous with respect to »
and vice versa.

Estimator: A statistic selected to approximate (or to estimate) a given parameter
(or function of such parameter).

Euclidean Space R* of n Dimensions: A metric space made up of points (vectors)
z = (x,,xy, " * ", x,), Where the z, for i = 1,2, - + -, n are real numbers and where for
two points z = (2;,%,,* * *,¥,) and ¥ = (¥, ¥, " * *, ¥n), the “‘distance” between z

n 12
and y is defined as ( 2 (2 — y,)”)
t=1

Event: A set of the probability space (Z', &, u) belonging to &.

Field: A class & of sets of a space & such that the union of any two sets in & is in
&, the intersection of any two sets in & is in &, and the complement of any set in &
with respect to 2 is in &.

Finite Measure: A measure u such that 4(2) < o for a measurable space (Z, 5).

Fisher’s Information Matrix: The k X k matrix whose element in the ith row and
jth column isJ flz, 8) [;0— log f(x, 0)] l:é%' log( f=, 0)] dMx), where Z(z) is a prob-

i 2
ability measure and f(z, 6), the generalized density, is a function of x and a k-dimensional
parameter 6.

Generalized Probability Density: Let u be a probability measure which is absolutely
continuous with respect to A on a probability space (, &, 7). Then the generalized
probability density function corresponding to u is that function [f(), unique, positive,

and finite except for sets of A-measure zero, such that w(E) = | f(x) di(z) for all E
belonging to &. E

Greatest Lower Bound (Abbreviated g.Lb., or called “the’’ lower bound): The largest
of the lower bounds of a set (of real numbers).

Homageneous Samples: Samples from populations with t'he same parameter valut:s.
If only some of the parameters are alike, the samples are said to be homogeneous with
respect to these parameters only.
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Homogeneous Set of Measures: A set of measures such that any two members of the
set are absolutely continuous with respect to each other.

Hyperplane (of n dimensions): The set of all points in R" which satisfy a single
linear function /(z,,x,,* * -, z,) = 0. (See Linear Set.)

Hypothesis: A statement that a point of the parameter space belongs to a specified
set of the parameter space.

Identity Matrix (n x n): The matrix with all n diagonal elements equal to 1 and all
other elements equal to 0.

Indicator of a Set: Same as characteristic function of a set.

Infimum (inf): Greatest lower bound.

Information Inequality: Consider f(z,6) a density function corresponding to an
absolutely continuous distribution function with parameter 6 for a random variable X.
Let T(X) be any unbiased estimate of ¢(6), a function of 8. Then the inequality

de/db)?
variance of T > (——ﬂl-—)—,

14,
where / is the variance of };g. is called the information inequality.

Note: The range of X must be independent of 6 and f must be differentiable with
respect to 6 under the integral sign. As defined by R. A. Fisher, I is the information
on 6 supplied by a sample of n observations.

Intersection of Two Sets: The set of points belonging to both sets. The intersection
of sets 4 and B is written 4 N B.

Inverse Image of a Set: 1f a set G belongs to a space # corresponding to a space £
under a transformation T'(z), then the set of all points 2 of Z whose transforms under
T(x) are in G is called the inverse image of G. It is denoted by T-YG) = {z:T(x) € G}.

Inverse of a Matrix: An n X n square nonsingular matrix A is said to have an
inverse A1 if AA~! = A-1A = I, where I is the n X n identity matrix.

Jacobian of a Transformation: W y; = flz,,* + -, z,) for i = 1,2, - -, k is a trans-
formation, then the determinant whose element in the ith row and jth column is
f/ox; is called the Jacobian of the transformation.

Khintchine’s Theorem: Llet X), X,,© - - be identically distributed independent

n
random variables with finite meanm. Then X = ;l-l 2.X,; converges in probability to m.
i=1

Least Upper Bound (Abbreviated Lu.b., or called “the” upper bound): The smallest
of the upper bounds of a set (of real numbers).

Likelihood Ratio (at X = x): The ratio of f(x) to fy(x), where fi(z) for i = 1,2 is
the generalized probability density for the observation X =z under the hypothesis
that the random variable X is from the population having the generalized probability
density fi(X).

Limit Inferior (lim inf): The smallest limit point of a sequence (of real numbers
bounded below). (limz = a if z > @ — € but never ultimately > a + ¢.) (li_rE r, =

n-—-—+
lim m,, where m, is the lower bound of z,,2,,2s,* * *, my is the lower bound of
n~ .
X, &g, * * *, My is the lower bound of 3, z,, * - -, etc.) (lim z, = sup inf z,,.)

n— © k m2k
Limit Point (of a sequence of real numbers): A point every neighborhood of which

contains infinitely many points of the sequence.
Limit Superior (lim sup): The greatest limit point of a sequence (of real numbers
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bounded above). (ii_r—r;a: = A ifx < A + ebut never ultimately < 4 — ¢) (fi-r;x,, =
n—-

lim M,, where M, is the upper bound of z,,z;, * * *, M, is the upper bound of
n—w
Zg, 3, * * *, My is the upper bound of x4, z,, - * *, etc.) (lim z, = inf sup Z,.)
n— o kmzk

Linear Set of n — p Dimensions: A set of points in a space R* each of whose
coordinates can be expressed as a linear function of n — p arbitrary parameters. For
p =1 this set is a hyperplane and for p = n — 1, a straight line. Also: the set of
points in R® common to p linearly independent hyperplanes is a set of n — p dimensions.

Linear Transformation: y = Ax with y' = (¥, ¥3," * 2 Um), X = (21,25, * *, Zp),
A=(@y)i=12"mj=12""n

Linearly Independent Functions (on R"): A set of functions fi(z) defined on R" such
that no one of them can be expressed as a linear combination of the others with real
numbers not all zero for coefficients.

Linearly Independent Vectors: A set of vectors is said to be linearly independent if
none of them can be expressed as a linear combination of the rest.

Lower Bound (of a set E of real numbers): A real point c such that for every point
zof E,x = c.

Matrix (m x n): A set of numbers arranged rectangularly in m rows and n columns.

Measurable Function: A real-valued function f(x) of the points  of the measurable
space (Z, &) such that for every real number c, the set {z: f(x) < c} belongs to <.
Such a function is called an &-measurable function. '

Measurable Set: Any subset of a measurable space (£, &) belonging to the Borel
field & defined on the space Z. '

Measurable Space: A space 2 on which is defined a Borel field & of subsets of Z..
We denote this type of space by (2, ¥).

Measurable Transformation: A transformation T(z) of the elements of a measurable
space (Z, &) into those of another measurable space (%, ) such that for every set
G belonging to the Borel field 7, the inverse image of G, T-(G), belongs to the Borel
field &, where T-YG) = {z: T(z) € G,.

Measure: A nonnegative, completely additive set function defined on-a Borel field
& of a measurable space (', &).

Minor (of a matrix A): The determinant of any square submatrix of A.

Moment Generating Function (of a random variable X): A function of a real variable
t equal to the expected value of !X with respect to the distribution function of X.

Most Powerful Test: That test among all tests of a given size giving the largest
possible value to the probability of rejecting the null hypothesis when an alternative
hypothesis is true.

Neighborhood of a Point: The neighborhood of a point a is the set of points x which
satisfy an inequality of the form |x —a| <, where ¢ >0 and |x — a| means the
distance between x and a. (See Euclidean Space.)

Nonsingular Linear Transformation: A linear transformation with a nonsingular
matrix.

Nonsingular Matrix: A square matrix A such that its determinant |A] #0. If
|A} = 0 the matrix is said to be singular. ) ]

Nonsingular Transformation: A one-to-one transformation which has an inverse.

One-sided Hypothesis: A hypothesis which places the value of a parameter as always
greater than, or as always less than, some fixed constant.

One-to-One Transformation T: A transformation such that T(z,) = T(xy) when and
only when 2z, = z,.
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Open Set of R": A set all of whose points are interior points, that is, points such
that a neighborhood of the point belongs entirely to the set.

Orthogonal Matrix: A matrix C such that CC’ = I, where C’ is the transpose of C
and 1 is the identity matrix.

Parameter Space: The space of all admissible parameter points.

Point: Any element of a space 2. Generally a vector (2, ,, * * *, x,) for a vector
space of k dimensions.

Point Function: A function defined (having a value) for every point of a space.
Contrast is usually with set function.

Positive Definite Matrix: The matrix of a positive definite quadratic form.

Positive Definite Quadratic Form: A quadratic form which is never negative for real
values of the variables and is zero only for all values of the variables equal to zero.

Positive Matrix: The matrix of a positive quadratic form.

Positive Quadratic Form: A quadratic form which is nonnegative and which may be
zero for real values of the variables not all zero.

Power (of a test): The power of a test (of a given size) is the probability of rejecting
the null hypothesis when an alternative hypothesis is true.

Principal Minor (of a square matrix): A minor whose diagonal elements are diagonal
elements of the matrix.

Probability Measure: A measure u such that u(%£) = 1 for the space 2" [which is a
measurable space (Z', &)).

Probability Measure Space: Same as probability space.

Probability Space: A measurable space (2, &) on which a probability measure u
is defined. Designated as (£, &, u).

n n
Quadratic Form: Aun expression of the form x’Ax = X Zlai,m,-x,-, with x’ =
i=1j=
(z), x4, * *,x,) and the matrix A = (a;;) of the quadratic form symmetric.
R": Symbol for the Euclidean space of n dimensions.
Radon-Nikodym Theorem: If u and » are two o-finite measures on the measurable
space (Z', &) such that » is absolutely continuous with respect to u, then there exists
an &-measurable function f(x) such that 0 < f(z) < 40, and for every set

Eec ¥ wE) =f f(x) du(z). The function f(x) is unique in the sense that if there
E

exists another function g(x) with the same properties as f(z), then u(z:f(z) # g(x)) = 0.

Random Variable: Any &-measurable function f(x) defined on a measurable space
(2, &£).

Rank of a Matrix: A matrix is of rank r if r is the largest integer such that at least
one minor of the matrix of order r is not zero.

Region of Acceptance (Rejection): A set of the sample space such that if a sample
point (or function thereof) falls inside (outside) the set we accept (reject) a given
hypothesis.

Set: Any subset of a given set (space) Z. (The words set, subset, and space are
among the “undefined elements” of the science, theory, or geometry of measure.)

Set Function: A function whose domain of definition is a class of sets.

o-Algebra: Same as Borel field. A nonempty class of sets closed under (that is,
contains the result of) the formation of complements and denumerable unions.

o-Finite Measure: A measure u for which a finite or denumerable sequence of
measurable sets E; can be found such that the union U E; = Z (the whole space) and

#(E;) < oo for every i.
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Size (of a test): The probability of rejecting the null hypothesis when it is true.

Space: Any collection or set of elements . of any nature. Denoted by 4. (An
“undefined” element of our science.)

Statistic:  Any function of a sample not depending on any parameter. Itself a
random variable.

Supremum (sup): Least upper bound.

Theory: A set of axioms and all logical deductions (theorems) therefrom. Synonyms:

‘Science, geometry.

Trace (of a square matrix): The sum of the diagonal elements.

Transformation: A function T(x) = y of the elements .t of a space 2" which establishes
a correspondence between those elements and the elements of a space .

Transformation Matrix: The matrix A = (a;;) of a linear transformation.

Transpose (of a matrix A): The matrix A" with the rows and columns of A inter-
changed.

Truncation: A process by which all observations outside a given interval are dis-
carded. The remaining cases then yield a truncated distribution with the distribution
function

0 forax <a
) F(x) — F(a)
& £ < b) = —————— f <ax<b
F(rla < & < b) 7o) — F@ fora<z<
1 forx > b,

where F(x|a < & < b) is the conditional distribution function of the random variable
§ on the assumption that & lies on the interval (a, 8] (haif open) and where F(z) is the
original distribution function of & on the whole r-space of §.

Type 1 Error: The error made in rejecting the null hypothesis when it is true.

Type 11 Error: The error made in accepting the null hypothesis when it is false.

Unbiased Estimate: An estimate whose expected value is the estimated parameter.

Uniformly Most Powerful Test: The test among all tests of a given size that is most
powerful for all admissible alternative hypotheses.

Union of Two or More Sets: The set of all those points of a space 2" which belong

n
to at least one of the sets. If E; denotes the sets, for i =1,2,- - -, n, then U E;
i=1

denotes the union.

Upper Bound (of a set E of real numbers): A real point d such that for every point
rof E,xr <d.

Vector: A matrix consisting of a single row or of a single column.



Appendix

Note to page 38
Anticipating lemma 4.9 in section 4 we also state:

THEOREM 2.2. Iff,(%) and f,(x) are generalized densities of a dominated
set of probability measures, Y = T(x) is a measurable statistic such that
§ T(x)f,(2)dA(z) exists, and My(7) = [ fo(2)esT® dA() exists for T in some
interval; then

I(1:2) = 07 — log My(t) = I(*:2), 6 = ‘—;{—rlog My(7),

for f,(x) ranging over the generalized densities for which | T(z)f,(z)dA(x) = 6
and § T(x)fy(x) dA(x) < 0, with equality if and only if

f[i(®) = f*(2) = erT@f(2)[My(7) [4].

Note to page 70

THEOREM 2.1a. Suppose that the probability measures in theorem 2.1
are such that

W9(G) = f 29) dy(y), #(G) = f 2@ &), i=1,2GeT.

If lim (¢i"/gy) = 1 by), uniformly and lim log (8M/g5") = log (g./g2)1¥1,
umformly, then hm (1M 2N, ¥ = I(l 2; %), if I(1:2; ¥) is finite.

(N)
Proof. |I(1:2;%)—I(1M:2(%); ‘-’y)l‘lf & loggl — gi" log g(N)) d?’l

gﬂgl log‘gl —gi”’log% dy + f g

(N)
S

d

M [og 8L — gl ]ogt
1 log & ® uv)

N
Mg

2 g dy.
81 ggl

log dy + f
389

log ra 108 o ®
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g
For sufficiently large N,' 1 - -Zl’- <¢q
1
() 2
lo -5-,1—10 1 <e,g—1—-<l+e
ggz ggfo,N) & !

so that
[I(1:2; %) — I(1¥): 2% .%)|

=q fg1

and since €, and e, are arbitrarily small the assertion is proven. (See
S. Tkeda (1960), “A remark on the convergence of Kullback-Leibler’s
mean information”, Annals of the Institute of Statistical Mathematics,
Vol. 12, No. 1, pp. 81-88.)

Note that if I(1(M:2(M; %) in theorem 2.1, page 70, is a monotonically

increasing function of N and I(1M:2M; &) < I(1:2; %), then lim
N—+x

I(1:2M; @) = I(1:2; ). Since lim inf (120, @) 2 1(1:2; @), if

I(1:2; %) = oo, thenlgim I(1W:2N); %) = co.

dy + 52(1 + 51)

lo 81
ggz

Note to page 72

The following is the proof of lemma 2.2, page 72. In problems 7.29,
7.31, 7.32 on page 69 it is shown that

10:2) 2 -2 log [(A@A) a1 220 - [(h@EN* i)

= f(()ﬁ(%‘))yz — (@)% dA(=) 2 § flfl(w) = f(D)|dA(2)).

(see S. Kullback (1966), “ An information-theoretic derivation of certain
limit relations for a stationary Markov Chain,” SIAM Journal on Control,
Vol. 4, No. 3.)

Accordingly 1 (f | fi¥(2) — fi()|dA(2))2 < I(1W:1) < € for sufficient-
ly large N, that is § | f{*(z) — fy(#)|dA(z) -0 as N — co. The last asser-
tions follow from Loeve (1955, p. 140, problem 16 and page 158).

Note to page 306

In problem 8.34, page 341, table 8.5, the component due to Z,; X! re-
duces to the independence test for £,y = 0. The component in table 8.5
is then also a test for specified Z,, 3! other than 0. The analysis for
independence may also be set up as in table 8.6.
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TABLE 8.6
Component due to Information D.F. 8
Independence withinset |  — N log |Ry,) "J(—"—'z-_—-l) ky(ky —112);,2"1 + 5)
Independence within set 2 — N log | Res| k_____..2(k22_ 1) kolks —112)1(5"2 +3)
Independence within set m  — N log | Rpym! M‘J’.z_:_}.) ki m —l %ka +35)
—Nlog |R| (263 + 3k2 — k — 3 (2K} + 3k} — k9)

e e 1 ' 1

Independence between sets Rl [ Rl ‘;j kik; I
, ki — 1 — 1)(2%k +

Total independence —Nlog |R| _(_._2__.2 k(k l;(N 5)

Note that when R,; contains all but the last variable

and

R
—Nlog |R| = —Nlog |Ry;| — Nlog ‘LRl—l[

R
log ‘_IR'I':{—" = log (l - r?”.12 “ e m_l).

(See table 8.1, page 337.)
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Analysis of covariance, 219, 239
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Analysis of variance, 109
multivariate analogue, 294
multivariate generalization, 109

Asymptotic confidence interval, 382

Asymptotic distribution, 70, 97, 324, 382

Averages, distribution of, 191
moment generating function of, 297
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Basis, 382

Bayes’ theorem, 4, 84

Behrens-Fisher problem, 311

Bessel function, 327

Best estimate, 109, 382

Bhattacharyya, A., 41
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Biased estimate, 58, 382

Binary digit, 7, 382

Bit, 7, 382

Borel field, 3, 382

Borel set, 3, 382

Box, G. E. P., 327

Brownlee, K. A., 188

Canonical correlation, 202-204, 275, 277,
279, 281
discrimination efficiency, 278
test for, 276, 278, 282
Canonical form, 194

Carter, A. H., 229
Categories, grouping, 114, 116
Centering, 217, 262
Central limit theorem, 101, 105
Channel, capacity, 9, 25
noisy, 24
Characteristic equation, 382
Characteristic function, 325, 328, 329
x2-distribution, 210, 327, 330
noncentral x2-distribution, 210, 327
Characteristic function of a set, 21, 42,
382
Characteristic roots, 195
Characteristic vectors, 195, 382
Chernoff, H., 41, 77, 86, 95, 98
Cherry, E.C,, 2, 3
Class, 3, 382
Classification procedure, 85, 348
Column effect, 239, 240
Communication, system, 24
theory, 1, 8, 24, 382
Comparisons, dichotomous, 114, 11§
pooling, 136, 147
Complement of one set with respect to
another, 42, 382
Components, principal, 197
Concave function, 34
Conditional discrimination information,
13
Conditional entropy, 24
Conditional expectation, 19
Conditional homogeneity, analysis of,
171, 181, 184
null hypothesis of, 170
Conditional independence, 166, 170, 182
Conditional information, 13
Conditional probability, 4, 83, 117, 166
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Confidence coefficient, 102, 382
Confidence interval, 91, 103, 149, 382
binomial, 103
Confidence limits, 102, 382
Confidence region, 102
Conjecture, 352
Conjugate distribution, 81, 106, 111,
143, 297, 298, 310, 315, 318
Consistent estimate, 98, 382
Consistent test, 100, 105
Converge in probability, 75, 102, 382
Converge with probability 1, 141, 187,
382
Convex function, 16, 34, 171
Convex set, 98, 383
Convexity property, 16, 114, 135, 145,
157, 171
Correlation, canonical, 200, 275, 277, 279,
281
multiple, 203
simple, 205
Correlation coefficients, test of homo-
geneity, 321, 323
Correlation matrices, 192
null hypothesis of homogeneity, 320
Correlation matrix, null hypothesis
specifying, 304
Covariance, analysis of, 219, 239
multiple, 239
Covariance matrices, homogeneity of,
315, 324
test of homogeneity, 322
Covariance matrix, 189
null hypothesis specifying, 302
of estimates, 213, 237, 255, 291
of linear functions, 290
unbiased sample, 192
Covariance variates, 204
Cramér-Rao inequality, 36, 383
Critical region, 74, 86
Cumulant generating function, 41

Denumerable, 383

Determinantal equation, 195, 197, 382
roots of, 330

Diagonal element, 383

Diagonal matrix, 192, 195

Digit, binary, 7, 382

Directed divergence, 7, 82, 85

Discriminant function, linear, 196, 203,
205, 254, 276, 305, 311, 317, 342
sufficient, 196
Discrimination efficiency, 63, 64, 65, 197,
277
Discrimination information, 5, 19, 70,
85, 196
conditional, 13
minimum, 37, 38, 81, 85, 94, 109, 213,
256, 302, 303
Disjoint sets, 383
Distance, 6, 383
generalized, 190
Distribution, asymptotic, 324, 382
conjugate, 81, 106, 111, 143, 297, 298,
310, 315, 318
Fisher’s B-, 327
least informative, 111, 120, 143
multivariate normal, 189
noncentral, 257
noncentral x?-, 327, 328
roots of determinantal equation, 330
Wishart, 191, 325
Divergence, 6, 22, 41, 110, 142, 190, 212,
254
directed, 7, 82, 85
Dominated set of measures, 29, 383

Efficiency, discrimination, 63, 64, 65,
197, 277
estimation, 64, 65, 66
relative, 77
Efficient estimate, 383
Entropy, 1, 7, 34
conditional, 24
Equivalent measures, 383
Equivalent samples, 82
Equivalent x's, sets of, 18
Error, type 1 (11), 74, 77, 86, 125, 387
Estimate, consistent, 98, 382
efficient, 383
maximum-likelihood, 94, 102
Estimation efficiency, 64, 65, 66
Estimator, 81, 383
unbiased, 57, 387
Euclidean space, 3, 383
Event, 3, 383
Evidence, weight of, 5
Expectation, conditional, 19
Experiment, 10
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Experiment, designer of, 1
Exponential family, 38, 84
Exponential type, 39, 44

Factor analysis, 302

Field, 383

Finite measure, 5, 383

Fisher, R. A,, 1, 2, 13, 18, 119, 141
Fisher consistent, 141

Fisher information matrix, 28, 49, 383
Fisher’s B-distribution, 327

Fisher’s B?, table of, 380

Fisher's information, 13, 26, 55
Fisher's z-test, 324

Garner, W. R., 155

Generalized distance, 190

Generalized probability density, 4, 383

Generalized Student ratio, see Hotelling’s

T‘.’

Generating function, cumulant, 41
moment, 41, 297, 385

Gilbert, E. N., 1

Good, 1. J,, 5, 114

Greatest lower bound, 383

Green, P. E,, Jr., 2

Greenhouse, S. W., 344

¢T(x), definition of, 19

Halmos, P. R., 19

Hartley, R. V. L., 2,7

Homogeneity, conditional, 169
correlation matrices, 320
covariance matrices, 315, 318
marginal distributions, 179, 333
means, multivariate samples, 264, 276,

309, 311

means, single-variate samples, 223
means and regressions, 272, 273
multinomial samples, 128, 134, 159
multivariate normal sample, 299
normal sample, 95
null subhypothesis of, 225
Poisson samples, 144
regression coefficients, 221
sample averages, 280
two-way contingency table, 168
variances, Bartlett’s test, 319

Homogeneous sample, hypothesis about

mean of, 301

Homogeneous samples, 383
Homogeneous set of measures, 20, 384
Hotelling, H., 199, 202, 256, 268
Hotelling’s canonical correlation coef-
ficients, 276
Hotelling's generalization of Student’s
t-test, 301
Hotelling’s T2, 213, 257, 262, 279
Hyperplane, 98, 384
Hypotheses, rejection of, 3, 37, 85
testing, 85, 109
Hypothesis, 384
conditional, 166
multivariate normal, 333
one-sided, 119, 121, 131, 148, 151, 385

1(*:H), 85
I(*:2), 38
I(1:2),5
Identity matrix, 384
Independence, conditional, 166
multivariate, 303
sets of variates, 276, 282, 306
three-way contingency table, 160, 162,
177
two-way contingency table, 156
Independence components, analysis of,
173
Independence hypotheses, 165, 182
Indicator of a set, 42, 384
Inequality, Cramér-Rao, 36
information, 36, 55, 384
Jensen’'s, 16
Infimum (inf), 384
Information, additivity of, 12
bit of, 7
Chernoff’s, 41
conditional, 13
definition of, 3, 5
discrimination, 5, 19, 70, 85, 196
experiment, 10
Fisher's, 13, 26, 55
Hartley's, 7
in a set, 16
in a variable about another variable, 8
in a vector about another vector, 201
in row-categories about column-
categories, 156
in row-categories about (column,
depth)-categories, 163
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Information, in the elements of a set, 16
infinite, 6
logarithmic form of, 13
loss of, 16, 22, 74, 144
 mean, 8, 142, 156, 201
pseudo, 41
Savage’s, 5
selective, 7
semantic, 2
Shannon’s, 2, 7, 8
transmission of, 25
unit of, 5,7, 8
Wiener’s, 2, 33
Information inequality, 36, 55, 384
Information statistic, 81, 83, 85, 113, 120,
124
Information theory, 1, 2
Input space, 24
Interaction, 171, 186, 238
negative, 172, 185
second-order, 188
Intersection of two sets, 384
Invariance, 6
Invariant properties, 64, 194, 292
Inverse image set, 18, 384
Inverse of a matrix, 384
Iteration, 343, 349
Ito, K., 268

J(, 2), 6

Jacobian, 325, 328, 384
Jeffreys, H., 6

Jensen's inequality, 16

Khintchine's theorem, 75, 105, 384
Klemmer, E. T., 110 '

Knowledge, prior, 10

Kolodziejezyk, S., 211

Koopman, B. O., 39

Kossack, C. F., 313

Kronecker product of matrices, 255, 291
Kullback, J. H., 313

Kupperman, M., 83, 98

Al 4

Latin square, 238

Lawley, D. N., 256, 257, 268

Least informative distribution, 111, 120,
143

Least upper bound, 71, 384

Lehmann, E. L., 93

Levin, S. G., 109

Likelihood ratio, 5, 94, 95, 97, 104, 114,
384

Limit inferior (lim inf), 71, 384

Limit point, 384

Limit superior (lim sup), 384

Lindley, D. V., 9

Linear compound, 254, 276, 278, 317,
348

Linear discriminant functions, compari-
son of, 351

minimum error criterion, 349
most divergent, 198, 200, 203, 347
most informative, 198, 200, 203, 347
pair of, 204
Linear estimates, minimum variance,
unbiased, 238, 255, 292
Linear hypothesis, 109, 211, 212, 253
Linear regression, common, 268
k categories, 219
test of, 214
two-way classification, 239
Linear regression model, 294
Linear set, 385
Linear transformation, 385
nonsingular, 194, 385
Linearly independent functions, 385
Linearly independent vectors, 385
Log n, tables of, 109, 110, 367
Lower bound, 75, 385

McCall, C. H., Jr., 238
MacDonald, D. K. C., 8
McGill, W. J., 155
Mahalanobis, P. C., 190
Mann, H. B,, 102
Marginal distributions, homogeneity of,
179, 333
Matrices, 189
direct product of, 255, 291, 293
inverse of direct product of, 256, 292
Matrix, 385
diagonal, 192, 195
nonsingular, 385
orthogonal, 199, 386
positive, 237, 289, 386
positive definite, 386
rank of, 386
Matrix differentiation, 298
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Matrix factorization, 302
Matrix inequality, 56, 292
Maximum likelihood, 85, 94
equations, 118, 139, 176
estimate, 94, 102
Means, homogeneity of, 223, 264, 272,
273, 276, 309, 311
Measurable function, 4, 385
Measurable set, 1, 3, 385
Measurable space, 3, 385
Measurable statistic, 18
Measurable transformation, 18, 70, 385
Measure, 385
probability, 3, 386
o-finite, 386
Minor, 56, 385
principal, 386
Modulo A, 4
Moment generating function, 41, 297,
385
Most powerful test, 385
Mourier, E., 77
Multinomial distribution, conditional,
116
fitting, 117, 139
Multinomial populations, tests of, 112
Multiple correlation, 203
Multiple covariance, 239
Multivalued population, 155
Multivariate normal density, 189
Multivariate regression, test of, 264

N(p;, 2;), 189
n log n, tables of, 109, 110, 367
Neighborhood of a point, 385
Neyman, J., 87, 94, 114
Neyman criterion, sufficient statistic, 45
Neyman's x'2, 114
Nit, 8
Noise power, 9
Noncentral x2, 105, 106, 127, 210, 257
distribution, 327, 328
table of, 380
Noncentral distributions, 257
Noncentrality parameter, 105, 106, 125,
146, 158, 162, 165, 210, 257, 327
Nonsingular linear transformation, 385
Nonsingular matrix, 385
Nonsingular transformation, 21, 385
Normal density, 8, 14, 189

Normal equations, 212, 215, 216, 220,
221, 226, 230, 237, 255, 258, 289
Notation, matrix, 189
under various hypotheses, 220

Observations, definitive, 4
grouping of, 16, 22
missing, 238
probabilistic, 1
raw, 219, 231, 234, 260
statistical, 3, 15
Odds, posterior, 5
prior, 5
Okano, F., 234
One-sided hypothesis, 119, 121, 131, 148,
151, 385
One-to-one transformation, 385
Open set, 386
Orthogonal matrix, 199, 386
Output space, 24

Parameter matrix, 220, 254
partitioning of, 214, 294
sufficient estimate of, 293
unbiased estimate of, 289

Parameter space, 98, 386

Partial correlation, 210

Partitioning, of samples, 138
of tables, 173
sufficient, 18

Pearson, E. S., 87, 94, 322

Pearson, K., 8

Pearson’s x?%, 114

Pierce, J. R, 1

Pillai, K. C. S., 257

Pitman, E. J. G., 39

Point, 386

Point function, 386

Pooling, of samples, 147, 188

Positive definite, 14
matrix, 386
qﬁadratic form, 386

Positive matrix, 237, 289, 386

Positive quadratic form, 386

Power, noise, 9
of a test, 386
signal, 9

Powers, K. H., 2, 13, 33

Principal components, 199

Principal direction, 64
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Principal minor, 386
Probability, conditional, 4, 24, 83
posterior, 5
prior, 5
theory of, 1
Probability density, generalized, 4, 383
Probability measure, 3, 386
Probability space, 3, 386

Quadratic form, 56, 386
positive, 386
positive definite, 386

R", 3, 386

Radon-Nikodym, derivative, 4, 29
theorem, 29, 386

Random variable, 386

Rank of a matrix, 386

Rate of transmission, 24, 25

Region of acceptance (rejection), 74,

386

Regression, null hypothesis of no, 269
test of, 268, 273
test of subhypothesis, 282, 286, 287
two-way classification, analysis of, 239

Regression model, 294
Carter's, 229
k-category, 221, 222, 225
multivariate, 253, 254, 258, 265, 269

Regularity conditions, 26, 98

Relation, measure of, 8, 9, 25, 156, 160,

163, 199, 201

Reparametrization, 238, 289

Replication, 238

*‘Resemblance,”” 37, 82

Rippe, D. D., 302

Roberts, H. R., 103

Rosenblatt, H. M., 234

Rothstein, J., 1

Row effect, 239, 240

Sakaguchi, M., 77

Sample averages, moment generating
function of, 297

Sample space, 3

Sample unbiased covariance matrix, mo-
ment generating function of, 297

Samples, equivalent, 82

multivariate normal, 191
Sampling theorem, 9

Savage, L. J., 2, 3, 5, 19, 36

Scale factor in x? approximation, 328

Schiitzenberger, M. P., 41

Semantic information, 2

Sequential analysis, 2, 43

Set, 3, 386

Set function, 386

Set of measures, dominated, 29
homogeneous, 20

Shannon, C. E,, 1, 2, 24, 25, 37

Shannon's information, 2, 7, 8

o-algebra, 3, 386

o-finite measure, 386

Signal power, 9

Size (of a test), 387

Smith, C. A. B., 321, 344, 348

Space, 387
Euclidean, 3, 383
input, 24
measurable, 3, 385
output, 24

parameter, 98, 386
probability, 3, 386
sample, 3
Specified mean, test of, 300
Statistic, 18, 70, 387
sufficient, 18, 20, 21, 22, 24, 44, 59
Statistics, mathematical, 1
Stein, C., 77
Stirling’s approximation, 326
Stuart, A., 334
Stuart’s test, 333
Student’s ¢-test, 97, 301
Stumpers, F.L.H. M., 1, 2
Subhypothesis, 214, 258
test of, 216, 260
Sufficiency, criterion of, 18, 45
Sufficient partitioning, 18
Sufhcient statistic, 18, 20, 21, 22, 24, 44,
59
Supremum (sup), 387
Symmetry, null hypothesis of, 177, 178
test for, 179

T~Y(G), definition of, 18
Table, contingency, 155
Fisher’s B2, 380
log #, 109, 110, 367
n log n, 109, 110, 367
noncentral x%, 380
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Tensor, fundamental, 64
Test, consistent, 100, 105
most powerful, 385
power of, 386
size of, 387
uniformly most powerful, 387
Theory, 387
communication, 1, 24, 382
information, 1, 2
Three-partition subhypothesis, test of,
288
Trace, 387
Transformation, 18, 22, 387
Jacobian of, 325, 328, 384
linear, 385
matrix, 387
nonsingular, 21, 385
one-to-one, 385
Transpose, 387
Truncation, 15, 22, 387
Tuller, W. G., 1, 7
Two-way table with no regression, 250
Two-way tables, homogeneity of, 168
Type I (II) error, 74, 77, 86, 125, 387

Unbiased estimator, 57, 387
Uncertainty, 4, 7, 17, 155
posterior, 24
prior, 24
Uniformly most powerful test, 387
Union of two or more sets, 387
Upper bound, 387

Variance, unbiased, 50
Variances, Bartlett’s test for homoge-
netty of, 319
independence and equality of, 307
Variates, covariance, 204
Vector, 189, 387

Wald, A., 2, 74, 98, 102

Wiener, N, 1, 2

Wiener's informatton, 2, 33

Wilks, S. S., 97, 114, 322

Wilks' theorem, 98

Wishart distribution, 191, 325
reproductive property, 325

Woodward, P. M., 2



