Information Theory, Inference, and Learning Algorithms

David J.C. MacKay

=15 CAMBRIDGE

€0/ UNIVERSITY PRESS

Information Theory,
Inference,

and Learning Algorithms

David J.C. MacKay

mackay@mrao.cam.ac.uk

©1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003

Version 6.0 (as published) June 26, 2003

Please send feedback on this book via
http://www.inference.phy.cam.ac.uk/mackay/itila/

This book will be published by C.U.P. in September 2003. It will remain
viewable on-screen on the above website, in postscript, djvu, and pdf
formats.

(C.U.P. replace this page with their own page ii.)

II

II1

v

Contents

Preface
Introduction to Information Theory
2 Probability, Entropy, and Inference
3 More about Inference oL

Data Compression v v v v v vt v vt e e

4 The Source Coding Theorem

5 Symbol Codes
6 Stream Codes
7 Codes for Integers L
Noisy-Channel Coding oo v v v v v

8 Correlated Random Variables
9 Communication over a Noisy Channel
10 The Noisy-Channel Coding Theorem
11 Error-Correcting Codes and Real Channels

Further Topics in Information Theory

12 Hash Codes: Codes for Efficient Information Retrieval
13 Binary Codes
14 Very Good Linear Codes Exist
15 Further Exercises on Information Theory
16 Message Passing oL
17 Communication over Constrained Noiseless Channels
18 Crosswords and Codebreaking
19 Why have Sex? Information Acquisition and Evolution

Probabilities and Inference

20 An Example Inference Task: Clustering
21 Exact Inference by Complete Enumeration
22 Maximum Likelihood and Clustering
23 Useful Probability Distributions
24 Exact Marginalization
25 Exact Marginalization in Trellises

26 Exact Marginalization in Graphs

VI

VII

27 Laplace’s Method 341

28 Model Comparison and Occam’s Razor 343
29 Monte Carlo Methods 357
30 Efficient Monte Carlo Methods 387
31 Ising Models L 400
32 Exact Monte Carlo Sampling 413
33 Variational Methods 422
34 Independent Component Analysis and Latent Variable Mod-

elling 437
35 Random Inference Topics 445
36 Decision Theory 451
37 Bayesian Inference and Sampling Theory 457
Neural networks v v oo 467
38 Introduction to Neural Networks 468
39 The Single Neuron as a Classifier 471
40 Capacity of a Single Neuron 483
41 Learning as Inference oo 492
42 Hopfield Networks 505
43 Boltzmann Machines 0L 522
44 Supervised Learning in Multilayer Networks 527
45 Gaussian Processes 535
46 Deconvolution Lo 549
Sparse Graph Codes 0. 555
47 Low-Density Parity-Check Codes 557
48 Convolutional Codes and Turbo Codes 574
49 Repeat—Accumulate Codes 582
50 Digital Fountain Codes 589
Appendices Lo L L e e 597
A Notation e 598
B Some Physics 601
C Some Mathematics 605
Bibliography 613

Index 620

Preface

This book is aimed at senior undergraduates and graduate students in Engi-
neering, Science, Mathematics, and Computing. It expects familiarity with
calculus, probability theory, and linear algebra as taught in a first- or second-
year undergraduate course on mathematics for scientists and engineers.

Conventional courses on information theory cover not only the beauti-
ful theoretical ideas of Shannon, but also practical solutions to communica-
tion problems. This book goes further, bringing in Bayesian data modelling,
Monte Carlo methods, variational methods, clustering algorithms, and neural
networks.

Why unify information theory and machine learning? Because they are
two sides of the same coin. In the 1960s, a single field, cybernetics, was
populated by information theorists, computer scientists, and neuroscientists,
all studying common problems. Information theory and machine learning still
belong together. Brains are the ultimate compression and communication
systems. And the state-of-the-art algorithms for both data compression and
error-correcting codes use the same tools as machine-learning.

How to use this book

The essential dependencies between chapters are indicated in the figure on the
next page. An arrow from one chapter to another indicates that the second
chapter requires some of the first.

Within Parts I, II, IV, and V of this book, chapters on advanced or optional
topics are towards the end. All chapters of Part III are optional on a first
reading, except perhaps for Chapter 16 (Message Passing).

The same system sometimes applies within a chapter: the final sections of-
ten deal with advanced topics that can be skipped on a first reading. For exam-
ple in two key chapters — Chapter 4 (The Source Coding Theorem) and Chap-
ter 10 (The Noisy-Channel Coding Theorem) — the first-time reader should
detour at section 4.5 and section 10.4 respectively.

Pages vii—x show a few ways to use this book. First, I give the roadmap for
a course that I teach in Cambridge: ‘Information theory, pattern recognition,
and neural networks’. The book is also intended as a textbook for traditional
courses in information theory. The second roadmap shows the chapters for an
introductory information theory course and the third for a course aimed at an
understanding of state-of-the-art error-correcting codes. The fourth roadmap
shows how to use the text in a conventional course on machine learning.

vi

0 Introduction to Information Theory‘
'/e Probability, Entropy, and Inference‘
a More about Inference‘

EH Data Compression |
e The Source Coding Theorem‘

Symbol Codes

e Codes for Integers‘

Noisy-Channel Coding |

@ Correlated Random Variables‘

@ Communication over a Noisy Channel‘
@ The Noisy-Channel Coding Theorem‘
m Error-Correcting Codes and Real Channels‘

L

Further Topics in Information Theory|

@ Hash Codes
()

@ Very Good Linear Codes Exist‘
@—‘ Further Exercises on Information Theory‘
|

@ Constrained Noiseless Channels‘

Crosswords and Codcbrcaking‘
@ Why have Sex?

~| Dependencies |t~

Preface

Probabilities and Inference|

@ An Example Inference Task: Clustering‘
@—‘ Exact Inference by Complete Enumeration‘
@ Maximum Likelihood and Clustoring‘

@ Useful Probability Distributions‘
@ Exact Marginalization‘

@ Exact Marginalization in Trellises‘

@ Exact Marginalization in Graphs‘
@—‘ Laplace’s Method ‘

@ Model Comparison and Occam’s Razor‘
Monte Carlo Methods‘

@ Efficient Monte Carlo Methods‘

0
@ Exact Monte Carlo Sampling]

@ Variational Methods ‘

@ Independent Component Analysis‘
@—‘ Random Inference Topics‘

@ Decision Theory

@—‘ Bayesian Inference and Sampling Theory‘

Neural networks |

@ Introduction to Neural Networks‘

The Single Neuron as a Classiﬁer‘

Capacity of a Single Neuron‘

Learning as Inference‘

Hopfield Networks ‘

Boltzmann Machines ‘

Supervised Learning in Multilayer Networks

Gaussian Processes ‘

®
Sparse Graph Codes|

@ Low-Density Parity-Check Codes‘

@ Convolutional Codes and Turbo Codes‘
@ Repeat-Accumulate Codes‘

@ Digital Fountain Codes‘

Preface

@—' Introduction to Information Theory|
@—' Probability, Entropy, and Inference|

@—' More about Inference|
Data Cornpression|

@—' The Source Coding Theorem|
®
@—‘ Codes for Integers‘

IT H Noisy-Channel Coding|
Correlated Random Variables|
@—| Communication over a Noisy Channel|

The Noisy-Channel Coding Theorem|
@—| Error-Correcting Codes and Real Channels|

Further Topics in Information Theory|

Hash Codes

Very Good Linear Codes Exist‘

Eﬁ

P

Further Exercises on Information Theory‘

Message Passing

Constrained Noiseless Channels‘

®

Nibd

Crosswords and Codebroaking‘

Why have Sex?

®

My Cambridge Course on,
Information Theory,

Pattern Recognition,
and Neural Networks

vii

Probabilities and Inference|

An Example Inference Task: Clustering|
@—| Exact Inference by Complete Enumeration|

@—| Maximum Likelihood and Clustering|
@4 Useful Probability Distributions]

Exact Marginalization |

@—‘ Exact Marginalization in Trellises‘

@ Exact Marginalization in Graphs‘
@—' Laplace’s Method |

@ Model Comparison and Occam’s Razor‘
Monte Carlo Methods|

Efficient Monte Carlo Methods|

@

@—| Exact Monte Carlo Sampling|

@—' Variational Methods |

@ Independent Component Analysis‘
@—‘ Random Inference Topics‘

@ Decision Theory

@—‘ Bayesian Inference and Sampling Theory‘

Neural networks |

Introduction to Neural Networks|
The Single Neuron as a Classiﬁer|
Capacity of a Single Neur0n|
Learning as Inference|

Hopfield Networks |

@ Boltzmann Machines‘

@ Supervised Learning in Multilayer Networks

Gaussian Processes ‘
®

Sparse Graph Codes|
Low-Density Parity-Check Codes|

Convolutional Codes and Turbo Codes‘
@ Repeat-Accumulate Codes‘
@ Digital Fountain Codes‘

@—{ Introduction to Information Theory |
@—{ Probability, Entropy, and Inference |

@—‘ More about Inference‘
Data Compression|

@—{ The Source Coding Theorem|
®
@—‘ Codes for Integers‘

IT H Noisy-Channel Coding|
Correlated Random Variables |
@—{ Communication over a Noisy Channel|

The Noisy-Channel Coding Theorem |
@—‘ Error-Correcting Codes and Real Channels‘

E
4
o+
=
@
]
5
=
Q
n
=
i
5
]
=
g
.
]
=
i
=
@
]
=
<

11

i

Hash Codes

Very Good Linear Codes Exist‘

®

P

Further Exercises on Information Theory‘

Message Passing

@—‘ Constrained Noiseless Channels‘
H Crosswords and Codebroaking‘

Why have Sex?

®

@

(19)

Short Course on
Information Theory

Probabilities and Inference|

@—‘ An Example Inference Task: Clustering‘
@—‘ Exact Inference by Complete Enumeration‘
@—‘ Maximum Likelihood and Clustoring‘
@4 Useful Probability Distributions]

Exact Marginalization ‘

@—‘ Exact Marginalization in Trellises‘

@ Exact Marginalization in Graphs‘
@—‘ Laplace’s Method ‘

@ Model Comparison and Occam’s Razor‘
@ Monte Carlo Methods‘

@—‘ Efficient Monte Carlo Methods‘

@ Ising Models

@4 Exact Monte Carlo Sampling]|

@—‘ Variational Methods ‘

@ Independent Component Analysis‘
@—‘ Random Inference Topics‘

@ Decision Theory

@—‘ Bayesian Inference and Sampling Theory‘

Neural networks |

@ Introduction to Neural Networks‘
@ The Single Neuron as a Classiﬁer‘
@ Capacity of a Single Neuron‘
Learning as Inference‘

@ Hopfield Networks ‘

@ Boltzmann Machines ‘

@ Supervised Learning in Multilayer Networks
@ Gaussian Processes ‘

®
Sparse Graph Codes|

@ Low-Density Parity-Check Codes‘
Convolutional Codes and Turbo Codes‘
@ Repeat-Accumulate Codes‘

@ Digital Fountain Codes‘

Preface

Preface

@—‘ Introduction to Information Theory‘
@—‘ Probability, Entropy, and Inference‘

@—‘ More about Inference‘
Data Compression|

@—‘ The Source Coding Theorem‘

a Symbol Codes
@—‘ Codes for Integers‘

IT H Noisy-Channel Coding |

@—‘ Communication over a Noisy Channel‘

The Noisy-Channel Coding Theorem‘
@—{ Error-Correcting Codes and Real Channels|

Further Topics in Information Theory|

Hash Codes

Very Good Linear Codes Exist|

Further Exercises on Information Theory |

Message Passing

Constrained Noiseless Channels|

P09

?

Crosswords and Codebroaking‘

Why have Sex?

(19)

Advanced Course on
Information Theory and Coding

Probabilities and Inference|

@—‘ An Example Inference Task: Clustering‘
@—‘ Exact Inference by Complete Enumeration‘
@—‘ Maximum Likelihood and Clustoring‘
@4 Useful Probability Distributions]

Exact Marginalization |

@—{ Exact Marginalization in Trellises|

Exact Marginalization in Graphs|

@—‘ Laplace’s Method ‘

@ Model Comparison and Occam’s Razor‘
@ Monte Carlo Methods‘
@—‘ Efficient Monte Carlo Methods‘

@ Ising Models

@4 Exact Monte Carlo Sampling]|

@—‘ Variational Methods ‘

@ Independent Component Analysis‘
@—‘ Random Inference Topics‘

@ Decision Theory

@—‘ Bayesian Inference and Sampling Theory‘

Neural networks |

@ Introduction to Neural Networks‘
@ The Single Neuron as a Classiﬁer‘
@ Capacity of a Single Neuron‘
Learning as Inference‘

@ Hopfield Networks ‘

@ Boltzmann Machines ‘

@ Supervised Learning in Multilayer Networks
@ Gaussian Processes ‘

(1 Dreomonion

Sparse Graph Codes|
Low-Density Parity-Check Codes |

Convolutional Codes and Turbo Codes |

Repeat-Accumulate Codes |
Digital Fountain Codes|

@—‘ Introduction to Information Theory‘
@—' Probability, Entropy, and Inference|

@—' More about Inference|
Data Cornpression|

@—‘ The Source Coding Theorem‘

a Symbol Codes
@—‘ Codes for Integers‘

IT H Noisy-Channel Coding |

The Noisy-Channel Coding Theorem‘
@—‘ Error-Correcting Codes and Real Channels‘

Further Topics in Information Theory|

Hash Codes
Very Good Linear Codes Exist‘

@—‘ Further Exercises on Information Theory‘

@ Message Passing

@—‘ Constrained Noiseless Channels‘

Eﬁ

Crosswords and Codebroaking‘
(19

Why have Sex?

A Course on Bayesian Inference
and Machine Learning

Probabilities and Inference|

An Example Inference Task: Clustering|
@—| Exact Inference by Complete Enumeration|

@—| Maximum Likelihood and Clustering|
@4 Useful Probability Distributions]
Exact Marginalization |

@—‘ Exact Marginalization in Trellises‘
@ Exact Marginalization in Graphs‘
@—' Laplace’s Method |

Model Comparison and Occam’s Razor|
Monte Carlo Methods|

Efficient Monte Carlo Methods|

@

@—| Exact Monte Carlo Sampling|

@—' Variational Methods |

Independent Component Analysis|

@—‘ Random Inference Topics‘

@ Decision Theory

@—‘ Bayesian Inference and Sampling Theory‘

Neural networks |

Introduction to Neural Networks|

The Single Neuron as a Classiﬁer|

Capacity of a Single Neur0n|

Learning as Inference|

Hopfield Networks |

Boltzmann Machines |

Supervised Learning in Multilayer Networks
Gaussian Processes |

@

Sparse Graph Codes|

@ Low-Density Parity-Check Codes‘
Convolutional Codes and Turbo Codes‘
@ Repeat-Accumulate Codes‘

@ Digital Fountain Codes‘

Preface

Preface

About the exercises

You can understand a subject only by creating it for yourself. The exercises
play an essential role in this book. For guidance, each has a rating (similar to
that used by Knuth (1968)) from 1 to 5 to indicate its difficulty.

In addition, exercises that are especially recommended are marked by a
marginal encouraging rat. Some exercises that require the use of a computer
are marked with a C.

Answers to many exercises are provided. Use them wisely. Where a solu-
tion is provided, this is indicated by including its page number alongside the
difficulty rating.

Solutions to many of the other exercises will be supplied to instructors
using this book in their teaching; please email solutions@cambridge.org.

Summary of codes for exercises

% Especially recommended [1] Simple (one minute)
[2] Medium (quarter hour)
> Recommended [8] Moderately hard
C Parts require a computer [4] Hard
[p-42] Solution provided on page 42 [5] Research project

Internet resources
The website
http://www.inference.phy.cam.ac.uk/mackay/itila

contains several resources:

1. Software. Teaching software that I use in lectures, interactive software,
and research software, written in perl, octave, tcl, C, and gnuplot.
Also some animations.

2. Corrections to the book. Thank you in advance for emailing these!

3. This book. The book is provided in postscript, pdf, and djvu formats
for on-screen viewing. The same copyright restrictions apply as to a
normal book.

Acknowledgments

I am most grateful to the organizations who have supported me while this
book gestated: the Royal Society and Darwin College who gave me a fantas-
tic research fellowship in the early years; the University of Cambridge; the
Keck Centre at the University of California in San Francisco, where I spent a
productive sabbatical; and the Gatsby Charitable Foundation, whose support
gave me the freedom to break out of the Escher staircase that book-writing
had become.

My work has depended on the generosity of free software authors. I wrote
the book in I4TEX 2¢. Three cheers for Donald Knuth and Leslie Lamport!
Our computers run the GNU/Linux operating system. I use emacs, perl, and

Xi

xii

gnuplot every day. Thank you Richard Stallman, thank you Linus Torvalds,
thank you everyone.

Many readers, too numerous to name here, have given feedback on the
book, and to them all I extend my sincere acknowledgments. I especially wish
to thank all the students and colleagues at Cambridge University who have
attended my lectures on information theory and machine learning over the last
nine years.

The members of the Inference research group have given immense support,
and I thank them all for their generosity and patience over the last ten years:
Mark Gibbs, Michelle Povinelli, Simon Wilson, Coryn Bailer-Jones, Matthew
Davey, Katriona Macphee, James Miskin, David Ward, Ed Ratzer, Seb Wills,
John Barry, John Winn, Phil Cowans, Hanna Wallach, Matthew Garrett, and
especially Sanjoy Mahajan. Thank you too to Graeme Mitchison, Mike Cates,
and Davin Yap.

Finally T would like to express my debt to my personal heroes, the mentors
from whom I have learned so much: Yaser Abu-Mostafa, Andrew Blake, John
Bridle, Peter Cheeseman, Steve Gull, Geoff Hinton, John Hopfield, Steve Lut-
trell, Robert MacKay, Bob McEliece, Radford Neal, Roger Sewell, and John
Skilling.

Dedication

This book is dedicated to the campaign against the arms trade.
www.caat.org.uk
Peace cannot be kept by force.

It can only be achieved through understanding.
— Albert Einstein

Preface

About Chapter 1

In the first chapter, you will need to be familiar with the binomial distribution.
And to solve the exercises in the text — which I urge you to do — you will need
to know Stirling’s approximation for the factorial function, z! ~ x¥e™*, and

be able to apply it to (JX) = ﬁ These topics are reviewed below.

The binomial distribution

Example 1.1. A bent coin has probability f of coming up heads. The coin is
tossed N times. What is the probability distribution of the number of
heads, r? What are the mean and variance of r?

Solution. The number of heads has a binomial distribution.

Plr|£,N) = (N) - N (1)
The mean, E[r], and variance, var[r], of this distribution are defined by
N
Elr] EZP(T|f,N)T (1.2)
r=0
varlr] = €[(r - &f])?] (1.3)
N
= &[] = (E? =D P(r| f,N)r? = (Elr])*. (1.4)
r=0

Rather than evaluating the sums over r in (1.2) and (1.4) directly, it is easiest
to obtain the mean and variance by noting that r is the sum of N independent
random variables, namely, the number of heads in the first toss (which is either
zero or one), the number of heads in the second toss, and so forth. In general,

Elx+y] = Elz]+E[Y] for any random variables = and y;

var[z +y] = varz] +var[y] if z and y are independent. (1.5)

So the mean of 7 is the sum of the means of those random variables, and the
variance of r is the sum of their variances. The mean number of heads in a
single toss is f x 1+ (1 — f) x 0 = f, and the variance of the number of heads
in a single toss is

X PN x =2 =f=f=f1-), (1.6)
so the mean and variance of r are:

Elr]=Nf and var[r] = Nf(1 = f).] (1.7)

Unfamiliar notation?
See Appendix A, p.598.

0.3 +
0.25 o

0.15 -
0.1 - ‘
| ‘ |

0.05
04

L e e S L
012345678910

r

Figure 1.1. The binomial
distribution P(r | f=0.3, N =10).

Approzimating x! and <]j>

Let’s derive Stirling’s approximation by an unconventional route. We start
from the Poisson distribution with mean A,

,
P(r|)) = e_)‘>\—

o re{0,1,2,...}.

(1.8)

For large A, this distribution is well approximated — at least in the vicinity of
r ~ X\ — by a Gaussian distribution with mean A and variance A:

e 1 _ (r=X)?
e~ e 2A (1.9)
r! V2T
Let’s plug » = X into this formula.
A 1
-A
e T — ~ 1.10
Al 2w A ()
=\~ Me Vo (1.11)
This is Stirling’s approximation for the factorial function.
zl~a2"e 21z & Inzl~zlnr -+ 127z, (1.12)

We have derived not only the leading order behaviour, ! ~ ¥ e~", but also,
at no cost, the next-order correction term +/27mx. We now apply Stirling’s
approximation to In (17\])

(1.13)

N N! N N
1 =ln——— ~ (N-17)l In —.
n<7‘> n(N—T)!T! (7“)nN—rJran
Since all the terms in this equation are logarithms, this result can be rewritten
in any base. We will denote natural logarithms (log,) by ‘In’, and logarithms
to base 2 (logy) by ‘log’.
If we introduce the binary entropy function,

Ha(x) _xlog + (1—2)log —— (1_ 7 (1.14)
then we can rewrite the approximation (1.13) as
log (f) ~ NHs(r/N), (1.15)
or, equivalently,
<N> ~ gNH2(r/N) (1.16)
r

If we need a more accurate approximation, we can include terms of the next
order from Stirling’s approximation (1.12):

Nor T} (1.17)

N 1
log(T>NH2(r/N)210g{27rN NN

About Chapter 1

0.12
0.1 A
0.08
0.06 4

04

0.04 +
0.02

T
0 5 10 15 20 25
T

Figure 1.2. The Poisson
distribution P(r | A=15).

log, x
11 that 1 =—=
Recall that log, = log, 2
1 1 1
Note that Olog, @ = —.
Ox log.2 x
H2 (’L‘) 1

0.8-
0.6
0.4-
0.24

0+ T | 4 v 1
0 02 04 06 08 1 T

Figure 1.3. The binary entropy
function.

1.1

Introduction to Information Theory

The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point.

(Claude Shannon, 1948)

In the first half of this book we study how to measure information content; we
learn how to compress data; and we learn how to communicate perfectly over
imperfect communication channels.

We start by getting a feeling for this last problem.

How can we achieve perfect communication over an imperfect,
noisy commmunication channel?

Some examples of noisy communication channels are:

e an analogue telephone line, over which two modems communicate digital
information;

e the radio communication link from Galileo, the Jupiter-orbiting space-
craft, to earth;

e reproducing cells, in which the daughter cells’s DNA contains informa-
tion from the parent cells;

e a disk drive.

The last example shows that communication doesn’t have to involve informa-
tion going from one place to another. When we write a file on a disk drive,
we’ll read it off in the same location — but at a later time.

These channels are noisy. A telephone line suffers from cross-talk with
other lines; the hardware in the line distorts and adds noise to the transmitted
signal. The deep space network that listens to Galileo’s puny transmitter
receives background radiation from terrestrial and cosmic sources. DNA is
subject to mutations and damage. A disk drive, which writes a binary digit
(a one or zero, also known as a bit) by aligning a patch of magnetic material
in one of two orientations, may later fail to read out the stored binary digit:
the patch of material might spontaneously flip magnetization, or a glitch of
background noise might cause the reading circuit to report the wrong value
for the binary digit, or the writing head might not induce the magnetization
in the first place because of interference from neighbouring bits.

In all these cases, if we transmit data, e.g., a string of bits, over the channel,
there is some probability that the received message will not be identical to the

3

modem

Galileo

parent
cell

computer
memory

phone
line

—

_, radio
waves

daughter
cell

daughter
cell

disk
drive

— modem

— Earth

computer
memory

4 1 — Introduction to Information Theory

transmitted message. We would prefer to have a communication channel for
which this probability was zero — or so close to zero that for practical purposes
it is indistinguishable from zero.

Let’s consider a noisy disk drive that transmits each bit correctly with
probability (1—f) and incorrectly with probability f. This model communi-
cation channel is known as the binary symmetric channel (figure 1.4).

Figure 1.4. The binary symmetric
0§’<0 y P(y =0 | T = ()) = 1-f; P(y =0 | T = 1) = f; channel. The transmitted symbol
/A Ply=1lz=0) = : Plu=1lz=1) = 1-f. is « and the received symbol y.
=1 v |) ! v |) f The noise level, the probability of
a bit’s being flipped, is f.

REDLMNTAN 1-=1 Figure 1.5. A binary data
0—0 sequence of length 10000
transmitted over a binary
f symmetric channel with noise
level f = 0.1. [Dilbert image
m Copyright©1997 United Feature

Syndicate, Inc., used with
permission.]

As an example, let’s imagine that f = 0.1, that is, ten per cent of the bits are
flipped (figure 1.5). A useful disk drive would flip no bits at all in its entire
lifetime. If we expect to read and write a gigabyte per day for ten years, we
require a bit error probability of the order of 1072, or smaller. There are two
approaches to this goal.

The physical solution

The physical solution is to improve the physical characteristics of the commu-
nication channel to reduce its error probability. We could improve our disk
drive by

1. using more reliable components in its circuitry;

2. evacuating the air from the disk enclosure so as to eliminate the turbu-
lence that perturbs the reading head from the track;

3. using a larger magnetic patch to represent each bit; or

4. using higher-power signals or cooling the circuitry in order to reduce
thermal noise.

These physical modifications typically increase the cost of the communication
channel.

The ‘system’ solution

Information theory and coding theory offer an alternative (and much more ex-
citing) approach: we accept the given noisy channel as it is and add communi-
cation systems to it so that we can detect and correct the errors introduced by
the channel. As shown in figure 1.6, we add an encoder before the channel and
a decoder after it. The encoder encodes the source message s into a transmit-
ted message t, adding redundancy to the original message in some way. The
channel adds noise to the transmitted message, yielding a received message r.
The decoder uses the known redundancy introduced by the encoding system
to infer both the original signal s and the added noise.

1.2

1.2: Error-correcting codes for the binary symmetric channel

Source
‘| E
Encoder Decoder

Noisy
channel

tL BE

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times — for example, three times, as shown in table 1.7. We call
this repetition code ‘Rg’.

Imagine that we transmit the source message

s=0010110

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector — adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

S 0 0 1 0 1 1 0
AN AN AN AN AN AN AN
t 000 000 111 000 111 111 000
n 000 001 000 000 101 000 00O
r 000 001 111 000 010 111 000

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).

Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Source Transmitted
sequence sequence
s t
0 000
1 111

Table 1.7. The repetition code Rg.

Figure 1.8. An example
transmission using Rs.

6 1 — Introduction to Information Theory

Algorithm 1.9. Majority-vote
Received sequence r Likelihood ratio % Decoded sequence § decoding algorithm for R3. Also
shown are the likelihood ratios
000 v 0 (1.23), assuming the channel is a
001 7_1 0 binary symmetric channel;
010 v 0 y=01-H/f
100 vt 0
101 At 1
110 At 1
011 At 1
111 3 1

At the risk of explaining the obvious, let’s prove this result. The optimal decoding
decision (optimal in the sense of having the smallest probability of being wrong) is
to find which value of s is most probable, given r. Consider the decoding of a single
bit s, which was encoded as t(s) and gave rise to three received bits r = rir2r3. By
Bayes’ theorem, the posterior probability of s is

P(rirors| s)P(s)

P or3) = 1.18
(s|rirars) Plrirars) (1.18)
We can spell out the posterior probability of the two alternatives thus:
P(rirers|s=1)P(s=1)
P(s=1 = ; 1.19
(s=1]rirars) Plrirars) ; (1.19)
P 3|s=0)P(s=0
P(s=0|rirgry) = LT2ra|s=0)P(s=0) (1.20)

P(T1T2T3)
This posterior probability is determined by two factors: the prior probability P(s),
and the data-dependent term P(ri72rs|s), which is called the likelihood of s. The
normalizing constant P(r17273) needn’t be computed when finding the optimal decod-
ing decision, which is to guess §=0 if P(s=0]|r) > P(s=1|r), and § =1 otherwise.

To find P(s=0|r) and P(s=1]|r), we must make an assumption about the prior
probabilities of the two hypotheses s =0 and s =1, and we must make an assumption
about the probability of r given s. We assume that the prior probabilities are equal:
P(s=0) = P(s=1) = 0.5; then maximizing the posterior probability P(s|r) is
equivalent to maximizing the likelihood P(r|s). And we assume that the channel is
a binary symmetric channel with noise level f < 0.5, so that the likelihood is

N
P(r|s) = P(r|t(s) = [[P(ra[ta(s)), (1.21)
n=1
where N = 3 is the number of transmitted bits in the block we are considering, and
_a=f it or=ts
P(rn|tn) = { ¥ i rn o t (1.22)
Thus the likelihood ratio for the two hypotheses is

P(r|s=1) P(rn|tn(1))
; 1.23
P(r[s=0) 0 H P(rn | tn(0)) (1:23)
P(raltn (1)) a-f — (a-f)

each factor ol (o) equals ifr, =1and (1 5 if 7, = 0. The ratio vy =
is greater than 1, since f < 0.5, so the winning hypothesis is the one with the most
‘votes’, each vote counting for a factor of v in the likelihood ratio.

Thus the majority-vote decoder shown in algorithm 1.9 is the optimal decoder if we
assume that the channel is a binary symmetric channel and that the two possible
source messages 0 and 1 have equal prior probability.

We now apply the majority vote decoder to the received vector of figure 1.8.
The first three received bits are all 0, so we decode this triplet as a 0. In the
second triplet of figure 1.8, there are two Os and one 1, so we decode this triplet

1.2: Error-correcting codes for the binary symmetric channel

as a 0 — which in this case corrects the error. Not all errors are corrected,
however. If we are unlucky and two errors fall in a single block, as in the fifth
triplet of figure 1.8, then the decoding rule gets the wrong answer, as shown
in figure 1.10.

s 0 0 1 0 1 1 0
AN AN AN AN AN AN AN

t 000 000 111 000 111 111 00O

n 000 001 000 000 101 000 0OO

r 000 001 111 000 010 111 00O
N T S M N T

S 0 0 1 0 0 1 0

corrected errors *
undetected errors *

Exercise 1.2.1% P16] Show that the error probability is reduced by the use of
R3 by computing the error probability of this code for a binary symmetric
channel with noise level f.

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f2. In the case of the binary
symmetric channel with f = 0.1, the R3 code has a probability of error, after
decoding, of py, ~ 0.03 per bit. Figure 1.11 shows the result of transmitting a
binary image over a binary symmetric channel using the repetition code.

The repetition code R3 has therefore reduced the probability of error, as
desired. Yet we have lost something: our rate of information transfer has
fallen by a factor of three. So if we use a repetition code to communicate data
over a telephone line, it will reduce the error frequency, but it will also reduce
our communication rate. We will have to pay three times as much for each
phone call. Similarly, we would need three of the original noisy gigabyte disk
drives in order to create a one-gigabyte disk drive with p;, = 0.03.

Can we push the error probability lower, to the values required for a sell-
able disk drive — 107157 We could achieve lower error probabilities by using
repetition codes with more repetitions.

Exercise 1.3.1% P-16] (a) Show that the probability of error of Ry, the repe-

tition code with IV repetitions, is
N

m= 3 (Z)f"(l—f)N—",
)/2

n=(N+1

(1.24)

for odd N.

(b) Assuming f = 0.1, which of the terms in this sum is the biggest?
How much bigger is it than the second-biggest term?

(c) Use Stirling’s approximation (p.2) to approximate the (]T\Z) in the
largest term, and find, approximately, the probability of error of
the repetition code with N repetitions.

(d) Assuming f = 0.1, find how many repetitions are required to get
the probability of error down to 1071%. [Answer: about 60.]

So to build a single gigabyte disk drive with the required reliability from noisy
gigabyte drives with f = 0.1, we would need sizty of the noisy disk drives.
The tradeoff between error probability and rate for repetition codes is shown
in figure 1.12.

Figure 1.10. Decoding the received
vector from figure 1.8.

The exercise’s rating, e.g.‘[2]’, indi-
cates its difficulty: ‘1’ exercises are
the easiest. Exercises that are accom-
panied by a marginal rat are espe-
cially recommended. If a solution or
partial solution is provided, the page
is indicated after the difficulty rating;
for example, this exercise’s solution is
on page 16.

1 — Introduction to Information Theory

A

t CHANNEL r DECODER S

F=10%
REDUNDAN

S ENCODER

REDUNDAN

o 2

REDUNDAN
—_—

Figure 1.11. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a repetition code and the
majority vote decoding algorithm.
The probability of decoded bit
error has fallen to about 3%; the
rate has fallen to 1/3.

Figure 1.12. Error probability py,

0.1 = o
01 4 R1D 0014 RS- /ERS R1 versus relxte for repetm?n codes
I over a binary symmetric channel
g with f = 0.1. The right-hand
0.08 " . . .
1e-05 1 2 more useful codes figure shows py, on a logarithmic
Pb 7 Em? scale. We would like the rate to
0.06 2 be large and py, to be small.
1
0.04 1le-10 4@
1
0.02 7
-
'% R61
0 T le-15 T T T T T
1 0 02 04 06 08 1

Rate

1.2: Error-correcting codes for the binary symmetric channel

Block codes — the (7,4) Hamming code

We would like to communicate with tiny probability of error and at a substan-
tial rate. Can we improve on repetition codes? What if we add redundancy to
blocks of data instead of encoding one bit at a time? We now study a simple
block code.

A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length IV bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N — K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7,4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.

aen
JESARNS

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1tatsty, are set equal to the four source bits, s1825384. The
parity-check bits t5tgt7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 2¢ =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t s t s t s t

0000 0000000 0100 0100110 1000 1000101 1100 1100011
0001 0001011 0101 0101101 1001 1001110 1101 1101000
0010 0010111 0110 0110001 1010 1010010 1110 1110100
0011 0011100 0111 0111010 1011 1011001 1111 1111111

Because the Hamming code is a linear code, it can be written compactly in terms of
matrices as follows. The transmitted codeword t is obtained from the source sequence
s by a linear operation,

t=G's, (1.25)

where G is the generator matrix of the code,

1 00 0
010 0
00 1 0

G'=|0 o0 o0 1], (1.26)
1110
01 1 1
10 1 1

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1=0,0+1 =1,
etc.).

Figure 1.13. Pictorial
representation of encoding for the
(7,4) Hamming code.

Table 1.14. The sixteen codewords
{t} of the (7,4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

10 1 — Introduction to Information Theory

In the encoding operation (1.25) I have assumed that s and t are column vectors. If
instead they are row vectors, then this equation is replaced by

t =sG, (1.27)

where

G =

= O O
e e

1
0
) (1.28)

o O O =
o O = O
= O O O
=

0 0 1

I find it easier to relate to the right-multiplication (1.25) than the left-multiplication
(1.27). Many coding theory texts use the left-multiplying conventions (1.27-1.28),
however.

The rows of the generator matrix (1.28) can be viewed as defining four basis vectors
lying in a seven-dimensional binary space. The sixteen codewords are obtained by
making all possible linear combinations of these vectors.

Decoding the (7,4) Hamming code

When we invent a more complex encoder s — t, the task of decoding the
received vector r becomes less straightforward. Remember that any of the
bits may have been flipped, including the parity bits.

If we assume that the channel is a binary symmetric channel and that all
source vectors are equiprobable, then the optimal decoder identifies the source
vector s whose encoding t(s) differs from the received vector r in the fewest
bits. [Refer to the likelihood function (1.23) to see why this is so.] We could
solve the decoding problem by measuring how far r is from each of the sixteen
codewords in table 1.14, then picking the closest. Is there a more efficient way
of finding the most probable source vector?

Syndrome decoding for the Hamming code

For the (7,4) Hamming code there is a pictorial solution to the decoding
problem, based on the encoding picture, figure 1.13.

As a first example, let’s assume the transmission was t = 1000101 and the
noise flips the second bit, so the received vector is r = 1000101 ¢ 0100000 =
1100101. We write the received vector into the three circles as shown in
figure 1.15a, and look at each of the three circles to see whether its parity
is even. The circles whose parity is not even are shown by dashed lines in
figure 1.15b. The decoding task is to find the smallest set of flipped bits that
can account for these violations of the parity rules. [The pattern of violations
of the parity checks is called the syndrome, and can be written as a binary
vector — for example, in figure 1.15b, the syndrome is z = (1,1,0), because
the first two circles are ‘unhappy’ (parity 1) and the third circle is ‘happy’
(parity 0).]

To solve the decoding task, we ask the question: can we find a unique bit
that lies inside all the ‘unhappy’ circles and outside all the ‘happy’ circles? If
so, the flipping of that bit would account for the observed syndrome. In the
case shown in figure 1.15b, the bit ry lies inside the two unhappy circles and
outside the happy circle; no other single bit has this property, so 72 is the only
single bit capable of explaining the syndrome.

Let’s work through a couple more examples. Figure 1.15¢ shows what
happens if one of the parity bits, t5, is flipped by the noise. Just one of the
checks is violated. Only 75 lies inside this unhappy circle and outside the other
two happy circles, so r5 is identified as the only single bit capable of explaining
the syndrome.

1.2: Error-correcting codes for the binary symmetric channel

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none 77 6 T4 5 1 T2 T3

If the central bit r3 is received flipped, figure 1.15d shows that all three
checks are violated; only r3 lies inside all three circles, so r3 is identified as
the suspect bit.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case — seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f, the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r9; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15¢/. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices. The
first four received bits, r1727374, purport to be the four source bits; and the received
bits rsrery purport to be the parities of the source bits, as defined by the generator
matrix G. We evaluate the three parity-check bits for the received bits, rirarsra,
and see whether they match the three received bits, r5r¢r7. The differences (modulo

11

Figure 1.15. Pictorial
representation of decoding of the
Hamming (7,4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by * were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.

In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.

In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is ro, marked by
a circle in (e), which shows the
output of the decoding algorithm.

Algorithm 1.16. Actions taken by
the optimal decoder for the (7,4)
Hamming code, assuming a
binary symmetric channel with
small noise level f. The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, rg, and r7.

12 1 — Introduction to Information Theory

S ENCODER t CHANNEL r DECODER S
f=10%
REDUNDAN

REDUNDAN

Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7,4) Hamming code. The
probability of decoded bit error is
about 7%.

parity bits

2) between these two triplets are called the syndrome of the received vector. If the
syndrome is zero — if all three parity checks are happy — then the received vector is a
codeword, and the most probable decoding is given by reading out its first four bits.
If the syndrome is non-zero, then the noise sequence for this block was non-zero, and
the syndrome is our pointer to the most probable error pattern.

The computation of the syndrome vector is a linear operation. If we define the 3 x 4
matrix P such that the matrix of equation (1.26) is

T 14
G = { b } (1.29)

where 14 is the 4 x 4 identity matrix, then the syndrome vector is z = Hr, where the
parity-check matrix H is given by H = [-P I3 } ; in modulo 2 arithmetic, —1 =1,

SO
11 1 0 1 0 O
H=[P It|]=|0 1 1 10 1 0|. (1.30)
1 0 1 1 0 O 1
All the codewords t = G's of the code satisfy
0
Ht=] 0 |. (1.31)
0

> Exercise 1.4.[1] Prove that this is so by evaluating the 3 x 4 matrix HG'.

Since the received vector r is given by r = G's + n, the syndrome-decoding problem
is to find the most probable noise vector n satisfying the equation

Hn =z. (1.32)

A decoding algorithm that solves this problem is called a maximum-likelihood decoder.
We will discuss decoding problems like this in later chapters.

Summary of the (7,4) Hamming code’s properties

Every possible received vector of length 7 bits is either a codeword, or it’s one
flip away from a codeword.

Since there are three parity constraints, each of which might or might not
be violated, there are 2 x 2 x 2 = 8 distinct syndromes. They can be divided
into seven non-zero syndromes — one for each of the one-bit error patterns —
and the all-zero syndrome, corresponding to the zero-noise case.

The optimal decoder takes no action if the syndrome is zero, otherwise it
uses this mapping of non-zero syndromes onto one-bit error patterns to unflip
the suspect bit.

There is a decoding error if the four decoded bits §1, 82, §3, 84 do not all
match the source bits s1,$9,s3,84. The probability of block error pg is the

1.2: Error-correcting codes for the binary symmetric channel

probability that one or more of the decoded bits in one block fail to match the
corresponding source bits,

p = P(8 #s). (1.33)

The probability of bit error py, is the average probability that a decoded bit
fails to match the corresponding source bit,

| K
P =72 > P8k # sk)- (1.34)
k=1

In the case of the Hamming code, a decoding error will occur whenever
the noise has flipped more than one bit in a block of seven. The probability
of block error is thus the probability that two or more bits are flipped in a
block. This probability scales as O(f?), as did the probability of error for the
repetition code R3. But notice that the Hamming code communicates at a
greater rate, R = 4/7.

Figure 1.17 shows a binary image transmitted over a binary symmetric
channel using the (7,4) Hamming code. About 7% of the decoded bits are
in error. Notice that the errors are correlated: often two or three successive
decoded bits are flipped.

ﬁ% Exercise 1.5.17] This exercise and the next three refer to the (7,4) Hamming
code. Decode the received strings:

(a) r=1101011
(b) r = 0110110
(c) r=0100111
(d) r=1111111.

ﬂ Exercise 1.6.12 P-17] (a) Calculate the probability of block error pg of the
(7,4) Hamming code as a function of the noise level f and show
that to leading order it goes as 21 f2.

(b) [Show that to leading order the probability of bit error py, goes
as 9f2.

ﬁ% Exercise 1.7.1% P19 Find some noise vectors that give the all-zero syndrome
(that is, noise vectors that leave all the parity checks unviolated). How
many such noise vectors are there?

> Exercise 1.8.12] T asserted above that a block decoding error will result when-
ever two or more bits are flipped in a single block. Show that this is
indeed so. [In principle, there might be error patterns that, after de-
coding, led only to the corruption of the parity bits, with no source bits
incorrectly decoded.]

Summary of codes’ performances

Figure 1.18 shows the performance of repetition codes and the Hamming code.
It also shows the performance of a family of linear block codes that are gen-
eralizations of Hamming codes, called BCH codes.

This figure shows that we can, using linear block codes, achieve better
performance than repetition codes; but the asymptotic situation still looks
grim.

1 — Introduction to Information Theory

14
Figure 1.18. Error probability py,
0.1 1 St B o+ o .
01 - R1D 0014 RS s H(7.4) R1 versus rate R for repetition codes,
4 the (7,4) Hamming code and
4 i K BCH codes with block lengths up
008 7 S 1e05 4 @ 4 more useful codes to 1023 over a binary symmetric
A ;'(7'4) Db 1 Dm? * channel with f = 0.1. The
0.06 A e JBCHE1LTE) righthand figure shows py, on a
4yt 8 .+ logarithmic scale.
+ 'g +
0.04 1 *+ +BCH(31,16) le-10 3 *
, E% s
002 1 / +BCH(15.7) 1 BcHoz3,101)
more useful codes b
ﬁ%ﬁ s 0+
0 = T T T T le-15 == T T T T T
0 02 04 06 08 1 0 02 04 06 08 1
Rate Rate

ﬁ% Exercise 1.9.14 P-19] Design an error-correcting code and a decoding algorithm
for it, estimate its probability of error, and add it to figure 1.18. [Don’t
worry if you find it difficult to make a code better than the Hamming
code, or if you find it difficult to find a good decoder for your code; that’s

the point of this exercise.]

ﬁ% Exercise 1.10.[% P-20] o (7,4) Hamming code can correct any one error; might
there be a (14, 8) code that can correct any two errors?

Optional extra: Does the answer to this question depend on whether the
code is linear or nonlinear?

ﬁ% Exercise 1.11.[47 P-21] Design an error-correcting code, other than a repetition
code, that can correct any two errors in a block of size N.

1.3 What performance can the best codes achieve?

There seems to be a trade-off between the decoded bit-error probability py
(which we would like to reduce) and the rate R (which we would like to keep
large). How can this trade-off be characterized? What points in the (R, py)
plane are achievable? This question was addressed by Claude Shannon in his
pioneering paper of 1948, in which he both created the field of information
theory and solved most of its fundamental problems.

At that time there was a widespread belief that the boundary between
achievable and nonachievable points in the (R, pp) plane was a curve passing
through the origin (R, pp) = (0,0); if this were so, then, in order to achieve
a vanishingly small error probability pp, one would have to reduce the rate
correspondingly close to zero. ‘No pain, no gain.’

However, Shannon proved the remarkable result that the boundary be- X
tween achievable and nonachievable points meets the R axis at a mon-zero
value R = C, as shown in figure 1.19. For any channel, there exist codes that
make it possible to communicate with arbitrarily small probability of error py,
at non-zero rates. The first half of this book (Parts I-III) will be devoted to
understanding this remarkable result, which is called the noisy-channel coding

theorem.

Ezxample: f=0.1

The maximum rate at which communication is possible with arbitrarily small
pp is called the capacity of the channel. The formula for the capacity of a

1.4

1.4: Summary
01 0.061 1w Hfﬁtﬁ o R1
1 mmﬁﬂj
. +
0.08 16-05 4 Li
Db 18"
0.06 b §+ N
_E +*
0.04 le-10 -&‘F
-g s achievable | not achievable
0.02 :@ s
B
0 le-15 i T T T T T
0o o2 o4 06 08 1
Rate
binary symmetric channel with noise level f is
1 1
C(f)=1-Ha(f) =1~ f10g2?+(1—f)10g2m ; (1.35)

the channel we were discussing earlier with noise level f = 0.1 has capacity
C ~ 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code Rg could communicate over this channel with p, = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pp = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with p, ~ 10~ from sixty noisy one-gigabyte drives
(exercise 1.3, p.7). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

‘What performance are you trying to achieve? 107'%? You don’t
need sizty disk drives — you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pp = 1071 or 10724 or anything, you can get there with two disk

drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high quality terabyte

drive from them’.]

Summary

The (7,4) Hamming Code

By including three parity-check bits in a block of 7 bits it is possible to detect
and correct any single bit error in each block.

Shannon’s noisy-channel coding theorem

Information can be communicated over a noisy channel at a non-zero rate with

arbitrarily small error probability.
Information theory addresses both the limitations and the possibilities of

communication. The noisy-channel coding theorem, which we will prove in

15

Figure 1.19. Shannon’s
noisy-channel coding theorem.
The solid curve shows the
Shannon limit on achievable
values of (R, pp) for the binary
symmetric channel with f = 0.1.
Rates up to R = C are achievable
with arbitrarily small py,. The
points show the performance of
some textbook codes, as in

figure 1.18.

The equation defining the
Shannon limit (the solid curve) is
R=C/(1 - Hz(py)), where C and
H, are defined in equation (1.35).

1.5

1.6

16 1 — Introduction to Information Theory

Chapter 10, asserts both that reliable communication at any rate beyond the
capacity is impossible, and that reliable communication at all rates up to
capacity is possible.

The next few chapters lay the foundations for this result by discussing
how to measure information content and the intimately related topic of data
compression.

Further exercises

Exercise 1.12.1% P21 Congider the repetition code Rg. One way of viewing
this code is as a concatenation of Rz with R3. We first encode the
source stream with Rg, then encode the resulting output with R3. We
could call this code ‘R’. This idea motivates an alternative decoding
algorithm, in which we decode the bits three at a time using the decoder
for Rg; then decode the decoded bits from that first decoder using the
decoder for Rs.

Evaluate the probability of error for this decoder and compare it with
the probability of error for the optimal decoder for Rg.

Do the concatenated encoder and decoder for R have advantages over
those for Rg?

Solutions

Solution to exercise 1.2 (p.7). An error is made by Rg if two or more bits are
flipped in a block of three. So the error probability of R3 is a sum of two
terms: the probability that all three bits are flipped, f3; and the probability
that exactly two bits are flipped, 3f2(1 — f). [If these expressions are not
obvious, see example 1.1 (p.1): the expressions are P(r=3|f, N=3) and
P(r=2|f,N=3)]

py=pp =3f2(L— f)+ f>=3f* —2f> (1.36)

This probability is dominated for small f by the term 3f2.
See exercise 2.38 (p.39) for further discussion of this problem.

Solution to exercise 1.3 (p.7). The probability of error for the repetition code
Ry is dominated by the probability of [N/2] bits’ being flipped, which goes
(for odd N) as

((NJ\/fﬂ) SN2 D2, (1.37)

The term (%) can be approximated using the binary entropy function:

L onmr/N) o~ (N NHa(K/N) N
- < < oNHz
N+1 2 Slg)s 2 = K

) ~ oNH2(K/N) = (1 38)

where this approximation introduces an error of order v N — as shown in
equation (1.17). So

po=pp = 2V (f(1— N2 = (4f(1 -)N (1.39)

log 10~
| dual el g d7(1=7] — O
This answer is a little out because the approximation we used overestimated

(%) and we did not distinguish between [N/2] and N/2.

Setting this equal to the required value of 10~ we find N ~ 2

Notation: {N / 2] denotes the smallest
integer greater than or equal to N/2.

1.6: Solutions

A slightly more careful answer (short of explicit computation) goes as follows. Taking

the approximation for (g) to the next order, we find:

N ~ oN 1
(N/Z) ~2 N (1.40)

This approximation can be proved from an accurate version of Stirling’s approxima-
tion (1.12), or by considering the binomial distribution with p = 1/2 and noting

N/2
E (@) B e () oo

K r=—N/2

where o = 1/ N/4, from which equation (1.40) follows. The distinction between [N/2]

N) has a maximum at K = N/2.

and N/2 is not important in this term since (K

Then the probability of error (for odd N) is to leading order

(N >f(N+1>/z(1 _ pen/2 (1.42)

1

b (N+1)/2

1R

oN Ll vz o L

\/TN/2 wIN/8

The equation pp, = 107® can be written

FIAFQ = HIND2 (1.43)

log 107*° + log ¥ /8

N—1)/2 ~ ! 1.44
()/ e if(1=7) (1.44)
which may be solved for N iteratively, the first iteration starting from Ny = 68:
N ~15+1. .
(Ky — 1)/2 ~ % =299 = Ny~60.9 (1.45)

This answer is found to be stable, so N ~ 61 is the block length at which p, ~ 10715,

Solution to exercise 1.6 (p.13).

(a)

The probability of block error of the Hamming code is a sum of six terms
— the probabilities that 2, 3, 4, 5, 6, or 7 errors occur in one block.

7
net()ra s a0

r=2

To leading order, this goes as
PB 9 ! [(1.47)

The probability of bit error of the Hamming code is smaller than the
probability of block error because a block error rarely corrupts all bits in
the decoded block. The leading-order behaviour is found by considering
the outcome in the most probable case where the noise vector has weight
two. The decoder will erroneously flip a third bit, so that the modified
received vector (of length 7) differs in three bits from the transmitted
vector. That means, if we average over all seven bits, the probability that
a randomly chosen bit is flipped is 3/7 times the block error probability,
to leading order. Now, what we really care about is the probability that
a source bit is flipped. Are parity bits or source bits more likely to be
among these three flipped bits, or are all seven bits equally likely to be
corrupted when the noise vector has weight two? The Hamming code
is in fact completely symmetric in the protection it affords to the seven
bits (assuming a binary symmetric channel). [This symmetry can be

17

18 1 — Introduction to Information Theory

proved by showing that the role of a parity bit can be exchanged with
a source bit and the resulting code is still a (7,4) Hamming code; see
below.] The probability that any one bit ends up corrupted is the same
for all seven bits. So the probability of bit error (for the source bits) is
simply three sevenths of the probability of block error.

3
Py~ ZpB = 9f2. (1.48)

Symmetry of the Hamming (7,4) code

To prove that the (7,4) code protects all bits equally, we start from the parity-
check matrix

1
H=|o0 (1.49)
1

(@SN
N
e
o o R

0
1
0

= O O

o

bits will be easiest to see if we
titatstatstets) — (tstatstatitetr).

The symmetry among the seven transmitte
reorder the seven bits using the permutation
Then we can rewrite H thus:

—~

1110100
H=|01110 10 (1.50)
0011101

Now, if we take any two parity constraints that t satisfies and add them
together, we get another parity constraint. For example, row 1 asserts t5 +
to +t3 +t1 = even, and row 2 asserts ty + t3 + t4 + tg = even, and the sum of
these two constraints is

ts + 2to + 2t3 + 11 + t4 + tg = even; (1.51)

we can drop the terms 2t, and 2t3, since they are even whatever to and t3 are;
thus we have derived the parity constraint ¢5 + t1 + t4 + tg¢ = even, which we
can if we wish add into the parity-check matrix as a fourth row. [The set of
vectors satisfying Ht = 0 will not be changed.] We thus define

H = (1.52)

= O O =
O O - =
O K~ -
Rk R, O
= =, O -
= O = O
O = O O

The fourth row is the sum (modulo two) of the top two rows. Notice that the
second, third, and fourth rows are all cyclic shifts of the top row. If, having
added the fourth redundant constraint, we drop the first constraint, we obtain
a new parity-check matrix H”,

0111010
H=|001110 1], (1.53)
1001110

which still satisfies H’t = 0 for all codewords, and which looks just like
the starting H in (1.50), except that all the columns have shifted along one
to the right, and the rightmost column has reappeared at the left (a cyclic
permutation of the columns).

This establishes the symmetry among the seven bits. Iterating the above
procedure five more times, we can make a total of seven different H matrices
for the same original code, each of which assigns each bit to a different role.

1.6: Solutions

We may also construct the super-redundant seven-row parity-check matrix
for the code,

H"” = (1.54)

_ O O O
H O P, O O K -
O, OO K K -

O O r K~ K, O
O O KB B O
O P P, ORFr O
B B, 2, O P OO

1 1

This matrix is ‘redundant’ in the sense that the space spanned by its rows is
only three-dimensional, not seven.

This matrix is also a cyclic matrix. Every row is a cyclic permutation of
the top row.

Cyclic codes: if there is an ordering of the bits ¢; ...ty such that a linear
code has a cyclic parity-check matrix, then the code is called a cyclic
code.

The codewords of such a code also have cyclic properties: any cyclic
permutation of a codeword is a codeword.

For example, the Hamming (7,4) code, with its bits ordered as above,
consists of all seven cyclic shifts of the codewords 1110100 and 1011000,
and the codewords 0000000 and 1111111.

Cyclic codes are a cornerstone of the algebraic approach to error-correcting
codes. We won’t use them again in this book, however, as they have been
superceded by sparse graph codes (Part VI).

Solution to exercise 1.7 (p.13). There are fifteen non-zero noise vectors which
give the all-zero syndrome; these are precisely the fifteen non-zero codewords
of the Hamming code. Notice that because the Hamming code is linear, the
sum of any two codewords is a codeword.

Graphs corresponding to codes

Solution to exercise 1.9 (p.14). When answering this question, you will prob-
ably find that it is easier to invent new codes than to find optimal decoders
for them. There are many ways to design codes, and what follows is just one
possible train of thought. We make a linear block code that is similar to the
(7,4) Hamming code, but bigger.

Many codes can be conveniently expressed in terms of graphs. In fig-
ure 1.13, we introduced a pictorial representation of the (7,4) Hamming code.
If we replace that figure’s big circles, each of which shows that the parity of
four particular bits is even, by a ‘parity-check node’ that is connected to the
four bits, then we obtain the representation of the (7,4) Hamming code by a
bipartite graph as shown in figure 1.20. The 7 circles are the 7 transmitted
bits. The 3 squares are the parity-check nodes (not to be confused with the
3 parity-check bits, which are the three most peripheral circles). The graph
is a ‘bipartite’ graph because its nodes fall into two classes — bits and checks
— and there are edges only between nodes in different classes. The graph and
the code’s parity-check matrix (1.30) are simply related to each other: each
parity-check node corresponds to a row of H and each bit node corresponds to
a column of H; for every 1 in H, there is an edge between the corresponding
pair of nodes.

19

Figure 1.20. The graph of the
(7,4) Hamming code. The 7
circles are the bit nodes and the 3
squares are the parity-check
nodes.

20 1 — Introduction to Information Theory

Having noticed this connection between linear codes and graphs, one way
to invent linear codes is simply to think of a bipartite graph. For example,
a pretty bipartite graph can be obtained from a dodecahedron by calling the
vertices of the dodecahedron the parity-check nodes, and putting a transmitted
bit on each edge in the dodecahedron. This construction defines a parity-
check matrix in which every column has weight 2 and every row has weight 3.
[The weight of a binary vector is the number of 1s it contains.]

This code has N = 30 bits, and it appears to have M,pparent = 20 parity-
check constraints. Actually, there are only M = 19 independent constraints;
the 20th constraint is redundant (that is, if 19 constraints are satisfied, then
the 20th is automaticallly satisfied); so the number of source bits is K = the (30, 11) dodecahedron code.
N — M =11. The code is a (30,11) code. The circles are the 30 transmitted

It is hard to find a decoding algorithm for this code, but we can estimate bits and the triangles are the 20
its probability of error by finding its lowest weight codewords. If we flip all parity checks. One parity check is
the bits surrounding one face of the original dodecahedron, then all the parity =~ redundant.
checks will be satisfied; so the code has 12 codewords of weight 5, one for each
face. Since the lowest-weight codewords have weight 5, we say that the code
has distance d = 5; the (7,4) Hamming code had distance 3 and could correct
all single bit-flip errors. A code with distance 5 can correct all double bit-flip
errors, but there are some triple bit-flip errors that it cannot correct. So the
error probability of this code, assuming a binary symmetric channel, will be
dominated, at least for low noise levels f, by a term of order f3, perhaps Figure 1.22. Graph of a rate-1/4
something like low-density parity-check code

5\ . - (Gallager code) with blocklength
12(3)f (1= 1)".

Figure 1.21. The graph defining

(1.55) N =16, and M = 12 parity-check
constraints. Each white circle
represents a transmitted bit. Each
bit participates in j = 3
constraints, represented by

Of course, there is no obligation to make codes whose graphs can be rep-
resented on a plane, as this one can; the best linear codes, which have simple
graphical descriptions, have graphs that are more tangled, as illustrated by squares. The edges between nodes
the tiny (16,4) code of figure 1.22. were placed at random. (See

Furthermore, there is no reason for sticking to linear codes; indeed some Chapter 47 for more.)
nonlinear codes — codes whose codewords cannot be defined by a linear equa-
tion like Ht = 0 — have very good properties. But the encoding and decoding
of a nonlinear code are even trickier tasks.

Solution to exercise 1.10 (p.14). First let’s assume we are making a linear
code and decoding it with syndrome decoding. If there are N transmitted
bits, then the number of possible error patterns of weight up to two is

D)

For N = 14, that’s 91 + 14 + 1 = 106 patterns. Now, every distinguishable
error pattern must give rise to a distinct syndrome; and the syndrome is a
list of M bits, so the maximum possible number of syndromes is 2*. For a
(14,8) code, M = 6, so there are at most 2¢ = 64 syndromes. The number of
possible error patterns of weight up to two, 106, is bigger than the number of
syndromes, 64, so we can immediately rule out the possibility that there is a
(14,8) code that is 2-error-correcting.

The same counting argument works fine for nonlinear codes too. When
the decoder receives r = t + n, his aim is to deduce both t and n from r. If
it is the case that the sender can select any transmission t from a code of size
St, and the channel can select any noise vector from a set of size Sy, and those
two selections can be recovered from the received bit string r, which is one of

1.6: Solutions

at most 2V possible strings, then it must be the case that
S¢Sy < 2N, (1.57)

So, for a (N, K) two-error-correcting code, whether linear or nonlinear,

#10) () 6)

Solution to exercise 1.11 (p.14). There are various strategies for making codes
that can correct multiple errors, and I strongly recommend you think out one
or two of them for yourself.

If your approach uses a linear code, e.g., one with a collection of M parity
checks, it is helpful to bear in mind the counting argument given in the previous
exercise, in order to anticipate how many parity checks, M, you might need.

Examples of codes that can correct any two errors are the (30,11) dodec-
ahedron code in the previous solution, and the (15, 6) pentagonful code to be
introduced on p.221. Further simple ideas for making codes that can correct
multiple errors from codes that can correct only one error are discussed in
section 13.7.

< 2N, (1.58)

Solution to exercise 1.12 (p.16). The probability of error of R3 is, to leading
order,
po(R3) ~ 3 [pp(Ra)]> = 3(3f%)2 + - =27f4 + .-, (1.59)

whereas the probability of error of Rg is dominated by the probability of five
flips,

b(Rg) ~ <§> o= ~126f° +---. (1.60)

The Rg decoding procedure is therefore suboptimal, since there are noise vec-
tors of weight four which cause it to make a decoding error.

It has the advantage, however, of requiring smaller computational re-
sources: only memorization of three bits, and counting up to three, rather
than counting up to nine.

This simple code illustrates an important concept. Concatenated codes
are widely used in practice because concatenation allows large codes to be
implemented using simple encoding and decoding hardware. Some of the best
known practical codes are concatenated codes.

21

Probability, Entropy, and Inference

This chapter, and its sibling, Chapter 8, devote some time to notation. Just
as the White Knight distinguished between the song, the name of the song,
and what the name of the song was called (Carroll, 1998), we will sometimes
need to be careful to distinguish between a random variable, the value of the

random variable, and the proposition that asserts that the random variable M b
has a particular value. In any particular chapter, however, I will use the most 1 a 00575 a
asab) Ay part; pret, - . 2 b 00128 b
simple and friendly notation possible, at the risk of upsetting pure-minded 3 ¢ 0.0263 .
readers. For example, if something is ‘true with probability 17, T will usually 4 4 0.0285 a
simply say that it is ‘true’. 5 e 0.0913 e
6 £ 0.0173 f
Probabilities and ensembles Tog 00133 g
8 h 0.0313 h
An ensemble X is a triple (z, Ax,Px), where the outcome z is the value O i 00599 i
HPIe A, X, X : 10§ 00006 j
of a random variable, which takes on one of a set of possible values, 11 k00084 i
Ax ={a1,a9,...,a,...,ar}, having probabilities Px = {p1,p2,...,pr}, 12 1 00335 1
with P(x=a;) = p;, pi >0 and >°, 4, P(x=a;) = 1. 13 m 0.0235 m
14 n 0.0596 n
The name A is mnemonic for ‘alphabet’. One example of an ensemble is a 15 o 0.0689 0o
letter that is randomly selected from an English document. This ensemble is 16 p 0.0192 p
shown in figure 2.1. There are twenty-seven possible letters: a-z, and a space 17 q 0.0008 a
character ‘-. 18 r 0.0508 r
19 s 0.0567 s
Abbreviations. Briefer notation will sometimes be used. For example, 5(1) 1t1 gg;gi 1"'1
P(x=a;) may be written as P(a;) or P(x). 22 v 0.0069 v
Probability of a subset. If T is a subset of Ax then: 23w 00119 v
24 x 0.0073 X
P(T) = P(zeT) = ¥ P(z=aj). (1) oo Y e
wel 27 -~ 01928
For example, if we define V to be vowels from figure 2.1, V =
{a,e,i,0,u}, then Figure 2.1. Probability
distribution over the 27 outcomes
P(V) =0.06 4+ 0.09 4+ 0.06 4+ 0.07 + 0.03 = 0.31. (2.2) for a randomly selected letter in

an English language document
(estimated from The Frequently
Asked Questions Manual for
Linuzx). The picture shows the
We call P(z,y) the joint probability of z and y. probabilities by the areas of white
squares.

A joint ensemble XY is an ensemble in which each outcome is an ordered
pair z,y with © € Ax = {a1,...,ar} and y € Ay = {b1,...,bs}.

Commas are optional when writing ordered pairs, so zy < x,y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.

22

2.1: Probabilities and ensembles 23

8

Figure 2.2. The probability
distribution over the 27x27
possible bigrams zy in an English
language document, The
Frequently Asked Questions
Manual for Linuz.

IN<KES<edtnROTOBEHKNWCHBERHROAONT M
TR

| LI I RT RN BN IR I RRT | LN N
abcdefghijklmnopqrstuvwxyz— y

Marginal probability. We can obtain the marginal probability P(z) from
the joint probability P(x,y) by summation:

Plz=a;) = Z P(z=ai,y). (2.3)
yEAy

Similarly, using briefer notation, the marginal probability of y is:

P(y) = Z P(z,y). (2.4)

rEAx
Conditional probability
P(r=a;,y=0b;) .
P(xaﬂybﬂ% if P(y=b;)#0. (2.5)
=9

[If P(y=b;) =0 then P(x=a;|y="0;) is undefined.|

We pronounce P(x=a;|y=0;) ‘the probability that x equals a;, given
y equals b;’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P(x) and P(y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P(z,y) we can obtain conditional distributions,
P(y|x) and P(z|y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P(y|z=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given

24 2 — Probability, Entropy, and Inference
a . a Figure 2.3. Conditional

o] - - b o C . .

c - c probability distributions. (a)
iB " . [

H O H P(y|z): Each row shows the

% . ‘. % : : oo .- conditional distribution of the

1 [. 1 [IERRY LRI .o second letter, y, given the first

% : . % : e : letter, z, in a bigram zy. (b)

] - : m SR IENEN (| y): Each column shows the
o [N . 9 . - - conditional distribution of the

}frl) . n § R N first letter, =, given the second
H . H : P THRARC AN AR AR |cttcr, y.

M. . B celeTe T :

v . v

W M

X X

y y

z z

. [TR PRI IR RNY | ENDERT LN N
abcdefghijklmnopqrstuvwxyz— y

(a) P(y]|z) (b) P(zy)

abcdefghijklmnopqrstuvwxyz— y

that the first letter x is q are u and -. (The space is common after q
because the source document makes heavy use of the word FAQ.)

The probability P(z|y=u) is the probability distribution of the first
letter x given that the second letter y is a u. As you can see in figure 2.3b
the two most probable values for x given y=u are n and o.

Rather than writing down the joint probability directly, we often define an
ensemble in terms of a collection of conditional probabilities. The following
rules of probability theory will be useful. (H denotes assumptions on which
the probabilities are based.)

Product rule — obtained from the definition of conditional probability:
P(z,y|H) = P(z|y, H)P(y|H) = P(y |z, H)P(x | H). (2.6)
This rule is also known as the chain rule.

Sum rule — a rewriting of the marginal probability definition:
P(x|H) = > P(zy|H) (2.7)
y

= Y Plz|y.H)Py|H). (2.8)

Bayes’ theorem — obtained from the product rule:

P(y|z,H) = Pl |1y3’(7;)i()y) (2.9)
Pz |y, H)P(y|H)

Yy Py, H)P(y |H)

(2.10)

Independence. Two random variables X and Y are independent (sometimes
written X 1Y) if and only if

P(x,y) = P(x)P(y). (2.11)

% Exercise 2.2.[2: P-40] Are the random variables X and Y in the joint ensemble
of figure 2.2 independent?

2.2

2.2: The meaning of probability

I said that we often define an ensemble in terms of a collection of condi-
tional probabilities. The following example illustrates this idea.

Example 2.3. Jo has a test for a nasty disease. We denote Jo’s state of health
by the variable a and the test result by b.

a=1 Jo has the disease

a=0 Jo does not have the disease. (2.12)

The result of the test is either ‘positive’ (b = 1) or ‘negative’ (b = 0);
the test is 95% reliable: in 95% of cases of people who really have the
disease, a positive result is returned, and in 95% of cases of people who
do not have the disease, a negative result is obtained. The final piece of
background information is that 1% of people of Jo’s age and background
have the disease.

OK — Jo has the test, and the result was positive. What is the probability
that Jo has the disease?

Solution. We write down all the provided probabilities. The test reliability
specifies the conditional probability of b given a:

P(b=1la=1)=1095 P(b=1|a=0) = 0.05

P(b=0]a=1) = 005 P(b=0|a=0) = 0.95; (2.13)

and the disease prevalence tells us about the marginal probability of a:
P(a=1) =001 P(a=0) = 0.99. (2.14)

From the marginal P(a) and the conditional probability P(b|a) we can deduce
the joint probability P(a,b) = P(a)P(b|a) and any other probabilities we are
interested in. For example, by the sum rule, the marginal probability of b=1
— the probability of getting a positive result — is

P(b=1)=P(b=1|a=1)Pa=1)+ P(b=1|a=0)P(a=0). (2.15)

Jo has received a positive result b=1 and is interested in how plausible it is
that she has the disease (i.e., that a=1). The man in the street might be
duped by the statement ‘the test is 95% reliable, so Jo’s positive result implies
that there is a 95% chance that Jo has the disease’, but this is incorrect. The
correct solution to an inference problem is found using Bayes’ theorem.

P(b=1la=1)P(a=1)

Pla=1lb=1) = 2.16
(@=110=1) = B Ta= TP T PO=1]a=0)Pla=0) >
0.95 x 0.01
= 2.1
0.95 x 0.01 + 0.05 x 0.99 (2.17)
= 0.16 (2.18)

So in spite of the positive result, the probability that Jo has the disease is only
16%. O

The meaning of probability

Probabilities can be used in two ways.

Probabilities can describe frequencies of outcomes in random experiments,
but giving noncircular definitions of the terms ‘frequency’ and ‘random’ is a
challenge — what does it mean to say that the frequency of a tossed coin’s

25

26 2 — Probability, Entropy, and Inference

Box 2.4. The Cox axioms.

Notation. Let ‘the degree of belief in proposition z’ be denoted by B(x). The If a set of beliefs satisfy these
negation of z (NOT-z) is written Z. The degree of belief in a condi- axioms then they can be mapped
tional proposition, ‘x, assuming proposition y to be true’, is represented onto probabilities satisfying
by B(z|y). P(FALSE) = 0, P(TRUE) = 1,

0 < P(z) <1, and the rules of

Axiom 1. Degrees of belief can be ordered; if B(x) is ‘greater’ than B(y), and
B(y) is ‘greater’ than B(z), then B(x) is ‘greater’ than B(z).

[Consequence: beliefs can be mapped onto real numbers.] and

probability:
P($)21—P(f)7

Axiom 2. The degree of belief in a proposition x and its negation T are related. P(x,y) = P(z|y)P(y).

There is a function f such that
B(x) = f[B(T)].

Axiom 3. The degree of belief in a conjunction of propositions z,y (x ANDY) is
related to the degree of belief in the conditional proposition x |y and the
degree of belief in the proposition y. There is a function g such that

B(z,y) = g[B(z|y), B(y)] .

coming up heads is 1/2? If we say that this frequency is the average fraction of
heads in long sequences, we have to define ‘average’; and it is hard to define
‘average’ without using a word synonymous to probability! I will not attempt
to cut this philosophical knot.

Probabilities can also be used, more generally, to describe degrees of be-
lief in propositions that do not involve random variables — for example ‘the
probability that Mr. S. was the murderer of Mrs. S., given the evidence’ (he
either was or wasn’t, and it’s the jury’s job to assess how probable it is that he
was); ‘the probability that Thomas Jefferson had a child by one of his slaves’;
‘the probability that Shakespeare’s plays were written by Francis Bacon’; or,
to pick a modern-day example, ‘the probability that a particular signature on
a particular cheque is genuine’.

The man in the street is happy to use probabilities in both these ways, but
some books on probability restrict probabilities to refer only to frequencies of
outcomes in repeatable random experiments.

Nevertheless, degrees of belief can be mapped onto probabilities if they sat-
isfy simple consistency rules known as the Cox axioms (Cox, 1946) (figure 2.4).
Thus probabilities can be used to describe assumptions, and to describe in-
ferences given those assumptions. The rules of probability ensure that if two
people make the same assumptions and receive the same data then they will
draw identical conclusions. This more general use of probability to quantify
beliefs is known as the Bayesian viewpoint. It is also known as the subjective
interpretation of probability, since the probabilities depend on assumptions.
Advocates of a Bayesian approach to data modelling and pattern recognition
do not view this subjectivity as a defect, since in their view,

you cannot do inference without making assumptions. I

In this book it will from time to time be taken for granted that a Bayesian
approach makes sense, but the reader is warned that this is not yet a globally
held view — the field of statistics was dominated for most of the 20th century
by non-Bayesian methods in which probabilities are allowed to describe only
random variables. The big difference between the two approaches is that

2.3

g

g

2.3: Forward probabilities and inverse probabilities
Bayesians also use probabilities to describe inferences.

Forward probabilities and inverse probabilities

Probability calculations often fall into one of two categories: forward prob-
ability and inverse probability. Here is an example of a forward probability
problem:

Exercise 2.4.12 D401 A urn contains K balls, of which B are black and W =
K — B are white. Fred draws a ball at random from the urn and replaces
it, N times.

(a) What is the probability distribution of the number of times a black
ball is drawn, ng?

(b) What is the expectation of np? What is the variance of ng? What
is the standard deviation of ng? Give numerical answers for the
cases N =5 and N = 400, when B = 2 and K = 10.

Forward probability problems involve a generative model that describes a pro-
cess that is assumed to give rise to some data; the task is to compute the
probability distribution or expectation of some quantity that depends on the
data. Here is another example of a forward probability problem:

Exercise 2.5.1% P40) Ay urn contains K balls, of which B are black and W =
K — B are white. We define the fraction fp = B/K. Fred draws N
times from the urn, exactly as in exercise 2.4, obtaining np blacks, and
computes the quantity

2
,_ (ns— fBN)* (2.19)

Nfs(1 - fB)
What is the expectation of z7 In the case N =5 and fp = 1/5, what
is the probability distribution of z7 What is the probability that z < 17
[Hint: compare z with the quantities computed in the previous exercise.]

Like forward probability problems, inverse probability problems involve a
generative model of a process, but instead of computing the probability distri-
bution of some quantity produced by the process, we compute the conditional
probability of one or more of the unobserved variables in the process, given
the observed variables. This invariably requires the use of Bayes’ theorem.

Example 2.6. There are eleven urns labelled by u € {0,1,2,...,10}, each con-
taining ten balls. Urn u contains u black balls and 10 — u white balls.
Fred selects an urn v at random and draws N times with replacement
from that urn, obtaining np blacks and N — npg whites. Fred’s friend,
Bill, looks on. If after NV = 10 draws np = 3 blacks have been drawn,
what is the probability that the urn Fred is using is urn u, from Bill’s
point of view? (Bill doesn’t know the value of w.)

Solution. The joint probability distribution of the random variables u and npg
can be written
P(u,ng|N) = P(ng|u, N)P(u). (2.20)
From the joint probability of v and np, we can obtain the conditional
distribution of u given np:

P(ulnp,N) = W (2.21)
_ P(np|u,N)P(u)
= Pla] (2.22)

27

28 2 — Probability, Entropy, and Inference

=
<

Figure 2.5. Joint probability of u

0 and np for Bill and Fred’s urn
1 problem, after N = 10 draws.
2
3
4
5
6
7
8
9
10

012345678910 ng

The marginal probability of u is P(u) = & for all u. You wrote down the

probability of np given v and N, P(np|u, N), when you solved exercise 2.4 03 -
(p-27). [You are doing the highly recommended exercises, aren’t you?] If we 0022
define f,, = u/10 then 0.15 -
N oos ‘
P(ng |u,N) = (n3>f;“3<1 — f)Nme, (2.23) o L
01 2 3 456 7 8 910

What about the denominator, P(ng | N)? This is the marginal probability of

np, which we can obtain using the sum rule: u Plulnp=3,N)
0 O
P(ng|N)=Y_P(u,ng|N) =Y P(u)P(ng|u,N). (2.24) 1 0.063
u u 2 0.22
- . . . 3029
So the conditional probability of u given np is 4 024
P(u)P(ng | u, N) 5 0.13
wrng | U, 6 0.047
P(u|ng, N 2.25
(wlns, N) P(np|N) (2.25) 7 0.0099
1 1/N 8 0.00086
= —— - nB(1— f,)N "B, 2.26 :
Plng|N) 11 <nB> fuP (1= fu) () 190 80000096

This conditional distribution can be found by normalizing column 3 of . .
. X . . Figure 2.6. Conditional
figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal probability of u given np =3 and
probability of np, is P(ng=3| N =10) = 0.083. The posterior probability — n —1(.
(2.26) is correct for all u, including the end-points ©u=0 and u=10, where
fu = 0 and f, = 1 respectively. The posterior probability that u=0 given
np =3 is equal to zero, because if Fred were drawing from urn 0 it would be
impossible for any black balls to be drawn. The posterior probability that
u =10 is also zero, because there are no white balls in that urn. The other
hypotheses u=1, u=2, ... u=9 all have non-zero posterior probability. O

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P(u) the prior probability of u, and P(npg |u, N) is called the like-
lihood of w. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P(np|u,N) is a function of both np and
u. For fixed u, P(np|u,N) defines a probability over ng. For fixed np,
P(npg|u, N) defines the likelihood of w.

2.3: Forward probabilities and inverse probabilities

Never say ‘the likelihood of the data’. Always say ‘the likelihood
of the parameters’. The likelihood function is not a probability

distribution.

(If you want to mention the data that a likelihood function is associated with,
you may say ‘the likelihood of the parameters given the data’.)

The conditional probability P(u|npg, N) is called the posterior probability
of u given ng. The normalizing constant P(np | N) has no u-dependence so its
value is not important if we simply wish to evaluate the relative probablities
of the alternative hypotheses u. However, in most data modelling problems
of any complexity, this quantity becomes important, and it is given various
names: P(np|N) is known as the evidence or the marginal likelihood.

If 6 denotes the unknown parameters, D denotes the data, and H denotes
the overall hypothesis space, the general equation:

P01 D.3) = T2 LT O T (227)

is written:
likelihood x prior

posterior = (2.28)

evidence

Inverse probability and prediction

Example 2.6 (continued). Assuming again that Bill has observed np = 3 blacks
in N = 10 draws, let Fred draw another ball from the same urn. What
is the probability that the next drawn ball is a black? [You should make
use of the posterior probabilities in figure 2.6.]

Solution. By the sum rule,

P(ball N+1 is black |ng, N) = ZP(ball N+1 is black |u,ng, N)P(u|ng, N).

(2.29)
Since the balls are drawn with replacement from the chosen urn, the proba-
bility P(ball N+1 is black |u,ng, N) is just f, = u/10, whatever ng and N
are. So

P(ball N+1 is black [np, N) =Y fuP(u|np,N). (2.30)
u

Using the values of P(u|npg, N) given in figure 2.6 we obtain

P(ball N+1 is black |np =3, N =10) = 0.333. 0O (2.31)

Comment. Notice the difference between this prediction obtained using prob-
ability theory, and the widespread practice in statistics of making predictions
by first selecting the most plausible hypothesis (which here would be that the
urn is urn v = 3) and then making the predictions assuming that hypothesis
to be true (which would give a probability of 0.3 that the next ball is black).
The correct prediction is the one that takes into account the uncertainty by
marginalizing over the possible values of the hypothesis u. Marginalization
here leads to slightly more moderate, less extreme predictions.

30 2 — Probability, Entropy, and Inference

Inference as inverse probability

Now consider the following exercise, which has the character of a simple sci-
entific investigation.

Example 2.7. Bill tosses a bent coin N times, obtaining a sequence of heads
and tails. We assume that the coin has a probability fr of coming up
heads; we do not know fyr. If ny heads have occurred in N tosses, what
is the probability distribution of fz? (For example, N might be 10, and
ny might be 3; or, after a lot more tossing, we might have N = 300 and
ny = 29.) What is the probability that the N+ 1th outcome will be a
head, given ny heads in N tosses?

Unlike example 2.6 (p.27), this problem has a subjective element. Given a
restricted definition of probability that says ‘probabilities are the frequencies
of random variables’, this example is different from the eleven-urns example.
Whereas the urn v was a random variable, the bias fy of the coin would not
normally be called a random variable. It is just a fixed but unknown parameter
that we are interested in. Yet don’t the two examples 2.6 and 2.7 seem to have
an essential similarity? [Especially when N = 10 and ngy = 3!]
To solve example 2.7, we have to make an assumption about what the bias
of the coin fy might be. This prior probability distribution over fg, P(fr), Here P(f) denotes a probability den-
corresponds to the prior over u in the eleven-urns problem. In that example, sity, rather than a probability distri-
the helpful problem definition specified P(u). In real life, we have to make bution.
assumptions in order to assign priors; these assumptions will be subjective,
and our answers will depend on them. Exactly the same can be said for the
other probabilities in our generative model too. We are assuming, for example,
that the balls are drawn from an urn independently; but could there not be
correlations in the sequence because Fred’s ball-drawing action is not perfectly
random? Indeed there could be, so the likelihood function that we use depends
on assumptions too. In real data modelling problems, priors are subjective and
so are likelihoods.

We are now using P() to denote probability densities over continuous variables as well
as probabilities over discrete variables and probabilities of logical propositions. The
probability that a continuous variable v lies between values a and b (where b > a) is
defined to be fabdv P(v). P(v)dv is dimensionless. The density P(v) is a dimensional
quantity, having dimensions inverse to the dimensions of v — in contrast to discrete
probabilities, which are dimensionless. Don’t be surprised to see probability densities

greater than 1. This is normal, and nothing is wrong, as long as fabd'u P(v) < 1 for
any interval (a,b).
Conditional and joint probability densities are defined in just the same way as condi-

tional and joint probabilities.

> Exercise 2.8.1] Assuming a uniform prior on fg, P(fr) = 1, solve the problem
posed in example 2.7 (p.30). Sketch the posterior distribution of fz and
compute the probability that the N+ 1th outcome will be a head, for
(a) N=3and ng =0;
(b) N=3and ng = 2;
(¢) N =10 and ng = 3;
(d) N =300 and ng = 29.

You will find the beta integral useful:

L D(F, + D)I(F, 4+ 1) F,\F!
dpg pEe(1 — po)ft = =2 = a . (2.32
/O Papa’ (L= pa) T(Fy + Fy +2) Forbrr &%

2.3: Forward probabilities and inverse probabilities

You may also find it instructive to look back at example 2.6 (p.27) and
equation (2.31).

People sometimes confuse assigning a prior distribution to an unknown pa-
rameter such as fy with making an initial guess of the value of the parameter.
But the prior over fg, P(fm), is not a simple statement like ‘initially, I would
guess fi = 1/2’. The prior is a probability density over fg which specifies the
prior degree of belief that fr lies in any interval (f, f + §f). It may well be
the case that our prior for fg is symmetric about 1/2, so that the mean of fg
under the prior is 1/2. In this case, the predictive distribution for the first toss
x1 would indeed be

Plar=head) = [dfis P(fu) Plar =bead | fu) = [afu P(fu) = Vo
(2.33)
But the prediction for subsequent tosses will depend on the whole prior dis-
tribution, not just its mean.

Data compression and inverse probability

Consider the following task.

Example 2.9. Write a computer program capable of compressing binary files
like this one:

31

0000000000000000000010010001000000100000010000000000000000000000000000000000001010000000000000110000
1000000000010000100000000010000000000000000000000100000000000000000100000000011000001000000011000100
0000000001001000000000010001000000000000000011000000000000000000000000000010000000000000000100000000

The string shown contains n; = 29 1s and ng = 271 Os.

Intuitively, compression works by taking advantage of the predictability of a
file. In this case, the source of the file appears more likely to emit Os than
1s. A data compression program that compresses this file must, implicitly or
explicitly, be addressing the question ‘What is the probability that the next
character in this file is a 17’

Do you think this problem is similar in character to example 2.7 (p.30)?
I do. One of the themes of this book is that data compression and data
modelling are one and the same, and that they should both be addressed, like
the urn of example 2.6, using inverse probability. Example 2.9 is solved in

Chapter 6.

The likelihood principle

Please solve the following two exercises.

Example 2.10. Urn A contains three balls: one black, and two white; urn B
contains three balls: two black, and one white. One of the urns is
selected at random and one ball is drawn. The ball is black. What is
the probability that the selected urn is urn A7

Example 2.11. Urn A contains five balls: one black, two white, one green and
one pink; urn B contains five hundred balls: two hundred black, one
hundred white, 50 yellow, 40 cyan, 30 sienna, 25 green, 25 silver, 20
gold, and 10 purple. [One fifth of A’s balls are black; two-fifths of B’s
are black.] One of the urns is selected at random and one ball is drawn.
The ball is black. What is the probability that the urn is urn A?

[O®) [1]@

Figure 2.7. Urns for example 2.10.

Figure 2.8. Urns for example 2.11.

32 2 — Probability, Entropy, and Inference

What do you notice about your solutions? Does each answer depend on the i a; pi h(p)
detailed contents of each urn? 1 a2 0575 11
The details of the other possible outcomes and their probabilities are ir- 29 b 0128 6.3
relevant. All that matters is the probability of the outcome that actually 3 ¢ .0263 5.2
happened (here, that the ball drawn was black) given the different hypothe- 4 4 .0285 5.1
ses. We need only to know the likelihood, i.e., how the probability of the data 5 e .0913 3.5
that happened varies with the hypothesis. This simple rule about inference is 6 £ .0173 5.9
known as the likelihood principle. 7 g (033 6.2
8 h .0313 5.0

9 i .0599 4.1

The likelihood principle: given a generative model for data d given 10§ .0006 10.7
parameters 6, P(d|0), and having observed a particular outcome 11 k .0084 6.9

d1, all inferences and predictions should depend only on the function 121 .0335 4.9

P(d, | 6). 13 m 0235 54

14 n .0596 4.1

15 o .0689 3.9

In spite of the simplicity of this principle, many classical statistical methods 16 p .0192 5.7
violate it. 17 q .0008 10.3
18 r .0508 4.3

ol . 19 s .0567 4.1
Definition of entropy and related functions 50 t 0706 38
The Shannon information content of an outcome x is defined to be 21 w0334 4.9
22 v .0069 7.2

1 23 w .0119 6.4

h(z) =logz - (2.34) 24 x 0073 7.1

25 y 0164 5.9

It is measured in bits. [The word ‘bit’ is also used to denote a variable 26 =z .0007 104
whose value is 0 or 1; I hope context will always make clear which of the 21 - 1928 24

two meanings is intended.]

1
In the next few chapters, we will establish that the Shannon information ;p 82 Di

content h(a;) is indeed a natural measure of the information content
of the event * = a;. At that point, we will shorten the name of this Table 2.9. Shannon information
quantity to ‘the information content’. contents of the outcomes a—z.

The fourth column in table 2.9 shows the Shannon information content
of the 27 possible outcomes when a random character is picked from
an English document. The outcome x = z has a Shannon information
content of 10.4 bits, and z = e has an information content of 3.5 bits.

The entropy of an ensemble X is defined to be the average Shannon in-
formation content of an outcome:

1
H(X)= > P(z)log ——, (2.35)
rzeAx P(.’I))
with the convention for P(z) = 0 that 0xlogl/0=0, since

limy_,g+ flog 1/6 = 0.
Like the information content, entropy is measured in bits.

When it is convenient, we may also write H(X) as H(p), where p is
the vector (p1,p2,...,pr). Another name for the entropy of X is the
uncertainty of X.

Example 2.12. The entropy of a randomly selected letter in an English docu-
ment is about 4.11 bits, assuming its probability is as given in table 2.9.
We obtain this number by averaging log 1/p; (shown in the fourth col-
umn) under the probability distribution p; (shown in the third column).

2.5

2.5: Decomposability of the entropy

We now note some properties of the entropy function.
e H(X) >0 with equality iff p; = 1 for one . [‘iff” means ‘if and only if’.]
e Entropy is maximized if p is uniform:

H(X) <log(|Ax]|) with equality iff p; = 1/|X| for all s. (2.36)

Notation: the vertical bars ‘| - |” have two meanings. If Ax is a set, |Ax]|
denotes the number of elements in Ax; if x is a number, then |z| is the
absolute value of z.

The redundancy measures the fractional difference between H(X) and its max-
imum possible value, log(|Ax|).

The redundancy of X is:
H(X)
log |Ax|

We won’t make use of ‘redundancy’ in this book, so I have not assigned
a symbol to it.

(2.37)

The joint entropy of X,Y is:

HX,Y)= Y P(zy)log (2.38)

zy€Ax Ay P(I’ y)

Entropy is additive for independent random variables:
HX,)Y)=H(X)+ H(Y) iff P(z,y)= P(z)P(y). (2.39)

Our definitions for information content so far apply only to discrete probability
distributions over finite sets Ax. The definitions can be extended to infinite
sets, though the entropy may then be infinite. The case of a probability
density over a continuous set is addressed in section 11.3. Further important
definitions and exercises to do with entropy will come along in section 8.1.

Decomposability of the entropy

The entropy function satisfies a recursive property that can be very useful
when computing entropies. For convenience, we’ll stretch our notation so that
we can write H(X) as H(p), where p is the probability vector associated with
the ensemble X.

Let’s illustrate the property by an example first. Imagine that a random
variable z € {0,1, 2} is created by first flipping a fair coin to determine whether
x = 0; then, if is not 0, flipping a fair coin a second time to determine whether
z is 1 or 2. The probability distribution of x is

P(sz):%; P(x:l):i; P(x:2):i (2.40)

What is the entropy of X7 We can either compute it by brute force:
H(X) =1Y2log?2 + Yalog4 + Y/alog 4 = 1.5; (2.41)

or we can use the following decomposition, in which the value of x is revealed
gradually. Imagine first learning whether =0, and then, if x is not 0, learning
which non-zero value is the case. The revelation of whether =0 or not entails

33

2.6

34 2 — Probability, Entropy, and Inference

revealing a binary variable whose probability distribution is {1/2,%/2}. This
revelation has an entropy H(Y/2,%2) = L1log2 + $log2 = 1bit. If x is not 0,
we learn the value of the second coin flip. This too is a binary variable whose
probability distribution is {1/2, 1/2}7 and whose entropy is 1bit. We only get
to experience the second revelation half the time, however, so the entropy can
be written:

H(X) = H(Y2,Y2) + Y2 H(Y/2,1/2). (2.42)

Generalizing, the observation we are making about the entropy of any
probability distribution p = {p1,p2,...,pr} is that

P2 P3 Pr
H(p)=H(p1,1—p +1—p1H(, s) 2.43
(0) = Hpr1-pn) + (1-p)H ({22 P P 2y
When it’s written as a formula, this property looks regretably ugly; nev-
ertheless it is a simple property and one that you should make use of.
Generalizing further, the entropy has the property for any m that

H(p) = H[(pl+p2+"'+pm)7(pm+1+pm+2+"'+p1)]
p1 Pm
: A T M e
Pm+1 br
+(p +'--+p1H(ey)
(P) (Pm+1+ - +pr1) (Pm+1+ - +pr1)

(2.44)

Example 2.13. A source produces a character x from the alphabet A =
{0,1,...,9,a,b,...,z}; with probability 1/3, x is a numeral (0,...,9);
with probability 1/3, x is a vowel (a, e, i,0,u); and with probability 1/3
it’s one of the 21 consonants. All numerals are equiprobable, and the
same goes for vowels and consonants. Estimate the entropy of X.

Solution. log 3 + %(log 10 +log 5 +log21) =log 3 + % log 1050 =~ log 30 bits. O

Gibbs’ inequality

The relative entropy or Kullback—Leibler divergence between two
probability distributions P(z) and Q(x) that are defined over the same
alphabet Ax is

P(z)
Dy, (P =) P(x)l . 2.45
Ku(PIQ) = 3 Ple) log 5 (2.45)
The relative entropy satisfies Gibbs’ inequality
Dgi(P|lQ) >0 (2.46)

with equality only if P =). Note that in general the relative entropy
is not symmetric under interchange of the distributions P and @: in
general Dk, (P||Q) # DkuL(Q||P), so Dxi, although it is sometimes
called the ‘KL distance’, is not strictly a distance. The relative entropy
is important in pattern recognition and neural networks, as well as in
information theory.

Gibbs’ inequality is probably the most important inequality in this book. It,
and many other inequalities, can be proved using the concept of convexity.

The ‘ei’ in Leibler is pronounced the
same as in heist.

2.7: Jensen’s inequality for convex functions

2.7 Jensen’s inequality for convex functions
The words ‘convex—’ and ‘concave ~’ may be pronounced ‘convex-smile’ and

‘concave-frown’. This terminology has useful redundancy: while one may forget which
way up ‘convex’ and ‘concave’ are, it is harder to confuse a smile with a frown.

Convex — functions. A function f(z) is convex— over (a,b) if every chord
of the function lies above the function, as shown in figure 2.10; that is,
for all z1,x9 € (a,b) and 0 < A <1,

fQAz14+ (1= Nz2) < Af(21) + (1= A)f(2). (2.47)

A function f is strictly convex— if, for all z1, 29 € (a,b), the equality
holds only for A =0 and A = 1.

Similar definitions apply to concave ~ and strictly concave ~ functions.

Some strictly convex — functions are
e 22, ¢ and e~ 7 for all z;

e log(1/x) and zlogz for « > 0.

2 —x 1 .
T \e\ Llogm zlogx
o 1T 2z 35 % 1T I 10 1 2 30 1

0 1 2 3

-T

Jensen’s inequality. If f is a convex — function and x is a random variable
then:
Elf(x)] = f(Elx]), (2.48)

where € denotes expectation. If f is strictly convex— and & [f(z)] =
f(&[z]), then the random variable z is a constant.

Jensen’s inequality can also be rewritten for a concave —~ function, with
the direction of the inequality reversed.

A physical version of Jensen’s inequality runs as follows.

If a collection of masses p; are placed on a convex— curve f(x)
at locations (x;, f(x;)), then the centre of gravity of those masses,
which is at (E[z], € [f(z)]), lies above the curve.

If this fails to convince you, then feel free to do the following exercise.

Exercise 2.14.1% P41] Prove Jensen’s inequality.

Example 2.15. Three squares have average area A = 100m?. The average of

the lengths of their sides is [= 10m. What can be said about the size
of the largest of the three squares? [Use Jensen’s inequality.

Solution. Let = be the length of the side of a square, and let the probability
of be 1/3,1/3,1/3 over the three lengths I;,ls,13. Then the information that
we have is that € [z] = 10 and € [f(x)] = 100, where f(z) = x? is the function
mapping lengths to areas. This is a strictly convex— function. We notice
that the equality &€ [f(x)] = f(E[z]) holds, therefore x is a constant, and the
three lengths must all be equal. The area of the largest square is 100m?. O

35

I 7\ T2
' =Ax1+ (1= Nz2

Figure 2.10. Definition of
convexity.

Figure 2.11. Convex — functions.

Centre of gravity

22|

36 2 — Probability, Entropy, and Inference

Convezity and concavity also relate to maximization

If f(x) is concave ~ and there exists a point at which

88—;; =0 for all £, (2.49)
then f(x) has its maximum value at that point.

The converse does not hold: if a concave ~ f(x) is maximized at some x
it is not necessarily true that the gradient V f(x) is equal to zero there. For
example, f(z) = —|z| is maximized at = 0 where its derivative is undefined;
and f(p) = log(p), for a probability p € (0, 1), is maximized on the boundary
of the range, at p = 1, where the gradient df(p)/dp = 1.

2.8 Exercises

Sums of random variables

ﬁ% Exercise 2.16.[% P-41] (a) Two ordinary dice with faces labelled 1,...,6 are
thrown. What is the probability distribution of the sum of the val-
ues? What is the probability distribution of the absolute difference

between the values?

(b) One hundred ordinary dice are thrown. What, roughly, is the prob-
ability distribution of the sum of the values? Sketch the probability
distribution and estimate its mean and standard deviation.

(¢) How can two cubical dice be labelled using the numbers

{0,1,2,3,4,5,6} so that when the two dice are thrown the sum
has a uniform probability distribution over the integers 1-127

(d) Is there any way that one hundred dice could be labelled with inte-
gers such that the probability distribution of the sum is uniform?

Inference problems

ﬁ% Exercise 2.17.12 P4 f g =1 pand a = Inp/q, show that

1

R et (2.50)

p
Sketch this function and find its relationship to the hyperbolic tangent

function tanh(u) = EZ;Z:Z

It will be useful to be fluent in base-2 logarithms also. If b = logy p/q,
what is b as a function of p?

> Exercise 2.18.[% P42l Let 1z and y be correlated random variables with = a
binary variable taking values in Ax = {0,1}. Use Bayes’ theorem to
show that the log posterior probability ratio for x given y is

Plx=1ly) Plylz=1) Plr=1)

1 =1
BP@=0ly CP(yle=0) " *P=0)

(2.51)

> Exercise 2.19.[2’ p-42] Let z, di and dy be random variables such that d; and
ds are conditionally independent given a binary variable z. Use Bayes’
theorem to show that the posterior probability ratio for x given {d;} is

Plx=1[{d}) _ P(d|z=1) P(dy|e=1) Ple=1)
P(x=0|{d:}) P(d|2=0) P(ds|2=0) Plz=0)’

(2.52)

2.8: Exercises

Life in high-dimensional spaces

Probability distributions and volumes have some unexpected properties in
high-dimensional spaces.

ﬁ% Exercise 2.20.[% P21 Consider a sphere of radius r in an N-dimensional real
space. Show that the fraction of the volume of the sphere that is in the
surface shell lying at values of the radius between r — € and r, where

O<e<r,is:

€ N

f:1—<1——) . (2.53)

T
Evaluate f for the cases N =2, N =10 and N = 1000, with (a) ¢/r=0.01;
(b) ¢/r=0.5.
Implication: points that are uniformly distributed in a sphere in N di-
mensions, where N is large, are very likely to be in a thin shell near the
surface.

Ezxpectations and entropies

You are probably familiar with the idea of computing the expectation of a
function of x,

Elf(@)] = {f(x)) =D P(z)f(a). (2.54)

Maybe you are not so comfortable with computing this expectation in cases
where the function f(z) depends on the probability P(z). The next few ex-
amples address this concern.

ﬁ%Exercise 22115 P8 1o 5 =01, pp=02, and p.=0.7. Let f(a)=10,
F()=5, and f(c)=10/7. What is € [f(x)]? What is £ [1/P(x)]?

i% Exercise 2.22.1% P43 For an arbitrary ensemble, what is £ [1/P(x)]?

> Exercise 2.23.[1 P43] et pa=0.1, p,=0.2, and p.=0.7. Let g(a) =0, g(b) =1,
and ¢g(c) =0. What is & [g(z)]?

> Exercise 2.24.[1 P-43] ¢ pe=0.1, pp=0.2, and p.=0.7. What is the proba-
bility that P(z) € [0.15,0.5]? What is

g

ﬁ% Exercise 2.25.1% P43] Prove the assertion that H(X) <log(|X]) with equality
iff p; = 1/|X]| for all 4. (]X| denotes the number of elements in the set
Ax.) [Hint: use Jensen’s inequality (2.48); if your first attempt to use

Jensen does not succeed, remember that Jensen involves both a random

variable and a function, and you have quite a lot of freedom in choosing

these; think about whether your chosen function f should be convex or

P(z)
1 0.05)?
og 55| > 0.05)

concave.|

> Exercise 2.26.1% P44 Prove that the relative entropy (equation (2.45)) satisfies
Dk, (P||Q) > 0 (Gibbs’ inequality) with equality only if P = Q.

> Exercise 2.27.12] Prove that the entropy is indeed decomposable as described
in equations (2.43-2.44).

37

38 2 — Probability, Entropy, and Inference

> Exercise 2.28.12] A random variable z € {0,1,2,3} is selected by flipping a
bent coin with bias f to determine whether the outcome is in {0,1} or 94 0
{2,3}; then either flipping a second bent coin with bias g or a third bent
coin with bias h respectively. Write down the probability distribution r -g
of z. Use the decomposability of the entropy (2.44) to find the entropy
of X. [Notice how compact an expression results if you make use of the
binary entropy function Hy(z), compared with writing out the four-term 1-f hx 2
entropy explicitly.] Find the derivative of H(X) with respect to f. [Hint: <
dHy(z)/dz = log((1 - z) /)]

> Exercise 2.29.12] An unbiased coin is flipped until one head is thrown. What is
the entropy of the random variable z € {1,2,3,...}, the number of flips?
Repeat the calculation for the case of a biased coin with probability f of
coming up heads. [Hint: solve the problem both directly and by using
the decomposability of the entropy (2.43).]

2.9 Further exercises

Forward probability

> Exercise 2.30.17] An wrn contains w white balls and b black balls. Two balls
are drawn, one after the other, without replacement. Prove that the
probability that the first ball is white is equal to the probability that the
second is white.

> Exercise 2.31.[2] A circular coin of diameter a is thrown onto a square grid
whose squares are b x b. (a < b) What is the probability that the coin
will lie entirely within one square? [Ans: (1 — a/b)?]

> Exercise 2.32.13] Buffon’s needle. A needle of length a is thrown onto a plane
covered with equally spaced parallel lines with separation b. What is
the probability that the needle will cross a line? [Ans, if a < b: 2¢/zp]
[Generalization — Buffon's noodle: on average, a random curve of length
A is expected to intersect the lines 24/xb times.]

Exercise 2.33.1%] Two points are selected at random on a straight line segment
of length 1. What is the probability that a triangle can be constructed
out of the three resulting segments?

Exercise 2.34.[% P51 An unbiased coin is flipped until one head is thrown.
What is the expected number of tails and the expected number of heads?

Fred, who doesn’t know that the coin is unbiased, estimates the bias
using f = h/(h +t), where h and t are the numbers of heads and tails
tossed. Compute and sketch the probability distribution of f.

NB, this is a forward probability problem, a sampling theory problem,
not an inference problem. Don’t use Bayes’ theorem.

ﬁ% Exercise 2.35.[% P45 Frod rolls an unbiased six-sided die once per second, not-
ing the occasions when the outcome is a six.
(a) What is the mean number of rolls from one six to the next six?

(b) Between two rolls, the clock strikes one. What is the mean number
of rolls until the next six?

2.9: Further exercises 39

(¢) Now think back before the clock struck. What is the mean number
of rolls, going back in time, until the most recent six?

(d) What is the mean number of rolls from the six before the clock
struck to the next six?

(e) Is your answer to (d) different from your answer to (a)? Explain.

Another version of this exercise refers to Fred waiting for a bus at a
bus-stop in Poissonville where buses arrive independently at random (a
Poisson process), with, on average, one bus every six minutes. What is
the average wait for a bus, after Fred arrives at the stop? [6 minutes.] So
what is the time between the two buses, the one that Fred just missed,
and the one that he catches? [12 minutes.] Explain the apparent para-
dox. Note the contrast with the situation in Clockville, where the buses
are spaced exactly 6 minutes apart. There, as you can confirm, the mean
wait at a bus-stop is 3 minutes, and the time between the missed bus
and the next one is 6 minutes.

Conditional probability

> Exercise 2.36.12] You meet Fred. Fred tells you he has two brothers, Alf and
Bob.

What is the probability that Fred is older than Bob?

Fred tells you that he is older than Alf. Now, what is the probability
that Fred is older than Bob? (That is, what is the conditional probability
that F' > B given that F' > A?)

> Exercise 2.37.[2] The inhabitants of an island tell the truth one third of the
time. They lie with probability 2/3.

On an occasion, after one of them made a statement, you ask another
‘was that statement true?’ and he says ‘yes’.

What is the probability that the statement was indeed true?

> Exercise 2.38.[% P-40] Compare two ways of computing the probability of error
of the repetition code Rs, assuming a binary symmetric channel (you
did this once for exercise 1.2 (p.7)) and confirm that they give the same
answer.

Binomial distribution method. Add the probability of all three bits’
being flipped to the probability of exactly two bits’ being flipped.

Sum rule method. Using the sum rule, compute the marginal prob-
ability that r takes on each of the eight possible values, P(r).
[P(r) = Y, P(s)P(r|s).] Then compute the posterior probabil-
ity of s for each of the eight values of r. [In fact, by symmetry,
only two example cases r = (000) and r = (001) need be consid-
ered.] Notice that some of the inferred bits are better determined Equation (1.18) gives the posterior
than others. From the posterior probability P(s|r) you can read probability of the input s, given the
out the case-by-case error probability, the probability that the more ~ eceived vector .
probable hypothesis is not correct, P(error|r). Find the average
error probability using the sum rule,

P(error) = Z P(r)P(error|r). (2.55)

40 2 — Probability, Entropy, and Inference

> Exercise 2.39.13€] The frequency p,, of the nth most frequent word in English
is roughly approximated by

0.1 1...12
pn~{ n forn e 507 (2.56)

0 n>12367.

[This remarkable 1/n law is known as Zipf’s law, and applies to the word
frequencies of many languages (Zipf, 1949).] If we assume that English
is generated by picking words at random according to this distribution,
what is the entropy of English (per word)? [This calculation can be found
in ‘Prediction and entropy of printed English’, C.E. Shannon, Bell Syst.
Tech. J. 30, pp.50-64 (1950), but, inexplicably, the great man made
numerical errors in it.]

2.10 Solutions

Solution to exercise 2.2 (p.24). No, they are not independent. If they were
then all the conditional distributions P(y|x) would be identical functions of
y, regardless of x (c.f. figure 2.3).

Solution to exercise 2.4 (p.27). We define the fraction fp = B/K.

(a) The number of black balls has a binomial distribution.
N np N—-np
P(np|fs,N) = ng)P (1-/B) : (2.57)

(b) The mean and variance of this distribution are:
Elnpl =Nfp (2.58)

Var[nB] = NfB(l - fB) (2.59)
These results were derived in example 1.1 (p.1). The standard deviation
of np is \/var[ng] = /N fs(1 — [B).

When B/K =1/5 and N = 5, the expectation and variance of np are 1
and 4/5. The standard deviation is 0.89.

When B/K =1/5 and N = 400, the expectation and variance of np are
80 and 64. The standard deviation is 8.

Solution to exercise 2.5 (p.27). The numerator of the quantity

,_ (s~ fBN)?
Nfp(1- fB)

can be recognized as (ng — & [nB])Z; the denominator is equal to the variance
of np (2.59), which is by definition the expectation of the numerator. So the
expectation of z is 1. [A random variable like z, which measures the deviation
of data from the expected value, is sometimes called x? (chi-squared).]

In the case N = 5 and fp = 1/5, Nfp is 1, and var[np] is 4/5. The
numerator has five possible values, only one of which is smaller than 1: (np —
fBN)? = 0 has probability P(np=1) = 0.4096; so the probability that z < 1
is 0.4096.

2.10: Solutions

Solution to exercise 2.14 (p.35). We wish to prove, given the property

FQAz+ (1= Nag) < Af(z1) + (1= A)f(22), (2.60)

that, if >~ p; =1 and p; > 0,

I I
> pif(xi) > f (szwz’) : (2.61)
= im1

We proceed by recursion, working from the right-hand side. (This proof does

not handle cases where some p; = 0; such details are left to the pedantic

reader.) At the first line we use the definition of convexity (2.60) with A =
PL__ — py; at the second line, A = <2

Zj:l Pi DisaPil

I I
f <ZPZIZ> =/ (p11’1 + ZPW&)
i=1

=2

I I I
< puflen) + sz] f(ZPiwi ZZH)] (2.62)
i=2 i i
I
< plf 531 ZPZ:| [Z (.%’) %l 3 i (szxz/z z>:|7
i=2 Di i=2 Di =3 =3
and so forth. O

Solution to exercise 2.16 (p.36).

(a) For the outcomes {2, 3,4,5,6,7, 8 9 10,11, 12}, the probabilities are P =
3 4 5 6 5 4 3

36’ 36’ 367367 367 367 367 36’ 36° 36’ 36

(b) The value of one die has mean 3.5 and variance 35/12. So the sum of
one hundred has mean 350 and variance 3500/12 ~ 292, and by the
central limit theorem the probability distribution is roughly Gaussian
(but confined to the integers), with this mean and variance.

(¢) In order to obtain a sum that has a uniform distribution we have to start
from random variables some of which have a spiky distribution with the
probability mass concentrated at the extremes. The unique solution is
to have one ordinary die and one with faces 6, 6, 6, 0, 0, 0.

(d) Yes, a uniform distribution can be created in several ways, for example
by labelling the rth die with the numbers {0,1,2,3,4,5} x 6".

Solution to exercise 2.17 (p.36).

a=m2 = Lo (2.63)
q q
and ¢ =1 — p gives
p
— = ¢ 2.64
L - (264)
a
1
= p = = . (2.65)

e*+1 1+4+exp(—a)
The hyperbolic tangent is

e’ —e @
tanh(a) = m (266)

41

42 2 — Probability, Entropy, and Inference

S0
1 1(1—¢e°
= = - 1
f(a) 1+exp(—a) 2 (1 +e@ *)
1 [e*2 —¢a/2 1
= = <m + 1) = E(tanh(a/Q) + 1). (267)
In the case b = log, p/q, we can repeat steps (2.63-2.63), replacing e by 2,
to obtain
1
= 2.
P=1¥2 (2.68)
Solution to exercise 2.18 (p.36).
P(y|z)P(x)
Plaxly) = —A20) 2.69
an o (269)
Plz=1]y) Ply|z=1) P(z=1)
(2.70)
P(z=0]y) P(y|z=0) P(x=0)
Plz=1]y) Ply|z=1) Plz=1)
= log ———F= = log + log 2.71
Plr=0]y) Plylz=0) " ®PE=o >

Solution to exercise 2.19 (p.36). The conditional independence of d; and dsy
given r means

P(z,dy,d3) = P()P(dy | 2)P(ds |). (2.72)

This gives a separation of the posterior probability ratio into a series of factors,
one for each data point, times the prior probability ratio.

Pa=1{d}) _ P({d}|z=1)Pla=1) 273)
P(z=0]{d;}) P({d;}[x=0) P(z=0) '

_ P(d1 |£L’=1) P(d2|$:1) P({L‘Zl)

= P(di|2=0)P(dy|2=0) P(x=0) (2.74)

Life in high-dimensional spaces

Solution to exercise 2.20 (p.37). The volume of a hypersphere of radius r in

N dimensions is in fact
aN/2 N
V(T, N) = W’r 5 (275)

but you don’t need to know this. For this question all that we need is the
r-dependence, V (r, N) oc rV. So the fractional volume in (r — ¢, 7) is

WI(IE)N‘ (2.76)

The fractional volumes in the shells for the required cases are:

N 2 10 1000

e/r =001 0.02 0.096 0.99996
e/r=05 075 0.999 1— 271000

Notice that no matter how small € is, for large enough N essentially all the
probability mass is in the surface shell of thickness e.

2.10: Solutions

Solution to exercise 2.21 (p.37). pa=0.1, pp=02, p.=0.7. f(a)=10,
f(b)=5, and f(c)=10/7.

Ef(@)]=01x1040.2x5+0.7x 10/7 = 3. (2.77)
For each z, f(z) = 1/P(x), so
EN/P(z)] = E[f(x)] = 3. (2.78)
Solution to exercise 2.22 (p.37). For general X,
E[1/P(z)] = ; P(z)1/P(x) = EZA: 1=|Ax]. (2.79)

Solution to exercise 2.23 (p.37). p,=0.1, p,=0.2, p.=0.7. g(a)=0, g(b)=1,
and g(¢)=0.
Elg(x)] =pp=0.2. (2.80)

Solution to exercise 2.24 (p.37).

P (P(z)€[0.15,0.5)) = p, = 0.2. (2.81)
p (’10g IB(—;)‘ > 0.05) = Do+ pe = 0.8. (2.82)

Solution to exercise 2.25 (p.37). This type of question can be approached in
two ways: either by differentiating the function to be maximized, finding the
maximum, and proving it is a global maximum; this strategy is somewhat
risky since it is possible for the maximum of a function to be at the boundary
of the space, at a place where the derivative is not zero. Alternatively, a
carefully chosen inequality can establish the answer. The second method is
much neater.

Proof by differentiation (not the recommended method). Since it is slightly
easier to differentiate In1/p than log, 1/p, we temporarily define H(X) to be
measured using natural logarithms, thus scaling it down by a factor of log, e.

1
H(X) = Zpiln; (2.83)
OH(X) 1

= In——1 2.84
Op; Di (2.84)

we maximize subject to the constraint >, p; = 1 which can be enforced with
a Lagrange multiplier:

Glp) = HX)+A (Zpi - 1) (2.85)
9G(p) 1
= In——14+ A\ 2.86
Ip; i (2.86)
At a maximum,

mt—14x = 0 (2.87)

bi
N mZ% Y (2.88)

so all the p; are equal. That this extremum is indeed a maximum is established

by finding the curvature:
0°G(p) 1
= ——0;j, 2.89
IpiOp; pi (2.89)

which is negative definite. O

43

44 2 — Probability, Entropy, and Inference
Proof using Jensen's inequality (recommended method). First a reminder of
the inequality.
If f is a convex — function and z is a random variable then:
Ef(@)] = f (&)

If f is strictly convex— and & [f(x)] = f (£]z]), then the random
variable x is a constant (with probability 1).

The secret of a proof using Jensen’s inequality is to choose the right func-
tion and the right random variable. We could define

flu) = log% = —logu (2.90)

(which is a convex function) and think of H(X) =) p; log p% as the mean of
f(u) where u = P(z), but this would not get us there — it would give us an
inequality in the wrong direction. If instead we define

u=1/P(x) (2.91)
then we find:
H(X)=-€[f(1/P(x))] < —f(E[1/P(z)]); (2.92)
now we know from exercise 2.22 (p.37) that £[1/P(z)] = |Ax|, so
H(X) < —f (| Ax]) = log |Ax]. (2.93)

Equality holds only if the random variable v = 1/P(x) is a constant, which
means P(z) is a constant for all x. O

Solution to exercise 2.26 (p.37).
P(z)

Dia(PIIQ) = Y- P(a)los 5 (2.94)

We prove Gibbs’ inequality using Jensen’s inequality. Let f(u) =log1/u and
U= %. Then

Dxu(PlIQ) = E[f(Qx)/P(x))] (2.95)

Q(z) < 1)

> Pz —log [————) =0, (2.96

> 1(Sres) <o (s om (290

with equality only if u = % is a constant, that is, if Q(z) = P(x). o

Second solution. In the above proof the expectations were with respect to
the probability distribution P(x). A second solution method uses Jensen’s
inequality with Q(z) instead. We define f(u) = ulogu and let u = ggg

Then

Da(PIQ) = Y Qg s s = Y QW) (5) (207

P@Y _)
f (z Q(w)Q(x)> - f(n =0, (299)

%

with equality only if u = ggg is a constant, that is, if Q(z) = P(x). O

2.10: Solutions

Solution to exercise 2.28 (p.38).
H(X) = Hy(f) + fHa(g) + (1 = f)Ha(h). (2.99)

Solution to exercise 2.29 (p.38). The probability that there are 2z — 1 tails and
then one head (so we get the first head on the zth toss) is

P(z) = (1 - f)*f. (2.100)

If the first toss is a tail, the probability distribution for the future looks just
like it did before we made the first toss. Thus we have a recursive expression
for the entropy:

H(X) = Ha(f) + (1 - f)H(X). (2.101)

Rearranging,
H(X) = Ha(f)/f. (2.102)

Solution to exercise 2.34 (p.38). The probability of the number of tails ¢ is

Plt) = <%>t% for ¢ > 0. (2.103)

The expected number of heads is 1, by definition of the problem. The expected
number of tails is
ad 1\ 41
= -] = 2.104
&[] t§=0t(2) 5 (2.104)

which may be shown to be 1 in a variety of ways. For example, since the
situation after one tail is thrown is equivalent to the opening situation, we can
write down the recurrence relation

£t = %(1 +E) + %0 S & =1 (2.105)

The probability distribution of the ‘estimator’ ji = 1/(1 +1¢), given that
f =1/2, is plotted in figure 2.12. The probability of f is simply the probability
of the corresponding value of t.

Solution to exercise 2.35 (p.38).

(a) The mean number of rolls from one six to the next six is six (assuming
we start counting rolls after the first of the two sixes). The probability
that the next six occurs on the rth roll is the probability of not getting
a six for r — 1 rolls multiplied by the probability of then getting a six:

5711
Plr =) = (6) o forre {123,). (2.106)

This probability distribution of the number of rolls, 7, may be called an
exponential distribution, since

P(ri=r)=¢/Z, (2.107)
where a = 1n(6/5), and Z is a normalizing constant.
(b) The mean number of rolls from the clock until the next six is six.

(¢) The mean number of rolls, going back in time, until the most recent six
is six.

45
05 - o
P
o (f)
03 -
02 -
01 - ‘
0 il
I I I I I I
0 02 04 06 08 1
f

Figure 2.12. The probability
djstribution of the estimator
f=1/(1+t), given that f =1/2.

46

(d)

(e)

2 — Probability, Entropy, and Inference

The mean number of rolls from the six before the clock struck to the six
after the clock struck is the sum of the answers to (b) and (c), less one,
that is, eleven.

Rather than explaining the difference between (a) and (d), let me give
another hint. Imagine that the buses in Poissonville arrive indepen-
dently at random (a Poisson process), with, on average, one bus every
six minutes. Imagine that passengers turn up at bus-stops at a uniform
rate, and are scooped up by the bus without delay, so the interval be-
tween two buses remains constant. Buses that follow gaps bigger than
six minutes become overcrowded. The passengers’ representative com-
plains that two-thirds of all passengers found themselves on overcrowded
buses. The bus operator claims, ‘no, no — only one third of our buses

are overcrowded’. Can both these claims be true?

Solution to exercise 2.38 (p.39).

Binomial distribution method. From the solution to exercise 1.2, pgp =

32— 1)+ f°.

Sum rule method. The marginal probabilities of the eight values of r are

Solution to exercise 2.39 (p.40).

illustrated by:

P(r=000) = 2(1 — £)% + /253, (2.108)
P(r=001) = Yaf(1 —)2+ V2 f2(1 — f) =Yof(1—f). (2.109)
The posterior probabilities are represented by
P(s=1|r=000) = % (2.110)
and
P(s=1|r=001) = (-7 _f (2.111)

fA=1r+ A=)

The probabilities of error in these representative cases are thus

f3
P(error | I':OOO) = m (2112)
and
P(error | r=001) = f. (2.113)

Notice that while the average probability of error of Rg is about 32, the
probability (given r) that any particular bit is wrong is either about f3

or f.

The average error probability, using the sum rule, is

P(error) = ZP(r)P(error\r)

f3

= 2[l2(1—f)3 + 1/2f3}m

+6[12f(1 = f)If.
So
P(error) = f3+3f%(1— f).

The entropy is 9.7 bits per word.

0.15 o
0.1

005 4 o

0

Figure 2.13. The probability
distribution of the number of rolls
r1 from one 6 to the next (falling
solid line),

Plry =) = <2)H

and the probability distribution
(dashed line) of the number of
rolls from the 6 before 1pm to the
next 6, Tiot,

=+ ()

The probability P(r; > 6) is
about 1/3; the probability
P(ryor > 6) is about 2/3. The
mean of r; is 6, and the mean of
Ttor 1S 11.

The first two terms are for the cases
r = 000 and 111; the remaining 6 are
for the other outcomes, which share
the same probability of occuring and
identical error probability, f.

About Chapter 3

If you are eager to get on to information theory, data compression, and noisy
channels, you can skip to Chapter 4. Data compression and data modelling
are intimately connected, however, so you’ll probably want to come back to
this chapter by the time you get to Chapter 6. Before reading Chapter 3, it
might be good to look at the following exercises.

> Exercise 3.1.1% P59 A die is selected at random from two twenty-faced dice
on which the symbols 1-10 are written with nonuniform frequency as

follows.
Symbol 1 2 3 4 5 6 7 8 9 10
Number of facesofdieA 6 4 3 2 1 1 1 1 1 0
Number of facesofdieB 3 3 2 2 2 2 2 2 1 1

The randomly chosen die is rolled 7 times, with the following outcomes:
5,3,9,3,8,4, 7.

What is the probability that the die is die A?
> Exercise 3.2.[2’ P59 Agsume that there is a third twenty-faced die, die C, on
which the symbols 1-20 are written once each. As above, one of the
three dice is selected at random and rolled 7 times, giving the outcomes:
3,5,4,8,3,9,7.
What is the probability that the die is (a) die A, (b) die B, (c) die C?

ﬁ% Exercise 3.3.1% P-48] Inferring a decay constant
Unstable particles are emitted from a source and decay at a distance
x, a real number that has an exponential probability distribution with
characteristic length \. Decay events can only be observed if they occur
in a window extending from z = lcm to x = 20cm. N decays are
observed at locations {x1,...,zx}. What is A?

i***** * * * %

X

> Exercise 3.4.1% P-5%] Forensic evidence

Two people have left traces of their own blood at the scene of a crime. A
suspect, Oliver, is tested and found to have type ‘O’ blood. The blood
groups of the two traces are found to be of type ‘O’ (a common type
in the local population, having frequency 60%) and of type ‘AB’ (a rare
type, with frequency 1%). Do these data (type ‘O’ and ‘AB’ blood were
found at scene) give evidence in favour of the proposition that Oliver
was one of the two people present at the crime?

47

3.1

More about Inference

It is not a controversial statement that Bayes’ theorem provides the correct
language for describing the inference of a message communicated over a noisy
channel, as we used it in Chapter 1 (p.6). But strangely, when it comes to
other inference problems, the use of Bayes’ theorem is not so widespread.

A first inference problem

When I was an undergraduate in Cambridge, I was privileged to receive su-
pervisions from Steve Gull. Sitting at his desk in a dishevelled office in St.
John’s College, I asked him how one ought to answer an old Tripos question
(exercise 3.3):

Unstable particles are emitted from a source and decay at a
distance x, a real number that has an exponential probability dis-
tribution with characteristic length A. Decay events can only be
observed if they occur in a window extending from z = lcm to

xz = 20cm. N decays are observed at locations {x1,...,zx}. What
is A?
1 * kk ok ok x ok * ok
X

I had scratched my head over this for some time. My education had provided
me with a couple of approaches to solving such inference problems: contructing
‘estimators’ of the unknown parameters; or ‘fitting’ the model to the data, or
a processed version of the data.

Since the mean of an unconstrained exponential distribution is A, it seemed
reasonable to examine the sample mean z =), ,,/N and see if an estimator
\ could be obtained from it. It was evident that the estimator A = z — 1 would
be appropriate for A < 20 cm, but not for cases where the truncation of the
distribution at the right-hand side is significant; with a little ingenuity and
the introduction of ad hoc bins, promising estimators for A > 20 cm could be
constructed. But there was no obvious estimator that would work under all
conditions.

Nor could I find a satisfactory approach based on fitting the density P(x | A)
to a histogram derived from the data. I was stuck.

What is the general solution to this problem and others like it? Is it
always necessary, when confronted by a new inference problem, to grope in the
dark for appropriate ‘estimators’ and worry about finding the ‘best’ estimator
(whatever that means)?

48

3.1: A first inference problem

0.25
P(x|lambda=2)
P(x/lambda=5) -------
0.2 P(x|lambda=10) --------
0.15
0.1
0.05
0 i e
2 4 6 8 10 12 14 16 18 20
0.2
P(x=3|lambda)
P(x=5|lambda)
0.15 PFx—1?|Iambda)
0.1
0.05
0

1 10 100

Steve wrote down the probability of one data point, given A:

LN Zz(\) 1<z <20
e x
@) { 0 otherwise (3.1)
where
20 —z/A —1/A _ _—20/A
Z()\):'/1 dz ye z(e —e) (3.2)
This seemed obvious enough. Then he wrote Bayes’ theorem:
P({z} | NPA)
P {x1,...,zN —_— 3.3
(I)) (33)
1 N
x ——————exp|(— Tn/A) P(N). 34
SZo0 p (=X 2a/A) PO, (34)

Suddenly, the straightforward distribution P({z1,...,zn}|A), defining the
probability of the data given the hypothesis A, was being turned on its head
so as to define the probability of a hypothesis given the data. A simple figure
showed the probability of a single data point P(x | A) as a familiar function of z,
for different values of A (figure 3.1). Each curve was an innocent exponential,
normalized to have area 1. Plotting the same function as a function of A for a
fixed value of x, something remarkable happens: a peak emerges (figure 3.2).
To help understand these two points of view of the one function, figure 3.3
shows a surface plot of P(x|\) as a function of z and A.

For a dataset comsisting of several points, e.g., the six points {z}Y_; =
{1.5,2,3,4,5,12}, the likelihood function P({z}|\) is the product of the N
functions of A, P(z, |\) (figure 3.4).

1.4e-06
1.2e-06
1le-06
8e-07
6e-07
4e-07
2e-07

0

49

Figure 3.1. The probability
density P(x|A) as a function of z.

Figure 3.2. The probability
density P(x|\) as a function of A,
for three different values of x.
When plotted this way round, the
function is known as the likelihood
of \. The marks indicate the
three values of A\, A = 2,5,10, that
were used in the preceding figure.

Figure 3.3. The probability
density P(x|A) as a function of
and A. Figures 3.1 and 3.2 are
vertical sections through this
surface.

Figure 3.4. The likelihood function
in the case of a six-point dataset,
P({z} ={1.5,2,3,4,5,12} | \), as
a function of .

50 3 — More about Inference

Steve summarized Bayes’ theorem as embodying the fact that

what you know about A after the data arrive is what you knew

before [P(A)], and what the data told you [P({z}|\)].

Probabilities are used here to quantify degrees of belief. To nip possible
confusion in the bud, it must be emphasized that the hypothesis A that cor-
rectly describes the situation is not a stochastic variable, and the fact that the
Bayesian uses a probability distribution P does mot mean that he thinks of
the world as stochastically changing its nature between the states described
by the different hypotheses. He uses the notation of probabilities to represent
his beliefs about the mutually exclusive micro-hypotheses (here, values of \),
of which only one is actually true. That probabilities can denote degrees of
belief, given assumptions, seemed reasonable to me.

The posterior probability distribution (3.4) represents the unique and com-
plete solution to the problem. There is no need to invent ‘estimators’; nor do
we need to invent criteria for comparing alternative estimators with each other.
Whereas orthodox statisticians offer twenty ways of solving a problem, and an-
other twenty different criteria for deciding which of these solutions is the best,

Bayesian statistics only offers one answer to a well-posed problem. If you have any difficulty understand-
ing this chapter I recommend ensur-
ing you are happy with exercises 3.1
and 3.2 (p.47) then noting their sim-
ilarity to exercise 3.3.

Assumptions in inference

Our inference is conditional on our assumptions [for example, the prior P(\)].
Critics view such priors as a difficulty because they are ‘subjective’, but I don’t
see how it could be otherwise. How can one perform inference without making
assumptions? I believe that it is of great value that Bayesian methods force
one to make these tacit assumptions explicit.

First, once assumptions are made, the inferences are objective and unique,
reproduceable with complete agreement by anyone who has the same informa-
tion and makes the same assumptions. For example, given the assumptions
listed above, H, and the data D, everyone will agree about the posterior prob-
ability of the decay length A:

P(D|)H)P(\|H)

P(\|D,H) = i)

(3.5)

Second, when the assumptions are explicit, they are easier to criticize, and
easier to modify — indeed, we can quantify the sensitivity of our inferences to
the details of the assumptions. For example, we can note from the likelihood
curves in figure 3.2 that in the case of a single data point at = = 5, the
likelihood function is less strongly peaked than in the case = 3; the details
of the prior P(\) become increasingly important as the sample mean T gets
closer to the middle of the window, 10.5. In the case x = 12, the likelihood
function doesn’t have a peak at all — such data merely rule out small values
of A\, and don’t give any information about the relative probabilities of large
values of A\. So in this case, the details of the prior at the small A end of things
are not important, but at the large A\ end, the prior is important.

Third, when we are not sure which of various alternative assumptions is
the most appropriate for a problem, we can treat this question as another
inference task. Thus, given data D, we can compare alternative assumptions
‘H using Bayes’ theorem:

P(D|H,I)P(H|I)
P(DII) ’

P(H|D,1) = (3.6)

3.2

3.2: The bent coin

where I denotes the highest assumptions, which we are not questioning.

Fourth, we can take into account our uncertainty regarding such assump-
tions when we make subsequent predictions. Rather than choosing one partic-
ular assumption H*, and working out our predictions about some quantity t,
P(t| D, H*, I), we obtain predictions that take into account our uncertainty
about H by using the sum rule:

P(t|D,I) =) P(t|D,H,I)P(H|D,I). (3.7)
H

This is another contrast with orthodox statistics, in which it is conventional
to ‘test’ a default model, and then, if the test ‘accepts the model’ at some
‘significance level’; to use exclusively that model to make predictions.

Steve thus persuaded me that

probability theory reaches parts that ad hoc methods cannot reach. I

Let’s look at a few more examples of simple inference problems.

The bent coin

A bent coin is tossed F' times; we observe a sequence s of heads and tails
(which we’ll denote by the symbols a and b). We wish to know the bias of
the coin, and predict the probability that the next toss will result in a head.
We first encountered this task in example 2.7 (p.30), and we will encounter it
again in Chapter 6, when we discuss adaptive data compression. It is also the
original inference problem studied by Thomas Bayes in his essay published in
1763.

As in exercise 2.8 (p.30), we will assume a uniform prior distribution and
obtain a posterior distribution by multiplying by the likelihood. A critic might
object, ‘where did this prior come from?’ I will not claim that the uniform
prior is in any way fundamental; indeed we’ll give examples of nonuniform
priors later. The prior is a subjective assumption. One of the themes of this
book is:

you can’t do inference — or data compression — without making
assumptions.

We give the name H; to our assumptions. [We’'ll be introducing an al-
ternative set of assumptions in a moment.] The probability, given p,, that F'
tosses result in a sequence s that contains {F,, Fy,} counts of the two outcomes
is

P(s|pa, F, H1) = pk=(1 — pa)*e. (3.8)

[For example, P(s=aaba|p,, F'=4,H1) = papa(l — pa)pa.] Our first model
assumes a uniform prior distribution for ps,

P(pa | Hl) =1, pa€ [07 1] (3'9)
and pp =1 — pa.

Inferring unknown parameters

Given a string of length F' of which F, are as and F;, are bs, we are interested
in (a) inferring what p, might be; (b) predicting whether the next character is

51

g

3.3

52

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H; to be true, the posterior probability of p,, given a string s
of length F' that has counts {F,, F,}, is, by Bayes’ theorem,

P(S |pa7F7H1)P(pa | Hl)
P(s|F, ")
The factor P(s|pa, F,H1), which, as a function of p,, is known as the likeli-

hood function, was given in equation (3.8); the prior P(p, | H1) was given in
equation (3.9). Our inference of p, is thus:

pk(1—pa)™®

P(pa|s, F, H1) (3.10)

P(pals, I, Hy) P (3.11)
The normalizing constant is given by the beta integral
1 [N(F,+)I(F, + 1) F,'F!
P(SIF,Hl):/O dpap*(1 —pa)™ = L(F, +Fbj2) ~ (7 +be+ 0N
(3.12)

Exercise 3.5.1% P-%] Sketch the posterior probability P(p,|s=aba, F'=3).

What is the most probable value of p, (i.e., the value that maximizes
the posterior probability density)? What is the mean value of p, under
this distribution?

Answer the same questions for the posterior probability
P(ps|s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that next toss is a a, is
obtained by integrating over p,. This has the effect of taking into account our
uncertainty about p, when making predictions. By the sum rule,

P(als,F) — / dpa P(a|pa)P(pa|s, F). (3.13)
The probability of an a given p, is simply pa, so

F, R

_ pa*(1—pa)™

P(als, F) —/dpapa PGIF)
+1 R
pat (1 —pa)™
dpy, ——F——— (3.15)
/ P(s|F)
B { (Fa+ DIK! }/[F'F) } _ F,+1

(Pt Ry +2)! (Fo+F+1)] F+FR+2

which is known as Laplace’s rule.

(3.14)

(3.16)

The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter p,, which in the original model, H;, could take any value between
0 and 1, is according to the new hypothesis, Hg, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed Hy so that the suffix of
each model indicates its number of free parameters.|

How can we compare these two models in the light of data? We wish to
infer how probable H; is relative to Hy.

3 — More about Inference

3.3: The bent coin and model comparison

Model comparison as inference

In order to perform model comparison, we write down Bayes’ theorem again,
but this time with a different argument on the left-hand side. We wish to
know how probable H; is given the data. By Bayes’ theorem,

P(S|F’H1)P(H1).

P F)= 1
Similarly, the posterior probability of Hj is
P(s|F P

P(s|F)

The normalizing constant in both cases is P(s|F'), which is the total proba-
bility of getting the observed data. If H; and Hy are the only models under
consideration, this probability is given by the sum rule:

P(s|F) = P(s|F,H1)P(H1) + P(s | F, Ho)P(Hy). (3.19)

To evaluate the posterior probabilities of the hypotheses we need to assign
values to the prior probabilities P(H1) and P(Hp); in this case, we might
set these to 1/2 each. And we need to evaluate the data-dependent terms
P(s|F,H1) and P(s|F,Hy). We can give names to these quantities. The
quantity P(s|F,H;) is a measure of how much the data favour H;, and we
call it the evidence for model H;. We already encountered this quantity in
equation (3.10) where it appeared as the normalizing constant of the first
inference we made — the inference of p, given the data.

How model comparison works: The evidence for a model is

usually the normalizing constant of an earlier Bayesian inference.

We evaluated the normalizing constant for model H; in (3.12). The evi-
dence for model Hy is very simple because this model has no parameters to
infer. Defining py to be 1/6, we have

P(s| F, Ho) = pj*(1 — po)™. (3.20)
Thus the posterior probability ratio of model H; to model Hy is
P(Hi|s, F) _ P(s|F,Hi)P(H1)
T e T (3.21)
P(Ho|s, F) P(s| F, Ho)P(Ho)
FulF!
(FatFo+1)! (3.22)

po*(1 —po)P

Some values of this posterior probability ratio are illustrated in table 3.5. The
first five lines illustrate that some outcomes favour one model, and some favour
the other. No outcome is completely incompatible with either model. With
small amounts of data (six tosses, say) it is typically not the case that one of
the two models is overwhelmingly more probable than the other. But with
more data, the evidence against Hy given by any data set with the ratio Fy: Fy,
differing from 1:5 mounts up. You can’t predict in advance how much data
are needed to be pretty sure which theory is true. It depends what pg is.

The simpler model, Hy, since it has no adjustable parameters, is able to
lose out by the biggest margin. The odds may be hundreds to one against it.
The more complex model can never lose out by a large margin; there’s no data
set that is actually unlikely given model H;.

53

54
P(Hl | S F)
F Data (Fy, F,) ==
P(HO | S, F)
6 (5,1) 222.2
6 (3,3) 2.67
6 (2,4) 0.71 =1/14
6 (1,5) 0.356 =1/2.8
6 (0,6) 0.427 =1/2.3
20 (10, 10) 96.5
20 (3,17) 0.2 =1/5
20 (0,20) 1.83
Hy is true H; is true
o pa=1/6 8 pa = 0.25 o pa = 0.5
6 10001 100011 ¢ 1000/1
4 100/1 4 10011 4 100/1
2 101 2 101 2 10/1
0 FmM 11 0 My 111 0 11
-2 1/10 -2 /10 -2 1/10
-4 1/100 -4 17100 -4 1/100
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
g 1000/1 g 1000/1 2 "V 1000/1
4 100/1 4 10011 4 100/1
2 101 2 101 2 10/1
ol 1 0 SV 7 0 11
-2 1/10 -2 /10 -2 1/10
-4 1/100 -4 17100 -4 1/100
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
2 1000/1 g 1000/1 2 1000/1
4 100/1 4 10011 4 100/1
2 1011 2)\ 1011 2 10/1
0 1/1 0 171 0 1/1
-2 AN 1/10 -2 110 -2 1/10
-4 1/100 -4 17100 -4 1/100
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

> Exercise 3.6.12] Show that after F' tosses have taken place, the biggest value
that the log evidence ratio

log

P(s| F, H1)
P(S|F7HO)

(3.23)

can have scales linearly with F' if H; is more probable, but the log
evidence in favour of Hy can grow at most as log F.

> Exercise 3.7.[3

Typical behaviour of the evidence

, p-60]

Putting your sampling theory hat on, assuming F, has
not yet been measured, compute a plausible range that the log evidence
ratio might lie in, as a function of F' and the true value of p,, and sketch
it as a function of F for p, = po = 1/6, p, = 0.25, and p, = 1/2. [Hint:
sketch the log evidence as a function of the random variable F, and work
out the mean and standard deviation of Fy.]

Figure 3.6 shows the log evidence ratio as a function of the number of tosses,
F, in a number of simulated experiments. In the left-hand experiments, H
was true. In the right-hand ones, H; was true, and the value of p, is either
0.25 or 0.5.

We will discuss model comparison more in a later chapter.

3 — More about Inference

Table 3.5. Outcome of model
comparison between models H;
and Hj for the ‘bent coin’. Model
Ho states that p, =1/6, p, = 5/6.

Figure 3.6. Typical behaviour of
the evidence in favour of H; as
bent coin tosses accumulate under
three different conditions.
Horizontal axis is the number of
tosses, F'. The vertical axis on the

: P(s|FH1), :

left is In Pls [FHo) the right-hand
vertical axis shows the values of
P(s| F,H1)

P(s|F,Ho)"

(See also figure 3.8, p.60.)

3.4

3.4: An example of legal evidence

An example of legal evidence

The following example illustrates that there is more to Bayesian inference than
the priors.

Two people have left traces of their own blood at the scene of a
crime. A suspect, Oliver, is tested and found to have type ‘O’
blood. The blood groups of the two traces are found to be of type
‘O’ (a common type in the local population, having frequency 60%)
and of type ‘AB’ (a rare type, with frequency 1%). Do these data
(type ‘O’ and ‘AB’ blood were found at scene) give evidence in
favour of the proposition that Oliver was one of the two people
present at the crime?

A careless lawyer might claim that the fact that the suspect’s blood type was
found at the scene is positive evidence for the theory that he was present. But
this is not so.

Denote the proposition ‘the suspect and one unknown person were present’
by S. The alternative, S, states ‘two unknown people from the population were
present’. The prior in this problem is the prior probability ratio between the
propositions S and S. This quantity is important to the final verdict and
would be based on all other available information in the case. Our task here is
just to evaluate the contribution made by the data D, that is, the likelihood
ratio, P(D | S,H)/P(D|S,H). In my view, a jury’s task should generally be to
multiply together carefully evaluated likelihood ratios from each independent
piece of admissible evidence with an equally carefully reasoned prior proba-
bility. [This view is shared by many statisticians but learned British appeal
judges recently disagreed and actually overturned the verdict of a trial because
the jurors had been taught to use Bayes’ theorem to handle complicated DNA
evidence.]

The probability of the data given S is the probability that one unknown
person drawn from the population has blood type AB:

P(D[S,H) = pas (3.24)

(since given S, we already know that one trace will be of type O). The prob-
ability of the data given S is the probability that two unknown people drawn
from the population have types O and AB:

P(D|S,H) = 2po pas- (3.25)

In these equations H denotes the assumptions that two people were present
and left blood there, and that the probability distribution of the blood groups
of unknown people in an explanation is the same as the population frequencies.
Dividing, we obtain the likelihood ratio:
P(D|S,H) 1 1

SH) 2p0 = 0.83. 2
P(D|S.H) 2po _2x06 % (3.26)

Thus the data in fact provide weak evidence against the supposition that
Oliver was present.

This result may be found surprising, so let us examine it from various
points of view. First consider the case of another suspect, Alberto, who has
type AB. Intuitively, the data do provide evidence in favour of the theory S’

56

that this suspect was present, relative to the null hypothesis S. And indeed

the likelihood ratio in this case is:
P(D|S""H) 1
P(D | S, H) 2 PAB

= 50. (3.27)

Now let us change the situation slightly; imagine that 99% of people are of
blood type O, and the rest are of type AB. Only these two blood types exist
in the population. The data at the scene are the same as before. Consider
again how these data influence our beliefs about Oliver, a suspect of type
O, and Alberto, a suspect of type AB. Intuitively, we still believe that the
presence of the rare AB blood provides positive evidence that Alberto was
there. But does the fact that type O blood was detected at the scene favour
the hypothesis that Oliver was present? If this were the case, that would mean
that regardless of who the suspect is, the data make it more probable they were
present; everyone in the population would be under greater suspicion, which
would be absurd. The data may be compatible with any suspect of either
blood type being present, but if they provide evidence for some theories, they
must also provide evidence against other theories.

Here is another way of thinking about this: imagine that instead of two
people’s blood stains there are ten, and that in the entire local population
of one hundred, there are ninety type O suspects and ten type AB suspects.
Consider a particular type O suspect, Oliver: without any other information,
and before the blood test results come in, there is a one in 10 chance that he
was at the scene, since we know that 10 out of the 100 suspects were present.
We now get the results of blood tests, and find that nine of the ten stains are
of type AB, and one of the stains is of type O. Does this make it more likely
that Oliver was there? No, there is now only a one in ninety chance that he
was there, since we know that only one person present was of type O.

Maybe the intuition is aided finally by writing down the formulae for the
general case where ng blood stains of individuals of type O are found, and
nap of type AB, a total of N individuals in all, and unknown people come
from a large population with fractions po,pap. (There may be other blood
types too.) The task is to evaluate the likelihood ratio for the two hypotheses:
S, ‘the type O suspect (Oliver) and N—1 unknown others left N stains’; and
S, ‘N unknowns left N stains’. The probability of the data under hypothesis
S is just the probability of getting no, nap individuals of the two types when
N individuals are drawn at random from the population:

P(no,nap|S) = mpgopZ%B~ (3.28)

In the case of hypothesis S, we need the distribution of the N —1 other indi-
viduals: (V- 1)
P(TLO» NAB ‘ S) = mpgo_lngg. (329)

The likelihood ratio is:

P(no,nag|S) no/N

. = 3.30
P(no,nag|S) PO (8:30)

This is an instructive result. The likelihood ratio, i.e. the contribution of
these data to the question of whether Oliver was present, depends simply on
a comparison of the frequency of his blood type in the observed data with the
background frequency in the population. There is no dependence on the counts
of the other types found at the scene, or their frequencies in the population.

3 — More about Inference

g

g

3.5: Exercises

If there are more type O stains than the average number expected under
hypothesis S, then the data give evidence in favour of the presence of Oliver.
Conversely, if there are fewer type O stains than the expected number under
S, then the data reduce the probability of the hypothesis that he was there.
In the special case no/N = po, the data contribute no evidence either way,

regardless of the fact that the data are compatible with the hypothesis S.

Exercises

[2

Exercise 3.8.~ p-60] The three doors, normal rules.

On a game show, a contestant is told the rules as follows:

There are three doors, labelled 1, 2, 3. A single prize has
been hidden behind one of them. You get to select one door.
Initially your chosen door will not be opened. Instead, the
gameshow host will open one of the other two doors, and he
will do so in such a way as not to reveal the prize. For example,
if you first choose door 1, he will then open one of doors 2 and
3, and it is guaranteed that he will choose which one to open
so that the prize will not be revealed.

At this point, you will be given a fresh choice of door: you
can either stick with your first choice, or you can switch to the
other closed door. All the doors will then be opened and you
will receive whatever is behind your final choice of door.

Imagine that the contestant chooses door 1 first; then the gameshow host
opens door 3, revealing nothing behind the door, as promised. Should
the contestant (a) stick with door 1, or (b) switch to door 2, or (c¢) does
it make no difference?

Exercise 3.9.[2’ p-61] The three doors, earthquake scenario.

Imagine that the game happens again and just as the gameshow host is
about to open one of the doors a violent earthquake rattles the building
and one of the three doors flies open. It happens to be door 3, and it
happens not to have the prize behind it. The contestant had initially
chosen door 1.

Repositioning his toupée, the host suggests, ‘OK, since you chose door
1 initially, door 3 is a valid door for me to open, according to the rules
of the game; T'll let door 3 stay open. Let’s carry on as if nothing
happened.’

Should the contestant stick with door 1, or switch to door 2, or does it
make no difference? Assume that the prize was placed randomly, that
the gameshow host does not know where it is, and that the door flew
open because its latch was broken by the earthquake.

[A similar alternative scenario is a gameshow whose confused host for-
gets the rules, and where the prize is, and opens one of the unchosen
doors at random. He opens door 3, and the prize is not revealed. Should
the contestant choose what’s behind door 1 or door 2? Does the opti-
mal decision for the contestant depend on the contestant’s beliefs about
whether the gameshow host is confused or not?]

> Exercise 3.10.[2] Another example in which the emphasis is not on priors. You

visit a family whose three children are all at the local school. You don’t

57

58

know anything about the sexes of the children. While walking clum-
sily round the home, you stumble through one of the three unlabelled
bedroom doors that you know belong, one each, to the three children,
and find that the bedroom contains girlie stuff in sufficient quantities to
convince you that the child who lives in that bedroom is a girl. Later,
you sneak a look at a letter addressed to the parents, which reads ‘From
the Headmaster: we are sending this letter to all parents who have male
children at the school to inform them about the following boyish mat-
ters...’ .

These two sources of evidence establish that at least one of the three
children is a girl, and that at least one of the children is a boy. What
are the probabilities that there are (a) two girls and one boy; (b) two
boys and one girl?

> Exercise 3.11.[% P01 Mg S is found stabbed in her family garden. Mr S
behaves strangely after her death and is considered as a suspect. On
investigation of police and social records it is found that Mr S had beaten
up his wife on at least nine previous occasions. The prosecution advances
this data as evidence in favour of the hypothesis that Mr S is guilty of the
murder. ‘Ah no,” says Mr S’s highly paid lawyer, ‘statistically, only one
in a thousand wife-beaters actually goes on to murder his wife.! So the
wife-beating is not strong evidence at all. In fact, given the wife-beating
evidence alone, it’s extremely unlikely that he would be the murderer of
his wife — only a 1/1000 chance. You should therefore find him innocent.’

Is the lawyer right to imply that the history of wife-beating does not
point to Mr S’s being the murderer? Or is the lawyer a slimy trickster?
If the latter, what is wrong with his argument?

[Having received an indignant letter from a lawyer about the preceding
paragraph, I’d like to add an extra inference exercise at this point: Does
my suggestion that Mr. S.’s lawyer may have been a slimy trickster imply
that I believe all lawyers are slimy tricksters? (Answer: No.)]

> Exercise 3.12.[2] A bag contains one counter, known to be either white or
black. A white counter is put in, the bag is shaken, and a counter
is drawn out, which proves to be white. What is now the chance of
drawing a white counter? [Notice that the state of the bag, after the
operations, is exactly identical to its state before.]

> Exercise 3.13.1% P92 vou move into a new house; the phone is connected, and
you're pretty sure that the phone number is 740511, but not as sure as
you would like to be. As an experiment, you pick up the phone and
dial 740511; you obtain a ‘busy’ signal. Are you now more sure of your
phone number? If so, how much?

> Exercise 3.14.11] In a game, two coins are tossed. If either of the coins comes
up heads, you have won a prize. To claim the prize, you must point to
one of your coins that is a head and say ‘look, that coin’s a head, I've
won’. You watch Fred play the game. He tosses the two coins, and he

'In the U.S.A., it is estimated that 2 million women are abused each year by their partners.
In 1994, 4739 women were victims of homicide; of those, 1326 women (28%) were slain by
husbands and boyfriends.
(Sources: http://www.umn.edu/mincava/papers/factoid.htm,
http://www.gunfree.inter.net/vpc/womenfs.htm)

3 — More about Inference

3.6: Solutions

points to a coin and says ‘look, that coin’s a head, I've won’. What is
the probability that the other coin is a head?

> Exercise 3.15.[% P03 A statistical statement appeared in The Guardian on
Friday January 4, 2002:

When spun on edge 250 times, a Belgian one-euro coin came
up heads 140 times and tails 110. ‘It looks very suspicious
to me’, said Barry Blight, a statistics lecturer at the London
School of Economics. ‘If the coin were unbiased the chance of
getting a result as extreme as that would be less than 7%’.

But do these data give evidence that the coin is biased rather than fair?
[Hint: see equation (3.22).]

3.6 Solutions

Solution to exercise 3.1 (p.47). Let the data be D. Assuming equal prior
probabilities,
P(A|D) 1313121

P(BID) 2312223 /32 (3:31)

and P(A|D) = 9/41.

Solution to exercise 3.2 (p.47). The probability of the data given each hy-
pothesis is:

P(D|A)= 22— ° — (3.32)

P(D\B):lzllzil 64 (3.33)

1111111 1
P(D|C)= oo = . 34
(D1 = 25362020202020 ~ 207 (3:34)

So
18 18 64 1
P(A|D)= ——— = —; P(B|D)=—; P(C|D)=—.
(|) 18464 +1 83’ (|) 83’ (|) 83
(3.35)
(a) 0 02 04 06 038 1 (b) 0 02 04 06 038 1
P(p.|s=aba, F=3) x p2(1 — pa) P(pa|s=bbb, F=3) x (1 —pa)?

Solution to exercise 3.5 (p.52).

(a) P(pa|s=aba, F=3) o< p2(1 — pa). The most probable value of p, (i.e.,
the value that maximizes the posterior probability density) is 2/3. The
mean value of p, is 3/5.

See figure 3.7a.

59

Figure 3.7. Posterior probability
for the bias p, of a bent coin
given two different data sets.

60

(b) P(pa|s=bbb, F=3) oc (1 — pa)®. The most probable value of p, (i.e.,
the value that maximizes the posterior probability density) is 0. The
mean value of p, is 1/5.

See figure 3.7b.

Hp is true H; is true

pa =1/6 Pe = 0.25 Pa = 0.5
g 1000/1 g 1000/1 2 / 1000/1
4 100/1 4 1001 40/ 100/1
2 101 2 w01 2 ¢ 10/1
0 (0 1711 0k 1/1
2 -2 R 1710 -2 1/10
-4 1/100 -4 17100 -4 1/100

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Solution to exercise 3.7 (p.54). The curves in figure 3.8 were found by finding
the mean and standard deviation of F,, then setting F; to the mean + two
standard deviations to get a 95% plausible range for F,, and computing the
three corresponding values of the log evidence ratio.

Solution to exercise 3.8 (p.57). Let H; denote the hypothesis that the prize is
behind door i. We make the following assumptions: the three hypotheses Hj,
‘Ho and H3 are equiprobable a priori, i.e.,

P(Hy) = P(Hy) = P(1g) = 5. (3.36)
The datum we receive, after choosing door 1, is one of D =3 and D =2 (mean-
ing door 3 or 2 is opened, respectively). We assume that these two possible
outcomes have the following probabilities. If the prize is behind door 1 then
the host has a free choice; in this case we assume that the host selects at
random between D=2 and D =3. Otherwise the choice of the host is forced
and the probabilities are 0 and 1.

‘ P(D=2|H,)=1/ (3.37)

P(D=3|H;y)=12

P(D=2|H2)=0| P(D=2|H3)=1
P(D=3|Hs)=1|P(D=3|H3)=0

Now, using Bayes’ theorem, we evaluate the posterior probabilities of the

hypotheses:

P(D=3[H:)P(H:)
P(D=3)

P(H;| D=3) = (3.38)

| POwID=3)= Y0 | POt D=5 = 085 | POty | D=3) = L)
(3.39)

The denominator P(D =3) is (1/2) because it is the normalizing constant for
this posterior distribution. So

| P(H1|D=3) = 3| P(Hy|D=3) = %3|P(H3|D=3) = 0. |
(3.40)
So the contestant should switch to door 2 in order to have the biggest chance
of getting the prize.

Many people find this outcome surprising. There are two ways to make it
more intuitive. One is to play the game thirty times with a friend and keep
track of the frequency with which switching gets the prize. Alternatively, you
can perform a thought experiment in which the game is played with a million
doors. The rules are now that the contestant chooses one door, then the game

3 — More about Inference

Figure 3.8. Range of plausible
values of the log evidence in
favour of H; as a function of F'.
The vertical axis on the left is

log %; the right-hand

vertical axis shows the values of
P(s| F,H1)

The solid line shows the log
evidence if the random variable
F, takes on its mean value,

F, = poF. The dotted lines show
(approximately) the log evidence
if F, is at its 2.5th or 97.5th
percentile.

(See also figure 3.6, p.54.)

3.6: Solutions

show host opens 999,998 doors in such a way as not to reveal the prize, leaving
the contestant’s selected door and one other door closed. The contestant may
now stick or switch. Imagine the contestant confronted by a million doors,
of which doors 1 and 234,598 have not been opened, door 1 having been the
contestant’s initial guess. Where do you think the prize is?

Solution to exercise 3.9 (p.57). If door 3 is opened by an earthquake, the
inference comes out differently — even though visually the scene looks the
same. The nature of the data, and the probability of the data, are both
now different. The possible data outcomes are, firstly, that any number of
the doors might have opened. We could label the eight possible outcomes
d = (0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),...,(1,1,1). Secondly, it might
be that the prize is visible after the earthquake has opened one or more doors.
So the data D consists of the value of d, and a statement of whether the
prize was revealed. It is hard to say what the probabilities of these outcomes
are, since they depend on our beliefs about the reliability of the door latches
and the properties of earthquakes, but it is possible to extract the desired
posterior probability without naming the values of P(d|H;) for each d. All
that matters are the relative values of the quantities P(D |H;), P(D|Ha2),
P(D|Hz3), for the value of D that actually occured. [This is the likelihood
principle, which we met in section 2.3.] The value of D that actually occured is
d=(0,0,1), and no prize visible. First, it is clear that P(D | Hs) = 0, since the
datum that no prize is visible is incompatible with Hs. Now, assuming that
the contestant selected door 1, how does the probability P(D |H;) compare
with P(D|Hz2)? Assuming that earthquakes are not sensitive to decisions of
game show contestants, these two quantities have to be equal, by symmetry.
We don’t know how likely it is that door 3 falls off its hinges, but however
likely it is, it’s just as likely to do so whether the prize is behind door 1 or
door 2. So, if P(D|H;) and P(D |Hz) are equal, we obtain:

P(H|D) = PEIOCRL | (1| D) = FEFRILR) | p(ry| D) = PETO0R
=1/ =1/ =0.
(3.41)
The two possible hypotheses are now equally likely.

If we assume that the host knows where the prize is and might be acting
deceptively, then the answer might be further modified, because we have to
view the host’s words as part of the data.

Confused? It’s well worth making sure you understand these two gameshow
problems. Don’t worry, I slipped up on the second problem, the first time I
met it.

There is a general rule which helps immensely in confusing probability
problems:

Always write down the probability of everything.

(Steve Gull)

From this joint probability, any desired inference can be mechanically ob-
tained (figure 3.9).

Solution to exercise 3.11 (p.58). The statistic quoted by the lawyer indicates
the probability that a randomly selected wife-beater will also murder his wife.
The probability that the husband was the murderer, given that the wife has
been murdered, is a completely different quantity.

61

Where the prize is

door door door
1 2 3
none pnone pnone pnone
3 3 3
2 1
(3]
3
o
S 2
(2]
(0]
& 4 | |
3 3 | 3|3
c
[0}
g 12
4
o
]
S 13
=
)
<=
= 23
P1,2,3 | P1,2,3 | P1,2,3
1,2,3 |23 | 23 228
3 3 3

Figure 3.9. The probability of
everything, for the second
three-door problem, assuming an
earthquake has just occured.
Here, p3 is the probability that
door 3 alone is opened by an

earthquake.

62

To deduce the latter, we need to make further assumptions about the
probability of the wife’s being murdered by someone else. If she lives in a
neighbourhood with frequent random murders, then this probability is large
and the posterior probability that the husband did it (in the absence of other
evidence) may not be very large. But in more peaceful regions, it may well be
that the most likely person to have murdered you, if you are found murdered,
is one of your closest relatives.

Let’s work out some illustrative numbers with the help of the statistics
on page 58. Let m =1 denote the proposition that a woman has been mur-
dered; h=1, the proposition that the husband did it; and b=1, the propo-
sition that he beat her in the year preceding the murder. The statement
‘someone else did it’ is denoted by h=0. We need to define P(h|m=1),
Pb|h=1,m=1), and P(b=1|h=0,m=1) in order to compute the pos-
terior probability P(h=1|b=1,m=1). From the statistics, we can read
out P(h=1|m=1) = 0.28. And if two million women out of 100 million
are beaten, then P(b=1|h=0,m=1) = 0.02. Finally, we need a value for
P(b|h=1,m=1): if a man murders his wife, how likely is it that this is the
first time he laid a finger on her? I expect it’s pretty unlikely; so maybe
P(b=1|h=1,m=1) is 0.9 or larger.

By Bayes’ theorem, then,

.9 x .28

Plh=1]b=1,m=1) = 5o = 95%. (3.42)

One way to make obvious the sliminess of the lawyer on p.58 is to construct
arguments, with the same logical structure as his, that are clearly wrong.
For example, the lawyer could say ‘Not only was Mrs. S murdered, she was
murdered between 4.02pm and 4.03pm. Statistically, only one in a million
wife-beaters actually goes on to murder his wife between 4.02pm and 4.03pm.
So the wife-beating is not strong evidence at all. In fact, given the wife-beating
evidence alone, it’s extremely unlikely that he would murder his wife in this
way — only a 1/1,000,000 chance.’

Solution to exercise 3.13 (p.58). There are two hypotheses. Hy: your number
is 740511; H;: it is another number. The data, D, are ‘when I dialed 740511,
I got a busy signal’. What is the probability of D, given each hypothesis? If
your number is 740511, then we expect a busy signal with certainty:

P(D|Hy) =1.

On the other hand, if H; is true, then the probability that the number dialled
returns a busy signal is smaller than 1, since various other outcomes were also
possible (a ringing tone, or a number-unobtainable signal, for example). The
value of this probability P(D |H;) will depend on the probability « that a
random phone number similar to your own phone number would be a valid
phone number, and on the probability § that you get a busy signal when you
dial a valid phone number.

I estimate from the size of my phone book that Cambridge has about
75000 valid phone numbers, all of length six digits. The probability that a
random six-digit number is valid is therefore about 75000/10 = 0.075. If
we exclude numbers beginning with 0, 1, and 9 from the random choice, the
probability « is about 75000/700000 ~ 0.1. If we assume that telephone
numbers are clustered then a misremembered number might be more likely
to be valid than a randomly chosen number; so the probability, «, that our
guessed number would be valid, assuming H; is true, might be bigger than

3 — More about Inference

3.6: Solutions

0.1. Anyway, @ must be somewhere between 0.1 and 1. We can carry forward
this uncertainty in the probability and see how much it matters at the end.

The probability 3 that you get a busy signal when you dial a valid phone
number is equal to the fraction of phones you think are in use or off-the-hook
when you make your tentative call. This fraction varies from town to town
and with the time of day. In Cambridge, during the day, I would guess that
about 1% of phones are in use. At 4am, maybe 0.1%, or fewer.

The probability P(D |H;i) is the product of a and 3, that is, about 0.1 x
0.01 = 1073, According to our estimates, there’s about a one-in-a-thousand
chance of getting a busy signal when you dial a random number; or one-in-a-
hundred, if valid numbers are strongly clustered; or one-in-10%, if you dial in
the wee hours.

How do the data affect your beliefs about your phone number? The pos-
terior probability ratio is the likelihood ratio times the prior probability ratio:

P(Ho|D) _ P(D|Ho) P(Ho)

P(H,|D) ~ P(D|Hy) P(H1) (3.43)

The likelihood ratio is about 100-to-1 or 1000-to-1, so the posterior probability
ratio is swung by a factor of 100 or 1000 in favour of Hy. If the prior probability
of Hy was 0.5 then the posterior probability is

1
+ P(Ho | D)

Solution to exercise 3.15 (p.59). We compare the models Hy — the coin is fair
— and H; — the coin is biased, with the prior on its bias set to the uniform
distribution P(p|H1) = 1. [The use of a uniform prior seems reasonable
to me, since I know that some coins, such as American pennies, have severe
biases when spun on edge; so the situations p = 0.01 or p = 0.1 or p = 0.95
would not surprise me.]

When I mention Ho — the coin is fair — a pedant would say, ‘how absurd to even
consider that the coin is fair — any coin is surely biased to some extent’. And of
course I would agree. So will pedants kindly understand Ho as meaning ‘the coin is
fair to within one part in a thousand, i.e., p € 0.5 & 0.001".

The likelihood ratio is:

140!110!
P(D|H1) _ _ 251!

P(D|Hy) — 1/2250

= 0.48. (3.45)

Thus the data give scarcely any evidence either way; in fact they give weak
evidence (two to one) in favour of H!

‘No, no’, objects the believer in bias, ‘your silly uniform prior doesn’t
represent my prior beliefs about the bias of biased coins — I was expecting only
a small bias’. To be as generous as possible to the Hi, let’s see how well it
could fare if the prior were presciently set. Let us allow a prior of the form

1
P(piHs.0) = Zrsp™ (L= p)"!, where Z(a) = [(0)*/I(20) (3.46)
ot
(a Beta distribution, with the original uniform prior reproduced by setting
a =1). By tweaking «, the likelihood ratio for H; over Ho,

P(D|Hy,@) T(140+) T(110+a) T'(20) 225

P(D[Ho) T(250+20) [(a)?) (3.47)

63

0.05
0.04
0.03
0.02

0.01

0

0 50 100 150 200 250
Figure 3.10. The probability
distribution of the number of
heads given the two hypotheses,
that the coin is fair, and that it is
biased, with the prior distribution
of the bias being uniform. The
outcome (D = 140 heads) gives
weak evidence in favour of Hg, the
hypothesis that the coin is fair.

64 3 — More about Inference

can be increased a little. It is shown for several values of « in figure 3.11.

Even the most favourable choice of o (o =~ 50) can yield a likelihood ratio of o P(D[H,1,)
only two to one in favour of H;. P(D[Ho)
In conclusion, the data are not ‘very suspicious’. They can be construed 37 25
as giving at most two-to-one evidence in favour of one or other of the two ;(7) gg
hypotheses. 74 13
20 1.8
Are these wimpy likelihood ratios the fault of over-restrictive priors? Is there any 55 1.9
way of producing a ‘very suspicious’ conclusion? The prior that is best-matched to 148 1.7
the data, in terms of likelihood, is the prior that sets p to f = 140/250 with prob- 403 1.3
ability one. Let’s call this model H.. The likelihood ratio is P(D|H.)/P(D|Ho) = 1096 1.1

2250 1407 _)10 — 6.1, So the strongest evidence that these data can possibly
muster against the hypothesis that there is no bias is six-to-one.

Figure 3.11. Likelihood ratio for
various choices of the prior

. . . .] . . :
While we are noticing the absurdly misleading answers that ‘sampling the distribution’s hyperparameter .

ory’ statistics produces, such as the p-value of 7% in the exercise we just solved,
let’s stick the boot in. If we make a tiny change to the data set, increasing
the number of heads in 250 tosses from 140 to 141, we find that the p-value
goes below the mystical value of 0.05 (the p-value is 0.0497). The sampling
theory statistician would happily squeak ‘the probability of getting a result as
extreme as 141 heads is smaller than 0.05 — we thus reject the null hypothesis
at a significance level of 5%’. The correct answer is shown for several values
of a in figure 3.12. The values worth highlighting from this table are, first,

the likelihood ratio when H; uses the standard uniform prior, which is 1:0.61 P(D'[M1,)
in favour of the null hypothesis Hy. Second, the most favourable choice of «, @ "P(D'THo)
from the point of view of Hy, can only yield a likelihood ratio of about 2.3:1 37 39
in favour of H;. 1.0 .61

Be warned! A p-value of 0.05 is often interpreted as implying that the odds 2.7 1.0
are stacked about twenty-to-one against the null hypothesis. But the truth 74 L6
. 20 2.2
in this case is that the evidence either slightly favours the null hypothesis, or 55 2.3
disfavours it by at most 2.3 to one, depending on the choice of prior. 148 1.9

The p-values and ‘significance levels’ of classical statistics should be treated 403 1.4

with extreme caution. Shun them! Here ends the sermon. 1096 1.2

Figure 3.12. Likelihood ratio for
various choices of the prior
distribution’s hyperparameter «,
when the data are D’ = 141 heads
in 250 trials.

Part 1

Data Compression

g

About Chapter 4

In this chapter we discuss how to measure the information content of the
outcome of a random experiment.

This chapter has some tough bits. If you find the mathematical details
hard, skim through them and keep going — you’ll be able to enjoy Chapters 5
and 6 without this chapter’s tools.

Before reading Chapter 4, you should have read Chapter 2 and worked on
exercises 2.21-2.25 and 2.16 (pp.37-36), and exercise 4.1 below.

The following exercise is intended to help you think about how to measure
information content.

Exercise 4.1.1% P91 prease work on this problem before reading Chapter 4.

You are given 12 balls, all equal in weight except for one that is either
heavier or lighter. You are also given a two-pan balance to use. In each
use of the balance you may put any number of the 12 balls on the left
pan, and the same number on the right pan, and push a button to initiate
the weighing; there are three possible outcomes: either the weights are
equal, or the balls on the left are heavier, or the balls on the left are
lighter. Your task is to design a strategy to determine which is the odd
ball and whether it is heavier or lighter than the others in as few uses
of the balance as possible.

While thinking about this problem, you may find it helpful to consider
the following questions:

(a) How can one measure information?

(b) When you have identified the odd ball and whether it is heavy or
light, how much information have you gained?

(¢) Once you have designed a strategy, draw a tree showing, for each
of the possible outcomes of a weighing, what weighing you perform
next. At each node in the tree, how much information have the
outcomes so far given you, and how much information remains to
be gained?

(d) How much information is gained when you learn (i) the state of a
flipped coin; (ii) the states of two flipped coins; (iii) the outcome
when a four-sided die is rolled?

(e) How much information is gained on the first step of the weighing
problem if 6 balls are weighed against the other 67 How much is
gained if 4 are weighed against 4 on the first step, leaving out 4
balls?

66

Notation

ze A
SCcA
SCA
V=BUA
V=BnA

Al

x is a member of the
set A

S is a subset of the
set A

S is a subset of, or
equal to, the set A
V is the union of the
sets B and A

V is the intersection
of the sets B and A
number of elements
in set A

4.1

The Source Coding Theorem

How to measure the information content of a random variable?

In the next few chapters, we’ll be talking about probability distributions and
random variables. Most of the time we can get by with sloppy notation,
but occasionally, we will need precise notation. Here is the notation that we
established in Chapter 2.

An ensemble X is a triple (z, Ax,Px), where the outcome z is the value
of a random variable, which takes on one of a set of possible values,
Ax ={a1,a9,...,a4...,as}, having probabilities Px = {p1,p2,...,p1},
with P(x=a;) = p;, p; >0 and >_, c 4, P(x=a;) = 1.

How can we measure the information content of an outcome z = a; from such

an ensemble? In this chapter we examine the assertions

1. that the Shannon information content,

1
h(z=a;) = log, . (4.1)

1
is a sensible measure of the information content of the outcome x = ay,
and

2. that the entropy of the ensemble,
1
H(X) =) pilog, P (4.2)
i 7

is a sensible measure of the ensemble’s average information content.

0 h(p):logzz—lj p h(p) Ha(p) " H,(p)
& 0.001 10.0 0.011 *
001 6.6 0.081 a8
0.1 3.3 047
0.2 2.3 0.72 0.2
0.5 1.0 1.0 o
p 0.2 0.4 0.6 0.8 1 p

Figure 4.1 shows the Shannon information content of an outcome with prob-
ability p, as a function of p. The less probable an outcome is, the greater
its Shannon information content. Figure 4.1 also shows the binary entropy
function,

1
Hs(p) = H(p,1—p) = plog,) + (1 = p)logy (4.3)

1
(1-p)’
which is the entropy of the ensemble X whose alphabet and probability dis-
tribution are Ax = {a,b},Px = {p, (1 —p)}.

67

Figure 4.1. The Shannon

information content h(p) = log, %
and the binary entropy function

Hy(p) = H(p,1-p) =

plogy 5 + (1 —p)logy 715 as a

function of p.

68 4 — The Source Coding Theorem

Information content of independent random variables

Why should log 1/p; have anything to do with the information content? Why
not some other function of p;? We’ll explore this question in detail shortly,
but first, notice a nice property of this particular function h(z) = log1/p(x).

Imagine learning the value of two independent random variables, = and y.
The definition of independence is that the probability distribution is separable
into a product:

P(z,y) = P(x)P(y)- (4.4)

Intuitively, we might want any measure of the ‘amount of information gained’
to have the property of additivity — that is, for independent random variables
z and y, the information gained when we learn x and y should equal the sum
of the information gained if x alone were learned and the information gained
if y alone were learned.

The Shannon information content of the outcome x,y is

1 1 1 1
h(z,y) =log — =log ———— =log—— + log —— 4.5
) =18) TS Pwp FPw Y
so it does indeed satisfy
h(z,y) = h(z) + h(y), if z and y are independent. (4.6)

ﬁ%Exercise 4.2.111 Show that, if z and y are independent, the entropy of the
outcome x,y satisfies

H(X,)Y)=H(X)+ H(Y). (4.7)
In words, entropy is additive for independent variables.

We now explore these ideas with some examples; then, in section 4.4 and
in Chapters 5 and 6, we prove that the Shannon information content and the
entropy are related to the number of bits needed to describe the outcome of
an experiment.

The weighing problem: designing informative experiments

Have you solved the weighing problem (exercise 4.1, p.66) yet? Are you sure?
Notice that in three uses of the balance — which reads either ‘left heavier’,
‘right heavier’, or ‘balanced’ — the number of conceivable outcomes is 3% = 27,
whereas the number of possible states of the world is 24: the odd ball could
be any of twelve balls, and it could be heavy or light. So in principle, the
problem might be solvable in three weighings — but not in two, since 32 < 24.

If you know how you can determine the odd weight and whether it is
heavy or light in three weighings, then you may read on. If you haven’t found
a strategy that always gets there in three weighings, I encourage you to think
about exercise 4.1 some more.

Why is your strategy optimal? What is it about your series of weighings
that allows useful information to be gained as quickly as possible? The answer
is that at each step of an optimal procedure, the three outcomes (‘left heavier’,
‘right heavier’, and ‘balance’) are as close as possible to equiprobable. An
optimal solution is shown in figure 4.2.

Suboptimal strategies, such as weighing balls 1-6 against 7-12 on the first
step, do not achieve all outcomes with equal probability: these two sets of balls
can never balance, so the only possible outcomes are ‘left heavy’ and ‘right
heavy’. Such a binary outcome only rules out half of the possible hypotheses,

4.1: How to measure the information content of a random variable?

. e)[§] &
2+ .
weig
ii 126 3
1+ 5 e 3476~ 2
345 1
21 6~
3 e 7
4+ 8~ . 1 |
o 78 =
o
T
§+ . o [3] 4
10" 2-
11+ weigh 3- weigh
12+ | [1234 - 126 S 1
1 5678 5 345 2
2 6+
- T
; ” e | 1)<
6-
” -
g, ot 9+10+11+ o <
10~ 10+ , 117]
11~ 1+ weigh 0]
12- 12+ [91011 PP 9
o =3 9-10-11 = <
10~
11~ 12H
12 12+12- 11_2 <

Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 11,...,127, with, e.g., 17 denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled x correspond to impossible outcomes.

70

so a strategy that uses such outcomes must sometimes take longer to find the
right answer.

The insight that the outcomes should be as near as possible to equiprobable
makes it easier to search for an optimal strategy. The first weighing must
divide the 24 possible hypotheses into three groups of eight. Then the second
weighing must be chosen so that there is a 3:3:2 split of the hypotheses.

Thus we might conclude:

the outcome of a random experiment is guaranteed to be most in-

formative if the probability distribution over outcomes is uniform.

This conclusion agrees with the property of the entropy that you proved
when you solved exercise 2.25 (p.37): the entropy of an ensemble X is biggest
if all the outcomes have equal probability p; =1/|Ax]|.

Guessing games

In the game of twenty questions, one player thinks of an object, and the
other player attempts to guess what the object is by asking questions that
have yes/no answers, for example, ‘is it alive?’, or ‘is it human?’ The aim
is to identify the object with as few questions as possible. What is the best
strategy for playing this game? For simplicity, imagine that we are playing
the rather dull version of twenty questions called ‘sixty-three’.

Example 4.3. The game ‘sixty-three’. What’s the smallest number of yes/no
questions needed to identify an integer x between 0 and 637

Intuitively, the best questions successively divide the 64 possibilities into equal
sized sets. Six questions suffice. One reasonable strategy asks the following
questions:

is x> 327

is xmod 32 > 167
is x mod 16 > 87
is zmod 8 > 47
is xmod4 > 27
is zmod2 =17

SURCANE R

[The notation zmod 32, pronounced ‘z modulo 32’, denotes the remainder
when z is divided by 32; for example, 35 mod 32 = 3 and 32mod 32 = 0.]

The answers to these questions, if translated from {yes,no} to {1,0}, give
the binary expansion of x, for example 35 = 100011. O

What are the Shannon information contents of the outcomes in this ex-
ample? If we assume that all values of x are equally likely, then the answers
to the questions are independent and each has Shannon information content
log,(1/0.5) = 1Dbit; the total Shannon information gained is always six bits.
Furthermore, the number = that we learn from these questions is a six-bit bi-
nary number. Our questioning strategy defines a way of encoding the random
variable = as a binary file.

So far, the Shannon information content makes sense: it measures the
length of a binary file that encodes x. However, we have not yet studied
ensembles where the outcomes have unequal probabilities. Does the Shannon
information content make sense there too?

4 — The Source Coding Theorem

4.1: How to measure the information content of a random variable?

71

A SIXIXIY SRR SIXIXIXIXIY
B X B XXX S IXIXIXIXXIX X IXIXIXIXIXIX
c XIXIXIX XXX XIXIXIXIXXY
b IXIX XIXIXIXIXIX XIXIXIXIXXY
E XXX SIXIXIXIX XIXIXIXIXX)
F XXX XXX XIXIXIXIXXY
6 TIX X X IXIXIXIX XIXIXIX SXIXIXIXIX
H XIXIXIX XIXIXIXIX SIXIXIXIXIX
123456738
move # 1 2 32 48 49
question G3 B1 E5 F3 H3
outcome r=n r=n r=n r=n T=y
63 62 32 16 1
P(x) — — — — —
64 63 33 17 16
h(x) 0.0227 0.0230 0.0443 0.0874 4.0
Total info. 0.0227 0.0458 1.0 2.0 6.0

The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the xs show squares in which the outcome was a miss, £ = n; the
submarine is hit (outcome & = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y,n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P(y) = 1/64 and
P(n) = 63/64. At the second shot, if the first shot missed, P(y) = 1/63 and
P(n) = 62/63. At the third shot, if the first two shots missed, P(y) = 1/62
and P(n) = 61/62.

The Shannon information gained from an outcome z is h(z) = log(1/P(x)).
If we are lucky, and hit the submarine on the first shot, then

h(z) = hq)(y) = log, 64 = 6 bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

4
h(z) = h(y(n) = logy % = (.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

63
hi)(m) = logy 5 = 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is
lo ol +1lo g3 +---+1o 33
g2 63 g2 62 g2 32
= 0.0227 4-0.0230 4--- - 4+ 0.0430 = 1.0bits. (4.11)

Figure 4.3. A game of submarine.
The submarine is hit on the 49th
attempt.

72 4 — The Source Coding Theorem

Why this round number? Well, what have we learnt? We now know that the
submarine is not in any of the 32 squares we fired at; learning that fact is just
like playing a game of sixty-three (p.70), asking as our first question ‘is
one of the thirty-two numbers corresponding to these squares I fired at?’, and
receiving the answer ‘no’. This answer rules out half of the hypotheses, so it
gives us one bit.

After 48 unsuccessful shots, the information gained is 2 bits: the unknown
location has been narrowed down to one quarter of the original hypothesis
space.

What if we hit the submarine on the 49th shot, when there were 16 squares
left? The Shannon information content of this outcome is

hao)(y) = logy 16 = 4.0 bits. (4.12)

The total Shannon information content of all the outcomes is

I 64 +1 63 + +1 17 + 1 16
082 63 089 62 089 16 089 1
= 0.0227 4 0.0230 + --- + 0.0874 + 4.0 = 6.0bits. (4.13)

So once we know where the submarine is, the total Shannon information con-
tent gained is 6 bits.

This result holds regardless of when we hit the submarine. If we hit it
when there are n squares left to choose from — n was 16 in equation (4.13) —

then the total information gained is: 1 aaail
64 63 +1 aaal
n n

10g2 @ + 10g2 6_2 + o4+ 10g2 - + logz T 3 aaald

64 63 n+l n 64 . :
log, Bl XX T X T log,y T = 6 bits. (4.14) 129 abati
What have we learned from the examples so far? I think the submarine 2047 azy;an
example makes quite a convincing case for the claim that the Shannon infor- 2048 aztdn

mation content is a sensible measure of information content. And the game of

sixty-three shows that the Shannon information content can be intimately

connected to the size of a file that encodes the outcomes of a random experi-

ment, thus suggesting a possible connection to data compression. 16384 odrcr
In case you’re not convinced, let’s look at one more example. :

The Wenglish language 32737 za1;nt

Wenglish is a language similar to English. Wenglish sentences consist of words :
drawn at random from the Wenglish dictionary, which contains 2!% = 32,768 32768 zxast
words, all of length 5 characters. Each word in the Wenglish dictionary was -
constructed at random by picking five letters from the probability distribution Figure 4.4. The Wenglish
over a...z depicted in figure 2.1. dictionary.

Some entries from the dictionary are shown in alphabetical order in fig-
ure 4.4. Notice that the number of words in the dictionary (32,768) is
much smaller than the total number of possible words of length 5 letters,
26° ~ 12,000,000.

Because the probability of the letter z is about 1/1000, only 32 of the
words in the dictionary begin with the letter z. In contrast, the probability
of the letter a is about 0.0625, and 2048 of the words begin with the letter a.
Of those 2048 words, two start az, and 128 start aa.

Let’s imagine that we are reading a Wenglish document, and let’s discuss
the Shannon information content of the characters as we acquire them. If we

4.2

4.2: Data compression

are given the text one word at a time, the Shannon information content of
each five-character word is log 32,768 = 15 bits, since Wenglish uses all its
words with equal probability. The average information content per character
is therefore 3 bits.

Now let’s look at the information content if we read the document one
character at a time. If, say, the first letter of a word is a, the Shannon
information content is log 1/0.0625 ~ 4 bits. If the first letter is z, the Shannon
information content is log1/0.001 ~ 10 bits. The information content is thus
highly variable at the first character. The total information content of the 5
characters in a word, however, is exactly 15 bits; so the letters that follow an
initial z have lower average information content per character than the letters
that follow an initial a. A rare initial letter such as z indeed conveys more
information about what the word is than a common initial letter.

Similarly, in English, if rare characters occur at the start of the word (e.g.
xyl...), then often we can identify the whole word immediately; whereas
words that start with common characters (e.g. pro...) require more charac-
ters before we can identify them.

Data compression

The preceding examples justify the idea that the Shannon information content
of an outcome is a natural measure of its information content. Improbable out-
comes do convey more information than probable outcomes. We now discuss
the information content of a source by considering how many bits are needed
to describe the outcome of an experiment.

If we can show that we can compress data from a particular source into
a file of L bits per source symbol and recover the data reliably, then we will
say that the average information content of that source is at most L bits per
symbol.

Example: compression of text files

A file is composed of a sequence of bytes. A byte is composed of 8 bits and

can have a decimal value between 0 and 255. A typical text file is composed

of the ASCII character set (decimal values 0 to 127). This character set uses

only seven of the eight bits in a byte.

Exercise 4.4.11 P-86] By how much could the size of a file be reduced given
that it is an ASCII file? How would you achieve this reduction?

Intuitively, it seems reasonable to assert that an ASCII file contains 7/8 as
much information as an arbitrary file of the same size, since we already know
one out of every eight bits before we even look at the file. This is a simple ex-
ample of redundancy. Most sources of data have further redundancy: English
text files use the ASCII characters with non-equal frequency; certain pairs of
letters are more probable than others; and entire words can be predicted given
the context and a semantic understanding of the text.

Some simple data compression methods that define measures of informa-
tion content

One way of measuring the information content of a random variable is simply
to count the number of possible outcomes, |Ax|. (The number of elements in
a set A is denoted by |A].) If we gave a binary name to each outcome, the

73

Here we use the word ‘bit’ with its
meaning, ‘a symbol with two values’,
not to be confused with the unit of
information content.

g

4.3

74

length of each name would be log, | Ax| bits, if |Ax| happened to be a power
of 2. We thus make the following definition.

The raw bit content of X is

Ho(X) = logy | Ax|. (4.15)

Hy(X) is a lower bound for the number of binary questions that are always
guaranteed to identify an outcome from the ensemble X. It is an additive
quantity: the raw bit content of an ordered pair z, y, having | Ax||Ay| possible
outcomes, satisfies

Hy(X,Y) = Ho(X)+ Ho(Y). (4.16)

This measure of information content does not include any probabilistic
element, and the encoding rule it corresponds to does not ‘compress’ the source
data, it simply maps each outcome to a constant-length binary string.
Exercise 4.5.1% P-86] Could there be a compressor that maps an outcome z to

a binary code c¢(z), and a decompressor that maps ¢ back to x, such
that every possible outcome is compressed into a binary code of length
shorter than Hy(X) bits?

Even though a simple counting argument shows that it is impossible to make
a reversible compression program that reduces the size of all files, ama-
teur compression enthusiasts frequently announce that they have invented
a program that can do this — indeed that they can further compress com-
pressed files by putting them through their compressor several times. Stranger
yet, patents have been granted to these modern-day alchemists. See the
comp . compression frequently asked questions for further reading. '

There are only two ways in which a ‘compressor’ can actually compress

files:

1. A lossy compressor compresses some files, but maps some files to the
same encoding. We’ll assume that the user requires perfect recovery of
the source file, so the occurrence of one of these confusable files leads
to a failure (though in applications such as image compression, lossy
compression is viewed as satisfactory). We’ll denote by ¢ the probability
that the source string is one of the confusable files, so a lossy compressor
has a probability § of failure. If § can be made very small then a lossy
compressor may be practically useful.

2. A lossless compressor maps all files to different encodings; if it shortens
some files, it necessarily makes others longer. We try to design the
compressor so that the probability that a file is lengthened is very small,
and the probability that it is shortened is large.

In this chapter we discuss a simple lossy compressor. In subsequent chapters
we discuss lossless compression methods.

Information content defined in terms of lossy compression

Whichever type of compressor we construct, we need somehow to take into
account the probabilities of the different outcomes. Imagine comparing the
information contents of two text files — one in which all 128 ASCII characters

"http://sunsite.org.uk/public/usenet/news-faqs/comp.compression/

4 — The Source Coding Theorem

4.3: Information content defined in terms of lossy compression

are used with equal probability, and one in which the characters are used with
their frequencies in English text. Can we define a measure of information
content that distinguishes between these two files? Intuitively, the latter file
contains less information per character because it is more predictable.

One simple way to use our knowledge that some symbols have a smaller
probability is to imagine recoding the observations into a smaller alphabet
— thus losing the ability to encode some of the more improbable symbols —
and then measuring the raw bit content of the new alphabet. For example,
we might take a risk when compressing English text, guessing that the most
infrequent characters won’t occur, and make a reduced ASCII code that omits
the characters { !, @, #, %, ~, %, 7, <,> /., \, ., {, }, [, 1, | }, thereby reducing
the size of the alphabet by seventeen. The larger the risk we are willing to
take, the smaller our final alphabet becomes.

We introduce a parameter ¢ that describes the risk we are taking when
using this compression method: ¢ is the probability that there will be no
name for an outcome z.

Example 4.6. Let

Ax={a,b,c, 4, e, £, g h},
and Px ={ 3,3, 7:16 51> 51> 51 o1)+
The raw bit content of this ensemble is 3 bits, corresponding to 8 binary
names. But notice that P(z € {a,b,c,d}) = 15/16. So if we are willing
to run a risk of 6 = 1/16 of not having a name for =, then we can get
by with four names — half as many names as are needed if every x € Ax

has a name.

(4.17)

Table 4.5 shows binary names that could be given to the different out-
comes in the cases § = 0 and § = 1/16. When 6 = 0 we need 3 bits to
encode the outcome; when § = 1/16 we only need 2 bits.

Let us now formalize this idea. To make a compression strategy with risk
6, we make the smallest possible subset S5 such that the probability that z is
not in Sy is less than or equal to 9§, i.e., P(z & Ss) < §. For each value of §
we can then define a new measure of information content — the log of the size
of this smallest subset Ss5. [In ensembles in which several elements have the
same probability, there may be several smallest subsets that contain different
elements, but all that matters is their sizes (which are equal), so we will not
dwell on this ambiguity.]

The smallest §-sufficient subset Sy is the smallest subset of Ax satisfying
Pz e Ss)>1—-0. (4.18)

The subset S5 can be constructed by ranking the elements of Ax in order of
decreasing probability and adding successive elements starting from the most
probable elements until the total probability is > (1-9).

We can make a data compression code by assigning a binary name to each
element of the smallest sufficient subset. This compression scheme motivates
the following measure of information content:

The essential bit content of X is:

Hj(X) = log, [Ss| (4.19)

Note that Hy(X) is the special case of Hs(X) with § =0 (if P(z) > 0 for all
x € Ax). [Caution: do not confuse Ho(X) and Hs(X) with the function Ha(p)
displayed in figure 4.1.]

Figure 4.6 shows Hs(X) for the ensemble of example 4.6 as a function of
J.

0=0 0=1/16
z c(x) x c(x)
a 000 a 00
b 001 b 01
c 010 c 10
d 011 d 11
e 100 e -
f 101 f —
g 110 g —
h 111 h —

Table 4.5. Binary names for the
outcomes, for two failure
probabilities §.

75

76

—6 —4 -24 =2

k-

e, f,gh d ab,c

T T T T T T T T T
3 h=—— {ab,cdefgh B
<=— {abcdefg}
25 L =" {abcdef} 4
=— {ab,c,de
2+ =—— {ab,c,d} -
15| =—— {abc} B
1+ —{a,b} o
05 4
{a}
0 1 1 1 1 1 1 1 !/ 1

0 01 02 03 04 05 06 07 08 09

(b)

FExtended ensembles

Is this compression method any more useful if we compress blocks of symbols
from a source?

We now turn to examples where the outcome x = (z1,29,...,2N) is a
string of N independent identically distributed random variables from a single
ensemble X. We will denote by X the ensemble (X1, Xs,..., Xy). Remem-
ber that entropy is additive for independent variables (exercise 4.2 (p.68)), so
H(XN)=NH(X).

Example 4.7. Consider a string of N flips of a bent coin, x = (z1, z2,...,zN),
where z,, € {0,1}, with probabilities pg=0.9, p; =0.1. The most prob-
able strings x are those with most 0s. If r(x) is the number of 1s in x

then

P(x) =py "®p™. (4.20)
To evaluate Hs(X") we must find the smallest sufficient subset Ss. This
subset will contain all x with r(x) =0,1,2,..., up to some ryax(9) — 1,

and some of the x with r(x) = rypax(9). Figures 4.7 and 4.8 show graphs
of Hs(X™) against § for the cases N = 4 and N = 10. The steps are the
values of ¢ at which |Ss| changes by 1, and the cusps where the slope of
the staircase changes are the points where ry. changes by 1.

Exercise 4.8.[% P-86] What are the mathematical shapes of the curves between
the cusps?

For the examples shown in figures 4.6-4.8, H5(X") depends strongly on
the value of §, so it might not seem a fundamental or useful definition of
information content. But we will consider what happens as N, the number
of independent variables in XV, increases. We will find the remarkable result
that Hs(X") becomes almost independent of § — and for all § it is very close
to NH(X), where H(X) is the entropy of one of the random variables.

Figure 4.9 illustrates this asymptotic tendency for the binary ensemble of
example 4.7. As N increases, %H s(X™V) becomes an increasingly flat function,

4 — The Source Coding Theorem

log, P()

Figure 4.6. (a) The outcomes of X
(from example 4.6 (p.75)), ranked
by their probability. (b) The
essential bit content Hs(X). The
labels on the graph show the
smallest sufficient set as a
function of . Note Ho(X) =3
bits and H;,16(X) = 2 bits.

4.3: Information content defined in terms of lossy compression 77

log, P()
_14 —192 ~10 -8 -6 4 _9 0 Figure 4.7. (a) The sixteen
outcomes of the ensemble X* with
p1 = 0.1, ranked by probability.
‘H (b) The essential bit content
f

S()i)l S().l

Hs(X*). The upper schematic
diagram indicates the strings’s

t i i t probabilities by the vertical lines’s
1111 1101,1011,... 0110,1010,... 0010,0001,... 0000 lengths (not to scale).
(a)
4 T T T T T T T
N=4 —
3.5 4
Hs(X*) st A
25 F 4
2 r 4
15 4
1r 4
0.5 4
(b) Oo 0.65 Ofl 0.15 ofz o.és 0f3 o,és 04 §
10 ‘ ‘ T Figure 4.8. Hs(XN) for N = 10
| binary variables with p; = 0.1.
0{8 10
N‘:lo _ Figure 4.9. + Hs(X") for
Neas N =10,210,...,1010 binary
N variables with p; = 0.1.
N=1010

4.4

4 — The Source Coding Theorem

Figure 4.10. The top 15 strings
are samples from X %0 where

p1 = 0.1 and po = 0.9. The
bottom two are the most and
least probable strings in this
ensemble. The final column shows
the log-probabilities of the
random strings, which may be
compared with the entropy
H(X190) = 46.9 bits.

.. —15.2

1111111111441111141111421112441144211411411411114211114111142111111111111144111111111111111111111111 _3321

except for tails close to § = 0 and 1. As long as we are allowed a tiny
probability of error §, compression down to NH bits is possible. Even if we
are allowed a large probability of error, we still can compress only down to
N H bits. This is the source coding theorem.

Theorem 4.1 Shannon's source coding theorem. Let X be an ensemble with
entropy H(X) = H bits. Given € > 0 and 0 < § < 1, there exists a positive
integer Ng such that for N > Ny,

%H,;(XN) —H|<e (4.21)

Typicality

Why does increasing N help? Let’s examine long strings from X*. Table 4.10
shows fifteen samples from X~ for N = 100 and p; = 0.1. The probability
of a string x that contains r 1s and N —r Os is

P(x) = pi(1 —pl)Nﬂ”. (4.22)

The number of strings that contain r 1s is

n(r) = <];7> . (4.23)

So the number of 1s, r, has a binomial distribution:

P(r) = (]7\"]) Pl —p)N " (4.24)

These functions are shown in figure 4.11. The mean of r is Npj, and its
standard deviation is v/Np1(1 —p;) (p.1). If N is 100 then

r~ Npy£4/Np1(1—p1) ~10+£3. (4.25)

4.4: Typicality

1.2e+29 3e+299
le+29 - 2.5e+299
n(r) = (N) 8e+28 - 1 2e+299
r
6e+28 - 4 1.5e+299
4e+28 - 1e+299
2e+28 - 5e+298
0 P SR S ST N S R 0 P ST A G T R S
0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 9001000
2005
— T _ N—7r 2e.05 |- il
P(x) = pi(1 —p1)
1e-05 | %o 1 2 s 4 s A

ol v v
0 10 20 30 40 50 60 70 80 90 100
0 0
-50 -500
< 4
-100 £ A -1000 A
log, P(x) T T
-150 A -1500 A
-200 A -2000 A
-250 A -2500 A
-300 B -3000 B
Aol o P
0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 9001000
0.14 0.045
0.12 - 4 0.04 4
0.035 |- A
_ (NN, r N—r 01 Bl
n(r)P(x) = (;)pi(1=p1) 0o |] Lot]
0.06 - - 0.02 - 4
00a L | o015 | B
0.01 A
0.02 - 7 0.005 q
o L - s
0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 9001000
r T

Figure 4.11. Anatomy of the typical set 7. For p; = 0.1 and N = 100 and N = 1000, these graphs
show n(r), the number of strings containing r 1s; the probability P(x) of a single string
that contains r 1s; the same probability on a log scale; and the total probability n(r)P(x) of
all strings that contain r 1s. The number r is on the horizontal axis. The plot of log, P(x)
also shows by a dotted line the mean value of logy P(x) = —N Hy(p1) which equals —46.9
when N = 100 and —469 when N = 1000. The typical set includes only the strings that
have log, P(x) close to this value. The range marked T shows the set T'yg (as defined in
section 4.4) for N = 100 and § = 0.29 (left) and N = 1000, 3 = 0.09 (right).

79

80

If N = 1000 then
7~ 100 + 10. (4.26)

Notice that as N gets bigger, the probability distribution of r becomes more
concentrated, in the sense that while the range of possible values of r grows
as N, the standard deviation of r only grows as v/N. That r is most likely to
fall in a small range of values implies that the outcome x is also most likely to
fall in a corresponding small subset of outcomes that we will call the typical
set.

Definition of the typical set

Let us define typicality for an arbitrary ensemble X with alphabet Ax. Our
definition of a typical string will involve the string’s probability. A long string
of N symbols will usually contain about p; N occurrences of the first symbol,
p2N occurrences of the second, etc. Hence the probability of this string is
roughly

P(X)iyp = P(a1)P(22)P(a3) ... P(zy) ~ p{P*pl2N) - pler¥) g 97)

so that the information content of a typical string is

1 1
log, e ~ NE; p; log, . NH. (4.28)
So the random variable log,!/P(x), which is the information content of x, is
very likely to be close in value to NH. We build our definition of typicality
on this observation.

We define the typical elements of A)I\g to be those elements that have prob-
ability close to 27V (Note that the typical set, unlike the smallest sufficient
subset, does not include the most probable elements of A% , but we will show
that these most probable elements contribute negligible probability.)

We introduce a parameter 3 that defines how close the probability has to
be to 27V for an element to be ‘typical’. We call the set of typical elements
the typical set, Tig:

1 1

We will show that whatever value of 3 we choose, the typical set contains
almost all the probability as N increases.

This important result is sometimes called the ‘asymptotic equipartition
principle.

7

‘Asymptotic equipartition’ principle. For an ensemble of N independent
identically distributed (i.i.d.) random variables XV = (X1, Xo, ..., Xn),
with N sufficiently large, the outcome x = (x1,22,...,zyN) is almost
certain to belong to a subset of .A% having only 2VH(X) members, each
having probability ‘close to’ 2~ NH(X),

Notice that if H(X) < Ho(X) then 2VH(X) is a tiny fraction of the number
of possible outcomes \A%| = |Ax|N = 9NHo(X)

The term equipartition is chosen to describe the idea that the members of the typical
set have roughly equal probability. [This should not be taken too literally, hence my
use of quotes around ‘asymptotic equipartition’; see page 83.]

A second meaning for equipartition, in thermal physics, is the idea that each degree
of freedom of a classical system has equal average energy, %kT. This second meaning
is not intended here.

4 — The Source Coding Theorem

4.5

4.5: Proofs

—NH(X)

81

log, P(x)

1111111111110...11111110111

0000100000010. ..00001000010

0100000001000. ..00010000000

0001000000000. .. 00000000000

|
——— T

0000000000000. .. 00000000000

The ‘asymptotic equipartition’ principle is equivalent to:

Shannon’s source coding theorem (verbal statement). N iid. ran-
dom variables each with entropy H(X) can be compressed into more
than N H(X) bits with negligible risk of information loss, as N — oo;
conversely if they are compressed into fewer than NH(X) bits it is vir-
tually certain that information will be lost.

These two theorems are equivalent because we can define a compression algo-
rithm that gives a distinct name of length NV H (X)) bits to each x in the typical
set.

Proofs

This section may be skipped if found tough going.

The law of large numbers

Our proof of the source coding theorem uses the law of large numbers.

Mean and variance of a real random variable are [u] = @ = Y, P(u)u
and var(u) = 02 = E[(u — u)?] = X, P(u)(u — u)%.

Technical note: strictly I am assuming here that u is a function u(z) of a sample
x from a finite discrete ensemble X. Then the summations) P(u)f(u) should
be written) P(z)f(u(z)). This means that P(u) is a finite sum of delta
functions. This restriction guarantees that the mean and variance of u do exist,
which is not necessarily the case for general P(u).

Chebyshev’s inequality 1. Let ¢ be a non-negative real random variable,
and let a be a positive real number. Then

Pt>a) < (4.30)

Q| =+

Proof: P(t > a) = 37,5, P(t). We multiply each term by t/a > 1 and
obtain: P(t > a) < 37,5, P(t)t/a. We add the (non-negative) missing
terms and obtain: P(t > a) <Y, P(t)t/a =t/c. ad

Figure 4.12. Schematic diagram
showing all strings in the ensemble
XV ranked by their probability,
and the typical set Tng.

82

Chebyshev’s inequality 2. Let x be a random variable, and let a be a
positive real number. Then

P ((m —1)?> a) < ¢%/a. (4.31)
Proof: Take t = (x — #)? and apply the previous proposition. m|
Weak law of large numbers. Take = to be the average of N independent
random variables hq, ..., hy, having common mean h and common vari-

ance oi: T = % SN | hy,. Then
P((z —h)?> > a) <o}/aN. (4.32)
Proof: obtained by showing that # = h and that 2 = O}QL/N. m]

We are interested in x being very close to the mean (« very small). No matter
how large O’%L is, and no matter how small the required « is, and no matter
how small the desired probability that (z — h)? > «, we can always achieve it
by taking N large enough.

Proof of theorem 4.1 (p.78)

We apply the law of large numbers to the random variable % log, ﬁ defined

for x drawn from the ensemble X*~. This random variable can be written as
the average of N information contents h,, = logy(1/P(xy,)), each of which is a
random variable with mean H = H(X) and variance o = var[logy(1/P(z,))].
(Each term hy, is the Shannon information content of the nth outcome.)

We again define the typical set with parameters N and g thus:

1 1 2
For all x € Tivg, the probability of x satisfies
2~ NUH+0) < p(x) < 2~ NUH=0), (4.34)

And by the law of large numbers,

2
PN
We have thus proved the ‘asymptotic equipartition’ principle. As N increases,
the probability that x falls in Tvg approaches 1, for any 5. How does this
result relate to source coding?

We must relate Tig to Hs(XY). We will show that for any given & there
is a sufficiently big N such that Hs(X") ~ NH.

P(x€Tyg) >1— (4.35)

Part 1: +Hs(XN) < H +e.

The set Tvg is not the best subset for compression. So the size of Tvg gives
an upper bound on Hs. We show how small Hs(X") must be by calculating
how big Tyg could possibly be. We are free to set 3 to any convenient value.
The smallest possible probability that a member of T g can have is 2~ NH+H),
and the total probability that Tg contains can’t be any bigger than 1. So

[Tyg| 27 NED) <1, (4.36)
that is, the size of the typical set is bounded by
[Tyg| < 2NUHHA), (4.37)

If we set 3 = € and Ny such that 6‘2’—?\, < ¢, then P(Tng) > 1 — 0, and the set
Tnp becomes a witness to the fact that Hs(XY) < log, |Tns| < N(H +).

4 — The Source Coding Theorem

1 N
~Hs(X™)
Ho(X)
[H+6
— ~H
\er
0 1 4

Figure 4.13. Schematic illustration
of the two parts of the theorem.
Given any § and €, we show that
for large enough N, +H;(X™N)
lies (1) below the line H + € and
(2) above the line H — e.

4.6

4.6: Comments

Part 2: +Hs(XN) > H —e.

Imagine that someone claims this second part is not so — that, for any IV,
the smallest d-sufficient subset Ss is smaller than the above inequality would
allow. We can make use of our typical set to show that they must be mistaken.
Remember that we are free to set 5 to any value we choose. We will set
B = €/2, so that our task is to prove that a subset S’ having |S’| < 2NV(H~25)
and achieving P(x € §') > 1 — ¢ cannot exist (for NV greater than an Ny that
we will specify).

So, let us consider the probability of falling in this rival smaller subset S’.
The probability of the subset S’ is

P(xeS') = P(xe€ S'NTng) + P(x € S'NTyp), (4.38)

where Tng denotes the complement {x ¢ Tng}. The maximum value of
the first term is found if S’ N Tyg contains oN(H=20) gutcomes all with the
maximum probability, 2~V =5 The maximum value the second term can
have is P(x & Tng). So:

/ N(H—28) o—N(H-3 o’ _ o ng, O

P(x € §) < 2N(H=25) 9=N()+62—N_2 * EN (4.39)

We can now set 3 = ¢/2 and Ny such that P(x € S') < 1 — 4, which shows

that S’ cannot satisfy the definition of a sufficient subset Ss5. Thus any subset

S’ with size |S’] < 2V(H=¢) has probability less than 1 — 4, so by the definition
of Hs, Hs(XN) > N(H — ¢).

Thus for large enough N, the function %Hg(X N is essentially a constant

function of §, for 0 < § < 1, as illustrated in figures 4.9 and 4.13. O

Comments

The source coding theorem (p.78) has two parts, %Hg(XN) < H + ¢, and
+Hs(XN) > H — €. Both results are interesting.

The first part tells us that even if the probability of error § is extremely
small, the number of bits per symbol %H(;(XN) needed to specify a long
N-symbol string x with vanishingly small error probability does not have to
exceed H + € bits. We need to have only a tiny tolerance for error, and the
number of bits required drops significantly from Ho(X) to (H + ¢).

What happens if we are yet more tolerant to compression errors? Part 2
tells us that even if ¢ is very close to 1, so that errors are made most of the
time, the average number of bits per symbol needed to specify x must still be
at least H — € bits. These two extremes tell us that regardless of our specific
allowance for error, the number of bits per symbol needed to specify x is H
bits; no more and no less.

Caveat regarding ‘asymptotic equipartition’

I put the words ‘asymptotic equipartition’ in quotes because it is important
not to think that the elements of the typical set Tig really do have roughly
the same probability as each other. They are similar in probability only in
the sense that their values of logy ﬁ are within 2NN of each other. Now, as
(3 is decreased, how does N have to increase, if we are to keep our bound on
the mass of the typical set, P(x € Tng) > 1 — B‘Q—QN, constant? N must grow

as 1/32, so, if we write 3 in terms of N as a/v/N, for some constant «, then

S’ N TNg

S/

S’ ﬂTNﬁ

83

84 4 — The Source Coding Theorem

the most probable string in the typical set will be of order 22VN times greater
than the least probable string in the typical set. As § decreases, N increases,
and this ratio 20VN grows exponentially. Thus we have ‘equipartition’ only in
a weak sense!

Why did we introduce the typical set?

The best choice of subset for block compression is (by definition) Ss, not a
typical set. So why did we bother introducing the typical set? The answer is,
we can count the typical set. We know that all its elements have ‘almost iden-
tical’ probability (27V#), and we know the whole set has probability almost
1, so the typical set must have roughly 2V elements. Without the help of
the typical set (which is very similar to Sy) it would have been hard to count
how many elements there are in Ss.

4.7 Exercises

Weighing problems

> Exercise 4.9.17] While some people, when they first encounter the weighing
problem with 12 balls and the three-outcome balance (exercise 4.1
(p.66)), think that weighing six balls against six balls is a good first
weighing, others say ‘no, weighing six against six conveys no informa-
tion at all’. Explain to the second group why they are both right and
wrong. Compute the information gained about which is the odd ball,
and the information gained about which is the odd ball and whether it is
heavy or light.

> Exercise 4.10.12] Solve the weighing problem for the case where there are 39
balls of which one is known to be odd.

> Exercise 4.11.12] You are given 16 balls, all of which are equal in weight except
for one that is either heavier or lighter. You are also given a bizarre two-
pan balance that can report only two outcomes: ‘the two sides balance’
or ‘the two sides do not balance’. Design a strategy to determine which
is the odd ball in as few uses of the balance as possible.

> Exercise 4.12.[%] You have a two-pan balance; your job is to weigh out bags of
flour with integer weights 1 to 40 pounds inclusive. How many weights
do you need? [You are allowed to put weights on either pan. You're only
allowed to put one flour bag on the balance at a time.]

Exercise 4.13.[4» P-86] (a) Isit possible to solve exercise 4.1 (p.66) (the weigh-
ing problem with 12 balls and the three-outcome balance) using a
sequence of three fized weighings, such that the balls chosen for the
second weighing do not depend on the outcome of the first, and the
third weighing does not depend on the first or second?

(b) Find a solution to the general N-ball weighing problem in which
exactly one of NV balls is odd. Show that in W weighings, an odd
ball can be identified from among N = (3" — 3)/2 balls.

Exercise 4.14.1%] You are given 12 balls and the three-outcome balance of exer-
cise 4.1; this time, two of the balls are odd; each odd ball may be heavy
or light, and we don’t know which. We want to identify the odd balls
and in which direction they are odd.

4.7: Exercises

(a) FEstimate how many weighings are required by the optimal strategy.
And what if there are three odd balls?

(b) How do your answers change if it is known that all the regular balls
weigh 100 g, that light balls weigh 99 g, and heavy ones weigh 110 g7

Source coding with a lossy compressor, with loss §

> Exercise 4.15.[% P87 Lot Py = {0.2,0.8}. Sketch +Hs(X™) as a function of
6 for N = 1,2 and 1000.

> Exercise 4.16.1%] Let Py = {0.5,0.5}. Sketch §Hs(YN) as a function of § for
N =1,2,3 and 100.

> Exercise 4.17.[% P-87] (For physics students.) Discuss the relationship between
the proof of the ‘asymptotic equipartition’ principle and the equivalence
(for large systems) of the Boltzmann entropy and the Gibbs entropy.

Distributions that don’t obey the law of large numbers

The law of large numbers, which we used in this chapter, shows that the mean
of a set of IV i.i.d. random variables has a probability distribution that becomes
narrower, with width o 1/ V/N, as N increases. However, we have proved
this property only for discrete random variables, that is, for real numbers
taking on a finite set of possible values. While many random variables with
continuous probability distributions also satisfy the law of large numbers, there
are important distributions that do not. Some continuous distributions do not
have a mean or variance.

> Exercise 4.18.1% P88] Sketch the Cauchy distribution

1 1

P@) =z o

x € (—o0,00). (4.40)
What is its normalizing constant Z? Can you evaluate its mean or
variance?

Consider the sum z = x1 + 2, where x1 and x5 are independent random
variables from a Cauchy distribution. What is P(z)? What is the prob-
ability distribution of the mean of 1 and xz9, T = (z1 + 22)/27 What is
the probability distribution of the mean of N samples from this Cauchy
distribution?

Other asymptotic properties

Exercise 4.19.19) Chernoff bound. We derived the weak law of large numbers
from Chebyshev’s inequality (4.30) by letting the random variable ¢ in
the inequality P(t >) < f/a be a function, t = (z —z)?, of the random
variable z we were interested in.

Other useful inequalities can be obtained by using other functions. The
Chernoff bound, which is useful for bounding the tails of a distribution,
is obtained by letting ¢ = exp(sx).
Show that

Pz >a) <e %g(s), foranys>0 (4.41)

and
P(x <a) <e %g(s), foranys<0 (4.42)

85

86 4 — The Source Coding Theorem

where ¢g(s) is the moment-generating function of z,

s) = Z P(z)e®™. (4.43)

Curious functions related to plog1/p

Exercise 4.20.14 P89 Thig exercise has no purpose at all; it’s included for the
enjoyment of those who like mathematical curiousities.

Sketch the function

@) =" (4.44)

for x > 0. Hint: Work out the inverse function to f — that is, the function
g(y) such that if © = ¢g(y) then y = f(z) —it’s closely related to plog 1/p.

4.8 Solutions

Solution to exercise 4.2 (p.68). Let P(z,y) = P(x)P(y). Then

H(X,Y)

1
1 1
= ZP logP()+ZP($ y)logp() (4.46)

= Y P(x) log 55— +ZP)log —— (y) (4.47)
= H(X)+H(Y). (4.48)

Solution to exercise 4.4 (p.73). An ASCII file can be reduced in size by a
factor of 7/8. This reduction could be achieved by a block code that maps
8-byte blocks into 7-byte blocks by copying the 56 information-carrying bits
into 7 bytes, and ignoring the last bit of every character.

Solution to exercise 4.5 (p.74). The pigeon-hole principle states: you can’t
put 16 pigeons into 15 holes without using one of the holes twice.

Similarly, you can’t give Ax outcomes unique binary names of some length
[shorter than log, |Ax| bits, because there are only 2! such binary names,
and [< log, | Ax/| implies 2! < |Ax|, so at least two different inputs to the
compressor would compress to the same output file.

Solution to exercise 4.8 (p.76). Between the cusps, all the changes in proba-
bility are equal, and the number of elements in T' changes by one at each step.
So Hj varies logarithmically with (—4).

Solution to exercise 4.13 (p.84). This solution was found by Dyson and Lyness
in 1946 and presented in the following elegant form by John Conway in 1999.
Be warned: the symbols A, B, and C are used to name the balls, to name the
pans of the balance, to name the outcomes, and to name the possible states
of the odd ball!

(a) Label the 12 balls by the sequences
AAB ABA ABB ABC BBC BCA BCB BCC CAA CAB CAC CCA

and in the

4.8: Solutions

1st AAB ABA ABB ABC BBC BCA BCB BCC
2nd weighings put AAB CAA CAB CAC in pan A, ABA ABB ABC BBC in pan B.
3rd ABA BCA CAA CCA AAB ABB BCB CAB

Now in a given weighing, a pan will either end up in the

e Canonical position (C) that it assumes when the pans are balanced,
or

e Above that position (4), or

e Below it (B),
so the three weighings determine for each pan a sequence of three of
these letters.

If both sequences are CCC, then there’s no odd ball. Otherwise, for just
one of the two pans, the sequence is among the 12 above, and names
the odd ball, whose weight is Above or Below the proper one according
as the pan is A or B.

In W weighings the odd ball can be identified from among
N =Y -3)/2 (4.49)

balls in the same way, by labelling them with all the non-constant se-
quences of W letters from A, B, C whose first change is A-to-B or B-to-C
or C-to-A, and at the wth weighing putting those whose wth letter is A
in pan A and those whose wth letter is B in pan B.

Solution to exercise 4.15 (p.85). The curves 4 Hs(X™) as a function of § for
N =1,2 and 1000 are shown in figure 4.14. Note that H5(0.2) = 0.72 bits.

0.6

0.4

0.2

o — N=1 N=2
| N=1000 --------
LI 5 + Hy(X) 9Hs(X) 5 + Hs(X) 9Hs(X)
0-0.2 1 2 0-0.04 1 4
0.2-1 0 1 0.04-0.2 0.792 48 3
0.2-0.36 0.5 2
0.36-1 0 1
0 02 04 0.6 08 1 Figure 4.14. %Hg(X) (vertical

Solution to exercise 4.17 (p.85). The Gibbs entropy is kg Y, p; In p%-? where 1

87

axis) against ¢ (horizontal), for

N =1,2,100 binary variables

with p; = 0.4.

runs over all states of the system. This entropy is equivalent (apart from the
factor of kg) to the Shannon entropy of the ensemble.

Whereas the Gibbs entropy can be defined for any ensemble, the Boltz-
mann entropy is only defined for microcanonical ensembles, which have a
probability distribution that is uniform over a set of accessible states. The
Boltzmann entropy is defined to be Sg = kg In Q where 2 is the number of ac-
cessible states of the microcanonical ensemble. This is equivalent (apart from
the factor of kg) to the perfect information content Hy of that constrained
ensemble. The Gibbs entropy of a microcanonical ensemble is trivially equal
to the Boltzmann entropy.

88

We now consider a thermal distribution (the canonical ensemble), where
the probability of a state x is

Hm:%“ﬁ}iﬁ) (4.50)

With this canonical ensemble we can associate a corresponding microcanonical
ensemble, an ensemble with total energy fixed to the mean energy of the
canonical ensemble (fixed to within some precision €). Now, fixing the total
energy to a precision € is equivalent to fixing the value of In!/P(x) to within
ekgT. Our definition of the typical set Tyg was precisely that it consisted
of all elements that have a value of log P(x) very close to the mean value of
log P(x) under the canonical ensemble, —NH(X). Thus the microcanonical
ensemble is equivalent to a uniform distribution over the typical set of the
canonical ensemble.

Our proof of the ‘asymptotic equipartition’ principle thus proves — for the
case of a system whose energy is separable into a sum of independent terms
— that the Boltzmann entropy of the microcanonical ensemble is very close
(for large N) to the Gibbs entropy of the canonical ensemble, if the energy of
the microcanonical ensemble is constrained to equal the mean energy of the
canonical ensemble.

Solution to exercise 4.18 (p.85). The normalizing constant of the Cauchy dis-
tribution

1 1
Plz) = = ——
() Zx2+1
is 1
_ 0o _ IERLS _Z__TF_
Z_/_oodm—xQJrl_[tan $}7oo_2 - =T (4.51)

The mean and variance of this distribution are both undefined. (The distribu-
tion is symmetrical about zero, but this does not imply that its mean is zero.
The mean is the value of a divergent integral.) The sum z = 1 + x2, where
1 and xg both have Cauchy distributions, has probability density given by
the convolution

P(y-l/md ! ! (4.52)
SRl B 22+ 1(z—2)2+1 ’

which after a considerable labour using standard methods gives

1 s 2 1

P(Z):F 2+4 m2+422

(4.53)

which we recognize as a Cauchy distribution with width parameter 2 (where
the original distribution has width parameter 1). This implies that the mean
of the two points, T = (x1 + x2)/2 = 2/2, has a Cauchy distribution with
width parameter 1. Generalizing, the mean of N samples from a Cauchy
distribution is Cauchy-distributed with the same parameters as the individual
samples. The probability distribution of the mean does not become narrower
as 1/vV/N.

The central limit theorem does not apply to the Cauchy distribution, because
it does not have a finite variance.

An alternative neat method for getting to equation (4.53) makes use of the
Fourier transform of the Cauchy distribution, which is a biexponential e~
Convolution in real space corresponds to multiplication in Fourier space, so
the Fourier transform of z is simply e~12«l. Reversing the transform, we obtain
equation (4.53).

4 — The Source Coding Theorem

4.8: Solutions

Solution to exercise 4.20 (p.86). The function f(z) has inverse function

g9(y) =y (4.54)

Note
log g(y) = 1/ylogy. (4.55)

I obtained a tentative graph of f(x) by plotting ¢g(y) with y along the vertical
axis and ¢g(y) along the horizontal axis. The resulting graph suggests that
f(z) is single valued for « € (0,1), and looks surprisingly well-behaved and
ordinary; for € (1,e"/¢), f(x) is two-valued. f(1/2) is equal both to 2 and
4. For z > e'/¢ (which is about 1.44), f(z) is infinite. However, it might be
argued that this approach to sketching f(z) is only partly valid, if we define f
as the limit of the sequence of functions x, 2%, z*", .. .; this sequence does not
have a limit for 0 < z < (1/e)® ~ 0.07 on account of a pitchfork bifurcation
at x = (1/e)%; and for = € (1,e'/¢), the sequence’s limit is single-valued — the
lower of the two values sketched in the figure.

89

50 -
40 -
30 -
20 -
10 -

0 T T i T T 1 T
0 02 04 06 08 1 12 14

[} T T T 1 T T v
0 02 04 06 08 1 12 14

05 -
04 -
03 -
02
01

(U} T
0 0.2

Figure 4.15. f(z) = a:”fzw shown
at three different scales.

About Chapter 5

In the last chapter, we saw a proof of the fundamental status of the entropy
as a measure of average information content. We defined a data compression
scheme using fized length block codes, and proved that as N increases, it is
possible to encode N i.i.d. variables x = (z1, ..., zx) into a block of N(H (X)+
€) bits with vanishing probability of error, whereas if we attempt to encode
XN into N(H(X) — €) bits, the probability of error is virtually 1.

We thus verified the possibility of data compression, but the block coding
defined in the proof did not give a practical algorithm. In this chapter and
the next, we study practical data compression algorithms. Whereas the last
chapter’s compression scheme used large blocks of fized size and was lossy,
in the next chapter we discuss variable-length compression schemes that are
practical for small block sizes and that are not lossy.

Imagine a rubber glove filled with water. If we compress two fingers of the
glove, some other part of the glove has to expand, because the total volume
of water is constant. (Water is essentially incompressible.) Similarly, when
we shorten the codewords for some outcomes, there must be other codewords
that get longer, if the scheme is not lossy. In this chapter we will discover the
information-theoretic equivalent of water volume.

Before reading Chapter 5, you should have worked on exercise 2.26 (p.37).

We will use the following notation for intervals:
xz €[1,2) means that z > 1 and z < 2;
x € (1,2] means that z > 1 and z < 2.

90

Symbol Codes

In this chapter, we discuss variable-length symbol codes, which encode one
source symbol at a time, instead of encoding huge strings of NV source sym-
bols. These codes are lossless: unlike the last chapter’s block codes, they are
guaranteed to compress and decompress without any errors; but there is a
chance that the codes may sometimes produce encoded strings longer than
the original source string.

The idea is that we can achieve compression, on average, by assigning
shorter encodings to the more probable outcomes and longer encodings to the
less probable.

The key issues are:

What are the implications if a symbol code is lossless? If some code-
words are shortened, by how much do other codewords have to be length-
ened?

Making compression practical. How can we ensure that a symbol code is
easy to decode?

Optimal symbol codes. How should we assign codelengths to achieve the
best compression, and what is the best achievable compression?

We again verify the fundamental status of the Shannon information content
and the entropy, proving:

Source coding theorem (symbol codes). There exists a variable-length
encoding C of an ensemble X such that the average length of an en-
coded symbol, L(C, X), satisfies L(C, X) € [H(X),H(X) + 1).

The average length is equal to the entropy H(X) only if the codelength
for each outcome is equal to its Shannon information content.

We will also define a constructive procedure, the Huffman coding algorithm,
that produces optimal symbol codes.

Notation for alphabets. A" denotes the set of ordered N-tuples of ele-
ments from the set A, i.e., all strings of length N. The symbol AT will
denote the set of all strings of finite length composed of elements from
the set A.

Example 5.1. {0,1}3 = {000,001,010,011,100,101,110,111}.

Example 5.2. {0,1}* = {0,1,00,01,10,11,000,001,...}.

91

92 5 — Symbol Codes

5.1 Symbol codes

A (binary) symbol code C for an ensemble X is a mapping from the range
of z, Ax ={a1,..., ar}, to {0,1}*. ¢(x) will denote the codeword cor-
responding to z, and I(z) will denote its length, with ; = I(a;).

The extended code C* is a mapping from A% to {0,1}* obtained by
concatenation, without punctutation, of the corresponding codewords:

ct(

x1x2 ... xN) = c(x1)c(xe) ... c(zN). (5.1)
[The term ‘mapping’ here is a synonym for ‘function’.]

Example 5.3. A symbol code for the ensemble X defined by

AX:{aabaCad}a

Px = {V2,Va, 18,181, (5-2) o cla) b
a 1000 4
is Cp, shown in the margin. Co: b 0100 4
Using the extended code, we may encode acdbac as c 0010 4
d 0001 4
c+(acdbac) = 100000100001010010000010 (5.3)

There are basic requirements for a useful symbol code. First, any encoded
string must have a unique decoding. Second, the symbol code must be easy to
decode. And third, the code should achieve as much compression as possible.

Any encoded string must have a unique decoding

A code C(X) is uniquely decodeable if, under the extended code CT, no
two distinct strings have the same encoding, i.e.,

Vx,y € Ay, x#y = ct(x) #ct(y). (5.4)
The code Cy defined above is an example of a uniquely decodeable code.

The symbol code must be easy to decode

A symbol code is easiest to decode if it is possible to identify the end of a
codeword as soon as it arrives, which means that no codeword can be a prefix
of another codeword. [A word c is a prefix of another word d if there exists a
tail string ¢ such that the concatenation ct is identical to d. For example, 1 is
a prefix of 101, and so is 10.]

We will show later that we don’t lose any performance if we constrain our
symbol code to be a prefix code.

A symbol code is called a prefix code if no codeword is a prefix of any
other codeword.

A prefix code is also known as an instantaneous or self-punctuating code,
because an encoded string can be decoded from left to right without
looking ahead to subsequent codewords. The end of a codeword is im-
mediately recognizable. A prefix code is uniquely decodeable.

Prefix codes are also known as ‘prefix-free codes’ or ‘prefix condition codes’.

Prefix codes correspond to trees.

5.1: Symbol codes 93

Example 5.4. The code C; = {0,101} is a prefix code because 0 is not a prefix 9
of 101, nor is 101 a prefix of 0. 1 0
Cy 1~101

Example 5.5. Let Co = {1,101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C5 = {0,10,110,111} is a prefix code.

0
Example 5.7. The code Cy = {00,01,10,11} is a prefix code. 9
1 104 G 1 o
ﬁ% Exercise 5.8.1% P-104] [g C5 uniquely decodeable? 1 0-110
1I~N111
Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can 0 -00
be viewed as assigning a ternary code to each of the 24 possible states. 0 1~01
This code is a prefix code. Cy 1 _0-10
1~11

The code should achieve as much compression as possible
Prefix codes can be represented

The expected length L(C, X) of a symbol code C for ensemble X is on binary trees. Complete prefix
codes correspond to binary trees
L(C, X) = Z P(x)I(z). (5.5) with no unused branches. ' is an
rEAX incomplete code.

We may also write this quantity as

I
L(C, X) = pili (5.6)
i=1
where I = |Ax]|.
Cg:
Example 5.10. Let
Ax = {a b, c, d}, ai clai) pi hpi) b
and Py = {Y2, V1,18 138}, (5.7) 0 /5 1.0
Vs 2.0

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C5, X) of this code is also 1.75 bits. The sequence of symbols
x = (acdbac) is encoded as ¢ (x) = 0110111100110. Cj is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy I; = logy(1/p;), or equivalently, p; =27%.

110 18 3.0
111 18 3.0

Q0 o e
=
o
W W N

Cy Cs
Example 5.11. Consider the fixed length code for the same ensemble X, Cjy. a 00 O
The expected length L(Cy, X) is 2 bits. b 01 1
c 10 00
Example 5.12. Consider Cs. The expected length L(Cj5, X) is 1.25 bits, which d 11 11
is less than H(X). But the code is not uniquely decodeable. The se-
quence x = (acdbac) encodes as 000111000, which can also be decoded Ci:

as (cabdca).

a; cla;) pi hpi) 1

B

Example 5.13. Consider the code Cs. The expected length L(Cq, X) of this
code is 1.75 bits. The sequence of symbols x = (acdbac) is encoded as
c*(x) = 0011111010011.

01 Yy 20
o118 3.0
111 18 3.0

Q0 o e
W W N =

Is Cg a prefix code? It is not, because c¢(a) = 0 is a prefix of ¢(b) and

c(c).

5.2

94

Is Cs uniquely decodeable? This is not so obvious. If you think that it
might not be uniquely decodeable, try to prove it so by finding a pair of
strings x and y that have the same encoding. [The definition of unique
decodeability is given in equation (5.4).]

Cg certainly isn’t easy to decode. When we receive ‘00, it is possible
that x could start ‘aa’, ‘ab’ or ‘ac’. Once we have received ‘001111’,
the second symbol is still ambiguous, as x could be ‘abd. ..’
But eventually a unique decoding crystallizes, once the next 0 appears
in the encoded stream.

or ‘acd...’.

Cg is in fact uniquely decodeable. Comparing with the prefix code Cf,
we see that the codewords of Cg are the reverse of C3’s. That Cj is
uniquely decodeable proves that Cg is too, since any string from Cjg is
identical to a string from C3 read backwards.

What limit is imposed by unique decodeability?

We now ask, given a list of positive integers {l;}, does there exist a uniquely
decodeable code with those integers as its codeword lengths? At this stage, we
ignore the probabilities of the different symbols; once we understand unique
decodeability better, we’ll reintroduce the probabilities and discuss how to
make an optimal uniquely decodeable symbol code.

In the examples above, we have observed that if we take a code such as
{00,01, 10,11}, and shorten one of its codewords, for example 00 — 0, then
we can retain unique decodeability only if we lengthen other codewords. Thus
there seems to be a constrained budget that we can spend on codewords, with
shorter codewords being more expensive.

Let us explore the nature of this budget. If we build a code purely from
codewords of length [equal to three, how many codewords can we have and
retain unique decodeability? The answer is 2! = 8. Once we have chosen all
eight of these codewords, is there any way we could add to the code another
codeword of some other length and retain unique decodeability? It would
seem not.

What if we make a code that includes a length-one codeword, ‘0’, with the
other codewords being of length three? How many length-three codewords can
we have? If we restrict attention to prefix codes, then we can have only four
codewords of length three, namely {100,101,110,111}. What about other
codes? Is there any other way of choosing codewords of length 3 that can give
more codewords? Intuitively, we think this unlikely. A codeword of length 3
appears to have a cost that is 22 times smaller than a codeword of length 1.

Let’s define a total budget of size 1, which we can spend on codewords. If
we set the cost of a codeword whose length is I to 27!, then we have a pricing
system that fits the examples discussed above. Codewords of length 3 cost
1/8 each; codewords of length 1 cost 1/2 each. We can spend our budget on
any codewords. If we go over our budget then the code will certainly not be
uniquely decodeable. If, on the other hand,

doohi<n, (5.8)
%

then the code may be uniquely decodeable. This inequality is the Kraft in-
equality.

Kraft inequality. For any uniquely decodeable code C' over the binary al-

5 — Symbol Codes

5.2: What limit is imposed by unique decodeability?

phabet {0,1}, the codeword lengths must satisfy:

where I = |Ax]|.

Completeness. If a uniquely decodeable code satisfies the Kraft inequality
with equality then it is called a complete code.

We want codes that are uniquely decodeable; prefix codes are uniquely de-
codeable, and are easy to decode. So life would be simpler for us if we could
restrict attention to prefix codes. Fortunately, for any source there is an op-
timal symbol code that is also a prefix code.

Kraft inequality and prefix codes. Given a set of codeword lengths that
satisfy the Kraft inequality, there exists a uniquely decodeable prefix
code with these codeword lengths.

The Kraft inequality might be more accurately referred to as the Kraft—-McMillan
inequality: Kraft proved that if the inequality is satisfied, then a prefix code exists with
the given lengths. McMillan (1956) proved the converse, that unique decodeability
implies that the inequality holds.

Proof of the Kraft inequality. Define S = 3;27%. Consider the quantity

N I I I
gV — |:Z 211':| — Z Z Z 2= (liy +liy + - liy) (5.10)
i in—=1

i1=1142=1

The quantity in the exponent, (I;; + 1, + -+ + i,), is the length of the
encoding of the string x = a;, a4, . .. a;, . For every string x of length IV,
there is one term in the above sum. Introduce an array A; that counts
how many strings x have encoded length I. Then, defining l,,;;, = min; [;
and lnax = max; l;:
Nlmax
SN = > 27lA. (5.11)
I=Nlmin

Now assume C' is uniquely decodeable, so that for all x # y, ¢™(x) #
¢ (y). Concentrate on the x that have encoded length I. There are a
total of 2! distinct bit strings of length [, so it must be the case that

Al < 2l. So
Nlmax Nlmux
SV= 3 274, < Y 1 < Niga (5.12)
l:Nlmin l:Nlmin

Thus SV < . N for all N. Now if S were greater than 1, then as IV
increases, SV would be an exponentially growing function, and for large
enough N, an exponential always exceeds a polynomial such as l[ax V.
But our result (S < . N) is true for any N. Therefore S < 1. O

> Exercise 5.14.1% P 1041 prove the result stated above, that for any set of code-
word lengths {l;} satisfying the Kraft inequality, there is a prefix code
having those lengths.

95

96

000 0000

0 0001
0010 g
001 3
0 0011 S
0100 Q
010 (]
o1 0101 '8
011 0110 o
0111 8
1000 =

100

0 1001 @
01 1010 <
1011 S
! 1100 Q
110 <
1 1101 —

1110

111
1111
Co
000

001

01

010

011

10

100

101

1

110

111

5 — Symbol Codes

Figure 5.1. The symbol coding
budget. The ‘cost’ 27¢ of each
codeword (with length 1) is
indicated by the size of the box it
is written in. The total budget
available when making a uniquely
decodeable code is 1.

You can think of this diagram as
showing a codeword supermarket,
with the codewords arranged in
aisles by their length, and the cost
of each codeword indicated by the
size of its box on the shelf. If the
cost of the codewords that you
take exceeds the budget then your
code will not be uniquely
decodeable.

1111

Figure 5.2. Selections of
codewords made by codes

Cy, C3,Cy and Cg from section
5.1.

5.3

5.3: What’s the most compression that we can hope for?

A pictorial view of the Kraft inequality may help you solve this exercise.
Imagine that we are choosing the codewords to make a symbol code. We can
draw the set of all candidate codewords in a supermarket that displays the
‘cost’ of the codeword by the area of a box (figure 5.1). The total budget
available — the ‘1’ on the right-hand side of the Kraft inequality — is shown at
one side. Some of the codes discussed in section 5.1 are illustrated in figure
5.2. Notice that the codes that are prefix codes, Cy, C3, and Cy, have the
property that to the right of any selected codeword, there are no other selected
codewords — because prefix codes correspond to trees. Notice that a complete
prefix code corresponds to a complete tree having no unused branches.

We are now ready to put back the symbols’s probabilities {p;}. Given a
set of symbol probabilities (the English language probabilities of figure 2.1,
for example), how do we make the best symbol code — one with the smallest
possible expected length L(C, X)? And what is that smallest possible expected
length? It’s not obvious how to assign the codeword lengths. If we give short
codewords to the more probable symbols then the expected length might be
reduced; on the other hand, shortening some codewords necessarily causes
others to lengthen, by the Kraft inquality.

What’s the most compression that we can hope for?

We wish to minimize the expected length of a code,

L(C,X) = Y pili. (5.13)

As you might have guessed, the entropy appears as the lower bound on the
expected length of a code.

Lower bound on expected length. The expected length L(C,X) of a
uniquely decodeable code is bounded below by H(X).

Proof. We define the implicit probabilities ¢; = 27" /2, where z= 3", 27, so
that I; = log 1/¢; —log z. We then use Gibbs’ inequality, >, p; log 1/¢; >
> pilog 1/p;, with equality if ¢; =p;, and the Kraft inequality z < 1:

L(C,X) = Zpili = Zpilog 1/q; —log z (5.14)
i i
> Y pilogl/p; —logz (5.15)
i
> H(X). (5.16)
The equality L(C, X) = H(X) is achieved only if the Kraft equality z=1
is satisfied, and if the codelengths satisfy I; = log(1/p;). m|

This is an important result so let’s say it again:
Optimal source codelengths. The expected length is minimized and is

equal to H(X) only if the codelengths are equal to the Shannon in-
formation contents:

li =logy(1/pi). (5.17)

Implicit probabilities defined by codelengths. Conversely, any choice
of codelengths {I;} implicitly defines a probability distribution {g;},

=2"/z (5.18)

for which those codelengths would be the optimal codelengths. If the
code is complete then z = 1 and the implicit probabilities are given by
g =274,

97

5.4

5.5

98

How much can we compress?

So, we can’t compress below the entropy. How close can we expect to get to
the entropy?

Theorem 5.1 Source coding theorem for symbol codes. For an ensemble X
there exists a prefix code C' with expected length satisfying

H(X) < L(C,X) < H(X) + 1. (5.19)

Proof. We set the codelengths to integers slightly larger than the optimum
lengths:

li = [logy(1/pi)] (5.20)
where [I*] denotes the smallest integer greater than or equal to I*. [We
are not asserting that the optimal code necessarily uses these lengths,
we are simply choosing these lengths because we can use them to prove
the theorem.]

We check that there is a prefix code with these lengths by confirming
that the Kraft inequality is satisfied.

Z 9=l _ ngﬂogz(l/mﬂ < 22*108;2(1/1%) — sz. - 1. (5.21)
[7 7 7

Then we confirm
L(C,X) = Y pillog(1/pi)] < Y pillog(1/pi) +1) = H(X) +1. (5.22)

O

The cost of using the wrong codelengths

If we use a code whose lengths are not equal to the optimal codelengths, the
average message length will be larger than the entropy.
If the true probabilities are {p;} and we use a complete code with lengths

l;, we can view those lengths as defining implicit probabilities ¢; = 27%. Con-
tinuing from equation (5.14), the average length is
L(C,X)=H(X)+ > pilogpi/s, (5.23)

i.e., it exceeds the entropy by the relative entropy Dk (pl||q) (as defined on
p.34).

Optimal source coding with symbol codes: Huffman coding

Given a set of probabilities P, how can we design an optimal prefix code?
For example, what is the best symbol code for the English language ensemble
shown in figure 5.37 When we say ‘optimal’; let’s assume our aim is to
minimize the expected length L(C, X).

How not to do it

One might try to roughly split the set Ax in two, and continue bisecting the
subsets so as to define a binary tree from the root. This construction has the
right spirit, as in the weighing problem, but it is not necessarily optimal; it
achieves L(C, X) < H(X) + 2.

5 — Symbol Codes

I NWYKES<eEdtnRQCWOBBHKRGRPITRHAHOQLAT M 8

Figure 5.3. An ensemble in need of

a symbol code.

P(x)

0.0575
0.0128
0.0263
0.0285
0.0913
0.0173
0.0133
0.0313
0.0599
0.0006
0.0084
0.0335
0.0235
0.0596
0.0689
0.0192
0.0008
0.0508
0.0567
0.0706
0.0334
0.0069
0.0119
0.0073
0.0164
0.0007
0.1928

5.5: Optimal source coding with symbol codes: Huffman coding

The Huffman coding algorithm

We now present a beautifully simple algorithm for finding an optimal prefix
code. The trick is to construct the code backwards starting from the tails of
the codewords; we build the binary tree from its leaves.

1. Take the two least probable symbols in the alphabet. These two
symbols will be given the longest codewords, which will have equal
length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will
have assigned strings to all the symbols after |Ax| — 1 steps.

Example 5.15. Let Ax={a, b, ¢ 4, e }
and Py ={0.25,0.25,0.2,0.15,0.15 }.

x stepl step2 step3 step4
0 0
a 02— 025— 0.25 0.55 1.0
0 /
b 025 0.257 0.45 0.4571
c 0.2 T 02 "1
1
d 0.15 0.3 — 0.3
e 0‘157

The codewords are then obtained by concatenating the binary digits in
reverse order: C' = {00,10,11,010,011}. The codelengths selected
by the Huffman algorithm (column 4 of table 5.5) are in some cases
longer and in some cases shorter than the ideal codelengths, the Shannon
information contents log, 1/p; (column 3). The expected length of the
code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. O

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner — the expected length of
the code will not depend on the choice.

Exercise 5.16.1% P105] prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log, 1/p;.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees — ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable — appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.

Algorithm 5.4. Huffman coding

99

algorithm.
ai pi hp) L cla)
a 0.25 20 2 00
b 0.25 20 2 10
c 02 23 2 11
d 0.15 2.7 3 010
e 0.15 2.7 3 011

Table 5.5. Code created by the
Huffman algorithm.

100 5 — Symbol Codes

a; ps logy, L I; c(a) Figure 5.6. Huffman code for the
b English language ensemble

a 0.0575 41 4 0000 (monogram statistics).

b 0.0128 6.3 6 001000

c 0.0263 52 5 00101

d 0.0285 5.1 5 10000

e 0.0913 35 4 1100

£ 0.0173 5.9 6 111000

g 0.0133 62 6 001001

h 0.0313 5.0 5 10001

i 0.0599 41 4 1001

j 0.0006 10.7 10 1101000000

k 0.0084 6.9 7 1010000

1 0.0335 49 5 11101

m 0.0235 54 6 110101

n 0.0596 41 4 0001

o 0.0689 39 4 1011

p 0.0192 57 6 111001

q 0.0008 10.3 9 110100001

r 0.0508 43 5 11011

s 0.0567 41 4 o011

t 0.0706 38 4 1111

u 0.0334 49 5 10101

v 0.0069 72 8 11010001

w 0.0119 6.4 7 1101001

x 0.0073 7.1 7 1010001

vy 0.0164 59 6 101001

z 0.0007 10.4 10 1101000001

- 0.1928 24 2 o1

It is not the case, however, that optimal codes can always be constructed
by a greedy top-down method in which the alphabet is successively divided

into subsets that are as near as possible to equiprobable. a; p; Greedy Huffman
.01 000 000000
Example 5.18. Find the optimal binary symbol code for the ensemble: 2 94 001 o1
c .05 o010 0001
Ax={a b ¢ d e I g} (5.24) 4 20 o1l 001
Px = {0.01,0.24,0.05,0.20,0.47,0.01, 0.02 } o 47 10 ;
. . . . f .01 110 000001
Notice that a greedy top-down method can split this set into two sub- g .02 111 00001

sets {a,b, c,d} and {e, f, g} which both have probability 1/2, and that
{a,b, c,d} can be divided into subsets {a, b} and {c,d}, which have prob- T3pje 5.7. A greedily-constructed
ability 1/4; so a greedy top-down method gives the code shown in the ¢ode compared with the Huffman
third column of table 5.7, which has expected length 2.53. The Huffman code.

coding algorithm yields the code shown in the fourth column, which has

expected length 1.97. O

Disadvantages of the Huffman code

The Huffman algorithm produces an optimal symbol code for an ensemble,
but this is not the end of the story. Both the word ‘ensemble’ and the phrase
‘symbol code’ need careful attention.

Changing ensemble

If we wish to communicate a sequence of outcomes from one unchanging en-
semble, then a Huffman code may be convenient. But often the appropriate

5.6: Disadvantages of the Huffman code

ensemble changes. If for example we are compressing text, then the symbol
frequencies will vary with context: in English the letter u is much more prob-
able after a q than after an e (figure 2.3). And furthermore, our knowledge of
these context-dependent symbol frequencies will also change as we learn the
statistical properties of the text source.

Huffman codes do not handle changing ensemble probabilities with any
elegance. One brute-force approach would be to recompute the Huffman code
every time the probability over symbols changes. Another attitude is to deny
the option of adaptation, and instead run through the entire file in advance
and compute a good probability distribution, which will then remain fixed
throughout transmission. The code itself must also be communicated in this
scenario. Such a technique is not only cumbersome and restrictive, it is also
suboptimal, since the initial message specifying the code and the document
itself are partially redundant. This technique therefore wastes bits.

The extra bit

An equally serious problem with Huffman codes is the innocuous-looking ‘ex-
tra bit’ relative to the ideal average length of H(X) — a Huffman code achieves
a length that satisfies H(X) < L(C, X) < H(X)+1, as proved in theorem 5.1.
A Huffman code thus incurs an overhead of between 0 and 1 bits per symbol.
If H(X) were large, then this overhead would be an unimportant fractional
increase. But for many applications, the entropy may be as low as one bit
per symbol, or even smaller, so the overhead L(C,X) — H(X) may domi-
nate the encoded file length. Consider English text: in some contexts, long
strings of characters may be highly predictable. For example, in the context
‘strings_of_ch’, one might predict the next nine symbols to be ‘aracters_’
with a probability of 0.99 each. A traditional Huffman code would be obliged
to use at least one bit per character, making a total cost of nine bits where
virtually no information is being conveyed (0.13 bits in total, to be precise).
The entropy of English, given a good model, is about one bit per character
(Shannon, 1948), so a Huffman code is likely to be highly inefficient.

A traditional patch-up of Huffman codes uses them to compress blocks of
symbols, for example the ‘extended sources’ XV we discussed in Chapter 4.
The overhead per block is at most 1 bit so the overhead per symbol is at most
1/N bits. For sufficiently large blocks, the problem of the extra bit may be
removed — but only at the expenses of (a) losing the elegant instantaneous
decodeability of simple Huffman coding; and (b) having to compute the prob-
abilities of all relevant strings and build the associated Huffman tree. One will
end up explicitly computing the probabilities and codes for a huge number of
strings, most of which will never actually occur. (See exercise 5.29 (p.103).)

Beyond symbol codes

Huffman codes, therefore, although widely trumpeted as ‘optimal’, have many
defects for practical purposes. They are optimal symbol codes, but for practi-
cal purposes we don’t want a symbol code.

The defects of Huffman codes are rectified by arithmetic coding, which
dispenses with the restriction that each symbol must translate into an integer
number of bits. Arithmetic coding is the main topic of the next chapter.

101

102

5.7 Summary

Kraft inequality. If a code is uniquely decodeable its lengths must satisfy
dooh < (5.25)
i

For any lengths satisfying the Kraft inequality, there exists a prefix code
with those lengths.

Optimal source codelengths for an ensemble are equal to the Shannon
information contents

1
li =logy —, (5.26)

(2

and conversely, any choice of codelengths defines implicit probabilities

27l
—

q = (5.27)

The relative entropy Dxr,(p||q) measures how many bits per symbol are
wasted by using a code whose implicit probabilities are q, when the
ensemble’s true probability distribution is p.

Source coding theorem for symbol codes. For an ensemble X, there ex-
ists a prefix code whose expected length satisfies

H(X) < L(C,X) < H(X) + 1. (5.28)

The Huffman coding algorithm generates an optimal symbol code itera-
tively. At each iteration, the two least probable symbols are combined.

5.8 Exercises

> Exercise 5.19.1%] Is the code {00,11,0101,111,1010,100100,0110} uniquely
decodeable?

> Exercise 5.20.1%] Is the ternary code {00,012,0110,0112, 100,201,212, 22}
uniquely decodeable?

ﬁ Exercise 5.21.1% P-106] \ake Huffman codes for X2, X3 and X* where Ax =
{0,1} and Px = {0.9,0.1}. Compute their expected lengths and com-
pare them with the entropies H(X?), H(X?3) and H(X*).

Repeat this exercise for X? and X* where Px = {0.6,0.4}.

i% Exercise 5.22.[% P-106] i o probability distribution {p1, p2, p3, p4} such that
there are two optimal codes that assign different lengths {/;} to the four
symbols.

Exercise 5.23.1%] (Continuation of exercise 5.22.) Assume that the four proba-
bilities {p1, p2, p3,pa} are ordered such that p; > pa > p3 > py > 0. Let
Q be the set of all probability vectors p such that there are two optimal
codes with different lengths. Give a complete description of Q. Find
three probability vectors g,), ¢®, which are the convex hull of Q,
i.e., such that any p € Q can be written as

p = ma™® + p2q® + p3q®, (5.29)

where {u;} are positive.

5 — Symbol Codes

5.8: Exercises

> Exercise 5.24.17] Write a short essay discussing how to play the game of twenty
questions optimally. [In twenty questions, one player thinks of an object,
and the other player has to guess the object using as few binary questions
as possible, preferably fewer than twenty.]

> Exercise 5.25.12] Show that, if each probability p; is equal to an integer power
of 2 then there exists a source code whose expected length equals the
entropy.

> Exercise 5.26.[% P196] NMake ensembles for which the difference between the
entropy and the expected length of the Huffman code is as big as possible.

> Exercise 5.27.2 P-106] o binary source X has an alphabet of eleven characters
{a’ b7 c, d7 e, f7 g: ha i7 J b k}a

all of which have equal probability, 1/11.

Find an optimal uniquely decodeable symbol code for this source. How
much greater is the expected length of this optimal code than the entropy
of X7

> Exercise 5.28.1%] Consider the optimal symbol code for an ensemble X with
alphabet size I from which all symbols have identical probability p =
1/I. I is not a power of 2.

Show that the fraction fT of the I symbols that are assigned codelengths

equal to
1T = [logy I (5.30)
satisfies
2"
ff=2- o (5.31)

and that the expected length of the optimal symbol code is

L=1"—14f". (5.32)
By differentiating the excess length AL = L — H(X) with respect to I,
show that the excess length is bounded by

In2) 1 _) os6 (5.33)
In2 m2 '

AL <1-

ﬁ% Exercise 5.29.1?) Consider a sparse binary source with Px = {0.99,0.01}. Dis-
cuss how Huffman codes could be used to compress this source efficiently.
Estimate how many codewords your proposed solutions require.

> Exercise 5.30.[%] Scientific American carried the following puzzle in 1975.

The poisoned glass. ‘Mathematicians are curious birds’, the police
commissioner said to his wife. ‘You see, we had all those partly
filled glasses lined up in rows on a table in the hotel kitchen. Only
one contained poison, and we wanted to know which one before
searching that glass for fingerprints. Our lab could test the liquid
in each glass, but the tests take time and money, so we wanted to
make as few of them as possible by simultaneously testing mixtures
of small samples from groups of glasses. The university sent over a

103

104

mathematics professor to help us. He counted the glasses, smiled
and said:

¢ “Pick any glass you want, Commissioner. We'll test it first.”

‘ “But won’t that waste a test?” I asked.

‘“No,” he said, “it’s part of the best procedure. We can test one
glass first. It doesn’t matter which one.””’

‘How many glasses were there to start with?’ the commissioner’s
wife asked.

‘I don’t remember. Somewhere between 100 and 200.’

What was the exact number of glasses?

Solve this puzzle and then explain why the professor was in fact wrong
and the commissioner was right. What is in fact the optimal procedure
for identifying the one poisoned glass? What is the expected waste
relative to this optimum if one followed the professor’s strategy? Explain
the relationship to symbol coding.

ﬁ% Exercise 5.31.1% 1061 Agqume that a sequence of symbols from the ensemble

X introduced at the beginning of this chapter is compressed using the
code C3. Imagine picking one bit at random from the binary encoded
sequence ¢ = c(xy)c(x2)c(xs) What is the probability that this bit
isa1?

> Exercise 5.32.1% P 1971 How should the binary Huffman encoding scheme be
modified to make optimal symbol codes in an encoding alphabet with ¢
symbols? (Also known as ‘radix ¢’.)

Mixture codes

It is a tempting idea to construct a ‘metacode’ from several symbol codes that
assign different-length codewords to the alternative symbols, then switch from
one code to another, choosing whichever assigns the shortest codeword to the
current symbol. Clearly we cannot do this for free. If one wishes to choose
between two codes, then it is necessary to lengthen the message in a way that
indicates which of the two codes is being used. If we indicate this choice by
a single leading bit, it will be found that the resulting code is suboptimal
because it is incomplete (that is, it fails the Kraft equality).

ﬁ% Exercise 5.33.1% P198] prove that this metacode is incomplete, and explain

5.9

why this combined code is suboptimal.

Solutions

Solution to exercise 5.8 (p.93). Yes, Co = {1,101} is uniquely decodeable,
even though it is not a prefix code, because no two different strings can map
onto the same string; only the codeword c¢(ag) = 101 contains the symbol 0.

Solution to exercise 5.14 (p.95). We wish to prove that for any set of codeword
lengths {l;} satisfying the Kraft inequality, there is a prefix code having those
lengths. This is readily proved by thinking of the codewords illustrated in
figure 5.8 as being in a ‘codeword supermarket’, with size indicating cost.
We imagine purchasing codewords one at a time, starting from the shortest
codewords (i.e., the biggest purchases), using the budget shown at the right
of figure 5.8. We start at one side of the codeword supermarket, say the

5 — Symbol Codes

Cg:
a; cla;) pi hps) L
a 0 o 10 1
b 10 Yy 20 2
c 110 18 30 3
4 111 Y8 30 3

5.9: Solutions

0000
00 0001
00 o3}
0010 S
001 S
o 0011 B
0100 o
010 S
o 0101 3
o1 0110 o
©
0111 g
1000
100 1001 o
10 =
1010
101 B
1011 =
! 1100 Q
110 |-E
1 1101
1110
111
1111
symbol probability Huffman Rival code’s Modified rival
codewords codewords code
a Pa ™ ‘ ci(a) ‘ ‘CR(Q)‘ cr(c)
b pmoo La®) | [w® | [w®
c pe = @) | (@) | [en(o)

top, and purchase the first codeword of the required length. We advance
down the supermarket a distance 27!, and purchase the next codeword of the
next required length, and so forth. Because the codeword lengths are getting
longer, and the corresponding intervals are getting shorter, we can always
buy an adjacent codeword to the latest purchase, so there is no wasting of
the budget. Thus at the Ith codeword we have advanced a distance Y/_; 27
down the supermarket; if 227" < 1, we will have purchased all the codewords
without running out of budget.

Solution to exercise 5.16 (p.99). The proof that Huffman coding is optimal
depends on proving that the key step in the algorithm — the decision to give
the two symbols with smallest probability equal encoded lengths — cannot
lead to a larger expected length than any other code. We can prove this by
contradiction.

Assume that the two symbols with smallest probability, called a and b,
to which the Huffman algorithm would assign equal length codewords, do not
have equal lengths in any optimal symbol code. The optimal symbol code
is some other rival code in which these two codewords have unequal lengths
l, and I with [, < [, Without loss of generality we can assume that this
other code is a complete prefix code, because any codelengths of a uniquely
decodeable code can be realized by a prefix code.

In this rival code, there must be some other symbol ¢ whose probability
pe is greater than p, and whose length in the rival code is greater than or
equal to [, because the code for b must have an adjacent codeword of equal
or greater length — a complete prefix code never has a solo codeword of the
maximum length.

Consider exchanging the codewords of a and ¢ (figure 5.9), so that a is

105

Figure 5.8. The codeword
supermarket and the symbol
coding budget. The ‘cost’ 27 of
each codeword (with length 1) is
indicated by the size of the box it
is written in. The total budget
available when making a uniquely
decodeable code is 1.

Figure 5.9. Proof that Huffman
coding makes an optimal symbol
code. We assume that the rival
code, which is said to be optimal,
assigns unequal length codewords
to the two symbols with smallest
probability, @ and b. By
interchanging codewords a and ¢
of the rival code, where c is a
symbol with rival codelength as
long as b’s, we can make a code
better than the rival code. This
shows that the rival code was not
optimal.

106 5 — Symbol Codes

encoded with the longer codeword that was ¢’s, and ¢, which is more probable
than a, gets the shorter codeword. Clearly this reduces the expected length
of the code. The change in expected length is (p, — pc)(lc — lq). Thus we have
contradicted the assumption that the rival code is optimal. Therefore it is
valid to give the two symbols with smallest probability equal encoded lengths.

Huffman coding produces optimal symbol codes. ad a D L clai)

Solution to exercise 5.21 (p.102). A Huffman code for X? where Ax = {0,1} 0000 0.1296 3 000
and Px = {0.9,0.1} is {00,01,10,11} — {1,01,000,001}. This code has gg‘l’é 88223 j 81‘1’8
L(C, X?) = 1.29, whereas the entropy H(X?) is 0.938. 0100 00864 4 0111

A Huffman code for X3 is 1000 0.0864 3 100
{000, 100,010,001,101,011,110, 111} — o 88;;2 j o
{1,011,010,001,00000, 00001, 00010, 00011}. 1001 00576 4 1101

This has expected length L(C,X?) = 1.598 whereas the entropy H(X?) is 813(1) 88;;2 i 1112
1.4069. 0011 0.0576 4 0010
A Huffman code for X* maps the sixteen source strings to the following 1110 0.0384 5 00110
codelengths: 1101 0.0384 5 01010
1011 0.0384 5 01011

{0000, 1000, 0100, 0010, 0001, 1100, 0110,0011,0101, 1010, 1001, 1110, 1101, 0111 0.0384 4 1011
1011,0111,1111} — {1,3,3,3,4,6,7,7,7,7,7,9,9,9,10,10}. 1111 00256 5 00111

This has expected length L(C, X%) = 1.9702 whereas the entropy H(X*) is Table 5.10. Huffman code for X4
1.876. when po = 0.6. Column 3 shows
When Px = {0.6,0.4}, the Huffman code for X? has lengths {2,2,2,2}; the assigned codelengths and
the expected length is 2 bits, and the entropy is 1.94 bits. A Huffman code for ~ column 4 the codewords. Some

X4 is shown in table 5.10. The expected length is 3.92 bits, and the entropy Strings whose probabilities are
is 3.88 bits identical, e.g., the fourth and

fifth, receive different codelengths.

Solution to exercise 5.22 (p.102). The set of probabilities {p1, p2,ps,pa} =
{1/67 16,1/, 1/3} gives rise to two different optimal sets of codelengths, because
at the second step of the Huffman coding algorithm we can choose any of the
three possible pairings. We may either put them in a constant length code
{00,01, 10,11} or the code {000,001,01,1}. Both codes have expected length
2.

Another solution is {p1, p2,p3, pa} = {1/5,1/5,1/5,%/5}.

And a third is {p1, p2, p3, pa} = {1/3,1/3,1/3,0}.

Solution to exercise 5.26 (p.103). Let pmax be the largest probability in
p1,p2,...,pr- The difference between the expected length L and the entropy
H can be no bigger than max(pmax,0.086) (Gallager, 1978).

See exercises 5.27-5.28 to understand where the curious 0.086 comes from.

Solution to exercise 5.27 (p.103). Length — entropy = 0.086.

Solution to exercise 5.31 (p.104). There are two ways to answer this problem
correctly, and one popular way to answer it incorrectly. Let’s give the incorrect
answer first:

Erroneous answer. “We can pick a random bit by first picking a random

source symbol x; with probability p;, then picking a random bit from ai clai) pi L
c(x;). If we define f; to be the fraction of the bits of ¢(x;) that are 1s, a 0 o 1
we find Cs: b 10 g 2
. 110 8 3

P 1) = i fi 34 ©
(bit is 1) ;plfl (5:34) a 111 18 3

= Yox0+VYVaxlo+18x23+18x1=137535)

5.9: Solutions

This answer is wrong because it falls for the bus-stop fallacy, which was intro-
duced in exercise 2.35 (p.38): if buses arrive at random, and we are interested
in ‘the average time from one bus until the next’, we must distinguish two
possible averages: (a) the average time from a randomly chosen bus until the
next; (b) the average time between the bus you just missed and the next bus.
The second ‘average’ is twice as big as the first because, by waiting for a bus
at a random time, you bias your selection of a bus in favour of buses that
follow a large gap. You’re unlikely to catch a bus that comes 10 seconds after
a preceding bus! Similarly, the symbols ¢ and d get encoded into longer-length
binary strings than a, so when we pick a bit from the compressed string at
random, we are more likely to land in a bit belonging to a c or a d than would
be given by the probabilities p; in the expectation (5.34). All the probabilities
need to be scaled up by [;, and renormalized.

Correct answer in the same style. Every time symbol x; is encoded, I;
bits are added to the binary string, of which f;l; are 1s. The expected
number of 1s added per symbol is

> pifili; (5.36)
i
and the expected total number of bits added per symbol is

> pili. (5.37)

So the fraction of 1s in the transmitted string is

i Di fili
P(bitis 1) = ZZZ?TQ (5.38)
B 1/2><0+1/4><1+1/8><2+1/8><3_7_/8_1/2
N /4 /7

For a general symbol code and a general ensemble, the expectation (5.38) is
the correct answer. But in this case, there is a more powerful argument we
can use.

Information-theoretic answer. The encoded string c is the output of an
optimal compressor that compresses samples from X down to an ex-
pected length of H(X) bits. We can’t expect to compress this data any
further. But if the probability P(bit is 1) were not equal to /2 then it
would be possible to compress the binary string further (using a block
compression code, say). Therefore P(bit is 1) must be equal to 1/2; in-
deed the probability of any sequence of [bits in the compressed stream
taking on any particular value must be 27!. The output of a perfect
compressor is always perfectly random bits.

To put it another way, if the probability P(bit is 1) were not equal to
1/2, then the information content per bit of the compressed string would
be at most Ho(P(1)), which would be less than 1; but this contradicts
the fact that we can recover the original data from c, so the information
content per bit of the compressed string must be H(X)/L(C,X) = 1.

Solution to exercise 5.32 (p.104). The general Huffman coding algorithm for
an encoding alphabet with ¢ symbols has one difference from the binary case.
The process of combining ¢ symbols into 1 symbol reduces the number of
symbols by ¢—1. So if we start with A symbols, we’ll only end up with a

107

108

complete g-ary tree if Amod (¢—1) is equal to 1. Otherwise, we know that
whatever prefix code we make, it must be an incomplete tree with a number
of missing leaves equal, modulo (¢—1), to Amod (¢—1) — 1. For example, if
a ternary tree is built for eight symbols, then there will unavoidably be one
missing leaf in the tree.

The optimal g-ary code is made by putting these extra leaves in the longest
branch of the tree. This can be achieved by adding the appropriate number
of symbols to the original source symbol set, all of these extra symbols having
probability zero. The total number of leaves is then equal to r(g—1) + 1, for
some integer r. The symbols are then repeatedly combined by taking the ¢
symbols with smallest probability and replacing them by a single symbol, as
in the binary Huffman coding algorithm.

Solution to exercise 5.33 (p.104). We wish to show that a greedy metacode,
which picks the code which gives the shortest encoding, is actually suboptimal,
because it violates the Kraft inequality.

We’ll assume that each symbol x is assigned lengths I (x) by each of the
candidate codes C}. Let us assume there are K alternative codes and that we
can encode which code is being used with a header of length log K bits. Then
the metacode assigns lengths I'(x) that are given by

I'(x) =logy K + mkin Ig(x). (5.39)
We compute the Kraft sum:

S = ZQ—l’(Qj) — %ZQ_mink lk(fb) (540)

Let’s divide the set Ax into non-overlapping subsets {Ak}le such that subset
Ay, contains all the symbols x that the metacode sends via code k. Then

S = %Z > o7k, (5.41)

k xeA

Now if one sub-code k satisfies the Kraft equality > c 1. 271(®) =1, then it
must be the case that
ool <, (5.42)
TEA
with equality only if all the symbols x are in Ay, which would mean that we
are only using one of the K codes. So

1 K
S< = 1=1 5.43
<pyi=t (5.43)

with equality only if equation (5.42) is an equality for all codes k. But it’s
impossible for all the symbols to be in all the non-overlapping subsets {Ak}kK:p
so we can’t have equality (5.42) holding for all k. So S < 1.

Another way of seeing that a mixture code is suboptimal is to consider
the binary tree that it defines. Think of the special case of two codes. The
first bit we send identifies which code we are using. Now, in a complete code,
any subsequent binary string is a valid string. But once we know that we
are using, say, code A, we know that what follows can only be a codeword
corresponding to a symbol x whose encoding is shorter under code A than
code B. So some strings are invalid continuations, and the mixture code is
incomplete and suboptimal.

For further discussion of this issue and its relationship to probabilistic
modelling read about ‘bits back coding’ in section 28.3 and in Frey (1998).

5 — Symbol Codes

About Chapter 6

Before reading Chapter 6, you should have read the previous chapter and
worked on most of the exercises in it.

We'll also make use of some Bayesian modelling ideas that arrived in the
vicinity of exercise 2.8 (p.30).

109

6.1

Stream Codes

In this chapter we discuss two data compression schemes.

Arithmetic coding is a beautiful method that goes hand in hand with the
philosophy that compression of data from a source entails probabilistic mod-
elling of that source. As of 1999, the best compression methods for text files
use arithmetic coding, and several state-of-the-art image compression systems
use it too.

Lempel-Ziv coding is a ‘universal’ method, designed under the philosophy
that we would like a single compression algorithm that will do a reasonable job
for any source. In fact, for many real life sources, this algorithm’s universal
properties hold only in the limit of unfeasibly large amounts of data, but, all
the same, Lempel-Ziv compression is widely used and often effective.

The guessing game

As a motivation for these two compression methods, consider the redundancy
in a typical English text file. Such files have redundancy at several levels: for
example, they contain the ASCII characters with non-equal frequency; certain
consecutive pairs of letters are more probable than others; and entire words
can be predicted given the context and a semantic understanding of the text.

To illustrate the redundancy of English, and a curious way in which it
could be compressed, we can imagine a guessing game in which an English
speaker repeatedly attempts to predict the next character in a text file.

For simplicity, let us assume that the allowed alphabet consists of the 26
upper case letters A,B,C,..., Z and a space ‘=’. The game involves asking
the subject to guess the next character repeatedly, the only feedback being
whether the guess is correct or not, until the character is correctly guessed.
After a correct guess, we note the number of guesses that were made when
the character was identified, and ask the subject to guess the next character
in the same way.

One sentence gave the following result when a human was asked to guess
a sentence. The numbers of guesses are listed below each character.

THERE-IS-NO-REVERSE-ON-A-MOTORCY

CLE -

11151121121115117111213212271111411111

Notice that in many cases, the next letter is guessed immediately, in one
guess. In other cases, particularly at the start of syllables, more guesses are
needed.

What do this game and these results offer us? First, they demonstrate the
redundancy of English from the point of view of an English speaker. Second,
this game might be used in a data compression scheme, as follows.

110

6.2

6.2: Arithmetic codes

The string of numbers ‘1, 1, 1, 5, 1, ...’ listed above, was obtained by
presenting the text to the subject. The maximum number of guesses that the
subject will make for a given letter is twenty-seven, so what the subject is
doing for us is performing a time-varying mapping of the twenty-seven letters
{A,B,C,...,Z,—} onto the twenty-seven numbers {1,2,3,...,27}, which we
can view as symbols in a new alphabet. The total number of symbols has not
been reduced, but since he uses some of these symbols much more frequently
than others — for example, 1 and 2 — it should be easy to compress this new
string of symbols.

How would the uncompression of the sequence of numbers ‘1,1, 1,5, 1, ...’
work? At uncompression time, we do not have the original string ‘THERE...’,
we have only the encoded sequence. Imagine that our subject has an absolutely
identical twin who also plays the guessing game with us, as if we knew the
source text. If we stop him whenever he has made a number of guesses equal to
the given number, then he will have just guessed the correct letter, and we can
then say ‘yes, that’s right’, and move to the next character. Alternatively, if
the identical twin is not available, we could design a compression system with
the help of just one human as follows. We choose a window length L, that is,
a number of characters of context to show the human. For every one of the
271 possible strings of length L, we ask them, ‘What would you predict is the
next character?’, and ‘If that prediction were wrong, what would your next
guesses be?’. After tabulating their answers to these 26 x 27% questions, we
could use two copies of these enormous tables at the encoder and the decoder
in place of the two human twins. Such a language model is called an Lth order
Markov model.

These systems are clearly unrealistic for practical compression, but they
illustrate several principles that we will make use of now.

Arithmetic codes

When we discussed variable-length symbol codes, and the optimal Huffman
algorithm for constructing them, we concluded by pointing out two practical
and theoretical problems with Huffman codes (section 5.6).

These defects are rectified by arithmetic codes, which were invented by
Elias, by Rissanen and by Pasco, and subsequently made practical by Witten
et al. (1987). In an arithmetic code, the probabilistic modelling is clearly
separated from the encoding operation. The system is rather similar to the
guessing game. The human predictor is replaced by a probabilistic model of
the source. As each symbol is produced by the source, the probabilistic model
supplies a predictive distribution over all possible values of the next symbol,
that is, a list of positive numbers {p;} that sum to one. If we choose to model
the source as producing i.i.d. symbols with some known distribution, then the
predictive distribution is the same every time; but arithmetic coding can with
equal ease handle complex adaptive models that produce context-dependent
predictive distributions. The predictive model is usually implemented in a
computer program.

The encoder makes use of the model’s predictions to create a binary string.
The decoder makes use of an identical twin of the model (just as in the guessing
game) to interpret the binary string.

Let the source alphabet be Ax = {a1,...,as}, and let the I'th symbol a;
have the special meaning ‘end of transmission’. The source spits out a sequence
T1,22,...,Ty,.... Lhe source does not necessarily produce i.i.d. symbols. We
will assume that a computer program is provided to the encoder that assigns a

111

112 6 — Stream Codes

predictive probability distribution over a; given the sequence that has occurred

thus far, P(z, =a;|z1,...,2,—1). The receiver has an identical program that
produces the same predictive probability distribution P(z, =a;|z1,...,Tn-1).
0.00 Figure 6.1. Binary strings define
real intervals within the real line
0.25 —— 0 [0,1). We first encountered a
— I 01 01101 picture like this when we
050 — v discussed the symbol-code
supermarket in Chapter 5.
0.7 —— 1
1.00

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01,0.10) is all numbers between 0.01 and 0.10,
including 0.010 = 0.01000. .. but not 0.100 = 0.10000....

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. . ., which
corresponds to the interval [0.01,0.10) in binary, i.e., the interval [0.25,0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01,0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places — two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P(z1 =a;), as shown in figure 6.2.

0.00 ¢ ai Figure 6.2. A probabilistic model
Plri=a1) ———— asay defines real intervals within the
- real line [0,1).
_ ag
_ az0as
P(z1=a1) + P(z1=a2)
P(11:a1)+...+P(1’1:aI,1) ¢a[

1.0

We may then take each interval a; and subdivide it into intervals de-
noted a;ai,a;as,...,a;ar, such that the length of a;a; is proportional to
P(zy=aj|x1=a;). Indeed the length of the interval a;a; will be precisely
the joint probability

P(.’L’l =a;, T :aj) = P(ml :ai)P(ig =aj ‘l’l :ai). (61)

Iterating this procedure, the interval [0,1) can be divided into a sequence
of intervals corresponding to all possible finite length strings zixs ... xy, such
that the length of an interval is equal to the probability of the string given
our model.

6.2: Arithmetic codes

u := 0.0
v :=1.0
pi=v—u

for n =1 to N {
Compute the cumulative probabilities @, and R, (6.2, 6.3)

v = utpRy(xn |21, ..., Tpo1)
u = U+an(In|$1,..‘,In,1)
pi=v—u

Formulae describing arithmetic coding

The process depicted in figure 6.2 can be written explicitly as follows. The intervals
are defined in terms of the lower and upper cumulative probabilities

i—1

Qulai|@1,-ano1) = > Plen=ay |z, 20m1), (6.2)
i =1

Rn(ai|z1,...,Tn-1) = Z P(zn=ay|21,...,Zn-1)- (6.3)

=1

As the nth symbol arrives, we subdivide the n — 1th interval at the points defined by

Q@ and R,,. For example, starting with the first symbol, the intervals ‘a:’, ‘a2’, and
k)

a1 < [Q1(a1), Ri(a1)) = [0, P(z1=a1)), (6.4)
az < [Q1i(az2), Ri(az2)) = [P(x=a1), P(x=a1) + P(x=a2)), (6.5)

and
ar < [Qi(ar),Ri(ar)) = [P(xz1=a1)+ ...+ P(z1=0a11),1.0). (6.6)

Algorithm 6.3 describes the general procedure.

To encode a string x1x2...2xn, we locate the interval corresponding to
r122...2xN, and send a binary string whose interval lies within that interval.
This encoding can be performed on the fly, as we now illustrate.

Ezxample: compressing the tosses of a bent coin

Imagine that we watch as a bent coin is tossed some number of times (c.f.
example 2.7 (p.30) and section 3.2 (p.51)). The two outcomes when the coin
is tossed are denoted a and b. A third possibility is that the experiment is
halted, an event denoted by the ‘end of file’ symbol, ‘00°. Because the coin is
bent, we expect that the probabilities of the outcomes a and b are not equal,
though beforehand we don’t know which is the more probable outcome.

Encoding

Let the source string be ‘bbbal’. We pass along the string one symbol at a
time and use our model to compute the probability distribution of the next

113

Algorithm 6.3. Arithmetic coding.
Iterative procedure to find the
interval [u,v) for the string
r1r2...TN-

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P(a)=0.425 P(b) =0.425 P(0)=0.15
b P(a|b)=0.28 P(b|b)=0.57 P(O]p)=0.15
bb P(a|bb)=021 P(b|bb)=0.64 P(0|bb)=0.15
bbb P(a|bbb)=0.17 P(b|bbb)=0.68 P(0|bbb)=0.15
bbba P(a|bbba)=0.28 P(b|bbba)=0.57 P(O|bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0,1). The interval bb is the middle 0.567 of b, and so forth.

= 00000 0000 Figure 6.4. Illustration of the

00001 000 arithmetic coding process as the
— 00010 0001 sequence bbbal is transmitted.
00011 00
00100
ooto1 9010
=0

0110
00111 2011

01000
01001 2100
S

1010
01011 0101
S

1100
01101 0110
=0

1110 0111011
01111 - 10010111

= 10000 1000 - 10011000
= 10001 bbbaa - 10011001

bba = oolo 100 — T10011010
: 1001 10011011
bbba = 10011 10 bbba 1\ oo —Iooilion —
b = 10100 ~10011101
1010 T T TR T -
bb bbb bbbb = 10101777, o) 55bar] ~ 10011110
10110 10011111

5B = 10111 1011 ~110100000

bbOl = 11000
— 11001 1100 100111101

bO A n— 110

001

IUEE
o

010

01

ba

10011

1
1—11

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10°, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’; so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘0’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbbal’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbbal, so the encoding
can be completed by appending ‘11101’.

6.2: Arithmetic codes 115

ﬁ% Exercise 6.1.1% P127] Show that the overhead required to terminate a message
is never more than 2 bits, relative to the ideal message length given the
probabilistic model H, h(x|H) = log[1/P(x|H)].

This is an important result. Arithmetic coding is very nearly optimal. The
message length is always within two bits of the Shannon information content
of the entire source string, so the expected message length is within two bits
of the entropy of the entire message.

Decoding

The decoder receives the string ‘100111101’ and passes along it one symbol
at a time. First, the probabilities P(a), P(b), P(O) are computed using the
identical program that the encoder used and the intervals ‘a’, ‘b’ and ‘O’ are
deduced. Once the first two bits ‘10’ have been examined, it is certain that
the original string must have been started with a ‘b’, since the interval ‘10’ lies
wholly within interval ‘b’. The decoder can then use the model to compute
P(a|b),P(b|b), P(O]|b) and deduce the boundaries of the intervals ‘ba’, ‘bb’
and ‘b0’. Continuing, we decode the second b once we reach ‘1001’, the third
b once we reach ‘100111’, and so forth, with the unambiguous identification
of ‘bbball’ once the whole binary string has been read. With the convention
that ‘0’ denotes the end of the message, the decoder knows to stop decoding.

Transmission of multiple files

How might one use arithmetic coding to communicate several distinct files over
the binary channel? Once the O character has been transmitted, we imagine
that the decoder is reset into its initial state. There is no transfer of the learnt
statistics of the first file to the second file. If, however, we did believe that
there is a relationship among the files that we are going to compress, we could
define our alphabet differently, introducing a second end-of-file character that
marks the end of the file but instructs the encoder and decoder to continue
using the same probabilistic model.

The big picture

Notice that to communicate a string of N letters both the encoder and the
decoder needed to compute only N|.A| conditional probabilities — the proba-
bilities of each possible letter in each context actually encountered — just as in
the guessing game. This cost can be contrasted with the alternative of using
a Huffman code with a large block size (in order to reduce the possible one-
bit-per-symbol overhead discussed in section 5.6), where all block sequences
that could occur must be considered and their probabilities evaluated.

Notice how flexible arithmetic coding is: it can be used with any source
alphabet and any encoded alphabet. The size of the source alphabet and the
encoded alphabet can change with time. Arithmetic coding can be used with
any probability distribution, which can change utterly from context to context.

Furthermore, if we would like the symbols of the encoding alphabet (say,
0 and 1) to be used with unequal frequency, that can easily be arranged by
subdividing the right-hand interval in proportion to the required frequencies.

How the probabilistic model might make its predictions

The technique of arithmetic coding does not force one to produce the predic-
tive probability in any particular way, but the predictive distributions might

116

'l

o
S
S
S
S

0000
000
0001

o
o
o
o
NI
']
oo
oo
oo
= O
O

aaa -

aa aaab ——

00

ot
o
o
o
=
=

0010

aab

001

T
o
o
=
o
s

aal 0011

aba

0100
010
0101

ab

_abba ——
abb abbb
abl]

adl

01

0110

baaa 011

0
baa pagp ——= 01110
ba ‘baba ——=— 01111
Pab babb - 14000
ball -
BBag =—=_ 10001
bba pbab —_—= 10010 1001
bbba — - 10011
b ——210100
bb bbb bbbb — 10101
__=10110
— 10111 0t
bbOl = 11000
— 11001 110
b0l = 11010 . .
= 11011
= 11100
O — 11101
— 11110
—1111q M

0111

1000

100

10

1010
101

11

1110
111

naturally be produced by a Bayesian model.

Figure 6.4 was generated using a simple model that always assigns a prob-
ability of 0.15 to O, and assigns the remaining 0.85 to a and b, divided in
proportion to probabilities given by Laplace’s rule,

F,+1

S S 6.7
Fot Fy+2 (6.7)

Po(alz,...,2p-1) =
where F,(z1,...,2,-1) is the number of times that a has occurred so far, and
Fy, is the count of bs. These predictions corresponds to a simple Bayesian
model that expects and adapts to a non-equal frequency of use of the source
symbols a and b within a file.

Figure 6.5 displays the intervals corresponding to a number of strings of
length up to five. Note that if the string so far has contained a large number of
bs then the probability of b relative to a is increased, and conversely if many
as occur then as are made more probable. Larger intervals, remember, require
fewer bits to encode.

Details of the Bayesian model

Having emphasized that any model could be used — arithmetic coding is not wedded
to any particular set of probabilities — let me explain the simple adaptive probabilistic

6 — Stream Codes

Figure 6.5. Illustration of the
intervals defined by a simple
Bayesian probabilistic model. The
size of an intervals is proportional
to the probability of the string.
This model anticipates that the
source is likely to be biased
towards one of a and b, so
sequences having lots of as or lots
of bs have larger intervals than
sequences of the same length that
are 50:50 as and bs.

6.2: Arithmetic codes 117

model used in the preceding example; we first encountered this model in exercise 2.8
(p-30).

Assumptions

The model will be described using parameters po, p. and py, defined below, which
should not be confused with the predictive probabilities in a particular context, for
example, P(a|s=baa). A bent coin labelled a and b is tossed some number of times [,
which we don’t know beforehand. The coin’s probability of coming up a when tossed
iS pa, and p, = 1 — pa; the parameters pa, pp are not known beforehand. The source
string s = baabal indicates that [was 5 and the sequence of outcomes was baaba.

1. It is assumed that the length of the string ! has an exponential probability
distribution
P(l) = (1 - pa)'pa. (6.8)
This distribution corresponds to assuming a constant probability pg for the
termination symbol ‘0" at each character.

2. It is assumed that the non-terminal characters in the string are selected inde-
pendently at random from an ensemble with probabilities P = {pa,pv}; the
probability p, is fixed throughout the string to some unknown value that could
be anywhere between 0 and 1. The probability of an a occurring as the next
symbol, given p, (if only we knew it), is (1 — po)pa. The probability, given
Pa, that an unterminated string of length F' is a given string s that contains
{Fa, Fyv} counts of the two outcomes is the Bernoulli distribution

P(s|pa, F) = p*(1 = po)"™. ©6.9)
3. We assume a uniform prior distribution for pa,
P(pa) =1, pa€l0,1] (6.10)

and pr = 1 — pa. It would be easy to assume other priors on p., with beta
distributions being the most convenient to handle.

This model was studied in section 3.2. The key result we require is the predictive
distribution for the next symbol, given the string so far, s. This probability of an a or
b being the next character (assuming that it is not ‘0’) was derived in equation (3.16)
and is precisely Laplace’s rule (6.7).

> Exercise 6.2.17] Compare the expected message length when an ASCII file is
compressed by the following three methods.

Huffman-with-header. Read the whole file, find the empirical fre-
quency of each symbol, construct a Huffman code for those frequen-
cies, transmit the code by transmitting the lengths of the Huffman
codewords, then transmit the file using the Huffman code. (The
actual codewords don’t need to be transmitted, since we can use a
deterministic method for building the tree given the codelengths.)

Arithmetic code using the Laplace model.

F,+1
Pa|lz,...,2p-1) = =———=. 6.11
el) =) (041
Arithmetic code using a Dirichlet model. This model’s predic-
tions are: o
2t a
Pla|zy,...,2p—1) = =——, 6.12
Lol) = v a) (042

where « is fixed to a number such as 0.01. This corresponds to a
more responsive version of the Laplace model; the probability over
characters is expected to be more nonuniform; a = 1 reproduces
the Laplace model.

Take care that the header of your Huffman message is self-delimiting.
Special cases worth considering are (a) short files with just a few hundred
characters; (b) large files in which some characters are never used.

6.3

g

118

Further applications of arithmetic coding

Efficient generation of random samples

Arithmetic coding not only offers a way to compress strings believed to come
from a given model; it also offers a way to generate random strings from a
model. Imagine sticking a pin into the unit interval at random, that line
having been divided into subintervals in proportion to probabilities p;; the
probability that your pin will lie in interval ¢ is p;.

So to generate a sample from a model, all we need to do is feed ordinary
random bits into an arithmetic decoder for that model. An infinite random
bit sequence corresponds to the selection of a point at random from the line
[0,1), so the decoder will then select a string at random from the assumed
distribution. This arithmetic method is guaranteed to use very nearly the
smallest number of random bits possible to make the selection — an important
point in communities where random numbers are expensive! [This is not a joke.
Large amounts of money are spent on generating random bits in software and
hardware. Random numbers are valuable.]

A simple example of the use of this technique is in the generation of random
bits with a nonuniform distribution {pg, p1}.

Exercise 6.3.1% P-127] Compare the following two techniques for generating
random symbols from a nonuniform distribution {pg, p1} = {0.99,0.01}:

(a) The standard method: use a standard random number generator
to generate an integer between 1 and 232. Rescale the integer to
(0,1). Test whether this uniformly distributed random variable is
less than 0.99, and emit a 0 or 1 accordingly.

(b) Arithmetic coding using the correct model, fed with standard ran-
dom bits.

Roughly how many random bits will each method use to generate a
thousand samples from this sparse distribution?

Efficient data-entry devices

When we enter text into a computer, we make gestures of some sort — maybe
we tap a keyboard, or scribble with a pointer, or click with a mouse; an
efficient text entry system is one where the number of gestures required to
enter a given text string is small.

Writing can be viewed as an inverse process to data compression. In data
compression, the aim is to map a given text string into a small number of bits.
In text entry, we want a small sequence of gestures to produce our intended
text.

By inverting an arithmetic coder, we can obtain an information-efficient
text entry device that is driven by continuous pointing gestures (Ward et al.,
2000). In this system, called Dasher, the user zooms in on the unit interval to
locate the interval corresponding to their intended string, in the same style as
figure 6.4. A language model (exactly as used in text compression) controls
the sizes of the intervals such that probable strings are quick and easy to
identify. After an hour’s practice, a novice user can write with one finger
driving Dasher at about 25 words per minute — that’s about half their normal
ten-finger typing speed on a regular keyboard. It’s even possible to write at 25

6 — Stream Codes

Compression:
text — bits
Writing:

text

«— gestures

6.4

6.4: Lempel-Ziv coding

words per minute, hands-free, using gaze direction to drive Dasher (Ward and
MacKay, 2002). Dasher is available as free software for various platforms.!

Lempel-Ziv coding

The Lempel-Ziv algorithms, which are widely used for data compression (e.g.,
the compress and gzip commands), are different in philosophy to arithmetic
coding. There is no separation between modelling and coding, and no oppor-
tunity for explicit modelling.

Basic Lempel-Ziwv algorithm

The method of compression is to replace a substring with a pointer to
an earlier occurrence of the same substring. For example if the string is
1011010100010..., we parse it into an ordered dictionary of substrings that
have not appeared before as follows: A, 1, 0, 11, 01, 010, 00, 10, We in-
clude the empty substring A as the first substring in the dictionary and order
the substrings in the dictionary by the order in which they emerged from the
source. After every comma, we look along the next part of the input sequence
until we have read a substring that has not been marked off before. A mo-
ment’s reflection will confirm that this substring is longer by one bit than a
substring that has occurred earlier in the dictionary. This means that we can
encode each substring by giving a pointer to the earlier occurrence of that pre-
fix and then sending the extra bit by which the new substring in the dictionary
differs from the earlier substring. If, at the nth bit, we have enumerated s(n)
substrings, then we can give the value of the pointer in [log, s(n)] bits. The
code for the above sequence is then as shown in the fourth line of the following
table (with punctuation included for clarity), the upper lines indicating the
source string and the value of s(n):

source substrings | A 1 0 11 01 010
s(n) 0 1 2 3 4 5
5(1)binary 000 001 010 011 100 101
(pointer, bit) (,1) (0,0) (01,1) (10,1) (100,0)

Notice that the first pointer we send is empty, because, given that there is
only one substring in the dictionary — the string A — no bits are needed to
convey the ‘choice’ of that substring as the prefix. The encoded string is
100011101100001000010. The encoding, in this simple case, is actually a
longer string than the source string, because there was no obvious redundancy
in the source string.

Exercise 6.4.12] Prove that any uniquely decodeable code from {0,1}T to
{0,1}" necessarily makes some strings longer if it makes some strings
shorter.

One reason why the algorithm described above lengthens a lot of strings is
because it is inefficient — it transmits unnecessary bits; to put it another way,
its code is not complete. Once a substring in the dictionary has been joined
there by both of its children, then we can be sure that it will not be needed
(except possibly as part of our protocol for terminating a message); so at that
point we could drop it from our dictionary of substrings and shuffle them
all along one, thereby reducing the length of subsequent pointer messages.

lwww.inference.phy.cam.ac.uk/dasher/

00
6

110
(010,0)

10

7

111
(001, 0)

119

120

Equivalently, we could write the second prefix into the dictionary at the point
previously occupied by the parent. A second unnecessary overhead is the
transmission of the new bit in these cases — the second time a prefix is used,
we can be sure of the identity of the next bit.

Decoding

The decoder again involves an identical twin at the decoding end who con-
structs the dictionary of substrings as the data are decoded.

Exercise 6.5.1% P128] Encode the string 000000000000100000000000 using
the basic Lempel-Ziv algorithm described above.

Exercise 6.6.1% P128] Decode the string
00101011101100100100011010101000011

that was encoded using the basic Lempel-Ziv algorithm.

Practicalities

In this description I have not discussed the method for terminating a string.

There are many variations on the Lempel-Ziv algorithm, all exploiting the
same idea but using different procedures for dictionary management, etc. The
resulting programs are fast, but their performance on compression of English
text, although useful, does not match the standards set in the arithmetic
coding literature.

Theoretical properties

In contrast to the block code, Huffman code, and arithmetic coding methods
we discussed in the last three chapters, the Lempel-Ziv algorithm is defined
without making any mention of a probabilistic model for the source. Yet, given
any ergodic source (i.e., one that is memoryless on sufficiently long timescales),
the Lempel-Ziv algorithm can be proven asymptotically to compress down to
the entropy of the source. This is why it is called a ‘universal’ compression
algorithm. For a proof of this property, see Cover and Thomas (1991).

It achieves its compression, however, only by memorizing substrings that
have happened so that it has a short name for them the next time they occur.
The asymptotic timescale on which this universal performance is achieved may,
for many sources, be unfeasibly long, because the number of typical substrings
that need memorizing may be enormous. The useful performance of the al-
gorithm in practice is a reflection of the fact that many files contain multiple
repetitions of particular short sequences of characters, a form of redundancy
to which the algorithm is well suited.

Common ground

I have emphasized the difference in philosophy behind arithmetic coding and
Lempel-Ziv coding. There is common ground between them, though: in prin-
ciple, one can design adaptive probabilistic models, and thence arithmetic
codes, that are ‘universal’, that is, models that will asymptotically compress
any source in some class to within some factor (preferably 1) of its entropy.
However, for practical purposes, I think such universal models can only be
constructed if the class of sources is severely restricted. A general purpose
compressor that can discover the probability distribution of any source would

6 — Stream Codes

6.5

6.5: Demonstration

be a general purpose artificial intelligence! A general purpose artificial intelli-
gence does not yet exist.

Demonstration

An interactive aid for exploring arithmetic coding, dasher.tcl, is available.?

A demonstration arithmetic-coding software package written by Radford
Neal® consists of encoding and decoding modules to which the user adds a
module defining the probabilistic model. It should be emphasized that there
is no single general-purpose arithmetic-coding compressor; a new model has to
be written for each type of source. Radford Neal’s package includes a simple
adaptive model similar to the Bayesian model demonstrated in section 6.2.
The results using this Laplace model should be viewed as a basic benchmark
since it is the simplest possible probabilistic model — it simply assumes the
characters in the file come independently from a fixed ensemble. The counts
{F;} of the symbols {a;} are rescaled and rounded as the file is read such that
all the counts lie between 1 and 256.

A state-of-the-art compressor for documents containing text and images,
DjVu, uses arithmetic coding.* It uses a carefully designed approximate arith-
metic coder for binary alphabets called the Z-coder (Bottou et al., 1998), which
is much faster than the arithmetic coding software described above. One of
the neat tricks the Z-coder uses is this: the adaptive model adapts only occa-
sionally (to save on computer time), with the decision about when to adapt
being pseudo-randomly controlled by whether the arithmetic encoder emitted
a bit.

The JBIG image compression standard for binary images uses arithmetic
coding with a context-dependent model, which adapts using a rule similar to
Laplace’s rule. PPM (Teahan, 1995) is a leading method for text compression,
and it uses arithmetic coding.

There are many Lempel-Ziv-based programs. gzip is based on a version
of Lempel-Ziv called ‘LZ77’. compress is based on ‘LZW. In my experience
the best is gzip, with compress being inferior on most files.

bzip is a block-sorting file compressor, which makes use of a neat hack
called the Burrows—Wheeler transform (Burrows and Wheeler, 1994). This
method is not based on an explicit probabilistic model, and it only works well
for files larger than several thousand characters; but in practice it is a very
effective compressor for files in which the context of a character is a good
predictor for that character.’

Compression of a text file

Table 6.6 gives the computer time in seconds taken and the compression
achieved when these programs are applied to the IATEX file containing the
text of this chapter, of size 20,942 bytes.

Compression of a sparse file

Interestingly, gzip does not always do so well. Table 6.7 gives the compres-
sion achieved when these programs are applied to a text file containing 106

2http://www.inference.phy.cam.ac.uk/mackay/itprnn/softwarel.html

3ftp://ftp.cs.toronto.edu/pub/radford/www/ac.software.html

*http://www.djvuzone.org/

5There is a lot of information about the Burrows-Wheeler transform on the net.
http://dogma.net/DataCompression/BWT.shtml

121

6.6

122
Method Compression Compressed size Uncompression
time /sec (%age of 20,942) time / sec

Laplace model 0.28 12974 (61%) 0.32
gzip 0.10 8177 (39%) 0.01
compress 0.05 10816 (51%) 0.05
bzip 7495 (36%)

bzip2 7640 (36%)

ppmz 6800 (32%)

characters, each of which is either 0 and 1 with probabilities 0.99 and 0.01.
The Laplace model is quite well matched to this source, and the benchmark
arithmetic coder gives good performance, followed closely by compress; gzip,
interestingly, is worst. An ideal model for this source would compress the
file into about 10°H3(0.01)/8 ~ 10100 bytes. The Laplace model compressor
falls short of this performance because it is implemented using only eight-bit
precision. The ppmz compressor compresses the best of all, but takes much
more computer time.

Method Compression Compressed size Uncompression
time / sec / bytes time / sec
Laplace model 0.45 14143 (1.4%) 0.57
gzip 0.22 20646 (2.1%) 0.04
gzip —-best+ 1.63 15553 (1.6%) 0.05
compress 0.13 14785 (1.5%) 0.03
bzip 0.30 10903 (1.09%) 0.17
bzip2 0.19 11260 (1.12%) 0.05
ppmz 533 10447 (1.04%) 535
Summary

In the last three chapters we have studied three classes of data compression
codes.

Fixed-length block codes (Chapter 4). These are mappings from a fixed
number of source symbols to a fixed length binary message. Only a tiny
fraction of the source strings are given an encoding. These codes were
fun for identifying the entropy as the measure of compressibility but they
are of little practical use.

Symbol codes (Chapter 5). Symbol codes employ a variable length code for
each symbol in the source alphabet, the codelengths being integer lengths
determined by the probabilities of the symbols. Huffman’s algorithm
constructs an optimal symbol code for a given set of symbol probabilities.

Every source string has a uniquely decodeable encoding, and if the source
symbols come from the assumed distribution then the symbol code will
compress to an expected length L lying in the interval [H, H 4+ 1). Sta-
tistical fluctuations in the source may make the actual length longer or
shorter than this mean length.

6 — Stream Codes

Table 6.6. Comparison of
compression algorithms applied to
a text file.

Table 6.7. Comparison of
compression algorithms applied to
a random file of 10® characters,
99% 0s and 1% 1s.

6.7: Exercises on stream codes

If the source is not well matched to the assumed distribution then the
mean length is increased by the relative entropy Dkr, between the source
distribution and the code’s implicit distribution. For sources with small
entropy, the symbol has to emit at least one bit per source symbol;
compression below one bit per source symbol can only be achieved by
the cumbersome procedure of putting the source data into blocks.

Stream codes. The distinctive property of stream codes, compared with

symbol codes, is that they are not constrained to emit at least one bit for
every symbol read from the source stream. So large numbers of source
symbols may be coded into a smaller number of bits. This property
could only be obtained using a symbol code if the source stream were
somehow chopped into blocks.

e Arithmetic codes combine a probabilistic model with an encoding
algorithm that identifies each string with a sub-interval of [0,1) of
size equal to the probability of that string under the model. This
code is almost optimal in the sense that the compressed length of a
string x closely matches the Shannon information content of x given
the probabilistic model. Arithmetic codes fit with the philosophy
that good compression requires data modelling, in the form of an
adaptive Bayesian model.

e Lempel-Ziv codes are adaptive in the sense that they memorize
strings that have already occurred. They are built on the philoso-
phy that we don’t know anything at all about what the probability
distribution of the source will be, and we want a compression algo-
rithm that will perform reasonably well whatever that distribution
is.

Both arithmetic codes and Lempel-Ziv codes will fail to decode correctly

if any of the bits of the compressed file are altered. So if compressed files are
to be stored or transmitted over noisy media, error-correcting codes will be
essential. Reliable communication over unreliable channels is the topic of the
next few chapters.

Exercises on stream codes

Exercise 6.7.12] Describe an arithmetic coding algorithm to encode random bit

strings of length N and weight K (i.e., K ones and N — K zeroes) where
N and K are given.

For the case N =5, K =2 show in detail the intervals corresponding to
all source substrings of lengths 1-5.

> Exercise 6.8.1% P128] oy many bits are needed to specify a selection of K

objects from N objects? (N and K are assumed to be known and the
selection of K objects is unordered.) How might such a selection be
made at random without being wasteful of random bits?

> Exercise 6.9.[2] A binary source X emits independent identically distributed

symbols with probability distribution {fo, f1}, where f; = 0.01. Find
an optimal uniquely-decodeable symbol code for a string x = x1xox3 of
three successive samples from this source.

Estimate (to one decimal place) the factor by which the expected length
of this optimal code is greater than the entropy of the three-bit string x.

123

124 6 — Stream Codes

[H2(0.01) ~ 0.08, where Ho(x) = xlogy(1/z) + (1 — z)logy(1/(1 — z)).]

An arithmetic code is used to compress a string of 1000 samples from
the source X. Estimate the mean and standard deviation of the length
of the compressed file.

> Exercise 6.10.[?] Describe an arithmetic coding algorithm to generate random
bit strings of length N with density f (i.e., each bit has probability f of
being a one) where N is given.

Exercise 6.11.12] Use a modified Lempel-Ziv algorithm in which, as discussed
on p.119, the dictionary of prefixes is pruned by writing new prefixes
into the space occupied by prefixes that will not be needed again.
Such prefixes can be identified when both their children have been
added to the dictionary of prefixes. (You may neglect the issue of
termination of encoding.) Use this algorithm to encode the string
0100001000100010101000001. Highlight the bits that follow a prefix
on the second occasion that that prefix is used. (As discussed earlier,
these bits could be omitted.)

Exercise 6.12.[% P-128] Show that this modified Lempel-Ziv code is still not
‘complete’; that is, there are binary strings that are not encodings of
any string.

> Exercise 6.13.3 P-128] Give examples of simple sources that have low entropy
but would not be compressed well by the Lempel-Ziv algorithm.

6.8 Further exercises on data compression

The following exercises may be skipped by the reader who is eager to learn
about noisy channels.

ﬁ% Exercise 6.14.[% 130 Congider a Gaussian distribution in N dimensions,

2
P(x) = —5xmexp | — 2n n). (6.13) probability density
(2ma2)N/ 20 / is maximized here
Define the radius of a point x to be r = (3, xi)l/z. Estimate the mean
and variance of the square of the radius, r? = (32, z2). VNo
X
i almost all
You may find helpful the integral probability mass is here
2
de — gt exp [~ | = 30%, (6.14) Figure 6.8. Schematic
(2mo?)1/2 202 . .
representation of the typical set of
though you should be able to estimate the required quantities without it. an N-dimensional Gaussian
distribution.

Assuming that N is large, show that nearly all the probability of a
Gaussian is contained in a thin shell of radius v No. Find the thickness
of the shell.

Evaluate the probability density (6.13) at a point in that thin shell and
at the origin x = 0 and compare. Use the case N = 1000 as an example.

Notice that nearly all the probability mass is located in a different part
of the space from the region of highest probability density.

6.8: Further exercises on data compression
ﬁ% Exercise 6.15.12! Explain what is meant by an optimal binary symbol code.
Find an optimal binary symbol code for the ensemble:

A={ab,c,d,e f, g h i, j},

10071007 1007 100" 100”100’ 100’ 100° 100’ 100
and compute the expected length of the code.

1 2 4 5 6 8 9 10 25 30
,P:{ }7

ﬁ% Exercise 6.16.1%] A string y = 129 consists of two independent samples from
an ensemble

1 3 6
X = {a,b,c}; = —,—,— .
AX {a7 7C}7PX {10710710}
What is the entropy of y? Construct an optimal binary symbol code for
the string y, and find its expected length.

ﬁ%Exercise 6.17.[2] Strings of N independent samples from an ensemble with

P ={0.1,0.9} are compressed using an arithmetic code that is matched

to that ensemble. Estimate the mean and standard deviation of the
compressed strings’ lengths for the case N = 1000. [H2(0.1) ~ 0.47]

ﬁ% Exercise 6.18.1%] Source coding with variable-length symbols.

In the chapters on source coding, we assumed that we were
encoding into a binary alphabet {0,1} in which both symbols
should be used with equal frequency. In this question we ex-
plore how the encoding alphabet should be used if the symbols
take different times to transmit.

A poverty-stricken student communicates for free with a friend using a
telephone by selecting an integer n € {1,2,3...}, making the friend’s
phone ring n times, then hanging up in the middle of the nth ring. This
process is repeated so that a string of symbols ninong... is received.
What is the optimal way to communicate? If large integers n are selected
then the message takes longer to communicate. If only small integers n
are used then the information content per symbol is small. We aim to
maximize the rate of information transfer, per unit time.

Assume that the time taken to transmit a number of rings n and to
redial is l,, seconds. Consider a probability distribution over n, {p,}.
Defining the average duration per symbol to be

L(p) =Y puln (6.15)
n
and the entropy per symbol to be
1
H(p) = > pnlog, . (6.16)
n n

show that for the average information rate per second to be maximized,
the symbols must be used with probabilties of the form

1
pn=527" (6.17)

125

126 6 — Stream Codes

where Z = 3", 27P» and §3 satisfies the implicit equation

H(p)
8 =—=, 6.18
Lp) (64%)
that is, (3 is the rate of communication. Show that these two equations
(6.17, 6.18) imply that S must be set such that

log Z =0. (6.19)
Assuming that the channel has the property
I, = n seconds, (6.20)

find the optimal distribution p and show that the maximal information
rate is 1 bit per second.

How does this compare with the information rate per second achieved if
p isset to (1/2,1/2,0,0,0,0,...) — that is, only the symbols n = 1 and
n = 2 are selected, and they have equal probability?

Discuss the relationship between the results (6.17, 6.19) derived above,
and the Kraft inequality from source coding theory.

How might a random binary source be efficiently encoded into a se-
quence of symbols ninong ... for transmission over the channel defined
in equation (6.20)7

> Exercise 6.19.[1] How many bits does it take to shuffle a pack of cards?

> Exercise 6.20.12] In the card game Bridge, the four players receive 13 cards
each from the deck of 52 and start each game by looking at their own
hand and bidding. The legal bids are, in ascending order 1d, 1,10, 1,
INT, 2&, 25, ... 7O, 78, TNT, and successive bids must follow this
order; a bid of, say, 20 may only be followed by higher bids such as 2&
or 3% or TNT. (Let us neglect the ‘double’ bid.)

The players have several aims when bidding. One of the aims is for two
partners to communicate to each other as much as possible about what
cards are in their hands.

Let us concentrate on this task.

(a) After the cards have been dealt, how many bits are needed for North
to convey to South what her hand is?

(b) Assuming that E and W do not bid at all, what is the maximum
total information that N and S can convey to each other while
bidding? Assume that N starts the bidding, and that once either
N or S stops bidding, the bidding stops.

1[Gl EEo
> Exercise 6.21.[2] My old ‘arabic’ microwave oven had 11 buttons for entering @
cooking times, and my new ‘roman’ microwave has just five. The but- @ =]
tons of the roman microwave are labelled ‘10 minutes’, ‘1 minute’, ‘10
seconds’, ‘1 second’, and ‘Start’; I'll abbreviate these five strings to the Figure 6.9. Alternative keypads
symbols M, C, X, I, O. To enter one minute and twenty-three seconds for microwave ovens.
(1:23), the arabic sequence is

Arabic Roman

1230, (6.21)

6.9

6.9: Solutions

and the roman sequence is
CXXIIIO. (6.22)

Each of these keypads defines a code mapping the 3599 cooking times
from 0:01 to 59:59 into a string of symbols.

(a) Which times can be produced with two or three symbols? (For
example, 0:20 can be produced by three symbols in either code:
XXO and 200.)

(b) Are the two codes complete? Give a detailed answer.

(c) For each code, name a cooking time that it can produce in four
symbols that the other code cannot.

(d) Discuss the implicit probability distributions over times to which
each of these codes is best matched.

(e) Concoct a plausible probability distribution over times that a real
user might use, and evaluate roughly the expected number of sym-
bols, and maximum number of symbols, that each code requires.
Discuss the ways in which each code is inefficient or efficient.

(f) Invent a more efficient cooking-time-encoding system for a mi-
crowave oven.

Exercise 6.22.1% P-132] [g the standard binary representation for positive inte-
gers (e.g. cp(5) = 101) a uniquely decodeable code?

Design a binary code for the positive integers, i.e., a mapping from
n € {1,2,3,...} to ¢(n) € {0,1}*, that is uniquely decodeable. Try
to design codes that are prefix codes and that satisfy the Kraft equality
Sp27h=1.

Motivations: any data file terminated by a special end of file character can be
mapped onto an integer, so a prefix code for integers can be used as a self-
delimiting encoding of files too. Large files correspond to large integers. Also,
one of the building blocks of a ‘universal’ coding scheme — that is, a coding
scheme that will work OK for a large variety of sources — is the ability to encode
integers. Finally, in microwave ovens, cooking times are positive integers!

Discuss criteria by which one might compare alternative codes for inte-
gers (or, equivalently, alternative self-delimiting codes for files).

Solutions

Solution to exercise 6.1 (p.115). The worst-case situation is when the interval
to be represented lies just inside a binary interval. In this case, we may choose
either of two binary intervals as shown in figure 6.10. These binary intervals
are no smaller than P(x|H)/4, so the binary encoding has a length no greater
than logy 1/P(x|H) + log, 4, which is two bits more than the ideal message
length.

Solution to exercise 6.3 (p.118). The standard method uses 32 random bits
per generated symbol and so requires 32000 bits to generate one thousand
samples.

Arithmetic coding uses on average about H3(0.01) = 0.081 bits per gener-
ated symbol, and so requires about 83 bits to generate one thousand samples
(assuming an overhead of roughly two bits associated with termination).

Fluctuations in the number of 1s would produce variations around this
mean with standard deviation 21.

127

128 6 — Stream Codes

Figure 6.10. Termination of
Source string’s interval Binary intervals arithmetic coding in the worst
case, where there is a two bit
overhead. Either of the two
binary intervals marked on the
right-hand side may be chosen.
P(x[H) _ These binary intervals are no
smaller than P(x|H)/4.

Solution to exercise 6.5 (p.120). The encoding is 010100110010110001100,
which comes from the parsing

0, 00,000, 0000,001,00000,000000 (6.23)
which is encoded thus
(,0),(1,0),(10,0),(11,0),(010,1),(100,0),(110,0). (6.24)

Solution to exercise 6.6 (p.120). The decoding is
0100001000100010101000001.

Solution to exercise 6.8 (p.123). This problem is equivalent to exercise 6.7
(p.123).

The selection of K objects from N objects requires [log, (%)] bits =~
NHy(K/N) bits. This selection could be made using arithmetic coding. The
selection corresponds to a binary string of length N in which the 1 bits rep-
resent which objects are selected. Initially the probability of a 1 is K/N and
the probability of a 0 is (N—K)/N. Thereafter, given that the emitted string
thus far, of length n, contains k 1s, the probability of a 1 is (K —k)/(N —n)
and the probability of a 0is 1 — (K —k)/(N—n).

Solution to exercise 6.12 (p.124). This modified Lempel-Ziv code is still not
‘complete’, because, for example, after five prefixes have been collected, the
pointer could be any of the strings 000, 001, 010, 011, 100, but it cannot be
101, 110 or 111. Thus there are some binary strings that cannot be produced
as encodings.

Solution to exercise 6.13 (p.124). Sources with low entropy that are not well
compressed by Lempel-Ziv include:

(a) Sources with some symbols that have long range correlations and inter-
vening random junk. An ideal model should capture what’s correlated
and compress it. Lempel-Ziv can only compress the correlated features
by memorizing all cases of the intervening junk. As a simple example,
consider a telephone book in which every line contains an (old number,
new number) pair:

285-3820:572-58920

258-8302:593-20100
The number of characters per line is 18, drawn from the 13-character
alphabet {0,1,...,9,—,:,0}. The characters ‘~’, ‘:” and ‘0’ occur in a
predictable sequence, so the true information content per line, assuming
all the phone numbers are seven digits long, and assuming that they are

6.9: Solutions

|

'i"l_; _.

il
|I| [l J ||I!I
Figure 6.11. A source with low entropy that is not well compressed by Lempel-Ziv. The bit sequence
is read from left to right. Each line differs from the line above in f = 5% of its bits. The

random sequences, is about 14 bans. (A ban is the information content of
a random integer between 0 and 9.) A finite state language model could
easily capture the regularities in these data. A Lempel-Ziv algorithm
will take a long time before it compresses such a file down to 14 bans
per line, however, because in order for it to ‘learn’ that the string :ddd
is always followed by -, for any three digits ddd, it will have to see all
those strings. So near-optimal compression will only be achieved after
thousands of lines of the file have been read.
e
Tl
I

|' “ | .H.
i "!

"l, Hll .! J|.|.

|

image width is 400 pixels.

(b) Sources with long range correlations, for example two-dimensional im-

ages that are represented by a sequence of pixels, row by row, so that
vertically adjacent pixels are a distance w apart in the source stream,
where w is the image width. Consider, for example, a fax transmission in
which each line is very similar to the previous line (figure 6.11). The true
entropy is only Hy(f) per pixel, where f is the probablity that a pixel
differs from its parent. Lempel-Ziv algorithms will only compress down
to the entropy once all strings of length 2 = 2499 have occurred and
their successors have been memorized. There are only about 23%0 par-
ticles in the universe, so we can confidently say that Lempel-Ziv codes
will never capture the redundancy of such an image.

=] | Wi 2 ey

A T

Si %Qf'-—'w— 1

mniie===

L | — e — I|||.||.'|

Figure 6.12. A texture consisting of horizontal and vertical pins dropped at random on the plane.

Another highly redundant texture is shown in figure 6.12. The image was
made by dropping horizontal and vertical pins randomly on the plane. It
contains both long-range vertical correlations and long-range horizontal
correlations. There is no practical way that Lempel-Ziv, fed with a
pixel-by-pixel scan of this image, could capture both these correlations.

Biological computational systems can readily identify the redundancy in
these images and in images that are much more complex; thus we might
anticipate that the best data compression algorithms will result from the
development of artificial intelligence methods.

129

130

()

()

Sources with intricate redundancy, such as files generated by computers.
For example, a I¥TEX file followed by its encoding into a PostScript
file. The information content of this pair of files is roughly equal to the
information content of the IATEX file alone.

A picture of the Mandelbrot set. The picture has an information content
equal to the number of bits required to specify the range of the complex
plane studied, the pixel sizes, and the colouring rule used.

A picture of a ground state of a frustrated antiferromagnetic Ising model
(figure 6.13), which we will discuss in Chapter 31. Like figure 6.12, this
binary image has interesting correlations in two directions.

Cellular automata — figure 6.14 shows the state history of 100 steps of
a cellular automaton with 400 cells. The update rule, in which each
cell’s new state depends on the state of five preceding cells, was selected
at random. The information content is equal to the information in the
boundary (400 bits), and the propagation rule, which here can be de-
scribed in 32 bits. An optimal compressor will thus give a compressed file
length which is essentially constant, independent of the vertical height of
the image. Lempel-Ziv would only give this zero-cost compression once
the cellular automaton has entered a periodic limit cycle, which could

easily take about 2'%° iterations.

In contrast, the JBIG compression method, which models the probability
of a pixel given its local context and uses arithmetic coding, would do a
good job on these images.

Solution to exercise 6.14 (p.124). For a one-dimensional Gaussian, the vari-

ance of x, £[z?], is o2

2. So the mean value of 72 in N dimensions, since the

components of x are independent random variables, is

E[rY] = No. (6.25)

6 — Stream Codes

Figure 6.13. Frustrated triangular
Ising model in one of its ground
states.

Figure 6.14. The 100-step time-history of a cellular automaton with 400 cells.

6.9: Solutions

The variance of r2, similarly, is N times the variance of z2, where z is a
one-dimensional Gaussian variable.

1 z2
Var(x2) = /d(E W.’ZA exp (_ﬁ) — 0'4. (626)

The integral is found to be 30 (equation (6.14)), so var(2?) = 20*. Thus the
variance of 72 is 2No*.

For large N, the central limit theorem indicates that r? has a Gaussian
distribution with mean No? and standard deviation v2N o2, so the probability
density of r must similarly be concentrated about r ~ v/No.

The thickness of this shell is given by turning the standard deviation
of r? into a standard deviation on 7: for small ér/r, dlogr = or/r =
(Y2)8logr? = (12)8(r?)/r?, so setting 6(r?) = v2No?, r has standard de-
viation dr = (1/2)ré(r?)/r? = o //2.

The probability density of the Gaussian at a point Xgpe; where r = VNo
is

1 No? 1 N
P = — = — . 2
(Xshell) ro?) V2 exp < 557) L exp (5) (6.27)

Whereas the probability density at the origin is

1

P(x=0)= W.

(6.28)
Thus P(xghen)/P(x=0) = exp (—N/2) . The probability density at the typical
radius is e=N/2 times smaller than the density at the origin. If N = 1000, then
the probability density at the origin is €0 times greater.

131

Codes for Integers

This chapter is an aside, which may safely be skipped.

Solution to exercise 6.22 (p.127)
To discuss the coding of integers we need some definitions.

The standard binary representation of a positive integer n will be
denoted by ¢ (n), e.g., ,(5) = 101, ¢,(45) = 101101.

The standard binary length of a positive integer n, I,(n), is the
length of the string ¢, (n). For example, I (5) = 3, I,(45) = 6.

The standard binary representation cp(n) is not a uniquely decodeable code
for integers since there is no way of knowing when an integer has ended. For
example, cp(5)cp(5) is identical to ¢,(45). It would be uniquely decodeable if
we knew the standard binary length of each integer before it was received.

Noticing that all positive integers have a standard binary representation
that starts with a 1, we might define another representation:

The headless binary representation of a positive integer n will be de-
noted by cg(n), e.g., cg(5) = 01, cp(45) = 01101 and cp(1) = A (where
A denotes the null string).

This representation would be uniquely decodeable if we knew the length [}, (n)
of the integer.

So, how can we make a uniquely decodeable code for integers? Two strate-
gies can be distinguished.

1. Self-delimiting codes. We first communicate somehow the length of
the integer, I (n), which is also a positive integer; then communicate the
original integer n itself using cg(n).

2. Codes with ‘end of file’ characters. We code the integer into blocks
of length b bits, and reserve one of the 2° symbols to have the special
meaning ‘end of file’. The coding of integers into blocks is arranged so
that this reserved symbol is not needed for any other purpose.

The simplest uniquely decodeable code for integers is the unary code, which
can be viewed as a code with an end of file character.

132

7 — Codes for Integers

Unary code. An integer n is encoded by sending a string of n—1 0s followed
by a 1.

cuy(n)
1

01
001
0001
00001

CUb W N~ |3

45 001

The unary code has length ly(n) = n.

The unary code is the optimal code for integers if the probability distri-
bution over n is py(n) = 27"

Self-delimiting codes

We can use the unary code to encode the length of the binary encoding of n
and make a self-delimiting code:

Code C,. We send the unary code for I, (n), followed by the headless binary
representation of n.
ca(n) = cu(lb(n)]es(n) (7.1)
Table 7.1 shows the codes for some integers. The overlining indicates
the division of each string into the parts cy[lp(n)] and cg(n). We might
equivalently view c,(n) as consisting of a string of (I,(n) — 1) zeroes
followed by the standard binary representation of n, cp(n).

The codeword ¢, (n) has length I, (n) = 2l,(n) — 1.

The implicit probability distribution over n for the code C,, is separable
into the product of a probability distribution over the length [,

P(l) =271, (7.2)
and a uniform distribution over integers having that length,

2~ i+l Ih(n) =1
P(nll) = { 0 otherwise. (7.3)

Now, for the above code, the header that communicates the length always
occupies the same number of bits as the standard binary representation of
the integer (give or take one). If we are expecting to encounter large integers
(large files) then this representation seems suboptimal, since it leads to all files
occupying a size that is double their original uncoded size. Instead of using
the unary code to encode the length l,(n), we could use C,.

Code Cp. We send the length I, (n) using Cy, followed by the headless binary
representation of n.

cp(n) = callb(n))es(n) (7.4)
Iterating this procedure, we can define a sequence of codes.
Code C,,.

¢y(n) = cgllb(n)]ca(n) (7.5)
Code Cs.

cs(n) = ¢y[lb(n)]es(n) (7.6)

133

n c(n) lb(n) ca(n)
1 1 1 1

2 10 2 010

3 11 2 011

4 100 3 00100
5 101 3 00101
6 110 3 00110

45 101101 6 00000101101

Table 7.1. C,.

n ca(n) cy(n)

1 1 1

2 0100 01000
3 0101 01001
4 01100 010100
5 01101 010101
6 01110 010110

Table 7.2. Cg and Cj.

134 7 — Codes for Integers

Codes with end-of-file symbols

We can also make byte-based representations. (Let’s use the term byte flexibly

here, to denote any fixed-length string of bits, not just a string of length 8 n es(n) cr(n)

bits.) If we encode the number in some base, for example decimal, then we 1 o111 001111
can represent each digit in a byte. In order to represent a digit from 0 to 9 in a 9 1011 010111
byte we need four bits. Because 2% = 16, this leaves 6 extra four-bit symbols, 3 010011 011 111

{1010, 1011, 1100, 1101, 1110, 1111}, that correspond to no decimal digit.
We can use these as end-of-file symbols to indicate the end of our positive
integer.

45 0110000011 110011111

Clearly it is redundant to have more than one end-of-file symbol, so a more
efficient code would encode the integer into base 15, and use just the sixteenth Taple 7.3. Two codes with
symbol, 1111, as the punctuation character. Generalizing this idea, we can end-of-file symbols, C'5 and C-.
make similar byte-based codes for integers in bases 3 and 7, and in any base Spaces have been included to
of the form 2™ — 1. show the byte boundaries.
These codes are almost complete. (Recall that a code’s being ‘complete’
means that it satisfies the Kraft inequality with equality.) The codes’s remain-
ing inefficiency is that they provide the ability to encode the integer zero and
the empty string, neither of which was required.
> Exercise 7.1.1% 1361 Consider the implicit probability distribution over inte-
gers corresponding to the code with an end-of-file character.

(a) If the code has eight-bit blocks (i.e., the integer is coded in base
255), what is the mean length in bits of the integer, under the
implicit distribution?

(b) If one wishes to encode binary files of expected size about one hun-
dred kilobytes using a code with an end-of-file character, what is
the optimal block size?

Encoding a tiny file

To illustrate the codes we have discussed, we now use each code to encode a
small file consisting of just 14 characters,

| Claude Shannon ‘

e If we map the ASCII characters onto seven-bit symbols (e.g., in decimal,
C=67,1 =108, etc.), this 14 character file corresponds to the integer

n = 167987 786 364 950 891 085 602 469 870 (decimal).

e The unary code for n consists of this many (less one) zeroes, followed by
a one. If all the oceans were turned into ink, and if we wrote a hundred
bits with every cubic millimeter, there might be enough ink to write

cy(n).

e The standard binary representation of n is this length 98 sequence of
bits:

cp(n) = 1000011110110011000011110101110010011001010100000
1010011110100011000011101110110111011011111101110.

> Exercise 7.2.12] Write down or describe the following self-delimiting represen-
tations of the above number n: co(n), cg(n), ¢ (n), cs(n), c3(n), cr(n),
and ¢15(n). Which of these encodings is the shortest? [Answer: c¢;5.]

7 — Codes for Integers

Comparing the codes

One could answer the question ‘which of two codes is superior?’ by a sentence
of the form ‘For n > k, code 1 is superior, for n < k, code 2 is superior’ but 1
contend that such an answer misses the point: any complete code corresponds
to a prior for which it is optimal; you should not say that any other code is
superior to it. Other codes are optimal for other priors. These implicit priors
should be thought about so as to achieve the best code for one’s application.

Notice that one cannot, for free, switch from one code to another, choosing
whichever is shorter. If one were to do this, then it would be necessary to
lengthen the message in some way that indicates which of the two codes is
being used. If this is done by a single leading bit, it will be found that the
resulting code is suboptimal because it fails the Kraft equality, as was discussed
in exercise 5.33 (p.104).

Another way to compare codes for integers is to consider a sequence of
probability distributions, such as monotonic probability distributions over n >
1, and rank the codes as to how well they encode any of these distributions.
A code is called a ‘universal’ code if for any distribution in a given class, it
encodes into an average length that is within some factor of the ideal average
length.

Let me say this again. We are meeting an alternative world view — rather
than figuring out a good prior over integers, as advocated above, many the-
orists have studied the problem of creating codes that are reasonably good
codes for any priors in a broad class. Here the class of priors convention-
ally considered is the set of priors that (a) assign a monotonically decreasing
probability over integers and (b) have finite entropy.

Several of the codes we have discussed above are universal. Another code
which elegantly transcends the sequence of self-delimiting codes is Elias’s ‘uni-
versal code for integers’ (Elias, 1975), which effectively chooses from all the
codes Cy,Cg, It works by sending a sequence of messages each of which
encodes the length of the next message, and indicates by a single bit whether
or not that message is the final integer (in its standard binary representation).
Because a length is a positive integer and all positive integers begin with ‘1’,
all the leading 1s can be omitted.

Write ‘0’

Loop {
If |logn| =0 halt
Prepend cp(n) to the written string
n:=|logn]|

}

The encoder of C,, is shown in algorithm 7.4. The encoding is generated
from right to left. Table 7.5 shows the resulting codewords.

> Exercise 7.3.12] Show that the Elias code is not actually the best code for a
prior distribution that expects very large integers. (Do this by construct-
ing another code and specifying how large n must be for your code to
give a shorter length than Elias’s.)

135

Algorithm 7.4. Elias’s encoder for
an integer n.

136 7 — Codes for Integers

n c,(n) n cw(n) n cy(n) n cw(n)

1 0 31 10100111110 9 1110010 256 1110001000000000

2 100 32 101011000000 10 1110100 365 1110001011011010

3 110 45 101011011010 11 1110110 511 1110001111111110

4 101000 63 101011111110 12 1111000 512 11100110000000000

5 101010 64 1011010000000 13 1111010 719 11100110110011110

6 101100 127 1011011111110 14 1111100 1023 11100111111111110

7 101110 128 10111100000000 15 1111110 1024 111010100000000000

8 1110000 255 10111111111110 16 10100100000 1025 111010100000000010

Table 7.5. Elias’s ‘universal’ code

Solutions for integers. Examples from 1 to

1025.
Solution to exercise 7.1 (p.134). The use of the end-of-file symbol in a code
that represents the integer in some base g corresponds to a belief that there is
a probability of (1/(g + 1)) that the current character is the last character of
the number. Thus the prior to which this code is matched puts an exponential
prior distribution over the length of the integer.

(a) The expected number of characters is g+ 1 = 256, so the expected length
of the integer is 256 x 8 ~ 2000 bits.

(b) We wish to find ¢ such that ¢log g ~ 800000 bits. A value of ¢ between
215 and 216 satisfies this constraint, so 16-bit blocks are roughly the
optimal size, assuming there is one end-of-file character.

Part 11

Noisy-Channel Coding

8.1

Correlated Random Variables

In the last three chapters on data compression we concentrated on random
vectors x coming from an extremely simple probability distribution, namely
the separable distribution in which each component x,, is independent of the
others.

In this chapter, we consider joint ensembles in which the random variables
are correlated. This material has two motivations. First, data from the real
world have interesting correlations, so to do data compression well, we need
to know how to work with models that include correlations. Second, a noisy
channel with input x and output y defines a joint ensemble in which x and y are
correlated — if they were independent, it would be impossible to communicate
over the channel — so communication over noisy channels (the topic of chapters
9-11) is described in terms of the entropy of joint ensembles.

More about entropy

This section gives definitions and exercises to do with entropy, carrying on
from section 2.4.

The joint entropy of X,Y is:

1
H(X,Y)= ZyE%AY P(z,y)log Py (8.1)

Entropy is additive for independent random variables:

H(X,Y) = H(X)+ H(Y) iff P(z,y) = P(x)P(y). (8.2)

The conditional entropy of X given y=b; is the entropy of the proba-
bility distribution P(z|y=by).

H(X |y=by) = Y Plz|y=b)log
ze€Ax

1
Paly=ty) &Y

The conditional entropy of X given Y is the average, over y, of the con-
ditional entropy of X given y.

H(X|Y)

1
Z P(y) Z P(x|y)logm

yE.Ay rz€Ax

1
zyE;XAY P(z,y)log Py (8.4)

This measures the average uncertainty that remains about z when y is
known.

138

8.1: More about entropy

The marginal entropy of X is another name for the entropy of X, H(X),
used to contrast it with the conditional entropies listed above.

Chain rule for information content. From the product rule for probabil-
ities, equation (2.6), we obtain:

1 1 1
log — = log + log 8.5
P(z,y) P(x) Py|x) (85)

h(z,y) = h(z) + h(y | x). (8.6)

In words, this says that the information content of z and y is the infor-
mation content of z plus the information content of y given x.

Chain rule for entropy. The joint entropy, conditional entropy and
marginal entropy are related by:

HX,Y)=HX)+H(Y |X)=HY)+HX|Y). (87

In words, this says that the uncertainty of X and Y is the uncertainty
of X plus the uncertainty of Y given X.

The mutual information between X and Y is
I(X;Y) = HX)-HX|Y), (8.8)

and satisfies I(X;Y) = I(Y; X), and I(X;Y) > 0. It measures the
average reduction in uncertainty about x that results from learning the
value of y; or vice versa, the average amount of information that x
conveys about .

The conditional mutual information between X and Y given z=c;
is the mutual information between the random variables X and Y in
the joint ensemble P(x,y |z =cg),

I(X;Y|z=cx) =H(X |z=cx) — HX|Y,z=cy). (8.9)

The conditional mutual information between X and Y given 7 is
the average over z of the above conditional mutual information.

I(X;Y|2Z)=H(X|Z)- H(X|Y,Z). (8.10)

No other ‘three-term entropies’ will be defined. For example, expres-
sions such as I(X;Y;Z) and I(X |Y;Z) are illegal. But you may put
conjunctions of arbitrary numbers of variables in each of the three spots
in the expression I(X;Y | Z) — for example, I(A,B;C,D | E, F) is fine:
it measures how much information on average ¢ and d convey about a
and b, assuming e and f are known.

Figure 8.1 shows how the total entropy H(X,Y’) of a joint ensemble can be
broken down. This figure is important.

139

140

| H(Y) |

| H(X|Y) | I(X;Y) || HY[X) |

8.2 Exercises

> Exercise 8.1.17] Consider three independent random variables u, v, w with en-
tropies Hy, Hy, Hy. Let X = (U, V)and Y = (V,W). What is H(X,Y)?
What is H(X |Y)? What is I(X;Y)?

> Exercise 8.2.[% P-142] Referring to the definitions of conditional entropy (8.3—
8.4), confirm (with an example) that it is possible for H(X |y=b;) to
exceed H(X), but that the average, H(X |Y) is less than H(X). So
data are helpful — they do not increase uncertainty, on average.

> Exercise 8.3.% P12l Prove the chain rule for entropy, equation (8.7).
[H(X,Y) = H(X)+ H(Y|X)].

ﬁ% Exercise 8.4.1% P143] Prove that the mutual information I(X;Y)=HX) -
H(X|Y) satisfies I(X;Y) =I(Y;X) and I(X;Y) > 0.

[Hint: see exercise 2.26 (p.37) and note that

I(X;Y) = DgL(P(z,y)||P(z) P(y)).] (8.11)

Exercise 8.5.4] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

Dy(X,Y)=H(X,Y) - I(X;Y). (8.12)

Prove that the entropy distance satisfies the axioms for a distance —
Dy(X,Y)>0,Dy(X,X)=0,Dy(X,Y)=Dg(Y,X), and Dy (X,Z) <
Dy(X,Y)+ Du(Y,Z). [Incidentally, we are unlikely to see Dy (X,Y)
again but it is a good function on which to practise inequality-proving.]

% Exercise 8.6.1%] A joint ensemble XY has the following joint distribution.

P(z,y) - 1234
1 2 3 4

|
1 | s 1he 132 132 ;' :. : :
y 2 |lhe Ys 132 132 3 EEEE
3 |Vie Ve Y16 Vie 4 .
4

s 0 0 0

What is the joint entropy H(X,Y)? What are the marginal entropies
H(X) and H(Y)? For each value of y, what is the conditional entropy
H(X |y)? What is the conditional entropy H(X |Y)? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y?

8 — Correlated Random Variables

Figure 8.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.

8.3: Further exercises

ﬁ%Exercise 8.7.12 P 1431 Copsider the ensemble XY Z in which Ax = Ay =
Az = {0,1}, = and y are independent with Py = {p,1 — p} and
Py = {31 - g} and
z = (z +y)mod 2. (8.13)
(a) If ¢ = Y2, what is P»z? What is I(Z; X)?

(b) For general p and ¢, what is Pz? What is I(Z; X)? Notice that
this ensemble is related to the binary symmetric channel, with x =
input, ¥y = noise, and z = output.

T UH)

H(X) >

Three term entropies

Exercise 8.8.1% P-143] Many texts draw figure 8.1 in the form of a Venn diagram
(figure 8.2). Discuss why this diagram is a misleading representation
of entropies. Hint: consider the three-variable ensemble XY Z in which
x €{0,1} and y € {0, 1} are independent binary variables and z € {0,1}
is defined to be z = x + ymod 2.

8.3 Further exercises

The data-processing theorem

The data processing theorem states that data processing can only destroy
information.

ﬁ% Exercise 8.9.1% P14 prove this theorem by considering an ensemble W DR
in which w is the state of the world, d is data gathered, and r is the
processed data, so that these three variables form a Markov chain

w—d—r, (8.14)
that is, the probability P(w,d,r) can be written as
P(w,d,r) = P(w)P(d|w)P(r|d). (8.15)

Show that the average information that R conveys about W, I(W; R), is
less than or equal to the average information that D conveys about W,
I(W; D).

This theorem is as much a caution about our definition of ‘information’ as it
is a caution about data processing!

Inference and information measures

ﬁ% Exercise 8.10.[2] The three cards.

Figure 8.2. A misleading
representation of entropies
(contrast with figure 8.1).

141

142 8 — Correlated Random Variables

(a) One card is white on both faces; one is black on both faces; and one
is white on one side and black on the other. The three cards are
shuffled and their orientations randomized. One card is drawn and
placed on the table. The upper face is black. What is the colour of
its lower face? (Solve the inference problem.)

(b) Does seeing the top face convey information about the colour of
the bottom face? Discuss the information contents and entropies
in this situation. Let the value of the upper face’s colour be v and
the value of the lower face’s colour be [. Imagine that we draw
a random card and learn both w and I. What is the entropy of
u, H(U)? What is the entropy of I, H(L)? What is the mutual
information between U and L, I(U; L)?

Entropies of Markov processes

> Exercise 8.11.13] n the guessing game, we imagined predicting the next letter
in a document starting from the beginning and working towards the end.
Consider the task of predicting the reversed text, that is, predicting the
letter that precedes those already known. Most people find this a harder
task. Assuming that we model the language using an N-gram model
(which says the probability of the next character depends only on the
N —1 preceding characters), is there any difference between the average
information contents of the reversed language and the forward language?

8.4 Solutions

Solution to exercise 8.2 (p.140). See exercise 8.6 (p.140) for an example where
H(X |y) exceeds H(X) (set y=3).

We can prove the inequality H(X |Y) < H(X) by turning the expression
into a relative entropy (using Bayes’ theorem) and invoking Gibbs’ inequality
(exercise 2.26 (p.37)):

HX|Y) = ygyp(y xgxPx\ylogP(™
1
= xyeAZXAyP(:c ,y)log ——— ey (8.16)
_ P(y)
= ZP P(y|x) logm (8.17)

_ P(y)
= zx: P(zx)log % + zx: P(z) zy: P(y|x)log Pylo) (8.18)

The last expression is a sum of relative entropies between the distributions
P(y|x) and P(y). So
H(X|Y)<H(X)+0, (8.19)

with equality only if P(y|z) = P(y) for all and y (that is, only if X and Y
are independent).

Solution to exercise 8.3 (p.140). The chain rule for entropy follows from the
decomposition of a joint probability:
(8.20)

H(X,Y) = ZP(x,y)logﬁ

8.4: Solutions

1 1
= %;P P(y|z) {logp()—Hogp(\x)} (8.21)
= ZP(J? 10gP —I—ZP ZP y|) logP(|)(822)
= H(X)—&—H(Y\X). (8.23)

Solution to exercise 8.4 (p.140). Symmetry of mutual information:

I(X;Y) = H(X)-H(X|Y) (8.24)
1 1

= ; P(z)log Py % P(z,y)log Paly) (8.25)

— Y P(x,y)log P}gﬂ;’) (8.26)

= ZP(x y) log }(D()P?J(?g) (8:27)

This expression is symmetric in x and y so
I(X;Y)=H(X)-HX|Y)=H(Y)- HY|X). (8.28)

We can prove that mutual information is positive two ways. One is to continue
from

P(z,y)
I(X;Y)=) P(x,y)log ——— (8.29)
=L P P@@)P(y)
which is a relative entropy and use Gibbs’ inequality (proved on p.44), which
asserts that this relative entropy is > 0, with equality only if P(z,y) =
P(x)P(y), that is, if X and Y are independent.

The other is to use Jensen’s inequality on

P(z)P(y) P(z,y) _ _
fxzh;P(:zz,y) logm > flog;y P(xyy)P(x)P(y) =log1l=0. (8.30)

Solution to exercise 8.7 (p.141). z = + ymod2.
(a) If g=12, Py ={Y2,Y2} and I(Z; X) = H(Z) - H(Z|X)=1-1=0.

(b) For general q and p, Pz = {pq + (1 = p)(1 = q),p(1 — q) + q(1 = p)}.
The mutual information is I(Z; X) = H(Z) — H(Z | X) = Ha(pg + (1 —

p)(1 —q)) — Ha(q).

Three term entropies

Solution to exercise 8.8 (p.141). The depiction of entropies in terms of Venn
diagrams is misleading for at least two reasons.

First, one is used to thinking of Venn diagrams as depicting sets; but what
are the ‘sets’ H(X) and H(Y") depicted in figure 8.2, and what are the objects
that are members of those sets? I think this diagram encourages the novice
student to make inappropriate analogies. For example, some students imagine
that the random outcome (z,y) might correspond to a point in the diagram,
and thus confuse entropies with probabilities.

Secondly, the depiction in terms of Venn diagrams encourages one to be-
lieve that all the areas correspond to positive quantities. In the special case of
two random variables it is indeed true that H(X |Y), I(X;Y) and H(Y | X)
are positive quantities. But as soon as we progress to three-variable ensembles,

143

144 8 — Correlated Random Variables

Figure 8.3. A misleading
representation of entropies,
continued.

we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as

HX)+H(Z|X)+H(Y |X,Z)=H(X,Y,Z). (8.31)

But it gives the misleading impression that the conditional mutual information
I(X;Y | Z) is less than the mutual information I(X;Y). In fact the area
labelled A can correspond to a negative quantity. Consider the joint ensemble
(X,Y,Z) in which z € {0,1} and y € {0,1} are independent binary variables
and z € {0,1} is defined to be z = z + ymod2. Then clearly H(X) =
H(Y) =1 bit. Also H(Z) =1 bit. And H(Y |X) = H(Y) = 1 since the two
variables are independent. So the mutual information between X and Y is
zero. I(X;Y) = 0. However, if z is observed, X and Y become correlated —
knowing x, given z, tells you what y is: y = z —zmod2. So I(X;Y |Z) =1
bit. Thus the area labelled A must correspond to —1 bits for the figure to give
the correct answers.

The above example is not at all a capricious or exceptional illustration. The
binary symmetric channel with input X, noise Y, and output Z is a situation
in which I(X;Y) = 0 (input and noise are uncorrelated) but I(X;Y | Z) > 0
(once you see the output, the unknown input and the unknown noise are
intimately related!).

The Venn diagram representation is therefore valid only if one is aware
that positive areas may represent negative quantities. With this proviso kept
in mind, the interpretation of entropies in terms of sets can be helpful (Yeung,
1991).

Solution to exercise 8.9 (p.141). For any joint ensemble XY Z, the following
chain rule for mutual information holds.

(XY, 2)=I(X;Y)+ I(X; Z|Y). (8.32)

Now, in the case w — d — r, w and r are independent given d, so
I(W; R| D) = 0. Using the chain rule twice, we have:

I(W;D,R) = I(W;D) (8.33)

and

I(W;D,R) = I(W;R) + I(W;D|R), (8.34)

SO

I(W;R) — I(W;D) <0. (8.35)

About Chapter 9

Before reading Chapter 9, you should have read Chapter 1 and worked on
exercise 2.26 (p.37), and exercises 8.2-8.7 (pp.140-141).

145

Communication over a Noisy Channel

9.1 The big picture

Source
SOURCE
Compressor Decompressor
CODING
CHANNEL
Encoder Decoder
CODING
Noisy

channel

In Chapters 4-6, we discussed source coding with block codes, symbol codes
and stream codes. We implicitly assumed that the channel from the compres-
sor to the decompressor was noise-free. Real channels are noisy. We will now
spend two chapters on the subject of noisy-channel coding — the fundamen-
tal possibilities and limitations of error-free communication through a noisy
channel. The aim of channel coding is to make the noisy channel behave like
a noiseless channel. We will assume that the data to be transmitted has been
through a good compressor, so the bit stream has no obvious redundancy. The
channel code, which makes the transmission, will put back redundancy of a
special sort, designed to make the noisy received signal decodeable.

Suppose we transmit 1000 bits per second with pg = p; = /2 over a
noisy channel that flips bits with probability f = 0.1. What is the rate of
transmission of information? We might guess that the rate is 900 bits per
second by subtracting the expected number of errors per second. But this is
not correct, because the recipient does not know where the errors occurred.
Consider the case where the noise is so great that the received symbols are
independent of the transmitted symbols. This corresponds to a noise level of
f = 0.5, since half of the received symbols are correct due to chance alone.
But when f = 0.5, no information is transmitted at all.

Given what we have learnt about entropy, it seems reasonable that a mea-
sure of the information transmitted is given by the mutual information between
the source and the received signal, that is, the entropy of the source minus the
conditional entropy of the source given the received signal.

We will now review the definition of conditional entropy and mutual in-
formation. Then we will examine whether it is possible to use such a noisy
channel to communicate reliably. We will show that for any channel @ there
is a non-zero rate, the capacity C(Q), up to which information can be sent

146

9.2

9.3

9.2: Review of probability and information
with arbitrarily small probability of error.

Review of probability and information

As an example, we take the joint distribution XY from exercise 8.6 (p.140).
The marginal distributions P(z) and P(y) are shown in the margins.

P(z,y) z P(y)
1 2 3 4
1 | Y8 Ve 32 12| s
y 2 |YVie Ys ls2 lsa| 1/
3 |YVie Yie Yie Yie|
4 | Yo+ 0 0 0| Va
P(z) | Y2 Ya 15 1k

The joint entropy is H(X,Y’) = 27/8 bits. The marginal entropies are H(X) =
7/4 bits and H(Y') = 2 bits.

We can compute the conditional distribution of = for each value of y, and
the entropy of each of those conditional distributions:

P(z|y) T H(X |y)/bits
1 2 3 4
1 | Y2 Ya Y 18 /4
y 2 |Ya Y2 s 18 /4
3 |Va Ya Vi Vg 2
4 1 0 0 0 0
H(X|Y) =1/

Note that whereas H(X |y=4) = 0 is less than H(X), H(X |y=3) is greater
than H(X). So in some cases, learning y can increase our uncertainty about
z. Note also that although P(z|y=2) is a different distribution from P(z),
the conditional entropy H (X |y=2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about z, since H(X |Y) < H(X).

One may also evaluate H(Y|X) = 13/8 bits. The mutual information is
I(X;Y) = H(X) — H(X |Y) = 3/8 bits.

Noisy channels

A discrete memoryless channel @ is characterized by an input alphabet
Ax, an output alphabet Ay, and a set of conditional probability distri-
butions P(y|x), one for each x € Ay.

These transition probabilities may be written in a matrix

Qj|i :P(y:bj|x:ai). (91)

I usually orient this matrix with the output variable j indexing the rows and the
input variable ¢ indexing the columns, so that each column of Q is a probability
vector. With this convention, we can obtain the probability of the output, py,
from a probability distribution over the input, px, by right-multiplication:

py = Qpx. (9.2)

147

9.4

148

Some useful model channels are:

Binary symmetric channel. Ax ={0,1}. Ay ={0,1}.

0—0 — — - 1 f
vy P(y=0|z=0) 1—f; P(y=0[z=1)
1251 Ply=1lz=0) = f; Ply=1lz=1)
Binary erasure channel. Ax={0,1}. Ay ={0,7,1}.
00 P(ly=0]|z=0) = 1—f; Ply=0|z=1)
v E?y Ply=7|z=0) = f; Ply=7|z=1)
1=~1 Ply=1|z=0) = 0; Ply=1|z=1)

Noisy typewriter. Ax = Ay = the 27 letters {A, B, ..., Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.

A
B
AC
D
E
F Ply=F|lx=G) = 1/3;
G Ply=Glxz=G) = 1/3;
i Ply=Hlz=06) = 1/3;
»Y
Z
Z channel. Ax={0,1}. Ay ={0,1}.
m070 P(y=0]|x=0) 1; Ply=0|z=1)
191 Ply=1lz=0) = 0; Py=t|lz=1) =

Inferring the input given the output

If we assume that the input = to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables z and y have
the joint distribution:

P(z,y) = P(y|z)P(z). (9-3)
Now if we receive a particular symbol y, what was the input symbol 7 We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

_ Plyla)P(x) __ P(y|e)P()
P(y) Y Pyl a)P(a')
Example 9.1. Consider a binary symmetric channel with probability of error

f=0.15. Let the input ensemble be Px : {pp=0.9,p1 =0.1}. Assume
we observe y=1.

P(z|y) (9.4)

Ply=1lz=1)P(x=1)
Yo Plyla')P(a")
0.85 x 0.1

0.85 x 0.1 +0.15x 0.9
0.085
— 0.39.

0.22

Pz=1|y=1)

' N<XS<CHNTO TOZZ™ A~ IOTMOOW>

01
Ve o M=
1—f. .

fi 0
1-f 1
0; o
VE ?
1-f. !

ABCDEFGHI JKLMNOPQRSTUVWXYZ-

9 — Communication over a Noisy Channel

«l °
H=

9.5: Information conveyed by a channel

Thus ‘x=1’ is still less probable than ‘z=0’, although it is not as im-
probable as it was before.

i% Exercise 9.2.1% P157] Now assume we observe y=0. Compute the probability
of x=1 given y=0.

Example 9.3. Consider a Z channel with probability of error f=0.15. Let the
input ensemble be Py : {pp=0.9,p1 =0.1}. Assume we observe y=1.

0.85 x 0.1
Ple=1ly=1) = 52017 0x09
0.085
= %2 _ . .
0.085 0 (9.6)

So given the output y =1 we become certain of the input.

ﬁ% Exercise 9.4.[1 P-157] Alternatively, assume we observe y=0. Compute
P(z=1|y=0).

9.5 Information conveyed by a channel

We now consider how much information can be communicated through a chan-
nel. In operational terms, we are interested in finding ways of using the chan-
nel such that all the bits that are communicated are recovered with negligible
probability of error. In mathematical terms, assuming a particular input en-
semble X, we can measure how much information the output conveys about
the input by the mutual information:

I(X;Y)=H(X)-HX|Y)=H(Y)- HY|X). (9.7)
Our aim is to establish the connection between these two ideas. Let us evaluate
I(X;Y) for some of the channels above.

Hint for computing mutual information

We will tend to think of I(X;Y) as H(X) — H(X |Y), i.e.,, how much the
uncertainty of the input X is reduced when we look at the output Y. But for
computational purposes it is often handy to evaluate H(Y) — H(Y|X) instead.

| H(X,Y) |

| H(X) |

| H(Y) |

| HX]Y) JIXY) | HY]X) |

Example 9.5. Consider the binary symmetric channel again, with f=0.15 and
Px : {po=0.9,p1 =0.1}. We already evaluated the marginal probabil-
ities P(y) implicitly above: P(y=0) = 0.78; P(y=1) = 0.22. The
mutual information is:

I(X;Y) = H(Y)-H(Y|X).

149

Figure 9.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.
This figure is important, so I'm
showing it twice.

150 9 — Communication over a Noisy Channel

What is H(Y'|X)? It is defined to be the weighted sum over = of H(Y | z);
but H(Y | z) is the same for each value of x: H(Y |2=0) is H2(0.15),
and H(Y |z=1) is H(0.15). So

I(X;Y) = H(Y)-H(Y|X)
= Hy(0.22) — Hy(0.15)
0.76 —0.61 = 0.15 bits. (9.8)

This may be contrasted with the entropy of the source H(X) =
Hy(0.1) = 0.47 bits.

Note: here we have used the binary entropy function Ho(p) = H(p,1—

p) :PIOgQ%‘F (1 —p)logy QIT)

Example 9.6. And now the Z channel, with Px as above. P(y=1)=0.085.

I(X;Y) = H(Y)-H(Y|X)
= Hy(0.085) — [0.9H(0) + 0.1H5(0.15)]
0.42 — (0.1 x 0.61) = 0.36 bits. (9.9)

The entropy of the source, as above, is H(X) = 0.47 bits. Notice that
the mutual information I(X;Y") for the Z channel is bigger than the
mutual information for the binary symmetric channel with the same f.
The Z channel is a more reliable channel.

ﬁ% Exercise 9.7.1% P-157] Compute the mutual information between X and Y for
the binary symmetric channel with f=0.15 when the input distribution
is Px = {po=0.5,p1 =0.5}.

ﬁ% Exercise 9.8.[% P-158] Compute the mutual information between X and Y for
the Z channel with f = 0.15 when the input distribution is Px :

{Po=0.5,p1 =0.5}.

Mazimizing the mutual information

We have observed in the above examples that the mutual information between
the input and the output depends on the chosen input ensemble.

Let us assume that we wish to maximize the mutual information conveyed
by the channel by choosing the best possible input ensemble. We define the
capacity of the channel to be its maximum mutual information.

The capacity of a channel Q is: I(X;Y)

0.4 T T

C(Q) =max I(X;Y). (9.10)

PX 03 -

The distribution Px that achieves the maximum is called the optimal

input distribution, denoted by P%. [There may be multiple optimal
input distributions achieving the same value of I(X;Y).]

0.2 | 4

0.1 [B

In Chapter 10 we will show that the capacity does indeed measure the maxi- %0 om o5 om 1
mum amount of error-free information that can be transmitted over the chan- P1
nel per unit time. Figure 9.2. The mutual

. . .) information I(X;Y') for a binary
Example 9.9. Consider the binary symmetric channel with f=0.15. Above, symmetric channel with f = 0.15

we considered Px = {po=0.9,p; =0.1}, and found I(X;Y) = 0.15 bits. as a function of the input
How much better can we do? By symmetry, the optimal input distribu- distribution.

g
g

9.6

9.6: The noisy-channel coding theorem

tion is {0.5,0.5} and the capacity is
C(Qpsc) = Ha(0.5) — Hy(0.15) = 1.0 —0.61 = 0.39bits. (9.11)

We'll justify the symmetry argument later. If there’s any doubt about
the symmetry argument, we can always resort to explicit maximization
of the mutual information I(X;Y),

I(X;Y) = Hy((1 = f)pr + (1 = p1)f) — Ha(f) (figure 9.2). (9.12)

Example 9.10. The noisy typewriter. The optimal input distribution is a uni-
form distribution over x, and gives C' = logy 9 bits.

Example 9.11. Consider the Z channel with f=0.15. Identifying the optimal
input distribution is not so straightforward. We evaluate I(X;Y") explic-
itly for Px = {po,p1}. First, we need to compute P(y). The probability
of y=1 is easiest to write down:

Py=1) = pi(1—f). (9.13)
Then the mutual information is:

I(X;Y) = H(Y)- H(Y|X)
Hy(p1(1 — f)) — (poH2(0) + p1Ha(f))
Hy(p1(1 = f)) — piHa(f). (9.14)

This is a non-trivial function of p;, shown in figure 9.3. It is maximized
for f = 0.15 by pj = 0.445. We find C(Qz) = 0.685. Notice that
the optimal input distribution is not {0.5,0.5}. We can communicate
slightly more information by using input symbol 0 more frequently than
1.

Exercise 9.12.[% P-158] \hat is the capacity of the binary symmetric channel
for general f?

Exercise 9.13.[% P 158] Show that the capacity of the binary erasure channel
with f = 0.15 is Cpgc = 0.85. What is its capacity for general f?
Comment.

The noisy-channel coding theorem

It seems plausible that the ‘capacity’ we have defined may be a measure of
information conveyed by a channel; what is not obvious, and what we will
prove in the next chapter, is that the capacity indeed measures the rate at
which blocks of data can be communicated over the channel with arbitrarily
small probability of error.

We make the following definitions.

An (N, K) block code for a channel @ is a list of S = 2K codewords
{xW x® ,X(ZK)}, x() e AN,

each of length N. Using this code we can encode a signal s €
{1,2,3,...,2K} as x(5), [The number of codewords S is an integer,
but the number of bits specified by choosing a codeword, K = log, S, is
not necessarily an integer.|

151
I(X;Y)

0.7 T T T
0.6 [B
0.5 | B
0.4 4
03 [B
0.2 | B
0.1 -

0 1 1 1
0 0.25 0.5 0.75 1

b1

Figure 9.3. The mutual
information I(X;Y) for a Z
channel with f =0.15 as a
function of the input distribution.

152 9 — Communication over a Noisy Channel

The rate of the code is R = K/N bits per channel use.

[We will use this definition of the rate for any channel, not only chan-
nels with binary inputs; note however that it is sometimes conventional
to define the rate of a code for a channel with ¢ input symbols to be

K/(Nlogq).]

A decoder for an (N, K) block code is a mapping from the set of length-N
strings of channel outputs, AY to a codeword label § € {0,1,2,...,2K}.
The extra symbol §=0 can be used to indicate a ‘failure’.

The probability of block error of a code and decoder, for a given channel,
and for a given probability distribution over the encoded signal P(siy,),

1S:

pPB = Z P(Sin)P(Sout 7ASin | Sin) (915)

Sin

The maximal probability of block error is

peM = max P(sout 7 in | $in) (9.16)

The optimal decoder for a channel code is the one that minimizes the prob-
ability of block error. It decodes an output y as the input s that has
maximum posterior probability P(s|y).

__ Py[s)P(s)
PE) =5 Py P 017
Soptimal = argmax P(s|y). (9.18)

A uniform prior distribution on s is usually assumed, in which case the = PBM
optimal decoder is also the maximum likelihood decoder, i.e., the decoder
that maps an output y to the input s that has maximum likelihood

|
|
P(y]|s). achievable |
The probability of bit error p;, is defined assuming that the codeword J
number s is represented by a binary vector s of length K bits; it is the C R
average probability that a bit of syyt is not equal to the corresponding
bit of si, (averaging over all K bits). Figure 9.4. Portion of the R, ppm

plane asserted to be achievable by
Shannon’s noisy-channel coding theorem (part one). Associated with the first part of Shannon’s noisy
each discrete memoryless channel,there is a non-negative number C channel coding theorem.
(called the channel capacity) with the following property. For any ¢ > 0
and R < C, for large enough N, there exists a block code of length N and
rate > R and a decoding algorithm, such that the maximal probability
of block error is < €.

Confirmation of the theorem for the noisy typewriter channel

In the case of the noisy typewriter, we can easily confirm the theorem, because
we can create a completely error-free communication strategy using a block
code of length N = 1: we use only the letters B, E, H, ..., Z, i.e., every third
letter. These letters form a non-confusable subset of the input alphabet (see
figure 9.5). Any output can be uniquely decoded. The number of inputs
in the non-confusable subset is 9, so the error-free information rate of this
system is logy 9 bits, which is equal to the capacity C, which we evaluated in
example 9.10 (p.151).

9.7

9.7: Intuitive preview of proof

153

ABLOEF &l 3L MNoPloRsfruviwk vE] .
A Figure 9.5. A non-confusable
B B g subset of inputs for the noisy
C E typewriter.
D g
E E)
F :
G I
H H 8
I 7
\L}
w
Y
Z Z -
OO0 O0O0O0OO0CO0O d el
8853554098833 33dS
OHOoHOH0H0H0 400 Figure 9.6. Extended channels
0000 |HHm ™ - m - - w. .. obtained from a binary symmetric
1000 "= -= - - .= ‘ channel with transition
0100 w -Mw - w-- m . s
1100| " wl- - - = - " . probability 0.15.
000! ® -+ Euw- - . .
1000| +m - -ull-m- - . -
0i0| - - m-m = - .-
1110 | - «-unll - - .
0001 | We .- .i. .
1001 +m -+« - nll-m-w -
893 0101| = - ® Y [
1101 T
01 oo |HM==- |0011 IR R LR
10| "l- = 1011 = - -n - -all-.
o= o1 | = -M= o111 " LI I L
1«01 wol 1301| -- = - -n-nll
N=1 N =2 N =4

How does this translate into the terms
explains.

The theorem

of the theorem? The following table

How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C'.

For any € > 0 and R < C, for large
enough N,

there exists a block code of length N and
rate > R

and a decoding algorithm,

such that the maximal probability of
block error is < e.

Intuitive preview of proof

FExtended channels

The capacity C is log, 9.

No matter what € and R are, we set the block length N to 1.

The block code is {B,E,...,Z}. The value of K is given by
2K =9, s0 K =log, 9, and this code has rate log, 9, which is
greater than the requested value of R.

The decoding algorithm maps the received letter to the nearest
letter in the code;

the maximal probability of block error is zero, which is less
than the given e.

To prove the theorem for a given channel, we consider the extended channel

corresponding to N uses of the given channel.
|Ax |V possible inputs x and |Ay|"Y possible outputs.

The extended channel has
Extended channels

obtained from a binary symmetric channel and from a Z channel are shown in

figures 9.6 and 9.7, with N =2 and N =

4.

154 9 — Communication over a Noisy Channel

OO0O0O0O0O0O0O0ddd oA
8832co000885S383a04
°eHdododododododod Figure 9.7. Extended channels
0000 |H= = - = - obtained from a Z channel with
1000 ..: L, transition probability 0.15. Each
(ﬁgg [. . . column corresponds to an input,
0010 LR "o and each row is a different output.
1010 a - =
0110 - -
1110 u .
0001 Mo
OO - 1001 . - " i
oHo- 0101 - ..
1101 u .
01 oo |M==- 0011 -
10 H_= 1011 u -
o|H= o1 M= o111 -
1] B L_BEEET]]
N=1 N=2 N =4
AY AN Figure 9.8. (a) Some typical
. outputs in AY corresponding to
Typical y T
typical inputs x. (b) A subset of
Q@Q the typical sets shown in (a) that
do not overlap each other. This
QQQ picture can be compared with the
solution to the noisy typewriter in
Q@Q figure 9.5.
Typical y for a given typical x
(a) (b)

i% Exercise 9.14.1% P-159] Find the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block
lengths N. The intuitive idea is that, if NV is large, an extended channel looks
a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet — the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N, let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble XV, where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2VH () all having similar probability. For any particular typical
input sequence x, there are about 2V#(Y'I1X) probable sequences. Some of these
subsets of Ay are depicted by circles in figure 9.8a.

We now imagine restricting ourselves to a subset of the typical inputs
x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by

9.8: Further exercises

dividing the size of the typical y set, 2NH(Y) by the size of each typical-y-
given-typical-x set, 2V (¥1X) | So the number of non-confusable inputs, if they
are selected from the set of typical inputs x ~ XV, is < 2NHY)-NHY[X) _
oNI(X;Y)

The maximum value of this bound is achieved if X is the ensemble that
maximizes I(X;Y), in which case the number of non-confusable inputs is
< 2NC Thus asymptotically up to C bits per cycle, and no more, can be
communicated with vanishing error probability. m]

This sketch has not rigorously proved that reliable communication really
is possible — that’s our task for the next chapter.

9.8 Further exercises

ﬁ% Exercise 9.15.1% 1591 Refer back to the computation of the capacity of the Z
channel with f = 0.15.

(a) Why is pj less than 0.5? One could argue that it is good to favour
the O input, since it is transmitted without error — and also argue
that it is good to favour the 1 input, since it often gives rise to the
highly prized 1 output, which allows certain identification of the
input! Try to make a convincing argument.

(b) In the case of general f, show that the optimal input distribution

is
c__ 1/ -f)
p1= 1 4 oH2(N)/A=F)"

(9.19)
(c) What happens to pj if the noise level f is very close to 1?7

ﬁ%Exercise 9.16.1% P 159 gietch graphs of the capacity of the Z channel, the
binary symmetric channel and the binary erasure channel as a function

of f.

> Exercise 9.17.[2] What is the capacity of the five-input, ten-output channel
whose transition probability matrix is

[025 0 0 0 0.25]
0.25 0 0 0 0.25 01234
0.25 025 0 0 0 olm -
0.25 0.25 0 0 0 % e "
0 025 025 0 0 S |"E. .
0 025 025 0 0 % " ! (9.20)
0 0 025 025 0 ; e
0 0 025 025 0 9 .
0 0 0 025 025
| O 0 0 025 025 |

ﬁ%Exercise 9.18.[% P-159] Congider a Gaussian channel with binary input z €
{=1,+1} and real output alphabet Ay, with transition probability den-
sity

Qly|z,a,0) = 207 | (9.21)

where « is the signal amplitude.

155

156 9 — Communication over a Noisy Channel

(a) Compute the posterior probability of x given y, assuming that the
two inputs are equiprobable. Put your answer in the form
1

14 e
Sketch the value of P(x=1]y,«, o) as a function of y.

(b) Assume that a single bit is to be transmitted. What is the optimal
decoder, and what is its probability of error? Express your answer

in terms of the signal to noise ratio a?/0? and the error function
(the cumulative probability function of the Gaussian distribution),

Plz=1|y,a,0) = (9.22)

'z 1 2
o(2) E/ e 2 dz. (9.23)
—00 2w
[Note that this definition of the error function ®(z) may not corre-

spond to other people’s.]

Pattern recognition as a noisy channel

We may think of many pattern recognition problems in terms of communi-
cation channels. Consider the case of recognizing handwritten digits (such
as postcodes on envelopes). The author of the digit wishes to communicate
a message from the set Ay = {0,1,2,3,...,9}; this selected message is the
input to the channel. What comes out of the channel is a pattern of ink on
paper. If the ink pattern is represented using 256 binary pixels, the channel
Q has as its output a random variable y € Ay = {0,1}2%6. An example of an
element from this alphabet is shown in the margin.

ﬁ% Exercise 9.19.12] Estimate how many patterns in Ay are recognizable as the
character ‘2’. [The aim of this problem is to try to demonstrate the
existence of as many patterns as possible that are recognizable as 2s.]

Discuss how one might model the channel P(y|x=2). Estimate the
entropy of the probability distribution P(y|x=2).

One strategy for doing pattern recognition is to create a model for
P(y|x) for each value of the input = {0,1,2,3,...,9}, then use Bayes’
theorem to infer z given y.

Plaly) — PWIDPE)

Yo Ply|a’)P(a)
This strategy is known as full probabilistic modelling or generative
modelling. This is essentially how current speech recognition systems
work. In addition to the channel model, P(y|x), one uses a prior proba-
bility distribution P(x), which in the case of both character recognition
and speech recognition is a language model that specifies the probability
of the next character/word given the context and the known grammar
and statistics of the language.

(9.24)

Random coding

ﬁ% Exercise 9.20.1% P-160] Given twenty-four people in a room, what is the prob-
ability that there are at least two people present who have the same
birthday (i.e., day and month of birth)? What is the expected number
of pairs of people with the same birthday? Which of these two questions
is easiest to solve? Which answer gives most insight? You may find it Figure 9.9. Some more 2s.

helpful to solve these problems and those that follow using notation such

as A = number of days in year = 365 and S = number of people = 24.

9.9

9.9: Solutions

> Exercise 9.21.12] The birthday problem may be related to a coding scheme.
Assume we wish to convey a message to an outsider identifying one of
the twenty-four people. We could simply communicate a number s from
As = {1,2,...,24}, having agreed a mapping of people onto numbers;
alternatively, we could convey a number from Ax = {1,2,...,365},
identifying the day of the year that is the selected person’s birthday
(with apologies to leapyearians). [The receiver is assumed to know all
the people’s birthdays.] What, roughly, is the probability of error of this
communication scheme, assuming it is used for a single transmission?
What is the capacity of the communication channel, and what is the
rate of communication attempted by this scheme?

> Exercise 9.22.1%] Now imagine that there are K rooms in a building, each
containing ¢ people. (You might think of K = 2 and ¢ = 24 as an
example.) The aim is to communicate a selection of one person from each
room by transmitting an ordered list of K days (from Ax). Compare
the probability of error of the following two schemes.

(a) As before, where each room transmits the birthday of the selected
person.

(b) To each K-tuple of people, one drawn from each room, an ordered
K-tuple of randomly selected days from Ax is assigned (this K-
tuple has nothing to do with their birthdays). This enormous list
of S = ¢¥ strings is known to the receiver. When the building has
selected a particular person from each room, the ordered string of
days corresponding to that K-tuple of people is transmitted.

What is the probability of error when ¢ = 364 and K = 17 What is the
probability of error when ¢ = 364 and K is large, e.g. K = 60007

Solutions

Solution to exercise 9.2 (p.149). If we assume we observe y =0,

Py=0|z=1)P(x=1)

Ple=1]y=0 S, P(y|)P(7) (925

0.15 x 0.1
- 8'(1)?5:(0.1+0.85 x 0.9 (9.26)
= Sz = 0.019. (9.27)

Solution to exercise 9.4 (p.149). If we observe y = 0,
Pla=1ly=0) = g5 xobl.? i (1):(1) % 0.9 (9.28)

0.015

= Gop = 0:016. (9.29)

Solution to exercise 9.7 (p.150). The probability that y = 1 is 0.5, so the
mutual information is:

I(X;Y) = H(Y)-H(Y|X) (9.30)

= Hy(0.5) — Hy(0.15) (9.31)
= 1-0.61 = 0.39 bits. (9.32)

157

158 9 — Communication over a Noisy Channel

Solution to exercise 9.8 (p.150). We again compute the mutual information
using I(X;Y) = H(Y) — H(Y | X). The probability that y = 0 is 0.575, and
HY|X)=Y,P@HY |z)=Plx=1)HY |z=1) + P(z=0)H(Y |2=0)

so the mutual information is:

I(X;Y) = H(Y)-H(Y|X) (9.33)
= Hy(0.575) — [0.5 x Hy(0.15) + 0.5 x 0] (9.34)
= 0.98-0.30 = 0.679 bits. (9.35)

Solution to exercise 9.12 (p.151). By symmetry, the optimal input distribution
is {0.5,0.5}. Then the capacity is

C =1I1X;Y) = HY)-HY|X) (9.36)
= H>(0.5) — Ha(f) (9.37)
1— Ha(f). (9.38)

Would you like to find the optimal input distribution without invoking sym-
metry? We can do this by computing the mutual information in the general
case where the input ensemble is {po, p1}:

I(X;Y) = H(Y)-H(Y|X) (9.39)
= Ha(pof +p1(1 = f)) — Ha(f)- (9.40)

The only p-dependence is in the first term Ha(pof + p1(1 — f)), which is
maximized by setting the argument to 0.5. This value is given by setting

Solution to exercise 9.13 (p.151). Answer 1. By symmetry, the optimal input
distribution is {0.5,0.5}. The capacity is most easily evaluated by writing the
mutual information as I(X;Y) = H(X) — H(X |Y). The conditional entropy
H(X|Y)is 3, P(y)H (X |y); when y is known, x is only uncertain if y = 7,
which occurs with probability f/24 f/2, so the conditional entropy H (X |Y)

is fH2(0.5).
C =I(X;Y) = HX)-H(X|Y) (9.41)
= Hy(0.5) — fH5(0.5) (9.42)
= 1—f. (9.43)

The binary erasure channel fails a fraction f of the time. Its capacity is
precisely 1 — f, which is the fraction of the time that the channel is reliable.
This result seems very reasonable, but it is far from obvious how to encode
information so as to communicate reliably over this channel.

Answer 2. Alternatively, without invoking the symmetry assumed above, we
can start from the input ensemble {pg,p1}. The probability that y = ? is
pof + p1f = f, and when we receive y = ?, the posterior probability of x is
the same as the prior probability, so:

I(X;Y) = HX)-HX|Y) (9.44)
= Hs(p1) — fHa(p1) (9.45)
= (1= f)Hz(p1) (9.46)

This mutual information achieves its maximum value of (1— f) when p; = 1/2.

9.9: Solutions 159

X_m x(2) X_<1) x(® Figure 9.10. (a) The extended
g9z gle g’; sle SE channel (N = 2) obtained from a
- oo [lm oo-Llm binary erasure channel with
20| um 20 |lm|m 20w erasure probability 0.15. (b) A
ég . | . (1)9) . u . ég__ . block code consisting of the two
01 P 22 |- -] o codewords 00 and 11. (¢) The
1? . . 1? = = 17— optimal decoder for this code.
oM 01 [| 01 [| 01
? L ?1 [N | 21 m|m 21—+
Q! B @=L B L (c) M
N=1 N =2

Solution to exercise 9.14 (p.153). The extended channel is shown in fig-
ure 9.10. The best code for this channel with N = 2 is obtained by choosing
two columns that have minimal overlap, for example, columns 00 and 11. The
decoding algorithm returns ‘00’ if the extended channel output is among the

top four and ‘11’ if it’s among the bottom four, and gives up if the output is
‘77,

Solution to exercise 9.15 (p.155). In example 9.11 (p.151) we showed that the
mutual information between input and output of the Z channel is
I(X;Y) = HY)-HY|X)
= Ha(pi(1 - f)) — p1H2(f). (9.47)

We differentiate this expression with respect to p;, taking care not to confuse
logy with log,:

XYY = (1— P log, L=P11 = f)

dp:
Setting this derivative to zero and rearranging using skills developed in exer-
cise 2.17 (p.36), we obtain:

— (). (0.48)

1

* p—
so the optimal input distribution is
1/A-F)
R 1 | m—
L= T 0mhia-m 050)]
As the noise level f tends to 1, this expression tends to 1/e (as you can prove o7 -
using L’Hopital’s rule). oo
For all values of f, p} is smaller than 1/2. A rough intuition for why input 1 sl N e a
is used less than input 0 is that when input 1 is used, the noisy channel injects 1 N A
entropy into the received string; whereas when input 0 is used, the noise has zj -]
zero entropy. Thus starting from p; = 1/2, a perturbation towards smaller ol 0\3\‘;;'0\5/«»0—;" R
p1 will reduce the conditional entropy H(Y | X) linearly while leaving H(Y)

unchanged, to first order. H(Y') decreases only quadratically in (p; — 1/2). Figure 9.11. Capacities of the Z

channel, binary symmetric
Solution to exercise 9.16 (p.155). The capacities of the three channels are channel, and binary erasure

shown in figure 9.11. For any f < 0.5, the BEC is the channel with highest channel.
capacity and the BSC the lowest.

Solution to exercise 9.18 (p.155). The logarithm of the posterior probability
ratio, given y, is
Plz=1|y,a,0) Qlylz=1,a,0) _ 5

—1 —1 s
o) =18 B T gae) B Olyle= —Laio) o7

(9.51)

160 9 — Communication over a Noisy Channel

Using our skills picked up from exercise 2.17 (p.36), we rewrite this in the
form

1
1+ e_a(?/))
The optimal decoder selects the most probable hypothesis; this can be done
simply by looking at the sign of a(y). If a(y) > 0 then decode as & = 1.

The probability of error is

Plz=1|y,a,0) = (9.52)

0 —za 1 _y_z ro
pb:/,oodyQ(ym:l’a’U):/,m dy st ¥ =@ (~-—) (953)

Random coding

Solution to exercise 9.20 (p.156). The probability that S = 24 people whose
birthdays are drawn at random from A = 365 days all have distinct birthdays
is

AA-1)(A-2)...(A-S5+1)
Ad
The probability that two (or more) people share a birthday is one minus this
quantity, which, for S = 24 and A = 365, is about 0.5. This exact way of
answering the question is not very informative since it is not clear for what
value of S the probability changes from being close to 0 to being close to 1.
The number of pairs is S(S — 1)/2, and the probability that a particular
pair shares a birthday is 1/A4, so the expected number of collisions is

. (9.54)

S(S—1)1
= (9.55)

This answer is more instructive. The expected number of collisions is tiny if

S < VA and big if S > VA.
We can also approximate the probability that all birthdays are distinct,

for small S, thus:

A(A-1){4 7124)3' CAZSHED - Va1 —2a).. (1= (S-Da)

~ exp(0)exp(—1/A)exp(—2/A)...exp(—(S—1)/A) (9.56)

S—1
~ exp (1 ' 1] =exp <fw> . (9.57)

About Chapter 10

Before reading Chapter 10, you should have read Chapters 4 and 9. Exer-
cise 9.14 (p.153) is especially recommended.

Cast of characters

Q
C

XN

SERA

S =2K
K =log, S

R=K/N

the noisy channel

the capacity of the channel

an ensemble used to create a random code

a random code

the length of the codewords

a codeword, the sth in the code

the number of a chosen codeword (mnemonic: the source
selects s)

the total number of codewords in the code

the number of bits conveyed by the choice of one codeword
from S, assuming it is chosen with uniform probability

a binary representation of the number s

the rate of the code, in bits per channel use (sometimes called
R’ instead)

the decoder’s guess of s

161

10

The Noisy-Channel Coding Theorem

10.1 The theorem

The theorem has three parts, two positive and one negative. The main positive
result is the first.

1. For every discrete memoryless channel, the channel capacity

C=max I(X;Y) (10.1)
Px

has the following property. For any € > 0 and R < C, for large enough N,
there exists a code of length N and rate > R and a decoding algorithm,
such that the maximal probability of block error is < e.

2. If a probability of bit error py, is acceptable, rates up to R(py,) are achiev-
able, where

C

R(pp) = m (10.2)

3. For any py, rates greater than R(pp) are not achievable.

10.2 Jointly typical sequences

We formalize the intuitive preview of the last chapter.

We will define codewords x®) as coming from an ensemble XV, and con-
sider the random selection of one codeword and a corresponding channel out-
put y, thus defining a joint ensemble (XY)". We will use a typical set decoder,
which decodes a received signal y as s if x(*) and y are jointly typical, a term
to be defined shortly.

The proof will then centre on determining the probabilities (a) that the
true input codeword is not jointly typical with the output sequence; and (b)
that a false input codeword is jointly typical with the output. We will show
that, for large IV, both probabilities go to zero as long as there are fewer than
2NVC codewords, and the ensemble X is the optimal input distribution.

Joint typicality. A pair of sequences x,y of length N are defined to be
jointly typical (to tolerance () with respect to the distribution P(z,y)
if

1

1
x is typical of P(x), i.e., Nlog@ — H(X)‘ < B,

1 1
y is typical of P(y), ie., |—=log———H(Y ’ < B,
1

1
and x,y is typical of P(x,y), ie., N log P(xy)

H(X,Y)' < B.

162

Py

Figure 10.1. Portion of the R, py,
plane to be proved achievable
(1,2) and not achievable (3).

10.2: Jointly typical sequences

The jointly typical set Jyg is the set of all jointly typical sequence pairs
of length N.

Example. Here is a jointly typical pair of length N = 100 for the ensemble
P(z,y) in which P(x) has (po,p1) = (0.9,0.1) and P(y|z) corresponds to a
binary symmetric channel with noise level 0.2.

X 111111111100
Y 001111111100111111111111111111

Notice that x has 10 1s, and so is typical of the probability P(x) (at any
tolerance (3); and y has 26 1s, so it is typical of P(y) (because P(y=1) = 0.26);
and x and y differ in 20 bits, which is the typical number of flips for this
channel.

Joint typicality theorem. Let x,y be drawn from the ensemble (XY)V

defined by
N
P(va) = H P(xnayn)
n=1
Then

1. the probability that x,y are jointly typical (to tolerance () tends
to 1 as N — oo;
2. the number of jointly typical sequences |Jn 3| is close to oNH(X.Y),

To be precise,
|Ing| < 2N(H(X,Y)+ﬁ); (10.3)

3.if X ~ XN and y' ~ YV, ie., x' and y’ are independent samples
with the same marginal distribution as P(x,y), then the probability
that (x,y’) lands in the jointly typical set is about 2= N(X3Y) To

be precise,
P((X,y') € Jyg) < 2~ NUXY)=30) (10.4)

Proof. The proof of parts 1 and 2 by the law of large numbers follows that
of the source coding theorem in Chapter 4. For part 2, let the pair =,y
play the role of z in the source coding theorem, replacing P(x) there by
the probability distribution P(z,y).

For the third part,

P(x.y)eJns) = . PPy (10.5)
xy)edng
< |JIngl 9—N(H(X)=B) 9—N(H(Y)—-p) (10.6)

oN(HXY)+B)-NHX)+HY)=28) (10.7)
9= N(I(X;Y)=33) O (10.8)

IA

A cartoon of the jointly typical set is shown in figure 10.2. Two independent
typical vectors are jointly typical with probability

P((x,y') € Jng) = 27 NI (10.9)

because the total number of independent typical pairs is the area of the dashed
rectangle, 2NH(X)oNH(Y) “and the number of jointly typical pairs is roughly
oNH(X.Y) “s6 the probability of hitting a typical pair is roughly

163

10.3

164 10 — The Noisy-Channel Coding Theorem

———————————————————————

Proof of the noisy-channel coding theorem

Analogy

Imagine that we wish to prove that there is a baby in a class of one hundred
babies who weighs less than 10kg. Individual babies are difficult to catch and
weigh. Shannon’s method of solving the task is to scoop up all the babies
and weigh them all at once on a big weighing machine. If we find that their
average weight is smaller than 10 kg, there must exist at least one baby who
weighs less than 10kg — indeed there must be many! Shannon’s method isn’t
guaranteed to reveal the existence of an underweight child, since it relies on
there being a tiny number of elephants in the class. But if we use his method
and get a total weight smaller than 1000 kg then our task is solved.

From skinny children to fantastic codes

We wish to show that there exists a code and a decoder having small prob-
ability of error. Evaluating the probability of error of any particular coding
and decoding system is not easy. Shannon’s innovation was this: instead of
constructing a good coding and decoding system and evaluating its error prob-
ability, Shannon calculated the average probability of block error of all codes,
and proved that this average is small. There must then exist individual codes
that have small probability of block error.

Random coding and typical set decoding

Consider the following encoding—decoding system, whose rate is R'.

1. We fix P(z) and generate the S = 2N/ codewords of a (N, NR') =

Figure 10.2. The jointly typical
set. The horizontal direction
represents AY, the set of all input
strings of length N. The vertical
direction represents A%, the set of
all output strings of length N.
The outer box contains all
conceivable input—output pairs.
Each dot represents a jointly
typical pair of sequences (x,y).
The total number of jointly

typical sequences is about
gNH(X,Y)

Figure 10.3. Shannon’s method for
proving one baby weighs less than
10kg.

10.3: Proof of the noisy-channel coding theorem

@ x1) @ @ @< x@ @
Sk Ya s 3(ya) =0
Tk Yo : 8(ys) =3
T Ya T 3(ya)=0
T Ye = 3(ye) =4
(a) (b)
(N, K) code C at random according to
N
P(x) =[] P(zn). (10.11)
n=1
A random code is shown schematically in figure 10.4a.
2. The code is known to both sender and receiver.
3. A message s is chosen from {1,2,..., oN R’}, and x(®) is transmitted. The
received signal is y, with
N
P(y [x") = T P(yn|2})). (10.12)

n=1
4. The signal is decoded by typical set decoding.

Typical set decoding. Decode y as § if (X(g),y) are jointly typical and
there is no other s’ such that (X(s/),y) are jointly typical;
otherwise declare a failure (§=0).

This is not the optimal decoding algorithm, but it will be good enough,
and easier to analyze. The typical set decoder is illustrated in fig-
ure 10.4b.

5. A decoding error occurs if § # s.

There are three probabilities of error that we can distinguish. First, there
is the probability of block error for a particular code C, that is,

pe(C) = P(5 # 5|0). (10.13)

This is a difficult quantity to evaluate for any given code.
Second, there is the average over all codes of this block error probability,

(p) =Y _ P(5# s|C)P(C). (10.14)
C

165

Figure 10.4. (a) A random code.
(b) Example decodings by the
typical set decoder. A sequence
that is not jointly typical with any
of the codewords, such as y,, is
decoded as § = 0. A sequence that
is jointly typical with codeword
x(®) alone, y, is decoded as § = 3.
Similarly, y. is decoded as § = 4.
A sequence that is jointly typical
with more than one codeword,
such as yy4, is decoded as § = 0.

166 10 — The Noisy-Channel Coding Theorem

Fortunately, this quantity is much easier to evaluate than the first quantity
P(s#s|C).
Third, the maximal block error probability of a code C,

pMm(C) = msaXP(é #sls,C), (10.15)

is the quantity we are most interested in: we wish to show that there exists a
code C with the required rate whose maximal block error probability is small.

We will get to this result by first finding the average block error probability,
{pB). Once we have shown that this can be made smaller than a desired small
number, we immediately deduce that there must exist at least one code C
whose block error probability is also less than this small number. Finally,
we show that this code, whose block error probability is satisfactorily small
but whose maximal block error probability is unknown (and could conceivably
be enormous), can be modified to make a code of slightly smaller rate whose
maximal block error probability is also guaranteed to be small. We modify
the code by throwing away the worst 50% of its codewords.

We therefore now embark on finding the average probability of block error.

Probability of error of typical set decoder

There are two sources of error when we use typical set decoding. Either (a)
the output y is not jointly typical with the transmitted codeword x*), or (b)
there is some other codeword in C that is jointly typical with y.

By the symmetry of the code construction, the average probability of error
averaged over all codes does not depend on the selected value of s; we can
assume without loss of generality that s = 1.

(a) The probability that the input x() and the output y are not jointly
typical vanishes, by the joint typicality theorem’s first part (p.163). We give a
name, J, to the upper bound on this probability, satisfying 6 — 0 as N — oo;
for any desired 8, we can find a blocklength N (§) such that the P((x™V),y) &
JIng) < 4.

(b) The probability that x5 and y are jointly typical, for a given s’ # 1
is < 2-NUXY)=30) Hy part 3. And there are (2VF — 1) rival values of s’ to
worry about.

Thus the average probability of error (pg) satisfies:

9NR/

(pp) < o+ Y 2 NUXY)=35) (10.16)
s'=2

< § 42 NUXY)=R'=30) (10.17)

The inequality (10.16) that bounds the total probability of error Perr by the sum of
the probabilities P,/ of all sorts of events s’ each of which is sufficient to cause error,

Pror<Pi+FPo+---,

is called a ‘union bound’. It is only an equality if the different events that cause error
never occur at the same time as each other.

The average probability of error can be made < 26 by increasing N if
R < I(X;Y) - 383. (10.18)
We are almost there. We make three modifications:

1. We choose P(x) in the proof to be the optimal input distribution of the
channel. Then the condition R’ < I(X;Y) — 33 becomes R’ < C — 30.

10.4

10.4: Communication (with errors) above capacity

. -~ °
. L4 ° . L
h \
_ .
° ® o . RS) ° ® o .
o/ o .
e |
° - °
. . . ° . .
. .
. ° . °
o o N o o
v ° .
LI
e - K °
, .
e . .
° . .
_ . .
. .
. ° . °
° .
. ° . °

(a) A random code ... (b) expurgated

2. Since the average probability of error over all codes is < 24, there must
exist a code with mean probability of block error pp(C) < 26.

3. To show that not only the average but also the maximal probability of
error, ppgmM, can be made small, we modify this code by throwing away
the worst half of the codewords — the ones most likely to produce errors.
Those that remain must all have conditional probability of error less
than 45. We use these remaining codewords to define a new code. This
new code has 2V ~1 codewords, i.e., we have reduced the rate from R’
to R'—1/N (a negligible reduction, if N is large), and achieved pgy < 46.
This trick is called expurgation (figure 10.5). The resulting code may
not be the best code of its rate and length, but it is still good enough to
prove the noisy-channel coding theorem, which is what we are trying to
do here.

In conclusion, we can ‘construct’ a code of rate R’ — /N, where R’ < C' — 343,
with maximal probability of error < 45. We obtain the theorem as stated by
setting R' = (R4 C)/2, § = ¢/4, 8 < (C — R')/3, and N sufficiently large for
the remaining conditions to hold. The theorem’s first part is thus proved. O

Communication (with errors) above capacity

We have proved, for any discrete memoryless channel, the achievability of a
portion of the R, py plane shown in figure 10.6. We have shown that we can
turn any noisy channel into an essentially noiseless binary channel with rate
up to C bits per cycle. We now extend the right-hand boundary of the region
of achievability at non-zero error probabilities. [This is called rate-distortion
theory.]

We do this with a new trick. Since we know we can make the noisy channel
into a perfect channel with a smaller rate, it is sufficient to consider commu-
nication with errors over a noiseless channel. How fast can we communicate
over a noiseless channel, if we are allowed to make errors?

Consider a noiseless binary channel, and assume that we force communi-
cation at a rate greater than its capacity of 1 bit. For example, if we require
the sender to attempt to communicate at R =2 bits per cycle then he must
effectively throw away half of the information. What is the best way to do
this if the aim is to achieve the smallest possible probability of bit error? One
simple strategy is to communicate a fraction 1/R of the source bits, and ignore
the rest. The receiver guesses the missing fraction 1 — 1/R at random, and

167

Figure 10.5. How expurgation
works. (a) In a typical random
code, a small fraction of the
codewords are involved in
collisions — pairs of codewords are
sufficiently close to each other
that the probability of error when
either codeword is transmitted is
not tiny. We obtain a new code
from a random code by deleting
all these confusable codewords.
(b) The resulting code has slightly
fewer codewords, so has a slightly
lower rate, and its maximal
probability of error is greatly
reduced.

Pp

achievable

|
|
|
|
-l

C R
Figure 10.6. Portion of the R, py,
plane proved achievable in the
first part of the theorem. [We've
proved that the maximal
probability of block error ppy can
be made arbitrarily small, so the
same goes for the bit error
probability py, which must be
smaller than ppu.]

10.5

168 10 — The Noisy-Channel Coding Theorem

the average probability of bit error is

Dy = %(1 _1/R). (10.19)
The curve corresponding to this strategy is shown by the dashed line in fig-
ure 10.7.

We can do better than this (in terms of minimizing py,) by spreading out
the risk of corruption evenly among all the bits. In fact, we can achieve
Py = H{l(l —1/R), which is shown by the solid curve in figure 10.7. So, how
can this optimum be achieved?

We reuse a tool that we just developed, namely the (N, K) code for a
noisy channel, and we turn it on its head, using the decoder to define a lossy
compressor. Specifically, we take an excellent (N, K) code for the binary
symmetric channel. Assume that such a code has a rate R’ = K/N, and that
it is capable of correcting errors introduced by a binary symmetric channel
whose transition probability is ¢. Asymptotically, rate R’ codes exist that
have R’ ~ 1 — Hs(q). Recall that, if we attach one of these capacity-achieving
codes of length N to a binary symmetric channel then (a) the probability
distribution over the outputs is close to uniform, since the entropy of the
output is equal to the entropy of the source (NR') plus the entropy of the
noise (NHs(q)), and (b) the optimal decoder of the code, in this situation,
typically maps a received vector of length N to a transmitted vector differing
in g¢N bits from the received vector.

We take the signal that we wish to send, and chop it into blocks of length N
(ves, N, not K). We pass each block through the decoder, and obtain a shorter
signal of length K bits, which we communicate over the noiseless channel. To
decode the transmission, we pass the K bit message to the encoder of the
original code. The reconstituted message will now differ from the original
message in some of its bits — typically ¢N of them. So the probability of bit
error will be p, = g. The rate of this lossy compressor is R = N/K =1/R' =
1/(1 = Hy(py)).

Now, attaching this lossy compressor to our capacity-C error-free commu-
nicator, we have proved the achievability of communication up to the curve

(pp, R) defined by:
C

- Hy(py)

For further reading about rate-distortion theory, see Gallager (1968), p.451,
or McEliece (2002), p. 75.

R O (10.20)

The non-achievable region (part 3 of the theorem)

The source, encoder, noisy channel and decoder define a Markov chain:
P(s,x.y,3) = P(s)P(x|$)P(y |) P3| y). (10.21)

The data processing inequality (exercise 8.9, p.141) must apply to this chain:
I(s;8) < I(x;y). Furthermore, by the definition of channel capacity, I(x;y) <
NC,s0 I(s;5) < NC.

Assume that a system achieves a rate R and a bit error probability py;
then the mutual information I(s;§) is > NR(1 — Ha(pp)). But I(s;8) > NC

is not achievable, so R > ———— is not achievable. a
1—-Hz(pp)

Exercise 10.1.12] Fill in the details in the preceding argument. If the bit errors
between § and s are independent then we have I(s; §) = NR(1—Ha(py)).

0.3

0.25 - Optimum — ~
Simple -----
0.2 q
Pv

0.15 - 4
01 B
0.05 |- q

0 | 3 | |

0 0.5 1 15 2

Figure 10.7. A simple bound on
achievable points (R, pp), and
Shannon’s bound.

§—o>X—oy—S§

25

10.6: Computing capacity

What if we have complex correlations among those bit errors? Why does
the inequality I(s;$) > NR(1 — Ha(py)) hold?

10.6 Computing capacity

We have proved that the capacity of a channel is the maximum rate at which
reliable communication can be achieved. How can we compute the capacity of
a given discrete memoryless channel? We need to find its optimal input distri-
bution. In general we can find the optimal input distribution by a computer
search, making use of the derivative of the mutual information with respect
to the input probabilities.

> Exercise 10.2.[°] Find the derivative of I(X;Y) with respect to the input prob-
ability p;, 9I(X;Y)/0p;, for a channel with conditional probabilities Qjji-

Exercise 10.3.1%] Show that I(X;Y) is a concave ~ function of the input prob-
ability vector p.

Since I(X;Y) is concave ~ in the input distribution p, any probability distri-
bution p at which I(X;Y") is stationary must be a global maximum of I(X;Y).
So it is tempting to put the derivative of I(X;Y’) into a routine that finds a
local maximum of I(X;Y'), that is, an input distribution P(z) such that

OL(X;Y) =\ for all i, (10.22)

Ipi
where A is a Lagrange multiplier associated with the constraint >, p; = 1.
However, this approach may fail to find the right answer, because I(X;Y")
might be maximized by a distribution that has p; =0 for some inputs. A
simple example is given by the ternary confusion channel.

Ternary confusion channel. Ax={0,7,1}. Ay ={0,1}.

1 Ply=1|z=0) = 0;

Whenever the input ? is used, the output is random; the other inputs
are reliable inputs. The maximum information rate of 1 bit is achieved
by making no use of the input 7.

> Exercise 10.4.[2’ p-173] Sketch the mutual information for this channel as a
function of the input distribution p. Pick a convenient two-dimensional
representation of p.

The optimization routine must therefore take account of the possibility that,
as we go up hill on I(X;Y), we may run into the inequality constraints p; > 0.

> Exercise 10.5.1% P17 Describe the condition, similar to equation (10.22), that
is satisfied at a point where I(X;Y") is maximized, and describe a com-
puter program for finding the capacity of a channel.

Szo Ply=0]2=0) = 1: Ply=0]z=7) = 1/2; Ply=0]z—=1) —
P(y= =7) 1/2; Py=1lz=1) =

169

170 10 — The Noisy-Channel Coding Theorem

Results that may help in finding the optimal input distribution

1. All outputs must be used.
2. I(X,Y) is a convex — function of the channel parameters.

3. There may be several optimal input distributions, but they all look the
same at the output.

Exercise 10.6.[2] Prove that no output y is unused by an optimal input distri-
bution, unless it is unreachable, that is, has Q(y | z) = 0 for all .

Exercise 10.7.1%! Prove that I(X,Y) is a convex — function of Q(y|x).

Exercise 10.8.12] Prove that all optimal input distributions of a channel have
the same output probability distribution P(y) = >, P(z)Q(y | z).

These results, along with the fact that I(X;Y") is a concave ~ function of
the input probability vector p, prove the validity of the symmetry argument
that we have used when finding the capacity of symmetric channels. If a
channel is invariant under a group of symmetry operations — for example,
interchanging the input symbols and interchanging the output symbols — then,
given any optimal input distribution that is not symmetric, i.e., is not invariant
under these operations, we can create another input distribution by averaging
together this optimal input distribution and all its permuted forms that we
can make by applying the symmetry operations to the original optimal input
distribution. The permuted distributions must have the same I(X;Y) as the
original, by symmetry, so the new input distribution created by averaging
must have I(X;Y") bigger than or equal to that of the original distribution,
because of the concavity of I.

Symmetric channels

In order to use symmetry arguments, it will help to have a definition of a
symmetric channel. I like Gallager’s (1968) definition.

A discrete memoryless channel is a symmetric channel if the set of
outputs can be partitioned into subsets in such a way that for each
subset the matrix of transition probabilities has the property that each
row (if more than 1) is a permutation of each other row and each column
is a permutation of each other column.

Example 10.9. This channel

Ply=0]z=0) = 0.7; P(y=0]|xz=1) = 0.1;
Ply=7|z=0) = 0.2; Py=7|z=1) = 0.2; (10.23)
Ply=1|z=0) = 0.1; P(y=1|z=1) = 0.7.

is a symmetric channel because its outputs can be partitioned into (0, 1)
and 7, so that the matrix can be rewritten:

P(y=0|xz=0) = 0.7; Py=0lz=1) = 0.1;
Py=1|z=0) = 01; Py=1llz=1) = 0.7; (10.24)
Ply=7|z=0) = 0.2; Ply=7|z=1) = 0.2.

Reminder: The term ‘convex—’
means ‘convex’, and the term
‘concave —~’ means ‘concave’; the

little smile and frown symbols are
included simply to remind you what
convex and concave mean.

10.7

10.7: Other coding theorems

Symmetry is a useful property because, as we will see in a later chapter,
communication at capacity can be achieved over symmetric channels by linear
codes.

Exercise 10.10.1%! Prove that for a symmetric channel with any number of
inputs, the uniform distribution over the inputs is an optimal input
distribution.

Exercise 10.11.1% P17 Are there channels that are not symmetric whose op-
timal input distributions are uniform? Find one, or prove there are
none.

Other coding theorems

The noisy-channel coding theorem that we proved in this chapter is quite gen-
eral, applying to any discrete memoryless channel; but it is not very specific.
The theorem only says that reliable communication with error probability e
and rate R can be achieved by using codes with sufficiently large blocklength
N. The theorem does not say how large N needs to be to achieve given values
of R and e.

Presumably, the smaller € is and the closer R is to C, the larger N has to
be.

Noisy-channel coding theorem — versiton with explicit N-dependence

For a discrete memoryless channel, a blocklength N and a rate R,
there exist block codes of length N whose average probability of
error satisfies:

pp < exp [-NE;(R)] (10.25)

where E,(R) is the random-coding exponent of the channel, a
convex —, decreasing, positive function of R for 0 < R < C. The
random-coding exponent is also known as the reliability function.

[By an expurgation argument it can also be shown that there exist
block codes for which the mazimal probability of error pgy is also
exponentially small in N.]

The definition of E.(R) is given in Gallager (1968), p.139. E,(R) approaches
zero as R — C; the typical behaviour of this function is illustrated in fig-
ure 10.8. The computation of the random-coding exponent for interesting
channels is a challenging task on which much effort has been expended. Even
for simple channels like the binary symmetric channel, there is no simple ex-
pression for E,(R).

Lower bounds on the error probability as a function of blocklength

The theorem stated above asserts that there are codes with pg smaller than
exp [-NE,(R)]. But how small can the error probability be? Could it be
much smaller?

For any code with blocklength N on a discrete memoryless channel,
the probability of error assuming all source messages are used with
equal probability satisfies

pB % exp|—NEg,(R)), (10.26)

Figure 10.8. A typical
random-coding exponent

171

172 10 — The Noisy-Channel Coding Theorem

where the function Eg,(R), the sphere-packing exponent of the
channel, is a convex —, decreasing, positive function of R for 0 <
R<C.

For a precise statement of this result and further references, see Gallager
(1968), p. 157.

10.8 Noisy-channel coding theorems and coding practice

Imagine a customer who wants to buy an error-correcting code and decoder
for a noisy channel. The results described above allow us to offer the following
service: if he tells us the properties of his channel, the desired rate R and the
desired error probability pg, we can, after working out the relevant functions
C, E;(R), and Eg,(R), advise him that there exists a solution to his problem
using a particular blocklength N; indeed that almost any randomly chosen
code with that blocklength should do the job. Unfortunately we have not
found out how to implement these encoders and decoders in practice; the cost
of implementing the encoder and decoder for a random code with large N
would be exponentially large in N.

Furthermore, for practical purposes, the customer is unlikely to know ex-
actly what channel he is dealing with. So Berlekamp (1980) suggests that
the sensible way to approach error-correction is to design encoding-decoding
systems and plot their performance on a wariety of idealized channels as a
function of the channel’s noise level. These charts (one of which is illustrated
on page 568) can then be shown to the customer, who can choose among the
systems on offer without having to specify what he really thinks his channel
is like. With this attitude to the practical problem, the importance of the
functions Ey(R) and Es,(R) is diminished.

10.9 Further exercises

ﬁ% Exercise 10.12.[2] A binary erasure channel with input x and output y has
transition probability matrix:

1—gq 0 00
Q= q q Y?

0 1—gq 141

Find the mutual information I(X;Y) between the input and output for
general input distribution {pg,p1}, and show that the capacity of this
channel is C' = 1 — ¢ bits.

A 7 channel has transition probability matrix:

1 q 0—;0
Q= { 0 1—g¢q] Z
141
Show that, using a (2,1) code, two uses of a Z channel can be made to
emulate one use of an erasure channel, and state the erasure probability

of that erasure channel. Hence show that the capacity of the Z channel,
Cy, satisfies Cy > %(1 — q) bits.

Explain why the result Cz > %(1 — q) is an inequality rather than an
equality.

10.10

10.10: Solutions

Exercise 10.13.1% P17 A transatlantic cable contains N = 20 indistinguish-
able electrical wires. You have the job of figuring out which wire is
which, that is, to create a consistent labelling of the wires at each end.
Your only tools are the ability to connect wires to each other in groups
of two or more, and to test for connectedness with a continuity tester.
What is the smallest number of transatlantic trips you need to make,
and how do you do it?

How would you solve the problem for larger N such as N = 10007

As an illustration, if N were 3 then the task can be solved in two steps
by labelling one wire at one end a, connecting the other two together,
crossing the Atlantic, measuring which two wires are connected, labelling
them b and ¢ and the unconnected one a, then connecting b to a and
returning across the Atlantic, whereupon on disconnecting b from ¢, the
identities of b and ¢ can be deduced.

This problem can be solved by persistent search, but the reason it is
posed in this chapter is that it can also be solved by a greedy approach
based on maximizing the acquired information. Let the unknown per-
mutation of wires be z. Having chosen a set of connections of wires C at
one end, you can then make measurements at the other end, and these
measurements y convey information about x. How much? And for what
set of connections is the information y conveys about z maximized?

Solutions

Solution to exercise 10.4 (p.169). If the input distribution is p = (po, p?, p1),
the mutual information is

[(X:Y) = HY) — HY|X) = Ha(po + p2/2) — pr. (10.27)

We can build a good sketch of this function in two ways: by careful inspection
of the function, or by looking at special cases.

For the plots, the two-dimensional representation of p I will use has py and
p1 as the independent variables, so that p = (po, p7, 1) = (po, (L —po—p1),p1)-

By inspection. If we use the quantities p. = po + p?/2 and pr as our two
degrees of freedom, the mutual information becomes very simple: I(X;Y) =
Hy(ps) — pr. Converting back to pg = p« — p2/2 and p1 = 1 — p. — p?/2,
we obtain the sketch shown at the left below. This function is like a tunnel
rising up the direction of increasing pg and p;. To obtain the required plot of
I(X;Y) we have to strip away the parts of this tunnel that live outside the
feasible simplex of probabilities; we do this by redrawing the surface, showing
only the parts where pg > 0 and p; > 0. A full plot of the function is shown
at the right.

173

174 10 — The Noisy-Channel Coding Theorem

Special cases. In the special case p» = 0, the channel is a noiseless binary
channel, and I(X;Y") = Ha(pp).

In the special case pg = p1, the term Ha(pg + p2/2) is equal to 1, so
I(X;Y)=1-p.

In the special case pg = 0, the channel is a Z channel with error probability
0.5. We know how to sketch that, from the previous chapter (figure 9.3).

These special cases allow us to construct the skeleton shown in figure 10.9.

Solution to exercise 10.5 (p.169). Necessary and sufficient conditions for p to
maximize I(X;Y) are

PXY) = X and pi>0 for all (10.28)
r ; or a 7;) ’
% < X and p;=0

where) is a constant related to the capacity by C = A + logye.

This result can be used in a computer program that evaluates the deriva-
tives and increments and decrements the probabilities p; in proportion to the
differences between those derivatives.

This result is also useful for lazy human capacity-finders who are good
guessers. Having guessed the optimal input distribution, one can simply con-
firm that equation (10.28) holds.

Solution to exercise 10.11 (p.171). We certainly expect nonsymmetric chan-
nels with uniform optimal input distributions to exist, since when inventing a
channel we have I(J — 1) degrees of freedom whereas the optimal input dis-
tribution is just (I — 1)-dimensional; so in the I(J—1)-dimensional space of
perturbations around a symmetric channel, we expect there to be a subspace
of perturbations of dimension I(J —1) — (I —1) = I(J —2) 4 1 that leave the
optimal input distribution unchanged.
Here is an explicit example, a bit like a Z channel.

09585 0.0415 0.35 0.0
0.0415 0.9585 0.0 0.35
Q=1 0 065 0 (10-29)

0 0 0 0.65

Solution to exercise 10.13 (p.173). The labelling problem can be solved for
any N > 2 with just two trips, one each way across the Atlantic.

The key step in the information-theoretic approach to this problem is to
write down the information content of one partition, the combinatorial object
that is the connecting together of subsets of wires. If N wires are grouped
together into g; subsets of size 1, go subsets of size 2, ..., then the number of

such partitions is

NI
Q= (10.30)

[T gl

T
and the information content of one such partition is the log of this quantity.
In a greedy strategy we choose the first partition to maximize this information
content.

One game we can play is to maximize this information content with re-
spect to the quantities g,, treated as real numbers, subject to the constraint
>, g = N. Introducing a Lagrange multiplier A for the constraint, the
derivative is

a(zr <log Q+ A 2 gﬂ‘) = —logr! —log g, + Ar, (10.31)

0.5

Figure 10.9. Skeleton of the
mutual information for the
ternary confusion channel.

10.10: Solutions

which, when set to zero, leads to the rather nice expression

e)\'r

- (10.32)

gr = !
T

the optimal g, is proportional to a Poisson distribution! We can solve for the
Lagrange multiplier by plugging ¢, into the constraint >, g,r = N, which
gives the implicit equation

N = pet, (10.33)

where p = e’ is a convenient reparameterization of the Lagrange multiplier.

Figure 10.10a shows a graph of u(N); figure 10.10b shows the deduced non-
integer assignments g, when p = 2.2, and nearby integers g, = {1,2,2,1,1}
that motivate setting the first partition to (a)(bc)(de)(fgh)(ijk)(lmno)(pqrst).

This partition produces a random partition at the other end, which has an
information content of log €2 = 40.4 bits, which is a lot more than half the total
information content we need to acquire to infer the transatlantic permutation,
log 20! ~ 61bits. [In contrast, if all the wires are joined together in pairs,
the information content generated is only about 29 bits.] How to choose the
second partition is left to the reader. A Shannonesque approach is appropriate,
picking a random partition at the other end, using the same {g,}; you need
to ensure the two partitions are as unlike each other as possible.

If N # 2, 5 or 9, then the labelling problem has solutions that are
particularly simple to implement, called Knowlton—-Graham partitions: par-
tition {1,..., N} into disjoint sets in two ways A and B, subject to the
condition that at most one element appears both in an A set of cardinal-
ity j and in a B set of cardinality k, for each j and k (Graham, 1966;
Graham and Knowlton, 1968).

175

12354556 7138910
Figure 10.10. Approximate
solution of the cable labelling
problem using Lagrange
multipliers. (a) The parameter p
as a function of N; the value
1(20) = 2.2 is highlighted. (b)
Non-integer values of the function
gr = #"/r! are shown by lines and
integer values of g, motivated by
those non-integer values are
shown by crosses.

About Chapter 11

Before reading Chapter 11, you should have read Chapters 9 and 10.
You will also need to be familiar with the Gaussian distribution.

One-dimensional Gaussian distribution. If a random variable y is Gaus-
sian and has mean g and variance o2, which we write:

y ~ Normal(p, 0%), or P(y) = Normal(y; 1, 0?), (11.1)

then the distribution of y is:

P(ylu,0?) = exp |~ (y — 1)?/20%] . (11.2)

1
V2mo?
[I use the symbol P for both probability densities and probabilities.]
The inverse-variance 7 = /o2 is sometimes called the precision of the

Gaussian distribution.

Multi-dimensional Gaussian distribution. If y = (y1,%2,...,yn) has a
multivariate Gaussian distribution, then

Pylx.A) = e (<30 —xAy-x) . (113)

where x is the mean of the distribution, A is the inverse of the
variance—covariance matrix, and the normalizing constant is Z(A) =

(det(A/27))"V/2.

This distribution has the property that the variance X; of y;, and the
covariance X;; of y; and y; are given by

i = E i — 0y —)] = Aij (11.4)

where A~ is the inverse of the matrix A.

The marginal distribution P(y;) of one component y; is Gaussian;
the joint marginal distribution of any subset of the components is
multivariate-Gaussian; and the conditional density of any subset, given
the values of another subset, for example, P(y;|y;), is also Gaussian.

176

11.1

11

Error-Correcting Codes & Real Channels

The noisy-channel coding theorem that we have proved shows that there exist
reliable error-correcting codes for any noisy channel. In this chapter we address
two questions.

First, many practical channels have real, rather than discrete, inputs and
outputs. What can Shannon tell us about these continuous channels? And
how should digital signals be mapped into analogue waveforms, and vice versa?

Second, how are practical error-correcting codes made, and what is
achieved in practice, relative to the possibilities proved by Shannon?

The Gaussian channel

The most popular model of a real-input, real-output channel is the Gaussian
channel.

The Gaussian channel has a real input z and a real output y. The condi-
tional distribution of y given x is a Gaussian distribution:

P(y|lz) = exp [—(y - x)2/202} . (11.5)

1
V2mro?
This channel has a continuous input and output but is discrete in time.
We will show below that certain continuous-time channels are equivalent
to the discrete-time Gaussian channel.

This channel is sometimes called the additive white Gaussian noise
(AWGN) channel.

As with discrete channels, we will discuss what rate of error-free information
communication can be achieved over this channel.

Motivation in terms of a continuous-time channel

Consider a physical (electrical, say) channel with inputs and outputs that are
continuous in time. We put in z(t), and out comes y(t) = z(t) + n(t).

Our transmission has a power cost. The average power of a transmission
of length 7" may be constrained thus:

T
/ dt [z(t)]*/T < P. (11.6)
0
The received signal is assumed to differ from x(¢t) by additive noise n(t) (for
example Johnson noise), which we will model as white Gaussian noise. The

magnitude of this noise is quantified by the noise spectral density Ny.
How could such a channel be used to communicate information? Consider

177

o1 (t) /\

Figure 11.1. Three basis functions,
and a weighted combination of
them, z(t) = nyil Zndn(t), with
x1 = 0.4, xo = —0.2, and 23 = 0.1.

178 11 — Error-Correcting Codes and Real Channels

transmitting a set of N real numbers {x,,}_; in a signal of duration 7" made
up of a weighted combination of orthonormal basis functions ¢, (t),

N
z(t) = Z Ty dn(t), (11.7)
n=1

where fOT dt ¢y, (t)Pm(t) = Opm.- The receiver can then compute the scalars:

T
T+ /0 dt G (E)n(t) (11.8)
= Tp+nn (11.9)

T
Yo = /0 dt - (t)y(t)

for n = 1...N. If there were no noise, then ¥, would equal x,,. The white
Gaussian noise n(t) adds scalar noise n, to the estimate y,. This noise is
Gaussian:

ny, ~ Normal(0, Ny/2), (11.10)

where Ny is the spectral density introduced above. Thus a continuous channel
used in this way is equivalent to the Gaussian channel defined above. The
power constraint fOT dt [z(t)]? < PT defines a constraint on the signal ampli-
tudes x,,

> ap < PT = 2 < —. (11.11)

Before returning to the Gaussian channel, we define the bandwidth (mea-

sured in Hertz) of the continuous channel to be:
Nmax

W = o7 (11.12)
where N™?2% is the maximum number of orthonormal functions that can be
produced in an interval of length 7. This definition can be motivated by
imagining creating a band-limited signal of duration T from orthonormal co-
sine and sine curves of maximum frequency W. The number of orthonormal
functions is N™& = 2WT. This definition relates to the Nyquist sampling
theorem: if the highest frequency present in a signal is W, then the signal
can be fully determined from its values at a series of discrete sample points
separated by the Nyquist interval At = /2 seconds.

So the use of a real continuous channel with bandwidth W, noise spectral
density Ny and power P is equivalent to N/T = 2W uses per second of a
Gaussian channel with noise level 02 = Ny/2 and subject to the signal power
constraint :L’T% < Phw.

Definition of Ey,/Ny

Imagine that the Gaussian channel y, = z, + n, is used with an encoding
system to transmit binary source bits at a rate of R bits per channel use. How
can we compare two encoding systems that have different rates of communi-
cation R and that use different powers E? Transmitting at a large rate R is
good; using small power is good too.

It is conventional to measure the rate-compensated signal to noise ratio by
the ratio of the power per source bit Ey, = E/ R to the noise spectral density

Np: o Ey /Ny is dimensionless, but it is usu-
x% ally reported in the units of decibels;
Ey/No = %2R (11.13) the value given is 10log,, E1/No.

Ey, /Ny is one of the measures used to compare coding schemes for Gaussian
channels.

11.2

11.3

11.2: Inferring the input to a real channel

Inferring the input to a real channel

‘The best detection of pulses’

In 1944 Shannon wrote a memorandum (Shannon, 1993) on the problem of
best differentiating between two types of pulses of known shape, represented
by vectors xg and xi, given that one of them has been transmitted over a
noisy channel. This is a pattern recognition problem. It is assumed that the
noise is Gaussian with probability density

P(n) = {det (%)} v exp (_% TAn) ,

where A is the inverse of the variance—covariance matrix of the noise, a sym-
metric and positive-definite matrix. (If A is a multiple of the identity matrix,
I/0?, then the noise is ‘white’. For more general A, the noise is ‘coloured’.)
The probability of the received vector y given that the source signal was s
(either zero or one) is then

(11.14)

A2 1
P(y|s) = [det (—)} exp (——(y —x5) Ay — xs)> . (11.15)
2w 2
The optimal detector is based on the posterior probability ratio:
P(s=0ly) P(yls=0)P(s=0)
1 1 P(s=1
= exp —5(}’ —x1)'Aly —x1) + 5(}’ —%0)'A(y —x0) +1n ﬁ)
= exp(y'A(x; —x0) +6), (11.17)
where 6 is a constant independent of the received vector y,
1 P(s=1)
9 = ——XlAX1 + XBAXO +1 m (1118)

If the detector is forced to make a decision (i.e., guess either s = 1 or s =
0) then the decision that minimizes the probability of error is to guess the
most probable hypothesis. We can write the optimal decision in terms of a
discriminant function:

a(y) =y'A(x1 —xo) +0 (11.19)
with the decisions
aly) >0 — guesss=1
a(ly) <0 — guesss=0 (11.20)
a(y) =0 — guess either.
Notice that a(y) is a linear function of the received vector,
aly) =w'y +0, (11.21)

where w = A(x1 — Xp).

Capacity of Gaussian channel

Until now we have only measured the joint, marginal, and conditional entropy
of discrete variables. In order to define the information conveyed by continuous
variables, there are two issues we must address — the infinite length of the real
line, and the infinite precision of real numbers.

179

X0 ”HHH““‘WHHHW“'

X1 HJ, 1l

y " \’ ”H

Figure 11.2. Two pulses xg and
X1, represented as 31-dimensional
vectors, and a noisy version of one
of them, y.

w 1l

ol \W i !

Figure 11.3. The weight vector
W X X] — Xg that is used to
discriminate between x¢ and x;.

180 11 — Error-Correcting Codes and Real Channels

Infinite inputs

How much information can we convey in one use of a Gaussian channel? If
we are allowed to put any real number x into the Gaussian channel, we could
communicate an enormous string of N digits didads...dy by setting z =
didads ... dN000...000. The amount of error-free information conveyed in

) FA
just a single transmission could be made arbitrarily large by increasing NV,
<
(b)

and the communication could be made arbitrarily reliable by increasing the
number of zeroes at the end of z. There is usually some power cost associated
with large inputs, however, not to mention practical limits in the dynamic
range acceptable to a receiver. It is therefore conventional to introduce a
cost function v(x) for every input x, and constrain codes to have an average

cost ¥ less than or equal to some maximum value. A generalized channel
coding theorem, including a cost function for the inputs, can be proved — see "L

McEliece (1977). The result is a channel capacity C(v) that is a function of
the permitted cost. For the Gaussian channel we will assume a cost

v(z) = 2? (11.22)

such that the ‘average power’ 22 of the input is constrained. We motivated this h
cost function above in the case of real electrical channels in which the physical
power consumption is indeed quadratic in z. The constraint z2 = © makes
it impossible to communicate infinite information in one use of the Gaussian
channel. Figure 11.4. (a) A probability
density P(z). Question: can we
define the ‘entropy’ of this
density? (b) We could evaluate

It is tempting to define joint, marginal, and conditional entropies for real the entropies of a sequence of
variables simply by replacing summations by integrals, but this is not a well ~ probability distributions with
defined operation. As we discretize an interval into smaller and smaller divi- ~ decreasing grain-size g, but these
sions, the entropy of the discrete distribution diverges (as the logarithm of the entropies tendlto

granularity) (figure 11.4). Also, it is not permissible to take the logarithm of / P(z)log P(r)g dz, which is not
a dimensional quantity such as a probability density P(x) (whose dimensions independent of g: the entropy

are [z]71). goes up by one bit for every

Infinite precision

There is one information measure, however, that has a well-behaved limit, ~ halving of g.
namely the mutual information — and this is the one that really matters, since / P(z)log % dz is an illegal
it measures how much information one variable conveys about another. In the
discrete case,

integral.

P(z,y)
P(x)P(y)
Now because the argument of the log is a ratio of two probabilities over the

same space, it is OK to have P(x,y), P(x) and P(y) be probability densities
and replace the sum by an integral:

I(X;Y) =) P(x,y)log
z,y

(11.23)

I(XyY) = /dw dy P(z,y) log% (11.24)
_ Plylz)
= /dx dy P(x)P(y|z)log Py (11.25)

We can now ask these questions for the Gaussian channel: (a) what probability
distribution P(z) maximizes the mutual information (subject to the constraint
22 = v)? and (b) does the maximal mutual information still measure the
maximum error free communication rate of this real channel, as it did for the
discrete channel?

11.3: Capacity of Gaussian channel

Exercise 11.1.1% P 1891 prove that the probability distribution P(z) that max-
imizes the mutual information (subject to the constraint z2 = v) is a
Gaussian distribution of mean zero and variance v.

Exercise 11.2.1% P189 Show that the mutual information I1(X;Y), in the case
of this optimized distribution, is

1
C=-log (1+1). (11.26)
2 o?

This is an important result. We see that the capacity of the Gaussian channel
is a function of the signal to noise ratio v/o>.

Inferences given a Gaussian input distribution

If P(x) = Normal(x;0,v) and P(y|z) = Normal(y;x,0?) then the marginal
distribution of y is P(y) = Normal(y;0,v + o) and the posterior distribution
of the input, given that the output is y, is:

P(z|ly) « P(ylx)P(x) (11.27)
o exp(—(y — x)?/20%) exp(—z?/2v) (11.28)
= Normal <x; # v, (% + %)) . (11.29)

[The step from (11.28) to (11.29) is made by completing the square in the
exponent.] This formula deserves careful study. The mean of the posterior
distribution, # Y, can be viewed as a weighted combination of the value
that best fits the output, z = y, and the value that best fits the prior, z = 0:

v 1/0? 1/v
7y = Sy+ S 0.
v+o 1/v+1/o 1/v+1/c

(11.30)

The weights 1/02 and 1/v are the precisions of the two Gaussians that we
multiplied together in equation (11.28): the prior and the likelihood.

The precision of the posterior distribution is the sum of these two pre-
cisions. This is a general property: whenever two independent sources con-
tribute information, via Gaussian distributions, about an unknown variable,
the precisions add. [This is the dual to the better known relationship ‘when
independent variables are added, their variances add’.]

Noisy-channel coding theorem for the Gaussian channel

We have evaluated a maximal mutual information. Does it correspond to a
maximum possible rate of error-free information transmission? One way of
proving that this is so is to define a sequence of discrete channels, all derived
from the Gaussian channel, with increasing numbers of inputs and outputs,
and prove that the maximum mutual information of these channels tends to the
asserted C. The noisy-channel coding theorem for discrete channels applies
to each of these derived channels, thus we obtain a coding theorem for the
continuous channel. Alternatively, we can make an intuitive argument for the
coding theorem specific for the Gaussian channel.

181

182 11 — Error-Correcting Codes and Real Channels

Geometrical view of the noisy-channel coding theorem: sphere packing

Consider a sequence x = (1, ...,zy) of inputs, and the corresponding output
y, as defining two points in an N dimensional space. For large N, the noise
power is very likely to be close (fractionally) to No?. The output y is therefore
very likely to be close to the surface of a sphere of radius v No?2 centred on x.
Similarly, if the original signal x is generated at random subject to an average
power constraint z2 = v, then x is likely to lie close to a sphere, centred
on the origin, of radius v/ Nv; and because the total average power of y is
v+ 02, the received signal y is likely to lie on the surface of a sphere of radius
N(v + 0?), centred on the origin.
The volume of an N-dimensional sphere of radius r is

N/2 N

V(r,N) = -~ V. (11.31)

T(N/2+1)

Now consider making a communication system based on non-confusable

inputs x, that is, inputs whose spheres do not overlap significantly. The max-

imum number S of non-confusable inputs is given by dividing the volume of
the sphere of probable ys by the volume of the sphere for y given x:

N
S < <N(%;2)) (11.32)

Thus the capacity is bounded by:
1 1 v
C = NlogM < ilog <1 + ?) . (11.33)

A more detailed argument like the one used in the previous chapter can es-
tablish equality.

Back to the continuous channel

Recall that the use of a real continuous channel with bandwidth W, noise
spectral density Ny and power P is equivalent to N/T = 2W uses per second of
a Gaussian channel with o2 = N, /2 and subject to the constraint E < P/2W.
Substituting the result for the capacity of the Gaussian channel, we find the
capacity of the continuous channel to be:

P
C =Wlog <1 + NO—W) bits per second. (11.34)

This formula gives insight into the tradeoffs of practical communication. Imag-
ine that we have a fixed power constraint. What is the best bandwidth to make
use of that power? Introducing Wy = P/Np, i.e., the bandwidth for which the
signal to noise ratio is 1, figure 11.5 shows C/Wy = W/Wylog(1l + Wy /W)
as a function of W/Wj. The capacity increases to an asymptote of W loge.
It is dramatically better (in terms of capacity for fixed power) to transmit at
a low signal to noise ratio over a large bandwidth, than with high signal to
noise in a narrow bandwidth; this is one motivation for wideband communi-
cation methods such as the ‘direct sequence spread-spectrum’ approach used
in 3G mobile phones. Of course, you are not alone, and your electromagnetic Figure 11.5. Capacity versus

neighbours may not be pleased if you use a large bandwidth, so for social rea- bandwidth for a real channel:

sons, engineers often have to make do with higher-power, narrow-bandwidth ~ C/Wy = W/Wylog (1 + Wy /W)
transmitters. as a function of W/Wj.

capacity

bandwidth

11.4

11.4: What are the capabilities of practical error-correcting codes?

What are the capabilities of practical error-correcting codes?

Nearly all codes are good, but nearly all codes require exponential look-up
tables for practical implementation of the encoder and decoder — exponential
in the block length N. And the coding theorem required N to be large.

By a practical error-correcting code, we mean one that can be encoded
and decoded in a reasonable amount of time, for example, a time that scales
as a polynomial function of the block length N — preferably linearly.

The Shannon limit is not achieved in practice

The non-constructive proof of the noisy-channel coding theorem showed that
good block codes exist for any noisy channel, and indeed that nearly all block
codes are good. But writing down an explicit and practical encoder and de-
coder that are as good as promised by Shannon is still an unsolved problem.

Very good codes. Given a channel, a family of block codes that achieve
arbitrarily small probability of error at any communication rate up to
the capacity of the channel are called ‘very good’ codes for that channel.

Good codes are code families that achieve arbitrarily small probability of
error at non-zero communication rates up to some maximum rate that
may be less than the capacity of the given channel.

Bad codes are code families that cannot achieve arbitrarily small probability
of error, or that can only achieve arbitrarily small probability of error by
decreasing the information rate to zero. Repetition codes are an example
of a bad code family. (Bad codes are not necessarily useless for practical
purposes.)

Practical codes are code families that can be encoded and decoded in time
and space polynomial in the block length.

Most established codes are linear codes

Let us review the definition of a block code, and then add the definition of a
linear block code.

An (N, K) block code for a channel Q is a list of S = 25 codewords
{(xM x® . ,X(QK)}, each of length N: x() e A¥Y. The signal to be
encoded, s, which comes from an alphabet of size 25, is encoded as x(*).

A linear (N, K) block code is a block code in which the codewords {x(*)}
make up a K-dimensional subspace of A%. The encoding operation can
be represented by an N x K binary matrix G' such that if the signal to
be encoded, in binary notation, is s (a vector of length K bits), then the
encoded signal is t = G's modulo 2.

The codewords {t} can be defined as the set of vectors satisfying Ht =
0 mod 2, where H is the parity-check matrix of the code.

For example the (7,4) Hamming code of section 1.2 takes K = 4 signal
bits, s, and transmits them followed by three parity-check bits. The N =7
transmitted symbols are given by G'smod 2.

Coding theory was born with the work of Hamming, who invented a fam-
ily of practical error-correcting codes, each able to correct one error in a
block of length N, of which the repetition code R3 and the (7,4) code are

GT

R

.

e e

183

184 11 — Error-Correcting Codes and Real Channels

the simplest. Since then most established codes have been generalizations of
Hamming’s codes: Bose—-Chaudhury—Hocquenhem codes, Reed—Miiller codes,
Reed—Solomon codes, and Goppa codes, to name a few.

Convolutional codes

Another family of linear codes are convolutional codes, which do not divide
the source stream into blocks, but instead read and transmit bits continuously.
The transmitted bits are a linear function of the past source bits. Usually the
rule for generating the transmitted bits involves feeding the present source
bit into a linear feedback shift register of length k, and transmitting one or
more linear functions of the state of the shift register at each iteration. The
resulting transmitted bit stream is the convolution of the source stream with
a linear filter. The impulse response function of this filter may have finite or
infinite duration, depending on the choice of feedback shift register.
We will discuss convolutional codes in Chapter 48.

Are linear codes ‘good’?

One might ask, is the reason that the Shannon limit is not achieved in practice
because linear codes are inherently not as good as random codes? The answer
is no, the noisy-channel coding theorem can still be proved for linear codes,
at least for some channels (see Chapter 14), though the proofs, like Shannon’s
proof for random codes, are non-constructive.

Linear codes are easy to implement at the encoding end. Is decoding a
linear code also easy? Not necessarily. The general decoding problem (find
the maximum likelihood s in the equation G's+n = r) is in fact NP-complete
(Berlekamp et al., 1978). [NP-complete problems are computational problems
that are all equally difficult and which are widely believed to require expo-
nential computer time to solve in general.] So attention focuses on families of
codes for which there is a fast decoding algorithm.

Concatenation

One trick for building codes with practical decoders is the idea of concatena-

tion.

An encoder-channel-decoder system C — @@ — D can be viewed as defining C—=C—>Q—D—T
a super-channel @’ with a smaller probability of error, and with complex -
correlations among its errors. We can create an encoder C' and decoder D’ for Q@

this super-channel Q’. The code consisting of the outer code C’ followed by
the inner code C is known as a concatenated code.

Some concatenated codes make use of the idea of interleaving. We read
the data in blocks, the size of each block being larger than the block lengths
of the constituent codes C and C’. After encoding the data of one block using
code C', the bits are reordered within the block in such a way that nearby
bits are separated from each other once the block is fed to the second code
C. A simple example of an interleaver is a rectangular code or product code
in which the data are arranged in a K9 x Kj block, and encoded horizontally
using an (N7, K1) linear code, then vertically using a (No, K3) linear code.

Exercise 11.3.[3] Show that either of the two codes can be viewed as the inner
code or the outer code.

As an example, figure 11.6 shows a product code in which we encode
first with the repetition code Rs (also known as the Hamming code H(3,1))

11.4: What are the capabilities of practical error-correcting codes?

11 1 11 1 11 1 11 1
000 * [110 111 000
111 111 111 111
111 * 110 1 111 111
000 * 001 000 000
000 * 100 000 000

(@)L 11]) @11 @l @lr11

10 1 111
1110 111
111 111
10 1 111
100 000
100 000
(@)L 1 1] (¢H[L11

horizontally then with H(7,4) vertically. The block length of the concatenated
code is 27. The number of source bits per codeword is four, shown by the small
rectangle.

We can decode conveniently (though not optimally) by using the individual
decoders for each of the subcodes in some sequence. It makes most sense to
first decode the code which has the lowest rate and hence the greatest error-
correcting ability.

Figure 11.6(c—e) shows what happens if we receive the codeword of fig-
ure 11.6a with some errors (five bits flipped, as shown) and apply the decoder
for H(3,1) first, and then the decoder for H(7,4). The first decoder corrects
three of the errors, but erroneously modifies the third bit in the second row
where there are two bit errors. The (7,4) decoder can then correct all three
of these errors.

Figure 11.6(d’-¢') shows what happens if we decode the two codes in the
other order. In columns one and two there are two errors, so the (7,4) decoder
introduces two extra errors. It corrects the one error in column 3. The (3,1)
decoder then cleans up four of the errors, but erroneously infers the second
bit.

Interleaving

The motivation for interleaving is that by spreading out bits that are nearby
in one code, we make it possible to ignore the complex correlations among the
errors that are produced by the inner code. Maybe the inner code will mess
up an entire codeword; but that codeword is spread out one bit at a time over
several codewords of the outer code. So we can treat the errors introduced by
the inner code as if they are independent.

Other channel models

In addition to the binary symmetric channel and the Gaussian channel, coding
theorists keep more complex channels in mind also.

Burst-error channels are important models in practice. Reed—Solomon
codes use Galois fields (see Appendix C.1) with large numbers of elements
(e.g. 2'9) as their input alphabets, and thereby automatically achieve a degree
of burst-error tolerance in that even if 17 successive bits are corrupted, only 2
successive symbols in the Galois field representation are corrupted. Concate-
nation and interleaving can give further protection against burst errors. The
concatenated Reed—Solomon codes used on digital compact discs are able to
correct bursts of errors of length 4000 bits.

185

Figure 11.6. A product code. (a)
A string 1011 encoded using a
concatenated code consisting of
two Hamming codes, H(3,1) and
H(7,4). (b) a noise pattern that
flips 5 bits. (c¢) The received
vector. (d) After decoding using
the horizontal (3, 1) decoder, and
(e) after subsequently using the
vertical (7,4) decoder. The
decoded vector matches the
original.

(d’, €') After decoding in the other
order, three errors still remain.

186 11 — Error-Correcting Codes and Real Channels

> Exercise 11.4.1% P-189] e technique of interleaving, which allows bursts of
errors to be treated as independent, is widely used, but is theoretically
a poor way to protect data against burst errors, in terms of the amount
of redundancy required. Explain why interleaving is a poor method,
using the following burst-error channel as an example. Time is divided
into chunks of length N = 100 clock cycles; during each chunk, there
is a burst with probability b = 0.2; during a burst, the channel is a bi-
nary symmetric channel with f = 0.5. If there is no burst, the channel
is an error-free binary channel. Compute the capacity of this channel
and compare it with the maximum communication rate that could con-
ceivably be achieved if one used interleaving and treated the errors as
independent.

Fading channels are real channels like Gaussian channels except that the
received power is assumed to vary with time. A moving mobile phone is an
important example. The incoming radio signal is reflected off nearby objects
so that there are interference patterns and the intensity of the signal received
by the phone varies with its location. The received power can easily vary by
10 decibels (a factor of ten) as the phone’s antenna moves through a distance
similar to the wavelength of the radio signal (a few centimetres).

11.5 The state of the art

What are the best known codes for communicating over Gaussian channels?
All the practical codes are linear codes, and are either based on convolutional
codes or block codes.

Convolutional codes, and codes based on them

Textbook convolutional codes. The ‘de facto standard’ error-correcting
code for satellite communications is a convolutional code with constraint
length 7. Convolutional codes are discussed in Chapter 48.

Concatenated convolutional codes. The above convolutional code can be
used as the inner code of a concatenated code whose outer code is a Reed—
Solomon code with eight-bit symbols. This code was used in deep space
communication systems such as the Voyager spacecraft. For further
reading about Reed—Solomon codes, see Lin and Costello (1983).

C
The code for Galileo. A code using the same format but using a longer @

constraint length — 15 — for its convolutional code and a larger Reed— Cy b
Solomon code was developed by the Jet Propulsion Laboratory (Swan-
son, 1988). The details of this code are unpublished outside JPL, and the Figure 11.7. The encoder of a
decoding is only possible using a room full of special-purpose hardware. turbo code. Each box C1, Cs,
In 1992, this was the best known code of rate 1/4. contains a convolutional code.

The source bits are reordered
Turbo codes. In 1993, Berrou, Glavieux and Thitimajshima reported work using a permutation = before they

on turbo codes. The encoder of a turbo code is based on the encoders are fed to C2. The transmitted
of two convolutional codes. The source bits are fed into each encoder, —codeword is obtained by
the order of the source bits being permuted in a random way, and the concatenating or interleaving the

resulting parity bits from each constituent code are transmitted. outputs of the two Conmlutlo.nal
codes. The random permutation

The decoding algorithm involves iteratively decoding each constituent is chosen when the code is
code using its standard decoding algorithm, then using the output of designed, and fixed thereafter.
the decoder as the input to the other decoder. This decoding algorithm

11.6

11.7

11.8

11.6: Summary

is an instance of a message-passing algorithm called the sum—product
algorithm.

Turbo codes are discussed in Chapter 48, and message passing in Chap-
ters 16, 17, 25, and 26.

Block codes

Gallager’s low-density parity-check codes. The best block codes known
for Gaussian channels were invented by Gallager in 1962 but were
promptly forgotten by most of the coding theory community. They were
rediscovered in 1995 and shown to have outstanding theoretical and prac-
tical properties. Like turbo codes, they are decoded by message-passing
algorithms.

We will discuss these beautifully simple codes in Chapter 47.

The performances of the above codes are compared for Gaussian channels
in figure 47.17, p.568.

Summary

Random codes are good, but they require exponential resources to encode
and decode them.

Non-random codes tend for the most part not to be as good as random
codes. For a non-random code, encoding may be easy, but even for
simply-defined linear codes, the decoding problem remains very difficult.

The best practical codes (a) employ very large block sizes; (b) are based
on semi-random code constructions; and (c) make use of probability-
based decoding algorithms.

Nonlinear codes

Most practically used codes are linear, but not all. Digital soundtracks are
encoded onto cinema film as a binary pattern. The likely errors affecting the
film involve dirt and scratches, which produce large numbers of 1s and Os
respectively. We want none of the codewords to look like all-1s or all-Os, so
that it will be easy to detect errors caused by dirt and scratches. One of the
codes used in digital cinema sound systems is a nonlinear (8, 6) code consisting
of 64 of the (Z) binary patterns of weight 4.

Errors other than noise

Another source of uncertainty for the receiver is uncertainty about the tim-
ing of the transmitted signal z(t).
mation theory, the transmitter’s time ¢ and the receiver’s time u are as-
sumed to be perfectly synchronized. But if the receiver receives a signal
y(u), where the receiver’s time, u, is an imperfectly known function u(t)
of the transmitter’s time ¢, then the capacity of this channel for commu-
nication is reduced. The theory of such channels is incomplete, compared
with the synchronized channels we have discussed thus far. Not even the ca-
pacity of channels with synchronization errors is known (Levenshtein, 1966;
Ferreira et al., 1997); codes for reliable communication over channels with
synchronization errors remain an active research area (Davey and MacKay,
2001).

In ordinary coding theory and infor-

187
1 11 1
1 11 1
1 11 1
11 1 1
1 t 1 %1 H
= 1 1 1 1
H 1 1 1 1
1 1 11
11 11
1 111
1 1 1 1

Figure 11.8. A low-density
parity-check matrix and the
corresponding graph of a rate- /4
low-density parity-check code
with blocklength N =16, and
M =12 constraints. Each white
circle represents a transmitted bit.
Each bit participates in j =3
constraints, represented by
squares. Each constraint forces
the sum of the k£ = 4 bits to which
it is connected to be even. This

code is a (16,4) code.

Outstanding performance is
obtained when the block length is

increased to N ~ 10000.

188 11 — Error-Correcting Codes and Real Channels

Further reading

For a review of the history of spread-spectrum methods, see Scholtz (1982).

11.9 Exercises

The Gaussian channel

> Exercise 11.5.[% P19 Congider a Gaussian channel with a real input z, and
signal to noise ratio v/c?.

(a) What is its capacity C?

(b) If the input is constrained to be binary, € {£,/v}, what is the
capacity C’ of this constrained channel?

(c) If in addition the output of the channel is thresholded using the
mapping

;)1 y>0
y—y { 0 y<0, (11.35)

what is the capacity C” of the resulting channel?

(d) Plot the three capacities above as a function of v/0? from 0.1 to 2.
[You'll need to do a numerical integral to evaluate C'.]

> Exercise 11.6.1%] For large integers K and N, what fraction of all binary error-
correcting codes of length IV and rate R = K/N are linear codes? [The
answer will depend on whether you choose to define the code to be an
ordered list of 25 codewords, that is, a mapping from s € {1,2,...,25}
to x(), or to define the code to be an unordered list, so that two codes
consisting of the same codewords are identical. Use the latter definition:
a code is a set of codewords; how the encoder operates is not part of the
definition of the code.]

Erasure channels

> Exercise 11.7.[%] Design a code for the binary erasure channel, and a decoding
algorithm, and evaluate their probability of error. [The design of good
codes for erasure channels is an active research area (Spielman, 1996;
Byers et al., 1998); see also Chapter 50.]

> Exercise 11.8.1%] Design a code for the g-ary erasure channel, whose input z is
drawn from 0,1,2,3,...,(¢ — 1), and whose output y is equal to with
probability (1 — f) and equal to ? otherwise. [This erasure channel is a
good model for packets transmitted over the internet, which are either
received reliably or are lost.]

Exercise 11.9.1% P19 How do redundant arrays of independent disks (RAID)
work? These are information storage systems consisting of about ten [Some people say RAID stands for ‘re-
disk drives, of which any two or three can be disabled and the oth- ~ dundant array of inexpensive disks’,
ers are able to still able to reconstruct any requested file. What codes :,)tliltl I&Tgﬁ?;ﬁ:i@ﬁ? Itiewu(l)i:ti
are used, and how far are these systems from the Shannon limit for ... expensivel]
the problem they are solving?” How would you design a better RAID
system? Some information is provided in the solution section. See
http://www.acnc.com/raid2.html; see also Chapter 50.

11.10

11.10: Solutions

Solutions

Solution to exercise 11.1 (p.181). Introduce a Lagrange multiplier A for the
power constraint and another, p, for the constraint of normalization of P(z).

F = I(X;Y)—\[dzP(x)z? — u [dx P(z) (11.36)
_ Plyle) | 2
_ /da:P(x) Udyp(y|:c)1n Bl et ou] 1)

Make the functional derivative with respect to P(z*).

(SP(S(FI*) /dy P(y|z*)In 7P1(Dy(|;)*) —A*? -
- /d:c P(x) /dy P(yx)%(sépp(%*)). (11.38)

The final factor 0P (y)/dP(«*) is found, using P(y) = [da P(x)P(y|z), to be
P(y|z*), and the whole of the last term collapses in a puff of smoke to 1, which
can be absorbed into the p term.
Substitute P(y|z) = exp(—(y — x)%/20?)/v2m0? and set the derivative to
Z€ero:
(

/dy P(y|z)In PPZ(/S) e — ' =0 (11.39)
= /d exp(= 2;2 [20%)), [P(y)o] = —Xa? — 1/ — % (11.40)

This condition must be satisfied by In[P(y)o] for all x.

Writing a Taylor expansion of In[P(y)o] = a+by+cy?+- - -, only a quadratic
function In[P(y)o] = a + cy? would satisfy the constraint (11.40). (Any higher
order terms yP, p > 2, would produce terms in zP that are not present on
the right-hand side.) Therefore P(y) is Gaussian. We can obtain this optimal
output distribution by using a Gaussian input distribution P(z).

Solution to exercise 11.2 (p.181). Given a Gaussian input distribution of vari-
ance v, the output distribution is Normal(0,v + ¢2), since 2 and the noise
are independent random variables, and variances add for independent random
variables. The mutual information is:

10GY) = [dedy P@)Plyle)log Plyle) — [dy Ply)log Ply) (11.41)

1 11 1

= Zlog— — ~log —— 11.42
1085 —glog——s ()
1 v

= log (1 + ?) . (11.43)

Solution to exercise 11.4 (p.186). The capacity of the channel is one minus
the information content of the noise that it adds. That information content is,
per chunk, the entropy of the selection of whether the chunk is bursty, Ha(b),
plus, with probability b, the entropy of the flipped bits, N, which adds up
to Ha(b) + Nb per chunk (roughly; accurate if N is large). So, per bit, the
capacity is, for N = 100,

1
C=1- (NHQ(Z)) + b) —1—10.207 = 0.793. (11.44)

In contrast, interleaving, which treats bursts of errors as independent, causes
the channel to be treated as a binary symmetric channel with f = 0.2 x 0.5 =
0.1, whose capacity is about 0.53.

189

190 11 — Error-Correcting Codes and Real Channels

Interleaving throws away the useful information about the correlated-
ness of the errors. Theoretically, we should be able to communicate about
(0.79/0.53) ~ 1.6 times faster using a code and decoder that explicitly treat
bursts as bursts.

Solution to exercise 11.5 (p.188).

(a) Putting together the results of exercises 11.1 and 11.2, we deduce that
a Gaussian channel with real input 2, and signal to noise ratio v/c? has

capacity 121
1 v 1 I
C=zlog|l+—). (11.45) 08
2 o2 06
0.4 H
(b) If the input is constrained to be binary, x € {+/v}, the capacity is 024
achieved by using these two inputs with equal probability. The capacity 0 =

is reduced to a somewhat messy integral,

"= [N og Nw:0) — [~ dyPly)log P, (11.46)

01 4
where N(y;z) = (1/v27n)expl(y — 2)2/2], * = /v/o, and P(y) =]

[N(y;z) + N(y; —x)]/2. This capacity is smaller than the unconstrained o1 1

capacity (11.45), but for small signal to noise ratio, the two capacities "ot 1

are close in value. Figure 11.9. Capacities (from top

to bottom in each graph) C, C”,
(c) If the output is thresholded, then the Gaussian channel is turned into and C”, versus the signal to noise

a binary symmetric channel whose transition probability is given by the ratio (y/v/c). The lower graph is
error function ® defined on page 156. The capacity is a log-log plot.

C" =1— Hy(f), where f = ®(\/v/0). (11.47)

Solution to exercise 11.9 (p.188). There are several RAID systems. One of
the easiest to understand consists of 7 disk drives which store data at rate
4/7 using a (7,4) Hamming code: each successive four bits are encoded with
the code and the seven codeword bits are written one to each disk. Two or
perhaps three disk drives can go down and the others can recover the data.
The effective channel model here is a binary erasure channel, because it is
assumed that we can tell when a disk is dead.

It is not possible to recover the data for some choices of the three dead
disk drives; can you see why?

ﬁ% Exercise 11.10. Give an example of three disk drives that, if lost, lead to failure
of the above RAID system, and three that can be lost without failure.

Solution to exercise 11.10 (p.190). The (7,4) Hamming code has codewords
of weight 3. If any set of three disk drives corresponding to one of those code-
words is lost, then the other four disks can only recover 3 bits of information
about the four source bits; a fourth bit is lost. [c.f. exercise 13.13 (p.220) with
q = 2: there are no binary MDS codes. This deficit is discussed further in
section 13.11]

Any other set of three disk drives can be lost without problems because
the corresponding four by four submatrix of the generator matrix is invertible.
A better code would be the digital fountain — see Chapter 50.

Part 111

Further Topics in Information Theory

About Chapter 12

In Chapters 1-11, we concentrated on two aspects of information theory and
coding theory: source coding — the compression of information so as to make
efficient use of data transmission and storage channels; and channel coding —
the redundant encoding of information so as to be able to detect and correct
communication errors.

In both these areas we started by ignoring practical considerations, concen-
trating on the question of the theoretical limitations and possibilities of coding.
We then discussed practical source-coding and channel-coding schemes, shift-
ing the emphasis towards computational feasibility. But the prime criterion
for comparing encoding schemes remained the efficiency of the code in terms
of the channel resources it required: the best source codes were those that
achieved the greatest compression; the best channel codes were those that
communicated at the highest rate with a given probability of error.

In this chapter we now shift our viewpoint a little, thinking of ease of
information retrieval as a primary goal. It turns out that the random codes
which were theoretically useful in our study of channel coding are also useful
for rapid information retrieval.

Efficient information retrieval is one of the problems that brains seem to
solve effortlessly, and content-addressable memory is one of the topics we will
study when we look at neural networks.

192

12.1

12

Hash Codes: Codes for Efficient
Information Retrieval

The information retrieval problem

A simple example of an information retrieval problem is the task of imple-
menting a phone directory service, which, in response to a person’s name,
returns (a) a confirmation that that person is listed in the directory; and (b)
the person’s phone number and other details. We could formalize this prob-
lem as follows, with S being the number of names that must be stored in the
directory.

You are given a list of S binary strings of length IV bits, {X(l), e ,x(S)}7
where S is considerably smaller than the total number of possible strings, 2*.
We will call the superscript ‘s’ in x(®) the record number of the string. The
idea is that s runs over customers in the order in which they are added to the
directory and x® is the name of customer s. We assume for simplicity that
all people have names of the same length. The name length might be, say,
N = 200 bits, and we might want to store the details of ten million customers,
so S8 ~ 107 ~ 22, We will ignore the possibility that two customers have
identical names.

The task is to construct the inverse of the mapping from s to x(¥), i.e., to
make a system that, given a string x, returns the value of s such that x = x(5)
if one exists, and otherwise reports that no such s exists. (Once we have the
record number, we can go and look in memory location s in a separate memory
full of phone numbers to find the required number.) The aim, when solving
this task, is to use minimal computational resources in terms of the amount
of memory used to store the inverse mapping from x to s and the amount of
time to compute the inverse mapping. And, preferably, the inverse mapping
should be implemented in such a way that further new strings can be added
to the directory in a small amount of computer time too.

Some standard solutions

The simplest and dumbest solutions to the information retrieval problem are
a look-up table and a raw list.

The look-up table is a piece of memory of size 2V log, S, log, S being the
amount of memory required to store an integer between 1 and S. In
each of the 2V locations, we put a zero, except for the locations x that
correspond to strings x(®), into which we write the value of s.

The look-up table is a simple and quick solution, if only there is sufficient
memory for the table, and if the cost of looking up entries in memory is

193

string length N ~ 200

number of strings S~ 22

number of possible 2V ~ 2200
strings

Figure 12.1. Cast of characters.

194 12 — Hash Codes: Codes for Efficient Information Retrieval

independent of the memory size. But in our definition of the task, we
assumed that IV is about 200 bits or more, so the amount of memory
required would be of size 2200; this solution is completely out of the
question. Bear in mind that the number of particles in the solar system
is only about 2190,

The raw list is a simple list of ordered pairs (s,x(s)) ordered by the value
of s. The mapping from x to s is achieved by searching through the list
of strings, starting from the top, and comparing the incoming string x
with each record x(*) until a match is found. This system is very easy
to maintain, and uses a small amount of memory, about SN bits, but
is rather slow to use, since on average five million pairwise comparisons
will be made.

> Exercise 12.1.[% P202] Show that the average time taken to find the required
string in a raw list, assuming that the original names were chosen at
random, is about S + N binary comparisons. (Note that you don’t
have to compare the whole string of length N, since a comparison can
be terminated as soon as a mismatch occurs; show that you need on
average two binary comparisons per incorrect string match.) Compare
this with the worst-case search time — assuming that the devil chooses
the set of strings and the search key.

The standard way in which phone directories are made improves on the look-up
table and the raw list by using an alphabetically ordered list.

Alphabetical list. The strings {x(®)} are sorted into alphabetical order.
Searching for an entry now usually takes less time than was needed
for the raw list because we can take advantage of the sortedness; for
example, we can open the phonebook at its middle page, and compare
the name we find there with the target string; if the target is ‘greater’
than the middle string then we know that the required string, if it exists,
will be found in the second half of the alphabetical directory. Otherwise,
we look in the first half. By iterating this splitting-in-the-middle proce-
dure, we can identify the target string, or establish that the string is not
listed, in [logy ST string comparisons. The expected number of binary
comparisons per string comparison will tend to increase as the search
progresses, but the total number of binary comparisons required will be
no greater than [logy, STN.

The amount of memory required is the same as that required for the raw
list.

Adding new strings to the database requires that we insert them in the
correct location in the list. To find that location takes about [log, ST
binary comparisons.

Can we improve on the well-established alphabetized list? Let us consider
our task from some new viewpoints.

The task is to construct a mapping x — s from N bits to log, S bits. This
is a pseudo-invertible mapping, since for any x that maps to a non-zero s, the
customer database contains the pair (s,x(®)) that takes us back. Where have
we come across the idea of mapping from N bits to M bits before?

We encountered this idea twice: first, in source coding, we studied block
codes which were mappings from strings of N symbols to a selection of one
label in a list. The task of information retrieval is similar to the task (which

12.2

12.2: Hash codes

we never actually solved) of making an encoder for a typical-set compression
code.

The second time that we mapped bit strings to bit strings of another
dimensionality was when we studied channel codes. There, we considered
codes that mapped from K bits to N bits, with N greater than K, and we
made theoretical progress using random codes.

In hash codes, we put together these two notions. We will study random
codes that map from N bits to M bits where M is smaller than N.

The idea is that we will map the original high-dimensional space down into
a lower-dimensional space, one in which it is feasible to implement the dumb
look-up table method which we rejected a moment ago.

Hash codes

First we will describe how a hash code works, then we will study the properties
of idealized hash codes. A hash code implements a solution to the information
retrieval problem, that is, a mapping from x to s, with the help of a pseudo-
random function called a hash function, which maps the N-bit string x to an
M-bit string h(x), where M is smaller than N. M is typically chosen such that
the ‘table size’ T ~ 2™ is a little bigger than S — say, ten times bigger. For
example, if we were expecting S to be about a million, we might map x into
a 30-bit hash h (regardless of the size N of each item x). The hash function
is some fixed deterministic function which should ideally be indistinguishable
from a fixed random code. For practical purposes, the hash function must be
quick to compute.
Two simple examples of hash functions are:

Division method. The table size T is a prime number, preferably one that
is not close to a power of 2. The hash value is the remainder when the
integer x is divided by T.

Variable string addition method. This method assumes that x is a string
of bytes and that the table size T is 256. The characters of x are added,
modulo 256. This hash function has the defect that it maps strings that
are anagrams of each other onto the same hash.

It may be improved by putting the running total through a fixed pseu-
dorandom permutation after each character is added. In the variable
string exclusive-or method with table size < 65536, the string is hashed
twice in this way, with the initial running total being set to 0 and 1
respectively (algorithm 12.3). The result is a 16-bit hash.

Having picked a hash function h(x), we implement an information retriever
as follows.

Encoding. A piece of memory called the hash table is created of size 2Mb
memory units, where b is the amount of memory needed to represent an
integer between 0 and S. This table is initially set to zero throughout.
Each memory x(®) is put through the hash function, and at the location
in the hash table corresponding to the resulting vector h(*) = h(x(®)),
the integer s is written — unless that entry in the hash table is already
occupied, in which case we have a collision between x(®) and some earlier
x5 which both happen to have the same hash code. Collisions can be
handled in various ways — we will discuss some in a moment — but first
let us complete the basic picture.

195

string length N ~ 200
number of strings S ~223
size of hash function M ~ 30 bits

size of hash table T =2M
~ 230

Figure 12.2. Revised cast of
characters.

196

12 — Hash Codes: Codes for Efficient Information Retrieval

unsigned char Rand8[256];

int Hash(char *x) {
int h;
unsigned char hil, h2;

if (*x == 0) return O;
hl = *xx; h2 = *x + 1;
X++

while (*x) {

hl = Rand8[h1l ~ *x];
h2 = Rand8[h2 ~ *x];

X++;

s

}
h = ((int) (h1)<<8) |

// This array contains a random

permutation from 0..255 to 0..255
// x is a pointer to the first char;
// *x is the first character

// Special handling of empty string
// Initialize two hashes
// Proceed to the next character

// Exclusive-or with the two hashes
// and put through the randomizer

// End of string is reached when *x=0
// Shift hi left 8 bits and add h2

(int) h2 ;
return h ; // Hash is concatenation of hl and h2
}
Hash
Strings function Hash table
hashes M
B e
h(x®) — 2
N ()
| xM |
| x® |
| x® | h(x(l)) — 1
S \\ 5
h(x®) — 3 o
|) | \

h(x®) — S

Algorithm 12.3. C code
implementing the variable string
exclusive-or method to create a
hash h in the range 0...65535
from a string x. Author: Thomas
Niemann.

Figure 12.4. Use of hash functions
for information retrieval. For each
string x(*), the hash h = h(x(®))
is computed, and the value of s is
written into the hth row of the
hash table. Blank rows in the
hash table contain the value zero.
The table size is T = 2M.

12.3

12.3: Collision resolution

Decoding. To retrieve a piece of information corresponding to a target vector
x, we compute the hash h of x and look at the corresponding location
in the hash table. If there is a zero, then we know immediately that the
string x is not in the database. The cost of this answer is the cost of one
hash function evaluation and one look-up in the table of size 2M. If, on
the other hand, there is a non-zero entry s in the table, there are two
possibilities: either the vector x is indeed equal to x(®); or the vector x(*)
is another vector that happens to have the same hash code as the target
x. (A third possibility is that this non-zero entry might have something
to do with our yet-to-be-discussed collision-resolution system.)

To check whether x is indeed equal to x(®), we take the tentative answer
s, look up x®) in the original forward database, and compare it bit by
bit with x; if it matches then we report s as the desired answer. This
successful retrieval has an overall cost of one hash-function evaluation,
one look-up in the table of size 2™, another look-up in a table of size
S, and N binary comparisons — which may be much cheaper than the
simple solutions presented in section 12.1.

> Exercise 12.2.[2’ p-202] If we have checked the first few bits of x(8) with x and

found them to be equal, what is the probability that the correct entry
has been retrieved, if the alternative hypothesis is that x is actually not
in the database? Assume that the original source strings are random,
and the hash function is a random hash function. How many binary
evaluations are needed to be sure with odds of a billion to one that the
correct entry has been retrieved?

The hashing method of information retrieval can be used for strings x of
arbitrary length, if the hash function h(x) can be applied to strings of any
length.

Collision resolution

We will study two ways of resolving collisions: appending in the table, and
storing elsewhere.

Appending in table

When encoding, if a collision occurs, we continue down the hash table and
write the value of s into the next available location in memory that currently
contains a zero. If we reach the bottom of the table before encountering a
zero, we continue from the top.

When decoding, if we compute the hash code for x and find that the s
contained in the table doesn’t point to an x(*) that matches the cue x, we
continue down the hash table until we either find an s whose x¥) does match
the cue x, in which case we are done, or else encounter a zero, in which case
we know that the cue x is not in the database.

For this method, it is essential that the table be substantially bigger in size
than S. If 2 < S then the encoding rule will become stuck with nowhere to
put the last strings.

Storing elsewhere

A more robust and flexible method is to use pointers to additional pieces of
memory in which collided strings are stored. There are many ways of doing

197

198 12 — Hash Codes: Codes for Efficient Information Retrieval

this. As an example, we could store in location h in the hash table a pointer
(which must be distinguishable from a valid record number s) to a ‘bucket’
where all the strings that have hash code h are stored in a sorted list. The
encoder sorts the strings in each bucket alphabetically as the hash table and
buckets are created.

The decoder simply has to go and look in the relevant bucket and then
check the short list of strings that are there by a brief alphabetical search.

This method of storing the strings in buckets allows the option of making
the hash table quite small, which may have practical benefits. We may make it
so small that almost all strings are involved in collisions, so all buckets contain
a small number of strings. It only takes a small number of binary comparisons
to identify which of the strings in the bucket matches the cue x.

12.4 Planning for collisions: a birthday problem

ﬁ% Exercise 12.3.1% P202] It we wish to store S entries using a hash function whose
output has M bits, how many collisions should we expect to happen,
assuming that our hash function is an ideal random function? What
size M of hash table is needed if we would like the expected number of

collisions to be smaller than 17

What size M of hash table is needed if we would like the expected number
of collisions to be a small fraction, say 1%, of S7

[Notice the similarity of this problem to exercise 9.20 (p.156).]

12.5 Other roles for hash codes

Checking arithmetic

If you wish to check an addition that was done by hand, you may find useful
the method of casting out nines. In casting out nines, one finds the sum,
modulo nine, of all the digits of the numbers to be summed and compares
it with the sum, modulo nine, of the digits of the putative answer. [With a
little practice, these sums can be computed much more rapidly than the full
original addition.]

Example 12.4. In the calculation shown in the margin the sum, modulo nine, of 189
the digits in 189+1254+238 is 7, and the sum, modulo nine, of 1+6+8+1 +1254
is 7. The calculation thus passes the casting-out-nines test. + 238

1681
Casting out nines gives a simple example of a hash function. For any

addition expression of the form a + b + ¢ + ---, where a,b,c,... are decimal
numbers we define h € {0,1,2,3,4,5,6,7,8} by

h(a+b+c+---) = sum modulo nine of all digits in a,b, ¢ ; (12.1)
then it is nice property of decimal arithmetic that if
a+b+c+---=m+n+o+--- (12.2)

then the hashes h(a +b+c+---) and h(m+n+o+---) are equal.

> Exercise 12.5.1% P203] What evidence does a correct casting-out-nines match
give in favour of the hypothesis that the addition has been done cor-
rectly?

12.5: Other roles for hash codes

Error detection among friends

Are two files the same? If the files are on the same computer, we could just
compare them bit by bit. But if the two files are on separate machines, it
would be nice to have a way of confirming that two files are identical without
having to transfer one of the files from A to B. [And even if we did transfer one
of the files, we would still like a way to confirm whether it has been received
without modifications!]

This problem can be solved using hash codes. Let Alice and Bob be the
holders of the two files; Alice sent the file to Bob, and they wish to confirm
it has been received without error. If Alice computes the hash of her file and
sends it to Bob, and Bob computes the hash of his file, using the same M-bit
hash function, and the two hashes match, then Bob can deduce that the two
files are almost surely the same.

Example 12.6. What is the probability of a false negative, i.e., the probability,
given that the two files do differ, that the two hashes are nevertheless
identical?

If we assume that the hash function is random and that the process that causes
the files to differ knows nothing about the hash function, then the probability
of a false negative is 27M. O
A 32-bit hash gives a probability of false negative of about 10710, It is
common practice to use a linear hash function called a 32-bit cyclic redundancy
check to detect errors in files. (A cyclic redundancy check is a set of 32 parity-
check bits similar to the 3 parity-check bits of the (7,4) Hamming code.)

To have a false-negative rate smaller than one in a billion, M = 32

bits is plenty, if the errors are produced by noise.

Exercise 12.7.1% P-203] gycpy simple parity-check code only detects errors; it
doesn’t help correct them. Since error-correcting codes exist, why not
use one of them to get some error-correcting capability too?

Tamper detection

What if the differences between the two files are not simply ‘noise’, but are
introduced by an adversary, a clever forger called Fiona, who modifies the
original file to make a forgery that purports to be Alice’s file? How can Alice
make a digital signature for the file so that Bob can confirm that no-one has
tampered with the file? And how can we prevent Fiona from listening in on
Alice’s signature and attaching it to other files?

Let’s assume that Alice computes a hash function for the file and sends it
securely to Bob. If Alice computes a simple hash function for the file like the
linear cyclic redundancy check, and Fiona knows that this is the method of
verifying the file’s integrity, Fiona can make her chosen modifications to the
file and then easily identify (by linear algebra) a further 32-or-so single bits
that, when flipped, restore the hash function of the file to its original value.
Linear hash functions give no security against forgers.

We must therefore require that the hash function be hard to invert so that
no-one can construct a tampering that leaves the hash function unaffected.
We would still like the hash function to be easy to compute, however, so that
Bob doesn’t have to do hours of work to verify every file he received. Such
a hash function — easy to compute, but hard to invert — is called a one-way

199

200 12 — Hash Codes: Codes for Efficient Information Retrieval

hash function. Finding such functions is one of the active research areas of
cryptography.

A hash-function that is widely used in the free software community to
confirm that two files do not differ is MD5, which produces a 128 bit hash. The
details of how it works are quite complicated, involving convoluted exclusive-
or-ing and if-ing and and-ing.!

Even with a good one-way hash function, the digital signatures described
above are still vulnerable to attack, if Fiona has access to the hash function.
Fiona could take the tampered file and hunt for a further tiny modification to
it such that its hash matches the original hash of Alice’s file. This would take
some time — on average, about 232 attempts, if the hash function has 32 bits —
but eventually Fiona would find a tampered file that matches the given hash.
To be secure against forgery, digital signatures must either have enough bits
for such a random search to take too long, or the hash function itself must be
kept secret.

Fiona has to hash 2™ files to cheat. 232 file modifications is not
very many, so a 32-bit hash function is not large enough for forgery
prevention.

Another person who might have a motivation for forgery is Alice herself.
For example, she might be making a bet on the outcome of a race, without
wishing to broadcast her prediction publicly; a method for placing bets would
be for her to send to Bob the bookie the hash of her bet. Later on, she could
send Bob the details of her bet. Everyone can confirm that her bet is consis-
tent with the previously publicized hash. [This method of secret publication
was used by Isaac Newton and Robert Hooke when they wished to establish
priority for scientific ideas without revealing them. Hooke’s hash function
was alphabetization as illustrated by the conversion of UT TENSIO, SIC VIS
into the anagram CEIIINOSSSTTUV.| Such a protocol relies on the assumption
that Alice cannot change her bet after the event without the hash coming
out wrong. How big a hash function do we need to use to ensure that Alice
cannot cheat? The answer is different from the size of the hash we needed in
order to defeat Fiona above, because Alice is the author of both files. Alice
could cheat by searching for two files that have identical hashes to each other.
For example, if she’d like to cheat by placing two bets for the price of one,
she could make a large number N; of versions of bet one (differing from each
other in minor details only), and a large number Ny of versions of bet two, and
hash them all. If there’s a collision between the hashes of two bets of different
types, then she can submit the common hash and thus buy herself the option
of placing either bet.

Example 12.8. If the hash has M bits, how big do N; and N5 need to be for
Alice to have a good chance of finding two different bets with the same
hash?

This is a birthday problem like exercise 9.20 (p.156). If there are Ny Montagues

and No Capulets at a party, and each is assigned a ‘birthday’ of M bits, the
expected number of collisions between a Montague and a Capulet is

NiN,2~ M (12.3)

"http://wuw.freesoft.org/CIE/RFC/1321/3 . htm

12.6: Further exercises 201

S0 to minimize the number of files hashed, N; + Ny, Alice should make Ny
and Ny equal, and will need to hash about 2/2 files until she finds two that
match. O

Alice has to hash 2M/2 files to cheat. [This is the square root of the

number of hashes Fiona had to make.

If Alice has the use of C' = 10% computers for T' = 10 years, each computer
taking ¢ = 1ns to evaluate a hash, the bet-communication system is secure
against Alice’s dishonesty only if M > 2log, CT'/t ~ 160 bits.

Further reading

I highly recommend the story of Doug Mcllroy’s spell program, as told in
section 13.8 of Programming Pearls (Bentley, 2000). This astonishing piece of
software makes use of a 64-kilobyte data structure to store the spellings of all
the words of 75000-word dictionary.

12.6 Further exercises

ﬁ% Exercise 12.9.11) What is the shortest the address on a typical international

letter could be, if it is to get to a unique human recipient? (Assume

the permitted characters are [A-Z,0-9].) How long are typical email
addresses?

ﬁ% Exercise 12.10.[% P-203] 115y, long does a piece of text need to be for you to be
pretty sure that no human has written that string of characters before?
How many notes are there in a new melody that has not been composed

before?

> Exercise 12.11.[% P-204 pattern recognition by molecules.

Some proteins produced in a cell have a regulatory role. A regulatory
protein controls the transcription of specific genes in the genome. This
control often involves the protein’s binding to a particular DNA sequence
in the vicinity of the regulated gene. The presence of the bound protein
either promotes or inhibits transcription of the gene.

(a) Use information-theoretic arguments to obtain a lower bound on
the size of a typical protein that acts as a regulator specific to one
gene in the whole human genome. Assume that the genome is a
sequence of 3 x 10 nucleotides drawn from a four letter alphabet
{A,C,G,T}; a protein is a sequence of amino acids drawn from a
twenty letter alphabet. [Hint: establish how long the recognized
DNA sequence has to be in order for that sequence to be unique
to the vicinity of one gene, treating the rest of the genome as a
random sequence. Then discuss how big the protein must be to
recognize a sequence of that length uniquely.]

(b) Some of the sequences recognized by DNA-binding regulatory pro-
teins consist of a subsequence that is repeated twice or more, for
example the sequence

GCCCCCCACCCCTGCCCCC (12.4)

202 12 — Hash Codes: Codes for Efficient Information Retrieval

is a binding site found upstream of the alpha-actin gene in humans.
Does the fact that some binding sites consist of a repeated subse-
quence influence your answer to part (a)?

12.7 Solutions

Solution to exercise 12.1 (p.194). First imagine comparing the string x with
another random string x(®). The probability that the first bits of the two
strings match is 1/2. The probability that the second bits match is 1/2. As-
suming we stop comparing once we hit the first mismatch, the expected number
of matches is 1, so the expected number of comparisons is 2 (exercise 2.34,
p.38).

Assuming the correct string is located at random in the raw list, we will
have to compare with an average of S/2 strings before we find it, which costs
25/2 binary comparisons; and comparing the correct strings takes N binary
comparisons, giving a total expectation of S + N binary comparisons, if the
strings are chosen at random.

In the worst case (which may indeed happen in practice), the other strings
are very similar to the search key, so that a lengthy sequence of comparisons
is needed to find each mismatch. The worst case is when the correct string
is last in the list, and all the other strings differ in the last bit only, giving a
requirement of SN binary comparisons.

Solution to exercise 12.2 (p.197). The likelihood ratio for the two hypotheses,
Ho: x) = x, and H;: x®) # x, contributed by the datum ‘the first bits of
x(®) and x are equal’ is

P(Datum|H,) 1

P(Datum|H;) 1/2 - (125)

If the first 7 bits all match, the likelihood ratio is 2" to one. On finding that
30 bits match, the odds are a billion to one in favour of Hy, assuming we start
from even odds. [For a complete answer, we should compute the evidence
given by the prior information that the hash entry s has been found in the
table at h(x). This fact gives further evidence in favour of Hj.]

Solution to exercise 12.3 (p.198). Let the hash function have an output al-
phabet of size T' = 2M . If M were equal to logy S then we would have exactly
enough bits for each entry to have its own unique hash. The probability that
one particular pair of entries collide under a random hash function is 1/7T". The
number of pairs is S(S — 1)/2. So the expected number of collisions between
pairs is exactly

S(S —1)/(2T). (12.6)
If we would like this to be smaller than 1, then we need T' > S(S —1)/2 so

M > 2log, S. (12.7)

We need twice as many bits as the number of bits, logy S, that would be
sufficient to give each entry a unique name.

If we are happy to have occasional collisions, involving a fraction f of the
names S, then we need T' > S/f (since the probability that one particular
name is collided-with is f ~ S/T) so

M > log, S + logy[1/ f], (12.8)

12.7: Solutions

which means for f ~ 0.01 that we need an extra 7 bits above log, S.

The important point to note is the scaling of T" with S in the two cases
(12.7,12.8). If we want the hash function to be collision-free, then we must
have T greater than ~ S2. If we are happy to have a small frequency of
collisions, then T needs to be of order S only.

Solution to exercise 12.5 (p.198). The posterior probability ratio for the two
hypotheses, H = ‘calculation correct’ and H_ = ‘calculation incorrect’ is the
product of the prior probability ratio P(H.)/P(H_) and the likelihood ratio,
P(match|Hy)/P(match|H_). This second factor is the answer to the question.
The numerator P(match|H) is equal to 1. The denominator’s value depends
on our model of errors. If we know that the human calculator is prone to errors
involving multiplication of the answer by 10, or to transposition of adjacent
digits, neither of which affects the hash value, then P(match|H_) could be
equal to 1 also, so that the correct match gives no evidence in favour of H. .
But if we assume that errors are ‘random from the point of view of the hash
function’ then the probability of a false positive is P(match|H_) = 1/9, and
the correct match gives evidence 9:1 in favour of H, .

Solution to exercise 12.7 (p.199). If you add a tiny M = 32 extra bits of hash
to a huge N-bit file you get pretty good error detection — the probability that
an error is undetected is 27 less than one in a billion. To do error correction
requires far more check bits, the number depending on the expected types of
corruption, and on the file size. For example, if just eight random bits in a
megabyte file are corrupted, it would take about log, (2;3) ~ 23 x 8 ~ 180
bits to specify which are the corrupted bits, and the number of parity check
bits used by a successful error-correcting code would have to be at least this
number, by the counting argument of exercise 1.10 (solution, p.20).

Solution to exercise 12.10 (p.201). We want to know the length L of a string
such that it is very improbable that that string matches any part of the entire
writings of humanity. Let’s estimate that these writings total about one book
for each person living, and that each book contains two million characters (200
pages with 10000 characters per page) — that’s 10'® characters, drawn from
an alphabet of, say, 37 characters.

The probability that a randomly chosen string of length L matches at one
point in the collected works of humanity is 1/37%. So the expected number
of matches is 10'6/37% which is vanishingly small if L > 16/ log;, 37 =~ 10.
Because of the redundancy and repetition of humanity’s writings, it is possible
that L ~ 10 is an overestimate.

So, if you want to write something unique, sit down and compose a string
of ten characters. But don’t write gidnebinzz, because I already thought of
that string.

As for a new melody, if we focus on the sequence of notes, ignoring duration
and stress, and allow leaps of up to an octave at each note, then the number
of choices per note is 23. The pitch of the first note is arbitrary. The number
of melodies of length r notes in this rather ugly ensemble of Schonbergian
tunes is 23" !; for example, there are 250000 of length r = 5. Restricting
the permitted intervals will reduce this figure; including duration and stress
will increase it again. [If we restrict the permitted intervals to repetitions and
tones or semitones, the reduction is particularly severe; is this why the melody
of ‘Ode to Joy’ sounds so boring?] The number of recorded compositions is
probably less than a million. If you learn 100 new melodies per week for every
week of your life then you will have learned 250 000 melodies at age 50. Based

203

204 12 — Hash Codes: Codes for Efficient Information Retrieval

on empirical experience of playing the game ‘guess that tune’, it seems to
me that whereas many four-note sequences are shared in common between
melodies, the number of collisions between five-note sequences is rather smaller
— most famous five-note sequences are unique.

Solution to exercise 12.11 (p.201). (a) Let the DNA-binding protein recognize
a sequence of length L nucleotides. That is, it binds preferentially to that
DNA sequence, and not to any other pieces of DNA in the whole genome. (In
reality, the recognized sequence may contain some wildcard characters, e.g.,
the * in TATAA*A, which denotes ‘any of A, C, G and T’; so, to be precise, we are
assuming that the recognized sequence contains L non-wildcard characters.)

Assuming the rest of the genome is ‘random’, i.e., that the sequence con-
sists of random nucleotides A, C, G and T with equal probability — which is
obviously untrue, but it shouldn’t make too much difference to our calculation
— the chance of there being no other occurence of the target sequence in the
whole genome, of length N nucleotides, is roughly

(1 - (/M) = exp(~N(1/4)"), (12.9)
which is close to one only if
Na—L «1, (12.10)
that is,
L > log N/log 4. (12.11)

Using N = 3 x 107, we require the recognized sequence to be longer than
Lin = 16 nucleotides.
What size of protein does this imply?

e A weak lower bound can be obtained by assuming that the information
content of the protein sequence itself is greater than the information
content of the nucleotide sequence the protein prefers to bind to (which
we have argued above must be at least 32 bits). This gives a minimum
protein length of 32/logy(20) ~ 7 amino acids.

e Thinking realistically, the recognition of the DNA sequence by the pro-
tein presumably involves the protein coming into contact with all sixteen
nucleotides in the target sequence. If the protein is a monomer, it must
be big enough that it can simultaneously make contact with sixteen nu-
cleotides of DNA. One helical turn of DNA containing ten nucleotides
has a length of 3.4nm, so a contiguous sequence of sixteen nucleotides
has a length of 5.4nm. The diameter of the protein must therefore be
about 5.4nm or greater. Egg-white lysozyme is a small globular pro-
tein with a length of 129 amino acids and a diameter of about 4nm.
Assuming that volume is proportional to sequence length and that vol-
ume scales as diameter cubed, a protein of diameter 5.4 nm must have a
sequence of length 2.5 x 129 ~ 324 amino acids.

(b) If, however, a target sequence consists of a twice-repeated sub-sequence, we
can get by with a much smaller protein that recognizes only the sub-sequence,
and that binds to the DNA strongly only if it can form a dimer, both halves
of which are bound to the recognized sequence. Halving the diameter of the
protein, we now only need a protein whose length is greater than 324/8 = 40
amino acids. A protein of length smaller than this cannot by itself serve as
a regulatory protein specific to one gene, because it’s simply too small to be
able to make a sufficiently specific match — its available surface does not have
enough information content.

About Chapter 13

In Chapters 8-11, we established Shannon’s noisy-channel coding theorem
for a general channel with any input and output alphabets. A great deal of
attention in coding theory focuses on the special case of channels with binary
inputs. Constraining ourselves to these channels simplifies matters, and leads
us into an exceptionally rich world, which we will only taste in this book.

One of the aims of this chapter is to point out a contrast between Shannon’s
aim of achieving reliable communication over a noisy channel and the apparent
aim of many in the world of coding theory. Many coding theorists take as
their fundamental problem the task of packing as many spheres as possible,
with radius as large as possible, into an N-dimensional space, with no spheres
overlapping. Prizes are awarded to people who find packings that squeeze in
an extra few spheres. While this is a fascinating mathematical topic, we shall
see that the aim of maximizing the distance between codewords in a code has
only a tenuous relationship to Shannon’s aim of reliable communication.

205

13.1

13.2

13

Binary Codes

We’ve established Shannon’s noisy-channel coding theorem for a general chan-
nel with any input and output alphabets. A great deal of attention in coding
theory focuses on the special case of channels with binary inputs, the first
implicit choice being the binary symmetric channel.

The optimal decoder for a code, given a binary symmetric channel, finds
the codeword that is closest to the received vector, closest in Hamming dis-
tance. The Hamming distance between two binary vectors is the number of
coordinates in which the two vectors differ. Decoding errors will occur if the
noise takes us from the transmitted codeword t to a received vector r that
is closer to some other codeword. The distances between codewords are thus
relevant to the probability of a decoding error.

Distance properties of a code

The distance of a code is the smallest separation between two of its codewords.

Example 13.1. The (7,4) Hamming code (p.9) has distance d = 3. All pairs of
its codewords differ in at least 3 bits. The minimum number of errors
it can correct is t = 1; in general a code with distance d is [(d—1)/2]-
error-correcting.

A more precise term for distance is the minimum distance of the code. The
distance of a code is often denoted by d or dpy;p.

We'll now constrain our attention to linear codes. In a linear code, all
codewords have identical distance properties, so we can summarize all the
distances between the code’s codewords by counting the distances from the
all-zero codeword.

The weight enumerator function of a code, A(w), is defined to be the
number of codewords in the code that have weight w. The weight enumerator
function is also known as the distance distribution of the code.

Example 13.2. The weight enumerator functions of the (7,4) Hamming code
and the dodecahedron code are shown in figures 13.1 and 13.2.

Obsession with distance

Since the minimum number of errors that a code can guarantee to correct,
t, is related to its distance d by t = [(d—1)/2], many coding theorists focus
on the distance of a code, searching for codes of a given size that have the
biggest possible distance. Much of practical coding theory has focused on
decoders that give the optimal decoding for all error patterns of weight up to
the half-distance ¢ of their codes.

206

Example:
The Hamming distance
between 00001111
and 11001101

is 3.
w A(w)
0 1
3 7
4 7
7 1
Total 16
8
B
6 |
s |
4]
3
> |
1] []

Figure 13.1. The graph of the
(7,4) Hamming code, and its
weight enumerator function.

d=2t+1if d is odd, and
d =2t + 2 if d is even.

13.2: Obsession with distance

w Aw) 300 -
0 1 250
5 12 200
8 30 150 A
9 20 100 4
10 72 © 4
11 120 ol = -
g 128 0 5 810 15 25 30
14 240 —E
15 272 100 5 s
16 345 ¥
17 300 *; .
18 200 10 4 x :
19 120
20 36
Total 2048 s

0 5 810 15 20 25 30

A bounded-distance decoder is a decoder that returns the closest code-
word to a received binary vector r if the distance from r to that codeword
is less than or equal to t; otherwise it returns a failure message.

The rationale for not trying to decode when more than ¢ errors have occurred
might be ‘we can’t guarantee that we can correct more than ¢ errors, so we
won’t bother trying — who would be interested in a decoder that corrects some
error patterns of weight greater than ¢, but not others?” This defeatist attitude
is an example of worst-case-ism, a widespread mental ailment which this book
is intended to cure.

The fact is that bounded-distance decoders cannot reach the Shannon limit
of the binary symmetric channel; only a decoder that often corrects more than
t errors can do this. The state of the art in error-correcting codes have decoders
that work way beyond the minimum distance of the code.

Definitions of good and bad distance properties

Given a family of codes of increasing blocklength N, and with rates approach-
ing a limit R > 0, we may be able to put that family in one of the following
categories, which have some similarities to the categories of ‘good’ and ‘bad’
codes defined earlier (p.183):

A sequence of codes has ‘good’ distance if d/N tends to a constant
greater than zero.

A sequence of codes has ‘bad’ distance if d/N tends to zero.

A sequence of codes has ‘very bad’ distance if d tends to a constant.

Example 13.3. A low-density generator-matrix code is a linear code whose K x
N generator matrix G has a small number dy of 1s per row, regardless
of how big N is. The minimum distance of such a code is at most dy, so
low-density generator-matrix codes have ‘very bad’ distance.

While having large distance is no bad thing, we’ll see, later on, why an
emphasis on distance can be unhealthy.

207

Figure 13.2. The graph defining
the (30,11) dodecahedron code
(the circles are the 30 transmitted
bits and the triangles are the 20
parity checks, one of which is
redundant) and the weight
enumerator function (solid lines).
The dotted lines show the average
weight enumerator function of all
random linear codes with the

same size of generator matrix,
which will be computed shortly.
The lower figure shows the same
functions on a log scale.

Figure 13.3. The graph of a
rate-1/2 low-density generator
matrix code. The rightmost M of
the transmitted bits are each
connected to a single distinct
parity constraint.

13.3

208

Perfect codes

A t-sphere (or a sphere of radius ¢) in Hamming space, centred on a point x,
is the set of points whose Hamming distance from x is less than or equal to t.

The (7,4) Hamming code has the beautiful property that if we place 1-
spheres about each of its 16 codewords, those spheres perfectly fill Hamming
space without overlapping. As we saw in Chapter 1, every binary vector of
length 7 is within a distance of ¢ = 1 of exactly one codeword of the Hamming
code.

A code is a perfect t-error-correcting code if the set of t-spheres cen-
tred on the codewords of the code fill the Hamming space without over-
lapping. (See figure 13.4.)

Let’s recap our cast of characters. The number of codewords is S = 2K,

The number of points in the entire Hamming space is 2. The number of

points in a Hamming sphere of radius ¢ is

Zt: (g) (13.1)
w=0

For a code to be perfect with these parameters, we require S times the number
of points in the ¢-sphere to equal 2/V:

t
N
for a perfect code, QKE () = 2N (13.2)
w
w=0
(N N-K
ivalentl = 277", 13.3
or, equivalently, wgzo (w) ()

For a perfect code, the number of noise vectors in one sphere must equal
the number of possible syndromes. The (7,4) Hamming code satisfies this
numerological condition because

1+ (I) =23 (13.4)

13 — Binary Codes

Figure 13.4. Schematic picture of
part of Hamming space perfectly
filled by t-spheres centred on the
codewords of a perfect code.

13.3: Perfect codes

How happy we would be to use perfect codes

If there were large numbers of perfect codes to choose from, with a wide
range of blocklengths and rates, then these would be the perfect solution to
Shannon’s problem. We could communicate over a binary symmetric channel
with noise level f, for example, by picking a perfect t-error-correcting code
with blocklength N and t = f*N, where f* = f 4+ and N and 0 are chosen
such that the probability that the noise flips more than ¢ bits is satisfactorily
small.

However, there are almost no perfect codes. The only nontrivial perfect
binary codes are

1. the Hamming codes, which are perfect codes with ¢ = 1 and blocklength
N = 2M _ 1, defined below; the rate of a Hamming code approaches 1
as its blocklength IV increases;

2. the repetition codes of odd blocklength N, which are perfect codes with
t = (N — 1)/2; the rate of repetition codes goes to zero as 1/N; and

3. one remarkable 3-error-correcting code with 2'2 codewords of block-
length N = 23 known as the binary Golay code. [A second 2-error-
correcting Golay code of length N = 11 over a ternary alphabet was dis-
covered by a Finnish football-pool enthusiast called Juhani Virtakallio
in 1947.]

There are no other binary perfect codes. Why this shortage of perfect codes?
Is it because precise numerological coincidences like those satisfied by the
parameters of the Hamming code (13.4) and the Golay code,

R

are rare? Are there plenty of ‘almost-perfect’ codes for which the ¢-spheres fill
almost the whole space?

No. In fact, the picture of Hamming spheres centred on the codewords
almost filling Hamming space (figure 13.5) is a misleading one: for most codes,
whether they are good codes or bad codes, almost all the Hamming space is
taken up by the space between t-spheres (which is shown in grey in figure 13.5).

Having established this gloomy picture, we spend a moment filling in the
properties of the perfect codes mentioned above.

209

Figure 13.5. Schematic picture of
Hamming space not perfectly
filled by t-spheres centred on the
codewords of a code. The grey
regions show points that are at a
Hamming distance of more than ¢
from any codeword. This is a
misleading picture, as, for any
code with large ¢ in high
dimensions, the grey space
between the spheres takes up
almost all of Hamming space.

g

13.4

210

00000000000000000000000000000
111111012111111111110000000000
000000{11111111111111111110000

uN vN wN ' xN
N

The Hamming codes

The (7,4) Hamming code can be defined as the linear code whose 3 x 7 parity-
check matrix contains, as its columns, all the 7 (= 23 — 1) non-zero vectors of
length 3. Since these 7 vectors are all different, any single bit-flip produces a
distinct syndrome, so all single-bit errors can be detected and corrected.

We can generalize this code, with M = 3 parity constraints, as follows. The
Hamming codes are single-error-correcting codes defined by picking a number
of parity-check constraints, M; the blocklength N is N = 2™ —1; the parity-
check matrix contains, as its columns, all the N non-zero vectors of length M
bits.

The first few Hamming codes have the following rates:

Checks, M (N,K) R=K/N

2 (3,1) 1/3 repetition code Rj3

3 (7,4) 4)7 (7,4) Hamming code
4 (15,11) 11/15

5 (31,26) 26/31

6 (63,57) 57/63

Exercise 13.4.1% P-223] What is the probability of block error of the (N, K)
Hamming code to leading order, when the code is used for a binary
symmetric channel with noise density f7

Perfectness is unattainable — first proof

We will show in several ways that useful perfect codes do not exist (here,
‘useful’ means ‘having large blocklength N, and rate close neither to 0 nor 17).

Shannon proved that, given a binary symmetric channel with any noise
level f, there exist codes with large blocklength N and rate as close as you
like to C(f) = 1 — Ha(f) that enable communication with arbitrarily small
error probability. For large N, the number of errors per block will typically by
about fN, so these codes of Shannon are ‘almost-certainly- fN-error-correcting’
codes.

Let’s pick the special case of a noisy channel with f € (1/3,1/2). Can
we find a large perfect code that is fN-error-correcting? Well, let’s suppose
that such a code has been found, and examine just three of its codewords.
(Remember that the code ought to have rate R ~ 1 — Ha(f), so it should have
an enormous number (2V7) of codewords.) Without loss of generality, we
choose one of the codewords to be the all-zero codeword and define the other
two to have overlaps with it as shown in figure 13.6. The second codeword
differs from the first in a fraction u+ v of its coordinates. The third codeword
differs from the first in a fraction v + w, and from the second in a fraction
u~+w. A fraction x of the coordinates have value zero in all three codewords.
Now, if the code is fN-error-correcting, its minimum distance must be greater

13 — Binary Codes

Figure 13.6. Three codewords.

13.5

13.5: Weight enumerator function of random linear codes

than 2fN| so

u+t+v>2f, v+w>2f and u+w > 2f. (13.6)
Summing these three inequalities and dividing by two, we have
u+v+w>3f. (13.7)

Soif f > 1/3, we can deduce u+v+w > 1, so that x < 0, which is impossible.
Such a code cannot exist. So the code cannot have three codewords, let alone
2NE,

We conclude that, whereas Shannon proved there are plenty of codes for
communicating over a binary symmetric channel with f > 1/3, there are no
perfect codes that can do this.

We now study a more general argument that indicates that there are no
large perfect linear codes for general rates (other than 0 and 1). We do this
by finding the typical distance of a random linear code.

Weight enumerator function of random linear codes

Imagine making a code by picking the binary entries in the M x N parity-check

matrix H at random. What weight enumerator function should we expect?
The weight enumerator of one particular code with parity-check matrix H,

A(w)n, is the number of codewords of weight w, which can be written

Alwyg = > 1[Hx=0],

x:|x|=w

(13.8)

where the sum is over all vectors x whose weight is w and the truth function
1[Hx = 0] equals one if Hx = 0 and zero otherwise.
We can find the expected value of A(w),

{A(w)) > PH)A(w)n
H
> Y PH)1[Hx=0],

x:|x|=w H

(13.9)

(13.10)

by evaluating the probability that a particular word of weight w > 0 is a
codeword of the code (averaging over all binary linear codes in our ensemble).
By symmetry, this probability depends only on the weight w of the word, not
on the details of the word. The probability that the entire syndrome Hx is
zero can be found by multiplying together the probabilities that each of the
M bits in the syndrome is zero. Each bit z,, of the syndrome is a sum (mod
2) of w random bits, so the probability that z,, =0 is }/2. The probability that
Hx =0 is thus
> P(H)1[Hx=0] = (Y2)" =27, (13.11)
H
independent of w.
The expected number of words of weight w (13.10) is given by summing,
over all words of weight w, the probability that each word is a codeword. The
number of words of weight w is (), so

(13.12)

w

(A(w)) = (N> 27M for any w > 0.

N

[1010101001001101000101107

001110111100011001101000
101110111001011000110100
000010111100101101001000
000000110011110100000100
110010001111100000101110
101111100010100001001110
110010110001101011101010
100011100101000010111101
010001000010101001101010
010111110111111110111010

01101110101001001101000011 |

Figure 13.7. A random binary
parity-check matrix.

211

M

212

For large N, we can use log (g) ~ NHy(w/N) and R~1— M/N to write

logy (A(w))

12

NHy(w/N) — M
N[Hy(w/N) — (1 — R)] for any w > 0.

(13.13)
(13.14)

R

As a concrete example, figure 13.8 shows the expected weight enumerator
function of a rate-1/3 random linear code with N = 540 and M = 360.

Gilbert—Varshamouv distance

For weights w such that He(w/N) < (1 — R), the expectation of A(w) is
smaller than 1; for weights such that Ha(w/N) > (1 — R), the expectation is
greater than 1. We thus expect, for large N, that the minimum distance of a
random linear code will be close to the distance dgy defined by

Hy(dav/N) = (1 - R). (13.15)
Definition. This distance, dgy = NHgl(l — R), is the Gilbert—Varshamov
distance for rate R and blocklength N.

The Gilbert—Varshamov conjecture, widely believed, asserts that (for large
N) it is not possible to create binary codes with minimum distance significantly
greater than dgv.

Definition. The Gilbert—Varshamov rate Rgy is the minimum rate at which
you can reliably communicate with a bounded-distance decoder (as defined on
p-207), assuming that the Gilbert—Varshamov conjecture is true.

Why sphere-packing is a bad perspective, and an obsession with distance
1§ 1nappropriate

If one uses a bounded-distance decoder, the maximum tolerable noise level
will flip a fraction frq = %dmin /N of the bits. So, assuming dp,i, is equal to
the Gilbert distance dgy (13.15), we have:

Hy(2fpq) = (1 — Ray). (13.16)

Rav =1 — Ha(2fpa)-

Now, here’s the crunch: what did Shannon say is achievable? He said the
maximum possible rate of communication is the capacity,

(13.17)

C =1-— Hy(f). (13.18)

So for a given rate R, the maximum tolerable noise level, according to Shannon,
is given by
Hy(f) = (1= R).

Our conclusion: imagine a good code of rate R has been chosen; equations
(13.16) and (13.19) respectively define the maximum noise levels tolerable by
a bounded-distance decoder, f,4, and by Shannon’s decoder, f.

Joa = f/2

Those who use bounded-distance decoders can only ever cope with half the
noise-level that Shannon proved is tolerable!

How does this relate to perfect codes? A code is perfect if there are t-
spheres around its codewords that fill Hamming space without overlapping.

(13.19)

(13.20)

13 — Binary Codes

6e+52

5e+52 |- q
4e+52 q
3e+52 | q
2e+52 | q

le+52 - T

0 L L L L
0 100 200 300 400 500

1e+60
le+40
1le+20

1
1le-20 £ 3
le-40 £ 3
1le-60 F 3
1e-80
1e-100
. . .

1le-120 L
0 100 200 300 400 500

Figure 13.8. The expected weight
enumerator function (A(w)) of a

random linear code with N = 540
and M = 360. Lower figure shows
(A(w)) on a logarithmic scale.

Capacity
R_GV

0.5

Figure 13.9. Contrast between
Shannon’s channel capacity C' and
the Gilbert rate Rgy — the
minimum communication rate
achievable using a
bounded-distance decoder, as a
function of noise level f. For any
given rate, R, the minimum
tolerable noise level for Shannon
is twice as big as the minimum
tolerable noise level for a
‘worst-case-ist” who uses a
bounded-distance decoder.

13.6

13.6: Berlekamp’s bats

But when a typical random linear code is used to communicate over a bi-
nary symmetric channel near to the Shannon limit, the typical number of bits
flipped is fN, and the minimum distance between codewords is also fN, or
a little bigger, if we are a little below the Shannon limit. So the fN-spheres
around the codewords overlap with each other sufficiently that each sphere
almost contains the centre of its nearest neighbour! The reason why this
overlap is not disastrous is because, in high dimensions, the volume associated
with the overlap, shown shaded in figure 13.10, is a tiny fraction of either
sphere, so the probability of landing in it is extremely small.

The moral of the story is that worst-case-ism can be bad for you, halving
your ability to tolerate noise. You have to be able to decode way beyond the
minimum distance of a code to get to the Shannon limit!

Nevertheless, the minimum distance of a code is of interest in practice,
because, under some conditions, the minimum distance dominates the errors
made by a code.

Berlekamp’s bats

A blind bat lives in a cave. It flies about the centre of the cave, which corre-
sponds to one codeword, with its typical distance from the centre controlled
by a friskiness parameter f. (The displacement of the bat from the centre
corresponds to the noise vector.) The boundaries of the cave are made up
of stalactites that point in towards the centre of the cave. Each stalactite is
analogous to the boundary between the home codeword and another code-
word. The stalactite is like the shaded region in figure 13.10, but reshaped to
convey the idea that it is a region of very small volume.

Decoding errors correspond to the bat’s intended trajectory passing inside
a stalactite. Collisions with stalactites at various distances from the centre
are possible.

If the friskiness is very small, the bat is usually very close to the centre
of the cave; collisions will be rare, and when they do occur, they will usually
involve the stalactites whose tips are closest to the centre point. Similarly,
under low-noise conditions, decoding errors will be rare, and they will typi-
cally involve low-weight codewords. Under low-noise conditions, the minimum
distance of a code is relevant to the (very small) probability of error.

213

Figure 13.10. Two overlapping
spheres whose radius is almost as
big as the distance between their
centres.

Figure 13.11. Berlekamp’s
schematic picture of Hamming
space in the vicinity of a
codeword. The jagged solid line
encloses all points to which this
codeword is the closest. The
t-sphere around the codeword
takes up a small fraction of this
space.

13.7

214

If the friskiness is higher, the bat may often make excursions beyond the
safe distance t where the longest stalactites start, but it will collide most fre-
quently with more distant stalactites, owing to their greater number. There’s
only a tiny number of stalactites at the minimum distance, so they are rela-
tively unlikely to cause the errors. Similarly, errors in a real error-correcting
code depend on the properties of the weight enumerator function.

At very high friskiness, the bat is always a long way from the centre of
the cave, and almost all its collisions involve contact with distant stalactites.
Under these conditions, the bat’s collision frequency has nothing to do with
the distance from the centre to the closest stalactite.

Concatenation of Hamming codes

It is instructive to play some more with the concatenation of Hamming codes,
a concept we first visited in figure 11.6, because we will get insights into the
notion of good codes and the relevance or otherwise of the minimum distance
of a code.

We can create a concatenated code for a binary symmetric channel with
noise density f by encoding with several Hamming codes in succession.

The table recaps the key properties of the Hamming codes, indexed by
number of constraints, M. All the Hamming codes have minimum distance
d = 3 and can correct one error in N.

N =2M _1 block length
K =N—M number of source bits
pB = % (g) % probability of block error to leading order

If we make a product code by concatenating a sequence of C Hamming
codes with increasing M, we can choose those parameters {Mc}cczl in such a
way that the rate of the product code

(13.21)

tends to a non-zero limit as C' increases. For example, if we set M; = 2,
My =3, M3 =4, etc., then the asymptotic rate is 0.093 (figure 13.12).

The block length N is a rapidly growing function of C, so these codes
are somewhat impractical. A further weakness of these codes is that their
minimum distance is not very good (figure 13.13). Every one of the constituent
Hamming codes has minimum distance 3, so the minimum distance of the C'th
product is 3¢. The blocklength N grows faster than 3¢, so the ratio d/N tends
to zero as C increases. In contrast, for typical random codes, the ratio d/N
tends to a constant such that Ho(d/N) = 1 — R. Concatenated Hamming
codes thus have ‘bad’ distance.

Nevertheless, it turns out that this simple sequence of codes yields good
codes for some channels — but not very good codes (see section 11.4 to recall
the definitions of the terms ‘good’ and ‘very good’). Rather than prove this
result, we will simply explore it numerically.

Figure 13.14 shows the bit error probability py, of the concatenated codes
assuming that the constituent codes are decoded in sequence, as described
in section 11.4. [This one-code-at-a-time decoding is suboptimal, as we saw
there.] The horizontal axis shows the rates of the codes. As the number
of concatenations increases, the rate drops to 0.093 and the error probability
drops towards zero. The channel assumed in the figure is the binary symmetric

13 — Binary Codes

0.8
0.6
0.4

0.2

o 2 4 6 _8 10 12
C

Figure 13.12. The rate R of the
concatenated Hamming code as a
function of the number of
concatenations, C.

le+25
1e+20 x
le+15

1e+10 x

100000 X

1

Figure 13.13. The blocklength N¢
and minimum distance d¢ of the
concatenated Hamming code as a
function of the number of
concatenations C.

13.8

13.8: Distance isn’t everything

channel with f = 0.0588. This is the highest noise level that can be tolerated
using this concatenated code.

The take-home message from this story is distance isn’t everything. The
minimum distance of a code, although widely worshipped by coding theorists,
is not of fundamental importance to Shannon’s mission of achieving reliable
communication over noisy channels.

Exercise 13.5.13] Prove that there exist families of codes with ‘bad’ distance
that are ‘very good’ codes.

Distance isn’t everything

Let’s get a quantitative feeling for the effect of the minimum distance of a
code, for the special case of a binary symmetric channel.

The error probability associated with one low-weight codeword

Let a binary code have blocklength N and just two codewords, which differ in
d places. For simplicity, let’s assume d is even. What is the error probability
if this code is used on a binary symmetric channel with noise level f?7

Bit flips matter only in places where the two codewords differ. The error
probability is dominated by the probability that d/2 of these bits are flipped.
What happens to the other bits is irrelevant, since the optimal decoder ignores
them.

(13.22)

P(block error) =~ (dc/i2> Y21 - p2,

This error probability associated with a single codeword of weight d is plotted
in figure 13.15. Using the approximation for the binomial coefficient (1.16),
we can further approximate

(13.23)
(13.24)

P(block error) =~ [2fl/2(1_f)1/2]d
= [B(N),

where B(f) = 2fY2(1 — £)V/2 is called the Bhattacharyya parameter of the
channel.

Now, consider a general linear code with distance d. Its block error prob-
ability must at least than (d‘/iQ) f%2(1 — £)¥2, independent of the blocklength
N of the code. For this reason, a sequence of codes of increasing blocklength
N and constant distance d (i.e., ‘very bad’ distance) cannot have a block er-
ror probability that tends to zero, on any binary symmetric channel. If we
are interested in making superb error-correcting codes with tiny, tiny error
probability, we might therefore shun codes with bad distance. However, being
pragmatic, we should look more carefully at figure 13.15. In Chapter 1 we
argued that codes for disk drives need an error probability smaller than about
108, If the raw error probability in the disk drive is about 0.001, the error
probability associated with one codeword at distance d = 20 is smaller than
10~24, If the raw error probability in the disk drive is about 0.01, the error
probability associated with one codeword at distance d = 30 is smaller than
10~2%. For practical purposes, therefore, it is not essential for a code to have
good distance. For example, codes of blocklength 10000, known to have many
codewords of weight 32, can nevertheless correct errors of weight 320 with tiny
error probability.

215

Pb g1
0.0001
16-06
1e-08
1e-10
le-12
le-14

1073

0 02 04 06_ 08 1
R

Figure 13.14. The bit error
probabilities versus the rates R of
the concatenated Hamming codes,
for the binary symmetric channel
with f = 0.0588. The solid line
shows the Shannon limit for this
channel.

The bit error probability drops to
zero while the rate tends to 0.093,
so the concatenated Hamming
codes are a ‘good’ code family.

1

1le-05

le-10

Q0000 Q

le-15

1le-20

0.0001 0.001 0.01 0.1

Figure 13.15. The error
probability associated with a
single codeword of weight d,
(d72)fd/2(1 — £)%?, as a function
of f.

13.9

13.10

>

216

I wouldn’t want you to think I am recommending the use of codes with
bad distance; in Chapter 47 we will discuss low-density parity-check codes, my
favourite codes, which have both excellent performance and good distance.

The union bound

The error probability of a code on the binary symmetric channel can be
bounded in terms of its weight enumerator function by adding up appropriate
multiples of the error probability associated with a single codeword (13.24):

P(block error) < Z A(w)[B()]Y. (13.25)

w>0

This inequality, which is an example of a union bound, is accurate for low
noise levels f, but inaccurate for high noise levels, because it overcounts the
contribution of errors that cause confusion with more than one codeword at a
time.

Exercise 13.6.1%! Poor man’s noisy-channel coding theorem.

Pretending that the union bound (13.25) is accurate, and using the aver-
age weight enumerator function of a random linear code (13.14) (section
13.5) as A(w), estimate the maximum rate Ryg(f) at which one can
communicate over a binary symmetric channel.

Or, to look at it more positively, using the union bound (13.25) as an
inequality, show that communication at rates up to Ruyp(f) is possible
over the binary symmetric channel.

In the following chapter, by analysing the probability of error of syndrome
decoding for a binary linear code, and using a union bound, we will prove
Shannon’s noisy-channel coding theorem (for symmetric binary channels), and
thus show that very good linear codes exist.

Dual codes

A concept that has some importance in coding theory, though we will have
no immediate use for it in this book, is the idea of the dual of a linear error-
correcting code.

An (N, K) linear error-correcting code can be thought of as a set of 2K
codewords generated by adding together all combinations of K independent
basis codewords. The generator matrix of the code consists of those K basis
codewords, conventionally written as row vectors. For example, the (7,4)
Hamming code’s generator matrix (from p.10) is

100010 1
0100110

G= 0010111 (13.26)
0001011

and its sixteen codewords were displayed in table 1.14 (p.9). The code-
words of this code are linear combinations of the four vectors [100010 1],
[0100110],[0010111],and [0001011].

An (N, K) code may also be described in terms of an M x N parity-check
matrix (where M = N — K) as the set of vectors {t} that satisfy

Ht = 0. (13.27)

13 — Binary Codes

13.10: Dual codes

One way of thinking of this equation is that each row of H specifies a vector
to which t must be orthogonal if it is a codeword.

The generator matrix specifies K vectors from which all codewords
can be built, and the parity-check matrix specifies a set of M vectors
to which all codewords are orthogonal.

The dual of a code is obtained by exchanging the generator matrix
and the parity-check matrix.

Definition. The set of all vectors of length N that are orthogonal to all code-
words in a code, C, is called the dual of the code, C*.

If t is orthogonal to h; and hs, then it is also orthogonal to hy = hy + ho;
so all codewords are orthogonal to any linear combination of the M rows of
H. So the set of all linear combinations of the rows of the parity-check matrix
is the dual code.

For our Hamming (7,4) code, the parity-check matrix is (from p.12):

H:[P 13}2 <1> (13.28)
1

[RN
=R e
= = O

1
0
0

o = O
= O O

The dual of the (7,4) Hamming code H 7 4 is the code shown in table 13.16.

0000000 0101101 1001110 1100011
0010111 0111010 1011001 1110100

A possibly unexpected property of this pair of codes is that the dual,
H(LM), is contained within the code H 74 itself: every word in the dual code
is a codeword of the original (7,4) Hamming code. This relationship can be
written using set notation:

Hiz) C M- (13.29)

The possibility that the set of dual vectors can overlap the set of codeword
vectors is counterintuitive if we think of the vectors as real vectors — how can
a vector be orthogonal to itself? But when we work in modulo-two arithmetic,
many non-zero vectors are indeed orthogonal to themselves!

Exercise 13.7.1% P22 Give a simple rule that distinguishes whether a binary
vector is orthogonal to itself, as is each of the three vectors [1110100],
[0111010],and [1011001].

Some more duals
In general, if a code has a systematic generator matrix,

G = [Ix|PT], (13.30)
where P is a K x M matrix, then its parity-check matrix is

H = [P|I]. (13.31)

217

Table 13.16. The eight codewords
of the dual of the (7,4) Hamming
code. [Compare with table 1.14,
p.9.]

218

Example 13.8. The repetition code R3 has generator matrix

G:[l 1 1]; (13.32)
its parity-check matrix is
1 1 0
H_{l 0 1} (13.33)

The two codewords are [1 1 1] and [0 0 0].

The dual code has generator matrix

1 _ |1 10
G —H—{l 0 1} (13.34)
or equivalently, modifying G into systematic form by row additions,
L |1 o1
G _[O i 1]. (13.35)

We call this dual code the simple parity code Ps; it is the code with one
parity-check bit, which is equal to the sum of the two source bits. The
dual code’s four codewords are [110], [101],[000], and [01 1].

In this case, the only vector common to the code and the dual is the
all-zero codeword.

Goodness of duals

If a sequence of codes is ‘good’, are their duals good too? Examples can be
constructed of all cases: good codes with good duals (random linear codes);
bad codes with bad duals; and good codes with bad duals. The last category
is especially important: many state-of-the-art codes have the property that
their duals are bad. The classic example is the low-density parity-check code,
whose dual is a low-density generator-matrix code.

Exercise 13.9.1%] Show that low-density generator-matrix codes are bad. A
family of low-density generator-matrix codes is defined by two param-
eters j, k, which are the column weight and row weight of all rows and
columns respectively of G. These weights are fixed, independent of V;
for example, (j, k) = (3,6). [Hint: show that the code has low-weight
codewords, then use the argument from p.215.]

Exercise 13.10.1%] Show that low-density parity-check codes are good, and have
good distance. (For solutions, see Gallager (1963) and MacKay (1999b).)

Self-dual codes

The (7,4) Hamming code had the property that the dual was contained in the
code itself. A code is self-orthogonal if it is contained in its dual. For example,
the dual of the (7,4) Hamming code is a self-orthogonal code. One way of
seeing this is that overlap between any pair of rows of H is even. Codes that
contain their duals are important in quantum error-correction (Calderbank
and Shor, 1996).

It is intriguing, though not necessarily useful, to look at codes that are
self-dual. A code C is self-dual if the dual of the code is identical to the code.

ct=c. (13.36)

Some properties of self-dual codes can be deduced:

13 — Binary Codes

13.11

13.11: Generalizing perfectness to other channels

1. If a code is self-dual, then its generator matrix is also a parity-check
matrix for the code.

2. Self-dual codes have rate 1/2, i.e., M = K = N/2.

3. All codewords have even weight.

> Exercise 13.11.[% P-223] What property must the matrix P satisfy, if the code
with generator matrix G = [Ix|P"] is self-dual?

Ezxamples of self-dual codes

1. The repetition code Ry is a simple example of a self-dual code.

G:H:[l 1]. (13.37)

2. The smallest non-trivial self-dual code is the following (8,4) code.

100001 11
0100|1011

— T |

G_[I‘l‘P}_ 00101101 (13.38)
000 1/1 1 10

> Exercise 13.12.[% P-223] Find the relationship of the above (8,4) code to the
(7,4) Hamming code.

Duals and graphs

Let a code be represented by a graph in which there are nodes of two types,
parity-check constraints, and equality constraints, joined by edges which rep-
resent the bits of the code (not all of which need be transmitted).

The dual code’s graph is obtained by replacing all parity-check nodes by
equality nodes and wvice versa. This type of graph is called a normal graph by
Forney (2001).

Further reading

Duals are important in coding theory because functions involving a code (such
as the posterior distribution over codewords) can be transformed by a Fourier
transform into functions over the dual code. For an accessible introduction
to Fourier analysis on finite groups, see Terras (1999). See also MacWilliams
and Sloane (1977).

Generalizing perfectness to other channels

Having given up on the search for perfect codes for the binary symmetric
channel, we could console ourselves by changing channel. We could call a
code ‘a perfect wu-error-correcting code for the binary erasure channel’ if it
can restore any u erased bits, and never more than u. Rather than using the
word perfect, however, the conventional term for such a code is a ‘maximum
distance separable code’, or MDS code.

As we already noted in exercise 11.10 (p.190), the (7,4) Hamming code is
not an MDS code. It can recover some sets of 3 erased bits, but not all. If
any 3 bits corresponding to a codeword of weight 3 are erased, then one bit of

219

13.12

13.13

220

information is unrecoverable. This is why the (7,4) code is a poor choice for
a RAID system.

A tiny example of a maximum distance separable code is the simple parity-
check code P3 whose parity-check matrix is H = [111]. This code has 4
codewords, all of which have even parity. All codewords are separated by
a distance of 2. Any single erased bit can be restored by setting it to the
parity of the other two bits. The repetition codes are also maximum distance
separable codes.

Exercise 13.13.1% P-224] cap you make an (N, K) code, with M = N — K
parity symbols, for a g-ary erasure channel, such that the decoder can
recover the codeword when any M symbols are erased in a block of N7
[Example: for the channel with ¢ = 4 symbols there is an (N, K) = (5,2)
code which can correct any M = 3 erasures.]

For the g-ary erasure channel with ¢ > 2, there are large numbers of MDS
codes, of which the Reed—Solomon codes are the most famous and most widely
used. As long as the field size ¢ is bigger than the blocklength N, MDS block
codes of any rate can be found. (For further reading, see Lin and Costello
(1983).)

Summary

Shannon’s codes for the binary symmetric channel can almost always correct
fN errors, but they are not fIN-error-correcting codes.

Reasons why the distance of a code has little relevance

1. The Shannon limit shows you that you must be able to cope with a noise
level twice as big as the maximum noise level for a bounded-distance
decoder.

2. When the binary symmetric channel has f > 1/4, no code with a
bounded-distance decoder can communicate at all; but Shannon says
good codes exist for such channels.

3. Concatenation shows that we can get good performance even if the dis-
tance is bad.

The whole weight enumerator function is relevant to the question of
whether a code is a good code.

The relationship between good codes and distance properties is discussed
further in exercise 13.14 (p.220).

Further exercises

Exercise 13.14.1% P24 A codeword t is selected from a linear (N, K) code
C, and it is transmitted over a noisy channel; the received signal is y.
We assume that the channel is a memoryless channel such as a Gaus-
sian channel. Given an assumed channel model P(y |t), there are two
decoding problems.

The codeword decoding problem is the task of inferring which
codeword t was transmitted given the received signal.

13 — Binary Codes

13.13: Further exercises 221

The bitwise decoding problem is the task of inferring for each
transmitted bit t, how likely it is that that bit was a one rather
than a zero.

Consider optimal decoders for these two decoding problems. Prove that
the probability of error of the optimal bitwise-decoder is closely related
to the probability of error of the optimal codeword-decoder, by proving
the following theorem.

Theorem 13.1 If a binary linear code has minimum distance dpyin,
then, for any given channel, the codeword bit error probability of the
optimal bitwise decoder, py, and the block error probability of the maxi-
mum likelihood decoder, pg, are related by:

min

NPB

1
DB 2 Pb = B (13.39)

i% Exercise 13.15.11] What are the minimum distances of the (15,11) Hamming
code and the (31,26) Hamming code?

> Exercise 13.16.1?] Let A(w) be the average weight enumerator function of a
rate-1/3 random linear code with N = 540 and M = 360. Estimate,
from first principles, the value of A(w) at w = 1.

Exercise 13.17.[301 A code with minimum distance greater than dgy. A rather
nice (15,5) code is generated by this generator matrix, which is based
on measuring the parities of all the (g) = 10 triplets of source bits:

1 1111 - 11 -

G= 1 - -1 11 -1 - 1 1]. (13.40)
1 - 11 11 -1 -1
1111 11 -1

Figure 13.17. The graph of the

. pentagonful low-density
Find the minimum distance and weight enumerator function of this code. parity-check code with 15 bit

nodes (circles) and 10
Exercise 13.18.1%C] Find the minimum distance of the ‘pentagonful’ low- parity-check nodes (triangles).
density parity-check code whose parity-check matrix is

r1 - - - 11 - - «] - . . 7
11 -
11
11 |- « 1 .
H— .‘.11....1i....'(13.41)
1

.o . 1
1 - - <] 11
.o 1 1 -
1 - . . .11

Show that nine of the ten rows are independent, so the code has param-
eters N = 15, K = 6. Using a computer, find its weight enumerator
function.

222

> Exercise 13.19.[9] Replicate the calculations used to produce figure 13.12.

g

Check the assertion that the highest noise level that’s correctable is
0.0588. Explore alternative concatenated sequences of codes. Can you
find a better sequence of concatenated codes — better in the sense that it
has either higher asymptotic rate R or can tolerate a higher noise level

f?

Exercise 13.20.[% P-226] Investigate the possibility of achieving the Shannon

limit with linear block codes, using the following counting argument.
Assume a linear code of large blocklength N and rate R = K/N. The
code’s parity-check matrix H has M = N — K rows. Assume that the
code’s optimal decoder, which solves the syndrome decoding problem
Hn = z, allows reliable communication over a binary symmetric channel
with flip probability f.

How many ‘typical’ noise vectors n are there?
Roughly how many distinct syndromes z are there?

Since n is reliably deduced from z by the optimal decoder, the number
of syndromes must be greater than or equal to the number of typical
noise vectors. What does this tell you about the largest possible value
of rate R for a given f7

> Exercise 13.21.[2] Linear binary codes use the input symbols 0 and 1 with

equal probability, implicitly treating the channel as a symmetric chan-
nel. Investigate how much loss in communication rate is caused by this
assumption, if in fact the channel is a highly asymmetric channel. Take
as an example a Z-channel. How much smaller is the maximum possible
rate of communication using symmetric inputs than the capacity of the
channel? [Answer: about 6%.]

Exercise 13.22.12] Show that codes with ‘very bad’ distance are ‘bad’ codes, as

defined in section 11.4 (p.183).

Exercise 13.23.1%] One linear code can be obtained from another by punctur-

ing. Puncturing means taking each codeword and deleting a defined set
of bits. Puncturing turns an (N, K) code into an (N’, K') code, where
N' < N.

Another way to make new linear codes from old is shortening. Shortening
means constraining a defined set of bits to be zero, and then deleting
them from the codewords. Typically if we shorten by one bit, half of the
code’s codewords are lost. Shortening typically turns an (N, K) code
into an (N', K’) code, where N — N' = K — K'.

Another way to make a new linear code from two old ones is to make
the intersection of the two codes: a codeword is only retained in the new
code if it is present in both of the two old codes.

Discuss the effect on a code’s distance properties of puncturing, short-
ening, and intersection. Is it possible to turn a code family with bad
distance into a code family with good distance, or vice versa, by each of
these three manipulations?

Exercise 13.24.1% P-226] Todd Ebert's 'hat puzzle'.

Three players enter a room and a red or blue hat is placed on each
person’s head. The colour of each hat is determined by a coin toss, with

13 — Binary Codes

13.14

13.14: Solutions

the outcome of one coin toss having no effect on the others. Each person
can see the other players’ hats but not his own.

No communication of any sort is allowed, except for an initial strategy
session before the group enters the room. Once they have had a chance
to look at the other hats, the players must simultaneously guess their
own hat’s colour or pass. The group shares a $3 million prize if at least
one player guesses correctly and no players guess incorrectly.

The same game can be played with any number of players. The general
problem is to find a strategy for the group that maximizes its chances of
winning the prize. Find the best strategies for groups of size three and
seven.

[Hint: when you've done three and seven, you might be able to solve
fifteen.|

Exercise 13.25.1°] Estimate how many binary low-density parity-check codes
have self-orthogonal duals. [Note that we don’t expect a huge number,
since almost all low-density parity-check codes are ‘good’, but a low-
density parity-check code that contains its dual must be ‘bad’.]

Exercise 13.26.12] Tn figure 13.15 we plotted the error probability associated
with a single codeword of weight d as a function of the noise level f of
a binary symmetric channel. Make an equivalent plot for the case of
the Gaussian channel, showing the error probability associated with a
single codeword of weight d as a function of the rate-compensated signal
to noise ratio Eyp/Ny. Because E}, /Ny depends on the rate, you have to
choose a code rate. Choose R =1/2, 2/3, 3/4, or 5/6.

Solutions

Solution to exercise 13.4 (p.210).
order is pg = & (§) f2.

The probability of block error to leading

Solution to exercise 13.7 (p.217). A binary vector is perpendicular to itself if
it has even weight, i.e., an even number of 1s.

Solution to exercise 13.11 (p.219). The self-dual code has two equivalent
parity-check matrices, Hy = G = [Ix|P"] and Hy = [P|Ig]; these must be
equivalent to each other through row additions, that is, there is a matrix U
such that UHy = Hy, so

[UP|UIg] = [Ix|P"]. (13.42)

From the right-hand sides of this equation, we have U = P7, so the left-hand
sides become:

PP =1I. (13.43)

Thus if a code with generator matrix G = [Ix|P7] is self-dual then P is an
orthogonal matrix, modulo 2, and vice versa.

Solution to exercise 13.12 (p.219). The (8,4) and (7,4) codes are intimately
related. The (8,4) code, whose parity-check matrix is

H:[P\Ll]: , (13.44)

e)
== O
= O ke
O R B
O O O =
O O = O
O = O O
= O O O

223

If you already know the hat puzzle,
you could try the ‘Scottish version’ of
the rules in which the prize is only
awarded to the group if they all guess
correctly.

In the ‘Reformed Scottish version’,
all the players must guess correctly,
and there are two rounds of guessing.
Those players who guess during round
one leave the room. The remain-
ing players must guess in round two.
What strategy should the team adopt
to maximize their chance of winning?

224

is obtained by (a) appending an extra parity-check bit which is the parity of
all seven bits of the (7,4) Hamming code; and (b) reordering the first four
bits.

Solution to exercise 13.13 (p.220). If an (N, K) code, with M = N — K parity
symbols, has the property that the decoder can recover the codeword when any
M symbols are erased in a block of N, then the code is said to be maximum
distance separable (MDS).

No MDS binary codes exist, apart from the repetition codes and simple
parity codes. For ¢ > 2, some MDS codes can be found.

As a simple example, here is a (9,2) code for the 8-ary erasure channel.
The code is defined in terms of the multiplication and addition rules of GF(8),
which are given in Appendix C.1. The elements of the input alphabet are
{0,1,A,B,C, D, E,F} and the generator matrix of the code is

101 A B C D E F

G=lo111 11111

(13.45)

The resulting 64 codewords are:

000000000 011111111 OAAAAAAAA OBBBBBBBB 0CCCCCCCC ODDDDDDDD
101ABCDEF 110BADCFE 1ABO1EFCD 1BA10OFEDC 1CDEFO1AB 1DCFE10BA
AOACEBI1FD A1BDFAOEC AAOECI1BDF ABI1FDOACE ACEOAFDB1 ADF1BECAO
BOBEDFC1A B1AFCEDOB BA1CFDEBO BBODECFA1 BCFA1BODE BDEBOA1CF
COCBFEAD1 C1DAEFBCO CAE1DCOFB CBFOCD1EA CCOFBAEID CD1EABFOC
DOD1CAFBE DI1CODBEAF DAFBEODIC DBEAF1COD DC1DOEBFA DDOC1FAEB
EOEFIDBAC EIFEOCABD EACDBF10E EBDCAEOIF ECABDIFEO EDBACOEF1
FOFDA1ECB F1ECBOFDA FADFOBCE1 FBCE1ADFO FCB1EDAOF FDAOFCBI1E

Solution to exercise 13.14 (p.220). Quick, rough proof of the theorem. Let x
denote the difference between the reconstructed codeword and the transmitted
codeword. For any given channel output r, there is a posterior distribution
over x. This posterior distribution is positive only on vectors x belonging
to the code; the sums that follow are over codewords x. The block error

probability is:
pe =Y P(x|r). (13.46)

x#0
The average bit error probability, averaging over all bits in the codeword, is:
w(x)
m= Y P, (13.47)
x#0

where w(x) is the weight of codeword x. Now the weights of the non-zero
codewords satisfy
1> w(x) > dmin.
- N T N
Substituting the inequalities (13.48) into the definitions (13.46,13.47), we ob-
tain:

(13.48)

dmin
PB = Db 2 N /B (13.49)

which is a factor of two stronger, on the right, than the stated result (13.39).
In making the proof watertight, I have weakened the result a little.

Careful proof. The theorem relates the performance of the optimal block de-
coding algorithm and the optimal bitwise decoding algorithm.

We introduce another pair of decoding algorithms, called the block-
guessing decoder and the bit-guessing decoder. The idea is that these two

13 — Binary Codes

OEEEEEEEE OFFFFFFFF
1EFCDABO1 1FEDCBA10
AECAODF1B AFDB1CEOA
BEDOB1AFC BFC1AOBED
CEAD10CBF CFBCO1DAE
DEBFAC1DO DFAEBDOC1
EEO1FBDCA EF10EACDB
FE1BCFOAD FFOADE1BC

13.14: Solutions

algorithms are similar to the optimal block decoder and the optimal bitwise
decoder, but lend themselves more easily to analysis.

We now define these decoders. Let x denote the inferred codeword. For
any given code:

The optimal block decoder returns the codeword x that maximizes the
posterior probability P(x|r), which is proportional to the likelihood
P(r|x).

The probability of error of this decoder is called pp.

The optimal bit decoder returns for each of the N bits, x,, the
value of a that maximizes the posterior probability P(z,=a|r) =

2x P(x|r) 1y = a].
The probability of error of this decoder is called py,.

The block-guessing decoder returns a random codeword x with probabil-
ity distribution given by the posterior probability P(x|r).

The probability of error of this decoder is called pg.

The bit-guessing decoder returns for each of the N bits, z,, a random bit
from the probability distribution P(z,=a|r).

The probability of error of this decoder is called pg’.

The theorem states that the optimal bit error probability py, is bounded above
by pp and below by a given multiple of pg (13.39).

The left-hand inequality in (13.39) is trivially true — if a block is correct, all
its constituent bits are correct; so if the optimal block decoder outperformed
the optimal bit decoder, we could make a better bit decoder from the block
decoder.

We prove the right-hand inequality by establishing that:

(a) the bit-guessing decoder is nearly as good as the optimal bit decoder:

Py < 2p. (13.50)

(b) the bit-guessing decoder’s error probability is related to the block-
guessing decoder’s by

d.
G > TG 13.51
Py 2~ PB (13.51)

Then since pg > pg, we have

1 G ldmin G > ldmin

> —p > .
Pb 2Pb_2NPB_2NpB

(13.52)

We now prove the two lemmas.

Near-optimality of guessing: Consider first the case of a single bit, with posterior
probability {pg,p1}. The optimal bit decoder has probability of error

pertimal — min (pg, p1). (13.53)

The guessing decoder picks from 0 and 1. The truth is also distributed with
the same probability. The probability that the guesser and the truth match is
p% + p?; the probability that they mismatch is the guessing error probability,

PEIesS — 2p0p; < 2min(po,p1) — 9 poptimal (1354)

225

226

Since pg is the average of many such error probabilities, P& and py, is the
average of the coresponding optimal error probabilities, PoP™mal we obtain
the desired relationship (13.50) between p& and py,. |

Relationship between bit error probability and block error probability: The bit-
guessing and block-guessing decoders can be combined in a single system: we
can draw a sample z;, from the marginal distribution P(xz, |r) by drawing
a sample (z,,x) from the joint distribution P(x,,x|r), then discarding the
value of x.

We can distinguish between two cases: the discarded value of x is the
correct codeword, or not. The probability of bit error for the bit-guessing
decoder can then be written as a sum of two terms:

e P(x correct) P(bit error | x correct)

+ P(x incorrect) P(bit error | x incorrect)

= 0+ ng(bit error | x incorrect).

Now, whenever the guessed x is incorrect, the true x must differ from it in at
least d bits, so the probability of bit error in these cases is at least d/N. So

d
Py > Npg’-
QED. O

Solution to exercise 13.20 (p.222). The number of ‘typical’ noise vectors n
is roughly 2V#2(f) The number of distinct syndromes z is 2M. So reliable
communication implies

M > NHy(f), (13.55)
or, in terms of the rate R=1— M/N,

R <1-— Hy(f), (13.56)

a bound which agrees precisely with the capacity of the channel.
This argument is turned into a proof in the following chapter.

Solution to exercise 13.24 (p.222). In the three-player case, it is possible for
the group to win three-quarters of the time.

Three-quarters of the time, two of the players will have hats of the same
colour and the third player’s hat will be the opposite colour. The group can
win every time this happens by using the following strategy. Each player looks
at the other two players’ hats. If the two hats are different colours, he passes.
If they are the same colour, the player guesses his own hat is the opposite
colour.

This way, every time the hat colours are distributed two and one, one
player will guess correctly and the others will pass, and the group will win the
game. When all the hats are the same colour, however, all three players will
guess incorrectly and the group will lose.

When any particular player guesses a colour, it is true that there is only a
50:50 chance that their guess is right. The reason that the group wins 75% of
the time is that their strategy ensures that when players are guessing wrong,
a great many are guessing wrong.

For larger numbers of players, the aim is to ensure that most of the time
no one is wrong and occasionally everyone is wrong at once. In the game with
7 players, there is a strategy for which the group wins 7 out of every 8 times

13 — Binary Codes

13.14: Solutions

they play. In the game with 15 players, the group can win 15 out of 16 times.
If you have not figured out these winning strategies for teams of 7 and 15,
I recommend thinking about the solution to the three-player game in terms
of the locations of the winning and losing states on the three-dimensional
hypercube, and thinking laterally.

If the number of players, N, is 2" — 1, the optimal strategy can be defined
using a Hamming code of length IV, and the probability of winning the prize
is N/(N +1). Each player is identified with a number n € 1... N. The two
colours are mapped onto 0 and 1. Any state of their hats can be viewed as a
received vector out of a binary channel. A random binary vector of length N
is either a codeword of the Hamming code, with probability 1/(N + 1), or it
differs in exactly one bit from a codeword. Each player looks at all the other
bits and considers whether his bit can be set to a colour such that the state is
a codeword (which can be deduced using the decoder of the Hamming code).
If it can, then the player guesses that his hat is the other colour. If the state is
actually a codeword, all players will guess and will guess wrong. If the state is
a non-codeword, only one player will guess, and his guess will be correct. It’s
quite easy to train seven players to follow the optimal strategy if the cyclic
representation of the (7,4) Hamming code is used (p.19).

227

About Chapter 14

In this chapter we will draw together several ideas that we’ve encountered
so far in one nice short proof. We will simultaneously prove both Shannon’s
noisy-channel coding theorem (for symmetric binary channels) and his source
coding theorem (for binary sources). While this proof has connections to many
preceding chapters in the book, it’s not essential to have read them all.

On the noisy-channel coding side, our proof will be more constructive than
the proof given in Chapter 10; there, we proved that almost any random code
is ‘very good’. Here we will show that almost any linear code is very good. We
will make use of the idea of typical sets (Chapters 4 and 10), and we’ll borrow
from the previous chapter’s calculation of the weight enumerator function of
random linear codes (section 13.5).

On the source coding side, our proof will show that random linear hash
functions can be used for compression of compressible binary sources, thus
giving a link to Chapter 12.

228

14.1

14

Very Good Linear Codes Exist

In this chapter we’ll use a single calculation to prove simultaneously the source
coding theorem and the noisy-channel coding theorem for the binary symmet-
ric channel.

Incidentally, this proof works for much more general channel models, not
only the binary symmetric channel. For example, the proof can be reworked
for channels with non-binary outputs, for time-varying channels and for chan-
nels with memory, as long as they have binary inputs satisfying a symmetry
property, c.f. section 10.6.

A simultaneous proof of the source coding and noisy-channel
coding theorems

We consider a linear error-correcting code with binary parity-check matrix H.
The matrix has M rows and N columns. Later in the proof we will increase
N and M, keeping M « N. The rate of the code satisfies

M
>1-——. 14.1
R > N (14.1)

If all the rows of H are independent then this is an equality, R =1 — M/N.
In what follows, we’ll assume the equality holds. Eager readers may work out
the expected rank of a random binary matrix H (it’s very close to M) and
pursue the effect that the difference (M — rank) has on the rest of this proof
(it’s negligible).

A codeword t is selected, satisfying

Ht = 0mod 2, (14.2)
and a binary symmetric channel adds noise x, giving the received signal
r =t + xmod?2. (14.3)

The receiver aims to infer both t and x from r using a syndrome decoding
approach. Syndrome decoding was first introduced in section 1.2 (p.10 and
11). The receiver computes the syndrome

z = Hrmod 2 = Ht + Hxmod 2 = Hxmod 2. (14.4)

The syndrome only depends on the noise x, and the decoding problem is to
find the most probable x that satisfies

Hx = zmod 2. (14.5)

229

In this chapter x denotes the noise
added by the channel, not the input
to the channel.

230 14 — Very Good Linear Codes Exist

This best estimate for the noise vector, X, is then subtracted from r to give the
best guess for t. Our aim is to show that, aslong as R < 1—H(X) = 1—Ha(f),
where f is the flip probability of the binary symmetric channel, the optimal
decoder for this syndrome decoding problem has vanishing probability of error,
as N increases, for random H.
We prove this result by studying a sub-optimal strategy for solving the
decoding problem. Neither the optimal decoder nor this typical set decoder
would be easy to implement, but the typical set decoder is easier to analyze.
The typical set decoder examines the typical set T of noise vectors, the set
of noise vectors x’ that satisfy log1/P(x') ~ NH(X), checking to see if any of =~ We'll leave out the es and Ss that

those typical vectors x’ satisfies the observed syndrome, make a typical set definition rigorous.
Enthusiasts are encouraged to revisit
Hx =z (14 6) section 4.4 and put these details into

’ ’ this proof.

If exactly one typical vector x' does so, the typical set decoder reports that
vector as the hypothesized noise vector. If no typical vector matches the
observed syndrome, or more than one does, then the typical set decoder reports
an error.

The probability of error of the typical set decoder, for a given matrix H,
can be written as a sum of two terms,

Prgjg = P + P

e (14.7)

where PU) is the probability that the true noise vector x is itself not typical,
and Pgsl‘)H is the probability that the true x is typical and at least one other
typical vector clashes with it. The first probability vanishes as N increases, as
we proved when we first studied typical sets (Chapter 4). We concentrate on
the second probability. To recap, we’re imagining a true noise vector, x; and
if any of the typical noise vectors x’, different from x, satisfies H(x' — x) = 0,
then we have an error. We use the truth function

1H((x'—x)=0], (14.8)

whose value is one if the statement H(x' — x) = 0 is true and zero otherwise.
We can bound the number of type II errors made when the noise is x thus:

[Number of errors given x and H] < Z 1H(x'—x)=0]. (14.9)

x € T
x't % Zx
The number of errors is either zero or one; the sum on the right-hand side
may exceed one, in cases where several typical noise vectors have the same
syndrome.
We can now write down the probability of a type-II error by averaging over

X:
1I
P < 2. P Y 1[H(—x) =0]. (14.10)
xeT x': z iz

Now, we will find the average of this probability of type-II error over all linear
codes by averaging over H. By showing that the average probability of type-II
error vanishes, we will thus show that there exist linear codes with vanishing
error probability, indeed, that almost all linear codes are very good.

We denote averaging over all binary matrices H by (...)y. The average
probability of type-II error is

P ZP Pl = <P§ISI&{>H (14.11)

14.2

14.2: Data compression by linear hash codes

<EP > 1[HE —x) 0}> (14.12)

xeT X/.xeT H

x' # x
> P(x) Z (1HE —x) =0])g - (14.13)
x€T /-xiT

Now, the quantity (1[H(x' —x) = 0]) already cropped up when we were
calculating the expected weight enumerator function of random linear codes
(section 13.5): for any non-zero binary vector v, the probability that Hv = 0,
averaging over all matrices H, is 2. So

PUD = (ZP(@) (IT| - 1)27M (14.14)
xeT
< |Tj27, (14.15)

where |T'| denotes the size of the typical set. As you will recall from Chapter
4, there are roughly 2V#(X) noise vectors in the typical set. So

P < oNHX)g-M (14.16)

This bound on the probability of error either vanishes or grows exponentially
as N increases (remembering that we are keeping M proportional to N as N
increases). It vanishes if

H(X)< M/N. (14.17)

Substituting R = 1 — M/N, we have thus established the noisy-channel coding
theorem for the binary symmetric channel: very good linear codes exist for
any rate R satisfying

R<1-H(X), (14.18)

where H(X) is the entropy of the channel noise, per bit. |

Exercise 14.1.1%] Redo the proof for a more general channel.

Data compression by linear hash codes

The decoding game we have just played can also be viewed as an uncompres-
sion game. The world produces a noise vector x from a source P(x). The
noise has redundancy (if the flip probability is not 0.5). We compress it with
a linear compressor that maps the N-bit input x (the noise) to the M-bit
output z (the syndrome). Our uncompression task is to recover the input x
from the output z. The rate of the compressor is

Rcompressor = M/N (14.19)

[We don’t care about the possibility of linear redundancies in our definition
of the rate, here.] The result that we just found, that the decoding problem
can be solved, for almost any H, with vanishing error probability, as long as
H(X) < M/N, thus instantly proves a source coding theorem:

Given a binary source X of entropy H(X), and a required com-
pressed rate R > H(X), there exists a linear compressor x — z =
Hx mod 2 having rate M /N equal to that required rate R, and an
associated uncompressor, that is virtually lossless.

This theorem is true not only for a source of independent identically dis-
tributed symbols but also for any source for which a typical set can be de-
fined: sources with memory, and time-varying sources, for example; all that’s
required is that the source be ergodic.

231

232 14 — Very Good Linear Codes Exist

Notes

This method for proving that codes are good can be applied to other linear
codes, such as low-density parity-check codes (MacKay, 1999b; Aji et al., 2000).
For each code we need an approximation of its expected weight enumerator
function.

15

Further Exercises on Information Theory

The most exciting exercises, which will introduce you to further ideas in in-
formation theory, are towards the end of this chapter.

Refresher exercises on source coding and noisy channels

> Exercise 15.1.1%] Let X be an ensemble with Ay = {0,1} and Px =
{0.995,0.005}. Consider source coding using the block coding of X100
where every x € X' containing 3 or fewer 1s is assigned a distinct
codeword, while the other xs are ignored.

(a) If the assigned codewords are all of the same length, find the min-
imum length required to provide the above set with distinct code-
words.

(b) Calculate the probability of getting an x that will be ignored.

> Exercise 15.2.[2] Let X be an ensemble with Py = {0.1,0.2,0.3,0.4}. The en-
semble is encoded using the symbol code C = {0001, 001,01, 1}. Consider
the codeword corresponding to x € XV, where N is large.

(a) Compute the entropy of the fourth bit of transmission.

(b) Compute the conditional entropy of the fourth bit given the third
bit.

(c) Estimate the entropy of the hundredth bit.

(d) Estimate the conditional entropy of the hundredth bit given the
ninety-ninth bit.

ﬁ% Exercise 15.3.12] Two fair dice are rolled by Alice and the sum is recorded.
Bob’s task is to ask a sequence of questions with yes/no answers to find
out this number. Devise in detail a strategy that achieves the minimum

possible average number of questions.

> Exercise 15.4.1%] How can you use a coin to draw straws among 3 people?

> Exercise 15.5.14] In a magic trick, there are three participants: the magician,
an assistant, and a volunteer. The assistant, who claims to have paranor-
mal abilities, is in a soundproof room. The magician gives the volunteer
six blank cards, five white and one blue. The volunteer writes a dif-
ferent integer from 1 to 100 on each card, as the magician is watching.
The volunteer keeps the blue card. The magician arranges the five white
cards in some order and passes them to the assistant. The assistant then
announces the number on the blue card.

How does the trick work?

233

234 15 — Further Exercises on Information Theory

> Exercise 15.6.1%] How does this trick work?

‘Here’s an ordinary pack of cards, shuffled into random order.
Please choose five cards from the pack, any that you wish.
Don’t let me see their faces. No, don’t give them to me: pass
them to my assistant Esmerelda. She can look at them.
‘Now, Esmerelda, show me four of the cards. Hmm... nine
of spades, six of clubs, four of hearts, ten of diamonds. The
hidden card, then, must be the queen of spades!’

The trick can be performed as described above for a pack of 52 cards.
Use information theory to give an upper bound on the number of cards
for which the trick can be performed.

> Exercise 15.7.[%] Find a probability sequence p = (pi1,p2,...) such that
H(p) = oo.

> Exercise 15.8.12] Consider a discrete memoryless source with Ax = {a,b, ¢, d}
and Px = {1/2,1/4, 1/8,1/8}. There are 4 = 65536 eight-letter words
that can be formed from the four letters. Find the total number of such
words that are in the typical set Tivg (equation 4.29) where N = 8 and
B8=0.1.

> Exercise 15.9.[?] Consider the source Ag = {a,b,c,d,e}, Ps =
{1/3,1/3,1/9,1/9,1/9} and the channel whose transition probability matrix

1S

10 0 0
0 0 23 0

Q_0101 (15.1)
00 Y3 0

Note that the source alphabet has five symbols, but the channel alphabet
Ax = Ay ={0,1,2,3} has only four. Assume that the source produces
symbols at exactly 3/4 the rate that the channel accepts channel sym-
bols. For a given (tiny) € > 0, explain how you would design a system
for communicating the source’s output over the channel with an aver-
age error probability per source symbol less than €. Be as explicit as
possible. In particular, do not invoke Shannon’s noisy-channel coding
theorem.

> Exercise 15.10.[2] Consider a binary symmetric channel and a code C =
{0000,0011,1100,1111}; assume that the four codewords are used with
probabilities {1/2,1/8,1/8,1/4}.

What is the decoding rule that minimizes the probability of decoding
error? [The optimal decoding rule depends on the noise level f of the
binary symmetric channel. Give the decoding rule for each range of
values of f, for f between 0 and 1/2.]

i% Exercise 15.11.12] Find the capacity and optimal input distribution for the
three-input, three-output channel whose transition probabilities are:

1 0 0
Q=10 23 13 |. (15.2)
0 Y3 23

g

15 — Further Exercises on Information Theory

Exercise 15.12.[% P-239] e input to a channel @ is a word of 8 bits. The

output is also a word of 8 bits. Each time it is used, the channel flips
ezxactly one of the transmitted bits, but the receiver does not know which
one. The other seven bits are received without error. All 8 bits are
equally likely to be the one that is flipped. Derive the capacity of this
channel.

Show, by describing an explicit encoder and decoder that it is possible
reliably (that is, with zero error probability) to communicate 5 bits per
cycle over this channel.

> Exercise 15.13.[2] A channel with input « € {a,b,c} and output y € {r,s, t,u}

has conditional probability matrix:

2 0 0 r
Y2 20 a<:s
Q=110 1n 1| b,
0 0 1~ <,

What is its capacity?

> Exercise 15.14.13] The ten-digit number on the cover of a book known as the

ISBN incorporates an error-detecting code. The number consists of nine
source digits x1,x9,...,xq, satisfying x, € {0,1,...,9}, and a tenth
check digit whose value is given by

9
19 = <Z na:n> mod 11.

n=1
Here z19 € {0,1,...,9,10}. If 219 = 10 then the tenth digit is shown
using the roman numeral X.

Show that a valid ISBN satisfies:

10
(Z m:n) mod 11 = 0.

n=1
Imagine that an ISBN is communicated over an unreliable human chan-
nel which sometimes modifies digits and sometimes reorders digits.

Show that this code can be used to detect (but not correct) all errors in
which any one of the ten digits is modified (for example, 1-010-00000-4
— 1-010-00080-4).

Show that this code can be used to detect all errors in which any two ad-
jacent digits are transposed (for example, 1-010-00000-4 — 1-100-00000-
4).

What other transpositions of pairs of non-adjacent digits can be de-
tected?

If the tenth digit were defined to be
9
T19 = <Z nzn> mod 10,
n=1

why would the code not work so well? (Discuss the detection of both
modifications of single digits and transpositions of digits.)

0-521-64298-1
1-010-00000-4

Table 15.1. Some valid ISBNs.
[The hyphens are included for
legibility.]

235

236 15 — Further Exercises on Information Theory

ﬁ% Exercise 15.15.1%] A channel with input x and output y has transition proba-
bility matrix:

a a
1—f 0 0 X
b b
Q- f1—=f 0 0
B 0 0 1-g g ¢ X ¢
0 0 g l-g d d
Assuming an input distribution of the form
_[ppl=-pl-p
7))(- {27 27 92 s 2 })
write down the entropy of the output, H(Y'), and the conditional entropy
of the output given the input, H(Y|X).
Show that the optimal input distribution is given by
_ 1
P = T o ()
where Ho(f) = flog, % + (1= f)log, ﬁ Remember 4 Hz(p) = log, 2.

Write down the optimal input distribution and the capacity of the chan-
nel in the case f =1/2, g = 0, and comment on your answer.

> Exercise 15.16.[2] What are the differences in the redundancies needed in an
error-detecting code (which can reliably detect that a block of data has
been corrupted) and an error-correcting code (which can detect and cor-
rect errors)?

Further tales from information theory

The following exercises give you the chance to discover for yourself the answers
to some more surprising results of information theory.

Exercise 15.17.19] Communication of correlated information. Imagine that we
want to communicate data from two data sources X(4) and X) to a central
location C via noise-free one-way communication channels (figure 15.2a). The
signals () and z(P) are strongly correlated, so their joint information content
is only a little greater than the marginal information content of either of them.
For example, C is a weather collator who wishes to receive a string of reports
saying whether it is raining in Allerton (x(A)) and whether it is raining in
Bognor (z(5)). The joint probability of (4) and z(¥) might be

P, 2(B)); 2

(B 0| 049 0.01
1] 0.010.49 (15.3)

The weather collator would like to know N successive values of 2(4) and z(5)
exactly, but, since he has to pay for every bit of information he receives, he
is interested in the possibility of avoiding buying N bits from source A and
N bits from source B. Assuming that variables (Y and z(8) are generated
repeatedly from this distribution, can they be encoded at rates R4 and Rp in
such a way that C can reconstruct all the variables, with the sum of information
transmission rates on the two lines being less than two bits per cycle?

15 — Further Exercises on Information Theory

Rp

encode H(XW, X))
— @
x i Ra H(X®)

| C
Y
(a) o encode

Rp H(X<B) \X<A))

- ey

-

(b) H(X(A> \‘X(B>) H(;X(A))) Ra

The answer, which you should demonstrate, is indicated in figure 15.2.
In the general case of two correlated sources X and X(B),
codes for the two transmitters that can achieve reliable communication of
both X and X®) to C, as long as: the information rate from XA,
Ry, exceeds H(X@) | X(B)); the information rate from XB) Rp. exceeds
H(X®B) | X): and the total information rate Ry + Rp exceeds the joint
information H (X, X(B)),

So in the case of () and z(B) above, each transmitter must transmit at
a rate greater than H»(0.02) = 0.14 bits, and the total rate R4 + Rp must
be greater than 1.14 bits, for example R4 = 0.6, Rp = 0.6. There exist codes
that can achieve these rates. Your task is to figure out why this is so.

Try to find an explicit solution in which one of the sources is sent as plain
text, t(B) = x(B)_ and the other is encoded.

there exist

Exercise 15.18.!7] Multiple access channels. Consider a channel with two sets
of inputs and one output — for example, a shared telephone line (figure 15.3a).
A simple model system has two binary inputs z(4) and z(5®) and a ternary
output y equal to the arithmetic sum of the two inputs, that’s 0, 1 or 2. There
is no noise. Users A and B cannot communicate with each other, and they
cannot hear the output of the channel. If the output is a 0, the receiver can
be certain that both inputs were set to 0; and if the output is a 2, the receiver
can be certain that both inputs were set to 1. But if the output is 1, then
it could be that the input state was (0,1) or (1,0). How should users A and
B use this channel so that their messages can be deduced from the received
signals? How fast can A and B communicate?

Clearly the total information rate from A and B to the receiver cannot
be two bits. On the other hand it is easy to achieve a total information rate
R4+ Rp of one bit. Can reliable communication be achieved at rates (R4, Rp)
such that R4 + R > 17

The answer is indicated in figure 15.3.

Some practical codes for multi-user channels are presented in Ratzer and
MacKay (2003).

Exercise 15.19.1) Broadcast channels. A broadcast channel consists of a single
transmitter and two or more receivers. The properties of the channel are de-
fined by a conditional distribution Q(y4), y(B) | z). (We’ll assume the channel
is memoryless.) The task is to add an encoder and two decoders to enable
reliable communication of a common message at rate Ry to both receivers, an
individual message at rate R4 to receiver A, and an individual message at rate
Rp to receiver B. The capacity region of the broadcast channel is the convex
hull of the set of achievable rate triplets (Ry, Ra, Rp).

A simple benchmark for such a channel is given by time-sharing (time-
division signaling). If the capacities of the two channels, considered separately,

237

Figure 15.2. Communication of
correlated information. (a) z(4)
and () are correlated sources
(the correlation is represented by
the dotted arrow). Strings of
values of each variable are
encoded using codes of rate R 4
and Rp into transmissions £
and tB) | which are communicated
over noise-free channels to a
receiver C. (b) The achievable
rate region. Both strings can be
conveyed without error even
though Ra < H(X@) and

Rp < H(X®).

y@
x -
yB)
Figure 15.4. The broadcast
channel. z is the channel input;
y4) and y(®) are the outputs.

238 15 — Further Exercises on Information Theory

x(A) —
Pylz@®,2®) ——y
)
(a)
y () o
01 1/2 -~ Achievable --
o 0] 0 N
(b) 1 (c) I N,
1/2 I Rr,

are C) and OB, then by devoting a fraction ¢4 of the transmission time
to channel A and ¢p=1—¢4 to channel B, we can achieve (Ry, Ra, Rp) =
(0,0ACW, ¢pCP)).

We can do better than this, however. As an analogy, imagine speaking
simultaneously to an American and a Belarusian; you are fluent in American
and in Belarusian, but neither of your two receivers understands the other’s
language. If each receiver can distinguish whether a word is in their own
language or not, then an extra binary file can be conveyed to both recipients by
using its bits to decide whether the next transmitted word should be from the
American source text or from the Belarusian source text. Each recipient can
concatenate the words that they understand in order to receive their personal
message, and can also recover the binary string.

An example of a broadcast channel consists of two binary symmetric chan-
nels with a common input. The two halves of the channel have flip prob-
abilities f4 and fp. We’ll assume that A has the better half-channel, i.e.,
fa < fB < 12. A closely related channel is a ‘degraded’ broadcast channel,
in which the conditional probabilities are such that the random variables have
the structure of a Markov chain,

(4) (B)

x—y -y (15.4)
ie., yB) is a further degraded version of y(A).] In this special case, it turns
out that whatever information is getting through to receiver B can also be
recovered by receiver A. So there is no point distinguishing between Ry and
Rp: the task is to find the capacity region for the rate pair (Rp, R4), where
Ry is the rate of information reaching both A and B, and R4 is the rate of
the extra information reaching A.

The following exercise is equivalent to this one, and a solution to it is

illustrated in figure 15.8.

Exercise 15.20.1 Variable-rate error-correcting codes for channels with unknown
noise level. In real life, channels may sometimes not be well characterized
before the encoder is installed. As a model of this situation, imagine that a
channel is known to be a binary symmetric channel with noise level either fa
or fg. Let fg > fa, and let the two capacities be C4 and Cp.

Those who like to live dangerously might install a system designed for noise
level f4 with rate R4 ~ Cy; in the event that the noise level turns out to be
fB, our experience of Shannon’s theories would lead us to expect that there

Figure 15.3. Multiple access
channels. (a) A general multiple
access channel with two
transmitters and one receiver. (b)
A binary multiple access channel
with output equal to the sum of
two inputs. (¢) The achievable
region.

Rp
CcB)

A Ry

Figure 15.5. Rates achievable by
simple timesharing.

Figure 15.6. Rate of reliable
communication R, as a function of
noise level f, for Shannonesque
codes designed to operate at noise
levels f4 (solid line) and fp
(dashed line).

15 — Further Exercises on Information Theory

would be a catastrophic failure to communicate information reliably (solid line
in figure 15.6).

A conservative approach would design the encoding system for the worst-
case scenario, installing a code with rate Rp ~ Cp (dashed line in figure 15.6).
In the event that the lower noise level, f4, holds true, the managers would
have a feeling of regret because of the wasted capacity difference C4 — Rp.

Is it possible to create a system that not only transmits reliably at some
rate Ry whatever the noise level, but also communicates some extra, ‘lower-
priority’ bits if the noise level is low, as shown in figure 15.77 This code
communicates the high-priority bits reliably at all noise levels between f4 and
fB, and communicates the low-priority bits also if the noise level is f4 or
below.

This problem is mathematically equivalent to the previous problem, the
degraded broadcast channel. The lower rate of communication was there called
Ry, and the rate at which the low-priority bits are communicated if the noise
level is low was called Ry4.

An illustrative answer is shown in figure 15.8, for the case f4 = 0.01 and
fB = 0.1. (This figure also shows the achievable region for a broadcast channel
whose two half-channels have noise levels f4 = 0.01 and fp = 0.1.) I admit I
find the gap between the simple time-sharing solution and the cunning solution
disappointingly small.

In Chapter 50 we will discuss codes for a special class of broadcast channels,
namely erasure channels, where every symbol is either received without error
or erased. These codes have the nice property that they are rateless — the
number of symbols transmitted is determined on the fly such that reliable
comunication is achieved, whatever the erasure statistics of the channel.

Exercise 15.21.17] Multiterminal information networks are both important practi-
cally and intriguing theoretically. Consider the following example of a two-way
binary channel (figure 15.9a,b): two people both wish to talk over the channel,
and they both want to hear what the other person is saying; but you can only
hear the signal transmitted by the other person if you are transmitting a zero.
What simultaneous information rates from A to B and from B to A can be
achieved, and how? Everyday examples of such networks include the VHF
channels used by ships, and computer ethernet networks (in which all the
devices are unable to hear anything if two or more devices are broadcasting
simultaneously).

Obviously, we can achieve rates of 1/2 in both directions by simple time-
sharing. But can the two information rates be made larger? Finding the
capacity of a general two-way channel is still an open problem. However,
we can obtain interesting results concerning achievable points for the simple
binary channel discussed above, as indicated in figure 15.9c. There exist codes
that can achieve rates up to the boundary shown. There may exist better
codes too.

Solutions

Solution to exercise 15.12 (p.235). C(Q) = 5bits.

Hint for the last part: a solution exists that involves a simple (8,5) code.

239

.

Figure 15.7. Rate of reliable
communication R, as a function of
noise level f, for a desired
variable-rate code.

0.6

0.4
0.2

0 T T T T T : 1
0 02 04 06 08 1

Figure 15.8. An achievable region
for the channel with unknown
noise level. Assuming the two
possible noise levels are f4 = 0.01
and fp = 0.1, the dashed lines
show the rates R4, Rp that are
achievable using a simple
time-sharing approach, and the
solid line shows rates achievable
using a more cunning approach.

240

R(A)

01 01
00 L) 0]01
10 1100
B Ach\i\é\@ble 7
0j2 OT4 Oj6 018 1

15 — Further Exercises on Information Theory

Figure 15.9. (a) A general
two-way channel. (b) The rules
for a binary two-way channel.
The two tables show the outputs
y and y(B) that result for each
state of the inputs. (c¢) Achievable
region for the two-way binary
channel. Rates below the solid
line are achievable. The dotted
line shows the ‘obviously
achievable’ region which can be
attained by simple time-sharing.

16.1

16

Message Passing

One of the themes of this book is the idea of doing complicated calculations
using simple distributed hardware. It turns out that quite a few interesting
problems can be solved by message-passing algorithms, in which simple mes-
sages are passed locally among simple processors whose operations lead, after
some time, to the solution of a global problem.

Counting

As an example, consider a line of soldiers walking in the mist. The commander
wishes to perform the complex calculation of counting the number of soldiers
in the line. This problem could be solved in two ways.

First there is a solution that uses expensive hardware: the loud booming
voices of the commander and his men. The commander could shout ‘all soldiers
report back to me within one minute!’, then he could listen carefully as the
men respond ‘Molesworth here sir!’; ‘Fotherington—Thomas here sir!’; and so
on. This solution relies on several expensive pieces of hardware: there must be
a reliable communication channel to and from every soldier; the commander
must be able to listen to all the incoming messages — even when there are
hundreds of soldiers — and must be able to count; and all the soldiers must be
well-fed if they are to be able to shout back across the possibly-large distance
separating them from the commander.

The second way of finding this global function, the number of soldiers,
does not require global communication hardware, high 1Q, or good food; we
simply require that each soldier can communicate single integers with the two
adjacent soldiers in the line, and that the soldiers are capable of adding one
to a number. Each soldier follows these rules:

1. If you are the front soldier in the line, say the number ‘one’ to the
soldier behind you.

2. If you are the rearmost soldier in the line, say the number ‘one’ to
the soldier in front of you.

3. If a soldier ahead of or behind you says a number to you, add one
to it, and say the new number to the soldier on the other side.

If the clever commander can not only add one to a number, but also add
two numbers together, then he can find the global number of soldiers by simply
adding together:

241

Algorithm 16.1. Message-passing
rule-set A.

242

the number said to him by the (which equals the total number of
soldier in front of him, soldiers in front)
+ the number said to the com- (which is the number behind)
mander by the soldier behind
him
+ one (to count the commander himself).

)

This solution requires only local communication hardware and simple compu-
tations (storage and addition of integers).

1 2 3 4

OO0 =9
N T R A T

Commander

Separation

This clever trick makes use of a profound property of the total number of
soldiers: that it can be written as the sum of the number of soldiers in front
of a point and the number behind that point, two quantities which can be
computed separately, because the two groups are separated by the commander.

If the soldiers were not arranged in a line but were travelling in a swarm,
then it would not be easy to separate them into two groups in this way. The

ot | 3
% Jim

guerillas in figure 16.3 could not be counted using the above message-passing
rule-set A, because, while the guerillas do have neighbours (shown by lines),
it is not clear who is ‘in front’ and who is ‘behind’; furthermore, since the
graph of connections between the guerillas contains cycles, it is not possible
for a guerilla in a cycle (such as ‘Jim’) to separate the group into two groups,
‘those in front’, and ‘those behind’.

A swarm of guerillas can be counted by a modified message-passing algo-
rithm if they are arranged in a graph that contains no cycles.

Rule-set B is a message-passing algorithm for counting a swarm of guerillas
whose connections form a cycle-free graph, also known as a tree, as illustrated
in figure 16.4. Any guerilla can deduce the total in the tree from the messages
that they receive.

16 — Message Passing

Figure 16.2. A line of soldiers
counting themselves using
message-passing rule-set A. The
commander can add ‘3’ from the
soldier in front, ‘1’ from the
soldier behind, and ‘1’ for himself,
and deduce that there are 5
soldiers in total.

Figure 16.3. A swarm of guerillas.

16.1: Counting

. Count your number of neighbours, N.

. Keep count of the number of messages you have received from your
neighbours, m, and of the values v, v9, ...,vn of each of those
messages. Let V' be the running total of the messages you have
received.

. If the number of messages you have received, m, is equal to N — 1,
then identify the neighbour who has not sent you a message and tell
them the number V + 1.

. If the number of messages you have received is equal to N, then:

(a) the number V + 1 is the required total.

(b) for each neighbour n {
say to neighbour n the number V + 1 — v,,.
}

00 rHHH

243

Figure 16.4. A swarm of guerillas
whose connections form a tree.

Algorithm 16.5. Message-passing
rule-set B.

Figure 16.6. A triangular 41 x 41
grid. How many paths are there
from A to B? One path is shown.

16.2

g

244

Path-counting

A more profound task than counting squaddies is the task of counting the
number of paths through a grid, and finding how many paths pass through
any given point in the grid.

Figure 16.6 shows a rectangular grid, and a path through the grid, con-
necting points A and B. A valid path is one that starts from A and proceeds
to B by rightward and downward moves. Our questions are:

1. How many such paths are there from A to B?

2. If a random path from A to B is selected, what is the probability that it
passes through a particular node in the grid? [When we say ‘random’,
we mean that all paths have exactly the the same probability of being
selected.]

3. How can a random path from A to B be selected?

Counting all the paths from A to B doesn’t seem straightforward. The number
of paths is expected to be pretty big — even if the permitted grid were a diagonal
strip only three nodes wide, there would still be about 2N/2 possible paths.

The computational breakthrough is to realize that to find the number of
paths, we do not have to enumerate all the paths explicitly. Pick a point P in
the grid and consider the number of paths from A to P. Every path from A
to P must come in to P through one of its upstream neighbours (‘upstream’
meaning above or to the left). So the number of paths from A to P can be
found by adding up the number of paths from A to each of those neighbours.

This message-passing algorithm is illustrated in figure 16.8 for a simple
grid with ten vertices connected by twelve directed edges. We start by send-
ing the ‘1’ message from A. When any node has received messages from all its
upstream neighbours, it sends the sum of them on to its downstream neigh-
bours. At B, the number 5 emerges: we have counted the number of paths
from A to B without enumerating them all. As a sanity-check, figure 16.9
shows the five distinct paths from A to B.

Having counted all paths, we can now move on to more challenging prob-
lems: computing the probability that a random path goes through a given
vertex, and creating a random path.

Probability of passing through a node

By making a backward pass as well as the forward pass, we can deduce how
many of the paths go through each node; and if we divide that by the total
number of paths, we obtain the probability that a randomly selected path
passes through that node. Figure 16.10 shows the backward-passing mes-
sages in the lower-right corners of the tables, and the original forward-passing
messages in the upper-left corners. By multiplying these two numbers at a
given vertex, we find the total number of paths passing through that vertex.
For example, four paths pass through the central vertex.

Figure 16.11 shows the result of this computation for the triangular 41 x
41 grid. The area of each blob is proportional to the probability of passing
through each node.

Random path sampling

Exercise 16.1.1% P247] If one creates a ‘random’ path from A to B by flipping
a fair coin at every junction where there is a choice of two directions, is

16 — Message Passing

Figure 16.7. Every path from A to
P enters P through an upstream
neighbour of P, either M or N; so
we can find the number of paths
from A to P by adding the
number of paths from A to M and
from A to N.

A
1 2| _3
2l 5
5
B

Figure 16.8. Messages sent in the
forward pass.

A

I

Figure 16.9. The five paths.

1 !1—_11—Hﬂ

5/ [s] [[3[[]t
A T [2 13

s

2[] G]

1] |2

B 1%,

Figure 16.10. Messages sent in the
forward and backward passes.

g

16.3

16.3: Finding the lowest-cost path

the resulting path a uniform random sample from the set of all paths?
[Hint: imagine trying it for the grid of figure 16.8.]

There is a neat insight to be had here, and I'd like you to have the satisfaction
of figuring it out.

Exercise 16.2.1% P-247] Having run the forward and backward algorithms be-
tween points A and B on a grid, how can one draw one path from A to
B uniformly at random? (Figure 16.11.)

[m wmms

o HHHH

(a)

The message-passing algorithm we used to count the paths to B is an
example of the sum—product algorithm. The ‘sum’ takes place at each node
when it adds together the messages coming from its predecessors; the ‘product’
was not mentioned, but you can think of the sum as a weighted sum in which
all the summed terms happened to have weight 1.

Finding the lowest-cost path

Imagine you wish to travel as quickly as possible from Ambridge (A) to Bognor
(B). The various possible routes are shown in figure 16.12, along with the cost
in hours of traversing each edge in the graph. For example, the route A-I-L—
N-B has a cost of 8 hours. We would like to find the lowest-cost path without
explicitly evaluating the cost of all paths. We can do this efficiently by finding
for each node what the cost of the lowest-cost path to that node from A is.
These quantities can be computed by message-passing, starting from node
A. The message-passing algorithm is called the min-sum algorithm. or the
Viterbi algorithm.

For brevity, we’ll call the cost of the lowest-cost path from node A to
node x ‘the cost of 2’. Each node can broadcast its cost to its descendants
once it knows the costs of all its possible predecessors. Let’s step through the
algorithm by hand. The cost of A is zero. We pass this news on to H and I.
As the message passes along each edge in the graph, the cost of that edge is
added. We find the costs of H and I are 4 and 1 respectively (figure 16.13a).
Similarly then, the costs of J and L are found to be 6 and 2 respectively, but
what about K? Out of the edge H-K comes the message that a path of cost 5
exists from A to K via H; and from edge I-K we learn of an alternative path of
cost 3 (figure 16.13b). The min—sum algorithm sets the cost of K equal to the
minimum of these (the ‘min’), and records which was the smallest-cost route
into K by retaining only the edge H-K and pruning away the other edges
leading to K (figure 16.13c). Figure 16.13d and e show the remaining two
iterations of the algorithm which reveal that there is a path from A to B with
cost 6. [If the min—sum algorithm encounters a tie, where the minimum cost

245

Figure 16.11. (a) The probability
of passing through each node, and
(b) a randomly chosen path.

<
<

Figure 16.12. Route diagram from
Ambridge to Bognor, showing the
costs associated with the edges.

sy

\
<
/'

16.4

16.5

246

path to a node is achieved by more than one route to it, then the algorithm
can pick any of those routes at random.]

We can recover this lowest-cost path by backtracking from B, following
the trail of surviving edges back to A. We deduce that the lowest-cost path is
A-I-K-M-B.

Other applications of the min—sum algorithm

Imagine that you manage the production of a product from raw materials
via a large set of operations. You wish to identify the critical path in your
process, that is, the subset of operations that are holding up production. If
any operations on the critical path were carried out a little faster then the
time to get from raw materials to product would be reduced.

The critical path of a set of operations can be found using the min—-sum
algorithm.

In Chapter 25 the min—sum algorithm will be used in the decoding of
error-correcting codes.

Summary and related ideas

Some global functions have a separability property. For example, the number
of paths from A to P separates into the sum of the number of paths from A to M
(the point to P’s left) and the number of paths from A to N (the point above
P). Such functions can be computed efficiently by message-passing. Other
functions do not have such separability properties, for example

1. the number of pairs of soldiers in a troop who share the same birthday;

2. the size of the largest group of soldiers who share a common height
(rounded to the nearest centimetre);

3. the length of the shortest tour that a travelling salesman could take that
visits every soldier in a troop.

One of the challenges of machine learning is to find low-cost solutions to prob-
lems like these. The problem of finding a large subset variables that are ap-
proximately equal can be solved with a neural network approach (Hopfield and
Brody, 2000; Hopfield and Brody, 2001). A neural approach to the travelling
salesman problem will be discussed in section 42.9.

Further exercises

> Exercise 16.3.12] Describe the asymptotic properties of the probabilities de-
picted in figure 16.11a, for a grid in a triangle of width and height N.

> Exercise 16.4.1?] In image processing, the integral image I(z,y) obtained from
an image f(z,y) (where x and y are pixel coordinates) is defined by

z
I(z,y) = Z Zf(u,v).

u=0v=0

(16.1)

Show that the integral image I(z,y) can be efficiently computed by mes-
sage passing.

Show that, from the integral image, some simple functions of the image
can be obtained. For example, give an expression for the sum of the
image intensities f(z,y) for all (z,y) in a rectangular region extending
from (z1,41) to (z2,92).

16 — Message Passing

4
4 H<) M\1~
0< K B
A 2
™1 N5
I
o
(b) 213 2

Figure 16.13. Min—sum
message-passing algorithm to find
the cost of getting to each node,
and thence the lowest cost route
from A to B.

Y2

Y

16.6

16.6: Solutions

Solutions

Solution to exercise 16.1 (p.244). Since there are five paths through the grid
of figure 16.8, they must all have probability 1/5. But a strategy based on fair
coin-flips will produce paths whose probabilities are powers of 1/2.

Solution to exercise 16.2 (p.245). To make a uniform random walk, each step
of the walk should be chosen using a different biased coin at each junction,
with the biases chosen in proportion to the backward messages emanating from
the two options. For example, at the first choice after leaving A, there is a ‘3’
message coming from the East, and a ‘2’ coming from South, so one should
go East with probability 3/5 and South with probability 2/5. This is how the
path in figure 16.11 was generated.

247

17.1

17

Communication over Constrained
Noiseless Channels

In this chapter we study the task of communicating efficiently over a con-
strained noiseless channel — a constrained channel over which not all strings
from the input alphabet may be transmitted.

We make use of the idea introduced in Chapter 16, that global properties
of graphs can be computed by a local message-passing algorithm.

Three examples of constrained binary channels

A constrained channel can be defined by rules that define which strings are
permitted.

Example 17.1. In Channel A every 1 must be followed by at least one 0.

A valid string for this channel is

00100101001010100010. (17.1)

As a motivation for this model, consider a channel in which 1s are repre-
sented by pulses of electromagnetic energy, and the device that produces
those pulses requires a recovery time of one clock cycle after generating
a pulse before it can generate another.

Example 17.2. Channel B has the rule that all 1s must come in groups of two
or more, and all Os must come in groups of two or more.

A valid string for this channel is

00111001110011000011. (17.2)

As a motivation for this model, consider a disk drive in which succes-
sive bits are written onto neighbouring points in a track along the disk
surface; the values 0 and 1 are represented by two opposite magnetic
orientiations. The strings 101 and 010 are forbidden because a single
isolated magnetic domain surrounded by domains having the opposite
orientation is unstable, so that 101 might turn into 111, for example.

Example 17.3. Channel C has the rule that the largest permitted runlength is
two, that is, each symbol can be repeated at most once.

A wvalid string for this channel is

10010011011001101001. (17.3)

248

Channel A:
the substring 11 is forbidden.

Channel B:
101 and 010 are forbidden.

Channel C:
111 and 000 are forbidden.

17.1: Three examples of constrained binary channels

A physical motivation for this model is a disk drive in which the rate of
rotation of the disk is not known accurately, so it is difficult to distinguish
between a string of two 1s and a string of three 1s, which are represented
by oriented magnetizations of duration 27 and 37 respectively, where
7 is the (poorly known) time taken for one bit to pass by; to avoid
the possibility of confusion, and the resulting loss of synchronization of
sender and receiver, we forbid the string of three 1s and the string of
three Os.

All three of these channels are examples of runlength-limited channels.
The rules constrain the minimum and maximum numbers of successive 1s and
Os.

Channel Runlength of 1s Runlength of 0s
minimum maximum minimum maximum
unconstrained 1 00 1 00
A 1 1 1 %)
B 2 00 2 %9
C 1 2 1 2

In channel A, runs of 0s may be of any length but runs of 1s are restricted to
length one. In channel B all runs must be of length two or more. In channel
C, all runs must be of length one or two.

The capacity of the unconstrained binary channel is one bit per channel
use. What are the capacities of the three constrained channels? [To be fair,
we haven’t defined the ‘capacity’ of such channels yet; please understand ‘ca-
pacity’ as meaning how many bits can be conveyed reliably per channel-use.]

Some codes for a constrained channel

Let us concentrate for a moment on channel A, in which runs of 0Os may be
of any length but runs of 1s are restricted to length one. We would like to
communicate a random binary file over this channel as efficiently as possible.

A simple starting point is a (2,1) code that maps each source bit into two
transmitted bits, C;. This is a rate-1/2 code, and it respects the constraints of
channel A, so the capacity of channel A is at least 0.5. Can we do better?

(' is redundant because if the first of two received bits is a zero, we know
that the second bit will also be a zero. We can achieve a smaller average
transmitted length using a code that omits the redundant zeroes in C.

C5 is such a variable-length code. If the source symbols are used with
equal frequency then the average transmitted length per source bit is

1 1 3
L=-14+-2=— 174
2 * 2 2’ (17.4)
so the average communication rate is
R =23, (17.5)

and the capacity of channel A must be at least /3.

Can we do better than Cs? There are two ways to argue that the infor-
mation rate could be increased above R = 2/3.

The first argument assumes we are comfortable with the entropy as a
measure of information content. The idea is that, starting from code Cs, we
can reduce the average message length, without greatly reducing the entropy

Code C;
s t
0 00
1 10
Code Cy
s t
0 0
1 10

249

250 17 — Communication over Constrained Noiseless Channels

of the message we send, by decreasing the fraction of 1s that we transmit. 2 . . .
Imagine feeding into Cy a stream of bits in which the frequency of 1sis f. [Such -
a stream could be obtained from an arbitrary binary file by passing the source L4f e
file into the decoder of an arithmetic code that is optimal for compressing H20 —
binary strings of density f.] The information rate R achieved is the entropy 1 4
of the source, Hs(f), divided by the mean transmitted length,
Lif)=Q-f)+2f=1+f. (17.6)
Thus % 025 05 075 1
Half) _ Half) T
R(f) = = . 17.7
(f) L(f) 1 + f () 0.6 + -
05 J
The original code Cs, without preprocessor, corresponds to f = /2. What o4l |
happens if we perturb f a little towards smaller f, setting 0al/ RO=H 20/ |
1 0.2 H]
f= 3 + 0, (17.8) o1 |
0 1 1 1
0 0.25 0.5 0.75 1

for small negative 6? In the vicinity of f = 1/2, the denominator L(f) varies

linearly with 6. In contrast, the numerator Hs(f) only has a second-order Figure 17.1. Top: The information

dependence on . content per source symbol and

. 1] 9 .) mean transmitted length per
> Exercise 17.4.1" Find, to order §*, the Taylor expansion of Ha(f) as a function source symbol as a function of the

of 4. source density. Bottom: The
information content per
To first order, R(f) increases linearly with decreasing §. It must be possible transmitted symbol, in bits, as a

to increase R by decreasing f. Figure 17.1 shows these functions; R(f) does function of f.
indeed increase as f decreases and has a maximum of about 0.69 bits per
channel use at f ~ 0.38.
By this argument we have shown that the capacity of channel A is at least
maxy R(f) = 0.69.

> Exercise 17.5.[% P257] 1f 4 file containing a fraction f = 0.5 1s is transmitted
by C9, what fraction of the transmitted stream is 1s?

What fraction of the transmitted bits is 1s if we drive code Cy with a
sparse source of density f = 0.387

A second, more fundamental approach counts how many valid sequences
of length N there are, Sy. We can communicate log Sy bits in N channel
cycles by giving one name to each of these valid sequences.

17.2 The capacity of a constrained noiseless channel

We defined the capacity of a noisy channel in terms of the mutual information
between its input and its output, then we proved that this number, the capac-
ity, was related to the number of distinguishable messages S(IV) that could be
reliably conveyed over the channel in IV uses of the channel by

. 1
C= A}gnoo N log S(N). (17.9)

In the case of the constrained noiseless channel, we can adopt this identity as
our definition of the channel’s capacity. However, the name s, which, when
we were making codes for noisy channels (section 9.6), ran over messages
s=1...5, is about to take on a new role: labelling the states of our channel;

17.3

17.3: Counting the number of possible messages

1

1 2 3 4 5 6

D0 1,D0 1O 0 1D 0 1D 0 1O 0 1D

251

7

S S
(from)

1 0

S S S

10 o 1
(a)o (c) @{©

Sn Sn+1

(d) A= o

D, (D 1[01}

1 1

0

1100 010
00 01 0 01
B A= 1 0 0 0 C A= 1 10
00 11 0 0 1

so in this chapter we will denote the number of distinguishable messages of
length N by My, and define the capacity to be:

. 1
C=]\}gnooﬁlogMN. (17.10)

Once we have figured out the capacity of a channel we will return to the
task of making a practical code for that channel.

Counting the number of possible messages

First let us introduce some representations of constrained channels. In a state
diagram, states of the transmitter are represented by circles labelled with the
name of the state. Directed edges from one state to another indicate that
the transmitter is permitted to move from the first state to the second, and a
label on that edge indicates the symbol emitted when that transition is made.
Figure 17.2a shows the state diagram for channel A. It has two states, 0 and
1. When transitions to state 0 are made, a 0 is transmitted; when transitions
to state 1 are made, a 1 is transmitted; transitions from state 1 to state 1 are
not possible.

We can also represent the state diagram by a trellis section, which shows
two successive states in time at two successive horizontal locations (fig-
ure 17.2b). The state of the transmitter at time n is called s,. The set of
possible state sequences can be represented by a trellis as shown in figure 17.2c.
A valid sequence corresponds to a path through the trellis, and the number of

S
XO

53
0 ©

Figure 17.2. (a) State diagram for
channel A. (b) Trellis section. (c)
Trellis. (d) Connection matrix.

Figure 17.3. State diagrams, trellis
sections and connection matrices
for channels B and C.

252 17 — Communication over Constrained Noiseless Channels

Figure 17.4. Counting the number
of paths in the trellis of channel
A. The counts next to the nodes
are accumulated by passing from

1 1 1 1 1 2
o O, @ ©) @ ©)

/ / >< / >< >< left to right across the trellises.
Oo—0© O—0O0— 0O O © © ©
1 1 2 1 2 3

My=2 My=2 My=3 My=2 My;=3 M3z=5

My=2 My=3 Mz=5 M;=8 Ms;=13 Mg=21 M;=34 Ms=55
1 1 2 3 5 8 13 21
/ ®><®><®><®><®><®><®><®
© © © © © © © © ©
1 2 3 5 8 13 21 34

My =2 My=3 DMs=5 Ms=8 Ms=13 Meg=21 M;=34 Mg=

(a) Channel A

(b) Channel B 2 3 4 6 10 1
1 1 2 4 7
® ® ® ® ®
1 2 3 4 6
© © © © ©
1 1 2 4 7

My=1 My=2 Mz=3 M;=5 M;=8 Mg=13 M;=21 Mg=34

(c) Channel C 1 1 2 2 4 7
®) ©) © @) @) @) @) @)
1 1 2 2 4 7 10

® ® ® ® ® ® ® ®

1 1 1 3 4 (] 11

© © © © © © © ©

1 1 1 3 4 6

Figure 17.5. Counting the number of paths in the trellises of channels A, B, and C. We assume that at
the start the first bit is preceded by 00, so that for channels A and B, any initial character
is permitted, but for channel C, the first character must be a 1.

17.3: Counting the number of possible messages

n M, M,/M,_1 logy M, % logy M,
1 2 1.0 1.00
2 3 1.500 1.6 0.79
3 5 1.667 2.3 0.77
4 8 1.600 3.0 0.75
5 13 1.625 3.7 0.74
6 21 1.615 4.4 0.73
7 34 1.619 5.1 0.73
8 55 1.618 5.8 0.72
9 89 1.618 6.5 0.72
10 144 1.618 7.2 0.72
11 233 1.618 7.9 0.71
12 377 1.618 8.6 0.71
100 9x10% 1.618 69.7 0.70
200 Tx104 1.618 139.1 0.70
300 6x1062 1.618 208.5 0.70
400 5x1083 1.618 277.9 0.69

valid sequences is the number of paths. For the purpose of counting how many
paths there are through the trellis, we can ignore the labels on the edges and
summarize the trellis section by the connection matrix A, in which Ay =1
if there is an edge from state s to s’, and A,y = 0 otherwise (figure 17.2d).
Figure 17.3 shows the state diagrams, trellis sections and connection matrices
for channels B and C.

Let’s count the number of paths for channel A by message-passing in its
trellis. Figure 17.4 shows the first few steps of this counting process, and
figure 17.5a shows the number of paths ending in each state after n steps for
n = 1...8. The total number of paths of length n, M,, is shown along the
top. We recognize M,, as the Fibonacci series.

Exercise 17.6.[1] Show that the ratio of successive terms in the Fibonacci series
tends to the golden ratio,

14+5
2

=1.618. (17.11)

ol

Thus, to within a constant factor, My scales as My ~ vY as N — oo, so the
capacity of channel A is

1
C = lim - log, [constant - 4] = log, y = log, 1.618 = 0.694. (17.12)
How can we describe what we just did? The count of the number of paths
is a vector ¢(™; we can obtain ¢t from ¢ using:
M) = Ac), (17.13)

So

™) = AN, (17.14)
where ¢(© is the state count before any symbols are transmitted. In figure 17.5
we assumed ¢(©) = [0,1]7, i.e., that either of the two symbols is permitted at
the outset. The total number of paths is M;, =", cgn) = ¢ .n. In the limit,
c™ becomes dominated by the principal right-eigenvector of A.

c¢™) = constant -)\{Ve(RO). (17.15)

253

Figure 17.6. Counting the number
of paths in the trellis of channel A.

254 17 — Communication over Constrained Noiseless Channels

Here, A1 is the principal eigenvalue of A.
So to find the capacity of any constrained channel, all we need to do is find

t
the principal eigenvalue, A1 of its connection matrix. Then
1
Z1 <§| 20
C = 10g2 /\1. (17.16) | T

—»@4— S

17.4 Back to our model channels
1
Comparing figure 17.5a and figure 17.5b and c it looks as if channels B and C Z1(D] %0
have the same capacity as channel A. The principal eigenvalues of the three l l
trellises are the same (the eigenvectors for channels A and B are given at the —®— s
bottom of table C.4, p.608). And indeed the channels are intimately related.

t

Figure 17.7. An accumulator and
a differentiator.
Equivalence of channels A and B

If we take any valid string s for channel A and pass it through an accumulator,
obtaining t defined by:

t1=81

tn th—1+ Sp mod2 forn > 27 (1717)

then the resulting string is a valid string for channel B, because there are no
11s in s, so there are no isolated digits in t. The accumulator is an invertible
operator, so, similarly, any valid string t for channel B can be mapped onto a
valid string s for channel A through the binary differentiator,

S1 = tl
Sp = tp—tpn_1mod2 forn > 2. (17.18)
Because + and — are equivalent in modulo 2 arithmetic, the differentiator is
also a blurrer, convolving the source stream with the filter (1,1).

Channel C is also intimately related to channels A and B.

<(s)

> Exercise 17.7.[0 P257) What is the relationship of channel C to channels A °
and B? 1 00000
2 10000
) o _ 3 01000
17.5 Practical communication over constrained channels 4 00100
. . . . 5 00010
OK, how to do it in practice? Since all three channels are equivalent, we can 6 10100
concentrate on channel A. 7 01010
8 10010

Fized-length solutions
Table 17.8. A runlength-limited
We start with explicitly-enumerated codes. The code in the table 17.8 achieves code for channel A.

a rate of 3/5 = 0.6.

> Exercise 17.8.[1 P-257] Similarly, enumerate all strings of length 8 that end in
the zero state. (There are 34 of them.) Hence show that we can map 5
bits (32 source strings) to 8 transmitted bits and achieve rate 58 = 0.625.

What rate can be achieved by mapping an integer number of source bits
to N = 16 transmitted bits?

17.5: Practical communication over constrained channels

Optimal variable-length solution

The optimal way to convey information over the constrained channel is to find
the optimal transition probabilities for all points in the trellis, Q|,, and make
transitions with these probabilities.

When discussing channel A, we showed that a sparse source with density
f = 0.38, driving code C5, would achieve capacity. And we know how to
make sparsifiers (Chapter 6): we design an arithmetic code that is optimal
for compressing a sparse source; then its associated decoder gives an optimal
mapping from dense (i.e., random binary) strings to sparse strings.

The task of finding the optimal probabilities is given as an exercise.

Exercise 17.9.1%] Show that the optimal transition probabilities Q can be found
as follows.

Find the principal right- and left-eigenvectors of A, that is the solutions
of Ae(® = xe® and eP'A = Xe)" with largest eigenvalue A. Then
construct a matrix Q whose invariant distribution is proportional to
(R) (L)
e e

,» namely
(L)
€. A /
Qo = 2L—25, (17.19)
s'|s)\egL)
mt: exercise 16.2 (p. might give helpful cross-fertilization here.
Hi ise 16.2 245 ight give helpful fertilization h

> Exercise 17.10.1% P2%8] Show that when sequences are generated using the op-
timal transition probability matrix (17.19), the entropy of the resulting
sequence is asymptotically logy A per symbol. [Hint: consider the condi-
tional entropy of just one symbol given the previous one, assuming the
previous one’s distribution is the invariant distribution.]

In practice, we would probably use finite-precision approximations to the
optimal variable-length solution. One might dislike variable-length solutions
because of the resulting unpredictability of the actual encoded length in any
particular case. Perhaps in some applications we would like a guarantee that
the encoded length of a source file of size N bits will be less than a given
length such as N/(C + ¢€). For example, a disk drive is easier to control if
all blocks of 512 bytes are known to take exactly the same amount of disk
real-estate. For some constrained channels we can make a simple modification
to our variable-length encoding and offer such a guarantee, as follows. We
find two codes, two mappings of binary strings to variable-length encodings,
having the property that for any source string x, if the encoding of x under
the first code is shorter than average, then the encoding of x under the second
code is longer than average, and vice versa. Then to transmit a string x we
encode the whole string with both codes and send whichever encoding has the
shortest length, prepended by a suitably encoded single bit to convey which
of the two codes is being used.

> Exercise 17.11.[3C P-258] oy many valid sequences of length 8 starting with
a 0 are there for the run-length-limited channels shown in figure 17.97

What are the capacities of these channels?

Using a computer, find the matrices Q for generating a random path
through the trellises of the channel A, and the two run-length-limited
channels shown in figure 17.9.

255

010
0 0 1
1 11
010 0
0 010
0 0 01
1 111

Figure 17.9. State diagrams and

connection matrices for channels
with maximum runlengths for 1s
equal to 2 and 3.

256 17 — Communication over Constrained Noiseless Channels

> Exercise 17.12.[% P-258] Consider the run-length-limited channel in which any
length of run of 0s is permitted, and the maximum run length of 1s is a
large number L such as nine or ninety.

Estimate the capacity of this channel. (Give the first two terms in a
series expansion involving L.)

What, roughly, is the form of the optimal matrix Q for generating a
random path through the trellis of this channel? Focus on the values of
the elements Q;o, the probability of generating a 1 given a preceding 0,
and Qr 1, the probability of generating a 1 given a preceding run of
L—1 1s. Check your answer by explicit computation for the channel in
which the maximum runlength of 1s is nine.

17.6 Variable symbol durations

We can add a further frill to the task of communicating over constrained
channels by assuming that the symbols we send have different durations, and
that our aim is to communicate at the maximum possible rate per unit time.
Such channels can come in two flavours: unconstrained, and constrained.

Unconstrained channels with variable symbol durations

We encountered an unconstrained noiseless channel with variable symbol du-
rations in exercise 6.18 (p.125). Solve that problem, and you’ve done this
topic. The task is to determine the optimal frequencies with which the sym-
bols should be used, given their durations.

There is a nice analogy between this task and the task of designing an
optimal symbol code (Chapter 4). When we make an binary symbol code
for a source with unequal probabilities p;, the optimal message lengths are
17 = logy Ypi, so

pi=2"4, (17.20)

Similarly, when we have a channel whose symbols have durations /; (in some
units of time), the optimal probability with which those symbols should be
used is

pr =214 (17.21)

where is the capacity of the channel in bits per unit time.

Constrained channels with variable symbol durations

Once you have grasped the preceding topics in this chapter, you should be
able to figure out how to define and find the capacity of these, the trickiest
constrained channels.

Exercise 17.13.1%] A classic example of a constrained channel with variable
symbol durations is the ‘Morse’ channel, whose symbols are

the dot d,
the dash D,
the short space (used between letters in morse code) s, and
the long space (used between words) S;

the constraints are that spaces may only be followed by dots and dashes.

Find the capacity of this channel in bits per unit time assuming (a) that
all four symbols have equal durations; or (b) that the symbol durations
are 2, 4, 3 and 6 time units respectively.

17.7

17.7: Solutions

Exercise 17.14.14] How well-designed is Morse code for English (with, say, the
probability distribution of figure 2.1)?

Exercise 17.15.1C] How difficult is it to get DNA into a narrow tube?

To an information theorist, the entropy associated with a constrained
channel reveals how much information can be conveyed over it. In sta-
tistical physics, the same calculations are done for a different reason: to
predict the thermodynamics of polymers, for example.

As a toy example, consider a polymer of length N that can either sit
in a constraining tube, of width L, or in the open where there are no
constraints. In the open, the polymer adopts a state drawn at random
from the set of one dimensional random walks, with, say, 3 possible
directions per step. The entropy of this walk is log 3 per step, i.e., a
total of Nlog3. [The free energy of the polymer is defined to be kT
times this, where T is the temperature.] In the tube, the polymer’s one-
dimensional walk can go in 3 directions unless the wall is in the way, so
the trellis section is, for example (if L = 10),

1'10000O0O0O0O
1110000000
0111000O0O0O0
0011100O0O0TO0
00011100°O0°FO0

000O0O0OO0OO0OT1T171
000O0O0OO0OOTOT11

Now, what is the entropy of the polymer? What is the change in entropy
associated with the polymer entering the tube? If possible, obtain an
expression as a function of L. Use a computer to find the entropy of the
walk for a particular value of L, e.g. 20, and plot the probability density
of the polymer’s transverse location in the tube.

Notice the difference in capacity between two channels, one constrained
and one unconstrained, is directly proportional to the force required to
pull the DNA into the tube.

Solutions

Solution to exercise 17.5 (p.250). A file transmitted by Cy contains, on aver-
age, one-third 1s and two-thirds Os.
If f = 0.38, the fraction of 1sis f/(1+ f) = (y—1.0)/(2y —1.0) = 0.2764.

Solution to exercise 17.7 (p.254). A valid string for channel C can be obtained
from a valid string for channel A by first inverting it [1 — 0; 0 — 1], then
passing it through an accumulator. These operations are invertible, so any
valid string for C can also be mapped onto a valid string for A. The only
proviso here comes from the edge effects. If we assume that the first character
transmitted over channel C is preceded by a string of zeroes, so that the first
character is forced to be a 1 (figure 17.5¢) then the two channels are exactly
equivalent only if we assume that channel A’s first character must be a zero.

Solution to exercise 17.8 (p.254). With N = 16 transmitted bits, the largest
integer number of source bits that can encoded is 10, so the maximum rate of
a fixed length code with V = 16 is 0.625.

257

Figure 17.10. Model of DNA
squashed in a narrow tube. The
DNA will have a tendency to pop
out of the tube, because, outside
the tube, its random walk has
greater entropy.

258 17 — Communication over Constrained Noiseless Channels

Solution to exercise 17.10 (p.255). Let the invariant distribution be
P(s) = aell el (17.22)

where « is a normalization constant. The entropy of Sy given S;_1, assuming Here, as in Chapter 4, S; denotes the

S;_1 comes from the invariant distribution, is ensemble whose random variable is
the state sq.

H(S|Si—1) = —>_ P(s) s)log P(s]s) (17.23)
5,8’
- (L)A”l e Ay 17.24
= —st;ae D og D (17.24)
= - Zae [log e(,) 4 log Ay —log A — log egL)} . (17.25)

Now, Ay is either 0 or 1, so the contributions from the terms proportional to
Agslog Ay are all zero. So

H(SSi-1) = logh+—— Z (Z Ay se(R)) 62{3) log eilL) i

Z(Ze)ASS> ™ log e(H) (17.26)

= log\—— Z)\e,e,)loge + = Z)\e R)loge(L) (17.27)

log . (17.28)

Solution to exercise 17.11 (p.255). The principal eigenvalues of the connection
matrices of the two channels are 1.839 and 1.928. The capacities (log \) are
0.879 and 0.947 bits.

Solution to exercise 17.12 (p.256). The channel is similar to the unconstrained
binary channel; runs of length greater than L are rare if L is large, so we only
expect weak differences from this channel; these differences will show up in
contexts where the run length is close to L. The capacity of the channel is
very close to one bit.

A lower bound on the capacity is obtained by considering the simple
variable-length code for this channel which replaces occurrences of the maxi-
mum runlength string 111...1 by 111...10, and otherwise leaves the source file
unchanged. The average rate of this code is 1/(1+27%) because the invariant
distribution will hit the ‘add an extra zero’ state a fraction 27 of the time.

We can reuse the solution for the variable-length channel in exercise 6.18
(p-125). The capacity is the value of § such that the equation

L+1
Z3) =Y 2=1 (17.29)
=1
is satisfied. The L+1 terms in the sum correspond to the L+1 possible strings N
. . . n o af N+1 _ 1)
that can be emitted, 0, 10, 110, ..., 11...10. The sum is exactly given by: Zar i —
n=0
L+1
(7)) -1
A e R A— (17.30)

28 —1

17.7: Solutions

We anticipate that § should be a little less than 1 in order for Z(3) to equal
1. Rearranging and solving approximately for 3, using In(1 + z) ~ z,

Zp) =1 (17.31)
=0 ~ 1-27E2) /o (17.32)

We evaluated the true capacities for L = 2 and L = 3 in an earlier exercise.
The table compares the approximate capacity 8 with the true capacity for a
selection of values of L.

The element Q19 will be close to 1/2 (just a tiny bit larger), since in the
unconstrained binary channel Qo = 1/2. When a run of length L — 1 has
occurred, we effectively have a choice of printing 10 or 0. Let the probability of
selecting 10 be f. Let us estimate the entropy of the remaining N characters
in the stream as a function of f, assuming the rest of the matrix Q to have
been set to its optimal value. The entropy of the next N characters in the
stream is the entropy of the first bit, Hy(f), plus the entropy of the remaining
characters, which is roughly (N —1) bits if we select 0 as the first bit and
(N —2) bits if 1 is selected. More precisely, if C' is the capacity of the channel
(which is roughly 1),

H(the next N chars) ~ Hy(f)+[(N—-1)1—f)+(N—-2)f]C
= Hy(f)+ NC — fC ~ Hso(f)+ N — f.(17.33)
Differentiating and setting to zero to find the optimal f, we obtain:

10g21}f:1 :%:2 = f~1/3. (17.34)

The probability of emitting a 1 thus decreases from about 0.5 to about 1/3 as
the number of emitted 1s increases.
Here is the optimal matrix:

[0.3334 O 0 0 0 0 0 0 0 7
0 0 .4287 O 0 0 0 0 0 0
0 0 0 .4669 0 0 0 0 0 0
0 O 0 0 4841 O 0 0 0 0
0 O 0 0 0 .4923 0 0 0 0
0 0 0 0 0 0 .4963 O 0 0 (17:35)
0 O 0 0 0 0 0 4983 0 0
0 O 0 0 0 0 0 0 4993 0
0 0 0 0 0 0 0 0 0 .4998
1

.6666 .5713 .5331 .5159 .5077 .5037 .5017 .5007 .5002]

Our rough theory works.

259

L B True capacity
2 0.910 0.879

3 0.955 0.947

4 0977 0.975

5 0.9887 0.9881

6 0.9944 0.9942

9 0.9993 0.9993

18.1

18

Crosswords and Codebreaking

In this chapter we make a random walk through a few topics related to lan-
guage modelling.

Crosswords

The rules of crossword-making may be thought of as defining a constrained
channel. The fact that many valid crosswords can be made demonstrates that
this constrained channel has a capacity greater than zero.

There are two archetypal crossword formats. In a ‘type A’ (or American)
crossword, every row and column consists of a succession of words of length 2
or more separated by one or more spaces. In a ‘type B’ (or British) crossword,
each row and column consists of a mixture of words and single characters,
separated by one or more spaces, and every character lies in at least one word
(horizontal or vertical). Whereas in a type A crossword every letter lies in a
horizontal word and a vertical word, in a typical type B crossword only about
half of the letters do so; the other half lie in one word only.

Type A crosswords are harder to create than type B because of the con-
straint that no single characters are permitted. Type B crosswords are gener-
ally harder to solve because there are fewer constraints per character.

Why are crosswords possible?

If a language has no redundancy, then any letters written on a grid form a
valid crossword. In a language with high redundancy, on the other hand, it
is hard to make crosswords (except perhaps a small number of trivial ones).
The possibility of making crosswords in a language thus demonstrates a bound
on the redundancy of that language. Crosswords are not normally written
in genuine English. They are written in the ‘word-English’, the language
consisting of strings of words from a dictionary, separated by spaces.

Exercise 18.1.12] Estimate the capacity of word-English, in bits per character.
[Hint: think of word-English as defining a constrained channel (Chapter
17) and see exercise 6.18 (p.125).]

The fact that many crosswords can be made leads to a lower bound on the
entropy of word-English.

For simplicity, we now model word-English by Wenglish, the language in-
troduced in section 4.1 which consists of W words all of length L. The entropy
of such a language, per character, including inter-word spaces, is:

_ logy W

Hy = . 18.1
=T (18.1)

260

D[AT s[als]s
ulFlo [[L[1]A
FlA[T B|O[R[B
F[R[O T[H[E[R
M E[A[S[E
s[t[ofo R [
ThLT KLY
U[T[A[H E[R[A[S
D[O|V][E C[NJo[T[E
TR M[A[N[N[E[R
G|A[R[G M[TR]Y
[o[r]o ClAIS|TIM Y [E[A
L1 [D[oMB[R[O[T[H[E|R[R[A[T
DIEIE[SEA[O[R[T[AMA[E[R[O
SIUIRIEMMSITIEE[PIMHIEIL|M
BlAIN[GIE[RIMBIATKIE[R[1TE[S
[V A T O [R I T RO L |
NN H M EHEE M
NI OB €|
[CIAIN[O[ERRIHIAPISIOID]
[EININTIIFIE[RIESITIE[P]S]
[T I X | P |
ITIC[RIAICIKIE[R]
A AU R]
I TITILIE[S[T[AIR]
E [EI e
BIR[I[SIT[L|E[SIMAIU[S|T[E[N

Figure 18.1. Crosswords of types
A (American) and B (British).

18.1: Crosswords

We'll find that the conclusions we come to depend on the value of Hy, and
are not terribly sensitive to the value of L. Consider a large crossword of size
S squares in area. Let the number of words be f,,S and let the number of
letter-occupied squares be f1.5. For typical crosswords of types A and B made
of words of length L, the two fractions f,, and fi have roughly the values in
table 18.2.

We now estimate how many crosswords there are of size S using our simple
model of Wenglish. We assume that Wenglish is created at random by gener-
ating W strings from a monogram (i.e., memoryless) source with entropy Hyp.
If, for example, the source used all A = 26 characters with equal probability
then Hp = logy A = 4.7 bits. If instead we use Chapter 2’s distribution then
the entropy is 4.2. The redundancy of Wenglish stems from these two sources:
it tends to use some letters more than others; and there are only W words in
the dictionary.

Let’s now count how many crosswords there are by imagining filling in
the squares of a crossword at random using the same distribution that pro-
duced the Wenglish dictionary and evaluating the probability that this random
scribbling produces valid words in all rows and columns. The total number of
typical fillings-in of the f1.5 squares in the crossword that can be made is

|T| = 2f15Ho, (18.2)
The probability that one word of length L is validly filled in is

w

8= i (18.3)

and the probability that the whole crossword, made of f,,S words, is validly
filled in by a single typical in-filling is

Bws, (18.4)
So the log of the number of valid crosswords of size S is estimated to be

log B7S|T| = S[(fi — fwL)Ho+ fulog W]log g7=5|T| (18.5)
= S[(fi— fwl)Ho+ fu(L +1)H,] (18.6)

which is an increasing function of S only if
(/1 = ful)Ho + fu(L + 1)Hy > 0. (18.7)

So arbitrarily many crosswords can be made only if there’s enough words in
the Wenglish dictionary that

(fwLl — f1)

Plugging in the values of f; and f,, from previous page, we find the following.

Crossword type A B

" 1_L 1 L
Condition for crosswords Hw > 5:57Ho Hw > 37:7Ho

If we set Hy = 4.2 bits and assume there are W = 4000 words in a normal
English-speaker’s dictionary, all with length L = 5, then we find that the
condition for crosswords of type B is satisfied, but the condition for crosswords
of type A is only just satisfied. This fits with my experience that crosswords
of type A usually contain more obscure words.

261
B
2 1
e 51 I31
L 3 L
T 1Tqa

Table 18.2. Factors f,, and fi; by
which the number of words and
number of letter-squares
respectively are smaller than the
total number of squares.

18.2

262 18 — Crosswords and Codebreaking

Further reading

These observations about crosswords were first made by Shannon; I learned
about them from Wolf and Siegel (1998). The topic is closely related to
the capacity of two-dimensional constrained channels. An example of a two-
dimensional constrained channel is a two-dimensional bar-code, as seen on
parcels.

Exercise 18.2.1%] A two-dimensional channel is defined by the constraint that,
of the eight neighbours of every interior pixel in an N x N rectangular
grid, four must be black and four white. (The counts of black and white
pixels around boundary pixels are not constrained.) A binary pattern
satisfying this constraint is shown in figure 18.3. What is the capacity
of this channel, in bits per pixel, for large N?

Simple language models

The Zipf-Mandelbrot distribution

The crudest model for a language is the monogram model, which asserts that
each successive word is drawn independently from a distribution over words.
What is the nature of this distribution over words?

Zipf’s law (Zipf, 1949) asserts that the probability of the rth most probable
word in a language is approximately

Py =2, (18.9)

where the exponent a has a value close to 1, and « is a constant. According
to Zipf, a log—log plot of frequency versus word-rank should show a straight
line with slope —a.

Mandelbrot’s (1982) modification of Zipf’s law introduces a third param-
eter v, asserting that the probabilities are given by

K

P(r) = o (18.10)
For some documents, such as Jane Austen’s Emma, the Zipf-Mandelbrot dis-
tribution fits well — figure 18.4.

Other documents give distributions that are not so well fitted by a Zipf—
Mandelbrot distribution. Figure 18.5 shows a plot of frequency versus rank for
the IXTEX source of this book. Qualitatively, the graph is similar to a straight
line, but a curve is noticeable. To be fair, this source file is not written in
pure English — it is a mix of English, maths symbols such as ‘z’, and IXTEX
commands.

tot hea%q

0.01
0. 001
i nf or mati on
0. 0001 robabi lity
le- 05

1 10 100 1000 10000

Figure 18.3. A binary pattern in
which every pixel is adjacent to
four black and four white pixels.

Figure 18.4. Fit of the
Zipf-Mandelbrot distribution
(18.10) (curve) to the empirical
frequencies of words in Jane
Austen’s Emma (dots). The fitted
parameters are k = 0.56; v = 8.0;
o =1.26.

18.2: Simple language models 263

0.1

.t hef Figure 18.5. Log—log plot of
° 'a.i,s' « frequency versus rank for the
0.01 RS words in the WTEX file of this
book.
0.001
0. 0001
0.00001 -
1 10 100 1000
N Figure 18.6. Zipf plots for four
01 - ‘languages’ randomly generated
001 N from Dirichlet processes with
’ x‘“a‘x‘@lphazloo parameter o ranging from 1 to
0.001 1000. Also shown is the Zipf plot

alpha=1000 for this book.
0.0001

0.00001 - book

1 10 100 1000 10000

The Dirichlet process

Assuming we are interested in monogram models for languages, what model
should we use? One difficulty in modelling a language is the unboundedness
of vocabulary. The greater the sample of language, the greater the number
of words encountered. A generative model for a language should emulate
this property. If asked ‘what is the next word in a newly-discovered work
of Shakespeare?’ our probability distribution over words must surely include
some non-zero probability for words that Shakespeare never used before. Our
generative monogram model for language should also satisfy a consistency
rule called exchangeability. If we imagine generating a new language from
our generative model, producing an ever-growing corpus of text, all statistical
properties of the text should be homogeneous: the probability of finding a
particular word at a given location in the stream of text should be the same
everywhere in the stream.

The Dirichlet process model is a model for a stream of symbols (which we
think of as ‘words’) that satisfies the exchangeability rule and that allows the
vocabulary of symbols to grow without limit. The model has one parameter
«. As the stream of symbols is produced, we identify each new symbol by a
unique integer w. When we have seen a stream of length F' symbols, we define
the probability of the next symbol in terms of the counts {F,,} of the symbols
seen so far thus: the probability that the next symbol is a new symbol, never

seen before, is
e

: 18.11
F+a ()
The probability that the next symbol is symbol w is
Fy
. 18.12
F+a ()

Figure 18.6 shows Zipf plots (i.e., plots of symbol frequency versus rank) for
million-symbol ‘documents’ generated by Dirichlet process priors with values
of a ranging from 1 to 1000.

It is evident that a Dirichlet process is not an adequate model for observed
distributions that roughly obey Zipf’s law.

18.3

264 18 — Crosswords and Codebreaking

0.1 |*
..,
0.01 S
~
0.001
0.0001
0.00001 -

1 10 100 1000 10000

With a small tweak, however, Dirichlet processes can produce rather nice
Zipf plots. Imagine generating a language composed of elementary symbols
using a Dirichlet process with a rather small value of the parameter a, so that
the number of reasonably frequent symbols is about 27. If we then declare
one of those symbols (now called ‘characters’ rather than words) to be a space
character, then we can identify the strings between the space characters as
‘words’. If we generate a language in this way then the frequencies of words
often come out as very nice Zipf plots, as shown in figure 18.7. Which character
is selected as the space character determines the slope of the Zipf plot — a less
probable space character gives rise to a richer language with a shallower slope.

Units of information content

The information content of an outcome, z, whose probability is P(x), is defined
to be

h(xz) =1 . 18.1
(@) = log (18.13)
The entropy of an ensemble is an average information content,
1
H(X)=) P(x)log——. 18.14
() = 3 Ple) log 55 (18.14)

When we compare hypotheses with each other in the light of data, it is of-
ten convenient to compare the log of the probability of the data under the
alternative hypotheses,

‘log evidence for H;’ = log P(D|H,), (18.15)

or, in the case where just two hypotheses are being compared, we evaluate the
‘log odds’, (D)
P(D|H;

log P(D[Hs)’ (18.16)
which has also been called the ‘weight of evidence in favour of H;’. The log ev-
idence for a hypothesis, log P(D|H;) is the negative of the information content
of the data D: if the data have large information content, given a hypothesis,
then they are surprising to that hypothesis; if some other hypothesis is not
so surprised by the data, then that hypothesis becomes more probable. ‘In-
formation content’, ‘surprise value’, and log likelihood or log evidence are the
same thing.

All these quantities are logarithms of probabilities, or weighted sums of
logarithms of probabilities, so they can all be measured in the same units.
The units depend on the choice of the base of the logarithm.

The names that have been given to these units are shown in table 18.8.

Figure 18.7. Zipf plots for the
words of two ‘languages’
generated by creating successive
characters from a Dirichlet
process with o = 2, and declaring
one character to be the space
character. The two curves result
from two different choices of the
space character.

18.4

18.4: A taste of Banburismus

Unit Expression that has those units
bit logy p
nat log,. p
ban log,op
deciban (db) 10loggp

The bit is the unit that we use most in this book. Because the word ‘bit’
has other meanings, a backup name for this unit is the shannon. A byte is
8 bits. A megabyte is 229 ~ 106 bytes. If one works in natural logarithms,
information contents and weights of evidence are measured in nats. The most
interesting units are the ban and the deciban.

The history of the ban

Let me tell you why a factor of ten in probability is called a ban. When Alan
Turing and the other codebreakers at Bletchley Park were breaking each new
day’s Enigma code, their task was a huge inference problem: to infer, given
the day’s cyphertext, which three wheels were in the Enigma machines that
day; what their starting positions were; what further letter substitutions were
in use on the steckerboard; and, not least, what the original German messages
were. These inferences were conducted using Bayesian methods (of course!),
and the chosen units were decibans or half-decibans, the deciban being judged
the smallest weight of evidence discernible to a human. The evidence in favour
of particular hypotheses was tallied using sheets of paper that were specially
printed in Banbury, a town about 30 miles from Bletchley. The inference task
was known as Banburismus, and the units in which Banburismus was played
were called bans, after that town.

A taste of Banburismus

The details of the code-breaking methods of Bletchley Park were kept secret
for a long time, but some aspects of Banburismus can be pieced together.
I hope the following description of a small part of Banburismus is not too
inaccurate.’!

How much information was needed? The number of possible settings of
the Enigma machine was about 8 x 10'2. To deduce the state of the machine,
‘it was therefore necessary to find about 129 decibans from somewhere’; as
Good puts it. Banburismus was aimed not at deducing the entire state of the
machine, but only at figuring out which wheels were in use; the logic-based
bombes, fed with guesses of the plaintext (cribs), were then used to crack what
the settings of the wheels were.

The Enigma machine, once its wheels and plugs were put in place, im-
plemented a continually-changing permutation cypher that wandered deter-
ministically through a state space of 263 permutations. Because an enormous
number of messages were sent each day, there was a good chance that what-
ever state one machine was in when sending one character of a message, there
would be another machine in the same state while sending a particular char-
acter in another message. Because the evolution of the machine’s state was
deterministic, the two machines would remain in the same state as each other

've been most helped by descriptions given by Tony Sale (http://www.
codesandciphers.org.uk/lectures/) and by Jack Good (1979), who worked with Turing
at Bletchley.

265

Table 18.8. Units of measurement
of information content.

266 18 — Crosswords and Codebreaking

for the rest of the transmission. The resulting correlations between the out-
puts of such pairs of machines provided a dribble of information-content from
which Turing and his co-workers extracted their daily 129 decibans.

How to detect that two messages came from machines with a common
state sequence

The hypotheses are the null hypothesis, Hg, which states that the machines
are in different states, and that the two plain messages are unrelated; and the
‘match’ hypothesis, H1, which says that the machines are in the same state,
and that the two plain messages are unrelated. No attempt is being made
here to infer what the state of either machine is. The data provided are the
two cyphertexts x and y; let’s assume they both have length T" and that the
alphabet size is A (26 in Enigma). What is the probability of the data, given
the two hypotheses?
First, the null hypothesis. This hypothesis asserts that the two cyphertexts
are given by
X =T1X2x3... = Cl(Ul)CQ(UQ)Cg(U3) o (1817)

and
Y = y1y2ys ... = ¢ (v1)ch(va)ch(vs) . ..y (18.18)

where the codes ¢; and ¢, are two unrelated time-varying permutations of the
alphabet, and ujusus ... and vivovs ... are the plaintext messages. An exact
computation of the probability of the data (x,y) would depend on a language
model of the plain text, and a model of the Enigma machine’s guts, but if we
assume that each Enigma machine is an ideal random time-varying permuta-
tion, then the probability distribution of the two cyphertexts is uniform. All
cyphertexts are equally likely.

1 2T
P(x,y|Ho) = (Z) for all x,y of length 7T (18.19)

What about H;? This hypothesis asserts that a single time-varying permuta-
tion ¢; underlies both

X = 212273 ... = c1(ug)ca(uz)cs(us) . .. (18.20)

and
Y =y1y2y3 ... = c1(v1)ea(va)es(vs) (18.21)

What is the probability of the data (x,y)? We have to make some assumptions
about the plaintext language. If it were the case that the plaintext language
was completely random, then the probability of ujusug ... and viv9vs ... would
be uniform, and so would that of x and y, so the probability P(x,y|H1)
would be equal to P(x,y|Ho), and the two hypotheses Hy and H; would be
indistinguishable.

We make progress by assuming that the plaintext is not completely ran-
dom. Both plaintexts are written in a language, and that language has redun-
dancies. Assume for example that particular plaintext letters are used more
often than others. So, even though the two plaintext messages are unrelated,
they are slightly more likely to use the same letters as each other; if H; is true,
two synchronized letters from the two cyphertexts are slightly more likely to
be identical. Similarly, if a language uses particular bigrams and trigrams
frequently, then the two plaintext messages will occasionally contain the same
bigrams and trigrams at the same time as each other, giving rise, if Hj is true,

18.4: A taste of Banburismus 267

u LITTLE-JACK-HORNER-SAT-IN-THE-CORNER-EATING-A-CHRISTMAS-PIE--HE-PUT-IN-H
v RIDE-A-COCK-HORSE-TO-BANBURY-CROSS-TO-SEE-A-FINE-LADY-UPON-A-WHITE-HORSE
matches: k... k. ckkkokokk kL L L L. L. Kot Ko Ko

Table 18.9. Two aligned pieces of
English plaintext, u and v, with
matches marked by *. Notice that
there are twelve matches,
including a run of six, whereas the

to a little burst of 2 or 3 identical letters. Table 18.9 shows such a coinci-
dence in two plaintext messages that are unrelated, except that they are both
written in English.

The codebreakers hunted among pairs of messages for pairs that were sus- expected number of matches in
piciously similar to each other, counting up the numbers of matching mono- two completely random strings of
grams, bigrams, trigrams, etc. This method was first used by the Polish length T' = 74 would be about 3.
codebreaker Rejewski. The two corresponding

Let’s look at the simple case of a monogram language model and estimate prh?rtem from two machines in
how long a message is needed to be able to decide whether two machines identical states would also have
. . . twelve matches.
are in the same state. I'll assume the source language is monogram-English,
the language in which successive letters are drawn i.i.d. from the probability
distribution {p;} of figure 2.1. The probability of x and y is nonuniform:
consider two single characters, z; = ¢/(u;) and y; = ¢(vi); the probability
that they are identical is

> Plug)P(v) Luy =vy] = Zpi =m. (18.22)

Ut,Vt

We give this quantity the name m, for ‘match probability’; for both English
and German, m is about 2/26 rather than 1/26 (the value that would hold
for a completely random language). Assuming that ¢; is an ideal random
permutation, the probability of z; and y; is, by symmetry,

m ifzt:yt

Pz, yH1) = { (12

18.23
AA—) for z; # y;. ()

Given a pair of cyphertexts x and y of length 7" that match in M places and
do not match in N places, the log evidence in favour of H; is then

(1=m)

P(x,y|H1) m/A A(A—1)
log YT N1 18.24
°8 B, y[Ho) 2y TN (1824)
1—m)A
- MlogmA+Nlog%. (18.25)

Every match contributes logmA in favour of Hj; every non-match contributes

log ﬂé—;nl)A in favour of Hy.

Match probability for monogram-English m 0.076
Coincidental match probability 1/A 0.037
log-evidence for H; per match 10logg mA 3.1db
log-evidence for H; per non-match 101ogyq % —0.18db

If there were M = 4 matches and N = 47 non-matches in a pair of length
T = 51, for example, the weight of evidence in favour of H; would be +4
decibans, or a likelihood ratio of 2.5 to 1 in favour.

The expected weight of evidence from a line of text of length T = 20
characters is the expectation of (18.25), which depends on whether H; or Hy
is true. If H; is true then matches are expected to turn up at rate m, and the
expected weight of evidence is 1.4 decibans per 20 characters. If Hy is true
then spurious matches are expected to turn up at rate 1/A, and the expected

268 18 — Crosswords and Codebreaking

weight of evidence is —1.1 decibans per 20 characters. Typically, roughly 400
characters need to be inspected in order to have a weight of evidence greater
than a hundred to one (20 decibans) in favour of one hypothesis or the other.
So, two English plaintexts have more matches than two random strings.
Furthermore, because consecutive characters in English are not independent,
the bigram and trigram statistics of English are nonuniform and the matches
tend to occur in bursts of consecutive matches. [The same observations also
apply to German.] Using better language models, the evidence contributed
by runs of matches was more accurately computed. Such a scoring system
was worked out by Turing and refined by Good. Positive results were passed
on to automated and human-powered codebreakers. According to Good, the
longest false-positive that arose in this work was a string of 8 consecutive
matches between two machines that were actually in unrelated states.

Further reading

For further reading about Turing and Bletchley Park, see Hodges (1983) and
Good (1979). For an in-depth read about cryptography, Schneier’s (1996)
book is highly recommended. It is readable, clear, and entertaining.

18.5 Exercises

> Exercise 18.3.12] Another weakness in the design of the Enigma machine,
which was intended to emulate a perfectly random time-varying permu-
tation, is that it never mapped a letter to itself. When you press Q, what
comes out is always a different letter from Q. How much information per
character is leaked by this design flaw? How long a crib would be needed
to be confident that the crib is correctly aligned with the cyphertext?
And how long a crib would be needed to be able confidently to identify
the correct key?

[A crib is a guess for what the plaintext was. Imagine that the Brits
know that a very important German is travelling from Berlin to Aachen,
and they intercept Enigma-encoded messages sent to Aachen. It is a
good bet that one or more of the original plaintext messages contains
the string OBERSTURMBANNFUEHRERXGRAFXHEINRICHXVONXWEIZSAECKER,
the name of the important chap. A crib could be used in a brute-force
approach to find the correct Enigma key (feed the received messages
through all possible Engima machines and see if any of the putative
decoded texts match the above plaintext). This question centres on the
idea that the crib can also be used in a much less expensive manner:
slide the plaintext crib along all the encoded messages until a perfect
mismatch of the crib and the encoded message is found; if correct, this
alignment then tells you a lot about the key.]

19

Why have Sex? Information Acquisition
and Evolution

Evolution has been happening on earth for about the last 10? years. Un-
deniably, information has been acquired during this process. Thanks to the
tireless work of the Blind Watchmaker, some cells now carry within them all
the information required to be outstanding spiders; other cells carry all the
information required to make excellent octupuses. Where did this information
come from?

The entire blueprint of all organisms on the planet has emerged in a teach-
ing process in which the teacher is natural selection: fitter individuals have
more progeny, the fitness being defined by the local environment (including
the other organisms). The teaching signal is only a few bits per individual: an
individual simply has a smaller or larger number of grandchildren, depending
on the individual’s fitness. ‘Fitness’ is a broad term that could cover

e the ability of an antelope to run faster than other antelopes and hence
avoid being eaten by a lion;

e the ability of a lion to be well-enough camouflaged and run fast enough
to catch one antelope per day;

e the ability of a peacock to attract a peahen to mate with it;
e the ability of a peahen to rear many young simultaneously.

The fitness of an organism is largely determined by its DNA — both the coding
regions, or genes, and the non-coding regions (which play an important role
in regulating the transcription of genes). We’ll think of fitness as a function
of the DNA sequence and the environment.

How does the DNA determine fitness, and how does information get from
natural selection into the genome? Well, if the gene that codes for one of an
antelope’s proteins is defective, that antelope might get eaten by a lion early
in life and have only two grandchildren rather than forty. The information
content of natural selection is fully contained in a specification of which off-
spring survived to have children — an information content of at most one bit
per offspring. The teaching signal does not communicate to the ecosystem
any description of the imperfections in the organism that caused it to have
fewer children. The bits of the teaching signal are highly redundant, because,
throughout a species, unfit individuals who are similar to each other will be
failing to have offspring for similar reasons.

So, how many bits per generation are acquired by the species as a whole
by natural selection? How many bits has natural selection succeeded in con-
veying to the human branch of the tree of life, since the divergence between

269

270 19 — Why have Sex? Information Acquisition and Evolution

Australopithecines and apes 4000000 years ago? Assuming a generation time
of 10 years for reproduction, there have been about 400000 generations of
human precursors since the divergence from apes. Assuming a population of
10? individuals, each receiving a couple of bits of information from natural
selection, the total number of bits of information responsible for modifying
the genomes of 4 million B.C. into today’s human genome is about 8 x 104
bits. However, as we noted, natural selection is not smart at collating the
information that it dishes out to the population, and there is a great deal of
redundancy in that information. If the population size were twice as great,
would it evolve twice as fast? No, because natural selection will simply be
correcting the same defects twice as often.

John Maynard Smith has suggested that the rate of information acquisition
by a species is independent of the population size, and is of order 1 bit per
generation. This figure would only allow for 400 000 bits of difference between
apes and humans, a number that is much smaller than the total size of the
human genome — 6 x 10° bits. [One human genome contains about 3 x 10°
nucleotides.] It is certainly the case that the genomic overlap between apes
and humans is huge, but is the difference that small?

In this chapter, we’ll develop a crude model of the process of information
acquisition through evolution, based on the assumption that a gene with two
defects is typically likely to be more defective than a gene with one defect, and
an organism with two defective genes is likely to be less fit than an organism
with one defective gene. Undeniably, this is a crude model, since real biological
systems are baroque constructions with complex interactions. Nevertheless,
we persist with a simple model because it readily yields striking results.

What we find from this simple model is that

1. John Maynard Smith’s figure of 1 bit per generation is correct for an
asexually-reproducing population;

2. in contrast, if the species reproduces sexually, the rate of information
acquisition can be as large as VG bits per generation, where G is the
size of the genome.

We'll also find interesting results concerning the maximum mutation rate
that a species can withstand.

19.1 The model

We study a simple model of a reproducing population of N individuals with
a genome of size G bits: variation is produced by mutation or by recombina-
tion (i.e., sex) and truncation selection selects the N fittest children at each
generation to be the parents of the next. We find striking differences between
populations that have recombination and populations that do not.

The genotype of each individual is a vector x of G bits, each having a good
state 4 =1 and a bad state x4, =0. The fitness F'(x) of an individual is simply
the sum of her bits:

G
F(x) =Y . (19.1)
g=1

The bits in the genome could be considered to correspond either to genes
that have good alleles (z,=1) and bad alleles (x4 =0), or to the nucleotides
of a genome. We will concentrate on the latter interpretation. The essential
property of fitness that we are assuming is that it is locally a roughly linear
function of the genome, that is, that there are many possible changes one

19.2

19.2: Rate of increase of fitness

could make to the genome, each of which has a small effect on fitness, and
that these effects combine approximately linearly.

We define the normalized fitness f(x) = F(x)/G.

We consider evolution by natural selection under two models of variation.

Variation by mutation. The model assumes discrete generations. At each
generation, t, every individual produces two children. The children’s
genotypes differ from the parent’s by random mutations. Natural selec-
tion selects the fittest N progeny in the child population to reproduce,
and a new generation starts.

[The selection of the fittest N individuals at each generation is known
as truncation selection.]

The simplest model of mutations is that the child’s bits {z,} are in-
dependent. Each bit has a small probability of being flipped, which,
thinking of the bits as corresponding roughly to nucleotides, is taken to
be a constant m, independent of z,. [If alternatively we thought of the
bits as corresponding to genes, then we would model the probability of
the discovery of a good gene, P(xy=0 — x,=1), as being a smaller
number than the probability of a deleterious mutation in a good gene,
Plzg=1—2,=0)]

Variation by recombination (or crossover, or sex). Our organisms are
haploid, not diploid. They enjoy sex by recombination. The N individ-
uals in the population are married into M = N/2 couples, at random,
and each couple has C' children — with C'=4 children being our stan-
dard assumption, so as to have the population double and halve every
generation, as before. The C children’s genotypes are independent given
the parents’. Each child obtains its genotype z by random crossover of
its parents’ genotypes, x and y. The simplest model of recombination
has no linkage, so that:

2y = { xg with probability 1/2 (19.2)

yy with probability 1/2.

Once the M C progeny have been born, the parents pass away, the fittest
N progeny are selected by natural selection, and a new generation starts.

We now study these two models of variation in detail.

Rate of increase of fitness

Theory of mutations

We assume that the genotype of an individual with normalized fitness f = F/G
is subjected to mutations that flip bits with probability m. We first show that
if the average normalized fitness f of the population is greater than 1/2, then
the optimal mutation rate is small, and the rate of acquisition of information
is at most of order one bit per generation.

Since it is easy to achieve a normalized fitness of f=1/2 by simple muta-
tion, we’ll assume f > 1/2 and work in terms of the excess normalized fitness
0f = f —1/2. If an individual with excess normalized fitness Jf has a child
and the mutation rate m is small, the probability distribution of the excess
normalized fitness of the child has mean

Of enita = (1 — 2m)f (19.3)

271

272 19 — Why have Sex? Information Acquisition and Evolution

and variance
m(l—m) m

G G’
If the population of parents has mean Jf(t) and variance o(t) = 3m/G, then
the child population, before selection, will have mean (1 — 2m)Jf (¢) and vari-
ance (14 3)m/G. Natural selection chooses the upper half of this distribution,
so the mean fitness and variance of fitness at the next generation are given by

SF(t+1) = (1 — 2m)ef () + an/ (1 +ﬂ)\/g, (19.5)

o (t+1) = y(1 + ﬁ)g, (19.6)

(19.4)

where « is the mean deviation from the mean, measured in standard devia-
tions, and + is the factor by which the child distribution’s variance is reduced
by selection. The numbers a and v are of order 1. For the case of a Gaussian
distribution, a = \/2/m ~ 0.8 and v = (1 — 2/7) ~ 0.36. If we assume that
the variance is in dynamic equilibrium, i.e., o?(t+1) =~ o%(t), then

y1+4+8)=p8,s (1+08) = L, (19.7)

I—vy
and the factor a\/(1 + () in equation (19.5) is equal to 1, if we take the results
for the Gaussian distribution, an approximation that becomes poorest when
the discreteness of fitness becomes important, i.e., for small m. The rate of
increase of normalized fitness is thus:

df m
o= —mmif 4| % (19.8)
which, assuming G(df)? > 1, is maximized for
1
=— (19.9)

Mort = 16G(0f)2
at which point,

df) 1
— = . 19.10
(dt opt SG((Sf) ()
So the rate of increase of fitness F'= fG is at most
dr ! er generatio (19.11)
—— = ——— per generation. .
at — s(af) P8

For a population with low fitness (6f < 0.125), the rate of increase of fitness
may exceed 1 unit per generation. Indeed, if §f < 1/+/G, the rate of increase, if
m=1/2, is of order v/G} this initial spurt can only last of order v/G generations.
For f > 0.125, the rate of increase of fitness is smaller than one per generation.
As the fitness approaches G, the optimal mutation rate tends to m=1/(4G), so
that an average of 1/4 bits are flipped per genotype, and the rate of increase of
fitness is also equal to 1/4; information is gained at a rate of about 0.5 bits per
generation. It takes about 2G generations for the genotypes of all individuals
in the population to attain perfection.

For fixed m, the fitness is given by

(1 —ce2mty, (19.12)

subject to the constraint §f(¢t) < 1/2, where ¢ is a constant of integration,
equal to 1 if f(0) = 1/2. If the mean number of bits flipped per genotype,

19.2: Rate of increase of fitness

No sex

273

Sex

Histogram of parents’ fitness j\

Histogram of children’s fitness

Selected children’s fitness

N

mG, exceeds 1, then the fitness F' approaches an equilibrium value Fegqm =
(1/2 +1/(2VmG))G.

This theory is somewhat inaccurate in that the true probability distribu-
tion of fitness is non-Gaussian, asymmetrical, and quantized to integer values.
All the same, the predictions of the theory are not grossly at variance with
the results of simulations described below.

Theory of sex

The analysis of the sexual population becomes tractable with two approxi-
mations: first, we assume that the gene-pool mixes sufficiently rapidly that
correlations between genes can be neglected; second, we assume homogeneity,
i.e., that the fraction f, of bits g that are in the good state is the same, f(¢),
for all g.

Given these assumptions, if two parents of fitness F'= fG mate, the prob-
ability distribution of their children’s fitness has mean equal to the parents’
fitness, F; the variation produced by sex does not reduce the average fitness.
The standard deviation of the fitness of the children scales as /G f(1 — f).
Since, after selection, the increase in fitness is proportional to this standard
deviation, the fitness increase per gemeration scales as the square root of the

size of the genome, VG. As shown in box 19.2, the mean fitness F = fG
evolves in accordance with the differential equation:

my/ f(H) (1 = f())G,

2/(m 4 2). The solution of this equation is

dF

o (19.13)

where n =

F(t) = % {1 4 sin (%(tﬂ))} , fort+ce (~3vVG/n,5VG/n), (19.14)

where ¢ is a constant of integration, ¢ = sin=!(2f(0) — 1). So this idealized
system reaches a state of eugenic perfection (f = 1) within a finite time:

(7/1)V'G generations.

Simulations

Figure 19.3a shows the fitness of a sexual population of N = 1000 individ-
uals with a genome size of G = 1000 starting from a random initial state
with normalized fitness 0.5. It also shows the theoretical curve f(¢)G from
equation (19.14), which fits remarkably well.

In contrast, figures 19.3(b) and (c) show the evolving fitness when variation
is produced by mutation at rates m = 0.25/G and m = 6/G respectively. Note
the difference in the horizontal scales from panel (a).

Figure 19.1. Why sex is better
than sex-free reproduction. If
mutations are used to create
variation among children, then it
is unavoidable that the average
fitness of the children is lower
than the parents’ fitness; the
greater the variation, the greater
the average deficit. Selection
bumps up the mean fitness again.
In contrast, recombination
produces variation without a
decrease in average fitness. The
typical amount of variation scales
as /G, where G is the genome
size, so after selection, the average
fitness rises by O(VG).

274 19 — Why have Sex? Information Acquisition and Evolution

Box 19.2. Details of the theory of
How does f(t+1) depend on f(¢)? Let’s first assume the two parents of a child both sex.

have exactly f(¢)G good bits, and, by our homogeneity assumption, that those bits are
independent random subsets of the G bits. The number of bits that are good in both
parents is roughly f (75)2G7 and the number that are good in one parent only is roughly
27 (t)(1—£(t))G, so the fitness of the child will be f(#)?G plus the sum of 2f(t)(1—f ()G
fair coin flips, which has a binomial distribution of mean f(¢)(1 — f(¢))G and variance
1f®)(1 — f(t))G. The fitness of a child is thus roughly distributed as

Fenila ~ Normal (mean = f(t)G, variance = %f(t)(l — f(t))G) .

The important property of this distribution, contrasted with the distribution under
mutation, is that the mean fitness is equal to the parents’ fitness; the variation produced
by sex does not reduce the average fitness.

If we include the parental population’s variance, which we will write as o> (t) =
B(t)2f(t)(1 — f(1))G, the children’s fitnesses are distributed as

Fenita ~ Normal (mean:f(t)G,variance: (1 + g) %f(t)(l — f(t))G) .

Natural selection selects the children on the upper side of this distribution. The mean
increase in fitness will be

F(t+1) = F(t) = [a(1+ 8/2)* /V21\/F(5)(1 = f(1))G,

and the variance of the surviving children will be
1
o*(t+1) =v(1+B/2)5 F(H(1 - F(1))G,

where o = y/2/7 and v = (1 —2/7). If there is dynamic equilibrium [o2(t+1) = o%(t)]
then the factor in (19.2) is

1/2 _ 2
a(l+ 6/2)Y* V2 = = 0.62.

Defining this constant to be n = /2/(w + 2), we conclude that, under sex and natural
selection, the mean fitness of the population increases at a rate proportional to the
square root of the size of the genome,

% ~n/ f(t)(1 — f(t))G bits per generation.

19.3: The maximal tolerable mutation rate

1000

900

800

700

600

T T T T T T T T T T T T T
1000 | — o 1000 |- E
/
‘ sex L
900 | - 900 [b
800 g 800 |- |
700 | 1 700 | 1
i no sex
H /r ; no sex
600 | e 600 [e
500 i 1 1 1 1 1 1 1 500 ‘J‘ 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 0 50 100 150 200 250 300 350
(b) (c)
G = 1000 G = 100000
20 50
45 +
40 + with sex/
15 4
with sex, 35
mG 30 4
10 f ithout sex 25
/W 20 -
15
5 4
10 A _—without sex
Tl 51 - Tl
0 T T T T T T 0 T T T — —
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Exercise 19.1.1%] Dependence on population size. How do the results for a sexual
population depend on the population size? We anticipate that there is
a minimum population size above which the theory of sex is accurate.

In what way is that minimum population size related to G?

Exercise 19.2.1%] Dependence on crossover mechanism. In the simple model of
sex, each bit is taken at random from one of the two parents, that is, we
allow crossovers to occur with probability 50% between any two adjacent
nucleotides. How is the model affected (a) if the crossover probability is
smaller? (b) if crossovers exclusively occur at hot-spots located every d
bits along the genome?

19.3 The maximal tolerable mutation rate

What if we combine the two models of variation? What is the maximum
mutation rate that can be tolerated by a species that has sex?
The rate of increase of fitness is given by

a@ —om &f + V2 w’

~ 19.1
7 (19.15)

275

Figure 19.3. Fitness as a function
of time. The genome size is

G =1000. The dots show the
fitness of six randomly selected
individuals from the birth
population at each generation.
The initial population of

N = 1000 had randomly
generated genomes with

f(0) = 0.5 (exactly). (a) Variation
produced by sex alone. Line
shows theoretical curve (19.14) for
infinite homogeneous population.
(b,c) Variation produced by
mutation, with and without sex,
when the mutation rate is

mG = 0.25 (b) or 6 (c) bits per
genome. The dashed line shows
the curve (19.12).

Figure 19.4. Maximal tolerable
mutation rate, shown as number
of errors per genome (mG@), versus
normalized fitness f = F/G. Left
panel: genome size G = 1000;
right: G = 100 000.

Independent of genome size, a
parthenogenetic species (no sex)
can only tolerate of order 1 error
per genome per generation; a
species that uses recombination
(sex) can tolerate far greater
mutation rates.

276 19 — Why have Sex? Information Acquisition and Evolution

which is positive if the mutation rate satisfies

a-f (19.16)

m<n =

Let us compare this rate with the result in the absence of sex, which, from
equation (19.8), is that the maximum tolerable mutation rate is

1 1

(19.17)

The tolerable mutation rate with sex is of order v/G times greater than that
without sex!

A parthenogenetic (non-sexual) species could try to wriggle out of this
bound on its mutuation rate by increasing its litter sizes. But if mutation flips
on average mG bits, the probability that no bits are flipped in one genome
is roughly e~™%, so a mother needs to have roughly e™¢ offspring in order
to have a good chance of having one child with the same fitness as her. The
litter size of a non-sexual species thus has to be exponential in mG (if mG is
bigger than 1), if the species is to persist.

So the maximum tolerable mutation rate is pinned close to 1/G, for a non-
sexual species, whereas it is a larger number of order 1/v/G, for a species with
recombination.

Turning these results around, we can predict the largest possible genome
size for a given fixed mutation rate, m. For a parthenogenetic species, the
largest genome size is of order 1/m, and for a sexual species, 1/m?. Taking
the figure m = 1078 as the mutation rate per nucleotide per generation (Eyre-
Walker and Keightley, 1999), and allowing for a maximum brood size of 20 000
(that is, mG ~ 10), we predict that all species with more than G = 10° coding
nucleotides make at least occasional use of recombination. If the brood size is
12, then this number falls to G = 2.5 x 108.

19.4 Fitness increase and information acquisition

For this simple model it is possible to relate increasing fitness to information
acquisition.

If the bits are set at random, the fitness is roughly F' = G/2. If evolution
leads to a population in which all individuals have the maximum fitness F' = G,
then G bits of information have been acquired by the species, namely for each
bit x4, the species has figured out which of the two states is the better.

We define the information acquired at an intermediate fitness to be the
amount of selection (measured in bits) required to select the perfect state
from the gene pool. Let a fraction f; of the population have x4, =1. Because
log,(1/f) is the information required to find a black ball in an urn containing
black and white balls in the ratio f : 1—f, we define the information acquired
to be

fg 1.
1= log, ——~-bits. 19.1
§0g21/21s (19.18)
If all the fractions f; are equal to F'//G, then

2F

which is well approximated by

I=2(F—-G/2). (19.20)

19.5

19.5: Discussion

The rate of information acquisition is thus roughly two times the rate of in-
crease of fitness in the population.

Discussion

These results quantify the well known argument for why species reproduce
by sex with recombination, namely that recombination allows useful muta-
tions to spread more rapidly through the species and allows deleterious muta-
tions to be more rapidly cleared from the population (Maynard Smith, 1978;
Felsenstein, 1985; Maynard Smith, 1988; Maynard Smith and Szathmary,
1995). A population that reproduces by recombination can acquire informa-
tion from natural selection at a rate of order /G times faster than a partheno-
genetic population, and it can tolerate a mutation rate that is of order VG
times greater. For genomes of size G ~ 10% coding nucleotides, this factor of
VG is substantial.

This enormous advantage conferred by sex has been noted before by Kon-
drashov (1988), but this meme, which Kondrashov calls ‘the deterministic
mutation hypothesis’, does not seem to have diffused throughout the evolu-
tionary research community, as there are still numerous papers in which the
prevalence of sex is viewed as a mystery to be explained by elaborate mecha-
nisms.

‘The cost of males’ — stability of a gene for sex or parthenogenesis

Why do people declare sex to be a mystery? The main motivation for being
mystified is an idea called the ‘cost of males’. Sexual reproduction is disad-
vantageous compared with asexual reproduction, it’s argued, because of every
two offspring produced by sex, one (on average) is a useless male, incapable
of child-bearing, and only one is a productive female. In the same time, a
parthenogenetic mother could give birth to two female clones. To put it an-
other way, the big advantage of parthenogenesis, from the point of view of
the individual, is that one is able to pass on 100% of one’s genome to one’s
children, instead of only 50%. Thus if there were two versions of a species, one
reproducing with and one without sex, the single mothers would be expected
to outstrip their sexual cousins. The simple model presented thus far did not
include either genders or the ability to convert from sexual reproduction to
asexual, but we can easily modify the model.

We modify the model so that one of the G bits in the genome determines
whether an individual prefers to reproduce parthenogenetically (x=1) or sex-
ually (x=0). The results depend on the number of children had by a single
parthenogenetic mother, K, and the number of children born by a sexual
couple, K. Both (K, =2, K;=4) and (K, =4, K;=4) are reasonable mod-
els. The former (K, =2, K;=4) would seem most appropriate in the case
of unicellular organisms, where the cytoplasm of both parents goes into the
children. The latter (K, =4, Ky=4) is appropriate if the children are solely
nurtured by one of the parents, so single mothers have just as many offspring
as a sexual pair. I concentrate on the latter model, since it gives the greatest
advantage to the parthenogens, who are supposedly expected to outbreed the
sexual community. Because parthenogens have four children per generation,
the maximum tolerable mutation rate for them is twice the expression (19.17)
derived before for K, =2. If the fitness is large, the maximum tolerable rate
is mG ~ 2.

Initially the genomes are set randomly with F' = G/2, with half of the pop-

277

278 19 — Why have Sex? Information Acquisition and Evolution

(a) mG =4 (b) mG =1 Figure 19.5. Results when there is
1000 F T T T T ™3 1000 F T T T T T a gene for parthenogenesis, and no
interbreeding, and single mothers
900 - 4 900 - 1 produce as many children as
sexual couples. G = 1000,
w800 - 1 soof 1
g N =1000. (a) mG = 4; (b)
[0 . .
i _
g 700 - sexual fitness 4 700 - sexual fitness B mG = 1. Vertical axis shows both
i parthen fitness parthen fitness fitness and percentage of the
600 |- 41 600 f 1 population that is
parthenogenetic.
500 1 1 1 1 1 500 1 1 1 1 1
0 50 100 150 200 250 0 50 100 150 200 250
100 T T T T T 3 100 T T
80 [1 s} 1
&
% g 1 60 1
8
c
(]
P 40 4 40 e
[
a
20 1 20 1
0 1 1 1 0 A‘ 1 1 1 1
0 50 100 150 200 250 0 50 100 150 200 250

ulation having the gene for parthenogenesis. Figure 19.5 shows the outcome.
During the ‘learning’ phase of evolution, in which the fitness is increasing
rapidly, pockets of parthenogens appear briefly, but then disappear within
a couple of generations as their sexual cousins overtake them in fitness and
leave them behind. Once the population reaches its top fitness, however, the
parthenogens can take over, if the mutation rate is sufficiently low (mG=1).

In the presence of a higher mutation rate (mG =4), however, the partho-
negens never take over. The breadth of the sexual population’s fitness is of
order v/G, so a mutant parthenogenetic colony arising with slightly above-
average fitness will last for about vG/(mG) = 1/(mv/G) generations before
its fitness falls below that of its sexual cousins. As long as the population size
is sufficiently large for some sexual individuals to survive for this time, sex will
not die out.

In a sufficiently unstable environment, where the fitness function is contin-
ually changing, the parthenogens will always lag behind the sexual community.
These results are consistent with the argument of Haldane and Hamilton that
sex is helpful in an arms race with parasites. The parasites define an effective
fitness function which changes with time, and a sexual population will always
ascend the current fitness function more rapidly.

Additive fitness function

Of course, our results depend on the fitness function that we assume, and on
our model of selection. Is it reasonable to model fitness, to first order, as a sum
of independent terms? Maynard Smith (1968) argues that it is: the more good
genes you have, the higher you come in the pecking order, for example. The
directional selection model has been used extensively in theoretical popula-
tion genetic studies (Bulmer, 1985). We might expect real fitness functions to
involve interactions, in which case crossover might reduce the average fitness.
However, since recombination gives the biggest advantage to species whose fit-
ness functions are additive, we might predict that evolution will have favoured
species that used a representation of the genome that corresponds to a fitness

19.5: Discussion

function that has only weak interactions. And even if there are interactions,
it seems plausible that the fitness would still involve a sum of such interacting
terms, with the number of terms being some fraction of the genome size G.

Exercise 19.3.19¢] Investigate how fast sexual and asexual species evolve if
they have a fitness function with interactions. For example, let the fitness
be a sum of exclusive-ors of pairs of bits; compare the evolving fitnesses
with those of the sexual and asexual species with a simple additive fitness
function.

Furthermore, if the fitness function were a highly nonlinear function of the
genotype, it could be made more smooth and locally linear by the Baldwin
effect. The Baldwin effect (Baldwin, 1896; Hinton and Nowlan, 1987) has been
widely studied as a mechanism whereby learning guides evolution, and it could
also act at the level of transcription and translation. Consider the evolution
of a peptide sequence for a new purpose, assuming the effectiveness of the
peptide is highly nonlinear function of the sequence, perhaps having a small
island of good sequences surrounded by an ocean of equally bad sequences.
In an organism whose transcription and translation machinery is flawless, the
fitness will be an equally nonlinear function of the DNA sequence and evolution
will wander around the ocean making progress towards the island only by a
random walk. In contrast, an organism having the same DNA sequence, but
whose DNA-to-RNA transcription or RNA-to-protein translation is ‘faulty’,
will occasionally, by mistranslation or mistranscription, accidentally produce a
working enzyme; and it will do so with greater probability if its DNA sequence
is close to a good sequence. One cell might produce 1000 proteins from the
one mRNA sequence, of which 999 have no enzymatic effect, and one does.
The one working catalyst will be enough for that cell to have an increased
fitness relative to rivals whose DNA sequence is further from the island of
good sequences. For this reason I conjecture that, at least early in evolution,
and perhaps still now, the genetic code was not implemented perfectly but was
implemented noisily, with some codons coding for a distribution of possible
amino acids. This noisy code could even be switched on and off from cell
to cell in an organism by having multiple aminoacyl-tRNA synthetases, some
more reliable than others.

Whilst our model assumed that the bits of the genome do not interact,
ignored the fact that the information is represented redundantly, assumed
that there is a direct relationship between phenotypic fitness and the genotype,
and assumed that the crossover probability in recombination is high, I believe
these qualitative results would still hold if more complex models of fitness and
crossover were used: the relative benefit of sex will still scale as v/G. Only in
small, in-bred populations are the benefits of sex expected to be diminished.

In summary: Why have sex? Because sex is good for your bits!

Further reading

How did a high-information-content self-replicating system ever emerge in the
first place? In the general area of the origins of life and other tricky questions
about evolution, I highly recommend Maynard Smith and Szathmary (1995),
Maynard Smith and Szdthmary (1999), Kondrashov (1988), Maynard Smith
(1988), Dyson (1985), Cairns-Smith (1985), and Hopfield (1978).

279

280 19 — Why have Sex? Information Acquisition and Evolution

19.6 Further exercises

Exercise 19.4.%] How good must the error-correcting machinery in DNA repli-
cation be, given that mammals have not all died out long ago? Estimate the
probability of nucleotide substitution, per cell division. [See Appendix C.4.]

Exercise 19.5.14] Given that DNA replication is achieved by bumbling Brow-
nian motion and ordinary thermodynamics in a biochemical porridge at a
temperature of 35C, it’s astonishing that the error-rate of DNA replication
is about 10~ per replicated nucleotide. How can this reliability be achieved,
given that the energetic difference between a correct base-pairing and an incor-
rect one is only one or two hydrogen bonds and the thermal energy kT is only
about a factor of four smaller than the free energy associated with a hydrogen
bond. If ordinary thermodynamics is what favours correct base-pairing, surely
the frequency of incorrect base-pairing should be about

f = exp(—AE/kT), (19.21)

where AFE is the free energy difference, i.e., an error frequency of f ~ 10747
How has DNA replication cheated thermodynamics?

The situation is equally perplexing in the case of protein synthesis, which
translates an mRNA sequence into a polypeptide in accordance with the ge-
netic code. Two specific chemical reactions are protected against errors: the
binding of tRNA molecules to amino acids, and the production of the polypep-
tide in the ribosome, which, like DNA replication, involves base-pairing.
Again, the fidelity is high (an error rate of about 10™%), and this fidelity
can’t be caused by the energy of the ‘correct’ final state being especially low
— the correct polypeptide sequence is not expected to be significantly lower in
energy than any other sequence. How do cells perform error correction? (See
Hopfield (1974), Hopfield (1980)).

Exercise 19.6.) While the genome acquires information through natural se-
lection at a rate of a few bits per generation, your brain acquires information
at a greater rate.

Estimate at what rate new information can be stored in long term memory
by your brain. Think of learning the words of a new language, for example.

19.7 Solutions

Solution to exercise 19.1 (p.275). For small enough N, whilst the average fit-
ness of the population increases, some unlucky bits become frozen into the
bad state. (These bad genes are sometimes known as hitchhikers.) The ho-
mogeneity assumption breaks down. Eventually, all individuals have identical
genotypes that are mainly 1-bits, but have some 0-bits too. The smaller the
population, the greater the number of frozen 0-bits is expected to be. How
small can the population size N be if the theory of sex is accurate?

We find experimentally that the theory based on assuming homogeneity
only fits poorly if the population size N is smaller than ~+/G. If N is signifi-
cantly smaller than v/G, information cannot possibly be acquired at a rate as
big as VG, since the information content of the Blind Watchmaker’s decisions
cannot be any greater than 2N bits per generation, this being the number of
bits required to specify which of the 2N children get to reproduce. Baum et al.
(1995), analyzing a similar model, show that the population size N should be
about v/G(log G)? to make hitchhikers unlikely to arise.

Part IV

Probabilities and Inference

About Part IV

The number of inference problems that can (and perhaps should) be tackled
by Bayesian inference methods is enormous. In this book, for example, we
discuss the decoding problem for error-correcting codes, the task of inferring
clusters from data, the task of interpolation through noisy data, and the task
of classifying patterns given labelled examples. Most techniques for solving
these problems can be categorized as follows.

Exact methods compute the required quantities directly. Only a few inter-
esting problems have a direct solution, but exact methods are important
as tools for solving subtasks within larger problems. Methods for the
exact solution of inference problems are the subject of Chapters 21, 24,
25, and 26.

Approximate methods can be subdivided into

1. deterministic approximations, which include maximum likeli-
hood (Chapter 22), Laplace’s method (Chapters 27 and 28) and
variational methods (Chapter 33); and

2. Monte Carlo methods — techniques in which random numbers
play an integral part — which will be discussed in Chapters 29, 30,
and 32.

This part of the book does not form a one-dimensional story. Rather, the
ideas make up a web of interrelated threads which will recombine in subsequent
chapters.

Chapter 3, which is an honorary member of this part, discussed a range of
simple examples of inference problems and their Bayesian solutions.

To give further motivation for the toolbox of inference methods discussed in
this part, Chapter 20 discusses the problem of clustering; subsequent chapters
discuss the probabilistic interpretation of clustering as mixture modelling.

Chapter 21 discusses the option of dealing with probability distributions
by completely enumerating all hypotheses. Chapter 22 introduces the idea
of maximization methods as a way of avoiding the large cost associated with
complete enumeration, and points out reasons why maximum likelihood is
not good enough. Chapter 23 reviews the probability distributions that arise
most often in Bayesian inference. Chapters 24, 25, and 26 discuss another
way of avoiding the cost of complete enumeration: marginalization. Chapter
25 discusses message-passing methods appropriate for graphical models, using
the decoding of error-correcting codes as an example. Chapter 26 combines
these ideas with message-passing concepts from Chapters 16 and 17. These
chapters are a prerequisite for the understanding of advanced error-correcting
codes.

Chapter 27 discusses deterministic approximations including Laplace’s
method. This chapter is a prerequisite for understanding the topic of complex-
ity control in learning algorithms, an idea that is discussed in general terms
in Chapter 28.

282

About Part IV

Chapter 29 discusses Monte Carlo methods. Chapter 30 gives details of
state-of-the-art Monte Carlo techniques.

Chapter 31 introduces the Ising model as a test-bed for probabilistic meth-
ods. An exact message-passing method and a Monte Carlo method are demon-
strated. A motivation for studying the Ising model is that it is intimately
related to several neural network models. Chapter 32 describes ‘exact’ Monte
Carlo methods and demonstrates their application to the Ising model.

Chapter 33 discusses variational methods and their application to Ising
models and to simple statistical inference problems including clustering. This
chapter will help the reader understand the Hopfield network (Chapter 42)
and the EM algorithm, which is an important method in latent-variable mod-
elling. Chapter 34 discusses a particularly simple latent variable model called
independent component analysis.

Chapter 35 discusses a ragbag of assorted inference topics. Chapter 36
discusses a simple example of decision theory. Chapter 37 discusses differences
between sampling theory and Bayesian methods.

A theme: what inference is about

A widespread misconception is that the aim of inference is to find the most
probable explanation for some data. While this most probable hypothesis may
be of interest, and some inference methods do locate it, this hypothesis is just
the peak of a probability distribution, and it is the whole distribution that is
of interest. As we saw in Chapter 4, the most probable outcome from a source
is often not a typical outcome from that source. Similarly, the most probable
hypothesis given some data may be atypical of the whole set of reasonably-
plausible hypotheses.

About Chapter 20

Before reading the next chapter, exercise 2.17 (p.36) and section 11.2 (inferring
the input to a Gaussian channel) are recommended reading.

283

20

An Example Inference Task: Clustering

Human brains are good at finding regularities in data. One way of expressing
regularity is to put a set of objects into groups that are similar to each other.
For example, biologists have found that most objects in the natural world
fall into one of two categories: things that are brown and run away, and
things that are green and don’t run away. The first group they call animals,
and the second, plants. We’ll call this operation of grouping things together
clustering. If the biologist further sub-divides the cluster of plants into sub-
clusters, we would call this ‘hierarchical clustering’; but we won’t be talking
about hierarchical clustering yet. In this chapter we’ll just discuss ways to
take a set of IV objects and group them into K clusters.

There are several motivations for clustering. First, a good clustering has
predictive power. When an early biologist encounters a new green thing he has
not seen before, his internal model of plants and animals fills in predictions for
attributes of the green thing: it’s unlikely to jump on him and eat him; if he
touches it, he might get grazed or stung; if he eats it, he might feel sick. All of
these predictions, while uncertain, are useful, because they help the biologist
invest his resources (for example, the time spent watching for predators) well.
Thus, we perform clustering because we believe the underlying cluster labels
are meaningful, will lead to a more efficient description of our data, and will
help us choose better actions. This type of clustering is sometimes called
‘mixture density modelling’, and the objective function that measures how
well the predictive model is working is the information content of the data,
log 1/ P({x}).

Second, clusters can be a useful aid to communication because they allow
lossy compression. The biologist can give directions to a friend such as ‘go to
the third tree on the right then take a right turn’ (rather than ‘go past the
large green thing with red berries, then past the large green thing with thorns,
then ...”). The brief category name ‘tree’ is helpful because it is sufficient to
identify an object. Similarly, in lossy image compression, the aim is to convey
in as few bits as possible a reasonable reproduction of a picture; one way to do
this is to divide the image into N small patches, and find a close match to each
patch in an alphabet of K image-templates; then we send a close fit to the
image by sending the list of labels ki, ko, ..., kny of the matching templates.
The task of creating a good library of image-templates is equivalent to finding
a set of cluster centres. This type of clustering is sometimes called ‘vector
quantization’.

We can formalize a vector quantizer in terms of an assignment rule x —
k(x) for assigning datapoints x to one of K codenames, and a reconstruction
rule k — m(*), the aim being to choose the functions k(x) and m®*) so as to

284

20.1

20.1: K-means clustering

minimize the expected distortion, which might be defined to be

p=%" P(x)% 09—]” (20.1)

[The ideal objective function would be to minimize the psychologically per-
ceived distortion of the image. Since it is hard to quantify the distortion
perceived by a human, vector quantization and lossy compression are not so
crisply defined problems as data modelling and lossless compression.] In vec-
tor quantization, we don’t necessarily believe that the templates {m(*)} have
any natural meaning; they are simply tools to do a job. We note in passing
the similarity of the assignment rule (i.e., the encoder) of vector quantization
to the decoding problem when decoding an error-correcting code.

A third reason for making a cluster model is that failures of the cluster
model may highlight interesting objects that deserve special attention. If
we have trained a vector quantizer to do a good job of compressing satellite
pictures of ocean surfaces, then maybe patches of image that are not well
compressed by the vector quantizer are the patches that contain ships! If the
biologist encounters a green thing and sees it run (or slither) away, this misfit
with his cluster model (which says green things don’t run away) cues him
to pay special attention. One can’t spend all one’s time being fascinated by
things; the cluster model can help sift out from the multitude of objects in
one’s world the ones that really deserve attention.

A fourth reason for liking clustering algorithms is that they may serve
as models of learning processes in neural systems. The clustering algorithm
that we now discuss, the K-means algorithm, is an example of a competitive
learning algorithm. The algorithm works by having the K clusters compete
with each other for the right to own the data points.

K-means clustering

The K-means algorithm is an algorithm for putting N data points in an I-
dimensional space into K clusters. Each cluster is parameterized by a vector
m®) called its mean.

The data points will be denoted by x(™ where the superscript n runs from
1 to the number of data points N. Each vector x is a vector with I components
z;. We will assume that the space that x lives in is a real space and that we
have a metric that defines distances between points, for example,

d(x,y) = % Z(l'i —u)”. (20.2)

(3

To start the K-means algorithm (algorithm 20.2), the K means {m(*)}
are initialized in some way, for example to random values. K means is then
an iterative two-step algorithm. In the assignment step, each data point n is
assigned to the nearest mean. In the update step, the means are adjusted to
match the sample means of the data points that they are responsible for.

The K-means algorithm is demonstrated for a toy two-dimensional data set
in figure 20.3, where 2 means are used. The assignments of the points to the
two clusters are indicated by two point styles, and the two means are shown
by the circles. The algorithm converges after three iterations, at which point
the assignments are unchanged so the means remain unmoved when updated.
The K-means algorithm always converges to a fixed point.

285

X
X X
X
X
X X
X X X
X X
X X X
X X
X X X X X
X X X
X X X
X X X
X X X
XX
X

Figure 20.1. N = 40 data points.

About the name... As far as I know,
the ‘K’ in K-means clustering simply
refers to the chosen number of clus-
ters. If Newton had followed the same
naming policy, maybe we would learn
at school about ‘calculus for the vari-
able x’. It’s a silly name, but we are
stuck with it.

286 20 — An Example Inference Task: Clustering

Algorithm 20.2. The K-means
Initialization. Set K means {m®)} to random values. clustering algorithm.

Assignment step. Each data point n is assigned to the nearest mean.
We denote our guess for the cluster k(™ that the point x(™ belongs
to by k™),

k™ = argmin{d(m® x(™)}. (20.3)
k

An alternative, equivalent representation of this assignment of
points to clusters is given by ‘responsibilities’, which are indicator
variables 7,;. In the assignment step, we set r,(cn) to one if mean k

is the closest mean to datapoint x(™); otherwise r,(cn) is zero.

it =
(n)_{1 it kM =k (20.4)

T 0oif EM £k

What about ties? — We don’t expect two means to be exactly the
same distance from a data point, but if a tie does happen, £ is
set to the smallest of the winning {k}.

Update step. The model parameters, the means, are adjusted to match
the sample means of the data points that they are responsible for.

Z r,(cn)x(”)
k) _
where R is the total responsibility of mean k,
R®) =3 p, (20.6)

What about means with no responsibilities? — If R*¥) = 0, then we
leave the mean m®) where it is.

Repeat the assignment step and update step until the assign-
ments do not change.

20.1: K-means clustering 287

Figure 20.3. K means algorithm
% applied to a data set of 40 points.
Data: B K = 2 means evolve to stable
xixi x locations after three iterations.
X X X X X
X X X
X X X
X X X
X X X
XX
X
Assignment Update Assignment Update Assignment Update
o < < < < o
O O o O o O o O Qo O O O
@ < < < < < <
o o < < < o
© o o < < < o < < < © o
+ o < + < o + < o + < < + o o + o <
+ < + < + O + < @ + + @ + + @
+ o <o + o <o + + > + + <o + + > + + <o
+ < <o + O @ <o + + @ o + + <o + + o + + <o
+ o O O O & o O O @ + o O O + + o O O + + S O O + O O O
+ O O <o + 0 O <o ++ + & +© + <o +© + & +© + <o
+ o <o + o & + + & + & + <o + <o
+ o o + <O < + + < + + < + + < + + o
+ < < + <& o + + o + + o + + o + + <
fogod Lo ++ ++ ++ ++
< o + + + +
Run 1 Figure 20.4. K means algorithm
applied to a data set of 40 points.
n] n] n] n] n] .
go go go go Eg e Two separate runs, both with
o o o a
+ RPN + ” @D + ” @E ” @] = K =4 means reach (1lﬁCrCIlt
© +o © + + 4+ + + + 4)
T g Q. g T g T X solutions. Each frame shows a
+ X 0Doog + + X 00 + + X X O + + X X X + + X X _X - . > -
o X x o+ X © o] o+ + X o+ + X o+ + % . .
°s%% N 9 N 9 © © 9 Ox © 9 X successive assignment step.
% X & X & X & X & X
O@ foied foied 00 00
<o <o
Run 2
X X X X X X
X X X X X X X X X X X X
X X X X X X
X x X x X X x X X x X X x X X x X
XXX @X X QOQ X X QOQ X X QOQ X X QOQ X X QOQ X X
<o X X o <O @ X o < @ X <o © X <o © X <o © X
X o O X @)O X @O X @O X @O X
@0 <o X X X @0 X X X o' X X X o O X X X o O X X X [mEed X X X
X O <o X 0o ¢ oo ¢ X o ¢ X o ¢ X
3¢S X B} X @]DD N 9 N D@D N DE@D N
@DQ+Q x* %o x* + X + X it X it X
Q + +® +@ + +

Exercise 20.1.14 P-291] Geq if you can prove that K-means always converges.
[Hint: find a physical analogy and an associated Lyapunov function.]

[A Lyapunov function is a function of the state of the algorithm that
decreases whenever the state changes and that is bounded below. If a
system has a Lyapunov function then its dynamics converge.]

The K-means algorithm with a larger number of means, 4, is demonstrated in
figure 20.4. The outcome of the algorithm depends on the initial condition.
In the first case, after five iterations, a steady state is found in which the data
points are fairly evenly split between the four clusters. In the second case,
after six iterations, half the data points are in one cluster, and the others are
shared among the other three clusters.

Questions about this algorithm

The K-means algorithm has several ad hoc features. Why does the update step
set the ‘mean’ to the mean of the assigned points? Where did the distance d
come from? What if we used a different measure of distance between x and m?
How can we choose the ‘best’ distance? [In vector quantization, the distance

288 20 — An Example Inference Task: Clustering

10 T T T 10 T T T Figure 20.5. K means algorithm
%, X x o, © * for a case with two dissimilar
8 r o X; 7 8 o <>©<> 7 clusters. (a) The “little 'n’ large”
X X ®® o data. (b) A stable set of
6 L wx XX - 6L 0. 0% ¢ i ;
() X KO 5 X (b) 00 Bo o © assignments and means. Note that
X % X %% & % © % four points belonging to the broad
4x x X 7] 4 & ® © 7 cluster have been incorrectly
5)X . X) o O @ L assigned to the narrower cluster.
Eox _ SRS _
X x LR
O | | | | 0 | | | |
0 2 4 6 8 10 0 2 4 6 8 10
Figure 20.6. Two elongated
X, o clusters, and the stable solution
XX found by the K-means algorithm.
B
X
(@) ¥ (b)
35
X% X
£
X +
X +

function is provided as part of the problem definition; but I’'m assuming we
are interested in data-modelling rather than vector quantization.] How do we
choose K7 Having found multiple alternative clusterings for a given K, how
can we choose among them?

Cases where K-means might be viewed as failing.

Further questions arise when we look for cases where the algorithm behaves
badly (compared with what the man in the street would call ‘clustering’).
Figure 20.5a shows a set of 75 data points generated from a mixture of two
Gaussians. The right-hand Gaussian has less weight (only one fifth of the data
points), and it is a less broad cluster. Figure 20.5b shows the outcome of using
K-means clustering with K = 2 means. Four of the big cluster’s data points
have been assigned to the small cluster, and both means end up displaced
to the left of the true centres of the clusters. The K-means algorithm takes
account only of the distance between the means and the data points; it has
no representation of the weight or breadth of each cluster. Consequently, data
points which actually belong to the broad cluster are incorrectly assigned to
the narrow cluster.

Figure 20.6 shows another case of K-means behaving badly. The data
evidently falls into two elongated clusters. But the only stable state of the
K-means algorithm is that shown in figure 20.6b: the two clusters have been
sliced in half! These two examples show that there is something wrong with
the distance d in the K-means algorithm. The K-means algorithm has no way
of representing the size or shape of a cluster.

A final criticism of K-means is that it is a ‘hard’ rather than a ‘soft’
algorithm: points are assigned to exactly one cluster and all points assigned
to a cluster are equals in that cluster. Points located near the border between
two or more clusters should, arguably, play a partial role in determining the
locations of all the clusters that they could plausibly be assigned to. But in
the K-means algorithm, each borderline point is dumped in one cluster, and

20.2

20.3

20.2: Soft K-means clustering

has an equal vote with all the other points in that cluster, and no vote in any
other clusters.

Soft K-means clustering

These criticisms of K-means motivate the ‘soft K-means algorithm’, algo-
rithm 20.7. The algorithm has one parameter, §, which we could term the
stiffness.

Assignment step. Each data point x(™ is given a soft ‘degree of as-

signment’ to each of the means. We call the degree to which x(™

is assigned to cluster k the responsibility r](gn) (the responsibility of

cluster k for point n).

(n) _ exp <_ﬂ d(m(k)7 X(”)))
T S exp (—Bd(m®), x(M))

The sum of the K responsibilities for the nth point is 1.

(20.7)

Update step. The model parameters, the means, are adjusted to match
the sample means of the data points that they are responsible for.

5
k) _n
m® === (20.8)

where R®) is the total responsibility of mean k,

R® =3 p", (20.9)

Notice the similarity of this soft K-means algorithm to the hard K-means
algorithm 20.2. The update step is identical; the only difference is that the
responsibilities r,(cn) can take on values between 0 and 1. Whereas the assign-
ment &£ in the K-means algorithm involved a ‘min’ over the distances, the
rule for assigning the responsibilities is a ‘soft-min’ (20.7).

Exercise 20.2.12] Show that as the stiffness 0B goes to 0o, the soft K means algo-
rithm becomes identical to the original hard K-means algorithm, except
for the way in which means with no assigned points behave. Describe
what those means do instead of sitting still.

Dimensionally, the stiffness § is an inverse-length-squared, so we can as-
sociate a lengthscale, ¢ = 1/4/B, with it. The soft K-means algorithm is
demonstrated in figure 20.8. The lengthscale is shown by the radius of the
circles surrounding the four means. Each panel shows the final fixed point
reached for a different value of the lengthscale o.

Conclusion

At this point, we may have fixed some of the problems with the original K-
means algorithm by introducing an extra complexity-control parameter 5. But
how should we set 37 And what about the problem of the elongated clusters,

289

Algorithm 20.7. Soft K-means
algorithm, version 1.

20.4

290 20 — An Example Inference Task: Clustering

Figure 20.8. Soft K-means
algorithm, version 1, applied to a
data set of 40 points. K = 4.
Implicit lengthscale parameter

o =1/3"/? varied from a large to
a small value. Each picture shows
the state of all four means, with
the implicit lengthscale shown by
the radius of the four circles, after
running the algorithm for several
tens of iterations. At the largest
lengthscale, all four means
converge exactly to the data
mean. Then the four means
separate into two groups of two.
At shorter lengthscales, each of
these pairs itself bifurcates into
subgroups.

and the clusters of unequal weight and width? Adding one stiffness parameter
[is not going to make all these problems go away.

We’'ll come back to these questions in a later chapter, as we develop the
mixture-density-modelling view of clustering.

Further reading

For a vector-quantization approach to clustering see (Luttrell, 1989; Luttrell,
1990).

Exercises

> Exercise 20.3.[3 P-291] Explore the properties of the soft K-means algorithm,
version 1, assuming that the datapoints {x} come from a single separable
two-dimensional Gaussian distribution with mean zero and variances
(var(zy), var(z2)) = (02,02), with 0 > 03. Set K = 2, assume N is
large, and investigate the fixed points of the algorithm as 3 is varied.
[Hint: assume that m™) = (m,0) and m® = (—m,0).]

> Exercise 20.4.13] Consider the soft K-means algorithm applied to a large
amount of one-dimensional data that comes from a mixture of two equal-
weight Gaussians with true means p = +1 and standard deviation op,
for example op = 1. Show that the hard K-means algorithm with K = 2
leads to a solution in which the two means are further apart than the
two true means. Discuss what happens for other values of 3, and find
the value of 8 such that the soft algorithm puts the two means in the
correct places.

20.5

20.5: Solutions

Solutions

Solution to exercise 20.1 (p.287). We can associate an ‘energy’ with the state
of the K-means algorithm by connecting a spring between each point x(™ and
the mean that is responsible for it. The energy of one spring is proportional to
its squared-length, namely 3d(x(™, m®*)) where {3 is the stiffness of the spring.
The total energy of all the springs is a Lyapunov function for the algorithm,
because (a) the assignment step can only decrease the energy — a point only
changes its allegiance if the length of its spring would be reduced; (b) the
update step can only decrease the energy — moving m®*) to the mean is the
way to minimize the energy of its springs; and (c¢) the energy is bounded below
— which is the second condition for a Lyapunov function. Since the algorithm
has a Lyapunov function, it converges.

Solution to exercise 20.3 (p.290). If the means are initialized to m®) = (m, 0)
and m™) = (—m, 0), the assignment step for a point at location x1, zy gives

exp(—B(xz1 —m)*/2)

M) = B —) + e~ Tz 0N
1
T o1+ exp(—28mzy)’ (20.11)
and the updated m is

r fdxl P(Il) xr1r (X)

e v PATE) (20.12)
1

= 2/dm1 P(.%‘l) xr1 T eXp(—Qﬁmml)' (20.13)

Now,m = 0 is a fixed point, but the question is, is it stable or unstable? For
tiny m (that is, Soym < 1), we can Taylor expand

1

1
T+ exp(—20may) = a0 Homa) 4 (20.14)

SO
m ~ /dl’l P(Il) T (]. + ﬂmml) (2015>
= oifm. (20.16)

For small m, m either grows or decays exponentially under this mapping,
depending on whether 0?3 is greater than or less than 1. The fixed point
m = 0 is stable if

ot <1/8

and unstable otherwise. [Incidentally, this derivation shows that this result is
general, holding for any true probability distribution P(z1) having variance
o2, not just the Gaussian.]

If 07 > 1/f3 then there is a bifurcation and there are two stable fixed points
surrounding the unstable fixed point at m = 0. To illustrate this bifurcation,
figure 20.10 shows the outcome of running the soft K-means algorithm with
(3 = 1 on one-dimensional data with standard deviation o; for various values of
o1. Figure 20.11 shows this pitchfork bifurcation from the other point of view,
where the data’s standard deviation oy is fixed and the algorithm’s lengthscale
o =1/("? is varied on the horizontal axis.

(20.17)

291

Figure 20.9. Schematic diagram of
the bifurcation as the largest data
variance oy increases from below
1/8Y2 to above 1/8'/2. The data
variance is indicated by the
ellipse.

Data density .
Mean locations™

AN RO R NS

0 05 1 15 2 25 3 35 4

Figure 20.10. The stable mean
locations as a function of o1, for
constant (3, found numerically
(thick lines), and the

approximation (20.22) (thin lines).

Data density
Mean locns.

Figure 20.11. The stable mean
locations as a function of 1/51/27
for constant oy.

292 20 — An Example Inference Task: Clustering

Here is a cheap theory to model how the fitted parameters +m behave beyond the
bifurcation, based on continuing the series expansion. This continuation of the series
is rather suspect, since the series isn’t necessarily expected to converge beyond the
bifurcation point, but the theory fits well anyway.

We take our analytic approach one term further in the expansion

1 N 1 1 5
TF exp(—2fmay) — 3L T Ama = 5(Bma)") + (20.18)

then we can solve for the shape of the bifurcation to leading order, which depends on
the fourth moment of the distribution:

i

m o~ /dxl P(z1)z1(1+ Bmay — %(5mx1)3) (20.19)

o2 Bm — é(ﬁm)?’:aa;*. (20.20)

[At (20.20) we use the fact that P(x1) is Gaussian to find the fourth moment.] This
map has a fixed point at m such that

aiB(1— (Bm)*ot) =1, (20.21)
ie.,
1/2 (U%ﬂ - 1)1/2
o
The thin line in figure 20.10 shows this theoretical approximation. Figure 20.10 shows

the bifurcation as a function of o for fixed g; figure 20.11 shows the bifurcation as a
function of 1/3/? for fixed o1.

m==+3" (20.22)

> Exercise 20.5.[% P-297] Why does the pitchfork in figure 20.11 tend to the val-
ues ~=+0.8 as 1/4'/2 — 0?7 Give an analytic expression for this asymp-
tote.

Solution to exercise 20.5 (p.292). The asymptote is the mean of the rectified

Gaussian,
Jo° Normal(z, 1)z dz
=14/2/m ~0.798. 20.2
72 \/2/m ~0.798 (20.23)

21.1

21

Exact Inference by Complete
Enumeration

We open our toolbox of methods for handling probabilities by discussing a
brute-force inference method: complete enumeration of all hypotheses, and
evaluation of their probabilities. This approach is an exact method, and the
difficulty of carrying it out will motivate the smarter exact and approximate
methods introduced in the following chapters.

The burglar alarm

Bayesian probability theory is sometimes called ‘common sense, amplified’.
When thinking about the following questions, please ask your common sense
what it thinks the answers are; we will then see how Bayesian methods confirm
your everyday intuition.

Example 21.1. Fred lives in Los Angeles and commutes 60 miles to work.
Whilst at work, he receives a phone-call from his neighbour saying that
Fred’s burglar alarm is ringing. What is the probability that there was
a burglar in his house today? While driving home to investigate, Fred
hears on the radio that there was a small earthquake that day near his
home. ‘Oh’, he says, feeling relieved, ‘it was probably the earthquake
that set off the alarm’. What is the probability that there was a burglar
in his house? (After Pearl, 1988).

Let’s introduce variables b (a burglar was present in Fred’s house today),
a (the alarm is ringing), p (Fred receives a phonecall from the neighbour re-
porting the alarm), e (a small earthquake took place today near Fred’s house),
and r (the radio report of earthquake is heard by Fred). The probability of
all these variables might factorize as follows:

P(b,e,a,p,7) = P(b)P(e)P(a|b,e)P(p|a)P(r|e), (21.1)
and plausible values for the probabilities are:
1. Burglar probability:
Pb=1)=p8, P(b=0)=1-0, (21.2)
e.g., 0 =0.001 gives a mean burglary rate of once every three years.
2. Earthquake probability:
Ple=1)=¢, P(e=0)=1—F, (21.3)

293

Earthquake Burglar

O O
NS
O (O Alarm

Radio

O

Phonecall

Figure 21.1. Belief network for the
burglar alarm problem.

294 21 — Exact Inference by Complete Enumeration

with, e.g., ¢ = 0.001; our assertion that the earthquakes are independent
of burglars, i.e., the prior probability of b and e is P(b,e) = P(b)P(e),
seems reasonable unless we take into account opportunistic burglars who
strike immediately after earthquakes.

3. Alarm ringing probability: we assume the alarm will ring if any of the
following three events happens: (a) a burglar enters the house, and trig-
gers the alarm (let’s assume the alarm has a reliability of o, = 0.99, i.e.,
99% of burglars trigger the alarm); (b) an earthquake takes place, and
triggers the alarm (perhaps . = 1% of alarms are triggered by earth-
quakes?); or (¢) some other event causes a false alarm; let’s assume the
false alarm rate f is 0.001, so Fred has false alarms from non-earthquake
causes once every three years. [This type of dependence of a on b and e
is known as a ‘noisy-or’.] The probabilities of a given b and e are then:

Pla=0]|b=0,e=0) = (1-f), Pla=1|b=0,e=0) = f

Pla=0]|b=1,e=0) = (1—f)(1—), Pla=1|b=1,e=0) = 1—-(1-/f)(1—ay)
P(a=0]|b=0,e=1) = (1—f)(1—a), P(a=1|b=0,e=1) 1-(1-H)01—a)
Pla=0]b=1,e=1) = (1—-f)1—ap)(1 —c), Pla=1|b=1,e=1) 1—-(1-H01—ap)(1 —)
or, in numbers,

Pla=0]b=0,e=0) = 0.999, Pla=1|b=0,e=0) = 0.001

Pla=0]b=1,e=0) = 0.00999, Pla=1|b=1e=0) = 0.99001

P(a=0|b=0,e=1) = 098901, Pla=1|b=0,e=1) = 0.01099

Pla=0]b=1,e=1) = 0.0098901, Pla=1|b=1e=1) = 0.9901099.

We assume the neighbour would never phone if the alarm is not ringing
[P(p=1]a=0) = 0]; and that the radio is a trustworthy reporter too
[P(r=1|e=0) = 0]; we won’t need to specify the probabilities P(p=1|a=1)
or P(r=1|e=1) in order to answer the questions above, since the outcomes
p =1 and r=1 give us certainty respectively that a=1 and e=1.

We can answer the two questions about the burglar by computing the
posterior probabilities of all hypotheses given the available information. Let’s
start by reminding ourselves that the probability that there is a burglar, before
either p or r is observed, is P(b=1) = 8 = 0.001, and the probability that an
earthquake took place is P(e=1) = ¢ = 0.001, and these two propositions are
independent.

First, when p=1, we know that the alarm is ringing: a=1. The posterior
probability of b and e becomes:

P(a=1]b,e)P(b)P(e) ‘

Pbela=1) = Pla=1)

(21.4)

The numerator’s four possible values are

0.001 x0.999x0.999 = 0.000998
0.99001 x0.001x0.999 0.000989
0.01099 x0.999x0.001 0.000010979
= 0.9901099%0.001x0.001 = 9.9 x 1077.

P(azl\bzl,ef) (1) x
Pla=1]b=0,e=1) x P(b=0) x
Pla=1|b=1,e=1) x P(b=1) x

(=]
—_ ==

The normalizing constant is the sum of these four numbers, P(a=1) = 0.002,
and the posterior probabilities are

P(b=0,e=0]la=1) = 0.4993
Pb=1,e=0|a=1) = 0.4947
P(b=0,e=1|a=1) = 0.0055
Plb=1le=1|a=1) = 0.0005.

(21.5)

21.2

21.2: Exact inference for continuous hypothesis spaces

To answer the question, ‘what’s the probability a burglar was there?” we
marginalize over the earthquake variable e:

P(b=0|a=1) = P(b=0,e=0]|a=1)+P(b=0,e=1|a=1) = 0.505
Pb=1la=1) = P(b=1,e=0]a=1)+Pb=1l,e=1|a=1) 0.495.
(21.6)
So there is nearly a 50% chance that there was a burglar present. It is impor-
tant to note that the variables b and e, which were independent a priori, are
now dependent. The posterior distribution (21.5) is not a separable function of
b and e. This fact is illustrated most simply by studying the effect of learning
that e = 1.

When we learn e=1, the posterior probability of b is given by
Pble=1,a=1) = P(b,e=1|a=1)/P(e=1|a=1), i.e., by dividing the bot-
tom two rows of (21.5), by their sum P(e=1|a=1) = 0.0060. The posterior
probability of b is:

Pb=0le=1,a=1) 0.92

Pb=1le=1,a=1) = 0.08. (21.7)

There is thus now an 8% chance that a burglar was in Fred’s house. It is
in accordance with everyday intuition that the probability that b=1 (a pos-
sible cause of the alarm) reduces when Fred learns that an earthquake, an
alternative explanation of the alarm, has happened.

Ezxplaining away

This phenomenon, that one of the possible causes (b=1) of some data (the
data in this case being a = 1) becomes less probable when another of the causes
(e=1) becomes more probable, even though those two causes were indepen-
dent variables a priori, is known as explaining away. Explaining away is an
important feature of correct inferences, and one that any artificial intelligence
should replicate.

If we believe that the neighbour and the radio service are unreliable or
capricious, so that we are not certain that the alarm really is ringing or that
an earthquake really has happened, the calculations become more complex,
but the explaining-away effect persists; the arrival of the earthquake report r
simultaneously makes it more probable that the alarm truly is ringing, and
less probable that the burglar was present.

In summary, we solved the inference questions about the burglar by enu-
merating all four hypotheses about the variables (b, €), finding their posterior
probabilities, and marginalizing to obtain the required inferences about b.

Exercise 21.2.12] After Fred receives the phone-call about the burglar alarm,
but before he hears the radio report, what, from his point of view, is the
probability that there was a small earthquake today?

Exact inference for continuous hypothesis spaces

Many of the hypothesis spaces we will consider are naturally thought of as
continuous. For example, the unknown decay length X\ of section 3.1 (p.48)
lives in a continuous one-dimensional space; and the unknown mean and stan-
dard deviation of a Gaussian u, o live in a continuous two-dimensional space.
In any practical computer implementation, such continuous spaces will neces-
sarily be discretized, however, and so can, in principle, be enumerated — at a
grid of parameter values, for example. In figure 3.2 we plotted the likelihood

295

296 21 — Exact Inference by Complete Enumeration

— =

A A A AN
AN NN
[O

function for the decay length as a function of A by evaluating the likelihood
at a finely-spaced series of points.

==
= =
= =
= =

p—
| ——
p—
[—
e —
—
a—
—
p——
—

A two-parameter model

Let’s look at the Gaussian distribution as an example of a model with a two-
dimensional hypothesis space. The one-dimensional Gaussian distribution is
parameterized by a mean p and a standard deviation o:

P(z|p,0) =

2

\/21_7r(7 exp (—Q) = Normal(z; 1, 0?). (21.8)
Figure 21.2 shows an enumeration of one hundred hypotheses about the mean
and standard deviation of a one-dimensional Gaussian distribution. These
hypotheses are evenly spaced in a ten by ten square grid covering ten values
of 1 and ten values of 0. Each hypothesis is represented by a picture showing
the probability density that it puts on x. We now examine the inference of p
and o given data points z,, n = 1,..., N, assumed to be drawn independently
from this density.

Imagine that we acquire data, for example the five points shown in fig-
ure 21.3. We can now evaluate the posterior probability of each of the one
hundred subhypotheses by evaluating the likelihood of each, that is, the value
of P({xn}>_1 | p,0). The likelihood values are shown diagrammatically in
figure 21.4 using the line thickness to encode the value of the likelihood. Sub-
hypotheses with likelihood smaller than e™® times the maximum likelihood
have been deleted.

Using a finer grid, we can represent the same information by plotting the
likelihood as a surface plot or contour plot as a function of p and o (figure 21.5).

A five-parameter mixture model

Eyeballing the data (figure 21.3), you might agree that it seems more plau-
sible that they come not from a single Gaussian but from a mixture of two

Figure 21.2. Enumeration of an
entire (discretized) hypothesis
space for one Gaussian with
parameters u (horizontal axis)
and o (vertical).

N x

-0.5 0 0.5 1 15 2 25

Figure 21.3. Five datapoints
{x,}>_;. The horizontal
coordinate is the value of the
datum, x,; the vertical coordinate
has no meaning.

21.2: Exact inference for continuous hypothesis spaces

e T e T e T e T — T

SN N

N N AN

o S o . . .

TN AN NN .,

0.06
0.05
0.04
0.03
0.02
0.01 i /4”!"
10 %/Z?;W“‘l
°e i
sgma’ L "‘4'/“00“‘0““‘“

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

sigma

297

Figure 21.4. Likelihood function,
given the data of figure 21.3,
represented by line thickness.
Subhypotheses having likelihood
smaller than e~2 times the
maximum likelihood are not
shown.

Figure 21.5. The likelihood
function for the parameters of a
Gaussian distribution.

Surface plot and contour plot of
the log likelihood as a function of
uand o. The data set of N =5
points had mean £ = 1.0 and
S?2=3(z—x)?=1.0.

298 21 — Exact Inference by Complete Enumeration

Gaussians, defined by two means, two standard deviations, and two mixing
coefficients 71 and 7o, satisfying m; + 79 =1, m; > 0.

T _ 2 T 2
P(-Tl/.tl,O'l,ﬂ'],/};Q,O’Q,Wg) = \/%0'1 eXp (_(xQOl%l)) + \/%0_2 exp(%)

Let’s enumerate the subhypotheses for this alternative model. The parameter
space is five-dimensional, so it becomes challenging to represent it on a single
page. Figure 21.6 enumerates 800 subhypotheses with different values of the
five parameters p1, p12,01,09, 7. The means are varied between five values
each in the horizontal directions. The standard deviations take on four values
each vertically. And 7 takes on two values vertically. We can represent the
inference about these five parameters in the light of the five datapoints as
shown in figure 21.7.

If we wish to compare the one-Gaussian model with the mixture-of-two
model, we can find the models’ posterior probabilities by evaluating the
marginal likelihood or evidence for each model H, P({z}|H). The evidence
is given by integrating over the parameters, @; the integration can be imple-
mented numerically by summing over the alternative enumerated values of
07

P({z}|H) ZP P({z}|0,H), (21.9)

where P(6) is the prior distribution over the grid of parameter values, which
I take to be uniform.

For the mixture of two Gaussians this integral is a five-dimensional integral;
if it is to be performed at all accurately, the grid of points will need to be
much finer than the grids shown in the figures. If the uncertainty about each
of K parameters has been reduced by, say, a factor of ten by observing the

Figure 21.6. Enumeration of the
entire (discretized) hypothesis
space for a mixture of two
Gaussians. Weight of the mixture
components is w1, m2 = 0.6,0.4 in
the top half and 0.8,0.2 in the
bottom half. Means p; and o
vary horizontally, and standard
deviations o1 and oy vary
vertically.

21.2: Exact inference for continuous hypothesis spaces 299

Figure 21.7. Inferring a mixture of

N N - R R T - N N -7 e -

A e e A A AL A e S A AL A s o A B P e o & two Gaussians. Likelihood

A A A DA ALA e S DN A N oA e P AN L P N function7gjventhedata0f
Ah AAAA b A AA A b AN A Sehe e A figure 21.3, represented by line
== TEOSON O AL LS A AN LS e thickness. The hypothesis space is
o~ e A A A s o DA A mn o A A A e identical to that shown in
Ao AAA A DA AAA b ANA PN LS figure 21.6. Subhypotheses having
A ANANAA AANAANM AN NA AN BVNSU NS likelihood smaller than e~ times
O ADDse AN AN L AN NN A =0 =h A the maximum likelihood are not
NS Anire ANANM A AN N AN AN 1 .
~ AAos ma AAAM s~ ANAAm Y shown, hence the blank regions,

AAAL AAAAA AAAAA A A which correspond to hypotheses

A A AN AAAAMA A ANAANL _AA_A that the data have ruled out.
I AN AAAAM 2 AAANL haA .
M An A ANAM AANM 20

0.5 0 05 1 15 2 25
S s s A A AL A A AAA A e AN S s s e
A s s A A A A A AAA A S AN s o
A e A A A A e A AANA s SN e o O
AL A e SAA A A A S A A LSS AN N e b =~ N

DD AN, DA NDND L AN D D D D

o~ s AN e DA ND D DDA o o~ D
~ o~ DD ANA A ANDNDN L AN DND A P N)
ANA A A on ADAA AN A A~ DY S VA
AN NN AAANAAN A NANA AN A
AN NN ANAAN AN AN AN . .\
ANADN ANAAAA AAANAAN .}
AN A ANAAANA AANAA I,

A A
A AA
A AA

A A

data, then brute force integration requires a grid of at least 10X points. This
exponential growth of computation with model size is the reason why complete
enumeration is rarely a feasible computational strategy.

ﬁ%Exercise 21.3.[1] Imagine fitting a mixture of ten Gaussians to data in a
twenty-dimensional space. Estimate the computational cost of imple-
menting inferences for this model by enumeration of a grid of parameter

values.

22.1

22

Maximum Likelihood and Clustering

Rather than enumerate all hypotheses — which may be exponential in number
— we can save a lot of time by homing in on one good hypothesis that fits
the data well. This is the philosophy behind the maximum likelihood method,
which identifies the setting of the parameter vector 8 that maximizes the
likelihood, P(Data|,H).

For some models the maximum likelihood parameters can be identified
instantly from the data; for more complex models, finding the maximum like-
lihood parameters may require an iterative algorithm.

For any model, it is usually easiest to work with the logarithm of the
likelihood rather than the likelihood, since likelihoods, being products of the
probabilities of many data points, tend to be very small. Likelihoods multiply;
log likelihoods add.

Maximum likelihood for one Gaussian

We return to the Gaussian for our first examples. Assume we have data
{xn}nNzl. The log likelihood is:

I P({2}) g o) = —Nln(v3mo) = 3 (e, — w)?/(20%). (22.1)

n

The likelihood can be expressed in terms of two functions of the data, the
sample mean

N
z=) a,/N, (22.2)
n=1
and the sum of square deviations

S=) (an—2)*: (22.3)

In P({z,}N_| | p,0) = =N In(v27m0) — [N(n — 2)2 + 8]/ (20%). (22.4)

Because the likelihood depends on the data only through and .S, these two
quantities are known as sufficient statistics.

Example 22.1. Differentiate the log likelihood with respect to x and show that,
if the standard deviation is known to be o, the maximum likelihood mean
u of a Gaussian is equal to the sample mean z, for any value of o.

Solution.
9 _ Np-1
P = - (22.5)
= 0 when p=12. O (22.6)

300

22.1: Maximum likelihood for one Gaussian

0.06 -
1
0.05 |-
1 o9
0.04 - 4 08
0.03 1 07
1 o6
0.02 - 1 os sigma
0.01 i 4 o4
"’//"”' I "ll \
10 . //,//,,;///,;///,"l,"//‘"““l\\\ L 4 o3
TN 1 02
N -
06 9“".‘.““““‘\\@ ! ! ! 01

0.4
(al : 2
al) 1 (a2)
o 0.5 mean mean
45 ——— 0.09 ———
sigma=0.2 — mu=l —
4t sigma=0.4 - + 0.08 g ’ mu=1.25 - 4
sigma=0.6 -+ MU=L5 -
35 1 0.07
3r I 0.06
8 25 4
s 0.05
8 2k 4
g 0.04
18 1 0.03
1 4
Y NS 0.02
05 | 4 001
o il A N e Ty
0 02 04 06 08 1 12 14 16 18 2 0

- L L L PR —=CE
mean 0.2 0.4 0.6 0.8 1 121416182

If we Taylor-expand the log likelihood about the maximum, we can de-
fine approximate error bars on the maximum likelihood parameter: we use
a quadratic approximation to estimate how far from the maximum-likelihood
parameter setting we can go before the likelihood falls by some standard factor,
for example e'/2, or €*/2, In the special case of a likelihood that is a Gaussian
function of the parameters, the quadratic approximation is exact.

Example 22.2. Find the second derivative of the log likelihood with respect to
1, and find the error bars on pu, given the data and o.

Solution.
—InP=—-——. O (22.7)

Comparing this curvature with the curvature of the log of a Gaussian distri-
bution over p of standard deviation o, exp(—uQ/(Qai)), which is l/ai, we
can deduce that the error bars on p (derived from the likelihood function) are

o
VN
The error bars have this property: at the two points 4 = T+ 0, the likelihood
is smaller than its maximum value by a factor of e!/2.

O = (22.8)

Example 22.3. Find the maximum likelihood standard deviation o of a Gaus-
sian, whose mean is known to be g, in the light of data {z,}_;. Find
the second derivative of the log likelihood with respect to In o, and error
bars on Ino.

Solution. The likelihood’s dependence on o is

S
In P({z,}_ | p,0) = =N In(v270) — ﬁ (22.9)
where Sior = Y, (zn — w)?. To find the maximum of the likelihood, we can

differentiate with respect to Ino. [It’s often most hygienic to differentiate with

301

Figure 22.1. The likelihood
function for the parameters of a
Gaussian distribution.

(al, a2) Surface plot and contour
plot of the log likelihood as a
function of p and o. The data set
of N =5 points had mean £ = 1.0
and S%? = 3 (z —)% = 1.0.

(b) The posterior probability of 4
for various values of o.

(¢) The posterior probability of o
for various fixed values of p.

302 22 — Maximum Likelihood and Clustering

respect to Inwu rather than w, when w is a scale variable; we use du™/d(lnu) =

81nP({£L’n}N_1 ‘[h O') Stot
n= =N+ —== 22.1
Olno + o2 (0)
This derivative is zero when g
2 tot
= 22.11
ot =2t (22.11)
ie.,
Z,Iy:l(xn - N)Q
=/ == 7 22.12
o= (2212)
The second derivative is
& In P({zn}0"y | 1, 0) _ _2Stot’ (22.13)
d(Ino)? o2

and at the maximum-likelihood value of ¢, this equals —2N. So error bars

on Ino are
! O (22.14)
Olpe = —. .
Ino /—2N

> Exercise 22.4.17] Show that the values of 1 and Ino that jointly maximize the
likelihood are: {u, o} = {.f,UN = \/S/N} , where

N —\2
n=1(Tnp — T
on = % (22.15)

22.2 Maximum likelihood for a mixture of Gaussians

We now derive an algorithm for fitting a mixture of Gaussians to one-
dimensional data. In fact, this algorithm is so important to understand that,
you, gentle reader, get to derive the algorithm. Please work through the fol-
lowing exercise.

ﬁ Exercise 22.5.1% P-3101 A random variable is assumed to have a probability
distribution that is a mizture of two Gaussians,

P(z|p, p2, 0) = {ipk Lo (Mﬂ (22.16)
= V2ro? 202

where the two Gaussians are given the labels k = 1 and & = 2; the prior
probability of the class label k is {p1 = 1/2,p2 = 1/2}; {4} are the means
of the two Gaussians; and both have standard deviation o. For brevity, we
denote these parameters by 8 = {{ux},0}.

A data set consists of N points {,}_; which are assumed to be indepen-
dent samples from this distribution. Let k,, denote the unknown class label of
the nth point.

Assuming that {ux} and o are known, show that the posterior probability
of the class label k;,, of the nth point can be written as

1
Plky = 1|2,,0) —
([#n, 6) 1+ exp[—(w1xy + wo)]
X (22.17)
P(ky =2|z,,0) =

1 + exp[+(wixy, + wo)]’

and give expressions for wy and wy.

22.3

22.3: Enhancements to soft K-means

Assume now that the means {u;} are not known, and that we wish to
infer them from the data {z,}"_;. (The standard deviation o is known.) In
the remainder of this question we will derive an iterative algorithm for finding
values for {ur} that maximize the likelihood,

P({zp}ni{pw}s 0) = T Plaal{mm}, o). (22.18)
n
Let L denote the log of the likelihood. Show that the derivative of the log

likelihood with respect to py is given by

0
Ok

(xn — Hk
L= Zpka)v (22.19)
n
where py, = P(k, = k|2, 0) appeared above at equation (22.17).
Show, neglecting terms in %P(kn = k|z,, 0), that the second derivative

is approximately given by
0? 1
8—%1: = - ;pk‘n;. (22.20)

Hence show that from an initial state 1, p2, an approximate Newton—Raphson
step updates these parameters to p, ith, where

_ Zn Pk|nTn

!
pfy, = Snm (22.21)

[The Newton—Raphson method for maximizing L(u) updates p to p/ = p —

5%/ 5%]

Assuming that o = 1, sketch a contour plot of the likelihood function L as a
function of p; and ps for the data set shown above. The data set consists of
32 points. Describe the peaks in your sketch and indicate their widths.

Notice that the algorithm you have derived for maximizing the likelihood
is identical to the soft K-means algorithm of section 20.4. Now that it is clear
that clustering can be viewed as mixture-density-modelling, we are able to
derive enhancements to the K-means algorithm, which rectify the problems
we noted earlier.

Enhancements to soft K-means

Algorithm 22.2 shows a version of the soft-K-means algorithm corresponding
to a modelling assumption that each cluster is a spherical Gaussian having its
own width (each cluster has its own 8¥) = 1/¢7). The algorithm updates the
lengthscales oy, for itself. The algorithm also includes cluster weight parame-
ters 7y, mo, ..., mx which also update themselves, allowing accurate modelling
of data from clusters of unequal weights. This algorithm is demonstrated in
figure 20.8 and figure 22.3 for two data sets that we’ve seen before. The sec-
ond example shows that convergence can take a long time, but eventually the
algorithm identifies the small cluster and the large cluster.

303

304 22 — Maximum Likelihood and Clustering

Algorithm 22.2. The soft K-means

Assignment step. The responsibilities are algorithm, version 2.

i = k (22.22)

1 /
S T ——a—— — (*) x(n)
K Tk Jaran)T OXP (z d(m'"/ x))

where [is the dimensionality.

Update step. Each cluster’s parameters, m®), 7., and or,%, are adjusted
to match the data points that it is responsible for.

Z r](cn)x(”)
(k) _ n
m'" = T CRE (22.23)
XA -
2_n
ot = =5 (22.24)
R®)
T = W (22.25)
where R*) is the total responsibility of mean k,
R® =3¢, (22.26)
and [is the dimensionality of x.
t=0 t=1 t=2 t=3 t=9 Figure 22.3. Soft K-means

algorithm, with K = 2, applied

82 8° (a) to the 40-point data set of
oo X o° Y figure 20.3; (b) to the little 'n’
M 3 @ .3 | large data set of figure 20.5.

+

*

*

4
++
£ ',A
Ssay
%
& 2L &
o o

Algorithm 22.4. The soft K-means
" algorithm, version 3, which

1 (k) (n)\2 (k)\2 corresponds to a model of
Tk =7) P <_ Z (m;” — ;") /2(01') axis-aligned Gaussians.
=L (22.27)

(n) _ i=1 V210;
> (numerator, with k" in place of k)

SO - Py
n

k
o2 = =5 (22.28)

22.4: A fatal flaw of maximum likelihood

Soft K-means, version 2, is a maximum-likelihood algorithm for fitting a
mixture of spherical Gaussians to data — ‘spherical’ meaning that the variance
of the Gaussian is the same in all directions. This algorithm is still no good
at modelling the cigar-shaped clusters of figure 20.6. If we wish to model the
clusters by axis-aligned Gaussians with possibly-unequal variances, we replace
the assignment rule (22.22) and the variance update rule (22.24) by the rules
(22.27) and (22.28) displayed in algorithm 22.4.

This third version of soft K-means is demonstrated in figure 22.5 on the
‘two cigars’ data set of figure 20.6. After 30 iterations, the algorithm has
correctly located the two clusters. Figure 22.6 shows the same algorithm
applied to the little 'n’ large data set, where, again, the correct cluster locations
are found.

22.4 A fatal flaw of maximum likelihood

Finally, figure 22.7 sounds a cautionary note: when we fit K = 4 means to our
first toy data set, we sometimes find that very small clusters form, covering
just one or two data points. This is a pathological property of soft K-means
clustering, versions 2 and 3.

> Exercise 22.6.[%] Investigate what happens if one mean m®) sits exactly on
top of one data point; show that if the variance a,% is sufficiently small,
then no return is possible: O']% becomes ever smaller.

t=0 t=>5 t=10 t =20
X
xX X
X
X
o O
o
o X
X
o X
¥ O O
*

305

Figure 22.5. Soft K-means
algorithm, version 3, applied to
the data consisting of two
cigar-shaped clusters. K = 2 (c.f.
figure 20.6).

Figure 22.6. Soft K-means
algorithm, version 3, applied to
the little 'n’ large data set. K = 2.

A proof that the algorithm does in-
deed maximize the likelihood is de-
ferred to section 33.7.

Figure 22.7. Soft K means
algorithm applied to a data set of
40 points. K = 4. Notice that at
convergence, one very small
cluster has formed between two
data points.

306 22 — Maximum Likelihood and Clustering

KABOOM!

Soft K-means can blow up. Put one cluster exactly on one data point and let its
variance go to zero — you can obtain an arbitrarily large likelihood! Maximum
likelihood methods can break down by finding highly tuned models that fit part
of the data perfectly. This phenomenon is known as overfitting. The reason
we are not interested in these solutions with enormous likelihood is this: sure,
these parameter-settings may have enormous posterior probability density,
but the density is large over only a very small volume of parameter space. So
the probability mass associated with these likelihood spikes is usually tiny.

We conclude that maximum likelihood methods are not a satisfactory gen-
eral solution to data modelling problems: the likelihood may be infinitely large
at certain parameter settings. Even if the likelihood does not have infinitely-
large spikes, the maximum of the likelihood is often unrepresentative, in high-
dimensional problems.

Even in low-dimensional problems, maximum likelihood solutions can be
unrepresentative. As you may know from basic statistics, the maximum like-
lihood estimator (22.15) for a Gaussian’s standard deviation, oy, is a biased
estimator, a topic that we’ll take up in Chapter 24.

The mazimum a posteriori (MAP) method

A popular replacement for maximizing the likelihood is maximizing the
Bayesian posterior probability density of the parameters instead. However,
multiplying the likelihood by a prior and maximizing the posterior does
not make the above problems go away; the posterior density often also has
infinitely-large spikes, and the maximum of the posterior probability density
is often unrepresentative of the whole posterior distribution. Think back to
the concept of typicality, which we encountered in Chapter 4: in high dimen-
sions, most of the probability mass is in a typical set whose properties are
quite different from the points that have the maximum probability density.
Maxima are atypical.

A further reason for disliking the maximum a posteriori is that it is basis-
dependent. If we make a nonlinear change of basis from the parameter 6 to
the parameter u = f() then the probability density of 6 is transformed to

00
ou
The maximum of the density P(u) will usually not coincide with the maximum
of the density P(0). (For figures illustrating such nonlinear changes of basis,

see the next chapter.) It seems undesirable to use a method whose answers
change when we change representation.

P(u) = P(0)| 22| (22.29)

Further reading

The soft K-means algorithm is at the heart of the automatic classification
package, AutoClass (Hanson et al., 1991b; Hanson et al., 1991a).

22.5 Further exercises

Exercises where mazximum likelihood may be useful

Exercise 22.7.1%] Make a version of the K-means algorithm that models the
data as a mixture of K arbitrary Gaussians, i.e., Gaussians that are not
constrained to be axis-aligned.

22.5: Further exercises 307

> Exercise 22.8.1%] (a) A photon counter is pointed at a remote star for one
minute, in order to infer the brightness, i.e., the rate of photons
arriving at the counter per minute, A. Assuming the number of
photons collected r has a Poisson distribution with mean A,

T

P(r|X) = exp(—)\)A—

T (22.30)

what is the maximum likelihood estimate for A, given r = 97 Find
error bars on In \.

(b) Same situation, but now we assume that the counter detects not
only photons from the star but also ‘background’ photons. The
background rate of photons is known to be b=13 photons per
minute. We assume the number of photons collected, r, has a Pois-
son distribution with mean A+b. Now, given r =9 detected photons,
what is the maximum likelihood estimate for A? Comment on this
answer, discussing also the Bayesian posterior distribution, and the
‘unbiased estimator’ of sampling theory, A=r—b.

Exercise 22.9.12] A bent coin is tossed N times, giving N, heads and N, tails.
Assume a beta distribution prior for the probability of heads, p, for
example the uniform distribution. Find the maximum likelihood and
maximum a posteriori values of p, then find the maximum likelihood
and maximum a posteriori values of the logit a = In[p/(1—p)]. Compare
with the predictive distribution, i.e., the probability that the next toss
will come up heads.

> Exercise 22.10.1%] Two men looked through prison bars; one saw stars, the
other tried to infer where the window frame was. (Tmax, Ymax)

From the other side of a room, you look through a window and see
stars at locations {(zn,yn)}. You can’t see the window edges because *
it is totally dark apart from the stars. Assuming the window is rectan- *
gular and that the visible stars’s locations are independently randomly
distributed, what are the inferred values of (Zmin, Ymin, Tmax, Ymax), aC-
cording to maximum likelihood? Sketch the likelihood as a function of
Tmax, for fixed Zmin, Ymin, and Ymax-

(-Tminy ymin)

> Exercise 22.11.13] A sailor infers his location (z,y) by measuring the bearings
of three buoys whose locations (x,,y,) are given on his chart. Let the (23, y3)
true bearings of the buoys be 0,,. Assuming that his measurement 6,, of
each bearing is subject to Gaussian noise of small standard deviation o,
what is his inferred location, by maximum likelihood?

The sailor’s rule of thumb says that the boat’s position can be taken to
be the centre of the cocked hat, the triangle produced by the intersection
of the three measured bearings (figure 22.8). Can you persuade him that
the maximum likelihood answer is better?

(z1,91)
(w2, y2)

> Exercise 22.12.[3 3101 Masimum likelihood fitting of an exponential-family ~ Figure 22.8. The standard way of
model. drawing three slightly inconsistent

bearings on a chart produces a
Assume that a variable x comes from a probability distribution of the triangle called a cocked hat.
form Where is the sailor?

P(x|w) = Z()exp (Zwkfk) (22.31)

308 22 — Maximum Likelihood and Clustering

where the functions fi(x) are given, and the parameters w = {wy} are
not known. A data set {x(™} of N points is supplied.

Show by differentiating the log likelihood that the maximum-likelihood
parameters wyy, satisfy

ZP x| W) fr(x ka (" (22.32)

where the left-hand sum is over all x, and the right-hand sum is over the
data points. A shorthand for this result is that each function-average
under the fitted model must equal the function-average found in the
data:

<fk>P(x\wML) = (fk)Data - (22.33)

> Exercise 22.13.1%] *Maximum entropy’ fitting of models to constraints.

When confronted by a probability distribution P(x) about which only a
few facts are known, the maximum entropy principle (maxent) offers a
rule for choosing a distribution that satisfies those constraints. Accord-
ing to maxent, you should select the P(x) that maximizes the entropy

H=> P(x)log1/P(x), (22.34)

subject to the constraints. Assuming the constraints assert that the
averages of certain functions fi(x) are known, i.e.,

(fr) pe) = Fis (22.35)

show, by introducing Lagrange multipliers (one for each constraint, in-
cluding normalization), that the maximum-entropy distribution has the
form

P(X)Maxent = %GXP (Z wlcfk(x)> s (22.36)
k

where the parameters Z and {wy} are set such that the constraints
(22.35) are satisfied.

And hence the maximum entropy method gives identical results to max-
imum likelihood fitting of an exponential-family model (previous exer-
cise).

The maximum entropy method has sometimes been recommended as a method
for assigning prior distributions in Bayesian modelling. While the outcomes
of the maximum entropy method are sometimes interesting and thought-
provoking, I do not advocate maxent as the approach to assigning priors.
Maximum entropy is also sometimes proposed as a method for solving inference
problems — for example, ‘given that the mean score of this unfair six-sided die
is 2.5, what is its probability distribution (p1, p2, p3, p4,ps,ps)?’ I think it is a
bad idea to use maximum entropy in this way; it can give very silly answers.
The correct way to solve inference problems is to use Bayes’ theorem.

Exercises where mazximum likelihood and MAP have difficulties

> Exercise 22.14.[2] This exercise explores the idea that maximizing a proba-
bility density is a poor way to find a point that is representative of
the density. Consider a Gaussian distribution in a k-dimensional space,
P(w) = (1/v2m ow)* exp(— ¥ w?/202,). Show that nearly all of the
probability mass of a Gaussian is in a thin shell of radius 7 = Vkoy

22.5: Further exercises 309

and of thickness proportional to r/ Vk. For example, in 1000 dimen-

sions, 90% of the mass of a Gaussian with oy, = 1 is in a shell of radius A B CD-G
31.6 and thickness 2.8. However, the probability density at the origin is N —
ek/2 ~ 10217 times bigger than the density at this shell where most of ¥

the probability mass is.

Now consider two Gaussian densities in 1000 dimensions that differ in
radius oy by just 1%, and that contain equal total probability mass.

Show that the maximum probability density is greater at the centre of Scientist T

the Gaussian with smaller oy, by a factor of ~exp(0.01k) ~ 20000. A —97.020
In ill-posed problems, a typical posterior distribution is often a weighted B 3.570
superposition of Gaussians with varying means and standard deviations, C 8.191
so the true posterior has a skew peak, with the maximum of the prob- D 9.898
ability density located near the mean of the Gaussian distribution that E 9.603
has the smallest standard deviation, not the Gaussian with the greatest F 9.945
weight. G 10.056

> Exercise 22.15.1%] The seven scientists. N datapoints {an} are drawn from Figyre 22.9. Seven measurements
N distributions, all of which are Gaussian with a common mean p but {x,} of a parameter u by seven
with different unknown standard deviations o,. What are the maximum scientists each having his own
likelihood parameters p,{c,} given the data? For example, seven noise-level oy,.
scientists (A, B, C, D, E, F, G) with wildly-differing experimental skills
measure g. You expect some of them to do accurate work (i.e., to have
small ¢,,), and some of them to turn in wildly inaccurate answers (i.e.,
to have enormous o,,). Figure 22.9 shows their seven results. What is
1, and how reliable is each scientist?

I hope you agree that, intuitively, it looks pretty certain that A and B
are both inept measurers, that D—G are better, and that the true value
of u is somewhere close to 10. But what does maximizing the likelihood
tell you?

Exercise 22.16.1%] Problems with MAP method. A collection of widgets i =
1...k have a property called ‘wodge’, w;, which we measure, widget by
widget, in noisy experiments with a known noise level ¢, =1.0. Our
model for these quantities is that they come from a Gaussian prior
P(w; |a) = Normal(0,1/a), where a=1/02, is not known. Our prior
for this variance is flat over log oy, from oy, = 0.1 to o = 10.

Scenario 1. Suppose four widgets have been measured and give the fol-
lowing data: {di,ds,ds,ds} = {2.2, —2.2, 2.8, —2.8}. We are interested
in inferring the wodges of these four widgets.

(a) Find the values of w and « that maximize the posterior probability
P(w,loga|d).

(b) Marginalize over a and find the posterior probability density of w
given the data. [Integration skills required. See MacKay (1999a) for
solution.] Find maxima of P(w|d). [Answer: two maxima — one at
wyp = {1.8,—1.8,2.2, —2.2}, with error bars on all four parameters
(obtained from Gaussian approximation to the posterior) £0.9; and
one at wi,, = {0.03,—0.03,0.04, —0.04} with error bars +0.1.]

Scenario 2. Suppose in addition to the four measurements above we are
now informed that there are four more widgets that have been measured
with a much less accurate instrument, having o], =100.0. Thus we now
have both well-determined and ill-determined parameters, as in a typical

310 22 — Maximum Likelihood and Clustering

ill-posed problem. The data from these measurements were a string of
uninformative values, {ds, dgs, d7,ds} = {100, —100, 100, —100}.

We are again asked to infer the wodges of the widgets. Intuitively, our
inferences about the well-measured widgets should be negligibly affected
by this vacuous information about the poorly-measured widgets. But
what happens to the MAP method?

(a) Find the values of w and « that maximize the posterior probability .
P(w,loga|d).

(b) Find maxima of P(w|d). [Answer: only one maximum, wyp = !

{0.03, —0.03, 0.03, —0.03, 0.0001, —0.0001, 0.0001, —0.0001}, with I

error bars on all eight parameters +0.11.] I

© 1

22.6 Solutions ,

0 1 2 3 4 5
Solution to exercise 22.5 (p.302). Figure 22.10 shows a contour plot of the
likelihood function for the 32 data points. The peaks are pretty-near centred
on the points (1,5) and (5,1), and are pretty-near circular in their contours.
The width of each of the peaks is a standard deviation of 0/v/16 = 1/4. The
peaks are roughly Gaussian in shape.

Figure 22.10. The likelihood as a
function of p; and po.

Solution to exercise 22.12 (p.307). The log likelihood is:

In P({x™}|w) = -NInZ(w) + > > wpfu(x™). (22.37)
n k

9 P{x™} |w) = —Nil Z(w +Zf (22.38)

dun n X w D0 n k . .

Now, the fun part is what happens when we differentiate the log of the nor-
malizing constant:

b 1 a
a—wkan(W) = m;fwke}{p (;wk’fk/(x))

- ﬁze"p (Zwk'fk’(X)> frlx) = Y Px|w)fi(x), (22.39)
X k! ”

SO

ailnp({x”)}\w ——NZPx\wfk +ka (22.40)

and at the maximum of the likelihood,

Z P(x|wy) fr(x) = Z Te(x ") (22.41)

23.1

23

Useful Probability Distributions

In Bayesian data modelling, there’s a small collection of probability distribu-
tions that come up again and again. The purpose of this chapter is to intro-
duce these distributions so that they won’t be intimidating when encountered
in combat situations.

There is no need to memorize any of them, except perhaps the Gaussian;
if a distribution is important enough, it will memorize itself, and otherwise, it
can easily be looked up.

Distributions over integers

Binomial, Poisson, exponential
We already encountered the binomial distribution and the Poisson distribution
on page 2.
The binomial distribution for an integer r with parameters f (the bias,
f€10,1]) and N (the number of trials) is:

P(r|f,N) = <]:>f’(1 - H¥ " ref0,1,2,...,N}. (23.1)

The binomial distribution arises, for example, when we flip a bent coin,
with bias f, N times, and observe the number of heads, r.

The Poisson distribution with parameter A > 0 is:
T

P(r|\) :e“% re{0,1,2,...}. (23.2)

The Poisson distribution arises, for example, when we count the number of
photons r that arrive in a pixel during a fixed interval, given that the mean
intensity on the pixel corresponds to an average number of photons .

The exponential distribution on integers,
Pirify=frA-f) re€(0,1,2,...,00), (23.3)

arises in waiting problems. How long will you have to wait until a six is rolled,
if a fair six-sided dice is rolled? Answer: the probability distribution of the
number of rolls, r, is exponential over integers with parameter f = 5/6. The
distribution may also be written

Pirify=01-fle™ re(0,1,2,...,00), (23.4)
where A = log(1/f).

311

0.3 o
0.25
0.2 A
0.15
0.1 A
0.05

0.01 4
0.001 A
0.0001 o
le-05 o
1e-06

T LI B B B B
0123456738910
r

Figure 23.1. The binomial
distribution P(r | f=0.3, N =10),
on a linear scale (top) and a
logarithmic scale (bottom).

5 10 15

001 -

1e-05 -
1e-06
1e-07 -

0.001 -
0.0001 -
‘ I,

5 10 15
T

Figure 23.2. The Poisson

distribution P(r|A=2.7), on a

linear scale (top) and a

logarithmic scale (bottom).

23.2

312

Distributions over unbounded real numbers

Gaussian, Student, Cauchy, biexponential, inverse-cosh.
The Gaussian distribution or normal distribution with mean p and standard
deviation o is

T —)2
Pla| o) = %exp (-%) 2 € (—00,50), (23.5)
where
7 = V2mo2. (23.6)

It is sometimes useful to work with the quantity 7 = 1/02, which is called the
precision parameter of the Gaussian.

A sample z from a standard univariate Gaussian can be generated by
computing
21n(1/ug),

z = cos(2muy) (23.7)

where u; and ug are uniformly distributed in (0,1). A second sample z5 =
sin(27uq)v/21In(1/us), independent of the first, can then be obtained for free.

The Gaussian distribution is widely used and often asserted to be a very
common distribution in the real world, but I am sceptical about this asser-
tion. Yes, unimodal distributions may be common; but a Gaussian is a spe-
cial, rather extreme, unimodal distribution. It has very light tails: the log-
probability-density decreases quadratically. The typical deviation of x from p
is o, but the respective probabilities that x deviates from p by more than 20,
30, 40, and 50, are 0.046, 0.003, 6 x 107>, and 6 x 10~7. In my experience,
deviations from a mean four or five times greater than the typical deviation
may be rare, but not as rare as 6 x 107°! I therefore urge caution in the use of
Gaussian distributions: if a variable that is modelled with a Gaussian actually
has a heavier-tailed distribution, the rest of the model will contort itself to
reduce the deviations of the outliers, like a sheet of paper being crushed by a
rubber band.

Exercise 23.1.11] Pick a variable that is supposedly bell-shaped in probability
distribution, gather data, and make a plot of the variable’s empirical
distribution. Show the distribution as a histogram on a log scale and
investigate whether the tails are well-modelled by a Gaussian distribu-
tion. [One example of a variable to study is the amplitude of an audio
signal.]

One distribution with heavier tails than a Gaussian is a mixture of Gaus-
sians. A mixture of two Gaussians, for example, is defined by two means,
two standard deviations, and two mixing coefficients m and o, satisfying
T +me=1,m,; > 0.

1

—1u1)2 Up) _ 2
P(I | NlaalvwlaNQaa'QyﬂQ) = \/%0_1 exp <7 (12;%1))+\/%0_2 exp (7%) .

If we take an appropriately weighted mixture of an infinite number of
Gaussians, all having mean pu, we obtain a Student-t distribution,

1 1

P(x|p,s,n) == 5 (& = 2 (ns)) T2 (23.8)
where
_ I'(n/2)
Z= WW (23.9)

23 — Useful Probability Distributions

01 -

0.01 -

0.001 -

00001

Figure 23.3. Three unimodal
distributions. Two Student
distributions, with parameters
(m,s) = (1,1) (heavy line) (a
Cauchy distribution) and (2, 4)
(light line), and a Gaussian
distribution with mean p = 3 and
standard deviation o = 3 (dashed
line), shown on linear vertical
scales (top) and logarithmic
vertical scales (bottom). Notice
that the heavy tails of the Cauchy
distribution are scarcely evident
in the upper ‘bell-shaped curve’.

23.3

23.3: Distributions over positive real numbers

and n is called the number of degrees of freedom and I is the gamma function.
If n > 1 then the Student distribution (23.8) has a mean and that mean is
p. If n > 2 the distribution also has a finite variance, o2 = ns?/(n — 2).
As n — oo, the Student distribution approaches the normal distribution with
mean g and standard deviation s. The Student distribution arises both in
classical statistics (as the sampling-theoretic distribution of certain statistics)
and in Bayesian inference (as the probability distribution of a variable coming
from a Gaussian distribution whose standard deviation we aren’t sure of).

In the special case n = 1, the Student distribution is called the Cauchy
distribution.

A distribution whose tails are intermediate in heaviness between Student
and Gaussian is the biexponential distribution,

P(x|u,s) = %exp (—@) x € (—00,00) (23.10)

where
7 = 2s. (23.11)

The inverse-cosh distribution

1

Pl o omganr?

(23.12)
is a popular model in independent component analysis. In the limit of large /3,
the probability distribution P(x | () becomes a biexponential distribution. In
the limit 5 — 0 P(z|f3) approaches a Gaussian with mean zero and variance

1/8.
Distributions over positive real numbers

Exponential, gamma, inverse-gamma, and log-normal.
The exponential distribution,

P(z|s) = %exp (72) x € (0, 00), (23.13)

where
7 = s, (23.14)

arises in waiting problems. How long will you have to wait for a bus in Pois-
sonville, given that buses arrive independently at random with one every s
minutes on average? Answer: the probability distribution of your wait, x, is
exponential with mean s.

The gamma distribution is like a Gaussian distribution, except whereas the
Gaussian goes from —oo to oo, gamma distributions go from 0 to co. Just as
the Gaussian distribution has two parameters p and o which control the mean
and width of the distribution, the gamma distribution has two parameters. It
is the product of the one-parameter exponential distribution (23.13) with a
polynomial, z¢~*. The exponent c in the polynomial is the second parameter.

1 /x\! T
P(z|s,c) = T(x;s,¢) = E<§> exp <_§)’ 0<z<oo (23.15)

where

Z =T(c)s. (23.16)

313

314 23 — Useful Probability Distributions

Figure 23.4. Two gamma
distributions, with parameters
(s,¢) = (1,3) (heavy lines) and
10,0.3 (light lines), shown on
linear vertical scales (top) and
logarithmic vertical scales
(bottom); and shown as a
function of x on the left (23.15)
and [= log z on the right (23.18).

000000000
oRNwhuodN®OR
S O N |

01 -
0.01 -

0.001 | 0.001 -

0.0001 0.0001 -

T l=logx

This is a simple peaked distribution with mean sc and variance s2c.

It is often natural to represent a positive real variable x in terms of its
logarithm [= log . The probability density of [is

P(l) = P(x(l)) g—“l? = P(x(l)z(l) (23.17)
_ L (e (e
_ Zl(s) p< S) (23.18)
where
Z = T(c). (23.19)

[The gamma distribution is named after its normalizing constant — an odd
convention, it seems to mel]

Figure 23.4 shows a couple of gamma distributions as a function of and
of . Notice that where the original gamma distribution (23.15) may have a
‘spike’ at x = 0, the distribution over [never has such a spike. The spike is
an artefact of a bad choice of basis.

In the limit sc = 1,¢ — 0, we obtain the noninformative prior for a scale
parameter, the 1/x prior. This improper prior is called noninformative because
it has no associated length scale, no characteristic value of x, so it prefers all
values of = equally. It is invariant under the reparameterization x = max. If
we transform the 1/x probability density into a density over I = log x we find
the latter density is uniform.

Exercise 23.2.1] Imagine that we reparameterize a positive variable x in terms
of its cube root, u = z!/3. If the probability density of z is the improper
distribution 1/z, what is the probability density of u?

The gamma distribution is always a unimodal density over | = log z, and,
as can be seen in the figures, it is asymmetric. If x has a gamma distribution,
and we decide to work in terms of the inverse of x, v = 1/x, we obtain a new
distribution, in which the density over [is flipped left-for-right: the probability
density of v is called an inverse-gamma distribution,

1 1 \¢t1 1
P(v|s,c)=7 " exp | ——1, 0<v<oo (23.20)

where
Z, =T(c)/s. (23.21)

23.4

23.4: Distributions over periodic variables

25 08
0.7 -

2 06
15 05
04 -

14 0.3 -
02 -

0.5 -| |
0.1 -

01 -

0.01 - 0.01

0.001 | 0.001

0.0001 - 0.0001 -
0 1 2 3 4 2 0o 2 a4

v log v

Gamma and inverse gamma distributions crop up in many inference prob-
lems in which a positive quantity is inferred from data. Examples include
inferring the variance of Gaussian noise from some noise samples, and infer-
ring the rate parameter of a Poisson distribution from the count.

Gamma distributions also arise naturally in the distributions of waiting
times between Poisson-distributed events. Given a Poisson process with rate
A, the probability density of the arrival time x of the mth event is

/\((rAnx)T)_!l X (23.22)

Log-normal distribution

Another distribution over a positive real number x is the log-normal distribu-
tion, which is the distribution that results when [= Inx has a normal distri-
bution. We define m to be the median value of x, and s to be the standard
deviation of In x.

1 (I —Inm)?
P(l|m,s) = 7 &P (_T> l € (—00,00), (23.23)
where
Z =V2rs?, (23.24)
implies
1 (Inz — Inm)?
P(z|m,s) = — exp <—T> x € (0,00). (23.25)

Distributions over periodic variables

A periodic variable 0 is a real number € [0, 27] having the property that 6 = 0
and 6 = 27 are equivalent.

A distribution that plays for periodic variables the role played by the Gaus-
sian distribution for real variables is the Von Mises distribution:

1
PO u,B) = - OXp (Bcos(@ —) 6 € (0,2m). (23.26)

The normalizing constant is Z = 27ly(3), where Iy(x) is a modified Bessel
function.

315

Figure 23.5. Two inverse gamma
distributions, with parameters
(s,¢) = (1,3) (heavy lines) and
10,0.3 (light lines), shown on
linear vertical scales (top) and
logarithmic vertical scales
(bottom); and shown as a
function of x on the left and

| = log z on the right.

0.4 -
0.35 -

0.25 |

0.15 -

0.1

0.01

0.001

0.0001

Figure 23.6. Two log-normal
distributions, with parameters
(m,s) = (3,1.8) (heavy line) and
(3,0.7) (light line), shown on
linear vertical scales (top) and
logarithmic vertical scales
(bottom). [Yes, they really do
have the same value of the
median, m = 3.]

316 23 — Useful Probability Distributions

A distribution that arises from Brownian diffusion around the circle is the
Gaussian distribution with wrap-around,
(o]
PO|p,o0)= Z Normal(8; (i + 27n),0) 6 € (0,2n). (23.27)
n=-—oo
0 o025 05 075 1
23.5 Distributions over probabilities 0.6
05
Beta distribution, Dirichlet distribution, entropic distribution 04
The beta distribution is a probability density over a variable p that is a prob- 03
ability, p € (0,1): 0.2
) 01 ; .
P(plut,ug) = ————p“ 11 —p)=l. 23.28 %5Ta 2 o \
(p|u1,uz) Z(Ul,UQ)p () () 6 4 -2 0 2 4 6

The parameters up, ug may take any positive value. The normalizing constant Figure 23.7. Three beta
is the beta function. ()T () distributions, with
I'(un)T (uz (u1,ug) = (0.3,1), (1.3,1), and
Z(ur, uz) = T(uy + ug) (23.29) (12,2). The upper figure shows
Special cases include the uniform distribution — u; =1,us =1; the Jeffreys P(p|u1, uz) as a function O.f p; the
. . . lower shows the corresponding
prior — u; =0.5,u2 =0.5; and the improper Laplace prior — u; =0,us =0. If density over the logit,
we transform the beta distribution to the corresponding density over the logit
l=1Inp/(1—p), wefind it is always a pleasant bell-shaped density over [, while 1
the density over p may have singularities at p = 0 and p = 1 (figure 23.7).

P
n
1-p

Notice how well-behaved the

More dimensions densities are as a function of the
logit.

The Dirichlet distribution is a density over an I-dimensional vector p whose

I components are positive and sum to 1. The beta distribution is a special

case of a Dirichlet distribution with I = 2. The Dirichlet distribution is

parameterized by a measure u (a vector with all coefficients u; > 0) which

I will write here as u = am, where m is a normalized measure over the [

components (Y m; = 1), and « is positive:

1 oom .
P(p|am) :mﬂpi =15 (3, pi — 1) = Dirichlet”) (p|am) (23.30)
=1

The function 6(z) is the Dirac delta function which restricts the distribution
to the simplex such that p is normalized, i.e., > ,p; = 1. The normalizing
constant of the Dirichlet distribution is:

Z(am) = HF(ozmi) /T(a) . (23.31)
The vector m is the mean of the probability distribution:
/ Dirichlet) (p|am) p d’p = m. (23.32)

When working with a probability vector p, it is often helpful to work in the
‘softmax basis’, in which, for example, a three-dimensional probability p =
(p1, P2, p3) is represented by three numbers a1, ag, ag satisfying a; +as+as =0

and
1

Z
This nonlinear transformation is analogous to the ¢ — Ino transformation
for a scale variable and the logit transformation for a single probability, p —

pi = = €%, where Z =, e%. (23.33)

23.5: Distributions over probabilities

u = (20,10,7) u=(02,1,2) u=(0.2,0.3,0.15)
-
= i
8 8 8
4 4 4
0 3‘ 0 0
4 -4 4
g ! 8| g !
8 4 0 4 8 -8 4 0 4 8 8 4 0 4 8

In £-. In the softmax basis, the ugly minus-ones in the exponents in the

Dirichlet distribution (23.30) disappear, and the density is given by:

1
P(a]am) o m T om0 (5 as) - (23.34)
=1

The role of a can be characterized in two ways. First, the parameter o mea-
sures the sharpness of the distribution (figure 23.8); it measures how different
we expect typical samples p from the distribution to be from the mean m, just
as the precision 7 = /o2 of a Gaussian measures how far samples stray from its
mean. A large value of « produces a distribution over p that is sharply peaked
around m. The effect of & in higher-dimensional situations can be visualized
by drawing a typical sample from the distribution Dirichlet(!)(p\am), with m
set to the uniform vector m; = /I, and making a Zipf plot, that is, a ranked
plot of the values of the components p;. It is traditional to plot both p; (ver-
tical axis) and the rank (horizontal axis) on logarithmic scales so that power
law relationships appear as straight lines. Figure 23.9 shows these plots for a
single sample from ensembles with I = 100 and I = 1000 and with « from 0.1
to 1000. For large «, the plot is shallow with many components having simi-
lar values. For small «, typically one component p; receives an overwhelming
share of the probability, and of the small probability that remains to be shared
among the other components, another component p; receives a similarly large
share. In the limit as a goes to zero, the plot tends to an increasingly steep
power law.

Second, we can characterize the role of a in terms of the predictive dis-
tribution that results when we observe samples from p and obtain counts
F = (F1,F;, ..., Fr) of the possible outcomes. The value of o defines the
number of samples from p that are required in order that the data dominate
over the prior in predictions.

Exercise 23.3.19] The Dirichlet distribution satisfies a nice additivity property.
Imagine that a biased six-sided die has two red faces and four blue faces.
The die is rolled N times and two Bayesians examine the outcomes in
order to infer the bias of the die and make predictions. One Bayesian
has access to the red/blue colour outcomes only, and he infers a two-
component probability vector (pr,pp). The other Bayesian has access
to each full outcome: he can see which of the six faces came up, and
he infers a six-component probability vector (p1,p2, p3, P4, Ps, Ps), Where

317

Figure 23.8. Three Dirichlet
distributions over a
three-dimensional probability
vector (p1,p2,p3). The upper
figures show 1000 random draws
from each distribution, showing
the values of p; and p2 on the two
axes. pg = pa + p1. The triangle
in the first figure is the simplex of
legal probability distributions.
The lower figures show the same
points in the ‘softmax’ basis
(equation (23.33)). The two axes
show a1 and as. a3 = —a1 — as.

0.1 F

001 | ST

0.001 4 4

0.0001 i
1 10 100

0.001 | Vel A

0.0001 F b ; o

1e-05 . o
1 10 100 1000

Figure 23.9. Zipf plots for random
samples from Dirichlet
distributions with various values
of @« =0.1...1000. For each value
of I =100 or 1000 and each «,
one sample p from the Dirichlet
distribution was generated. The
Zipf plot shows the probabilities
pi, ranked by magnitude, versus
their rank.

23.6

318 23 — Useful Probability Distributions

pr = p1 + p2 and pg = p3 + ps + p5 + pg. Assuming that the sec-
ond Bayesian assigns a Dirichlet distribution to (p1, p2, p3, p4, Ps, pe) with
hyperparameters (uy, ug, U3, ug, Us, ug), show that, in order for the first
Bayesian’s inferences to be consistent with those of the second Bayesian,
the first Bayesian’s prior should be a Dirichlet distribution with hyper-
parameters ((u1 + ug), (us + ug + us + ug)).

Hint: a brute-force approach is to compute the integral P(pr,pp) =
[d°p P(p|u)d(pr — (p1 + p2)) 6(pB — (3 + pa + p5 + p6)). A cheaper
approach is to compute the predictive distributions, given arbitrary data
(F1, Fy, F3, Fy, F5, Fs), and find the condition for the two predictive dis-
tributions to match for all data.

The entropic distribution for a probability vector p is sometimes used in
the ‘maximum entropy’ image reconstruction community.

P(p | am) = i expla (p)] (i~ 1). (23.35)

where H(p) = Y, pilog 1/p;.
Further reading

See (MacKay and Peto, 1995) for fun with Dirichlets.

Further exercises

Exercise 23.4.121 N datapoints {x,} are drawn from a gamma distribution
P(z|s,c) = I'(x;s,c) with unknown parameters s and ¢c. What are the
maximum likelihood parameters s and ¢?

24.1

24

Exact Marginalization

How can we avoid the exponentially large cost of complete enumeration of
all hypotheses? Before we stoop to approximate methods, we explore two
approaches to exact marginalization: first, marginalization over continuous
variables (sometimes known as nuisance parameters) by doing integrals; and
second, summation over discrete variables by message-passing.

Exact marginalization over continuous parameters is a macho activity en-
joyed by those who are fluent in definite integration. This chapter uses gamma
distributions; as was explained in the previous chapter, gamma distributions
are a lot like Gaussian distributions, except that whereas the Gaussian goes
from —oo to oo, gamma distributions go from 0 to oc.

Inferring the mean and variance of a Gaussian distribution

We discuss again the one-dimensional Gaussian distribution, parameterized
by a mean p and a standard deviation o:

I —)2
P(z|p,o0) = M) = Normal(z; 1, 02). (24.1)

1

V2ro P < 202
When inferring these parameters, we must specify their prior distribution.
The prior gives us the opportunity to include specific knowledge that we have
about y and o (from independent experiments, or on theoretical grounds, for
example). If we have no such knowledge, then we can construct an appropriate
prior that embodies our supposed ignorance. In section 21.2, we assumed a
uniform prior over the range of parameters plotted. If we wish to be able to
perform exact marginalizations, it may be useful to consider conjugate priors;
these are priors whose functional form combines naturally with the likelihood
such that the inferences have a convenient form.

Congugate priors for p and o

The conjugate prior for a mean p is a Gaussian: we introduce two ‘hy-
perparameters’, ug and o, which parameterize the prior on u, and write
P(u|po,0,) = Normal(yu; po, 0,,). In the limit p10=0, 0, — 0o, we obtain
the noninformative prior for a location parameter, the flat prior. This is
noninformative because it is invariant under the natural reparameterization
1 = p+c. The prior P(u) = const. is also an improper prior, that is, it is not
normalizable.

The conjugate prior for a standard deviation o is a gamma distribution,
which has two parameters bg and cg. It is most convenient to define the prior

319

320

density of the inverse variance (the precision parameter) 3 = 1/0:

Lol (3
P(B) =T(B;bg, cp) = e 57) 0<B<oo. (24.2)
B

This is a simple peaked distribution with mean bgcg and variance b%cﬁ. In
the limit bgcg = 1,cg3 — 0, we obtain the noninformative prior for a scale
parameter, the 1/0 prior. This is ‘noninformative’ because it is invariant
under the reparameterization ¢’ = co. The 1/0 prior is less strange-looking
if we examine the resulting density over log o, or log 3, which is flat. This is
the prior that expresses ignorance about ¢ by saying ‘well, it could be 10, or
it could be 1, or it could be 0.1, ...’ Scale variables such as ¢ are usually best
represented in terms of their logarithm. Again, this noninformative 1/ prior
is improper.

In the following examples, I will use the improper noninformative priors
for u and o. Using improper priors is viewed as distasteful in some circles,
so let me excuse myself by saying it’s for the sake of readability; if I included
proper priors, the calculations could still be done but the key points would be
obscured by the flood of extra parameters.

Mazimum likelihood and marginalization: oy and oy,

The task of inferring the mean and standard deviation of a Gaussian distribu-
tion from N samples is a familiar one, though maybe not everyone understands
the difference between the on and oy, buttons on their calculator. Let us
recap the formulae, then derive them.

Given data D = {x,})_;, an ‘estimator’ of y is

2= Y0 @ /N, (24.3)
and two estimators of o are:
N =\2 N =\2
_(xn — _1(xp, —
on = % and oy, = % (24.4)

There are two principal paradigms for statistics: sampling theory and Bayesian
inference. In sampling theory (also known as ‘frequentist’ or orthodox statis-
tics), one invents estimators of quantities of interest and then chooses between
those estimators using some criterion measuring their sampling properties;
there is no clear principle for deciding which criterion to use to measure the
performance of an estimator; nor, for most criteria, is there any systematic
procedure for the construction of optimal estimators. In Bayesian inference,
in contrast, once we have made explicit all our assumptions about the model
and the data, our inferences are mechanical. Whatever question we wish to
pose, the rules of probability theory give a unique answer which consistently
takes into account all the given information. Human-designed estimators and
confidence intervals have no role in Bayesian inference; human input only en-
ters into the important tasks of designing the hypothesis space (that is, the
specification of the model and all its probability distributions), and figuring
out how to do the computations that implement inference in that space. The
answers to our questions are probability distributions over the quantities of
interest. We often find that the estimators of sampling theory emerge auto-
matically as modes or means of these posterior distributions when we choose
a simple hypothesis space and turn the handle of Bayesian inference.

24 — Exact Marginalization

24.1: Inferring the mean and variance of a Gaussian distribution 321

1 Figure 24.1. The likelihood
005 1 o9 function for the parameters of a
004 | 1 o8 Gaussian distribution, repeated
0.03 1 o7 from figure 21.5.
002 1 %% ggma (al, a2) Surface plot and contour
108 plot of the log likelihood as a
" i 1 function of 4 and . The d
10 %f”/%"'""“‘““\\\ 1 o3 unction o ,u and o. e ;}ta set
08 . "W"&W‘“‘|“\\\&\\§\ 1 o2 of N =5 points had mean z = 1.0
o SN N 01 and §2 = 3 (z — z)? = 1.0.
sOMma& 04) 0 05 ! 15 2 Notice that the maximum is skew
(al) 05 rban (a2) mean in . The two estimators of
0 o
standard deviation have values
oo ‘ o oo ‘ ‘ o oy = 0.45 amd.o,\,,1 = 050
vl e ool | (c) The posterior probability of o
ol muLs | oo |Pesiamalp mu=1) / | for various fixed values of u.
ool | 0'06 / \ (d) The posterior probability of o,
ool ! | v P(o| D), assuming a flat prior on
ol | vor | 1, obtained by projecting the
ol | oo PaigmalD) | probability mass in (a) onto the o
ol | oo axis. The maximum of P(c | D) is
(©) oot @ et at Ot By contrast, the .
/ ‘ L e . ‘ T maximum of P(o | D, u==,0) is
00 2 0.4 0.6 0.8 1 121416182 00.2 0.4 0.6 0.8 1 121416182

at oy.

In sampling theory, the estimators above can be motivated as follows. T is
an unbiased estimator of pu which, out of all the possible unbiased estimators
of 11, has smallest variance (where this variance is computed by averaging over
an ensemble of imaginary experiments in which the data samples are assumed
to come from an unknown Gaussian distribution). The estimator (Z,oy) is the
maximum likelihood estimator for (i, o). The estimator oy is biased, however:
the expectation of oy, given o, averaging over many imagined experiments, is
not o.

ﬁ% Exercise 24.1.1% P32 Give an intuitive explanation why the estimator oy is
biased.

This bias motivates the invention, in sampling theory, of ox_;, which can be
shown to be an unbiased estimator. Or to be precise, it is o2, that is an
unbiased estimator of 2.

We now look at some Bayesian inferences for this problem, assuming non-
informative priors for ;4 and ¢. The emphasis is thus not on the priors, but
rather on (a) the likelihood function, and (b) the concept of marginalization.
The joint posterior probability of u and o is proportional to the likelihood
function illustrated by a contour plot in figure 24.1a. The log likelihood is:

InP({zn}ply | p0) = —Nn(V2ro) = (20 —p)?/(20%), (24.5)

n

= —NIn(v2r0) — [N(u— %)? + 5]/ (20%), (24.6)

where S = 3, (z, — 7)2. Given the Gaussian model, the likelihood can be
expressed in terms of the two functions of the data and S, so these two
quantities are known as ‘sufficient statistics’. The posterior probability of u
and o is, using the improper priors:

xn }NV o o
P(p,o [{zn}hl)) = il "?HEE";}V_i;D(“ .0) (24.7)
1 N(u—2)*+5
_ (2‘11'0’2)]\’/2 exp (7 202) u
= P({xn}ﬁle) . (24.8)

11
oy o

322

This function describes the answer to the question, ‘given the data, and the
noninformative priors, what might u and o be?’ It may be of interest to find
the parameter values that maximize the posterior probability, though it should
be emphasized that posterior probability maxima have no fundamental status
in Bayesian inference, since their location depends on the choice of basis. Here
we choose the basis (u,lno), in which our prior is flat, so that the posterior
probability maximum coincides with the maximum of the likelihood. As we
saw in exercise 22.4 (p.302), the maximum likelihood solution for p and Ino
is {pu, 0 = {i,aN = S/N}.

There is more to the posterior distribution than just its mode. As can
be seen in figure 24.1a, the likelihood has a skew peak. As we increase o,
the width of the conditional distribution of y increases (figure 22.1b). And
if we fix p to a sequence of values moving away from the sample mean z, we
obtain a sequence of conditional distributions over ¢ whose maxima move to
increasing values of o (figure 24.1c).

The posterior probability of u given o is

N _ P({zabiy | 0) P(n)
P(p{zntn=1,0) = PN o) (24.9)
x exp(—=N(u —7)%/(20?)) (24.10)
= Normal(y; Z,0%/N). (24.11)

We note the familiar ¢ /v/N scaling of the error bars on .

Let us now ask the question ‘given the data, and the noninformative priors,
what might o be?’ This question differs from the first one we asked in that we
are now not interested in p. This parameter must therefore be marginalized
over. The posterior probability of o is:

X N, g (o
P(o|[{za}no1) = P({P?}{Zl}}j_)j(), (24.12)

The data-dependent term P({x,})_; | o) appeared earlier as the normalizing
constant in equation (24.9); one name for this quantity is the ‘evidence’, or
marginal likelihood, for 0. We obtain the evidence for o by integrating out
u; a noninformative prior P(u) = constant is assumed; we call this constant
1/0,, so that we can think of the prior as a top-hat prior of width o,. The
Gaussian integral, P({z,}N_; |0) = [P({zn})_1 | 1, o) P(12) dp, yields:

S I \/%CT/\/N.
o

I P({za}pls |0) = =N In(v2r0) = =5 :

(24.13)
The first two terms are the best fit log likelihood (i.e., the log likelihood with
1 =Z). The last term is the log of the Occam factor which penalizes smaller
values of 0. (We will discuss Occam factors more in Chapter 28.) When we
differentiate the log evidence with respect to Ino, to find the most probable
o, the additional volume factor (¢/v/N) shifts the maximum from o to

ot =1/S/(N —1). (24.14)

Intuitively, the denominator (N —1) counts the number of noise measurements
contained in the quantity S = 3, (2, —%)2. The sum contains N residuals
squared, but there are only (N —1) effective noise measurements because the
determination of one parameter p from the data causes one dimension of noise
to be gobbled up in unavoidable overfitting. In the terminology of classical

24 — Exact Marginalization

24.2

24.3

>

24.2: Exercises

statistics, the Bayesian’s best guess for o sets x? (the measure of deviance
defined by x? = 3", (7, — 1)?/5?) equal to the number of degrees of freedom,
N —1.

Figure 24.1d shows the posterior probability of o, which is proportional
to the marginal likelihood. This may be contrasted with the posterior prob-
ability of o with p fixed to its most probable value, =1, which is shown in
figure 24.1c and d.

The final inference we might wish to make is ‘given the data, what is p?’

Exercise 24.2.1%] Marginalize over ¢ and obtain the posterior marginal distri-
bution of u, which is a Student-t distribution:

P(u|D) 1/ (N(M—E)Z+S>N/2. (24.15)

Further reading

A bible of exact marginalization is Bretthorst’s (1988) book on Bayesian spec-
trum analysis and parameter estimation.

Exercises

Exercise 24.3.1%] [This exercise requires macho integration capabilities.] Give
a Bayesian solution to exercise 22.15 (p.309), where seven scientists of
varying capabilities have measured p with personal noise levels oy,
and we are interested in inferring p. Let the prior on each o, be a
broad prior, for example a gamma distribution with parameters (s, c) =
(10,0.1). Find the posterior distribution of u. Plot it, and explore its
properties for a variety of data sets such as the one given, and the data
set {z,} = {13.01,7.39}.

[Hint: first find the posterior distribution of ¢, given g and x,,
P(oy, | xn,). Note that the normalizing constant for this inference is
P(x,, |p). Marginalize over o, to find this normalizing constant, then
use Bayes’ theorem a second time to find P(u|{z,}).]

Solutions

Solution to exercise 24.1 (p.321). 1. The data points are distributed with mean
squared deviation o2 about the true mean. 2. The sample mean is unlikely
to exactly equal the true mean. 3. The sample mean is the value of y that
minimizes the sum squared deviation of the data points from p. Any other
value of p (in particular, the true value of u) will have a larger value of the
sum-squared deviation that p = Z.

So the expected mean squared deviation from the sample mean is neces-
sarily smaller than the mean squared deviation o2 about the true mean.

B CD-G

323

25.1

29

Exact Marginalization in Trellises

In this chapter we will discuss a few exact methods that are used in proba-
bilistic modelling. As an example we will discuss the task of decoding a linear
error-correcting code. We will see that inferences can be conducted most effi-
ciently by message-passing algorithms, which take advantage of the graphical
structure of the problem to avoid unnecessary duplication of computations
(see Chapter 16).

Decoding problems

A codeword t is selected from a linear (N, K) code C, and it is transmitted
over a noisy channel; the received signal is y. In this chapter we will assume
that the channel is a memoryless channel such as a Gaussian channel. Given
an assumed channel model P(y|t), there are two decoding problems.

The codeword decoding problem is the task of inferring which codeword
t was transmitted given the received signal.

The bitwise decoding problem is the task of inferring for each transmit-
ted bit ¢, how likely it is that that bit was a one rather than a zero.

As a concrete example, take the (7,4) Hamming code. In Chapter 1, we
discussed the codeword decoding problem for that code, assuming a binary
symmetric channel. We didn’t discuss the bitwise decoding problem and we
didn’t discuss how to handle more general channel models such as a Gaussian
channel.

Solving the codeword decoding problem

By Bayes’ theorem, the posterior probability of the codeword t is

Ply[t)P(t)
Pt|y) = ————7—2. (25.1)
P(y)
Likelihood function. The first factor in the numerator, P(y | t), is the likeli-

hood of the codeword, which, for any memoryless channel, is a separable
function,

2

P(y|t) :H (Yn | tn) (25.2)

For example, if the channel is a Gaussian channel with transmissions +x
and additive noise of standard deviation o, then the probability density

324

25.1: Decoding problems 325

of the received signal v, in the two cases ¢, = 0,1 is

)2
T 2
P(yn|t,=0) = \/2;? exp <—%> : (25.4)

From the point of view of decoding, all that matters is the likelihood
ratio, which for the case of the Gaussian channel is

P(yn|t,=1) > <2xyn) '

P(y, |t,=0) o?

(25.5)

ﬁ% Exercise 25.1.[2] Show that from the point of view of decoding, a Gaussian
channel is equivalent to a time-varying binary symmetric channel with
a known noise level f, which depends on n.

Prior. The second factor in the numerator is the prior probability of the
codeword, P(t), which is usually assumed to be uniform over all valid
codewords.

The denominator in (25.1) is the normalizing constant

P(y) =) _P(y[t)P(t). (25.6)

The complete solution to the codeword decoding problem is a list of all
codewords and their probabilities as given by equation (25.1). Since the num-
ber of codewords in a linear code, 2%, is often very large, and since we are not
interested in knowing the detailed probabilities of all the codewords, we often
restrict attention to a simplified version of the codeword decoding problem.

The MAP codeword decoding problem is the task of identifying the
most probable codeword t given the received signal.

If the prior probability over codewords is uniform then this task is iden-
tical to the problem of maximum likelihood decoding, that is, identifying
the codeword that maximizes P(y |t).

Example: In Chapter 1, for the (7,4) Hamming code and a binary symmetric
channel we discussed a method for deducing the most probable codeword from
the syndrome of the received signal, thus solving the MAP codeword decoding
problem for that case. We would like a more general solution.

The MAP codeword decoding problem can be solved in exponential time
(of order 2%) by searching through all codewords for the one that maximizes
P(y|t)P(t). But we are interested in methods that are more efficient than
this. In section 25.3, we will discuss an exact method known as the min—sum
algorithm which may be able to solve the codeword decoding problem more
efficiently; how much more efficiently depends on the properties of the code.

It is worth emphasizing that MAP codeword decoding for a general linear
code is known to be NP-complete (which means in layman’s terms that MAP
codeword decoding has a complexity that scales exponentially with the block
length, unless there is a revolution in computer science). So restricting atten-
tion to the MAP decoding problem hasn’t necessarily made the task much less
challenging; it simply makes the answer briefer to report.

326 25 — Exact Marginalization in Trellises

Solving the bitwise decoding problem

Formally, the exact solution of the bitwise decoding problem is obtained from
equation (25.1) by marginalizing over the other bits.

P(taly)= > Plt]y). (25.7)
{t,y:n'#n}

We can also write this marginal with the aid of a truth function 1[S] that is
one if the proposition S is true and zero otherwise.

P(ta=1ly) = Y P(t|y)1[tn=1] (25.8)

P(t,=1ly) =) P(t|y)1[t.=0]. (25.9)

Computing these marginal probabilities by an explicit sum over all codewords
t takes exponential time. But, for certain codes, the bitwise decoding problem
can be solved much more efficiently using the forward—-backward algorithm.
We will describe this algorithm, which is an example of the sum-product
algorithm, in a moment. Both the min—sum algorithm and the sum—product Q
algorithm have widespread importance, and have been invented many times

in many fields. Repetition code R3

25.2 Codes and trellises

In Chapters 1 and 11, we represented linear (N, K) codes in terms of their &

generator matrices and their parity-check matrices. In the case of a systematic
block code, the first K transmitted bits in each block of size N are the source
bits, and the remaining M = N — K bits are the parity-check bits. This means
that the generator matrix of the code can be written

Simple parity code Ps

;1
G = {]_f }, (25.10)

and the parity-check matrix can be written

H=|P Ly |, (25.11)

(7,4) Hamming code

where P is an M x K matrix.

In this section we will now study another representation of a linear code Figure 25.1. Examples of trellises.
called a trellis. The codes that these trellises represent will not in general be Each edge in a trellis is labelled
systematic codes, but they can be mapped onto systematic codes if desired by ~ by a zero (shown by a square) or
a reordering of the bits in a block. a one (shown by a cross).

Definition of a trellis

Our definition will be quite narrow. For a more comprehensive view of trellises,
the reader should consult Kschischang and Sorokine (1995).

A trellis is a graph consisting of nodes (also known as states or vertices) and
edges. The nodes are grouped into vertical slices called times, and the
times are ordered such that each edge connects a node in one time to
a node in a neighbouring time. Every edge is labelled with a symbol.
The leftmost and rightmost states contain only one node. Apart from
these two extreme nodes, all nodes in the trellis have at least one edge
connecting leftwards and at least one connecting rightwards.

25.3

25.3: Solving the decoding problems on a trellis

A trellis with N 41 times defines a code of block length N as follows: a
codeword is obtained by taking a path that crosses the trellis from left to right
and reading out the symbols on the edges that are traversed. Each valid path
through the trellis defines a codeword. We will number the leftmost time ‘time
0’ and the rightmost ‘time N’. We will number the leftmost state ‘state 0’
and the rightmost ‘state I’, where I is the total number of states (vertices) in
the trellis. The nth bit of the codeword is emitted as we move from time n—1
to time n.

The width of the trellis at a given time is the number of nodes in that
time. The maximal width of a trellis is what it sounds like.

A trellis is called a linear trellis if the code it defines is a linear code. We will
solely be concerned with linear trellises from now on, as nonlinear trellises are
much more complex beasts. For brevity, we will only discuss binary trellises,
that is, trellises whose edges are labelled with zeroes and ones. It is not hard
to generalize the methods that follow to g-ary trellises.

Figures 25.1(a—c) show the trellises corresponding to the repetition code
R3 which has (N, K) = (3,1); the parity code P with (N, K) = (3,2); and
the (7,4) Hamming code.

Exercise 25.2.[2] Confirm that the sixteen codewords listed in table 1.14 are
generated by the trellis shown in figure 25.1c.

Observations about linear trellises

For any linear code the minimal trellis is the one that has the smallest number
of nodes. In a minimal trellis, each node has at most two edges entering it and
at most two edges leaving it. All nodes in a time have the same left degree as
each other and they have the same right degree as each other. The width is
always a power of two.
A minimal trellis for a linear (N, K) code cannot have a width greater than
since every node has at least one valid codeword through it, and there are
only 2% codewords. Furthermore, if we define M = N — K, the minimal
trellis’s width is everywhere less than 2. This will be proved in section 25.4.

Notice that for the linear trellises in figure 25.1, all of which are minimal
trellises, K is the number of times a binary branch point is encountered as the
trellis is traversed from left to right or from right to left.

We will discuss the construction of trellises more in section 25.4. But we
now know enough to discuss the decoding problem.

QK

Solving the decoding problems on a trellis

We can view the trellis of a linear code as giving a causal description of the
probabilistic process that gives rise to a codeword, with time flowing from left
to right. Each time a divergence is encountered, a random source (the source
of information bits for communication) determines which way we go.

At the receiving end, we receive a noisy version of the sequence of edge-
labels, and wish to infer which path was taken, or to be precise, (a) we want
to identify the most probable path in order to solve the codeword decoding
problem; and (b) we want to find the probability that the transmitted symbol
at time n was a zero or a one, to solve the bitwise decoding problem.

Example 25.3. Consider the case of a single transmission from the Hamming
(7,4) trellis shown in figure 25.1c.

327

328

25 — Exact Marginalization in Trellises

t Likelihood Posterior probability

0000000 0.0275562 0.25 CJ
0001011 0.0001458 0.0013 !
0010111 0.0013122 0.012 |
0011100 0.0030618 0.027 10
0100110 0.0002268 0.0020 |
0101101 0.0000972 0.0009 !
0110001 0.0708588 0.63 L1
0111010 0.0020412 0.018 !

|

|

1000101 0.0001458 0.0013
1001110 0.0000042 0.0000
1010010 0.0030618 0.027 D
1011001 0.0013122 0.012 !
1100011 0.0000972 0.0009 !
1101000 0.0002268 0.0020 !
1110100 0.0020412 0.018 !
1111111 0.0000108 0.0001 !

Let the normalized likelihoods be: (0.1,0.4,0.9,0.1,0.1,0.1,0.3). That is,

the ratios of the likelihoods are

P(yl |l‘1:1) 0.1 P(yg |1’2:1) 0.4
2 TR T 2 ete 25.12
P(y1]x1=0) 0.9 P(yz|z2=0) 0.6 ()

How should this received signal be decoded?

1. If we threshold the likelihoods at 0.5 to turn the signal into a bi-

nary received vector, we have r = (0,0,1,0,0,0,0), which decodes,
using the decoder for the binary symmetric channel (Chapter 1), into
t=1(0,0,0,0,0,0,0).

This is not the optimal decoding procedure. Optimal inferences are
always obtained by using Bayes’ theorem.

We can find the posterior probability over codewords by explicit enu-
meration of all sixteen codewords. This posterior distribution is shown
in figure 25.2. Of course, we aren’t really interested in such brute-force
solutions, and the aim of this chapter is to understand algorithms for
getting the same information out in less than 2% computer time.

Examining the posterior probabilities, we notice that the most probable
codeword is actually the string t = 0110001. This is more than twice as
probable as the answer found by thresholding, 0000000.

Using the posterior probabilities shown in figure 25.2, we can also com-
pute the posterior marginal distributions of each of the bits. The result
is shown in figure 25.3. Notice that bits 1, 4, 5 and 6 are all quite con-
fidently inferred to be zero. The strengths of the posterior probabilities
for bits 2, 3, and 7 are not so great. O

In the above example, the MAP codeword is in agreement with the bitwise

decoding that is obtained by selecting the most probable state for each bit
using the posterior marginal distributions. But this is not always the case, as
the following exercise shows.

Figure 25.2. Posterior probabilities
over the sixteen codewords when
the received vector y has
normalized likelihoods
(0.1,0.4,0.9,0.1,0.1,0.1,0.3).

g

25.3: Solving the decoding problems on a trellis

n Likelihood Posterior marginals
P(yn|tn:1) P(yn|tn20) P(tn:1|Y) P(tn:O|Y)

1 0.1 0.9 0.061 U 0939 —— 1

2 0.4 0.6 0.674 ——1 0.326 —

3 0.9 0.1 0.746 ———1 0.254 [

4 0.1 0.9 0.061 O 0939 —— 1

5 0.1 0.9 0.061 O 0939 -—

6 0.1 0.9 0.061 O 0939 b—w—

7 0.3 0.7 0.659 —— 1 0.341 —

Exercise 25.4.1% P333] Find the most probable codeword in the case where
the normalized likelihood is (0.2,0.2,0.9,0.2,0.2,0.2,0.2). Also find or
estimate the marginal posterior probability for each of the seven bits,
and give the bit-by-bit decoding.

[Hint: concentrate on the few codewords that have the largest probabil-
ity.]

We now discuss how to use message passing on a code’s trellis to solve the
decoding problems.

The min—-sum algorithm

The MAP codeword decoding problem can be solved using the min—sum al-
gorithm that was introduced in section 16.3. Each codeword of the code
corresponds to a path across the trellis. Just as the cost of a journey is the
sum of the costs of its constituent steps, the log likelihood of a codeword is
the sum of the bitwise log likelihoods. By convention, we flip the sign of the
log likelihood (which we would like to maximize) and talk in terms of a cost,
which we would like to minimize.

We associate with each edge a cost —log P(yy | tn), where ¢, is the trans-
mitted bit associated with that edge, and ¥, is the received symbol. The
min—sum algorithm presented in section 16.3 can then identify the most prob-
able codeword in a number of computer operations equal to the number of
edges in the trellis. This algorithm is also known as the Viterbi algorithm
(Viterbi, 1967).

The sum—product algorithm

To solve the bitwise decoding problem, we can make a small modification to
the min—sum algorithm, so that the messages passed through the trellis define
‘the probability of the data up to the current point’ instead of ‘the cost of the
best route to this point’. We replace the costs on the edges, —log P(y, | t,), by
the likelihoods themselves, P(y, |t,). We replace the min and sum operations
of the min—sum algorithm by a sum and product respectively.

Let i run over nodes/states, i = 0 be the label for the start state, P(7)
denote the set of states that are parents of state ¢, and w;; be the likelihood
associated with the edge from node j to node i. We define the forward-pass
messages a; by

Ozozl

329

Figure 25.3. Marginal posterior
probabilities for the 7 bits under
the posterior distribution of
figure 25.2.

330 25 — Exact Marginalization in Trellises

o; = Z Wij Q. (2513)
JEP()

These messages can be computed sequentially from left to right.

> Exercise 25.5.12] Show that for a node i whose time-coordinate is n, o is
proportional to the joint probability that the codeword’s path passed
through node ¢ and that the first n received symbols were y1,...,yn-

The message «a; computed at the end node of the trellis is proportional to the
marginal probability of the data.

> Exercise 25.6.1%] What is the constant of proportionality? [Answer: 25]

We define a second set of backward-pass messages §; in a similar manner.
Let node I be the end node.

Br = 1
63' = Z wijﬁz—. (25.14)
i:5€P (i)
These messages can be computed sequentially in a backward pass from right
to left.

> Exercise 25.7.[2] Show that for a node ¢ whose time-coordinate is n, (; is pro-
portional to the conditional probability, given that the codeword’s path
passed through node ¢, that the subsequent n received symbols were

Yntl - - - YN-

Finally, to find the probability that the nth bit was a 1 or 0, we do two
summations of products of the forward and backward messages. Let i run over
nodes at time n and j run over nodes at time n — 1, and let ¢;; be the value
of t,, associated with the trellis edge from node j to node i. For each value of
t =0/1, we compute

7’7(5) = Z ajwijﬂi. (25.15)
i,j:jep(i),tij=t

Then the posterior probability that ¢, was ¢t =0/1 is

1

P(tn=t|y) =), (25.16)

where the normalizing constant Z = rT(zO) + rﬁf) should be identical to the final
forward message oy that was computed earlier. n P(yn | tn)

Exercise 25.8.1% Confirm that the above sum—product algorithm does com- tn=0 tn=1

pute P(t, =t|y). 1 Ua 12
. . 2 1 1/4
Other names for the sum—product algorithm presented here are ‘the forward-— 3 1g 1/5

backward algorithm’, ‘the BCJR algorithm’, and ‘belief propagation’.

> Exercise 25.9.[% P-333] A codeword of the simple parity code Ps is transmitted, Table 25.4. Bitwise likelihoods for

and the received signal y has associated likelihoods shown in table 25.4. a codeword of Ps.

Use the min—sum algorithm and the sum-—product algorithm in the trellis

(figure 25.1) to solve the MAP codeword decoding problem and the

bitwise decoding problem. Confirm your answers by enumeration of

all codewords (000, 011, 110, 101). [Hint: use logs to base 2 and do

the min—sum computations by hand. When working the sum—product

algorithm by hand, you may find it helpful to use three colours of pen,

one for the as, one for the ws, and one for the Bs.]

25.4

25.4: More on trellises

More on trellises

We now discuss various ways of making the trellis of a code. You may safely
jump over this section.

The span of a codeword is the set of bits contained between the first bit in
the codeword that is non-zero, and the last bit that is non-zero, inclusive. We
can indicate the span of a codeword by a binary vector as shown in table 25.5.

Codeword 0000000 0001011 0100110 1100011 0101101
Span 0000000 0001111 0111110 1111111 0111111

A generator matrix is in trellis-oriented form if the spans of the rows of the
generator matrix all start in different columns and the spans all end in different
columns.

How to make a trellis from a generator matriz

First, put the generator matrix into trellis-oriented form by row-manipulations
similar to Gaussian elimination. For example, our (7,4) Hamming code can
be generated by

1000101
0100110

G= 0010111 (25.17)
0001011

but this matrix is not in trellis-oriented form — for example, rows 1, 3 and 4
all have spans that end in the same column. By subtracting lower rows from
upper rows, we can obtain an equivalent generator matrix (that is, one that
generates the same set of codewords) as follows:

1101000
0100110

G= 0011100 (25.18)
0001011

Now, each row of the generator matrix can be thought of as defining an
(N, 1) subcode of the (N, K) code, that is, in this case, a code with two
codewords of length N = 7. For the first row, the code consists of the two
codewords 1101000 and 0000000. The subcode defined by the second row
consists of 0100110 and 0000000. It is easy to construct the minimal trellises
of these subcodes; they are shown in the left column of figure 25.6.

We build the trellis incrementally as shown in figure 25.6. We start with
the trellis corresponding to the subcode given by the first row of the generator
matrix. Then we add in one subcode at a time. The vertices within the span
of the new subcode are all duplicated. The edge symbols in the original trellis
are left unchanged and the edge symbols in the second part of the trellis are
flipped wherever the new subcode has a 1 and otherwise left alone.

Another (7,4) Hamming code can be generated by

1110000
0111100

G= 0010110 (25.19)
0001111

331

Table 25.5. Some codewords and
their spans.

332 25 — Exact Marginalization in Trellises

+
+
+

The (7,4) Hamming code generated by this matrix differs by a permutation
of its bits from the code generated by the systematic matrix used in Chapter
1 and above. The parity-check matrix corresponding to this permutation is:

H= (25.20)

S O =
O = O
S

0101
0 011
1111

The trellis obtained from the permuted matrix G given in equation (25.19) is
shown in figure 25.7a. Notice that the number of nodes in this trellis is smaller
than the number of nodes in the previous trellis for the Hamming (7,4) code
in figure 25.1c. We thus observe that rearranging the order of the codeword
bits can sometimes lead to smaller, simpler trellises.

Trellises from parity-check matrices

Another way of viewing the trellis is in terms of the syndrome. The syndrome
of a vector r is defined to be Hr, where H is the parity-check matrix. A vector
is only a codeword if its syndrome is zero. As we generate a codeword we can
describe the current state by the partial syndrome, that is, the product of
H with the codeword bits thus far generated. Each state in the trellis is a
partial syndrome at one time coordinate. The starting and ending states are
both constrained to be the zero syndrome. Each node in a state represents a
different possible value for the partial syndrome. Since H is an M x N matrix,
where M = N — K, the syndrome is at most an M-bit vector. So we need at
most 2M nodes in each state. We can construct the trellis of a code from its
parity-check matrix by walking from each end, generating two trees of possible
syndrome sequences. The intersection of these two trees defines the trellis of
the code.

In the pictures we obtain from this construction, we can let the vertical
coordinate represent the syndrome. Then any horizontal edge is necessarily
associated with a zero bit (since only a non-zero bit changes the syndrome)

Figure 25.6. Trellises for four
subcodes of the (7,4) Hamming
code (left column), and the
sequence of trellises that are made
when constructing the trellis for
the (7,4) Hamming code (right
column).

Each edge in a trellis is labelled
by a zero (shown by a square) or
a one (shown by a cross).

Figure 25.7. Trellises for the
permuted (7,4) Hamming code
generated from (a) the generator
matrix by the method of

figure 25.6; (b) the parity-check
matrix by the method on page
332.

Each edge in a trellis is labelled
by a zero (shown by a square) or
a one (shown by a cross).

25.5

25.5: Solutions 333

and any non-horizontal edge is associated with a one bit. (Thus in this rep-
resentation we no longer need to label the edges in the trellis.) Figure 25.7b
shows the trellis corresponding to the parity-check matrix of equation (25.20).

Solutions

Table 25.8. The posterior

1100011 0.00010 0.0012
1101000 0.00041 0.0047
1110100 0.0037 0.0423
1111111 0.000058 0.0007

t Likelihood Posterior probability prObE’Fbﬂith’ zver codewords for
exercise 25.4.
0000000 0.026 0.3006 [—1
0001011 0.00041 0.0047 |
0010111 0.0037 0.0423 [
0011100 0.015 0.1691
0100110 0.00041 0.0047 |
0101101 0.00010 0.0012 !
0110001 0.015 0.1691 [
0111010 0.0037 0.0423 [
1000101 0.00041 0.0047 |
1001110 0.00010 0.0012 !
1010010 0.015 0.1691 [
1011001 0.0037 0.0423 [
|
|
0
|

Solution to exercise 25.4 (p.329). The posterior probability over codewords is
shown in table 25.8. The most probable codeword is 0000000. The marginal
posterior probabilities of all seven bits are:

n Likelihood Posterior marginals
P(yn|tn:1) P(yn|tn:0) P(tnzl‘Y) P(tn:O|y)

1 0.2 0.8 0.266 0734 —— 1
2 0.2 0.8 0.266 [0734 L—
3 0.9 0.1 0.677 ——1 0.323 1

4 0.2 0.8 0.266 0734 L——
5 0.2 0.8 0.266 0734 — 1
6 0.2 0.8 0.266 0734 —— 1
7 0.2 0.8 0.266 [0734 L——1

So the bitwise decoding is 0010000, which is not actually a codeword.

Solution to exercise 25.9 (p.330). The MAP codeword is 101, and its like-
lihood is 1/8. The normalizing constant of the sum-—product algorithm is
Z = a; = 3/16. The intermediate a; are (from left to right) /2, 14, 516, 4/16;
the intermediate (3; are (from right to left), /2, 1/8, 9/32, 3/16. The bitwise
decoding is: P(t;=1|y) = 3/4; P(ti=1|y) = 1/4; P(t1=1]y) = 5/6. The
codewords’s probabilities are /12, 2/12, 1/12, 8/12 for 000, 011, 110, 101.

26.1

26

Exact Marginalization in Graphs

We now take a more general view of the tasks of inference and marginalization.
Before reading this chapter, you should read about message passing in Chapter
16.

The general problem

Assume that a function P* of a set of N variables x = {x,,}2_, is defined as
a product of M factors as follows:

M
Pr(x) =[] fin(xm). (26.1)
m=1

Each of the factors f,(x,,) is a function of a subset x,,, of the variables that
make up x. If P* is a positive function then we may be interested in a second
normalized function,

P(x)= 2P (x) =2 [[fmlxm), (26.2)

where the normalizing constant Z is defined by
M
Z = Z H Fm(%Xm).- (26.3)
X m=1

As an example of the notation we’ve just introduced, here’s a function on
three binary variables x1, x2, x3 defined by the five factors:

R = Loy ot

I R

Al = {00 o

oz = {) iz
Mo = (o (=) o o)

P*(x) = fi(x1)f2(x2) f3(x3) fa(z1, 72) f5 (72, 23)

P(x) = %f1(~’51)f2 r2) f3(x3) fa(w1, 22) f5(22, T3).

334

26.1: The general problem

The five subsets of {z1,z2, 23} denoted by x,, in the general function (26.1)
are here x1 = {x1}, xo = {x2}, x3 = {x3}, x4 = {21, 22}, and x5 = {x9, z3}.

The function P(x), by the way, may be recognized as the posterior prob-
ability distribution of the three transmitted bits in a repetition code (section
1.2) when the received signal is r = (1,1, 0) and the channel is a binary sym-
metric channel with flip probability 0.1. The factors f; and f5 respectively
enforce the constraints that x; and xo must be identical and that zo and x3
must be identical. The factors fi, fo, f3 are the likelihood functions con-
tributed by each component of r.

A function of the factored form (26.1) can be depicted by a factor graph, in
which the variables are depicted by circular nodes and the factors are depicted
by square nodes. An edge is put between variable node n and factor node m
if the function f,(x,,) has any dependence on variable z,,. The factor graph
for the example function (26.4) is shown in figure 26.1.

The normalization problem

The first task to be solved is to compute the normalizing constant Z.

The marginalization problems

The second task to be solved is to compute the marginal function of any
variable z,, defined by

Zn(zn) = > P*(x). (26.5)
{z,},n'#n

For example, if f is a function of three variables then the marginal for
n =1 is defined by
Z](.’Iil) = Z f(xl,.TQ,.Tg). (266)
T2,m3

)

This type of summation, over ‘all the z,s except for x,’ is so important that
it can be useful to have a special notation for it — the ‘not-sum’ or ‘summary’.

The third task to be solved is to compute the normalized marginal of any
variable z,,, defined by

Py(zn)= > P(x). (26.7)
{z,},n'#n

[We include the suffix ‘n’ in P, (z,,), departing from our normal practice in the
rest of the book, where we would omit it.]

Exercise 26.1.11] Show that the normalized marginal is related to the marginal
Zy(zn) by

We might also be interested in marginals over a subset of the variables,
such as
Zio(x1,29) = ZP*(ml,xz,mg). (26.9)
x3
All these tasks are intractable in general. Even if every factor is a function
of only three variables, the cost of computing exact solutions for Z and for
the marginals is believed in general to grow exponentially with the number of
variables N.

335

T1 i) I3

i

O
i fo fz o fa fs

Figure 26.1. The factor graph
associated with the function g(x)
(26.4).

336 26 — Exact Marginalization in Graphs

For certain functions P*, however, the marginals can be computed effi-
ciently by exploiting the factorization of P*. The idea of how this efficiency
arises is well illustrated by the message-passing examples of Chapter 16. The
sum—product algorithm that we now review is a generalization of message-
passing rule-set B (p.242). As was the case there, the sum—product algorithm
is only valid if the graph is tree-like.

26.2 The sum—product algorithm

Notation

We identify the set of variables that the mth factor depends on, x,,, by the set
of their indices A (m). For our example function (26.4), the sets are N (1) =
{1} (since fy is a function of z; alone), N(2) = {2}, N(3) = {3}, N(4) =
{1,2}, and N'(5) = {2,3}. Similarly we define the set of factors in which
variable n participates, by M(n). We denote a set A/(m) with variable n
excluded by N(m)\n. We introduce the shorthand x,,\n or X,,\, to denote
the set of variables in x,, with z,, excluded, i.e.,

xm\n = {z,: 0’ € N(m)\n}. (26.10)

The sum—product algorithm will involve messages of two types passing
along the edges in the factor graph: messages ¢,_., from variable nodes to
factor nodes, and messages r,,_, from factor nodes to variable nodes. A
message (of either type, g or r) that is sent along an edge connecting factor
fm to variable x,, is always a function of the variable x,.

Here are the two rules for the updating of the two sets of messages.

From variable to factor:

Qnam(mn) = H Tm’—m(fn)- (26.11)
m/eM(n)\m

From factor to variable: Ln

qun(l'n) = fm(xn)

Tm—n(ZTn) = Z (fm(xm) H qn/ém(acn/)> . (26.12)
N\n

Xm \n n'eN(m

fm

Figure 26.2. A factor node that is

How these rules apply to leaves in the factor graph a leaf node perpetually sends the
message rm—n(Tn) = fm(xn) to

A node that has only one edge connecting it to another node is called a leaf its one neighbour z,.

node.
Some factor nodes in the graph may be connected to only one vari- @
able node, in which case the set N(m)\n of variables appearing in the fac-
tor message update (26.12) is an empty set, and the product of functions p () = 1

[Lventm)\n @n/—m(xn) is the empty product, whose value is 1. Such a fac-
tor node therefore always broadcasts to its one neighbour x, the message o
Tm—»n(xn) = fm(xn)

Similarly, there may be variable nodes that are connected to only one Figure 26.3. A variable node that
factor node, so the set M(n)\m in (26.11) is empty. These nodes perpetually is a leaf node perpetually sends
broadcast the message ¢n—m(x,) = 1. the message gn—m(2,) = 1.

26.2: The sum—product algorithm

Starting and finishing, method 1

The algorithm can be initialized in two ways. If the graph is tree-like then
it must have nodes that are leaves. These leaf nodes can broadcast their
messages to their respective neighbours from the start.

For all leaf variable nodes n: gn—m(x,) =1 (26.13)
For all leaf factor nodes m: rp_pn(n) = fm(zn)- (26.14)

We can then adopt the procedure used in Chapter 16’s message-passing rule-
set B (p.242): a message is created in accordance with the rules (26.11, 26.12)
only if all the messages on which it depends are present. For example, in
figure 26.4, the message from z; to f; will be sent only once the message from
f4 to x1 has been received; and the message from z2 to fa, g2, can be sent
only once the messages r4_o and r5_2 have both been received.

Messages will thus flow through the tree, one in each direction along every
edge, and after a number of steps equal to the diameter of the graph, every
message will have been created.

The answers we require can then be read out. The marginal function of
T, is obtained by multiplying all the incoming messages at that node.

Zn(@n) =[] rmen(zn). (26.15)
meM(n)

The normalizing constant Z can be obtained by summing any marginal
function, Z = _, Z,(x,), and the normalized marginals obtained from

Zn ()

Pa(an) = =7, (26.16)

Exercise 26.2.[2] Apply the sum-product algorithm to the function defined in
equation (26.4) and figure 26.1. Check that the normalized marginals
are consistent with what you know about the repetition code R3.

Exercise 26.3.1%] Prove that the sum—product algorithm correctly computes
the marginal functions Z,(x,) if the graph is tree-like.

Exercise 26.4.1%] Describe how to use the messages computed by the sum-—
product algorithm to obtain more complicated marginal functions in a
tree-like graph, for example 21,2(1‘1, xg), for two variables x1 and zo that
are connected to one common factor node.

Starting and finishing, method 2

Alternatively, the algorithm can be initialized by setting all the initial mes-
sages from variables to 1:

for all n, m: gnom(x,) =1, (26.17)

then proceeding with the factor message update rule (26.12), alternating with
the variable message update rule (26.11). Compared with method 1, this lazy
initialization method leads to a load of wasted computations, whose results
are gradually flushed out by the correct answers computed by method 1.

After a number of iterations equal to the diameter of the factor graph,
the algorithm will converge to a set of messages satisfying the sum—product
relationships (26.11, 26.12).

337

x1 x2 Z3

T Y

[l
fi fo fz fi f5

Figure 26.4. Our model factor
graph for the function g(x) (26.4).

338 26 — Exact Marginalization in Graphs

Exercise 26.5.1%! Apply this second version of the sum—product algorithm to
the function defined in equation (26.4) and figure 26.1.

The reason for introducing this lazy method is that (unlike method 1) it can
be applied to graphs that are not tree-like. When the sum—product algorithm
is run on a graph with cycles, the algorithm does not necessarily converge,
and certainly does not in general compute the correct marginal functions; but
it is nevertheless an algorithm of great practical importance, especially in the
decoding of sparse graph codes.

Sum-—product algorithm with on-the-fly normalization

If we are interested in only the normalized marginals, then another version
of the sum—product algorithm may be useful. The factor-to-variable messages
Tm—n are computed in just the same way (26.12), but the variable-to-factor
messages are normalized thus:

qnem(xn) = Qpm H Tm/ﬂn(xn) (26.18)
m/'eM(n)\m

where ay,,, is a scalar chosen such that

ZQnHm(fEn) =1 (2619)

Exercise 26.6.12! Apply this normalized version of the sum—product algorithm
to the function defined in equation (26.4) and figure 26.1.

A factorization view of the sum-product algorithm

One way to view the sum—product algorithm is that it reexpresses the original
factored function, the product of M factors P*(x) = [T*_, f,n(Xm), as another
factored function which is the product of M + N factors,

M N
P*(x) = [[émxm) I ¢n(zn). (26.20)
m=1 n=1

Each factor ¢, is associated with a factor node m, and each factor 1, () is
associated with a variable node. Initially ¢p,(Xm) = fin(xm) and ¥, (x,) = 1.

Each time a factor-to-variable message 7,—n (%) is sent, the factorization
is updated thus:

Un(zn) =] rm—n(an) (26.21)
meM(n)
f(xm)
HnEJ\/’(m) Tm—n(Tn)
And each message can be computed in terms of ¢ and 1 using

G (Xm) = (26.22)

Pm—n(Tn) = > (¢m(xm) 1T 1/;”,(%,)) (26.23)

Xm\n n’eN(m)

which differs from the assignment (26.12) in that the product is over all n’ €
N (m).

Exercise 26.7.1?] Confirm that the update rules (26.21-26.23) are equivalent
to the sum—product rules (26.11-26.12). So ¥, (x,) eventually becomes
the marginal Z,(x,).

This factorization viewpoint applies whether or not the graph is tree-like.

26.3

26.3: The min-sum algorithm

Computational tricks

On-the-fly normalization is a good idea from a computational point of view
because if P* is a product of many factors, its values are likely to be very large
or very small.

Another useful computational trick involves passing the logarithms of the
messages ¢ and r instead of ¢ and r themselves; the computations of the
products in the algorithm (26.11, 26.12) are then replaced by simpler additions.
The summations in (26.12) of course become more difficult: to carry them out
and return the logarithm, we need to compute softmax functions like

I =1In(e" + e +€b). (26.24)

But this computation can be done efficiently using look-up tables along with
the observation that the value of the answer [is typically just a little larger
than max; [;. If we store in look-up tables values of the function

In(1 + %) (26.25)

(for negative ¢) then ! can be computed exactly in a number of look-ups and
additions scaling as the number of terms in the sum. If look-ups and sorting
operations are cheaper than exp() then this approach costs less than the
direct evaluation (26.24). The number of operations can be further reduced
by omitting negligible contributions from the smallest of the {l;}.

A third computational trick applicable to certain error-correcting codes is
to pass not the messages but the Fourier transform of the messages. This
again makes the computations of the factor-to-variable messages quicker. A
simple example of this Fourier transform trick is given in Chapter 47 at equa-

tion (47.9).

The min—sum algorithm

The sum—product algorithm solves the problem of finding the marginal func-
tion of a given product P*(x). This is analogous to solving the bitwise decod-
ing problem of section 25.1. And just as there were other decoding problems
(for example, the codeword decoding problem), we can define other tasks
involving P*(x) that can be solved by modifications of the sum—product algo-
rithm. For example, consider this task, analogous to the codeword decoding
problem:

The maximization problem. Find the setting of x that maximizes the
product P*(x).

This problem can be solved by replacing the two operations add and mul-
tiply everywhere they appear in the sum—product algorithm by another pair
of operations that satisfy the distributive law, namely max and multiply. If
we replace summation (+, >°) by maximization, we notice that the quantity
formerly known as the normalizing constant,

Z=> P*x), (26.26)

becomes maxy P*(x).

Thus the sum—product algorithm can be turned into a max—product algo-
rithm that computes maxy P*(x), and from which the solution of the max-
imization problem can be deduced. FEach ‘marginal’ Z,(x,) then lists the
maximum value that P*(x) can attain for each value of z,,.

339

340 26 — Exact Marginalization in Graphs

In practice, the max—product algorithm is most often carried out in the
negative log likelihood domain, where max and product and replaced by min
and sum. The min-sum algorithm is also known as the Viterbi algorithm.

26.4 The junction tree algorithm

What should one do when the factor graph one is interested in is not a tree?

There are several options, and they divide into exact methods and approx-
imate methods. The most widely used exact method for handling marginaliza-
tion on graphs with cycles is called the junction tree algorithm. This algorithm
works by agglomerating variables together until the agglomerated graph has
no cycles. You can probably figure out the details for yourself; the complexity
of the marginalization grows exponentially with the number of agglomerated
variables. Read more about the junction tree algorithm in (Lauritzen, 1996;
Jordan, 1998).

There are many approximate methods, and we’ll visit some of them over
the next few chapters — Monte Carlo methods and variational methods, to
name a couple. However, the most amusing way of handling factor graphs
to which the sum—product algorithm may not be applied is, as we already
mentioned, to apply the sum-product algorithm! We simply compute the
messages for each node in the graph, as if the graph were a tree, iterate, and
cross our fingers. This so-called ‘loopy’ message passing has great importance
in the decoding of error-correcting codes, and we’ll come back to it in section
33.8 and Part VI

Further reading

For further reading about factor graphs and the sum—product algorithm, see
Kschischang et al. (2001), Yedidia et al. (2000¢), Yedidia et al. (2000a), Yedidia
et al. (2002), Wainwright et al. (2002), and Forney (2001).

See also Pearl (1988). A good reference for the fundamental theory of
graphical models is Lauritzen (1996). A readable introduction to Bayesian
networks is given by Jensen (1996).

Interesting message-passing algorithms that have different capabilities from
the sum-product algorithm include expectation propagation (Minka, 2001)
and survey propagation (Braunstein et al., 2003). See also section 33.8.

26.5 Exercises

> Exercise 26.8.[%] Express the joint probability distribution from the burglar
alarm and earthquake problem (example 21.1 (p.293)) as a factor graph,
and find the marginal probabilities of all the variables as each piece of
information comes to Fred’s attention, using the sum—product algorithm
with on-the-fly normalization.

27

Laplace’s Method

The idea behind the Laplace approximation is simple. We assume that an
unnormalized probability density P*(x), whose normalizing constant

Zp = / P*(2) da (27.1)

is of interest, has a peak at a point xg. We Taylor-expand the logarithm of
P*(x) around this peak:

In P*(z) ~ In P*(xg) — g(l‘ —z0)2 4+, (27.2)
where
0? .
c=-53 In P*(x) . (27.3)
We then approximate P*(z) by an unnormalized Gaussian,
* * c
Q') = P (a)exp | -5 (o — a0 (27.4)

and we approximate the normalizing constant Zp by the normalizing constant

of this Gaussian,
" 12

We can generalize this integral to approximate Zp for a density P*(x) over
a K-dimensional space x. If the matrix of second derivatives of —In P*(x) at
the maximum xg is A, defined by:

32
Ay = — In P* 27.6
) axlax] n (X) _— ’ ()
so that the expansion (27.2) is generalized to
1

In P*(x) ~ In P*(xq) — §(X —x0)"A(x —x0) + - -, (27.7)

then the normalizing constant can be approximated by:

. 1 y 2m)K

Zp ~ Zg = P*(xo) = P*(xq) (2m) (27.8)

det A’

4/ det %A

Predictions can be made using the approximation (. Physicists also call this
widely-used approximation the saddle-point approximation.

341

P(z)

In P*(z)

342 27 — Laplace’s Method

The fact that the normalizing constant of a Gaussian is given by

K
/de exp [— %XTAX] = gc:)A (27.9)

can be proved by making an orthogonal transformation into the basis u in which A
is transformed into a diagonal matrix. The integral then separates into a product of
one-dimensional integrals, each of the form

/du,' exp [7%/\Luf] = %\—W (27.10)

The product of the eigenvalues \; is the determinant of A.

The Laplace approximation is basis-dependent: if x is transformed to a
nonlinear function u(x) and the density is transformed to P(u) = P(x) |[dz/dul
then in general the approximate normalizing constants Zg will be different.
This can be viewed as a defect — since the true value Zp is basis-independent
— or an opportunity — because we can hunt for a choice of basis in which the
Laplace approximation is most accurate.

27.1 Exercises

ﬁ% Exercise 27.1.1%! (See also exercise 22.8 (p.307).) A photon counter is pointed
at a remote star for one minute, in order to infer the rate of photons
arriving at the counter per minute, A. Assuming the number of photons
collected r has a Poisson distribution with mean A,
T

P () = exp(-X)

(27.11)
and assuming the improper prior P(A) = 1/, make Laplace approxima-
tions to the posterior distribution

(a) over A

(b) over logA. [Note the improper prior transforms to P(log)\) =
constant.]

> Exercise 27.2.1%] Use Laplace’s method to approximate the integral
[e.@]
Z(ur,uz) = / da f(a)" (1 — f(a))", (27.12)

where f(a) =1/(1+e~%) and uy, up are positive. Check the accuracy of
the approximation against the exact answer (23.29, p.316) for (uy,us) =
(Y/2,%2) and (u1,us) = (1,1). Measure the accuracy (log Zp — log Zg)
in bits.

> Exercise 27.3.1%] Linear regression. N datapoints {(2(™, ("))} are generated by
the experimenter choosing each z(™, then the world delivering a noisy
version of the linear function

y(z) = wo + wiz, (27.13)
t™) ~ Normal(y(z™), o2). (27.14)

Assuming Gaussian priors on wgy and w;, make the Laplace approxima-
tion to the posterior distribution of wy and wy (which is exact, in fact)

and obtain the predictive distribution for the next datapoint t ¥ | given
(N+1)
x .

(See MacKay (1992a) for further reading.)

28

Model Comparison and Occam’s Razor

Figure 28.1. A picture to be
interpreted. It contains a tree and
some boxes.

I

28.1 Occam’s razor

.

How many boxes are in the picture (figure 28.1)7 In particular, how many ﬂ
boxes are in the vicinity of the tree? If we looked with x-ray spectacles, or 27 I
would we see one or two boxes behind the trunk (figure 28.2)7 (Or even Figure 28.2. How many boxes are
more?) Occam’s razor is the principle that states a preference for simple behind the tree?

theories. ‘Accept the simplest explanation that fits the data’. Thus according

to Occam’s razor, we should deduce that there is only one box behind the tree.

Is this an ad hoc rule of thumb? Or is there a convincing reason for believing

there is most likely one box? Perhaps your intuition likes the argument ‘well,

it would be a remarkable coincidence for the two boxes to be just the same

height and colour as each other’. If we wish to make artifical intelligences that

interpret data correctly, we must translate this intuitive feeling into a concrete

theory.

Motivations for Occam’s razor

If several explanations are compatible with a set of observations, Occam’s
razor advises us to buy the simplest. This principle is often advocated for one
of two reasons: the first is aesthetic (‘A theory with mathematical beauty is
more likely to be correct than an ugly one that fits some experimental data’

343

344 28 — Model Comparison and Occam’s Razor

Evidence
P(DH

J 1\

<

)

P(DIHy

D

(Paul Dirac)); the second reason is the past empirical success of Occam’s razor.
However there is a different justification for Occam’s razor, namely:

Coherent inference (as embodied by Bayesian probability) auto-
matically embodies Occam’s razor, quantitatively.

It is indeed more probable that there’s one box behind the tree, and we can
compute how much more probable one is than two.

Model comparison and Occam’s razor

We evaluate the plausibility of two alternative theories H; and Hs in the light
of data D as follows: using Bayes’ theorem, we relate the plausibility of model
H1 given the data, P(Hi|D), to the predictions made by the model about
the data, P(D|H1), and the prior plausibility of Hy, P(H1). This gives the
following probability ratio between theory H; and theory Ho:

P(H.|D) _ P(Hy) P(D|H) (28.1)

P(Ha|D) P(H2) P(D|H2)
The first ratio (P(H1)/P(Hz)) on the right-hand side measures how much our
initial beliefs favoured H; over Hs. The second ratio expresses how well the
observed data were predicted by H;, compared to Ha.

How does this relate to Occam’s razor, when Hj is a simpler model than
Ha? The first ratio (P(H1)/P(H2)) gives us the opportunity, if we wish, to
insert a prior bias in favour of H; on aesthetic grounds, or on the basis of
experience. This would correspond to the aesthetic and empirical motivations
for Occam’s razor mentioned earlier. But such a prior bias is not necessary:
the second ratio, the data-dependent factor, embodies Occam’s razor auto-
matically. Simple models tend to make precise predictions. Complex models,
by their nature, are capable of making a greater variety of predictions (figure
28.3). So if Hs is a more complex model, it must spread its predictive prob-
ability P(D|Hz) more thinly over the data space than H;. Thus, in the case
where the data are compatible with both theories, the simpler H; will turn out
more probable than Hs, without our having to express any subjective dislike
for complex models. Our subjective prior just needs to assign equal prior prob-
abilities to the possibilities of simplicity and complexity. Probability theory
then allows the observed data to express their opinion.

Let us turn to a simple example. Here is a sequence of numbers:

~1,3,7, 11.

The task is to predict the next two numbers, and infer the underlying process
that gave rise to this sequence. A popular answer to this question is the
prediction ‘15, 19’, with the explanation ‘add 4 to the previous number’.
What about the alternative answer ‘—19.9,1043.8" with the underlying
rule being: ‘get the next number from the previous number, z, by evaluating

Figure 28.3. Why Bayesian
inference embodies Occam’s razor.
This figure gives the basic
intuition for why complex models
can turn out to be less probable.
The horizontal axis represents the
space of possible data sets D.
Bayes’ theorem rewards models in
proportion to how much they
predicted the data that occurred.
These predictions are quantified
by a normalized probability
distribution on D. This
probability of the data given
model H;, P(D|H,;), is called the
evidence for H;.

A simple model H; makes only a
limited range of predictions,
shown by P(D|H;); a more
powerful model Hs, that has, for
example, more free parameters
than H;, is able to predict a
greater variety of data sets. This
means, however, that Hs does not
predict the data sets in region Cq
as strongly as H;. Suppose that
equal prior probabilities have been
assigned to the two models. Then,
if the data set falls in region C,
the less powerful model Hy will be
the more probable model.

28.1: Occam’s razor

—23/11 4+ 9/112% + 23/11°? 1 assume that this prediction seems rather less
plausible. But the second rule fits the data (—1, 3, 7, 11) just as well as the
rule ‘add 4’. So why should we find it less plausible? Let us give labels to the
two general theories:

‘H, — the sequence is an arithmetic progression, ‘add n’, where n is an integer.

H. — the sequence is generated by a cubic function of the form z — ca3 +
dx?® + e, where ¢, d and e are fractions.

One reason for finding the second explanation, H,, less plausible, might be
that arithmetic progressions are more frequently encountered than cubic func-
tions. This would put a bias in the prior probability ratio P(H,)/P(H,) in
equation (28.1). But let us give the two theories equal prior probabilities, and
concentrate on what the data have to say. How well did each theory predict
the data?

To obtain P(D|H,) we must specify the probability distribution that each
model assigns to its parameters. First, H, depends on the added integer n,
and the first number in the sequence. Let us say that these numbers could
each have been anywhere between —50 and 50. Then since only the pair of
values {n=4, first number= — 1} give rise to the observed data D = (-1, 3,
7, 11), the probability of the data, given H,, is:

1 1

P(DH,) = To1T01 = 0.00010. (28.2)
To evaluate P(D|H.), we must similarly say what values the fractions ¢,d
and e might take on. [I choose to represent these numbers as fractions rather
than real numbers because if we used real numbers, the model would assign,
relative to H,, an infinitesimal probability to D. Real parameters are the
norm however, and are assumed in the rest of this chapter.] A reasonable
prior might state that for each fraction the numerator could be any number
between —50 and 50, and the denominator is any number between 1 and 50.
As for the initial value in the sequence, let us leave its probability distribution
the same as in H,. There are four ways of expressing the fraction ¢ = —1/11 =
—2/22 = —3/33 = —4/44 under this prior, and similarly there are four and two
possible solutions for d and e, respectively. So the probability of the observed
data, given H,, is found to be:

1 4 1 4 1 2 1
PDIH) = () (oo) (o) (o =

(D[He) (101) (101 50> <101 50> (101 50>
0.0000000000025 = 2.5 x 10712, (28.3)

Thus comparing P(D|H.) with P(D|H,) = 0.00010, even if our prior proba-
bilities for H, and H,. are equal, the odds, P(D|H,) : P(D|H.), in favour of
H,, over H,, given the sequence D = (-1, 3, 7, 11), are about forty million to
one. O
This answer depends on several subjective assumptions; in particular, the
probability assigned to the free parameters n, ¢, d, e of the theories. Bayesians
make no apologies for this: there is no such thing as inference or prediction
without assumptions. However, the quantitative details of the prior proba-
bilities have no effect on the qualitative Occam’s razor effect; the complex
theory H,. always suffers an ‘Occam factor’ because it has more parameters,
and so can predict a greater variety of data sets (figure 28.3). This was only
a small example, and there were only four data points; as we move to larger
and more sophisticated problems the magnitude of the Occam factors typi-
cally increases, and the degree to which our inferences are influenced by the
quantitative details of our subjective assumptions becomes smaller.

345

346 28 — Model Comparison and Occam’s Razor

Create
Gather alternative
DATA MODELS

\Ve

Fit each MODEL
to the DATA

\Vg

Assign preferences to the
alternative MODELS

Choose what / \ Decide whether

data to to create new
gather next models

Gather
more data

Create new
models

Choose future
actions

Bayesian methods and data analysis

Let us now relate the discussion above to real problems in data analysis.

There are countless problems in science, statistics and technology which
require that, given a limited data set, preferences be assigned to alternative
models of differing complexities. For example, two alternative hypotheses
accounting for planetary motion are Mr. Inquisition’s geocentric model based
on ‘epicycles’, and Mr. Copernicus’s simpler model of the solar system with
the sun at the centre. The epicyclic model fits data on planetary motion at
least as well as the Copernican model, but does so using more parameters.
Coincidentally for Mr. Inquisition, two of the extra epicyclic parameters for
every planet are found to be identical to the period and radius of the sun’s
‘cycle around the earth’. Intuitively we find Mr. Copernicus’s theory more
probable.

The mechanism of the Bayesian razor: the evidence and the Occam factor

Two levels of inference can often be distinguished in the process of data mod-
elling. At the first level of inference, we assume that a particular model is true,
and we fit that model to the data, i.e., we infer what values its free param-
eters should plausibly take, given the data. The results of this inference are
often summarized by the most probable parameter values, and error bars on
those parameters. This analysis is repeated for each model. The second level
of inference is the task of model comparison. Here we wish to compare the
models in the light of the data, and assign some sort of preference or ranking
to the alternatives.

Note that both levels of inference are distinct from decision theory. The goal of
inference is, given a defined hypothesis space and a particular data set, to assign
probabilities to hypotheses. Decision theory typically chooses between alternative
actions on the basis of these probabilities so as to minimize the expectation of a ‘loss
function’. This chapter concerns inference alone and no loss functions are involved.
When we discuss model comparison, this should not be construed as implying model
choice. Ideal Bayesian predictions do not involve choice between models; rather,
predictions are made by summing over all the alternative models, weighted by their
probabilities.

Figure 28.4. Where Bayesian
inference fits into the data
modelling process.

This figure illustrates an
abstraction of the part of the
scientific process in which data
are collected and modelled. In
particular, this figure applies to
pattern classification, learning,
interpolation, etc. The two
double-framed boxes denote the
two steps which involve inference.
It is only in those two steps that
Bayes’ theorem can be used.
Bayes does not tell you how to
invent models, for example.

The first box, ‘fitting each model
to the data’, is the task of
inferring what the model
parameters might be given the
model and the data. Bayesian
methods may be used to find the
most probable parameter values,
and error bars on those
parameters. The result of
applying Bayesian methods to this
problem is often little different
from the answers given by
orthodox statistics.

The second inference task, model
comparison in the light of the
data, is where Bayesian methods
are in a class of their own. This
second inference problem requires
a quantitative Occam’s razor to
penalise over-complex models.
Bayesian methods can assign
objective preferences to the
alternative models in a way that
automatically embodies Occam’s
razor.

28.1: Occam’s razor

Bayesian methods are able consistently and quantitatively to solve both
the inference tasks. There is a popular myth that states that Bayesian meth-
ods only differ from orthodox statistical methods by the inclusion of subjective
priors, which are difficult to assign, and which usually don’t make much dif-
ference to the conclusions. It is true that, at the first level of inference, a
Bayesian’s results will often differ little from the outcome of an orthodox at-
tack. What is not widely appreciated is how a Bayesian performs the second
level of inference; this section will therefore focus on Bayesian model compar-
ison.

Model comparison is a difficult task because it is not possible simply to
choose the model that fits the data best: more complex models can always
fit the data better, so the maximum likelihood model choice would lead us
inevitably to implausible, over-parameterized models, which generalize poorly.
Occam’s razor is needed.

Let us write down Bayes’ theorem for the two levels of inference described
above, so as to see explicitly how Bayesian model comparison works. Each
model H; is assumed to have a vector of parameters w. A model is defined
by a collection of probability distributions: a ‘prior’ distribution P(w|H;),
which states what values the model’s parameters might be expected to take;
and a set of conditional distributions, one for each value of w, defining the
predictions P(D|w, H;) that the model makes about the data D.

1. Model fitting. At the first level of inference, we assume that one model,
the ith, say, is true, and we infer what the model’s parameters w might
be, given the data D. Using Bayes’ theorem, the posterior probability
of the parameters w is:

P(D|w,H;)P(w|H;)

(28.4)

that is,

Likelihood x Prior

Posterior =
Evidence

The normalizing constant P(D|H;) is commonly ignored since it is irrele-
vant to the first level of inference, i.e., the inference of w; but it becomes
important in the second level of inference, and we name it the evidence
for H;. It is common practice to use gradient-based methods to find the
maximum of the posterior, which defines the most probable value for the
parameters, wyp; it is then usual to summarize the posterior distribu-
tion by the value of wyp, and error bars or confidence intervals on these
best fit parameters. Error bars can be obtained from the curvature of the
posterior; evaluating the Hessian at wyp, A = —VV 1n P(w|D, H;) |WMP7
and Taylor-expanding the log posterior probability with Aw = w —wp:

P(w|D,H;) ~ P(wyp|D, H;) exp (—1/2AWTAAW) , (28.5)

we see that the posterior can be locally approximated as a Gaussian
with covariance matrix (equivalent to error bars) A=!. [Whether this
approximation is good or not will depend on the problem we are solv-
ing. Indeed, the maximum and mean of the posterior distribution have
no fundamental status in Bayesian inference — they both change under
nonlinear reparameterizations. Maximization of a posterior probabil-
ity is only useful if an approximation like equation (28.5) gives a good
summary of the distribution.]

347

348 28 — Model Comparison and Occam’s Razor

[Figure 28.5. The Occam factor.
This figure shows the quantities
P(w|D,H,;) that determine the Occam factor
for a hypothesis H; having a
10| D\ single parameter w. The prior
P(w|H,;) [\ distribution (solid line) for the
T W - parameter has width o,,. The
f posterior distribution (dashed
O line) has a single peak at wyp
with characteristic width o, p.
The Occam factor is

2. Model comparison. At the second level of inference, we wish to infer
which model is most plausible given the data. The posterior probability O pP(Wup|H;) =
of each model is:

Ow|D

P(H”D) X P(D|H2)P(Hl) (28.6)

Notice that the data-dependent term P(D|H;) is the evidence for H;,
which appeared as the normalizing constant in (28.4). The second term,
P('H;), is the subjective prior over our hypothesis space, which expresses
how plausible we thought the alternative models were before the data
arrived. Assuming that we choose to assign equal priors P(H;) to the
alternative models, models H; are ranked by evaluating the evidence. The
normalizing constant P(D) = ", P(D|H;)P(H;) has been omitted from
equation (28.6) because in the data modelling process we may develop
new models after the data have arrived, when an inadequacy of the first
models is detected, for example. Inference is open ended: we continually
seek more probable models to account for the data we gather.

To repeat the key idea: to rank alternative models H;, a Bayesian eval-
uates the evidence P(D|H;). This concept is very general: the evidence
can be evaluated for parametric and ‘non-parametric’ models alike; what-
ever our data modelling task, a regression problem, a classification prob-
lem, or a density estimation problem, the evidence is a transportable
quantity for comparing alternative models. In all these cases the evi-
dence naturally embodies Occam’s razor.

Evaluating the evidence

Let us now study the evidence more closely to gain insight into how the
Bayesian Occam’s razor works. The evidence is the normalizing constant for
equation (28.4):

P(D[H;) = / P(D|w, H;) P(w|H;) dw. (28.7)

For many problems the posterior P(w|D,H;) o« P(D|w,H;)P(w|H;) has
a strong peak at the most probable parameters wyp (figure 28.5). Then,
taking for simplicity the one-dimensional case, the evidence can be approx-
imated, using Laplace’s method, by the height of the peak of the integrand
P(D|w,H;)P(w|H;) times its width, oy p:

P(D ‘Hz) ~ P(D ‘WI\IP7H7;) X P(WI\/IF"Hi) leD . (28.8)
—_— S—
Evidence ~ Best fit likelihood x Occam factor

Thus the evidence is found by taking the best fit likelihood that the model
can achieve and multiplying it by an ‘Occam factor’, which is a term with
magnitude less than one that penalizes H; for having the parameter w.

28.1: Occam’s razor

M P(D|Hs)
A P(D[H2)
D \\/ - =k
_\P(D|H1) ':- 3 by e
N k oo
- .3 }X;
1 . T
.".': P(W|D7H1)::
/_"/ :‘l| o :‘I Ei
; PWID,Ho) i} P(w[Hy) i
L .0 P(W|D, Hs)ii i E
i Pl | |
le\ W Vi \W
Ow|D
O-UI

Interpretation of the Occam factor

The quantity o, p is the posterior uncertainty in w. Suppose for simplicity
that the prior P(w|H;) is uniform on some large interval o,,, representing the
range of values of w that were possible a priori, according to H; (figure 28.5).
Then P(wyp|H;) = 1/04, and

Ow|D

Occam factor = , (28.9)

Ow

i.e., the Occam factor is equal to the ratio of the posterior accessible volume
of H;’s parameter space to the prior accessible volume, or the factor by which
‘H;’s hypothesis space collapses when the data arrive. The model H; can be
viewed as consisting of a certain number of exclusive submodels, of which only
one survives when the data arrive. The Occam factor is the inverse of that
number. The logarithm of the Occam factor is a measure of the amount of
information we gain about the model’s parameters when the data arrive.

A complex model having many parameters, each of which is free to vary
over a large range o, will typically be penalized by a stronger Occam factor
than a simpler model. The Occam factor also penalizes models that have to
be finely tuned to fit the data, favouring models for which the required pre-
cision of the parameters o, p is coarse. The magnitude of the Occam factor
is thus a measure of complexity of the model; it relates to the complexity of
the predictions that the model makes in data space. This depends not only
on the number of parameters in the model, but also on the prior probability
that the model assigns to them. Which model achieves the greatest evidence
is determined by a trade-off between minimizing this natural complexity mea-
sure and minimizing the data misfit. In contrast to alternative measures of
model complexity, the Occam factor for a model is straightforward to evalu-
ate: it simply depends on the error bars on the parameters, which we already
evaluated when fitting the model to the data.

Figure 28.6 displays an entire hypothesis space so as to illustrate the var-
ious probabilities in the analysis. There are three models, H