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Preface

This book is on real-time video compression. Specifically, the book introduces the XY Z video
compression technique, that operates in three dimensions, eliminating the overhead of motion
estimation. First, video compression standards, MPEG and H.261/H.263, are described. They both
use asymmetric compression algorithms, based on motion estimation. Their encoders are much more
complex than decoders. The XY Z technique uses a symmetric algorithm, based on the Three-
Dimensional Discrete Cosine Transform (3D-DCT). 3D-DCT was originally suggested for
compression about twenty years ago, however at that time the computational complexity of the
algorithm was to high, it required large buffer memory, and was not as effective as motion
estimation. We have resurrected the 3D-DCT based video compression algorithm by developing
severa enhancements to the original algorithm. These enhancements made the algorithm feasible for
real-time video compression in applications such as video-on-demand, interactive multimedia, and
videoconferencing. The demonstrated results, presented in the book, suggest that the XY Z video
compression technique is not only afast algorithm, but also provides superior compression ratios and
high quality of the video compared to existing standard techniques, such as MPEG and H.261/H.263.
The elegance of the XY Z technique isin its simplicity, which leads to inexpensive VLS|
implementation of a XY Z codec.

We would like to thank Jim Prince for conducting experimentsin developing visually weighted
quantizersfor the XY Z agorithm, as well as a number of students from Florida Atlantic University,
who participated in these experiments. We also want to thank Drs. Roy Levow, K. Genesan, and
Matthew Evett, professors from Florida Atlantic University, Dr. Steve Rosenbaum from Cylex
Systems, and Joshua Greenberg for constructive discussions during this project.

RAYMOND WESTWATER AND BORKO FURHT
BOCA RATON, JULY 1996.
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1—
The Problem of Video Compression

The problem of real-time video compression is a difficult and important one, and has inspired a great
deal of research activity. This body of knowledge has been, to a substantial degree, embodied into the
MPEG and H.261/H263 motion video standards. However, some important questions remain
unexplored. This book describes one possible alternative to these standards that has superior
compression characteristics while requiring far less computational power for its full implementation.

Since about 1989, moving digital video images have been integrated with programs. The difficulty in
implementing moving digital video is the tremendous bandwidth required for the encoding of video
data. For example, a quarter screen image (320 x 240 pixels) playing on an RGB video screen at full
speed of 30 frames per second (fps) requires storage and transmission of 6.9 million bytes per second.
Thisdatarate is ssmply prohibitive, and so means of compressing digital video suitable for real-time
playback are anecessary step for the widespread introduction of digital motion video applications.

Many digital video compression algorithms have been devel oped and implemented. The compression
ratios of these algorithms varies according to the subjective acceptable level of error, the definition of
the word compression, and who is making the claim. Table 1.1 summarizes video compression
algorithms, their typical compression ratios reported in the literature, and their characteristics.
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Table 1.1 Overview of video compression algorithms.

Compression Algorithm Typical Characteristics
Compression
Ratio

Intel RTV/Indeo 31 A 128X240 data stream is interpolated to 256X 240. Color is
subsampled 4:1. A simple 16 bit codebook is used without error
correction. Frame differencing is used.

Intel PLV 12:1 A native 256X 240 stream is encoded using vector quantization
and motion compensation. Compression requires specialized
equipment.

IBM Photomotion 31 An optimal 8-bit color palette is determined, and run-length
encoding and frame differencing are used.

Motion JPEG 10:1 Uses 2-D DCT to encode individual frames. Gives good real-time
results with inexpensive but special-purpose equipment. This
technique supports random-access since no frame differencing is
used.

Fractals 10:1 Fractals compress natural scenes well, but require tremendous
computing power.

Wavelets 20:1 2-D and 3-D wavelets have been used in the compression of
motion video. Wavelet compression islow enough in complexity
to compress entire images, and therefore does not suffer from the
boundary artifacts seen in DCT-based techniques.

H.261/H263 50:1 Real-time compression and decompression algorithm for video
telecommunications. It is based on 2-D DCT with simple motion
estimation between frames.

MPEG 30:1 Uses 2-D DCT with motion estimation and interpolation between

frames. The MPEG standard is difficult and expensive to
compress, but plays back in real-time with inexpensive equipment.

Anideal video compression technique should have the following characteristics:

» Will produce levels of compression rivaling MPEG without objectionable artifacts.

 Can be played back in real time with inexpensive hardware support.
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« Can degrade easily under network overload or on aslow platform.

« Can be compressed in real time with inexpensive hardware support.

11—
Overview of Video Compression Techniques

The JPEG till picture compression standard has been extremely successful, having been
implemented on virtually all platforms. This standard isfairly simple to implement, is not
computationally complex, and gets 10:1 to 15:1 compression ratios without significant visual
artifacts. This standard is based upon entropy encoding of quantized coefficients of the discrete
cosine transformation of 8x8 blocks of pixel data.

Figure 1.1 shows the block diagram of both the JPEG compression and decompression algorithms. A
single frame is subdivided into 8x8 blocks, each of which isindependently processed. Each block is
transformed into DCT space, resulting in an 8x8 block of DCT coefficients. These coefficients are
then quantized by integer division by constants. The quantizing constant for each DCT coefficient is
chosen to produce minimal visual artifacts, while maximally reducing the representational entropy of
the coefficients. The quantized coefficients are then entropy coded into a compressed data stream.
The reduced entropy of the quantized coefficientsis reflected in the higher compression ratio of the
data.

The Motion JPEG (M-JPEG) uses the JPEG compression for each frame. It provides random access
toindividual frames, however the compression ratios are too low (same as in JPEG), because the
technique does not take advantage of the similarities between adjacent frames.

The MPEG moving compression standard is an attempt to extend DCT-based compression into
moving pictures. MPEG encodes frames by estimating the motion difference between the frames, and
encoding the differences into roughly JPEG format. Unfortunately, motion estimation is
computationally complex, requires specialized equipment to encode, and adds considerable
complexity to the algorithm. Figure 1.2 illustrates the MPEG compression algorithm for predictive
frames.
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Figure 1.1
JPEG compression and decompression algorithms.

One of the most promising new technologies is wavel et-based compression [VK95]. Figure 1.3
illustrates a simple wavelet transform: subband decomposition. The image as awhole is subdivided
into frequency subbands, which are then individually quantized. One of the most attractive features of
this systemisthat it is applied to the image as awhole, thereby avoiding the edge artifacts associated
with the block-based DCT compression schemes.

The wavelet transform can be applied to the time dimension as well. Experience has shown that this
decomposition does hot give as good compression results as motion compensation. As there are no
other compression algorithms capable of such high compression ratios, MPEG is considered the
existing "state-of-the-art”.

The XY Z algorithm is anatural extension of the research that has been done in video compression.
Much work has been done in the development of transform-based motion video compression
algorithms, and in the development of quantizing factors based on the sensitivity of the human eye to
various artifacts of compression.
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MPEG compression algorithm for predictive frames. MPEG

adds motion estimation to the JPEG model.

Figure 1.3
Octave-band or wavelet decomposition of a still
image into unequal subbands.
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XYZ compression is an alternative extension of DCT encoding to moving pictures. Sequences of
eight frames are collected into athree-dimensional block to which athree-dimensional DCT will be
applied. The transformed data is then quantized.



Page 6

These quantizing constants are demonstrated to cause artifacts which are minimally visible. The resulting
data stream is then entropy coded. This process strongly resembles the JPEG encoding process, as
illustrated in Figure 1.4.

i Comprassad Video
1 Spquenca
aDDCT ™ Quantization (e Entropy e

: Encoder

Tabhs
SpecHication
B Quantization
Talshees
Figure1.4

XY Z compression algorithm.

This algorithm is built upon a considerable body of published work. The three-dimensional DCT has been
used to encode errors after motion estimation has been performed [RP77], and true three-dimensional
DCT-based compression agorithms have been devel oped where the quantizers were based upon
minimization of introduced mean square error [NA77]. These algorithms have fallen into disfavor because
they were considered to require excessive computation, required too much buffer memory, and were not as
effective as motion estimation. This book refutes these arguments.

Work in visibility of artifacts produced by quantization has a so been done [CR90]. Visibility of two-
dimensional quantization artifacts has been thoroughly explored for the DCT transforms space. The XY Z
algorithm extends this work to quantization of three-dimensional DCT coefficients.

12—
Applications of Compressed Video

Video compression techniques made feasible a number of applications. Four distinct applications of the
compressed video can be summarized as. (a) consumer broadcast television, (b) consumer playback, (¢)
desktop video, and (d) videoconferencing.
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Consumer broadcast television, which includes digital video delivery to homes, typically requires a small number of high-quality compressors and a
large number of low-cost decompressors. Expected compression ratio is about 50:1.

Consumer playback applications, such as CD-ROM libraries and interactive games, also require a small number of compressors and a large number
of low-cost decompressors. The required compression ratio is about 100:1.

Desktop video, which includes systems for authoring and editing video presentations, is a symmetrical application requiring the same number of
encoders and decoders. The expected compression ratio isin the range from 5:1 to 50:1.

Videconferencing applications a so require the same number of encoders and decoders, and the expected compression ratio is about 100:1.

Table 1.2 Applications of the compressed video and current video compression standards.

Application Bandwidth Standard Size Frame Rate [frames/sec]

Analog Videophone 5-10 Kbps none 170x128 2-5

Low Bitrate Video 26-64 Kbps H.263 128x96 15-30

Conferencing 176x144

Basic Video Telephony 64-128 Kbps H.261 176x144 10-20
352x288

Video Conferencing >= 384 Kbps H.261 352x288 15-30

Interactive Multimedia 1-2 Mbps MPEG-1 352x240 15-30

Digital TV - NTSC 3-10 Mbps MPEG-2 720x480 30

High Definition Television 15-80 Mbps MPEG-2 1200x800 30-60

Table 1.2 summarizes applications of the compressed video, by specifying current standards used in various applications, the required bandwidth,
and typical frame sizes and frame rates.



Page 8

13—
Image and Video Formats

A digital image represents atwo-dimensional array of samples, where each sampleiscalled a pixel.
Precision determines how many levels of intensity can be represented, and is expressed as the number
of bits/'sample. According to precision, images can be classified into: (a) binary images, represented
by 1 bit/sample, (b) computer graphics, represented by 4 bits/sample, (c) grayscale images,
represented by 8 bits/sample, and color images, represented with 16, 24 or more bits/sample.

According to the trichromatic theory, the sensation of color is produced by selectively exciting three
classes of receptorsin the eye. In aRGB color representation system, shown in Figure 1.5, acolor is
produced by adding three primary colors: red, green, and blue (RGB). The straight line, where
R=G=B, specifies the gray values ranging from black to white.

A A
Graysopls valsa
wmﬂf'ﬁf il
-
Elueic / Gi
A
B
Figure1.5

The RGB representation of color images.

Another representation of color images, YUV representation, describes luminance and chrominance
components of an image. The luminance component provides a grayscale version of the image, while
two chrominance components give additional information that converts the grayscale image to a color
image. The YUV representation is more natural for image and video compression. The exact
transformation from RGB to YUV representation, specified by the CCIR 601 standard, is given by
the following equations:
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Y = 0.299R + 0.587G +0.114B (1.1)
U=0564(B-Y1) (1.2}
V=0713(B- ) (1.3)

where Y isthe luminance component, and U and V are two chrominance components.

An approximate RGB to YUV transformation is given as:

Y=03R+06G+0I18 (1.4)
U=8B-Y (1.5)
V=R-Y (1.6)

This transformation has a nice feature that, when R+G+B, then Y=R=G=B, and U=V=0. In this case,
theimage is a grayscale image.

Color conversion from RGB to YUV requires several multiplications, which can be computationally
expensive. An approximation, proposed in [W+94], can be calculated by performing bit shifts and
adds instead multiplication operations. This approximation is defines as;

y-R,G . B (1.7)
4 2 2
U=M (1.8)
2
~Y
y=R=Z (19)
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This approximation also gives asimplified YUV to RGB transformation, expressed by:

R=Y+2V (1.1
G=Y-=(U+V) (1.11)
B=Y+2U (1.1

Another color format, referred to as Y CbCr format, isintensively used for image compression. In
Y CbCr format, Y isthe sameasina YUYV system, however U and VV components are scaled and zero-
shifted to produce Cb and Cr, respectively, as follows:

chb=2105 (1.13)
3
Cr= iﬁ+ 0.5 (1.14)

In thisway, chrominance components Cb and Cr are alwaysin the range [0,1].
Computer Video Formats

Resolutions of an image system refersto its capability to reproduce fine detail. Higher resolution
requires more complex imaging systems to represent these imagesin real time. |n computer systems,
resolution is characterized with number of pixels. Table 1.3 summarizes popular computer video
formats, and related storage requirements.

Television Formats

In television systems, resolution refers to the number of line pairs resolved on the face of the display
screen, expressed in cycles per picture height, or cycles per picture width. For example, the NTSC
broadcast system in North America and Japan, denoted as 525/59.94, has about 483 picture lines.

The HDTV system will approximately double the number of lines of current broadcast television at
approximately the samefield rate. For example, a 1050x960 HDTV system will have 960 total lines.
Spatial and temporal characteristics of conventional television systems (such as NTSC, SECAM, and
PAL), and high-



definition TV systems (HDTV) are presented in Tables 1.4 and 1.5, respectively [BF91].

Table 1.3 Characteristics of various computer video formats.

Computer Video Resolution (pixels) Colors (bits) Storage
Format Capacity
Per Image

CGA - Color 320x200 4 (2 bits) 128,000 bits=
Graphics Adapter 16 KB
EGA - Enhanced 640x350 16 (4 bits) 896,000 bits=
Graphics Adapter 112KB
VGA - Video 640x480 256 (8 bits) 2,457,600 bits=
Graphics Adapter 307.2KB
88514/A Display 1024x768 256 (8 bits) 6,291,456 bits=
Adapter Mode 786.432 KB
XGA - Extended 640x480 65,000 (24 bits) 6,291,456 bits=
GraphicsArray (a) 786.432 KB
XGA - Extended 1024x768 256 (8 bits) 6,291,456 bits
GraphicsArray (b) =786.432 KB
SVGA - Super VGA 1024x768 65,000 (24 bits) 2.36 MB
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Table 1.4 Spatial characteristics of television systems[BF91].

System Total Lines | Active Vertical Optimal Aspect Horizontal Total
Lines Resolution Viewing Ratio Resolution Picture
Distance [m] Elements
HDTV 1050 960 675 25 16/9 600 720,000
USA
HDTV Europe | 1250 1000 700 24 16/9 700 870,000
NTSC 525 484 242 7.0 4/3 330 106,000
PAL 625 575 290 6.0 4/3 425 165,000
SECAM 625 575 290 6.0 4/3 465 180,000
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Table 1.5 Temporal characteristics of television systems [BF91].
System Total Channel Video Baseband | Video Baseband | Video Baseband Scanning Rate Scanning Rate Scanning Rate
Width [MHZ] Y [MHZ] R-Y [MHZ] B-Y [MHZ] Camera[HZ] HDTV Display Convent.
[HZ] Display [HZ]
HDTV USA 9.0 10.0 5.0 5.0 59.94 59.94 59.94
HDTYV Europe 12.0 14.0 7.0 7.0 50 100 50
NTSC 6.0 4.2 10 0.6 59.94 NA 59.94
PAL 8.0 55 18 18 50 NA 50
SECAM 8.0 6.0 2.0 20 50 NA 50
14—

Overview of the Book

This book is divided into ten chapters:

1. Video compression. This current chapter introduces the problem of compressing motion video, illustrates the motivation for the 3-D
solution chosen in the book, and briefly describes the proposed solution. Image and video formats are introduced as well.

2. MPEG. This chapter describes the MPEG compression standard. Important contributions in the field and related work are emphasized.

3. H.261/H.263. This chapter describes the compression standard for video telecommunications.

4. XYZ compression. The XY Z video compression algorithm is described in detail in this chapter. Both encoder and decoder are presented, as

well as an example of compressing 8x8x8 video block.

5. 3-D DCT. The theory of the Discrete Cosine Transform is developed and extended to three dimensions. A fast 3-D algorithm is devel oped.

6. Quantization. Discussion is presented on the issues of determining optimal quantizers using various error criteria. A model of Human

Visual System is used to develop factors that weigh the DCT coefficients according to their relative visibility.

7. Entropy coding. A method for encoding the quantized coefficients is devel oped based on the stochastic behavior of the pixel data
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8. VL SI architecturesfor XY Z codec. Issues concerning real-time implementation of the XYZ
compression algorithm are analyzed including the complexity of the algorithm and mapping the
algorithm into various VL SI architectures.

9. Results. Obtained results of an implementation of the XY Z compression algorithm are presented.

10. Conclusion. Summary of contributions are outlined, emphasizing the real-time features of the
compression algorithm, visual quality, and compression ratio. Directions for future research are given
aswell.






Page 15

2—
The MPEG Video Compression Standard

The Motion Picture Experts' Group was assembled by the International Standards Organization (1SO)
to establish standards for the compression, encoding, and decompression of motion video. MPEG-1
[1S92b] is a standard supporting compression of image resolutions of approximately 352x288 at 30
fpsinto a data stream of 1.5 Mbps. This data rate is suitable for pressing onto CD-ROM. The MPEG-
2 standard [1S93b] supports compression of broadcast television (704x576 at 30 fps) and HDTV
(1920x1152 at 60 fps) of up to 60 Mpixels/sec (appx. 700 Mb) at compression ratios of roughly three
times those expected of moving JPEG [1S92a] (playback rates of up to 80 Mbps).

The MPEG standard specifies the functional organization of a decoder. The data stream is cached in a
buffer to reduce the effect of jitter in delivery and decode, and is demultiplexed into a video stream,
an audio stream, and additional user-defined streams. The video stream is decoded into a "video
sequence” composed of the sequence header and groups of pictures.

21—
MPEG Encoder and Decoder

The specification of the MPEG encoder defines many compression options. While all of these options
must be supported by the decoder, the selection of which options to support in compression is left to
the discretion of the implementer. An MPEG encoder may choose compression options balancing the
need for high compression
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ratios against the complexity of motion compensation or adaptive quantization calculations.
Decisions will be affected by such factors as:

« A need for real-time compression. MPEG algorithms are complex, and there may not be sufficient
time to implement exotic options on a particular platform.

* A need for high compression ratios. For highest possible compression ratios at highest possible
quality, every available option must be exercised.

* A need for insensitivity to transmission error. MPEG-2 supports recovery from transmission errors.
Some error recovery mechanisms are implemented by the encoder.

* Fast algorithms. Development of fast al gorithms may make compression options available that
would otherwise be impractical.

* Availability of specialized hardware. Dedicated hardware may increase the performance of the
encoder to the point that additional compression options can be considered.

In the MPEG standard, frames in a sequence are coded using three different algorithms, asillustrated
in Figure 2.1.
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Types of frames in the MPEG standard.
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| frames (intra frames) are self-contained and coded using a DCT-based technique similar to JPEG. |
frames are used as random access points in MPEG streams, and they give the lowest compression
ratios within MPEG.

P frames (predicted frames) are coded using forward predictive coding, where the actual frameis
coded with reference to a pervious frame (I or P). This processis similar to H.261/H.263 predictive
coding, except the previous frame is not always the closest previous frames, asin H.261/H.263
coding. The compression ratio of P framesis significantly higher than of | frames.

B frames (bidirectional or interpolated frames) are coded using two reference frames, a past and a
future frame (which can be | or P frames). Bidirectional, or interpolated coding provides the highest
amount of compression [Fur95b].

I, P, and B frames are described in more detail in Section 8.2. Note that in Figure 2.1, the first three B
frames (2,3, and 4) are bidirectionally coded using the past frame | (frame 1), and the future frame P
(frame 5). Therefore, the decoding order will differ from the encoding order. The P frame 5 must be
decoded before B frames 2,3, and 4, and | frame 9 before B frames 6,7, and 8. If the MPEG sequence
istransmitted over the network, the actual transmission order should be {1,5,2,,3,4,8,6,7,8} .

The MPEG application determines a sequence of |, P, and B frames. If thereis aneed for fast random
access, the best resolution would be achieved by coding the whole sequence as | frames (MPEG
becomes identical to Motion JPEG). However, the highest compression ratio can be achieved by
incorporating alarge number of B frames.

The block diagram of the MPEG encoder is given in Figure 2.2, while the MPEG decoder is shown in
Figure 2.3.

| frames are created similarly to JPEG encoded pictures, while P and B frames are encoded in terms
of previous and future frames. The motion vector is estimated, and the difference between the
predicted and actual blocks (error terms) are calculated. The error terms are then DCT encoded and
the entropy encoder is used to produce the compact code.
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Figure 2.2
The block diagram of the MPEG encoder.

2.2—
MPEG Data Stream

The MPEG specification defines a"video sequence” composed of a video sequence header and many Group-
Of-Pictures (GOP), asillustrated in Figure 2.4. The video sequence header defines the video format, picture
dimensions, aspect ratio, frame rate, and delivered data rate. Supported video formats include CCIR601,
HDTV(16:9), and VGA. Supported chroma formats include "4:2:0" (YUV) and
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"4:4:4" (RGB). A suggested buffer size for the video sequence is also specified, anumber intended to buffer
jitter caused by differencesin decode time.
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Figure 2.3
The block diagram of the MPEG decoder.

A GOP contains pictures that may be encoded into one of three supported compression formats. The GOP
header contains a starting time for the group, and can therefore be used as a point of random access. Each frame
within the GOP is numbered, and its number coupled with the GOP start time and the playback frame rate
determinesiits playback time. Each picture is subdivided into "slices’ and then into "macroblocks’. A
macroblock is composed of four 8x8 blocks of luminance data, and typically two 8x8 blocks of chrominance
data, one Cr and one Cb.
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MPEG data stream.

| Picture Format

Thel (Intraframe) picture format substantially corresponds to the JPEG format. These pictures are
encoded by transformation into DCT space, quantization of the resultant coefficients, and entropy
coding of the result. Transformation into DCT space is performed by an 8x8 DCT. Quantization is
performed by reference to a user-loadabl e quantization table modified by a scale factor. This
mechanism supports adaptive quantization at the cost of additional complexity - although 30%
improvement in compression is claimed [PM93].

After quantization, the resulting coefficients are reordered in zig-zag order, run-length coded,
variable-length coded, and entropy coded. The resulting data stream should show roughly JPEG
levels of compression.

P Picture Format

The P (Predicted) picture format introduces the concept of motion compensation. Each macroblock is
coded with a vector that predictsits value from an earlier | or P
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frame. The decoding process copies the contents of the macroblock-sized data at the address
referenced by the vector into the macroblock of the P frame currently being decoded. Five bits of
resolution are reserved for the magnitude of the vector in each of the x and y directions, meaning that
1024 possible data blocks may be referenced by the predicted macroblock. However, eight possible
magnitude ranges may be assigned to those five bits, meaning as many as 8192 macrobl ocks might
have to be evaluated to exhaustively determine the best vector. Each evaluation might require testing
as many as 384 pixels, and a further complexity is seen in performing fractional interpolation of
pixels (vector motions as small as 1/2 pixel are supported). Finaly, the difference between the
prediction and the macrobl ock to be compressed may be encoded in like fashion to | frame encoding
above.

B Picture Format

The B (Bidirectional prediction) picture format is calculated with two vectors. A backwards vector
references a macroblock-sized region in the previous | or P frame, the forward vector referencesa
macroblock-sized region in the next | or P frame. For thisreason, | and P frames are placed in the

coded stream before any B frames that reference them.

The macroblock-sized regions referenced by the motion compensation vectors are averaged to
produce the motion estimate for the macroblock being decoded. Aswith P frames, the error between
the prediction and the frame being encoded is compressed and placed in the bitstream. The error
factor is decompressed and added to the prediction to form the B frame macroblock.

Many demanding technical issues are raised by the MPEG specification. These include fast
algorithms for the DCT, fast algorithms for motion vector estimation, algorithms for adaptive
guantization, and decompression in environments that allow some errors.
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3
The H.261/H.263 Compression Standard for Video Telecommunications

ITU has developed a video conferencing standard H.324 at very low bitrate for the General Switched
Telephone Network (GSTN) and mobileradio [IT95a, IT95b, IT93]]. TheH.324 isa
recommendation for real-time voice, data, and video over V.34 modems on the GSTN telephone
network. It consists of five documents: (1) H.324 systems, (2) H.223 multiplex, (3) H.245 control, (4)
H.263 video codec, and (5) G.273 speech codec. The H.261 coding standard provides coded video at
bit rates 64 Kbits/s and above, whereas the H.263 video coding standard, proposed for H.324,
provides coded video around 16 Kbits/s.

Figure 3.1 shows a block diagram of a generic multimedia system, compliant to the H.324 standard.
The system consists of terminal equipment, GSTN modem, GSTN network, multipoint control unit
(MCU), and other system operation entities.

Video equipment includes cameras, monitors, and video processing units to improve compression.
Audio equipment includes microphone, speakers, telephone instrument, and attached audio devices.
Data application equipment includes computers, non-standardized data application protocols,
telematic visual aids such as electronic whiteboards, etc.

GSTN network interface supports appropriate signaling, ringing functions and voltage levelsin
accordance with national standards.
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Block diagram of a generic H.324-compliant multimedia system.

3.1—
Picture Formats for H.261/H.263 Video Codecs

All H.324 terminal s support both the H.263 and H.261 video codecs. For the H.261 algorithm two
formats are defined: CIF and QCIF, while for the H.263 algorithm three additional formats are
specified: SQCIF, 4CIF, and 16CIF.

The Common Intermediate Format (CIF) is a noninterlaced format, based on 352x288 pixels per frame
at 30 frames per second. These vaues represent half the active lines of 625/25 television signal and the
picture rate of a’525/30 NTSC signal. Therefore, 625/25 systems need only to perform a picture rate
conversion, while NTSC systems need to perform only aline-number conversion.

Color pictures are coded using one luminance and two col or-difference components (Y CbCr format),
specified by the CCIR 601 standard. The Cb and Cr components are subsampled by a factor of two on
both horizontal and vertical directions, and have 176x144 pixels per frame. The picture aspect ratio for
all five CIF-based



formatsis 4:3. Table 3.1 summarizes the picture formats for H.261 and H.263 codecs.

Picture Luminance pixels
format

SQCIF 128 x 96

QCIF 176 x 144

CIF 352 x 288

4CIF 704 x 576

16CIF 1408 x 1152
32—

H.261/H.263 Video Encoder

Table 3.1. Picture formats for H.261 and H.263 video codecs.

Maximum frame

rate
[f/s]

30

30

30

30

50

Video
source
rate

1.3 Mb/s

9 Mb/s

36 Mb/s

438 Mb/s

2.9Gbl/s

Average coded
bit rate

26 Kbls

64 Kb/s
(px64 Kbps)

384 Kb/s (px64 Kbps)

3-6 Mb/s

20-60 Mb/s

H.261
codec
Optional

Required

Optiona

Not
defined

Not
defined

H.263
codec

Required

Required

Optiona

Optiona

Optional
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The H.261/H.263 video encoder combines intraframe and interframe coding to provide fast processing for on-the-fly video [Oku95,
FSz95, BK95, Furd5b)]. The algorithm creates two types of frames:

(1) DCT-based intraframes, compressed using DCT, quantization, and entropy (variable-length) coding (similarly to JPEG) [Fur95a], and

(2) predictive interframes, compressed using Differential Pulse Code Modulation (DPCM) and motion estimation.

The block diagram of the video encoder is shown in Figure 3.2. The H.261/H.263 coding a gorithm begins by coding an intraframe block
and then sendsiit to the video multiplex coder. The same frame is then decompressed using the inverse quantizer and inverse DCT, and

then stored in the frame memory for interframe coding.

During the interframe coding, the prediction based on the DPCM algorithm is used to compare every macro block of the actual frame
with the available macro blocks of the previous frame, asillustrated in Figure 3.3.
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Block diagram of the H.261/H.263 video encoder.
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(16 x 16 pixels) in the current frame is compared with macro blocks

from the previous frame to find the best match.

To reduce the encoding delay, only the closest previous frame is used for prediction. Then, the difference, created as
error terms, is DCT-coded and quantized, and sent to the video multiplex coder with or without the motion vector. At
the final step, variable-length coding (VLC), such as Huffman encoder, is used to produce more compact code. An

optional loop filter can be used to minimize the prediction error
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by smoothing the pixelsin the previous frame. At least one in every 132 frames should be intraframe
coded, as shown in Figure 3.4.
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Figure 3.4
Types of framesin H.261/H.263 standard. At least
every 132-nd frame should be the | frame.

The compressed data stream is arranged in a hierarchical structure consisting of four layers: Pictures,
Group of Pictures (GOPs), Macro Blocks (MB), and Blocks, asillustrated in Figure 3.5.
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Hierarchical block structure of the H.261/H.263 video data stream.
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3.3—
TheH.261/H.263 Video Decoder

The H.261/H.263 video decoder is shown in Figure 3.6. It consists of the receiver buffer, VLC decoder, inverse
quantizer, inverse DCT, and the motion compensation, which includes frame memory and an optional loop filter
[BSZ95, BK95, Furgsh].

In addition to the encoding and decoding of video, the audio data must also be compressed and decompressed.

Special buffering and multiplexing/demultiplexing circuitry is required to handle the complexities of combining the
video and audio.

step slze
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bit atre VLC Inverse e
—| Buffer [-» ) IDCT =(z a
Decoder |quantize
| Fitsronfolt
L Motion-
F"}P ol compensation
Filter &
Motlon veclors - Frame memeory
Figure 3.6

Block diagram of the H.261/H.263 video decoder.
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4—
The XYZ Video Compression Algorithm

The XY Z motion video compression agorithm relies on adifferent principle for compression of
temporal information than do the MPEG and H.261/H.263 standards. While the MPEG and
H.261/H.263 strategies look for motion vectors to represent a frame being compressed, the XY Z
strategy more closely resembles the technique adopted by both MPEG and JPEG for intra-frame
compression.

A continuous tone image can be represented as a two-dimensional array of pixel valuesin the spatial
domain. The Forward Discrete Cosine Transform (FDCT) converts the two-dimensional image from
spatia to frequency domain. In spatial representation the energy distribution of pixelsis uniform,
while in the frequency domain the energy is concentrated into few low-frequency coefficients.

Pixelsin full-motion video are also correlated in the temporal domain, and the FDCT will concentrate
the energy of pixelsin the temporal domain just asit doesin the spatial domain. The XY Z video
compression is based on this property.

41—
XYZ Compression Algorithm

The XY Z video compression algorithm is based on the three-dimensional DCT (3D DCT). This
algorithm takes afull-motion digital video stream and divides it into groups of 8 frames. Each group
of 8 framesis considered as a three-dimensional image, where X and Y are spatial components, and Z
is the temporal component. Each frame in the image is divided into 8x8 blocks (like JPEG), forming
8x8x8 cubes, asillustrated in Figure 4.1. Each 8x8x8 cube is then independently encoded using the
three blocks of the XY Z video encoder: 3D DCT, Quantizer, and Entropy encoder [WF95]. The
block diagram of the XY Z compressor is shown in Figure 4.2.



Figure4.1
Forming 8x8x8 video cube for XY Z compression.
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Block diagram of the XY Z compressor.
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The original unsigned pixel sample values, typically in the range [0,255] are first shifted to signed
integers, say in the range [-128, 127]. Then each 8x8x8 cube of 512 pixelsistransformed into the
frequency domain using the Forward 3D DCT:
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7

Flu,v,w)= Cfu}{?(v]ﬂw]*ziif(xsfrﬂ*

=0 y=0 z=0
(4.1)
cos((2x + Lum ) cosl(2y + 1}'-’1"5) cos((2z + wn)
16 16 16
where:
X,y,z are index pixelsin pixel space,
f(x,y,z) isthe value of apixel in pixel space,
u,v,w areindex pixelsin DCT space,
F(u,v,w) is atransformed pixel valuein DCT space, and
L] :
Cii ZE for i=0 Cliy=1 foriz0 (4.2)

The transformed 512-point discrete signal is afunction in three dimensions, and contains both spatial and
temporal information. Most of the energy is contained in few low-frequency coefficients, while the majority
of the high-frequency coefficients have zero or near-zero values.

In the next step, al 512 DCT coefficients are quantized using a 512-element quantization table. Quantization
introduces minimum error while increasing the number of zero-value coefficients. Quantization may also be
used to discard visual information to which the human eyeis not sensitive. Quantizer tables may be
predefined, or adaptive quantizers may be developed and transmitted with the compressed data.

Quantization is performed according to the following equation:

F (u, v, w)

G Pomem

(4.3)

where:
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F(u,v,w) are the elements before the quantization,
Fy(u,v,w) are the quantized elements, and
Q(u,v,w) are the elements from the quantization table.

Each quantizer Q(u,v,w) isin the range[1,1024]. The result of the quantization operation is a collection of smaller-
valued coefficients, alarge number of which are 0. These coefficients are then converted into a compact binary
sequence using an entropy coder (in this case, a Huffman coder).

The entropy coding operation starts with reordering the coefficients in descending order of expected value. This
sequence has the benefit of collecting sequentially the largest number of zero-valued coefficients. The run-lengths
of zero coefficients is computed, and the al phabet of symbolsto be encoded becomes the run-length of zeros
appended to the length of the non-zero coefficient. This binary sequence represents the compressed 8x8x8 block.

Figure 4.3 illustrates an example of encoding avideo cube (eight frames of 8x8 pixels) using the XY Z compression
algorithm. Figure 4.3 shows the original video cube, Figure 4.4a shows the DCT coefficients after the 3D DCT, and
Figure 4.4b presents the quantized coefficients. Note that the largest quantized coefficient is Fq(0,0,0), which
carries the crucial information on the video cube, while the majority of quantized coefficients are zero.

42—
XYZ Decompression Algorithm

In XY Z decoding, the steps from the encoding process are inverted and implemented in reverse order, as shown in
Figure 4.5.

Hulfman Quantizing
Tahla Tahlas
w i T
Compressed | Entropy Dequantizer Inverae
Video Decoder > 3-D Video
Seduance DCT Cube
Figure 4.5

Block diagram of the XY Z decompression algorithm.
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An example of encoding an 8x8x8 video cube - original pixelsin video cube.
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Figure 4.3

First the compressed data stream is Huffman-decoded. This data stream is now composed of the coding al phabet
symbols of run-length and VL C lengths alternated with the VL C representation of the non-zero coefficient. The

decoded datais run-length expanded and converted into a stream of quantized coefficients. These quantized
coefficients are resequenced into XY Z video cubes of quantized coefficients.

The quantized coefficients are dequantized according to the following equation:

F’(u,v,w) =F, {u,v,w}* Q(u,v, w)

where F'(u,v,w) is adequantized coefficient.

(4.4)
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(b} Quantized DCT coefficients

Figure 4.4
An example of encoding an 8x8x8 video cube.
(a) DCT coefficients, after 3D DCT, and (b) quantized DCT coefficients.
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The three-dimensiona inverse DCT (3-D IDCT) isimplemented on the dequantized coefficients in order to
convert video from the frequency domain into the spatial/temporal domain. The 3-D IDCT equation is defined as:

fiix,v.z) = 22 EC{H}C{P)C{W}* F’[u,u,w}*

u=0 w=0 w=0

cos((2x + Dumn) GUS((EJ’ + 1}”") cos((2z+ 1)wn)
16 16 16

where f'(x,y,z) isthe value of a pixel in pixel space.

(4.5)

After the pixels have been transformed in spatial/temporal representation, they are shifted back to the origina
range [0,255]. Finally, the video cubes are reorganized into frames of video data ready for playback.

Figure 4.6 illustrates an example of the XY Z decompression, applied on the same 8x8x8 video cube from Figures
4.3 and 4.4.



Page 36

1638 -14 15 0 O O 0 O & 0 0 0 0 0 0 0 <105 &0 0 0 O 0 0 O
12 M 15 0 0 O 0 D L0 45 O 0 0 0 O 0 O % 0 00 0 00
015 0 0 0 0 0 0 1532 0 0 0 0 0 0 A7 0 0 0 0 0 0
15 0 00 @0 000 & O -18 0 0 00O O 00 Q0000
O 0 o000 O0O0OOO0 o 0 0O0CO0O0ODOCTOD O 00 Q0 OO0 D
O 0 000000 o0 000 000 o 00 00000
0O 0 000 0O0O0 O 0 000000 0 000000
a Q0 0 9 0000 O 0o 00900000 o o0 00000
48 -1T O O O 0 0 720 000 00 O 0 0-23.3 0 0 0 0
6 17 O O 0 0 0D 4 000 000 O 2 0 0 0 0000
A7 .18 0 0 O 0 0 0 19 0 00000 Q o0 0 0 0000
o 0 000000 0O0O0O0O0O0OQ0QOD o0 ¢ 0 000D
g @ 0 00 @ 0 0 o 0 o0 00O 0 G0 0 0 00 00
O o 000000 0000 0O0O0OD0 G0 0 0 0000
@ o 000000 00 000000 o0 00 0000
o ¢ 000000 00000000 0090 0 0 090D
0 0¥ 00000 0 033 0000 O
0N 000000 o0 0 0000 0
O 0 000000 @ o 4 0 9 a 9 0
00 000000 o0 0 0 0 0 0 0
¢ 0 0 0CO0O0O00 9 9 0 0 0 0 0
O 0 0000 00 o0 000000
o0 00000 o0 990 00 0 0
00 000000 a0 0 0 6 a0 0
(a) DCT coefficients after dequantization
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(8) Decompressed pixels gfter inverse 30 DCT

Figure 4.6

An example of decoding the 8x8x8 video cube from Figure 4.3.
(a) DCT coefficients after dequantization,
(b) Decompressed pixels after inverse 3D DCT.
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5
Discrete Cosine Transform

5.1—
Behavior of the DCT

Moving continuous tone images are represented as a sequence of "frames’. A frameis atwo-dimensional
array of pixel valuesin one"plane" for black and white images, or more planes for color images. We
model the signal being sampled (a sequence of pixel values forming arow, column, or time-varying
sequence) as arandom variable with amean of zero. The probability distribution, shown in Figure 5.1, of
pixel x, given the value of pixel x, has been shown empirically to be an exponential (laplacian) distribution
[RY90]:

—A| zi—x0|

P(X = xi—xs) = — 5.1
(X = xi—xi) o (5.1)

Intuitively, thismeansthat if pixel X, isred, thereisagreat likelihood that pixel x, isred. Thisnotionis
expressed with the probabilistic notion of covariance. N samples of the signal are considered, forming the
sample vector X. Exponential distributions form a stationary process, where the random function may be
described by its auto-covariance matrix A, where:

A= H(."{* KT) {ﬁﬂ]
For an exponential distribution [FA90]:
— ol B
Aij =p (3.3}

where O<=r<=1 isthe correlation between samples (r is a function of 1).
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Figure5.1
Distribution of pixel valuesin continuous tone images.

The Karhunen-Loeve Transform transforms the basis set in the sample space into a new basis set such that
the greatest energy is contained in the fewest number of transform coordinates, and the total representation
entropy of the sequence of coefficients in transform space is minimized. In other words, the greatest energy
is contained in the earliest coefficientsin the basis of the transform space.

Formally, we say that the K-L transform should minimize the Mean Square Error in any truncated
representation of the samplesin the transform space. Given arandom vector X = (P, Py, - - - , Pn.1), W Want
to find a set of basis vectors 3 = (B, By, - - -Bn.1), SO We can rewrite X in this basis as x, = (Kg, Ky, - « -Ky.1)-

We choose 3 in such way that atruncated representation t of x, given ast, = (kq, Ky, . . .Ky.1, 0,0, .. .0) has
minimum error:

t= Y xpi (5.4)
=04 =1
It can be shown that this transformation [RY 90]:
1. completely decorrelates the signal in transform space,

2. minimizes the mean square error in its truncated representation (guarantees minimum error in
compression),

3. concentrates the most energy in the fewest number of coefficients,

4. minimizes the total representation entropy of the sequence.
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For highly correlated images (r approaches 1), the basis vectors are exactly the Forward Discrete Cosine
Transform (FDCT) [AN74]:

(2%i + 1)+ us*m
S, = E C, *5.%C0 i+ Deu

i {(5.3)
i=0,N=1 2= N

C, =1 (5.6)

Figures 5.2aand b show energy distribution in pixel space and in DCT space, respectively. In the DCT space
the energy is concentrated in few coefficients.

4

Ensegy Ensrgy

Plosl sumbsre DET basls nembEnrs

Figure 5.2
Energy distribution: (&) in pixel space energy is equally distributed over all
pixels, (b) in DCT space energy is concentrated in few coefficients.
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52—
Fast One-dimensional DCT Techniques

Fast algorithms have been proposed for the one-dimensional Discrete Cosine Transform. They are based on
the following techniques [CSF77, RY 90, PM90]:

a) Exploiting symmetries of the cosine function

b) Relating the DCT to the Discrete Fourier Transform (DFT)
¢) Relating the DCT to other discrete transformations

d) Computation using matrix representation

€) Reducing the DCT to polynomial evaluation.

The first two techniques, based on exploiting symmetries of the cosine transform and relating the DCT to
DFT, are the fastest known techniques, and they are described next.

521—
Exploiting Symmetries of the Cosine Function

An opportunity to improve the FDCT engineis seen in the redundancy of the cosine termsin the
calculations. The redundancy in the cosine terms is enhanced by expressing all anglesin the range 0-p/2

radians, asillustrated in Figure 5.3. The following identities are used to convert anglesin the range p/2 -
2p:

cos|", +0 )= —cos|V, -8 0 <0 <% (5.7)
(%4 +6)=—cos(%4-0)0<0 <

cosim +0)=—coslB),—mw <8 <n (5.8)

These symmetries are used to reduce the number of calculations needed to calculate the 1-D DCT. For the
8 point DCT, the number of multiplications is reduced from 64 to 22 [PM93].
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Figure 5.3
Symmetries in the cosine transform can reduce
the number of calculations for 1-D DCT.

Another symmetry can be used to further reduce the number of multiplications. This symmetry is based on the
introduction of the rotation:

X = x*cos(@)+ y=sin(B),

. 3.9
Y =—xsin(@)+ y+cos(@) (3-3)
We rewrite the transformation into a form that will require only three multiplications:
X = {x + }r)*cus[ﬁ}+ y#(sin(@) - cos(@)),
{5.10)

Y= (x+ y]* cos(®) — x+(sin(0) + cos(®))

By applying the rotation operation, the number of multiplications for the 8-point DCT is reduced to 20.

Y et another trigonometric identity, sum/difference of two angles, yields good resullts:
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%1 JET ) (1' + j)*’.ﬂ: ) {f — j}*’.ﬂ:
— = —2#sin| ———— |*gin| —=—|,
COSs 16 c 16 11 32 5111 32
{(5.11)
irm) (), (i+jpx)  (li=jpn
COs 16 ) 16 = COE 37 CO5 32

The 8 point 1-D DCT overhead now becomes 13 multiplications, which is as good as any other known method
[PM93].

52.2—
Fast DCT Based on the Discrete Fourier Transform

The 8-point DCT can be extended to form a 16-point FFT. The 8 points of the pixel space to be transformed are
extended to form 16 points by duplicating each of the original pointsi to form point 15-i.

The real part of the Fourier-transformed pointsis only a constant factor different from the DCT-transformed points.
A careful analysis of the Fourier transform, including exploiting symmetries and trigonometric identities similar to
those discussed in 5.2.1, shows that the real part of the Fourier transform may be computed with just five
multiplications [CT65, Win78]. The DCT may therefore be computed with 13 multiplications [Fei90].

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X135

Figure5.4
Extending 8 points of pixel datato perform a 16 point FFT.

We first extend 8 points of pixel data s(x) to 16 points (see Figure 5.4) in order to compute a 16 point FFT by
defining:

slx]=x[15- x] (5.12)

The Fast Fourier Transform (FFT) is then computed as:



Flul = Y slx]e ™"

x=0.15

which may be rewritten because of (5.12) as:
=i =2mitrpil B

F|u] - Zﬂllﬁ-’ EmiEl16 + ES[:P}? Ircivy

x=0,7 w=1.13
We define z=15-y, so F[u] becomes:

- —riuxl |6 =il 3-2)016
Flu]= Y s[x)e + . slzle

x=0,7 z=0,7

We can now relabel z as x, and collect like terms. We also observe that:

E—E:ﬁu[lﬁ—z].ﬂﬁ — E—:rﬁu[w—]—:;ﬂa E—Eﬂr':.l{—l—::u"lﬁ _ Ezmﬂulfl{r

giving Fu]:

F[u] = ZJ‘[I],(E_:“'-“#“" + E—Eﬂfu[ﬁl:l,lr]lﬁ)

=07

Multiplying both sides by eriu16 gives:

E-nru,rm* F[u] — Z S[xI E—l.‘::‘u[x+.5},|']5 + E-lrl;r'ufxr.S:lfll.’:J

=01

Since €d = cos(q) + i*sin(q), (5.18) becomes:

e 5% Flul= Y olx]
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(3.13)

(5.14)

(5.15)

(3.16)

(5.17)

(3.18)

-:;ns(— 2ru( x+.5)/ 115) + cﬂs(ﬂnu{xtﬁ} /1 5} +

+=0,7 i sin(— 2ru(x+35)/1 ﬁ) +i Sil‘l(zﬂu (x+5)/1 '5)

(3.19)
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Since cos(-q) = cos(q) and sin(-q) = -sin(g), (5.19) becomes:

e Flu]= Y fx]cos(2mu(x+5)/16) (5.20)
=07

ey Flu] = 2 i x] cns([lr + D/ 16] (5.21)
x=1.7

Equations (5.20) and (5.21) indicate that the DCT coefficients can be derived from the complex FFT
coefficients by multiplication by a complex factor. However, closer analysis shows that we can obtain the
DCT coefficients using multiplication by real factors only.

If we rewrite F(u) = A(u) +i*B(u), and use €a = cos(q) + i*sin(q), we can get:

(cos(—ru/16)+ i+ sin(—mu/16) ) (Alue] + i+ Blu])
= Y s[x]cos((2x + Dmu/16)

=07

{5.22)

From cos(-q) = cos(q) and sin(-q) = -sin(q), and multiplying, and i*i = -1, eg. (5.22) becomes:

Alul* -:Ds{nu,-’ 1 E-}+ i® Blul* cns{'n:uf 1 ﬁ)
— i Alu]* sin(mu/16)+ Blu¥ sin(ru/16) (5.23)
= Y slx]cos{(2x + mu/16)

x=0.7

Collecting real and complex parts gives:

Alul® cus(nu,i’lﬁ) + Blul= sin[m;,.*’l ﬁ)
= ¥ slx]cos((2x + D)mu/16)

=07

i B[Hj*cns(ﬂuﬂﬁ)—f* Alul* sin(nuflﬁ} =1 (5.25)

(3.24)

Solving the complex equation (5.25) for B(u) gives:
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_ Alu]* sin(nu,.'“lfi)
Blu] = As(:tufl 6] (5.26)

Substituting for B(u) into the real equation (5.24) gives:

Al ]+ Cﬂs[ituflﬁ)+ Aluls S:in{‘:'l:u,-"lﬁ)* sin(nufly

cns(:rruf 1 6) (5.27)

= 3 s[x]cos((2x + mu/16)

x=0,7

-*cnsz{ﬂuflfj) Al ] ﬂnl(ﬂuﬂy
Alul A&{nuﬂﬁr cos(mu/16) (5.28)
= Z s[x]-::us((lx + 1)mue/1 ﬁ}

x=0.7

Since A(u) isthereal part of F(u), and sin2(B)+cos?(6)=1, we can get:

Re( Flu])
= ) slx]cosi(2x + Dimu/16 (5.29)

Cosruic) = 2 Lrlcos@xe Dma/16)

Fast Computation of the Discrete Fourier Transform

Since € = cos(q) + i*sin(q), we can express the Fourier transform (5.17) as:

Flu]= Zs{x]*-:us(— Emf_x}'lﬁ)+i*5[x]*sin(—2£uxflﬁ],u=EI,T (5.30)

x=0,15

In (5.30), s(x) is known to be real. The product i* s(x)* sin(-2piux/16) can only make complex contributions to
F(u). Because we are only interested in Re(F(u)), the contribution of complex termsisinsignificant.
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Since only the cosine terms are significant, we may reduce the expression e2piux/16 gccording the cosine periodic
identities described above. Certain expressions are repeated in the resulting equations, and are computed once
only.

Calculation of the significant FFT coefficients can be done with only 5 multiplications, as shown in Figure 5.5.
Conversion of these 8 coefficientsinto the first 8 DCT coefficients requires 8 additional multiplications.

s0 ; ‘ : 30 {C4
o S\ L PR, -y
o T AW = —{C2 |-
I B 7 M C3

e G

5 T . cs |-

<6 F] G M —x OB ™
C2-Ce

ET ........... rr b C?’ _—

Figure5.5
Flowgraph showing computation of the fast DCT using FFT. Note that
only 5 multiplications are needed before the final stage.



Page 47

53—
Two-dimensional DCT Algorithms

Two-dimensional DCT algorithms, proposed in the literature [PM 93, CSF77] include:
a) Reductionto 1-D DCT

b) Relating the 2-D DCT to the 2-D DFT

¢) Relating the 2-D DCT to other 2-D discrete transformations

d) Block Matrix Decomposition.

In this Section, we describe two most promising techniques, reduction of the 2D DCT to 1D DCTSs,
and block matrix decomposition of the 2D DCT.

53.1—
Reduction of the 2D DCT to 1D DCT

Since the 2D DCT is separable, it may be computed by performing eight 1D DCTs on al rows,
followed by eight 1D DCTs on the eight columns produced by the first pass of eight DCTs. The
number of multiplications required by this approach is then 16 times the number required by asingle
fast DCT.

In the case of reducing the DCT to FFT, discussed in Section 5.2.2, 8 multiplications are required to
scale the results, and only 5 multiplications in the FFT calculation. If the scaling is postponed to the
second pass, only 5*8 calculations are required in the first pass, and 5*8 + 8* 8 in the second pass.
Furthermore, it may be possible to fold the scaling multiplications into a quantization step. In this
case, only 80 multiplications are required to perform the 2D DCT[PM93]. Figure 5.6 illustrates this
technique.

5.3.2—
Calculation of 2D DCT by Sparse Matrix and Cosine Symmetry

In this method, the 1D DCT is expressed as a matrix product, and is factored into 4 sparse matrices,
only one of which contains values other than O, 1, or -1 [CSF77].
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When extended to the 2D case by forming the tensor product of the 1D DCTSs, the multiplication matrix can be

optimized using cosine identities [PM93].
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Figure 5.6

The 2D DCT transform is calculated by first performing row-wise

1D DCT. and then column-wise 1D DCT.

This factoring is suggested by the dataflow diagram for the 1D DCT. The accompanying diagram, shown in

Figure 5.7, performs the 1D DCT without the final output scaling step.

The FFT transformation may be written as:

F=P®R ®M®R,

(5.31)

The flowgraph shows that al multiplications are concentrated in matrix M. In the tensor product FxF the tensor
product MxM can beisolated and optimized separately due to the properties of the tensor product operator.
Application of the properties of the cosine function result in a reduction of the total number of multiplications to
54 (with six additional multiplications by 1/2, which are considered a shift right by one bit).
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Figure 5.7
Flowgraph for scaled 1D DCT based on FFT.
53.3—

Comparison of 2D DCT Techniques

Table 5.1 compares the complexity of 8x8 2D DCT techniques, presented in this Section. Fast FFT-
based 2D DCT algorithm is the fastest known algorithm requiring 462 multiplications and 60 shift
operations.
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Table 5.1 Comparison of complexity of various 2D DCT techniques.

ALGORITHM Multiplications Additions Characteristics
Fast symmetry-based 1D DCT 13X16=208 20X 16=464 Apply the DCT column-wise on 8
rows, then row-wise on 8 columns.
Fast FFT-based 5X16+64=144 20X 16=464 Also apply column-wise, then row-wise. Precompute scaling
1D DCT, multiplications and apply once.
not quantized
Fast FFT-based 1D DCT 5X16=80 29X 16=464 Fold output scaling into quantization. Fastest known 1D
algorithm, and simple to implement (8 equations).
Fast matrix decomposed, FFT-based | 54+64=118+6 shifts 462 True 2D algorithm.
2D DCT, not quantized
Fast matrix decomposed, FFT-based | 54 + 6 shifts 462 Fastest known algorithm. However, 2D algorithm requires
2D DCT coding of 64 equations (one per transformed coordinate).
54—

Inverse DCT Algorithms
Two inverse DCT (IDCT) algorithms are described in this section: (a) forward mapped IDCT, and (b) fast IDCT derived from the DCT.

54.1—
Forward Mapped | DCT

Ideally, the DCT creates alarge number of zero coefficients. The DCT is selected as the preferred transform, because it concentrates energy into the
least number of coefficients. In addition, quantization is used to increase the number of zero coefficients by discarding information to which the
human eyeisleast sensitive [GR82], and by introducing the least mean square error [L1082].

If we consider the IDCT to be an expression of the pixel datain a 64-dimensional vector space (the 8x8 2D DCT space), we can easily calculate the
64 basis vectors. Each basis vector has 64 components, and it is known that no more than 10 of the components are unique, asillustrated in Figure
5.8. Thus no more than 10 multiplications need to be performed for any non-zero component [HM94].

If the quantized values are fixed, all multiplications can be precalculated. In any event, if fewer than about 60 multiplications are required (about 6-10
coefficients,
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depending on the number of unique values in the required basis vectors), the forward mapped IDCT
will outperform other fast IDCT methods.
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Figure5.8
The basis vector for component
(u, v)=(1, 1). This vector has 10
unique values. t; = C,C;cos
(ip/16)cos(jp/16).

54.2—
Fast IDCT Derived from the DCT

The DCT isan orthogonal and unitary transformation. The inverse of any orthonormal transformation
is the transpose of the transformation. The transpose of a flowgraph may be computed by following
the graph from right to left [PM93]. Since the number of branchesis equal to the number of merges,
the computational complexity of the IDCT is exactly the same as that of the DCT. The IDCT for the
FFT version of the DCT was calculated using this approach.

55—
Three-dimensional DCT Algorithms

551—
Applying the DCT to Motion Video

Compression strategies are chosen based upon the statistical behavior of the data to be compressed.
Continuous-tone pictures have traditionally been modeled as a stochastic sequence of random
variables. An autoregressive model is developed by using a causal minimum variance representation
for the stochastic sequence. We express the value of pixel x, as the sum of a causal prediction x,,, and
the error term e,
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X, = X, TE, (3.32)

The prediction term is chosen to minimize the error term €,. The minimum occurs when x,,, is the conditional mean:

X = E(x, |5, i = 12,om (5.33)

X

If the x,, process is Gaussian, the predictor is linear. We assume a first-order autoregessive model, wherer is the one-
step correlation coefficient:

X = P*X, TE, (5.34)

Thevariance & of g, is:
2 1 -
G- = E.'(ER) {(5.35)
and s2 is related to the variance of the pixel distribution s,»-

o’ =cl+(1-p?) (5.36)

Statistics have been collected for the correlation p in the pixel, scan line, and motion directions for various video
effects (motion, pan, bresk). The results are shown in Table 5.2. These images show extremely high correlationsin all
three directions, showing that the energy of the pixel representation can be concentrated in each direction with the
DCT. Thisjustifiesthe use of the DCT in al three dimensions (pixel, scan line, motion).

Table 5.2 Measured one-step correlation coefficient p for various video clips.

Scene Char acterization Pixel Scan-Line Direction Frame
Direction Direction
TYPICAL .9997 .9991 .9978
PAN .9988 .9970 .9980
ZOOM 9910 .9893 .9881
BREAK .9994 .9976 .9970
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552—
Development of Fast 3D DCT Algorithms

The heart of both XY Z compression and decompression processes is the three-dimensional DCT.
Optimizing this transformation is the key part of developing a practical real-time algorithm [VDG89].

Applying a separable algorithm gives a baseline for evaluating the performance advantages of various
3-D optimizations. Direct separable calculation of the 3-D DCT requires computation of 64 1-D
DCTsin each dimension, asillustrated in Figure 5.9. The 1-D DCT requires 64 multiplications and
63 additions. Thusthe 3-D transformation will require 3x64x64 multiplications, and 3x64x63
additions : 12,288 multiplications and 12,096 additions.
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Figure5.9
Applying the separable 1-D DCT to compute the 3-D DCT (4x4x4 case).
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The fastest known Fourier-based 1-D DCT requires 13 multiplications. Applying thisfast 1-D DCT
separately to the 3-D case will require 3x64x13 multiplications, and 3x64x29 additions: 2,496
multiplications and 5,568 additions. However, the Fourier-based 1-D DCT uses 5 multiplications to
compute the (abbreviated) Fourier transform, and 8 multiplications to scale the FFT into the DCT. These
scaling multiplications can be folded into the quantizing phase. Thisresultsin atotal of 3x64x5
multiplications: 960 multiplications and 5,568 additions.

A true two-dimensional algorithm has been developed using the sparse matrix technique, described in
Section 5.3.2, that requires 54 multiplications, 6 shifts, and 462 additions. Using this algorithmin 3
dimensions, as shown in Figure 5.10, will require 8x54 + 64x5 multiplications, 8x6 shifts, and 8x462 +
64x29 multiplications, which gives total of 752 multiplications, 48 shifts, and 5,552 additions. However,
the estimated size of the code required to implement this algorithm is about eight times the size of the 1D
DCT.

The estimated performance savings of atrue 3D DCT is about 15% over separable 1D DCT. But the
code size is an estimated 50-60 times the size of the 1D DCT. The complexity of various 3-D DCT
algorithmsis shown in Figure 5.11.

Based on the comparison of the 3D DCT agorithms (Fig. 5.11) and analyzing their implementations, we
decided to implement the 3-D DCT as the convolution of the 1-D DCT algorithms.
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Figure5.10
Applying the separable 1-D DCT after the
2-D DCT to compute the 3-D DCT (4x4x4 case).
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Figure5.11

The complexity of various 3-D DCT agorithms for 8x8x8 video cube.
10 additions are assumed to be worth 1 multiplication.
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6—
Quantization

We return to the model of continuous-tone full-motion pictures as a stochastic sequence of random
variables, as described in Section 5.5. Pixel values are used as predictors, and thus:

X, =x, +¢&, (6.1)

"

where:

X, isthe pixel value to be predicted,

X1 iSthe pixel value to be used as predictor, and
€, isthe prediction error distribution.

A first-order autoregression model is used to minimize the error distribution e,, wherer is the one-step
correlation coefficient:

X,, =P*x,, +€, (6.2)
The variance 2 of g, is calculated from the assumption that its expectation is O:

o? =E(e}) (6.3)
and s? isrelated to the variance of the pixel distribution s,»-

o’ =02%(1-p?) (6.4)

Lloyd and Max have developed the optimal quantizers by minimizing the mean square error of the
introduced quantizing noise [L1082, Max60]. In this case, the
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optimal quantizers are determined using the variance of the stochastic variables in the transform space to
predict the error introduced in pixel space.

6.1—
Defining an Invariant Measure of Error

The problem of adaptive quantization requires prediction of the error caused in pixel space by the
introduction of error in DCT space. This problem is addressed by recalling that the DCT (and all unitary

transformations) are distance preserving (the norm of the sum/difference of two vectorsisinvariant,
Parseval's relation):

E(SL[I]'—'Sl[IDE = Z(S] [HJ—SI[H])I (6.5)

a={lm—1 w={}m—1

where:
s, S, are expressions of pixel valuesin pixel space,
S, S, are expressions of pixel valuesin DCT space, and
the DCT isaunitary transform (i.e,, DCT-1 = DCTT).
The Mean Square Error (MSE) is defined as:
F]
MSE = E (::[x] — 8, [x]) (6.6)
x=0n=1
where:
sisthe pixel valuein pixel space, and
s, isthe pixel valuein pixel space after quantization.

Thus Mean Square Error isinvariant under the DCT transformation. We define the invariant measure of
error Normalized Root Mean Square Error (NRMSE) as:

1% (sll-s, L)
NRMSE = A-——"= " (6.7)

where [ is the mean pixel value (in pixel space).

The foundation can now been laid for the definition of a criterion for measuring quantization error that is
invariant under the DCT. Quantization error isthe term
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used to describe the discrepancy introduced when a component of the DCT is recovered from its quantized
value. Quantization is defined as the rounded quotient of the DCT component and a quantizing factor:

X
Olx) = E+5 (6.8)

where:

x isthe DCT component to be quantized,
g is the quantizing factor, and

Q(x) isthe quantized value of x.

Quantizing error is defined as:

x'=g*0(x)

_ _— r
Eq—,x x

(6.9)

where X' is the dequantized value of x.

E, has a distribution whose mean is 0 if the distribution of x is even (we assume it is Gaussian), and g is
odd (if g is even and large, we may assume the mean of E, is"close" to 0).

Let's choose atypical DCT component x to be quantized by the factor g, and define a"normalized
modulus® function that returns avalue in the range [-g/2, g/2] asfollows:

_q
N(x)=1{" modg,xmodg <= A (6.10)

xmod g — g, otherwise

Then quantzing error becomes:
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¥=x-N(x),

6.11
E, = N(x) &

The average quantizing error is then calculated as:

D E,(x)*P(x)
N

= (6.12)

where:

P(x) isthe probability of the value x,

E, isthe error introduced by quantizing the value x by the factor g, and
N isthe number of distinct values x.

Since P(x) is even:

Pix)= Pl—x) (6.13)
Further, it follows from the properties of the modulus function that:
Ni=x)=-N(x) (6.14)

Thus (6.13) becomes:

Y N(x)* P(x)+ ¥, N(x)* P(x)+ N(0)* P(0)

=0 x=0 ~ ’
Y N(x)* P(x)+ Y N(—x)* P(—x)

x=0 xi

N . (6.15)
Y N(x)x P(x) - Y N(x)* P(x)

— =0 x()

= N .

I._l_:

=0

The variance of a probability distribution is calculated as:



Page 61

=Y E(x-p)’ (6.16)

where:
E represents the expectation, or average, function,
X represents the values taken by the probability distribution, and

U represents the previously calculated expectation, or mean, of the probability distribution.

Since the quantizer error distribution for E, has mean 0, the variance g2uiik Of Eq can then be calculated as.

= 2 ZEMM[}*] (6.17)

=N 8 y=0.N,,

where:

E,ix isthe quantizer error distribution in DCT space for component i, j K,
gk isthe variance in DCT for component i,j,k, and

X,y range over all 8x8x8 blocks in the group of 8 frames being compressed.

The obtained result estimates quantizer truncation error introduced by representation of a coefficient by an
n-bit number for the unit Gaussian distribution as [Shad9]:

E =277 (6.18)

where E, is the normalized truncated quantizer error.

Quantizer error for an unnormalized Gaussian distribution is related to that of a normalized distribution by
the standard deviation of the unnormalized distribution:

E E, (6.19)

aiit = Ouije

Then quantizers introduce error as follows:
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(6.20)

where:
0« is the quanti zer factor for component ij,k, and

Yoy, isthe minimum error caused by representing the error terms with the expected range of the error
distribution.

Then the Normalized Root Mean Square Error may be written:

Lo

. Z Gy‘xz*qi

G
NRMSE = (6.21)

6.2—
Calculation of the Transform Variances

In one-dimensional space, the transform variances are calculated as:

62 =c2*[CAC" |(k.k) (6.22)
where:

o2k and o2« are variances of the kth pasisin DCT and pixel space, respectively,

C isthe DCT transform,

A isthe autocorrelation matrix, and thus a function of p, and

CACT(kK) isthe kth diagonal of the product CACT.

Figure 6.1 shows the variance of DCT transform variables for different correlation coefficients.
The problem of adaptive quantization requires prediction of the error caused in pixel space by the
introduction of error in DCT space. This problem is addressed by recalling that the DCT (and all

orthonormal transformations) are energy preserving (the sum of the squares of the basis elementsis
invariant):

Yo slxP = > slul’ (6.23)

x=0,a-1 =0 n—1
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o

i 1 2 3 4 g B 7
Transform Coafficlent, k

Figure 6.1
Variance of DCT transform variables foe different correlation coefficients.

The varianceis preserved under the energy preserving property of the DCT. Since the mean of all AC
coefficients of the DCT isaready 0, only the DC value has a difficult variance to calcul ate.

The approach taken to solve this problem in XY Z compression isto average all pixelsin the sequence
of framesto be compressed. This average is subtracted from each of the pixelsin the frames, returning
anew pixel distribution whose mean isO.

Let S, represent the pixels to be compressed. The average of all pixels, p is calculated by:
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> 2 2 slillf]]

im0, j=0,M, k=0.N,

BT NN N,

(6.24)

where:

N, isthe number of pixelsin ascan line (720 for NTSC),

N, is the number of scan lines (480 for NTSC),

N; is the number of frames to be compressed (typically 8), and
S[i][j1[K] isatypical pixel to be compressed.

Now the transformed pixel distribution s is calculated from the distribution s as follows:

sl i)l = il k] - n (6.25)

The new distribution s has a mean of 0. The transformed DC coefficient will have amean of O:

sfoJfolfo] = % > ¥ > slilli]k) (6.26)

i=0,7 j=0,T k=07

Now the variances of all components can be easily calculated in either pixel space or DCT space, as the
mean of each variable is now zero in either space. Thus the variance in pixel space for atypical pixel
s[il[j1[k] taken from the 8x8x8 cube of pixels to be compressed is calculated across the entire block of
frames:

o= 2 25 liLilk] (6.27)

rmlh N B op=0.0, B
where:
g2ijk isthe variance in pixel space for the pixel sTi][j1[K],
X counts every eighth pixel up the N, number of pixelsin the frame, and
y counts every eighth scan line up the Ns number of scan linesin the frame.
Similarly, variances are calculated in DCT space:

ol,= 2 2S8?]#] (6.28)

.'l.'='i].|"u'F B p=0.N_.18



Page 65

where g2uik isthe variance in DCT space for the DCT component STi][j][K].

The energy-preserving property of the DCT is used to assert:

Z )3 Eﬁj}t :2 2 Zﬁj',il.- (6.29)

i=(h,7j=0,7 k=07 i=0,7 j=0,7 £=0,7

6.3—
Generating Quantizer Factors

Quantizer distortion is proportional to the variance of the transformed random variable. However, no closed
form expression for optimal bit allocation is known. However, it is reasonable to expect that the number of
bits allocated will be proportional to the log of the variance of the variable in transform space. Results
similar to this conjecture have been reported in [Shad9, HS63, WK 68, WJ79]. In this research, we use
results given by Shannon [Sha49].

An integer bit allocation algorithm may be used to all ocate the expected number of bits needed to represent
each DCT component at the desired error level. Once the bit allocation has been completed, the quantizing

factorsto arrive at the allocated number of bits have be calculated. These quantizers will return the desired
error level in pixel space. We begin by initializing al quantizers to their maximum error contribution state:

Jix =Oy (6.30)
Then weinitialize:

n, 0

d, «ac}
D« Y o}
¥

D, « E*

(6.31)
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where:

k ranges through all 512 DCT components,

n, counts the number of bits allocated to each component,

d, isthe variance of the kth component not yet represented by the bit allocation,
D isthetotal of d,,

E isthe desired error (input by the agent performing the compression), and Dy, is the square of the desired
error.

The Normalized Root Mean Square Error at each iteration is calculated as:

D

F

NRMSE = (6.32)

The algorithm isiterated while the Normalized Root Mean Square Error exceeds the desired error, i.e.,
while:

Dy <— (6.33)

At each step of theiteration, find the index i for the component which will most minimize the unrepresented
variance by being allocated one bit:

d; = max(dk) (6.34)

Allocate one bit to the ith component, and reduce the variance, and calcul ate the new quantizer:

no—n+1

pep-
| {_d/ (6.35)
AV

4; =q£

When the algorithm converges, the optimal quantizers have been calculated.
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6.4—
Adding Human Visual Factors

It may be desirable to modify the optimum quantizers by weighing them with factors determined by
evauating human visual acuity. By analogy, JPEG continuous tone picture quantizers are skewed by
factors intending to take advantage of the reduced human visual sensitivity to rapid small changesin
the picture. It iswell-known that the human eye isinsensitive to motion changes of 1/60 of a second,
and this fact was used to establish the frame rate of television transmission in the United States.

The process of quantizing coefficientsin DCT space relies heavily on the decorrelation property of
the DCT. Since the DCT decorrelates the random variablesin DCT space, each DCT coefficient may
be individually processed. Now adifferent view of DCT coefficients can be devel oped.

A model of human visual acuity can be developed based on DCT coefficients. Since DCT
coefficients can be individually processed, we can also study their individual visibility. Two-
dimensional human visual acuity has been modeled by a modulation transfer function of radial
frequency in cycles/degree of visual angle subtended.

Figure 6.2 illustrates typical visual acuity curves.

The results of thiswork have been published in [CR90].

Therelative visibility of DCT basis vectorsin the spatial dimensionsis documented in Table 6.1.
In order to determine the correct curve for perceived amplitude versus frequency of change over time,

test samples were played to test audiences. Each of the three-dimensional DCT components was used
to build test casesindividually for playback at their natural frequency.
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Figure 6.2
Empirically determined human visual actuity for continuous tone pictures.
Table 6.1 Relative visibility of DCT basis vectorsin the spatial dimensions.
4942 1.000 7023 .3814 .1856 .0849 .0374 .0160
1.000 4549 .3085 .1706 .0845 .0392 .0174 .0075
.7023 .3085 2139 1244 .0645 .0311 .0142 .0063
.3814 .1706 1244 0771 .0425 .0215 .0103 .0047
.1856 .0845 .0645 .0425 .0246 .0133 .0067 .0032
.0849 .0392 .0311 .0215 .0133 .0075 .0040 .0020
.0374 .0174 .0142 .0103 .0067 .0040 .0022 .0011
.0160 .0075 .0063 .0047 .0032 .0020 .0011 .0006

The experimental system is composed of two windows whose display is controlled by the viewer, as shown in Figure 6.3. The user selectsaDCT
component from the 512 available (in the 8x8x8 DCT space), and assignsit an amplitude. An inverse DCT is performed on the selected component to
create an 8x8x8 array in pixel space. The array of pixelsis organized into 8 frames of 8 scan lines of 8 pixels.
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Figure 6.3
Sample test pattern for determining human visual factors.

As the demonstration system, we used the ActionMedia |l motion video capture and display adapter. This
adapter is composed of afully programmable microcontroller, 2 million bytes of VRAM, aregister-
programmable display processor, and a register-programmable capture subsystem, asillustrated in Figure 6.4.

The key concept behind using the ActionMediall is removing the real-time constraint of video playback from
the host processor (in this case, a PC). However,
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interactive real-time playback is an absolute requirement for determining the relative visibility of the
DCT components.

Fivel Processar
: ' Display :
] | Frocessor | .
HGS5T rl—-:—l VRAM E
Caplure
: Ationhiedia I e
Figure 6.4

Block diagram of the demonstration system based on ActionMediall.

The real-time playback requirement may be separated from the PC by playing back pre-computed video
frames stored on the ActionMediall. This was accomplished by building aminimal playback system on
the ActionMediall. The host processor is responsible for allocation of resources and scheduling of
activity on the ActionMediall. The pixel processor assumes the responsibility of traversing the queues
and executing any work scheduled there. Block diagram of ActionMediall operating system is presented
in Figure 6.5.

The host processor |oads the operating system into the pixel processor, and starts the pixel processor
running. The host processor |oads the copy microcode into RAM on the ActionMediall. When the user
selectsa DCT component for display, the host processor calculates the IDCT of the component, then
downloads the 8 frames to the ActionMediall. The pixel processor of the ActionMediall is capable of
displaying the contents of aframe within the vertical block period between frames.



Page 71

Dizplay Q

A

/

: * | Display :

! t 1 Microcode |
Host : Vidao Data : ' ' Fixel
Procassor » Buffer P : Procassor

i 'f E T A ': /

5.------1.-...-..; : Oparating :

: ! H : Syslam |

© VL U Microcode

beeeeaedae, )

Figure 6.5

Block diagram of ActionMedia |l operating system.

The host processor then waits for the vertical blank interval. When the start of the vertical blank periodis
detected, the host formats a context block with the arguments to the copy routine. The context block is a copy
of the internal registers and context of the processor. This organization alows an item of work to be
interrupted and saved into the same data structure as that used to load the initial context of the task.

The pixel processor monitors the display queue. When awork item has been detected, the microcode
corresponding to that work item is loaded into the host processor. The context block containing the arguments
for the microcode are also loaded, and the microcode program begins execution. When complete, execution
returns to the microcode operating system.
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7—
Entropy Coding

Binary encoding of datais a natural means of representing computational data on modern digital
computers. When the values to be encoded are uniformly distributed, this is an space-efficient means of
representing the data as well. Information theory gives us severa efficient methods of encoding
"aphabets’ where the likelihood of symbol occurrence varies symbol by symbol. Coding techniques that
minimize space in the representation of random sequences of symbols (optimize space used in the
representation of symbols based upon the probability the symbol) are known as entropy coding
techniques.

There are two popular methods of entropy coding in the literature, Huffman coding and arithmetic
coding. Huffman coding represents symbols with words of integer length while arithmetic coding is not
limited to integer-length codes. Huffman coding is computationally |ess expensive to implement and
typically gives compression ratios close to those of arithmetic coding. XY Z compression is developed to
support Huffman coding [Huf52].

71—
Huffman Coding

Consider the problem of encoding the six symbols defined in Table 7.1. The amount of information
transferred in asymbol A that occurs with probability pis:

I, =Iﬂgz(%;ﬁJ (7.1)

where |, isthe number of bits required to express the amount of information conveyed by symbol A, and
p. isthe probability that symbol A will occur.
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The entropy of a code sequence is the average amount of information contained in each symbol of the sequence:

H= 2‘ pls)e lﬂgl( %} {5]) (7.2)

where H isthe entropy of the coding representation, and s ranges through all symbolsin the a phabet of symbols.

Table 7.1 Symbols and their associated Huffman code.

Symbol Probability Information Code
A 12 1 bit 0

B v4 2 bits 10

C 116 4 bits 1100
D 116 4 bits 1101
E 116 4 bits 1110
F /16 4 hits 1111

The entropy of the sequence represents the lower bound of the space needed to communicate the information
contained in the sequence. A fixed word length of three bits may be used to represent the six symbolsin Table
7.1. Using the Huffman coding representation, we get an average code length of 2, which for these probabilities
happens al so to be the entropy, or lower limit of the average code length:

H=%)x1+(%I)x2+(}{5)x4+(%6)x4+(}{ﬁ)x4+(%ﬁ)x4

=2
(7.3)

Assignment of Huffman codes is done by developing a Huffman coding tree, asillustrated in Figure 7.1. The tree
is developed "left to right" (or bottom to top). Symbols are listed in decreasing order of probability. Iteratively,
the two adjacent branches whose sum is least are combined into a new branch, until the tree is completed. The
treeisthen traversed and labeled.
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1100 |C
1101 |D
1110 |E
1111 F

Figure 7.1
Huffmand coding tree - an example.

This agorithm computes Huffman codes for arbitrary sequences of symbols, and will work regardless of their
relative probabilities (real cases don't show the simple logarithmic behavior of this example). The algorithm is
simple enough (O(NlogN)) to form the kernel of areal-time a gorithm for the adaptive entropy coding of images.
Huffman coding is used in the JPEG and MPEG specification
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7.2—
Use of Entropy Codingin JPEG and MPEG

Once Huffman coding has been chosen to represent the data, the compression attained by the system
isinfluenced by the choice of alphabet. Severa different alphabets have been defined in the JPEG,
MPEG-1, and MPEG-2 standards.

Variable-length coding assigns a length prefix to each word, and follows it with avalue code, as
shown in Table 7.2. If the values to be represented are small on average, this technique helps reduce
the number of bits required to represent them.

Table 7.2 VLC length code and range of encoded values.

Number Range of encoded values

of bits

1 -11

2 -3.-2,2.3

3 -7,.-4,4.7

4 -15.8,8..15

5 -31, 16, 16..31

6 -63..32, 32..63

7 -127..64, 64..127

8 -255..-128, 128..255

9 -511..-256, 256..511

10 -1023..-512, 512..1023

11 -2047..-1024, 1024..2048

12 -4095..-2047, 2047..4095

13 -8191..-4096, 4096..8191

14 -16383..-8192, 8192..16383
15 -32767..-16384, 16384..32767
16 -65535..-32768, 32768..65535

The concept of run-length coding is also introduced. In its more general form, run-length coding
encodes a"run” of consecutive equal values into alength code followed by the value of the run. In
the case of JPEG, only zeroes are run-length coded. The run-length code stands alone, and the zero
valueisimplied.

JPEG introduced a modified Huffman coding scheme that introduces many of the concepts later used
by the MPEG specifications. JPEG constructs symbols from sequences of DCT components. Two
fundamental concepts are used: variable length coding, and run-length coding. JPEG words are
formatted into arun length, aVVLC length, and aVVLC vaue. The run length and VL C length are
combined to form the



Page 77

JPEG alphabet, given in Table 7.3. Four bits are allocated to each length code, giving 256 symbolsin the

alphabet.

EOB
N/A
N/A
N/A
N/A
N/A
N/A
ZRL

01
11
21
31
41
51
61
71

Table 7.3 The JPEG alphabet.
2 3 4
02 03 04
12 13 14
22 23 24
32 33 34
42 43 44
52 53 54
62 63 64
2 73 74

05
15
25
35
45
55
65
75

06
16
26
36
46
56
66
76

07
17
27
37
47
57
67
7

The JPEG run length and VL C words are combined and treated as symbols to be Huffman encoded. The
value 0 is never coded, but istreated as part of arun. Two special symbols are introduced, EOB and ZRL.
EOB isthe End Of Block symbol, and marks the end of each block, implying arun of zeroesto fill the rest
of the block. The ZRL code isthe Zero Run Length code, and represents arun of exactly 16 zeroes. This

code is used to segment runs of over 16 zeroes.

DCT coefficients are arranged in asimple "zig-zag" order (Table 7.4) intended to concentrate the zero
components and increase the run lengths. The variance of each DCT component predicts the probability
that component will be 0 (smaller variances predict 0). Higher frequency components tend to have larger
variances, and so JPEG orders the components into increasing order of frequency before encoding.

10
20
21
35

11
19
22

36

Table 7.4 The JPEG zig-zag order of DCT coefficients.

5

7

12
18
23
33
37
48

6

13
17
24
32
38
47
49

14
16
25
31
39
46
50
57

15
26
30
40
45
51
56
58

27
29
41
44
52
55
59
62

28
42

53

60

61
63



Page 78

MPEG-1 encodes a different alphabet - the run length, VLC length, and the VL C value are combined
into a single symbol of the alphabet. Even worse, MPEG-1 allows run lengths of up to 63 zeroes (the
maximum possible as there are only 64 DCT coefficients), resulting in a proliferation of symbals.
However, DCT components are limited in value to the range [-256..255]. The number of symbolsin
the alphabet now becomes the number of possible zero runs multiplied by the number of VLC values
plus the number of special symbols (EOB). This makes the total number of symbols 32K+1. MPEG-1
zero run length codes are shown in Table 7.5.

Table 7.5 MPEG-1 zero run length codes.

Run Length Code

0 000000
1 000001
2 000010
62 111110
63 111111

In order to limit the length of code wordsto 16 bits, MPEG-1 introduces a new symbol, escape
(ESC). The ESC symbol triggers the decoder to look for a run-length code followed by alevel code.
Upon examination of sample video, the most common 222 VL C codes were selected as the al phabet
for MPEG-1. All other VL C codes are coded with the escape mechanism. MPEG-1 level codes are
shownin Table 7.6.

The MPEG-2 encoding scheme isvirtually identical to the MPEG-1 encoding scheme, except that the
escape levels are fixed at 12 bits, while those of MPEG are either 8 or 16 bits.

7.3—
Adaptive Huffman Coding

This section describes a modification of the JPEG encoding scheme well suited to encoding motion
video. The JPEG alphabet is extended with the ESC symbol. The alphabet to be encoded will be
composed of all 256 combinations of 4 bit run length and 4 bit VLC codes, ZRL, and EOB.



Table 7.6 MPEG-1 level codes.
LEVEL

-255

-254

-129
-128
-127

-126

126
127
128
129

254
255

CODE
1000 0000 0000 0001
1000 0000 0000 0010

1000 0000 0111 1111
1000 0000 1000 0000
1000 0001
1000 0010

11111110
11111111
0000 0001
0000 0010

0111 1110
01111111
0000 0000 1000 0000
0000 0000 1000 1001

0000 0000 1111 1110
0000 0000 1111 1111
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Statistics for the group of frames to be decoded are gathered. The count of the occurrence of each
symbol in the alphabet within the group of frames is collected, and a table of the countsis collected.

The count for ESC is set to 0.

The standard Huffman coding procedure, described in Section 7.1, is applied to the data. Two
additional tables are constructed, one for the temporary storage of symbols waiting to be coded

(representing the root of each branch of the Huffman coding tree), and one for the storage of the
symbolsthat arein the process of being coded (the branches of the tree), asillustrated in Figure 7.2.

Entriesin the Encoder Alphabet Table (Table 7.7) whose count is hon-zero are copied into the Root
Table, setting the #hits field to 0, and the left and right subtrees to none. The procedure to construct
the Huffman code tree is then followed.
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SYMBOL COUNT #BITS LEFT RIGHT
Root Table
SYMBOL COUNT #BITS LEFT RIGHT
Branch Table
Figure7.2

Format of Root Table and Branch Table

The Root Tableis sorted by the count field. The two symbols (branches) with smallest count are removed from the Root Table and added into Branch
Table. A new branch entry is created to be added into the Root Table. The left and right fields of the new entry will point to the two branches just
added into the Branch Table. The count field of the new entry will be set to the sum of the count fields of the two branches just added to the Branch
Table, and the new branch is added to the Root Table in its sorted position. This process is repeated until there is exactly one entry in the Root Table.

The Huffman coding treeis traversed, and the number of bits to be assigned to each code is accumulated. Any symbol that requires more than 12 bits
to encode is removed from the Encoder Alphabet Table (by setting its count field to 0), and the value of its count field is added to the count field of
the ESC symbol.

A new Huffman Coding tree is built - anew Root Tableis built from the Encoder Alphabet Table, a new Huffman Coding Table is built. When this
treeistraversed, all entries with less than 12 bits have their codes written to the Encoder Alphabet Table. The Encoder Alphabet Tableis now ready
for use to encode the frame data.

Encoding is straightforward for entries with less than 12 bits. Entries with over 12 bits are coding using an escape coding procedure - the ESC
symbol iswritten, then the 8 bit run length / variable length field, then the VL C value to be encoded.
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Table 7.7 Encoder Alphabet Table

SYMBOL (run/vic) COUNT CODE
0/1 nnn
0/2 nnn
O/F nnn
1/1 nnn
1/2 nnn
1F nnn
F/1 nnn
F/2 nnn
F/IF

ZRL nnn
EOB nnn

ESC 0
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8
VLSl Architecturesfor the XYZ Video Codec

81—
Complexity of Video Compression Algorithms

In video and signal processing applications a measure of algorithmic complexity, which istypically
used, isthe total number of operations expressed in MOPS (million operations per second) or GOPS
(giga operations per second). When designing a new video codec, the first step is to estimate its
complexity [BK95, PDG95, F+95, GGV 92]. For example, Table 8.1, adapted from [BK95], estimates
MOPS (Million Operations Per Second) requirements for H.261 codec using CIF format at 30
frames/s. These estimates were computed assuming fast implementations of DCT and IDCT
algorithms and fast 2-D logarithmic search for motion estimation. Total MOPS requirements for both
the encoder and decoder are 1,166 MOPS. If the exhaustive search was used for motion estimation,
this number would be much higher — 7,550 MOPS.

In [F+92] MOPS requirements for an H.261 codec has been estimated to be about 3,500 MOPS (the
encoder required 2,500 MOPS and the decoder and postprocessing about 1,000 MOPS).

MOPS requirements for the MPEG algorithm, for different frame sizes, and different percentages of
frames computed with bi-directional motion estimation (B-frames) are reported in [BK95], and
presented in Table 8.2.
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Table 8.1 MOPS requirements for H.261 codec. CIF format at 30 frames/s. [BK95] Fast DCT and IDCT algorithms and
fast search for motion estimation are used.

COMPRESSION MOPS

RGB to Y CbCr conversion 27
Motion estimation (exhaustive search for p=8) 608
Inter-/Intraframe coding 40
Loop filtering 55
Pixel prediction 18
2-D DCT 60
Quantization and zig-zag scanning 44
Entropy coding 17
Frame reconstruction 99
TOTAL 968
DECOMPRESSION MOPS
Entropy decoder 17
Inverse quantization 9
Inverse DCT 60
Loop filter 55
Prediction 30

Y CbCr to RGB conversion 27
TOTAL 198

Table 8.2 MOPS requirements for MPEG compressor and decompressor at 30 fps. No preprocessing and postprocessing. No audio and other system-

related operations[BK 95].
COMPRESSION SIF FORMAT CCIR 601 HDTV FORMAT
No B-frames 738 3,020 14,498
20% B-frames 847 3,467 16,645
50% B-frames 1,011 4,138 19,865
70% B-frames 1,120 4,585 22,012
DECOMPRESSION SIF FORMAT CCIR 601 HDTV FORMAT
No B-frames 96 395 1,898
20% B-frames 101 415 1,996
50% B-frames 108 446 2,143

70% B-frames 113 466 2,241
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Due to the complexity of the motion vector search algorithm, the compression algorithms for both MPEG and H.261/H.263 are
much more complex than the decompression agorithm.

The obtained complexity estimates can be used in evaluating various aternatives in the implementation of the video codecs,
such as general-purpose RISC microprocessors versus digital signal processors (DSPs), or programmable video processors.
Figure 8.1 shows the current trends in computing power for general purpose RISC processors, programmable DSPs, and
programmable video processors.

From Tables 8.1 and 8.2 and Figure 8.1, it can be concluded that it is now easily achievable to implement decompression using
one or more general-purpose RISC or DSP processors. However, the encoder requirements (even assuming 1000 MOPS of
processing power by using a fast motion estimation agorithm) is outside of the complexity of general-purpose processors at
thistime.

Computing Powar

(MOPs] Current siivaton
10,000 -
Programmable
Video Processors
1,000
Programmabis DSPs
100 L
General-Purpose
Microprocesiors
t % t ; l —
1980 1992 1594 1896 1358 2000 Years
Figure 8.1

Trendsin performance of programmable processors.
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82—
From Algorithmsto VLSl Architectures

Thefirst step in designing a VL SI architecture for avideo codec isto map the specific algorithm into
the VLS| architecture. In the mapping process, the main goal is to keep low manufacturing cost and
small size of the architecture. Manufacturing cost depends on the number of integrated chips, chip
packaging, and silicon area per chip. Using large area silicon, the number of chips can be kept small.
On the other hand, production of very large area chipsis not economic, due to the defect density.

Therequired silicon areafor VLS| implementation of algorithmsis related to required resources such
as logic gates, memory, and the interconnect between the modules. The amount of logic depends on
the concurrency of operations. A measure for the required concurrency (Neo, o) Can be expressed as:

N:-um. op — R&"Nq. ,m!'- T—-.'g:- (3.1}

where:

R, - isthe source rate in pels per time unit,

Noppe - IS the number of operations per pel,

T, - IS average time for performing an operation.

The number of operations per pel (N,,,) isan average value derived by counting all operations
required for performing a specific coding algorithm. The video coding a gorithms are periodically
defined over abasic interval. In MPEG and H.261/H.263 coding algorithms, thisinterval is amacro
block. Almost all tasks of the coding algorithms are defined on amacro block of 16x16 luminance
pels and the associated chrominance pels. For this reason, counting is done over one macro block. For
example, for the H.261/H.263 codec the N, ,,=1,170 MOPS, when applying 2D logarithmic search
algorithm. With the present technology, T,, is order of 20 nsec. From Table 3.1 for video source rate,
we can obtain the number of concurrent operations for the H.261/H/263 video agorithms ranging
from 40 (for SQCIF) to over 1000 (for 16CIF).

The required interconnects between the operation part and the memory highly depends on the access
rate. Considering one large external memory for storing video data and intermediate results, the
number of parallel bus lines for connecting the operation bus and the memory (N,,.) becomes
approximately:

New = Ko Naee, pae!! ® [ace (8.2)
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where;
Neeepa - SPECifi€S the mean number of accesses per pel, and
T . - iISthe memory access time.

Because of one- and two-operand operations, N, 4 islarger than N,, 4. For simplicity, let us assume
that N pa X T iSin the same order as T, 5y X Top. Thus, the number of bus lines is the same order of
magnitude as the concurrency, which is very large. Taking into consideration that the accessrateis
mainly influenced by multiple accesses of image source data and intermediate results, the access rate
to an external memory can be significantly reduced by assigning alocal memory to the operative part.
Because of the periodicity over the macro block, the local memory isin order to amacro block size.

8.3—
Classification of Video Codec VL S| Architectures

Designs of video processors range from fully custom architectures, referred to as function specific
architectures, with minimal programmability, to fully programmable architectures, based on
multiprocessors. Furthermore, programmabl e architectures can be classified to flexible
programmable architectures, which provide moderate to high flexibility, and adapted
programmable architectures, which provide an increased efficiency and less flexibility.

The selection of the architecture depends on the speed requirements of the target application and the
constraints on circuit integration, performance, power requirements, and cost. Regardless of the
implementation details, discussed later in this section, the general design theme is to use either aDSP
or aRISC core processor for main control and special hardware accelerators for the DCT,
guantization, entropy encoding, and motion estimation.

In order to assess and evaluate various architectures, the well-known AT-product will be used.
Efficiency of an architecture (E) is defined as:

1
Asiw Tp

=

(8.3)

where;
T, - isthe effective processing time for one sample, and

A4 - istherequired silicon area for a specific architecture under evauation.
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8.3.1—
Function Specific Architectures

Function specific (or dedicated) architectures for video codecs provide limited, if any,
programmability, because they use dedicated architectures for a specific encoding or decoding
standard. For high volume consumer products, the silicon area optimization achieved by dedicated
architectures, compared to programmable architectures, leads to lower production cost.

Function specific architectures include dedicated chips for DCT, quantization, entropy encoder, and
motion estimation algorithm. In the first generation of VLSI chips, each of these functions were
implemented in one chip, and a chipset was necessary to create the system for MPEG or H.261
encoding or decoding. Examples of function specific encoders and decodersinclude AT&T's

AV 4310 encoder for and AB4220A decoder for MPEG-1 and H.261, AV 6101 and AV6110 MPEG-
2 decoders, STi3400 H.261 and MPEG-1 decoder, and Sti3500 MPEG-2 decoder (SGS-Thomson), C-
Cube's CL480VCD MPEG-1 audio and video decoder and CL9100 MPEG-2 decoder, and LS|
Logic's L64112 MPEG-1 decoder and L64002 MPEG-2 decoder.

Figure 8.2 shows the block diagram of atypical video encoder, based on motion estimation (such as
MPEG and H.261/H.263), using function specific architecture.

8.3.2—
Programmable Architectures

In contrast to function oriented approach with limited flexibility, programmable architectures enable
the processing of different tasks under software control. The main advantage of programmable
architecturesis the increased flexibility. Changes of architectural requirements, such as changes of
algorithms or an extension of the application domain, can be handled by software changes. Thus,
with programmable architectures a cost intensive redesign of the hardware can be avoided.

On the other hand, programmabl e architectures require a higher expense for design and
manufacturing, since additional hardware for program control is required. In addition, programmable
architectures require software devel opment for the application. Video coding applications require a
real-time processing of the image data, and therefore parallelization strategies have to be applied. The
two basic alternative parallelization strategies, which will applied in the project, include: (1) data
distribution, and (2) task distribution.
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Figure 8.2

Block diagram of atypical function specific architecture for video
encoder based on motion estimation. The dedicated processors
are used for various operations, such as DCT, quantization,
variable length coding, motion estimation, etc.

Two alternative programmable architectures include:

(1) Flexible programmable architectures, with moderate to high flexibility. These architectures are based on coprocessor
concept as well as parallel datapaths and deeply pipelined designs with high clock frequency, and

(2) Adapted programmable ar chitectures, with increased efficiency by adapting the architecture to the specific requirements of
video coding applications. These architectures provide dedicated modules for several tasks of the video codec algorithm, such as
DCT module, or variable length coding.

Figure 8.3, adapted from [PDG95], compares these two programmable architectures in terms of silicon areaand frame rate, for
several H.261 codec implementations, reported in the literature. Adapted processor design can achieve an efficiency gain in terms
of the AT-criterion (eg. 8.3) by afactor of about 6-7 compared to flexible architectures. Assuming approximately 200 operations
per pel for the implementation of aH.261 codec [PDG95], this comparison leads to 100



Page 90

mm?2/GOPS for flexible programmable architectures, and 15 mm?2/GOPS for adapted programmable
architectures.
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Figure 8.3

Normalized silicon area and throughput (frame rate) for programmable
architectures for H.261 codec implementations,
reported in the literature [PDG95)].

Examples of MPEG-1, MPEG-2, and H.261 flexible programmable architectures include MV P chip
(Texas Instruments) [GGA92], and VCP chip (Integrated Information Technology) [FSZ95, BK95],
while VSP3 chip (NEC) is an example of H.261 adapted programmable architecture [BK95, PDG95].

84—
Implementations of the XY Z Video Compression Algorithm

The main disadvantage of dedicated, function specific architecturesisthe lack of flexibility. Thus, in
this book we propose the implementation of the XY Z codec based on a programmabl e architecture.
The selected architecture should balance two controversial requests — flexibility and architectural
efficiency. We explore and study two alternative programmabl e architectures, both based on flexible
and adapted programmabl e approach. Our methodology in this study consists of the following
activities:
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1. Mapping tasks into multiprocessor system

In the first phase, we decompose the XY Z algorithm into a series of concurrent tasks, and map them into
multiple processors, asillustrated in an example in Figure 8.4.

In Task Distribution
T“ Mapping l
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Memory Proctascrs
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Figure 8.4
Mapping tasks of a XY Z codec into multiprocessor system
exploiting data distribution and task distribution.

Since the results of onetask are required for the proceeding task, alocal memory is required for storage
of intermediate results. The required concurrency can be achieved by parallel operation of processors,
whereby a subsection of the image is assigned to each processor. The task mapping onto processors. The
task mapping onto set of homogenous programmabl e processorsiis referred to as data distribution.

In order to increase the silicon efficiency of programmable processors, we will also consider using
additional coprocessors for specific functions. Thiswill result in heterogeneous programmable
processors referred to as task distribution.

We developed two XY Z agorithms, described later in this Chapter:
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(1) Non-adaptive XY Z algorithm, which is fast and with lower complexity, and

(2) Adaptive XY Z agorithm, which is of higher complexity, but gives better performance compared

to non-adaptive algorithm.

2. Design of two alter native architectures

Two aternative architectures will be exploited and analyzed in this study. The Architecture-1,
referred to as FP architecture, will based on flexible programmable architectural concept. The FM
architecture will consist of a master general-purpose RISC processor, a number of RISC processors
(2 to 10), a shared memory, and an interconnection network, asillustrated in Figure 8.5.
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Figure8.5

An example of aflexible programmable architecture for the XY Z
codec implementation. The codec consists of a master RISC
processor, 2-10 parallel RISC processors, shared
memory, and an interconnection network.

In Sections 8.5 and 8.6 of this Chapter, we present detailed implementations of the XY Z codec using
the mesh-based fully programmabl e architecture and the adapted programmabl e architecture using

dedicated 3D DCT processors.
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The core of the system are parallel processors, which handle various digital processing functionsin parallel, as
pixel processing and other massively parallel integer and floating point operations. The shared RAM memory (2-
10 modules) provides on-chip memory for the parallel processors. Each memory module can be accessed in
parallel over an interconnection network. Several interconnection networks will be evaluated in this study,
including crossbar switch, multistage networks, and common bus.
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Figure 8.6
An example of adapted programmable architecture for the XY Z codec implementation.
The codec consists of a RISC (or DSP core), and several dedicated processors.

The Architecture-2, referred as AP architecture, will be based on adapted programmable architectural concept, in
which we propose to use additional coprocessors for specific functions in order to increase computational power
without increasing the required semiconductor areas (see Figure 8.3). In this approach, we intend to combine a
flexible programmabl e concept with one or more adapted modules. We will study what functions of the XY Z
codec should be implemented as coprocessors. Typically, computationally intensive tasks, such as DCT and
variable length coding, are good candidates for an adapted implementation. In Figure 8.6,
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one possible implementation of an AP architecture for the XY Z codec is shown. The architecture
consists of aRISC (or DSP core) and several dedicated processors for DCT, VLC, and adaptive
quantization.

8.4.1—
Non-adaptive XYZ Compression Algorithm

The XY Z motion video algorithm is composed of two parts, a video compressor, and a video
decompressor. Each part of the algorithm may support adaptive quantization, or may use
precomputed tables. The non-adaptive XY Z motion video algorithm is intended to be avery fast, low-
overhead algorithm, and it is simple to implement. It compresses motion video in the following steps,
asillustrated in Figure 8.7.
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Figure 8.7
Overview of the XY Z non-adaptive compression.

1. Inthe step 1, raw video is collected into 8x8x8 cubes at extremely high datarates. Video is
typically captured in YUV format and sent in adigital data stream in 4:2:2 format. This data must be
converted into 4:2:0 format and cached into memory. In the process of caching, the data must be re-
sequenced into appropriate format for access by the video processor(s).
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2. In the second step, the 3D DCT is performed on the raw cubes returning DCT coefficients. The
forward DCT may be performed in several different ways depending on the processor throughput and
architecture. The forward DCT may be performed by brute force, leading to a simple algorithm that
requires considerable processor power, or may be performed by afast algorithm. Two of the most
promising fast algorithms are the Fourier-based algorithm, and a fused multiply-add algorithm. The
Fourier-based algorithm minimizes the number of multiplications, and iswell suited to general-
purpose processors. The fused multiply-add algorithm is better suited to DSPs, where accumulation
of productsisaone-tick operation. Figure 8.8 compares shows the flowgraphs of the slow FDCT
algorithm and a simplified fused add-multiply fast FDCT algorithm.
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Flowgraphs of FDCT algorithms: (a) slow FDCT
algorithm, (b) simplified fused add-multiply
fast FDCT agorithm.
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3. In the next step, the cubes are quantized according to predefined constants. Each DCT coefficient
is quantized by dividing it by a constant. One such constant is defined for each DCT coefficient. If
either the Fourier-based or the fused multiply-add algorithm is used, the scaling multiplies may be
folded into the quantizing factors.

4. The DCT coefficients are sequenced according to a predefined sequence order table. A sequenceis
defined that typically orders coefficients in decreasing order of variance. This order of coefficients
will be used to generate symbols for compression. In practice, this step isintegrated into the symbol
generation procedure. A new "zig-zag" sequence for the 512 XY Z DCT coefficients must be defined.
This sequence may be devel oped based on the average statistics of different actual video, or on the
expected theoretical behavior of the DCT.

5. A sequence of symbolsis created and run lengths of zeroes are counted. If arun length exceeds 16,
the ZRL symbol is coded. If arun length exhausts the block, no ZRL s are issued and the EOB
symbol is coded. When a non-zero coefficient is reached, the run length and the VLC length of the
coefficient are combined to form a symbol to be coded.

6. The symbols are encoded into a compressed data stream. Each symbol is replaced by its Huffman
code. Huffman codes representing non-zero terminated run lengths are followed by VL C codes.
Symbols that occur infrequently and have no explicit Huffman code are represented by the ESC code
and the corresponding escape sequence (composed of the run length, the VL C length, and the VLC
code).

8.4.2—
Adaptive XYZ Compression Algorithm

Adaptive compression is more complex in the sense that tables for quantization and entropy coding
are generated from statistics gathered from the entire sequence of eight frames to be compressed,
while non-adaptive compression may be performed with reference only to the pixels within asingle
8x8x8 cube. Overview of the adaptive XY Z compression algorithm is given in Figure 8.8.
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Figure 8.8

Overview of the XY Z adaptive compression algorithm.

The adaptive compression algorithm is composed of the following steps:

1. Calculate the mean of all pixels. Calculation of pixel mean involves summing al pixels, then
dividing by the number of pixels:

Y slil

_ i=DN=1

K==y (8.4)
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where:

M isthe pixel mean,

i ranges over all pixelsin all 8 frames,

gi] represents the value of an individual pixel, and
N isthe number of pixelsin all 8 frames.

However, in afull implementation of adaptive compression, it may be convenient to view compression as
taking place in stages. In this case, pixel averages may be computed within each block, and the overall
average then computed:

Z 5 [I]

__ =051

Fa B g s
2]1&
__ B

K —Nﬂ

where:

W, isthe pixel average for one block,

S, isapixel within the block,

W isthe overall average of al pixels,

B ranges over al blocksin the 8 frames, and
Nj; is the number of blocks.

2. Subtract the pixel mean from all pixels. Once the mean pixel value has been calculated, al pixelsare
reduced by the mean:

slil & lil-p (8.6)

where §i] isatypical pixel to be compressed.

This ensuresthat all pixels are distributed with amean of 0, and that all DCT coefficients will be
distributed with amean of 0.

3. Perform the forward DCT on each 8x8x8 block. The forward DCT is now performed on each block of
pixels, returning ablock of DCT coefficients. Should a general -purpose processor be chosen to perform
the DCT, the Fourier-based DCT agorithm may be a good choice to implement this transformation. If a
DSP-like processor is used, the fused multiply-add algorithm may be a better choice.
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4. Calculate the variance of each DCT component from all blocks. The variance is computed for each of

the 512 DCT component within a block. Since the mean of each DCT component is zero, the variance
may be calculated as:

>, 82i

2 i
G, = . 8.7
I NE E }

where:

0i2 isthe variance for coefficient i of ablock,
and S[i] isthe value of coefficienti in block b.

5. Calculate the adaptive quantizer values. Development of adaptive quantizersis done for a specified
Normalized Root Mean Square Error (NRMSE), defined as:

S(s-s)

NRMSE = 512 (8.8)

where:

S istheith DCT coefficient,

S'istheith DCT coefficient after recovery from quantization,
and [ isthe mean value of the pixels.

6. Calculate the encoding sequence. Since each DCT component has an expectation of 0, smaller
variances imply greater likelihood the DCT valueis 0. In order to maximize the average run length, the
DCT components are encoded in order of decreasing variance. This should give rise to longer run lengths
than a fixed coding segquence.

7. Quantize each block. Each block of coefficientsis quantized by division by quantizer factors. The
guantization of each coefficient within the block is done by adding 1/2 the quantizer value for than
coefficient to the coefficient value, and then dividing by the quantizer value. This effects arounded
division by the quantizer.
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8. Order the quantized DCT coefficients according to the encoding sequence. A simple lookup table
can be used to represent the encoding sequence (Figure 8.9). The encoding process can then be
sequentially driven by looking up the index for each coefficient.

H Probability of
being non-zero

Q
0 8 16 24 32 40 48 56

Figure 8.9
Probability of being non-zero for 64 AC coefficients
when ordered in XY Z sequence.

9. Compute the run lengths of zeros to generate sequences of symbols to encode. Run lengths of
zeros are counted until a non-zero coefficient is found, or the end of block. If the run length reaches
the end of block, the EOB symbol is coded. If the run length islonger than 16, ZRL symbols are
coded for each run length of 16. The remaining run length and the VLC code for the non-zero
coefficient are combined to for a symbol for Huffman encoding.

10. Collect number of occurrences of each symbol. As symbols are formed, their occurrenceis
counted. The accumulation of symbol statistics is a prerequisite for creating Huffman codes.

11. Construct the Huffman encoding tables. A treeisformed collecting lowest-probability symbol
events, and is used to encode the symbols. The treeis pruned to limit the length of code words to 12
bits. The pruned symbols will be represented by the ESC symbol.

12. Encode the symbolsinto a compressed data stream. The symbols within ablock are encoded
according to the Huffman codes. The bit streams are collected across blocksto form asingle
compressed data stream, as shown in Figure 8.10.
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File Group of | |[Compressed | |Group of | [Next
Header | |[Frames | |Data - Group| |Frames | [Group of
Header | |of Frames Header | |Frames
File Header
Length
Width
Frame Rate

Video Format

Frame Directory
Adaptive Quantizers Y/N
Adaptive Coding Y/N

Group of Frames Header
Quantizer Table (optional)
Zig-zag Order Table
(opticnal)

Huffman Table (optional)

Figure 8.10
Format of the XY Z compressed data stream.

Decompression is done following essentially the non-adaptive encode procedure in reverse. Some
additional overhead is dedicated to construction of Huffman lookup tables when decompressing data streams
that were adaptively encoded. The decompression procedure consists of the following steps:

1. Construction of Huffman decoding tables. For non-adaptive data streams, this is done once at the start of
the decode process. For adaptive data streams, the Huffman codes are read at the beginning of the data
stream representing one group of eight compressed frames.
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2. Assignment of quantizer factors. For non-adaptive data streams, quantizing factors are assigned at
the start of the decode process. For adaptive data streams, quantizing factors are read at the beginning
of the data stream representing one group of eight compressed frames.

3. Decode Huffman data stream into stream of symbols. The longest Huffman code used by XY Z
compression is 12 bitsin length. The next 12 bits in the data stream is used as an index into the
Huffman decoding table. Thus the Huffman decoding table must recognize Huffman codes of varying
lengths. Thisis accomplished in the construction of the Huffman decoding table, as shown in Figure
8.11. For each Huffman code, every possible 12 bit index with that code as prefix is generated. In the
case of collisions, the longer prefix takes priority. Once completed, every Huffman code will
correctly index the table.

Code Length
1001100100010 Symbol

Code Length
Symbol

Code Length
Symbaol

Figure8.11
The Huffman Decoding Table

4. Expand symbol stream into DCT coefficients. Asthe symbols are decoded, they cause specify
zero run lengths and non-zero DCT coefficients. These values are resequenced from their encoded zig-
zag order and stored into the DCT block.

5. Perform IDCT on DCT coefficients. Aninverse DCT is performed on the DCT coefficients,
returning pixel values. The pixel values must be clamped to their legal range (0..255).

6. Reorder pixel data and display. Pixel data must be sequenced in scan-line order, and played
through a D/A converter to generate aframe of video.
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85—
Adaptive XY Z Codec Using Mesh Architecture

The adaptive XY Z compression algorithm iswell suited to mesh implementation. The implementation of
the algorithm follows the steps given in Figure 8.8. Each so-called "global" stage performs an essentially
single process of highly-coupled multi-process task. The "block" stages perform highly independent,
parallel tasks.

Assumption is made that enough local or shared memory is available to the processors to store the entire
contents of 8 frames (N blocks). N, parallel processors are organized into a 2-D array of length n, and

depth n,. Blocks of pixels are allocated to each parallel processor in row-stripe fashion. The maximum
number of blocks per processor N, is:

N, =|— (8.9)

Parallel processors are connected to their 4 nearest neighbors. Cut-through routing is provided aswell as
copy during routing.

1. Compute mean pixel value. Each processor accumulates the pixel values for each block it has been

allocated. Each processor performs 512 additions per block (ignoring looping overhead). Time to
accumulate pixel values on each processor is:

T, = N, %512+t (8.10)

where:

t,isthe time required to perform a single addition, and

t, isloop overhead time.

The average value and the number of blocks per processor are collected across processor rows and
columns. Collection across n, rowsisdonein log,(n,)-1 parallel collection steps. At each step i, datais

sent from processors whose x rank 2i+1 js 2i to the processor whose rank isx rank - 2!, asillustrated in
Figure 8.12.



Page 104

Proc || Proc || Proc || Proc || Proc || Proc || Proc | | Proc
0 1 2 3 4 5 6 7
fd Tt ] [
Step 0
Step 1
Step 2
Figure 8.12
Collecting valuesin the x direction.
Time to perform cut-through routing transfers is modeled as (Figure 8.13):
t =t +mt,l (8.11)
where:
teomm 1S the total communications overhead,
t, isthe startup overhead,
m is the number of words in the message,
t, isthe transfer time per word, and
1 isthe number of links over which the transfer will be made.
Proc || Proc || Proc || Proc || Proc || Proc || Proc || Proc
0 1 2 3 4 2 6 7
F Y F 3 F 3 F Y F 3 3
Figure 8.13
Distributing values in the x direction using the copy cut-through operation.
The time to collect m words over n, processors can be calculated. At each step i, | = 2i. The total communication
timein the x direction is then:
_ i
T,= .t +met, %2 (8.12)

i=lJagin, }-1
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T, =log(n, Jet, +mrt, *(n, — 1) (8.13)
Assuming t,n, dominates tlog(n,), we conservatively estimate:
’I; =mEn_*t (8,14
The same reasoning appliesin they direction. Total communication time to distribute m words is then:

T, = m*(nx +n?)*fh, (8.15)

Timeto collect two words (number of blocks, total pixel value) is:

I = m*(r:x + .‘I_.,,}"‘ t, (8.16)

At each step in the communication process, the accumulation of the total number of blocks and the total pixel
valuesis made. At the last step, the average pixel valueis calculated by dividing the accumulated pixel total by
the accumulated total number of blocks. The time to perform these calculationsis:

T, = (lng(nx]+ Ing(n}_])*(lra )+1,, (8.17)

wheret,, is the time needed to perform a multiply/divide.

2. Reduce pixels by mean pixel value, perform FDCT, calculate variances. The mean pixel value must be
distributed amongst all processors. This effort requires a cut-through copy distribution in the x direction, and
then the y direction. The overhead to distribute m words in the x directioniis:

T, =t +mt,(n, —1) (8.18)

which may be conservatively approximated by:
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T =m#n_*t (8.19)

Distribution to al processorsis done by distribution in the x direction followed by distribution in the y direction.
Thus time to distribute m words to all processorsis:

T, =m¥(n, +n, o1, (8.20)

The time to distribute the mean is given as:

T, =(n, +n, p1, 8.21)
Reducing the pixel values by the mean is aloop of 512 subtractions per block, and thus thetimeis:
T, = N, #512%¢, (8.22)

The forward DCT is calculated independently on all processors. Three passes are taken over each block. 64 one-
dimensional DCTs are performed for each pass. The time needed to perform asingle 8 word FFT-based unscaled
DCT is:

t, =5t, +29t, (8.23)
The time to perform the unscaled 3-D DCT to al blocksisthen:

T, = N,*(960z,, +55681,) (8.24)

Adding the scaling operation (one multiplication per each of 512 coefficients) to the DCT gives an overall DCT
computation time of:

T, = N, *(14721,, + 55681, ) (8.25)

Variances are calculated as the square of each DCT component. The time to calculate the individual variances
for one block is then one multiplication per coefficient, and for all blocks:
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T, = N #5112+t (8.26)

3. Accumulate variances, compute quantizing factors, compute encoding sequence. Variances are accumul ated
in much the same manner as the pixel mean is computed. Of course, accumulations of 512 variances takes place.
The time to accumulate the 512 variances over the blocks within one processor is:

T, = N, *512%¢_ (8.27)

The communication time to accumul ate variancesis:

T, =512*[H1 +ny]*£w (8.28)

Thetotal of the time needed to accumulate variances at each communication step, plus the time needed to scale
the variances after accumulation, is:

T, =512*(lug[nj)+lug(:z?)}t(r¢)+512*rm (8.29)

Compuitation of quantizing factors requires sort of the variances followed by iteration of the bit allocation
algorithm until convergence of the Root Variance Error. Sorting 512 coefficients takes on the order of
512l0g(512) operations. Double this number to arrive at the sort overhead estimate of:

T, =8192¢, (8.30)

In typical video sources, the accumulated variance requires on the order of 20 bits to encode at NRM SE error
levels of 5%. This algorithm requires, per iteration, an average of roughly 16 comparisons to determine the largest
unrepresented variance, 3 adds and 3 multiplies. Startup overhead is 4096 assignments. Bit allocation overhead is
then roughly (assignment overhead is assumed to bet,):

T,, = 4296t + 60, (8.31)
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Quantizers are developed by dividing expected range of each coefficient (square root of variance) into range
represented by each coefficient's bit allocation. The requires 512 square roots, roughly 20 shifts, and 512
divisions. Assuming a shift takes place in time t, and a square root requires roughly 16 multiplication times,
generation of quantizers takes:

T, = 87041, +20r, (8.32)

4. Quantize DCT coefficients, construct symbol sequencesfor encoding. Calculated quantizers and the
encoding order must be broadcast to each processor. Per the pixel average broadcast above, the time to
broadcast 512 quantizers and the 512 word coding sequence array is:

T, =1024%(n, +n, Jer, (833)

Quantization per block is done with a shift, an add, and a multiply per coefficient (of the 512 in the block).
Total quantization timeis:

T,s = N, #512%(21, +1,,) (8.34)

Calculation of symbolsis done by counting zero run lengths in the coding sequence. This requires 512
decisions and for most of them, an increment operation. For about 8 of the coefficients, a non-zero value will be
detected. In this case, the logarithm must be calculated to compute the VL C length. Overall, the cost of this
procedure is 20 shifts. The cost of this processis estimated at one add time per sequencing lookup, one add time
per decision, and either one add time per zero or 2.5 shifts per VLC code:

To = Ny(492+(3r, )+ 8% (25¢, ) (8.35)

5. Collect symbol statistics, construct Huffman codes. The collection of symbol statistics follows amodel quite
similar to calculating the pixel mean or the coefficient variances. There are 256 symbols. First the frequency of
symbol occurrence is measured for each processor. The time to do thisis 256 initialization assignments, and
approximately 8 indexed lookups and 8 increments per block (still ignoring control overhead!):

T, = N, *16t, + 2561, (8.36)
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The 256-word frequency of symbolsis collected across processors. Total communication timeis:

T, = ESE:'P#(MJt +H}}*IW (8.37)
At each communication step, statistics are accumulated. The time to do thisis:
T, = N, #256%1 (8.38)

Once the symbol statistics have been calculated, a Huffman tree may be constructed. Thisis a O(nlog(n))
algorithm, and the constant factor will be estimated at 20. Thus Huffman tree construction is estimated at:

T,y = 40960, (8.39)

The resulting coding table is 256 words long. This table is distributed to all processors. This takes:

T, =256% (nz +n, }«tw (8.40)

6. Encode symbols. Each block of symbolsis encoded on its processor. There are approximately 8 symbols per
block. Each symbol requires alookup in the Huffman coding table, and about 4 shift and or operations to insert
the lookup bits into the compressed bitstream. Another add is needed to count the number of bitsin the
bitstream. The time to perform this encoding is then:

T, = N, *40t, (8.41)

The encoded bitstreams must be collected into a single compressed bitstream. If the compression ratio after
encoding is 32:1, the length of the bitstream will be 9 words on average (1 extraword for the length of the data
stream). Collecting this bitstream will take:
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(8.42)

At each step in the collection process, the two bitstreams are concatenated. For step i, the bitstreams are of length 8*2i, and
the number of operations to concatenate is roughly four shifts and two logical operations per byte:

[.= N,*2' %61,

The total number of stepsis nx+ny, making the total number of logical operations:

T, = N ybr,

(8.43)

(8.44)

The total number of operationsis summarized in Table 8.3. If we assumet,=t,, t,=16t,, Nz=10,800, N,=4096, N,=3,
n,=n,=32, we get the resultsin Table 8.4.
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Table 8.3 Summary of expected complexity of adaptive XY Z algorithm on mesh architecture.
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Table 8.4 Complexity of XYZ adaptive and non-adaptive a gorithms for one video block 8x8x8.

COMPRESSION ALGORITHM NUMBER OF OPERATIONS NUMBER OF OPERATIONS

[PER BLOCK OF 8x8x8 FRAMES] [PER SECOND]
Adaptive XYZ 454,855 1,705,706
Non-adaptive XYZ 116,180 435,675

8.6—
XYZ Codec Based on Fast 3D DCT Copr ocessor

From the previous analysis, 64% of the overhead the non-adaptive compression processiis due to the 3-dimensional DCT. Optimizing this
transformation is akey part of developing a practical rea-time agorithm.

Applying a Fourier-based fast DCT separately to the 3-D case will require 3X64X 13 multiplications, and 3x64x29 additions: 2,496
multiplications and 5,568 additions. However, the Fourier-based DCT supports folding in of constants into the quantizing phase. Thisresultsin
atotal of 3x64x5 multiplications: 960 multiplications and 5,568 additions. Table 8.5 summarizes the complexity of two 3D DCT algorithms,
first based on direct 1D DCT, and second one based on direct fast 1D DCT.

Table 8.5 Complexity of two 3D DCT algorithms for various image formats.

3D DCT Algorithm Format Number of Complexity
video cubes/second [MOPS]

Direct 1D DCT CIF 9,000 220
320%240 at 30fps

Direct 1D DCT NTSC 40,500 988
720x480 at 30 fps

Direct 1D DCT HDTV 307,200 7,490
1280x1024 at 60 fps

Direct Fast 1D DCT CIF 9,000 60
320%x240 at 30 fps

Direct Fast 1D DCT NTSC 40,500 256
720x480 at 30 fps

Direct Fast 1D DCT HDTV 307,200 2,000

1280x1024 at 60 fps
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Clearly, asingle-processor system is unworkable for any high-resolution system (but may be
appropriate for quarter-screen motion). Thus we investigate parallel architectures. The use of modern
DSP processorsis a particularly interesting investigative angle, as new core processors are capabl e of
over 100 MIPS, overlap address calculations with processing of data, and make an inexpensive engine
for computationally complex problems.

The first problem that hasto be resolved is real-time access to inexpensive (say 70 ns) memory.
Frames of video are digitized and written to alternate buffers, as shown in Figure 8.14. A simple state
machine is used to reorganize the digital datainto XY Z sequence. Video datais cached in fast shift
registers and written to slower banks of memory.

Video in,
XY Z format
Video is
double-buifarad
! +
Multiple Banks Multiple Banks
b 4

4D7
]
{_F
DCT Processors 1§

Figure 8.14
Buffering the input to the DCT processors.

Each memory buffer must be large enough to hold 8 frames of video. When full, the processing array
can start retrieving data from the frame buffer. Contention is resolved by subdividing the frame buffer
into separately addressable banks of memory. Fast interface to each memory bank is designed as
shown in Figure 8.15.
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8 byte FIFO, preloads

with 1ns/bit byte-wide
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—_— - e

—r—
_"li"""""‘l' ) Bank n serial-in,
—¥—

i parallel-outFIFO

——
{2}

Bank n, Buffer 0 Bank n, Buffer 1

Figure 8.15
Fast interface to each memory bank.

The DCT processors are assumed to have 512 words of local memory. Each processor reads a cube for processing, and
performs the DCT on the cube. Timings are given for the DSP fused multiply-accumulate architecture in Table 8.6.

The time to perform the 3D DCT on a"typical" DSP is then:

T, =9088¢, +1024¢ (8.45)

where:
t, is the processor cycletime,

and t., isthe memory cycle time.
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Table 8.6 Implementation of the fused multiply-add FDCT on atypical DSP.

Operation Number of Time per loop [memory/processor Total Time [memory/processor
loops cycles] cycles]

Read 512 words 512 1 512

from bank

3 passes: one per 3 2688 8064

X, Y, Z direction

64 DCTs 64 12 2688

Address calculation 8 2 16

DCT calculation 8 2 26

Post scaling 512 2 1024

Write 512 words to output bank 512 1 512

The overhead of address calculation of the data points (representing access of data points) is 3072 processor cycles. Thisis a considerable
portion of the overall DCT overhead, and is worth eliminating.

One means of elimination of address computation overhead is construction of a hardwired "shuffle" interconnection scheme, presented in
Figure 8.16. This architecture associates 64 DCT processors with asingle 512 word processing cache. A 512 word cache is constructed to
hold the contents of one 8x8x8 cube. The cubeisinitialy loaded from the memory bank it services. The contents of the cube are
distributed to each of 64 DCT processors, eight consecutive words of the X direction per processor. After processing, the new values are
redistributed for processing inthe Y direction, and finally in the Z direction. The timing for receipt and transmission of dataisillustrated
in Figure 817.

The time required to process the 3D DCT (T) isafunction of theinitial load time (T, ), the processing time (T, and the permutation time

(Tee). Assuming the time required to move the data out to the next stage after DCT processing (i.e., quantization) is equal to the
permutation time:

T,, =T, + 3T, +3T,, (8.46)

Load and permutation time can be reduced by wiring each word of temporary storage individually to the input processor and output
processor it services. In this
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case, although complex wiring is required (512 individually wired 16-bit words), the load time can be
pipelined with processing time, and shuffle time reduced to a single |oad/store time. The shuffle patternis
simply atransposition in three dimensions:

STjIk]E] = SEHNLFITA] (8.47)

The latest generation of DSPs support an aternative, more scal eable solution. The ADSP-2106x family of
Super Harvard Architecture Computers (SHARC) and the TM S320C8x are used to benchmark afast FDCT
design.

& word
inprut 512 bit 1512 bit | |512 bit

acha ap.1 | lap.2 | |lap.3

DCT Processor

256 word casing
lookup tabis

£12 word i
procassing j ; S12bit | |S12bit | [S12bit |2
cacha ; ] ap.2 | |lap.3 I
DCT Processor :
256 word cosing
kepup tabke

Figure 8.16
Shuffle interconnection of DCT processors.



Page 116

Mins E500ns T. TL+ Thr T+ Ter+ Trs
ﬂnq E]"EI_I:I ns EEGC‘I:JI'IB
] R i I "
Xwroll il i AN
Xgonl oM
Sl L Win
ool LU Y b
7.7 i , ]
X07.0] il . N
JiTi e . 1 :
X007] ¢ Ll an
Xo00] f1: i i, i :
Initial Load gﬂsﬂ . Pass? |[Pass 2
rocessing Load ||Processing
Figure 8.17

Timing diagram for shuffle interconnect between DCT processors.

8.6.1—
Fast DCT Based on the SHARC Architecture

The SHARC architecture incorporates processing capability, RAM, DMA capability, multiple buses,
address computation logic, and a single-tick multiply into asingle chip. This architectureis depicted in
Figure 8.18.

Two banks of dual ported SRAM each support simultaneous access from the DMA controller and one of
the two Data Buses. The Sequencer fetches a single instruction from the Instruction Cache or the Program
Memory bus. The instruction may:

« compute with registers,

« perform two move operations between registers and the Data Memory or Program Memory bus,

« perform address calculation for the next instruction.
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Figure 8.18
SHARC architecture.

Any instruction that is fetched from Program Memory and references Program Memory requires a
wait state. Thus instructions that reference Program Memory are cached (Instruction Cacheis
associative). Calculations are performed between registers. Supported cal culations include one tick
multiply/add, shifting, general ALU operations, variable-length bit insertion/deletion. Address
calculations alow increment of an address base by a programmable value. This increment may
support
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circular queues. Eight address cal culations are simultaneously active (each instruction chooses an address calculation reference).

The SHARC architecture is well-suited to implementation of the FDCT. The DMA controller can write video data into memory while the
SHARC is calculating the previous DCT. Constants used in multiplications are read from Program Memory, and are therefore cached and
availablein asingletick. Address calculation is done in the same instruction as the multiply/add, and so the overall time to perform the DCT is:

T,, = max(4992¢,,1024,, ) (8.48)

Table 8.7 summarizes memory and processor cycles needed to implement 3D DCT on SHARC processor. At NTSC rates, five 40 MHz
SHARC chips should be sufficient to perform the DCT.

Table 8.7 Implementation of the fused multiply-add FDCT on a SHARC DSP.

Operation Number of Time per loop Total time [memory/processor cycles]
loops [memory/
processor cycles]
Read 512 words from 512 1 512
bank
3 passes, one per X, Y, Z direction 3 1664 4992
64 DCTs 64 26 1664
Address Calculation 8 0 0
DCT Calculation 8 26
Post Scaling 512 2 1024
Write 512 words to output bank 512 1 512
8.6.2—

Fast DCT Based on the TM S320C80 Processor

The TMS320C80 is a single chip that incorporates many of the system features of video distribution and parallel processing. The TM S320C80
is composed of amaster RISC processor, four DSP processors, a smart DMA controller (transfer controller), and avideo controller, as shown
in Figure 8.19.

Each pixel processor incorporates processing capability, multiple buses, address computation logic, and asingle-tick multiply into asingle
chip. This architecture is depicted in Figure 8.20. The externa (to the pixel processor) crossbar enables accessto "loca™ memory or to external
memory. In the absence of contention, each
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pixel processor can access local memory in asingletick. Instructions are cached in standard LRU fashion.
Instructions perform the following operationsin one tick:

* A multiply/accumul ate operation between registers.

« Two move operations between registers and the Local Memory Bus or the Global Memory Bus. These
buses hames are by convention - in practice they are interchangeable. Move operations include variable-
length bit extraction.

* Address calculation for the data move operations.

PPO

Master Video
Prﬂﬂ%EEﬂr Controller
Crossbar Transter
Controller
| l 1
Data Data Data Data

RAM,
PPO

RAM,
PPO

RAM,
PPO

RAM,
PPO

Figure 8.19

Architecture of the TMS 320C80.

Any instruction that is fetched from Program Memory and references Program Memory requires a wait
state. Thusinstructions that reference Program Memory are cached (Instruction Cache is associative).
Calculations are performed between registers. Supported cal culations include one tick multiply/add,
shifting, and general ALU operations. Address calculations allow indexing of an address base by
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aprogrammable value. 3 address calculations are simultaneously active (each instruction chooses an
address calculation reference).

The TMS320C80 video controller performs all of the timing operations needed to capture video
images. The video controller issues orders to the transfer controller to store the captured video into
the memory buffer. The transfer controller supports transfer of packets of 3D blocks of memory,
using the concepts of pitch and patches. Scan lines in buffer memory are separated by the pitch, and a
collection of scan linesis organized into a patch. A packet can be programmed to communicate a
collection of patches, each separated by the patch offset. In the case of frames composed of 480 lines
of 720 bytes, eight bytes would be transferred per line with a pitch might of 720, a patch would be
composed of eight lines separated by 480 lines, and the entire transfer would be eight patches. This
correctly reorganizes eight frames of eight lines of eight bytesin scan-line order into a packed cube
of 512 bytes for 3D DCT processing.

Timings for the TM S320C80 are exactly the same as those for the SHARC processor, reported in
Table8.7.
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Architecture of Pixel Processors TM S320C80.
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9

Experimental Results Using XYZ Compression

On the basis of the analysis, performed in Chapter 8, we summarize the complexity of the XY Z agorithm compared to H.261/H/263 and
MPEG algorithms for different video formats. Results are shown in Table 9.1 for CIF format, Table 9.2 for CCIR 601 (NTSC) format, and
Table 9.3 for HDTV format.

Table 9.1 Complexity of video compression algorithmsin MOPS for CIF format (288x352) at 30 frames/sec.

Compression Algorithm Encoder Decoder Total
Complexity Complexity Complexity

H.261/H.263 970 200 1,170
MPEG 750 100 850
No B Frames
MPEG 1,120 120 1,240
70% B Frames
XYz 240 240 480

In summary, the XY Z decoder is more complex than H.261/H.263 and MPEG decoders, and its complexity is about 1.5-2 times higher than the
complexity of the other two algorithms. However, the complexity of the XY Z encoder, based on afast 3D DCT agorithm, is superior
compared to the other two agorithms. The complexity of the XY Z encoder is about 4-6 times lower than the complexity of H.261/H.263 and
MPEG encoders.

The XY Z compression algorithm was implemented on the PC, and on the MasPar parallel computer. Both implementations are described in
this Chapter, and timings



are shown. Based on these experiments, the final performance of the XY Z compression agorithm are determined.

Table 9.2 Complexity of video compression agorithmsin MOPS for CCIR 601 format (480x720) at 30 frames/sec.

Compression Algorithm Encoder Decoder Total
Complexity Complexity Complexity
MPEG 3,000 400 3,400
No B Frames
MPEG 4,600 470 5,070
70% B Frames
XYz 980 980 1,960

Table 9.3 Complexity of video compression algorithmsin MOPS for HDTV format (1152x1440) at 30 frames/sec.

Compression Algorithm Encoder Decoder Total
Complexity Complexity Complexity
MPEG 14,500 1,900 16,400
No B Frames
MPEG 22,000 2,300 24,300
70% B Frames
XYz 4,600 4,600 9,200

9.1—
PC Implementation
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We have performed a variety of experiments on a PC to demonstrate the XY Z video compression algorithm and eval uate its features. We aso
compared the XY Z agorithm with the MPEG standard. For these purposes, we have developed atestbed for both XY Z and MPEG video

compression techniques, and have implemented both techniques in software.

The testbed features a user-friendly interface. The user can select a video file which is to be compressed, and a set of quantization tablesto be
used in the experiment. After performing the experiment, which consists of running both the encoder and decoder, the obtained results are
written in the report file, while the error file contains the differences between the original and decompressed frames. The user can display each
of frames individually, both the original and the decompressed frame, and compare them visually. The user can also view the difference

between the original and the decompressed frames, as well as the obtained DCT coefficients.
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9.1.1—
Demonstration of the XYZ Algorithm

We demonstrate the performance of the XY Z video compression algorithm by applying it to avideo clip
chosen from the movie 'Dick Tracey'. The clip consists of eight frames with resolution 320x240 pixels. The
moving figures consume about 40% of the frame, and the figures move in opposite directions. The clip has

been captured and stored in uncompressed form. The quantizer, referred as QT1, is generated from one-
dimensional quantizer motivated by JPEG:

OneDQ[x] =(0,1,2,3,6,11,20,25) (9.1)

wherex=0to 7.

The 3D quantizer is then developed using the following expression:

ThreeDQ[x,v,z] = 5+ OneDQ| x] + oneDQ{ v] + OneDQz] (9.2)

wherex,y, and z arein the rangefromQto 7.

The Normalized Root Mean Square Error (NRMSE) is calculated as:

3 (Xi - Xi)?
NRMSE = |-=— (9.3)
Y (Xi%)
i=1

where:

Xi are original pixel values,

Al are pixel values after decompression, and

n isthe total number of pixelsin the 8-frame video sequence.
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Figure 9.1 shows the original sequence of 8 frames, the decompressed sequence, and the error
between frames. The error frames are multiplied by 16 in order to become visible for evaluation
purposes.

The obtained results indicate that the XY Z algorithm can effectively be used for compression of full-
motion video. Besides presenting 8 frames of the video, we also played back the decompressed video
in aloop. The obtained quality of the video was very good.

9.1.2—
Comparison with MPEG Standard

We compared the XY Z compression algorithm with the MPEG standard. Motion estimation in
MPEG is performed by 2D logarithmic search and by exhaustive search of aregion of 16 pixels wide.
First frame (frame 0) is compressed as | frame using MPEG-recommended quantizer. Frame 7 is
compressed as P frame using forward motion prediction. Error terms are cal culated and encoded
using the DCT. Frames 1 to 6 are compressed as bidirectional (B) frames. Maotion estimation is done
using bidirectional prediction. Four experiments were performed using MPEG: two including error
correction with two different search algorithms, and two with no error correction for both search
algorithms.

In addition to the previous experiment, reported in Section 9.1.1, we applied XY Z compression for
four additional sets of quantization tables, referred as QT2 to QT5 in [WF95]. The quantization tables
are selected in such way that QT1 tables contain the smallest coefficients, thus achieving the best
quality of the video and the lowest compression ratio. On the other hand, the QTS5 tables have the
largest coefficients, thus producing the highest compression ratio and the lowest video quality. The
results are summarized in Table 9.4. Figures 9.2 shows the XY Z decompressed sequences for
additional tow sets of quantization tables, QT2 and QT3, while Figure 9.3 shows the MPEG
decompressed video segquences.
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Table 9.4 Comparison of XYZ and MPEG video compression algorithms.

Video Compression Normalized Execution
Compression Ratio RMS Time[min]
Technique Error (8 frames, 320x240)
XYz 345 0.079 6.45
QT
XYz 57.7 0.097 6.45
QT2
XYz 70.8 0.105 6.45
QT3)
XYz 101.7 0.120 6.45
(QT4)
XYz 128.1 0.130 6.45
(QT5)
MPEG 11.0 0.080 2135
Logarithmic Search and
Error Correction
MPEG 156 0.080 163.0
Exhaustive Search and
Error Correction
MPEG 27.0 0.140 21.35
Logarithmic Search and
No Error Correction
MPEG 329 0.125 163.0
Exhaustive Search and

No Error Correction
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Figure9.1
ion algorithm: (a) original sequence of 8 frames (240x320),

Demonstration of the XY Z video compi

(b) decompressed sequence using QT1 - compression ratio=34.5, NRM SE=0.079, (c) error between frames multiplied by 16.
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Figure 9.2
The XY Z compression algorithm: () Decompressed sequence using QT2, compression ratio=57.7,
NRMSE=0.097, (b) error function for case a, (c) decompressed sequence using QT3,
compression ratio=70.8, NRMSE=0.105, (d) error function for case c.



Figure 9.3
MPEG compression algorithm: (a) decompressed sequence using MPEG including B error correction, compression
ratio=15.6, NRMSE=0.080, (b) error function for case a, (c) decompressed sequence using MPEG excluding
B error correction, compression ratio=32.9, NRMSE=0.125, (d) error function for case c.
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Figure 9.4 shows an uncompressed frame drawn from the eight frame sequence, rendered in gray scale
for ease of reproduction. The character in the foreground is moving to the reader's right, the character
behind him is moving to the | eft.
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e

Figure 9.4
Raw captured frame from the movie 'Dick Tracey'.
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Figure 9.5 is decoded frame using MPEG compression associated with MPEG-1 recommended
quantizers and Huffman coding tables. An exhaustive search for inter-frame motion estimation was used
with p=8. The same frame is displayed — in this case a B-frame. The compression ratio for the sequence
of framesis 11:1, and the NRMS error is 0.08.

Figure9.5
MPEG-decompressed frame, Compression ratio=11, NRM SE=0.08.
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Figure 9.6 displays the same frame after MPEG compression without error residue. That is, smple
motion estimation is used on the B frames. The compression ratio for this sequenceis 27:1, with
NRMSE of 0.14. Experience indicates that NRM SE values above 0.08 result in objectionable artifacts.

F

Figure 9.6
M PEG-decompressed frame, motion estimation only.
Compression ratio=27, NRMSE=0.14.
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Figure 9.7 displays the same frame after compression with the XY Z compression algorithm. The MPEG
guantizers were used (after extension into three dimensions), and the MPEG Huffman tables were used
for encoding. This sequence is compressed at 34.5:1 with NRM SE of 0.079.

i 7 S =
i
R gé'*
& fige o e e R
G
Figure 9.7

XY Z decompressed frame, Compression ratio = 34.5, NRM SE=0.079.
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The following conclusions can be made [WF95]:

» The XY Z video compression algorithm gives significantly better compression ratios than the MPEG
algorithm for the same quality of video. For example, XY Z result 1 and MPEG result 1 (see Table
9.3) give similar NRM S errors (0.079 and 0.08, respectively) and reconstructed sequences show
similar image quality. However, the XY Z algorithm provides much higher compression ratio (34.5
versus 15.6).

« For similar compression ratios, the XY Z video compression algorithm gives much better quality of
the decompressed video than the MPEG algorithm. For example, XY Z result 1 and MPEG result 4
(see Table 9.3) give similar compression ratios (34.5 and 32.9, respectively), but XY Z algorithm
gives much better quality (NRMS error for XY Z is0.079, while for MPEG is 0.125).

* The obtained results suggest that XY Z video compression algorithm is faster than the MPEG
algorithm (including both compression and decompression).

* The XYZ results 4 and 5 (Table 9.3) suggest that very high compression ratios (greater than 100)
can be achieved using the XY Z video compression agorithm, while the NRMS error is still kept
relatively small (in the range from 0.120 to 0.130). In this case, for videos with the fast camera
movement the visual artifacts are significant. However, the algorithm gives very good results for
videos with little movements, which is the case in videoconferencing applications.

* Finally, the MPEG technique is based on three different algorithms: one for I, another for P, and the
third algorithm for B frames. MPEG is also asymmetrical algorithm, requiring a complex encoder
and a simple decoder. On the other hand, the XY Z technique applies only one algorithm for all
frames and is a symmetrical algorithm requiring the same complexity for both encoder and decoder.
Thisfact is beneficia for VLS| implementation of the algorithm, discussed in Chapter 8.
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9.13—
The Sensitivity of the XYZ Algorithm to Various Video Effects

In the previous sections, we demonstrated the XY Z video compression algorithm by applying it to asingle 8-
frame clip, which includes the large area of motion. In this section, we present the results obtained when applying
the XY Z agorithm to various video clips, which show different video effects, such as camera break, camera
panning and zooming, and fast camera movement. Pan and zoom seguences are chosen from the movie 'Total
Recall', another pan and camera break sequences are from the movie 'Interview with a Vampire', and afast
camera movement sequence is from the movie 'Interceptor'. These sequences are compressed using the XY Z
algorithm and the MPEG-inspired quantization tables, given by the equation 9.2. The results are summarized in
Table 9.5.

Table 9.5 XY Z agorithm applied to various video effects.

MovieClip Compression Normalized RMSE
Video Effect Ratio Error
Dick Tracy 345 0.079
Typical Motion

Interview with the 325 0.087
Vampire Camera Break

Interview with the 26.1 0.085
Vampire Camera Panning

Total Recall 175 0.049
Camera Panning

Total Recall 239 0.042
Camera Zoom

Interceptor 26.0 0.025
Fast Motion

Note from Table 9.5 that the XY Z algorithm shows very little sensitivity to camera break achieving aimost the
same compression ratio and NRM SE asin the case with no camera break. For illustration purposes, Figure 9.8
shows two frames from a sequence which includes a camera break - the original frames and frames after
decompression.
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02 0:03.35 01

01 0:03.35 00

01 0:03.35 00

Figure 9.8
Applying the XY Z video compression agorithm to a sequence with camera break: (upper row): original
frames, (lower row): frames after decompression., Compression ratio=26, NRM SE=0.025.
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However, in the other three cases: camera panning, camera zooming, and fast camera movement, the XY Z
algorithm shows a decrease in the compression ratio compared to a normal sequence without these effects,
which is an expected result.

In Section 9.3, we present the XY Z agorithm using quantization based on human visual factors, which is
capable of achieving high compression ratios in all these cases.

9.2—
MasPar Implementation

The full adaptive XY Z compression algorithm, described in Chapter 8, was implemented on the MasPar
parallel computer. The MasPar was considered a good benchmark to predict the performance of DSP
implementations, as modern DSPs are about 1000 times more powerful than the MasPar processors. This
was also agood testbed for longer test video sequences (5 seconds or more).

9.21—
Architecture of the MasPar

The MasPar is amassively paralel SIMD (single instruction, multiple data) computer. In SIMD computers,
all Processing Elements (PES) execute the same instruction simultaneously, but operate on different data.
Instructions are decoded and broadcast by the Array Control Unit (ACU). The general architecture of the
MasPar is shown in Figure 9.9.

The ACU is ageneral-purpose processor with its own data and instruction memory. Programs are |oaded
and executed on the ACU. When parallel instructions are

VME
ACU Bus

ACU-PE 10
Bus 10 RAM

PE Global | Bus

P

Array Router

Figure 9.9
The architecture of MasPar.
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interpreted, they are broadcast to the PE array. All code was written in MPL, aparallel version of
ANSI C. In MPL, datathat is declared "plural" is stored on the PEs. Operations on plura data
generate paralldl instructions which are executed on the PEs.

Detail -
one

cluster
of PEs

Figure9.10
Communications of the PEsin MasPar computer.

The PE Array is organized into matrices of 32 PEs called clusters. Each cluster is a source or
destination for global routing, supporting communication between arbitrary processors or to/from the
ACU. In addition, a mesh architecture (" X-net") connects adjacent processors. Communications of
the PEsisillustrated in Figure 9.10.
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The mesh connection supports higher bandwidths than does the more general global routing connection.
Measured execution times on the MasPar computer are summarized in Table 9.6.

Table 9.6 Measured execution times (in milliseconds) on the MasPar compulter.

L oop Integer Multiply  Float Multiply Integer Integer Multiply
Add
ACU .002 .006 .024 .004 .017
PE .002 .022 .030 .015 .024

9.2.2—
Algorithms on the MasPar

Several standard problems must be solved in order to implement adaptive XY Z compression on the MasPar
computer. In particular, data on the ACU has to be distributed to the PEs, data on the PEs has to be
"reduced” (collected) into the ACU, and data on the PEs has to be sorted. Fast algorithms are developed for
each of these problems.

Distribution of individual datafrom the ACU to the PEsis done through the global router. The ACU simply
sends each data element to each PE (the MPL command proc). However, afast distribution strategy exists
for broadcast of the same dataitem to all PEs, asillustrated in Figure 9.11.

The X-Net copy command (the MPL command xnetc) transmits data along the xnet, depositing copies of
the data at each PE on the route. Since the PE array is organized as a two-dimensional array, the broadcast
can be accomplished with only two xnet transfers. Broadcast from the ACU is then accomplished by setting
the data item into PE#0, and performing an xnet copy transfer to the last processor on row 0. Then each
processor in row #0 performs an xnet copy to the corresponding processor in the last row along each
column.

Reduction of data across PEs is done with the X-Net "pipe" send (the MPL command xnetp). Pipe sends
are high-speed point-to-point sends (without copies to the intermediate nodes), as shown in Figure 9.12.
After each transfer of data from one PE to another, reduction of the datais performed on the target PE. For
example, in the case of pixel averaging, the reduction operation is accumulation.
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Figure9.11

Broadcast of datafrom the ACU to PEs.

Performance is gained by increasing the length of each successive transfer. Thefirst transfer isto the
nearest neighbor, the second transfer reduces every fourth PE, etc. At the end of the process, the reduced
data resides in PE#0. This data can then be transferred to the ACU.

Sorting of datais done with aparallel version of the bubble sort, asillustrated in Figure 9.13. This
technique was chosen because of the relatively small number of data items to be sorted (512), and its
ease of implementation.

The PEs arelogically organized as aline of processors. At each even step in the sorting process, each
even numbered processor (in the logical organization) compares its data value to the processor on the
right. The larger valueis sent to the right. At each odd step in the process, each odd numbered processor
compares its data value to the processor on itsright. At the end of N steps, N data items are sorted.
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Figure9.12
Reduction of data from PEsto the ACU.

9.2.3—
Adaptive XYZ Compression on the MasPar

The full adaptive XY Z video compression algorithm was implemented on the MasPar computer. Timing
of the XY Z adaptive compression algorithm on MasPar is reported in Table 9.7. Full-motion video clips
used by the MPEG committee to assess the MPEG compression algorithm were used to benchmark the
XY Z compression algorithm. Adaptive quantization was applied based on returning adesired NRM SE
figure. The quantizers were chosen to minimize overall mean square error. Thiswork duplicates earlier
work [RPR77]. The resulting compression ratios were disappointing, and it was not possible to arrive at
the compression ratios advertised in that work.

Adaptive Huffman coding can be expected to increase the compression ratio without decreasing the visual
quality. However, adaptive Huffman coding is computationally complex. This technique was applied to
CCIR clip"Susie", and to MPEG-2 clips "Carousel", and "Cheerleaders’.
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Sorting data on PEs.

Somewhat surprisingly, the results of adaptive Huffman coding actually show a reduction in compression
ratio when compared to the MPEG-1 coding tables. Thisis due to the different strategy used by the
MPEG-1 tables (the ESC code is not supported), and the different maximum length of the MPEG-1 code
words (16 bit vs. 12 hit).

It seems clear that then benefits of adaptive compression are outweighed by the computational expense of
this procedure. It seems clear that non-adaptive compression will give 50% to 75% of the compression
ratios at 1/4 the computational cost of adaptive compression. Except in the most demanding
environments, the advantages of real-time non-adaptive compression will probably outweigh the cost of
adaptive compression.

This combined failure of adaptive quantization and adaptive Huffman coding to generate high
compression ratios, coupled with the prohibitively high computational cost of the adaptive algorithms,
lead to abandonment of the adaptive
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approach. Thisleaves the human visual acuity experiments as the last hope for developing atruly reliable and competitive compression algorithm.

Function
Estimated Adaptive Compression Time
Estimated Non-adaptive Compression Time

Measured Overall Adaptive Compression Time

Read

Average Pixel

Forward DCT

Calculate Quantizers, Sort
Order

Entropy Coding
Inverse DCT
Write Frame Data

Overhead

83—
Non-adaptive XYZ Compression

Table 9.7 Timing of the X'Y Z adaptive compression on MasPar.

CPU Time

9 seconds
2 seconds

8.9 seconds

1.4 seconds

.047 seconds

1.126 seconds

1.030 seconds

1.477 seconds
1.149 seconds
1.107 seconds

App. 2 seconds

Comments

Time to read/write, encode and decode, compute adaptive quantizers for % sec.
Note that all numbers are for RGB (4:4:4) data. Real-life applications would use
YUV12 (4:2:0) data, and should run twice as fast, and get double the
compression ratios.

Read in pre-formatted data, 8x8x8 blocks distributed to al processors. This
corresponds to an actual throughput rate of only 15 MB/s, the maximum rating
for the MasPar disk array. FAU's MasPar lacks overlapped file 1/0 capability.

Time to compute average pixel across all processors. This indicates the
efficiency of the mesh interconnection.

Fast Forward DCT calculation

Does not include actual encoding time (only size of encoded datais collected)
Fast Inverse DCT
Writes data in same pre-formatted format

Overhead includes measurement of actual NRM SE, some loop control and
initialization code

The thrust of the work was then changed to emphasi ze quantization based on Human Visual Factors. Threshold visibility is defined as the magnitude
of the DCT component at which artifacts are first visible. This test was run by comparing the DCT component to be tested against a window
containing the DCT component with magnitude 0. The visibility was taken to be the greatest magnitude at which the windows could not be
differentiated (at the 6X viewing distance). The visibility of DCT coefficients was tested at a distance of 6X the screen size. Threshold visibility was
compared to relative visibility. The resulting figures are summarized in Table 9.8.
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Table 9.8 Measured threshold visibility of DCT coefficients.

Y=0 Y=1 Y=2 Y=3 Y=4 Y=5 Y=6 Y=7
X=0, 1 0 17 32 67 49 209 208
T=0..7

2 0 14 41 70 113 138 258

0 22 27 62 122 124 284 254

0 21 38 111 81 176 570 216

1 50 51 175 114 277 450 242

32 57 86 227 129 289 403 263

33 61 131 179 150 176 310 227

32 64 159 166 132 155 236 172

X=1, 16 28 41 89 196 260 255 220
T=0..7

17 46 39 91 172 200 175 205

35 55 62 115 219 225 235 235

45 92 108 166 215 225 250 225

75 114 114 126 222 250 235 230

110 82 135 176 228 235 230 230

41 75 139 207 238 240 230 225

71 171 179 152 165 200 195 210

X=2, 17 58 72 88 80 130 190 240
T=0..7

16 71 85 89 130 150 155 160

28 113 115 145 160 205 185 170

25 170 165 195 175 230 240 220

43 160 225 245 175 285 295 240

68 225 215 885 230 265 270 220

103 220 205 235 225 220 210 205

125 185 170 150 140 150 180 180

X=3, 27 49 86 115 145 225 155 235
T=0..7

13 67 71 155 185 150 180 165

30 110 110 210 255 260 250 240

37 170 135 270 260 370 335 330

57 215 185 325 475 425 435 280

59 295 205 380 355 375 380 255

135 260 215 250 260 245 280 250

200 175 195 155 160 210 210 215

X=4, 47 67 72 180 345 365 540 245
T=0..7

52 100 86 165 190 175 185 200

46 145 150 225 255 225 245 260

62 125 155 290 365 360 330 330

74 220 235 280 675 1000 610 285

84 175 260 285 355 385 360 330

88 240 235 265 255 270 265 270

93 200 190 185 195 200 205 205

X=5, 65 200 130 295 365 670 625 295
T=0..7

80 200 170 225 240 190 225 230

105 240 235 305 305 280 315 295

145 345 350 450 385 460 450 345

185 364 415 805 885 875 560 385

255 355 460 405 400 435 450 380

285 285 320 315 275 305 315 325

225 220 225 225 230 230 230 225

X=6, 140 285 325 425 385 585 560 240
T=0..7

95 220 225 220 210 180 205 235

175 320 295 330 320 260 320 285

270 330 435 455 435 375 425 360

315 360 545 655 615 640 545 325

335 355 425 390 420 425 400 330

310 325 285 260 275 270 285 280

215 210 215 185 215 205 225 185

X=7, 145 315 360 380 385 385 420 330
T=0..7

250 220 265 260 280 255 240 225

270 315 290 315 355 335 330 285

370 365 335 345 430 440 365 355

410 345 360 315 440 450 410 365

425 340 345 335 415 455 430 370

355 300 350 325 360 320 335 355

265 250 260 225 235 235 235 250
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Similarly, the relative visibility was tested by putting up awindow at a reference amplitude, and
displaying a second window at another amplitude. The amplitude at which the windows can be
consistently differentiated was recorded.

The results showed a surprising trend - while the threshold visibility was strongly related to the
frequency of the DCT component in all three dimensions, relative visibility was virtually independent
of time, and only dlightly related to spatial frequency. The primary relationship proved to be between
intensity of the reference frame and relative visihility coefficient (about 25% of the intensity proved
visible).

Thus a non-linear quantizer was used to model human visual acuity. The first quantizer step was
taken to be afunction of the threshold visibility (plus 1). Subsequent steps were taken, for these
experiments, to be a uniform step size. This size was chosen differently in the experiments.

The following series of experiments were performed:

« EXPERIMENT 1. First step isthreshold visibility+1. Second and following steps are taken to be
the minimum of the first step and 20.

« EXPERIMENT 2. First step is maximum of threshold visibility+1 and 8. Second and following
steps are taken to be the minimum of the first step and 20. This experiment is expected to factor in
relative insensitivity of the human eye to large areas of constant color.

*« EXPERIMENT 3. First step is maximum of (threshold visibility+1)/2 and 4. Second and following
steps are taken to be the minimum of the first step and 10.

Thisis expected to create artifacts invisible past 3X viewing distance. The video clips selected for
these tests were:

* Susie. A test sequence of 150 frames released by the CCIR was selected as typical of "talking head"
video sequences.

» Cheerleaders. A test sequence of 150 frames released by the MPEG-2 committee was selected as
typical of motion video sequences.

» Carousel. A test sequence of 150 frames released by the MPEG-2 committee was selected as
typical of fast, large-scale motion.

« Dick Tracy. A test sequence of 8 frames showing motion of two bodies on the screen was selected
astypical of motion video.

« Total Recall. A test sequence of 8 frames was taken as typical of zoom in maotion videos.
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« Interview with the Vampire. A test sequence of 8 frames was taken as typical of a scene break in motion videos.
« Vampire I nterview with the Vampire. A test sequence of 8 frames was taken astypical of camera panning in motion videos.
« Interceptor. A test sequence of 8 frames was taken as typical of fast motion in motion videos.

The results are summarized in Table 9.9.

Table 9.9 Results of the XY Z video compression using Human Visual Factors-based based quantization.

VIDEO CLIP Experiment #1 Compression Ratio / Experiment #2 Compression Ratio / Experiment #3 Compression Ratio /
NRMSE NRMSE NRMSE
Susie 64.7/0.053 109.5/0.054 71.0/0.049
Cheerleaders 33.1/0.102 40.7/0.102 27.1/0.086
Carousel 38.1/0.209 47.6/0.209 29.3/0.175
Dick Tracy 59.4/0.131 88.5/0.131 56.5/0.112
Total Recall 50.1/0.078 69.8/0.079 43.9/0.066
Vampire/Break 57.5/0.150 83.8/0.150 53.0/0.125
Vampire/Pan 49.8/0.151 69.7/0.152 44.8/0.128
I nter ceptor 54.9/0.047 74.9/0.047 47.2/0.039

The accompanying figures 9.14 and 9.15 show frame 3 (the frame most susceptible to artifacts) of sequences Susie and Cheerleaders,
respectively.

The 5-second clip of 'Susie' was compressed in about one minute on the MasPar, suggesting it may be compressible close to real-time on the
TMS32080. The compression ratios of 64.7, 109.5, and 71.0 include YUV sub-sampling of RGB data (a 2:1 factor). A videotape of the
returned data showed virtually no artifacts at about 6X the viewing distance.

This 5-second clip of 'Cheerleaders was also compressed in about one minute on the MasPar. The compression ratios attained for the three
experiments were 33.1, 40.7, and 27.1. A videotape of the returned data has been mistaken for the uncompressed clip at about 6X the viewing
distance.
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In summary, the XY Z agorithm, based on the human visual quantization, generates excellent visual results while requiring only calculations

of the non-adaptive procedure.

(a) Uncompressed

. (b) Experiment ." -

{c,l Experiment 2

{ed) EJ.'p{rn'rm 3 :

Figure 9.14

Frame 3 of 'Susi€' video clip. Compression ratios obtained in three
experiments are: 64.7, 109.5, and 71.0, respectively.



(b) Experiment 1

(c) Experiment 2 {ef) peﬁmﬂnt “

Figure 9.15
Frame 3 of 'Cheerleaders' video clip. Compression ratios obtained
in three experiments are: 33.1, 40.7, and 27.1, respectively.
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XY Z video compression compares favorably with other compression algorithms. Compression ratios exceed those of other algorithms, and
compression times are comparable to other algorithms capable of high compression ratios. The XY Z encoder complexity is significantly lower
than the complexity of the H.261/H/263 and MPEG algorithms (2.5 to 5 times), due to the fact that no motion estimation is necessary. On the
other hand, the XY Z decoder complexity is about 2 times higher compared to these tow algorithms. Table 10.1 summarizes the comparison of

XY Z compression with other popular video compression agorithms.

Table 10.1 Rough comparison of popular video compression algorithms.

ALGORITHM Average Compression Ratio
XYz 75:1
H.261/H.263 50:1
MPEG 30:1
Wavelet 20:1
MJPEG 10:1

The contributions of thistext include:

Relative Encoder Complexity
2
5
10
1
1

Relative Decoder Complexity
2
1

1

1. The XY Z multimedia compression algorithm has been added to the literature. This book has justified the algorithm and explored associated
issues. This contribution has made possible a fast, high-quality compression strategy.

2. The proposed XY Z agorithm is areal-time agorithm. Notably, compression takes place in real-time and does not require off-line
processing. The expected time to perform this compression compares with the decompression time of other algorithms featuring lower
compression performance. Thus the algorithm enables high-quality video teleconferencing.
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3. The algorithm takes advantage of Human Visual System features to generate highest-quality
playback. Compression ratios, superior to those of MPEG, are reached with equivalent visual
distortion.

4. The compression ratios for the XY Z algorithm is extremely high. Compression ratios are about 2-3
times those of MPEG at the same bit rate. Compression ratios of 30:1 show no apparent artifacts, and
ratios of up to 100:1 show no artifacts at normal viewing distances. Transmission times are
correspondingly reduced, and the algorithm may enable wide-area video transmission, interactive
television, videoconferencing, and other video-on-demand applications.

5. The computational complexity of the 3-D DCT has been reduced by developing afast 3-D DCT
algorithm.

6. Hardware and software implementation issues have been explored. Substantial progress towards an
inexpensive, real-time 3-D compression engine has been made.

7. Evaluation of the results has included a comparison with other compression schemes. The result of
this comparison will be a useful contribution for further work in related issues.

FutureWork

More work needs to be done in the devel opment of optimal visually weighed quantizers. The
identification of two classes of visual response has lead to the introduction of non-linear quantization.
Theinitial threshold visibility of DCT coefficients was demonstrated to be related to the DCT
frequency components, while subsequent relative visibility was demonstrated to be most closely
related to the intensity of the DCT coefficient. Further research will likely lead to even greater
compression ratios for the technique.

The agorithm was demonstrated to be implementable on only few DSPs. Thiswould be aworthwhile
effort, resulting in afully real-time teleconferencing application of arbitrarily high resolution.

Further work on the three-dimensional DCT could result in atrue 3-D DCT engine capable of faster
computation of the DCT transform. The DCT isthe primary bottleneck in the XY Z process.
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The XY Z encoder uses eight consecutive frames for the encoding process. This may pose avery critical
requirement for the XY Z encoder implementation, which must have alarge memory for storing eight
frames. One way to reduce large memory requirements would be to develop arecursive, real-time 3D DCT
algorithm, which will update the values of DCT coefficients based on the last frame. In that case, only the
last frame must be stored in the memory of the XY Z encoder. The challenge is to develop recursive
equations for DCT coefficientsin the form:

Fe(u,v,w) = Fe-1{u, v, w) + DCTe(x, v, 2) (10.1)

where F; are DCT coefficients calculated using (k-1) frames, F, are DCT coefficients calculated using k
frames, and DCT, is the impact of the k-th frame on DCT coefficients.

Similarly, in the XY Z decoder all eight frames must be reconstructed before they are played back. Thiswill
also require large memory for storing eight consecutive frames during decoding process. Recursive, real-
time inverse 3D DCT algorithms can resolve this problem by first calculating all coefficients of the first
frame, playing back the frame, and then continuing with the subsequent frames.

Some promising early work was done in mating the wavel et "subsampling" idea with the DCT block-based
transform idea. Early results seem to indicate that the combination of subsampling resultsin fewer block
artifacts and possibly higher compression ratios, but at the cost of added computational complexity. This
idea may also be useful in reducing the buffer requirements of the algorithm.

Some early work was also done in the development of fast DCT algorithms based on "Walsh-like" transform
domains. Thiswork held out the exciting prospect of integer and shift-based transforms approximating the
DCT with few or no multiplications.
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