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Preface

This book is on real-time video compression. Specifically, the book introduces the XYZ video 
compression technique, that operates in three dimensions, eliminating the overhead of motion 
estimation. First, video compression standards, MPEG and H.261/H.263, are described. They both 
use asymmetric compression algorithms, based on motion estimation. Their encoders are much more 
complex than decoders. The XYZ technique uses a symmetric algorithm, based on the Three-
Dimensional Discrete Cosine Transform (3D-DCT). 3D-DCT was originally suggested for 
compression about twenty years ago, however at that time the computational complexity of the 
algorithm was to high, it required large buffer memory, and was not as effective as motion 
estimation. We have resurrected the 3D-DCT based video compression algorithm by developing 
several enhancements to the original algorithm. These enhancements made the algorithm feasible for 
real-time video compression in applications such as video-on-demand, interactive multimedia, and 
videoconferencing. The demonstrated results, presented in the book, suggest that the XYZ video 
compression technique is not only a fast algorithm, but also provides superior compression ratios and 
high quality of the video compared to existing standard techniques, such as MPEG and H.261/H.263. 
The elegance of the XYZ technique is in its simplicity, which leads to inexpensive VLSI 
implementation of a XYZ codec.

We would like to thank Jim Prince for conducting experiments in developing visually weighted 
quantizers for the XYZ algorithm, as well as a number of students from Florida Atlantic University, 
who participated in these experiments. We also want to thank Drs. Roy Levow, K. Genesan, and 
Matthew Evett, professors from Florida Atlantic University, Dr. Steve Rosenbaum from Cylex 
Systems, and Joshua Greenberg for constructive discussions during this project.

RAYMOND WESTWATER AND BORKO FURHT
BOCA RATON, JULY 1996.
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1—
The Problem of Video Compression

The problem of real-time video compression is a difficult and important one, and has inspired a great 
deal of research activity. This body of knowledge has been, to a substantial degree, embodied into the 
MPEG and H.261/H263 motion video standards. However, some important questions remain 
unexplored. This book describes one possible alternative to these standards that has superior 
compression characteristics while requiring far less computational power for its full implementation.

Since about 1989, moving digital video images have been integrated with programs. The difficulty in 
implementing moving digital video is the tremendous bandwidth required for the encoding of video 
data. For example, a quarter screen image (320 x 240 pixels) playing on an RGB video screen at full 
speed of 30 frames per second (fps) requires storage and transmission of 6.9 million bytes per second. 
This data rate is simply prohibitive, and so means of compressing digital video suitable for real-time 
playback are a necessary step for the widespread introduction of digital motion video applications.

Many digital video compression algorithms have been developed and implemented. The compression 
ratios of these algorithms varies according to the subjective acceptable level of error, the definition of 
the word compression, and who is making the claim. Table 1.1 summarizes video compression 
algorithms, their typical compression ratios reported in the literature, and their characteristics.
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Table 1.1 Overview of video compression algorithms.

Compression Algorithm Typical
Compression

Ratio

Characteristics

Intel RTV/Indeo 3:1 A 128X240 data stream is interpolated to 256X240. Color is 
subsampled 4:1. A simple 16 bit codebook is used without error 
correction. Frame differencing is used.

Intel PLV 12:1 A native 256X240 stream is encoded using vector quantization 
and motion compensation. Compression requires specialized 
equipment.

IBM Photomotion 3:1 An optimal 8-bit color palette is determined, and run-length 
encoding and frame differencing are used.

Motion JPEG 10:1 Uses 2-D DCT to encode individual frames. Gives good real-time 
results with inexpensive but special-purpose equipment. This 
technique supports random-access since no frame differencing is 
used.

Fractals 10:1 Fractals compress natural scenes well, but require tremendous 
computing power.

Wavelets 20:1 2-D and 3-D wavelets have been used in the compression of 
motion video. Wavelet compression is low enough in complexity 
to compress entire images, and therefore does not suffer from the 
boundary artifacts seen in DCT-based techniques.

H.261/H263 50:1 Real-time compression and decompression algorithm for video 
telecommunications. It is based on 2-D DCT with simple motion 
estimation between frames.

MPEG 30:1 Uses 2-D DCT with motion estimation and interpolation between 
frames. The MPEG standard is difficult and expensive to 
compress, but plays back in real-time with inexpensive equipment.

An ideal video compression technique should have the following characteristics:

• Will produce levels of compression rivaling MPEG without objectionable artifacts.

• Can be played back in real time with inexpensive hardware support.
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• Can degrade easily under network overload or on a slow platform.

• Can be compressed in real time with inexpensive hardware support.

1.1—
Overview of Video Compression Techniques

The JPEG still picture compression standard has been extremely successful, having been 
implemented on virtually all platforms. This standard is fairly simple to implement, is not 
computationally complex, and gets 10:1 to 15:1 compression ratios without significant visual 
artifacts. This standard is based upon entropy encoding of quantized coefficients of the discrete 
cosine transformation of 8x8 blocks of pixel data.

Figure 1.1 shows the block diagram of both the JPEG compression and decompression algorithms. A 
single frame is subdivided into 8x8 blocks, each of which is independently processed. Each block is 
transformed into DCT space, resulting in an 8x8 block of DCT coefficients. These coefficients are 
then quantized by integer division by constants. The quantizing constant for each DCT coefficient is 
chosen to produce minimal visual artifacts, while maximally reducing the representational entropy of 
the coefficients. The quantized coefficients are then entropy coded into a compressed data stream. 
The reduced entropy of the quantized coefficients is reflected in the higher compression ratio of the 
data.

The Motion JPEG (M-JPEG) uses the JPEG compression for each frame. It provides random access 
to individual frames, however the compression ratios are too low (same as in JPEG), because the 
technique does not take advantage of the similarities between adjacent frames.

The MPEG moving compression standard is an attempt to extend DCT-based compression into 
moving pictures. MPEG encodes frames by estimating the motion difference between the frames, and 
encoding the differences into roughly JPEG format. Unfortunately, motion estimation is 
computationally complex, requires specialized equipment to encode, and adds considerable 
complexity to the algorithm. Figure 1.2 illustrates the MPEG compression algorithm for predictive 
frames.
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Figure 1.1
JPEG compression and decompression algorithms.

One of the most promising new technologies is wavelet-based compression [VK95]. Figure 1.3 
illustrates a simple wavelet transform: subband decomposition. The image as a whole is subdivided 
into frequency subbands, which are then individually quantized. One of the most attractive features of 
this system is that it is applied to the image as a whole, thereby avoiding the edge artifacts associated 
with the block-based DCT compression schemes.

The wavelet transform can be applied to the time dimension as well. Experience has shown that this 
decomposition does not give as good compression results as motion compensation. As there are no 
other compression algorithms capable of such high compression ratios, MPEG is considered the 
existing ''state-of-the-art".

The XYZ algorithm is a natural extension of the research that has been done in video compression. 
Much work has been done in the development of transform-based motion video compression 
algorithms, and in the development of quantizing factors based on the sensitivity of the human eye to 
various artifacts of compression.
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Figure 1.2
MPEG compression algorithm for predictive frames. MPEG

adds motion estimation to the JPEG model.

Figure 1.3
Octave-band or wavelet decomposition of a still

image into unequal subbands.

XYZ compression is an alternative extension of DCT encoding to moving pictures. Sequences of 
eight frames are collected into a three-dimensional block to which a three-dimensional DCT will be 
applied. The transformed data is then quantized.
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These quantizing constants are demonstrated to cause artifacts which are minimally visible. The resulting 
data stream is then entropy coded. This process strongly resembles the JPEG encoding process, as 
illustrated in Figure 1.4.

Figure 1.4
XYZ compression algorithm.

This algorithm is built upon a considerable body of published work. The three-dimensional DCT has been 
used to encode errors after motion estimation has been performed [RP77], and true three-dimensional 
DCT-based compression algorithms have been developed where the quantizers were based upon 
minimization of introduced mean square error [NA77]. These algorithms have fallen into disfavor because 
they were considered to require excessive computation, required too much buffer memory, and were not as 
effective as motion estimation. This book refutes these arguments.

Work in visibility of artifacts produced by quantization has also been done [CR90]. Visibility of two-
dimensional quantization artifacts has been thoroughly explored for the DCT transforms space. The XYZ 
algorithm extends this work to quantization of three-dimensional DCT coefficients.

1.2—
Applications of Compressed Video

Video compression techniques made feasible a number of applications. Four distinct applications of the 
compressed video can be summarized as: (a) consumer broadcast television, (b) consumer playback, (c) 
desktop video, and (d) videoconferencing.
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Consumer broadcast television, which includes digital video delivery to homes, typically requires a small number of high-quality compressors and a 
large number of low-cost decompressors. Expected compression ratio is about 50:1.

Consumer playback applications, such as CD-ROM libraries and interactive games, also require a small number of compressors and a large number 
of low-cost decompressors. The required compression ratio is about 100:1.

Desktop video, which includes systems for authoring and editing video presentations, is a symmetrical application requiring the same number of 
encoders and decoders. The expected compression ratio is in the range from 5:1 to 50:1.

Videconferencing applications also require the same number of encoders and decoders, and the expected compression ratio is about 100:1.

Table 1.2 Applications of the compressed video and current video compression standards.

Application Bandwidth Standard Size Frame Rate [frames/sec]

Analog Videophone 5-10 Kbps none 170x128 2-5

Low Bitrate Video 
Conferencing

26-64 Kbps H.263 128x96
176x144

15-30

Basic Video Telephony 64-128 Kbps H.261 176x144
352x288

10-20

Video Conferencing >= 384 Kbps H.261 352x288 15-30

Interactive Multimedia 1-2 Mbps MPEG-1 352x240 15-30

Digital TV - NTSC 3-10 Mbps MPEG-2 720x480 30

High Definition Television 15-80 Mbps MPEG-2 1200x800 30-60

Table 1.2 summarizes applications of the compressed video, by specifying current standards used in various applications, the required bandwidth, 
and typical frame sizes and frame rates.
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1.3—
Image and Video Formats

A digital image represents a two-dimensional array of samples, where each sample is called a pixel. 
Precision determines how many levels of intensity can be represented, and is expressed as the number 
of bits/sample. According to precision, images can be classified into: (a) binary images, represented 
by 1 bit/sample, (b) computer graphics, represented by 4 bits/sample, (c) grayscale images, 
represented by 8 bits/sample, and color images, represented with 16, 24 or more bits/sample.

According to the trichromatic theory, the sensation of color is produced by selectively exciting three 
classes of receptors in the eye. In a RGB color representation system, shown in Figure 1.5, a color is 
produced by adding three primary colors: red, green, and blue (RGB). The straight line, where 
R=G=B, specifies the gray values ranging from black to white.

Figure 1.5
The RGB representation of color images.

Another representation of color images, YUV representation, describes luminance and chrominance 
components of an image. The luminance component provides a grayscale version of the image, while 
two chrominance components give additional information that converts the grayscale image to a color 
image. The YUV representation is more natural for image and video compression. The exact 
transformation from RGB to YUV representation, specified by the CCIR 601 standard, is given by 
the following equations:
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where Y is the luminance component, and U and V are two chrominance components.

An approximate RGB to YUV transformation is given as:

This transformation has a nice feature that, when R+G+B, then Y=R=G=B, and U=V=0. In this case, 
the image is a grayscale image.

Color conversion from RGB to YUV requires several multiplications, which can be computationally 
expensive. An approximation, proposed in [W+94], can be calculated by performing bit shifts and 
adds instead multiplication operations. This approximation is defines as:
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This approximation also gives a simplified YUV to RGB transformation, expressed by:

Another color format, referred to as YCbCr format, is intensively used for image compression. In 
YCbCr format, Y is the same as in a YUV system, however U and V components are scaled and zero-
shifted to produce Cb and Cr, respectively, as follows:

In this way, chrominance components Cb and Cr are always in the range [0,1].

Computer Video Formats

Resolutions of an image system refers to its capability to reproduce fine detail. Higher resolution 
requires more complex imaging systems to represent these images in real time. In computer systems, 
resolution is characterized with number of pixels. Table 1.3 summarizes popular computer video 
formats, and related storage requirements.

Television Formats

In television systems, resolution refers to the number of line pairs resolved on the face of the display 
screen, expressed in cycles per picture height, or cycles per picture width. For example, the NTSC 
broadcast system in North America and Japan, denoted as 525/59.94, has about 483 picture lines.

The HDTV system will approximately double the number of lines of current broadcast television at 
approximately the same field rate. For example, a 1050x960 HDTV system will have 960 total lines. 
Spatial and temporal characteristics of conventional television systems (such as NTSC, SECAM, and 
PAL), and high-
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definition TV systems (HDTV) are presented in Tables 1.4 and 1.5, respectively [BF91].

Table 1.3 Characteristics of various computer video formats.

Computer Video
Format

Resolution (pixels) Colors (bits) Storage
Capacity
Per Image

CGA - Color
Graphics Adapter

320x200 4 (2 bits) 128,000 bits=
16 KB

EGA - Enhanced
Graphics Adapter

640x350 16 (4 bits) 896,000 bits=
112 KB

VGA - Video
Graphics Adapter

640x480 256 (8 bits) 2,457,600 bits=
307.2 KB

88514/A Display
Adapter Mode

1024x768 256 (8 bits) 6,291,456 bits=
786.432 KB

XGA - Extended
Graphics Array (a)

640x480 65,000 (24 bits) 6,291,456 bits=
786.432 KB

XGA - Extended
Graphics Array (b)

1024x768 256 (8 bits) 6,291,456 bits
=786.432 KB

SVGA - Super VGA 1024x768 65,000 (24 bits) 2.36 MB

Table 1.4 Spatial characteristics of television systems [BF91].

System Total Lines Active 
Lines

Vertical 
Resolution

Optimal 
Viewing 

Distance [m]

Aspect 
Ratio

Horizontal 
Resolution

Total
Picture 
Elements

HDTV
USA

1050 960 675 2.5 16/9 600 720,000

HDTV Europe 1250 1000 700 2.4 16/9 700 870,000

NTSC 525 484 242 7.0 4/3 330 106,000

PAL 625 575 290 6.0 4/3 425 165,000

SECAM 625 575 290 6.0 4/3 465 180,000
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Table 1.5 Temporal characteristics of television systems [BF91].

System Total Channel 
Width [MHz]

Video Baseband 
Y [MHz]

Video Baseband 
R-Y [MHz]

Video Baseband 
B-Y [MHz]

Scanning Rate 
Camera [Hz]

Scanning Rate 
HDTV Display 

[Hz]

Scanning Rate 
Convent. 

Display [Hz]

HDTV USA 9.0 10.0 5.0 5.0 59.94 59.94 59.94

HDTV Europe 12.0 14.0 7.0 7.0 50 100 50

NTSC 6.0 4.2 1.0 0.6 59.94 NA 59.94

PAL 8.0 5.5 1.8 1.8 50 NA 50

SECAM 8.0 6.0 2.0 2.0 50 NA 50

1.4—
Overview of the Book

This book is divided into ten chapters:

1. Video compression. This current chapter introduces the problem of compressing motion video, illustrates the motivation for the 3-D 
solution chosen in the book, and briefly describes the proposed solution. Image and video formats are introduced as well.

2. MPEG. This chapter describes the MPEG compression standard. Important contributions in the field and related work are emphasized.

3. H.261/H.263. This chapter describes the compression standard for video telecommunications.

4. XYZ compression. The XYZ video compression algorithm is described in detail in this chapter. Both encoder and decoder are presented, as 
well as an example of compressing 8x8x8 video block.

5. 3-D DCT. The theory of the Discrete Cosine Transform is developed and extended to three dimensions. A fast 3-D algorithm is developed.

6. Quantization. Discussion is presented on the issues of determining optimal quantizers using various error criteria. A model of Human 
Visual System is used to develop factors that weigh the DCT coefficients according to their relative visibility.

7. Entropy coding. A method for encoding the quantized coefficients is developed based on the stochastic behavior of the pixel data.
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8. VLSI architectures for XYZ codec. Issues concerning real-time implementation of the XYZ 
compression algorithm are analyzed including the complexity of the algorithm and mapping the 
algorithm into various VLSI architectures.

9. Results. Obtained results of an implementation of the XYZ compression algorithm are presented.

10. Conclusion. Summary of contributions are outlined, emphasizing the real-time features of the 
compression algorithm, visual quality, and compression ratio. Directions for future research are given 
as well.
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2—
The MPEG Video Compression Standard

The Motion Picture Experts' Group was assembled by the International Standards Organization (ISO) 
to establish standards for the compression, encoding, and decompression of motion video. MPEG-1 
[IS92b] is a standard supporting compression of image resolutions of approximately 352x288 at 30 
fps into a data stream of 1.5 Mbps. This data rate is suitable for pressing onto CD-ROM. The MPEG-
2 standard [IS93b] supports compression of broadcast television (704x576 at 30 fps) and HDTV 
(1920x1152 at 60 fps) of up to 60 Mpixels/sec (appx. 700 Mb) at compression ratios of roughly three 
times those expected of moving JPEG [IS92a] (playback rates of up to 80 Mbps).

The MPEG standard specifies the functional organization of a decoder. The data stream is cached in a 
buffer to reduce the effect of jitter in delivery and decode, and is demultiplexed into a video stream, 
an audio stream, and additional user-defined streams. The video stream is decoded into a ''video 
sequence" composed of the sequence header and groups of pictures.

2.1—
MPEG Encoder and Decoder

The specification of the MPEG encoder defines many compression options. While all of these options 
must be supported by the decoder, the selection of which options to support in compression is left to 
the discretion of the implementer. An MPEG encoder may choose compression options balancing the 
need for high compression
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ratios against the complexity of motion compensation or adaptive quantization calculations. 
Decisions will be affected by such factors as:

• A need for real-time compression. MPEG algorithms are complex, and there may not be sufficient 
time to implement exotic options on a particular platform.

• A need for high compression ratios. For highest possible compression ratios at highest possible 
quality, every available option must be exercised.

• A need for insensitivity to transmission error. MPEG-2 supports recovery from transmission errors. 
Some error recovery mechanisms are implemented by the encoder.

• Fast algorithms. Development of fast algorithms may make compression options available that 
would otherwise be impractical.

• Availability of specialized hardware. Dedicated hardware may increase the performance of the 
encoder to the point that additional compression options can be considered.

In the MPEG standard, frames in a sequence are coded using three different algorithms, as illustrated 
in Figure 2.1.

Figure 2.1
Types of frames in the MPEG standard.
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I frames (intra frames) are self-contained and coded using a DCT-based technique similar to JPEG. I 
frames are used as random access points in MPEG streams, and they give the lowest compression 
ratios within MPEG.

P frames (predicted frames) are coded using forward predictive coding, where the actual frame is 
coded with reference to a pervious frame (I or P). This process is similar to H.261/H.263 predictive 
coding, except the previous frame is not always the closest previous frames, as in H.261/H.263 
coding. The compression ratio of P frames is significantly higher than of I frames.

B frames (bidirectional or interpolated frames) are coded using two reference frames, a past and a 
future frame (which can be I or P frames). Bidirectional, or interpolated coding provides the highest 
amount of compression [Fur95b].

I, P, and B frames are described in more detail in Section 8.2. Note that in Figure 2.1, the first three B 
frames (2,3, and 4) are bidirectionally coded using the past frame I (frame 1), and the future frame P 
(frame 5). Therefore, the decoding order will differ from the encoding order. The P frame 5 must be 
decoded before B frames 2,3, and 4, and I frame 9 before B frames 6,7, and 8. If the MPEG sequence 
is transmitted over the network, the actual transmission order should be {1,5,2,,3,4,8,6,7,8}.

The MPEG application determines a sequence of I, P, and B frames. If there is a need for fast random 
access, the best resolution would be achieved by coding the whole sequence as I frames (MPEG 
becomes identical to Motion JPEG). However, the highest compression ratio can be achieved by 
incorporating a large number of B frames.

The block diagram of the MPEG encoder is given in Figure 2.2, while the MPEG decoder is shown in 
Figure 2.3.

I frames are created similarly to JPEG encoded pictures, while P and B frames are encoded in terms 
of previous and future frames. The motion vector is estimated, and the difference between the 
predicted and actual blocks (error terms) are calculated. The error terms are then DCT encoded and 
the entropy encoder is used to produce the compact code.
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Figure 2.2
The block diagram of the MPEG encoder.

2.2—
MPEG Data Stream

The MPEG specification defines a "video sequence" composed of a video sequence header and many Group-
Of-Pictures (GOP), as illustrated in Figure 2.4. The video sequence header defines the video format, picture 
dimensions, aspect ratio, frame rate, and delivered data rate. Supported video formats include CCIR601, 
HDTV(16:9), and VGA. Supported chroma formats include "4:2:0" (YUV) and

  



Page 19

"4:4:4" (RGB). A suggested buffer size for the video sequence is also specified, a number intended to buffer 
jitter caused by differences in decode time.

Figure 2.3
The block diagram of the MPEG decoder.

A GOP contains pictures that may be encoded into one of three supported compression formats. The GOP 
header contains a starting time for the group, and can therefore be used as a point of random access. Each frame 
within the GOP is numbered, and its number coupled with the GOP start time and the playback frame rate 
determines its playback time. Each picture is subdivided into "slices" and then into "macroblocks". A 
macroblock is composed of four 8x8 blocks of luminance data, and typically two 8x8 blocks of chrominance 
data, one Cr and one Cb.
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Figure 2.4
MPEG data stream.

I Picture Format

The I (Intraframe) picture format substantially corresponds to the JPEG format. These pictures are 
encoded by transformation into DCT space, quantization of the resultant coefficients, and entropy 
coding of the result. Transformation into DCT space is performed by an 8x8 DCT. Quantization is 
performed by reference to a user-loadable quantization table modified by a scale factor. This 
mechanism supports adaptive quantization at the cost of additional complexity - although 30% 
improvement in compression is claimed [PM93].

After quantization, the resulting coefficients are reordered in zig-zag order, run-length coded, 
variable-length coded, and entropy coded. The resulting data stream should show roughly JPEG 
levels of compression.

P Picture Format

The P (Predicted) picture format introduces the concept of motion compensation. Each macroblock is 
coded with a vector that predicts its value from an earlier I or P
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frame. The decoding process copies the contents of the macroblock-sized data at the address 
referenced by the vector into the macroblock of the P frame currently being decoded. Five bits of 
resolution are reserved for the magnitude of the vector in each of the x and y directions, meaning that 
1024 possible data blocks may be referenced by the predicted macroblock. However, eight possible 
magnitude ranges may be assigned to those five bits, meaning as many as 8192 macroblocks might 
have to be evaluated to exhaustively determine the best vector. Each evaluation might require testing 
as many as 384 pixels, and a further complexity is seen in performing fractional interpolation of 
pixels (vector motions as small as 1/2 pixel are supported). Finally, the difference between the 
prediction and the macroblock to be compressed may be encoded in like fashion to I frame encoding 
above.

B Picture Format

The B (Bidirectional prediction) picture format is calculated with two vectors. A backwards vector 
references a macroblock-sized region in the previous I or P frame, the forward vector references a 
macroblock-sized region in the next I or P frame. For this reason, I and P frames are placed in the 
coded stream before any B frames that reference them.

The macroblock-sized regions referenced by the motion compensation vectors are averaged to 
produce the motion estimate for the macroblock being decoded. As with P frames, the error between 
the prediction and the frame being encoded is compressed and placed in the bitstream. The error 
factor is decompressed and added to the prediction to form the B frame macroblock.

Many demanding technical issues are raised by the MPEG specification. These include fast 
algorithms for the DCT, fast algorithms for motion vector estimation, algorithms for adaptive 
quantization, and decompression in environments that allow some errors.
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3—
The H.261/H.263 Compression Standard for Video Telecommunications

ITU has developed a video conferencing standard H.324 at very low bitrate for the General Switched 
Telephone Network (GSTN) and mobile radio [IT95a, IT95b, IT93]]. The H.324 is a 
recommendation for real-time voice, data, and video over V.34 modems on the GSTN telephone 
network. It consists of five documents: (1) H.324 systems, (2) H.223 multiplex, (3) H.245 control, (4) 
H.263 video codec, and (5) G.273 speech codec. The H.261 coding standard provides coded video at 
bit rates 64 Kbits/s and above, whereas the H.263 video coding standard, proposed for H.324, 
provides coded video around 16 Kbits/s.

Figure 3.1 shows a block diagram of a generic multimedia system, compliant to the H.324 standard. 
The system consists of terminal equipment, GSTN modem, GSTN network, multipoint control unit 
(MCU), and other system operation entities.

Video equipment includes cameras, monitors, and video processing units to improve compression. 
Audio equipment includes microphone, speakers, telephone instrument, and attached audio devices. 
Data application equipment includes computers, non-standardized data application protocols, 
telematic visual aids such as electronic whiteboards, etc.

GSTN network interface supports appropriate signaling, ringing functions and voltage levels in 
accordance with national standards.
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Figure 3.1
Block diagram of a generic H.324-compliant multimedia system.

3.1—
Picture Formats for H.261/H.263 Video Codecs

All H.324 terminals support both the H.263 and H.261 video codecs. For the H.261 algorithm two 
formats are defined: CIF and QCIF, while for the H.263 algorithm three additional formats are 
specified: SQCIF, 4CIF, and 16CIF.

The Common Intermediate Format (CIF) is a noninterlaced format, based on 352x288 pixels per frame 
at 30 frames per second. These values represent half the active lines of 625/25 television signal and the 
picture rate of a 525/30 NTSC signal. Therefore, 625/25 systems need only to perform a picture rate 
conversion, while NTSC systems need to perform only a line-number conversion.

Color pictures are coded using one luminance and two color-difference components (YCbCr format), 
specified by the CCIR 601 standard. The Cb and Cr components are subsampled by a factor of two on 
both horizontal and vertical directions, and have 176x144 pixels per frame. The picture aspect ratio for 
all five CIF-based
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formats is 4:3. Table 3.1 summarizes the picture formats for H.261 and H.263 codecs.

Table 3.1. Picture formats for H.261 and H.263 video codecs.

Picture
format

Luminance pixels Maximum frame 
rate
[f/s]

Video
source

rate

Average coded
bit rate

H.261
codec

H.263
codec

SQCIF 128 x 96 30 1.3 Mb/s 26 Kb/s Optional Required

QCIF 176 x 144 30 9 Mb/s 64 Kb/s
(px64 Kbps)

Required Required

CIF 352 x 288 30 36 Mb/s 384 Kb/s (px64 Kbps) Optional Optional

4CIF 704 x 576 30 438 Mb/s 3-6 Mb/s Not
defined

Optional

16CIF 1408 x 1152 50 2.9 Gb/s 20-60 Mb/s Not
defined

Optional

3.2—
H.261/H.263 Video Encoder

The H.261/H.263 video encoder combines intraframe and interframe coding to provide fast processing for on-the-fly video [Oku95, 
FSZ95, BK95, Fur95b]. The algorithm creates two types of frames:

(1) DCT-based intraframes, compressed using DCT, quantization, and entropy (variable-length) coding (similarly to JPEG) [Fur95a], and

(2) predictive interframes, compressed using Differential Pulse Code Modulation (DPCM) and motion estimation.

The block diagram of the video encoder is shown in Figure 3.2. The H.261/H.263 coding algorithm begins by coding an intraframe block 
and then sends it to the video multiplex coder. The same frame is then decompressed using the inverse quantizer and inverse DCT, and 
then stored in the frame memory for interframe coding.

During the interframe coding, the prediction based on the DPCM algorithm is used to compare every macro block of the actual frame 
with the available macro blocks of the previous frame, as illustrated in Figure 3.3.
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Figure 3.2
Block diagram of the H.261/H.263 video encoder.

Figure 3.3
The principle of interframe coding in H.261/H.263 standard. Each macro block

(16 x 16 pixels) in the current frame is compared with macro blocks
from the previous frame to find the best match.

To reduce the encoding delay, only the closest previous frame is used for prediction. Then, the difference, created as 
error terms, is DCT-coded and quantized, and sent to the video multiplex coder with or without the motion vector. At 
the final step, variable-length coding (VLC), such as Huffman encoder, is used to produce more compact code. An 
optional loop filter can be used to minimize the prediction error
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by smoothing the pixels in the previous frame. At least one in every 132 frames should be intraframe 
coded, as shown in Figure 3.4.

Figure 3.4
Types of frames in H.261/H.263 standard. At least

every 132-nd frame should be the I frame.

The compressed data stream is arranged in a hierarchical structure consisting of four layers: Pictures, 
Group of Pictures (GOPs), Macro Blocks (MB), and Blocks, as illustrated in Figure 3.5.

Figure 3.5
Hierarchical block structure of the H.261/H.263 video data stream.
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3.3—
The H.261/H.263 Video Decoder

The H.261/H.263 video decoder is shown in Figure 3.6. It consists of the receiver buffer, VLC decoder, inverse 
quantizer, inverse DCT, and the motion compensation, which includes frame memory and an optional loop filter 
[BSZ95, BK95, Fur95b].

In addition to the encoding and decoding of video, the audio data must also be compressed and decompressed. 
Special buffering and multiplexing/demultiplexing circuitry is required to handle the complexities of combining the 
video and audio.

Figure 3.6
Block diagram of the H.261/H.263 video decoder.
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4—
The XYZ Video Compression Algorithm

The XYZ motion video compression algorithm relies on a different principle for compression of 
temporal information than do the MPEG and H.261/H.263 standards. While the MPEG and 
H.261/H.263 strategies look for motion vectors to represent a frame being compressed, the XYZ 
strategy more closely resembles the technique adopted by both MPEG and JPEG for intra-frame 
compression.

A continuous tone image can be represented as a two-dimensional array of pixel values in the spatial 
domain. The Forward Discrete Cosine Transform (FDCT) converts the two-dimensional image from 
spatial to frequency domain. In spatial representation the energy distribution of pixels is uniform, 
while in the frequency domain the energy is concentrated into few low-frequency coefficients.

Pixels in full-motion video are also correlated in the temporal domain, and the FDCT will concentrate 
the energy of pixels in the temporal domain just as it does in the spatial domain. The XYZ video 
compression is based on this property.

4.1—
XYZ Compression Algorithm

The XYZ video compression algorithm is based on the three-dimensional DCT (3D DCT). This 
algorithm takes a full-motion digital video stream and divides it into groups of 8 frames. Each group 
of 8 frames is considered as a three-dimensional image, where X and Y are spatial components, and Z 
is the temporal component. Each frame in the image is divided into 8x8 blocks (like JPEG), forming 
8x8x8 cubes, as illustrated in Figure 4.1. Each 8x8x8 cube is then independently encoded using the 
three blocks of the XYZ video encoder: 3D DCT, Quantizer, and Entropy encoder [WF95]. The 
block diagram of the XYZ compressor is shown in Figure 4.2.
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Figure 4.1
Forming 8x8x8 video cube for XYZ compression.

Figure 4.2
Block diagram of the XYZ compressor.

The original unsigned pixel sample values, typically in the range [0,255] are first shifted to signed 
integers, say in the range [-128, 127]. Then each 8x8x8 cube of 512 pixels is transformed into the 
frequency domain using the Forward 3D DCT:
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where:

x,y,z are index pixels in pixel space,

f(x,y,z) is the value of a pixel in pixel space,

u,v,w are index pixels in DCT space,

F(u,v,w) is a transformed pixel value in DCT space, and

The transformed 512-point discrete signal is a function in three dimensions, and contains both spatial and 
temporal information. Most of the energy is contained in few low-frequency coefficients, while the majority 
of the high-frequency coefficients have zero or near-zero values.

In the next step, all 512 DCT coefficients are quantized using a 512-element quantization table. Quantization 
introduces minimum error while increasing the number of zero-value coefficients. Quantization may also be 
used to discard visual information to which the human eye is not sensitive. Quantizer tables may be 
predefined, or adaptive quantizers may be developed and transmitted with the compressed data.

Quantization is performed according to the following equation:

where:
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F(u,v,w) are the elements before the quantization,

Fq(u,v,w) are the quantized elements, and

Q(u,v,w) are the elements from the quantization table.

Each quantizer Q(u,v,w) is in the range [1,1024]. The result of the quantization operation is a collection of smaller-
valued coefficients, a large number of which are 0. These coefficients are then converted into a compact binary 
sequence using an entropy coder (in this case, a Huffman coder).

The entropy coding operation starts with reordering the coefficients in descending order of expected value. This 
sequence has the benefit of collecting sequentially the largest number of zero-valued coefficients. The run-lengths 
of zero coefficients is computed, and the alphabet of symbols to be encoded becomes the run-length of zeros 
appended to the length of the non-zero coefficient. This binary sequence represents the compressed 8x8x8 block.

Figure 4.3 illustrates an example of encoding a video cube (eight frames of 8x8 pixels) using the XYZ compression 
algorithm. Figure 4.3 shows the original video cube, Figure 4.4a shows the DCT coefficients after the 3D DCT, and 
Figure 4.4b presents the quantized coefficients. Note that the largest quantized coefficient is Fq(0,0,0), which 
carries the crucial information on the video cube, while the majority of quantized coefficients are zero.

4.2—
XYZ Decompression Algorithm

In XYZ decoding, the steps from the encoding process are inverted and implemented in reverse order, as shown in 
Figure 4.5.

Figure 4.5
Block diagram of the XYZ decompression algorithm.
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Figure 4.3
An example of encoding an 8x8x8 video cube - original pixels in video cube.

First the compressed data stream is Huffman-decoded. This data stream is now composed of the coding alphabet 
symbols of run-length and VLC lengths alternated with the VLC representation of the non-zero coefficient. The 
decoded data is run-length expanded and converted into a stream of quantized coefficients. These quantized 
coefficients are resequenced into XYZ video cubes of quantized coefficients.

The quantized coefficients are dequantized according to the following equation:

where F'(u,v,w) is a dequantized coefficient.
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Figure 4.4
An example of encoding an 8x8x8 video cube.

(a) DCT coefficients, after 3D DCT, and (b) quantized DCT coefficients.
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The three-dimensional inverse DCT (3-D IDCT) is implemented on the dequantized coefficients in order to 
convert video from the frequency domain into the spatial/temporal domain. The 3-D IDCT equation is defined as:

where f'(x,y,z) is the value of a pixel in pixel space.

After the pixels have been transformed in spatial/temporal representation, they are shifted back to the original 
range [0,255]. Finally, the video cubes are reorganized into frames of video data ready for playback.

Figure 4.6 illustrates an example of the XYZ decompression, applied on the same 8x8x8 video cube from Figures 
4.3 and 4.4.
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Figure 4.6
An example of decoding the 8x8x8 video cube from Figure 4.3.

(a) DCT coefficients after dequantization,
(b) Decompressed pixels after inverse 3D DCT.
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5—
Discrete Cosine Transform

5.1—
Behavior of the DCT

Moving continuous tone images are represented as a sequence of ''frames". A frame is a two-dimensional 
array of pixel values in one "plane" for black and white images, or more planes for color images. We 
model the signal being sampled (a sequence of pixel values forming a row, column, or time-varying 
sequence) as a random variable with a mean of zero. The probability distribution, shown in Figure 5.1, of 
pixel x1 given the value of pixel x0 has been shown empirically to be an exponential (laplacian) distribution 
[RY90]:

Intuitively, this means that if pixel x0 is red, there is a great likelihood that pixel x1 is red. This notion is 
expressed with the probabilistic notion of covariance. N samples of the signal are considered, forming the 
sample vector x. Exponential distributions form a stationary process, where the random function may be 
described by its auto-covariance matrix A, where:

For an exponential distribution [FA90]:

where 0<=r<=1 is the correlation between samples (r is a function of 1).
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Figure 5.1
Distribution of pixel values in continuous tone images.

The Karhunen-Loeve Transform transforms the basis set in the sample space into a new basis set such that 
the greatest energy is contained in the fewest number of transform coordinates, and the total representation 
entropy of the sequence of coefficients in transform space is minimized. In other words, the greatest energy 
is contained in the earliest coefficients in the basis of the transform space.

Formally, we say that the K-L transform should minimize the Mean Square Error in any truncated 
representation of the samples in the transform space. Given a random vector x = (p0, p1, . . . , pN-1), we want 
to find a set of basis vectors β = (β0, β1, . . .βN-1), so we can rewrite x in this basis as xk = (k0, k1, . . .kN-1). 
We choose β in such way that a truncated representation t of x, given as tk = (k0, k1, . . .kM-1, 0,0, . . .0) has 
minimum error:

It can be shown that this transformation [RY90]:

1. completely decorrelates the signal in transform space,

2. minimizes the mean square error in its truncated representation (guarantees minimum error in 
compression),

3. concentrates the most energy in the fewest number of coefficients,

4. minimizes the total representation entropy of the sequence.
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For highly correlated images (r approaches 1), the basis vectors are exactly the Forward Discrete Cosine 
Transform (FDCT) [AN74]:

Figures 5.2a and b show energy distribution in pixel space and in DCT space, respectively. In the DCT space 
the energy is concentrated in few coefficients.

Figure 5.2
Energy distribution: (a) in pixel space energy is equally distributed over all

pixels, (b) in DCT space energy is concentrated in few coefficients.
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5.2—
Fast One-dimensional DCT Techniques

Fast algorithms have been proposed for the one-dimensional Discrete Cosine Transform. They are based on 
the following techniques [CSF77, RY90, PM90]:

a) Exploiting symmetries of the cosine function

b) Relating the DCT to the Discrete Fourier Transform (DFT)

c) Relating the DCT to other discrete transformations

d) Computation using matrix representation

e) Reducing the DCT to polynomial evaluation.

The first two techniques, based on exploiting symmetries of the cosine transform and relating the DCT to 
DFT, are the fastest known techniques, and they are described next.

5.2.1—
Exploiting Symmetries of the Cosine Function

An opportunity to improve the FDCT engine is seen in the redundancy of the cosine terms in the 
calculations. The redundancy in the cosine terms is enhanced by expressing all angles in the range 0-p/2 
radians, as illustrated in Figure 5.3. The following identities are used to convert angles in the range p/2 - 
2p:

These symmetries are used to reduce the number of calculations needed to calculate the 1-D DCT. For the 
8 point DCT, the number of multiplications is reduced from 64 to 22 [PM93].
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Figure 5.3
Symmetries in the cosine transform can reduce

the number of calculations for 1-D DCT.

Another symmetry can be used to further reduce the number of multiplications. This symmetry is based on the 
introduction of the rotation:

We rewrite the transformation into a form that will require only three multiplications:

By applying the rotation operation, the number of multiplications for the 8-point DCT is reduced to 20.

Yet another trigonometric identity, sum/difference of two angles, yields good results:
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The 8 point 1-D DCT overhead now becomes 13 multiplications, which is as good as any other known method 
[PM93].

5.2.2—
Fast DCT Based on the Discrete Fourier Transform

The 8-point DCT can be extended to form a 16-point FFT. The 8 points of the pixel space to be transformed are 
extended to form 16 points by duplicating each of the original points i to form point 15-i.

The real part of the Fourier-transformed points is only a constant factor different from the DCT-transformed points. 
A careful analysis of the Fourier transform, including exploiting symmetries and trigonometric identities similar to 
those discussed in 5.2.1, shows that the real part of the Fourier transform may be computed with just five 
multiplications [CT65, Win78]. The DCT may therefore be computed with 13 multiplications [Fei90].

Figure 5.4
Extending 8 points of pixel data to perform a 16 point FFT.

We first extend 8 points of pixel data s(x) to 16 points (see Figure 5.4) in order to compute a 16 point FFT by 
defining:

The Fast Fourier Transform (FFT) is then computed as:
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which may be rewritten because of (5.12) as:

We define z=15-y, so F[u] becomes:

We can now relabel z as x, and collect like terms. We also observe that:

giving F[u]:

Multiplying both sides by e-piu/16 gives:

Since eiq = cos(q) + i*sin(q), (5.18) becomes:
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Since cos(-q) = cos(q) and sin(-q) = -sin(q), (5.19) becomes:

Equations (5.20) and (5.21) indicate that the DCT coefficients can be derived from the complex FFT 
coefficients by multiplication by a complex factor. However, closer analysis shows that we can obtain the 
DCT coefficients using multiplication by real factors only.

If we rewrite F(u) = A(u) + i*B(u), and use eiq = cos(q) + i*sin(q), we can get:

From cos(-q) = cos(q) and sin(-q) = -sin(q), and multiplying, and i*i = -1, eq. (5.22) becomes:

Collecting real and complex parts gives:

Solving the complex equation (5.25) for B(u) gives:
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Substituting for B(u) into the real equation (5.24) gives:

Since A(u) is the real part of F(u), and sin2(θ)+cos2(θ)=1, we can get:

Fast Computation of the Discrete Fourier Transform

Since ei = cos(q) + i*sin(q), we can express the Fourier transform (5.17) as:

In (5.30), s(x) is known to be real. The product i*s(x)*sin(-2piux/16) can only make complex contributions to 
F(u). Because we are only interested in Re(F(u)), the contribution of complex terms is insignificant.
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Since only the cosine terms are significant, we may reduce the expression e-2piux/16 according the cosine periodic 
identities described above. Certain expressions are repeated in the resulting equations, and are computed once 
only.

Calculation of the significant FFT coefficients can be done with only 5 multiplications, as shown in Figure 5.5. 
Conversion of these 8 coefficients into the first 8 DCT coefficients requires 8 additional multiplications.

Figure 5.5
Flowgraph showing computation of the fast DCT using FFT. Note that

only 5 multiplications are needed before the final stage.
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5.3—
Two-dimensional DCT Algorithms

Two-dimensional DCT algorithms, proposed in the literature [PM93, CSF77] include:

a) Reduction to 1-D DCT

b) Relating the 2-D DCT to the 2-D DFT

c) Relating the 2-D DCT to other 2-D discrete transformations

d) Block Matrix Decomposition.

In this Section, we describe two most promising techniques, reduction of the 2D DCT to 1D DCTs, 
and block matrix decomposition of the 2D DCT.

5.3.1—
Reduction of the 2D DCT to 1D DCT

Since the 2D DCT is separable, it may be computed by performing eight 1D DCTs on all rows, 
followed by eight 1D DCTs on the eight columns produced by the first pass of eight DCTs. The 
number of multiplications required by this approach is then 16 times the number required by a single 
fast DCT.

In the case of reducing the DCT to FFT, discussed in Section 5.2.2, 8 multiplications are required to 
scale the results, and only 5 multiplications in the FFT calculation. If the scaling is postponed to the 
second pass, only 5*8 calculations are required in the first pass, and 5*8 + 8*8 in the second pass. 
Furthermore, it may be possible to fold the scaling multiplications into a quantization step. In this 
case, only 80 multiplications are required to perform the 2D DCT[PM93]. Figure 5.6 illustrates this 
technique.

5.3.2—
Calculation of 2D DCT by Sparse Matrix and Cosine Symmetry

In this method, the 1D DCT is expressed as a matrix product, and is factored into 4 sparse matrices, 
only one of which contains values other than 0, 1, or -1 [CSF77].
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When extended to the 2D case by forming the tensor product of the 1D DCTs, the multiplication matrix can be 
optimized using cosine identities [PM93].

Figure 5.6
The 2D DCT transform is calculated by first performing row-wise

1D DCT. and then column-wise 1D DCT.

This factoring is suggested by the dataflow diagram for the 1D DCT. The accompanying diagram, shown in 
Figure 5.7, performs the 1D DCT without the final output scaling step.

The FFT transformation may be written as:

The flowgraph shows that all multiplications are concentrated in matrix M. In the tensor product FxF the tensor 
product MxM can be isolated and optimized separately due to the properties of the tensor product operator. 
Application of the properties of the cosine function result in a reduction of the total number of multiplications to 
54 (with six additional multiplications by 1/2, which are considered a shift right by one bit).
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Figure 5.7
Flowgraph for scaled 1D DCT based on FFT.

5.3.3—
Comparison of 2D DCT Techniques

Table 5.1 compares the complexity of 8x8 2D DCT techniques, presented in this Section. Fast FFT-
based 2D DCT algorithm is the fastest known algorithm requiring 462 multiplications and 60 shift 
operations.
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Table 5.1 Comparison of complexity of various 2D DCT techniques.

ALGORITHM Multiplications Additions Characteristics

Fast symmetry-based 1D DCT 13X16=208 29X16=464 Apply the DCT column-wise on 8
rows, then row-wise on 8 columns.

Fast FFT-based
1D DCT,
not quantized

5X16+64=144 29X16=464 Also apply column-wise, then row-wise. Precompute scaling 
multiplications and apply once.

Fast FFT-based 1D DCT 5X16=80 29X16=464 Fold output scaling into quantization. Fastest known 1D 
algorithm, and simple to implement (8 equations).

Fast matrix decomposed, FFT-based 
2D DCT, not quantized

54+64=118+6 shifts 462 True 2D algorithm.

Fast matrix decomposed, FFT-based 
2D DCT

54 + 6 shifts 462 Fastest known algorithm. However, 2D algorithm requires 
coding of 64 equations (one per transformed coordinate).

5.4—
Inverse DCT Algorithms

Two inverse DCT (IDCT) algorithms are described in this section: (a) forward mapped IDCT, and (b) fast IDCT derived from the DCT.

5.4.1—
Forward Mapped IDCT

Ideally, the DCT creates a large number of zero coefficients. The DCT is selected as the preferred transform, because it concentrates energy into the 
least number of coefficients. In addition, quantization is used to increase the number of zero coefficients by discarding information to which the 
human eye is least sensitive [GR82], and by introducing the least mean square error [Llo82].

If we consider the IDCT to be an expression of the pixel data in a 64-dimensional vector space (the 8x8 2D DCT space), we can easily calculate the 
64 basis vectors. Each basis vector has 64 components, and it is known that no more than 10 of the components are unique, as illustrated in Figure 
5.8. Thus no more than 10 multiplications need to be performed for any non-zero component [HM94].

If the quantized values are fixed, all multiplications can be precalculated. In any event, if fewer than about 60 multiplications are required (about 6-10 
coefficients,
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depending on the number of unique values in the required basis vectors), the forward mapped IDCT 
will outperform other fast IDCT methods.

Figure 5.8
The basis vector for component
(u, v)=(1, 1). This vector has 10

unique values. tij = CiCjcos
(ip/16)cos(jp/16).

5.4.2—
Fast IDCT Derived from the DCT

The DCT is an orthogonal and unitary transformation. The inverse of any orthonormal transformation 
is the transpose of the transformation. The transpose of a flowgraph may be computed by following 
the graph from right to left [PM93]. Since the number of branches is equal to the number of merges, 
the computational complexity of the IDCT is exactly the same as that of the DCT. The IDCT for the 
FFT version of the DCT was calculated using this approach.

5.5—
Three-dimensional DCT Algorithms

5.5.1—
Applying the DCT to Motion Video

Compression strategies are chosen based upon the statistical behavior of the data to be compressed. 
Continuous-tone pictures have traditionally been modeled as a stochastic sequence of random 
variables. An autoregressive model is developed by using a causal minimum variance representation 
for the stochastic sequence. We express the value of pixel xn as the sum of a causal prediction xpn and 
the error term en:
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The prediction term is chosen to minimize the error term en. The minimum occurs when xpn is the conditional mean:

If the xn process is Gaussian, the predictor is linear. We assume a first-order autoregessive model, where r is the one-
step correlation coefficient:

The variance s2 of en is:

and s2 is related to the variance of the pixel distribution sx2:

Statistics have been collected for the correlation ρ in the pixel, scan line, and motion directions for various video 
effects (motion, pan, break). The results are shown in Table 5.2. These images show extremely high correlations in all 
three directions, showing that the energy of the pixel representation can be concentrated in each direction with the 
DCT. This justifies the use of the DCT in all three dimensions (pixel, scan line, motion).

Table 5.2 Measured one-step correlation coefficient ρ for various video clips.

Scene Characterization Pixel
Direction

Scan-Line Direction Frame
Direction

TYPICAL .9997 .9991 .9978

PAN .9988 .9970 .9980

ZOOM .9910 .9893 .9881

BREAK .9994 .9976 .9970
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5.5.2—
Development of Fast 3D DCT Algorithms

The heart of both XYZ compression and decompression processes is the three-dimensional DCT. 
Optimizing this transformation is the key part of developing a practical real-time algorithm [VDG89].

Applying a separable algorithm gives a baseline for evaluating the performance advantages of various 
3-D optimizations. Direct separable calculation of the 3-D DCT requires computation of 64 1-D 
DCTs in each dimension, as illustrated in Figure 5.9. The 1-D DCT requires 64 multiplications and 
63 additions. Thus the 3-D transformation will require 3x64x64 multiplications, and 3x64x63 
additions : 12,288 multiplications and 12,096 additions.

Figure 5.9
Applying the separable 1-D DCT to compute the 3-D DCT (4x4x4 case).
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The fastest known Fourier-based 1-D DCT requires 13 multiplications. Applying this fast 1-D DCT 
separately to the 3-D case will require 3x64x13 multiplications, and 3x64x29 additions: 2,496 
multiplications and 5,568 additions. However, the Fourier-based 1-D DCT uses 5 multiplications to 
compute the (abbreviated) Fourier transform, and 8 multiplications to scale the FFT into the DCT. These 
scaling multiplications can be folded into the quantizing phase. This results in a total of 3x64x5 
multiplications: 960 multiplications and 5,568 additions.

A true two-dimensional algorithm has been developed using the sparse matrix technique, described in 
Section 5.3.2, that requires 54 multiplications, 6 shifts, and 462 additions. Using this algorithm in 3 
dimensions, as shown in Figure 5.10, will require 8x54 + 64x5 multiplications, 8x6 shifts, and 8x462 + 
64x29 multiplications, which gives total of 752 multiplications, 48 shifts, and 5,552 additions. However, 
the estimated size of the code required to implement this algorithm is about eight times the size of the 1D 
DCT.

The estimated performance savings of a true 3D DCT is about 15% over separable 1D DCT. But the 
code size is an estimated 50-60 times the size of the 1D DCT. The complexity of various 3-D DCT 
algorithms is shown in Figure 5.11.

Based on the comparison of the 3D DCT algorithms (Fig. 5.11) and analyzing their implementations, we 
decided to implement the 3-D DCT as the convolution of the 1-D DCT algorithms.

Figure 5.10
Applying the separable 1-D DCT after the

2-D DCT to compute the 3-D DCT (4x4x4 case).
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Figure 5.11
The complexity of various 3-D DCT algorithms for 8x8x8 video cube.

10 additions are assumed to be worth 1 multiplication.
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6—
Quantization

We return to the model of continuous-tone full-motion pictures as a stochastic sequence of random 
variables, as described in Section 5.5. Pixel values are used as predictors, and thus:

where:

xn is the pixel value to be predicted,

xn-1 is the pixel value to be used as predictor, and

εn is the prediction error distribution.

A first-order autoregression model is used to minimize the error distribution en, where r is the one-step 
correlation coefficient:

The variance s2 of en is calculated from the assumption that its expectation is 0:

and s2 is related to the variance of the pixel distribution sx2:

Lloyd and Max have developed the optimal quantizers by minimizing the mean square error of the 
introduced quantizing noise [Llo82, Max60]. In this case, the
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optimal quantizers are determined using the variance of the stochastic variables in the transform space to 
predict the error introduced in pixel space.

6.1—
Defining an Invariant Measure of Error

The problem of adaptive quantization requires prediction of the error caused in pixel space by the 
introduction of error in DCT space. This problem is addressed by recalling that the DCT (and all unitary 
transformations) are distance preserving (the norm of the sum/difference of two vectors is invariant, 
Parseval's relation):

where:

s1, s2 are expressions of pixel values in pixel space,

S1, S2 are expressions of pixel values in DCT space, and

the DCT is a unitary transform (i.e., DCT-1 = DCTT).

The Mean Square Error (MSE) is defined as:

where:

s is the pixel value in pixel space, and

sq is the pixel value in pixel space after quantization.

Thus Mean Square Error is invariant under the DCT transformation. We define the invariant measure of 
error Normalized Root Mean Square Error (NRMSE) as:

where µ is the mean pixel value (in pixel space).

The foundation can now been laid for the definition of a criterion for measuring quantization error that is 
invariant under the DCT. Quantization error is the term
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used to describe the discrepancy introduced when a component of the DCT is recovered from its quantized 
value. Quantization is defined as the rounded quotient of the DCT component and a quantizing factor:

where:

x is the DCT component to be quantized,

q is the quantizing factor, and

Q(x) is the quantized value of x.

Quantizing error is defined as:

where x' is the dequantized value of x.

Eq has a distribution whose mean is 0 if the distribution of x is even (we assume it is Gaussian), and q is 
odd (if q is even and large, we may assume the mean of Eq is ''close" to 0).

Let's choose a typical DCT component x to be quantized by the factor q, and define a "normalized 
modulus" function that returns a value in the range [-q/2, q/2] as follows:

Then quantzing error becomes:
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The average quantizing error is then calculated as:

where:

P(x) is the probability of the value x,

Eq is the error introduced by quantizing the value x by the factor q, and

N is the number of distinct values x.

Since P(x) is even:

Further, it follows from the properties of the modulus function that:

Thus (6.13) becomes:

The variance of a probability distribution is calculated as:
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where:

E represents the expectation, or average, function,

x represents the values taken by the probability distribution, and

µ represents the previously calculated expectation, or mean, of the probability distribution.

Since the quantizer error distribution for Eq has mean 0, the variance σ2uijk of Eq can then be calculated as:

where:

Eqijk is the quantizer error distribution in DCT space for component i,,j,k,

σ2uijk is the variance in DCT for component i,j,k, and

x,y range over all 8x8x8 blocks in the group of 8 frames being compressed.

The obtained result estimates quantizer truncation error introduced by representation of a coefficient by an 
n-bit number for the unit Gaussian distribution as [Sha49]:

where En is the normalized truncated quantizer error.

Quantizer error for an unnormalized Gaussian distribution is related to that of a normalized distribution by 
the standard deviation of the unnormalized distribution:

Then quantizers introduce error as follows:
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where:

qijk is the quantizer factor for component i,j,k, and

1/σijk is the minimum error caused by representing the error terms with the expected range of the error 
distribution.

Then the Normalized Root Mean Square Error may be written:

6.2—
Calculation of the Transform Variances

In one-dimensional space, the transform variances are calculated as:

where:

σ2uk and σ2xk are variances of the kth basis in DCT and pixel space, respectively,

C is the DCT transform,

A is the autocorrelation matrix, and thus a function of ρ, and

CACT(k,k) is the kth diagonal of the product CACT.

Figure 6.1 shows the variance of DCT transform variables for different correlation coefficients.

The problem of adaptive quantization requires prediction of the error caused in pixel space by the 
introduction of error in DCT space. This problem is addressed by recalling that the DCT (and all 
orthonormal transformations) are energy preserving (the sum of the squares of the basis elements is 
invariant):
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Figure 6.1
Variance of DCT transform variables foe different correlation coefficients.

The variance is preserved under the energy preserving property of the DCT. Since the mean of all AC 
coefficients of the DCT is already 0, only the DC value has a difficult variance to calculate.

The approach taken to solve this problem in XYZ compression is to average all pixels in the sequence 
of frames to be compressed. This average is subtracted from each of the pixels in the frames, returning 
a new pixel distribution whose mean is 0.

Let Sijk represent the pixels to be compressed. The average of all pixels, µ is calculated by:
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where:

Np is the number of pixels in a scan line (720 for NTSC),

Ns is the number of scan lines (480 for NTSC),

Nf is the number of frames to be compressed (typically 8), and

S[i][j][k] is a typical pixel to be compressed.

Now the transformed pixel distribution s' is calculated from the distribution s as follows:

The new distribution s' has a mean of 0. The transformed DC coefficient will have a mean of 0:

Now the variances of all components can be easily calculated in either pixel space or DCT space, as the 
mean of each variable is now zero in either space. Thus the variance in pixel space for a typical pixel 
s'[i][j][k] taken from the 8x8x8 cube of pixels to be compressed is calculated across the entire block of 
frames:

where:

σ2xijk is the variance in pixel space for the pixel s'[i][j][k],

x counts every eighth pixel up the Np number of pixels in the frame, and

y counts every eighth scan line up the Ns number of scan lines in the frame.

Similarly, variances are calculated in DCT space:
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where σ2uijk is the variance in DCT space for the DCT component S'[i][j][k].

The energy-preserving property of the DCT is used to assert:

6.3—
Generating Quantizer Factors

Quantizer distortion is proportional to the variance of the transformed random variable. However, no closed 
form expression for optimal bit allocation is known. However, it is reasonable to expect that the number of 
bits allocated will be proportional to the log of the variance of the variable in transform space. Results 
similar to this conjecture have been reported in [Sha49, HS63, WK68, WJ79]. In this research, we use 
results given by Shannon [Sha49].

An integer bit allocation algorithm may be used to allocate the expected number of bits needed to represent 
each DCT component at the desired error level. Once the bit allocation has been completed, the quantizing 
factors to arrive at the allocated number of bits have be calculated. These quantizers will return the desired 
error level in pixel space. We begin by initializing all quantizers to their maximum error contribution state:

Then we initialize:
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where:

k ranges through all 512 DCT components,

nk counts the number of bits allocated to each component,

dk is the variance of the kth component not yet represented by the bit allocation,

D is the total of dk,

E is the desired error (input by the agent performing the compression), and DD is the square of the desired 
error.

The Normalized Root Mean Square Error at each iteration is calculated as:

The algorithm is iterated while the Normalized Root Mean Square Error exceeds the desired error, i.e., 
while:

At each step of the iteration, find the index i for the component which will most minimize the unrepresented 
variance by being allocated one bit:

Allocate one bit to the ith component, and reduce the variance, and calculate the new quantizer:

When the algorithm converges, the optimal quantizers have been calculated.
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6.4—
Adding Human Visual Factors

It may be desirable to modify the optimum quantizers by weighing them with factors determined by 
evaluating human visual acuity. By analogy, JPEG continuous tone picture quantizers are skewed by 
factors intending to take advantage of the reduced human visual sensitivity to rapid small changes in 
the picture. It is well-known that the human eye is insensitive to motion changes of 1/60 of a second, 
and this fact was used to establish the frame rate of television transmission in the United States.

The process of quantizing coefficients in DCT space relies heavily on the decorrelation property of 
the DCT. Since the DCT decorrelates the random variables in DCT space, each DCT coefficient may 
be individually processed. Now a different view of DCT coefficients can be developed.

A model of human visual acuity can be developed based on DCT coefficients. Since DCT 
coefficients can be individually processed, we can also study their individual visibility. Two-
dimensional human visual acuity has been modeled by a modulation transfer function of radial 
frequency in cycles/degree of visual angle subtended.
Figure 6.2 illustrates typical visual acuity curves.
The results of this work have been published in [CR90].

The relative visibility of DCT basis vectors in the spatial dimensions is documented in Table 6.1.

In order to determine the correct curve for perceived amplitude versus frequency of change over time, 
test samples were played to test audiences. Each of the three-dimensional DCT components was used 
to build test cases individually for playback at their natural frequency.
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Figure 6.2
Empirically determined human visual actuity for continuous tone pictures.

Table 6.1 Relative visibility of DCT basis vectors in the spatial dimensions.

.4942 1.000 .7023 .3814 .1856 .0849 .0374 .0160

1.000 .4549 .3085 .1706 .0845 .0392 .0174 .0075

.7023 .3085 .2139 .1244 .0645 .0311 .0142 .0063

.3814 .1706 .1244 .0771 .0425 .0215 .0103 .0047

.1856 .0845 .0645 .0425 .0246 .0133 .0067 .0032

.0849 .0392 .0311 .0215 .0133 .0075 .0040 .0020

.0374 .0174 .0142 .0103 .0067 .0040 .0022 .0011

.0160 .0075 .0063 .0047 .0032 .0020 .0011 .0006

The experimental system is composed of two windows whose display is controlled by the viewer, as shown in Figure 6.3. The user selects a DCT 
component from the 512 available (in the 8x8x8 DCT space), and assigns it an amplitude. An inverse DCT is performed on the selected component to 
create an 8x8x8 array in pixel space. The array of pixels is organized into 8 frames of 8 scan lines of 8 pixels.
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Figure 6.3
Sample test pattern for determining human visual factors.

As the demonstration system, we used the ActionMedia II motion video capture and display adapter. This 
adapter is composed of a fully programmable microcontroller, 2 million bytes of VRAM, a register-
programmable display processor, and a register-programmable capture subsystem, as illustrated in Figure 6.4.

The key concept behind using the ActionMedia II is removing the real-time constraint of video playback from 
the host processor (in this case, a PC). However,
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interactive real-time playback is an absolute requirement for determining the relative visibility of the 
DCT components.

Figure 6.4
Block diagram of the demonstration system based on ActionMedia II.

The real-time playback requirement may be separated from the PC by playing back pre-computed video 
frames stored on the ActionMedia II. This was accomplished by building a minimal playback system on 
the ActionMedia II. The host processor is responsible for allocation of resources and scheduling of 
activity on the ActionMedia II. The pixel processor assumes the responsibility of traversing the queues 
and executing any work scheduled there. Block diagram of ActionMedia II operating system is presented 
in Figure 6.5.

The host processor loads the operating system into the pixel processor, and starts the pixel processor 
running. The host processor loads the copy microcode into RAM on the ActionMedia II. When the user 
selects a DCT component for display, the host processor calculates the IDCT of the component, then 
downloads the 8 frames to the ActionMedia II. The pixel processor of the ActionMedia II is capable of 
displaying the contents of a frame within the vertical block period between frames.

  



Page 71

Figure 6.5
Block diagram of ActionMedia II operating system.

The host processor then waits for the vertical blank interval. When the start of the vertical blank period is 
detected, the host formats a context block with the arguments to the copy routine. The context block is a copy 
of the internal registers and context of the processor. This organization allows an item of work to be 
interrupted and saved into the same data structure as that used to load the initial context of the task.

The pixel processor monitors the display queue. When a work item has been detected, the microcode 
corresponding to that work item is loaded into the host processor. The context block containing the arguments 
for the microcode are also loaded, and the microcode program begins execution. When complete, execution 
returns to the microcode operating system.
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7—
Entropy Coding

Binary encoding of data is a natural means of representing computational data on modern digital 
computers. When the values to be encoded are uniformly distributed, this is an space-efficient means of 
representing the data as well. Information theory gives us several efficient methods of encoding 
''alphabets" where the likelihood of symbol occurrence varies symbol by symbol. Coding techniques that 
minimize space in the representation of random sequences of symbols (optimize space used in the 
representation of symbols based upon the probability the symbol) are known as entropy coding 
techniques.

There are two popular methods of entropy coding in the literature, Huffman coding and arithmetic 
coding. Huffman coding represents symbols with words of integer length while arithmetic coding is not 
limited to integer-length codes. Huffman coding is computationally less expensive to implement and 
typically gives compression ratios close to those of arithmetic coding. XYZ compression is developed to 
support Huffman coding [Huf52].

7.1—
Huffman Coding

Consider the problem of encoding the six symbols defined in Table 7.1. The amount of information 
transferred in a symbol A that occurs with probability p is:

where IA is the number of bits required to express the amount of information conveyed by symbol A, and 
pA is the probability that symbol A will occur.

  



Page 74

The entropy of a code sequence is the average amount of information contained in each symbol of the sequence:

where H is the entropy of the coding representation, and s ranges through all symbols in the alphabet of symbols.

Table 7.1 Symbols and their associated Huffman code.

Symbol Probability Information Code

A 1/2 1 bit 0

B 1/4 2 bits 10

C 1/16 4 bits 1100

D 1/16 4 bits 1101

E 1/16 4 bits 1110

F 1/16 4 bits 1111

The entropy of the sequence represents the lower bound of the space needed to communicate the information 
contained in the sequence. A fixed word length of three bits may be used to represent the six symbols in Table 
7.1. Using the Huffman coding representation, we get an average code length of 2, which for these probabilities 
happens also to be the entropy, or lower limit of the average code length:

Assignment of Huffman codes is done by developing a Huffman coding tree, as illustrated in Figure 7.1. The tree 
is developed "left to right" (or bottom to top). Symbols are listed in decreasing order of probability. Iteratively, 
the two adjacent branches whose sum is least are combined into a new branch, until the tree is completed. The 
tree is then traversed and labeled.
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Figure 7.1
Huffmand coding tree - an example.

This algorithm computes Huffman codes for arbitrary sequences of symbols, and will work regardless of their 
relative probabilities (real cases don't show the simple logarithmic behavior of this example). The algorithm is 
simple enough (O(NlogN)) to form the kernel of a real-time algorithm for the adaptive entropy coding of images. 
Huffman coding is used in the JPEG and MPEG specification
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7.2—
Use of Entropy Coding in JPEG and MPEG

Once Huffman coding has been chosen to represent the data, the compression attained by the system 
is influenced by the choice of alphabet. Several different alphabets have been defined in the JPEG, 
MPEG-1, and MPEG-2 standards.

Variable-length coding assigns a length prefix to each word, and follows it with a value code, as 
shown in Table 7.2. If the values to be represented are small on average, this technique helps reduce 
the number of bits required to represent them.

Table 7.2 VLC length code and range of encoded values.

Number
of bits

Range of encoded values

1 -1,1

2 -3..-2, 2..3

3 -7,..-4, 4..7

4 -15..8, 8..15

5 -31, 16, 16..31

6 -63..32, 32..63

7 -127..64, 64..127

8 -255..-128, 128..255

9 -511..-256, 256..511

10 -1023..-512, 512..1023

11 -2047..-1024, 1024..2048

12 -4095..-2047, 2047..4095

13 -8191..-4096, 4096..8191

14 -16383..-8192, 8192..16383

15 -32767..-16384, 16384..32767

16 -65535..-32768, 32768..65535

The concept of run-length coding is also introduced. In its more general form, run-length coding 
encodes a "run" of consecutive equal values into a length code followed by the value of the run. In 
the case of JPEG, only zeroes are run-length coded. The run-length code stands alone, and the zero 
value is implied.

JPEG introduced a modified Huffman coding scheme that introduces many of the concepts later used 
by the MPEG specifications. JPEG constructs symbols from sequences of DCT components. Two 
fundamental concepts are used: variable length coding, and run-length coding. JPEG words are 
formatted into a run length, a VLC length, and a VLC value. The run length and VLC length are 
combined to form the
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JPEG alphabet, given in Table 7.3. Four bits are allocated to each length code, giving 256 symbols in the 
alphabet.

Table 7.3 The JPEG alphabet.

Run\VLC 0 1 2 3 4 5 6 7

0 EOB 01 02 03 04 05 06 07

1 N/A 11 12 13 14 15 16 17

2 N/A 21 22 23 24 25 26 27

3 N/A 31 32 33 34 35 36 37

4 N/A 41 42 43 44 45 46 47

5 N/A 51 52 53 54 55 56 57

6 N/A 61 62 63 64 65 66 67

7 ZRL 71 72 73 74 75 76 77

The JPEG run length and VLC words are combined and treated as symbols to be Huffman encoded. The 
value 0 is never coded, but is treated as part of a run. Two special symbols are introduced, EOB and ZRL. 
EOB is the End Of Block symbol, and marks the end of each block, implying a run of zeroes to fill the rest 
of the block. The ZRL code is the Zero Run Length code, and represents a run of exactly 16 zeroes. This 
code is used to segment runs of over 16 zeroes.

DCT coefficients are arranged in a simple "zig-zag" order (Table 7.4) intended to concentrate the zero 
components and increase the run lengths. The variance of each DCT component predicts the probability 
that component will be 0 (smaller variances predict 0). Higher frequency components tend to have larger 
variances, and so JPEG orders the components into increasing order of frequency before encoding.

Table 7.4 The JPEG zig-zag order of DCT coefficients.

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

  



Page 78

MPEG-1 encodes a different alphabet - the run length, VLC length, and the VLC value are combined 
into a single symbol of the alphabet. Even worse, MPEG-1 allows run lengths of up to 63 zeroes (the 
maximum possible as there are only 64 DCT coefficients), resulting in a proliferation of symbols. 
However, DCT components are limited in value to the range [-256..255]. The number of symbols in 
the alphabet now becomes the number of possible zero runs multiplied by the number of VLC values 
plus the number of special symbols (EOB). This makes the total number of symbols 32K+1. MPEG-1 
zero run length codes are shown in Table 7.5.

Table 7.5 MPEG-1 zero run length codes.

Run Length Code

0 000000

1 000001

2 000010

. .

62 111110

63 111111

In order to limit the length of code words to 16 bits, MPEG-1 introduces a new symbol, escape 
(ESC). The ESC symbol triggers the decoder to look for a run-length code followed by a level code. 
Upon examination of sample video, the most common 222 VLC codes were selected as the alphabet 
for MPEG-1. All other VLC codes are coded with the escape mechanism. MPEG-1 level codes are 
shown in Table 7.6.

The MPEG-2 encoding scheme is virtually identical to the MPEG-1 encoding scheme, except that the 
escape levels are fixed at 12 bits, while those of MPEG are either 8 or 16 bits.

7.3—
Adaptive Huffman Coding

This section describes a modification of the JPEG encoding scheme well suited to encoding motion 
video. The JPEG alphabet is extended with the ESC symbol. The alphabet to be encoded will be 
composed of all 256 combinations of 4 bit run length and 4 bit VLC codes, ZRL, and EOB.
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Table 7.6 MPEG-1 level codes.

LEVEL CODE

-255 1000 0000 0000 0001

-254 1000 0000 0000 0010

. .

-129 1000 0000 0111 1111

-128 1000 0000 1000 0000

-127 1000 0001

-126 1000 0010

. .

-2 1111 1110

-1 1111 1111

1 0000 0001

2 0000 0010

. .

126 0111 1110

127 0111 1111

128 0000 0000 1000 0000

129 0000 0000 1000 1001

. .

254 0000 0000 1111 1110

255 0000 0000 1111 1111

Statistics for the group of frames to be decoded are gathered. The count of the occurrence of each 
symbol in the alphabet within the group of frames is collected, and a table of the counts is collected. 
The count for ESC is set to 0.

The standard Huffman coding procedure, described in Section 7.1, is applied to the data. Two 
additional tables are constructed, one for the temporary storage of symbols waiting to be coded 
(representing the root of each branch of the Huffman coding tree), and one for the storage of the 
symbols that are in the process of being coded (the branches of the tree), as illustrated in Figure 7.2.

Entries in the Encoder Alphabet Table (Table 7.7) whose count is non-zero are copied into the Root 
Table, setting the #bits field to 0, and the left and right subtrees to none. The procedure to construct 
the Huffman code tree is then followed.
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SYMBOL COUNT #BITS LEFT RIGHT

     

     

Root Table
 

SYMBOL COUNT #BITS LEFT RIGHT

     

     

Branch Table

Figure 7.2
Format of Root Table and Branch Table

The Root Table is sorted by the count field. The two symbols (branches) with smallest count are removed from the Root Table and added into Branch 
Table. A new branch entry is created to be added into the Root Table. The left and right fields of the new entry will point to the two branches just 
added into the Branch Table. The count field of the new entry will be set to the sum of the count fields of the two branches just added to the Branch 
Table, and the new branch is added to the Root Table in its sorted position. This process is repeated until there is exactly one entry in the Root Table.

The Huffman coding tree is traversed, and the number of bits to be assigned to each code is accumulated. Any symbol that requires more than 12 bits 
to encode is removed from the Encoder Alphabet Table (by setting its count field to 0), and the value of its count field is added to the count field of 
the ESC symbol.

A new Huffman Coding tree is built - a new Root Table is built from the Encoder Alphabet Table, a new Huffman Coding Table is built. When this 
tree is traversed, all entries with less than 12 bits have their codes written to the Encoder Alphabet Table. The Encoder Alphabet Table is now ready 
for use to encode the frame data.

Encoding is straightforward for entries with less than 12 bits. Entries with over 12 bits are coding using an escape coding procedure - the ESC 
symbol is written, then the 8 bit run length / variable length field, then the VLC value to be encoded.

  



Page 81

Table 7.7 Encoder Alphabet Table

SYMBOL (run/vlc) COUNT CODE

0/1 nnn  

0/2 nnn  

. .  

0/F nnn  

1/1 nnn  

1/2 nnn  

. .  

1/F nnn  

F/1 nnn  

F/2 nnn  

. .  

F/F   

ZRL nnn  

EOB nnn  

ESC 0  
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8—
VLSI Architectures for the XYZ Video Codec

8.1—
Complexity of Video Compression Algorithms

In video and signal processing applications a measure of algorithmic complexity, which is typically 
used, is the total number of operations expressed in MOPS (million operations per second) or GOPS 
(giga operations per second). When designing a new video codec, the first step is to estimate its 
complexity [BK95, PDG95, F+95, GGV92]. For example, Table 8.1, adapted from [BK95], estimates 
MOPS (Million Operations Per Second) requirements for H.261 codec using CIF format at 30 
frames/s. These estimates were computed assuming fast implementations of DCT and IDCT 
algorithms and fast 2-D logarithmic search for motion estimation. Total MOPS requirements for both 
the encoder and decoder are 1,166 MOPS. If the exhaustive search was used for motion estimation, 
this number would be much higher — 7,550 MOPS.

In [F+92] MOPS requirements for an H.261 codec has been estimated to be about 3,500 MOPS (the 
encoder required 2,500 MOPS and the decoder and postprocessing about 1,000 MOPS).

MOPS requirements for the MPEG algorithm, for different frame sizes, and different percentages of 
frames computed with bi-directional motion estimation (B-frames) are reported in [BK95], and 
presented in Table 8.2.
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Table 8.1 MOPS requirements for H.261 codec. CIF format at 30 frames/s. [BK95] Fast DCT and IDCT algorithms and 
fast search for motion estimation are used.

COMPRESSION MOPS

RGB to YCbCr conversion 27

Motion estimation (exhaustive search for p=8) 608

Inter-/Intraframe coding 40

Loop filtering 55

Pixel prediction 18

2-D DCT 60

Quantization and zig-zag scanning 44

Entropy coding 17

Frame reconstruction 99

TOTAL 968

  

DECOMPRESSION MOPS

Entropy decoder 17

Inverse quantization 9

Inverse DCT 60

Loop filter 55

Prediction 30

YCbCr to RGB conversion 27

TOTAL 198

Table 8.2 MOPS requirements for MPEG compressor and decompressor at 30 fps. No preprocessing and postprocessing. No audio and other system-
related operations[BK95].

COMPRESSION SIF FORMAT CCIR 601 HDTV FORMAT

No B-frames 738 3,020 14,498

20% B-frames 847 3,467 16,645

50% B-frames 1,011 4,138 19,865

70% B-frames 1,120 4,585 22,012

    

DECOMPRESSION SIF FORMAT CCIR 601 HDTV FORMAT

No B-frames 96 395 1,898

20% B-frames 101 415 1,996

50% B-frames 108 446 2,143

70% B-frames 113 466 2,241
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Due to the complexity of the motion vector search algorithm, the compression algorithms for both MPEG and H.261/H.263 are 
much more complex than the decompression algorithm.

The obtained complexity estimates can be used in evaluating various alternatives in the implementation of the video codecs, 
such as general-purpose RISC microprocessors versus digital signal processors (DSPs), or programmable video processors. 
Figure 8.1 shows the current trends in computing power for general purpose RISC processors, programmable DSPs, and 
programmable video processors.

From Tables 8.1 and 8.2 and Figure 8.1, it can be concluded that it is now easily achievable to implement decompression using 
one or more general-purpose RISC or DSP processors. However, the encoder requirements (even assuming 1000 MOPS of 
processing power by using a fast motion estimation algorithm) is outside of the complexity of general-purpose processors at 
this time.

Figure 8.1
Trends in performance of programmable processors.
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8.2—
From Algorithms to VLSI Architectures

The first step in designing a VLSI architecture for a video codec is to map the specific algorithm into 
the VLSI architecture. In the mapping process, the main goal is to keep low manufacturing cost and 
small size of the architecture. Manufacturing cost depends on the number of integrated chips, chip 
packaging, and silicon area per chip. Using large area silicon, the number of chips can be kept small. 
On the other hand, production of very large area chips is not economic, due to the defect density.

The required silicon area for VLSI implementation of algorithms is related to required resources such 
as logic gates, memory, and the interconnect between the modules. The amount of logic depends on 
the concurrency of operations. A measure for the required concurrency (Ncon.op) can be expressed as:

where:

Rs - is the source rate in pels per time unit,

Nop.pel - is the number of operations per pel,

Top - is average time for performing an operation.

The number of operations per pel (Nop.pel) is an average value derived by counting all operations 
required for performing a specific coding algorithm. The video coding algorithms are periodically 
defined over a basic interval. In MPEG and H.261/H.263 coding algorithms, this interval is a macro 
block. Almost all tasks of the coding algorithms are defined on a macro block of 16x16 luminance 
pels and the associated chrominance pels. For this reason, counting is done over one macro block. For 
example, for the H.261/H.263 codec the Nop.pel=1,170 MOPS, when applying 2D logarithmic search 
algorithm. With the present technology, Top is order of 20 nsec. From Table 3.1 for video source rate, 
we can obtain the number of concurrent operations for the H.261/H/263 video algorithms ranging 
from 40 (for SQCIF) to over 1000 (for 16CIF).

The required interconnects between the operation part and the memory highly depends on the access 
rate. Considering one large external memory for storing video data and intermediate results, the 
number of parallel bus lines for connecting the operation bus and the memory (Nbus) becomes 
approximately:
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where:

Nacc.pel - specifies the mean number of accesses per pel, and

Tacc - is the memory access time.

Because of one- and two-operand operations, Nacc.pel is larger than Nop.pel. For simplicity, let us assume 
that Nacc.pel x Tacc is in the same order as Top.pel x Top. Thus, the number of bus lines is the same order of 
magnitude as the concurrency, which is very large. Taking into consideration that the access rate is 
mainly influenced by multiple accesses of image source data and intermediate results, the access rate 
to an external memory can be significantly reduced by assigning a local memory to the operative part. 
Because of the periodicity over the macro block, the local memory is in order to a macro block size.

8.3—
Classification of Video Codec VLSI Architectures

Designs of video processors range from fully custom architectures, referred to as function specific 
architectures, with minimal programmability, to fully programmable architectures, based on 
multiprocessors. Furthermore, programmable architectures can be classified to flexible 
programmable architectures, which provide moderate to high flexibility, and adapted 
programmable architectures, which provide an increased efficiency and less flexibility.

The selection of the architecture depends on the speed requirements of the target application and the 
constraints on circuit integration, performance, power requirements, and cost. Regardless of the 
implementation details, discussed later in this section, the general design theme is to use either a DSP 
or a RISC core processor for main control and special hardware accelerators for the DCT, 
quantization, entropy encoding, and motion estimation.

In order to assess and evaluate various architectures, the well-known AT-product will be used. 
Efficiency of an architecture (E) is defined as:

where:

Tp - is the effective processing time for one sample, and

Asi - is the required silicon area for a specific architecture under evaluation.
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8.3.1—
Function Specific Architectures

Function specific (or dedicated) architectures for video codecs provide limited, if any, 
programmability, because they use dedicated architectures for a specific encoding or decoding 
standard. For high volume consumer products, the silicon area optimization achieved by dedicated 
architectures, compared to programmable architectures, leads to lower production cost.

Function specific architectures include dedicated chips for DCT, quantization, entropy encoder, and 
motion estimation algorithm. In the first generation of VLSI chips, each of these functions were 
implemented in one chip, and a chipset was necessary to create the system for MPEG or H.261 
encoding or decoding. Examples of function specific encoders and decoders include AT&T's 
AV4310 encoder for and AB4220A decoder for MPEG-1 and H.261, AV 6101 and AV6110 MPEG-
2 decoders, STi3400 H.261 and MPEG-1 decoder, and Sti3500 MPEG-2 decoder (SGS-Thomson), C-
Cube's CL480VCD MPEG-1 audio and video decoder and CL9100 MPEG-2 decoder, and LSI 
Logic's L64112 MPEG-1 decoder and L64002 MPEG-2 decoder.

Figure 8.2 shows the block diagram of a typical video encoder, based on motion estimation (such as 
MPEG and H.261/H.263), using function specific architecture.

8.3.2—
Programmable Architectures

In contrast to function oriented approach with limited flexibility, programmable architectures enable 
the processing of different tasks under software control. The main advantage of programmable 
architectures is the increased flexibility. Changes of architectural requirements, such as changes of 
algorithms or an extension of the application domain, can be handled by software changes. Thus, 
with programmable architectures a cost intensive redesign of the hardware can be avoided.

On the other hand, programmable architectures require a higher expense for design and 
manufacturing, since additional hardware for program control is required. In addition, programmable 
architectures require software development for the application. Video coding applications require a 
real-time processing of the image data, and therefore parallelization strategies have to be applied. The 
two basic alternative parallelization strategies, which will applied in the project, include: (1) data 
distribution, and (2) task distribution.
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Figure 8.2
Block diagram of a typical function specific architecture for video

encoder based on motion estimation. The dedicated processors
are used for various operations, such as DCT, quantization,

variable length coding, motion estimation, etc.

Two alternative programmable architectures include:

(1) Flexible programmable architectures, with moderate to high flexibility. These architectures are based on coprocessor 
concept as well as parallel datapaths and deeply pipelined designs with high clock frequency, and

(2) Adapted programmable architectures, with increased efficiency by adapting the architecture to the specific requirements of 
video coding applications. These architectures provide dedicated modules for several tasks of the video codec algorithm, such as 
DCT module, or variable length coding.

Figure 8.3, adapted from [PDG95], compares these two programmable architectures in terms of silicon area and frame rate, for 
several H.261 codec implementations, reported in the literature. Adapted processor design can achieve an efficiency gain in terms 
of the AT-criterion (eq. 8.3) by a factor of about 6-7 compared to flexible architectures. Assuming approximately 200 operations 
per pel for the implementation of a H.261 codec [PDG95], this comparison leads to 100
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mm2/GOPS for flexible programmable architectures, and 15 mm2/GOPS for adapted programmable 
architectures.

Figure 8.3
Normalized silicon area and throughput (frame rate) for programmable

architectures for H.261 codec implementations,
reported in the literature [PDG95].

Examples of MPEG-1, MPEG-2, and H.261 flexible programmable architectures include MVP chip 
(Texas Instruments) [GGA92], and VCP chip (Integrated Information Technology) [FSZ95, BK95], 
while VSP3 chip (NEC) is an example of H.261 adapted programmable architecture [BK95, PDG95].

8.4—
Implementations of the XYZ Video Compression Algorithm

The main disadvantage of dedicated, function specific architectures is the lack of flexibility. Thus, in 
this book we propose the implementation of the XYZ codec based on a programmable architecture. 
The selected architecture should balance two controversial requests — flexibility and architectural 
efficiency. We explore and study two alternative programmable architectures, both based on flexible 
and adapted programmable approach. Our methodology in this study consists of the following 
activities:
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1. Mapping tasks into multiprocessor system

In the first phase, we decompose the XYZ algorithm into a series of concurrent tasks, and map them into 
multiple processors, as illustrated in an example in Figure 8.4.

Figure 8.4
Mapping tasks of a XYZ codec into multiprocessor system

exploiting data distribution and task distribution.

Since the results of one task are required for the proceeding task, a local memory is required for storage 
of intermediate results. The required concurrency can be achieved by parallel operation of processors, 
whereby a subsection of the image is assigned to each processor. The task mapping onto processors. The 
task mapping onto set of homogenous programmable processors is referred to as data distribution.

In order to increase the silicon efficiency of programmable processors, we will also consider using 
additional coprocessors for specific functions. This will result in heterogeneous programmable 
processors referred to as task distribution.

We developed two XYZ algorithms, described later in this Chapter:
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(1) Non-adaptive XYZ algorithm, which is fast and with lower complexity, and

(2) Adaptive XYZ algorithm, which is of higher complexity, but gives better performance compared 
to non-adaptive algorithm.

2. Design of two alternative architectures

Two alternative architectures will be exploited and analyzed in this study. The Architecture-1, 
referred to as FP architecture, will based on flexible programmable architectural concept. The FM 
architecture will consist of a master general-purpose RISC processor, a number of RISC processors 
(2 to 10), a shared memory, and an interconnection network, as illustrated in Figure 8.5.

Figure 8.5
An example of a flexible programmable architecture for the XYZ

codec implementation. The codec consists of a master RISC
processor, 2-10 parallel RISC processors, shared

memory, and an interconnection network.

In Sections 8.5 and 8.6 of this Chapter, we present detailed implementations of the XYZ codec using 
the mesh-based fully programmable architecture and the adapted programmable architecture using 
dedicated 3D DCT processors.
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The core of the system are parallel processors, which handle various digital processing functions in parallel, as 
pixel processing and other massively parallel integer and floating point operations. The shared RAM memory (2-
10 modules) provides on-chip memory for the parallel processors. Each memory module can be accessed in 
parallel over an interconnection network. Several interconnection networks will be evaluated in this study, 
including crossbar switch, multistage networks, and common bus.

Figure 8.6
An example of adapted programmable architecture for the XYZ codec implementation.

The codec consists of a RISC (or DSP core), and several dedicated processors.

The Architecture-2, referred as AP architecture, will be based on adapted programmable architectural concept, in 
which we propose to use additional coprocessors for specific functions in order to increase computational power 
without increasing the required semiconductor areas (see Figure 8.3). In this approach, we intend to combine a 
flexible programmable concept with one or more adapted modules. We will study what functions of the XYZ 
codec should be implemented as coprocessors. Typically, computationally intensive tasks, such as DCT and 
variable length coding, are good candidates for an adapted implementation. In Figure 8.6,
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one possible implementation of an AP architecture for the XYZ codec is shown. The architecture 
consists of a RISC (or DSP core) and several dedicated processors for DCT, VLC, and adaptive 
quantization.

8.4.1—
Non-adaptive XYZ Compression Algorithm

The XYZ motion video algorithm is composed of two parts, a video compressor, and a video 
decompressor. Each part of the algorithm may support adaptive quantization, or may use 
precomputed tables. The non-adaptive XYZ motion video algorithm is intended to be a very fast, low-
overhead algorithm, and it is simple to implement. It compresses motion video in the following steps, 
as illustrated in Figure 8.7.

Figure 8.7
Overview of the XYZ non-adaptive compression.

1. In the step 1, raw video is collected into 8x8x8 cubes at extremely high data rates. Video is 
typically captured in YUV format and sent in a digital data stream in 4:2:2 format. This data must be 
converted into 4:2:0 format and cached into memory. In the process of caching, the data must be re-
sequenced into appropriate format for access by the video processor(s).

  



Page 95

2. In the second step, the 3D DCT is performed on the raw cubes returning DCT coefficients. The 
forward DCT may be performed in several different ways depending on the processor throughput and 
architecture. The forward DCT may be performed by brute force, leading to a simple algorithm that 
requires considerable processor power, or may be performed by a fast algorithm. Two of the most 
promising fast algorithms are the Fourier-based algorithm, and a fused multiply-add algorithm. The 
Fourier-based algorithm minimizes the number of multiplications, and is well suited to general-
purpose processors. The fused multiply-add algorithm is better suited to DSPs, where accumulation 
of products is a one-tick operation. Figure 8.8 compares shows the flowgraphs of the slow FDCT 
algorithm and a simplified fused add-multiply fast FDCT algorithm.

Figure 8.8
Flowgraphs of FDCT algorithms: (a) slow FDCT

algorithm, (b) simplified fused add-multiply
fast FDCT algorithm.
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3. In the next step, the cubes are quantized according to predefined constants. Each DCT coefficient 
is quantized by dividing it by a constant. One such constant is defined for each DCT coefficient. If 
either the Fourier-based or the fused multiply-add algorithm is used, the scaling multiplies may be 
folded into the quantizing factors.

4. The DCT coefficients are sequenced according to a predefined sequence order table. A sequence is 
defined that typically orders coefficients in decreasing order of variance. This order of coefficients 
will be used to generate symbols for compression. In practice, this step is integrated into the symbol 
generation procedure. A new ''zig-zag" sequence for the 512 XYZ DCT coefficients must be defined. 
This sequence may be developed based on the average statistics of different actual video, or on the 
expected theoretical behavior of the DCT.

5. A sequence of symbols is created and run lengths of zeroes are counted. If a run length exceeds 16, 
the ZRL symbol is coded. If a run length exhausts the block, no ZRLs are issued and the EOB 
symbol is coded. When a non-zero coefficient is reached, the run length and the VLC length of the 
coefficient are combined to form a symbol to be coded.

6. The symbols are encoded into a compressed data stream. Each symbol is replaced by its Huffman 
code. Huffman codes representing non-zero terminated run lengths are followed by VLC codes. 
Symbols that occur infrequently and have no explicit Huffman code are represented by the ESC code 
and the corresponding escape sequence (composed of the run length, the VLC length, and the VLC 
code).

8.4.2—
Adaptive XYZ Compression Algorithm

Adaptive compression is more complex in the sense that tables for quantization and entropy coding 
are generated from statistics gathered from the entire sequence of eight frames to be compressed, 
while non-adaptive compression may be performed with reference only to the pixels within a single 
8x8x8 cube. Overview of the adaptive XYZ compression algorithm is given in Figure 8.8.
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Figure 8.8
Overview of the XYZ adaptive compression algorithm.

The adaptive compression algorithm is composed of the following steps:

1. Calculate the mean of all pixels. Calculation of pixel mean involves summing all pixels, then 
dividing by the number of pixels:
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where:

µ is the pixel mean,

i ranges over all pixels in all 8 frames,

s[i] represents the value of an individual pixel, and

N is the number of pixels in all 8 frames.

However, in a full implementation of adaptive compression, it may be convenient to view compression as 
taking place in stages. In this case, pixel averages may be computed within each block, and the overall 
average then computed:

where:

µb is the pixel average for one block,

sb is a pixel within the block,

µ is the overall average of all pixels,

B ranges over all blocks in the 8 frames, and

NB is the number of blocks.

2. Subtract the pixel mean from all pixels. Once the mean pixel value has been calculated, all pixels are 
reduced by the mean:

where s[i] is a typical pixel to be compressed.

This ensures that all pixels are distributed with a mean of 0, and that all DCT coefficients will be 
distributed with a mean of 0.

3. Perform the forward DCT on each 8x8x8 block. The forward DCT is now performed on each block of 
pixels, returning a block of DCT coefficients. Should a general-purpose processor be chosen to perform 
the DCT, the Fourier-based DCT algorithm may be a good choice to implement this transformation. If a 
DSP-like processor is used, the fused multiply-add algorithm may be a better choice.
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4. Calculate the variance of each DCT component from all blocks. The variance is computed for each of 
the 512 DCT component within a block. Since the mean of each DCT component is zero, the variance 
may be calculated as:

where:

σi2 is the variance for coefficient i of a block,

and Sb[i] is the value of coefficient i in block b.

5. Calculate the adaptive quantizer values. Development of adaptive quantizers is done for a specified 
Normalized Root Mean Square Error (NRMSE), defined as:

where:

Si is the ith DCT coefficient,

Si' is the ith DCT coefficient after recovery from quantization,

and µ is the mean value of the pixels.

6. Calculate the encoding sequence. Since each DCT component has an expectation of 0, smaller 
variances imply greater likelihood the DCT value is 0. In order to maximize the average run length, the 
DCT components are encoded in order of decreasing variance. This should give rise to longer run lengths 
than a fixed coding sequence.

7. Quantize each block. Each block of coefficients is quantized by division by quantizer factors. The 
quantization of each coefficient within the block is done by adding 1/2 the quantizer value for than 
coefficient to the coefficient value, and then dividing by the quantizer value. This effects a rounded 
division by the quantizer.
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8. Order the quantized DCT coefficients according to the encoding sequence. A simple lookup table 
can be used to represent the encoding sequence (Figure 8.9). The encoding process can then be 
sequentially driven by looking up the index for each coefficient.

Figure 8.9
Probability of being non-zero for 64 AC coefficients

when ordered in XYZ sequence.

9. Compute the run lengths of zeros to generate sequences of symbols to encode. Run lengths of 
zeros are counted until a non-zero coefficient is found, or the end of block. If the run length reaches 
the end of block, the EOB symbol is coded. If the run length is longer than 16, ZRL symbols are 
coded for each run length of 16. The remaining run length and the VLC code for the non-zero 
coefficient are combined to for a symbol for Huffman encoding.

10. Collect number of occurrences of each symbol. As symbols are formed, their occurrence is 
counted. The accumulation of symbol statistics is a prerequisite for creating Huffman codes.

11. Construct the Huffman encoding tables. A tree is formed collecting lowest-probability symbol 
events, and is used to encode the symbols. The tree is pruned to limit the length of code words to 12 
bits. The pruned symbols will be represented by the ESC symbol.

12. Encode the symbols into a compressed data stream. The symbols within a block are encoded 
according to the Huffman codes. The bit streams are collected across blocks to form a single 
compressed data stream, as shown in Figure 8.10.
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Figure 8.10
Format of the XYZ compressed data stream.

Decompression is done following essentially the non-adaptive encode procedure in reverse. Some 
additional overhead is dedicated to construction of Huffman lookup tables when decompressing data streams 
that were adaptively encoded. The decompression procedure consists of the following steps:

1. Construction of Huffman decoding tables. For non-adaptive data streams, this is done once at the start of 
the decode process. For adaptive data streams, the Huffman codes are read at the beginning of the data 
stream representing one group of eight compressed frames.
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2. Assignment of quantizer factors. For non-adaptive data streams, quantizing factors are assigned at 
the start of the decode process. For adaptive data streams, quantizing factors are read at the beginning 
of the data stream representing one group of eight compressed frames.

3. Decode Huffman data stream into stream of symbols. The longest Huffman code used by XYZ 
compression is 12 bits in length. The next 12 bits in the data stream is used as an index into the 
Huffman decoding table. Thus the Huffman decoding table must recognize Huffman codes of varying 
lengths. This is accomplished in the construction of the Huffman decoding table, as shown in Figure 
8.11. For each Huffman code, every possible 12 bit index with that code as prefix is generated. In the 
case of collisions, the longer prefix takes priority. Once completed, every Huffman code will 
correctly index the table.

Figure 8.11
The Huffman Decoding Table

4. Expand symbol stream into DCT coefficients. As the symbols are decoded, they cause specify 
zero run lengths and non-zero DCT coefficients. These values are resequenced from their encoded zig-
zag order and stored into the DCT block.

5. Perform IDCT on DCT coefficients. An inverse DCT is performed on the DCT coefficients, 
returning pixel values. The pixel values must be clamped to their legal range (0..255).

6. Reorder pixel data and display. Pixel data must be sequenced in scan-line order, and played 
through a D/A converter to generate a frame of video.
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8.5—
Adaptive XYZ Codec Using Mesh Architecture

The adaptive XYZ compression algorithm is well suited to mesh implementation. The implementation of 
the algorithm follows the steps given in Figure 8.8. Each so-called "global" stage performs an essentially 
single process of highly-coupled multi-process task. The "block" stages perform highly independent, 
parallel tasks.

Assumption is made that enough local or shared memory is available to the processors to store the entire 
contents of 8 frames (NB blocks). Np parallel processors are organized into a 2-D array of length nx and 
depth ny. Blocks of pixels are allocated to each parallel processor in row-stripe fashion. The maximum 
number of blocks per processor Nb is:

Parallel processors are connected to their 4 nearest neighbors. Cut-through routing is provided as well as 
copy during routing.

1. Compute mean pixel value. Each processor accumulates the pixel values for each block it has been 
allocated. Each processor performs 512 additions per block (ignoring looping overhead). Time to 
accumulate pixel values on each processor is:

where:

ta is the time required to perform a single addition, and

t1 is loop overhead time.

The average value and the number of blocks per processor are collected across processor rows and 
columns. Collection across nx rows is done in log2(nx)-1 parallel collection steps. At each step i, data is 
sent from processors whose x rank 2i+1 is 2i to the processor whose rank is x rank - 2I, as illustrated in 
Figure 8.12.
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Figure 8.12
Collecting values in the x direction.

Time to perform cut-through routing transfers is modeled as (Figure 8.13):

where:

tcomm is the total communications overhead,

ts is the startup overhead,

m is the number of words in the message,

tw is the transfer time per word, and

1 is the number of links over which the transfer will be made.

Figure 8.13
Distributing values in the x direction using the copy cut-through operation.

The time to collect m words over nx processors can be calculated. At each step i, l = 2i. The total communication 
time in the x direction is then:

  



Page 105

Assuming twnx dominates tslog(nx), we conservatively estimate:

The same reasoning applies in the y direction. Total communication time to distribute m words is then:

Time to collect two words (number of blocks, total pixel value) is:

At each step in the communication process, the accumulation of the total number of blocks and the total pixel 
values is made. At the last step, the average pixel value is calculated by dividing the accumulated pixel total by 
the accumulated total number of blocks. The time to perform these calculations is:

where tm is the time needed to perform a multiply/divide.

2. Reduce pixels by mean pixel value, perform FDCT, calculate variances. The mean pixel value must be 
distributed amongst all processors. This effort requires a cut-through copy distribution in the x direction, and 
then the y direction. The overhead to distribute m words in the x direction is:

which may be conservatively approximated by:
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Distribution to all processors is done by distribution in the x direction followed by distribution in the y direction. 
Thus time to distribute m words to all processors is:

The time to distribute the mean is given as:

Reducing the pixel values by the mean is a loop of 512 subtractions per block, and thus the time is:

The forward DCT is calculated independently on all processors. Three passes are taken over each block. 64 one-
dimensional DCTs are performed for each pass. The time needed to perform a single 8 word FFT-based unscaled 
DCT is:

The time to perform the unscaled 3-D DCT to all blocks is then:

Adding the scaling operation (one multiplication per each of 512 coefficients) to the DCT gives an overall DCT 
computation time of:

Variances are calculated as the square of each DCT component. The time to calculate the individual variances 
for one block is then one multiplication per coefficient, and for all blocks:
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3. Accumulate variances, compute quantizing factors, compute encoding sequence. Variances are accumulated 
in much the same manner as the pixel mean is computed. Of course, accumulations of 512 variances takes place. 
The time to accumulate the 512 variances over the blocks within one processor is:

The communication time to accumulate variances is:

The total of the time needed to accumulate variances at each communication step, plus the time needed to scale 
the variances after accumulation, is:

Computation of quantizing factors requires sort of the variances followed by iteration of the bit allocation 
algorithm until convergence of the Root Variance Error. Sorting 512 coefficients takes on the order of 
512log(512) operations. Double this number to arrive at the sort overhead estimate of:

In typical video sources, the accumulated variance requires on the order of 20 bits to encode at NRMSE error 
levels of 5%. This algorithm requires, per iteration, an average of roughly 16 comparisons to determine the largest 
unrepresented variance, 3 adds and 3 multiplies. Startup overhead is 4096 assignments. Bit allocation overhead is 
then roughly (assignment overhead is assumed to be ta):
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Quantizers are developed by dividing expected range of each coefficient (square root of variance) into range 
represented by each coefficient's bit allocation. The requires 512 square roots, roughly 20 shifts, and 512 
divisions. Assuming a shift takes place in time ta and a square root requires roughly 16 multiplication times, 
generation of quantizers takes:

4. Quantize DCT coefficients, construct symbol sequences for encoding. Calculated quantizers and the 
encoding order must be broadcast to each processor. Per the pixel average broadcast above, the time to 
broadcast 512 quantizers and the 512 word coding sequence array is:

Quantization per block is done with a shift, an add, and a multiply per coefficient (of the 512 in the block). 
Total quantization time is:

Calculation of symbols is done by counting zero run lengths in the coding sequence. This requires 512 
decisions and for most of them, an increment operation. For about 8 of the coefficients, a non-zero value will be 
detected. In this case, the logarithm must be calculated to compute the VLC length. Overall, the cost of this 
procedure is 20 shifts. The cost of this process is estimated at one add time per sequencing lookup, one add time 
per decision, and either one add time per zero or 2.5 shifts per VLC code:

5. Collect symbol statistics, construct Huffman codes. The collection of symbol statistics follows a model quite 
similar to calculating the pixel mean or the coefficient variances. There are 256 symbols. First the frequency of 
symbol occurrence is measured for each processor. The time to do this is 256 initialization assignments, and 
approximately 8 indexed lookups and 8 increments per block (still ignoring control overhead!):
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The 256-word frequency of symbols is collected across processors. Total communication time is:

At each communication step, statistics are accumulated. The time to do this is:

Once the symbol statistics have been calculated, a Huffman tree may be constructed. This is a O(nlog(n)) 
algorithm, and the constant factor will be estimated at 20. Thus Huffman tree construction is estimated at:

The resulting coding table is 256 words long. This table is distributed to all processors. This takes:

6. Encode symbols. Each block of symbols is encoded on its processor. There are approximately 8 symbols per 
block. Each symbol requires a lookup in the Huffman coding table, and about 4 shift and or operations to insert 
the lookup bits into the compressed bitstream. Another add is needed to count the number of bits in the 
bitstream. The time to perform this encoding is then:

The encoded bitstreams must be collected into a single compressed bitstream. If the compression ratio after 
encoding is 32:1, the length of the bitstream will be 9 words on average (1 extra word for the length of the data 
stream). Collecting this bitstream will take:
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At each step in the collection process, the two bitstreams are concatenated. For step i, the bitstreams are of length 8*2i, and 
the number of operations to concatenate is roughly four shifts and two logical operations per byte:

The total number of steps is nx+ny, making the total number of logical operations:

The total number of operations is summarized in Table 8.3. If we assume tw=ta, tm=16ta, NB=10,800, Np=4096, Nb=3, 
nx=ny=32, we get the results in Table 8.4.

Table 8.3 Summary of expected complexity of adaptive XYZ algorithm on mesh architecture.

Tn ta tm tw loop

1 512Nb   512Nb

2  1 2nx+2ny log(nx)+log(ny)

3 2log(nx)+2log(nvy) 1   

4   nx+ny  

5 512Nb   512Nb

6 5568Nb 1472Nb  704Nb

7  512Nb  512Nb

8 512Nb   512Nb

9   512nx+512ny log(nx)+log(ny)

10 512log(nx)+512log(ny) 512   

11 8192   8192

12 4296 60  20

13 20 8704  512

14   1024nx+1024ny 1024

15 1024Nb 512Nb  512

16 1496Nb  512  

17 16Nb+256   512

18   256nx+256ny 256

19 256Nb   256

20 40960   16384

21   256nx+256ny 256

22 40Nb   8

23   9Nb 8

24 6NB   nx+ny
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Table 8.4 Complexity of XYZ adaptive and non-adaptive algorithms for one video block 8x8x8.

COMPRESSION ALGORITHM NUMBER OF OPERATIONS
[PER BLOCK OF 8x8x8 FRAMES]

NUMBER OF OPERATIONS
[PER SECOND]

Adaptive XYZ 454,855 1,705,706

Non-adaptive XYZ 116,180 435,675

8.6—
XYZ Codec Based on Fast 3D DCT Coprocessor

From the previous analysis, 64% of the overhead the non-adaptive compression process is due to the 3-dimensional DCT. Optimizing this 
transformation is a key part of developing a practical real-time algorithm.

Applying a Fourier-based fast DCT separately to the 3-D case will require 3X64X13 multiplications, and 3x64x29 additions: 2,496 
multiplications and 5,568 additions. However, the Fourier-based DCT supports folding in of constants into the quantizing phase. This results in 
a total of 3x64x5 multiplications: 960 multiplications and 5,568 additions. Table 8.5 summarizes the complexity of two 3D DCT algorithms, 
first based on direct 1D DCT, and second one based on direct fast 1D DCT.

Table 8.5 Complexity of two 3D DCT algorithms for various image formats.

3D DCT Algorithm Format Number of
video cubes/second

Complexity
[MOPS]

Direct 1D DCT CIF
320x240 at 30fps

9,000 220

Direct 1D DCT NTSC
720x480 at 30 fps

40,500 988

Direct 1D DCT HDTV
1280x1024 at 60 fps

307,200 7,490

Direct Fast 1D DCT CIF
320x240 at 30 fps

9,000 60

Direct Fast 1D DCT NTSC
720x480 at 30 fps

40,500 256

Direct Fast 1D DCT HDTV
1280x1024 at 60 fps

307,200 2,000
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Clearly, a single-processor system is unworkable for any high-resolution system (but may be 
appropriate for quarter-screen motion). Thus we investigate parallel architectures. The use of modern 
DSP processors is a particularly interesting investigative angle, as new core processors are capable of 
over 100 MIPS, overlap address calculations with processing of data, and make an inexpensive engine 
for computationally complex problems.

The first problem that has to be resolved is real-time access to inexpensive (say 70 ns) memory. 
Frames of video are digitized and written to alternate buffers, as shown in Figure 8.14. A simple state 
machine is used to reorganize the digital data into XYZ sequence. Video data is cached in fast shift 
registers and written to slower banks of memory.

Figure 8.14
Buffering the input to the DCT processors.

Each memory buffer must be large enough to hold 8 frames of video. When full, the processing array 
can start retrieving data from the frame buffer. Contention is resolved by subdividing the frame buffer 
into separately addressable banks of memory. Fast interface to each memory bank is designed as 
shown in Figure 8.15.

  



Page 113

Figure 8.15
Fast interface to each memory bank.

The DCT processors are assumed to have 512 words of local memory. Each processor reads a cube for processing, and 
performs the DCT on the cube. Timings are given for the DSP fused multiply-accumulate architecture in Table 8.6.

The time to perform the 3D DCT on a ''typical" DSP is then:

where:

tp is the processor cycle time,

and tm is the memory cycle time.
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Table 8.6 Implementation of the fused multiply-add FDCT on a typical DSP.

Operation Number of
loops

Time per loop [memory/processor 
cycles]

Total Time [memory/processor 
cycles]

Read 512 words
from bank

512 1 512

3 passes: one per
X, Y, Z direction

3 2688 8064

64 DCTs 64 42 2688

Address calculation 8 2 16

DCT calculation 8 2 26

Post scaling 512 2 1024

Write 512 words to output bank 512 1 512

The overhead of address calculation of the data points (representing access of data points) is 3072 processor cycles. This is a considerable 
portion of the overall DCT overhead, and is worth eliminating.

One means of elimination of address computation overhead is construction of a hardwired "shuffle" interconnection scheme, presented in 
Figure 8.16. This architecture associates 64 DCT processors with a single 512 word processing cache. A 512 word cache is constructed to 
hold the contents of one 8x8x8 cube. The cube is initially loaded from the memory bank it services. The contents of the cube are 
distributed to each of 64 DCT processors, eight consecutive words of the X direction per processor. After processing, the new values are 
redistributed for processing in the Y direction, and finally in the Z direction. The timing for receipt and transmission of data is illustrated 
in Figure 817.

The time required to process the 3D DCT (T) is a function of the initial load time (TL), the processing time (TPr) and the permutation time 
(TPe). Assuming the time required to move the data out to the next stage after DCT processing (i.e., quantization) is equal to the 
permutation time:

Load and permutation time can be reduced by wiring each word of temporary storage individually to the input processor and output 
processor it services. In this
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case, although complex wiring is required (512 individually wired 16-bit words), the load time can be 
pipelined with processing time, and shuffle time reduced to a single load/store time. The shuffle pattern is 
simply a transposition in three dimensions:

The latest generation of DSPs support an alternative, more scaleable solution. The ADSP-2106x family of 
Super Harvard Architecture Computers (SHARC) and the TMS320C8x are used to benchmark a fast FDCT 
design.

Figure 8.16
Shuffle interconnection of DCT processors.
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Figure 8.17
Timing diagram for shuffle interconnect between DCT processors.

8.6.1—
Fast DCT Based on the SHARC Architecture

The SHARC architecture incorporates processing capability, RAM, DMA capability, multiple buses, 
address computation logic, and a single-tick multiply into a single chip. This architecture is depicted in 
Figure 8.18.

Two banks of dual ported SRAM each support simultaneous access from the DMA controller and one of 
the two Data Buses. The Sequencer fetches a single instruction from the Instruction Cache or the Program 
Memory bus. The instruction may:

• compute with registers,

• perform two move operations between registers and the Data Memory or Program Memory bus,

• perform address calculation for the next instruction.
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Figure 8.18
SHARC architecture.

Any instruction that is fetched from Program Memory and references Program Memory requires a 
wait state. Thus instructions that reference Program Memory are cached (Instruction Cache is 
associative). Calculations are performed between registers. Supported calculations include one tick 
multiply/add, shifting, general ALU operations, variable-length bit insertion/deletion. Address 
calculations allow increment of an address base by a programmable value. This increment may 
support
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circular queues. Eight address calculations are simultaneously active (each instruction chooses an address calculation reference).

The SHARC architecture is well-suited to implementation of the FDCT. The DMA controller can write video data into memory while the 
SHARC is calculating the previous DCT. Constants used in multiplications are read from Program Memory, and are therefore cached and 
available in a single tick. Address calculation is done in the same instruction as the multiply/add, and so the overall time to perform the DCT is:

Table 8.7 summarizes memory and processor cycles needed to implement 3D DCT on SHARC processor. At NTSC rates, five 40 MHz 
SHARC chips should be sufficient to perform the DCT.

Table 8.7 Implementation of the fused multiply-add FDCT on a SHARC DSP.

Operation Number of
loops

Time per loop
[memory/
processor cycles]

Total time [memory/processor cycles]

Read 512 words from
bank

512 1 512

3 passes, one per X, Y, Z direction 3 1664 4992

64 DCTs 64 26 1664

Address Calculation 8 0 0

DCT Calculation 8  26

Post Scaling 512 2 1024

Write 512 words to output bank 512 1 512

8.6.2—
Fast DCT Based on the TMS320C80 Processor

The TMS320C80 is a single chip that incorporates many of the system features of video distribution and parallel processing. The TMS320C80 
is composed of a master RISC processor, four DSP processors, a smart DMA controller (transfer controller), and a video controller, as shown 
in Figure 8.19.

Each pixel processor incorporates processing capability, multiple buses, address computation logic, and a single-tick multiply into a single 
chip. This architecture is depicted in Figure 8.20. The external (to the pixel processor) crossbar enables access to "local" memory or to external 
memory. In the absence of contention, each
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pixel processor can access local memory in a single tick. Instructions are cached in standard LRU fashion. 
Instructions perform the following operations in one tick:

• A multiply/accumulate operation between registers.

• Two move operations between registers and the Local Memory Bus or the Global Memory Bus. These 
buses' names are by convention - in practice they are interchangeable. Move operations include variable-
length bit extraction.

• Address calculation for the data move operations.

Figure 8.19
Architecture of the TMS 320C80.

Any instruction that is fetched from Program Memory and references Program Memory requires a wait 
state. Thus instructions that reference Program Memory are cached (Instruction Cache is associative). 
Calculations are performed between registers. Supported calculations include one tick multiply/add, 
shifting, and general ALU operations. Address calculations allow indexing of an address base by
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a programmable value. 3 address calculations are simultaneously active (each instruction chooses an 
address calculation reference).

The TMS320C80 video controller performs all of the timing operations needed to capture video 
images. The video controller issues orders to the transfer controller to store the captured video into 
the memory buffer. The transfer controller supports transfer of packets of 3D blocks of memory, 
using the concepts of pitch and patches. Scan lines in buffer memory are separated by the pitch, and a 
collection of scan lines is organized into a patch. A packet can be programmed to communicate a 
collection of patches, each separated by the patch offset. In the case of frames composed of 480 lines 
of 720 bytes, eight bytes would be transferred per line with a pitch might of 720, a patch would be 
composed of eight lines separated by 480 lines, and the entire transfer would be eight patches. This 
correctly reorganizes eight frames of eight lines of eight bytes in scan-line order into a packed cube 
of 512 bytes for 3D DCT processing.

Timings for the TMS320C80 are exactly the same as those for the SHARC processor, reported in 
Table 8.7.
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Figure 8.20
Architecture of Pixel Processors TMS320C80.
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9—
Experimental Results Using XYZ Compression

On the basis of the analysis, performed in Chapter 8, we summarize the complexity of the XYZ algorithm compared to H.261/H/263 and 
MPEG algorithms for different video formats. Results are shown in Table 9.1 for CIF format, Table 9.2 for CCIR 601 (NTSC) format, and 
Table 9.3 for HDTV format.

Table 9.1 Complexity of video compression algorithms in MOPS for CIF format (288x352) at 30 frames/sec.

Compression Algorithm Encoder
Complexity

Decoder
Complexity

Total
Complexity

H.261/H.263 970 200 1,170

MPEG
No B Frames

750 100 850

MPEG
70% B Frames

1,120 120 1,240

XYZ 240 240 480

In summary, the XYZ decoder is more complex than H.261/H.263 and MPEG decoders, and its complexity is about 1.5-2 times higher than the 
complexity of the other two algorithms. However, the complexity of the XYZ encoder, based on a fast 3D DCT algorithm, is superior 
compared to the other two algorithms. The complexity of the XYZ encoder is about 4-6 times lower than the complexity of H.261/H.263 and 
MPEG encoders.

The XYZ compression algorithm was implemented on the PC, and on the MasPar parallel computer. Both implementations are described in 
this Chapter, and timings
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are shown. Based on these experiments, the final performance of the XYZ compression algorithm are determined.

Table 9.2 Complexity of video compression algorithms in MOPS for CCIR 601 format (480x720) at 30 frames/sec.

Compression Algorithm Encoder
Complexity

Decoder
Complexity

Total
Complexity

MPEG
No B Frames

3,000 400 3,400

MPEG
70% B Frames

4,600 470 5,070

XYZ 980 980 1,960

Table 9.3 Complexity of video compression algorithms in MOPS for HDTV format (1152x1440) at 30 frames/sec.

Compression Algorithm Encoder
Complexity

Decoder
Complexity

Total
Complexity

MPEG
No B Frames

14,500 1,900 16,400

MPEG
70% B Frames

22,000 2,300 24,300

XYZ 4,600 4,600 9,200

9.1—
PC Implementation

We have performed a variety of experiments on a PC to demonstrate the XYZ video compression algorithm and evaluate its features. We also 
compared the XYZ algorithm with the MPEG standard. For these purposes, we have developed a testbed for both XYZ and MPEG video 
compression techniques, and have implemented both techniques in software.

The testbed features a user-friendly interface. The user can select a video file which is to be compressed, and a set of quantization tables to be 
used in the experiment. After performing the experiment, which consists of running both the encoder and decoder, the obtained results are 
written in the report file, while the error file contains the differences between the original and decompressed frames. The user can display each 
of frames individually, both the original and the decompressed frame, and compare them visually. The user can also view the difference 
between the original and the decompressed frames, as well as the obtained DCT coefficients.
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9.1.1—
Demonstration of the XYZ Algorithm

We demonstrate the performance of the XYZ video compression algorithm by applying it to a video clip 
chosen from the movie 'Dick Tracey'. The clip consists of eight frames with resolution 320x240 pixels. The 
moving figures consume about 40% of the frame, and the figures move in opposite directions. The clip has 
been captured and stored in uncompressed form. The quantizer, referred as QT1, is generated from one-
dimensional quantizer motivated by JPEG:

where x=0 to 7.

The 3D quantizer is then developed using the following expression:

where x,y, and z are in the range from 0 to 7.

The Normalized Root Mean Square Error (NRMSE) is calculated as:

where:

Xi are original pixel values,

 are pixel values after decompression, and

n is the total number of pixels in the 8-frame video sequence.
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Figure 9.1 shows the original sequence of 8 frames, the decompressed sequence, and the error 
between frames. The error frames are multiplied by 16 in order to become visible for evaluation 
purposes.

The obtained results indicate that the XYZ algorithm can effectively be used for compression of full-
motion video. Besides presenting 8 frames of the video, we also played back the decompressed video 
in a loop. The obtained quality of the video was very good.

9.1.2—
Comparison with MPEG Standard

We compared the XYZ compression algorithm with the MPEG standard. Motion estimation in 
MPEG is performed by 2D logarithmic search and by exhaustive search of a region of 16 pixels wide. 
First frame (frame 0) is compressed as I frame using MPEG-recommended quantizer. Frame 7 is 
compressed as P frame using forward motion prediction. Error terms are calculated and encoded 
using the DCT. Frames 1 to 6 are compressed as bidirectional (B) frames. Motion estimation is done 
using bidirectional prediction. Four experiments were performed using MPEG: two including error 
correction with two different search algorithms, and two with no error correction for both search 
algorithms.

In addition to the previous experiment, reported in Section 9.1.1, we applied XYZ compression for 
four additional sets of quantization tables, referred as QT2 to QT5 in [WF95]. The quantization tables 
are selected in such way that QT1 tables contain the smallest coefficients, thus achieving the best 
quality of the video and the lowest compression ratio. On the other hand, the QT5 tables have the 
largest coefficients, thus producing the highest compression ratio and the lowest video quality. The 
results are summarized in Table 9.4. Figures 9.2 shows the XYZ decompressed sequences for 
additional tow sets of quantization tables, QT2 and QT3, while Figure 9.3 shows the MPEG 
decompressed video sequences.
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Table 9.4 Comparison of XYZ and MPEG video compression algorithms.

Video
Compression

Technique

Compression
Ratio

Normalized
RMS
Error

Execution
Time [min]

(8 frames, 320x240)

XYZ
(QT1)

34.5 0.079 6.45

XYZ
(QT2)

57.7 0.097 6.45

XYZ
(QT3)

70.8 0.105 6.45

XYZ
(QT4)

101.7 0.120 6.45

XYZ
(QT5)

128.1 0.130 6.45

MPEG
Logarithmic Search and
Error Correction

11.0 0.080 21.35

MPEG
Exhaustive Search and
Error Correction

15.6 0.080 163.0

MPEG
Logarithmic Search and
No Error Correction

27.0 0.140 21.35

MPEG
Exhaustive Search and
No Error Correction

32.9 0.125 163.0
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Figure 9.1
Demonstration of the XYZ video compression algorithm: (a) original sequence of 8 frames (240x320),

(b) decompressed sequence using QT1 - compression ratio=34.5, NRMSE=0.079, (c) error between frames multiplied by 16.
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Figure 9.2
The XYZ compression algorithm: (a) Decompressed sequence using QT2, compression ratio=57.7,

NRMSE=0.097, (b) error function for case a, (c) decompressed sequence using QT3,
compression ratio=70.8, NRMSE=0.105, (d) error function for case c.
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Figure 9.3
MPEG compression algorithm: (a) decompressed sequence using MPEG including B error correction, compression

ratio=15.6, NRMSE=0.080, (b) error function for case a, (c) decompressed sequence using MPEG excluding
B error correction, compression ratio=32.9, NRMSE=0.125, (d) error function for case c.
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Figure 9.4 shows an uncompressed frame drawn from the eight frame sequence, rendered in gray scale 
for ease of reproduction. The character in the foreground is moving to the reader's right, the character 
behind him is moving to the left.

Figure 9.4
Raw captured frame from the movie 'Dick Tracey'.
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Figure 9.5 is decoded frame using MPEG compression associated with MPEG-1 recommended 
quantizers and Huffman coding tables. An exhaustive search for inter-frame motion estimation was used 
with p=8. The same frame is displayed – in this case a B-frame. The compression ratio for the sequence 
of frames is 11:1, and the NRMS error is 0.08.

Figure 9.5
MPEG-decompressed frame, Compression ratio=11, NRMSE=0.08.
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Figure 9.6 displays the same frame after MPEG compression without error residue. That is, simple 
motion estimation is used on the B frames. The compression ratio for this sequence is 27:1, with 
NRMSE of 0.14. Experience indicates that NRMSE values above 0.08 result in objectionable artifacts.

Figure 9.6
MPEG-decompressed frame, motion estimation only.

Compression ratio=27, NRMSE=0.14.
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Figure 9.7 displays the same frame after compression with the XYZ compression algorithm. The MPEG 
quantizers were used (after extension into three dimensions), and the MPEG Huffman tables were used 
for encoding. This sequence is compressed at 34.5:1 with NRMSE of 0.079.

Figure 9.7
XYZ decompressed frame, Compression ratio = 34.5, NRMSE=0.079.
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The following conclusions can be made [WF95]:

• The XYZ video compression algorithm gives significantly better compression ratios than the MPEG 
algorithm for the same quality of video. For example, XYZ result 1 and MPEG result 1 (see Table 
9.3) give similar NRMS errors (0.079 and 0.08, respectively) and reconstructed sequences show 
similar image quality. However, the XYZ algorithm provides much higher compression ratio (34.5 
versus 15.6).

• For similar compression ratios, the XYZ video compression algorithm gives much better quality of 
the decompressed video than the MPEG algorithm. For example, XYZ result 1 and MPEG result 4 
(see Table 9.3) give similar compression ratios (34.5 and 32.9, respectively), but XYZ algorithm 
gives much better quality (NRMS error for XYZ is 0.079, while for MPEG is 0.125).

• The obtained results suggest that XYZ video compression algorithm is faster than the MPEG 
algorithm (including both compression and decompression).

• The XYZ results 4 and 5 (Table 9.3) suggest that very high compression ratios (greater than 100) 
can be achieved using the XYZ video compression algorithm, while the NRMS error is still kept 
relatively small (in the range from 0.120 to 0.130). In this case, for videos with the fast camera 
movement the visual artifacts are significant. However, the algorithm gives very good results for 
videos with little movements, which is the case in videoconferencing applications.

• Finally, the MPEG technique is based on three different algorithms: one for I, another for P, and the 
third algorithm for B frames. MPEG is also asymmetrical algorithm, requiring a complex encoder 
and a simple decoder. On the other hand, the XYZ technique applies only one algorithm for all 
frames and is a symmetrical algorithm requiring the same complexity for both encoder and decoder. 
This fact is beneficial for VLSI implementation of the algorithm, discussed in Chapter 8.
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9.1.3—
The Sensitivity of the XYZ Algorithm to Various Video Effects

In the previous sections, we demonstrated the XYZ video compression algorithm by applying it to a single 8-
frame clip, which includes the large area of motion. In this section, we present the results obtained when applying 
the XYZ algorithm to various video clips, which show different video effects, such as camera break, camera 
panning and zooming, and fast camera movement. Pan and zoom sequences are chosen from the movie 'Total 
Recall', another pan and camera break sequences are from the movie 'Interview with a Vampire', and a fast 
camera movement sequence is from the movie 'Interceptor'. These sequences are compressed using the XYZ 
algorithm and the MPEG-inspired quantization tables, given by the equation 9.2. The results are summarized in 
Table 9.5.

Table 9.5 XYZ algorithm applied to various video effects.

Movie Clip
Video Effect

Compression
Ratio

Normalized RMSE
Error

Dick Tracy
Typical Motion

34.5 0.079

Interview with the
Vampire Camera Break

32.5 0.087

Interview with the
Vampire Camera Panning

26.1 0.085

Total Recall
Camera Panning

17.5 0.049

Total Recall
Camera Zoom

23.9 0.042

Interceptor
Fast Motion

26.0 0.025

Note from Table 9.5 that the XYZ algorithm shows very little sensitivity to camera break achieving almost the 
same compression ratio and NRMSE as in the case with no camera break. For illustration purposes, Figure 9.8 
shows two frames from a sequence which includes a camera break - the original frames and frames after 
decompression.
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Figure 9.8
Applying the XYZ video compression algorithm to a sequence with camera break: (upper row): original

frames, (lower row): frames after decompression., Compression ratio=26, NRMSE=0.025.
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However, in the other three cases: camera panning, camera zooming, and fast camera movement, the XYZ 
algorithm shows a decrease in the compression ratio compared to a normal sequence without these effects, 
which is an expected result.

In Section 9.3, we present the XYZ algorithm using quantization based on human visual factors, which is 
capable of achieving high compression ratios in all these cases.

9.2—
MasPar Implementation

The full adaptive XYZ compression algorithm, described in Chapter 8, was implemented on the MasPar 
parallel computer. The MasPar was considered a good benchmark to predict the performance of DSP 
implementations, as modern DSPs are about 1000 times more powerful than the MasPar processors. This 
was also a good testbed for longer test video sequences (5 seconds or more).

9.2.1—
Architecture of the MasPar

The MasPar is a massively parallel SIMD (single instruction, multiple data) computer. In SIMD computers, 
all Processing Elements (PEs) execute the same instruction simultaneously, but operate on different data. 
Instructions are decoded and broadcast by the Array Control Unit (ACU). The general architecture of the 
MasPar is shown in Figure 9.9.

The ACU is a general-purpose processor with its own data and instruction memory. Programs are loaded 
and executed on the ACU. When parallel instructions are

Figure 9.9
The architecture of MasPar.

  



Page 139

interpreted, they are broadcast to the PE array. All code was written in MPL, a parallel version of 
ANSI C. In MPL, data that is declared ''plural" is stored on the PEs. Operations on plural data 
generate parallel instructions which are executed on the PEs.

Figure 9.10
Communications of the PEs in MasPar computer.

The PE Array is organized into matrices of 32 PEs called clusters. Each cluster is a source or 
destination for global routing, supporting communication between arbitrary processors or to/from the 
ACU. In addition, a mesh architecture ("X-net") connects adjacent processors. Communications of 
the PEs is illustrated in Figure 9.10.
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The mesh connection supports higher bandwidths than does the more general global routing connection. 
Measured execution times on the MasPar computer are summarized in Table 9.6.

Table 9.6 Measured execution times (in milliseconds) on the MasPar computer.

 Loop Integer Multiply Float Multiply Integer
Add

Integer Multiply

ACU .002 .006 .024 .004 .017

PE .002 .022 .030 .015 .024

9.2.2—
Algorithms on the MasPar

Several standard problems must be solved in order to implement adaptive XYZ compression on the MasPar 
computer. In particular, data on the ACU has to be distributed to the PEs, data on the PEs has to be 
"reduced" (collected) into the ACU, and data on the PEs has to be sorted. Fast algorithms are developed for 
each of these problems.

Distribution of individual data from the ACU to the PEs is done through the global router. The ACU simply 
sends each data element to each PE (the MPL command proc). However, a fast distribution strategy exists 
for broadcast of the same data item to all PEs, as illustrated in Figure 9.11.

The X-Net copy command (the MPL command xnetc) transmits data along the xnet, depositing copies of 
the data at each PE on the route. Since the PE array is organized as a two-dimensional array, the broadcast 
can be accomplished with only two xnet transfers. Broadcast from the ACU is then accomplished by setting 
the data item into PE#0, and performing an xnet copy transfer to the last processor on row 0. Then each 
processor in row #0 performs an xnet copy to the corresponding processor in the last row along each 
column.

Reduction of data across PEs is done with the X-Net "pipe" send (the MPL command xnetp). Pipe sends 
are high-speed point-to-point sends (without copies to the intermediate nodes), as shown in Figure 9.12. 
After each transfer of data from one PE to another, reduction of the data is performed on the target PE. For 
example, in the case of pixel averaging, the reduction operation is accumulation.
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Figure 9.11
Broadcast of data from the ACU to PEs.

Performance is gained by increasing the length of each successive transfer. The first transfer is to the 
nearest neighbor, the second transfer reduces every fourth PE, etc. At the end of the process, the reduced 
data resides in PE#0. This data can then be transferred to the ACU.

Sorting of data is done with a parallel version of the bubble sort, as illustrated in Figure 9.13. This 
technique was chosen because of the relatively small number of data items to be sorted (512), and its 
ease of implementation.

The PEs are logically organized as a line of processors. At each even step in the sorting process, each 
even numbered processor (in the logical organization) compares its data value to the processor on the 
right. The larger value is sent to the right. At each odd step in the process, each odd numbered processor 
compares its data value to the processor on its right. At the end of N steps, N data items are sorted.
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Figure 9.12
Reduction of data from PEs to the ACU.

9.2.3—
Adaptive XYZ Compression on the MasPar

The full adaptive XYZ video compression algorithm was implemented on the MasPar computer. Timing 
of the XYZ adaptive compression algorithm on MasPar is reported in Table 9.7. Full-motion video clips 
used by the MPEG committee to assess the MPEG compression algorithm were used to benchmark the 
XYZ compression algorithm. Adaptive quantization was applied based on returning a desired NRMSE 
figure. The quantizers were chosen to minimize overall mean square error. This work duplicates earlier 
work [RPR77]. The resulting compression ratios were disappointing, and it was not possible to arrive at 
the compression ratios advertised in that work.

Adaptive Huffman coding can be expected to increase the compression ratio without decreasing the visual 
quality. However, adaptive Huffman coding is computationally complex. This technique was applied to 
CCIR clip "Susie", and to MPEG-2 clips "Carousel", and ''Cheerleaders".
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Figure 9.13
Sorting data on PEs.

Somewhat surprisingly, the results of adaptive Huffman coding actually show a reduction in compression 
ratio when compared to the MPEG-1 coding tables. This is due to the different strategy used by the 
MPEG-1 tables (the ESC code is not supported), and the different maximum length of the MPEG-1 code 
words (16 bit vs. 12 bit).

It seems clear that then benefits of adaptive compression are outweighed by the computational expense of 
this procedure. It seems clear that non-adaptive compression will give 50% to 75% of the compression 
ratios at 1/4 the computational cost of adaptive compression. Except in the most demanding 
environments, the advantages of real-time non-adaptive compression will probably outweigh the cost of 
adaptive compression.

This combined failure of adaptive quantization and adaptive Huffman coding to generate high 
compression ratios, coupled with the prohibitively high computational cost of the adaptive algorithms, 
lead to abandonment of the adaptive
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approach. This leaves the human visual acuity experiments as the last hope for developing a truly reliable and competitive compression algorithm.

Table 9.7 Timing of the XYZ adaptive compression on MasPar.

Function CPU Time Comments

Estimated Adaptive Compression Time 9 seconds  

Estimated Non-adaptive Compression Time 2 seconds  

Measured Overall Adaptive Compression Time 8.9 seconds Time to read/write, encode and decode, compute adaptive quantizers for ¼ sec. 
Note that all numbers are for RGB (4:4:4) data. Real-life applications would use 
YUV12 (4:2:0) data, and should run twice as fast, and get double the 
compression ratios.

Read 1.4 seconds Read in pre-formatted data, 8x8x8 blocks distributed to all processors. This 
corresponds to an actual throughput rate of only 15 MB/s, the maximum rating 
for the MasPar disk array. FAU's MasPar lacks overlapped file I/O capability.

Average Pixel .047 seconds Time to compute average pixel across all processors. This indicates the 
efficiency of the mesh interconnection.

Forward DCT 1.126 seconds Fast Forward DCT calculation

Calculate Quantizers, Sort
Order

1.030 seconds  

Entropy Coding 1.477 seconds Does not include actual encoding time (only size of encoded data is collected)

Inverse DCT 1.149 seconds Fast Inverse DCT

Write Frame Data 1.107 seconds Writes data in same pre-formatted format

Overhead App. 2 seconds Overhead includes measurement of actual NRMSE, some loop control and 
initialization code

8.3—
Non-adaptive XYZ Compression

The thrust of the work was then changed to emphasize quantization based on Human Visual Factors. Threshold visibility is defined as the magnitude 
of the DCT component at which artifacts are first visible. This test was run by comparing the DCT component to be tested against a window 
containing the DCT component with magnitude 0. The visibility was taken to be the greatest magnitude at which the windows could not be 
differentiated (at the 6X viewing distance). The visibility of DCT coefficients was tested at a distance of 6X the screen size. Threshold visibility was 
compared to relative visibility. The resulting figures are summarized in Table 9.8.
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Table 9.8 Measured threshold visibility of DCT coefficients.

 Y=0 Y=1 Y=2 Y=3 Y=4 Y=5 Y=6 Y=7

X=0,
T=0..7

1 0 17 32 67 49 209 208

2 0 14 41 70 113 138 258

0 22 27 62 122 124 284 254

0 21 38 111 81 176 570 216

1 50 51 175 114 277 450 242

32 57 86 227 129 289 403 263

33 61 131 179 150 176 310 227

32 64 159 166 132 155 236 172

X=1,
T=0..7

16 28 41 89 196 260 255 220

17 46 39 91 172 200 175 205

35 55 62 115 219 225 235 235

45 92 108 166 215 225 250 225

75 114 114 126 222 250 235 230

110 82 135 176 228 235 230 230

41 75 139 207 238 240 230 225

71 171 179 152 165 200 195 210

X=2,
T=0..7

17 58 72 88 80 130 190 240

16 71 85 89 130 150 155 160

28 113 115 145 160 205 185 170

25 170 165 195 175 230 240 220

43 160 225 245 175 285 295 240

68 225 215 885 230 265 270 220

103 220 205 235 225 220 210 205

125 185 170 150 140 150 180 180

X=3,
T=0..7

27 49 86 115 145 225 155 235

13 67 71 155 185 150 180 165

30 110 110 210 255 260 250 240

37 170 135 270 260 370 335 330

57 215 185 325 475 425 435 280

59 295 205 380 355 375 380 255

135 260 215 250 260 245 280 250

200 175 195 155 160 210 210 215

X=4,
T=0..7

47 67 72 180 345 365 540 245

52 100 86 165 190 175 185 200

46 145 150 225 255 225 245 260

62 125 155 290 365 360 330 330

74 220 235 280 675 1000 610 285

84 175 260 285 355 385 360 330

88 240 235 265 255 270 265 270

93 200 190 185 195 200 205 205

X=5,
T=0..7

65 200 130 295 365 670 625 295

80 200 170 225 240 190 225 230

105 240 235 305 305 280 315 295

145 345 350 450 385 460 450 345

185 364 415 805 885 875 560 385

255 355 460 405 400 435 450 380

285 285 320 315 275 305 315 325

225 220 225 225 230 230 230 225

X=6,
T=0..7

140 285 325 425 385 585 560 240

95 220 225 220 210 180 205 235

175 320 295 330 320 260 320 285

270 330 435 455 435 375 425 360

315 360 545 655 615 640 545 325

335 355 425 390 420 425 400 330

310 325 285 260 275 270 285 280

215 210 215 185 215 205 225 185

X=7,
T=0..7

145 315 360 380 385 385 420 330

250 220 265 260 280 255 240 225

270 315 290 315 355 335 330 285

370 365 335 345 430 440 365 355

410 345 360 315 440 450 410 365

425 340 345 335 415 455 430 370

355 300 350 325 360 320 335 355

265 250 260 225 235 235 235 250
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Similarly, the relative visibility was tested by putting up a window at a reference amplitude, and 
displaying a second window at another amplitude. The amplitude at which the windows can be 
consistently differentiated was recorded.

The results showed a surprising trend - while the threshold visibility was strongly related to the 
frequency of the DCT component in all three dimensions, relative visibility was virtually independent 
of time, and only slightly related to spatial frequency. The primary relationship proved to be between 
intensity of the reference frame and relative visibility coefficient (about 25% of the intensity proved 
visible).

Thus a non-linear quantizer was used to model human visual acuity. The first quantizer step was 
taken to be a function of the threshold visibility (plus 1). Subsequent steps were taken, for these 
experiments, to be a uniform step size. This size was chosen differently in the experiments.

The following series of experiments were performed:

• EXPERIMENT 1. First step is threshold visibility+1. Second and following steps are taken to be 
the minimum of the first step and 20.

• EXPERIMENT 2. First step is maximum of threshold visibility+1 and 8. Second and following 
steps are taken to be the minimum of the first step and 20. This experiment is expected to factor in 
relative insensitivity of the human eye to large areas of constant color.

• EXPERIMENT 3. First step is maximum of (threshold visibility+1)/2 and 4. Second and following 
steps are taken to be the minimum of the first step and 10.

This is expected to create artifacts invisible past 3X viewing distance. The video clips selected for 
these tests were:

• Susie. A test sequence of 150 frames released by the CCIR was selected as typical of "talking head" 
video sequences.

• Cheerleaders. A test sequence of 150 frames released by the MPEG-2 committee was selected as 
typical of motion video sequences.

• Carousel. A test sequence of 150 frames released by the MPEG-2 committee was selected as 
typical of fast, large-scale motion.

• Dick Tracy. A test sequence of 8 frames showing motion of two bodies on the screen was selected 
as typical of motion video.

• Total Recall. A test sequence of 8 frames was taken as typical of zoom in motion videos.
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• Interview with the Vampire. A test sequence of 8 frames was taken as typical of a scene break in motion videos.

• Vampire Interview with the Vampire. A test sequence of 8 frames was taken as typical of camera panning in motion videos.

• Interceptor. A test sequence of 8 frames was taken as typical of fast motion in motion videos.

The results are summarized in Table 9.9.

Table 9.9 Results of the XYZ video compression using Human Visual Factors-based based quantization.

VIDEO CLIP Experiment #1 Compression Ratio / 
NRMSE

Experiment #2 Compression Ratio / 
NRMSE

Experiment #3 Compression Ratio / 
NRMSE

Susie 64.7/0.053 109.5/0.054 71.0/0.049

Cheerleaders 33.1/0.102 40.7/0.102 27.1/0.086

Carousel 38.1/0.209 47.6/0.209 29.3/0.175

Dick Tracy 59.4/0.131 88.5/0.131 56.5/0.112

Total Recall 50.1/0.078 69.8/0.079 43.9/0.066

Vampire/Break 57.5/0.150 83.8/0.150 53.0/0.125

Vampire/Pan 49.8/0.151 69.7/0.152 44.8/0.128

Interceptor 54.9/0.047 74.9/0.047 47.2/0.039

The accompanying figures 9.14 and 9.15 show frame 3 (the frame most susceptible to artifacts) of sequences Susie and Cheerleaders, 
respectively.

The 5-second clip of 'Susie' was compressed in about one minute on the MasPar, suggesting it may be compressible close to real-time on the 
TMS32080. The compression ratios of 64.7, 109.5, and 71.0 include YUV sub-sampling of RGB data (a 2:1 factor). A videotape of the 
returned data showed virtually no artifacts at about 6X the viewing distance.

This 5-second clip of 'Cheerleaders' was also compressed in about one minute on the MasPar. The compression ratios attained for the three 
experiments were 33.1, 40.7, and 27.1. A videotape of the returned data has been mistaken for the uncompressed clip at about 6X the viewing 
distance.

  



Page 148

In summary, the XYZ algorithm, based on the human visual quantization, generates excellent visual results while requiring only calculations 
of the non-adaptive procedure.

Figure 9.14
Frame 3 of 'Susie' video clip. Compression ratios obtained in three

experiments are: 64.7, 109.5, and 71.0, respectively.
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Figure 9.15
Frame 3 of 'Cheerleaders' video clip. Compression ratios obtained

in three experiments are: 33.1, 40.7, and 27.1, respectively.
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10—
Conclusion

XYZ video compression compares favorably with other compression algorithms. Compression ratios exceed those of other algorithms, and 
compression times are comparable to other algorithms capable of high compression ratios. The XYZ encoder complexity is significantly lower 
than the complexity of the H.261/H/263 and MPEG algorithms (2.5 to 5 times), due to the fact that no motion estimation is necessary. On the 
other hand, the XYZ decoder complexity is about 2 times higher compared to these tow algorithms. Table 10.1 summarizes the comparison of 
XYZ compression with other popular video compression algorithms.

Table 10.1 Rough comparison of popular video compression algorithms.

ALGORITHM Average Compression Ratio Relative Encoder Complexity Relative Decoder Complexity

XYZ 75:1 2 2

H.261/H.263 50:1 5 1

MPEG 30:1 10 1

Wavelet 20:1 1 1

MJPEG 10:1 1 1

The contributions of this text include:

1. The XYZ multimedia compression algorithm has been added to the literature. This book has justified the algorithm and explored associated 
issues. This contribution has made possible a fast, high-quality compression strategy.

2. The proposed XYZ algorithm is a real-time algorithm. Notably, compression takes place in real-time and does not require off-line 
processing. The expected time to perform this compression compares with the decompression time of other algorithms featuring lower 
compression performance. Thus the algorithm enables high-quality video teleconferencing.
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3. The algorithm takes advantage of Human Visual System features to generate highest-quality 
playback. Compression ratios, superior to those of MPEG, are reached with equivalent visual 
distortion.

4. The compression ratios for the XYZ algorithm is extremely high. Compression ratios are about 2-3 
times those of MPEG at the same bit rate. Compression ratios of 30:1 show no apparent artifacts, and 
ratios of up to 100:1 show no artifacts at normal viewing distances. Transmission times are 
correspondingly reduced, and the algorithm may enable wide-area video transmission, interactive 
television, videoconferencing, and other video-on-demand applications.

5. The computational complexity of the 3-D DCT has been reduced by developing a fast 3-D DCT 
algorithm.

6. Hardware and software implementation issues have been explored. Substantial progress towards an 
inexpensive, real-time 3-D compression engine has been made.

7. Evaluation of the results has included a comparison with other compression schemes. The result of 
this comparison will be a useful contribution for further work in related issues.

Future Work

More work needs to be done in the development of optimal visually weighed quantizers. The 
identification of two classes of visual response has lead to the introduction of non-linear quantization. 
The initial threshold visibility of DCT coefficients was demonstrated to be related to the DCT 
frequency components, while subsequent relative visibility was demonstrated to be most closely 
related to the intensity of the DCT coefficient. Further research will likely lead to even greater 
compression ratios for the technique.

The algorithm was demonstrated to be implementable on only few DSPs. This would be a worthwhile 
effort, resulting in a fully real-time teleconferencing application of arbitrarily high resolution.

Further work on the three-dimensional DCT could result in a true 3-D DCT engine capable of faster 
computation of the DCT transform. The DCT is the primary bottleneck in the XYZ process.
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The XYZ encoder uses eight consecutive frames for the encoding process. This may pose a very critical 
requirement for the XYZ encoder implementation, which must have a large memory for storing eight 
frames. One way to reduce large memory requirements would be to develop a recursive, real-time 3D DCT 
algorithm, which will update the values of DCT coefficients based on the last frame. In that case, only the 
last frame must be stored in the memory of the XYZ encoder. The challenge is to develop recursive 
equations for DCT coefficients in the form:

where Fk-1 are DCT coefficients calculated using (k-1) frames, Fk are DCT coefficients calculated using k 
frames, and DCTk is the impact of the k-th frame on DCT coefficients.

Similarly, in the XYZ decoder all eight frames must be reconstructed before they are played back. This will 
also require large memory for storing eight consecutive frames during decoding process. Recursive, real-
time inverse 3D DCT algorithms can resolve this problem by first calculating all coefficients of the first 
frame, playing back the frame, and then continuing with the subsequent frames.

Some promising early work was done in mating the wavelet ''subsampling" idea with the DCT block-based 
transform idea. Early results seem to indicate that the combination of subsampling results in fewer block 
artifacts and possibly higher compression ratios, but at the cost of added computational complexity. This 
idea may also be useful in reducing the buffer requirements of the algorithm.

Some early work was also done in the development of fast DCT algorithms based on "Walsh-like" transform 
domains. This work held out the exciting prospect of integer and shift-based transforms approximating the 
DCT with few or no multiplications.
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