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Preface

 

It is well known that in the 1960s the advent of the semiconductor computer and the space program
swiftly brought the field of digital image processing into public focus. Since then the field has
experienced rapid growth and has entered into every aspect of modern technology. Since the early
1980s, digital image sequence processing has been an attractive research area because an image
sequence, as a collection of images, may provide more information than a single image frame. The
increased computational complexity and memory space required for image sequence processing
are becoming more attainable. This is due to more advanced, achievable computational capability
resulting from the continuing progress made in technologies, especially those associated with the
VLSI industry and information processing.

In addition to image and image sequence processing in the digitized domain, facsimile trans-
mission has switched from analog to digital since the 1970s. However, the concept of high definition
television (HDTV) when proposed in the late 1970s and early 1980s continued to be analog. This
has since changed. In the U.S., the first digital system proposal for HDTV appeared in 1990. The
Advanced Television Standards Committee (ATSC), formed by the television industry, recom-
mended the digital HDTV system developed jointly by the seven Grand Alliance members as the
standard, which was approved by the Federal Communication Commission (FCC) in 1997. Today’s
worldwide prevailing concept of HDTV is digital. Digital television (DTV) provides the signal that
can be used in computers. Consequently, the marriage of TV and computers has begun. Direct
broadcasting by satellite (DBS), digital video disks (DVD), video-on-demand (VOD), video games,
and other digital video related media and services are available now, or soon will be.

As in the case of image and video transmission and storage, audio transmission and storage
through some media have changed from analog to digital. Examples include entertainment audio
on compact disks (CD) and telephone transmission over long and medium distances. Digital TV
signals, mentioned above, provide another example since they include audio signals. Transmission
and storage of audio signals through some other media are about to change to digital. Examples
of this include telephone transmission through local area and cable TV.

Although most signals generated from various sensors are analog in nature, the switching from
analog to digital is motivated by the superiority of digital signal processing and transmission over
their analog counterparts. The principal advantage of the digital signal is its robustness against
various noises. Clearly, this results from the fact that only binary digits exist in digital format and
it is much easier to distinguish one state from the other than to handle analog signals.

Another advantage of being digital is ease of signal manipulation. In addition to the development
of a variety of digital signal processing techniques (including image, video, and audio) and specially
designed software and hardware that may be well known, the following development is an example
of this advantage. The digitized information format, i.e., the bitstream, often in a compressed
version, is a revolutionary change in the video industry that enables many manipulations which
are either impossible or very complicated to execute in analog format. For instance, video, audio,
and other data can be first compressed to separate bitstreams and then combined to form a signal
bitstream, thus providing a multimedia solution for many practical applications. Information from
different sources and to different devices can be multiplexed and demultiplexed in terms of the
bitstream. Bitstream conversion in terms of bit rate conversion, resolution conversion, and syntax
conversion becomes feasible. In digital video, content-based coding, retrieval, and manipulation
and the ability to edit video in the compressed domain become feasible. All system-timing signals
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in the digital systems can be included in the bitstream instead of being transmitted separately as
in traditional analog systems.

The digital format is well suited to the recent development of modern telecommunication
structures as exemplified by the Internet and World Wide Web (WWW). Therefore, we can see that
digital computers, consumer electronics (including television and video games), and telecommu-
nications networks are combined to produce an information revolution. By combining audio, video,
and other data, multimedia becomes an indispensable element of modern life. While the pace and
the future of this revolution cannot be predicted, one thing is certain: this process is going to
drastically change many aspects of our world in the next several decades.

One of the enabling technologies in the information revolution is digital data compression,
since the digitization of analog signals causes data expansion. In other words, storage and/or
transmission of digitized signals require more storage space and/or bandwidth than the original
analog signals.

The focus of this book is on image and video compression encountered in multimedia engi-
neering. Fundamentals, algorithms, and standards are the three emphases of the book. It is intended
to serve as a senior/graduate-level text. Its material is sufficient for a one-semester or one-quarter
graduate course on digital image and video coding. For this purpose, at the end of each chapter
there is a section of exercises containing problems and projects for practice, and a section of
references for further reading.

Based on this book, a short course entitled “Image and Video Compression for Multimedia,”
was conducted at Nanyang Technological University, Singapore in March and April, 1999. The
response to the short course was overwhelmingly positive.
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Content and Organization 
of the Book

 

The entire book consists of 20 chapters which can be grouped into four sections:

I. Fundamentals,
II. Still Image Compression,

III. Motion Estimation and Compensation, and
IV. Video Compression.

In the following, we summarize the aim and content of each chapter and each part, and the
relationships between some chapters and between the four parts.

Section I includes the first six chapters. It provides readers with a solid basis for understanding
the remaining three parts of the book. In Chapter 1, the practical needs for image and video
compression is demonstrated. The feasibility of image and video compression is analyzed. Specif-
ically, both statistical and psychovisual redundancies are analyzed and the removal of these redun-
dancies leads to image and video compression. In the course of the analysis, some fundamental
characteristics of the human visual system are discussed. Visual quality measurement as another
important concept in the compression is addressed in both subjective and objective quality measures.
The new trend in combining the virtues of the two measures also is presented. Some information
theory results are presented as the final subject of the chapter.

Quantization, as a crucial step in lossy compression, is discussed in Chapter 2. It is known that
quantization has a direct impact on both the coding bit rate and quality of reconstructed frames.
Both uniform and nonuniform quantization are covered. The issues of quantization distortion,
optimum quantization, and adaptive quantization are addressed. The final subject discussed in the
chapter is pulse code modulation (PCM) which, as the earliest, best-established, and most frequently
applied coding system normally serves as a standard against which other coding techniques are
compared.

Two efficient coding schemes, differential coding and transform coding (TC), are discussed in
Chapters 3 and 4, respectively. Both techniques utilize the redundancies discussed in Chapter 1,
thus achieving data compression. In Chapter 3, the formulation of general differential pulse code
modulation (DPCM) systems is described first, followed by discussions of optimum linear predic-
tion and several implementation issues. Then, delta modulation (DM), an important, simple, special
case of DPCM, is presented. Finally, application of the differential coding technique to interframe
coding and information-preserving differential coding are covered.

Chapter 4 begins with the introduction of the Hotelling transform, the discrete version of the
optimum Karhunen and Loeve transform. Through statistical, geometrical, and basis vector (image)
interpretations, this introduction provides a solid understanding of the transform coding technique.
Several linear unitary transforms are then presented, followed by performance comparisons between
these transforms in terms of energy compactness, mean square reconstruction error, and computa-
tional complexity. It is demonstrated that the discrete cosine transform (DCT) performs better than
others, in general. In the discussion of bit allocation, an efficient adaptive scheme is presented
using thresholding coding devised by Chen and Pratt in 1984, which established a basis for the
international still image coding standard, Joint Photographic (image) Experts Group (JPEG). The
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comparison between DPCM and TC is given. The combination of these two techniques (hybrid
transform/waveform coding), and its application in image and video coding also are described.

The last two chapters in the first part cover some coding (codeword assignment) techniques.
In Chapter 5, two types of variable-length coding techniques, Huffman coding and arithmetic
coding, are discussed. First, an introduction to some basic coding theory is presented, which can
be viewed as a continuation of the information theory results presented in Chapter 1. Then the
Huffman code, as an optimum and instantaneous code, and a modified version are covered. Huffman
coding is a systematic procedure for encoding a source alphabet with each source symbol having
an occurrence probability. As a block code (a fixed codeword having an integer number of bits is
assigned to a source symbol), it is optimum in the sense that it produces minimum coding redun-
dancy. Some limitations of Huffman coding are analyzed. As a stream-based coding technique,
arithmetic coding is distinct from and is gaining more popularity than Huffman coding. It maps a
string of source symbols into a string of code symbols. Free of the integer-bits-per-source-symbol
restriction, arithmetic coding is more efficient. The principle of arithmetic coding and some of its
implementation issues are addressed.

While the two types of variable-length coding techniques introduced in Chapter 5 can be
classified as fixed-length to variable-length coding techniques, both run-length coding (RLC) and
dictionary coding, discussed in Chapter 6, can be classified as variable-length to fixed-length coding
techniques. The discrete Markov source model (another portion of the information theory results)
that can be used to characterize 1-D RLC, is introduced at the beginning of Chapter 6. Both 1-D
RLC and 2-D RLC are then introduced. The comparison between 1-D and 2-D RLC is made in
terms of coding efficiency and transmission error effect. The digital facsimile coding standards
based on 1-D and 2-D RLC are introduced. Another focus of Chapter 6 is on dictionary coding.
Two groups of adaptive dictionary coding techniques, the LZ77 and LZ78 algorithms, are presented
and their applications are discussed. At the end of the chapter, a discussion of international standards
for lossless still image compression is given. For both lossless bilevel and multilevel still image
compression, the respective standard algorithms and their performance comparisons are provided.

Section II of the book (Chapters 7, 8, and 9) is devoted to still image compression. In Chapter 7,
the international still image coding standard, JPEG, is introduced. Two classes of encoding: lossy
and lossless; and four modes of operation: sequential DCT-based mode, progressive DCT-based
mode, lossless mode, and hierarchical mode are covered. The discussion in the first part of the
book is very useful in understanding what is introduced here for JPEG.

Due to its higher coding efficiency and superior spatial and quality scalability features over the
DCT coding technique, the discrete wavelet transform (DWT) coding has been adopted by JPEG-
2000 still image coding standards as the core technology. Chapter 8 begins with an introduction to
wavelet transform (WT), which includes a comparison between WT and the short-time Fourier
transform (STFT), and presents WT as a unification of several existing techniques known as filter
bank analysis, pyramid coding, and subband coding. Then the DWT for still image coding is
discussed. In particular, the embedded zerotree wavelet (EZW) technique and set partitioning in
hierarchical trees (SPIHT) are discussed. The updated JPEG-2000 standard activity is presented.

Chapter 9 presents three nonstandard still image coding techniques: vector quantization (VQ),
fractal, and model-based image coding. All three techniques have several important features such
as very high compression ratios for certain kinds of images, and very simple decoding procedures.
Due to some limitations, however, they have not been adopted by the still image coding standards.
On the other hand, the facial model and face animation technique have been adopted by the MPEG-4
video standard.

Section III, consisting of Chapters 10 through 14, addresses the motion estimation and motion
compensation — key issues in modern video compression. In this sense, Section III is a prerequisite
to Section IV, which discusses various video coding standards. The first chapter in Section III,
Chapter 10, introduces motion analysis and compensation in general. The chapter begins with the
concept of imaging space, which characterizes all images and all image sequences in temporal and
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spatial domains. Both temporal and spatial image sequences are special proper subsets of the
imaging space. A single image becomes merely a specific cross section of the imaging space. Two
techniques in video compression utilizing interframe correlation, both developed in the late 1960s
and early 1970s, are presented. Frame replenishment is relatively simpler in modeling and imple-
mentation. However, motion compensated coding achieves higher coding efficiency and better
quality in reconstructed frames with a 2-D displacement model. Motion analysis is then viewed
from the signal processing perspective. Three techniques in motion analysis are briefly discussed.
They are block matching, pel recursion, and optical flow, which are presented in detail in
Chapters 11, 12, and 13, respectively. Finally, other applications of motion compensation to image
sequence processing are discussed.

Chapter 11 addresses the block matching technique, which presently is the most frequently
used motion estimation technique. The chapter first presents the original block matching technique
proposed by Jain and Jain. Several different matching criteria and search strategies are then
discussed. A thresholding multiresolution block matching algorithm is described in some detail so
as to provide an insight into the technique. Then, the limitations of block matching techniques are
analyzed, from which several new improvements are presented. They include hierarchical block
matching, multigrid block matching, predictive motion field segmentation, and overlapped block
matching. All of these techniques modify the nonoverlapped, equally spaced, fix-sized, small
rectangular block model proposed by Jain and Jain in some way so that the motion estimation is
more accurate and has fewer block artifacts and less overhead side information.

The pel recursive technique is discussed in Chapter 12. First, determination of 2-D displacement
vectors is converted via the use of the displaced frame difference (DFD) concept to a minimization
problem. Second, descent methods in optimization theory are discussed. In particular, the steepest
descent method and Newton-Raphson method are addressed in terms of algorithm, convergence,
and implementation issues such as selection of step-size and initial value. Third, the first pel
recursive techniques proposed by Netravali and Robbins are presented. Finally, several improvement
algorithms are described.

Optical flow, the third technique in motion estimation for video coding, is covered in Chapter 13.
First, some fundamental issues in motion estimation are addressed. They include the difference
and relationships between 2-D motion and optical flow, the aperture problem, and the ill-posed
nature of motion estimation. The gradient-based and correlation-based approaches to optical flow
determination are then discussed in detail. For the former, the Horn and Schunck algorithm is
illustrated as a representative technique and some other algorithms are briefly introduced. For the
latter, the Singh method is introduced as a representative technique. In particular, the concepts of
conservation information and neighborhood information are emphasized. A correlation-feedback
algorithm is presented in detail to provide an insight into the correlation technique. Finally, multiple
attributes for conservation information are discussed.

Chapter 14, the last chapter in Section III, provides a further discussion and summary of 2-D
motion estimation. First, a few features common to all three major techniques discussed in
Chapters 11, 12, and 13 are addressed. They are the aperture and ill-posed inverse problems,
conservation and neighborhood information, occlusion and disocclusion, rigid and nonrigid motion.
Second, a variety of different classifications of motion estimation techniques is presented. Frequency
domain methods are discussed as well. Third, a performance comparison between the three major
techniques in motion estimation is made. Finally, the new trends in motion estimation are presented.

Section IV, discussing various video coding standards, is covered in Chapters 15 through 20.
Chapter 15 presents fundamentals of video coding. First, digital video representation is discussed.
Second, the rate distortion function of the video signal is covered — the fourth portion of the
information theory results presented in this book. Third, various digital video formats are discussed.
Finally, the current digital image/video coding standards are summarized. The full names and
abbreviations of some organizations, the completion time, and the major features of various
image/video coding standards are listed in two tables.
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Chapter 16 is devoted to video coding standards MPEG-1/2, which are the most widely used
video coding standards at the present. The basic technique of MPEG-1/2 is a full-motion-compen-
sated DCT and DPCM hybrid coding algorithm. The features of MPEG-1 (including layered data
structure) and the MPEG-2 enhancements (including field/frame modes for supporting the interlaced
video input and scalability extension) are described. Issues of rate control, optimum mode decision,
and multiplexing are discussed.

Chapter 17 presents several application examples of MPEG-1/2 video standards. They are the
ATSC DTV standard approved by the FCC in the U.S., transcoding, the down-conversion decoder,
and error concealment. Discussion of these applications can enhance the understanding and mas-
tering of MPEG-1/2 standards. Some research work is reported that may be helpful for graduate
students to broaden their knowledge of digital video processing — an active research field.

Chapter 18 presents the MPEG-4 video standard. The predominant feature of MPEG-4, content-
based manipulation, is emphasized. The underlying concept of audio/visual objects (AVOs) is
introduced. The important functionalities of MPEG-4: content-based interactivity (including bit-
stream editing, synthetic and natural hybrid coding [SNHC]), content-based coding efficiency, and
universal access (including content-based scalability), are discussed. Since neither MPEG-1 nor
MPEG-2 includes synthetic video and content-based coding, the most important application of
MPEG-4 is in a multimedia environment.

Chapter 19 introduces ITU-T video coding standards H.261 and H.263, which are utilized
mainly for videophony and videoconferencing. The basic technical details of H.261, the earliest
video coding standard, are presented. The technical improvements by which H.263 achieves high
coding efficiency are discussed. Features of H.263+, H.263++, and H.26L are presented.

Chapter 20 covers the systems part of MPEG — multiplexing/demultiplexing and synchronizing
the coded audio and video as well as other data. Specifically, MPEG-2 systems and MPEG-4
systems are introduced. In MPEG-2 systems, two forms: Program Stream and Transport Stream,
are described. In MPEG-4 systems, some multimedia application related issues are discussed.
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1

 

Introduction

 

Image and video data compression* refers to a process in which the amount of data used to represent
image and video is reduced to meet a bit rate requirement (below or at most equal to the maximum
available bit rate), while the quality of the reconstructed image or video satisfies a requirement for
a certain application and the complexity of computation involved is affordable for the application.
The block diagram in Figure 1.1 shows the functionality of image and video data compression in
visual transmission and storage. Image and video data compression has been found to be necessary
in these important applications, because the huge amount of data involved in these and other
applications usually greatly exceeds the capability of today’s hardware despite rapid advancements
in the semiconductor, computer, and other related industries.

It is noted that information and data are two closely related yet different concepts. Data represent
information, and the quantity of data can be measured. In the context of digital image and video,
data are usually measured by the number of binary units (bits). Information is defined as knowledge,
facts, and news according to the Cambridge International Dictionary of English. That is, while data
are the 

 

representations

 

 of knowledge, facts, and news, information 

 

is

 

 the knowledge, facts, and
news. Information, however, may also be quantitatively measured.

The bit rate (also known as the coding rate), is an important parameter in image and video
compression and is often expressed in a unit of bits per second, which is suitable in visual
communication. In fact, an example in Section 1.1 concerning videophony (a case of visual trans-
mission) uses the bit rate in terms of bits per second (bits/sec, or simply bps). In the application
of image storage, the bit rate is usually expressed in a unit of bits per pixel (bpp). The term pixel
is an abbreviation for picture element and is sometimes referred to as pel. In information source
coding, the bit rate is sometimes expressed in a unit of bits per symbol. In Section 1.4.2, when
discussing noiseless source coding theorem, we consider the bit rate as the average length of
codewords in the unit of bits per symbol.

The required quality of the reconstructed image and video is application dependent. In medical
diagnoses and some scientific measurements, we may need the reconstructed image and video to
mirror the original image and video. In other words, only reversible, information-preserving
schemes are allowed. This type of compression is referred to as lossless compression. In applications
such as motion pictures and television (TV), a certain amount of information loss is allowed. This
type of compression is called lossy compression.

From its definition, one can see that image and video data compression involves several
fundamental concepts including information, data, visual quality of image and video, and compu-
tational complexity. This chapter is concerned with several fundamental concepts in image and
video compression. First, the necessity as well as the feasibility of image and video data compression
are discussed. The discussion includes the utilization of several types of redundancies inherent in
image and video data, and the visual perception of the human visual system (HVS). Since the
quality of the reconstructed image and video is one of our main concerns, the subjective and
objective measures of visual quality are addressed. Then we present some fundamental information
theory results, considering that they play a key role in image and video compression.

 

* In this book, the terms image and video data compression, image and video compression, and image and video coding
are synonymous.
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1.1 PRACTICAL NEEDS FOR IMAGE AND VIDEO COMPRESSION

 

Needless to say, visual information is of vital importance if human beings are to perceive, recognize,
and understand the surrounding world. With the tremendous progress that has been made in
advanced technologies, particularly in very large scale integrated (VLSI) circuits, and increasingly
powerful computers and computations, it is becoming more than ever possible for video to be
widely utilized in our daily lives. Examples include videophony, videoconferencing, high definition
TV (HDTV), and the digital video disk (DVD), to name a few.

Video as a sequence of video frames, however, involves a huge amount of data. Let us take a
look at an illustrative example. Assume the present switch telephone network (PSTN) modem can
operate at a maximum bit rate of 56,600 bits per second. Assume each video frame has a resolution
of 288 by 352 (288 lines and 352 pixels per line), which is comparable with that of a normal TV
picture and is referred to as common intermediate format (CIF). Each of the three primary colors
RGB (red, green, blue) is represented for 1 pixel with 8 bits, as usual, and the frame rate in
transmission is 30 frames per second to provide a continuous motion video. The required bit rate,
then, is 288 

 

¥

 

 352 

 

¥

 

 8 

 

¥

 

 3 

 

¥

 

 30 = 72,990,720 bps. Therefore, the ratio between the required bit
rate and the largest possible bit rate is about 1289. This implies that we have to compress the video
data by at least 1289 times in order to accomplish the transmission described in this example. Note
that an audio signal has not yet been accounted for yet in this illustration.

With increasingly complex video services such as 3-D movies and 3-D games, and high video
quality such as HDTV, advanced image and video data compression is necessary. It becomes an
enabling technology to bridge the gap between the required huge amount of video data and the
limited hardware capability.

 

1.2 FEASIBILITY OF IMAGE AND VIDEO COMPRESSION

 

In this section we shall see that image and video compression is not only a necessity for the rapid
growth of digital visual communications, but it is also feasible. Its feasibility rests with two types
of redundancies, i.e., statistical redundancy and psychovisual redundancy. By eliminating these
redundancies, we can achieve image and video compression.

 

1.2.1 S

 

TATISTICAL

 

 R

 

EDUNDANCY

 

Statistical redundancy can be classified into two types: interpixel redundancy and coding redun-
dancy. By interpixel redundancy we mean that pixels of an image frame and pixels of a group of
successive image or video frames are not statistically independent. On the contrary, they are
correlated to various degrees. (Note that the differences and relationships between image and video
sequences are discussed in Chapter 10, when we begin to discuss video compression.) This type
of interpixel correlation is referred to as interpixel redundancy. Interpixel redundancy can be divided
into two categories, spatial redundancy and temporal redundancy. By coding redundancy we mean
the statistical redundancy associated with coding techniques.

 

FIGURE 1.1

 

Image and video compression for visual transmission and storage.
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1.2.1.1 Spatial Redundancy

 

Spatial redundancy represents the statistical correlation between pixels within an image frame.
Hence it is also called intraframe redundancy.

It is well known that for most properly sampled TV signals the normalized autocorrelation
coefficients along a row (or a column) with a one-pixel shift is very close to the maximum value
of 1. That is, the intensity values of pixels along a row (or a column) have a very high autocorrelation
(close to the maximum autocorrelation) with those of pixels along the same row (or the same
column), but shifted by a pixel. This does not come as a surprise because most of the intensity
values change continuously from pixel to pixel within an image frame except for the edge regions.
This is demonstrated in Figure 1.2. Figure 1.2(a) is a normal picture — a boy and a girl in a park,
and is of a resolution of 883 by 710. The intensity profiles along the 318th row and the 262nd
column are depicted in Figures 1.2(b) and (c), respectively. For easy reference, the positions of the
318th row and 262nd column in the picture are shown in Figure 1.2(d). That is, the vertical axis
represents intensity values, while the horizontal axis indicates the pixel position within the row or
the column. These two plots (shown in Figures 1.2(b) and 1.2(c)) indicate that intensity values
often change gradually from one pixel to the other along a row and along a column.

The study of the statistical properties of video signals can be traced back to the 1950s. Knowing
that we must study and understand redundancy in order to remove redundancy, Kretzmer designed
some experimental devices such as a picture autocorrelator and a probabiloscope to measure several
statistical quantities of TV signals and published his outstanding work in (Kretzmer, 1952). He
found that the autocorrelation in both horizontal and vertical directions exhibits similar behaviors,
as shown in Figure 1.3. Autocorrelation functions of several pictures with different complexities
were measured. It was found that from picture to picture, the shape of the autocorrelation curves
ranges from remarkably linear to somewhat exponential. The central symmetry with respect to the
vertical axis and the bell-shaped distribution, however, remains generally the same. When the pixel
shifting becomes small, it was found that the autocorrelation is high. This “local” autocorrelation
can be as high as 0.97 to 0.99 for one- or two-pixel shifting. For very detailed pictures, it can be
from 0.43 to 0.75. It was also found that autocorrelation generally has no preferred direction.

The Fourier transform of autocorrelation, the power spectrum, is known as another important
function in studying statistical behavior. Figure 1.4 shows a typical power spectrum of a television
signal (Fink, 1957; Connor et al., 1972). It is reported that the spectrum is quite flat until 30 kHz
for a broadcast TV signal. Beyond this line frequency the spectrum starts to drop at a rate of around
6 dB per octave. This reveals the heavy concentration of video signals in low frequencies, consid-
ering a nominal bandwidth of 5 MHz.

Spatial redundancy implies that the intensity value of a pixel can be 

 

guessed

 

 from that of its
neighboring pixels. In other words, it is not necessary to represent each pixel in an image frame
independently. Instead, one can predict a pixel from its neighbors. Predictive coding, also known
as differential coding, is based on this observation and is discussed in Chapter 3. The direct
consequence of recognition of spatial redundancy is that by removing a large amount of the
redundancy (or utilizing the high correlation) within an image frame, we may save a lot of data in
representing the frame, thus achieving data compression.

 

1.2.1.2 Temporal Redundancy

 

Temporal redundancy is concerned with the statistical correlation between pixels from successive
frames in a temporal image or video sequence. Therefore, it is also called interframe redundancy.

Consider a temporal image sequence. That is, a camera is fixed in the 3-D world and it takes
pictures of the scene one by one as time goes by. As long as the time interval between two
consecutive pictures is short enough, i.e., the pictures are taken densely enough, we can imagine
that the similarity between two neighboring frames is strong. Figures 1.5(a) and (b) show, respectively,
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FIGURE 1.2

 

(a) A picture of “Boy and Girl,” (b) Intensity profile along 318th row, (c) Intensity profile
along 262nd column, (d) Positions of 318th row and 262nd column.
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the 21st and 22nd frames of the “Miss America” sequence. The frames have a resolution of 176
by 144. Among the total of 25,344 pixels, only 3.4% change their gray value by more than 1% of
the maximum gray value (255 in this case) from the 21st frame to the 22nd frame. This confirms
an observation made in (Mounts, 1969): for a videophone-like signal with moderate motion in the
scene, on average, less than 10% of pixels change their gray values between two consecutive frames
by an amount of 1% of the peak signal. The high interframe correlation was reported in (Kretzmer,
1952). There, the autocorrelation between two adjacent frames was measured for two typical
motion-picture films. The measured autocorrelations are 0.80 and 0.86. In summary, pixels within
successive frames usually bear a strong similarity or correlation.

As a result, we may predict a frame from its neighboring frames along the temporal dimension.
This is referred to as interframe predictive coding and is discussed in Chapter 3. A more precise,
hence, more efficient interframe predictive coding scheme, which has been in development since

 

FIGURE 1.2

 

 (continued)

 

FIGURE 1.3

 

Autocorrelation in the horizontal direction for some pictures. (After Kretzmer, 1952.)
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the 1980s, uses motion analysis. That is, it considers that the changes from one frame to the next
are mainly due to the motion of some objects in the frame. Taking this motion information into
consideration, we refer to the method as motion compensated predictive coding. Both interframe
correlation and motion compensated predictive coding are covered in detail in Chapter 10.

Removing a large amount of temporal redundancy leads to a great deal of data compression.
At present, all the international video coding standards have adopted motion compensated predictive
coding, which has been a vital factor to the increased use of digital video in digital media.

 

1.2.1.3 Coding Redundancy

 

As we discussed, interpixel redundancy is concerned with the correlation between pixels. That is,
some information associated with pixels is redundant. The psychovisual redundancy, which is
discussed in the next subsection, is related to the information that is psychovisually redundant, i.e.,
to which the HVS is not sensitive. Hence, it is clear that both the interpixel and psychovisual
redundancies are somehow associated with some information contained in the image and video.
Eliminating these redundancies, or utilizing these correlations, by using fewer bits to represent the

 

FIGURE 1.4

 

Typical power spectrum of a TV broadcast signal. (Adapted from Fink, D.G., 

 

Television
Engineering Handbook,

 

 McGraw-Hill, New York, 1957.)

 

FIGURE 1.5

 

(a) The 21st frame, and (b) 22nd frame of the “Miss America” sequence.
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information results in image and video data compression. In this sense, the coding redundancy is
different. It has nothing to do with information redundancy but with the representation of infor-
mation, i.e., coding itself. To see this, let us take a look at the following example.

One illustrative example is provided in Table 1.1. The first column lists five distinct symbols
that need to be encoded. The second column contains occurrence probabilities of these five symbols.
The third column lists code 1, a set of codewords obtained by using uniform-length codeword
assignment. (This code is known as the natural binary code.) The fourth column shows code 2, in
which each codeword has a variable length. Therefore, code 2 is called the variable-length code.
It is noted that the symbol with a higher occurrence probability is encoded with a shorter length.
Let us examine the efficiency of the two different codes. That is, we will examine which one
provides a shorter average length of codewords. It is obvious that the average length of codewords
in code 1, 

 

L

 

avg

 

,1

 

, is three bits. The average length of codewords in code 2, 

 

L

 

avg

 

,2

 

, can be calculated
as follows.

(1.1)

Therefore, it is concluded that code 2 with variable-length coding is more efficient than code 1
with natural binary coding.

From this example, we can see that for the same set of symbols different codes may perform
differently. Some may be more efficient than others. For the same amount of information, code 1
contains some redundancy. That is, some data in code 1 are not necessary and can be removed
without any effect. Huffman coding and arithmetic coding, two variable-length coding techniques,
will be discussed in Chapter 5.

From the study of coding redundancy, it is clear that we should search for more efficient coding
techniques in order to compress image and video data.

 

1.2.2 P

 

SYCHOVISUAL

 

 R

 

EDUNDANCY

 

While interpixel redundancy inherently rests in image and video data, psychovisual redundancy
originates from the characteristics of the human visual system (HVS).

It is known that the HVS perceives the outside world in a rather complicated way. Its response
to visual stimuli is not a linear function of the strength of some physical attributes of the stimuli,
such as intensity and color. HVS perception is different from camera sensing. In the HVS, visual
information is not perceived equally; some information may be more important than other infor-
mation. This implies that if we apply fewer data to represent less important visual information,
perception will not be affected. In this sense, we see that some visual information is psychovisually
redundant. Eliminating this type of psychovisual redundancy leads to data compression.

In order to understand this type of redundancy, let us study some properties of the HVS. We
may model the human vision system as a cascade of two units (Lim, 1990), as depicted in Figure 1.6.

 

TABLE 1.1
An Illustrative Example

 

Symbol Occurrence Probability Code 1 Code 2

 

a

 

1

 

0.1 000 0000
a

 

2

 

0.2 001 01
a

 

3

 

0.5 010 1
a

 

4

 

0.05 011 0001
a

 

5

 

0.15 100 001

Lavg, . . . . . .2 4 0 1 2 0 2 1 0 5 4 0 05 3 0 15 1 95= ¥ + ¥ + ¥ + ¥ + ¥ = bits per symbol
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The first one is a low-level processing unit which converts incident light into a neural signal. The
second one is a high-level processing unit, which extracts information from the neural signal. While
much research has been carried out to investigate low-level processing, high-level processing
remains wide open. The low-level processing unit is known as a nonlinear system (approximately
logarithmic, as shown below). While a great body of literature exists, we will limit our discussion
only to video compression-related results. That is, several aspects of the HVS which are closely
related to image and video compression are discussed in this subsection. They are luminance
masking, texture masking, frequency masking, temporal masking, and color masking. Their rele-
vance in image and video compression is addressed. Finally, a summary is provided in which it is
pointed out that all of these features can be unified as one: differential sensitivity. This seems to
be the most important feature of human visual perception.

 

1.2.2.1 Luminance Masking

 

Luminance masking concerns the brightness perception of the HVS, which is the most fundamental
aspect among the five to be discussed here. Luminance masking is also referred to as 

 

luminance
dependence

 

 (Connor et al., 1972), and 

 

contrast masking

 

 (Legge and Foley, 1980, Watson, 1987).
As pointed in (Legge and Foley, 1980), the term 

 

masking 

 

usually refers to a destructive interaction
or interference among stimuli that are closely coupled in time or space. This may result in a failure
in detection, or errors in recognition. Here, we are mainly concerned with the detectability of one
stimulus when another stimulus is present simultaneously. The effect of one stimulus on the
detectability of another, however, does not have to decrease detectability. Indeed, there are some
cases in which a low-contrast masker increases the detectability of a signal. This is sometimes
referred to as 

 

facilitation

 

, but in this discussion we only use the term masking.
Consider the monochrome image shown in Figure 1.7. There, a uniform disk-shaped object

with a gray level (intensity value) 

 

I

 

1

 

 is imposed on a uniform background with a gray level 

 

I

 

2

 

. Now
the question is under what circumstances can the disk-shaped object be discriminated from the
background by the HVS? That is, we want to study the effect of one stimulus (the background in
this example, the masker) on the detectability of another stimulus (in this example, the disk). Two
extreme cases are obvious. That is, if the difference between the two gray levels is quite large, the
HVS has no problem with discrimination, or in other words the HVS notices the object from the
background. If, on the other hand, the two gray levels are the same, the HVS cannot identify the
existence of the object. What we are concerned with here is the critical threshold in the gray level
difference for discrimination to take place.

If we define the threshold 

 

D

 

I

 

 as such a gray level difference 

 

D

 

I

 

 = 

 

I

 

1

 

 – 

 

I

 

2

 

 that the object can be
noticed by the HVS with a 50% chance, then we have the following relation, known as 

 

contrast
sensitivity function

 

, according to Weber’s law:

(1.2)

 

FIGURE 1.6

 

A two-unit cascade model of the human visual system (HVS).

DI

I
ª constant
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where the constant is about 0.02. Weber’s law states that for a relatively very wide range of I, the
threshold for discrimination, 

 

D

 

I

 

, is directly proportional to the intensity 

 

I

 

. The implication of this
result is that when the background is bright, a larger difference in gray levels is needed for the
HVS to discriminate the object from the background. On the other hand, the intensity difference
required could be smaller if the background is relatively dark. It is noted that Equation 1.2 implies
a logarithmic response of the HVS, and Weber’s law holds for all other human senses as well.

Further research has indicated that the luminance threshold 

 

D

 

I

 

 increases more slowly than is
predicted by Weber’s law. Some more accurate contrast sensitivity functions have been presented
in the literature. In (Legge and Foley, 1980), it was reported that an exponential function replaces
the linear relation in Weber’s law. The following exponential expression is reported in (Watson,
1987).

(1.3)

where 

 

I

 

0

 

 is the luminance detection threshold when the gray level of the background is equal to
zero, i.e., 

 

I

 

 = 0, and 

 

a

 

 is a constant, approximately equal to 0.7.
Figure 1.8 shows a picture uniformly corrupted by additive white Gaussian noise (AWGN). It

can be observed that the noise is more visible in the dark areas than in the bright areas if comparing,
for instance, the dark portion and the bright portion of the cloud above the bridge. This indicates
that noise filtering is more necessary in the dark areas than in the bright areas. The lighter areas
can accommodate more additive noise before the noise becomes visible. This property has found
application in embedding digital watermarks (Huang and Shi, 1998).

The direct impact that luminance masking has on image and video compression is related to
quantization, which is covered in detail in the next chapter. Roughly speaking, quantization is a
process that converts a continuously distributed quantity into a set of many finitely distinct quan-
tities. The number of these distinct quantities (known as quantization levels) is one of the keys in
quantizer design. It significantly influences the resulting bit rate and the quality of the reconstructed
image and video. An effective quantizer should be able to minimize the visibility of quantization
error. The contrast sensitivity function provides a guideline in analysis of the visibility of quanti-
zation error. Therefore, it can be applied to quantizer design. Luminance masking suggests a
nonuniform quantization scheme that takes the contrast sensitivity function into consideration. One
such example was presented in (Watson, 1987).

 

FIGURE 1.7
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1.2.2.2 Texture Masking

 

Texture masking is sometimes also called 

 

detail dependence

 

 (Connor et al., 1972), 

 

spatial masking

 

(Netravali and Presada, 1977; Lim, 1990), or 

 

activity masking

 

 (Mitchell et al., 1997). It states that
the discrimination threshold increases with increasing picture detail. That is, the stronger the texture,
the larger the discrimination threshold. In Figure 1.8, it can be observed that the additive random
noise is less pronounced in the strongly textured area than in the smooth area if comparing, for
instance, the dark portion of the cloud (the upper-right corner of the picture) with the water area
(the lower right corner of the picture). This is a confirmation of texture masking.

In Figure 1.9(b), the number of quantization levels decreases from 256, as in Figure 1.9(a), to
16. That is, we use only four bits instead of eight bits to represent the intensity value for each pixel.

 

FIGURE 1.8

 

The Burrard bridge in Vancouver. (a) Original picture (courtesy of Minhuai Shi). (b) Picture
uniformly corrupted by additive white Gaussian noise.
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The unnatural contours caused by coarse quantization can be noticed in the relatively uniform regions,
compared with Figure 1.9(a). This phenomenon was first noted in (Goodall, 1951) and is called 

 

false
contouring

 

 (Gonzalez and Woods, 1992). Now we see that the false contouring can be explained by
using texture masking, since texture masking indicates that the human eye is more sensitive to the
smooth region than to the textured region, where intensity exhibits a high variation. A direct impact
on image and video compression is that the number of quantization levels, which affects the bit rate
significantly, should be adapted according to the intensity variation of image regions.

 

1.2.2.3 Frequency Masking

 

While the above two characteristics are picture dependent in nature, frequency masking is picture
independent. It states that the discrimination threshold increases with frequency increase. It is also
referred to as 

 

frequency dependence

 

.

 

FIGURE 1.9

 

Christmas in Winorlia. (a) Original. (b) Four-bit quantized. (c) Improved IGS quantized with
four bits.



 

© 2000 by CRC Press LLC

 

Frequency masking can be well illustrated in using Figure 1.9 above. In Figure 1.9(c), high-
frequency random noise has been added to the original image before quantization. This method is
referred to as the improved gray-scale (IGS) quantization (Gonzalez and Woods, 1992). With the
same number of quantization levels, 16, as in Figure 1.9(b), the picture quality of Figure 1.9(c) is
improved dramatically compared with that of Figure 1.9(b): the annoying false contours have
disappeared despite an increase in the root mean square value of the total noise in Figure 1.9(c).
This is due to the fact that the low-frequency quantization error is converted to the high-frequency
noise, and that the HVS is less sensitive to the high-frequency content. We thus see, as pointed out
in (Connor, 1972), that our human eyes function like a low-pass filter.

Owing to frequency masking in the transform domain, say, the discrete cosine transform (DCT)
domain, we can drop some high-frequency coefficients with small magnitudes to achieve data
compression without noticeably affecting the perception of the HVS. This leads to what is called
transform coding, which is discussed in Chapter 4.

 

1.2.2.4 Temporal Masking

 

Temporal masking is another picture-independent feature of the HVS. It states that it takes a while
for the HVS to adapt itself to the scene when the scene changes abruptly. During this transition
the HVS is not sensitive to details. The masking takes place both before and after the abrupt change.
It is called forward temporal masking if it happens after the scene change. Otherwise, it is referred
to backward temporal masking (Mitchell et al., 1997).

This implies that one should take temporal masking into consideration when allocating data in
image and video coding.

 

1.2.2.5 Color Masking

 

Digital color image processing is gaining increasing popularity due to the wide application of color
images in modern life. As mentioned at the beginning of the discussion about psychovisual redun-
dancy, we are not going to cover all aspects of the perception of the HVS. Instead, we cover only
those aspects related to psychovisual redundancy, thus to image and video compression. Therefore,
our discussion here on color perception is by no means exhaustive.

 

FIGURE 1.9

 

 (continued)
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In physics, it is known that any visible light corresponds to an electromagnetic spectral distri-
bution. Therefore, a color, as a sensation of visible light, is an energy with an intensity as well as
a set of wavelengths associated with the electromagnetic spectrum. Obviously, intensity is an
attribute of visible light. The composition of wavelengths is another attribute: chrominance. There
are two elements in the chrominance attribute: 

 

hue

 

 and 

 

saturation

 

. The hue of a color is characterized
by the dominant wavelength in the composition. Saturation is a measure of the purity of a color.
A pure color has a saturation of 100%, whereas white light has a saturation of 0.

 

RGB model

 

 — The red-green-blue (RGB) primary color system is the best known of several
color systems. This is due to the following feature of the human perception of color. The color-
sensitive area in the HVS consists of three different sets of cones and each set is sensitive to the
light of one of the three primary colors: red, green, and blue. Consequently, any color sensed by
the HVS can be considered as a particular linear combination of the three primary colors. Many
research studies are available, the CIE (Commission Internationale de l’Eclairage) chromaticity
diagram being a well-known example. These results can be easily found in many classic optics and
digital image processing texts.

The RGB model is used mainly in color image acquisition and display. In color signal processing
including image and video compression, however, the luminance-chrominance color system is more
efficient and, hence, widely used. This has something to do with the color perception of the HVS.
It is known that the HVS is more sensitive to green than to red, and is least sensitive to blue. An
equal representation of red, green, and blue leads to inefficient data representation when the HVS
is the ultimate viewer. Allocating data only to the information that the HVS can perceive, on the
other hand, can make video coding more efficient.

Luminance is concerned with the perceived brightness, while chrominance is related to the
perception of hue and saturation of color. Roughly speaking, the luminance-chrominance represen-
tation agrees more with the color perception of the HVS. This feature makes the luminance-
chrominance color models more suitable for color image processing. A good example was presented
in (Gonzalez and Woods, 1992), about histogram equalization. It is well known that applying
histogram equalization can bring out some details originally hidden in dark regions. Applying
histogram equalization to the RGB components separately can certainly achieve the goal. In doing
so, however, the chrominance elements, hue and saturation, have been changed, thus leading to
color distortion. With a luminance-chrominance model, histogram equalization can be applied to
the luminance component only. Hence, the details in the dark regions are brought out, whereas the
chrominance elements remain unchanged, producing no color distortion. With the luminance com-
ponent Y serving as a black-white signal, a luminance-chrominance color model offers compatibility
with black and white TV systems. This is another virtue of luminance-chrominance color models.

It is known that a nonlinear relationship (basically a power function) exists between electrical
signal magnitude and light intensity for both cameras and CRT-based display monitors (Haskell
et al., 1997). That is, the light intensity is a linear function of the signal voltage raised to the power
of 

 

g

 

. It is a common practice to correct this nonlinearity before transmission. This is referred to as
gamma correction. The gamma-corrected RGB components are denoted by R

 

¢

 

, G

 

¢

 

, and B

 

¢

 

, respec-
tively. They are used in the discussion on various color models. For the sake of notational brevity,
we simply use R, G, and B instead of R

 

¢

 

, G

 

¢

 

 and B

 

¢

 

 in the following discussion, while keeping the
gamma-correction in mind.

Discussed next are several different luminance-chrominance color models: HSI, YUV, YCbCr,
and YDbDr.

 

HSI model 

 

—

 

 

 

In this model, I stands for the intensity component, H for the hue component,
and S for saturation. One merit of this color system is that the intensity component is decoupled
from the chromatic components. As analyzed above, this decoupling usually facilitates color image
processing tasks. Another merit is that this model is closely related to the way the HVS perceives
color pictures. Its main drawback is the complicated conversion between RGB and HSI models. A
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detailed derivation of the conversion may be found in (Gonzalez and Woods, 1992). Because of
this complexity, the HSI model is not used in any TV systems.

 

YUV model 

 

—

 

 

 

In this model, Y denotes the luminance component, and U and V are the two
chrominance components. The luminance Y can be determined from the RGB model via the
following relation:

(1.4)

It is noted that the three weights associated with the three primary colors, R, G, and B, are not the
same. Their different magnitudes reflect different responses of the HVS to different primary colors.

Instead of being directly related to hue and saturation, the other two chrominance components,
U

 

 

 

and V, are defined as color differences as follows.

(1.5)

(1.6)

In this way, the YUV model lowers computational complexity. It has been used in PAL (Phase
Alternating Line) TV systems. Note that PAL is an analog composite color TV standard and is
used in most European countries, some Asian countries, and Australia. By composite systems, we
mean both the luminance and chrominance components of the TV signals are multiplexed within
the same channel. For completeness, an expression of YUV in terms of RGB is listed below.

(1.7)

 

YIQ model

 

 — This color space has been utilized in NTSC (National Television Systems
Committee) TV systems for years. Note that NTSC is an analog composite color TV standard and
is used in North America and Japan. The Y component is still the luminance. The two chrominance
components are the linear transformation of the U and V components defined in the YUV model.
Specifically,

(1.8)

(1.9)

Substituting the U and V expressed in Equations 1.4 and 1.5 into the above two equations, we can
express YIQ directly in terms of RGB. That is,

(1.10)

 

YDbDr model

 

 — The YDbDr model is used in the SECAM (Sequential Couleur a Memoire)
TV system. Note that SECAM is used in France, Russia, and some eastern European countries.
The relationship between YDbDr and RGB appears below.
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(1. 11)

That is,

(1.12)

(1.13)

 

YCbCr model

 

 — From the above, we can see that the U and V chrominance components are
differences between the gamma-corrected color B and the luminance Y, and the gamma-corrected
R and the luminance Y, respectively. The chrominance component pairs I and Q, and Db and Dr are
both linear transforms of U and V. Hence they are very closely related to each other. It is noted that
U and V may be negative as well. In order to make chrominance components nonnegative, the Y, U,
and V are scaled and shifted to produce the YCbCr model, which is used in the international coding
standards JPEG and MPEG. (These two standards are covered in Chapters 7 and 16, respectively.)

(1.14)

 

1.2.2.6 Color Masking and Its Application in Video Compression

 

It is well-known that the HVS is much more sensitive to the luminance component than to the
chrominance components. Following Van Ness and Bouman (1967) and Mullen (1985), there is a
figure in Mitchell et al. (1997) to quantitatively illustrate the above statement. A modified version
is shown in Figure 1.10. There, the abscissa represents spatial frequency in the unit of cycles per
degree (cpd), while the ordinate is the contrast threshold for a just detectable change in the sinusoidal
testing signal. Two observations are in order. First, for each of the three curves, i.e., curves for the
luminance component Y and the opposed-color chrominance, the contrast sensitivity increases when
spatial frequency increases, in general. This agrees with frequency masking discussed above.
Second, for the same contrast threshold, we see that the luminance component corresponds to a
much higher spatial frequency. This is an indication that the HVS is much more sensitive to
luminance than to chrominance. This statement can also be confirmed, perhaps more easily, by
examining those spatial frequencies at which all three curves have data available. Then we can see
that the contrast threshold of luminance is much lower than that of the chrominance components.

The direct impact of color masking on image and video coding is that by utilizing this
psychovisual feature we can allocate more bits to the luminance component than to the chrominance
components. This leads to a common practice in color image and video coding: using full resolution
for the intensity component, while using a 2 by 1 subsampling both horizontally and vertically for
the two chrominance components. This has been adopted in related international coding standards,
which will be discussed in Chapter 16.

 

1.2.2.7 Summary: Differential Sensitivity

 

In this subsection we discussed luminance masking, texture masking, frequency masking, temporal
masking, and color masking. Before we enter the next subsection, let us summarize what we have
discussed so far.
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We see that luminance masking, also known as contrast masking, is of fundamental importance
among several types of masking. It states that the sensitivity of the eyes to a stimulus depends on
the intensity of another stimulus. Thus it is a differential sensitivity. Both the texture (detail or
activity) and frequency of another stimulus significantly influence this differential sensitivity. The
same mechanism exists in color perception, where the HVS is much more sensitive to luminance
than to chrominance. Therefore, we conclude that differential sensitivity is the key in studying
human visual perception. These features can be utilized to eliminate psychovisual redundancy, and
thus compress image and video data.

It is also noted that variable quantization, which depends on activity and luminance in different
regions, seems to be reasonable from a data compression point of view. Its practical applicability,
however, is somehow questionable. That is, some experimental work does not support this expec-
tation (Mitchell et al., 1997).

It is noted that this differential sensitivity feature of the HVS is common to human perception.
For instance, there is also forward and backward temporal masking in human audio perception.

 

1.3 VISUAL QUALITY MEASUREMENT

 

As the definition of image and video compression indicates, image and video quality is an important
factor in dealing with image and video compression. For instance, in evaluating two different
compression methods we have to base the evaluation on some definite image and video quality.
When both methods achieve the same quality of reconstructed image and video, the one that requires
less data is considered to be superior to the other. Alternatively, with the same amount of data the
method providing a higher-quality reconstructed image or video is considered the better method.
Note that here we have not considered other performance criteria, such as computational complexity.

 

FIGURE 1.10

 

Contrast sensitivity vs. spatial frequency. (Revised from Van Ness and Bouman [1967] and
Mullen [1985].)
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Surprisingly, however, it turns out that the measurement of image and video quality is not
straightforward. There are two types of visual quality assessments. One is objective assessment
(using electrical measurements), and the other is subjective assessment (using human observers).
Each has its merits and drawbacks. A combination of these two methods is now widely utilized in
practice. In this section we first discuss subjective visual quality measurement, followed by objective
quality measurement.

 

1.3.1 S

 

UBJECTIVE

 

 Q

 

UALITY

 

 M

 

EASUREMENT

 

It is natural that the visual quality of reconstructed video frames should be judged by human viewers
if they are to be the ultimate receivers of the data (see Figure 1.1). Therefore, the subjective visual
quality measure plays an important role in visual communications.

In subjective visual quality measurement, a set of video frames is generated with varying coding
parameters. Observers are invited to subjectively evaluate the visual quality of these frames.
Specifically, observers are asked to rate the pictures by giving some measure of picture quality.
Alternatively, observers are requested to provide some measure of impairment to the pictures. A
five-scale rating system of the degree of impairment, used by Bell Laboratories, is listed below
(Sakrison, 1979). It has been adopted as one of the standard scales in CCIR Recommendation
500-3 (CCIR, 1986). Note that CCIR is now ITU-R (International Telecommunications Union —
Recommendations).

1. Impairment is not noticeable
2. Impairment is just noticeable
3. Impairment is definitely noticeable, but not objectionable
4. Impairment is objectionable
5. Impairment is extremely objectionable

In regard to the subjective evaluation, there are a few things worth mentioning. In most
applications there is a whole array of pictures simultaneously available for evaluation. These pictures
are generated with different encoding parameters. By keeping some parameters fixed while making
one parameter (or a subset of parameters) free to change, the resulting quality rating can be used
to study the effect of the one parameter (or the subset of parameters) on encoding. An example
using this method for studying the effect of varying numbers of quantization levels on image quality
can be found in (Gonzalez and Woods, 1992).

Another possible way to study the effect is to identify pictures with the same subjective quality
measure from the whole array of pictures. From this subset of test pictures we can produce, in the
encoding parameter space, isopreference curves that can be used to study the effect of the param-
eter(s) under investigation. An example using this method to study the effect of varying both image
resolution and numbers of quantization levels on image quality can be found in (Huang, 1965).

In this rating, a whole array of pictures is usually divided into columns, with each column
sharing some common conditions. The evaluation starts within each column with a pairwise
comparison. This is because a pairwise comparison is relatively easy for the eyes. As a result,
pictures in one column are arranged in an order according to visual quality, and quality or impair-
ment measures are then assigned to the pictures in that one column. After each column has been
rated, a unification between columns is necessary. That is, different columns need to have a unified
quality measurement. As pointed out in (Sakrison, 1979), this task is not easy since it means we
may need to equate impairment that results from different types of errors.

One thing can be understood from the above discussion: subjective evaluation of visual quality
is costly. It needs a large number of pictures and observers. The evaluation takes a long time because
human eyes are easily fatigued and bored. Some special measures have to be taken in order to
arrive at an accurate subjective quality measurement. Examples in this regard include averaging
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subjective ratings and taking their deviation into consideration. For further details on subjective
visual quality measurement, readers may refer to Sakrison (1979), Hidaka and Ozawa (1990), and
Webster et al. (1993).

 

1.3.2 O

 

BJECTIVE

 

 Q

 

UALITY

 

 M

 

EASUREMENT

 

In this subsection, we first introduce the concept of signal-to-noise ratio (SNR), which is a popularly
utilized objective quality assessment. Then we present a promising new objective visual quality
assessment technique based on human visual perception.

 

1.3.2.1 Signal-to-Noise Ratio

 

Consider Figure 1.11, where 

 

ƒ

 

 (

 

x

 

, 

 

y

 

) is the input image to a processing system. The system can be
a low-pass filter, a subsampling system, or a compression system. It can even represent a process
in which additive white Gaussian noise corrupts the input image. The 

 

g

 

(

 

x

 

, 

 

y) is the output of the
system. In evaluating the quality of g(x, y), we define an error function e(x, y) as the difference
between the input and the output. That is,

(1.15)

The mean square error is defined as Ems:

(1.16)

where M and N are the dimensions of the image in the horizontal and vertical directions. Note that
it is sometimes denoted by MSE. The root mean square error is defined as Erms:

(1.17)

It is sometimes denoted by RMSE.
As noted earlier, SNR is widely used in objective quality measurement. Depending whether

mean square error or root mean square error is used, the SNR may be called the mean square signal-
to-noise ratio, SNRms, or the root mean square signal-to-noise ratio, SNRrms. We have

(1.18)

FIGURE 1.11 An image processing system.
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and

(1.19)

In image and video data compression, another closely related term, PSNR (peak signal-to-noise
ratio), which is essentially a modified version of SNRms, is widely used. It is defined as follows.

(1.20)

The interpretation of the SNRs is that the larger the SNR (SNRms, SNRrms, or PSNR) the better
the quality of the processed image, g(x, y); that is, the closer the processed image g(x,y) is to the
original image f (x, y). This seems to be correct. However, from our above discussion about the
features of the HVS, we know that the HVS does not respond to visual stimuli in a straightforward
way. Its low-level processing unit is known to be nonlinear. Several masking phenomena exist.
Each confirms that the visual perception of the HVS is not simple. It is worth noting that our
understanding of the high-level processing unit of the HVS is far from complete. Therefore, we
may understand that the SNR does not always provide us with reliable assessments of image quality.
One good example is presented in Section 1.2.2.3, which uses the IGS quantization technique to
achieve high compression (using only four bits for quantization instead of the usual eight bits)
without introducing noticeable false contouring. In this case, the subjective quality is improved,
and the SNR decreases due to the additive high-frequency random noise. Another example, drawn
from our discussion about the masking phenomena, is that some additive noise in bright areas or
in highly textured regions may be masked, while some minor artifacts in dark and uniform regions
may turn out to be quite annoying. In this case, the SNR cannot truthfully reflect visual quality, as
well.

On the one hand, we see that objective quality measurement does not always provide reliable
picture quality assessment. On the other hand, however, its implementation is much faster and
easier than that of the subjective quality measurement. Furthermore, objective assessment is repeat-
able. Owing to these merits, objective quality assessment is still widely used despite this drawback.

It is noted that combining subjective and objective assessments has been a common practice
in international coding-standard activity.

1.3.2.2 Objective Quality Measurement Based on Human Visual Perception

Introduced here is a new development in visual quality assessment, which is an objective quality
measurement based on human visual perception (Webster et al., 1993). Since it belongs to the
category of objective assessment, it possesses virtues such as repeatability and fast and easy
implementation. Because it is based on human visual perception, on the other hand, its assessment
of visual quality agrees closely to that of subjective assessment. In this sense the new method
attempts to combine the merits of the two different types of assessment.

Motivation — Visual quality assessment is best conducted via the subjective approach since
in this case the HVS is the ultimate viewer. The implementation of subjective assessment, however,
is time-consuming, costly, and lacks repeatability. On the other hand, although not always accurate,
objective assessment is fast, easy, and repeatable. The motivation here is to develop an objective
quality measurement system such that its quality assessment is very close to that obtained by using
subjective assessment. In order to achieve this goal, this objective system is based on subjective
assessment. That is, it uses the rating achieved via subjective assessment as a criterion to search
for new objective measurements so as to have the objective rating as close to the subjective one as
possible.
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Methodology — The derivation of the objective quality assessment system is shown in
Figure 1.12. The input testing video goes through a degradation block, resulting in degraded input
video. The degradation block, or impairment generator, includes various video compression codecs
(coder-decoder pairs) with bit rates ranging from 56 kb/sec to 45 Mb/sec and other video operations.
The input video and degraded input video form a pair of testing videos, which is sent to a subjective
assessment block as well as a statistical feature selection block.

A normal subjective visual quality assessment as introduced in the previous subsection is
performed in the subjective assessment block, which involves a large panel of observers, e.g.,
48 observers in Webster et al. (1993). In the statistical feature selection block, a variety of statistical
operations are conducted and various statistical features are selected. Examples cover Sobel filtering,
Laplacian operator, first-order differencing, moment calculation, fast Fourier transform, etc. Sta-
tistical measurements are then selected based on these statistical operations and features. An
objective assessment is formed as follows:

(1.21)

where ŝ denotes the output rating of the object assessment, or simply the objective measure, which
is supposed to be a good estimate of the corresponding subjective score. The ni , i = 1, L, l are
selected objective measurements. The a0, ai, i = 1, L, l are coefficients in the linear model of the
objective assessment.

The results of the objective assessment and subjective assessment are applied to a statistical
analysis block. In the statistical analysis block, the objective assessment rating is compared with
that of the subjective assessment. The result of the comparison is fed back to the statistical feature
selection block. The statistical measurements obtained in the statistical feature selection block are
examined according to their performance in the assessment. A statistical measurement is regarded
to be good if it can reduce by a significant amount of the difference between the objective assessment
and the subjective assessment. The best measurement is determined via an exhaustive search among
the various measurements. Note that the coefficients in Equation 1.21 are also examined in the
statistical analysis block in a similar manner to that used for the measurements.

FIGURE 1.12 Block diagram of objective assessment based on subjective assessment.
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The measurements and coefficients determined after iterations result in an optimal objective
assessment via Equation 1.21, which is finally passed to the last block as the output of the system.
The whole process will become much clearer below.

Results
The results reported by Webster (1993) are introduced here.

Information features — As mentioned in Section 1.2.2, differential sensitivity is a key in
human visual perception. Two selected features: perceived spatial information (the amount of spatial
detail) and perceived temporal information (the amount of temporal luminance variation), involve
pixel differencing. Spatial information (SI) is defined as shown below.

(1.22)

where STDs stands for the standard deviation operator in the spatial domain, Sobel denotes the
Sobel operation, and fn represents the nth video frame. Temporal information (TI) is defined
similarly:

(1.23)

where Dfn = fn – fn–1, i.e., the successive frame difference.

Determined Measurements
The parameter l in Equation 1.21 is chosen as three. That is

(1.24)

The measurements n1, n2, and n3 are formulated based on the above-defined information features,
SI and TI, as follows:

1. Measurement n1:

(1. 25)

where RMSt represents the root mean square value taken over the time dimension, and
ofn and dfn denote the original nth frame and the degraded nth frame, respectively. It is
observed that n1 is a measure of the relative change in the spatial information between
the original frame and the degraded frame.

2. Measurement n2:

(1.26)

where

(1.27)

where STDt denotes the standard deviation operator with respect to time, and CONV
indicates the convolution operation between its two arguments. It is understood that
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temporal information, TI, measures temporal luminance variation (temporal motion) and
the convolution kernel, [-1, 2, -1], enhances the variation due to its high-pass filter nature.
Therefore, n2 measures the difference of TI between the original and graded frames.

3. Measurement n3:

(1.28)

where MAXt indicates the taking of the maximum value over time. Therefore, measure-
ment n3 responds to the ratio between the temporal information of the degraded video
and that of the original video. Distortions such as block artifacts (discussed in Chapter 11)
and motion jerkiness (discussed in Chapter 10), which occur in video coding, will cause
n3 to be large.

Objective estimator — The least square error procedure is applied to testing video sequences
with measurements ni, i = 1,2,3, determined above, to minimize the difference between the rating
scores obtained from the subjective assessment and the objective assessment, resulting in the
estimated coefficients a0 and ai, i = 1,2,3. Consequently, the objective assessment of visual quality ŝ
becomes

(1.29)

Reported experimental results — It was reported that the correlation coefficient between the
subjective assessment score and the objective assessment score (an estimate of the subjective score)
is in the range of 0.92 to 0.94. It is noted that a set of 36 testing scenes containing various amounts
of spatial and temporal information was used in the experiment. Hence, it is apparent that quite
good performance was achieved. Though there is surely room for further improvement, this work
does open a new and promising way to assess visual quality by combining subjective and objective
approaches. Since it is objective it is fast and easy; and because it is based on the subjective
measurement, it is more accurate in terms of the high correlation to human perception. Theoretically,
the spatial information measure and temporal information measure defined on differencing are very
important. They reflect the most important aspect of human visual perception.

1.4 INFORMATION THEORY RESULTS

In the beginning of this chapter it was noted that the term information is considered one of the
fundamental concepts in image and video compression. We will now address some information
theory results. In this section, the measure of information and the entropy of an information source
are covered first. We then introduce some coding theorems, which play a fundamental role in
studying image and video compression.

1.4.1 ENTROPY

Entropy is a very important concept in information theory and communications. So is it in image
and video compression. We first define the information content of a source symbol. Then we define
entropy as average information content per symbol for a discrete memoriless source.

1.4.1.1 Information Measure

As mentioned at the beginning of this chapter, information is defined as knowledge, fact, and news.
It can be measured quantitatively. The carriers of information are symbols. Consider a symbol with
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an occurrence probability p. Its information content (i.e., the amount of information contained in
the symbol), I, is defined as follows.

(1.30)

where the bit is a contraction of binary unit. In the above equations we set the base of the logarithmic
function to equal 2. It is noted that these results can be easily converted as follows for the case
where the r-ary digits are used for encoding. Hence, from now on, we restrict our discussion to
binary encoding.

(1.31)

According to Equation 1.30, the information contained within a symbol is a logarithmic function
of its occurrence probability. The smaller the probability, the more information the symbol contains.
This agrees with common sense. The occurrence probability is somewhat related to the uncertainty
of the symbol. A small occurrence probability means large uncertainty. In this way, we see that the
information content of a symbol is about the uncertainty of the symbol. It is noted that the
information measure defined here is valid for both equally probable symbols and nonequally
probable symbols (Lathi, 1998).

1.4.1.2 Average Information per Symbol

Now consider a discrete memoriless information source. By discreteness, we mean the source is a
countable set of symbols. By memoriless, we mean the occurrence of a symbol in the set is
independent of that of its preceding symbol. Take a look at a source of this type that contains m
possible symbols: {si, i = 1,2L,m}. The corresponding occurrence probabilities are denoted by
{pi, i = 1,2,L,m}. According to the discussion above, the information content of a symbol si, Ii,
is equal to Ii = –log2 pi bits. Entropy is defined as the average information content per symbol of
the source. Obviously, the entropy, H, can be expressed as follows.

(1.32)

From this definition, we see that the entropy of an information source is a function of occurrence
probabilities. It is straightforward to show that the entropy reaches the maximum when all symbols
in the set are equally probable.

1.4.2 SHANNON’S NOISELESS SOURCE CODING THEOREM

Consider a discrete, memoriless, stationary information source. In what is called source encoding,
a codeword is assigned to each symbol in the source. The number of bits in the codeword is referred
to as the length of the codeword. The average length of codewords is referred to as the bit rate,
expressed in the unit of bits per symbol.

Shannon’s noiseless source coding theorem states that for a discrete, memoriless, stationary
information source, the minimum bit rate required to encode a symbol, on average, is equal to the
entropy of the source. This theorem provides us with a lower bound in source coding. Shannon
showed that the lower bound can be achieved when the encoding delay extends to infinity. By
encoding delay, we mean the encoder waits and then encodes a certain number of symbols at once.
Fortunately, with finite encoding delay, we can already achieve an average codeword length fairly
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close to the entropy. That is, we do not have to actually sacrifice bit rate much to avoid long
encoding delay, which involves high computational complexity and a large amount of memory
space.

Note that the discreteness assumption is not necessary. We assume a discrete source simply
because digital image and video are the focus in this book. Stationarity assumption is necessary
in deriving the noiseless source coding theorem. This assumption may not be satisfied in practice.
Hence, Shannon’s theorem is a theoretical guideline only. There is no doubt, however, that it is a
fundamental theoretical result in information theory.

In summary, the noiseless source coding theorem, Shannon’s first theorem, which was published
in his celebrated paper (Shannon, 1948), is concerned with the case where both the channel and
the coding system are noise free. The aim under these circumstances is coding compactness. The
more compact it is, the better the coding. This theorem specifies the lower bound, which is the
source entropy, and how to reach this lower bound.

One way to evaluate the efficiency of a coding scheme is to determine its efficiency with respect
to the lower bound, i.e., entropy. The efficiency h is defined as follows.

(1.33)

where H is entropy, and Lavg denotes the average length of the codewords in the code. Since the
entropy is the lower bound, the efficiency never exceeds the unity, i.e., h £ 1. The same definition
can be generalized to calculate the relative efficiency between two codes. That is

(1.34)

where Lavg,1 and Lavg,2 represent the average codeword length for code 1 and code 2, respectively.
We usually put the larger of the two in the denominator, and h is called the efficiency of code 2
with respect to code 1. A complementary parameter of coding efficiency is coding redundancy, z,
which is defined as

(1.35)

1.4.3 SHANNON’S NOISY CHANNEL CODING THEOREM

If a code has an efficiency of h = 1, i.e., it reaches the lower bound of source encoding, then coding
redundancy is z = 0. Now consider a noisy transmission channel. In transmitting the coded symbol
through the noisy channel, the received symbols may be erroneous due to the lack of redundancy.
On the other hand, it is well known that by adding redundancy (e.g., parity check bits) some errors
occurring during the transmission over the noisy channel may be corrected or identified. In the latter,
the coded symbols are then resent. In this way, we see that adding redundancy may combat noise.

Shannon’s noisy channel coding theorem states that it is possible to transmit symbols over a
noisy channel without error if the bit rate is below a channel capacity, C. That is

(1.36)

where R denotes the bit rate. The channel capacity is determined by the noise and signal power.
In conclusion, the noisy channel coding theorem, Shannon’s second theorem (Shannon, 1948),

is concerned with a noisy, memoriless channel. By memoriless, we mean the channel output
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corresponding to the current input is independent of the output corresponding to previous input
symbols. Under these circumstances, the aim is reliable communication. To be error free, the bit
rate cannot exceed channel capacity. That is, channel capacity sets an upper bound on the bit rate.

1.4.4 SHANNON’S SOURCE CODING THEOREM

As seen in the previous two subsections, the noiseless source coding theorem defines the lowest
possible bit rate for noiseless source coding and noiseless channel transmission; whereas the noisy
channel coding theorem defines the highest possible coding bit rate for error-free transmission.
Therefore, both theorems work for reliable (no error) transmission. In this subsection, we continue
to deal with discrete memoriless information sources, but we discuss the situation in which lossy
coding is encountered. As a result, distortion of the information source takes place. For instance,
quantization, which is covered in the next chapter, causes information loss. Therefore, it is concluded
that if an encoding procedure involves quantization, then it is lossy coding. That is, errors occur
during the coding process, even though the channel is error free. We want to find the lower bound
of the bit rate for this case.

The source coding theorem (Shannon, 1948) states that for a given distortion D, there exists a
rate distortion function R(D) (Berger, 1971), which is the minimum bit rate required to transmit
the source with distortion less than or equal to D. That is, in order to have distortion not larger
than D, the bit rate R must satisfy the following condition:

(1.37)

A more detailed discussion about this theorem and the rate distortion function is given in
Chapter 15, when we introduce video coding.

1.4.5 INFORMATION TRANSMISSION THEOREM

It is clear that by combining the noisy channel coding theorem and the source coding theorem we
can derive the following relationship:

(1.38)

This is called the information transmission theorem (Slepian, 1973). It states that if the channel
capacity of a noisy channel, C, is larger than the rate distortion function R(D), then it is possible
to transmit an information source with distortion D over a noisy channel.

1.5 SUMMARY

In this chapter, we first discussed the necessity for image and video compression. It is shown that
image and video compression becomes an enabling technique in today’s exploding number of
digital multimedia applications. Then, we show that the feasibility of image and video compression
rests in redundancy removal. Two types of redundancies: statistical redundancy and psychovisual
redundancy are studied. Statistical redundancy comes from interpixel correlation and coding redun-
dancy. By interpixel correlation, we mean correlation between pixels either located in one frame
(spatial or intraframe redundancy) or pixels located in successive frames (temporal or interframe
redundancy). Coding redundancy is related to coding technique. Psychovisual redundancy is based
on the features (several types of masking phenomena) of human visual perception. That is, visual
information is not perceived equally from the human visual point of view. In this sense, some
information is psychovisually redundant.

R R D≥ ( )

C R D≥ ( )
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The visual quality of the reconstructed image and video is a crucial criterion in the evaluation
of the performance of visual transmission or storage systems. Both subjective and objective assess-
ments are discussed. A new and promising objective technique based on subjective assessment is
introduced. Since it combines the merits of both types of visual quality assessment, it achieves a
quite satisfactory performance. The selected statistical features reveal some possible mechanism
of the human visual perception. Further study in this regard would be fruitful.

In the last section, we introduced some fundamental information theory results, relevant to
image and video compression. The results introduced include information measurement, entropy,
and several theorems. All the theorems assume discrete, memoriless, and stationary information
sources. The noiseless source coding theorem points out that the entropy of an information source
is the lower bound of the coding bit rate that a source encoder can achieve. The source coding
theorem deals with lossy coding applied in a noise-free channel. It states that for a given distortion,
D, there is a rate distortion function, R(D). When the bit rate in the source coding is greater than
R(D), the reconstructed source at the receiving end may satisfy the fidelity requirement defined by
D. The noisy channel coding theorem states that, in order to achieve error-free performance, the
source coding bit rate must be smaller than the channel capacity. Channel capacity is a function
of noise and signal power. The information transmission theorem combines the noisy channel
coding theorem and the source coding theorem. It states that it is possible to have a reconstructed
waveform at the receiving end, satisfying the fidelity requirement corresponding to distortion D if
the channel capacity, C, is larger than the rate distortion function R(D). Though some of the
assumptions on which these theorems were developed may not be valid in complicated practical
situations, these theorems provide important theoretical limits for image and video coding. They
can also be used for evaluation of the performance of different coding techniques.

1.6 EXERCISES

1-1. Using your own words, define spatial and temporal redundancy, and psychovisual redun-
dancy, and state the impact they have on image and video compression.

1-2. Why is differential sensitivity considered the most important feature in human visual
perception?

1-3. From the description of the newly developed objective assessment technique based on
subjective assessment, discussed in Section 1.3, what points do you think are related to
and support the statement made in Exercise 1-2?

1-4. Interpret Weber’s law using your own words.
1-5. What is the advantage possessed by color models that decouple the luminance component

from chrominance components.
1-6. Why has the HIS model not been adopted by any TV systems?
1-7. What is the problem with the objective visual quality measure of PSNR?
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Quantization

 

After the introduction to image and video compression presented in Chapter 1, we now address
several fundamental aspects of image and video compression in the remaining chapters of Section I.
Chapter 2, the first chapter in the series, concerns quantization. Quantization is a necessary com-
ponent in lossy coding and has a direct impact on the bit rate and the distortion of reconstructed
images or videos. We discuss concepts, principles and various quantization techniques which
include uniform and nonuniform quantization, optimum quantization, and adaptive quantization.

 

2.1 QUANTIZATION AND THE SOURCE ENCODER

 

Recall Figure 1.1, in which the functionality of image and video compression in the applications
of visual communications and storage is depicted. In the context of visual communications, the
whole system may be illustrated as shown in Figure 2.1. In the transmitter, the input analog
information source is converted to a digital format in the A/D converter block. The digital format
is compressed through the image and video source encoder. In the channel encoder, some redun-
dancy is added to help combat noise and, hence, transmission error. Modulation makes digital data
suitable for transmission through the analog channel, such as air space in the application of a TV
broadcast. At the receiver, the counterpart blocks reconstruct the input visual information. As far
as storage of visual information is concerned, the blocks of channel, channel encoder, channel
decoder, modulation, and demodulation may be omitted, as shown in Figure 2.2. If input and output
are required to be in the digital format in some applications, then the A/D and D/A converters are
omitted from the system. If they are required, however, other blocks such as encryption and
decryption can be added to the system (Sklar, 1988). Hence, what is conceptualized in Figure 2.1
is a fundamental block diagram of a visual communication system.

In this book, we are mainly concerned with source encoding and source decoding. To this end,
we take it a step further. That is, we show block diagrams of a source encoder and decoder in
Figure 2.3. As shown in Figure 2.3(a), there are three components in source encoding: transforma-
tion, quantization, and codeword assignment. After the transformation, some form of an input
information source is presented to a quantizer. In other words, the transformation block decides
which types of quantities from the input image and video are to be encoded. It is not necessary
that the original image and video waveform be quantized and coded: we will show that some
formats obtained from the input image and video are more suitable for encoding. An example is
the difference signal. From the discussion of interpixel correlation in Chapter 1, it is known that a
pixel is normally highly correlated with its immediate horizontal or vertical neighboring pixel.
Therefore, a better strategy is to encode the difference of gray level values between a pixel and its
neighbor. Since these data are highly correlated, the difference usually has a smaller dynamic range.
Consequently, the encoding is more efficient. This idea is discussed in Chapter 3 in detail.

Another example is what is called transform coding, which is addressed in Chapter 4. There,
instead of encoding the original input image and video, we encode a transform of the input image
and video. Since the redundancy in the transform domain is greatly reduced, the coding efficiency
is much higher compared with directly encoding the original image and video.

Note that the term transformation in Figure 2.3(a) is sometimes referred to as 

 

mapper

 

 and

 

signal processing

 

 in the literature (Gonzalez and Woods, 1992; Li and Zhang, 1995). Quantization
refers to a process that converts input data into a set of finitely different values. Often, the input
data to a quantizer are continuous in magnitude.
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Hence, quantization is essentially discretization in magnitude, which is an important step in
the lossy compression of digital image and video. (The reason that the term lossy compression is
used here will be shown shortly.) The input and output of quantization can be either scalars or
vectors. The quantization with scalar input and output is called 

 

scalar

 

 

 

quantization

 

, whereas that
with vector input and output is referred to as 

 

vector

 

 

 

quantization

 

. In this chapter we discuss scalar
quantization. Vector quantization will be addressed in Chapter 9.

After quantization, codewords are assigned to the many finitely different values from the output
of the quantizer. Natural binary code (NBC) and variable-length code (VLC), introduced in
Chapter 1, are two examples of this. Other examples are the widely utilized entropy code (including
Huffman code and arithmetic code), dictionary code, and run-length code (RLC) (frequently used
in facsimile transmission), which are covered in Chapters 5 and 6.

 

FIGURE 2.1

 

Block diagram of a visual communication system.

 

FIGURE 2.2

 

Block diagram of a visual storage system.
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The source decoder, as shown in Figure 2.3(b), consists of two blocks: codeword decoder and
inverse transformation. They are counterparts of the codeword assignment and transformation in
the source encoder. Note that there is no block that corresponds to quantization in the source
decoder. The implication of this observation is the following. First, quantization is an irreversible
process. That is, in general there is no way to find the original value from the quantized value.
Second, quantization, therefore, is a source of information loss. In fact, quantization is a critical
stage in image and video compression. It has significant impact on the distortion of reconstructed
image and video as well as the bit rate of the encoder. Obviously, coarse quantization results in
more distortion and a lower bit rate than fine quantization.

In this chapter, uniform quantization, which is the simplest yet the most important case, is
discussed first. Nonuniform quantization is covered after that, followed by optimum quantization
for both uniform and nonuniform cases. Then a discussion of adaptive quantization is provided.
Finally, pulse code modulation (PCM), the best established and most frequently implemented digital
coding method involving quantization, is described.

 

2.2 UNIFORM QUANTIZATION

 

Uniform quantization is the simplest and most popular quantization technique. Conceptually, it is
of great importance. Hence, we start our discussion on quantization with uniform quantization.
Several fundamental concepts of quantization are introduced in this section.

 

2.2.1 Basics

 

This subsection concerns several basic aspects of uniform quantization. These are some fundamental
terms, quantization distortion, and quantizer design.

 

2.2.1.1 Definitions

 

Take a look at Figure 2.4. The horizontal axis denotes the input to a quantizer, while the vertical
axis represents the output of the quantizer. The relationship between the input and the output best
characterizes this quantizer; this type of configuration is referred to as the input-output characteristic
of the quantizer. It can be seen that there are nine intervals along the 

 

x

 

-axis. Whenever the input
falls in one of the intervals, the output assumes a corresponding value. The input-output charac-
teristic of the quantizer is staircase-like and, hence, clearly nonlinear.

 

FIGURE 2.3

 

Block diagram of a source encoder and a source decoder.
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The end points of the intervals are called 

 

decision levels

 

, denoted by 

 

d

 

i

 

 with 

 

i 

 

being the index
of intervals. The output of the quantization is referred to as the 

 

reconstruction level 

 

(also known
as 

 

quantizing level

 

 [Musmann, 1979]), denoted by 

 

y

 

i

 

 with 

 

i

 

 being its index. The length of the
interval is called the 

 

step

 

 

 

size

 

 of the quantizer, denoted by 

 

D

 

. With the above terms defined, we
can now mathematically define the function of the quantizer in Figure 2.4 as follows.

(2.1)

where 

 

i

 

 = 1,2,

 

L

 

,9 and 

 

Q

 

(

 

x

 

) is the output of the quantizer with respect to the input 

 

x

 

.
It is noted that in Figure 2.4, 

 

D

 

 = 1. The decision levels and reconstruction levels are evenly
spaced. It is a uniform quantizer because it possesses the following two features.

1. Except for possibly the right-most and left-most intervals, all intervals (hence, decision
levels) along the 

 

x

 

-axis are uniformly spaced. That is, each inner interval has the same
length.

2. Except for possibly the outer intervals, the reconstruction levels of the quantizer are also
uniformly spaced. Furthermore, each inner reconstruction level is the arithmetic average
of the two decision levels of the corresponding interval along the 

 

x

 

-axis.

The uniform quantizer depicted in Figure 2.4 is called 

 

midtread

 

 quantizer. Its counterpart is
called a 

 

midrise

 

 quantizer, in which the reconstructed levels do not include the value of zero. A
midrise quantizer having step size 

 

D

 

 = 1 is shown in Figure 2.5. Midtread quantizers are usually
utilized for an odd number of reconstruction levels and midrise quantizers are used for an even
number of reconstruction levels.

 

FIGURE 2.4

 

Input-output characteristic of a uniform midtread quantizer.

y Q x if x d di i i= ( ) Œ( )+        , 1



 

© 2000 by CRC Press LLC

 

Note that the input-output characteristic of both the midtread and midrise uniform quantizers
as depicted in Figures 2.4 and 2.5, respectively, is odd symmetric with respect to the vertical axis

 

x

 

 = 0. In the rest of this chapter, our discussion develops under this symmetry assumption. The
results thus derived will not lose generality since we can always subtract the statistical mean of
input x from the input data and thus achieve this symmetry. After quantization, we can add the
mean value back.

Denote by 

 

N

 

 the total number of reconstruction levels of a quantizer. A close look at Figure 2.4
and 2.5 reveals that if 

 

N

 

 is even, then the decision level 

 

d

 

(

 

N

 

/2)+1

 

 is located in the middle of the input

 

x

 

-axis. If 

 

N

 

 is odd, on the other hand, then the reconstruction level 

 

y

 

(

 

N

 

+1)/2

 

 = 0. This convention is
important in understanding the design tables of quantizers in the literature.

 

2.2.1.2 Quantization Distortion

 

The source coding theorem presented in Chapter 1 states that for a certain distortion 

 

D

 

, there exists
a rate distortion function 

 

R

 

(

 

D

 

), such that as long as the bit rate used is larger than 

 

R

 

(

 

D

 

) then it is
possible to transmit the source with a distortion smaller than 

 

D

 

. Since we cannot afford an infinite
bit rate to represent an original source, some distortion in quantization is inevitable. In other words,
we can say that since quantization causes information loss irreversibly, we encounter 

 

quantization
error

 

 and, consequently, an issue: how do we evaluate the quality or, equivalently, the distortion
of quantization. According to our discussion on visual quality assessment in Chapter 1, we know
that there are two ways to do so: subjective evaluation and objective evaluation.

In terms of subjective evaluation, in Section 1.3.1 we introduced a five-scale rating adopted in
CCIR Recommendation 500-3. We also described the false contouring phenomenon, which is
caused by coarse quantization. That is, our human eyes are more sensitive to the relatively uniform
regions in an image plane. Therefore an insufficient number of reconstruction levels results in

 

FIGURE 2.5

 

Input-output characteristic of a uniform midrise quantizer.
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annoying false contours. In other words, more reconstruction levels are required in relatively
uniform regions than in relatively nonuniform regions.

In terms of objective evaluation, in Section 1.3.2 we defined mean square error (

 

MSE

 

) and root
mean square error (

 

RMSE

 

), signal-to-noise ratio (

 

SNR

 

), and peak signal-to-noise ratio (

 

PSNR

 

). In
dealing with quantization, we define quantization error, 

 

e

 

q

 

, as the difference between the input
signal and the quantized output:

(2.2)

where 

 

x

 

 and 

 

Q

 

(

 

x

 

) are input and quantized output, respectively. Quantization error is often referred
to as 

 

quantization noise

 

. It is a common practice to treat input 

 

x

 

 as a random variable with a
probability density function (

 

pdf

 

) 

 

f

 

x

 

(

 

x

 

). Mean square quantization error, 

 

MSE

 

q

 

, can thus be expressed
as

(2.3)

where 

 

N

 

 is the total number of reconstruction levels. Note that the outer decision levels may be
–

 

•

 

 or 

 

•

 

, as shown in Figures 2.4 and 2.5. It is clear that when the 

 

pdf

 

, 

 

f

 

x

 

(

 

x

 

), remains unchanged,
fewer reconstruction levels (smaller 

 

N

 

) result in more distortion. That is, coarse quantization leads
to large quantization noise. This confirms the statement that quantization is a critical component
in a source encoder and significantly influences both bit rate and distortion of the encoder. As
mentioned, the assumption we made above that the input-output characteristic is odd symmetric
with respect to the 

 

x

 

 = 0 axis implies that the mean of the random variable, 

 

x

 

, is equal to zero, i.e.,

 

E

 

(

 

x

 

) = 0. Therefore the mean square quantization error 

 

MSE

 

q

 

 is the variance of the quantization
noise equation, i.e., 

 

MSE

 

q

 

 =

 

s

 

q

 

2

 

.
The quantization noise associated with the midtread quantizer depicted in Figure 2.4 is shown

in Figure 2.6. It is clear that the quantization noise is signal dependent. It is observed that, associated
with the inner intervals, the quantization noise is bounded by ±0.5

 

D

 

. This type of quantization
noise is referred to as 

 

granular noise

 

. The noise associated with the right-most and the left-most

 

FIGURE 2.6

 

Quantization noise of the uniform midtread quantizer shown in Figure 2.4.
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intervals are unbounded as the input 

 

x

 

 approaches either –

 

•

 

 or 

 

•

 

. This type of quantization noise
is called 

 

overload

 

 

 

noise

 

. Denoting the mean square granular noise and overload noise by 

 

MSE

 

q,g

 

and 

 

MSE

 

q,o

 

, respectively, we then have the following relations:

(2.4)

and

(2.5)

(2.6)

 

2.2.1.3 Quantizer Design

 

The design of a quantizer (either uniform or nonuniform) involves choosing the number of recon-
struction levels, 

 

N

 

 (hence, the number of decision levels, 

 

N

 

+1), and selecting the values of decision
levels and reconstruction levels (deciding where to locate them). In other words, the design of a
quantizer is equivalent to specifying its input-output characteristic.

The 

 

optimum

 

 quantizer design can be stated as follows. For a given probability density function
of the input random variable, 

 

f

 

X

 

 

 

(

 

x

 

), determine the number of reconstruction levels, 
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, choose a set
of decision levels {
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 = 1,
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 + 1} and a set of reconstruction levels {
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, 
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 = 1, 

 

L

 

, 

 

N

 

} such
that the mean square quantization error, 

 

MSE

 

q

 

, defined in Equation 2.3, is minimized.
In the uniform quantizer design, the total number of reconstruction levels, 

 

N

 

, is usually given.
According to the two features of uniform quanitzers described in Section 2.2.1.1, we know that the
reconstruction levels of a uniform quantizer can be derived from the decision levels. Hence, only
one of these two sets is independent. Furthermore, both decision levels and reconstruction levels
are uniformly spaced except possibly the outer intervals. These constraints together with the
symmetry assumption lead to the following observation: There is in fact only one parameter that
needs to be decided in uniform quantizer design, which is the step size 

 

D

 

. As to the optimum
uniform quantizer design, a different 

 

pdf

 

 leads to a different step size.

 

2.2.2 O

 

PTIMUM
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NIFORM

 

 Q

 

UANTIZER

 

In this subsection, we first discuss optimum uniform quantizer design when the input 

 

x

 

 obeys
uniform distribution. Then, we cover optimum uniform quantizer design when the input 

 

x

 

 has other
types of probabilistic distributions.

 

2.2.2.1 Uniform Quantizer with Uniformly Distributed Input

 

Let us return to Figure 2.4, where the input-output characteristic of a nine reconstruction-level
midtread quantizer is shown. Now, consider that the input 

 

x

 

 is a uniformly distributed random
variable. Its input-output characteristic is shown in Figure 2.7. We notice that the new characteristic
is restricted within a finite range of 

 

x

 

, i.e., –4.5 

 

£

 

 

 

x

 

 

 

£

 

 4.5. This is due to the definition of uniform
distribution. Consequently, the overload quantization noise does not exist in this case, which is
shown in Figure 2.8.
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The mean square quantization error is found to be

(2.7)

FIGURE 2.7 Input-output characteristic of a uniform midtread quantizer with input x having uniform
distribution in [-4.5, 4.5].

FIGURE 2.8 Quantization noise of the quantizer shown in Figure 2.7.
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This result indicates that if the input to a uniform quantizer has a uniform distribution and the
number of reconstruction levels is fixed, then the mean square quantization error is directly
proportional to the square of the quantization step size. Or, in other words, the root mean square
quantization error (the standard deviation of the quantization noise) is directly proportional to the
quantization step. The larger the step size, the larger (according to square law) the mean square
quantization error. This agrees with our previous observation: coarse quantization leads to large
quantization error.

As mentioned above, the mean square quantization error is equal to the variance of the
quantization noise, i.e., MSEq = sq

2. In order to find the signal-to-noise ratio of the uniform
quantization in this case, we need to determine the variance of the input x. Note that we assume
the input x to be a zero mean uniform random variable. So, according to probability theory, we have

(2.8)

Therefore, the mean square signal-to-noise ratio, SNRms, defined in Chapter 1, is equal to

(2.9)

Note that here we use the subscript ms to indicate the signal-to-noise ratio in the mean square
sense, as defined in the previous chapter. If we assume N = 2n, we then have

(2.10)

The interpretation of the above result is as follows. If we use the natural binary code to code
the reconstruction levels of a uniform quantizer with a uniformly distributed input source, then
every increased bit in the coding brings out a 6.02-dB increase in the SNRms. An equivalent statement
can be derived from Equation 2.7. That is, whenever the step size of the uniform quantizer decreases
by a half, the mean square quantization error decreases four times.

2.2.2.2 Conditions of Optimum Quantization

The conditions under which the mean square quantization error MSEq is minimized were derived
(Lloyd, 1982; Max, 1960) for a given probability density function of the quantizer input, fX (x).

The mean square quantization error MSEq was given in Equation 2.3. The necessary conditions
for optimum (minimum mean square error) quantization are as follows. That is, the derivatives of
MSEq with respect to the di and yi have to be zero.

(2.11)

(2.12)

The sufficient conditions can be derived accordingly by involving the second-order derivatives
(Max, 1960; Fleischer, 1964). The symmetry assumption of the input-output characteristic made
earlier holds here as well. These sufficient conditions are listed below.
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1. (2.13)

2. (2.14)

3. (2.15)

Note that the first condition is for an input x whose range is –• < x < •. The interpretation of the
above conditions is that each decision level (except for the outer intervals) is the arithmetic average
of the two neighboring reconstruction levels, and each reconstruction level is the centroid of the
area under the probability density function fX (x) and between the two adjacent decision levels.

Note that the above conditions are general in the sense that there is no restriction imposed on
the pdf. In the next subsubsection, we discuss the optimum uniform quantization when the input
of quantizer assumes different distributions.

2.2.2.3 Optimum Uniform Quantizer with Different Input Distributions

Let’s return to our discussion on the optimum quantizer design whose input has uniform distribution.
Since the input has uniform distribution, the outer intervals are also finite. For uniform distribution,
Equation 2.14 implies that each reconstruction level is the arithmetic average of the two corre-
sponding decision levels. Considering the two features of a uniform quantizer, presented in
Section 2.2.1.1, we see that a uniform quantizer is optimum (minimizing the mean square quanti-
zation error) when the input has uniform distribution.

When the input x is uniformly distributed in [-1,1], the step size D of the optimum uniform
quantizer is listed in Table 2.1 for the number of reconstruction levels, N, equal to 2, 4, 8, 16, and
32. From the table, we notice that the MSEq of the uniform quantization with a uniformly distributed
input decreases four times as N doubles. As mentioned in Section 2.2.2.1, this is equivalent to an
increase of SNRms by 6.02 dB as N doubles.

The derivation above is a special case, i.e., the uniform quantizer is optimum for a uniformly
distributed input. Normally, if the probability density function is not uniform, the optimum quantizer
is not a uniform quantizer. Due to the simplicity of uniform quantization, however, it may sometimes
be desirable to design an optimum uniform quantizer for an input with an other-than-uniform
distribution.

Under these circumstances, however, Equations 2.13, 2.14, and 2.15 are not a set of simulta-
neous equations one can hope to solve with any ease. Numerical procedures were suggested to
solve for design of optimum uniform quantizers. Max derived uniform quantization step size D for
an input with a Gaussian distribution (Max, 1960). Paez and Glisson (1972) found step size D for
Laplacian- and Gamma-distributed input signals. These results are listed in Table 2.1. Note that all
three distributions have a zero mean and unit standard deviation. If the mean is not zero, only a
shift in input is needed when applying these results. If the standard deviation is not unity, the
tabulated step size needs to be multiplied by the standard deviation. The theoretical MSE is also
listed in Table 2.1. Note that the subscript q associated with MSE has been dropped from now on
in the chapter for the sake of notational brevity as long as it does not cause confusion.

2.3 NONUNIFORM QUANTIZATION

It is not difficult to see that, except for the special case of the uniformly distributed input variable x,
the optimum (minimum MSE, also denoted sometimes by MMSE) quantizers should be nonuniform.
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Consider a case in which the input random variable obeys the Gaussian distribution with a zero
mean and unit variance, and the number of reconstruction levels is finite. We naturally consider
that having decision levels more densely located around the middle of the x-axis, x = 0 (high-
probability density region), and choosing decision levels more coarsely distributed in the range far
away from the center of the x-axis (low-probability density region) will lead to less MSE. The
strategy adopted here is analogous to the superiority of variable-length code over fixed-length code
discussed in the previous chapter.

TABLE 2.1
Optimal Symmetric Uniform Quantizer for Uniform Gaussian, Laplacian, 
and Gamma Distributions a

Uniform Gaussian Laplacian Gamma

N di yi MSE di yi MSE di yi MSE di yi MSE

2 –1.000 –0.500 8.33 
¥10–2

–1.596 –0.798 0.363 –1.414 –0.707 0.500 –1.154 –0.577 0.668
0.000 0.500 0.000 0.798 0.000 0.707 0.000 0.577
1.000 1.596 1.414 1.154

4 –1.000 –0.750 2.08 
¥10–2

–1.991 –1.494 0.119 –2.174 –1.631 1.963
¥10–1

–2.120 –1.590 0.320
–0.500 –0.250 –0.996 –0.498 –1.087 –0.544 –1.060 –0.530
0.000 0.250 0.000 0.498 0.000 0.544 0.000 0.530
0.500 0.750 0.996 1.494 1.087 1.631 1.060 1.590
1.000 1.991 2.174 2.120

8 –1.000 –0.875 5.21 
¥10–3

–2.344 –2.051 3.74 
¥10–2

–2.924 –2.559 7.17 
¥10–2

–3.184 –2.786 0.132
–0.750 –0.625 –1.758 –1.465 –2.193 –1.828 –2.388 –1.990
–0.500 –0.375 –1.172 –0.879 –1.462 –1.097 –1.592 –1.194
–0.250 –0.125 –0.586 –0.293 –0.731 –0.366 –0.796 –0.398
0.000 0.125 0.000 0.293 0.000 0.366 0.000 0.398
0.250 0.375 0.586 0.879 0.731 1.097 0.796 1.194
0.500 0.625 1.172 1.465 1.462 1.828 1.592 1.990
0.750 0.875 1.758 2.051 2.193 2.559 2.388 2.786
1.000 2.344 2.924 3.184

16 –1.000 –0.938 1.30 
¥10–3

–2.680 –2.513 1.15 
¥10–2

–3.648 –3.420 2.54 
¥10–2

–4.320 –4.050 5.01 
¥10–2–0.875 –0.813 –2.345 –2.178 –3.192 –2.964 –3.780 –3.510

–0.750 –0.688 –2.010 –1.843 –2.736 –2.508 –3.240 –2.970
–0.625 –0.563 –1.675 –1.508 –2.280 –2.052 –2.700 –2.430
–0.500 –0.438 –1.340 –1.173 –1.824 –1.596 –2.160 –1.890
–0.375 –0.313 –1.005 –0.838 –1.368 –1.140 –1.620 –1.350
–0.250 –0.188 –0.670 –0.503 –0.912 –0.684 –1.080 –0.810
–0.125 –0.063 –0.335 –0.168 –0.456 –0.228 –0.540 –0.270
0.000 0.063 0.000 0.168 0.000 0.228 0.000 0.270
0.125 0.188 0.335 0.503 0.456 0.684 0.540 0.810
0.250 0.313 0.670 0.838 0.912 1.140 1.080 1.350
0.375 0.438 1.005 1.173 1.368 1.596 1.620 1.890
0.500 0.563 1.340 1.508 1.824 2.052 2.160 2.430
0.625 0.688 1.675 1.843 2.280 2.508 2.700 2.970
0.750 0.813 2.010 2.178 2.736 2.964 3.240 3.510
0.875 0.938 2.345 2.513 3.192 3.420 3.780 4.050
1.000 2.680 3.648 4.320

Note: The uniform distribution is between [–1,1], the other three distributions have zero mean and unit variance. The numbers
in bold type are the step sizes.
a Data from (Max, 1960; Paez and Glisson, 1972).
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2.3.1 OPTIMUM (NONUNIFORM) QUANTIZATION

Conditions for optimum quantization were discussed in Section 2.2.2.2. With some constraints,
these conditions were solved in a closed form (Panter and Dite, 1951). The equations characterizing
these conditions, however, cannot be solved in a closed form in general. Lloyd and Max proposed
an iterative procedure to numerically solve the equations. The optimum quantizers thus designed
are called Lloyd-Max quantizers.

TABLE 2.2
Optimal Symmetric Quantizer for Uniform, Gaussian, Laplacian, and Gamma 
Distributionsa

Uniform Gaussian Laplacian Gamma

N di yi MSE di yi MSE di yi MSE di yi MSE

2 –1.000 –0.500 8.33 
¥10–2

–• –0.799 0.363 –• –0.707 0.500 –• –0.577 0.668
0.000 0.500 0.000 0.799 0.000 0.707 0.000 0.577
1.000 • • •

4 –1.000 –0.750 2.08 
¥10–2

–• –1.510 0.118 –• –1.834 1.765
¥10–1

–• –2.108 0.233
–0.500 –0.250 –0.982 –0.453 –1.127 –0.420 –1.205 –0.302
0.000 0.250 0.000 0.453 0.000 0.420 0.000 0.302
0.500 0.750 –0.982 1.510 1.127 1.834 1.205 2.108
1.000 • • •

8 –1.000 –0.875 5.21 
¥10–3

–• –2.152 3.45 
¥10–2

–• –3.087 5.48 
¥10–2

–• –3.799 7.12 
¥10–2–0.750 –0.625 –1.748 –1.344 –2.377 –1.673 –2.872 –1.944

–0.500 –0.375 –1.050 –0.756 –1.253 –0.833 –1.401 –0.859
–0.250 –0.125 –0.501 –0.245 –0.533 –0.233 –0.504 –0.149
0.000 0.125 0.000 0.245 0.000 0.233 0.000 0.149
0.250 0.375 0.501 0.756 0.533 0.833 0.504 0.859
0.500 0.625 1.050 1.344 1.253 1.673 1.401 1.944
0.750 0.875 1.748 2.152 2.377 3.087 2.872 3.799
1.000 • • •

16 –1.000 –0.938 1.30 
¥10–3

–• –2.733 9.50 
¥10–3

–• –4.316 1.54 
¥10–2

–• –6.085 1.96
¥10–2–0.875 –0.813 –2.401 –2.069 –3.605 –2.895 –5.050 –4.015

–0.750 –0.688 –1.844 –1.618 –2.499 –2.103 –3.407 –2.798
–0.625 –0.563 –1.437 –1.256 –1.821 –1.540 –2.372 –1.945
–0.500 –0.438 –1.099 –0.942 –1.317 –1.095 –1.623 –1.300
–0.375 –0.313 –0.800 –0.657 –0.910 –0.726 –1.045 –0.791
–0.250 –0.188 –0.522 –0.388 –0.566 –0.407 –0.588 –0.386
–0.125 –0.063 –0.258 –0.128 –0.266 –0.126 –0.229 –0.072
0.000 0.063 0.000 0.128 0.000 0.126 0.000 0.072
0.125 0.188 0.258 0.388 0.266 0.407 0.229 0.386
0.250 0.313 0.522 0.657 0.566 0.726 0.588 0.791
0.375 0.438 0.800 0.942 0.910 1.095 1.045 1.300
0.500 0.563 1.099 1.256 1.317 1.540 1.623 1.945
0.625 0.688 1.437 1.618 1.821 2.103 2.372 2.798
0.750 0.813 1.844 2.069 2.499 2.895 3.407 4.015
0.875 0.938 2.401 2.733 3.605 4.316 5.050 6.085
1.000 • • •

Note: The uniform distribution is between [-1, 1], the other three distributions have zero mean and unit variance.
a Data from Lloyd, 1957, 1982; Max, 1990; and Paez, 1972.
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The solution to optimum quantizer design for many finite reconstruction levels N when input
x obeys Gaussian distribution was obtained (Lloyd, 1982; Max, 1960). That is, the decision levels
and reconstruction levels together with theoretical minimum MSE and optimum SNR have been
determined. Following this procedure, the design for Laplacian and Gamma distribution were
tabulated in (Paez and Glisson, 1972). These results are contained in Table 2.2. As stated before,
we see once again that uniform quantization is optimal if the input x is a uniform random variable.

Figure 2.9 (Max, 1960) gives a performance comparison between optimum uniform quantiza-
tion and optimum quantization for the case of a Gaussian-distributed input with a zero mean and
unit variance. The abscissa represents the number of reconstruction levels, N, and the ordinate the
ratio between the error of the optimum quantizer and the error of the optimum uniform quantizer.
It can be seen that when N is small, the ratio is close to one. That is, the performances are close.
When N increases, the ratio decreases. Specifically, when N is large the nonuniform quantizer is
about 20 to 30% more efficient than the uniform optimum quantizer for the Gaussian distribution
with a zero mean and unit variance.

2.3.2 COMPANDING QUANTIZATION

It is known that a speech signal usually has a large dynamic range. Moreover, its statistical
distribution reveals that very low speech volumes predominate most voice communications. Spe-
cifically, by a 50% chance, the voltage characterizing detected speech energy is less than 25% of
the root mean square (rms) value of the signal. Large amplitude values are rare: only by a 15%
chance does the voltage exceed the rms value (Sklar, 1988). These statistics naturally lead to the
need for nonuniform quantization with relatively dense decision levels in the small-magnitude range
and relatively coarse decision levels in the large-magnitude range.

When the bit rate is eight bits per sample, the following companding technique (Smith, 1957),
which realizes nonuniform quantization, is found to be extremely useful. Though speech coding is
not the main focus of this book, we briefly discuss the companding technique here as an alternative
way to achieve nonuniform quantization.

FIGURE 2.9 Ratio of the error for the optimal quantizer to the error for the optimum uniform quantizer
vs. the number of reconstruction levels N. (Minimum mean square error for Gaussian-distributed input with
a zero mean and unit variance). (Data from Max, 1960.)
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The companding technique, also known as logarithmic quantization, consists of the following
three stages: compressing, uniform quantization, and expanding (Gersho, 1977), as shown in
Figure 2.10. It first compresses the input signal with a logarithmic characteristic, and then it
quantizes the compressed input using a uniform quantizer. Finally, the uniformly quantized results
are expanded inversely. An illustration of the characteristics of these three stages and the resultant
nonuniform quantization are shown in Figure 2.11.

FIGURE 2.10 Companding technique in achieving quantization.

FIGURE 2.11 Characteristics of companding techniques. (a) Compressing characteristic. (b) Uniform quan-
tizer characteristic. (c) Expanding characteristic. (d) Nonuniform quantizer characteristic.
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In practice, a piecewise linear approximation of the logarithmic compression characteristic is
used. There are two different ways. In North America, a µ-law compression characteristic is used,
which is defined as follows:

(2.16)

where sgn is a sign function defined as

(2.17)

The µ-law compression characteristic is shown in Figure 2.12(a). The standard value of µ is 255.
Note from the figure that the case of µ = 0 corresponds to uniform quantization.

In Europe, the A-law characteristic is used. The A-law characteristic is depicted in
Figure 2.12(b), and is defined as follows:

(2.18)

It is noted that the standard value of A is 87.6. The case of A = 1 corresponds to uniform quantization.

2.4 ADAPTIVE QUANTIZATION

In the previous section, we studied nonuniform quantization, whose motivation is to minimize the
mean square quantization error MSEq. We found that nonuniform quantization is necessary if the
pdf of the input random variable x is not uniform. Consider an optimum quantizer for a Gaussian-
distributed input when the number of reconstruction levels N is eight. Its input-output characteristic
can be derived from Table 2.2 and is shown in Figure 2.13. This plot reveals that the decision levels
are densely located in the central region of the x-axis and coarsely elsewhere. In other words, the

FIGURE 2.12 Compression characteristics.
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decision levels are densely distributed in the region having a higher probability of occurrence and
coarsely distributed in other regions. A logarithmic companding technique also allocates decision
levels densely in the small-magnitude region, which corresponds to a high occurrence probability,
but in a different way. We conclude that nonuniform quantization achieves minimum mean square
quantization error by distributing decision levels according to the statistics of the input random
variable.

These two types of nonuniform quantizers are both time-invariant. That is, they are not designed
for nonstationary input signals. Moreover, even for a stationary input signal, if its pdf deviates from
that with which the optimum quantizer is designed, then what is called mismatch will take place
and the performance of the quantizer will deteriorate. There are two main types of mismatch. One
is called variance mismatch. That is, the pdf of input signal is matched, while the variance is
mismatched. Another type is pdf mismatch. Noted that these two kinds of mismatch also occur in
optimum uniform quantization, since there the optimization is also achieved based on the input
statistics assumption. For a detailed analysis of the effects of the two types of mismatch on
quantization, readers are referred to (Jayant and Noll, 1984).

Adaptive quantization attempts to make the quantizer design adapt to the varying input statistics
in order to achieve better performance. It is a means to combat the mismatch problem discussed
above. By statistics, we mean the statistical mean, variance (or the dynamic range), and type of
input pdf. When the mean of the input changes, differential coding (discussed in the next chapter)
is a suitable method to handle the variation. For other types of cases, adaptive quantization is found
to be effective. The price paid for adaptive quantization is processing delays and an extra storage
requirement as seen below.

There are two different types of adaptive quantization: forward adaptation and backward
adaptation. Before we discuss these, however, let us describe an alternative way to define quanti-
zation (Jayant and Noll, 1984). Look at Figure 2.14. Quantization can be viewed as a two-stage

FIGURE 2.13 Input-output characteristic of the optimal quantizer for Gaussian distribution with zero mean,
unit variance, and N = 8.
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process. The first stage is the quantization encoder and the second stage is the quantization decoder.
In the encoder, the input to quantization is converted to the index of an interval into which the
input x falls. This index is mapped to (the codeword that represents) the reconstruction level
corresponding to the interval in the decoder. Roughly speaking, this definition considers a quantizer
as a communication system in which the quantization encoder is on the transmitter side while the
quantization decoder is on the receiver side. In this sense, this definition is broader than that for
quantization defined in Figure 2.3(a).

2.4.1 FORWARD ADAPTIVE QUANTIZATION

A block diagram of forward adaptive quantization is shown in Figure 2.15. There, the input to the
quantizer, x, is first split into blocks, each with a certain length. Blocks are stored in a buffer one
at a time. A statistical analysis is then carried out with respect to the block in the buffer. Based on
the analysis, the quantization encoder is set up, and the input data within the block are assigned
indexes of respective intervals. In addition to these indexes, the encoder setting parameters, derived
from the statistical analysis, are sent to the quantization decoder as side information. The term side
comes from the fact that the amount of bits used for coding the setting parameter is usually a small
fraction of the total amount of bits used.

Selection of the block size is a critical issue. If the size is small, the adaptation to the local
statistics will be effective, but the side information needs to be sent frequently. That is, more bits
are used for sending the side information. If the size is large, the bits used for side information
decrease. On the other hand, the adaptation becomes less sensitive to changing statistics, and both
processing delays and storage required increase. In practice, a proper compromise between the
quantity of side information and the effectiveness of adaptation produces a good selection of the
block size.

Examples of using the forward approach to adapt quantization to a changing input variance (to
combat variance mismatch) can be found in (Jayant and Noll, 1984; Sayood, 1996).

FIGURE 2.14 A two-stage model of quantization.

FIGURE 2.15 Forward adaptive quantization.
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2.4.2 BACKWARD ADAPTIVE QUANTIZATION

Figure 2.16 shows a block diagram of backward adaptive quantization. A close look at the block
diagram reveals that in both the quantization encoder and decoder the buffering and the statistical
analysis are carried out with respect to the output of the quantization encoder. In this way, there
is no need to send side information. The sensitivity of adaptation to the changing statistics will be
degraded, however, since instead of the original input, only the output of the quantization encoder
is used in the statistical analysis. That is, the quantization noise is involved in the statistical analysis.

2.4.3 ADAPTIVE QUANTIZATION WITH A ONE-WORD MEMORY

Intuitively, it is expected that observance of a sufficiently large number of input or output (quantized)
data is necessary in order to track the changing statistics and then adapt the quantizer setting in
adaptive quantization. Through an analysis, Jayant showed that effective adaptations can be realized
with an explicit memory of only one word. That is, either one input sample, x, in forward adaptive
quantization or a quantized output, y, in backward adaptive quantization is sufficient (Jayant, 1973).

In (Jayant, 1984), examples on step-size adaptation (with the number of total reconstruction
levels larger than four) were given. The idea is as follows. If at moment ti the input sample xi falls
into the outer interval, then the step size at the next moment ti+1 will be enlarged by a factor of mi

(multiplying the current step size by mi, mi > 1). On the other hand, if the input xi falls into an
inner interval close to x = 0 then, the multiplier is less than 1, i.e., mi < 1. That is, the multiplier
mi is small in the interval near x = 0 and monotonically increases for an increased x. Its range
varies from a small positive number less than 1 to a number larger than 1. In this way, the quantizer
adapts itself to the input to avoid overload as well as underload to achieve better performance.

2.4.4 SWITCHED QUANTIZATION

This is another adaptive quantization scheme. A block diagram is shown in Figure 2.17. It consists
of a bank of L quantizers. Each quantizer in the bank is fixed, but collectively they form a bank

FIGURE 2.16 Backward adaptive quantization.
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of quantizers with a variety of input-output characteristics. Based on a statistical analysis of recent
input or output samples, a switch connects the current input to one of the quantizers in the bank
such that the best possible performance may be achieved. It is reported that in both video and
speech applications, this scheme has shown improved performance even when the number of
quantizers in the bank, L, is two (Jayant and Noll, 1984). Interestingly, it is noted that as L Æ •,
the switched quantization converges to the adaptive quantizer discussed above.

2.5 PCM

Pulse code modulation (PCM) is closely related to quantization, the focus of this chapter. Further-
more, as pointed out in (Jayant, 1984), PCM is the earliest, best established, and most frequently
applied coding system despite the fact that it is the most bit-consuming digitizing system (since it
encodes each pixel independently) as well as being a very demanding system in terms of the bit
error rate on the digital channel. Therefore, we discuss the PCM technique in this section.

PCM is now the most important form of pulse modulation. The other forms of pulse modulation
are pulse amplitude modulation (PAM), pulse width modulation (PWM), and pulse position mod-
ulation (PPM), which are covered in most communications texts. Briefly speaking, pulse modulation
links an analog signal to a pulse train in the following way. The analog signal is first sampled (a
discretization in the time domain). The sampled values are used to modulate a pulse train. If the
modulation is carried out through the amplitude of the pulse train, it is called PAM. If the modified
parameter of the pulse train is the pulse width, we then have PWM. If the pulse width and magnitude
are constant — only the position of pulses is modulated by the sample values — we then encounter
PPM. An illustration of these pulse modulations is shown in Figure 2.18.

In PCM, an analog signal is first sampled. The sampled value is then quantized. Finally the
quantized value is encoded, resulting in a bit steam. Figure 2.19 provides an example of PCM. We
see that through a sampling and a uniform quantization the PCM system converts the input analog
signal, which is continuous in both time and magnitude, into a digital signal (discretized in both
time and magnitude) in the form of a natural binary code sequence. In this way, an analog signal
modulates a pulse train with a natural binary code.

By far, PCM is more popular than other types of pulse modulation since the code modulation
is much more robust against various noises than amplitude modulation, width modulation, and
position modulation. In fact, almost all coding techniques include a PCM component. In digital
image processing, given digital images usually appear in PCM format. It is known that an acceptable
PCM representation of a monochrome picture requires six to eight bits per pixel (Huang, 1975).
It is used so commonly in practice that its performance normally serves as a standard against which
other coding techniques are compared.

FIGURE 2.17 Switched quantization.
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Recall the false contouring phenomenon discussed in Chapter 1, when we discussed texture
masking. It states that our eyes are more sensitive to relatively uniform regions in an image plane.
If the number of reconstruction levels is not large enough (coarse quantization), then some unnatural
contours will appear. When frequency masking was discussed, it was noted that by adding some
high-frequency signal before quantization, the false contouring can be eliminated to a great extent.
This technique is called dithering. The high-frequency signal used is referred to as a dither signal.
Both false contouring and dithering were first reported in (Goodall, 1951).

2.6 SUMMARY

Quantization is a process in which a quantity having possibly an infinite number of different values
is converted to another quantity having only finite many values. It is an important element in source
encoding that has significant impact on both bit rate and distortion of reconstructed images and
video in visual communication systems. Depending on whether the quantity is a scalar or a vector,
quantization is called either scalar quantization or vector quantization. In this chapter we considered
only scalar quantization.

Uniform quantization is the simplest and yet the most important case. In uniform quantization,
except for outer intervals, both decision levels and reconstruction levels are uniformly spaced.
Moreover, a reconstruction level is the arithmetic average of the two corresponding decision levels.
In uniform quantization design, the step size is usually the only parameter that needs to be specified.

FIGURE 2.18 Pulse modulation.
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Optimum quantization implies minimization of the mean square quantization error. When the
input has a uniform distribution, uniform quantization is optimum. For the sake of simplicity, a
uniform optimum quantizer is sometimes desired even when the input does not obey uniform
distribution. The design under these circumstances involves an iterative procedure. The design
problem in cases where the input has Gaussian, Lapacian, or Gamma distribution was solved and
the parameters are available.

When the constraint of uniform quantization is removed, the conditions for optimum quanti-
zation are derived. The resultant optimum quantizer is normally nonuniform. An iterative procedure
to solve the design is established and the optimum design parameters for Gaussian, Laplacian, and
Gamma distribution are tabulated.

The companding technique is an alternative way to implement nonuniform quantization. Both
nonuniform quantization and companding are time-invariant and hence not suitable for nonstation-
ary input. Adaptive quantization deals with nonstationary input and combats the mismatch that
occurs in optimum quantization design.

In adaptive quantization, buffering is necessary to store some recent input or sampled output
data. A statistical analysis is carried out with respect to the stored recent data. Based on the analysis,
the quantizer’s parameters are adapted to changing input statistics to achieve better quantization
performance. There are two types of adaptive quantization: forward and backward adaptive quan-
tization. With the forward type, the statistical analysis is derived from the original input data, while
with the backward type, quantization noise is involved in the analysis. Therefore, the forward

FIGURE 2.19 Pulse code modulation (PCM).
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technique usually achieves more effective adaptation than the backward manner. The latter, however,
does not need to send quantizer setting parameters as side information to the receiver side, since
the output values of the quantization encoder (based on which the statistics are analyzed and the
quantizer’s parameters are adapted) are available in both the transmitter and receiver sides.

Switched quantization is another type of adaptive quantization. In this scheme, a bank of fixed
quantizers is utilized, each quantizer having different input-output characteristics. A statistical
analysis based on recent input decides which quantizer in the bank is suitable for the present input.
The system then connects the input to this particular quantizer.

Nowadays, pulse code modulation is the most frequently used form of pulse modulation due
to its robustness against noise. PCM consists of three stages: sampling, quantization, and encoding.
Analog signals are first sampled with a proper sampling frequency. The sampled data are then
quantized using a uniform quantizer. Finally, the quantized values are encoded with natural binary
code. It is the best established and most applied coding system. Despite its bit-consuming feature,
it is utilized in almost all coding systems.

2.7 EXERCISES

2-1. Using your own words, define quantization and uniform quantization. What are the two
features of uniform quantization?

2-2. What is optimum quantization? Why is uniform quantization sometimes desired, even
when the input has a pdf different from uniform? How was this problem solved? Draw
an input-output characteristic of an optimum uniform quantizer with an input obeying
Gaussian pdf having zero mean, unit variance, and the number of reconstruction levels,
N, equal to 8.

2-3. What are the conditions of optimum nonuniform quantization? From Table 2.2, what
observations can you make?

2-4. Define variance mismatch and pdf mismatch. Discuss how you can resolve the mismatch
problem.

2-5. What is the difference between forward and backward adaptive quantization? Comment
on the merits and drawbacks for each.

2-6. What are PAM, PWM, PPM, and PCM? Why is PCM the most popular type of pulse
modulation?
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Differential Coding

 

Instead of encoding a signal directly, the 

 

differential coding

 

 technique codes the difference between
the signal itself and its prediction. Therefore it is also known as 

 

predictive coding

 

. By utilizing
spatial and/or temporal interpixel correlation, differential coding is an efficient and yet computation-
ally simple coding technique. In this chapter, we first describe the differential technique in general.
Two components of differential coding, prediction and quantization, are discussed. There is an
emphasis on (optimum) prediction, since quantization was discussed in Chapter 2. When the differ-
ence signal (also known as prediction error) is quantized, the differential coding is called differential
pulse code modulation (DPCM). Some issues in DPCM are discussed, after which delta modulation
(DM) as a special case of DPCM is covered. The idea of differential coding involving image
sequences is briefly discussed in this chapter. More detailed coverage is presented in Sections III
and IV, starting from Chapter 10. If quantization is not included, the differential coding is referred
to as information-preserving differential coding. This is discussed at the end of the chapter.

 

3.1 INTRODUCTION TO DPCM

 

As depicted in Figure 2.3, a source encoder consists of the following three components: transfor-
mation, quantization, and codeword assignment. The transformation converts input into a format
for quantization followed by codeword assignment. In other words, the component of transformation
decides which format of input is to be encoded. As mentioned in the previous chapter, input itself
is not necessarily the most suitable format for encoding.

Consider the case of monochrome image encoding. The input is usually a 2-D array of gray
level values of an image obtained via PCM coding. The concept of spatial redundancy, discussed
in Section 1.2.1.1, tells us that neighboring pixels of an image are usually highly correlated.
Therefore, it is more efficient to encode the gray difference between two neighboring pixels instead
of encoding the gray level values of each pixel. At the receiver, the decoded difference is added
back to reconstruct the gray level value of the pixel. Since neighboring pixels are highly correlated,
their gray level values bear a great similarity. Hence, we expect that the variance of the difference
signal will be smaller than that of the original signal. Assume uniform quantization and natural
binary coding for the sake of simplicity. Then we see that for the same bit rate (bits per sample)
the quantization error will be smaller, i.e., a higher quality of reconstructed signal can be achieved.
Or, for the same quality of reconstructed signal, we need a lower bit rate.
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Denote the gray level values of pixels along a row of an image as 
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total number of pixels within the row. Using the immediately preceding pixel’s gray level value,
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, i.e.,
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we then have the difference signal
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Assume a bit rate of eight bits per sample in the quantization. We can see that although the dynamic
range of the difference signal is theoretically doubled, from 256 to 512, the variance of the difference
signal is actually much smaller. This can be confirmed from the histograms of the “boy and girl”
image (refer to Figure 1.1) and its difference image obtained by horizontal pixel-to-pixel differ-
encing, shown in Figure 3.1(a) and (b), respectively. Figure 3.1(b) and its close-up (c) indicate that
by a rate of 42.44% the difference values fall into the range of –1, 0, and +1. In other words, the
histogram of the difference signal is much more narrowly concentrated than that of the original
signal.

 

FIGURE 3.1

 

(a) Histogram of the original “boy and girl” image. (b) Histogram of the difference image
obtained by using horizontal pixel-to-pixel differencing. (c) A close-up of the central portion of the histogram
of the difference image.
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A block diagram of the scheme described above is shown in Figure 3.2. There 

 

z

 

i

 

 denotes the
sequence of pixels along a row, 

 

d

 

i

 

 is the corresponding difference signal, and

 

d̂

 

i

 

 is the quantized
version of the difference, i.e.,

(3.3)

where 

 

e

 

q

 

 represents the quantization error. In the decoder,

 

–

 

z

 

i

 

 represents the reconstructed pixel gray
value, and we have

(3.4)

This simple scheme, however, suffers from an accumulated quantization error. We can see this
clearly from the following derivation (Sayood, 1996), where we assume the initial value 

 

z

 

0

 

 is
available for both the encoder and the decoder.

(3.5)

Similarly, we can have

(3.6)

and, in general,

(3.7)

This problem can be remedied by the following scheme, shown in Figure 3.3. Now we see that
in both the encoder and the decoder, the reconstructed signal is generated in the same way, i.e.,

(3.8)

and in the encoder the difference signal changes to

(3.9)

 

FIGURE 3.2

 

Block diagram of a pixel-to-pixel differential coding system.
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Thus, the previously reconstructed
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z

 

i

 

–1

 

 is used as the predictor,

 

ẑ

 

i

 

, i.e.,

(3.10)

In this way, we have

(3.11)

Similarly, we have

(3.12)

In general,

(3.13)

Thus, we see that the problem of the quantization error accumulation has been resolved by
having both the encoder and the decoder work in the same fashion, as indicated in Figure 3.3, or
in Equations 3.3, 3.9, and 3.10.

 

3.1.2 G

 

ENERAL

 

 DPCM S

 

YSTEMS

 

In the above discussion, we can view the reconstructed neighboring pixel’s gray value as a prediction
of that of the pixel being coded. Now, we generalize this simple pixel-to-pixel DPCM. In a general
DPCM system, a pixel’s gray level value is first predicted from the preceding reconstructed pixels’
gray level values. The difference between the pixel’s gray level value and the predicted value is
then quantized. Finally, the quantized difference is encoded and transmitted to the receiver. A block

 

FIGURE 3.3

 

Block diagram of a practical pixel-to-pixel differential coding system.
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diagram of this general differential coding scheme is shown in Figure 3.4, where the codeword
assignment in the encoder and its counterpart in decoder are not included.

It is noted that, instead of using the previously reconstructed sample,
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, as a predictor, we
now have the predicted version of 
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. That is,

(3.14)

Linear prediction, i.e., that the function 

 

f

 

 in Equation 3.14 is linear, is of particular interest and
is widely used in differential coding. In linear prediction, we have

(3.15)

where 
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j

 

 are real parameters. Hence, we see that the simple pixel-to-pixel differential coding is a
special case of general differential coding with linear prediction, i.e., 
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 = 1 and 
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 = 1.
In Figure 3.4, 
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 is the difference signal and is equal to the difference between the original
signal, 
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, and the prediction
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. That is,
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The quantized version of 

 

d

 

i

 

 is denoted by
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. The reconstructed version of 
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 is represented
by
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, and

(3.17)

Note that this is true for both the encoder and the decoder. Recall that the accumulation of the
quantization error can be remedied by using this method.

The difference between the original input and the predicted input is called prediction error,
which is denoted by 

 

e

 

p

 

. That is,
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where the 
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 is understood as the prediction error associated with the index 
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, is equal to the reconstruction error or coding error, 
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, defined as the difference between the
original signal, 
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, and the reconstructed signal,
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, when the transmission is error free:

 

FIGURE 3.4

 

Block diagram of a general DPCM system.
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(3.19)

This indicates that quantization error is the only source of information loss with an error-free
transmission channel.

The DPCM system depicted in Figure 3.4 is also called closed-loop DPCM with feedback
around the quantizer (Jayant, 1984). This term reflects the feature in DPCM structure.

Before we leave this section, let us take a look at the history of the development of differential
image coding. According to an excellent early article on differential image coding (Musmann,
1979), the first theoretical and experimental approaches to image coding involving linear prediction
began in 1952 at the Bell Telephone Laboratories (Oliver, 1952; Kretzmer, 1952; Harrison, 1952).
The concepts of DPCM and DM were also developed in 1952 (Cutler, 1952; Dejager, 1952).
Predictive coding capable of preserving information for a PCM signal was established at the
Massachusetts Institute of Technology (Elias, 1955).

The differential coding technique has played an important role in image and video coding. In
the international coding standard for still images, JPEG (covered in Chapter 7), we can see that
differential coding is used in the lossless mode and in the DCT-based mode for coding DC
coefficients. Motion-compensated (MC) coding has been a major development in video coding
since the 1980s and has been adopted by all the international video coding standards such as H.261
and H.263 (covered in Chapter 19), MPEG 1 and MPEG 2 (covered in Chapter 16). MC coding is
essentially a predictive coding technique applied to video sequences involving displacement motion
vectors.

 

3.2 OPTIMUM LINEAR PREDICTION

 

Figure 3.4 demonstrates that a differential coding system consists of two major components:
prediction and quantization. Quantization was discussed in the previous chapter. Hence, in this
chapter we emphasize prediction. Below, we formulate an optimum linear prediction problem and
then present a theoretical solution to the problem.
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is a linear function of the 
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with 
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 being a set of real coefficients. An illustration of a linear predictor is shown
in Figure 3.5. As defined above, the prediction error, 
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, is
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The mean square prediction error, 

 

MSE

 

p

 

, is

(3.22)

The optimum prediction, then, refers to the determination of a set of coefficients 

 

a

 

j
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 = 1,2,
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such that the mean square prediction error, 

 

MSE
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, is minimized.
This optimization problem turns out to be computationally intractable for most practical cases

due to the feedback around the quantizer shown in Figure 3.4, and the nonlinear nature of the
quantizer. Therefore, the optimization problem is solved in two separate stages. That is, the best
linear predictor is first designed ignoring the quantizer. Then, the quantizer is optimized for the
distribution of the difference signal (Habibi, 1971). Although the predictor thus designed is sub-
optimal, ignoring the quantizer in the optimum predictor design allows us to substitute the recon-
structed

 

–

 

z

 

i

 

–

 

j by zi–j for j = 1,2,L,n, according to Equation 3.20. Consequently, we can apply the
theory of optimum linear prediction to handle the design of the optimum predictor as shown below.

3.2.2 ORTHOGONALITY CONDITION AND MINIMUM MEAN SQUARE ERROR

By taking the differentiation of MSEp with respect to coefficient ajs, one can derive the following
necessary conditions, which are usually referred to as the orthogonality condition:

(3.23)

The interpretation of Equation 3.23 is that the prediction error, ep, must be orthogonal to all the
observations, which are now the preceding samples: zi–j, j = 1,2,L,n according to our discussion
in Section 3.2.1. These are equivalent to

FIGURE 3.5 An illustration of a linear predictor.
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(3.24)

where Rz represents the autocorrelation function of z. In a vector-matrix format, the above orthogonal
conditions can be written as

(3.25)

Equations 3.24 and 3.25 are called Yule-Walker equations.
The minimum mean square prediction error is then found to be

(3.26)

These results can be found in texts dealing with random processes, e.g., in (Leon-Garcia, 1994).

3.2.3 SOLUTION TO YULE-WALKER EQUATIONS

Once autocorrelation data are available, the Yule-Walker equation can be solved by matrix inversion.
A recursive procedure was developed by Levinson to solve the Yule-Walker equations (Leon-Garcia,
1993). When the number of previous samples used in the linear predictor is large, i.e., the dimension
of the matrix is high, the Levinson recursive algorithm becomes more attractive. Note that in the
field of image coding the autocorrelation function of various types of video frames is derived from
measurements (O’Neal, 1966; Habibi, 1971).

3.3 SOME ISSUES IN THE IMPLEMENTATION OF DPCM

Several related issues in the implementation of DPCM are discussed in this section.

3.3.1 OPTIMUM DPCM SYSTEM

Since DPCM consists mainly of two parts, prediction and quantization, its optimization should not
be carried out separately. The interaction between the two parts is quite complicated, however, and
thus combined optimization of the whole DPCM system is difficult. Fortunately, with the mean
square error criterion, the relation between quantization error and prediction error has been found:

(3.27)

where N is the total number of reconstruction levels in the quantizer (O’Neal, 1966; Musmann,
1979). That is, the mean square error of quantization is approximately proportional to the mean
square error of prediction. With this approximation, we can optimize the two parts separately, as
mentioned in Section 3.2.1. While the optimization of quantization was addressed in Chapter 2, the
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optimum predictor was discussed in Section 3.2. A large amount of work has been done on this
subject. For instance, the optimum predictor for color image coding was designed and tested in
(Pirsch and Stenger, 1977).

3.3.2 1-D, 2-D, AND 3-D DPCM

In Section 3.1.2, we expressed linear prediction in Equation 3.15. However, so far we have not
really discussed how to predict a pixel’s gray level value by using its neighboring pixels’ coded
gray level values.

Recall that a practical pixel-to-pixel differential coding system was discussed in Section 3.1.1.
There, the reconstructed intensity of the immediately preceding pixel along the same scan line is used
as a prediction of the pixel intensity being coded. This type of differential coding is referred to as
1-D DPCM. In general, 1-D DPCM may use the reconstructed gray level values of more than one of
the preceding pixels within the same scan line to predict that of a pixel being coded. By far, however,
the immediately preceding pixel in the same scan line is most frequently used in 1-D DPCM. That
is, pixel A in Figure 3.6 is often used as a prediction of pixel Z, which is being DPCM coded.

Sometimes in DPCM image coding, both the decoded intensity values of adjacent pixels within
the same scan line and the decoded intensity values of neighboring pixels in different scan lines
are involved in the prediction. This is called 2-D DPCM. A typical pixel arrangement in 2-D
predictive coding is shown in Figure 3.6. Note that the pixels involved in the prediction are restricted
to be either in the lines above the line where the pixel being coded, Z, is located or on the left-
hand side of pixel Z if they are in the same line. Traditionally, a TV frame is scanned from top to
bottom and from left to right. Hence, the above restriction indicates that only those pixels, which
have been coded and available in both the transmitter and the receiver, are used in the prediction.
In 2-D system theory, this support is referred to as recursively computable (Bose, 1982). An often-
used 2-D prediction involves pixels A, D, and E.

Obviously, 2-D predictive coding utilizes not only the spatial correlation existing within a scan
line but also that existing in neighboring scan lines. In other words, the spatial correlation is utilized
both horizontally and vertically. It was reported that 2-D predictive coding outperforms 1-D
predictive coding by decreasing the prediction error by a factor of two, or equivalently, 3dB in
SNR. The improvement in subjective assessment is even larger (Musmann, 1979). Furthermore, the
transmission error in 2-D predictive image coding is much less severe than in 1-D predictive image
coding. This is discussed in Section 3.6.

In the context of image sequences, neighboring pixels may be located not only in the same
image frame but also in successive frames. That is, neighboring pixels along the time dimension
are also involved. If the prediction of a DPCM system involves three types of neighboring pixels:
those along the same scan line, those in the different scan lines of the same image frame, and those

FIGURE 3.6 Pixel arrangement in 1-D and 2-D prediction.
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in the different frames, the DPCM is then called 3-D differential coding. It will be discussed in
Section 3.5.

3.3.3 ORDER OF PREDICTOR

The number of coefficients in the linear prediction, n, is referred to as the order of the predictor.
The relation between the mean square prediction error, MSEp, and the order of the predictor, n, has
been studied. As shown in Figure 3.7, the MSEp decreases quite effectively as n increases, but the
performance improvement becomes negligible as n > 3 (Habibi, 1971).

3.3.4 ADAPTIVE PREDICTION

Adaptive DPCM means adaptive prediction and adaptive quantization. As adaptive quantization
was discussed in Chapter 2, here we discuss adaptive prediction only.

Similar to the discussion on adaptive quantization, adaptive prediction can be done in two
different ways: forward adaptive and backward adaptive prediction. In the former, adaptation is
based on the input of a DPCM system, while in the latter, adaptation is based on the output of the
DPCM. Therefore, forward adaptive prediction is more sensitive to changes in local statistics.
Prediction parameters (the coefficients of the predictor), however, need to be transmitted as side
information to the decoder. On the other hand, quantization error is involved in backward adaptive
prediction. Hence, the adaptation is less sensitive to local changing statistics. But, it does not need
to transmit side information.

FIGURE 3.7 Mean square prediction error vs. order of predictor. (Data from Habibi, 1971.)
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In either case, the data (either input or output) have to be buffered. Autocorrelation coefficients
are analyzed, based on which prediction parameters are determined.

3.3.5 EFFECT OF TRANSMISSION ERRORS

Transmission errors caused by channel noise may reverse the binary bit information from 0 to 1
or 1 to 0 with what is known as bit error probability, or bit error rate. The effect of transmission
errors on reconstructed images varies depending on different coding techniques.

In the case of the PCM-coding technique, each pixel is coded independently of the others.
Therefore bit reversal in the transmission only affects the gray level value of the corresponding
pixel in the reconstructed image. It does not affect other pixels in the reconstructed image.

In DPCM, however, the effect caused by transmission errors becomes more severe. Consider
a bit reversal occurring in transmission. It causes error in the corresponding pixel. But, this is not
the end of the effect. The affected pixel causes errors in reconstructing those pixels towards which
the erroneous gray level value was used in the prediction. In this way, the transmission error
propagates.

Interestingly, it is reported that the error propagation is more severe in 1-D differential image
coding than in 2-D differential coding. This may be explained as follows. In 1-D differential coding,
usually only the immediate preceding pixel in the same scan line is involved in prediction. Therefore,
an error will be propagated along the scan line until the beginning of the next line, where the pixel
gray level value is reinitialized. In 2-D differential coding, the prediction of a pixel gray level value
depends not only on the reconstructed gray level values of pixels along the same scan line but also
on the reconstructed gray level values of the vertical neighbors. Hence, the effect caused by a bit
reversal transmission error is less severe than in the 1-D differential coding.

For this reason, the bit error rate required by DPCM coding is lower than that required by PCM
coding. For instance, while a bit error rate less than 5 ·10–6 is normally required for PCM to provide
broadcast TV quality, for the same application a bit error rate less than 10–7 and 10–9 are required
for DPCM coding with 2-D prediction and 1-D prediction, respectively (Musmann, 1979).

Channel encoding with an error correction capability was applied to lower the bit error rate.
For instance, to lower the bit error rate from the order of 10–6 to the order of 10–9 for DPCM coding
with 1-D prediction, an error correction by adding 3% redundancy in channel coding has been used
(Bruders, 1978).

3.4 DELTA MODULATION

Delta modulation (DM) is an important, simple, special case of DPCM, as discussed above. It has
been widely applied and is thus an important coding technique in and of itself.

The above discussion and characterization of DPCM systems are applicable to DM systems.
This is because DM is essentially a special type of DPCM, with the following two features.

1. The linear predictor is of the first order, with the coefficient a1 equal to 1.
2. The quantizer is a one-bit quantizer. That is, depending on whether the difference signal

is positive or negative, the output is either +D/2 or –D/2.

To perceive these two features, let us take a look at the block diagram of a DM system and
the input-output characteristic of its one-bit quantizer, shown in Figures 3.8 and 3.9, respectively.
Due to the first feature listed above, we have:

(3.28)ẑ zi i= -1
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Next, we see that there are only two reconstruction levels in quantization because of the second
feature. That is,

(3.29)

From the relation between the reconstructed value and the predicted value of DPCM, discussed
above, and the fact that DM is a special case of DPCM, we have

(3.30)

Combining Equations 3.28, 3.29, and 3.30, we have

(3.31)

FIGURE 3.8 Block diagram of DM systems.

FIGURE 3.9 Input-output characteristic of two-level quantization in DM.
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The above mathematical relationships are of importance in understanding DM systems. For
instance, Equation 3.31 indicates that the step size D of DM is a crucial parameter. We notice that
a large step size compared with the magnitude of the difference signal causes granular error, as
shown in Figure 3.10. Therefore, in order to reduce the granular error we should choose a small
step size. On the other hand, a small step size compared with the magnitude of the difference signal
will lead to the overload error discussed in Chapter 2 for quantization. Since in DM systems it is
the difference signal that is quantized, the overload error in DM becomes slope overload error, as
shown in Figure 3.10. That is, it takes a while (multiple steps) for the reconstructed samples to
catch up with the sudden change in input. Therefore, the step size should be large in order to avoid
the slope overload. Considering these two conflicting factors, a proper compromise in choosing
the step size is common practice in DM.

To improve the performance of DM, an oversampling technique is often applied. That is, the
input is oversampled prior to the application of DM. By oversampling, we mean that the sampling
frequency is higher than the sampling frequency used in obtaining the original input signal. The
increased sample density caused by oversampling decreases the magnitude of the difference signal.
Consequently, a relatively small step size can be used so as to decrease the granular noise without
increasing the slope overload error. Thus, the resolution of the DM-coded image is kept the same
as that of the original input (Jayant, 1984; Lim, 1990).

To achieve better performance for changing inputs, an adaptive technique can be applied in
DM. That is, either input (forward adaptation) or output (backward adaptation) data are buffered
and the data variation is analyzed. The step size is then chosen accordingly. If it is forward
adaptation, side information is required for transmission to the decoder. Figure 3.11 demonstrates
step size adaptation. We see the same input as that shown in Figure 3.10. But, the step size is now
not fixed. Instead, the step size is adapted according to the varying input. When the input changes
with a large slope, the step size increases to avoid the slope overload error. On the other hand,
when the input changes slowly, the step size decreases to reduce the granular error.

FIGURE 3.10 DM with fixed step size.



© 2000 by CRC Press LLC

3.5 INTERFRAME DIFFERENTIAL CODING

As was mentioned in Section 3.3.2, 3-D differential coding involves an image sequence. Consider
a sensor located in 3-D world space. For instance, in applications such as videophony and video-
conferencing, the sensor is fixed in position for a while and it takes pictures. As time goes by, the
images form a temporal image sequence. The coding of such an image sequence is referred to as
interframe coding. The subject of image sequence and video coding is addressed in Sections III
and IV. In this section, we briefly discuss how differential coding is applied to interframe coding.

3.5.1 CONDITIONAL REPLENISHMENT

Recognizing the great similarity between consecutive TV frames, a conditional replenishment
coding technique was proposed and developed (Mounts, 1969). It was regarded as one of the first
real demonstrations of interframe coding exploiting interframe redundancy (Netravali and Robbins,
1979).

In this scheme, the previous frame is used as a reference for the present frame. Consider a pair
of pixels: one in the previous frame, the other in the present frame — both occupying the same
spatial position in the frames. If the gray level difference between the pair of pixels exceeds a
certain criterion, then the pixel is considered a changing pixel. The present pixel gray level value
and its position information are transmitted to the receiving side, where the pixel is replenished.
Otherwise, the pixel is considered unchanged. At the receiver its previous gray level is repeated.
A block diagram of conditional replenishment is shown in Figure 3.12. There, a frame memory
unit in the transmitter is used to store frames. The differencing and thresholding of corresponding
pixels in two consecutive frames can then be conducted there. A buffer in the transmitter is used
to smooth the transmission data rate. This is necessary because the data rate varies from region to
region within an image frame and from frame to frame within an image sequence. A buffer in the
receiver is needed for a similar consideration. In the frame memory unit, the replenishment is

FIGURE 3.11 Adaptive DM.
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carried out for the changing pixels and the gray level values in the receiver are repeated for the
unchanged pixels.

With conditional replenishment, a considerable savings in bit rate was achieved in applications
such as videophony, videoconferencing, and TV broadcasting. Experiments in real time, using the
head-and-shoulder view of a person in animated conversation as the video source, demonstrated
an average bit rate of 1 bit/pixel with a quality of reconstructed video comparable with standard
8 bit/pixel PCM transmission (Mounts, 1969). Compared with pixel-to-pixel 1-D DPCM, the most
popularly used coding technique at the time, the conditional replenishment technique is more
efficient due to the exploitation of high interframe redundancy. As pointed in (Mounts, 1969), there
is more correlation between television pixels along the frame-to-frame temporal dimension than
there is between adjacent pixels within a signal frame. That is, the temporal redundancy is normally
higher than spatial redundancy for TV signals.

Tremendous efforts have been made to improve the efficiency of this rudimentary technique.
For an excellent review, readers are referred to (Haskell et al., 1972, 1979). 3-D DPCM coding is
among the improvements and is discussed next.

3.5.2 3-D DPCM

It was soon realized that it is more efficient to transmit the gray level difference than to transmit
the gray level itself, resulting in interframe differential coding. Furthermore, instead of treating
each pixel independently of its neighboring pixels, it is more efficient to utilize spatial redundancy
as well as temporal redundancy, resulting in 3-D DPCM.

Consider two consecutive TV frames, each consisting of an odd and an even field. Figure 3.13
demonstrates the small neighborhood of a pixel, Z, in the context. As with the 1-D and 2-D DPCM
discussed before, the prediction can only be based on the previously encoded pixels. If the pixel
under consideration, Z, is located in the even field of the present frame, then the odd field of the
present frame and both odd and even fields of the previous frame are available. As mentioned in
Section 3.3.2, it is assumed that in the even field of the present frame, only those pixels in the lines
above the line where pixel Z lies and those pixels left of the Z in the line where Z lies are used
for prediction.

Table 3.1 lists several utilized linear prediction schemes. It is recognized that the case of element
difference is a 1-D predictor since the immediately preceding pixel is used as the predictor. The

FIGURE 3.12 Block diagram of conditional replenishment.
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field difference is defined as the arithmetic average of two immediately vertical neighboring pixels
in the previous odd field. Since the odd field is generated first, followed by the even field, this
predictor cannot be regarded as a pure 2-D predictor. Instead, it should be considered a 3-D predictor.
The remaining cases are all 3-D predictors. One thing is common in all the cases: the gray levels
of pixels used in the prediction have already been coded and thus are available in both the transmitter
and the receiver. The prediction error of each changing pixel Z identified in thresholding process
is then quantized and coded.

An analysis of the relationship between the entropy of moving areas (bits per changing pixel)
and the speed of the motion (pixels per frame interval) in an image containing a moving mannequin’s
head was studied with different linear predictions, as listed in Table 3.1 in Haskell (1979). It was
found that the element difference of field difference generally corresponds to the lowest entropy,
meaning that this prediction is the most efficient. The frame difference and element difference
correspond to higher entropy. It is recognized that, in the circumstances, transmission error will be
propagated if the pixels in the previous line are used in prediction (Connor, 1973). Hence, the linear
predictor should use only pixels from the same line or the same line in the previous frame when
bit reversal error in transmission needs to be considered. Combining these two factors, the element
difference of frame difference prediction is preferred.

FIGURE 3.13 Pixel arrangement in two TV frames. (After Haskell, 1979.)

TABLE 3.1
Some Linear Prediction Schemes. (After Haskell, 1979).

Original signal (Z) Prediction signal (Ẑ) Differential signal (dz)

Element difference Z G Z-G
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3.5.3 MOTION-COMPENSATED PREDICTIVE CODING

When frames are taken densely enough, changes in successive frames can be attributed to the
motion of objects during the interval between frames. Under this assumption, if we can analyze
object motion from successive frames, then we should be able to predict objects in the next frame
based on their positions in the previous frame and the estimated motion. The difference between
the original frame and the predicted frame thus generated and the motion vectors are then quantized
and coded. If the motion estimation is accurate enough, the motion-compensated prediction error
can be smaller than 3-D DPCM. In other words, the variance of the prediction error will be smaller,
resulting in more efficient coding. Take motion into consideration — this differential technique is
called motion compensated predictive coding. This has been a major development in image sequence
coding since the 1980s. It has been adopted by all international video coding standards. A more
detailed discussion is provided in Chapter 10.

3.6 INFORMATION-PRESERVING DIFFERENTIAL CODING

As emphasized in Chapter 2, quantization is not reversible in the sense that it causes permanent
information loss. The DPCM technique, discussed above, includes quantization, and hence is lossy
coding. In applications such as those involving scientific measurements, information preservation
is required. In this section, the following question is addressed: under these circumstances, how
should we apply differential coding in order to reduce the bit rate while preserving information?

Figure 3.14 shows a block diagram of information-preserving differential coding. First, we see
that there is no quantizer. Therefore, the irreversible information loss associated with quantization
does not exist in this technique. Second, we observe that prediction and differencing are still used.
That is, the differential (predictive) technique still applies. Hence it is expected that the variance
of the difference signal is smaller than that of the original signal, as explained in Section 3.1.
Consequently, the higher-peaked histograms make coding more efficient. Third, an efficient lossless
coder is utilized. Since quantizers cannot be used here, PCM with natural binary coding is not used
here. Since the histogram of the difference signal is narrowly concentrated about its mean, lossless
coding techniques such as an efficient Huffman coder (discussed in Chapter 5) is naturally a suitable
choice here.

FIGURE 3.14 Block diagram of information-preserving differential coding.
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As mentioned before, input images are normally in a PCM coded format with a bit rate of
eight bits per pixel for monochrome pictures. The difference signal is therefore integer-valued.
Having no quantization and using an efficient lossless coder, the coding system depicted in
Figure 3.14, therefore, is an information-preserving differential coding technique.

3.7 SUMMARY

Rather than coding the signal itself, differential coding, also known as predictive coding, encodes
the difference between the signal and its prediction. Utilizing spatial and/or temporal correlation
between pixels in the prediction, the variance of the difference signal can be much smaller than
that of the original signal, thus making differential coding quite efficient.

Among differential coding methods, differential pulse code modulation (DPCM) is used most
widely. In DPCM coding, the difference signal is quantized and codewords are assigned to the
quantized difference. Prediction and quantization are therefore two major components in the DPCM
systems. Since quantization was addressed in Chapter 2, this chapter emphasizes prediction. The
theory of optimum linear prediction is introduced. Here, optimum means minimization of the mean
square prediction error. The formulation of optimum linear prediction, the orthogonality condition,
and the minimum mean square prediction error are presented. The orthogonality condition states
that the prediction error must be orthogonal to each observation, i.e., to the reconstructed sample
intensity values used in the linear prediction. By solving the Yule-Walker equation, the optimum
prediction coefficients may be determined.

In addition, some fundamental issues in implementing the DPCM technique are discussed. One
issue is the dimensionality of the predictor in DPCM. We discussed 1-D, 2-D, and 3-D predictors.
DPCM with a 2-D predictor demonstrates better performance than a 1-D predictor since 2-D DPCM
utilizes more spatial correlation, i.e., not only horizontally but also vertically. As a result, a 3-dB
improvement in SNR was reported. 3-D prediction is encountered in what is known as interframe
coding. There, temporal correlation exists. 3-D DPCM utilizes both spatial and temporal correlation
between neighboring pixels in successive frames. Consequently, more redundancy can be removed.
Motion-compensated predictive coding is a very powerful technique in video coding related to
differential coding. It uses a more advanced translational motion model in the prediction, however,
and it is covered in Sections III and IV.

Another issue is the order of predictors and its effect on the performance of prediction in terms
of mean square prediction error. Increasing the prediction order can lower the mean square predic-
tion error effectively, but the performance improvement becomes insignificant after the third order.

Adaptive prediction is another issue. Similar to adaptive quantization, discussed in Chapter 2,
we can adapt the prediction coefficients in the linear predictor to varying local statistics.

The last issue is concerned with the effect of transmission error. Bit reversal in transmission
causes a different effect on reconstructed images depending on the type of coding technique used.
PCM is known to be bit-consuming. (An acceptable PCM representation of monochrome images
requires six to eight bits per pixel.) But a one-bit reversal only affects an individual pixel. For the
DPCM coding technique, however, a transmission error may propagate from one pixel to the other.
In particular, DPCM with a 1-D predictor suffers from error propagation more severely than DPCM
with a 2-D predictor.

Delta modulation is an important special case of DPCM in which the predictor is of the first
order. Specifically, the immediately preceding coded sample is used as a prediction of the present
input sample. Furthermore, the quantizer has only two reconstruction levels.

Finally, an information-preserving differential coding technique is discussed. As mentioned in
Chapter 2, quantization is an irreversible process: it causes information loss. In order to preserve
information, there is no quantizer in this type of system. To be efficient, lossless codes such as
Huffman code or arithmetic code should be used for difference signal encoding.
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3.8 EXERCISES

3-1. Justify the necessity of the closed-loop DPCM with feedback around quantizers. That
is, convince yourself why the quantization error will be accumulated if, instead of using
the reconstructed preceding samples, we use the immediately preceding sample as the
prediction of the sample being coded in DPCM.

3-2. Why does the overload error encountered in quantization appear to be the slope overload
in DM?

3-3. What advantage does oversampling bring up in the DM technique?
3-4. What are the two features of DM that make it a subclass of DPCM?
3-5. Explain why DPCM with a 1-D predictor suffers from bit reversal transmission error

more severely than DPCM with a 2-D predictor.
3-6. Explain why no quantizer can be used in information-preserving differential coding, and

why the differential system can work without a quantizer.
3-7. Why do all the pixels involved in prediction of differential coding have to be in a

recursively computable order from the point of view of the pixel being coded?
3-8. Discuss the similarity and dissimilarity between DPCM and motion compensated pre-

dictive coding.
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Transform Coding

 

As introduced in the previous chapter, differential coding achieves high coding efficiency by
utilizing the correlation between pixels existing in image frames. Transform coding (TC), the focus
of this chapter, is another efficient coding scheme based on utilization of interpixel correlation. As
we will see in Chapter 7, TC has become a fundamental technique recommended by the international
still image coding standard, JPEG. Moreover, TC has been found to be efficient in coding prediction
error in motion-compensated predictive coding. As a result, TC was also adopted by the international
video coding standards such as H.261, H.263, and MPEG 1, 2, and 4. This will be discussed in
Section IV.

 

4.1 INTRODUCTION

 

Recall the block diagram of source encoders shown in Figure 2.3. There are three components in
a source encoder: transformation, quantization, and codeword assignment. It is the transformation
component that decides which format of input source is quantized and encoded. In DPCM, for
instance, the difference between an original signal and a predicted version of the original signal is
quantized and encoded. As long as the prediction error is small enough, i.e., the prediction resembles
the original signal well (by using correlation between pixels), differential coding is efficient.

In transform coding, the main idea is that if the transformed version of a signal is less correlated
compared with the original signal, then quantizing and encoding the transformed signal may lead
to data compression. At the receiver, the encoded data are decoded and transformed back to
reconstruct the signal. Therefore, in transform coding, the transformation component illustrated in
Figure 2.3 is a transform. Quantization and codeword assignment are carried out with respect to
the transformed signal, or, in other words, carried out in the transform domain.

We begin with the Hotelling transform, using it as an example of how a transform may
decorrelate a signal in the transform domain.
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The covariance matrix of the population, denoted by 
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, is equal to
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N

 

 orthonormal
eigenvectors of the matrix 

 

C

 

Æ

 

z

 

, with which we can convert the real symmetric matrix 

 

C

 

Æ

 

z

 

into a fully
ranked diagonal matrix. This statement can be found in texts of linear algebra, e.g., in (Strang, 1998).

Denote the set of 

 

N

 

 orthonormal eigenvectors and their corresponding eigenvalues of the
covariance matrix 

 

C

 

Æ

 

z

 

by

 

Æ

 

e

 

i

 

 and 

 

l

 

i

 

, 

 

i

 

 = 1,2,

 

L

 

,

 

N

 

, respectively. Note that eigenvectors are column
vectors. Form a matrix 

 

F

 

 such that its rows comprise the 

 

N

 

 transposed eigenvectors. That is,

. (4.6)

Now, consider the following transformation:

(4.7)

It is easy to verify that the transformed random vector

 

Æ

 

y

 

 has the following two characteristics:

1. The mean vector, 

 

m

 

Æ

 

y

 

, is a zero vector. That is,

(4.8)

2. The covariance matrix of the transformed random vector 

 

C

 

Æ

 

y

 

is

(4.9)

This transform is called the Hotelling transform (Hotelling, 1933), or eigenvector transform (Tasto,
1971; Wintz, 1972).

The inverse Hotelling transform is defined as

(4.10)
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where 

 

F

 

–1

 

 is the inverse matrix of 

 

F

 

. It is easy to see from its formation discussed above that the
matrix 

 

F

 

 is orthogonal. Therefore, we have 

 

F

 

T

 

 = 

 

F

 

–1

 

. Hence, the inverse Hotelling transform can
be expressed as

(4.11)

Note that in implementing the Hotelling transform, the mean vector 

 

m

 

Æ

 

z

 

and the covariance matrix

 

C

 

Æ

 

z

 

can be calculated approximately by using a given set of 

 

K

 

 sample vectors (Gonzalez and Woods,
1992).

(4.12)

(4.13)

The analogous transform for continuous data was devised by Karhunen and Loeve (Karhunen,
1947; Loeve, 1948). Alternatively, the Hotelling transform can be viewed as the discrete version
of the Karhunen-Loeve transform (KLT). We observe that the covariance matrix 

 

C

 

Æ

 

y

 

is a diagonal
matrix. The elements in the diagonal are the eigenvalues of the covariance matrix 

 

C

 

Æ

 

z

 

. That is, the
two covariance matrices have the same eigenvalues and eigenvectors because the two matrices are
similar. The fact that zero values are everywhere except along the main diagonal in 

 

C

 

Æ

 

y

 

indicates
that the components of the transformed vector

 

Æ

 

y

 

 are uncorrelated. That is, the correlation previously
existing between the different components of the random vector

 

Æ

 

z

 

 has been removed in the trans-
formed domain. Therefore, if the input is split into 

 

blocks

 

 and the Hotelling transform is applied
blockwise, the coding may be more efficient since the data in the transformed block are uncorrelated.
At the receiver, we may produce a replica of the input with an inverse transform. This basic idea
behind transform coding will be further illustrated next. Note that transform coding is also referred
to as block quantization (Huang, 1963).

 

4.1.2 S

 

TATISTICAL

 

 I

 

NTERPRETATION

 

Let’s continue our discussion of the 1-D Hotelling transform. Recall that the covariance matrix of
the transformed vector

 

Æ

 

y
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, is a diagonal matrix. The elements in the main diagonal are eigen-
values of the covariance matrix 
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. According to the definition of a covariance matrix, these
elements are the variances of the components of vector
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2

 

,

 

 L,
Æ
eL, we form a matrix

—
F with these L eigenvectors (transposed) as its L rows. Obviously, the matrix

—
F is of L ¥ N. Hence,

using the matrix
—
F in Equation 4.7 we will have the transformed vector

Æ
y of L ¥ 1. That is,

(4.14)

The inverse transform changes accordingly:

(4.15)
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Note that the reconstructed vector
Æ
z, denoted by

Æ
z ¢, is still an N ¥ 1 column vector. It can be

shown (Wintz, 1972) that the mean square reconstruction error between the original vector
Æ
z and

the reconstructed vector
Æ
z is given by

(4.16)

This equation indicates that the mean square reconstruction error equals the sum of variances
of the discarded components. Note that although we discuss the reconstruction error here, we have
not considered the quantization error and transmission error involved. Equation 4.15 implies that
if, in the transformed vector

Æ
y, the first L components have their variances occupy a large percentage

of the total variances, the mean square reconstruction error will not be large even though only the
first L components are kept, i.e., the (N – L) remaining components in the

Æ
y are discarded.

Quantizing and encoding only L components of vector
Æ
y in the transform domain lead to higher

coding efficiency. This is the basic idea behind transform coding.

4.1.3 GEOMETRICAL INTERPRETATION

Transforming a set of statistically dependent data into another set of uncorrelated data, then
discarding the insignificant transform coefficients (having small variances) illustrated above using
the Hotelling transform, can be viewed as a statistical interpretation of transform coding. Here, we
give a geometrical interpretation of transform coding. For this purpose, we use 2-D vectors instead
of N-D vectors.

Consider a binary image of a car in Figure 4.1(a). Each pixel in the shaded object region
corresponds to a 2-D vector with its two components being coordinates z1 and z2, respectively.
Hence, the set of all pixels associated with the object forms a population of vectors. We can
determine its mean vector and covariance matrix using Equations 4.12 and 4.13, respectively. We
can then apply the Hotelling transform by using Equation 4.7. Figure 4.1(b) depicts the same object
after the application of the Hotelling transform in the y1-y2 coordinate system. We notice that the
origin of the new coordinate system is now located at the centroid of the binary object. Furthermore,
the new coordinate system is aligned with the two eigenvectors of the covariance matrix CÆz.

As mentioned, the elements along the main diagonal of CÆy (two eigenvalues of the CÆy and
CÆz) are the two variances of the two components of the

Æ
y population. Since the covariance matrix

FIGURE 4.1 (a) A binary object in the z1-z2 coordinate system. (b) After the Hotelling transform, the object
is aligned with its principal axes.

MSEr y i

i L

N

=
= +
Â s , .2

1



© 2000 by CRC Press LLC

CÆy is a diagonal matrix, the two components are uncorrelated after the transform. Since one variance
(along the y1 direction) is larger than the other (along the y2 direction), it is possible for us to
achieve higher coding efficiency by ignoring the component associated with the smaller variance
without too much sacrifice of the reconstructed image quality.

It is noted that the alignment of the object with the eigenvectors of the covariance matrix is of
importance in pattern recognition (Gonzalez and Woods, 1992).

4.1.4 BASIS VECTOR INTERPRETATION

Basis vector expansion is another interpretation of transform coding. For simplicity, in this sub-
section we assume a zero mean vector. Under this assumption, the Hotelling transform and its
inverse transform become

(4.17)

(4.18)

Recall that the row vectors in the matrix F are the transposed eigenvectors of the covariance matrix
CÆz. Therefore, Equation 4.18 can be written as

(4.19)

In the above equation, we can view vector
Æ
z as a linear combination of basis vectors

Æ
ei, i =

1,2,L,N. The components of the transformed vector
Æ
y, yi, i = 1,2,L,N serve as coefficients in the

linear combination, or weights in the weighted sum of basis vectors. The coefficient yi, i = 1,2,L,N
can be produced according to Equation 4.17:

(4.20)

That is, yi is the inner product between vectors
Æ
ei and

Æ
z. Therefore, the coefficient yi can be

interpreted as the amount of correlation between the basis vector
Æ
ei and the original signal

Æ
z.

In the Hotelling transform the coefficients yi, i = 1,2,L,N are uncorrelated. The variance of yi

can be arranged in a nonincreasing order. For i > L, the variance of the coefficient becomes
insignificant. We can then discard these coefficients without introducing significant error in the
linear combination of basis vectors and achieve higher coding efficiency.

In the above three interpretations of transform coding, we see that the linear unitary transform
can provide the following two functions:

1. Decorrelate input data; i.e., transform coefficients are less correlated than the original
data, and

2. Have some transform coefficients more significant than others (with large variance,
eigenvalue, or weight in basis vector expansion) such that transform coefficients can be
treated differently: some can be discarded, some can be coarsely quantized, and some
can be finely quantized.

Note that the definition of unitary transform is given shortly in Section 4.2.1.3.
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4.1.5 PROCEDURES OF TRANSFORM CODING

Prior to leaving this section, we summarize the procedures of transform coding. There are three
steps in transform coding as shown in Figure 4.2. First, the input data (frame) are divided into
blocks (subimages). Each block is then linearly transformed. The transformed version is then
truncated, quantized, and encoded. These last three functions, which are discussed in Section 4.4,
can be grouped and termed as bit allocation. The output of the encoder is a bitstream.

In the receiver, the bitstream is decoded and then inversely transformed to form reconstructed
blocks. All the reconstructed blocks collectively produce a replica of the input image.

4.2 LINEAR TRANSFORMS

In this section, we first discuss a general formulation of a linear unitary 2-D image transform. Then,
a basis image interpretation of TC is given.

4.2.1 2-D IMAGE TRANSFORMATION KERNEL

There are two different ways to handle image transformation. In the first way, we convert a 2-D
array representing a digital image into a 1-D array via row-by-row stacking, for example. That is,
from the second row on, the beginning of each row in the 2-D array is cascaded to the end of its
previous row. Then we transform this 1-D array using a 1-D transform. After the transformation,
we can convert the 1-D array back to a 2-D array. In the second way, a 2-D transform is directly
applied to the 2-D array corresponding to an input image, resulting in a transformed 2-D array.
These two ways are essentially the same. It can be straightforwardly shown that the difference
between the two is simply a matter of notation (Wintz, 1972). In this section, we use the second
way to handle image transformation. That is, we work on 2-D image transformation.

FIGURE 4.2 Block diagram of transform coding.



© 2000 by CRC Press LLC

Assume a digital image is represented by a 2-D array g(x, y), where (x, y) is the coordinates
of a pixel in the 2-D array, while g is the gray level value (also often called intensity or brightness)
of the pixel. Denote the 2-D transform of g(x, y) by T (u, v), where (u, v) is the coordinates in the
transformed domain. Assume that both g(x, y) and T (u, v) are a square 2-D array of N ¥ N; i.e.,
0 £ x, y, u, v £ N – 1.

The 2-D forward and inverse transforms are defined as

(4.21)

and

(4.22)

where f (x, y, u, v) and i(x, y, u, v) are referred to as the forward and inverse transformation kernels,
respectively.

A few characteristics of transforms are discussed below.

4.2.1.1 Separability

A transformation kernel is called separable (hence, the transform is said to be separable) if the
following conditions are satisfied.

(4.23)

and

(4.24)

Note that a 2-D separable transform can be decomposed into two 1-D transforms. That is, a
2-D transform can be implemented by a 1-D transform rowwise followed by another 1-D transform
columnwise. That is,

(4.25)

where 0 £ x, v £ N – 1, and

(4.26)

where 0 £ u, v £ N – 1. Of course, the 2-D transform can also be implemented in a reverse order
with two 1-D transforms, i.e., columnwise first, followed by rowwise. The counterparts of
Equations 4.25 and 4.26 for the inverse transform can be derived similarly.
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4.2.1.2 Symmetry

The transformation kernel is symmetric (hence, the transform is symmetric) if the kernel is separable
and the following condition is satisfied:

(4.27)

That is, f1 is functionally equivalent to f2.

4.2.1.3 Matrix Form

If a transformation kernel is symmetric (hence, separable) then the 2-D image transform discussed
above can be expressed compactly in the following matrix form. Denote an image matrix by G and
G = {gi, j} = {g(i – 1, j – 1)}. That is, a typical element (at the ith row and jth column) in the matrix
G is the pixel gray level value in the 2-D array g(x, y) at the same geometrical position. Note that
the subtraction of one in the notation g(i – 1, j – 1) comes from Equations 4.21 and 4.22. Namely,
the indexes of a square 2-D image array are conventionally defined from 0 to N-1, while the indexes
of a square matrix are from 1 to N. Denote the forward transform matrix by F and F = { fi, j} =
{ f1(i – 1, j – 1)}. We then have the following matrix form of a 2-D transform:

(4.28)

where T on the left-hand side of the equation denotes the matrix corresponding to the transformed
2-D array in the same fashion as that used in defining the G matrix. The inverse transform can be
expressed as

(4.29)

where the matrix I is the inverse transform matrix and I = {ij,k} = {i1 ( j – 1, k – 1)}. The forward
and inverse transform matrices have the following relation:

(4.30)

Note that all of the matrices defined above, G, T, F, and I are of N ¥ N.
It is known that the discrete Fourier transform involves complex quantities. In this case, the

counterparts of Equations 4.28, 4.29, and 4.30 become Equations 4.31, 4.32, and 4.33, respectively:

(4.31)

(4.32)

(4.33)

where * indicates complex conjugation. Note that the transform matrices F and I contain complex
quantities and satisfy Equation 4.33. They are called unitary matrices and the transform is referred
to as a unitary transform.
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4.2.1.4 Orthogonality

A transform is said to be orthogonal if the transform matrix is orthogonal. That is,

(4.34)

Note that an orthogonal matrix (orthogonal transform) is a special case of a unitary matrix
(unitary transform), where only real quantities are involved. We will see that all the 2-D image
transforms, presented in Section 4.3, are separable, symmetric, and unitary.

4.2.2 BASIS IMAGE INTERPRETATION

Here we study the concept of basis images or basis matrices. Recall that we discussed basis vectors
when we considered the 1-D transform. That is, the components of the transformed vector (also
referred to as the transform coefficients) can be interpreted as the coefficients in the basis vector
expansion of the input vector. Each coefficient is essentially the amount of correlation between the
input vector and the corresponding basis vector. The concept of basis vectors can be extended to
basis images in the context of 2-D image transforms.

Recall that the 2-D inverse transform introduced at the beginning of this section is defined as

(4.35)

where 0 £ x, y £ N – 1. This equation can be viewed as a component form of the inverse transform.
As defined above in Section 4.2.1.3, the whole image {g(x, y)} is denoted by the image matrix G
of N ¥ N. We now denote the “image” formed by the inverse transformation kernel {i (x, y, u, v),0 £
x, y £ N – 1} as a 2-D array Iu,v of N ¥ N for a specific pair of (u, v) with 0 £ u, v £ N – 1. Recall
that a digital image can be represented by a 2-D array of gray level values. In turn the 2-D array
can be arranged into a matrix. Namely, we treat the following three: a digital image, a 2-D array
(with proper resolution), and a matrix (with proper indexing), interchangeably. We then have

(4.36)

The 2-D array Iu,v is referred to as a basis image. There are N 2 basis images in total since 0 £
u,v £ N – 1. The inverse transform expressed in Equation 4.35 can then be written in a collective
form as

(4.37)

We can interpret this equation as a series expansion of the original image G into a set of N 2

basis images Iu,v. The transform coefficients T (u,v), 0 £ u, v £ N – 1, become the coefficients of
the expansion. Alternatively, the image G is said to be a weighted sum of basis images. Note that,
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similar to the 1-D case, the coefficient or the weight T (u,v) is a correlation measure between the
image G and the basis image Iu,v (Wintz, 1972).

Note that basis images have nothing to do with the input image. Instead, it is completely defined
by the transform itself. That is, basis images are the attribute of 2-D image transforms. Different
transforms have different sets of basis images.

The motivation behind transform coding is that with a proper transform, hence, a proper set of
basis images, the transform coefficients are more independent than the gray scales of the original
input image. In the ideal case, the transform coefficients are statistically independent. We can then
optimally encode the coefficients independently, which can make coding more efficient and simple.
As pointed out in (Wintz, 1972), however, this is generally impossible because of the following
two reasons. First, it requires the joint probability density function of the N 2 pixels, which have
not been deduced from basic physical laws and cannot be measured. Second, even if the joint
probability density functions were known, the problem of devising a reversible transform that can
generate independent coefficients is unsolved. The optimum linear transform we can have results
in uncorrelated coefficients. When Gaussian distribution is involved, we can have independent
transform coefficients. In addition to the uncorrelatedness of coefficients, the variance of the
coefficients varies widely. Insignificant coefficients can be ignored without introducing significant
distortion in the reconstructed image. Significant coefficients can be allocated more bits in encoding.
The coding efficiency is thus enhanced.

As shown in Figure 4.3, TC can be viewed as expanding the input image into a set of basis
images, then quantizing and encoding the coefficients associated with the basis images separately.
At the receiver the coefficients are reconstructed to produce a replica of the input image. This
strategy is similar to that of subband coding, which is discussed in Chapter 8. From this point of
view, transform coding can be considered a special case of subband coding, though transform
coding was devised much earlier than subband coding.

It is worth mentioning an alternative way to define basis images. That is, a basis image with
indexes (u, v), Iu,v, of a transform can be constructed as the outer product of the uth basis vector,

Æ
bu,

and the vth basis vector,
Æ
bv, of the transform. The basis vector,

Æ
bu , is the uth column vector of the

inverse transform matrix I (Jayant and Noll, 1984). That is,

(4.38)

4.2.3 SUBIMAGE SIZE SELECTION

The selection of subimage (block) size, N, is important. Normally, the larger the size the more
decorrelation the transform coding can achieve. It has been shown, however, that the correlation
between image pixels becomes insignificant when the distance between pixels becomes large, e.g., it
exceeds 20 pixels (Habibi, 1971a). On the other hand, a large size causes some problems. In adaptive
transform coding, a large block cannot adapt to local statistics well. As will be seen later in this
chapter, a transmission error in transform coding affects the whole associated subimage. Hence a
large size implies a possibly severe effect of transmission error on reconstructed images. As will be
shown in video coding (Section III and Section IV), transform coding is used together with motion-
compensated coding. Consider that large block size is not used in motion estimation; subimage sizes
of 4, 8, and 16 are used most often. In particular, N = 8 is adopted by the international still image
coding standard, JPEG, as well as video coding standards H.261, H.263, MPEG 1, and MPEG 2.

4.3 TRANSFORMS OF PARTICULAR INTEREST

Several commonly used image transforms are discussed in this section. They include the discrete
Fourier transform, the discrete Walsh transform, the discrete Hadamard transform, and the discrete
Cosine and Sine transforms. All of these transforms are symmetric (hence, separable as well),
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unitary, and reversible. For each transform, we define its transformation kernel and discuss its basis
images.

4.3.1 DISCRETE FOURIER TRANSFORM (DFT)

The DFT is of great importance in the field of digital signal processing. Owing to the fast Fourier
transform (FFT) based on the algorithm developed in (Cooley, 1965), the DFT is widely utilized
for various tasks of digital signal processing. It has been discussed in many signal and image
processing texts. Here we only define it by using the transformation kernel just introduced above.
The forward and inverse transformation kernels of the DFT are

(4.39)

and

(4.40)

FIGURE 4.3 Basis image interpretation of TC (Q: quantizer, E: encoder, D: decoder).
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Clearly, since complex quantities are involved in the DFT transformation kernels, the DFT is
generally complex. Hence, we use the unitary matrix to handle the DFT (refer to Section 4.2.1.3).
The basis vector of the DFT

Æ
bu is an N ¥ 1 column vector and is defined as

(4.41)

As mentioned, the basis image with index (u,v), Iu,v, is equal to
Æ
bu

Æ
bu

T. A few basis images are
listed below for N = 4.

(4.42)

(4.43)

(4.44)

(4.45)

4.3.2 DISCRETE WALSH TRANSFORM (DWT)

The transformation kernels of the DWT (Walsh, 1923) are defined as

(4.46)

and

(4.47)

where n = log2 N, pi(arg) represents the ith bit in the natural binary representation of the arg, the
oth bit corresponds to the least significant bit, and the (n-1)th bit corresponds to the most significant
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bit. For instance, consider N = 16, then n = 4. The natural binary code of number 8 is 1000. Hence,
p0(8) = p1(8) = p2(8) = 0, and p3(8) = 1. We see that if the factor 1/N is put aside then the forward
transformation kernel is always an integer: either +1 or –1. In addition, the inverse transformation
kernel is the same as the forward transformation kernel. Therefore, we conclude that the imple-
mentation of the DWT is simple.

When N = 4, the 16 basis images of the DWT are shown in Figure 4.4. Each corresponds to a
specific pair of (u, v) and is of resolution 4 ¥ 4 in the x-y coordinate system. They are binary
images, where the bright represents +1, while the dark –1. The transform matrix of the DWT is
shown below for N = 4.

(4.48)

4.3.3 DISCRETE HADAMARD TRANSFORM (DHT)

The DHT (Hadamard, 1893) is closely related to the DWT. This can be seen from the following
definition of the transformation kernels.

(4.49)

and

(4.50)

where the definitions of n, i, and pi(arg) are the same as in the DWT. For this reason, the term
Walsh-Hadamard transform (DWHT) is frequently used to represent either of the two transforms.

FIGURE 4.4 When N = 4: a set of the 16 basis images of DWT.
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When N is a power of 2, the transform matrices of the DWT and DHT have the same row (or
column) vectors except that the order of row (or column) vectors in the matrices are different. This
is the only difference between the DWT and DHT under the circumstance N = 2n. Because of this
difference, while the DWT can be implemented by using the FFT algorithm with a straightforward
modification, the DHT needs more work to use the FFT algorithm. On the other hand, the DHT
possesses the following recursive feature, while the DWT does not:

(4.51)

and

(4.52)

where the subscripts indicate the size of the transform matrices. It is obvious that the transform
matrix of the DHT can be easily derived by using the recursion.

Note that the number of sign changes between consecutive entries in a row (or a column) of
a transform matrix (from positive to negative and from negative to positive) is known as sequency.
It is observed that the sequency does not monotonically increase as the order number of rows (or
columns) increases in the DHT. Since sequency bears some similarity to frequency in the Fourier
transform, sequency is desired as an increasing function of the order number of rows (or columns).
This is realized by the ordered Hadamard transform (Gonzalez, 1992).

The transformation kernel of the ordered Hadamard transform is defined as

(4.53)

where the definitions of i, pi(arg) are the same as defined above for the DWT and DHT. The di (arg)
is defined as below.

(4.54)

The 16 basis images of the ordered Hadamard transform are shown in Figure 4.5 for N = 4. It
is observed that the variation of the binary basis images becomes more frequent monotonically
when u and v increase. Also we see that the basis image expansion is similar to the frequency
expansion of the Fourier transform in the sense that an image is decomposed into components with
different variations. In transform coding, these components with different coefficients are treated
differently.

4.3.4 DISCRETE COSINE TRANSFORM (DCT)

The DCT is the most commonly used transform for image and video coding.
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4.3.4.1 Background

The DCT, which plays an extremely important role in image and video coding, was established by
Ahmed et al. (1974). There, it was shown that the basis member cos[(2x + 1)up/2N] is the uth
Chebyshev polynomial TU (x) evaluated at the xth zero of TN (x). Recall that the Chebyshev poly-
nomials are defined as

(4.55)

(4.56)

where TK (x) is the kth order Chebyshev polynomial and it has k zeros, starting from the 1st zero
to the kth zero. Furthermore, it was demonstrated that the basis vectors of 1-D DCT provide a good
approximation to the eigenvectors of the class of Toeplitz matrices defined as

(4.57)

where 0 < r < 1.

4.3.4.2 Transformation Kernel

The transformation kernel of the 2-D DCT can be extended straightforwardly from that of 1-D
DCT as follows:

FIGURE 4.5 When N = 4: a set of the 16 basis images of the ordered DHT.
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(4.58)

where

(4.59)

(4.60)

Note that the C(v) is defined the same way as in Equation 4.59. The 64 basis images of the DCT
are shown in Figure 4.6 for N = 8.

4.3.4.3 Relationship with DFT

The DCT is closely related to the DFT. This can be examined from an alternative method of defining
the DCT. It is known that applying the DFT to an N-point sequence gN (n), n = 0,1,L,N – 1, is
equivalent to the following:

FIGURE 4.6 When N = 8: a set of the 64 basis images of the DCT.
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1. Repeating gN (n) every N points, form a periodic sequence, g̃N (n), with a fundamental
period N. That is,

(4.61)

2. Determine the Fourier series expansion of the periodic sequence g̃N (n). That is, determine
all the coefficients in the Fourier series which are known to be periodic with the same
fundamental period N.

3. Truncate the sequence of the Fourier series coefficients so as to have the same support
as that of the given sequence gN (n). That is, only keep the N coefficients with indexes
0,1,L,N – 1 and set all the others to equal zero. These N Fourier series coefficients form
the DFT of the given N-point sequence gN (n).

An N-point sequence gN (n) and the periodic sequence g̃N (n), generated from gN (n), are shown
in Figure 4.7(a) and (b), respectively. In summary, the DFT can be viewed as a correspondence
between two periodic sequences. One is the periodic sequence g̃N (n), which is formed by period-
ically repeating gN (n). The other is the periodic sequence of Fourier series coefficients of g̃N (n).

The DCT of an N-point sequence is obtained via the following three steps:

1. Flip over the given sequence with respect to the end point of the sequence to form a 2N-
point sequence, g2N (n), as shown in Figure 4.7(c). Then form a periodic sequence g̃2N (n),
shown in Figure 4.7(d), according to

(4.62)

2. Find the Fourier series coefficients of the periodic sequences g̃2N (n).
3. Truncate the resultant periodic sequence of the Fourier series coefficients to have the

support of the given finite sequence gN(n). That is, only keep the N coefficients with
indexes 0,1,L,N – 1 and set all the others to equal zero. These N Fourier series coeffi-
cients form the DCT of the given N-point sequence gN(n).

A comparison between Figure 4.7(b) and (d) reveals that the periodic sequence g̃N (n) is not
smooth. There usually exist discontinuities at the beginning and end of each period. These end-
head discontinuities cause a high-frequency distribution in the corresponding DFT. On the contrary,
the periodic sequence g̃2N (n) does not have this type of discontinuity due to flipping over the given
finite sequence. As a result, there is no high-frequency component corresponding to the end-head
discontinuities. Hence, the DCT possesses better energy compaction in the low frequencies than
the DFT. By better energy compaction, we mean more energy is compacted in a fraction of transform
coefficients. For instance, it is known that the most energy of an image is contained in a small
region of low frequency in the DFT domain. Vivid examples can be found in (Gonzalez and Woods,
1992). In terms of energy compaction, when compared with the Karhunen-Loeve transform (the
Hotelling transform is its discrete version), which is known as the optimal, the DCT is the best
among the DFT, DWT, DHT, and discrete Haar transform.

Besides this advantage, the DCT can be implemented using the FFT. This can be seen from
the above discussion. There, it has been shown that the DCT of an N-point sequence, gN (n), can
be obtained from the DFT of the 2N-point sequence g2N (n). Furthermore, the even symmetry
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in g̃2N (n) makes the computation required for the DCT of an N-point equal to that required for the
DFT of the N-point sequence. Because of these two merits, the DCT is the most popular image
transform used in image and video coding nowadays.

4.3.5 PERFORMANCE COMPARISON

In this subsection, we compare the performance of a few commonly used transforms in terms of
energy compaction, mean square reconstruction error, and computational complexity.

4.3.5.1 Energy Compaction

Since all the transforms we discussed are symmetric (hence separable) and unitary, the matrix form
of the 2-D image transform can be expressed as T = FT GF as discussed in Section 4.2.1.3. In the
1-D case, the transform matrix F is the counterpart of the matrix F discussed in the Hotelling

FIGURE 4.7 An example to illustrate the differences and similarities between DFT and DCT.
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transform. Using the F, one can transform a 1-D column vector
Æ
z into another 1-D column vector

Æ
y.

The components of the vector
Æ
y are transform coefficients. The variances of these transform

coefficients, and therefore the signal energy associated with the transform coefficients, can be
arranged in a nondecreasing order. It can be shown that the total energy before and after the
transform remains the same. Therefore, the more energy compacted in a fraction of total coefficients,
the better energy compaction the transform has. One measure of energy compaction is the transform
coding gain GTC, which is defined as the ratio between the arithmetic mean and the geometric mean
of the variances of all the components in the transformed vector (Jayant, 1984).

(4.63)

A larger GTC indicates higher energy compaction. The transform coding gains for a first-order
autoregressive source with r = 0.95 achieved by using the DCT, DFT, and KLT was reported in
(Zelinski and Noll, 1975; Jayant and Noll, 1984). The transform coding gain afforded by the DCT
compares very closely to that of the optimum KLT.

4.3.5.2 Mean Square Reconstruction Error

The performance of the transforms can be compared in terms of the mean square reconstruction
error as well. This was mentioned in Section 4.1.2 when we provided a statistical interpretation for
transform coding. That is, after arranging all the N transformed coefficients according to their
variances in a nonincreasing order, if L < N and we discard the last (N – L) coefficients to reconstruct
the original input signal

Æ
z (similar to what we did with the Hotelling transform), then the mean

square reconstruction error is

(4.64)

where
Æ
z ¢ denotes the reconstructed vector. Note that in the above-defined mean square reconstruc-

tion error, the quantization error and transmission error have not been included. Hence, it is
sometimes referred to as the mean square approximation error. Therefore it is desired to choose a
transform so that the transformed coefficients are “more independent” and more energy is concen-
trated in the first L coefficients. Then it is possible to discard the remaining coefficients to save
coding bits without causing significant distortion in input signal reconstruction.

In terms of the mean square reconstruction error, the performance of the DCT, KLT, DFT,
DWT, and discrete Haar transform for the 1-D case was reported in Ahmed et al. (1974). The
variances of the 16 transform coefficients are shown in Figure 4.8 when N = 16, r = 0.95. Note
that N stands for the dimension of the 1-D vector, while the parameter r is shown in the Toeplitz
matrix (refer to Equation 4.57). We can see that the DCT compares most closely to the KLT, which
is known to be optimum.

Note that the unequal variance distribution among transform coefficients has also found appli-
cation in the field of pattern recognition. Similar results to those in Ahmed et al. (1974) for the
DFT, DWT, and Haar transform were reported in (Andrews, 1971).

A similar analysis can be carried out for the 2-D case (Wintz, 1972). Recall that an image
g(x, y) can be expressed as a weighted sum of basis images Iu,v. That is,

G
N

TC

i

i

N

i

i

N N

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=

-

=

-

Â

’

1 2

0

1

2

0

1
1

s

s

MSE E z zr i

i L

N

= - ¢[ ] =
= +
Âr r 2 2

1

s ,



© 2000 by CRC Press LLC

(4.65)

where the weights are transform coefficients. We arrange the coefficients according to their variances
in a nonincreasing order. For some choices of the transform (hence basis images), the coefficients
become insignificant after the first L terms, and the image can be approximated well by truncating
the coefficients after L. That is,

(4.66)

The mean square reconstruction error is given by

(4.67)

A comparison among the KLT, DHT, and DFT in terms of the mean square reconstruction error
for 2-D array of 16 ¥ 16 (i.e., 256 transform coefficients) was reported in (Figure 5, Wintz, 1972).
Note that the discrete KLT is image dependent. In the comparison, the KLT is calculated with
respect to an image named “Cameraman.” It shows that while the KLT achieves the best perfor-
mance, the other transforms perform closely.

In essence, the criteria of mean square reconstruction error and energy compaction are closely
related. It has been shown that the discrete Karhunen transform (KLT), also known as the Hotelling
transform, is the optimum in terms of energy compaction and mean square reconstruction error.
The DWT, DHT, DFT, and DCT are close to the optimum (Wintz, 1972; Ahmed et al., 1974);
however, the DCT is the best among these several suboptimum transforms.

FIGURE 4.8 Transform coefficient variances when N = 16, r = 0.95. (From Ahmed, N. et al., IEEE Trans.
Comput., 90, 1974. With permission.)
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Note that the performance comparison among various transforms in terms of bit rate vs.
distortion in the reconstructed image was reported in (Pearl et al., 1972; Ahmed et al., 1974). The
same conclusion was drawn. That is, the KLT is optimum, while the DFT, DWT, DCT, and Haar
transforms are close in performance. Among the suboptimum transforms, the DCT is the best.

4.3.5.3 Computational Complexity

Note that while the DWT, DHT, DFT, and DCT are input image independent, the discrete KLT
(the Hotelling transform) is input dependent. More specifically, the row vectors of the Hotelling
transform matrix are transposed eigenvectors of the covariance matrix of the input random vector.
So far there is no fast transform algorithm available. This computational complexity prohibits the
Hotelling transform from practical usage. It can be shown that the DWT, DFT, and DCT can be
implemented using the FFT algorithm.

4.3.5.4 Summary

As pointed out above, the DCT is the best among the suboptimum transforms in terms of energy
compaction. Moreover, the DCT can be implemented using the FFT. Even though a 2N-point
sequence is involved, the even symmetry makes the computation involved in the N-point DCT
equivalent to that of the N-point FFT. For these two reasons, the DCT finds the widest application
in image and video coding.

4.4 BIT ALLOCATION

As shown in Figure 4.2, in transform coding, an input image is first divided into blocks (subimages).
Then a 2-D linear transform is applied to each block. The transformed blocks go through truncation,
quantization, and codeword assignment. The last three functions: truncation, quantization, and
codeword assignment, are combined and called bit allocation.

From the previous section, it is known that the applied transform decorrelates subimages.
Moreover, it redistributes image energy in the transform domain in such a way that most of the
energy is compacted into a small fraction of coefficients. Therefore, it is possible to discard the
majority of transform coefficients without introducing significant distortion.

As a result, we see that in transform coding there are mainly three types of errors involved.
One is due to truncation. That is, the majority of coefficients are truncated to zero. Others come
from quantization. (Note that truncation can also be considered a special type of quantization).
Transmission errors are the third type of error. Recall that the mean square reconstruction error
discussed in Section 4.3.5.2 is in fact only related to truncation error. For this reason, it was referred
to more precisely as a mean square approximation error. In general, the reconstruction error, i.e.,
the error between the original image signal and the reconstructed image at the receiver, includes
three types of errors: truncation error, quantization error, and transmission error.

There are two different ways to truncate transform coefficients. One is called zonal coding,
while the other is threshold coding. They are discussed below.

4.4.1 ZONAL CODING

In zonal coding, also known as zonal sampling, a zone in the transformed block is predefined
according to a statistical average obtained from many blocks. All transform coefficients in the zone
are retained, while all coefficients outside the zone are set to zero. As mentioned in Section 4.3.5.1,
the total energy of the image remains the same after applying the transforms discussed there. Since
it is known that the DC and low-frequency AC coefficients of the DCT occupy most of the energy,
the zone is located in the top-left portion of the transformed block when the transform coordinate
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system is set conventionally. (Note that by DC we mean u = v = 0. By AC we mean u and v do
not equal zero simultaneously.) That is, the origin is at the top-left corner of the transformed block.
Two typical zones are shown in Figure 4.9. The simplest uniform quantization with natural binary
coding can be used to quantize and encode the retained transform coefficients. With this simple
technique, there is no overhead side information that needs to be sent to the receiver, since the
structure of the zone, the scheme of the quantization, and encoding are known at both the transmitter
and receiver.

The coding efficiency, however, may not be very high. This is because the zone is predefined
based on average statistics. Therefore some coefficients outside the zone might be large in magni-
tude, while some coefficients inside the zone may be small in quantity. Uniform quantization and
natural binary encoding are simple, but they are known not to be efficient enough.

For further improvement of coding efficiency, an adaptive scheme has to be used. There, a two-
pass procedure is applied. In the first pass, the variances of transform coefficients are measured or
estimated. Based on the statistics, the quantization and encoding schemes are determined. In the
second pass, quantization and encoding are carried out (Habibi, 1971a; Chen and Smith, 1977).

4.4.2 THRESHOLD CODING

In threshold coding, also known as threshold sampling, there is not a predefined zone. Instead,
each transform coefficient is compared with a threshold. If it is smaller than the threshold, then it
is set to zero. If it is larger than the threshold, it will be retained for quantization and encoding.
Compared with zonal coding, this scheme is adaptive in truncation in the sense that the coefficients
with more energy are retained no matter where they are located. The addresses of these retained
coefficients, however, have to be sent to the receiver as side information. Furthermore, the threshold
is determined after an evaluation of all coefficients. Hence, it was usually a two-pass adaptive
technique.

Chen and Pratt (1984) devised an efficient adaptive scheme to handle threshold coding. It is a
one-pass adaptive scheme, in contrast to the two-pass adaptive schemes. Hence it is fast in imple-
mentation. With several effective techniques that will be addressed here, it achieved excellent results
in transform coding. Specifically, it demonstrated a satisfactory quality of reconstructed frames at
a bit rate of 0.4 bits per pixel for coding of color images, which corresponds to real-time color
television transmission over a 1.5-Mb/sec channel. This scheme has been adopted by the interna-
tional still coding standard JPEG. A block diagram of the threshold coding proposed by Chen and
Pratt is shown in Figure 4.10. More details and modification made by JPEG will be described in
Chapter 7.

FIGURE 4.9 Two illustrations of zonal coding.
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4.4.2.1 Thresholding and Shifting

The DCT is used in the scheme because of its superiority, described in Section 4.3. Here we use
C(u,v) to denote the DCT coefficients. The DC coefficient, C(0,0), is processed differently. As
mentioned in Chapter 3, the DC coefficients are encoded with a differential coding technique. For
more details, refer to Chapter 7. For all the AC coefficients, the following thresholding and shifting
are carried out:

(4.68)

where T on the right-hand side is the threshold. Note that the above equation also implies a shifting
of transform coefficients by T when C(u, v) > T. The input-output characteristic of the thresholding
and shifting is shown in Figure 4.11.

Figure 4.12 demonstrates that more than 60% of the DCT coefficients normally fall below a
threshold value as low as 5. This indicates that with a properly selected threshold value it is possible
to set most of the DCT coefficients equal to zero. The threshold value is adjusted by the feedback
from the rate buffer, or by the desired bit rate.

FIGURE 4.10 Block diagram of the algorithm proposed by Chen and Pratt (1984).
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4.4.2.2 Normalization and Roundoff

The threshold subtracted transform coefficients CT(u,v) are normalized before roundoff. The nor-
malization is implemented as follows:

(4.69)

where the normalization factor Gu,v is controlled by the rate buffer. The roundoff process converts
floating point to integer as follows.

(4.70)

FIGURE 4.11 Input-output characteristic of thresholding and shifting.

FIGURE 4.12 Amplitude distribution of the DCT coefficients.
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where the operator  means the largest integer smaller than or equal to x, the operator  means
the smallest integer larger than or equal to x. The input-output characteristics of the normalization
and roundoff are shown in Figure 4.13(a) and (b), respectively.

From these input-output characteristics, we can see that the roundoff is a uniform midtread
quantizer with a unit quantization step. The combination of normalization and roundoff is equivalent
to a uniform midtread quantizer with the quantization step size equal to the normalization factor
Gu,v. Normalization is a scaling process, which makes the resultant uniform midtread quantizer
adapt to the dynamic range of the associated transform coefficient. It is therefore possible for one
quantizer design to be applied to various coefficients with different ranges. Obviously, by adjusting
the parameter Gu,v (quantization step size) a variable bit rate and mean square quantization error
can be achieved. Hence, the selection of the normalization factors for different transform coefficients
can take the statistical feature of the images and the characteristics of the human visual system
(HVS) into consideration. In general, most image energy is contained in the DC and low-frequency
AC transform coefficients. The HVS is more sensitive to a relatively uniform region than to a
relatively detailed region, as discussed in Chapter 1. Chapter 1 also mentions that, with regard to
the color image, the HVS is more sensitive to the luminance component than to the chrominance
components.

These have been taken into consideration in JPEG. A matrix consisting of all the normalization
factors is called a quantization table in JPEG. A luminance quantization table and a chrominance
quantization table used in JPEG are shown in Figure 4.14. We observe that in general in both tables

FIGURE 4.13 Input-output characteristic of (a) normalization, (b) roundoff.
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the small normalization factors are assigned to the DC and low-frequency AC coefficients. The
large Gs are associated with the high-frequency transform coefficients. Compared with the lumi-
nance quantization table, the chrominance quantization table has larger quantization step sizes for
the low- and middle-frequency coefficients and almost the same step sizes for the DC and high-
frequency coefficients, indicating that the chrominance components are relatively coarsely quan-
tized, compared with the luminance component.

4.4.2.3 Zigzag Scan

As mentioned at the beginning of this section, while threshold coding is adaptive to the local
statistics and hence is more efficient in truncation, threshold coding needs to send the addresses
of retained coefficients to the receiver as overhead side information. An efficient scheme, called
the zigzag scan, was proposed by Chen and Pratt (1984) and is shown in Figure 4.14. As shown
in Figure 4.12, a great majority of transform coefficients have magnitudes smaller than a threshold
of 5. Consequently, most quantized coefficients are zero. Hence, in the 1-D sequence obtained by
zigzag scanning, most of the numbers are zero. A code known as run-length code, discussed in
Chapter 6, is very efficient under these circumstances to encode the address information of nonzero
coefficients. Run-length of zero coefficients is understood as the number of consecutive zeros in
the zigzag scan. Zigzag scanning minimizes the use of run-length codes in the block.

FIGURE 4.14 Quantization tables.

FIGURE 4.15 Zigzag scan of DCT coefficients within an 8 ¥ 8 block.
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4.4.2.4 Huffman Coding

Statistical studies of the magnitude of nonzero DCT coefficients and the run-length of zero DCT
coefficients in zigzag scanning were conducted in (Chen and Pratt, 1984). The domination of the
coefficients with small amplitudes and the short run-lengths was found and is shown in Figures 4.16
and 4.17. This justifies the application of the Huffman coding to the magnitude of nonzero transform
coefficients and run-lengths of zeros.

FIGURE 4.16 Histogram of DCT coefficients in absolute amplitude.

FIGURE 4.17 Histogram of zero run length.
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4.4.2.5 Special Codewords

Two special codewords were used by Chen and Pratt (1984). One is called end of block (EOB).
Another is called run-length prefix. Once the last nonzero DCT coefficients in the zigzag is coded,
EOB is appended, indicating the termination of coding the block. This further saves bits used in
coding. A run-length prefix is used to discriminate the run-length codewords from the amplitude
codewords.

4.4.2.6 Rate Buffer Feedback and Equalization

As shown in Figure 4.10, a rate buffer accepts a variable-rate data input from the encoding process
and provides a fixed-rate data output to the channel. The status of the rate buffer is monitored and
fed back to control the threshold and the normalization factor. In this fashion a one-pass adaptation
is achieved.

4.5 SOME ISSUES

4.5.1 EFFECT OF TRANSMISSION ERRORS

In transform coding, each pixel in the reconstructed image relies on all transform coefficients in
the subimage where the pixel is located. Hence, a bit reversal transmission error will spread. That
is, an error in a transform coefficient will lead to errors in all the pixels within the subimage. As
discussed in Section 4.2.3, this is one of the reasons the selected subimage size cannot be very
large. Depending on which coefficient is in error, the effect caused by a bit reversal error on the
reconstructed image varies. For instance, an error in the DC or a low-frequency AC coefficient may
be objectionable, while an error in the high-frequency coefficient may be less noticeable.

4.5.2 RECONSTRUCTION ERROR SOURCES

As discussed, three sources: truncation (discarding transform coefficients with small variances),
quantization, and transmission contribute to the reconstruction error. It is noted that in TC the
transform is applied block by block. Quantization and encoding of transform coefficients are also
conducted blockwise. At the receiver, reconstructed blocks are put together to form the whole
reconstructed image. In the process, block artifacts are produced. Sometimes, even though it may
not severely affect an objective assessment of the reconstructed image quality, block artifacts can
be annoying to the HVS, especially when the coding rate is low.

To alleviate the blocking effect, several techniques have been proposed. One is to overlap blocks
in the source image. Another is to postfilter the reconstructed image along block boundaries. The
selection of advanced transforms is an additional possible method (Lim, 1990).

In the block-overlapping method, when the blocks are finally organized to form the recon-
structed image, each pixel in the overlapped regions takes an average value of all its reconstructed
gray level values from multiple blocks. In this method, extra bits are used for those pixels involved
in the overlapped regions. For this reason, the overlapped region is usually only one pixel wide.

Due to the sharp transition along block boundaries, block artifacts are of high frequency in
nature. Hence, low-pass filtering is normally used in the postfiltering method. To avoid the blurring
effect caused by low-pass filtering on the nonboundary image area, low-pass postfiltering is only
applied to block boundaries. Unlike the block-overlapping method, the postfiltering method does
not need extra bits. Moreover, it has been shown that the postfiltering method can achieve better
results in combating block artifacts (Reeve and Lim, 1984; Ramamurthi and Gersho, 1986). For
these two reasons, the postfiltering method has been adopted by the international coding standards.



© 2000 by CRC Press LLC

4.5.3 COMPARISON BETWEEN DPCM AND TC

As mentioned at the beginning of the chapter, both differential coding and transform coding utilize
interpixel correlation and are efficient coding techniques. Comparisons between these two tech-
niques have been reported (Habibi, 1971b). Take a look at the techniques discussed in the previous
chapter and in this chapter. We can see that differential coding is simpler than TC. This is because
the linear prediction and differencing involved in differential coding are simpler than the 2-D
transform involved in TC. In terms of the memory requirement and processing delay, differential
coding such as DPCM is superior to TC. That is, DPCM needs less memory and has less processing
delay than TC. The design of the DPCM system, however, is sensitive to image-to-image variation,
and so is its performance. That is, an optimum DPCM design is matched to the statistics of a certain
image. When the statistics change, the performance of the DPCM will be affected. On the contrary,
TC is less sensitive to the variation in the image statistics. In general, the optimum DPCM coding
system with a third or higher order predictor performs better than TC when the bit rate is about
two to three bits per pixel for single images. When the bit rate is below two to three bits per pixel,
TC is normally preferred. As a result, the international still image coding standard JPEG is based
on TC, whereas, in JPEG, DPCM is used for coding the DC coefficients of DCT, and information-
preserving differential coding is used for lossless still image coding.

4.5.4 HYBRID CODING

A method called hybrid transform/waveform coding, or simply hybrid coding, was devised in order
to combine the merits of the two methods. By waveform coding, we mean coding techniques that
code the waveform of a signal instead of the transformed signal. DPCM is a waveform coding
technique. Hybrid coding combines TC and DPCM coding. That is, TC can be first applied rowwise,
followed by DPCM coding columnwise, or vice versa. In this way, the two techniques complement
each other. That is, the hybrid coding technique simultaneously has TC’s small sensitivity to variable
image statistics and DPCM’s simplicity in implementation.

Worth mentioning is a successful hybrid coding scheme in interframe coding: predictive coding
along the temporal domain. Specifically, it uses motion-compensated predictive coding. That is,
the motion analyzed from successive frames is used to more accurately predict a frame. The
prediction error (in the 2-D spatial domain) is transform coded. This hybrid coding scheme has
been very efficient and was adopted by the international video coding standards H.261, H.263, and
MPEG 1, 2, and 4.

4.6 SUMMARY

In transform coding, instead of the original image or some function of the original image in the
spatial and/or temporal domain, the image in the transform domain is quantized and encoded. The
main idea behind transform coding is that the transformed version of the image is less correlated.
Moreover, the image energy is compacted into a small proper subset of transform coefficients.

The basis vector (1-D) and the basis image (2-D) provide a meaningful interpretation of
transform coding. This type of interpretation considers the original image to be a weighted sum of
basis vectors or basis images. The weights are the transform coefficients, each of which is essentially
a correlation measure between the original image and the corresponding basis image. These weights
are less correlated than the gray level values of pixels in the original image. Furthermore they have
a great disparity in variance distribution. Some weights have large variances. They are retained and
finely quantized. Some weights have small energy. They are retained and coarsely quantized. A
vast majority of weights are insignificant and discarded. In this way, a high coding efficiency is
achieved in transform coding. Because the quantized nonzero coefficients have a very nonuniform
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probability distribution, they can be encoded by using efficient variable-length codes. In summary,
three factors: truncation (discarding a great majority of transform coefficients), adaptive quantiza-
tion, and variable-length coding contribute mainly to a high coding efficiency of transform coding.

Several linear, reversible, unitary transforms have been studied and utilized in transform coding.
They include the discrete Karhunen-Loeve transform (the Hotelling transform), the discrete Fourier
transform, the Walsh transform, the Hadamard transform, and the discrete cosine transform. It is
shown that the KLT is the optimum. The transform coefficients of the KLT are uncorrelated. The
KLT can compact the most energy in the smallest fraction of transform coefficients. However, the
KLT is image dependent. There is no fast algorithm to implement it. This prohibits the KLT from
practical use in transform coding. While the rest of the transforms perform closely, the DCT appears
to be the best. Its energy compaction is very close to the optimum KLT and it can be implemented
using the fast Fourier transform. The DCT has been found to be efficient not only for still images
coding but also for coding residual images (predictive error) in motion-compensated interframe
predictive coding. These features make the DCT the most widely used transform in image and
video coding.

There are two ways to truncate transform coefficients: zonal coding and threshold coding. In
zonal coding, a zone is predefined based on average statistics. The transform coefficients within
the zone are retained, while those outside the zone are discarded. In threshold coding, each transform
coefficient is compared with a threshold. Those coefficients larger than the threshold are retained,
while those smaller are discarded. Threshold coding is adaptive to local statistics. A two-pass
procedure is usually taken. That is, the local statistics are measured or estimated in the first pass.
The truncation takes place in the second pass. The addresses of the retained coefficients need to
be sent to the receiver as overhead side information.

A one-step adaptive framework of transform coding has evolved as a result of the tremendous
research efforts in image coding. It has become a base of the international still image coding
standard JPEG. Its fundamental components include the DCT transform, thresholding and adaptive
quantization of transform coefficients, zigzag scan, Huffman coding of the magnitude of the nonzero
DCT coefficients and run-length of zeros in the zigzag scan, the codeword of EOB, and rate buffer
feedback control.

The threshold and the normalization factor are controlled by rate buffer feedback. Since the
threshold decides how many transform coefficients are retained and the normalization factor is
actually the quantization step size, the rate buffer has direct impact on the bit rate of the transform
coding system. Selection of quantization steps takes the energy compaction of the DCT and the
characteristics of the HVS into consideration. That is, it uses not only statistical redundancy, but
also psychovisual redundancy to enhance coding efficiency.

After thresholding, normalization and roundoff are applied to the DCT transform coefficients
in a block; a great majority of transform coefficients are set to zero. A zigzag scan can convert the
2-D array of transform coefficients into a 1-D sequence. The number of consecutive zero-valued
coefficients in the 1-D sequence is referred to as the run-length of zeros and is used to provide
address information of nonzero DCT coefficients. Both the magnitude of nonzero coefficients and
run-length information need to be coded. Statistical analysis has demonstrated that a small mag-
nitude and short run-length are dominant. Therefore, efficient lossless entropy coding methods such
as Huffman coding and arithmetic coding (the focus of the next chapter) can be applied to magnitude
and run-length.

In a reconstructed subimage, there are three types of errors involved: truncation error (some
transform coefficients have been set to zero), quantization error, and transmission error. In a broad
sense, the truncation can be viewed as a part of the quantization. That is, these truncated coefficients
are quantized to zero. The transmission error in terms of bit reversal will affect the whole recon-
structed subimage. This is because, in the inverse transform (such as the inverse DCT), each
transform coefficient makes a contribution.
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In reconstructing the original image all the subimages are organized to form the whole image.
Therefore the independent processing of individual subimages causes block artifacts. Though they
may not severely affect the objective assessment of reconstructed image quality, block artifacts can
be annoying, especially in low bit rate image coding. Block overlappling and postfiltering are two
effective ways to alleviate block artifacts. In the former, neighboring blocks are purposely over-
lapped by one pixel. In reconstructing the image, those pixels that have been coded more than once
take an average of the multiple decoded values. Extra bits are used. In the latter technique, a low-
pass filter is applied along boundaries of blocks. No extra bits are required in the process and the
effect of combating block artifacts is better than with the former technique.

The selection of subimage size is an important issue in the implementation of transform coding.
In general, a large size will remove more interpixel redundancy. But it has been shown that the
pixel correlation becomes insignificant when the distance of pixels exceeds 20. On the other hand,
a large size is not suitable for adaptation to local statistics, while adaptation is required in handling
nonstationary images. A large size also makes the effect of a transmission error spread more widely.
For these reasons, subimage size should not be large. In motion-compensated predictive interframe
coding, motion estimation is normally carried out in sizes of 16 ¥ 16 or 8 ¥ 8. To be compatible,
the subimage size in transform coding is normally chosen as 8 ¥ 8.

Both predictive codings, say, DPCM and TC, utilize interpixel correlation and are efficient
coding schemes. Compared with TC, DPCM is simpler in computation. It needs less storage and
has less processing delay. But it is more sensitive to image-to-image variation. On the other hand,
TC provides higher adaptation to statistical variation. TC is capable of removing more interpixel
correlation, thus providing higher coding efficiency. Traditionally, predictive coding is preferred if
the bit rate is in the range of two to three bits per pixel, while TC is preferred when bit rate is
below two to three bits per pixel. However, the situation changes. TC becomes the core technology
in image and video coding. Many special VLSI chips are designed and manufactured for reducing
computational complexity. Consequently, predictive coding such as DPCM is only used in some
very simple applications.

In the context of interframe coding, 3-D (two spatial dimensions and one temporal dimension)
transform coding has not found wide application in practice due to the complexity in computation
and storage. Hybrid transform/waveform coding has proven to be very efficient in interframe coding.
There, motion-compensated predictive coding is used along the temporal dimension, while trans-
form coding is used to code the prediction error in two spatial dimensions.

4.7 EXERCISES

4-1. Consider the following eight points in a 3-D coordinate system: (0,0,0)T, (1,0,0)T, (0,1,0)T,
(0,0,1)T, (0,1,1)T, (1,0,1)T, (1,1,0)T, (1,1,1)T. Find the mean vector and covariance matrix
using Equations 4.12 and 4.13.

4-2. For N = 4, find the basis images of the DFT, Iu,v when (a) u = 0, v = 0; (b) u = 1, v =
0; (c) u = 2, v = 2; (d) u = 3, v = 2. Use both methods discussed in the text; i.e., the
method with basis image and the method with basis vectors.

4-3. For N = 4, find the basis images of the ordered discrete Hadamard transform when (a) u =
0, v = 2; (b) u = 1, v = 3; (c) u = 2, v = 3; (d) u = 3, v = 3. Verify your results by
comparing them with Figure 4.5.

4-4. Repeat the previous problem for the DWT, and verify your results by comparing them
with Figure 4.4.

4-5. Repeat problem 4-3 for the DCT and N = 4.
4-6. When N = 8, draw the transform matrix F for the DWT, DHT, the order DHT, DFT, and

DCT.
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4-7. The matrix form of forward and inverse 2-D symmetric image transforms are expressed
in texts such as (Jayant and Noll, 1984) as T = FGF T and G = ITI T, which are different
from Equations 4.28 and 4.29. Can you explain this discrepancy?

4-8. Derive Equation 4.64. (Hint: use the concept of basis vectors and the orthogonality of
basis vectors.)

4-9. Justify that the normalization factor is the quantization step.
4-10. The transform used in TC has two functions: decorrelation and energy compaction. Does

decorrelation automatically lead to energy compaction? Comment.
4-11. Using your own words, explain the main idea behind transform coding.
4-12. Read the techniques by Chen and Pratt presented in Section 4.4.2. Compare them with

JPEG discussed in Chapter 7. Comment on the similarity and dissimilarity between them.
4-13. How is one-pass adaptation to local statistics in the Chen and Pratt algorithm achieved?
4-14. Explain why the DCT is superior to the DFT in terms of energy compaction.
4-15. Why is the subimage size of 8 ¥ 8 widely used?
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Variable-Length Coding: 
Information Theory Results (II)

 

Recall the block diagram of encoders shown in Figure 2.3. There are three stages that take place
in an encoder: transformation, quantization, and codeword assignment. Quantization was discussed
in Chapter 2. Differential coding and transform coding using two different transformation compo-
nents were covered in Chapters 3 and 4, respectively. In differential coding it is the difference
signal that is quantized and encoded, while in transform coding it is the transformed signal that is
quantized and encoded. In this chapter and the next chapter, we discuss several codeword assignment
(encoding) techniques. In this chapter we cover two types of variable-length coding: Huffman
coding and arithmetic coding.

First we introduce some fundamental concepts of encoding. After that, the rules that must be
obeyed by all optimum and instantaneous codes are discussed. Based on these rules, the Huffman
coding algorithm is presented. A modified version of the Huffman coding algorithm is introduced as
an efficient way to dramatically reduce codebook memory while keeping almost the same optimality.

The promising arithmetic coding algorithm, which is quite different from Huffman coding, is
another focus of the chapter. While Huffman coding is a 

 

block

 

-

 

oriented

 

 coding technique, arithmetic
coding is a 

 

stream

 

-

 

oriented

 

 coding technique. With improvements in implementation, arithmetic
coding has gained increasing popularity. Both Huffman coding and arithmetic coding are included in
the international still image coding standard JPEG (Joint Photographic [image] Experts Group coding).
The adaptive arithmetic coding algorithms have been adopted by the international bilevel image coding
standard JBIG (Joint Bi-level Image experts Group coding). Note that the material presented in this
chapter can be viewed as a continuation of the information theory results presented in Chapter 1.

 

5.1 SOME FUNDAMENTAL RESULTS

 

Prior to presenting Huffman coding and arithmetic coding, we first provide some fundamental
concepts and results as necessary background.

 

5.1.1 C

 

ODING

 

 

 

AN

 

 I

 

NFORMATION

 

 S

 

OURCE

 

Consider an information source, represented by a 

 

source alphabet S

 

.

(5.1)

where 

 

s

 

i

 

, i

 

 = 1,2,

 

L

 

,

 

m

 

 are 

 

source symbols.

 

 Note that the terms source symbol and information
message are used interchangeably in the literature. In this book, however, we would like to
distinguish between them. That is, an information message can be a source symbol, or a combination
of source symbols. We denote 

 

code alphabet

 

 by 

 

A

 

 and

(5.2)

where 

 

a

 

j

 

, j

 

 = 1,2,

 

L

 

,

 

r

 

 are 

 

code symbols

 

. A 

 

message code

 

 is a sequence of code symbols that
represents a given information message. In the simplest case, a message consists of only a source
symbol. Encoding is then a procedure to assign a 

 

codeword 

 

to the source symbol. Namely,

S s s sm= { }1 2, , ,L

A a a ar= { }1 2, , ,L
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(5.3)

where the codeword 

 

A

 

i

 

 is a string of 

 

k

 

 code symbols assigned to the source symbol 

 

s

 

i

 

. The term
message ensemble is defined as the entire set of messages. A code, also known as an ensemble
code, is defined as a mapping of all the possible sequences of symbols of 

 

S 

 

(message ensemble)
into the sequences of symbols in 

 

A

 

.
Note that in binary coding, the number of code symbols 

 

r

 

 is equal to 2, since there are only
two code symbols available: the binary digits “0” and “1”. Two examples are given below to
illustrate the above concepts.

 

Example 5.1 

 

Consider an English article and the ASCII code. Refer to Table 5.1. In this context, the source
alphabet consists of all the English letters in both lower and upper cases and all the punctuation
marks. The code alphabet consists of the binary 1 and 0. There are a total of 128 7-bit binary
codewords. From Table 5.1, we see that the codeword assigned to the capital letter A is 1000001.
That is, A is a source symbol, while 1000001 is its codeword.

 

Example 5.2 

 

Table 5.2 lists what is known as the (5,2) code. It is a linear block code. In this example, the source
alphabet consists of the four (2

 

2

 

) source symbols listed in the left column of the table: 00, 01, 10,
and 11. The code alphabet consists of the binary 1 and 0. There are four codewords listed in the
right column of the table. From the table, we see that the code assigns a 5-bit codeword to each
source symbol. Specifically, the codeword of the source symbol 00 is 00000. The source symbol
01 is encoded as 10100; 01111 is the codeword assigned to 10. The symbol 11 is mapped to 11011.

 

5.1.2 S

 

OME

 

 D

 

ESIRED

 

 C

 

HARACTERISTICS

 

To be practical in use, codes need to have some desirable characteristics (Abramson, 1963). Some
of the characteristics are addressed in this subsection.

 

5.1.2.1 Block Code

 

A code is said to be a block code if it maps each source symbol in 

 

S

 

 into a fixed codeword in A.
Hence, the codes listed in the above two examples are block codes.

 

5.1.2.2 Uniquely Decodable Code

 

A code is uniquely decodable if it can be unambiguously decoded. Obviously, a code has to be
uniquely decodable if it is to be of use.

 

Example 5.3 

 

Table 5.3 specifies a code. Obviously it is not uniquely decodable since if a binary string “00” is
received we do not know which of the following two source symbols has been sent out: 

 

s

 

1

 

 or 

 

s

 

3

 

.

 

Nonsingular Code 

 

A block code is nonsingular if all the codewords are distinct (see Table 5.4).

 

Example 5.4 

 

Table 5.4 gives a nonsingular code since all four codewords are distinct. If a code is not a nonsingular
code, i.e., at least two codewords are identical, then the code is not uniquely decodable. Notice,
however, that a nonsingular code does not guarantee unique decodability. The code shown in
Table 5.4 is such an example in that it is nonsingular while it is not uniquely decodable. It is not

s A a a ai i i i ikÆ = ( )1 2, , ,L
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TABLE 5.1
Seven-Bit American Standard Code for Information Interchange (ASCII)

 

Bits

 

5 0 1 0 1 0 1 0 1
6 0 0 1 1 0 0 1 1

1 2 3 4 7 0 0 0 0 1 1 1 1
0 0 0 0 NUL DLE SP 0 @ P ‘ p
1 0 0 0 SOH DC1 ! 1 A Q a q
0 1 0 0 STX DC2

 

≤

 

2 B R b r
1 1 0 0 ETX DC3 # 3 C S c s
0 0 1 0 EOT DC4 $ 4 D T d t
1 0 1 0 ENQ NAK % 5 E U e u
0 1 1 0 ACK SYN & 6 F V f v
1 1 1 0 BEL ETB

 

¢

 

7 G W g w
0 0 0 1 BS CAN ( 8 H X h x
1 0 0 1 HT EM ) 9 I Y i y
0 1 0 1 LF SUB * : J Z j z
1 1 0 1 VT ESC + ; K [ k {
0 0 1 1 FF FS , < L \ l |
1 0 1 1 CR GS -  = M ] m }
0 1 1 1 SO RS . > N

 

Ÿ

 

n ~
1 1 1 1 SI US / ? O

 

æ

 

o DEL

 

TABLE 5.2
A (5,2) Linear Block Code

 

Source Symbol Codeword

 

S

 

1

 

 (0 0)
S

 

2

 

 (0 1)
S

 

3

 

 (1 0)
S

 

4

 

 (1 1)

0 0 0 0 0
1 0 1 0 0
0 1 1 1 1
1 1 0 1 1

NUL Null, or all zeros DC1 Device control 1
SOH Start of heading DC2 Device control 2
STX Start of text DC3 Device control 3
ETX End of text DC4 Device control 4
EOT End of transmission NAK Negative acknowledgment
ENQ Enquiry SYN Synchronous idle
ACK Acknowledge ETB End of transmission block
BEL Bell, or alarm CAN Cancel
BS Backspace EM End of medium
HT Horizontal tabulation SUB Substitution
LF Line feed ESC Escape
VT Vertical tabulation FS File separator 
FF Form feed GS Group separator 
CR Carriage return RS Record separator 
SO Shift out US Unit separator
SI Shift in SP Space
DLE Data link escape DEL Delete
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uniquely decodable because once the binary string “11” is received, we do not know if the source
symbols transmitted are 

 

s

 

1

 

 followed by 

 

s

 

1

 

 or simply 

 

s

 

2

 

.

 

The 

 

n

 

th Extension of a Block Code 

 

The 

 

n

 

th extension of a block code, which maps the source symbol 

 

s

 

i

 

 into the codeword 

 

A

 

i

 

, is a
block code that maps the sequences of source symbols 

 

s

 

i

 

1

 

s

 

i

 

2

 

L

 

s

 

in

 

 into the sequences of codewords

 

A

 

i

 

1

 

A

 

i

 

2

 

L

 

A

 

in

 

.

 

A Necessary and Sufficient Condition of a Block Code’s Unique Decodability 

 

A block code is uniquely decodable if and only if the 

 

n

 

th extension of the code is nonsingular for
every finite 

 

n

 

.

 

Example 5.5 

 

The second extension of the nonsingular block code shown in Example 5.4 is listed in Table 5.5.
Clearly, this second extension of the code is not a nonsingular code, since the entries 

 

s

 

1

 

s

 

2

 

 and 

 

s

 

2

 

s

 

1

 

are the same. This confirms the nonunique decodability of the nonsingular code in Example 5.4.

 

TABLE 5.3
A Not Uniquely Decodable Code

 

Source Symbol Codeword

 

S

 

1

 

S

 

2

 

S

 

3

 

S

 

4

 

 

0 0
1 0
0 0
1 1

 

TABLE 5.4
A Nonsingular Code

 

Source Symbol Codeword

 

S

 

1

 

S

 

2

 

S

 

3

 

S

 

4

 

 

1
1 1
0 0
0 1

 

TABLE 5.5
The Second Extension of the Nonsingular Block Code in 
Example 5.4

 

Source Symbol Codeword Source Symbol Codeword

 

S

 

1

 

 S

 

1

 

S

 

1

 

 S

 

2

 

S

 

1

 

 S

 

3

 

S

 

1

 

 S

 

4

 

S

 

2

 

 S

 

1

 

S

 

2

 

 S

 

2

 

S

 

2

 

 S

 

3

 

S

 

2

 

 S

 

4

 

1 1
1 1 1
1 0 0
1 0 1
1 1 1
1 1 1 1
1 1 0 0
1 1 0 1

S

 

3

 

 S
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3
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3
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S

 

4

 

 S
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S

 

4

 

 S
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S

 

4

 

 S

 

3

 

S

 

4

 

 S

 

4

 

0 0 1
0 0 1 1
0 0 0 0
0 0 0 1
0 1 1
0 1 1 1
0 1 0 0
0 1 0 1
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5.1.2.3 Instantaneous Codes

 

Definition of Instantaneous Codes

 

 
A uniquely decodable code is said to be instantaneous if it is possible to decode each codeword
in a code symbol sequence without knowing the succeeding codewords.

 

Example 5.6 

 

Table 5.6 lists three uniquely decodable codes. The first one is in fact a two-bit natural binary code.
In decoding, we can immediately tell which source symbols are transmitted since each codeword
has the same length. In the second code, code symbol “1” functions like a comma. Whenever we
see a “1”, we know it is the end of the codeword. The third code is different from the previous
two codes in that if we see a “10” string we are not sure if it corresponds to 

 

s

 

2

 

 until we see a
succeeding “1”. Specifically, if the next code symbol is “0”, we still cannot tell if it is 

 

s

 

3

 

 since the
next one may be “0” (hence 

 

s

 

4

 

) or “1” (hence 

 

s

 

3

 

). In this example, the next “1” belongs to the
succeeding codeword. Therefore we see that code 3 is uniquely decodable. It is not instantaneous,
however.

 

Definition of the 

 

j

 

th Prefix 

 

Assume a codeword 

 

A

 

i

 

 = 

 

a

 

i

 

1

 

a

 

i

 

2

 

L
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ik

 

. Then the sequences of code symbols 

 

a

 

i

 

1

 

a

 

i

 

2

 

L

 

a

 

ij

 

 with 1 £ j £ k
is the jth order prefix of the codeword Ai.

Example 5.7 
If a codeword is 11001, it has the following five prefixes: 11001, 1100, 110, 11, 1. The first-order
prefix is 1, while the fifth-order prefix is 11001.

A Necessary and Sufficient Condition of Being an Instantaneous Code 
A code is instantaneous if and only if no codeword is a prefix of some other codeword. This
condition is often referred to as the prefix condition. Hence, the instantaneous code is also called
the prefix condition code or sometimes simply the prefix code. In many applications, we need a
block code that is nonsingular, uniquely decodable, and instantaneous.

5.1.2.4 Compact Code

A uniquely decodable code is said to be compact if its average length is the minimum among all
other uniquely decodable codes based on the same source alphabet S and code alphabet A. A
compact code is also referred to as a minimum redundancy code, or an optimum code.

Note that the average length of a code was defined in Chapter 1 and is restated below.

5.1.3 DISCRETE MEMORYLESS SOURCES

This is the simplest model of an information source. In this model, the symbols generated by the
source are independent of each other. That is, the source is memoryless or it has a zero memory.

Consider the information source expressed in Equation 5.1 as a discrete memoryless source.
The occurrence probabilities of the source symbols can be denoted by p(s1), p(s2), L, p(sm). The

TABLE 5.6
Three Uniquely Decodable Codes

Source Symbol Code 1 Code 2 Code 3

S1

S2

S3

S4

0 0
0 1
1 0
1 1

1
0 1
0 0 1
0 0 0 1

1
10
1 0 0
1 0 0 0
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lengths of the codewords can be denoted by l1, l2, L, lm. The average length of the code is then
equal to

(5.4)

Recall Shannon’s first theorem, i.e., the noiseless coding theorem described in Chapter 1. The
average length of the code is bounded below by the entropy of the information source. The entropy
of the source S is defined as H(S) and

(5.5)

Recall that entropy is the average amount of information contained in a source symbol. In
Chapter 1 the efficiency of a code, h, is defined as the ratio between the entropy and the average
length of the code. That is, h = H(S)/Lavg. The redundancy of the code, z, is defined as z = 1 – h.

5.1.4 EXTENSIONS OF A DISCRETE MEMORYLESS SOURCE

Instead of coding each source symbol in a discrete source alphabet, it is often useful to code blocks
of symbols. It is, therefore, necessary to define the nth extension of a discrete memoryless source.

5.1.4.1 Definition

Consider the zero-memory source alphabet S defined in Equation 5.1. That is, S = {s1, s2, L, sm}.
If n symbols are grouped into a block, then there is a total of mn blocks. Each block is considered
as a new source symbol. These mn blocks thus form an information source alphabet, called the nth
extension of the source S, which is denoted by Sn.

5.1.4.2 Entropy

Let each block be denoted by bi and

(5.6)

Then we have the following relation due to the memoryless assumption:

(5.7)

Hence, the relationship between the entropy of the source S and the entropy of its nth extension is
as follows:

(5.8)

Example 5.8 
Table 5.7 lists a source alphabet. Its second extension is listed in Table 5.8.
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The entropy of the source and its second extension are calculated below.

It is seen that H(S2) = 2H(S).

5.1.4.3 Noiseless Source Coding Theorem

The noiseless source coding theorem, also known as Shannon’s first theorem, defining the minimum
average codeword length per source pixel, was presented in Chapter 1, but without a mathematical
expression. Here, we provide some mathematical expressions in order to give more insight about
the theorem.

For a discrete zero-memory information source S, the noiseless coding theorem can be expressed
as

(5.9)

That is, there exists a variable-length code whose average length is bounded below by the entropy
of the source (that is encoded) and bounded above by the entropy plus 1. Since the nth extension
of the source alphabet, Sn, is itself a discrete memoryless source, we can apply the above result to
it. That is,

(5.10)

where Ln
avg is the average codeword length of a variable-length code for the Sn. Since H(Sn) = nH(S)

and Ln
avg = nLnavg, we have

(5.11)

TABLE 5.7
A Discrete Memoryless Source Alphabet

Source Symbol Occurrence Probability

S1

S2

0.6
0.4

TABLE 5.8
The Second Extension of the Source 
Alphabet Shown in Table 5.7

Source Symbol Occurrence Probability

S1 S1

S2 S2

S2 S1

S2 S2

0.36
0.24
0.24
0.16

H S

H S

( ) = - ◊ ( ) - ◊ ( ) ª

( ) = - ◊ ( ) - ◊ ◊ ( ) - ◊ ( ) ª

0 6 0 6 0 4 0 4 0 97
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Therefore, when coding blocks of n source symbols, the noiseless source coding theory states that
for an arbitrary positive number e, there is a variable-length code which satisfies the following:

(5.12)

as n is large enough. That is, the average number of bits used in coding per source symbol is
bounded below by the entropy of the source and is bounded above by the sum of the entropy and
an arbitrary positive number. To make e arbitrarily small, i.e., to make the average length of the
code arbitrarily close to the entropy, we have to make the block size n large enough. This version
of the noiseless coding theorem suggests a way to make the average length of a variable-length
code approach the source entropy. It is known, however, that the high coding complexity that occurs
when n approaches infinity makes implementation of the code impractical.

5.2 HUFFMAN CODES

Consider the source alphabet defined in Equation 5.1. The method of encoding source symbols
according to their probabilities, suggested in (Shannon, 1948; Fano, 1949), is not optimum. It
approaches the optimum, however, when the block size n approaches infinity. This results in a large
storage requirement and high computational complexity. In many cases, we need a direct encoding
method that is optimum and instantaneous (hence uniquely decodable) for an information source
with finite source symbols in source alphabet S. Huffman code is the first such optimum code
(Huffman, 1952), and is the technique most frequently used at present. It can be used for r-ary
encoding as r > 2. For notational brevity, however, we discuss only the Huffman coding used in
the binary case presented here.

5.2.1 REQUIRED RULES FOR OPTIMUM INSTANTANEOUS CODES

Let us rewrite Equation 5.1 as follows:

(5.13)

Without loss of generality, assume the occurrence probabilities of the source symbols are as
follows:

(5.14)

Since we are seeking the optimum code for S, the lengths of codewords assigned to the source
symbols should be

(5.15)

Based on the requirements of the optimum and instantaneous code, Huffman derived the
following rules (restrictions):

1. (5.16)

Equations 5.14 and 5.16 imply that when the source symbol occurrence probabilities are
arranged in a nonincreasing order, the length of the corresponding codewords should be
in a nondecreasing order. In other words, the codeword length of a more probable source
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symbol should not be longer than that of a less probable source symbol. Furthermore,
the length of the codewords assigned to the two least probable source symbols should
be the same.

2. The codewords of the two least probable source symbols should be the same except for
their last bits.

3. Each possible sequence of length lm – 1 bits must be used either as a codeword or must
have one of its prefixes used as a codeword.

Rule 1 can be justified as follows. If the first part of the rule, i.e., l1 £ l2 £ L £ lm–1 is violated,
say, l1 > l2, then we can exchange the two codewords to shorten the average length of the code.
This means the code is not optimum, which contradicts the assumption that the code is optimum.
Hence it is impossible. That is, the first part of Rule 1 has to be the case. Now assume that the
second part of the rule is violated, i.e., lm–1 < lm. (Note that lm–1 > lm can be shown to be impossible
by using the same reasoning we just used in proving the first part of the rule.) Since the code is
instantaneous, codeword Am–1 is not a prefix of codeword Am. This implies that the last bit in the
codeword Am is redundant. It can be removed to reduce the average length of the code, implying
that the code is not optimum. This contradicts the assumption, thus proving Rule 1.

Rule 2 can be justified as follows. As in the above, Am–1 and Am are the codewords of the two
least probable source symbols. Assume that they do not have the identical prefix of the order lm – 1.
Since the code is optimum and instantaneous, codewords Am–1 and Am cannot have prefixes of any
order that are identical to other codewords. This implies that we can drop the last bits of Am–1 and
Am to achieve a lower average length. This contradicts the optimum code assumption. It proves that
Rule 2 has to be the case.

Rule 3 can be justified using a similar strategy to that used above. If a possible sequence of
length lm – 1 has not been used as a codeword and any of its prefixes have not been used as
codewords, then it can be used in place of the codeword of the mth source symbol, resulting in a
reduction of the average length Lavg. This is a contradiction to the optimum code assumption and
it justifies the rule.

5.2.2 HUFFMAN CODING ALGORITHM

Based on these three rules, we see that the two least probable source symbols have codewords of
equal length. These two codewords are identical except for the last bits, the binary 0 and 1,
respectively. Therefore, these two source symbols can be combined to form a single new symbol.
Its occurrence probability is the sum of two source symbols, i.e., p(sm–1) + p(sm). Its codeword is
the common prefix of order lm – 1 of the two codewords assigned to sm and sm–1, respectively. The
new set of source symbols thus generated is referred to as the first auxiliary source alphabet, which
is one source symbol less than the original source alphabet. In the first auxiliary source alphabet,
we can rearrange the source symbols according to a nonincreasing order of their occurrence
probabilities. The same procedure can be applied to this newly created source alphabet. A binary
0 and a binary 1, respectively, are assigned to the last bits of the two least probable source symbols
in the alphabet. The second auxiliary source alphabet will again have one source symbol less than
the first auxiliary source alphabet. The procedure continues. In some step, the resultant source
alphabet will have only two source symbols. At this time, we combine them to form a single source
symbol with a probability of 1. The coding is then complete.

Let’s go through the following example to illustrate the above Huffman algorithm.

Example 5.9 
Consider a source alphabet whose six source symbols and their occurrence probabilities are listed
in Table 5.9. Figure 5.1 demonstrates the Huffman coding procedure applied. In the example, among
the two least probable source symbols encountered at each step we assign binary 0 to the top
symbol and binary 1 to the bottom symbol.
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5.2.2.1 Procedures

In summary, the Huffman coding algorithm consists of the following steps.

1. Arrange all source symbols in such a way that their occurrence probabilities are in a
nonincreasing order.

2. Combine the two least probable source symbols:
• Form a new source symbol with a probability equal to the sum of the probabilities

of the two least probable symbols.
• Assign a binary 0 and a binary 1 to the two least probable symbols.

3. Repeat until the newly created auxiliary source alphabet contains only one source symbol.
4. Start from the source symbol in the last auxiliary source alphabet and trace back to each

source symbol in the original source alphabet to find the corresponding codewords.

5.2.2.2 Comments

First, it is noted that the assignment of the binary 0 and 1 to the two least probable source symbols
in the original source alphabet and each of the first (u – 1) auxiliary source alphabets can be
implemented in two different ways. Here u denotes the total number of the auxiliary source symbols
in the procedure. Hence, there is a total of 2u possible Huffman codes. In Example 5.9, there are
five auxiliary source alphabets, hence a total of 25 = 32 different codes. Note that each is optimum:
that is, each has the same average length.

Second, in sorting the source symbols, there may be more than one symbol having equal
probabilities. This results in multiple arrangements of symbols, hence multiple Huffman codes.
While all of these Huffman codes are optimum, they may have some other different properties.

TABLE 5.9
Source Alphabet and Huffman Codes in Example 5.9

Source Symbol Occurrence Probability Codeword Assigned Length of Codeword

S1

S2

S3

S4

S5

S6

0.3
0.1
0.2
0.05
0.1
0.25

00
101
11
1001
1000
01

2
3
2
4
4
2

FIGURE 5.1 Huffman coding procedure in Example 5.9.
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For instance, some Huffman codes result in the minimum codeword length variance (Sayood, 1996).
This property is desired for applications in which a constant bit rate is required.

Third, Huffman coding can be applied to r-ary encoding with r > 2. That is, code symbols are
r-ary with r > 2.

5.2.2.3 Applications

As a systematic procedure to encode a finite discrete memoryless source, the Huffman code has
found wide application in image and video coding. Recall that it has been used in differential
coding and transform coding. In transform coding, as introduced in Chapter 4, the magnitude of
the quantized transform coefficients and the run-length of zeros in the zigzag scan are encoded by
using the Huffman code. This has been adopted by both still image and video coding standards.

5.3 MODIFIED HUFFMAN CODES

5.3.1 MOTIVATION

As a result of Huffman coding, a set of all the codewords, called a codebook, is created. It is an
agreement between the transmitter and the receiver. Consider the case where the occurrence
probabilities are skewed, i.e., some are large, while some are small. Under these circumstances,
the improbable source symbols take a disproportionately large amount of memory space in the
codebook. The size of the codebook will be very large if the number of the improbable source
symbols is large. A large codebook requires a large memory space and increases the computational
complexity. A modified Huffman procedure was therefore devised in order to reduce the memory
requirement while keeping almost the same optimality (Hankamer, 1979).

Example 5.10 
Consider a source alphabet consisting of 16 symbols, each being a 4-bit binary sequence. That is,
S = {si, i = 1,2,L,16}. The occurrence probabilities are

The source entropy can be calculated as follows:

Applying the Huffman coding algorithm, we find that the codeword lengths associated with
the symbols are: l1 = l2 = 2, l3 = 4, and l4 = l5 = L = l16 = 5, where li denotes the length of the ith
codeword. The average length of Huffman code is

 

We see that the average length of Huffman code is quite close to the lower entropy bound. It is
noted, however, that the required codebook memory, M (defined as the sum of the codeword lengths),
is quite large:
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This number is obviously larger than the average codeword length multiplied by the number of
codewords. This should not come as a surprise since the average here is in the statistical sense instead
of in the arithmetic sense. When the total number of improbable symbols increases, the required
codebook memory space will increase dramatically, resulting in a great demand on memory space.

5.3.2 ALGORITHM

Consider a source alphabet S that consists of 2v binary sequences, each of length v. In other words,
each source symbol is a v-bit codeword in the natural binary code. The occurrence probabilities
are highly skewed and there is a large number of improbable symbols in S. The modified Huffman
coding algorithm is based on the following idea: lumping all the improbable source symbols into
a category named ELSE (Weaver, 1978). The algorithm is described below.

1. Categorize the source alphabet S into two disjoint groups, S1 and S2, such that

(5.17)

and

(5.18)

2. Establish a source symbol ELSE with its occurrence probability equal to p(S2).
3. Apply the Huffman coding algorithm to the source alphabet S3 with S3 = S1 U ELSE.
4. Convert the codebook of S3 to that of S as follows.

• Keep the same codewords for those symbols in S1.
• Use the codeword assigned to ELSE as a prefix for those symbols in S2.

5.3.3 CODEBOOK MEMORY REQUIREMENT

Codebook memory M is the sum of the codeword lengths. The M required by Huffman coding
with respect to the original source alphabet S is

(5.19)

where li denotes the length of the ith codeword, as defined previously. In the case of the modified
Huffman coding algorithm, the memory required MmH is

(5.20)

where lELSE is the length of the codeword assigned to ELSE. The above equation reveals the big
savings in memory requirement when the probability is skewed. The following example is used to
illustrate the modified Huffman coding algorithm and the resulting dramatic memory savings.
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Example 5.11 
In this example, we apply the modified Huffman coding algorithm to the source alphabet presented
in Example 5.10. We first lump the 14 symbols having the least occurrence probabilities together
to form a new symbol ELSE. The probability of ELSE is the sum of the 14 probabilities. That is,
p(ELSE) =  · 14 = .

Apply Huffman coding to the new source alphabet S3 = {s1, s2, ELSE}, as shown in Figure 5.2.
From Figure 5.2, it is seen that the codewords assigned to symbols s1, s2, and ELSE, respectively,
are 10, 11, and 0. Hence, for every source symbol lumped into ELSE, its codeword is 0 followed
by the original 4-bit binary sequence. Therefore, MmH = 2 + 2 + 1 = 5 bits, i.e., the required
codebook memory is only 5 bits. Compared with 73 bits required by Huffman coding (refer to
Example 5.10), there is a savings of 68 bits in codebook memory space. Similar to the comment
made in Example 5.10, the memory savings will be even larger if the probability distribution is
skewed more severely and the number of improbable symbols is larger. The average length of the
modified Huffman algorithm is . This demonstrates
that modified Huffman coding retains almost the same coding efficiency as that achieved by
Huffman coding.

5.3.4 BOUNDS ON AVERAGE CODEWORD LENGTH

It has been shown that the average length of the modified Huffman codes satisfies the following
condition:

(5.21)

where p = Ssi Œ s2
 p(si). It is seen that, compared with the noiseless source coding theorem, the upper

bound of the code average length is increased by a quantity of –p log2 p. In Example 5.11 it is
seen that the average length of the modified Huffman code is close to that achieved by the Huffman
code. Hence the modified Huffman code is almost optimum.

5.4 ARITHMETIC CODES

Arithmetic coding, which is quite different from Huffman coding, is gaining increasing popularity.
In this section, we will first analyze the limitations of Huffman coding. Then the principle of
arithmetic coding will be introduced. Finally some implementation issues are discussed briefly.

FIGURE 5.2 The modified Huffman coding procedure in Example 5.11.
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5.4.1 LIMITATIONS OF HUFFMAN CODING

As seen in Section 5.2, Huffman coding is a systematic procedure for encoding a source alphabet,
with each source symbol having an occurrence probability. Under these circumstances, Huffman
coding is optimum in the sense that it produces a minimum coding redundancy. It has been shown
that the average codeword length achieved by Huffman coding satisfies the following inequality
(Gallagher, 1978).

(5.22)

where H(S) is the entropy of the source alphabet, and pmax denotes the maximum occurrence
probability in the set of the source symbols. This inequality implies that the upper bound of the
average codeword length of Huffman code is determined by the entropy and the maximum occur-
rence probability of the source symbols being encoded.

In the case where the probability distribution among source symbols is skewed (some proba-
bilities are small, while some are quite large), the upper bound may be large, implying that the
coding redundancy may not be small. Imagine the following extreme situation. There are only two
source symbols. One has a very small probability, while the other has a very large probability (very
close to 1). The entropy of the source alphabet in this case is close to 0 since the uncertainty is
very small. Using Huffman coding, however, we need two bits: one for each. That is, the average
codeword length is 1, which means that the redundancy is very close to 1. This agrees with
Equation 5.22. This inefficiency is due to the fact that Huffman coding always encodes a source
symbol with an integer number of bits.

The noiseless coding theorem (reviewed in Section 5.1) indicates that the average codeword
length of a block code can approach the source alphabet entropy when the block size approaches
infinity. As the block size approaches infinity, the storage required, the codebook size, and the
coding delay will approach infinity, however, and the complexity of the coding will be out of control.

The fundamental idea behind Huffman coding and Shannon-Fano coding (devised a little earlier
than Huffman coding [Bell et al., 1990]) is block coding. That is, some codeword having an integral
number of bits is assigned to a source symbol. A message may be encoded by cascading the relevant
codewords. It is the block-based approach that is responsible for the limitations of Huffman codes.

Another limitation is that when encoding a message that consists of a sequence of source
symbols, the nth extension Huffman coding needs to enumerate all possible sequences of source
symbols having the same length, as discussed in coding the nth extended source alphabet. This is
not computationally efficient.

Quite different from Huffman coding, arithmetic coding is stream-based. It overcomes the
drawbacks of Huffman coding. A string of source symbols is encoded as a string of code symbols.
Hence, it is free of the integral-bits-per-source symbol restriction and is more efficient. Arithmetic
coding may reach the theoretical bound to coding efficiency specified in the noiseless source coding
theorem for any information source. Below, we introduce the principle of arithmetic coding, from
which we can see the stream-based nature of arithmetic coding.

5.4.2 PRINCIPLE OF ARITHMETIC CODING

To understand the different natures of Huffman coding and arithmetic coding, let us look at
Example 5.12, where we use the same source alphabet and the associated occurrence probabilities
used in Example 5.9. In this example, however, a string of source symbols s1s2s3s4s5s6 is encoded.
Note that we consider the terms string and stream to be slightly different. By stream, we mean a
message, or possibly several messages, which may correspond to quite a long sequence of source
symbols. Moreover, stream gives a dynamic “flavor.” Later on we will see that arithmetic coding

H S L H S pavg( ) £ < ( ) + +max .0 086
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is implemented in an incremental manner. Hence stream is a suitable term to use for arithmetic
coding. In this example, however, only six source symbols are involved. Hence we consider the
term string to be suitable, aiming at distinguishing it from the term block.

Example 5.12 
The set of six source symbols and their occurrence probabilities are listed in Table 5.10. In this
example, the string to be encoded using arithmetic coding is s1s2s3s4s5s6. In the following four
subsections we will use this example to illustrate the principle of arithmetic coding and decoding.

5.4.2.1 Dividing Interval [0,1) into Subintervals

As pointed out by Elias, it is not necessary to sort out source symbols according to their occurrence
probabilities. Therefore in Figure 5.3(a) the six symbols are arranged in their natural order, from
symbols s1, s2, L, up to s6. The real interval between 0 and 1 is divided into six subintervals, each
having a length of p(si), i = 1,2,L,6. Specifically, the interval denoted by [0,1) — where 0 is
included in (the left end is closed) and 1 is excluded from (the right end is open) the interval —
is divided into six subintervals. The first subinterval [0, 0.3) corresponds to s1 and has a length of
P(s1), i.e., 0.3. Similarly, the subinterval [0, 0.3) is said to be closed on the left and open on the
right. The remaining five subintervals are similarly constructed. All six subintervals thus formed
are disjoint and their union is equal to the interval [0, 1). This is because the sum of all the
probabilities is equal to 1.

We list the sum of the preceding probabilities, known as cumulative probability (Langdon,
1984), in the right-most column of Table 5.10 as well. Note that the concept of cumulative prob-
ability (CP) is slightly different from that of cumulative distribution function (CDF) in probability
theory. Recall that in the case of discrete random variables the CDF is defined as follows.

(5.23)

The CP is defined as

(5.24)

where CP(s1) = 0 is defined. Now we see each subinterval has its lower end point located at CP(si).
The width of each subinterval is equal to the probability of the corresponding source symbol. A
subinterval can be completely defined by its lower end point and its width. Alternatively, it is

TABLE 5.10
Source Alphabet and Cumulative Probabilities in Example 5.12

Source Symbol Occurrence Probability Associated Subintervals CP

S1

S2

S3

S4

S5

S6

0.3
0.1
0.2
0.05
0.1
0.25

[0, 0.3)
[0.3, 0.4)
[0.4, 0.6)
[0.6, 0.65)
[0.65, 0.75)
[0.75, 1.0)

0
0.3
0.4
0.6
0.65
0.75

CDF s p si j

j

i

( ) = ( )
=

Â
1

CP s p si j

j

i

( ) = ( )
=

-

Â
1

1



© 2000 by CRC Press LLC

determined by its two end points: the lower and upper end points (sometimes also called the left
and right end points).

Now we consider encoding the string of source symbols s1s2s3s4s5s6 with the arithmetic coding
method.

5.4.2.2 Encoding

Encoding the First Source Symbol 
Refer to Figure 5.3(a). Since the first symbol is s1, we pick up its subinterval [0, 0.3). Picking up
the subinterval [0, 0.3) means that any real number in the subinterval, i.e., any real number equal
to or greater than 0 and smaller than 0.3, can be a pointer to the subinterval, thus representing the
source symbol s1. This can be justified by considering that all the six subintervals are disjoint.

Encoding the Second Source Symbol 
Refer to Figure 5.3(b). We use the same procedure as used in part (a) to divide the interval [0, 0.3)
into six subintervals. Since the second symbol to be encoded is s2, we pick up its subinterval [0.09,
0.12).

FIGURE 5.3 Arithmetic coding working on the same source alphabet as that in Example 5.9. The encoded
symbol string is S1 S2 S3 S4 S5 S6.
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Notice that the subintervals are recursively generated from part (a) to part (b). It is known that
an interval may be completely specified by its lower end point and width. Hence, the subinterval
recursion in the arithmetic coding procedure is equivalent to the following two recursions: end
point recursion and width recursion.

From interval [0, 0.3) derived in part (a) to interval [0.09, 0.12) obtained in part (b), we can
conclude the following lower end point recursion:

(5.25)

where Lnew , Lcurrent represent, respectively, the lower end points of the new and current recursions,
and the Wcurrent and the CPnew denote, respectively, the width of the interval in the current recursion
and the cumulative probability in the new recursion. The width recursion is

(5.26)

where Wnew, and p(si) are, respectively, the width of the new subinterval and the probability of the
source symbol si that is being encoded. These two recursions, also called double recursion (Langdon,
1984), play a central role in arithmetic coding.

Encoding the Third Source Symbol 
Refer to Figure 5.3(c). When the third source symbol is encoded, the subinterval generated above
in part (b) is similarly divided into six subintervals. Since the third symbol to encode is s3, its
subinterval [0.102, 0.108) is picked up.

Encoding the Fourth, Fifth, and Sixth Source Symbols 
Refer to Figure 5.3(d,e,f). The subinterval division is carried out according to Equations 5.25 and
5.26. The symbols s4, s5, and s6 are encoded. The final subinterval generated is [0.1058175,
0.1058250).

That is, the resulting subinterval [0.1058175, 0.1058250) can represent the source symbol string
s1s2s3s4s5s6. Note that in this example decimal digits instead of binary digits are used. In binary
arithmetic coding, the binary digits 0 and 1 are used.

5.4.2.3 Decoding

As seen in this example, for the encoder of arithmetic coding, the input is a source symbol string
and the output is a subinterval. Let us call this the final subinterval or the resultant subinterval.
Theoretically, any real numbers in the interval can be the code string for the input symbol string
since all subintervals are disjoint. Often, however, the lower end of the final subinterval is used as
the code string. Now let us examine how the decoding process is carried out with the lower end
of the final subinterval.

Decoding sort of reverses what encoding has done. The decoder knows the encoding procedure
and therefore has the information contained in Figure 5.3(a). It compares the lower end point of
the final subinterval 0.1058175 with all the end points in (a). It is determined that 0 < 0.1058175 <
0.3. That is, the lower end falls into the subinterval associated with the symbol s1. Therefore, the
symbol s1 is first decoded.

Once the first symbol is decoded, the decoder may know the partition of subintervals shown in
Figure 5.3(b). It is then determined that 0.09 < 0.1058175 < 0.12. That is, the lower end is contained
in the subinterval corresponding to the symbol s2. As a result, s2 is the second decoded symbol.

The procedure repeats itself until all six symbols are decoded. That is, based on Figure 5.3(c),
it is found that 0.102 < 0.1058175 < 0.108. The symbol s3 is decoded. Then, the symbols s4, s5, s6

are subsequently decoded because the following inequalities are determined:

L L W CPnew current current new= + ◊

W W p snew current i= ◊ ( )
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0.1056 < 0.1058175 < 0.1059

0.105795 < 0.1058175 < 0.1058250

0.1058145 < 0.1058175 < 0.1058250

Note that a terminal symbol is necessary to inform the decoder to stop decoding.
The above procedure gives us an idea of how decoding works. The decoding process, however,

does not need to construct parts (b), (c), (d), (e), and (f) of Figure 5.3. Instead, the decoder only
needs the information contained in Figure 5.3(a). Decoding can be split into the following three
steps: comparison, readjustment (subtraction), and scaling (Langdon, 1984).

As described above, through comparison we decode the first symbol s1. From the way
Figure 5.3(b) is constructed, we know the decoding of s2 can be accomplished as follows. We
subtract the lower end of the subinterval associated with s1 in part (a), that is, 0 in this example,
from the lower end of the final subinterval 0.1058175, resulting in 0.1058175. Then we divide this
number by the width of the subinterval associated with s1, i.e., the probability of s1, 0.3, resulting
in 0.352725. Looking at part (a) of Figure 5.3, it is found that 0.3 < 0.352725 < 0.4. That is, the
number is within the subinterval corresponding to s2. Therefore the second decoded symbol is s2.
Note that these three decoding steps exactly “undo” what encoding did.

To decode the third symbol, we subtract the lower end of the subinterval with s2, 0.3 from
0.352725, obtaining 0.052725. This number is divided by the probability of s2, 0.1, resulting in
0.52725. The comparison of 0.52725 with end points in part (a) reveals that the third decoded
symbol is s3.

In decoding the fourth symbol, we first subtract the lower end of the s3’s subinterval in part (a),
0.4 from 0.52725, getting 0.12725. Dividing 0.12725 by the probability of s3, 0.2, results in 0.63625.
Referring to part (a), we decode the fourth symbol as s4 by comparison.

Subtraction of the lower end of the subinterval of s4 in part (a), 0.6, from 0.63625 leads to
0.03625. Division of 0.03625 by the probability of s4, 0.05, produces 0.725. The comparison
between 0.725 and the end points in part (a) decodes the fifth symbol as s5.

Subtracting 0.725 by the lower end of the subinterval associated with s5 in part (a), 0.65, gives
0.075. Dividing 0.075 by the probability of s5, 0.1, generates 0.75. The comparison indicates that
the sixth decoded symbol is s6.

In summary, considering the way in which parts (b), (c), (d), (e), and (f) of Figure 5.3 are
constructed, we see that the three steps discussed in the decoding process: comparison, readjustment,
and scaling, exactly “undo” what the encoding procedure has done.

5.4.2.4 Observations

Both encoding and decoding involve only arithmetic operations (addition and multiplication in
encoding, subtraction and division in decoding). This explains the name arithmetic coding.

We see that an input source symbol string s1s2s3s4s5s6, via encoding, corresponds to a subinterval
[0.1058175, 0.1058250). Any number in this interval can be used to denote the string of the source
symbols.

We also observe that arithmetic coding can be carried out in an incremental manner. That is,
source symbols are fed into the encoder one by one and the final subinterval is refined continually,
i.e., the code string is generated continually. Furthermore, it is done in a manner called first in first
out (FIFO). That is, the source symbol encoded first is decoded first. This manner is superior to
that of last in first out (LIFO). This is because FIFO is suitable for adaptation to the statistics of
the symbol string.

It is obvious that the width of the final subinterval becomes smaller and smaller when the length
of the source symbol string becomes larger and larger. This causes what is known as the precision
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problem. It is this problem that prohibited arithmetic coding from practical usage for quite a long
period of time. Only after this problem was solved in the late 1970s, did arithmetic coding become
an increasingly important coding technique.

It is necessary to have a termination symbol at the end of an input source symbol string. In
this way, an arithmetic coding system is able to know when to terminate decoding.

Compared with Huffman coding, arithmetic coding is quite different. Basically, Huffman coding
converts each source symbol into a fixed codeword with an integral number of bits, while arithmetic
coding converts a source symbol string to a code symbol string. To encode the same source symbol
string, Huffman coding can be implemented in two different ways. One way is shown in Example 5.9.
We construct a fixed codeword for each source symbol. Since Huffman coding is instantaneous,
we can cascade the corresponding codewords to form the output, a 17-bit code string
00.101.11.1001.1000.01, where, for easy reading, the five periods are used to indicate different
codewords. As we see that for the same source symbol string, the final subinterval obtained by
using arithmetic coding is [0.1058175, 0.1058250). It is noted that a decimal in binary number
system, 0.000110111111111, which is of 15 bits, is equal to the decimal in decimal number system,
0.1058211962, which falls into the final subinterval representing the string s1s2s3s4s5s6. This indi-
cates that, for this example, arithmetic coding is more efficient than Huffman coding.

Another way is to form a sixth extension of the source alphabet as discussed in Section 5.1.4:
treat each group of six source symbols as a new source symbol; calculate its occurrence probability
by multiplying the related six probabilities; then apply the Huffman coding algorithm to the sixth
extension of the discrete memoryless source. This is called the sixth extension of Huffman block
code (refer to Section 5.1.2.2). In other words, in order to encode the source string s1s2s3s4s5s6,
Huffman coding encodes all of the 66 = 46,656 codewords in the sixth extension of the source
alphabet. This implies a high complexity in implementation and a large codebook. It is therefore
not efficient.

Note that we use the decimal fraction in this section. In binary arithmetic coding, we use the
binary fraction. In (Langdon, 1984) both binary source and code alphabets are used in binary
arithmetic coding.

Similar to the case of Huffman coding, arithmetic coding is also applicable to r-ary encoding
with r > 2.

5.4.3 IMPLEMENTATION ISSUES

As mentioned, the final subinterval resulting from arithmetic encoding of a source symbol string
becomes smaller and smaller as the length of the source symbol string increases. That is, the lower
and upper bounds of the final subinterval become closer and closer. This causes a growing precision
problem. It is this problem that prohibited arithmetic coding from practical usage for a long period
of time. This problem has been resolved and the finite precision arithmetic is now used in arithmetic
coding. This advance is due to the incremental implementation of arithmetic coding.

5.4.3.1 Incremental Implementation

Recall Example 5.12. As source symbols come in one by one, the lower and upper ends of the
final subinterval get closer and closer. In Figure 5.3, these lower and upper ends in Example 5.12
are listed. We observe that after the third symbol, s3, is encoded, the resultant subinterval is [0.102,
0.108). That is, the two most significant decimal digits are the same and they remain the same in
the encoding process. Hence, we can transmit these two digits without affecting the final code
string. After the fourth symbol s4 is encoded, the resultant subinterval is [0.1056, 0.1059). That is,
one more digit, 5, can be transmitted. Or we say the cumulative output is now .105. After the sixth
symbol is encoded, the final subinterval is [0.1058175, 0.1058250). The cumulative output is 0.1058.
Refer to Table 5.11. This important observation reveals that we are able to incrementally transmit
output (the code symbols) and receive input (the source symbols that need to be encoded).
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5.4.3.2 Finite Precision

With the incremental manner of transmission of encoded digits and reception of input source
symbols, it is possible to use finite precision to represent the lower and upper bounds of the resultant
subinterval, which gets closer and closer as the length of the source symbol string becomes long.

Instead of floating-point math, integer math is used. The potential problems known as underflow
and overflow, however, need to be carefully monitored and controlled (Bell et al., 1990).

5.4.3.3 Other Issues

There are some other problems that need to be handled in implementation of binary arithmetic
coding. Two of them are listed below (Langdon and Rissanen, 1981).

Eliminating Multiplication 
The multiplication in the recursive division of subintervals is expensive in hardware as well as
software. It can be avoided in binary arithmetic coding so as to simplify the implementation of
binary arithmetic coding. The idea is to approximate the lower end of the interval by the closest
binary fraction 2–Q, where Q is an integer. Consequently, the multiplication by 2–Q becomes a right
shift by Q bits. A simpler approximation to eliminate multiplication is used in the Skew Coder
(Langdon and Rissanen, 1982) and the Q-Coder (Pennebaker et al., 1988).

Carry-Over Problem 
Carry-over takes place in the addition required in the recursion updating the lower end of the
resultant subintervals. A carry may propagate over q bits. If the q is larger than the number of bits
in the fixed-length register utilized in finite precision arithmetic, the carry-over problem occurs. To
block the carry-over problem, a technique known as “bit stuffing” is used, in which an additional
buffer register is utilized.

For a detailed discussion on the various issues involved, readers are referred to (Langdon et al.,
1981, 1982, 1984; Pennebaker et al., 1988, 1992). Some computer programs of arithmetic coding
in C language can be found in (Bell et al., 1990; Nelson and Gailley, 1996).

5.4.4 HISTORY

The idea of encoding by using cumulative probability in some ordering, and decoding by compar-
ison of magnitude of binary fraction, was introduced in Shannon’s celebrated paper (Shannon,
1948). The recursive implementation of arithmetic coding was devised by Elias. This unpublished
result was first introduced by Abramson as a note in his book on information theory and coding

TABLE 5.11
Final Subintervals and Cumulative Output in Example 5.12

Source Symbol

Final Subinterval

Cumulative OutputLower End Upper End

S1

S2

S3

S4

S5

S6

0
0.09
0.102
0.1056
0.105795
0.1058175

0.3
0.12
0.108
0.1059
0.105825
0.1058250

—
—
0.10
0.105
0.105
0.1058
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(Abramson, 1963). The result was further developed by Jelinek in his book on information theory
(Jelinek, 1968). The growing precision problem prevented arithmetic coding from attaining practical
usage, however. The proposal of using finite precision arithmetic was made independently by Pasco
(Pasco, 1976) and Rissanen (Rissanen, 1976). Practical arithmetic coding was developed by several
independent groups (Rissanen and Langdon, 1979; Rubin, 1979; Guazzo, 1980). A well-known
tutorial paper on arithmetic coding appeared in (Langdon, 1984). The tremendous efforts made in
IBM led to a new form of adaptive binary arithmetic coding known as the Q-coder (Pennebaker
et al., 1988). Based on the Q-coder, the activities of the international still image coding standards
JPEG and JBIG combined the best features of the various existing arithmetic coders and developed
the binary arithmetic coding procedure known as the QM-coder (Pennebaker and Mitchell, 1992).

5.4.5 APPLICATIONS

Arithmetic coding is becoming popular. Note that in text and bilevel image applications there are
only two source symbols (black and white), and the occurrence probability is skewed. Therefore
binary arithmetic coding achieves high coding efficiency. It has been successfully applied to bilevel
image coding (Langdon and Rissanen, 1981) and adopted by the international standards for bilevel
image compression, JBIG. It has also been adopted by the international still image coding standard,
JPEG. More in this regard is covered in the next chapter when we introduce JBIG.

5.5 SUMMARY

So far in this chapter, not much has been explicitly discussed regarding the term variable-length
codes. It is known that if source symbols in a source alphabet are equally probable, i.e., their
occurrence probabilities are the same, then fixed-length codes such as the natural binary code are
a reasonable choice. When the occurrence probabilities, however, are unequal, variable-length codes
should be used in order to achieve high coding efficiency. This is one of the restrictions on the
minimum redundancy codes imposed by Huffman. That is, the length of the codeword assigned to
a probable source symbol should not be larger than that associated with a less probable source
symbol. If the occurrence probabilities happen to be the integral powers of 1/2, then choosing the
codeword length equal to –log2 p(si) for a source symbol si having the occurrence probability p(si)
results in minimum redundancy coding. In fact, the average length of the code thus generated is
equal to the source entropy.

Huffman devised a systematic procedure to encode a source alphabet consisting of finitely
many source symbols, each having an occurrence probability. It is based on some restrictions
imposed on the optimum, instantaneous codes. By assigning codewords with variable lengths
according to variable probabilities of source symbols, Huffman coding results in minimum redun-
dancy codes, or optimum codes for short. These have found wide applications in image and video
coding and have been adopted in the international still image coding standard JPEG and video
coding standards H.261, H.263, and MPEG 1 and 2.

When some source symbols have small probabilities and their number is large, the size of the
codebook of Huffman codes will require a large memory space. The modified Huffman coding
technique employs a special symbol to lump all the symbols with small probabilities together. As
a result, it can reduce the codebook memory space drastically while retaining almost the same
coding efficiency as that achieved by the conventional Huffman coding technique.

On the one hand, Huffman coding is optimum as a block code for a fixed-source alphabet. On
the other hand, compared with the source entropy (the lower bound of the average codeword length)
it is not efficient when the probabilities of a source alphabet are skewed with the maximum
probability being large. This is caused by the restriction that Huffman coding can only assign an
integral number of bits to each codeword.



© 2000 by CRC Press LLC

Another limitation of Huffman coding is that it has to enumerate and encode all the possible
groups of n source symbols in the nth extension Huffman code, even though there may be only
one such group that needs to be encoded.

Arithmetic coding can overcome the limitations of Huffman coding because it is stream-oriented
rather than block-oriented. It translates a stream of source symbols into a stream of code symbols.
It can work in an incremental manner. That is, the source symbols are fed into the coding system
one by one and the code symbols are output continually. In this stream-oriented way, arithmetic
coding is more efficient. It can approach the lower coding bounds set by the noiseless source coding
theorem for various sources.

The recursive subinterval division (equivalently, the double recursion: the lower end recursion
and width recursion) is the heart of arithmetic coding. Several measures have been taken in the
implementation of arithmetic coding. They include the incremental manner, finite precision, and
the elimination of multiplication. Due to its merits, binary arithmetic coding has been adopted by
the international bilevel image coding standard, JBIG, and still image coding standard, JPEG. It is
becoming an increasingly important coding technique.

5.6 EXERCISES

5-1. What does the noiseless source coding theorem state (using your own words)? Under
what condition does the average code length approach the source entropy? Comment on
the method suggested by the noiseless source coding theorem.

5-2. What characterizes a block code? Consider another definition of block code in (Blahut,
1986): a block code breaks the input data stream into blocks of fixed length n and encodes
each block into a codeword of fixed length m. Are these two definitions (the one above
and the one in Section 5.1, which comes from [Abramson, 1963]) essentially the same?
Explain.

5-3. Is a uniquely decodable code necessarily a prefix condition code?
5-4. For text encoding, there are only two source symbols for black and white. It is said that

Huffman coding is not efficient in this application. But it is known as the optimum code.
Is there a contradiction? Explain.

5-5. A set of source symbols and their occurrence probabilities is listed in Table 5.12. Apply
the Huffman coding algorithm to encode the alphabet.

5-6. Find the Huffman code for the source alphabet shown in Example 5.10.
5-7. Consider a source alphabet S = {si, i = 1,2,L,32} with p(s1) = 1/4, p(si) = 3/124, i =

2,3,L,32. Determine the source entropy and the average length of Huffman code if
applied to the source alphabet. Then apply the modified Huffman coding algorithm.
Calculate the average length of the modified Huffman code. Compare the codebook
memory required by Huffman code and the modified Huffman code.

5-8. A source alphabet consists of the following four source symbols: s1, s2, s3, and s4, with
their occurrence probabilities equal to 0.25, 0.375, 0.125, and 0.25, respectively. Applying
arithmetic coding as shown in Example 5.12 to the source symbol string s2s1s3s4, deter-
mine the lower end of the final subinterval.

5-9. For the above problem, show step by step how we can decode the original source string
from the lower end of the final subinterval.

5-10. In Problem 5.8, find the codeword of the symbol string s2s1s3s4 by using the fourth
extension of the Huffman code. Compare the two methods.

5-11. Discuss how modern arithmetic coding overcame the growing precision problem.
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TABLE 5.12
Source Alphabet in Problem 5.5

Source Symbol Occurrence Probability Codeword Assigned

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

0.20
0.18
0.10
0.10
0.10
0.06
0.06
0.04
0.04
0.04
0.04
0.04
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Run-Length and 
Dictionary Coding: 
Information Theory Results 
(III)

 

As mentioned at the beginning of Chapter 5, we are studying some codeword assignment (encoding)
techniques in Chapters 5 and 6. In this chapter, we focus on run-length and dictionary-based coding
techniques. We first introduce Markov models as a type of dependent source model in contrast to
the memoryless source model discussed in Chapter 5. Based on the Markov model, run-length coding
is suitable for facsimile encoding. Its principle and application to facsimile encoding are discussed,
followed by an introduction to dictionary-based coding, which is quite different from Huffman and
arithmetic coding techniques covered in Chapter 5. Two types of adaptive dictionary coding tech-
niques, the LZ77 and LZ78 algorithms, are presented. Finally, a brief summary of and a performance
comparison between international standard algorithms for lossless still image coding are presented.

Since the Markov source model, run-length, and dictionary-based coding are the core of this
chapter, we consider this chapter as a third part of the information theory results presented in the
book. It is noted, however, that the emphasis is placed on their applications to image and video
compression.

 

6.1 MARKOV SOURCE MODEL

 

In the previous chapter we discussed the discrete memoryless source model, in which source
symbols are assumed to be independent of each other. In other words, the source has zero memory,
i.e., the previous status does not affect the present one at all. In reality, however, many sources are
dependent in nature. Namely, the source has memory in the sense that the previous status has an
influence on the present status. For instance, as mentioned in Chapter 1, there is an interpixel
correlation in digital images. That is, pixels in a digital image are not independent of each other.
As will be seen in this chapter, there is some dependence between characters in text. For instance,
the letter 

 

u

 

 often follows the letter 

 

q

 

 in English. Therefore it is necessary to introduce models that
can reflect this type of dependence. A Markov source model is often used in this regard.

 

6.1.1 D
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Here, as in the previous chapter, we denote a source alphabet by 

 

S

 

 = {

 

s

 

1

 

, 

 

s

 

2

 

, 

 

L
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s

 

m

 

} and the
occurrence probability by 

 

p

 

. An 

 

l

 

th order Markov source is characterized by the following equation
of conditional probabilities.
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source alphabet 

 

S

 

. This equation states that the source symbols are not independent of each other.
The occurrence probability of a source symbol is determined by some of its previous symbols.
Specifically, the probability of 
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 given its history being 
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 (also called the transition
probability), is determined completely by the immediately previous 
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the knowledge of the entire sequence of previous symbols is equivalent to that of the 

 

l

 

 symbols
immediately preceding the current symbol 

 

s

 

j

 

.
An 

 

l

 

th order Markov source can be described by what is called a 

 

state diagram. 

 

A state is a
sequence of (
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) with 
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}. That is, any group of 

 

l

 

 symbols from
the 

 

m

 

 symbols in the source alphabet 

 

S

 

 forms a state. When 

 

l

 

 = 1, it is called a first-order Markov
source. The state diagrams of the first-order Markov sources, with their source alphabets having
two and three symbols, are shown in Figure 6.1(a) and (b), respectively. Obviously, an 

 

l

 

th order
Markov source with 

 

m

 

 symbols in the source alphabet has a total of 

 

m

 

l

 

 different states. Therefore,
we conclude that a state diagram consists of all the 

 

m

 

l

 

 states. In the diagram, all the transition
probabilities together with appropriate arrows are used to indicate the state transitions.

The source entropy at a state (
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s

 

il

 

) is defined as

(6.2)

The source entropy is defined as the statistical average of the entropy at all the states. That is,

(6.3)

 

FIGURE 6.1

 

State diagrams of the first-order Markov sources with their source alphabets having (a) two
symbols and (b) three symbols.
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where, as defined in the previous chapter, 

 

S

 

l

 

 denotes the 

 

l

 

th extension of the source alphabet 

 

S

 

.
That is, the summation is carried out with respect to all 

 

l

 

-tuples taking over the 

 

S

 

l

 

. Extensions of
a Markov source are defined below.
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An extension of a Markov source can be defined in a similar way to that of an extension of a
memoryless source in the previous chapter. The definition of extensions of a Markov source and
the relation between the entropy of the original Markov source and the entropy of the 
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of the Markov source are presented below without derivation. For the derivation, readers are referred
to (Abramson, 1963).
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6.1.2.2 Entropy

 

Denote, respectively, the entropy of the 

 

lth order Markov source S by H(S), and the entropy of the
nth extension of the lth order Markov source, Sn, by H(Sn). The following relation between the two
entropies can be shown:

(6.5)

6.1.3 AUTOREGRESSIVE (AR) MODEL

The Markov source discussed above represents a kind of dependence between source symbols in
terms of the transition probability. Concretely, in determining the transition probability of a present
source symbol given all the previous symbols, only the set of finitely many immediately preceding
symbols matters. The autoregressive model is another kind of dependent source model that has
been used often in image coding. It is defined below.

(6.6)

where sj represents the currently observed source symbol, while sik with k = 1,2,L,l denote the l
preceding observed symbols, ak’s are coefficients, and xj is the current input to the model. If l = 1,
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the model defined in Equation 6.6 is referred to as the first-order AR model. Clearly, in this case,
the current source symbol is a linear function of its preceding symbol.

6.2 RUN-LENGTH CODING (RLC)

The term run is used to indicate the repetition of a symbol, while the term run-length is used to
represent the number of repeated symbols, in other words, the number of consecutive symbols of
the same value. Instead of encoding the consecutive symbols, it is obvious that encoding the run-
length and the value that these consecutive symbols commonly share may be more efficient. Accord-
ing to an excellent early review on binary image compression by Arps (1979), RLC has been in use
since the earliest days of information theory (Shannon and Weaver, 1949; Laemmel, 1951).

From the discussion of the JPEG in Chapter 4 (with more details in Chapter 7), it is seen that
most of the DCT coefficients within a block of 8 ¥ 8 are zero after certain manipulations. The DCT
coefficients are zigzag scanned. The nonzero DCT coefficients and their addresses in the 8 ¥ 8
block need to be encoded and transmitted to the receiver side. There, the nonzero DCT values are
referred to as labels. The position information about the nonzero DCT coefficients is represented
by the run-length of zeros between the nonzero DCT coefficients in the zigzag scan. The labels
and the run-length of zeros are then Huffman coded.

Many documents such as letters, forms, and drawings can be transmitted using facsimile
machines over the general switched telephone network (GSTN). In digital facsimile techniques,
these documents are quantized into binary levels: black and white. The resolution of these binary
tone images is usually very high. In each scan line, there are many consecutive white and black
pixels, i.e., many alternate white runs and black runs. Therefore it is not surprising to see that RLC
has proven to be efficient in binary document transmission. RLC has been adopted in the interna-
tional standards for facsimile coding: the CCITT Recommendations T.4 and T.6.

RLC using only the horizontal correlation between pixels on the same scan line is referred to
as 1-D RLC. It is noted that the first-order Markov source model with two symbols in the source
alphabet depicted in Figure 6.1(a) can be used to characterize 1-D RLC. To achieve higher coding
efficiency, 2-D RLC utilizes both horizontal and vertical correlation between pixels. Both the 1-D
and 2-D RLC algorithms are introduced below.

6.2.1 1-D RUN-LENGTH CODING

In this technique, each scan line is encoded independently. Each scan line can be considered as a
sequence of alternating, independent white runs and black runs. As an agreement between encoder
and decoder, the first run in each scan line is assumed to be a white run. If the first actual pixel is
black, then the run-length of the first white run is set to be zero. At the end of each scan line, there
is a special codeword called end-of-line (EOL). The decoder knows the end of a scan line when it
encounters an EOL codeword.

Denote run-length by r, which is integer-valued. All of the possible run-lengths construct a
source alphabet R, which is a random variable. That is,

(6.7)

Measurements on typical binary documents have shown that the maximum compression ratio,
zmax, which is defined below, is about 25% higher when the white and black runs are encoded
separately (Hunter and Robinson, 1980). The average white run-length, –rW, can be expressed as

(6.8)
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where m is the maximum value of the run-length, and PW(r) denotes the occurrence probability of
a white run with length r. The entropy of the white runs, HW, is

(6.9)

For the black runs, the average run-length –rB and the entropy HB can be defined similarly. The
maximum theoretical compression factor zmax is

(6.10)

Huffman coding is then applied to two source alphabets. According to CCITT Recommendation
T.4, A4 size (210 ¥ 297 mm) documents should be accepted by facsimile machines. In each scan
line, there are 1728 pixels. This means that the maximum run-length for both white and black runs
is 1728, i.e., m = 1728. Two source alphabets of such a large size imply the requirement of two
large codebooks, hence the requirement of large storage space. Therefore, some modification was
made, resulting in the “modified” Huffman (MH) code.

In the modified Huffman code, if the run-length is larger than 63, then the run-length is
represented as

(6.11)

where M takes integer values from 1, 2 to 27, and M ¥ 64 is referred to as the makeup run-length;
T takes integer values from 0, 1 to 63, and is called the terminating run-length. That is, if r £ 63,
the run-length is represented by a terminating codeword only. Otherwise, if r > 63, the run-length
is represented by a makeup codeword and a terminating codeword. A portion of the modified
Huffman code table (Hunter and Robinson, 1980) is shown in Table 6.1. In this way, the requirement
of large storage space is alleviated. The idea is similar to that behind modified Huffman coding,
discussed in Chapter 5.

6.2.2 2-D RUN-LENGTH CODING

The 1-D run-length coding discussed above only utilizes correlation between pixels within a scan
line. In order to utilize correlation between pixels in neighboring scan lines to achieve higher coding
efficiency, 2-D run-length coding was developed. In Recommendation T.4, the modified relative
element address designate (READ) code, also known as the modified READ code or simply the
MR code, was adopted.

The modified READ code operates in a line-by-line manner. In Figure 6.2, two lines are shown.
The top line is called the reference line, which has been coded, while the bottom line is referred
to as the coding line, which is being coded. There are a group of five changing pixels, a0, a1, a2,
b1, b2, in the two lines. Their relative positions decide which of the three coding modes is used.
The starting changing pixel a0 (hence, five changing points) moves from left to right and from top
to bottom as 2-D run-length coding proceeds. The five changing pixels and the three coding modes
are defined below.

6.2.2.1 Five Changing Pixels

By a changing pixel, we mean the first pixel encountered in white or black runs when we scan an
image line-by-line, from left to right, and from top to bottom. The five changing pixels are defined
below.
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a0: The reference-changing pixel in the coding line. Its position is defined in the previous
coding mode, whose meaning will be explained shortly. At the beginning of a coding
line, a0 is an imaginary white changing pixel located before the first actual pixel in the
coding line.

a1: The next changing pixel in the coding line. Because of the above-mentioned left-to-right
and top-to-bottom scanning order, it is at the right-hand side of a0. Since it is a changing
pixel, it has an opposite “color” to that of a0.

a2: The next changing pixel after a1 in the coding line. It is to the right of a1 and has the
same color as that of a0.

b1: The changing pixel in the reference line that is closest to a0 from the right and has the
same color as a1.

b2: The next changing pixel in the reference line after b1.

6.2.2.2 Three Coding Modes

Pass Coding Mode — If the changing pixel b2 is located to the left of the changing pixel a1,
it means that the run in the reference line starting from b1 is not adjacent to the run in the coding
line starting from a1. Note that these two runs have the same color. This is called the pass coding
mode. A special codeword, “0001”, is sent out from the transmitter. The receiver then knows that
the run starting from a0 in the coding line does not end at the pixel below b2. This pixel (below b2

in the coding line) is identified as the reference-changing pixel a0 of the new set of five changing
pixels for the next coding mode.

Vertical Coding Mode — If the relative distance along the horizontal direction between the
changing pixels a1 and b1 is not larger than three pixels, the coding is conducted in vertical coding

FIGURE 6.2 2-D run-length coding.
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TABLE 6.1
Modified Huffman Code Table 
(Hunter and Robinson, 1980)

Run-
Length White Runs Black Runs

Terminating Codewords

0  00110101  0000110111
1  000111  010
2  0111  11
3  1000  10
4  1011  011
5  1100  0011
6  1110  0010
7  1111  00011
8  10011  000101

�
�
�
�

�
�
�
�

�
�
�
�

60  01001011  000000101100
61  00110010  000001011010
62  00110011  000001100110
63  00110100  000001100111

Makeup Codewords
64  11011  0000001111
128  10010  000011001000
192  010111  000011001001
256  0110111  000001011011

�
�
�
�

�
�
�
�

�
�
�
�

1536  010011001  0000001011010
1600  010011010  0000001011011
1664  011000  0000001100100
1728  010011011  0000001100101
EOL  000000000001  000000000001

TABLE 6.2
2-D Run-Length Coding Table

Mode Conditions Output Codeword Position of New a0

Pass coding mode b2a1 < 0 0001 Under b2 in coding line
Vertical coding mode a1b1 = 0 1 a1

a1b1 = 1 011
a1b1 = 2 000011
a1b1 = 3 0000011
a1b1 = –1 010
a1b1 = –2 000010
a1b1 = –3 0000010

Horizontal coding mode |a1b1| > 3 001 + (a0a1) + (a1a2) a2

Note: | xiyj |: distance between xi and yj, xiyj > 0: xi is right to yj, xiyj < 0: xi is left to yj.
(xiyj): codeword of the run denoted by xiyj taken from the modified Huffman code.

Source: From Hunter and Robinson (1980).
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mode. That is, the position of a1 is coded with reference to the position of b1. Seven different
codewords are assigned to seven different cases: the distance between a1 and b1 equals 0, ±1, ±2,
±3, where + means a1 is to the right of b1, while – means a1 is to the left of b1. The a1 then becomes
the reference changing pixel a0 of the new set of five changing pixels for the next coding mode.

Horizontal Coding Mode — If the relative distance between the changing pixels a1 and b1 is
larger than three pixels, the coding is conducted in horizontal coding mode. Here, 1-D run-length
coding is applied. Specifically, the transmitter sends out a codeword consisting the following three
parts: a flag “001”; a 1-D run-length codeword for the run from a0 to a1; a 1-D run-length codeword
for the run from a1 to a2. The a2 then becomes the reference changing pixel a0 of the new set of
five changing pixels for the next coding mode. Table 6.2 contains three coding modes and the
corresponding output codewords. There, (a0a1) and (a1a2) represent 1-D run-length codewords of
run-length a0a1 and a1a2, respectively.

6.2.3 EFFECT OF TRANSMISSION ERROR AND UNCOMPRESSED MODE

In this subsection, effect of transmission error in the 1-D and 2-D RLC cases and uncompressed
mode are discussed.

6.2.3.1 Error Effect in the 1-D RLC Case

As introduced above, the special codeword EOL is used to indicate the end of each scan line. With
the EOL, 1-D run-length coding encodes each scan line independently. If a transmission error
occurs in a scan line, there are two possibilities that the effect caused by the error is limited within
the scan line. One possibility is that resynchronization is established after a few runs. One example
is shown in Figure 6.3. There, the transmission error takes place in the second run from the left.
Resynchronization is established in the fifth run in this example. Another possibility lies in the
EOL, which forces resynchronization.

In summary, it is seen that the 1-D run-length coding will not propagate transmission error
between scan lines. In other words, a transmission error will be restricted within a scan line.
Although error detection and retransmission of data via an automatic repeat request (ARQ) system
is supposed to be able to effectively handle the error susceptibility issue, the ARQ technique was
not included in Recommendation T.4 due to the computational complexity and extra transmission
time required.

Once the number of decoded pixels between two consecutive EOL codewords is not equal to
1728 (for an A4 size document), an error has been identified. Some error concealment techniques
can be used to reconstruct the scan line (Hunter and Robinson, 1980). For instance, we can repeat

FIGURE 6.3 Establishment of resynchronization after a few runs.
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the previous line, or replace the damaged line by a white line, or use a correlation technique to
recover the line as much as possible.

6.2.3.2 Error Effect in the 2-D RLC Case

From the above discussion, we realize that 2-D RLC is more efficient than 1-D RLC on the one
hand. The 2-D RLC is more susceptible to transmission errors than the 1-D RLC on the other hand.
To prevent error propagation, there is a parameter used in 2-D RLC, known as the K-factor, which
specifies the number of scan lines that are 2-D RLC coded.

Recommendation T.4 defined that no more than K-1 consecutive scan lines be 2-D RLC coded
after a 1-D RLC coded line. For binary documents scanned at normal resolution, K = 2. For
documents scanned at high resolution, K = 4.

According to Arps (1979), there are two different types of algorithms in binary image coding,
raster algorithms and area algorithms. Raster algorithms only operate on data within one or two
raster scan lines. They are hence mainly 1-D in nature. Area algorithms are truly 2-D in nature.
They require that all, or a substantial portion, of the image is in random access memory. From our
discussion above, we see that both 1-D and 2-D RLC defined in T.4 belong to the category of raster
algorithms. Area algorithms require large memory space and are susceptible to transmission noise.

6.2.3.3 Uncompressed Mode

For some detailed binary document images, both 1-D and 2-D RLC may result in data expansion
instead of data compression. Under these circumstances the number of coding bits is larger than
the number of bilevel pixels. An uncompressed mode is created as an alternative way to avoid data
expansion. Special codewords are assigned for the uncompressed mode.

For the performances of 1-D and 2-D RLC applied to eight CCITT test document images, and
issues such as “fill bits” and “minimum scan line time (MSLT),” to name only a few, readers are
referred to an excellent tutorial paper by Hunter and Robinson (1980).

6.3 DIGITAL FACSIMILE CODING STANDARDS

Facsimile transmission, an important means of communication in modern society, is often used as
an example to demonstrate the mutual interaction between widely used applications and standard-
ization activities. Active facsimile applications and the market brought on the necessity for inter-
national standardization in order to facilitate interoperability between facsimile machines world-
wide. Successful international standardization, in turn, has stimulated wider use of facsimile
transmission and, hence, a more demanding market. Facsimile has also been considered as a major
application for binary image compression.

So far, facsimile machines are classified in four different groups. Facsimile apparatuses in
groups 1 and 2 use analog techniques. They can transmit an A4 size (210 ¥ 297 mm) document
scanned at 3.85 lines/mm in 6 and 3 min, respectively, over the GSTN. International standards for
these two groups of facsimile apparatus are CCITT (now ITU) Recommendations T.2 and T.3,
respectively. Group 3 facsimile machines use digital techniques and hence achieve high coding
efficiency. They can transmit the A4 size binary document scanned at a resolution of 3.85 lines/mm
and sampled at 1728 pixels per line in about 1 min at a rate of 4800 b/sec over the GSTN. The
corresponding international standard is CCITT Recommendations T.4. Group 4 facsimile appara-
tuses have the same transmission speed requirement as that for group 3 machines, but the coding
technique is different. Specifically, the coding technique used for group 4 machines is based on
2-D run-length coding, discussed above, but modified to achieve higher coding efficiency. Hence
it is referred to as the modified modified READ coding, abbreviated MMR. The corresponding
standard is CCITT Recommendations T.6. Table 6.3 summarizes the above descriptions.
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6.4 DICTIONARY CODING

Dictionary coding, the focus of this section, is different from Huffman coding and arithmetic coding,
discussed in the previous chapter. Both Huffman and arithmetic coding techniques are based on a
statistical model, and the occurrence probabilities play a particular important role. Recall that in
the Huffman coding the shorter codewords are assigned to more frequently occurring source
symbols. In dictionary-based data compression techniques a symbol or a string of symbols generated
from a source alphabet is represented by an index to a dictionary constructed from the source
alphabet. A dictionary is a list of symbols and strings of symbols. There are many examples of this
in our daily lives. For instance, the string “September” is sometimes represented by an index “9,”
while a social security number represents a person in the U.S.

Dictionary coding is widely used in text coding. Consider English text coding. The source
alphabet includes 26 English letters in both lower and upper cases, numbers, various punctuation
marks, and the space bar. Huffman or arithmetic coding treats each symbol based on its occurrence
probability. That is, the source is modeled as a memoryless source. It is well known, however, that
this is not true in many applications. In text coding, structure or context plays a significant role.
As mentioned earlier, it is very likely that the letter u appears after the letter q. Likewise, it is likely
that the word “concerned” will appear after “As far as the weather is.” The strategy of the dictionary
coding is to build a dictionary that contains frequently occurring symbols and string of symbols.
When a symbol or a string is encountered and it is contained in the dictionary, it is encoded with
an index to the dictionary. Otherwise, if not in the dictionary, the symbol or the string of symbols
is encoded in a less efficient manner.

6.4.1 FORMULATION OF DICTIONARY CODING

To facilitate further discussion, we define dictionary coding in a precise manner (Bell et al., 1990).
We denote a source alphabet by S. A dictionary consisting of two elements is defined as D = (P, C),
where P is a finite set of phrases generated from the S, and C is a coding function mapping P onto
a set of codewords.

The set P is said to be complete if any input string can be represented by a series of phrases
chosen from the P. The coding function C is said to obey the prefix property if there is no codeword
that is a prefix of any other codeword. For practical usage, i.e., for reversible compression of any
input text, the phrase set P must be complete and the coding function C must satisfy the prefix property.

6.4.2 CATEGORIZATION OF DICTIONARY-BASED CODING TECHNIQUES

The heart of dictionary coding is the formulation of the dictionary. A successfully built dictionary
results in data compression; the opposite case may lead to data expansion. According to the ways

TABLE 6.3 FACSIMILE CODING STANDARDS

Group of 
Facsimile 
Apparatuses

Speed 
Requirement for 

A-4 Size Document
Analog or 

Digital Scheme
CCITT 

Recommendation

Compression Technique

Model Basic Coder
Algorithm 
Acronym

G1 6 min Analog T.2 — — —
G2 3 min Analog T.3 — — —
G3 1 min Digital T.4 1-D RLC

2-D RLC
(optional)

Modified Huffman MH
MR

G4 1 min Digital T.6 2-D RLC Modified Huffman MMR
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in which dictionaries are constructed, dictionary coding techniques can be classified as static or
adaptive.

6.4.2.1 Static Dictionary Coding

In some particular applications, the knowledge about the source alphabet and the related strings of
symbols, also known as phrases, is sufficient for a fixed dictionary to be produced before the coding
process. The dictionary is used at both the transmitting and receiving ends. This is referred to as
static dictionary coding. The merit of the static approach is its simplicity. Its drawbacks lie in its
relatively lower coding efficiency and less flexibility compared with adaptive dictionary techniques.
By less flexibility, we mean that a dictionary built for a specific application is not normally suitable
for utilization in other applications.

An example of static algorithms occurring is digram coding. In this simple and fast coding
technique, the dictionary contains all source symbols and some frequently used pairs of symbols.
In encoding, two symbols are checked at once to see if they are in the dictionary. If so, they are
replaced by the index of the two symbols in the dictionary, and the next pair of symbols is encoded
in the next step. If not, then the index of the first symbol is used to encode the first symbol. The
second symbol is combined with the third symbol to form a new pair, which is encoded in the next
step.

The digram can be straightforwardly extended to n-gram. In the extension, the size of the
dictionary increases and so does its coding efficiency.

6.4.2.2 Adaptive Dictionary Coding

As opposed to the static approach, with the adaptive approach a completely defined dictionary does
not exist prior to the encoding process and the dictionary is not fixed. At the beginning of coding,
only an initial dictionary exists. It adapts itself to the input during the coding process. All the
adaptive dictionary coding algorithms can be traced back to two different original works by Ziv
and Lempel (1977, 1978). The algorithms based on Ziv and Lempel (1977) are referred to as the
LZ77 algorithms, while those based on their 1978 work are the LZ78 algorithms. Prior to intro-
ducing the two landmark works, we will discuss the parsing strategy.

6.4.3 PARSING STRATEGY

Once we have a dictionary, we need to examine the input text and find a string of symbols that
matches an item in the dictionary. Then the index of the item to the dictionary is encoded. This
process of segmenting the input text into disjoint strings (whose union equals the input text) for
coding is referred to as parsing. Obviously, the way to segment the input text into strings is not unique.

In terms of the highest coding efficiency, optimal parsing is essentially a shortest-path problem
(Bell et al., 1990). In practice, however, a method called greedy parsing is used most often. In fact,
it is used in all the LZ77 and LZ78 algorithms. With greedy parsing, the encoder searches for the
longest string of symbols in the input that matches an item in the dictionary at each coding step.
Greedy parsing may not be optimal, but it is simple in its implementation.

Example 6.1 
Consider a dictionary, D, whose phrase set P = {a, b, ab, ba, bb, aab, bbb}. The codewords assigned
to these strings are C(a) = 10, C(b) = 11, C(ab) = 010, C(ba) = 0101, C(bb) = 01, C(abb) = 11,
and C(bbb) = 0110. Now the input text is abbaab.

Using greedy parsing, we then encode the text as C(ab).C(ba).C(ab), which is a 10-bit string:
010.0101.010. In the above representations, the periods are used to indicate the division of segments
in the parsing. This, however, is not an optimum solution. Obviously, the following parsing will
be more efficient, i.e., C(a).C(bb).C(aab), which is a 6-bit string: 10.01.11.
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6.4.4 SLIDING WINDOW (LZ77) ALGORITHMS

As mentioned earlier, LZ77 algorithms are a group of adaptive dictionary coding algorithms rooted
in the pioneering work of Ziv and Lempel (1977). Since they are adaptive, there is no complete
and fixed dictionary before coding. Instead, the dictionary changes as the input text changes.

6.4.4.1 Introduction

In the LZ77 algorithms, the dictionary used is actually a portion of the input text, which has been
recently encoded. The text that needs to be encoded is compared with the strings of symbols in
the dictionary. The longest matched string in the dictionary is characterized by a pointer (sometimes
called a token), which is represented by a triple of data items. Note that this triple functions as an
index to the dictionary, as mentioned above. In this way, a variable-length string of symbols is
mapped to a fixed-length pointer.

There is a sliding window in the LZ77 algorithms. The window consists of two parts: a search
buffer and a look-ahead buffer. The search buffer contains the portion of the text stream that has
recently been encoded which, as mentioned, is the dictionary; while the look-ahead buffer contains
the text to be encoded next. The window slides through the input text stream from beginning to
end during the entire encoding process. This explains the term sliding window. The size of the
search buffer is much larger than that of the look-ahead buffer. This is expected because what is
contained in the search buffer is in fact the adaptive dictionary. The sliding window is usually on
the order of a few thousand symbols, whereas the look-ahead buffer is on the order of several tens
to one hundred symbols.

6.4.4.2 Encoding and Decoding

Below we present more details about the sliding window dictionary coding technique, i.e., the
LZ77 approach, via a simple illustrative example.

Example 6.2 
Figure 6.4 shows a sliding window. The input text stream is ikaccbadaccbaccbaccgikmoabc. In
part (a) of the figure, a search buffer of nine symbols and a look-ahead buffer of six symbols are
shown. All the symbols in the search buffer, accbadacc, have just been encoded. All the symbols
in the look-ahead buffer, baccba, are to be encoded. (It is understood that the symbols before the

FIGURE 6.4 An encoding example using LZ77.
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search buffer have been encoded and the symbols after the look-ahead buffer are to be encoded.)
The strings of symbols, ik and ccgikmoabcc, are not covered by the sliding window at the moment.

At the moment, or in other words, in the first step of encoding, the symbol(s) to be encoded
begin(s) with the symbol b. The pointer starts searching for the symbol b from the last symbol in
the search buffer, c, which is immediately to the left of the first symbol b in the look-ahead buffer.
It finds a match at the sixth position from b. It further determines that the longest string of the
match is ba. That is, the maximum matching length is two. The pointer is then represented by a
triple, <i,j,k>. The first item, “i”, represents the distance between the first symbol in the look-ahead
buffer and the position of the pointer (the position of the first symbol of the matched string). This
distance is called offset. In this step, the offset is six. The second item in the triple, “j”, indicates
the length of the matched string. Here, the length of the matched string ba is two. The third item,
“k”, is the codeword assigned to the symbol immediately following the matched string in the look-
ahead buffer. In this step, the third item is C(c), where C is used to represent a function to map
symbol(s) to a codeword, as defined in Section 6.4.1. That is, the resulting triple after the first step
is: <6, 2, C(c)>.

The reason to include the third item “k” into the triple is as follows. In the case where there
is no match in the search buffer, both “i” and “j” will be zero. The third item at this moment is
the codeword of the first symbol in the look-ahead buffer itself. This means that even in the case
where we cannot find a match string, the sliding window still works. In the third step of the encoding
process described below, we will see that the resulting triple is: <0, 0, C(i)>. The decoder hence
understands that there is no matching, and the single symbol i is decoded.

The second step of the encoding is illustrated in part (b) of Figure 6.4. The sliding window has
been shifted to the right by three positions. The first symbol to be encoded now is c, which is the
left-most symbol in the look-ahead buffer. The search pointer moves towards the left from the
symbol c. It first finds a match in the first position with a length of one. It then finds another match
in the fourth position from the first symbol in the look-ahead buffer. Interestingly, the maximum
matching can exceed the boundary between the search buffer and the look-ahead buffer and can
enter the look-ahead buffer. Why this is possible will be seen shortly, when we discuss the decoding
process. In this manner, it is found that the maximum length of matching is five. The last match
is found at the fifth position. The length of the matched string, however, is only one. Since greedy
parsing is used, the match with a length five is chosen. That is, the offset is four and the maximum
match length is five. Consequently, the triple resulting from the second step is <4, 5, C(g)>.

The sliding window is then shifted to the right by six positions. The third step of the encoding
is depicted in Part (c). Obviously, there is no matching of i in the search buffer. The resulting triple
is hence <0, 0, C(i)>.

The encoding process can continue in this way. The possible cases we may encounter in the
encoding, however, are described in the first three steps. Hence we end our discussion of the
encoding process and discuss the decoding process. Compared with the encoding, the decoding is
simpler because there is no need for matching, which involves many comparisons between the
symbols in the look-ahead buffer and the symbols in the search buffer. The decoding process is
illustrated in Figure 6.5.

In the above three steps, the resulting triples are <6, 2, C(c)>, <4, 5, C(g)>, and <0, 0, C(i)>.
Now let us see how the decoder works. That is, how the decoder recovers the string baccbaccgi
from these three triples.

In part (a) of Figure 6.5, the search buffer is the same as that in part (a) of Figure 6.4. That is,
the string accbadacc stored in the search window is what was just decoded.

Once the first triple <6, 2, C(c)> is received, the decoder will move the decoding pointer from
the first position in the look-ahead buffer to the left by six positions. That is, the pointer will point
to the symbol b. The decoder then copies the two symbols starting from b, i.e., ba, into the look-
ahead buffer. The symbol c will be copied right to ba. This is shown in part (b) of Figure 6.5. The
window is then shifted to the right by three positions, as shown in part (c) of Figure 6.5.
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After the second triple <4, 5, C(g)> is received, the decoder moves the decoding pointer from
the first position of the look-ahead buffer to the left by four positions. The pointer points to the
symbol c. The decoder then copies five successive symbols starting from the symbol c pointed by
the pointer. We see that at the beginning of this copying process there are only four symbols
available for copying. Once the first symbol is copied, however, all five symbols are available. After
copying, the symbol g is added to the end of the five copied symbols in the look-ahead buffer. The
results are shown in part (c) of Figure 6.5. Part (d) then shows the window shifting to the right by
six positions.

After receiving the triple <0, 0, C(i)>, the decoder knows that there is no match and a single
symbol i is encoded. Hence, the decoder adds the symbol i following the symbol g. This is shown
in part (f) of Figure 6.5.

In Figure 6.5, for each part, the last previously encoded symbol c prior to the receiving of the
three triples is shaded. From part (f), we see that the string added after the symbol c due to the
three triples is baccbaccgi. This agrees with the sequence mentioned at the beginning of our
discussion about the decoding process. We thus conclude that the decoding process has correctly
decoded the encoded sequence from the last encoded symbol and the received triples.

6.4.4.3 Summary of the LZ77 Approach

The sliding window consists of two parts: the search buffer and the look-ahead buffer. The most
recently encoded portion of the input text stream is contained in the search buffer, while the portion
of the text that needs to be encoded immediately is in the look-ahead buffer. The first symbol in
the look-ahead buffer, located to the right of the boundary between the two buffers, is the symbol

FIGURE 6.5 A decoding example using LZ77.
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or the beginning of a string of symbols to be encoded at the moment. Let us call it the symbol s.
The size of the search buffer is usually much larger than that of the look-ahead buffer.

In encoding, the search pointer moves to the left, away from the symbol s, to find a match of
the symbol s in the search buffer. Once a match is found, the encoding process will further determine
the length of the matched string. When there are multiple matches, the match that produces the
longest matched string is chosen. The match is denoted by a triple <i, j, k>. The first item in the
triple, “i”, is the offset, which is the distance between the pointer pointing to the symbol giving
the maximum match and the symbol s. The second item, “j”, is the length of the matched string.
The third item, “k”, is the codeword of the symbol following the matched string in the look-ahead
buffer. The sliding window is then shifted to the right by j+1 positions before the next coding step
takes place.

When there is no matching in the search buffer, the triple is represented by <0, 0, C(s)>, where
C(s) is the codeword assigned to the symbol s. The sliding window is then shifted to the right by
one position.

The sliding window is shifted along the input text stream during the encoding process. The
symbol s moves from the beginning symbol to the ending symbol of the input text stream.

At the very beginning, the content of the search buffer can be arbitrarily selected. For instance,
the symbols in the search buffer may all be the space symbol.

Let us denote the size of the search buffer by SB, the size of the look-ahead buffer by L, and
the size of the source alphabet by A. Assume that the natural binary code is used. Then we see that
the LZ77 approach encodes variable-length strings of symbols with fixed-length codewords. Spe-
cifically, the offset “i” is of coding length � log2 SB �, the length of matched string “j” is of coding
length � log2 (SB + L) �, and the codeword “k” is of coding length � log2 (A) �, where the sign 
denotes the smallest integer larger than a.

The length of the matched string is equal to � log2 (SB + L) � because the search for the maximum
matching can enter into the look-ahead buffer as shown in Example 6.2.

The decoding process is simpler than the encoding process since there are no comparisons
involved in the decoding.

The most recently encoded symbols in the search buffer serve as the dictionary used in the
LZ77 approach. The merit of doing so is that the dictionary is well adapted to the input text. The
limitation of the approach is that if the distance between the repeated patterns in the input text
stream is larger than the size of the search buffer, then the approach cannot utilize the structure to
compress the text. A vivid example can be found in (Sayood, 1996).

A window with a moderate size, say, SB + L £ 8192, can compress a variety of texts well.
Several reasons have been analyzed by Bell et al. (1990).

Many variations have been made to improve coding efficiency of the LZ77 approach. The LZ77
produces a triple in each encoding step; i.e., the offset (position of the matched string), the length
of the matched string, and the codeword of the symbol following the matched string. The trans-
mission of the third item in each coding step is not efficient. This is true especially at the beginning
of coding. A variant of the LZ77, referred to as the LZSS algorithm, improves this inefficiency.

6.4.5 LZ78 ALGORITHMS

6.4.5.1 Introduction

As mentioned above, the LZ77 algorithms use a sliding window of fixed size, and both the search
buffer and the look-ahead buffer have a fixed size. This means that if the distance between two
repeated patterns is larger than the size of the search buffer, the LZ77 algorithms cannot work
efficiently. The fixed size of both the buffers implies that the matched string cannot be longer than
the sum of the sizes of the two buffers, placing another limitation on coding efficiency. Increasing
the sizes of the search buffer and the look-ahead buffer seemingly will resolve the problem. A close

a
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look, however, reveals that it also leads to increases in the number of bits required to encode the
offset and matched string length, as well as an increase in processing complexity.

The LZ78 algorithms (Ziv and Lempel, 1978) eliminate the use of the sliding window. Instead,
these algorithms use the encoded text as a dictionary which, potentially, does not have a fixed size.
Each time a pointer (token) is issued, the encoded string is included in the dictionary. Theoretically,
the LZ78 algorithms reach optimal performance as the encoded text stream approaches infinity. In
practice, however, as mentioned above with respect to the LZ77, a very large dictionary will affect
coding efficiency negatively. Therefore, once a preset limit to the dictionary size has been reached,
either the dictionary is fixed for the future (if the coding efficiency is good), or it is reset to zero,
i.e., it must be restarted.

Instead of the triples used in the LZ77, only pairs are used in the LZ78. Specifically, only the
position of the pointer to the matched string and the symbol following the matched string need to
be encoded. The length of the matched string does not need to be encoded since both the encoder
and the decoder have exactly the same dictionary, i.e., the decoder knows the length of the matched
string.

6.4.5.2 Encoding and Decoding

Like the discussion of the LZ77 algorithms, we will go through an example to describe the LZ78
algorithms.

Example 6.3 
Consider the text stream: baccbaccacbcabccbbacc. Table 6.4 shows the coding process. We see
that for the first three symbols there is no match between the individual input symbols and the
entries in the dictionary. Therefore, the doubles are, respectively, <0, C(b)>, <0, C(a)>, and
<0, C(c)>, where 0 means no match, and C(b), C(a), and C(c) represent the codewords of b, a, and
c, respectively. After symbols b, a, c, comes c, which finds a match in the dictionary (the third
entry). Therefore, the next symbol b is combined to be considered. Since the string cb did not
appear before, it is encoded as a double and it is appended as a new entry into the dictionary. The
first item in the double is the index of the matched entry c, 3, the second item is the index/codeword
of the symbol following the match b, 1. That is, the double is <3, 1>. The following input symbol
is a, which appeared in the dictionary. Hence, the next symbol c is taken into consideration. Since
the string ac is not an entry of the dictionary, it is encoded with a double. The first item in the
double is the index of symbol a, 2; the second item is the index of symbol c, 3, i.e., <2, 3>. The
encoding proceeds in this way. Take a look at Table 6.4. In general, as the encoding proceeds, the
entries in the dictionary become longer and longer. First, entries with single symbols come out,
but later, more and more entries with two symbols show up. After that, more and more entries with
three symbols appear. This means that coding efficiency is increasing.

Now consider the decoding process. Since the decoder knows the rule applied in the encoding,
it can reconstruct the dictionary and decode the input text stream from the received doubles. When
the first double <0, C(b)> is received, the decoder knows that there is no match. Hence, the first
entry in the dictionary is b. So is the first decoded symbol. From the second double <0, C(a)>,
symbol a is known as the second entry in the dictionary as well as the second decoded symbol.
Similarly, the next entry in the dictionary and the next decoded symbol are known as c. When the
following double <3, 1> is received. The decoder knows from two items, 3 and 1, that the next
two symbols are the third and the first entries in the dictionary. This indicates that the symbols c
and b are decoded, and the string cb becomes the fourth entry in the dictionary.

We omit the next two doubles and take a look at the double <4, 3>, which is associated with
Index 7 in Table 6.4. Since the first item in the double is 4, it means that the maximum matched
string is cb, which is associated with Index 4 in Table 6.4. The second item in the double, 3, implies
that the symbol following the match is the third entry c. Therefore the decoder decodes a string
cbc. Also the string cbc becomes the seventh entry in the reconstructed dictionary. In this way, the
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decoder can reconstruct the exact same dictionary as that established by the encoder and decode
the input text stream from the received doubles.

6.4.5.3 LZW Algorithm

Both the LZ77 and LZ78 approaches, when published in 1977 and 1978, respectively, were theory
oriented. The effective and practical improvement over the LZ78 by Welch (1984) brought much
attention to the LZ dictionary coding techniques. The resulting algorithm is referred to the LZW
algorithm. It removed the second item in the double (the index of the symbol following the longest
matched string) and, hence, it enhanced coding efficiency. In other words, the LZW only sends the
indexes of the dictionary to the decoder. For the purpose, the LZW first forms an initial dictionary,
which consists of all the individual source symbols contained in the source alphabet. Then, the
encoder examines the input symbol. Since the input symbol matches to an entry in the dictionary,
its succeeding symbol is cascaded to form a string. The cascaded string does not find a match in
the initial dictionary. Hence, the index of the matched symbol is encoded and the enlarged string
(the matched symbol followed by the cascaded symbol) is listed as a new entry in the dictionary.
The encoding process continues in this manner.

For the encoding and decoding processes, let us go through an example to see how the LZW
algorithm can encode only the indexes and the decoder can still decode the input text string.

Example 6.4 
Consider the following input text stream: accbadaccbaccbacc. We see that the source alphabet is
S = {a,b,c,d,}. The top portion of Table 6.5 (with indexes 1,2,3,4) gives a possible initial dictionary
used in the LZW. When the first symbol a is input, the encoder finds that it has a match in the
dictionary. Therefore the next symbol c is taken to form a string ac. Because the string ac is not
in the dictionary, it is listed as a new entry in the dictionary and is given an index, 5. The index
of the matched symbol a, 1, is encoded. When the second symbol, c, is input the encoder takes
the following symbol c into consideration because there is a match to the second input symbol c
in the dictionary. Since the string cc does not match any existing entry, it becomes a new entry in
the dictionary with an index, 6. The index of the matched symbol (the second input symbol), c, is
encoded. Now consider the third input symbol c, which appeared in the dictionary. Hence, the
following symbol b is cascaded to form a string cb. Since the string cb is not in the dictionary, it
becomes a new entry in the dictionary and is given an index, 7. The index of matched symbol c, 3,
is encoded. The process proceeds in this fashion.

TABLE 6.4
An Encoding Example Using the LZ78 Algorithm

Index Doubles Encoded Symbols

1 < 0, C(b) > b
2 < 0, C(a) > a
3 < 0, C(c) > c
4 < 3, 1 > cb
5 < 2, 3 > ac
6 < 3, 2 > ca
7 < 4, 3 > cbc
8 < 2, 1 > ab
9 < 3, 3 > cc

10 < 1, 1 > bb
11 < 5, 3 > acc
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Take a look at entry 11 in the dictionary shown in Table 6.5. The input symbol at this point is
a. Since it has a match in the previous entries, its next symbol c is considered. Since the string ac
appeared in entry 5, the succeeding symbol c is combined. Now the new enlarged string becomes
acc and it does not have a match in the previous entries. It is thus added to the dictionary. And a
new index, 11, is given to the string acc. The index of the matched string ac, 5, is encoded and
transmitted. The final sequence of encoded indexes is 1, 3, 3, 2, 1, 4, 5, 7, 11, 8. Like the LZ78,
the entries in the dictionary become longer and longer in the LZW algorithm. This implies high
coding efficiency since long strings can be represented by indexes.

Now let us take a look at the decoding process to see how the decoder can decode the input
text stream from the received index. Initially, the decoder has the same dictionary (the top four
rows in Table 6.5) as that in the encoder. Once the first index 1 comes, the decoder decodes a
symbol a. The second index is 3, which indicates that the next symbol is c. From the rule applied
in encoding, the decoder knows further that a new entry ac has been added to the dictionary with
an index 5. The next index is 3. It is known that the next symbol is also c. It is also known that
the string cc has been added into the dictionary as the sixth entry. In this way, the decoder
reconstructs the dictionary and decodes the input text stream.

6.4.5.4 Summary

The LZW algorithm, as a representative of the LZ78 approach, is summarized below.
The initial dictionary contains the indexes for all the individual source symbols. At the beginning

of encoding, when a symbol is input, since it has a match in the initial dictionary, the next symbol
is cascaded to form a two-symbol string. Since the two-symbol string cannot find a match in the
initial dictionary, the index of the former symbol is encoded and transmitted, and the two-symbol
string is added to the dictionary with a new, incremented index. The next encoding step starts with
the latter symbol of the two.

In the middle, the encoding process starts with the last symbol of the latest added dictionary
entry. Since it has a match in the previous entries, its succeeding symbol is cascaded after the
symbol to form a string. If this string appeared before in the dictionary (i.e., the string finds a

TABLE 6.5
An Example of the Dictionary Coding 
Using the LZW Algorithm

Index Entry Input Symbols
Encoded 

Index

1 a

Initial dictionary
2 b
3 c
4 d

5 ac a 1
6 cc c 3
7 cb c 3
8 ba b 2
9 ad a 1

10 da d 4
11 acc a,c 5
12 cba c,b 7
13 accb a,c,c 11
14 bac b,a, 8
15 cc… c,c,…

¸
˝
Ô

Ǫ̂
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match), the next symbol is cascaded as well. This process continues until such an enlarged string
cannot find a match in the dictionary. At this moment, the index of the last matched string (the
longest match) is encoded and transmitted, and the enlarged and unmatched string is added into
the dictionary as a new entry with a new, incremented index.

Decoding is a process of transforming the index string back to the corresponding symbol string.
In order to do so, however, the dictionary must be reconstructed in exactly the same way as that
established in the encoding process. That is, the initial dictionary is constructed first in the same
way as that in the encoding. When decoding the index string, the decoder reconstructs the same
dictionary as that in the encoder according to the rule used in the encoding.

Specifically, at the beginning of the decoding, after receiving an index, a corresponding single
symbol can be decoded. Via the next received index, another symbol can be decoded. From the
rule used in the encoding, the decoder knows that the two symbols should be cascaded to form a
new entry added into the dictionary with an incremented index. The next step in the decoding will
start from the latter symbol among the two symbols.

Now consider the middle of the decoding process. The presently received index is used to
decode a corresponding string of input symbols according to the reconstructed dictionary at the
moment. (Note that this string is said to be with the present index.) It is known from the encoding
rule that the symbols in the string associated with the next index should be considered. (Note that
this string is said to be with the next index.) That is, the first symbol in the string with the next
index should be appended to the last symbol in the string with the present index. The resultant
combination, i.e., the string with the present index followed by the first symbol in the string with
the next index, cannot find a match to an entry in the dictionary. Therefore, the combination should
be added to the dictionary with an incremented index. At this moment, the next index becomes the
new present index, and the index following the next index becomes the new next index. The decoding
process then proceeds in the same fashion in a new decoding step.

Compared with the LZ78 algorithm, the LZW algorithm eliminates the necessity of having the
second item in the double, an index/codeword of the symbol following a matched string. That is,
the encoder only needs to encode and transmit the first item in the double. This greatly enhances
the coding efficiency and reduces the complexity of the LZ algorithm.

6.4.5.5 Applications

The CCITT Recommendation V.42 bis is a data compression standard used in modems that connect
computers with remote users via the GSTN. In the compressed mode, the LZW algorithm is
recommended for data compression.

In image compression, the LZW finds its application as well. Specifically, it is utilized in the
graphic interchange format (GIF) which was created to encode graphical images. GIF is now also
used to encode natural images, though it is not very efficient in this regard. For more information,
readers are referred to Sayood (1996). The LZW algorithm is also used in the UNIX Compress
command.

6.5 INTERNATIONAL STANDARDS FOR LOSSLESS STILL 
IMAGE COMPRESSION

In the previous chapter, we studied Huffman and arithmetic coding techniques. We also briefly
discussed the international standard for bilevel image compression, known as the JBIG. In this
chapter, so far we have discussed another two coding techniques: the run-length and dictionary
coding techniques. We also introduced the international standards for facsimile compression, in
which the techniques known as the MH, MR, and MMR were recommended. All of these techniques
involve lossless compression. In the next chapter, the international still image coding standard JPEG
will be introduced. As we will see, the JPEG has four different modes. They can be divided into
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two compression categories: lossy and lossless. Hence, we can talk about the lossless JPEG. Before
leaving this chapter, however, we briefly discuss, compare, and summarize various techniques used
in the international standards for lossless still image compression. For more details, readers are
referred to an excellent survey paper by Arps and Truong (1994).

6.5.1 LOSSLESS BILEVEL STILL IMAGE COMPRESSION

6.5.1.1 Algorithms

As mentioned above, there are four different international standard algorithms falling into this
category.

MH (Modified Huffman coding) — This algorithm is defined in CCITT Recommendation
T.4 for facsimile coding. It uses the 1-D run-length coding technique followed by the “modified”
Huffman coding technique.

MR (Modified READ [Relative Element Address Designate] coding) — Defined in CCITT
Recommendation T.4 for facsimile coding. It uses the 2-D run-length coding technique followed
by the “modified” Huffman coding technique.

MMR (Modified Modified READ coding) — Defined in CCITT Recommendation T.6. It is
based on MR, but is modified to maximize compression.

JBIG (Joint Bilevel Image experts Group coding) — Defined in CCITT Recommendation
T.82. It uses an adaptive 2-D coding model, followed by an adaptive arithmetic coding technique.

6.5.1.2 Performance Comparison

The JBIG test image set was used to compare the performance of the above-mentioned algorithms.
The set contains scanned business documents with different densities, graphic images, digital
halftones, and mixed (document and halftone) images.

Note that digital halftones, also named (digital) halftone images, are generated by using only
binary devices. Some small black units are imposed on a white background. The units may assume
different shapes: a circle, a square, and so on. The more dense the black units in a spot of an image,
the darker the spot appears. The digital halftoning method has been used for printing gray-level
images in newspapers and books. Digital halftoning through character overstriking, used to generate
digital images in the early days for the experimental work associated with courses on digital image
processing, has been described by Gonzalez and Woods (1992).

The following two observations on the performance comparison were made after the application
of the several techniques to the JBIG test image set.

1. For bilevel images excluding digital halftones, the compression ratio achieved by these
techniques ranges from 3 to 100. The compression ratio increases monotonically in the
order of the following standard algorithms: MH, MR, MMR, JBIG.

2. For digital halftones, MH, MR, and MMR result in data expansion, while JBIG achieves
compression ratios in the range of 5 to 20. This demonstrates that among the techniques,
JBIG is the only one suitable for the compression of digital halftones.

6.5.2 LOSSLESS MULTILEVEL STILL IMAGE COMPRESSION

6.5.2.1 Algorithms

There are two international standards for multilevel still image compression:
JBIG (Joint Bilevel Image experts Group coding) — Defined in CCITT Recommendation

T.82. It uses an adaptive arithmetic coding technique. To encode multilevel images, the JIBG
decomposes multilevel images into bit-planes, then compresses these bit-planes using its bilevel
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image compression technique. To further enhance the compression ratio, it uses Gary coding to
represent pixel amplitudes instead of weighted binary coding.

JPEG (Joint Photographic (image) Experts Group coding) — Defined in CCITT Recom-
mendation T.81. For lossless coding, it uses the differential coding technique. The predictive error
is encoded using either Huffman coding or adaptive arithmetic coding techniques.

6.5.2.2 Performance Comparison

A set of color test images from the JPEG standards committee was used for performance compar-
ison. The luminance component (Y) is of resolution 720 ¥ 576 pixels, while the chrominance
components (U and V) are of 360 ¥ 576 pixels. The compression ratios calculated are the combined
results for all the three components. The following observations have been reported.

1. When quantized in 8 bits per pixel, the compression ratios vary much less for multilevel
images than for bilevel images, and are roughtly equal to 2.

2. When quantized with 5 bits per pixel down to 2 bits per pixel, compared with the lossless
JPEG the JBIG achieves an increasingly higher compression ratio, up to a maximum of
29%.

3. When quantized with 6 bits per pixel, JBIG and lossless JPEG achieve similar compres-
sion ratios.

4. When quantized with 7 bits per pixel to 8 bits per pixel, the lossless JPEG achieves a
2.4 to 2.6% higher compression ratio than JBIG.

6.6 SUMMARY

Both Huffman coding and arithmetic coding, discussed in the previous chapter, are referred to as
variable-length coding techniques, since the lengths of codewords assigned to different entries in
a source alphabet are different. In general, a codeword of a shorter length is assigned to an entry
with higher occurrence probabilities. They are also classified as fixed-length to variable-length
coding techniques (Arps, 1979), since the entries in a source alphabet have the same fixed length.
Run-length coding (RLC) and dictionary coding, the focus of this chapter, are opposite, and are
referred to as variable-length to fixed-length coding techniques. This is because the runs in the
RLC and the string in the dictionary coding are variable and are encoded with codewords of the
same fixed length.

Based on RLC, the international standard algorithms for facsimile coding, MH, MR, and MMR
have worked successfully except for dealing with digital halftones. That is, these algorithms result
in data expansion when applied to digital halftones. The JBIG, based on an adaptive arithmetic
coding technique, not only achieves a higher coding efficiency than MH, MR, and MMR for
facsimile coding, but also compresses the digital halftones effectively.

Note that 1-D RLC utilizes the correlation between pixels within a scan line, whereas 2-D RLC
utilizes the correlation between pixels within a few scan lines. As a result, 2-D RLC can obtain
higher coding efficiency than 1-D RLC. On the other hand, 2-D RLC is more susceptible to
transmission errors than 1-D RLC.

In text compression, the dictionary-based techniques have proven to be efficient. All the adaptive
dictionary-based algorithms can be classified into two groups. One is based on a work by Ziv and
Lempel in 1977, and another is based on their pioneering work in 1978. They are called the LZ77
and LZ78 algorithms, respectively. With the LZ77 algorithms, a fixed-size window slides through
the input text stream. The sliding window consists of two parts: the search buffer and the look-
ahead buffer. The search buffer contains the most recently encoded portion of the input text, while
the look-ahead buffer contains the portion of the input text to be encoded immediately. For the
symbols to be encoded, the LZ77 algorithms search for the longest match in the search buffer. The
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information about the match: the distance between the matched string in the search buffer and that
in the look-ahead buffer, the length of the matched string, and the codeword of the symbol following
the matched string in the look-ahead buffer are encoded. Many improvements have been made in
the LZ77 algorithms.

The performance of the LZ77 algorithms is limited by the sizes of the search buffer and the
look-ahead buffer. With a finite size for the search buffer, the LZ77 algorithms will not work well
in the case where repeated patterns are apart from each other by a distance longer than the size of
the search buffer. With a finite size for the sliding window, the LZ77 algorithms will not work well
in the case where matching strings are longer than the window. In order to be efficient, however,
these sizes cannot be very large.

In order to overcome the problem, the LZ78 algorithms work in a different way. They do not
use the sliding window at all. Instead of using the most recently encoded portion of the input text
as a dictionary, the LZ78 algorithms use the index of the longest matched string as an entry of the
dictionary. That is, each matched string cascaded with its immediate next symbol is compared with
the existing entries of the dictionary. If this combination (a new string) does not find a match in
the dictionary constructed at the moment, the combination will be included as an entry in the
dictionary. Otherwise, the next symbol in the input text will be appended to the combination and
the enlarged new combination will be checked with the dictionary. The process continues until the
new combination cannot find a match in the dictionary. Among the several variants of the LZ78
algorithms, the LZW algorithm is perhaps the most important one. It only needs to encode the
indexes of the longest matched strings to the dictionary. It can be shown that the decoder can
decode the input text stream from the given index stream. In doing so, the same dictionary as that
established in the encoder needs to be reconstructed at the decoder, and this can be implemented
since the same rule used in the encoding is known in the decoder.

The size of the dictionary cannot be infinitely large because, as mentioned above, the coding
efficiency will not be high. The common practice of the LZ78 algorithms is to keep the dictionary
fixed once a certain size has been reached and the performance of the encoding is satisfactory.
Otherwise, the dictionary will be set to empty and will be reconstructed from scratch.

Considering the fact that there are several international standards concerning still image coding
(for both bilevel and multilevel images), a brief summary of them and a performance comparison
have been presented in this chapter. At the beginning of this chapter, a description of the discrete
Markov source and its nth extensions was provided. The Markov source and the autoregressive
model serve as important models for the dependent information sources.

6.7 EXERCISES

6-1. Draw the state diagram of a second-order Markov source with two symbols in the source
alphabet. That is, S = {s1, s2}. It is assumed that the conditional probabilities are

6-2. What are the definitions of raster algorithm and area algorithm in binary image coding?
To which category does 1-D RLC belong? To which category does 2-D RLC belong?

6-3. What effect does a transmission error have on 1-D RLC and 2-D RLC, respectively?
What is the function of the codeword EOL?

p s s s p s s s

p s s s p s s s

p s s s p s s s p s s s p s s s

1 1 1 2 2 2

2 1 1 1 2 2

1 1 2 1 2 1 2 1 2 2 2 1

0 7

0 3

0 5

( ) = ( ) =

( ) = ( ) =

( ) = ( ) = ( ) = ( ) =

. ,

. ,

. .

 and
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6-4. Make a convincing argument that the “modified” Huffman (MH) algorithm reduces the
requirement of large storage space.

6-5. Which three different modes does 2-D RLC have? How do you view the vertical mode?
6-6. Using your own words, describe the encoding and decoding processes of the LZ77

algorithms. Go through Example 6.2.
6-7. Using your own words, describe the encoding and decoding processes of the LZW

algorithm. Go through Example 6.3.
6-8. Read the reference paper (Arps and Truong, 1994), which is an excellent survey on the

international standards for lossless still image compression. Pay particular attention to
all the figures and to Table 1.
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Still Image Coding 
Standard: JPEG

 

In this chapter, the JPEG standard is introduced. This standard allows for lossy and lossless encoding
of still images and four distinct modes of operation are supported: sequential DCT-based mode,
progressive DCT-based mode, lossless mode and hierarchical mode.

 

7.1 INTRODUCTION

 

Still image coding is an important application of data compression. When an analog image or
picture is digitized, each pixel is represented by a fixed number of bits, which correspond to a
certain number of gray levels. In this uncompressed format, the digitized image requires a large
number of bits to be stored or transmitted. As a result, compression become necessary due to the
limited communication bandwidth or storage size. Since the mid-1980s, the ITU and ISO have
been working together to develop a joint international standard for the compression of still images.
Officially, JPEG [jpeg] is the ISO/IEC international standard 10918-1; digital compression and
coding of continuous-tone still images, or the ITU-T Recommendation T.81. JPEG became an
international standard in 1992. The JPEG standard allows for both lossy and lossless encoding of
still images. The algorithm for lossy coding is a DCT-based coding scheme. This is the baseline
of JPEG and is sufficient for many applications. However, to meet the needs of applications that
cannot tolerate loss, e.g., compression of medical images, a lossless coding scheme is also provided
and is based on a predictive coding scheme. From the algorithmic point of view, JPEG includes
four distinct modes of operation, namely, sequential DCT-based mode, progressive DCT-based
mode, lossless mode, and hierarchical mode. In the following sections, an overview of these modes
is provided. Further technical details can be found in the books by Pennelbaker and Mitchell (1992)
and Symes (1998).

In the sequential DCT-based mode, an image is first partitioned into blocks of 8 

 

¥

 

 8 pixels.
The blocks are processed from left to right and top to bottom. The 8 

 

¥

 

 8 two-dimensional Forward
DCT is applied to each block and the 8 

 

¥

 

 8 DCT coefficients are quantized. Finally, the quantized
DCT coefficients are entropy encoded and output as part of the compressed image data.

In the progressive DCT-based mode, the process of block partitioning and Forward DCT
transform is the same as in the sequential DCT-based mode. However, in the progressive mode,
the quantized DCT coefficients are first stored in a buffer before the encoding is performed. The
DCT coefficients in the buffer are then encoded by a multiple scanning process. In each scan, the
quantized DCT coefficients are partially encoded by either spectral selection or successive approx-
imation. In the method of spectral selection, the quantized DCT coefficients are divided into multiple
spectral bands according to a zigzag order. In each scan, a specified band is encoded. In the method
of successive approximation, a specified number of most significant bits of the quantized coefficients
are first encoded and the least significant bits are then encoded in subsequent scans.

The difference between sequential coding and progressive coding is shown in Figure 7.1. In
the sequential coding an image is encoded part by part according to the scanning order, while in
the progressive coding the image is encoded by a multiscanning process and in each scan the full
image is encoded to a certain quality level.

As mentioned earlier, lossless coding is achieved by a predictive coding scheme. In this scheme,
three neighboring pixels are used to predict the current pixel to be coded. The prediction difference
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is entropy coded using either Huffman or arithmetic coding. Since the prediction is not quantized,
the coding is lossless.

Finally, in the hierarchical mode, an image is first spatially down-sampled to a multilayered
pyramid, resulting in a sequence of frames as shown in Figure 7.2. This sequence of frames is
encoded by a predictive coding scheme. Except for the first frame, the predictive coding process
is applied to the differential frames, i.e., the differences between the frame to be coded and the
predictive reference frame. It is important to note that the reference frame is equivalent to the
previous frame that would be reconstructed in the decoder. The coding method for the difference
frame may use the DCT-based coding method, the lossless coding method, or the DCT-based
processes with a final lossless process. Down-sampling and up-sampling filters are used in the
hierarchical mode. The hierarchical coding mode provides a progressive presentation similar to the
progressive DCT-based mode, but is also useful in the applications that have multiresolution
requirements. The hierarchical coding mode also provides the capability of progressive coding to
a final lossless stage.

 

FIGURE 7.1

 

(a) Sequential coding, (b) progressive coding.

 

FIGURE 7.2

 

Hierarchical multiresolution encoding.
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7.2 SEQUENTIAL DCT-BASED ENCODING ALGORITHM

 

The sequential DCT-based coding algorithm is the baseline algorithm of the JPEG coding standard.
A block diagram of the encoding process is shown in Figure 7.3. As shown in Figure 7.4, the
digitized image data are first partitioned into blocks of 8 

 

¥

 

 8 pixels. The two-dimensional forward
DCT is applied to each 8 

 

¥

 

 8 block. The two-dimensional forward and inverse DCT of 8 

 

¥

 

 8 block
are defined as follows:

(7.1)

where 

 

s

 

ij

 

 is the value of the pixel at position (

 

i,j

 

) in the block, and 

 

S

 

uv

 

 is the transformed (

 

u,v

 

) DCT
coefficient.

 

FIGURE 7.3

 

Block diagram of a sequential DCT-based encoding process.

 

FIGURE 7.4

 

Partitioning to 8 
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 8 blocks.
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After the forward DCT, quantization of the transformed DCT coefficients is performed. Each
of the 64 DCT coefficients is quantized by a uniform quantizer:

(7.2)

where the 

 

S

 

quv

 

 is the quantized value of the DCT coefficient, 

 

S

 

uv

 

, and 

 

Q

 

uv

 

 is the quantization step
obtained from the quantization table. There are four quantization tables that may be used by the
encoder, but there is no default quantization table specified by the standard. Two particular quan-
tization tables are shown in Table 7.1.

At the decoder, the dequantization is performed as follows:

(7.3)

where 

 

R

 

quv

 

 is the value of the dequantized DCT coefficient. After quantization, the DC coefficient,

 

S

 

q

 

00

 

, is treated separately from the other 63 AC coefficients. The DC coefficients are encoded by
a predictive coding scheme. The encoded value is the difference (

 

DIFF

 

) between the quantized DC
coefficient of the current block (

 

S

 

q

 

00

 

) and that of the previous block of the same component (

 

PRED

 

):

 

DIFF

 

 = 

 

S

 

q

 

00

 

 – 

 

PRED

 

(7.4)

The value of 

 

DIFF

 

 is entropy coded with Huffman tables. More specifically, the two’s com-
plement of the possible 

 

DIFF

 

 magnitudes are grouped into 12 categories, “SSSS”. The Huffman
codes for these 12 difference categories and additional bits are shown in the Table 7.2.

For each nonzero category, additional bits are added to the codeword to uniquely identify which
difference within the category actually occurred. The number of additional bits is defined by “SSSS”
and the additional bits are appended to the least significant bit of the Huffman code (most significant
bit first) according to the following rule. If the difference value is positive, the “SSSS” low-order
bits of 

 

DIFF

 

 are appended; if the difference value is negative, then the “SSSS” low-order bits of

 

DIFF

 

-

 

1

 

 are appended. As an example, the Huffman tables used for coding the luminance and
chrominance DC coefficients are shown in Tables 7.3 and 7.4, respectively. These two tables have
been developed from the average statistics of a large set of images with 8-bit precision.

 

TABLE 7.1
Two Examples of Quantization Tables Used by JPEG
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In contrast to the coding of DC coefficients, the quantized AC coefficients are arranged to a
zigzag order before being entropy coded. This scan order is shown in Figure 7.5.

According to the zigzag scanning order, the quantized coefficients can be represented as:

ZZ(0) = S

 

q00

 

, ZZ(1) = S

 

q01

 

, ZZ(2) = S

 

q10

 

, …., ZZ(63) = S

 

q77

 

. (7.5)

Since many of the quantized AC coefficients become zero, they can be very efficiently encoded
by exploiting the run of zeros. The run-length of zeros are identified by the nonzero coefficients.
An 8-bit code ‘RRRRSSSS’ is used to represent the nonzero coefficient. The four least significant
bits, ‘SSSS’, define a category for the value of the next nonzero coefficient in the zigzag sequence,
which ends the zero run. The four most significant bits, ‘RRRR’, define the run-length of zeros in
the zigzag sequence or the position of the nonzero coefficient in the zigzag sequence. The composite
value, RRRRSSSS, is shown in Figure 7.6. The value ‘RRRRSSSS’ = ‘11110000’ is defined as
ZRL, “RRRR” = “1111” represents a run-length of 16 zeros and “SSSS” = “0000” represents a
zero amplitude. Therefore, ZRL is used to represent a run-length of 16 zero coefficients followed

 

TABLE 7.2
Huffman Coding of DC Coefficients

 

SSS
S DIFF Values Additional Bits

 

0 0 –
1 –1,1 0,1
2 –3,–2,2,3 00,01,10,11
3 –7,…,–4,4,…,7 000,…,011,100,.,111
4 –15,…,–8,8,…,15 0000,.,0111,1000,…,1111
5 –31,…,–16,16,…,31 00000,…,01111,10000,…,11111
6 –63,…–32,32,…63 ….,…
7 –127,…,–64,64,…,127 ….,…
8 –255,…,–128,128,…,255 ….,…
9 –511,…,–256,256,…,511 ….,…

10 –1023,…,–512,512,…,1023 ….,…
11 –2047,…,–1024,1024,…,2047 ….,…

 

TABLE 7.3
Huffman Table for Luminance 
DC Coefficient Differences

 

Category Code Length Codeword

 

0
1
2
3
4
5
6
7
8
9

10
11

2
3
3
3
3
3
4
5
6
7
8
9

00
010
011
100
101
110
1110
11110
111110
1111110
11111110
111111110
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by a zero-amplitude coefficient, it is not an 

 

abbreviation

 

. In the case of a run-length of zero
coefficients that exceeds 15, multiple symbols will be used. A special value ‘RRRRSSSS’ =
‘00000000’ is used to code the end-of-block (EOB). An EOB occurs when the remaining coefficients
in the block are zeros. The entries marked “N/A” are undefined.

 

TABLE 7.4
Huffman table for chrominance 
DC coefficient differences

 

Category Code Length Codeword

 

0
1
2
3
4
5
6
7
8
9

10
11

2
2
2
3
4
5
6
7
8
9

10
11

00
01
10
110
1110
11110
111110
1111110
11111110
111111110
1111111110
11111111110

 

FIGURE 7.5

 

Zigzag scanning order of DCT coefficients.

 

FIGURE 7.6

 

Two-dimensional value array for Huffman coding.
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The composite value, RRRRSSSS, is then Huffman coded. SSSS is actually the number to
indicate “category” in the Huffman code table. The coefficient values for each category are shown
in Table 7.5.

Each Huffman code is followed by additional bits that specify the sign and exact amplitude of
the coefficients. As with the DC code tables, the AC code tables have also been developed from
the average statistics of a large set of images with 8-bit precision. Each composite value is
represented by a Huffman code in the AC code table. The format for the additional bits is the same
as in the coding of DC coefficients. The value of SSSS gives the number of additional bits required
to specify the sign and precise amplitude of the coefficient. The additional bits are either the low-
order SSSS bits of ZZ(k) when ZZ(k) is positive, or the low-order SSSS bits of ZZ(k)-1 when
ZZ(k) is negative. Here, ZZ(k) is the 

 

kth 

 

coefficient in the zigzag scanning order of coefficients
being coded. The Huffman tables for AC coefficients can be found in Annex K of the JPEG standard
(jpeg) and are not listed here due to space limitations.

As described above, Huffman coding is used as the means of entropy coding. However, an
adaptive arithmetic coding procedure can also be used. As with the Huffman coding technique, the
binary arithmetic coding technique is also lossless. It is possible to transcode between two systems
without either of the FDCT or IDCT processes. Since this transcoding is a lossless process, it does
not affect the picture quality of the reconstructed image. The arithmetic encoder encodes a series
of binary symbols, zeros or ones, where each symbol represents the possible result of a binary
decision. The binary decisions include the choice between positive and negative signs, a magnitude
being zero or nonzero, or a particular bit in a sequence of binary digits being zero or one. There
are four steps in the arithmetic coding: initializing the statistical area, initializing the encoder,
terminating the code string, and adding restart markers.

 

7.3 PROGRESSIVE DCT-BASED ENCODING ALGORITHM

 

In progressive DCT-based coding, the input image is first partitioned to blocks of 8 

 

¥

 

 8 pixels. The
two-dimensional 8 

 

¥

 

 8 DCT is then applied to each block. The transformed DCT-coefficient data
are then encoded with multiple scans. At each scan, a portion of the transformed DCT coefficient
data is encoded. This partially encoded data can be reconstructed to obtain a full image size with
lower picture quality. The coded data of each additional scan will enhance the reconstructed image
quality until the full quality has been achieved at the completion of all scans. Two methods have
been used in the JPEG standard to perform the DCT-based progressive coding. These include
spectral selection and successive approximation.

 

TABLE 7.5
Huffman Coding for AC Coefficients

 

Category (SSSS) AC Coefficient Range

 

1 –1,1
2  –3,–2,2,3
3  –7,…,–4,4,…,7
4  –15,…,–8,8,…,15
5  –31,…,–16,16,…,31
6  –63,…,–32,32,…,63
7  –127,…,–64,.64,…,127
8  –255,…,–128,128,…,255
9  –511,…,–256,256,…,511

10  –1023,.,–512,512,…,1023
11  –2047,…,–1024,1024,…,2047
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In the method of spectral selection, the transformed DCT coefficients are first reordered as a
zigzag sequence and then divided into several bands. A frequency band is defined in the scan header
by specifying the starting and ending indexes in the zigzag sequence. The band containing the DC
coefficient is encoded at the first scan. In the following scan, it is not necessary for the coding
procedure to follow the zigzag ordering.

In the method of the successive approximation, the DCT coefficients are first reduced in
precision by the point transform. The point transform of the DCT coefficients is an arithmetic shift
right by a specified number of bits, or division by a power of 2 (near zero, there is slight difference
in truncation of precision between an arithmetic shift and division by 2, see annex K10 of [jpeg]).
This specified number is the successive approximation of bit position. To encode using successive
approximations, the significant bits of the DCT coefficient are encoded in the first scan, and each
successive scan that follows progressively improves the precision of the coefficient by one bit. This
continues until full precision is reached.

The principles of spectral selection and successive approximation are shown in Figure 7.7. For
both methods, the quantized coefficients are coded with either Huffman or arithmetic codes at each
scan. In spectral selection and the first scan of successive approximation for an image, the AC
coefficient coding model is similar to that used in the sequential DCT-based coding mode. However,
the Huffman code tables are extended to include coding of runs of end-of-bands (EOBs). For
distinguishing the end-of-band and end-of-block, a number, n, which is used to indicate the range
of run length, is added to the end-of-band (EOBn). The EOBn code sequence is defined as follows.
Each EOBn is followed by an extension field, which has the minimum number of bits required to
specify the run length. The end-of-band run structure allows efficient coding of blocks which have
only zero coefficients. For example, an EOB run of length 5 means that the current block and the
next 4 blocks have an end-of-band with no intervening nonzero coefficients. The Huffman coding
structure of the subsequent scans of successive approximation for a given image is similar to the
coding structure of the first scan of that image. Each nonzero quantized coefficient is described by
a composite 8-bit run length-magnitude value of the form: RRRRSSSS. The four most significant
bits, RRRR, indicate the number of zero coefficients between the current coefficient and the
previously coded coefficient. The four least significant bits, SSSS, give the magnitude category of
the nonzero coefficient. The run length-magnitude composite value is Huffman coded. Each Huff-
man code is followed by additional bits: one bit is used to code the sign of the nonzero coefficient
and another bit is used to code the correction, where “0” means no correction and “1” means add
one to the decoded magnitude of the coefficient. Although the above technique has been described
using Huffman coding, it should be noted that arithmetic encoding can also be used in its place.

 

7.4 LOSSLESS CODING MODE

 

In the lossless coding mode, the coding method is spatially based coding instead of DCT-based
coding. However, the coding method is extended from the method for coding the DC coefficients
in the sequential DCT-based coding mode. Each pixel is coded with a predictive coding method,
where the predicted value is obtained from one of three one-dimensional or one of four two-
dimensional predictors, which are shown in Figure 7.8.

In Figure 7.8, the pixel to be coded is denoted by x, and the three causal neighbors are denoted
by a, b, and c. The predictive value of x, Px, is obtained from three neighbors, a, b, and c in the
one of seven ways as listed in Table 7.6.

In Table 7.6, the selection value 0 is only used for differential coding in the hierarchical coding
mode. Selections 1, 2, and 3 are one-dimensional predictions and 4, 5, 6, and 7 are two-dimensional
predictions. Each prediction is performed with full integer precision, and without clamping of either
the underflow or overflow beyond the input bounds. In order to achieve lossless coding, the
prediction differences are coded with either Huffman coding or arithmetic coding. The prediction
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difference values can be from 0 to 2

 

16

 

 for 8-bit pixels. The Huffman tables developed for coding
DC coefficients in the sequential DCT-based coding mode are used with one additional entry to
code the prediction differences. For arithmetic coding, the statistical model defined for the DC
coefficients in the sequential DCT-based coding mode is generalized to a two-dimensional form in
which differences are conditioned on the pixel to the left and the line above.

 

FIGURE 7.7

 

Progressive coding with spectral selection and successive approximation.
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7.5 HIERARCHICAL CODING MODE

 

The hierarchical coding mode provides a progressive coding similar to the progressive DCT-based
coding mode, but it offers more functionality. This functionality addresses applications with multi-
resolution requirements. In the hierarchical coding mode, an input image frame is first decomposed
to a sequence of frames, such as the pyramid shown in Figure 7.2. Each frame is obtained through
a down-sampling process, i.e., low-pass filtering followed by subsampling. The first frame (the
lowest resolution) is encoded as a nondifferential frame. The following frames are encoded as
differential frames, where the differential is with respect to the previously coded frame. Note that
an up-sampled version that would be reconstructed in the decoder is used. The first frame can be
encoded by the methods of sequential DCT-based coding, spectral selection, method of progressive
coding, or lossless coding with either Huffman code or arithmetic code. However, within an image,
the differential frames are either coded by the DCT-based coding method, the lossless coding
method, or the DCT-based process with a final lossless coding. All frames within the image must
use the same entropy coding, either Huffman or arithmetic, with the exception that nondifferential
frames coded with the baseline coding may occur in the same image with frames coded with
arithmetic coding methods. The differential frames are coded with the same method used for the
nondifferential frames except the final frame. The final differential frame for each image may use
a differential lossless coding method.

In the hierarchical coding mode, resolution changes in frames may occur. These resolution
changes occur if down-sampling filters are used to reduce the spatial resolution of some or all
frames of an image. When the resolution of a reference frame does not match the resolution of the
frame to be coded, a up-sampling filter is used to increase the resolution of the reference frame.
The block diagram of coding of a differential frame is shown in Figure 7.9.

 

FIGURE 7.8

 

Spatial relationship between the pixel to be coded and three decoded neighbors.

 

TABLE 7.6
Predictors for Lossless Coding

 

Selection-Value Prediction

 

0
1
2
3
4
5
6
7

No prediction (hierarchical mode)
Px = a
Px = b
Px = c
Px = a+b-c
Px = a + ((b-c)/2)

 

a

 

Px = b + ((a-c)/2)

 

a

 

Px = (a+b)/2

 

a

 

 Shift right arithmetic operation.
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The up-sampling filter increases the spatial resolution by a factor of two in both horizontal and
vertical directions by using bilinear interpolation of two neighboring pixels. The up-sampling with
bilinear interpolation is consistent with the down-sampling filter that is used for the generation of
down-sampled frames. It should be noted that the hierarchical coding mode allows one to improve
the quality of the reconstructed frames at a given spatial resolution.

 

7.6 SUMMARY

 

In this chapter, the still image coding standard, JPEG, has been introduced. The JPEG coding
standard includes four coding modes: sequential DCT-based coding mode, progressive DCT-based
coding mode, lossless coding mode, and hierarchical coding mode. The DCT-based coding method
is probably the one that most of us are familiar with; however, the lossless coding modes in JPEG
which use a spatial domain predictive coding process have many interesting applications as well.
For each coding mode, entropy coding can be implemented with either Huffman coding or arithmetic
coding. JPEG has been widely adopted for many applications.

 

7.7 EXERCISES

 

7-1.

 

What is the difference between sequential coding and progressive coding in JPEG?
Conduct a project to encode an image with sequence coding and progressive coding,
respectively.

 

7-2.

 

Use the JPEG lossless mode to code several images and explain why different bit rates
are obtained.

 

7-3.

 

Generate a Huffman code table using a set of images with 8-bit precision (aproximately
2~3) using the method presented in Annex C of the JPEG specification. This set of
images is called the training set. Use this table to code an image within the training set
and an image which is not in the training set, and explain the results.

 

7-4.

 

Design a three-layer progressive JPEG coder using (a) spectral selection, and (b) pro-
gressive approximation (0.3 bits per pixel at the first layer, 0.2 bits per pixel at the second
layer, and 0.1 bits per pixel at the third layer).
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FIGURE 7.9

 

Hierarchical coding of a differential frame.
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Wavelet Transform 
for Image Coding

 

During the last decade, a number of signal processing applications have emerged using wavelet
theory. Among those applications, the most widespread developments have occurred in the area of
data compression. Wavelet techniques have demonstrated the ability to provide not only high coding
efficiency, but also spatial and quality scalability features. In this chapter, we focus on the utility
of the wavelet transform for image data compression applications.

 

8.1 REVIEW OF THE WAVELET TRANSFORM

8.1.1 D
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The wavelet transform, as a specialized research field, started over a decade ago (Grossman and
Morlet, 1984). To better understand the theory of wavelets, we first give a very short review of the
Short-Time Fourier Transform (STFT) since there are some similarities between the STFT and the
wavelet transform. As we know, the STFT uses sinusoidal waves as its orthogonal basis and is
defined as:

(8.1)

where 

 

w

 

(

 

t

 

) is a time-domain windowing function, the simplest of which is a rectangular window
that has a unit value over a time interval and has zero elsewhere. The value 

 

t

 

 is the starting position
of the window. Thus, the STFT maps a function 

 

f

 

(

 

t

 

) into a two-dimensional plane (

 

w,t

 

). The STFT
is also referred to as Gabor transform (Cohen, 1989). Similar to the STFT, the wavelet transform
also maps a time or spatial function into a two-dimensional function in 
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 and 

 

t

 

 (
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 and 
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 for STFT).
The wavelet transform is defined as follows. Let 

 

f

 

(

 

t

 

) be any square integrable function, i.e., it
satisfies:

(8.2)

The continuous-time wavelet transform of 

 

f

 

(

 

t

 

) with respect to a wavelet 

 

y

 

(

 

t

 

) is defined as:

(8.3)

where 

 

a

 

 and 

 

t

 

 are real variables and * denotes complex conjugation. The wavelet is defined as:

(8.4)

F f t w t e dtj tw t t w,( ) = ( ) -( ) -

-•

+•

Ú

f t dt( ) < •
-•

+•

Ú 2

W a f t
a

t
a

dt, *t y t( ) = ( ) -Ê
Ë

ˆ
¯-•

+•

Ú 1

y y t
ta t a

t
a

( ) = -Ê
Ë

ˆ
¯

-1 2



 

© 2000 by CRC Press LLC

 

The above equation represents a set of functions that are generated from a single function, 

 

y

 

(

 

t

 

)

 

,

 

by dilations and translations. The variable 

 

t

 

 represents the time shift and the variable 

 

a

 

 corresponds
to the amount of time-scaling or dilation. If 

 

a

 

 >1, there is an expansion of 

 

y

 

(

 

t

 

), while if 0 < 

 

a

 

 < 1,
there is a contraction of 

 

y

 

(
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). For negative values of 

 

a

 

, the wavelet experiences a time reversal in
combination with a dilation. The function, 

 

y
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t

 

)

 

,

 

 is referred to as the mother wavelet and it must
satisfy two conditions:

1. The function integrates to zero:

(8.5)

2. The function is square integrable, or has finite energy:

(8. 6)

The continuous-time wavelet transform can now be rewritten as:

(8.7)

In the following, we give two well-known examples of 

 

y

 

(

 

t

 

) and their Fourier transforms. The
first example is the Morlet (modulated Gaussian) wavelet (Daubechies, 1990),

(8.8)

and the second example is the Haar wavelet:

(8.9)

From the above definition and examples, we can find that the wavelets have zero DC value.
This is clear from Equation 8.5. In order to have good time localization, the wavelets are usually
bandpass signals and they decay rapidly towards zero with time. We can also find several other
important properties of the wavelet transform and several differences between STFT and the wavelet
transform.

The STFT uses a sinusoidal wave as its basis function. These basis functions keep the same
frequency over the entire time interval. In contrast, the wavelet transform uses a particular wavelet
as its basis function. Hence, wavelets vary in both position and frequency over the time interval.
Examples of two basis functions for the sinusoidal wave and wavelet are shown in Figure 8.1(a)
and (b), respectively.

The STFT uses a single analysis window. In contrast, the wavelet transform uses a short time
window at high frequencies and a long time window at low frequencies. This is referred to as
constant Q-factor filtering or relative constant bandwidth frequency analysis. A comparison of the
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constant bandwidth analysis of the STFT and the relative constant bandwidth wavelet transform is
shown in Figure 8.2(a) and (b), respectively.

This feature can be further explained with the concept of a time-frequency plane, which is
shown in Figure 8.3.

As shown in Figure 8.3, the window size of the STFT in the time domain is always chosen to
be constant. The corresponding frequency bandwidth is also constant. In the wavelet transform,
the window size in the time domain varies with the frequency. A longer time window is used for

 

FIGURE 8.1

 

(a) Two sinusoidal waves, and (b) two wavelets.

 

FIGURE 8.2

 

(a) Constant bandwidth analysis (for Fourier transform), and (b) relative constant bandwidth
analysis (for wavelet transform). (From Vetterli, M. & Kovacevic, J. 

 

Wavelets and Sub-Band Coding

 

, ©1995.
With permission of Prentice-Hall, Upper Saddle River, N.J.)

 

FIGURE 8.3

 

Comparison of the STFT and the wavelet transform in the time-frequency plane. (From Vetterli,
M. & Kovacevic, J. 

 

Wavelets and Sub-Band Coding

 

, ©1995. With permission of Prentice-Hall, Upper Saddle
River, N.J.)
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a lower frequency and a shorter time window is used for a higher frequency. This property is very
important for image data compression. For image data, the concept of a time-frequency plane
becomes a spatial-frequency plane. The spatial resolution of a digital image is measured with pixels,
as described in Chapter 15. To overcome the limitations of DCT-based coding, the wavelet transform
allows the spatial resolution and frequency bandwidth to vary in the spatial-frequency plane. With
this variation, better bit allocation for active and smooth areas can be achieved.

The continuous-time wavelet transform can be considered as a correlation. For fixed 

 

a

 

, it is
clear from Equation 8.3 that 

 

W

 

(

 

a,

 

t

 

) is the cross-correlation of functions 

 

f

 

(

 

t

 

) with related wavelet
conjugate dilated to scale factor 

 

a

 

 at time lag 

 

t

 

. This is an important property of the wavelet
transform for multiresolution analysis of image data. Since the convolution can be seen as a filtering
operation, the integral wavelet transform can be seen as a bank of linear filters acting upon 

 

f

 

(

 

t

 

).
This implies that the image data can be decomposed by a bank of filters defined by the wavelet
transform.

The continuous-time wavelet transform can be seen as an operator. First, it has the property of
linearity. If we rewrite 
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) as 
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[
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)], then we have

(8.10)

where 

 

a

 

 and 

 

b

 

 are constant scalars. Second, it has the property of translation:

(8.11)

where 

 

l

 

 is a time lag.
Finally, it has the property of scaling

(8.12)
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 are the dilation
and translation, respectively. Now let us to find a means of obtaining the inverse transform, i.e.,
given 
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 If we know how to get the inverse transform, we can then represent any
arbitrary function 

 

f

 

(

 

t

 

) as a summation of wavelets, such as in the Fourier transform and DCT that
provide a set of coefficients for reconstructing the original function using sine and cosine as the
basis functions. In fact, this is possible if the mother wavelet satisfies the admissibility condition:

(8.13)
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Then, the inverse wavelet transform is
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The above results can be extended for two-dimensional signals. If 

 

f

 

(

 

x,y

 

) is a two-dimensional
function, its continuous-time wavelet transform is defined as:

(8.15)

where 

 

t

 

x

 

 and 

 

t

 

y

 

 specify the transform in two dimensions. The inverse two-dimensional continuous-
time wavelet transform is then defined as:

(8.16)

where the 

 

C

 

 is defined as in Equation 8.13 and 

 

y
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x,y

 

) is a two-dimensional wavelet

(8.17)

For image coding, the wavelet is used to decompose the image data into wavelets. As indicated
in the third property of the wavelet transform, the wavelet transform can be viewed as the cross-
correlation of the function 

 

f

 

(

 

t

 

) and the wavelets 
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 Therefore, the wavelet transform is equivalent
to finding the output of a bank of bandpass filters specified by the wavelets of 

 

y
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t
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as shown in
Figure 8.4. This process decomposes the input signal into several subbands. Since each subband
can be further partitioned, the filter bank implementation of the wavelet transform can be used for
multiresolution analysis (MRA). Intuitively, when the analysis is viewed as a filter bank, the time
resolution must increase with the central frequency of the analysis filters. This can be exactly
obtained by the scaling property of the wavelet transform, where the center frequencies of the
bandpass filters increase as the bandwidth becomes wider. Again, the bandwidth becomes wider
by reducing the dilation parameter 

 

a

 

. It should be noted that such a multiresolution analysis is
consistent with the constant Q-factor property of the wavelet transform. Furthermore, the resolution
limitation of the STFT does not exist in the wavelet transform since the time-frequency resolutions
in the wavelet transform vary, as shown in Figure 8.2(b).

 

FIGURE 8.4

 

The wavelet transform implemented with a bank of filters.
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For digital image compression, it is preferred to represent 

 

f (t) as a discrete superposition sum
rather than an integral. With this move to the discrete space, the dilation parameter a in Equation 8.10
takes the values a = 2k and the translation parameter t takes the values t = 2kl, where both k and
l are integers. From Equation 8.4, the discrete version of yat(t) becomes:

(8.18)

Its corresponding wavelet transform can be rewritten as:

(8.19)

and the inverse transform becomes:

(8.20)

The values of the wavelet transform at those a and t are represented by d(k,l):

(8.21)

The d(k,l) coefficients are referred to as the discrete wavelet transform of the function f (t) (Dau-
bechies, 1992; Vetterli and Kovacevic, 1995). It is noted that the discretization so far is only applied
to the parameters a and t; d(k,l) is still a continuous-time function. If the discretization is further
applied to the time domain by letting t = mT, where m is an integer and T is the sampling interval
(without loss of generality, we assume T = 1), then the discrete-time wavelet transform is defined as:

(8.22)

Of course, the sampling interval has to be chosen according to the Nyquist sampling theorem
so that no information is lost in the process of sampling. The inverse discrete-time wavelet transform
is then

(8.23)

8.2 DIGITAL WAVELET TRANSFORM FOR IMAGE COMPRESSION

8.2.1 BASIC CONCEPT OF IMAGE WAVELET TRANSFORM CODING

From the previous section, we have learned that the wavelet transform has several features that are
different from traditional transforms. It is noted from Figure 8.2 that each transform coefficient in
the STFT represents a constant interval of time regardless of which band the coefficient belongs
to, whereas for the wavelet transform, the coefficients at the course level represent a larger time
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interval but a narrower band of frequencies. This feature of the wavelet transform is very important
for image coding. In traditional image transform coding, which makes use of the Fourier transform
or discrete cosine transform (DCT), one difficult problem is to choose the block size or window
width so that statistics computed within that block provide good models of the image signal
behavior. The choice of the block size has to be compromised so that it can handle both active and
smooth areas. In the active areas, the image data are more localized in the spatial domain, while
in the smooth areas the image data are more localized in the frequency domain. With traditional
transform coding, it is very hard to reach a good compromise. The main contribution of wavelet
transform theory is that it provides an elegant framework in which both statistical behaviors of
image data can be analyzed with equal importance. This is because that wavelets can provide a
signal representation in which some of the coefficients represent long data lags corresponding to
a narrow band or low frequency range, and some of the coefficients represent short data lags
corresponding to a wide band or high frequency range. Therefore, it is possible to obtain a good
trade-off between spatial and frequency domain with the wavelet representation of image data.

To use the wavelet transform for image coding applications, an encoding process is needed
which includes three major steps: image data decomposition, quantization of the transformed
coefficients, and coding of the quantized transformed coefficients. A simplified block diagram of
this process is shown in Figure 8.5. The image decomposition is usually a lossless process which
converts the image data from the spatial domain to frequency domain, where the transformed
coefficients are decorrelated. The information loss happens in the quantization step and the com-
pression is achieved in the coding step. To begin the decomposition, the image data are first
partitioned into four subbands labeled as LL1, HL1, LH1, and HH1, as shown in Figure 8.6(a). Each
coefficient represents a spatial area corresponding to one-quarter of the original image size. The
low frequencies represent a bandwidth corresponding to 0 < ÁwÙ< p/2, while the high frequencies
represent the band p/2 < Áw˜ < p. To obtain the next level of decomposition, the LL1 subband is
further decomposed into the next level of four subbands, as shown in Figure 8.6(b). The low
frequencies of the second level decomposition correspond to 0 < Íw˜ < p/4, while the high
frequencies at the second level correspond to p/4 < Íw˜ < p/2. This decomposition can be continued

FIGURE 8.5 Block diagram of the image coding with the wavelet transform coding.

FIGURE 8.6 Two-dimensional wavelet transform. (a) First-level decomposition, and (b) second-level
decomposition. (L denotes a low band, H denotes a high band, and the subscript denotes the number of the
level. For example, LL1 denotes the low-low band at level 1.)
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to as many levels as needed. The filters used to compute the discrete wavelet transform are generally
the symmetric quadrature mirror filters (QMF), as described by Woods (1991). A QMF-pyramid
subband decomposition is illustrated in Figure 8.6(b).

During quantization, each subband is quantized differently depending on its importance, which
is usually based on its energy or variance (Jayant and Noll, 1984). To reach the predetermined bit
rate or compression ratio, coarse quantizers or large quantization steps would be used to quantize
the low-energy subbands while the finer quantizers or small quantization steps would be used to
quantize the large-energy subbands. This results in fewer bits allocated to those low-energy sub-
bands and more bits for large-energy subbands.

8.2.2 EMBEDDED IMAGE WAVELET TRANSFORM CODING ALGORITHMS

As with other transform coding schemes, most wavelet coefficients in the high-frequency bands
have very low energy. After quantization, many of these high-frequency wavelet coefficients are
quantized to zero. Based on the statistical property of the quantized wavelet coefficients, Huffman
coding tables can be designed. Generally, most of the energy in an image is contained in the low-
frequency bands. The data structure of the wavelet-transformed coefficients is suitable to exploit
this statistical property.

Consider a multilevel decomposition of an image with the discrete wavelet transform, where
the lowest levels of decomposition would correspond to the highest-frequency subbands and the
finest spatial resolution, and the highest level of decomposition would correspond to the lowest-
frequency subband and the coarsest spatial resolution. Arranging the subbands from lowest to
highest frequency, we expect a decrease in energy. Also, we expect that if the wavelet-transformed
coefficients at a particular level have lower energy, then coefficients at the lower levels or high-
frequency subbands, which correspond to the same spatial location, would have smaller energy.

Another feature of the wavelet coefficient data structure is spatial self-similarity across sub-
bands. Several algorithms that have been developed to exploit this and the above-mentioned
properties for image coding. Among them, one of the first was proposed by Shapiro (1993) and
used an embedded zerotree technique referred to as EZW. Another algorithm is the so-called set
partitioning in hierarchical trees (SPIHT) developed by Said and Pearlman (1996). This algorithm
also produces an embedded bitstream. The advantage of the embedded coding schemes allows an
encoding process to terminate at any point so that a target bit rate or distortion metric can be met
exactly. Intuitively, for a given bit rate or distortion requirement a nonembedded code should be
more efficient than an embedded code since it has no constraints imposed by embedding require-
ments. However, embedded wavelet transform coding algorithms are currently the best. The addi-
tional constraints do not seem to have deleterious effect. In the following, we introduce the two
embedded coding algorithms: the zerotree coding and the set partitioning in hierarchical tree coding.

As with DCT-based coding, an important aspect of wavelet-based coding is to code the positions
of those coefficients that will be transmitted as nonzero values. After quantization the probability
of the zero symbol must be extremely high for the very low bit rate case. A large portion of the
bit budget will then be spent on encoding the significance map, or the binary decision map that
indicates whether a transformed coefficient has a zero or nonzero quantized value. Therefore, the
ability to efficiently encode the significance map becomes a key issue for coding images at very
low bit rates. A new data structure, the zerotree, has been proposed for this purpose (Shapiro, 1993).
To describe zerotree, we first must define insignificance. A wavelet coefficient is insignificant with
respect to a given threshold value if the absolute value of this coefficient is smaller than this
threshold. From the nature of the wavelet transform we can assume that every wavelet transformed
at a given scale can be strongly related to a set of coefficients at the next finer scale of similar
orientation. More specially, we can further assume that if a wavelet coefficient at a coarse scale is
insignificant with respect to the preset threshold, then all wavelet coefficients at finer scales are
likely to be insignificant with respect to this threshold. Therefore, we can build a tree with these



© 2000 by CRC Press LLC

parent-child relationships, such that coefficients at a coarse scale are called parents, and all coef-
ficients corresponding to the same spatial location at the next finer scale of similar orientation are
called children. Furthermore, for a parent, the set of all coefficients at all finer scales of similar
orientation corresponding to the same spatial location are called descendants. For a QMF-pyramid
decomposition the parent-children dependencies are shown in Figure 8.7(a). For a multiscale wave-
let transform, the scan of the coefficients begins at the lowest frequency subband and then takes
the order of LL, HL, LH, and HH from the lower scale to the next higher scale, as shown in
Figure 8.7(b).

The zerotree is defined such that if a coefficient itself and all of its descendants are insignificant
with respect to a threshold, then this coefficient is considered an element of a zerotree. An element
of a zerotree is considered as a zerotree root if this element is not the descendant of a previous
zerotree root with respect to the same threshold value. The significance map can then be efficiently
represented by a string with three symbols: zerotree root, isolated zero, and significant. The isolated
zero means that the coefficient is insignificant, but it has some significant descendant. At the finest
scale, only two symbols are needed since all coefficients have no children, thus the symbol for
zerotree root is not used. The symbol string is then entropy encoded. Zerotree coding efficiently
reduces the cost for encoding the significance map by using self-similarity of the coefficients at
different scales. Additionally, it is different from the traditional run-length coding that is used in
DCT-based coding schemes. Each symbol in a zerotree is a single terminating symbol, which can
be applied to all depths of the zerotree, similar to the end-of-block (EOB) symbol in the JPEG and
MPEG video coding standards. The difference between the zerotree and EOB is that the zerotree
represents the insignificance information at a given orientation across different scale layers. There-
fore, the zerotree can efficiently exploit the self-similarity of the coefficients at the different scales
corresponding to the same spatial location. The EOB only represents the insignificance information
over the spatial area at the same scale.

In summary, the zerotree-coding scheme tries to reduce the number of bits to encode the
significance map, which is used to encode the insignificant coefficients. Therefore, more bits can
be allocated to encode the important significant coefficients. It should be emphasized that this
zerotree coding scheme of wavelet coefficients is an embedded coder, which means that an encoder
can terminate the encoding at any point according to a given target bit rate or target distortion
metric. Similarly, a decoder which receives this embedded stream can terminate at any point to
reconstruct an image that has been scaled in quality.

Another embedded wavelet coding method is the SPIHT-based algorithm (Said and Pearlman,
1996). This algorithm includes two major core techniques: the set partitioning sorting algorithm
and the spatial orientation tree. The set partitioning sorting algorithm is the algorithm that hierar-
chically divides coefficients into significant and insignificant, from the most significant bit to the
least significant bit, by decreasing the threshold value at each hierarchical step for constructing a
significance map. At each threshold value, the coding process consists of two passes: the sorting

FIGURE 8.7 (Left) Parent-children dependencies of subbands; the arrow points from the subband of the
parents to the subband of the children. At top left is the lowest-frequency band. (Right) The scanning order
of the subbands for encoding a significance map.
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pass and the refinement pass — except for the first threshold that has only the sorting pass. Let
c(i,j) represent the wavelet-transformed coefficients and m is an integer. The sorting pass involves
selecting the coefficients such that 2m £ �c(i,j)� £ 2m+1, with m being decreased at each pass. This
process divides the coefficients into subsets and then tests each of these subsets for significant
coefficients. The significance map constructed in the procedure is tree-encoded. The significant
information is store in three ordered lists: list of insignificant pixels (LIP), list of significant pixels
(LSP), and list of insignificant sets (LIS). At the end of each sorting pass, the LSP contains the
coordinates of all significant coefficients with respect to the threshold at that step. The entries in
the LIS can be one of two types: type A represents all its descendants, type B represents all its
descendants from its grandchildren onward. The refinement pass involves transmitting the mth-
most significant bit of all the coefficients with respect to the threshold, 2m+1.

The idea of a spatial orientation tree is based on the following observation. Normally, among
the transformed coefficients most of the energy is concentrated in the low frequencies. For the
wavelet transform, when we move from the highest to the lowest levels of the subband pyramid
the energy usually decreases. It is also observed that there exists strong spatial self-similarity
between subbands in the same spatial location such as in the zerotree case. Therefore, a spatial
orientation tree structure has been proposed for the SPIHT algorithm. The spatial orientation tree
naturally defines the spatial relationship on the hierarchical pyramid as shown in Figure 8.8.

During the coding, the wavelet-transformed coefficients are first organized into spatial orientation
trees as in Figure 8.8. In the spatial orientation tree, each pixel (i,j) from the former set of subbands
is seen as a root for the pixels (2i, 2j), (2i+1, 2j), (2i,2j+1), and (2i+1, 2j+1) in the subbands of the
current level. For a given n-level decomposition, this structure is used to link pixels of the adjacent
subbands from level n until to level 1. In the highest-level n, the pixels in the low-pass subband are
linked to the pixels in the three high-pass subbands at the same level. In the subsequent levels, all
the pixels of a subband are involved in the tree-forming process. Each pixel is linked to the pixels
of the adjacent subband at the next lower level. The tree stops at the lowest level.

The implementation of the SPIHT algorithm consists of four steps: initialization, sorting pass,
refinement pass, and quantization scale update. In the initialization step, we find an integer m =
Îlog2(max(i,j){�c(i,j)�})˚. Here Î ˚ represent an operation of obtaining the largest integer less than
�c(i,j)�. The value of m is used for testing the significance of coefficients and constructing the
significance map. The LIP is set as an empty list. The LIS is initialized to contain all the coefficients
in the low-pass subbands that have descendants. These coefficients can be used as roots of spatial
trees. All these coefficients are assigned to be of type A. The LIP is initialized to contain all the
coefficients in the low-pass subbands.

In the sorting pass, each entry of the LIP is tested for significance with respect to the threshold
value 2m. The significance map is transmitted in the following way. If it is significant, a “1” is
transmitted, a sign bit of the coefficient is transmitted, and the coefficient coordinates are moved
to the LSP. Otherwise, a “0” is transmitted. Then, each entry of the LIS is tested for finding the
significant descendants. If there are none, a “0” is transmitted. If the entry has at least one significant
descendant, then a “1” is transmitted and each of the immediate descendants are tested for signif-
icance. The significance map for the immediate descendants is transmitted in such a way that if it

FIGURE 8.8 Relationship between pixels in 
the spatial orientation tree.
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is significant, a “1” plus a sign bit are transmitted and the coefficient coordinates are appended to
the LSP. If it is not significant, a “0” is transmitted and the coefficient coordinates are appended
to the LIP. If the coefficient has more descendants, then it is moved to the end of the LIS as an
entry of type B. If an entry in the LIS is of type B, then its descendants are tested for significance.
If at least one of them is significant, then this entry is removed from the list, and its immediate
descendants are appended to the end of the list of type A. For the refinement pass, the mth-most
significant bit of the magnitude of each entry of the LSP is transmitted except those in the current
sorting pass. For the quantization scale update step, m is decreased by 1 and the procedure is
repeated from the sorting pass.

8.3 WAVELET TRANSFORM FOR JPEG-2000

8.3.1 INTRODUCTION TO JPEG-2000

Most image coding standards so far have exploited the DCT as their core technique for image
decomposition. However, recently there has been a noticeable change. The wavelet transform has
been adopted by MPEG-4 for still image coding (mpeg4). Also, JPEG-2000 is considering using
the wavelet transform as its core technique for the next generation of the still image coding standard
(jpeg2000 vm). This is because the wavelet transform can provide not only excellent coding
efficiency, but also good spatial and quality scalable functionality. JPEG-2000 is a new type of
image compression system under development by Joint Photographic Experts Group for still image
coding. This standard is intended to meet a need for image compression with great flexibility and
efficient interchangeability. JPEG-2000 is also intended to offer unprecedented access into the
image while still in compressed domain. Thus, images can be accessed, manipulated, edited,
transmitted, and stored in a compressed form. As a new coding standard, the detailed requirements
of JPEG-2000 include:

Low bit-rate compression performance: JPEG-2000 is required to offer excellent coding
performance at bit rates lower than 0.25 bits per pixel for highly detailed gray-bits per
level images since the current JPEG (10918-1) cannot provide satisfactory results at this
range of bit rates. This is the primary feature of JPEG-2000.

Lossless and lossy compression: it is desired to provide lossless compression naturally in the
course of progressive decoding. This feature is especially important for medical image
coding where the loss is not always allowed. Also, other applications such as high-quality
image archival systems and network applications desire to have the functionality of lossless
reconstruction.

Large images: currently, the JPEG image compression algorithm does not allow for images
greater than 64K by 64K without tiling.

Single decomposition architecture: the current JPEG standard has 44 modes; many of these
modes are for specific applications and not used by the majority of JPEG decoders. It is
desired to have a single decomposition architecture that can encompass the interchange
between applications.

Transmission in noisy environments: it is desirable to consider error robustness while design-
ing the coding algorithm. This is important for the application of wireless communication.
The current JPEG has provision for restart intervals, but image quality suffers dramatically
when bit errors are encountered.

Computer-generated imagery: the current JPEG is optimized for natural imagery and does
not perform well on computer-generated imagery or computer graphics.

Compound documents: the new coding standard is desired to be capable of compressing both
continuous-tone and bilevel images. The coding scheme can compress and decompress
images from 1 bit to 16 bits for each color component. The current JPEG standard does
not work well for bilevel images.
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Progressive transmission by pixel accuracy and resolution: progressive transmission that
allows images to be transmitted with increasing pixel accuracy or spatial resolution is
important for many applications. The image can be reconstructed with different resolutions
and pixel accuracy as needed for different target devices such as in World Wide Web
applications and image archiving.

Real-time encoding and decoding: for real-time applications, the coding scheme should be
capable of compressing and decompressing with a single sequential pass. Of course,
optimal performance cannot be guaranteed in this case.

Fixed rate, fixed size, and limited workspace memory: the requirement of fixed bit rate allows
the decoder to run in real time through channels with limited bandwidth. The limited
memory space is required by the hardware implementation of decoding.

There are also some other requirements such as backwards compatibility with JPEG, open
architecture for optimizing the system for different image types and applications, interface with
MPEG-4, and so on. All these requirements are seriously being considered during the development
of JPEG-2000. However, it is still too early to comment whether all targets can be reached at this
moment. There is no doubt, though, that the basic requirement on the coding performance at very
low bit rate for still image coding will be achieved by using wavelet-based coding as the core
technique instead of DCT-based coding.

8.3.2 VERIFICATION MODEL OF JPEG-2000

Since JPEG-2000 is still awaiting finalization, we introduce the techniques that are very likely to
be adopted by the new standard. As in other standards such as MPEG-2 and MPEG-4, the verifi-
cation model (VM) plays an important role during the development of standards. This is because
the VM or TM (test model for MPEG-2) is a platform for verifying and testing the new techniques
before they are adopted as standards. The VM is updated by completing a set of core experiments
from one meeting to another. Experience has shown that the decoding part of the final version of
VM is very close to the final standard. Therefore, in order to give an overview of the related wavelet
transform parts of the JPEG-2000, we start to introduce the newest version of JPEG-2000 VM
(jpeg2000 vm). The VM of JPEG-2000 describes the encoding process, decoding process, and the
bitstream syntax, which eventually completely defines the functionality of the existing JPEG-2000
compression system.

The newest version of the JPEG-2000 verification model, currently VM 4.0, was revised on
April 22, 1999. In this VM, the final convergence has not been reached, but several candidates have
been introduced. These techniques include a DCT-based coding mode, which is currently the
baseline JPEG, and a wavelet-based coding mode. In the wavelet-based coding mode, several
algorithms have been proposed: overlapped spatial segmented wavelet transform (SSWT), non-
overlapped SSWT, and the embedded block-based coding with optimized truncation (EBCOT).
Among these techniques, and according to current consensus, EBCOT is a very likely candidate
for adoption into the final JPEG-2000 standard.

The basic idea of EBCOT is the combination of block coding with wavelet transform. First,
the image is decomposed into subbands using the wavelet transform. The wavelet transform is not
restricted to any particular decomposition. However, the Mallat wavelet provides the best compres-
sion performance, on average, for natural images; therefore, the current bitstream syntax is restricted
to the standard Mallat wavelet transform in VM 4.0. After decomposition, each subband is divided
into 64 ¥ 64 blocks, except at image boundaries where some blocks may have smaller sizes. Every
block is then coded independently. For each block, a separate bitstream is generated without utilizing
any information from other blocks. The key techniques used for coding include an embedded quad-
tree algorithm and fractional bit-plane coding.
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The idea of an embedded quad-tree algorithm is that it uses a single bit to represent whether
or not each leading bit-plane contains any significant samples. The quad-tree is formed in the
following way. The subband is partitioned into a basic block. The basic block size is 64 ¥ 64. Each
basic block is further partitioned into 16 ¥ 16 sub-blocks, as shown in Figure 8.9. Let s j(Bi

k) denote
the significance of sub-block, Bi

k(k is the kth sub-block as shown in Figure 8.9), in jth bit plane of
ith block. If one or more samples in the sub-block have the magnitude greater than 2j, then
s j(Bi

k) = 1; otherwise, s j(Bi
k) = 0. For each bit-plane, the information concerning the significant

sub-blocks is first encoded. All other sub-blocks can then be bypassed in the remaining coding
procedure for that bit-plane. To specify the exact coding sequence, we define a two-level quad-tree
for the block size of 64 ¥ 64 and sub-block size of 16 ¥ 16. The level-1 quads, Qi

l[k], consist of
four sub-blocks, Bi

1, Bi
2, Bi

3, Bi
4 from Figure 8.9. In the same way, we define level-2 quads, Qi

2[k],
to be 2 ¥ 2 groupings of level-1 quads. Let sj(Qi

l[k]) denote the significance of the level-1 quad,
Qi

l[k], in jth bit-plane. If at least one member sub-block is significant in the jth bit-plane, then
s j(Qi

l[k]) = 1; otherwise, s j(Qi
l[k]) = 0. At each bit-plane, the quad-tree coder visits the level-2

quad first, followed by level-1 quads. When visiting a particular quad, Qi
L[k](L = 1 or 2, it is the

number of the level), the coder sends the significance of each of the four child quads, s j(Qi
L[k]),

or sub-blocks, s j(Bi
k), as appropriate, except if the significance value can be deduced from the

decoder. Under the following three cases, the significance may be deduced by the decoder: (1) the
relevant quad or sub-block was significant in the previous bit-plane; (2) the entire sub-block is
insignificant; or (3) this is the last child or sub-block visited in Qi

L[k] and all previous quads or
sub-blocks are insignificant.

The idea of bit-plane coding is to entropy code the most significant bit first for all samples in
the sub-blocks and to send the resulting bits. Then, the next most significant bit will be coded and
sent, this process will be continued until all bit-planes have been coded and sent. This kind of
bitstream structure can be used for robust transmission. If the bitstream is truncated due to a
transmission error or some other reason, then some or all the samples in the block may lose one
or more least significant bits. This will be equivalent to having used a coarser quantizer for the
relevant samples and we can still obtain a reduced-quality reconstructed image. The idea of
fractional bit-plane coding is to code each bit-plane with four passes: a forward significance
propagation pass, a backward significance propagation pass, a magnitude refinement pass, and a
normalization pass. For the technical details of fractional bit-plane coding, the interested readers
can refer to the VM of JPEG-2000 (jpeg2000 vm).

Finally, we briefly describe the optimization issue of EBCOT. The encoding optimization
algorithm is not a part of the standard, since the decoder does not need to know how the encoder
generates the bitstream. From the viewpoint of the standard, the only requirement from the decoder
to the encoder is that the bitstream must be compliant with the syntax of the standard. However,
from the other side, the bitstream syntax could always be defined to favor certain coding algorithms
for generating optimized bitstreams. The optimization algorithm described here is justified only if
the distortion measure adopted for the code blocks is additive. That is, the final distortion, D, of
the whole reconstructed image should satisfy

FIGURE 8.9 Example of sub-block partitioning 
for a block of 64 ¥ 64.
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(8.24)

where Di is the distortion for block Bi and Ti is the truncation point for Bi. Let R be the total number
of bits for coding all blocks of the image for a set of truncation point Ti, then

(8.25)

where Ri
Ti are the bits for coding block Bi. The optimization process wishes to find the suitable set

of Ti values, which minimizes D subject to the constraint R £ Rmax. Rmax is the maximum number
of bits assigned for coding the image. The solution is obtained by the method of Lagrange
multipliers:

(8.26)

where the value l must be adjusted until the rate obtained by the truncation points, which minimize
the value of L, satisfies R = Rmax. From Equation 8.26, we have a separate trivial optimization
problem for each individual block. Specially, for each block, Bi, we find the truncation point, Ti,
which minimizes the value (Ri

Ri – lDi
Ti). This can be achieved by finding the slope turning points

of rate distortion curves. In the VM, the set of truncation points and the slopes of rate distortion
curves are computed immediately after each block is coded, and we only store enough information
to later determine the truncation points which correspond to the slope turning points of rate distortion
curves. This information is generally much smaller than the bitstream which is stored for the block
itself. Also, the search for the optimal l is extremely fast and occupies a negligible portion of the
overall computation time.

8.4 SUMMARY

In this chapter, image coding using the wavelet transform has been introduced. First, an overview
of wavelet theory was given, and second, the principles of image coding using wavelet transform
have been presented. Additionally, two particular embedded image coding algorithms have been
explained, namely, the embedded zerotree and set partitioning in hierarchical trees. Finally, the
new standard for still image coding, JPEG-2000, which may adopt the wavelet as its core technique,
has been described.

8.5 EXERCISES

8-1. For a given function, the Mexican hat wavelet,

Use Equations 8.3 and 8.4 to derive a closed-form expression for the continuous wavelet
transform, yab(t).

8-2. Consider the dilation equation

D Di
Ti= Â

R Ri
Ti= Â

L R Di
Ti

i
Ti= -( )Â l

f t
for t

otherwise
( ) =

£Ï
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1 1

0
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How does j(t) change if h(k) is shifted? Specifically, let g(k) = h(n–l)

How does u(t) relate to j(t)?
8-3. Let ja(t) and jb(t) be two scaling functions generated by the two scaling filters ha(k) and

hb(k). Show that the convolution ja(t)* jb(t) satisfies a dilation equation with ha(k)*
hb(k)/÷2.

8-4. In the applications of denoising and image enhancement, how can the wavelet transform
improve the results?

8-5. For a given function

show that the Mexican hat wavelet transform of f (t) = 
will be

where sgn(x) is the signum function defined as
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Nonstandard Image Coding

 

In this chapter, we introduce three nonstandard image coding techniques: vector quantization (VQ)
(Nasrabadi and King, 1988), fractal coding (Barnsley and Hurd, 1993; Fisher, 1994; Jacquin, 1993),
and model-based coding (Li et al., 1994).

 

9.1 INTRODUCTION

 

The VQ, fractal coding, and model-based coding techniques have not yet been adopted as an image
coding standard. However, due to their unique features these techniques may find some special
applications. Vector quantization is an effective technique for performing data compression. The-
oretically, vector quantization is always better than scalar quantization because it fully exploits the
correlation between components within the vector. The optimal coding performance will be obtained
when the dimension of the vector approaches infinity, and then the correlation between all com-
ponents is exploited for compression. Another very attractive feature of image vector quantization
is that its decoding procedure is very simple since it only consists of table look-ups. However, there
are two major problems with image VQ techniques. The first is that the complexity of vector
quantization exponentially increases with the increasing dimensionality of vectors. Therefore, for
vector quantization it is important to solve the problem of how to design a practical coding system
which can provide a reasonable performance under a given complexity constraint. The second
major problem of image VQ is the need for a codebook, which causes several problems in practical
application such as generating a universal codebook for a large number of images, scaling the
codebook to fit the bit rate requirement, and so on. Recently, the lattice VQ schemes have been
proposed to address these problems (Li, 1997).

Fractal theory has a long history. Fractal-based techniques have been used in several areas of
digital image processing such as image segmentation, image synthesis, and computer graphics, but
only in recent years have they been extended to the applications of image compression (Jacquin,
1993).

 

 

 

A fractal is a geometric form which has the unique feature of having extremely high visual
self-similar irregular details while containing very low information content. Several methods for
image compression have been developed based on different characteristics of fractals. One method
is based on Iterated Function Systems (

 

IFS

 

) proposed by Barnsley (1988). This method uses the
self-similar and self-affine property of fractals. Such a system consists of sets of transformations
including translation, rotation, and scaling. On the encoder side of a fractal image coding system,
a set of fractals is generated from the input image. These fractals can be used to reconstruct the
image at the decoder side. Since these fractals are represented by very compact fractal transforma-
tions, they require very small amounts of data to be expressed and stored as formulas. Therefore,
the information needed to be transmitted is very small. The second fractal image coding method
is based on the fractal dimension (Lu, 1993; Jang and Rajala, 1990). Fractal dimension is a good
representation of the roughness of image surfaces. In this method, the image is first segmented
using the fractal dimension and then the resultant uniform segments can be efficiently coded using
the properties of the human visual system. Another fractal image coding scheme is based on fractal
geometry, which is used to measure the length of a curve with a yardstick (Walach, 1989). The
details of these coding methods will be discussed in Section 9.3.

The basic idea of model-based coding is to reconstruct an image with a set of model parameters.
The model parameters are then encoded and transmitted to the decoder. At the decoder the decoded
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model parameters are used to reconstruct the image with the same model used at the encoder.
Therefore, the key techniques in the model-based coding are image modeling, image analysis, and
image synthesis.

 

9.2 VECTOR QUANTIZATION

9.2.1 B
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An N-level vector quantizer, 
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-dimensional vector set {
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In other words, it assigns an input vector, 

 

v

 

, to a representative vector (codeword), 

 

w

 

 from a
codebook, 
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. The vector quantizer, 
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, is completely described by the codebook, 

 

W

 

 = {

 

w

 

1

 

, 

 

w

 

2

 

, …,

 

w

 

N

 

}, together with the disjoint partition, 

 

R

 

 = {

 

r

 

1

 

, 

 

r

 

2

 

, …, 

 

r

 

N

 

}, where

 

r

 

i

 

 = {

 

v

 

: 

 

Q

 

(

 

v

 

) = 

 

w

 

i

 

} (9.2)

and 

 

w

 

 and 

 

v

 

 are 

 

K

 

-dimensional vectors. The partition should identically minimize the quantization
error (Gersho, 1982). A block diagram of the various steps involved in image vector quantization
is depicted in Figure 9.1.

The first step in image vector quantization is the image formation. The image data are first
partitioned into a set of vectors. A large number of vectors from various images are then used to
form a training set. The training set is used to generate a codebook, normally using an iterative
clustering algorithm. The quantization or coding step involves searching each input vector for the
closest codeword in the codebook. Then the corresponding index of the selected codeword is coded
and transmitted to the decoder. At the decoder, the index is decoded and converted to the corre-
sponding vector with the same codebook as at the encoder by look-up table. Thus, the design
decisions in implementing image vector quantization include (1) vector formation; (2) training set
generation; (3) codebook generation; and (4) quantization.

 

9.2.1.1 Vector Formation

 

The first step of vector quantization is vector formation; that is, the decomposition of the images
into a set of vectors. Many different decompositions have been proposed; examples include the

 

FIGURE 9.1

 

Principle of image vector quantization. The dashed lines correspond to training set generation,
codebook generation, and transmission (if it is necessary).
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intensity values of a spatially contiguous block of pixels (Gersho and Ramamuthi, 1982; Baker
and Gray, 1983); these same intensity values, but now normalized by the mean and variance of the
block (Murakami et al., 1982); the transformed coefficients of the block pixels (Li and Zhang,
1995); and the adaptive linear predictive coding coefficients for a block of pixels (Sun, 1984).
Basically, the approaches of vector formation can be classified into two categories: direct spatial
or temporal, and feature extraction. Direct spatial or temporal is a simple approach to forming
vectors from the intensity values of a spatial or temporal contiguous block of pixels in an image
or an image sequence. A number of image vector quantizaton schemes have been investigated with
this method. The other method is feature extraction. An image feature is a distinguishing primitive
characteristic. Some features are natural in the sense that they are defined by the visual appearance
of an image, while the other so-called artificial features result from specific manipulations or
measurements of images or image sequences. In vector formation, it is well known that the image
data in a spatial domain can be converted to a different domain so that subsequent quantization
and joint entropy encoding can be more efficient. For this purpose, some features of image data,
such as transformed coefficients and block means can be extracted and vector quantized. The
practical significance of feature extraction is that it can result in the reduction of vector size,
consequently reducing the complexity of coding procedure.

 

9.2.1.2 Training Set Generation

 

An optimal vector quantizer should ideally match the statistics of the input vector source. However,
if the statistics of an input vector source are unknown, a training set representative of the expected
input vector source can be used to design the vector quantizer. If the expected vector source has a
large variance, then a large training set is needed. To alleviate the implementation complexity
caused by a large training set, the input vector source can be divided into subsets. For example, in
(Gersho, 1982) the single input source is divided into “edge” and “shade” vectors, and then the
separate training sets are used to generate the separate codebooks. Those separate codebooks are
then concatenated into a final codebook. In other methods, small local input sources corresponding
to portions of the image are used as the training sets, thus the codebook can better match the local
statistics. However, the codebook needs to be updated to track the changes in local statistics of the
input sources. This may increase the complexity and reduce the coding efficiency. Practically, in
most coding systems a set of typical images is selected as the training set and used to generate the
codebook. The coding performance can then be insured for the images with the training set, or for
those not in the training set but with statistics similar to those in the training set.

 

9.2.1.3 Codebook Generation

 

The key step in conventional image vector quantization is the development of a good codebook.
The optimal codebook, using the mean squared error (MSE) criterion, must satisfy two necessary
conditions (Gersho, 1982). First, the input vector source is partitioned into a predecided number
of regions with the minimum distance rule. The number of regions is decided by the requirement
of the bit rate, or compression ratio and coding performance. Second, the codeword or the repre-
sentative vector of this region is the mean value, or the statistical center, of the vectors within the
region. Under these two conditions, a generalized Lloyd clustering algorithm proposed by Linde,
Buzo, and Gray (1980) — the so-called LBG algorithm — has been extensively used to generate
the codebook. The clustering algorithm is an iterative process, minimizing a performance index
calculated from the distances between the sample vectors and their cluster centers. The LBG
clustering algorithm can only generate a codebook with a local optimum, which depends on the
initial cluster seeds. Two basic procedures have been used to obtain the initial codebook or cluster
seeds. In the first approach, the starting point involves finding a small codebook with only two
codewords, and then recursively splitting the codebook until the required number of codewords is
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obtained. This approach is referred to as binary splitting. The second procedure starts with initial
seeds for the required number of codewords, these seeds being generated by preprocessing the
training sets. To address the problem of a local optimum, Equitz (1989) proposed a new clustering
algorithm, the pairwise nearest neighbor (PNN) algorithm. The PNN algorithm begins with a
separate cluster for each vector in the training set and merges together two clusters at a time until
the desired codebook size is obtained. At the beginning of the clustering process, each cluster
contains only one vector. In the following process the two closest vectors in the training set are
merged to their statistical mean value, in such a way the error incurred by replacing these two
vectors with a single codeword is minimized. The PNN algorithm significantly reduces computa-
tional complexity without sacrificing performance. This algorithm can also be used as an initial
codebook generator for the LBG algorithm.

 

9.2.1.4 Quantization

 

Quantization in the context of a vector quantization involves selecting a codeword in the codebook
for each input vector. The optimal quantization, in turn, implies that for each input vector, 

 

v

 

, the
closest codeword, 

 

w

 

i

 

, is found as shown in Figure 9.2. The measurement criterion could be mean
squared error, absolute error, or other distortion measures.

A full-search quantization is an exhaustive search process over the entire codebook for finding
the closest codeword, as shown in Figure 9.3(a). It is optimal for the given codebook, but the
computation is more expensive. An alternative approach is a tree-search quantization, where the
search is carried out based on a hierarchical partition. A binary tree search is shown in Figure 9.3(b).
A tree search is much faster than a full search, but it is clear that the tree search is suboptimal for
the given codebook and requires more memory for the codebook.

 

FIGURE 9.2

 

Principle of vector quantization.

 

FIGURE 9.3

 

(a) Full search quantization; (b) binary tree search quantization.
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In this section, we are going to present several image coding schemes using vector quantization
which include residual vector quantization, classified vector quantization, transform domain vector
quantization, predictive vector quantization, and block truncation coding (BTC) which can be seen
as a binary vector quantization.

 

9.2.2.1 Residual VQ

 

In the conventional image vector quantization, the vectors are formed by spatially partitioning the
image data into blocks of 8 

 

¥

 

 8 or 4 

 

¥

 

 4 pixels. In the original spatial domain the statistics of
vectors may be widely spread in the multidimensional vector space. This causes difficulty in
generating the codebook with a finite size and limits the coding performance. Residual VQ is
proposed to alleviate this problem. In residual VQ, the mean of the block is extracted and coded
separately. The vectors are formed by subtracting the block mean from the original pixel values.
This scheme can be further modified by considering the variance of the blocks. The original blocks
are converted to the vectors with zero mean and unit standard deviation with the following con-
version formula (Murakami et al., 1982):

(9.3)
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With the above normalization the probability function 

 

P

 

(

 

X

 

) of input vector 

 

X

 

 is approximately
similar for image data from different scenes. Therefore, it is easy to generate a codebook for the
new vector set. The problem with this method is that the mean and variance values of blocks have
to be coded separately. This increases the overhead and limits the coding efficiency. Several methods
have been proposed to improve the coding efficiency. One of these methods is to use predictive
coding to code the block mean values. The mean value of the current block can be predicted by
one of the previously coded neighbors. In such a way, the coding efficiency increases as the use
of interblock correlation.

 

9.2.2.2 Classified VQ

 

In image vector quantization, the codebook is usually generated using training set under constraint
of minimizing the mean squared error. This implies that the codeword is the statistical mean of the
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region. During quantization, each input vector is replaced by its closest codeword. Therefore, the
coded images usually suffer from edge distortion at very low bit rates, since edges are smoothed
by the operation of averaging with the small-sized codebook. To overcome this problem, we can
classify the training vector set into edge vectors and shade vectors (Gersho, 1982). Two separate
codebooks can then be generated with the two types of training sets. Each input vector can be
coded by the appropriate codeword in the codebook. However, the edge vectors can be further
classified into many types according to their location and angular orientation. The classified VQ
can be extended into a system which contains many sub-codebooks, each representing a type of
edge. However, this would increase the complexity of the system and would be hard to implement
in practical applications.

 

9.2.2.3 Transform Domain VQ

 

Vector quantization can be performed in the transform domain. A spatial block of 4 

 

¥

 

 4 or 8 

 

¥

 

 8
pixels is first transformed to the 4 

 

¥

 

 4 or 8 

 

¥

 

 8 transformed coefficients. There are several ways to
form vectors with transformed coefficients. In the first method, a number of high-order coefficients
can be discarded since most of the energy is usually contained in the low-order coefficients for
most blocks. This reduces the VQ computational complexity at the expense of a small increase in
distortion. However, for some active blocks, the edge information is contained in the high frequen-
cies, or high-order coefficients. Serious subjective distortion will be caused by discarding high
frequencies. In the second method, the transformed coefficients are divided into several bands and
each band is used to form its corresponding vector set. This method is equivalent to the classified
VQ in spatial domain. An adaptive scheme is then developed by using two kinds of vector formation
methods. The first method is used for the blocks containing the moderate intensity variation and
the second method is used for the blocks with high spatial activities. However, the complexity
increases as more codebooks are needed in this kind of adaptive coding system.

 

9.2.2.4 Predictive VQ

 

The vectors are usually formed by the spatially consecutive blocks. The consecutive vectors are
then highly statistically dependent. Therefore, better coding performance can be achieved if the
correlation between vectors is exploited. Several predictive VQ schemes have been proposed to
address this problem. One kind of predictive VQ is finite state VQ (Foster et al., 1985). The finite-
state VQ is similar to a trellis coder. In the finite state VQ, the codebook consists of a set of sub-
codebooks. A state variable is then used to specify which sub-codebook should be selected for
coding the input vector. The information about the state variable must be inferred from the received
sequence of state symbols and initial state such as in a trellis coder. Therefore, no side information
or no overhead need be transmitted to the decoder. The new encoder state is a function of the
previous encoder state and the selected sub-codebook. This permits the decoder to track the encoder
state if the initial condition is known. The finite-state VQ needs additional memory to store the
previous state, but it takes advantage of correlation between successive input vectors by choosing
the appropriate codebook for the given past history. It should be noted that the minimum distortion
selection rule of conventional VQ is not necessary optimum for finite-state VQ for a given decoder
since a low-distortion codeword may lead to a bad state and hence to poor long-term behavior.
Therefore, the key design issue of finite-state VQ is to find a good next-state function.

Another predictive VQ was proposed by Hang and Woods (1985). In this system, the input
vector is formed in such a way that the current pixel is as the first element of the vector and the
previous inputs as the remaining elements in the vector. The system is like a mapping or a recursive
filter which is used to predict the next pixel. The mapping is implemented by a vector quantizer
look-up table and provides the predictive errors.
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9.2.2.5 Block Truncation Coding

 

In the block truncation code (BTC) (Delp and Mitchell, 1979), an image is first divided into 4 

 

¥

 

 4
blocks. Each block is then coded individually. The pixels in each block are first converted into two-
level signals by using the first two moments of the block:

(9.7)

where 

 

m

 

 is the mean value of the block, 

 

s

 

 is the standard deviation of the block, 

 

N

 

 is the number
of total pixels in the block, and 

 

q

 

 is the number of pixels which are greater in value than 

 

m

 

.
Therefore, each block can be described by the values of block mean, variance, and a binary-bit
plane which indicates whether the pixels have values above or below the block mean. The binary-
bit plane can be seen as a binary vector quantizer. If the mean and variance of the block are
quantized to 8 bits, then 2 bits per pixel is achieved for blocks of 4 

 

¥

 

 4 pixels. The conventional
BTC scheme can be modified to increase the coding efficiency. For example, the block mean can
be coded by a DPCM coder which exploits the interblock correlation. The bit plane can be coded
with an entropy coder on the patterns (Udpikar and Raina, 1987).

 

9.2.3 L

 

ATTICE

 

 VQ 

 

FOR

 

 I

 

MAGE

 

 C

 

ODING

 

In conventional image vector quantization schemes, there are several issues, which cause some
difficulties for the practical application of image vector quantization. The first problem is the
limitation of vector dimension. It has been indicated that the coding performance of vector quan-
tization increases as the vector dimension while the coding complexity exponentially increases at
the same time as the increasing vector dimension. Therefore, in practice only a small vector
dimension is possible under the complexity constraint. Another important issue in VQ is the need
for a codebook. Much research effort has gone into finding how to generate a codebook. However,
in practical applications there is another problem of how to scale the codebook for various rate-
distortion requirements. The codebook generated by LBG-like algorithms with a training set is
usually only suitable for a specified bit rate and does not have the flexibility of codebook scalability.
For example, a codebook generated for an image with small resolution may not be suitable for
images with high resolution. Even for the same spatial resolution, different bit rates would require
different codebooks. Additionally, the VQ needs a table to specify the codebook and, consequently,
the complexity of storing and searching is too high to have a very large table. This further limits
the coding performance of image VQ.

These problems become major obstacles for implementing image VQ. Recently, an algorithm
of lattice VQ has been proposed to address these problems (Li et al., 1997). Lattice VQ does not
have the above problems. The codebook for lattice VQ is simply a collection of lattice points
uniformly distributed over the vector space. Scalability can be achieved by scaling the cell size
associated with every lattice point just like in the scalar quantizer by scaling the quantization step.
The basic concept of the lattice can be found in (Conway and Slone, 1991). A typical lattice VQ
scheme is shown in Figure 9.4. There are two steps involved in the image lattice VQ. The first step
is to find the closest lattice point for the input vector. The second step is to label the lattice point,
i.e., mapping a lattice point to an index. Since lattice VQ does need a codebook, the index assignment
is based on a lattice labeling algorithm instead of a look-up table such as in conventional VQ.
Therefore, the key issue of lattice VQ is to develop an efficient lattice-labeling algorithm. With this
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algorithm the closest lattice point and its corresponding index within a finite boundary can be
obtained by a calculation at the encoder for each input vector.

At the decoder, the index is converted to the lattice point by the same labeling algorithm. The
vector is then reconstructed with the lattice point. The efficiency of a labeling algorithm for lattice
VQ is measured by how many bits are needed to represent the indices of the lattice points within
a finite boundary. We use a two-dimensional lattice to explain the lattice labeling efficiency. A two-
dimensional lattice is shown in Figure 9.5.

In Figure 9.5, there are seven lattice points. One method used to label these seven 2-D lattice
points is to use their coordinates (

 

x,y

 

) to label each point. If we label 

 

x

 

 and 

 

y

 

 separately, we need
two bits to label three values of 

 

x

 

 and three bits to label a possible five values of 

 

y

 

, and need a total
of five bits. It is clear that three bits are sufficient to label seven lattice points. Therefore, different
labeling algorithms may have different labeling efficiency. Several algorithms have been developed
for multidimensional lattice labeling. In (Conway, 1983), the labeling method assigns an index to
every lattice point within a Voronoi boundary where the shape of the boundary is the same as the
shape of Voronoi cells. Apparently, for different dimension, the boundaries have different shapes.
In the algorithm proposed in (Laroia, 1993), the same method is used to assign an index to each
lattice point. Since the boundaries are defined by the labeling algorithm, this algorithm might not
achieve a 100% labeling efficiency for a prespecified boundary such as a pyramid boundary. The
algorithm proposed by Fischer (1986) can assign an index to every lattice point within a prespecified
pyramid boundary and achieves a 100% labeling efficiency, but this algorithm can only be used
for the Z

 

n

 

 lattice. In a recently proposed algorithm (Wang et al., 1998), the technical breakthrough
was obtained. In this algorithm a labeling method was developed for Construction-A and Construc-
tion-B lattices (Conway, 1983), which is very useful for VQ with proper vector dimensions, such
as 16, and achieves 100% efficiency. Additionally, these algorithms are used for labeling lattice

 

FIGURE 9.4

 

Block diagram of lattice VQ.

 

FIGURE 9.5

 

Labeling a two-dimensional lattice.
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points with 16 dimensions and provide minimum distortion. These algorithms were developed
based on the relationship between lattices and linear block codes. Construction-A and Construction-
B are the two simplest ways to construct a lattice from a binary linear block code C = (n, k, d),
where n, k, and d are the length, the dimension, and the minimum distance of the code, respectively.

A Construction-A lattice is defined as:

(9.8)

where 

 

Z

 

n

 

 is the 

 

n

 

-dimensional cubic lattice and 

 

C

 

 is a binary linear block code. There are two steps
involved for labeling a Construction-A lattice. The first is to order the lattice points according to
the binary linear block code 

 

C

 

, and then to order the lattice points associated with a particular
nonzero binary codeword. For the lattice points associated with a nonzero binary codeword, two
sub-lattices are considered separately. One sub-lattice consists of all the dimensions that have a
“0” component in the binary codeword and the other consists of all the dimensions that have a “1”
component in the binary codeword. The first sub-lattice is considered as a 2Z lattice while the
second is considered as a translated 2Z lattice. Therefore, the labeling problem is reduced to labeling
the Z lattice at the final stage.

A Construction-B lattice is defined as:

(9.9)

where 

 

D

 

n

 

 is an 

 

n

 

-dimensional Construction-A lattice with the definition as:

(9.10)

and 

 

C

 

 is a binary doubly even linear block code. When 

 

n

 

 is equal to 16, the binary even linear
block code associated with 

 

L

 

16

 

 is 

 

C

 

 = (16, 5, 8). The method for labeling a Construction-B lattice
is similar to the method for labeling a Construction-A lattice with two minor differences. The first
difference is that for any vector 

 

y

 

 = 

 

c

 

 + 2x, x Œ Zn, if y is a Construction-A lattice point; and x Œ
Dn, if y is a Construction-B lattice point. The second difference is that C is a binary doubly even
linear block code for Construction-B lattices while it is not necessarily doubly even for Construc-
tion-A lattices. In the implementation of these lattice point labeling algorithms, the encoding and
decoding functions for lattice VQ have been developed in (Li et al., 1997). For a given input vector,
an index representing the closest lattice point will be found by the encoding function, and for an
input index the reconstructed vector will be generated by the decoding function. In summary, the
idea of lattice VQ for image coding is an important achievement in eliminating the need for a
codebook for image VQ. The development of efficient algorithms for lattice point labeling makes
lattice VQ feasible for image coding.

9.3 FRACTAL IMAGE CODING

9.3.1 MATHEMATICAL FOUNDATION

A fractal is a geometric form whose irregular details can be represented by some objects with
different scale and angle, which can be described by a set of transformations such as affine
transformations. Additionally, the objects used to represent the image’s irregular details have some
form of self-similarity and these objects can be used to represent an image in a simple recursive
way. An example of fractals is the Von Koch curve as shown in Figure 9.6. The fractals can be
used to generate an image. The fractal image coding that is based on iterated function systems

Ln
nC Z= + 2

Ln nC D= + 2

D n n Zn
n= -( ) +, ,1 2 2
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(IFS) is the inverse process of image generation with fractals. Therefore, the key technology of
fractal image coding is the generation of fractals with an IFS.

To explain IFS, we start from the contractive affine transformation. A two-dimensional affine
transformation A is defined as follows:

(9.11)

This is a transformation which consists of a linear transformation followed by a shift or translation,
and maps points in the Euclidean plane into new points in the another Euclidean plane. We define
that a transformation is contractive if the distance between two points P1 and P2 in the new plane
is smaller than their distance in the original plane, i.e.,

(9.12)

where s is a constant and 0 < s < 1. The contractive transformations have the property that when
the contractive transformations are repeatedly applied to the points in a plane, these points will
converge to a fixed point. An iterated function system (IFS) is defined as a collection of contractive
affine transformations. A well-known example of IFS contains four following transformations:

(9.13)

This is the IFS of a fern leaf, whose parameters are shown in Table 9.1.
The transformation A1 is used to generate the stalk, the transformation A2 is used to generate

the right leaf, the transformation A3 is used to generate the left leaf, and the transformation A4 is
used to generate main fern. A fundamental theorem of fractal geometry is that each IFS defines a
unique fractal image. This image is referred to as the attractor of the IFS. In other words, an image
corresponds to the attractor of an IFS. Now let us explain how to generate the image using the IFS.
Let us suppose that an IFS contains N affine transformations, A1, A2, … AN, and each transformation
has an associated probability, p1, p2, …, pN, respectively. Suppose that this is a complete set and
the sum of the probability equals to 1, i.e.,

FIGURE 9.6 Construction of the Von Koch curve.
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p1 + p2 +…+ pN = 1 and pi > 0 for i = 0, 1, …, N. (9.14)

The procedure for generating an attractor is as follows. For any given point (x0, y0) in a Euclidean
plane, one transformation in the IFS according to its probability is selected and applied to this
point to generate a new point (x1, y1). Then another transformation is selected according to its
probability and applied to the point (x1,y1) to obtain a new point (x2,y2). This process is repeated
over and over again to obtain a long sequence of points: (x0,y0), (x1,y1), …, (xn,yn), …. According
to the theory of iterated function systems, these points will converge to an image that is the attractor
of the given IFS. The above-described procedure is shown in the flowchart of Figure 9.7. With the
above algorithm and the parameters in Table 9.1, initially the point can be anywhere within the
large square, but after several iterations it will converge onto the fern. The 2-D affine transformations
are extended to 3-D transformations, which can be used to create fractal surfaces with the iterated
function systems. This fractal surface can be considered as the gray level or brightness of a 2-D
image.

9.3.2 IFS-BASED FRACTAL IMAGE CODING

As described in the last section, an IFS can be used to generate a unique image, which is referred
to as an attractor of the IFS. In other words, this image can be simply represented by the parameters
of the IFS. Therefore, if we can use an inverse procedure to generate a set of transformations, i.e.,

TABLE 9.1
The Parameters of the IFS of a Fern Leaf

a b c d e f

A1 0 0 0 0.16 0 0.2
A2 0.2 –0.26 0.23 0.22 0 0.2
A3 –0.15 0.28 0.26 0.24 0 0.2
A4 0.85 0.04 –0.04 0.85 0 0.2

FIGURE 9.7 Flowchart of image generation 
with an IFS.
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an IFS from an image, then these transformations or the IFS can be used to represent the approx-
imation of the image. The image coding system can use the parameters of the transformations in
the IFS instead of the original image data for storage or transmission. Since the IFS contains only
very limited data such as transformation parameters, this image coding method may result in a
very high compression ratio. For example, the fern image is represented by 24 integers or 192 bits
(if each integer is represented by 8 bits). This number is much smaller than the number needed to
represent the fern image pixel by pixel. Now the key issue of the IFS-based fractal image coding
is to generate the IFS for the given input image. Three methods have been proposed to obtain the
IFS (Lu, 1993). One is the direct method, that directly finds a set of contractive affine transforma-
tions from the image based on the self-similarity of the image. The second method is to partition
an image into the smaller objects whose IFSs are known. These IFSs are used to form a library.
The encoding procedure is to look for an IFS from the library for each small object. The third
method is called partitioned IFS (PIFS). In this method, the image is first divided into smaller
blocks and then the IFS for each block is found by mapping a larger block into a small block.

In the direct approach, the image is first partitioned into nonoverlapped blocks in such a way
that each block is similar to the whole image and a transformation can map the whole image to
the block. The transformation for each individual block may be different. The combination of these
transformations can be taken as the IFS of the given image. Then much fewer data are required to
represent the IFS or the transformations than to transmit or store the given image in the pixel by
pixel way. For the second approach, the key issue is how to partition the given image into objects
whose IFSs are known. The image processing techniques such as color separation, edge detection,
spectrum analysis, and texture variation analysis can be used for image partitioning. However, for
natural images or arbitrary images, it may be impossible or very difficult to find an IFS whose
attractor perfectly covers the original image. Therefore, for most natural images the partitioned IFS
method has been proposed (Lu, 1993). In this method, the transformations do not map the whole
image into small block. For encoding an image, the whole image is first partitioned into a number
of larger blocks that are referred to as domain blocks. The domain blocks can be overlapped. Then
the image is partitioned into a number of smaller blocks that are called as range blocks. The range
blocks do not overlap and the sum total of the range blocks covers the whole image. In the third
step, a set of contractive transformations is chosen. Each range block is mapped into a domain
block with a searching method and a matching criterion. The combination of the transformations
is used to form a partitioned IFS (PIFS). The parameters of PIFS are transmitted to the decoder.
It is noted that no domain blocks are transmitted. The decoding starts with a flat background. The
iterated process is then applied with the set of transformations. The reconstructed image is then
obtained after the process converges. From the above discussion, it is found that there are three
main design issues involved in the block fractal image coding system. First are partitioning
techniques which include range block partitioning and domain block partitioning. As mentioned
earlier, the domain block is larger than the range block. Dividing the image into square blocks is
the simplest partitioning approach. The second issue is the choice of distortion measurement and
a searching method. The common distortion measurement in the block fractal image coding is the
root mean square (RMS) error. The closest match between the range block and transformed domain
block is found by the RMS distortion measurement. The third method is the selection of a set of
contractive transformations defined consistently with a partition.

It is noted that the partitioned IFS (PIFS)-based fractal image coding has several similar features
with image vector quantization. Both coding schemes are block-based coding schemes and need a
codebook for encoding. For PIFS-based fractal image coding the domain blocks can be seen as
forming a virtual codebook. One difference is that the fractal image coding does not need to transmit
the codebook data (domain blocks) to the decoder while VQ does. The second difference is the
block size. For VQ, block size for the code vector and input vector is the same while in PIFS
fractal coding the size of the domain block is different from the size of the range blocks. Another



© 2000 by CRC Press LLC

difference is that in fractal image coding the image itself serves as the codebook, while this is not
true for VQ image coding.

9.3.3 OTHER FRACTAL IMAGE CODING METHODS

Besides the IFS-based fractal image coding, there are several other fractal image coding methods.
One is the segmentation-based coding scheme using fractal dimensions. In this method, the image
is segmented into regions based on the properties of the human visual system (HVS). The image
is segmented into the regions, each of these regions is homogeneous in the sense of having similar
features by visual perception. This is different from the traditional image segmentation techniques
that try to segment an image into regions of constant intensity. For a complicated image, good
representation of an image needs a large number of small segmentations. However, in order to
obtain a high compression ratio, the number of segmentations is limited. The trade-off between
image quality and bit rate has to be considered. A parameter, fractal dimension, is used as a measure
to control the trade-off. Fractal dimension is a characteristic of a fractal. It is related to a metric
property such as the length of a curve and the area of a surface. The fractal dimension can provide
a good measurement of the perceptual roughness of the curve and surface. For example, if we use
many segments of straight lines to approximate a curve, by increasing the length of the straight
lines perceptually rougher curves are represented.

9.4 MODEL-BASED CODING

9.4.1 BASIC CONCEPT

In the model-based coding, an image model that can be a 2-D model for still images or a 3-D
model for video sequence is first constructed. At the encoder, the model is used to analyze the
input image. The model parameters are then transmitted to the decoder. At the decoder the recon-
structed image is synthesized by the model parameters, with the same image model used at the
encoder. This basic idea of model-based coding is shown in the Figure 9.8. Therefore, the basic
techniques in the model-based coding are the image modeling, image analysis, and image synthesis
techniques. Both image analysis and synthesis are based on the image model. The image modeling
techniques used for image coding can normally be divided into two classes: structure modeling
and motion modeling. Motion modeling is usually used for video sequences and moving pictures,
while structure modeling is usually used for still image coding. The structure model is used for
reconstruction of a 2-D or 3-D scene model.

FIGURE 9.8 Basic principle of model-based coding.
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9.4.2 IMAGE MODELING

The geometric model is usually used for image structure description. The geometric model can be
classified into a surface-based description and volume-based description. The major advantage of
surface description is that such description is easily converted into a surface representation that can
be encoded and transmitted. In these models the surface is approximated by planar polygonal
patches such as triangle patches. The surface shape is represented by a set of points that represent
the vertices of these triangle meshes. The size of these triangle patches can be adjusted according
to the surface complexity. In other words, for more complicated areas, more triangle meshes are
needed to approximate the surface while for smoothing areas, the mesh sizes can be larger or less
vertices of the triangle meshes are needed to represent the surface. The volume-based description
is a natural approach for modeling most solid world objects. Most existing research work on volume-
based description focuses on the parametric volume description. The volume-based description is
used for 3-D objects or video sequences.

However, model-based coding is successfully applicable only to certain kinds of images since
it is very hard to find general image models suitable for most natural scenes. The few successful
examples of image models include the human face, head, and body. These models are developed
for the analysis and synthesis of moving images. The face animation has been adopted for the
MPEG-4 visual coding. The body animation is under consideration for version 2 of MPEG-4 visual
coding.

9.5 SUMMARY

In this chapter three kinds of image coding techniques, vector quantization, fractal image coding,
and model-based coding, which are not used in the current standards, have been presented. All
three techniques have several important features such as very high compression ratios for certain
kinds of images and very simple decoding procedures (especially for VQ). However, due to some
limitations these techniques have not been adopted by industry standards. It should be noted that
recently the facial model face animation technique has been adopted for the MPEG-4 visual standard
(mpeg4 visual).

9.6 EXERCISES

9-1. In the modified residual VQ described in Equation 9.5, with a 4 ¥ 4 block and 8 bits for
each pixel of original image, we use 8 bits for coding block mean and block variance.
We want to obtain the final bit rate of 2 bits per pixel. What codebook size do we have
to use for the coding residual, assuming that we use fixed-length coding to code vector
indices?

9-2. In the block truncation coding described in Equation 9.7, what is the bit rate for a block
size of 4 ¥ 4 if the mean and variance are both encoded with 8 bits? Do you have any
suggestions for reducing the bit rate without seriously affecting the reconstruction quality?

9-3. Is the codebook generated with the LBG algorithm local optimum? List the several
important factors that will affect the quality of codebook generation.

9-4. In image coding using VQ, what kind of problems will be caused by using the codebook
in practical applications (hint: changing bit rate).

9-5. What is the most important improvement of the lattice VQ over traditional VQ in practical
application. What is the key issue for lattice VQ for image coding application?

9-6. Write a subroutine to generate a fern leaf (using C).
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Motion Analysis and 
Motion Compensation

 

Up to this point, what we have discussed in the previous chapters were basic techniques in image
coding, specifically, techniques utilized in still image coding. From here on, we are going to address
the issue of video sequence compression. To fulfill the task, we will first define the concepts of
image and video sequences. Then we address the issue of interframe correlation between successive
frames. Two techniques in exploitation of interframe correlation, frame replenishment and motion-
compensated coding, will then be discussed. The rest of the chapter covers the concepts of motion
analysis and motion compensation in general.

 

10.1 IMAGE SEQUENCES

 

In this section the concept of various image sequences is defined in a theoretical and systematic
manner. The relationship between image sequences and video sequences is also discussed.

It is well known that in the 1960s the advent of the semiconductor computer and the space
program swiftly brought the field of digital image processing into public focus. Since then the field
has experienced rapid growth and has entered every aspect of modern technology. Since the early
1980s, digital image sequence processing has been an attractive research area (Huang, 1981a, 1983).
This is not surprising, because an image sequence, as a collection of images, may provide more
information than a single image frame. The increased computational complexity and memory space
associated with image sequence processing are becoming more affordable due to more advanced,
achievable computational capability. With the tremendous advancements continuously made in
VLSI computer and information processing, image and video sequences are evermore indispensable
elements of modern life. While the pace and the future of this development cannot be predicted,
one thing is certain: this process is going to drastically change all aspects of our world in the next
several decades.

As far as image sequence processing is concerned, it is noted that in addition to temporal image
sequences, stereo image pair and stereo image sequences also received attention in the middle of
the 1980s (Waxman and Duncan, 1986). The concepts of temporal and spatial image sequences,
and the imaging space (which may be considered as a next-higher-level unification of temporal
and spatial image sequences) may be illustrated as follows.

Consider a sensor located in a specific position in the three-dimensional (3-D) world space. It
generates images about the scene, one after another. As time goes by, the images form a sequence.
The set of these images can be represented with a brightness function g(x,y,t), where x and y are
coordinates on the image planes. This is referred to as a 

 

temporal image sequence

 

. This is the basic
outline about the brightness function g(x,y,t) dealt with by researchers in both computer vision,
e.g., Horn and Schunck (1980) and signal processing fields, e.g., Pratt (1979).

Now consider a generalization of the above basic outline. A sensor, as a solid article, can be
translated (in three free dimensions) and rotated (in two free dimensions). It is noted that here the
rotation of a sensor about its optical axis is not counted, since the images generated will remain
unchanged when this type of rotation takes place. So, we can obtain a variety of images when a
sensor is translated to different coordinates and rotated to different angles in the 3-D world space.
Equivalently, we can imagine that there is an infinite number of sensors in the 3-D world space
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that occupies all possible spatial coordinates and assumes all possible orientations at each coordi-
nate; i.e., they are located on all possible positions. At one specific moment, all of these images
form a set, which can be referred to as a 

 

spatial image sequence

 

. When time varies, these sets of
images form a much larger set of images, called an 

 

imaging space

 

.
Clearly, it is impossible to describe such a set of images by using the above-mentioned g(x,y,t).

Instead, it should be described by a more general brightness function,

(10.1)

where  indicates the sensor’s position in the 3-D world space; i.e., the coordinates of the sensor
center and the orientation of the optical axis of the sensor. Hence  is a 5-D vector. That is,

(10.2)

where x̃, ỹ, and z̃ represent the coordinates of the optical center of the sensor in the 3-D world
space; and 

 

b

 

 and 

 

g

 

 represent the orientation of the optical axis of the sensor in the 3-D world space.
More specifically, each sensor in the 3-D world space may be considered associated with a 3-D
Cartesian coordinate system such that its optical center is located on the origin and its optical axis
is aligned with the 

 

OZ

 

 axis. In the 3-D world space we choose a 3-D Cartesian coordinate system
as the reference coordinate system. Hence, a sensor with its Cartesian coordinate system coincident
with the reference coordinate system has its position in the 3-D world space denoted by  =
(0,0,0,0,0). An arbitrary sensor position denoted by  = (x̃, ỹ, z̃, â, ã) can be described as follows.
The sensor’s associated Cartesian coordinate system is first shifted from the reference coordinate
system in the 3-D world space with its origin settled at (x̃, ỹ, z̃) in the reference coordinate system.
Then it is rotated with the rotation angles 

 

b

 

 and 

 

g

 

 being the same as Euler angles (Shu and Shi,
1991; Shi et al., 1994). Figure 10.1 shows the reference coordinate system and an arbitrary Cartesian
coordinate system (indicating an arbitrary sensor position). There, 

 

oxy

 

 and 

 

o

 

¢

 

x

 

¢

 

y

 

¢

 

 represent, respec-
tively, the related image planes.

Assume now a world point 

 

P

 

 in the 3-D space that is projected onto the image plane as a pixel
with the coordinates x

 

P

 

 and y

 

P

 

. Then, x

 

P

 

 and y

 

P

 

 are also dependent on t and . That is, the coordinates
of the pixel can be denoted by x

 

P

 

 = x

 

P

 

 (t, ) and y

 

P

 

 = y

 

P

 

 (t, ). So generally speaking, we have

(10.3)

As far as temporal image sequences are concerned, let us take a look at the framework of Pratt
(1979), and Horn and Schunck (1980). There, g = g (x

 

P 

 

(t), y

 

P 

 

(t), t) is actually a special case of
Equation 10.3, i.e., 

 

g

 

 = 

 

g

 

(

 

x

 

P

 

(

 

t

 

,  = constant vector), 

 

y

 

P

 

(

 

t, 

 

 = constant vector), (

 

t, 

 

 = constant
vector). In other words, the variation of  is restricted to be zero, i.e., 

 

D

 

 = 0. This means the
sensor is fixed in a certain position in the 3-D world space.

Obviously, an alternative is to define the imaging space as a set of all temporal image sequences;
i.e., those taken by sensors located at all possible positions in the 3-D world space. Stereo image
sequences can thus be viewed as a proper subset of the imaging space, just like a stereo pair of
images can be considered as a proper subset of a spatial image sequence.

In summary, the imaging space is a collection of all possible forms assumed by the general
brightness function g (x, y, t, ). Each picture taken by a sensor located on a particular position at
a specific moment is merely a special cross section of this imaging space. Both temporal and spatial
image sequences are special proper subsets of the imaging space. They are in the middle level,
between the imaging space and the individual images. This hierarchical structure is depicted in
Figure 10.2.
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Before we conclude this section, we should discuss the relationship between image sequences
and video sequences. It is noted that the term 

 

video 

 

is used very often nowadays in addition to the
terms 

 

image frames 

 

and 

 

image

 

 

 

sequence

 

. It is necessary to pause for a while to discuss the
relationship between these terms. Image frames and image sequence have been defined clearly
above with the introduction of the concept of the imaging space. Video can mean an individual
video frame or video sequences. It refers, however, to those frames and sequences that are associated
with the visible frequency band in the electromagnetic spectrum. For image frames and image
sequences, there is no such restriction. For instance, infrared image frames and sequences corre-
spond to a band outside the visible band in the spectrum. From this point of view, the scope of
image frames and sequences is wider than that of video frames and sequences. When the visible
band is concerned, the terms 

 

image frame and sequence

 

 are interchangeable with that 

 

video frame
and sequence

 

.
Another point we would like to bring to the reader’s attention is as follows. Though video is

referred to as visual information, which includes both a single frame and frame sequences, in
practice it is often used to mean sequences exclusively. Such an example can be found in 

 

Digital
Video Processing

 

 (Tekalp, 1995).
In this book, we use 

 

image compression

 

 to indicate still image compression, and 

 

video compression

 

to indicate video sequence compression. Readers should keep in mind, however, that (1) video can
mean a single frame or sequences of frames; and (2) the scope of image is wider than that of video,
and video is more pertinent to multimedia engineering.

 

10.2 INTERFRAME CORRELATION

 

As far as video compression is concerned, all the techniques discussed in the previous chapters are
applicable. By this we mean two classes of techniques. The first class, which is also the most
straightforward way to handle video compression, is to code each frame separately. That is,

 

FIGURE 10.1

 

Two sensor positions  = (0,0,0,0,0) and  = (x̃, ỹ, z̃, â, ã).
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individual frames are coded independently on each other. For instance, using a JPEG compression
algorithm to code each frame in a video sequence results in 

 

motion JPEG

 

 (Westwater and Furht,
1997). In the second class, methods utilized for still image coding can be generalized for video
compression. For instance, (DCT) transform coding can be generalized and applied to video coding
by extending 2-D DCT to 3-D DCT. That is, instead of 2-D DCT, say, 8 

 

¥

 

 8, applied to a single
image frame, we can apply 3-D DCT, say, 8 

 

¥

 

 8 

 

¥

 

 8, to a video sequence. Refer to Figure 10.3.
That is, 8 blocks of 8 

 

¥

 

 8 each located, respectively, at the same position in one of the 8 successive
frames from a video sequence are coded together with the 3-D DCT. It was reported that this 3-D
DCT technique is quite efficient (Lim, 1990; Westwater and Furht, 1997). In addition, the DPCM
technique and the hybrid technique can be generalized and applied to video compression in a similar
fashion (Jain, 1989; Lim, 1990). It is noted that in the second class of techniques several successive
frames are grouped and coded together, while in the first class each frame is coded independently.

Video compression has its own characteristics, however, that make it quite different from still
image compression. The major difference lies in the exploitation of interframe correlation that
exists between successive frames in video sequences, in addition to the intraframe correlation that
exists within each frame. As mentioned in Chapter 1, the interframe correlation is also referred to
as 

 

temporal redundancy

 

, while the intraframe correlation is referred to as 

 

spatial redundancy

 

. In
order to achieve coding efficiency, we need to remove these redundancies for video compression.
To do so we must first understand these redundancies.

Consider a video sequence taken in a videophone service. There, the camera is static most of
the time. A typical scene is a head-and-shoulder view of a person imposed on a background. In
this type of video sequence the background is usually static. Only the speaker is experiencing
motion, which is not severe. Therefore, there is a strong similarity between successive frames, that
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A hierarchical structure.
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is, a strong adjacent-frame correlation. In other words, there is a strong interframe correlation. It
was reported by Mounts (1969) that when using videophone-like signals with moderate motion in
the scene, on average, less than one-tenth of the elements change between frames by an amount
which exceeds 1% of the peak signal. Here, a 1% change is regarded as significant. Our experiment
on the first 40 frames of the Miss America sequence supports this observation. Two successive
frames of the sequence, frames 24 and 25, are shown in Figure 10.4.

Now, consider a video sequence generated in a television broadcast. It is well known that
television signals are generated with a scene scanned in a particular manner in order to maintain
a steady picture for a human being to view, regardless of whether there is a scenery change or not.
That is, even if there is no change from one frame to the next, the scene is still scanned constantly.
Hence there is a great deal of frame-to-frame correlation (Haskell et al., 1972b; Netravali and Robbins,
1979). In TV broadcasts, the camera is most likely not static, and it may be panned, tilted, and
zoomed. Furthermore, more movement is involved in the scene. As long as the TV frames are taken
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FIGURE 10.4

 

Two frames of the Miss America sequence: (a) frame 24, (b) frame 25.
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densely enough, then most of the time we think the changes between successive frames are due
mainly to the apparent motion of the objects in the scene that takes place during the frame intervals.
This implies that there is also a high correlation between sequential frames. In other words, there
is an interframe redundancy (interpixel redundancy between pixels in successive frames). There is
more correlation between television picture elements along the frame-to-frame temporal dimension
than there is between adjacent elements in a single frame along the spatial dimension. That is, there
is generally more interframe correlation than intraframe correlation. Taking advantage of the
interframe correlation, i.e., eliminating or decreasing the uncertainty of successive frames, leads
to video data compression. This is analogous to the case of still image coding with the DPCM
technique, where we can predict part of an image by knowing the other part. Now the knowledge
of the previous frames can remove the uncertainty of the next frame. In both cases, knowledge of
the past removes the uncertainty of the future, leaving less actual information to be transmitted
(Kretzmer, 1952). In Chapter 16, we will see that the words “past” and “future” used here are not
necessary. They can be changed, respectively, to “some frames” and “some other frames” in
advanced video coding techniques such as MPEG. There, a frame might be predicted from both
its previous frames and its future frames.

At this point, it becomes clear that the second class of techniques (mentioned at the beginning
of this section), which generalizes techniques originally developed for still image coding and applies
them to video coding, exploits interframe correlation. For instance, in the case of the 3-D DCT
technique, a strong temporal correlation causes an energy compaction within the low temporal
frequency region. The 3-D DCT technique drops transform coefficients associated with high
temporal frequency, thus achieving data compression.

The two techniques specifically developed to exploit interframe redundancy, i.e., frame replen-
ishment and motion-compensated coding, are introduced below. The former is the early work, while
the latter is the more popular recent work.

 

10.3 FRAME REPLENISHMENT

 

As mentioned in Chapter 3, frame-to-frame redundancy has long been recognized in TV signal
compression. The first few experiments of a frame sequence coder exploiting interframe redundancy
may be traced back to the 1960s (Seyler, 1962, 1965; Mounts, 1969). In (Mounts, 1969) the first
real demonstration was presented and was termed 

 

conditional replenishment

 

. This frame replen-
ishment technique can be briefly described as follows. Each pixel in a frame is classified into

 

changing

 

 or 

 

unchanging

 

 areas depending on whether or not the intensity difference between its
present value and its previous one (the intensity value at the same position on the previous frame)
exceeds a threshold. If the difference does exceed the threshold, i.e., a 

 

significant

 

 change has been
identified, the address and intensity of this pixel are coded and stored in a buffer and then transmitted
to the receiver to replenish intensity. For those unchanging pixels, nothing is coded and transmitted.
Their previous intensities are repeated in the receiver. It is noted that the buffer is utilized to make
the information presented to the transmission channel occur at a smooth bit rate. The threshold is
to make the average replenishment rate match the channel capacity.

Since the replenishment technique only encodes those pixels whose intensity value has changed
significantly between successive frames, its coding efficiency is much higher than the coding
techniques which encode every pixel of every frame, say, the DPCM technique applied to each
single frame. In other words, utilizing interframe correlation, the replenishment technique achieves
a lower bit rate, while keeping the equivalent reconstructed image quality.

Much effort had been made to further improve this type of simple replenishment algorithm.
As mentioned in the discussion of 3-D DPCM in Chapter 3, for instance, it was soon realized that
intensity values of pixels in a changing area need not be transmitted independently of one another.
Instead, using both spatial and temporal neighbors’ intensity values to predict the intensity value
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of a changing pixel leads to a 

 

frame

 

-

 

difference

 

 predictive coding technique. There, the differential
signal is coded instead of the original intensity values, thus achieving a lower bit rate. For more
detail, readers are referred to Section 3.5.2. Another example of the improvements is that measures
have been taken to distinguish the intensity difference caused by noise from those associated with
changing to avoid the dirty window effect, whose meaning is given in the next paragraph. For more
detailed information on these improvements over the simple frame replenishment technique, readers
are referred to two excellent reviews by Haskell et al. (1972b, 1979).

The main drawback associated with the frame replenishment technique is that it is difficult to
handle frame sequences containing more rapid changes. When there are more rapid changes, the
number of pixels whose intensity values need to be updated increases. In order to maintain the
transmission bit-rate at a steady and proper level the threshold has to be raised, thus causing many
slow changes that cannot show up in the receiver. This poorer reconstruction in the receiver is
somewhat analogous to viewing a scene through a dirty window. This is referred to as the dirty
window effect. The result of one experiment on the dirty window effect is displayed in Figure 10.5.
From frame 22 to frame 25 of the Miss America sequence, there are 2166 pixels (less than 10%
of the total pixels) that change their gray level values by more than 1% of the peak signal. When
we only update the gray level values for 25% (randomly chosen) of these changing pixels, we can
clearly see the dirty window effect. When rapid scene changes exceed a certain level, buffer
saturation will result, causing picture breakup (Mounts, 1969). Motion-compensated coding, which
is discussed below, has been proved to be able to provide better performance than the replenishment
technique in situations with rapid changes.

 

10.4 MOTION-COMPENSATED CODING

 

In addition to the frame-difference predictive coding technique (a variant of the frame replenishment
technique discussed above), another technique: displacement-based predictive coding, was devel-
oped at almost the same time (Rocca, 1969; Haskell and Limb, 1972a). In this technique, a motion
model is assumed. That is, the changes between successive frames are considered due to the
translation of moving objects in the image planes. Displacement vectors of objects are first esti-
mated. Differential signals between the intensity value of the picture elements in the moving areas
and those of their counterparts in the previous frame, which are translated by the estimated
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Dirty window effect.
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displacement, are encoded. This approach, which takes motion into account to compress video
sequences, is referred to as motion-compensated predictive coding. It has been found to be much
more efficient than the frame-difference prediction technique.

To understand the above statement, let us look at the diagram shown in Figure 10.6. Assume
a car translating from the right side to the left side in the image planes at a uniform speed during
the time interval between the two consecutive image frames. Other than this, there are no movements
or changes in the frames. Under this circumstance, if we know the displacement vector of the car
on the image planes during the time interval between two consecutive frames, we can then predict
the position of the car in the latter frame from its position in the former frame. One may think that
if the translation vector is estimated well, then so is the prediction of the car position. This is true.
In reality, however, estimation errors occurring in determination of the motion vector, which may
be caused by various noises existing in the frames, may cause the predicted position of the car in
the latter frame to differ from the actual position of the car in the latter frame.

The above translational model is a very simple one; it cannot accommodate motions other than
translation, say, rotation, and camera zooming. Occlusion and disocclusion of objects make the
situation even more complicated since in the occlusion case some portions of the images may
disappear, while in the disocclusion case some newly exposed areas may appear. Therefore, the
prediction error is almost inevitable. In order to have good-quality frames in the receiver, we can
find the prediction error by subtracting the predicted version of the latter frame from the actual
version of latter frame. If we encode both the displacement vectors and the prediction error, and
transmit these data to the receiver, we may be able to obtain high-quality reconstructed images in
the receiver. This is because in the receiving end, using the displacement vectors transmitted from
the transmitter and the reconstructed former frame, we can predict the latter frame. Adding the
transmitted prediction error to the predicted frame, we may reconstruct the latter frame with
satisfactory quality. Furthermore, if manipulating the procedure properly, we are able to achieve
data compression.

The displacement vectors are referred to as side or overhead information to indicate their
auxiliary nature. It is noted that motion estimation drastically increases the computational com-
plexity of the coding algorithm. In other words, the higher coding efficiency is obtained in motion-
compensated coding, but with a higher computational burden. As we pointed out in Section 10.1,
this is both technically feasible and economically desired since the cost of digital signal processing
decreases much faster than that of transmission (Dubois et al., 1981).

Motion-compensated video compression has become a major development in coding. For more
information, readers should refer to several excellent survey papers (Musmann et al., 1985; Zhang
et al., 1995; Kunt, 1995).

The common practice of motion-compensated coding in video compression can be split into
the following three stages. First, the 

 

motion analysis

 

 stage; that is, displacement vectors for either
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Two consecutive frames of a video sequence.
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every pixel or a set of pixels in image planes from sequential images are estimated. Second, the
present frame is predicted by using estimated motion vectors and the previous frame. The prediction
error is then calculated. This stage is called 

 

prediction and differentiation

 

. The third stage is

 

encoding

 

. The prediction error (difference between the present and the predicted present frames)
and the motion vectors are encoded. Through an appropriate manipulation, the total amount of data
for both the motion vectors and prediction error is expected to be much less than the raw data
existing in the image frames, thus resulting in data compression. A block diagram of motion-
compensated coding is shown in Figure 10.7.

Before leaving this section, we compare the frame replenishment technique with the motion-
compensated coding technique. Qualitatively speaking, we see from the above discussion that the
replenishment technique is also a kind of predictive coding in nature. This is particularly true if
we consider the frame-difference predictive technique used in frame replenishment. There, it uses
a pixel’s intensity value in the previous frame as an estimator of its intensity value in the present
frame.

Now let’s look at motion-compensated coding. Consider a pixel on the present frame. Through
motion analysis, the motion-compensated technique finds its counterpart in the previous frame.
That is, a pixel in the previous frame is identified such that it is supposed to translate to the position
on the present frame of the pixel under consideration during the time interval between successive
frames. This counterpart’s intensity value is used as an estimator of that of the pixel under
consideration. We can see that the model used for motion-compensated coding is much more
advanced than that used for frame replenishment, therefore, it achieves a much higher coding
efficiency. A motion-compensated coding technique that utilized the first pel-recursive algorithm
for motion estimation (Netravali and Robbins, 1979) was reported to achieve a bit rate 22 to 50%
lower than that obtained by simple frame-difference prediction, a version of frame replenishment.

The more advanced model utilized in motion-compensated coding, on the other hand, leads to
higher computational complexity. Consequently, both the coding efficiency and the computational
complexity in motion-compensated coding are higher than that in frame replenishment.

 

10.5 MOTION ANALYSIS

 

As discussed above, we usually conduct motion analysis in video sequence compression. There,
2-D displacement vectors of a pixel or a group of pixels on image planes are estimated from given
image frames. Motion analysis can be viewed from a much broader point of view. It is well known
that the vision systems of both humans and animals observe the outside world to ascertain motion
and to navigate themselves in the 3-D world space. Two groups of scientists study vision. Scientists

 

FIGURE 10.7

 

Block diagram of motion-compensated coding.
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in the first group, including psychophysicists, physicians, and neurophysiologists study human and
animal vision. Their goal is to understand biological vision systems — their operation, features,
and limitations. Computer scientists and electrical engineers form the second group. As pointed
out by Aggarwal and Nandhakumar (1988), their ultimate goal is to develop computer vision systems
with the ability to navigate, recognize, and track objects, and estimate their speed and direction.
Each group benefits from the research results of the other group. The knowledge and results of
research in psychophysics, physiology, and neurophysiology have influenced the design of computer
vision systems. Simultaneously, the research results achieved in computer vision have provided a
framework in modeling biological vision systems and have helped in remedying faults in biological
vision systems. This process will continue to advance research in both groups, hence benefiting
society.

 

10.5.1 B

 

IOLOGICAL

 

 V

 

ISION

 

 P

 

ERSPECTIVE

 

In the field of biological vision, most scientists consider motion perception as a two-step process,
even though there is no ample biological evidence to support this view (Singh, 1991). The two
steps are measurement and interpretation. The first step measures the 2-D motion projected on the
imaging surfaces. The second step interprets the 2-D motion to induce the 3-D motion and structure
on the scene.

 

10.5.2 C

 

OMPUTER

 

 V

 

ISION

 

 P

 

ERSPECTIVE

 

In the field of computer vision, motion analysis from image sequences is traditionally split into
two steps. In the first step, intermediate variables are derived. By 

 

intermediate

 

 

 

variables

 

, we mean
2-D motion parameters in image planes. In the second step, 3-D motion variables, say, speed,
displacement, position, and direction, are determined.

Depending on the different intermediate results, all approaches to motion analysis can be
basically classified into two categories: feature correspondence and optical flow. In the former
category, a few distinct features are first extracted from image frames. For instance, consider an
image sequence containing an aircraft. Two consecutive frames are shown in Figure 10.8. The head
and tail of the aircraft, and the tips of its wings may be chosen as features. The correspondence of
these features on successive image frames needs to be established. In the second step, 3-D motion
can then be analyzed from the extracted features and their correspondence in successive frames.
In the latter category of approaches, the intermediate variables are optical flow. An optical flow
vector is defined as a velocity vector of a pixel on an image frame. An optical flow field is referred
to as the collection of the velocity vectors of all the pixels on the frame. In the first step, optical
flow vectors are determined from image sequences as the intermediate variables. In the second
step, 3-D motion is estimated from optical flow. It is noted that optical flow vectors are closely

 

FIGURE 10.8

 

Feature extraction and correspondence from two consecutive frames in a temporal image
sequence.
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related to displacement vectors in that a velocity vector multiplying by the time interval between
two consecutive frames results in the corresponding displacement vector. Optical flow and its
determination will be discussed in detail in Chapter 13.

It is noted that there is a so-called direct method in motion analysis. Contrary to the above
optical flow approach, instead of determining 2-D motion variables, (i.e., the intermediate variables),
prior to 3-D motion estimation, the direct method attempts to estimate 3-D motion without explicitly
solving for the intermediate variables. In (Huang and Tsai, 1981b) the equation characterizing
displacement vectors in the 2-D image plane and the equation characterizing motion parameters in
3-D world space are combined so that the motion parameters in 3-D world space can be directly
derived. This method has been utilized to recover structure (object surfaces) in 3-D world space
as well (Negahdaripour and Horn, 1987; Horn and Weldon, 1988; Shu and Shi, 1993).

 

 

 

The direct
method has certain limitations. That is, if the geometry of object surfaces is not known in advance,
then the method fails.

The feature correspondence approach is sometimes referred to as the discrete approach, while
the optical flow approach is sometimes referred to as the continuous approach. This is because the
correspondence approach concerns only a set of relatively sparse but highly discriminatory 2-D
features on image planes. The optical flow approach is concerned with a dense field of motion
vectors.

It has been found that both feature extraction and correspondence establishment are not trivial
tasks. Occlusion and disocclusion which, respectively, cause some features to disappear and some
features to reappear, make feature correspondence even more difficult. The development of robust
techniques to solve the correspondence problem is an active research area and is still in its infancy.
So far, only partial solutions suitable for simplistic situations have been developed (Aggarwal and
Nandhakumar, 1988). Hence the feature correspondence approach is rarely used in video compres-
sion. Because of this, we will not discuss this approach any further.

Motion analysis (sometimes referred to as motion estimation or motion interpretation) from
image sequences is necessary in automated navigation. It has played a central role in the field of
computer vision since the late 1970s and early 1980s. A great deal of the papers presented at the
International Conference on Computer Vision cover this and related topics. Many workshops,
symposiums, and special sessions are organized around this subject (Thompson, 1989).
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In the field of signal processing, motion analysis is mainly considered in the context of bandwidth
reduction and/or data compression in the transmission of visual signals. Therefore, instead of the
motion in 3-D world space, only the 2-D motion in the image plane is concerned.

Because of the real-time nature in visual transmission, the motion model cannot be very
complicated. So far, the 2-D translational model is most frequently assumed in the field. In the 2-D
translational model it is assumed that the change between a frame and its previous one is due to
the motion of objects in the frame plane during the time interval between two consecutive frames.
In many cases, as long as frames are taken densely enough, this assumption is valid. By 

 

motion
analysis

 

 we mean the estimation of translational motion — either the displacement vectors or
velocity vectors. With this kind of motion analysis, one can apply the motion-compensated coding
discussed above, making coding more efficient.

Basically there are three techniques in 2-D motion analysis: correlation, and recursive and
differential techniques. Philosophically speaking, the first two techniques belong to the same group:
region matching.

Refer to Figure 10.6, where the moving car is the object under investigation. By 

 

motion analysis

 

we mean finding the displacement vector, i.e., a vector representing the relative positions of the
car in the two consecutive frames. With region matching, one may consider the car (or a portion
of the car) as a region of interest, and seek the best match between the two regions in the two
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frames: specifically, the region in the present frame and the region in the previous frame. For
identifying the best match, two techniques, the correlation and the recursive methods, differ in
methodology. The correlation technique finds the best match by searching the maximum correlation
between the two regions in a predefined search range, while the recursive technique estimates the
best match by recursively minimizing a nonlinear measurement of the dissimilarities between the
two regions.

A couple of comments are in order. First, it is noted that the most frequently used technique
in motion analysis is called block matching, which is a type of the correlation technique. There, a
video frame is divided into nonoverlapped rectangular blocks with each block having the same
size, usually 16 

 

¥

 

 16. Each block thus generated is assumed to move as one, i.e., all pixels in a
block share the same displacement vector. For each block, we find its best match in the previous
frame with correlation. That is, the block in the previous frame, which gives the maximum
correlation, is identified. The relative position of these two best matched blocks produces a dis-
placement vector. This block matching technique is simple and very efficient, and will be discussed
in detail in Chapter 11. Second, as multimedia finds more and more applications, the regions
occupied by arbitrarily-shaped objects (no longer always rectangular blocks) become increasingly
important in content-based video retrieval and manipulation. Motion analysis in this case is dis-
cussed in Chapter 18. Third, although the recursive technique is categorized as a region matching
technique, it may be used for finding displacement vectors for individual pixels. In fact the recursive
technique was originally developed for determining displacement vectors of pixels and, hence, it
is called pel-recursive. This technique is discussed in Chapter 12. Fourth, both correlation and
recursive techniques can be utilized for determining optical flow vectors. Optical flow is discussed
in Chapter 13.

The third technique in 2-D motion analysis is the differential technique. This is one of the main
techniques utilized in determining optical flow vectors. It is named after the term of differentials
because it uses partial differentiation of an intensity function with respect to the spatial coordinates
x and y, as well as the temporal coordinate 

 

t

 

. This technique is also discussed in Chapter 13.

 

10.6 MOTION COMPENSATION FOR IMAGE 
SEQUENCE PROCESSING

 

Motion analysis has long been considered a key issue in image sequence processing (Huang, 1981a;
Shi, 1997). Obviously, in an area like automated navigation, motion analysis plays a central role.
From the discussion in this chapter, we see that motion analysis also plays a key role in video data
compression. Specifically, we have discussed the concept of motion-compensated video coding in
Section 10.4. In this section we would like to consider motion compensation for image sequence
processing, in general. Let us first consider motion-compensated interpolation. Then, we will discuss
motion-compensated enhancement, restoration, and down-conversion.
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Interpolation is a simple yet efficient and important method in image and video compression. In
image compression, we may only transmit, say, every other row. We then try to interpolate these
missing rows from the other half of the transmitted rows in the receiver. In this way, we compress
the data to half. Since the interpolation is carried out within a frame, it is referred to as 

 

spatial

 

interpolation. In video compression, for instance, in videophone service, instead of transmitting
30 frames per second, we may choose a lower frame rate, say, 10 frames per second. In the receiver,
we may try to interpolate the dropped frames from the transmitted frames. This strategy immediately
drops the transmitted data to one third. Another example is the conversion of a motion picture into
an NTSC (National Television System Commission) TV signal. There, every first frame in the
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motion picture is repeated three times and the next frame twice, thus converting a 24-frame-per-
second motion picture to a 60-field-per-second NTSC signal. This is commonly referred to as 3:2
pulldown. In these two examples concerning video, interpolation is along the temporal dimension,
which is referred to as 

 

temporal

 

 interpolation.
For basic concepts of zero-order interpolation, bilinear interpolation, and polynomial interpo-

lation, readers are referred to signal processing texts, for instance (Lim, 1990). In temporal inter-
polation, the zero-order interpolation means creation of a frame by copying its nearest frame along
the time dimension. The conversion of a 24-frame-per-second motion picture to a 60-field-per-
second NTSC signal can be classified into this type of interpolation. Weighted linear interpolation
can be illustrated with Figure 10.9.

There, the weights are determined according to the lengths of time intervals, which is similar
to the bilinear interpolation widely used in spatial interpolation, except that here only one index
(along the time axes) is used, while two indexes (along two spatial axes) are used in spatial bilinear
interpolation. That is,

(10.4)

If there are one or multiple moving objects existing in successive frames, however, the weighted
linear interpolation will blur the interpolated frames. Taking motion into account in the interpolation
results in motion-compensated interpolation. In Figure 10.10, we still use the three frames shown
in Figure 10.9 to illustrate the concept of motion-compensated interpolation. First, motion between
two given frames is estimated. That is, the displacement vectors for each pixel are determined.
Second, we choose a frame that is nearer to the frame we want to interpolate. Third, the displacement
vectors determined in the first step are proportionally converted to the frame to be created. Each
pixel in this frame is projected via the determined motion trajectory to the frame chosen in step 2.
In the process of motion-compensated interpolation, spatial interpolation in the frame chosen in
step 2 usually is needed.
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It is well known that when an image is corrupted by additive white Gaussian noise (AWGN) or
burst noise, linear low-pass filtering, such as simple averaging or nonlinear low-pass filtering, such
as a median filter, performs well in removing the noise. When an image sequence is concerned,

 

FIGURE 10.9

 

Weighted linear interpolation.
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we may apply such types of filtering along the temporal dimension to remove noise. This is called
temporal filtering. These types of low-pass filtering may blur images, an effect that may become
quite serious when motion exists in image planes. The enhancement, which takes motion into
account, is referred to as motion-compensated enhancement, and has been found very efficient in
temporal filtering (Huang and Hsu, 1981c).

To facilitate the discussion, we consider simple averaging as a means for noise filtering in what
follows. It is understood that other filtering techniques are possible, and that everything discussed
here is applicable there. Instead of simply averaging 

 

n

 

 successive image frames in a video sequence,
motion-compensated temporal filtering will first analyze the motion existing in these frames. That
is, we estimate the motion of pixels in successive frames first. Then averaging will be conducted
only on those pixels along the same motion trajectory. In Figure 10.11, three successive frames are
shown and denoted by f (x, y, t

 

1

 

), f (x, y, t

 

2

 

), and f (x, y, t

 

3

 

), respectively. Assume that three pixels,
denoted by (x

 

1

 

, y

 

1

 

), (x

 

2

 

, y

 

2

 

), and (x

 

3

 

, y

 

3

 

), respectively, are identified to be perspective projections
of the same object point in the 3-D world space on the three frames. The averaging is then applied
to these three pixels. It is noted that the number of successive frames, 

 

n

 

, may not necessarily have
to be three. Motion analysis can use any one of the several techniques discussed in Section 10.5.

 

FIGURE 10.10

 

Motion-compensated interpolation.

 

FIGURE 10.11

 

Motion-compensated temporal filtering.
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Motion-compensated temporal filtering is not necessarily implemented pixelwise; it can also be
used objectwise, or regionwise.
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Extensive attention has been paid to the restoration of full-length feature films. There, typical
artifacts are due to dirt and sparkle. Early work in the detection of these artifacts ignored motion
information completely. Late motion estimation has been utilized to detect these artifacts based on
the assumption that the artifacts occur occasionally along the temporal dimension. Once the artifacts
have been found, motion-compensated temporal filtering and/or interpolation will be used to remove
the artifacts. One successful algorithm for the detection and removal of anomalies in digitized
animation film can be found in (Tom et al., 1998).
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Here we present one more example in which motion compensation finds application in digital video
processing.

It is believed that there will be a need to down-convert a high definition television (HDTV)
image sequence for display onto an NTSC monitor during the upcoming transition to digital
television broadcast. The most straightforward approach is to fully decode the image sequence first,
then apply a prefiltering and subsampling process to each field of the interlaced sequence. This is
referred to as a full-resolution decoder (FRD). The merit of this approach is the high quality
achieved, while the drawback is a high cost in terms of the large amount of memory required to
store the reference frames. To reduce the required memory space, another approach is considered.
In this approach, the down-conversion is conducted within the decoding loop and is referred to as
a low-resolution decoder (LRD). It can significantly reduce the required memory and still achieve
a reasonably good picture quality.

The prediction drift is a major type of artifact existing in the down-conversion. It is defined as
the successive blurring of forward-predicted frames with a group of pictures. It is caused mainly
by non-ideal interpolation of sub-pixel intensities and the loss of high-frequency data within the
block. An optimal set of filters to perform low-resolution motion compensation has been derived
to effectively minimize the drift. For details on an algorithm in the down-conversion utilizing an
optimal motion compensation scheme, readers are referred to Vetro and Sun (1998).

 

10.7 SUMMARY

 

After Section II, still image compression, we shift our attention to video compression. Prior to
Section IV, where we discuss various video compression algorithms and standards, however, we
first address the issue of motion analysis and motion compensation in this chapter that starts
Section III, motion estimation and compensation. This is because video compression has its own
characteristics, which are different from those of still image compression. The main difference lies
in interframe correlation.

In this chapter, the concept of various image sequences is discussed in a broad scope. In doing
so, a single image, temporal image sequences, and spatial image sequences are all unified under
the concept of imaging space. The redundancy between pixels in successive frames is analyzed for
both videoconferencing and TV broadcast cases. In these applications, there is more interframe
correlation than intraframe correlation, in general. Therefore, the utilization of interframe correla-
tion becomes a key issue in video compression.

There are two major techniques in exploitation of interframe correlation: frame replenishment
and motion compensation. In the conditional replenishment technique, only those pixel gray level
values, whose variation from their counterparts in the previous frame exceeds a threshold, are
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encoded and transmitted to the receiver. These pixels are called changing pixels. For pixels other
than the changing pixels, their gray values are just repeated in the receiver. This simplest frame
replenishment technique achieves higher coding efficiency than coding each pixel in each frame
due to the utilization of interframe redundancy. In the more advanced frame replenishment tech-
niques, say, the frame-difference predictive coding technique, both temporal and spatial neighboring
gray values of the pixels are used to predict that of a changing pixel. Instead of the intensity values
of the changing pixels, the prediction error is encoded and transmitted. Because the variance of
the prediction error is smaller than that of the intensity values, this more advanced frame replen-
ishment technique is more efficient than the conditional replenishment technique.

The main drawback of frame replenishment techniques is associated with rapid motion and/or
intensity variation occurring on the image planes. Under these circumstances, frame replenishment
will suffer from the dirty window effect, and even buffer saturation.

In motion-compensated coding, the motion of pixels is first analyzed. Based on the previous
frame and the estimated motion, the current frame is predicted. The prediction error together with
motion vectors are encoded and transmitted to the receiver. Due to more accurate prediction based
on a motion model, motion-compensated coding achieves higher coding efficiency compared with
frame replenishment. This is conceivable because frame replenishment basically uses the intensity
value of a pixel in the previous frame to predict that of the pixel in the same location in the present
frame, while the prediction in motion-compensated coding uses motion trajectory. This implies that
higher coding efficiency is obtained in motion compensation at the cost of higher computational
complexity. This is technically feasible and economically desired since the cost of digital signal
processing decreases much faster than that of transmission.

Because of the real-time requirement in video coding, only a simple 2-D translational model
is used. There are mainly three types of motion analysis techniques used in motion-compensated
coding. They are block matching, pel-recursion, and optical flow. By far, block matching is used
most frequently. These three techniques are discussed in detail in the following three chapters.

Motion compensation is also widely utilized in other tasks of digital video sequence processing.
Examples include motion-compensated interpolation, motion-compensated enhancement, motion-
compensated restoration, and motion-compensated down-conversion.

10.8 EXERCISES

10-1. Explain the analogy between a stereo image sequence vs. the imaging space, and a
stereo image pair vs. the spatial image sequence to which the stereo image pair belongs.

10-2. Explain why the imaging space can be considered as a unification of image frames,
spatial image sequences, and temporal image sequences.

10-3. Give the definitions of the following several concepts: image, image sequence, and
video. Discuss the relationship between them.

10-4. What feature causes video compression to be quite different from still image compres-
sion?

10-5. Describe the conditional replenishment technique. Why can it achieve higher coding
efficiency in video coding than those techniques encoding each pixel in each frame?

10-6. Describe the frame-difference predictive coding technique. You may want to refer to
Section 3.5.2.

10-7. What is the main drawback of frame replenishment?
10-8. Both the frame-difference predictive coding and motion-compensated coding are pre-

dictive codings in nature.
(a) What is the main difference between the two?
(b) Explain why motion-compensated coding is usually more efficient.
(c) What is the price paid for higher coding efficiency with motion-compensated coding?
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10-9. Motion analysis is an important task encountered in both computer vision and video
coding. What is the major different requirement for motion analysis in these two fields?

10-10. Work on the first 40 frames of a video sequence other than the Miss America sequence.
Determine, on an average basis, what percentage of the total pixels change their gray-
level values by more than 1% of the peak signal between two consecutive frames.

10-11. Similar to the experiment associated with Figure 10.5, do your own experiment to
observe the dirty window effect. That is, work on two successive frames of a video
sequence chosen by yourself, and only update a part of those changing pixels.

10-12. Take two frames from the Miss America sequence or from another sequence of your
own choice in which a relatively large amount of motion is involved.
(a) Using the weighted linear interpolation defined in Equation 10.4, create an inter-

polated frame, which is located in the 1/3 of the time interval from the second frame
(i.e., l2 =  (l1 + l2) according to Figure 10.9).

(b) Using motion-compensated interpolation, create an interpolated frame at the same
position along the temporal dimension.

(c) Compare the two interpolated frames and make your comments.
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Block Matching

 

As mentioned in the previous chapter, displacement vector measurement and its usage in motion
compensation in interframe coding for a TV signal can be traced back to the 1970s. Netravali and
Robbins (1979) developed a pel-recursive technique, which estimates the displacement vector for
each pixel recursively from its neighboring pixels using an optimization method. Limb and Murphy
(1975), Rocca and Zanoletti (1972), Cafforio and Rocca (1976), and Brofferio and Rocca (1977)
developed techniques for the estimation of displacement vectors of a block of pixels. In the latter
approach, an image is first segmented into areas with each having an approximately uniform
translation. Then the motion vector is estimated for each area. The segmentation and motion
estimation associated with these arbitrarily shaped blocks are very difficult. When there are multiple
moving areas in images, the situation becomes more challenging. In addition to motion vectors,
the shape information of these areas needs to be coded. Hence, when moving areas have various
complicated shapes, both computational complexity and coding load will increase remarkably.

In contrast, the block matching technique, which is the focus of this chapter, is simple,
straightforward, and yet very efficient. It has been by far the most popularly utilized motion
estimation technique in video coding. In fact, it has been adopted by all the international video
coding standards: ISO, MPEG-1 and MPEG-2, and ITU H.261, and H.263. These standards will
be introduced in detail in Chapters 16, 17, and 19, respectively.

It is interesting to note that even nowadays, with the tremendous advancements in multimedia
engineering, object-based and/or content-based manipulation of audiovisual information is still very
demanding, particularly in audiovisual data storage, retrieval, and distribution. The applications
include digital library, video on demand, audiovisual databases, and so on. Therefore, the coding
of arbitrarily shaped objects has attracted great research attention these days. It has been included
in the MPEG-4 activities (Brailean, 1997), and will be discussed in Chapter 18.

In this chapter various aspects of block matching are addressed. They include the concept and
algorithm, matching criteria, searching strategies, limitations, and new improvements.

 

11.1 NONOVERLAPPED, EQUALLY SPACED, FIXED SIZE, 
SMALL RECTANGULAR BLOCK MATCHING

 

To avoid the kind of difficulties encountered in motion estimation and motion compensation with
arbitrarily shaped blocks, the block matching technique was proposed by Jain and Jain (1981) based
on the following simple motion model.

An image is partitioned into a set of nonoverlapped, equally spaced, fixed size, small rectangular
blocks; and the translation motion within each block is assumed to be uniform. Although this simple
model considers translation motion only, other types of motions, such as rotation and zooming of
large objects, may be closely approximated by the piecewise translation of these small blocks
provided that these blocks are small enough. This observation, originally made by Jain and Jain,
has been confirmed again and again since then.

Displacement vectors for these blocks are estimated by finding their best matched counterparts
in the previous frame. In this manner, motion estimation is significantly easier than that for
arbitrarily shaped blocks. Since the motion of each block is described by only one displacement
vector, the side information on motion vectors decreases. Furthermore, the rectangular shape
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information is known to both the encoder and the decoder, and hence does not need to be encoded,
which saves both computation load and side information.

The block size needs to be chosen properly. In general, the smaller the block size, the more
accurate is the approximation. It is apparent, however, that the smaller block size leads to more
motion vectors being estimated and encoded, which means an increase in both computation and
side information. As a compromise, a size of 16 

 

¥

 

 16 is considered to be a good choice. (This has
been specified in international video coding standards such as H.261, H.263, and MPEG-1 and
MPEG-2.) Note that for finer estimation a block size of 8 

 

¥

 

 8 is sometimes used.
Figure 11.1 is utilized to illustrate the block matching technique. In Figure 11.1(a) an image

frame at moment 

 

t

 

n

 

 is segmented into nonoverlapped 

 

p

 

 

 

¥

 

 

 

q

 

 rectangular blocks. As mentioned above,
in common practice, square blocks of 

 

p

 

 = 

 

q

 

 = 16 are used most often. Consider one of the blocks
centered at (x, y). It is assumed that the block is translated as a whole. Consequently, only one
displacement vector needs to be estimated for this block. Figure 11.1(b) shows the previous frame:
the frame at moment t

 

n-1

 

. In order to estimate the displacement vector, a rectangular search window
is opened in the frame 

 

t

 

n

 

-1

 

 and centered at the pixel (x, y). Consider a pixel in the search window,
a rectangular correlation window of the same size 

 

p

 

 

 

¥

 

 

 

q

 

 is opened with the pixel located in its
center. A certain type of similarity measure (correlation) is calculated. After this matching process
has been completed for all candidate pixels in the search window, the correlation window corre-
sponding to the largest similarity becomes the best match of the block under consideration in frame

 

t

 

n

 

. The relative position between these two blocks (the block and its best match) gives the displace-
ment vector. This is shown in Figure 11.1(b).

The size of the search window is determined by the size of the correlation window and the
maximum possible displacement along four directions: upward, downward, rightward, and leftward.
In Figure 11.2 these four quantities are assumed to be the same and are denoted by 

 

d

 

. Note that 

 

d

 

is estimated from 

 

a priori 

 

knowledge about the translation motion, which includes the largest
possible motion speed and the temporal interval between two consecutive frames, i.e., 

 

t

 

n

 

 – 

 

t

 

n

 

-1

 

.

 

11.2 MATCHING CRITERIA

 

Block matching belongs to image matching and can be viewed from a wider perspective. In many
image processing tasks, we need to examine two images or two portions of images on a pixel-by-pixel

 

FIGURE 11.1

 

Block matching.
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basis. These two images or two image regions can be selected from a spatial image sequence, i.e.,
from two frames taken at the same time with two different sensors aiming at the same object, or
from a temporal image sequence, i.e., from two frames taken at two different moments by the same
sensor. The purpose of the examination is to determine the similarity between the two images or
two portions of images. Examples of this type of application include image registration (Pratt,
1974) and template matching (Jain, 1989). The former deals with spatial registration of images,
while the latter extracts and/or recognizes an object in an image by matching the object template
and a certain area of the image.

The similarity measure, or correlation measure, is a key element in the matching process. The
basic correlation measure between two images 

 

t

 

n

 

 and 

 

t

 

n

 

-1

 

, C (s, t), is defined as follows (Anuta, 1969).

(11.1)

This is also referred to as a normalized two-dimensional cross-correlation function (Musmann et al.,
1985).

Instead of finding the maximum similarity or correlation, an equivalent but yet more compu-
tationally efficient way of block matching is to find the minimum dissimilarity, or matching error.
The dissimilarity (sometimes referred to as the error, distortion, or distance) between two images

 

t

 

n

 

 and 

 

t

 

n

 

-1

 

, D (s, t) is defined as follows.

(11.2)

where M(u,v) is a metric that measures the dissimilarity between the two arguments u and v. The
D (s, t) is also referred to as the matching criterion or the D values.

In the literature there are several types of matching criteria, among which the mean square
error (MSE) (Jain and Jain, 1981) and mean absolute difference (MAD) (Koga et al., 1981) are
used most often. It is noted that the sum of the squared difference (SSD) (Anandan, 1987) or the
sum of the squared error (SSE) (Chan et al., 1990) is essentially the same as MSE. The mean

 

FIGURE 11.2

 

Search window and correlation window.
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absolute difference is sometimes referred to as the mean absolute error (MAE) in the literature
(Nogaki and Ohta, 1972).

In the MSE matching criterion, the dissimilarity metric M (u, v) is defined as

(11.3)

In the MAD,

(11.4)

Obviously, both criteria are simpler than the normalized two-dimensional cross-correlation measure
defined in Equation 11.1.

Before proceeding to the next section, a comment on the selection of the dissimilarity measure
is due. A study based on experimental works reported that the matching criterion does not signif-
icantly affect the search (Srinivasan, 1984). Hence, the MAD is preferred due to its simplicity in
implementation (Musmann et al., 1985).

 

11.3 SEARCHING PROCEDURES

 

The searching strategy is another important issue to deal with in block matching. Several searching
strategies are discuused below.

 

11.3.1 F
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Figure 11.2 shows a search window, a correlation window, and their sizes. In searching for the best
match, the correlation window is moved to each candidate position within the search window. That
is, there are a total (2 d+1) 

 

¥

 

 (2 d+1) positions that need to be examined. The minimum dissimilarity
gives the best match. Apparently, this full search procedure is brute force in nature. While the full
search delivers good accuracy in searching for the best match (thus, good accuracy in motion
estimation), a large amount of computation is involved.

In order to lower computational complexity, several fast searching procedures have been
developed. They are introduced below.

 

11.3.2 2-D L
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Jain and Jain (1981) developed a 2-D logarithmic searching procedure. Based on a 1-D logarithmic
search procedure (Knuth, 1973), the 2-D procedure successively reduces the search area, thus
reducing the computational burden. The first steps computes the matching criteria for five points
in the search window. These five points are as follows: the central point of the search window and
the four points surrounding it, with each being a midpoint between the central point and one of
the four boundaries of the window. Among these five points, the one corresponding to the minimum
dissimilarity is picked as the winner. In the next step, surrounding this winner, another set of five
points are selected in a similar fashion to that in the first step, with the distances between the five
points remaining unchanged. The exception takes place when either a central point of a set of five
points or a boundary point of the search window gives a minimum D value. In these circumstances,
the distances between the five points need to be reduced. The procedure continues until the final
step, in which a set of candidate points are located in a 3 

 

¥

 

 3 2-D grid. Figure 11.3 demonstrates
two cases of the procedure. Figure 11.3(a) shows that the minimum D value takes place on a
boundary, while Figure 11.3(b) shows the minimum D value in the central position.

M u v u v, .( ) = -( )2

M u v u v, .( ) = -
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A convergence proof of the procedure is presented by Jain and Jain (1981), under the assumption
that the dissimilarity monotonically increases as the search point moves away from the point
corresponding to the minimum dissimilarity.

 

FIGURE 11.3

 

(a) A 2-D logarithmic search procedure. Points at (j, k+2), (j+2, k+2), (j+2, k+4), and (j+1,
k+4) are found to give the minimum dissimilarity in steps 1, 2, 3, and 4, respectively. (b) A 2-D logarithmic
search procedure. Points at (j, k-2), (j+2, k-2), and (j+2, k-1) are found to give the minimum dissimilarity in
steps 1, 2, 3, and 4, respectively.
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Another important work on the block matching technique was completed at almost the same time
by Koga et al. (1981). A coarse-fine three-step procedure was developed for fast searching.

The three-step search is very similar to the 2-D logarithm search. There are, however, three
main differences between the two procedures. First, each step in the three-step search compares a
set of nine points that form a 3 

 

¥

 

 3 2-D grid structure. Second, the distances between the points in
the 3 

 

¥

 

 3 2-D grid structure in the three-step search decrease monotonically in steps 2 and 3. Third,
a total of only three steps are carried out. Obviously, these three items are different from the 2-D
logarithmic search described in Section 11.3.2. An illustrative example of the three-step search is
shown in Figure 11.4.
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The conjugate direction search is another fast search algorithm that was developed by Srinivasan
and Rao (1984). In principle, the procedure consists of two parts. In the first part, it finds the
minimum dissimilarity along the horizontal direction with the vertical coordinate fixed at an initial
position. In the second part, it finds the minimum D value along the vertical direction with the
horizontal coordinate fixed in the position determined in the first part. Starting with the vertical
direction followed by the horizontal direction is, of course, functionally equivalent. It was reported
that this search procedure works quite efficiently (Srinivasan and Rao, 1984).

Figure 11.5 illustrates the principle of the conjugate direction search. In this example, each
step involves a comparison between three testing points. If a point assumes the minimum D value
compared with both of its two immediate neighbors (in one direction), then it is considered to be
the best match along this direction, and the search along another direction is started. Specifically,
the procedure starts to compare the D values for three points (j, k–1), (j, k), and (j, k+1). If the D
value of point (j, k–1) appears to be the minimum among the three, then points (j, k-2), (j, k–1),

 

FIGURE 11.4

 

Three-step search procedure. Points (j+4, k-4), (j+4, k-6), and (j+5, k-7) give the minimum
dissimilarity in steps 1, 2, and 3, respectively.
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and (j, k) are examined. The procedure continues, finding point (j, k–3) as the best match along
the horizontal direction since its D value is smaller than that of points (j, k–4) and (j, k–2). The
procedure is then conducted along the vertical direction. In this example the best matching is finally
found at point (j+2, k–3).
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In the evaluation of the matching criterion, either MAD or MSE, all pixels within a correlation
window at the 

 

t

 

n

 

-1

 

 frame and an original block at the 

 

t

 

n

 

 frame are involved in the computation. Note
that the correlation window and the original block are the same size (refer to Figure 11.1). In order
to further reduce the computational effort, a subsampling inside the window and the block is
performed (Bierling, 1988). Aliasing effects can be avoided by using low-pass filtering. For instance,
only every second pixel, both horizontally and vertically inside the window and the block, is taken
into account for the evaluation of the matching criterion. Obviously, by using this subsampling
technique, the computational burden is reduced by a factor of 4. Since 3/4 of the pixels within the
window and the block are not involved in the matching computation, however, the use of such a
subsampling procedure may affect the accuracy of the estimated motion vectors, especially in the
case of small-size blocks. Therefore, the subsampling technique is recommended only for those
cases with a large enough block size so that the matching accuracy will not be seriously affected.
Figure 11.6 shows an example of 2 

 

¥

 

 2 subsampling applied to both an original block of 16 

 

¥

 

 16
at the 

 

t

 

n

 

 frame and a correlation window of the same size at the 

 

t

 

n

 

-1

 

 frame.
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It is well known that a multiresolution structure, also known as a pyramid structure, is a very
powerful computational configuration for various image processing tasks. To save computation in
block matching, it is natural to resort to the pyramid structure. In fact, the multiresolution technique
has been regarded as one of the most efficient methods in block matching (Tzovaras et al., 1994).
In a named top-down multiresolution technique, a typical Gaussian pyramid is formed first.

 

FIGURE 11.5

 

Conjugate direction search.
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Before diving into further description, let us pause here to give those readers who have not been
exposed to the Gaussian pyramid a short introduction to the concept. For those who know the
concept, this paragraph can be skipped. Briefly speaking, a Gaussian pyramid can be understood
as a set of images with different resolutions related to an original image in a certain way. The
original image has the highest resolution and is considered as the lowest level, sometimes called
the bottom level, in the set. From the bottom level to the top level, the resolution decreases
monotonically. Specifically, between two consecutive levels, the upper level is half as large as the
lower level in both horizontal and vertical directions. The upper level is generated by applying a
low-pass filter (which has a group of weights) to the lower level, followed by a 2 

 

¥

 

 2 subsampling.
That is, each pixel in the upper level is a weighted average of some pixels in the lower level. In
general, this iterative procedure of generating a level in the set is equivalent to convolving a specific
weight function with the original image at the bottom level followed by an appropriate subsampling.
Under certain conditions, these weight functions can closely approximate the Gaussian probability
density function, which is why the pyramid is named after Gauss. (For a detailed discussion, readers
are referred to Burt and Adelson [1983, 1984].) A Gaussian pyramid structure is depicted in
Figure 11.7. Note that the Gaussian pyramid depicted in Figure 11.7 resembles a so-called quad-
tree structure in which each node has four children nodes. In the simplest quad-tree pyramid, each
pixel in an upper level is assigned an average value of its corresponding four pixels in the next
lower level.

Now let’s return to our discussion on the top-down multiresolution technique. After a Gaussian
pyramid has been constructed, motion search ranges are allocated among the different pyramid
levels. Block matching is initiated at the lowest resolution level to obtain an initial estimation of
motion vectors. These computed motion vectors are then propagated to the next higher resolution
level, where they are corrected and then propagated to the next level. This procedure continues
until the highest resolution level is reached. As a result, a large amount of computation can be
saved. Tzovaras et al. (1994) showed that a two-level Gaussian pyramid outperforms a three-level
pyramid. Compared with full search block matching, the top-down multiresolution block search
saves up to 67% of computations without seriously affecting the quality of the reconstructed images.

In conclusion, it has been demonstrated that multiresolution is indeed an efficient computational
structure in block matching. This once again confirms the high computational efficiency of the
multiresolution structure.

 

FIGURE 11.6

 

An example of 2 

 

¥

 

 2 subsampling in the original block and correlation window for a fast
search.



 

© 2000 by CRC Press LLC

 

11.3.7 T

 

HRESHOLDING

 

 M

 

ULTIRESOLUTION

 

 B

 

LOCK

 

 M

 

ATCHING

 

With the multiresolution technique discussed above, the computed motion vectors at any interme-
diate pyramid level are projected to the next higher resolution level. In reality, some computed
motion vectors at the lower resolution levels may be inaccurate and have to be further refined,
while others may be relatively accurate and able to provide satisfactory motion compensation for
the corresponding block. From a computation-saving point of view, for the latter class it may not
be worth propagating the motion vectors to the next higher resolution level for further processing.

Motivated by the above observation, a new multiresolution block matching method with a
thresholding technique was developed by Shi and Xia (1997). The thresholding technique prevents
those blocks, whose estimated motion vectors provide satisfactory motion compensation, from
further processing, thus saving a lot of computation. In what follows, this technique is presented
in detail so as to provide readers with an insight to both multiresolution block matching and
thresholding multiresolution block matching techniques.
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to Method 1 in Tzovaras et al. [1994]), the size of the block in this work varies with the pyramid
levels. That is, if the size of a block at level 
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. The variable block size method is used because it gives more efficient motion estimation
than the fixed block size method. Here, the matching criterion used for motion estimation is the
MAD because it does not require multiplication and performs similar to the MSE. The MAD
between block (i, j)
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 can be calculated as

 

FIGURE 11.7

 

Gaussian pyramid structure.



 

© 2000 by CRC Press LLC

 

(11.5)

where V
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 = (v
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) is one of the candidates of the motion vector of block (i, j)
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n

 

,

 

v

 

l
x

 

,

 

v

 

l
y

 

are the two
components of the motion vector along the x and y directions, respectively.

A block diagram of the algorithm is shown in Figure 11.8. The threshold in terms of MAD
needs to be determined in advance according to the accuracy requirement of the motion estimation.
Determining the threshold is discussed below in Part B of this subsection. Gaussian pyramids are
formed for two consecutive frames of an image sequence from which motion estimation is desired.
Block matching is then performed at the top level with the full-search scheme. The estimated
motion vectors are checked to see if they provide satisfactory motion compensation. If the accuracy
requirement is met, then the motion vectors will be directly transformed to the bottom level of the
pyramid. Otherwise, the motion vectors will be propagated to the next higher resolution level for
further refinement. This thresholding process is discussed below in Part C of this subsection. The
algorithm continues in this fashion until either the threshold has been satisfied or the bottom level
has been reached. The skipping of some intermediate-level calculations provides for computational
saving. Experimental work with quite different motion complexities demonstrates that the proposed
algorithm reduces the processing time from 14 to 20%, while maintaining almost the same quality
in the reconstructed image compared with the fastest existing multiresolution block matching
algorithm (Tzovaras et al., 1994).

 

FIGURE 11.8

 

Block diagram for a three-level threshold multiresolution block matching.
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Threshold Determination

 

 — The MAD accuracy criterion is used in this work for the sake of
saving computations. The threshold value has a direct impact on the performance of the proposed
algorithm. A small threshold value can improve the reconstructed image quality at the expense of
increased computational effort. On the other hand, a large threshold value can reduce the compu-
tational complexity, but the quality of the reconstructed image may be degraded. One possible way
to determine a threshold value, which was used in many experiments by Shi and Xia (1997), is as
follows.

The peak signal-to-noise ratio (PSNR) is commonly used as a measure of the quality of the
reconstructed image. As introduced in Chapter 1, it is defined as

(11.6)

From the given required PSNR, one can find the necessary MSE value. A square root of this
MSE value can be chosen as a threshold value, which is applied to the first two images from the
sequence. If the resulting PSNR and required processing time are satisfactory, it is then used for
the rest of the sequence. Otherwise, the threshold can be slightly adjusted accordingly and applied
to the second and third images to check the PSNR and processing time. It was reported in numerous
experiments that this adjusted threshold value was accurate enough, and that there was no need for
further adjustment. As shown in Table 11.1, the threshold values used for the “Miss America,”
“Train,” and “Football” sequences (three sequences having quite different motion complexities) are
2, 3, and 4, respectively. They are all determined in this fashion and give satisfactory performance,
as shown in the three rows marked “New Method (TH=2),” “New Method (TH=3)” and “New
Method (TH=4),” respectively, in Table 11.2. That is, the PSNR experiences only about 0.1 dB loss
and the processing time decreases drastically. In the experiments, the threshold value of 3, i.e., the
average value of 2, 3, and 4, was also tried. Refer to the three rows marked “New Method (TH=3)”
in Table 11.2. It is noted that this average threshold value 3 has already given satisfactory perfor-
mance for all three sequences. Specifically, for the “Miss America” sequence, since the criterion
increases from 2 to 3, the PSNR loss increases from 0.12 to 0.48 dB, and the reduction in processing
time increases from 20 to 38%. For the “Football” sequence, since the criterion decreases from
4 to 3, the PSNR loss decreases from 0.08 to 0.05 dB, and the reduction in processing time decreases

 

TABLE 11.1
Parameters Used in the Experiments

Parameters at Level Low Resolution Level Full Resolution Level

Miss America 
Search range 3 ¥ 3 1 ¥ 1
Block size 4 ¥ 4 8 ¥ 8
Thresholding value 2 None (not applicable)

Train 
Search range 4 ¥ 4 1 ¥ 1
Block size 4 ¥ 4 8 ¥ 8
Thresholding value 3 None (not applicable)

Football 
Search range 4 ¥ 4 1 ¥ 1
Block size 4 ¥ 4 8 ¥ 8
Thresholding value 4 None (not applicable)

PSNR
MSE

= 10
255

10

2

log
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from 14 to 9%. Obviously, for the “Train” sequence, the criterion, as well as the performance,
remains the same. One can therefore conclude that the threshold determination may not require
much computation at all.

Thresholding — Motion vectors estimated at each pyramid level will be checked to see if they
provide satisfactory motion compensation. Assume V l (i, j) = (v l

x, vl
y) is the estimated motion vector

for block (i, j)1
n at level l of pyramid n. For thresholding, V l (i, j) should be directly projected to

the bottom level L. The corresponding motion vector for the same block at the bottom level of
pyramid n will be V L (2(L–l) i,2(L–l) j), and is given as

(11.7)

The MAD between the block at the bottom pyramid level of the current frame and its counterpart
in the previous frame can be determined according to Equation 11.5, where the motion vector is
VL = VL (2(L–l) i,2(L–l) j). This computed MAD value can be compared with the predefined threshold.
If this MAD value is less than the threshold, the computed motion vector VL (2(L–l) i,2(L–l) j) will
be assigned to block (2(L–l) i,2(L–l) j)L

n at level L in the current frame and motion estimation for this
block will be stopped. If not, the estimated motion vector Vl (i, j) at level l will be propagated to
level l + 1 for further refinement. Figure 11.9 gives an illustration of the above thresholding process.

Experiments — To verify the effectiveness of the proposed algorithm, extensive experiments have
been conducted. The performance of the new algorithm is evaluated and compared with that of
Method 1, one of the most efficient multiresolution block matching methods (Tzovaras et al., 1994)
in terms of PSNR, error image entropy, motion vector entropy, the number of blocks stopped at
the top level vs. the total number of blocks, and processing time. The number of blocks stopped
at the top level is the number of blocks withheld from further processing, while the total number
of blocks is the number of blocks existing at the top level. It is noted that the total number of
blocks is the same for each level in the pyramid. The processing time is the sum of the total number
of additions involved in the evaluation of the MAD and the thresholding operation.

In the experiments, two-level pyramids are used since they give better performance for motion
estimation purposes (Tzovaras et al., 1994). The algorithms are tested on three video sequences
with different motion complexities, i.e., the “Miss America,” “Train,” and “Football.” The “Miss
America” sequence has a speaker imposed on a static background and contains less motion. The
“Train” sequence has more detail and contains a fast-moving object (train). The 20th frame of the
sequence is shown in Figure 11.10. The “Football” sequence contains the most complicated motion

FIGURE 11.9 The thresholding process.

V i j V i jL L l L l L l l2 2 2-( ) -( ) -( )( ) = ( ), ,
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compared with the other two sequences. The 20th frame is shown in Figure 11.11. Table 11.1 is
the list of implementing parameters used in the experiments. Tables 11.2 and 11.3 give the perfor-
mance of the proposed algorithm compared with Method 1. In all three cases, the motion estimation
has a half-pixel accuracy, the meaning of which will be explained in the next section. All perfor-
mance measures listed there are averaged for the first 25 frames of the testing sequences.

Each frame of the “Miss America” sequence is of 360 ¥ 288 pixels. For convenience, only the
central portion, 320 ¥ 256 pixels, is processed. Using the operational parameters listed in Table 11.1
(with a criterion value of 2), 38% of the total blocks at the top level satisfy the predefined criterion
and are not propagated to the bottom level. The processing time needed by the proposed algorithm
is 20% less than Method 1, while the PSNR, the error image entropy, and the vector entropy are
almost the same. Compared with Method 1, an extra amount of computation (around 0.16 ¥ 106

FIGURE 11.10 The 20th frame of the “Train” sequence.

FIGURE 11.11 The 20th frame in the “Football” sequence.
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additions) is conducted on the thresholding operation, but a large computational savings (around
2.16 ¥ 106 additions) is achieved by withholding from further processing those blocks whose MAD
values at the full resolution level are less than the predefined accuracy criterion.

The frames of the “Train” sequence are 720 ¥ 288 pixels, and only the central portion, 640 ¥
256 pixels, is processed. Using the operational parameters listed in Table 11.1 (with a criterion
value of 3), about 52% of the total blocks are stopped at the top level. The processing time is
reduced about 17% by the new algorithm, compared with Method 1. The PSNR, the error image
entropy, and the vector entropy are almost the same.

The frames of the “Football” sequence are 720 ¥ 480 pixels, and only the central portion,
640 ¥ 384 pixels, is processed. Using the operational parameters listed in Table 11.1 (with a criterion
value of 4), about 38% of the total blocks are stopped at the top level. The processing time is about
14% less than that required by Method 1, while the PSNR, the error image entropy, and the vector
entropy are almost the same.

As discussed, the experiments with a single accuracy criterion of 3 also produce similarly good
performance for the three different image sequences.

In summary, it is clear that with the three different testing sequences, the thresholding multi-
resolution block matching algorithm works faster than the fastest existing top-down multiresolution
block matching algorithm while achieving almost the same quality of the reconstructed image.

11.4 MATCHING ACCURACY

Apparently, the two components of the displacement vectors obtained using the technique described
above are an integer multiple of pixels. This is referred to as one-pixel accuracy. If a higher accuracy
is desired, i.e., the components of the displacement vectors may be a non-integer multiple of pixels,
then spatial interpolation is required. Not only will more computation be involved, but also more
bits will be required to represent motion vectors. The gain is a more accurate motion estimation,
hence less prediction error. In practice, half-pixel or quarter-pixel accuracy are two widely utilized
accuracies other than one-pixel accuracy.

TABLE 11.2
Experimental Results (I)

PSNR
(dB)

Error Image
Entropy

(bits per pixel)
Vector Entropy

(bits/vector)
Block Stopped at 

Top Level/Total Block

Processing Times 
(No. of 

Additions, 106)

Miss America Sequence 
Method 1 (Tzovaras 
et al., 1994)

New method (TH=2)
New method (TH=3)

38.91

38.79
38.43

3.311

3.319
3.340

6.02

5.65
5.45

0/1280

487/1280
679/1280

10.02

8.02
6.17

Train Sequence 
Method 1 (Tzovaras 
et al., 1994)

New method (TH=3)

27.37

27.27

4.692

4.788

6.04

5.65

0/2560

1333/2560

22.58

18.68

Football Sequence 
Method 1 (Tzovaras 
et al., 1994)

New method (TH=4)
New method (TH=3)

24.26

24.18
24.21

5.379

5.483
5.483

7.68

7.58
7.57

0/3840

1464/3840
1128/3840

30.06

25.90
27.10
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11.5 LIMITATIONS WITH BLOCK MATCHING TECHNIQUES

Although very simple, straightforward, and efficient, hence, utilized most widely in video coding,
the block matching motion compensation technique has its drawbacks. First, it has an unreliable
motion vector field with respect to the true motion in 3-D world space. In particular, it has
unsatisfactory motion estimation and compensation along moving boundaries. Second, it causes
block artifacts. Third, it needs to handle side information. That is, it needs to encode and transmit
motion vectors as an overhead to the receiving end, thus making it difficult to use smaller block
size to achieve higher accuracy in motion estimation.

All these drawbacks are due to its simple model: each block is assumed to experience a uniform
translation and the motion vectors of partitioned blocks are estimated independently of each other.
Unreliable motion estimation, particularly along moving boundaries, causes more prediction error,
hence reduced coding efficiency.

The block artifacts do not cause severe perceptual degradation to the human visual system
(HVS) when the available coding bit rate is adequately high. This is because, with a high bit rate,
a sufficient amount of the motion-compensated prediction error can be transmitted to the receiving
end, hence improving the subjective visual effect to such an extent that the block artifacts do not
appear to be annoying. However, when the available bit rate is low, particularly lower than 64 kbps,
the artifacts become visually unpleasant. In Figure 11.12, a reconstructed frame of the “Miss
America” sequence at a low bit rate is shown. Obviously, block artifacts are very annoying,

FIGURE 11.12 The 21st reconstructed frame of the “Miss America” sequence using a codec following
H.263.



© 2000 by CRC Press LLC

especially where the mouth and hair are involved. The sequence was coded and decoded by using
a codec following ITU-T Recommendations H.263, an international standard in which block
matching is utilized for motion estimation.

The assumption that motion within each block is uniform requires a small block size such as
16 ¥ 16 and 8 ¥ 8. A small block size leads to a large number of motion vectors, however, resulting
in a large overhead of side information. A study by Chan et al. (1990) indicated that 8 ¥ 8 block
matching performs much better than 16 ¥ 16 in terms of decoded image quality due to better motion
estimation and compensation. The bits used for encoding motion vectors, however, increase sig-
nificantly (about four times), which may be prohibitive for very low bit rate coding since the total
bit rate needed for both prediction error and motion vectors may exceed the available bit rate. It
is noted that when the coding bit rate is quite low, say, on the order of 20 kbps, the side information
becomes compatible with the main information (prediction error) (Lin et al., 1997).

Tremendous research efforts have been made to overcome the limitations of block-matching
techniques. Some improvements have been achieved and are discussed next. It should be kept in
mind, however, that block matching is still by far the most popular and efficient motion estimation
and compensation technique utilized for video coding, and it has been adopted for use by various
international coding standards. In other words, block matching is the most appropriate technique
in the framework of first-generation video coding (Dufaux and Moscheni, 1995).

11.6 NEW IMPROVEMENTS

11.6.1 HIERARCHICAL BLOCK MATCHING

Bierling (1988) developed the hierarchical search based on the following two observations. On the
one hand, for a relatively large displacement, accurate block matching requires a relatively large
block size. This is conceivable if one considers its opposite case: a large displacement with a small
correlation window. Under this circumstance, the search range is large. Therefore the probability
of finding multiple matches is high, resulting in unreliable motion estimation. On the other hand,
a large block size may violate the assumption that all pixels in the block share the same displacement
vector. Hence a relatively small block size is required in order to meet the assumption. These
observations shed light on the problem of using a fixed block size, which may lead to unreliable
motion estimation.

To satisfy these two contradicting requirements simultaneously, in a hierarchical search proce-
dure a set of different sizes of blocks and correlation windows is utilized. To facilitate the discussion,
consider a three-level hierarchical block-matching algorithm, in which three block-matching pro-
cedures are conducted, each with its own parameters. Block matching is first conducted with respect
to the largest size of blocks and correlation windows. Using the estimated displacement vector as
an initial vector at the second level, a new search is carried out with respect to the second largest
size of blocks and correlation windows. The third search procedure is carried out similarly, based
on the results of the second search. An example with three correlation windows is illustrated in
Figure 11.13. It is noted that the resultant displacement vector is the sum of the three displacement
vectors determined by three searches.

The parameters in these three levels are listed in Table 11.4. The algorithm is described below
with an explanation of the various parameters in Table 11.4. Prior to each block matching, a separate
low-pass filter is applied to the whole image in order to achieve reliable block matching. The low-
pass filtering used is simply a local averaging. That is, the gray value of every pixel is replaced by
the mean value of the gray values of all pixels within a square area centered at the pixel to which
the mean value is assigned. In calculating the matching criterion D value, a subsampling is applied
to the original block and the correlation window in order to save computation, which was discussed
in Section 11.3.5.
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In the first level, for every 8th pixel horizontally and vertically (a step size of 8 ¥ 8), block
matching is conducted with the maximum displacement being ±7 pixels, a correlation window size
of 64 ¥ 64, and a subsampling factor of 4 ¥  4. A 5 ¥ 5 averaging low-pass filter is applied prior
to first level block matching. Second-level block matching is conducted with respect to every 4th
pixel horizontally and vertically (a step size of 4 ¥ 4). Note that for a pixel whose displacement
vector estimate has not been determined in first-level block matching, an average of the four nearest
neighboring estimates will be taken as its estimate. All the parameters for the second level are
listed in Table 11.4. One thing that needs to be emphasized is that in block matching at this level
the search window should be displaced by the estimated displacement vector obtained in the first
level. Third-level block matching is dealt with accordingly for every 2nd pixel horizontally and
vertically (a step size of 2 ¥ 2). The different parameters are listed in Table 11.4. In each of the
three levels, the three-step search discussed in Section 11.3.3 is utilized.

Experimental work has demonstrated a more reliable motion estimation due to the usage of a
set of different sizes for both the original block and the correlation window. The first level with a
large window size and a large displacement range determines a major portion of the displacement
vector reliably. The successive levels with smaller window sizes and smaller displacement ranges
are capable of adaptively estimating motion vectors more locally.

Figure 11.14 shows a portion of an image with pixels processed in the three levels, respectively.
It is noted that it is possible to apply one more interpolation after these three levels so that a motion
vector field of full resolution is available. Such a full-resolution motion vector field is useful in

FIGURE 11.13 Hierarchical block matching.

TABLE 11.3
Experimental Results (II)

Frames Tested

Total Blocks Stopped 
at Top Level

(%)

Saved Processing Time Compared 
with Method 1 in Tzovaras et al. (1994)

(%)

“Miss America” sequence
(TH = 2)

38 20

“Train” sequence
(TH = 3)

52 17

“Football” sequence
(TH = 4)

38 14
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such applications as motion-compensated interpolation in the context of videophony. There, in
order to maintain a low bit rate some frames are skipped for transmission. At the receiving end
these skipped frames need to be interpolated. As discussed in Chapter 10, motion-compensated
interpolation is able to produce better frame quality than that achievable by using weighted linear
interpolation.

11.6.2 MULTIGRID BLOCK MATCHING

Multigrid theory was developed originally in mathematics (Hackbusch and Trottenberg, 1982). It
is a useful computational structure in image processing besides the multiresolution one described
in Section 11.3.6. A diagram with three different levels used to illustrate a multigrid structure is
shown in Figure 11.15. Although it is also a hierarchical structure, each level within the hierarchy

TABLE 11.4
Parameters Used in a Three-Level Hierarchical Block Matching

Hierarchical 
Level

Maximum 
Displacemen

t
Correlation 

Window Size Step Size LPF Window Size
Subsamplin

g

1 ±7 pel 64 ¥ 64 8 5 ¥ 5 4 ¥ 4
2 ±3 pel 28 ¥ 28 4 5 ¥ 5 4 ¥ 4
3 ±1 pel 12 ¥ 12 2 3 ¥ 3 2 ¥ 2

Source: Data from Bierling (1988).

FIGURE 11.14 A portion of an image with pixels processed in all three levels.
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is of the same resolution. A few algorithms based on multigrid structure have been developed in
order to improve the block-matching technique. Two advanced methods are introduced below.

Thresholding Multigrid Block Matching — Realizing that the simple block-based motion model
(assuming a uniform motion within a fixed-size block) in the block matching technique causes
several drawbacks, Chan et al. (1990) proposed a variable size block matching technique. The main
idea is using a split-and-merge strategy with a multigrid structure in order to segment an image
into a set of variable size blocks, each of which has an approximately uniform motion. A binary
tree (also known as bin-tree) structure is used to record the relationship between these blocks of
different sizes.

Specifically, an image frame is initially split into a set of square blocks by cutting the image
alternately horizontally and vertically. With respect to each block thus generated, a block matching
is performed in conjunction with its previous frame. Then the matching accuracy in terms of the
sum squared error is compared with a preset threshold. If it is smaller than or equal to the threshold,
the block remains unchanged in the whole process and the estimated motion vector is final.
Otherwise, the block will be split into two blocks, and a new run of block matching is conducted
for each of these two children blocks. The process continues until either the estimated vector
satisfies a preset accuracy requirement or the block size has reached a predefined minimum. At
this point, a merge process is proposed by Chan et al. Neighboring blocks under the same inter-
mediate nodes in the bin-tree are checked to see if they can be merged, i.e., if the merged block
can be approximated with adequate accuracy by a block in the reconstructed previous frame. It is
noted that the merge operation may be optional depending on the specific application.

A block diagram of multigrid block matching is shown in Figure 11.16. Note that it is similar
to that shown in Figure 11.8 for the thresholding multiresolution block matching discussed in
Section 11.3.6. This observation reflects the similarities between multigrid and multiresolution
structures: both are hierarchical in nature and the splitting and merging can be easily performed.
An example of an image decomposition and its corresponding bin-tree are shown in Figure 11.17.

It was reported by Chan et al. (1990) that, with respect to a picture of a computer mouse and
a coin, the proposed variable size block matching achieves up to a 6-dB improvement in SNR and
about 30% reduction in required bits compared with fixed-size (16 ¥ 16) block matching. For several
typical videoconferencing sequences, the proposed algorithm constantly performs better than the
fixed-size block matching technique in terms of improved SNR of reconstructed frames with the
same bit rate.

A similar algorithm was reported by Xia and Shi (1996) where a quad-tree-based segmentation
is used. The thresholding technique is similar to that used by Shi and Xia (1997) and the emphasis
is placed on the reduction of computational complexity. It was found that for the head-shoulder
type of videophony sequences the thresholding multigrid block matching algorithm performs better

FIGURE 11.15 Illustration of a three-level hierarchical structure.
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than the thresholding multiresolution block matching algorithm. For video sequences that contain
more complicated details and motion, however, the performance comparison turns out to be
reversed.

A few remarks can be made as a conclusion for the thresholding technique. Although it needs
to encode and transmit the bin-tree or quad-tree as a portion of side information, and it has to
resolve the preset threshold issue, overall, the proposed algorithms achieve better performance
compared with fixed-size block matching. With the flexibility provided through the variable-size
methodology, the proposed approach is capable of making the model of the uniform motion within
each block more accurate than fixed-size block matching can do.

Optimal Multigrid Block Matching — As pointed out in Chapter 10, the ultimate goal of motion
estimation and motion compensation in the context of video coding is to provide a high code
efficiency in real time. In other words, accurate true motion estimation is not the final goal, although
accurate motion estimation is certainly desired. This point was presented by Bierling (1988) as
well. There, the different requirements with respect to motion-compensated coding and motion-
compensated interpolation were discussed. While the former requires motion vector estimation
leading to minimum prediction error and at the same time a low amount of motion vector infor-
mation, the latter requires accurate estimation of true vectors and a high resolution of the motion
vector field.

This point was very much emphasized by Dufaux and Moscheni (1995). They clearly stated
that in the context of video coding, estimation of true motion in 3-D world space is not the ultimate

FIGURE 11.16 Flow chart of multigrid block matching.
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goal. Instead, motion estimation should be able to provide good temporal prediction and at the
same time require low overhead information. In a word, the total amount of information that needs
to be encoded should be minimized. Based on this observation, a multigrid block matching technique
with an advanced entropy criterion was proposed.

Since it belongs to the category of thresholding multigrid block matching, it shares many
similarities with those of Chan et al. (1990) and Xia and Shi (1996). It also bears some resemblance
to thresholding multiresolution block matching (Shi and Xia, 1997). What really distinguishes this
approach from other algorithms is its segmentation decision rule. Instead of a preset threshold, the
algorithm works with an adaptive entropy criterion, which aims at controlling the segmentation in
order to achieve an optimal solution in such a way that the total number of bits needed for
representing both the prediction error and motion overhead is minimized. The decision of splitting
a block is made only when the extra motion overhead involved in the splitting is lower than the
gain obtained from less prediction error due to more accurate motion estimation. Not only is it
optimal in the sense of bit saving, but it also eliminates the need for setting a threshold.

The number of bits needed for encoding motion information can be estimated in a straightfor-
ward manner. As far as the prediction error is concerned, the bits required can be represented by
a total entropy of the prediction error, which can be estimated by using an analytical expression
presented by Dufaux (1994) and Moscheni et al. (1993). Note that the coding cost for quad-tree
segmentation information is negligible compared with that used for encoding prediction error and
motion vectors and, hence, is omitted in determining the criterion.

FIGURE 11.17 Thresholding multigrid block matching.
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In addition to this entropy criterion, a more advanced procedure is adopted in the algorithm
for down-projecting the motion vectors between two consecutive grids in the coarse-to-fine iterative
refinement process.

Both qualitative and quantitative assessments in experiments demonstrate its good performance.
It was reported that, when the PSNR is fixed, the bit rate saving for the sequence “Flower Garden”
is from 10 to 20%, for “Mobile Calendar” from 6 to 12%, and for “Table Tennis” up to 8%. This
can be translated into a gain in the PSNR ranging from 0.5 to 1.5 dB. Subjectively, the visual
quality is improved greatly. In particular, moving edges become much sharper. Figures 11.18, 11.19,
and 11.20 show a frame from “Flower Garden,” “Mobile Calendar,” and “Table Tennis” sequences,
respectively.

11.6.3 PREDICTIVE MOTION FIELD SEGMENTATION

As pointed at the beginning of Section 11.5, the block-based model, which assumes constant motion
within each block, leads to unreliable motion estimation and compensation. This block effect
becomes more obvious and severe for motion-discontinuous areas in image frames. This is because
there are two or more regions in a block in the areas, each having a different motion. Using one
motion vector to represent and compensate for the whole block results in a significant prediction
error increase.

Orchard (1993) proposed a predictive motion field segmentation technique to improve motion
estimation and compensation along boundaries of moving objects. Significant improvement in the
accuracy of the motion-compensated frame was achieved through relaxing the restrictive block-
based model along moving boundaries. That is, for those blocks involving moving boundaries, the
motion field assumes pixel resolution instead of block resolution.

Two key issues have to be resolved in order to realize the idea. One is the segmentation issue.
It is known that the segmentation information is needed at the receiving end for motion compen-
sation. This gives rise to a large increase in side information. To maintain almost the same amount
of coding cost as the conventional block matching technique, the motion field segmentation was
proposed to be conducted based on previously decoded frames. This scheme is based on the
following observation: the shape of a moving object does not change from frame to frame.

FIGURE 11.18 The 20th frame of the “Flower Garden” sequence.
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This segmentation is similar to the pel recursive technique (which will be discussed in detail
in the next chapter) in the sense that both techniques operate backwards: based on previously
decoded frames. The segmentation is different from the pel recursive method in that it only uses
previously decoded frames to predict the shape of discontinuity in the motion field; not the whole
motion field itself. Motion vectors are still estimated using the current frame at the encoder.

FIGURE 11.19 The 20th frame of the “Mobile and Calendar” sequence.

FIGURE 11.20 The 20th frame of the “Table Tennis” sequence.
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Consequently, this scheme is capable of achieving high accuracy in motion estimation, and at the
same time it does not cause a large increase in side information due to the motion field segmentation.

Another key issue is how to achieve a reconstructed motion field with pixel resolution along
moving boundaries. In order to avoid extra motion vectors that need to be encoded and transmitted,
the motion vectors applied to these segmented regions in the areas of motion discontinuity are
selected from a set of neighboring motion vectors. As a result, the proposed technique is capable
of reconstructing discontinuities in the motion field at pixel resolution while maintaining the same
amount of motion vectors as the conventional block matching technique.

A number of algorithms using this type of motion field segmentation technique have been
developed and their performance has been tested and evaluated on some real video sequences
(Orchard, 1993). Two of the 40-frame test sequences used were the “Table Tennis” and the
“Football” sequences. The former contains fast ball motion and camera zooming, while the latter
contains small objects with relatively moderate amounts of motion and camera panning. Several
proposed algorithms were compared with conventional block matching in terms of average pixel
prediction error energy and bits per frame required for coding prediction error. For the average
pixel prediction error energy, the proposed algorithms achieve a significant reduction, ranging from
–0.7 to –2.8 dB with respect to the “Table Tennis” sequence, and from –1.3 to –4.8 dB with the
“Football” sequence. For bits per frame required for coding prediction error, a reduction of 20 to
30% was reported.

11.6.4 OVERLAPPED BLOCK MATCHING

All the techniques discussed so far in this section aim at more reliable motion estimation. As a
result, they also alleviate annoying block artifacts to a certain extent. In this subsection we discuss
a group of techniques, termed overlapped block matching, developed to alleviate or eliminate block
artifacts (Watanabe, 1991; Nogaki and Ohta, 1992; Auyeung et al., 1992).

The idea is to relax the restriction of a nonoverlapped block partition imposed in the block-
based model in block matching. After the nonoverlapped, fixed size, small rectangular block
partition has been made, each block is enlarged along all four directions from the center of the
block. Refer to Figure 11.21. Both motion estimation (block matching) and motion-compensated
prediction are conducted in the same manner as that in block matching except for the inclusion of

FIGURE 11.21 Overlapped block matching.
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a window function. That is, a 2-D window function is utilized in order to maintain an appropriate
quantitative level along the overlapped portion. The window function decays towards the bound-
aries. In (Nogaki and Ohta, 1992) a sine-shaped window function was used.

Next, we use the algorithm proposed by Nogaki and Ohta as an example to specifically illustrate
this type of technique. Consider one of the enlarged, overlapped original (also known as target)
blocks, T(x,y), with a dimension of l ¥ l. Assume that a vector vi is one of the candidate displacement
vectors under consideration. The predicted version of the target block with vi is denoted by vi, Pvi

(x, y). Thus, the prediction error with vi, Evi
 (x, y) can be calculated according to the following

equation

(11.8)

The window function W(x, y) is applied at this stage as follows, resulting in a window-operated
prediction error with vi, WEvi

.

(11.9)

Assume that the MAD is used as the matching criterion. It can then be determined as usual by
using the window-operated prediction error WEvi

 (x, y). That is,

(11.10)

The best match, which corresponds to the minimum MAD, produces the displacement vector v.
In motion-compensated prediction, the predicted version of the enlarged target block, Pv (x, y)

is derived from the frame at ti-1 by using estimated vector v. The same window function W (x, y)
is used to generate the final window-operated predicted version of the target block. That is,

(11.11)

It was reported by Nogaki (1992) that the luminance signal of an HDTV sequence was used
in computer simulation. A block size of 16 ¥ 16 was used for conventional block matching, while
a block size of 32 ¥ 32 was employed for the proposed overlapped block matching. The maximum
displacement range d was taken as d = 15, i.e., from –15 to +15 in both the horizontal and vertical
directions. The simulation indicated a reduction in the power of the prediction error by about 19%.
Subjectively, it was observed that the blocking edges originally existing in the prediction error
signal with conventional block matching was largely removed with the proposed overlapped block
matching technique.

11.7 SUMMARY

By far, block matching is used more frequently than any other motion estimation technique in
motion-compensated coding. By partitioning a frame into nonoverlapped, equally spaced, fixed
size, small rectangular blocks and assuming that all the pixels in a block experience the same
translational motion, block matching avoids the difficulty encountered in motion estimation of
arbitrarily shaped blocks. Consequently, block matching is much simpler and involves less side
information compared with motion estimation with arbitrarily shaped blocks.
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Although this simple model considers translation motion only, other types of motions, such as
rotation and zooming of large objects, may be closely approximated by the piecewise translation
of these small blocks, provided that these blocks are small enough. This important observation,
originally made by Jain and Jain, has been confirmed again and again since then.

Various issues related to block matching such as selection of block sizes, matching criteria,
search strategies, matching accuracy, and its limitations and improvements are discussed in this
chapter. Specifically, a block size of 16 ¥ 16 is used most often. For more accurate motion estimation,
the size of 8 ¥ 8 is used sometimes. In the latter case, more accurate motion estimation is obtained
at the cost of more side information and higher computational complexity.

There are several different types of matching criteria that can be used in block matching. Since
it was shown that the different criteria do not cause significant differences in block matching, the
mean absolute difference is hence preferred due to its simplicity in implementation.

On the one hand, a full-search procedure delivers good accuracy in searching for the best match.
On the other hand, it requires a large amount of computation. In order to lower computational
complexity, several fast searching procedures were developed: 2-D logarithmic search, coarse-fine
three-step search, and conjugate direction search, to name a few.

Besides these suboptimum search procedures, there are some other measures developed to
lower computation. One of them is subsampling in the original blocks and the correlation windows.
By subsampling, the computational burden in block matching can be reduced drastically, while the
accuracy of the estimated motion vectors may be affected. Therefore, the subsampling procedure
is only recommended for the case with a large block size.

Naturally, the multiresolution structure, a powerful computational configuration in image pro-
cessing, lends itself well to a fast search in block matching. It significantly reduces the computations
involved. Thresholding multiresolution block matching further saves computation.

In terms of matching accuracy, several common choices are one-pixel, half-pixel, and quarter-
pixel accuracies. Spatial interpolation is usually required for half-pixel and quarter-pixel accuracies.
That is, a higher accuracy is achieved with more computation.

Limitations with block matching techniques are mainly an unreliable motion vector field and
block artifacts. Both are caused by the simple model: each block is assumed to experience a uniform
translation. Much efforts have been made to improve these drawbacks. Several techniques that are
an improvement over the conventional block matching technique are discussed in this chapter.

In the hierarchical block matching technique, a set of different sizes for both the original block
and the correlation window are used. The first level in the hierarchy with a large window size and
a large displacement range determines a major portion of the displacement vector reliability. The
successive levels with smaller window sizes and smaller displacement ranges are capable of
adaptively estimating motion vectors more locally.

The multigrid block matching technique uses multigrid structure, another powerful computa-
tional structure in image processing, to provide a variable size block matching. With a split-and-
merge strategy, the thresholding multigrid block matching technique segments an image into a set
of variable size blocks, each of which experiences an approximately uniform motion. A tree structure
(bin-tree or quad-tree) is used to record the relationship between these variable size blocks. With
the flexibility provided through the variable-size methodology, the thresholding block matching
technique is capable of making the motion model of the uniform motion within each block more
accurate than fixed-size block matching can do.

As pointed out in Chapter 10, the ultimate goal of motion compensation in video coding is to
achieve a high coding efficiency. In other words, accurate true motion estimation is not the final
goal. From this point of view, in the above-mentioned multigrid block matching, the decision of
splitting a block is made only when the bits used to encode extra motion vectors involved in the
splitting are less than the bits saved from encoding reduced prediction error due to more accurate
estimation. To this end, an adaptive entropy criterion is proposed and used in the optimal multigrid
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block matching technique. Not only is it optimal in the sense of bit saving, but it also eliminates
the need for setting a threshold.

Apparently the block-based model encounters a more severe problem along moving boundaries.
To solve the problem, the predictive motion field segmentation technique make the blocks involving
moving boundaries have the motion field measured with pixel resolution instead of block resolution.
In order to save shape overhead, segmentation is carried out backwards, i.e., based on previously
decoded frames. In order to avoid a large increase of side information associated with extra motion
vectors, the motion vectors applied to these segmented regions along moving boundaries are selected
from a set of neighboring motion vectors. As a result, the technique is capable of reconstructing
discontinuities in the motion field at pixel resolution while maintaining the same amount of motion
vectors as the conventional block matching technique.

The last improvement over conventional block matching discussed in this chapter is overlapped
block matching. In contrast to dealing with blocks independently of each other, the overlapped
block matching technique enlarges blocks so as to make them overlap. A window function is then
constructed and used in both motion estimation and motion compensation. Because it relaxes the
restriction of a nonoverlapped block partition imposed by conventional block matching, it achieves
better performance than the conventional block matching.

11.8 EXERCISES

11-1. Refer to Figure 11.2. It is said that there are a total of (2d + 1) ¥ (2d + 1) positions that
need to be examined in block matching with full search if one-pixel accuracy is required.
How many positions are there that need to be exmined in block matching with full
search if half-pixel and quarter-pixel accuracies are required?

11-2. What are the two effects that subsampling in the original block and the correlation block
may bring out?

11-3. Read Burt and Adelson (1983) or Burt (1984), and explain why the pyramid is named
after Gauss.

11-4. Read Burt and Adelson (1983) or Burt (1984), and explain why a pyramid structure is
considered as a powerful computational configuration. Specifically, in multiresolutional
block matching, how and to what extent does it save computation dramatically, compared
with the conventional block matching technique? You may want to refer to
Section 11.3.7.

11-5. How is the threshold determined in the thresholding multidimensional block matching
technique (refer to Section 11.3.7). It is said that the square root of the MSE value,
derived from the given PSNR according to Equation 11.6, is used as an initial threshold
value. Justify the necessity of the square root operation.

11-6. Refer to Section 11.6.1 or the paper by Bierling (1988). State the different requirements
in the applications of motion-compensated interpolation and motion-compensated cod-
ing. Discuss where a full resolution of the translational motion vector field may be used?

11-7. Read the paper Dufaux and Moscheni (1995), and explain the main feature of optimal
multigrid block matching. State how the adaptive entropy criterion is established. Imple-
ment the algorithm and compare its performance with that presented by Chan et al.
(1990).

11-8. Learn the predictive motion field segmentation technique (Orchard, 1993). Explain how
the algorithms avoid a large increase in overhead due to motion field segmentation.

11-9. Implement the overlapped block matching algorithm introduced by Nogaki (1992).
Compare its performance with that of the conventional block matching technique.
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Pel Recursive Technique

 

As discussed in Chapter 10, the pel recursive technique is one of the three major approaches to
two-dimensional displacement estimation in image planes for the signal processing community.
Conceptually speaking, it is one type of region-matching technique. In contrast to block matching
(which was discussed in the previous chapter), it 

 

recursively

 

 estimates displacement vectors for

 

each pixel

 

 in an image frame. The displacement vector of a pixel is estimated by recursively
minimizing a nonlinear function of the dissimilarity between two certain regions located in two
consecutive frames. Note that 

 

region

 

 means a group of pixels, but it could be as small as a single
pixel. Also note that the terms 

 

pel

 

 and 

 

pixel

 

 have the same meaning. Both terms are used frequently
in the field of signal and image processing.

This chapter is organized as follows. A general description of the recursive technique is provided
in Section 12.1. Some fundamental techniques in optimization are covered in Section 12.2.
Section 12.3 describes the Netravali and Robbins algorithm, the pioneering work in this category.
Several other typical pel recursive algorithms are introduced in Section 12.4. In Section 12.5, a
performance comparison between these algorithms is made.

 

12.1 PROBLEM FORMULATION

 

In 1979 Netravali and Robbins published the first pel recursive algorithm to estimate displacement
vectors for motion-compensated interframe image coding. Netravali and Robbins (1979) defined a
quantity, called the displaced frame difference (DFD), as follows.

(12.1)

where the subscript 

 

n

 

 and 
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 – 1 indicate two moments associated with two successive frames based
on which motion vectors are to be estimated; 

 

x
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 are coordinates in image planes, 
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 are the
two components of the displacement vector, , along the horizontal and vertical directions in the
image planes, respectively. 
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) can also be expressed as 
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; . Whenever it
does not cause confusion, it can be written as 

 

DFD

 

 for the sake of brevity. Obviously, if there is
no error in the estimation, i.e., the estimated displacement vector is exactly equal to the true motion
vector, then 

 

DFD

 

 will be zero.
A nonlinear function of the 

 

DFD

 

 was then proposed as a dissimilarity measure by Netravali
and Robbins (1979), which is a square function of 

 

DFD

 

, i.e., 

 

DFD

 

2

 

.
Netravali and Robbins thus converted displacement estimation into a minimization problem.

That is, each pixel corresponds to a pair of integers (

 

x

 

, 

 

y

 

), denoting its spatial position in the image
plane. Therefore, the 

 

DFD

 

 is a function of . The estimated displacement vector  = (

 

d

 

x

 

, 

 

d

 

y

 

)

 

T

 

,
where ( )

 

T

 

 denotes the transposition of the argument vector or matrix, can be determined by
minimizing the 

 

DFD

 

2

 

. This is a typical nonlinear programming problem, on which a large body
of research has been reported in the literature. In the next section, several techniques that rely on
a method, called descent method, in optimization are introduced. The Netravali and Robbins
algorithm can be applied to a pixel once or iteratively applied several times for displacement
estimation. Then the algorithm moves to the next pixel. The estimated displacement vector of a
pixel can be used as an initial estimate for the next pixel. This recursion can be carried out
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horizontally, vertically, or temporally. By 

 

temporally

 

, we mean that the estimated displacement
vector can be passed to the pixel of the same spatial position within image planes in a temporally
neighboring frame. Figure 12.1 illustrates these three different types of recursion.

 

12.2 DESCENT METHODS

 

Consider a nonlinear real-valued function 

 

z

 

 of a vector variable ,

(12.2)

with  

 

Œ

 

 

 

R

 

n

 

, where 

 

R

 

n

 

 represents the set of all 

 

n

 

-tuples of real numbers. The question we face now
is how to find such a vector denoted by * that the function 

 

z

 

 is minimized. This is classified as
an unconstrained nonlinear programming problem.
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According to the optimization theory, if 

 

f

 

( ) has continuous first-order partial derivatives, then the
first-order necessary conditions that * has to satisfy are

(12.3)

 

FIGURE 12.1

 

Three types of recursions: (a) horizontal; (b) vertical; (c) temporal.
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where 

 

—

 

 denotes the gradient operation with respect to  evaluated at *. Note that whenever there
is only one vector variable in the function 

 

z

 

 to which the gradient operator is applied, the sign 

 

—

 

would remain without a subscript, as in Equation 12.3. Otherwise, i.e., if there is more than one
vector variable in the function, we will explicitly write out the variable, to which the gradient
operator is applied, as a subscript of the sign 

 

—

 

. In the component form, Equation 12.3 can be
expressed as

(12.4)
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If 

 

F

 

( ) has second-order continuous derivatives, then the second-order sufficient conditions for

 

F

 

( *) to reach the minimum are known as

(12.5)

and

(12.6)

where 

 

H

 

 denotes the Hessian matrix and is defined as follows.

. (12.7)

We can thus see that the Hessian matrix consists of all the second-order partial derivatives of 

 

f

 

 with
respect to the components of . Equation 12.6 means that the Hessian matrix 
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 is positive definite.
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Our aim is to derive an iterative procedure for the minimization. That is, we want to find a sequence
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A fundamental underlying strategy for almost all the descent algorithms (Luenberger, 1984) is
described next. We start with an initial point in the space; we determine a direction to move
according to a certain rule; then we move along the direction to a relative minimum of the function

 

z

 

. This minimum point becomes the initial point for the next iteration.
This strategy can be better visualized using a 2-D example, shown in Figure 12.2. There,  =

(

 

x

 

1

 

, 

 

x

 

2

 

)

 

l

 

. Several closed curves are referred to as 

 

contour

 

 

 

curves

 

 or 

 

level curves

 

. That is, each of
the curves represents

(12.10)

with 

 

c

 

 being a constant.
Assume that at the 

 

k

 

th iteration, we have a guess: 

 

k

 

. For the (

 

k

 

 + l)th iteration, we need to

• Find a search direction, pointed by a vector 

 

k

 

;
• Determine an optimal step size 

 

a

 

k

 

 with 

 

a

 

k

 

 > 0,

such that the next guess 

 

k

 

+1

 

 is

(12.11)

and 

 

k

 

+1

 

 satisfies 

 

f

 

(

 

k

 

) > 

 

f

 

(

 

k

 

+1

 

).
In Equation 12.11, 

 

k

 

 can be viewed as a prediction vector for 

 

k

 

+1

 

, while 

 

a

 

k k

 

 an update
vector, 

 

k

 

. Hence, using the Taylor series expansion, we can have

(12.12)

where 

 

·

 

s
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 denotes the inner product between vectors  and 
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t

 

; and 

 

e

 

 represents the higher-order
terms in the expansion. Consider that the increment of 
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k k

 

 is small enough and, thus, 

 

e

 

 can be
ignored. From Equation 12.10, it is obvious that in order to have 
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< 0. That is,

(12.13)
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Choosing a different update vector, i.e., the product of the k vector and the step size ak, results
in a different algorithm in implementing the descent method.

In the same category of the descent method, a variety of techniques have been developed. The
reader may refer to Luenberger (1984) or the many other existing books on optimization. Two
commonly used techniques of the descent method are discussed below. One is called the steepest
descent method, in which the search direction represented by the  vector is chosen to be opposite
to that of the gradient vector, and a real parameter of the step size ak is used; the other is the
Newton–Raphson method, in which the update vector in estimation, determined jointly by the
search direction and the step size, is related to the Hessian matrix, defined in Equation 12.7. These
two techniques are further discussed in Sections 12.2.5 and 12.2.6, respectively.

12.2.4 CONVERGENCE SPEED

Speed of convergence is an important issue in discussing the descent method. It is utilized to
evaluate the performance of different algorithms.

Order of Convergence — Assume a sequence of vectors { k}, with k = 0, 1, L, •, converges to
a minimum denoted by *. We say that the convergence is of order p if the following formula
holds (Luenberger, 1984):

(12.14)

where p is positive,  denotes the limit superior, and | | indicates the magnitude or norm of a
vector argument. For the two latter notions, more descriptions follow.

The concept of the limit superior is based on the concept of supremum. Hence, let us first
discuss the supremum. Consider a set of real numbers, denoted by Q, that is bounded above. Then
there must exist a smallest real number o such that for all the real numbers in the set Q, i.e., q Œ
Q, we have q £ o. This real number o is referred to as the least upper bound or the supremum of
the set Q, and is denoted by

(12.15)

Now turn to a real bounded above sequence r k, k = 0,1,L,•. If sk = sup{r j: j ≥ k}, then the sequence
{sk} converges to a real number s*. This real number s* is referred to as the limit superior of the
sequence {r k} and is denoted by

(12.16)

The magnitude or norm of a vector , denoted by � �, is defined as

(12.17)

where ·s, tÒ is the inner product between the vector  and . Throughout this discussion, when we
say vector we mean column vector. (Row vectors can be handled accordingly.) The inner product
is therefore defined as

(12.18)
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with the superscript T indicating the transposition operator.
With the definitions of the limit superior and the magnitude of a vector introduced, we are now

in a position to understand easily the concept of the order of convergence defined in Equation 12.14.
Since the sequences generated by the descent algorithms behave quite well in general (Luenberger,
1984), the limit superior is rarely necessary. Hence, roughly speaking, instead of the limit superior,
the limit may be used in considering the speed of convergence.

Linear Convergence — Among the various orders of convergence, the order of unity is of
importance, and is referred to as linear convergence. Its definition is as follows. If a sequence { k},
k = 0,1,L,•, converges to * with

(12.19)

then we say that this sequence converges linearly with a convergence ratio g. The linear convergence
is also referred to as geometric convergence because a linear convergent sequence with convergence
ratio g converges to its limit at least as fast as the geometric sequences cg k, with c being a constant.

12.2.5 STEEPEST DESCENT METHOD

The steepest descent method, often referred to as the gradient method, is the oldest and simplest
one among various techniques in the descent method. As Luenberger pointed out in his book, it
remains the fundamental method in the category for the following two reasons. First, because of
its simplicity, it is usually the first method attempted for solving a new problem. This observation
is very true. As we shall see soon, when handling the displacement estimation as a nonlinear
programming problem in the pel recursive technique, the first algorithm developed by Netravali
and Robbins is essentially the steepest descent method. Second, because of the existence of a
satisfactory analysis for the steepest descent method, it continues to serve as a reference for
comparing and evaluating various newly developed and more advanced methods.

Formula — In the steepest descent method, k is chosen as

(12.20)

resulting in

(12.21)

where the step size ak is a real parameter, and, with our rule mentioned before, the sign — here
denotes a gradient operator with respect to k. Since the gradient vector points to the direction
along which the function f( ) has greatest increases, it is naturally expected that the selection of
the negative direction of the gradient as the search direction will lead to the steepest descent of
f( ). This is where the term steepest descent originated.

Convergence Speed — It can be shown that if the sequence { } is bounded above, then the steepest
descent method will converge to the minimum. Furthermore, it can be shown that the steepest
descent method is linear convergent.

Selection of Step Size — It is worth noting that the selection of the step size ak has significant
influence on the performance of the algorithm. In general, if it is small, it produces an accurate
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estimate of *. But a smaller step size means it will take longer for the algorithm to reach the
minimum. Although a larger step size will make the algorithm converge faster, it may lead to an
estimate with large error. This situation can be demonstrated in Figure 12.3. There, for the sake of
an easy graphical illustration,  is assumed to be one dimensional. Two cases of too small (with
subscript 1) and too large (with subscript 2) step sizes are shown for comparison.

12.2.6 NEWTON-RAPHSON’S METHOD

The Newton–Raphson method is the next most popular method among various descent methods.

Formula — Consider k at the kth iteration. The k + 1th guess, k+1, is the sum of k and k,

(12.22)

where k is an update vector as shown in Figure 12.4. Now expand the k+1 into the Taylor series
explicitly containing the second-order term.

(12.23)

where j denotes the higher-order terms, — the gradient, and H the Hessian matrix. If  is small
enough, we can ignore the j. According to the first-order necessary conditions for k+1 to be the
minimum, discussed in Section 12.2.1, we have

(12.24)

FIGURE 12.3 An illustration of effect of selection of step size on minimization performance. Too small a
requires more steps to reach x*. Too large a may cause overshooting.

FIGURE 12.4 Derivation of the 
Newton–Raphson method.
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where —v denotes the gradient operator with respect to . This leads to

(12.25)

The Newton–Raphson method is thus derived below.

(12.26)

Another loose and intuitive way to view the Newton–Raphson method is that its format is similar
to the steepest descent method, except that the step size ak is now chosen as H–1 ( k), the inverse
of the Hessian matrix evaluated at k.

The idea behind the Newton–Raphson method is that the function being minimized is approx-
imated locally by a quadratic function and this quadratic function is then minimized. It is noted
that any function will behave like a quadratic function when it is close to the minimum. Hence,
the closer to the minimum, the more efficient the Newton–Raphson method. This is the exact
opposite of the steepest descent method, which works more efficiently at the beginning, and less
efficiently when close to the minimum. The price paid with the Newton–Raphson method is the
extra calculation involved in evaluating the inverse of the Hessian matrix at k.

Convergence Speed — Assume that the second-order sufficient conditions discussed in
Section 12.2.2 are satisfied. Furthermore, assume that the initial point 0 is sufficiently close to
the minimum *. Then it can be shown that the Newton–Raphson method converges with an order
of at least two. This indicates that the Newton–Raphson method converges faster than the steepest
descent method.

Generalization and Improvements — In Luenberger (1984), a general class of algorithms is
defined as

(12.27)

where G denotes an n ¥ n matrix, and ak a positive parameter. Both the steepest descent method
and the Newton–Raphson method fall into this framework. It is clear that if G is an n ¥ n identical
matrix I, this general form reduces to the steepest descent method. If G = H and a = 1 then this
is the Newton–Raphson method.

Although it descends rapidly near the solution, the Newton–Raphson method may not descend
for points far away from the minimum because the quadratic approximation may not be valid there.
The introduction of the ak, which minimizes f, can guarantee the descent of f at the general points.
Another improvement is to set G = [zkI + H( k)]–1 with z ≥ 0. Obviously, this is a combination of
the steepest descent method and the Newton–Raphson method. Two extreme ends are that the
steepest method (very large zk) and the Newton–Raphson method (zk = 0). For most cases, the
selection of the parameter zk aims at making the G matrix positive definite.

12.2.7 OTHER METHODS

There are other gradient methods such as the Fletcher–Reeves method (also known as the conjugate
gradient method) and the Fletcher–Powell–Davidon method (also known as the variable metric
method). Readers may refer to Luenberger (1984) or other optimization text.

12.3 THE NETRAVALI–ROBBINS PEL RECURSIVE ALGORITHM

Having had an introduction to some basic nonlinear programming theory, we now turn to the pel
recursive technique in displacement estimation from the perspective of the descent methods. Let
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us take a look at the first pel recursive algorithm, the Netravali–Robbins pel recursive algorithm.
It actually estimates displacement vectors using the steepest descent method to minimize the squared
DFD. That is,

(12.28)

where — DFD2(x, y, k) denotes the gradient of DFD2 with respect to  evaluated at k, the
displacement vector at the kth iteration, and a is positive. This equation can be further written as

(12.29)

A a result of Equation 12.1, the above equation leads to

(12.30)

where —x, y means a gradient operator with respect to x and y. Netravali and Robbins (1979) assigned
a constant of 1/1024 to a, i.e., 1/1024.

12.3.1 INCLUSION OF A NEIGHBORHOOD AREA

To make displacement estimation more robust, Netravali and Robbins considered an area for
evaluating the DFD2 in calculating the update term. More precisely, they assume the displacement
vector is constant within a small neighborhood W of the pixel for which the displacement is being
estimated. That is,

(12.31)

where i represents an index for the ith pixel (x, y) within W, and wi is the weight for the ith pixel
in W . All the weights satisfy the following two constraints.

(12.32)

(12.33)

This inclusion of a neighborhood area also explains why pel recursive technique is classified into
the category of region-matching techniques as we discussed at the beginning of this chapter.

12.3.2 INTERPOLATION

It is noted that interpolation will be necessary when the displacement vector components dx and
dy are not integer numbers of pixels. A bilinear interpolation technique is used by Netravali and
Robbins (1979). For the bilinear interpolation, readers may refer to Chapter 10.

12.3.3 SIMPLIFICATION

To make the proposed algorithm more efficient in computation, Netravali and Robbins also proposed
simplified versions of the displacement estimation and interpolation algorithms in their paper.
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One simplified version of the Netravali and Robbins algorithm is as follows:

(12.34)

where sign{s} = 0, 1, –1, depending on s = 0, s > 0, s < 0, respectively, while the sign of a vector
quantity is the vector of signs of its components. In this version the update vectors can only assume
an angle which is an integer multiple of 45°. As shown in Netravali and Robbins (1979), this version
is effective.

12.3.4 PERFORMANCE

The performance of the Netravali and Robbins algorithm has been evaluated using computer
simulation (Netravali and Robbins, 1979). Two video sequences with different amounts and different
types of motion are tested. In either case, the proposed pel recursive algorithm displays superior
performance over the replenishment algorithm (Mounts, 1969; Haskell, 1979), which was discussed
briefly in Chapter 10. The Netravali and Robbins algorithm achieves a bit rate which is 22 to 50%
lower than that required by the replenishment technique with the simple frame difference prediction.

12.4 OTHER PEL RECURSIVE ALGORITHMS

The progress and success of the Netravali and Robbins algorithm stimulated great research interests
in pel recursive techniques. Many new algorithms have been developed. Some of them are discussed
in this section.

12.4.1 THE BERGMANN ALGORITHM (1982)

Bergmann modified the Netravali and Robbins algorithm by using the Newton–Raphson method
(Bergmann, 1982). In doing so, the following difference between the fundamental framework of
the descent methods discussed in Section 12.2 and the minimization problem in displacement
estimation discussed in Section 12.3 need to be noticed. That is, the object function f( ) discussed
in Section 12.2 now becomes DFD2(x, y, ). The Hessian matrix H, consisting of the second-order
partial derivatives of the f( ) with respect to the components of  now become the second-order
derivatives of DFD2 with respect to dx and dy. Since the vector  is a 2-D column vector now, the
H matrix is hence a 2 ¥ 2 matrix. That is,

(12.35)

As expected, the Bergmann algorithm (1982) converges to the minimum faster than the steepest
descent method since the Newton–Raphson method converges with an order of at least two.

12.4.2 THE BERGMANN ALGORITHM (1984)

Based on the Burkhard and Moll algorithm (Burkhard and Moll, 1979), Bergmann developed an
algorithm that is similar to the Newton–Raphson algorithm. The primary difference is that an
average of two second-order derivatives is used to replace those in the Hessian matrix. In this sense,
it can be considered as a variation of the Newton–Raphson algorithm.
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12.4.3 THE CAFFORIO AND ROCCA ALGORITHM

Based on their early work (Cafforio and Rocca, 1975), Cafforio and Rocca proposed an algorithm
in 1982, which is essentially the steepest descent method. That is, the step size a is defined as
follows (Cafforio and Rocca, 1982):

(12.36)

with h2 = 100. The addition of h2 is intended to avoid the problem that would have occurred in a
uniform region where the gradients are very small.

12.4.4 THE WALKER AND RAO ALGORITHM

Walker and Rao developed an algorithm based on the steepest descent method (Walker and Rao,
1984; Tekalp, 1995), and also with a variable step size. That is,

(12.37)

where

(12.38)

It is observed that this step size is variable instead of being a constant. Furthermore, this variable
step size is reverse proportional to the norm square of the gradient of fn–1 (x – dx, y – dy) with
respect to x, y. That means this type of step size will be small in the edge or rough area, and will
be large in the relatively smooth area. These features are desirable.

Although it is quite similar to the Cafforio and Rocca algorithm, the Walker and Rao algorithm
differs in the following two aspects. First, the a is selected differently. Second, implementation of
the algorithm is different. For instance, instead of putting an h2 in the denominator of a, the Walker
and Rao algorithm uses a logic.

As a result of using the variable step size a, the convergence rate is improved substantially.
This implies fast implementation and accurate displacement estimation. It was reported that usually
one to three iterations are able to achieve quite satisfactory results in most cases.

Another contribution is that the Walker and Rao algorithm eliminates the need to transmit
explicit address information to bring out higher coding efficiency.

12.5 PERFORMANCE COMPARISON

A comprehensive survey of various algorithms using the pel recursive technique can be found in
a paper by Musmann, Pirsch, and Grallert (1985). There, two performance features are compared
among the algorithms. One is the convergence rate and hence the accuracy of displacement
estimation. The other is the stability range. By stability range, we mean a range starting from which
an algorithm can converge to the minimum of DFD2, or the true displacement vector.

Compared with the Netravali and Robbins algorithm, those improved algorithms discussed in
the previous section do not use a constant step size, thus providing better adaptation to local image
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statistics. Consequently, they achieve a better convergence rate and more accurate displacement
estimation. According to Bergmann (1984) and Musmann et al. (1985), the Bergmann algorithm
(1984) performs best among these various algorithms in terms of convergence rate and accuracy.

According to Musmann et al. (1985), the Newton–Raphson algorithm has a relatively smaller
stability range than the other algorithms. This agrees with our discussion in Section 12.2.2. That
is, the performance of the Newton–Raphson method improves when it works in the area close to
the minimum. The choice of the initial guess, however, is relatively more restricted.

12.6 SUMMARY

The pel recursive technique is one of three major approaches to displacement estimation for motion
compensation. It recursively estimates displacement vectors in a pixel-by-pixel fashion. There are
three types of recursion: horizontal, vertical, and temporal. Displacement estimation is carried out
by minimizing the square of the displaced frame difference (DFD). Therefore, the steepest descent
method and the Newton–Raphson method, the two most fundamental methods in optimization,
naturally find their application in pel recursive techniques. The pioneering Netravali and Robbins
algorithm and several other algorithms such as the Bergmann (1982), the Cafforio and Rocca, the
Walker and Rao, and the Bergmann (1984) are discussed in this chapter. They can be classified
into one of two categories: the steepest-descent-based algorithms or the Newton–Raphson-based
algorithms. Table 12.1 contains a classification of these algorithms.

Note that the DFD can be evaluated within a neighborhood of the pixel for which a displacement
vector is being estimated. The displacement vector is assumed constant within this neighborhood.
This makes the displacement estimation more robust against various noises.

Compared with the replenishment technique with simple frame difference prediction (the first
real interframe coding algorithm), the Netravali and Robbins algorithm (the first pel recursive
technique) achieves much higher coding efficiency. Specifically, a 22 to 50% savings in bit rate
has been reported for some computer simulations. Several new pel recursive algorithms have made
further improvements in terms of the convergence rate and the estimation accuracy through replace-
ment of the fixed step size utilized in the Netravali and Robbins algorithm, which make these
algorithms more adaptive to the local statistics in image frames.

12.7 EXERCISES

12-1. What is the definition of the displaced frame difference? Justify Equation 12.1.
12-2. Why does the inclusion of a neighborhood area make the pel recursive algorithm more

robust against noise?
12-3. Compare the performance of the steepest descent method with that of the Newton–Raph-

son method.

TABLE 12.1
Classification of Several Pel Recursive Algorithms

Algorithms
Category I

Steepest Descent Based
Category II

Newton–Raphson Based

Netravali and Robbins Steepest descent
Bergmann (1982) Newton–Raphson
Walker and Rao Variation of steepest descent
Cafforio and Rocca Variation of steepest descent
Bergmann (1984) Variation of Newton–Raphson
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12-4. Explain the function of h2 in the Cafforio and Rocca algorithm.
12-5. What is the advantage you expect to have from the Walker and Rao algorithm?
12-6. What is the difference between the Bergmann algorithm (1982) and the Bergmann

algorithm (1984)?
12-7. Why does the Newton–Raphson method have a smaller stability range?
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Optical Flow

 

As mentioned in Chapter 10, optical flow is one of three major techniques that can be used to
estimate displacement vectors from successive image frames. As opposed to the other two displace-
ment estimation techniques discussed in Chapters 11 and 12, block matching and pel recursive
method, however, the optical flow technique was developed primarily for 3-D motion estimation
in the computer vision community. Although it provides a relatively more accurate displacement
estimation than the other two techniques, as we shall see in this and the next chapter, optical flow
has not yet found wide applications for motion-compensated video coding. This is mainly due to
the fact that there are a large number of motion vectors (one vector per pixel) involved, hence, the
more side information that needs to be encoded and transmitted. As emphasized in Chapter 11, we
should not forget the ultimate goal in motion-compensated video coding: to encode video data with
a 

 

total

 

 bit rate as low as possible, while maintaining a satisfactory quality of reconstructed video
frames at the receiving end. If the extra bits required for encoding a large amount of optical flow
vectors counterbalance the bits saved in encoding the prediction error (as a result of more accurate
motion estimation), then the usage of optical flow in motion-compensated coding is not worthwhile.
Besides, more computation is required in optical flow determination. These factors have prevented
optical flow from being practically utilized in motion-compensated video coding. With the continued
advance in technologies, however, we believe this problem may be resolved in the near future. In
fact, an initial, successful attempt has been made (Shi et al., 1998).

On the other hand, in theory, the optical flow technique is of great importance in understanding
the fundamental issues in 2-D motion determination, such as the aperture problem, the conservation
and neighborhood constraints, and the distinction and relationship between 2-D motion and 2-D
apparent motion.

In this chapter we focus on the optical flow technique. In Section 13.1, as stated above, some
fundamental issues associated with optical flow are addressed. Section 13.2 discusses the differential
method. The correlation method is covered in Section 13.3. In Section 13.4, a multiple attributes
approach is presented. Some performance comparisons between various techniques are included
in Sections 13.3 and 13.4. A summary is given in Section 13.5.

 

13.1 FUNDAMENTALS

 

Optical flow is referred to as the 2-D distribution of apparent velocities of movement of intensity
patterns in an image plane (Horn and Schunck, 1981). In other words, an optical flow field consists
of a dense velocity field with one velocity vector for each pixel in the image plane. If we know
the time interval between two consecutive images, which is usually the case, then velocity vectors
and displacement vectors can be converted from one to another. In this sense, optical flow is one
of the techniques used for displacement estimation.
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In the above definition, it is noted that the word 

 

apparent

 

 is used and nothing about 3-D motion
in the scene is stated. The implication behind this observation is discussed in this subsection. We
start with the definition of 2-D motion. 2-D motion is referred to as motion in a 2-D image plane
caused by 3-D motion in the scene. That is, 2-D motion is the projection (commonly perspective
projection) of 3-D motion in the scene onto the 2-D image plane. This can be illustrated by using
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a very simple example, shown in Figure 13.1. There the world coordinate system 

 

O

 

-

 

XYZ

 

 and the
camera coordinate systems 

 

o

 

-

 

xyz

 

 are aligned. The point 

 

C

 

 is the optical center of the camera. A
point 

 

A

 

1

 

 moves to 

 

A

 

2

 

, while its perspective projection moves correspondingly from 

 

a

 

1

 

 to 

 

a

 

2

 

. We
then see that a 2-D motion (from 

 

a

 

1

 

 to 

 

a

 

2

 

) in image plane is invoked by a 3-D motion (from 

 

A

 

1

 

 to

 

A

 

2

 

) in 3-D space. By a 2-D motion field, or sometimes image flow, we mean a dense 2-D motion
field: One velocity vector for each pixel in the image plane.

Optical flow, according to its definition, is caused by movement of intensity patterns in an
image plane. Therefore 2-D motion (field) and optical flow (field) are generally different. To support
this conclusion, let us consider the following two examples. One is given by Horn and Schunck
(1981). Imagine a uniform sphere rotating with a constant speed in the scene. Assume the luminance
and all other conditions do not change at all when pictures are taken. Then, there is no change in
brightness patterns in the images. According to the definition of optical flow, the optical flow is
zero, whereas the 2-D motion field is obviously not zero. At the other extreme, consider a stationary
scene; all objects in 3-D world space are still. If illuminance changes when pictures are taken in
such a way that there is movement of intensity patterns in image planes, as a consequence, optical
flow may be nonzero. This confirms a statement made by Singh (1991): the scene does not have
to be in motion relative to the image for the optical flow field to be nonzero. It can be shown that
the 2-D motion field and the optical flow field are equal under certain conditions. Understanding
the difference between the two quantities and the conditions under which they are equal is important.

This understanding can provide us with some sort of guide to evaluate the reliability of
estimating 3-D motion from optical flow. This is because, in practice, time-varying image sequences
are only what we have at hand. The task in computer vision is to interpret 3-D motion from time-
varying sequences. Therefore, we can only work with optical flow in estimating 3-D motion. Since
the main focus of this book is on image and video coding, we do not cover these equality conditions
here. Interested readers may refer to Singh (1991). In motion-compensated video coding, it is
likewise true that the image frames and video data are only what we have at hand. We also, therefore,
have to work with optical flow. Our attention is thus turned to optical flow determination and its
usage in video data compression.

 

13.1.2 A

 

PERTURE

 

 P

 

ROBLEM

 

The aperture problem is an important issue, originating in optics. Since it is inherent in the local
estimation of optical flow, we address this issue in this subsection. In optics, apertures are openings
in flat screens (Bracewell, 1995). Therefore, apertures can have various shapes, such as circular,
semicircular, and rectangular. Examples of apertures include a thin slit or array of slits in a screen.
A circular aperture, a round hole made on the shutter of a window, was used by Newton to study
the composition of sunlight. It is also well known that the circular aperture is of special interest in
studying the diffraction pattern (Sears et al., 1986).

 

FIGURE 13.1

 

2-D motion vs. 3-D motion.
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Roughly speaking, the aperture problem in motion analysis refers to the problem that occurs
when viewing motion via an aperture, i.e., a small opening in a flat screen. Marr (1982) states that
when a straight moving edge is observed through an aperture, only the component of motion
orthogonal to the edge can be measured. Let us examine some simple examples depicted in
Figure 13.2. In Figure 13.2(a), a large rectangular 

 

ABCD

 

 is located in the 

 

XOZ

 

 plane. A rectangular
screen 

 

EFGH

 

 with a circular aperture is perpendicular to the 

 

OY

 

 axis. Figure 13.2(b) and (c) show,
respectively, what is observed through the aperture when the rectangular 

 

ABCD

 

 is moving along
the positive 

 

X

 

 and 

 

Z

 

 directions with a uniform speed. Since the circular opening is small and the
line 

 

AB

 

 is very long, no motion will be observed in Figure 13.2(b). Obviously, in Figure 13.2(c)
the upward movement can be observed clearly. In Figure 13.2(d), the upright corner of the rectangle

 

ABCD

 

, angle 

 

B

 

, appears. At this time the translation along any direction in the 

 

XOZ

 

 plane can be
observed clearly. The phenomena observed in this example demonstrate that it is sometimes
impossible to estimate motion of a pixel by only observing a small neighborhood surrounding it.
The only motion that can be estimated from observing a small neighborhood is the motion
orthogonal to the underlying moving contour. In Figure 13.2(b), there is no motion orthogonal to
the moving contour 

 

AB

 

; the motion is aligned with the moving contour 

 

AB

 

, which cannot be
observed through the aperture. Therefore, no motion can be observed through the aperture. In
Figure 13.2(c), the observed motion is upward, which is perpendicular to the horizontal moving
contour 

 

AB

 

. In Figure 13.2(d), any translation in the 

 

XOZ

 

 plane can be decomposed into horizontal
and vertical components. Either of these two components is orthogonal to one of the two moving
contours: 

 

AB

 

 or 

 

BC

 

.
A more accurate statement on the aperture problem needs a definition of the so-called normal

optical flow. The normal optical flow refers to the component of optical flow along the direction
pointed by the local intensity gradient. Now we can make a more accurate statement: the only
motion in an image plane that can be determined is the normal optical flow.

In general, the aperture problem becomes severe in image regions where strong intensity
gradients exist, such as at the edges. In image regions with strong higher-order intensity variations,
such as corners or textured areas, the true motion can be estimated. Singh (1991) provides a more
elegant discussion on the aperture problem, in which he argues that the aperture problem should
be considered as a continuous problem (it always exists, but in varying degrees of acuteness) instead
of a binary problem (either it exists or it does not).
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Motion estimation from image sequences, including optical flow estimation, belongs in the category
of inverse problems. This is because we want to infer motion from given 2-D images, which is the
perspective projection of 3-D motion. According to Hadamard (Bertero et al., 1988), a mathematical
problem is well posed if it possesses the following three characteristics:

1. Existence. That is, the solution exists.
2. Uniqueness. That is, the solution is unique.
3. Continuity. That is, when the error in the data tends toward zero, then the induced error

in the solution tends toward zero as well.

Inverse problems usually are not well posed in that the solution may not exist. In the example
discussed in Section 13.1.1, i.e., a uniform sphere rotated with illuminance fixed, the solution to
motion estimation does not exist since no motion can be inferred from given images. The aperture
problem discussed in Section 13.1.2 is the case in which the solution to the motion may not be unique.
Let us take a look at Figure 13.2(b). From the given picture, one cannot tell whether the straight line

 

AB

 

 is static, or is moving horizontally. If it is moving horizontally, one cannot tell the moving speed.
In other words, infinitely many solutions exist for the case. In optical flow determination, we will
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see that computations are noise sensitive. That is, even a small error in the data can produce an
extremely large error in the solution. Hence, we see that the motion estimation from image sequences
suffers from all three aspects just mentioned: nonexistence, nonuniqueness, and discontinuity. The
last term is also referred to as the instability of the solution.

 

(a)

(b)

(c)

(d)

 

FIGURE 13.2

 

(a) Aperture problem: A large rectangle ABCD is located in the 

 

XOZ

 

 plane. A rectangular
screen 

 

EFGH

 

 with a circular aperture is perpendicular to the 

 

OY

 

 axis. (b) Aperture problem: No motion can
be observed through the circular aperture when the rectangular 

 

ABCD

 

 is moving along the positive 

 

X

 

 direction.
(c) Aperture problem: The motion can be observed through the circular aperture when the 

 

ABCD

 

 is moving
along the positive 

 

Z

 

 direction. (d) Aperture problem: The translation of 

 

ABCD

 

 along any direction in the 

 

XOZ

 

plane can be observed through the circular aperture when the upright corner of the rectangle 

 

ABCD

 

, angle 

 

B

 

,
appears in the aperture.
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It is pointed out by Bertero et al. (1988) that all the low-level processing (also known as early
vision) in computational vision are inverse problems and are often ill posed. Examples in low-level
processing include motion recovery, computation of optical flow, edge detection, structure from
stereo, structure from motion, structure from texture, shape from shading, and so on. Fortunately,
the problem with early vision is mildly ill posed in general. By 

 

mildly

 

, we mean that a reduction
of errors in the data can significantly improve the solution.

Since the early 1960s, the demand for accurate approximates and stable solutions in areas such
as optics, radioastronomy, microscopy, and medical imaging has stimulated great research efforts
in inverse problems, resulting in a unified theory: the regularization theory of ill-posed problems
(Tikhonov and Arsenin, 1977). In the discussion of optical flow methods, we shall see that some
regularization techniques have been posed and have improved accuracy in flow determination.
More-advanced algorithms continue to come.
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Optical flow in image sequences provides important information regarding both motion and struc-
ture, and it is useful in such diverse fields as robot vision, autonomous navigation, and video coding.
Although this subject has been studied for more than a decade, reducing the error in the flow
estimation remains a difficult problem. A comprehensive review and a comparison of the accuracy
of various optical flow techniques have recently been made (Barron et al., 1994). So far, most of
the techniques in the optical flow computations use one of the following basic approaches:

• Gradient-based (Horn and Schunck, 1981; Lucas and Kanade, 1981; Nagel and Enkel-
man, 1986; Uras et al., 1988; Szeliski et al., 1995; Black and Anandan, 1996),

• Correlation-based (Anandan, 1989; Singh, 1992; Pan et al., 1998),
• Spatiotemporal energy-based (Adelson and Bergen, 1985; Heeger, 1988; Bigun et al.,

1991),
• Phase-based (Waxman et al., 1988; Fleet and Jepson, 1990).

Besides these deterministic approaches, there is the stochastic approach to optical flow com-
putation (Konrad and Dubois, 1992). In this chapter we focus our discussion of optical flow on the
gradient-based and correlation-based techniques because of their frequent applications in practice
and fundamental importance in theory. We also discuss multiple attribute techniques in optical flow
determination. The other two approaches will be briefly touched upon when we discuss new
techniques in motion estimation in the next chapter.

 

13.2 GRADIENT-BASED APPROACH

 

It is noted that before the methods of optical flow determination were actually developed, optical
flow had been discussed and exploited for motion and structure recovery from image sequences in
computer vision for years. That is, the optical flow field was assumed to be available in the study
of motion recovery. The first type of methods in optical flow determination is referred to as gradient-
based techniques. This is because the spatial and temporal partial derivatives of intensity function
are utilized in these techniques. In this section, we present the Horn and Schunck algorithm. It is
regarded as the most prominent representative of this category. After the basic concepts are pre-
sented, some other methods in this category are briefly discussed.
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We shall begin with a very general framework (Shi et al., 1994) to derive a brightness time-
invariance equation. We then introduce the Horn and Schunck method.
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13.2.1.1 Brightness Invariance Equation

 

As stated in Chapter 10, the imaging space can be represented by

, (13.1)

where  indicates the sensor’s position in 3-D world space, i.e., the coordinates of the sensor center
and the orientation of the optical axis of the sensor. The  is a 5-D vector. That is,  where ( ˜

 

x

 

, ˜

 

y

 

, ˜

 

z

 

,

 

b

 

, 

 

g

 

), where ˜

 

x

 

, ˜

 

y

 

, and ˜

 

z

 

 represent the coordinate of the optical center of the sensor in 3-D world
space; and 

 

b

 

 and 

 

g

 

 represent the orientation of the optical axis of the sensor in 3-D world space,
the Euler angles, pan and tilt, respectively.

With this very general notion, each picture, which is taken by a sensor located on a particular
position at a specific moment, is merely a special cross section of this imaging space. Both temporal
and spatial image sequences become a proper subset of the imaging space.

Assume now a world point 

 

P

 

 in 3-D space that is perspectively projected onto the image plane
as a pixel with the coordinates 

 

x

 

P

 

 and 

 

y

 

P

 

. Then, 

 

x

 

P

 

 and 

 

y

 

P

 

 are also dependent on 

 

t

 

 and . That is,

(13.2)

If the optical radiation of the world point 

 

P

 

 is invariant with respect to the time interval from 

 

t

 

1

 

 to

 

t

 

2

 

, we then have

(13.3)

This is the brightness time-invariance equation.
At a specific moment 

 

t

 

1

 

, if the optical radiation of 

 

P

 

 is isotropical we then get

(13.4)

This is the brightness space-invariance equation.
If both conditions are satisfied, we get the brightness time-and-space-invariance equation, i.e.,

(13.5)

Consider two brightness functions 
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D
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D

 

) in which the variation in time, 

 

D

 

t

 

, and the variation in the spatial position of
the sensor, 

 

D

 

, are very small. Due to the time-and-space-invariance of brightness, we can get

(13.6)

The expansion of the right-hand side of the above equation in the Taylor series at (

 

t, 

 

) and the
use of Equation 13.5 lead to

(13.7)
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where

If D  = 0, i.e., the sensor is static in a fixed spatial position (in other words, both the coordinate
of the optical center of the sensor and its optical axis direction remain unchanged), dividing both
sides of the equation by Dt and evaluating the limit as Dt Æ 0 degenerate Equation 13.7 into

(13.8)

If Dt = 0, both its sides are divided by D , and D  Æ 0 is examined. Equation 13.7 then reduces to

(13.9)

When Dt = 0, i.e., at a specific time moment, the images generated with sensors at different spatial
positions can be viewed as a spatial sequence of images. Equation 13.9 is, then, the equation for
the spatial sequence of images.

For the sake of brevity, we will focus on the gradient-based approach to optical flow determi-
nation with respect to temporal image sequences. That is, in the rest of this section we will address
only Equation 13.8. It is noted that the derivation can be extended to spatial image sequences. The
optical flow technique for spatial image sequences is useful in stereo image data compression. It
plays an important role in motion and structure recovery. Interested readers are referred to Shi et al.
(1994) and Shu and Shi (1993).

13.2.1.2 Smoothness Constraint

A careful examination of Equation 13.8 reveals that we have two unknowns: u and v, i.e., the
horizontal and vertical components of an optical flow vector at a three-tuple (x, y, t), but only one
equation to relate them. This once again demonstrates the ill-posed nature of optical flow determi-
nation. This also indicates that there is no way to compute optical flow by considering a single
point of the brightness pattern moving independently. As stated in Section 13.1.3, some regular-
ization measure — here an extra constraint — must be taken to overcome the difficulty.

A most popularly used constraint was proposed by Horn and Schunck and is referred to as the
smoothness constraint. As the name implies, it constrains flow vectors to vary from one to another
smoothly. Clearly, this is true for points in the brightness pattern most of the time, particularly for
points belonging to the same object. It may be violated, however, along moving boundaries.
Mathematically, the smoothness constraint is imposed in optical flow determination by minimizing
the square of the magnitude of the gradient of the optical flow vectors:

(13.10)

It can be easily verified that the smoother the flow vector field, the smaller these quantities. Actually,
the square of the magnitude of the gradient of intensity function with respect to the spatial
coordinates, summed over a whole image or an image region, has been used as a smoothness
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measure of the image or the image region in the digital image processing literature (Gonzalez and
Woods, 1992).

13.2.1.3 Minimization

Optical flow determination can then be converted into a minimization problem.
The square of the left-hand side of Equation 13.8, which can be derived from the brightness

time-invariance equation, represents one type of error. It may be caused by quantization noise or
other noises and can be written as

(13.11)

The smoothness measure expressed in Equation 13.10 denotes another type of error, which is

(13.12)

The total error to be minimized is

(13.13)

where a is a weight between these two types of errors. The optical flow quantities u and v can be
found by minimizing the total error. Using the calculus of variation, Horn and Schunck derived
the following pair of equations for two unknown u and v at each pixel in the image.

(13.14)

where

—2 denotes the Laplacian operator. The Laplacian operator of u and v are defined below.

(13.15)
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13.2.1.4 Iterative Algorithm

Instead of using the classical algebraic method to solve the pair of equations for u and v, Horn and
Schunck adopted the Gaussian Seidel (Ralston and Rabinowitz, 1978) method to have the following
iterative procedure:

(13.16)

where the superscripts k and k + 1 are indexes of iteration and –u, –v are the local averages of u and
v, respectively.

Horn and Schunck define –u, –v as follows:

(13.17)

The estimation of the partial derivatives of intensity function and the Laplacian of flow vectors
need to be addressed. Horn and Schunck considered a 2 ¥ 2 ¥ 2 spatiotemporal neighborhood,
shown in Figure 13.3, for estimation of partial derivatives fx, fy, and ft. Note that replacing the first-
order differentiation by the first-order difference is a common practice in managing digital images.
The arithmetic average can remove the noise effect, thus making the obtained first-order differences
less sensitive to various noises.

The Laplacian of u and v are approximated by

(13.18)

Equivalently, the Laplacian of u and v, —2(u) and —2(v), can be obtained by applying a 3 ¥ 3 window
operator, shown in Figure 13.4, to each point in the u and v planes, respectively.

Similar to the pel recursive technique discussed in the previous chapter, there are two different
ways to iterate. One way is to iterate at a pixel until a solution is steady. Another way is to iterate
only once for each pixel. In the latter case, a good initial flow vector is required and is usually
derived from the previous pixel.

13.2.2 MODIFIED HORN AND SCHUNCK METHOD

Observing that the first-order difference is used to approximate the first-order differentiation in
Horn and Schunck’s original algorithm, and regarding this as a relatively crude form and a source
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of error, Barron, Fleet, and Beauchemin developed a modified version of the Horn and Schunck
method (Barron et al., 1994).

It features a spatiotemporal presmoothing and a more-advanced approximation of differentia-
tion. Specifically, it uses a Gaussian filter as a spatiotemporal prefilter. By the term Gaussian filter,
we mean a low-pass filter with a mask shaped similar to that of the Gaussian probability density
function. This is similar to what was utilized in the formulation of the Gaussian pyramid, which
was discussed in Chapter 11. The term spatiotemporal means that the Gaussian filter is used for
low-pass filtering in both spatial and temporal domains.

With respect to the more-advanced approximation of differentiation, a four-point central dif-
ference operator is used, which has a mask, shown in Figure 13.5.

As we will see later in this chapter, this modified Horn and Schunck algorithm has achieved
better performance than the original one as a result of the two above-mentioned measures. This
success indicates that a reduction of noise in image (data) leads to a significant reduction of noise
in optical flow (solution). This example supports the statement we mentioned earlier that the ill-
posed problem in low-level computational vision is mildly ill posed.

FIGURE 13.3 Estimation of fx, fy, and ft.
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13.2.3 THE LUCAS AND KANADE METHOD

Lucas and Kanade assume a flow vector is constant within a small neighborhood of a pixel, denoted
by W. Then they form a weighted object function as follows.

(13.19)

where w(x, y) is a window function, which gives more weight to the central portion than the
surrounding portion of the neighborhood W.

The flow determination thus becomes a problem of a least-square fit of the brightness invariance
constraint. We observe that the smoothness constraint has been implied in Equation 13.19, where
the flow vector is assumed to be constant within W.

FIGURE 13.4 A 3 ¥ 3 window operation for estimation of the Laplacian of flow vector.

FIGURE 13.5 Four-point central difference operator mask.
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13.2.4 THE NAGEL METHOD

Nagel first used the second-order derivatives in optical flow determination in the very early days
(Nagel, 1983). Since the brightness function f (x, y, t, ) is a real-valued function of multiple
variables (or a vector of variables), the Hessian matrix, discussed in Chapter 12, is used for the
second-order derivatives.

An oriented-smoothness constraint was developed by Nagel that prohibits imposition of the
smoothness constraint across edges, as illustrated in Figure 13.6. In the figure, an edge AB separates
two different moving regions: region 1 and region 2. The smoothness constraint is imposed in these
regions separately. That is, no smoothness constraint is imposed across the edge. Obviously, it
would be a disaster if we smoothed the flow vectors across the edge. As a result, this reasonable
treatment effectively improves the accuracy of optical flow estimation (Nagel, 1989).

13.2.5 THE URAS, GIROSI, VERRI, AND TORRE METHOD

The Uras, Girosi, Verri, and Torre method is another method that uses second-order derivatives.
Based on a local procedure, it performs quite well (Uras et al., 1988).

13.3 CORRELATION-BASED APPROACH

The correlation-based approach to optical flow determination is similar to block matching, covered
in Chapter 11. As may be recalled, the conventional block-matching technique partitions an image
into nonoverlapped, fixed-size, rectangular blocks. Then, for each block, the best matching in the
previous image frame is found. In doing so, a search window is opened in the previous frame
according to some a priori knowledge: the time interval between the two frames and the maximum
possible moving velocity of objects in frames. Centered on each of the candidate pixels in the
search window, a rectangle correlation window of the same size as the original block is opened.
The best-matched block in the search window is chosen such that either the similarity measure is
maximized or the dissimilarity measure is minimized. The relative spatial position between these
two blocks (the original block in the current frame and the best-matched one in the previous frame)
gives a translational motion vector to the original block. In the correlation-based approach to optical
flow computation, the mechanism is very similar to that in conventional block matching. The only
difference is that for each pixel in an image, we open a rectangle correlation window centered on
this pixel for which an optical flow vector needs to be determined. It is for this correlation window
that we find the best match in the search window in its temporal neighboring image frame. This
is shown in Figure 13.7. A comparison between Figures 13.7 and 11.1 can convince us about the

FIGURE 13.6 Oriented-smoothness constraint.
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above observation. In this section, we first briefly discuss Anandan’s method, which is pioneer
work in this category. Then Singh’s method is described. His unified view of optical flow compu-
tation is introduced. We then present a correlation-feedback method by Pan, Shi, and Shu, which
uses the feedback technique in flow calculation.

13.3.1 THE ANANDAN METHOD

As mentioned in Chapter 11, the sum of squared difference (SSD) is used as a dissimilarity measure
in (Anandan, 1987). It is essentially a simplified version of the well-known mean square error
(MSE). Due to its simplicity, it is used in the methods developed by Singh (1992), and Pan, Shi,
and Shu (1998).

In the Anandan method (Anandan, 1989), a pyramid structure is formed, and it can be used
for an efficient coarse-fine search. This is very similar to the multiresolution block-matching
techniques discussed in Chapter 11. In the higher levels (with lower resolution) of the pyramid, a
full search can be performed without a substantial increase in computation. The estimated velocity
(or displacement) vector can be propagated to the lower levels (with higher resolution) for further
refinement. As a result, a relatively large motion vector can be estimated with a certain degree of
accuracy.

Instead of the Gaussian pyramid discussed in Chapter 11, however, a Laplacian pyramid is used
here. To understand the Laplacian pyramid, let us take a look at Figure 13.8(a). There two consec-
utive levels are shown in a Gaussian pyramid structure: level k, denoted by f k (x, y), and level k + 1,
f k+1(x, y). Figure 13.8(b) shows how level k + 1 can be derived from level k in the Gaussian pyramid.
That is, as stated in Chapter 11, level k + 1 in the Gaussian pyramid can be obtained through low-
pass filtering applied to level k, followed by subsampling. Figure 13.8(c), level k + 1 is first
interpolated, thus producing an estimate of level k, f̂ k (x, y). The difference between the original
level k and the interpolated estimate of level k generates an error at level k, denoted by ek (x, y). If
there are no quantization errors involved, then level k, f k (x, y) can be recovered completely from
the interpolated estimate of level k, f̂ k (x, y), and the error at level k, ek (x, y). That is,

(13.20)

With quantization errors, however, the recovery of level k, f k (x, y) is not error free. It can be shown
that coding f̂ k (x, y) and ek (x, y) is more efficient than directly coding f k (x, y).

f (x, y, t) f (x, y, t – 1)

FIGURE 13.7 Correlation-based approach to optical flow determination.
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A set of images ek (x, y), k = 0, 1, º, K – 1 and f K(x, y) forms a Laplacian pyramid.
Figure 13.8(d) displays a Laplacian pyramid with K = 5. It can be shown that Laplacian pyramids
provide an efficient way for image coding (Burt and Adelson, 1983). A more-detailed description
of Gaussian and Laplacian pyramids can be found in Burt (1984) and Lim (1990).

13.3.2 THE SINGH METHOD

Singh (1991, 1992) presented a unified point of view on optical flow computation. He classified
the information available in image sequences for optical flow determination into two categories:
conservation information and neighborhood information. Conservation information is the informa-
tion assumed to be conserved from one image frame to the next in flow estimation. Intensity is an
example of conservation information, which is used most frequently in flow computation. Clearly,
the brightness invariance constraint in the Horn and Schunck method is another way to state this
type of conservation. Some functions of intensity may be used as conservation information as well.

FIGURE 13.8 Laplacian pyramid (level k in a Gaussian pyramid). (a) Two consecutive levels in a pyramid
structure. (b) Derivation of level k + 1 from level K. (c) Derivation of error at level k in a Laplacian pyramid.
(d) Structure of Laplacian pyramid.
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In fact, Singh uses the Laplacian of intensity as conservation information for computational sim-
plicity. More examples can be found later in Section 13.4. Other information, different from
intensity, such as color, can be used as conservation information. Neighborhood information is the
information available in the neighborhood of the pixel from which optical flow is estimated.

These two different types of information correspond to two steps in flow estimation. In the first
step, conservation information is extracted, resulting in an initial estimate of flow vector. In the
second step, this initial estimate is propagated into a neighborhood area and is iteratively updated.
Obviously, in the Horn and Schunck method, the smoothness constraint is essentially one type of
neighborhood information. Iteratively, estimates of flow vectors are refined with neighborhood
information so that flow estimators from areas having sufficient intensity variation, such as the
intensity corners as shown in Figure 13.2(d) and areas with strong texture, can be propagated into
areas with relatively small intensity variation or uniform intensity distribution.

With this unified point of view on optical flow estimation, Singh treated flow computation as
parameter estimation. By applying estimation theory to flow computation, he developed an esti-
mation-theoretical method to determine optical flow. It is a correlation-based method and consists
of the above-mentioned two steps.

13.3.2.1 Conservation Information

In the first step, for each pixel (x, y) in the current frame fn(x, y), a correlation window of (2l + 1) ¥
(2l + 1) is opened, centered on the pixel. A search window of (2N+1) ¥ (2N+1) is opened in the
previous frame fn-1(x, y) centered on (x, y). An error distribution of those (2N + 1) ¥ (2N + 1) samples
are calculated by using SSD as follows:

(13.21)

A response–distribution for these (2N + 1) ¥ (2N + 1) samples is then calculated.

(13.22)

where b is a parameter, whose function and selection will be described in Section 13.3.3.1.
According to the weighted-least-square estimation, the optical flow can be estimated in this

step as follows:

(13.23)

Assuming errors are additive and zero-mean random noise, we can also find the covariance matrix
associated with the above estimate:
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(13.24)

13.3.2.2 Neighborhood Information

After step 1, all initial estimates are available. In step 2, they need to be refined according to
neighborhood information. For each pixel, the method considers a (2w + 1) ¥ (2w + 1) neighborhood
centered on it. The optical flow of the center pixel is updated from the estimates in the neighborhood.
A set of Gaussian coefficients is used in the method such that the closer the neighbor pixel to the
center pixel, the more influence the neighbor pixel has on the flow vector of the center pixel. The
weighted-least-square based estimate in this step is

(13.25)

and the associated covariance matrix is

, (13.26)

where 1 £ i £ (2w + 1)2.
In implementation, Singh uses a 3 ¥ 3 neighborhood (i.e., w = 1) centered on the pixel under

consideration. The weights are depicted in Figure 13.9.

13.3.2.3 Minimization and Iterative Algorithm

According to estimation theory (Beck and Arnold, 1977), two covariance matrices, expressed in
Equations 13.24 and 13.26, respectively, are related to the confidence measure. That is, the recip-
rocals of the eigenvalues of the covariance matrix reveal confidence of the estimate along the
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direction represented by the corresponding eigenvectors. Moreover, conservation error and neigh-
borhood error can be represented as the following two quadratic terms, respectively.

(13.27)

(13.28)

where
—
U = (–u, –v), Uc = (uc, vc), U = (u, v).

The minimization of the sum of these two errors over the image area leads to an optimal
estimate of optical flow. That is, find (u, v) such that the following error is minimized.

(13.29)

An iterative procedure according to the Gauss–Siedel algorithm (Ralston and Rabinowitz, 1978)
is used by Singh:

(13.30)

Note that Uc, Sc are calculated once and remain unchanged in all the iterations. On the contrary,
—
U

and Sn vary with each iteration. This agrees with the description of the method in Section 13.3.2.2.

13.3.3 THE PAN, SHI, AND SHU METHOD

Applying feedback (a powerful technique widely used in automatic control and many other fields)
to a correlation-based algorithm, Pan, Shi, and Shu developed a correlation-feedback method to
compute optical flow. The method is iterative in nature. In each iteration, the estimated optical flow
and its several variations are fed back. For each of the varied optical flow vectors, the corresponding
sum of squared displaced frame difference (DFD), which was discussed in Chapter 12 and which
often involves bilinear interpolation, is calculated. This useful information is then utilized in a
revised version of a correlation-based algorithm (Singh, 1992). They choose to work with this

FIGURE 13.9 3 ¥ 3 Gaussian mask.
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algorithm because it has several merits, and its estimation-theoretical computation framework lends
itself to the application of the feedback technique.

As expected, the repeated usage of two given images via the feedback iterative procedure
improves the accuracy of optical flow considerably. Several experiments on real image sequences
in the laboratory and some synthetic image sequences demonstrate that the correlation-feedback
algorithm performs better than some standard gradient- and correlation-based algorithms in terms
of accuracy.

13.3.3.1 Proposed Framework

The block diagram of the proposed framework is shown in Figure 13.10 and described next.

Initialization — Although any flow algorithms can be used to generate an initial optical flow
field –uo = (uo, vo) (even a nonzero initial flow field without applying any flow algorithm may work,
but slowly), the Horn and Schunck algorithm (Horn and Schunck, 1981), discussed in Section 13.2.1
(usually 5 to 10 iterations) is used to provide an appropriate starting point after preprocessing
(involving low-pass filtering), since the algorithm is fast and the problem caused by the smoothness
constraint is not serious in the first 10 to 20 iterations. The modified Horn and Schunck method,
discussed in Section 13.2.2, may also be used for the initialization.

Observer — The DFD at the kth iteration is observed as fn ( ) – fn-1 (  – k), where fn and fn-1

denote two consecutive digital images,  = (x, y) denotes the spatial coordinates of the pixel under
consideration, and k = (u k, v k) denotes the optical flow of this pixel estimated at the kth iteration.
(Note that the vector representation of the spatial coordinates in image planes is used quite often
in the literature, because of its brevity in notation.) Demanding fractional pixel accuracy usually
requires interpolation. In the Pan et al. work, the bilinear interpolation is adopted. The bilinearly
interpolated image is denoted by f̂n-1.

Correlation — Once the bilinearly interpolated image is available, a correlation measure needs to
be selected to search for the best match of a given pixel in fn ( ) in a search area in the interpolated
image. In their work, the sum-of-square-differences (SSD) is used. For each pixel in fn, a correlation
window Wc of size (2l + 1) ¥ (2l + 1) is formed, centered on the pixel.

The search window in the proposed approach is quite different from that used in the correlation-
based approach, say, that of Singh (1992). Let u be a quantity chosen from the following five
quantities:

(13.31)

FIGURE 13.10 Block diagram of correlation feedback technique.
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Let v be a quantity chosen from the following five quantities:

(13.32)

Hence, there are 25 (i.e., 5 ¥ 5) possible combinations for (u, v). (It is noted that the restriction of
the nonzero initial flow field mentioned above in part A comes from here). Note that other choices
of variations around (u k, v k) are possible. Each of them corresponds to a pixel, (x – u, y – v), in
the bilinearly interpolated image plane. A correlation window is formed and centered in this pixel.
The 25 samples of error distribution around (uk, v k) can be computed by using the SSD. That is,

(13.33)

The 25 samples of response distribution can be computed as follows:

(13.34)

where b is chosen so as to make the maximum Rc among the 25 samples of response distribution
be a number close to unity. The choice of an exponential function for converting the error distribution
into the response distribution is based primarily on the following consideration: the exponential
function is well behaved when the error approaches zero and all the response distribution values
are positive. The choice of b mentioned above is motivated by the following observation: in this
way, the Rc values, which are the weights used in Equation 13.35, will be more effective. That is,
the computation in Equation 13.35 will be more sensitive to the variation of the error distribution
defined in Equation 13.33.

The optical flow vector derived at this correlation stage is then calculated as follows, according
to the weighted-least-squares estimation (Singh, 1992).

(13.35)

Propagation — Except in the vicinity of motion boundaries, the motion vectors associated with
neighboring pixels are expected to be similar. Therefore, this constraint can be used to regularize
the motion field. That is,

(13.36)

where w1(i, j) is a weighting function. The Gaussian mask shown in Figure 13.9 is chosen as the
weighting function w1(i, j) used in our experiments. By using this mask, the velocity of various
pixels in the neighborhood of a pixel will be weighted according to their distance from the pixel:
the larger the distance, the smaller the weight. The mask smooths the optical flow field as well.

Convergence — Under the assumption of the symmetric response distribution with a single
maximum value assumed by the ground-truth optical flow, the convergence of the correlation-
feedback technique is justified by Pan et al. (1995).
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13.3.3.2 Implementation and Experiments

Implementation — To make the algorithm more robust against noise, three consecutive images
in an image sequence, denoted by f1, f2, and f3, respectively, are used to implement their algorithm
instead of the two images in the above principle discussion. This implementation was proposed by
Singh (1992). Assume the time interval between f1 and f2 is the same as that between f2 and f3.
Also assume the apparent 2-D motion is uniform during these two intervals along the motion
trajectories. From images f1 and f2, (uo, v o) can be computed. From (uk, v k), the optical flow estimated
during the kth iteration, and f1 and f2, the response distribution, Rc

+(uk, v k), can be calculated as

(13.37)

Similarly, from images f3 and f2, (–uk, –v k) can be calculated. Then Rc
–(–uk, –v k) can be calculated as

(13.38)

The response distribution Rc(uk, v k) can then be determined as the sum of Rc
+(uk, v k) and Rc

–(–uk,–v k).
The size of the correlation window and the weighting function is chosen to be 3 ¥ 3, i.e., l = 1,
w = 1. In each search window, b is chosen so as to make the larger one among Rc

+ and Rc
– a number

close to unity. In the observer stage, the bilinear interpolation is used, which is shown to be faster
and better than the B-spline in the many experiments of Pan et al.

Experiment I — Figure 13.11 shows the three successive image frames f1, f2, and f3 about a square
post. They were taken by a CCD video camera and a DATACUBE real-time image processing
system supported by a Sun workstation. The square post is moving horizontally, perpendicular to
the optical axis of the camera, in a uniform speed of 2.747 pixels per frame. To remove various
noises to a certain extent and to speed up processing, these three 256 ¥ 256 images are low-pass
filtered and then subsampled prior to optical flow estimation. That is, the intensities of every
16 pixels in a block of 4 ¥ 4 are averaged and the average value is assigned to represent this block.
Note that the choice of other low-pass filters is also possible. In this way, these three images are
compressed into three 64 ¥ 64 images. The “ground-truth” 2-D motion velocity vector is hence
known as ua = –0.6868; v a = 0.

To compare the performance of the correlation-feedback approach with that of the gradient-
based and correlation-based approaches, the Horn and Schunck algorithm is chosen to represent
the gradient-based approach and Singh’s framework to represent the correlation-based approach.
Table 13.1 shows the results of the comparison. There, l, w, and N indicate the sizes of the correlation
window, weighting function, and search window, respectively. The program that implements Singh’s
algorithm is provided by Barron et al. (1994). In the correlation-feedback algorithm, ten iterations
of the Horn and Schunck algorithm with a = 5 are used in the initialization. (Recall that the a is
a regularization parameter used by Horn and Schunck, 1981). Only the central 40 ¥ 40 flow vector
array is used to compute uerror, which is the root mean square (RMS) error in the vector magnitudes
between the ground-truth and estimated optical flow vectors. It is noted that the relative error in
Experiment I is greater than 10%. This is because the denominator in the formula calculating the
RMS error is too small due to the static background and, hence, there are many zero ground-truth
2-D motion velocity vectors in this experiment. Relatively speaking, the correlation-feedback
algorithm performs best in determining optical flow for a texture post in translation. The correct
optical flow field and those calculated by using three different algorithms are shown in Figure 13.12.
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Experiment II — The images in Figure 13.13 were obtained by rotating a CCD camera with
respect to the center of a ball. The rotating velocity is 2.5° per frame. Similarly, three 256 ¥ 256
images are compressed into three 64 ¥ 64 images by using the averaging and subsampling discussed
above. Only the central 40 ¥ 40 optical vector arrays are used to compute uerror. Table 13.2 reports
the results for this experiment. There, uerror, l, w, and N have the same meaning as that discussed
in Experiment I. It is obvious that our correlation-feedback algorithm performs best in determining
optical flow for this rotating ball case.

FIGURE 13.11 Texture square (a). Texture square (b). Texture square (c).

TABLE 13.1
Comparison in Experiment I

Techniques
Gradient-Based 

Approach
Correlation-Based 

Approach
Correlation-Feedback 

Approach

13.3.3.3 Conditions Iteration no. = 128
a = 5

Iteration no. = 25
l = 2, w = 2
N = 4

Iteration no. = 10
Iteration no. (Horn) = 10
l = 1, w = 1, N = 5

uerror 56.37% 80.97% 44.56%
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Experiment III — To compare the correlation-feedback algorithm with other existing techniques
in a more objective, quantitative manner, Pan et al. cite some results reported by Barron et al.
(1994), which were obtained by applying some typical optical flow techniques to some image
sequences chosen with deliberation. In the meantime they report the results obtained by applying
their feedback technique to the identical image sequences with the same accuracy measurement as
used by Barron et al. (1994).

Three image sequences used by Barron et al. (1994) were utilized here. They are named
“Translating Tree,” “Diverging Tree,” and “Yosemite.” The first two simulate translational camera
motion with respect to a textured planar surface (Figure 13.14), and are sometimes referred to as

FIGURE 13.12 (a) Correct optical flow field. (b) Optical flow field calculated by the gradient-based
approach. (c) Optical flow field calculated by the correlation-based approach. (d) Optical flow field calculated
by the correlation-feedback approach.
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“Tree 2-D” sequence. Therefore, there are no occlusions and no motion discontinuities in these
two sequences. In the “Translating Tree” sequence, the camera moves normally to its line of sight,
with velocities between 1.73 and 2.26 pixels/frame parallel to the x-axis in the image plane. In the
“Diverging Tree” sequence, the camera moves along its line of sight. The focus of expansion is at
the center of the image. The speeds vary from 1.29 pixels/frame on left side to 1.86 pixels/frame
on the right. The “Yosemite” sequence is a more complex test case (see Figure 13.15). The motion
in the upper right is mainly divergent. The clouds translate to the right with a speed of 1 pixel/frame,
while velocities in the lower left are about 4 pixels/frame. This sequence is challenging because
of the range of velocities and the occluding edges between the mountains and at the horizon. There
is severe aliasing in the lower portion of the images, causing most methods to produce poorer
velocity measurements. Note that this synthetic sequence is for quantitative study purposes since
its ground-truth flow field is known and is, otherwise, far less complex than many real-world outdoor
sequences processed in the literature.

The angular measure of the error used by Barron et al. (1994) is utilized here, as well. Let
image velocity  = (u, v) be represented as 3-D direction vectors,

FIGURE 13.12 (continued)

v
u



© 2000 by CRC Press LLC

(13.39)

The angular error between the correct image velocity  and an estimate e is yE = across ( c · e).
It is obvious that the smaller the angular error yE, the more accurate the estimation of the optical
flow field will be. Despite the fact that the confidence measurement can be used in the correlation-
feedback algorithm, as well, Pan et al. did not consider the usage of the confidence measurement
in their work. Therefore, only the results with 100% density in Tables 4.6, 4.7, and 4.10 in the
Barron et al. (1994) paper were used in Tables 13.3, 13.4, and 13.5, respectively.

FIGURE 13.13 A rotating ball in three different frames — a, b, c. The rotating velocity is 2.5° per frame.

TABLE 13.2
Comparison in Experiment II

Techniques
Gradient-Based 

Approach
Correlation-Based 

Approach
Correlation-Feedback 

Approach

Conditions Iteration no. = 128
a = 5

Iteration no. = 25
l = 2, w = 2
N = 4

Iteration no. = 10
Iteration no. (Horn) = 10
l = 1, w = 1, N = 5

uerror 65.67% 55.29% 49.80%
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Prior to computation of the optical flow field, the “Yosemite” and “Tree 2-D” test sequences
were compressed by a factor of 16 and 4, respectively, using the averaging and subsampling method
discussed earlier.

As mentioned by Barron et al. (1994) the optical flow field for the “Yosemite” sequence is
complex, and Table 13.5 indicates that the correlation-feedback algorithm evidently performs best.
A robust method was developed and applied to a cloudless Yosemite sequence (Black and Anandan,
1996). It is noted that the performance of flow determination algorithms will be improved if the
sky is removed from consideration (Barron et al., 1994; Black and Anandan, 1996). Still, it is clear

FIGURE 13.14 A frame of the “Tree 2-D” sequence.

FIGURE 13.15 A frame of the “Yosemite” sequence.
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that the algorithm in the Black and Anandan (1996) paper achieved very good performance in terms
of accuracy. In order to make a comparison with their algorithm, the correlation-feedback algorithm
was applied to the same cloudless Yosemite sequence. The results were reported in Table 13.6,
from which it can be observed that the results obtained by Pan et al. are slightly better. Tables 13.3
and 13.4 indicate that the feedback technique also performs very well in translating and diverging
texture post cases.

Experiment IV — Here, the correlation-feedback algorithm is applied to a real sequence named
Hamburg Taxi, which is used as a testing sequence by Barron et al. (1994). There are four moving

TABLE 13.3
Summary of the “Translating Tree” 2-D Velocity Results

Techniques Average Error, ° Standard Deviation, ° Density, %

Horn and Schunck (original) 38.72 27.67 100
Horn and Schunck (modified) 2.02 2.27 100
Uras et al. (unthresholded) 0.62 0.52 100
Nagel 2.44 3.06 100
Anandan 4.54 3.10 100
Singh (step 1, l = 2, w = 2) 1.64 2.44 100
Singh (step 2, l = 2, w = 2) 1.25 3.29 100
Correlation feedback (l = 1, w = 1) 1.07 0.48 100

TABLE 13.4
Summary of the “Diverging Tree” 2-D Velocity Results

Techniques Average Error, ° Standard Deviation, ° Density, %

Horn and Schunck (original) 12.02 11.72 100
Horn and Schunck (modified) 2.55 3.67 100
Uras et al. (unthresholded) 4.64 3.48 100
Nagel 2.94 3.23 100
Anandan (frames 19 and 21) 7.64 4.96 100
Singh (step 1, l = 2, w = 2) 17.66 14.25 100
Singh (step 2, l = 2, w = 2) 8.60 5.60 100
Pan, Shi, and Shu (l = 1, w = 1) 5.12 2.16 100

TABLE 13.5
Summary of the “Yosemite” 2-D Velocity Results

Techniques Average Error, ° Standard Deviation, ° Density, %

Horn and Schunck (original) 32.43 30.28 100
Horn and Schunck (modified) 11.26 16.41 100
Uras et al. (unthresholded) 10.44 15.00 100
Nagel 11.71 10.59 100
Anandan (frames 19 and 21) 15.84 13.46 100
Singh (step 1, l = 2, w = 2) 18.24 17.02 100
Singh (step 2, l = 2, w = 2) 13.16 12.07 100
Pan, Shi, and Shu (l = 1, w = 1) 7.93 6.72 100
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objects in the scene: a moving pedestrian in the upper left portion, a turning car in the middle, a
car moving toward right at the left side and a car moving toward left at the right side. A frame of
the sequence and the needle diagram of flow vectors estimated by using ten iterations of the
correlation-feedback algorithm (with ten iterations of the Horn and Schunck algorithm for initial-
ization) are shown in Figures 13.16 and 13.17, respectively. The needle diagram is printed in the
same fashion as those shown by Barron et al. (1994). It is noted that the moving pedestrian in the
upper left portion cannot be shown because of the scale used in the needle diagram. The other
three moving vehicles in the sequence are shown very clearly. The noise level is low. Compared
with those diagrams reported by Barron et al. (1994), the correlation-feedback algorithm achieves
very good results.

For a comparison on a local basis, the portion of the needle diagram associated with the area
surrounding the turning car (a sample of the velocity fields), obtained by 50 iterations of the
correlation-feedback algorithm with five iterations of the Horn and Schunck algorithm as initial-
ization, is provided in Figure 13.18(c). Its counterparts obtained by applying the Horn and Schunck
(50 iterations) and the Singh (50 iterations) algorithms are displayed in Figure 13.18(a) and (b),
respectively. It is observed that the correlation-feedback algorithm achieves the best results among
the three algorithms.

13.3.3.4 Discussion and Conclusion

Although it uses a revised version of a correlation-based algorithm (Singh, 1992), the correlation-
feedback technique is quite different from the correlation-based algorithm (Singh, 1992) in the
following four aspects. First, different optimization criteria: the algorithm does not use the iterative
minimization procedure used in (Singh, 1992). Instead, some variations of the estimated optical

TABLE 13.6
Summary of the cloudless “Yosemite” 2-D Velocity Results

Techniques Average Error, ° Standard Deviation, ° Density, %

Robust formulation 4.46 4.21 100
Pan, Shi, and Shu (l = 1, w = 1) 3.79 3.44 100

FIGURE 13.16 Hamburg Taxi.
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flow vectors are generated and fed back. The associated bilinearly interpolated displaced frame
difference for each variation is calculated and utilized. In essence, the feedback approach utilizes
two given images repeatedly, while the Singh method uses two given images only once (uc and vc

derived from the two given images are only calculated once). The best local matching between the
displaced image, generated via feedback of the estimated optical flow, and the given image is
actually used as the ultimate criterion for improving optical flow accuracy in the iterative process.
Second, the search window in the algorithm is an adaptive “rubber” window, having a variable size
depending on (uk, v k). In the correlation-based approaches (Singh, 1992), the search window has
a fixed size. Third, the algorithm uses a bilinear interpolation technique in the observation stage
and provides the correlation stage with a virtually continuous image field for more accurate motion
vector computation, while that of Singh (1992) does not. Fourth, different performances are achieved
when image intensity is a linear function of image coordinates. In fact, in the vicinity of a pixel,
the intensity can usually be considered as such a linear function. Except if the optical flow vectors
happen to have only an integer multiple of pixels as their components, an analysis by Pan (1994)
shows that the correlation-based approach (Singh, 1992) will not converge to the apparent 2-D
motion vectors and will easily have error much greater than 10%. Pan (1994) also shows that the
linear intensity function guarantees the assumption of the symmetric response distribution with a
single maximum value assumed by the ground-truth optical flow. As discussed in Section 13.3.3.1,
under this assumption the convergence of the correlation-feedback technique is justified.

Numerous experiments have demonstrated the convergence and accuracy of the correlation-
feedback algorithm, and usually it is more accurate than some standard gradient- and correlation-
based approaches. In the complicated optical flow cases, specifically in the case of the “Yosemite”
image sequence (regarded as the most challenging quantitative test image sequence by Barron et al.
(1994), it performs better than all other techniques.

FIGURE 13.17 Needle diagram of flow field of Hamburg Taxi sequence obtained by using the correlation-
feedback algorithm.
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13.4 MULTIPLE ATTRIBUTES FOR 
CONSERVATION INFORMATION

As stated at the beginning of this chapter, there are many algorithms in optical flow computation
reported in the literature. Many more new algorithms continue to be developed. In Sections 13.2
and 13.3, we introduced some typical algorithms using gradient- and correlation-based approaches.
We will not explore various algorithms any further here. It is hoped that the fundamental concepts
and algorithms introduced above have provided a solid base for readers to study more-advanced
techniques.

We would like to discuss optical flow from another point of view, however: multiple image
attributes vs. a single image attribute. All of the methods we have discussed so far use only one
kind of image attributes as conservation information in flow determination. Most methods use
intensity. Singh’s method uses the Laplacian of intensity, which is calculated by using the difference
of the Gaussian operation (Burt, 1984). It was reported by Weng, Ahuja, and Huang (1992) that
using a single attribute as conservation information may result in ambiguity in matching two
perspective views, while multiple attributes, which are motion insensitive, may reduce ambiguity
remarkably, resulting in better matching. An example is shown in Figure 13.19 to illustrate this
argument. In this section, the Weng et al. method is discussed first. Then we introduce the Xia and
Shi method, which uses multiple attributes in a framework based on weighted-least-square estima-
tion and feedback techniques.

FIGURE 13.18 A portion of the needle diagram obtained by using (a) the Horn and Schunk algorithm,
(b) the Singh algorithm, and (c) the correlation-feedback algorithm.
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13.4.1 THE WENG, AHUJA, AND HUANG METHOD

Weng, Ahuja, and Huang proposed a quite different approach to image point matching (Weng et al.,
1992). Note that the image matching amounts to flow field computation since it calculates a
displacement field for each point in image planes, which is essentially a flow field if the time
interval between two image frames is known.

Based on an analysis indicating that using image intensity as a single attribute is not enough
in accurate image matching, Weng, Ahuja, and Huang utilize multiple attributes associated with
images in estimation of the dense displacement field. These image attributes are motion insensitive;
i.e., they generally sustain only small change under motion assumed to be locally rigid. The image
attributes used are image intensity, edgeness, and cornerness. For each image attribute, the algorithm
forms a residual function, reflecting the inaccuracy of the estimated matching. The matching is
then determined via an iterative procedure to minimize the weighted sum of these residual functions.
In handling neighborhood information, a more-advanced smoothness constraint is used to take care
of moving discontinuities. The method considers uniform regions and the occlusion issue as well.

In addition to using multiple image attributes, the method is pointwise processing. There is no
need for calculation of correlation within two correlation windows, which saves computation
dramatically. However, the method also has some drawbacks. First, the edgeness and cornerness
involve calculation of the spatial gradient, which is noise sensitive. Second, in solving for minimi-
zation, the method resorts to numerical differentiation again: the estimated displacement vectors
are updated based on the partial derivatives of the noisy attribute images. In a word, the computa-
tional framework heavily relies on numerical differentiation, which is considered to be impractical
for accurate computation (Barron et al., 1994).

FIGURE 13.18 (continued)
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On the other hand, the Pan, Shi, and Shu method, discussed in Section 13.3.3 in the category
of correlation based approaches, seems to have some complementary features. It is correlation-
based. It uses intensity as a single attribute. In these two aspects the Pan et al. method is inferior
to the method by Weng, Ahuja, and Huang. The feedback technique and the weighted least-square
computation framework used in the Pan et al. method are superior, however, compared with the
method by Weng et al. Motivated by the above observations, an efficient, multiattribute feedback
method was developed by Xia and Shi (Xia and Shi, 1995; Xia, 1996), and is discussed in the next
subsection. It is expected that more insight into the Weng, Ahuja, and Huang method will become
clear in the discussion as well.

FIGURE 13.18 (continued)

FIGURE 13.19 Multiple attributes vs. single attribute. (a) With intensity information only, points D, E, and
F tend to match to points A, B, and C, respectively. (b) With intensity, edge and corner information points D
and E tend to match points B and C, respectively.
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13.4.2 THE XIA AND SHI METHOD

This method uses multiple attributes that are motion insensitive. The following five attributes are
used: image intensity, horizontal edgeness, vertical edgeness, contrast, and entropy. The first three
are used by Weng et al. (1992) as well, and can be considered as structural attributes, while the
last two, which are not used by Weng et al. (1992), can be considered as textural attributes according
to Haralick (1979).

Instead of the computational framework presented by Weng et al. (1992), which, as discussed
above, may not be practical for accurate computation, the method uses the computational framework
of Pan (1994; 1998). That is, the weighted-least-squared estimation technique used by Singh (1992)
and the feedback technique used by Pan (1994; 1998) are utilized here. Unlike in the Weng et al.
(1992) method, subpixel accuracy is considered and a confidence measure is generated in the
method.

The Xia and Shi method is also different from those algorithms presented by Singh (1992) and
Pan et al. (1995; 1998). First, there is no correlation in the method, while both Singh (1992) and
Pan et al. (1995; 1998) are correlation based. Specifically, the method is a point-wise processing.
Second, the method uses multiple attributes, while both Singh (1992) and Pan et al. (1995; 1998)
use image intensity as a single attribute.

In summary, the Xia and Shi method to compute optical flow is motivated by several existing
algorithms mentioned above. It does, however, differ from each of them significantly.

13.4.2.1 Multiple Image Attributes

As mentioned before, there are five image attributes in the Xia and Shi method. They are defined
below.

Image Intensity — The intensity at a pixel (x, y) in an image fn (x, y), denoted by Ai (x, y), i.e.,
Ai (x, y) = fn (x, y).

Horizontal Edgeness — The horizontal edgeness at a pixel (x, y), denoted by Ah (x, y), is
defined as

(13.40)

i.e., the partial derivative of f (x, y) with respect to y, the second component of the gradient of
intensity function at the pixel.

Vertical Edgeness — The vertical edgeness at a pixel (x, y), denoted by Av (x, y), is defined as

(13.41)

i.e., the first component of the gradient of intensity function at the pixel. Note that the partial
derivatives in Equations 13.40 and 13.41 are computed by applying a Sobel operator (Gonzalez
and Woods, 1992) in a 3 ¥ 3 neighborhood of the pixel.

Contrast — The local contrast at a pixel (x, y), denoted by Ac (x, y), is defined as

(13.42)

where S is a set of all the distinct gray levels within a 3 ¥ 3 window centered at pixel (x, y). Ci,j

specifies a relative frequency with which two neighboring pixels separated horizontally by a distance
of 1 occur in the 3 ¥ 3 window, one with gray level i and the other with gray level j.
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Entropy — The local entropy at a point (x, y), denoted by Ae (x, y), is given by

(13.43)

where S was defined above, and pi is the probability of occurrence of the gray level i in the 3 ¥ 3
window.

Since the intensity is assumed to be invariant to motion, so are the horizontal edgeness, vertical
edgeness, contrast, and entropy.

As mentioned above, the intensity and edgeness are used as attributes in the Weng et al.
algorithm as well. Compared with the negative and positive cornerness used in the Weng et al.
algorithm, the local contrast and entropy need no differentiation and therefore are less sensitive to
various noises in original images. In addition, these two attributes are inexpensive in terms of
computation. They reflect the textural information about the local neighborhood of the pixel for
which the flow vector is to be estimated.

13.4.2.2 Conservation Stage

In the Xia and Shi algorithm, this stage is similar to that in the Pan et al. algorithm. That is, for a
flow vector estimated at the kth iteration, denoted by (uk, v k), we find its 25 variations, (u, v),
according to

(13.44)

For each of these 25 variations, the matching error is computed as

(13.45)

where rAi
, rAh

, rAv
, rAc

, rAe
 denote the residual function with respect to the five attributes, respectively.

The residual function of intensity is defined as

(13.46)

where fn (x, y), fn-1 (x, y) is defined as before, i.e., the intensity function at tn and tn-1, respectively;
Ain, Ain–1

 denote the intensity attributes on fn and fn-1, respectively.
It is observed that the residual error of intensity is essentially the DFD discussed in Chapter 12.

The rest of the residual functions are defined similarly. When subpixel accuracy is required, spatial
interpolation in the attribute images generally is necessary. Thus, the flow vector estimation is now
converted to a minimization problem. That is, find u and v at pixel (x, y) such that the matching
error defined in Equation 13.45 is minimized. The weighted least-square method (Singh, 1992; Pan
et al., 1998) is then used. That is,

(13.47)
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(13.48)

Since the weighted least-square method has been discussed in detail in Sections 13.3.2 and 13.3.3,
we will not go into more detail here.

13.4.2.3 Propagation Stage

Similar to what was proposed in the Pan et al. algorithm, in this stage Xia and Shi form a window
W of size (2w + 1) ¥ (2w + 1) centered at the pixel (x, y) in the image fn (x, y). The flow estimate
at the pixel (x, y) in this stage, denoted by (uk+1, v k+1), is calculated as a weighted sum of the flow
vectors of the pixel within the window W.

(13.49)

where w1[.,.] is a weight function. For each point in the window W, a weight is assigned according
to the weight function. Let (x + s, y + t) denote a pixel within the window W; then the weight of
the pixel (x + s, y + t) is given by

(13.50)

where e is a small positive number to prevent the denominator from vanishing, c is a normalization
constant that makes the summation of all the weights in the W equal 1.

From the above equation, we see that the weight is determined based on the intensity difference
between the pixel under consideration and its neighboring pixel. The larger the difference in the
intensity, the more likely the two points belong to different regions. Therefore, the weight will be
small in this case. On the other hand, the flow vector in the same region will be similar since the
corresponding weight is large. Thus, the weighting function implicitly takes flow discontinuity into
account and is more advanced than that of Singh (1992) and Pan et al. (1994; 1998).

13.4.2.4 Outline of Algorithm

The following summarizes the procedures of the algorithm.

1. Perform a low-pass prefiltering on two input images to remove various noises.
2. Generate attribute images: intensity, horizontal edgeness, vertical edgeness, local con-

trast, and local entropy. Those attributes are computed at each grid point of both images.
3. Set the initial flow vectors to zero. Set the maximum iteration number and/or estimation

accuracy.
4. For each pixel under consideration, generate flow variations according to Equation 13.44.

Compute matching error for each flow variation according to Equation 13.45 and trans-
form them to the corresponding response distribution R using Equation 13.47. Compute
the flow estimation uc, v c using Equation 13.48.
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5. Form a (2w + 1) ¥ (2w + 1) neighborhood window W centered at the pixel. Compute the
weight for each pixel within the window W using Equation 13.50. Update the flow vector
using Equation 13.49.

6. Decrease the preset iteration number. If the iteration number is zero, the algorithm returns
with the resultant optical flow field. Otherwise, go to the next step.

7. If the change in flow vector over two successive iterations is less than the predefined
threshold, the algorithm returns with the estimated optical flow field. Otherwise, go to
step 4.

13.4.2.5 Experimental Results

To compare the method with other methods existing in the literature, similar to what has been done
by Pan et al. (1998) (discussed above in Section 13.3.3), the method was applied to three test
sequences used by Barron et al. (1994): the “Translating Tree” sequence, the “Diverging Tree”
sequence, and the “Yosemite” sequence. The same accuracy criterion is used as that by Barron
et al. (1994). Only those results reported by Barron et al. (1994) with 100% density are listed in
Tables 13.7, 13.8, and 13.9 for a fair and easy comparison. The Weng et al. algorithm was imple-
mented by Xia and Shi and the results were reported by Xia and Shi (1995).

TABLE 13.7
Summary of the “Translating Tree” 2D Velocity Results

Techniques Average Error, ° Standard Deviation, ° Density, %

Horn and Schunck (original) 38.72 27.67 100
Horn and Schunck (modified) 2.02 2.27 100
Uras et al. (unthresholded) 0.62 0.52 100
Nagel 2.44 3.06 100
Anandan 4.54 3.10 100
Singh (step 1, n = 2, w = 2) 1.64 2.44 100
Singh (step 2, n = 2, w = 2) 1.25 3.29 100
Pan, Shi, and Shu (n = 1, w = 1) 1.07 0.48 100
Weng, Ahuja, and Huang 1.81 2.03 100
Xia and Shi 0.55 0.52 100

TABLE 13.8
Summary of the “Diverging Tree” 2D Velocity Results

Techniques Average Error, ° Standard Deviation, ° Density, %

Horn and Schunck (original) 32.43 30.28 100
Horn and Schunck (modified) 11.26 16.41 100
Uras et al. (unthresholded) 10.44 15.00 100
Nagel 11.71 10.59 100
Anandan 15.84 13.46 100
Singh (step 1, n = 2, w = 2, N = 4) 18.24 17.02 100
Singh (step 2, n = 2, w = 2, N = 4) 13.16 12.07 100
Pan, Shi, and Shu (n = 1, w = 1) 7.93 6.72 100
Weng, Ahuja, and Huang 8.41 8.22 100
Xia and Shi 7.54 6.61 100
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13.4.2.6 Discussion and Conclusion

The above experimental results demonstrate that the Xia and Shi method outperforms both the Pan,
Shi, and Shu method and the Weng, Ahuja, and Huang method in terms of accuracy of optical flow
determined. Computationally speaking, the Xia and Shi method is less expensive than the Pan et al.,
since there is no correlation involved and the correlation is known to be computationally expensive.

13.5 SUMMARY

The optical flow field is a dense 2-D distribution of apparent velocities of movement of intensity
patterns in image planes, while the 2-D motion field can be understood as the perspective projection
of 3-D motion in the scene onto image planes. They are different. Only under certain circumstances
are they equal to each other. In practice, however, they are closely related in that image sequences
are usually the only data we have in motion analysis. Hence, we can only deal with the optical
flow in motion analysis, instead of the 2-D motion field. The aperture problem in motion analysis
refers to the problem that occurs when viewing motion via an aperture. Specifically, the only motion
we can observe from local measurement is the motion component orthogonal to the underlying
moving contour. That is another way to manifest the ill-posed nature of optical flow computation.
In general, motion analysis from image sequences is an inverse problem, which is ill posed.
Fortunately, low-level computational vision problems are only mildly ill posed. Hence, lowering
the noise in image data leads to a possible significant reduction of errors in flow determination.

Numerous flow determination algorithms have appeared over the course of more than a decade.
Most of the techniques take one of the following approaches: the gradient-based approach, the
correlation-based approach, the energy-based approach, or the phase-based approach. In addition
to these deterministic approaches, there is also a stochastic approach. A unification point of view
of optical flow computation is presented in Section 13.3. That is, for any algorithm in optical flow
computation, there are two types of information that need to be extracted — conservation infor-
mation and neighborhood information.

Several techniques are introduced for the gradient-based approach, particularly the Horn and
Schunck algorithm, which is a pioneer work in flow determination. There, the brightness invariant
equation is used to extract conservation information and the smoothness constraint is used to extract
neighborhood information. The modified Horn and Schunck algorithm shows significant error
reduction in flow determination, because of a reduction of noise in image data, which confirms the
mildly ill-posed nature of optical flow computation.

TABLE 13.9
Summary of the “Yosemite” 2D Velocity Results

Techniques Average Error, ° Standard Deviation, ° Density, %

Horn and Schunck (original) 12.02 11.72 100
Horn and Schunck (modified) 2.55 3.67 100
Uras et al. (unthresholded) 4.64 3.48 100
Nagel 2.94 3.23 100
Anandan (frame 19 and 21) 7.64 4.96 100
Singh (step 1, n = 2, w = 2, N = 4) 17.66 14.25 100
Singh (step 2, n = 2, w = 2, N = 4) 8.60 5.60 100
Pan, Shi, and Shu (n = 1, w = 1) 5.12 2.16 100
Weng, Ahuja, and Huang 8.01 9.71 100
Xia and Shi 4.04 3.82 100
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Several techniques are discussed for the correlation-based approach. The Singh algorithm is
given emphasis due to its estimation-theoretical framework. The Pan, Shi, and Shu algorithm, which
applies the feedback technique to the correlation method, demonstrates an accuracy enhancement
in flow estimation.

Section 13.4 addresses the usage of multiple image attributes vs. that of a single image attribute
in the flow determination technique. It is found that the use of multiple motion-insensitive attributes
can help reduce the ambiguity in motion analysis. The application of multiple image attributes to
conservation information turns out to be promising for flow computation.

Some experimental works are presented in Sections 13.3 and 13.4. With Barron et al.’s recent
comprehensive survey of various existing optical flow algorithms, we can have a quantitative
assessment on various optical flow techniques.

Optical flow finds application in areas such as computer vision, image interpolation, temporal
filtering, and video coding. In computational vision, raising the accuracy of optical flow estimation
is important. In video coding, however, lowering the bit rate for both prediction error and motion
overhead, while keeping certain quality of reconstructed frames, is the ultimate goal. Properly
handling the large amount of velocity vectors is a key issue in this regard. It is noted that the optical
flow-based motion estimation for video compression has been applied for many years. However,
the high bit overhead and computational complexity prevent it from practical usage in video coding.
With the continued advance in technologies, however, we believe this problem may be resolved in
the near future. In fact, an initial, successful attempt has been made and reported by Shi et al.
(1998). There, based on a study that demonstrates that flow vectors are highly correlated and can
be modeled by a first-order autoregressive (AR) model, the discrete cosine transform (DCT) is
applied to flow vectors. An adaptive threshold technique is developed to match optical flow motion
prediction and to minimize the residual errors. Consequently, this optical flow-based motion-
compensated video coding algorithm achieves good performance for very low bit rate video coding.
It obtains a bit rate compatible with that obtained by an H.263 standard algorithm, which uses
block matching for motion estimation. (Note that the video coding standard H.263 is covered in
Chapter 19.) Furthermore, the reconstructed video frames by using this flow-based algorithm are
free of annoying blocking artifacts. This effect is demonstrated in Figure 13.20. Note that
Figure 13.20 (b) has appeared in Figure 11.12, where the same picture is displayed in a larger size
and the blocking artifacts are hence clearer.

13.6 EXERCISES

13-1. What is an optical flow field? What is a 2-D motion field? What is the difference between
the two? How are they related to each other?

13-2. What is an aperture problem? Give two of your own examples.
13-3. What is the ill-posed problem? Why do we consider motion analysis from image

sequences an ill-posed problem?
13-4. Is the relationship between the optical flow in an image plane and the velocities of

objects in 3-D world space necessarily obvious? Justify your answer.
13-5. What does the smoothness constraint imply? Why is it required?
13-6. How are the derivatives of intensity function and the Laplacian of flow components

estimated in the Horn and Schunck method?
13-7. What are the differences between the Horn and Schunck original method and the

modified Horn and Schunck method? What do you observe from these differences?
13-8. What is the difference between the smoothness constraint proposed by Horn and

Schunck and the oriented smoothness constraint proposed by Nagel? Provide comments.
13-9. In your own words, describe the Singh method. What is the weighted-least-square

estimation technique?
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13-10. In your own words, describe conservation information and neighborhood information.
Using this perspective, take a new look at the Horn and Schunck algorithm.

13-11. How is the feedback technique applied in the Pan et al. algorithm?
13-12. In your own words, tell the difference between the Singh method and the Pan et al.

method.
13-13. Give two of your own examples to show that multiple image attributes are able to reduce

ambiguity in image matching.
13-14. How does the Xia and Shi method differ from the Weng et al. method?
13-15. How does the Xia and Shi method differ from the Pan et al. method?
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Further Discussion 
and Summary on 
2-D Motion Estimation

 

Since Chapter 10, we have been devoting our discussion to motion analysis and motion-compen-
sated coding. Following a general description in Chapter 10, three major techniques — block
matching, pel recursion, and optical flow — are covered in Chapters 11, 12, and 13, respectively.

In this chapter, before concluding this subject, we provide further discussion and a summary.
A general characterization for 2-D motion estimation, thus for all three techniques, is given in
Section 14.1. In Section 14.2, different classifications of various methods for 2-D motion analysis
are given in a wider scope. Section 14.3 is concerned with a performance comparison among the
three major techniques. More-advanced techniques and new trends in motion analysis and motion
compensation are introduced in Section 14.4.

 

14.1 GENERAL CHARACTERIZATION

 

A few common features characterizing all three major techniques are discussed in this section.

 

14.1.1 A

 

PERTURE

 

 P

 

ROBLEM

 

The aperture problem, discussed in Chapter 13, describes phenomena that occur when observing
motion through a small opening in a flat screen. That is, one can only observe normal velocity. It
is essentially a form of ill-posed problem since it is concerned with existence and uniqueness issues,
as illustrated in Figure 13.2(a) and (b). This problem is inherent with the optical flow technique.

We note, however, that the aperture problem also exists in block matching and pel recursive
techniques. Consider an area in an image plane having strong intensity gradients. According to our
discussion in Chapter 13, the aperture problem does exist in this area no matter what type of
technique is applied to determine local motion. That is, motion perpendicular to the gradient cannot
be determined as long as only a local measure is utilized. It is noted that, in fact, the steepest
descent method of the pel recursive technique only updates the estimate along the gradient direction
(Tekalp, 1995).

 

14.1.2 I
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In Chapter 13, when we discuss the optical flow technique, a few fundamental issues are raised. It
is stated that optical flow computation from image sequences is an inverse problem, which is usually
ill-posed. Specifically, there are three problems: nonexistence, nonuniqueness, and instability. That
is, the solution may not exist; if it exists, it may not be unique. The solution may not be stable in
the sense that a small perturbation in the image data may cause a huge error in the solution.

Now we can extend our discussion to both block matching and pel recursion. This is because
both block matching and pel recursive techniques are intended for determining 2-D motion from
image sequences, and are therefore inverse problems.
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14.1.3 C

 

ONSERVATION

 

 I

 

NFORMATION

 

 

 

AND

 

 N

 

EIGHBORHOOD

 

 I

 

NFORMATION

 

Because of the ill-posed nature of 2-D motion estimation, a unified point of view regarding various
optical flow algorithms is also applicable for block matching and pel recursive techniques. That is,
all three major techniques involve extracting conservation information and extracting neighborhood
information.

Take a look at the block-matching technique. There, conservation information is a distribution
of some sort of features (usually intensity or functions of intensity) within blocks. Neighborhood
information manifests itself in that all pixels within a block share the same displacement. If the
latter constraint is not imposed, block matching cannot work. One example is the following extreme
case. Consider a block size of 1 

 

¥

 

 1, i.e., a block containing only a single pixel. It is well known
that there is no way to estimate the motion of a pixel whose movement is independent of all its
neighbors (Horn and Schunck, 1981).

With the pel recursive technique, say, the steepest descent method, conservation information
is the intensity of the pixel for which the displacement vector is to be estimated. Neighborhood
information manifests itself as recursively propagating displacement estimates to neighboring pixels
(spatially or temporally) as initial estimates.

In Section 12.3, it is pointed out that Netravali and Robbins suggested an alternative, called
“inclusion of a neighborhood area.” That is, in order to make displacement estimation more robust,
they consider a small neighborhood 

 

W

 

 of the pixel for evaluating the square of displaced frame
difference (DFD) in calculating the update term. They assume a constant displacement vector within
the area. The algorithm thus becomes

(14.1)

where 

 

i

 

 represents an index for the 

 

i

 

th pixel (

 

x

 

, 

 

y

 

) within 

 

W

 

, and 

 

w

 

i

 

 is the weight for the 

 

i

 

th pixel
in 

 

W

 

. All the weights satisfy certain conditions; i.e., they are nonnegative, and their sum equals 1.
Obviously, in this more-advanced algorithm, the conservation information is the intensity distribu-
tion within the neighborhood of the pixel, the neighborhood information is imposed more explicitly,
and it is stronger than that in the steepest descent method.

 

14.1.4 O

 

CCLUSION

 

 

 

AND

 

 D

 

ISOCCLUSION

 

The problems of occlusion and disocclusion make motion estimation more difficult and hence more
challenging. Here we give a brief description about these and other related concepts.

Let us consider Figure 14.1. There, the rectangle 

 

ABCD

 

 represents an object in an image taken
at the moment of 

 

t

 

n

 

-1
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f

 

 (

 

x
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y
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n
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). The rectangle EFGH denotes the same object, which has been
translated, in the image taken at 

 

t

 

n

 

 moment, 

 

f

 

 (
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). In the image 
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), the area 

 

BFDH

 

 is
occluded by the object that newly moves in. On the other hand, in 

 

f

 

 (

 

x
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y
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t

 

n

 

), the area of 

 

AECG

 

resurfaces and is referred to as a newly visible area, or a newly exposed area.
Clearly, when occlusion and disocclusion occur, all three major techniques discussed in this

part will encounter a fatal problem, since conservation information may be lost, making motion
estimation fail in the newly exposed areas. If image frames are taken densely enough along the
temporal dimension, however, occlusion and disocclusion may not cause serious problems, since
the failure in motion estimation may be restricted to some limited areas. An extra bit rate paid for
the corresponding increase in encoding prediction error is another way to resolve the problem. If
high quality and low bit rate are both desired, then some special measures have to be taken.

One of the techniques suitable for handling the situation is Kalman filtering, which is known
as the best, by almost any reasonable criterion, technique working in the Gaussian white noise case
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(Brown and Hwang, 1992). If we consider the system that estimates the 2-D motion to be contam-
inated by Gaussian white noise, we can use Kalman filtering to increase the accuracy of motion
estimation, particularly along motion discontinuities. It is powerful in doing incremental, dynamic,
and real-time estimation.

In estimating 3-D motion, Kalman filtering was applied by Matthies et al. (1989) and Pan et al.
(1994). Kalman filters were also utilized in optical flow computation (Singh, 1992; Pan and Shi,
1994). In using the Kalman filter technique, the question of how to handle the newly exposed areas
was raised by Matthies et al. (1989). Pan et al. (1994) proposed one way to handle this issue, and
some experimental work demonstrated its effectiveness.

 

14.1.5 R

 

IGID
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OTION

 

There are two types of motion: rigid motion and nonrigid motion. Rigid motion refers to motion
of rigid objects. It is known that our human vision system is capable of perceiving 2-D projections
of 3-D moving rigid bodies as 2-D moving rigid bodies. Most cases in computer vision are concerned
with rigid motion. Perhaps this is due to the fact that most applications in computer vision fall into
this category. On the other hand, rigid motion is easier to handle than nonrigid motion. This can
be seen in the following discussion.

Consider a point 

 

P

 

 in 3-D world space with the coordinates (

 

X

 

,

 

Y

 

, 

 

Z

 

), which can be represented
by a column vector :

(14.2)

Rigid motion involves rotation and translation, and has six free motion parameters. Let 

 

R

 

 denote
the rotation matrix and 

 

T

 

 the translational vector. The coordinates of point 

 

P

 

 in the 3-D world after
the rigid motion are denoted by 

 

¢

 

. Then we have

(14.3)

Nonrigid motion is more complicated. It involves deformation in addition to rotation and translation,
and thus cannot be characterized by the above equation. According to the Helmholtz theory
(Sommerfeld, 1950), the counterpart of the above equation becomes

(14.4)

where 

 

D

 

 is a deformation matrix. Note that 

 

R

 

, 

 

T

 

, and 

 

D

 

 are pixel dependent. Handling nonrigid
motion, hence, is very complicated.

 

FIGURE 14.1

 

Occlusion and disocclusion.
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In videophony and videoconferencing applications, a typical scene might be a head-and-
shoulder view of a person imposed on a background. The facial expression is nonrigid in nature.
Model-based facial coding has been studied extensively (Aizawa and Harashima, 1994; Li et al.,
1993; Arizawa and Huang, 1995). There, a 3-D wireframe model is used for handling rigid head
motion. Li (1993) analyzes the facial nonrigid motion as a weighted linear combination of a set of

 

action units

 

, instead of determining 

 

D

 

 directly. Since the number of action units is limited, the
compuatation becomes less expensive. In the Aizawa and Harashima (1989) paper, the portions in
the human face with rich expression, such as lips, are 

 

cut

 

 and then transmitted out. At the receiving
end, the portions are 

 

pasted

 

 back in the face.
Among the three types of techniques, block matching may be used to manage rigid motion,

while pel recursive and optical flow may be used to handle either rigid or nonrigid motion.

 

14.2 DIFFERENT CLASSIFICATIONS

 

There are various methods in motion estimation, which can be classified in many different ways.
We discuss some of the classifications in this section.
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Most algorithms are deterministic in nature. To see this, let us take a look at the most prominent
algorithm for each of the three major 2-D motion estimation techniques. That is, the Jain and Jain
algorithm for the block matching technique (Jain and Jain, 1981); the Netravali and Robbins
algorithm for the pel recursive technique (Netravali and Robbins, 1979); and the Horn and Schunck
algorithm for the optical flow technique (Horn and Schunck, 1981). All are deterministic methods.
There are also stochastic methods in 2-D motion estimation, such as the Konrad and Dubois
algorithm (Konrad and Dubois, 1992), which estimates 2-D motion using the maximum 

 

a posteriori

 

probability (MAP).
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While most techniques in 2-D motion analysis are spatial domain methods, there are also frequency
domain methods (Kughlin and Hines, 1975; Heeger, 1988; Porat and Friedlander, 1990; Girod,
1993; Kojima et al., 1993; Koc and Liu, 1998). Heeger (1988) developed a method to determine
optical flow in the frequency domain, which is based on spatiotemporal filters. The basic idea and
principle of the method is introduced in this subsection. A very new and effective frequency method
for 2-D motion analysis (Koc and Liu, 1998) is presented in Section 14.4, where we discuss new
trends in 2-D motion estimation.

 

14.2.2.1 Optical Flow Determination Using Gabor Energy Filters

 

The frequency domain method of optical flow computation developed by Heeger is suitable for
highly textured image sequences. First, let us take a look at how motion can be detected in the
frequency domain.

 

Motion in the spatiotemporal frequency domain

 

 — We initiate our discussion with a 1-D case.
The spatial frequency of a (translationally) moving sinusoidal signal, 

 

w

 

x

 

, is defined as cycles per
distance (usually cycles per pixel), while temporal frequency,

 

w

 

t

 

, is defined as cycles per time unit
(usually cycles per frame). Hence, the velocity of (translational) motion, defined as distance per
time unit (usually pixels per frame), can be related to the spatial and temporal frequencies as follows.

(14.5)
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A 1-D moving signal with a velocity 

 

v 

 

may have multiple spatial frequency components. Each
spatial frequency component 

 

w

 

xi

 

, 

 

i

 

 = 1,2,… has a corresponding temporal frequency component

 

w

 

ti

 

 such that

(14.6)

This relation is shown in Figure 14.2. Thus, we see that in the spatiotemporal frequency domain,
velocity is the slope of a straight line relating temporal and spatial frequencies.

For 2-D moving signals, we denote spatial frequencies by 

 

w

 

x

 

 and 

 

w

 

y

 

, and velocity vector by
 = (

 

v

 

x

 

, 

 

v

 

y

 

)

 

. The above 1-D result can be extended in a straightforward manner as follows:

(14.7)

The interpretation of Equation 14.7 is that a 2-D translating texture pattern occupies a plane in the
spatiotemporal frequency domain.

 

Gabor Energy Filters

 

 — As Adelson and Bergen (1985) pointed out, the translational motion of
image patterns is characterized by orientation in the spatiotemporal domain. This can be seen from
Figure 14.3. Therefore, motion can be detected by using spatiotemporally oriented filters. One filter
of this type, suggested by Heeger, is the Gabor filter.

A 1-D sine-phase Gabor filter is defined as follows:

(14.8)

Obviously, this is a product of a sine function and a Gaussian probability density function. In the
frequency domain, this is the convolution between a pair of impulses located in 

 

w

 

 and –

 

w

 

, and the
Fourier transform of the Gaussian, which is itself again a Gaussian function. Hence, the Gabor
function is localized in a pair of Gaussian windows in the frequency domain. This means that the
Gabor filter is able to pick up some frequency components selectively.

A 3-D sine Gabor function is

(14.9)

 

FIGURE 14.2

 

Velocity in 1-D spatiotemporal frequency domain.

w wti xiv= .

v
v

w w wt x x y yv v= + .

g t t
t( ) =

p
p( ) -

Ï
Ì
Ó

¸
˝
˛

1

2
2

2

2

2s
w

s
sin exp .

g x y t
x y t

x y t

x y t x y t

x y t

, , exp

  sin ,

( ) =
p

◊ - + +
Ê

Ë
Á

ˆ

¯
˜

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

◊ p + +( )[ ]

1
2

1
2

2

3 2

2

2

2

2

2

2

0 0 0

s s s s s s

w w w



 

© 2000 by CRC Press LLC

 

where 

 

s

 

x

 

, 

 

s

 

y

 

, and 

 

s

 

t

 

 are, respectively, the spreads of the Gaussian window along the spatiotemporal
dimensions; and 

 

w

 

x

 

0

 

, 

 

w

 

y

 

0

 

, and 

 

w

 

t

 

0

 

 are, respectively, the central spatiotemporal frequencies. The
actual Gabor energy filter used by Heeger is the sum of a sine-phase filter (which is defined above),
and a cosine-phase filter (which shares the same spreads and central frequencies as that in the sine-
phase filter, and replaces sine by cosine in Equation 14.9). Its frequency response, therefore, is as
follows.

(14.10)

This indicates that the Gabor filter is motion sensitive in that it responds largely to motion that has
more power distributed near the central frequencies in the spatiotemporal frequency domain, while
it responds poorly to motion that has little power near the central frequencies.

 

Flow extraction with motion energy

 

 — Using a vivid example, Heeger explains in his paper why
one such filter is not sufficient in detection of motion. Multiple Gabor filters must be used. In fact,
a set of 12 Gabor filters are utilized in Heeger’s algorithm. The 12 Gabor filters in the set have
one thing in common:

(14.11)

 

FIGURE 14.3

 

Orientation in spatiotemporal domain. (a) A horizontal bar translating downward. (b) A
spatiotemporal cube. (c) A slice of the cube perpendicular to 

 

y

 

 axis. The orientation of the slant edges represents
the motion.
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In other words, the 12 filters are tuned to the same spatial frequency band but to different spatial
orientation and temporal frequencies.

Briefly speaking, optical flow is determined as follows. Denote the measured motion energy
by ni,i = 1,2…,12. Here i indicates one of the 12 Gabor filters. The summation of all ni is denoted by

(14.12)

Denote the predicted motion energy by Pi(vx, vy), and the sum of predicted motion energy by

(14.13)

Similar to what many algorithms do, optical flow determination is then converted to a minimization
problem. That is, optical flow should be able to minimize error between the measured and predicted
motion energies:

(14.14)

Similarly, many readily available numerical methods can be used for solving this minimization
problem.

14.2.3 REGION-BASED APPROACHES VS. GRADIENT-BASED APPROACHES

As stated in Chapter 10, methodologically speaking, there are generally two approaches to 2-D
motion analysis for video coding: region based and gradient based. Now that we have gone through
three major techniques, we can see this classification more clearly.

The region-based approach can be characterized as follows. For a region in an image frame,
we find its best match in another image frame. The relative spatial position between these two
regions produces a displacement vector. The best matching is found by minimizing a dissimilarity
measure between the two regions, which is defined as

(14.15)

where R denotes a spatial region, on which the displacement vector (dx, dy)T estimate is based;
M[a,b] denotes a dissimilarity measure between two arguments a and b; Dt is the time interval
between two consecutive frames.

Block matching certainly belongs to the region-based approach. By region we mean a rectangle
block. For an original block in a (current) frame, block matching searches for its best match in
another (previous) frame among candidates. Several dissimilarity measures are utilized, among
which the mean absolute difference (MAD) is used most often.

Although it uses the spatial gradient of intensity function, the pel recursive method with
inclusion of a neighborhood area assumes the same displacement vector within a neighborhood
region. A weighted sum of the squared DFD within the region is used as a dissimilarity measure.
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By using numerical methods such as various descent methods, the pel recursive method iteratively
minimizes the dissimilarity measure, thus delivering displacement vectors. The pel recursive tech-
nique is therefore in the category of region-based approaches.

In optical flow computation, the two most frequently used techniques discussed in Chapter 13
are the gradient method and the correlation method. Clearly, the correlation method is region based.
In fact, as we pointed out in Chapter 13, it is very similar to block matching.

As far as the gradient-based approach is concerned, we start its characterization with the
brightness invariant equation, covered in Chapter 13. That is, we assume that brightness is conserved
during the time interval between two consecutive image frames.

(14.16)

By expanding the right-hand side of the above equation into the Taylor series, applying the above
equation, and some mathematical manipulation, we can derive the following equation.

(14.17)

where fx, fy, ft are partial derivatives of intensity function with respect to x, y, and t, respectively;
and u and v are two components of pixel velocity. This equation contains gradients of intensity
function with respect to spatial and temporal variables and links two components of the displacement
vector. The square of the left-hand side in the above equation is an error that needs to be minimized.
Through the minimization, we can estimate displacement vectors.

Clearly, the gradient method in optical flow determination, discussed in Chapter 13, falls into
the above framework. There, an extra constraint is imposed and included into the error represented
in Equation 14.17.

Table 14.1 summarizes what we discussed in this subsection.

14.2.4 FORWARD VS. BACKWARD MOTION ESTIMATION

Motion-compensated predictive video coding may be done in two different ways: forward and
backward (Boroczky, 1991). These ways are depicted in Figures 14.4 and 14.5, respectively. With
the forward manner, motion estimation is carried out by using the original input video frame and
the reconstructed previous input video frame. With the backward manner, motion estimation is
implemented with two successive reconstructed input video frames.

The former provides relatively higher accuracy in motion estimation and hence more efficient
motion compensation than the latter, owing to the fact that the original input video frames are
utilized. However, the latter does not need to transmit motion vectors to the receiving end as an
overhead, while the former does.

TABLE 14.1
Region-Based vs. Gradient-Based Approaches

Block Matching Pel Recursion

Optical Flow

Gradient-Based 
Method

Correlation-Based 
Method

Regional-based approaches
Gradient-based approaches
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Block matching is used in almost all the international video coding standards, such as H.261,
H.263, MPEG 1, and MPEG 2 (which are covered in the next part of this book), as forward-motion
estimation. The pel recursive technique is used as backward-motion estimation. In this way, the
pel recursive technique avoids encoding a large amount of motion vectors. On the other hand,
however, it provides relatively less accurate motion estimation than block matching. Optical flow
is usually used as forward-motion estimation in motion-compensated video coding. Therefore, as
expected, it achieves higher motion estimation accuracy on the one hand and it needs to handle a
large amount of motion vectors as overhead on the other hand. These will be discussed in the next
section.

It is noted that one of the new improvements in the block-matching technique is described in
Section 11.6.3. It is called the predictive motion field segmentation technique (Orchard, 1993), and
it is motivated by backward-motion estimation. There, segmentation is conducted backward, i.e.,
based on previously decoded frames. The purpose of this is to save overhead for shape information
of motion discontinuities.

14.3 PERFORMANCE COMPARISON AMONG THREE 
MAJOR APPROACHES

14.3.1 THREE REPRESENTATIVES

A performance comparison among the three major approaches; block matching, pel recursion, and
optical flow, was provided in a review paper by Dufaux and Moscheni (1995). Experimental work
was carried out as follows. The conventional full-search block matching is chosen as a representative

FIGURE 14.4 Forward motion estimation and compensation, T: transformer, Q: quantizer, FB: frame buffer,
MCP: motion-compensated predictor, ME: motion estimator, e: prediction error, f : input video frame,
fp: predicted video frame, fr: reconstructed video frame, q: quantized transform coefficients, v: motion vector.
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for the block-matching approach, while the Netravali and Robbins algorithm and the modified Horn
and Schunck algorithm are chosen to represent the pel recursion and optical flow approaches,
respectively.

14.3.2 ALGORITHM PARAMETERS

In full-search block matching, the block size is chosen as 16 ¥ 16 pixels, the maximum displacement
is ±15 pixels, and the accuracy is half-pixel. In the Netravali and Robbins pel recursion, e = 1/1024,
the update term is averaged in an area of 5 ¥ 5 pixels and clipped to a maximum of 1/16 pixels
per frame, and the algorithm iterates one iteration per pixel. In the modified Horn and Schunck
algorithm, the weight a2 is set to 100, and 100 iterations of the Gauss and Seidel procedure are
carried out.

14.3.3 EXPERIMENTAL RESULTS AND OBSERVATIONS

The three test video sequences are the “Mobile and Calendar,” “Flower Garden,” and “Table Tennis.”
Both subjective criteria (in terms of needle diagrams showing displacement vectors) and objective
criteria (in terms of DFD error energy) are applied to access the quality of motion estimation.

It turns out that the pel recursive algorithm gives the worst accuracy in motion estimation. In
particular, it cannot follow fast and large motions. Both block-matching and optical flow algorithms
give better motion estimation.

FIGURE 14.5 Backward-motion estimation and compensation, T: transformer, Q: quantizer, FB: frame
buffer, MCP: motion-compensated predictor, ME: motion estimator, e: prediction error, f: input video frame,
fp: predicted video frame, fr1: reconstructed video frame, fr2: reconstructed previous video frame, q: quantized
transform coefficients.
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It is noted that we must be cautious in drawing conclusions from these tests. This is because
different algorithms in the same category and the same algorithm under different implementation
conditions will provide quite different performances. In the above experiments, the full-search
block matching with half-pixel accuracy is one of the better block-matching techniques. On the
contrary, there are many improved pel recursive and optical flow algorithms, which outperform the
chosen representatives in the reported experiments.

The experiments do, however, provide an insight about the three major approaches. Pel recursive
algorithms are seldom used in video coding now, mainly because of their inaccurate motion
estimation, although they do not require transmitting motion vectors to the receiving end. Although
they can provide relatively accurate motion estimation, optical flow algorithms require a large
amount of overhead for handling dense motion vectors. This prevents the optical flow techniques
from wide and practical usage in video coding. Block matching is simple, yet very efficient for
motion estimation. It provides quite accurate and reliable motion estimation for most practical
video sequences in spite of its simple piecewise translational model. At the same time it does not
require much overhead. Therefore, for first-generation video coding, block matching is considered
to be the most suitable among the three approaches.

14.4 NEW TRENDS

In Chapters 11, 12, and 13, many new, effective improvements within the three major approaches
were discussed. These techniques include multiresolution block matching, (locally adaptive) mul-
tigrid block matching, overlapped block matching, thresholding techniques, (predictive) motion
field segmentation, feedback and multiple attributes in optical flow computation, subpixel accuracy,
and so on. Some improvements will be discussed in Section IV, where various international video
coding standards such as H.263 and MPEG 2, and 4 are introduced.

As pointed out by Orchard (1998), today our understanding of motion analysis and video
compression is still based on an ad hoc framework, in general. What today’s standards have achieved
is not near the ideally possible performance. Therefore, more efforts are continuously made in this
field, seeking much simpler and more practical, and efficient algorithms.

As an example of such developments, we conclude this chapter by presenting a novel method
for 2-D motion estimation: the DCT-based motion estimation (Koc and Liu, 1998).

14.4.1 DCT-BASED MOTION ESTIMATION

As pointed out in Section 14.2.2, as opposed to the conventional 2-D motion estimation techniques,
this method is carried out in the frequency domain. It is also different from the Gabor energy filter
method by Heeger, discussed in Section 14.2.2.1. Without introducing Gabor filters, this mehtod
is directly DCT based. The fundamental concepts and techniques of this method are discussed below.

14.4.1.1 DCT and DST Pseudophases

The underlying idea behind this method is to estimate 2-D translational motion by determining the
DCT and DST (discrete sine transform) pseudophases. Let us use the simpler 1-D case to illustrate
this concept. Once it is established, it can be easily extended to the 2-D case.

Consider a 1-D signal sequence { f (n),n Œ (0, 1, L, N – 1} of length N. Its translated version
is denoted by {g(n),n Œ (0, 1, L, N – 1}. The translation is defined as follows.

. (14. 18)g n
f n d n d N( ) =

-( ) -( ) Œ -( )Ï
Ì
Ó

,   , , ,

,

if

otherwise

0 1 1

0

L



© 2000 by CRC Press LLC

In the above equation, d is the amount of the translation and it needs to be estimated. Let us define
the following several functions before introducing the pseudophases. The DCT and the DST of the
second kind of g(n), GC(k), and GS(k) are defined as follows.

(14.19)

(14.20)

The DCT and DST of the first kind of f (n), FC(k), and FS(k) are defined as

(14.21)

(14.22)

In the above equations, C(k) is defined as

(14.23)

Now we are in a position to introduce the following equation, which relates the translational amount d
to the DCT and DST of the original sequence and its translated version, defined above. That is,

(14.24)

where DC(k) and DC(k) are referred to as the pseudophases and defined as follows:

(14.25)

Equation 14.24 can be solved for the amount of translation d, thus motion estimation. This becomes
clearer when we rewrite the equation in a matrix-vector format. Denote the 2 ¥ 2 matrix in
Equation 14.24 by F(k), the 2 ¥ 1 column vector at the left-hand side of the equation by G(k), and
the 2 ¥ 1 column vector at the right-hand side by D(k). It is easy to verify that the matrix F(k) is
orthogonal by observing the following.

G k
N

C k g n
k
N

n k NC

n

N

( ) = ( ) ( ) p +( )È
ÎÍ

˘
˚̇

Œ -{ }
=

-

Â2
0 5 0 1 1

0

1

cos .   , ,L

G k
N

C k g n
k
N

n k NS

n

N

( ) = ( ) ( ) p +( )È
ÎÍ

˘
˚̇

Œ{ }
=

-

Â2
0 5 1

0

1

sin .   , .L

F k
N

C k f n
k
N

n k NC

n

N

( ) = ( ) ( ) pÈ
ÎÍ

˘
˚̇

Œ -{ }
=

-

Â2
0 1 1

0

1

cos   , ,L

F k
N

C k f n
k
N

n k NS

n

N

( ) = ( ) ( ) pÈ
ÎÍ

˘
˚̇

Œ{ }
=

-

Â2
1

0

1

sin   , .L

C k
n N( ) = =Ï

Ì
Ô

ÓÔ

1
2

0

1

for  or 

otherwise
.

G k

G k

F k F k

F k F k

D k

D k

C

S

C S

C C

C

S

( )
( )

È

Î
Í

˘

˚
˙ =

( ) - ( )
( ) ( )

È

Î
Í

˘

˚
˙

( )
( )

È

Î
Í

˘

˚
˙ ,

D k
k
N

d

D k
k
N

d

C

S

( ) p +Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

( ) p +Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

D

D

cos

sin .

1
2

1
2



© 2000 by CRC Press LLC

(14.26)

where I is a 2 ¥ 2 identity matrix and the constant l is

(14.27)

We then derive the matrix-vector format of Equation 14.24 as follows:

(14.28)

14.4.1.2 Sinusoidal Orthogonal Principle

It was shown above that the pseudophases, which contain the translation information, can be
determined in the DCT and DST frequency domain. But how the amount of the translation can be
found has not been mentioned. Here, the algorithm uses the sinusoidal principle to pick up this
information. That is, the inverse DST of the second kind of scaled pseudophase, C(k)Ds(k), is found
to equal an algebraic sum of the following two discrete impulses according to the sinusoidal
orthogonal principle:

(14.29)

Since the inverse DST is limited to n Œ {0, 1, L, N – 1}, the only peak value among this set of
N values indicates the amount of the translation d. Furthermore, the direction of the translation
(positive or negative) can be determined from the polarity (positive or negative) of the peak value.

The block diagram of the algorithm is shown in Figure 14.6. This technique can be extended
to the 2-D case in a straightforward manner. Interested readers should refer to Koc and Liu (1998).

14.4.1.3 Performance Comparison

The algorithm was applied to several typical testing video sequences, such as the “Miss America”
and “Flower Garden” sequences, and an “Infrared Car” sequence. The results were compared with
the conventional full-search block-matching technique and several fast-search block-matching tech-
niques such as the 2-D logarithm search, three step search, search with subsampling in the original
block, and the correlation windows.

Prior to applying the algorithm, one of the following preprocessing procedures is implemented:
frame differentiation or edge extraction. It was reported that for the “Flower Garden” and “Infrared
Car” sequences, the DCT-based algorithm achieves a higher coding efficiency than all three fast-
search block-matching methods, while for the Miss America sequence it obtains a lower efficiency.
It was also reported that it performs well even in a noisy situation.

A lower computational complexity, O(M 2) for an M ¥ M search range, is one of the major
advantages possessed by the DCT-based motion estimation algorithm compared with conventional
full-search block matching, O(M 2 · N 2) for an M ¥ M search range and an N ¥ N block size.

With DCT-based motion estimation, a fully DCT-based motion-compensated coder structure
becomes possible, which is expected to achieve a higher throughput and a lower system complexity.
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14.5 SUMMARY

In this chapter, which concludes the motion analysis and compensation portion of the book, we
first generalize the discussion of the aperture problem, the ill-posed nature, and the conservation-
and-neighborhood-information unified point of view, previously made with respect to the optical
flow technique in Chapter 13, to cover block-matching and pel recursive techniques. Then, occlusion
and disocclusion, and rigidity and nonrigidity are discussed with respect to the three techniques.
The difficulty of nonrigid motion estimation is analyzed. Its relevance in visual communications
is addressed.

Different classifications of various methods in the three major 2-D motion estimation tech-
niques; block matching, pel recursion, and optical flow, are presented. Besides the frequently utilized
deterministic methods, spatial domain methods, region-based methods, and forward-motion esti-
mation, their counterparts — stochastic methods, frequency domain methods, gradient methods,
and backward motion estimation — are introduced. In particular, two frequency domain methods
are presented with some detail. They are the method using the Gabor energy filter and the DCT-
based method.

A performance comparison among the three techniques is also introduced in this chapter, based
on which observations are drawn. A main point is that block matching is at present the most suitable
technique for 2-D motion estimation among the three techniques.

FIGURE 14.6 Block diagram of DCT-based motion estimation (1-D case).
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14.6 EXERCISES

14-1. What is the difference between rigid motion and nonrigid motion? In facial encoding,
what is the nonrigid motion? How is the nonrigid motion handled?

14-2. How is 2-D motion estimation carried out in the frequency domain? What are the
underlying ideas behind the Heeger method and the Koc and Liu method?

14-3. Why is one Gabor energy filter not sufficient in motion estimation? Draw the power
spectrum of a 2-D sine-phase Gabor function.

14-4. Show the correspondence of a positive (negative) peak value in the inverse DST of the
second kind of DST pseudophase to a positive (negative) translation in the 1-D spatial
domain.

14-5. How does neighborhood information manifest itself in the pel recursive technique?
14-6. Using your own words and some diagrams, state that the translational motion of an

image pattern is characterized by orientation in the spatiotemporal domain.
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Digital Video Coding 
Standards — MPEG-1/2 Video

 

In this chapter, we introduce the ISO/IEC digital video coding standards, MPEG-1 (ISO/IEC,
1992) and MPEG-2 (ISO/IEC, 1995), which are extensively used in the video industry for television
broadcast, visual communications, and multimedia applications.

 

16.1 INTRODUCTION

 

As we know, MPEG has successfully developed two standards, MPEG-1 and MPEG-2. The
MPEG-1 video standard was completed in 1991 with the development of the ISO/IEC specification
11172, which is the standard for coding of moving picture and associated audio for digital storage
media at up to about 1.5 Mbps. To support a wide range of application profiles the user can specify
a set of input parameters including flexible picture size and frame rate. MPEG-1 was developed
for multimedia CD-ROM applications. Important features provided by MPEG-1 include frame-
based random access of video, fast-forward/fast-reverse searches through compressed bitstreams,
reverse playback of video, and editability of the compressed bitstream. MPEG-2 is formally referred
to as ISO/IEC specification 13818, which is the second phase of MPEG video coding solution for
applications not originally covered by the MPEG-1 standard. Specifically, MPEG-2 was developed
to provide video quality not lower than NTSC/PAL and up to HDTV quality. The MPEG-2 standard
was completed in 1994. Its target bit rates for NTSC/PAL are about 2 to 15 Mbps, and it is optimized
at about 4 Mbps. The bit rates used for HDTV signals are about 19 Mbps. In general, MPEG-2
can be seen as a superset of the MPEG-1 coding standard and is backward compatible to the
MPEG-1 standard. In other words, every MPEG-2-compatible decoder is able to decode a compliant
MPEG-1 bit stream.

In this chapter, we will briefly introduce the standard itself. Since many books and publications
exist for the explanation of the standards (Haskell et al., 1997; Mitchell et al., 1997), we will pay
more attention to the utility of the standard, how the standard is used, and touch on some interesting
research topics that have emerged. In other words, the standards provide the knowledge for how
to design the decoders that are able to decode the compliant MPEG bitstreams successfully. But
the standards do not specify the means of generating these bitstreams. For instance, given some
bit rate, how can one generate a bitstream that provides the best picture quality? To answer this,
one needs to understand the encoding process, which is an informative part of the standard (referred
to as the test model), but it is very important for the content and service providers. In this chapter,
the issues related to the encoding process are described. The main contents include the following
topics: preprocessing, motion compensation, rate control, statistically multiplexing multiple pro-
grams, and optimal mode decision. Some of the sections contain the authors’ own research results.
These research results are useful in providing examples for readers to understand how the standard
is used.

 

16.2 FEATURES OF MPEG-1/2 VIDEO CODING

 

It should be noted that MPEG-2 video coding has the feature of being backward compatible with
MPEG-1. It turns out that most of the decoders in the market are MPEG-2 compliant decoders.
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For simplicity, we will start to introduce the technical detail of MPEG-1 and then describe the
enhanced features of MPEG-2, which MPEG-1 does not have.

 

16.2.1 MPEG-1 F

 

EATURES

 

16.2.1.1 Introduction

 

The algorithms employed by MPEG-1 do not provide a lossless coding scheme. However, the
standard can support a variety of input formats and be applied to a wide range of applications. As
we know, the main purpose of MPEG-1 video is to code moving image sequences or video signals.
To achieve a high compression ratio, both intraframe redundancy and interframe redundancy should
be exploited. This implies that it would not be efficient to code the video signal with an intraframe-
coding scheme, such as JPEG. On the other hand, to satisfy the requirement of random access, we
have to use intraframe coding from time to time. Therefore, the MPEG-1 video algorithm is mainly
based on discrete cosine transform (DCT) coding and interframe motion compensation. The DCT
coding is used to remove the intraframe redundancy and motion compensation is used to remove
the interframe redundancy. With regard to input picture format, MPEG-1 allows progressive pictures
only, but offers great flexibility in the size, up to 4095 

 

¥

 

 4095 pixels. However, the coder itself is
optimized to the extensively used video SIF picture format. The SIF is a simple derivative of the
CCIR601 video format for digital television applications. According to CCIR601, a color video
source has three components, a luminance component (

 

Y

 

) and two chrominance components (

 

C

 

b

 

and 

 

C

 

r

 

) which are in the 4:2:0 subsampling format. Note that the 4:2:0 and 4:2:2 color formats
were described in Chapter 15.

 

16.2.1.2 Layered Structure Based on Group of Pictures

 

The MPEG coding algorithm is a full-motion-compensated DCT and DPCM hybrid coding algo-
rithm. In MPEG coding, the video sequence is first divided into groups of pictures or frames (GOP)
as shown in Figure 16.1. Each GOP may include three types of pictures or frames: intracoded (I)
picture or frame, predictive-coded (P) picture or frame, and bidirectionally predictive-coded (B)
picture or frame. I-pictures are coded by intraframe techniques only, with no need for previous
information. In other words, I-pictures are self-sufficient. They are used as anchors for forward
and/or backward prediction. P-pictures are coded using one-directional motion-compensated pre-
diction from a previous anchor frame, which could be either an I- or a P-picture. The distance
between two nearest I-frames is denoted by 

 

N

 

, which is the size of GOP. The distance between
two nearest anchor frames is denoted by 

 

M

 

. Parameters 

 

N

 

 and 

 

M

 

 both are user-selectable parameters,
which are selected by user during the encoding. A larger number of 

 

N

 

 and 

 

M

 

 will increase the

 

FIGURE 16.1

 

A group of pictures of video sequence in display order.
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coding performance but cause error propagation or drift. Usually, 

 

N

 

 is chosen from 12 to 15 and

 

M

 

 from 1 to 3. If 

 

M

 

 is selected to be 1, this means no B-picture will be used. Last, B-pictures can
be coded using predictions from either past or future anchor frames (I or P), or both. Regardless
of the type of frame, each frame may be divided into slices; each slice consists of several macrob-
locks (MBs). There is no rule to decide the slice size. A slice could contain all macroblocks in a
row of a frame or all macroblocks of a frame. Smaller slice size is favorable for the purpose of
error resilience, but will decrease coding performance due to higher overhead. A macroblock
contains a 16 

 

¥

 

 16 

 

Y

 

 component and spatially corresponding 8 

 

¥

 

 8 

 

C

 

b

 

 and 

 

C

 

r

 

 components. A
macroblock has four luminance blocks and two chrominance blocks (for 4:2:0 sampling format)
and the macroblock is also the basic unit of adaptive quantization and motion compensation. Each
block contains 8 

 

¥

 

 8 pixels over which the DCT operation is performed.
To exploit the temporal redundancy in the video sequence, the motion vector for each macrob-

lock is estimated from two original luminance pictures using a block-matching algorithm. The
criterion for the best match between the current macroblock and a macroblock in the anchor frame
is the minimum mean absolute error. Once the motion vector for each macroblock is estimated,
pixel values for the target macroblock can be predicted from the previously decoded frame. All
macroblocks in the I-frame are coded in intramode with no motion compensation. Macroblocks in
P- and B-frames can be coded in several modes. Among the modes are intracoded and intercoded
with motion compensation. This decision is made by mode selection. Most encoders depend on
the values of predicted differences to make this decision. Within each slice, the values of motion
vectors and DC values of each macroblock are coded using DPCM. The detailed specifications of
this coding can be found in the document proposed by the MPEG video committee (ISO/IEC,
1995). The structure of MPEG implies that if an error occurs within I-frame data, it will be
propagated through all frames in the GOP. Similarly, an error in a P-frame will affect the related
P- and B-frames, while B-frame errors will be isolated.

 

16.2.1.3 Encoder Structure

 

The typical MPEG-1 video encoder structure is shown in Figure 16.2. Since the encoding order is
different from the display order, the input sequence has to be reordered for encoding. For example,
if we choose the GOP size (

 

N

 

) to be 12, and the distance between two nearest anchor frames (

 

M

 

)
to be 3, the display order and encoding order are as shown in Table 16.1.

It should be noted that in the encoding order or in the bitstream the first frame in a GOP is
always an I-picture. In the display order the first frame can be either an I-picture or the first B-picture
of the consecutive series of B-pictures which immediately precedes the first I-picture, and the last

 

FIGURE 16.2

 

Typical MPEG-1 encoder structure. (From ISO/IEC, MPEG-2, Test Model 5, ISO-IEC/STCI/
SC29/WGII, April, 1993. With permission.)
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picture in a GOP is an anchor picture, either an I- or P-picture. The first GOP always starts with
an I-picture and, as a consequence, this GOP will have fewer B-pictures than the other GOPs.

The MPEG-1 video compression technique uses motion compensation to remove the interframe
redundancy. The concept of motion compensation is based on the estimation of motion between
video frames. The fundamental model that is used assumes that a translational motion can approx-
imate the motion of a block. If all elements in a video scene are approximately spatially displaced,
the motion between frames can be described by a limited number of motion parameters. In other
words, the motion can be described by motion vectors for translatory motion of pixels. Since the
spatial correlation between adjacent pixels is usually very high, it is not necessary to transmit
motion information for each coded image pixel. This would be too expensive and the coder would
never be able to reach a high compression ratio. The MPEG video uses the macroblock structure
for motion compensation; i.e., for each 16 

 

¥

 

 16 macroblock only one or sometimes two motion
vectors are transmitted. The motion vectors for any block are found within a search window that
can be up to 512 pixels in each direction. Also, the matching can be done at half-pixel accuracy,
where the half-pixel values are computed by averaging the full-pixel values (Figure 16.3).

For interframe coding, the prediction differences or error images are coded and transmitted
with motion information. A 2-D DCT is used for coding both the intraframe pixels and the predictive
error pixels. The image to be coded is first partitioned into 8 

 

¥

 

 8 blocks. Each 8 

 

¥

 

 8 pixel block is
then subject to an 8 

 

¥

 

 8 DCT, resulting in a frequency domain representation of the block as shown
in Figure 16.4.

The goal of the transformation is to decorrelate the block data so that the resulting transform
coefficients can be coded more efficiently. The transform coefficients are then quantized. During

 

TABLE 16.1
Display Order and Encoding Order

 

Display Order 0 1 2 3 4 5 6 7 8 9 10 11 12

 

Encoding order 0 3 1 2 6 4 5 9 7 8 12 10 11
Coding type I P B B P B B P B B I B B

 

FIGURE 16.3

 

Half-pixel locations in motion compensation.

 

FIGURE 16.4

 

Example of 8 

 

¥

 

 8 DCT.
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the process of quantization a weighted quantization matrix is used. The function of quantization
matrix is to quantize high frequencies with coarser quantization steps that will suppress high
frequencies with no subjective degradation, thus taking advantage of human visual perception
characteristics. The bits saved for coding high frequencies are used for lower frequencies to obtain
better subjective coded images. There are two quantizer weighting matrices in Test Model 5 (TM5)
(ISO/IEC, 1993), an intraquantizer weighting matrix and a nonintraquantizer weighting matrix; the
latter is flatter since the energy of coefficients in interframe coding is more uniformly distributed
than in intraframe coding.

In intra macroblocks, the DC value, 

 

dc

 

, is an 11-bit value before quantization and it will be
quantized to 8, 9, or 10 bits according to the setting of parameter. Thus, the quantized DC value,
QDC, is calculated as

(16.1)

where symbol // means integer division with rounding to the nearest integer and the half-integer
values are rounded away for zero unless otherwise specified.

 

 

 

The AC coefficients, 

 

ac

 

(

 

i

 

,

 

j

 

), are first
quantized by individual quantization factors to the value of 

 

ac

 

 ~ (

 

i

 

,

 

j

 

):

(16.2)

where 

 

W

 

I

 

 (

 

i

 

,

 

j

 

) is the element at the (

 

i

 

,

 

j

 

) position in the intraquantizer weighting matrix shown in
Figure 16.5.

The quantized level QAC(

 

i

 

,

 

j

 

) is given by

(16.3)

where 

 

mquant

 

 is the quantizer scale or step which is derived for each macroblock by rate control
algorithm, and 

 

p

 

 = 3 and 

 

q

 

 = 4 in TM5 (ISO/IEC, 1993). For nonintra macroblocks,

(16.4)

where 

 

W

 

N

 

(

 

i

 

,

 

j

 

) is the nonintraquantizer weighting matrix in Figure 16.5 and

(16.5)

An example of encoding an intrablock is shown in Figure 16.6.

 

FIGURE 16.5

 

Quantizer matrices for intra- and nonintracoding.

8-bit:  QDC 9-bit:  QDC or 10-bit:  QDC= = =dc dc dc// , // ,  // ,8 4 2

ac i j ac i j W i jI~ , , // , ,( ) = * ( )( ) ( )16

QAC signi j ac i j ac i j p mquant q mquant, ~ , ~ , // ,( ) = ( ) + ( ) * *( )( )([ ] *( )2

ac i j ac i j W i jN~ , , // , ,( ) = * ( )( ) ( )16

QAC i j ac i j mquant, ~ , .( ) = ( ) *( )2
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The coefficients are processed in zigzag order since the most energy is usually concentrated in
the lower-order coefficients. The zigzag ordering of elements in an 8 

 

¥

 

 8 matrix allows for a more
efficient run-length coder. This is illustrated in Figure 16.7.

With the zigzag order, the run-length coder converts the quantized frequency coefficients to
pairs of zero runs and nonzero coefficients:

34 0 1 0 –1 1 0 0 0 0 0 0 –1 0 0 0 0.…

After parsing we obtain the pairs of zero runs and values:

34 | 0 1 | 0 –1 | 1 | 0 0 0 0 0 0 –1 | 0 0 0 0.…

These pairs of runs and values are then coded by a Huffman-type entropy coder. For example,
for the above run/value, pairs are

 

FIGURE 16.6

 

An example of coding an intrablock.

 

FIGURE 16.7

 

Zigzag scans to get pairs of zero-runs and value.

 

Run/Value 34 VLC (Variable Length Code)

 

1, 1 0110
1, –1 0111
0, 1 110
6, –1 0001011
End of block 10
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The VLC tables are obtained by statistically optimizing a large number of training video
sequences and are included in the MPEG-2 specification. The same idea is applied to code the DC
values, motion vectors, and other information. Therefore, the MPEG video standard contains a
number of VLC tables.

 

16.2.1.4 Structure of the Compressed Bitstream

 

After coding, all the information is converted to binary bits. The MPEG video bitstream consists
of several well-defined layers with headers and data fields. These layers include sequence, GOP,
picture, slice, macroblock, and block. The important syntax elements contained in each layer can
be summarized in Table 16.2. The typical structure of the MPEG-1 video-compressed bitstream is
shown in Figure 16.8. The syntax elements contained in the headers and the amount of bits defined
for each element can be found in the standard.

For picture layer, a frame of picture is first partitioned into macroblocks (16 

 

¥

 

 16 for luminance
and 8 

 

¥

 

 8 for chrominance in the 4:2:0 color representation). The compressed bitstream structure
at this layer is shown in Figure 16.9. It is important to note that most elements in the syntax are
coded by VLC. The tables of these variable run-length codes are obtained through the simulation
of a large number of training video sequences.

 

FIGURE 16.8

 

Description of layered structure of compressed bitstream.

 

TABLE 16.2
Summary of Important Syntax of Each Layer

 

Name of Layer Important Syntax Elements

 

Sequence Picture size and frame rate
Bit rate and buffering requirement
Programmable coding parameters

GOP Random access unit
Time code

Picture Timing information (buffer fullness, temporal reference)
Coding type (I, P, or B)

Slice Intraframe addressing information
Coding reinitialization (error resilience)

MB Basic coding structure
Coding mode
Motion vectors
Quantization

Block DCT coefficients
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16.2.1.5 Decoding Process

 

The decoding process is an inverse procedure of encoding. The block diagram of a typical decoder
is shown in Figure 16.10

The variable-length decoder (VLD) first decodes the coded data or video bitstream. This process
yields the quantized DCT coefficients and motion vector data for each macroblock. The coefficients
are inversely scanned and dequantized. The decoded DCT coefficients are then inverse-transformed
to obtain the spatial-domain pixels. If the macroblock was intracoded, these pixels represent the
reconstructed values, without any further processing. However, if the macroblock is intercoded,
then motion compensation is performed to add the prediction from the corresponding reference
frame or frames.

 

16.2.2 MPEG-2 E

 

NHANCEMENTS

 

The basic coding structure of MPEG-2 video is the same as that of MPEG-1 video, that is, intraframe
and interframe DCT with I-, P-, and B-pictures is used. The most important features of MPEG-2
video coding include:

 

FIGURE 16.9

 

Picture layer data structure.

 

FIGURE 16.10

 

Simplified MPEG video decoder. (From ISO/IEC, MPEG-2 Test Model 5, April, 1993. With
permission.)
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• Field/frame prediction modes for supporting the interlaced video input;
• Field/frame DCT coding syntax;
• Downloadable quantization matrix and alternative scan order;
• Scalability extension.

The above enhancement items are all coding performance improvements that are related to the
support of interlaced material. There are also several noncompression enhancements, which include:

• Syntax to facilitate 3:2 pull-down in the decoder;
• Pan and scan codes with 

 

1

 

/

 

16

 

 pixel resolution;
• Display flags indicating chromaticity, subcarrier amplitude, and phase (for NTSC/PAL/

SECAM source material).

In the following, each of these enhancements is introduced.

 

16.2.2.1 Field/Frame Prediction Mode

 

In MPEG-1 video, we always code each picture as a frame structure, whether the original material
is progressive or interlaced. If the original sequence is interlaced, each frame consists of two fields:
top field and bottom field as shown in Figure 16.11. We still can use frame-based prediction if we
consider the two fields as a frame, such as that shown in Figure 16.11.

In Figure 16.11, three frames are coded as I-, B-, and P-frames and each frame consists of two
fields. The P-frame is predicted with the I-frame with one motion vector. The B-frame can be
predicted only with I-frame (forward prediction) or only with P-frame (backward prediction) or
from both I- and P-picture (bidirectional prediction), the forward and backward prediction needs
only one motion vector and the bidirectional prediction needs two motion vectors.

MPEG-2 video provides an enhanced prediction mode to support interlaced material, which
uses the adaptive field/frame selection, based on the best match criteria. Each frame consists of
two fields: top field and bottom field. Each field can be predicted from either field of the previous
anchor frame. The possible prediction modes are shown in Figure 16.12.

In a field-based prediction, the top field of the current frame can be either predicted from the
top field or the bottom field of an anchor frame as shown in Figure 16.12. The solid arrow represents
the prediction from the top field, and the dashed arrow represents the prediction from the bottom
field. The same is also true for bottom field of the current frame. If the current frame is a P-frame,
there could be up to two motion vectors used to make the prediction (one for top field and one for
bottom field); if the current frame is a B-frame, there could be up to four motion vectors (each
field could be bidirectional prediction which needs two motion vectors). At the macroblock level

 

FIGURE 16.11

 

Frame-based prediction of MPEG-1 video coding.
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of MPEG-2, several coding modes are added to support these new field-based predictions. Addi-
tionally, there is another new prediction mode supported by the MPEG-2 syntax. This is the special
prediction mode referred to as dual prime prediction. The basic idea of dual prime prediction is to
code a set of field motion vectors with a scaling to a near or far field, plus a transmitted delta value.
Due to the correlation of adjacent pixels, the dual prime coding of field vectors can save the number
of bits used for field motion vectors. The dual prime prediction is shown in Figure 16.13. In
Figure 16.13, the value of one field motion vector and the value of the delta motion vector are
transmitted; the motion vectors for other field are derived from the above two values.

It should be noted that only the P-picture is allowed to use dual prime prediction. In other
words, if the dual prime prediction is used in the encoder, there will be no B-pictures. The reason
for this restriction is to limit the required memory bandwidth for a real system implementation.

 

16.2.2.2 Field/Frame DCT Coding Syntax

 

Another important feature to support interlaced material is to allow adaptive selection of the
field/frame DCT coding as shown in Figure 16.14.

In Figure 16.14, the middle is a luminance macroblock of 16 

 

¥

 

 16 pixels, the black rectangular
represents the 8 pixels in the top field and the white rectangular represents the 8 pixels in the
bottom field. The left is the field DCT in which each 8 

 

¥

 

 8 block contains only the pixels from the
same field. The eight in the frame DCT, each 8 

 

¥

 

 8 block contains the pixels from both top field
and bottom field.

At the macroblock level for interlaced video, the field-type DCT may be selected when the
video scene contains less detail and experiences large motion. Since the difference between adjacent
fields may be large when there is large motion between fields, it may be more efficient to group
the fields together, rather than the frames. In this way, the possibility that there exists more
correlation among the fields can be exploited. Ultimately, this can provide much more efficient

 

FIGURE 16.12

 

Field-based prediction of enhanced option of MPEG-2 video coding.

 

FIGURE 16.13

 

Dual prime prediction in MPEG-2 video coding.
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coding since the block data are represented with fewer coefficients, especially if there is not much
detail contained in the scene.

 

16.2.2.3 Downloadable Quantization Matrix and Alternative Scan Order

 

A new feature in MPEG-2 regarding the quantization matrix is that it can be downloaded for every
frame. This may be helpful if the input video characteristics are very dynamic. In general, the
quantizer matrices are different for intracoding and nonintracoding. With 4:2:0 format, only two
matrices are used, one for the intrablocks and another for the nonintrablocks. With 4:2:2 or 4:4:4
formats four matrices are used, both an intra- and a nonintramatrix are used for the luminance and
chrominance blocks. If the matrix load flags are not set, the decoder will use default matrices. The
formats 4:2:0, 4:2:2 are defined in Chapter 15. In the 4:4:4 format, the luminance and two chromi-
nance pictures have the same picture size.

In the picture layer, there is a flag that can be set for an alternative scan of DCT blocks, instead
of using the zigzag scan discussed earlier. Depending on the spectral distribution, the alternative
scan can yield run lengths that better exploit the multitude of zero coefficients. The zigzag scan
and alternative scan are shown in Figure 16.15.

The normal zigzag scan is used for MPEG-1 and as an option for MPEG-2. The alternative
scan is not supported by MPEG-1 and is an option for MPEG-2. For frame-type DCT of interlaced
video, more energy may exist at the bottom part of the block; hence the run-length coding may be
better off with the alternative scan.

 

16.2.2.4 Pan and Scan

 

In MPEG-2 there are several parameters defined in the sequence display extension and picture
display extension. These parameters are used to display a specified rectangle within a reconstructed

 

FIGURE 16.14

 

Frame and field DCT for interlaced video.

 

FIGURE 16.15

 

Two zigzag scan methods for MPEG-2 video coding.
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frame. They include display horizontal size and display vertical size in the sequence display
extension, and frame center horizontal offset and frame center vertical offset in the picture display
extension. A typical example using pan-scan parameters is the conversion of a 16:9 frame to a 4:3
frame. The 4:3 region is defined by display horizontal size and display vertical size, and the 16:9
frame is defined by horizontal size and vertical size. If we choose the display horizontal size to be
4 pixels less than the horizontal size, and keep the display vertical size as the same as the vertical
size, then we can obtain a 4:3 pictures on the display. Figure 16.16 shows the conversion of 16:9
to the 4:3 frame using the pan-scan parameter, but there is no center offset involved in this example.

 

16.2.2.5 Concealment Motion Vector

 

The concealment motion vector is a new tool supported by MPEG-2. This tool is useful in concealing
errors in the noisy channel environment where the transmitted data may be lost or corrupted. The
basic idea of a concealment motion vector is that the motion vectors are sent for the intracoded
macroblock. These motion vectors are referred to as concealment motion vectors (CMV) which
should be used in macroblocks immediately below the one in which the CMV occurs. The details
are described in the section about error concealment.

 

16.2.2.6 Scalability

 

MPEG-2 video has several scalable modes, which include spatial scalability, temporal scalability,
SNR (signal-to-noise ratio) scalability, and data partitioning. These scalability tools allow a subset
of any bitstream to be decoded into meaningful imagery. Moreover, scalability is a useful tool for
error resilience on prioritized transmission media. The drawback of scalability is that some coding
efficiency is lost as a result of extra overhead. Here, we briefly introduce the basic notions of the
above scalability features.

Spatial scalability allows multiresolution coding, which is suitable for video service internet-
working applications. In spatial scalability, a single video source is split into a base layer (lower
spatial resolution) and enhancement layers (higher spatial resolution). For example, a CCIR601
video can be down-sampled to SIF format with spatial filtering, which can serve as the base layer
video. The base layer or low-resolution video can be coded with MPEG-1 or MPEG-2, and the
higher-resolution layer must be coded by MPEG-2-supported syntax. For the up-sampled lower
layer, an additional prediction mode is available in the MPEG-2 encoder. This is a flexible technique
in terms of bit rate ratios, and the enhancement layer can be used in high-quality service. The
problem with spatial scalability is that there exists some bit rate penalty due to overhead and there
is also a moderate increase in complexity. A block diagram that illustrates encoding with spatial
scalability is shown in Figure 16.17. In Figure 16.17, the output of decoding and spatial up-sampling
block provides an additional choice of prediction for the MPEG-2 compatible coder, but not the
only choice of prediction. The prediction can be obtained from HDTV input itself, also depending
on the prediction select criterion such as the minimum prediction difference.

 

FIGURE 16.16

 

An example of pan-scan.
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It should be noted that the spatial scalability coding allows the base layer to be coded inde-
pendently from the enhancement layer. In other words, the base layer or lower layer bitstream is
generated without regard for the enhancement layer and can be decoded independently. The
enhancement layer bitstream is additional information, which can be seen as the prediction error
based on the base layer data. This implies that the enhancement layer is useless without the base.
However, this type of structure can find a lot of applications such as error concealment, which will
be discussed in the following section.

Temporal scalability is a scalable coding technique in the temporal domain. An example of a
two-layer temporal scalable coder is shown in Figure 16.18. The example uses temporal scalability
to decompose the progressive image sequence to two interlaced image sequences; then one is coded
as the base layer and one as the enhancement layer. Of course, the decomposition could be different.
For the enhancement layer, there are two choices in making predictions. One choice for prediction
is available between frames of base layer and enhancement layer, and the other is between frames
from the enhancement layer itself. It should be noted that the spatial resolution of two layers is
the same and the combined temporal rate of two layers is the full temporal rate of the source.
Again, it should be noted that the decoding output of the base layer bitstream by the MPEG decoder
provides an additional choice of prediction but not the only choice of predictions.

The SNR scalability provides a mechanism for transmitting two-layer service with the same
spatial resolution but different quality levels. The lower layer is coded at a coarse quantization step
at 3 to 5 Mbps to provide NTSC/PAL/SECAM-quality video for low-capacity channels. In the
enhancement layer, the difference between original and the coarse-quantized signals is then coded
with a finer quantizer to generate an enhancement bitstream for high-quality video applications.

The above three scalability schemes all generate at least two bitstreams, one for the base layer
and the other for the enhancement layer, and the lower-layer bitstream can be independently decoded
to provide low spatial resolution, low quality, or low frame rate video, respectively. There is another
scalability scheme, data partitioning, in which the base layer bitstream cannot be independently

 

FIGURE 16.17

 

Block diagram of spatial scalability encoder.

 

FIGURE 16.18

 

Block diagram of temporal scalability.
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decoded. In data partitioning, a single video source is split into a high-priority portion, which can
be better protected, and low-priority portion, which is less important with regard to the reconstructed
video quality. The priority breakpoint in the syntax specifies which syntax elements are coded as
low priority (for example, the higher-order DCT coefficients in the intercoded blocks).

 

16.3 MPEG-2 VIDEO ENCODING

16.3.1 I

 

NTRODUCTION

 

MPEG video compression is a generic standard that is essential for the growth of the digital video
industry, as mentioned previously. Although the MPEG video coding standard recommended a
general coding methodology and syntax for the creation of a legitimate MPEG bitstream, there are
many areas of research left open regarding how to generate high-quality MPEG bitstreams. This
allows the designers of an MPEG encoder great flexibility in developing and implementing their
own MPEG-specific algorithms, leading to product differentiation on the marketplace. To design
a performance-optimized MPEG-2 encoder system, several major areas of research have to be
considered. These include image preprocessing, motion estimation, coding mode decisions, and
rate control. Algorithms for all of these areas in an encoder should aim to minimize subjective
distortion for a prescribed bit rate and operating delay constraint. The preprocessing includes the
noise reduction and the removal of redundant fields, which are contained in the detelecine material.
The telecine material is used for the movie industry, which contains 24 progressive frames/second.
The TV signal is 30 frames/second. The detelecine process converts the 24-frames/second film
signal to the 30-frames/second TV signal. This is also referred to as 3:2 pull-down process. Since
the 30-frames/second detelecine material only contains 24 frames/second of unique pictures, the
encoder has to detect and remove the redundant fields for obtaining better coding performance.
The procession of noise reduction can reduce the bits wasted for coding random noise. Motion
compensation is used to remove the temporal redundancy in the video signals. The motion vectors
between the anchor picture and the current picture are obtained with motion estimation algorithms.
Except for I-pictures each macroblock can be inter- or intracoded, which is determined by the mode
decision. The investigation of motion estimation algorithms is an important research topic since
different motion estimation schemes may result in different coding efficiency. Rate control is always
applied for non-variable-bit rate (non-VBR) coding. The purpose of rate control is to assign the
bits for each macroblock properly under the constraints of total bit rate budget and buffer size.
This is also an important topic since the optimized bit assignment scheme will result in better
coding performance and better subjective reconstruct quality at a given bit rate. In this section,
areas of preprocessing and motion estimation are covered. The topics of rate control and optimum
mode decision are discussed in later sections.

 

16.3.2 P

 

REPROCESSING

 

For low-bit-rate video coding, preprocessing is sometimes applied to the video signals before coding
to increase the coding efficiency. Usually, preprocessing implies a filtering of the video signals that
are corrupted by random and burst noise for various reasons, such as imperfections of the scanner,
transmission, or recording medium. Noise reduction not only improves the visual quality but also
increases the performance of video coding. Noise reduction can be achieved by filtering each frame
independently. There are a variety of spatial filters which have been developed for image noise
filtering and restoration that can be used for noise reduction task (Cano and Benard, 1983; Kat-
saggelos et al., 1991). On the other hand, it is also possible to filter the video sequence temporally
along the motion trajectories using motion compensation (Sezan et al., 1991). However, it was
shown that among the recursive stationary methods the motion-compensated spatiotemporal filtering
performed better than spatial or motion-compensated temporal filtering alone (Ozkan et al., 1993).
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Another important type of preprocessing is detelecine processing. Since movie material is
originally shot at 24 progressive frames/second, standard conversion to television at 30 frames/sec-
ond is made by a 3:2 pull-down process, which periodically inserts a repeated field, giving
30-frames/second telecine source material. The 3:2 pull-down has been described in Chapter 10,
and will not be repeated here. Since the 30-frames/second detelecine material only contains
24 frames/second of unique pictures, it is necessary to detect and remove the redundant fields before
or during encoding. Rather than directly encoding the 30-frames/second detelecine material, one
can remove the redundant fields first and then encode 24 frames/second of unique material, thereby
realizing higher coding quality at the same bit rate. The decoder can simply reconstruct the
redundant fields before presenting them.

Television broadcast programmers frequently switch between telecine material and natural
30-frames/second material, such as when splicing to and from various sources of movies, ordinary
television programs, and commercials. An MPEG-2 encoder should be able to cope with these
transitions and consistently produce decent pictures. During movie segments, the encoder should
realize the gains from coding at the lower frame rate after detelecine. Ideally, the process of source
transition from the lower 24-frames/second rate to the higher 30-frames/second rate should not
cause any quality drop of every encoded frame. The quality of encoded frames should maintain
the same as the case where the detelecine process is ignored and all material, regardless of source
type, is coded at 30 frames/second.
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OMPENSATION

 

In principle, for coding video signals if the motion trajectory of each pixel could be measured,
then only the initial or anchor reference frame and the motion vector information need to be coded.
In such a way the interframe redundancy will be removed. To reproduce the pictures, one can
simply propagate each pixel along its motion trajectory. Since there is also a cost for transmitting
motion vector information, in practice one can only measure the motion vectors of a group of
pixels, which will share the cost for transmission of the motion information. Of course, at the same
time the pixels in the same group are assumed to have the same motion information. This is not
always true since the pixels in the block may move in different directions, or some of them may
belong to the background. Therefore, both motion vectors and the prediction difference have to be
transmitted. Usually, the block matching can be considered as the most practical method for motion
estimation because of less hardware complexity. In the block-matching method, the image frame
is divided into fixed-size small rectangular blocks such as 16 

 

¥

 

 16 or 16 

 

¥

 

 8 in MPEG video coding.
Each block is assumed to undergo a linear translation and the displacement vector of each block
and the predictive errors are coded and transmitted. The related issues for motion estimation and
compensation include a motion vector searching algorithm, searching range, matching criteria and
coding method. Although the matching criteria, and searching algorithms have been discussed in
Chapter 11, we will briefly introduce them here for the sake of completeness.

 

16.3.3.1 Matching Criterion

 

The matching of the blocks can be determined according to the various criteria including the
maximum cross-correlation, the minimum mean square error (MSE), the minimum mean absolute
difference (MAD) and maximum matching pixel count (MPC). For MSE and MAD, the best
matching block is reached if the MSE or MAD is minimized at that location. In practice, we use
MAD instead of MSE as the matching criterion because of its computational simplicity. The
minimum MSE criterion is not commonly used in hardware implementations because it is difficult
to realize the square operation. However, the performance of the MAD criterion deteriorates as the
search area becomes larger as a result of the presence of several local minima. In the maximum
MPC criterion, each pixel in the block is classified as either a matching pixel or a mismatching
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pixel according to the prediction difference whether which is smaller than a preset threshold. The
best matching is then determined by the maximum number of matching pixels. However, the MPC
criterion requires a threshold comparator and a counter.

 

16.3.3.2 Searching Algorithm

 

Finding the best-matching block requires optimizing the matching criterion over all possible
candidate displacement vectors at each pixel. The so-called full-search logarithmic search, and
hierarchical searching algorithms can accomplish this.

 

Full search

 

: The full-search algorithm evaluates the matching criterion for all possible values
within the predefined searching window. If the search window is restricted to a [–

 

p, p

 

] square, for
each motion vector there are (2
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search location we compare 
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 pixels. If we know the matching criterion and how many
operations are needed for each comparison, then we can calculate the computation complexity of
the full-search algorithm. Full search is computationally expensive, but guarantees finding the global
optimal matching within a defined searching range.

 

Logarithmic search

 

: Actually, the expected accuracy of motion estimation algorithms varies
according to the applications. In motion-compensated video coding, all one seeks is a matching
block in terms of some metric, even if the match does not correlate well with the actual projected
motion. Therefore, in most cases, search strategies faster than full searches are used, although they
lead to suboptimal solutions. These faster search algorithms evaluate the criterion function only at
a predetermined subset of the candidate motion vector locations instead of all possible locations.
One of these faster search algorithms is the logarithmic search. Its more popular form is referred
to as the three-step search. We explain the three-step search algorithm with the help of Figure 16.19,
where only the search frame is depicted. Search locations corresponding to each of the steps in the
three-step search procedure are labeled 1, 2, and 3. In the first step, starting from pixel 0 we compute
MAD for the nine search locations labeled 1. The spacing between these search locations here is
4. Assume that MAD is minimum for the search location (4,4) which is circled 1. In the second
step, the criterion function is evaluated at eight locations around the circled 1 which are labeled 2.
The spacing between locations is now 2 pixels. Assume now the minimum MAD is at the location
(6,2), which is also circled. Thus, the new search origin is the circled 2, which is located at (6.2).
For the third step, the spacing is now set to 1 and the eight locations labeled 3 are searched. The
search procedure is terminated at this point and the output of the motion vector is (7,1). Additional
steps may be incorporated into the procedure if we wish to obtain subpixel accuracy in the motion
estimations. Then, the search frame needs to be interpolated to evaluate the criterion function at
subpixel locations.

 

FIGURE 16.19

 

Three-step search.
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Hierarchical motion estimation

 

: Hierarchical representations of images in the form of a Lapla-
cian pyramid or wavelet transform are also quite often used with the block-matching method for
improved motion estimation. The basic idea of hierarchical block matching is to perform motion
estimation at each level successively, starting with the lowest resolution level. The lower resolution
levels serve to determine a rough estimate of the motion information using relatively larger blocks.
The estimate of the motion vector at a lower resolution level is then passed onto the next higher
resolution level as an initial estimate. The higher resolution levels are used to fine-tune the motion
vector estimate. At higher resolution levels, relatively smaller window sizes can be used since we
start with a good initial estimate. The hierarchical motion estimate can significantly reduce the
implementation complexity since its search method is very efficient. However, such a method
requires increased storage because of the need to keep pictures at different resolutions. Furthermore,
this scheme may yield inaccurate motion vectors for regions containing small objects. Since the
search starts at the lowest resolution of the hierarchy, regions containing small objects may be
eliminated and thus fail to be tracked. On the other hand, the creation of low-resolution pictures
provides some immunity to noise. Results of experiments performed by one of the authors have
shown that, compared with full-search, the two-layer hierarchical motion estimation reduces the
search complexity of factor 10 at the price of degrading reconstruction quality from about 0.2 to
0.6 dB for frame-mode coding, from 0.26 to 0.38 dB for field-mode coding, and only 0.16 to 0.37
dB for frame/field adaptive coding, for different video sequences in the case of a fixed bit rate of
4 Mbps. In the case of VBR coding, similar results can be observed from the rate distortion curves.

In the above discussion, we have restricted the motion vector estimation to integer pixel grids,
or pixel accuracy. Actually, the motion vectors can be estimated with fractional or subpixel accuracy.
In MPEG-2 video coding the half-pixel accuracy motion estimation can be used. Half-pixel accuracy
can easily be achieved by interpolating the current and reference pictures by a factor of two and
then using any of the motion estimation methods described previously.

 

16.3.3.3 Advanced Motion Estimation

 

Progress has recently been made in several aspects of motion estimation, which are described as
follows.

 

Motion estimation using a reduced set of image data

 

: The methods to reduce search complexity
with subsampling and pyramid processing are well known and can be found in the literatures (Sun,
1994). However, the reduction by lowering the precision of each sample does not appear to have
been extensively studied. Some experimental results have shown that performance degradation of
the hierarchical motion estimation algorithm is not serious when each layer up to a four-layer
pyramid is limited to 6 bits/sample. At 4 to 5 bits/sample the performance is degraded 0.2 dB over
full precision.

Overlapped motion estimation (Katto et al., 1994): A limitation of block matching is that it
generates a significant proportion of motion vectors that do not represent the true motion present
in the scene. One possible reason is that the motion vectors are estimated without reference to any
picture data outside of the nonoverlapping blocks. This problem has been addressed by overlapped
motion estimation. In the case of the overlapped motion compensation, motion-compensated regions
translated by the motion vectors are overlapped with each other. Then, a window function is used
to determine the weighting factors for each vector. This technique has been adopted into the H.263
video coding standard. Some improvements have been clearly identified for low-bit-rate coding.

Frequency domain motion estimation: An alternative to spatial-domain block-matching meth-
ods is to estimate motion vectors in the frequency domain through calculating the cross-correlation
(Young and Kingsbury, 1993). Most international standards, such as MPEG, H.263, as well as the
proposed HDTV standard, use the DCT and block-based motion estimation as essential elements
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to achieve spatial and temporal compression, respectively. The new motion estimation approach is
proposed in the DCT domain (Koc and Liu, 1998). This method of motion estimation has certain
merits over conventional methods. It has very low computational complexity and is robust even in
a noisy environment. Moreover, the motion-compensation loop in the encoder is much simplified
due to replacing the IDCT out of the loop (Koc and Liu, 1998).

Generalized block matching: In generalized block matching, the encoded frame is divided into
triangular, rectangular, or arbitrary quadrilateral patches. We then search for the best-matching
triangular or quadrilateral patch in the search frame under a given spatial transformation. The choice
of patch shape and the spatial transform are mutual related. For example, triangular patches offer
sufficient degrees of freedom with affine transformation, which has only six independent parameters.
The bilinear transform has eight free parameters. Hence, it is suitable for use with rectangular or
quadrilateral patches. Generalized block matching is usually only adaptively used for those blocks
where standard block matching is not satisfactory for avoiding imposed computational load.

16.4 RATE CONTROL

16.4.1 INTRODUCTION OF RATE CONTROL

The purpose of rate control is to optimize the perceived picture quality and to achieve a given
constant average bit rate by controlling the allocation of the bits. From the viewpoint of rate control,
the encoding can be classified into VBR coding and constant bit rate (CBR) coding. The VBR
coding can provide a constant picture quality with variable coding bit rate, while the CBR will
provide a constant bit rate with a nonuniform picture quality. Rate control and buffer regulation is
an important issue for both VBR and CBR applications. In the case of VBR encoding, the rate
controller attempts to achieve optimum quality for a given target rate. In the case of CBR encoding
and real-time application, the rate control scheme has to satisfy the low-latency and VBV (video
buffering verifier) buffer constraints. The VBV is a hypothetical decoder, which is conceptually
connected to the output of an encoder (see Appendix C of ISO/IEC, 1995). The bitstream generated
by the encoder is placed into the VBV buffer at the CBR rate that is being used. The rate control
has to assure that the VBV will not be overflow or underflow. In addition, the rate control scheme
has to be applicable to a wide variety of sequences and bit rates. At the GOP level, the total number
of available bits is allocated among the various picture types, taking into account the constraints
of the decoder buffer, so that the perceived quality is balanced. Within each picture, the available
bits are allocated among the macroblocks to maximize the visual quality and to achieve the desired
target of encoded bits for the whole picture.

16.4.2 RATE CONTROL OF TEST MODEL 5 FOR MPEG-2

As we described before, the standard only defines the syntax for decoding. The test model is an
example of the encoder, which may not be optimal; however, it can provide a compliant compressed
bitstream. Also, the test model served as a reference during the development of the standard. The
TM5 rate control algorithm consists of three steps to adapting the macroblock quantization param-
eter for controlling the bit rate.

16.4.2.1 Step 1: Target Bit Allocation

The target bit allocation is the first step of rate control. Before coding a picture, we need to estimate
the number of bits available for coding this picture. The estimation is based on several factors.
These include the picture type, buffer fullness, and picture complexity. The estimation of picture
complexity is based on the number of bits and quantization parameter used for coding the same
type of previous picture in the GOP. The initial complexity values are given according to the type
of picture:
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(16.6)

where the subscripts i, p, and b stand for picture types I, P, and B (this will be applied to the
formulas in this section). After a picture of a certain type (I, P, or B) is encoded, the respective
“global complexity measure” (Xi, Xp, and Xb) is updated as

(16.7)

where Si, Sp, Sb are the number of bits generated by encoding this picture and Qi, Qp, Qb are the
average quantization parameters computed the actual quantization values used during the encoding
of all the macroblocks including the skipped macroblocks. This estimation is very intuitive since,
if the picture is more complicated, more bits are needed to encode it. The quantization parameter
(step or interval) is used to normalize this measure because the number of bits generated by the
encoder is inversely proportional to the quantization step. The quantization step can also be
considered as a measure of coded picture quality. The target number of bits for the next picture in
the GOP (Ti, Tp, and Tb) is computed as follows:

(16.8)

where Kp and Kb are “universal” constants dependent on the quantization matrices. For the matrices
of TM5, Kp = 1.0 and Kb = 1.4. The R is the remaining number of bits assigned to the GOP and
after coding the picture this number is updated by subtracting the bit used for the picture. Np and
Nb are the number of P-pictures and B-pictures remaining in the current GOP in the encoding order.
The problem of the above target bit assignment algorithm is that it does not handle scene changes
efficiently.

16.4.2.2 Step 2: Rate Control

Within a picture, the bits used for each macroblock is determined by the rate control algorithm.
Then a quantizer step is derived from the number of bits available for the macroblock to be coded.
The following is an example of rate control for P-picture.

In Figure 16.20, d p
0  is initial virtual buffer fullness, the Tp is the target bits for P-picture. Bj is

the number of bits generated by encoding all macroblocks in the picture up to and including jth
macroblock. MB_cnt is the number of macroblocks in the picture. Before encoding the jth mac-
roblock the virtual buffer fullness is adjusted during the encoding according to the following
equation for the P-picture:
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(16.9)

Then the quantization step is computed with the equation:

(16.10)

where the “reaction parameter” r is given by r = 2 * bit-rate/picture-rate and dp
j  is the fullness of

the appropriate virtual buffer. This procedure is shown in Figure 16.20. The fullness of the virtual
buffer for the last macroblock is used for encoding the next picture of the same type as the initial
fullness.

The above example can be extended to the general case for all I-, P-, and B-pictures. Before
encoding the jth macroblock, we compute the fullness of the appropriate virtual buffer:

(16.11)

Depending on the picture type, where di
0,  d

p
0,  db

0  are initial fullness of the virtual buffers and di
j

dp
j, db

j are the fullness of virtual buffer at jth macroblock — one for each picture type. From the
number of bits of the virtual buffer fullness, we compute the quantization step Qj for macroblock j
according to the buffer fullness:

(16.12)

FIGURE 16.20 Rate control for P-picture. (From ISO/IEC, MPEG-2, Test Model 5, April 1993. With
permission.)

d d B
T j

MB cntj
p p

j
p= + -

-( )
-0 1

1

_
.

Q
d

rj
p j

p

= ,

d d B
T j

MB cnt

d d B
T j

MB cnt

d d B
T j

MB cnt

j
i i

j
i

j
p p

j
p

j
b b

j
b

= + - -( )

= + -
-( )

= + -
-( )

-

-

-

0 1

0 1

0 1

1

1

1

_
  

_
  

_
.

or

or

Q
d

rj
j=

* 31
.



© 2000 by CRC Press LLC

The initial values of the virtual buffer fullness are

(16.13)

Kp and Kb are constants which are defined in Equation 16.8.

16.4.2.3 Step 3: Adaptive quantization

Adaptive quantization is the last step of the TM5 rate control. It is noted that for active areas or
busy areas, the human eyes are not so sensitive to the quantization noise, while the smooth areas
are more sensitive to the quantization noise as discussed in Chapter 1. Based on this observation
we modulate the quantization step obtained from the previous step in such a way to increase the
quantization step for active areas and reduce the quantization step for the smooth areas. In other
words, we use more bits in the smooth areas and fewer bits for the active areas. The experiment
results have shown that the subjective quality is higher with the adaptive quantization step than
without this step. The procedure of adaptive quantization in TM5 is as follows. First, the spatial
activity measure for the jth macroblock is calculated from the four luminance frame–organized
subblocks and the four luminance field–organized blocks using the intrapixel values:

(16.14)

where var_sblk is the variance of each spatial 8 ¥ 8 block, which value is calculated as

(16.15)

and Pk is the pixel value in the original 8 ¥ 8 block and Pmean is the mean value of the block which
is calculated as

(16.16)

The normalized activity factor N_actj is

(16.17)

where avg_act is the average value of actj the last picture to be encoded. Therefore, this value will
not give good results when a scene change occurs. On the first picture, this parameter takes the
value of 400. Finally, we can obtain the modulated quantization step for jth macroblock:

(16.18)
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where Qj is the reference quantization step value obtained in the last step. The final value of mquantj

is clipped to the range of [1,31] and is used and coded as described in the MPEG standard.
As we indicated before, the TM5 rate control provides only a reference model. It is not optimized

in many aspects. Therefore, there is still a lot of room for improving the rate control algorithm,
such as to provide more precise estimation of average activity by preprocessing. In the following
section, we will investigate the optimization problem for mode decision combined with rate control,
which can provide a significant quality improvement as shown by experimental results.

16.5 OPTIMUM MODE DECISION

16.5.1 PROBLEM FORMATION

This section addresses the problem of determining the optimal MPEG (ISO/IEC, 1995) coding
strategy in terms of the selection of macroblock coding modes and quantizer scales. In the TM5,
the rate control operates independently from the coding mode selection for each macroblock. The
coding mode is decided based only upon the energy of predictive residues. Actually, the two
processes, coding mode decision and rate control, are intimately related to each other and should
be determined jointly in order to achieve optimal coding performance. A constrained optimization
problem can be formulated based on the rate–distortion characteristics, or R(D) curves, for all the
macroblocks that compose the picture being coded. Distortion for the entire picture is assumed to
be decomposable and expressible as a function of individual macroblock distortions, with this being
the objective function to minimize. The determination of the optimal solution is complicated by
the MPEG differential encoding of motion vectors and dc coefficients, which introduce dependen-
cies that carry over from macroblock to macroblock for a duration equal to the slice length. As an
approximation, a near-optimum greedy algorithm can be developed. Once the upper bound in
performance is calculated, it can be used to assess how well practical suboptimum methods perform.

Prior related work dealing with dependent quantization for MPEG include the work done by
Ramchandran et al. (1994) and Lee and Dickerson (1994). Those works treated the problem of bit
allocation where there is temporal dependency in coding complexity across I-, P-, and B-frames.
While these techniques represent the most proper bit allocation strategies across frames from a
theoretical viewpoint, no practical real-time MPEG encoding system will use even those proposed
simplified techniques because they require an unwieldy number of preanalysis encoding passes
over the window of dependent frames (one MPEG GOP). To overcome these computational burdens,
more pragmatic solutions that can realistically be implemented have been considered by Sun et al.
(1997). In this work, the major emphasis is not on the problem of bit allocation among I-, P-, and
B-frames; rather, the authors choose to utilize the frame-level allocation method provided by the
TM5. In this way, frame-level coding complexities are estimated from past frames without any
forward preanalysis knowledge of future frames. This type of analysis forms the most reasonable
set of assumptions for a practical real-time encoding system. Another method that extends the basic
TM5 idea to alter frame budgets heuristically in the case of scene changes, use of dynamic GOP
size, and temporal masking effects can be found in Wang (1995). These techniques also offer very
effective and practical solutions for implementation. Given the chosen method for frame-level bit
budget allocation, the focus of this section is to optimize macroblock coding modes and quantizers
jointly within each frame.

There exists many choices for the macroblock coding mode under the MPEG-2 standard for
P- and B-pictures, including intramode, no-motion-compensation mode, frame/field/dual-prime
motion compensation intermode, forward/backward/average intermode, and field/frame DCT mode.
In the standard TM5 reference (ISO/IEC, 1993), the coding mode for each macroblock is selected
by comparing the energy of predictive residuals. For example, the intra/inter decision is determined
by a comparison of the variance of the macroblock pixels against the variance of the predictive
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residuals; the interprediction mode is selected to be the intermode that has the least predictive
residual MSE. The coding mode selected by the TM5 criteria does not result in the optimal coding
performance.

In attempting to achieve optimal coding performance, it is important to realize that coding
modes should be determined jointly with rate control because the best coding mode depends upon
the operating point for rate. In deciding which of the various coding modes is best, one should
consider what the operating point is for distortion, and also consider the trade-off between spending
bits for coding the prediction residuals and bits for coding motion vectors.

The number of bits used for coding the macroblock is the sum of bits used for coding motion
vectors and bits used for coding residuals:

(16.19)

For example, in Figure 16.21, consider the decision between (1) frame-mode forward prediction
and (2) field-mode bidirectional prediction. Mode (2) will almost always produce a prediction that
has lower MSE than mode (1). However, mode (1) requires coding of fewer motion vectors than
mode (2). Which mode is best? The answer depends on the operating point for distortion. When
coding at a very coarse quant scale, mode (1) can perform better than mode (2) because the
difference in bits required for coding motion vectors between the two modes may be much greater
than the difference in bits required for coding residuals between the two modes. However, when
coding at a fine quant scale, mode (2) can perform better than mode (1) because mode (2) provides
a better prediction and the bits required for motion vectors would become negligible compared
with bits for coding residuals.

Coding mode decisions and rate control can be determined jointly and optimally starting from
the basics of constrained optimization using R(D) curves. This optimal solution would be an
a posteriori solution that assumes complete knowledge of R(D). We investigate an optimal solution
for objective functions of the form:

(16.20)

which states that the distortion for the picture, DPICT, can be measured as an accumulation of
individual macroblock distortions, DMB, for all NMB number of macroblocks in the picture. We

FIGURE 16.21 R(D) curves for different macroblock coding modes.
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minimize this objective function subject to having individual macroblock distortions being uniform
over the picture:

(16.21)

and having the bits generated from coding each macroblock, RMB, sum to a target bit allocation for
the entire picture, RPICT :

(16.22)

The choice for the macroblock distortion measure, DMB, can be the MSE computed over the pixels
in the macroblock, or it can be a measure that reflects subjective distortion more accurately, such
as luminance- and frequency-weighted MSE. Other choices for DMB may be the quantizer scale
used for coding the macroblock, or, better yet, the quantizer scale weighted by an activity-masking
factor. In this chapter, we select distortion for each macroblock i to be a spatial-masking-activity-
weighted quantizer scale:

(16.23)

where N_acti Œ [0.5, 2.0] is the normalized spatial masking activity quantizer weighting factor, as
defined in the TM5:

(16.24)

where acti is the minimum luma block spatial variance for macroblock i and avg_act is the average
value of acti over the last picture to be coded. N_acti reflects the relative amount of quantization
error that can be tolerated for macroblock i as compared with the rest of the macroblocks that
compose the picture. N_acti depends strongly on whether the macroblock belongs to a smooth,
edge, or textured region of the picture. Hence, the macroblock distortion metric is space variant
and depends on the context of the local picture characteristics surrounding each macroblock. We
assume that maintaining the same DMBi for all macroblocks, or selecting the quantizer scales directly
proportional to N_acti in such a manner, corresponds to maintaining uniform subjective quality
throughout the picture. The masking-activity-weighted quantizer scale is a somewhat coarse mea-
sure for image quality, but it reflects subjective image quality better than MSE or PSNR (peak
signal-to-noise ratio), and it is a practical metric to compute that lends itself to an additive form
for distortion.

It is important to note that the resulting distortion measure for the picture DPICT is really only
meaningful as a relative comparison figure for the same identical picture (thus having the same
masking activities) quantized different ways. It is not useful comparing two different images. PSNR
is only useful in this sense too, although with poorer subjective accuracy.

In the following, a procedure for obtaining the optimal coding performance with the joint
optimization of coding mode selection and rate control is discussed. Since this method would be
too complex to implement, a practical suboptimal heuristic algorithm is presented. Some simulation
results and comparisons between the different algorithms — TM5 algorithm, near-optimum algo-
rithm, and the practical suboptimum algorithm are also provided to assist the reader in understanding
the differences in performance.
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16.5.2 PROCEDURE FOR OBTAINING THE OPTIMAL MODE

16.5.2.1 Optimal Solution

The solution to the optimization problem is unique because the objective function is monotonic
and the individual macroblock R(D) functions are also monotonic. In order to solve for the optimal
set of macroblock modes and quant-scales for the picture (  and ), the differential
encoding of motion vectors and intra-dc coefficients as done in MPEG should be accounted for.
According to MPEG, each slice has its own differential encoding chain. At the start of each slice,
prediction motion vectors are reset to zero. As each macroblock is encoded in raster scan order,
the macroblock motion vectors are encoded differentially with respect to prediction motion vectors
that depend on the coding mode of the previous macroblock. These prediction motion vectors may
be reset to zero in the case that the previous macroblock was coded as intra or skipped. Similarly,
dc coefficients in continuous runs of intramacroblocks are encoded differentially with respect to
the previous intramacroblock. The intra dc predictors are reset at the start of every slice, and at
inter or skipped macroblocks. Slice boundaries delimit independent self-contained decodable units.
Finding the optimal set of coding modes for the macroblocks in each slice entails a search through
a trellis of dimensions S stages by M states per stage, with S being the slice size and M being the
number of coding modes being considered (Figure 16.22). This trellis structure arises because there
are M2 distinct rate distortion, Rmode|previous-mode(D), characteristic curves corresponding to each of M
coding modes, with each in turn having a different dependency for each of M coding modes of the
previous macroblock. We now consider populating the trellis links with values by sampling the set
of these M 2S rate–distortion curves at a specific distortion level. For a given fixed macroblock
distortion level, DMB, each link on the trellis is assigned a cost equal to the number of bits to code
a macroblock in a certain mode given the mode from which the preceding macroblock was coded.
For any group of links entering a node, the cost of these links differs only because of the difference
in bits caused by the motion vector and dc coefficient coding dependency upon the prior macroblock.

The computational requirements per slice involve:

• To determine link costs in the trellis, the number of “code the macroblock” operations
(i.e., DCT + Quantization + RLC/VLC) is equal to M 2S.

• After determining all trellis link costs, the number of path searches is equal to M S.

FIGURE 16.22 Full-search trellis, Ms (M is number of modes at each stage and S is the length of slice)
searches needed to obtain the best path.
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A general iterative procedure for obtaining the optimal solution is as follows:

1. Initialize a guess for DMB = DMB0. Since DMB is the same for every macroblock in the
picture, this sets an initial guess for the operating distortion level of the picture.

2. Perform for each slice in the picture:
• For each macroblock in the slice and the mode considered, determine the quantizer

scale which yields the distortion level DMB, i.e., qs = f (DMB), where f is the function
that describes the relationship between quantizer scale qs and distortion DMB. If we
use the spatial-masking-activity-weighted quantizer scale as a measure of distortion
(as from Equation 16.4), then qs equals N_act * DMB.

• Compute all the link costs in the trellis representing the slice. The link costs, RMBi

(mode k | mode j), represents the number of resulting bits (total bits for coding residual,
motion vectors, and macroblock header) for coding macroblock i in mode k given
that the preceding macroblock was coded in mode j.

• Search through the trellis to find the path that has the lowest S RMBi over the slice.
3. Compute S RMBi for all macroblocks in the picture and compare to target RPICT.

• If | S  RMBi – RPICT | < e, then the optimal  and  has been found for picture.
Repeat the process for the next picture.

• If S RMBi < RPICT, then decrement DMB = DMB – DDMB and go to step 2.
• If S RMBi > RPICT, then increment DMB = DMB + DDMB and go to step 2.

16.5.2.2 Near-Optimal Greedy Solution

The solution from the full exponential-order search requires an unwieldy amount of computations.
To avoid the heavy computational burden, we can use a greedy approach (Lee and Dickerson, 1994)
to simplify and sidestep the dependency problems of the full-search method. In the greedy algorithm,
the best coding mode selection for the current macroblock depends only upon the best mode of
the previous coded macroblock. Therefore, the upper bound we obtain is a near-optimum solution
instead of a global optimum. Figure 16.23 illustrates the greedy algorithm. After coding a macrob-
lock in each of the M modes, the mode resulting in the least number of bits is chosen to be “best.”
The very next macroblock is coded with dependencies to that chosen “best” mode. The computations
per slice are reduced to M ¥ S “code the macroblock” operations and M ¥ S comparisons. A general
iterative procedure for obtaining the greedy solution is as follows:

FIGURE 16.23 Greedy approach, M ¥ S comparisons needed to obtain the locally “best” path.
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1. Initialize a guess for DMB = DMBO.
2. Perform for each macroblock:

• For each mode considered, determine the quantizer scale that yields the distortion
level DMB, i.e., qs = f (DMB), where f is the function we mentioned previously.

• For each mode, code the macroblock in that mode with that qs value and record the
resulting number of generated bits, RMBi(mode i| mode j). The macroblock is coded based
on the already determined mode of the preceding macroblock.

• The “best” mode for macroblock i is the mode for which RMBi(mode i| mode j) mode is smallest.
This yields RMBi bits for macroblock i.

3. Compute S RMBi for all macroblocks in the picture and compare to target RPICT.
• If | S  RMBi – RPICT | < e, then the optimal  and  has been found for the

picture. Repeat the process for the next picture.
• If S RMBi < RPICT, then decrement DMB = DMB – DDMB and go to step 2.
• If S RMBi > RPICT, then increment DMB = DMB + DDMB and go to step 2.

16.5.3 PRACTICAL SOLUTION WITH NEW CRITERIA FOR THE SELECTION 
OF CODING MODE

It is obvious that the near-optimal solution discussed in the previous section is not a practical
method because of its complexity. To determine the best mode, we have to know how many bits
it takes to code each macroblock in every mode with the same distortion level. The total number
of bits for each macroblock, RMB, consists of three parts, bits for coding motion vectors, Rmv, bits
for coding the predictive residue, Rres, and bits for coding macroblock header information, Rheader,
such as macroblock type, quantizer scale, and coded-block pattern.

(16.25)

The number of bits for motion vectors, Rmv, can be easily obtained by VLC table lookup. But to
obtain the number of bits for coding the predictive residue, one has to go through the three step
coding procedure: (1) DCT, (2) quantization, and (3) VLC as shown in Figure 16.24. At step 3,
Rres is obtained with a lookup table according to the run length of zeros and the level of quantized
coefficients, i.e., Rres depends on the pair of values of run and level:

(16.26)

As stated above, to obtain the upper-bound coding performance, all three steps are needed for each
coding mode, and then the coding mode resulting in the least number of bits is selected as the best
mode.

To obtain a much less computationally intensive method, it is preferred to use a statistical
model of DCT coefficient bit usage vs. variance of the prediction residual and quantizer step size.
This will provide an approximation of the number of residual bits, Rres. For this purpose we assume
that the run and level pair in Equation 16.26 is strongly dependent on values of the quantizer scale,
qs, and the variance of the residue, Vres, for each macroblock. Intuitively, we would expect the
number of bits to encode a macroblock is proportional to the variance of the residual and inversely

FIGURE 16.24 Coding stages to find bit count.
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proportional to the value of quantizer step size. Therefore, a statistical model can be constructed
by plotting Rres vs. the independent variables Vres and qs over a large set of representative macroblock
pixels from images typical of natural video material. This results in a scatter plot showing tight
correlation, and hence a surface can be fit through the data points. It was found that Equation 16.26
can be approximately expressed as:

(16.27)

where K and C are constants found through surface-fitting regression. If we assume Rheader is a
relatively fixed component that does not vary much with macroblock coding mode and can be
ignored, then Equation 16.25 can be approximately replaced by:

(16.28)

The value of RMB ¢ reflects the variable portion of bit usage that is dependent on coding mode, and
can be used as the measure for selecting the coding mode in our encoder. For a given quantizer
step size, the mode resulting in the smallest value of RMB ¢ is chosen as the “best” mode. It is obvious
that, in the use of this new measurement to select the coding mode, the computational complexity
increase over the TM5 is very slight (the same identical calculation for Vres is made in the TM5).

16.6 STATISTICAL MULTIPLEXING OPERATIONS ON MULTIPLE 
PROGRAM ENCODING

In this section, the strategies for statistical multiplexing operation on the multiple program encoding
will be introduced. This topic is an extension of rate control into the case of multiple program
encoding. First, a background survey of general encoding and multiplexing modes is reviewed.
Second, the specific algorithm used in some current systems is introduced, its shortcomings are
addressed, and possible amendments to the basic algorithm are described. Some potential research
topics such as modeling strategies and methods for solving the problem are proposed for investi-
gation. These topics may be good research topics for the interested graduate student.

16.6.1 BACKGROUND OF STATISTICAL MULTIPLEXING OPERATION

In many applications, several video sources may often be combined, or multiplexed, onto a single
link for transmission. At the receiving end, the individual sources of data from the multiplexed
data are demultiplexed and supplied to the intended receivers. For example, in an ATM network
scenario many video sources originating from a local area are multiplexed onto a wide-area
backbone trunk. In a satellite-broadcasting scenario, several video sources are multiplexed for
transmission through a transponder. In a cable TV scenario, hundreds of video programs are
broadcast onto a cable bus. Since the transmission channel, such as a trunk, a transponder, or a
cable, is always an expensive resource, the limited channel capacity should be exploited as much
as possible. The goal of statistical multiplexing encoding is to make the best use of the limited
channel capacity possible. There are several approaches to encoding and multiplexing a plurality
of video sources. In the following, we will compare the methods and describe the situation where
each method is applicable. The qualitative comparisons are made in terms of trade-offs among
factors of computation, implementation complexity, encoded picture quality, buffering delay, and
channel utilization. To understand the statistical multiplexing method, we first introduce a simple
case of deterministic multiplexing function of a CBR encoder. The standard method for performing
the encoding and multiplexing function is to encode the source independently with a CBR. The

R f q V K C q q Vres s res s s resª ( ) = +( )( ), ,2
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CBR encoder produces an encoded bit steam, representing the video supplied to it, at a predeter-
mined CBR. To produce a CBR, the CBR encoder utilizes a rate buffer and feedback control
mechanism that continually modifies the amount of quantization applied to the video signal, as
shown in Figure 16.25.

The CBR encoder provides a CBR with varying encoded picture quality. This means that the
degree of quantization applied depends upon the coding complexity of the current frame offered
to the MPEG compression algorithm. Fine quantization is then applied to those frames that have
low spatial and/or temporal coding complexity, and conversely coarse quantization is applied to
frames that possess high spatial and temporal coding complexity in order to meet the bit rate.
However, varying the quantization level corresponds to varying the video quality. Thus, in a CBR
encoder, spatial and temporal complexity tends to be encoded in such a manner that the subjective
quality of the reproduced image is lower than that of less complex images. This makes any form
of rate control inherently bad in the sense that control is always imposed in a direction contrary
to the goal of achieving uniform image quality. Usually, bit rates for CBR encoders are chosen so
that the moderately difficult scenes can be coded to an acceptable quality level. Given that mod-
erately difficult scenes give good results, then all simpler scenes will yield even better results with
the given rate, while very difficult scenes will result in noticeable degradation. Since CBR encoders
produce CBR, the multiplexing of a plurality of sources is very simple. The required channel
capacity would simply be the sum of all the individual CBRs. Deterministic time or frequency
division multiplexing of the individual CBR bitstreams onto the channel is a well-known and simple
process. So with CBR encoding, uniformly consistent image quality is impossible for the video
sequence with varying scene complexity, but the reward is the ease of multiplexing. The penalty
of CBR coding with easy multiplexing may not only be nonuniform picture quality, also result in
lower efficiency of channel bandwidth employment. Better efficiency can be gained by statistical
multiplexing, whereby each source is encoded at a VBR coding approach. The VBR coding will
result in uniform or consistent coded image quality by fixing the quantization scale or by modulating
the quantization scale to a limited extent according to activity-masking attributes of the human
visual system. Then, the bit rates generated by VBR coding vary with the coding complexity of
the incoming video source material. Statistical multiplexing is referred to as StatMux. The coding
gain of StatMux is possible through sharing of the channel resource jointly among the encoders.
For example, two MPEG encoders may assign the appearance of their I-pictures at different time;
this may reduce the limitation of the maximum channel bandwidth requirement since coding an
I-picture may generate a large number of bits. This may not be a good example for practical
applications. However, this explains that the process of StatMux is not a zero-sum game whereby
one encoder’s gain must be exactly another encoder’s loss. In the process of StatMux, one encoder’s
gain is obtained by using the channel bandwidth that another encoder does not need at that time

FIGURE 16.25 Independent encoding/muxing of CBR sources.
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or that would bring a very marginal gain for another encoder at that time. More exactly, this concept
of gains through sharing arises when the limited amount of bits is dynamically appropriated toward
encoders that can best utilize those bits in substantially improving their image quality during
complex segments and eschewed from encoders that can improve their image quality only margin-
ally during easy segments. It is obvious that the CBR-encoded sources do not need statistical
multiplexing since the bandwidth for each encoded source is well defined. The gain of statistical
multiplexing is only possible with VBR-encoded sources. In the following section, we discuss two
kinds of multiplexing with multiple VBR-encoded sources.

16.6.2 VBR ENCODERS IN STATMUX

There are two multiplexing methods for encoding multiple sources with VBR encoders, open loop
and closed loop. Each VBR encoder in open-loop-multiplexing mode produces the most consistently
uniform predefined image quality level regardless of the coding complexity of the incoming video
sources. The image quality is decided by fixing the quantization scale. When the quantization scale
is fixed, the SNR is fixed under assumption of white Gaussian quantization noise. Sometimes, the
quantization scale is slightly modulated according to the image activity to match the human visual
system, for example, in the method in MPEG-2 TM5. The resulting VBR bit rate process is generated
by allowing the encoder to use freely however many bits needed to meet the predetermined quality
level. Usually, each video source encoded by a VBR encoder in the open-loop mode is not
geographically colocated and cannot be encoded jointly. However, the resulting VBR processes do
share the channel “jointly,” in the sense that the total channel bandwidth is not rigidly allocated
among the sources in a fixed manner such as is done in CBR operation mode, where each source
has the fixed portion of channel bandwidth. The instantaneous combined rates of all the VBR
encoders may exceed the channel capacity, especially in the case when all the encoders generate
bursts of bits at the same time. Then, the joint buffer will overflow, thereby leading to loss of data.
However, there always still exists a possibility to utilize the channel capacity more efficiently by
carefully allocating the loading conditions without loss of data. But totally open-loop VBR coding
is not stationary and it is hard to achieve both good channel utilization and very limited data loss.
A practical method of VBR transmission for use in the ATM environment involves placing limita-
tions on the degree of variability allowed in VBR processes. Figure 16.26 illustrates the idea of
self-regulating VBR encoders.

The difference between the proposed VBR encoder and a totally open-loop VBR encoder is
that a looser form of rate control is imposed to the VBR encoder in order to avoid violating
transmission constraints that are agreed to by the user and the network as part of the contract

FIGURE 16.26 Independent encoding/muxing of geographically dispersed VBR sources.
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negotiated during the call setup stage. The rate control will match the policing function, which is
enforced by the network. Looser rate control means that the rate control is not so strict as the one
in the CBR case because it allows for the encoder to vary its output bit rate according to the coding
complexity up to a certain degree as decided by the policing function.

In some applications such as the TV broadcasting or cable TV, the video sources may be
geographically colocated at the same site. In such scenarios, additional gains can be realized by
the StatMux in which the sources are jointly encoded and jointly multiplexed. By using a common
rate controller, all encoders operate in VBR mode but without contending and stepping over one
another as in independent VBR encoding and multiplexing. The joint rate controller assigns the
total available channel capacity to each encoder so that a certain common quality level is maintained.
The bit rates assigned to each individual encoder by joint rate control dynamically change based
on the coding complexities of each video source to achieve the most uniform quality among the
encoders and along the time for each encoder. In such a joint rate control method, although each
encoder produces its own variable rate bits, the sum of bits produced by all encoders combined
together is a CBR to fit the channel capacity. Such an idea is shown in Figure 16.27.

16.6.3 RESEARCH TOPICS OF STATMUX

The major problem of StatMux is how to allocate the bit rate resource among the video sources
that share the common channel bit rate and are jointly encoded by a joint rate controller. This
allocation should be based on the coding complexity of each source. The bit rate, Ri (t), for encoder
i at time t according to the normalized coding complexity of all encoders for the GOP period ending
at time t, such as

(16.29)

where Xi (t) is the coding complexity of source for encoder i at the time t over a GOP period and
C is the total channel capacity. Also the bit rate assignment has to be updated from time to time
to trace the variation of source complexity. In the following, we will discuss several topics which
may be research topics for graduate students.

Forward Analysis — Without forward analysis, scene transitions are unanticipated and lead to
incorrect bit allocation for a brief, transient period following the scene changes. If the bit allocation
of a current video segment is based on the complexity of previous video segments and is adjusted

FIGURE 16.27 Method of joint rate control and multiplexing.
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by the available bit rate resource, those video segments which change from easy coding complexity
to difficult coding complexity suffer the greatest degradation without preanalysis of upcoming
increased complexity. Preanalysis could be performed with a dual set of encoders operating with
a certain preprocessing delay ahead of the actual encoding process. As a simple example, we start
to assign the equal portion of bit rate for each encoder; then we can obtain the average quantization
scale for this GOP that can be considered as the forward analysis results of coding complexity.
The real coding process can operate on the coding complexity obtained by the preanalysis. If we
choose one or two GOPs according to the synchronous status of the input video sources to perform
the preanalysis, it will result in small buffering delay.

Potential Modeling Strategies and Methods — Several modeling strategies and methods have
been investigated to find a suitable procedure for classifying sources and determining what groups
of sources can appropriately be jointly encoded together for transmission over a common channel
to meet a specified image quality level. These modeling strategies and methods include modeling
of video encoding, modeling of source coding complexity, and source classification. The modeling
of a video-encoding algorithm involves measuring the operating performance of the individual
encoders or characterizing its rate distortion function for a variety of scenes. Embodied into this
model are the MPEG algorithms implemented for motion estimation, mode decision, rate control,
and their joint optimization issues. It has been speculated that a hyperbolic functional form of

(16.30)

would be appropriate over the normal operating bit rate range of 3 to 7 Mbps for MPEG-2 encoded
CCIR601-sized videos. The hyperbolic shape of rate distortion curves would be also suitable for all
video scenes. Actually, we can use a set of collected rate distortion data pairs with an encoder to fit
a hyperbola through the points as shown in Figure 16.28 and estimate the shape parameter X. The
value of X will be used to present the coding complexity offered to an encoder. For modeling at the
GOP level, the rate would be the number of bits used to code that GOP and the distortion can be
chosen as the averaging quantization scale over the GOP. In some of the literature, the distortion is
taken as the average PSNR over the GOP or overall sequence. If it is assumed that the quantization
noise is modeled by white Gaussian noise, then both distortion measures are equivalent.

After obtaining the correct coding complexity parameters, we can improve the StatMux algo-
rithm by assigning an encoding bit budget to each encoder based on the GOP level normalized
complexity measure X that each encoder is encoding. The GOP level normalized complexity
measure X(n) is defined as

(16.31)

FIGURE 16.28 Rate distortion modeling of encoding algorithm and video source.
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where n is the GOP number, T (i) is the total number of bits used for encoding picture i, and Q(i)
is the average quantization scale used for encoding picture i. Some research results have shown
that the X(n) is insensitive to the operating bit rate, therefore, X(n) is a reliable measure of the
loading characteristics of a video source. Therefore, the study of accurate model of the random
process of x(n) is very important for improving the operations of the StatMux algorithm. The
accurate model of X(n) reflects the loading characteristics of the video source which dictates the
share of total bit budget that an encoder expects to get. Several statistical models have been proposed
to describe the complexity measure, X(n). For example, an autoregressive process model is proposed
for the intrascene X(n) process. This proposed model is based on the following observations; the
complexity measure within a single scene has a skewed distribution by the Gamma function, and
furthermore, the complexity measure within a scene displays a strong temporal correlation and the
form of the correlation is essentially exponential. The definition for the Mth order autoregressive
model is

(16.32)

where e(n) is the white noise process and a(m) terms are the innovation filter coefficients. The
statistics of the model such as the mean value, the variance, the correlation, and the marginal
distribution are used to match those of actual signals by adjusting the a(m) terms, e(n) and M.
Other cases, such as scene transition model, intercoded scene models, we leave as project topics
for graduate students.

16.7 SUMMARY

In this chapter, the technical details of MPEG video are introduced. The technical detail of MPEG
standards includes the decoding process of MPEG-1 and MPEG-2 video. Although the encoding
process is not a standard part, it is very important for content and service providers. We discuss
the most important parts of encoding techniques. Some examples such as the joint optimizing of
mode decision and rate control are good examples to understand how the standard is used.

16.8 EXERCISES

16-1. According to your understanding, give several reasons to explain why the MPEG
standards specify only decoding as a normative part and define encoding as an infor-
mative part (TM5).

16-2. Can an MPEG-2 video decoder decode a bitstream generated by an MPEG-1 video
encoder? Summarize the main difference between the MPEG-1 and MPEG-2 video
standards.

16-3. Prefiltering may reduce the noise of original video source and increase the coding
efficiency. But at the same time prefiltering will result in a certain information loss.
Conduct a project to investigate at what bit rate range prefiltering may benefit the coding
efficiency for some video sources.

16-4. Use TM5 rate control to encode several video sequences (such as Flower Garden
sequence) in two ways: (a) with adaptive quantization step, (b) without adaptive quan-
tization step (Equation 6.16). Compare and discuss the numerical results and subjective
results (observe the smooth areas carefully).
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16-5. Why does MPEG-2 use different quantizer matrices for intra- and intercoding? Conduct
a project to use different quantization matrices to encode several video sequences and
report the results.

16-6. Conduct a project to encode several video sequences (a) with B-picture; (b) without
B-picture. Compare the numerical and subjective results. Observe what difference exists
between the sequences with fast motion and the sequence with slow motion. (Typical
bit rates for CCIR601 sequences are 4 to 6 Mbps).
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Application Issues of 
MPEG-1/2 Video Coding

 

This chapter is an extension of the previous chapter. We introduce several important application
issues of MPEG-1/2 video which include the ATSC (Advanced Television Standard Committee)
DTV standard which has been adopted by the FCC (Federal Communications Commission) as the
TV standard in the United States, transcoding, down-conversion decoder, and error concealment.

 

17.1 INTRODUCTION

 

Digital video signal processing is an area of science and engineering that has developed rapidly
over the past decade. The maturity of the moving picture expert group (MPEG) video-coding
standard is a very important achievement for the video industry and provides strong support for
digital transmission and storage of video signals. The MPEG coding standard is now being deployed
for a variety of applications, which include high-definition television (HDTV), teleconferencing,
direct broadcasting by satellite (DBS), interactive multimedia terminals, and digital video disk
(DVD). The common feature of these applications is that the different source information such as
video, audio, and data are all converted to the digital format and then mixed together to a new
format which is referred to as the bitstream. This new format of information is a revolutionary
change in the multimedia industry, since the digitized information format, i.e., the bitstream, can
be decoded not only by traditional consumer electronic products such as television but also by the
digital computer. In this chapter, we will present several application examples of MPEG-1/2 video
standards, which include the ATSC DTV standard, transcoding, down-conversion decoder, and error
concealment. The DTV standard is the application extension of the MPEG video standard. The
transcoding and down-conversion decoders are the practical application issues which increase the
features of compression-related products. The error concealment algorithms provide the tool for
transmitting the compressed bitstream over noisy channels.

 

17.2 ATSC DTV STANDARDS
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The birth of digital television (DTV) in the U.S. has undergone several stages: the initial stage, the
competition stage, the collaboration stage, and the approval stage (Reitmeier, 1996). The concept
of high-definition television (HDTV) was proposed in Japan in the late 1970s and early 1980s.
During that period, Japan and Europe continued to make efforts in the development of analog
television transmission systems, such as MUSE and HD-MAC systems. In early 1987, U.S. broad-
casters fell behind in this field and felt they should take action to catch up with the new HDTV
technology and petitioned the FCC to reserve a spectrum for terrestrial broadcasting of HDTV. As
a result, the Advisory Committee on Advanced Television Service (ACATS) was founded in August
1987. This committee takes the role of recommending a standard to the FCC for approval. Thus,
the process of selecting an appropriate HDTV system for the U.S. started. At the initial stage
between 1987 and 1990, there were over 23 different analog systems proposed; among these systems
two typical approaches were extended definition television (EDTV) which fits into a single 6-MHz
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channel and the high definition television (HDTV) approach which requires two 6-MHz channels.
By 1990, ACATS had established the Advanced Television Test Center (ATTC), an official testing
laboratory sponsored by broadcasters to conduct extensive laboratory tests in Virginia and field tests
in Charlotte, NC. Also, the industry had formed the Advanced Television Standards Committee
(ATSC) to perform the task of drafting the official standard documents of the selected winning system.

As we know, the current ATSC-proposed television standard is a digital system. In early 1990,
the FCC issued a very difficult request to industry about the DTV standard. The FCC required the
industry to provide full-quality HDTV service in a single 6-MHz channel. Having recognized the
technical difficulty of this requirement at that time, the FCC also stated that this service could be
provided by a simulcast service in which programs would be simultaneously broadcasted in both
NTSC and the new television system. However, the FCC decided not to assign new spectrum bands
for television. This means that simulcasting would occur in the already crowded VHF and UHF
spectrum. The new television system had to use low-power transmission to avoid excessive inter-
ference into the existing NTSC services. Also, the new television system had to use a very aggressive
compression approach to squeeze a full HDTV signal into the 6-MHz spectrum. One good thing
was that backward compatibility with NTSC was not required. Actually, under these constraints
the backward compatibility had already become impossible. Also, this goal could not be achieved
by any of the previously proposed systems and it caused most of the competing proponents to
reconsider their approaches. Engineers realized that it was almost impossible to use the traditional
analog approaches to reach this goal and that the solution may be in digital approaches. After a
few months of consideration, General Instrument announced its first digital system proposal for
HDTV, DigiCigher, in June 1990. In the following half year, three other digital systems were
proposed: the Advanced Digital HDTV by the Advanced Television Research Consortium, which
included Thomson, Philips, Sarnoff, and NBC in November 1990; Digital Spectrum Compatible
HDTV by Zenith and AT&T in December 1990; and Channel Compatible Digicipher by General
Instrument and the Massachusetts Institute of Technology in January 1991. Thus, the competition
stage started. The prototypes of four competing digital systems and the analog system, Narrow
MUSE, proposed by NHK (Nippon Houson Kyokai, the Japan Broadcasting Corporation), were
officially tested and extensively analyzed during 1992. After a first round of tests, it was concluded
that the digital systems would be continued for further improvement and would be adopted. In
February 1992, the ACATS recommended digital HDTV for the U.S. standard. It also recommended
that the competing systems be either further improved and retested, or be combined into a new
system. In the middle of 1993, the former competitors joined in a Grand Alliance. Then the DTV
development entered the collaboration stage. The Grand Alliance began a collaborative effort to
create the best system which combines the best features and capabilities of the formerly competing
systems into a single “best of the best” system. After 1 year of joint effort by the seven Grand
Alliance members, the Grand Alliance provided a new system that was prototyped and extensively
tested in the laboratory and field. The test results showed that the system is indeed the best of the
best compared with the formerly competing systems (Grand Alliance, 1994). The ATSC then
recommended this system to the FCC as the candidate HDTV standard in the United States. During
the following period, the computer industry realized that DTV provides the signals that can now
be used for computer applications and the TV industry was invading its terrain. It presented different
opinions about the signal format and was especially opposed to the interlaced format. This reaction
delayed the approval of the ATSC standard. After a long debate, the FCC finally approved the
ATSC standard in early 1997. But, the FCC did not specify the picture formats and leaves this
issue to be decided by the market.
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The ATSC DTV system has been designed to satisfy the FCC requirements. The basic requirement
is that no additional frequency spectrum will be assigned for DTV broadcasting. In other words,
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during a transition period, both NTSC and DTV service will be simultaneously broadcast on
different channels and DTV can only use the taboo channels. This approach allows a smooth
transition to DTV, such that the services of the existing NTSC receivers will remain and gradually
be phased out of existence in the year 2006. The simulcasting requirement causes some technical
difficulties in DTV design. First, the high-quality HDTV program must be delivered in a 6-MHz
channel to make

 

 

 

efficient use of spectrum and to fit allocation plans for the spectrum assigned to
television broadcasting. Second, a low-power and low-interference signal must be used so that
simulcasting in the same frequency allocations as current NTSC service does not cause excessive
interference with the existing NTSC receiving, since the taboo channels are generally unsuitable
for broadcasting an NTSC signal due to high interference. In addition to satisfying the frequency
spectrum requirement, the DTV standard has several important features, which allow DTV to
achieve interoperability with computers and data communications. The first feature is the adoption
of a layered digital system architecture. Each individual layer of the system is designed to be
interoperable with other systems at the corresponding layers. For example, the square pixel and
progressive scan picture format should be provided to allow computers access to the compression
layer or picture layer depending on the capacity of the computers and the ATM-like packet format
for the ATM network to access the transport layer. Second, the DTV standard uses a header/descrip-
tor approach to provide maximum flexible operating characteristics. Therefore, the layered archi-
tecture is the most important feature of DTV standards. The additional advantage of layering is
that the elements of the system can be combined with other technologies to create new applications.
The system of DTV standard includes four layers: the picture layer, the compression layer, the
transport layer, and the transmission layer.

 

17.2.2.1 Picture Layer

 

At the picture layer, the input video formats have been defined. The Executive Committee of the
ATSC has approved release of statement regarding the identification of the HDTV and Standard
Definition Television (SDTV) transmission formats within the ATSC DTV standards. There are six
video formats in the ATSC DTV standard, which are “High Definition Television.” These formats
are listed in Table 17.1.

The remaining 12 video formats are not HDTV format. These formats represent some improve-
ments over analog NTSC and are referred to as “SDTV.” These are listed in Table 17.2.

These definitions are fully supported by the technical specifications for the various formats as
measured against the internationally accepted definition of HDTV established in 1989 by the ITU
and the definitions cited by the FCC during the DTV standard development process. These formats
cover a wide variety of applications, which include motion picture film, currently available HDTV
production equipment, the NTSC television standard, and computers such as personal computers
and workstations. However, there is no simple technique which can convert images from one pixel

 

TABLE 17.1
HDTV Formats
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 Y active pixels) Aspect Ratio
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(Hz progressive scan)
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 1080 (square pixel) 16:9 23.976/24
29.97/30
59.94/60
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 720 (square pixel) 16:9 23.976/24
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format and frame rate to another that achieve interoperability among film and the various worldwide
television standards. For example, all low-cost computers use square pixels and progressive scan-
ning, while current television uses rectangular pixels and interlaced scanning. The video industry
has paid a lot of attention to developing format-converting techniques. Some techniques such as
deinterlacing, down/up-conversion for format conversion have already been developed. It should
be noted that the broadcasters, content providers, and service providers can use any one of these
DTV format. This results in a difficult problem for DTV receiver manufacturers who have to provide
all kinds of DTV receivers to decode all these formats and then to convert the decoded signal to
its particular display format. On the other hand, this requirement also gives receiver manufacturers
the flexibility to produce a wide variety of products that have different functionality and cost, and
the consumers freedom to choose among them.

 

17.2.2.2 Compression Layer

 

The raw data rate of HDTV of 1920 
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 1080 
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 30 
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 16 (16 bits per pixel corresponds to 4:2:2 color
format) is about 1 Gbps. The function of the compression layer is to compress the raw data from
about 1 Gbps to the data rate of approximately 19 Mbps to satisfy the 6-MHz spectrum requirement.
This goal is achieved by using the main profile and high level of the MPEG-2 video standard.
Actually, during the development of the Grand Alliance HDTV system, many research results were
adopted by the MPEG-2 standard at the same time; for example, the support for interlaced video
format and the syntax for data partitioning and scalability. The ATSC DTV standard is the first and
most important application example of the MPEG-2 standard. The use of MPEG-2 video compres-
sion fundamentally enables ATSC DTV devices to interoperate with MPEG-1/2 computer multi-
media applications directly at the compressed bitstream level.

 

17.2.2.3 Transport Layer

 

The transport layer is another important issue for interoperability. The ATSC DTV transport layer
uses the MPEG-2 system transport stream syntax. It is a fully compatible subset of the MPEG-2
transport protocol. The basic function of the transport layer is to define the basic format of data
packets. The purposes of packetization include:

• Packaging the data into the fixed-size cells or packets for forward error correction (FEC)
encoding to protect the bit error due to the communication channel noise;

• Multiplexing the video, audio, and data of a program into a bitstream;
• Providing time synchronization for different media elements;
• Providing flexibility and extensibility with backward compatibility.

 

TABLE 17.2
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The transport layer of ATSC DTV uses a fixed-length packet. The packet size is 188 bytes consisting
of 184 bytes of payload and 4 bytes of header. Within the packet header, the13-bit packet identifier
(PID) is used to provide the important capacity to combine the video, audio, and ancillary data
stream into a single bitstream as shown in Figure 17.1. Each packet contains only a single type of
data (video, audio, data, program guide, etc.) identified by the PID.

This type of packet structure packetizes the video, audio, and auxiliary data separately. It also
provides the basic multiplexing function that produces a bitstream including video, five-channel
surround-sound audio, and an auxiliary data capacity. This kind of transport layer approach also
provides complete flexibility to allocate channel capacity to achieve any mix among video, audio,
and other data services. It should be noted that the selection of 188-packet length is a trade-off
between reducing the overhead due to the transport header and increasing the efficiency of error
correction. Also, one ATSC DTV packet can be completely encapsulated with its header within
four ATM packets by using 1 AAL byte per ATM header leaving 47 usable payload bytes times 4,
for 188 bytes. The details of the transport layer is discussed in the chapter on MPEG systems.

 

Transmission Layer

 

 — The function of the transmission layer is to modulate the transport bitstream
into a signal that can be transmitted over the 6-MHz analog channel. The ATSC DTV system uses
a trellis-coded eight-level vestigial sideband (8-VSB) modulation technique to deliver approxi-
mately 19.3 Mbps in the 6-MHz terrestrial simulcast channel. VSB modulation inherently requires
only processing the in-phase signal sampled at the symbol rate, thus reducing the complexity of
the receiver, and ultimately the cost of implementation. The VSB signal is organized in a data
frame that provides a training signal to facilitate channel equalization for removing multipath
distortion. However, from several field-test results, the multipath distortion is still a serious problem
of terrestrial simulcast receiving. The frame is organized into segments each with 832 symbols.
Each transmitted segment consists of one synchronization byte (four symbols), 187 data bytes, and
20 R-S parity bytes. This corresponds to a 188-byte packet, which is protected by 20-byte R-S
code. Interoperability at the transmission layer is required by different transmission media appli-
cations. The different media use different modulation techniques now, such as QAM for cable and
QPSK for satellite. Even for terrestrial transmission, European DVB systems use OFDM transmis-
sion. The ATV receivers will not only be designed to receive terrestrial broadcasts, but also the
programs from cable, satellite, and other media.

 

17.3 TRANSCODING WITH BITSTREAM SCALING

17.3.1 B

 

ACKGROUND

 

As indicated in the previous chapters, digital video signals exist everywhere in the format of
compressed bitstreams. The compressed bitstreams of video signals are used for transmission and
storage through different media such as terrestrial TV, satellite, cable, the ATM network, and the

 

FIGURE 17.1

 

Packet structure of ATSC DTV transport layer.
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Internet. The decoding of a bitstream can be implemented in either hardware or software. However,
for high-bit-rate compressed video bitstreams, specially designed hardware is still the major decod-
ing approach due to the speed limitation of current computer processors. The compressed bitstream
as a new format of video signal is a revolutionary change to video industry since it enables many
applications. On the other hand, there is a problem of bitstream conversion. Bitstream conversion
or transcoding can be classified as bit rate conversion, resolution conversion, and syntax conversion.
Bit rate conversion includes bit rate scaling and the conversion between constant bit rate (CBR)
and variable bit rate (VBR). Resolution conversion includes spatial resolution conversion and
temporal resolution conversion. Syntax conversion is needed between different compression stan-
dards such as JPEG, MPEG-1, MPEG-2, H.261, and H.263. In this section, we will focus on the
topic of bit rate conversion, especially on bit rate scaling since it finds wide application and readers
can extend the idea to other kinds of transcoding. Also, we limit ourselves to focus on the problem
of scaling an MPEG CBR-encoded bitstream down to a lower CBR. The other kind of transcoding,
down-conversion decoder, will be presented in a separate section.

The basic function of bitstream scaling may be thought of as a black box, which passively
accepts a precoded MPEG bitstream at the input and produces a scaled bitstream, which meets new
constraints that are not known 

 

a priori

 

 during the creation of the original precoded bitstream. The
bitstream scaler is a transcoder, or filter, that provides a match between an MPEG source bitstream
and the receiving load. The receiving load consists of the transmission channel, the destination
decoder, and perhaps a destination storage device. The constraint on the new bitstream may be bound
by a variety of conditions. Among them are the peak or average bit rate imposed by the communi-
cations channel, the total number of bits imposed by the storage device, and/or the variation of bit
usage across pictures due to the amount of buffering available at the receiving decoder.

While the idea of bitstream scaling has many concepts similar to those provided by the various
MPEG-2 scalability profiles, the intended applications and goals differ. The MPEG-2 scalability
methods (data partitioning, SNR scalability, spatial scalability, and temporal scalability) are aimed
at providing encoding of source video into multiple service grades (that are predefined at the time
of encoding) and multitiered transmission for increased signal robustness. The multiple bitstreams
created by MPEG-2 scalability are hierarchically dependent in such a way that by decoding an
increasing number of bitstreams, higher service grades are reconstructed. Bitstream scaling meth-
ods, in contrast, are primarily decoder/transcoder techniques for converting an existing precoded
bitstream to another one that meets new rate constraints. Several applications that motivate bitstream
scaling include the following:

1. Video-On-Demand — Consider a video-on-demand (VOD) scenario wherein a video file
server includes a storage device containing a library of precoded MPEG bitstreams.
These bitstreams in the library are originally coded at high quality (e.g., studio quality).
A number of clients may request retrieval of these video programs at one particular time.
The number of users and the quality of video delivered to the users are constrained by
the outgoing channel capacity. This outgoing channel, which may be a cable bus or an
ATM trunk, for example, must be shared among the users who are admitted to the service.
Different users may require different levels of video quality, and the quality of a respective
program will be based on the fraction of the total channel capacity allocated to each
user. To accommodate a plurality of users simultaneously, the video file server must scale
the stored precoded bitstreams to a reduced rate before it is delivered over the channel
to respective users. The quality of the resulting scaled bitstream should not be signifi-
cantly degraded compared with the quality of a hypothetical bitstream so obtained by
coding the original source material at the reduced rate. Complexity cost is not such a
critical factor because only the file server has to be equipped with the bitstream scaling
hardware, not every user. Presumably, video service providers would be willing to pay
a high cost for delivering the possible highest-quality video at a prescribed bit rate.
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As an option, a sophisticated video file server may also perform scaling of multiple
original precoded bitstreams jointly and statistically multiplex the resulting scaled VBR
bitstreams into the channel. By scaling the group of bitstreams jointly, statistical gains
can be achieved. These statistical gains can be realized in the form of higher and more
uniform picture quality for the same channel capacity. Statistical multiplexing over a
DirecTv transponder (Isnardi, 1993) is one example of an application of video statistical
multiplexing.

2. Trick-play Track on Digital VTRs — In this application, the video bitstream is scaled
to create a sidetrack on video tape recorders (VTRs). This sidetrack contains very coarse
quality video sufficient to facilitate trick-modes on the VTR (e.g., FF and REW at
different speeds). Complexity cost for the bitstream scaling hardware is of significant
concern in this application since the VTR is a mass consumer item subject to mass
production.

3. Extended-Play Recording on Digital VTRs — In this application, video is broadcast to
users’ homes at a certain broadcast quality (~6 Mbps for standard-definition video and
~24 Mbps for high-definition video). With a bitstream scaling feature in their VTRs,
users may record the video at a reduced rate, akin to extended-play (EP) mode on today’s
VHS recorders, thereby recording a greater duration of video programs onto a tape at
lower quality. Again, hardware complexity costs would be a major factor here.
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As described previously, the idea of scaling an MPEG-2-compressed bitstream down to a lower
bit rate is initiated by several applications. One problem is the criteria that should be used to judge
the performance of an architecture that can reduce the size or rate of an MPEG-compressed
bitstream. Two basic principles of bitstream scaling are (1) the information in the original bitstream
should be exploited as much as possible, and (2) the resulting image quality of the new bitstream
with a lower bit rate should be as close as possible to a bitstream created by coding the original
source video at the reduced rate. Here, we assume that for a given rate the original source is encoded
in an optimal way. Of course, the implementation of hardware complexity also has to be considered.
Figure 17.2 shows a simplified encoding structure of MPEG encoding in which the rate control
mechanism is not shown.

In this structure, a block of image data is first transformed to a set of coefficients; the coefficients
are then quantized with a quantizer step which is decided by the given bit rate budget, or number
of bits assigned to this block. Finally, the quantized coefficients are coded in variable-length coding
to the binary format, which is called the bitstream or bits.

 

FIGURE 17.2

 

Simplified encoder structure. T = transform, Q = quantizer, P = motion-compensated predic-
tion, VLC = variable length.
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From this structure it is obvious that the performance of changing the quantizer step will be
better than cutting higher frequencies when the same amount of rate needs to be reduced. In the
original bitstream the coefficients are quantized with finer quantization steps which are optimized
at the original high rate. After cutting the coefficients of higher frequencies, the rest of the
coefficients are not quantized with an optimal quantizer. In the method of requantization all
coefficients are requantized with an optimal quantizer which is determined by the reduced rate; the
performance of the requantization method must be better than the method of cutting high frequencies
to reach the reduced rate. The theoretical analysis is given in Section 17.3.4.

In the following, several different architectures that accomplish the bitstream scaling are
discussed. The different methods have varying hardware implementation complexities; each has its
own degree of trade-off between required hardware and resulting image quality.
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Four architectures for bitstream scaling are discussed. Each of the scaling architectures described
has its own particular benefits that are suitable for a particular application.

Architecture 1: The bitstream is scaled by cutting high frequencies.
Architecture 2: The bitstream is scaled by requantization.
Architecture 3: The bitstream is scaled by reencoding the reconstructed pictures with

motion vectors and coding decision modes extracted from the original high-
quality bitstream.

Architecture 4: The bitstream is scaled by reencoding the reconstructed pictures with
motion vectors extracted from the original high-quality bitstream, but new
coding decisions are computed based on reconstructed pictures.

Architectures 1 and 2 are considered for VTR applications such as trick-play modes and EP
recording. Architectures 3 and 4 are considered for and other applicable StatMux scenarios.

 

17.3.3.1 Architecture 1: Cutting AC Coefficients

 

A block diagram illustrating architecture 1 is shown in Figure 17.3a. The method of reducing the
bit rate in architecture 1 is based on cutting the higher-frequency coefficients. The incoming
precoded CBR stream enters a decoder rate buffer. Following the top branch leading from the rate
buffer, a VLD is used to parse the bits for the next frame in the buffer to identify all the variable-
length codewords that correspond to ac coefficients used in that frame. No bits are removed from
the rate buffer. The codewords are not decoded, but just simply parsed by the VLD parser to
determine codeword lengths. The bit allocation analyzer accumulates these ac bit counts for every
macroblock in the frame and creates an ac bit usage profile as shown in Figure 17.3(b). That is,
the analyzer generates a running sum of ac DCT coefficient bits on a macroblock basis:

(17.1)

where 
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 is the profile value of a running sum of 
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 codeword bits until the macroblock 
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. In
addition, the analyzer counts the sum of all coded bits for the frame, TB (total bits). After all
macroblocks for the frame have been analyzed, a target value TV
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, of ac DCT coefficient bits per
frame is calculated as

(17.2)
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where 
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 is the target value of 
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macroblock, 
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 is the percentage by which the preencoded bitstream is to be reduced, 
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 is the amount of bits by which the previous frame missed its desired target. The
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scaling by that factor to generate the linearly scaled profile shown in Figure 17.3(b). Following the
bottom branch from the rate buffer, a delay is inserted equal to the amount of time required for
the top branch analysis processing to be completed for the current frame. A second VLD parser
accesses and removes all codeword bits from the buffer and delivers them to a rate controller. The
rate controller receives the scaled target bit usage profile for the amount of ac bits to be used within
the frame. The rate controller has memory to store all coefficients associated with the current
macroblock it is operating on. All original codeword bits at a higher level than ac coefficients (i.e.,
all fixed-length header codes, motion vector codes, macroblock type codes, etc.) are held in memory
and will be remultiplexed with all 
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 codewords in that macroblock that have not been excised to
form the outgoing scaled bitstream. The rate controller determines and flags in the macroblock
codeword memory which 
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 codewords to keep and which to excise. 
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th block in the macroblock if it is present. As the 
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 codewords are accessed from memory,
the respective codeword bits are summed and continuously compared with the scaled profile value
to the current macroblock, less the number of bits for insertion of 
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 (end-of-block) codewords.
Respective 
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 codewords are flagged as kept until the running sum of 
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 codewords bits exceeds
the scaled profile value less 
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 bits. When this condition is met, all remaining 

 

AC

 

 codewords
are marked for being excised. This process continues until all macroblocks have their kept code-
words reassembled to form the scaled bitstream.

 

FIGURE 17.3

 

(a) Architecture 1: cutting high frequencies. (b) Profile map.
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17.3.3.2 Architecture 2: Increasing Quantization Step

 

Architecture 2 is shown in Figure 17.4. The method of bitstream scaling in architecture 2 is based
on increasing the quantization step. This method requires additional dequantizer/quantizer and
variable-length coding (VLC) hardware over the first method. Like the first method, it also makes
a first VLD pass on the bitstream and obtains a similar scaled profile of target cumulative codeword
bits vs. macroblock count to be used for rate control.

The rate control mechanism differs from this point on. After the second-pass VLD is made on
the bitstream, quantized DCT coefficients are dequantized. A block of finely quantized DCT
coefficients is obtained as a result of this. This block of DCT coefficients is requantized with a
coarser quantizer scale. The value used for the coarser quantizer scale is determined adaptively by
making adjustments after every macroblock so that the scaled target profile is tracked as we progress
through the macroblocks in the frame:

(17.3)

where 
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 is the quantization factor for macroblock 
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quantization factor for the frame, 
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 is a gain factor which controls how tightly the profile curve is tracked through the
picture. 

 

Q

 

NOM

 

 is initialized to an average guess value before the very first frame, and updated for
the next frame by setting it to 

 

Q

 

LS

 

 (the quantization factor for the last macroblock) from the frame
just completed. The coarsely requantized block of DCT coefficients is variable-length-coded to
generate the scaled bitstream. The rate controller also has provisions for changing some macroblock-
layer codewords, such as the macroblock-type and coded-block pattern to ensure a legitimate scaled
bitstream that conforms to MPEG-2 syntax.

 

17.3.3.3 Architecture 3: Reencoding with Old Motion Vectors 
and Old Decisions

 

The third architecture for bitstream scaling is shown in Figure 17.5. In this architecture, the motion
vectors and macroblock coding decision modes are first extracted from the original bitstream, and
at the same time the reconstructed pictures are obtained from the normal decoding procedure. Then
the scaled bitstream is obtained by reencoding the reconstructed pictures using the old motion
vectors and macroblock decisions from the original bitstream. The benefits obtained from this
architecture compared with full decoding and reencoding is that no motion estimation and decision
computation is needed.

 

FIGURE 17.4

 

Architecture 2: increasing quantization step.
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17.3.3.4 Architecture 4: Reencoding with Old Motion Vectors 
and New Decisions

 

Architecture 4 is a modified version of architecture 3 in which new macroblock decision modes
are computed during reencoding based on reconstructed pictures. The scaled bitstream created this
way is expected to yield an improvement in picture quality because the decision modes obtained
from the high-quality original bitstream are not optimal for reencoding at the reduced rate. For
example, at higher rates the optimal mode decision for a macroblock is more likely to favor
bidirectional field motion compensation over forward frame motion compensation. But at lower
rates, only the opposite decision may be true. In order for the reencoder to have the possibility of
deciding on new macroblock coding modes, the entire pool of motion vectors of every type must
be available. This can be supplied by augmenting the original high-quality bitstream with ancillary
data containing the entire pool of motion vectors during the time it was originally encoded. It could
be inserted into the user data every frame. For the same original bit rate, the quality of an original
bitstream obtained this way is degraded compared with an original bitstream obtained from archi-
tecture 3 because the additional overhead required for the extra motion vectors steals away bits for
actual encoding. However, the resulting scaled bitstream is expected to show quality improvement
over the scaled bitstream from architecture 3 if the gains from computing new and more accurate
decision modes can overcome the loss in original picture quality. Table 17.3 outlines the hardware
complexity savings of each of the three proposed architectures as compared with full decoding and
reencoding.

 

17.3.3.5 Comparison of Bitstream Scaling Methods

 

We have described four architectures for bitstream scaling which are useful for various applications
as described in the introduction. Among the four architectures, architectures 1 and 2 do not require

 

FIGURE 17.5

 

Architecture 3.

 

TABLE 17.3
Hardware Complexity Savings over Full Decoding/Reencoding

 

Coding Method Hardware Complexity Savings

 

Architecture 1 No decoding loop, no DCT/IDCT, no frame store memory, no encoding loop, no quantizer/dequantizer, 
no motion compensation, no VLC, simplified rate control

Architecture 2 No decoding loop, no DCT/IDCT, no frame store memory, no encoding loop, no motion compensation, 
simplified rate control

Architecture 3 No motion estimation, no macroblock coding decisions
Architecture 4 No motion estimation
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entire decoding and encoding loops or frame store memory for reconstructed pictures, thereby
saving significant hardware complexity. However, video quality tends to degrade through the group
of pictures (GOP) until the next I-picture due to drift in the absence of decoder/encoder loops. For
large scaling, say, for rate reduction greater than 25%, architecture 1 produces poor-quality blocky
pictures, primarily because many bits were spent in the original high-quality bitstream on finely
quantizing the dc and other very low-order ac coefficients. Architecture 2 is a particularly good
choice for VTR applications since it is a good compromise between hardware complexity and
reconstructed image quality. Architectures 3 and 4 are suitable for VOD server applications and
other StatMux applications.

 

17.3.4 A

 

NALYSIS

 

In this analysis, we assume that the optimal quantizer is obtained by assigning the number of bits
according to the variance or energy of the coefficients. It is slightly different from MPEG standard
which will be explained later, but the principal concept is the same and the results will hold for
the MPEG standard. We first analyze the errors caused by cutting high coefficients and increasing
the quantizer step. The optimal bit assignment is given by Jayant and Noll (1984):

(17.4)
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In the case of cutting high frequencies, say, the number of coefficients is reduced from N to

M, then
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the quantizer error increased due to the cutting is
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where sq1
2 is the quantizer error after cutting the high frequencies.

In the method of increasing quantizer step, or decreasing the average bits, from Rav0 to Rav2,
assigned to each coefficient, the number of bits reduced for the block is

(17.8)

and the bits assigned to each coefficient become now

(17.9)

The corresponding quantizer error increased by the cutting bits is

(17.10)

where sq2
2 is the quantizer error at the reduced bit rate.

If the same number of bits is reduced, i.e., DR1 = DR2, it is obvious that Dsq2
2 is smaller than

Dsq1
2 since sq2

2 is the minimized value at the reduced rate. This implies that the performance of
changing the quantizer step will be better than cutting higher frequencies when the same amount
of rate needs to be reduced. It should be noted that in the MPEG video coding, more sophisticated
bit assignment algorithms are used. First, different quantizer matrices are used to improve the visual
perceptual performance. Second, different VLC tables are used to code the DC values and the AC
transform coefficients and the run-length coding is used to code the pairs of the zero-run length
and the values of amplitudes. However, in general, the bits are still assigned according to the
statistical model that indicates the energy distribution of the transform coefficients. Therefore, the
above theoretical analysis will hold for the MPEG video coding.

17.4 DOWN-CONVERSION DECODER

17.4.1 BACKGROUND

Digital video broadcasting has had a major impact in both academic and industrial communities.
A great deal of effort has been made to improve the coding efficiency at the transmission side and
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offer cost-effective implementations in the overall end-to-end system. Along these lines, the notion
of format conversion is becoming increasingly popular. On the transmission side, there are a number
of different formats that are likely candidates for digital video broadcast. These formats vary in
horizontal, vertical, and temporal resolution. Similarly, on the receiving side, there are a variety of
display devices that the receiver should account for. In this section, we are interested in the specific
problem of how to receive an HDTV bitstream and display it at a lower spatial resolution. In the
conventional method of obtaining a low-resolution image sequence, the HD bitstream is fully
decoded; then it is simply prefiltered and subsampled (ISO/IEC, 1993). The block diagram of this
system is shown in Figure 17.6(a); it will be referred to as a full-resolution decoder (FRD) with
spatial down-conversion. Although the quality is very good, the cost is quite high due to the large
memory requirements. As a result, low-resolution decoders (LRDs) have been proposed to reduce
some of the costs (Ng, 1993; Sun, 1993; Boyce et al., 1995; Bao et al., 1996). Although the quality
of the picture will be compromised, significant reductions in the amount of memory can be realized;
the block diagram for this system is shown in Figure 17.6(b). Here, incoming blocks are subject
to down-conversion filters within the decoding loop. In this way, the down-converted blocks are
stored into memory rather than the full-resolution blocks. To achieve a high-quality output with
the low-resolution decoder, it is important to take special care in the algorithms for down-conversion
and motion compensation (MC). These two processes are of major importance to the decoder as
they have significant impact on the final quality. Although a moderate amount of complexity within
the decoding loop is added, the reductions in external memory are expected to provide significant
cost savings, provided that these algorithms can be incorporated into the typical decoder structure
in a seamless way.

As stated above, the filters used to perform the down-conversion are an integral part of the
low-resolution decoder. In Figure 17.6(b), the down-conversion is shown to take place before the
IDCT. Although the filtering is not required to take place in the DCT domain, we initially assume
that it takes place before the adder. In any case, it is usually more intuitive to derive a down-
conversion filter in the frequency domain rather than in the spatial domain; this has been described

FIGURE 17.6 Decoder structures. (a) Block diagram of full-resolution decoder with down-conversion in 
the spatial domain. The quality of this output will serve as a drift-free reference. (b) Block diagram of low-
resolution decoder. Down-conversion is performed within the decoding loop and is a frequency domain process. 
Motion compensation is performed from a low-resolution reference using motion vectors that are derived from 
the full-resolution encoder. Motion compensation is a spatial domain process.
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by Pang et al. (1996), Merhav and Bhaskaran (1997), and Mokry and Anastassiou (1994). The
major drawback of these approaches is that high frequency data is lost or not preserved very well.
To overcome this, a method of down-conversion, which better preserves high-frequency data within
the macroblock has been reported by Bao et al. (1996), Vetro and Sun (1998a); this method is
referred to as frequency synthesis.

Although the above statement of the problem has only mentioned filtering-based approaches
to memory reduction within the decoding loop, readers should be aware that other techniques have
also been proposed. For the most part, these approaches rely on methods of embedded compression.
For instance, de With et al. (1998) quantized the data being written to memory adaptively using a
block predictive coding scheme; then a segment of macroblocks is fit into a fixed length packet.
Similarly, Yu et al. (1999) proposed an adaptive min-max quantizer and edge detector. With this
method, each macroblock is compressed to a fixed size to simplify memory access. Another, simpler
approach may be to truncate the 8-bit data to 7 or 6 bits. However, in this case, it is expected the
drift would accumulate very fast and result in poor reconstruction quality. Bruni et al. (1998) used
a vectors quantization method, and Lei (1999) described a wavelet-based approach. Overall, these
approaches offer exceptional techniques to reduce the memory requirements, but in most cases the
reconstructed video would still be a high-resolution signal. The reason is that compressed high-
resolution data are stored in memory rather than the raw, low-resolution data. For this reason, the
remainder of this section emphasizes the filtering-based approach, in which the data stored in
memory represent the actual low-resolution picture data.

The main novelty of the system that we describe is the filtering which is used to perform motion
compensation from low-resolution anchor frames. It is well known that prediction drift has been
difficult to avoid. It is partly due to the loss of high-frequency data from the down-conversion and
partly due to the inability to recover the lost information. Although prediction drift cannot be totally
avoided in a low-resolution decoder, it is possible to reduce the effects of drift significantly in
contrast to simple interpolation methods. The solution that we described is optimal in the least-
squares sense and is dependent on the method of down-conversion that is used (Vetro and Sun,
1998b). In its direct form, the solution cannot be readily applied to a practical decoding scheme.
However, it is shown that a cascaded realization is easily implemented into the FRD-type structure
(Vetro et al., 1998).

17.4.2 FREQUENCY SYNTHESIS DOWN-CONVERSION

The concept of frequency synthesis was first reported by Bao et al. (1996) and later expanded upon
by Vetro and Sun (1998b). The basic premise is to better preserve the frequency characteristics of
a macroblock in comparison to simpler methods which extract or cut specified frequency compo-
nents of an 8 ¥ 8 block. To accomplish this, the four blocks of a macroblock are subject to a global
transformation — this transformation is referred to as frequency synthesis. Essentially, a single-
frequency domain block can be realized using the information in the entire macroblock. From this,
lower-resolution blocks can be achieved by cutting out the low-order frequency components of the
synthesized block — this action represents the down-conversion process and is generally represented
in the following way:

(17.11)

where A denotes the original DCT macroblock, A denotes the down-converted DCT block, and X
is a matrix which contains the frequency synthesis coefficients. The original idea for frequency
synthesis down-conversion was to extract an 8 ¥ 8 block directly from the 16 ¥ 16 synthesized
block in the DCT domain as shown in Figure 17.7(a). The advantage of doing this is that the down-
converted DCT block is directly applicable to an 8 ¥ 8 IDCT (for which fast algorithms exist). The
major drawback with regard to computation is that each frequency component in the synthesized

˜ ,A X A=
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block is dependent on all of the frequency components in each of the 8 ¥ 8 blocks, i.e., each
synthesized frequency component is the result of a 256-tap filter. The major drawback with regard
to quality is that interlaced video with field-based predictions should not be subject to frame-based
filtering (Vetro and Sun, 1998b). If frame-based filtering is used, it becomes impossible to recover
the appropriate field-based data that is required to make field-based predictions. In areas of large
motion, severe blocking artifacts will result.

Obviously, the original approach would incur too much computation and quality degradation,
so, instead, the operations are performed separately and vertical down-conversion is performed on
a field basis. In Figure 17.7(b), it is shown that a horizontal-only down-conversion can be performed.
To perform this operation, a 16-tap filter is ultimately required. In this way, only the relevant row
information is applied as the input to the horizontal filtering operation and the structure of the
incoming video has no bearing on the down-conversion process. The reason is that the data in each
row of a macroblock belong to the same field; hence the format of the output block will be
unchanged. It is noteworthy that the set of filter coefficients is dependent on the particular output
frequency index. For 1-D filtering, this means that the filters used to compute the second output
index, for example, are different from those used to compute the fifth output index. Similar to the
horizontal down-conversion, vertical down-conversion can also be applied as a separate process.
As reasoned earlier, field-based filtering is necessary for interlaced video with field-based predictions.

However, since a macroblock consists of eight lines for the even field and eight lines for the
odd field, and the vertical block unit is 8, frequency synthesis cannot be applied. Frequency synthesis
is a global transformation and is only applicable when one wishes to observe the frequency
characteristics over a larger range of data than the basic unit. Therefore, to perform the vertical
down-conversion, we can simply cut the low-order frequency components in the vertical direction.
This loss that we accept in the vertical direction is justified by the ability to perform accurate low-
resolution MC that is free from severe blocking artifacts.

In the above, we have explained how the original idea to extract an 8 ¥ 8 DCT block is broken
down into separable operations. However, since frequency synthesis provides an expression for
every frequency component in the new 16 ¥ 16 block, it makes sense to generalize the down-
conversion process so that decimation, which are multiples of 1/16 can be performed. In
Figure 17.7(c), an M ¥ N block is extracted. Although this type of down-conversion filtering may
not be appropriate before the IDCT operation and may not be appropriate for a bitstream containing

FIGURE 17.7 Concept of frequency synthesis down-conversion; (a) 256-tap filter applied to every frequency 
component to achieve vertical and horizontal down-conversion by a factor of two frame-based filtering; (b) 16-tap 
filter applied to frequency components in the same row to achieve horizontal down-conversion by two, picture 
structure is irrelevant; (c) illustration that the amount of synthesized frequency components which are retained 
is arbitrary.
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field-based predictions, it may be applicable elsewhere, e.g., as a spatial domain filter somewhere
else in the system and/or for progressive material. To obtain a set of spatial domain filters, an
appropriate transformation can be applied. In this way, Equation 17.8 is expressed as

(17.12)

where the lowercase counterparts denote spatial equivalents. The expression which transforms X
to x is derived in Appendix A, Section 17.4.6.

17.4.3 LOW-RESOLUTION MOTION COMPENSATION

The focus of this section is to provide an expression for the optimal set of low-resolution MC filters
given a set of down-conversion filters. The resulting filters are optimal in the least-squares sense
as they minimize the mean squared error (MSE) between a reference block and a block obtained
through low-resolution MC. The results that have been derived by Vetro and Sun (1998a) assume
that a spatial domain filter, x, is applied to incoming macroblocks to achieve the down-conversion.
The scheme shown in Figure 17.8(a) illustrates the process by which reference blocks are obtained.
First, full-resolution motion compensation is performed on macroblocks a, b, c, and d to yield h.
To execute this process, the filters Sa

(r), Sb
(r), Sc

(r), and Sd
(r)  are used. Basically, these filters represent

the masking/averaging operations of the motion compensation in a matrix form. More on the
composition of these filters can be found in Appendix B, Section 17.4.7. Once h is obtained, it is
down-converted to h̃ via the spatial filter, x:

(17.13)

The above block is considered to be the drift-free reference. On the other hand, in the scheme of
Figure 17.8(b), the blocks a, b, c, and d are first subject to the down-conversion filter, x, to yield

FIGURE 17.8 Comparison of decoding methods to achieve low-resolution image sequence. (a) FRD with 
spatial down-conversion; (b) LRD. The objective is to minimize the MSE between the two outputs by choosing 
N1, N2, N3, and N4 for a fixed down-conversion. (From Vetro, A. et al., IEEE Trans. Consumer Elec., 44(3), 
1998. With permission.)
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the down-converted blocks, ã, b̃, c̃, and d̃, respectively. By using these down-converted blocks as
input to the low-resolution motion compensation process, the following expression can be assumed:

(17.14)

where Nk, k = 1,2,3,4 are the unknown filters which are assumed to perform the low-resolution
motion compensation, and h̃ is the low-resolution prediction. These filters are solved by differen-
tiating the following objective function (Vetra and Sun, 1998a):

(17.15)

with respect to each unknown filter and setting each result equal to zero. It can be verified that the
optimal least-squares solution for these filters is given by

(17.16)

where

(17.17)

is the Moore–Penrose inverse (Lancaster and Tismenetsky, 1985) for an m ¥ n matrix with m £ n.
In the solution of Equation 17.16, the superscript r is added to the filters, Nk, due to their dependency
on the full-resolution motion compensation filters. In using these filters to perform the low-
resolution motion compensation, the MSE between h̃ and ˆ̃h is minimized. It should be emphasized
that Equation 17.16 represents a generalized set of MC filters which are applicable to any x, which
operates on a single macroblock. For the special case of the 4 ¥ 4 cut, these filters are equivalent
to the ones that were determined by Morky and Anastassiou (1994) to minimize the drift.

In Figure 17.9, two equivalent MC schemes are shown. However, for implementation purposes,
the optimal MC scheme is realized in a cascade form rather than a direct form. The reason is that
the direct-form filters are dependent on the matrices, which perform full-resolution MC. Although,
these matrices were very useful in analytically expressing the full-resolution MC process, they
require a huge amount of storage due to their dependency on the prediction mode, motion vector,
and half-pixel-accuracy. Instead, the three linear processes in Equation 17.13 are separated, so that
an up-conversion, full-resolution MC, and down-conversion can be performed. Although one may
be able to guess such a scheme, we have proved here that it is an optimal scheme provided the up-
conversion filter is a Moore–Penrose inverse of the down-conversion filter. Vetro and Sun (1998b),
the optimal MC scheme, which employs frequency synthesis, to a nonoptimal MC scheme, which
employs bilinear interpolation, and an optimal MC scheme, which employs the 4 ¥ 4 cut down-
conversion. Significant reductions in the amount of drift were realized by both optimal MC schemes
over the method, which used bilinear interpolation as the method of up-conversion. But more
importantly, a 35% reduction in the amount of drift was realized by the optimal MC scheme using
frequency synthesis over the optimal MC scheme using the 4 ¥ 4 cut.
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17.4.4 THREE-LAYER SCALABLE DECODER

In this section, we show how the key algorithms for down-conversion and motion compensation are
integrated into a three-layer scalable decoder. The central concept of this decoder is that three layers
of resolution can be decoded using a decreased amount of memory for the lower resolution layers.
Also, regardless of which layer is being decoded, much of the logic can be shared. Three possible
decoder configurations are considered: full-memory decoder (FMD), half-memory decoder (HMD),
and quarter-memory decoder (QMD). The low-resolution decoder configurations are based on the
key algorithms, which were described for down-conversion and motion compensation. In the fol-
lowing, three possible architectures are discussed that provide equal quality, but vary in system-level
complexity. The first (ARCH1) is based on the low-resolution decoder modeled in Figure 17.6(b),
the second (ARCH2) is very similar, but attempts to reduce the IDCT computation, while the third
(ARCH3) is concerned with the amount of interface with an existing high-level decoder.

With regard to functionality, all of the architectures share similar characteristics. For one, an
efficient implementation is achieved by arranging the logic in a hierarchical manner, i.e., employing
separable processing. In this way, the FMD configuration is the simplest and serves as the logic
core on which other decoder configurations are built. In the HMD configuration, an additional
horizontal down-conversion and up-conversion are performed. In the QMD configuration, all of
the logic components from the HMD are utilized, such that an additional vertical down-conversion
is performed after a horizontal down-conversion, and an additional vertical up-conversion is per-
formed after a horizontal up-conversion. In summary, the logic for the HMD is built on the logic
for the FMD, and the logic for the QMD is built on the logic of the HMD. The total system contains
a moderate increase in logic, but HD bitstreams may be decoded to a lower resolution with a smaller
amount of external memory. By simply removing external memory, lower layers can be achieved
at a reduced cost.

FIGURE 17.9 Optimal low-resolution MC scheme: direct form (top) vs. cascade form (bottom). Both forms 
yield equivalent quality, but vary significantly in the amount of internal memory. (From Vetra, A., et al., IEEE 
Trans. Consumer Elec., 44(3), 1998. With permission.)
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FIGURE 17.10 Block diagram of various three-layer scalable decoder architectures; all architectures provide 
equal quality with varying system complexity: (a) ARCH1, derived directly from block diagram of assumed 
low-resolution decoder; (b) ARCH2, reduce computation of IDCT by combining down-conversion and IDCT 
filters; (c) ARCH3, minimize interface with existing HL decoder by moving linear filtering for down-conversion 
outside of the adder. (From Vetro, A. et al., IEEE Trans. Consumer Elec., 44(3), 1998. With permission.)
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The complete block diagram of ARCH1 is shown in Figure 17.10(a). The diagram shown here
assumes two things: (1) the initial system model of a low-resolution decoder from Figure 17.6(b)
is assumed, and (2) the down-conversions in the incoming branch are performed after the IDCT to
avoid any confusion regarding macroblock format conversions in the DCT domain (Vetro and Sun,
1998b). In looking at the resulting system, it is evident that full computation of the IDCT is required,
and that two independent down-conversion operations must be performed. The latter is necessary
so that low-resolution predictions are added to low-resolution residuals. Overall, the increase in
logic for the added feature of memory savings is quite small. However, it is evident that ARCH1
is not the most cost-effective implementation, but it represents the foundation of previous assump-
tions, and allows us to analyze better the impact of the two modified architectures to follow.

In Figure 17.10(b), the block diagram of ARCH2 is shown. In this system, realizing that the
IDCT operation is simply a linear filter reduces the combined computation for the IDCT and down-
conversion. In the FMD, we know that a fast IDCT is applied separately to the rows and columns
of an 8 ¥ 8 block. For the HMD, our goal is to combine the horizontal down-conversion with the
horizontal IDCT. In the 1-D case, an 8 ¥ 16 matrix can represent the horizontal down-conversion,
and an 8 ¥ 8 matrix can represent the horizontal IDCT. Combining these processes, such that the
down-conversion operates on the incoming DCT rows first, results in a combined 8 ¥ 16 matrix.
To complete the transformation, the remaining columns can then be applied to the fast IDCT. In
the above description, computational savings are achieved in two places: first, the horizontal IDCT
is fully absorbed into the down-conversion computation which must take place anyway, and, second,
the fast IDCT is utilized for a smaller amount of columns. In the case of the QMD, these same
principles can be used to combine the vertical down-conversion with the vertical IDCT. In this
case, one must be aware of the macroblock type (field-DCT or frame-DCT) so that an appropriate
filter can be applied. In contrast to the previous two architectures, ARCH3 assumes that the entire
front-end processing of the decoder is used; it is shown in Figure 17.5. In this way, the adder is
always a full-resolution adder, whereas in ARCH1 and ARCH2, the adder needed to handle all
three layers of resolution. The major benefit of ARCH3 is that it does not require many interfaces
with the existing decoder structure. The memory is really the only place where a new interface
needs to be defined. Essentially, a down-conversion filtering may be applied before storing the data,

FIGURE 17.10 (continued)
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and an up-conversion filtering may be applied, as the data is needed for full-resolution MC. This
final architecture is similar in principle to the embedded compression schemes that were mentioned
in the beginning of this section. The main difference is that the resolution of the data is decreased
rather than compressed. This allows a simpler means of low-resolution display.

17.4.5 SUMMARY OF DOWN-CONVERSION DECODER

A number of integrated solutions for a scalable decoder have been presented. Each decoder is
capable of decoding directly to a lower resolution using a reduced amount of memory in comparison
with the memory required by the high-level decoder. The method of frequency synthesis is suc-
cessful in better preserving the high-frequency data within a macroblock, and the filtering that is
used to perform optimal low-resolution MC is capable of minimizing the drift. It has been shown
that a realizable implementation can be achieved, such that the filters for optimal low-resolution
MC are equivalent to an up-conversion, full-resolution MC, and for down-conversion, where the
up-conversion filters are determined by a Moore–Penrose inverse of the down-conversion. The
amount of logic required by these processes is kept minimal since they are realized in a hierarchical
structure. Since the down-conversion and up-conversion processes are linear, the architecture design
is flexible in that equal quality can be achieved with varying levels of system complexity. The first
architecture that we examined came from the initial assumptions that were made on the low-
resolution decoder, i.e., a down-conversion is performed before the adder. It was noted that a full
IDCT computation was required and that a down-conversion must be performed in two places. As
a result, a second architecture was presented to reduce the IDCT computation, and a third was
presented to minimize the amount of interface with the existing high-level decoder. The major point
here is that the advantages of ARCH2 and ARCH3 cannot be realized by a single architecture. The
reason is that performing a down-conversion in the incoming branch reduces the IDCT computation;
therefore, a down-conversion must be performed after the full-resolution MC as well. In any case,
equal quality is offered by each architecture and the quality is of commercial grade.

17.4.6 DCT-TO-SPATIAL TRANSFORMATION

Our objective in this section is to express the following DCT domain relationship:

(17.18)

as

(17.19)

where Ã and ã are the DCT and spatial output, A and a are the DCT and spatial input, and X and
x are the DCT and spatial filters, respectively. By definition, the M ¥ N DCT transform is defined by

(17.20)

and its inverse, the M ¥ N IDCT by

(17.21)
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where the basis function is given by

(17.22)

and

(17.23)

By substituting Equation 17.22 into the expression for the IDCT yields

(17.24)

Substituting the DCT definition into the above gives the following,

(17.25)

Finally, Equation 17.17 can be formed with

(17.26)

and the transformation is fully defined.

17.4.7 FULL-RESOLUTION MOTION COMPENSATION IN MATRIX FORM

In 2-D, a motion compensated macroblock may have contributions from at most four macroblocks
per motion vector. As noted in Figure 17.11, macroblocks a, b, c, and d include four 8 ¥ 8 blocks
each. These subblocks are raster-scanned so that each macroblock can be represented as a vector.
According to the motion vector, (dx, dy), a local reference, (y1,y2), is computed to indicate where
the origin of the motion compensated block is located; the local reference is determined by

(17.27)

where

(17.28)
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The reference point for this value is the origin of the upper-left-most input macroblock. With
this, the motion-compensated prediction may be expressed as

(17.29)

As an example, Figure 17.11 considers (y1, y2) Œ [0,7], which implies that r = 1. In this case the
motion compensation filters are given by

(17.30)

FIGURE 17.11 Relationship between the input and output blocks of the motion compensation process in 
the FRD. (From Vetro, A. et al., IEEE Trans. Consumer Elec., 44(3), 1998. With permission.)
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In the above equations, the M1, M2, M3, and M4 matrices operate on the relevant 8 ¥ 8 blocks of
a, b, c, and d. Their elements will vary according to the amount of overlap as indicated by (y1, y2)
and the type of prediction. The type of prediction may be frame based or field based and is predicted
with half-pixel accuracy. As a result, the matrices Sa

(r), Sb
(r), Sc

(r), and Sd
(r), are extremely sparse and

may only contain nonzero values of 1, , and . For different values of (y1,y2) the configuration
of the above matrices will change: y1 Œ [0,7] and y2 Œ [8,15] implies r = 2; y1 Œ [8,15] and y2 Œ
[0,7] implies r = 3; y1, y2 Œ [8,15] implies r = 4. The resulting matrices can easily be formed using
the concepts illustrated in Figure 17.11.

17.5 ERROR CONCEALMENT

17.5.1 BACKGROUND

Practical communications channels available for delivery of compressed digital video are charac-
terized by occasional bit error and/or packet loss, although the actual impairment mechanism varies
widely with the specific medium under consideration. The class of decoder error concealment
schemes described here is based on identification and predictive replacement of picture regions
affected by bit error or data loss. It is noted that this approach is based on conversion (via appropriate
error/loss detection mechanisms) of the transmission medium into an erasure channel in which all
error or loss events can be identified in the received bit-stream. In a block-structured compression
algorithm such as MPEG, all channel impairments are manifested as erasures of video units (such
as MPEG macroblocks or slices). Concealment at the decoder is then based on exploiting temporal
and spatial picture redundancy to obtain an estimate of erased picture areas. The efficiency of error
concealment depends on redundancies in pictures and on redundancies in the compressed bitstream
that are not removed by source coding. Block compression algorithms do not remove a considerable
amount of inter-block redundancies, such as structure, texture, and motion information about objects
in the scene.

To be more specific, error resilience for compressed video can be achieved through the addition
of suitable transport and error concealment methods, as outlined in the system block diagram shown
in Figure 17.12.

The key elements of such a robust video delivery system are outlined below:

• The video signal is encoded using an appropriate video compression syntax such as
MPEG. Note that we have restricted consideration primarily to the practical case in which
the video compression process itself is not modified, and robustness is achieved through
additive transport and decoder concealment mechanisms (except for I-frame motion
described in Section 17.4.3). This approach simplifies encoder design, since it separates

FIGURE 17.12 System block diagram of visual communication system.
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media-independent video compression functions from media-dependent transport oper-
ations. On the receiver side, although a similar separation is substantially maintained,
the video decoder must be modified to support an “error token” interface and error
concealment functionality.

• Compressed video data is organized into a systematic data structure with appropriate
headers for identification of the temporal and spatial pixel-domain location of encoded
data (Joseph et al., 1992b). When an erroneous/lost packet is detected, these video units
serve as resynchronization points for resumption of normal decoding, while the headers
provide a means for precisely locating regions of the picture that were not correctly
received. Note that two-tier systems may require additional transport-level support for
high- and low-priority (HP/LP) resynchronization (Siracusa et al., 1993).

• The video bitstream may optionally be segregated into two layers for prioritized transport
(Ghanbari, 1989; Kishno et al., 1989; Karlsson and Vetterli, 1989; Zdepski et al., 1989;
Joseph et al., 1992a,b; Siracusa, 1993) when a high degree of error resilience is required.
Note that separation into high and low priorities may be achieved either by using a
hierarchical (layered) compression algorithm (Ghanbari, 1989; Siracusa, 1993) or by
direct codeword parsing (Zdepski et al., 1989; 1990). Note that both these layering
mechanisms have been accepted for standardization by MPEG-2 (ISO/IEC, 1995).

• Once the temporal and spatial location(s) corresponding to lost or incorrectly received
packets is determined by the decoder, it will execute an error-concealment procedure for
replacement of lost picture areas with subjectively acceptable material estimated from
available picture regions (Harthanck et al., 1986; Jeng and Lee, 1991; Wang and Zhu,
1991). Generally, this error concealment procedure will be applied to all erased blocks
in one-tier (single-priority) transmission systems, while for two-tier (HP/LP) channels
the concealment process may optionally ignore loss of LP data.

• In the following subsections, the technical detail of some commonly used error conceal-
ment algorithms is provided. Specifically, we focus on the recovery of codeword errors
and errors that affect the pixels within a macroblock.

17.5.2 ERROR CONCEALMENT ALGORITHMS

In general, design of specific error-concealment strategies depends on the system design. For
example, if two-layered transmission is used, the receiver should be designed to conceal high-
priority error and low-priority error with different strategies. Moreover, if some redundancy (“steer-
ing information”) could be added to the encoder the concealment could be more efficient. However,
we first assume that the encoder is defined for maximum compression efficiency, and that conceal-
ment is only performed in the receiver. It should be noted that some exemptions exist for this
assumption. These exemptions include the use of I-frame motion vectors, scalability concealment,
and limitation of slice length (to perform acceptable concealment in the pixel domain the limitation
of slice length exists, i.e., the length of slices cannot be longer than one row of picture). Figure 17.13
shows a block diagram of a generic one/two-tier video decoder with error concealment.

Note that the figure shows two stages of decoder concealment in the codeword domain and
pixel domain, respectively. Codeword domain concealment, in which locally generated decodable
codewords (e.g., B-picture motion vectors, end-of-block code, etc.) are inserted into the bitstream,
is convenient for implementation of simple temporal replacement functions (which in principle can
also be performed in the pixel domain). The second stage of pixel domain processing is for temporal
and spatial operations not conveniently done in the codeword domain. Advanced spatial processing
will generally have to be performed in the pixel domain, although limited codeword domain options
can also be identified.
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17.5.2.1 Codeword Domain Error Concealment

The codeword domain concealment receives video data and error tokens from the transport pro-
cessor/VLD. Under normal conditions, no action is taken and the data are passed along to the video
decoder. When an error token is received, damaged data are repaired to the extent possible by
insertion of locally generated codewords and resynchronization codes. An error region ID is also
created to indicate the image region to be concealed by subsequent pixel domain processing. Two
mechanisms have been used in codeword domain error concealment: neglect the effect of lost data
by declaring an end of block (EOB), or replace the lost data with a pseudo-code to handle the
macroblock-types or other VLC codes. If high-level data such as dc or macroblock header is lost,
the codeword domain concealment with pseudo-codes can only provide signal resynchronization
(decodability) and replaces the image scene with a fixed gray level in the error region. Obviously,
further improvement is needed in the video decoder. This task is implemented with the error
concealment in the video decoder. It is desirable to replace erased I- or P-picture regions with a
reasonably accurate estimate to minimize the impact of frame-to-frame propagation.

17.5.2.2 Spatiotemporal Error Concealment

In general, two basic approaches are used for spatial domain error concealment: temporal replace-
ment and spatial interpolation. In temporal replacement, as shown in Figure 17.14, the spatially
corresponding ones in the previously decoded data with motion compensation replace the damaged
blocks in the current frame if motion information is available. This method exploits temporal
redundancy in the reconstructed video signals and provides satisfactory results in areas with small

FIGURE 17.13 MPEG video decoder with error concealment.

FIGURE 17.14 Error concealment uses temporal replenishment with motion compensation.
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motion and for which motion vectors are provided. If motion information is lost, this method will
fail in the moving areas. In the method of spatial interpolation as shown in Figure 17.15, the lost
blocks are interpolated by the data from the adjacent nonerror blocks with maximally smooth
reconstruction criteria or other techniques.

In this method, the correlation between adjacent blocks in the received and reconstructed video
signals is exploited. However, severe blurring will result from this method if data in adjacent blocks
are also lost. In an MPEG decoder, temporal replacement outlined above is based on previously
decoded anchor (I, P) pictures that are available in the frame memory. If motion vectors corre-
sponding to pixels in the erasure region can also be estimated, this temporal replacement operation
can be improved via motion compensation. Also, in the MPEG decoder, groups of video pixels
(blocks, macroblocks, or slices) are separately decoded, so that pixel values and motion information
corresponding to adjacent picture regions are generally available for spatial concealment. However,
estimation from horizontally adjacent blocks may not always be useful since cell loss tends to
affect a number of adjacent blocks (due to the MPEG and ATM data structures); also differential
encoding between horizontally adjacent blocks tends to limit the utility of data obtained from such
neighbors. Therefore, most of the usable spatial information will be located in blocks above or
below the damaged region. That is, vertical processing/concealment is found to be most useful due
to the transmission order of the data.

For I-pictures, the damaged data can be reconstructed by either temporal replacement from the
previously decoded anchor frame or by spatial interpolation from good neighbors. These two
methods will be discussed later. For P- and B-pictures, the main strategy to conceal the lost data
is to replace the region with pixels from the corresponding (and possibly motion-compensated)
location in the previously decoded anchor. In this replacement the motion vectors play a very
important role. In other words, if “good” estimates of motion information can be obtained, its use
may be the least noticeable correction. Since DPCM coding for motion vectors only exploited the
correlations between the horizontally neighboring macroblocks, the redundancy between the vertical
neighborhood still exists after encoding. Therefore, the lost motion information can be estimated
from the vertical neighbors. In the following, three algorithms that have been developed for error
concealment in the video decoder are described.

Algorithm 1: Spatial interpolation of missing I-picture data and temporal replacement for P-
and B-pictures with motion compensation (Sun et al., 1992a):

For I-pictures, dc values of damaged block are replaced by the interpolation from the closest
top and bottom good neighbors; the ac coefficients of those blocks are synthesized from
the dc values of the surrounding neighboring blocks.

For P-pictures, the previously decoded anchor frames with motion compensation replace the
lost blocks. The lost motion vectors are estimated by interpolation of the ones from the

FIGURE 17.15 Error concealment uses spatial interpolation with the data from good neighbors. (From Sun, 
H. and Kwok, W. IEEE Trans. Image Proc., 4(4), 470–477, 1995. With permission.)
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top and bottom macroblocks. If motion vectors in both top and bottom macroblocks are
not available, zero motion vectors are used. The same strategy is used for B-pictures; the
only difference is that the closest anchor frame is used. In other words, the damaged part
of the B-picture could be replaced by either the forward or backward anchor frame,
depending on its temporal position.

Algorithm 2: Temporal replacement of missing I-picture data and temporal replacement for
P- and B-pictures with top motion compensation:

For I-pictures, the damaged blocks are replaced with the colocated ones in the previously
decoded anchor frame.

For P- and B-pictures, the closest previously decoded anchor frame replaces the damaged
part with motion compensation as in the Algorithm 1. The only difference is that the
motion vectors are estimated only from the closest top macroblock instead of interpolation
of top and bottom motion vectors. This makes the implementation of this scheme much
easier. If these motion vectors are not available, then zero motion vectors are used.

In the above two algorithms, the damaged blocks in an I-picture (anchor frame) are concealed
by two methods: temporal replacement and spatial interpolation. Temporal replacement is able to
provide high-resolution image data to substitute for lost data; however, in motion areas, a big
difference might exist between the current intracoded frame and the previously decoded frame. In
this case, temporal replacement will produce large shearing distortion unless some motion-based
processing can be applied at the decoder. However, this type of processing is not generally available
since it is a computationally demanding task to compute motion trajectories locally at the decoder.
In contrast, the spatial interpolation approach synthesizes lost data from the adjacent blocks in the
same frame. Therefore, the intraframe redundancy between blocks is exploited, while the potential
problem of severe blurring due to insufficient high-order ac coefficients for active areas. To alleviate
this problem, an adaptive concealment strategy can be used as a compromise; this is described in
Algorithm 3.

Algorithm 3: Adaptive spatiotemporal replacement of missing I-picture data and temporal
replacement with motion compensation for P- and B-pictures:

For I-pictures, the damaged blocks are concealed with temporal replacement or spatial
interpolation according to the decision made by the top and bottom macroblocks, which
is shown in Figure 17.16. The decision of which concealment method to use will be based
on the more cheaply obtained measures of image activity from the neighboring top and
bottom macroblocks. One candidate for the decision processor is to make the decision
based on prediction error statistics measured in the neighborhood. The decision region is
shown in Figure 17.16, where

(17.31)

and x is the neighboring good macroblock data, x̂ is the data of the corresponding mac-
roblock in the previously decoded frame at the colocated position, and µ is the average
value of the neighboring good macroblock data in the current frame. One can appreciate
that VAR is indicative of the local motion and VAROR of the local spatial detail. If VAR >
VAROR and VAR > T, where T is a preset threshold value which is set to 5 in the
experiments, the concealment method is spatial interpolation; if VAR < VAROR or VAR <
T, the concealment method is temporal replacement.

VAR

VAROR

= -( )[ ]
= [ ] - m

E x x

E x

ˆ ,

,

2

2 2



© 2000 by CRC Press LLC

It should be noted that the concealment for luminance is performed on a block basis instead
of macroblock basis, while the chrominance is still on the macroblock basis. The detailed
decisions for the luminance blocks are described as follows:

• If both top and bottom are temporally replaced, then four blocks (0, 1, 2, and 3) are
replaced by the colocated ones (colocated means no motion compensation) in the pre-
viously decoded frame.

• If top is temporally replaced and bottom is spatially interpolated, then blocks 0 and 1
are replaced by the colocated ones in the previously decoded anchor frame and blocks
2 and 3 are interpolated from the block boundaries.

• If top is spatially interpolated and bottom is temporally replaced, then blocks 0 and 1
are interpolated from the boundaries, and blocks 2 and 3 are replaced by the colocated
ones in the previously decoded anchor frame.

• If both top and bottom are not temporally replaced, all four blocks are spatially inter-
polated.

In spatial interpolation, a maximal smoothing technique with boundary conditions under
certain smoothness measures is used. The spatial interpolation process is carried out with
two steps: the mean value of the damaged block is first bilinearly interpolated with ones
from the neighboring blocks; then spatial interpolation for each pixel is performed with
a Laplacian operator. Minimizing the Laplacian on the boundary pixels using the iterative
process (Wang and Zhu, 1991) enforces the process of maximum smoothness.

For P- and B-pictures a similar concealment method is used as in Algorithm 2 except motion
vectors from top and bottom neighboring macroblocks are used for top two blocks and
bottom two blocks, respectively.

A schematic block diagram for implementation of adaptive error concealment for intracoded
frames is given in Figure 17.17. Corrupted macroblocks are first indicated by error tokens obtained
via the transport interface. Then, a decision regarding which concealment method (temporal replace-
ment or spatial interpolation) should be used is based on easily obtained measures of image activity

FIGURE 17.16 Adaptive error concealment strategy. (From Sun, H. and Kwok, W., IEEE Trans. Image 
Proc., 4(4), 470–477, 1995. With permission.)
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from the neighboring top and bottom macroblocks. The corrupted macroblocks are first classified
into two classes according to the local activities. If local motion is smaller than spatial detail, the
corrupted macroblocks are defined as the first class and will be concealed by temporal replacement;
when local motion is greater than local spatial detail, the corrupted macroblocks are defined as the
second class and will be concealed by spatial interpolation. The overall concealment procedure
consists of two stages. First, temporal replacement is applied to all corrupted macroblocks of the
first class throughout the whole frame. After the temporal replacement stage, the remaining uncon-
cealed damaged macroblocks of the second class are more likely to be surrounded by valid image
macroblocks. A stage of spatial interpolation is then performed on them. This will now result in
less blurring, or the blurring will be limited to smaller areas. Therefore, a good compromise between
shearing (discontinuity or shift of edge or line) and blurring can be obtained.

17.5.3 ALGORITHM ENHANCEMENTS

As discussed above, I-picture errors, which are imperfectly concealed, will tend to propagate
through all frames in the group of pictures (GOP). Therefore, it is desirable to develop enhancements
for the basic spatiotemporal error concealment technique to improve further the accuracy with
which missing I-picture pixels are replaced. Three new algorithms have been developed for this
purpose. The first is an extension of the spatial restoration technique outlined earlier, and is based
on processing of edge information in a large local neighborhood to obtain better restoration of the
missing data. The second and third are variations which involve encoder modifications aimed at
improved error concealment performance. Specifically, information such as I-picture pseudo-motion
vectors, or low-resolution data in a hierarchical compression system are added in the encoder. These
redundancies can significantly benefit error concealment in the decoders that must operate under
higher cell loss/error conditions, while having a relatively modest impact on nominal image quality.

17.5.3.1 Directional Interpolation

Improvements in spatial interpolation algorithms (for use with MPEG I-pictures) have been pro-
posed (Kwok and Sun, 1993; Sun and Kwok, 1995). In these studies, additional smoothness criteria
and/or directional filtering are used for estimating the picture area to be replaced. The new algo-
rithms utilize spatially correlated edge information from a large local neighborhood of surrounding
pixels and perform directional or multidirectional interpolation to restore the missing block. The
block diagram illustrating the general principle of the restoration process is shown in Figure 17.18.

Three parts are included in the restoration processing: edge classification, spatial interpolation,
and pattern mixing. The function of the classifier is to select the top one, two, or three directions
that strongly characterize edge orientations in the surrounding neighborhood. Spatial interpolation

FIGURE 17.17 Two-stage error concealment strategy. (From Sun, H. and Kwok, W., IEEE Trans. Image 
Proc., 4(4), 470–477, 1995. With permission.)
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is performed for each of the directions determined by the classifier. For a given direction, a series
of 1-D interpolations are carried out along that direction. All of the missing pixels are interpolated
from a weighted average of good neighborhood pixels. The weights depend inversely on the distance
from the missing pixel to the good neighborhood pixels. The purpose of pattern mixing is to extract
strong characteristic features of two or more images and merge them into one image, which is then
used to replace the corrupted one. Results show that these algorithms are capable of providing
subjectively better edge restoration in missing areas, and may thus be useful for I-picture processing
in high-error-rate scenarios. However, the computational practicality of these edge-filtering tech-
niques needs further investigation for given application scenarios.

17.5.3.2 I-Picture Motion Vectors

Motion information is very useful in concealing losses in P- and B-frames, but is not available for
I-pictures. This limits the concealment algorithm to spatial or direct temporal replacement options
described above, which may not always be successful in moving areas of the picture. If motion
vectors are made available for all MPEG frames (including intracoded ones) as an aid for error
concealment (Sun et al., 1992a), good error concealment performance can be obtained without the
complexity of adaptive spatial processing. Therefore, a syntax extension has been adopted by the
MPEG-2 where motion vectors can be transmitted in an I-picture as the redundancy for error-
concealment purposes (Sun et al., 1992b). The macroblock syntax is unchanged, however, motion
vectors are interpreted in the following way: the decoded forward motion vectors belong to the
macroblock spatially below the current macroblock, and describe how that macroblock can be
replaced from the previous anchor frame in the event that the macroblock cannot be recovered.
Simulation results have shown that subjective picture quality with I-picture motion vectors is
noticeably superior to conventional temporal replacement, and that the overhead for transmitting
the additional motion vectors is less than 0.7% of the total bit rate at a bit rate of about 6 to 7 Mbps.

FIGURE 17.18 The multidirectional edge restoration process. (From Sun, H. and Kwok, W., IEEE Trans. 
Image Proc., 4(4), 470–477, 1995. With permission.)
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17.5.3.3 Spatial Scalable Error Concealment

This approach for error concealment of MPEG video is based on the scalability (or hierarchy)
feature of MPEG-2 (ISO/IEC, 1995). Hierarchical transmission provides more possibilities for error
concealment, when a corresponding two-tier transmission media is available. A block diagram
illustrating the general principle of coding system with spatial scalability and error concealment is
shown in Figure 17.19.

It should be noted that the concept of scalable error concealment is different from the two-tier
concept with data partitioning. Scalable concealment uses the spatial scalability feature in MPEG-2,
while the two-tier case uses the data partitioning feature of MPEG-2, in which the data corresponds
to the same spatial resolution layer but is partitioned to two parts with a breakpoint. In spatial
scalability, the encoder produces two separate bitstreams: one for the low-resolution base layer and
another for the high-resolution enhancement. The high-resolution layer is encoded with an adaptive
choice of temporal prediction from previous anchor frames and compatible spatial prediction
(obtained from the up-sampled low-resolution layer) corresponding to the current temporal refer-
ence. In the decoder, redundancies that exist in the scaling data greatly benefit the error concealment
processing. In a simple experiment with spatially scalable MPEG-2, we consider a scenario in
which losses in the high-resolution MPEG-2 video are concealed with information from the low-
resolution layer. Actually, there are two kinds of information in the lower layer that can be used
to conceal the data loss in the high-resolution layer: up-sampled picture data and scaled motion
information. Therefore, three error concealment approaches are possible:

1. Up-sampled substitution: Lost data are replaced by colocated up-sampled data in the
low-resolution decoded frame. The up-sampled picture is obtained from the low-resolu-
tion picture with proper up-sampling filter.

2. Mixed substitution: Lost macroblocks in I-picture are replaced by colocated up-sampled
macroblocks in the low-resolution decoded frame, while lost macroblocks in P- and
B-picture are temporally replaced by the previously decoded anchor frame with the
motion vectors for the low-resolution layer.

3. Motion vector substitution: The previously decoded anchor frame with the motion vec-
tors replaces lost macroblocks for the low-resolution layer appropriately scaled.

Since motion vectors are not available for I-pictures, obviously, method 3 does not work for
I-pictures (unless I-picture motion vectors, concealment motion vectors, of MPEG-2 are generated

FIGURE 17.19 Block diagram of spatial scalability with error concealment.
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in encoder). Simulation results have shown that, on average, the up-sampled substitution outper-
forms the other two, and mixed substitution also provides acceptable results in the case of video
with smooth motion.

17.5.4 SUMMARY OF ERROR CONCEALMENT

In this section, a general class of error-concealment algorithms for MPEG video has been discussed.
The error-concealment approaches that have been described are practical for current MPEG decoder
implementations, and have been demonstrated to provide significant robustness. Specifically, it has
been shown that the adaptive spatiotemporal algorithm can provide reasonable picture quality at
cell loss ratios (CLR) as high as 10–3 when used in conjunction. These results confirm that
compressed video is far less fragile than originally believed when appropriate transport and con-
cealment techniques are employed. The results can be summarized as in Table 17.4.

Several concealment algorithm extensions based on directional filtering, I-picture pseudo-
motion vectors, and MPEG-2 scalability were also considered and shown to provide performance
gains that may be useful in certain application scenarios. In view of the practical benefits of robust
video delivery, it is recommended that such error resilience functions (along with associated
transport structures) be important for implementation in emerging TV, HDTV, teleconferencing,
and multimedia systems if the cell loss rates on these transmission systems are significant. Partic-
ularly for terrestrial broadcasting and ATM network scenarios, we believe that robust video delivery
based on decoder error concealment is an essential element of a viable system design.

17.6 SUMMARY

In this chapter, several application issues of MPEG-2 are discussed. The most successful application
of MPEG-2 is the U.S. HDTV standard. The other application issues include transcoding with
bitstream scaling, down-conversion decoding, and error concealment. Transcoding is a very inter-
esting topic that converts the bitstreams between different standards. The error concealment is very
useful in the noisy communication channels such as terrestrial television broadcasting. The down-
conversion decoder responds to the market requirement during the DTV transition-period and long-
term need for displaying DTV signals on computer monitors.

TABLE 17.4
Subjective Quality Comparison

Picture Material Items Alg 1 Alg 2 Alg 3 Comments

Still Blurring High None Low Temporal replacement works very well in no-
motion areasShearing None None None

Artifact blocking Medium None Low
Slow motion Blurring High None Low Temporal replacement works well in slow-

motion areasShearing None Low Low
Artifact blocking Medium None Low

Fast motion Blurring High None Medium Temporal replacement causes more shearing; 
spatial interpolation results in blurring; adaptive 
strategy limits blurring in smaller areas

Shearing None High Low
Artifact blocking High Low Medium

Overall The adaptive strategy of steering the temporal replacement and spatial interpolation according to the 
measures of local activity and local motion gives a good compromise between shearing and blurring
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17.7 EXERCISES

17-1. In DTV applications, describe the advantages and disadvantages of interlaced format
and progressive format. Explain why the computer industry favors progressive format
and TV manufacturers like interlaced format.

17-2. Do all DTV formats have square pixel format? Why is square pixel format important
for digital television?

17-3. The bitstream scaling is one kind of transcoding; according to your knowledge, describe
several other kinds of transcoding (such as MPEG-1 to JPEG) and propose a feasible
solution to achieve the transcoding requirements.

17-4. What type of MPEG-2 frames will cause a higher degree of error propagation if errors
occur? What technique of error concealment is allowed by the MPEG-2 syntax? Using
this technique, perform simulations with several images to determine the penalty in the
case of no errors.

17-5. To reduce the drift in a down-conversion decoder, what coding parameters can be chosen
at the encoder? Will these actions affect the coding performance?

17-6. What are the advantages and disadvantages of a down-conversion decoder in the fre-
quency domain and spatial domain?
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MPEG-4 Video Standard: 
Content-Based Video Coding

 

This chapter provides an overview of the ISO MPEG-4 standard. The MPEG-4 work includes
natural video, synthetic video, audio and systems. Both natural and synthetic video have been
combined into a single part of the standard, which is referred to as MPEG-4 visual (ISO/IEC,
1998a). It should be emphasized that neither MPEG-1 nor MPEG-2 considers synthetic video (or
computer graphics) and the MPEG-4 is also the first standard to consider the problem of content-
based coding. Here, we focus on the video parts of the MPEG-4 standard.

 

18.1 INTRODUCTION

 

As we discussed in the previous chapters, MPEG has completed two standards: MPEG-1 that was
mainly targeted for CD-ROM applications up to 1.5 Mbps and MPEG-2 for digital TV and HDTV
applications at bit rates between 2 and 30 Mbps. In July 1993, MPEG started its new project,
MPEG-4, which was targeted at providing technology for multimedia applications. The first working
draft (WD) was completed in November 1996, and the committee draft (CD) of version 1 was
completed in November 1997. The draft international standard (DIS) of MPEG-4 was completed
in November of 1998, and the international standard (IS) of MPEG-4 version 1 was completed in
February of 1999. The goal of the MPEG-4 standard is to provide the core technology that allows
efficient content-based storage, transmission, and manipulation of video, graphics, audio, and other
data within a multimedia environment. As we mentioned before, there exist several video-coding
standards such as MPEG-1/2, H.261, and H.263. Why do we need a new standard for multimedia
applications? In other words, are there any new attractive features of MPEG-4 that the current
standards do not have or cannot provide? The answer is yes. The MPEG-4 has many interesting
features that will be described later in this chapter. Some of these features are focused on improving
coding efficiency; some are used to provide robustness of transmission and interactivity with the
end user. However, among these features the most important one is the content-based coding.
MPEG-4 is the first standard that supports content-based coding of audio visual objects. For content
providers or authors, the MPEG-4 standard can provide greater reusability, flexibility, and man-
ageability of the content that is produced. For network providers, MPEG-4 will offer transparent
information, which can be interpreted and translated into the appropriate native signaling messages
of each network. This can be accomplished with the help of relevant standards bodies that have
the jurisdiction. For end users, MPEG-4 can provide much functionality to make the user terminal
have more capabilities of interaction with the content. To reach these goals, MPEG-4 has the
following important features:

The contents such as audio, video, or data are represented in the form of primitive audio visual
objects (AVOs). These AVOs can be natural scenes or sounds, which are recorded by video camera
or synthetically generated by computers.

The AVOs can be composed together to create compound AVOs or scenes.
The data associated with AVOs can be multiplexed and synchronized so that they can be

transported through network channels with certain quality requirements.
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18.2 MPEG-4 REQUIREMENTS AND FUNCTIONALITIES

 

Since the MPEG-4 standard is mainly targeted at multimedia applications, there are many require-
ments to ensure that several important features and functionalities are offered. These features include
the allowance of interactivity, high compression, universal accessibility, and portability of audio
and video content. From the MPEG-4 video requirement document, the main functionalities can
be summarized by the following three aspects: content-based interactivity, content-based efficient
compression, and universal access.

 

18.2.1 C
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In addition to provisions for efficient coding of conventional video sequences, MPEG-4 video has
the following features of content-based interactivity.

 

18.2.1.1 Content-Based Manipulation and Bitstream Editing

 

The MPEG-4 supports the content-based manipulation and bitstream coding without the need for
transcoding. In MPEG-1 and MPEG-2, there is no syntax and no semantics for supporting true
manipulation and editing in the compressed domain. MPEG-4 provides the syntax and techniques
to support content-based manipulation and bitstream editing. The level of access, editing, and
manipulation can be done at the object level in connection with the features of content-based
scalability.

 

18.2.1.2 Synthetic and Natural Hybrid Coding (SNHC)

 

The MPEG-4 supports combining synthetic scenes or objects with natural scenes or objects. This
is for “compositing” synthetic data with ordinary video, allowing for interactivity. The related
techniques in MPEG-4 for supporting this feature include sprite coding, efficient coding of 2-D
and 3-D surfaces, and wavelet coding for still textures.

 

18.2.1.3 Improved Temporal Random Access

 

The MPEG-4 provides and efficient method to access randomly, within a limited time, and with
the fine resolution parts, e.g., video frames or arbitrarily shaped image objects from an audiovisual
sequence. This includes conventional random access at very low bit rate. This feature is also
important for content-based bitstream manipulation and editing.
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One initial goal of MPEG-4 is to provide a highly efficient coding tool with high compression at
very low bit rates. But this goal has now extended to a large range of bit rates from 10 Kbps to
5 Mbps, which covers QSIF to CCIR601 video formats. Two important items are included in this
requirement.

 

18.2.2.1 Improved Coding Efficiency

 

The MPEG-4 video standard provides subjectively better visual quality at comparable bit rates
compared with the existing or emerging standards, including MPEG-1/2 and H.263. MPEG-4 video
contains many new tools, which optimize the code in different bit rate ranges. Some experimental
results have shown that it outperforms MPEG-2 and H.263 at the low bit rates. Also, the content-
based coding reaches the similar performance of the frame-based coding.
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18.2.2.2 Coding of Multiple Concurrent Data Streams

 

The MPEG-4 provides the capability of coding multiple views of a scene efficiently. For stereo-
scopic video applications, MPEG-4 allows the ability to exploit redundancy in multiple viewing
points of the same scene, permitting joint coding solutions that allow compatibility with normal
video as well as the ones without compatibility constraints.
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The another important feature of the MPEG-4 video is the feature of universal access.

 

18.2.3.1 Robustness in Error-Prone Environments

 

The MPEG-4 video provides strong error robustness capabilities to allow access to applications
over a variety of wireless and wired networks and storage media. Sufficient error robustness is
provided for low-bit-rate applications under severe error conditions (e.g., long error bursts).

 

18.2.3.2 Content-Based Scalability

 

The MPEG-4 video provides the ability to achieve scalability with fine granularity in content,
quality (e.g., spatial and temporal resolution), and complexity. These scalabilities are especially
intended to result in content-based scaling of visual information.

 

18.2.4 S
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From above description of MPEG-4 features, it is obvious that the most important application of
MPEG-4 will be in a multimedia environment. The media that can use the coding tools of MPEG-4
include computer networks, wireless communication networks, and the Internet. Although it can
also be used for satellite, terrestrial broadcasting, and cable TV, these are still the territories of
MPEG-2 video since MPEG-2 already has made such a large impact in the market. A large number
of silicon solutions exist and its technology is more mature compared with the current MPEG-4
standard. From the viewpoint of coding theory, we can say there is no significant breakthrough in
MPEG-4 video compared with MPEG-2 video. Therefore, we cannot expect to have a significant
improvement of coding efficiency when using MPEG-4 video over MPEG-2. Even though MPEG-4
optimizes its performance in a certain range of bit rates, its major strength is that it provides more
functionality than MPEG-2. Recently, MPEG-4 added the necessary tools to support interlaced
material. With this addition, MPEG-4 video does support all functionalities already provided by
MPEG-1 and MPEG-2, including the provision to compress efficiently standard rectangular-sized
video at different levels of input formats, frame rates, and bit rates.

Overall, the incorporation of an object- or content-based coding structure is the feature that
allows MPEG-4 to provide more functionality. It enables MPEG-4 to provide the most elementary
mechanism for interactivity and manipulation with objects of images or video in the compressed
domain without the need for further segmentation or transcoding at the receiver, since the receiver
can receive separate bitstreams for different objects contained in the video. To achieve content-
based coding, the MPEG-4 uses the concept of a video object plane (VOP). It is assumed that each
frame of an input video is first segmented into a set of arbitrarily shaped regions or VOPs. Each
such region could cover a particular image or video object in the scene. Therefore, the input to the
MPEG-4 encoder can be a VOP, and the shape and the location of the VOP can vary from frame
to frame. A sequence of VOPs is referred to as a video object (VO). The different VOs may be
encoded into separate bitstreams. MPEG-4 specifies demultiplexing and composition syntax which
provide the tools for the receiver to decode the separate VO bitstreams and composite them into a
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frame. In this way, the decoders have more flexibility to edit or rearrange the decoded video objects.
The detailed technical issues will be addressed in the following sections.

 

18.3 TECHNICAL DESCRIPTION OF MPEG-4 VIDEO

18.3.1 O

 

VERVIEW

 

 

 

OF

 

 MPEG-4 V

 

IDEO

 

The major feature of MPEG-4 is to provide the technology for object-based compression, which
is capable of separately encoding and decoding video objects. To explain the idea of object-based
coding clearly, we should review the set of video object-related definitions. An image scene may
contain several objects. In the example of Figure 18.1, the scene contains the background and two
objects. The time instant of each video object is referred to as the VOP. The concept of a VO
provides a number of functionalities of MPEG-4, which are either impossible or very difficult in
MPEG-1 or MPEG-2 video coding. Each video object is described by the information of texture,
shape, and motion vectors. The video sequence can be encoded in a way that will allow the separate
decoding and reconstruction of the objects and allow the editing and manipulation of the original
scene by simple operation on the compressed bitstream domain. The feature of object-based coding
is also able to support functionality such as warping of synthetic or natural text, textures, image,
and video overlays on reconstructed video objects.

Since MPEG-4 aims at providing coding tools for multimedia environments, these tools not
only allow one to compress natural video objects efficiently, but also to compress synthetic objects,
which are a subset of the larger class of computer graphics. The tools of MPEG-4 video includes
the following:

 

•

 

Motion estimation and compensation

 

•

 

Texture coding

 

•

 

Shape coding

 

•

 

Sprite coding

 

•

 

Interlaced video coding

 

•

 

Wavelet-based texture coding
• Generalized temporal and spatial as well as hybrid scalability
• Error resilience.

The technical details of these tools will be explained in the following sections.

 

FIGURE 18.1

 

Video object definition and format: (a) video object, (b) VOPs.
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For object-based coding, the coding task includes two parts: texture coding and shape coding. The
current MPEG-4 video texture coding is still based on the combination of motion-compensated pre-
diction and transform coding. Motion-compensated predictive coding is a well-known approach for
video coding. Motion compensation is used to remove interframe redundancy, and transform coding
is used to remove intraframe redundancy, as in the MPEG-2 video-coding scheme. However, there are
lots of modifications and technical details in MPEG-4 for coding a very wide range of bit rates.
Moreover, MPEG-4 coding has been optimized for low-bit-rate applications with a number of new
tools. In other words, MPEG-4 video coding uses the most common coding technologies, such as
motion compensation and transform coding, but at the same time, it modifies some traditional methods
such as advanced motion compensation and also creates some new features, such as sprite coding.

The basic technique to perform motion-compensated predictive coding for coding a video
sequence is motion estimation (ME). The basic ME method used in the MPEG-4 video coding is
still the block-matching technique. The basic principle of block matching for motion estimation is
to find the best-matched block in the previous frame for every block in the current frame. The
displacement of the best-matched block relative to the current block is referred to as the motion
vector (MV). Positive values for both motion vector components indicate that the best-matched
block is on the bottom right of the current block. The motion-compensated prediction difference
block is formed by subtracting the pixel values of the best-matched block from the current block,
pixel by pixel. The difference block is then coded by a texture-coding method. In MPEG-4 video
coding, the basic technique of texture coding is a discrete cosine transformation (DCT). The coded
motion vector information and difference block information is contained in the compressed bit-
stream, which is transmitted to the decoder. The major issues in the motion estimation and com-
pensation are the same as in the MPEG-1 and MPEG-2 which include the matching criterion, the
size of search window (searching range), the size of matching block, the accuracy of motion vectors
(one pixel or half-pixel), and inter/intramode decision. We are not going to repeat these topics and
will focus on the new features in the MPEG-4 video coding. The feature of the advanced motion
prediction is a new tool of MPEG-4 video. This feature includes two aspects: adaptive selection
of 16 
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 16 block or four 8 
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 8 blocks to match the current 16 
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 16 block and overlapped motion
compensation for luminance block.

 

18.3.2.1 Adaptive Selection of 16 
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The purpose of the adaptive selection of the matching block size is to enhance coding efficiency
further. The coding performance may be improved at low bit rate since the bits for coding prediction
difference could be greatly reduced at the limited extra cost for increasing motion vectors. Of
course, if the cost of coding motion vectors is too high, this method will not work. The decision
in the encoder should be very careful. For explaining the procedure of how to make decisions, we
define {
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 – 1} to be the pixels in the search window in the previous frame. The sum of absolute difference
(SAD) is calculated as

(18.1)
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Step 3: If

then choose 8 
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 8 prediction; otherwise, choose 16 
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 16 prediction.

If the 8 

 

¥

 

 8 prediction is chosen, there are four motion vectors for the four 8 

 

¥

 

 8 luminance
blocks that will be transmitted. The motion vector for the two chrominance blocks is then obtained
by taking an average of these four motion vectors and dividing the average value by a factor of
two. Since each motion vector for the 8 

 

¥

 

 8 luminance block has half-pixel accuracy, the motion
vector for the chrominance block may have a sixteenth pixel accuracy.

 

18.3.2.2 Overlapped Motion Compensation

 

This kind of motion compensation is always used for the case of four 8 

 

¥

 

 8 blocks. The case of
one motion vector for a 16 
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 16 block can be considered as having four identical 8 
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 8 motion
vectors, each for an 8 
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 8 block. Each pixel in an 8 
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 8 of the best-matched luminance block is a
weighted sum of three prediction values specified in the following equation:

(18.2)

where division is with round-off. The weighting matrices are specified as:
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) is the motion vector of the block either to the left (for i = 0,1,2,3) or right
(for i = 4,5,6,7) of the current block. The overlapped motion compensation can reduce the prediction
noise at a certain level.

18.3.3 TEXTURE CODING

Texture coding is used to code the intra-VOPs and the prediction residual data after motion
compensation. The algorithm for video texture coding is based on the conventional 8 ¥ 8 DCT with
motion compensation. DCT is performed for each luminance and chrominance block, where the
motion compensation is performed only on the luminance blocks. This algorithm is similar to those
in H.263 and MPEG-1 as well as MPEG-2. However, MPEG-4 video texture coding has to deal
with the requirement of object-based coding, which is not included in the other video-coding
standards. In the following we will focus on the new features of the MPEG-4 video coding. These
new features include the intra-DC and AC prediction for I-VOP and P-VOP, the algorithm of motion
estimation and compensation for arbitrary shape VOP, and the strategy of arbitrary shape texture
coding. The definitions of I-VOP, P-VOP, and B-VOP are similar to the I-picture, P-picture, and
B-picture in Chapter 16 for MPEG-1 and MPEG-2.

18.3.3.1 Intra-DC and AC Prediction

In the intramode coding, the predictive coding is not only applied on the DC coefficients but also
the AC coefficients to increase the coding efficiency. The adaptive DC prediction involves the
selection of the quantized DC (QDC) value of the immediately left block or the immediately above
block. The selection criterion is based on comparison of the horizontal and vertical DC gradients
around the block to be coded. Figure 18.2 shows the three surrounding blocks “A,” “B,” and “C”
to the current block “X” whose QDC is to be coded where block “A”, “B,” and “C” are the
immediately left, immediately left and above, and immediately above block to the “X,” respectively.
The QDC value of block “X,” QDCX, is predicted by either the QDC value of block “A,” QDCA,

FIGURE 18.2 Previous neighboring blocks used in DC prediction. (From ISO/IEC 14496-2 Video Verifi-
cation Model V.12, N2552, Dec. 1998. With permission.)

q i j p i MV j MV

r i j p i MV j MV

s i j p i MV j MV

x y

x y

x y

, , ,

, , ,

, , ,

( ) = + +( )
( ) = + +( )
( ) = + +( )

0 0

1 1

2 2



© 2000 by CRC Press LLC

or the QDC value of block “C,” QDCC, based on the comparison of horizontal and vertical gradients
as follows:

(18.4)

The differential DC is then obtained by subtracting the DC prediction, QDCP, from QDCX. If any
of block “A”, “B,” or “C” are outside of the VOP boundary, or they do not belong to an intracoded
block, their QDC value are assumed to take a value of 128 (if the pixel is quantized to 8 bits) for
computing the prediction. The DC prediction is performed similarly for the luminance and each
or the two chrominance blocks.

For AC coefficient prediction, either coefficients from the first row or the first column of a
previous coded block are used to predict the cosited (same position in the block) coefficients in
the current block. On a block basis, the same rule for selecting the best predictive direction (vertical
or horizontal direction) for DC coefficients is also used for the AC coefficient prediction. A
difference between DC prediction and AC prediction is the issue of quantization scale. All DC
values are quantized to the 8 bits for all blocks. However, the AC coefficients may be quantized
by the different quantization scales for the different blocks. To compensate for differences in the
quantization of the blocks used for prediction, scaling of prediction coefficients becomes necessary.
The prediction is scaled by the ratio of the current quantization step size and the quantization step
size of the block used for prediction. In the cases when AC coefficient prediction results in a larger
range of prediction errors as compared with the original signal, it is desirable to disable the AC
prediction. The decision of AC prediction switched on or off is performed on a macroblock basis
instead of a block basis to avoid excessive overhead. The decision for switching on or off AC
prediction is based on a comparison of the sum of the absolute values of all AC coefficients to be
predicted in a macroblock and that of their predicted differences. It should be noted that the same
DC and AC prediction algorithm is used for the intrablocks in the intercoded VOP. If any blocks
used for prediction are not intrablocks, the QDC and QAC values used for prediction are set to
128 and 0 for DC and AC prediction, respectively.

18.3.3.2 Motion Estimation/Compensation of Arbitrarily Shaped VOP

In previous sections we discussed the general issues of motion estimation (ME) and motion
compensation (MC). Here we are going to discuss the ME and MC for coding the texture in the
arbitrarily shaped VOP. In an arbitrarily shaped VOP, the shape information is given by either binary
shape information or alpha components of a gray-level shape information. If the shape information
is available to both encoder and decoder, three important modifications have to be considered for
the arbitrarily shaped VOP. The first is for the blocks, which are located in the border of VOP. For
these boundary blocks, the block-matching criterion should be modified. Second, a special padding
technique is required for the reference VOP. Finally, since the VOPs have arbitrary shapes rather
than rectangular shapes, and the shapes change from time to time, an agreement on a coordinate
system is necessary to ensure the consistency of motion compensation. At the MPEG-4 video, the
absolute frame coordinate system is used for referencing all of the VOPs. At each particular time
instance, a bounding rectangle that includes the shape of that VOP is defined. The position of upper-
left corner in the absolute coordinate in the VOP spatial reference is transmitted to the decoder.
Thus, the motion vector for a particular block inside a VOP is referred to as the displacement of
the block in absolute coordinates.

Actually, the first and second modifications are related since the padding of boundary blocks
will affect the matching of motion estimation. The purpose of padding aims at more accurate block
matching. In the current algorithm, the repetitive padding is applied to the reference VOP for
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performing motion estimation and compensation. The repetitive padding process is performed as
the following steps:

Define any pixel outside the object boundary as a zero pixel.
Scan each horizontal line of a block (one 16 ¥ 16 for luminance and two 8 ¥ 8 for chromi-

nance). Each scan line is possibly composed of two kinds of line segments: zero segments
and nonzero segment. It is obvious that our task is to pad zero segments. There are two
kinds of zero segments: (1) between an end point of the scan line and the end point of a
nonzero segment, and (2) between the end points of two different nonzero segments. In
the first case, all zero pixels are replaced by the pixel value of the end pixel of nonzero
segment; for the second kind of zero segment, all zero pixels take the averaged value of
the two end pixels of the nonzero segments.

Scan each vertical line of the block and perform the identical procedure as described for the
horizontal line.

If a zero pixel is located at the intersection of horizontal and vertical scan lines, this zero
pixel takes the average of two possible values.

For the rest of zero pixels, find the closest nonzero pixel on the same horizontal scan line
and the same vertical scan line (if there is a tie, the nonzero pixel on the left or the top
of the current pixel is selected). Replace the zero pixel by the average of these two nonzero
pixels.

For a fast-moving VOP, padding is further extended to the blocks outside the VOP but imme-
diately next to the boundary blocks. These blocks are padded by replacing the pixel values of
adjacent boundary blocks. This extended padding is performed in both horizontal and vertical
directions. Since block matching is replaced by polygon matching for the boundary blocks of the
current VOP, the SAD values are calculated by the modified formula:

(18.5)

where C = NB /2 + 1 and NB is the number of pixels inside the VOP and in this block and a(i, j) is
the alpha component specifying the shape information, and it is not equal to zero here.

18.3.3.3 Texture Coding of Arbitrarily Shaped VOP

During encoding the VOP is represented by a bounding rectangle that is formed to contain the
video object completely but with minimum number of macroblocks in it, as shown in Figure 18.3.
The detailed procedure of VOP rectangle formation is given in MPEG-4 video VM (ISO/IEC,
1998b).

There are three types of macroblocks in the VOP with arbitrary shape: the macroblocks that
are completely located inside of the VOP, the macroblocks that are located along the boundary of
the VOP, and the macroblocks outside of the boundary. For the first kind of macroblock, there is
no need for any particular modified technique to code them and just use of normal DCT with
entropy coding of quantized DCT coefficients such as coding algorithm in H.263 is sufficient. The
second kind of macroblocks, which are located along the boundary, contains two kinds of 8 ¥ 8
blocks: the blocks lie along the boundary of VOP and the blocks do not belong to the arbitrary
shape but lie inside the rectangular bounding box of the VOP. The second kind of blocks are referred
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to as transparent blocks. For those 8 ¥ 8 blocks that do lie along the boundary of VOP, there are
two different methods that have been proposed: low-pass extrapolation (LPE) padding and shape-
adaptive DCT (SA-DCT). All blocks in the macroblock outside of boundary are also referred to
as transparent blocks. The transparent blocks are skipped and not coded at all.

1. Low-pass extrapolation padding technique: This block-padding technique is applied to
intracoded blocks, which are not located completely within the object boundary. To
perform this padding technique we first assign the mean value of those pixels that are
located in the object boundary (both inside and outside) to each pixel outside the object
boundary. Then an average operation is applied to each pixel p(i, j) outside the object
boundary starting from the upper-left corner of the block and proceeding row by row to
the lower-right corner pixel:

(18.6)

If one or more of the four pixels used for filtering are outside of the block, the corre-
sponding pixels are not considered for the average operation and the factor  is modified
accordingly.

2. SA-DCT: The shape-adaptive DCT is only applied to those 8 ¥ 8 blocks that are located
on the object boundary of an arbitrarily shaped VOP. The idea of the SA-DCT is to apply
1-D DCT transformation vertically and horizontally according to the number of active
pixels in the row and column of the block, respectively. The size of each vertical DCT
is the same as the number of active pixels in each column. After vertical DCT is performed
for all columns with at least one active pixel, the coefficients of the vertical DCTs with
the same frequency index are lined up in a row. The DC coefficients of all vertical DCTs
are lined up in the first row, the first-order vertical DCT coefficients are lined up in the
second row, and so on. After that, horizontal DCT is applied to each row. As the same
as for the vertical DCT, the size of each horizontal DCT is the same as the number of
vertical DCT coefficients lined up in the particular row. The final coefficients of SA-
DCT are concentrated into the upper-left corner of the block. This procedure is shown
in the Figure 18.4.

The final number of the SA-DCT coefficients is identical to the number of active pixels of the
image. Since the shape information is transmitted to the decoder, the decoder can perform the
inverse shape-adapted DCT to reconstruct the pixels. The regular zigzag scan is modified so that
the nonactive coefficient locations are neglected when counting the runs for the run-length coding
of the SA-DCT coefficients. It is obvious that for a block with all 8 ¥ 8 active pixels, the SA-DCT
becomes a regular 8 ¥ 8 DCT and the scanning of the coefficients is identical to the zigzag scan.
All SA-DCT coefficients are quantized and coded in the same way as the regular DCT coefficients

FIGURE 18.3 A VOP is represented by a bounding rectangular box.
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employing the same quantizers and VLC code tables. The SA-DCT is not included in MPEG-4
video version 1, but it is being considered for inclusion into version 2.

18.3.4 SHAPE CODING

Shape information of the arbitrarily shaped objects is very useful not only in the field of image
analysis, computer vision, and graphics, but also in object-based video coding. MPEG-4 video
coding is the first to make an effort to provide a standardized approach to compress the shape
information of objects and contain the compressed results within a video bitstream. In the current
MPEG-4 video coding standard, the video data can be coded on an object basis. The information
in the video signal is decomposed to shape, texture, and motion. This information is then coded
and transmitted within the bitstream. The shape information is provided in binary format or gray
scale format. The binary format of shape information consists of a pixel map, which is generally
the same size as the bounding box of the corresponding VOP. Each pixel takes on one of two
possible values indicating whether it is located within the video object or not. The gray scale format
is similar to the binary format with the additional feature that each pixel can take on a range of
values, i.e., times an alpha value. Alpha typically has a normalized value of 0 to 1. The alpha value
can be used to blend two images on a pixel-by-pixel basis in this way: new pixel = (alpha)(pixel A
color) + (1 – alpha)(pixel B color).

Now let us discuss how to code the shape information. As we mentioned, the shape information
is classified as binary shape or gray scale shape. Both binary and gray scale shapes are referred to
as an alpha plane. The alpha plane defines the transparency of an object. Multilevel alpha maps
are frequently used to blend different images. A binary alpha map defines whether or not a pixel
belongs to an object. The binary alpha planes are encoded by modified content-based arithmetic
encoding (CAE), while the gray scale alpha planes are encoded by motion-compensated DCT
coding, which is similar to texture coding. For binary shape coding, a rectangular box enclosing
the arbitrarily shaped VOP is formed as shown in Figure 18.3. The bounded rectangle box is then
extended in both vertical and horizontal directions on the right-bottom side to the multiple of
16 ¥ 16 blocks. Each 16 ¥ 16 block within the rectangular box is referred to as binary alpha block
(BAB). Each BAB is associated with colocated macroblock. The BAB can be classified as three
types: transparent block, opaque block, and alpha or shape block. The transparent block does not
contain any information about an object. The opaque block is entirely located inside the object.
The alpha or shape block is located in the area of the object boundary; i.e., a part of block is inside
of object and the rest of block is in background. The value of pixels in the transparent region is
zero. For shape coding, the type information will be included in the bitstream and signaled to the
decoder as a macroblock type. But only the alpha blocks need to be processed by the encoder and
decoder. The methods used for each shape format contain several encoding modes. For example,
the binary shape information can be encoded using either an intra- or intermode. Each of these
modes can be further divided into lossy and lossless options. Gray scale shape information also
contains intra- and intermodes; however, only a lossy option is used.

FIGURE 18.4 Illustration of SA-DCT. (From ISO/IEC 14496-2 Video Verification Model V.12, N2552,
Dec. 1998. With permission.)
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18.3.4.1 Binary Shape Coding with CAE Algorithm

As mentioned previously, the CAE is used to code each binary pixel of the BAB. For a P-VOP,
the BAB may be encoded in intra- or intermode. Pixels are coded in scan-line order, i.e., row by
row for both modes. The process for coding a given pixel includes three steps: (1) compute a
context number, (2) index a probability table using the context number, and (3) use the indexed
probability to drive an arithmetic encoder. In intramode, a template of 10 pixels is used to define
the causal context for predicting the shape value of the current pixel as shown in Figure 18.5. For
the pixels in the top and left boundary of the current macroblock, the template of causal context
will contain the pixels of the already transmitted macroblocks on the top and on the left side of
the current macroblock. For the two rightmost columns of the VOP, each undefined pixel such as
C7, C3, and C2, of the context is set to the value of its closest neighbor inside the macroblock, i.e.,
C7 will take the value of C8 and C3 and C2 will take the value of C4.

A 10-bit context is calculated for each pixel, X as

(18.7)

This causal context is used to predict the shape value of the current pixel. For encoding the state
transition, a context-based arithmetic encoder is used. The probability table of the arithmetic encoder
for the 1024 contexts was derived from sequences that are outside of the test set. Two bytes are
allocated to describe the symbol probability for each context; the table size is 2048 bytes. To
increase coding efficiency and rate control, the algorithm allows lossy shape coding. In lossy shape
coding a macroblock can be down-sampled by a factor of two or four resulting in a subblock of
size 8 ¥ 8 pixels or 4 ¥ 4 pixels, respectively. The subblock is then encoded using the same method
as for full-size block. The down-sampling factor is included in the encoded bitstream and then
transmitted to the decoder. The decoder decodes the shape data and then up-samples the decoded
subblock to full macroblock size according to the down-sampling factor. Obviously, it is more
efficient to code shape using a high down-sampling factor, but the coding errors may occur in the
decoded shape after up-sampling. However, in the case of low-bit-rate coding, lossy shape coding
may be necessary since the bit budget may not be enough for lossless shape coding. Depending
on the up-sampling filter, the decoded shape can look somewhat blocky. Several up-sampling filters
were investigated. The best-performing filter in terms of subjective picture quality is an adaptive
nonlinear up-sampling filter. It should be noted that the coding efficiency of shape coding also
depends on the orientation of the shape data. Therefore, the encoder can choose to code the block
as described above or transpose the macroblock prior to arithmetic coding. Of course, the transpose
information has to be signaled to the decoder.

For shape coding in a P-VOP or B-VOP, the intermode may be used to exploit the temporal
redundancy in the shape information with motion compensation. For motion compensation, a 2-D
integer pixel motion vector is estimated using full search for each macroblock in order to minimize

FIGURE 18.5 Template for defining the context of the pixel, X, to be coded in intramode. (From ISO/IEC
14496-2 Video Verification Model V.12, N2552, Dec. 1998. With permission.)
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the prediction error between the previously coded VOP shape and the current VOP shape. The
shape motion vectors are predictively encoded with respect to the shape motion vectors of neigh-
boring macroblocks. If no shape motion vector is available, texture motion vectors are used as
predictors. The template for intermode differs from the one used for intramode. The intermode
template contains 9 pixels among which 5 pixels are located in the previous frame and 4 are the
current neighbors as shown in Figure 18.6.

The intermode template defines a context of 9 pixels. Accordingly, a 9-bit context or 512
contexts, can be computed in a similar way to Equation 18.7:

(18.8)

The probability for one symbol is also described by 2 bytes giving a probability table size of
1024 bytes. The idea of lossy coding can also be applied to the intermode shape coding by down-
sampling the original BABs. For intermode shape coding, the total bits for coding the shape consist
of two parts, one part for coding motion vectors and another for prediction residue. The encoder
may decide that the shape representation achieved by just using motion vectors is sufficient; thus
bits for coding the prediction error can be saved. Actually, there are seven modes to code the shape
information of each macroblock: (1) transparent, (2) opaque, (3) intra, inter (4) with and (5) without
shape motion vectors, and inter (6) with and (7) without shape motion vectors and prediction error
coding. These different options with optional down-sampling and transposition allow for encoder
implementations of different coding efficiency and implementation complexity. Again, this is a
problem of encoder optimization, which does not belong to the standard.

18.3.4.2 Gray Scale Shape Coding

The gray scale shape information is encoded by separately encoding the shape and transparency
information as shown in Figure 18.7. For a transparent object, the shape information is referred to
as the support function and is encoded using the binary shape-coding method. The transparency
or alpha values are treated as the texture of luminance and encoded using padding, motion com-
pensation, and the same 8 ¥ 8 block DCT approach for the texture coding. For an object with
varying alpha maps, shape information is encoded in two steps. The boundary of the object is first
losslessly encoded as a binary shape, and then the actual alpha map is encoded as texture coding.

The binary shape coding allows one to describe objects with constant transparency, while gray
scale shape coding can be used to describe objects with arbitrary transparency, providing for more
flexibility for image composition. One application example is a gray scale alpha shape that consists
of a binary alpha shape with the value around the edges tapered from 255 to 0 to provide for a
smooth composition with the background. The description of each video object layer includes the
information to give instruction for selecting one of six modes for feathering. These six modes

FIGURE 18.6 Template for defining the context of the pixel, X, to be coded in intermode. (From ISO/IEC
14496-2 Video Verification Model, N2552, Dec. 1998. With permission.)
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include (1) no effects, (2) linear feathering, (3) constant alpha, (4) linear feathering and constant
alpha, (5) feathering filter, and (6) feathering filter and constant alpha. The detailed description of
the function of these modes are given in the reference of version 12 (ISO/IEC, 1998b).

18.3.5 SPRITE CODING

As mentioned previously, MPEG-4 video has investigated a number of new tools, which attempt
to improve the coding efficiency at low bit rates compared with MPEG-1/2 video coding. Among
these tools, sprite coding is an efficient technology to reach this goal. A sprite is a specially
composed video object that is visible throughout an entire piece of video sequence. For example,
the sprite generated from a panning sequence contains all the visible pixels of the background
throughout the video sequence. Portions of the background may not be seen in certain frames due
to the occlusion of the foreground objects or the camera motion. This particular example is one of
the static sprites. In other words, a static sprite is a possible still image. Since the sprite contains
all visible background scenes of a segment video sequence where the changes within the background
content are mainly caused by camera parameters, the sprite can be used for direct reconstruction
of the background VOPs or as the prediction of the background VOPs within the video segment.
The sprite-coding technology first efficiently transmits this background to the receiver and then
stores it in a frame at both encoder and decoder. The camera parameters are then transmitted to
the decoder for each frame so that the appropriate part of the background scene can be either used
as the direct reconstruction or as the prediction of the background VOP. Both cases can significantly
save the coding bits and increase the coding efficiency. There are two types of sprites, static sprite
and dynamic sprite, which are being considered as coding tools for MPEG-4 video. A static sprite
is used for a video sequence in which the objects in a scene can be separated into foreground
objects and a static background. A static sprite is a special VOP, which is generated by copying
the background from a video sequence. This copying includes the appropriate warping and cropping.
Therefore, a static sprite is always built off-line. In contrast, a dynamic sprite is dynamically built
during the predictive coding. It can be built either online or off-line. The static sprite has shown
significant coding gain over existing compression technology for certain video sequences. The
dynamic sprite is more complicated in the real-time application due to the difficulty of updating
the sprite during the coding. Therefore, the dynamic sprite has not been adopted by version 1 of
the standard. Additionally, both sprites are not easily applied to the generic scene content. Also,
there is another kind of classification of sprite coding according to the method of sprite generation,
namely, off-line and online sprites. Off-line is always used for static sprite generation. Off-line
sprites are well suited for synthetic objects and objects that mostly undergo rigid motion. Online
sprites are only used for dynamic sprites. Online sprites provide a no-latency solution in the case
of natural sprite objects. Off-line dynamic sprites provide an enhanced predictive coding environ-
ment. The sprite is built with a similar way in both off-line and online methods. In particular, the
same global motion estimation algorithm is exploited. The difference is that the off-line sprite is

FIGURE 18.7 Gray scale shape coding.
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built before starting the encoding process while, in the online sprite case, both the encoder and the
decoder build the same sprite from reconstructed VOPs. This is why the online dynamic sprites
are more complicated in the implementation. The online sprite is not included in version 1, and
will most likely not be considered for version 2 either. In sprite coding, the chrominance components
are processed in the same way as the luminance components, with the properly scaled parameters
according to the video format.

18.3.6 INTERLACED VIDEO CODING

Since June of 1997, MPEG-4 has extended its application to support interlaced video. Interlaced
video consists of two fields per frame, which are referred to as the even field and the odd field.
MPEG-2 has a number of tools, which are used to deal with field structure of video signals. These
tools include frame/field-adaptive DCT coding and frame/field-adaptive motion compensation.
However, the field issue in MPEG-4 has to be considered on a VOP basis instead of the conventional
frame basis. When field-based motion compensation is specified, two field motion vectors and the
corresponding reference fields are used to generate the prediction from each reference VOP. Shape
information has to be considered in the interlaced video for MPEG-4.

18.3.7 WAVELET-BASED TEXTURE CODING

In MPEG-4 there is a texture-coding mode which is used to code the texture or still image such
as in JPEG. The basic technique used in this mode is wavelet-based transform coding. The reason
for adopting wavelet transform instead of DCT for still texture coding is not only its high coding
efficiency, but also because the wavelet can provide excellent scalability, both spatial scalability
and SNR scalability. Since the principle of wavelet-based transform coding for image compression
has been explained in Chapter 8, we just briefly describe the coding procedure of this mode. The
block diagram of the encoder is shown in Figure 18.8.

18.3.7.1 Decomposition of the Texture Information

The texture or still image is first decomposed into bands using a bank of analysis filters. This
decomposition can be applied recursively on the obtained bands to yield a decomposition tree of
subbands. An example of decomposition to depth 2 is shown in Figure 18.9.

FIGURE 18.8 Block diagram of encoder of wavelet-based texture coding, DWT stands for discrete wavelet
transform.

FIGURE 18.9 An example of wavelet decomposition of depth 2.
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18.3.7.2 Quantization of Wavelet Coefficients

After decomposition, the coefficients of the lowest band are coded independently of the other bands.
These coefficients are quantized using a uniform midriser quantizer. The coefficients of high bands
are quantized with a multilevel quantization. The multilevel quantization provides a very flexible
approach to support the correct trade-off between levels and type of scalability, complexity, and
coding efficiency for any application. All quantizers for the higher bands are uniform midrise
quantizers with a dead zone that is twice the quantizer step size. The levels and quantization steps
are determined by the encoder and specified in the bitstream. To achieve scalability, a bi-level
quantization scheme is used for all multiple quantizers. This quantizer is also uniform and midrise
with a dead zone that is twice the quantization step. The coefficients outside of the dead zone are
quantized to 1 bit. The number of quantizers is equal to the maximum number of bit planes in the
wavelet transform representation. In this bi-level quantizer, the maximum number of bit planes
instead of a quantization step size is specified in the bitstream.

18.3.7.3 Coding of Wavelet Coefficients of Low–Low Band and Other Bands

The quantized coefficients at the lowest band are DPCM coded. Each of the current coefficients is
predicted from three other quantized coefficients in its neighborhood in a way shown in Figure 18.10.

The coefficients in high bands are coded with the zerotree algorithm (Shapiro, 1993), which
has been discussed in Chapter 8.

18.3.7.4 Adaptive Arithmetic Coder

The quantized coefficients and the symbols generated by the zerotree are coded using an adaptive
arithmetic coder. In the arithmetic coder three different tables which correspond to the different
statistical models have been utilized. The method used here is very similar to one in Chapter 8.
Further detail can be found in MPEG-4 (ISO/IEC, 1998a).

18.3.8 GENERALIZED SPATIAL AND TEMPORAL SCALABILITY

The scalability framework is referred to as generalized scalability that includes the spatial and the
temporal scalability similar to MPEG-2. The major difference is that MPEG-4 extends the concept
of scalability to be content based. This unique functionality allows MPEG-4 to be able to resolve
objects into different VOPs. By using the multiple VOP structure, different resolution enhancement
can be applied to different portions of a video scene. Therefore, the enhancement layer may only
be applied to a particular object or region of the base layer instead of to the entire base layer. This
is a feature that MPEG-2 does not have.

In spatial scalability, the base layer and the enhancement layer can have different spatial
resolutions. The base-layer VOPs are encoded in the same way as the nonscalable encoding
technique described previously. The VOPs in the enhancement layer are encoded as P-VOPs or
B-VOPs, as shown in Figure 18.11. The current VOP in the enhancement layer can be predicted

FIGURE 18.10 Adaptive DPCM coding of the coefficients in the lowest band.
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from either the up-sampled base layer VOP or the previously decoded VOP at the same layer as
well as both of them. The down-sampling and up-sampling processing in spatial scalability is not
a part of the standard and can be defined by the user.

In temporal scalability, a subsequence of subsampled VOP in the time domain is coded as a base
layer. The remaining VOPs can be coded as enhancement layers. In this way, the frame rate of a
selected object can be enhanced so that it has a smoother motion than other objects. An example of
temporal scalability is illustrated in Figure 18.12. In Figure 18.12, the VOL0 is the entire frame with
both an object and a background, while VOL1 is a particular object in VOL0. VOL0 is encoded with
a low frame rate and VOL1 is the enhancement layer. The high frame rate can be reached for the
particular object by combining the decoded data from both the base layer and the enhancement layer.
Of course, the B-VOP is also used in temporal scalability for coding the enhancement layer, which
is another type of temporal scalability. As in spatial scalability, the enhancement layer can be used
to improve either the entire base layer frame resolution or only a portion of the base layer resolution.

18.3.9 ERROR RESILIENCE

The MPEG-4 visual coding standard provides error robustness and resilience to allow access of
image and video data over a wide range of storage and transmission media. The error resilience
tool development effort is divided into three major areas, which include resynchronization, data
recovery, and error concealment. As with other coding standards, MPEG-4 makes heavy use of
variable-length coding to reach high coding performance. However, if even 1 bit is lost or damaged,
the entire bitstream becomes undecodable due to loss of synchronization. The resynchronization
tools attempt to enable resynchronization between the decoder and the bitstream after a transmission
error or errors have been detected. Generally, the data between the synchronization point prior to
the error and the first point, where synchronization is reestablished, are discarded. The purpose of
resynchronization is to localize effectively the amount of data discarded by the decoder; then the

FIGURE 18.11 Illustration of spatial scalability.

FIGURE 18.12 An example of temporal scalability. (From ISO/IEC 14496-2 Video Verification Model V.12,
N2552, Dec. 1998. With permission.)
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other methods such as error concealment can be used to conceal the damaged areas of a decoded
picture. Currently, the resynchronization approach adopted by MPEG-4 is referred to as a packet
approach. This approach is similar to the group of block (GOB) structure used in H.261 and H.263.
In the GOB structure, the GOB contains a start code, which provides the location information of
the GOB. MPEG-4 adopted a similar approach in which a resynchronization marker is periodically
inserted into the bitstream at the particular macroblock locations. The resynchronization marker is
used to indicate the start of new video packet. This marker is distinguished from all possible VLC
codewords as well as the VOP start code. The packet header information is then provided at the
start of a video packet. The header contains the information necessary to restart the decoding
process. This includes the macroblock number of the first macroblock contained in this packet and
the quantization parameter necessary to decode the first macroblock. The macroblock number
provides the necessary spatial resynchronization while the quantization parameter allows the dif-
ferential decoding process to be resynchronized. It should be noted that when error resilience is
used within MPEG-4, some of the compression efficiency tools need to be modified. For example,
all predictively encoded information must be contained within a video packet to avoid error
propagation. In conjunction with the video packet approach to resynchronization, MPEG-4 has also
adopted a fixed-interval synchronization method which requires that VOP start-codes and resyn-
chronization markers appear only at legal fixed-interval locations in the bitstream. This will help
to avoid the problems associated with start-code emulation. In this case, when fixed-interval
synchronization is utilized, the decoder is only required to search for a VOP start-code at the
beginning of each fixed interval. The fixed-interval synchronization method extends this approach
to any predetermined interval.

After resynchronization is reestablished, the major problem is recovering lost data. A new tool
called reversible variable-length codes (RVLC) is developed for the purpose of data recovery. In
this approach, the variable-length codes are designed such that the codes can be read both in the
forward and the reverse direction. An example of such a code includes codewords like 111, 101,
010. All these codewords can be read reversibly. However, it is obvious that this approach will
reduce the coding efficiency that is achieved by the entropy coder. Therefore, this approach is used
only in the cases where error resilience is important.

Error concealment is an important component of any error-robust video coding. The error-
concealment strategy is highly dependent on the performance of the resynchronization technique.
Basically, if the resynchronization method can efficiently localize the damaged data area, the error
concealment strategy becomes much more tractable. Error concealment is actually a decoder issue
if there is no additional information provided by the encoder. There are many approaches to error
concealment, which are referred to in Chapter 17.

18.4 MPEG-4 VISUAL BITSTREAM SYNTAX AND SEMANTICS

The common feature of MPEG-4 and MPEG-1/MPEG-2 is the layered structure of the bitstream.
MPEG-4 defines a syntactic description language to describe the exact binary syntax of an audio-
visual object bitstream, as well as that of the scene description information. This provides a
consistent and uniform way to describe the syntax in a very precise form, while at the same time
simplifying bitstream compliance testing. The visual syntax hierarchy includes the following layers:

• Video session (VS)
• Video object (VO)
• Video object layer (VOL) or texture object layer (TOL)
• Group of video object plane (GOV)
• Video object plane (VOP)

A typical video syntax hierarchy is shown in Figure 18.13.
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The video session (VS) is the highest syntactic structure of the coded video bitstream. A VS
is a collection of one or more VOs. A VO can consist of one or more layers. Since MPEG-4 is
extended from video coding to visual coding, the type of visual objects not only includes video
objects, but also still texture objects, mesh objects, and face objects. These layers can be either
video or texture. Still texture coding is designed for high-visual-quality applications in transmission
and rendering of texture. The still coding algorithm supports a scalable representation of image or
synthetic scene data such as luminance, color, and shape. This is very useful for progressive
transmission of images or 2-D/3-D synthetic scenes. The images can be gradually built up in the
terminal monitor as they are received. The bitstreams for coded mesh objects are nonscalable; they
define the structure and motion of a 2-D mesh. The texture of the mesh has to be coded as a separate
video object. The bitstreams for face objects are also nonscalable; these bitstreams contain the face
animation parameters. VOs are coded with different types of scalability. The base layer can be
decoded independently and the enhancement layers can only be decoded with the base layer. In
the special case of a single rectangular VO, all of the MPEG-4 layers can be related to MPEG-2
layers. That is, VS is the same as VO since in this case a single VO is a video sequence, VOL or
TOL is the same as the sequence scalable extension, GOV is like the GOP, and VOP is a video
frame. VO sequence may contain one or more VOs coded concurrently. The VO header information
contains the start code followed by profile and level identification and a VO identification to indicate
the type of object, which may be a VO, a still texture object, a mesh object, or a face object. The
VO may contain one or more VOLs. In the VOL, the VO can be coded with spatial or temporal
scalability. Also, the VO may be encoded in several layers from coarse to fine resolution. Depending
on the application need, the decoder can choose the number of layers to decode. A VO at a specified
time is called a video object plane (VOP). Thus, a VO contains many VOPs. A scene may contain
many VOs. Each VO can be encoded to an independent bitstream. A collection of VOPs in a VOL
is called a group of VOPs (GOV). This concept corresponds to the group of pictures (GOP) in
MPEG-1 and MPEG-2. A VOP is then coded by shape coding and texture coding, which is specified
at lower layers of syntax, such as the macroblock and block layer. The VOP or higher-than-VOP
layer always commences with a start code and is followed by the data of lower layers, which is
similar to the MPEG-1 and MPEG-2 syntax.

18.5 MPEG-4 VIDEO VERIFICATION MODEL

Since all video-coding standards define only the bitstream syntax and decoding process, the use of
test models to verify and optimize the algorithms is needed during the development process. For
this purpose a common platform with a precise definition of encoding and decoding algorithms
has to be provided. The test model (TM) of MPEG-2 took the above-mentioned role. The TM of
MPEG-2 was updated continually from version 1.0 to version 5.0, until the MPEG-2 Video IS
(International Standard) was completed. MPEG-4 video uses a similar tool during the development

FIGURE 18.13 MPEG-4 video syntax hierarchy.
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process; this tool in MPEG-4 is called the Verification Model (VM). So far, the MPEG-4 video
VM has gradually evolved from version 1.0 to version 12.0 and in the process has addressed an
increasing number of desired functionalities such as content-based scalability, error resilience,
coding efficiency, and so on. The material presented in this section is different from Section 18.3.
Section 18.3 presented the technologies adopted or that will be adopted by MPEG-4, while this
section provides an example of how to use the standard, for example, how to encode or generate
the MPEG-4-compliant bitstream. Of course, the decoder is also included in the VM.

18.5.1 VOP-BASED ENCODING AND DECODING PROCESS

Since the most important feature of MPEG-4 is an object-based coding method, the input video
sequence is first decomposed into separate VOs, these VOs are then encoded into separate bitstreams
so that the user can access and manipulate (cut, paste, etc.) the video sequence in the bitstream
domain. Instances of VOs in a given time are called a video object plane (VOP). The bitstream
also contains the composition information to indicate where and when each VOP is to be displayed.
At the decoder, the user may be allowed to change the composition of the scene displayed by
interactively changing the composition information.

18.5.2 VIDEO ENCODER

For object-based coding, the encoder consists mainly of two parts: the shape coding and the texture
coding of the input VOP. The texture coding is based on the DCT coding with traditional motion-
compensated predictive coding. The VOP is represented by means of a bounding rectangular as
described previously. The phase between luminance and chrominance pixels of the bounding
rectangular has to be correctly set to the 4:2:0 format as in MPEG-1/2. The block diagram of
encoding structure is shown in Figure 18.14.

The core technologies used in VOP coding of MPEG-4 have been described previously. Here
we are going to discuss several encoding issues. Although these issues are essential to the perfor-
mance and application, they are not dependent on the syntax. As a result, they are not included as
normative parts of the standard, but are included as informative annexes.

FIGURE 18.14 Block diagram of MPEG-4 video encoder structure.
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18.5.2.1 Video Segmentation

Object-based coding is the most important feature of MPEG-4. Therefore, the tool for object
boundary detection or segmentation is a key issue in efficiently performing the object-based coding
scheme. But the method of decomposing a natural scene to several separate objects is not specified
by the standard since it is a preprocessing issue. There are currently two kinds of algorithms for
segmentation of video objects. One kind of algorithm is an automatic segmentation algorithm. In
the case of real-time applications, the segmentation must be done automatically. Real-time automatic
segmentation algorithms are currently not mature. An automatic segmentation algorithm has been
proposed in MPEG96/M960 (Colonnese and Russo, 1996). This algorithm separates regions cor-
responding to moving objects from regions belonging to a static background for each frame of a
video sequence. The algorithm is based on a motion analysis for each frame. The motion analysis
is performed along several frames to track each pixel of the current frame and to detect whether
the pixel belongs to the moving objects.

Another kind of segmentation algorithms is one that is user assisted or “semiautomatic.” In
non-real-time applications, the semiautomatic segmentation may be used effectively and give better
results than the automatic segmentation. In the core experiments of MPEG-4, a semiautomatic
segmentation algorithm was proposed in MPEG97/M3147 (Choi et al., 1997). The block diagram
of the semiautomatic segmentation is shown in Figure 18.15.

This technique consists of two steps. First, the intraframe segmentation is applied to the first
frame, which is considered as a frame that either contains newly appeared objects or a reset frame.
Then the interframe segmentation is applied to the consecutive frames. For intraframe, the segmen-
tation is processed by a user manually or semiautomatically. The user uses a graphical user interface
(GUI) to draw the boundaries of objects of interest. The user can mask the entire objects all the
way around objects using a mouse with a predefined thickness of the line (number of pixels). A
marked swath is then achieved by the mouse, and this marked area is assumed to contain the object
boundaries. A boundary-detection algorithm is applied to the marked area to create the real object
boundaries. For interframe segmentation, an object boundary-tracking algorithm is proposed to
obtain the object boundaries of the consecutive frames. At first, the boundary of the previous object
is extracted and the motion estimation is performed on the object boundary. The object boundary

FIGURE 18.15 Block diagram of a user-assisted VO segmentation method.
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of the current frame is initially obtained by motion compensation and then refined by using temporal
information and spatial information all the way around the object boundary. Finally, the refined
object boundary can be obtained. As mentioned previously, the segmentation technique is an
important tool for object-based processing in MPEG-4, but it is not defined by the standard. The
method described here is just an example provided by the core experiments of MPEG-4. There are
many other algorithms under investigation, such as the circular Viterbi algorithm described by Lin
et al. (1998).

18.5.2.2 Intra/Intermode Decision

For inter-VOP coding, a macroblock can be coded in one of four modes. These four modes include
direct coding mode, forward coding, backward coding, and bidirectional coding. In the encoder
we have to decide which mode is the best. The mode decision is an important part of encoding
optimization. An example of the selection of an optimized mode decision has been given in
Chapter 17 for an MPEG-2 encoder. The same technique can be extended to an MPEG-4 encoder.
The basic idea of mode decision is to choose the coding mode that results in the best operation
point on the rate–distortion curve. For obtaining the best operation point on the rate–distortion
curve, the encoder has to compare all possible coding modes and choose the best one. This is a
very complicated procedure. In the MPEG-2 case, we used a quadratic model to unify the measures
of bits used to code prediction residues and the motion vectors. A simplified mode but near-
optimized mode decision method has resulted. Here, the VM.12 proposes the following steps to
make coding mode decisions. First, the motion-compensated prediction error is calculated by each
of the four modes. Next, the SAD of each of the motion-compensated prediction macroblocks is
calculated and compared with the variance of the macroblock to be coded. Then, a mode of
generating the smallest SAD (for direct mode, a bias is applied) is selected. For the interlaced
video, more coding modes are involved. This method of mode decision is simple, but it is not
optimal since the cost for coding motion vectors is not considered. Consequently, the mode may
not lie on the best operation point on the distortion curve. But again, this is an encoding issue; the
encoding designers have the freedom to use their own algorithm. The VM just provides an example
of an encoder that can generate the compliant bitstream.

18.5.2.3 Off-Line Sprite Generation

The sprite is a useful tool in MPEG-4 for coding a certain kind of video sequences at very low bit
rates. The method of generating a sprite for a video sequence is an encoder issue. The VM gives
an example of off-line sprite generation. For a natural VO, a sprite is referred to as a representative
view collected from a video sequence. Before decoding, the sprite is transmitted to the decoder.
Then the motion compensation can be performed by using the sprite from which the video can be
reconstructed. The effectiveness of video reconstruction depends on whether the motion of the
object can be effectively represented by a global motion model such as translation, zooming, affine,
and perspective. The key technology of the sprite generation is the motion estimation to find
perspective motion parameters. This can be implemented by many algorithms described in this
book such as the three-step matching technique. The block diagram of sprite generation using the
perspective motion estimation is shown as in Figure 18.16.

The sprite is generated from the input video sequence by the following steps. First, the first
frame is used as the initial value of sprite. From the second frame, the motion estimation is applied
to find the perspective motion parameters between two frames. The current frame is wrapped toward
the initial sprite using the perspective motion vectors to get wrapped image. Then the wrapped
image is blended with initial sprite to obtain a updated sprite. This procedure is continued to the
entire video sequence. The final sprite is then generated.
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18.5.2.4 Multiple VO Rate Control

As we know, the purpose of rate control is to obtain the best coding performance for a given bit
rate in constant-bit-rate video coding. In MPEG-4 video coding, there is an additional objective
for rate control: how to assign the bits among multiple VOs. In the multiple VO video coding rate
control algorithm, the total target is first adjusted based on the buffer fullness, and then distributed
proportional to the size of the object, the motion which the object is experiencing, and its maximum
absolute differences. Based on the new individual targets and second-order model parameters (Lee
et al., 1997), appropriate quantization parameters can be calculated for each VO. To compromise
the trade-offs in spatial and temporal coding, two modes of operation have been introduced. With
these modes, suitable decisions can be made to differentiate between low- and high-bit-rate coding.
In addition, a shape rate control algorithm has been included. The algorithm for performing the
joint rate control can be decomposed into a preencoding stage and a postencoding stage. The
preencoding stage consists of (1) the target bit estimation, (2) joint buffer control, (3) pre-frame-
skip control, and (4) the quantization level and alpha threshold calculation. The postencoding stage
consists of (1) updating the rate–distortion model, (2) post-frame-skip control, and (3) determining
the mode of operation. The initialization process is very similar to the single VOP initialization
process. Since a single buffer is used, the buffer drain rate and initializations remain the same, but
many of the parameters are extended to vector quantities. As a means of regulating the trade-offs
between spatial and temporal coding, two modes of operation are introduced: low mode and high
mode. When encoding at high bit rates, the availability of bits allows the algorithm to be flexible
in its target assignment to each VO. Under these circumstances, it is reasonable to impose homo-
geneous quality among each VO. Therefore, the inclusion of MAD2[i] is essential to the target
distribution and should carry the highest weighting. On the other hand, when the availability of
bits is limited, it is very difficult (if not impossible) to achieve homogeneous quality among the
VOs. Under these conditions, it is desirable to spend fewer bits on the background and more bits
on the foreground. Consequently, the significance of the variance has decreased and the significance
of the motion has increased. Besides regulating the quality within each frame, it is also important
to regulate the temporal quality as well, i.e., to keep the frame skipping to a minimum. In high
mode, this is very easy to do since the availability of bits is plentiful. However, in low mode, frame-
skipping occurs much more often. In fact, the number of frames being skipped is a good indication
in which mode the algorithm should be operating. Overall, this particular algorithm is able to
achieve the target bit rate successfully, effectively code arbitrarily shaped objects, and maintain a
stable buffer (Vetro et al., 1999).

FIGURE 18.16 Block diagram of sprite generation.
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18.5.3 VIDEO DECODER

The decoder mainly consists of three parts: shape, motion, and texture decoding. The decoder block
diagram is shown in Figure 18.17. At the decoder the bitstream is first demultiplexed into shape
information and motion information as well as texture information. The reconstructed VOP is
obtained by the right combination of the shape, texture, and motion information. The shape decoding
is a unique feature of the MPEG-4 decoder. The basic technology of shape decoding is context-
based arithmetic decoding and block-based motion compensation.

The primary data structure is denoted is the binary alpha block (BAB). The BAB is a square
block of binary pixels representing the opacity or transparency for the pixels in a specified block-
shaped spatial region of size 16 ¥ 16 pixels which is colocated with each texture macroblock. The
block diagram of a texture decoder is shown in Figure 18.18.

Texture decoding is similar to the video decoder in MPEG-1/2 except for inverse DC/AC
prediction and more quantization methods. The DC prediction is different from the one used in
MPEG-1/2. In MPEG-4 the DC coefficient is adaptively predicted from the above block or left
block. The AC prediction is similar to the one used in H.263 but is not used in the MPEG-1/2. For
motion compensation, the motion vectors must be decoded. The horizontal and vertical motion
vector components are decoded differentially by using a prediction from the spatial neighborhood
consisting of three motion vectors already decoded. The final motion vector is obtained by adding
the prediction motion vector values to the decoded differential motion values. Also, in MPEG-4
video coding the several advanced motion compensation modes, such as four 8 ¥ 8 motion vector
compensation and overlapped motion compensation, have to be handled. Another issue of motion
compensation in MPEG-4 is raised by VOP-based coding. To perform motion-compensated pre-
diction on a VOP basis, a special padding technique is used for each of macroblock that lies on
the shape boundary of the VOP. The padding process defines the values of pixels, which are located
outside the VOP for prediction of arbitrarily shaped objects. Padding for luminance pixels and
chrominance pixels is defined in the standard (ISO/IEC, 1998a). The additional decoding issues

FIGURE 18.17 VOP decoder structure.

FIGURE 18.18 Block diagram of texture decoding.
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which are special for MPEG-4 include sprite decoding, generalized scalable decoding, and still
texture decoding. We do not go into further detail for these topics. Interested readers can get detail
from the standard documents. The outputs of decoded results are the reconstructed VOPs that are
finally sent to the compositor. In the compositor, the VOPs are recursively blended in the order
specified by the VOP composition order. It should be noted that the decoders could take advantage
of object-based decoding. They are able to be flexible in the composition of the reconstructed VOPs
such as reallocating, rotation, or other editing actions.

18.6 SUMMARY

In this chapter, the new video-coding standard, MPEG-4 is introduced. The unique feature of
MPEG-4 video is content-based coding. This feature allows the MPEG-4 to provide much func-
tionality, which other video-coding standards do not have. The key technologies used in MPEG-4
video are described. These technologies provide basic tools for MPEG-4 video to provide object-
based coding functionality. Finally, the video verification model, a platform of MPEG-4 develop-
ment and an encoding and decoding example, is described.

18.7 EXERCISES

18-1. Why is object- or content-based coding the most important feature of MPEG-4 visual
coding standard? Describe several applications for this feature.

18-2. What are the new coding tools in MPEG-4 visual coding that are different from MPEG-2
video coding? Is MPEG-4 backward compatible with MPEG-2?

18-3. MPEG-4 video coding has the feature of using either a 16 ¥ 16 block motion vector or
an 8 ¥ 8 block motion vector. For what kind of video sequences will the 8 ¥ 8 block
motion increase coding efficiency? For what kind of video sequences will the 8 ¥ 8
block motion compensation decrease the coding efficiency?

18-4. What approaches for error resilience are supported by the MPEG-4 syntax? Make a
comparison with the error resilience method adopted in MPEG-2 (supported by MPEG-2
syntax), and indicate their relative advantages and disadvantages.

18-5. Design an arithmetic coder for zerotree coding and write a program to test it with several
images.

18-6. The Sprite is a new feature of MPEG-4 video coding. MPEG-4 specifies the syntax for
sprite coding, but does not give any detail about how to generate a sprite. Conduct a
project to generate an off-line sprite for a video sequence and use it for coding the video
sequence. Do you observe any increased coding efficiency? When do you expect to see
such an increase?

18-7. Shape coding (binary-shape coding) is an important part of MPEG-4 due to object-based
coding. Besides the shape coding method used in MPEG-4, name another shape coding
method. Conduct a project to compare the method you know with the method proposed
in MPEG-4. (Do not expect to get better performance, but expect to reduce the complexity.)
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ITU-T Video Coding Standards 
H.261 and H.263

 

This chapter introduces ITU-T video coding standards H.261 and H.263, which are established
mainly for videophony and videoconferencing. The basic technical detail of H.261 is presented.
The technical improvements with which H.263 achieves high coding efficiency are discussed.
Features of H.263+, H.263++, and H.26L are presented.

 

19.1 INTRODUCTION

 

Very low bit rate video coding has found many industry applications such as wireless and network
communications. The rapid convergence of standardization of digital video-coding standards is the
reflection of several factors: the maturity of technologies in terms of algorithmic performance,
hardware implementation with VLSI technology, and the market need for rapid advances in wireless
and network communications. As stated in the previous chapters, these standards include JPEG for
still image coding and MPEG-1/2 for CD-ROM storage and digital television applications. In
parallel with the ISO/IEC development of the MPEG-1/2 standards, the ITU-T has developed H.261
(ITU-T, 1993) for videotelephony and videoconferencing applications in an ISDN environment.

 

19.2 H.261 VIDEO-CODING STANDARD

 

The H.261 video-coding standard was developed by ITU-T study group XV during 1988 to 1993.
It was adopted in 1990 and the final revision approved in 1993. This is also referred to as the P 
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 64
standard because it encodes the digital video signals at the bit rates of P 
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 64 Kbps, where 
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 is an
integer from 1 to 30, i.e., at the bit rates 64 Kbps to 1.92 Mbps.
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The H.261 video-coding standard has many features in common with the MPEG-1 video-coding
standard. However, since they target different applications, there exist many differences between
the two standards, such as data rates, picture quality, end-to-end delay, and others. Before indicating
the differences between the two coding standards, we describe the major similarity between H.261
and MPEG-1/2. First, both standards are used to code similar video format. H.261 is mainly used
to code the video with the common intermediate format (CIF) or quarter-CIF (QCIF) spatial
resolution for teleconferencing application. MPEG-1 uses CIF, SIF, or higher spatial resolution for
CD-ROM applications. The original motivation for developing the H.261 video-coding standard
was to provide a standard that can be used for both PAL and NTSC television signals. But later,
the H.261 was mainly used for videoconferencing and the MPEG-1/2 was used for digital television
(DTV), VCD (video CD), and DVD (digital video disk). The two TV systems, PAL and NTSC,
use different line and picture rates. The NTSC, which is used in North America and Japan, uses
525 lines per interlaced picture at 30 frames/second. The PAL system is used for most other
countries, and it uses 625 lines per interlaced picture at 25 frames/second. For this purpose, the
CIF was adopted as the source video format for the H.261 video coder. The CIF format consists
of 352 pixels/line, 288 lines/frame, and 30 frames/second. This format represents half the active
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lines of the PAL signal and the same picture rate of the NTSC signal. The PAL systems need only
perform a picture rate conversion and NTSC systems need only perform a line number conversion.
Color pictures consist of one luminance and two color-difference components (referred to as 
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 format) as specified by the CCIR601 standard. The 
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 and 
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 components are the half-size on
both horizontal and vertical directions and have 176 pixels/line and 144 lines/frame. The other
format, QCIF, is used for very low bit rate applications. The QCIF has half the number of pixels
and half the number of lines of CIF format. Second, the key coding algorithms of H.261 and
MPEG-1 are very similar. Both H.261 and MPEG-1 use DCT-based coding to remove intraframe
redundancy and motion compensation to remove interframe redundancy.

Now let us describe the main differences between the two coding standards with respect to
coding algorithms. The main differences include:

• H.261 uses only I- and P-macroblocks but no B-macroblocks, while MPEG-1 uses three
macroblock types, I-, P-, and B-macroblocks (I-macroblock is in intraframe-coded mac-
roblock, P-macroblock is a predictive-coded macroblock, and B-macroblock is a bidi-
rectionally coded macroblock), as well as three picture types, I-, P-, and B-pictures as
defined in Chapter 16 for the MPEG-1 standard.

• There is a constraint of H.261 that for every 132 interframe-coded macroblocks, which
corresponds to 4 GOBs (group of blocks) or to one-third of the CIF pictures, it requires
at least one intraframe-coded macroblock. To obtain better coding performance at low-
bit-rate applications, most encoding schemes of H.261 prefer not to use intraframe coding
on all the macroblocks of a picture, but only on a few macroblocks in every picture with
a rotational scheme. MPEG-1 uses the GOP (group of pictures) structure, where the size
of GOP (the distance between two I-pictures) is not specified.

• The end-to-end delay is not a critical issue for MPEG-1, but is critical for H.261. The
video encoder and video decoder delays of H.261 need to be known to allow audio
compensation delays to be fixed when H.261 is used in interactive applications. This
will allow lip synchronization to be maintained.

• The accuracy of motion compensation in MPEG-1 is up to a half-pixel, but is only a
full-pixel in H.261. However, H.261 uses a loop filter to smooth the previous frame. This
filter attempts to minimize the prediction error.

• In H.261, a fixed picture aspect ratio of 4:3 is used. In MPEG-1, several picture aspect
ratios can be used and the picture aspect ratio is defined in the picture header.

• Finally, in H.261, the encoded picture rate is restricted to allow up to three skipped
frames. This would allow the control mechanism in the encoder some flexibility to control
the encoded picture quality and satisfy the buffer regulation. Although MPEG-1 has no
restriction on skipped frames, the encoder usually does not perform frame skipping.
Rather, the syntax for B-frames is exploited, as B-frames require much fewer bits than
P-pictures.
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The key technologies used in the H.261 video-coding standard are the DCT and motion compen-
sation. The main components in the encoder include DCT, prediction, quantization (Q), inverse
DCT (IDCT), inverse quantization (IQ), loop filter, frame memory, variable-length coding, and
coding control unit. A typical encoder structure is shown in Figure 19.1.

The input video source is first converted to the CIF frame and then is stored in the frame memory.
The CIF frame is then partitioned into GOBs. The GOB contains 33 macroblocks, which are 
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 of
a CIF picture or N of a QCIF picture. Each macroblock consists of six 8 
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 8 blocks among which
four are luminance (
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) blocks and two are chrominance blocks (one of 
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and one of 
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For the intraframe mode, each 8 

 

¥

 

 8 block is first transformed with DCT and then quantized.
The variable-length coding (VLC) is applied to the quantized DCT coefficients with a zigzag
scanning order such as in MPEG-1. The resulting bits are sent to the encoder buffer to form a
bitstream.

For the interframe-coding mode, frame prediction is performed with motion estimation in a
similar manner to that in MPEG-1, but only P-macroblocks and P-pictures, no B-macroblocks and
B-pictures, are used. Each 8 

 

¥

 

 8 block of differences or prediction residues is coded by the same
DCT coding path as for intraframe coding. In the motion-compensated predictive coding, the
encoder should perform the motion estimation with the reconstructed pictures instead of the original
video data, as it will be done in the decoder. Therefore, the IQ and IDCT blocks are included in
the motion compensation loop to reduce the error propagation drift. Since the VLC operation is
lossless, there is no need to include the VLC block in the motion compensation loop. The role of
the spatial filter is to minimize the prediction error by smoothing the previous frame that is used
for motion compensation.

The loop filter is a separable 2-D spatial filter that operates on an 8 

 

¥

 

 8 block. The corresponding
1-D filters are nonrecursive with coefficients , , . At block boundaries, the coefficients are 0,
1, 0 to avoid the taps falling outside the block. It should be noted that MPEG-1 uses subpixel
accurate motion vectors instead of a loop filter to smooth the anchor frame. The performance
comparison of two methods should be interesting.

The role of coding control includes the rate control, the buffer control, the quantization control,
and the frame rate control. These parameters are intimately related. The coding control is not the
part of the standard; however, it is an important part of the encoding process. For a given target
bit rate, the encoder has to control several parameters to reach the rate target and at the same time
provide reasonable coded picture quality.

Since H.261 is a predictive coder and the VLCs are used everywhere, such as coding quantized
DCT coefficients and motion vectors, a single transmission error may cause a loss of synchronization
and consequently cause problems for the reconstruction. To enhance the performance of the H.261
video coder in noisy environments, the transmitted bitstream of H.261 can optionally contain a
BCH (Bose, Chaudhuri, and Hocquengham) (511,493) forward error-correction code.

The H.261 video decoder performs the inverse operations of the encoder. After optional error
correction decoding, the compressed bitstream enters the decoder buffer and then is parsed by the
variable-length decoder (VLD). The output of the VLD is applied to the IQ and IDCT where the
data are converted to the values in the spatial domain. For the interframe-coding mode, the motion

 

FIGURE 19.1

 

Block diagram of a typical H.261 video encoder. (From ITU-T Recommendation H.261,
March 1993. With permission.)
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compensation is performed and the data from the macroblocks in the anchor frame are added to
the current data to form the reconstructed data.
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ESCRIPTION

 

The syntax of H.261 video coding has a hierarchical layered structure. From the top to the bottom
the layers are picture layer, GOB layer, macroblock layer, and block layer.

 

19.2.3.1 Picture Layer

 

The picture layer begins with a 20-bit picture start code (PSC). Following the PSC, there are
temporal reference (5-bit), picture type information (PTYPE, 6-bit), extra insertion information
(PEI, 1-bit), and spare information (PSPARE). Then the data for GOBs are followed.

 

19.2.3.2 GOB Layer

 

A GOB corresponds to 176 pixels by 48 lines of 

 

Y

 

 and 88 pixels by 24 lines of 
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. The
GOB layer contains the following data in order: 16-bit GOB start code (GBSC), 4-bit group number
(GN), 5-bit quantization information (GQUANT), 1-bit extra insertion information (GEI), and spare
information (GSPARE). The number of bits for GSPARE is variable depending on the set of GEI
bits. If GEI is set to “1,” then 9 bits follow, consisting of 8 bits of data and another GEI bit to
indicate whether a further 9 bits follow, and so on. Data of the GOB header are then followed by
data for macroblocks.

 

19.2.3.3 Macroblock Layer

 

Each GOB contains 33 macroblocks, which are arranged as in Figure 19.2. A macroblock consists
of 16 pixels by 16 lines of 
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 that spatially correspond to 8 pixels by 8 lines each of 
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 and 
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.

 

Data in the bitstream for a macroblock consist of a macroblock header followed by data for blocks.
The macroblock header may include macroblock address (MBA) (variable length), type information
(MTYPE) (variable length), quantizer (MQUANT) (5 bits), motion vector data (MVD) (variable
length), and coded block pattern (CBP) (variable length). The MBA information is always present
and is coded by VLC. The VLC table for macroblock addressing is shown in Table 19.1. The
presence of other items depends on macroblock type information, which is shown in the VLC
Table 19.2.

 

19.2.3.4 Block Layer

 

Data in the block layer consists of the transformed coefficients followed by an end of block (EOB)
marker (10 bits). The data of transform coefficients (TCOEFF) is first converted to the pairs of
RUN and LEVEL according to the zigzag scanning order. The RUN represents the number of
successive zeros and the LEVEL represents the value of nonzero coefficients. The pairs of RUN
and LEVEL are then encoded with VLCs. The DC coefficient of an intrablock is coded by a fixed-
length code with 8 bits. All VLC tables can be found in the standard document (ITU-T, 1993).

 

FIGURE 19.2

 

Arrangement of macroblocks in a GOB. (From ITU-T Recommendation H.261, March 1993.
With permission.)
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19.3 H.263 VIDEO-CODING STANDARD

 

The H.263 video-coding standard (ITU-T, 1996) is specifically designed for very low bit rate
applications such as practical video telecommunication. Its technical content was completed in late
1995 and the standard was approved in early 1996.
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The basic configuration of the video source coding algorithm of H.263 is based on the H.261.
Several important features that are different from H.261 include the following new options: unre-
stricted motion vectors, syntax-based arithmetic coding, advanced prediction, and PB-frames. All
these features can be used together or separately for improving the coding efficiency. The H.263

 

TABLE 19.1
VLC Table for Macroblock Addressing

 

MBA Code MBA Code MBA Code

 

1 1 13 0000 1000 25 0000 0100 000
2 011 14 0000 0111 26 0000 0011 111
3 010 15 0000 0110 27 0000 0011 110
4 0011 16 0000 0101 11 28 0000 0011 101
5 0010 17 0000 0101 10 29 0000 0011 100
6 0001 1 18 0000 0101 01 30 0000 0011 011
7 0001 0 19 0000 0101 00 31 0000 0011 010
8 0000 111 20 0000 0100 11 32 0000 0011 001
9 0000 110 21 0000 0100 10 33 0000 0011 000
10 0000 1011 22 0000 0100 011 MBA stuffing 0000 0001 111
11 0000 1010 23 0000 0100 010 Start code 0000 0000 0000 0001
12 0000 1001 24 0000 0100 001

 

TABLE 19.2
VLC Table for Macroblock Type

 

Prediction MQUANT MVD CBP TCOEFF VLC

 

Intra x 0001
Intra x x 0000 001
Inter x x 1
Inter x x x 0000 1
Inter+MC x 0000 0000 1
Inter+MC x x x 0000 0001
Inter+MC x x x x 0000 0000 01
Inter+MC+FIL x 001
Inter+MC+FIL x x x 01
Inter+MC+FIL x x x x 0000 01

 

Notes:

 

1. “x” means that the item is present in the macroblock,
2. It is possible to apply the filter in a non-motion-compensated macroblock

by declaring it as MC+FIL but with a zero vector.
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video standard can be used for both 625-line and 525-line television standards. The source coder
operates on the noninterlaced pictures at picture rate about 30 pictures/second. The pictures are
coded as luminance and two color difference components (
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b

 

, and 
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r

 

). The source coder is based
on a CIF. Actually, there are five standardized formats which include sub-QCIF, QCIF, CIF, 4CIF,
and 16CIF. The detail of formats is shown in Table 19.3.

It is noted that for each format, the chrominance is a quarter the size of the luminance picture,
i.e., the chrominance pictures are half the size of the luminance picture in both horizontal and
vertical directions. This is defined by the ITU-R 601 format. For CIF format, the number of
pixels/line is compatible with sampling the active portion of the luminance and color difference
signals from a 525- or 626-line source at 6.75 and 3.375 MHz, respectively. These frequencies have
a simple relationship to those defined by the ITU-R 601 format.
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The H.263 encoder structure is similar to the H.261 encoder with the exception that there is no
loop filter in H.263 encoder. The main components of the encoder include block transform, motion-
compensated prediction, block quantization, and VLC. Each picture is partitioned into groups of
blocks, which are referred to as GOBs. A GOB contains a multiple number of 16 lines, 
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 16
lines, depending on the picture format (
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 = 1 for sub-QCIF, QCIF; 
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 = 2 for 4CIF; 
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 = 4 for 16CIF).
Each GOB is divided into macroblocks that are the same as in H.261 and each macroblock consists
of four 8 

 

¥

 

 8 luminance blocks and two 8 

 

¥

 

 8 chrominance blocks. Compared with H.261, H.263
has several new technical features for the enhancement of coding efficiency for very low bit rate
applications. These new features include picture-extrapolating motion vectors (or unrestricted
motion vector mode), motion compensation with half-pixel accuracy, advanced prediction (which
includes variable-block-size motion compensation and overlapped block motion compensation),
syntax-based arithmetic coding, and PB-frame mode.

 

19.3.2.1 Half-Pixel Accuracy

 

In H.263 video coding, half-pixel accuracy motion compensation is used. The half-pixel values are
found using bilinear interpolation as shown in Figure 19.3.

Note that H.263 uses subpixel accuracy for motion compensation instead of using a loop filter
to smooth the anchor frames as in H.261. This is also done in other coding standards, such as
MPEG-1 and MPEG-2, which also use half-pixel accuracy for motion compensation. In MPEG-4
video, quarter-pixel accuracy for motion compensation has been adopted as a tool for version 2.

 

19.3.2.2 Unrestricted Motion Vector Mode

 

Usually motion vectors are limited within the coded picture area of anchor frames. In the unrestricted
motion vector mode, the motion vectors are allowed to point outside the pictures. When the values

 

TABLE 19.3
Number of Pixels per Line and the Number of Lines for Each Picture Format

 

Picture 
Format

Number of Pixels 
for Luminance (

 

dx

 

)
Number of Lines 

for Luminance (

 

dy

 

)
Number of Pixels 

for Chrominance (

 

dx

 

/2)
Number of Lines 

for Chrominance (

 

dy

 

/2)

 

Sub-QCIF 128 96 64 48
QCIF 176 144 88 72
CIF 352 288 176 144
4CIF 704 576 352 288
16CIF 1408 1152 704 576
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of the motion vectors exceed the boundary of the anchor frame in the unrestricted motion vector
mode, the picture-extrapolating method is used. The values of reference pixels outside the picture
boundary will take the values of boundary pixels. The extension of the motion vector range is also
applied to the unrestricted motion vector mode. In the default prediction mode, the motion vectors
are restricted to the range of [–16, 15.5]. In the unrestricted mode, the maximum range for motion
vectors is extended to [–31.5, 31.5] under certain conditions.

 

19.3.2.3 Advanced Prediction Mode

 

Generally, the decoder will accept no more than one motion vector per macroblock for baseline
algorithm of H.263 video-coding standard. However, in the advanced prediction mode, the syntax
allows up to four motion vectors to be used per macroblock. The decision to use one or four vectors
is indicated by the macroblock type and coded block pattern for chrominance (MCBPC) codeword
for each macroblock. How to make this decision is the task of the encoding process.

The following example gives the steps of motion estimation and coding mode selection for the
advanced prediction mode in the encoder.

Step 1. Integer pixel motion estimation:

(19.1)

where 
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 is the sum of absolute difference, values of (
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, 

 

y

 

) are within the search
range, 

 

N

 

 is equal to 16 for 16 

 

¥

 

 16 block, and 
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 is equal to 8 for 8 

 

¥

 

 8 block.

(19.2)

(19.3)

Step 2. Intra/intermode decision:
If 
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 < (

 

SAD

 

inter

 

 – 500), this macroblock is coded as intra-MB; otherwise, it is coded
as inter-MB, where 

 

SAD

 

inter

 

 is determined in step 1, and

(19.4)

 

FIGURE 19.3

 

Half-pixel prediction by bilinear interpolation.
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If this macroblock is determined to be coded as inter-MB, go to step 3.
Step 3. Half-pixel search:

In this step, half-pixel search is performed for both 16 

 

¥

 

 16 blocks and 8 

 

¥

 

 8 blocks
as shown in Figure 19.3.

Step 4. Decision on 16 

 

¥

 

 16 or four 8 

 

¥

 

 8 (one motion vector or four motion vectors per
macroblock):
If 
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4

 

x

 

8

 

 < 
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16

 

 – 100, four motion vectors per macroblock will be used, one of
the motion vectors is used for all pixels in one of the four luminance blocks in the
macroblock, otherwise, one motion vector will be used for all pixels in the mac-
roblock.

Step 5. Differential coding of motion vectors for each of 8 

 

¥

 

 8 luminance block is performed
as in Figure 19.4.

When it has been decided to use four motion vectors, the MVD
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 motion vector for both
chrominance blocks is derived by calculating the sum of the four luminance vectors and dividing
by 8. The component values of the resulting 
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 pixel resolution vectors are modified toward the
position as indicated in the Table 19.4.

Another advanced prediction mode is overlapped motion compensation for luminance. Actually,
this idea is also used by MPEG-4, which has been described in Chapter 18. In the overlapped
motion compensation mode, each pixel in an 8 

 

¥

 

 8 luminance block is a weighted sum of three
values divided by 8 with rounding. The three values are obtained by the motion compensation with
three motion vectors: the motion vector of the current luminance block and two of four “remote”

 

FIGURE 19.4

 

Differential coding of motion vectors.
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vectors. These remote vectors include the motion vector of the block to the left or right of the
current block and the motion vector of the block above or below the current block. The remote
motion vectors from other GOBs are used in the same way as remote motion vectors inside the
current GOB. For each pixel to be coded in the current block, the remote motion vectors of the
blocks at the two nearest block borders are used, i.e., for the upper half of the block the motion
vector corresponding to the block above the current block is used while for the lower half of the
block the motion vector corresponding to the block below the current block is used. Similarly, the
left half of the block uses the motion vector of the block at the left side of the current block and
the right half uses the one at the right side of the current block. To make this clearer, let (
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x

 

0

 

,

 

MV

 

y

 

0

 

) be the motion vector for the current block, (
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x
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,  
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1

 

) be the motion vector for the block
either above or below, and (
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) be the motion vector of the block either to the left or right
of the current block. Then the value of each pixel, 
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) in the current 8 
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 8 luminance block is
given by

(19.5)

where

and

(19.6)
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 is the weighting matrix for prediction with the current block motion vector, 
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 is the weighting
matrix for prediction with the top or bottom block motion vector and 
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 is the weighting matrix
for prediction with the left or right block motion vector. This applies to the luminance block only.
The values of 
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 are shown in Figure 19.5.

TABLE 19.4
Modification of 1/16 Pixel Resolution Chrominance Vector Components

1/16 Pixel Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 /16
Resulting Position 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 /2

FIGURE 19.5 Weighting matrices for overlapped motion compensation.
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It should be noted that the above coding scheme is not optimized in the selection of mode
decision since the decision depends only on the values of predictive residues. Optimized mode
decision techniques that include the above possibilities for prediction have been considered by
Weigand (1996).

19.3.2.4 Syntax-Based Arithmetic Coding

As in other video-coding standards, H.263 uses VLC and variable-length decoding (VLC/VLD) to
remove the redundancy in the video data. The basic principle of VLC is to encode a symbol with
a specific table based on the syntax of the coder. The symbol is mapped to an entry of the table in
a table lookup operation, then the binary codeword specified by the entry is sent to a bitstream
buffer for transmitting to the decoder. In the decoder, an inverse operation, VLD, is performed to
reconstruct the symbol by the table lookup operation based on the same syntax of the coder. The
tables in the decoder must be the same as the one used in the encoder for encoding the current
symbol. To obtain better performance, the tables are generated in a statistically optimized way
(such as a Huffman coder) with a large number of training sequences. This VLC/VLD process
implies that each symbol be encoded into a fixed-integral number of bits. An optional feature of
H.263 is to use arithmetic coding to remove the restriction of fixed-integral number bits for symbols.
This syntax-based arithmetic coding mode may result in bit rate reductions.

19.3.2.5 PB-Frames

The PB-frame is a new feature of H.263 video coding. A PB-frame consists of two pictures, one
P-picture and one B-picture, being coded as one unit, as shown in Figure 19.6. Since H.261 does
not have B-pictures, the concept of a B-picture comes from the MPEG video-coding standards. In
a PB-frame, the P-picture is predicted from the previous decoded I- or P-picture and the B-picture
is bidirectionally predicted both from the previous decoded I- or P-picture and the P-picture in the
PB-frame unit, which is currently being decoded.

Several detailed issues have to be addressed at macroblock level in PB-frame mode:

• If a macroblock in the PB-frame is intracoded, the P-macroblock in the PB-unit is
intracoded and the B-macroblock in the PB-unit is intercoded. The motion vector of
intercoded PB-macroblock is used for the B-macroblock only.

• A macroblock in PB-frame contains 12 blocks for 4:2:0 format, six (four luminance
blocks and two chrominance blocks) from the P-frame and six from the B-frame. The
data for the six P-blocks are transmitted first and then for the six B-blocks.

• Different parts of a B-block in a PB-frame can be predicted with different modes. For
pixels where the backward vector points inside of coded P-macroblock, bidirectional
prediction is used. For all other pixels, forward prediction is used.

FIGURE 19.6 Prediction in PB-frames
mode. (From ITU-T Recommendation
H.263, May 1996. With permission.)
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19.4 H.263 VIDEO CODING STANDARD VERSION 2

19.4.1 OVERVIEW OF H.263 VERSION 2

The H.263 version 2 (ITU-T, 1998) video-coding standard, also known as H.263+, was approved
in January 1998 by the ITU-T. H.263 version 2 includes a number of new optional features based
on the H.263 video-coding standard. These new optional features are added to broaden the appli-
cation range of H.263 and to improve its coding efficiency. The main features are flexible video
format, scalability, and backward-compatible supplemental enhancement information. Among these
new optional features, five of them are intended to improve the coding efficiency and three of them
are proposed to address the needs of mobile video and other noisy transmission environments. The
features of scalability provide the capability of generating layered bitstreams, which are spatial
scalability, temporal scalability, and signal-to-noise ratio (SNR) scalability similar to those defined
by the MPEG-2 video-coding standard. There are also other modes of H.263 version 2 that provide
some enhancement functions. We will describe these features in the following section.

19.4.2 NEW FEATURES OF H.263 VERSION 2

The H.263 version 2 includes a number of new features. In the following we briefly describe the
key techniques used for these features.

19.4.2.1 Scalability

The scalability function allows for encoding the video sequences in a hierarchical way that partitions
the pictures into one basic layer and one or more enhancement layers. The decoders have the option
of decoding only the base layer bitstream to obtain lower-quality reconstructed pictures or further
decode the enhancement layers to obtain higher-quality decoded pictures. There are three types of
scalability in H.263: temporal scalability, SNR scalability, and spatial scalability.

Temporal scalability (Figure 19.7) is achieved by using B-pictures as the enhancement layer.
All three types of scalability are similar to the ones in the MPEG-2 video-coding standard. The
B-pictures are predicted from either or both a previous and subsequent decoded picture in the base
layer.

In SNR scalability (Figure 19.8), the pictures are first encoded with coarse quantization in the
base layer. The differences or coding error pictures between a reconstructed picture and its original
in the base layer encoder are then encoded in the enhancement layer and sent to the decoder
providing an enhancement of SNR. In the enhancement layer there are two types of pictures. If a
picture in the enhancement layer is only predicted from the base layer, it is referred to as an EI
picture. It is a bidirectionally predicted picture if it uses both a prior enhancement layer picture
and a temporally simultaneous base layer reference picture for prediction. Note that the prediction

FIGURE 19.7 Temporal scalability. (From ITU-T Recommendation H.263, May 1996. With permission.)
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from the reference layer uses no motion vectors. However, EP (enhancement P) pictures use motion
vectors when predicted from their temporally prior reference picture in the same layer. Also, if
more than two layers are used, the reference may be the lower layer instead of the base layer.

In spatial scalability (Figure 19.9), lower-resolution pictures are encoded in the base layer or
lower layer. The differences or error pictures between up-sampled decoded base layer pictures and
their original picture are encoded in the enhancement layer and sent to the decoder providing the
spatial enhancement pictures. As in MPEG-2, spatial interpolation filters are used for the spatial
scalability. There are also two types of pictures in the enhancement layer: EI and EP. If a decoder
is able to perform spatial scalability, it may also need to be able to use a custom picture format.
For example, if the base layer is sub-QCIF (128 ¥ 96), the enhancement layer picture would be
256 ¥ 192, which does not belong to a standard picture format.

Scalability in H.263 can be performed with multilayers. In the case of multilayer scalability,
the picture layer used for upward prediction in an EI or EP picture may be an I, P, EI, or EP picture,
or may be the P part of a PB or improved PB frame in the base layer as shown in Figure 19.10.

19.4.2.2 Improved PB-Frames

The difference between the PB-frame and the improved PB-frame is that bidirectional prediction
is used for B-macroblocks in the PB-frame, while in the improved PB-frame, B-macroblocks can
be coded in three prediction modes: bidirectional prediction, forward prediction, and backward
prediction. This means that in forward prediction or backward prediction only one motion vector
is used for a 16 ¥ 16 macroblock instead of using two motion vectors for a 16 ¥ 16 macroblock in

FIGURE 19.8 SNR scalability. (From ITU-T Recommendation H.263, May 1996. With permission.)

FIGURE 19.9 Spatial scalability. (From ITU-T Recommendation H.263, May 1996. With permission.)
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bidirectional prediction. In the very low bit rate case, this mode can improve the coding efficiency
by saving bits for coding motion vectors.

19.4.2.3 Advanced Intracoding

The advantage of intracoding is to protect the error propagation since intracoding does not depend
on the previous decoded picture data. However, the problem of intracoding is that more bits are
needed since the temporal correlation between frames is not exploited. The idea of advanced
intracoding (AIC) is used to address this problem. The coding efficiency of intracoding is improved
by the use of following three methods:

1. Intrablock prediction using neighboring intrablocks for the same color component (Y,
Cb, or Cr): A particular intracoded block may be predicted from the block above or left
to the current block being decoded, or from both. The main purpose of these predictions
is to use the correlation between neighboring blocks. For example, the first row of AC
coefficients may be predicted from those in the block above, the first column of AC
coefficients may be predicted from those in the left, and the DC value may be predicted
as an average from the block above and left.

2. Modified inverse quantization for intracoefficients: Inverse quantization of the intra-DC
coefficient is modified to allow a varying quantization step size. Inverse quantization of
all intra-AC coefficients is performed without a “dead-zone” in the quantizer reconstruc-
tion spacing.

3. A separate VLC for intracoefficients: To improve intracoding a separate VLC table is
used for all intra-DC and intra-AC coefficients. The price paid for this modification is
the use of more tables.

19.4.2.4 Deblocking Filter

The deblocking filter (DF) is used to improve the decoded picture quality further by smoothing
the block artifacts. Its function in improving picture quality is similar to overlapped block motion
compensation. The filter operations are performed across 8 ¥ 8 block edges using a set of four
pixels on both horizontal and vertical directions at the block boundaries, such as shown in
Figure 19.11. In the figure, the filtering process is applied to the edges. The edge pixels, A, B, C,
and D, are replaced by A1, B1, C1, and D1 by the following operations:

FIGURE 19.10 Multilayer scalability. (From ITU-T Recommendation H.263, May 1996. With permission.)
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(19.7a)

(19.7b)

(19.7c)

(19.7d)

(19.7e)

(19.7f)

(19.7g)

where clip is a function of clipping the value to the range of 0 to 255, clip d(x, d) is a function
that clips x to the range of from –d to +d, and the value S is a function of quantization step QUANT
that is defined in Table 19.5.

FIGURE 19.11 Positions of filtered pixels. (From ITU-T Recommendation H.263, May 1996. With
permission.)

TABLE 19.5
The Value S as a Function of Quantization Step (QUANT)

QUANT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S 1 1 2 2 3 3 4 4 4 5 5 6 6 7 7 7
QUANT 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12

B B d1 1= +( )clip

C C d1 1= -( )clip

A A d1 2= -

D D d1 2= +

d A B C D= - + -( )4 4 8

d f d S1 = ( ),

d d A D d2 1 14 2= -( )( )clip , ,
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The function f (d, S) is defined as

(19.8)

This function can be described by Figure 19.12. From the figure, it can be seen that this function
is used to control the amount of distortion introduced by filtering. The filter has an effect only if
d is smaller than 2S. Therefore, some features such an isolated pixel, corner, etc. would be reserved
during the nonlinear filtering since for those features the value d may exceed the 2S. The function
f(d,S) is also designed to ensure that small mismatch between encoder and decoder will remain
small and will not allow the mismatch to be propagated over multiple pictures. For example, if the
filter is simply switched on or off with a mismatch of only +1 or –1 for d, then this will cause the
filter to be switched on at the encoder and off at the decoder, or vice versa. It should be noted that
the deblocking filter proposed here is an optional selection. It is a result of a large number of
simulations; it may be effective for some sequences, but may be not effective for all kinds of video
sequences.

19.4.2.5 Slice Structured Mode

A slice contains a video picture segment. In the coding syntax, a slice is defined as a slice header
followed by consecutive macroblocks in scanning order. The slice structured (SS) mode is designed
to address the needs of mobile video and other unreliable transmission environments. This mode
contains two submodes: the rectangular slice (RS) submode and the arbitrarily slice ordering (ASO)
submode. In the rectangular submode, a slice contains a rectangular region of a picture, such that
the slice header specifies the width. The macroblocks in this slice are in scan order within the
rectangular region. In the arbitrarily slice ordering submode, the slices may appear in any order
within the bitstream. The arbitrarily arrangement of slices in the picture may provide an environment
for obtaining better error concealment. The reason is that the damaged areas caused by packet loss
may be isolated from each other and can be easily concealed by the well-decoded neighboring
blocks. In this submode, there is usually no data dependency that can cross the slice boundaries,
except for the deblocking filter mode since the slices may not be decoded in the normal scan order.

19.4.2.6 Reference Picture Selection

With optional mode of the reference picture selection (RPS), the encoder is allowed to use a
modified interframe prediction method. In this method, additional picture memories are used. The
encoder may select one of the picture memories to suppress the temporal error propagation due to
the interframe coding. The information to indicate which picture is selected for prediction is
included in the encoded bitstream that is allowed by syntax. The strategy used by the encoder to

FIGURE 19.12 The plot of function of f (d,S). (From ITU-T Recommendation H.263, May 1996. With
permission.)

f d S d d d S, , , .( ) = ( ) * ( )( ) - * ( ) -( )( )( )sign max  abs max abs0 0 2
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select the picture to be used for prediction is open for algorithm design. This mode can use the
backward channel message that is sent from a decoder to an encoder to inform the encoder which
part of which pictures have been correctly decoded. The encoder can use the message from the
backward channel to decide which picture will provide better prediction. From the above description
of reference picture selection mode, it becomes evident that this mode is useful for improving the
performance over unreliable channels.

19.4.2.7 Independent Segmentation Decoding

The independent segmentation decoding (ISD) mode is another option of H.263 video coding which
can be used for unreliable transmission environments. In this mode, each video picture segment is
decoded without the presence of any data dependencies across slice boundaries or across GOB
boundaries, i.e., with complete independence from all other video picture segments and all data
outside the same video picture segment location in the reference pictures. This independence
includes no use of motion vectors outside of the current video picture segment for motion prediction
or remote motion vectors for overlapped motion compensation in the advanced prediction mode,
no deblocking filter operation, and no linear interpolation across the boundaries of current video
picture segment.

19.4.2.8 Reference Picture Resampling

The reference picture resampling (RPR) mode allows a prior-coded picture to be resampled, or
wrapped, before it is used as a reference picture. The idea of using this mode is similar to the idea
of global motion, which is expected to obtain better performance of motion estimation and com-
pensation. The wrapping is defined by four motion vectors for the corners of the reference picture
as shown in Figure 19.13.

For the current picture with horizontal size H and vertical size V, four conceptual motion vectors,
MVOO, MVOV, MVHO, and MVHV are defined for the upper-left, lower-left, upper-right, and lower-
right corners of the picture, respectively. These motion vectors as wrapping parameters have to be
coded with VLC and included in the bitstream. These vectors are used to describe how to move
the corners of the current picture to map them onto the corresponding corners of the previous
decoded pictures as shown in Figure 19.13. The motion compensation is performed using bilinear
interpolation in the decoder with the wrapping parameters.

19.4.2.9 Reduced-Resolution Update

When encoding a video sequence with highly active scenes, the encoder may have a problem
providing sufficient subjective picture quality at low-bit-rate coding. The reduced-resolution update
(RRU) mode is expected to be used in this case for improving the coding performance. This mode
allows the encoder to send update information for a picture that is encoded at a reduced resolution
to create a final image at the higher resolution. At the encoder, the pictures in the sequence are

FIGURE 19.13 Reference picture resampling.
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first down-sampled to a quarter-size (half in both horizontal and vertical directions) and then the
resulting low-resolution pictures are encoded as shown in Figure 19.14.

A decoder with this mode is more complicated than one without this mode. The block diagram
of decoding process with the RRU mode is shown in Figure 19.15.

The decoder with RRU mode has to deal with several new issues. First, the reconstructed
pictures are up-sampled to the full size for display. However, the reference pictures have to be
extended to the integer times of 32 ¥ 32 macroblocks if it is necessary. The pixel values in the
extended areas take the values of the original border pixels. Second, the motion vectors for 16 ¥ 16
macroblocks in the encoder are used for the up-sampled 32 ¥ 32 macroblock in the decoder.
Therefore, an additional procedure is needed to reconstruct the motion vectors for each up-sampled
16 ¥ 16 macroblock including chrominance macroblocks. Third, bilinear interpolation is used for
up-sampling in the decoder loop. Finally, in the boundary of a reconstructed picture, a block
boundary filter is used along the edges of the 16 ¥ 16 reconstructed blocks at the encoder as well
as on the decoder. There are two kinds of block boundary filters that have been proposed. One is
the previously described deblocking filter. The other one is defined as follows. If two pixels, A and
B, are neighboring pixels and A is in block 1 and B is in block 2, respectively, then the filter is
designed as

(19.9a)

(19.9b)

where A1 and B1 are the pixels after filtering and “/” is division with truncation.

FIGURE 19.14 Block diagram of encoder with RRU mode.

FIGURE 19.15 Block diagram of decoder with RRU mode.

A A B1 3 2 4= * + +( )

B A B1 3 2 2= + * +( ) ,
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19.4.2.10 Alternative Inter-VLC and Modified Quantization

The alternative inter-VLC (AIV) mode is developed for improving coding efficiency of interpicture
coding for the pictures containing significant scene changes. This efficiency improvement is
obtained by allowing some VLC codes originally designed for intrapicture to be used for interpicture
coefficients. The idea is very intuitive and simple. When a rapid scene change occurs in the video
sequence, interpicture prediction becomes difficult. This results in large prediction differences,
which are similar to the intrapicture data. Therefore, the use of intrapicture VLC tables instead of
using interpicture tables may obtain better results. However there is no syntax definition for this
mode. In other words, the encoder may use the intra-VLC table for encoding an interblock without
informing the decoder. After receiving all coefficient codes of a block, the decoder will first decode
these codewords with the inter-VLC tables. If the addressing of coefficients stays inside the 64
coefficients of a block, the VLC will accept the results even if some coding mismatch exists. Only
if coefficients outside the block are addressed, will the codewords be interpreted according to the
intra-VLC table. The modified quantization mode is designed for providing several features, which
can improve the coding efficiency. First, with this mode more flexible control of the quantizer step
can be specified in the dequantization field. The dequantization field is no longer a 2-bit fixed-
length field; it is a variable-length field which can either be 2 or 6 bits depending on the first bit.
Second, in this mode the quantization parameter of the chrominance coefficients is different from
the quantization parameter of the luminance coefficients. The chrominance fidelity can be improved
by specifying a smaller quantization step for chrominance than that for luminance. Finally, this
mode allows the extension of a range of coefficient values. This provides more accuracy represen-
tation of any possible true coefficient value with the accuracy allowed by the quantization step.
However, the range of quantized coefficient levels is restricted to those, which can reasonably occur,
to improve the detectability or errors and minimize decoding complexity.

19.4.2.11 Supplemental Enhancement Information

The usage of supplemental information may be included in the bitstream in the picture layer to
signal enhanced display capabilities or to provide tagging information for external usage. This
supplemental enhancement information includes full-picture freeze/freeze-release request, partial-
picture freeze/freeze-release request, resizing partial-picture freeze request, full-picture snapshot tag,
partial-picture snapshot tag, video time segment start/end tag, progressive refinement segment
start/end tag, and chroma key information. The full-picture freeze request is used to indicate that
the contents of the entire prior displayed video picture will be kept and not updated by the contents
in the current decoded picture. The picture freeze will be kept under this request until the full-picture
freeze-release request occurs in the current or subsequent picture-type information. The partial-
picture freeze request indicates that the contents of a specified rectangular area of the prior displayed
video picture are frozen until the release request is received or time-out occurs. The resizing partial-
picture freeze request is used to change the specified rectangular area for the partial picture. One
use of this information is to keep the contents of a picture in the corner of display unchanged for a
time period for commercial use or some other purpose. All information given by the tags indicates
that the current picture is labeled as either a still image snapshot or a subsequence of video data for
external usage. The progressive refinement segment tag is used to indicate the display period of the
pictures with better quality. The chroma keying information is used to request “transparent” and
“semitransparent” pixels in the decoded video pictures (Chen et al., 1997). One application of the
chroma key is to describe simply the shape information of objects in a video sequence.

19.5 H.263++ VIDEO CODING AND H.26L

H.263++ is the next version of H.263. It considers adding more optional enhancements to H.263
and is the extension of H.263 version 2. It is currently scheduled be completed late in the year
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2000. H.26L, the L standards for long term, is a project to seek more-efficient video-coding
algorithms that will be much better than the current H.261 and H.263 standards. The algorithms
for H.26L can be fundamentally different from the current DCT with motion compensation frame-
work that is used for H.261, H.262 (MPEG-2), and H.263. The expected improvements on the
current standards include several aspects: higher coding efficiency, more functionality, low com-
plexity permitting software implementation, and enhanced error robustness. H.26L addresses very
low bit rate, real-time, low end-to-end delay applications. The potential application targets can be
Internet videophones, sign-language or lip-reading communications, video storage and retrieval
service, multipoint communication, and other visual communication systems. H.263L is currently
scheduled for approval in the year 2002.

19.6 SUMMARY

In this chapter, the video-coding standards for low-bit-rate applications are introduced. These
standards include H.261, H.263, H.263 version 2, and the versions under development, H.263++
and H.263L. H.261 and H.263 are extensively used for videoconferencing and other multimedia
applications at low bit rates. In H.263 version 2, all new negotiable coding options are developed
for special applications. Among these options, five options, which include advanced intracoding
mode, alternative inter-VLC mode, modified quantization mode, de-blocking filter mode, and
improved PB-frame mode, are intended to improve coding efficiency. Three modes, including slice
structured mode, reference picture selection mode, and independent segment decoding mode, are
used to meet the need of mobile video applications. The others provide the functionality of
scalability such as spatial, temporal, and SNR scalability. H.26L is a future standard to meet the
requirements of very low bit rate, real-time, low end-to-end delay, and other advanced performance
needs.

19.7 EXERCISES

19-1. What is the enhancement of H.263 over H.261? Describe the applications of each
enhanced tool of H.263.

19-2. Compared with MPEG-1 and MPEG-2, which features of H.261 and H.263 are used to
improve coding performance at low bit rates? Explain the reasons.

19-3. What is the difference between spatial scalability and reduced resolution update mode
in H.263 video coding?

19-4. Conduct a project to compare the results by using deblocking filters in the coding loop
and out of the coding loop. Which method will cause less drift if a large number of
pictures are contained between two consecutive I-pictures?
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MPEG System — Video, Audio, 
and Data Multiplexing

 

In this chapter, we present the methods and standards requiring how to multiplex and synchronize
the MPEG-coded video, audio, and other data into a single bitstream or multiple bitstreams for
storage and transmission.

 

20.1 INTRODUCTION

 

ISO/IEC MPEG has completed work on the ISO/IEC 11172 and 13818 standards known as MPEG-1
and MPEG-2, respectively, which deal with the coding of digital audio and video signals. Currently,
ISO/IEC is working on ISO/IEC 14496 known as MPEG-4 that is object-based generic coding for
multimedia applications. As mentioned in the previous chapters, the MPEG-1, 2, and 4 standards
are designed as generic standards and as such are suitable for use in a wide range of audiovisual
applications. The coding part of the standards convert the digital visual, audio, and data signals to
the compressed formats that are represented as binary bits. The task of the MPEG system is focused
on multiplexing and synchronizing the coded audio, video, and data into a single bitstream or
multiple bitstreams. In other words, the digital compressed video, audio, and data are all first
represented as binary formats which are referred to as bitstreams, and then the function of system
is to mix the bitstreams from video, audio, and data together. For this purpose, several issues have
to be addressed by the system part of the standard:

• Distinguishing different data, such as audio, video, or other data;
• Allocating bandwidth during muxing;
• Reallocating or decoding the different data during demuxing;
• Protecting the bitstreams in error-prone media and detecting the errors;
• Dynamically multiplexing several bitstreams.

Additional requirements for the system should include extensibility issues, such as:

• New service extensions should be possible;
• Existing decoders should recognize and ignore data they cannot understand;
• The syntax should have extension capacity.

It should also be noted that all system-timing signals are included in the bitstream. This is the
big difference between digital systems and traditional analog systems in which the timing signals
are transmitted separately. In this chapter, we will introduce the concept of systems and give detailed
explanations for existing standards such as MPEG-2. However, we will not go through the standards
page by page to explain the syntax, we will pay more attention to the core parts of the standard
and the parts which always cause confusion during implementation. One of the key issues is system
timing. For MPEG-4, we will give a presentation of the current status of the system part of the
standards.
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20.2 MPEG-2 SYSTEM

 

The MPEG-2 system standard is also referred to as ITU-T Rec. H.222.0/ISO/IEC 13818-1
(ISO/IEC, 1996). The ISO document gives a very detailed description of this standard. A simplified
overview of this system is shown in Figure 20.1.

The MPEG-2 system coding is specified in two forms: the transport stream and the program
stream. Each is optimized for a different set of applications. The audio and video data are first
encoded by an audio and a video encoder, respectively. The coded data are the compressed
bitstreams, which follow the syntax rules specified by the video-coding standard 13818-2 and audio-
coding standard 13818-3. The compressed audio and video bitstreams are then packetized to the
packetized elementary streams (PES). The video PES and audio PES are coded by system coding
to the transport stream or program stream according to the requirements of the application.

The system coding provides a coding syntax which is necessary and sufficient to synchronize
the decoding and presentation of the video and audio information; at the same time it also has to
ensure that data buffers in the decoders do not overflow and underflow. Of course, buffer regulation
is also considered by the buffer control or rate control mechanism in the encoder. The video, audio,
and data information are multiplexed according to the system syntax by inserting time stamps for
decoding, presenting, and delivering the coded audio, video, and other data. It should be noted that
both the program stream and the transport stream are packet-oriented multiplexing. Before we
explain these streams, we first give a set of parameter definitions used in the system documents.
Then, we describe the overall picture regarding the basic multiplexing approach for single video
and audio elementary streams.
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In this section, the technical definitions that are often used in the system document are provided.
First, the major packet- and stream-related definitions are given.

 

Access unit:

 

A coded representation of a presentation unit. In the case of audio, an access
unit is the coded representation of audio frame. In the case of video, an access unit indicates
all the coded data for a picture, and any stuffing that follows it, up to but not including
the start of the next access unit. In other words, the access unit begins with the first byte
of the first start code. Except for the end of sequence, all bytes between the last byte of
the coded picture and the sequence end code belong to the access unit.

 

DSM

 

-

 

CC:

 

Digital storage media command and control.

 

Elementary stream 

 

(

 

ES

 

)

 

:

 

A generic term for one of the coded video, coded audio, or other
coded bitstreams in PES packets. One elementary stream is carried in a sequence of PES

 

FIGURE 20.1

 

Simplified overview of system layer scope. (From ISO/IEC 13818-1, 1996. With permission.)
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packets with one and only one stream identification. This implies that one elementary
stream can only carry the same type of data, such as audio or video.

 

Packet:

 

A packet consists of a header followed by a number of contiguous bytes from an
elementary data stream.

 

Packet identification 

 

(

 

PID

 

)

 

:

 

A unique integer value used to associate elementary streams
of a program in a single- or multiprogram transport stream. It is a 13-bit field, which
indicates the type of data stored in the packet payload.

 

PES packet:

 

The data structure used to carry elementary stream data. It contains a PES
packet header followed by PES packet payload

 

.
PES stream:

 

A PES stream consists of PES packets, all of whose payloads consist of data
from a single elementary steam, and all of which have the same stream identification.
Specific semantic constraints apply.

 

PES packet header:

 

The leading fields in the PES packet up to and not including the PES
packet data byte fields. Its function will be explained in the section on syntax description.

 

System target decoder 

 

(

 

STD

 

)

 

:

 

A hypothetical reference model of a decoding process used
to describe the semantics of the MPEG-2 system-multiplexed bitstream.

 

Program-specific information 

 

(

 

PSI

 

)

 

:

 

PSI includes normal data that will be used for demul-
tiplexing of programs in the transport stream by decoders. One case of PSI, the nonman-
datory network information table, is privately defined.

 

System header:

 

The leading fields of program stream packets.

 

Transport stream packet header:

 

The leading fields of program stream packets.

The following definitions are related to timing information:

 

Time stamp:

 

A term that indicates the time of a specific action such as the arrival of a byte
or the presentation of a presentation unit.

 

System clock reference 

 

(

 

SCR

 

)

 

:

 

A Time stamp in the program stream from which decoder
timing is derived.

 

Elementary stream clock reference 

 

(

 

ESCR

 

)

 

:

 

A time stamp in the PES stream from which
decoders of the PES stream may derive timing information.

 

Decoding time stamp 

 

(

 

DTS

 

)

 

:

 

A time stamp that may be presented in a PES packet header
used to indicate the time when an access unit is decoded in the system target decoder.

 

Program clock reference 

 

(

 

PCR

 

)

 

:

 

A time stamp in the transport stream from which decoder
timing is derived.

 

Presentation time stamp 

 

(

 

PTS

 

)

 

:

 

A time stamp that may be presented in the PES packet
header used to indicate the time that a presentation unit is presented in the system target
decoder.

 

20.2.2 T
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TREAMS

 

The transport stream is a stream definition that is designed for communicating or storing one or
more programs of coded video, audio, and other kinds of data in lossy or noisy environments where
significant errors may occur. A transport stream combines one or more programs with one or more
time bases into a single stream. However, there are some difficulties with constructing and delivering
a transport stream containing multiple programs with independent time bases such that the overall
bit rate is variable. As in other standards, the transport stream may be constructed by any method
that results in a valid stream. In other words, the standards just specify the system coding syntax.
In this way, all compliant decoders can decode bitstreams generated according to the standard
syntax. However, the standard does not specify how the encoder generates the bitstreams. It is
possible to generate transport streams containing one or more programs from elementary coded
data streams, from program streams, or from other transport streams, which may themselves contain
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one or more programs. An important feature of a transport stream is that the transport stream is
designed in such a way that makes the following operations possible with minimum effort. These
operations include several transcoding requirements, including the following:

• Retrieve the coded data from one program within the transport stream, decode it, and
present the decoded results. In this operation, the transport stream is directly demulti-
plexed and decoded. The data in the transport stream are constructed in two layers: a
system layer and a compression layer. The system decoder decodes the transport streams
and demultiplexes them to the compressed video and audio streams that are further
decoded to the video and audio data by the video decoder and the audio decoder,
respectively. It should be noted that nonaudio/video data is also allowed. The function
of the transport decoder includes demultiplexing, depacketization, and other functions
such as error detection, which will be explained in detail later. This procedure is shown
in Figure 20.2.

 

•

 

Extract the transport stream packets from one program within the transport stream and
produce as the output a new transport stream that contains only that one program. This
operation can be seen as system-layer transcoding that converts a transport stream
containing multiple programs to a transport stream containing only a single program. In
this case, the remultiplexing operation may need the correction of PCR values to account
for changes in the PCR locations in the bitstream.

• Extract the transport stream packets of one or more programs from one or more transport
streams and produce as output of a new transport stream. This is another kind of
transcoding that converts selected programs of one transport stream to a different one.

• Extract the contents of one program from the transport stream and produce as output
another program stream. This is a transcoding that converts the transport program to a
program stream for certain applications.

 

•

 

Convert a program stream to a transport stream that can be used in a lossy communication
environment.

To answer the question of how to define the transport stream and then make the above
transcoding simpler and more efficient, we will begin by describing the technical detail of the
systems specification in the following section.

 

20.2.2.1 Structure of Transport Streams

 

As described earlier, the task of the transport stream coding layer is to allow one or more programs
to be combined into a single stream. Data from each elementary stream are multiplexed together
with timing information, which is used for synchronization and presentation of the elementary

 

FIGURE 20.2

 

Example of transport demultiplexing and decoding. (From ISO/IEC 13818-1, 1996. With
permission.)
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stream during decoding. Therefore, the transport stream consists of one or more programs such as
audio, video, and data elementary stream access units. The transport stream structure is a layered
structure. All the bits in the transport stream are packetized to the transport packets. The size of
transport packet is chosen to be 188 bytes, among which 4 bytes are used as the transport stream
packet header. In the first layer, the header of the transport packets indicates whether or not the
transport packet has an adaptation field. If there is no adaptation field, the transport payload may
consist of only PES packets or consist of both PES packets and PSI packets. Figure 20.3 illustrates
the case of containing PES packets only. If the transport stream carries both PES and PSI packets,
then the structure of transport stream is as shown in Figure 20.4 would result. If the transport stream
packet header indicates that the transport stream packet includes the adaptation field, then the
construct is as shown in Figure 20.5.

In Figure 20.5, the appearance of the optional field depends on the flag settings. The function
of adaptation field will be explained in the syntax section. Before we go ahead, however, we should
give a little explanation regarding the size of the transport stream packet. More specifically, why
is a packet size of 188 bytes chosen? Actually, there are several reasons. First, the transport packet
size needs to be large enough so that the overhead due to the transport headers is not too significant.
Second, the size should not be so large that the packet-based error correction code becomes
inefficient. Finally, the size 188 bytes is also compatible with ATM packet size which is 47 bytes;
one transport stream packet is equal to four ATM packets. So the size of 188 bytes is not a theoretical
solution but a practical and compromised solution.

 

FIGURE 20.3

 

Structure of transport stream containing only PES packets. (From ISO/IEC 13818-1, 1996.
With permission.)

 

FIGURE 20.4

 

Structure of transport stream containing both PES packets and PSI packets.
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20.2.2.2 Transport Stream Syntax

 

As we indicated, the transport stream is a layered structure. To explain the transport stream syntax
we start from the transport stream packet header. Since the header part is very important, it is the
highest layer of the stream. We describe it in more detail. For the rest, we do not repeat the standard
document and just indicate the important parts that we think may cause some confusion for readers.
The detail of other parts that are not covered here can be found from the MPEG standard document
(ISO/IEC, 1996).

 

Transport stream packet header

 

 — This header contains four bytes that are assigned as eight parts:

The mnemonic in the above table means:

• The sync_byte is a fixed 8-bit field whose value is 0100 0111 (hexadecimal 47 = 71).
• The transport_error_indicator is a 1-bit flag, when it is set to 1, it indicates that at least

1 uncorrectable bit error exists in the associated transport stream packet. It will not be
reset to 0 unless the bit values in error have been corrected. This flag is useful for error
concealment purpose, since it indicates the error location. When an error exists, either
resynchronization or another concealment method can be used.

• The payload_unit_start_indicator is a 1-bit flag that is used to indicate whether the
transport stream packets carry PES packets or PSI data. If it carries PES packets, then
the PES header starts in this transport packet. If it contains PSI data, then a PSI table
starts in this transport packet.

• The transport_priority is a 1-bit flag which is used to indicate that the associated packet
is of greater priority than other packets having the same PID which do not have the flag

 

FIGURE 20.5

 

Structure of transport stream whose header contains an adaptation field.

 

Syntax No. of bits Mnemonic

 

sync_byte 8 bslbf
transport_error_indicator 1 bslbf
payload_unit_start_indicator 1 bslbf
transport_priority 1 bslbf
PID 13 uimsbf
transport_scrambling_control 2 bslbf
adaptation_field_control 2 bslbf
continuity_counter 4 uimsbf

 

bslbf Bitstream left bit first
unimsbf Unsigned integer, most significant bit first
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bit set to 1. The original idea of adding a flag to indicate the priority of packets comes
from video coding. The video elementary bitstream contains mostly bits that are con-
verted from DCT coefficients. The priority indicator can set a partitioning point that can
divide the data into a more important part and a less important part. The important part
includes the header information and low-frequency coefficients, and the less important
part includes only the high-frequency coefficients that have less effect on the decoding
and quality of reconstructed pictures.

• PID is a 13-bit field that provides information for multiplexing and demultiplexing by
uniquely identifying which packet belongs to a particular bitstream.

• The transport_scrambling_control is a 2-bit flag. 00 indicates that the packet is not
scrambled, the other three (01, 10, and 11) indicate that the packet is scrambled by a
user-defined scrambling method. It should be noted that the transport packet header and
adaptation field (when it is present) should not be scrambled. In other words, only the
payload of transport packets can be scrambled.

• The adaptation_field_control is a 2-bit indicator that is used to inform whether or not
there is an adaptation field present in the transport packet. 00 is reserved for future use:
01 indicates no adaptation field; 10 indicates that there is only an adaptation field and
no payload. Finally, 11 indicates that there is an adaptation field followed by a payload
in the transport stream packet.

• The continuity_counter is a 4-bit counter which increases with each transport stream
packet having the same PID.

From the header of the transport stream packet we can obtain information about future bits.
There are two possibilities; if the adaptation field control value is 10 or 11, then the bits following
the header are adaptation field; otherwise, the bits are payload. The information contained in the
adaptation field is described as follows.

 

Adaptation field

 

 — The structure of the adaptation field data is shown in Figure 20.5. The
functionality of these headers is basically related to the timing and decoding of the elementary bit
steam. Some important fields are explained below:

• Adaptation field length is an 8-bit field specifying the number of bytes immediately
following it in the adaptation field including stuffing bytes.

• Discontinuity indicator is 1-bit flag which when it is set to 1 indicates that the discon-
tinuity state is true for the current transport packet. When this flag is set to 0, the
discontinuity is false. This discontinuity indicator is used to indicate two types of
discontinuities, system time-base discontinuities and continuity-counter discontinuities.
In the first type, this transport stream packet is the packet of a PID designed as a PCR-
PID. The next PCR represents a sample of a new system time clock for the associated
program. In the second type, the transport stream packet could be any PID type. If the
transport stream packet is not designated as a PCR-PID, the continuity counter may be
discontinuous with respect to the previous packet with the same PID or when a system
time-base discontinuity occurs. For those PIDs that are not designated as PCR-PIDs, the
discontinuity indicator may be set to 1 in the next transport stream packet with the same
PID, but will not be set to 1 in three consecutive transport stream packet with the same
PID.

• Random access indicator is a 1-bit flag that indicates the current and subsequent transport
stream packets with the same PID, containing some information to aid random access
at this point. Specifically, when this flag is set to 1, the next PES packet in the payload
of the transport stream packet with the current PID will contain the first byte of a video
sequence header or the first byte of an audio frame.
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• Elementary stream priority indicator is used for data-partitioning application in the
elementary stream. If this flag is set to 1, the payload contains high-priority data, such
as the header information, or low-order DCT coefficients of the video data. This packet
will be highly protected.

• PCR flag and OPCR flag: If these flags are set to 1, it means that the adaptation field
contains the PCR data and original PCR data. These data are coded in two parts.

• Splicing point flag: When this flag is set to 1, it indicates that a splice-countdown field
will be present to specify the occurrence of a splicing point. The splice point is used to
splice two bitstreams smoothly into one stream. The Society of Motion Picture and
Television Engineers (SMPTE) has developed a standard for seamless splicing of two
streams (SMPTE, 1997). We will describe the function of splicing later.

• Transport private flag: This flag is used to indicate whether the adaptation field contains
private data.

• Adaptation filed extension-flag: This flag is used to indicate whether the adaptation field
contains the extension field that gives more-detailed splicing information.

 

Packetized elementary stream

 

 — It is noted that the elementary stream data is carried in PES
packets. A PES packet consists of a PES packet header followed by packet data, or payload. The
PES packet header begins with a 32-bit start-code that also identifies the stream or stream type to
which the packet data belong. The first byte of each PES packet header is located at the first
available payload location of a transport stream packet. The PES packet header may also contain
decoding time stamps (DTS), presentation time stamps (PTS), elementary stream clock reference
(ESCR), and other optional fields such as DSM trick-mode information. The PES packet data field
contains a variable number of contiguous bytes from one elementary stream. Readers can learn
this part of the syntax in the same way as described for the transport packet header and adaptation
field.

 

Program-specific information

 

 — PSI includes both MPEG-2 system-compliant data and private
data. In the transport streams, the program-specific information is classified into four table struc-
tures: program association table, program map table, conditional access table, and network infor-
mation table. The network information table is private data and the other three are MPEG-2 system
compliant data. The program associate table provides the information of program number and the
PID value of the transport stream packets. The program map table specifies PID values for
components of one or more programs. The conditional access (CA) table provides the association
between one or more CA systems, their entitlement management messages (EMM), and any special
parameters associated with them. The EMM are private conditional-access information that specify
the authorization levels or the services of specific decoders. They may be addressed to a single
decoder or groups of decoders. The network information table is optional and its contents are
private. Its contents provide physical network parameters such as FDM frequencies, transponder
numbers, etc.
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The operation of bitstream splicing is switching from one source to another according to the
requirements of the applications. Splicing is the most common operation performed in TV stations
today (Hurst, 1997). The examples include inserting commercials into programming, editing,
inserting, or replacing a segment into an existing stream, and inserting local commercials or news
into a network feed. The most important problem for bitstream splicing is managing the buffer
fullness at the decoder. Usually, the encoded bitstream satisfies the buffer regulation with a buffer
control algorithm at the encoder. During decoding, this bitstream will not cause the decoder buffer
to suffer from buffer overflow and underflow. A typical example of buffer fullness trajectory at the
decoder is shown in Figure 20.6. However, after bitstream splicing, the buffer regulation is not



 

© 2000 by CRC Press LLC

 

guaranteed depending on the selection of splicing point and the bit rate of the new bitstream. It is
necessary to have a rule for selecting the splicing point.

The committee on packetized television technology, PT20 of SMPTE, has proposed a standard
that deals with the splice point for MPEG-2 transport streams (SMPTE, 1997). In this standard,
two techniques have been proposed for selecting splicing points. One is the seamless splicing and
the other is nonseamless splicing. The seamless splicing approach can provide clean and instant
switching of bitstreams, but it requires careful selection of splicing points on video bitstreams. The
nonseamless splicing approach inserts a “drain time” that is a period of time between the end of
an old stream and the start of a new stream to avoid overflow in the decoder buffer. The “drain
time” assures that the new stream begins with an empty buffer. However, the decoder has to freeze
the final presented picture of the old stream and wait for a period of start-up delay while the new
stream is initially filling the buffer. The difference between seamless splicing and nonseamless
splicing is shown in Figure 20.7.

 

FIGURE 20.6

 

Typical buffer fullness trajectory at the decoder.

 

FIGURE 20.7

 

Difference between seamless splicing and nonseamless splicing: (a) the VBV buffer behavior
of seamless splicing, (b) the VBV buffer behavior of nonseamless buffer behavior.
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In the SMPTE proposed standard (SMPTE, 1997), the optional indicator data in the PID streams
(all the packets with the same PID within a transport stream) are used to provide important
information about the splice for the applications such as inserting commercial programs. The
proposed standard defines a syntax that may be carried in the adaptation field in the packets of the
transport stream. The syntax provides a way to convey two kinds of information. One type of
information is splice-point information that consists of four splicing parameters: drain time, in-
point flag, ground id and picture-param-type. The other types of information are splice point
indicators that provide a method to indicate application-specific information. One such application
example is the insertion indicator for commercial advertisements. This indicator includes flags to
indicate that the original stream is obtained from the network and that the splice point is the time
point where the network is going out or going in. Other fields give information about whether it
is scheduled, how long it is expected to last, as well as an ID code. The detail about splicing can
be found in the proposed standard (SMPTE, 1997).

Although the standard provides a tool for bitstream splicing, there are still some difficulties for
performing bitstream splicing in practice. One problem is that the selection of a splicing point has
to consider that the bitstream contains video that has been encoded by a predictive coding scheme.
Therefore, the new stream should begin from the anchor picture. Other problems include uneven
timing frames and splicing of bitstreams with different bit rates. In such cases, one needs to be
aware of any consequences related to buffer overflow and underflow.
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The program stream is defined for the multiplexing of audio, video, and other data into a single
stream for communication or storage application. The essential difference between the program
stream and transport stream is that the transport stream is designed for applications with noisy
media, such as in terrestrial broadcasting. Since the program stream is designed for applications
in the relatively error-free environment, such as in the digital video disk (DVD) and digital storage
applications, the overhead in the program stream is less than in the transport stream.

A program stream contains one or more elementary streams. The data from elementary streams
are organized in the form of PES packets. The PES packets from different elementary streams are
multiplexed together. The structure of a program stream is shown in Figure 20.8.

 

FIGURE 20.8

 

Structure of program stream.
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A program stream consists of packs. A pack begins from a pack header followed by PES
packets. The pack header is used to carry timing and bit-rate information. It begins with a 32-bit
start-code followed by system clock reference (SCR) information, program muxing rate, and stuffing
bits. The SCR indicates the intended arrival time of the byte that contains the last bit of SCR base
at the input of the decoder. The program muxing rate is a 22-bit integer that specifies the rate at
the decoder. The value of this rate may vary from pack to pack. The stuffing bits are inserted by
the encoder to meet channel requirements. The pack header may contain a system header that may
be repeated optionally. The system header contains the summary of the system parameters, such
as header length, rate bound, audio bound, video bound, stream id, and other system parameters.
The rate bound is used to indicate the maximum rate in any pack of the program stream, and it
may be used to assess whether the decoder is capable of decoding the entire stream. The audio
bound and video bound are used to indicate the maximum values of audio and video in the program
stream. There are some other flags that are used to give some system information. A PES packet
consists of a PES packet header followed by packet data. The PES packets have the same structure
as in the transport stream.

A special type of PES packet is the program stream map; it is present when the stream id value
is 0 

 

¥

 

 BC. The program stream map provides a description of the elementary streams in the program
stream and their relationship to one another. The data structure of program stream map is shown
in Figure 20.9.

Other special types of PES packets include program stream directory and program element
descriptors. The major information contained in the program stream directory includes the number
of access units, packet stream id, and presentation time stamp (PTS). The program and program
descriptors provide the coding information about the elementary streams. There are a total of
17 descriptors including video descriptor, audio descriptor, and hierarchy descriptor. For the detail
on these descriptors, the reader is referred to the standard document (ISO/IEC, 1996).
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The principal function of the MPEG system is to define the syntax and semantics of the bitstreams
that allow the system decoder to perform two operations among multiple elementary streams:
demultiplexing and resynchronization. Therefore, the system encoder has to add the timing infor-
mation to the program streams or transport streams during the process of multiplexing the coded
video, audio, and data elementary streams to a single stream or multiple streams. System, video,
and audio all have a timing model in which the end-to-end delay from the signal input to an encoder
to the signal output from a decoder is a constant. The delay is the sum of encoding, encoder
buffering, multiplexing, transmission or storage, demultiplexing, decoding buffering, decoding, and
presentation delays. The buffering delays could be variable, while the sum of total delays should
be constant.

In the program stream, the timing information for a decoding system is the SCR; in the transport
stream, the timing information is given by the PCR. The SCR and PCR are time stamps that are

 

FIGURE 20.9

 

Data structure of program stream map.
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used to encode the timing information of the bitstream itself. The 27 MHz SCR is the kernel time
base for the entire system. The PCR is 90 kHz, which is 
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 of the SCR. In the transport stream,
the PCR is encoded with 33 bits and is contained in the adaptation field of the transport stream.
The PCR can be extended to the SCR with an additional 9 bits in the adaptation field. For the
program stream, the SCR is directly encoded with 42 bits and it is located in the pack header of
the program stream. The synchronization among multiple elementary streams is accomplished with
a PTS in the program and transport streams. The PTS is 90 kHz and represented with a 33-bit
number coded in three separate parts contained in the PES packet header. In the case of audio, if
a PTS is present, it will refer to the first access unit commencing in the PES packet. An audio
access unit starts in a PES packet if the first byte of the audio access unit is present in the PES
packet. In the case of video, if a PTS occurs in the PES packet header, it refers to the access-unit
containing the first picture start-code that commences in this PES packet. A picture start-code
commences in the PES packet if the first byte of the picture start-code is present in the PES packet.
In an MPEG-2 system, the system clock reference is specified to satisfy the following conditions:
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In the encoder, the SCR or PCR are encoded in the bitstream at intervals up to 100 ms in the
transport stream and up to 700 ms in the program stream. As such, they can be used to reconstruct
the system time clock in the decoder with sufficient accuracy for all identified applications. The
decoder has its own system time clock (STC) with the same frequency, 90 kHz for the transport
stream and 27 MHz for the program stream. In a correctly constructed MPEG-2 system bitstream,
each SCR arrives at the decoder at precisely the time indicated by the value of that SCR. If the
decoder’s clock frequency matches the one in the encoder, the decoding and presentation of video
and audio will automatically have the same rate as those in the encoder; then the end-to-end delay
will be constant. However, the STC in the decoder may not exactly match the one in the encoder
due to the independent oscillators. Therefore, a decoder’s system clock frequency may not match
the encoder’s system clock frequency that is sampled and indicated in the SCR. One method is to
use a free run 27 MHz in the decoder. The mismatch between the encoder’s system time clock and
the decoder’s system time clock is handled by skipping or repeating frames. Another method to
handle the mismatch is to use the received SCRs (which occur at least once in the intervals of
100 ms for the transport stream and 700 ms for the program stream). In this way, the decoder’s
system time clock is a slave to the encoder’s system time clock. This can be implemented with a
phase-locked loop (PLL) as shown in Figure 20.10.

The synchronization among multiple elementary streams can be achieved by adjusting the
decoding of streams to a common master time base rather than by adjusting the decoding of one

 

FIGURE 20.10

 

System time clock recovery using PLL.
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stream to match that of another. The master time base may be one of the many decoder clocks, the
clock of the data source, or some external clock. Each program in a transport stream, which may
contain multiple programs, may have its own time base. The time bases of different programs
within a transport stream may be different.

In the digital video systems, the 13.5 MHz sampling rate of the luminance signal and 6.25 MHz
chrominance signals of the CCIR601 digital video are all synchronized to 27 MHz system time
clock. The NTSC or PAL TV signals are also phase-locked to the same 27 MHz clock such that
the horizontal and vertical synchronous signals and the color burst clock are all locked to the
27-MHz system time clock.

In the TV studio applications, the entire TV studio equipment is synchronized to the same time
base as a composite horizontal and vertical synchronization signal in order to perform the seamless
video source switching and editing. It should be noted that this time base is definitely not synchro-
nized to the PCRs from various remote encoder sites. The 27-MHz local decoder’s system time
clock is locked to the same studio composite horizontal and vertical synchronization signal. The
33 bits of video STC counter is initialized by the latest video PTS, then calibrated using the 90-kHz
clock derived from the 27-MHz system clock in the decoder. If the 27-MHz system clock in the
decoder is synchronized with the system clock on the transmitting end, the STC counter will be
always the same as the incoming PTS numbers. However, there may be some mismatch between
the system clocks. As each new PTS arrives, the PTS will be compared with the STC counter. If
the PTS is larger than the STC plus half of the duration of the PTS, it means that the 27-MHz
decoder clock is too slow and the bit buffer may overflow. In this case, the decoder should skip
some of the current data to search for the next anchor frame so that decoding can be continued. If
the PTS is less than the STC minus half of the duration of the PTS, the bit buffer may underflow.
The decoding will halt and repeatedly display the current frame. The audio decoder will also be
locked on the same 27-MHz system clock, where similar skipping and repeating of audio data are
used to handle the mismatch.

In the low-cost consumer “set-top box” (STB) applications, a simple free-run 27-MHz decoder
system clock with the skipping and repeating frame scheme can provide pretty good results. In
fact, the skipping or repeating frame may happen once in a 2- or 4-hour period with a free-run
27-MHz crystal clock. The STC counter will be set by the latest PTS, then count on the 90-kHz
STC clock derived from the free-run 27-MHz crystal clock. The same skipping or repeating display
control as the TV studio will be used.

For a complex STC solution, a phase-locked loop with VCXO (voltage controlled crystal
oscillator) in the decoder is used to synchronize the incoming PCR data. The 33-bit decoder’s PCR
counter is initialized by the latest PCR data, then the 27-MHz system clock is calibrated. If the
decoder’s system clock is synchronized with the encoder’s remote 27-MHz system clock, every
incoming PCR data will be the same as the decoder’s PCR counter or have small errors from PCR
jitter. The difference between the decoder’s PCR counter and the incoming PCR data indicates this
frequency jitter or drift. As long as the decoder’s 27-MHz system clock is locked on the PCR data,
the STC counter will be initialized by the latest PTS, then calibrated using the 90-kHz clock. The
similar skipping and repeating frame scheme will be used again, but the 27-MHz system clock in
the decoder is synchronized with the incoming PCR. As long as the decoder’s 27 MHz is locked
on the encoder’s 27 MHz, there will be no skipping or repeating of frames. However, if the PCR
PLL is not working properly, the skipping or repeating of frames will occur more often than when
the free-run 27-MHz system clock is used.

Finally, it should be noted that the PTS-DTS flag is used to indicate whether or not the PTS
and DTS or both of them (decoding time stamp) will be present in the PES packet header. The
DTS is a 33-bit number coded in three separate fields in the PES packet header. It is used to indicate
the decoding time.
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20.3 MPEG-4 SYSTEM

 

This section describes the specification of the MPEG-4 system or ISO/IEC 14496-1.
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The specification of the MPEG-4 system (ISO/IEC, 1998) is used to define the requirements for
the communication of interactive audiovisual scenes. An example of such a scene is shown in
Figure 20.11 (ISO/IEC, 1998). The overall operation of this system can be summarized as follows.
At the encoder, the audio, visual, and other data information is first compressed and supplemented
with synchronization timing information. The compressed data with timing information are then
passed to a delivery layer that multiplexes these data into one or more coded binary streams for
storing or transmission. At the decoder, these streams are first demultiplexed and decompressed.
The reconstructed audio and visual objects are then composed according to the scene description
and synchronization information. The composed audiovisual objects are then presented to the end
user. The important feature of the MPEG-4 standard is that the end user may have the option to
interact with this presentation since the compression is performed on the object or content basis.
The interaction information can be processed locally or transmitted back to the encoder. The scene
information is contained in the bitstreams and used in the decoding processes.

The system part of the MPEG-4 standard specifies the overall architecture of a general receiving
terminal. Figure 20.12 shows the basic architecture of the receiving terminal. The major elements
of this architecture are delivery layer, sync layer (SL), and compression layer. The delivery layer
consists of the FlexMux and TransMux. At the encoder, the coded elementary streams, which
include the coded video, audio, and other data with the synchronization and scene description
information, are multiplexed to the FlexMux streams. The FlexMux streams are transmitted to the

 

FIGURE 20.11

 

An example of MPEG-4 audiovisual scene. (From ISO/IEC 14496-1, 1998. With permission.)
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TransMux of the delivery layer from the network. The function of TransMux is not within the
scope of the system standard and it can be any of the existing transport protocols such as MPEG-2
transport stream, RTP/UDP/IP, AAL5/ATM, and H223/Mux.

Only the interface to the TransMux layer is part of the standard. Usually, the interface is the
DMIF application interface (DAI), which is not specified in the system part, but in Part 6 of the
MPEG-4 standard. The DAI specifies the data that need to be exchanged between the SL and the
delivery layer. The DAI also defines the interface for signaling information required for session
and channel setup as well as teardown. For some simple applications, it does not require full
functionality of the system specification. A simple multiplexing tool, FlexMux, with low delay and
low overhead, is defined in the system part of MPEG-4. The FlexMux tool is a flexible multiplexer
that accommodates the interleaving of SL-packetized streams with varying instantaneous bit rates.
The FlexMux packet has a variable length which may contain one or more SL packets. Also, the

 

FIGURE 20.12

 

The MPEG-4 system terminal architecture. (From ISO/IEC 14496-1, 1998. With permission.)
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FlexMux tool provides the identification for the SL packets to indicate which elementary stream
they come from. FlexMux packets with data from different SL-packetized streams, therefore, can
be arbitrarily interleaved.

The SL specifies the syntax for packetizing the elementary streams to the SL packets. The SL
packets contain an SL packet header and an SL packet payload. The SL packet header provides
the information for continuity checking in case of data loss and also carries the timing and
synchronization information as well as fragmentation and random access information. The SL
packet does not contain its length information. Therefore, SL packets must be framed by the
FlexMux tool. At the decoder, the SL packets are demultiplexed to the elementary streams in the
SL. At the same time, the timing and the synchronization information as well as fragmentation and
random access information are also extracted for synchronizing the decoding process and subse-
quently for composition of the elementary streams.

At the compression layer, the encoded elementary streams are decoded. The decoded informa-
tion is then used for the reconstruction of audiovisual information. The operation of the reconstruc-
tion includes composition, rendering, and presentation with the timing synchronization information.
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The systems decoder model (SDM) is a conceptual model that is used to describe the behavior of
decoders complying with MPEG-4 systems. It may be used for the encoder to predict how the
decoder or receiving terminal will behave in terms of buffer management and synchronization
during the process of decoding, reconstructing, and composing of audiovisual objects. The systems
decoder model includes a system timing model and a system buffer model. These models specify
the interfaces for accessing demultiplexed data streams, decoding buffers for each elementary
stream, the behavior of elementary stream decoders, composition memory for decoded data from
each decoder, and the output behavior of composition memory toward the compositor. The systems
decoder model is shown in Figure 20.13.

The timing model defines the mechanisms that allow a decoder or receiving terminal to process
time-dependent objects. This model also allows the decoder or receiving terminal to establish
mechanisms to maintain synchronization both across and within particular media types as well as
with user interaction events. In order to facilitate these functions at the decoder or receiving terminal,
the timing model requires that the transmitted data streams contain implicit or explicit timing
information. There are two sets of timing information that are defined in the MPEG-4 system. One
indicates the periodic values of the encoder clock that is used to convey the encoder’s time base
to the decoder or the receiving terminal, while the other is the desired presentation timing for each
audiovisual object. For real-time applications, the end-to-end delay from the encoder input to the
decoder output is constant. The delay is equal to the sum of the delay due to the encoding process,
buffering, multiplexing at the encoder, the delay due to the delivery layer and demultiplxing, decoder
buffering, and decoding process at the decoder.

 

FIGURE 20.13

 

Block diagram of systems decoder model. (From ISO/IEC 14496-1, 1998. With permission.)
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The buffer model is used for the encoder to monitor and control the buffer resources that are
needed for decoding each elementary stream at the decoder. The information of the buffer require-
ments is transmitted to the decoder by descriptors at the beginning of the decoding process. The
decoder can then decide whether or not it is capable of handling this particular bitstream. In
summary, the buffer model allows the encoder to schedule data transmission and to specify when
the bits may be removed from these buffers. Then the decoder can choose proper buffers so that
the buffers will not overflow or underflow during the decoding process.
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In multimedia applications a scene may consist of audiovisual objects that include the objects of
natural video, audio, texture, 2-D or 3-D graphics, and synthetic video. Since MPEG-4 is the first
object-based coding standard, reconstructing or composing a multiple audiovisual scene is quite
new. The decoder not only needs the elementary streams for the individual audiovisual objects, but
also synchronization timing information and the scene structure. This information is called the
scene description and it specifies the temporal and spatial relationships between the objects or scene
structures. The information of the scene description can be defined in the encoder or interactively
determined by the end user and transmitted with the coded objects to the decoder. The scene
description only describes the scene structure. The action of assembling these audiovisual objects
to a scene is called composition. The action of transmitting these objects from a common repre-
sentation space to a specific presentation device is called rendering.

The MPEG-4 system defines the syntax and semantics of a bitstream that can be used to describe
the relationships of the objects in space and time. However, for visual data, the system standard does
not specify the composition algorithms. Only for audio data the composition process is specified in
a normative manner. In order to allow the operations of authoring, editing, and interaction of visual
objects at the decoder the scene descriptions are coded independently from the audiovisual media.
This allows the decoder to modify the scene according to the requirements of the end user. Two
kinds of user interaction are provided in the system specification. One is client-side interaction that
involves object manipulations requested in the end user’s terminal. The manipulation includes the
modification of attributes of scene objects according to specified user actions. The other type of
manipulation is the server-side interaction that the standard does not deal with.

The scene description is a hierarchical structure that can be represented as a graph. The example
of the audiovisual scene in Figure 20.11 can be represented as in Figure 20.14. The scene description

 

FIGURE 20.14

 

Hierarchical graph representation of an audiovisual scene. (From ISO/IEC 14496-1, 1998.
With permission.)
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is represented by a parametric approach, the binary format for scenes (BIFS). The description
consists of an encoded hierarchical tree of nodes with attributes and other information. In this tree,
the leaf nodes correspond to the elementary audiovisual objects and information for grouping,
transformation, and other operation.
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The elementary streams carry data for audio or visual objects as well as for the scene description
itself. The purpose of the object description framework is to provide the link between the elementary
streams and the audiovisual scene description. The object description framework consists of a set
of descriptors that allow identifying, describing, and appropriately associating elementary streams
to each other and to audiovisual objects used in the scene description. Each object descriptor is a
collection of one or more elementary stream descriptors that are associated to a single audiovisual
object or a scene description. Object descriptors are themselves conveyed in elementary streams.
Each object descriptor is assigned an identifier (object descriptor ID), which is unique within a
defined name scope. This identifier is used to associate audiovisual objects in the scene description
with a particular object descriptor, and thus the elementary streams related to that particular object.
Elementary stream descriptors include information about the source of the stream data, in the form
of a unique numeric identifier (the elementary stream ID) or a URL pointing to a remote source
for the stream. Elementary stream descriptors also include information about the encoding format,
configuration information for the decoding process and the SL packetization, as well as quality-
of-service requirements for the transmission of the stream and intellectual property identification.
Dependencies between streams can also be signaled within the elementary stream descriptors. This
functionality may be used, for example, in scalable audio or visual object representations to indicate
the logical dependency of an enhancement layer stream to a base-layer stream. It can also be used
to describe alternative representations for the same content (e.g., the same speech content in various
languages).

The object description framework provides the hooks to implement intellectual property man-
agement and protection (IPMP) systems. IPMP descriptors are carried as part of an object descriptor
stream. IPMP elementary streams carry time-variant IPMP information that can be associated to
multiple object descriptors. The IPMP system itself is a nonnormative component that provides
intellectual property management and protection functions for the terminal. The IPMP system uses
the information carried by the IPMP elementary streams and descriptors to make protected IS
14496 content available to the terminal. An application may choose not to use an IPMP system,
thereby offering no management and protection features.

 

20.4 SUMMARY

 

In this chapter, the MPEG system issues are discussed. Two typical systems, MPEG-2 and MPEG-4,
are introduced. The major task of the system layer is to multiplex and demultiplex video, audio,
and other data to a single bitstream with synchronization timing information. For MPEG-4 systems,
there are additional issues addressed, such as interface with network applications.

 

20.5 EXERCISES

 

20-1.

 

What are two major system streams provided by MPEG-2 system? Describe some
application examples for these two streams and explain the reasons.

 

20-2.

 

The MPEG-2 system bitstream is a self-contained bitstream to facilitate synchronous
playback of video, audio, and related data. Describe what kind of timing signals are
contained in the bitstream to achieve the goal of synchronization.
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20-3.

 

How does the MPEG-2 system deal with different system clocks between the encoder
and decoder? Describe what a system may do when the decoder clock is running too
slow or too fast?

 

20-4.

 

Why is the 27-MHz system clock in MPEG-2 represented in two parts: 33 + 9 bit
extension?

 

20-5.

 

What is bitstream splicing of a transport stream? Give several application examples of
bitstream splicing and indicate the problems that may arise.

 

20-6.

 

Describe the difference between the MPEG-2 system and the MPEG-4 system.
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