
FnT

the essence of knowledge

Foundations and Trends® in
Communications and Information Theory

Network CodingTheory
Raymond Yeung, S.-Y. R. Li, N. Cai and Z. Zhang

Network CodingTheory provides a tutorial on the basic of network coding theory. It presents the

material in a transparent manner without unnecessarily presenting all the results in their full

generality.

Store-and-forward had been the predominant technique for transmitting information through a

network until its optimality was refuted by network coding theory. Network coding offers a new

paradigm for network communications and has generated abundant research interest in

information and coding theory, networking, switching, wireless communications, cryptography,

computer science, operations research, and matrix theory.

The tutorial is divided into twoparts.Part I is devoted tonetworkcoding for the transmission froma

single source node to other nodes in the network. Part II deals with the problem under the more

general circumstances when there are multiple source nodes each intending to transmit to a

different set of destination nodes.

Network Coding Theory presents a unified framework for understanding the basic notions and

fundamental results in network coding. It will be of interest to students, researchers and

practitioners working in networking research.

Network CodingTheory
Raymond Yeung, S.-Y. R. Li, N. Cai and Z. Zhang

N
etw

ork
C
oding

Theory
R
aym

ond
Yeung,S

.-Y.R
.Li,N

.C
aiand

Z
.Z

hang

This book is originally published as
Foundations and Trends

1
in Communications and

InformationTechnology,
Volume 2 Issues 4 and 5 (2005), ISSN: 1567-2190.

Network Coding Theory

Network Coding Theory

Raymond W. Yeung

The Chinese University of Hong Kong
Hong Kong, China

whyeung@ie.cuhk.edu.hk

Shuo-Yen Robert Li

The Chinese University of Hong Kong
Hong Kong, China

bob@ie.cuhk.edu.hk

Ning Cai

Xidian University
Xi’an, Shaanxi, China

caining@mail.xidian.edu.cn

Zhen Zhang

University of Southern California
Los Angeles, CA, USA
zzhang@milly.usc.edu

Boston – Delft

Foundations and Trends R© in
Communications and Information Theory

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

A Cataloging-in-Publication record is available from the Library of Congress

The preferred citation for this publication is R.W. Yeung, S.-Y.R. Li, N. Cai, and

Z. Zhang, Network Coding Theory, Foundation and Trends R© in Communications
and Information Theory, vol 2, nos 4 and 5, pp 241–381, 2005

Printed on acid-free paper

ISBN: 1-933019-24-7
c© 2006 R.W. Yeung, S.-Y.R. Li, N. Cai, and Z. Zhang

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Contents

1 Introduction 1

1.1 A historical perspective 1
1.2 Some examples 4

I SINGLE SOURCE 9

2 Acyclic Networks 11

2.1 Network code and linear network code 12
2.2 Desirable properties of a linear network code 18
2.3 Existence and construction 25
2.4 Algorithm refinement for linear multicast 40
2.5 Static network codes 44

3 Cyclic Networks 51

3.1 Non-equivalence between local and global descriptions 52
3.2 Convolutional network code 55
3.3 Decoding of convolutional network code 67

4 Network Coding and Algebraic Coding 73

v

4.1 The combination network 73
4.2 The Singleton bound and MDS codes 74
4.3 Network erasure/error correction and error detection 76
4.4 Further remarks 77

II MULTIPLE SOURCES 79

5 Superposition Coding and Max-Flow Bound 81

5.1 Superposition coding 82
5.2 The max-flow bound 85

6 Network Codes for Acyclic Networks 87

6.1 Achievable information rate region 87
6.2 Inner bound Rin 91
6.3 Outer bound Rout 107
6.4 RLP – An explicit outer bound 111

7 Fundamental Limits of Linear Codes 117

7.1 Linear network codes for multiple sources 117
7.2 Entropy and the rank function 119
7.3 Can nonlinear codes be better asymptotically? 122

Appendix A Global Linearity versus Nodal Linearity 127

Acknowledgements 133

References 135

1

Introduction

1.1 A historical perspective

Consider a network consisting of point-to-point communication
channels. Each channel transmits information noiselessly subject to the
channel capacity. Data is to be transmitted from the source node to a
prescribed set of destination nodes. Given the transmission require-
ments, a natural question is whether the network can fulfill these
requirements and how it can be done efficiently.

In existing computer networks, information is transmitted from the
source node to each destination node through a chain of intermediate
nodes by a method known as store-and-forward. In this method, data
packets received from an input link of an intermediate node are stored
and a copy is forwarded to the next node via an output link. In the
case when an intermediate node is on the transmission paths toward
multiple destinations, it sends one copy of the data packets onto each
output link that leads to at least one of the destinations. It has been
a folklore in data networking that there is no need for data processing
at the intermediate nodes except for data replication.

Recently, the fundamental concept of network coding was first intro-
duced for satellite communication networks in [211] and then fully

1

2 Introduction

developed in [158], where in the latter the term “network coding” was
coined and the advantage of network coding over store-and-forward was
first demonstrated, thus refuting the aforementioned folklore. Due to
its generality and its vast application potential, network coding has
generated much interest in information and coding theory, networking,
switching, wireless communications, complexity theory, cryptography,
operations research, and matrix theory.

Prior to [211] and [158], network coding problems for special net-
works had been studied in the context of distributed source coding
[207][177][200][212][211]. The works in [158] and [211], respectively,
have inspired subsequent investigations of network coding with a single
information source and with multiple information sources. The theory
of network coding has been developed in various directions, and new
applications of network coding continue to emerge. For example, net-
work coding technology is applied in a prototype file-sharing applica-
tion [176]1. For a short introduction of the subject, we refer the reader
to [173]. For an update of the literature, we refer the reader to the
Network Coding Homepage [157].

The present text aims to be a tutorial on the basics of the theory of
network coding. The intent is a transparent presentation without nec-
essarily presenting all results in their full generality. Part I is devoted to
network coding for the transmission from a single source node to other
nodes in the network. It starts with describing examples on network
coding in the next section. Part II deals with the problem under the
more general circumstances when there are multiple source nodes each
intending to transmit to a different set of destination nodes.

Compared with the multi-source problem, the single-source network
coding problem is better understood. Following [188], the best possi-
ble benefits of network coding can very much be achieved when the
coding scheme is restricted to just linear transformations. Thus the
tools employed in Part I are mostly algebraic. By contrast, the tools
employed in Part II are mostly probabilistic.

While this text is not intended to be a survey on the subject,
we nevertheless provide at <http://dx.doi.org/10.1561/0100000007>

1 See [206] for an analysis of such applications.

1.1. A historical perspective 3

a summary of the literature (see page 135) in the form of a table accord-
ing to the following categorization of topics:

1. Linear coding
2. Nonlinear coding
3. Random coding
4. Static codes
5. Convolutional codes
6. Group codes
7. Alphabet size
8. Code construction
9. Algorithms/protocols

10. Cyclic networks
11. Undirected networks
12. Link failure/Network management
13. Separation theorem
14. Error correction/detection
15. Cryptography
16. Multiple sources
17. Multiple unicasts
18. Cost criteria
19. Non-uniform demand
20. Correlated sources
21. Max-flow/cutset/edge-cut bound
22. Superposition coding
23. Networking
24. Routing
25. Wireless/satellite networks
26. Ad hoc/sensor networks
27. Data storage/distribution
28. Implementation issues
29. Matrix theory
30. Complexity theory
31. Graph theory
32. Random graph
33. Tree packing

4 Introduction

34. Multicommodity flow
35. Game theory
36. Matriod theory
37. Information inequalities
38. Noisy channels
39. Queueing analysis
40. Rate-distortion
41. Multiple descriptions
42. Latin squares
43. Reversible networks
44. Multiuser channels
45. Joint network-channel coding

1.2 Some examples

Terminology. By a communication network we shall refer to a finite
directed graph, where multiple edges from one node to another are
allowed. A node without any incoming edges is called a source node.
Any other node is called a non-source node. Throughout this text, in
the figures, a source node is represented by a square, while a non-source
node is represented by a circle. An edge is also called a channel and
represents a noiseless communication link for the transmission of a data
unit per unit time. The capacity of direct transmission from a node to
a neighbor is determined by the multiplicity of the channels between
them. For example, the capacity of direct transmission from the node
W to the node X in Figure 1.1(a) is 2. When a channel is from a node
X to a node Y , it is denoted as XY .

A communication network is said to be acyclic if it contains no
directed cycles. Both networks presented in Figures 1.1(a) and (b) are
examples of acyclic networks.

A source node generates a message, which is propagated through
the network in a multi-hop fashion. We are interested in how much
information and how fast it can be received by the destination nodes.
However, this depends on the nature of data processing at the nodes
in relaying the information.

1.2. Some examples 5

Fig. 1.1 Multicasting over a communication network.

Assume that we multicast two data bits b1 and b2 from the source
node S to both the nodes Y and Z in the acyclic network depicted by
Figure 1.1(a). Every channel carries either the bit b1 or the bit b2 as
indicated. In this way, every intermediate node simply replicates and
sends out the bit(s) received from upstream.

The same network as in Figure 1.1(a) but with one less channel
appears in Figures 1.1(b) and (c), which shows a way of multicasting
3 bits b1, b2 and b3 from S to the nodes Y and Z in 2 time units. This

6 Introduction

achieves a multicast rate of 1.5 bits per unit time, which is actually the
maximum possible when the intermediate nodes perform just bit repli-
cation (See [209], Ch. 11, Problem 3). The network under discussion is
known as the butterfly network.

Example 1.1. (Network coding on the butterfly network)
Figure 1.1(d) depicts a different way to multicast two bits from the
source node S to Y and Z on the same network as in Figures 1.1(b)
and (c). This time the node W derives from the received bits b1 and
b2 the exclusive-OR bit b1 ⊕ b2. The channel from W to X transmits
b1 ⊕ b2, which is then replicated at X for passing on to Y and Z. Then,
the node Y receives b1 and b1 ⊕ b2, from which the bit b2 can be
decoded. Similarly, the node Z decodes the bit b1 from the received
bits b2 and b1 ⊕ b2. In this way, all the 9 channels in the network are
used exactly once.

The derivation of the exclusive-OR bit is a simple form of coding. If
the same communication objective is to be achieved simply by bit repli-
cation at the intermediate nodes without coding, at least one channel
in the network must be used twice so that the total number of channel
usage would be at least 10. Thus, coding offers the potential advantage
of minimizing both latency and energy consumption, and at the same
time maximizing the bit rate.

Example 1.2. The network in Figure 1.2(a) depicts the conversation
between two parties, one represented by the node combination of S and
T and the other by the combination of S′ and T ′. The two parties send
one bit of data to each other through the network in the straightforward
manner.

Example 1.3. Figure 1.2(b) shows the same network as in
Figure 1.2(a) but with one less channel. The objective of Example 1.2
can no longer be achieved by straightforward data routing but is still
achievable if the node U, upon receiving the bits b1 and b2, derives
the new bit b1 ⊕ b2 for the transmission over the channel UV. As in
Example 1.1, the coding mechanism again enhances the bit rate. This

1.2. Some examples 7

Fig. 1.2 (a) and (b) Conversation between two parties, one represented by the node com-

bination of S and T and the other by the combination of S′ and T ′.

example of coding at an intermediate node reveals a fundamental fact
in information theory first pointed out in [207]: When there are mul-
tiple sources transmitting information over a communication network,
joint coding of information may achieve higher bit rate than separate
transmission.

Example 1.4. Figure 1.3 depicts two neighboring base stations,
labeled ST and S′T ′, of a communication network at a distance twice
the wireless transmission range. Installed at the middle is a relay
transceiver labeled by UV, which in a unit time either receives or trans-
mits one bit. Through UV, the two base stations transmit one bit of
data to each other in three unit times: In the first two unit times, the
relay transceiver receives one bit from each side. In the third unit time,
it broadcasts the exclusive-OR bit to both base stations, which then can
decode the bit from each other. The wireless transmission among the
base stations and the relay transceiver can be symbolically represented
by the network in Figure 1.2(b).

The principle of this example can readily be generalized to the situ-
ation with N-1 relay transceivers between two neighboring base stations
at a distance N times the wireless transmission range.

This model can also be applied to satellite communications, with
the nodes ST and S′T ′ representing two ground stations communicat-
ing with each other through a satellite represented by the node UV.
By employing very simple coding at the satellite as prescribed, the
downlink bandwidth can be reduced by 50%.

8 Introduction

Fig. 1.3 Operation of the relay transceiver between two wireless base stations.

Part I

SINGLE SOURCE

2

Acyclic Networks

A network code can be formulated in various ways at different levels
of generality. In a general setting, a source node generates a pipeline
of messages to be multicast to certain destinations. When the commu-
nication network is acyclic, operation at all the nodes can be so syn-
chronized that each message is individually encoded and propagated
from the upstream nodes to the downstream nodes. That is, the pro-
cessing of each message is independent of the sequential messages in
the pipeline. In this way, the network coding problem is independent of
the propagation delay, which includes the transmission delay over the
channels as well as processing delay at the nodes.

On the other hand, when a network contains cycles, the propagation
and encoding of sequential messages could convolve together. Thus the
amount of delay becomes part of the consideration in network coding.

The present chapter, mainly based on [187], deals with network
coding of a single message over an acyclic network. Network coding for
a whole pipeline of messages over a cyclic network will be discussed in
Section 3.

11

12 Acyclic Networks

2.1 Network code and linear network code

A communication network is a directed graph1 allowing multiple edges
from one node to another. Every edge in the graph represents a com-
munication channel with the capacity of one data unit per unit time.
A node without any incoming edge is a source node of the network.
There exists at least one source node on every acyclic network. In Part I
of the present text, all the source nodes of an acyclic network are com-
bined into one so that there is a unique source node denoted by S on
every acyclic network.

For every node T , let In(T) denote the set of incoming channels
to T and Out(T) the set of outgoing channels from T . Meanwhile,
let In(S) denote a set of imaginary channels, which terminate at the
source node S but are without originating nodes. The number of these
imaginary channels is context dependent and always denoted by ω.
Figure 2.1 illustrates an acyclic network with ω = 2 imaginary channels
appended at the source node S.

Fig. 2.1 Imaginary channels are appended to a network, which terminate at the source

node S but are without originating nodes. In this case, the number of imaginary channels
is ω = 2.

1 Network coding over undirected networks was introduced in [189]. Subsequent works can
be found in [185][159][196].

2.1. Network code and linear network code 13

A data unit is represented by an element of a certain base field F .
For example, F = GF (2) when the data unit is a bit. A message consists
of ω data units and is therefore represented by an ω-dimensional row
vector x ∈ Fω. The source node S generates a message x and sends
it out by transmitting a symbol over every outgoing channel. Message
propagation through the network is achieved by the transmission of a
symbol f̃e(x) ∈ F over every channel e in the network.

A non-source node does not necessarily receive enough information
to identify the value of the whole message x. Its encoding function
simply maps the ensemble of received symbols from all the incoming
channels to a symbol for each outgoing channel. A network code is
specified by such an encoding mechanism for every channel.

Definition 2.1. (Local description of a network code on an
acyclic network) Let F be a finite field and ω a positive integer.
An ω-dimensional F -valued network code on an acyclic communication
network consists of a local encoding mapping

k̃e : F |In(T)| → F

for each node T in the network and each channel e ∈ Out(T).

The acyclic topology of the network provides an upstream-to-
downstream procedure for the local encoding mappings to accrue into
the values f̃e(x) transmitted over all channels e. The above definition of
a network code does not explicitly give the values of f̃e(x), of which the
mathematical properties are at the focus of the present study. There-
fore, we also present an equivalent definition below, which describes a
network code by both the local encoding mechanisms as well as the
recursively derived values f̃e(x).

Definition 2.2. (Global description of a network code on an
acyclic network) Let F be a finite field and ω a positive integer. An
ω-dimensional F -valued network code on an acyclic communication net-
work consists of a local encoding mapping k̃e : F |In(T)| → F and a global

14 Acyclic Networks

encoding mapping f̃e : Fω → F for each channel e in the network such
that:

(2.1) For every node T and every channel e ∈ Out(T), f̃e(x) is uniquely
determined by (f̃d(x),d ∈ In(T)), and k̃e is the mapping via

(f̃d(x),d ∈ In(T)) 7→ f̃e(x).

(2.2) For the ω imaginary channels e, the mappings f̃e are the pro-
jections from the space Fω to the ω different coordinates,
respectively.

Example 2.3. Let x = (b1, b2) denote a generic vector in [GF (2)]2.
Figure 1.1(d) shows a 2-dimensional binary network code with the fol-
lowing global encoding mappings:

f̃e(x) = b1 for e = OS,ST,TW, and TY

f̃e(x) = b2 for e = OS′,SU,UW, and UZ

f̃e(x) = b1 ⊕ b2 for e = WX,XY, and XZ

where OS and OS′ denote the two imaginary channels in Figure 2.1.
The corresponding local encoding mappings are

k̃ST (b1, b2) = b1, k̃SU (b1, b2) = b2,

k̃TW (b1) = k̃TY (b1) = b1,

k̃UW (b2) = k̃UZ(b2) = b2, k̃WX(b1, b2) = b1 ⊕ b2,

etc.

Physical implementation of message propagation with network cod-
ing incurs transmission delay over the channels as well as processing
delay at the nodes. Nowadays node processing is likely the dominant
factor of the total delay in message delivery through the network.
It is therefore desirable that the coding mechanism inside a network
code be implemented by simple and fast circuitry. For this reason,
network codes that involve only linear mappings are of particular
interest.

2.1. Network code and linear network code 15

When a global encoding mapping f̃e is linear, it corresponds to an
ω-dimensional column vector fe such that f̃e(x) is the product x · fe,
where the ω-dimensional row vector x represents the message generated
by S. Similarly, when a local encoding mapping k̃e, where e ∈ Out(T), is
linear, it corresponds to an |In(T)|-dimensional column vector ke such
that k̃e(y) = y · ke, where y ∈ F |In(T)| is the row vector representing
the symbols received at the node T . In an ω-dimensional F -valued
network code on an acyclic communication network, if all the local
encoding mappings are linear, then so are the global encoding mappings
since they are functional compositions of the local encoding mappings.
The converse is also true and formally proved in Appendix A: If the
global encoding mappings are all linear, then so are the local encoding
mappings.

Let a pair of channels (d,e) be called an adjacent pair when there
exists a node T with d ∈ In(T) and e ∈ Out(T). Below, we formulate a
linear network code as a network code where all the local and global
encoding mappings are linear. Again, both the local and global descrip-
tions are presented even though they are equivalent. A linear network
code was originally called a “linear-code multicast (LCM)” in [188].

Definition 2.4. (Local description of a linear network code
on an acyclic network) Let F be a finite field and ω a posi-
tive integer. An ω-dimensional F -valued linear network code on an
acyclic communication network consists of a scalar kd,e, called the local
encoding kernel, for every adjacent pair (d,e). Meanwhile, the local
encoding kernel at the node T means the |In(T)| × |Out(T)| matrix
KT = [kd,e]d∈In(T),e∈Out(T).

Note that the matrix structure of KT implicitly assumes some order-
ing among the channels.

Definition 2.5. (Global description of a linear network code
on an acyclic network) Let F be a finite field and ω a positive
integer. An ω-dimensional F -valued linear network code on an acyclic
communication network consists of a scalar kd,e for every adjacent pair

16 Acyclic Networks

(d,e) in the network as well as an ω-dimensional column vector fe for
every channel e such that:

(2.3) fe =
∑

d∈In(T) kd,efd, where e ∈ Out(T).
(2.4) The vectors fe for the ω imaginary channels e ∈ In(S) form the

natural basis of the vector space Fω.

The vector fe is called the global encoding kernel for the channel e.

Let the source generate a message x in the form of an ω-dimensional
row vector. A node T receives the symbols x·fd, d ∈ In(T), from which
it calculates the symbol x·fe for sending onto each channel e ∈ Out(T)
via the linear formula

x·fe = x ·
∑

d∈In(T)

kd,efd =
∑

d∈In(T)

kd,e(x·fd),

where the first equality follows from (2.3).
Given the local encoding kernels for all the channels in an acyclic

network, the global encoding kernels can be calculated recursively in
any upstream-to-downstream order by (2.3), while (2.4) provides the
boundary conditions.

Remark 2.6. A partial analogy can be drawn between the global
encoding kernels fe for the channels in a linear network code and
the columns of a generator matrix of a linear error-correcting code
[161][190][162][205]. The former are indexed by the channels in the net-
work, while the latter are indexed by “time.” However, the mappings
fe must abide by the law of information conservation dictated by the
network topology, i.e., (2.3), while the columns in the generator matrix
of a linear error-correcting code in general are not subject to any such
constraint.

Example 2.7. Example 2.3 translates the solution in Example 1.1
into a network code over the network in Figure 2.1. This network code
is in fact linear. Assume the alphabetical order among the channels
OS,OS′,ST, . . . ,XZ. Then, the local encoding kernels at nodes are the

2.1. Network code and linear network code 17

Fig. 2.2 The global and local encoding kernels in the 2-dimensional linear network code in

Example 2.7.

following matrices:

KS =
[
1 0
0 1

]
, KT = KU = KX =

[
1 1
]
, KW =

[
1
1

]
.

The corresponding global encoding kernels are:

fe =



[
1
0

]
for e = OS,ST,TW, and TY

[
0
1

]
for e = OS′,SU,UW, and UZ

[
1
1

]
for e = WX,XY, and XZ.

The local/global encoding kernels are summarized in Figure 2.2. In fact,
they describe a 2-dimensional network code regardless of the choice
of the base field.

18 Acyclic Networks

Example 2.8. For a general 2-dimensional linear network code on
the network in Figure 2.2, the local encoding kernels at the nodes can
be expressed as

KS =
[
n q

p r

]
, KT =

[
s t
]
, KU =

[
u v
]
,

KW =
[
w

x

]
, KX =

[
y z
]
,

where n, p, q, . . . , z are indeterminates. Starting with fOS =
[
1
0

]
and

fOS′ =
[
0
1

]
, we calculate the global encoding kernels recursively as fol-

lows:

fST =
[
n

p

]
, fSU =

[
q

r

]
, fTW =

[
ns

ps

]
, fTY =

[
nt

pt

]
,

fUW =
[
qu

ru

]
, fUZ =

[
qv

rv

]
, fWX =

[
nsw + qux

psw + rux

]
,

fXY =
[
nswy + quxy

pswy + ruxy

]
, fXZ =

[
nswz + quxz

pswz + ruxz

]
.

The above local/global encoding kernels are summarized in Figure 2.3.

2.2 Desirable properties of a linear network code

Data flow with any conceivable coding schemes at an intermediate node
abides with the law of information conservation: the content of infor-
mation sent out from any group of non-source nodes must be derived
from the accumulated information received by the group from outside.
In particular, the content of any information coming out of a non-source
node must be derived from the accumulated information received by
that node. Denote the maximum flow from S to a non-source node T

2.2. Desirable properties of a linear network code 19

Fig. 2.3 Local/global encoding kernels of a general 2-dimensional linear network code.

as maxflow(T). From the Max-flow Min-cut Theorem, the information
rate received by the node T obviously cannot exceed maxflow(T). (See
for example [195] for the definition of a maximum flow and the Max-
flow Min-cut Theorem.) Similarly, denote the maximum flow from S

to a collection ℘ of non-source nodes as maxflow(℘). Then, the infor-
mation rate from the source node to the collection ℘ cannot exceed
maxflow(℘).

Whether this upper bound is achievable depends on the network
topology, the dimension ω, and the coding scheme. Three special classes
of linear network codes are defined below by the achievement of this
bound to three different extents. The conventional notation 〈·〉 for the
linear span of a set of vectors will be employed.

Definition 2.9. Let vectors fe denote the global encoding kernels in
an ω-dimensional F -valued linear network code on an acyclic network.
Write VT = 〈{fe : e ∈ In(T)}〉. Then, the linear network code qualifies
as a linear multicast, a linear broadcast, or a linear dispersion, respec-
tively, if the following statements hold:

(2.5) dim(VT) = ω for every non-source node T with maxflow(T) ≥ ω.

20 Acyclic Networks

(2.6) dim(VT) = min{ω,maxflow(T)} for every non-source node T .
(2.7) dim(〈∪T∈℘VT 〉) = min{ω,maxflow(℘)} for every collection ℘ of

non-source nodes.

In the existing literature, the terminology of a “linear network code”
is often associated with a given set of “sink nodes” with maxflow(T) ≥
ω and requires that dim(VT) = ω for every sink T . Such terminology in
the strongest sense coincides with a “linear network multicast” in the
above definition.

Clearly, (2.7) ⇒ (2.6) ⇒ (2.5). Thus, every linear dispersion is a
linear broadcast, and every linear broadcast is a linear multicast. The
example below shows that a linear broadcast is not necessarily a linear
dispersion, a linear multicast is not necessarily a linear broadcast, and
a linear network code is not necessarily a linear multicast.

Example 2.10. Figure 2.4(a) presents a 2-dimensional linear disper-
sion on an acyclic network by prescribing the global encoding kernels.
Figure 2.4(b) presents a 2-dimensional linear broadcast on the same
network that is not a linear dispersion because maxflow({T,U}) =
2 = ω while the global encoding kernels for the channels in In(T) ∪
In(U) span only a 1-dimensional space. Figure 2.4(c) presents a 2-
dimensional linear multicast that is not a linear broadcast since the
node U receives no information at all. Finally, the 2-dimensional linear
network code in Figure 2.4(d) is not a linear multicast.

When the source node S transmits a message of ω data units into the
network, a receiving node T obtains sufficient information to decode the
message if and only if dim(VT) = ω, of which a necessary prerequisite is
that maxflow(T) ≥ ω. Thus, an ω-dimensional linear multicast is useful
in multicasting ω data units of information to all those non-source
nodes T that meet this prerequisite.

A linear broadcast and a linear dispersion are useful for more elab-
orate network applications. When the message transmission is through
a linear broadcast, every non-source node U with maxflow(U) <

ω receives partial information of maxflow(U) units, which may be
designed to outline the message in more compressed encoding, at a

2.2. Desirable properties of a linear network code 21

Fig. 2.4 (a) A 2-dimensional binary linear dispersion over an acyclic network, (b) a 2-

dimensional linear broadcast that is not a linear dispersion, (c) a 2-dimensional linear
multicast that is not a linear broadcast, and (d) a 2-dimensional linear network code that

is not a linear multicast.

lower resolution, with less error-tolerance and security, etc. An exam-
ple of application is when the partial information reduces a large image
to the size for a mobile handset or renders a colored image in black
and white. Another example is when the partial information encodes
ADPCM voice while the full message attains the voice quality of PCM
(see [178] for an introduction to PCM and ADPCM). Design of linear
multicasts for such applications may have to be tailored to network
specifics. Most recently, a combined application of linear broadcast and
directed diffusion [182] in sensor networks has been proposed [204].

A potential application of a linear dispersion is in the scalability of a
2-tier broadcast system herein described. There is a backbone network
and a number of local area networks (LANs) in the system. A single
source presides over the backbone, and the gateway of every LAN is
connected to backbone node(s). The source requires a connection to

22 Acyclic Networks

the gateway of every LAN at the minimum data rate ω in order to
ensure proper reach to LAN users. From time to time a new LAN is
appended to the system. Suppose that there exists a linear broadcast
over the backbone network. Then ideally the new LAN gateway should
be connected to a backbone node T with maxflow(T) ≥ ω. However,
it may so happen that no such node T is within the vicinity to make
the connection economically feasible. On the other hand, if the lin-
ear broadcast is in fact a linear dispersion, then it suffices to connect
the new LAN gateway to any collection ℘ of backbone nodes with
maxflow(℘) ≥ ω.

In real implementation, in order that a linear multicast, a linear
broadcast, or a linear dispersion can be used as intended, the global
encoding kernels fe,e ∈ In(T) must be available to each node T . In case
this information is not available, with a small overhead in bandwidth,
the global encoding kernel fe can be sent along with the value f̃e(x)
on each channel e, so that at a node T , the global encoding kernels
fe,e ∈ Out(T) can be computed from fd,d ∈ In(T) via (2.3) [179].

Example 2.11. The linear network code in Example 2.7 meets all the
criteria (2.5) through (2.7) in Definition 2.5. Thus it is a 2-dimensional
linear dispersion, and hence also a linear broadcast and linear multicast,
regardless of the choice of the base field.

Example 2.12. The more general linear network code in Example 2.8
meets the criterion (2.5) for a linear multicast when

• fTW and fUW are linearly independent;
• fTY and fXY are linearly independent;
• fUZ and fXZ are linearly independent.

Equivalently, the criterion says that s, t,u,v,y,z, nr − pq,
npsw + nrux − pnsw − pqux, and rnsw + rqux − qpsw − qrux

are all nonzero. Example 2.7 has been the special case with

n = r = s = t = u = v = w = x = y = z = 1

2.2. Desirable properties of a linear network code 23

and

p = q = 0.

The requirements (2.5), (2.6), and (2.7) that qualify a linear network
code as a linear multicast, a linear broadcast, and a linear dispersion,
respectively, state at three different levels of strength that the global
encoding kernels fe span the maximum possible dimensions. Imagine
that if the base field F were replaced by the real field R. Then arbi-
trary infinitesimal perturbation of local encoding kernels kd,e in any
given linear network code would place the vectors fe at “general posi-
tions” with respect to one another in the space Rω. Generic positions
maximize the dimensions of various linear spans by avoiding linear
dependence in every conceivable way. The concepts of generic positions
and infinitesimal perturbation do not apply to the vector space Fω

when F is a finite field. However, when F is almost infinitely large, we
can emulate this concept of avoiding unnecessary linear dependence.

One way to construct a linear multicast/broadcast/dispersion is by
considering a linear network code in which every collection of global
encoding kernels that can possibly be linearly independent is linearly
independent. This motivates the following concept of a generic linear
network code.

Definition 2.13. Let F be a finite field and ω a positive integer. An
ω-dimensional F -valued linear network code on an acyclic communica-
tion network is said to be generic if:

(2.8) Let {e1,e2, . . . ,em} be an arbitrary set of channels, where each
ej ∈ Out(Tj). Then, the vectors fe1 ,fe2 , . . . ,fem are linearly
independent (and hence m ≤ ω) provided that

〈{fd : d ∈ In(Tj)}〉 6⊂ 〈{fek
: k 6= j}〉 for 1 ≤ j ≤ m.

Linear independence among fe1 , fe2 , . . . , fem is equivalent to that
fej /∈ 〈{fek

: k 6= j}〉 for all j, which implies that 〈{fd : d ∈ In(Tj)}〉 6⊂
〈{fek

: k 6= j}〉. Thus the requirement (2.8), which is the converse of

24 Acyclic Networks

the above implication, indeed says that any collection of global encod-
ing kernels that can possibly be linearly independent must be linearly
independent.

Remark 2.14. In Definition 2.13, suppose all the nodes Tj are equal
to some node T . If the linear network code is generic, then for any
collection of no more than dim(VT) outgoing channels from T , the cor-
responding global encoding kernels are linearly independent. In partic-
ular, if |Out(T)| ≤ dim(VT), then the global encoding kernels of all the
outgoing channels from T are linearly independent.

Theorem 2.21 in the next section will prove the existence of a generic
linear network code when the base field F is sufficiently large. Theo-
rem 2.29 will prove every generic linear network code to be a linear
dispersion. Thus, a generic network code, a linear dispersion, a linear
broadcast, and a linear multicast are notions of decreasing strength in
this order with regard to linear independence among the global encod-
ing kernels. The existence of a generic linear network code then implies
the existence of the rest.

Note that the requirement (2.8) of a generic linear network code
is purely in terms of linear algebra and does not involve the notion
of maximum flow. Conceivably, other than (2.5), (2.6) and (2.7), new
conditions about linear independence among global encoding kernels
might be proposed in the future literature and might again be entailed
by the purely algebraic requirement (2.8).

On the other hand, a linear dispersion on an acyclic network does
not necessarily qualify for a generic linear network code. A counterex-
ample is as follows.

Example 2.15. The 2-dimensional binary linear dispersion on the
network in Figure 2.5 is a not a generic linear network code because the
global encoding kernels of two of the outgoing channels from the source

node S are equal to
(

1
1

)
, a contradiction to the remark following

Definition 2.13.

2.3. Existence and construction 25

Fig. 2.5 A 2-dimensional linear dispersion that is not a generic linear network code.

2.3 Existence and construction

The following three factors dictate the existence of an ω-dimensional
F -valued generic linear network code, linear dispersion, linear broad-
cast, and linear multicast on an acyclic network:

• the value of ω,
• the network topology,
• the choice of the base field F .

We begin with an example illustrating the third factor.

Example 2.16. On the network in Figure 2.6, a 2-dimensional
ternary linear multicast can be constructed by the following local
encoding kernels at the nodes:

KS =
[
0 1 1 1
1 0 1 2

]
and KUi =

[
1 1 1

]
for i = 1 to 4. On the other hand, we can prove the nonexistence of
a 2-dimensional binary linear multicast on this network as follows.
Assuming to the contrary that a 2-dimensional binary linear multicast
exists, we shall derive a contradiction. Let the global encoding kernel

fSUi =
[
yi

zi

]
for i = 1 to 4. Since maxflow(Tk) = 2 for all k = 1 to 6,

26 Acyclic Networks

Fig. 2.6 A network with a 2-dimensional ternary linear multicast but without a

2-dimensional binary linear multicast.

the global encoding kernels for the two incoming channels to each node
Tk must be linearly independent. Thus, if Tk is at the downstream of

both Ui and Uj , then the two vectors
[
yi

zi

]
and

[
yj

zj

]
must be linearly

independent. Each node Tk is at the downstream of a different pair of

nodes among U1,U2,U3, and U4. Therefore, the four vectors
[
yi

zi

]
, i = 1

to 4, are pairwise linearly independent, and consequently, must be four

distinct vectors in GF (2)2. Thus, one of them must be
[
0
0

]
, as there

are only four vectors in GF (2)2. This contradicts the pairwise linear
independence among the four vectors.

In order for the linear network code to qualify as a linear multi-
cast, a linear broadcast, or a linear dispersion, it is required that cer-
tain collections of global encoding kernels span the maximum possible
dimensions. This is equivalent to certain polynomial functions taking
nonzero values, where the indeterminates of these polynomials are the
local encoding kernels. To fix ideas, take ω = 3 and consider a node
T with two incoming channels. Put the global encoding kernels for
these two channels in juxtaposition to form a 3 × 2 matrix. Then, this
matrix attains the maximum possible rank of 2 if and only if there
exists a 2 × 2 submatrix with nonzero determinant.

2.3. Existence and construction 27

According to the local description, a linear network code is specified
by the local encoding kernels and the global encoding kernels can be
derived recursively in the upstream-to-downstream order. From Exam-
ple 2.11, it is not hard to see that every component in a global encod-
ing kernel is a polynomial function whose indeterminates are the local
encoding kernels.

Whenanonzerovalue of suchapolynomial function is required, it does
not merely mean that at least one coefficient in the polynomial is nonzero.
Rather, it means a way to choose scalar values for the indeterminates so
that the polynomial function assumes a nonzero scalar value.

When the base field is small, certain polynomial equations may be
unavoidable. For instance, for any prime number p, the polynomial
equation zp − z = 0 is satisfied for any z ∈ GF (p). The nonexistence
of a binary linear multicast in Example 2.16 can also trace its root to
a set of polynomial equations that cannot be avoided simultaneously
over GF (2).

However, when the base field is sufficiently large, every nonzero
polynomial function can indeed assume a nonzero value with a proper
choice of the values taken by the set of indeterminates involved. This is
asserted by the following elementary proposition, which will be instru-
mental in the alternative proof of Corollary 2.24 asserting the existence
of a linear multicast on an acyclic network when the base field is suffi-
ciently large.

Lemma 2.17. Let g(z1,z2, . . . ,zn) be a nonzero polynomial with coef-
ficients in a field F . If |F | is greater than the degree of g in every zj ,
then there exist a1,a2, . . . ,an ∈ F such that g(a1,a2, . . . ,an) 6= 0.

Proof. The proof is by induction on n. For n = 0, the proposition is
obviously true, and assume that it is true for n − 1 for some n ≥ 1.
Express g(z1,z2, . . . ,zn) as a polynomial in zn with coefficients in the
polynomial ring F [z1,z2, . . . ,zn−1], i.e.,

g(z1,z2, . . . ,zn) = h(z1,z2, . . . ,zn−1)zn
k + . . . ,

where k is the degree of g in zn and the leading coefficient
h(z1,z2, . . . ,zn−1) is a nonzero polynomial in F [z1,z2, . . . ,zn−1].

28 Acyclic Networks

By the induction hypothesis, there exist a1,a2, . . . ,an−1 ∈ E such that
h(a1,a2, . . . ,an−1) 6= 0. Thus g(a1,a2, . . . ,an−1,z) is a nonzero polyno-
mial in z with degree k < |F |. Since this polynomial cannot have more
than k roots in F and |F | > k, there exists an ∈ F such that

g(a1,a2, . . . ,an−1,an) 6= 0.

Example 2.18. Recall the 2-dimensional linear network code in
Example 2.8 that is expressed in the 12 indeterminates n,p,q, . . . ,z.
Place the vectors fTW and fUW in juxtaposition into the 2 × 2 matrix

LW =
[
ns qu

ps ru

]
,

the vectors fTY and fXY into the 2 × 2 matrix

LY =
[
nt nswy + quxy

pt pswy + ruxy

]
,

and the vectors fUZ and fXZ into the 2 × 2 matrix

LZ =
[
nswz + quxz qv

pswz + ruxz rv

]
.

Clearly,

det(LW) · det(LY) · det(LZ) 6= 0

in F [n,p,q, . . . ,z]. Applying Lemma 2.17 to F [n,p,q, . . . ,z], we can set
scalar values for the 12 indeterminates so that

det(LW) · det(LY) · det(LZ) 6= 0

when the field F is sufficiently large. These scalar values then yield a
2-dimensional F -valued linear multicast. In fact,

det(LW) · det(LY) · det(LZ) = 1

when

p = q = 0

2.3. Existence and construction 29

and

n = r = s = t = · · · = z = 1.

Therefore, the 2-dimensional linear network code depicted in Figure 2.2
is a linear multicast, and this fact is regardless of the choice of the base
field F .

Algorithm 2.19. (Construction of a generic linear network
code) Let a positive integer ω and an acyclic network with N channels
be given. This algorithm constructs an ω-dimensional F -valued linear
network code when the field F contains more than

(
N+ω−1

ω−1

)
elements.

The following procedure prescribes global encoding kernels that form
a generic linear network code.

{
// By definition, the global encoding kernels for the ω

// imaginary channels form the standard basis of Fω.
for (every channel e in the network except for the imaginary

channels)
fe = the zero vector;

// This is just initialization.
// fe will be updated in an upstream-to-downstream order.

for (every node T , following an upstream-to-downstream order)
{

for (every channel e ∈ Out(T))
{

// Adopt the abbreviation VT = 〈{fd : d ∈ In(T)}〉 as before.
Choose a vector w in the space VT such that w /∈ 〈{fd : d ∈ ξ}〉,
where ξ is any collection of ω − 1 channels, including possibly
imaginary channels in In(S) but excluding e, with
VT 6⊂ 〈{fd : d ∈ ξ}〉;

// To see the existence of such a vector w, denote dim(VT)
// by k. If ξ is any collection of ω − 1 channels with VT 6⊂
// 〈{fd : d ∈ ξ}〉, then dim(VT) ∩ 〈{fd : d ∈ ξ}〉 ≤ k − 1.
// There are at most

(
N+ω−1

ω−1

)
such collections ξ. Thus,

// |VT ∩ (∪ξ〈{fd : d ∈ ξ}〉)| ≤
(
N+ω−1

ω−1

)
|F |k−1 < |F |k = |VT |.

30 Acyclic Networks

fe = w;
// This is equivalent to choosing scalar values for local
// encoding kernels kd,e for all d such that Σd∈In(T)kd,efd /∈
// 〈{fd : d ∈ ξ}〉 for every collection ξ of channels with
// VT 6⊂ 〈{fd : d ∈ ξ}〉.

}
}

}

Justification. We need to show that the linear network code constructed
by Algorithm 2.19 is indeed generic. Let {e1,e2, . . . ,em} be an arbitrary
set of channels, excluding the imaginary channels in In(S), where ej ∈
Out(Tj) for all j. Assuming that VTj 6⊂ 〈{fek

: k 6= j}〉 for all j, we need
to prove the linear independence among the vectors fe1 ,fe2 , . . . ,fem .

Without loss of generality, we may assume that fem is the last
updated global encoding kernel among fe1 ,fe2 , . . . ,fem in the algorithm,
i.e., em is last handled by the inner “for loop” among the channels
e1,e2, . . . ,em. Our task is to prove (2.8) by induction on m, which is
obviously true for m = 1. To prove (2.8) for m ≥ 2, observe that if

〈{fd : d ∈ In(Tj)}〉 6⊂ 〈{fek
: k 6= j, 1 ≤ k ≤ m}〉 for 1 ≤ j ≤ m,

then

〈{fd : d ∈ In(Tj)}〉 6⊂ 〈{fek
: k 6= j, 1 ≤ k ≤ m − 1}〉

for 1 ≤ j ≤ m − 1.

By the induction hypothesis, the global encoding kernels fe1 , fe2 , . . . ,
fem−1 are linearly independent. Thus it suffices to show that fem is
linearly independent of fe1 , fe2 , . . . , fem−1 .

Since

VTm 6⊂ {fek
: 1 ≤ k ≤ m − 1}

and fe1 , fe2 , . . . ,fem−1 are assumed to be linearly independent, we have
m − 1 < ω, or m ≤ ω. If m = ω, {e1,e2, . . . ,em−1} is one of the collec-
tions ξ of ω − 1 channels considered in the inner loop of the algorithm.
Then fem is chosen such that

2.3. Existence and construction 31

fem 6∈ 〈{fe1 ,fe2 , . . . ,fem−1}〉,

and hence fem is linearly independent of fe1 , fe2 , . . . , fem−1 .
If m ≤ ω − 1, let ζ = {e1,e2, . . . ,em−1}, so that |ζ| ≤ ω − 2. Subse-

quently, we shall expand ζ iteratively so that it eventually contains
ω − 1 channels. Initially, ζ satisfies the following conditions:

1. {fd : d ∈ ζ} is a linearly independent set;
2. |ζ| ≤ ω − 1;
3. VTm 6⊂ 〈{fd : d ∈ ζ}〉.

Since |ζ| ≤ ω − 2, there exists two imaginary channels b and c in
In(S) such that {fd : d ∈ ζ} ∪ {fb,fc} is a linearly independent set. To
see the existence of the channels b and c, recall that the global encoding
kernels for the imaginary channels in In(S) form the natural basis for
Fω. If for all imaginary channels b, {fd : d ∈ ζ} ∪ {fb} is a dependence
set, then fb ∈ 〈{fd : d ∈ ζ}〉, which implies Fω ⊂ 〈{fd : d ∈ ζ}〉, a con-
tradiction because |ζ| ≤ ω − 2 < ω. Therefore, such an imaginary chan-
nel b exists. To see the existence of the channel c, we only need to replace
ζ in the above argument by ζ ∪ {b} and to note that |ζ| ≤ ω − 1 < ω.

Since {fd : d ∈ ζ} ∪ {fb,fc} is a linearly independent set,

〈{fd : d ∈ ζ} ∪ {fb}〉 ∩ 〈{fd : d ∈ ζ} ∪ {fc}〉 = 〈{fd : d ∈ ζ}〉.

Then either

VTm 6⊂ 〈{fd : d ∈ ζ} ∪ {fb}〉

or

VTm 6⊂ 〈{fd : d ∈ ζ} ∪ {fc}〉,

otherwise

VTm ⊂ 〈{fd : d ∈ ζ}〉,

a contradiction to our assumption. Now update ζ by replacing it with
ζ ∪ {b} or ζ ∪ {c} accordingly. Then the resulting ζ contains one more
channel than before, while it continues to satisfy the three properties
it satisfies initially. Repeat this process until |ζ| = ω − 1, so that ζ is

32 Acyclic Networks

one of the collections ξ of ω − 1 channels considered in the inner loop
of the algorithm. For this collection ξ, the global encoding kernel fem

is chosen such that

fem 6∈ 〈{fd : d ∈ ξ}〉.

As

{fe1 ,fe2 , . . . ,fem−1} ⊂ ξ,

we conclude that {fe1 ,fe2 , . . . ,fem} is an independent set. This complete
the justification.
Analysis of complexity. For each channel e, the “for loop” in Algo-
rithm 2.19 processes

(
N+ω−1

ω−1

)
collections of ω − 1 channels. The pro-

cessing includes the detection of those collections ξ with VT 6⊂ 〈{fd :
d ∈ ξ}〉 and the calculation of the set VT \ ∪ξ 〈{fd : d ∈ ξ}〉. This can
be done by, for instance, Gaussian elimination. Throughout the algo-
rithm, the total number of collections of ω − 1 channels processed is
N
(
N+ω−1

ω−1

)
, a polynomial in N of degree ω. Thus, for a fixed ω, it is not

hard to implement Algorithm 2.19 within a polynomial time in N . This
is similar to the polynomial-time implementation of Algorithm 2.31 in
the sequel for refined construction of a linear multicast.

Remark 2.20. In [158], nonlinear network codes for multicasting
were considered, and it was shown that they can be constructed by
a random procedure with high probability for large block lengths. The
size of the base field of a linear network code corresponds to the block
length of a nonlinear network code. It is not difficult to see from the
lower bound on the required field size in Algorithm 2.19 that if a field
much larger than sufficient is used, then a generic linear network code
can be constructed with high probability by randomly choosing the
global encoding kernels. See [179] for a similar result for the special
case of linear multicast. The random coding scheme proposed therein
has the advantage that code construction can be done independent of
the network topology, making it potentially very useful when the net-
work topology is unknown.

While random coding offers simple construction and more flexibility,
a much larger base field is usually needed. In some applications, it is

2.3. Existence and construction 33

necessary to verify that the code randomly constructed indeed possesses
the desired properties. Such a task can be computationally non-trivial.

Algorithm 2.19 constitutes a constructive proof for the following
theorem.

Theorem 2.21. Given a positive integer ω and an acyclic network,
there exists an ω-dimensional F -valued generic linear network code for
sufficiently large base field F .

Corollary 2.22. Given a positive integer ω and an acyclic network,
there exists an ω-dimensional F -valued linear dispersion for sufficiently
large base field F .

Proof. Theorem 2.29 in the sequel will assert that every generic linear
network code is a linear dispersion.

Corollary 2.23. Given a positive integer ω and an acyclic network,
there exists an ω-dimensional F -valued linear broadcast for sufficiently
large base field F .

Proof. (2.7) ⇒ (2.6).

Corollary 2.24. Given a positive integer ω and an acyclic network,
there exists an ω-dimensional F -valued linear multicast for sufficiently
large base field F .

Proof. (2.6) ⇒ (2.5).

Actually, Corollary 2.23 also implies Corollary 2.22 by the following
argument. Let a positive integer ω and an acyclic network be given.
For every nonempty collection ℘ of non-source nodes, install a new
node T℘ and |℘| channels from every node T ∈ ℘ to this new node.
This constructs a new acyclic network. A linear broadcast on the new
network incorporates a linear dispersion on the original network.

34 Acyclic Networks

Similarly, Corollary 2.24 implies Corollary 2.23 by the following
argument. Let a positive integer ω and an acyclic network be given.
For every non-source node T , install a new node T ′ and ω incoming
channels to this new node, min{ω,maxflow(T)} of them from T and
the remaining ω−min{ω,maxflow(T)} from S. This constructs a new
acyclic network. A linear multicast on the new network then incorpo-
rates a linear broadcast on the original network.

The paper [188] gives a computationally less efficient version of
Algorithm 2.19, Theorem 2.21, and also proves that every generic linear
network code (therein called a “generic LCM”) is a linear broadcast.
The following alternative proof for Corollary 2.24 is adapted from the
approach in [184].
Alternative proof of Corollary 2.24. Let a sequence of channels
e1,e2, . . . ,em, where e1 ∈ In(S) and (ej ,ej+1) is an adjacent pair for
all j, be called a path from e1 to em. For a path P = (e1,e2, . . . ,em),
define

KP =
∏

1≤j<m

kej ,ej+1 . (2.9)

Calculating by (2.3) recursively from the upstream channels to the
downstream channels, it is not hard to find that

(2.10) fe = Σd∈In(S) (ΣP : a path from d to e KP)fd

for every channel e (see Example 2.25 below). Thus, every component
of every global encoding kernel belongs to F [∗]. The subsequent argu-
ments in this proof actually depend only on this fact alone but not on
the exact form of (2.10). Denote by F [∗] the polynomial ring over the
field F with all the kd,e as indeterminates, where the total number of
such indeterminates is equal to ΣT |In(T)| · |Out(T)|.

Let T be a non-source node with maxflow(T) ≥ ω. Then, there exists
ω disjoint paths from the ω imaginary channels to ω distinct channels
in In(T). Putting the global encoding kernels for these ω channels of
In(T) in juxtaposition to form an ω×ω matrix LT . Claim that

(2.11) det(LT) = 1 for properly set scalar values of the indeterminates.

2.3. Existence and construction 35

To prove the claim, we set kd,e = 1 when both d and e belong
to one of the ω channel-disjoint paths with d immediately preceding
e, and set kd,e = 0 otherwise. With such local encoding kernels, the
symbols sent on the ω imaginary channels at S are routed to the node
T via the channel-disjoint paths. Thus the columns in LT are simply
global encoding kernels for the imaginary channels, which form the
standard basis of the space Fω. Therefore, det(LT) = 1, verifying the
claim (2.11).

Consequently, det(LT) 6= 0 in F [∗], i.e., det(LT) is a nonzero poly-
nomial in the indeterminates kd,e. This conclusion applies to every non-
source node T with maxflow(T) ≥ ω. Thus∏

T :maxflow(T)≥ω

det(LT) 6= 0

in F [∗]. Applying Lemma 2.17 to F [∗], we can set scalar values for the
indeterminates so that ∏

T :maxflow(T)≥ω

det(LT) 6= 0

when the field F is sufficiently large, which in turns implies that
det(LT) 6= 0 for all T such that maxflow(T) ≥ ω. These scalar values
then yield a linear network code that meets the requirement (2.5) for
a linear multicast.

This proof provides an alternative way to construct a lin-
ear multicast, using Lemma 2.17 as a subroutine to search for
scalars a1,a2, . . . ,an ∈ F such that g(a1,a2, . . . ,an) 6= 0 whenever
g(z1,z2, . . . ,zn) is a nonzero polynomial over a sufficiently large field F .
The straightforward implementation of this subroutine is exhaustive
search.

We note that it is straightforward to strengthen this alternative
proof for Corollary 2.23 and thereby extend the alternative construction
to a linear broadcast.

Example 2.25. We now illustrate (2.10) in the above alternative
proof of Corollary 2.24 with the 2-dimensional linear network code in

36 Acyclic Networks

Example 2.8 that is expressed in the 12 indeterminates n,p,q, . . . ,z.
The local encoding kernels at the nodes are

KS =
[
n q

p r

]
, KT =

[
s t
]
, KU =

[
u v
]
,

KW =
[
w

x

]
, KX =

[
y z
]
.

Starting with fOS =
[
1
0

]
and fOS′ =

[
0
1

]
, we can calculate the global

encoding kernels by the formula (2.10). Take fXY as the example. There
are two paths from OS to XY and two from OS ′ to XY. For these paths,

Kp =


nswy

pswy

quxy

ruxy

when P is the path


OS,ST,TW,WX,XY

OS′,ST,TW,WX,XY

OS,SU,UW,WX,XY

OS′,SU,UW,WX,XY .

Thus

fXY = (nswy)fOS + (pswy)fOS′ + (quxy)fOS + (ruxy)fOS′

=
[
nswy + quxy

pswy + ruxy

]
,

which is consistent with Example 2.8.

The existence of an ω-dimensional F -valued generic linear network
code for sufficiently large base field F has been proved in Theorem 2.21
by a construction algorithm, but the proof of the existence of a linear
dispersion still hinges on Theorem 2.29 in the sequel, which asserts
that every generic linear network code is a linear dispersion. The
remainder of the section is dedicated to Theorem 2.29 and its proof. A
weaker version of this theorem, namely that a generic linear network
code is a linear multicast, was proved in [188].

Notation. Consider a network with ω imaginary channels in
In(S). For every set ℘ of nodes in the network, denote by cut(℘)

2.3. Existence and construction 37

the collection of channels that terminates at the nodes in ℘ but do
not originate from nodes in ℘. In particular, cut(℘) includes all the
imaginary channels when S ∈ ℘.

Example 2.26. For the network in Figure 2.3, cut({U,X}) =
{SU,WX} and cut({S,U,X,Y,Z}) = {OS,OS′,WX,TY }, where OS

and OS′ stand for the two imaginary channels.

Lemma 2.27. Let fe denote the global encoding kernel for a channel
e in an ω-dimensional linear network code on an acyclic network. Then,

〈{fe : e ∈ cut(℘)}〉 = 〈∪T∈℘VT 〉

for every set ℘ of non-source nodes, where VT = 〈fe : e ∈ In(T)〉.

Proof. First, note that

〈∪T∈℘VT 〉 = 〈{fe : e terminates at a node in ℘}〉.

We need to show the emptiness of the set

Ψ = {c : fc /∈ 〈{fe : e ∈ cut(℘)}〉 and c terminates at a node in ℘}.

Assuming the contrary that Ψ is nonempty, we shall derive a con-
tradiction. Choose c to be a channel in Ψ that it is not at the
downstream of any other channel in Ψ. Let c ∈ Out(U). From the
definition of a linear network code, fc is a linear combination of vec-
tors fd,d ∈ In(U). As fc /∈ 〈{fe : e ∈ cut(℘)}〉, there exists a channel
d ∈ In(U) with fd /∈ 〈{fe : e ∈ cut(℘)}〉. As d is at the upstream of c,
it cannot belong to the set Ψ. Thus d terminates at a node outside ℘.
The terminal end U of d is the originating end of c. This makes c a
channel in cut(℘), a contradiction to that fc /∈ 〈{fe : e ∈ cut(℘)}〉.

Lemma 2.28. Let ℘ be a collection of non-source nodes on an acyclic
network with ω imaginary channels. Then

min{ω,maxflow(℘)} = minI⊃℘|cut(I)|.

38 Acyclic Networks

Proof. The proof is by the standard version of the Max-flow Min-cut
Theorem in the theory of network flow (see, e.g., [195]), which applies
to a network with a source and a sink. Collapse the whole collection
℘ into a sink, and install an imaginary source at the upstream of S.
Then the max-flow between this pair of source and sink is precisely
min{ω,maxflow(℘)} and the min-cut between this pair is precisely
minI⊃℘|cut(I)|.

The above lemma equates min{ω,maxflow(℘)} with minI⊃℘|cut(I)|
by identifying them as the max-flow and min-cut, respectively, in a
network flow problem. The requirement (2.5) of a linear dispersion is
to achieve the natural bound min{ω,maxflow(℘)} on the information
transmission rate from S to every group ℘ of non-source nodes. The
following theorem verifies this qualification for a generic linear network
code.

Theorem 2.29. Every generic linear network code is a linear
dispersion.

Proof. Let fe denote the global encoding kernel for each channel e in
an ω-dimensional generic linear network code on an acyclic network. In
view of Lemma 2.27, we adopt the abbreviation

span(℘) = 〈fe : e ∈ cut(℘)〉 = 〈∪T∈℘VT 〉

for every set ℘ of non-source nodes. Thus, for any set I ⊃ ℘ (I may
possibly contain S), we find

span(I) ⊃ span(℘),

and therefore

dim(span(℘)) ≤ dim(span(I)) ≤ |cut(I)|.

In conclusion,

dim(span(℘)) ≤ minI⊃℘|cut(I)|.

Hence, according to Lemma 2.28,

dim(span(℘)) ≤ minI⊃℘|cut(I)| = min{ω,maxflow(℘)} ≤ ω. (2.10)

2.3. Existence and construction 39

In order for the given generic linear network code to be a linear disper-
sion, we need

dim(span(℘)) = min{ω,maxflow(℘)} (2.11)

for every set ℘ of non-source nodes. From (2.10), this is true if either

dim(span(℘)) = ω (2.12)

or

(2.13) There exists a set I ⊃ ℘ such that dim(span(℘)) = |cut(I)|.

(Again, I may contain S.) Thus, it remains to verify (2.13) under the
assumption that

dim(span(℘)) < ω. (2.14)

This is by induction on the number of non-source nodes outside ℘. First,
assume that this number is 0, i.e., ℘ contains all non-source nodes.
Then, because the linear network code is generic, from the remark
following Definition 2.13, we see that dim(span(℘)) is equal to either
|cut(I)| or |cut(℘ ∪ {S})| depending on whether |cut(℘)| ≤ ω or not.
This establishes (2.13) by taking I to be ℘ or ℘ ∪ {S}.

Next, suppose the number of non-source nodes outside ℘ is nonzero.
Consider any such node T and write

℘′ = ℘ ∪ {T}.

Then there exists a set I
′ ⊃ ℘′ such that

dim(span(℘′)) = |cut(I′)|,

which can be seen as follows. If dim(span(℘′)) = ω, take I
′ to be the

set of all nodes, otherwise the existence of such a set I
′ follows from

the induction hypothesis. Now if

dim(span(℘′)) = dim(span(℘)),

then (2.13) is verified by taking I to be I
′. So, we shall assume that

dim(span(℘′)) > dim(span(℘))

and hence

(2.15) There exists a channel d ∈ In(T) such that fd 6∈ span(℘).

40 Acyclic Networks

The assumption (2.15) applies to every non-source node T outside ℘.
Because of (2.14), it applies as well to the case T = S. Thus (2.15)
applies to every node T outside ℘. With this, we shall show that

dim(span(℘)) = |cut(℘)| (2.16)

which would imply (2.13) by taking I to be ℘. Write

cut(℘) = {e1,e2, · · · ,em}

with each ej ∈ Out(Tj). Taking T = Tj in (2.15), there exists a channel
d ∈ In(T) such that fd 6∈ span(℘). Thus

〈fd : d ∈ In(Tj)〉 6⊂ span(℘) = 〈fek
: 1 ≤ k ≤ m〉

for 1 ≤ j ≤ m. Therefore,

〈fd : d ∈ In(Tj)〉 6⊂ 〈fek
: k 6= j〉

since {ek : k 6= j} is a subset of {e1,e2, · · · ,em}. According to the
requirement (2.8) for a generic linear network code, the vectors
fe1 ,fe2 , · · · ,fem are linearly independent. This verifies (2.13).

2.4 Algorithm refinement for linear multicast

When the base field is sufficiently large, Theorem 2.21 asserts the exis-
tence of a generic linear network code and the ensuing corollaries assert
the existence of a linear dispersion, a linear broadcast, and a linear mul-
ticast. The root of all these existence results traces to Algorithm 2.19,
which offers the threshold

(
N+ω−1

ω−1

)
on the sufficient size of the base

field, where N is the number of channels in the network. It applies to
the existence of a generic linear network code as well as the existence
of a linear multicast. The lower the threshold, the stronger are the
existence statements.

Generally speaking, the weaker the requirement on a class of special
linear network codes, the smaller is the required size of the base field.
The following is an example of an acyclic network where the require-
ment on the base field for a generic linear network code is more stringent
than it is for a linear multicast.

2.4. Algorithm refinement for linear multicast 41

Fig. 2.7 A network on which a 2-dimensional binary linear multicast and a ternary generic

linear network code exist, but not a binary generic linear network code.

Example 2.30. Figure 2.7 presents a 2-dimensional linear multicast
on an acyclic network regardless of the choice of the base field. The
linear multicast becomes a 2-dimensional ternary generic linear network
code when the global encoding kernels for the two channels from S to

Y are replaced by
(

1
1

)
and

(
1
2

)
. On the other hand, it is not hard to

prove the nonexistence of a 2-dimensional binary generic linear network
code on the same network.

The aforementioned threshold on the sufficient size of the base field
is only a sufficient condition for existence but not a necessary one.
Sometimes the existence is independent of the choice of the base field.
For instance, Example 2.7 constructs a 2-dimensional linear multicast
on the network in Figure 2.2 regardless of the choice of the base field.
However, the choice of the base field and more generally the alphabet
size plays an intriguing role. For instance, a multicast may exist on
a network for a certain alphabet but not necessarily for some larger
alphabets [168].

With respect to Algorithm 2.19, it is plausible that one can devise a
computationally more efficient algorithm for constructing a code that
is weaker than a generic linear network code. The following algorithm
exemplifies a fine tuning of Algorithm 2.19 with an aim to lower the

42 Acyclic Networks

computational complexity as well as the threshold on the sufficient size
of the base field. This algorithm as presented is only for the construction
of a linear multicast, but it can be adapted for the construction of a
linear broadcast in a straightforward manner.

Algorithm 2.31. (Construction of a linear multicast) [183] The
objective is to modify Algorithm 2.19 for efficient construction of a
linear multicast. This algorithm constructs an ω-dimensional F -valued
linear multicast on an acyclic network when |F | > η, the number of
non-source nodes T in the network with maxflow(T) ≥ ω. Denote these
η non-source nodes by T1,T2, . . . ,Tη.

A sequence of channels e1,e2, . . . ,el is called a path leading to a
node Tq when e1 ∈ In(S), el ∈ In(Tq), and (ej ,ej+1) is an adjacent
pair for all j. For each q, 1 ≤ q ≤ η, there exist channel-disjoint paths
Pq,1,Pq,2, . . . ,Pq,ω leading to Tq. Altogether there are ηω paths. Adopt
the notation VT = 〈{fd : d ∈ In(T)}〉 as before. The following procedure
prescribes a global encoding kernel fe for every channel e in the network
such that dim(VTq) = ω for 1 ≤ q ≤ η.
{

// By definition, the global encoding kernels for the ω

// imaginary channels form the standard basis of Fω.
for (every channel e in the network)

fe = the zero vector;
// This is just initialization. fe will be updated in an
// upstream-to-downstream order.

for (q = 1;q ≤ η;q + +)
for (i = 1; i ≤ ω; i + +)

eq,i = the imaginary channel initiating the path Pq,i;
// This is just initialization. Later eq,i will be
// dynamically updated by moving down along the path
// Pq,i until finally eq,i becomes a channel in In(Tq).

for (every node T , in any upstream-to-downstream order)
{

for (every channel e ∈ Out(T))
{

// With respect to this channel e, define a “pair” as a

2.4. Algorithm refinement for linear multicast 43

// pair (q, i) of indices such that the channel e is on the
// path Pq,i. Note that for each q, there exists at most
// one pair (q, i). Thus, the number of pairs is at least 0
// and at most η. Since the nodes T are chosen in
// an upstream-to-downstream manner, if (q, i) is a pair,
// then eq,i ∈ In(T) by induction, so that feq,i ∈ VT . For
// reasons to be explained in the justification below,
// feq,i 6∈ 〈{feq,j : j 6= i}〉, and therefore
// feq,i ∈ VT \〈{feq,j : j 6= i}〉.

Choose a vector w in VT such that w /∈ 〈{feq,j : j 6= i}〉 for
every pair (q, i);

// To see the existence of such a vector w, denote
// dim(VT) = k. Then, dim(VT ∩ 〈{feq,j : j 6= i}〉) ≤
// k − 1 for every pair (q, i) since
// feq,i ∈ VT \〈{feq,j : j 6= i}〉. Thus
// |VT ∩ (∪(q,i): a pair〈{feq,j : j 6= i}〉)|
// ≤ η|F |k−1 < |F |k = |VT |.

fe = w;
// This is equivalent to choosing scalar values for local
// encoding kernels kd,e for all d ∈ In(T) such that
// Σd∈In(T)kd,efd /∈ 〈{feq,j : j 6= i}〉 for every pair (q, i).

for (every pair (q, i))
eq,i = e;

}
}

}

Justification. For 1 ≤ q ≤ η and 1 ≤ i ≤ ω, the channel eq,i is on the
path Pq,i. Initially eq,i is an imaginary channel at S. Through dynamic
updating it moves downstream along the path until finally reaching a
channel in In(Tq).

Fix an index q, where 1 ≤ q ≤ η. Initially, the vectors feq,1 , feq,2 , . . . ,
feq,ω are linearly independent because they form the standard basis of
Fω. At the end, they need to span the vector space VTq . Therefore,
in order for the eventually constructed linear network code to qualify

44 Acyclic Networks

as a linear multicast, it suffices to show the preservation of the linear
independence among feq,1 ,feq,2 , . . . ,feq,ω throughout the algorithm.

Fix a node Xj and a channel e ∈ Out(Xj). We need to show the
preservation in the generic step of the algorithm for each channel e

in the “for loop.” The algorithm defines a “pair” as a pair (q, i) of
indices such that the channel e is on the path Pq,i. When no (q, i) is
a pair for 1 ≤ i ≤ ω, the channels eq,1,eq,2, . . . ,eq,ω are not changed in
the generic step; neither are the vectors feq,1 , feq,2 , . . . ,feq,ω . So we may
assume the existence of a pair (q, i) for some i. The only change among
the channels eq,1,eq,2, . . . ,eq,ω is that eq,i becomes e. Meanwhile, the
only change among the vectors feq,1 ,feq,2 , . . . ,feq,ω is that feq,i becomes
a vector w /∈ 〈{feq,j : j 6= i}〉. This preserves the linear independence
among feq,1 ,feq,2 , . . . ,feq,ω as desired.
Analysis of complexity. Let N be the number of channels in the net-
work as in Algorithm 2.19. In Algorithm 2.31, the generic step for each
channel e in the “for loop” processes at most η pairs, where the pro-
cessing of a pair is analogous to the processing of a collection ξ of
channels in Algorithm 2.19. Throughout Algorithm 2.31, at most Nη

such collections of channels are processed. From this, it is not hard to
implement Algorithm 2.31 within a polynomial time in N for a fixed ω.
The computational details can be found in [183]. It is straightforward
to extend Algorithm 2.31 for the construction of a linear broadcast in
similar polynomial time.

2.5 Static network codes

So far, a linear network code has been defined on a network with a
fixed network topology. In some applications, the configuration of a
communication network may vary from time to time due to traffic con-
gestion, link failure, etc. The problem of a linear multicast under such
circumstances was first considered in [184].

Convention. A configuration ε of a network is a mapping from the
set of channels in the network to the set {0,1}. Channels in ε−1(0)
are idle channels with respect to this configuration, and the subnet-
work resulting from the deletion of idle channels will be called the

2.5. Static network codes 45

ε-subnetwork. The maximum flow from S to a non-source node T over
the ε-subnetwork is denoted as maxflowε(T). Similarly, the maximum
flow from S to a collection ℘ of non-source nodes over the ε-subnetwork
is denoted as maxflowε(℘).

Definition 2.32. Let F be a finite field and ω a positive integer. Let
kd,e be the local encoding kernel for each adjacent pair (d,e) in an ω-
dimensional F -valued linear network code on an acyclic communication
network. The ε-global encoding kernel for the channel e, denoted by
fe,ε, is the ω-dimensional column vector calculated recursively in an
upstream-to-downstream order by:

(2.17) fe,ε = ε(e)Σd∈In(T)kd,efd,ε for e ∈ Out(T).
(2.18) The ε-global encoding kernels for the ω imaginary channels are

independent of ε and form the natural basis of the space Fω.

Note that in the above definition, the local encoding kernels kd,e

are not changed with ε. Given the local encoding kernels, the ε-global
encoding kernels can be calculated recursively by (2.17), while (2.18)
serves as the boundary conditions. Let the source generate a message
x in the form of an ω-dimensional row vector when the prevailing
configuration is ε. A node T receives the symbols x · fd,ε, d ∈ In(T),
from which it calculates the symbol x · fe,ε to be sent on each channel
e ∈ Out(T) via the linear formula

x · fe,ε = ε(e)Σd∈In(T)kd,e(x · fd,ε).

In particular, a channel e with ε(e) = 0 has fe,ε = 0 according to (2.17)
and transmits the symbol x · fe,ε = 0. In a real network, a failed channel
does not transmit the symbol 0. Rather, whenever a symbol is not
received on an input channel, the symbol is regarded as being 0.

Definition 2.33. Following the notation of Definition 2.32 and adopt-
ing the abbreviation VT,ε = 〈{fd,ε : d ∈ In(T)}〉, the ω-dimensional
F -valued linear network code qualifies as an static linear multicast,
static linear broadcast, static linear dispersion, and static generic linear

46 Acyclic Networks

network code, respectively, if the following statements hold:

(2.19) dim(VT,ε) = ω for every configuration ε and every non-source
node T with maxflowε(T) ≥ ω.

(2.20) dim(VT,ε) = min{ω,maxflowε(T)} for every configuration ε and
every non-source node T .

(2.21) dim(〈∪T∈℘VT,ε〉) = min{ω,maxflowε(℘)} for every configuration
ε and every collection ℘ of non-source nodes.

(2.22) Let ε be a configuration and {e1,e2, . . . ,em} a set of chan-
nels, where each ej ∈ Out(Tj) ∩ ε−1(1). Then, the vectors
fe1,ε,fe2,ε, . . . ,fem,ε are linearly independent (and hence m ≤ ω)
provided that VTj ,ε 6⊂ 〈{fek,ε : k 6= j}〉 for all j.

The adjective “static” in the terms above stresses the fact that,
while the configuration ε varies, the local encoding kernels remain
unchanged. The advantage of using a static linear dispersion, broadcast,
or multicast in case of link failure is that the local operation at any node
in the network is affected only at the minimum level. Each receiving
node in the network, however, needs to know the configuration ε before
decoding can be done correctly. In real implementation, this informa-
tion can be provided by a separate signaling network. In the absence
of such a network, training methods for conveying this information to
the receiving nodes have been proposed in [170].

Example 2.34. A 2-dimensional GF (5)-valued linear network code
on the network in Figure 2.8 is prescribed by the following local encod-
ing kernels at the nodes:

KS =
[
1 0 1
0 1 1

]
and KX =

1 3
3 2
1 1


Claim that this is a static generic linear network code. Denote the three
channels in In(X) by c,d and e and the two in Out(X) by g and h.
The vectors fg,ε and fh,ε for all possible configurations ε are tabulated
in Table 2.1, from which it is straightforward to verify the condition
(2.22).

2.5. Static network codes 47

Fig. 2.8 A 2-dimensional GF (5)-valued static generic linear network code.

Table 2.1 The vectors fg,ε and fh,ε for all possible configurations ε in Example 2.34.

ε(c) 0 0 0 1 1 1 1

ε(d) 0 1 1 0 0 1 1

ε(e) 1 0 1 0 1 0 1

fg,ε ε(g)

[
1
1

]
ε(g)

[
0
3

]
ε(g)

[
1
4

]
ε(g)

[
1
0

]
ε(g)

[
2
1

]
ε(g)

[
1
3

]
ε(g)

[
2
4

]

fh,ε ε(h)

[
1

1

]
ε(h)

[
0

2

]
ε(h)

[
1

3

]
ε(h)

[
3
0

]
ε(h)

[
4
1

]
ε(h)

[
3
2

]
ε(h)

[
4
3

]

The following is an example of a generic linear network code that
does not qualify for a static linear multicast.

Example 2.35. On the network in Figure 2.8, a 2-dimensional
GF (5)-valued generic linear network is prescribed by the following local
encoding kernels at the nodes:

KS =
[
1 0 1
0 1 1

]
and KX =

2 1
1 2
0 0


For the configuration ε such that

ε(c) = 0 and ε(d) = ε(e) = 1,

48 Acyclic Networks

we have the ε-global encoding kernels fg,ε =
[
0
1

]
and fh,ε =

[
0
2

]
and

hence dim(VY,ε) = 1. On the other hand maxflowε(Y) = 2, and hence
this generic linear network code is not a static linear multicast.

Recall that in Algorithm 2.19 for the construction of a generic lin-
ear network code, the key step chooses for a channel e ∈ Out(T) a
vector in VT = 〈{fd : d ∈ In(T)}〉 to be the global encoding kernel fe

such that fe /∈ 〈{fc : c ∈ ξ}〉, where ξ is any collection of ω − 1 chan-
nels as prescribed with VT 6⊂ 〈{fc : c ∈ ξ}〉. This is equivalent to choos-
ing scalar values for local encoding kernels kd,e for all d ∈ In(T) such
that Σd∈In(T)kd,efd /∈ 〈{fc : c ∈ ξ}〉. Algorithm 2.19 is adapted below for
the construction of a static generic linear network code.

Algorithm 2.36. (Construction of a static generic linear
network code) Given a positive integer ω and an acyclic network
with N channels, the following procedure constructs an ω-dimensional
F -valued static generic linear network code when the field F contains
more than 2N

(
N+ω−1

ω−1

)
elements. Write VT,ε = 〈{fd,ε : d ∈ In(T)}〉. The

key step in the construction will be to choose scalar values for the local
encoding kernels kd,e such that Σd∈In(T)kd,efd,ε /∈ 〈{fc,ε : c ∈ ξ}〉 for
every configuration ε and every collection ξ of ω − 1 channels, including
possibly the imaginary channels in In(S), with VT,ε 6⊂ 〈{fc,ε : c ∈ ξ}〉.
Then, fe,ε will be set as fe,ε = ε(e)Σd∈In(T)kd,efd,ε.
{

// By definition, the global encoding kernels for the ω

// imaginary channels form the standard basis of Fω.
for (every channel e)

for (every configuration ε)
fe,ε = the zero vector;

// Initialization.
for (every node T , following an upstream-to-downstream order)
{

for (every channel e ∈ Out(T))
{

Choose scalar values for kd,e for all d ∈ T such that

2.5. Static network codes 49

Σd∈In(T)kd,efd /∈ 〈{fc,ε : c ∈ ξ}〉 for every configuration ε

and every collection ξ of channels with VT,ε 6⊂ 〈{fc,ε :
c ∈ ξ}〉;

// To see the existence of such values kd,e, let dim(VT,ε)
// = m. For any collection ξ of channels with
// VT,ε 6⊂ 〈{fc,ε : c ∈ ξ}〉, the space VT,ε ∩ 〈{fc,ε : c ∈ ξ}〉
// is less than m-dimensional. Consider the linear
// mapping from F |In(T)| onto Fω via
// [kd,e]d∈In(T) 7→ Σd∈In(T)kd,efd,ε. The nullity of this
// linear mapping is |In(T)| − m. Hence the pre-image
// of the space VT,ε ∩ 〈{fc,ε : c ∈ ξ}〉 is less than
// |In(T)|-dimensional. Thus the pre-image of
// ∪ε,ξ(VT,ε ∩ 〈{fc,ε : c ∈ ξ}〉) contains at most
// 2N

(
N+ω−1

ω−1

)
|F ||In(T)|−1 elements, which are fewer

// than |F ||In(T)| if |F | > 2N
(
N+ω−1

ω−1

)
.

for (every configuration ε)
fe,ε = ε(e)Σd∈In(T)kd,efd,ε;

}
}

}

Justification. The explanation for the code constructed by Algo-
rithm 2.36 being a static generic network code is exactly the same
as that given in the justification of Algorithm 2.19. The details are
omitted.

Algorithm 2.36 constitutes a constructive proof for the following
theorem.

Theorem 2.37. Given a positive integer ω and an acyclic network,
there exists an ω-dimensional F -valued static generic linear network
code when the field F is sufficiently large.

Corollary 2.38. Given a positive integer ω and an acyclic network,
there exists an ω-dimensional F -valued static linear dispersion when
the field F is sufficiently large.

50 Acyclic Networks

Corollary 2.39. Given a positive integer ω and an acyclic network,
there exists an ω-dimensional F -valued static linear broadcast when
the field F is sufficiently large.

Corollary 2.40. Given a positive integer ω and an acyclic network,
there exists an ω-dimensional F -valued static linear multicast when the
field F is sufficiently large.

The original proof of Corollary 2.40, given in [184], was by extending
the alternative proof of Corollary 2.24 in the preceding section. This,
together with Lemma 2.17, provides another construction algorithm for
a static linear multicast when the base field is sufficiently large. In fact,
this algorithm can be extended to the construction of a static linear
broadcast.

The requirements (2.19) through (2.21) in Definition 2.32 refer to
all the 2n possible configurations. Conceivably, a practical application
may deal with only a certain collection {ε1, ε2, . . . , εκ} of configu-
rations in order to provide link contingency, network security, network
expandability, transmission redundancy, alternate routing upon conges-
tion, etc. We may define, for instance, an {ε1, ε2, . . . , εκ}-static linear
multicast and an {ε1, ε2, . . . , εκ}-static linear broadcast by replacing
the conditions (2.19) and (2.20) respectively by

(2.23) dim(VT,ε) = ω for every configuration ε ∈ {ε1,ε2, . . . ,εκ} and
every non-source node T with maxflowε(T) ≥ ω.

(2.24) dim(VT,ε) = min{ω,maxflowε(T)} for every configuration ε ∈
{ε1,ε2, . . . ,εκ} and every non-source node T .

Recall that Algorithm 2.19 is converted into Algorithm 2.36 by modi-
fying the key step in the former. In a similar fashion, Algorithm 2.31
can be adapted for the construction of an {ε1, ε2, . . . , εκ}-static linear
multicast or linear broadcast. This will lower the threshold on the suf-
ficient size of the base field as well as the computational complexity. In
fact, the computation can be in polynomial time with respect to κN ,
where N is the number of channels in the network.

3

Cyclic Networks

A communication network is said to be cyclic when it contains at least
one directed cycle. The present section, mainly based on [186], deals
with network coding for a whole pipeline of messages over a cyclic
network.

One problem with applying the local description of a linear net-
work code (Definition 2.4) and the global description (Definition 2.5)
to a cyclic network is in their different treatments of each individ-
ual message in the pipeline generated by the source node. When the
communication network is acyclic, operation at all nodes can be syn-
chronized so that each message is individually encoded and propagated
from the upstream nodes to the downstream nodes. That is, the pro-
cessing of each message is independent of the sequential messages in
the pipeline. In this way, the network coding problem is independent
of the propagation delay, which may include transmission delay over
the channels as well as processing delay at the nodes. Over a cyclic
network, however, the global encoding kernels for all channels could
be simultaneously implemented only under the ideal assumption of
delay-free communications, which is of course unrealistic. The prop-
agation and encoding of sequential messages can potentially convolve

51

52 Cyclic Networks

together. Thus the amount of delay incurred in transmission and pro-
cessing becomes part of the consideration in network coding. That is,
the time dimension is an essential part of the transmission medium
over a cyclic network. Another problem is the non-equivalence between
Definition 2.4 and Definition 2.5 over a cyclic network, as we shall see
in the next section.

3.1 Non-equivalence between local and global
descriptions of a linear network code over a delay-free
cyclic network

Definition 2.4 for the local description and Definition 2.5 for the global
description of a linear network code are equivalent over an acyclic net-
work, because given the local encoding kernels, the global encoding
kernels can be calculated recursively in any upstream-to-downstream
order. In other words, the equation (2.3) has a unique solution for the
global encoding kernels in terms of the local encoding kernels, while
(2.4) serves as the boundary conditions. If these descriptions are applied
to a cyclic network, certain logical problems are expected to arise.

First, let fd denote the global encoding kernel for a channel d. Then
for every collection ℘ of non-source nodes in the network, it is only
natural that

〈{fd : d ∈ In(T) for some T ∈ ℘}〉 = 〈{fe : e ∈ cut(℘)}〉.

However, Definition 2.5 does not always imply this equality over a cyclic
network. Second, given the local encoding kernels, there may exist none
or one or more solutions for the global encoding kernels. Below we give
one example with a unique solution, one with no solution, and one with
multiple solutions.

Example 3.1. Recall the network in Figure 1.2(b) which depicts the
conversation between two sources over a communication network. An
equivalent representation of this network obtained by creating a single
source node that generates both b1 and b2 and appending two imaginary
incoming channels to the source node is shown in Figure 3.1. Let ST

precede V T in the ordering among the channels. Similarly, let ST ′

3.1. Non-equivalence between local and global descriptions 53

Fig. 3.1 A 2-dimensional linear broadcast on a cyclic network.

precede V T ′. Given the local encoding kernels

KS =
[
1 0
0 1

]
, KT = KT ′ =

[
1
0

]
, KU =

[
1
1

]
, KV =

[
1 1
]
,

the equation (2.3) yields the following unique solution for the global
encoding kernels:

fST = fTU =
[
1
0

]
, fST ′ = fT ′U =

[
0
1

]
fUV = fV T = fV T ′ =

[
1
1

]
.

These encoding kernels are shown in Figure 3.1 and in fact, define a
2-dimensional linear broadcast regardless of the choice of the base field.

Example 3.2. A randomly prescribed set of local encoding kernels
at the nodes on a cyclic network is unlikely to be compatible with any
global encoding kernels. In Figure 3.2(a), a local encoding kernel KT

is prescribed at each node T in a cyclic network. Had there existed
a global encoding kernel fe for each channel e, the requirement (2.3)

54 Cyclic Networks

Fig. 3.2 (a) The requirement on the global encoding kernels that are compatible with the

prescribed local encoding kernels and (b) the scalar value x · fe that would be carried by

each channel e had the global encoding kernels existed.

would imply the equations

fXY =
[
1
0

]
+ fWX , fY W =

[
0
1

]
+ fXY , fWX = fY W ,

which sum up to a contradiction.
The nonexistence of compatible global encoding kernels can also

be interpreted in terms of message transmission. Let S generate the
message x = (a,b) ∈ F 2. The intended symbol for the transmission over
each channel e is x · fe as shown in Figure 3.2(b). In particular, the
symbols p = x · fXY , q = x · fY W , and r = x · fWX are correlated by

p = a + r

q = b + p,

r = q.

These equalities imply that a + b = 0, a contradiction to the indepen-
dence between the two components a and b of a generic message.

3.2. Convolutional network code 55

Example 3.3. Let F be a field extension of GF(2). Consider the same
prescription of local encoding kernels at nodes as in Example 3.2 except

that KS =
[
1 1
0 0

]
. The following three sets of global encoding kernels

meet the requirement (2.3) in the definition of a linear network code:

fSX = fSY =
[
1
0

]
, fXY =

[
0
0

]
, fY W = fWX =

[
1
0

]
;

fSX = fSY =
[
1
0

]
, fXY =

[
1
0

]
, fY W = fWX =

[
0
0

]
;

fSX = fSY =
[
1
0

]
, fXY =

[
0
1

]
, fY W = fWX =

[
1
1

]
.

3.2 Convolutional network code

Let every channel in a network carry a scalar value in every time slot.
For both physical feasibility and mathematical logic, we need a certain
assumption on the transmission/processing delay to ensure a nonzero
delay when a message is propagated around any cycle in the network.
Both [188] and [184] simply assume a negligible transmission delay
and a unit-time delay in the node processing, and a communication
network under this assumption can be called a unit-delay network. In
this expository text, we shall again consider only unit-delay networks in
order to simplify the notation in mathematical formulation and proofs.
The results to be developed in this section, although discussed in the
context of cyclic networks, apply equally well to acyclic networks.

As a time-multiplexed network in the combined time-space domain,
a unit-delay network can be unfolded with respect to the time dimen-
sion into an indefinitely long network called a trellis network. Cor-
responding to a physical node X, there is a sequence of nodes
X0,X1,X2, . . . in the trellis network. A channel in the trellis network
represents a physical channel e only for a particular time slot t ≥ 0,
and is thereby identified by the pair (e, t). When e is from the node X

to the node Y , the channel (e, t) is then from the node Xt to the node
Yt+1. The trellis network is acyclic regardless of the topology of the

56 Cyclic Networks

Fig. 3.3 Message transmission via a convolutional network code on a cyclic network means

the pipelining of sequential symbols through every channel. The transmission media in the

time-space domain can be unfolded with respect to the time dimension into an indefinitely
long “trellis network.”

physical network, and the upstream-to-downstream order in the trellis
network is along the forward direction of time.

Example 3.4. Based on the local encoding kernels on the net-
work in Figure 3.2, every channel (e, t), t = 0,1,2, . . . in the corre-
sponding trellis network in Figure 3.3 carries a scalar value. For
instance, the channels (XY,t), t ≥ 0 carry the successive scalar val-
ues 0,0,a0,a1,a2 + b0,a0 + a3 + b1,a1 + a4 + b2,a2 + a5 + b0 + b3, . . .

Such a code is called a convolutional code (over the network) to be
formally defined in Definition 3.5.

Given a field F , functions of the form p(z)/(1 + zq(z)), where p(z)
and q(z) are polynomials, are expandable into power series at z = 0.
Rational functions of this form may be called “rational power series.”
They constitute an integral domain1, which will be denoted by F 〈z〉.
The integral domain of all power series over F is conventionally denoted
by F [[z]]. Thus F 〈z〉 is a subdomain of F [[z]].

1 An integral domain is a commutative ring with unity 1 6= 0 and containing no divisors
of 0. See for example [175].

3.2. Convolutional network code 57

Let the channel e carry the scalar value ct ∈ F for each t ≥ 0. A
succinct mathematical expression for a scalar sequence (c0, c1, . . . , ct, . . .)
is the z-transform

∑
t≥0 ctz

t ∈ F [[z]], where the power t of the dummy
variable z represents discrete time. The pipelining of scalars over a
time-multiplexed channel can thus be regarded as the transmission of
a power series over the channel. For example, the transmission of a
scalar value on the channel (XY,t) for each t ≥ 0 in the trellis network
of Figure 3.3 translates into the transmission of the power series

a0z
2 + a1z

3 + (a2 + b0)z4 + (a0 + a3 + b1)z5 + (a1 + a4 + b2)z6

+(a2 + a5 + b0 + b3)z7 + · · · (3.1)

over the channel XY in the network in Figure 3.2.

Definition 3.5. Let F be a finite field and ω a positive integer. An
ω-dimensional F -valued convolutional network code on a unit-delay net-
work consists of an element kd,e(z) ∈ F 〈z〉 for every adjacent pair (d,e)
in the network as well as an ω-dimensional column vector fe(z) over
F 〈z〉 for every channel e such that:

(3.1) fe(z) = z
∑

d∈In(T) kd,e(z)fd(z) for e ∈ Out(T).
(3.2) The vectors fe(z) for the imaginary channels e, i.e., those ω chan-

nels in In(S), consist of scalar components that form the nat-
ural basis of the vector space Fω.

The vector fe(z) is called the global encoding kernel for the channel e

and ke(z) is called the local encoding kernel for the adjacent pair (d,e).
The local encoding kernel at the node T refers to the |In(T)| × |Out(T)|
matrix KT (z) = [kd,e(z)]d∈In(T),e∈Out(T).

This notion of a convolutional network code is a refinement of a
“time-invariant linear-code multicast (TILCM)” in [LYC03]. The equa-
tion in (3.1) is the time-multiplexed version of (2.3), and the factor z

in it indicates a unit-time delay in node processing. In other words, the
filters in data processing for the calculation of fe(z) are zkd,e(z) for all
channels d ∈ In(T). Write

58 Cyclic Networks

fe(z) =
∑
t≥0

fe,tz
t

and

kd,e(z) =
∑
t≥0

kd,e,tz
t,

where each fe,t and kd,e,t are ω-dimensional column vectors in Fω. The
convolutional equation (3.1) can be further rewritten as

fe,t =
∑

d∈In(T)

 ∑
0≤u<t

kd,e,ufd,t−1−u

 for all t ≥ 0, (3.3)

with the boundary conditions provided by (3.2):

• The vectors fe,0 for the imaginary channels e form the natural
basis of the vector space Fω over F .

• fe,t is the zero vector for all t > 0 when e is one of the imag-
inary channels.

Note that for t = 0, the summation in (3.3) is empty, and fe,0 is taken
to be zero by convention. With these boundary conditions, the global
encoding kernels can be recursively calculated from the local encoding
kernels through (3.3), where the recursive procedure follows the forward
direction of time. This is equivalent to a linear network code on the
indefinitely long trellis network, which is an acyclic network.

Example 3.6. In Figure 3.2, let the ω = 2 imaginary channels be
denoted as OS and OS′. Let SX precede WX in the ordering among
the channels, and similarly let SY precede XY . A convolutional net-
work code is specified by the prescription of a local encoding kernel at
every node:

KS(z) =
[
1 0
0 1

]
, KX(z) = KY (z) =

[
1
1

]
, KW (z) =

[
1
]
,

3.2. Convolutional network code 59

and a global encoding kernel for every channel:

fOS(z) =
[
1
0

]
, fOS′(z) =

[
0
1

]
fSX(z) = z

[
1 0
0 1

]
·
[
1
0

]
=
[
z

0

]
fSY (z) = z

[
1 0
0 1

]
·
[
0
1

]
=
[

0
z

]
fXY (z) =

[
z2/(1 − z3)
z4/(1 − z3)

]
, fY W (z) =

[
z3/(1 − z3)
z2/(1 − z3)

]
fWX(z) =

[
z4/(1 − z3)
z3/(1 − z3)

]
,

where the last three global encoding kernels have been solved from the
following equations:

fXY (z) = z
[
fSX(z) fWX(z)

]
·
[
1
1

]
= z2

[
1
0

]
+ zfWX(z)

fY W (z) = z
[
fSY (z) fXY (z)

]
·
[
1
1

]
= z2

[
0
1

]
+ zfXY (z)

fWX(z) = z(fY W (z))·
[
1
]

= zfY W (z).

These local and global encoding kernels of a 2-dimensional convolu-
tional network code are summarized in Figure 3.4. They correspond to
the encoding kernels of a 2-dimensional linear network code over the
trellis network.

Represent the message generated at the source node S at the time
slot t, where t ≥ 0, by the ω-dimensional row vector xt ∈ Fω. Equiva-
lently, S generates the message pipeline represented by the z-transform

x(z) =
∑
t≥0

xtz
t,

which is an ω-dimensional row vector over F [[z]]. In real applications,
x(z) is always a polynomial because of the finite length of the message
pipeline. Through a convolutional network code, each channel e carries

60 Cyclic Networks

Fig. 3.4 A convolutional network code on a cyclic network that can be unfolded with respect

to the time dimension into the linear network code on the trellis.

the power series x(z) · fe(z). Write

me,t =
∑

0≤u≤t

xufe,t−u,

so that

x(z) · fe(z) =
∑
t≥0

me,tz
t.

For e ∈ Out(T), the equation (3.1) yields

x(z) · fe(z) = z
∑

d∈In(T)

kd,e(z)(x(z)·fd(z)), (3.4)

or equivalently, in time domain,

me,t =
∑

d∈In(T)

 ∑
0≤u<t

kd,e,umd,t−1−u

 . (3.5)

A node T calculates the scalar value me,t for sending onto each
outgoing channel e at time t from the accumulative information it

3.2. Convolutional network code 61

has received from all the incoming channels up to the end of the
time slot t − 1. The accumulative information includes the sequence
md,0,md,1, . . . ,md,t−1 for each incoming channel d. The calculation is
by the convolution (3.5) which can be implemented by circuitry in the
causal manner, because the local encoding kernels in Definition 3.5 as
well as the components of the global encoding kernels belong to F 〈z〉.

Example 3.7. Consider the convolutional network code in Exam-
ple 3.6. When the source pipelines the message

x(z) =
[∑

t≥0 atz
t
∑

t≥0 btz
t
]
,

the five channels in the network carry the following power series, respec-
tively:

x(z)·fSX(z) =
∑
t≥0

atz
t+1

x(z)·fSY (z) =
∑
t≥0

btz
t+1

x(z)·fXY (z) =

∑
t≥0

atz
t+2 +

∑
t≥0

btz
t+4

/(1 − z3)

=

∑
t≥0

atz
t+2 +

∑
t≥0

btz
t+4

∑
t≥0

z3t

= a0z
2 + a1z

3 + (a2 + b0)z4 + (a0 + a3 + b1)z5

+ (a1 + a4 + b2)z6 + (a2 + a5 + b0 + b3)z7 + · · ·

x(z)·fY W (z) =

∑
t≥0

atz
t+3 +

∑
t≥0

btz
t+2

/(1 − z3)

x(z)·fWX(z) =

∑
t≥0

atz
t+4 +

∑
t≥0

btz
t+3

/(1 − z3).

At each time slot t ≥ 0, the source generates a message xt = [at, bt].
Thus, the channel SX carries the scalar 0 at time 0 and the scalar at−1

at time t > 0. Similarly, the channel SY carries the scalar 0 at time 0

62 Cyclic Networks

and the scalar bt−1 at time t > 0. For every channel e, write∑
t≥0

xtz
t

 · fe(z) =
∑
t≥0

me,tz
t

as before. The actual encoding process at the node X is as follows. At
the end of the time slot t − 1, the node X has received the sequence
md,0,md,1, . . . ,md,t−1 for d = SX and WX. Accordingly, the channel
XY at time t > 0 transmits the scalar value

mXY,t =
∑

0≤u<t

kSX,XY,umSX,t−1−u +
∑

0≤u<t

kWX,XY,umWX,t−1−u

= mSX,t−1 + mWX,t−1,

with the convention that me,t = 0 for all channels e and t < 0. Similarly,

mY W,t = mSY,t−1 + mXY,t−1

and

mWX,t = mY W,t−1

for t ≥ 0. (Note that mXY,0 = mY W,0 = mWX,0 = 0.) The values mXY,t,
mY W,t, and mWX,t for t = 0,1,2,3, . . . can be calculated recursively by
these formulas, and they are shown in the trellis network in Figure 3.3
for small values of t. For instance, the channel XY carries the scalar
values

mXY,0 = 0, mXY,1 = 0, mXY,2 = a0, mXY,3 = a1,

mXY,4 = a2 + b0, mXY,5 = a0 + a3 + b1, . . .

in the initial time slots. The z-transform of this sequence is

x(z)·fXY (z) =

∑
t≥0

atz
t+2 +

∑
t≥0

btz
t+4

/(1 − z3)

as calculated in the above. The encoding formulas in this example
are especially simple, and the convolution in (3.5) is rendered triv-
ial. Because all the local encoding kernels are scalars, the encoder at

3.2. Convolutional network code 63

a node does not require the memory of any previously received infor-
mation other than the scalar value that has just arrived from each
incoming channel. However, the scalar local encoding kernels do not
offer similar advantage to the decoding process at the receiving nodes.
This will be further discussed in the next example.

Example 3.8. Figure 3.5 presents another 2-dimensional convolu-
tional network code on the same cyclic network. The salient character-
istic of this convolutional network code is that every component of the
global encoding kernel for every channel is simply a power of z. This
simplicity renders decoding at every receiving nodes almost effortless.
On the other hand, the encoders at the nodes in this case are only
slightly more complicated than those in the preceding example. Thus,
in terms of the total complexity of encoding and decoding, the present
convolutional network code is more desirable.

Again, let the source generate a message xt = [at, bt] at each time
slot t ≥ 0. Thus, the channel SX carries the scalar 0 at time 0 and the
scalar at−1 at time t > 0. Similarly, the channel SY carries the scalar 0

Fig. 3.5 When every component of the global encoding kernel for every channel is simply

a power of z, the decoding of the convolutional network code at every receiving node is
almost effortless.

64 Cyclic Networks

at time 0 and the scalar bt−1 at time t > 0. For every channel e, write∑
t≥0

xtz
t

 · fe(z) =
∑
t≥0

me,tz
t

as before. At the end of the time slot t − 1, the node T has received
the sequence md,0,md,1, . . . ,md,t−1 for d = SX and WX. Accordingly,
the channel XY at time t > 0 transmits the value

mXY,t =
∑

0≤u<t

kSX,XY,umSX,t−1−u +
∑

0≤u<t

kWX,XY,umWX,t−1−u.

In this case, kSX,XY,0 = kWX,XY,0 = 1, kWX,XY,u = 0 for all u > 0,
kSX,XY,3 = −1, and kSX,XY,u = 0 for all u 6= 0 or 3. Thus,

mXY,t = mSX,t−1 − mSX,t−4 + mWX,t−1,

with the convention that me,t = 0 for all channels e and t < 0. Similarly,

mY W,t = mSY,t−1 − mSY,t−4 + mXY,t−1

and

mWX,t = mY W,t−1

for t > 0. The values mXY,t, mY W,t, and mWX,t for t = 0,1,2,3, . . . can
be calculated by these formulas, and they are shown in the trellis net-
work in Figure 3.6 for small values of t.

Take the channel XY as an example. The encoder for this channel
is to implement the arithmetic of

mXY,t = mSX,t−1 − mSX,t−4 + mWX,t−1

= at−2 − at−5 + (at−5 + bt−4)

= at−2 + bt−4,

which incorporates both the local encoding kernels kSX,XY (z) and
kWX,XY (z). This only requires the simple circuitry in Figure 3.7, where
an element labeled “z” is for a unit-time delay.

A convolutional network code over a unit-delay network can be
viewed as a linear time-invariant (LTI) system defined by the local

3.2. Convolutional network code 65

Fig. 3.6 Message transmission via a linear network code on a cyclic network means the

pipelining of sequential symbols through every channel. The transmission media in the

time-space domain is an indefinitely long “trellis network,” where every channel carried a
scalar value at each time slot.

Fig. 3.7 Circuitry for the encoding at the node X for the convolutional network code in

Figure 3.5, where an element labeled “z” is for a unit-time delay.

encoding kernels, which therefore uniquely determine the global encod-
ing kernels. More explicitly, given kd,e(z) ∈ F 〈z〉 for all adjacent pairs
(d,e), there exists a unique solution to (3.1) and (3.2) for fe(z) for all
channels e. The following theorem further gives a simple close-form for-
mula for fe(z) and shows that the entries in fe(z) indeed belong to F 〈z〉,
i.e., fe(z) is a rational power series, a requirement by Definition 3.5 for
an F -valued convolutional network code.

Theorem 3.9. Let F be a finite field and ω a positive integer. Let
kd,e(z) ∈ F 〈z〉 be given for every adjacent pair (d,e) on a unit-delay net-
work. Then there exists a unique ω-dimensional F -valued convolutional
network code with kd,e(z) as the local encoding kernel for every (d,e).

Proof. Let N be the number of channels in the network, not counting
the imaginary channels in In(S). Given an ω-dimensional vector ge(z)

66 Cyclic Networks

for every channel e, we shall adopt the notation [ge(z)] for the ω×N

matrix that puts the vectors ge(z) in juxtaposition. Let HS(z) denote
the particular ω×N matrix [ge(z)] such that, when e ∈ Out(S), ge(z)
is composed of the given kd,e(z) for all the imaginary channels d and
otherwise ge(z) is the zero vector. In other words, HS(z) is formed by
appending N − |Out(S)| columns of zeroes to the local encoding kernel
KS(z) at the node S, which is an ω × |Out(S)| matrix.

Let [kd,e(z)] denote the N×N matrix in which both the rows and
columns are indexed by the channels and the (d,e)-th entry is equal
to the given kd,e(z) if (d,e) is an adjacent pair, and is equal to zero
otherwise. In order to have an ω-dimensional F -valued convolutional
network code with kd,e(z) as the local encoding kernels, the concomitant
global encoding kernels fe(z) must meet the requirements (3.1) and
(3.2), which can be translated into the matrix equation

[fe(z)] = z[fe(z)] · [kd,e(z)] + zHS(z),

or equivalently,

[fe(z)] · (IN − z[kd,e(z)]) = zHS(z), (3.6)

where is IN the N×N identity matrix. Clearly, det(IN − z[kd,e(z)]) is
of the form 1 + zq(z), where q(z) ∈ F 〈z〉. Hence, det(IN − z[kd,e(z)]) is
invertible inside F 〈z〉. The unique solution of (3.6) for [fe(z)] is given by

[fe(z)] = zdet(IN − z[kd,e(z)])−1HS(z)·A(z), (3.7)

where A(z) denotes the adjoint matrix of IN − z[kd,e(z)]. Thus [fe(z)]
is a matrix over F 〈z〉. With the two matrices [kd,e(z)] and HS(z) rep-
resenting the given local encoding kernels and the matrix [fe(z)] repre-
senting the global encoding kernels, (3.7) is a close-form expression of
the latter in terms of the former.

In retrospect, Definition 3.5 may be regarded as the “global descrip-
tion” of a convolutional network over a unit-delay network, while
Theorem 3.9 allows a “local description” by specifying only the local
encoding kernels.

3.3. Decoding of convolutional network code 67

3.3 Decoding of convolutional network code

In this section, we define a convolutional multicast, the counterpart of
a linear multicast defined in Section 2, for a unit-delay cyclic network.
The existence of a convolutional multicast is also established.

Definition 3.10. Let fe(z) be the global encoding kernel for each
channel e in an ω-dimensional F -valued convolutional network code
over a unit-delay network. At every node T , let [fe(z)]e∈In(T) denote
the ω × |In(T)| matrix that puts vectors fe(z), e ∈ In(T), in juxtaposi-
tion. Then the convolutional network code qualifies as an ω-dimensional
convolutional multicast if

(3.8) For every non-source node T with maxflow(T) ≥ ω, there exists
an |In(T)| × ω matrix DT (z) over F 〈z〉 and a positive integer
τ such that [fe(z)]e∈In(T) · DT (z) = zτIω, where τ depends on
the node T and Iω is the ω × ω identity matrix.

The matrix DT (z) are called the decoding kernel and the decoding delay
at the node T , respectively.

Let the source node S generate the message pipeline x(z) =∑
t≥0 xtz

t, where xt is an ω-dimensional row vector in Fω, so that x(z)
is an ω-dimensional row vector over F [[z]]. Through the convolutional
network code, a channel e carries the power series x(z) · fe(z). The
power series x(z) · fe(z) received by a node T from all the incoming
channels e form the |In(T)|-dimensional row vector x(z)·[fe(z)]e∈In(T)

over F [[z]]. When the convolutional network code is a convolutional
multicast, the node T then uses the decoding kernel DT (z) to calculate(
x(z)·[fe(z)]e∈In(T)

)
· DT (z) = x(z) ·

(
[fe(z)]e∈In(T) · DT (z)

)
= zτx(z).

The ω-dimensional row vector zτx(z) of power series represents the
message pipeline generated by S after a delay of τ unit times. Note
that τ > 0 because the message pipeline x(z) is delayed by one unit
time at the source node S.

68 Cyclic Networks

The above discussion is illustrated by the two examples below,
where we again let the source node S generate the message pipeline

x(z) =
[∑

t≥0
atz

t
∑
t≥0

btz
t
]
.

Example 3.11. Consider the node X in the network in Figure 3.4.
We have

[fe(z)]e∈In(X) =
[
z z4/(1 − z3)
0 z3/(1 − z3)

]
.

Let

DX(z) =
[
z2 −z3

0 1 − z3

]
.

Then

[fe(z)]e∈In(X) · DT (z) = z3I2,

where I2 denotes the 2 × 2 identity matrix. From the channels SX and
WX, the node X receives the row vector

x(z)·[fe(z)]e∈In(X) =
[∑

t≥0
atz

t+1
∑
t≥0

atzt+4+btzt+3

1−z3

]
and decodes the message pipeline as

z3x(z) =
[∑

t≥0
atz

t+1
∑
t≥0

atzt+4+btzt+3

1−z3

]
·
[
z2 −z3

0 1 − z3

]
.

Decoding at the node Y is similar. Thus, the 2-dimensional convolu-
tional network code in this case is a convolutional multicast.

Example 3.12. The 2-dimensional convolutional network code in
Figure 3.5 is also a convolutional multicast. Take the decoding at the
node X as an example. We have

[fe(z)]e∈In(X) =
[
z z4

0 z3

]
.

3.3. Decoding of convolutional network code 69

Let

DX(z) =
[
z2 −z3

0 1

]
.

Then

[fe(z)]e∈In(X) · DX(z) = z3I2.

From the channels SX and WX, the node X receives the row vector
x(z)·[fe(z)]e∈In(X) and decodes the message pipeline as

z3x(z) = x(z)·[fe(z)]e∈In(X)·
[
z2 −z3

0 1

]
=
[∑

t≥0
atzt+1

∑
t≥0

(atzt+4 + btzt+3)
]
·
[
z2 −z3

0 1

]
.

Having formulated a convolutional multicast, the natural concern is
its existence. Toward proving the existence of a convolutional multicast,
we first observe that Lemma 2.17 can be strengthened as follows with
essentially no change in the proof.

Lemma 3.13. Let g(y1,y2, . . . ,ym) be a nonzero polynomial with
coefficients in a field G. For any subset E of G, if |E| is greater than
the degree of g in every yj , then there exist a1,a2, . . . ,am ∈ E such that
g(a1,a2, . . . ,am) 6= 0. The values a1,a2, . . . ,am can be found by exhaus-
tive search in E provided that E is finite. If E is infinite, simply replace
E by a sufficiently large finite subset of E.

Theorem 3.14. Given a unit-delay network, a finite field F , and a
positive integer ω, there exists an ω-dimensional F -valued convolutional
multicast. Furthermore, if E is a sufficiently large subset of F 〈z〉, then
the local encoding kernels of the convolutional multicast can be chosen
to take values from E.

Proof. From Theorem 3.9, a set of arbitrarily given local encoding
kernels uniquely determines a convolutional network code on a unit-
delay network. Following the proof of that theorem, the global encod-
ing kernels fe(z) concomitant to the given local encoding kernels

70 Cyclic Networks

kd,e(z) ∈ F 〈z〉 are calculate by (3.7). We shall show that the global
encoding kernels fe(z) meet the requirement (3.8) for a convolutional
multicast when kd,e(z) are appropriately chosen.

Restate (3.7) as

det(In − z[kd,e(z)])[fe(z)] = zHS(z)·A(z). (3.9)

We now treat the local encoding kernels kd,e(z) as
∑

T |In(T)| ·
|Out(T)| indeterminates. Thus all the entries in the ω×N matrix
zHS(z)·A(z), as well as det(IN − z[kd,e(z)]), are polynomials in these
indeterminates over the integral domain F 〈z〉. Denote by (F 〈z〉)[∗] the
polynomial ring in these indeterminates over F 〈z〉.

Let T be a non-source node with maxflow(T) ≥ ω. Then there exist
ω disjoint paths starting at the ω imaginary channels and ending at ω

distinct channels in In(T), respectively. Let LT (z) be the ω × ω matrix
that puts the global encoding kernels of these ω channels in juxtaposi-
tion. Thus LT (Z) is an ω × ω matrix over (F 〈z〉)[∗]. Claim that:

det(LT (z)) 6= 0 ∈ (F 〈z〉)[∗]. (3.10)

Toward proving this claim, it suffices to show that det(LT (z)) 6= 0 ∈
F 〈z〉 when evaluated at some particular values of the indeterminates
kd,e(z). Arguing similarly as in the alternative proof of Corollary 2.24,
we set the indeterminates kd,e(z) to 1 for all adjacent pairs (d,e) along
any one of the ω disjoint paths and to 0 otherwise. Then the matrix
LT (z) becomes diagonal with all the diagonal entries being powers of z.
Hence det(LT (z)) also becomes a power of z. This proves the claim.

The statement (3.10) applies to every non-source node T with
maxflow(T) ≥ ω. Thus

(3.11)
∏

T :maxflow(T)≥ω det(LT (z)) 6= 0 in (F 〈z〉)[∗].

Apply Lemma 3.13 to G = F (z), where F (z) is the conventional nota-
tion for the field of rational functions over F . We can choose a value
ad,e(z) ∈ E ⊂ F 〈z〉 ⊂ F (z) for each of the indeterminates kd,e(z) so that

(3.12)
∏

T :maxflow(T)≥ω det(LT (z)) 6= 0 in (F 〈z〉)[∗] when evaluated at
kd,e(z) = ad,e(z) for all (d,e).

3.3. Decoding of convolutional network code 71

As the integral domain F 〈z〉 is infinite, this statement applies in par-
ticular to the case where E = F 〈z〉.

From now on, the local encoding kernel kd,e(z) will be fixed at the
appropriately chosen value ad,e(z) for all (d,e). Denote by JT (z) the
adjoint matrix of LT (z). Without loss of generality, we shall assume
that LT (z) consists of the first ω columns of [fe(z)]e∈In(T). From (3.12),
LT (z) is a nonsingular matrix over F 〈z〉. Therefore, we can write

det(LT (z)) = zt(1 + zq(z))/p(z),

where τ is some positive integer, and p(z) and q(z) are polynomials
over F . Take the ω × ω matrix [p(z)/(1 + zq(z))]JT (z) and append
to it |In(T)| − ω rows of zeroes to form an |In(T)| × ω matrix DT (z).
Then,

[fe(z)]e∈In(T)·DT (z) = [p(z)/(1 + zq(z))]LT (z)·JT (z)

= [p(z)/(1 + zq(z))]det(LT (z))Iω

= zτIω,

where Iω denotes the ω × ω identity matrix. Thus the matrix DT (z)
meets the requirement (3.8) for a convolutional multicast.

When F is a sufficiently large finite field, this theorem can be applied
with E = F so that the local encoding kernels of the convolutional mul-
ticast can be chosen to be scalars. This special case is the convolutional
counterpart to Corollary 2.24 on the existence of a linear multicast over
an acyclic network. In this case, the local encoding kernels can be found
by exhaustive search over F . This result was first established in [184].

More generally, by virtue of Lemma 3.13, the same exhaustive search
applies to any large enough subset E of F 〈z〉. For example, F can be
GF (2) and E can be the set of all binary polynomials up to a sufficiently
large degree. More explicit and efficient construction of a convolutional
multicast over the integral domain of binary rational power series have
been reported in [171][174][172].

4

Network Coding and Algebraic Coding

Algebraic coding theory deals with the design of error-correcting/
erasure channel codes using algebraic tools for reliable transmission of
information across noisy channels. As we shall see in this section, there
is much relation between network coding theory and algebraic coding
theory, and in fact, algebraic coding can be viewed as an instance of
network coding. For comprehensive treatments of algebraic coding the-
ory, we refer the reader to [161][190][162][205].

4.1 The combination network

Consider a classical (n,k) linear block code with generator matrix G,
where G is a k × n matrix over some base field F . As discussed in
the remark following Definition 2.5, the global encoding kernels are
analogous to the columns of the generator matrix of a classical linear
block code. It is therefore natural to formulate an (n,k) linear block
code as a linear network code on the network in Figure 4.1. In this
network, a channel connects the source node S to each of the n non-
source node. Throughout this section, we shall assume that there are
k imaginary channels at the the source node, i.e., the dimension of the

73

74 Network Coding and Algebraic Coding

Fig. 4.1 A network representation of a classical linear block code.

network code is k. The linear network code is specified by taking the
global encoding kernels of the n edges in Out(S) to be the columns of G,
or equivalently, by taking KS , the local encoding kernel of the source
node S, to be G. Traditionally, the columns of the generator matrix
G are indexed in “time.” In the network coding formulation, however,
they are indexed in “space.” It is readily seen that the symbols received
by the non-source nodes in Figure 4.1 constitute the codeword of the
classical linear block code.

The above formulation is nothing but just another way to describe a
classical linear block code. In order to gain further insight into the rela-
tion between network coding and algebraic coding, we consider the net-
work in Figure 4.2, which is an extension of the network in Figure 4.1.
In this network, the top two layers are exactly as the network in
Figure 4.1. The bottom layer consists of

(
n
r

)
nodes, each connecting

to a distinct subset of r nodes on the middle layer. We call this net-
work an

(
n
r

)
combination network, or simply an

(
n
r

)
network, where

1 ≤ r ≤ n.

4.2 The Singleton bound and MDS codes

Consider a classical (n,k) linear block code with minimum distance
d and regard it as a linear network code on the

(
n

n−d+1

)
network. In

this network, the assignment of global encoding kernels for the channels
between the first layer and the second layer is the same as in Figure 4.1.
For each node on middle layer, since there is only one input channel,

4.2. The Singleton bound and MDS codes 75

Fig. 4.2 An
(n

r

)
combination network.

we assume without loss of generality that the global encoding kernel of
all the output channels are the same as that of the input channel.

Since the (n,k) code has minimum distance d, by accessing a subset
of n − d + 1 of the nodes on the middle layer (corresponding to d − 1
erasures), each node T on the bottom layer can decode the message x

generated at the source node uniquely, where x consists of k symbols
from F . Then by the Max-flow Min-cut theorem,

maxflow(T) ≥ k. (4.1)

Since

maxflow(T) = n − d + 1,

it follows that

k ≤ n − d + 1,

or

d ≤ n − k + 1, (4.2)

which is precisely the Singleton bound [202] for classical linear block
code. Thus the Singleton bound is a special case of the Max-flow

76 Network Coding and Algebraic Coding

Min-cut theorem. Moreover, by (4.1), the non-source nodes in the net-
work with maximum flow at least equal to k are simply all the nodes on
the bottom layer, and each of them can decode the message x. Hence,
we conclude that an (n,k) classical linear block code with minimum
distance d is a k-dimensional linear multicast on the

(
n

n−d+1

)
network.

More generally, an (n,k) classical linear block code with minimum
distance d is a k-dimensional linear multicast on the

(
n
r

)
network for all

r ≥ n − d + 1. The proof is straightforward (we already have shown
it for r = n − d + 1). On the other hand, it is readily seen that a
k-dimensional linear multicast on the

(
n
r

)
network, where r ≥ k, is an

(n,k) classical linear block code with minimum distance d such that

d ≥ n − r + 1.

A classical linear block code achieving tightness in the Singleton
bound is called a maximum distance separation (MDS) code [202].
From the foregoing, the Singleton bound is a special case of the Max-
flow Min-cut theorem. Since a linear multicast, broadcast, or dispersion
achieves tightness in the Max-flow Min-cut theorem to different extents,
they can all be regarded as network generalizations of an MDS code.
The existence of MDS codes corresponds, in the more general paradigm
of network coding, to the existence of linear multicasts, linear broad-
casts, linear dispersions, and generic linear network codes, which have
been discussed in great detail in Section 2.

4.3 Network erasure/error correction and error detection

Consider the network in Figure 4.3, which is the setup of a classi-
cal point-to-point communication system. A message of k symbols is
generated at the node S and is to be transmitted to the node T via
n channels, where n ≥ k. For a linear network code on this network to be
qualified as a static linear multicast, if no more than (n − k) channels
are removed (so that maxflow(T) ≥ k), the message x can be decoded
at the node T . Equivalently, a static linear multicast on this network
can be described as a classical (n,k) linear block code that can correct
(n − k) erasures. Therefore, a static linear multicast can be viewed as
a network generalization of a classical erasure-correcting code.

4.4. Further remarks 77

Fig. 4.3 A classical point-to-point communication system.

It is evident that a linear multicast on the network in Figure 4.2 is a
static linear multicast on the network in Figure 4.3, and vice versa. An
(n,k) MDS code, whose minimum distance is (n − k + 1), can correct
up to (n − k) erasures. So it is readily seen that an (n,k) MDS code
is a static linear multicast on the network in Figure 4.3. Thus a static
linear multicast can also be viewed as a network generalization of an
MDS code.

A static linear multicast, broadcast, or dispersion is a network code
designed for erasure correction in a point-to-point network. In the same
spirit, a network code can also be designed for error detection or error
correction. For the former, the use of random error detection codes for
robust network communications has been investigated in [180]. For the
latter, network generalizations of the Hamming bound, the Singleton
bound, and the Gilbert-Varshamov bound for classical error-correcting
codes have been obtained in [165][210][164]. Some basic properties and
the constructions of network error-correcting codes have been studied
in [213].

4.4 Further remarks

A primary example of an MDS code is the Reed-Solomon code [198].
The construction of a Reed-Solomon code is based on the Vandermonde
matrix, which has the form

1 1 · · · 1
α1 α2 · · · αk

α2
1 α2

2 · · · α2
k

...
...

. . .
...

αk−1
1 αk−1

2 · · · αk−1
k

 ,

78 Network Coding and Algebraic Coding

where k ≥ 1 and αi, 1 ≤ i ≤ k are distinct elements in some field F

(in our context F is taken to be a finite field). The essential proper-
ties of the Vandermonde matrix in the context of algebraic coding are
that i) each column has exactly the same form and is parametrized by
one field element; ii) its determinant is always nonzero. By appending
columns of the same form parametrized by distinct field elements to a
Vandermonde matrix, the generator matrix of a Reed-Solomon code is
obtained.

The constructions of linear multicast, linear broadcast, linear dis-
persion, and generic linear network code may be regarded as exten-
sions of the kind of matrix construction rendered by the Vandermonde
matrix. However, although the constructions of these network codes
are explicit as discussed in Section 2, they are not in closed-form as the
Vandermonde matrix.

Fountain codes [163][193], a class of randomly generated rateless
erasure codes, are finding applications in robust network communica-
tions. They guarantee near-optimal bandwidth consumption as well as
very efficient decoding with high probability. The random linear net-
work codes discussed in [192][176][191] may be regarded as a kind of
generalization of fountain codes, except that very efficient decoding
algorithms do not exist for such codes. The main distinction between
these codes and fountain codes is that a fountain code may encode only
at the source node, while a network code may encode at every node in
the network1.

1 In the setting of a fountain code, the communication network between the source node and

a receiving node is basically modeled as a classical point-to-point communication system
as in Figure 4.3.

Part II

MULTIPLE SOURCES

5

Superposition Coding and Max-Flow Bound

In Part I of this tutorial, we have discussed the single-source network
coding problem in an algebraic setting. Each communication channel
in the network is assumed to have unit capacity. The maximum rate
at which information can be multicast has a simple characterization in
terms of the maximum flows in the network. In Part II, we consider
the more general multi-source network coding problem in which more
than one mutually independent information sources are generated at
possibly different nodes, where each information source is transmitted
to a certain set of nodes in the network. We continue to assume that
the communication channels in the network are free of error.

The achievable information rate region for a multi-source network
coding problem, which will be formally defined in Section 6, refers
to the set of all possible rate tuples at which multiple information
sources can be multicast simultaneously on a network. In a single-
source network coding problem, a primary goal is to characterize the
maximum rate at which information can be multicast from the source
node to all the sink nodes. In a multi-source network coding prob-
lem, we are interested in characterizing the achievable information rate
region.

81

82 Superposition Coding and Max-Flow Bound

Fig. 5.1 A network for which superposition coding is suboptimal.

Multi-source network coding turns out not to be a simple extension
of single-source network coding. In the rest of this section, we discuss
two characteristics of multi-source networking coding which differenti-
ate it from single-source network coding. In all the examples, the unit
of information is the bit.

In Part I, nodes are labelled by capital letters. In Part II, since
captical letters are reserved for random variables, nodes will instead be
labelled by small letters.

5.1 Superposition coding

Let us first revisit the network in Figure 1.2(b) of Part I which is
reproduced here as Figure 5.1 in a slightly different manner. Here, we
assume that each channel has unit capacity. For i = 1,2, the source
node i generates a bit bi which is sent to the node ti. We have shown in
Example 1.3 of Part I that in order for the nodes t1 and t2 to exchange
the two bits b1 and b2, network coding must be performed at the node u.
This example in fact has a very intriguing implication. Imagine that
on the Internet a message in English and a message in Chinese are
generated at two different locations. These two messages are to be
transmitted from one point to another point within the network, and we
can assume that there is no correlation between the two messages. Then
this example shows that we may have to perform joint coding of the
two messages in the network in order to achieve bandwidth optimality!

5.1. Superposition coding 83

Fig. 5.2 A network for which superposition coding is optimal.

We refer to the method of coding individual information sources
separately as superposition coding. The above example simply shows
that superposition coding can be suboptimal.

We now give an example for which superposition coding does achieve
optimality. Consider the network in Figure 5.2. To simply the discus-
sion, we set the capacities of the channels 1u and 2u to infinity so that
the information generated at both source nodes are directly available
to the node u. For all the other channels, we set the capacity to 1. We
want to multicast the information generated at the source node 1 to
the nodes v,w and t, and to transmit the information generated at the
source node 2 to the node t.

Let X1 and X2 be independent random variables representing the
information generated respectively at the source nodes 1 and 2 for one
unit time. The rate of the information generated at the source node
s is given by ωs = H(Xs) for s = 1,2. Let Uij be the random variable
sent on the channel ij, where H(Uij) ≤ 1 due to the bit rate constraint
for the channel. Then for any coding scheme achieving the prescribed
communication goals, we have

2ω1 + ω2 = 2H(X1) + H(X2)

= 2H(X1) + H(X2|X1)
a)

≤ 2H(X1) + H(Uvt,Uwt|X1)

84 Superposition Coding and Max-Flow Bound

Fig. 5.3 The information rate region for the network in Figure 5.2.

b)

≤ 2H(X1) + H(Uuv,Uuw|X1)

≤ 2H(X1) + H(Uuv|X1) + H(Uuw|X1)

= H(Uuv,X1) + H(Uuw,X1)
c)
= H(Uuv) + H(Uuw)

≤ 2,

where a) follows because X2 is a function of Uvt and Uwt, b) follows
because Uvt is a function of Uuv and Uwt is a function of Uuw, and
c) follows because X1 is a function of Uuv and a function of Uuw.

This region is illustrated in Figure 5.3. To see that the whole region
is achievable by superposition coding, let r

(s)
ij be the bit rate on the

channel ij for transmitting the information generated at the source
node s. Due to the bit rate constraint for each channel ij, the following
must be satisfied:

r
(1)
ij + r

(2)
ij ≤ 1.

Then the rate pair (ω1,ω2) = (1,0) is achieved by taking

r(1)
uv = r(1)

uw = r
(1)
vt = 1

and

r
(1)
wt = r(2)

uv = r(2)
uw = r

(2)
vt = r

(2)
wt = 0,

5.2. The max-flow bound 85

while the rate pair (0,2) is achieved by taking

r(1)
uv = r(1)

uw = r
(1)
vt = r

(1)
wt = 0

and

r(2)
uv = r(2)

uw = r
(2)
vt = r

(2)
wt = 1.

Then the whole information rate region depicted in Figure 5.3 is seen
to be achievable via a time-sharing argument.

From the above two examples, we see that superposition coding is
sometimes but not always optimal. Optimality of superposition coding
for certain classes of multilevel diversity coding problems (special cases
of multi-source network coding) has been reported in [207], [200], [212].
For a class of multilevel diversity coding problems (special cases of
multi-source network coding) studied in [177], superposition coding is
optimal for 86 out of 100 configurations. In any case, superposition
coding always induces an inner bound on the information rate region.

5.2 The max-flow bound

In this section, we revisit the two examples in the last section from a
different angle. First, for the network in Figure 5.1, we already have
seen that superposition coding is suboptimal. Now consideration of the
max-flows from t1 to t2 and from t2 to t1 gives

ω1,ω2 ≤ 1.

This outer bound on the information rate region, referred to as the
max-flow bound, is depicted in Figure 5.4. Here the rate pair (1,1) is
achieved by using network coding at the node u as we have discussed,
which implies the achievability of the whole region. Therefore, the max-
flow bound is tight.

We now consider the network in Figure 5.2. Consideration of the
max-flow at either node v or w gives

ω1 ≤ 1, (5.1)

while consideration of the max-flow at node t gives

ω1 + ω2 ≤ 2. (5.2)

86 Superposition Coding and Max-Flow Bound

Fig. 5.4 The max-flow bound for the network in Figure 5.1.

Fig. 5.5 The max-flow bound for the network in Figure 5.2.

Figure 5.5 is an illustration of the region of all (ω1,ω2) satisfy-
ing these bounds, which constitute the max-flow bound. Comparing
with the achievable information rate region shown in Figure 5.3, we
see that the max-flow bound is not tight. From these two examples, we
see that like superposition coding, the max-flow bound is sometimes
but not always tight. Nevertheless, it always gives an outer bound on
the information rate region. It has been shown in [170][194] that the
max-flow bound is tight for networks with two sink nodes.

6

Network Codes for Acyclic Networks

6.1 Achievable information rate region

In Part I, the capacity of direct transmission from a node to its
neighbor is determined by the multiplicity of the channels between
them. This is to facilitate the discussion of linear codes. In this
section, codes not necessarily linear are considered and we assume
that the capacity of a channel can take any positive real number. We,
however, continue to allow multiple channels between a pair of nodes
to facilitate subsequent comparison with linear codes.

Convention. The following convention applies to every acyclic com-
munication network in this section.

• The set of all nodes and the set of all channels are denoted
by V and E, respectively.

• The nodes are ordered in a way such that if there exists a
channel from a node i to a node j, then the node i precedes
the node j. This is possible by the acyclicity of the network.

• The capacity of a channel e is denoted by Re.

87

88 Network Codes for Acyclic Networks

• An independent information source Xs is generated at a
source node s.

• A source node has no input channels.
• The set of all the source nodes in the network is denoted by

S, which is a subset of V .
• The set of all sink nodes is denoted by T , where a sink node

receives at least one information source1. The set of informa-
tion sources received by a sink node i is denoted by β(i).

In the above setup, the decoding requirements are described by the
functions β(i), i ∈ T . Equivalently, we may think of each information
source Xs being multicast to the set of nodes

{i ∈ T : s ∈ β(i)}.
We now consider a block code with length n. The information source

Xs is a random variable which takes values in the set

Xs = {1,2, · · · ,d2nτse}

according to the uniform distribution. The rate of the information
source Xs is τs. According to our assumption, the random variables
Xs,s ∈ S are mutually independent.

Definition 6.1. An

(n,(ηe : e ∈ E),(τs : s ∈ S))

code on a given communication network is defined by

1) for all source node s ∈ S and all channel e ∈ Out(s), a local
encoding mapping

k̃e : Xs → {1, · · · ,ηe}; (6.1)

2) for all node i ∈ V \S and all channel e ∈ Out(i), a local encod-
ing mapping

k̃e :
∏

d∈In(i)

{1, · · · ,ηd} → {1, · · · ,ηe}; (6.2)

1 Since a source node has no input channels, it cannot be a sink node.

6.1. Achievable information rate region 89

3) for all sink node i ∈ T , a decoding mapping

gi :
∏

d∈In(i)

{1 · · · ,ηd} →
∏

s∈β(i)

Xs.

In a coding session, if a node i precedes a node j, then the encod-
ing mappings k̃e,e ∈ Out(i) are applied before the encoding mappings
k̃e,e ∈ Out(j). If e,e′ ∈ Out(i), then k̃e and k̃e′ can be applied in any
order. Since a node i precedes a node j if there exists a channel from
the node i to the node j, a node does not encode until all the necessary
information is received on the input channels.

Introduce the notation XS′ for (Xs : s ∈ S′), where S′ ⊂ S. For all
i ∈ T , define

∆i = Pr
{
ĝi(XS) 6= Xβ(i)

}
,

where ĝi(XS) denotes the value of gi as a function of XS . ∆i is the prob-
ability that the set of information sources Xβ(i) is decoded incorrectly
at the node i.

In the subsequent discussion, all the logarithms are in the base 2.

Definition 6.2. An information rate tuple

ω = (ωs : s ∈ S),

where ω ≥ 0 (componentwise), is asymptotically achievable if for any
ε > 0, there exists for sufficiently large n an

(n,(ηe : e ∈ E),(τs : s ∈ S))

code such that

n−1 logηe ≤ Re + ε

for all e ∈ E, where n−1 logηe is the average bit rate of the code on the
channel e,

τs ≥ ωs − ε

for all s ∈ S, and

∆i ≤ ε

90 Network Codes for Acyclic Networks

for all i ∈ T . For brevity, an asymptotically achievable information rate
tuple will be referred to as an achievable information rate tuple.

Definition 6.3. The achievable information rate region, denoted by
R, is the set of all achievable information rate tuples ω.

Remark 6.4. It follows from the definition of the achievability of an
information rate tuple that if ω is achievable, then ω′ is achievable for
all 0 ≤ ω′ ≤ ω. Also, for any sequence of achievable rate tuples ω(k),
k ≥ 1, it can be proved that

ω = lim
k→∞

ω(k),

if exists, is also achievable, i.e., R is closed. It can then be shown by
invoking a time-sharing argument that R is closed and convex.

In this chapter, we discuss characterizations of the information rate
region of a general multi-source network coding problem. Unlike single-
source network coding which already has explicit algebraic code con-
structions, the current understanding of multi-source network coding is
quite far from being complete. Specifically, only inner and outer bounds
on the achievable information rate region R are known for acyclic net-
works, and only existence proof of codes by random coding technique
is available. The tools we shall use are mainly probabilistic instead of
algebraic.

We note that the definition of a network code in this section does
not reduce directly to the definitions of a network code in Part I when
there is only one information source. It is because in Part I, a network
code is defined in a way such that various notions specific to linear
codes for a single information source (namely linear broadcast, linear
dispersion, and generic network code) can be incorporated. Essentially,
the definition of a network code here is the local description of a network
code for multicast.

6.2. Inner bound Rin 91

6.2 Inner bound Rin

In this section, we discuss an inner bound on the achievable informa-
tion rate region R for acyclic networks. We start with some standard
definitions and properties of strong typicality, a fundamental tool in
information theory. For proofs and further details, We refer the reader
to [160], [166], [209]. Here, we adopt the convention in [209].

6.2.1 Typical sequences

Consider an information source {Xk,k ≥ 1} where Xk are i.i.d. with
distribution p(x). We use X to denote the generic random variable, SX

to denote the support of X, and H(X) to denote the common entropy
for all Xk, where H(X) < ∞. Let X = (X1,X2, · · · ,Xn).

Definition 6.5. The strongly typical set Tn
[X]δ with respect to p(x)

is the set of sequences x = (x1,x2, · · · ,xn) ∈ X n such that N(x;x) = 0
for x 6∈ SX , and ∑

x

∣∣∣∣ 1nN(x;x) − p(x)
∣∣∣∣ ≤ δ, (6.3)

where N(x;x) is the number of occurrences of x in the sequence x, and
δ is an arbitrarily small positive real number. The sequences in Tn

[X]δ

are called strongly δ-typical sequences.

Theorem 6.6. (Strong asymptotic equipartition property) In
the following, η is a small positive quantity such that η → 0 as δ → 0.

1) If x ∈ Tn
[X]δ, then

2−n(H(X)+η) ≤ p(x) ≤ 2−n(H(X)−η). (6.4)

2) For n sufficiently large,

Pr{X ∈ Tn
[X]δ} > 1 − δ.

92 Network Codes for Acyclic Networks

3) For n sufficiently large,

(1 − δ)2n(H(X)−η) ≤ |Tn
[X]δ| ≤ 2n(H(X)+η). (6.5)

Next, we discuss strong joint typicality with respect to a bivariate
distribution. Generalization to a multivariate distribution is straight-
forward.

Consider a bivariate information source {(Xk,Yk),k ≥ 1} where
(Xk,Yk) are i.i.d. with distribution p(x,y). We use (X,Y) to denote
the pair of generic random variables, and assume that H(X,Y) < ∞.

Definition 6.7. The strongly jointly typical set Tn
[XY]δ with respect

to p(x,y) is the set of (x,y) ∈ X n × Yn such that N(x,y;x,y) = 0 for
(x,y) 6∈ SXY , and∑

x

∑
y

∣∣∣∣ 1nN(x,y;x,y) − p(x,y)
∣∣∣∣ ≤ δ, (6.6)

where N(x,y;x,y) is the number of occurrences of (x,y) in the pair
of sequences (x,y), and δ is an arbitrarily small positive real number.
A pair of sequences (x,y) is called strongly jointly δ-typical if it is in
Tn

[XY]δ.

Strong typicality satisfies the following consistency and preservation
properties.

Theorem 6.8. (Consistency) If (x,y) ∈ Tn
[XY]δ, then x ∈ Tn

[X]δ and
y ∈ Tn

[Y]δ.

Theorem 6.9. (Preservation) Let Y = f(X). If

x = (x1,x2, · · · ,xn) ∈ Tn
[X]δ,

then

f(x) = (y1,y2, · · · ,yn) ∈ Tn
[Y]δ, (6.7)

where yi = f(xi) for 1 ≤ i ≤ n. ([209], Lemma 15.10.)

6.2. Inner bound Rin 93

For a bivariate i.i.d. source {(Xk,Yk)}, we have the strong joint
asymptotic equipartition property (strong JAEP), which can readily be
obtained by applying the strong AEP to the source {(Xk,Yk)}.

Theorem 6.10. (Strong JAEP) Let

(X,Y) = ((X1,Y1),(X2,Y2), · · · ,(Xn,Yn)),

where (Xi,Yi) are i.i.d. with generic pair of random variables (X,Y). In
the following, λ is a small positive quantity such that λ → 0 as δ → 0.

1) If (x,y) ∈ Tn
[XY]δ, then

2−n(H(X,Y)+λ) ≤ p(x,y) ≤ 2−n(H(X,Y)−λ).
2) For n sufficiently large,

Pr{(X,Y) ∈ Tn
[XY]δ} > 1 − δ.

3) For n sufficiently large,

(1 − δ)2n(H(X,Y)−λ) ≤ |Tn
[XY]δ| ≤ 2n(H(X,Y)+λ).

6.2.2 First example

Consider a point-to-point communication system, the simplest possible
example of a communication network:

V = {1,a}, E = {1a}, S = {1}, T = {a}, β(a) = {1}.

This network is illustrated in Figure 6.1, and we call this network G1.
By the source coding theorem [201], the information rate ω1 is achiev-
able if and only if ω1 ≤ R1a. The following theorem can be regarded as
an alternative form of the direct part of the source coding theorem.

Fig. 6.1 The network G1 for the first example.

94 Network Codes for Acyclic Networks

Theorem 6.11. For the network G1, an information rate ω1 is achiev-
able if there exists auxiliary random variables Y1 and U1a such that

H(Y1) > ω1 (6.8)

H(U1a|Y1) = 0 (6.9)

H(U1a) < R1a (6.10)

H(Y1|U1a) = 0. (6.11)

We first note that (6.9) and (6.11) together imply that the random
variables Y1 and U1a determines each other, so we write

U1a = u1a(Y1)

and

Y1 = y1(U1a),

which imply

Y1 = y1(u1a(Y1)). (6.12)

Moreover,

H(Y1) = H(U1a).

Then for any ω1 satisfying (6.8) to (6.11) for some auxiliary random
variables Y1 and U1a, we have

R1a > H(U1a) = H(Y1) > ω1,

which is essentially the direct part of the source coding theorem except
that the inequality is strict here. By invoking the remark following
Definition 6.3, we see that the rate

R1a = ω1

is indeed achievable.

6.2. Inner bound Rin 95

We should think of Y1 and U1a as random variables representing
the information source X1 and the codeword sent on the channel 1a,
respectively. Accordingly, we have (6.8) as the entropy constraint on Y1,
and (6.10) corresponds to the capacity constraint for the channel 1a.

Proof of Theorem 6.11. Let δ to be a small positive real number
to be specified later. For given random variables Y1 and U1a satisfying
(6.8) to (6.11), we construct a random code by the following procedure:

1. Generate 2nω1 sequences of length n independently according
to pn(y1).

2. If the message is i, map it to the ith sequence generated in
Step 1. Denote this sequence by y1.

3. If y1 ∈ Tn
[Y1]δ, obtain the sequence

u1a = u1a(y1)

(recall the notation f(x) in Theorem 6.9). By Theorem 6.9,
u1a ∈ Tn

[U1a]δ. Otherwise, let u1a be a constant sequence in
Tn

[U1a]δ.
4. Output the index of u1a in Tn

[U1a]δ as the codeword and send
on the channel 1a.

5. At the node b, upon receiving the index of u1a ∈ Tn
[U1a]δ,

recover u1a and obtain

ỹ1 = y1(u1a).

If ỹ1 = y1 and y1 is unique among all the sequences generated
in Step 1 of the random coding procedure, then the message
i can be decoded correctly.

A decoding error is said to occur if the message i is decoded incorrectly.
Note that the total number of codewords is upper bounded by

|Tn
[U1a]δ| < 2n(H(U1a)+η)

(cf. (6.5)), so that the rate of the code is at most

H(U1a) + η < R1a + η.

96 Network Codes for Acyclic Networks

We now analyze the probability of decoding error of this random
code. Consider

Pr{decoding error}
= Pr{decoding error|y1 6∈ Tn

[Y1]δ}Pr{y1 6∈ Tn
[Y1]δ}

+Pr{decoding error|y1 ∈ Tn
[Y1]δ}Pr{y1 ∈ Tn

[Y1]δ}
≤ 1 · Pr{y1 6∈ Tn

[Y1]δ} + Pr{decoding error|y1 ∈ Tn
[Y1]δ} · 1

= Pr{y1 6∈ Tn
[Y1]δ} + Pr{decoding error|y1 ∈ Tn

[Y1]δ}.

By the strong AEP,

Pr{y1 6∈ Tn
[Y1]δ} → 0

as n →∞. So it remains to show that

Pr{decoding error|y1 ∈ Tn
[Y1]δ} → 0

as n →∞ with an appropriate choice of δ. Toward this end, we observe
that if y1 ∈ Tn

[Y1]δ, then

u1a = u1a(y1)

(instead of being a constant sequence in Tn
[U1a]δ), so that

ỹ1 = y1(u1a) = y1(u1a(y1)).

Then from (6.12), we see that

ỹ1 = y1.

In other words, if y1 ∈ Tn
[Y1]δ, a decoding error occurs if and only if the

sequence y1 is drawn more than once in Step 1. Thus,

Pr{decoding error|y1 ∈ Tn
[Y1]δ}

= Pr{y1 drawn more than once|y1 ∈ Tn
[Y1]δ}

= Pr
{
∪j 6=i{obtain y1 in the jth drawing|y1 ∈ Tn

[Y1]δ}
}

6.2. Inner bound Rin 97

≤
∑
j 6=i

Pr{obtain y1 in the jth drawing|y1 ∈ Tn
[Y1]δ}

< 2nω1 · Pr{obtain y1 in any drawing|y1 ∈ Tn
[Y1]δ}

< 2nω1 · 2−n(H(U1a)−η)

= 2−n(H(U1a)−ω1−η)

= 2−n(H(Y1)−ω1−η),

where we have invoked the strong AEP in the last inequality. Since
H(Y1) > ω1 and η → 0 as δ → 0, by taking δ to be sufficiently small,
we have H(Y1) − ω1 − η > 0, and hence

Pr{decoding error|y1 ∈ Tn
[Y1]δ} → 0

as n →∞.
It appears that Theorem 6.11 only complicates the direct part of

the source coding theorem, but as we shall see, it actually prepares us
to obtain a characterization of the achievable information rate region
for more general networks.

6.2.3 Second example

In the next section, we shall state without proof an inner bound on the
achievable information rate region R for a general acyclic network. We
already have proved a special case of this inner bound in Theorem 6.11
for a point-to-point communication system. In this section, we prove
this inner bound for another network considerably more complicated
than the one in the last section. Although this network is still far from
being general, the proof of the inner bound for this network contains
all the essential ingredients. Besides, the ideas are more transparent
without the overwhelming notation in the general proof.

The second network we consider here is the network in Figure 6.2
with the following specification:

V = {1,2,a,b,c,d}, E = {1a,2b,ab,ac,bc,bd,cd}
S = {1,2}, T = {c,d}, β(c) = {1}, β(d) = {1,2}.

Call this network G2.

98 Network Codes for Acyclic Networks

Fig. 6.2 The network G2 for the second example.

For the network G2, we first make the observation that the source
nodes 1 and 2 each has only one output channel. By the source coding
theorem, if either R1a < ω1 or R2b < ω2, the sink node d cannot possi-
bly receive both X1 and X2. Therefore, in order to make the problem
meaningful, we make the assumptions that R1a ≥ ω1 and R2b ≥ ω2, so
that we can regard X1 and X2 as being directly available to the nodes
a and b, respectively.

Theorem 6.12. For the network G2, an information rate pair (ω1,ω2)
is achievable if there exist auxiliary random variables Ys,s ∈ S and
Ue,e ∈ E such that

H(Y1,Y2) = H(Y1) + H(Y2) (6.13)

H(Ys) > ωs, s ∈ S (6.14)

H(Uab,Uac|Y1) = 0 (6.15)

H(Ubc,Ubd|Y2,Uab) = 0 (6.16)

H(Ucd|Uac,Ubc) = 0 (6.17)

H(Ue) < Re, e ∈ E (6.18)

H(Y1|Uac,Ubc) = 0 (6.19)

H(Y1,Y2|Ubd,Ucd) = 0. (6.20)

6.2. Inner bound Rin 99

The interpretations of (6.13) to (6.20) are as follows. Similar to our
discussion on the network in the last section, Ys and Ue are random
variables representing the information source Xs and the codeword
sent on the channel e, respectively. The equality in (6.13) says that
the information sources 1 and 2 are independent. The inequality (6.14)
is the entropy constraint on the auxiliary random variable Ys. The
equality (6.15) says that the codewords sent on the channels ab and
ac depend only on the information source X1. The equality (6.16) says
that the codewords sent on the channels bc and bd depend only on the
information source X2 and the codeword sent on the channel ab. The
equality (6.17) says that the codeword sent on the channel cd depends
only on the codeword sent on the channels ac and bc. The inequality
(6.18) is the capacity constraint for the channel e. The equality (6.19)
says that the information source 1 can be recovered (at the sink node
c) from the codewords sent on the channels ac and bc, and finally the
equality (6.20) says that both the information sources X1 and X2 can be
recovered (at the sink node d) from the codewords sent on the channels
bd and cd.

From (6.15), we see that Uab and Uac are both functions of Y1. Thus
we write

Uab = uab(Y1) (6.21)

and

Uac = uac(Y1). (6.22)

In the same way, from (6.16), (6.17), (6.19), and (6.20), we write

Ubc = ubc(Y2,Uab) (6.23)

Ubd = ubd(Y2,Uab) (6.24)

Ucd = ucd(Uac,Ubc) (6.25)

Y1 = y
(c)
1 (Uac,Ubc) (6.26)

Y1 = y
(d)
1 (Ubd,Ucd) (6.27)

Y2 = y
(d)
2 (Ubd,Ucd). (6.28)

In (6.26) to (6.28), the superscript denotes the sink node with which
the function is associated.

100 Network Codes for Acyclic Networks

Proof of Theorem 6.12. Let δ to be a small positive real number to
be specified later. For given random variables Ys,s ∈ S and Ue,e ∈ E

satisfying (6.13) to (6.20), we construct a random code by the following
procedure:

1. For the information source j (= 1,2),

a) Generate 2nωj sequences of length n independently
according to pn(yj).

b) If the message is ij , map it to the ij-th sequence gen-
erated in Step 1a). Call this sequence yj .

2. If y1 ∈ Tn
[Y1], obtain the sequences

uab = uab(y1) ∈ Tn
[Uab]δ

and

uac = uac(y1) ∈ Tn
[Uac]δ

(cf. (6.21) for the definition of uab(·), etc, and Theorem 6.9
for the notation f(x)). Here, uab(y1) ∈ Tn

[Uab]δ
and uac(y1) ∈

Tn
[Uac]δ

as follow from Theorem 6.8. Otherwise, let uab and
uac be constant sequences in Tn

[Uab]δ
and Tn

[Uac]δ
, respectively.

3. Output the indices of uab in Tn
[Uab]δ

and uac in Tn
[Uac]δ

as
codewords and send on the channels ab and ac, respectively.

4. If (y2,uab) ∈ Tn
[Y2Uab]δ

, obtain the sequences

ubc = ubc(y2,uab) ∈ Tn
[Ubc]

and

ubd = ubd(y2,uab) ∈ Tn
[Ubd].

Otherwise, let ubc and ubd be constant sequences in Tn
[Ubc]δ

and Tn
[Ubd]δ, respectively.

5. Output the indices of ubc in Tn
[Ubc]δ

and ubd in Tn
[Ubd]δ as code-

words and send on the channels bc and bd, respectively.
6. If (uac,ubc) ∈ Tn

[UabUbc]δ
, obtain the sequence

ucd = ucd(uab,ubc) ∈ Tn
[Ucd].

Otherwise, let ucd be a constant sequence in Tn
[Ucd]δ.

6.2. Inner bound Rin 101

7. Output the index of ucd in Tn
[Ucd]δ as the codeword and send

on the channel cd.
8. At the node c, upon receiving the indices of uac ∈ Tn

[Uac]δ
and

ubc ∈ Tn
[Ubc]δ

, uac and ubc can be recovered. Then obtain

ỹ(c)
1 = y

(c)
1 (uac,ubc). (6.29)

If ỹ(c)
1 = y1 and y1 is unique among all the sequences gener-

ated in Step 1a) for j = 1, then the message i1 can be decoded
correctly.

9. At the node d, upon receiving the indices of ubd ∈ Tn
[Ubd]δ

and ucd ∈ Tn
[Ucd]δ, ubd and ucd can be recovered. For j = 1,2,

obtain

ỹ(d)
j = y

(d)
j (ubd,ucd).

If ỹ(d)
j = yj and yj is unique among all the sequences gen-

erated in Step 1a), then the message ij can be decoded
correctly.

If either i1 is decoded incorrectly at the node c or (i1, i2) is decoded
incorrectly at the node d, we say that a decoding error occurs. Note
that for each channel e ∈ E, the total number of codewords is upper
bounded by

|Tn
[Ue]δ

| < 2nH(Ue)+η

(cf. (6.5)), so that the rate on the channel e is at most

H(Ue) + η < Re + η.

We now analyze the probability of decoding error of this random
code. Analogous to the proof of Theorem 6.11 in the last section, we
have

Pr{decoding error}
≤ Pr{(y1,y2) 6∈ Tn

[Y1Y2]δ} + Pr{decoding error|(y1,y2) ∈ Tn
[Y1]δ}.

102 Network Codes for Acyclic Networks

Since the pair of sequence (y1,y2) is generated according to

pn(y1)pn(y2) = pn(y1,y2),

by the strong JAEP,

Pr{(y1,y2) 6∈ Tn
[Y1Y2]δ} → 0

as n →∞, so it suffices to show that

Pr{decoding error|(y1,y2) ∈ Tn
[Y1Y2]δ} → 0

as n →∞ with an appropriate choice of δ. Toward this end, we analyze
the random coding procedure when (y1,y2) ∈ Tn

[Y1Y2]δ:

• By Theorem 6.8, we have yj ∈ Tn
[Yj]δ

, j = 1,2.
• In Step 2, since y1 ∈ Tn

[Y1]δ, we have

uab = uab(y1) (6.30)

(instead of a constant sequence in Tn
[Uab]δ

) and

uac = uac(y1). (6.31)

• In Step 4, by (6.30), we have

(y2,uab) = (y2,uab(y1)).

Since (y1,y2) ∈ Tn
[Y1Y2]δ,

(y2,uab(y1)) ∈ Tn
[Y2Uab]δ

by Theorem 6.9. Therefore,

ubc = ubc(y2,uab) (6.32)

and

ubd = ubd(y2,uab). (6.33)

6.2. Inner bound Rin 103

• In Step 6, by applying (6.31), (6.32) and (6.30), we have

(uac,ubc) = (uac(y1),ubc(y2,uab))

= (uac(y1),ubc(y2,uab(y1))). (6.34)

Again, since (y1,y2) ∈ Tn
[Y1Y2]δ,

(uac,ubc) ∈ Tn
[UacUbc]δ

by Theorem 6.9. Therefore,

ucd = ucd(uac,ubc).

• By (6.26), (6.22), (6.23), and (6.21), we can write

Y1 = y
(c)
1 (Uac,Ubc)

= y
(c)
1 (uac(Y1),ubc(Y2,Uab))

= y
(c)
1 (uac(Y1),ubc(Y2,uab(Y1))). (6.35)

On the other hand, from (6.29) and (6.34), we have

ỹ(c)
1 = y

(c)
1 (uac,ubc)

= y
(c)
1 (uac(y1),ubc(y2,uab(y1))). (6.36)

A comparison of (6.35) and (6.36) reveals that

ỹ(c)
1 = y1. (6.37)

Similarly, it can be shown that

ỹ(d)
1 = y1. (6.38)

and

ỹ(d)
2 = y2. (6.39)

In conclusion, whenever (y1,y2) ∈ Tn
[Y1Y2]δ, (6.37) to (6.39) hold. By the

strong AEP,

Pr{(y1,y2) ∈ Tn
[Y1Y2]δ} → 1

as n →∞. Therefore, if (y1,y2) ∈ Tn
[Y1Y2]δ, a decoding error occurs if

and only if either y1 or y2 is drawn more than once in Step 1a).

104 Network Codes for Acyclic Networks

By means of an argument similar to the one in the proof of Theo-
rem 6.11, it can be shown that

Pr{decoding error|(y1,y2) ∈ Tn
[Y1Y2]δ} → 0

as n →∞ with an appropriate choice of δ. The details are omitted here.

6.2.4 General acyclic networks

In this section, we present an inner bound Rin on the information rate
region for a general acyclic network. The reader should have no problem
understanding the meaning of Rin after studying the special cases in
the previous two sections. In the sequel, we will use the abbreviations
YS , UIn(i) respectively for {Ys : s ∈ S}, {Ue : e ∈ In(i)}, etc.

Definition 6.13. Let R′ be the set of all information rate tuples ω

such that there exist auxiliary random variables Ys,s ∈ S and Ue,e ∈ E

which satisfy the following conditions:

H(YS) =
∑
s∈S

H(Ys) (6.40)

H(Ys) > ωs, s ∈ S (6.41)

H(UOut(s)|Ys) = 0, s ∈ S (6.42)

H(UOut(i)|UIn(i)) = 0, i ∈ V \S (6.43)

H(Ue) < Re, e ∈ E (6.44)

H(Yβ(i)|UIn(i)) = 0, i ∈ T. (6.45)

Theorem 6.14. R′ ⊂ R.

The proof of Theorem 6.14 involves a set of techniques originally
developed in [211] and [203]. The proof of Theorem 6.12 in the last
section, though a special case of Theorem 6.16 here, contains all the
essential ingredients necessary for proving Theorem 6.14.

Definition 6.15. Let Rin = con(R′), the convex closure of R′.

6.2. Inner bound Rin 105

Theorem 6.16. Rin ⊂ R.

Theorem 6.16 can readily be obtained from Theorem 6.14 as a corol-
lary by invoking the remark following Definition 6.3. Specifically, by
taking the convex closure on both sides in

R′ ⊂ R,

we have

con(R′) ⊂ con(R) = R.

For a complete proof of Theorem 6.16, we refer the reader to [203]
and [209], Ch. 152. The inner bound proved in [203] is for zero-error
variable-length network codes.

6.2.5 Rin recasted

In this section, Rin will be recasted in the framework of information
inequalities developed in [208]. As we shall see, this alternative charac-
terization of Rin, developed in [211] and [203], enables the region to be
described on the same footing for different multi-source network coding
problems.

Let N be a collection of discrete random variables whose joint dis-
tribution is unspecified, and let

QN = 2N \{∅},

the set of all nonempty subsets of random variables in N . Then

|QN | = 2|N | − 1.

Let HN be the |QN |-dimensional Euclidean space with the coordinates
labeled by hA,A ∈ QN . We will refer to HN as the entropy space for
the set of random variables N . A vector

h = (hA : A ∈ QN) ∈ HN (6.46)

2 The proof given in Section 6.2.3 is a simplified version of the proofs in [209] and [203].

106 Network Codes for Acyclic Networks

is said to be an entropy function if there exists a joint distribution for
(Z : Z ∈ N) such that

hA = H(Z : Z ∈ A)

for all A ∈ QN . We then define the region

Γ∗N = {h ∈ HN : h is an entropy function}.

To simplify notation in the sequel, for any nonempty A,A′ ∈ QN ,
we define

hA|A′ = hAA′ − hA′ , (6.47)

where we use juxtaposition to denote the union of two sets. In using
the above notation, we do not distinguish elements and singletons of
N , i.e., for a random variable Z ∈ N , hZ is the same as h{Z}. Note that
(6.47) corresponds to the information-theoretic identity

H(A|A′) = H(AA′) − H(A′).

To describe Rin in terms of the above framework, we let

N = {Ys : s ∈ S;Ue : e ∈ E}.

Observe that the constraints (6.40) to (6.45) in the definition of R′

correspond to the following constraints in HN , respectively:

hYS
=
∑
s∈S

hYs (6.48)

hYs > ωs, s ∈ S (6.49)

hUOut(s)|Ys
= 0, s ∈ S (6.50)

hUOut(i)|UIn(i)
= 0, i ∈ V \S (6.51)

hUe < Re, e ∈ E (6.52)

hYβ(i)|UIn(i)
= 0, i ∈ T. (6.53)

Then we have the following alternative definition of R′.

Definition 6.17. Let R′ be the set of all information rate tuples ω

such that there exists h ∈ Γ∗N which satisfies (6.48) to (6.53).

6.3. Outer bound Rout 107

Although the original definition of R′ as given in Definition 6.13 is
more intuitive, the region so defined appears to be totally different from
one problem to another problem. On the other hand, the alternative
definition of R′ above enables the region to be described on the same
footing for all cases. Moreover, if Γ̃N is an explicit inner bound on Γ∗N ,
upon replacing Γ∗N by Γ̃N in the above definition of R′, we immediately
obtain an explicit inner bound on Rin for all cases. We shall see further
advantage of this alternative definition when we discuss an explicit
outer bound on R in the next section.

6.3 Outer bound Rout

In this section, we prove an outer bound Rout on R. This outer bound
is in terms of Γ∗N , the closure of Γ∗N .

Definition 6.18. Let Rout be the set of all information rate tuples ω

such that there exists h ∈ Γ∗N which satisfies the following constraints:

hYS
=
∑
s∈S

hYs (6.54)

hYs ≥ ωs, s ∈ S (6.55)

hUOut(s)|Ys
= 0, s ∈ S (6.56)

hUOut(i)|UIn(i)
= 0, i ∈ V \S (6.57)

hUe ≤ Re, e ∈ E (6.58)

hYβ(i)|UIn(i)
= 0, i ∈ T. (6.59)

The definition of Rout is the same as the alternative definition of
R′ (Definition 6.17) except that

1. Γ∗N is replaced by Γ∗N .
2. The inequalities in (6.49) and (6.52) are strict, while the

inequalities in (6.55) and (6.58) are nonstrict.

From the definitions of R′ and Rout, it is clear that

R′ ⊂ Rout. (6.60)

108 Network Codes for Acyclic Networks

It is also easy to verify that the convexity of Γ∗N ([209], Theorem 14.5)
implies the convexity of Rout. Then upon taking convex closure in
(6.60), we see that

Rin = con(R′) ⊂ con(Rout) = Rout,

where the last equality follows because Rout is close and convex. How-
ever, it is not apparent that the two regions Rin and Rout coincide
in general. This will be further discussed in the next section. We first
prove that Rout is indeed an outer bound on R.

Theorem 6.19. R ⊂ Rout.

Proof. Let ω be an achievable information rate tuple and n be a suffi-
ciently large integer. Then for any ε > 0, there exists an

(n,(ηe : e ∈ E),(τs : s ∈ S))

code on the network such that

n−1 logηe ≤ Re + ε (6.61)

for all e ∈ E,

τs ≥ ωs − ε (6.62)

for all s ∈ S, and

∆i ≤ ε (6.63)

for all i ∈ T .
We consider such a code for a fixed ε and a sufficiently large n. Since

the information sources Xs,s ∈ S are mutually independent, we have

H(XS) =
∑
s∈S

H(Xs). (6.64)

For all s ∈ S, from (6.62),

H(Xs) = log |Xs| = logd2nτse ≥ nτs ≥ n(ωs − ε). (6.65)

6.3. Outer bound Rout 109

For e ∈ E, let Ue be the codeword sent on the channel e. For all s ∈ S

and e ∈ Out(s), since Ue is a function of the information source Xs,

H(UOut(s)|Xs) = 0. (6.66)

Similarly, for all i ∈ V \S,

H(UOut(i)|UIn(i)) = 0. (6.67)

From (6.1), (6.2), and (6.61), for all e ∈ E,

H(Ue) ≤ log |Ue| = log(ηe + 1) ≤ n(Re + 2ε). (6.68)

For i ∈ T , by Fano’s inequality (cf. [209], Corollary 2.48), we have

H(Xβ(i)|UIn(i)) ≤ 1 + ∆i log

 ∏
s∈β(i)

|Xs|


= 1 + ∆iH(Xβ(i)) (6.69)

≤ 1 + εH(Xβ(i)), (6.70)

where (6.69) follows because Xs distributes uniformly on Xs and Xs,
s ∈ S are mutually independent, and (6.70) follows from (6.63). Then

H(Xβ(i)) = I(Xβ(i);UIn(i)) + H(Xβ(i)|UIn(i))
a)

≤ I(Xβ(i);UIn(i)) + 1 + εH(Xβ(i))

≤ H(UIn(i)) + 1 + εH(Xβ(i))

b)

≤

 ∑
e∈In(i)

logηe

 + 1 + εH(Xβ(i))

c)

≤

 ∑
e∈In(i)

n(Re + ε)

 + 1 + εH(Xβ(i)), (6.71)

where

a) follows from (6.70);
b) follows from H(Z) ≤ log |Z|, cf. [209], Theorem 2.43;
c) follows from (6.61).

110 Network Codes for Acyclic Networks

Rearranging the terms in (6.71), we obtain

H(Xβ(i)) ≤
n

1 − ε

 ∑
e∈In(i)

(Re + ε) +
1
n


< 2n

∑
e∈In(i)

(Re + ε) (6.72)

for sufficiently small ε and sufficiently large n. Substituting (6.72) into
(6.70), we have

H(Xβ(i)|UIn(i)) < n

 1
n

+ 2ε
∑

e∈In(i)

(Re + ε)


= nφi(n,ε), (6.73)

where

φi(n,ε) =

 1
n

+ 2ε
∑

e∈In(i)

(Re + ε)

→ 0

as n →∞ and then ε → 0. Thus for this code, from (6.64), (6.65),
(6.67), (6.68), and (6.73), we have

H(XS) =
∑
s∈S

H(Xs) (6.74)

H(Xs) ≥ n(ωs − ε), s ∈ S (6.75)

H(UOut(s)|Xs) = 0, s ∈ S (6.76)

H(UOut(i)|UIn(i)) = 0, i ∈ V \S (6.77)

H(Ue) ≤ n(Re + 2ε), e ∈ E (6.78)

H(Xβ(i)|UIn(i)) ≤ nφi(n,ε), i ∈ T. (6.79)

We note the one-to-one correspondence between (6.74) to (6.79) and
(6.54) to (6.59). By letting Ys = Xs for all s ∈ S, we see that there
exists h ∈ Γ∗N such that

hYS
=
∑
s∈S

hYs (6.80)

hYs ≥ n(ωs − ε), s ∈ S (6.81)

6.4. RLP – An explicit outer bound 111

hUOut(s)|Ys
= 0, s ∈ S (6.82)

hUOut(i)|UIn(i)
= 0, i ∈ V \S (6.83)

hUe ≤ n(Re + 2ε), e ∈ E (6.84)

hYβ(i)|UIn(i)
≤ nφi(n,ε), i ∈ T. (6.85)

By Theorem 14.5 in [209], Γ∗N is a convex cone. Therefore, if h ∈ Γ∗N ,
then n−1h ∈ Γ∗N . Dividing (6.80) through (6.85) by n and replacing
n−1h by h, we see that there exists h ∈ Γ∗N such that

hYS
=
∑
s∈S

hYs

hYs ≥ ωs − ε, s ∈ S

hUOut(s)|Ys
= 0, s ∈ S

hUOut(i)|UIn(i)
= 0, i ∈ V \S

hUe ≤ Re + 2ε, e ∈ E

hYβ(i)|UIn(i)
≤ φi(n,ε), i ∈ T.

We then let n →∞ and then ε → 0 to conclude that there exists h ∈ Γ∗N
which satisfies (6.54) to (6.59). Hence, R ⊂ Rout, and the theorem is
proved.

6.4 RLP – An explicit outer bound

In Section 6.2.5, we stated the inner bound Rin on R in terms of Γ∗N ,
and in Section 6.3, we proved the outer bound Rout on R in terms
of Γ∗N . So far, there exists no full characterization of either Γ∗N or
Γ∗N . Therefore, these bounds cannot be evaluated explicitly. In this
section, we give a geometrical interpretation of these bounds which
leads to an explicit outer bound on R called the LP bound (LP for
linear programming).

Let A be a subset of QN . For a vector h ∈ HN , let

hA = (hZ : Z ∈ A).

For a subset B of HN , let

projA(B) = {hA : h ∈ B}

112 Network Codes for Acyclic Networks

be the projection of the set B on the coordinates hZ ,Z ∈ A. For a subset
B of HN , define

Λ(B) = {h ∈ HN : 0 ≤ h < h′ for some h′ ∈ B}

and

Λ̄(B) = {h ∈ HN : 0 ≤ h ≤ h′ for some h′ ∈ B}.

A vector h ≥ 0 is in Λ(B) if and only if it is strictly inferior to some
vector h′ in B, and is in Λ̄(B) if and only if it is inferior to some vector
h′ in B.

Define the following subsets of HN :

C1 =

{
h ∈ HN : hYS

=
∑
s∈S

hYs

}
C2 =

{
h ∈ HN : hUOut(s)|Ys

= 0 for all s ∈ S
}

C3 =
{
h ∈ HN : hUOut(i)|UIn(i)

= 0 for all i ∈ V \S
}

C4 = {h ∈ HN : hUe < Re for all e ∈ E}

C5 =
{
h ∈ HN : hYβ(i)|UIn(i)

= 0 for all i ∈ T
}

.

These sets contain points in HN that satisfy the constraints in (6.48)
and (6.50) to (6.53), respectively. The set C1 is a hyperplane in HN .
Each of the sets C2, C3, and C5 is the intersection of a collection of
hyperplanes in HN . The set C4 is the intersection of a collection of
open half-spaces in HN . Then from the alternative definition of R′

(Definition 6.17), we see that

R′ = Λ(projYS
(Γ∗N ∩ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5)).

and

Rin = con(Λ(projYS
(Γ∗N ∩ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5))).

Similarly, we see that

Rout = Λ̄(projYS
(Γ∗N ∩ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5)). (6.86)

6.4. RLP – An explicit outer bound 113

It can be shown that if Γ∗N ∩ (C1 ∩ C2 ∩ C3 ∩ C5) is dense in Γ∗N ∩
(C1 ∩ C2 ∩ C3 ∩ C5), i.e.,

Γ∗N ∩ (C1 ∩ C2 ∩ C3 ∩ C5) = Γ∗N ∩ (C1 ∩ C2 ∩ C3 ∩ C5),

then

Rout = R′ ⊂ con(R′) = Rin,

which implies

Rin = Rout.

Note that (C1 ∩ C2 ∩ C3 ∩ C5) is a closed subset of HN . However, while

Γ∗N ∩ C ⊂ Γ∗N ∩ C

for any closed subset C of HN , it is not in general true that

Γ∗N ∩ C = Γ∗N ∩ C.

As a counterexample, it has been shown in [214] (also see [209], Theo-
rem 14.2) that Γ∗3 ∩ C̃ is a proper subset of Γ∗3 ∩ C̃, where Γ∗n denotes
Γ∗N for

N = {X1,X2, · · · ,Xn}

and

C̃ =
{
h ∈ Γ∗3 : hXj + hXk

= h{Xj ,Xk},1 ≤ j < k ≤ 3
}

.

To facilitate our discussion, we further define

iA;A′ = hA − hA|A′ (6.87)

and

iA;A′|A′′ = hA|A′′ − hA|A′A′′ (6.88)

for A,A′,A′′ ∈ QN . Note that (6.87) and (6.88) correspond to the
information-theoretic identities

I(A;A′) = H(A) − H(A|A′)

114 Network Codes for Acyclic Networks

and

I(A;A′|A′′) = H(A|A′′) − H(A|A′A′′),

respectively. Let ΓN be the set of h ∈ HN such that h satisfies all the
basic inequalities involving some or all of the random variables in N ,
i.e., for all A,A′,A′′ ∈ QN ,

hA ≥ 0

hA|A′ ≥ 0

iA;A′ ≥ 0

iA;A′|A′′ ≥ 0.

These inequalities are equivalent to the nonnegativity of all Shan-
non’s information measures (entropy, conditional entropy, mutual infor-
mation, and conditional mutual information). The significance of the
region ΓN is that it fully characterizes all the Shannon-type informa-
tion inequalities involving the random variables in N , namely those
inequalities implied by the above set of basic inequalities. Since the
basic inequalities are satisfied by all joint distributions (i.e., h ∈ Γ∗N
implies h ∈ ΓN) and that ΓN is closed, we have Γ∗N ⊂ ΓN . Then upon
replacing Γ∗N by ΓN in the definition of Rout, we immediately obtain
an outer bound on Rout. This is called the LP bound, denoted by RLP .
In other words, RLP is obtained by replacing Γ∗N by ΓN on the right
hand side of (6.86), i.e.,

RLP = Λ̄(projYS
(ΓN ∩ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5)).

Since all the constraints defining RLP are linear, RLP can in prin-
ciple be evaluated explicitly, although the computation involved can be
nontrivial.

However, it has been shown in [215] by means of the discovery of
what is known as a non-Shannon-type information inequality that Γ∗n 6=
Γn for n ≥ 4, so there is a potential gap between Rout and RLP . In
short, a non-Shannon-type information inequality is an outer bound
on Γ∗N which is not implied by the basic inequalities. Specifically, it is

6.4. RLP – An explicit outer bound 115

proved in [215] that for any 4 random variables X1,X2,X3, and X4,

2I(X3;X4) ≤ I(X1;X2) + I(X1;X3,X4)

+ 3I(X3;X4|X1) + I(X3;X4|X2). (6.89)

We refer the reader to [209], Ch. 14, for a detailed discussion.
Now return to the question of whether there is indeed a gap between

Rout and RLP . This important question has recently been answered in
[167], where it is shown by means of the non-Shannon-type inequality
(6.89) that RLP is not tight for a particular multi-source network cod-
ing problem constructed from matroid theory. This result implies that
Rout is generally tighter than RLP .

Nonetheless, it has been proved in [209], Ch. 15, and [211] that
RLP is tight for all special cases of multi-source network coding for
which the achievable information rate region is known. These include
single-source network coding discussed in Part I as well as the mod-
els described in [207][177][200][212][211]. Since RLP encompasses all
Shannon-type information inequalities and the converse proofs of the
achievable information rate region for all these special cases do not
involve non-Shannon-type inequalities, the tightness of RLP for all
these cases is not surprising.

7

Fundamental Limits of Linear Codes

In Part I, we have shown that for single-source network coding, linear
codes are sufficient for achieving asymptotic optimality. It is not clear
whether this continues to hold for multi-source network coding. In this
section, we present a framework for discussion and explore a potential
gap between the asymptotic performance of linear codes and nonlinear
codes.

7.1 Linear network codes for multiple sources

We first generalize the global description of a linear network code in
Definition 2.5 of Part I for multiple sources. As in Part I, to facilitate
our discussion of linear codes, we assume that each channel has unit
capacity. Let F be a finite field,

ω = (ωs : s ∈ S)

be a tuple of positive integers, and

Ω =
∑
s∈S

ωs.

117

118 Fundamental Limits of Linear Codes

Consider the space FΩ. The information source generated at a source
node s is regarded as an ωs-dimensional subspace of FΩ, denoted by Ws,
and it is assumed that the subspaces for different information sources
are linearly independent, i.e.,

Ws ∩ Ws′ = 0 for s 6= s′, (7.1)

where 0 denotes the zero vector.
As in Part I, the information source generated at a source node s is

modelled by ωs imaginary channels terminating at the node s. We adopt
the convention that these channels are labeled by s(1),s(2), · · · ,s(ωs).

Definition 7.1. (Global Description of a Linear Network
Code) Let F be a finite field, and ω = (ωs : s ∈ S) be a tuple of pos-
itive integers. For s ∈ S, let Ws be an ωs-dimensional subspace of FΩ

such that Ws ∩ Ws′ = 0 for s 6= s′. An ω-dimensional F -valued linear
network code on an acyclic network with respect to {Ws} consists of
a scalar kd,e for every adjacent pair (d,e) in the network as well as an
Ω-dimensional column vector fe for every channel e such that:

(7.2) fe =
∑

d∈In(i) kd,efd, where e ∈ Out(i).
(7.3) For s ∈ S, the vectors fs(1),fs(2), · · · ,fs(ωs) for the ωs imaginary

channels terminating at the node source node s constitute a
basis for the subspace Ws.

The scalar kd,e is called the local encoding kernel for the adjacent pair
(d,e), while the vector fe is called the global encoding kernel for the
channel e.

We note that in the above definition, for given ωs,s ∈ S, the spe-
cific choice of the set of subspaces {Ws} is not important. While it is
convenient to choose Ws for s ∈ S and fe for all imaginary channels e

such that the latter form the natural basis for FΩ, in order to keep
the definition general and to facilitate subsequent discussion, we do
not impose this requirement. In fact, a linear network code as defined
in Definition 7.1 that does not satisfy this requirement can readily be
converted into one by means of a linear transformation.

7.2. Entropy and the rank function 119

Introduce the notations

fs =
[
fs(1) fs(2) · · · fs(ωs)

]
(7.4)

for s ∈ S and

fE′ = [fe]e∈E′ (7.5)

for E′ ⊂ E. In (7.5), the matrix elements fe are put in juxtaposition.
This convention will be adopted throughout this section.

Definition 7.2. An information rate tuple

ω = (ωs : s ∈ S)

is linearly achievable if for some base field F , there exists an ω′-
dimensional linear code on the network, where ω′ ≥ ω (component-
wise), satisfying: For all i ∈ T , for all s ∈ β(i), there exists an |In(i)| ×
ω′s matrix Gi(s) such that

fs = fIn(i) · Gi(s). (7.6)

The matrix Gi(s) is called the decoding kernel at the node i for the
information source generated at the source node s.

7.2 Entropy and the rank function

In this section, we establish a fundamental relation (Theorem 7.4)
between entropy and the rank function of matrices. This relation is
instrumental for the discussion in the next section, where we explore
the asymptotic limitation of linear network codes for multiple sources.

Theorem 7.3. Let F be a finite field, Y be an Ω-dimensional
random row vector that distributes uniformly on FΩ, and A be
an F -valued Ω × l matrix. Let Z = g(Y), where g(Y) = Y · A. Then
H(Z) = rank(A) log |F |.

Proof. Let y ∈ FΩ and z ∈ F l be row vectors. Consider the system of
simultaneous equations

y · A = z

120 Fundamental Limits of Linear Codes

with y being unknown and z fixed, and let Sz denote the solution set
for a particular z. It is readily seen that S0, where 0 denotes the zero
vector, is a linear subspace of FΩ.

For a particular z, Sz may or may not be empty. For distinct z1,z2 ∈
range(g), i.e., both Sz1 and Sz2 are nonempty, it is readily seen that

Sz1 ∩ Sz2 = ∅. (7.7)

Now regard the vectors in FΩ together with vector addition as a
group, and hence S0 is a subgroup of FΩ. For a fixed z such that Sz is
nonempty, consider any ỹ ∈ Sz. Then it is easy to verify that

Sz = {ỹ + y : y ∈ S0}.

Thus Sz is a coset of S0 with respect to ỹ, and by the Lagrange theorem
(see for example [175]), |Sz| = |S0|. It follows that |Sz| is equal to a
constant for all z ∈ range(g).

Finally, for all z ∈ range(g),

Pr{Z = z} = Pr{Y ∈ Sz}

=
|Sz|
|F |Ω

=
|S0|
|F |Ω

,

which does not depend on z. Thus Z has a uniform distribution on
range(g). Since range(g) is a subspace of F l with dimension rank(A),
it follows that

H(Z) = log |F |rank(A) = rank(A) log |F |.

The theorem is proved.

Before we proceed further, we first define a region in the entropy
space HN which is closely related to the region Γ∗N , where we recall
from Section 6.2.5 that

N = {Ys : s ∈ S;Ue : e ∈ E}.

Let Ω be any integer such that Ω ≥ 1. For each e ∈ E, associate with
the random variable Ue an unspecified Ω-dimensional column vector

7.2. Entropy and the rank function 121

denoted by vUe , and for each s ∈ S, associate with the random variable
Ys an unspecified Ω × ωs matrix denoted by vYs (here vYs is regarded
as a collection of ωs Ω-dimensional column vectors). The use of these
unspecified vectors/matrices will become clear shortly. For A ∈ QN , let

vA = [vZ]Z∈A.

A vector

h = (hA : A ∈ QN)

as defined in (6.46) is a rank function for a finite base field F if there
exists a collection of column vectors {vZ : Z ∈ N} in F such that

hA = rank(vA) (7.8)

for all A ∈ QN . We then define the region

Ψ∗
N = {h ∈ HN : h is a rank function for some base field F

and some Ω ≥ 1}.

The possible gap between the asymptotic performance between lin-
ear and nonlinear codes, as we shall see, hinges on a gap between the
region Ψ∗

N and Γ∗N characterized by an inequality on the rank function
known as the Ingleton inequality [181]. We first establish the following
fundamental theorem.

Theorem 7.4. con(Ψ∗
N) ⊂ Γ∗N , where con(Ψ∗

N) denotes the convex
hull of Ψ∗

N .

Proof. Consider h ∈ Ψ∗
N . Then for some finite base field F and some

Ω ≥ 1, there exists a collection of vectors {vZ : Z ∈ N} such that (7.8)
is satisfied. Let

Y =
[
Y1 Y2 · · · YΩ

]
be an Ω-dimensional row vector, where Yi, 1 ≤ i ≤ Ω are i.i.d. random
variables each distributing uniformly on F , so that Y distributes uni-
formly on FΩ. Define the random variable

Z = Y · vZ

122 Fundamental Limits of Linear Codes

for every Z ∈ N , so that for every A ∈ QN ,

[Z]Z∈A = Y · vA.

Then by Theorem 7.3,

H(Z : Z ∈ A) = rank(vA) log |F |. (7.9)

From (7.8) and (7.9), we have

hA = rank(vA) = (log |F |)−1H(Z : Z ∈ A),

or

(log |F |)hA = H(Z : Z ∈ A).

This implies that (log |F |)h is an entropy function, or

(log |F |)h ∈ Γ∗N .

Since Γ∗N is a convex cone,

h ∈ Γ∗N .

Therefore, we conclude that

Ψ∗
N ⊂ Γ∗N .

The proof is then completed by taking the convex hull in the above.

7.3 Can nonlinear codes be better asymptotically?

Recall the notation

fE′ = [fe]e∈E′

for E′ ⊂ E and introduce a similar notation

fS′ = [fs]s∈S′

for S′ ⊂ S. For a linear code as defined in Definition 7.1, we observe
that the assumption (7.1) is equivalent to

rank(fS) =
∑
s∈S

rank(fs),

7.3. Can nonlinear codes be better asymptotically? 123

while the requirement (7.2) is equivalent to

rank(fIn(i)∪Out(i)) = rank(fIn(i)).

Furthermore, in Definition 7.2, the decoding requirement prescribed in
(7.6) is equivalent to

rank(fβ(i)∪In(i)) = rank(fIn(i)).

Letting

vYs = fs

for s ∈ S and

vUe = fe

for e ∈ E, and following Definitions 7.1 and 7.2 and the foregoing, we
see that an information rate tuple ω is linearly achievable if and only
if for some finite base field F , there exists a collection of Ω-dimensional
column vectors {vZ : Z ∈ N}, where Ω =

∑
s∈S ωs, which satisfies the

following conditions:

rank(vYS
) =

∑
s∈S

rank(vYs) (7.10)

rank(vYs) ≥ ωs, s ∈ S (7.11)

rank(vUOut(s)∪Ys) = rank(vYs), s ∈ S (7.12)

rank(vUIn(i)∪Out(i)
) = rank(vUIn(i)

), i ∈ V \S (7.13)

rank(vUe) ≤ 1, e ∈ E (7.14)

rank(vYβ(i)∪UIn(i)
) = rank(vUIn(i)

), i ∈ T. (7.15)

In other words, there exists h ∈ Ψ∗
N which satisfy the following

conditions:

hYS
=
∑
s∈S

hYs (7.16)

hYs ≥ ωs, s ∈ S (7.17)

hUOut(s)|Ys
= 0, s ∈ S (7.18)

hUOut(i)|UIn(i)
= 0, i ∈ V \S (7.19)

hUe ≤ 1, e ∈ E (7.20)

hYβ(i)|UIn(i)
= 0, i ∈ T, (7.21)

124 Fundamental Limits of Linear Codes

where (7.18), (7.19), and (7.21) follow because these equalities are
equivalent to

hUOut(s)∪Ys = hYs

hUOut(i)∪In(i)
= hUIn(i)

and

hYβ(i)∪UIn(i)
= hUIn(i)

,

which correspond to (7.12), (7.13), and (7.15), respectively. If we allow
time-sharing of linear codes, then we simply replace the region Ψ∗

N
by the region con(Ψ∗

N). The discussion above is summarized by the
following definition and theorem.

Definition 7.5. Let Rlinear be the set of all information rate tuple ω

such that there exists h ∈ con(Ψ∗
N) satisfying (7.16) to (7.21).

Theorem 7.6. An information rate tuple is achievable by time-
sharing of linear codes, possibly defined on base fields with different
characteristics, if and only if ω ∈ Rlinear .

By setting Re = 1 in (6.58), (7.16) to (7.21) become exactly the
same as (6.54) to (6.59). Invoking Theorem 7.4, we see that

Rlinear ⊂ Rout,

which is expected.
The regions Rin and Rout are in terms of Γ∗N and Γ∗N , respectively,

while the region Rlinear is in terms of con(Ψ∗
N). Let A and B be any

collections of vectors. It is well known that the rank function satisfies
the following properties:

P1. 0 ≤ rank(A) ≤ |A|.
P2. rank(A) ≤ rank(B) if A ⊂ B.
P3. rank(A) + rank(B) ≥ rank(A ∪ B) + rank(A ∩ B).

7.3. Can nonlinear codes be better asymptotically? 125

In addition, a rank function also satisfies the Ingleton inequality [181]:
For any collections of vectors Ai, i = 1,2,3,4,

rank(A13) + rank(A14) + rank(A23) + rank(A24) + rank(A34)

≥ rank(A3) + rank(A4) + rank(A12) + rank(A134) + rank(A234),

where A13 denotes A1 ∪ A3, etc.
It has been shown in [215] that there exists entropy functions

involving 4 random variables which do not satisfy the corresponding
Ingleton inequality for entropy functions. The gap between con(Ψ∗

N)
and Γ∗N so implied indicates that for certain multi-source network
coding problems, ROut may be strictly larger than RLinear, opening
up the possibility that nonlinear codes can outperform linear codes
asymptotically.

In fact, examples have been reported by various authors that non-
linear codes can outperform linear codes [197][199][168][196][169]. In
particular, it is shown in [169] that there exist multi-source network
coding problems for which nonlinear codes can outperform very gen-
eral forms of linear codes, including mixtures of linear codes discussed
here. This shows that there is indeed a gap between RLinear and ROut.

Appendix A

Global Linearity versus Nodal Linearity

In this appendix, we define global linearity and local linearity of a
network code based on the first principle. We shall show that global
linearity implies local linearity. This justifies the generality of the local
and global descriptions of a linear network code on an acyclic network
in Definitions 2.4 and 2.5 of Part I.

Definition A.1. (Global Linearity) A network code on an acyclic
network is globally linear if the global encoding mappings f̃e,e ∈ E are
all linear, i.e.,

f̃e(a1x1 + a2x2) = a1f̃e(x1) + a2f̃e(x2), (A.1)

where x1 and x2 are row vectors in Fω and a1,a2 ∈ F .

Definition A.2. (Local Linearity) A network code on an acyclic
network is locally linear if the local encoding mappings k̃e,e ∈ E are all
linear.

127

128 Global Linearity versus Nodal Linearity

It can easily be seen by induction that local linearity implies global
linearity, but the converse is not immediate. We shall prove that this
is indeed the case.

We shall need a few preliminary results. We begin with the following
lemma whose proof is elementary, but we nevertheless include it so that
the reader can compare it with the proof of the next lemma.

Lemma A.3. Let g : Fm → F , where Fm denotes the linear space
of F -valued m-dimensional row vectors. Then g is linear if and only if
there exists an F -valued m-dimensional column vector a such that

g(y) = y · a

for all y ∈ Fm.

Proof. It is clear that if g(y) = y · a for all y ∈ Fm, then g is linear. We
only need to prove the converse. Let uk denote the row vector in Fm

such that the kth component is equal to 1 while all other components
are equal to 0. Write

y =
∑

k

ykuk,

where yk is the kth component of y. Then

g(y) = g

(∑
k

ykuk

)
=
∑

k

ykg(uk).

Upon letting a be the column vector [g(uk)], we have

g(y) = y · a,

proving the lemma.

This lemma has the following less trivial generalization.

Lemma A.4. Let g : S → F , where S denotes a subspace of row vec-
tors in Fm. Then g is linear if and only if there exists an F -valued

129

m-dimensional column vector k such that

g(y) = y · k

for all y ∈ S.

Proof. Again, it is clear that if g(y) = y · k for all y ∈ S, then g is linear.
So we only prove the converse.

Denote the dimension of S by κ. Let {u1, · · · ,uκ} be a basis for S

and let U be the κ × m matrix with the rows being u1, · · · ,uκ in this
order. Then y ∈ S if and only if

y = w · U

for some row vector w ∈ F κ. Since U is full rank by construction, it’s
right inverse, denoted by U−1

r (m × κ), exists, and we can write

w = y · U−1
r .

Define a function g̃ : F κ → F such that

g̃(w) = g(w · U).

Since g is linear, it can readily be verified that so is g̃. Then by
Lemma A.3,

g̃(w) = w · a

for some column vector a ∈ F κ. Hence,

g(y) = g(w · U)

= g̃(w)

= w · a
= (y · U−1

r) · a
= y · (U−1

r · a).

Upon letting k = U−1
r · a, we have

g(y) = y · k,

proving the lemma.

This lemma has the following immediate matrix generalization.

130 Global Linearity versus Nodal Linearity

Corollary A.5. Let g : S → F l, where S denotes a subspace of row
vectors in Fm. Then g is a linear transformation if and only if there
exists an F -valued matrix K with dimension m × l such that

g(y) = y · K

for all y ∈ S.

Now consider a globally linear network code and any non-source
node i. Let K̃i be the local encoding mapping at i, i.e.,

(f̃d(x),d ∈ In(i)) 7→ (f̃e(x),e ∈ Out(i)).

Introduce the notations

f̃In(i)(x) = [f̃d(x)]d∈In(i)

and

fIn(i) = [fd]d∈In(i),

where f̃In(i)(x) and fIn(i) are row vectors, and recall that fd denotes the
global encoding kernel of the channel d. In a similar fashion, f̃Out(i)(x)
and fOut(i) are defined. It is easy to see that {f̃In(i)(x) : x ∈ Fω} forms
a subspace (of row vectors) in F |In(i)|. In other words, K̃i is a mapping
from a subspace of F |In(i)| to F |Out(i)|.

We now show that encoding mapping K̃i is linear. Let

yj = f̃In(i)(xj)

for j = 1,2. Then for any c1, c2 ∈ F ,

K̃i(c1y1 + c2y2) = K̃i(c1f̃In(T)(x1) + c2f̃In(T)(x2))

= K̃i(f̃In(T)(c1x1 + c2x2))

= f̃Out(T)(c1x1 + c2x2)

= c1f̃Out(T)(x1) + c2f̃Out(T)(x2)

= c1K̃i(f̃In(T)(x1)) + c2K̃i(f̃In(T)(x2))

= c1K̃i(y1) + c2K̃i(y2).

131

Thus K̃i is linear. Hence, global linearity implies local linearity.
Now since K̃i is linear, by Corollary A.5, there exists an |In(i)| ×

|Out(i)| matrix Ki (encoding kernel for the node i) such that

gi(y) = y · Ki

for all {f̃In(i)(x) : x ∈ Fω}. Then for any row vector x ∈ Fω, we have

x · fOut(i) = f̃Out(i)(x)

= K̃i(f̃In(i)(x))

= f̃In(i)(x) · Ki

= (x · fIn(i)) · Ki

= x · (fIn(i) · Ki).

Since the above holds for every x ∈ Fω, it implies that

fOut(i) = fIn(i) · Ki,

or for every e ∈ Out(T),

fe =
∑

d∈In(T)

kd,efe.

This justifies Definition 2.5, and we have shown that this definition as
well as Definition 2.4 define the most general linear network code on
an acyclic network.

Acknowledgements

The authors would like to thank Chung Ping Kwong and David Tse
for the useful discussions, and Siu-Wai Ho for converting part of the
manuscript from Word to LATEX. They also would like to thank Ken
Zeger for clarifying their results in [169]. The work of Raymond Yeung
and Bob Li were partially supported by grants from the Research Grant
Council of the Hong Kong Special Administrative Region, China (RGC
Ref. No. CUHK4214/03E and 414005).

133

References

Literature Survey

[1] R. W. Yeung, “Multilevel diversity coding with distortion,” IEEE Trans.
Inform. Theory, IT-41: 412-422, 1995.

[2] K. P. Hau, “Multilevel diversity coding with independent data streams,”
M.Phil. thesis, The Chinese University of Hong Kong, Jun. 1995.

[3] J. R. Roche, R. W. Yeung, and K. P. Hau, “Symmetrical multilevel diversity
coding,” IEEE Trans. Inform. Theory, IT-43: 1059-1064, 1997.

[4] R. Ahlswede, N. Cai, and R. W. Yeung, “Network information flow theory,”
1998 IEEE International Symposium on Information Theory, MIT, Aug 16-21,
1998.

[5] S.-Y. R. Li and R. W. Yeung, “Network multicast flow via linear cod-
ing,” International Symposium on Operations Research and its Applications
(ISORA 98), Kunming, China, pp. 197-211, Aug 1998.

[6] R. W. Yeung and Z. Zhang, “On symmetrical multilevel diversity coding,”
IEEE Trans. Inform. Theory, IT-45: 609-621, 1999.

[7] R. W. Yeung and Z. Zhang, “Distributed source coding for satellite commu-
nications,” IEEE Trans. Inform. Theory, IT-45: 1111-1120, 1999.

[8] S.-Y. R. Li and R. W. Yeung, “Single-source network information flow,” 1999
IEEE Information Theory Workshop, Metsovo, Greece, Jun 27-Jul 1, 1999.

[9] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inform. Theory, IT-46: 1204-1216, 2000.

[10] R. Koetter and M. Medard, “An algebraic approach to network coding and
robust networks,” 2001 IEEE International Symposium on Information The-
ory, Washington, DC, Jun 24-29, 2001.

135

136 References

[11] T. Ho, M. Medard and R. Koetter, “A coding view of network recovery and
managment for single receiver communication,” 2002 Conference on Informa-
tion Science and Systems, Princeton University, Mar 20-22, 2002.

[12] R. Koetter and M. Medard, “Beyond Routing: An algebraic approach to net-
work coding,” INFOCOM 2002, New York, NY, USA, Jun 23-27, 2002.

[13] S. Borade, “Network information flow: Limits and achievability,” 2002 IEEE
International Symposium on Information Theory, Lausanne, Switzerland, Jun
30-Jul 5, 2002.

[14] N. Cai and R. W. Yeung, “Secure network coding,” 2002 IEEE International
Symposium on Information Theory, Lausanne, Switzerland, Jun 30-Jul 5,
2002.

[15] N. Cai and R. W. Yeung, “Network coding and error correction,” 2002 IEEE
Information Theory Workshop, Bangalore, India, Oct 20-25, 2002.

[16] S.-Y. R. Li, R. W. Yeung and N. Cai, “Linear network coding,” IEEE Trans.
Inform. Theory, IT-49: 371-381, 2003.

[17] M. Effros, M. Medard, T. Ho, S. Ray, D. Karger, R. Koetter, “Linear net-
work codes: A unified framework for source, channel, and network coding,”
DIMACS workshop on Network Information Theory, Mar 2003.

[18] T. Ho, M. Medard, and R. Koetter, “An information theoretic view of network
management,” INFOCOM 2003, San Francisco, CA, USA, Mar 30 - Apr 3,
2003.

[19] E. Erez and M. Feder, “Capacity region and network codes for two receivers
multicast with private and common data,” Workshop on Coding, Cryptogra-
phy and Combinatorics, 2003.

[20] T. Noguchi, T. Matsuda, M. Yamamoto, “Performance evaluation of new mul-
ticast architecture with network coding,” IEICE Trans. Comm., vol. E86-B,
1788-1795, 2003.

[21] P. Sanders, S. Egner, and L. Tolhuizen, “Polynomial time algorithms for net-
work information flow,” 15th ACM Symposium on Parallelism in Algorithms
and Architectures, San Diego, CA, Jun 7-9, 2003.

[22] T. Ho, D. Karger, M. Medard, and R. Koetter, “Network coding from a net-
work flow perspective,” 2003 IEEE International Symposium on Information
Theory, Yokohama, Japan, Jun 29-Jul 4, 2003.

[23] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits of
coding over routing in a randomized setting,” 2003 IEEE International Sym-
posium on Information Theory, Yokohama, Japan, Jun 29-Jul 4, 2003.

[24] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” 41st Annual
Allerton Conference on Communication, Control, and Computing, Monticello,
IL, Oct 2003.

[25] E.Erez and M. Feder, “On codes for network multicast,” 41st Annual Allerton
Conference on Communication, Control, and Computing, Monticello, IL, Oct
2003.

[26] M. Feder, D. Ron, A. Tavory, “Bounds on linear codes for network multi-
cast,” Electronic Colloquium on Computational Complexity (ECCC) 10(033):
(2003).

References 137

[27] T. Ho, M. Medard, J. Shi, M. Effros, and D. R. Karger, “On randomized
network coding,” 41st Annual Allerton Conference on Communication Control
and Computing, Monticello, IL, Oct 2003.

[28] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Networking, vol. 11, 782-795, 2003.

[29] A. Rasala-Lehman and E. Lehman, “Complexity classification of network
information flow problems,” 41st Annual Allerton Conference on Communi-
cation Control and Computing, Monticello, IL, Oct 2003.

[30] M. Medard, M. Effros, T. Ho, and D. Karger, “On coding for non-multicast
networks,” 41st Annual Allerton Conference on Communication Control and
Computing, Monticello, IL, Oct 2003.

[31] A. Ramamoorthy, J. Shi, and R. Wesel, “On the capacity of network coding
for wireless networks,” 41st Annual Allerton Conference on Communication
Control and Computing, Monticello, IL, Oct 2003.

[32] P. Sanders, S. Egner, and L. Tolhuizen, “Polynomial time algorithms for the
construction of multicast network codes,” 41st Annual Allerton Conference on
Communication Control and Computing, Monticello, IL, Oct 2003.

[33] S. Riis, “Linear versus non-linear Boolean functions in Network Flow,”
preprint, Nov 2003.

[34] L. Song, R. W. Yeung and N. Cai, “Zero-error network coding for acyclic
networks,” IEEE Trans. Inform. Theory, IT-49: 3129-3139, 2003.

[35] A. Lehman and E. Lehman “Complexity classification of network informa-
tion flow problems,” ACM-SIAM Symposium on Discrete Algorithms, New
Orleans, LA, Jan 11-13, 2004.

[36] Y. Zhu, B. Li, J. Guo, “Multicast with network coding in application-layer
overlay networks,” IEEE J. Selected Areas Comm. (special issue on Service
Overlay Networks), vol. 22, 107-120, 2004.

[37] K. Jain, “Security based on network topology against the wiretapping attack,”
IEEE Wireless Comm., 68-71, Feb 2004.

[38] S. Deb, C. Choute, M. Medard, and R. Koetter, “Data harvesting: A random
coding approach to rapid dissemination and efficient storage of data,” IEEE
INFOCOM 2005, Miami, FL, USA, Mar 13-17, 2005.

[39] R. Dougherty, C. Freiling, and K. Zeger, “Linearity and solvability in multicast
networks,” 38th Annual Conference on Information Sciences and Systems,
Princeton, NJ, Mar 17-19, 2004.

[40] C. Fragouli, E. Soljanin, A. Shokrollahi, “Network coding as a coloring prob-
lem,” 38th Annual Conference on Information Sciences and Systems, Prince-
ton, NJ, Mar 17-19, 2004.

[41] T. Ho, M. Medard, M. Effros, R. Koetter, “Network coding for correlated
sources,” 38th Annual Conference on Information Sciences and Systems,
Princeton, NJ, Mar 17-19, 2004.

[42] Z. Li, B. Li, “Network coding in undirected networks,” 38th Annual Confer-
ence on Information Sciences and Systems, Princeton, NJ, Mar 17-19, 2004.

[43] D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, and H. Lee,
“Achieving minimum-cost Multicast: A decentralized approach based on net-
work coding,” IEEE INFOCOM 2005, Miami, FL, USA, Mar 13-17, 2005.

138 References

[44] Y. Wu, P. A. Chou, Q. Zhang, K. Jain, W. Zhu, and S.-Y. Kung, “Achiev-
able throughput for multiple multicast sessions in wireless ad hoc networks,”
submitted to IEEE Globecom 2004.

[45] S. Deb and M. Medard, “Algebraic Gossip: A network coding approach to
optimal multiple rumor mongering,” preprint.

[46] D. Lun, M. Medard, T. Ho, and R. Koetter, “Network coding with a cost
criterion,” MIT LIDS TECHNICAL REPORT P-2584, Apr 2004.

[47] Z. Li, B. Li, D. Jiang, and L. C. Lau, “On achieving optimal end-to-end
throughput in data networks: Theoretical and empirical studies,” Technical
Report, University of Toronto, May 2004.

[48] S. Che and X. Wang, “Network coding in wireless network,” 16th International
Conference on Computer Communication, China, 2004.

[49] E. Erez and M. Feder, “Convolutional network codes,” 2004 IEEE Interna-
tional Symposium on Information Theory, Chicago, IL, Jun 27-Jul 2, 2004.

[50] C. Fragouli and E. Soljanin, “Required alphabet size for linear network cod-
ing,” 2004 IEEE International Symposium on Information Theory, Chicago,
IL, USA, Jun 27 -Jul 2.

[51] C. Fragouli and E. Soljanin, “A connection between network coding and con-
volutional codes,” IEEE International Conference on Communications, Paris,
France, Jun 20-24, 2004.

[52] T. Ho, B. Leong, M. Medard, R.Koetter, Y. Chang, and M. Effros, “On the
utility of network coding in dynamic environments,” International Workshop
on Wireless Ad-hoc Networks (IWWAN), University of Oulu, Finland, May
31-Jun 3, 2004.

[53] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. R. Karger,
“Byzantine modification detection in multicast networks using randomized
network coding,” 2004 IEEE International Symposium on Information The-
ory, Chicago, IL, Jun 27-Jul 2, 2004.

[54] G. Kramer and S. A. Savari, “Cut sets and information flow in networks
of two-way channels,” 2004 IEEE International Symposium on Information
Theory, Chicago, IL, Jun 27-Jul 2, 2004.

[55] C. K. Ngai and R.W. Yeung, “Multisource network coding with two sinks,”
International Conference on Communications, Circuits and Systems (ICC-
CAS), Chengdu, China, Jun 27-29, 2004.

[56] Y. Wu, P. A. Chou, K. Jain, “A comparison of network coding and tree pack-
ing,” 2004 IEEE International Symposium on Information Theory, Chicago,
IL, Jun 27-Jul 2, 2004.

[57] Y. Cui, Y. Xue, and K. Nahrstedt, “Optimal distributed multicast routing
using network coding: Theory and applications,” preprint UIUCDCS-R-2004-
2473, University of Illinois, Urbana-Champaign, Aug 2004.

[58] Y. Wu, P. A. Chou, and S.-Y. Kung, “Information exchange in wireless net-
works with network coding and physical-layer broadcast,” Microsoft Technical
Report, MSR-TR-2004-78, Aug 2004.

[59] J. Feldman, T. Malkin, C. Stein, and R. A. Servedio, “On the capacity of
secure network coding,” 42nd Annual Allerton Conference on Communication,
Control, and Computing, Sept 29-Oct 1, 2004.

References 139

[60] C. Fragouli and E. Soljanin, “On average throughput benefit for network cod-
ing,” 42nd Annual Allerton Conference on Communication, Control, and Com-
puting, Sept 29-Oct 1, 2004.

[61] N. Harvey, R. Kleinberg, and A. Lehman, “Comparing network coding with
multicommodity flow for the k-pairs communication problem,” MIT LCS
Technical Report 964, Sept 28, 2004.

[62] S. Jaggi, M. Effros T. C. Ho, and M. Medard, “On linear network coding,”
42nd Annual Allerton Conference on Communication, Control, and Comput-
ing, Sept 29-Oct 1, 2004.

[63] D. S. Lun, M. Medard, and M. Effros, “On coding for reliable communication
over packet networks,” 42nd Annual Allerton Conference on Communication,
Control, and Computing, Sept 29-Oct 1, 2004.

[64] A. Ramamoorthy, K. Jain, P. A. Chou, and M. Effros, “Separating distributed
source coding from network coding,” 42nd Annual Allerton Conference on
Communication, Control, and Computing, Sept 29-Oct 1, 2004.

[65] Y. Wu , K. Jain, and S.-Y. Kung, “A unification of Edmonds’ graph the-
orem and Ahlswede et al’s network coding theorem,” 42nd Annual Allerton
Conference on Communication, Control, and Computing, Sept 29-Oct 1, 2004.

[66] A. Argawal and M. Charikar, “On the advantage of network coding for improv-
ing network throughput,” 2004 IEEE Information Theory Workshop, San
Antonio, Oct 25-29, 2004.

[67] R. Dougherty, C. Freiling, and K. Zeger, “Linearity and solvability in multicast
networks,” IEEE Trans. Inform. Theory, IT-50: 2243-2256, 2004.

[68] C. Fragouli and E. Soljanin, “Decentralized network coding,” 2004 IEEE Infor-
mation Theory Workshop, San Antonio, Oct 25-29, 2004.

[69] J. Han and P. H. Siegel, “Reducing acyclic network coding problems to single-
transmitter-single-demand form,” 42nd Allerton Conference on Communica-
tion, Control, and Computing, Monticello, IL, Spet 29-Oct 1, 2004.

[70] D. S. Lun, M. Medard, T. Ho , and R. Koetter, “Network coding with a cost
criterion,” International Symposium on Information Theory and its Applica-
tions, Parma, Italy, Oct 10-13, 2004.

[71] C. K. Ngai and R. W. Yeung, “Network coding gain of combination networks,”
2004 IEEE Information Theory Workshop, San Antonio, Oct 25-29, 2004.

[72] D. Tuninetti and C. Fragouli, “Processing along the way: Forwarding vs. Cod-
ing,” International Symposium on Information Theory and its Applications,
Parma, Italy, Oct 10-13, 2004.

[73] Y. Wu, P. A. Chou, and S.-Y. Kung, “Minimum-energy multicast in mobile ad
hoc networks using network coding,” 2004 IEEE Information Theory Work-
shop, San Antonio, Oct 25-29, 2004.

[74] R. W. Yeung, “Two approaches to quantifying the bandwidth advantage of
network coding,” presented at 2004 IEEE Information Theory Workshop, San
Antonio, Oct 25-29, 2004.

[75] S. C. Zhang, I. Koprulu, R. Koetter, and D. L. Jones, “Feasibility analysis of
stochastic sensor networks,” IEEE International Conference on Sensor and Ad
hoc Communications and Networks, Santa Clara, CA, USA, Oct 4-7, 2004.

140 References

[76] N. Harvey, D. Karger, and K. Murota, “Deterministic network coding
by matrix completion,” ACM-SIAM Symposium on Discrete Algorithms
(SODA), Vancouver, British Columbia, Canada, Jan 23-25, 2005.

[77] M. Langberg, A. Sprintson and J. Bruck, “The encoding complexity of network
coding,” ETR063, California Institute of Technology.

[78] A. R. Lehman and E. Lehman, “Network coding: Does the model need tun-
ing?” ACM-SIAM Symposium on Discrete Algorithms (SODA), Vancouver,
British Columbia, Canada, Jan 23-25, 2005.

[79] Y. Wu, P. A. Chou, Q. Zhang, K. Jain, W. Zhu, and S.-Y. Kung, “Network
planning in wireless ad hoc networks: a cross-layer approach,” IEEE J. Selected
Areas Comm. (Special Issue on Wireless Ad Hoc Networks), vol. 23, 136-150,
2005.

[80] A. Rasala-Lehman, “Network coding,” Ph.D. thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering and Computer Science,
Feb 2005.

[81] X. B. Liang, “Matrix games in the multicast networks: Maximum information
flows with network switching,” revised version (original version: Mar 2005),
preprint.

[82] Y. Wu, P. A. Chou, S.-Y. Kung, “Information exchange in wireless networks
with network coding and physical-layer broadcast,” 2005 Conference on Infor-
mation Science and Systems, Johns Hopkins University, Mar 16-18, 2005.

[83] Y. Wu and S.-Y. Kung, “Reduced-complexity network coding for multicasting
over ad hoc networks,” IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Philadelphia, PA, USA, Mar 18-23, 2005.

[84] S. Acedański, S. Deb, M. Medard, and R. Koetter, “How good is random
linear coding based distributed networked storage?” NetCod 2005, Riva del
Garda, Italy, Apr 7, 2005.

[85] K. Bhattad and K. R. Nayayanan, “Weakly secure network coding,” NetCod
2005, Riva del Garda, Italy, Apr 7, 2005.

[86] T. Coleman, M. Medard, and M. Effros, “Practical universal decoding for
combined routing and compression in network coding,” NetCod 2005, Riva
del Garda, Italy, Apr 7, 2005.

[87] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Ubiquitous access to
distributed data in large-scale sensor networks through decentralized erasure
codes,” The Fourth International Symposium on Information Processing in
Sensor Networks (IPSN’05), UCLA, Los Angeles, CA, Apr 25-27, 2005.

[88] E. Erez and M. Feder, “Convolutional network codes for cyclic networks,”
NetCod 2005, Riva del Garda, Italy, Apr 7, 2005.

[89] T. Ho, B. Leong, R. Koetter, M. Medard, “Distributed asynchronous algo-
rithms for multicast network coding,” NetCod 2005, Riva del Garda, Italy,
Apr 7, 2005.

[90] T. Ho, M. Medard, and R. Koetter, “An information theoretic view of network
management,” IEEE Trans. Inform. Theory, IT-51: 1295-1312, 2005.

[91] R. Khalili and K. Salamatian, “On the capacity of multiple input erasure relay
channels,” NetCod 2005, Riva del Garda, Italy, Apr 7, 2005.

References 141

[92] D. S. Lun, M. Medard, D. Karger, “On the dynamic multicast problem for
coded networks,” NetCod 2005, Riva del Garda, Italy, Apr 7, 2005.

[93] D. Petrović, K. Ramchandran, and J. Rabaey, “Overcoming untuned radios in
wireless networks with network coding,” NetCod 2005, Riva del Garda, Italy,
Apr 7, 2005.

[94] N. Ratnakar and G. Kramer, “The multicast capacity of acyclic, deterministic,
relay networks with no interference,” NetCod 2005, Riva del Garda, Italy, Apr
7, 2005.

[95] S. Riis and R. Alswede, “Problems in network coding and error correcting
codes,” NetCod 2005, Riva del Garda, Italy, Apr 7, 2005.

[96] Y. Sagduyu and A. Ephremides, “Joint scheduling and wireless network cod-
ing,” NetCod 2005, Riva del Garda, Italy, Apr 7, 2005.

[97] J. Widmer, C. Fragouli, and J.-Y. Le Boudec, “Energy-efficient broadcasting
in wireless ad-hoc networks,” NetCod 2005, Riva del Garda, Italy, Apr 7, 2005.

[98] Y. Wu, V. Stankovic, Z. Xiong, and S.-Y. Kung, “On practical design for joint
distributed source and network coding,” NetCod 2005, Riva del Garda, Italy,
Apr 7, 2005.

[99] X. Yan, J. Yang, and Z. Zhang, ”An improved outer bound for multisource
multisink network coding,” NetCod 2005, Riva del Garda, Italy, Apr 7, 2005.

[100] C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale content
distribution,” IEEE INFOCOM 2005, Miami, FL, Mar 13-17, 2005.

[101] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial time algorithms for multicast network code con-
struction,” IEEE Trans. Inform. Theory, IT 51: 1973-1982, 2005.

[102] Y. Wu, M. Chiang, and S.-Y. Kung, “Distributed utility maximization for
network coding based multicasting: a critical cut approach,” submitted to
IEEE INFOCOM 2006.

[103] Y. Wu and S.-Y. Kung, “Distributed utility maximization for network coding
based multicasting: a shorted path approach,” submitted to IEEE INFOCOM
2006.

[104] K. K. Chi and X. M. Wang, “Analysis of network error correction based on
network coding,” IEE Proc. Commun., vol. 152, No. 4, 393-396, 2005.

[105] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding in
network information flow,” IEEE Trans. Inform. Theory, IT-51: 2745-2759,
2005.

[106] H. Wang, P. Fan, and Z. Cao, “On the statistical properties of maximum flows
based on random graphs,” IEEE 2005 International Symposium on Microwave,
Antenna, Propagation and EMC Technologies for Wireless Communications,
Beijing, China, Aug 8-12, 2005.

[107] J. Widmer and J.-Y. Le Boudec, “Network coding for efficient communication
in extreme networks,” Workshop on Delay Tolerant Networking and Related
Topics (WDTN-05), Philadelphia, PA, USA, Aug 22-26, 2005.

[108] X. Bao and J. (T). Li, “Matching code-on-graph with network-on-graph:
Adaptive network coding for wireless relay networks,” 43rd Allerton Confer-
ence on Communication, Control, and Computing, Monticello, IL, Sept 28-30,
2005.

142 References

[109] K. Bhattad, N. Ratnakar, R. Koetter, and K. R. Narayanan, “Minimal network
coding for multicast,” 2005 IEEE International Symposium on Information
Theory, Adelaide, Australia, Sept 4-9, 2005.

[110] Y. Cassuto and J. Bruck, “Network coding for nonuniform demands,” 2005
IEEE International Symposium on Information Theory, Adelaide, Australia,
Sept 4-9, 2005.

[111] T. H. Chan, “On the optimality of group network codes,” 2005 IEEE Inter-
national Symposium on Information Theory, Adelaide, Australia, Sept 4-9,
2005.

[112] C. Chekuri, C. Fragouli, and E. Soljanin, “On average throughput and alpha-
bet size in network coding,” 2005 IEEE International Symposium on Infor-
mation Theory, Adelaide, Australia, Sept 4-9, 2005.

[113] S. Deb, M. Medard, and C. Choute, “On random network coding based infor-
mation dissemination,” 2005 IEEE International Symposium on Information
Theory, Adelaide, Australia, Sept 4-9, 2005.

[114] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding in net-
work information flow,” 2005 IEEE International Symposium on Information
Theory, Adelaide, Australia, Sept 4-9, 2005.

[115] R. Dougherty and K. Zeger, “Nonreversibility of multiple unicast networks,”
43rd Allerton Conference on Communication, Control, and Computing,
Monticello, IL, Sept 28-30, 2005.

[116] E. Erez and M. Feder, “Efficient network codes for cyclic networks,” 2005
IEEE International Symposium on Information Theory, Adelaide, Australia,
Sept 4-9, 2005.

[117] C. Fragouli and A. Markopoulou, “A network coding approach to network
monitoring,” 43rd Allerton Conference on Communication, Control, and Com-
puting, Monticello, IL, Sept 28-30, 2005.

[118] N. Harvey and R. Kleinberg, “Tighter cut-based bounds for k-pairs communi-
cation problems,” 43rd Allerton Conference on Communication, Control, and
Computing, Monticello, IL, Sept 28-30, 2005.

[119] C. Hausl, F. Schreckenbach, I. Oikonomidis, and G. Bauch, “Iterative net-
work and channel decoding on a Tanner graph,” 43rd Allerton Conference on
Communication, Control, and Computing, Monticello, IL, Sept 28-30, 2005.

[120] T. Ho, B. Leong, Y.-H. Chang, Y. Wen, and R. Koetter, “Network monitor-
ing in multicast networks using network coding,” 2005 IEEE International
Symposium on Information Theory, Adelaide, Australia, Sept 4-9, 2005.

[121] T. Ho and H. Viswanathan, “Dynamic algorithms for multicast with intra-
session network coding,” 43rd Allerton Conference on Communication, Con-
trol, and Computing, Monticello, IL, Sept 28-30, 2005.

[122] K. Jain, “On the power (saving) of network coding,” 43rd Allerton Conference
on Communication, Control, and Computing, Monticello, IL, Sept 28-30, 2005.

[123] S. Katti, D. Katabi, W. Hu, and R. Hariharan, “The importance of being
opportunistic: Practical network coding for wireless environments,” 43rd Aller-
ton Conference on Communication, Control, and Computing, Monticello, IL,
Sept 28-30, 2005.

References 143

[124] G. Kramer and S. Savari, “Progressive d-separating edge set bounds on net-
work coding rates,” 2005 IEEE International Symposium on Information The-
ory, Adelaide, Australia, Sept 4-9, 2005.

[125] M. Langberg, A. Sprintson, and J. Bruck, “The encoding complexity of net-
work coding,” 2005 IEEE International Symposium on Information Theory,
Adelaide, Australia, Sept 4-9, 2005.

[126] A. Lee and M. Medard, “Simplified random network codes for multicast net-
works,” 2005 IEEE International Symposium on Information Theory, Ade-
laide, Australia, Sept 4-9, 2005.

[127] S.-Y. R. Li, N. Cai, and R. W. Yeung, “On theory of linear network cod-
ing,” 2005 IEEE International Symposium on Information Theory, Adelaide,
Australia, Sept 4-9, 2005.

[128] R. W. Yeung and S-Y. R. Li, “Polynomial time construction of generic linear
network codes,” 43rd Allerton Conference on Communication, Control, and
Computing, Monticello, IL, Sept 28-30, 2005.

[129] D. Lun, M. Medard, R. Koetter, and M. Effros, “Further results on coding
for reliable communication over packet networks,” 2005 IEEE International
Symposium on Information Theory, Adelaide, Australia, Sept 4-9, 2005.

[130] N. Ratnakar and G. Kramer, “On the separation of channel and network
coding in Aref networks,” 2005 IEEE International Symposium on Information
Theory, Adelaide, Australia, Sept 4-9, 2005.

[131] Y. Sagduyu and A. Ephremides, “Crosslayer design for distributed MAC and
network coding in wireless ad hoc networks,” 2005 IEEE International Sym-
posium on Information Theory, Adelaide, Australia, Sept 4-9, 2005.

[132] X. Wu, B. Ma, and N. Sarshar, “Rainbow network problems and multiple
description coding,” 2005 IEEE International Symposium on Information The-
ory, Adelaide, Australia, Sept 4-9, 2005.

[133] Y. Xi and E. M. Yeh, “Distributed algorithms for minimum cost multicast
with network coding,” 43rd Allerton Conference on Communication, Control,
and Computing, Monticello, IL, Sept 28-30, 2005.

[134] K. Cai and P. Fan, “An algebraic approach to link failures based on network
coding,” submitted to IEEE Trans. Inform. Theory.

[135] N. Cai and R. W. Yeung, “The Singleton bound for network error-correcting
codes,” 4th International Symposium on Turbo Codes and Related Topics,
Munich, Germany, Apr 3-7, 2006.

[136] Y. Ma, W. Li, P. Fan, and X. Liu, “Queuing model and delay analysis on net-
work coding,” International Symposium on Communications and Information
Technologies 2005, Beijing, China, Oct 12-14, 2005.

[137] R. W. Yeung, “Avalanche: A network coding analysis,” preprint.
[138] Y. Wu, P. A. Chou, and S.-Y. Kung, ”Minimum-energy multicast in mobile ad

hoc networks using network coding,” IEEE Trans. Comm., vol. 53, 1906-1918,
2005.

[139] P. Fan, “Upper bounds on the encoding complexity of network coding with
acyclic underlying graphs,” preprint.

[140] J. Barros and S. D. Servetto, “Network Information Flow with Correlated
Sources,” IEEE Trans. Inform. Theory, IT-52: 155-170, 2006.

144 References

[141] Y. Wu, “Network coding for multicasting,” Ph.D. Dissertation, Dept. of Elec-
trical Engineering, Princeton University, Nov 2005.

[142] J. Cannons, R. Dougherty, C. Freiling, and K. Zeger, “Network Routing
Capacity,” IEEE Trans. Inform. Theory, IT-52: 777-788, 2006.

[143] C. Fragouli and E. Soljanin, “Information flow decomposition for network
coding,” IEEE Trans. Inform. Theory, IT-52: 829-848, 2006.

[144] A. L. Toledo and X. Wang, “Efficient multipath in sensor networks using dif-
fusion and network coding,” 40th Annual Conference on Information Sciences
and Systems, Princeton University, NJ, USA, Mar 22-24, 2006.

[145] R. Dougherty, C. Freiling, and K. Zeger, “Unachievability of network coding
capacity,” to appear in IEEE Trans. Inform. Theory and IEEE/ACM Trans.
Networking (joint special issue on Networking and Information Theory).

[146] R. Dougherty, C. Freiling, and K. Zeger, “Matroids, networks, and non-
Shannon information inequalities,” submitted to IEEE Trans. Inform. Theory.

[147] N. J. A. Harvey, R. Kleinberg and A. R. Lehman, “On the capacity
of information networks,” to appear in IEEE Trans. Inform. Theory and
IEEE/ACM Trans. Networking (joint special issue on Networking and Infor-
mation Theory).

[148] T. Ho, R. Koetter, M. Medard, M. Effros, J. Shi, and D. Karger, “Toward a
random operation of networks,” submitted to IEEE Trans. Inform. Theory.

[149] S. Riis, “Reversible and irreversible information networks” submitted.
[150] L. Song, R. W. Yeung and N. Cai, “A separation theorem for single-source

network coding,” to appear in IEEE Trans. Inform. Theory.
[151] X. Yan, J. Yang, and Z. Zhang, “An outer bound for multi-source multi-sink

network coding with minimum cost consideration,” to appear in IEEE Trans.
Inform. Theory and IEEE/ACM Trans. Networking (joint special issue on
Networking and Information Theory).

[152] R. W. Yeung and N. Cai, “Network error correction, Part I, Basic concepts and
upper bounds,” to appear in Communications in Information and Systems.

[153] N. Cai and R. W. Yeung, “Network error correction, Part II: Lower bounds,”
to appear in Communications in Information and Systems.

[154] S.-Y. R. Li and R. W. Yeung, “On the theory of linear network coding,”
submitted to IEEE Trans. Inform. Theory.

[155] S.-Y. R. Li and R. W. Yeung, “On convolutional network coding,” submitted
to IEEE Trans. Inform. Theory.

[156] Z. Zhang, “Network error correction coding in packetized networks,” submit-
ted to IEEE Trans. Inform. Theory.

References cited in text

[157] “Network Coding Homepage,” http://www.networkcoding.info.
[158] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information

flow,” IEEE Trans. Inform. Theory, vol. IT-46, pp. 1204–1216, 2000.
[159] A. Argawal and M. Charikar, “On the advantage of network coding for improv-

ing network throughput,” in 2004 IEEE Information Theory Workshop, (San
Antonio), October 25–29, 2004.

References 145

[160] T. Berger, “Multiterminal source coding,” in The Information Theory
Approach to Communications, (G. Longo, ed.), 1978. CISM Courses and Lec-
tures #229, Springer-Verlag, New York.

[161] E. R. Berlekamp, “Block coding for the binary symmetric channel with noise-
less, delayless feedback,” in Error Correcting Codes, (H. B. Mann, ed.), (Wiley,
New York), 1968.

[162] R. E. Blahut, Theory and practice of error control codes. 1983.
[163] J. Byers, M. Luby, and M. Mitzenmacher, “A digital foundation approach

to asynchronous reliable multicast,” IEEE J. Selected Areas Comm., vol. 20,
pp. 1528–1540, (A preliminary versin appeared in ACM SIGCOMM ’98.),
2002.

[164] N. Cai and R. W. Yeung, “Network error correction, Part II: Lower bounds,”
to appear in Communications in Information and Systems.

[165] N. Cai and R. W. Yeung, “Secure network coding,” in 2002 IEEE International
Symposium on Information Theory, (Lausanne, Switzerland), June 30–July 5
2002.

[166] T. M. Cover and J. A. Thomas, Elements of information theory. 1991.
[167] R. Dougherty, C. Freiling, and K. Zeger, “Matroids, networks, and non-

shannon information inequalities,” submitted to IEEE Trans. Inform. Theory.
[168] R. Dougherty, C. Freiling, and K. Zeger, “Linearity and solvability in multicast

networks,” in 38th Annual Conference on Information Sciences and Systems,
(Princeton, NJ), March 17–19 2004.

[169] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding in
network information flow,” IEEE Trans. Inform. Theory, vol. IT-51, pp. 2745–
2759, 2005.

[170] E. Erez and M. Feder, “Capacity region and network codes for two receivers
multicast with private and common data,” in Workshop on Coding, Cryptog-
raphy and Combinatorics, 2003.

[171] E. Erez and M. Feder, “Convolutional network codes,” in 2004 IEEE Inter-
national Symposium on Information Theory, (Chicago, IL), June 27–July 2
2004.

[172] E. Erez and M. Feder, “Convolutional network codes for cyclic networks,” in
NetCod 2005, (Riva del Garda, Italy), April 7, 2005.

[173] C. Fragouli, J.-Y. L. Boudec, and J. Widmer, “Network Coding: An Instant
Primer,” http://algo.epfl.ch/christin/primer.ps.

[174] C. Fragouli and E. Soljanin, “A connection between network coding and convo-
lutional codes,” in IEEE International Conference on Communications, (Paris,
France), pp. 20–24, June 2004.

[175] J. B. Fraleigh, A first course in abstract algebra. 7th ed., 2003.
[176] C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale content

distribution,” in IEEE INFOCOM 2005, (Miami, FL), March 13–17, 2005.
[177] K. P. Hau, Multilevel diversity coding with independent data streams. June

1995. M.Phil. thesis, The Chinese University of Hong Kong.
[178] S. Haykin, “Communications Systems,” Wiley, 2001.

146 References

[179] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits of
coding over routing in a randomized setting,” in 2003 IEEE International
Symposium on Information Theory, (Yokohama, Japan), June 29–July 4 2003.

[180] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. R. Karger,
“Byzantine modification detection in multicast networks using randomized
network coding,” in 2004 IEEE International Symposium on Information The-
ory, (Chicago, IL), June 27–July 2 2004.

[181] A. W. Ingleton, “Representation of matroids,” in Combinatorial Mathematics
and its Applications, (D. J. A. Welsh, ed.), (London), pp. 149–167, Academic
Press, 1971.

[182] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scal-
able and robust communication paradigm for sensor networks,” in 6th Annual
International Conference on Mobile Computing and Networking (Mobicom
2000), (Boston, MA, USA), August 6–11 2000.

[183] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. Tolhuizen,
“Polynomial time algorithms for multicast network code construction,” IEEE
Trans. Inform. Theory, vol. IT-51, pp. 1973–1982, 2005.

[184] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Networking, vol. 11, pp. 782–795, 2003.

[185] G. Kramer and S. A. Savari, “Cut sets and information flow in networks of
two-way channels,” in 2004 IEEE International Symposium on Information
Theory, (Chicago, IL), June 27–July 2 2004.

[186] S.-Y. R. Li and R. W. Yeung, “On Convolutional Network Coding,” submitted
to IEEE Trans. Inform. Theory.

[187] S.-Y. R. Li and R. W. Yeung, “On the Theory of Linear Network Coding,”
submitted to IEEE Trans. Inform. Theory.

[188] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans.
Inform. Theory, vol. IT-49, pp. 371–381, 2003.

[189] Z. Li and B. Li, “Network coding in undirected networks,” in 38th Annual
Conference on Information Sciences and Systems, (Princeton, NJ), March 17–
19 2004.

[190] S. Lin and D. J. Costello Jr., Error control coding: Fundamentals and appli-
cations. 1983.

[191] D. Lun, M. Medard, R. Koetter, and M. Effros, “Further results on coding
for reliable communication over packet networks,” in 2005 IEEE Interna-
tional Symposium on Information Theory, (Adelaide, Australia), September
4–9 2005.

[192] D. S. Lun, M. Medard, and M. Effros, “On coding for reliable communication
over packet networks,” in 42nd Annual Allerton Conference on Communica-
tion, Control, and Computing, September 29–October 1, 2004.

[193] M. Mitzenmacher, “Digital fountain: A survey and look forward,” in 2004
IEEE Information Theory Workshop, (San Antonio, TX), October 24–29 2004.

[194] C. K. Ngai and R. W. Yeung, “Multisource network coding with two
sinks,” in International Conference on Communications, Circuits and Systems
(ICCCAS), (Chengdu, China), June 27–29 2004.

References 147

[195] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: Algorithms
and complexity. 1982.

[196] A. Rasala-Lehman, Network coding. Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, February 2005.

[197] A. Rasala-Lehman and E. Lehman, “Complexity classification of network
information flow problems,” in 41st Annual Allerton Conference on Commu-
nication Control and Computing, (Monticello, IL), October 2003.

[198] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” SIAM
Journal Appl. Math., vol. 8, pp. 300–304, 1960.

[199] S. Riis, “Linear versus non-linear boolean functions in network flow,” preprint,
November 2003.

[200] J. R. Roche, R. W. Yeung, and K. P. Hau, “Symmetrical multilevel diversity
coding,” IEEE Trans. Inform. Theory, vol. IT-43, pp. 1059–1064, 1997.

[201] C. E. Shannon, “A mathematical theory of communication,” Bell Sys. Tech.
Journal, vol. 27, pp. 379–423, 623–656, 1948.

[202] R. C. Singleton, “Maximum distance Q-nary codes,” IEEE Trans. Inform.
Theory, vol. IT-10, pp. 116–118, 1964.

[203] L. Song, R. W. Yeung, and N. Cai, “Zero-error network coding for acyclic
networks,” IEEE Trans. Inform. Theory, vol. IT-49, pp. 3129–3139, 2003.

[204] A. L. Toledo and X. Wang, “Efficient multipath in sensor networks using
diffusion and network coding,” in 40th Annual Conference on Information
Sciences and Systems, (Princeton University, NJ, USA), March 22–24 2006.

[205] S. B. Wicker, Error control systems for digital communication and storage.
1995.

[206] R. W. Yeung, “Avalanche: A network Coding Analysis,” preprint.
[207] R. W. Yeung, “Multilevel diversity coding with distortion,” IEEE Trans.

Inform. Theory, vol. IT-41, pp. 412–422, 1995.
[208] R. W. Yeung, “A framework for linear information inequalities,” IEEE Trans.

Inform. Theory, vol. IT-43, pp. 1924–1934, 1997.
[209] R. W. Yeung, A first course in information theory. Kluwer Academic/Plenum

Publishers, 2002.
[210] R. W. Yeung and N. Cai, “Network Error Correction, Part I, Basic Concepts

and Upper Bounds,” to appear in Communications in Information and Sys-
tems.

[211] R. W. Yeung and Z. Zhang, “Distributed source coding for satellite commu-
nications,” IEEE Trans. Inform. Theory, vol. IT-45, pp. 1111–1120, 1999.

[212] R. W. Yeung and Z. Zhang, “On symmetrical multilevel diversity coding,”
IEEE Trans. Inform. Theory, vol. IT-45, pp. 609–621, 1999.

[213] Z. Zhang, “Network Error Correction Coding in Packetized Networks,” sub-
mitted to IEEE Trans. Inform. Theory.

[214] Z. Zhang and R. W. Yeung, “A non-shannon-type conditional inequality of
information quantities,” IEEE Trans. Inform. Theory, vol. IT-43, pp. 1982–
1986, 1997.

[215] Z. Zhang and R. W. Yeung, “On characterization of entropy function via
information inequalities,” IEEE Trans. Inform. Theory, vol. IT-44, pp. 1440–
1452, 1998.

