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Preface

This book aims to be an introduction to the topic of error-correcting codes, a topic
of major importance in digital communication whenever accuracy is critical.

There are several excellent specialist textbooks (and one or two almost
unreadable ones) on the subject, in addition to innumerable articles and papers in
the journals. Despite this, the basics of digital error detection and correction are
unfamiliar to many who might easily understand them, even when they rely on
those techniques in much of their professional work. In the author’s opinion this
situation arises from the lack of clear, concise introductory texts on the subject;
and it is his hope that this book will be such a text.

There are at least three good reasons for studying the subject:

* |t is an ingenious and intellectually satisfying discipline in its own right

* It is an application of branches of mathematics, notably that of finite fields,
that gives stimulus to the study of those branches

* It is a technology of immense practical use in computer and telecommunica-
tion systems

This book aims to illuminate all three of these aspects and, by presenting basic
concepts and results, give the reader a firm grasp of the scope of the subject and a
thorough understanding of the principal techniques. On this basis the reader
should be able to pursue any future interest in more specialised areas of the
subject without difficulty. There are many such areas.

The intended readership is the first-time student, whether one who is
formally studying in a third-level institution or a computer or communications
professional wishing to become familiar with the subject by self-education. Mathe-
matical literacy is required, in particular familiarity with linear algebra, but no
further exceptional ability or special knowledge is needed.

The course of the book moves from the general concepts of block codes and
distances (Chapter 1), through linear block codes (Chapter 2), to the special linear
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codes that are cyclic codes (Chapter 3) and the special cyclic codes that are BCH
codes (Chapter 4).

By contrast Chapter 5 is devoted to Convolutional or Trellis Codes, in which
data are in the form of an “infinite” stream, rather than a fixed-length block.
Supporting mathematics is in the Appendices, so that those readers already
familiar with, for example, finite fields can proceed through the main text directly.

The author hopes indeed that his aim of a clear, concise introduction has
been achieved. It remains his pleasure to thank his professional colleagues in the
computer industry and his students at Trinity Coliege in Dublin who helped to
stimulate his interest in error correction and who inspired this book. Special
thanks are due to Jennifer O’Reiily, who typed it.



Chapter 1

Introduction

1.1 BIT STRINGS AND CODES

In computers and in digital telecommunications information is almost always
represented in binary form, that is, as a sequence of bits each having the value 0
or 1. In its original form the information may have a different representation. It
could be text represented as words and punctuation based on an alphabet; it could
be speech or video represented as analogue signals. But whatever the original or
intermediate form, the final representation is binary. The alphabet is turned into
6-, 7-, or 8-bit patterns; the speech and video are sampled, quantised, and
digitised.

A sequence of bits may be of any length. For example, digitised TV signals
provide a continuous, virtually endless bit-stream. Alternatively the sequence may
divide naturally into units such as octets or bytes representing the characters in an
alphabet. For practical reasons, sequences of bits are also frequently divided into
blocks that may have little relation to the structure of the content of the informa-
tion. This is done to facilitate handling; a typical example is the blocking of a
bit-stream into “packets” of fixed maximum length (e.g., 256 octets) for transmis-
sion over a packet-switched network.

In this book we are concerned with detecting and correcting errors that
typically occur when such sequences of bits are transmitted over communication
channels. It is worthwhile considering for a moment why one should want to do so,
or at least, why one should want to employ the relatively complex and sophisti-
cated techniques that have been developed for error correction. After all, a large
proportion of distorted information is readily corrected by the human eye, ear, and
brain, without any other aids. One need only consider reading a letter from
someone who cannot spell, or a newspaper, or a corrupted fax message; listening
to an incoherent child or to someone with a speech impediment; or watching a
badly tuned TV set, to realise how great one’s capabilities are for recreating sense
from apparent nonsense.




But the essence of this ability to correct errors is that we make use of
redundancy in the information. One or two key words in a garbled message enable
us to guess the rest because the rest was hardly necessary in the first place. A
Spaniard can read an Italian newspaper without knowing Italian, because he
recognises the stems of a few basic nouns and verbs. Most of the rest of the written
text is superfluous to him. Redundancy, often huge redundancy, exists in almost all
information. Consider, for example, ordinary text. There is redundancy

* In the orthography. For example, in English the U following a Q is quite
unnecessary. More drastically, it is possible to leave out most vowels from
written English and to reduce all double letters to single ones and still leave
the text intelligible.

* In the syntax. For example, definite and indefinite articles in English can
often be omitted harmlessly: in languages in which the verbs are inflected the
personal pronoun is usually superfluous.

¢ In the semantics. “At this moment in time” can be cut down to “At this
moment” or “At this time” or indeed discarded in favour of “now.”

(We do not consider complete redundancy in which the message is, for example, a
repetition of what we know already or perhaps just irrelevant.)

But some information is less redundant and more compact than other
information. It is usually impossible to remove a single instruction or parameter
from a computer program in machine language without destroying the program’s
meaning, at least to the computer that interprets it, if not to a skilled and critical
programmer reading it.

From certain viewpoints redundancy is a weakness. It is a waste of space. In
particular it is a waste of capacity on communication channels, which are often
bottlenecks in computer systems if redundant information is transmitted. Many
compression techniques exist for removing redundancy from text and other data
streams; in the case of voice and video these techniques are complex and clever
and compress raw digital signals by factors of 10, or 100, or even more.

A second way of looking at redundancy reveals another associated weakness.
Essentially redundancy means that out of all possible strings of characters (e.g., in
a text) only a small proportion are valid. Thus, a Q in English not followed by a U
is invalid, and a message containing such a Q is not possible in the normally
written language. This aspect is explored marvellously in Jorge Luis Borges’
“La Biblioteca” (“The Library”), which contains all combinations of letters and
texts possible, and hence contains (in all languages) all knowledge, including, for
example, the future history of the world. The problem is to find the text you are
looking for. If you do find it, is it true? Another text, if you could find it, would tell
you if it is or not (correctly or not?). Perhaps the searching procedure could be
simplified by looking up the catalogue, which must be in the library-if you could
find it. This fantasy conceals an important truth, namely, that in searching for



hidden information you use redundancy to distinguish sense from nonsense. In
practical terms if you know the process by which secret text is encrypted and
decrypted without knowing the specific key, trying out all possible keys may enable
vou to find the correct one (and hence the secret message) by testing if the
cvphertext decrypted with the test key value makes sense or not. Shannon has
<hown that if the key length used in encryption is shorter than the length of the
~information contents” of the secret message this “attack” has a high probability
of success. That is, a trial-and-error attack using all possible keys for decryption
will yield only one meaningful message the correct one. The concepts of “informa-
tion content” and “redundancy” as originated by Shannon, the founder of Infor-
mation Theory, are explored in more detail in Appendix A {1,2].

From the point of view of error detection and correction, the custom of
removing redundancy from information either to compress it or to foil “try-all-
the-keys” decryption is a serious problem. Without redundancy one message is as
valid as another, so the corruption of one message necessarily produces another
valid one; and since the recipient has no means of knowing that it has been
corrupted, the error goes undetected. But even with redundancy that enables the
occurrence of an error to be detected by the nonsense that results on re-expanding
the compressed or decrypting the garbled encrypted message, we may be quite
unable to recrcate the original data. That is because the complexity of the
cxpansion and decryption process is likely to spread errors in a small part of the
ransmitted data to such an extent that a large part of, if not all the processed data
are corrupted. The error is detected but cannot be corrected. A good example of
this spreading of an error can be scen on many fax machines. which use compres-
<ion. and where one or two bit errors may destroy a whole scan line.

{.1.1 Codes and Error Correction

It is the central function of error-control techniques to reintroduce controlled
redundancy, which will overcome these problems, by enabling messages corrupted
in transmission to be corrected before further processing. With this controlled
redundancy only a subset of all possible transmitted messages (bit sequences)
contains valid messages. The subset is then called a code, and the valid messages
are called codewords or codevectors. A good code is one in which the codewords
are so “separated” that the likelihood of errors corrupting one into another is kept
small.

Error detection then is simplified to answering this question: Is the received
message a codeword or not? If it is a codeword, one assumes that no errors have
occurred. The probability of an undetected error getting through is then the
probability of sufficient errors occurring to transform the real transmitted code-
word into another, apparently correct but in reality a false one.



If an error is detected, it can be corrected in principle by one of two
methods:

* The recipient rejects the received message as erroneous and requests the
original transmitter for a repeat transmission (see Figure 1.1). This recovery
by retransmission is commonplace in communication systems where it is
possible. However, if propagation delays, due to distance, are large, the
technique may become so inefficient as to be useless. And then there are
other cases where retransmission is not possible, for example, if one considers
a corrupted archive without a backup.

* The recipient corrects the errors by finding the valid codeword “nearest” to
the received message, on the assumption that the nearest is the most likely,
because few corrupting errors are more likely than many! This procedure is
often called forward error correction (FEC) and is one of the principal topics
of this book. See Figure 1.2.

As an example of these ideas, consider the digits 0 and 1 extended to 3 bits in

Sender Errors Recipient

+

Message

" 1

Error detected

l

Correct errors

|—’ To application

Figure 1.1 Error-recovery by detection and retransmission.

Sender Recipient
Errors
Message N
>

Error detected
Request retransmission

¢

Retransmitted message

—r P To application

Figure 1.2 Forward error correction (FEC).



length, using 2 redundant bits, to become 010 and 101 respectively. These are then
the only two valid codewords of 3 bits in length; if one receives 000, 001, 011, 100,
110, or 111, one has detected an error.

These invalid vectors can be associated with the valid ones to facilitate error
correction; thus,

0w 101
011 001
110 100
000 111

where we have placed in the column beneath each codeword those 3-bit patterns
that differ from it by only one bit the “nearest” ones. If we receive 011, for
example, we know it is invalid, but we correct it by saying that it most likely is a
corruption of 010, representing 0. It could, however, be 101, with the first two bits
corrupted, in that case we would have made the error worse by our so-called
correction, but this is a less likely event.

Why is it less likely? The assumption here is that the probability of a
bit being corrupted, p, is small, so that the probability of one error in three,
p (1 —p)?, is significantly greater than the probability of two errors in three,
p? (1 —p). If p=0.1, for example, p(1 — p)* = 0.081, whereas p*(1 —p) = 0.009 (p
is necessarily less than or equal to 0.5. If it were greater, we would simply
complement the entire bit string and then work with (1 —p).)

Obviously an FEC technique that relies on comparing the received message
with all codewords to find the nearest one is impracticable for long codes with
many codewords. For example, many codes will have 2% or 2% codewords.
Such codes are not a more-or-less random collection of reasonably well separated
vectors (as one might be tempted to choose), but rather a carefully structured set
with a complex internal consistency. Error correction then exploits this structure
and consistency to find the codeword nearest to the received vector, using mathe-
matics.

1.1.2 Erasures and Soft-Decision Decoding

We finish this introduction by pointing out that so far we have assumed that the
recipient has been presented with a corrupted received message or vector with no
further information as to the nature and location of the errors. We have also
assumed that the errors, insofar as they affect individual bits, are random and
uniform over all bits. Neither of these assumptions is necessarily true.

In many systems the bits received are the result of some prior processing,
such as demodulation of an analogue waveform, or at least a threshold detector
that decides whether a level is nearer 0 or 1. This preprocessor may quality the bit



values it produces, and this additional information can be used to improve further
the error-correcting procedures. For example, some bits could be flagged as
“uncertain”, that is, either 0 or 1, and could be omitted in the search for the
nearest codeword and filled in only after the codeword was found. A channel that
gives this 3-valued output (0, 1, X = uncertain) is called a Binary Erasure Channel.
To see how an Erasure Channel permits more accurate decoding compared with a
“hard-decision” channel, consider the previous 3-bit example and suppose we
receive 0X1. If we had been told that this was 001, we would have said 101 was
transmitted; if we had been told that it was 011, we would have said 010 was
transmitted. But if we work with 0X1, we compare with 0X0 and 1X1, from which
0X1 is equidistant and conclude that we do not know what was transmitted. This is
certainly more accurate (if less conclusive) than “hard-decoding” based on a prior,
possibly arbitrary decision by a preprocessor, of which we are ignorant.

The Erasure Channel is a special example of a more general channel that
delivers qualifying information for each bit, for example, some sort of reliability
factor. These reliability factors can be used to influence the concept and evaluation
of “nearness”. Thus, each bit might have an accompanying factor of value 0.5 to
1.0, which would be the estimated probability that it is what it claims to be. If we
receive 0(0.5), 1(0.6), 1(0.9), where the value in parentheses are the probabilities,
then we could say the “distance” to 010 is 0.5+ 0.4 + 0.9 = 1.8, whereas the
“distance” to 101 is 0.5 + 0.6 + 0.1 = 1.2, and we would decode the received 011 to
101, not to 010. (Alternatively we could say that the probability of 010 given the
received values is 0.5 - 0.6 - 0.1 = 0.03, whereas the probability of 101 is 0.5 - 0.4 - 0.9
=0.18 and again choose 101 in preference to 010). This sort of decoding tech-
nique, in which reliability factors are taken into account, is called “soft-decision
decoding”. It has useful applications, particularly in delicate systems, but in many
cases it is simply not practicable, because the receiver of the data is presented with
an uncompromising and unqualified bit stream by other equipment over which he
has little or no control.

The other assumption that has been implicit in this introduction is that bit
errors are random and uniform. In practice this is seldom so. Errors have their
causes, and if that cause is an electrical “spike”, a momentary short-circuit, or a
scratch on a magnetic medium, it is common that the corruption affects more than
one bit. This will happen if the “noise” lasts for longer than a bit-time or spreads
wider than a bit-space on the medium. Bursts of errors are created, usually at
widely spaced, irregular intervals. Error-correction techniques take account of
burst-errors in various ways, such as

* Rearranging the sequence of the data so that the burst of errors is scattered
randomly throughout it;

* Using specifically designed burst-error-detecting and-correcting codes (e.g.,
Fire codes);



* Handling groups of bits, rather than individual bits, as the basic code symbols,
so that a short burst of single-bit errors becomes one symbol error (e.g.,
Reed-Solomon codes).

1.2 HAMMING DISTANCE AND SPHERE-PACKING

Following on from the above heuristic introduction, we may now try to be
somewhat more precise.

We consider block codes. A block code is defined as a subset of all the
possible 2" binary vectors having n bits in length. The distance, also called the
Hamming distance in honour of R.W. Hamming, between two such vectors is
defined as the number of bit positions at which the two vectors have differing
values [3]. The distance of the code, the code-distance, is defined as the minimum
distance between any two members of the code, that is, between any two code-
words.

The first aim in designing a good code is to ensure that its distance is as large
as possible, so as to enable as many errors as possible to be corrected. If the
distance d = 2t + 1, it is clear that we can detect all corruptions that affect <2¢
bits of a codeword, because they can never transform one codeword into another.
It is also clear that we can, at least in principle, correct all corruptions affecting
<1 bits of a codeword, because the corrupted word will be nearer (i.e., have a
smaller distance) to the original codeword than to any other. If d is even, d = 2¢,
we can detect (2t — 1) errors; but we can correct only (¢ — 1) errors, because ¢
errors could bring us as near to some other codeword as to the original one. (As an
example, if 00 and 11 are codewords with n = 2, we can detect 01 and 10 as errors
but we cannot correct them).

The second aim in good code design is to construct the code, that is, select
the subset from all possible 2" vectors, in such a way that error detection and
correction can be performed without the need to compare the received vector with
all valid codewords.

Returning to the problem of maximising the distance of the code, it is
obvious that the number of codewords in the code is the principal restriction on
our liberty. If there exist M codewords, we can imagine each codeword sur-
rounded by a “sphere” of related vectors, nearer to it than to any other codeword,
comprising the codeword corrupted by all single-bit errors, all two-bit errors, and
s0 on, up to all £-bit vectors. The number of such related vectors is S(n, t), and

wn-(1)+{2)+[5)+

where the parentheses are binomial coefficients. If we include the original
codeword itself, then each sphere contains (1 + S(n,1)) vectors. To respect the



distance d = 2t + 1 of the code, these spheres cannot overlap; therefore,
M(1+S8(n,t)) <2" (1.1)

This is a necessary condition for a code of distance d; but not sufficient.
In Appendix B it is shown that for large n,t =an,and a < 1/2, 1+ S(n,t) <
2mH@® where H(a) is the entropy function.

H(a)= —(alogza +(1-a)log, (1 —a)).
Thus, if
MS 2n[lfH(a)] (12)

is satisfied, (1.1) is certainly satisfied, so we may use (1.2) for large n. For example,
if n=28,t=2 (so that we have a two-error correcting code, if we can find one),
using inequality (1.1) we get M(1 + 8 + 28) < 256, so M < 6.9.

The codevectors could be 00000000, 01111100, 10011111, and 11100011, but
we have found only four, not six. The code’s (minimum) distance =2+ + 1 = 5; the
distance between the second and fourth codewords and the first and third is 6, and
this explains why M is smaller than expected.

Inequality (1.2) is known as the sphere-packing bound. If we take logarithms
to the base 2 in (1.2), we have

log, M <n(1-H(a)) (1.3)

This states that for large n, the effective length of the code, from the point of view
of the number of unrestricted information bits we can put into a codeword (the
remaining bits being redundant, but used for error detection and correction) is
bounded by n(1 — H(a)), with a =t /n.

A code that is composed of k information bits, which can have 2% arbitrary
values, and (n — k) redundant bits or check digits is called a systematic (n, k) code.
Our example is a systematic (8,2) code with the first two bits being the information
bits. Inequality (1.3) states that k/n <1 - H(a), where a=t/n=(d—1)/2n.
k /n is known as the code rate. Note that, in (1.1), in the special case when » is odd
and ¢ =(n - 1)/2 we have (1 + S(n,t)) =2""!; so that M < 2. The two codewords
are then 000...00 and 111...11.

1.3 SHANNON’S THEOREM

Inequality (1.2) puts an upper limit on the number of codewords that can exist if a
minimum distance d =2¢+ 1 is to be attained. But we have seen even in our



simple example that there may be difficulties in finding a code with M approaching
the limit. Do such codes exist?

Shannon addressed this question obliquely by considering the problem of
correctly decoding a corrupted codeword [4]. His decoding rule is

If the probability of a bit error is p, then search in the sphere around r, the
received vector, using a radius n(p +¢), where ¢ is very small, for a
codeword. If a single one is found, decode r to it. If none is found, or if two
or more are found, decoding fails.

Thus, (p + £) corresponds to our «, but the sphere is centred on r, not on a
codeword.
With this method

P, = Prob(Decoding failure) = Prob(No codeword)

+ Prob(Two or more codewords)

For large n, Prob(No codeword) < §, where § is an arbitrary small constant,
because the expected distance of the original uncorrupted codeword from r is np,
with standard deviation proportional to (np)!/2. As n increases, this is bound to be
less than n(p + ¢). Note that § is independent of the choice of code itself and of
the particular vector received.

The probability of two or more codewords being found in the sphere
surrounding the received vector clearly depends on the code used and on that
vector. However, if we average over all possible codes having M codewords and
also possible received vectors, we get

n
gn
where g =(p +¢)

This is the proportion of the (M — 1) remaining codewords, using the ratio of
the number of vectors in the “sphere” to the total number. Replacing (M — 1) with
M and using the inequality of Appendix B, we get

Prob(2 or more codewords) = (M — 1)(1/2")(('1’) + (’;) 4ot

Prob(Two or more codewords) < M2"#@ /27

Accordingly
Pp <8+ M/2p0H@»

where 135 is the average probability of error over all codes and received vectors.
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Provided that

M <27 ey (1.4)

}_’E can be made arbitrarily small by increasing n and reducing e.

But if the average error probability over all codes can be made arbitrarily
small, then there must exist at least one code that has the same effect, averaged
over all possible received vectors. Therefore, P; can be made arbitrarily small
provided that

* A suitable code is chosen.
* pn is large enough.
s M< 2n(l—H(p)>.

Looking back to Inequality (1.2), we see that, if the bit-error probability p is
given, we can in theory find a code that will correct all error patterns of ¢ = pn bits
or less with arbitrarily small probability of erroneous decoding, with M almost
equal to 2" ~H) We cannot increase ¢ without being obliged to reduce M,
because of Inequality (1.2), and we cannot reduce ¢ to allow M to increase because
this would violate Inequality (1.4), and we would begin to suffer erroneous
decoding.

In Appendix A it is shown that (1 —H(p)) is the capacity of a binary
symmetric channel, in which all bits 0 or 1 are uniformly subject to being comple-
mented with probability p.

Capacity=C = (1~ H( p))
Taking logarithms to base 2 in Inequality (1.4) with M = 2% we get
Coderate =k /n <C

This is Shannon’s famous theorem, which effectively states that we can achieve
virtually error-free communications provided we choose a suitable code (and such
a one exists if we can only find it), n is large enough, and the coderate does not
exceed the channel’s capacity.



Chapter 2

Linear Codes

2.1 MATRIX REPRESENTATION

The first step in imposing some internal structure on a code, which is otherwise an
arbitrary collection of M vectors out of 27, is to make it linear.

In a linear code the n elements of the vector are elements of a finite field, F.
Finite fields are presented in Appendix C. For the moment it is sufficient to
remember that a finite field is a finite collection of elements, including 0 (additive
identity) and 1 (multiplicative identity), between which addition /subtraction and
multiplication /division are defined. Each element, «, has an additive inverse, —a.
Each element, B, except 0 has a multiplicative inverse, 8 ~'. We are concerned at
the moment only with the finite field (GF(2)) of two elements, 0 and 1. The
following properties apply:

0+0=0 O0+1=1+0=1 1+ 1 =0 (note particularly)

0x0=0 O0X1=1x0=0 Ix1=1

For a code to be linear, the following rule applies:
If ¢, and c, are codewords, and «,, @, are field elements, then

c=a,c +a,c, (2.1)

is a codeword. Equation {2.1) uses the definitions that if ¢, =(c;,C 12, Ch3- -
and similarly for ¢, then addition of vectors is

¢ te=(c ¢yt Chyyees €yt Cay)

and multiplication by a scalar «, is @ ¢, = (a;c;}, @,¢,5 @,C 5.0 a)C),)

117
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In common mathematical language, then, a linear code is a subspace within
the n-dimensional vector space of all n-tuples over a finite field.

2.1.1 The Standard Array

Equation (2.1) effectively defines the subspace by stating that the code is closed
under addition and scalar multiplication, because if these operations are per-
formed on any codewords we simply produce another codeword. The code is also a
subgroup of the group of 2" n-tuples, closed under addition. The code necessarily
contains 0 = (0,0...0), which we shall usually call ¢, so the codewords may be
labelled ¢, ¢y, ..., €, ;. It is important to note that, since the difference between
any two codewords is itself a codeword, the minimum distance of the code is the
minimum weight of the nonzero codewords, where the weight is defined as the
number of nonzero bits in a codeword. Since the code is a subgroup, we may
construct cosets in the usual way to form the standard array. The procedure is to
write down the codewords in a row,

€€ 1€y Cpr_2Cpr 1

and then build a second row by selecting e, (a vector not already written down) and
adding it to the first row; thus,

¢y c, Crvvvnnnnn Cr_2 Crroi

e, e, +c e, tc,y...e tCy e+ ey

A third row is created by picking e, (a vector not already written down) and again
adding it to the first row.

Cy c, Crevnnnn Caro i
€, e, +c, e, t¢Cy...e tCy
€, e,+ ¢ €, +Cy...e T Cy

This procedure is repeated until no previously selected vectors remain. In the most
recently written row, corresponding to e;, say, no vector e, + ¢, =e; + ¢, where
j <i, because this would imply that e, = e; + (c, — ¢,) = e; + ¢, for some codeword
c,, and this contradicts the rule that e, has not been written down already.

Thus, the procedure terminates with a full row. Since there are 2" vectors in
total, M must divide 2"; therefore, M = 2* for some k.
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2.1.2 The Generator Matrix

The fact that M = 2% implies that the code is a k-dimensional subspace based on
k linearly independent base vectors, g, i = 1 to k say, and that the code consists of
all linear combinations of these

k
c;= ) m;g; m;=0 or 1
i=1
We can then write this in matrix notation

¢c=mG (2.2)

where m is a row-vector of k elements, and G is a (k by n) matrix, whose rows are
the g;.

Equation (2.2) is the formula used to generate a linear (n, k) code from k
message elements (bits) using the generator matrix G.

The basis of the subspace can be changed without changing the space itself.
Using standard matrix techniques, given that the g; are linearly independent, we
can add rows of G together (without changing the subspace) and reorder columns
(which only means reordering the sequence in which we consider the bits in a
vector) to produce

G =(LP)

where I is the (k by k) identity matrix, and P is called the (k by (n — k)) parity
matrix. This form of G results in a systematic (n, k) linear code giving
C=mG
=m(1,P)

=(mm,y...m .1 Gier---dy)

with the first k bits being the unaltered message and the last (n — k) bits, g, to
q,, the check digits.

Using this representation we can summarise the code in Section 1.2, contain-
ing four codewords by its generator matrix

G= 10011111
01111100

The code of Section 1.1 with codewords (010) and (101) is not linear and cannot be
represented in this way.
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If we consider the subgroup within the code of all codewords ¢ having a zero
in a given position, for example, the first so that ¢ =(0 c,Cy...C,), we can then
form a coset with a new vector e, = (100...0). This exhausts all the codewords,
because if one remained, c,, say, it would necessarily have a 1 in the first position,
and then (c, +e,) would be a codeword c, in the original subgroup, so that
¢, = (¢, + e,), which contradicts the assumption that ¢, has not been written down
already. Therefore, the original subgroup comprises half the code, so that over all
codewords any bit position has an equal number of O’s and 1’s. This is illustrated in
the code with codewords (00000000), (01111100), (10011111), and (11100011),
previously considered.

2.2 THE NULL MATRIX OR PARITY-CHECK MATRIX

Constructing codewords from the generating matrix is a simple procedure, al-
though it does suppose that one performs calculations with the (k - (n — k)) parity
matrix P to form the check digits. If k is large, for example, of the order 10* or
105, the storage and computing requirements may begin to become onerous. In the
next chapter we shall see how the need to store P can be overcoming because
further internal consistency, beyond mere linearity, is imposed on the code
structure. A proper understanding of this can be obtained only by considering the
null matrix, H, of a code. (In this book we use the term null matrix, which best
expresses its principal property. The term parity-check matrix is also frequently
used.)

The null matrix is formed from (n — k) linearly independent vectors orthogo-
nal to the code’s basic vectors and hence orthogonal to all codevectors. By
orthogonal we mean that the innerproduct

(c,7¢y)= Z_Cliczi =0.

These (n — k) vectors define the nullspace, and (as with the code itself) we have
liberty in choosing a basis for the nullspace. If G is in systematic form, we can
choose a particularly convenient form for the rows of the ((n — k)-n) matrix H as
follows:

G =(1,P) (k-n) o)
H=(PTI) ((n—k)-n)

where the superscript T indicates the transpose of the matrix in question, that is,
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rows and columns interchanged. It is easily verified that
GH" =0 (k-k) (2.4)

proving that the rows of H indeed define the nullspace.

Note that some caution is required when considering H. In ordinary matrices
over an infinite field, if a vector is orthogonal to a subspace it is linearly
independent of that subspace; if it is linearly independent of a subspace, it has a
component orthogonal to that subspace. This means that a vectorspace can be split
into a subspace and its null space, which between them contain all the vectors of
the space. But over a finite field a vector can be orthogonal to itself. Over GF(2)
every vector with an even number of bits is orthogonal to itself. That the nullspace
of a code is of dimension (n — k) can be seen by considering a vector with 2" =%
arbitrary codes in the last (n — k) positions and noting that the first k positions are
then determined uniquely by the orthogonality requirement when the vector is
multiplied into the k& rows of G in systematic form. The nullspace of G, H, and G
itself do not necessarily span the space; so that there are vectors that are neither
linearly dependent on the rows of G nor on the rows of H. For example, if

1001
G=10101) thenH=(1111)
0011

and the nullspace is contained in the code. A vector such as (1000) is neither in the
code nor in the nullspace.
From Equations (2.2) and (2.4) we get

s=cH"=mGH" =0 (1-(n—k)) (2.5)

where s is an (n — k) vector called the syndrome of ¢. Equation (2.5) shows that we
can test if a vector is a codeword by evaluating its syndrome and seeing if it is zero,
because if the vector is in the null space of H, then it must lie in the code.

2.2.1 The Syndrome

If we apply this test to a received vector
r=c+e

where ¢ is a codeword, e an error pattern, we get

s=rH" =(c+e)H’

- (2.6)
s=eH’
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Equation (2.6) states that the syndrome of a received vector depends only on the
error pattern and is independent of the codeword. Moreover, it is clear that if s,
and s, are two distinct syndromes, then the corresponding errors ¢, and e, are
distinct, except for the possible addition of a codeword. We can thus identify error
patterns with weight w <¢, where the distance d=2¢+1, by looking at the
syndrome of the received vector, because such error patterns cannot differ by a
codeword. There is a one-to-one correspondence between syndromes and error
patterns with w <t.

There are 2" % possible distinct syndromes, and (fv) distinct error patterns
of weight w; therefore, for t-error correction we require

1+(’I)+(;)...+(7)52""‘ (2.7)

This is (1.1) of Chapter 1 rewritten with M = 2* for a linear code.
Reverting to the standard array introduced previously, we now form it with

the e, chosen as the most likely error patterns: first, all the ('1’) single-error

patterns, then the ('2’) two errors patterns, and so on. This procedure can continue
up to all t-error patterns, if d =27+ 1 is the distance of the code. As we go
beyond t-error patterns, ambiguities arise, because we will find that some values

(c + e) have been written down already. To illustrate this ambiguity, consider the
d = 4 code with

10001011 11101000
G= 01001110 H= 01110100
00101101 11010010
00010111 10110001

If we choose e = (00000011) of weight 2 for the first weight — 2 row of the standard
array, we will (for example) write down (10001000) in that row, being (g, + e). Now
we cannot choose ¢ = (10001000) for the next row. Alternatively if we had chosen
¢’ for the first weight — 2 row, we could not choose e for the next one. Note that
the syndrome of e and € is (0011), that is, the same for both error patterns.
However, as shown above, there is no such problem with single-error patterns, all
of which give distinct syndromes, namely, the rows of H” (the columns of H).

This suggests a simple technique for correcting correctable error patterns, of
weight less than or equal to ¢, in a received vector r, namely:

1. Evaluate the syndrome, s, from r.

2. Look up the corresponding e in a precomputed table. (If the s found is not in
the table the error is not correctable.)

3. The correct codeword c=r + e,
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(This technique is equivalent to finding r in a column in the standard array
and picking the ¢ at the head of that column as the correct codeword.)

2.2.2 The Columns of the Null Matrix

It was remarked that the columns of H are the syndromes corresponding to single
errors. In fact the columns of H have a further significance: The distance (weight)
of a linear code is the minimum number of linearly dependent columns of H. This
follows from the fact that a codeword of that weight multiplied into H” must give a
zero syndrome; and no lower-weight codewords exist. This fact suggests a method
for constructing codes in which the number of check-digits (n — k) is chosen, the
number of rows of H, and suitable linearly independent columns are created to
give a required distance, until we can add no more, and then we have n. This
process is used in establishing the Varsharmov-Gilbert bound (see [2.4]), and in the
construction of cyclic codes, as will be shown in the next chapter.

We finish this section by illustrating some of the points made with the (5,2)
code defined by

10100
G- [é%i?] H=|11010
01001

The columns of H are distinct; therefore, the distance d > 3. In fact d = 3, because
the rows of G have weight 3, that is, columns 1, 3, 4 and 2, 4, 5 of H are linearly
dependent. All single error patterns are correctable and we can write down the
standard array with the syndromes (the rows of H”) added on the right.

€ c, ¢, €, s

00000 10110 01011 11101 000
10000 00110 11011 01101 110
01000 11110 00011 10101 011
00100 10010 01111 11001 100
00010 10100 01001 11111 010
00001 10111 01010 11100 001
110600 01110 10011 00101 101
10001 00111 11010 01100 111

Above the broken line is a one-to-one correspondence between the coset leader,
that is, the error pattern in column ¢, and the syndrome. Below the broken line,
where we consider 2-error patterns, there is ambiguity. Both 11000 and 00101 give
the same syndrome, 101. We could have chosen 00101 as coset leader, without
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changing the content of the coset, merely its internal order. If the change were
made we would decode 11000 to 11101 at the head of the column, rather than to
00000. (In the standard array the vectors of weight = 2 have been highlighted.)

2.3 PERFECT CODES

For a given (n—k) and n, (2.7) gives an upper bound for the number of
correctable bits in error, f. An (n, k) linear code for which the inequality becomes
an equality is called a perfect code. The (23,12) Golay code [5] is an example of a
perfect code, with t =3, d =7, and 1 + 23 + 253 + 1771 = 2048 = 2",

Simpler examples of perfect codes are the Hamming codes [3], with =1,
d=3sothat 1 +n=2""*

For Hamming codes we have then

n (n—k) k
3 2 1
7 3 4
15 4 11

5 26

31

Note that if 1+n=2""% then the number of columns of H, n, is given by
n=2""kK_1. That is, since H has (n — k) rows, all (2"~% — 1) distinct nonzero bit
patterns for the columns of H can be accommodated, giving a distance d = 3,
because no fewer than three columns can be linearly dependent. This situation is
illustrated in the (7,4) Hamming code with

égggi?} 1110100

G- H-=| 0111010
0010110 1101001
0001011

Another example of perfect codes is given by the repetition codes, which have
n=2t+1, k=1 Withi=(n-1)/2

2"
n n )\ _ 5 _on-1_on—k
) () (0] =g e

There is one information bit and (n — 1) check digits. For example, with n =5 the
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codevectors are (00000) and (11111),

11000
10100
10010
10001

G=(11111) H-=

and d =5, t=2.

Linear codes whose weight is an odd number can have their distance
increased by adding an extra bit to the code length, n, and setting that bit to 0 or 1
to give all base codewords (i.e., rows of G) even parity (i.e., an even number of 1’s).
This procedure cannot reduce the distance (since the original n bits are unaltered)
but ensures that all codewords have even parity, since linear combinations of
cven-parity vectors give more-even-parity vectors. Therefore the minimum weight,
which was odd, must have been increased by at least 1. As an example of this
procedure consider the (7,4) Hamming code (d = 3) extended to an (8,4) code
with d = 4; thus,

10001011 11101000
G= 01001110 H= 01110100
00101101 11010010
00010111 11111111

G has had parity bits added in an eighth position. H has had zeroes added in the
eighth position so as to leave the existing orthogonality unchanged. H has also had
an all-1’s fourth row added to ensure the even parity of all codewords multiplied
into it. H can be put in more normal form by subtracting the sum of the first three
rows from the last, to give

11101000
01110100
11010010
10110001

2.4 FURTHER BOUNDS ON LINEAR CODES
2.4.1 The Varsharmov-Gilbert Bound

The sphere-packing bound of Inequality (2.7) is attained by perfect codes, of which
the repetition, Hamming, and Golay codes are the only known examples. Given
the number of check digits (n — k), it imposes an upper bound on the distance d,
or more precisely on = (d — 1)/2. On the other hand, given (n — k) we can, as
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suggested in (2.2), always construct linear codes up to a certain limit by choosing
columns of H to be suitably linearly independent. The limit is given by the
Varsharmov-Gilbert bound [6] as follows:

Suppose we have constructed (n — 1) columns of H subject to the constraint
that all linear combinations of j columns, j < 2¢, are linearly independent. Then
we pick a new column x that is not equal to any linear combination of (2¢ — 1) of
the existing columns. No 2t columns of the (now) n columns are linearly depen-
dent; if they were, it would be a contradiction of the assumptions about the first
(n—1) columns and the choice of the nth column. But for this choice to be
possible, in the worst case when all j linear combinations produce distinct values,
we must have

(7—1)+(;—1)+...+(;t—_ll)<2"—k—1 (2.8)

where (27 % — 1) is the maximum number of nonzero columns.
For large n, (2.8) becomes

2(n7 DYH(m) < 2(n—k)
with m = (2t — 1) /(n — 1); see Appendix B. We may rephrase this as follows:
Provided that nH(m) < (n — k), which implies (2.8), we can certainly con-
struct a linear code of distance (2¢ + 1). For large n this becomes

coderate =k /n <1- H(2t/n) (2.9)

If (2.9) is satisfied, we can certainly construct an (n, k) linear code capable of
correcting ¢ errors. This should be contrasted with the sphere-packing bound

k/n<1—H(t/n) (2.10)
Inequality (2.10) must be satisfied, since codes that do not satisfy it are impossible;
but if (2.9) is satisfied, we can always find a linear code. The grey area where we

must look for “good” codes with large k/n given t/n, or large t/n given k/n is

1-H(2t/n) <k/n<1-H(t/n)

2.4.2 The Plotkin Bound

The sphere-packing bound, in its general form of inequality (1.2) in Chapter 1,
applies to all codes. The Plotkin bound [7] is another upper bound on the code
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rate specific to linear codes. It is found as follows:

1. Let M(n,t) be the maximum number of codewords, given n and ¢. Then
consider the corresponding code of length n and its subgroup consisting of
all codewords with 0 in the last position. This subgroup (dropping the last
bit) is a code of length (n — 1), with < M(n — 1, t) codewords by hypothesis.
But the subgroup is half the original code, so

M(n,t)/2<M(n~-1,1)
or

M(n,t)<2M(n-1,t)

Note that this very simple expression states that for given ¢, as n increases by
1 bit, the number of codewords at most doubles. This is a severe restriction
on the coderate k/n imposed only by linearity.

2. Now consider the total weight of all codewords:

Total weight = 2%n /2
=2k=1p

(This is because half the bits in the code are 1, half 0, as shown in [2.1]). The
average weight of the nonzero codewords is the total weight divided by
(2% — 1), so the minimum weight or distance d = 2t + 1 satisfies

d2¥-1) <2k n
S0 28 <2d/(2d —n)

provided that (2d —n) > 0.
3. For the optimum code with maximum codewords

M(n,t)=2%<2d/(2d —n) (if (2d —n) > 0)
Given d, we consider the largest n = n* such that
2d —n* >0, namely, n* =2d — 1

Then M(n*,t) <2d
For larger n we apply the inequality of step 1 repeatedly to get

25 =M(n,t) <2"7" M(n*,t) <2172 29
therefore,

k<n+2-2d+log,d
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4. We conclude that, if n>n*=2d -1
(n—k)=>2d-2-log,d
For large n > 2d — 1 = 4t + 1 we can write this:

coderate =k/n <1-4t/n (2.11)

Inequality (2.11) is the Plotkin bound for linear codes. It is clear from Figure 2.1,
that for high values of ¢/n this bound is more confining than the sphere-packing
bound.

2.4.3 Bounds in Practice

It is worth looking at some real codes in the light of these various bounds.

Shannon’s theorem states that it is possible to find a code that will correct np
errors, where p is the bit error rate, with arbitrary small probability of error,
provided that the coderate is less than the capacity.

Consider p=1/7, so that the capacity C =1 — H(p) = 0.408. The probabil-
ity of decoding failure is the probability that more than ¢ bit errors occur. The
(7.4) Hamming code corrects np = 1 bit error. But the coderate k/n = 0.571 (i.e.,
in excess of the capacity), and the probability of a decoding failure (i.e.. more than
a single error) is 0.264. We can reduce the coderate to 0.143, by using the (7,1)
repetition code, with =3 and the Prob(Failure) = 0.01. This is certainly much
smaller than 0.264 but not negligible: and the coderate is well below the capacity.
We are nowhere near the theoretical optimum given by Shannon, despite using
‘perfect’ codes, and this is because 7 is small.

If we try the (15,11) Hamming code as an cxample of a larger n. with
p=1/15 and C = 0.646, we can still correct np =1 errors, but k/n=0.733 (in
excess of C) and the Prob(Failure) = 0.264. Reducing the coderate to 0.067 by
using the (15, 1) repetition code gives a Prob(Failure) < 5 x 10~ °. This is certainly
approaching what one might call “arbitrary small” probability of error, but with a
coderate an order of magnitude less than C.

Table 2.1 presents the (15,7) d =5, and (15,5) d = 7 codes in addition to
those already introduced. In the table are values for the coderate k/n, the ratio
t/n, and the Prob(Failure) assuming the bit-error probability p is 1 /7 and 1/15. It
can be seen that only when k/n < C does Prob(Failure) start to decrease and we
have 7 /n > p in these cases; whereas according to Shannon’s theorem ¢/n ~ p can
give negligible Prob(Failure).

In Table 2.1 the Prob(Failure) values corresponding to & /n < C have been
highlighted. The codes have also been plotted on Figure 2.1. Shannon’s theorem
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Table 2.1
Prob (Failure)

Code t k/n t/n p=1/7=0143 p=1/15=0067
(7,4) 1 0.571 0.143 0.264 0.075
7.1 3 0.143 0.429 0.010 6x10*
(15,11 1 0.733 0.067 0.653 0.264
(15,7 2 0.467 0.133 0.365 0.074
(15,5) 3 0.333 0.200 0.156 0.015
(15,1 7 0.067 0.467 0.005 5x10°¢

C =0.408 C =0.646

indicates that as n becomes much larger the situation should improve, but there is
very little evidence of this from Table 2.1 (which, it must be admitted, has n small,
although it has been doubled, from 7 to 15).

Ideally we want to maintain k/n, near the capacity, and hold t/n constant
near the sphere-packing or Plotkin boundary, while progressively reducing
Prob(Failure) as n increases. If we can manage to hold ¢ /n constant, then we shall
certainly reduce the probability of decoding failure, because

t
Prob(Failure) =1 ~ Z (1 _p)"—'pi(ril)
i=0

tends to zero i =0 as n increases, for constant t/n. See Appendix B, expres-
sion (B.2).

It is also intuitively obvious that a single long codeword is better than a
concatenation of short ones if we can maintain k/n and ¢/n as we lengthen n,
because it can handle a burst of ¢ or fewer errors anywhere in it. A concatenation
of short codewords cannot do so, for the same value of f; the errors must be
suitably distributed over the individual codewords. But the problem remains: How
do we find the long codes that are promised by Shannon’s theorem?

Finally we note that we have taken Prob(Failure) to be equal to the
probability of (¢ + 1) or more bit errors, when the code has distance d =27 + 1.
This is true for a perfect code, but for most codes there is the ambiguous range of
error patterns giving rise to received vectors at a distance greater than ¢ from any
codeword. These errors are detectable, and so, while error correction may fail, it is
not true to say that a faise result will be produced. The decoding procedure can
explicity flag such cases and recovery can be made by other means, for example,
retransmission. Detectable error patterns are, as we have seen, patterns that are
not codewords. Thus, an analysis of detectable errors requires an analysis of the
probability of error patterns in the form of codewords, the undetectable errors-all
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the rest are detectable. In turn this requires an analysis of the weight distribution of
the code, the number of codewords of weight i,w,, for i = 0 to n. For example, for
the (7,4) code we have

we=1, w; =0, w,=0, wy=7, wy=7, ws=0, we=0, w;=1

A more thorough analysis of the probabilities of successful error correction, error
detection without correction, and outright failure or incorrect “correction” must
take into account the weight distribution of the code, as opposed to considering
only the length and distance, as we have done.

2.5 NONBINARY LINEAR CODES

A nonbinary linear code is a subspace of a vector space over a finite field GF(q),
where ¢ =p™ and p is prime. Appendix C presents finite fields, and it is shown
there that a finite field must have a prime characteristic, p, such that (1 +1
+ .-+ +1) p times sums to zero. It is also shown that the total number of
clements in the field is g = p™ for some integer m and that the (¢ — 1) nonzero
clements form a multiplicative group with a primitive element «, say, such that
o I = 1.

A nonbinary (#n, k) linear code thus consists of g* codewords, each one being
avector of n symbols in length, where the symbols represent one of the g field
clements. Addition and subtraction of vectors is pairwise by the field elements;
scalar multiplication uses the multiplication rules of the field.

For example, in GF(3)

(1,2,0) +(2,2,1) = (0,1,1)
(1,2,0) — (2,2,1) = (2,0,2)
and 2(1,2,0) = (2,1,0)

In just the same way as we did for binary linear codes we can define a (k X n)
generating matrix

G = (I, P)

It is important to note that the (n — k) by n null matrix H contains —P’, because
1 +1+#0 in general except when p = 2, so that

H=(-P",I)
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We can form the standard array as in the binary case, but this time there are
(g — 1)’(:) coset leaders of weight r; as opposed to simply (:) when g = 2. To be
able to correct t symbols in error we require

1+(q—1)(’1’) +(q - 1)2(’2’)...+(q—1)’(’t’)5q"~k

as a new form of the sphere-packing bound.

Over GF(g) we can define Hamming codes using the columns of the null
matrix. We require that the minimum weight of the code is 3, so all columns of H
must be distinct, including the fact that no column must be a scalar multiple of any
other. (This was irrelevant with g =2, as the only nonzero scalar available for
multiplication was 1.) This can be achieved if we consider the columns in sequence
with the leading (n — k — 1), (n — k — 2), and so on, positions equal to zero and the
first nonzero position made equal to 1. For example, over GF(3) with (n — k) =3
we have

0000111111111
0111000111222
1012012012012

H=

So n=13, and we have an (13,10) code over GF(3) with d =3 symbols. In
systematic form we might write

H = 1100111222010

1212012012001

0011111111100)

In general there exist
l+g+qg%+q°... +g" %!
such columns; therefore

n=(q""*-1)/(qg—1)

for a nonbinary Hamming code.

If we consider error correction with such a code, we follow the previous
procedure of evaluating

rH  =eH” =5

where r is the received vector, e the error vector, and s the syndrome. The scalar
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product of a column of H will be s if only a single symbol error occurs, and this will
cnable us to locate the error postion. To calculate the error value (because it is
not necessarily equal to 1 as is the case for binary codes) we use the parity checks.
For example, suppose ¢ is sent using the (13, 10) code illustrated,

¢ = (0100000000021)

that is, the second row of G, remembering to change the sign as well as transpose
the parity matrix in H. And suppose the error is

e = (0020000000000)

Then r = (0120000000021)

and s=(0+2+0+0,1+0+2+0,2+2+0+1)
= (202)
= 2(101)

therefore, the error is located in the third symbol position, because this is the
position where H” has a row (101). We can conclude directly that the error value
is 2, but it may be more illuminating to do the following: Let x be the correct value
for the position, so ¢ is r with x in the third position.

¢ = (01x0000000021)

Then, since cH” =0 we find x =0

The above procedure is typical of nonbinary error correction. Two steps are
used:

1. Locate the position of the symbols in error.
2. Evaluate the values corresponding to those positions.

(There are up to (n —k) equations in principle available for this, from the
requirement cH” = 0.)

- The reasoning that was used (based on cosets of the subspace consisting of
all codewords with a zero in a given position) in (2.1) can be extended to show that

In a code over GF(g) each symbol position has an equal number of all
symbol values, namely g*/q = g*~'. We can use this in step 2 of calculating
the Plotkin bound in (2.4) to give for large n

coderate =k/n<1-2qt/n

which is the new Plotkin bound for codes over GF(q).
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2.5.1 Nonbinary Codes with Characteristic 2

In practice, when digital computers are used, it is most convenient to choose
GF(q) to have characteristic p =2, so g =2".

In accordance with Appendix C we represent the field by the residues of an
irreducible polynomial of degree m over GF(2). It is normal to take the polynomial
as primitive, because that allows us to represent all nonzero field elements in one
of two ways, as convenient.

Thus, if « is the primitive root of the chosen polynomial we can consider
elements as patterns of m bits, each postion corresponding to a power of a, o
i=0,(m-1)

so that, for example if m = 4, 1011 means

ata+l

This form is suitable for adding field elements, because p = 2, so addition is the
familiar exclusive OR.

Alternatively, we can represent elements by their power of «, so that
multiplication and division become simple. This is done by adding or subtracting
exponents modulo (27 — 1), since a?" "1=1

As an example consider GF(23) defined by x* + x + 1. The nonzero elements
are tabulated in Table 2.2; the first column being the exponent of «, the second
the representation of the element as a 3-bit vector.

From Table 2.2 we can see that o’ +a®=(111) + (101) = (010) = «, while

a’a®=a'' = ¢*. We may use the two representations of the field elements in the

Table 2.2
al
i o’ @ 1
0 0 0 1
1 0 1 0
2 1 0 0
3 0 1 1
4 1 1 0
5 1 1 1
6 1 0 1
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manner we find most convenient. As an example, consider the (7,3) code over
GF(2%) defined by

100a a’a’a®
G=10101 a‘*a’a
001a’a’a’a®

001000000010011101101
= | 000001000001110100010
000000001100111111101

a 1 «?1000
a’ata®0100
a®a?a®0010
a’a a®0001

with H=

Suppose we receive r = (a’ala*0a’1), a 7-symbol, 21-bit stream, and suppose we
are told the code can correct two symbol errors, and two errors are known to exist
in positions 1 and 6 of r. Then we can evaluate

r= (xa1a40yl)
by multiplication into the columns of H to find a syndrome (ax, a’x, a’x + a® +
y, a®x). Since this must be zero, we deduce x =0, y = «?, so the corrected received
vector is (Oala*0a?1). This is, in fact,
a(2nd row of G) + (3rd row of G)
Note that in this example of calculations over GF(2™) we did not explain the

origins of the code or its property of correcting two symbol errors. It is, in fact, a
Reed-Solomon code.



Chapter 3
Cyclic Codes

3.1 THE GENERATING POLYNOMIAL

In Chapter (2), a linear code was defined as a subspace of a linear vector space.
We now introduce multiplication into the vector space by considering the elements
in each vector as coefficients of a polynomial. Thus,

a(x)=a,_x" "+a, ,x"*+ - +ax+a,
is our new representation of the n-vector

(a,_,a,_,...a,a,)

with the elements a, taken from the finite field, which for the moment we assume
to be GF(2).

The multiplication of vectors a,b is now given by
c~c(x)=a(x)b(x)mod(x"-1)~a-b

That is, ¢(x) is the remainder on dividing the product a(x)b(x) by (x" — 1).

The n-dimensional vector space is now also a ring of 2” polynomials, that is,
a set of polynomials forming a group under addition and closed under multiplica-
tion. (Note that if the underlying field is GF(2) the modulus (x" — D) =(x" + 1).) A
cyclic code is defined as an ideal in this ring. An ideal is an additive subgroup of
the ring with the additional property that if c(x) is a polynomial in the ideal, and
a(x) is any other polynomial (in the ideal or not), then a(x)c(x) is in the ideal.

31
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An immediate consequence of this definition is that if ¢(x) is a codeword and
we take a(x)=x, we get

d(x) = x.c{x)mod(x"—1)
=C,_ X"+ c, ,x" T+t xt+cypxmod(x" - 1)
=c,_x" "+ toxitegxte,

Thus, d(x)is another codeword by the definition of the ideal, so that

A cyclic code is a subspace of a vector space with the additional property that
all cyclic rotations of the elements of a codeword give rise to another
codeword.

Thus, (c,_,c,_,...¢,c;) is a codeword implies that (¢, _,c,_5...c,coc, ) is
a codeword.

Within the code, there must exist a codeword polynomial of lower degree
than any other, g(x), say. g(x) must also be unique, because if there were two
81(x), g,(x) of the same minimal degree, we could construct a new polynomial of
lower degree by subtraction—a contradiction.

Then, every codeword c(x) is divisible by g(x), because if it were not so,
there would exist a remainder r(x) of degree less than g(x):

c(x) =g(x)a(x) +r(x)

where g(x) is the quotient polynomial. But g(x)q(x) is a codeword by definition
of the ideal, and c¢(x) is a codeword by assumption; therefore, r(x) is a codeword
of degree less than g(x)—a contradiction. Therefore, r(x) =0 identically, and
c(x) =g(x)q(x). g(x) is called the generating polynomial.

2(x) not only divides all “normal” codewords, it also divides (x" — 1), which
is the null codeword.

To see this, consider p(x), a codeword of degree (n — 1). Then

r(x) =p(x)g(x) mod(x" —1)

is a codeword by definition, where g(x) is any polynomial of degree greater than
zero. Thus,

p(x)a(x) =r(x) +(x"-1)

But g(x), the generating polynomial divides p(x) and r(x) because they are
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codewords; therefore, g(x) divides (x” — 1) and

(x"=1) =g(x)h(x)

where A(x) is the quotient.

If the degree of g(x) is (n — k), the cyclic code is an (n, k) linear code.
Codewords can be generated from messages of k bits by regarding the message as
a polynomial m(x) of degree (k — 1), that is, with 2% possible values, and forming

c(x) =m(x)g(x)

to give c(x), a codeword divisible by g(x), of degree (n — 1).

3.1.1 Systematic Cyclic Codes

As with all linear codes, cyclic codes can be put more conveniently in systematic
form by considering r(x), the remainder of degree (n —k — 1) or less on dividing
v by g(x), for i =0 to (n — 1). The generating matrix G then has Row (),

Row (j) =x"""—r, (x) 1<j<k (3.1)
The null matrix H then has as Column ()
Column (j)=r, (x) 1<j<n (3.2)

Notice that this expression (3.2) for the columns of H holds even when j >k, in
which case

r, (x)=x""
(In (3.1) and (3.2) we of course consider only the coefficients of the polynomials in
G and H; the powers of x have to be imagined.)

The rows of G are divisible by g(x), as they must be, as can be seen from
(3.1). A codeword ¢ multiplied into HT must give a zero syndrome, and it is easily
verified that this occurs by cancellation of the check digits in the codeword with
the appropriate sum of columns of H. However, the most important conclusion
from this systematic representation is that the syndrome of a general received
vector a(x) is simply the remainder on dividing it by g(x), found by adding the
remainders corresponding to the error-bits in a(x)=c(x) +e(x), that is, the
nonzero bits in e(x).
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To make this clear, consider g(x)=x*+x + 1, with n = 15. Ignoring minus
signs since we are in GF(2), we find:

ro(x)=1 r(x)=x, ry(x)=x? ry(x)=x°
rf(x)=x+1 ro(x)=x*+x ryx)=x3+x2 ry(x)=x*+x+1
re(x)=x2+1 ro(x)=x’+x rp(x)=x>+x+1 ry(x)=x3+x2+x

rax)=x>+x+x+1 rp(x)=x"+x2+1 r,(x)=x3+1
Thus,

[ 100000000001001 |
010000000001101
001000000001111
000100000001110
000010000000111
G = | 000001000001010
000000100000101
000000010001011
000000001001100
000000000100110
| 000000000010011 |

[ 111101011001000
011110101100100
001111010110010
| 111010110010001

If a(x) =x® +x® + x3 + x2, division by g(x) = x* + x + 1 yields remainder (x2 + D,
which corresponds to rg(x), or column (7) of H. This identifies the x, term of a(x)
as erroneous, because this is a (cyclic) Hamming code, as can be seen from H,
which contains all distinct nonzero 4-bit patterns for its columns.

For cyclic codes in systematic form we thus have a simple procedure for
forming codewords and finding syndromes, as follows:

® To form a codeword from a message, m(x), of degree less than or equal to
(k — 1) we write down c(x) =x""¥m(x) — r(x), where r(x) is the remainder
on dividing x"~*m(x) by g(x).

* To evaluate a syndrome, s(x), divide the received vector, a(x), by g(x) and
evaluate the remainder, s(x) = a(x) — g(x)g(x), where g(x) is the quotient.
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The importance of this is that, for cyclic codes, it is not necessary to hold matrices
G. H, nor to perform calculations with them. (When the codes are binary, we may
replace all minus signs with plus signs in the above description.) Note that in G
(and H) all rows are formed from cyclic rotations and additions of one basic row.

3.2 THE ROOTS OF g(x) AND THE NULL MATRIX

Since g(x) divides all codewords and also (x" — 1), the roots of g(x) are roots of
all codewords and of (x” — 1). If « is a root of g(x), since a” =1 the order of x
divides n.

In general g(x) factorizes into one or more irreducible polynomials (irreduci-
ble over our basic field, e.g., GF(2)), so the roots of g(x) lie in some extension
field. For example, if g(x) is itself irreducible of degree m, the roots of g(x) (see
Appendix C) are a?,a*...a?" ' and lie in the field GF(2™). Each root satisfies
x"=1, with n=2"—1. If g(x) is primitive, no smaller value of n is possible,
since the order of « is (2™ — 1). If g(x) is irreducible but not primitive, n divides
(2™ —1). If g(x) is the product of two or more irreducible polynomials, the value
of n is the lowest common multiple of the order of the roots of those irreducible
factors of g{x).

In (3.1) we had an example of g(x) primitive with m =4,n =2" —1=15. As
an example of a nonprimitive irreducible g(x) consider g(x)=x*+x*+x?+x + 1.

If « is a root, we have a’® + a* + a® + a® + a = 0; therefore «° = 1. Thus, «
has order 5, and g(x) divides (x* — 1) =(x>+ 1). In fact (x> + 1) =g(x) (x + 1).
In this case n=5,n—k =4,k =1 and we have a (cyclic) (5,1) repetition code.
(Repetition codes are obviously cyclic.)

For an example of g(x) not being irreducible, consider g(x)=(x*+x+1)
(x+1)=x*+x>+x2+ 1. The order of the roots of (x* +x + 1), which is primi-
tive, is 7. The order of the root of (x + 1) is 1. The least common multiple is 7.
Therefore, n = 7 and we can form

G=|ow00111| H=
0011101 1100010
0110001

Adding all the rows of H together gives the row (1111111), which shows that this
(7,3) code has even parity, as is obvious from looking at the rows of G. It is also
obvious that since (x + 1) is a factor of all codewords, substituting x =1 in those
codewords results in adding together the nonzero coefficients to produce a zero
result, that is, even parity. This technique is general, in the sense that we can
convert any (n, k) code with n = 2" — 1 and n — k = m based on a primitive g(x),



36

which is necessarily of odd parity, into an even parity (n, kK — 1) code with a new
generating polynomial g(xX1 + x).

However, the most important point to make about the roots of g(x) is that,
since they satisfy c¢(x)=0, the vector (a”" 'a"~?...a%x1) must lic in the null
space, where « is a root of g(x), because

c(la)=c,_a" '+e, a" .. . coal+ca+c,=0 33
n-1 no2 2 I 0

Accordingly an alternative representation for H is

an—lan—z. .alzal

H=|--oooooooooooo (3.4)
n— n—
a, a, “...ana,l

where the «, for i = 1 to m are the roots of g(x).

Equation (3.4) requires some explanation. If g(x) is of degree m =n — k,
there are, as there should be, (n — k) rows in H. However, if g(x) is irreducible,
only one row is necessary. This is because, over GF(2), the subsequent roots are
a;=a? ' (See Appendix C.) If a, satisfies (3.3), all «; automatically satisfy it, as
we can see by repeatedly squaring (3.3) and rememberlng that 12 =1 and that all
cross terms have coefficient 2 = 0. The same reasoning applies over GF(g) with

i—1
a;, =af

On the other hand, the (n—k) rows of H are maintained in (3.4) even if
we drop all «;, 2 <i <m, because the powers of a themselves form a vector of m
elements, namely (dropping the subscript 1), linear combinations of
(00...0D7,(00...¢0)T,(00...a200)T.. (™ 10...00)".

If g(x) is the product of j irreducible polynomials, then H has j rows each of
“dimension” m,, where m;, is the degree of the jth factor and
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where a® to o represent the four rows of H, we see that we end up with precisely
the same H as in the example of (3.1).

Yet another way of looking at the null matrix H is based on the fact that g(x)
divides (x" — 1), so

h(x) =(x"—1)/g(x)

i(x) can be regarded as the generating polynomial of another, dual, cyclic code
with codewords d(x). Since g(x) divides c(x) (the original codevectors) and
h(x) divides d(x), we have g(x)h(x) divides c(x)d(x); therefore, c¢(x)d(x)=
Omod(x” — 1).If we consider any power of x, say, x*, it has as coefficients the sum

)» ¢i—jd;

j=0,n—-1

with the subscript (i —j) of ¢ taken modulo (n —1). All such sums for i =0 to
(11 — 1) can be produced by multiplying & rotations of c(x) into (n — k) rotations
of d(x), using the inner product, and writing d(x) in reverse order

(Cn—l—icanfi . 'Clc() e Cnfi)'(dlivjdnfj-kl e dnfld()dl Lo dn—j—l)

In terms of the G and H matrices and their bases, we can form H by writing the
rows of H as A(x) and cyclic shifts of it in reverse order. Thus, the left column of H
corresponds to x”, the next column to x', and so forth.

Thus, if gx)=x*+x+ 1L Ax)=1+x+x+x>+x +x +x%+x'" =
(111101011001000).

This is the first row of H in the example of (3.1). The subsequent rows are
formed by rotating this row and adding in previously created rows, as appropriate,
to form the (n — k) by (n — k) identity matrix I at the right end.

Finally, we remark that the length of a cyclic code, n, is normally given by the
least value of n, n* say, such that g(x) divides (x” — 1). We could of course choose
n = in*, where i is an integer (see Appendix C), but this would gain us nothing but
merely reduce the distance to d =2, since x" + 1 is now a codeword. We cannot
choose n less than n*. We can, however, turn any cyclic code into a shortened
cyclic code if we restrict m(x), the message polynomial, to be of degree less than k
by making the first few bits (m, _;, m, _,, etc.) always zero. This shortened code is
a valid linear code in that it is a subspace. It is clearly not cyclic, however. The
effect of making the first j coefficients of m(x) zero is to shorten the length to
(n —j) and to make the first j rows of G and the first j columns of H unnecessary.
A shortened cyclic code cannot have a lesser distance than the cyclic code from
which it is derived.



38

3.3 ERROR DETECTION WITH CYCLIC CODES

The ability of a linear code to detect and correct errors depends on its distance
properties, as discussed in Chapter 2. Since cyclic codes are linear, that discussion
is still relevant. In the Chapter 4 we shall consider methods for constructing special
classes of codes with predetermined distances. However, for the moment let us
merely consider the distance properties and the error-detection capabilities of the
types of cyclic codes we have already discussed.

First we remark that if the generating polynomial, g(x), is primitive of
degree m we necessarily have a Hamming code, with the null matrix having as
columns all the powers @' i =0 to (2™ — 2), as we have seen. Thus, a primitive
g(x) gives rise to d = 3.

If g(x) is irreducible but nonprimitive, we have a code with a length »n that
divides (2™ — 1) and a distance not less than 3, since the columns of H are still all
distinct. With luck the distance is considerably greater. A good example of such a
nonprimitive cyclic code is the Golay code, with d =7 and g(x)=x" +x° +x7 +
x®+x%+x + 1. In that case n = 23 (which divides 2'' — 1 = 2047).

However, if we are really to create linearly independent columns of H that
give a large distance; and if we recall how those columns are made up of powers of
a root of each irreducible factor of g(x) (see [3.1]), it is clear that we need to make
g(x) composite. Methods for constructing such composite g(x) are considered in
Chapter 4. But cyclic codes, even of limited distance, do have the ability to detect
bursts of errors. Since any error pattern that gives rise to a nonzero syndrome, that
is, a nonzero remainder on division by g(x), is detectable, any single error burst of
(n — k) or fewer bits is detectable. In this case

e(x) =x'(e, 4, x" T e, x"TFT2 4exteg)

and this cannot be divisible by g(x) of degree (n — k); therefore, the syndrome
remainder is nonzero.

Moreover, if g(x) has (x + 1) as a factor and (x + 1) always divides (x" + 1)
then all codewords c(x) have (x+ 1) as a factor, that is, have even parity.
Therefore, all error patterns that contain an odd number of error bits are
detectable.

These observations point toward the use of a simple and common form for
g(x), namely, g(x)=(1+x)p(x), where p(x) is a primitive polynomial, typically
of degree 15, 23, or 31, so that g(x) is of degree (n — k) = 16, 24, or 32.

Such a g(x) gives rise to

* A code with d >4 so that any three or fewer random bit errors are de-
tectable.

® All odd numbers of bits in error are detectable.
*® Any single error burst of (n — k) or fewer bits in length is detectable.
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The best known example of such a code is probably that of CCITT’s Recommen-
dation X.41, [8] based on the generating polynomial g(x)=x"+x2+x%+1=
v+ DB+ +xB x4 xd + P +x?+x+ 1.

3.3.1 Weight Distributions

As pointed out in Chapter 2, a full analysis of the error-detection capabilities of a
code requires knowledge of the weight distribution. If the code is cyclic, and the
generating polynomial g{x) does not have (x + 1) as a factor, then the polynomial

c(x)=x""14x"T24+x" 4 txi x4 1
is a codeword. This is because
(x"+ 1) =(x+1ec(x)

and since g(x) divides (x” + 1), it must divide c¢(x). Such codes have a symmetrical
weight distribution, in that the number of vectors of weight w is the same as the
number of vectors of weight (n — w); because then the complement (a(x) + ¢(x))
of any codeword a(x) becomes another codeword. This facilitates the analysis of
error detection. For example, the (15,7) code with

g(x)=(x*+x+D(x*+x3+x2+x+ D) =x8+x"+x°+x* +1
has the weight distribution shown in Table 3.1.

Table 3.1
Weight Number of Codewords Number of Possibilities
0 1 1
1 0 15
2 0 105
3 0 455
4 0 1365
S 18 3003
6 30 5005
7 15 6435
8 15 6435
9 30 5005
10 18 3003
11 0 1365
12 0 455
13 0 105
14 0 15
15 1 1

128 =27 32768 =215
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The first column gives the weight; the second, the number of codewords of
that weight; the third, the number of possible n-vectors of that weight. Since all
errors that are not codewords are detectable, we may make statements like these:

“All 1365 4-bit error patterns are detectable”

and

“6420 of all 7-bit error patterns are detectable, and that is 99.77%
of all 7-bit error patterns”

3.3.2 Shortened Cyclic Codes and Feedback Shift Registers

Probably the most widely used method of error detection in digital computing is
based on shortened cyclic codes. This means that the message is not constrained to
be k bits in length, but rather j bits with j < k. The number of check digits (n — k)
is, however, fixed. In most cases the value of j is not known in advance, so the
technique used is to compute a sort of “running remainder” for the check digits,
adjusting it each time a new message bit is presented. To explain this procedure,
we alter the notation and call the message (m;m, ... m;), with m, the first bit. The
complete codeword now becomes, after i message bits have been processed,

x"*km(x) +r(x)

=x"Kmx"" " +myx' i+ o +m x4+ m))
Fry X" et x
=q(x)g(x)

where r(x) is the remainder on dividing x" *m(x) by g(x), and g(x) is the
quotient.

With this notation, the appearance of a new message bit, m,, , gives rise to a
new message, m'(x):
m'(x)y=xm{(x)+m,,,
The new value of r'(x) can be calculated as follows. Since
x"*m(x)=r(x) mod g(x)

X" H(xm(x)+m; ) =xr(x)+m; x" *modg(x)
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But the expression on the left is x"~*m’(x), and this modulo g(x), is by definition
r’'(x). Therefore,

r'(x)=xr(x)+m,, ,x" *mod g(x)
=x""*(m,  +r,  )modg(x)+ (r,_,_x" K+ = +ryx)

because g(x) is of degree (n — k). Thus, to calculate the new remainder from the
old:

1. Shift the old r(x) left 1 bit (multiply by x).

2. Add (XOR) the new message bit m, ., to the overflow remainder bit r,_,
from step 1.

3. If the result of step 2 is zero, the result of step 1 is r'(x); otherwise, add
(XOR) into the result of step 1 the terms of g(x) with the exception of x” *
to give r'(x).

-1

This process is easily performed by a feedback shift register circuit, as illustrated in
Figure 3.1. In the figure the polynomial x'®+ x>+ x>+ 1 is used to make the
example precise. One has to imagine message and remainder bits (in the register)
being shifted in synchronism to the left, one at a time, and the result of step 2
being added back into the register. We can also perform the process simply in
software, typically § bits at a time. That is, we process an octet, 8 new input bits
(m,,, to m,, ), each step as follows:

1. Shift the old r(x) left one octet.

2. Add (XOR) the new message octet to the overflow octet from step 1 to
produce J(J =0 to 255)

3. Use J as the index into a table T of 256 entries 7(J), each of (n — k) bits,
which represent the contribution to the new remainder of feeding back J
cight times using the mod g(x) process; and add (XOR) 7'(J) into the result
of step 1 to give the new remainder.

At each stage r(x), the content of the register, is the remainder, that is, the check

g%ﬂ]]]%%y[llulsk-é{rlle

X15 x12

Message bits

Figure 3.1 Feedback shift register for dividing by (x'* +x'2 + x5 + 1).
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digits, associated with m(x). If we stop when i =, the initial (k —j) bits of m(x)
are zero, so the code is a systematic cyclic code shortened by forcing the first
(k —j) bits to be zero. The circuit of Figure 3.1 effectively performs division.

This procedure can be used to generate codewords. It can also be used to
detect errors. We can divide the entire received vector (x"~*m(x) + r(x)) by g(x)
and check that the resultant remainder is zero. If the circuit of Figure 3.1 is used,
we would then be processing (j +n — k) bits, that is, dividing x"~* times the
received vector rather than the vector itself, but the criterion of a zero remainder
for no detected errors still holds. Alternatively we can stop the process after
dividing x" *m"(x) by g(x), where m"(x) is m(x) after possible corruption by
errors, and compare the r(x) calculated from this with the received r”(x). If they
are not equal, an error has been detected.

3.4 ERROR CORRECTION WITH CYCLIC CODES

Correcting errors in received cyclic codewords is, as usual, much more complex
than merely detecting them. If g(x) is irreducible, then the columns of H are
simply some power «' of a root a of g(x), so that a single error is easily corrected
because if it occurs in the (n + 1 — i)th column it will give a syndrome equal to a’,
and i can then be deduced from that syndrome. But if more than one error is to be
corrected (which implies that g(x) is composite, as we have seen), then this
identification of the contributing columns of H from the syndrome becomes
nontrivial.

However, one simple method, due to Kasami, does exist [9]. It is capable of
correcting ¢ or fewer errors in a cyclic code with distance d = 2¢ + 1, provided
those errors are confined to a burst less than or equal to (n — k) bits in length.

Kasami’s method is based on the following reasoning. Suppose there are j <¢
bits in error, with r of them affecting the check digits and (j —r) affecting the
message bits of a systematic codeword. If we evaluate the syndrome s, it will have
> (d — (j — r)) nonzero bits contributed from the errors in the message portion of
the received vector. This is because this contribution to s is the remainder on
dividing the message multiplied by x”~* by the generating polynomial; that is, it is
precisely the check digits, and since the distance of the code is d, we need
> {(d — (j — r)) nonzero bits. These nonzero bits may or may not cancel out the r
error bits in the received check digits, which are the check digits’ contribution to
the syndrome. In the worst case, if all » are cancelled, the syndrome still has

d=(j=ry-r=d-j=2t+1—-j=t+1

nonzero bits.

However, if the j < ¢ error bits are confined to the check digits only, then the
syndrome has <t nonzero bits.
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If we rotate the received vector, we rotate a codeword plus its error pattern.
Because the code is cyclic, the rotated codeword will contribute zero to the
syndrome calculated from the rotated received vector. But if the error pattern is
confined to < (n — k) bits, when rotation brings it into the position of the check
digits, the number of nonzero bits in the syndrome, its weight, will drop to <1,
from > (¢ + 1). When this occurs, the nonzero bits in the syndrome are precisely
the error bits in the rotated received vector. We therefore correct them and rotate
the vector back to its original position, where it is now the error-corrected
codeword.

If there are <t errors, but they are not confined to a burst of <(n — k) bits,
the syndrome will never have weight <. The Kasami method will give no result.

If there are >t errors, the error-correction procedure breaks down, as
always, and could lead to erroneous error correction.

Consider, for example, the (15,7) code generated by g(x)=x®+x"+x°
+x*+ 1, with d = 5 and ¢ = 2, which we considered in (3.3). Suppose the received
vector is (111100100011111) or

Colx) =xM+xB x4+ x4+ x¥ xt P i+ x4 1
Division by g(x) yields a remainder syndrome
so(x) =x®+x+x*+x2+1
with weight equal to 5.
We rotate the vector left to get ¢ (x), which is (111001000111111), and
calculate s,(x). This process is repeated to give Table 3.2.

Since, after two left rotations, the weight of s(x)=2 <, we conclude that
the errors are

000000000000101
in ¢,(x) and therefore
010000000000001
Table 3.2
Rotations r(x) s(x) weight of s(x)
0 111100100011111 01110101 5
1 111001000111111 11101010 5
2 110010001111111 00000101 2
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in r{x). Accordingly the corrected received vector is

101100100011110

This procedure can be simplified by noting that it is not necessary to rotate the
(long) received vector. It is sufficient to rotate the syndrome, modulo g{x). To see
this, consider

s(x) =v(x) mod g(x)
Then

$ie1(x) = (xr;(x) mod(x" + 1)) mod g( x)
But since (x" + 1) is divisible by g{(x), we have

s;o{(x) =xv,(x) mod g(x)

=xs;(x) mod g(x)
This is illustrated in Table 3.2, where

5, = 00000101 = x? + 1
=xs,(x) mod g(x)
=x8+x"+x+xt+x?mod(xP+x7+x0 +x? + 1)

When a syndrome of weight <t is found, we rotate this back mod(x” + 1) (not
mod g(x)) the appropriate number of times to place the error bits in the correct
location for adding into the original received vector.

3.5 NONBINARY CYCLIC CODES

Cyclic codes can be constructed over GF(q) where g=p” and p is prime.
Multiplication is modulo (x” — 1), where n is the length of the code; and as in the
binary case a cyclic code has a monic generating polynomial g(x), with coefficients
in GF(q), which divides all codewords and (x"” — 1). g(x) is monic, that is, the
coefficient of x" * is 1, to ensure the uniqueness of g(x). It is, as it were,
“normalised”. If g(x) is primitive of degree m, then n =q" — 1. A primitive g(x)
does not give a Hamming code, because the columns of H, which are all the
powers «',i =0 to n — 1, of a primitive root « are not “different” since some are
simply scalar multiples of others. The distance d = 2. For a Hamming code we
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require, as was shown in Chapter 2, that

n=(q""*-1)/(g—-1)
=(q@"-1)/(qa—-1)

Provided that (¢ — 1) is prime to this order n, the minimal polynomial of a9~ ! (see
Apperdix C) will serve as a suitable generating polynomial for a Hamming code
over GF(g). For an example of a nonbinary cyclic code, consider the code
generated by g{x) =x?+x + 2 over GF(3).

This generating polynomial is irreducible in GF(3), and it is also primitive.
Table 3.3 gives the successive powers of a primitive root « and the corresponding
minimum polynomials.

Notice that although «? is of order 4 =(g™ —1)/(g — 1) with g =3 and
m = 2, the nonprimitive g(x)=x?+ 1 does not give a Hamming code.

If we introduce a factor (x — 1) into a generating polynomial, the sum of all
coeflicients in a codeword is equal to zero. If the coefficients are over GF(27), this
gives a longitudinal parity check on the powers of «f, for i =0 to (r — 1) in the
representation of GF(27), for the codeword elements. In general, if g(x) is
composite, with j irreducible polynomials over GF(g) as factors

n=LCM(m,,i=1toj)
where m;, is the order of the roots of the ith factor.
Nonbinary cyclic codes can be generated using feedback shift registers, in a

manner similar to that for binary codes. Figure 3.2 illustrates this for the (8,5)
example considered, over GF(3), with

g(x)=x’+x+1=(x+x+2)(x—1)

Table 3.3

Q~

Value Minimum Polynomial

a1 x+2
ol o« x24+x+2
o’ 2a+1 x2+1
o 2a+2 2+x+2
at 2 x+1
b 2 x+2x+2
a® a+2 x2+1
al a+l x24+2x+2
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[T I«

Fig.re 3.2 Feedback shift register for dividing by (xP+x+ 1)

Into the feedback loop are included multiplications by constants, corresponding to
the (negative of the) coefficients of g(x). (Note that the circuit calculates the
remainder on division of the message by g(x), and this is to be negated before
appending to the message.)

Nonbinary cyclic codes over GF(2”), with a generating polynomial of degree
m, have the ability to detect all single bursts of errors of length < m symbols = mr
bits. Although the distance of such a code may be small, owing to the lack of linear
independence of the columns of H, it can still be very useful for burst error
detection. Correction of single bursts of errors can also be achieved using a
nonbinary version of the Kasami method. However, if we can also achieve a large
distance—and the maximum distance possible is (n — k + 1), being the maximum
number of nonzero terms in g{(x)—while maintaining the cyclic nature of the
code, we are then able to detect and correct random as well as bursts of errors.
How this can be achieved is discussed in Chapter 4.



Chapter 4
BCH Codes

4.1 MINIMUM POLYNOMIALS

In Chapter 3 we have seen that a cyclic code is completely defined by its generating
polynomial g(x), which in turn is determined by its roots. We have also seen that
the best hope of attaining a reasonable distance, d, without being forced to use a
low coderate k/n, is that g(x) should be composite, that is, have two or more
irreducible polynomial factors. Each such factor of degree m ; contributes m; rows
to the H matrix, in the form of an “m ~dimensional” sequence of powers of a root
a; (in an extension of the basic field to which the codewords belong). All the roots
a; have an order that divides n, where n is the length of the code, so that the «;
are solutions to x” = 1.

The art of creating a good code is to choose the «, in such a way that the
columns of H have a high degree of linear independence, giving a large distance,
while at the same time ensuring a good coderate with a large n in proportion to
(n— k), where n —k =3m,.

We start this process by choosing a first root of g(x), a, in an extension field
GF(q*) of our basic field of coefficients GF(q). For binary codes the fields are
GF(2°) and GF(2), respectively, and we shall confine ourselves to these for the
moment. We then choose other roots in the same field but restrict ourselves to
powers a' of the first root. If « is a primitive member of GF(2°), this is no
restriction.

Each of these roots a' has a minimum polynomial p,(x), which is the
polynomial with coefficients in GF(2) of smallest degree m ;» which has o' as a root.
See Appendix C. The minimum polynomials are necessarily irreducible, and the
full list of the roots of p,(x) is

di(a) (@)t ()"

A7
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If the minimum polynomial of « has degree m, =r, then (2" — 1) divides (2° — 1).
If the order of « is n, then n divides (27— 1).
We have

nl(27 = 1)](2° = 1)

Normally we would work with r=s (there is little point in not doing so) and
n=(2"—1) for a primitive code; n < (2" — 1) for a nonprimitive code. The other
powers a' of a have orders that divide n and have minimum polynomials px) of
degree less than or equal to r.

As an example, consider s = 6,2° — 1 = 63. Let B be a primitive element of
GF(2°), that is, a root of x®+x + 1.

1. If a =p7 then a’=1 and x°®+ x>+ 1 is the minimum polynomial of a. We
have n=9, (2" - 1)=63,(2* - 1) =63.

2. If a=pB° then o’ =1 and x*+x + 1 is the minimum polynomial of a. We
have n=7,2"—1)=7,(2°—1)=63.

3. If a =B then a®>=1 and x*+x + 1 is the minimum polynomial of a. We
have n=3,(2"—1)=3,(2°— 1) =63.

As another example, consider s =8, 2° — 1 =255. Let B be a primitive element,
that is, a root of x®+x*+x>+x?+ 1, and consider a =B"". « has order 15 and
minimum polynomial of degree 4, namely, x*+x + 1. a® has order 5 and mini-
mum polynomial x*+x3+x?>+x+ 1. &’ has order 3 and minimum polynomial
x2+x+ 1

4.2 THE ROOTS OF BCH CODES

Bose-Chaudhuri-Hocquenghem (BCH) codes [10] are constructed from consecutive
powers of a basic root a. Thus, g(x) is constructed to have roots

my+1 my+2 my+m—1
,

a™ « a o

giving m consecutive powers of a. Often m, is chosen so that m,=1; for
simplicity we shall suppose that to have been done. We call these roots “consecu-
tive roots” for short. Then if the minimum polynomial of « has degree r

Degree(g(x))=Degree( Il p,-(x))

i=1l,m

Y., Degree(p,(x))

i=1,m

< mr
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But for all even values of 7,i = 2j say, @” and a’ are roots of the same polynomial
p{x). So for m even (and there is no point in considering m to be odd because

a™ "' would appear automatically as a consecutive root) we have

(n—k) = Degree (g(x)) <mr/2 (4.1)

Inequality (4.1) puts a bound on the number of check digits in a binary BCH code

in terms of the degree of the basic root’s minimum polynomial, r, and the number

of irreducible factors of g(x), m. We now show that this choice of roots (choice of

factors of g(x)) also puts a lower bound on the code’s distance, namely, d > m + 1.
Consider the null matrix

a1 a2 a? a 1
@)@ (@) o 1

H= n—1 son—2 2
o) (@) () & 1
(@)™ (am)" e (™) a" 1]
B an—l an—2 aZ a 1.1
(T ey (@) o' 1

= ,. ; P 4.2
ey @ (aF) o 1 “
(@)™ (e )" ()" am 1

The determinant, D, formed from a selection of any m distinct columns of H,
corresponding to powers of a that we label a’', @/... @’ in the second equation
for H in (4.2) is then

1 1 1

a’l a’? a’”
D—ajlajz @M=~
(ajl)m 1 ( jz)m 1 (ajm)m 1

=a’la’? .. . a/mA

= T1 8,A with §,—a’

i=1,m
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and
1 1 1
61 82 5m
A oe oo
syt ey o
=TT (3,-4)
i<j<m

That this last product evaluates to A can be verified by noting that, viewed as a
polynomial in 8,,1 <k <m, it has the correct degree (m — 1), the correct roots §,
i # k making A =0 when two columns are equal, and the correct coefficient for
87!, But the §,; are not equal by construction, because the powers a' are not
equal for i <n, since n is the order of a. Therefore, D # 0 and any selection of m
columns of H must be linearly independent. But the distance of a linear code is
equal to the minimum number of linearly dependent columns of H. Therefore,

d>m+1 (4.3)
With d = 2¢ + 1 we have t > m /2, and combining this with inequality (4.1) we get
tz(n—k)/r (4.4)

Inequality (4.4) shows clearly that a composite g(x) in which r, the degree of the
minimum polynomial of the basic root «, is much smaller than (n — k), the degree
of g(x), is necessary for a large ¢.

It is important to note that (4.3) is an inequality, that is, it gives a lower
bound for d. In the expression (4.2) for H we only considered m consecutive roots.
In reality we know that there are nearly always other roots of the minimum
polynomials of the consecutive roots, which we have not included as rows in H This
omission does not invalidate our argument. We have seen that these other roots,
being successive squares of previous roots, contribute nothing to the orthogonality
of H with G. Omitting them from considerations regarding the linear indepen-
dence of the columns of H will certainly not increase the degree of linear
independence but rather decrease it, so that (m + 1) is a lower bound for d.
Values larger than (m + 1) are possible because, as stated, there are usually more
than m rows in H if we were to write down all the roots, as opposed to just the
consecutive roots.

For example the (23,12) Golay code, which has been mentioned, can be
constructed from B = a®, where « is a primitive root of GF(2'!). For a BCH code
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we consider the minimum polynomial of 8 with roots

B’BZ,B4,BB’BIG’B9’BI8’BI3,B3’B6,BIZ (and BZ4 — B again)

obtained by successive squaring and remembering that B> = 827 = 1. It is clear
that there are four consecutive roots here, B, 2, 8% B% so d =5, if we simply
choose for g(x) the minimum polynomial of B8 with the eleven roots listed. This
gives a (23,12) code with d > 5. However, in this particular case d = 7, and this can
be shown by considering all the eleven rows of H rather than only the first four.

4.3 SOME EXAMPLES OF BCH CODES

In the following examples of BCH codes we start with a root, «, and its minimum
polynomial and the resultant code and its distance. In each subsequent line we add
new roots, giving rise to new minimum polynomials, and a new code (whose g(x) is
the product of all the preceding minimum polynomials) and the lower bound on its
distance. Thus, over GF(2*) we start with « a root of the (primitive) x* + x + 1 and
get Table 4.1.

Over GF(2°) with « a root of the (primitive) x5+ x? + 1 we get Table 4.2.

In this example over GF(2°) notice that when o’ is included as a root d
mcreases from 7 to 11, because @’ is already present in the third row. Similarly
when a!! is introduced, a'® comes also and d again increases by 4, not 2. Notice
also that the polynomials of rows 1 and 6, 2 and 4, 3 and 5 are reciprocals with
p'(x)=x"p(1/x) (where p'(x), p(x) are reciprocals) and their roots can be paired
a' with a™ =317,

If we con51der GF(2°) with a as a root of the (nonprimitive) x° +x* +x2 +
X + 1, so that @' = 1, we get Table 4.3,

In this example, choosing a nonprimitive root as a starting point has not
produced the more rapid increase in distance, which occurred in the case of the
Golay code.

Table 4.1
Roots Min. Polynomial Code Distance
(Lower Bound)
«a o’ at b (x*+x+ 1 15,11) 3
o’ a® 12 o’ (*+xt+x24x+1) 15,7) 5
@ al (xX2+x+1) (15,5) 7
l17 aM 13 11 15

a' a (x*+x¥+ 1) (15,1)
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Table 4.2
Roots Min. Polynomial Code Distance
( Lower Bound)
@ a® ot a® al® x4l (31,26) 3
o’ a® al? a™ a'’ IS R Ny | (31,21) 5
@ a" o ot @™ Cxtaai4atd (31.16) 7
a’ a't o™ a™ al? St eal+x+1 31,11) 11
all a®? al? a’® a’! St tx+d (31,6) 15
al® al a® a”’ a?? xtl 3L 31
Table 4.3
Roots Min. Polynomial Code Distance
(Lower Bound)
o a® at a® al® all O xttxi+x+ 1 (21,15) 3
ot a 12 x4l (21,12) 5
o’ a'f o al? al’ al? xS +xt+x+1 (21,6) 7
a’ al? xTHx+1 (21,4) 9
o’ a'® al? xI+x2+1 21, 1) 21

In all the above examples a™ with m, =1 was chosen as a starting point.
Inspection of the examples will show what happens if we start with m, > 1. For
example, if, in the GF(2°) example, we tried to form a d =7 code with a'’ as a
starting point, it apparently cannot be done using only the first three rows, since
we have o', a!!, a'?, ' but not «’ or a'¥, which implies d = 5. Nevertheless, the
product of the minimum polynomials of the first three rows does give a d = 7 code.
The mistake is to have looked at the wrong roots and treated the lower bound to
the distance as the distance itself.

We can also take m, =0 so that x =1 is a root of g(x). The effect of this is
to make the number of consecutive roots odd, so that the lower bound to the
distance is even. Viewed as an additional row added to H, it can be seen that the
distance cannot be decreased; therefore, it must be increased if it goes from odd to
even. For example, we can turn the (23,12) Golay code into a (23,11) even parity
code by including B° in the list of roots given at the end of (4.2); and the distance
rises from 7 to 8. (This procedure was illustrated in (3.3).)

In principle it is possible to tabulate all binary BCH codes with their
corresponding distances. More usually the textbooks list the minimum polynomials
of successive (odd) powers of a basic root in GF(2°*) for values of s from 2 to 20 or
30. These minimum polynomials are of course all the irreducible polynomials that
divide (x¥ 7' = 1).
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4.4 ERROR CORRECTION OF BINARY BCH CODES

The regular structure of BCH codes given by the m ‘“consecutive roots” enables a
minimum distance, d =2fr+1=m + 1, to be determined. This structure also
permits correction of up to ¢ errors to be performed by a relatively simple
procedure.

Suppose we have ¢ errors and evaluate syndromes S; by multiplying the
received vector into the columns of HT, that is, the rows of H. For a BCH code
these rows include

n—1

()" (@) . (@) (a1

for i =m to (my+m — 1) if there are m consecutive roots. The rows can also be
written

(@ N '(a" ) .. (a) (@) (1)

for i =mgy to (my+m—1).
Errors in columns corresponding to o’!, a’?,...a’" will then give rise to
syndromes

S,=(a) + (a) ... +(a)

We write @/ = X, and call this an error locator, because if we know the value of
X, we know the column in H to which it belongs and hence the location of the
crror. Thus,

S.= Y X! fori=m, to(m,+m-—1) (4.5)

S is found from the received vector, and there are m = 2¢ nonlinear equations in

(4.5) to find the ¢ values X, for k=1 to . However, the system (4.5) is not

overdetermined, since some equations are simply restatements of others. This is

clearly seen if we take m, = 1, in which case S,; = for j =1 to m/2. Equations

(4.5) can be solved by turning the nonlinear into a linear system, as follows.
Suppose the X, are the t roots of an equation

flxy=x"+fix""'...+f_x+f=0 (4.6)
Then

X' +f,X "V +f X+ f,=0 (4.7)
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Multiplying (4.7) by X/, with 1 <j <t, and summing over i =1 to ¢ gives
S[+j+flst+jfl"'+flflsj+1+flSj:O (48)

Equations (4.8) (the “Newton identities™) are ¢ linear equations, for j=1 to ¢,

which enable the ¢ coeflicients f, to f, to be calculated, and hence the X, to be
found by solving (4.6).

Thus, the error-correction procedure for BCH codes is

. Find the m = 2 syndromes corresponding to the consecutive roots.

. Solve the linear system of ¢ equations (4.8) to find the coefficients f, to f,.
Solve (4.6) to find the r error locators X,.

Determine the columns in H where errors have occurred from the values X
and change the bits in the received vector corresponding to those columns.

B

4.4.1 Practical Procedures for Solving the Equations

Various methods have been developed for speeding up the calculations in steps 2
and 3; but given that in most cases ¢ is relatively small (e.g., t <10) and that
computers are being used in any case, simple direct methods often are sufficient.

Thus, step 2 may be performed by normal methods for linear equations (e.g.,
determinants) without taking into account the “diagonal” arrangement of the S, to
§,, or the fact that there are only 2¢ rather than ¢? distinct matrix elements. And
in step 3 there are only n possible values for the X, namely «" to «"~ Y, and
these can simply be tested one by one to see if they are roots of f(x).

However, it is important to note that if the number of errors is r < ¢ then
f(x) is only of degree r and the system of equations (4.8) becomes singular. This
presents problems in step 2. More precisely, if there are r,0 <r <t, errors and we
assume that there are 5,0 <s <t, errors and therefore use a function f(x) of
degree s, the system of equations (4.8) is effectively insoluble unless we guess s =r
correctly. To understand how this is so, consider the situation when there are
r( < t) real errors.

Equations (4.8) then become

Sj+r=f15j+r-1~--+fr—1Sj+1+erj (4.9)

for 1 <j <2t —r,since f(x)is now only of degree r, but the number of syndromes
evaluated is 2¢. This system of (2t — r) equations in r unknown is either inconsis-
tent or else contains redundant (linearly dependent) equations. It cannot be
inconsistent, because it is true; therefore, the excess (2t —r —r =2t — 2r) equa-
tions must be satisfied automatically by the solution to the first r equations. The
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matrix associated with those first » equations, namely,
(Sisro1Sjir—2---8115)) j=1 tor

is nonsingular, because if it were singular we could choose one variable ( f,, say) in
(4.9) arbitrarily, and choosing f, = 0 would imply X; =0 for some 1 <i <r, which
contradicts the assumption that there are r errors. Therefore, if the number of
errors we guess to be present, s, equals the number of errors really present, r, then
(4.9) can always be solved, with 1 <r <t. However, if we guess s <r, then we
cannot find solutions f; to

0=, 4 IS crr oo 118,01 + 1S, (4.10)
for 1 <j <2t —s, because all (s + 1) by (s + 1) matrices, formed from the rows
(Sj+.rSj+s— Tre- Sj+ lSj)

for (s + 1) differing values of j, would then have to be singular for the homoge-
ncous set (4.10) to be true. But if all these matrices are singular (with s <r), then
the determinant of the right side of (4.9) is zero, which contradicts the fact that
there are nonzero solutions to (4.9). Therefore, when s < r, (4.10) is insoluble and
represents an inconsistent set of equations. If we guess s <r and find f; to f]
from the first s equations, they will not satisfy the remaining (2¢ — 2s) equations.

Finally, if we guess s <r, we cannot solve (4.10) for f/ (i =1 to s), because
the matrix

(Sies1Sihs-2---8,018) forj=1tos (4.11)
is singular, because all (r - r) determinants of the homogeneous system (4.9)
(Sj+rSj+rfl"'Sj+1Sj)

for any r values of j, 1 <j <2t —r, are zero; which makes the determinant of
(4.11) equal to zero.

Thus, we conclude that in step 2 the way to proceed is to guess that there are
s =t errors. If the matrix of (4.8) (S, ;_\S,,, ,S$;,,S;) for j =1 to s is nonsingu-
lar, solve (4.8) for f; to f, and proceed to step 3. If the matrix is singular,
decrement s and try again for a nonsingular matrix. When a solution is found, it
can be checked for consistency in the last (2¢ — 2s) equations:

Sei;HFiSsujctee Hfo 1S, +£,5,=0 with j=(s+1)to(2r—s)



4.4.2 An Example of BCH Error Correction

To illustrate the method, consider the (15,5) code listed in (4.3) with
g(x)=(x*+x+ (s +x*+x?+x+ 1) (x*+x+1) and d=7

The code is capable of correcting three errors, but suppose only two occur, namely,

001000010000000

Then consecutive roots are a, a2, a’, a*, a’, a® with an a root of x*+x + 1. We
evaluate syndromes S,,S;, and S directly and then calculate S,,S,, and §¢ by
squaring. With

2 g
o a® a2 @' @ o’ @ al e & ot & er a1
— 2 S 2 2
H=1a" o’ a° o 1 a? a¥ a® & 1 Q' a’ a® a1
" 51 a0 &b I a® a5 1 & &8 1 a® o 1
we get S, =a?+a’ =a?
—q2 4
Sz“‘Sl‘—a

S;=a®+a®=0
S,=83=a"
Ss=1+a’=a"
S§,=8i=0

Table 4.4 lists the powers of «, where a* +a + 1 =0 has been used.
To solve

S3+J+f1S2+]+f251+j+f3S]=0

with j = 1,2,3 (on the assumption that there are three errors), we need to evaluate

Table 4.4
o ol a? & (;4 & a® & & & al al'! o 13 14
«10 0 0 1 0 0 1 1 0 1 0 1 1 1 1
10 0 1 0 0 1 1 0 1 0 1 1 1 1 0
a |0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
1 1 ¢ 0o 0o 1 o0 0 1 1 O 1 0 1 1 1
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the determinant

$55,5, 0 42
8488 |=a® 0 a*|=0
555453 al(] a8 0

This shows that there are fewer than three errors, so we try again with
Srv; 1814+ f28,=0 (4.12)

with j =1 to 4. Considering only j = 1,2 first, we find the determinant

D= S2 Sl a4 az _ag
AR 0 o
S, S
So that fi= Sj S; /D =a" /a8 =a?
S, 8
f,= /D =a'?/a® =at
2 53 S4 / /

This means that the error locators X,, X, are roots of (x? + a’x + a*), and it is
easy to verify that @’ and «'? are these roots, pinpointing the errors to be

(001000010000000)

We verify the remaining equations of (4.12) with j = 3,4, namely,
Ss+fiSatfa83=a+a®+0=0
Se+f1Ss+f28,=0+a?+a"?=0

Finally, if we had guessed that there was only one error we would have solved

S;+f15,=0

to give f, =a’. But if we try to verify this for the remaining equations S, , +
f18;=0with j=2to 5, we get

S +f15,=0+a®#0
Sy +fS;=a*+0+0
Sc+fiS,=a’+a®=0

Sg+f1Ss=0+a'?#0
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showing clearly that the equations are inconsistent, because there are two. not one,
errors.

This procedure for step 2 is based on trial and error, with 1 <r <t¢. In many
practical cases ¢ is small, so there is not much superfiuous effort wasted in finding
the r that gives a nonsingular matrix in (4.9) and consistent results for the
remaining 2(¢ — r) equations. However, there exists an ingenious and faster method
for solving these equations (due to Berlekamp and Massey) that automatically
determines the number of errors r as it proceeds to find the f, for i=1 to r.
Essentially the method relies on the fact that (4.9),

Sier=hSi 1t 2S00 +fr—lSj-+-l +£.5;
may be regarded as a linear predictor of §;,,, given §;,,_, to §,, with coefficients
f, to f,. The Berlekamp-Massey algorithm [11] synthesises such a linear predictor
by predicting $, from S;; S, from §,, S;; S, from §,, §,, §,, and so on, modifying
coefficients up to f, as necessary. When the algorithm has found f, to f, that
predict S, ., correctly (from S, to §,), it transpires that S ., can be predicted
without adding an f, | coefficient, so the S, term is dropped. The algorithm
continues until S,, is predicted, but these later stages merely verify that the r

found is indeed correct and the f;,i=1 to r, are the coefficients of f(x). The
algorithm is presented in Appendix D.

4.5 ERROR CORRECTION OF NONBINARY BCH CODES

A technique very similar to that of (4.4) can be used to find and correct errors in
nonbinary BCH codes. Nonbinary BCH codes are simply nonbinary cyclic codes, as
discussed in Section 3.5, with the added requirement that there are m consecutive
powers of a basic root a (in an extension field to GF(g), the field of the
coefficients and the code itself) as roots of the generating polynomial g(x).

Because the coefficients of the code polynomials are not restricted to 0 or 1,
the syndrome equation (4.5) now becomes

S;=Y Y. X{ i=myto(myg+m-—1) (4.13)
where Y, is the value of the kth error, at the location identified by X,. As before,
the nonlinear equations in X, of (4.13) are transformed to linear ones by
supposing the X, are roots of f(x), of degree ¢, so that

f(Xk) =X/i+f1X/:_] vt fi X+ f,=0

But this time we multiply not merely by X/, but by Y, X/ and sum over & to get,
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using (4.13),
Sj+t +flsj+t—l +f2Sj+r—2 +f1—1Sj+1 +erj =0

This can be solved as before for the f,, i =1 to ¢, to give the f(x), whose roots in
turn can be found to give the X,. Equation (4.13) is then a system of linear
equations in Y,, with S, and X} known, which can be solved to give the error
values.

The process can be summarised as follows:

1. Evaluate the syndromes §; for i =1 to 2¢. They will satisfy (4.13), that is,
Si=Lypo1. Vi X,

2. Find the coefficients f; of f(x), the polynomial with the error locators as
roots, by solving S, +f18;,, 1 +f3S.i - +fi018, Hf.S;=0for j=1
to ¢ or shortened versions of this if there are fewer than ¢ errors.

3. Find the error locators that are the roots X, of f(x). If X, =a*, then the
error is in the (n — k)™ position of the codevector, reading from the left.

4. Evaluate the Y, from ¥,_, Y, X by matrix inversion and subtract them
from the received vector at the appropriate locations identified by the X,.

The above procedure is quite simple to implement, although the manipulation of
two finite fields the ground field GF(gq) and the extension field of the roots, in
which powers of the basic root will be represented as polynomial remainders on
division by the minimal (nonbinary) polynomial of the basic root can become
confusing. Fortunately the classic nonbinary BCH codes, the Reed-Solomon codes,
require only one nonbinary field.

4.6 REED-SOLOMON (RS) CODES

Reed-Solomon codes [12] are remarkably simple, despite being nonbinary BCH
codes over a ground field GF(g). As with all BCH codes m consecutive roots are
chosen, but the roots are in the ground field itself, not in an extension of it. Thus,
if the basic root is a (in GF(q)), the other roots are «', and all have minlrpurp
polynomials of degree equal to unity, (x —a’). Thus, the generating polynomial 1s

g(x) =Ti(x —a’)

We have (n —k)=m; and d =m + 1 =n — k + 1 for the distance. Notice that this
is the maximum possible value for d since there are only (n —k) rows in H;
therefore, any (n — k + 1) columns of H are linearly dependent. The length of an
RS code is given by n =g — 1 because @7 ! =1, since the order of a certainly
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divides (g — 1). But « is always chosen to be primitive, because no advantage
accrues from using a nonprimitive «, given that the distance is maximum in any
case. If a shorter length is required, it is simpler to use a shortened RS code, which
will also have d =n — k + 1 for the same reason.

4.6.1 A Worked RS Example

It is wusually convenient to choose m,=0 for the sequence of roots
a™ gmt _gmMotm=1 and this is done in the following example. First we
construct a d =5 RS code over GF(2?), and then we use it to correct two symbol
errors in accordance with the procedure of (4.5). Let the roots be 1,a,a?, a?,
where « is primitive in GF(2°), for example, « is a root of x* +x + 1. This gives

a=a+ l,a4=a2+a,a5=az+a+1,a°=a2+1
Sothat g(x) =(x+1)(x+a)(x+a’)(x+a’)
=(x’+a’x+a)(x?+a’x+a’)
=x*+a’x*+a’xt+a’x +ab
This gives a (7,3) RS code over GF2*) with d =n—k+1=35.

1 0 0 « o’ a® af
G=|0 1 0 at a «a
0 0 1 o & & af
[« 1 «> 1 0 0 0
H= a ot & 01 0 0
a® a* o 0 0 1 0
La(’ a a® 0 0 0 1

H can also be represented in a form showing the powers of the roots

5

1
o
R
a

R R R =
[}
—_ e e e

by adding together suitable multiples of the rows of the first form of H.
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We can represent the elements of GF(23) as triplets (a’al) so that (101)
signifies @? + 1 =a®. Then a codeword could be

(1 @00 a®a* 1)=(001 010 000 000 100 110 001)
We suppose this becomes corrupted to
(001 010 111 000 101 110 001)
=(1aa’0a®a*l)
and we get the following syndromes
Si=l+a+a’+a®+a*+1=a’+a=a*
S,=a+ab+a’+0+a+a’+1=0
S;=a’+a*+a®+0+a’+al+1=a+1=0a’
S;=a*+a’+a’+0+e’+1+1=a’+a=a*
On the assumption that there are two errors we try to solve for f, and f,
S3=115:+115,
Si=f83+13S,

The determinant = S7 — S,5, =0 +a’ = 1 and we get

538,
fi= S,S, =5;5,+ 5,5,
=0+al=«
S,8;
sz 5354 =SZS4+SBZ

=0+a®=a’
The error locators are found by solving
f(x)=x?+fix+f,=0

giving roots x = a® and x = «*, so the errors have been located in the (7 — 4) = 3rd
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and (7 — 2) = 5th positions from the left. The values of the errors are given by

Y, +Y,=5 =a

a'Y, +a’Y,=5,=0

giving
Y, =a%Y,
)
Y,=a'/(1+a?)=a'/a®=0a’
Therefore,

Y, =a’ Y,=a'=1
= (111) = (001)
which added back into

(001 010 111 000 101 110 001)

as follows,
(000 000 111 000 001 000 000)
gives the original vector,

(001 010 000 000 100 110 001)

4.6.2 An Example of Practical Use of RS Codes

The preceding example illustrated the calculations involved in error correction
based on an RS code. The following example is of an application using an RS
code. The application is the transmission by radio (spare capacity on a satellite TV
channel in reality) of blocks of broadcast financial data. The one-to-many nature of
broadcasting and the relatively noisy transmission medium make the application a
natural candidate for FEC, as opposed to correction by retransmission.

The data are composed of blocks of 36 octets (bytes), transmitted between
framing characters (which do not concern us) and forming a series of perhaps 200
or 300 blocks. Because the receiving radio equipment may temporarily lose
synchronisation with the framing, every so often (e.g., one block in a few hundred)
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an entire 36-octet block may be destroyed. This erroneous block may sometimes be
signalled as such, but usually it is not; the application could then be fed with 36
arbitrary but apparently genuine octets. Random single bit errors also occasionally
occur.

To provide error correction for this application it was decided to use
interleaved shortened RS codes over GF(2®%). The scheme is illustrated in Figure
4.1. The columns represent codewords, which for an RS code over GF(2%) must

have n < 255. In practice a distance-5 RS code was used with roots 1, a, a?, a?,
where a is a (primitive) root of x® + x> + x> +x + 1, giving
g(x)=x*+a?x*+a’x? + a®*x +
Generation/
Checking Column by Column
vwv
Transmissioy —P 1 &
Reception Row by Row ——Jp 2
(n-4)
data
octets
n-4 v
g
4
P2 | check
octets
n J
‘— 36 columns —"‘—’ "“_‘—36 columns —’

* On transmission, first the columns are filled, then the rows transmitted

* On reception, first the rows are received, then the columns checked

Figure 4.1 Example of interleaved RS code.
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Thus each column has < 251 data octets and four check digit octets. Seventy-two
columns, representing two transmission blocks, were chosen.

The interleaving is achieved by filling the matrix column by column. As soon
as (n — 4) octets are read in, the four check digits are calculated and added to the
bottom of the current column, and the process continues on the next column. But
once all columns are full, transmission starts by sending out octets row by row.
Thus, the 72 leading octets of each column are sent as the first two transmission
blocks, then the 72 second octets, and so on. On reception the rows are filled in
the same way as they were emptied on transmission, and then RS error correction
proceeds column by column. It is clear that two completely corrupted 36-octet
transmission blocks cannot cause more than two octet errors in an RS codeword,
and the likelihood is that they will usually cause fewer. Thus, two blocks in error in
2n blocks are correctable, with n <255 and k =n — 4.

The choice of GF(2®) was made partly because of the ease of handling
octet-based operations, and partly because the maximum value for n (= 255) suited
the requirements for the application to handle a series of “a few hundred 36-octet
transmission blocks”.

The interleaving technique described above is a very simple technique for
turning bursts of errors (e.g., a 36-octet block) into random errors. The RS code
enables these and other random octet and bit errors to be corrected readily and
has the merit of adapting itself to various lengths n( < 255) without change of
distance d(=5).

Thus, the system can be and is configured to meet differing requirements
from the application, in terms of number of blocks in a series, and to adapt to
differing error rates, by adjusting the length of the code and so changing the
probability of an octet in a codeword being in error.

In many radio-based broadcast transmission systems the entire digital stream,
framing characters and so forth included, is itself error-corrected using a convolu-
tional code (see Chapter 5); so if block coding is used within the stream, two levels
of error correction apply. This is often called concatenated coding, because one
coder follows another as the data are processed.

4.6.3 Other Aspects of RS Codes

Some final comments on RS codes can be made. First, the weight distribution of
RS codes can be readily calculated, and this enables the probability of correct and
incorrect decoding and of other parameters such as the postdecoding error rate
(the residual error rate) to be calculated accurately, as has been indicated.

The calculation of the weight distribution relies on the fact that the contents
of any k symbol positions, over all g* codewords of an RS code, are all distinct.
This is because if two codewords had equal values in those & positions, they could
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be subtracted to form a codeword with zero in those postions; therefore, with
d<n—k. But d=n—k+1, so this is possibie only if the result is the all-zero
codeword, in which case the codewords were not distinct in the first place.
Applying this to a consideration of the number of codewords of weight = d=
n —k + 1, we can see that for any d positions a codeword of weight = d exists. For
an example, consider (d-1) of these positions leaving n —(n — k) = k over. All g~
values occur in these k positions when all g* codewords are considered; therefore,
in particular the codeword with all zeros, except for 1 in the dth postion of those
originally considered, occurs. But this must have weight = d; therefore, the remain-
ing (d — 1) postions are nonzero; therefore we have a codeword of weight d. There

are (2 (g — 1) such codewords of weight d, because there are (:’1) selected

positions possible, and for each codeword there is a possible scalar multiplication
by (g — 1.

It is interesting to consider “how good” are RS codes, given that the distance
d =n—k+ 1 is maximum (given n, k) and that k/n =1— 2t /n for large n. This
means that the coderate is preserved if t/n is preserved as n increases, and vice
versa. But how near the theoretical bounds are RS codes?

From Appendix B we have

Y (’? ) <2"H(a)
A i
i=0,na

for large n; therefore, the summation term in the inequality of Section 2.5, which is

applicable to the nonbinary sphere-packing case, can certainly be bounded as
follows:

Z (fll )(q — ])i < 2"H(a)(q _ 1)"“ < an(a)qna

i=0,na
In consequence, the sphere-packing bound with a =t/n becomes
M= qk <qn/2n11(a)qna
Taking logarithms to the base g we get
Coderate =k/n <(1—a—H(a)/m) (4.14)
where we have assumed g =m so that log 2 =1/m. (It must also be remembered

that since in the case of RS codes n =g — 1, m ~ log,n so that H(a)/m tends to
zero as n becomes very large.) The Plotkin bound of Chapter 2 can also be
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recalculated tor the nonbinary case to give
Coderate =k/n<1-q(2t+1)/(q—1)—log,(qg—1)/n
which for large » may be approximated by
Coderate =k/n<1-2ag/(g-1) (4.15)
For large g (as occurs with RS codes)
k/n<l1-2a (4.16)

and we see that the Plotkin bound (4.15), which takes into account the code’s
linearity, is considerably more constraining than the (in any case conservative)
sphere-packing bound of (4.14).

Reed-Solomon codes attain this upper Plotkin bound (4.16), as we have seen.
How near are RS codes to the theoretical limits as given by Shannon’s theorem of
Section 1.3? The theorem puts a bound on the coderate, which can be achieved
with arbitrarily small probability of decoding error. For such a probability, the
correctable errors must at least include the expected number of errors Pn, where
P is the probability of a symbol error. Therefore, t > Pn

For RS codes with a@ = ¢/n this implies

k/n<1-2P (4.17)

But Shannon’s theorem states that

k/n<1-H(p) (4.18)

where p is the bit-error probability. If g = 2™ then each symbol is represented by
m bits and the symbol-error probability is related to the bit-error probability by

n

P=(1-(1-p)") (4.19)

It is clear that as n increases, thereby increasing m = log,(n + 1), the probability
of a symbol error P increases to reach (and exceed) 1/2, so that the coderate of
the RS code given by (4.17) decreases to zero, until finally no RS codes of the
required characteristics exist. This situation is far less favourable than the theoreti-
cal coderate given by (4.18).

In short, the good performance of RS codes with large n as evidenced by
their attainment of the Plotkin bound (4.16) is in fact an illusion. It is achieved by
considering symbols requiring ever more bits m to represent them, so that if used
on a channel of fixed bit-error probability p. the symbol-error probability P
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increases with n. We may maintain the ratio ¢/n, but we should increase it to cope
with the increasing P, as n increases. If we do this using (4.17) with P given by
(4.19), the coderate drops away from the theoretical limit of (4.18). Because RS
codes are at the Plotkin bound, it is clear that this limitation on performance is
essentially due to the linearity of the code.

Despite these strictures, RS codes are very useful, not least because they
have built-in burst-error detection and correction (being nonbinary); and because
they require only relatively straightforward calculations for error correction.



Chapter 5

Convolutional Codes

5.1 TREE AND TRELLIS CODES

The previous chapters have been concerned with block codes, in which information
symbols are supplemented with check digits, symbols, and bits, which create the
distance between codewords and enable error detection and correction to be
performed. The check digits are calculated from the information symbols in the
block. The block is self-sufficient.

This chapter is concerned with streams of blocks, usually very short in length,
supplemented with check digits that are calculated from the information symbols
of the current block and of several preceding blocks. While the number of
information and check digits per block is known and is a fixed property of the code
in use, the number of blocks in the stream is usually indeterminate and considered
to be infinite. In general these codes need not even be systematic, so that a block
in the stream is simply a collection of ¢ symbols derived from, but not necessarily
containing the input b information symbols, to give a coderate b/v. The important
difference between these codes and block codes lies in the fact that successive
blocks are interdependent.

Viewed in another way we may consider tree codes, the most general form of
such codes, to be generated by a state-changing process. In this process, the code
generator moves from one state to a new state as determined by the input symbols,
the symbols to be encoded, and on each transition between states it emits output
symbols, which depend on the input symbols and on the state from which the
transition is made. Thus, from a given state, possible paths (depending on the
sequence of input symbols) spread out like the branches of a tree; each path is
associated with a sequence of output symbols, which form the transmitted (infinite)
codevector. The recipient of the codevector must try to recreate the sequence of
input symbols, and to be able to do this in the presence of transmission errors
clearly requires the existence of some distance properties between codevectors.

69



70

Time ——)

Figure 5.1 A 3-state 2-input trellis.

In practice such code trees do not spread out indefinitely. There exists only a
finite number of states, usually determined by the last (k — 1) groups of b symbols,
where k is known as the constraint length and includes the current input symbols.
If we regard the states as m points on a vertical line and time (measured in
transition intervals) as increasing horizontally to the right, the code can be
represented as a trellis in which each state connects to j other states in the vertical
line to the right of it, as determined by the j possible values for the input symbols
causing the transition. After n transitions there are nyj" possible paths through the
trellis, and the decoder’s job is to determine which of these was taken by
examining the output symbols emitted on each transition. If the input and output
symbols are binary, we typically have m = 20¢ D j =26

A simple trellis code is illustrated in Figure 5.1, with m =3 and j=2.
Numbering the states 1, 2, 3 and denoting the input symbols by 0 and 1, we could
define the coding procedure for generating the output symbols as

On each transition, output the state number followed by the input symbol.

The state transition rules themselves are defined by the diagram with
continuous lines corresponding to transitions caused by input 0, dashed lines
caused by input 1.

Thus (starting in state 1), input 101101000 gives output 112031313021101010.

5.1.1 The Viterbi Algorithm

Trellis codes can be decoded with the Viterbi algorithm [13]. The basis of this
algorithm is that, in seeking the codevector ¢ nearest to a received vector r, it is
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not necessary to compare every possible ¢ with r. It is sufficient to maintain for
each state i (i = 1, m) that codevector that is nearest to r and that terminates at
state i. We denote this codevector, at instant n, by ¢; ,. Now when the next v
symbols are received, corresponding to the extension of r, to r(, ., the distance
between ¢, , ., and r,, ;, is the minimum distance between ¢, , and r, (where ¢,
is the codevector leading to state p, a predecessor of state i) plus the distance
between the new v symbols received and those that would be emitted in the
transition p to i; with minimisation taking place with respect to p.

Minimum Distance (¢; ¢, 1 1)> T 1))
= Mln[d(cp,n’rn) +d(rn - r(n+1)’cp,n - cl,n+l)]

(The arrow — indicates that the symbols associated with the transfer are to be
used.)

Thus, the algorithm proceeds by finding the new path to state i, nearest to r,
by minimising the distance over i’s preceding states p. Accordingly in the one
operation the nearest distance is found and the path through the trellis, as
identified by the preceding state p, selected.

In practical terms, if this algorithm is implemented in a computer, each of
the m states i has associated with it a minimum distance d; and a path ¢, nearest
to r. In advancing from moment n to (n + 1), ¢; not only must be extended but
usually requires a transfer from c

ci,(n+l) = (cp,n’cp,n - ci,n+l)

In short, the software must transfer a list of states, corresponding to a codevector,
from one state p and attach it (extended) to state i. This requirement to maintain
m extending lists and to transfer them between states is not complicated, but it is
messy to handle and makes for relatively slow execution of the algorithm, particu-
larly when it is remembered that there are also jm comparisons to make in the
minimisation procedure, if there are j possible input paths to each state.

As discussed. the algorithm maintains m “nearest” codevector paths, but
when decoding we only want one, the overall nearest. This is achieved first by
noting that the effect of a few symbol errors, causing r to deviate from the
codevector transmitted, wears off as »n increases. For a while, several states and
their associated nearest paths may appear equally good, but eventually the algo-
rithm is going to settle down and the diverging contenders for the overall optimum
will converge again. There will be one optimum path prior to this convergence
point, and subsequent to it the paths must spread out to reach the m states we are
considering. Thus, after a certain time, ¢, all the m paths ¢, , at time n will be
identical from time instant (n — ) backward. These states can be saved as the
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decoded codevector, and the m running codevectors can be truncated at this point,
so that each has length ¢t. (The saved states prior to time (n —¢) are readily
converted into the input symbol stream if the encoding procedure is known.)

Second, although the most recent portion of length vt of the m contending
codevectors can easily be selected on the basis of overall nearness to r, this would
be a mistake. It is the nature of the encoding process that being in state i at instant
n affects the subsequent states attainable and the symbols emitted. Not to observe
those symbols and include them in the decision as to which state we are in (i.e.,
which is the overall nearest path) is to negate the whole purpose of the code.
Accordingly, the usual process of bringing decoding to an end is for the encoder to
enforce convergence on a predetermined state by appending a fixed sequence of
input symbols (e.g., all zeros) to the preceding arbitrary data symbols.

The decoder then picks the path associated with this predetermined state as
the overall nearest, when transmission ceases. Alternatively, the encoder can
simply insert (bt) arbitrary symbols after the end of the input data and let the
decoder make no choice with regard to the last vt received.

In practice, because trellis codes consist of a stream of blocks, there are often
synchronisation problems. Where does the stream begin? Where does it end?
Given that ¢ symbols are emitted at a time, as a block, the first requirement is that
the decoder at least aligns itself with the block boundary. With Viterbi decoding
this is achieved by noting the distances between the m nearest paths ¢; and the
received vector r. If all the distances are similar, alignment has not been achieved,
and the decoder should shift one symbol position and try again. When correct
alignment has been achieved, the decoder can search for a known preamble, a
fixed pattern of input symbols transmitted before the data, and synchronise itself
with that. All this takes time, and preambles may be many hundreds of bits in
length.

The end of the stream may be determined by information contained in the
data (e.g., a count of symbols included at the start), by convention (e.g., all streams
are of a certain length), or by an explicit postamble, or pattern of symbols used to
denote the end. In this last case there are clearly transparency problems, that is,
the data are not allowed to contain the terminating pattern.

5.2 LINEAR CONVOLUTIONAL CODES

Trellis codes can be generated by using the arrangement in Figure 5.2. Symbols
(e.g., bits) are shifted as input into the register, b at a time. The register holds kb
symbols, where & is the constraint length. ¢ combinatorial circuits are fed from the
kb stages of the register, each circuit producing a single symbol output. The total
of v outputs is sampled one after the other each time interval, to give ¢ outputs
for b inputs and a coderate b /¢.
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If the combinatorial circuits consist of modulo-2 additon (XOR) of a selec-
tion of register stages (the other stages being omitted), then the trellis code
becomes a convolutional code. 1t is linear in the sense that if x, and x, are two
input sequences giving output codevectors y, and y,, respectively, then the input
sequence (x, + x,) gives output (y, +y,), where + means XOR. y =0, the all-zero
output stream, is a codevector.

The distances between codevectors can be considered by looking at the
weights of codevectors, because the difference of two codevectors is a codevector.
If one of the combinatorial circuits is fed from a single stage only in the register
(usually the first one, for decoding convenience), the convolutional code generated
is systematic.

For an example, consider Figure 5.3, which shows the generating circuit for a
1 /2-rate systematic convolutional code, with b =1, v =2, k = 3. The state of the
generator is determined by the leftmost k — 1 = 2 bits, so that when a new (b =1)
input bit enters, it and the state (shifted) determine the output.

o
| {c2 Vss:wtg:)jlts
b input || I ' l r:-@—_‘ Selector
'l
—[ [ [ [ ]

symbols
b ¢ p—p D0 @ = Combinatorial Circuit n

| 4

L4

< kb

Figure 5.2 Generation of a trellis code with a shift register.

1 input bit | / \

Figure 5.3 Generating a 3-rate convolutional code.
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This can be represented in a state diagram, Figure 5.4, which shows the
transitions with the input bit causing the transition at the start of each arrow, and
the two output bits emitted at the head. Obviously we can also illustrate the
encoder as a trellis, as in Figure 5.5.

Labelling the states 00 =a, 10 = b, 11 = ¢, 01 = d and starting in state 00 = q,
we can tabulate the response to various input sequences, as shown in Table 5.1.

Table 5.1 indicates that we should be careful when talking about the distance
of a convolutional code. The constraint length k(=3 in this case) determines the
interdependence of output symbols, and it is perhaps tempting to state that when

a=00
b=10
c=11
d=01

Figure 5.5 Trellis for code of Figure 5.3.
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considering decoding techniques it is sufficient to make comparisons between
received and codevectors using kv symbols; for example, take ¢, the interval back
in time mentioned in the Viterbi algorithm, as ¢ = k. The example shows that if we
did that, then the d = 4 code would effectively have distance d = 3, because the
codevector generated by input 1100 is 111000 if we confine ourselves to consider-
ing only kt = 6 bits.

Put another way, two consecutive error bits, ...0011000000., added to the
all-zero codevector would logically result in erroneous decoding to a restored input
sequence ..0110... as opposed to being flagged as uncorrectable because equidis-
tant from 0011010100 and 0011100001. Generally, by distance is meant the free
distance, which is the minimum distance over all codevectors between any pair that
start with differing bits considering arbitrary many bits in the sequence.

The depth of decoding, the number of consecutive bits taken into the
decision-making process, should be at least kr, and as we have seen usually more ,
so that the distance used in decoding is the free distance.

We can also represent the behaviour of a convolutional code analytically as
follows.

Yei= L &%, 1s<s<v (5.1)
j=0,(k—1)

Here s identifies a bit in the output block of v bits; g, ; corresponds to the
connections in the XOR combinatorial circuit corresponding to s; and y is the
output, x the input sequence.

If we define

x(T)=xo+ Tx,+ T, + Tx;...

V(T)=yo+ Ty, + Ty, + Ty;...

Table 5.1
Input State Sequence Output
100 abda 110101
1100 abcda 11100001
10100 abdbda 1101100101
110100 abcdbda 111000100101

11100 abceda 1110110001




where T is a delay operator, then we have

¥(T) =g(T)x(T) (5.2)

with
8(T) =g, 0+8  T+eg ,T*+ - +g, , T+

as can be seen by collecting together the coefficients of a given power of T and

using equation (5.1). Equations (5.1) and (5.2) define y( ) as the convolution of

x( ) with respect to g( ) and hence justify the use of the term convolutional codes.
In the example of Figure 5.3 the generating functions are given by

g(T)=1
8(T)=1+T+T?

and if, for example,
x(TY=04+T’+T*+0
then
y(T)=T*+T*
yT)=T*+T°

so that the output from sampling y, and y, alternately is ..001110000100. .. .

Before beginning a more detailed analysis of convolutional codes, it is worth
asking the question: Have we any criteria for “good” codes, and how do we find
such codes? Clearly we would like the distance of the code to be as large as
possible. Remembering that for linear block codes the maximum distance is
(n—k + 1), where (n — k) is the number of check digits, it is remarkable that even
in our simple example with each block having only 2 bits (1 data, 1 a check bit) the
minimum distance is 4. This has been achieved by pushing out the check bits over
the constraint length.

Longer constraint lengths are necessary for, but do not always give, greater
distances. On the other hand, long constraint lengths give rise to heavy computa-
tion if, for example, the Viterbi decoding algorithm is used. A shorter constraint
length may be feasible if we have more check bits to provide the distance. But this
will then imply a lower code rate as ¢ increases and b /U decreases. As always,
compromises between distance, coderate, and complexity (as represented by the
constraint length) are necessary.
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As for finding a good code, assuming we are agreed on the criteria for what
is good, it is often easiest to use a computer search through all codes, subject to
certain constraints, using various analytical techniques to determine their proper-
ties for comparison.

5.2.1 Control of Decoding Errors

One of the important constraints that must be observed in choosing arbitrary codes
for analysis is to avoid those that can cause infinite decoding errors. This could
occur if a source vector of infinite weight can be encoded into a codevector of
finite weight. If this is so, an error pattern of finite weight could be mapped into
the codevector in question as being the nearest and could then be decoded into an
infinite weight source vector, that is, an infinite decoding error.

Using (5.2), if the infinite polynomial x,(T) gives rise to a finite polynomial
¥,.o(T); then an error pattern on transmission e (7T) =y, (T) will give rise to an
infinite error on decoding given by

e(T)/8(T)

For this problem to occur, all y(T),s =1 to v, must be finite for some infinite
x(T). This will happen if the g(7T) have a common factor 4(T) (not equal to 7™
for some m), because in this case all y(T) =g (T)x(T) will be finite when x(T) is
infinite and equal to 1/h(T). For example, if g(T)=1+T,g,(T)=1+T? (see
Figure 5.6), then x(T)=1/(1+T)=1+T+T?+T*+ ... will give y(T)=1,
vT)=1+T.

Conversely a 3-bit error corresponding to these values of y, and y, would be
decoded to an infinite series of 1’s for addition to the correct vector, complement-
ing it completely. 11010000. .. would be decoded to 111111..., not 00000... . It is

—D
N
T

'/\0—5 2 bits
10t —

Figure 5.6 A bad code giving infinite errors.
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clear that if the code is systematic no such h(T) can exist, and the problem does
not arise.

5.3 ANALYSIS OF CONVOLUTIONAL CODES

If good convolutional codes are to be found by inspection rather than by construc-!
tion, it is important to be able to analyse a code’s properties, and in particular its:
weight distribution. This can be done readily with a technique first described by
Viterbi [13] by considering the state diagram and to that end Figure 5.7, which is
simply Figure 5.4 “opened” at the 00 state, will serve as an example.

The basic codevector may be taken as all zeros, and other codevectors are’
found by leaving state 00 at x, wandering round the state diagram, and returning
eventually to state 00 at y. The nature of these excursions can be analysed with the’
equations

b =LND?x + LND d
¢ =LND? +LNDb
d=Lc+LDb
y=LDd

(5.3)

In (5.3) D is a distance operator, whose exponent signifies the distance between
the symbols emitted on the transition and the all-zero emission (that would occur if
we remained at 00), that is, the weight of the codevector. Thus, state b can be
reached by two transitions: one from x with distance 2, one from d with distance
1. State ¢ can be reached from ¢ or b; state d from ¢ or b; state y from 4. The

Figure 5.7 The state diagram of Figure 5.3.



exponent of the operator L gives the length of the transition in interstate hops and
is always 1 in (5.3). The exponent of the operator N gives the number of inpur 1’s
required to make the transition; 0 or 1 in (5.3).

We can “solve” (5.3) for y in terms of x, and the result will give us all the
possible excursions from x to y with their distances (D’s exponent), length (L’s
exponent), and number of input 1’s (N’s exponent). With some algebraic manipula-
tion we find

y =xL’ND*(1+ LN — LND?) /(1 - (LN + L?N + L’N?)D? + L’N’D*)
(5.4)
=x[D?L’N(1 + LN) + D°LN?(1 + N+ 2LN + L2N?) + D¥( )...]

Equation (5.4) states that there are two codevectors of weight 4 (corresponding to
D*), one of length 3 generated by a single input 1, one of length 4 generated by
two input 1’s. It also states that there are five codevectors of weight 6 (D), two of
length 5, two of length 6, one of length 7, and so on.

The vectors are given by the following paths:

xbdy D*L’N

xbedy D4L*N?
xbdbdy D°I’N?
xbccdy DOL’N?
xbcdbdy DPLSN?
xbdbcdy DSLPN?
xbcdbedy DOL'N*

Thus, (5.4) gives the weight structure of the code and also indicates how it arises by
means of the L and N operators. This in turn can be used to put bounds on the
probability of incorrect decoding.

In this general case, in place of equation (5.4) we have

y = F(L,N, D)
= ¥ fo(L,N)D* (5:5)
k

The expression f, (L, N) evaluated with L =1,N =1, that is, f,(1,1) is simply the
number of codevectors of weight k.

Equation (5.5) can be used to establish bounds on the probability of erro-
neous decoding. Consider a sequence of bit errors that causes the recipient to
believe that a codevector different to the one really transmitted was intended. This
would occur if the error pattern is nearer to a codevector with weight not equal to
zero than to the zero codevector. If P, is the probability of an error pattern nearer
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to a codevector of weight k than to the zero codevector occurring, then

E < Lfi(1L,1) Py (5.6)
k

where E; is the probability of a wrong decoding decision being arrived at in respect
of this error sequence starting at bit i. Inequality (5.6) is an inequality, not an
equation, because the P, are not necessarily disjoint and an error pattern could be
nearer to two or more nonzero codevectors than to zero, so it would be counted
two or more times in (5.6).

Over n received bits, the probability of a decoding error is then bounded by
(nE;). Again this is an upper bound because these n error sequences are distinct
only if they have returned to y from x in Figure 5.7 before setting out again; this
is determined by the exponent of L in (5.5) (and the minimum value for this is
usually considerably greater than 1). Note that (5.6) presupposes that the decoding
technique picks the nearest codevector to the received vector, considering all
codevectors. Such a technique is the Viterbi algorithm, but other techniques may
not perform a complete search of the codespace, and (5.6) need not necessarily
hold.

For given codes and given assumptions about the occurrences of errors (e.g.,
the binary symmetric channel, BSC), it is possible to put an upper bound, if not an
explicit value, on P,. For example, Viterbi gives

P < (2p(1-p))"?)

for the BSC. In our example we would then find from (5.4) that

E,<2(2(p(1=p)") +5(2(p(1-p))"}) + ...
=32p*(1-p)*+320p°(1-p)’ + ...
Forp=10"° E,<4x107°

p=10"*% E;<4x10"7 very approximately.

Equation (5.5) can also be used to find a bound on the postdecoding bit error rate.
If we set

8«(1,N) =8(fk(1,N))/aN
then

L gL, Py (5.7)
k
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gives the number of decoded bits in error corresponding to each erroneously
selected codevector of weight k, muitiplied by a bound on the probability of this
occurring as a weighting factor. In short (5.7) is a bound on the expectation value
for postdecoding errors. In our example this is

3P, + 15P, + ...

giving an expected postdecoding bit error rate for the BSC of <5 X 1073 (wl;en
p=102) or <5x%x 1077 (when p=10"4).

5.4 ERROR CORRECTING WITH CONVOLUTIONAL CODES

Decoding convolutional codes, that is, correcting the errors occurring in transit to
obtain the originally transmitted codevector, can be performed (as we have seen)
using the Viterbi algorithm. The algorithm is optimum, in the sense that the
nearest codevector to the received vector is found, the entire space of codevectors
being searched. The algorithm does, however, become quite slow and cumbersome
as the constraint length k increases and it becomes necessary to manage 2btk=1D

states assuming the input is binary. Popular codes such as the b =1, k =7 code
with

g(T)=1+T+T*+T*+T*

g(T)=1+T*+T*+T°+T°

and weight equal to 10 correspond, in many cases, to the maximum computing load
the system can reasonably support using the Viterbi technique; if larger distances
are required, other approaches to decoding must be employed. This section
considers some examples of such techniques, but first we give a concrete example
of Viterbi decoding applied to the code we have already analysed and whose
generator is shown in Figure 5.3.

The decoding process is illustrated in trellis form in Figure 5.8. The transmit-
ted codevector, corresponding to the state sequence abccdbdaabcda, is

111011001001010011100001

There are assumed to be two errors, and the received vector is

111011011001110011100001

In Figure 5.8, at each transition the distance between the pair of bits in the
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Figure 5.8 Viterbi decoding example.
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received vector and the pair that should be transmitted for that transition, the
metric, is shown on the transition arrow. At each time interval, for each of the four
states, the accummulated minimum metric for that state, and the preceding state
on the path that gives rise to that metric, is shown. Thus, state d, after the first
time interval, can be reached from b, (metric = 1 since 11 was received and the
proper emission is 01) or from c(metric = 2 since 11 was received and the proper
emission is 00); therefore state d is labelled with b as the preceding state on the
optimum path, with an accummulated metric 0+ 1= 1.

In the fourth time interval an error is processed, and both states ¢ and d
have equally good accummulated metrics; but after the fifth interval state b is
unique in having metric = 1. The path can be traced back using the indicated
preceding states to give the correct sequence (in reverse order) bdccba. In the
seventh interval another error occurs, and the algorithm again handles this
correctly, reducing the two optimum paths at time 7 to one, with metric = 2, at
time 8. It should be pointed out that although the distance of the code is only 4 we
have successfully decoded two errors; this is because the error pattern, which
is...0100001000...is nearer to the all-zero codevector than to the weight=4
vectors...11010100...and...11100001... . However, if the error were ..01000001..
we can see from Figure 5.9 (which picks up Figure 5.8 at time 6) that by time 9 we
have incorrectly established the optimum path with metric = 2 as reaching state b;
with a path history (in reverse order) baaadcccba or (in forward order) a state
sequence abcccdaaab with emitted vector 111011110001000011, which is nearer to
the received vector 111011011001000011 than it is to the real transmitted vector
111011001001010011.

Figure 5.9 Viterbi decoding with a different error.
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5.4.1 Soft-Decision Decoding

The Viterbi algorithm can be readily adapted to “soft-decision” decoding (see
Section 1.1). In this case it would be more normal to work with a metric that
required maximisation, rather than the “hard-decision” metric of the Hamming
distance, which requires minimisation. For example, the received binary symbol 0
or 1 might be accompanied by a reliability or probability factor (= 1/2) and the
metric to the same symbol in a codevector being matched to the received vector
would then be (a function of) that factor, while the metric to the complementary
symbol would be (a function of) unity minus that factor. In Section 1.1 this
approach was illustrated, starting with the assumption that the reliability factors
were provided bit by bit by receiving equipment, such as a demodulator of
analogue waveforms. Another view could be that the input to the decoder is taken
to be “hard” 0°s and 1’s from the receiving equipment, to which we attach
standard probability factors, (1 — p) for the same symbol, p for the complementary
symbol, assuming the model of the binary symmetric channel. The metric used
would then be

log,((1-p)/3)=1+1log,(1—p) between the same symbols

log,(p/3)=1+log,(p) between complementary symbols (5.8)

where the factor 1/2 is a normaliser. The rationale is that if the y is the received
bit and x the transmitted bit

Prob(y = 0) = Prob(y =0/x =0) Prob(x =0) + Prob(y = 0lx = 1)Prob(x = 1)

=(1-p)/2+p/2
=12

and similarly Prob(y = 1) =1/2, assuming x =0 or 1 with equal probability, so
that the arguments of the logarithms are Prob(y|x)/Prob(y).

The reason for using logarithms is to make the metric additive rather than
multiplicative and is based on the concept of maximising the likelihood of the
chosen path through trellis:

(likelihood of optimum path to state n,,, ,, at time (¢ + 1)) =

(likelihood of optimum path to state n, at time ¢) multiplied by
(probability that the symbols emitted were those of transition n, tong,,,
given the actual symbols received)

Taking logarithms to base 2, we maximise the log-likelihood, and obtain from the
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last term the additive metric (1 + log (1 — p)) or (1 + log, p). Given that the rate at
which symbols are complemented by errors is p, we can say that the expected
metric of the correct path over N bits received is

N(p(1+log,p) + (1 -p)(1 +log,(1—p)))

(5.9)
=N(1-H(p))
where H( ) is the entropy function.
If, on the other hand, we consider an incorrect path through the trellis, and
supposing that the probability that the received symbols and the symbols emitted

according to the path agree is 1/2 (i.e., random), then the expected metric for an
incorrect path is

N(3(1 +log,p) + 3(1 +log,(1 - p)))

(5.10)
= N(1 + (log, p +log,(1-p))/2)
For p < 1/2, the metric for the correct path (5.9) is positive and increases with N.
The metric for an incorrect path (5.10) is negative and decreases with N.
Although the use of soft decision with bit-by-bit reliability factors covering a
range of values (if they are available) can significantly improve the performance of
the algorithm, the two-valued scheme for the metric of (5.8) is of little value with
the Viterbi technique. The use of the normal Hamming distance for the metric is
sufficient if the Viterbi decoder receives unqualified 0’s and 1’s; the metric of (5.8)
is more appropriate to decoding techniques that are based on the metric’s rate of
change, as given by (5.9) and (5.10), than on its absolute value.

5.4.2 Sequential Decoding

Such a technique is that of sequential decoding. The general idea behind this
technique is to follow the transmitted codevector through the state diagram (or
equivalently the tree or trellis), making instant decisions as to the path as each v
new received symbols are processed. The new node on the path is that which can
be reached from the previous node and which maximises the accummulated
metric. This process continues with the metric increasing until an incorrect branch
is taken and as a consequence the metric starts to decrease. When this occurs, an
appropriate algorithm is invoked which backtracks along the path and tries
forward moves along branches that were previously rejected as not being optimum,
until a new path with an increasing metric is again established.

When a metric such as that of (5.8) is used (and sometimes a biasing constant
is also added to it), there is a sharp negative turn in the accummulated value when
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an incorrect path is chosen. The extent of this is controllable, to a certain extent,
by choosing the number of connection points in the polynomials g/(T), that is, the
nonzero coefficients. A single wrong input bit will clearly complement the output
bit y, each time it is shifted into a stage in the shift register corresponding to such
a connection. Thus, the g (7) can be chosen not only to maximise distance but also
to affect the sensitivity of the algorithm used.

The most commonly used form of sequential decoding algorithm is due to
Fano [14]. It relies on a threshold value that is raised in fixed increments as the
metric increases. Very roughly the algorithm proceeds as follows:

1. Calculate the new accummulated metric by adding in the new (maximum
value) metric corresponding to the latest received ¢ bits and the newly
chosen node.

2. If the new accummulated metric exceeds the current threshold by the value
of the increment or more, increment the threshold and repeat the procedure
for the next v received bits by returning to step 1. If the metric simply
exceeds the current threshold, also return to step 1 without any incrementa-
tion. Otherwise, go to step 3.

3. The metric is decreasing, so backtrack one node and try an alternative
branch from it that gives a metric above the threshold; if no such branch
exists, go back a further node and try again, and so on. If branches are found
that allow us to advance successfully again to include the most recent v
received bits, with the accummulated metric still above the threshold, we
have established a new acceptable path. Return to step 1 and continue.
Otherwise, go to step 4.

4. Decrement the threshold, return to the original node considered before
backtracking began, and try to advance with this new lower threshold. Return
to step 2.

During implementation of this algorithm care must be taken not to get stuck in a
loop by raising the threshold again, until a new successful path is firmly estab-
lished. The advantage of sequential decoding is that it can be used with codes
having long constraint lengths (to allow large distances) where Viterbi decoding is
impracticable. Also, if there are not too many errors, it is much faster than the
Viterbi method, because an exhaustive search for the correct path, involving
backtracking, is rarely undertaken.

$5.4.3 Feedback Decoding

Another method for correcting errors in convolutional codes is called feedback
decoding. The approach is to accummulate several sets of received symbols (or of
quantities derived from them) at the decoder before making a decoding decision



on the oldest. When the decision is made, an estimate of the corresponding data
symbol(s) is passed to the application. If the value decided on implies a change in
any subsequent received symbols still waiting to be processed, this change is fed
back and applied to those symbols. The effect of this procedure is that once a firm
decision has been taken and its consequences have been executed, decoding
proceeds only within a limited set of branches of the code tree. Feedback decoding
is thus suboptimum, in that the entire code space is not searched, as in Viterbi
decoding or sequential decoding with unlimited backtracking.

More precisely we can say that at instant n we have received y .., to
Yns1ye and if the “decoding depth” is L, the process involves making a firm
decision on the data x., 1,541, tO X, .1 Which were putatively input to the
encoder.

The basis of the decision is that those X ,_1y,+1, 10 X(,—p+1) are chosen
that give rise to a path through the state diagram that begins at the previously
chosen X, _1 1541y 10 X(,_1) and that gives rise to emitted symbols nearest to
the actual (L + Du received symbols y, —1).+1) 0 Y(ue1y- It is Obvious that L
should at least equal (k — 1), where k is the constraint length; the remarks in
Section 5.2 indicate that usually it should be greater.

An example of one form of feedback decoding is syndrome feedback, which is
a technique applicable only to systematic convolutional codes. It is illustrated in
Figure 5.10 for a code with b = 1, for simplicity. The received message or data bit
m',, , (the dash signifies that m/,, | is a possibly corrupted version of the transmit-
ted m, . ,) is put through the code generator to regenerate the associated check or
parity bits p}, ., for i =1to v. These are subtracted from the received parity bits
P n+, to give syndromes S, , ;.

‘——— k —+ ‘— L-k+1 —’
mln+1 o mln-k+2 m‘n-L+1 . LI
AN ——
e
ﬁ,_ Correction feed back
yp m r 1} ‘} '

, .
Pins
T ><> P(Sinet| Sin |- Sintet \
T / —P entn

Sin Sin-L+1

U s],n+1

Figure 5.10 Syndrome feedback decoding.
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The syndromes are accummulated, and the decoding decision for m,_; ., is
made on the basis of syndromes §; , |, to §;,,, for i=1to v, where L is the
decoding depth. As shown below, the syndromes depend only on the transmission
errors, so that the output of the decision-making process is in fact e, _; ., an error
bit equal to 0 or 1, which is subtracted (XOR) from m/,_, ., to give m,_; .. It is
interesting to compare this procedure with syndrome decoding for linear block
codes (see Chapter 2). In such codes we have the generator matrix G and the null
matrix H given by

G=(L,P) and H=(-P")I)

where P is the k by (n — k) parity matrix.
A codevector ¢ = mG = (m, p), where p is an (n — k) vector representing the
check or parity digits. If ¢/ = (m’, p’) is received, we calculate the syndrome

s=cH = —mp+p
=p’_p”

where p” is the (n — k) parity vector recalculated from the received m'.
But

P-p'=pte,—(p+te,P)
=e,—¢,P
where e, and e, are the error vectors added to p and m, respectively. Thus,
s=e,—e¢,P (5.11)
So the syndrome of systematic block codes is independent of the codeword sent
and depends only on the errors.

For syndrome decoding of convolutional codes we have

S

! ’
n = PpT Zgjm(nﬂ')
J

- Zgj(mn~j + em,(n—j)) +pn + ep,n
J
So

S, = €pn” Zgjem.(n*j) (5.12)
j
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Equation (5.12) is directly analogous to (5.11). In (5.12) the g; are the coefficients
of g(T), (see [5.1]), and we have considered only one syndrome (equivalent to the
case v = 1) to simplify the notation.

From (5.12) we see that the syndromes of systematic convolutional codes
depend only on the errors in the parity check bits (e,) and the message data bits
(e,,), not on the message itself.

For an example, consider the code generated in Figure 5.3.

5.4.4 Syndrome Decoding: A Worked Example

The syndrome decoder for the code of Figure 5.3 is illustrated in Figure 5.11, with
a decoding depth L = k — 1= 2. There are thus three registers for holding syn-
dromes, labelled S, . ,,S,,S,_;, where S, _; is the oldest. The output from the
decision-making process, whose inputs are the syndromes, is the message error bit
€, n—1- 1t is used first to complement the corresponding message bit m, _; and
second to complement S, ., and S,, since an error in m), _, will have affected
them as well as §,, ;.

The decision-making process is performed using the look-up Table 5.2. There
are eight possible states for S, ,,S, and S, _,, and for each state a decision on
e,, ,_, must be made, 0 or 1. The rule used is that if a single bit error in message
(e ) or parity check bit (e,) could give rise to the state in question, it is assumed to
have done so. If that b1t error was e, ,_;, then 1 is output; otherwise, 0. This
look-up table shows the presumed errors giving rise to the state, and the conse-
quent output e,, ,_;. In two cases (S, 11,5, S,_; =011 and (S, ., S,, S, = 101)
no single error could have given rise to the states, but three versions of double
errors could have done so.

m; M-

m
n+1 —}?_’ n-1

Sns1 |-9-| Sn Sn-1

Look-up Table

pn+1

Figure 5.11 Syndrome feedback decoder for code of Figure 5.3.



90

The value for e, , , which occurs most frequently in those three versions is
chosen. (Remember that the code has weight equal to 4, and cannot (in general)
correct double errors.)

As an example, consider the received sequence 00101001 where the first
message bit is on the right (the second bit being a parity bit). It will give rise to the
following syndromes and outputs

Syndromes Decison (e, ,_,) Output (m,,_,)
100 0 0
010 0 0
001 0 1
000 0 0

which implies that the transmitted vector was 00101011 (reading from the right),
being that generated by a single nonzero bit in the message.

For a second example, we take as received vector (reading from the right)
00101111, which gives rise to

Syndromes Decision (e, , ) Output (m,,_,)
000 0 0
100 0 0
110 0 1
111 1 0
000 0 0

In the fourth step the output e, ,_, cancels the (erroneous) third bit received

Table 5.2

S+ S, S, Most likely errors Decision
0 0 0 None €mn1=0
0 0 1 €pn_1=1 €n_1=0
0 1 0 €p =1 €n_1=0
0 i 1 €nn1=1lande,, =1

ore, , =lande, ,, =1 Cn-1=1

ore,, ;=lande,, =1

1 0 0 epni1=1 €nn-1=0
1 0 1 €mn=1lande,, =1

ore, ,,;=lande,, =1 €pmn1=0

ore, ,;=lande,, =1
1 1 0 € =1 enn1=0

1 1 1 e =1 e

mon-—1 moan—17




91

(second message bit) to give the correct value for the message bit; and the
feedback complements S,., and §, so that the syndromes are zero for the fifth
step.

It will be noted that the decoding depth L =k — 1, which is the minimum
advisable; and that it was pointed out that larger values of L are desirable because
over ki symbols the distance could be less than the free distance. (In the case of
this code, over six symbols we can have distance =3 as given by the vector
11100001, reading left to right.) However, if we work with S, ., $,,S,_,and S, _,
and a l6-state look-up table we find that there is no improvement in the
decision-making process. This is partly due to the fact that the code’s distance is 4,
so that double-errors are always going to give rise to ambiguities. It is also due to
the nature of syndrome decoding, which works with a combination (XOR) of
message and parity bits, rather than the individual bits, and as such inherently has
a coarser view of discrepancies and inconsistencies.

5.5 BLOCK CODES AND CONVOLUTIONAL CODES

We conclude this chapter with some brief remarks contrasting block and convolu-
tional codes.

Block codes, as we have seen in Chapters 2, 3, and 4, are built on mathemati-
cal concepts such as vector spaces over a finite field for general linear codes or, in
the case of cyclic codes, ideals in a ring of polynomials.

This mathematical foundation permits not only a reasonably thorough analy-
sis of a code’s properties, it also allows codes to be constructed with predeter-
mined properties, using techniques such as that of “consecutive roots” for cyclic
codes.

In the case of convolutional codes the mathematical basis is much weaker.
Certain techniques are available for analysing a given code (e.g., using the
operators D, N and L), but the construction of convolutional codes is more a
matter of trial and error than anything else.

When it comes to decoding, the same general situation applies. Block codes
are decoded using relatively sophisticated mathematics, with computations in finite
fields, Newton’s identities, and so on. Convolutional codes are decoded with
heuristic algorithms designed essentially to search the codespace, with some
possible restrictions in the name of efficiency.

With regard to the properties of the codes we have seen already that linearity
imposes a severe constraint on block codes. Adding another bit of length (doubling
the number of vectors in the total space) at most doubles the number of
codewords in the subspace. Similarly, for an (n, k) code there are (n — k) check
digits, and the maximum distance of the code d is bound by

d<n—k+1
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a value attained only with Reed-Solomon codes. If the coderate r =k /n is fixed,
then d/n has a fixed upper bound (1 —r+ 1/n). In fact the Plotkin bound
(Chapter 2) shows that d/n has a more severe upper limit, namely, (1 — r)/2. In
the case of cyclic codes, if m is the degree of the minimal polynomial of the basic
root, we have (very approximately) md /2 < (n — k), since the number of polyno-
mial factors required to produce a distance d, with d consecutive roots, is d /2.
Therefore d/n <2(1-r)/m. But m =log,n approximately; so that as n in-
creases, keeping the coderate constant, d/n decreases in general. The block codes
we have looked at are severely constrained as to their distance, not in absolute
terms but in proportion to the code length; and the ratio d/n is the critical
parameter when we consider the objective of correcting random bit errors of rate
p. We want d/2 =t > pn.

The situation with convolutional codes is very different. At first sight they
have small distances and low coderates. However, the distance is a local property.
It is true that a convolutional code cannot correct more than (d — 1)/2 errors if
they all occur in a short interval, but if they are scattered over a longer period they
are correctable.

If the codevector of least weight d represents a digression from the all-zero
path of length L, then (roughly speaking) any number of error bursts of less than
(d — 1)/2 bits can be corrected, provided they are spaced at intervals greater than
L. Although there are digressions longer than L, these tend to have proportionally
greater distances, so the statement still holds true. However, more important, the
coderate, r, has only a tenuous connection with the distance. The determining
factor for the distance is the constraint length, to which there is essentially no upper
limit except that imposed by the complexity of the associated operations, in
particular decoding algorithms.

The overall error-correcting capability of a convolutional code therefore
principally depends on the constraint length and on the nature of the convolu-
tional polynomials g (T), but it cannot usually be expressed as a simple function of
these items, but rather by bounding inequalities on the postdecoding error rate,
such as that given by the expression of (5.7).

Finally with regard to the low coderates of convolutional codes as commonly
used, this is not an inherent property of such codes but again the result of wishing
to avoid excessive complexity. To obtain higher coderates than r = 1 /2 we require
b > 1. But there are 2°¢*~1 states (for a binary code), each one of which has 2°
outgoing connections to other states, and also 2° incoming ones from other states.
Figure 5.12 illustrates an extension of our b= 1,0 = 2,k =3 1/2-rate binary code
of Figure 5.3 to a 2/3-rate b=2,v =3,k =3 code. An attempt to draw the state
diagram of this simple scheme will convince the reader how quickly the complexity
of the code grows as b increases above unity. Moreover, the code has a poor
distance = 2 (consider the input ...0011000000 . .. ), which is essentially due to the
fact that it is systematic, so there is only one parity bit out of the ¢ = 3 output bits
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Figure 5.12 A systemate %—rate code generator.

available for increasing the distance; the other two bits being arbitrary data. In
general, the distances of nonsystematic codes, suitably chosen, are greater than
those of systematic codes with the same b, v and &, but this improvement is again
at the cost of complexity.

The overall conclusion may be put thus:

e Block codes are used when information is naturally structured in blocks; when
channel capacity is relatively low and we do not want to waste it further with
unnecessarily low coderates; and when quick efficient decoding is required,
because of limited processing time available.

* When long streams of relatively unstructured data are transmitted on high-
capacity channels (e.g.. satellite 10Mbps channels) and when the complexity of
the decoder represents a relatively small proportion of the total cost of
receiving equipment (e.g., a satellite receiver), then convolutional codes can
offer the best error-correcting solutions.

The interested reader is referred to the many more specialist texts on these topics,
for further study [15,16,17]. In general, there is no unique solution to any
particular error-correcting problem: it is a matter of balancing coderate against
code distance; the extent of error correction against the computational complexity;
and also taking into account many associated considerations such as synchronisa-
tion and the possible use of soft-decision techniques. In many respects the
practical application of error-correcting techniques is as much an art as a science.



Appendix A
Information Theory

The relevance of information theory [2] to error-correcting codes is largely con-
fined to two areas:

* Providing an insight into the need for error correction, by analysing redun-
dancy in an information source, and the effect of its removal by compression;

* Providing a measure of information loss on a channel as a result of errors and
thus making a link between error rates, channel capacity, and the probability
of successful error correction, as in Shannon’s Theorem (see Chapter 1).

This appendix looks briefly at both these aspects.

A.1 INFORMATION, ENTROPY, REDUNDANCY AND COMPRESSION

The information associated with an event, E;, is defined as

Info(i) = log,(1/p;)

where p; is the probability of E;s occurrence. This information is obtained if E,
occurs. In the absence of E,’s occurrence, it is an “‘uncertainty”, a “lack of
information”.

The definition satisfies two commonsense requirements.

* The smaller the probability the higher the associated information. If an event
is certain (E, has p, = 1) the occurrence of E; delivers no information. If p; is
very small, the information delivered is large.

e if E, and E, are independent events, the probability of both occurring is
P P,, giving

Info(1,2) = log,(1/p,P>)

=log,(1/p,) +log,(1/p,)
= Info(1) + Info(2)

95
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Thus, the information associated with the joint occurrence of two independent
events is the sum of the individual information.

The base 2, for the logarithms, is arbitrary, a scaling factor. If 2, as opposed
to some other base, is used, we talk of the information being measured in “bits”,
binary information units. The connection with “ordinary” bits as symbols is obvious,
if we consider the probability of a bit being 1 or 0. If this is given by p = 1 /2, with
1 or 0 equally likely, we have

Info = log,(2) = 1 bit

Thus, one bit symbol holds one information bit.

If a source, S, of information emits one of M symbols at a time, with a
probability p, (i=1 to M) for the ith symbol, we can define the average
information or entropy provided by that source as H(S) with

H(S)= Y plog,(1/p,) (A1)

i=1,M

subject to

Z pi=1

i=1,M

Using Lagrange’s method of an undetermined multiplier, A, we can find the
maximum value for H(S) by partial differentiation with respect to p;:

I[H(S) +A(Lp;- 1)]/ap,, =0 (A2)
and solving (A.2) for the p,.. We get
log,(1/p;) —log,e+A=0

which means that all p, satisfy the same equation and so are equal. Therefore,
pi=1/M

This in turn in (A.1) gives

Max[ H(S)] =log, M

which is the number of symbol bits required to represent M differing symbols.

The fact that log, M is the maximum information suggests that when there is

less information from the source it may be possible to represent it with fewer
symbol bits. This could be done by using shorter bit strings for the most frequently
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occurring symbols and longer bit strings for the least frequently occurring symbols,
instead of log, M bits for all of them.
We now define the redundancy of the source by

redundancy = log, M — H(S)
and the percentage redundancy by
percentage redundancy = 100[log, M — H(S)] /log, M

These definitions imply that not only is H(S) the information associated with the
source normally less than log, M; but that using log, M bits to represent
the output of the source is in some sense redundant and unnecessary. This can be
put more precisely by stating that using an “immediate” code to represent the M
symbols, we can compress the source output so that the average length of the
symbols, weighted with their probabilities, is (aimost) H(S) rather than log, M. To
see this, we need to prove the theorems that follow, but first we must define an
“immediate” code.

An immediate code is a representation of a set of symbols (e.g., symbols
omitted by a source) that uses a string of symbols selected from a restricted
alphabet of symbols (e.g., 0 and 1) as codewords, subject to the constraint that no
codeword may be equal to or a prefix of any other (where prefix means the first
few symbols in the representation).

We could represent the source symbols in any way we like as strings in the
restricted alphabet. The immediacy constraint means that there is no ambiguity in
decoding a series of symbols, when no separators are used to break up the series
into its component strings of potentially unequal length.

For example, if the four symbols A, B,C, and D are emitted by the source S,
and we use a binary alphabet for representation:

* 4=1,B=11,C=110,D =111 is not immediate

* 4=1 B=10,C =100, D =1000 is not immediate

* 4=0,B=10,C=110, D = 1110 is immediate
Theorem A.1l

For a code over base r (i.e., with r base symbols in its alphabet) and with »,

codewords of length i,1 <i <j, n; # 0, a necessary and sufficient requirement for it
to be immediate is

rien.+m._  +rin,_,+ - +ri7'n A3
J i—1 i-2 1
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Proof

The inequality is necessary because of the prohibition on one codeword being a
prefix of any other codeword. Then the n, codewords of length 1 “use up” r"/~Vpn,
of the possible r’ vectors, because all 7/~ ' values for the (j — 1) symbols following
the initial symbol are not allowed. Similar reasoning applies to r~?n,, and so on.

But from (A.3) we can deduce a whole series of necessary inequalities by
remembering that n; = 0. Therefore,

P> 4ring 4+ n

or
et >n 4 o+ o+ i

Discarding n;_,,n;_,, and so on, successively and dividing by r each time, we get
> a4+
rE>n_ a4y 40070
.......................... (A4)

r2>n2+rn,

r>n,

The series of inequalities (A.4) are a consequence of (A.3). But given that (A.4)
hold, we can construct an immediate code by choosing any r (< r) symbols for the
strings of one symbol in length. This leaves (r?>—rn,)> 0 strings of length 2
available. Since n, < (r*—r ) we can pick any n, of these length -2 strings and

leave r* — r(n, + m,) > 0 strings of length 3 available from which to pick ny, and
SO On.

Therefore, (A.3) is a necessary and sufficient condition for an immediate
code.

Theorem A.2
If

u;= 3y, v;=1 then

i=1,n i=1,n

L rilog(l/u) > 3 vlog(1/v))

i=1.n i=1,n

(A.5)
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Proof

Consider the inequality x > 1 + In x, where In is the natural logarithm to base ¢

Putting x = u,/v;, we have
u;,/vi=1+In(u,/v;)
Multiplying by ¢; and summing i =1 to n gives

Z u = Z v+ Z v In(u,/v;)

i=1,n i=1,n i=1l,n

or

121+ Y vIn(l/e) - ¥ v;In(1/u;)

i=1,n i=1,n

SO

Y oun(l/u)z ¥ v n(l/r,)

i=1l,n i=1,n

Changing the base of the logarithms merely multiplies this inequality by a positive
constant. Therefore, (A.5) holds.

Theorem A3

The average length, L, of an immediate code is greater than or equal to the
entropy of the source measured in bits

L> H(S)

L is defined as

L= Z pil;

i=1,n

where there are n source symbols to be encoded, and the ith source symbol has

probability p; and is encoded as a string of length /, in the representational
symbols 0 and 1.
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Proof

In inequality (A.5) set

to give
pli+ X pilng( > 2?[’)2 Y. p;log,(1/p;) =H(S)
i=1,n i=1,n j=1,n i=1,n
or
LzH(S)—logz( Y 2—11) (A.6)
i=1,n
But

Y 27h=n2 ' +n,27%+ - 40,27

i=1,n

if there are n; strings of length /;, which, using (A.3) of Theorem A.1 with r =2,
gives

Y 27hi<2i/2i=1 (A7)

i=1,n
Substituting (A.7) in (A.6) gives

L>=H(S)

since
logz( 2_"') <0
i=1,n

Theorem A.3 states, setting M = n, that information in the form of source symbols
selected from an alphabet of M such symbols, can be compressed by encoding
each symbol as a binary string of /, bits per symbol, but that L has H(S) as a
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lower bound. Shannon proposed a procedure for performing this encoding that
nearly achieves this bound, as follows.

1. List the source symbols S, in order of decreasing probability p,.
2. Calculate for each S, the number of bits /, to represent it, using the
inequalities

log,(1/p;)} <1, <1+ log,(1/p;)
3. Calculate

F= Z D;

j=0,Gi-1)

and represent F; as a binary fraction.
4. Then §; is represented by the first /; bits of F,.

Thus, for an example, consider eight source symbols, S, to Sg, with probabilities as
listed in the first column of Table A.l. Then /,, F;, and the binary representation of
S, can be read from the second, third, and fourth columns, respectively.

It can be seen that this encoding produces an immediate code because the
length is such that for each new S, the last bit is changed. It is also clear that

L= Zpi l;
is bounded by

Ypilogy(1/p;) <L < Yp;+ Lp;logy(1/p;)
So
H(S)<L<1+H(S)
In the above example H(S)=2.73, while L =2.78.

Table A.1

D l; F, Bit String Representation
S, 1/4 2 0.00000 00
S, 1/4 2 0.01000 01
S, 1/8 3 0.10000 100
S, 1/8 3 0.10100 101
Ss 3/32 4 0.11000 1100
S¢ 1/16 4 0.11011 1101
S, 1/16 4 0.11101 1110
Sy 1/32 5 0.11111 11111
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This method of “Shannon encoding” is not the best available. For example,
Huffman encoding applied to the above example would give L =2.75. For our
purposes, however, it is sufficient to note that L is bounded by H(S), and coding
procedures can be found that give L near to this bound. The fact that this
compression from length log, M to near H(S) is possible justifies our definition of
redundancy.

A.2 CORRELATED SOURCES

So far we have assumed that the source symbols are uncorrelated in time, so the
symbol §, ; emitted at time t(i=1to M) is in no way affected by the symbol
S -1y, emitted at time (r —1). This is seldom the case, and it is necessary to
extend the concept of entropy to correlated sources.

We model a correlated source as a Markov process in which the probability
of S, ; is conditioned by the state of the process as determined by the previous k
symbols emitted, S, ;; S, _1,2---S¢-k+1)k- We TEPresent this state more con-
cisely by C ,k j (or C }‘ for short when the moment in time is irrelevant). Here j runs
from 1 to M* if the i run from 1 to M. Thus, we represent the conditional
probability of S, , ; given the state C}; as

P(St+l,i|Ctk.j)
The entropy of such a correlated source is defined as

H(S)=H(S) = ZP(C}‘)H(C}‘) (A.8)

where

H(C) =~ ZP(S,+l_i|C,’fj)log2 P(S,...ICF))

Thus, the entropy of the source is the average, weighted by the probability of the
states, of the normal entropy associated with each state. Figure A.1 illustrates such
a correlated resource with M =2 and k =3, so that there are eight states, as
shown in Figure A.1. The transitional probabilities are also shown, so, for example,
P(11000) = 7/8.

It is easily shown that the probabilities and entropies of the states are as
shown in Table A.2.

This gives H(S) = 0.659.

In reality, of course, while we may guess that a source is correlated, we do
not know k. We might guess that the depth of correlation is n symbols rather than
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Figure A.1 State diagram of a correlated source.

Table A.2
State 000 001 010 011 100 101 110 111
Probability 2/88 7/88 28/88 7/8 7/88 28 /88 7/88 2/88
Entropy 0.544 1.000 0.544 0.811 0.811 0.544 1.000 0.544

k, in which case we would work with

H(E") = ZP(C;"I)H(CJ'")

where it is assumed that the probabilities are correct, that is, those of the real
process, as deduced from observation.
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Theorem A.4
H(S"y <H(S" )
Proof
Clearly when n > k H(S§") = H(S) because of (A.8). For n <k
H(CT) = - ZP(Sr+1,f‘Cr".j)l°g2 P(S,.1.1Cr))
< = LP(S,.1.41Cr ) )log, P(S,.1C )

by Theorem A.2.
Therefore,

P(C,'")H(Cj") s - ZP(SH]J’S:,H---S:—n+1,in)10g2P(Sr+1,i|cr",;l)

Summing over all M" values of j we get
H(S"y <H(S" ') (A.9)

We can also consider n symbols at a time and ignore the correlation. This means
that the source is regarded as an uncorrelated source of M* symbols. We
designate such a source as S”, and its entropy is called H(S").

Theorem A.5
H(S")=H(S"" ")+ H(S"™")
Proof

By definition

H(S") = = L P(C]")log, P(C})

J

= - ZP(C,")[log2 P(S, 1Cr7;) +log, P(Cr7)]
J

It

= LP(C5) L P(S, 1) Ylog, P(S, €2ty
J 1

- L LP(S,.,,Cin Jog, P(CT)
Jooi
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So
H(S,)=H(S""))+H($"™") (A.10)

Theorem A.6

H(S")/n tends to H(S) as n becomes large.

Proof

For n > k (the correlation length) we sum equations (A.10) together, remembering
that

H(S")=H(S) fori>k and H(S") <H(S")
by Theorem A4, and get
(n—1)H(S) +H(S") <H(S") < (k—1)H(S") + (n—k)H(S) + H(S")
Dividing by n gives
H(S) + [H(SY) —H(S)] [n<H(S")/n
<H(S) +[(k—1)H(8") + H(S") = kH(S)] n
Now

H(gl) =~ ZP(Ctl,j)ZP(S1+1,i|Ctl,j)10g2 P(Sr+1,i|Ctl,j)
J i

IA

- EP(CII,]')EP(SH—],ilCtl,j)lOgZ P(Si1.)
j i
by Theorem A.2. That gives

H(El) s - ZP(S:+1,i)10g2 P(SH—l,i)

=H(S")
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and since H(S") > H(S), the above inequality for H(S")/n becomes
H(S)+a/n<H(S"Y/n<H(S)+ka/n (A.11)

with a > 0. Therefore, H(S")/n tends to H(S) as n tends to infinity.
We can also show the next theorem.

Theorem A.7

H(S")/n decreases as n increases
Proof
H(S™)[n—H(S"")[(n+1)

[ v H(§’)+H(S‘)}/n—[ Y H(E")+H(sl)]/(n+1)

Li=1l,n—1 i=1,n

Li=1,n—1

| Y H(§")+H(sl)]/n(n+1)—H(§")/(n+1)

| S HE)+HSY —nH(E")]/n(n 1)

Li=1,n—1

>0

Therefore, H(S")/n decreases as n increases and, by Theorem A.6, tends to
H(S).

We can conclude from these theorems that modelling the source as a Markov
source will give better and better approximations to the real entropy as »n increases
to k (Theorem A.4). But, more important, if we do not model the correlation but
group the symbols n at a time into “supersymbols” from an alphabet of M”
symbols and treat them as independent of each other in time, then the entropy per
symbol H(S")/n tends to the real entropy. This then is a justification for
continuing to use compression techniques based on uncorrelated symbol strings,
provided they are applied to symbols grouped n at a time. We see also that
Theorem A.3 holds with the new definition of entropy, H(S), if we consider
variable length encoding of our supersymbol strings of n symbols.
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In our specific example these theorems are illustrated by noting that

H(S')=0.731 2 H(§?%) = 0.730 = H(S?) = 0.659 = H( S)
H(S')=1>H(S5%)/2=0.866>H(S%)/3=0.821>H(5%)/4=0.780

and

H(S%) =1.732=H(S') + H(§")
H(S8%) =2.463 =H(S?) + H(S?)

H(S8*) =3.120=H(S?) + H(§?)

A.3 INFORMATION IN TRANSIT

We have seen how the information generated by a source, nH(S), is generally less
than the number of bits, n log, M; if there are M symbols in the alphabet, H(S) is
the average information content of each symbol in bits, and »n symbols are sent.

The information rate is, therefore, [ H(S)]r bits per second, where r is the
symbol rate, that is, the number of symbols per second.

When this information is actually transmitted, it may become subject to
further losses, due to errors. We model this by considering the probabilities of
transmitted symbols x; (i =1 to K) after observing received symbols y (=1
to K), which are the x; with some corruptions. See Figure A.2. The symbols here
are the representational symbols of the restricted alphabet into which the source
symbols are encoded. K = 2 normally. The information associated with x; given Y
is —log, p(x;ly;), where p(x,ly;) is the a posteriori probability of x, having
observed y,. We may define

H(Xly;) = - Zp(xf|yj)10g2 p(x:ly;)

i

as the average uncertainty about the source symbols remaining after viewing Vi

X, —) Transmission medium —> yj

Figure A.2 Symbols being transmitted and corrupted.
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Averaging over all y;, we get
H(XIY) = = X p(y,) L p(xly;)log, p(x,ly;)
j i
= = L X p(xi.y)[log; p(x;,y)) —log, p(v)]  (A12)
joi
H(X|Y)=H(X,Y)—H(Y)
Equation (A.12) may be interpreted as follows:

The residual uncertainty about the inputs X to a channel after viewing the
outputs Y is the joint uncertainties of X and Y (before doing any viewing)
less the information obtained (uncertainty removed) by viewing Y.

H(X!Y) has been called by Shannon the “equivocation”. In practice we are more
likely to know p(y;|x;), the probability of x; being corrupted to y;, than p(xly)),
but the one may be calculated from the other by using Bayes’s theorem. Thus,

p(xly;) =p(y;lx)p(x,) /p(¥))
with

p(y)= X p(ylx)p(x)

i=1,K
If the channel is error free, we have
p(ylx;)=1 ifj=i
=0 ifj#i

For another example, suppose that the probability of corruption of x; is p, and
that corruption turns x; into y,(j # i) equally over the y;, then

p(ylx)=1-p if j=i
—p/(K—1) ifj+#i

(A.13)

By using the model of (A.13) for our channel and making the additional assump-
tion that all x, are equally probable, so that

p(x)=1/K
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it is easy to show that
p(y;) =1/K
and
p(x;,y)=(-p)/K  ifj=i
=p/K(K-1) ifj+#i
and so calculate the equivocation
H(X|Y)=H(p)+plog,(K—1) (A.14)

where H(p) is the entropy function of p.

Note that the assumption that the x, (i = 1 to K) are equally probable will be
true if we have compressed the M source symbols down to H(S) log2 representa-
tional symbols, where H(S) is the source entropy measured in bits; that is, when
redundancy is removed from the information prior to transmission. When K =2
(A.14) becomes

H(X|Y) =H(p) (A.15)

We now consider the quantity I(X:Y) called the mutual information and de-
fined by

I(X:Y)=H(X)—-H(X|Y) (A.16)
= — L p(x)log, p(x) + L p(¥)) L p(x;ly;)log; p(xly))

Il

= L X p(xi,y)[log, p(x;) — log, p(x,ly;)]

]

- ¥ Lp(x,)[logy( p(x)p(¥)) ~log, p(x,3)]  (A17)
[
> 0 by Theorem 2
The definition of the mutual information shows that it is the information about X
conveyed by the channel, because it is the a priori uncertainty about X less the a
posteriori uncertainty having viewed the output Y. Furthermore the symmetry of

(A.17) shows that I(X:Y)=I(Y: X) or

I[(X:Y)=H(Y) - H(YX) (A.18)
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(A.18) is often a more convenient expression to work with than (A.16). For
example, if we assume that for / fixed

p(y,lx,)=q,.,(2q,=1)

and that as we vary i the ralues q; do not change, although they may be permuted
so that a given ¢, may be associated with a v, (k # ). then we have a channel that
is known as “uniform from the input”, that is, the value of x; does not affect the
pattern of corruption. For such a channel H(Yl|x,) is an expression in the g;, into
which x; does not enter, so that

H(YIX) = T p(x) H(Ylx,)

is independent of the input X.

In this case, as X varies, I( X :Y) varies only as determined by H(Y), as can
be seen from (A.18).

We now define the capacity, C, of the channel as the maximum value of
I(X:Y) as we alter the inputs X. That is, we select our inputs so as to minimise
their liability to error on the channel. Clearly, from (A.18) and assuming uniform-
ity from the input applies, I( X : Y) is maximised when H(Y) is maximised, and we
know that occurs when p(y;)=1/K. If, in addition, we assume that p(y;) runs
through all the K values of g, as x, changes, then we can make p(y;) =1/K if we
have p(x,)=1/K because

p(y;) = Lop(ylx)p(x)

= ZCIA-/K
k

- 1/K

In this case we have

C=H(Y)—-H(YIX) maximised
=log, K — qu log,(1/q;)

=log, K= {(1=-p)log,[1/(1=p)] + [(K=1)(p/(K—1))]log,((K ~ 1) /p)}
=log, K—H(p)—plog,(K—1)
[=H(X)-H{X|Y) from (A.14)]
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/ \
H(X) H(Y)

Figure A.3 Relationship between equivocation, mutual information, etc.

HQ)=1 H(Y)=1

Figure A.4 Equivocation and mutual information for the BSC.

where we have taken the g; to be (1 —p) and (K —1) values of p/(K~-1),
corresponding to our uniformity from the input and other assumptions. In the
specific case where K =2, which is that of the binary symmetric channel (BSC),

where p is the probability of a bit being changed from 0 to 1 or from 1 to 0, we
have

C=1-H(p) (A.19)

Thus, the capacity, the maximum information-carrying capability, of the BSC is
determined by (A.19) and is achieved when the input bits 0 and 1 are equally
likely, as will be the case if the input information is nonredundant. The residual
uncertainty or equivocation H(X|Y) is then H{p) [see (A.15)]. The capacity is
unity when p =0 and the equivocation is zero. The capacity is zero when p =1/2.

Assuming then that we have a source of M symbols at a rate of r symbols per
second and that these are compressed to H(S) bits giving an information rate of
H(S)r bits per second, on reception from the BSC we will have an information
rate of H(S) [1 — H(p)}r bits per second.

The relationship between the various quantities H(X|Y), H(X,Y), I(X:Y),
and so on, is illustrated in Figure A.3.

The specific case of the BSC is illustrated in Figure A.4, with the assumption
that p(x))=1/2, x,=0or 1.



Appendix B

Some Binomial Approximations

Consider the sum

S= ¥ Kk

where &k, = ('l?)pi(l -p)

Thus, $ is the probability of (an) or more binomially distributed events, if
the individual probability is p.

kio/ki=p(n—=1)/(1-p)(i+1) =5

B, decreases as i increases.
The starting value for 8, is when i = an, and then

Ban=pn(1—a)/(1-p)(an+1) <p(1-a)/a(l-p)=p

If « >p,then B <1.

Since each term of S is less than its predecessor by at least a factor B, we
have

n—on

S - i;() Bi(zn)pan(l _p)n_an
= (=g )1 =) /(1)

< (Zn)p“"(l -p)" " "(1-p)a/(a—Dp)

Now by Stirling’s formula

(1) <a e -a) 0 amn( - a)

an
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So
S<(p/a)*"[(1-p)/(1-a)]" ™" K (B.1)

with K =a(1 — p)/(a — p)}[27wn(1 — a)}, which tends to O for large n.
Now the expression

(p/a)n[(l ——p)/(l ._a)](l—a)n

has, for « >p, a minimum value of 0 (when p =0) and a maximum value of 1
(when p =a) and increases monotonically between these values as p increases
from 0 to a, as can be seen by differentiation.

Therefore, for large n, S tends to zero. This means that

) (’.l)pi(l—p)"_i=1—Stendstolforlargen
i=0,(na—-1) !
if a>p.

With B =a —1/n and B >p — 1/n, we have

Y (’: )pi(l —p)" " tends to 1 for large n (B.2)
i=0, Bn

If p is the probability of a bit error, (B.2) states that for B large enough, effectively
the probability of error patterns, including more than Bn errors, tends to 0 as n
increases.

If we put p=1/2 in inequality (B.1) and, for large n, take K < 1, we have

S <(1/a)"[1/(1=a)]" =" y2

Therefore, log, S <nH(a) —n=n[H(a) - 1]
So

S < 2—n[1 —H(a))

A

But with p=1/2,
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because the binomial coefficients are symmetric; therefore,

Z (’;)/2n=5<2~n(ll1(a))

i=0,n(l—a)

or (B.3)

Y (") < 2nH®B)
l

i=0,np

with B8 = (1 — a), because the entropy function is also symmetric, H(a) = H(1 — a).
Inequality (B.3) holds for a« >p =1/2, 0r B < 1/2, as n becomes large. It is a
useful bound on the sum of the binomial coeflicients, for example, in proving
Shannon’s theorem.
Returning to (B.2), we can define the Prob(Failure), the probability of an
error-correction failure owing to the presence of more than ¢ errors, where
d =2t + 1 is the distance of the code, as

Prob(Failure) =1 — ¥ (’Z)p’(l )

i=0,t

with ¢ =np. As discussed, this tends to zero as n increases provided 8 > p. We
can also hold n and ¢ constant and plot the Prob(Failure) against decreasing p to
produce the so-called “waterfall curves”. Figure B.1 shows such curves for n = 64,
t =1 to 20. Note that we do not state that there exist codes with these values of n
and ¢, but if there did they would have error-correcting capabilities of Figure B.1.



Appendix C
Finite Fields

A field is a set of elements over which the operations of addition, subtraction,
multiplication, and division are defined. There exist the following identity ele-
ments:

* The additive identity element O such that if x is any field element x +0 =
0+x=x;

® The multiplicative identity element 1 such that if x is any field element
x-1=1-x=x

In a field every element x has an additive inverse —x such that x + (—x) = (—x)
+x=0.

In a field every nonzero element x also has a multiplicative inverse x~ ' such
that x-x '=x"'-x=1. Also x-0=0-x =0. Thus, all the field elements form an
additive group, and the nonzero elements form a multiplicative group.

Fields may have an infinite or a finite number of elements. If the field is
finite, repeated additions or multiplications of an eclement to or by itself of
necessity result in the original element again after k operations, say. Therefore,
after (k — 1) operations the result must have been the identity element (additive or
multiplicative). In the particular case of repeated addition of the multiplicative
identity, if

141414 ---+1=0 after p operations (but not before)

we say that “the finite field has characteristic p”. A finite field with g elements is
called “GF(q)”.

The following theorems summarise the main properties of finite fields.

Theorem C.1

The characteristic of the field, p, is prime.
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Proof

It p=x-y, then (x-1Xy-1)=p-1=0, where (n-1) means 1 added to itself n
times. But this implies (x - 1)~'(x- 1Xy - 1) = 0 which implies y - 1 = 0 with y <p,
which is a contradiction because p, the characteristic, is the smallest n such that
n - 1= 0. Therefore, p is prime.

Theorem C.2

The number of elements is p™.

Proof

Consider 0, 1, 2,...,(p = 1).

* If there exists another element «, we have p? elements (i +ja) i,j=0 to
p—1

* If @’ #i, +j,a for some i, j,, then we have p> elements (i + ja + ka?), and
SO on.

* If, however, a’ = i} +Jj,a, consider B # i, + j,a for any i5, j, and we have p3
elements. Continuing in this way, we get p™ elements of the form i a''B?,
and so on.

Theorem C.3

A polynomial g(x) of degree n over a finite field (i.e., with coefficients from the
finite field) has at most n roots.

Proof

Assume this is true for (n — 1). If there exists no root a of q(x), then there is
nothing to prove. If « is a root, then we can divide g(x) by (x — ) and get
q(x) = (x — a) s(x) + r. (Division is possible because the coefficients form a field.)

Now r =0 if @ is a root, and s(x) has <n — 1 roots by hypothesis; therefore, g(x)
has <n roots.

Theorem CA4

Given that there are p™ elements in the field, all nonzero elements satisfy
xP" V=1, and since there are (p™ — 1) of them the roots of (x*" '~ 1) are all
distinct and define the field.
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Proof

The powers of any element « form a cyclic subgroup of order e (i.e., a®=1 and
af # 1 for any f <e). By considering multiplicative cosets of this subgroup, we see
that e divides (p™ — 1). Therefore, xP™~1=1 for all elements.

Theorem C.5

If «, B have orders d, e, which are coprime, then order(aB) = de.

Proof

1. Let order(aB) = f, that is, (aB) = 1.
Now (aB)¥ = (a®)(B9) = 1.
Therefore, f divides de.
2. But 1 = ()4 = (a®)(B)/* =B/
Therefore, e divides fd.
But since e, d are coprime, e divides f.
Similarly d divides f.
Therefore, since e, f are coprime, ed divides f.
3. Therefore, from 1 and 2, f=de.

Theorem C.6

There exists a primitive element y among the (p™ — 1) nonzero elements of the
GF(p™), such that y¢=1 for e = p™ — 1, but for no smaller value of e.

Proof

Let pm—1=p ps?...pek. Let g=(p™ —1)/pl. There exist elements in the
field that do not satisfy x9 =1 (by Theorem C.3). Let a, be such an element, with
Order =p{'p{?... p{*. Then f, =e, (otherwise, [1p/" divides g, a contradiction).
Therefore, a, raised to the power pf?p{>... p{* has order p{'. Similarly we find
a, of order p%?, and so on. Then y =TIl«; has order I1p¢ (by Theorem C.5), and
Ipff=p™ -1
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Theorem C.7

All finite fields GF(p™) are of the form

Y ay' with Y byi=0

i=0,m-1 i=0,m
with a,, b, in GF(p).

Proof

If y is chosen primitive y’ # any L.ay ' provided j < m — 1, because that would
imply only p’ distinct powers of v. When j = m, we must have

Y byi=0

i=0,m

otherwise, the field would have too many elements.

Theorem C.8

If g(x)is an 1rredu01b£e polyrdlomlal over GF(p), of degree d with a rgot a, then
other roots are a”, a”’...a?’ "', all are distinct, and g{(x) divides (x?“~! —1).
Proof

g(a) =0, so [g(a)]” = 0. But [g(a)]” = g(aP), since cross terms are zero. There-
fore, a” is a root of g(x). Therefore, (a”)” =a” isa root, and so on. Suppose
ap’=ap'. Some j>i. Then ap'(p’ - 1)=1 with r—j — 1. But order(«) divides
(p™ - 1). Therefore, i = 0, and we have order(a) =p"—1.

But the roots of (x?"~! — 1) (plus 0) define a field, GF(p"), by Theorem C.6,
and « is in this field, so @ must satxsfy a polynomial over GF(p) of degree r or
less, with other roots «?, a"z, .a?""", This implies that g(x) is not irreducible, a
contradlctdlon therefore, all roots are distinct and j=r=d. Fmal]y, since a, a?f

a? . af , arc in the field composed of roots of (x??"1-1) (plus 0) q(x)
d1v1des (x?""1 -]
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Theorem C.9

2 d- e
All the roots a, a?,a?” ... a? 'of g(x) have the same order, and if «a is primitive

all roots are primitive, and g(x) is a primitive polynomial.

Proof
Let order(a) = e, order(a?) = f. (a”)f =(a®)?=1.S0 f divides e. 1 = (a?) = a”/.

So e divides (pf). But e divides (p? — 1) since a?’~1 = 1. Therefore, e cannot
have a factor p. So e divides f. Therefore, e = f, since f divides e and e divides f.

Theorem C.10

Every element « in GF( p™) has a minimum polynomlal m (x) of degree d,, and

m (x) divides (x? P4 =1 _ 1) and m (x) divides (x”" "' = 1).
Proof
1. m (x) exists (Theorem C.2).

2. m(x) is unique; otherwise, if there were two minimum polynomials of

degree d_, their dlfference would also have a root « and be of lower degree.

m(x) d1V1des (x?“*=1 = 1) by Theorem C.8. .

4, Smce the roots of m(x) are also in GF(p™) being o, m (x) divides
(x?™ ' =1) by Theorem C.4.

w

Theorem C.11

If g(x) is irreducible of degree d, and g(x) divides (xP"~'—1) then (p9—-1)
divides (p™ — 1).

Proof

The elements

Z aiai

i=0
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where a; is in GF(p) and « is a root of g(x), form a field. The nonzero elements
form a multiplicative group of order( p? — 1), which is a subgroup of the multiplica-
tive group of GF(p™) (less 0), because a is in GF(p™).

Therefore, (p¢ — 1) divides (p™ — 1).

Theorem C.12

(p?—1) divides (p™ —1) if and only if d divides m; consequently, minimum
polynomials have degree d, which divides m (by Theorem C.11).

Proof

Let m=kd+j, j<d.
pmz(pd_l)(pm—d+pm—2d+ _+_pm—kd)+pj‘

Therefore, (p” =D =(p?—1Xp™ ¥ +p" =244+ ... ypm~kdy 4 ni_ | There-
fore, if j=0, (p¢—1) divides (p” — 1).

Conversely, if (p¢—1) divides (p™ — 1), j=0 because (p?—1) does not
divide (p’ — 1).

Theorem C.13
If g(x) is irreducible of degree d and d divides m, then g(x) divides (x?*~! - 1)

divides (x?"~'—1). Consequently, the roots of q(x) are in GF(p™), so all
irreducible polynomials of degree d dividing m lie in GF(p™).

Proof
g{x) divides (xP9-1 = 1) by Theorem C.8. (x" — 1) divides (x* — 1) if and only if r

divides s by a similar proof to that of Theorem Cl12,s0if r=pi—1,s=p"—1
and d divides m, then r divides s and (x” — 1) divides (x* — 1).

Theorem C.14

If « is in GF(p™) and has minimum polynomial m(x) of degree d, then o' has
minimum polynomial of degree e dividing d.
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Proof

o' is in field GF(p?). Therefore, by Theorem C.12, e divides d.

Theorem C.15
If TI(d) = Number of irreducible polynomials of degree d (d divides m), then

p™—1=Xdll{d), and (x?™ 1= 1) = Product (all irreducible polynomials of de-
gree d), where d divides m.

Proof

By Theorem C.13 all irreducible polynomials of degree d dividing m divide
(x?™~1 = 1), so all the roots are in the field. Therefore, p™ — 1 = LdT1(d), where
d divides m. By Theorem C.12 any element not accounted for has a minimum

polynomial of degree d dividing m, but since all irreducible polynomials of degree
d dividing m have been included, p™ — 1 = £d[1(d) for d dividing m.

Theorem C.16

If m = prime, the [1(m) =(p™ —p)/m.

Proof
If m is prime, the divisors of m are d = 1,m

[1(1) = (p — 1). Therefore, p” —1=1-(p — 1) + m[1(m) by Theorem C.15.
Therefore, [1(m) = (p™ — p)/m.

Theorem C.17

Any irreducible polynomial of degree m defines a field GF(p™), but there exists
only one such field.

Proof

The field is defined by the solution to (xP™~"—1)=0 whose factorisation is
unique by Theorem C.15 so that the field is unique, and it depends only on which
minimum polynomial of degree m we choose for definition.
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Theorem C.18

The number of primitive polynomials of degree m is ¢( p™ —1)/m, where ¢( ) is
Euler’s totient function.

Proof

If @ has order d in GF(p™). Then order(a’)=e =d/lhef (j,d)]=d/h, say,
because (a’)?/" = (a’)/" = 1. So ¢ divides d /h.

And if 1=(a’)*=a’, then d divides je. So if d =xh, j=yh we have x
divides e, or (d /h) divides e. Therefore, e = d/h.

So if y is primitive with order d = p™ — 1. There exist ¢(p™ — 1) values of j
such that y/ is primitive and each satisfies a polynomial of degree m.

Therefore, there exist ¢(p™ — 1)/m primitive polynomials of degree m over
GF(p™).



Appendix D
The Berlekamp-Massey Algorithm

The algorithm is used to solve for the f; the set of equations:
Sivr THSjer 1t St A1 $50 Hf,.5,=0

for j =1 to (2¢ — r) with r <t. The value of ¢ is known, but the value of r is not
known. It is known, however, that if we guess a value s for r and s <r, then the
equations will be inconsistent due to the way the S; are constructed, and the
system will have no solution (see Section 4.4).

The algorithm, therefore, uses an approach in which r is first assumed to be
1 and f, is chosen so that S, + f, S, = 0. Then tests are made for increasing n =3
to 2¢ to see if S, +f, S,_, =0. If these tests succeed, we conclude that r=1;
otherwise, we introduce new “prediction” coefficients f; and f, (derived from the
old f,) such that Sy +f, S, +f, $; = 0 and test whether S, +f, S,_, +f, S,_,=0
for n = 4 to 2¢. If these tests succeed, we conclude r = 2; otherwise, we try f,, f,,
fyand (S, +f, S,_1+f> S,_2+f; S, 3) for n=35 to 2¢, and so on. In fact the
algorithm is more clever than indicated and can skip some unnecessary trial values
for r under certain circumstances.

In the algorithm we use a polynomial g(x)=x" f(1/x), where f(x) is as
defined in Section 4.4, namely, f(x)=x"+f,x" "'+ -+ +f,_,x +f,, so that

g(x)=1+fx+frx>+ - +fx
The algorithm is as follows:

1. Initialise g(x) =1, the correction polynomial ¢c(x)=x, n=1and r=0.
2. Evaluate the prediction error:

e=S,+ L fiS.
i=1,r

3. If e is zero, go to step 8; otherwise, make adjustments to remove the error
in steps 4 to 6.
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7.
8.
9.
10.

Set g*(x) =g(x) —ec(x).

This forms a new predictor polynomial that satisfies the equations up to the
current value corresponding to n, namely, §,,.

If 2r > n, go to step 7.

There are (n ~ r) equations in r unknowns, so if 2r > n there is no problem
of inconsistency.

Set r=(n—r)and c(x)=g(x)/e.

There are too few unknowns for the (1 — r) equations, so increase them to
accommodate g™(x) and establish a new correction polynomial that leaves
all equations up to (n — 1) satisfied and normalises the error for the last
equation.

Set g(x)=g*(x).

Set ¢(x)=xc(x).

Set n=n+1.

If n <21, go to step 2; otherwise, terminate.

Applying this to the example of Section 4.4 with S , 8, =a* ,8,=0,8,=

Ss=a', S, =0, where 1 =3, and « is a root of x* +x + 1 over GF(2) we get the
followmg iterations.

FIRST ITERATION

1.

O 00 N A

gx)=1,cx)=x,n=1,r=0

e=S,=a’

g¥(x) =1+ a’x(over GFQ2) a?= —qa?)
r=1,c(x)=1/a?

g(x)=1+a’x

c(x)=x/a’

n=2

SECOND ITERATION

2.

e=S+a’S,=a*+a*=0

8. c(x)=x?/a’=a"x?

9.

n=3

THIRD ITERATION

2.

e A S

e=S,+a’S,=0+a’=a’
g*(x)=1+a’x+a® (x*/a?)=1+a? x + a*x?
r=2cx)=00+a’x)/a’=a’+a' x
gx)=1+a’x+a*x?

cx)=a’x +a' x?

n=4



FOURTH ITERATION

2. e=S4+a2S3+a452=a8+0+a8=0
8. c(x)=a’x*+a''x?
9. n=5

FIFTH ITERATION

2. e=Ss+a’S,+a*S;=a+a®+0=0
8. c(x)=a’x*+a' x*
9. n=6

SIXTH ITERATION

2. e=S6+a255+a4S4=0+a12+a12=0
8. c(x)=a’x*+a'' x°
9. n=1
10. Terminate
We end with r =2, g(x)=1+a’x+a*x? or f,=a? f,=c" and all four
equations (S, +f,S,_, +f>S,_,=0) satisfied for n=3 to 6, although
there are only two free variables, f, and f,.
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Decoding (cont.)
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associated with event, 95-96
average, 96
maximum, 96-97
mutual, 109, 111
in transit, 107-111
Information rate, 107
Information theory
correlated sources in, 102-107
information, entropy, redundancy, and
compression in, 95-102

information in transit in, 107-11
Information units, binary, 96
Interleaved RS code, 6364

Kasami method, 4243

Linear codes
bounds in practice on, 23-25
convolutional, 72—-78
distance of, 17
matrix representation for, 11-14
nonbinary, 25-29
null matrix or parity-check matrix for, 14-18
perfect codes in, 18-19
Plotkin bound on, 20-23
Varsharmov-Gilbert bound on, 19-20

Matrix
generator, 13-14
null, 14-18
parity, 13
parity-check, 14-18
representation of, 11-14
Metric, 83
Minimum polynomials, in BCH codes, 4748
Minimum weight, 12
Mutual information, 109, 111

Nonbinary BCH codes, error correction
of, 58-59

Nonbinary cyclic codes, 4446
Nonbinary linear codes, 25-29
Null matrix, 14-18

columns of, 17-18

roots of generating polynomial and, 35-37
Nullspace, 14

Parity-check matrix, 14-18
Parity matrix, 13

Perfect codes, 18-19
Plotkin bound, 20-23
Postdecoding errors, 80-81
Preamble, 72

Redundancy, 2-3, 97
Reed-Solomon (RS) codes, 29, 59—67
interleaved, 63—64
nearness to bounds of, 6567
practical use of, 6264
weight distribution of, 64—65
worked example of, 6062
Reliability factor, 6
Repetition codes, 18-19
Residual error rate, 64
Retransmission, error-recovery by, 4
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Roots
of BCH codes, 48-51
consecutive, 48
of cyclic codes, 35-37
RS codes. See Reed-Solomon (RS) codes

Sequential decoding, with convolutional
codes, 85-86

Shannon’s theorem, 8-10

Soft-decision decoding, 5-7

with convolutional codes, 84-85

Sources, correlated, 102—7

Sphere-packing, 7-8

Standard array, 12

Subspace, 12

Syndrome, 15-17

Syndrome decoding, with convolutional
codes, 87-91

Tree codes, 69-72
Trellis codes, 69-72

Varsharmov-Gilbert bound, 19-20
Viterbi algorithm, 70-72

Weight, of linear code, 17
Weight distributions
of cyclic codes, 3940
of Reed-Solomon code, 64-65
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