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Preface

These notes are based on lectures given in the seminar on “Coding Theory and
Algebraic Geometry” held at Schloss Mickeln, Diisseldorf, November 16-21, 1987.

In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of
Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound.
The result ‘was considered sensational. Furthermore, it was surprising to see these
unrelated areas of mathematics collaborating.

The aim of this course is to give an introduction to coding theory and to sketch
the ideas of algebraic geometry that led to the new result. Finally, 2 number of
applications of these methods of algebraic geometry to coding theory are given.

Since this is a new area, there are presently no references where one can find a
more extensive treatment of all the material. However, both for algebraic geometry
and for coding theory excellent textbooks are available. The combination of the two
subjects can only be found in a number of survey papers. A book by C. Moreno with
a complete treatment of this area is in preparation.

We hope that these notes will stimulate further research and collaboration of
algebraic geometers and coding theorists.

G. van der Geer, J.H. van Lint
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1. Finite fields

In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in
this course.

For more details we refer to Lidl and Niederreiter (1983), van Lint (1982), Mac Williams and Sloane
(1977), Mc Eliece (1987).

A finite field with ¢ elements is denoted by lF (The notation is justified by the fact that two fields with
¢ elements are isomorphic.) The notation GF(q) is also used (Galois field). The easiest examples are the
fields with p elements, where p is a prime number.

(1.1) Z/pZ is a field if and only if p is a prime number. The other finite fields are residue class rings of
FF, [x}. ' \

We observe:

(1.2) If F is a field then JF [x] is a principal ideal ring.

The principal ideal generated by the polynomial g (x) is denoted by (g =)
We shall need the following result. '

(1.3) If FF is a field then the residue class ring F [x1/(x™ - 1) is a principal ideal ring and every ideal is

generated by a divisor of (x" - 1).

For the coﬁstmction of finite fields other than IF,, we need polynomials g (x) in FF, [x] that are irreduci-

 ble. By the method of inclusion and exclusion one can show that if /, denotes the number of monic

irreducible polynomials of degree r in FF, [x], then

a4 Brheq

rin .

~ This shows that /, is positive for all r.

(1.5) If p is prime and g (x) is irreducible of degree r in JF, [x], then the residue class ring IF {x1/(g (x))
is a field with p” elements.

It is an easy exereise to show that if IF, is a finite field, then ¢ is a power of a prime p and FF, is a

subfield. The number p is called the chardcteristic of the field.
Furthermore (Fq, +) is isomorphic to (IF,), where g =p”. 'I'he multiplicative structure of F, is also
quite easy:

(1.6) The group (I, \ {0}, ) is cyclic. A generator of this group is called a pnmmve element of the field.

This shows that the elements of qu form the set of all solutions of the equation x? — x =0 (in the closure
of F, , where g =p"). This fact combined with (1.4) easily leads:to the theorem that up to isomorphism
there is only one field with ¢ elements (g=p”,p przme) However, for some applications in coding
theory, the particular representation of the: ficld can make a difference! (cf. Mac Williams and Sloane
1977, Ch. 10 § 5). Furthermore, an easy consequence of (1.6) is:
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(1.7) F, is asubfield of I, if and only if r divides s.

A fact, sometimes referred to as the "freshman’s dream" is the equation (a+bY = a? + b? if ¢ and b are

elements in a field of characteristic p. A consequence of this fact is a(x¥) = (@) if a(x) € F,[x]. This
leads to a result that we use quite often:

(1.8) If 0= f(x) € IF,[x] and if f(a} =0, where o e I, then f(o?) =0.
The converse is also true:

(1.9 If f(x) e F,p{x] is monic and has the property that f(a%) =0 for every o for which f(o) =0, then
f&x)e F,lxl

Let ¢ =p” and let B be an element of IF,. The minimal polynomial m(x) of B is the monic irreducible poly-
nomial in JF,, [x] for which m(B) = 0. By (1.8) and (1.9) we have

m@x)=E-p) x-F) x~p") -+ @-p),
where s is the smallest positive integer such that g7 =g.

(1.10)Example. Let « be a primitive element of . Denote the minimal polynomial of of by m;(x)
Then e

21— 1= (e = 1) my (2) m3 (x) ms (x) my (3),

where e.g. m, (x) = (x- o) x-ao) x—-al?) (x—-alh),

Note that ms (x) = x* + x + 1, the unique irreducible polynomial of degree 2 in FF, [x]. Since o® is a
fifth root of unity we must have m; (x)=x*+x*+x2 +x + 1. The other two factors are x* + x + 1
andx* +x*+ 1. Usually one chooses a such that the first of these is my (x).

There are two more well known results about polynomials over IF, that we shall use:

(LIDIff(x) e F,[x] and a is a zero of f (x) in some extension field of IF,, then a is a multiple zero if
and only if it is also a zero of '(x). )

(1.12)lf. the polynomials a(x) and b(x) in FF, [x] have greatest common divisor 1, then there are polyno-
mials p(x) and ¢ (x) such that a (x) p (x) + b(x) g(x)= 1.

Finally, we mention the trace function Tr: FFy— IF,. Ifg=p" thenfort e F,
TrE) =E+8 +8 4 ... 4577

Note that by the freshman’s dream this is a linear mapping. Since the function is not identically 0, it
takes every value the same number of times.
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2. Error-correcting codes

We shall not go into details conceming all the technical applications of error-correcting codes. These
includé satellite pictures, telephone messages via glass fibre using light, compact disc audio system. The
idea is as follows. We consider "information" presented as a very long sequence of symbols from a
finite set called the "alphabet". In this course the alphabet will be a finite field F,. In the sequence each
symbol occurs with equal probability. This information is sent to a receiver over a so-called "noisy
chanmel". In the model that we consider there is a fixed (small) probability p, that 2 symbol, that is sent
over the channel, is changed into one of the other symbols (again, all equally likely). Such an event is
called a "symbol-error” and p, is the symbol-error probability. As a result a fraction p, of the transmit-
ted symbols arrives incorrectly at the receiver end of the channel. The aim of coding theory is to lower
the probability of error (considerably) at the expense of spending some of the transmission time or
energy on redundant symbols. The idea is explained in one sentence as follows. When we read printed
text we recognize a printing error in a word because in our vocabulary there is only one word that
resembles (is "sufficiently close to" ) the printed word.

In block coding the message is split into parts of say k symbols. The "encoding” is an injective mapping
from F§ to F; (where n > k). In IFj we introduce so-called Hamming-distance:

2.1) dx,y)=1{1<isn, x; =y}l
We define the minimum distance of the code C (i.e. the image of FF%) by
2.2) d=min{d(x,y)Ixe C,ye C,x#y}.

If d =2¢ + 1 then C is an e-error-correcting code because if a received word has distance < e to some
codeword, then it has distance > e to all other codewords.

Note that the toll we pay for the possibility of correcting errors is that we have to send » symbols over
the channel to convey k.information symbols to the receiver. This is expressed by saying that the code C
has information rate R = kin. The general definition for any subset C of FJisR = nlog, 1C 1.

We shall always assume that the receiver uses so-called "maximum-likelihood decoding”, i.e. a received
word is "decoded" into a codeword that is closest (where a choice is made if this is not unique). Subse-
quently, the inverse of the encoding map yields the original information.

It is fairly obvious that we can make the probability of error after decoding as small as we like if we arc
willing to transmit at very low information rate. The reason that coding theory is interesting is given by
Shannon’s famous channel coding theorem. To explain this, we need a number called the capacity of
the channel, This number depends on p, and the size of the alphabet (i.e. ¢ in our case). It lies between 0
and 1. (If ¢ = 2 the capacity is 1+ p, log p, + (1-p,) log(1 - p,), where logarithms are to the base 2.)

The theorem states that for any ¢ > 0 and for any R less than the capacity there is a code with informa-
tion rate at least R, for which the probability of incorrect decoding (of a received word) is less than e.
The reader should realize that we do not specify k or n but only restrict the value of k/n. The "good”
code promised by the theorem will have very large word length n.

To describe the situation that we are interested in in this course, we need a few more definitions.
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(2.3) Cisan(n, M, d) code over IF, if C is a subset of /F; with minimum distance dand 1 C | =M.

(2.4) A, (n, d) :==max{M | there exists an (n, M, d) code over F}.

A code that achieves the bound of (2.4) is called optimal. From Shannon’s theorem we know that we
should study long codes. However, if the channel has symbol-error probability p,, then we should
expect an average of p, n errors per received word. To correct these we need minimum distance more

than 2p, n. So, if we increase n, then d should increase proportionally. We introduce the parameter
§ = d/n and define

(2.5) a(3):=limsup n7 log, Ay (n, 8n).

Note that this function tells us something about the information rate of long codes with d/n = 5. In the
section on bounds on codes (Section 6) we shall describe the Gilbert-Varshamov bound, a lower bound
for o(8) proved in 1952/1957 that was not improved until 1982. The new bound is obtained using
methods from algebraic geometry and it is the purpose of this course to explain these methods and to
give the necessary background on coding theory.
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3. Linear codes

From now on we shall only consider linear codes.

3.1 Deﬁnitielm. A g-ary linear code or [n, k] code is a k-dimensional linear subspace of FFy.

If the code has minimum distance d we shall write [n, k , d] code. The information rate of such a code is

kin.

A linear code C is often described by a so-called generator matrix G. This is a matrix that has as its

rows k basis vectors of C; (note that elements of Fj are called vectors or words). If G is a generator

matrix for C,thenC = {aG | ae Fﬁ}, so encoding is multiplication by G. Since we are only interested in

error correction and this does not depend on the order of the symbols in a word, we shall cail two codes

equivalent if one is obtained from the other by some permutation of the coordinate positions. Then we

can assume w.Lo.g. that C has a generator matrix in so-called standard form: G = (I, P), where P is ak by

n—k matrix. In this case the first £ symbols of a codeword are sometimes called information symbols and

the remaining symbols are parity check symbols. (This name is due to the (historically) first example: a

simple parity check code used on paper tape for computers. Here ¢ =2, k=5, n =6 and every codeword

has an even number of ones, i.. P is a column of ones).

(3.2) Definition. The weight w(x) of a word is the number of nonzero symbols of x. The minimum
weight of a code C is the minimum of w(c) over all nonzero codewords c.

Note that for a linear code the minimum distance is equal to the minimum weight.
(3.3) Definition. If C is an [n , k] code then we define the dual code

ctoy
Cti={ye F} Ve [<x,y>=01},

where <x, y> := ¥, x;¥; is the usual inner product.

i=1

Clearly C* is an {n, n—k] code. Of special interest are self-dual codes, i.e. codes C for which ¢t=C
(see Section 7).

A generator matrix H for the code C* is called a parity check matrix for C. The code C is given by

(34) C=(xe FIIxH =0}. ,

If G = (I, P) is in standard form, then H = (P 1,_) is a parity check matrix (because G H" = 0). For the
{6,5] binary single parity check code mentioned above, the equation in (3.4) is x; +x3+ -+~ +xg= 0,
i.e. the equation checks the parity of the received word. Note that this code cannot correct errors but it
does detect the occurrence of a single error.

We mention a decoding method that is sometimes used in practice. For high-rate codes it is not too bad.
The method is known as syndrome decoding. For any x € Iy the syndrome is defined as x H' . For code-
words the syndrome is 0. A received vector x with errors in it can be written as x=c +e, where ¢ is the
transmitted word and e is known as the error-vector. If we pick a certain error-vector e and add it to all
the codewords, the result is a coset of C in IF} and all the words in this coset have the same syndrome,
namely eH’ .
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This means that any vector in a coset is a candidate for the error-vector of a word in the same coset. By
maximum likelihood decoding we should choose this vector so that it has minimum weight.

Decoding now goes as follows. For each coset of C we pick a member of minimal weight (often this ele-
ment is unique). This is called the coset leader. We make a list of these coset leaders and their syn-
dromes. When x is received, the syndrome is calculated, the leader is found by table lookup and x is
decoded by subtracting the leader from x. If, for example, we use a good binary code C of length 63

with R = —g—;— =0,8, then C has over 2.10' codewords but decoding involves only a check of a list of

4096 syndromes. Since this code can be chosen so that it has d = 5 (see 4.7), there are 63 coset leaders of
weight 1 and 1953 of weight 2. One could list only these and their syndromes and in those cases that the
syndrome of the received word is not in the list, the conclusion could be that more than two errors
occurred.

Remark: If we transmit information over a binary symmetric channel with bit-error probability p, = 0.01
using this code (with rate 0.8) we achieve an accuracy (after decoding) corresponding to a bit-error pro-
bability p, = 0.0005.

We give one more definition.
(3.5) Definition. 1f C is a g-ary code of length n, then the extended code C is defined by

— A+l
C={(c1.¢2, """ s Cam) 1 (C1a €2, “* )€ C, Y i =0}
in

(The symbol ¢, + 1 is called overall parity check. Itis Oif and only if ¢; + ¢c2 + *++ +¢,=0.)

The best known examples of single error-correcting codes are the following codes. Let
n =(q*~1)/(g~1). Since any nonzero column vector of length & has ¢ — 1 nonzero multiples, it is possi-
ble to make a k by » matrix 4 in which no column is 0 and for which no two columns are linearly depen-
dent. This implies that if x#” =0, then x must have weight at least 3. Therefore H is the parity check
matrix of a [n, n -k, 3] code that is called a Hamming code.
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4. Cyclic codes
We now consider linear codes with even more regularity.
(4.1) Definition. A linear code C is called cyclic if

V(c,,c,.....c.-x)EC [{cn-1,€0, """ cn2)€Cl

From now on we make the convention (#, ¢) = 1.

To describe cyclic codes algebraically we observe that Fj as vector space is isomorphic to
F,lx]/(x*-1), if we ignore the multiplication in this ring. We now identify the word
(@o, @1 *** » @y) With the corresponding polynomial ag+a;x+ -** +a,1x"~. Observe that multi-
plication by x now is nothing but a cyclic shift of the word. Since a cyclic code is linear by definition,
we have:

(4.2) Theorem. A linear code € in F7 is cyclic if and only if C is an ideal in I, [x]/(x"-1).

By (1.3) a cyclic code is a principal ideal generated by a polynomial g (x), the generator polynomial,
that divides x* — 1. If x* — 1 = £, (x) f2(x) - - - f,(x) is the decomposition of x™ - 1 into irreducible factors
we have 2" choices for g (x). (Some of these codes can be equivalent.)

The code M7 with generator (x*~1)/fi(x) is called an irreducible cyclic code. Every cyclic code is a
direct sum of irreducible cyclic codes. (This is an example of a well known structure theorem for ideals
in semisimple algebras). An irreducible cyclic [», k] code is isomorphic to %,

Note that (1.11) and the convention (n, ¢)=1 ensure that x" — 1 has no multiple zeros. So the factors
fi(x) are distinct.

Let 2"~ =g&x)h(x) in F,lx]. f g(x)=go+g1x+ - +gaax"Fand h(x)=ho+hyx+ - - + R xt,
then

80 81 " &nk 0o 0 - 0

0 g - &g 0 - 0
G = N ..

0 -+ o g0 81 2ot

is a generator matrix for the code C with generator polynomial g (x),and one easily checks that

(0 0 - 0 hy -+ ho

0 ses eans hk ho 0
H=

hk e ho 0 v 0

is a parity check matrix for C. We call h(x) the check polynomial. Observe that the code with & (x) as
generator polynomial is equivalent to C* (namely: obtained by reversing the order of the n symbols). So
C* has generator polynomial x* & (x™*). C has dimension a-degree g (x).
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Let C be a cyclic code with generator g(x) =f,(x) - -- f,(x). Let B; be a zero of f;(x), 1< i<t By (1.8)
and (1.9) we know all the zeros of g (x). We remind the reader that if p; lies in the extension field FF - of
FF,, then B; can be interpreted as a column vector in (I,)™. Now consider the ¢ by n matrix over IF,-:

R
e By g
18, ﬁ% p?‘l

This matrix can also be considered as a tm by n matrix over JF, (where we assume that all ; are in FF.).
In a sense H is a parity check matrix for the code C. Indeed ¢=(cg, ¢;, ', c,p) is in C if and only if
Co+ciBi+caP?+ - +c,qBF?'=0 for 1<ist because ¢ is in C if and only if
co+erx+ -+ +caq " is divisible by g(x). If we interpret H as a matrix over IF,, then it is possible
that the rows are not linearly independent, i.e. a parity check matrix for C can be obtained from H by
deleting rows if necessary.

(4.3) Example. Let n:=2" -1 and let  be a primitive element of the field F. The cyclic code C
defined by C := {c(x) | c(B) =0} has the (binary) m by n parity check matrix # =1 g% --- p*).

Since all the columns of H are different and nonzero, this code is the (binary) [, n—m] Hamming
code defined in Section 3.

We now come to a generalization of Hamming codes, the so-called BCH codes (discovered by Bose,

Ray Chaudhuri and Hocquenghem).

4.4) Deﬁnin‘on. Let B be a primitive * root of unity in an extension field of FF,. Let g (x) be the least
common multiple of the minimal polynomials of ', p™*!, - -, B"**~2. The cyclic code of length »
over IF, with generator g (x) is called a BCH code with designed distance t.

From now on we restrict ourselves to I = 1 (narrow-sense BCH codes). If n = ¢™ - 1, i.e. 8 is primitive in

FF -, the code is called a primitive BCH code.

(4.5) Theorem. The minimum distance of a BCH code with designed distance ¢ is at least ¢. (This is

called the BCH bound.)
Proof: As we saw earlier, a word ¢=(co, ¢;, *** , ¢,t) is in the code if and only if it has inner
product 0 with every row of the matrix
1 B BZ . Bn—l
1 82 B¢ ... gD
(4.6) H:=|" oF P :
{ gl gD L. gD

Any ¢ -1 columns of H form a Vandermonde matrix. Since this matrix has determinant = 0, the
columns are linearly independent. It follows that ¢ cannot have weight less than 1. {
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(4.7) Example. Let ¢ =2, n =63, p a primitive element of . We take g (x) =m;(x) m3(z). By (1.8 g0
has as zeros B, where i = 1,2, 4, 8, 16, 32 ori = 3, 6, 12, 24, 48, 33. Since we have four consecu-
tive powers of p among the zeros, the code with generator g (x) has minimum distance at least 5 (in
fact it is 5). So, this yields a [63, 51, 5] binary code. (This code was used as an example in Section
3)

A special case of BCH codes is obtained if we taken=¢q — 1.
(4.8) Definition. A Reed-Solomon code (RS code) is a primitive BCH code of length n=q ~ 1 over F,.

d_l i . 0 s -
The generator of an RS code has the form g (x) = I_Il (x—o'), where a is primitive in JF,.

By (4.5) this code has minimum distance at least d and by the Singleton bound (6.7) the distance cannot
be larger. Therefore RS codes are MDS codes (also see Section 6), i.e. [n, n—d+1, d] codes.

Sometimes one considers the extended code of length ¢ =n +1. A codeword that gets an overall parity
check ¢, =0 has x =1 as a zero, so by (4.5) it has weight at least 4 + 1. It follows that the extended
code has minimum distance d + 1, i.e. it is also MDS. We remark that RS codes are used in the compact
disc error correcting code.

The original approach of Reed and Solomon was different. We take » = ¢. Number the elements of F,
aso; == o/ (0<i< ¢ -2), o, =0, where a is primitive.

Let L be a set of polynomials of degree < k in IF, [x]. We define a code C by

C = {(foo), flon), -+, floga)) I fe L).

Since a polynomial cannot have more than k -1 zeros if its degree is less than , the minimum weight
(and hence the minimum distance) of C is%t least n — k + 1. Since C has dimension k we sec that C is an
[n,k,n—-k+1] code, i.e. MDS. It is not difficult to see that this code is equivalent to an extended RS
code as follows. .

k-1 .
Letf(x)= 3 a; x’ and write ¢; :=f (o), 0 i ¢ - 2.

Jj=0
Thenif 1< 1< g — k-1 we have

q-2 . k=l g2 i
T @y =3 g; 3, @y =0, ,
i=0 j=0 = i=0

since the inner sum is 0 because 1< ! + j< g — 2. So, by (4.8) ¢ is in the RS code with distance g ~ £.

As a preparation for the codes obtained from algebraic geometry we reformulate the second definition
of RS codes. Let /P be the projective line over IF,. Let Q be the point (1,0). We consider the space L of
rational functions defined on /P that do not have poles, even if we consider P over the closure of F,,
except possibly in Q and then with order less than k. Let Py, Py, --- , P,., be the points of [P different
from @. Then the code defined above is the set {(f(Po), f(P1), ' , f(Px1)) | f€ L} because the func-

tions in I clearly have the form f(x,y)= g%;l)—, where a(x,y) is a homogeneous polynomial of

degree I, where [ < k. The points P; are P; = (o, 1),0<i<n -2, P,y =0, 1).
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We now generalize the idea of these codes a little more. We consider as alphabet - and take » distinct
elements from this field, say a;, oy, -+, 0. Let v=(v;, v4, -+, v,) be a vector of weight n over FF .
and write a == (o, @, - - -, @)
(4.9) Definition. The generalized Reed-Solomon code GRSy(a,v) has as codewords all
i fl), vaflo), -+, v, f (a)), where £ runs through the polynomials of degree < kin FF« [x].
By the same arguments as used above, this code is MDS. From (4.8) we see that the dual of a Reed-
Solomon code is again a Reed-Solomon code. It is not difficult to show that this is also true for general-
ized Reed-Solomon codes. (Hint: find a suitable basis for the polynomials of degree < n - 1).
We now return to BCH codes. We take the point of view of (2.5) and fix a value of 5. We consider a
sequence of primitive BCH codes over some fixed field FF,, with wordlength n; := g™ - 1, where m; — oo.
We require each code to have minimum distance at least 5 n; and denote the information rate of the code
with length n; by R;. Now we are in for a disappointment! One can prove that R; — 0 fori — o,
So we see that for a given channel (i.e. fixed symbol error probability) one cannot hope to find a good
code by looking at long primitive BCH codes; (these codes are bad, cf. Mac Williams and Sloane (1977)
§9.5).
Luckily BCH codes (and hence RS codes) also have a nice property, namely that they are easy to decode.
We describe an algorithm that is used to decode BCH codes. It is a modification due to Massey and oth-
ers of an algorithm that was designed by Berlekamp. Consider a BCH code of length n over FF, with
zeros B!, p%, -~ , B%, where B is a primitive »™ root of unity in /F .. We use the following notation. A
codeword C(x) is transmitted and we receive R(x) =Ro+Ryx+ -+ +R,;x"' and call
EQx)=REx)~Cx)=Eg+E x+ +++ +E,_ x"! the error-vector. The set M := {i | E; 0} is the set of
positions where an error has occurred and we assume that the number of errors e := | M | is< ¢. Define

o(z) = _PM(I~B":), the so-called error-locator (because there is an error in position s if and only if
o(B™) =0).
oz)= 3 E§ T (1-p2), the error-evaluator (since E; = o)/ o’(B7Y).
ieM jeM\i)
Clearly o(z) is a polynomial of degree ¢ < ¢ and w(z) has degree less than e. If we know these polynomi-

als, then we know M (by factoring o(z) or by substituting all possible values of z) and from w(z) we can
then find the values of the E; by substituting z = §~. We now make a formal calculation.

o) _ o Ef

o(z) o 1-P'z

LR
i =1

ieM
=3 B,
I=1

The point of the algorithm is that the first 2¢ coefficients on the right-hand side are known, because

2
E(B")=R(p") for 15 I< 2 by definition of the code. So, if we write $(z) := ¥ R(8") z'~*, we now have to
I=1

find the unknown polynomials o(z) and o(z) about which we know that
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4.10) o(z) = 0(z) S(z) (mod z%).

We now perform Euclid’s algorithm to calculate the g.c.d. of §(z) and z%. This is a very efficient algo-
rithm that involves easily performed calculations. One can show (cf. Mc Eliece 1977, § 8.5) that the first
time that we find a remainder of degree less than ¢ we are done. More precisely: the algorithm starts
with 0. 2% + 1. §(z) = S(z) and produces a sequence of equations

52(2). 2% +1,(). $@) =7,(2),

where the degree of r,(z) decreases until the g.c.d. is reached. Clearly the pair r,(z), 1,(z) satisfies the
congruence (4.10). When for the first time r,(z) has degree < +, we have found the required pair up to a
constant factor (which is determined by the fact that 6(0) =1).
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5. Classical Goppa codes

Let us recall that in (4.4) a BCH code was defined as the set of words (co, ¢3, *** » Ca1) € Fg such that
co+ 1B+ ca®)P + -+ + cay (F)"! =0 where B is a primitive n* root of unity and 1< j <d. Here d is
the designed distance. We can rewrite this as follows:

(’"-Ug z_c;.,- =§c.-};:;z*(a*)"‘“=
= g, 2t g a @Y =24 p(a),
i.e.

for some polynomial p(z) and vice versa, i.e. (co, ¢y, *** , €a) i8 in the code if and only if the left-
hand side of (5.1) written as a rational function a(z)/b(z) has a numerator divisible by z¢™. We now
generalize this as follows.

(5.2) Definition: Let g(z) be a monic polynomial over Fg. and let L = (¥, Y1, *** . Ya-1) < IFg~ (heTE
n=1L1). We require that g(,)#0, 0<i <n. The Goppa code I'(L, g) with Goppa polynomial
g(2) is the set of words (co, c1, *** , caw) in JFg for which

-t
(53) b3

i=0 i

C;

=0 (modg()).

Here (5.3) means that the numerator of the left-hand side, written as a (z)/ b(z), is divisible by g(z). We
can also make the convention that

54) ;%::E_—(}-{)-[ (zz:y()]’ where the right-hand side is the unique polynomial

£ (2) modg(z) such that (z—v) f (z) = 1 (mod g(2)).
From our introduction and (5.1) we see that if we take g(z) =27 and L := (B | 05 i< n— 1}, where B is
a primitive »™ root of unity, then the Goppa code T'(L., g) is the narrow sense BCH code of designed dis-
tance d. We remark that not all BCH codes are also Goppa codes.
We can also interpret (5.2) as follows. Consider the vector space of rational functions f (z) with the fol-
lowing properties:
i)  f(z) has zeros in all the points where g(z) has zeros, with at least the same multiplicity;
ii)  f(z) has no poles, except possibly in the points s, 7;, ' , Y.~ and then of order 1.
Consider the code over JF,. consisting of all the words (Res,, f, Res, f, -, Res, /).

The Goppa code I'(L , g) is the "subfield subcode™ consisting of all the words in the code with all coordi-
nates in JF,.
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! .
We shall now find a parity check matrix for I'(L,g). Let g@)=Y g=z'. Then
i=0
(’)_x(x) = Y gy ¥ 2% 50 we have an easy expression for the polynomials on the right-hand
z- k+jse-1
side of (5.4). By (5.3) we must have, with &; := 1/g(y)),

n=1 .
Yeah Y gega (Y ¥ =0,
i=0 kjse-1

i.e. the coefficient of z* is 0 for 0< k< ¢ ~ 1. We see that ¢ must have inner product 0 with the rows of the
following matrix.
ho & hy & e By &
ho(gi-1 + & Yo) hi(ga+&m) - ha1(8i-1 + 8 Ya-1)

holgi +g2%0+ " + &) Fact (g1 +82Ya1 ¥ 0t Y

Using elementary row operations we then find the following simple parity check matrix for I'(L., g):
ho hy o hey

hovo him Ry Yam
H={ : : (5.3)

ho¥s™ ki Pt Yok
Note that if in (4.9) we take v:i=(hg, hy, ~** . hyq) and a:=(y, 7, ", Ya-1), k=1, then the code
GRS} (a, v) has the matrix H of (5.5) as generator matrix. It follows that I'(L , g) is a subfield subcode of

the dual of a certain Generalized Reed Solomon code, i.e. I'(L , g) is a subfield subcode of a Generalized
Reed Solomon code!

Observe that in (5.5) we can again interpret each row as a set of m rows over FF,. So we find (using
4.9)):

(5.6) Theorem. The Goppa code I'(L , g) has dimension> » ~ mt and minimum distance> ¢ + 1.

The fact that the minimum distance is at least ¢ + 1 follows directly from the definition (5.3). Since the
code is linear, we can consider the weight of c. If this is w then the degree of the numerator a (z) of the

Al 1
lefi-hand side of (5.3) is w— 1 (in fact less if 3 ¢;=0). So w— 1 is at least ¢. If ¢ =2 we can say a lot
i=0

more.

n-1 a1 .
Define f () i= 1T (z—1)°. Then 3, —— = (2)/f().

i=0 i £~ %
Since all exponents in f'(z) are even, this is a perfect square. If we assume that g(z) has no multiple
zcros, then the fact that g (z) divides f'(z) implies that g%(z) divides f'(z).

(5.7) Theorem. If g (z) has no multiple zeros, then the binary Goppa code I'(L , g) has minimum distance
at least 2/ + 1 (where ¢ := degree g (2)).
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We shall now show that the set of Goppa codes is a lot nicer than the BCH codes by showing that there
are good long Goppa codes. (To appreciate what we mean by "good" the reader should first study Sec-
tion 6.) We choose n =q™, ¢, d and take L = IF . It remains to pick a Goppa polynomial g (z) of degree ¢
over [, that is irreducible and such that T(L,g) has minimum distance at least d. Suppose
c=(Cg,C1» """ » Ca-1) IS aword of weight j < d, i.e. a word that we do not allow in the code. As we saw

before, the numerator of z “T{' has degree j— 1 and hence at most | J—-—_I different polynomials of
i=0

degree ¢ can divide this numerator. Therefore we have to exclude at most Z ( ™ (g-1Y LJ-——J irreduci-
j=1

ble polynomials of degree ¢. This number is less than T V,(n, d) where (as in (6.1)) we use the notation
d .
Vyn,d)y=Y (’i') (g—1). It is known that lim n™" log, V,(n,| 2] ) = H,(5), where H, is the entropy func-
i=0 Tomee

tion (cf. (6.3)). A sufficient condition for the existence of the code we are looking for is that % Vol(n, d)
is less than the total number of irreducible polynomials of degree ¢ over IF,., which is known to be
-1; ¢™ (1+0(1)). (In fact this follows from (1.4).) So, we find as a sufficient condition (after taking loga-
rithms, d = 8nf , n — o)

Hy @ +0() < - +o(l), (m ).

From (5.6) we know that the codes we are considering have rate> 1 - % So we have proved the fol-
lowing theorem.

(5.8) Theorem. There exists a sequence of Goppa codes over FF, that have information rate tending to
1 = H,(8), i.c. the rate tends to the Gilbert-Varshamov bound.
We remark that the decoding method that we discussed for BCH codes in Section 4 can be generalized

to also decode Goppa codes. As in Section 4 we call the received word R = € + E. Using a similar nota-
tion we define

(using the convention of (5.4)).

n-l E‘
HOED

i=0 27
By (5.3) we can calculate S (z) from R. Now we again define an error locator and error evaluator by
oz) = l'l {] E i.
o(z):= 11 (z-y), ofz):= Z mn( -
Then clearly

S(z) o(z) = wlz) (mod g(z))

and we are again in the situation of (4.10).

BN TR A taiind e s 5., Y
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6. Bounds on codes - -

We now return to the problem of finding bounds on codes and the study of the ﬁmcuon a@ deﬁnedm
(2.5). We need a few definitions and lemmas. If we consider the set of words in 3 that have dlstance at
most d to a fixed word, then the cardinality of this set is

d .
6.1 Vo, dy=3 () (g-1).
i=0
We define the entropy function H, on [0, 12——1—] by

6.2) H,(0):=0,
H,(x)=x log, (q— 1)~ x log, x - (1-x) log, (1-x), O<x< -q—;l—

The following lemma can easily be proved using Stirling’s formula (cf. van Lint 1982, 5.16):

(6.3) Lemma. For 0< 8< -‘l;;—l— we have
. -1 -
.h_rgn log, V,(n,|8n)=H,(@).

Suppose C is a code of length n over IF, with minimum distance d and suppose that it is not possible to
find 2 word not in C that has distance at least 4 to all codewords in C. Then clearly
IC | Vy(n,d~1)2 ¢". This simple argument is the proof of the Gilbert-Varshamov bound.

(6.4) Theorem. A,(n,d)2q" 1V (n,d-1).
1f we take d =| 8n] and use (2.5) and (6.3), then we find the asymptotic Gilbert bound:
(6.5) Theorem. o(8)2 1~ H,(3).

Suppose that we now consider only linear codes in JF;. We claim that we find a result just as good as
6.4)!

(6.6) Theorem: X q" IV (n,d-1)> ¢*! then there exists an [, k , d] code over F,.

Proof: For k=0, the assertion is trivial. Suppose the inequality holds and that we have a
[n, k-1, d] code C;.;. By the proof of (6.4) there is a word x e FF7 that has distance at least d to
all the words of Cy;. Ifa € F, and c € Cyy, then w(ax+e) =w(x+a &) =d(x,~a )2 d.
Hence C;_, and x span a linear code C, with minimum distance 4. 0
As we already remarked in Section 2 the lower bound (6.5) was not improved until recently.
The bound that we shall find from algebraic geometry (cf. alg. geom. 5.5} is

of8) + 82 (Vg -1y, ' *)

To see whether this improves (6.5) we first calculate the tangent to the curve (6.5) that has the same
slope as (*). By differentiating (6.2) we find the equation

log, (g—1) - log, 5+log, (1-8) =1,
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with solution 8, = (g —1)/(2¢ - 1).
Therefore the line given by (*) intersects the curve (6.5)
if: 1- H,(8) <1~ Mg -1 ~85,ie. 1+~ < log,(2g-1).
This is true for ¢ 2 43 but since in (*) ¢ must be a square, the smallest value of ¢ for which an improve-
ment of (6.5) is found is g = 49.
It was pointed out by Manin (1982) that upper bounds for 4,(x , ) could be used to prove theorems on
algebraic curves as follows. The equation (¥) is true for all ¢ if we replace the right-hand side by
¥, :=1im inf g / n where we consider curves over IF, with » rational points (n —» =) and genus g. However,
the line (*) must remain under the known upper bounds. At the time he wrote this, the bound for y,
could be improved using the best known upper bound for A,(n, ). At present the best known bounds
fory, are better than what we can find using coding theory.
For the sake of completeness we now treat a number of upper bounds for a(3).
(6.7) Theorem. (Singleton bound.) A (n, d)< ¢*~#*,
Proof: If C is a code with distance 4, then deleting the last  — 1 coordinates of each word in C
yields a code of length n — d + 1 in which all the words are still different. ]
(6.8) Corollary. Aln,k,d)codehasd<n-k+1.

Note that the proof of (6.7) implies that if equality holds in (6.8) then on any & positions the codewords
take all possible ¢* values (i.e. these k positions could be taken as "information positions"). Such a code
is usually called a maximum distance separable code (MDS code). Note that if G is the generator matrix
of such an MDS code, then any k columns of G are independent. This implies that the dual code has
minimum distance at least & + 1. Therefore this distance is k + 1 (by (6.8)) and we see that the dual of an
MDS code is again MDS.
One of the best known upper bounds is fairly obvious and asymptotically bad. This is the sphere-
packing bound:
(6.9) Theorem: If d =2¢ + 1 then An,d)< q" IV (n,e).

Proof: The "spheres" of radius e around codewords are disjoint. ]

In order to prove a better bound we now consider a code C over IF, with M words of length n and dis-
tance 4. We make a list of these words (as a matrix). We number the elements of F,from0tog-1.
Consider column ; of the matrix. Let the j* symbol of the alphabet occur m; times in this column,

We calculate in two ways the sum of the distances of all ordered pairs of codewords. Taking all pairs of
rows we find at least M (M - 1) d. By looking at the columns we find (using Cauchy-Schwarz):

n g-1 X . Iy -l X
MM-1)ds S mi M-m)=F M2-F (miy<
i= j=0 i=t j=o

n -1 ~
ST -g* (Tmpy=n L,
i=l =0 q
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. -1
It follows that M < -—d—1- ifd>n L5
d_,,_‘l__. q
q

This does not look very useful because we do not expect d to be so large. However we already have a
result for o(3) from this inequality, namely

(6.10) a(3)=0 for 131—5 s< 1.

’ , d~1
To make use of the inequality for smaller values of & we define the length n” by n :=|_-9(qu)-j ; note

that n’ < n. We consider the last n — n” symbols of all the codewords. There is a subset of M” codewords
ending in the same n — n” symbols, where M” 2 M.
For this subset the inequality derived above also holds, i.e.

M m's —E —<a

d-n’ q-
q

Taking d = 8n , n —» o we find the following theorem.
(6.10)Theorem. (Plotkin bound)

a®<1- 25 forocss L,
q-1 q
a®)=0 for 1—;—1—5 s< 1.

This leaves the shaded region in the following figure for possible values of a(s).

1
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7. Self-dual codes

A linear code C is called self-dual if C = C*. Clearly the rate of such a code is %. Many authors have
studied such codes and discovered interesting connections with invariant theory and with lattice sphere
packings (cf. Mac Williams and Sloane, 1977, Ch. 19). Recently there has been interest in geometric
Goppa codes that are self-dual. For examples see alg.geom. § III. ref. [5], [6]. Here we give some
theorems about self-dual codes.
A simple example of a self-dual code is the binary extended [8, 4, 4] Hamming code with generator
matrix

11111111

01010101

G=lo0110011
00001111

As a second example we consider¢ = 2™ and then construct the RS code C of length n = ¢ — 1, dimension

1

tq-t .
k =.12. ¢ and minimum distance d = n — k + 1 as in (4.8). The generator polynomial is l’Il (x-a'), where o
i=

e .
is primitive in F,. As we saw in Section 4, the dual C* has generator polynomial _I=Io (x—a').
. &

It follows that C* is the subcode of C consisting of all the words (co,€y, ***, Cyq) in C for which
Co+ €1+ -+ +¢pyq =0. Therefore the extended code Cis a [q, %q . % g+ 1] self-dual code. Since this is
an MDS code we should consider it as a good code. It is natural to ask the question whether it is possible
to find self-dual codes that are "good" in the asymptotic scnse.

This means that, given the fact that we must have rate = %, we should find out what can be said about d
(or better &= d/n) if n — . The following theorems will provide us with an answer, (We consider only
binary codes).

(7.1) Theorem. Let C be an [n, k] binary code, where n=21, 1 € C, C c C*. Then the number of [n, t]

%
sclf-dual codes that contain C is r_Il 2'+1).

Proof. For k<m< 1 we shall count the number a,, of binary [r,m] codes D such that C cD < D>,
Clearly a, = 1. If D is such a code (m <) then D* is the union of 2" cosets of D. Since 1 € C, each of
these cosets contains only vectors of even weight and hence the union of D with any other coset is a
code D’ of dimension m + 1 such that C €D’ < (D).

Exactly the same argument applied to C and D’ shows that D’ contains 2™** - 1 subcodes of dimension
m that also contain C.

Therefore a,.,; = (2* - 1)/ 2" * ~1)a,, (k<m <i). , a
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(1.2) Corollary:
=l
a) There are %.rI1 (2 +1) self-dual codes of length n (n even),

La-2 | .
b) If x is a vector of even weight, x € {0, 1}, then there are ;r=11 (2' +1) self-dual codes that contain

X.

Proof: a) Every self-dual code contains {0, 1}.
b) Apply (7.1) to the code C generated by 1 and x.
0

Now suppose n is even and d = ». The number of even-weight vectors x with weight less than d is less
than V, (n, d). Therefore (7.2) implies that a self-dual binary code of length » with minimum distance at
least d exists if V,(n, d) < 28" +1). From Lemma 6.3 we see that if H,(8) < -;. , then a sequence of

such codes with n —» oo exists. The Gilbert-Varshamov bound (6.5) states that for H,(8)= % we have
ad) .;- We have proved:

(7.3) Theorem. There exists a sequence of binary self-dual codes that meets the Gilbert bound.
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8. Codes from curves

We use the notation of alg. geom. § II1.

1) Reed-Solomon codes and BCH codes.
Let p be a primitive »" root of unity in JF,- (m minimal).
"

We consider P'/Fn. Let Po=(0,1),Po=(1,0) and define the divisor D:=Y P;, where

j=
P;=(8, 1), 1< j < n. We define the divisor G by G :=a Po+b Pw,a20, 52 0. In this case L(G) con-
sists of the rational functions % over IF,~ with degree a(x)< g, degree b(x)< b. It follows that L(G)
has dimension a + & + 1 and as basis the functions x’ (~a< i< b). A generator for the code C(D , G) has
as rows (B p¥ -+ B*) where —a<i<b. If (c1,cq, **,¢,) is a codeword, then ¥ ¢; ('Y =0 if

j=l

a+1<1<n—b-1. Therefore the code is a Reed-Solomon code (in the sense of (4.9)). The subfield
subcode found by restriction to IF, is a BCH code with designed distance n ~ (a+b). This is the bound
we also find for the distance of C(D, G).

2) Codes from Hermitean curves
We consider the alphabet F,, where g = r? (r a power of p). Consider the so-called hermitean curve X in
P? over FF, given by

(81) xr+l +yr+l +zr+l =0.

By the Pliicker formula (alg.geom. § I1. 4) the curve X has genus g = —r—%:ll, ie g =% (q—‘G). As an

cxercise we actually calculate the number of rational points of X. If one of the coordinates is 0, we may
take another to be 1 and then we have r + 1 solutions for the third coordinate, since x™*' =1 has r + 1
solutions in IF,. So, there are 3(r + 1) points with xyz = 0. If xyz # 0, we may take z = 1 and we can choose
the value of y™*! to be any element in #,\{0, 1}. This again leaves us with r + 1 choices for x. In this
way we find (r-2) (r + 1)? solutions. The total number of rational points of X is therefore 1 + ¢ ‘];1‘

Now let 0 be the point (0, 1, 1) and define the divisors G :==mQ, D := sum of all the other rational
points. We take ¢ ~Vg <m < ¢Vg. We find the geometric Goppa code C(D , G) with length n=gg,
dimension k =m - g + 1 and minimum distanced2n-m=n-k~g+ 1.

Again as an exercise, we treat a very simple example. Take ¢ =4 an write F,={0,1, o, ®) where
o=o? =0+ 1. In this case g = 1. If we take m =2 then C(D , G) has dimension 2. As basis we need two

functions belonging to L(2Q). Clearly f(x, y, z) =1 is one of these. We claim that x/(y +z) is another.
This follows from the fact that on X

X __x0Myz®) yleyeed?
y+z  (42)(yteyz+z?) P
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i.e. Q is indeed a pole of order 2 (x is a local parameter in Q).

Substituting the coordinates of the eight rational points #Q we find a generator matrix with a row of
ones and a-second row with each of the elements 0, 1, ®, @ two times. Obviously this code has distance
6 as the theorem promises. If we take m = 3, we must find one more basis function, now with a pole of
order 3 in Q. We leave it as an exercise to find such a function and to check by hand that d is 5. If we
then take m = 4 we can add the function (x/(y+2))? to our basis. The resulting code is an [8, 4, 4] code
that is self-dual.

Now, let us use the code C(D, G) of length n = 64 and rate % over IF ¢ for comparison. We assume that
we have a very poor channel with p, = 0.04. We compare the code with a Reed-Solomon code over the
same alphabet. Since this code has length 16 we shall consider four words of the second code as one
message. The code C(D, G) has m =37 and d =27. It is already far better than a BCH code over this
alphabet (it has d< 18). The error probability for a word (of 64 letters from F¢) for C(D, G) is 2.1077
as compared to 8.107 for the RS code.

We remark that it is easy to find a basis for L(m Q), i.e. to find a generator matrix for the code. Consider

ivi
the ﬁmctionsf(x,y,:):—é;L), where 0<i<4,j20,i+j=1 Using (8.1) with r =5 we can replace
r4

G+2)7 by ¢ +y%z 4y 22 +y2% +2% 2%, Therefore f (x, y, z) has a pole of order 5/ -i in Q. Clearly
these functions are independent. For 51 — i < 37 there are exactly 32 triples (i, j, !) satisfying the condi-
tions.

3) New bounds for binary codes.
We consider an example that was considered before (cf. alg. geom. 1.9, 3.12)

Let X be the Klein quartic over IF; (genus g = 3):
8.2) 3y+ydz+23x=0.

The points over IFy are easily found. Let a be a primitive element satisfying o® + o+ 1=0. Clearly the
three points (0, 0, 1), (0, 1, 0) and (1, 0, 0) are on X. If xyz # 0 we take z =1, y = of (0< i< 6), Writing
x=a¥Ewe find 2 +&+1=0,ie &e {of, a?, o*). So X has 24 points. Take @ :=(0,0, 1), G =100, D
the sum of the 23 other points. Then the code C :=C(D, G) has length 23, distance 23 - deg G =13,
dimension = 10~ g + 1 =8, Since FFg =(F,)* we can consider codewords in € as 3 by 23 matrices over
IF,. We now extend the code by adding a fourth row as "parity row" (making a 4 by 23 matrix over F,
with column of even weight). It is obvious that we have constructed a binary [92, 24, 26] code.

By leaving out one bit we find a binary {91, 24, 25] code. This example (due to Barg et al 1987) beats
the best known code forn =91,d =25.
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4HA

geometric MDS code (example due to R. Pellikaan)

Consider the curve X with equation

8.3)

2y+oy’zrozix=0
over Fy:={0, 1, ®, ®}. The curve X has genus 1 and is nonsingular. The nine rational points of X
are:
Py Py Py Py Ps Pg @ 0, (@,
x |1 6 o0 1 1 1 © 1 1
y {0 1 0 @ P 1 1 © 1
210 0 1 © o 1 1 1 o

The line x +y+wz =0 is tangent to X at @, and also intersects X in Q,. Let G =20,+0, and
D:=Py+--- +Pg.

To describe the code C (D, G) we use as basis for L (G) the functions x/(x+y+o0z), y/(x+y+u_oz)
and @z /(x+y +wz). This gives as generator matrix

1001w

01001 o .(Notethat the code is equivalent to its dual).
00loowl

Our bounds show that this [6, 3] code has d> 3 but in fact this is a [6, 3, 4] code, i.e. it is an MDS
code. This contradicts an assertion of Driencourt and Michon (1986) that none of the
lg+2,4 -1, 4] codes is elliptic.
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Introduction.

These notes are the slightly extended version of the notes of my DMV lectures on algebraic
geometry and coding,to be more precise, the algebraic geometry counter part to the lectures
of van Lint on coding. Since the audience was rather inhomogeneous it was necessary to
start from scratch and explain or recall elementary notions from algebraic geometry. The
aim of the lectures was to sketch the main ideas behind the recent succesful application of
curves and in particular modular curves to coding theory. Although we review basic
notions from algebraic geometry in the first two lectures this should not be seen as a
substitute for a more thorough approach. If the reader really wants to apply algebraic
geometry to coding he should make himself well-acquainted with the basic results. Good
textbooks for this purpose are now available. We refer to the list of references at the end of
Lecture 1 and Lecture 2.

After reviewing the necessary algebraic geometry in Lecture 1 and Lecture 2 we
define the geometric Goppa codes in Lecture 3. We first treat the standard material and then
we show how one can determine the actual minimum distance for geometric Goppa codes
using the subtle geometry of divisors on a curve. In general the determination of this
minimum distance is a very non-trivial problem. As a result we can give several examples

~ of good Goppa codes obtained from higher genus curves, in particular from the Klein

curve. In Lecture 4 we treat the zeta function of a curve over a finite field. In Lecture 5, the
last lecture, we sketch the application of modular curves to Goppa codes. We hope to give
the reader an idea how modular curves are used. Since the theory of modular curves is deep
we cannot pretend to give more than a rough outline here.
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I. Elementary concepts from algebraic geometry.

1. Let k be an algebraically closed field. We denote by Ai or simply by A" the n-

dimensional affine space over k. It carries a topology, the Zariski-topology whose closed
sets are the sets of zeroes of ideals a of k[xj,...,Xn]:

V() = {(x1,....xp) € A? : f(X1,....xp) =0 forall fe a}.
A closed set B of a topological space is called irreducible if B cannot be written as the
union of two proper closed subsets Bj and By of B. The set V(a) is irreducible if and
only if a is a prime ideal. By the Hilbert Nullstellensatz the points of Aﬁ correspond 1-1

to the maximal ideals of k{Xj,...,Xn] : to a point (xi,....Xn) We associate the ideal

{ f ek[X],....Xn] : f(X1,0e,Xp) = 0}
and to a maximal ideal its unique zero. This correspondence will enable us to translate
geometry into algebra and vice versa.

An affine variety X in Ai is the set of zeroes of a prime ideal p of

k[X1,....Xn]. It is provided with the induced topology. Its points correspond 1-1 to the
maximal ideals of k[X]j,....Xn] which contain p,i.e. to the maximal ideals of

k[X] = k[X1,....Xnl/p.
This quotient ring is called the coordinate ring of X. Itis a domain and a finitely generated
k-algebra. Its field of quotients k(X) is called the function field of X.

Let X in Al and Y in A] be two affine varieties. A map ¢: X — Y is

called a morphism if there exist m polynomials fy,....fr; in k[Xy,...,Xp] such that ¢ is
given by
Ox) =(F1(X1reresXn) oo fn (X 15eeenXp)) forall x in X.
A morphism is a continuous map. Such a morphism induces a k-algebra homomorphism
o* 1 k[Y] = k[X] as follows.
If ge k[Y},...,.Yn] represents g' € k[Y] then define é*(g') as the class of g(fy,...,fiy).
This is well-defined. Conversely, let y:k[Y] — k[X] be a k-algebra homomorphism
and let f; be the image under y of the class of Y;. Representatives of the f; definca
morphism & :X — Y. One checks &* =vy. A morphism ¢: X — Y is called an
isomorphism if there exists a morphism y: Y — X with Oy = idy and y-¢ =idyx.
From what was just said one deduces immediately the following basic fact.

(1.1) Proposition. Two affine varieties X and Y (over k) are isomorphic if and only
if k[X] and k{Y] are isomorphic as k-algebras.
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Therefore all the information stored in an affine variety can be read off from its
coordinate ring.A further consequence: if Mor(X,Y) denotes the set of morphisms of X to
Y we have a bijection Mor(X,Y) «--» Hom(k[Y],k[X]). In particular, Mor(X,Al) <>
Homy(k[A11k[X]) = kIX]. In this way the elements of k[X] can be viewed as
"functions”.

The topology on X has a basis consisting of open sets of the form

Df)={xe X: fx)=#0}).

Then D(f) is again an affine variety (it can be given in AP+l by the equations of X < AR
and the equation Xp41f = 1) and the coordinate ring of such an open setis k[X][1/f].

For example, if X =P1, then for fe k{X], f ¢ k the complement of the set D(f)
consists of finitely many points. So non-empty open sets are very big and two non-empty
open sets have a non-zero intersection.

2. A polynomial f €k[Xj,...,Xp] is called homogeneous if f(AXg,...,AXp) = Adf for
some d (called the degree of f) and all A#0 in k. Anidealin k[Xg,....Xn] is called
homogeneous if it is generated by homogeneous elements. Assume again that K is an
algebraically closed field. A projective algebraic variety X is the set of zeroes in
projective space PT of a homogeneous prime ideal P of k[Xg,....Xn] . To it we can
associate the homogeneous coordinate ring, but unfortunately this does not possess the nice
properties that we have for affine varieties. An open subset of a projective algebraic variety
is called a Quasi-projective variety. If k is a field containedin K then we say that X is
defined over k if P is generated by a prime ideal p of k[Xo,...,.Xn] .

In the following we shall assume that k =K is algebraically closed. Let x be a
point of an affine (resp. projective) variety X. Let U be an open neighbourhood of x. We
say that a continuous map ¢ of U to Al is a regular function in x if there exist
polynomials f,g in Xi,...,.Xn (resp. homogeneous polynomials of the same degree in
X0, Xn) suchthat g(p)#0 and ¢ =f/g inan opeh neighbourhood of x. It is called
regularon U ifitis regularin all x e U.The regular functions on U form a ring which
is denoted Ox(U) or O(U).

Let x be a point of X. Consider pairs (U,f), where U is an open neighbourhood
of x and f is a regular function on U. Define an equivalence relation:

UbH=(Vg) & f=gonUNV.

The equivalence classes form a ring (by adding and multiplying values of functions). This
ring is denoted Ox. It is called the local ring of x. It is a local ring in the algebraic sense
that it has only one maximal ideal: the classes of those (U,f) where f(p) = 0. We view
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elements of the local ring Oy as functions defined on some open neighbourhood of x. In
case the variety is affine and m is the maximal ideal corresponding to x (by the Hilbert
Nullstellensatz, see above) the local ring is the localization k[X]ym of k[X] at m,ie.
{a/b e k(X) : b ¢ m]}. Using this one has for an affine variety

OX) =nx Ox = N k[X]y inside the quotient field of k[X]
and this intersection is k[X] as an easy exercise in algebra shows.

Let X be aquasi-projective variety and consider pairs (U,f) with U non-empty
andopenin X and f € O(U). Define again an equivalence relation

UhH=(Veg) & f=gonUnV. .
The equivalence classes are called rational functions and form a field, called the function
field k(X) of X. In the case of an affine variety one finds again the field of quotients of
k[X]. Obviously, if U is a non-empty subset of X then k(U) = k(X).

Let X and Y be quasi-projective varieties. A continuous map f: X - Y is called
a morphism if for every open U in Y and every g e O(U) the composition gf isa
regular function on f~1(U). For an affine variety morphisms in the earlier sense are
certainly morphisms in this new sense. But a morphism in the new sense induces a k-
algebra homomorphism on the coordinate rings, therefore it is a morphism in the old sense
and the two concepts coincide there. We also consider pairs (U,f), where U is a non-
empty open subsetof X and f : U— Y is a morphism. The equivalence classes under
the relation

UbH= (Vg & f=gonUnV
are called rational maps from X to Y. A rational map is called dominant if for some (and
hence every) representative (U,f) the image f(U) lies dense. By composition of functions
a dominant rational map from X to Y gives rise to a k-algebra homomorphism k(Y) -
k(X) of the function fields . Conversely, given a k-algebra homomorphism ¢: k(Y) —
k(X) we find a rational map as follows. Choose an open affine Uin Y and choose
generators u; for k[U]. Let v; = ¢(u;) and choose an affine open V such that the v; are
regularon V. The k-algebra homomorphism k[U] - k[V] given by uj — v; induces
a morphism V — U which represents a rational map from X to Y. Wecall X and Y
birationally equivalent if there exists a rational map r; from X to Y and arational map
r; from Y to X such that the compositions ryy and rpry are the identity on a non-
empty open setof Y and X. We can deduce now:

(1.2) Proposition. X and Y are birationally equivalent if and only if their function
fields are isomorphic as k-algebras.
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(1.3) Example. Let X=Y =P2 and let r; :X —Y be given by (xg: x1:x2) =
(xpx1:x0%2:X1x2) if at least two coordinates are non-zero. It is a birational map with inverse
r2: Y—» X which sends (yo:y1:y2) to (yoyi:yoy2:yiy2) if at least two coordinates are

non-zero.

(1.4) Example. The parametrization Al — X = V(y2-x3) g A2 given by t — (t2,t3)
is a birational map with inverse (x,y) ~ x/y if y#0. It is not an isomorphism since k[t]
is not isomorphic to k{x,y}/(x3 — y2).

Projective varieties have the following important property. If X is a projective
variety and ¢ : X — Y is a morphism then the image of ¢ isclosedin Y. Soif ¢:X —
AlcP! isaregular function on a projective variety X, then the image is closed in Al
and in P! and irreducible, hence consists of one point. There are no regular functions
other than constant functions on a projective variety. This shows the need for introducing
concepts like rational functions and rational maps.

We define the dimension of X as the transcendence degree of the function field
k(X) of X. We denote it by dim(X) . A variety of dimension 1 is called an algebraic
curve. For example, an irreducible homogeneous polynomial f e k[x,y,z] of degree 21
defines an algebraic curve in P2.

A point x of a variety X is called a non-singular point if the Oy/my (= k)-
module mx/mi (i.e. k-vector space) has the same dimension as X.(In general dimy

mxlmf 2 dim(X).). The dual of this k-vector space mx/mi is called the (Zariski-) tangent

space. The set of non-singular points of X is a non-empty open subset of X. We call X
non-singular or smooth if all its points are non-singular.

For a curve given in P2 by an equation F =0, where F e k[X,Y,Z] is an
irreducible polynomial , we have

P =(x:y:z) is a singular point if and only if F(P) = gg{l’) = g—l\:-,(P) = g%(?) =0,
as we shall see shortly.
Recall the definition of a discrete valuation v ona field K. Itisa homomorphism

of the multiplicative group K* of K onto Z such that v(x+y) 2 min(v(x),v(y)). Such a
discrete valuation defines a discrete valuationring R={ x e K*: v(x) 20} U {0}. We
often put v(0) = o. The quotient field of R is K. A domain R is called a discrete

valuation ring if there exists a discrete valuation v on its quotient field K suchthat R =
{xe K*: v(x) 20} U {0}.
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(1.5) Lemma. Let X be an algebraic curve and x a pointon X. Then x is non-singular
if and only if the local ring Oy is a discrete valuation ring.

Proof. Suppose that x is a non-singular point. Let f e Oy. We define v(f) =n if fe
m", but f¢ m"*1 If f/g is an element of k(X) then we set v(f/g) = v(f) - v(g). This
defines a discrete valuation on k(X). Conversely if Oy isa discrete valuation ring then
m/m? has dimension one (it is generated by the class of an element t with v(t)=1). ¢

An element t with v(t) =1 is called a local parameter (or local coordinate).

(1.6) Lemma. Let X be a non-singular curve and f: X — P? a rational map. Then f
can be extended to a morphism.

well-defined there. 0

(L.7) Corollary. Non-singular projective curves are classified by their function fields.
Proof. If X and Y are two non-singular projective curves and f: X — Y is a birational

map, then it can be extended to an isomorphism. ¢

If X is a non-singular projective curve with function field k(X) we can read off
all information about X from k(X). Indeed, we know that a point x e X givesrisetoa
discrete valuation of k(X), trivial on k. But conversely, every discrete valuation of
k(X), trivial on k, determines a point of X, namely, the common zero of all f in k(X)
with v(f) 2 1. The above suggests to start with a function field K of transcendence degree
L over k and attach a non-singular projective curve X to it with kX)=K.

Thus after all, we might have started with a field K of algebraic functions of one
variable over k. The field uniquely determines the i;omorphism class of a smooth
projective curve X defined over k whose function field is isomorphic to K. All
properties of X can be derived from the function field.

Many questions can be dealt with on affine curves . Indeed, we can cover a
projective curve X with affine open sets U; which are themselves affine curves. So local
constructions can be done on affine curves, whereas many global properties can be checked
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by checking them on all Uj. For example, checking whether a point on a curve is non-
singular can be done in any open neighbourhood of this point.

It is of course important to be able to test whether a given curve X is non-singular
or smooth. We illustrate how to do this for affine plane curves. We shall assume that p =
(0,0) . Let f be an irreducible polynomial in x and y. One computes the linear part [
of the equation f=0 near p. The equation /=0 defines a linear subspace T of A2,
Then there is an isomorphism of vector spaces T* = m/m? with m the maximal ideal of
p and T* the dual vector space of T. Indeed, by associatingto g € k[X1,X»] its linear
part one getsa map d: k[X] — Homg(T)k) with the properties i) d(c) =0 forevery ¢
€ k, ii) d(a+b) = d(a) + d(b), iii) d(ab) = a(0)d(b) + b(0)d(a). We extend this by the
formula

b(0)d(a) — a(0)d(b)
b(0)2

d@ =

to a k-linear map d: Op -5 T*. Restriction to mc Op gives the required isomorphism
m/m2 = T* . This gives the connection with the more intuitive notion of tangent space (take
the linear part of the equations). Hence if the linear part of f at the origin is non-zero, then
dimyT* = 1 and we have a non-singular point at the origin. For a projective curve given
by f, the projective tangent space at (po:p1:p2) is fx(p)X + fy(p)Y + fz(p)Z =0. If at
least one of fx,fy.fz is non-zeroin p, then p is a smooth point. For example, the Fermat
equation XM+ Y" +Z0 =0 defines a non-singular curve over k if char(k) does not
divide n. The Klein quartic X3Y + Y3Z + Z3X =0 over F} is non-singular unless
p=7. Here the point (1:2:4) is the only singular point.

3. If the field k is no longer algebraically closed, the Hilbert Nullstellensatz no longer
holds in general since the corresponding points are lacking. For example, the equation
X2+Y2 = —1 has no solutions over R. Therefore, if we consider the case of an affine
variety, it seems better to start with the coordinate ring instead of with a set of zeroes. So let
K be an algebraic closure of k and let p be a prime ideal of k[Xi,...,Xs] which
generates a prime ideal P in K[X},...,.Xn] . Then P defines an affine variety X

efined over k. A morphism of affine varieties over k is a morphism of the associated
varieties over kK which is given by a homomorphism of k-algebras. Similarly, a projective
variety defined over k is given by a homogeneous prime ideal of k[Xo,...,Xn]} which
remains prime when extended to K[Xg,...,Xp] .To it we can associate a function field
k(X) by restricting our earlier definition to those pairs (U,f) where f can be defined by
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polynomials with coefficients in k. For acurve X this field is of the following shape : it
contains k as a subfield and possesses an element x which is transcendental over k and
such that k(X) is a finite algebraic extension of k(x). A field with these properties is
called a field of algebraic functions of one variable over k. The elements of k are called
the constants. By extending the constants to K we obtain the function field X (X).

We call X smooth if, after extension of k to an algebraic closure, the curve is a
smooth curve.

We can view a curve X over k asacurve over K of which we can see only a
fraction of all points. Now over kK we had a 1-1-correspondence between the points of X
and the discrete valuation rings of the function field. Since we cannot see all points, this
does no longer hold, but we can look nevertheless at all discrete valuation rings contained
in k(X) such that the discrete valuation is trivial on k. If v is a discrete valuation of
k(X) and Ry isits valuation ring with maximal ideal my then ky = Ry/my is called the
1esidue field. This is a finite extension of k. We call the pair (Ry,my) a closed point of X
and d=[kyk] the degree of the point. If k is algebraically closed then of course d=1
for every point. To a closed point of degree d over k we can associate a set of d points
of degree one over k which are the conjugates of each other under Gal(K/k) : extend the
discrete valuation v of k(X) to a discrete valuation of K (X). This corresponds to a point
P e X. These d points are all distinct if K/k is separable.

(1.8) Example. Let X = P! over Fp . Every irreducible polynomial fe Fp[T] of degree
d 2 1 defines a closed point of degree d on Pl. After extending Fp to de we can see

the d points of degree one over de which form this point of degree one over Fy.

(1.9) Example.The Klein Quartic. Let f=X3Y + Y3Z + Z3X and let k =F,. Over Fp
the curve defined by f=0 has three points of degree one : (0:0:1), (0:1:0) and (1:0:0).
Its points of degree 2 become visible over Fy =F2[a’]/(a2+a+1) . if we consider our
curve as a curve over Fy, then the curve has two more points of degree one : (1:a:1+a)
and its conjugate (1:1+a:a). This pair of points defines a point of degree 2 on X over
F2. Over Fg we find many more points. To describe these we first give a group of
automorphisms of X over Fg= F2[{7] . An automorphism of order 7 over Fg is
given by o (x:y:z) = (x:{y:(5z). Besides this we have an automorphism of order three:
(x:y:z) - (zxx:y).(In fact, one can show that this curve admits Gigg, the simple group with
168 elements as automorphism group.) Suppose that (x:y:z) is a point of X over Fg.If
x#0 and the point is not (1:0:0) then by applying o we can assume that both x and y are
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equal to 1. The condition is then: 1+ z + z3 = 0. There are three elements of Fg
satisfying this relation. Using the automorphisms we find 21 points. They come from 7
points of degree 3 over F3. Together with the points over F3 we already found we

have 24 points over Fg. One can in fact give formulas for the number of points of x over
F,k.(See lecture 4 where this is explained.) The formulais : if k#0 (mod 3) then Ng

= #X(Fy0) equals 2K+ 1; if k=0 (mod 3) then Ny is givenby Ng= (1 + 2K)- ag
with  a3k+6 + 5a3k+3 + 8azx = 0. Moreover, ag= 6, a3 = 15, ag = 27. Here is a small
table.

k 1 2 3 4 S 6 9

Nk 3 5 24 17 33 38 528

We give a lemma that we need later. A field extension L/K is called separably
generated over K if there exists an intermediate field K' which is a purely transcendental

extension of K such that L/K' is separable algebraic (i.e. the minimum polynomial of
every element of L over K'has distinct roots).

(1.10) Lemma. If the field k is perfect, then the field k(X) is separably generated
over k.

Finite fields and fields of characteristic zero are examples of perfect fields.
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IL. Divisors on algebraic curves.

1. Let X be a smooth projective curve over k. A divisor is a formal linear combination
D =X npP
where the sum is over all closed points of X, the coefficients are integers and are almost
always zero. We can add divisors formally and obtain a group : the group of divisors
Div(X). A divisor is called effective if all np are non-negative. The degree of a divisor is
deg(D) =X npdeg(P)
with deg(P) = [ky:k] the degree of P. (Recall that ky=k(P) is the residue field of P, see
Lecture 1.) The subgroup of divisors of degree zero is denoted Divo(X).
Let f be arational function on X. Then we define the divisor of fas
®=ZvpdP,
where vp(or ordp) is the discrete valuation associated to P. So we count the number of
zeroes minus the number of poles with their multiplicities. For a given f in k(X)* we can
assume-- after extending the field of constants if necessary -- that all points P in the
divisor of f have degree one. Let f: X — Y be a non-constant morphism of non-singular
projective curves. Let P be a pointon Y and let t be a local coordinate at P. Let
Pj,...,Pr be the points on X lying over P. We define
P(P) = L] VRi(F*D) P;.

This does not depend on the choice of t and is a finite sum. By linear extension we thus
getadivisor f*(D) on Y forevery divisor D on X :f*(Z npP) = T npf*(P). We call
it the pull back of D under f.

Let f € k(X) be a rational function . We shall use the following theorem:

(2.1) Theorem. Let f be a non-constant morphism of non-singular projective curves.
Let P be a closed point of Y. Then one has : degf*(P) = deg f -degP with degf=
kX) : k(Y)). g

(2.2) Corollary. The degree of a divisor of a rational function f is zero.

Proof.Note that f defines a morphism ¢: X — P1. Then one has : deg(f) = deg 6*(0) -
deg ¢*(c). ¢

To the smooth projective algebraic curve X we can now associate the group

DivX)/{(f) : f € k(X)*).
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This group is called the divisor class group and plays a crucial role in the theory of
algebraic curves. It is denoted Pic(X). Its elements are the equivalence classes under the

equivalence relation :
D=D" if and only if D'— D = divisor of a rational function.
This equivalence is called linear equivalence. Linearly equivalent divisors have the same

degree. We shall discuss the divisor class group later.
Let D be a divisor on a curve X. We consider the following vector space over k:

LD)=(fe kX)*: (H+D20} U {0}

o . r
where 2 means: all coefficients are 2 0. That is, if we write D = 7—11..:1 n;P; — Ei=1miQi

with all n;,m; 2 0, we consider all functions f in the function field which have zeroes of
order atleast mj at Q; and that may have poles of order at most nj at Pj. We claim :
L(D) is a finite dimensional vector space over k .Indeed, first we observe that if D and
D' are linearly equivalent then L(D)=L(D) by f-—fg if (gy=D-D".

(2.3) Lemma. We have L(D) = {0} if deg(D) <0 and dimg L(D) <1 + deg(D) for
deg(D)20.

Proof. If deg(D) <0 then deg((f) + D) = deg(D) < 0 for any function f € k(X)*,s0
L(D) = {0}. If deg(D) 2 0 then either L(D) = {0} or there exists a divisor D'2 0 with
D'=D (namely D'=D + (f) forafunction f#0 in L(D)). Since L(D) = L(D') we can

replace D by D'. Therefore we may assume that D = E-n;l n;iP; with n; 2 0.An element

of L(D) determines for i=1,...,.m an element of t”“iOpi/Opi. This gives a linear map
£ L(D) -2, MOp/Op,.

The kernel is k forif £f) =0 then fe Op; forall i and hence f is regular everywhere.

But then f is constant. Hence
dim L(D) <1+ Z; dimy t™iOpy/Op;

<1+ 30 njdeg(P)

< 1+ deg(D). 0
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The computation of the dimension £D) of L(D) is known as the problem of
Riemann-Roch. For more about this problem see later on. The projective space PLD))is
denoted. [D|. By associating

f - (H+D
one gets a bijection

Dl ¢ {D'e Div(X):D'=D,D'20 }.

The projective space |D! is called the complete linear system associated to D, a projective
linear subspace of |D! is called a linear system. If D and D' are linearly equivalent then
L(D) is isomorphic to L(D') via f - fg with g a function with divisor D'-D. Linear
systems on curves are important because of their relation with morphisms. Let V¢ L(D)
be a linear subspace. Choose a basis fy,....fa of V. Then we can define a rational map
X - PMby: x — (fo(x): ... :fa(x)), hence a morphism by (1.6). Conversely, let £: X —
P" be a morphism such that the image is not contained in a hyperplane. Any hyperplane h
=0 in P™cuts out a divisor on X. All these divisors are linearly equivalent.

2. Let X be an affine variety over k. We define a k[X] -module Q[X] as follows. It
is generated by elements df, f € k[X] with the relations: d(f+g) =df +dg, d(fg) = fdg +
gdf, da =0 forall ae k. The elements of Q[X] are called regular differential forms.

For a quasi-projective variety X, consider the following data: an open covering
{Ui} of X with affine open sets and a collection of regular differential forms w;e Q[U;]
such that on the intersections U; N Uj we have o = ;. We consider two such data
{Uj,oi}, {Vin;) equivalept ifonall UinV; wehave ;= Mj- An equivalence class is
called a regular differential form. For an affine variety this yields the same as before. We
denote it again by Q[X].

We can view a regular differential form as a rule which associates to each closed
point x of X a linear function on the tangent space Tx (=Homy(m/m2k)). In fact if X
is affine and f e k[X], then let dxf be the linear part ofs f£-f(x) in m/m2.Then x — dyf
is such a rule defined by df.

(2.4) Example. Let X bea non-singular plane curve of degree d in P2 given by an
affine equation f= 0. Then we can define regular differential forms on X (in affine
coordinates X,Y) by

0 =g dX/fy =-g dY/fx,
where g is an arbitrary polynomial of degree <d-3 in X,Y.( Note that we have fxdX +
fydY = 0.) Working out the expression for @ in the other affine parts of P2 one sees that
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the condition that the degree of g < d-3 is necessary and sufficient in order that the form
® is regular there.The dimension of the space of such polynomials g is

(dz—l) 2 @=Hd-2) )

If P is a smooth point on a curve C, then there exists a neighbourhood U of P
such that Q[U] is a free k[U]-module with generator dt, where t is a local parameter in
P.

In analogy with the definition of rational functions we can define the concept of a
rational differential form: consider pairs (U,0) with U anon-empty open set and ® a
regular diffferential form on U. Define an equivalence relation

U = (V) & ow=1n on UNV.

For an affine variety we find that the k(X)-module of rational differential forms equals
k(X) Q[X] . It is generated by elements df with f in k(X), where for gh in k(X)* we
have the rule  d(g/h) = (hdg — g dh)/h2.

(2.5) Example. Consider A! with coordinate X. On Al the expression dX definesa
regular differential form. On P! the pair (A1,dX) defines a rational differential form, If
Y= 51? is a local coordinate near the point (0:1) at infinity we have dX = '-—Y—lidY and we

see that the rational differential form is not regular on P1.

Two rational differential forms differ by a rational function on X. Hence the
module of rational differential forms over k(X) is of dimension 1 over k(X). Another
interpretation of this module is as the dual of the module of derivations. For all this we refer
to [5].

Let @ be arational differential form on a smooth curve.We can write near a closed
point P the form @ as ® =fdt with f=fp arational function and t = tp a local parameter.
We can define the divisor of the differential form ® by

(®) = Zpordp(fp) P,
where ordp is the valuation of the local ring Op. The divisor class of a rational differential
form on X is called the canonical divisor ¢lass of X and denoted by K .Often also a
representative divisor is denoted by K. The canonical divisor class is well-defined because
the quotient of two rational differential forms is a rational function on X. We can interpret
the space L(K) , where K is the divisor of «© as a space of differential forms: by
associating to fe L(K) the regular differential form fw we get an isomorphism of k-
vector spaces between L(K) and the space Q[X] of regular differential forms on X.
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(2.6) Definition. Let X be a smooth projective curve defined over k. The dimension
dimg L(K) iscalled the genus g of X.

(2.7) Proposition. If X is a smooth projective curve over k and ki/k is a separable
field extension then the genus of X as a carve over ki equals the genus of X over k.

Since we shall work over finite fields we can and shall use this fact often .We refer
to [1] for a proof.

Let P be a closed point on a smooth curve X and let @ be a rational differential
form on X. We define the residue of @ at P as

respw= Traj,
where we write ® as ® = X a; ti dt with t a local parameter at P and where Tr is the
trace map from the residue class field k(P) of P to k. Since the point is not necessarily
of degree 1 we must take the trace to land in k. Of course, one must check that this
definition is independent of the choice of a local parameter. This is a bit tedious but can be

done; see [3] for a proof. A basic result from the theory of algebraic curves is the
following theorem.

(2.8) Theorem. If  is a rational differential form on a smooth projective curve, then the
sum of the residues of ® iszero:
Zprespw =0,

where the sum is over all closed points of X.

The idea of the proof is to check this on P! and then represent a curve as a branched
cover of P! and to check what happens under a morphism, see [3].

3. The famous theorem of Riemann-Roch gives a (partial) answer to the problem of
Riemann-Roch.

(2.9) Theorem of Riemann-Roch. Let D be a divisor on a smooth projective curve
X of genus g. Then

dimgL(D) - dimgL(K-D) =deg(D) + 1 — g.
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We do not prove this theorem here, but refer to the literature cited above for various
proofs: {11, [2] ,[3] .
A divisor for which L(K-D) # 0 is called gpecial.

(2.10) Corollary. We have deg(K) =2g - 2.
Proof. Take D =K. Then we find
dim LK) — dimiL(0) = deg(K) + 1 — g.
But by definition dimx[.(K)=g and since everywhere regular functions are constant we
have dimgL(0) = 1.

(2.11) Remark. Let D be a divisor of degree 1. Then dim L(D) <1 unless the genus
= (. Indeed, if dim L(D) =2 we take f,g linearly independent from L(D). Then Q —
(f(Q):g(Q)) gives a morphismof X to P! which is an isomorphism since any non-zero
function from L(D) has only one zero and one pole which implies by Theorem (2.1) that
the degree of the morphism is one, i.e. k(X) =k(®1).

(2.12) Definition. By a gfi we mean the linear system of effective divisors linearly

equivalent to a given divisor D (i.e. P(L(D)) with r+1=dimL(D) and d=deg(D).

(2.13) Definition. A curve X of genus g2 2 is called hyperelliptic if its function field
has an involution i such that the fixed field of i is isomorphic to k(x)}, the field of rational
functions. Equivalently, if there is a morphism of degree two onto P1.

On a hyperelliptic curve there is a unique g; which is the pull-back of the unique

gi on P1, i.e. the linar system of divisors P+P', where P,P' are two points with the same

image under the map of our curve to PL.

Let X be a smooth projective curve of genus g2 2. The functions in L(K) with
K acanonical divisor forma g-dimensional vector space and define a morphism

¢:X - Ppg-l
by P-— ({i(P): ...: fg(P)) with the fj abasis of L(K). In fact, by the Riemann-Roch
theorem we can check that always one of fi(P) is non-zero: dim L(K-P) —dim L(P) =g -
2 and dim L(P) = 1 by the remark above. So dim L(K-P) = g-1.We find a well-defined
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morphism. Of course , it depends upon a choice of a basis. If fi' is another basis and if
¢' is the asssociated morphism then ¢' = ¢- g with g an automorphism of Pg&-1.
Despite this element of choice, the morphism ¢ is called the canonical map. Suppose that
¢ identifies two different points, say Pj;,P;. Then L(K-Pp) = L(K-P;-P2)= g-1.By
Riemann-Roch:

dim L(K-P3~P7) — dim L(P1+P2) = g - 3.
Hence dim L(P1+P2) = 2. Then L(P;+P;) defines a morphism of degree 2 on Pl A
curve which admits a morphism of degree 2 onto P1 is a hyperelliptic curve. We see :
the canonical map is injective if and only if X is not hyperelliptic. In fact, by applying the
argument above also for P; =P, we find that if X is not hyperelliptic, then ¢ is an
embedding (isomorphism onto its image).

As an example, take a curve of genus three which is not hyperelliptic. Then its
image under the canonical map is a non-singular curve of degree 4 in P2.

4. In view of the theorem of Riemann-Roch it is important to be able to determine the genus
of acurve. Let X be a non-singular projective algebraic curve of degree d in P2, Then
one has the well-known Pliicker formula:

g = 5(d-1)(d-2).

For example, the Klein quartic has genus three if the characteristic is not 7(because the
curve is singular in that case). A basis for the regular differential forms is given by (in
affine form)

0= XdX/fy =-XdY/fx, wz=YdX/fy =~YdY/fx, w3=dX/fy=-dY/fx.

If the curve has mild singularities, then one still has a simple formula for the genus
of a non-singular projective curve Y whose function field is isomorphic to k(X). E.g. if
X hasonly m ordinary double points (the mildest type of singular points : in an affine
equation such that the singular point is (0,0) the lowest order terms are quadratic and this
defines a conic which is the union of two distinct lines) then

g=d-1)d-2)-m.

Another way to determine the genus is to present X as a branched covering of
another curve of which one knows the genus. So let ¢:X — Y be a non-constant
morphism. The degree of ¢ is defined as degd = [k(X):k(Y)], the degree of the field
extension k(X)/k(Y).
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Let P be aclosed point of X andlet Q be its image. Choose a local parameter t
in Q. Using ¢ we can pull it back to an element of the local ring of P: ¢*te Op. We
define the ramification index ep of ¢ at P as

ep = ordp(d*t).

If ep>1 then P is called a ramification point and Q is called a branch point. If char(k)

~ =0 or char(k)=p>0 and p doesnot divide ep then the ramification is called tame.

If char(k) ep then we say that there is wild ramification.
Suppose now moreover that ¢ is separable (i.e. k(X)/k(Y) is a separable field

~ extension). We define the ramification divisor R on X as follows. Let dt be the

differential of t at Q. Pullitback to X : ¢*dt. Thenif s is alocal parameter at P we

define
rp = ordp(¢*dt/ds)

and

R=Zp rpP.
If the ramification is tame then rp=ep— 1, otherwise rp> ep— 1. The Hurwitz-Zeuthen

formula now computes the genus of X in terms of g(Y)and deg(R):

- (2.14) Theorem. Let ¢ : X — Y be a non-constant separable morphism of non-singular

projective curves. Then
2g(X) -2 = deg(¢)(2g(Y) - 2) + degR.

(2.15) Example. Let k=F3, Y =Pland let X be the non-singular projective curve

+ defined by the function field k(x,y) with y2+y=x5+ 1. We have an involution y -y
~ +1 on k(X) with fixed field k(x) = k(P1). The field extension k(x,)/k(x) corresponds

to a morphism ¢ of degree 2: X — Y.Restricted to the affine part Al with x as

- coordinate we can give X by the affine equation y2+y=x5+1 and ¢ by xy) = x.

No closed point of Al is a branch point. The inverse image of Qw =(1:0) € P! is the
point Pe, which corresponds to the discrete valuation Ve, with Vee(x) =—2, Ve(y) =—5. A

- local parameter t at Qe is 1/x,at Po itis s=xZ/y. We have d(y2 +y) =d(x5 + 1),

which gives dy = x4 dx. Since veu(x2/y) = 1, Veo(d(x2/y)) = 0 we find voo(dy) = 6,
Voo(dx) = 2. Therefore,
1P, = Veo(d(1/x)/d(x2/y)) = 6.
Moreover, rp =0 for all other points P of X. We find
gX)=2(=2) +6=2.
A basis for the 2-dimensional space of regular differentials is
dx, xdx. ‘ ¢

53

5. Let Pic(X) be the group of divisor classes on a curve X. We have a surjective map
PicX) > 2Z [D] — deg(D).
whose kernel is denoted Pico(X).

(2.16) Definition. An elliptic curve is a curve of genus one together with a point of
degree one.

(2.17) Proposition. Let (E,P) be an elliptic curve over a field k. For every extension
field K of k we have a bijection E(K) - PicO(X)(K) given by Q —[Q-P]. Here E(K)
(resp. PicO(X)(K) ) denotes the set of K-rational points of E (resp. the group of divisor
classes of degree zero defined over K).

Proof. Let D be a divisor of degree zero over K. Then D+P is a divisor of degree one.
By the Riemann-Roch theorem L(D-+P) has dimension 1. Hence there is a unique point Q
over K with Q=D + P. So the map is surjective. Suppose that Q and Q' have the same
image. Then Q = Q' and since dim L(Q) = 1 we find Q=Q. 0

Using this proposition we can define on E an addition @ such that E becomes a
group with P as the identity element. Using the functions in L(3P) -- which is 3-
dimensional -- we can map E to P2 such that the image is a non-singular curve of degree

3. We can normalize the equation such that it has the (affine) form (so-called Weierstrass
form)

y2 + aixy + a3y = x3 + apx2 + agx + ag.
The identity element of the group is then (0:1:0). The addition is characterized by the fact
that for any triple Q,R,S of pointson E we have : Q®R®S =0 in the group if and only
if Q,R,S are the three intersection points of E wiih a line given by L=0. Indeed, the line
Z=0 cuts out on X the divisor 3P. The divisor of the function L/Z is Q+R+S-3P
giving the relation QOR®S =0 . The converse is equally easy.

There is a vast literature on elliptic curves, see e.g. [4] .
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II. Goppa Codes.

1. Let X be a non-singular projective curve defined over the finite field Fq. Goppa had
the beautiful idea of associating to a set of distinct points Py,...,Py on X acode by
evaluating a set of rational functions on X in the points P; [see also Section 5 of Van
Lint's lectures]. To be precise, let Pj,....P, be rational points of X over Fq andset D=
P1+ ... +Pn. Let G be a divisor. We assume first that G has support disjoint from D
(i.e. the points P; occur with multiplicity 0 in G).

(3.1) Definition. The linear code C(D,G) of length n associated to the pair (D,G) is
the image of the linearmap o L(G) — F;‘ defined by

f = (EPy,...f(Pw)).

Such a code is called a Goppa code. Let us compute the parameters of this
code.The dimension k of this code C(D,G) is given by

k = dim C(D,G) = dim L(G) — dim I(G - D).
Indeed, if f belongs to the kernel of o then fe L(G ~ D). The minimum distance d of
C(D,G) satisfies

d2n —deg(G).
Indeed, if the weight of «(f) is d then f vanishes in n-d points Pj,s0o () +G - Py~
«« — Pj(n—q) is an effective divisor. By taking degrees : deg(G) ~n+d 0.
Let us remark here that for reasons of degree: dim L(G -D) =0 if deg(G) <n.

Remark. If G and D do not have disjoint support we still can associate a code to the
pair (D,G), but no longer in a canonical way. We choose a rational function t on X such
that ordp;t = multiplicity of P; in G. We then associgte to f a code word via

f = ((f)P1),....(E)(Pp)).
If we choose a different t then we get an equivalent code, see (3.19).

There is a second code that we can associate to the pair (D,G). Let us define for a
divisor E the vector space

(E) = { @ : ® arational differential form with (w) 2 E }u {0}.
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(3.2) Definition. The linear code C*(D,G) of length n associated to the pair (D,G)
is the image of the linear map o*: Q(G-D) — F; defined by

n - (resp;(M),...resp (M)

[Alternatively,since we can identify Q(G-D) with L(K+D-G) via n— n/o,
where @ is a fixed rational differntial form with divisor K, we can identify the image of
o* with the image of

B*: L(K+D-G) — F“, f— (resPl(fo)),.‘.,resPn(fw).]

Again let us compute the parameters of the code. The dimension k* is given by
k* = dim L(K+D-G) - dim L(K-G).
In particular, o* is an injection if deg(G) > 2g - 2. For the minimum distance we find:
d* 2 deg(G) +2 - 2g.
Indeed, suppose that o*(fw) has Hamming weight d*,ie., fo isregularin n—d* points
Pi(1),-Pi(n-d*). Then fe L(K+D - Pjqy—...~ Pi(n-d*) — G), so 2g -2 +n — (n~d*) —
deg(G) 2 0.

(3.3) Proposition. The codes C(D,G) and C*(D,G) are dual to each other. _
Proof. For fe L(G) and gw € L(K+D-G) we have <a(f),a*(gw)> = Xj
resp;(fgw) = Zay p resp(fga)) =0 by the residue theorem, hence they are orthogonal.We

have k + k* = dimL(G) — dimL(G-D) + dimL(K+D-G) ~ dimL(K-G) = n by the.

Riemann-Roch theorem. ) 0

(3.4)Remark. Algebraic geometry tells us that there is an exact sequence

0 — HO(X,0(G-D)) — HO(X,0(G)) —» Fr:l - HU(X,0(G-D)) — HY{X,0(G)) — 0.

We can identify this sequence with ‘
0 = LG-D) —» LG) % ,Fg -E> QG-Dy* - QGY* — 0,

where B is the dual of our map o*. This explains the duality of codes. More explicitly :

(3.5) Lemma. There exists a rational differential form @ with simple poles with residue
1 inall P; (i=l,...,n) such that C*(D,G) = C(D,K+D-G) with K the divisor of o.
Proof. Let o be a differential form as in the lemma. Then we have a commutative
diagram:
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Q(G-D) = L(K+D-G)

dox | al
no_ n
Fq. = Fq

where the upper arrow is an isomorphism which sends N to N/w. The Riemann-Roch
theorem tells us that a form @ as required exists. = ' 0

(3.6) Remark. This shows that the second construction gives the same class of codes as
the first. In parﬁbular all results that we derive for the codes C*(D,G) can be carried over
to the codes C(D,G) and the reader can choose to work with the C*(D, G) or the C(D,G) as
he prefers. We shall mainly work with the C*(D, G)

3.7 Example. Let X be the projective line P! over Fq.We choose for D the g-1
points of P! minus the origin Py and the point at infinity Pe and for G a multiple tPo.
of the point at infinity. If we choose as basis for L(G) the functions 1,t,...tf then the
code is given by a matrix whose ij-th entry is ol with a a generator of the cyclic group
Fq The code” C(D,G) that we find is a so-called Reed-Solomon-code. This code is a

MDS-code. In fact all Goppa codes obtained from curves of genus zero are ‘optimal or
MDS as we shall see in a moment. A variation : if we take for G a divisor of the form Py
+ sP.. we find examples of the so-called BCH codes (as was first observed by Michon
(3D.
(3.8) Remark. For the code C(D, G) one has if deg(G) <n:

k+d2n+(1-g).
Indeed,we have k =dimL(G) — dimL(G-D)=deg(G)+1~g and d 2 n—dcg(G)
In terms of the invariants 8 and R we thus have

8+R21+(1-g)n.
In particular, for the codes coming from curves of genuss zero, one has n=k +d - 1, ie.
the Singleton bound is reached. So we find : .

(3.9) Corollary. If g=0 then C(D,G) is optimal.

More gcnerally,'if we suppose that deg(G) 2 2g-2 we have (writing 'd- for d*)
for the geometric Goppa code C*(D,G)
 deg(G)+2-2g <d<deg(G) +2-g,
where the right hand side is the Singléton bound.



"(3.10) Theorem.The minimum distance d of C*(D,G) is the smallest number of

~distinct points Py(1),...,Pi(g) from D such that in Pic(X) we have

G-K = zj::l Pi(j) -Q,

where Q is an effective divisor on X with support disjoint from Pi(1),..-,Pi(d)-

" Proof. Let fe L(K+D-G) and suppose that there are exactly r points Pj, say Py,....Py,
__where fo has a pole. Then we have

()= -Z5_Pi +G+E with E20,

i.e. in terms of divisor classes
G-K= P+ ...+P;,-E. ¢

The special case g=1 of this theorem was treated by Driencourt and Michon in [4].

Another way of phrasing this is as follows. Let D' <D be an effective divisor

contained in D. Let r be the degree of D'. We have L(K+D-G) ¢ L(K+D-G). If
—~L(K+D'-G) # {0} then C*(D,G) possesses a codeword of weight <. To find the

___minimal distance we have to look at the divisor D' <D of smallest (positive) degree such

that L(K+D'-G) # {0}. Also the weight distribution can be read off from these spaces.For

—-example, the number of code words with minimum distance d is (g—1) times the number

of effective divisors D'< D of degree d which are linearly equivalent to a divisor of the

" form G-K+E with E>0.

Dually, the code C(D,G) has minimum distance n—d where d is the maximum

degree of a divisor D' with 0<D'<D and L(G-D") = 0.

2. As we shall see, determination of the actual value of d or the number of code words

with a given Hamming weight leads to very subtle questions on the geometry of the curve

" in question. We shall work this out in some detail for a number of curves.

@311 Example. Let X be the curve in P2 given by X3+ Y3 + Z3 = 0. This curve has

~ 3 points over F2,9 points over F4, and 9 points over Fg . In fact the number of points

over Fqwith g=2f is 2r+1 if ris not divisible by 2, and equals 22k+] + (~1)k+12k+1

" if r=2k. The nine points over F4 are flex points and they give the points of order three in
-~ the group. Choose G as a point of degrec 3 over F, (consisting of 3 new points Q;

(i=1,2,3) of degree one over Fg), and as D the sum of the nine points defined over Fy.
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L(K+D-G) has dimension 6. We geta [9,6,23]-code C*(D,G) over F4.The curve
isan elliptic curve with origin (1:1:0). We have : d = 3 if and only if Q®Q2®Q3 = point
of order three in the group. This is the case because this sum is a point over F2 and all
points over F» are points of order 3. The configuration of the nine points of order three
has a large automorphism group : the group of affine transformations of AZ(F3).

(3.12) Example. Let X be the Klein quartic : X3Y + Y3Z + Z3X = 0. We take for D
the divisor consisting of all 24 points of X defined over Fg. Over F4 there are two new
points (of degree one). They define a point of degree 2 over F», call it B. They are the
intersection points with the bitangent line X+Y+Z = 0. (A bitangent line is a line which is
the tangent line for two distinct points of X.) Let G=mB with 3<m<11 andtake D =
divisor of all points of X defined over Fg. We have for the code C=C*D,G):
n=24, k=26-2m, 2m + (2-g)2d 2 2m + (2-2g) with g=3.

If we take m=3, then d>2. We have d=2 if and only if L(-B+D") # {0} with D'<D a
divisor of degree 2. (Note that K = 2B.) Suppose L(-B+D") # {0}. Then the two points
of D' are the two intersection points of a bitangent since 2D'= K. But the points over
Fg are flex points, so the tangent there is not a bitangent.( A flex point is a point where the
tangent has at least a threefold intersection with X .) So this is not possible and d=23.
Again, d=3 if and only if there exists a divisor D'S D of degree 3 with L(-~B+D") # {0},
i.e. there exists a point E (of degree one) over Fg such that E + B = D'. But then they
belong to a gg and we can find a point Q over Fg such that

E+B+Q=D'+Q=K.
(In fact, by Riemann-Roch one has dim L(D") ~ dim L(K-D") = 1, and we know dim
L(D") 2 2, therefore dim L(K-D") 2 1.) This means that E+ Q =B, ie. 2E+2Q=2B =
K, i.e. E,Q are the two intersection points of a bitangent. But we do not have bitangents

which are tangent in points rational over Fg. Therefore d>4. By the Hamming bound d
cannot be 5. ’

(3.13) Proposition. Let X be the Klein quartic X3Y + Y3Z + Z3X =0 in P2 over
F2. If B is the divisor of degree 2 over F» corresponding to the bitangent X+Y+Z =0
and if D is the divisor consisting of all. 24 flex points (defined over Fg ) then the code
C*(D,G) with G =3B over Fg has parameters [24,20,4].
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The fact that d«5 implies that there exists a divisor D' with 0 £ D' <D of degree
4 such that L(D-B) # {0} , i.e. there exists an effective divisor E of degree 2 over Fg
such that D' =B + E. One can take E= B.

We can try to get good codes from this curve with G=mB and m 2 5. However,
here one cannot improve above the minimum value for d : [nk,d] = [24,26 - 2m,
2m - 4]. In fact let us show this for m =5 and for m=11(see also (3.14)). Then 6<d
£9. We have d=6 if and only if there exists a divisor 0 <D'<D with LK+D'-5B) = {
0 }.,i.e. D'=3B. This happens if and only if D'+B = 2K, i.e. there exists a conic which
passes through B and the six points of D'. For suitable D' such a conic exists: XY + XZ
+YZ=0.50 d=6 for m=5. For m=11 we have d=18 if and only if there exists a
divisor D'< D of degree 18 with G-K=~9B = D', Now D = 6K = 12B, therefore 9B
=D' if and only if 3B = D-D'. As we saw above we can find sucha D',

By suitable concatenation one gets reasonably good codes over F3. Indeed,
applying a [4,3,2] -code, i.e. viewing each element of Fg as a vector of leng*h three over
F2 and replacing it by its image in Fg under the linear map defined by the [4,3,2]-code,we

obtain from the [24,20,4]-code over Fg a [96,60,8]-code over Fa. This comes up to
the world record for codes of this length.

The question whether a divisor class can be represented by an effective divisor D' <
D is a subtle one. We give an example of a special case.

(3.14) Proposition. Let D be a divisor of degree 4 on the Klein curve over Fg. Then

there exist four distinct points (of degree one) such that D is linearly equivalent to their
sum.

Proof. By Riemann-Roch dim L(D) =1 or 2. If dim L(D)=2 then D =K and the
result is clear: take any four distinct points on a line. If dimL(D)=1 and D is of the form
Py + gé then since any g:l,, can be written as a sum of three distinct P; (different from

P1) we are again done. If dim L(D) =1 and D is not of the form P+ g;' then L(D)

defines a map of degree 4 onto PL. If a fibre of this map contains four distinct Pj's we
are done. If not, then each of the nine fibres contains at most three Py's . If there are three
Fg -rational points in the fibre at least one of them must be a ramification point (otherwise
the fourth point is also Fg-rational). By the Hurwitz formula we can have at most six
such fibres. On the other hand there must be six fibres with three P;'s (since there are 24
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points Pj) and three fibres with two points of degree one over ¥g .The fibre over a point
over F contains either only Fg-rational points defined over F2 or contains three points
rational over Fg which are permuted transitively by the Frobenius morphism (which raises
the coordinates to their second power) and are then all ramification points which is
impossible. Therefore, the three fibres over points over F3 can contain together only three
points Pj, namely the Fa-rational points. This is a contradiction. 0

Using this proposition one can determine the minimum distance for many codes
C*(D,G). For example, if G is of degree 12 and D is as above, the sum of all Fg-
rational points then d = 8. Indeed, G-2K is of degree 4, hence can be written as sum of
four distinct points P+ ... +P4. Choose a line which intersects the Klein curve in four
points Ps,...,P3 of degree one distinct from Pi...P4. We have G-X = Pj+ ... + Pg,
hence d = 8.

(3.15) Example. Let X be the hyperelliptic curve of genus 2 over Fy defined by
Y2+Y=X5+1.

(The genus can be computed by the Hurwitz-Zeuthen formula, see section 2.) It is a

twofold cover of P! ramified over the point at infinity.We denote byi the hyperelliptic

involution. Let Po be the point of X lying over the point at infinity. The number of points
over Fok is 2K+ 1 unless k =4m. In that case the number of points over Fok is 24m

+ 1+ (1m+122m+2 S gver F,4 we find 33 points : Pee and over each of the 16
points of the affine line two points P and i(P). We now let D = sum of all 32 points
over F24 different from Peand G = mPe. with m 23. For the code C*(D,G) we find n
=32,k=33-m and m-2<d<m. ,

Suppose d = m - 2. We have : there exists a divisor D'<D of degree m—2 such
that D' = (m~2) Pw. This is possible for m even by taking (m-2)/2 pairs of conjugate
points. We now assume that m is odd.Then D' = (m—2) Poo is impossible if m =3 since
X is notrational. Next let m=35. We have: there exists a divisor D' €D with D' = 3P...
Then 2D'=2K. The hyperelliptic involution i acts as the identity on I2K! since L(2K)
is generated by products of elements of L(K), hence 2D' is a 2-canonical divisor invariant
under the involution. But then also D' is invariant . This contradicts the fact that deg(D")
=3, Next, let m=7. Then we can finda D' with D' = (m-2)P., . Indeed, the points
lying over the 5 roots of 1 on the affine line with Y=0 form a divisor linearly equivalent
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with 5P.. By adding a suitable pair of two conjugate points P +i(P) one gets a D' of
the required form. We have proved:

(3.16) Proposition. Let X be the hyperelliptic curve over F, defined by Y2+ Y = X5
+1 andlet G = mP. with 3<m <31 andlet D be the sum of all points of X over
Fi6 minus Pe. Then the code C*(D,G) over Fi¢ is of type [32,33-m,d] with d =
m-1 for m=3,5 and d = m-2 otherwise.

Let m=3 as in (3.16). We determine the number of code words with Hamming
weight 2. The number of code words of weight 2 equals 15 times the number of effective
divisors D'<D ofdegree 2 suchthat D'=G-K+E=P.+E for E a point distinct
from D'. Then D' isa gé , but on a curve of genus two there is only one g;, namely

12Pol. We see that there are 16 such divisors D', all of the form P + i(P) with P # Pe.
We find 16-15 = 240 code words of Hamming weight 2.

(3.17) Example. Let q = pZk, r=pk. Let X be the curve in P2 given by Xr+! + Yr+l
+Zr+1 = 0. On this curve we have an involution given by (x:y:z) — (xT:yr:zl). Set X' =
Xr+1 etc. This curve can then be written as XX'+ YY'+ ZZ' =0, the so-called Hermite
form. The genus of this curve is g = (q—Vq)/2. The number of rational points over Fgis
1 + qVaq. (So here the Hasse-Weil bound is reached, see next lecture.) We leave it as an
exercise for the reader to determine the minimum distance for some codes C*(D,G) for the
case X4+ Y4+Z4=0 over the field Fo.

3. Let us check what the self-duality of Goppa codes means. For this we introduce the
following equivalence relation on linear codes in Fq If C,C' are codes in Fg of the same

dimension then we call them equivalent if there exists an element a = (ay,..,a,) € (F:l)“
such that aC = C' (coordinate-wise multiplication).Note that this notion of equivalence

differs from the one defined in Van Lint's lectures. In this section we shall use it only in the
sense defined here. The following is obvious.

(3.18) Proposition. If two codes are equivalent then their weight distributions are equal.
Y
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(3.19) Proposition. Let D = £ P; be-a divisor on X as before and suppose that G, G'
are linearly equivalent divisors with support disjoint from D. Then C(D,G) and C(D,G")
are equivalent. Also C*(D,G) and C*(D,G") are equivalent.
Proof. Let ge k(X) with (g) =G — G In particular, g(P)) # 0, i=1,...,n. Then we
have an isomorphism

L(G) —» LG), f-fg
This gives C(D,G") =aC(D,G) with aj = g(P;).Similarly, the isomorphism

LK+D-G) » LEK+D-G), f-fg
gives C*(D,G") = aC*(D,G). 0

Therefore, if we are only interested in the parameters nk,d and the weight
distribution of a code C (D,G) we can always replace G by a linearly equivalent divisor
G .

(3.20) Proposition. Suppose that 2G = K + D. Then the code C(D,G) is equivalent
to C*(D,G). ,

Proof. C*(D,G) equals C(D,K+D-G) with K as in the lemma above. But C(D,K+D—
G) is equivalent to C(D,G). 0

Self-dual codes have been studied by Scharlau and by Stichtenoth , see [5],{6].

(3.21) Examples. The [32,16,15]-code over Fi¢g obtained from the curve Y2+ Y = X5
+ 1 is formally self-dual, i.e. equivalent to its own dual. Also the [24,12,10]-code
obtained from the Klein quartic is formally self-dual. ¢

The following theorem gives a sufficient condition for self-duality. For simplicity
we shall assume that G and D have disjoint support. |
(3.22) Theorem.Suppose that G > 0 and that deg(G) <n. Suppose that n = 2k and
that there exists a diffferential form ® e Q(2G-D) with resp(®) =1 forall P in D.
Then C*(D,G) is self-dual.

Proof. If we Q(2G-D) hasresidue 1 atall P e D then we have : foe Q(G-D) for
all fe L(G). But then a*(f) = B*(fw), so CD,G) c C*(D,G) = C(D,G)+ , and for
dimension reasons C(D,G) = C(D,G)-. 0
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(3.23) Remark.i) The converse of the proposition (C(D,G) equivalent to C*(D,G)
implies 2G = K+D) does not hold.

ii) We can find a divisor class G such that 2G = K+D if and only if D is a square in
Pic(X). This is a theorem of Weil, see [5].

4. It is not necessary to restrict to varieties of dimension 1. We give some examples of
geometric codes obtained in an analogous way from higher-dimensional varieties.

(3.24) Example. Let V = { f € Fy[Xj,....X], f homogeneous and linear}. Obviously,
X0,....Xr consitute a basis. Let Py,...,Pq be all points of PT(Fg), so n=(q™*! - 1)/(q-1)
and define a code C as the image of V Fg given by Xj— Xj(Pj). We find a

[n,r+1,q"]-code. This code is called a simplex code since all code words have the same

distance. (Dual of the Hamming code; see also the Coding Theory part, Theorem 6.10)
This code reaches the Plotkin bound: A(n,d) < d/(d-8n)=qr+1.

(3.25) Example. Let V = { f € Fg[X,...,X{] : f homogeneous of degree m}. We have

dim V= (“gr). Suppose m<q and P;,..,Py asin the previous example. Then the map

V- Fg, f — (...f(PD,...) isinjective and defines a [n,(mgr),d]-code C with

d=n-M,
where M = the maximal number of zeroes of feV.
Especially, if q=m=2, r=4 we find a [31,15,8]-code . In fact, the quadric with the
maximum number of points over Fq is the reducible one consisting of two planes. It has
[15+ 15—7 = 23] points. So d=31-23=8.
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IV. Counting points on curves over finite fields

1. The zeta function of a curve over a finite field.

-~ The classical Riemann zeta function

Us)=Z qnS  (s€C)

" is well-known. It converges for Re(s) 21 and can be extended to a meromorphic function

of s with a simple pole s=1. We can also write it as

i) =Ip(1- S, (Euler product)
where the product is over all primes (of Q). We can define a similar function for the
function field k(X) of a smooth projective curve X over a finite field Fq. Indeed, define
formally

{(X.s) = Ip (1- N@)5)1
= s N(D) = Iy qles®@)-s),

Here s e € . (For convergence see later.) Here the product is taken over all closed points
P of X and N(P) = # k(P) = q4¢8(® and the sum is over all non-negative divisors on X
and N(D) = qde2(P). For example, if X =P! and q=p then

{X.s) = (1- p5)~1 (1-p=s+1)-1,
We define

3 = g.c.d. of all degrees of effective divisors on X,
and

h = # Pico(X).

If there exists a divisor D' of degree m then # Picp(X) =# Picg(X) (via D—->D +D").

The number a, of effective divisors of degree n is given by

dimL(D)_]
[D] € Picn(X) q-1
Moreover, if n>2g-2 and n is a multiple of 8, then by Riemann-Roch this number is

b)

N4 1
an - h g—.——i‘:—!— .
q-1
We can write

LX,s) = Z(X.q%)
which defines a power series Z(X,t). It converges for |t < q-! (equivalently, Re(s) > 1).
We have

ZX 0 = Ezr;‘__fg apth +X7_, apsthd

(with e = (2g-2+8)/8, so that ed = smallest multiple of 8 larger than 2g-2)
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O e
= polynomial + =7 £ T (q"5+1-8-1) 5.

But
- 14842g-2+8 2g-2+48
n=e 1-(qt)® 115
So we get a rational function of t . We observe that it has poles of order 1 when t8 =1

and ®=q-9

Another expression for the function Z(X.,t) is given by

log Z(X,t) =  oo; Nettfr,, M
with N; the number of points (of degree one) of X over qu . This follows immediately
from the definition {(X,s) = [Ip (1- N(P)-S)-L. It is convenient to view the points over
qu as the fixed points of F¥ with F the Frobenius morphism on X which raises the
coordinates of a point to their g-th power.

The following theorem describes some very strong properties of Z(X,t).

(4.1) Theorem. i) The function Z(X,t) is a rational function of t.
ii) Z(X.t) satisfies a functional equation:
Z(X,q-1t1) = q1-812-28Z(X.t).
iii) We have the f%ctorization:
ZXn = Po(tﬁ(Pt;(t) '
where Pg= 1-t, Py = 1-qt, P1=Hig=1(1—ait)(l—ﬁtit) with a; (i=1,..,g) algebraic

integers of absolute value ql/2,

Part i) was shown above. Also part ii) is an easy consequence of the Riemann-Roch
theorem on X. In fact, one first proves the following lemma.

(4.2) Lemma. Let Zy(X,t) = Z(X/Fqn,t). Then
Za(Xm = TTg Z(X.40) ,

where the product is over all n-throots { of 1.

If one takes n = § then, since Z(X,t) = L apst® we have Z(X,{t) = Z(X,t), hence
Z§(X,18) = Z(X,)® . Now Zg5(X,t8) hasapoleof order 1 at t=1 and Z(X,))3 hasa
poleof order & in t=1,hence & =1.
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We now have

ZX) = 2 gaut = ¥ Sann + 3 Pt
dim LD) h 281
=Zpe Pic(X), 0<deg(D) < 2g_29""'aj‘—"t deg(D) _ Tt
LI
q-1 1qt
So we have -
22 j L@l 1
@DZXD = Znp 1 Zgeg) = 98 LO) +h{gle o 1)

Applying Riemann-Roch to this identity one easily deduces ii) of the theorem. Indeed, if
we replace t by t-1q~1 and multiply by ql-8t28-2, the two terms between the brackets
{ } areinterchanged, while t qdim L(D) goes to 128-2-n gdim L(K-D) by Riemann-Roch.

Part iii) lies deeper. It is a consequence of the analogue of the Riemann hypothesis
for curves over finite fields proved by Weil using intersection theory on the surface XxX.
Another proof using only Riemann-Roch was given by Stepanov,see [1]. Weil proved that
Nr—(1+q") = a; with I ar I < Zg\]q_". (The Hasse-Weil bound)
It follows from this that if we write

log Z(X,t) = Zig-:l log (1-0it) + ).‘.ig=1 log (1-Git) —log (1-t) — log(1—qt),

we have using (1)
Ne=qr+1-2% (af+al)

and we have |ai| < */q forall i. The functional equation then implies Iai‘ = ‘/q By
computing a; we thus can determine N forall 1.

For example, if g=1and we know N, then we know a1 +81.Using a1 Gy =q
we find oy and @;. Hence we then know the number of points over all extension fields
of Fg. For higher genus one has to compute more N in order to determine all o, For
example, consider the Klein quartic. Over F, there are three points as one can easily
check.Over F4 one finds 2 more points.Using the automorphism group one determines the
number of points over Fg; it is 24.These are the flex points.With this information and

using the functional equation one determines the shape of the zeta function of the Klein
quartic over Fy :
1+53+8t6
20 = o=y -
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Another example. Let X be the hyperelliptic curve Y2+ Y =X5+1 over F; .We find 3
points over F7 and 5 points over F4. This determines the oo =1+i,0p =-1+i.
The shape of the zeta function is )
_ (142t-2t2)(142t4212)
ZXD="—paam

[Remark. The numbers o; that come up here have an intrinsic meaning: they are
the eigenvalues of the operator induced by the Frobenius morphism on the first etale
cohomology group of our curve, see Hartshorne for references. Part iii) of Theorem (4.1)
is now analogous to the Lefschetz fixed point theorem in topology, where one expresses
the number of fixed points of an automorphism by means of the trace of the induced
operator on the (co)homology, see {8].]

One strategy for producing good codes with the help of algebraic curves is by taking
acurve X over a fixed field Fq with a lot of rational points, say Pi,....Pn and then by
putting G =mP; and D = Py+...4P,. This produces codes with

d+k2n+1-g
i.e. with

S+R21+ (1—';1-5) .

In order to maximize the yield asymptotically, one looks for a family of curves X with
NEX) =Ni(X) as large as possible. We define

A(Q) =lim supy I:(g(x)) ,

where X runs over all smooth projective curves over Fg (up to isomorphism over Fo.
From the Hasse-Weil bound we deduce immediately

AW@<2Vg.
Thara improved this bound as follows.

1

(4.3) Theorem.(Ihara [2]). We have A(q) < _‘12__“8“—1

Proof. The idea is very simple: if the @ have argument near —x then Nj is big; but then

the squares of the o; have arguments near 2w, hence N is small. However, we have
N1 € Nj. More formally, set aj= o+ &;. Then

q+1_zig=1 ai=N1$N2=q2+1+2qg"zi=1 aiz'

By the Schwarz inequality
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g T 2 Ch a2
we get
Nisq?+1+2qg-g 1 N1-q-1)?
ie.

2
N1 - 2q+2-g)Ny + (q+1)2 - (¢2+1)g - 2qg S O.

Hence we see

2N; <V (8q+1)g2 +(4q2-4q)g — (g—2q-2)
which implies

limsup%l-s %NSqH—l}. ¢

This bound was improved by Vladut and Drinfeld (using similar ideas) to :
(4.4) Theorem.(Vladut-Drinfeld [5]) One has A(q) £vq-1.

One can show using modular curves that this bound is exact for even prime powers : q
=p2m, see next lecture. Manin conjectured

(4.5) Conjecture (Manin [4]) One has A(p2m+l) =pm_1,

Serre proved that A(q) > 0. In fact, he proved that there exist a constant ¢ > 0
with A(q) >clogq.
Let Ng(g) be the maximum number of points on a curve of genus g over Fg.
(Do not confuse this notation with N;j(X).) By the Hasse-Weil bound one has
Ng(® < q+1+[2gVq)
This can be improved as was shown by Serre :
Ng(® < q+1+g[2Vq].
By a variety of methods Ng(g) can be determined for low genera and for various q. We
give a sample of the results from Serre's papers [6,7] :
Let q=p® with e21, m=[2Vq].
g=1.
Ng(D= g+m if ¢ odd,e23, and pdivides m
Ng()= gq+m+1 otherwise.
g=2.

Ng@)= g+1+2m unless if q satisfies one of the following
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q=4,9,
q not a square, p divides m,
qnot a square, of the form x2+x+1 or x2+x+2 with xeZ.
In these exceptional cases Ng(2) =q +2m or q+2m—1 or q+ 2m~2 (only if q=4).

A table for small q :

q 2 3 4 5 7 8 .9 11 13 16 17 19 .23 25 27
Ng(1) 5 7 9 10 13 14 16 18 21 25 26 28 33 36 38
Ng2 6 8 10 12 16 18 20 24 26 33 32 36 42 46 48
Ng3) 710 14 16 20 24 28 28 32 38 40 44 7 56 7

Of course one can also keep q fixed and vary g. For q=2 a table of results :
g = 01234567 8.9 1519 21 39 350
Na(g) = 3 56 7 8 910101112 17 20 21 33 40.

We see in particular that the Klein curve over Fghas the maximum number of
points : 24. The Hermite curves over Fg form a class of curves for which

#X(Fg) = q+l+gm. )
Curves for which (2) holds are called maximal. See [3] for other examples of maximal
curves.

If one knows the zeta function
TIE.; (1-060)(1-Bit)

(1-)(1-qt)
of acurve X over Fq then one also can determine the pumber of points on the jacobian

Z(X,0)

of X over Fq. This can be useful for the determination of the minimum distance as in
Lecture 3 and we just state the result.

(4.6) Proposition. The number of points of Pico(X)(qu) equals
I (1-0f)(1-05).
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(4.7) Example. Working this out for the jacobian of the Klein curve over Fz we find for
i = #Pico(X)(Fzr) : k=841 13'331- if r#0(mod 3) and J3; = (093 . Here the
ay are integers defined by the recurrence relation :

a3k+6 + Sazk43+ 8az=0 and a3 = -15, ,a6= 27.
So Ji= 14, Jo= 56, J3 = 143,
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V. Shimura curves and codes.

1. One of the problems of coding theory is to find codes over the field Fyq for which the
ratios g— and -ﬁ- (with d the minimum distance, k the dimension and n the word length)
are as large as possible. To a (linear) code we can associate a pair (8,R) with 8 =d/n,R
=k/n in the unit square [0,1]x[0,1]. We consider the set Vg of all such pairs (3,R)
obtained from linear codes and we let Uq be the set of limit points of Vq. Manin proved
the following theorem about Ug, see [5,6].

(5.1) Theorem. There exists a continuous function 0 : [0,11 = [0,1] such that
Ug= (OR): 0351, 0<R<0gd) ).
Moreover, 0q(0) =1 and 0y is strictly decreasing on the interval [0,9%1-] and vanishes
on [9:1—1-,1] (by the Plotkin bound). For 0<3< 9:1—1 we have
By® Sog® <1 —%5 :
where Bq is the entropy function

log(q-1) - Slogq — (1-3)log(1-d)
ﬁq(s) =]~ logq .

The curve (8,8¢(8)), 8 € [0,1] is called the Gilbert-Varshamov curve.

(5.2) Lemma. If one has a sequence {Xj:ie Z} of non-singular projective curves over

Fq such that gi= g(Xj) tendsto infinity and such that lim;_;e. N-l%‘)(—) =17 then the line
L

8+R=1-7v iscontainedin U

Proof. Let (8,R) be a point on this line. One takes divisors G; of degree Ni(Xp(1-8).

This gives codes with invariants (5;,Rj). The efficienoy of the resulting code R; tends to

(1-8) — . On the other hand we know from (3.8) that Rj+8j2 1+ NlT_('% Together

with (5.1) this proves the result. Y

In order to produce a family of good Goppa codes for which R + & comes above
the Gilbert-Varshamov line one needs a family of curves with a lot of rational points
compared to the genus. The so-called modular curves or Shimura curves give an example
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of such a family of curves. We give a sketch of the ideas but must refer to the literature for
a more detailed treatment of the deep theory of these curves.

A moduli space is roughly speaking a variety whose points classify the
isomorphism classes of some kind of objects, e.g. algebraic curves of a certain type. It is
natural here to look at such modular curves in connection with Goppa codes since their
points have an interpretation. The modular curves we shall be concerned with are moduli
spaces of elliptic curves.

2. We start with elliptic curves defined over a given field k. We are interested in the set of
isomorphism classes of elliptic curves over this field. As we saw in lecture 2 we can
present our elliptic curve E by the so-called (affine) Weierstrass form

y2 +ajxy +azy =x3 + apx2 + agx + ag .
The point P corresponds to (0:1:0). Indeed, we have by Riemann-Roch dim L(2P) =2,
dim L(3P) = 3. Choose in L(2P) a-function x with a double pole at P, and choose in
L(3P) afunction y with a triple pole at P . Since dim L(6P) = 6, there must be a linear

relation between the functions 1, x, v, xy, x2, y2, x3. This gives (after normalization) the
equation above.

We can define invariants of E by
by=al+4ay , by = 2123 + 2a4 , be=a% + dag , c4= b2 — 24by,

= ~b2bg - 8b — 27bZ + 9bbabs,

and

g PSS

j=

The fact that E'is non-singular is equivalent to A # 0. A Weierstrass equation for the
elliptic curve is unique up to coordinate changes of the form :
x= ulx' +1, y - udy' +sux' +t

with r,s,t,u in k and u# 0. Under such a change of coordinates we find j =j'. If two
elliptic curves are isomorphic then j =j. Conversely, if k is algebraically closed and j=
j then E and E' are isomorphic. So over an algebraically closed field k the
isomorphism classes of elliptic curves are in 1-1 correspondence with the points of the
affine line Al with coordinate j. We say that Al is the moduli space of elliptic curves over
k. [For the precise definition of the notion moduli space see [3]]. That j does not suffice
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to specify an elliptic curve if k is not algebraically closed is due to the fact that an elliptic
curve can have a non-trivial automorphism group.

. To get more moduli spaces we consider pairs (E,G), where E is an elliptic curve
and where G is a cyclic subgroup of order N in E . Let us first look at the possibilities
for these cyclic subgroups.

Let E be an elliptic curve. We set E[N] for the kernel of multiplication by N.If
N is the product NiNz of two coprime numbers Np, Ny then E[N] = E[N1]XE[N3].
Now let p be a prime. Then the morphism [p}: E = E which is multiplication by p (in
the group) has degree p2. If p# char(k) then E[p] consists of p? points and is
isomorphic (as group) to Z/pZ X Z/pZ. If p = char(k) then multiplication by p is an
inseparable morphism. There are two possibilities : either the degree of inseparabilty is p
and E[p] consists of p points and is isomorphic to Z/pZ or the degree of inseparablity is
p? and E[p] consists of one point. In the former case we say that E is ordinary, in the
latter case we say that E is a supersingular elliptic curve.

3. The existence of good codes coming from modular curves is based upon three facts :
i) the existence of modular curves,i.e. curves whose points have an interpretation,
ii) the fact that the zeta function of such curves is known. This is due to the modular
interpretation of our curves. We can express the number of points (over sz) in terms of a
trace of a certain operator on a space of differential forms.
iii) the trace formula, which computes the trace of a Hecke operator on the space of modular
forms. This is the trace mentioned in ii).

We shall try to explain the main points. To begin with we have:

(5.3) Theorem. There exists a curve Xo(N) defined over Z[%I—] which is the moduli

space of pairs (E,G) where E is an elliptic curve and G is a cyclic subgroup of order N.

Roughly speaking this means the following.[We stress that this is only a rough
approximation. One needs the concept of a scheme. For more details, see [3].] There exists
an algebraic curve whose equations have coefficients in Z[%I-] such that for every prime p

the following holds. If we reduce the equations of Xo(N) modulo p, we get a non-
singular curve over F, whose points over an algebraic closure k of Fpcorrespond 1-1
to the isomorphism classes of pairs (E,C) with E an elliptic curve over k and C acyclic
subgroup of E of order N. Moreover, if we extend scalars to € ,i.e. if we consider the
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- complex curve defined by the equations of Xo(N), then again its points correspond 1-1 to
__ the pairs (E,C) where E is a complex elliptic curve and C a cyclic subgroup of order N.

Over the complex numbers we can give a very explicit description of Xo(N). A

... complex elliptic curve E can be described as a torus : E=C/Z + 2t with © in C but
notin R.Replacing T by -t if necessary we can assume that T has positive imaginary

part, i.e. lies in the upper half plane H. Two elliptic curves E=C/Z +Z1 and E=C/Z

.. + 24" are isomorphic (as elliptic curves) if and only if there exists an element (2 g) in

SL(2,Z) such that
at+b |
=1,
ct+d

Therefore, the isomorphism classes of elliptic curves over € correspond 1-1 to the points

of the orbit space H/SL(2,Z), where the action is given by

at+b
T =) e |
ct+d
A fundamental domain for this action of SL(2,Z) on H is given by

F={ze H:lzl21, lRe(z)Is%- }.

- The function z — j(C/Z + Z z) identifies the fundamental domain (with the appropriate

identifications on the boundary) with C. The function field of H/SL(2,2) is C(j).
If (E,C) is a complex elliptic curve together with a cyclic subgroup of order N, we

can assume that E=C/Z+Zt and that the cyclic subgroup is generated by -gr Then

the isomorphism classes of such pairs correspond 1-1 to the points of the orbit space

B H/T'o(N),where

TN ={ G e SL22): ¢ =0mod N) J.

For N=1 we find again H/SL(2,Z).The orbit space H/To(N) is not compact. It can be
" compactified by adding a finite number of points. In fact, one can add in a natural way the
) orbits of Q U{ee}/ To(N).These orbits are called the cusps.For example, for N =1 the set

{ze F: Im(z) >c>1} is mapped by z— exp(2niz) to a punctured disc {ze C*: Izl <
e~2nc}, We now just add the origin of this disc. A local coordinate near this cusp is then g=

exp(2riz). By doing this for all cusps we thus obtain a projective algebraic curve (compact

Riemann surface) Yo(N) over €. Wereferto [1] and [8] for more details.
The quotient E/C is again an elliptic curve. The function ficld of Xo(N) is
Q((E),J(E/C)). Here j(E) and j(E/C) satisfy an algebraic relation, called the modular

" equation.
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One can compute the genus of Xo(N) over Fp(where p does not divide N) or
over C. Itis the same for all these fields. Over C it can be computed using the Hurwitz-
Zeuthen formula for the covering Yo(N) — Yo(1) = P1. The result is (see [8]):

1 1 a; az(N) 1 N
g(YoN) = 1+ NI+ - R - B _ 53, e,
where ¢ is the Euler phi-function and

ap(N) =0 if 4divides N,

2200 =TI (1 + (5) otherwise,

a3(N) = 0 if N isevenor 9 divides N,

as(N) = Tlpm(1 + (—T’:i) otherwise.

Here (%) is the Legendre symbol. For future use we note that if N — oo, then g-3e and

the dominant term in the formula for g is the second term.

4. Of course, we have to compute the number of points of Xg(N) over Fpr. In fact we

shall take r=2. The instrument to do this is the zeta function as we saw in lecture 4.
Fortunately, in the case we consider, the zeta function can be described completely in terms
of the curve Xo(N) over C. '

We consider the space of regular differential forms on Yo(N) over C. If w isa
regular differential form we restrict it to Xo(N) . It comes from a I"(S(N) -invariant
differential form f(z)dz on H under the quotient map H - Xo(N). Here f(z) is a
holomorphic function on H. We have

d( %;—Eg) = (cz +d)2dz,

so f(z)dz is invariant under I'g(N) if and only if
az+b

1( E:'z_f»a) =(cz +d)?f(z) forall ( 23 ) in To(N). ¢
Moreover, the expression f(z)dz must extend over the cusps. A function satisfying these
conditions is called a cusp form of weight 2 on I'g(N). Conversely, every cusp form f of
weight 2 on [g(N) defines a regular differential on Yo(N) via f(z) — f(z)dz. The cusp
forms of weight 2 on I'g(N) form a vector space S2(I'o(N)) of dimension g, where g
is the genus of the complex curve Yo(N).

If fe Sa(To(N)) then by (1) we have f(z+1) = f(z), hence f admits a Fourier
series

f= 3 bm)qn.



78

The fact that the series start with n=1 is due to the fact that the differential form f(z)dz
extends over the cusps.

On the vector space Sp(I'g(N)) there acts an algebra of operators, called the Hecke
operators. The defintion is as follows. Let m be a positive integer prime to N. Consider
the product of Xo(N)xXo(N). Its points correspond to pairs of pairs (E,C). We consider in
this product the correspondence (algebraic curve) A(m) consisting of all pairs
((E,C),(E',CY) with E'=E/D, C'=image of C in E/D where D is a subgroup of E
of order m. Over € we can describe this correspondence as follows. We consider in
HxH all equations of the form

azjzyp + bz +czp+d= 0
where (z1,z2) € HxH and ad-bc = m. They define a curve in H/To(N)xH/T'o(N). It
extends to a correspondence on Yo(N)xY(N), again denoted by A(m). It is called the m-
th Hecke correspondence. If @ is a regular differential form on Yo(N) we can pull it
back to A(m) and push it forward to Yo(N). We find a differential form on Yo(N) : we
denote it by T(m)*®.If @ comes from f(z)dz on H and T(m)*® comes from g(z)dz
then we write: T(m)f = g. This defines an operator T(m) on S(T’o(N)), called the m-th
Hecke operator. One can compute its action on the Fourier expansion of f : the Hecke
operator T(m) with m a prime not dividing N actson f by

f — X 1bmgmn+ X ; bmn) g,

We have for the operator T(n) for n coprimeto N:

T()T(n) = T(ab) if (m,n) =1,

T(pK) = T(p)T(pk-1) — pT(pk-2) for aprime p with (p,N)=1 and k22. (2)
One finds in this way a commutative algebra of operators acting on S2(I"g(N)). On the
vector space S2(Io(N)) there is a positive definite inner product, the Petersson_product ,
defined by

<tg>= [ g gL,

The Hecke operators are hermitian with respect to this product :

<T(m)f,g> = <f,T(m)g>.
Therefore,we then can find a basis of common eigenforms for this whole algebra of
operators, say fy, ... fg. We write

fi=2, 1 bim)q".

One now observes that bj(1) # 0 and we may then assume b;(1) = 1. Indeed, we have
T(n) f; = bi(l)bi(n)fi,. so bj(1) =0 implies fij=0. We say that f; is a pormalized
eigenform if bi(1) = 1. We have
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T©fj = bi(r) f; for every normalized eigenform in S(Tp(N)),
i.e. the Fourier coefficients of a normalized eigen form are its eigen values for the Hecke
operators.

The basic fact is that the zeta function of Xo(N) over Fp is expressible in terms of
the Fourier coefficients bj(m) of these cusp forms f; of weight 2. It is proved by
computing the Hecke correspondence in characteristic p (Eichler-Shimura congruence
relation).

(5.4) Theorem. The zeta function Z(Xo(N),t) of Xo(N) over Fp with p aprime not
dividing N is of the form :
5. (-bit+pt?)

5. Now we show that this theorem and a formula for the trace of T(p2) on Sa(To(NY)
imply the desired result on codes if we assume that N is a prime. Indeed, from the formula
for the zeta-function we have

#XoMN)(Fp) =p+1- 5, bi(p)

# XoMN(F,) = p2+1 - T8, B2(p) + 2p,
and if we use now that bj(p?) = biz(p) ~p (aconsequence of (2)), we see that

# Xo(N)(F2) =p2 + 1~ Z§_bi(p?) + gp -
But Zig=1bi(p2) is the trace of the Hecke operator T(p2) on Sz(T'o(N)). Now the trace
of the Hecke operators on  Sp(To(N)) is known (see [2]):

Te T =g+p2+1 - L (A + QI

where the sum is over all pairs (s,f) of integers s with -2p <s < 2p and such that
=(s2—4p2)/f2 isaninteger =0 or 1 (mod 4).

If N ~yeo, then g—3o0 ,and we find-- since g is the dominant term in Tr T(p?) --
that

#Xo(N)(Fp2) = g(p-1),
that is, we have (if we view Xg(N) as a curve over sz Je Ni=# Xo(N)(sz) )
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%-—-) p-1 =vg-1.

(5.5) Theorem.(Tsfasman, Vladut, Zink [10]) There exists a sequence of Goppa codes

over sz such that R + 8 has I"FIT as its limit.

Note that we know from Lecture 4 that lim lig-l- £ p — 1 (Drinfeld-Vladut).

Therefore we find that R +8 has 1- -I;'!T as its limit and we cannot do better in this way.

(5.6) Corollary. There exist for p27 and q = p2 limit points of Goppa codes in Ug
lying above the Gilbert-Varshamov curve.

Proof. For p>7theline R+8=1- FlT lies above the Gilbert-Varshamov curve for &

in a certain interval . ¢

(5.7) Remark. In {10] this result was proved by exhibiting the points over sz ina
more explicit way. The points over sz that we find correspond to supersingular elliptic
curves. It is known that such curves are defined over sz ,see [9]. The approach using
the trace formula can be found in a preprint of Moreno [7]. The theorem can be extended

for all q = even power of p. Recently, Zink has obtained also some results for q = p3,
see [11].

(5.8) Remark. The fact that the zeta function of Xg(N) is known is due to the fact that
the reduction modulo p of the Hecke correspondence A(p) can be computed by the so-
called Eichler-Shimura congruence relation. It turns out that this reduction is the sum of
two correspondences, the Frobenius correspondence and its transpose. This gives the
relation with the o, the eigen values of Frobenius in cohomology.
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rational map

regular differential form
regular function

residue

Riemann hypothesis
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Index of notations

Part I. °

a(6)

Ay(n,d)

C+ - dual code

(L, g) — Goppa code
d(z,y) - distance
H,(8) - entropy
m;(z) ~ minimal polynomial
[n, k] code

(n, M, d) code

Tr(€) — trace
Vy(n,d)

<z,y>

Part II.
a, — modified number of points
«; — roots
A(g) - limsup Ny /g
B,(8) — entropy function
c(D,®),C*(D,G) -
Goppa codes
§ — min. Distance/length
|D| - linear system
F, - finite field with g elements
gy — linear system
To(N) - modular group
j — classical j-function
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68
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K — canonical divisor (class)
k[X] - coordinate ring
k(X) — function field
k, — residue field
L(D) - vector space
of rational functions
N, - number of points
over field with ¢" elements
N,(g) - max. number of points
on genus g curve over Fy
P; - characteristic polynomial
O(U) - ring of regular functions
0. ~ local ring
Pi¢(X) - group of divisor classes
R - information rate
res — residue
S2(To(N)) — space of cusp
forms of weight 2
T(m) — Hecke operator
U, - domain of codes
Xo(N) — modular curve
Z(X,t) — zeta function
((X,s) — zeta function
Q(E) - space of differentials
Q[X] - module of regular
differentials
[r, k, d] - linear code
with parameters n, k,d
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