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Preface

This book is designed to teach coding theory in a mathematically sound
manner to students in engineering, computer science, and mathematics. It differs
from most other texts on the subject in two important ways: the “just in time
philosophy,” and unnecessary mathematical generalizations are omitted.

The “just in time” philosophy consists of introducing the necessary mathe-
matics just in time to be applied; i.e. juxtaposed, with the applications. We
don’t have 200 pages of mathematics (most of which is irrelevant) followed by
200 pages of coding theory. So the format is roughly: mathematics, appli-
cations, mathematics, applications, etc. Avoiding unnecessary generalizations
means that we don’t find it necessary, for example, to describe a cyclic code as
a principal ideal. In other words, we have for the most part omitted the mathe-
matical generalizations and terminology that would normally be used in teaching
a course in coding theory to a class consisting entirely of advanced mathematics
majors.

Our book deals exclusively with binary codes and codes over fields of charac-
teristic 2, stressing the construction, encoding and decoding of several important
families of codes. Primarily, we have chosen families of codes that are of interest
in engineering and computer science, such as Reed-Solomon codes and convolu-
tional codes, which have been used in deep space communications and consumer
electronics (to name but two areas of application). This choice of codes also
reflects a broad range of algorithms for encoding and decoding.

This text been used to teach a two-quarter sequence in coding theory at
Auburn University. The minimal prerequisite for students taking this course
is a rather elementary knowledge of linear algebra. However, the more linear
algebra, as well as general modern algebra, students bring to the course the
better. Students with more mathematical background and maturity will be able
to move rather quickly through the early material.

The authors would very much appreciate any comments that users of this text
care to pass along. Our email address is KTPHELPS@DUCVAX.AUBURN.EDU.

The authors wish to thank Mrs. Rosie Torbert for her exceptional technical
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" expertise in typing the manuscript. Her never failing good cheer in enduring the
slings and arrows of constant revisions places her in the saint category.

D. G. Hoffman, D. A. Leonard,
C. C. Lindner, K. T. Phelps,
C. A. Rodger, J. R. Wall
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Chapter 1

Introduction to Coding Theory

1.1 Introduction

Coding theory is the study of methods for efficient and accurate transfer of
information from one place to another. The theory has been developed for such
diverse applications as the minimization of noise from compact disc recordings,
the transmission of financial information across telephone lines, data transfer
from one computer to another or from memory to the central processor, and
information transmission from a distant source such as a weather or commu-
nications satellite or the Voyager spacecraft which sent pictures of Jupiter and
Saturn to Earth. ‘

The physical medium through which the information is transmitted is called
a channel. Telephone lines and the atmosphere are examples of channels. Unde-
sirable disturbances, called noise, may cause the information received to differ
from what was transmitted. Noise may be caused by sunspots, lightning, folds in
a magnetic tape, meteor showers, competing telephone messages, random radio
disturbance, poor typing, poor hearing, poor speech, or many other things.

Coding theory deals with the problem of detecting and correcting transmis-
sion errors caused by noise on the channel. The following diagram provides a
rough idea of a general information transmission system.

Information| |Transmitter| | Communication Receiver | |Information
Source ™| (Encoder) |  Channel  [*(Decoder)*|  Sink

The most important part of the diagram, as far as we are concerned, is the noise,
for without it there would be no need for the theory.

In practice, the control we have over this noise is the choice of a good channel
to use for transmission and the use of various noise filters to combat certain types
of interference which may be encountered. These are engineering problems. Once

1



2 CHAPTER 1. INTRODUCTION TO CODING THEORY

we have settled on the best mechanical system for solving these problems, we
can focus our attention on the construction of the encoder and the decoder. Our
desire is to construct these in such a way as to effect:

1) fast encoding of information,

2) easy transmission of encoded messages,

3) fast decoding of received messages,

4) correction of errors introduced in the channel, and
5) maximum transfer of information per unit time.

The primary goal is the fourth of these. The problem is that it is not generally
compatible with the fifth, and also may not be especially compatible with the
other three. So any solution is necessarily a trade-off among the five objectives.

In our everyday communications among one another we standardly use words,
spoken or written, made from a limited alphabet. We have information to com-
municate; we encode it into strings of words which we then speak or write. These
are then sent across a channel, the channel normally being the space from mouth
to ear or from pen to paper to eye. The noise might be caused by poor speech,
bad hearing, incorrect grammar, a loud stereo, competing speech, misspelling,
misreading, or a faulty typewriter. The decoder is our reading (or hearing) and
understanding of the received messages. )

We have built-in error—correcting devices that that we don’t even think
about. Suppose we receive the message “Apt natural. I have a gub.” which
is a hold-up note in Woody Allen’s “Take the Money and Run”. Since our lan-
guage does not use all possible words of any given length, we hopefully recognize
that “gub” is not a word. We may safely assume that the transmitted word was
close to “gub” in some sense. So it was more likely to have been “gut” or “gun”
or “tub” than say “firetruck” or “rat”. It is only the context of the message
though that lets us choose “gun” as the most likely word. “Apt” is a perfectly
good word, but again from the context we are led to correct it to “act”. And
if we happen to be literate, we will also correct “natural” to “naturally,” even
though this was probably an error attributed to the source and not to the noise
on the channel.

Of these types of errors, we can probably only deal with the first: that is
choosing the most likely word transmitted. The standard method for combating
errors is through redundancy. Many businesses these days commonly add check
digits to identification numbers; these are extra digits that are used to check the
correctness of data or of account numbers. This is probably the most commonly
recognized method of coding in real life. We shall deal with more sophisticated
but similar ideas.

1.2. BASIC ASSUMPTIONS 3

1.2 Basic Assumptions

We state some fundamental definitions and assumptions which will apply
throughout the text.

In many cases, the information to be sent is transmitted by a sequence of
zeros and ones. We call a 0 or a 1 a digit. A word is a sequence of digits. The
length of a word is the number of digits in the word. Thus 0110101 is a word of
length seven. A word is transmitted by sending its digits, one after the other,
across a binary channel. The term “binary” refers to the fact that only two
digits, 0 and 1, are used. Each digit is transmitted mechanically, electrically,
magnetically, or otherwise by one of two types of easily differentiated pulses.

A binary code is a set C' of words. The code consisting of all words of length
two is

C = {00,10,01,11}.

A block code is a code having all its words of the same length; this number is
called the length of a code. We will consider only block codes. So, for us, the
term code will always mean a binary block code. The words that belong to a
given code Cy, will be called codewords. We shall denote the number of code-
words in a code C by |C].

Exercises
1.2.1 List all words of length 3; of length 4; of length 5.
1.2.2 Find a formula for the total number of words of length n.

1.2.3 Let C be the code consisting of all words of length 6 having an even
number of ones. List the codewords in C. ,

We also need to make certain basic assumptions about the channel. These
assumptions will necessarily shape the theory that we formulate.

The first assumption is that a‘codeword of length n consisting of 0’s and 1’s is
received as a word of length n consisting of 0’s and 1’s, although not necessarily
the same as the word that was sent.

The second is that there is no difficulty identifying the beginning of the first
word transmitted. Thus, if we are using codewords of length 3 and receive
011011001, we know that the words received are, in order, 011, 011, 001. This
assumption means, again using length 3, that the channel cannot deliver 01101
to the receiver, because a digit has been lost here.

The final assumption is that the noise is scattered randomly as opposed to
being in clumps called bursts. That is, the probability of any one digit being
affected in transmission is the same as that of any other digit and is not influenced
by errors made in neighboring digits. This is not a very realistic assumption for
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many types of noise such as lightning or scratches on compact discs. We shall
eventually consider this type of noise. .

In a perfect, or noiseless, channel, the digit sent, 0 or 1, is always the digit
received. If all channels were perfect, there would be no need for coding theory.
But fortunately (or unfortunately, perhaps) no channel is perfect; every channel
is noisy. Some channels are less noisy, or more reliable, than others.

A binary channel is symmetricif 0 and 1 are transmitted with equal accuracy;
that is the probability of receiving the correct digit is independent of which digit,
0 or 1, is being transmitted. The reliability of a binary symmetric channel (. BSC")
is a real number p,0 < p < 1, where p is the probability that the digit sent is
the digit received. N

If p is the probability that the digit received is the same as the digit sent,
then 1 — p is the probability that the digit received is not the digit sent. The
following diagram may clarify I;ow a BSC operates:

0
1
Lp

1

In most cases it may be hard to estimate the actual value of p for a given
channel. However the actual value of p does not influence significantly the form
of the theory.

We will call one channel more reliable than another if its reliability is higher.
Note that if p = 1, then there is no chance of a digit being altered in transmis-
sion. Hence the channel is perfect and of no interest to us. Nor is a channel with
p = 0 of any interest. Any channel with 0 < p < 1/2 can be easily converted
into a channel with 1/2 < p < 1. Hence forth we will always assume that we are
using a BSC with probability p satisfying 1/2 < p < 1.

Exercises
1.2.4 Explain why a channel with p = 0 is uninteresting.

1.2.5 Explain how to convert a channel with 0 < p < 1/2 into a channel with
1/2<p<1. :

1.2.6 What can be said about a channel with p =1/2?

1.3 Correcting and Detecting Error Patterns

We consider now the possibilities of correcting and detecting errors. In this
section we intend to develop an intuitive understanding of the concepts involved

1.3. CORRECTING AND DETECTING ERROR PATTERNS 5

in correcting and detecting errors, while a formal approach is adopted in later
sections.

Suppose a word is received that is not a codeword. Clearly some error has
occurred during the transmission process, so we have defected that an error
(perhaps several errors) has occurred. If however a codeword is received, then
perhaps no errors occurred during transmission, so we cannot detect any error.

The concept of correcting an error is more involved. As in the introduction
when we were inclined to correct ‘gub’ to ‘gun’ rather than to ‘rat’, we appeal
to intuition to suggest that any received word should be corrected to a codeword
that requires as few changes as possible. (In a later section we show that the
probability that such a codeword was sent is at least as great as the probability
that any other codeword was sent). To consolidate these ideas, we shall discuss
some particular codes. Notice that our assumption that no digits are lost or
created in transmission precludes decoding ‘gub’ to “firetruck’.

Example 1.3.1 Let C; = {00,01,10,11}. Every received word is a codeword
and so Cy cannot detect any errors. Also () corrects no errors since every
received word requires no changes to become a codeword.

Example 1.3.2 Modify C; by repeating each codeword three times. The new
code is

C» = {000000,010101,101010, 111111}.

This is an example of a repetition code. Suppose that 110101 is received. Since
this is not a codeword we can detect that at least one error has occurred. The
codeword 010101 can be formed by changing one digit, but all other codewords
are formed by changing more than one digit. Therefore we expect that 010101
was the most likely codeword transmitted, so we correct 110101 to 010101. (A
codeword that can be formed from a word w with the least number of digits
being changed is called a closest codeword; this idea is formalized later.) In
fact if any of the codewords, ¢ € C,, is transmitted and one error occurs during
transmission, then the unique closest codeword to the received word is c; so

any single error results in a word that we correct to the codeword that was
transmitted. ’

Example 1.3.3 Modify C; by adding a third digit to each codeword so that the
number of 1’s in each codeword is even. The resulting code is

Cs = {000,011,101,110}.

The added digit is called a parity-check digit. Suppose 010 is received, then since
010 is not a codeword we can detect that an error has occurred. Each of the
codewords 110, 000 and 011 can be formed by changing one digit in the received
word. In later sections we distinguish between how we treat received words that
are closest to a unique codeword (and so is the single most likely codeword sent)
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as was the case in Example 1.3.2, and received words that are closest to several
codewords as in this example. It suffices at this stage to observe that it seems
more sensible to correct 010 to one of 110, 000 or 011 rather than to 101.

Exercises

1.3.4 Let C be the code of all words of length 3. Determine which codeword
was most likely sent if 001 is received.

1.3.5 Add a parity check digit to the codewords in the code in Exercise 1.3.4,
and use the resulting code C to answer the following questions.
(2) If 1101 is received can we detect an error?

(b) If 1101 is received what codewords were most likely to have been
transmitted?

(c) Is any word of length 4 that is not in the code, closest to a unique
codeword?

1.3.6 Repeat each codeword in the code C defined in Exercise 1.3.4 three
times to form a repetition code of length 9. Find the closest codewords
to the following received words:

(a) 001000001
(b) 011001011
(c) 101000101
(d) 100000010

1.3.7 Find the maximum number of codewords of length n = 4 in a code in
which any single error can be detected.

1.3.8 Repeat Exercise 1.3.7 for n = 5,n = 6 and for general n.

1.4 Information Rate

After the last section it is apparent that the addition of digits to codewords
may improve the error correction and detection capabilities of the code. However,
clearly the longer the codewords, the longer it takes to transmit each message.
The information rate (or just rate) of a code is a number that is designed to
measure the proportion of each codeword that is carrying the message. The
information rate of a code C of length n is defined to be (for binary codes)

1
;1082 ICl.
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Since we may assume that 1 < |C| < 27, it is clear that the information rate
ranges between 0 and 1; it is 1 if every word is a codeword and 0 if |C| = 1.

For example, the information rates of the codes Cy, C; and Cj in the previous
section are 1, 1/3 and 2/3 respectively. Each of these information rates seems
sensibly related to their respective codes, since the first 2 digits of the 6 in each
codeword in C; can be considered to carry the message, as can the first 2 digits
of the 3 in each codeword in Cj.

Exercises

1.4.1 Find the information rate for each of the codes in Exercises 1.3.4, 1.3.5
and 1.3.6.

1.5 The Effects of Error Correction and
Detection

To exemplify the dramatic effect that the addition of a parity-check digit to a
code can have in recognizing when error occur, we consider the following codes.

Suppose that all 2'' words of length 11 are codewords; then no error is
detected. Let the reliability of the channel be p = 1 — 10~ and suppose that
digits are transmitted at the rate of 107 digits per second. Then the probability
that a word is transmitted incorrectly is approximately 11p™(1 — p), which is
about 11/108. So about

11 107

108 11
are transmitted incorrectly without being detected. That is one wrong word
every 10 seconds, 6 a minute, 360 an hour, or 8640 a day! Not too good.

Now suppose that a parity—check digit is added to each codeword, so the
number of 1’s in each of the 2048 codewords is even. Then any single error is
always detected, so at least 2 errors must occur if a word is to be transmitted
incorrectly without our knowledge. The probability of at least 2 errors occurring
is 1 —p'? — 12p*(1 — p) which can be approximated by (122) p*°(1 — p)* which for
p=1-107%is about l—g%. Now approximately lg% . 11921 =5-5x 107 words per
second are transmitted incorrectly without being detected. That is about one
error every 2000 days!

So if we are willing to reduce the ipformation rate by lengthening the code
from 11 to 12 we are very likely to know when errors occur. To decide where
these errors have actually occurred, we may need to request the retransmission
of the message. Physically this means that either transmission must be held
up until confirmation is received or messages must be stored temporarily until

= .1 words per second
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retransmission is requested; both alternatives may be very costly in time or in
storage space. It may also be that retransmission is impractical, such as with
the Voyager mission and when using compact discs. Therefore, at the expense
of further increase in wordlength, it may well be worth incorporating error-
correction capabilities into the code. Introducing such capabilities may also
make encoding and decoding more difficult, but will help to avoid the hidden
costs in time or space mentioned above.

One simple scheme to introduce error-correction is to form a repetition code
where each codeword is transmitted three times in succession. Then if at most
one error is made per 33 digit codeword, at least two of the three transmissions
will be correct. Since the comparisons of the three 11 digit words is relatively
simple, the only real trade-off for being able to correct one error is an information
rate of 1/3 instead of 1.

Still 1/3 is only 1/3. Perhaps we could do better. We will see later that it
is possible to add only 4 extra digits to each 11 digit codeword and still be able
to correct any single error. This produces a code with information rate 11/15, a
valuable improvement provided that the extra encoding and decoding costs are
not prohibitive.

It is our task, then, to design codes with reasonable information rates, low
encoding and decoding costs and some error—correcting or error-detecting capa-
bilities that make the need for retransmission unlikely.

1.6 Finding the Most Likely Codeword
Transmitted

Suppose that we have an overall view of the transmission process, knowing
both the codeword v that is transmitted and the word w that is received. For
any given v and w, let ¢,(v, w) be the probability that if the codeword v is sent
over a BSC with reliability p then the word w is received. Since we are assuming
that noise is distributed randomly, we can treat the transmission of each digit as
an independent event. So if v and w disagree in d positions, then we have n —d
digits correctly transmitted and d incorrectly transmitted and thus,

bo(v,w) = p"4(1 — p)°.

Example 1.6.1 Let C be a code of length 5. Then for any v in C, the probability
that v is received correctly is

¢P(va v) = ps-
Let 10101 be in C. Then

$,(10101,01101) = p*(1 — p)*

1.6. FINDING THE M OST LIKELY CODEWORD TRANSMITTED 9

and if p = .9 then

$9(10101,01101) = (.9)°(.1)* = .00729.

Exercises
1.6.2 Calculate ¢ g7(v,w) for each of the following pairs of v and w:

(a) v=011061101,w = 10001110
(b) v=1110101,w = 1110101
(¢) v =00101,w = 11010

(d) v = 00000,w = 00000

(e) v =1011010,w = 0000010
(f) v =10110,w = 01001

(g) v = 111101, w = 000010.

In practice we know w, the word received but we do not know the actual
codeword v that was sent. However each codeword v determines an assignment
of probabilities ¢,(v,w) to words, w. Each such assignment is a mathematical
model and we choose the model (that is, the codeword v) which agrees most

with observation - in this case, which makes the word received most likely. That
is, assume v is sent when w is received if

(v, w) = max{4,(u,w) : u € C}.
The following theorem provides a criterion for finding such a codeword v.

Theorem 1.6.3 Suppose we have a BSC with 1/2 < p < 1. Let v; and v, be

codewords and w a word, each of length n. Suppose that v, and w disagree in d
posttions and vy and w disagree in dy positions. Then

¢p(vlsw) < ¢p(02,w) if and only if dy > d,.
Proof: We have already established that »

$p(v1,w) < Pp(vg,w) iff pi(1 — p) < pra(1 — p)%
iff ($25)%% <1
iff d < d; (since 125 > 1).

a

This formally establishes the proceduré for correcting words which until now

we had adopted as being an intuitively sensible procedure: correct w to a code-

word which disagrees with w in as few positions as possible, since such a codeword
is the most likely to have been sent, given that w was received.
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. Example 1.6.4 If w = 00110 is received over a BSC with p = .98, which of the
codewords 01101, 01001, 10100, 10101 was the most likely one sent?

v | d (number of disagreements with w)
01101 | 3
01001 | 4
10100 | 2« smallest d
10101 | 3

Using the above table, Theorem 1.6.3 says that 10100 was the most likely code-
word sent. Note that we don’t need to know the precise value of p in order to
apply Theorem 1.6.3; we only to know that p > 1 /2.

Exercises
1.6.5 Suppose that w = 0010110 is received over a BSC with reliability p =
'90. Which of the following codewords is most likely to have been sent?

1001011, 1111100,0001110,0011001, 1101001.

1.6.6 Which of the 8 codewords in the code of Exercise 1.3.6 is most likely to
have been sent if w = 101000101 is received?

167 EC = {01000,01001,00011,11001} and a word w = 10110 is received,
which codeword is most likely to have been sent?

1.6.8 Repeat Exercise 1.6.7 after replacing C' with {010101,110110, 101101,
100110,011001} and w with 101010.

1.6.9 Which of the codewords 110110, 110101, 000111, 100111, 101000 is most
likely to have been sent if w = 011001 is received.

1.6.10 In Theorem 1.6.3 we assume that 1/2 <p < 1. What would change in
the statement of Theorem 1.6.3 if we replace this assumption with

(a) 0<p<1/2,
(b) p=1/27

1.7 Some Basic Algebra

A problem that we shall need to address is that of finding an efficient way of
finding the closest codeword to any received word. If the code has many code-
words then it is impractical to compare each received word w to each codeword
in turn to find which codeword disagrees with w in as few positions as possible.

1.7. SOME BASIC ALGEBRA 11

For example, if the code contains 2'? codewords (as was used for the Voyager
fnissio.n) then such a decoding procedure could never hope to keep up with the
incoming transmission. To overcome this problem, we need to introduce some
structure into our codes.

Pf?t K = {0,1} and let K™ be the set of all binary words of length n. Define
addition and multiplication of the elements of K as follows:

0+0=0,0+1=1140=1,1+1=0

0-0=0,1-0=0,0-1=0,1-1=1.

Define addition for the elements of K™ componentwise, using the addition defined
on K to add each component. For example, let

v = 01101 and w = 11001 then v + w = 10100.

Clearly the addition of two binary words of length n results in a binary word of
length n, so K™ is closed under addition.

Using linear algebra terminology, we refer to an element of K as scalar. Then
scalar multiplication of K™ is defined componentwise. Since the only scalars are
0 and 1, the only scalar multiples of a word w are 0 - w, which is the element of
K™ with 0 in every component, and 1 -w, which is w. We refer to the element of
K™ with 0 in all components as the zero word. Clearly K™ is closed under scalar
multiplication.

With these definitions of addition and scalar multiplication, it can be shown

that K™ is a vector space. That is, for any words of length n,u,v and w and for
any scalars a and b:

Lv+we K"

2. (u+v)tw=u+(v+w)

3. v+0=0+v = v, where 0 is the zero word.
4. for some v' € K® v+ v =v'+v=0

5. vtw=w+v

. av € K™

- a(v+w) =av+aw

. (q+b)v=av+bv

. {ab)v = a(bv)

©w 0 N Oy

10. 1v = v.
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Exercises
1.7.1 Show that if v is a word in K™ then v +v =20.
1.7.2 Show that if v and w are words in K™ and v + w = 0 then v = w.
1.7.3 Show that if «,v and w are words in K™ and u+v = w then u+w = v.

Notice that if v is sent over a BSC and w is received then 0 occurs in a com-
ponent of v 4 w if the corresponding component of v was correctly transmitted
and a 1 occurs if the component was incorrectly transmitted. v 4 w is called
the error pattern, or the error. For example if v = 10101 is transmitted and

— 01100 is received then errors occurred in the 1st, 2nd and 5th components.
The error pattern is v +w = 11001.

1.8 Weight and Distance

We introduce two important terms. Let v be a word of length n. The
Hamming weight, or simply the weight, of v is the number of times the digit 1
occurs in v. We denote the weight of v by wi(v). For example, wt(110101) = 4
and wt(00000) = 0.

Let v and w be words of length n. The Hamming distance, or simply distance,
between v and w is the number of positions in which v and w disagree. We denote
the distance between v and w by d(v,w). For example, d(01011,00111) = 2 and
d(10110,10110) =

Note that the distance between v and w is the same as the weight of the
error pattern u = v + w:

d(v,w) = wi(v + w).

For example, if v = 11010 and w = 01101, we have

d(v,w) = d(11010,01101) = 4, and wi(v+w) = wi(11010+01101) = wt(10111) = 4.

Thus the probability formula in Section 6 can be re-expressed as
¢p(v, ,w) — pn—wt(u)(l _p)wt(u)’

where u is the error pattern u = v + w. We refer to ¢,(v,w) as the probability
of the error pattern u = v + w.

Exercises

1.8.1 Compute the weight of each of the following words, and the distance
between each pair of them: v; = 1001010, v, = 0110101, v3 = 0011110,

and vy = vy + v3.
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1.8.2 Let u = 01011,v = 11010,w = 01100. Compare each of the following
pairs of quantities:

(a) wi(v+ w), and wi(v) + wi(w),
(b) d(v,w), and d(v,u) + d(u,w).

We now list a number of facts concerning weight and distance. Here u,v,
and w are words of length n and a is a digit.

1. 0<wt(v)<n
2. wi(0) =0
3. If wit(v) =0, then v = 0.
4. 0 < d(v,w) < n.
5. d(v,v) =0
6. .If d{v,w) =0, then v = w.
7. d(v,w) = d(w,v)
8. wi(v + w) < wi(v) + wi(w)
9. d(v,w) < d(v,u) + d(u,w)
10. wt(av) = a - wi(v)
11. d(av,aw) = a - d(v, w).

o

Most of these facts are immediately clear from the definitions of weight and
distance. In Exercise 1.8.2, the reader constructed examples of facts 8 and 9. To
construct proofs, try using the basic relation d(v w) = wi(v + w) and Exercises
1.7.1, 1.7.2, and 1.7.3 as necessary.

Exercises
1.8.3 Construct an example in K 5 of each of the eleven rules above.
1.8.4 Prove each of the eleven rules {;,bove.

These facts will be used as needed and without comment in the following
sections.
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1.9 Maximum Likelihood Decoding

We are now ready to give more precise formulations of two basic problems of
coding theory. Let us assume we are at the receiving end of a BSC and we want
to receive a message from the transmitter at the other end. The transmitter is,
of course, one we have ourselves previously designed. In fact, the design of the
transmitter is one of the basic problems.

There are two quantities over which we have no control. One is the proba-
bility p that our BSC will transmit a digit correctly. The second is the number
of possible messages that might be transmitted. The actual messages are not
nearly as important as the number of possible messages. For example, only two
messages were necessary before Paul Revere set off on his famous midnight ride.

Recall that for any set S, we denote by |S| the number of elements in S. Thus
|K™| = 2® from Exercise 1.2.2.

The two basic problems of coding then are:

1.9.1 Encoding We have to determine a code to use for sending our messages.
We must make some choices. First we select a positive integer k, the length of
each binary word corresponding to a message. Since each message must be
assigned a different binary word of length &,k must be chosen so that {M| <
|K*| = 2%. Next we decide how many digits we need to add to each word of
length k to ensure that as many errors can be corrected or detected as we require;
this is the choice of the codewords and the length of the code, n. To transmit a
particular message, the transmitter finds the word of length k assigned to that
message, then transmits the codeword of length n corresponding to that word
of length k.

1.9.2 Decoding A word w in K™ is received. We now describe a procedure,
called mazimum likelihood decoding, or MLD, for deciding which word v in C
was sent. There are acutally two kinds of MLD.

1) Complete Mazimum Likelihood Decoding, or CMLD. If there is one and
only one word v in C closer to w than any other word in C, we decode w
as v. That is, if d(v,w) < d(vy,w) for all v, in C,v; # v, then decode w
as v. If there are several words in C closest to w, i.e, at the same distance
from w, then we select arbitrarily one of them and conclude that it was
the codeword sent.

2) Incomplete Mazimum Likelihood Decoding, or IMLD. Again, if there is a
unique word v in C closest to w, then we decode w as v. But if there
are several words in C at the same distance from w, then we request a
retransmission. In some cases we might even ask for a retransmission if
the received word w is too far away from any word in the code.

Al e it
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We will use IMLD for the examples and exercises in this section, and through-
out most of the rest of the text. We emphasize that MLD does not always work;
in particular, if too many errors were made in transmitting across the BSC, then
MLD fails.

The word v in C closest to the received word w is the v for which the distance
d(v,w) is least and hence, by Theorem 1.6.3, has the greatest probability ¢,(v, w)
of being the word sent. Example 1.6.4 demonstrates this. Since d(v,w) =
wt(v + w), the weight of the error pattern u = v 4+ w, Theorem 1.6.3 may be
restated as follows:

Bp(v1,w) < p(ve, w) iff wi(vy + w) 2> wi(vs + w);

that is, the most likely codeword sent is the one with the error pattern of smallest
weight.

Thus the strategy in IMLD is to examine the error patterns v + w for all
codewords v, and pick the v which yields the error pattern of smallest weight.

Example 1.9.3 Suppose |M| = 2, and we select n = 3 and C = {000,111}.
If v = 000 is transmitted, when will IMLD conclude this correctly, and when
will IMLD incorrectly conclude that 111 was sent? We construct Table 1.1 as
follows.

Received Error Pattern Decode
w 000 + w | 1114w v
000 000* 111 000
100 100* 011 000
010 010* 101 000
001 001* 110 000
110 110 001* 111
101 101 010* 111
011 011 100* 111
111 111 000* 111

Table 1.1: IMLD table for Example 1.9.3

The first column lists all possible words which might be received. This is all
of K3. The second and third columns list the error patterns v+ w for each word
v in the code C. Since IMLD will select the error pattern of smallest weight, we
have put an asterisk beside the entry in folumn two or three of least weight. In
the last column we record the word v in the code C corresponding to the column
in which the asterisk was placed. This is the word v which IMLD will conclude
was sent for each possible word received. Thus IMLD will conclude correctly
that 000 was sent if 000, 100, 010, or 001 is received (first four rows of Table
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Received Error Pattern Decode
w 0000 + w | 1010 + w | 0111 + w v
0000 0000* 1010 0111 0000
1000 1000 0010 1111 —
0100 0100* 1110 0011 0000
0010 0010 1000 0101 —
0001 0001* 1011 0110 0000
1100 1100 0110 1011 —
1010 1010 0000* 1101 1010
1001 1001 0011 1110 —
0110 0110 1100 0001* 0111
0101 0101 1111 0010* 0111
0011 0011 1001 0100* 0111
1110 1110 0100* 1001 1010
1101 1101 0111 1010* 0111
1011 1011 0001* 1100 1010
0111 0111 1101 0000* 0111
1111 1111 0101 1000* 0111

Table 1.2: IMLD table for Example 1.9.4

1.1). And IMLD will conclude incorrectly that 111 was sent if 110, 101, 011, or
111 was recieved {last four rows of Table 1.1).

Example 1.9.4 Suppose [M| = 3, and we select C = {0000,1010,0111} with
n = 4. We construct the IMLD Table 1.2, just as in Example 1.9.3 above,
except that if two or more entries in the error pattern columns have the same
smallest weight, then we do not place an asterisk in that row and record nothing
(indicated by ~) in the decoding column for v. This means, for IMLD, that we
request a retransmission whenever there is a tie for smallest error pattern weight.

Exercises

1.9.5 |[M|=2,n =3, and C = {001,101}. If v = 001 is sent, when will IMLD
conclude this correctly, and when will IMLD incorrectly conclude that
101 was sent? -

1.9.6 Let [M| = 3 and n = 3. For each word w in K that could be re-
ceived, find the word v in the code C' = {000,001,110} which IMLD

will conclude was sent.

1.9.7 Construct the IMLD table for each of the following codes.
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(a) C = {101,111,011}

(b) C = {000,001,010,011}

(c) C = {0000,0001,1110}

(d) C = {0000,1001,0110,1111}

(e) C = {00000,11111}

(f) C = {00000,11100,00111,11011}

(g) C = {00000,11110,01111,10001}

(h) C = {000000,101010,010101,111111}

Recall that we have to choose n and C (1.9.1). Some choices are better than
others. We list three important criteria for measuring good choices:

1) Longer words take more time to transmit and decode, so n should not be
too large; that is, the information rate should be as close to 1 as possible.

2) With many messages being received per second, if |C] is large — say a few
thousand or so, the procedure for IMLD described in this section would
be too time consuming to implement. Fortunately, certain clever choices
of C' admit much slicker and faster methods for IMLD.

3) If many errors are made in transmission, MLD will not work. That is, the
word MLD will conclude was sent will not be the same as the actual word
sent. So C should be chosen so that the probability that MLD will work
is very high. (We will consider this probability in the next section.)

Thus we claim that the main goal of coding theory is to find sets C of words
which are adequate when judged by the criteria above. Most of the rest of our
efforts will be devoted to this goal.

1.10 Reliability of MLD

Suppose n and C have been chosen. We now give a procedure for determining
the probability 8,(C,v) that if v is sent over a BSC of probability p then IMLD
correctly concludes that v was sent.

Find the set L{v) of all words in K™ which are closer to v than to any other
word in C. Then 8,(C,v) is the sum of all the probabilities ¢,(v,w) as w ranges

over L(v). That is,
0,(C,v) = 9" dy(v,w).

weL(v)

Note that L(v) is precisely the set of words in K™ for which, if received, IMLD
will correctly conclude that v was sent. We can find L{v) from the IMLD table
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constructed as in the last section. In each row of the table where v is decoded
in the last column, the word w in the first column of that row is in L(v). And
these are all the words in L(v).

Also observe that 6,(C,v) is the sum over the words w in L(v) of the proba-
bilities of the error patterns v + w occuring during transmission.

8, can be used to compare two codes, judging them by the third criterion in
the previous section. However, it should be noted that 6,(C, v) as defined ignores
the possibility of retransmission, when the received word is equidistant from two
codewords. This does lead to some anomalies (such as 6,(K™,v) > 6,(C,u), for
any v in K™ and u in C, where C is the parity check code formed from K™), but
is a reasonable first approximation for a measure of reliabilty. Certainly 6,(C,v)
is a lower bound for the probability that v is decoded correctly.

Example 1.10.1 Suppose p = .90,|M| = 2,n = 3, and C = {000,111}, as

in Example 1.9.3. If the word v = 000 is sent, we compute the probability
that IMLD will correctly conclude this after one transmission. From Table 1.1,
v = 000 is decoded in the first four rows, so the set L(000) (words in K3 closer
to v = 000 than to 111) is

L(000) = {000,100,010,001}.
Thus,

6,(C,000) = 6,(000,000) + 6,(000,100) + 6,(000,010) + 4,(000,001)
=p’+p*(L—p) +p*(1 — p) + p*(1 — p)
=p°+3p*(1 - p)
= .972 (assuming p = .9).
If v = 111 is transmitted, we compute the probability that IMLD correctly
concludes this after one transmission. First,

L(111) = {110,101,011,111},

SO .
6,(C,111) = 6,(111,110) + 6,(111,101) + 8,(111,011) + 6,(111,111)
=pX1l —p)+p*(1 —p) + p*(1 —p) + 7°
=3p*(1 - p) +p°
= 972 (assuming p = .9).
Exercises

1.10.2 Suppose p = .90,|M| = 2,n = 3, and C = {001,101}, as in Exercise
1.9.5.

(a) I v = 001 is sent, find the probability that IMLD will correctly
conclude this after one transmission.
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(b) Repeat part (a) for v = 101.

Both answers in Exercise 1.10.2 are 6,(C,v) = .900. Comparing this to the
results in Example 1.10.1, we conclude that since .900 < .972, the code C =
{000,111} is better than the code C = {001,101}, at least when judged by the
third criterion in the last section. Qur method provides a procedure, (although
somewhat inefficient when n is large) for determining when the probability that
IMLD works is high. Fortunately, most of the codes we design later on are
structured so that the calculation of this probability is much easier.

Example 1.10.3 Suppose p = .90,|M| = 3,n = 4, and C = {0000,1010,0111},
as in Example 1.9.4. For each v in C, we compute 6,(C, v).

(2)
v = 0000
L(0000) = {0000,0100,0001}, (from Table 1.2)
0,(C,v) = 6,(0000,0000) + 6,(0000,0100) + 6,(0000, 0001)
=p'+p*(1-p)+ %1 -p)
= pt 4 2p%(1 — p) = .8019
(b)
v = 1010
L(1010) = {1010,1110,1011}
6,(C,v) = 6,(1010,1010) + 6,(1010,1110) + 6,(1010,1011)
=p*+p°(1~p)+ 91 -p)
= p* +2p%(1 - p) = .8019
(¢

v = 0111

L(0111) = {0110,0101,0011,1101,0111,1111}

6,(C,v) = 8,(0111,0110) + 6,(0111,0101) + 4,(0111,0011)
+6,(0111,1101) + 6,(0111,0111) + §,(0111,1111)
=p(1-p)+ 1 -p)+9°(1—p)+ PP —p)* +p* +P°(1 —p)
= p* +4p*(1 — p) + p*(1 — p)? = .9558.

Examining the three probabilities, we see that the probability that IMLD will
conclude correctly that 0111 was sent is not too bad. However the probability
that IMLD will conclude correctly that either 0000 or 1010 was sent is horrible.
Thus, at least by the third criterion in the last section, C' = {0000,1010,0111}
is not an especially good choice for a code.
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Exercises

1.10.4 Suppose p = .90 and C = {000,001,110}, as in Exercise 1.9.6. If
v = 110 is sent, find the probability that IMLD will correctly conclude
this, and the probability that IMLD will incorrectly conclude that 000
was sent.

1.10.5 For each of the following codes C calculate 6,(C, v) for each v in C using
p = .90. (The IMLD tables for these codes were constructed in Exercise
1.9.7). '

(a) C = {101,111,011}

(b) C = {000,001,010,011}

(c) € = {0000,0001,1110}

(d) € = {0000,1001,0110,1111}

(e) C = {00000,11111}

(f) C = {00000,11100,00111,11011}

(g) C = {00000,11110,01111,10001}

(k) C = {000000,101010,010101,111111}.

1.11 Error—Detecting Codes

We now make precise the notion of when a code C will detect errors. Recall
that if v in C' is sent and w in K™ is received, then u = v+w is the error pattern.
Any word u in K™ can occur as an error pattern, and we wish to know which
error patterns C will detect.

We say that code C' detects the error pattern u if and only if v + u is not a
codeword, for every v in C. In other words, u is detected if for any transmitted
codeword v, the decoder, upon receiving v + u can recognize that it is not a

' codeword and hence that some error has occurred.

Example 1.11.1 Let C = {001,101,110}. For the error pattern u = 010, we
calculate v + 010 for all v in C:

001 + 010 = 011,101 + 010 = 111,110 + 010 = 100.

None of the three words 011, 111, or 100 is in C, so C detects the error pattern
010. On the other hand, for the error pattern u = 100 we find -

001 + 100 = 101,101 -+ 100 = 001, 110 + 100 = 010.

Since at least one of these sums is in C, € does not detect the error pattern 100.
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Exercises

1.11.2 Let C = {001,101,110}. Determine whether C' will detect the error
patterns (a) 011, (b) 001, and (c) 000.

1.11.3 For each of the following codes C determine whether or not C detects
u:

(a) C = {00000,10101,00111,11100}
(i) u = 10101
(ii) u = 01010
(iii) u = 11011
(b) C = {1101,0110,1100}
(i) w = 0010
(i) u = 0011
(iii) » = 1010
(c) C = {1000,0100,0010, 0001}
(i) w= 1001
(if) u = 1110
(iif) w = 0110

1.11.4 Which error patterns will the code C = K™ detect?

1.11.5 (i) Let C be a code which contains the zero word as a codeword. Prove
that if the error pattern u is a codeword, then C will not detect u.

(ii) Prove that no code will detect the zero error pattern u = 0.

The table constructed for IMLD can be used to determine which error pat-
terns a code C will detect. The first column lists every word in K™. Hence the
first column can be reinterpreted as all possible error patterns, in which case the
“error pattern” columns in the IMLD table then contain the sums v + u, for all
vin C. If in any particular row none of these sums are codewords in €, then C
detects the error pattern in the first column of that row.

Example 1.11.6 Consider the code C' = {000,111} with IMLD Table 1.1. All
possible error patterns u are in the first column. For a given u, all sums v+ u
as v ranges over C' are in the second and third columns of the row labeled by u.
If none of these entries are in C' (that is, neither is 000 or 111), then C detects
u. Thus C detects the error patterns 100, 010, 001, 110, 101, and 011, as can be
seen by inspecting rows 2 through 7 of the table, but not the error patterns 000
or 111.
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Exercises

1.11.7 Determine the error patterns detected by each code in Exercise 1.9.7 by
using the IMLD tables constructed there.

An alternative and much faster method for finding the error patterns that
code C can detect is to first find all error patterns that C' does not detect;
then all remaining error patterns can be detected by C. Clearly, for any pair of
codewords v and w, if ¢ = v + w then e cannot be detected, since v + e = w,
which is a codeword. So the set of all error patterns that cannot be detected by
C is the set of all words that can be written as the sum of 2 codewords.

Example 1.11.8 Consider the code {000,111}. Since

000 -+ 000 = 000,000 + 111 = 111 and 111 4 111 = 000,

the set of error patterns that cannot be detected is {000,111}. Therefore all
error patterns in K*\{000,111} can be detected.

Example 1.11.9 Let C = {1000,0100,1111}. Since 1000+ 1000 = 0000, 1000+
0100 = 1100,1000 + 1111 = 0111 and 0100 + 1111 = 1011, the set of error
patterns that cannot be detected by C is {0000, 1100, 0111, 1011}. Therefore all
error patterns in K*\{0000,1100,0111,1011} can be detected.

Exercises

1.11.10 Find the error patterns detected by each of the following codes and

compare your answers with those Exercises 1.11.7.

(a) C =1{101,111,011}

(b) C = {000,001,010,011}

(c) C = {0000,0001,1110}

(d) € = {0000,1001,0110,1111}

(e) C = {00000,11111}

(f) C = {00000,11100,00111,11011}

(g) C = {00000,11110,01111, 10001}

(h) C = {000000,101010,010101, 111111}

There is also a way of determining some error patterns that code C will |

detect without any manual checking. First we have to introduce another number
associated with C.

- For a code €' containing at least two words the distance of the code C is
the smallest of the numbers d(v,w) as v and w range over all pairs of different
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codewords in C. Note that since d(v,w) = wit(v + w), the distance of the code
is the smallest value of wi(v + w) as v and w,v # w range over all possible
codewords.

The distance of a code has many of the properties of Euclidean distance;
this correspondence may be useful to assist in understanding the concept of the
distance of a code.

Example 1.11.11 Let C' = {0000,1010,0111}. Then d(0000, 1010} = 2, (0000,
0111) = 3, and d(1010,0111) = 3. Thus the distance of C is 2.

Exercises
1.11.12 Find the distance of each of the following codes.

(a) C = {101,111,011}

(b) C = {000,001,010,011}

(c) C = {0000,0001,1110}

(d) C = {0000,1001,0110,1111}

(e) C = {00000,11111}

(f) C = {00000,11100,00111,11011}

(g) C = {00000,11110,01111,10001}

(h) C = {000000,101010,010101,111111}

1.11.13 Find the distance of the code formed by adding a parity check digit to

K.

Now we can state a theorem which helps to identify many of the error patterns
a code will detect.

Theorem 1.11.14 4 code C of distance d will at least detect all non-zero error
patterns of weight less than or equal to d — 1. Moreover, there is at least one
error patiern of weight d which C will not detect.

Remark Notice that C' may detect some error patterns of weight d or more,
but does not detect all error patterns of weight d.

Proof: Let u be a nonzero error pattern with wt(u) < d — 1, and let v be in C.
Then
d(v,v +u) = wt(v +v+u) = wi(u) < d.

Since C has distance d, v + u is not in C. Therefore C detects u. From the
definition of d, there are codewords v and w in C with d(v,w) = d. Consider
the error pattern u = v+ w. Now w = v 4+ u is in C, so C will not detect the
error pattern u of weight d. O
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A codeis an t error—detecting code if it detects all error patterns of weight at
most ¢ and does not detect at least one error pattern of weight £+ 1. So, in view
of Theorem 1.11.14, if a code has distance d then it is a d — 1 error-detecting
code.

Example 1.11.15 The code C' = {000,111} has distance d = 3. By Theorem
1.11.14, C detects all error patterns of weight 1 or 2, and €' does not detect
the only error pattern of weight 3, 111. The only error pattern not covered by
Theorem 1.11.14 is 000. But by Exercise 1.11.5 we know that 000 is not detected.

Theorem 1.11.14 does not prevent a code C from detecting error patterns of
weight d or greater. Indeed, C usually will detect some such error patterns.

Example 1.11.16 The code C = {001,101,110} has distance d = 1. Since
d—~1 = 0, Theorem 1.11.14 does not help us determine which error patterns
C will detect. But it does tell us that there is at least one error pattern of
weight d = 1 which C' will not detect. As we saw in Example 1.11.1, such an

error pattern is 100. Note, however, that C does detect the error pattern 010 of
weight d = 1.

Exercises

1.11.17 The code C' = {0000,1010,0111} has distance d = 2. Using Exercise
1.11.5, show that the error pattern 1010 is not detected. Show that this
is the only error pattern of weight 2 that C does not detect. Find all
error patterns that C detects.

1.11.18 Find all error patterns which the code C;3 of Example 1.3.3 will detect.
Note that Cj is a single error—detecting code.

1.11.19 For each code C in Exercise 1.11.12 find the error patterns which The-
orem 1.11.14 guarantees C will detect.

1.11.20 Let C be the code consisting of all words of length 4 which have even
weight. Find the error patterns C detects.

1.12 Error—Correcting Codes

If a word v in a code C is transmitted over a BSC and if w is received resulting
in the error pattern v = v + w, then IMLD correctly concludes that v was sent
provided w is closer to v than to any other codeword. If this occurs every times

‘the error pattern u occurs, regardless of which codeword is transmitted, then
we say that C corrects the error pattern u. That is, a code C' corrects the error
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pattern u if, for allv in C, v+u is closer to v than to any other word in C. Also,
a code is said to be an £ error—correcting code if it corrects all error patterns of
weight at most ¢ and does not correct at least one error pattern of weight ¢ + 1.

Example 1.12.1 Let C = {000,111}.
(a) Take the error pattern u = 010. For » = 000,
d(000, v + u) = d(000,010) = 1 and

d(111,v +u) = d(111,010) = 2.
And for v = 111,

d(000, v + u) = d(000,101) = 2

d(111,v + u) = d(111,101) = 1.
Thus C corrects the error pattern 010.

(b) Now take the error pattern u = 110. For v = 000,
d(000,v + u) = d(000,110) = 2 and

d(111,v + ) = d(111,110) = 1.

Since v + u is not closer to v = 000 than to 111, C does not correct the
error pattern 110.

The IMLD table can be used to determine which error patterns a code C will
correct. In each error pattern column of the table, all possible error patterns
{which means each word in K™) occurs once and only once (for if the error
pattern u occurs twice in a column for some codeword v, then u occurs in rows
corresponding to distinct received words, say w; and we; thus u = v4w; = v+w,,
which is impossible for w; # w,). Also, an asterisk is placed beside the error
pattern u in the column corresponding to a codeword v in the IMLD table
precisely when v + u is closer to v than it is to any other codeword. Therefore
an error pattern u is corrected if an asterisk is placed beside u in every column
of the IMLD table.

Example 1.12.2 For the code C = {000,111}, the IMLD table is in Table 1.1.
In every row of the table where the error pattern 010 occurs (rows 3 and 6),
IMLD correctly concludes which word v was sent. Also, in at least one row (row
4) where the error pattern 110 occurs, if 111 is sent and 001 is received, IMLD
incorrectly concludes that 000 was sent. Note that this code corrects the error
patterns 000, 100, 010, and 001 which receive an asterisk each time they occur.
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Example 1.12.3 Let C' = {0000,1010,0111}. The IMLD table for C is Table
1.2. The code C' will not correct the error pattern u = 1010. This error pattern
occurs in the rows where w = 0000,1010, and 1101. In only one case, where
w = 1101, does IMLD correctly conclude which word v was sent. Note that the
error pattern u = 1010 receives an asterisk only in the column for v = 0111 and
not in the other two columns. C does correct the error patterns 0000, 0100 and
0001.

Example 1.12.4 Let C = {001,101,110}. Does C correct the error pattern
u = 1007 We construct only the three rows of the IMLD table where 100
appears. Since u = v+ w and we know u and v, we can find the received words
from w = u+wv. Notice that u = 100 does not receive an asterisk in every column
in the following table, so C does not correct 100.

Received Error Pattern Deocde
w 001+w | 101 +w | 110 + w v
101 100 000* 011 101
001 000* 100 111 001
010 011 111 100* 110

Exercises

1.12.5 Let C = {001,101,110}. Does C correct the error pattern u = 100?
What about u = 0007

1.12.6 Prove that the same error pattern cannot occur more than once in a
given row of an IMLD table.

1.12.7 Prove that the zero error pattern is always corrected.
1.12.8 Which error patterns will the code C = K™ correct?

The distance of a code can be used to devise a test for error—correcting
which avoids at least some of the manual checking from the MLD table. The
next theorem gives the test. Recall that the symbol |z] denotes the greatest
integer less than or equal to the real number x. For example, |5/2] = 2, 3] =3,
and |1/2] = 0.

Theorem 1.12.9 A code of distance d will correct all error patterns of weight
less than or equal to |(d — 1)/2]|. Moreover, there is at least one error pattern
of weight 1+ |(d — 1)/2] which C will not correct.

Proof: Let u be an error pattern of weight wt(u) < (d — 1)/2. Let v and w be
codewords in C with w # v. We want to show that d(v,v + u) < d(w,v + u).
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d(w,v +w) + d(v 4+ u,v) > d(w,v)

>d
dw,v+u) +wit(u) > 2wi(u) + 1
d(w, v+ u) > wi(u) + 1

>dv,v+u)+1
since wt(u) = d(v + u,v), and 2wit(u) + 1 < d.
Therefore C' corrects u. Now let v and w be codewords with d(v,w) = d.

Form an error pattern u by changing d — 1 — [(d—1)/2] of the d 1's in v+ w
to 0’s. Then ’

d(v,v+u) =wi(u)=1+|(d—1)/2], and
d(w, v+ u) = wi(w + v+ u) = d(v + w, u)
= d= (14 |(d=1)/2)).

If d is odd, say d = 2 + 1, then

d(v,v+u) =wi(u) =14 (2)/2=1+1¢, and
d(w,v+u) =241~ (1+18)=t,

$0 d(v,v +u) > d(w,v + u). And if d is even, say d = 2t, then

dv,v+u) =1+ [t—1/2] =t¢, and
dw,v+u) =2 —~t=14.

In either case, d(v,v + u) > d(w,v + u), so v + u is not closer to v than to the
codeword w. Thus C does not correct the error pattern wu. 0

In view of this theorem it is clear that any code of distance d is a [(d-1)/2]
error~correcting code.

Example 1.12.10 The code ¢ = {000,111} has distance d = 3. Since [(d -
1)/2] = 1, Theorem 1.12.9 ensures that C corrects all error patterns of weight 0
or 1. As we observed in Example 1.12.1, C does correct error patterns 000, 100,
010, and 001. The error pattern 110 has weight 14 [(d—1)/2] = 2, and we saw
that C' does not correct 110.

Theorem 1.12.9 does not prevent a code C of distance d from correcting error
patterns of weight greater than |(d —1)/2].

Example 1.12.11 Let C = {001, 101}. Then d = 1. The efror pattern u = 011

has weight 2, which is greater than 1 + [(d—1)/2] =1. As the following piece
of the IMLD table shows, C' does correct u=011.
&

w | 001+w | 1014w | v
010 | 011* 111 001
110 111 011* 101
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Exercises
1.12.12 For each of the following codes C
(i) determine the error patterns that C will correct (the IMLD tables
for these codes were constructed in Exercise 1.9.7), and

(i1) find the error patterns that Theorem 1.12.9 guarantees that C
corrects.

(a) C = {101,111,011}

(b) C = {000,001,010,011}

(c) C = {0000,0001,1110}

(d) € = {0000,1001,0110,1111}

(e) C = {00000,11111}

(f) C = {00000,11100,00111,11011}

(g) C = {00000,11110,01111,10001}

(h) C = {000000,101010,010101,111111}

1.12.13 Use the technique described in Example 1.12.11 to decide whether or not
the following error patterns are corrected by the accompanying code.

(a) C = {000000,100101,010110,001111,110011,101010,011001, 111100}

(i) u = 001000
(i) u = 000010
(iii) u = 100100
(b) C = {1001011,0110101,1110010,1111111}
(i) u = 0100000
(ii) u = 0101000
(iii) u = 1100000

1.12.14 For each code in Exercise 1.12.12, find an error pattern of weight |(d —
1)/2] + 1 that C does not correct.

1.12.15 Let C be the code consisting of all words of length 4 having even weight.
Determine the error patterns that C will correct.

1.12.16 Let u; and us be error patterns of length n, and assume that u; and u,
_agree at least in the positions where a 1 occurs in u;. Prove that if a
code C will correct uy, then C will also correct u;.

As we have observed, error patterns of small weight are more likely to occur
than error patterns of large weight (Theorem 1.6.3). Therefore, in designing
codes, we should concentrate on being able to correct, or at least to detect, error
patterns of small weight.

Chapter 2

Linear Codes

2.1 Linear Codes

In this section we introduce a broad class of codes. In fact, virtually every
code we consider will belong to this class. We will be able to bring into play
some powerful mathematical tools which will enable us to resolve some of the

previously discussed problems of coding theory when applied to codes in this
class. '

. A code C is called a linear code if v+ w is a word in C whenever v and w are
in C. That is, a linear code is a code which is closed under addition of words.
For example C = {000,111} is a linear code, since all four of the sums

000 4 000 = 000 111 4000 = 111

000 4 111 =111 111 4111 = 000

are in C. But Cy = {000,001, 101} is not a linear code, since 001 and 101 are in
C; but 001 + 101 is not in Cj.

A linear code C' must contain the zero word. For if C is to be linear, then
the sum v+ v = 0 must be in C by closure under addition. However, as the code

C; above demonstrates, the zero word being in a code does not guarantee that
the code is linear.

Exercises

2.1.1 Determine which of the following codes are linear.
(a) C= {101, 111, 011} F
(b) C = {000, 001, 010, 011}
(¢} C = {0000, 0001, 1110}
(d) € = {ooco, 1001, 0110, 1111}

29
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(e) C = {00000, 11111}

(f) C = {00000, 11100, 00111, 11011}

(g) C = {00000, 11110, 01111, 10001}

(h) C = {000000, 101010, 010101, 111111}

One advanta,gé a linear code has over a nonlinear code is that its distance is
casier to find. The distance of a linear code is equal to the minimum weight of
any nonzero codeword . Exercise 2.1.4 below requests the easy proof.

Exercises

2.1.2 Show that C = {0000, 1100, 0011, 1111} is a linear code and that its
distance is d = 2.

9.1.3 Find the distance of each linear code in Exercise 2.1.1. Check answers
with Exercise 1.11.12.

9.1.4 Prove that the distance of a linear code is the weight of the nonzero
codeword of least weight. .

As we will see in the following sections, linear codes are rather highly struc-
tured and have many other advantages over the arbitrary codes discussed so far.
Here are some problems, tedious to settle in general, but relatively easy for linear
codes:

1) For a linear code, there is a procedure for MLD that is simpler and faster
to use than the one described earlier (certain linear codes with even more
structure have very simple decoding algorithms).

2) Encoding a linear code is faster and requires less storage space than for
arbitrary non-linear codes.

3) The probabilities 6,(C, v) are straightforward to calculate for a linear code.
4) It is easy to describe the set of error patterns that a linear code will detect.

5) It is much easier to describe the set of error patterns a linear code will
correct than it is for arbitrary non-linear codes.

The most important tools and techniques for studying linear codes come from
linear algebra. In this and the next several sections we will review some basic
facts from linear algebra and attempt to show their relevance to coding theory.
Most proofs not depending on scalar products in K™ are exact replicas of the
proofs in R", and hence are omitted.

-
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Recall that we defined a vector space (over K), as consisting of scalars (K)
and a set of vectors, or words, K™, together with the operations of vector addition
and scalar multiplication, which satisfy the ten properties listed in Section 1.7.
A nonempty subset U of a vector space V is a subspace of V if U is closed under
vector addition and scalar multiplication; that is, if v and w are in U, then v+ w
and av are in U for any scalar a. In particular, since the only scalars in K are 0
and 1, U is a subspace of K™ if and only if U is closed under addition. Therefore
C is a linear code if and only if C is a subspace of K™. Over the next few sections
we shall use the knowledge of subspaces to dramatically improve our techniques
for encoding and decoding.

2.2 Two Important Subspaces

We consider two subspaces of the vector space K™ which will provide two
interesting examples of linear codes and will be vital in future developments.
Definitions and results will be stated for an arbitrary vector space, then inter-
preted for K.

The vector w is said to be a linear combination of vectors vy, vs,...,v; if
there are scalars ay, a,,. .. a; such that

w = a U1 + agve + ..+ apvg.

The set of all linear combinations of the vectors in a given set S = {vq,v2,...,v¢}
is called the linear span of S, and is denoted by < S >. If S is empty, we define
< S >={0}.

In linear algebra it is shown that for any subset S of a vector space V, the
linear span < S > is a subspace of V| called the subspace spanned or generated
by S. For the vector space K™, we have a very simple description of < § >
which is stated in the next theorem. Since < § > is a subspace, in K™ we call
< S > the linear code generated by S.

Theorem 2.2.1 For any subset S of K™, the code C =< S > generated by S
consists precisely of the following words: the zero word, all words in S, and all
sums of two or more words in S.

Example 2.2.2 Let S = {0100,0011,1100}. Then the code C =< § > gener-
ated by S consists of

0000, 0100, 0100+ 0011 =0111, 0100+ 0011+ 1100 = 1011,
1100, 0011, 0100+ 1100 = 1000, 0011 + 1100 = 1111;

that is, C =< S >= {0000,0100,0011,1100,0111,1000,1111,1011}.
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Exercises

2.2.3 For each of the following sets S, list the elements of the linear code
< 8>

(a) S = {010,011,111}

(b) S = {1010,0101,1111}

(c) S = {0101,1010,1100}

(d) § = {1000,0100,0010,0001}

(e) S = {11000,01111,11110,01010}

(f) S = {10101,01010,11111,00011,10110}

If v = (a1,89,...,0,) and w = (b1, ba, . .., by) are vectors in K7™, we define
the scalar product or dot product v - w of v and w as

vVew= a1b1+agbg+...+anbn.
Note that v - w is a scalar, not a vector. For instance, in K%,

11001-061101 =1-0+1-140-140-0+1-1
=0+14+0+0+1
=0.

Exercises
9.9.4 Construct examples in K® of each of the following rules

@ u-(vtwy=u-v+u-w

(b) a(v-w) = (av) - w = v - (aw).
9.2.5 Prove that the two rules in Exercise 2.2.4 hold in K™.

Vectors v and w are orthogonal if v - w = 0. The example above shows that
v = 11001 and w = 01101 are orthogonal in K®. For a given set S of vectors in
K™, we say a vector v is orthogonal to the set S if v-w = 0 for all w in S; that
is, v is orthogonal to every vectorin S. The set of all vectors orthogonal to S is
denoted by S* and is called the orthogonal complement of S.

In linear algebra it is shown that for any subset S of a vector space V, the

orthogonal complement S* is a subspace of V. For the vector space K*, if
C =< § >, then we write C* = S* and call C* the dual code of C.
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Example 2.2.6 For § = {0100,0101}, we compute the dual code C*+ = S+,
We must find all words v = (x,y,2,w) in K* such that both the equations

v -0100 =0
v -0101 =0

hold. Computing the scalar product we have
y=0 and y+w=0.

Thus y = w = 0 but x and z can be either 0 or 1. Writing down all such choices
for v we get

C* = §* = {0000,0010,1000,1010}.
Exercises

2.2.7 Find the dual code C* for each of the codes ¢ =< § > in Exercise
2.2.3.

2.2.8 Find an example of a nonzero word v such that v-v = 0. What can you
say about the weight of such a word?

2.2.9 For any subset S of a vector space V, (St} =< § >. Use the example
above to construct an example of this fact in K.

2.2.10 Prove that (S) C (S§*)*. (In fact (S*)* =< § >; for a linear code C,
this means (C+)* = C).

2.3 Independence, Basis, Dimension

We review several important concepts from linear algebra and illustrate how
to apply these concepts to linear codes. The main objective is to find an efficient
way to describe a.linear code without having to list all the codewords.

A set S = {vy,v9,...,0;} of vectors is linearly dependent if there are scalars
ay,8y,...,a; not all zero such that

a vy + @V + ...+ aivr = 0.

Otherwise the set S is linearly independent.

The test for linear independence, thefi, is to form the vector equation above
using arbitrary scalars. If this question forces all the scalars ay, a,,. .., ax to be
0, then the set .S is linearly independent. If af least one a; can be chosen to be
nonzero then S is linearly dependent.
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Example 2.3.1 We test § = {1001,1101, 1011} for linear independence. Let a,
b and ¢ be scalars {digits) such that
a(1001) + b(1101) 4 ¢(1011) = 0000.
Equating components on both sides yields the scalar equations
a+b+e=0,b=0,c=0,a+b+c=0.

These equations force a = b = ¢ = 0. Therefore S is a linearly independent set
of words in K*.

Example 2.3.2 We test S = {110,011, 101, 111} for linear independence.

Consider
a(110) + b(011) + c(101) + d(111) = 000.

This yields the system of scalar equations

at+ct+d =0
at+b+d =0
b+ec+d =0.

Adding these three equations gives d = 0. Now we have a + ¢ = O,a.—i- b=
0,6 +c = 0. Thus we can choose @ = b = ¢ = 1. Therefore S is a linearly
dependent set.

In linear algebra it is shown that any set of vectors S # {0} contains a largest
linearly independent subset. The next example shows how such a subset may be
found.

Example 2.3.3 Let § = {110,011,101,111}. The last example shows that S is
linearly dependent. In fact, we found that

1(110) + 1{011) + 1(101) + 0(111) = 000,
so we can solve for 101 as a linear combination of the other words in S:
101 = 1(110) 4 1(011) + 0(111).

In the dependent set S, if we take the words in the order given, we come to 101
as the first word which is dependent on, that is, is a linear combination of, the
preceding words 110 and 011 in S. Discarding this word, we obtain a new se't
§" = {110,011,111}. Now S’ can be tested for linear independence. If S'is
linearly dependent, we discard the first word which is a linear combination of
the preceding words, thus obtaining a new set S”. This process may be repeated
until we find a new set which is linearly independent; such a set is always a
largest linearly independent subset of the given set S. In the present example,
this set is S5’
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Exercises

2.3.4 Test each of the following sets for linear independence. 'If the set is
linearly dependent, extract from S a largest linearly independent subset.
(a) S ={1101,1110,1011}
{b) §={101,011,110,010}
(¢) §={1101,0111,1100,0011}
(d) S = {1000,0100,0010,0001}
(e) S = {1000,1100,1110,1111}
(f) S =4{1100,1010,1001,0101}
(g) S ={0110,1010,1100,0011,1111}
(k) S = {111000,000111,101010,010101}
(i) S = {00000000,10101010,01010101,11111111}.
In Exercise 2.3.4 (i) S is found to be a linearly dependent set. Note that S

contains the zero word. It is always true that any set of vectors containing the
zero vector is linearly dependent.

A nonempty subset B of vectors from a vector space V is a basis for V if
both:

1) B spans V (that is, < B >= V), and
2) B is a linearly independent set.

Note that any linearly independent set B is automatically a basis for < B >.
Also since any linearly dependent set S of vectors that contains a non-zero word
always contains a largest independent subset B, we can extract from § a basis
B for < §>. If § = {0} then we say that the basis of S is the empty set, §.

Example 2.3.5 Let S = {1001,1101,1011}. In Example 2.3.1 we found that
S is linearly independent. Therefore S is a basis for the code C = < § >=
{0000,1001,1101,1011,0100,0010,0110, 1111} which is a subspace of K*.

Example 2.3.6 Let S = {110,011,101,111}. In Example 2.3.2 we found that
S is linearly dependent. But in Example 2.3.3 we extracted a maximal linearly

independent subset B = §’ = {110,011,111} of S. Hence B is a basis for the
code =< 5 >.

These examples illustrate how to obtain a basis for the code C =< § >
generated by a nonempty subset S of K™. To find a basis for the dual code C*,

extract a largest linearly independent subset from C* following the procedure
in Example 2.3.3 :



36 CHAPTER 2. LINEAR CODES

Exercises

9.3.7 For each set in Exercise 2.2.3 find a basis B for the code C =< § >
and a basis Bt for the dual code C*.

The set B = {110,011,111} is not the only largest linearly independent sub-
set of $ = {110,011, 101,111} (see Example 2.3.6). The set B, = {110,101,111}
is also such a subset of S. Thus B is also a basis for the code C =< § >.

In general a vector space usually has many bases. However, all bases for a
vector space contain the same number of elements. The number of elements in
any basis for a vector space is called the dimension of the space.

The dimension of K™ is n, since the set of all words of length n and weight
one is a basis for K™. At the other extreme, the basis of the subspace {0} is @
and so has dimension 0.

Exercises

9.3.8 Find the dimensions of each code ¢ =< § > and its dual C* in Exercise
2.2.3 (see also Exercise 2.2.7).

A basis provides an efficient way to describe a linear code. For any vector
space V, if {v1,vs,...,0x} is @ basis for V, then every vector w in V can be

ezpressed as a unique linear combination of the basis vectors vy, v, ..., vk; that

is, there exist unique scalars ay, as, . . ., ax such that w = ayv; +agva +. . . +apvy.

Example 2.3.9 We write w = 011 as a unique linear combination of the words
in the basis {110, 001, 100} for K3. We seek digits a, b, ¢ such that

a(110) + b(001) + ¢(100) = 011,
This yields the scalar equations
at+c=0,a=1,b=1,
" which have the unique solution a = b = ¢ = 1. Thus 011 = 1(110) + 1(001) +
1(100).
Exercises

2.3.10 Write each of the following words in K* as a unique linear combination
of the words in the basis {1000, 1100, 1110, 1111}:

() 0011 (b) 1010 (c) 0111 (d) 0001  ()000O.

Another important fact about vector spaces is that aeny linearly independent
subset of a vector space is contained in a basis for the space. The next example
shows how this works.
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Example 2.3.11 The set § = {110,001} is a linearly independent subset of k3.
We extend S to a basis for K>. First we adjoin to S any known basis: 100, 010,
001 is a convenient basis to adjoint for K3. The resulting list of words

110,001, 100, 010, 001

is then reduced to a basis for K> according to the procedure in Example 2.3.3,
solving for 100, 010 or 001.

Exercises

2.3.12 (a) Find a basis for K* which contains {1001, 1111}.
(b) Extend {101010, 010101} to a basis for K®.
We now come to two important theorems concerning dimension of linear

codes. If a linear code C has dimension k and if {v1,v2,...,v:} is a basis for C,
then a word w in C can be written as

w=a;v; +ave+ ...+ arvr

for a unique choice of digits a;,a,,...,a;. Since each a; is either 0 or 1, there
are 2% choices for ay, s, . ..,ax, and hence 2* words in C.

Theorem 2.3.13 A linear code of dimension k contains precisely 2¢ codewords.

The next theorem can be proved using elementary results from the theory of
systems of linear equations.

Theorem 2.3.14 Let C =< § > be the linear code generated by a subset S of
K*. Then (dimension of C) + (dimension of C*) =n.

Exercises

2.3.15 Check your answers in Exercise 2.3.8 with the equation in Theorem
2.3.14.

2.3.16 Let S be a subset of K7, let C =< S > and assume C' has dimension
3.

(a) Find the dimension of £ =< ,S' >.
(b) Find the number of words in C.

2.3.17 Let S be asubset of K8 and assume that {11110000, 00001111, 10000001}
is a basis for C*. Find the number of words in C =< S >.
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2.3.18 Theorem 2.3.14 also holds in R*. In R™ every vector can be written
uniquely as the sum of a vector in < § > and a vector in S+, and
the zero vector is the only vector < S > and S have in common. (For
example, in R® take < S > to be the xy-plane and S* the z-axis.) Use
S = {000,101} in K3 to show that this is not the case in general in K™.

The last result in this section deals with the question of how many different
bases a linear code can have. In R™ a subspace has infinitely many bases, but
this is not so in K™.

Theorem 2.3.19 A linear code of dimension k has precisely %154 (2% — 2%)

different bases.

Example 2.3.20 The linear code K* has dimension k = 4 and hence
L oot 2%y = Lot 2t —2)(2* 22(24—23)~840‘
g 110 =2 = gt et -2t -2) =
different bases. Any linear code contained in K™, for n > 4, which has dimension

4 also has 840 different bases.

Exercises

2.3.21 Let b, be the number of different bases for K™. Verify the entries in the
following table:

[3 4] 5 | s
| 28 ] 840 | 83,328 | 27,998,208 |

2.3.22 List all the bases for K? and for K3.
2.3.23 Find the number of different bases for each code ¢ =< § > for

(2) S ={010,011,111},

(b) §={1010,0101,1111},

(¢) § = {0101,1010,1100},

(d) S = {1000,0100,0010,0001},

(e) S={11000,01111,11110,01010},

(f) S={10101,01010,11111,00011,10110}.
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2.4 Matrices

An m X n matriz is a rectangular array of scalars with m rows and n columns.
We assume the reader is familiar with the algebra of matrices over the real
numbers. In this section we review the necessary parts of elementary matrix
theory needed for coding theory. ,

If Ais an m X n matrix and B is an n x p matrix, then the product AB is
the m X p matrix which has for its (1,j)th entry, (that is the entry in row  and
column 7}, the dot product of row i of A and column J of B. For example

101
1011 011 [ | 100
0101 101§ 7| 111
100

Note that the number of columns of the first matrix must equal the number of
rows of the second matrix in order for the product to be defined.

Exercises

2.4.1 Find the product of each pair of the following matrices whenever the
product is defined.

o) e e
A= 100101 |, B=| 1001 |, C = , D=

11011 1100 101101 1010

101011 1101
The usual algebraic rules for matrices over the reals also hold for matrices
over K. The m X n zero matriz is the m x n matrix with each entry equal to
0. The n x n (square) matrix I in which the (i,j)th entry is 1 if s = j and is 0
otherwise is the n X n identity matriz. For any matrix A,AI = Aand JA = A.
The next three exercises point out three algebraic rules which fail for matrices

over K.

. Exercises

2.4.2 Find 2 x 2 matrices A and B over K such that AB # BA.

¢
2.4.3 Find 2x 2 matrices A and B over K , both different from the zero matrix
0, such that AB = 0.

2.4.4 Find 2x2 matrices A, B, and C over K such that AB — ACbut B#C.
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There are two types of elementary row operations which may be performed
on a matrix over K. They are:

1) interchanging two rows, and
2) replacing a row by itself plus another row.

Two matrices are row equivalent if one can be obtained from the other by a
sequence of elementary row operators.

A 1in a matrix M (over K) is called a leading 1 if there are no 1s to its left
in the same row, and a column of M is called a leading column if it contains a

leading 1. M is in row echelon form (REF) if the zero rows of M (if any) are all -

at the bottom, and each leading 1 is to the right of the leading 1s in the rows
above. If further, each leading column contains exactly one 1, M is in reduced
row echelon form (RREF).

Any matrix over K can be put in REF or RREF by a sequence of elementary
row operations. In other words, a matrix is row equivalent to a matrix in REF
or in RREF. For a given matrix, its RREF is unique, but it may have many
REFs. '

Example 2.4.5 We find the RREF for the matrix M below using elementary
row operations

1011 1011
M=]1010 | — | 0001 | (add row 1 to row 2 and to row 3)
1101 0110

1011
— | 0110 | (interchange rows 2 and 3)
0001

1010
-+ 1 0110 | (add row 3 to row 1)
0001

Exercises
2.4.6 Find the RREF for each of the four matrices in Exercise 2.4.1.

The transpose of an m X n matrix A is the n x m matrix AT which has column
iof A as its i-th row. For example,

w01 1o
if A= | 0000 |, then A7 = | |-
0110 100

We will need two facts about the transpose of matrices, A, B : (AT)T = A and
(AB)T = BTA”.
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2.5 Bases for C =< S > and C*

We develop algorithms for finding bases for a linear code and its dual. These
methods will be of great assistance in our study of linear codes.

Let S be a nonempty subset of K™. The first two algorithms provide a basis
for C =< § >, the linear code generated by S.

Algorithm 2.5.1 Form the matrix A whose rows are the words in S. Use ele-
mentary row operations to find a REF of A. Then the nonzero rows of the REF
form a basis for C =< § >.

The algorithm works because the rows of A generate C' and elementary row
operations simply interchange words or replace one word (row) with another in
C giving a new set of codewords which still generates C. Clearly the nonzero
rows of a matrix in REF are linearly independent.

Example 2.5.2 We find a basis for the linear code C =< § > for § =
{11101,10110,01011, 11010}

11101 11101 11101
A= 10110 - 01011 __) 01011
01011 01011 00111
11010 00111 00000

The last matrix is a REF of A. By Algorithm 2.5.1, {11101, 01011, 00111} is a
basis for C =< § >. Another REF of A is

11101
01100
00111
00000

so {11101, 01100, 00111} is also a basis for C =< § >. Note that Algorithm
2.5.1 does not produce a unique basis for < § >, nor are the words in the basis
necessarily in the given set S.

Exercises

2.5.3 Use Algorithm 2.5.1 to find a basis for C =< S > for each of the
following sets S.
(a) S ={010,011,111}
(b) S = {1010,0101,1111}
(c) §={0101,1010,1100}
(d) S = {1000,0100,0010,0001}
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(e) S ={11000,01111,11110,01010}
© (f) S = {10101,01010,11111,00011,10110}
(g) S={0110,1010,1100,0011,1111}
(h) S = {111000,000111,101010,010101}
(i) S = {00000000,10101010,01010101,11111111}
Algorithm 2.5.4 Form the matrix A whose columns are the words in 5. Use
elementary row operations to place A in REF and locate the leading columns in

the REF. Then the original columns of A corresponding to these leading columns
form a basis for C =< S >.

Tt is shown in elementary linear algebra that a linearly independent set of
columns of a matrix is still linearly independent after applying a sequence of
elementary row operations to the matrix. It is easy to see that the leading
columns of a matrix in REF form a linearly independent set.

Example 2.5.5 We use Algorithm 2.5.4 to find a basis for C =< S > for the
set S of Example 2.5.2.

1101 1101 1101
1011 0110 0110
A= 1100 | — | 0001 | — | 0001 |, which is in REF.
0111 0111 0000
1010 0111 0000

Since columns 1, 2, and 4 of the REF are the leading columns, Algorithm 2.5.4

says that columns 1, 2, and 4 of A form a basis for C =< § >. This basis {11101,
10110, 11010}. Note that Algorithm 2.5.4 has the property of producing a basis
for C =< § >, all of whose elements are words in the given set S.

Exercises

2.5.6 Use Algorithm 2.5.4 to find a basis for C =< § > for each set S in
Exercise 2.5.3 and compare answers.

Now we give an algorithm for finding a basis for the dual code C1. It will be
a very useful algorithm in our subsequent work. Also, notice that this algorithm
provides a basis for C' (since it includes Algorithm 2.5.1).

Algorithm 2.5.7 Form the matrix A whose rows are the words in S. Use ele-
mentary row operations to place A in RREF. Let G be the £ xn matrix consisting
of all the nonzero rows of the RREF. Let X be the k x (n — k) matrix obtained
from G by deleting the leading columns of G. Form an n X (n — k) matrix H as
follows:
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(1) inthe rows of H corresponding to the leading columns of G, place, in order,
the rows of X;

(i) in the remaining n — k rows of H, place, in order, the rows of the (n—k)x
(n — k) identity matrix I.

Then the columns of H form a basis for Ct.

The algorithm works because the n—k columns of H are linearly independent,
dimC* =n ~dimC = n ~ k, and to within a permutation of the columns of G
and therows of H, GH = X + X = 0.

The following description of Algorithm 2.5.7 may help in remembering it.
The matrix G contains k leading columns. Permute the columns of & so that
these columns come first. The other columns form the matrix X. Call this
matrix G'. Then Algorithm 2.5.7 begins thus:

A-—»[g] (RREF)

Permute the columns of G to form G = {Ik,X].
Form a matrix H' as follows:
, 1 X
B = { = ]

Apply the inverse of the permutation applied to the columns of G to the rows
of H' to form H.

Example 2.5.8 We use Algorithm 2.5.7 to find a basis for C* for the set S of
Example 2.5.2.

11101 11101 11010 10001
A= 10110 - 01011 - 01011 - 01011
’ 01011 00111 00111 00111 |’
11010 | 00000 00000 00000
[ 100/01 01
which is in RREF. Now G = | 010]11 | , k=3, and X = . The leading
001]11 : 11

columns of G are columns 1, 2, and 3, so the rows of X are placed in rows 1, 2,

and 3 respectively, of the 5 x (5 — 3) matrix H The remaining rows of H are
filled with the 2 x 2 identity matrix. Thus

01
11
11
10
01

H =
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By Algorithm 2.5.7, the columns of H form a basis for C*+. Note that, by
Algorithm 2.5.1, the rows of G form a basis for C' =< 5 >.

Example 2.5.9 Suppose n = 10 and we have a set S of words in K 19, Suppose
the RREF of the matrix A in Algorithm 2.5.7 has nonzero rows

1010010101
0001010001
G=],0000100100
0000001001
0000000011

The leading columns of G are columns 1, 4, 5, 7, and 9. We permute the columns
of G into the order 1, 4, 5, 7, 9, 2, 3, 6, 8, 10 (so the leading columns are first)

to form the matrix
10000]01111

01000[00101
G'=100100]00010
00010}00001
0000100001

Then we form the matrix H' and finally rearrange the rows of H into their natural
order to form the matrix H'.

fo11117 1 011117 1

00101 4 10000 | 2

00010 | 5 01000 3

00001 7 00101 | 4

, X1 |oo0001} 9 . |00010] 5
HAz[.I]“ 10000 | 2% 00100 6
01000 3 00001 | 7

00100 ]| 6 000101 8

00010 8 00001 9

00001 | 10 [ 00001 | 10

By Algorithm 2.5.7, the columns of H form a basis for C*.

Exercises

2.5.10 Use Algorithm 2.5.7 to find a basis for C* for each of the codes
C =< § > where
(a) §={010,011,111}
(b) S = {1010,0101,1111}
(c} S ={0101,1010,1100}
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(d) S = {1000,0100,0010,0001}

(€) S = {11000,01111,11110,01010}

(f) § = {10101,01010,11111,00011,10110}

(g) S = {0110,1010,1100,0011,1111}

(h) S = {111000,000111,101010,010101}

(i) § = {00000000,10101010,01010101,11111111}

2.5.11 With the notation of Algorithm 2.5.7, explain why it is expected that
GH =0.

2.5.12 For each of the following sets S, use Algorithm 2.5.7 to produce a basis
B for the code C =< 5 > and a basis B* for the dual code C*.

(a) S = {000000,111000,000111,111111}
(b) S = {1101000,0110100,0011010, 0001101, 1000110, 0100011, 1010001}
(c) $ = {1111000,0111100,0011110,0001111,1000111,1100011,1110001}
(d) S = {101101110,011011101,110110010,011011110,111111101}
() S = {100100100,010010010,111111111,000000000}

(f) S'= {001101,001000,001111,000101,000001}

2.6 Generating Matrices and Encoding

We put the material of the last several sections to work to find an important
matrix for a linear code and to see how this matrix is used to transmit messages.

First a few preliminary notes. The rank of a matrix over K is the number
of nonzero rows in any REF of the matrix. The dimension k of the code C is
the dimension of C, as a subspace of K™. If C also has length n and distance d,
then we refer to C' as an (n,k,d) linear code. These three parameters, length,
dimension and distance, provide vital information about C.

If C is a linear code of length n and dimension k, then any matrix whose
rows form a basis for C is called a generator matriz for C. Note that a generator
matrix for C must have & rows and n columus, and it must have rank k.

Theorem 2.6.1 A matriz G is a generator matriz for some linear code C if
and only if the rows of G are linearly independent; that is, if and only if the rank
of G is equal to the number of rows of G.

Because row equivalent matrices have the same rank, we have the following
theorem.
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Theorem 2.6.2 IfG is a generator matriz for a linear code C, then any matriz
row equivalent to G is also a generator matriz for C. In particular, any linear
code has a generator matriz in RREF.

To find a generator matrix for a linear code C, form the matrix whose rows
are the words in C. Since C =< C >, either Algorithm 2.5.1 or Algorithm 2.5.7
can be used to produce a basis for C. The matrix whose rows are these basis
vectors is a generator matrix for C.

Example 2.6.3 We find a generator matrix for the code C = {0000,1110,0111,
1001}. Using Algorithm 2.5.1,

0000 1110 1110 1110
1110 0111 R 0111 _ 0111
A=lo111|7 {1001 0111 0000 |°
1001 0000 0000 0000
L1104, i By Algorithm 2.5.7, since the
so G = 0111 is a generator matrix for C. By Algorithm 2.5.7, si
1001
RREF of A is 8(1)(1)(1) ,G1=[(1)(1](1)i]i;s also a generator matrix for C.
0000
Exercises

2.6.4 Determine whether each of the following is a generator matrix for some
linear code.

1001101001

010011101 1101000101

A= | 1001011010 5 45711001011
101100110 1000010111
101101101

1010001110

2.6.5 Find a generator matrix in RREF for each of the following codes.

(a) € = {000, 001, 010, 011}

(b) C = {0000, 1001, 0110, 1111}

(c) C = {00000, 11111}

(d) C = {00000, 11100, 00111, 11011}

(e) C = {00000, 11110, 01111, 10001}

(f) C = {000000, 101010, 010101, 111111}

RE————
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2.6.6 Find a generator matrix for each of the following codes. Give the di-
mension of the code.

(a) C = {000000, 001011, 016101, 011110, 100110, 101101, 110011,
111000}

(b) C'={00000000, 01101111, 11011000, 11111101, 10010010, 00100101,
01001010, 10110111}

(c) C = {0000000000, 1111100000, 0000011111, 1111111111}

2.6.7 Find a generator matrix for the linear code generated by each of the
following sets. Give the parameters (n, &, d) for each code.

(a) §={11111111,11110000, 11001100,10101010}
(b) = {11111100,11110011,11001111,00111111}

(c) § = {100100100,010010010,001001001,111111111}
(d) S = {10101,01010,11111,00011,10110}

(e) S ={1010,0101,1111}

(f) §={101101,011010,110111,000111, 110000}

(8) S ={1001011,0101010,1001100,0011001,0000111}

Let C be a linear code of length n and dimension k. If G is a generator
matrix for C and if u is a word of length k written as a row vector, then v = uG
is a word in C, since v is a linear combination of the rows of G, which form a
basis for C. Indeed, if u = (ay, a,...,a;) and if

5

92
G=1]",
9k
where g1,gs,...,g; are the rows of G, then v = uG = 191 + a292 + - .. + agg;.
On the other hand, since every word v in C is a linear combination of basis
words (rows of G), then v = u@ for some u in K*. Moreover, if u;G = u,G,
then u; = uy since each word in C' is a unique linear combination of the words
in a basis. Thus no word v = uG is produced by more than one u in K*.

Theorem 2.6.8 If G is a generator matriz for a linear code C of length n and
dimension k, then v = uG ranges over all 2% words in C as u ranges over all
2% words of length k. Thus C is the set of all words uG,u in K*. Moreover,
G = uyG if and only if uy = u,.

Note that Theorem 2.6.8 says that $he messages that can be encoded by a
linear (n, k, d) code are exactly all messages u in K*. The message u is encoded
as v = u(@, so only k digits in any codeword are used to carry the message.
Notice that the information rate of an (n, k,d) code is log,(2*)/n = k/n.
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Example 2.6.9 Let C be the (5, 3, d) linear code with generator matrix shown
below. The information rate of C is k/n = 3/5. All messages v in K> may be
encoded. For example the message v = 101 is encoded as

10110
v=uG={101]| 01011 | =10011
00101

Exercises

2.6.10 For each of the following generating matrices, encode the given mes-

sages.
10011
() G=|01010
00101
(i) u =100
(i) u =010
(i) w= 111
1000111
(b) G=]0100101
0010011 3
(i) w = 000
(ii) v =100
(i) w=111
1101001
0010111
©G=|g101010
1111111
(i) w = 1000
(i) u = 1010
(i) w= 0011
(iv) »=1011

2.6.11 Assign messages to the words in K> as follows:

000 100 010 001 110 101 011 111
A B E H M R T W

Using the generator matrix in Example 2.6.9, encode the message BE
THERE (Ignore the space.).
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2.6.12 Let C be the code with generator matrix

1000111
0100110
0010101
0001011

G =

Assign messages to the words in K* as follows:

0000 1000 0100 0010 0001 1100 1010 1001
A B C D E F G H
0110 0101 0011 1110 1101 1011 O111 1111
I J K L M N 0O P

{a) Encode the message HELP.

(b) Transmit the message HELP assuming that during transmission
the first word receives an error in the first position, the second
word receives no errors, the third an error in the seventh position,
and the fourth an error in the fifth and sixth positions.

(c) Encode the message CALL HOME BAMA (Ignore the spaces. ).

2.6.13 Find the number of messages which can be sent, and the information
rate 1, for each of the linear codes in Exercises 2.6.6 and 2.6.7.

2.7 Parity-Check Matrices

We develop another matrix associated with a linear code and closely con-
nected with the generator matrix. This new matrix will be of great value in
designing decoding schemes.

A matrix H is called a parity-check matriz for a linear code C if the columns
of H form a basis for the dual code C*. If C has length n and dimension k,
then, since the sum of the dimensions of € and C is n, any parity-check matrix
for C must have n rows, n — k columns and rank n — k. Compare the following
theorem to Theorem 2.6.1.

Theorem 2.7.1 A matriz H is a parity-check matriz for some linear code C if
and only if the columns of H are linearly independent.

The next theorem describes a linear code in terms of its parity-check matrix.

Theorem 2.7.2 If H is a parity-check matriz for a linear code C of length n,
then C consists precisely of all words v in K™ such that vH = 0.

If we are given a generator matrix for‘a linear code C, then we can find a
parity-check matrix for C using Algorithm 2.5.7. The parity-check matrix is the

matrix H constructed in Algorithm 2.5.7, since the columns of H form a basis
for C*.
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Example 2.7.3 We find a parity-check matrix for the code C = {0000, 1110,
0111, 1001} of Example 2.6.3. There we found that

10 01
G1=[0111]=[1X]

is a generator matrix for C' which is in RREF. By Algorithm 2.5.7, we construct
H:

01
X 11
H"[I}_ 10
01

is a parity-check matrix for C. Note that vH = 00 for all words v in C.

Exercises
2.7.4 Find a parity-check matrix from-each of the following codes.

(a) C = {000, 001, 010, 011}

(b) C = {0000, 1001, 0110, 1111}

(c) C = {00000, 11111}

(d) C = {00000, 11100, 00111, 11011}

(e) C = {00000, 11110, 01111, 16001}

(f) C = {000000, 101010, 010101, 111111}

2.7.5 Find a parity-check matrix for each of the following codes (the generat-
ing matrices were constructed in Exercises 2.6.6 and 2.6.7.)

(2) C = {000000, 001011, 010101, 011110, 100110, 101101, 110011,
111000}

(b) C={060000000, 01101111, 11011000, 11111101, 10010010, 00100101,
01001010, 10110111}

(c) C = {0000000000, 1111100000, 0000011111, 1111111111}

(d) C =< S >,S = {11111111,11110000, 11001100,10101010}

(e) C =<8 >,5=-{11111100,11110011,11001111,00111111}

(f) C =< §>,8 = {100100100, 010010010, 001001001,111111111}
(g) C =<8 >,5 = {10101,01010,11111,00011,10110}

(h) C =<8 >,5 = {1010,0101,1111}

(i) C =< §>,S = {101101,011010,110111,000111, 110000}

() C =< S >,5 = {1001011,0101010, 1001100, 0011001,0000111}
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We now characterize the relationship between a generator matrix and parity
check matrix for a linear code, and the relationship between these matrices for
a linear code and its dual code.

Theorem 2.7.6 Matrices G and H are generating and parity-check mairices,
respectively, for some linear code C if and only if

(i) the rows of G are linearly independent,
(ii) the columns of H are linearly independent,

(iii) the number of rows of G plus the number of columns of H equals the number
of columns of G which equals the number of rows of H, and

(iv) GH =0

Theorem 2.7.7 H is a parity-check matriz of C if and only if HY is.a generator
matriz for C*.

Theorem 2.7.7 follows from Theorem 2.7.6 and the fact that
HTGT = (G’H)T = (.

Given any one of the generating or parity-check matrices of C or of C*,
Algorithm 2.5.7 and Theorem 2.7.7 can be used to form the other three matrices.
The following diagram indicates how this is done.

Algorithm 2.5.7

C - Cy

Transpose j Transpose

g Algorithm 2.5.7

Hg

Example 2.7.8 Let C be a linear code with parity-check matrix
11
: 11
H=|0|= [
10
01

(a) Then a generator matrix for C* is ' /

r_ [ 11010
" = [ 11101 } '



52 | CHAPTER 2. LINEAR CODES

11010

T .
(b} The RREF of H" is { 00111

] , 50, by Algorithm 2.5.7, a parity-check

matrix for Ct is
110

100
011
010
001

(c) From the form of H, we have that

100 11
010 11 | =[I,X]
001 01

is a generator matrix for C. This is seen by using Algorithm 2.5.7 back-
wards. Thus, by Theorem 2.7.7 G7 is also a parity-check matrix for C*.

100
010
Gr=1o001
110
111

G =

Exercises

2.7.9 In each part, a parity-check matrix for a linear code C is given. Find
(i) a generator matrix for C1; (ii) a generator matrix for C.

111
igg 01 110
010 10 101
(@) H=| g0, | ® H=|01| (9 H=|011
010 10 100
001 01 010
[ 001 |

2.7.10 List all the words in the dual code C** for the code C = {00000, 11111}.
Then find generating and parity-check matrices for C*

2.7.11 For each code C described below, find the dimension of C, the dimension
of C*, the size of generating and parity-check matrices for C' and for
C*, the number of words in C and in C1, and the information rates r

of C and C*.
(a) C has length n = 2" — 1 and dimension t.
(b) C has length n = 23 and dimension 11.
(c) C has length n = 15 and dimension 8.
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2.8 Equivalent Codes

Any k x n matrix G with ¥ < n whose first k columns form the k x k identity
matrix I, so
G = [It, X],

automatically has linearly independent rows and is in RREF. Thus G is a gener-
ator matrix for some linear code of length n and dimension k. Such a generator
matrix is said to be in standard form, and the code C generated by G is called
a systematic code.

Not all linear codes have a generator matrix in standard form. For example,
the code defined by the generator matrix in the exercise below has five other
generating matrices; none of them are in standard form, and neither is G.

Exercises

2.8.1 Find the other five generator matrices for the code generated by
100
a={o01]

It is desirable, however, to use codes having generating matrices in standard
form. One reason for this is that if a linear code C has generator matrix G in
standard form, G = [, X], then Algorithm 2.5.7 yields at once that

X
a-[7]
is a parity-check matrix for C.

By Theorem 2.6.8 each codeword v in a linear code C of length n and di-
mension k is equal to 4G for one and only word u in K*, where G is a generator
matrix for C. We think of the word u of length k as the message to be sent.
But rather than transmitting u, we of course transmit the codeword v = uG. If
MLD manages to conclude correctly that v = 4G was sent, then the recipient of
the transmission must recover somehow the original message u form uG. If G is

‘in standard form, then it is trivial to recover u from uG. For in this case

v=uG =[]l X] = [u] uX]=[uuX]

So we obtain the following theorem, which points out an important advantage
of having a generator matrix in standard form.

Theorem 2.8.2 IfC is a linear code of length n and dimension k with generator
matriz G in standard form, then the first k digits in the codeword v = uG form
the word u in K*.
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Example 2.8.3 If

1000{101
0100f100
0010110
0001011

and if the message is u = 0111, then G = 0111001 = [«001]. And if u = 1011,
then uG = 1011000.

G = =L X]

Exercises

2.8.4 Let C be the generator matrix in Example 2.8.3. Encode each of the
following messages u, and observe that the first 4 digits in the resulting
codeword form the message u.

(a) u=1111 (b) u=1011 {d) u=0000

2.8.5 Explain a method for recovering u from uG if G is not in standard form.
2.8.6 If a linear code C has generator matrix

1100101
0110101

G=|1011011 |,
1100110
0110000

recover u from v = uG = 0000101.

Under the hypotheses of Theorem 2.8.2 the first &k digits of the codeword
v = u(@ are called the information digits, since they actually contain the message
u, while the last n — & digits of v = «G are called the redundancy or parity-check
digits. .
With all these advantages of having a linear code with generator matrix
in standard form, what can be done if we are stuck with a code C having no
generator matrix in standard form? Consider the code C with generator matrix
G from Exercise 2.8.1 (see below). As indicated in Exercise 2.8.1, C has no
generator matrix in standard form. Suppose, in this example, we decide to
rearrange the digits in all codewords and transmit the digits in the order “first,
third, second,” rather than “first, second, third.” The four words in C have been
transformed, then, into the four words in the new code C' as indicated in the
following chart: ie

C = {000,100,001,101}
¢’ = {000,100, 010,110}
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Note that C’, although a different code from C, shares many properties with C.
For example, both C and C are linear; both have length 3, dimension 2 and
distance 1. But C’ has an advantage over C, namely C’ has a generator matrix
in standard form. Observe that G' is obtained from G by switching the second
and third columns, just as C’ is obtained from C by consistently switching the
second and third digits.
100
G“[001]

,_[100
@=|410)

If C is any block code of length n, we can always obtain a new block code
C’ of length n by choosing a particular permutation of the n digits and then
consistently rearranging every word in C in the chosen way. The resulting code
C' is said to be equivalent to C.

Example 2.8.7 If n = 5 and we choose to rearrange the digits in the order
2,1,4,5,3, then the code

C = {11111,01111,00111,00011,00001 }
is equivalent to the code

¢’ = {11111,10111,00111,00110,00010}.
(Note that C and C’ are not linear.)

Theorem 2.8.8 Any linear code C is equivalent to a linear code C' having a
generator mdtriz in standard form.

Proof: If G is a generator matrix for C, place G in RREF. Rearrange the
columns of the RREF so that the leading columns come first and form an identity
matrix. The result is a matrix G’ in standard form which is a generator matrix

for a code C’ equivalent to C. 0
Example 2.8.9 The matrix
011000010
000100110
G=,000010010
000001100
000000001

is a generator matrix in RREF with columns 2, 4, 5, 6 and 9 as leading columns.
Rearranging the columns in the order 2, 4, 5, 6, 9, 1, 3, 7, 8 yields the matrix

10000 0101

01000 0011
G'=|00100 0001 |=[IX],

00010 0010

00001 0000
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which is a generator matrix in standard form for a code equivalent to the code
generated by G.

Exercises

2.8.10 Find a systematic code C” equivalent to the given code C. Check that
C and C' have the same length, dimension, and distance.

(2) C = {00000, 10110, 10101, 00011}
(b) C = {00000, 11100, 00111, 11011}.

2.8.11 Find a generator matrix G in standard form for a code equivalent to
the code with given generator matrix G.

é?igég 111000000

(@) G = ) G=]000111000
110100 000111111
101011

2.8.12 Find a generator matrix G’ in standard form for a code C’ equivalent
to the code C with given parity-check matrix H.

(100 ]

110 111

100 010

(@) H=]011 ()) H=]110
010 101

001 001

‘ [ 011 ]

2.8.13 Prove that equivalent linear codes always have the same length, dimen-
sion, and distance.

2.8.14 Determine whether each of the following pairs of matrices Gy and G,
generate equivalent codes.

(a) _
1100 (1001
Gi=10110{, G, 0101

0011 | 0011

(b)

110000 ] (111111
Gi=|[001100|, G,=|011011

000011 | (001001
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(o)
1000111 1011000
G, | 0100110 G, | 0101100
17100101011 72710010110
0001011 0001011

2.9 Distance of a Linear Code

We observed that the distance of a linear code is the minimum weight of any
nongero codeword. The distance of a linear code can also be determined from a
parity-check matrix for the code.

Theorem 2.9.1 Let H be a parity-check matriz for a linear code C. Then C
has distance d if and only if any set of d — 1 rows of H is linearly independent,
and at least one set of d rows of H is linearly dependent.

The idea is that if v is a word, then vH is a linear combination of exactly
wit(v) rows of H. So if v is in C and wi(v) = d, then since vH = 0, some d rows
of H are linearly dependent. And if vH = 0 then v is a codeword so wt(v) 2> d.

Example 2.9.2 Let C be the linear code with parity-check matrix

110
011
H =} 100
010
001

By inspection it is seen that no two rows of H sum to 000, so any two rows of

H are linearly independent, but rows 1, 3, and 4, for instance sum to 000, and
hence are linearly dependent. Therefore d — 1 = 2, so the distance of C is d = 3.

Exercises

2.9.3 Find the co_c-le‘ C in the Example 2.9.2. Compute the weight of each
' codeword and verify that C hds distance 3.

2.9.4 Find the distance of the linear code C with each of the given parity-
check matrices. Use Theorem 2.9.1 and then check your answer by
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finding wt(v) for each v in C.
[ 1110 ] r

0111 1101 1101

1011

1110 1011 1110

-] 1000 | 0111 _ 0

() H= (b) H= (c) H={ 100
0100 1000 0100°

0010 0100 0010

0001 0010 0001
| 0001 | L

2.9.5 Find, by Theorem 2.9.1, the distance of the linear code with the given
~ generator matrix.

11000000 100011

(¢) G=| 000111000 | (b)) G = |
111111111 0010101
0001011

2.10 Cosets

In this section we consider a topic which will be useful in decoding a linear
code, to which we will turn in the next section.

If C is a linear code of length n, and if u is any word of length n, we define
the coset of C' determined by u to be the set of all words of the form v + u as v
ranges over all the words in C. We denote this coset by €' + u. Thus

CHu={v+ulveC}.
Example 2.10.1 Let C = {000, 111}, and let « = 101. Then
C +101 = {000 + 101,111 + 101} = {101,010}.
Note that also )
C+ 111 = {000 + 111,111 + 111} = {111,000} = C'

and
C + 010 = {000 + 010,111 + 010} = {010,101} = C + 101.

Exercises

2.10.2 List the rest of the cosets of C = {000,111}. Notice that there are eight
possiblities for the cosets of C, one for each word in K 3, but only four
of these cosets are distinct. ‘
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If C is a linear code of length n, then you might think that there are as many
as 2" different cosets C + u of C, one for each of the 2" different words u of
length n. As Example 2.10.1 and Exercise 2.10.2 show, this is almost never so.
It is quite possible for C + u; to be identical with C + ug, but yet uy # u,.

The following theorem contains several important and useful facts about
cosets. A careful study of the examples following the theorem should help in
understanding these facts. The proofs are technical, set-theoretic arguments,
and hence relegated to the exercises.

Theorem 2.10.3 Let C be a linear code of length n. Let u and v be words of
length of n.

1) If u is in the coset C +v , then C +u = C + v; that is, each word in a
coset determines that coset.

2) The word u is in the coset C + u.
3) If u+ v is in C, then u and v are in the same coset.
4) Ifu+ v is not in C, then u and v are in different cosets.

5) Every word in K™ is contained in one and only one coset of C; that is,
either C +u=C+v, or C+u and C + v have no words in common.

6) |C + u| = |C|; that is, the number of words in a coset of C is equal to the
number of words in the code C.

7) If C has dimension k, then there are ezactly 2"~ different cosets of C, and
each coset contains exactly 2F words.

8) The code C itself is one of its cosets.
Example 2.10.4 We list the cosets of the code
C= {()000,1011,0101,1110}.

First of all, C itself is a coset by (8) of Theorem 2.10.3. (Numbers in parentheses

suggest that the reader refer to the parts of Theorem 2.10.3). Every word in C
will determine the coset C by ((1) and (5)), so we pick a word  in K* not in
C. For later use in decoding, it will help to pick u of smallest weight possible.
So let’s take u = 1000. Then we get the coset

€'+ 1000 = {1000,0011,1101,0110}

by adding 1000 to each word in C. Note that « = 1000 is in the coset C +u =
C + 1000. Now pick another word, of small weight, in K* but not in C or
C + 1000, say 0100. Form another coset

C + 0100 = {0100,1111,0001,1010}.
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Repeating the process with 0010 yields the coset () C = {00000, 10100, 01011, 11111}

(d) C = {0000}.
C +0010 = {0010,1001,0111,1100}. .
2.10.7 List the cosets of each of the linear codes having the given generator

The code C has dimension k = 2. We have listed 2°~* = 242 = 22 = 4 cosets, matrix

each with 2F = 22 = 4 words, and every word in K* is accounted for by appearing

111000

101010
in exactly one coset. Also observe that 0001 + 1010 = 1011 is in C, thus 0001 (a) G= [ (1]8(1)(1)}(1) } b G= [ 010101
and 1010 are in the same coset, namely C + 0100 (see (3)). On the other hand, , :
0100 + 0010 = 0110 is not in C, and 0100 and 0010 are in different cosets (see é(l)ggﬁé (l)(l)ggi
“ © G=1 o101 | @ =] o010
Example 2.10.5 We list the cosets of the linear code C with the generator | 0001011 00011 |
100110 © 1000
matrix G = | 010011 {. - 0100 _n
001111 () G=1| 4010 | () G=[u11].
| 0001
0 001000
(1) g g (1) 2 g (1] g g 2 (1] g (1) 1 g 2 (1) 0 101110 2.10.8 List the cosets of the code having the given parity-check matrix.
010011 110011 000011 011011 C 111 -
001111 101111 011111 000111 " 110 00
110101 010101 100101 111101 0 101 o1
101001 001001 111001 100001 (@) H= " ®) H=|o11 (©) H= 010
011100 111100 001100 010100 o 100 001
111010 011010 101010 110010 010
001 001
000100 000010 000001 000101 ; L J
100010 100100 100111 100011 2.10.9 Prove Theorem 2.10.3.
010111 010001 010011 010110 |
001011 001101 001110 001010 ‘l .
110001 110111 110100 110000 2.11 MLD for Linear Codes
101101 101011 101008 190 i (1) g (1) One of our goals is to design codes which permit easy and rapid decoding
01100 g (1) i i (1) (1) g (1) i i é g (1) (1] i 1111 of a received word. Linear codes do in fact admit a more efficient method for
11111

The eight cosets are listed. The first is the code C itself. The word u used ?o
form C + u is the top word in each coset, since u = 0+ «, and was chosen as in

Example 2.10.4.

Exercises

2.10.6 List the cosets of each of the following linear codes.

(a) C = {0000, 1001, 0101, 1100}
(b) C = {0000, 1010, 1101, 0111}

implementing MLD than using an IMLD table. We will describe a procedure
for either CMLD or IMLD for a linear code. The parity-check matrix and the
cosets of the code play fundamental roles in the decoding process.

Let C be a linear code. Assume the codeword v in C is transmitted and the
word w is received, resulting in the error pattern u = v+ w. Then w + u = v is
in C, so the error pattern u and the received word w are in the same coset of C
by (3) of Theorem 2.10.3. .

Since error patterns of small weight are the most likely to occur, here is how
MLD works for a linear code C. Upon receiving the word w, we choose a word

u of least weight in the coset C + w (which must contain w) and conclude that
v = w + u was the word sent.
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Example 2.11.1 Let C = {0000,1011,0101,1110}. The cosets of C (Example
2.10.4) are

0000 1000 0100 0010

1011 0011 1111 1001

0101 1101 0001 0111

1110 0110 1010 1100

Suppose w = 1101 is received. The coset C +w = C + 1101 containing w'is the
second one listed. The word of least weight in this coset is u = 1000, which we
choose as the error pattern. We conclude that v = w +u = 1101 + 1000 = 0101
was the most likely codeword sent. Now suppose w = 1111 is received. In the
coset C + w containing 1111 there are two words of smallest weight, 0100 and
0001. Since we are doing CMLD, we arbitrarily select one of these, say u = 0100,
for the error pattern, and conclude that v = w + u = 1111 + 0100 = 1011 was a
most likely codeword sent.

Exercises

2.11.2 Let C be the code of Example 2.10.5. Use the procedure for CMLD just
outlined to decode each of the following received words.

() 000011 () 001001 (c) 001101
(d) 010110 () 110101 (f) 001010.

The hardest parts of the above procedure are searching to find thf: coset
containing the received word w and then finding a word of least weight in t}}at
coset. We can use a parity-check matrix to develop a slick procedure for easing
these burdens.

Let C be a linear code of length n and dimension k. Let H be a parity check
matrix for C. For any word w in K™, the syndrome of w is-the word wH in
K™k,

Example 2.11.3 For the code C of Example 2.11.1 above, the matrix H below
is a parity-check matrix. If w = 1101, then the syndrome of w is

11
0| _
wH =1101 | 1, | =11

01

Notice that the word of least weight in the coset C+w is u = 1000 (see Example
2.11.1), and the syndrome of u is .

11
01
uH = 1000 0l= 11 = wH.

01
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Furthermore, if w = 1101 is received, CMLD concludes v = w 4+ u = 1101 +
1000 = 0101 was sent, so there was an error in the first digit. Notice also
that for the error pattern u, the syndrome uH picks up the row of H, the first,
corresponding to the location of the most likely error.

The following theorem contains some basic and useful facts about the syn-
drome. Proofs may be constructed using the definitions of the concepts involved
and the properties of cosets from Theorem 2.10.3.

Theorem 2.11.4 Let C be a linear code of length n. Let H be a parity-check
matriz for C. Let w and u be words in K™.

1. wH =0 if and only if w is a codeword in C.
2. wH = uH if and only if w and u lie in the same coset of C.

8. If u is the error pattern in a received word w, then uH is the sum of

the rows of H that correspond to the positions in which errors occurred in
transmission.

Note that if no errors occur in transmission and w is received, then wH = (.
But wH = 0 does not imply that no errors occurred, since the codeword w need
not be the codeword that was sent.

Since words in the same coset have the same syndromes, while words in
different cosets have different syndromes, we can identify a coset by its syndrome;
the syndrome of a coset is the syndrome of any word in the coset. Thus if the
code has length n and dimension k then the 2"~* words of length n — & each
occurs as the syndrome of exactly one of the 2"~* cosets.

Example 2.11.5 The code C of Example 2.11.1 has length n = 4 and dimension
k = 2. The cosets of C' (listed in Example 2.11.1) contain all 2* = 24 = 16 words
of length n = 4. There are 2% = 242 = 22 — 4 words of length n — k = 2;
each one is the syndrome of exactly one of the 2"* = 4 cosets of C.

To calculate the syndrome of a particular coset, we can choose any word w in
that coset. Then wH will be the syndrome of that coset. For MLD, we want a
word of least weight in the coset to use as the error pattern. In the examples in
the last section, we carefully arranged the cosets so that a word of least weight
was on top, or listed first. Any word of least weight in a coset is called a coset

leader. If there was more than one candidate for coset leader, we selected one
arbitrarily when doing CMLD.
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Example 2.11.6 Again let C be the code of Example 2.11.1. For each .coset,
we calculate the syndrome, using the coset leader, and display the results in the

following table.
¢ Coset leader u | Syndrome uH

0000 00
1000 11
0100 01
0010 10

Note again that each word of length 2 occurs once and only once as a syndrome.

The table in the Example 2.11.6, which matches each syndrome with its coset
leader, is called a standard decoding array, or SDA To construct an SDA, first
list all the cosets for the code, and choose from each coset a word of least weight
as coset leader u. Then find a parity check matrix for the code and, for each c?set
leader u, calculate its syndrome uH. A quicker way to construct an SDA, given
the parity check matrix H and distance d for the code C would be to generate
all error patterns e with wt(e) < |(d—1)/2] and compute the syndrome s = eH
for each one.

Example 2.11.7 We construct an SDA for the code C of Example 2.10.5 (where
the cosets of C have already been listed). For each of the first seven cosets we
had no choice for coset leader — the top word is the only word of least weight in
its coset. But in the last coset, the smallest weight of a word is 2, and that coset
contains three words of weight 2, 000101, 001010, and 110000. Usi‘ng CMLD
we could arbitrarily select 000101 as our presumed error pattern. Using IM LD,
we would ask for retransmission and place a “x” in that entry of the SDA to so
indicate. We can construct the following parity-check matrix for C:

110

011

111

H=1 100

010

001

Then we can obtain the following SDA for C assuming CM LD is being used:
Error pattern | Syndrome uH

000000 000
100000 110
010000 011
001000 111
000100 100
000010 010
000001 001
000101 101
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Note that the syndromes are precisely all words in K3. The coset ' always has
the zero word as its coset leader and always has syndrome 0. The choosen coset
leader for the last coset, u = 000101, gives us syndrome uH = 101, which is the
sum of rows 4 and 6 of H, the positions with 1’s in the error pattern u. Using
IMLD, this entry would instead be “x”.

Exercises

2.11.8 Construct an SDA assuming IM LD for each of the codes in Exercise
2.10.6.

2.11.9 Construct an SDA assuming IMLD for each of the codes in Exercise
2.10.7.

2.11.10 Construct an SDA assuming IM LD for each of the codes in Exercise
2.10.8.

2.11.11 Prove Theorem 2.11.4.

Finally we can do some decoding. Once we suffer the tedious construction of
an SDA, it is easy to use MLD. When we receive a word w, we first calculate the
syndrome wH. Then we find the coset leader u next to the syndrome wH = uH
in the SDA. We conclude that v = w + u was the most likely codeword sent.

Example 2.11.12 Let C be the code of Example 2.11.1. An SDA appears in
Example 2.11.6. The parity-check matrix H is in Example 2.11.3. Assume that
w = 1101 is received. Then the syndrome is wH = 11, directing us to the

- second row of the SDA, where the coset leader is u = 1000. We conclude that

v = w+u = 0101 was sent. I w = 1111 is received, then wH = 01 = uH for
u = 0100 from the SDA. We decode w as v = w + u = 1011. These results are
the same as found in Example 2.11.1.

For w = 1101 received, we decoded v = 0101 as the word sent. The calcula-
tions

d(000,1101) = 3 d(0101,1101) = 1
d(1011,1101) = 2 d(1110,1101) = 2

give the distances between w and each codeword in C, and show that indeed
v = 0101 is the closest word in C to w. :
For w = 1111 received, however, the same calculations

d(0000,1111) =4 d(0101,1111) =2
d(1011,1111) =1 . d(1110,1111) =1
reveal a tie for the closest word in C to w. This is not surprising, since there

was a choice for a coset leader in the coset containing w. We are doing CMLD,

so we arbitrarily choose a coset leader, which in effect arbitrarily selected one
word in C closest to w.
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Example 2.11.13 Let C be the code of Example 2.10.5. An SDA was con-
structed in Example 2.11.7. We do some decoding using this SDA. Suppose
we receive w = 110111. Then wH = 010, which directs us to the sixth row
of the SDA. The coset leader in that row is « = 000010. Thus CMLD con-
cludes that v = w + u = 110111 4 000010 = 110101 was the codeword sent.
Now suppose w = 110000 is received. The syndrome wH = 101 directs us
to the last row of the SDA where the coset leader is u = 000101. We de-
code w as v = w + u = 110000 + 000101 = 110101. Had we chosen the word
u' = 001010 as the coset leader for the last coset, then we would instead decode
w as w + v’ = 110000 + 001010 = 111010.

Exercises

2.11.14 Continuing the last example with w = 110000 received. Decode assum-
ing that »” = 110000 had been chosen as the coset leader for the last
coset.

2.11.15 Refer to Example 2.11.13 with w = 110111 received. Check that in fact
v = 110101 is the closest codeword in C to w.

2.11.16 Again refer to Example 2.11.13 with w = 110000 received. Find all the
codewords in C closest to w.

2.11.17 Repeat the decoding in Exercise 2.11.2 using the SDA in Example
2.11.7.

2.11.18 For the code in Example 2.11.13 above, decode the following received
words w. ‘

(a) 011101 (B) 110101 () 111111 (d) 000000.

2.11.19 For each of the following codes, use the SDA to decode the given received
words. (The SDA’s for these codes were constructed in Exercises 2.11.8
and 2.11.9.)

(a) C = {0000, 1001, 0101, 1100}
() w=1110 (i) w = 1001 . (ii5) w = 0101
(b) C= {00000, 10100, 01011, 11111}
(i) w=10101 (ii) w = 01110 (3ii) w = 10001
(c) € =< 111000,001110,100011 > |
(i) w=101010 (is) w = 011110 (iéi) w = 011001.
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2.11.20 lLet C be the code with the parity-check matrix

011
101
110
100
010
001

Decode (a) 110100 () 111111 (c) 101010 (d) 000110.

2.11.21 Let C be the code of length 7 which has as a parity-check matrix the
7 x 3 matrix H whose rows are all nonzero words of length 3.

(a) Construct an SDA for C.
(b) Decode 1010101.

If we want to construct an SDA when using IMLD, we can proceed as follows.
If a word w is received, then the number of words in the code C closest to w is
the same as the number of error patterns in the coset C -+ w of least weight. If in
some coset of C there is more than one word of smallest weight, then this coset
and its syndrome are omitted from the SDA when using IMLD. Furthermore,
the weight of a coset leader is the number of errors corrected by MLD when a
word in that coset is received. If this weight is excessively high, then we may
decide to eliminate this coset and its syndrome from the SDA in IMLD even
though there is only one word of least weight in that coset. To use the shortened
SDA for IMLD, if the received word has a syndrome which does not occur in the
SDA, then we request a retransmission.

In practice, it may not be unusual to have on the order of 2°°, about 1.126 x
10'° coset leaders and syndromes, which makes the SDA for an arbitrary linear
code an unmanageable list. Thus, in practice, we have not solved the problem
of decoding using MLD. As we will see later, however, MLD is computationally
effective if the linear code is constructed to certain specifications. Indeed, one
goal of coding theory is to construct codes which are easy to decode using MLD.

2.12 Reliability of IMLD for Linear Codes

Let C be a linear code of length n and dimension k. Recall that 8,(C,v) is
the probability that if v in C is sent over a BSC of probability p, then IMLD
will correctly conclude that v was sent.

For each unique coset leader v and for each codeword v in C,v + u is closer
to v than to any other codeword. Also, if w # v + u for some codeword v and
some unique coset leader u then w is at least as close to some other codeword
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as it is to v. So for a linear code, the set L{v) of words that are closer to v than
to any other codeword is

L(v) = {w|w = v + u where u is a unique coset leader .}

If w = v + u then 8,(v,w) depends only on wi(u); therefore, for a linear code
C,0,(C,v) does not depend on v. We denote this common value by 6,(C), and
S0

BP(C) — E pn—wt(u)(l — p)wt(u)'
+€L(0)

Thus, to find the reliability of a linear code, we need be concerned ‘()nlyk with
the unique coset leaders. Simply calculate the probability of each unique coset
leader occurring as an error pattern, then sum these probabilities to get 8,(C).
Notice that we have also shown that for a linear code, the set of error patterns
that can be corrected using IMLD is equal to the set of unique coset leaders.

_Example 2.12.1 Let C be the code of Example 2.10.5. Using IMLD there is
one coset leader of weight 0 and six of weight 1. Thus

8,(C) = p° + 6p°(1 — p)

Exercises

2.12.2 Calculate 8,(C) for each of the codes in Exercises 2.10.6, 2.10.7, 2.10.8.

Chapter 3

Perfect and Related Codes

3.1 Some Bounds for Codes

We now turn our attention to the problem of determining how many words
a linear code of given length n and distance d can have. This problem is far
from solved in general, though it has been settled for certain values of n and
d. We can, however find some bounds on the size of a code with these given
parameters.

Recall that if t and n are integers, 0 < ¢ < n, then the symbol

()=

is just the number of ways that an unordered collection of ¢ ob jects can be chosen

from a set of n objects. Thus (’:) is the number of words of length n and weight
t.

Theorem 3.1.1 If0 <t <n and if v is @ word of length n, then the number of
words of length n of distance at most t from v is precisely

(g)+(’;) +(3) bt (7).

Since there are 2* words of length n, setting ¢ = n in Theorem 3.1.1 yields

o)+ () ) oe ()

Exercises ¢

3.1.2 Mlustrate Theorem 3.1.1 for v = 10110 and £ = 3 by listing all words
in K® of distance at most 3 from v, and then check that Theorem 3.1.1
does give the correct number of such words.

69
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To find all words of a given distance  from a fixed word v, we simply add
to v, all words of weight ¢t. There are (’t’) such words. If C is a code of length
n and distance d = 2t + 1, then there is no word w at distance at most ¢ from
two different codewords vy and v,. Indeed, if d(w,v;) < ¢ and d{w,v;) <1t with
vy # vy, then

d(v1,v2) < d(vy,w) + d{w,vy) 2 <d =2t 41,

which is impossible since C has minimum distance d. Thus, if C has length
n and distance 2t + 1, the list of words in K™ at a distance at most ¢ from a
codeword v; has no codewords in common with the list of words a distance at
most ¢ from a codeword vg,v; # v,. This establishes the following result.

Theorem 3.1.3 (The Hamming Bound). IfC is a code of length n and distance
d=2t+1 or2t+2 then

el (@) +@)+.-+()) <2,
G+ ++ ()

"The Hamming bound is an upper bound for the number of words in a code
(linear or not) of length n and distance d = 2t + 1. Note that ¢ = [(d —1)/2],
so, by Theorem 1.12.9, such a code will correct all error patterns of weight less
than or equal to t. .

or

IC] <

Example 3.1.4 We compute an upper bound for the size or dimension k of a
linear code C of length n = 6 and distance d = 3. From d = 3 = 2t + 1 we get
t = 1. The Hamming bound gives

2 _ 64 _&
AT

But [C| must be a power of 2, so |C] < 8, and thus k < 3.

Exercises

3.1.5 Find an upper bound for the size or dimension of a linear code with the
given values of n and d.

(a) n=8,d=3 b)n=7,d=3
(d) n=15,d=3 (e)n=15,d=5

(c)n=10,d=5
f)n=23,d="7.

3.1.6 Verify the Hamming bound for the linear code C with the given gener-
ator matrix.
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(a) G = | 000001111100000
| 000001111111111

[ 100111 }

| 111110000000000 }

(b) G = | 010101
| 001011

[ 1000111
0100110
0010101
L 0001011

() G=

The next upper bound is called the Singleton bound:
Theorem 3.1.7 For any (n,k,d) linear code, d —1 <n — k.

Proof: Recall that from Section 2.7 and Theorem 2.9.1 we know that the parity
check matrix H of an (n, k, d) linear code is an n by n — k matrix such that every
d — 1 rows of H are independent. Since the rows have length n — &, you can
never have more than n — k independent row vectors. Henced ~1 < n —k or
equivalently k <n—d+1 O

The Singleton bound {Theorem 3.1.7) in one sense is much weaker than the
Hamming bound. For example, if n = 15 and d = 5 then Theorem 3.1.7 implies
that k¥ < 11, whereas Theorem 3.1.3 (Hamming bound) implies that & < 9.
However some codes do attain equality in the Singleton bound, so the Singleton
bound is used to define an important and useful class of codes called maximum
distance separable codes.

A linear (n, k,d) code is said to be a mazrimum distance separable (or MDS)
codeif d=n—k+1 (or k=n—d+1). There are several equivalent character-
izations of MDS codes.

Theorem 3.1.8 For a (n,%,d) linear code C, the following are equivalent:
(1) d=n—-k+1,
(2) everyn — k rows of the parity check matriz are linearly iﬁdependent,
(3) every k columns of the generator matriz are linearly independent, and

(4) C is MDS.

Proof: Theorem 3.1.7 states that d < n —.k +1;butd 2 n—k+ 1 iff every
n — k rows of the parity check matrix are independent. Thus (1) and (2) are
equivalent. For (3), note that if d = n — k + 1, no nonzero codeword can have
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more than k — 1 zeros in it. However, k columns of the k X n generator matrix
are linearly dependent iff some nonzero codeword has k zeros in those coordinate
positions. This last statement is relatively easy to see and is left to the exercises.

o

Corollary 3.1.9 The dual of an (n, k,n—k+ 1)AMDS code is an (n,n—k,k+1)
MDS code.

We will encounter MDS codes later when we study Reed-Solomon codes.

Exercises

3.1.10 Columns 2,3 and 5 of the generator matrix G below are linearly depen-
dent. Find a codeword which has zeros in positions 2,3 and 5

11001
G =] 01110

00101

3.1.11 Show that if a k X n generator matrix has & linearly dependent columns
then there is a nonzero codeword with zeros in those k positions.

We still would like to construct codes for given parameters n, k-and d. Upper
bounds rule out some parameter values for example the Hamming bound says
that a code of length n = 15 and distance d = 5 can not have dimension k = 10.
However, this bound does not rule out the possibility of a (15,8, 5) code existing.

How would we go about finding a (15,8,5) code? In general this is a very
difficult problem. One approach is to find the parity check matrix for such a
code. That is, assuming r = n—k, we must find n vectors of length r to form the
rows of H such that every set of d — I of these vectors is linearly independent.

Example 3.1.12 Let n =15,k =6 and d = 5. Thenr=15—-6 = 9. So we
wish to find 15 nonzero vectors of length 9 with the property that any 4 of these
are linearly independent. Finding the first 9 rows is easy: take the 9 x 9 identity
matrix Ig.
Suppose we have some how found 3 more vectors for a total of 12 rows and
s0 we have,
I
111100000
H = | 100011100

101000011
?

. Before searching for the next vector we notice that the following counting
argument tells us that one must exist. Among all 2° vectors, we cannot select
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the zero vector nor any of the 12 choosen so far. This rules out 1 4 12 vectors.
‘We also rule out any vector which can be written as the sum of 2 or 3 of these
vectors, as this would create a dependent set of 3 or 4 vectors respectively. This

rules out at most (122) + (132) additional vectors. However, any remaining vector
can be selected.

(0 ()2

we know that we can find yet another vector. For example one could choose the
vector 010101010 to be the next row of H. The chore of finding the remaining
rows of H is left to Exercise 3.1.21.

Example 3.1.12 (and the related exercises) show that a (15,6,5) code exists.
This establishes a lower bound on the maximum size (or dimension) of an-linear
codewithn=15and d=5,1e. 6 <k <8.

The next result formalizes the approach of Example 3.1.12 to constructing
linear codes (and thus establishing lower bounds). The proofs are left to Exer-
cises 3.1.22.

Theorem 3.1.13 (Gilbert-Varshamov Bound). There ezists a linear code of
length n, dimension k, and distance d if

n—1 n—1 n—1 ek
("o )+ (") (BTh ) <
Corollary 3.1.14 Ifn # 1 and d # 1, then there exists a linear code C length
n and distance at least d with
2n-—1
n—1 n—1 n—1Y)"
("o )+ (" )+t (525)
Example 3.1.15 Does there exist a linear code of length » = 9, dimension
k =2, and distance d = 57

ICl =

To determine if such a code exists, we use the Gilbert-Varshamov bound:

(nal)+...+(3:; )éf’=(§)+(§)+(;)+(§)

and 2*~% = 2°-% = 27 = 128. Since 93 < 128, such a code exists.
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Example 3.1.16 What is a lower and an upper bound on the size or the di-
mension, k, of a code with n =9 and d = 57

To find a lower bound for the most number of codewords such a code C could
have, we use Corollary 3.1.14:

gn—1 29-1 28 256

(n—1)+m+(n—1)=(§)+(f)+(§)+(§

0 d—2

Iz

Since |C| is a power of 2,{C| > 4.
To find an upper bound for |C|, we use the Hamming bound:

2° _ 512 512

O+ +() 1+9+36 46

Since |C| is a power of 2,|C| < 8.
Combining the bounds, a linear code with parameters (9, k,5) with 4 code-
words exists, but no (9, k,5) linear code with more than 8 codewords exists.

Ic] < =1113.

Example 3.1.17 Does there exist a (15,7,5) linear code? Again we can try to
use the Gilbert-Varshamov bound to answer this question.

(751 )t (508) =+ @)+ ()
=1+4+14 491 + 364
= 470,

and 2*% = 2157 = 256. In this case the inequality is not satisfied, so the
Gilbert-Varshamov bound does not tell use whether or not such a code exists.
In fact, as we shall see later, these are the parameters of the 2 error-correcting
BCH code, so such a code does exist.

Exercises

3.1.18 For each part of Exercise 3.1.5, let k = 2d and decide, if possible,
whether or not a linear code with the given parameters exists. Find a
lower and upper bound for the maximum number of codewords such a
code can have, assuming that & is unrestricted.

3.1.19 Find alower and an upper bound for the maximum number of codewords
in a linear code of length n and distance d where

(@) n=15,d=5
(dn=12,d=3

(b)n=15,d=3
(e)n=12,d=4

(¢)n=11,d=3
Hn=12,d=5.

= — = —— = 2,75,
) )
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3.1.20 Is it possible to have a linear code with parameters (8, 3, 5)7

3.1.21 Find a (15, 6, 5) code by constructing the parity check matrix. (See
Example 3.1.12, each of the 3 missing vectors must have weight at least

4. Why?)
3.1.22 Let H; be any ¢ x (n — k) matrix with no d — 1 rows linearly dependent.

(a) Prove that there are at most

SRORHN

words in K™ * which are linear combinations of at most d — 2 rows
of H;.

(b) Prove that if N; < 2"* then a row can be added in such a way
that no d — 1 rows of the resulting matrix are linearly dependent.

(c) Prove the Gilbert-Varshamov bound.

(d) Prove Corollary 3.1.14.

3.2 Perfect Codes

A code C of length n and odd distance d = 2¢ + 1 is called a perfect code if
C attains the Hamming bound of Theorem 3.1.3; that s, if

271
[C| = - .
@+ @ ++0)
Unfortunately, there are not many linear perfect codes, but the ones that do
exist are quite useful. The main problem in finding linear perfect codes is that

the number (3) + ('1‘ +...+ (’t‘) must be a power of 2 (since |C] is a power of

Example 3.2.1 Let ¢ = 0. Then (g =1=2%5|C| = 2"/(3) = 2", The only
code with 27 “c'o'dewords of length n is C = K™. K™ is a perfect code.

Example 3.2.2 Let n =2t + 1. Then

(nii ) = (n—z')!(nn—! - (n —ni')!n! = (T:)

B-6)-0-(2)0-(m)

Thus
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and, from n = 2t + 1,
Therefore

Hence gn on

Cl=ry =5 =
(0) Tt (t) 2
Thus any perfect code of length and distance 2t + 1 has exactly 2 codewords.
Among linear codes there is only one such code, the repetition code consisting
of the zero word and the word in which each digit is 1, and indeed this code is
perfect.

The codes in Examples 3.2.1 and 3.2.2, while perfect, are not very interesting.
They are called the trivial, perfect codes.

Example 3.2.3 Let n =7 and d =3. Thent =1 and

7
0] = e = 22 _1g =2,

@+C 8
Thus, there may exist a linear perfect code with n = 7 and d = 3. In the next
section we shall see that there is such a code, the Hamming Code.

Example 3.2.4 Let n =23 and d = 7. Then ¢ = 3, and

223 223
Il = E)+ @+ @)+ () T+B+m317
223 223
=m=2—u-=212=4096.

This shows that a linear perfect code with n = 23 and d = 7 may exist. In a
later section, we shall see that such a code does exist, i.e. the Golay Code.

Exercises
3.2.5 Show that forn =2" -1, (3) + ('1') =27,

3.2.6 Can there exist perfect codes for these values of n and d:
(a)n=15,d=3(b)n=31,d=3(c)n=15,d=5
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The possible lengths and distances for a perfect code were determined by
Tietdvairen and van Lint in 1963. The proof of their result is beyond the scope
of these notes.

Theorem 3.2.7 If C is a non-trivial perfect code of length n and distance d =
2t +1, then eithern=23 and d=7, orn =27 — 1 for somer > 2 and d = 3.

If a linear code of length n has distance d = 2¢ +1, then, by Theorem 1:12.9,
C will correct all error patterns of weight less than or equal to ¢ = (d-1)/2.
Thus every word of length n and weight less than or equal to ¢ is a coset leader.
There are precisely (g) + (’1‘) 4.4 ('t‘) such words. But this is precisely the
number of cosets if the code is perfect. We have proved another theorem.

Theorem 3.2.8 If C is a perfect code of length n and distance d = 2t + 1, then
C will correct all error patterns of weight less than or equal to t, and no other
error patterns.

We can interpret Theorem 3.2.8 as saying that each of the 2™ words in K™
lies within distance ¢ of exactly one codeword. This property enables us, for
example, to count the number of codewords of minimum non-zero weight in a
perfect code.

A perfect code which corrects all error patterns of weight less than or equal
to ¢ is called a perfect t-error correcting code. From Theorem 3.2.7 the only
possible values for ¢ here are ¢ = 1 and t = 3. We examine the case ¢ = 1 in the
next section.

3.3 Hamming Codes

Finally it’s time to design a code. We consider an important family of codes
which are easy to encode and decode, and which correct all single errors.

A code of length » = 2" — 1,r > 2, having parity check matrix H whose
rows consist of all nonzero vectors of length r is called a Hamming code of length
2r—1.

Example 3.3.1 One possiblity for a parity check matrix for a Hamming code
of length 7(r = 3) is

[ 111 ]
110
101
H=]011
100
010

001




- - . r
code has dimension 27 — 1 — r and contains 22
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From Algorithm 2.5.7, a generator matrix for Hamming code of length 7 is,
therefore, 1

1000111

0100110

0010101

0001011

G =

Thus the code has dimension 4 and contains 2* == 16 codewords. Theorem 2.9.1
can be used to find the distance of the code, which is 3. The information rate is
4/7. In Exercise 2.6.12, we encoded some messages using this code. There are

.other possibilities for a parity check matrix for a Hamming code of length 7, but

all yield equivalent codes.

Since the parity check matrix H for a Hamming code C contains all r rows
of weight one, the r columns of H are linearly independent. Thus a Hamming
~1=7 codewords.

No row of H is the zero word, so no single row of H is linearly dependent.
Thus C has distance at least 2. No two rows of H are equal, so no two rows
of H are linearly dependent. Thus C has distance at least 3. But H contains
the rows 100...0,010...0, and 110...0, which form a linearly dependent set.
Therefore, by Theorem 2.9.1, ¢ Hamming code has distance d = 3.

Nowforn=2"—-landd=2t+1=3 (sot=1),

9n on 22"—1 22'—1
Ot @ Q@ e T

o 1
so Hamming codes are perfect codes. By Theorem 3.2.8, Hamming codes are
perfect single-error correcting codes.

It is trivial to construct an SDA for a Hamming code. All single errors are
corrected so all words of length 2" —1 and weight one are error patterns that are
corrected, and hence must must be coset leaders. Since if e is an error pattern
then eH sums the rows of the parity check matrix H corresponding to positions
where errors occurred, and since H has 2" — 1 rows, we have the following as an
SDA for a Hamming code:

AR ER
=2 s

coset leader | syndrome
000...0 00...0
Ior oy H

Example 3.3.2 For the Hamming code in Example 3.3.1, we decode w =
1101001. The syndrome is wH = 011, which is the fourth row of H. Thus
the coset leader u is the fourth row of J; : u = 0001000. We decode w as
w + u = 1100001.

3.3. HAMMING CODES 79

Exercises

3.3.3 Find a generator matrix in standard form for a Hamming code of length
15, then encode the message 11111100000.

3.3.4 Construct an SDA for a Hamming code of length 7, and use it to decode
the following words:
(a) 1101011 (c) 0011010 (e) 0100011
(b) 1111111 (d) 0101011 (f) 0001011

3.3.5 Construct an SDA for a Hamming code of length 15, and use it to

decode the following words:
{(a) 01010 01010 01000
(b) 11110 00101 10110
{(c) 11106 01110 00111
(d) 11100 10110 00000
(e) 00011 10100 00110
(f) 11001 11001 11000.

3.3.6 Show that each of the following is a parity check matrix for a Hamming
code of length 7, and that the codes are both equivalent to the one in
Example 3.3.1. »

" 001 100

010 110

011 111

H' = | 100 H" = | 011
101 101

110 010

| 111 | 001

3.3.7 Prove that all Hamming codes of a given length are equivalent.

3.3.8 Is the following matrix the transpose of a parity check matrix for a
Hamming code of length 157

10001 10111 01000
11100 . 10001 11110
01011 00101 11101
10001 01011 00111

HT =

3.3.9 Show that the Hamming code of length 2" —1 for r = 2 is a trivial code.

3.3.10 Use the Hamming code of lengt!'lrl 7 in Example 3.3.1 and the message
assignment in Exercise 2.6.11. Decode the following message received:

1010111,0110111, 1000010, 0010101, 1001011, 0010000, 1111100.
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3.4 Extended Codes

Sometimes increasing the length of a code by one digit, or perhaps a few
digits, result in a new code with improved error detection or error correction
capabilities which are worth the price of a lower information rate. We consider
one simple possibility in this section.

Let C be a linear code of length n. The code C* of length n + 1 obtained
from C by adding one extra digit to each codeword in order to make each word
in the new code have even weight is called the extended code of C.

In Example 1.3.3 we constructed the extended code of K?, and the reader
did the same for K3 in Exercise 1.3.5.

If the original code C has a k X n generator matrix G, then the extended
code C* has k x (n + 1) generator matrix

G = [Gs b]v

where the last column b of G* is appended so that each row of G* has even
weight.

A parity check matrix for C* can be constructed from G* using Algorithm
2.5.7. But there is an easier way if we are given a parity check matrix H for the
original code C. In this case, the extended code C* has a parity check matrix

«_|H 3
=31,
where j is the n x 1 column of all ones. Note that H* isan (n+1) X (n+1—k)

matrix. Since H has rank n — k, the last row of H* ensures that H* has rank
n — k + 1, Moreover,

mm—qu)J [GH,Gj +1b).

Now GH = 0 and Gj sums the ones in each row of G. From the definition of b,
it follows that Gj + b = 0. Therefore G*H* = 0. By Theorem 2.7.6 G* and H*
are, indeed generating and parity check matrices respectively for the linear code
c*.
Example 3.4.1 Let C be the linear code with generator matrix

‘ 10010

G = | 01001 |.

00111

Then
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is a parity check matrix for C' by Algorithm 2.5.7. So we obtain the following
generating and parity check matrices for the extended code:

F 101
011
111

and H* = 1041

011

00j1
If v is a word in the original code C and if V* is the corresponding word in
the extended code C* then
o | wit(v) if wt(v) is even
wi(v") = { wi(v) + 1 if wi(v) is odd .
Therefore if the distance d of C is odd then the distance of C* is d + 1, but if d
is even then the distance of C* is d. So an extended code is of use only when d
is odd, in which case it corrects no more errors than C but will detect one more
error. Notice then that there is no point in extending a code twice.

Example 3.4.2 Assume C has distance d = 5. Then C* has distance d* = 6.
By Theorem 1.11.14, C detects all nonzero error patterns of weight less than
or equal to d — 1 = 4, and C* detects all nonzero error patterns of weight less
than or equal to d* — 1 = 5. By Theorem 1.12.9, C corrects all error patterns of
weight less than or equal to |(d — 1)/2]| = |4/ 2_| =2, and C* corrects all error
patterns of weight less than or equal to |(d* — 1)/2] = |5/2] = 2.

10010[0
G* = | 01001]0

00111]1

Exercises

3.4.3 Find generating and parity check rmnatrices for an extended Hamming

code of length 8.

3.4.4 Construct an SDA for an extended Hamming code of length 8, and use
it to decode the following words:

(@) 10101010 () 11010110 (c) 11111111

3.4.5 Show that an extended Hamming code of length 8 is a self-dual code,
ie. C=Ct

3.4.6 Find a formula for the distance d* of the extended code C* in terms of
the distance of the original code C.

3.4.7 Let C be a Hamming code of length 15. Find the number-of error
‘patterns that Theorem 1.11.14 guarantees the extended code C* will
detect, and the number of error patterns Theorem 1.12.9 guarantees C*
will correct. How may error patterns does C* correct?
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3.5 The Extended Golay Code

In this and the next two sections we construct and decode two codes which
will correct three or fewer errors. The extended Golay code, discussed in this
and the next section, was in fact used in the Voyager spacecraft program which,
in the early 1980’s, brought us those marvelous close-up photographs of Jupiter
and Saturn.

Let B be the 12 x 12 matrix

(110111000101 ]
101110001011
011100010111
111000101101
110001011011
100010110111
000101101111
001011011101
010110111001
101101110001
011011100011
[ 111111111110 |

Let G be the 12 x 24 matrix G = [I, B], where [ is the 12 x 12 identity matrix.
The linear code C with generator matrix G is called the extended Golay code
and will be denoted by Co4.
As an aid to remembering B, note that the 11 x 11 matrix By obtained from
B by deleting the last row and column has a cyclic structure. The first row of
By is 11011100010. The second row is obtained from the first by shifting each
digit one position to the left and moving the first digit to the end. The third row
is obtained from the second row in the same way, and so on for the remaining
rows. Thus B may be remembered as the matrix
_| B JT
a5 %)

where j is the word of all ones of length 11. By inspection, we see that BT = B;
that is, B is a symmetric matrix.

We now list seven important facts about the extended Golay code Cyp4 with
generator matrix G = {I, B]:

(1) Caq has length n = 24, dimension k = 12 and 2'* = 4096 codewords. This
is clear upon inspection of G.

(2) A parity check matrix for Coq is the 24 x 12 matrix

7]
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Algorithm 2.5.7 yields this fact.

(3) Another parity check matrix for Co4 is the 24 X 12 matrix

-

To see this, note first that each row of B has odd weight (7 or 11). The
scalar (dot) product of any row with itself is therefore 1. Next, a manual
check shows that the scalar product of the first row of B with any other
row is 0. From the cyclic structure of B; it follows that the scalar product
of any two different rows of B is 0. Thus BBT = I. But BT = B, so
B? = BBT and,

I

GH:MB%B

]:12+BZ=1+BBT=1+1=Q

We shall use both parity check matrices to decode Co,.
(4) Another generator matrix for Cy4 is the 12 x 24 matrix [B, ).
(5) Caq is self-dual; that is, Cyy = Cy.
(6) The distance of C is 8.

7) Caq4 is a three-error-correcting code.
g

The proofs of facts (4) and (5) are requested in exercises. We will give a
proof of fact (6) which, in the bargain, contains further useful information about
the code Cy4. The proof is divided into three stages:

Stage I. The weight of any word in Cy4 is a multiple of 4. To see this, note first
that the rows of G have weight 8 or 12. Let v be a word in Cs4 which is the sum
v = r; +r; of two different rows of . The rows of B are orthogonal; hence the
rows of G are orthogonal. Therefore r; and r; have an even number, say 2z, of
ones in common. Thus

wi(v) = wi(r;) + wi(r;) — 2(2z)
is a multiple of 4. »

Now suppose the word v in Coy is the sum v = r; 4+ r; 4 7 of three different
rows of G. Let vy = r; +r;. Since Cyy is self-dual, vy and ry have scalar product
0, and hence an even numer, say 2y, of ones in common. Thus

wh(v) = wt(vr) + wi(re) — 2(2y)

is a multiple of 4. Continuing in this vein (formally, by induction) we see that if

v in Cyq is a linear combination of rows of G, then wt(v) must be a multiple of
4.
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Stage II. The first eleven rows of G are codewords in Cy4 of weight 8, so the
distance of C'24 must be either 4 or 8.

Stage III. We rule out words of weight 4 being codewords in Cp;. Let v be
a nonzero codeword in Cyy, and suppose wi(v) = 4. Then v = (I, B] and
v = uyB, I] for some u; and u (since both [I, B] and [B, I] generate Cy,) and
wi(u;) < 2 or wt(ug) < 2 (since one half of v must contain at most two 1’s).
However no sum of one or two row of B has weight at most 3, so wt(v) =
wt(u;) + wi(u;B) > 4. Therefore v does not have weight 4.

0

Exercises

3.5.1 Show that the word of all ones is in Ca4. Deduce that Cy4 contains no
words of weight 20.

3.5.2 Prove fact {4) about Ca.
3.5.3 Prove fact (5) about Chy.

3.5.4 Use Theorem 2.9.1 to verity that Cy4 has distance 8.

3.6 Decoding the Extended Golay Code

We shall now find an algorithm for IMLD for the code C,y. Throughout this
section, w denotes the word received, v the closest codeword to w and u the
error pattern v + w. For Cyy we want to correct all error patterns of weight at
most 3, so we assume that wi(u) < 3. A comma will be placed between the first
12 and the last 12 digits of words in K?*. The error pattern u will be denoted
by [u1,u;], where u; and u; each have length 12. Our aim is to determine the
coset leader, u of the coset containing w without having to refer to the SDA of
Caq

Since we are assuming that wit(u) < 3, either wt(w;) < 1 or wi(u,) < 1. Let
s1 be the syndrome of w = v + u using the parity check matrix

I
H= [ z ] :
Then s; = wH = [uy,us]H = uy + u3B. So if wit(ug) < 1 then s, consists of

either a word of weight at most 3 (if wi(uz) = 0) or a row of B with at most 2
of its digits changed (if wt(u,) = 1). Similary, if wt(u;) < 1 then the syndrome

szzw[?]=u1B+u2
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consists of either a word of weight at most 3 or a row of B with at most 2 of its
digits changed.

In any case, if u has weight at most 3 then it is easily identified, since at
most 3 rows of one of the two parity check matrices can be found to add to
the corresponding syndrome. Using this observation we obtain the following
decoding algorithm. We shall make use of the fact that B = I and

8 = Uy + UgB =wH
S = u1B + Ug
= (u; + w2 B)B = 5, B.

To avoid incorporating both of the parity check matrices into the algorithm, only
H= é is used. Of course once u has been determined, w is decoded to the
codeword v = w + u. ¢; is the word of length 12 with a 1 in the ¢tk position and
0's elsewhere, and &; is the i** row of B.

Algorithm 3.6.1 (IMLD for Cy).
1. Compute the syndrome s = wH.
. If wit(s) €3 then u = [s,0].
. If wi(s+ b;) < 2 for some row b; of B then u = [s + b, e;].
. Compute the second syndrome sB.
. If wi(sB) < 3 then u = [0,sB].
. If wt(sB + b;) < 2 for some row b; of B then u = [e;, sB + b].

P - N N N )

. If u is not yet determined then request retransmission.

The above algorithm requires at most 26 weight calculations in the decoding
procedure. (Of course, once u has been determined then no further steps in the
algorithm need to be done.)

Example 3.6.2 Decode w = 101111101111,010010010010. The syndrome is
s =wH = 101111101111 + 001111101110

= 100000000001,
which has weight 2. Since wi(s) < 3, we find that

u=/[s,0]= 100000000001, 000000000000
and conclude that

v=w+u=1001111101110,010010010010
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was the codeword sent.

Because G = [I, B] is in standard form and any word in K2 can be encoded
as a message {Ca4 has dimension 12), the message sent appears in the first 12
digits of the decoded word v. In Example 3.6.2 the message 001111101110 was
sent.

Example 3.6.3 Decode w = 001001001101, 101000101000. The syndrome is
s = wH = 001001001101 + 111000000100 = 110001001001,
which has weight 5. Proceeding to step 3 of the Algorithm 3.6.1 we compute

s+ by = 000110001100
s+ by = 011111000010
s+ b, = 101101011110
s+ by = 001001100100
s + bs = 000000010010.

Since wi(s + bs) < 2, we find that
u = [s + bs, 5] = 000000010010, 060010000000
and conclude that

v =w+u = 001001011111,101010101000

was the codeword sent.

Example 3.6.4 Decode w = 000111000111,011011010000. The syndrome is
s=wH =u; +u,B
= 000111000111 + 101010101101
= 101101101010,

which has weight 7. Proceeding to step 3, we find wt(s + b;) > 3 for each row b;
of B. We continue to step 4; the second syndrome is

sB = 111001111101,
which has weight 9. Forging ahead to step 5 we compute

sB +b; = 001110111000
sB + b, = 010111110110
sB + b3 = 100101101010
sB 4 by = 000001010000.

Since wi(sB + by) < 2, we find that
u = [eq, 8B + by] = 000100000000, 000001010000

and conclude that

v = w + u = 000011000111, 011010000000

was the codeword sent.
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Exercises

3.6.5 The code is Cy4. Decode, if possible, each of the following received
words w.

(a) 111 000 000 000, 011 011 011 011
(b) 111 111 000 000, 100 011 100 111
(c) 111 111 000 000, 101 611 100 111
(d) 111 111 000 000, 111 000 111 000
(e) 111 000 000 000, 110 111 001 101
(f) 110 111 001 101, 111 000 000 000
(g) 000 111 000 111, 101 000 101 101
(h) 110 000 000 000, 101 100 100 000
(i) 110 101 011 101, 111 000 000 000.

3.6.6 Find the most likely error pattern for any word with the given syn-
dromes.

(2) s, = 010010000000, s, = 011111010000
(b) s; = 010010100101, s, = 001000110000
(c) s; = 111111000101, s, = 111100010111
(d) s; = 111111111011, s, = 010010001110
(e) s; = 001101110110, s, = 111110101101
(f) sy = 010111111001, s; = 100010111111.

3.6.7 Show that if s or sB has weight 4 then IMLD requires that the word
be retransmitted.

3.7 The Golay Code

Another interesting three-error-correcting code can be obtained by punctur-
ing Cy4, that is, by removing a digit from every word in Cy,;. The same digit
must be removed from each word. We shall remove the last digit.

Let B be the 12 x 11 matrix obtained from the matrix B by deleting the
last column. Let G be the 12 x 23 matrix G = [L2, B]. The linear code with
generator matrix G is called the Golay code and is denoted by Ca3. The Golay
code has length n = 23, dimension k¥ = 12, and contains 2'? = 4096 codewords.
Note that the extended code C3; is indeed Cyq. Cyz has distance 7. This is most
easily seen from the fact that Cgy = Cy4 {see Exercise 3.4.6), but can be shown
using Theorem 3.2.8 or by modifying the proof that C,4 has distance 8.

The Golay code Cos is a perfect code {Example 3.2.4) and will correct all
error patterns of weight 3 or less, and no others (Theorem 3.2.8). Therefore
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every received word w is at most distance 3 from exactly one codeword. So
if we append the digit 0 or 1 to w forming w0 or wl respectively so that the
resulting word has odd weight, then the resulting word is distance at most 3
from a codeword ¢ in C4 (see Exercise 3.7.8). Decoding to ¢ using Algorithm
3.6.1 and removing the last digit from ¢ then gives the closest codeword to w in

Cas.
Algorithm 3.7.1 (Decoding algorithm for the Golay Code.)

1. Form w0 or wl, whichever has odd weight.
2. Decode wi (7 is 0 or 1) using Algorithm 3.6.1 to a codeword ¢ in Cyq.
3. Remove the last digit from c.

In practice, the received word w is normally a codeword, however w: formed in
step 1 is never a codeword (Why?). If w is a codeword then the syndrome of wi
is the last row of H (Why?) so this can easily be checked before implementing
Algorithm 3.6.1

Example 3.7.2 Decode w = 001001001001,11111110000. Since w has odd
weight, form w0 = 001001001001,111111100000. Then s; = 100010111110.
Since s; = bg + €9 + €15, w0 is decoded to 001001000000,111110100000 and so w
is decoded to 001001000000, 11111010000.’

Exercises

3.7.3 Decode each of the following received words that were encoded using
Cas.
(a) 101011100000, 10101011011
(b) 101010000001, 11011100010
(c) 100101011000, 11100010000
(d) 011001001001, 01101101111.

3.7.4 Prove that Cy3 has distance d = 7.
3.7.5 Find the reliability of C'3 transmitted over a BSC of probability p.

3.7.6 Determine whether Cy; or Cy4 has the greater reliability. Use the same
BSC for both.

3.7.7 Use the fact that every word of weight 4 is distance 3 from exactly one
codeword (why?) to count the numiber of codewords of weight 7 in the
Golay Code (Hint: for any codeword c, the number of words that have

weight 4 and are distance 3 from ¢ is (;) ).
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3.7.8 Use Exercise 3.7.7 to show that C,4 contains precisely 759 codewords of
weight 8.

3.7.9 Use Exercises 3.5.1 and 3.7.8 to verify the following weight distribution
table for Cay:
weight [o]4]8 |12 |16 |20]24]
number of words | 1| 0 | 759 | 2576 [ 759 [0 [1 |

3.7.10 Let w be a received word that was encoded using Co3. Append a digit ¢
to w to form a word wi of odd weight. Show that wi is within distance
3 of a codeword in Coq. (Hint: all words in Cy4 have even weight.)

3.8 Reed-Muller Codes

In this section we consider another important class of codes which includes
the extended Hamming code discussed earlier. The r** order Reed-Muller code
of length 2™ will be denoted by RM(r,m),0 < r < m. We present a recursive
definition of these codes

(1) RM(0,m) = {00...0,11...1}, RM(m,m) = K*"

(2) RM(r,m) = {(z,z + y)|z € RM(r,m — 1),y € RM(r —1,m - 1)},0 <
r<m.
So RM(m,m) is all words of length 2™ and RM(0,m) is just the all ones
word (and the zero word).
Example 3.8.1
RM(0,0) = {0,1}
RBM(0,1) = {00,11}, RM(1,1) = K? = {00,01,10,11}
RM(0,2) = {0000,1111}, RM(2,2) = K*
RM(1,2) = {(z,z +y)] =z €{00,01,10,11},y € {00,11}}
Rather than use this description of the code, we will give a recursive con-

struction for the generator matrix of RM(r, m), which we will denote by G(r,m).
For 0 < r < m, define G(r,m) by

_ | G(rym—-1)  G(r,m—-1)
Glrm) = [ 0 G(r—1,m—1)
For r = 0 define

G(0,m) =[11...1]
and for r = m, define o

6tmm) = | OG5 |
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Example 3.8.2 The generator matrices for RM(0,1) and RM(1,1) are

G(0,1) = (1 1) and G(1,1) = [ ol ]

Example 3.8.3 Let m = 2, then the length is 4 = 22 and for r = 1,2 we have

.= [ 940 560 o - [42]

Using Example 3.8.2 we have,

11 11 éiéi
G1L2)=| 01 01 |,G(2.2)=| o]
00 11 0001

Example 3.8.4 For m = 3,m = 23 = 8, we have
_ - | 6(23)
G(0,3) = (11111111), G(3,3) = [00000001 }

G(l’?’):[ 0 G(o,z)}’G(Q’g’):[ 0 G(1,2)

Thus using Example 3.8.3

G(1,2) G(1,2) G(2,2) G(2,2) } .

1111 1111
0101 0101
0011 0011
0000 1111

G(1,3) =

Exercises
3.8.5 Find the generator matrix G(2,3).
3.8.6 Find generator matrix G(r,4), for the codes RM (r,4) for r =0,1,2.

With this recursive definition it is a simple matter to prove via induction the
basic properties of a Reed-Muller code.

Theorem 3.8.7 The r** order Reed-Muller code RM (r,m) defined above has
the following properties:

(1) length n = 2™
(2) distance d = 2™~
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(3) dimension k=Y7_, (m)

(4) RM(r —1,m) is contained in RM(r,m),r > 0

(5) dual code RM(m — 1 — r;m),r < m.

Proof: The proofs of these claims all use induction. We leave it as an exercise
to show that this theorem holds for all RM(r,m) codes for m = 1,2,3,4. Also,
we note that these claims are obviously true for r = 0 and r = m.

First we want to show that RM(r — 1,m) C RM(r,m). We start with,

G(l,m—1) G(I,m—1
G(l’m)z( ( 0 )Ggo,m—lg)'

Since 1 is the top row of G(1,m — 1) then the all ones vector (1, 1) is the top
row vector in (G(1,m —1),G(1,m —1)). Thus RM(0,m) = {0, 1} is contained

in RM(1,m).

In general since G(r—1,m~1) is a submatrix of G(r,m—1) and G(r—2, m—1)
is a submatrix of G(r — 1,m — 1) we have obviously the

_{ Glr—=1,m-1) (G(r—1,m—1)
G(T‘l’m)‘< 0 G(r—2,m) >

is a submatrix of G(r,m) and thus RM(r — 1,m) is a subcode of RM(r,m).

Next we establish the distance d = 2™~" for RM(r,m), using induction on r.

Since RM(r,m) = {(z,z+y)|z € RM(r,m ~1),y € RM(r —1,m — 1)} and
RM(r—1,m~1) C RM(r,m —1) then z +y € RM(r,m — 1) andso if z # y,
then, by our inductive hypothesis, wt(z +y) > 2™~1-". Also wt(z) > 2m1-7,
Hence wi(z,z +y) = wi(z + y) + wi(z) > 2- 2™~ = 2™~ [f z = y. then
(z,z -{(- y)) = (y,0) but y € RM(r — 1,m — 1) and thus wi(y,0) = wt(y) >
2m—1— r-1) Qm—r,

From the definition of G(r,m), we have

dim RM(r,m) = dimRM(r,m —1) + dim BM(r — 1, m — 1)
- 2("7)E ()
- 207G+ (5)
Since (7) = ("7) + (73) and ("57) =1 = (3) we have,

dim RM(r,m) = ; (m)

=0 \?
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Finally let
RM(r,m) = {(z,z + y)|lz € RM(r,m — 1),y € RM(r — 1,m — 1)}

and let

RM(m—r—1,m) = {(z',z"+¥)lz’ € RM(m—r—1,m~1),y' € RM(m~r—2,m-1)}.

By induction the dual of RM(r,m — 1) is RM(m —r —2,m — 1) and Ithe dual
of RM(r —1,m —1)is RM(m —r —1,m—1) thus z-y' =0, and ' -y = 0.
Also since RM(r —1,m — 1) € RM(r,m — 1), y -y’ = 0. Hence

(z,2+y)-(@,a'+y) = (z+y)-(+y)+z-o
Ae-2)+z -y +y-2'+y-y
= 0.

i

We see that every vector in RM(r,m) is orthogonal to every vector in RM(m —
r — 1,m). Since

~ r m m-—r—1 m
dim RM(r,m) + dim RM(m —r —1,m) > ; + ;

i=0 i=0

£+ % ()
$ (m) —om

j=o \J

il

the RM(m — r — 1,m) code is the dual of the RM(r,m) code. a

Exercises

3.8.8 Show that Theorem 3.8.7 holds for the codes RM(r,m),1 < m < 4,
constructed in Examples 3.8.1, 3.8.3, 3.8.4 and Exercises 3.8.5, 3.8.6.

We consider the first order Reed-Muller code RM(1,m). Notice that RM (m.——
2,m) has dimension 2™ — m — 1 and has distance 4, length 2™ and therefore is
an extended Hamming code. By Theorem 3.8.7, RM(1,m) is the dual of t?ns
extended Hamming code. We present a decoding algorithm for this code which
is quite efficient. We postpone a discussion of a decoding algorithm for general
RM(r,m) codes until Chapter 9. . .

Note that the RM(1,m) code is a small code with a large minimum dlsta..nce,
so a good decoding algorithm is in fact the most elementary: for each received
word w, find the codeword in RM(1,m) closest to w. This can be done very
efficiently.
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Example 3.8.9 Let m = 3, consider the RM(1,3) code which has length 8 = 23

and 16 = 23*! codewords. The minimum distance is 4. Let

1111 1111
0101 0101
0011 0011
0000 1111

G(1,3) =

Note that if w is received and d(w, ¢) < 2 the we decode w to ¢ but if d(w, c) > 6,
then d(w, 1 +¢) < 2 and we decode w to 1 +¢. (Recall 1 is a codeword).
For example, if w = 1000 1111 is received then ¢ = 0000 1111 is the nearest
codeword. If w = (10101011) is received and we find ¢ = (01010101) with
d(w,c) > 6, then c+ 1 = 10101010 is the nearest codeword. Thus we have to
examine at most half of the codewords in RM(1,m)

In fact, there are very efficient matrix methods to compute these distances
but we will not consider them here.

Exercises

3.8.10 Let G(1,3) be the generator for the RM(1,3) code, decode the following
received words

a. 0101 1110
b. 0110 0111
. 0001 0100
. 1100 1110

]

jo N

3.8.11 Let G(1,4) be the generator for RM(1,4) code, decode the following
received words :

a. 1011 0110 0110 1001
b. 1111 0000 0101 1111

3.9 Fast Decoding for RM(1,m)

In this section we present briefly and without justification a very efficient
decoding method for RM(1,m) codes. Itiutilizes the Fast Hadamard Transform
to find the nearest codeword. First we need to introduce the Kronecher product
of matrices.

Define A x B = [a;; B]; that is, entry a;; in A is replaced by the matrix a;; B
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11 10
Example 3.9.1 Let H = [ -1 ] I, = [ ] then

1 01
1 1 0 0 7
1 -1 0 0
IgXHz 0 0 1 1
0o 0 1 —1]
M1 1 0 ]
01 0 1
H)(Iz=
10 -1 0
01 0 —1]

Now we consider a series of matrices defined as:
H:'n. _ Izm—i X H X I2i-—1
fori=1,2,...,m, where H is as in Example 3.9.1.
Example 3.9.2 Let m = 2. Then
H = LxHxL=LxH
H: = L xHxL=HxI
(see Example 3.9.1).
Example 3.9.3 Let m = 3 then

[1- 1 0 0
1 -1 0 0 0

(=

0 0 11 0
0

[
p—
|
—
=)

H§=I4XH>(11=

0 0 0 0 1
0 0 0 0 1
0 0 0 0 0
000 00 o
10 1 0 0
01 0 1 0
10 -1 0 0
61 0 -1 O
H32"—"I2XHX12= 00 O 0 1
00 0 O 0
00 0 O 1
(00 0 0 o0

o

oo

O - OO0 OO0

Q= OO OO

(=]
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1000 1 0 0 07
0100 0 1 0 0
0010 0 0 1 0
0001 0 0 o0 1
H:=HxI =
1000 -1 0 0 0
0100 0 —1 0 0
0010 0 0 -1 0
L0001 o0 0 0 -1]

The recursive nature of the construction of RM (1,m) codes suggests that
there is a recursive approach to decoding as well. This is the intuitive basis for
the following decoding algorithm for RM(1,m).

Algorithm 3.9.4 Suppose w is received and G(1,m) is the generator matrix
for RM(1,m) code

(1) replace 0 by —1 in w forming W
(2) compute wy = iUH}n and w; = w;_ H fori=23,. .. m.
(3) Find the position j of the largest component (in absolute value) of w,,.

Let v(j) € K™ be the binary representation of j (low order digits first). Then
if the j* component of w,, is positive, the presumed message is (1,v(5)), and if
1t is negative the presumed message is (0, v(5))

Example 8.9.5 Let m = 3, and G(1,3) be the generator matrix for RM(1,3)
(see Example 3.8.9). If w = 10101011 is received convert w to @ = (1,-1,1,~-1,1,
-1,1,1). Compute:

w = WH} = (0,2,0,2,0,2,2,0)

Wy = ’le2 = (0, 4, 0, 0,2, 2, "'2, 2)

ws = wH=(2,6,-2,2,-2,2,2,-2)
(see Example 3.9.2 for H}, HZ, H3).

The largest component of w; is 6 occurring in position 1. Since v(1) = 100
and 6 > 0, then the presumed message is m = (1100).
Suppose w = (10001111). Then w = (1,~1,-1,-1,1,1,1,1) and

w = TH; =(0,2,-2,0,2,0,2,0)
wy = w H] = (—2,2,2,2,4,0,0,0)
ws = w H3 =(2,2,2,2, -6,2,2,2)

the largest component of w is —6 occurring in position 4. Since v(4) = 001 and
—6 < 0 the presumed message is (0001).
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Exercises
3.9.6 Decode the received words in Exercise 3.8.10 using Algorithm 3.9.4 (and
Example 3.9.2).

3.9.7 Compute H; for i = 1,2,3,4.

3.9.8 Decode the received words in Exercise 3.8.11 using Algorithm 3.9.4 (and
Exercise 3.9.6).

Chapter 4

Cyclic Linear Codes

4.1 Polynomials and Words

We will find it convenient to represent cyclic codes in terms of polynomials.
For this reason we review some needed facts about polynomials (of one variable).

A polynomial of degree n over K is a polynomial ag+ @;z + ... + a,z" where
the coefficients ay, ..., a, are elements of K. The set of all polynomials over K
is denoted by K{z]. Elements of K([z] will be denoted by f(z), g(z), p(z) and so
forth.

Polynomials over K are added and multiplied in the usual fashion except
that since 1+ 1 = 0, we have that z* + z* = 0. This means that the degree of
f(z) + g(z) need not be max{deg f(z), deg g(z)}.

Example 4.1.1 Let f(z) = 1+ 2 4+ 23 + z4,9(z) = = + 2% + 2% and h(z) =
14 z?+ z*. Then: :

(@) f(z)+9(z) =14 22+ 2%
(b) f(x) + h(.’t) =gz 4 z2 + 33;
(©) fa(=) = (s+2°+2%) +ola+2? +2%) + 23(a + 22 + o)+

iz + 22 + z%)
= z4+z.

Exercises

4.1.2 Find the sum and the product of each of the following pairs of polyno-
mials over K:

(@) f(£) =a° +2°+27, h(x) = 1 + 2% + 2 4 o
(b) f(f"')=1+$2+23+x8+z13,h(z)=1+z3+z9,
() fl@)=1+4z,h(z) =14z +2? 423 + 2%,

97
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4.1.3 Let f(z) =14 z. Find:

(a) (f(=))
() (f(2)P°
() (f=)*.
4.1.4 Repeat Exercise 4.1.3 for f(z) =1+ z + °.

4.1.5 List all polynomials over K of degree n, for n = 0,n = 2,n = 3 and
n = 4.

4.1.6 Find the number of polynomials over K of degree at most 10.

4.1.7 As you may have noticed in Exercises 4.1.3 (a) and 4.1.4 (a), for any
polynomials f(z) and g{z) in K{z],

(f(=) + 9(=)* = (F(2))* + (9(2))*
since z* + z¥F = 0.

Is there also a special rule in K{z] for

(@) (f(=) +g(=))*
(b) (f(=) +9(=))%,
(c) (f(z)+ g{z))", for any positive integer, n?
The usual long division process works for polynomials over K just as it does
for polynomials over the rational numbers.

Algorithm 4.1.8 Division Algorithm. Let f(z) and h(z) be in K[z] with
R(z) # 0. Then there exist unique polynomials ¢(z) anﬁd r(z) in K[z] such that

f(z) = ¢(2)h(2) + (=),
with r(z) = 0 or degree (r(z)) < degree (h(z)).
The polynomial ¢(z) is called the quotient, and r(z) is called the remainder.
The procedure for finding the quotient and the remainder when h(z) is divided

into f(z) is the familiar long division process, but with the arithmetic in K
among the coeflicients.

‘Example 4.1.9 Let f(z) =z + 2 +2° + 27 + 28 and h(z) =1+ 2 + 22 + z*.

Then

zt 4 23

et te+1l28 42" +25 42842
$8+$6+$5+$4
z’ +:c5+$4+x§+z
4

2428424z

4zt 4tz
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Thus the quotient is ¢(z) = z° + z* and the remainder is r(z) = z + 2 + 2°.
We may write f(z) = h(z)(z® + z%) + (z + 2 + z°). Note that degree (r(z)) <
degree (h(z)) = 4.

Exercises

4.1.10 Find the quotient and remainder when &(z) is divided into f(z) for each
of the pairs of polynomials over K in Exercise 4.1.9.

4.1.11 Find the quotient and remainder in each part when %(z) is divided into
f(=)-
(@) flg) =2+ 2®+ 2 + 2% h(z) =1 + 25
(b) f(&) =1+ h(z) =1 + a5
(©) flz)y=142"h(z) =14z +2°
(d) flz) =142 h(z)=1+2%+ 25+ 27 + 28
The polynomial f(z) = ap + a1z + @22® + ... + ap_12™? of degree at most

n -1 over K may be regarded as the word v = ggaya;...a,_; of length n in K™.
For example if n = 7,

polynomial l word
1+ +2z%+2* | 1110100
14z + 2%+ 25 | 1000111

1+z +’a:3 1101000

Thus a code C of length n can be represented as a set of polynomials over K
of degree at most n — 1.

Note that it may be convenient for purposes of representing words by poly-
nomials to number the digits of a word of length n from 0 to n — 1, rather than
from 1 to n. The word apa;azaz of length 4 is represented by the polynomial
a4 + a1z + az? + azz® of degree 3, for instance.

Example 4.1.12 The code C in the left column of the array is represented by
the polynomials in the right column.

codeword polynomial
¢ Le(z)
0000 T 0
1010 14 2?
0101 z +z°

1111 l+z4 22 +2°
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Exercises

4.1.13 Represent each codeword C in the following codes with polynomials.

(a) C = {000,001,010,011}

(b) C = {000,001,010,011}

(¢) C = {0000,0001,1110}

(d) C = {0000,1001,0110,1111}

(e) C = {00000,11111}

(f) C = {00000,11100,00111,11011}.

4.1.14 Write out the Hamming code of length 7 generated by the matrix G
and then represent this code by polynomials.

1000111
0100110
0010101
0001011

G=

In Exercise 4.1.11(a), the reader computed the remainder r(z) when f(z) =
z? + 23 + z* + 2® was divided by h(z) = 1 + z°. The result was r(z) = 2% + z*.
By the Division Algorithm, r(z) is unique. Also r(z) has degree less than the
degree of the divisor h{z).

We say that f(z) modulo h(z) is r(z) if r(z) is the remainder when f(z) is
divided by A(z); we shall write r(z) = f(z) mod h(z). Furthermore, we say that
two functions f(z) and p(z) are equivalent modulo h(z) if and only if they have
the same remainder when divided by h(z); that is if

f(z) mod k(z) = r(z) = p(z) mod h{z).

We denote this by
f(z) = p(z)( mod h(z)).
Example 4.1.15 Let k(z) = 1+2° and f(z) = 1+2*+2° +2'%. Then dividing
f(z) by k(=) gives a remainder of r(z) = 1 + z. We say that r(z) = f(z) mod
h(z).
( %imﬂarly, if p(z) = 1+ 2%, then 1 +z = 1 + 2% mod (1 + z°) and thus we say
p(z) = f(z) mod h(x).

Example 4.1.16 Let h{z) = 1+ z? + z°. Computing f(z) mod k(z), with
flz) = 1+ 2% + 2% + 2° + 2! we find that the remainder r(z) = z + z* and
hence z + z* = f(z) mod h(z). Note that if p(z) = 2? + z® then p(z) mod
h(z) =1+ z® and p(z) and f(z) are not equivalent mod k(z).

Addition and multiplication of polynomials “respects” the equivalence of
polynomials defined above. That is to say:
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Lemma 4.1.17 If f(z) = g(z) mod h(z) then,
f(z) + p(z) = g(2) + p(z)( mod h(z))
and F()p(z) = o(2)p(z) mod h(z))

Proof: Suppose r(z) = f(z) mod A(z) and r(z) = g(z) mod k(z) and s(z) =
p(z) mod h(z) then we have

f(2) +p(z) = a(@)h(z) +(z) + g:(2)h(z) + s(z)
= (a1(2) + ga2(2))h(z) + r(z) + s(2).

Equivalently r(z) + s(z) = (f(z) + p(z)) mod k(z) since degree of r{z) +s(z) <
degree h(z) (Why?). Similar arguments show that r(z) + s(z) = (9(z) +
p(z)) mod k(z). We leave the remaining arguments to Exercise 4.1.22. O
Example 4.1.18 Let h(z) = 1+ 2% f(z) =1+ 2+ 27,9(z) = 1 + 2 + 2% and
p(z) = 14 2% so f(z) = g(z)( mod h(z)). Then

flz)+plz) =z + 25+ 27

and
9(z) + p(z) = z + 2® + 2°
but
(z+2°+2") mod h(z) = 22 = (z + 27 + z°) mod h(z).
Similarly

(142 +27)(1 +2°% mod h(z) = 1+ 2% = (1 + z + 2*)(1 + 2°) mod h(z).
Note that 1 4 z = (1 + 2°%) mod A(z). Thus we have
(I+z+2)(1+2%) =1 +z+2%)(1+2%
=(1+z+2’)(1+z)=1+2° (mod k(z)).
Exercises

4.1.19 Let :(m) =14 2%+ 2% Compute f(z) mod h(z) and its corresponding
word:
@ @) =14z +a°
(b) f(z)=2+z*+2"+28
(c) flz)=1+2

4.1.20 Let h(z) =1+ 2". Compute f(z) mod h(z) and p(z) mod h(z), and
decide whether f(z) = p(z) mod k(z):
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(a) flz)=1+2°+28p(z) =z +2®+2"

®) fz)=z+2°+2°p(z) =z +2°+ 2%+ 2"

() fle)=1+z,p(z) =z +a’

4.1.21 Let h(z) = 142" compute (f(z)+ g(z)) mod h(z) and (f(z)g(z)) mod

h(z), where

(2) f&) = 1425+ 2%, 6(z) = 1 +2

(b) f(a) =145+ g(c) =z +2° +57

(c) flz) =1+2"+25%g(z) =1+z+a

4.1.22 Prove that if f(z) = g(z) (mod (h(z)) then f(z)p(z) = g(z)p(z) (mod

4.2 Introduction to Cyclic Codes

We now begin the study of a class of codes, called cyclic codes. Eventually
we will be able to use our knowledge of cyclic codes to construct a generating
matrix for the two error correcting BCH codes, as well as some other codes. In
fact we shall also see that the Hamming and Golay codes are cyclic codes or are
equivalent to cyclic codes.

Let v be a word of length n. The cyclic shift x(v), of v is the word of length
n obtained from v by taking the last digit of v and moving it to the beginning,
all other digits moving one position to the right. For example:

| 10110 | 111000 | 0000 | 1011
w(v) | 01011 | 011100 | 0000 | 1101

A code C is said to be a cyclic code if the cyclic shift of each codeword is also a
codeword.

Example 4.2.1 The code C = {000,110,101,011} is a linear cychc code. First

C is linear. Next we compute x(v) for all vin C.
x(000) = 000, 7(110) = 011, 7(101) = 110, 7(011) = 101.
Since x(v) is also in C, for each v in C, C is cyclic.

Example 4.2.2 The code C = {000,100,011,111} is not cyclic. The cyclic shift
of v = 100 is #(100) = 010 which is not in C.

Note that the cyclic shift = is a linear transformation; that is,
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Lemma 4.2.3 7(v + w) = 7(v) + 7(w) end 7(av) = an(v),a € K = {0,1}.
Thus to show that a linear code C is cyclic it is enough to show that 7w(v) € C
for each word v in a basis for C.

Proof: Let v = (vov; ... vn_1),w = (Wow; ... w,—;1) then v+ w = (vy + wo, v; +
Wiy ooy Unot + Woo1) and 7o + w) = (Vuey + Weo1, Vo + Wo, ..., Vnon + Wyog) =
7(v) + 7 (w). 0
Example 4.2.4 In Example 4.2.1, {110,101} is a basis for C since 7(110) = 011
and 7(101) = 110 are in C, C is a linear cyclic code.

If we wish to construct a cyclic linear code then we can pick a word, v, form a
set S consisting of v and all of its cyclic shifts, § = {v, 7(v), 7%(v),..., 7" (v)}
and define C to be the linear span of S; that is C = (S). (We use the notation
73(v) = 7(x(v)),7*(v) = 7(x(x(v))), etc.) Since S contains a basis for C,C
must be cyclic by Lemma 4.2.3.

Example 4.2.5 Let n = 3and v = 100. Then S = {v,x(v),7%(v)} =
{100,010,001} and ( ) = K Note that if w = agv + a;7(v) + ap7*(v) then
T(w) = aon(v) + a17%(v) + @73 (v) = azv + amr(v) + a;7%(v).

Example 4.2.6 Let n = 4 and v = 0101. Then 7(v) = 1010 and #2(v) =
0101 = v. Thus § = {0101,1010} and C = (S) is the cyclic code, C =
{0000,0101,1010, 1111}.

If a word v and its cyclic shifts form a set S = {v,7(v),..., 7™ 1(v)} which
spans the code C (so C = (S)), then we say v is a generator of the linear cyclic
code C. Since every linear cyclic code which contains v must contain S as well,
we say that C' is the smallest linear cyclic code containing v. It is worth noting
that a linear cyclic code can have many generators.

Exercises

4.2.7 Find a basis for the smallest linear cyclic code of length n, containing
CH

(a) v=1101000,n = 7

(b) v=1010101,n =6

(c) v=11011000,n =8
4.2.8 Find all words v of length n, such that = (v) = v.
4.2.9 Find all words v of length 6 such that

(a) 7*(v) =v
{b) #3(v) = v.
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Cyclic codes have a slick representaton in terms of polynomials. This is based
on the simple observation that if the word v corresponds to the polynomial v(z)
then the cyclic shift of v, 7(v) corresponds to the polynomial zv(z) mod 1+ z".
Note that in general 1 = z” (mod 1 4 z™).

Example 4.2.10 Let v = 100 then v(z) = 1 and n(v) = 010 corresponds to
zv(z) = z. Similarly if v = 1101 then v(z) = 1 4+ z + 2% and =(v) = 1110
corresponds to zv(z) mod 1+ z* =1+ z + 2%

For cyclic codes we refer to the elements of the code both as codewc?rds and
polynomials. We can now restate the previous discussion of cyclic codes in jcerrns
of polynomials. Given a word v of length n, let the polynomial corresponding to
it be v(z); then the cyclic shifts of v correspond to the polynomials z*v(z) mod
14z%fori=0,1,...,n—1.

Example 4.2.11 Let v = 1101000 and n = 7. Then v(z) =1+ z + z® and

word  polynomial (mod 1 + z7)
0110100 zv(z) = z + 2? + 2*
0011010  z%v(z) = 2* +2* + 2°
0001101  z3v(z) =23+ 2% + 25
1000110  z%w(z)=z? 4+ 2% + 27 14+z*+2° (mod1l+27)
0100011  z%v(z) = z° + 2% + 28 z+2°+2% (mod1+z")
1010001  zfv(z) =%+ a2"+2° =1+22+2° (modl+2")

O

Clearly if ¢(z) € ({v(z),zv(z),..., 2" v(z)}), (mod 14 z") then that means
that

(aov(z) + a1zv(z) + ... + apyz™ 'v(z)) mod 1 + z™
(20 + @17 + a2z + ... + @12 V)v(z) mod 1 + z™
= a(z)v(z) mod 1 + z™

o(z) =

Therefore we obtain the following result.

Lemma 4.2.12 Let C be a cyclic code and let v € C. Then for any polynomial
a(z),e(z) = a(z)v(z) mod (1 + z™) is a codeword in C.

Among all non-zero codewords in a linear cyclic code C, there is a unique
word g € C, such g(z) has minimum degree, as the following argument indicates.
Certainly there is at least one word or polynomial of smallest degree in C. If two
non-zero words g and g’ correspond to polynomials g(z) and ¢'(z) of minimum
degree k then g(z) + ¢'(z) = ¢(z) € C since C is linear and degree (¢(z)) < k
(since z¥ + z*¥ = 0). Since g is a non-zero word of smallest degree, degree
(e{)) < k means that ¢(z) =0, so g(z) = ¢'(z) and so g(z) is unique.
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We define the generator polynomial of a linear cyclic code C to be the unique
non-zero polynomial of minimum degree in C. From the above discussion we

" know it is unique, but is it a generator?

To see that it is, we must show that for any codeword e(z) € C, there
exists a(z) such that, ¢(z) = a(z)g(z) mod 1 + z™; in fact we shall show that
e(z) = a{z)g(x). Since degree (c(z)) > degree (9(z)) we have by the Division
Algorithm,

e(z) = g(z)g(x) + r(z)
or

r(z) = g(z)g(2) + <(z).
However both ¢(z) and ¢(z)g(z) are codewords of C by Lemma 4.2.12 and thus
so is r(z). But by the Division Algorithm either r(z) = 0 or degree (r(z)) <
degree (g(z)). Since the latter is impossible unless r = 0, we conclude that
r(z) = 0 and thus g(z) is a divisor of every codeword c(z)in C.

Theorem 4.2.13 Let C be a cyclic code of length n and let g{(z) be the generator
polynomial. Ifn — k = degree (g(z)) then

(1) C has dimension k,

(2) The codewords corresponding to 9(z),zg(z),...,z¥1g(z) are a basis for
C, and

(3) c«(z) € C if and only if c(z) = a(z)g(z) for some polynomial a(z) with
degree (a(z)) < k (that is, g(z) is a divisor of every codeword o(z)).

Proof: The discussion before Theorem 4.2.13 proves (3). If g(z) has degree n—k
then g(z),zg(z),...,z* 'g(z) must be linearly independent (Why?). Since g(z)
divides every codeword there is a unique polynomial az) = g+ ayz +... +
a2 such that ¢(z) = a(z)g(z) = a0g(z) + a1zg(z) + ... + 412~ 1g(z).
Therefore c(z) is in {{9(z),zg(z),...,2*1g(2)}) and thus {9(=),z9(),...,
z*~1g(2)} is a basis for C. i

Example 4.2.14 Let n = 7,g(2) = 1 4+ z + 22 be the generator for the cyclic
code C. A basis for C is

g9(z) =1+z+z° 1101000

zg(z) =z + 2%+ 21 0110100
- zPg(z) =2 +23+ 75 o 0011010

22g(z) =2%+2* +2° o 0001101

Note z%g(z) mod 1+ 27 = 1+ 2* + 2% is a codeword since 1 + z* + 25 =
(I+z+2)(1+2+2%) =(1+z+2)g(z).
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Example 4.2.15 Let C be the cyclic code C = {0000,1010,0101,1111}; the
corresponding polynomials are {0,1+z% z+2% 1+ z+2%+2°}. Note, 1 +:f:2 -
1010 is the generator polynomial for C, since C contains only one polynomla.l of
degree 2 and none of degree 1. Also, every word (polynomial) in C is a multiple
of the generator polynomial:

0 =0(1+2%) z+2° = z(1+2%)
1+22 =1(1+$2) 1+$+$2+$3 :(l+$)(1+$2).

Example 4.2.16 The smallest linear cyclic code C of length 6 containing g(z} =
1 4 2% « 100100 is

= {000000, 100100, 010010,001001,110110,101101,011011,111111}.

This can be verified by the techniques described earlier in this section. The
polynomial of smallest degree representing a word in C is seen by inspecton

to be g(z) = 1+ z°, and C contains no other polynomial of degree 3. Thus -

g(z) = 1 + 2 is the generator polynomial for C. We represent each word in C
as a multiple of g(z), (See below).

word polynomial f(z) factorization h(z)g(z) of f(z)
000000 0 01 +2°)

100100 1423 1(1 + =®)

010010 z +z* z(1 + %)

001001 22 + 28 22(1 + %)

110110 14z +2%+ 2 (1 +z)(1+2%
101101 1+z?+ 22 +42° 1+ 21 +2°)
011011 r+2?+2t+2° (z +23)(1 + =)
11111 | 1+ 2+ 2% + 23+ 2% + 2° 1+ z+28)(1 +2°)

We can generate cyclic codes easily enough by picking a word v and setting
C = ({v(z),zv(z),...,2" v(z)}) (modulo 1+ z"). However we need to find the
generator polynomial for such a code and listing all codewords is not a reason-
able approach. The generator polynomial for a cyclic code has one important
property:

Theorem 4.2.17 g(z) is the generator polynomial for a linear cyclic code of
length n if and only if g(z) divides 1+ z™ (so 1 + z™ = h{z)g(z)).

Proof: By the Division Algorithm 1 + =™ = h(z)g(z) + r(z) with r(z) = 0 or
degree (r(z)) < degree {g(z)). Equivalently r(z) = A(z)g(z) + (1 + z"). But
r(z) = (k(z)g(z) + (1 + ™)) mod (1 + z") = h(z)g(z) (mod 1 + z"). Thus r(z)
is in the code generated by g(z) and r(z) = 0 or degree (r(z)) < degree (g¢(z)).
We conclude that r(z} = 0. o
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Corollary 4.2.18 The generator polynomial g(z) for the smallest cyclic code of
length n containing the word v (polynomial v(z)) is the greatest common divisor
of v(z) and 1+ z™ (that is, g(z) = ged(v(z),1 4 z™)).

Proof: If g(z) is the generator polynomial then g(z) divides both v(z) and
L+ 2™ But g(z) is in {{v(z),zv(z),...,2" 'v(z)}), thus we have

g(z) = a(z)v(z) mod 1 + z*
or equivalently by the Division Algorithm:
9(z) = a(z)v(z) + b(z)(1 + 2™).
Thus any common divisor of v(z) and 1 + z" must divide g(z) and thus g(z) is

the greatest common divisor. o

Example 4.2.19 Let n = 8 and v = 11011000, i.e. v(z) = 1 + z + 2% + 2*. The
ged of v(z) and 1+2® is 1422, Thus g(z) = 1+2? and the smallest linear cyclic
code containing v(z) has dimension of 6 and g(z) as the generator polynomial.

The Euclidean Algorithm for computing the g.c.d of two polynomials is dis-
cussed in the Appendix A. An alternate approach to finding the generator poly-
nomial for a cyclic code of length n and dimension n — k involves simple row
reduction. If one takes a basis (or generator matrix) and puts it into RREF
with the last k columns as the “leading columns” then the row (codeword) of
minimum degree will be the generator polynomial.

Exercises

4.2.20 For each of the words below, find the generator polynomial for the
smallest linear cyclic code containing that word.
(a) 010101
{b) 010010
(c) 01100110
(d) 0101100
(e) 001000101110000
(f) 000010010000000
(g) 010111010000000

4.2.21 Find the generator polynomial of the smallest linear cycle code contain-
ing each of the following words.

(a) 101010
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(b) 1100

(c) 10001000
(d) 011011
(e) 10101
(f) 111111,

4.2.22 For each of the codes C =< § > with S defined below, find the generator
polynomial g(z) and then represent each word in the code as a multiple

of g(z).
(a) S={010,011,111}
(b) S = {1010,0101,1111}
(c) S = {0101,1010,1100}
(d) S = {1000, 0100,0010,0001}
(e} S ={11000,01111,11110,01010}.

4.3 Polynomial Encoding and Decoding

One can find various generator matrices for linear cyclic codes; the simplest
is the matrix in which the rows are the codewords corresponding to the generator
polynomial and its first k£ — 1 cyclic shifts (see Theorem 4.2.13):

g(z)
G zy:(w)
z*1g(z)

Example 4.3.1 Let C = {0000,1010,0101,1111} be a linear cyclic code. The
generator polynomial for C is g{z) = 1 + 2. Here n = 4 and k = 2, so a basis
for C consists of

9(z) =1 +2* & 1010,zg(z) = = + z° < 0101,

as can be easily verified. A generating matrix for C is

o[- [
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Example 4.3.2 Let C be the linear cyclic code of length n = 7 with generator
polynomial g(z) = 1+ z + z° of degree n — k = 3. Then k = 4, so a basis for C
is,

g(z) =1l4+z+23

zg(z) =z +z+z

z2g(z) =22+ 2%+ 28

2g(z) =2+t + 2
and, a generating matrix for C is

1101000
0110100
0011010
0001101

G=

Let C be a linear cyclic code of length n and dimension & (so the generator
polynomial g(z) has degree n — k). The k information digits (aq, as,- . ., az_1) to
be encoded can be thought of as a polynomial a(z) = ag + a1z + ... 4 ag1z*!
called the information or message polynomial. Encoding consists simply of poly-
nomial multiplication; that is, a(z) is encoded as a(z)g(z) = ¢(z). So instead
of storing the entire k X n generator matrix one only has to store the generator
polynomial, which is a significant improvement in terms of the complexity of
encoding.

The inverse operation to polynomial multiplication is polynomial division.
Hence finding the message corresponding to the closest codeword c(z) to the
received word consists of dividing c(z) by g(z), thus recovering the message
polynomial a(z).

Example 4.3.3 Let g(z) = 1+z+2°andn=17. Thenk =7 — 3 = 4. Let
a(z) = 1+ z? be the message polynomial corresponding to the word a = 1010.
The message a(z) is encoded as c(z) = a(z)g(z), so

c(z)=(1+2)1+z+2%) =14z +2°+7°
with ¢ = 1110010 as the corresponding codeword.

If ¢(z) = 14 z + z* + 2° then the corresponding message polynomial is
oz)/g(z) = a(z) = 1 + z® corresponding to the message a = 1001.

Exercises
4.3.4 Let g(x) = 1 + 2% + z° be the generator polynomial of a linear cyclic
code of length 7.

(a) Encode the following message polynomials: 1+ z3,z,z + z? + z3.
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(b) Find the message polynomial corresponding to the codewords ¢(z) :
4t it 4o+ 22?4 25 4 2t 4 25

4.3.5 Find a basis and generating matrix for the linear cylic code of length n
with generator polynomial g(z).
(a) n="T,9(z) =1+ 2+ 23
(b) n=9,g(z) =1+ 2%+ 2°
(c) n=15,g9(z)=1+z+z*
(d) n=15,9(z) =142 +2%+ 27 + 25
(e) n=15,9(z) =1+ z+ 2%+ z*+2°+ 2% + 20

4.3.6 Show that the linear code with given generator matrix is cyclic and find
the generator polynomial.

110110
001001 010101

@ G=1 101101 (b)G“[mm]
101101

Having developed a polynomial encoding procedure for linear cyclic codes we
next must consider a parity check matrix for such codes as well as algorithms
for decoding received words. If ¢(z) is sent and w(z) is received, with w(z) =
c(z) + e(z) then one would like to compute the syndrome and the most likely
error polynomial e(z).

The syndrome polynomial, s(z), is defined by s(z) = w(z) mod g(z). As-
suming g(z) has degree n — k, then s(z) will have degree less than n — k and
will correspond to a binary word s, of length n — k. Since w(z) = ¢(z) + e(x)
and ¢(z) = a(z)g(z) we have that s(z) = e(z) mod g(z). That is, the syndrome
polynomial is dependent only on the error.

We can define a matrix H in which the it* row r; is the word of length n—k
corresponding to r;(z) = z* mod g(z). It turns out that this matrix is a parity
check matrix for the code. For, if w is a received word then

w(z) =c(z)+e(z), so
wH (c +e)H
T (a+e)r:
o TR + ex)ri(z)
= (T i) mod g(z) + (T2 i) mod g(z)
= ¢(z) mod g(z) + e(z) mod g(z)
= 0(+)e(:z:) mod g(z)
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Then s(z) = 0 if and only if w(zx) is a codeword, so H is a parity check matrix.
Also, if wH = s then s corresponds to s(z) = w(z) mod g(z). It is now clear
why we refer to s(z) as the syndrome polynomial.

Example 4.3.7Let n="7,and g(z) = 1+ +:1:3 Then n—k = 3. We produce
H as follows.

ro(z) =1 mod g(z) =1 « 100
ri(zy=z modg(z)=12z «~ 010
ro(z) = z? mod g(z) = z? « 001
r3s(z) =2° modg(z)=1+z « 110
rq(z) =2 mod g(z) =2+ 2 « 011
rs(z) =2 modg(z)=1+z+2? & 111
re(z) = 2% mod g(z) = 1 + z? « 101
[ 100 |
010
001
so H = 110
011
111
101 |

If w(z) = 1+ 2° + 2% is received, w = 1000011, then wH = s = 110 and
s(z)=14+z=1+2"4+2mod (1 +z +2z%).

Rather than construct a standard decoding array (SDA) for a cyclic code we
use an algorithm that utilitizes the symmetries inherent in cyclic codes. Note
that if e is a coset leader and if s = eH, then s(z) = e(z) mod g(z) as was
shown in the discussion before Example 4.3.7. Then z's(z) = z'e(z) mod g(z)
and so the syndromes of the cyclic shifts of e are easy to compute; rather than
storing an SDA we make use of this property.

It is important to note that if degree e(z) < degree g(z) then e(z) =
e(z) mod g(z) and thus the syndrome polynomial for the error polynomial e(z)
is just e(z) (i.e. s(z) = e(z)). We also note that if e(z) is a coset leader for a
cyclic code of length n, so is z'e(z) mod 1+ z"

Algorithm 4.3.8 (For decoding linear cyclic codes).

1. Calculate the syndrome polynomial s(z) = w(z) mod g(z), where w is the
received word.

2. For each i > 0, calculate s; « s:(m) = z's(z) mod g(z) (the syndrome
polynomial of the i** cyclic shift of w) until a syndrome s; is found with

wi(s;) < t. Then the most likely error polynoxmal is e(z) = 2" s5;(x) mod
(1+=z").



112 CHAPTER 4. CYCLIC LINEAR CODES

Remark This decoding algorithm will only correct error patterns e(z) where,
for some i, z'e(z) mod (14 z") has degree at most n—k. It is quite possible that
there are error patterns of weight at most ¢ that do not satisfy this property. Such
error patterns are correctable by the code, but the closest codeword is not found
with this algorithm. However, Algorithm 4.3.8 will be used in Chapter 7 when
burst error patterns are discussed. In that setting, the analogue of Algorithm
4.3.8 will always work.

Example 4.3.9 Let n = 7, let g(z) = 1+ z +z° be the generator polynomial for
the 1 error-correcting (so ¢ = 1) linear cyclic code. If w(z) = z? + 2° is received
then s(z) = w(z) mod g(z) = 2® + 2z mod (1 + = + z°) = 1 + 2 + 27 is the
syndrome polynomial. We next compute

zs(z) mod g(z) = z(1 + z + 2?) mod g(z) =1 +2°
z?s(z) mod ¢(z) = z(1 + z°) mod g(z) =1,

51(z)
32(.’1:)

which has weight 1 <{. So j = 2 and therefore

il

i

e(z) = 177 255(z) mod (1 +z7) = z°.
Thus ¢(z) = w(z) + e(z) = (2% + 2) + z° is the most likely codeword.
Example 4.3.10 Let n = 15, and let g(z) = 1+z%+2%+z"+2® be the generator
polynomial for a cyclic code with d = 5. Thus all error patterns of weight ¢ = 2

or less are correctable. Decode the received word w = 110011100111000.
Here w(z) = 1 +z + 2% + 2% + 2% + 2% + 210 + 2.

The syndrome polynomial s(z) = w(z) mod g(z) is
s(z) = 14+z+28+zt+2°+25+27
s1{z) zs(z) = z + 2% + z* + 2° + 2% + 27 + 2° mod g(z)
14z42*+1°

s(z) = 22s(z) =z +2° + 2% + 2° (mod g(z))
ss(z) = 2°s(z) = 2% +2°+2* + 27 (mod g(z))
sa(z) = z's(z)=1+2°+2° + 2%+ 27 (mod g(z))

ss(z) = z°s(z) =1+ z (mod g(z)), which has weight 2 <t.

So e(z) = % 3s5(z) mod (1 -+ z%%) = 1% + 21,
Therefore
c(z) =w(z)+e(z)
= w(z) + (z° + =)
=14+z+z*+25+2°
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Exercises

4.3.11 Find a parity check matrix for the linear cyclic code of length 7 with
generator g(z) =1+ z + 2% + 2%

4.3.12 Find a parity check matrix for a cyclic code of length n and with gen-

erator g(z):

(a) n=6,9(z) =1+1?

(b) n=6,9(z) =1+

(c) n=8,9(z) =1+ z?

(d) n=9,9(z) =1+ 2%+ 2"

(e) n =15,9(z) =1 + z + 2* (this generates a Hamming code)

(f) n=23,g(z) =1+ a+2°+ 25+ 2" + 2%+ z'! (this generates a

Golay code)

(g) » = 15,9(z) = 1 4+ z* + 2% + z7 + 2® (this generates a 2-error
correcting BCH code, constructed in Chapter 5).

4.3.13 g(z) = 1+ z*+ 2%+ z7 + 28 generates a 2 error-correcting linear cyclic
code C of length 15. Use Algorithm 4.3.8 decode the following received
words that were encoded using C.

(a) 001000001110110
(b) 110001101000101
(c) 001111101001001
(d) 001000000110000
(e) 110010000111010.

4.4 Finding Cyclic Codes

To construct a linear cyclic code of length n and dimension k, one must find
a factor of 1 + =™ having degree n — k. Of course there maybe several choices
or none for given n and k. There is also the question of minimum distance for
cyclic codes which we have not considered, a question which is not settled in
general. We will put this issue off until later.

To reiterate, the fact that every generator must divide 1 + z™ enables us to
find all linear cyclic codes of a given length n. All we have to do is find all factors
of 1+ a™, which means first finding all irreducible factors.

A polynomial f(z) in K[z] of degree at least one is irreducible if it is not
the product of two polynomials in K{z], both of which have degree at least one.
Finding the irreducible factors (which essentially gives all the factors of 1+z®) is
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not all that easy. The factorization of 142", n < 31 into irreducible polynomials
is in Appendix B and an algorithm to factor 1+z™ is discussed below (see 4.4.14).
The factor 1 of 1 + ™ has degree 0 and hence generates a cyclic code of
dimension n; this code must be K™, which proves that K™ is cyclic. We can
also, as a special case, define the code {0} consisting of only the zero word of
length n to be cyclic with “ generator” g(z) =0 =1+ z" mod 1+ z™
, We will call these linear cyclic codes K™ and {0}, improper cyclic codes.
Otherwise, the code is a proper cyclic code.

Example 4.4.1 For n = 3,1 + 2® = (1 4+ z)(1 + z + z?) is the factorization of
1+ 2 into irreducible factors. Thus there are two proper cyclic codes of length
3. One has generator g(z) = 1 4+ & and generating matrix

110
G= { 011 ] ’
The code is C = {000,110,011,101}. The other code has generator g(z) =
14 z + 2? and generating matrix G = [111], so is the code C = {000,111}.

Example 4.4.2.For n = 6, we factor 1 + 2° into irreducible factors.
1+2%=(1+2° =(1+2)*)(1+z+2%)>%

Then to find the generators of proper linear cyclic codes of length 6, we form all
possible products of these factors except for 1 and 1 + z®. Each such product
is the generator for a proper cyclic linear code of length 6. These products and
the dimension of the cyclic linear code of length 6 that each product generates
are given in the following table.

generator dimension
14z 5
(1+z)=1+22
l1+z+2*
(l+z+2)?=1+22+21
(I+2)0+z+29)=14+2°
+z(l+z+2) =142+ 2+ 2*
(I+z)l+z+a?)=1+z+a®+23+2%+2°

Theorem 4.4.3 Ifn =2"s then 1 + 2" = (1 + z°)?.

Ll SRR SR S

Proof: If n = 2s, then (14 2°)% = 1 +z° + 2° + 2% = 1 + 2?°. We then proceed
by induction on r. ¥

Corollary 4.4.4 Let n = 27s, where s is odd and let 1 + z° be the product of z
irreducible polynomials. Then there are (27 + 1)* Linear cyclic codes of length n
and (27 + 1)* — 2 proper linear cyclic codes of length n.
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Example 4.4.5 In Example 4.4.1 it is shown that 1 + z® is the product of two
irreducible polynomials, namely 1 + z and 1 + z + z%. By applying Corollary
4.4.4 with r = 0,5 = 3 and z = 2 we find that there are (2°+1)? = 4 linear cyclic
codes of length 3, 2 of which are proper (as shown in Example 4.4.1). Also, for
1+2% wehave n =6 = 2!'3 sor = 1, z is still 2 thus there are (241)? = 9 linear
cyclic codes of length 6, 7 of which are proper (as was shown in Example 4.4.2).

Exercises

4.4.6 Find the number of proper linear cyclic codes of length n, where

(a) n=14, (e) n = 56,
(b) n =5, ()n=15,
()n=17, (9) n = 120,
(d) n =14, (k) n = 1024.

4.4.7 Find the generator polynomial for all proper linear cyclic codes of length
n, where

4.4.8 Find two generators of degree 4 for a linear cyclic code of length 7.

4.4.9 Find a generator and a generating matrix for a linear code of length n
and dimension k& where

(&) n=12k=5"

(b) n=12,k =
()n=14,k=5
(d) n=14,k=6

() n =14,k =8.
4.4.10 Show that the Golay Code Coy; is equivalent to a linear cyclic code.

One can find all cyclic codes or equivalently factor 1 + z™, by a relatively
simple procedure. Throughout our discussion we will assume that n is odd.

The first step involves generating all polynomials I(z) (mod 14z") such that
I(z) = I(z)? (mod 1+z™). These polynomials are called idempotent polynomials.
It is easy to see that if u(z) and v(z) are idempotent, so is their sum u(z) 4 v(z)
and product u(z)v(z) (mod 1+z"). Thus'we need to construct only a “basic” set
of idempotent polynomials. To do this we need to partition Z, = {0,1,..., n—1}
into “classes”. :

Let C; = {s =27 - i(modr)|j = 0,1,...r} where 1 = 2" mod n.
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Example 4.4.11 For n = 7 we have
Co={0},C1 ={1,2,4} =C, = Cy, and C; = {3,5,6} = Cs = C.
For n = 9 we have
Co = {0},C, = {1,2,4,8,7,5}, and C;3 = {3,6}.
Next for each different class C; we form a polynomial

a(z) = 2.

7€C;

We claim that ci(z) is an idempotent and moreover that any idempotent I (=)
(mod 1 + z™) is
k
I(z) =) aici(z), a € {0,1}.
1=0

To see this note that,

c(z) =cfz®) =D 2% = 3 ¥ (mod 1 +2")
JEC keC;

since if j € C; then so is 2§ (mod n).
Example 4.4.12 For n = 7 we have,

Co=1{0}, 50 cfz)=2"=1,
Cy = {1,2,4} so alz) = 2! + 2 + 2*, and
Cs = {3,5,6}, so  c3(z) = z° + 2® + z°.

Then any idempotent polynomial (mod 1 + 27) can be expressed as
I(z) = aoco() + are:(2) + ases(z), a; € {0, 1}

Thus we have 2° — 1 different idempotents (mod 1 + z*). (We ignore I(z) = 0
which is trivially idempotent).

The connection between idempotents and cyclic codes is the following;:

Theorem 4.4.13 Every cyclic code contains a unique idempotent polynomial
which generates the code.

Proof: Let g(z) be the generator of a cyclic code of length n and let g(z)h(z) =
1+ 2" (n is odd). Then g.c.d (A(z),g(z)) = 1 and by the Euclidean Algorithm
(Appendix A) there exists polynomials ¢(z), s(z) such that

1 = t(z)g(z) + s(z)h(z).
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Multiplying both sides by #(z)g(z) gives,

t(z)g(z) = (t(z)g(2))* + t(z)s(z)(1 + <)
Ha)g(2) = (¢(x)g(2))? mod 1+ 2"
Thus t(z)g(z) is an idempotent and
9(z) = g.c.d(i(z)g(x),1 + z7).

0

Example 4.4.14 To find all cyclic codes of length 9, we simply find all idem-
potents polynomial and find the corresponding generator polynomial. Since

Co = {0},01 = {1,2,4,8,7,5},03 = {3,6}
we have

cofz) =1,c(z) =z +2” + 2%+ 2° + 27 + 2%, e3(2) = 2° + 25,

and
I(z) = ageo(z) + ayc1(z) + azes(z).
Idempotent polynomial The generator polynomial
I(z) g(z) = g.c.d.(I{z),1 + z°)
1 1
s+l 4zt + 25+ 27 + 28 l+z+23+zt+ 2%+ 27
3+ 2° 1428
I+z+22+28 425427 4 28 14z 422
1423428 1423425
x+z2+z3+w4+z5+z6+z7+m8 14z
ltz42? 42+ + 2%+ 2" +28 |14o422+23+25 + 28+ 27 + 28

Exercises

4.4.15 Find all idempotents polynomials mod 1 + z™, and the corresponding
generator polynomials for, EZ% Zi {1)5 8:)) Zi: ;l(C) n=1l

4.5 Dual Cyclic Codes.

Another fact about cyclic codes which is useful, is that the dual codes are also

cyclic. We will in fact give a procedure for constructing the generator polynomial
of the dual code.
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It is a simple matter to see that the dual of a cyclic code is cyclic. This follows
directly from the fact that if a - b = 0 then =(a) - #{b) = 0 where = is the cyclic
shift, as the following argument shows. (Note that a-b = agho+aiby +... +a,b,
and 7(a) - 7(8) = a1y + agbs + ... + @by + aoby = a-b = 0.) Consider the
cyclic code which is generated by the word v; so C = ({v,7(v),...,7" " 1(v)}).
Ifue Clthen 7°(v) - u = 0for i = 0,1,...,n — 1. However this means that
7% (v) - w(u) = 0 and thus 7(u) is orthogonal to {({x(v),x*(v),...,7"(v)}) = C
because 7™(v) = v. Since u € C! implies 7(u) € C* we conclude that C* is
cyclic.

To find the generator of the dual we need to relate the product of polynomials
and the dot product of vectors.

Lemma 4.5.1 Let a « a(z),b < b(z) and ¥’ « ¥/(z) = 2"b(z~') mod 1 + 2",
then a(z)b(z) mod 1 + 2™ = 0 if and only if 7*(a) - ¥ =0 for k=0,1,...,n~ L.

Proof: Let ¢(z) = a(z)b(z) mod 1 + z™. Then the coefficient of z* in ¢(z) is
¢k = agbo + app1bn_1 + ...+ Gnoybppr +aoky + ..+ axiiby

since z¥ = z™** (mod 1 + z"). Note that if ¢ = (ag,a1,-..,a,_1) and b =
(bos b1, - .., bac1) then b = (bg,bpe1,bnoz...,b1) and so ¢ = #%(a) - ¥. Thus
e =0for k=0,1,...,n—1if and only if ¢(z) =0 = a(z)b(z) mod 1 +2z™. 0O

Again let C be a cyclic linear code of length n and g{(z) be the generator
polynomial for C. We know that g(z) divides 1+ z™ and thus there is a unique
polynomial h(z), such that 1 + 2™ = g(z)h(z). By Lemma 4.5.1 we know that
z"h(z~1) is in C*, but we want to find the generator for C+.

Theorem 4.5.2 If C is a linear cyclic code of length n and dimension k with
generator g(z) and if 1 + =™ = g(z)h(z) then C* is a cyclic code of dimension
n — k with generator z*h(z™1).

Proof: Since C' has dimension k, g(z) has degree n —k and thus ~(z) has degree
k. Since
G@)h(z) = 1+

we have :
g h(z™) =1+ (@71
and

@ Dh(a) =1+

" kg(z1)zFh(z™1) =1+ 2"
Thus z*h(z7!) is a factor of 1 4 z”, having degree k and hence the generator
polynomial for the linear cyclic code, C* of dimension n—k containing z"h(z™).

a
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Example 4.5.3 g(z) = 1+ z + z° is the generator of a cyclic code of length 7
and dimension k = 7 — 3 = 4. Since g(z) is a factor of 1 + z” we can find &(z)
where 1427 = g(z)h(z) by long division. In this case A(z) = 1+ z+2?+z*. The
generator for C+ is gt (z) = z*h(z™!) = 21+ +2 2 +27) = 1+ 22 + 23 4 2*
which corresponds to 1011100 = w. Clearly g - w = (11010000) - (1011100) = 0
and 7%(g) - w = 0 as well. Note that g*(z) # h(z).

Example 4.5.4 Let g(z) = 1 + z + 22 be the generator for a linear cyclic code
of length 6. We find h{z) = 1+ z+2° + 27 satisfies g(z)h(z) = 1 4+ 2°. Therefore
g ) =zh(z ) =z (1 +27 '+ 278 + 27%) = 2% + 2% + 2 + 1 is the generator
for the dual code. Note in this example g*(z) = A(z).

Exercises

4.5.5 Find the generator polynomial for the dual code of the cyclic code of

length n having generator polynomial g(z) where:

(a) n=6,9(z) =1+ z*

(b) n=6,g(z) =1+ 1°

(¢) n=28,g(z) =1 +2*

d) n=9,9(z) =1+ 2%+

(e) n=15,9(z) =1+ + z*

(f)y n=15,g(z) =1+ 2%+ 2°+ 27 + 28

(g) n=23,9(z)=1+z+2%+2% 427 4+ 2% 4 2

(h) n="7,9(z) =1+ 2+ 22+ z*



Chapter 5
BCH Codes

5.1 Finite Fields

In this chapter we consider a special class of cyclic codes and a different
approach to decoding them, one which utilizes Galois fields GF(27).

Recall that a polynomial d(z) is a divisor or factor of f(z) if f(z) = g(z)d(z).
Of course 1 and f(z) are always divisors of f(z) but these are trivial. Any
other divisor is said to be a nontrivial or proper divisor of f(z). A polynomial
f(z) € Kiz], is said to be irreducible over K if it has no proper divisors in K{z];
otherwise it is said to be reducible {or factorable) over K.

Example 5.1.1 Polynomials = and 1+ 2 are irreducible by definition; 1 + z + z°
has neither = nor 1+ z as a divisor so it too is irreducible. However, 22,1 4 z2,
and « + 2 are not irreducible: z? and z + z? both have z as a divisor; 1 + z?
has 1 + z as a divisor.

In general 1+ z is a divisor or factor of f(z) if and only if 1 is a root of f(z);
that is, if and only if f(1) = 0. Note that 1 + z is a factor of f(z) = 1 + 2?
and f(1) = 1+1 = 0. Similarly z is a factor of g(z) if and only if g(0) = 0.
However finding other irreducible factors of a polynomial is more difficult and
at this point is simply a matter of trial and error.

Example 5.1.2 I f(z) =1+ + 22+ 2% then f() =1+1+1+1=0, and
so 1+ z is a factor of f(z). By long division f(z) = (1 + z)(1 + z%) = (1 + z)°.
On the other hand, if g(z) =14z + 2®, then g(0) =1 # 0 and g(1) = 1 # 0, s0
g(z) has no linear factor. Therefore g{z) is irreducible over K, since if a cubic
polynomial is reducible then it must have a linear factor.

Example 5.1.3 Let f(z) =1+ z 4+ 2*. Since f(0) # 0 and f(1) # 0, f(z) has
no linear factors. So, if f(z) is reducible, then f(z) must have an irreducible
quadratic factor. The only irreducible quadratic over K is g(z) = 1 + = + z2%.
After dividing g(z) into. f(z), we find a non-zero remainder. So 1+ z -+ z? is not
a factor of f(z). Therefore f(z) is irreducible over K.

121
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Exercises

5.1.4 Determine whether each of the following polynomials is irreducible over

K.

(a) f(z) =1+22+3"

(b) f(e) =1+2°

(¢ flz)=1+22 4+ 23425

(d) f(e) =1+2? +2°

(&) flz) =1+2* +a°

) f@)=14+z+234+27
5.1.5 Find all irreducible polynomials of degree 3 and 4 over K.
5.1.6 Find all irreducible polynomials of degree 5 over K.

An irreducible polynomial over K of degree n,n > 1 is said to be primitive if
it is not a divisor of 1 4+ z™ for any m < 2" — 1. We will see that an irreducible
polynomial of degree n always divides 1 + 2™ when m = 2" — 1.

Example 5.1.7 Since 1 + z + 27 is not a factor 1 + 2™ for m < 3 =22 — 1 it is
primitive. Similarly 1+« + z° is not a factor of 1 + 2™ for any m < 7 = 23 — 1
and thus it too is primitive.

However 1+ 2° = (1+z)(1+z+ 2?4+ 2 +2%)and 1+ o+ 22 + 2% + 2zt is
irreducible (see Exercise 5.1.5) but 5 < 15 = 2 —1 and thus 1+ z + 2% + 2% + z*
is not primitive.

Recall that we can define addition and multiplication of polynomials modulo
a polynomial h(z) of degree n. Let K™[z] denotes the set of all polynomials in
K{z] having degree less than n. Of course each word in K™ corresponds to a
polynomial in K™[z] so we can in effect define addition and multiplication of
words in K™.

In this chapter we introduce the additional structure of finite fields to assist
in constructing and decoding codes. We already have a definition of addition
and multiplication of words in K™, but for this to form a field we need to be
careful in our choice of k(z). For example, in a field it must be the case that if
ab =0 then either ¢ = 0 orb=0.

Example 5.1.8 We try using multiplication of polynomials modulo 1 + z* to
define multiplication of words in K*. However,

(0101)(0101) & (z + 2®)(z + 2°)
- $2 + 16
= (2® + 2%)( mod 1 + z%)

« 0000,
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so (0101)(0101) = 0000, but 0101 s 0000 in K*. Thus K* cannot be a field
under this definition of multiplication.

The difficulty in the last example arises because 1z is not irreducible over
K. The way to define multiplication in K™ in order to make K™ into a field is
to define multiplication in K™ modulo an irreducible polynomial of degree n. We
leave the proof that this is the field GF(2") to a course in modern algebra.

Example 5.1.9 Define multiplication in K* using the irreducible polynomial
h(z) = 1+ z + z*. To find the product (1101)(0101) note that

(1101)(0101) & (142 +2%)(z +2°)
But (1+z+2%(a+2% = z+42°+2%+2°

and 2 = z+z’+2°+2%mod (1 +z + ).

Thus (1101)(0101) = 0100 « z

Exercises

5.1.10 Define multiplication in K* modulo A(z) = 1 + z + z*. Calculate the
following products.

() (0011)(1011) (d)  (0100)(0010)
(b) (1110)(1001) (e) (1100)(0111)
(c) (1010)(0110) (f) (1111)(0001)

5.1.11 Find all products of elements in K? using 1 + z + 22 to define multipli-
cation (that is, make a multiplication table).

Example 5.1.12 Let us consider the construction of GF(2%) using the primitive
polynomial h(z) = 14z + 2° to define multiplication. We do this by computing
z* mod h(z):

word  « z‘ mod h(z)

100 1

010 T

001 z?

110 2=14z

011 t=z+ 52
111 =1+z+z°
101 26 =1+ 22



124 CHAPTER 5. BCH CODES

To compute (110)(001) «» (1 + z)z? note that from the above table 1 + z = z°
mod A(z) so
(=1 +2) =223
= z®

=1+ z + z*( mod k(z))

thus
(110)(001) = 111

Using a primitive polynomial to construct GF(27) makes computing in the
field much easier than using a non-primitive irreducible polynomial. To see
this, let 8 € K™ represent the word corresponding to z mod h(z), where h(z)
is a primitive polynomial of degree n. Then §* « z* mod h(z). Note that
1 = z™ mod h(z) means that 0 = 1 + z™ mod h(z) and thus that h(z) divides
14 z™. Since h(z) is primitive we know that A(z) does not divide 1 + z™ for
m < 2" —1 and thus ™ # 1 for m < 2* — 1. Since #7 = §' for j # ¢ if and only
if A = Bi~ip* which implies =% = 1, we conclude that

K™\{0} = {#'}i=0,1,...,2" — 2}.

That is, every non-zero word in K™ can be represented by some power of 3. This
is the property that makes multiplication in the field easy.

word  polynomial in & (modulo h(z)) power of 8

0000 0 I —
1000 1 B =
0100 T B
0010 z? g
0001 z® g
1100 l+z=2t B
0110 z+z=1° B
0011 z? 4 2 = 28 88
1101 l+z4+23=2" I
1010 14 2% = 28 B
0101 z+a8=2° B°
1110 1+z+2?=2g0 B
0111 z+2%4 2% =2V B
1111 1+z+z24+28 =21 /12
1011 14224 2% =23 g3
1001 1423 =24 o

Table 5.1: Construction of GF(2*) using h(z) =1+ z +z*.

An element @ € GF(27) is primitive f o™ #£1for 1 <m < 2" —~ 1.
Equivalently, « is primitive if every non-zero word in GF(27) can be expressed
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as a power of a. From the above discussion we see that if a primitive polynomial

is used to construct GF(27), with 8 being the word defined above, then S is a
primitive element.

Example 5.1.13 Construct GF(2*) using the primitive polynomial A(z) =
1+ z + 2. Write every vector as a power of # «» = mod h(z) (see Table 5.1).
Note that f1° = 1.

To compute (0110)(1101) = g°- 7 = f'? = 1111 since (z + z?)(1 +z +z°) =
¥ - 27 = 2'%( mod h(z)).

Exercises

5.1.14 Use GF(2%) constructed in Table 5.1 to compute the products in K* in
Exercise 5.1.10.

5.1.15 Construct the following fields as in Example 5.1.13 (Table 5.1).

(a) Construct GF(2?)

(b) Construct GF(2%) using h(z) = 1+ 22 + 2°
(c) Construct GF(2%) using h(z) =1 + 2 + z*
(d) Construct GF(2°) using h(z) =1 + 22 + 2°

5.1.16 Show that if h(z) € K|z] is an irreducible polynomial of degree n, then
h(z) divides 1+ z™ for some m < 2" — 1.

5.1.17 Find all primitive elements in GF(2¢) (see Table 5.1).

5.1.18 Show that §' € GF(2) is primitive iff ged(i,2" — 1) = 1.

5.2 Minimal Polynomials

Recall that «, an element in a field F = GF(27) is said to be a root of a
polynomial p(z) € Flz] if and only if p(e) = 0. That is, if p(z) = ao + a1z +
«..+ arz® then

pla) =ap +a1a+...+ apa® = 0.

Example 5.2.1 Let p(z) = 1 4+ 2® + 2%, and let B be the primitive element in
GF(2) constructed using h(z) = 1+ z + z* (see Table 5.1).
P(B)=1+8°+p* = 1000+ 0001 + 1100
= 0101
= 8.
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So f is not a root of p(z). However

pE) =1+ (8 ()
=14 8% 4 g%
=14 %+ 3 (since f1* = 1)
= 1000 -+ 0011 + 1011 = 0000
=0.

Since p(B7) = 0,8" is a root of p(x). Note that we used the convention that
1 ++ 1000 and 0 «> 0000 as well as the fact that 8'° = 1. Thus 8! = §'%8° =
1-ﬂ6=ﬂ6andﬁ28=ﬁ15-ﬂ13=l-ﬁlazﬂw.

In general the order of non-zero element & in GF(27) is the smallest positive
integer m such that o™ = 1. We know that for any non-zero a in GF(27), « has
order m < 27 — 1. In particular, @ in GF(27) is a primitive element if it has
order 2" — 1.

For any element « in GF(27), we define the minimal polynomial of « as the
polynomial in K|z} of smallest degree having « as a root. Let m,(z) denote the
minimal polynomial of a. Note that if « has order m, (that is, ™ = 1) then «
is a root of 1 4+ z™, so every element in GF(27) is a root of some polynomial in
K{z].

To find the minimal polynomial of an element of GF(27), it will help to have
some facts concerning minimal polynomials.

Theorem 5.2.2 Let o # 0 be an element of GF(27). Let m,(z) be the minimal
polynomial of . Then

{a) my(z) is irreducible over K,

(b) if f(z) is any polynomial over K such that f(c) = 0, then my(z) is a
factor of f(x),

(¢) the minimal polynomial is unique, and
(d) the minimal polynomial m,(z) is a factor of 1 + 22~ 1.

Proof: (a) If ms(z) = g(z)h(z), then m,(a) = 0 implies g(a)h(a) = 0. Thus
either g(@) = 0 or 2(a) = 0. Since mq(z) is the polynomial of smallest degree
such that mq(z) = 0, then either g(z) = 1 or h(z) = 1. Therefore m,(z) is
irreducible over K.

(b) By the Division Algorithm,

f(2) = ma(z)g(z) + 7(2),

where r(z) = 0 or degree r(z) < degree m,(z). Now f(e) = 0, so since

fla) = ma(a)g(a) +r(a) =0- g(a) + () = r(a)
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we have that 7(a) = 0. By the minimality of the degree of my(z),r(z) = 0.
Therefore f(z) = ma(z)q(z), and ma(z) is a factor of f(z).

(¢) If m'(z) is also a polynomial of smallest degree such that m'(a) = 0, then,
by part (b), ma(z) is a factor of m/(z) and m'(z) is a factor of mu(z). Therefore
™mq(z) = m'(z), so the minimal polynomial is unique.

(d) Let B be a primitive element in GF(27) and o = £". Then o?~! =
(B) = (B =1 =1. Thus a is a root of 1 + z2"~! and by (b) mu(z) is

a factor of 1 4 £2'-1, a
Finding the minimal polynomial of @, @ € GF(27), reduces to finding a linear
combination of the vectors {1,a,0?, ... ,a"} which sums to 0. Since any set of

r+ 1 vectors in K7 is dependent we know such a combination does exist.

Once we have constructed GF(2") using a primitive polynomial, it is natu-

rally convenient to represent mq(z) by m;(z) where a = 8'. We introduce this
notation in the following example.
Example 5.2.3 Find the minimal polynomial of a = 8,a € GF(2%) con-
structed using h(z) = 1+ z + z* (see Table 5.1). Let m,(z) = ma(z) =
ao+a17+a;2% +a32°+a,z* then we must find the values for ag, ay,...aq € {0,1}.
Note,

ma(a) =0 =al+ gy + a0® + aza® + a40t
= aof° + a18% + a2 8° + a3 + a, 2
$0 0000 = ao(1000) + a1(0001) + a5(0011) + a3(0101) + a4(1111)

Solving for ayg, a4, a,, a3, a4 we find that
Qo == @y == a9 == a3 = a4 = 1 and
me(z) =1+z+2>+ 2% + 2%

The roots of ma(z) are {a,a?,a,0®} = {g° 4%, 52, 8%}, and thus ms(z) =
me(z) = mg(x) = myy(x) (where m;(z) denotes the minimal polynomial of ).

If the minimal polynomials for all elements in GF(27) are being sought then
we have other useful facts. Recall that f(z)? = f(2?), so

el = 2 a (@) = Y aila?),
i=0 =0 =0
This follows from the fact that (a + 8)> = a2 + 5 and the fact that a? = q;
since a; € {0,1}.
Thus if f(a) = 0 then f(a?) = (f(a))? = 0 and so o? is also & root of f=).
Similarly f(a*) = (f(e?))? = 0, etc. and so we have that if a is a root of =)
so are o, 0%, 0t,...,a%,. ., etc. With some more effort one can prove:

Theorem 5.2.4 Let a be an element in GF(27) with minimal polynomial m,(z),
then {a,0?,at,...,0” '} is the set of dll the roots of my(z). In particular, the
degree (my(z)) is [{a,?,..., 0?1}
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element of GF(2*) | minimal polynomial
0 z
1 14z
B, 5%, B*, B° 1+z+azf
B3, 85, 3°, B2 14+z+2° 425+ 24
85, g10 1+ + 22
,87, ﬂll,ﬂls,ﬂ“ 1+ P + 7t

Table 5.2: Minimal polynomials in GF(2%)

Example 5.2.5 Let ms(z) be the minimal polynomial of a = 8%, 5° € GF(2?)
(see Table 5.1). Since {o,d?,a, 08} = {8% 8%} by Theorem 5.2.3 the roots
of ms(z) are B° and B'° which means that degree (ms(z)) = 2 (from Theorem
5.2.4). Thus ms(z) = ag + a;7 + azz?, hence

0 =ag+ a1’ +af"°
= ag(1000) + a;(0110) + ay(1110).

Thus ag = a1 = a; = 1 and ms(z) = 14z + 22

Similarly we can find the minimal polynomials of the rest of the field elements
in GF(2*) constructed using 1 + z + z%. The results are summarized in Table
5.2.

Exercises

5.2.6 Verify the entries in Table 5.2, for GF(2%).

5.2.7 Find the minimal polynomial of each element of GF(2%) constructed
using p(z) = 1 + z + z° (see Exercise 5.1.15).

5.2.8 Find the minimal polynomial of each element of GF(2*) constructed
using p(z) = 1+ 23 + z* (see Exercise 5.1.15).

5.2.9 Find the minimal polynomial of each element of GF(2%) constructed
using p(z) = 1 + 2® + 2° (see Exercise 5.1.15).

5.2.10 Show that 14z + 2% = (8% + z)(8° + z) (use Table 5.1).

5.2.11 Show that mq(z) is a primitive polynomial if and only if & is a primitive
element.
5.3 Cyclic Hamming Codes

We already know that Hamming codes have the important advantages of be-
ing perfect single-error-correcting codes and of admitting a very simple decoding
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scheme. In this section we show that there is a cyclic Hamming code of length
n =27 — 1, for each r > 2. This code has the added advantage common to all
cyclic codes of easy encoding.

The parity check matrix of a Hamming code of length n = 2" — 1 has as its
rows all 2" — 1 nonzero words of length n = 2" — 1. If B is a primitive element
of GF(27), then by definition the powers of 8 are all distinct. Therefore we can
construct a Hamming code of length n = 27 — 1 which has

'32;—2
as its parity check matrix. Note H is a (2" — 1) X r matrix.

Example 5.3.1 Letr =3,s0n =23 —1 = 7. Use p(z) = 1+ 2+ 2z* to construct
GF(2%), and B « 010 as the primitive element. Recall that 8 « z' mod p(z).
Therefore a parity check matrix for a Hamming code of length 7 is

[ 1] (100 ]

B 010

it 001
Bilel110l=H
B 011

B° 111
B8] | 101 ]

which is the same as the parity check matrix of the cyclic code with a generator
polynomial p(z).

Theorem 5.3.2 A primitive polynomial of degree  is the generator polynomial
of a cyclic Hamming code of length 27 — 1.

Let C be a cyclic code of length n with generator polynomial g(z). Suppose
a € GF(27) is a root of g(z). Then for all c(z) € C,c(a) = 0 and so by Theorem
5.2.2(b) my(z) is a divisor of c(z). We can always write g(z) as a product of
minimal polynomials of elements in GF(27). We can use this to construct a
parity check matrix and decoding algorithm for C.

Theorem 5.3.3 Let 9(z) be the generator for a cyclic code C of length n then
g(x) will be the product (least common multiple) of minimal polynomials of
o1, Q... 0 € GF(27), with o; a root of 1+ z*, if and only if for all c(z) € C

clon) = c(ez) = ... = ¢(ey) = 0.
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Decoding the cyclic Hamming code is easy. If the generator is the primitive
polynomial ma(z), and w(z) is received, then w(z) = c(z) + e(z),c(z) € C and
wla) = e(a) = o . Therefore, the most likely error polynomial is e(z) = =’ and
so c(z) = w(z) + 27
Example 5.3.4 Suppose GF(23) was constructed using 14+z+4z% Thenmy(z) =
1+ z + 23 is the generator for a cyclic Hamming code of length 7. Suppose

w(z) = 1+ + z° + 2° is received. Then

w(f) =1+ +4+p°
=100 4+ 001 + 110 + 101
=110

= ﬂB.
Thus e(z) = ° and ¢(z) = w(z) + z° = 1+ 2* +2°

Exercises

5.3.5 Find a parity check matrix for a cyclic Hamming code of length 7 using
GF(23) constructed with 1+ z + z°, where the generator polynomial is
ma(z). If w(z) = z + 2? + z* is received find the most likely codeword

().

5.3.6 Repeat Exercise 5.3.5 using GF(2%) constructed with p(z) =1 +224+23
and generator polynomial my(z).

5.3.7 Repeat Exercise 5.3.5 using GF(2%) constructed with p(z) = 1+z%+2°
and where the generator polynomial is ms(z).

5.3.8 Construct a parity check matrix for a cyclic Hamming code of length
15.

5.3.9 Find the generator polynomial for a cyclic code of length 15 having
roots 1,57, 8° € GF(2%) (constructed using 1 + z + z*). Construct a
parity check matrix for this code. Show that c(z) € C' iff wt(c) is even.

5.3.10 Show that every codeword of a cyclfc code has even weight iff 1 4+ z is
" a factor of the generator polynomial.

5.4 BCH Codes

An important class of multiple-error-correcting codes is the class of Bose-
Chaudhuri-Hocquengham codes; ot BCH codes. The construction and decoding
procedure for general BCH codes will be developed later. First we shall construct
and decode an important example of the class, namely the family of two-error-
correcting BCH codes.
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BCH codes are important for two reasons. First, they admit a relatively easy
decoding scheme and secondly the class of BCH codes is quite extensive. Indeed,
for any positive integers r and ¢ with ¢t < 27! —1, there is a BCH code of length
n =27 — 1 which is {-error correcting and has dimension k& > n — rt.

The 2 error-correcting BCH code of length 27 —1 is the cyclic linear code that
is generated by g(z) = mg(z)mgs(z), where 8 is a primitive element in GF(2")
and r > 4. Since n = 2" — 1 and g(z) divides 1+ z™ (by Theorem 5.2.2(c)) g(z)
is the generator polynomial for a cyclic code.

Example 5.4.1 f is a primitive element in GF(2') constructed with p(z) =
1+ z + z* (see Table 5.1). We have that my(z) = 1 + z + z* and ma(z) =
1+ z+ 2%+ 2° + 2%, Therefore

9(z) = mu(z)ms(z) = 1+ 2%+ 2° + 27 + 2°

is the generator for a 2 error-correcting BCH code of length 15.

Exercises

5.4.2 2 error-correcting BCH codes are defined for r > 4. What code does
g(z) = my(z)ms(z) generate when r = 3?7

5.4.3 B is a primitive element of GF(2) constructed using the irreducible
polynomial p(z) = 1+ 23+ z*. Find the generator polynomial g(z) the
2-error-correcting BCH code of length 15 using this representation of
GF(2%); that is, find g(z) = m;(z)ma(z). (See Exercise 5.1.15)

5.4.4 Find a generator polynomial for a 2 error-correcting BCH code of length
31 constructing GF(2°) with the irreducible polynomial 1+ z? + 5 (see
Exercise 5.1.15).

Lemm'a 5.4.5 The following matriz H is a parity-check matriz for the 2 error-
correcting BCH code of length 2" — 1, where B is a primitive element in GF(27),
and the generator polynomial is g(z) = my(z)ms(z)

[ A B°
B g
B g°
H=| :
,Bi ,33’.
i ﬂ2:—2 {;ﬂ3(2:"-2) |

Since f is an element of GF(27), it represents a word of length r, so H is
a (27 — 1) x (2r) matrix. Also, since degree(m(z)) = r = degree(ms(z)), the
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degree of g(z) = my(z)ms(z) is 2r and thus the code has dimension n — 2r =
2" — 1 — 2r. (We leave the proof that ms(z) has degree r to Exercises 5.4.9).

For example, we use GF(2*) constructed in Table 5.1 with the primitive
polynomial p(z) = 1 + z + z* to construct a 2 error-correcting BCH code Cis.
We define Cys5 to be the linear code with the 15 x 8 parity check matrix H, and
generator polynomial m;(z)ms(z) (see Table 5.4).

11 1000 1000 |
g B 0100 0001
J 0010 0011
B g 0001 0101
gt pv 1100 1111
[ 0110 1000
g B 0011 0001
BT B° | e | 1101 0011 | =H
g g 1010 0101
B pr 0101 1111
g 1 1110 1000
g B 0111 0001
g2 pe 1111 0011
g3 e 1011 0101
| g™ g2 | | 1001 1111 |

Table 5.3: The parity check matrix of Cys.

Theorem 5.4.6 For any integer r > 4 there is a 2 error-correcting BCH code
of length n = 2" — 1, dimension k = 27 — 2r — 1 and distance d = 5 having
generator polynomial my(z)ma(z).

For the proof that the distance is 5, we will show that it can correct 2 errors
and thus has distance at least 5. From the definition of the parity check matrix
it is clear that n = 2" —1, and since mq(z) and m3(z) each have degree r, degree
(¢(z))=n—k=2randso k=2"—2r — 1.

Exercises

5.4.7 Show that the columns of the parity check matrix of Cys in Table 5.4
are linearly independent and hence that Cy5 has dimension k = 7.

5.4.8 Show that d = 5 for Cy5 by using the parity check matrix.

5.4.9 Show that if B is a primitive element of GF(27),r > 2 then |{8%|0 <
i<r—1} =r and {(8%)¥|0 < i < r—1}| = r. Therefore m;(z) and
ms(z) both have degree r.
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5.4.10 Determine whether each of the following words of length 15 is a code-
word in Cys, where g(z) = 1 4+ 2* 4 28 + 27 + 28,

(a) 011001011000010
(b) 000111010000110
(¢) 011100000010001
(d) 111111111111111

5.5 Decoding 2 Error-Correcting BCH Code

We describe a decoding scheme for the 2 error-correcting BCH codes con-
structed in the last section. Throughout this section, we shall identify a binary
word of length r with the corresponding power of 4.

A parity check matrix for the (27— 1,2 — 2r — 1,5) 2 error-correcting BCH
code with generator g(z) = m;(z)ma(z) is H as defined in Lemma 5.4.5.

Assume the word w is received, and w w(z). Then the syndrome of w is

wH = [w(B),w(8%)] = [s1, s3]

where s; and s3 each are words of length r.

If no errors occurred in transmission, then the syndrome is wH = 0, so
$1 = s3 = 0. Ifjust one error occurred in transmission, then, the error polynomial
is e(z) = z' thus wH = eH = [e(8),e(f)] = [, 8%] = [s1,53). Therefore
S? == 83. .

If two errors occurred in transmission, say in positions ¢ and j,7 # j, then
e(z) = ' + 2/ and wH = eH = [e(f), ¢(8°)] = [s1,83]. Thus the syndrome wH
is given by

wH = [s1,83] = [§ + p, 5% + B

We consider the resulting system of equations

ﬂi _+ 5j =38
ﬂ3:+ﬁ3j = s3.

Now we have the factorization

(B + B)(B% + B + %) = g% + g%,
and

$i= (8 + B) = 4 7.

Therefore X ) 7
o opep
= (B'+ B7)(B* + B + p*)
= s1(s? + ).
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Thus o
=] =g
Now S and f7 are roots of the quadratic equation
22+ (B + )z + fH =0
and hence roots of s
x2+slx+(;—+sf)=0‘
1

Therefore we can find the positions of the errors by finding the solutions of
this equation. The polynomial on the left side of this equation is called the
error-locator polynomial

Example 5.5.1 Let w « w(z) be a received word with syndromes s; = 0111 =
w(B) and s3 = 1010 = w(f?), where w was encoded using Cjs. From Table 5.1
we have that s; < ' and s3 « §%. Then

3—3-«}—5% =,38ﬂ_u+ﬂ22
! =g g
= B
We form the polynomial 22 + 8z + % and find that it has roots §* and g%.

Therefore we can decide that the most likely errors occurred in positions 4 and
13 (that is, e(z) = z* + 2'3), so the most likely error pattern is

0000100000000610.

Exercises

5.5.2 Verify by substitution that 8* and 8'2 are indeed solutions of the quadrat-
ic equation z? 4+ Bz + 8% = 0. Also check that the sum of the 4th and
13th rows of H in Table 5.4 is [sq, s3].

5.5.3 Find the roots in GF(2*) of the following polynomials, if possible (use
Table 5.1).

(a) :1,.2 + ﬂ4:1: + ,813
(b) 2* + B’z + 5
(c) 2+ B’z + §°
(d) 2 + ¢
(e) 2%+ B%x
) =+ + B
We have arrived at a scheme for incomplete maximum likelihood decoding

for the 2 error-correcting BCH codes. Let w be a received word. Clearly once
an error pattern is determined then the algorithm is terminated.

5.5. DECODING 2 ERROR-CORRECTING BCH CODE 135

Algorithm 5.5.4 IMLD for 2 error correcting BCH codes with generator poly-
nomial my(z)ma(z).

1. Calculate the syndrome wH = [sy, s3] = [w(B), w(8>)].

2. If sy = s3 = 0, conclude that no errors occurred. Decode ¢ = w as the
codeword sent.

3. if sy =0 and s3 # 0 then ask for retransmission.
4. if 53 = s3 then correct a single error at position 4, where s; = f'.
5. Form the quadratic equation

:c2+slm+fi+sf=0. (%)
S1

6. If equation (5) has two distinct roots B and 37, correct errors at positions
t and j.

7. If equation (5) does not have two distinct roots in GF(2"), conclude that
at least three errors occurred in transmission, and ask for a retransmission.

All examples and exercises that follow use Cy5 whose parity check matrix is
listed in Table 5.4 and generator polynomial ¢g(z) listed in example 5.4.1.

Example 5.5.5 Assume w is received and the syndrome is wH = 01111010 «
(6", 8%]. Now

3:13 —_ (,311)3 — ,333 — ,33 # ,38 = 8.
In this case equation (5) is % + f''z + % = 0, as is shown in Example 5.5.1.
This equation has roots §* and #*3. So we correct errors in positions i = 4 and
J = 13; in other words, the most likely error pattern is « = 000010000000010,
and e(z) = z* + 23 is the presumed error polynomial.

Example 5.5.6 Assume the syndrome is wH = [w(8), w(6%)] = [6°, #°]. Then
s} = (8°)® = B° = s3. Therefore it is most likely that a single error occurred
at position ¢ = 3. The most likely error pattern is u = 000100000000000, and
e(z) = z° is the error polynomial.

Example 5.5.7 Assume w = 110111101011000 is received. The syndrome is
wH = 01110110 & [, %] = [s1,53].
Now s} = (8')° = 5% = B° # s3 = #°. To form the quadratic equation (5), we
first calculate o
8_3_*_3% =ﬂ5,3_u +(ﬂ11)2
1
_ ﬂg + ﬂ7
< 0101 4 1101

= 1000
“—r IBO,
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So in this case, (5) becomes
22+ Mz 4 8% =0.
Trying the elements of GF(2%) in turn as possible roots, we come to z = §7 and
find
(ﬂ7)2 +ﬂ11ﬁ7 + BO — ﬂl‘l + ‘63 + ﬂo
+ 1001 + 0001 + 1000
= 0000.

Now 78 =1 = 5, s0 7 = ° is the other root. Therefore we correct errors
at positions i = 7 and j = 8; that is u = 000000011000000 is the most likely
error pattern. We decode v = w + v = 110111110011000 as the word sent.

Example 5.5.8 Assume a codeword in Cis is sent, and errors occur in positions
2, 6, and 12. Then the syndrome wH is the sum of rows 2, 6, and 12 of H, where
w is the word received. Thus

wH =00100011 + 00110001 + 111106011
= 11100001 « [ﬁlo, ﬁ3] = [31,83].

Now s = (B1°)3 = ¥ =1 # ° = s°>. We calculate
Db ==
« 1010 + 0110 = 1100 « p*
and then form the quadratic equation
z? + 0z + B = 0.

By trying each of the elements of GF(2*), we see that this equation has no roots
in GF(2*%) (see Exercise 42.7(g)). Therefore IMLD for Cis concludes correctly,
that at least three errors occurred, and we request a retransmission.

Exercises

5.5.9 Messages are encoded using Cys. Determine, if possible the locations of
the errors if w is received and the syndrome wH is a given in each part.

(a) 0100 0101 (€) 0000 0100
(b) 1110 1000 () 1010 0100
(c) 1100 1101 (g) 0011 1101
(d) 0100 0000 (h) 0000 0000

5.5.10 The code is C}s. Decode, if possible, each of the following received
words w.

() 11000 00000 00000
(b) 00001 00001 00001
(c) 01000 10101 00000
(d) 11001 11001 11000
(e) 11001 11001 00000
(f) 11100 00000 00001
(g) 10111 00000 00000
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(h) 10101 00101 10001
(i) 01000 01000 0000

() 01010 10010 11000
(k) 11011 10111 01100
(1) 10111 00000 01000

(m) 11100 10110 00000
(n) 00011 10100 00110

137



Chapter 6
Reed-Solomon Codes

6.1 Codes over GF(2")

We now turn to one of the most practical codes known, namely the Reed-
Solomon codes. They are currently being used by both NASA and the European
Space Agency; the codes chosen for use in compact discs also come from this
family.

In the previous few sections we have extensively studied the 2-error correcting
binary BCH codes. In fact, the Reed-Solomon codes are also BCH codes, but the
digits in each codeword are no longer binary digits. This may seem strange as we
have just finished praising the practical uses of these codes, and transmissions
are always across binary channels. As will be shown, these codes do have a
binary representation, but that is not how we shall first see the codes.

Before continuing, we develop some notation. Let GF (27)[=] denote the set
of all polynomials with coefficients from GF (27). This set contains K[z}, K =
GF(2) = {0,1}, the set of all polynomials with binary coefficients. As before
we can identify codewords ¢ € C,C a linear code over GF(27) of length n, with
polynomials ¢(z) € GF(2")[z] having degree c(z) < n.

Recall we defined cyclic codes of length n in terms of roots of the corre-
sponding polynomials. For instance, the (binary) 2-error correcting BCH code
of length n = 27— 1, can be described by c(z) € Ck if and only if {8, 52, 5, 54}
are all roots of () where c(z) € K[z], degree (c{z)) < n and B is a primitive
element in the field GF(27). In this case 9x(z) = my(z)my(z) is the generator
polynomial for this cyclic code and ¢(z) € Cx if and only if ¢(z) = a(z)gx(z).

We can generalize this to codes over GF(27) by choosing c(z) € GF(27)[z],
instead. Again c(z) € C if and only if {8, 8%, 8%, B*} are all roots of c(z). Now
however polynomials z + 8,z + 2,z + B2, and z + B* are in GF(2")[z] and thus
¢(z) € C if and only if g(z) = (z + B)(z + B*)(z + B°)(z + B*) divides c(z).

The binary code Cx defined above is a BCH code. The code C over GF(27),
just defined, contains Cx as a subcode and is an example of a Reed-Solomon
code. In general, the code Cy is said to be a subfield subcode of C because C C C
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and all words in Ck have all their digits in the subfield K of GF (27); that is
Cx=CNK™

Both of these codes Cx and C are cyclic since ¢(z) € C implies c(z) = zc(z)
mod (1+2") is in C. This follows from the division algorithm and the fact that
B is a root of 1+ 2" and zc(z). In fact, it is not hard to show that if g(z)
generates a linear cyclic code of length 2" — 1 over GF(27), then the generator of
the binary subfield subcode is the polynomial gk () with the set of roots being
the smallest set R that satisfies:

(a) if o is a root of g(z) then o € R, and
(b) if a € R then o? € R.

Putting these observations together gives us the following result:

Theorem 6.1.1 Let oy, s, . .. oy be distinct non-zero elements of GF(27). Then
9(z) = (g +z)(az +z)... (0, + ) generates a linear cyclic code of length 27 — 1
over GF(27). )
Example 6.1.2 Let F = GF(2*) constructed using 1 + z + z* (see Table 5.1).
9(z) = (B+z)(B* + z) = f° + (°z + 2 generates a linear cyclic code over F of
length 15. The codeword corresponding to g{z) is of course £25°1000000000000.
Also gx(z) = 1+ z + z* « 110010000000000 is in this code and in fact
generates the cyclic binary subfield subcode. To see this, using the notation
above, we find R: from (a) 8,4 € R, and from (b) (*)? = B* € R and
(B%)* = 8° € R; so R= {B, 4, 4%, f*} and thus gx(z) = (B* + z)(B® + z)g(z).

We summarize some basic results about cyclic codes over GF (27):

Theorem 6.1.3 Let C be a linear cyclic code of length n over GF(27). Then
every codeword ¢(z) can be written uniquely as m(z)g(z) for some m(z) in
GF(27)[z] of degree less than n — deg(g(x)). Also, g(z) divides f(z) if and
only if f(z) is a codeword, and g(z) divides 1 + z.

Corollary 6.1.4 Let g(z) have degree n — k. If 9(z) generates a linear cyclic
code C over GF(27) of length n = 9" — 1, and dimension k then

9(z)
G- mg@
o*7g(2)
is a generating matriz for C, and the number of codewords in C is (27)*,

Remark: The fact that |C| = 27 follows from Theorem 6.1.3, since all of the
polynomials m(z) in GF(27)[z] of degree less than k give different codewords

m(z)g(z); but there are 2% such polynomials m(z) since each of the k coefficients
in m(z) can be any one of the 2" field elements.
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Example 6.1.5 Construct GF(2%) using 1 + z + z° with 8 as the primitive
clement. Let g(z) = (8 +z)(6° + z) = ° + Bz + 2z Then g(z) generates a
linear cyclic code C over GF(23) of length 7. A generating matrix for C is

BB 1 0 0
0 A/ B 1 0
G=|0 0 £ g 1
0 0 0 B g1
0 0 0 0 B g

0
|
0

-0 O OO

C has 8° codewords. The codeword corresponding to m(z) = 1 + Bz + Fz* «
18004° = m; for example, is m(z)g(z) & mG = B208485%1 8.

Exercises

6.1.6 Construct GF(2%) using 1+ z + 2 Let g(z) = (1 +z)(8+ z) generate
a code C over GF(23).
a) How many codewords does C have?
b) Construct a generating matrix G for C using Corollary 6.1.4.
¢) Encode the following messages using G-
() m{z) =14+ p%
(i) m(z) = Bzt
(i) m(z) =1+ 2z +2z?
d) Find the generating polynomial of the cyclic binary subfield sub-

code.

6.1.7 Construct GF(2*) using 1 +z + 2. Let g(z) = (8 + z)(82 + z)(8° +
z)(B* + z) generate a linear cyclic code C over GF(2¢).

a) How many codewords does C have?
b) Construct a generating matrix G for C using Corollary 6.1.4.
¢) Encode the following messages using G-
(1) m(z) =14 g7z
(i) m(z) = fPz + z?
(i) m(z) =142+ 22

d) Find the generator polynomial gx(z) of the binary subfield sub-
code. Find m(z) such that gx(z) = m(z)g(z).
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6.2 Reed-Solomon Codes

In Section 6.1, generators for linear cyclic codes over GF(2") were introduced,
but no idea of the error correction capabilities of these codes was given. Here
we shall address that question and then define the Reed-Solomon codes. We
consider only Reed-Solomon codes, but most of the results about these codes
apply directly to BCH codes, which are just subfield subcodes. We begin with
a technical lemma.

Lemma 6.2.1 Let oy, 9,...,0; be non-zero elements of GF(27). Then
1 ap &2 ... 7
1 (s3] at"l
det| . . 2 = H (0 + aj).
. : 1<5<igt
1 a aof ... of

Proof: If o; = a; for some i 3 j then two rows of the matrix are identical, so
the determinant is zero. Therefore for ¢ > 7 > 7 2 1, {e; + ;) is a factor of the
determinant, so Mlepisipi{e + ;) divides the determinant. Using the fact that
both sides are both polynomials in a, ..., ¢, of the same degree, we have shown
that they differ by at most a common factor. This common factor must be 1 as
can be seen by comparing the coefficients of [T{_, ai™* on both sides. 0

Example 6.2.2 Using Lemma 6.2.2 and GF(2¢) constructed using 1 + = + z*
{see Table 5.1) we find that

[ 'y }
det| 1 p7 pH4
1 g0 B

i

(ﬂ7+ﬂ2)(,310+,32)(ﬂ10+ﬂ7)

i

)612 . ,34 . ﬂG
ﬂ7
Exercises

6.2.3 Find the following determinants using Lemma 6.2.2. Assume B is the
primitive elements in GF(2*) constructed using 1+ z + z* (Table 5.1).

(1 5 B
a)det| 1 p* p®
i 1 ,37 ,314

(1 6 p* g

3 6 9

b) det } gs 510 ﬁl

L1 g2 B
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1 B
c) det [ 1B ]
We are now ready to present the main theorem concerning general BCH
codes. The result is not presented in its more general form, but is sufficient
when considering Reed-Solomon codes.

Theorem 6.2.4 Let g(z) = (™" + 2)(A™*? + z)... (™! + z) be the gen-
erator of a linear cyclic code C over GF(27) of length n = 2" — 1, where § is a
primitive element in GF(27) and m is some integer. Then d(C) > 8.

Proof: For 1 <i<§~—1,8™ is a root of g(z), and thus the columns of

1 1 ... 1
ﬂm+1 ﬂm+2 . ﬁm+5~1
H = (ﬂm+l)2 (ﬁm+2)2 . (ﬂm+6—-1)2

(ﬂm+.l)n—-l (ﬂm+.2)n—1 . (IBm-{—&:—l)n—l
span C*. No linear combination of § — 1 rows of this matrix is zero, as can be
seen by evaluating the determinant of any § — 1 rows, say

(‘B‘m+1)jl . (ﬁm+6—l)j1
ot (ﬁm—l-l )jz . (ﬂm+6—1 )j2
(,Bm+:1 Yoo Lo Igm+6:—1)ja_1
1 ﬂi:l . (133:1 )5—2
— ﬁ(m+1)(jl+j2+-~-+j6-1) 1 ﬂ” e . (ﬁ]z )5—2
i ﬂj;-—l . . (ﬁj&-; )6—2
— ﬂ(m+l)(j1+j2+...+ja-x) H (ﬂj: + ﬁjy)
1ygeLb~1

which is not zero since Bisof ordern = 2"—1and 1 € j; < ja... < js_y < n—1.
Therefore no linear combination of §~1 or fewer rows of the matrix is zero and so
by Theorem 2.9.1 d(C) > 4. Note, the columns of the H are linearly independent
and thus H is a parity check matrix for C. o

Remark. The proof of this theorem applies to any cyclic binary linear code
of length 27 — 1 with a generator contéining B+, ..., ™1 among its roots.
These binary codes are called primitive BCH codes and § is called the designed
distance of the code. Since they are binary subfield subcodes, Cx C C, of Reed
Solomon codes C' we must have d(Ck) > & for these codes as well.
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A binary Reed-Solomon code RS(27,6) is a cyclic linear code over GF(27)
with generator g{z) = (™! +z)(8™** + z) ... (8™+5~! 4 z) for some integer m
and some primitive element 8 of GF(27).

So for example, the code constructed in Example 6.1.5 is an RS(8,3), and
the code constructed in Exercise 6.1.7 is an RS(16,5).

Theorem 6.2.5 If C is an RS(27,6) then

) n=2"~1,
b) k=2 -6,
¢) d=26, and
d) |C| = 2%,

Proof: (a) follows from Theorem 6.1.1, and (b) and (d) follow from Corollary
6.1.4. (Notice that a linear code over GF(27) of dimension k has 27 codewords,
which is consistent with the result that a binary linear code (that is, a linear code
over GF(2)) of dimension k has 2* codewords.) The fact that d > § follows from
Theorem 6.2.4 and that d < § follows from the Singleton Bound (see Theorem
3.1.7). a

Remark: Notice that since d = n — k + 1, Reed-Solomon codes are MDS (max-
imum distance separable) codes (see Theorem 3.1.8).

Before we do another example, notice that any RS(2",6) code C, can be
represented as a binary code simply by replacing each digit in each codeword by
the binary word of length r given by an index table of GF(2"). This code has
length r(2" — 1) whereas the binary subfield subcode has length 2" — 1.

Let ¢ denote the binary representation of ¢ € C formed in this way and ¢
denote the binary code formed from C, by this method. One of the reasons

that €' is so useful is that it performs well as a burst error correcting code (see
Theorem 7.1.11).

Example 6.2.6 Let C be the RS5(4,2) with g(z) = B + z and where GF(2?) is
constructed using 1 + = + z?. From Theorem 6.2.5, C has n = 3,k = 2,d = 2,
and |C] = 16. From Corollary 6.1.4, a generating matrix for C is

_[B8 10
G“[Oﬂl]

From GF(2*) we have that 0,1, 3, 5 correspond to the vectors 00, 10,01 and 11
respectively. The 16 messages u with their binary representation # along with

the corresponding codewords ¢ = uG of C and their binary representations &
are:
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@ u c=uG é 4 v c=uG &
0000 0G 0600 000000 0001 04 04°3 001101
1000 10 B10 011000 1000 18 BB 010101
0100 B0 B°B0 110100 0101 BB pF*1A 111001
1100 A% 0 1A% 101100 1101 @28 108 100001
0010 01 041 000110 0011 08% 018% 001011
1010 11 BB% 011110 1011 14% p0B* 010011
0110 p1 £*01 110010 0111  Bp*  p*A%pA% 111111
1110 B%1 111 1061010 1111 A% 1 86% 100111

Exercises

6.2.7 Let C be the RS(4,3) with generator g{z) = (1 + z){B + z).

a) Find n,k&,d and |C] for this code.
b) Construct a generating matrix G for C using Corollary 6.1.4.

¢) Find all the codewords in C, their corresponding binary codewords
in C and the corresponding messages (of course, encode the mes-
sages using G from (b)).

6.2.8 Let C be the RS(8,5) with generator g(z) = (1+z){f+z)(B2+z)(f+z)
using GF(2%) constructed with 1 + z + z°.
a) Find n,k,d and |{C| for this code.
b) Find a generating matrix G for C using Corollary 6.1.4.

c) Encode the following message using G to a codeword in C and
then to a codeword in C:

(i) 108
(i) 111
(iti) B*pp°
6.2.9 Using the fields constructed in Exercise 5.1.15, find generator polyno-
mials for the RS(27,6) code with the following values of r, 6 and m:
(@) r=2,§=3,m=2
(b) r=3,6=3,m=2
(¢) r=3,6=5m=0
(d) r=4,6=5m=0
() r=5,6=7T,m=0

6.2.10 For each of the codes in Exercise 6.2.9, find the values of n, k,d and |C|.
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From Theorem 6.2.5 we have that if C is an RS(2", 6) then n = 2" —1. Often
one needs to have codes of lengths other than 2" — 1, but such codes can easily
be formed from an RS(27,6) code. For any integer s with 1 < s < 2" —§, and for
any RS(27,6) code C, form the shortened RS5(27,6) code C(s) from C by taking
all the codewords in C that have 0’s in the last s positions and then deleting the
last s positions.

Example 6.2.11 Let C be the RS(4,2) code of Example 6.2.6. The shortened
R5(4,2) code C(1) (so s = 1) is formed by taking all codewords that have 0’s
in the last s = 1 position, namely

000, 510, 440 and 1570,

then deleting the last s positions. So

C(1) = {00, 81, 8°8,15%}.

Alternatively, using the polynomial representation for an RS (27,6) code C,
the shortened code C(s) is formed by the set of polynomials in C of degree less
than n —s =27 — 1 —s. So, if g(z) is the generator polynomial of C, then C(s)
is the set of polynomials ¢(z) = a(z)g(z), where degla(z)) <k—s5=2"-6—3s
(since deg(g(z)) = §). Therefore, a generating matrix G(s) for the code C(s) is
given by

9(z)
zg(z
G(s) = g:( )
=y (z)
Comparing this to the generating matrix G of C given by Corollary 6.1.4, G(s)
is the first k£ — s rows of G with the last s columns deleted.

Soif C is an RS(27,6) code with parameters n, k and d then clearly we have
that C(s) has length n(s) =n —s = 2" — 1 — s and dimension E(s)=k—s=
2 —b—s.

To find the distance d(s) of C(s), notice that if ¢; and ¢z are codewords in
C(s) then the distance between ¢; and ¢, is the same as the distance between
the corresponding codewords ¢,00...0 and ¢;00...0 in C. Therefore d(C(s)) >
d(C) = é. Also, from the Singleton bound in Theorem 3.1.7,

d(s) < n(s)—k(s)+1
= 2 —1-s(2 —6—5)+1
§

So we have that d(s) = 6, and from Theorem 3.1.8 we have that C(s) is also an
MDS code. Therefore we have the following result.
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Theorem 6.2.12 Let C be an RS(27,8) code and let C(s) be the shortened
RS(27,8) code with parameters n(s), k(s) and d(s). Then

n(s) = 27 —1-—3,
k(s) = 2 —6—3s,
d(s) = §,

and C(s) is an MDS code (see Theorem 3.1.8).

Remark Other shortened RS (27,6) codes can be formed by deleting any set of
s coordinates, instead of the last s coordinates as was presented here. Because
RS(27,6) codes are MDS codes, any shortened RS(27,6) code will also have the
properties described in Theorem 6.2.12.

Example 6.2.13 In Example 6.1.5 we constructed an RS(2%,3) code C with
generator polynomial g(z) = £° + f%z + 22. The shortened RS(2,3) code C(2)
has generating matrix

£*B4100
G(2) « | 05°6%10 |.
0033341
and has parameters n(2) = 5, k(2) = 3 and d(2) = 3. Notice that G(2) is formed

by deleting the last s = 2 rows columns of the generating matrix G in Example
6.1.5.

6.3 Decoding Reed-Solomon Codes

Since digits in RS(27,8) codes are elements from QF (27), correcting a re-
ceived word involves not only finding the locations of errors, but also the “mag-
nitudes” of those errors since the digits of a most likely error pattern come from
GF(27). With this in mind, we make the following definitions. The error lo-
cations of a received word are the coordinates in which the (most likely) error
pattern is non-zero. The error locations are referred to by an error location num-
ber: if the jth coordinate of the received word is an error location then its error
location number is g/ (as with 2 error-correcting BCH codes, the coordinates are
labelled 0,1,...,n — 1). For example, steps 4 and 6 of Algorithm 5.5.4 find the
error location numbers of the most likely error pattern when using the 2 error-
correcting BCH code. The error magnitude of an error location i is the element
of GF(2") that occurs in coordinate 7 of the (most likely) error pattern. Since
the 2 error-correcting BCH code defined in Chapter 5 is a code over GF (2), all
error magnitudes must be 1 (the only non-zero element of GF(2)) and so are
completely determined by the error locations. This is not the case for codes over
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GF(27),r 2 2,50 to decode the Reed-Solomon codes we need to find the error
locations and their corresponding error magnitudes.

Example 6.3.1 Using RS(8,3) constructed in Example 6.1.5, if ¢ = §°4*4°0000
is transmitted and w = B2B*B°0000 is received then the most likely error pat-
tern is ¢+ w = e = 004%0000. So the error location number is % and the
corresponding error magnitude is B*.

We shall now develop an algorithm for decoding the RS(27,8) code (and the
corresponding BCH subfield subcode) with generator g(z) = (B + )™ +
z)...(f™+*" +z) where fis a primitive element of GF(27). Let t = [(6—1)/2]
as usual, and let a,...,ac and by, ..., b, be the error location numbers and their
corresponding error magnitudes respectively, where e < t. (Soin Example 6.3.1,
¢ = 1 and since one error occurred in the second position, a; = f% and b = B4)
If e < t then it will be convenient to define ¢; = 0 for e+ 1 <2 £ ¢, even
though no such error locations exist. Then we can calculate § — 1 syndromes
Smd1s- -2 Smyd—1 Which are defined by:

s;=w(@)form+1<j<m+6-1 (6.1)

(Notice that this is the same definition of s, and s3 used for the 2 error-correcting
BCH code.) Form+1<j<m+ §—1,p is a root of g(z) and therefore isa

root of all codewords, so

t .
s;=w(f)=c(f)+ e(B) =e(f7) = _ bl (6.2)
i=1
So the decoding problem is to find an effective way of solving 2e of the § —1
equations given by 6.2 for the 2e unknowns @y, . ..,d. and by,...,b.. (Notice
that 2e < 2t < § —1.) The difficulty in doing this lies in the non-linearity of the
equations resulting from a; being raised to the jth power. However we shall now
show how to easily find a polynomial whose roots are ay, ..., @, just as we did
in step 6 of Algorithm 5.5.4 when decoding the 2 error-correcting binary BCH
code.
Let A= {as,-.-,ac} and define the error-locator polynomial o 4(z) to be the
polynomial whose roots are precisely ai,. .., . So

oa(z) = (a1 + z)(az + ) ... (ae + T). (6.3)

Now define o; to be coefficient of #7 in o4(z). Then after expanding the above
product of o 4{z) we get

oalz) =00 +o1z+ ...+ ezt ! + 2% (6.4)

For any i with 1 < ¢ < e, we can multiply both sides of 6.4 by bial, then
substitute z = a; and sum both sides over ¢ from 1 to ¢; then from 6.4 we have
that o4(a;) = 0, and so we get
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0 = QO bial)oo+ (O bidl oy +... 4+ bial* (6.5)
i=1 =1 i=1
0 = s;004 554101+ ... 4 Sj4e

which may be rewritten as

Sj4e = $;09 -+ 854101 + ...+ Oe_1Sj4e—1-

But fortunately we know the values of 5,41, S;t2, - - - » Sm2¢, SO We can substitute
j=m+1,...,m-+ e in turn to obtain e linear equations in the unknowns

G0y -+« 501 These equations can most neatly be written in matrix form (where
the ith row represents 6.5 with j = m + ¢) as follows:

Sm+1  Sm42 e Smte Jo Smtet+l

Sm+2  Sm43 cee Smtet+l oy Smtet2 ( )
. . . = . 6.6

Smte Smtetl e Smt2e—~1 Te—1 Sm42e

It is important to know that this linear system can always be solved for gy, .. ., 0e-1.

Let. the e X e matrix in 6.6 be called M. Then indeed M does have full rank.
This can be seen by writing

1 ... 1
bl am+1 0 1 e—1
a o . 1 a ... dl
M= " * ,
ai'_.l - aﬁ.‘l 0 ba™t! 1 a ... &t
Each of the 3 matrices has full rank by Lemma 6.2.1, since a4, . .., a. are distinct

and ay,...,0¢,b1,. .., b are all non-zero. Therefore 6.6 can always be solved for
G0y ..,0~1- Notice also that if the decoder begins by assuming that e = ¢ (of
course the value of e is, at first, unknown to the decoder) then M isatx (1 +1)
matrix but will have rank e. This follows also by splitting M into the 3 matrices
above and using the fact that we defined a; = 0 for e + 1 < 7 < t. Therefore the
decoder now knows the value of e. o

Now we can find a;,...,a. by substituting the field elements into o4(z) =
09+ ayz + ... + z° (which is now known), since the roots of o4(z) are precisely
Ayyeeey Qe

.Now that ay,...,a. are known, equations 6.3 form a linear system in the
variables by,...,b. which can now be solved. Again these equations can most
easily be represented in matrix form as follows:
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m+1

af aptt .. gn! b Smt1

m+2 m+2 2
af al ...oartt by | | Sms2 6.7)
(111n+e (1;1+e agte be Smte

(Again, by Lemma 6.2.1 and since ay,...,a. are distinct and non-zero, this
matrix has full rank, so the linear system can always be solved for by, ..., b.)

Therefore we have the following decoding algorithm for Reed-Solomon codes.
In this algorithm, we define M’ be the extended matrix formed from M by adding
a column e + 1 to M which is simply the right hand side of 6.6; that is,

Smil  Sm+42 ..o Smtedl

Sm+2  Sm+3  ++- Smied2
M =

Sm+e Smtetl -+ Smi2e

Algorithm 6.3.2 Suppose that a codeword in an RS(27,6) code C with gen-
erator g(z) = (B™*! + z)... (B! + z) is transmitted and w is received. Let
t = [(§ — 1)/2]. Find the closest codeword in C to w as follows:

1. Calculate s; = w(fform+1<j<m+2t
2. Setting e = ¢, find the rank of the extended matrix M".
3. Now let e be the rank of M’ and solve the linear system 6.6 for oy, ..., 0._1.

4. Find the roots of o4(z) = g¢ + 1% + ... + °; these roots are the error
location numbers ay,...,a..

5. Solve the linear system 6.7 for by,...,b,; these are the error magnitudes
corresponding to aj, ... 4., so the most likely error pattern is completely
determined.

Notice that no further row reduction of a matrix is required in Step 3 of
Algorithm 6.3.2 since the matrix here is a submatrix of the one that is put into
echelon form in Step 2. The following example makes this clear.

Example 6.3.3 Let
9(z) = (1 +2)(B+2)(F* +a)(B° +2) = f° + f'x + f°a’ + f'2° + o

be the generator of an RS5(23,5) code (so m = —1 and t = 2), where GF(2%) is
constructed using 1 + = + z3. Suppose that the received word is

w = R A7104°.
We shall now decode w using Algorithm 6.3.2.
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1. S}nce m = —1and § = 5, we calculate the 4 syndromes so, 51,52, and s;
(in other words, calculate s; if 8 is a root of g(z)).

|

so =w(f)=pF+B+F +A+1+0+4 =1,

st =w(B) =L+ +B +B+ B +0+ 88 =48,

s2. =w(B?) =P+ B+ B+ 5+ F° + 0+ M = £, and
53 =w(ﬁ3)==,36+,54+ﬂn+ﬂ“+,312+0+ﬂ2°=1.

2. Setting e = { = 2, the extended matrix M’ is

|1 BB
M-[ﬂ3 o 1]'

Row reducing M’ yields the matrix
1 g op
0 g g

3. Since M’ has full rank, e = 2 and so we now solve the linear system

u[2]=[5)

However, as observed above, we have already row reduced M in Step 2, so

we have to solve :
1 B g | _| A
0 B ol [ A } '

Then %oy + % = 0 s0 0y = %, and oo+ B+ =0s00,=1.

which has rank 2.

4. We now know the error locator polynomial oa(z) = g9 + o1z + 2% =

1+ Bz + 2% On substituting field elements into o (
4(z), we find that
o4(B) =0 and 0 4(f°) = 0. Therefore

oa(z) =14 5z + 2% = (B + z)(4° + z).
So the error location numbers are a; = B and a; = f8°.

5. Now we solve the following linear system:

b w][5]=[5]
oslln]-[3)

or
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Then 8%, = 1 s0 by = 87, and b; + b, = 1 s0 by = §°. Therefore the most
likely error pattern is

e = 04°00005°

and the most likely codeword is
c=w+e=B°B°6°4%100.

Example 6.3.4 Let

= (1 +a)(B* + 2)(B° + )(B* + 2)(B° + z)
g(z) —_ & _:_‘Bafi)x(i ,822:.7:)2(+ ﬂ$:3E+ ﬁ12$4 + ﬂgms + 2:6

be the generator of an RS(2%,7) code (so m = —1 and ¢ = 3), wher.e GF(2Y) %s
constructed using 1 + z + z* (see Table 5.1). Suppose that the received word is

w(z) =14 flz + fz* + f22° + z°.

- so =w(f?) =1+ +B+p +1=F,
51 =w(f) =1+ +p+p+ 5 =1,
So =w(ﬂ2)=l+ﬂ6+ﬂ7+ﬂ19+ﬁ12=ﬁ9,
S5 = w(ﬂs) — 1+ﬂ7+.31°+,324+ﬁ18 — ﬂl‘z,
84 = w(,B") =1 +ﬂ8 +613+.329+l324 — 69, and
sy = w(ﬂS) =1 +,39+,316+ﬂ34d+ﬂ30 — 137.
2. 7 9 12 7 9 gi2
1 5 B g1 B
M = ﬂl ﬂ9 ﬂu ﬁ9 e ) ﬂlz ﬂ7 136
g g g 0o 5 B B
g1 pp
“r 0 ,512 ,37 ﬂe } .
0 0 0 O
So M has rank 2 and therefore the most likely error pattern has weight

e=2.

3. With e = 2, the linear system 6.7 becomes

T aE)-1]

but in Step 2 we row reduced this matrix:

HEER
.0 ﬁlz o1 - ,67_'

Then 820, + 87 =0, so oy = B9, and f7oq + oy + 8° = 0 50 g¢ = 5.

6.3. DECODING REED-SOLOMON CODES 153

4. o4(z) = B°+ %2+ 2 = (B*+)(B*+z). Therefore a; = B% and a, = B4
1 1] [6] _[s
g p b| |1
11 ] [s] [g
0 1310 b2 - 57 .

Therefore b, = B'2 and b = B2. So the most likely error pattern is
e = 006°04"%0...0 and the most likely codeword sent is

SO

c=w+e=15'4268125°100...0.

Note that this decoding scheme is independent of the cyclic nature of the
code, and thus will work for shortened RS(2",8) codes of length n as well.

Exercises

6.3.5 Let C be the RS(2%,7) code with generator g(z) = (1 + z)(B+z) (B +
z)(B +z)(B* + z)(B° + z) where GF(24) is constructed using 1 +z + z*
(see Table 5.1). Decode the following received words which were encoded
using C.
(a) 05°BB°H°5*5°6° 8000000
(b) 18*4*B001054°6°52081°8
(c) BOATOA™2A35°10000000
6.3.6 Let C be the R5(2¢,5) code with generator 9(z) = (B+z)(B* +2)(B+

z)(8* + z) where GF(24) is constructed using 1 +z +z* (see Table 5.1)

(notice here that m = 0). Decode the following received words that
were encoded using C.

a) 0014%005°00000000

b) Oﬁmoﬂeﬂ‘30ﬂ8ﬂ“ﬂ3,6'500000

c) B*01008%3°312 414000000

6.3.7 Take the RS(2*,5) code in exercise 6.3.6 and form the shortened code

C(4) of length n = 11 (and dimension & = 7). Decode the following
received words, that were encoded using C.

a) 0015%003°0000

b) 0ﬂ1°0ﬂ6ﬂ130ﬂ8ﬂ”ﬂ3ﬂ50

c) A0100828°61241400
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7

6.3.8 Let C be the RS(2,9) with generator g(z) = (1 +2)(B+z)- - (ﬂ + )
and with GF(2*) constructed using 1+ + z* (see Table 5.1). Find the

most likely error pattern for received words that were encoded using C

and have the following syndromes.
a’) So — ﬂzasl = ﬂ3752 = ﬂ4a53 = ﬁ5754 = ﬂ6,55 = .B7a36 = :38 and
e 4 8
b) S0 ﬂga Sy 7= 513,52 = ﬂ77 83 = ,34,34 = ﬂlz,ss = 5 =8 and
S7 = ,BZ.
C) Sg = 1,81 = 1,32 = 1,33 = 1,84 = 1,35 = 1,35 =1 and S = 1.

12 A5 - Q13
d) Sozﬂlossl :133752:ﬁ13as3=ﬂ3734:ﬂ 735"“5 756“ﬂ and

fl

3
S7=ﬂ .
— 4 . 313
e) S = .312331 = ﬁsaSZ = 0533 = :37734 = 613335 - 18 y 8¢ = ,6 and
37—_‘—1.

f) so=f%5 =08 = 0,53 = f%54=0,55=0,56 = % and s7 = 0.

6.4 Transform Approach to Reed-Solomon
Codes

There is an alternate approach to the construction and decoding of Ree<'i—
Solomon codes which is sometimes referred to as the iransform approa?h. It is
based on an alternate representation of vectors in [.( ™. Rather .than think of a
vector as representing the coefficients of a polynomial, wre consider a vector as
representing a function from a set S to a field F° :.GF" (2. ’

We first develop this approach and show that it gives a different generator

matrix for Reed-Solomon codes.

= ing 1+ z + z3 with primitive
Example 6.4.1 Let S = GF(2%), constructed using ! ve
element B. First consider f : § — {0,1} where f(0) = 0, f(1) = O,f(ﬂ) =
£(B%) = F(B) =1, f(8%) = f(B°) = f(#°) = 0. Then f(z) can be prescribed by
the vector vy = (f(0), f(1), f(8),--- , f(%) = (0,0,1,1,0,1,0,0).

Example 6.4.2 Let S = GF(2%). Consider a function g : 5 — S, defined by

'Ug = (g(o)3g(1)7g(ﬂ)v“~3g(ﬂ6))
= (ﬂ4:071aﬂ2717ﬂ3070)'

In this case, we can also represent g{z) as a polynomial,
g(e) = ' + f’z + F°z" +2°

Two polynomials p(z) and ¢(z) represent the same function from.S to GF(27),
§ C GF(27), if and only if p(a) = ¢(a) forall @ € S. If we con81.der all poly-
nomials of degree < k — 1 with coefficients from GF(2"), or equivalently the
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vector form of these polynomials as functions from S C GF(27) to GF 2n,
we see that they form a vector space and the basis is the set of polynomials
{1,z,2?%,...,251}. We will refer to such a vector space as a function space on

Theorem 6.4.3 The set of all functions from S to F = GF(27) represented by

polynomials of degree < k — 1 form a function space of dimension k with basis
{1,z,22,...,2F 1},

Proof: Certainly every polynomial of degree < k — 1 is the span of {1,z,22,...,
zF=1}. All we need to prove is that each function has a unique representation.
Suppose that p(z) and ¢(z) are equal as functions on S. Then pla) = ¢{a) for
all @ € S. But then p(a) — g(a) = 0 and p(z) — ¢(z) is a polynomial of degree
< k with n roots n > k, which is impossible unless p(z) — ¢(z) = 0 and thus
p(z) and ¢(z) are equal as polynomials. o

Example 6.4.4 Let F = GF(2®), constructed using 1 + z + 2% and consider all
polynomials of degree < 2. A basis for this function space is {1,z,2%} with the
corresponding vector forms,

1 < (L,L,1,1,1,1,1,1)
T & (O,laﬂ7527ﬁ31ﬂ49ﬂ57ﬁ6)
.’112 > (07 17 52 64: ﬂ67 ﬁa 1837 185)

Clearly any polynomial p(z) = ag + a;z + a,z? considered as a function can be
represented in vector form by a matrix product:

11 1 1 1 1 1 1
vp=lag,an,00) | 0 1 B B2 B gt g g
01§ B4 g B B g

Recall that a Maximum Distance Separable code (MDS-code) is a linear code
(n, k,d) with the distance d = n — k + 1.

Theorem 6.4.5 The function space on S C GF(27) of all polynomials of degree
< k— 1 with coefficients from GF(27) form @ linear (n,k,n —k+1) MDS code,
where n = |5] < 27.

Proof: We choose a subset S C GF(27),|S| = n and consider the function space
of all polynomials p: § — GF(27) of degree < k — 1. Clearly the length of each
vector form (and hence of the code) is 7 and the dimension from Theorem 6.4.3
is k,k < n. To establish the minimum distance, note that any polynomial o{z)
of degree < k — 1 has at most & — 1 different roots; hence the vector form of
p(z) has at most k — 1 zeros and thus has weight at least n — & 4 1. By the
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Singleton bound (Theorem 3.1.7), d < n —k+1 for any linear code, so therefore
d=n—Fk+1. 0

The subset S = {a € Fla™ = 1}, is said to be the set of nth roots of unity
in F = GF(2"). Then n is necessarily a divisor of 2" — 1 (but n need not equal
2" —1), and so n is odd. S consists of all roots of 1 4+z" in F. An element § € S
is said to be a primitive n** root of unity (in GF(27))if § = {1,8,6%,...,6"'}.
This generalizes the idea of a primitive element of a field and will allow for the
construction of cyclic Reed-Solomon codes of lengths n that divide, but are not
necessarily equal to 27 — 1. In fact everything done previously in this chapter
for codes of length 2" — 1 = n where § is a primitive element remains true when
B is just a primitive nt* root of unity. ‘

Example 6.4.6 Let F = GF(2*) constructed using 1 + = + z*, with primitive
element B. Then the 5™ roots of unity are {1, 8%, 8, 8%, 8'?}, and the set of 37¢
roots of unity are {1,8%, B*}. In this case 3% is a primitive 5" root of unity,
and B° is a primitive 3" root of unity.

We wish to construct cyclic Reed-Solomon codes, but first we need to estab-
lish that two polynomials will represent the same function on S if and only if
they are equivalent (mod 1 + z™).

Theorem 6.4.7 Let p(z),q(z) € GF(27)[z], and S C GF(2") be the set of n'*
roots of unity. Then p(z) and q(z) represent the same function f 'S — GF(27)

(i.e. p(B') = q(B°), for all B € S) if and only if p(z) = ¢(z) mod (1 + z™).

Proof: Let ¢(z) = h(z)(1 + z™) + p(z), where degree (p(z)) < n. Then ¢(5°) =
R(B)(B™ + 1) + p(B') = p(B') because f is a root of (1 + z™). Conversely if
q(8') = p(B¥), B € S then B is a root of p(z) — ¢(z). Hence

p(z) = q(z) = h(2)LH (z + F) = h(z)(1 + 7).

a

Theorem 6.4.8 Let S be the set of n'* roots of unity in GF(2"). The function
space of all polynomials in GF(2")[z] of degree < k — 1 on S forms a cyclic
(n,k,n —k+1) code over GF(27).

Proof: In order for the code C to be eyclic, if v, = (p(1),p(8), ..., p(f" 1)) € C,
we must have that (p(8),p(8%),...,p(B"!),p(1)) is also in C. But, note that
p(Bz) is still a polynomial of degree < k — 1 and so p'(z) = p(Bz) € C. But

('), 2B, o' (B*™) = (9(B),p(BY), ..., p(8*), p(1))- o
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Example 6.4.9 Consider GF(2°%) constructed using 1+z +z°. Let plz) =B+
Bz + B°z% + 28 with vector form (0,1,5%,1,8,0,0). Then the shift of this vector
(1,4%1,8,0,0,0) corresponds to the function p(Bz) = f*+ Pz + foz2 + 323 =
(B* + 2)(8° + z)(B° + ) B°.

If we have a polynomial, V(z) = Vo+Viz +... + Vae1z™ ! we say that
v(z) =vo+ vz + ...+ v,_y2"} is the transform of V(z) if V(f7) = S V% =
v; for j = 0,1,...,n — 1. In terms of matrix notation this is equivalent to
(Vo, Vi, . Vay)A = (vo, v1,. - . vn_y) where A4 = (ai;) and a;; = B9; B a primitive
n'* root of unity in GF(27). The matrix A is usually refered to as the finite
1F'ourier transform (or finite field transform). It has an inverse A~'. Thus we
1ave

(‘/01‘/1)'-'7‘/71) = (‘U(),’U],...)'Un)A—l

or
n—1

Vi= 2 vif™ = v(87)
j=0
We saw earlier in Lemma 6.2.1 that A was invertible but we produce an alternate
proof of this, by showing that A~! transforms v back to V.

Theorem 6.4.10 Let 8 be a primitive n™* root of unity. If v; = V(B) for
V(z) = Vo+ Viz + ...+ V12" then V; = v(f~), where o(z) = vy + v,z +

et vz

Proof: v(87) = 50,67 = Li(Su iH)BY = T Vi(5; B%) = V; be-
cause
n—1
(k=i)i __ n(mod2) if k—i=0
,goﬂ { 0 if k—i5#0

Note that (1+z") = (1+z)(1+z+...+ 2?2 +2" 1) soif B £ 1 then itis a
root of 1+z+4... 42" 24271, Also, recall that n divides 2" — 1,s0isodd. O

' As we see, given a vector of values (v0,v1,. .. ,vp-1) We can recover the coef-
ficients of the polynomial V(z)=Vo+WViz+...4 V,_;2"L. This is essentially
what the decoding algorithm presented in Section 6.3 is trying to do.

Theorem 6.4.11 Let S be the set of nt* roots of unity in GF(2"). The function
space of all polynomials of degree <n —6+10n S is a cyclic MDS code with
gelzerator polynomial g(z) = (B + z)(82 + z)... (ﬂs,‘gm), where § is a primitive
n'* root of unity.

Proof: T.he polynomial function C(z) whose vector form corresponds to ¢(x) =
a(z)g(z) is C(z) = Yot c(8*~")z. Since ¢(f") = 0 fori = n— &+ 1,n —
6+2,...,n ~1 the coefficient of z is zero in C(z) and thus C(z) has degree
<n-4§+1. 0
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In summary, we have produced an alternate method of constructing a RS(27, §)
code when n = 27 — 1, one which results in a different generator matrix (and a
different view of the information digits).

Example 6.4.12 Let B be a primitive element in GF(2%) constructed using
142z +23. Consider a RS(23,5) code (Exercise 6.2.8) with generator polynomial
g(z) = L+ 2)(B+ ) B+ z)(B +z) = B+ Bz + B52% + F22% + z* which
corresponds to (8%, 8°,4°,4%,1,0,0). The transform of g(z) is the polynomial
G(z) = 0 9(B7F)*. ———

e (PNt a(5) = (500,075 F) then G(&) = o(4™ e +
g(ﬂ7_2)$2 _'*_g(ﬁ7~—3)x3 — ﬂ4m’+ ,3.’2:2 423 = :L‘(ﬂ“ +ﬂ:1: + $2)‘ . .

It is easy to check that G{(z) represents a function with vector form

(G(B°),G(8"),...,G(B%) = (6% 8°,8°, 8°,1,0,0).

In this case we think of this RS(23,5) code as the function space of all polyno-
mials with degrees of all terms between 1 and 3. Equivalently, all polynomials
zp(z) (mod 1 + z7) where degree of @) < 3. Clearly the basis for these poly-
nomials is {z,z%,2z°} and the corresponding generator matrix for this function
space is:

1 g ptope g P
1 g g g s g s
Thus G(z) = 8%z + Bz® + z® if and only if its vector form is
1 B g popt g ope
801 B2 BB g B | = (56 6,6%1,0,0).
1 g g g g g s

(1 B B g s ﬁe)
(6.8)

Now we consider how this approach can help-with the decoding of Reed-
Solomon codes. Recall that if g(z) is the generator polynomial for an RS code
and w(z) is the received word then w(z) ='¢(z) + e(z), where ¢(z) = a(z)g(z)
and e(z) is the error polynomial. Let W(z),C(z) and E(z) be the transforms
of w(z),¢(z) and e(z) respectively. The transform is a linear mapping. So

W(a) = u (B H)et = 5y e(8H)o + 5y e(0-H)e*
= C(z) + E(z).

Since g(z) has § — 1 consecutive roots, f5, k=m+1,m+2,..., m+86—1
we have ¢(f*) = 0, and thus the syndromes s,_; are w(f*F) = (8" *) = E;
for these values of £. That is, the syndromes give us § — 1 of the coefficients of
the transform of e(z). What we want to do is find the remaining coefficients.
For this we need the error locator polynomial!
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o(z) was defined so that o(8*) = 0 if and only if e, # 0 (recall that () =0
if and only if B* is an error location number, which happens if and only if e(z)
is non-zero in the k% position). Since E(8*) = e, we have that a(BF)E(B*) =0
for all k£ and thus

o(z)E(z) = 0 (mod 1 + z™)
and ,
o(z)E(z) = 3 oir')(Y Exz*)(mod 1 + z7)
i=0 k

(since o(z) is a polynomial of degree at most ¢ = [(§ — 1}/2]), thus equating
coefficients of the z*** we have

O=0Er+ 011 By + 0 2Brya + .o+ 06 Ekqy

Since we know § — 1 consecutive values Ej (that is the syndromes S, —k), We can
compute the coefficients ¢; and use this to generate all values of E.

Example 6.4.13 Let o(z) = 0o+ 01z + 2% and E(z) = Eo+ Eyz + ... + Egz®.
Then o(z)E(z) = 0 mod 1+ z7 if and only if

Ey = 01E41 + 00Eke2s k=0,1,...,6

*Example 6.4.14 Consider Example 6.3.3. Suppose w = (85, 3, 5%, 2, 1,0,8%).

Since d = 5, < 2 and Ey = w(ﬂo) =1,F = w(ﬁ) =B = w(ﬁz) = 537 Ey=
w(f®) =1 and o(z) = 2% + 012 + 05. We solve for g1, 00 as in Example 6.3.3,
and find o1 = IBS,O'O = 1. Thus, Ek = ,BsEk+1 + Ek+2.

Since (Eo, Es, Es, E4) = (1,8°%,5°,1), we see that

Ey = B, + E = fB° + B8 = p?
E, = BE; + Ey = 8 + 241 = 0
E, = BPE, + E3 = 0 + 2 = p

Now we know that the transform of e(z) is E(z) = ¥ Eyz* where

(E07 E17 CRREY EG) = (17ﬁ2, 01 ﬂz) 17 53’ IBS)
At this point our decoding algorithm will depend on the encoding procedure.
Since E(z) = 1+ 2z + B2z 4 2* + f32° + °25, we know that the most likely
error vector is e = (E(f°), E(8"),...,E(f%) = (0, 8°,0,0,0,0, (%) and thus the
most likely codword is ¢ = w + e = (8¢, 85, 85, 82, 1,0, 0).

On the other hand if we used the generator matrix of Example 6.4.12 we
would not need to find the error vector, but simply compute all values of
w(BF),k = 0,...,6 to obtain the most likely message directly. That is, find
the transform of w(z) and add it to the transform of e(z).

(wOa wl)"-,wﬁ) = (w(ﬁo)aw(ﬁ6)7w(ﬂ5))"'7w(ﬁ1)) = (17 ﬂ’ﬂa ﬂe’l’ﬁ37 53)7
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(E07 El, ey EG) - (1’ ﬂ2707 ,323 17 ﬂ37 ﬂs)?
and thus

(C(),Cl,...CG): (Wo,Wl,...,We)+(E0,E1,...,E6)
= (07ﬂ43ﬂ,170a070)7

So C(z) = 'z + Bz* + z°. Hence our information digits are (8%, 8,1). We leave
it as an exercise to show that ¢ = (85, 8%, 6% 6%,1,0,0) is the vector form of

Cl(z).

Exercises

6.4.15 Show that C(z) = B4z+Bz+Bz+12> has vector form (4, 8%, 5%, 3%, 1,0,0),
B the primitive element in GF(2%) constructed using 1 + z + z°.

6.4.16 Given GF(2%) constructed using 1 + z + z°, find the generator matrix
for the MDS code of length 7 for the function space of all polynomials
defined on S = GF(2°)\{0} with basis

(a) {z,2?,2%}
(b) {1,z,2% 2% 2%}
(¢) {z,2°%2°}

6.4.17 Show that all codes in the previous exercise are cyclic. Find the gener-
ator polynomial for each code.

6.4.18 Given GF(23) constructed using 1 + = + 3, for each G(z) find the
corresponding vector form v, in the function space

a. G(z) ==z + B=®
b. G(z) =1+ 22+ 2*

6.4.19 Given GF(2?) constructing using 1 + z + z® with primitive element 3,
find the coefficients of the polynomial G(x) given the values v,.

8. Vg = (ﬂ37ﬁ7ﬂ4’0’ﬂ6aﬂ57ﬁ2)
b. v, = (8% 6% 8,,0,6°%1)

6.4.20 For Exercises 6.3.5, 6.3.6 6.3.8 use the transform approach to compute
the most likely error pattern and deche.
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6.5 Berlekamp-Massey Algorithm

The following algorithm is a faster algorithm for finding the error locator
polynomial than solving the linear system (6.6). The algorithm is essentially the
algorithm of Berlekamp and Massey for calculating the error-locator polynomial
o(z) given the syndromes s; = w(f) for m +1 < j < m + 2t.

Let op(z) = 1+ 0417 + 0127 +. . . + 00zt; that is, or(z) is the “reverse” of
the error locator polynomial o(z). Let ${(z) = 1 +8m1T+Smeaz?+. . .+ Sy z?
be the syndrome polynomial. Then from 6.5, the coefficients of z'*!, ... z% in
or(z)s(z) are all zero. Using the division algorithm, we can write

or(z)s(z) = q(z)z* ! + r(z)

with degree (r(z)) < 2t. But, since the coefficients of z*+1, ...,z in og(z)s(z)
are zero, in fact degree (r(z)) < t.

The Berlekamp-Massey algorithm below finds a polynomial Py(X) satisfying
Py(z)s(z) = q(z)z®+! + r(z) with degree (Py(z)) < t, degree (r(z)) < t and
Py (0) = 1. It can be shown then that Py(z) must be ogr(z). The algorithm
produces polynomials P;(z) and integers t; recursively such that if P{z)s(z) =
g(z)z™* + ri(z) with degri(z) < 4, then deg P(z) < t; and degri(z) < ¢
Moreover P;(x) is a linear combination of P;_{{z) and some previous polynomial
Py (z)-

The algorithm keeps track of the coefficients ¢;; of g, (z) for i +1 < 5 < 2¢,
the coefficients of p;(z) := 22+~ P(z), 7; := n — t;, and z. The proof that the
algorithm works, while not difficult, is not given here.

We now give the algorithm precisely. In the following, let ¢;(z) = q;o+gi17+
o+ g ;77 and let pi(z) = pig+ piaz +... +pix + ...+ piezt. In order to select
z;, we also keep track of a variable d;.

Algorithm 6.5.1 (Berlekamp-Massey; this finds the error locator polynomial)
Let w be a received word that was encoded using the RS(2",6) code with gen-
erator g(z) = (™! + z2)(™? + z)... (A" + z), and let t = [(6 — 1)/2].
Decode w as follows.

1. Calculate s; = w(f’) for m+1 < j < m + 2t.

2. Define
g-1(z) = 14 Smi1Z + Smaaz + .. + Sy,
w(*) = smy+ Smy2T + ...+ SmanTo Y,
P._l(l') = $2t+11 and
polz) = z%

Let d—-l = —‘1, do =0 and let 2o = —1.
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3. For 1 <1< 2t, define ¢;, p;,d; and z; as follows. i ¢ - pi d; =z
I 770 AT B g~ p0 1
(a) If gi10 = O then let 0 g‘; go gg gu AR 0 1
a(z) = q-1(z)/=, 1 g g g g g - B 0 0
pi(z) = pi-i(z)/z, , , . . .
d; =d;_;+1, and ° : Proceeding from i = 2 to i = 2¢ = 6 we obtain the following table.
2; = 2iq i ¢ - Di di =z
. ) . 1 G 7 0 9 12 9 T _ ‘BO -1
(b) If gi_1,0 # 0 then let ¢;(z) be the polynomial o g7 go ,gg g” gg 27 ? S o
(gi-1(2) + (gi-1,0/z:_1 0)¢=:_, (7)) / 2, 1 g pe p3opue g - 8 g 0 0-
7 3 12 _ 0 3
which can be truncated to have degree at most 2¢t — ¢ — 1, and let g §:’2 fg 1o gg ? g g 2 g ) 1 ;
pi(z) = (pie1(z) + (gi-10/9z:-1,0)P= (2)) /7, 40 0 - g po g 2 3
d; =1+ min{d;_y,d,,_, }, and 5 0 - B0 pO po 3 3
2 - 1—1if di-l __>_ dl-’—:l 6 - 50 ﬁlO 'BG 4 3
: 71 z_1 otherwise.

So finally we obtain o(z) by reading pa:(z) = pe(z) backwards:
If e < t errors have occurred during transmission then p,,(z) has degree €; the

error locator polynomial is o{(z) = pate + Pare-1T + - .. + P2:12°* + z° and has o(z) = B+ pz + «*
¢ distinct roots (notice that o(z) is the “reverse” of px(z)). G be the BS(2".9) cod . () = (1+2)(8
. . Example 6.5.3 Let e the ,9) code with generator ¢{z) = (1 +z)(8 +
- S
Examfleg 6'5._? (1320n31<i?r ?xarr_lpli 634 with the syndromes so = f,81 = z)- -+ (B +z) and with GF(2*) constructed using 1+z+z* (Table 5.1). Suppose
Brsr=Frss=F% 1= 0=, that w is the received word and the syndromes of w are:
Working step by step through Algorithm 6.5.1, we obtain the following.

We begin by setting so =B, 51 =50 = %55 = 0,50 = f°, 55 = "%, 56 = 8%, 57 = B°.
g-1(z) =1+ 2+ 2%+ %% + ' 2z* + B%° + BTz, Using Algoritm 6.5.1 and the notation described in Example 6.5.2, we obtain
w(z) =0 +z+ 22+ f23 + B0 4 f72° the error locator polynomial as follows.
pa(e) =4, ‘
po(x) = g8, 1 q; - Di d; z
d_y = —1,dp = 0 and 2o = —1. -1op0 pEop g8 ﬂ:; 552 .322 ﬁz B '0 g1
0 B2 B° 6 s g5 opg2opge g g 0 -1
Let ¢ = 1. Since goo = A7 # 0, we use step 3(b): 1 g Oﬂ g 'glo g g B - B g 0 0
7 _ 53 13,2, gl4.3 | gld 4 , Qld_5 2 0 0 0 g7 5 L 0 12 1 0
(go(2) + B'q-a(@)) /o = B + 7 + %% + f142° + fHia* + fla 30 g g, gs §2 A p gm g I
which is truncated to degree 2t — i — 1 = 4 to give 4 po BB B - g pe 3 0
8 5 - 12 0 0 ﬂlS 1 4
a(z) =B%+z+ B2 4 fMz3 4 fligh, 5 0 p& B g B
pz) =1+pz, 6 4 p - £ 2o 0 po 2 4
d; =1+ min{d_y,do} = 0, 70 - B pz g8 g pBs 3 4
8 — g p2 pB go gz 4 4
and since dg > d_y,z; =1 —1=0. ‘
Before proceeding, we shall adopt a more concise format by representing the Therefore the error locator polynomial is

polynomials by their corresponding words. Then the information we have found
so far is represented by the following table. v o(z) = B+ Y + fB2% + f1%2% 4 1t

P
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Remark. Notice that in Algorithm 6.5.1, at every step 2; is either 1 — 1 or z;_,.
Therefore at each step we need only store ¢;..1, pi-1, diw12i-1, ¢z;_, and p,,_,, and
not everything calculated so far, as is suggested by the tables of Examples 6.5.2
and 6.5.3. Clearly this is an important practical consideration, but to describe
the algorithm it is convenient to display all the calculations in one table.

Exercises

6.5.4 Let C be the RS(2%,9) with generator g{z) = (1 +z)(f+z) - (67 +1z)
and with GF(2*) constructed using 1+z+z* (Table 5.1). Use Algorithm
6.5.1 to find the error locator polynomial for received words that were
encoded using C and have the following syndromes. (See also exercise
6.3.7 which has the same syndromes).

a) So = ,32731 = ,33>32 = ,34,33 = ﬂs’&: = ﬂ6,35 = 57,56 = ﬁg and

Sy = ﬂg.
b) Sp = /39,31 = ﬂm’ S2 = 37, 83 = ﬂ4»54 = ﬂm,Ss = ,84756 = ,38 and
S7 = ﬂz.

C) Sg = 1,31 = 1,52 = 1,S3= 1,34: 1,55—“: l,SGZ 1 and st = 1.

d) Sg = .310351 = ﬂ3732 = :813)53 = ﬁ3,S4 = ﬂ12’35 = :85736 = ﬂlS and

Sy = ﬂs.
e) Sp = ,312’ Sy = 58, s3 = 0,83 = /37,54 = ﬁm’ S5 = ﬂ4 Sg = ,313
Sy = 1.

f) so=2%,51=0,5; = 0,83 = 82,84 = 0,85 = 0,56 = §% and s; = 0.

6.6 Erasures

An erasure is an error for which the error location number is known but
the error magnitude is not known. An erasure location number is the location
number of an erasure. Knowledge of the error location number may come from
the physical reading of the signal being received (the received digit not looking
like a zero or a one), but can also come from the structure of the code. For
example, suppose that C' is an RS(27,6) code and C is the binary representation
of C. Define (' to be the binary code formed from C by adding a parity check
digit to the binary representation of each digit in each codeword of C.

Example 6.6.1 Let C be the RS(4,2) defined in Example 6.2.6. To form ¢’
the digits 0,1, 8 and $? of codewords in C' are replaced by 000,101,011 and 110
respectively (the third digit in each of these words is a parity check digit). So
the codeword in €' that corresponds to the codeword B10in C is 011101000.
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Exercises

6.6.2 Let C be the RS(4,3) with generator g(z) = (1+2)(8+z) (see Exercise
6.2.7). Find all of the codewords in C".

Since each digit in a codeword ¢ from an RS(27,6) code C is represented by
a binary word of length r + 1 in the corresponding codeword &' in ¢, has length
(27 — 1)(r + 1). Also, since each non-zero digit in ¢ is replaced by a word of
even weight in &, & consists of 2" — 1 words of length r+1, each of which should
have even weight. Therefore if one of these 2" — 1 groups has odd weight in a
received word ' then we know an error has occurred among these r 4 1 digits.
We could try decoding @' by decoding w, the word having digits in GF(27) that
corresponds ', to the closest codeword in C. Knowing that errors occurred in
a group of r 4+ 1 digits corresponds to knowing one error location number of w,
which therefore is an erasure.

Example 6.6.3 Using the code (' defined in Example 6.2.6, suppose that
011 100 000 is received. Then we know errors occurred among the second group
of 3 digits (since this group of 3 digits has odd weight), so B! is an erasure
location number. Since this position of w is an erasure, we may as well replace
it with 0 (to make it easier to find the syndromes}), so we now try to decode
w = 0 0 to the closest codeword in C, knowing that one error location number

is a; = f.

Theorem 6.6.4 Let C be an RS(27,6) which is used to transmit messages and
let w be a received word containing € erasures and e errors which are not erasures.
Then w can be decoded correctly if

2e4+e< 6~ 1.

Proof: Let B be the set of erasure locations and let A be the set of error
locations; so A — B is the set of error locations which are not erasure locations.
Define )
os(z) = [[(F +2)
i€B
to be the erasure locator polynomial. Then we can express the error locator
polynomial as
O'A(:E) = O'B(JJ)O'A-B(JC).

Finding the unknown error location numbers requires finding the roots of o4_p(z).
Providing we can remove the effect of the erasures on the syndromes, finding the
roots of o 4_p(z) can simply be done with Algorithm 6.3.2 (or Algorithm 6.5.1)
using “modified” syndromes.

To see what the modified syndromes should be, we slightly alter the devel-
opment of Algorithm 6.1. Write

op(z) = B+ Byz + ...+ By + 2¢
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and
0a-p(z) = Ao+ A1 + ...+ Aeyz®' + 25

In the same way as 6.5 was obtained, multiply both sides of op(z)o4.p(z) =
oa(z) by bal (where m+1 < j <m+6—1, and a1,...,ac4 are the error
location numbers) and substitute z = a;, then sum both sides fromi = 1to e+e¢
to obtain

(Bosj + Bisjgr + -« -+ Be18j4e1 + $j1) Ao + (6.9)
(Bosjt1 + Bisjez + -« 4 Bee1Sjpe + Sjget1) Ar
4.+ (Bon+e + BISJ'+€+1 +...+ Sj+e+€) = 0.

So we form the modified syndromes by defining

S; = BOSJ' + BISj+1 + ...+ B€_1$j+€_1 + Sjite- (6.10)

Since we know the values of s; for m+1 < ;7 < m+6§—1 and since By, ..., B..; are
known, s7 is known for m+1 < j < 6—1—c¢. But since2ete <6—1,2¢ < 6—1—¢
so as when writing 6.6, we can solve the linear system formed from 6.9:

& 5 & Ao .

m41 m+42 A m+te Al Sm+e+1
: : . = : (6.11)

* * * .
Smte Smietl 0 Smtze—1 Aoy Stmtze
o
for the e unknown values Ag, Ay,..., Ao_1.

We can now decode Reed-Solomon codes with erasures by modifying Algo-

rithm 6.3.2 in the obvious manner suggested by the proof of Theorem 6.6.4. [

Algorithm 6.6.5 Suppose that ¢ is a codeword in an RS(27,8) code C with
generator g(z) = (8™ +z)...(B™+~1+z) that is transmitted and w is received
containing € erasures with erasure location numbers being the elements of B =
{a1,...,ac}. Let op(z) = (a1 +2)...(ac+ ) = Bo+ Biz + ... + Bejz= 1 4
z¢ be the erasure locator polynomial. The error locator polynomial o4(z) =
o4-g(z)op(z) can be found by finding 04..p(z) = Ao+ A1z +... 4+ Ae_yz® 14 2°
as follows:

1. Calculate s; = w(f) form+1<j<m+6—1.

2. Calculate s} = Bys; + B1sjs1+ ... + Bee1Sjpe-1 + Sjpe form +1 < j <
m+6—~1—e

3. Solve the linear system 6.11 for Ag, Ay,..., Ac_y.
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Then decoding w can be completed using steps 4 and 5 of Algorithm 6.3.2.

As would now be expected, the modified syndromes of Algorithm 6.6.5 can
be used to adapt Algorithm 6.5.1 for finding the error locator polynomial when
erasures are included.

Algorithm 6.6.6 Let C be an RS(2",6) code with generator g(z) = (™! +
z)... (™1 + 1) and let w be a received word. Let op(z) = Bo+ Biz+...+2¢
be the erasure locator polynomial of w. Modify Algorithm 6.5.1 for finding the
error locator polynomial of w as follows:

1. Calculate s; = w(f ) form+1<j<m+8§~1

2. Calculate s7 = Bosj + Bisjer + .- + BeeSjpemr tsjpcform +1 <5 <

m+6—1—e¢
3. Define
2 RIS
g-1(z) = l1+spuT+snur +. .+ 2 5
- * * * mA§—2—€
qo(l‘) = Smt1 + Sm+2% 4o+ Sm4s—2—eT 3

and define p_i{z), po(z),d-1,do and zp as in step of Algorithm 6.5.1.

4. Repeat step 3 of Algorithm 6.5.1, except that ¢ is now restricted to 1 <
1 < §—1—¢, to produce o4.-p(z). Then the error locator polynomial is
o(z) = op(z)oa—p(z).

Remark. To complete the decoding, b;,5,,...,b... can be found using step 5
of Algorithm 6.3.2 using the original syndromes; of course 6.7 is now a system
of € + e linear equations.

In the following examples we will use the code C” to transmit messages. Then
from the structure of the code, some erasures can be recognized.

Example 6.6.7 Messages are encoded using C’ where C is the RS(2%,6) code
with generator g(z) = (1 + z)(B8 + z)...(B* + z), where GF(2%) is constructed
using 1 + z + z%. Decode the received word
@' = 11101 11001 00101 06000 00110 1001090...0.
The only erasure location number is 8!, and so
op(z) = B+ =.

We can now use Algorithm 6.6.6 to find the error locator polynomial for

w = B°08%08°50. . .0.
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where we have set the digit in the position corresponding to the erasure equal to
zero (this makes calculating the syndromes easier). Since w(z) = f*° + #%z? +
B8zt + 2%, we find that so = £°,51 = 0,5, = (3,53 = f* and s4 = S
Since By = § and ¢ = 1, we find (from Step 2) that s§ = 85,57 = 8%s; =0
and s3 = B''. Proceeding as in Algorithm 6.5.1, but now using the modified
syndromes, we obtain:

i P g d;  z
T1 F B 0 [ 1
0 8 B 0 /! 1 0 -1
1 1310 ﬁQ ‘611 1 /36 0 0
2 ﬁO ﬁll 1 ﬂl? 1 1
3 ﬂlo 1 ﬂ14 ﬁll 1 2
4 1 A1t B8 2 3
So oa-p(z) = 8%+ pz + 22
Hence o4(z) = op(z)oa-p(z)
= (B + 2)(B° + 2)(B° + z).

Therefore the error location numbers are ay = 3,a; = #° and a5 = §°.

Of course we can then complete the decoding by finding by, by, and bs: we
use step 5 of Algorithm 6.3.2, the original syndromes and 6.7:

1 1 1 by B
22 2)[8]-[3]
ﬁz ﬂG ﬂm b3 ﬂs

11 11[61[8
{0 g g b, g,
00 1 ]|&/|]p

which gives b = 2,5, = 1 and b; = §°. So w(z) is decoded to

or

c(:z:):w(z)-!—e(z) — (ﬁ10+ﬂ2$2+ﬂ6$4+ﬂ14$5)+(,812$+$3+,33$5),
(z) « [YUp125218510...0,

and @' is decoded to
11101 11110 00101 10001 00110 10001 0...0.

Example 6.6.8 Messages are encoded using the code C’ defined in Example
6.6.7. Decode

F(w) = 11101 11001 00101 00100 00110 10010 0...0.
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The erasure locator polynomial is
op(a) = (B+2)(F* +2) = B* + Bz + 2*.

We decode
w = B904%08°5%40...0

to a codeword in C (again, the digits in w occurring in positions corresponding to
erasures have been set equal to 0). Since w(z) = 10+ B22? + B8z + 15, 50 =
5.5 = 0,8, = 83,83 = B* and s4 = . Therefore, from Step 2 of Algorithm
6.6.6, s5 = B,s; = f° and s = f'%.

i pi g di z
-1 1 ﬂl ﬂG ﬁll 1 21

0 ﬂl ﬂG ﬂll 1 0 -1

1 B B8 1 B 0 1

2 0 1 g 1 2

3 1B 1 3

So o 4_p(z) = BP+z,50 o4(x) = (B+z)(B%+z)(B°+z) and the error magnitudes
can be calculated as in Example 6.6.7.

When introducing the code ¢’ with C an RS(2",6) code, we noted that ol

has minimum distance at least 26 and so can correct all binary error patterns

of weight at most § — 1. Using Algorithm 6.6.6 will find the closest codeword
to a received word if at most § — 1 binary errors occur during transmission of &
as the following argument shows. Suppose that u is the most likely binary error
pattern, that wt(u) < § — 1, and that u causes ¢ erasures and e error which are
not erasures. Then since at least 2 errors must be made in %’ to cause an error
which is not an erasure in w, we have that 2¢ + ¢ < § — 1. Then by Theorem
6.6.4, w (and so therefore ©@') will be decoded correctly.

However, if Algorithm 6.6.6 decodes ¥’ to a codeword ¢ that is further than
§ — 1 from @' then the reader should be critical of the answer as we have no
guarantee that & is the closest codeword to @'

Exercises

6.6.9 Let C be the RS(23,5) with generator g(z) = (1+z)(8+z)(8*+z)(°+
z) where GF(2%) is constructed using 1 4 z + z°. Decode the following
received words that were encoded with C' by using Algorithm 6.6.6:

(a) 1011 1010 1111 0011 1001 0000 0000
(b) 1011 0000 1000 0011 1010 0011 1001
(c) 0101 1000 0000 1100 1100 1100 0101
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(d) 0000 1010 1011 1101 0111 1061 0000
6.6.10 Use the code C' defined in Example 6.6.7 and use Algorithm 6.6.6 to

decode the following received words:
{a) 11101 11110 11010 00111 11110 10100 10110 101000 ...0
(b) 11000 00000 01010 11111 11011 00000 10001 00101 0 ...0
{c) 00000 10000 10000 10000 00101 10100 111010 ...0
6.6.11 Let C be the RS(2%,7) with generator g(z) = (8+z)...(8° +z) where

GF(2*) is constructed using 1 + z + z*. Decode the following received
word which was encoded using C":

01011 11011 10001 11011 01001 11101 11110 10000 0...0.

Chapter 7

Burst Error-Correcting Codes

7.1 Introduction

Until now we have only been interested in designing codes that correct ran-
domly distributed errors. However there exist channels in which errors are likely
to occur very close to each other. For example, a possible source of noise in a
compact disc is a scratch across the disc: all digits occurring at the scratch may
be either altered or erased causing a group of errors to occur close together.

Suppose the polynomial e(z) corresponding to the word e can be factored as
e(z) = z*¢/(z), where €/(0) = 1, then we say the burst length of ¢ is deg(e'(z))+1.

A related concept is the cyclic burst length of a word e. The word e € K™ is
said to have cyclic burst length ¢, if the minimum degree of z*e(z) mod (14 z7)
fork=0,1,...,n—~1is £ — 1.

Example 7.1.1 Let 7 = 7, and e = 0101100. Then e(z) = z + z? 4+ 23 = (1 +
z* + 2°) and e therefore has burst length 4. If we consider z*e(z) mod (1 +z7),
that is all cyclic shifts of e, we see that z%¢(z) mod (1 + z7) has the smallest
degree, 3, and thus the cyclic burst length is also 4.

On the other hand e = 1000100 « 1 + z* has burst length 5 but 1 + 2% =
2%(1+ z*) mod (1 + z7) and thus e has cyclic burst length 4.

Up until now we have always assumed that the most likely error pattern
is the error pattern that has least weight. This is based on the fundamental
assumption that errors occur independently. In various actual situations this
assumption is not valid and thus our error correction strategy must change.

Recall that in MLD for a linear code, we take as coset representatives the
words of least weight in the cosets, and say that such a code is ¢ error-correcting
precisely when all the words of weight at most ¢ are in different cosets of the
code. In the correction of burst error patterns, we take as coset representatives
the error patterns with burst of least length in each coset. So a linear code is
an £ burst error-correcting code if all the words of burst length at most £ are in

171
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different cosets of the code. In general, if C is t error-correcting and £ burst error-
correcting, then t < £ (Why?) and this inequality may be strict (see Exercises
7.1.5 and 7.1.6).

Similarly, a linear code is an £-cyclic burst error correcting code if all error
patterns of cyclic burst length at most ¢ are in different cosets.

Example 7.1.2 Consider all non-zero cyclic burst error patterns of length
at most 3 in K. Each such non-zero error pattern is e(z) = zFe(z), k =
0,1,...,14 for €(z) € {1,1+ =,1 + 22,1+ z + 2°}. Thus there are 4 - 15 = 60
such error patterns.

Example 7.1.3 Let g(z) = 1 +z +2° + z3 + z° be a generator for a cyclic
linear code of length 15 and dimension 9. Clearly this code is not a 3 error-
correcting code since ther are 576 error patterns of weight 3 or less but there
are only 64 cosets. However there are only 61 error patterns of cyclic burst
length 3 or less (see example 7.1.2) so this code may be, and in fact is, a 3
cyclic burst error-correcting code (see Exercise 7.1.4). This can be checked by
calculating the syndromes of z¥¢'(z) mod g(z),k = 0,1,.. .,14, and €'(z) €
{1,1+z,1+2%1+z+2%}

Exercises
7.1.4 Verify that the cyclic burst error patterns of length 3 in K*® occur in
different cosets for the code in Example 7.1.3.

7.1.5 Show that g(z) = 1 + 2 + a* + 2° generates a 2 cyclic burst error-
correcting linear code C of length 15. Is C a 2 error-correcting code?

7.1.6 Show that g(z) = 1+ 2+ z* + z° + «° generates a 3 cyclic burst error-

correcting linear cyclic codes of length 15. Is C a 3 error-correcting
code?

7.1.7 Show that g(z) = 1+ z* + % + 7 + z° generates a 2 error-correcting,
4 cyclic burst error-correcting linear cyclic code of length 15.

As we have noticed, if C is a t error-correcting, £ burst error-correcting code
then £ > t. The following result gives an upper bound for the value £. A
better upper bound can be obtained (see Exercise 7.1.10) but this result will be
sufficient for our purpose.

Theorem 7.1.8 If C is an £ burst error-correcting linear code of length n and
dimension k then £ < (n — k).

Proof: Let C be an £ burst error-correcting linear (n,k) code. Then no two
error patterns, each with burst of length at most £ occur together in the same
coset. Therefore no two words in which all the 1’s occur in the first £ positions

can occur in the same coset. As there are 2¢ such words, there must be at least’

2¢ cosets, and son — k > £. O
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Exercises

7.1.9 Verify that each of codes in Exercises 7.1.5, 7.1.6 and .
1.0, 7.1, 7.1.7 sat
bound of Theorem 7.1.8. an satisfy the

7.1.10 S‘how t.hat if C is an £ burst error-correcting linear code length n and
dx'mensmn k then £ < (n — k)/2. (Hint: show that any error pattern
with burst of length 2¢ can be written as the sum of two error patterns

with bursts e; and e, respectively, each burst of which has length at
most £. Then show that e; + e, is not a codeword.)

. Clearly t'he decoding algorithm for cyclic codes, Algorithm 4.3.8 can be
slightly modified to correct cyclic burst error patterns.

Alg.orithm 7.1.11 (For decoding cyclic burst error patterns). Let w be a
rjecelved word. that was encoded using an £-cyclic burst error correcting cyclic
linear code with generator polynomial g(z).

1. Calculate the syndrome polynomial s(z) = w(z) mod g(z).

2. For .ea.ch i> p, calculatfa si(z) = z*s(z) mod g(z) until a syndrome poly-
nomial s;{z) is found with deg(s;(z)) < £—1. Then the most likely cyclic
burst error pattern is e(z) = z"7s5;(z) mod (1 + z*).

Example 7 112 g(x) =1+ + 2® + 2° + 1° generates a 3-cyclic burst error-

correcting linear cyclic code of length 15. Use Algorithm 7.1.11 to decode the

received word 1111001000010100, assuming that i
e Tl o g that cyclic burst error patterns are

L s(z) =1+z+2°+2°+ 2%+ 2! + 2" mod g(z)
=1+z3+2t+2°

2. s1(z) = zs(z) mod g(z) = 1 + 2% + 23 + z* + 25,
s2(z) = 2s(z) mod g(z) = 1+ 2% + 21 + 25,
s3(z) = 2%s(z) mod g(z) = 1 + 22 + 25,
s4(z) = 2*s(z) mod g(z) = 1+ z2,
and deg(s4(z)) =2<£—1.

e{z)

Therefore the most likely error pattern is

2% %54(z) mod (1 + z%)
= g4z

. . ¢
So the most likely codeword sent is

c(:c) ='w(:l:)+e(:1;) = 1+x+$2+$3+x6.
< 111160100000000.
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Exercises

lic burst error correcting

71.13 g(z) = 1 + = + 2% + z° + 2° generates a 3 cyc : '

lglgxe)ar cyclic code C of length 15. Decode the following received words
that were encoded using C.

(a) 101101110001000
(b) 001101100010101
(c) 100110101010011
(d) 101101000010111
(e) 000000111110000.

i t error-correcting linear
7.1.14 g(z) = 1+ 2%+ z* + z° generates a 2 cyclic burs. :
‘g)(rcl)ic code C of length 15. Decode the following received words that

were encoded using C.

(a) 010101000010010
(b) 011010010010100
(c) 001101000000100
(d) 000100010100101
(e) 000000011111001.

Reed-Solomon Codes also have good burst error correction ca,p?,bility. Recall
that if C is an RS(2",6) code then C is the binary representation of C (see
Example 6.2.6).

Theorem 7.1.15 Let C be an RS(27,2t + 1) code. Then C is an £ burst error
correcting code, where £ > v(t —1) +1.

Proof: Any burst error pattern e of length at most r(t — D+1 prodl.lces a
word @ = & + e, where d{w,c) < t. So w is decoded to th? cheWOfd ¢ in the
RS(27,2t +1) code and therefore & is the closest codeword in C to w. |

Two places where Reed-Solomon codes are used are in compact d.iscs., where
scratches on the disc cause bursts of errors, and in space commumcatxc')ns? by
NASA and the ESA, where sunspots cause bursts of errors in the .transnnssmns
which are in the form of electromagnetic waves. Under such c1rcgmst;.mces,
assuming that errors occur in bursts is a better model than the assumption of
random errors.

Example 7.1.16 The RS(8,5) code of Exercise 6.2.8 will correct all burst error
patterns of length at most r(t —1)+1=4.
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7.2 Interleaving

One method for improving the burst error correcting capability of a code
is to make use of interleaving. This technique rearranges the order in which
code digits are transmitted. Until now, messages mi, My, ... have been encoded
to corresponding codewords ¢;,cy,... and these codewords are transmitted in
turn. Suppose now that the first s codewords are selected, then the first digit
from each of these s codewords is transmitted, followed by the second digits,
third digits, and so on. Once all ns digits in the first s codewords have been
transmitted in this order, the same process is applied to the second set of s
codewords to be sent, then the third set, and so on. This rearrangement of the
order in which codeword digits are transmitted is called interleaving to depth s.
More formally, interleaving c;, c;, ... to depth s requires that for7 = 0,1,2...in
turn the codeword digits are transmitted in the order:

Cis41,15 Cis+2,15 - - + 5 Cis+s,15 Cis4+1,2, Cis+2,2y+ - -y Cist8,2y -+ 3 Cishlny -~ -5 Cists,n-

It is probably simpler to see this ordering by listing each of the codewords

Cisy Cist1y- -y Cisys TOW by Tow (see Table 7.1), then transmitting these digits
column by column.

Cis+1,0 Cis41,2 Cis+1,3 --- Cispign
Cis4+2,1 Cis+22 Cis42,3 Cis42,n
Cis+s,1 cis+s,2 Cists5,3 Cistsn

Table 7.1: Interleaving to depth s

Example 7.2.1 Let C be the linear code with generating matrix

G =

100110
6 10101].
001011

With no interleaving, the codewords

¢ = 100110, ¢q = 010101,
c; = 010101, ¢s = 100110, and
¢z = 111000 cs = 1110060

would be sent one after the other, so the code digits would be sent in the following
order: »

100110 010101 111000 010101 100110 111000.

If these codewords are interleaved to depth 3, then the first digits of ¢;,c; and
¢s, namely 1,0 and 1 are transmitted first, followed by their second digits 0,1
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and 1, and so on. So the digits in ¢, ¢; and c; are transmitted in the following

order:
101 011 001 110 100 010.

Notice that in this string, the digits in ¢; appear in positions 3i+1,for 0 <z < 5.
Notice also that with ¢;,c, and ¢; written in rows as in Table 7.1, the digits
are simply transmitted column by column. After these 21 digits have been
transmitted, a similar rearrangement of the digits in ¢4, ¢s and cs is used and so
those digits are transmitted in the order:

011 101 001 110 010 100.

What is the effect of interleaving to depth s on the burst error correcting
capabilities of a code C? Notice that if the first digit of a codeword c is the
ith digit transmitted, then the remaining digits occur in positions 7 + 5,1 +
2s,...,4 4+ (n — 1)s. Suppose that C is an £ burst error correcting code. If C
is interleaved to depth s then any burst of errors of length at most s¢ during
transmission will produce a burst error pattern of length at most £ in ¢, so ¢
will be decoded correctly, providing that this is the only burst error pattern that
affects ¢. Therefore we have the following result.

Theorem 7.2.2 Let C be an £ burst error correcting code. If C is interleaved
to depth s then all bursts of length at most s¢ will be corrected, providing that
each codeword is affected by at most one burst of errors.

Remark. The provision that each codeword is affected by at most one burst of
errors essentially requires that bursts of errors are separated by periods of error
free transmission which are sufficiently long to avoid two bursts of errors affecting
one block of s codewords. So choosing s to be large increases the burst length
that Theorem 7.2.2 guarantees can be corrected, but also increases the length of
error free transmission surrounding the burst required by Theorem 7.2.2.

Example 7.2.3 The code C in Example 7.2.1 is a 1 error correcting code. When
interleaved to depth 3 it corrects all bursts of length 3.

Exercises

7.2.4 Encode the mes"sa.ges m; = 1000, m; = 0110, mz = 1110, my4 = 0011,
msg = 0110, mg = 0001, then find the string of digits transmitted if the
code is interleaved to depth s, where

1000110
0100101
0010011
0001111

G =

s-frame delayed interleaving, since for examp
defined in the first column of Table 7.2 is ¢
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(a) s=1
(b) s=2
(c) s=3.

7.2.5 In Example 7.1.3, it was stated that g(z) = 1 + 2 4+ 22 + 2° + 2° is the
generator for. a linear cyclic code C of length 15 that is a 3 cyclic burst
error correcting code. Use the generating matrix

111100100000000
G 011110010000000
000000001111001

for C to encode the messages my(z) = 1,me(z) = 2%, ma(z) = 1 +

z,m,;(a:.) = 1.+ 7%, ms(z) = z® and me(z) = 1. Find the string of digits
transmitted if C is interleaved to depth s, where

(a) s=1
(b) s=2
(¢) s=3.

In e:ach case, what does Theorem 7.2.2 say about the burst error cor-
recting capability of the code?

In practice, interleaving to depth s has the disadvantage that s codewords
must be encoded before any of them are transmitted. This drawback can be
overcome by using s-frame delayed interleaving, which lists the digits in each
ct.)d.eword as in Table 7.2 (compare this with Table 7.1) and again transmits the
digits column by column. The array in Table 7.2 has n rows. Each codeword ¢

has exactly one digit ¢; ; in row j (for 1 < ¢ < n)and ¢ j4, is one row below and
s columns across from ¢;; (for 1 < j < n — 1).

C11C2y --.
1,1 C2,1 Cs+1,1 Cs42,1 -.. C2s411 C2s42,1 C(r~1)s+1,1)
C1,2 €22 --- Cs41,2  Csi22 C(n-2)s+1,2
€13 Ca.3

+ C(n-3)s+1.3

cl,n
Table 7.2: s-frame déiayed interleaving

Clearly there is some initialization process that must take place when using

le if s > 1 then the only entry
1- To ensure that each column of
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Table 7.2 contains n digits we place a 0 in any position that conta,ins: no codewdor-d
digits. The following example makes this clear, thouigh‘the.O s introduce ;xn
this initialization process have been replaced by * to distinguish them from the
0 codeword digits.

Example 7.2.6 Consider again the six codewords ¢, .. .,cs of Example 7.2.1.
If we use 1-frame delayed interleaving, the Table 7.2 becomes

o ...
0 ...
1 0 0

* K K Ok K
* ¥ ¥ ¥ OO
* K K O =
* K kO = O
R e
flowe i oo B e B e R e R
O e O
O O s

where we have placed * in the positions where the initialization process defines
the entry 0. The string of digits transmitted is

T %%+ ++00 %% %x 110+ +%x0101%x*....

If we use 2-frame delayed interleaving, then Table 7.2 becomes

* ¥k ¥ X ¥ M
EE R
% K OE Ok O M
¥ ¥ K K O
EE S e R e
* O * ¥ O
¥ K b= O
X % O e
® - O

H O et
[~N -
=

O =

o

<o

o

and the string of digits transmitted is

T xxk kx0 % %xk%x%x10%+%x 401 %% %x110*%x...

It is easy to get the analogue of Theorem 7.2.2 for s-frame delayed interleav-

ing.

Theorem 7.2.7 Let C be an £ burst error correcting code. If C is's'-fmme delay
interleaved then all bursts of length £(sn+1) will be corrected, providing that each
codeword is affected by at most one burst of errors.

Exercises

7.9.8 Use s-frame delayed interleaving and the codewords found in Exercise
7.2.4 to find the string of digits transmitted when

(a) s=1
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(b) s=2.

7.2.9 What string of digits is transmitted if O-frame delayed interleaving is
used?

7.2.10 Prove Theorem 7.2.7.

In practice, the encoding of a message often uses 2 codes. For example, 2
codes are used in the encoding of music on to compact discs (see Section 7.3)
where both codes are Reed-Solomon codes, and 2 codes are used by NASA and
the European Space Agency, where one code is a Reed-Solomon code, the other
a convolutional code (see Section 8.2). Interleaving to depth s is an important
technique in this 2 step encoding, as we shall now see.

Let Cy be an (ny, k1, d,) linear code and C, an (n2, k2, d2) linear code. Cross-
interleaving of Cy with C, is done as follows. Messages are first encoded using C
and the resulting codewords are interleaved to depth k,. The columns formed
(as in Table 7.1) in this interleaving process are all of length k,, so can now be
regarded as messages and encoded using Cy. The codewords resulting from this
second encoding can themselves be interleaved to any depth s, or s-frame delay
interleaved.

The main advantage of this 2 step encoding is the following. C, can be used
to detect d; — 1 errors, rather than to correct errors. If errors are detected in a
codeword in C, then all digits in this codeword are flagged and treated as digits
that may be incorrect. The codewords in C; are then considered. Notice that if
we know that n — d; + 1 digits in a codewords ¢ in C,; are correct then we can
always find the remaining d; — 1 digits. (This is so because it is impossible for
another codeword in Cj to agree with ¢ in the n — dy 4+ 1 correct digits since all
codewords disagree in at least d; positions.) Therefore, if each codeword in C;
contains at most d; — 1 flagged digits, and if we assume that all incorrect digits
are flagged, then the codewords will be decoded correctly.

So how long a burst of errors can this decoding scheme correct? Suppose
that C; is interleaved to depth s. Assume that each codeword in Cy and each
codeword in C; is affected by at most one burst of errors. If a burst of length at
most s(dy — 1) occurs, then it will affect at most d; — 1 digits in each codeword
in C3 (Why?). Therefore these errors will be detected and so all digits in the
affected codewords will be flagged. If s < d; — 1 then each codeword in Cy
contains at most d; — 1 flagged digits (Why?). Because we are assuming that

each codeword is affected by at most one burst of errors, the remaining unflagged
digits are correct. Therefore, from the argument in the previous paragraph, the
flagged digits can be decoded correctly, and thus we have the following result.

Theorem 7.2.11 Suppose that encodiny is done by the cross interleaving of the
(ny, ky, dy) linear code Cy with the (ng, ks, dy) linear code C,, C, being interleaved
to depth s, s < dy ~1. If each codeword is affected by at most one burst of errors
then all bursts of length at most s(dz — 1) will be decoded correctly.
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Example 7.2.12 Let C; and C; be the codes with generating matrices

10001110

100110

G, = | 00Ul i@, = | 010101

00101011 oS
00010111

respectively. So in the notation of Theorem 7.2.11, (ny, k;,d;) = (8,4,4) and
(n2, ke, d3) = (6,3,3). We shall encode the messages m; = 1000, m; = 1100 and
mg = 1010 by the cross interleaving of C; with C3, C; being interleaved to depth
s =3 =d; — 1. Encoding m;, m2 and m3 with C gives:

G = mlGl = 10001110,

Co m2G1 = 11000011, and
¢z = mgGy = 10100101.

il

The columns produced by interleaving these codewords to depth kg = 3 produces
the messages

111, 010, 001, 000, 100, 101, 110, and O11.

These are encoded using C; to produce 8 codewords that are then to be inter-
leaved to depth s = 3:

¢, = 111000 ¢, = 000000 ¢, = 110011
¢, = 010101 ¢, =100110 d = 011110
¢, = 001011 ¢ = 101101

(¢} and ¢ will be interleaved with the first codeword ¢ produced from the next
3 messages my, ms and me.) So the string of digits transmitted begins

100 110 101 010 001 611 011 000 001 011 010 001 ....

According to Theorem 7.2.11, by using C; to detect d; — 1 = 2 errors and
then using C; to correct any flagged digits, all bursts of length s(d; — 1) =
(dy — 1)(d2 — 1) = 6 can be corrected. For example, suppose the first 6 digits
are transmitted incorrectly; so

011 001 101 010 001 011 ...

is received. Removing the effect of the interleaving to depth s = 3 leaves the
received words
001000,100101and111011

(notice that compared to ¢}, ¢} and ¢ respectively, each of these has errors in the
first 2 positions). C, detects errors in all 3 codéwords (show that the syndrome
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wh; of each of these received words w is not 0, where H, is a parity check
matrix for C3), so all 18 digits are flagged (we shall replace them with an *).
Assuming that there are no more errors, after carrying out a similar process
for the subsequent received digits, ¢}, ¢}, ..., contain no flagged digits. Then,
removing the effect of the interleaving of depth k, = 3 leaves

¢ = **xx01110
¢ = x%%x00011
ez = % 100101.

There is exactly one way to replace each flagged digit with a 0 or a 1 to produce
codewords, and the codewords produced are ¢;,c; and c3. Notice that each of
the above has only/2)= d; — 1 flagged digits.

dy=\

Exercises

7.2.13 Use the codes C; and C; to encode the following sets of messages by
cross interleaving C; with Cy, with C, being interleaved to depth s.
(a) my = 0110, my = 1011, m3 = 1111,5 = 2
(b) my = 0110, m; = 1011, ms = 1111, = 3
(c) my = 0010,m; = 1111, m3,= 1010,5 = 3
(d) my = 1000,m; = 0100, ms = 0010,m, = 0001, ms = 0011, mq =
0100,s =3

7.2.14 The following string of digits was originally encoded by cross interleav-
ing the codes C; and C; of Example 7.2.12, C, being interleaved to

depth 3. Decode the following strings by finding the most likely mes-
sages m,, m, and mg.

(a) 000001001110110001000111000111000111000000000000000000 . . .
(b) 100011001111101010011001111010100110100100011101000100 . ...

7.2.15 Find the result analagous to Theorem 7.2.11 if s-frame delay interleaving
is used on C, instead of interleaving to depth s.
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7.3 Application to Compact Discs

The recording of music on compact discs has taken the music-loving world by
storm. The high quality reproduction from compact disc players is due in large
part to the error correcting codes that are used when storing the music. Each
compact disc contains a spiral track in which pits (lower levels) have been made.
A laser beam following the spiral track determines where changes in height in
the spiral track occur by detecting changes in the intensity of the light reflected
by the compact disc. In this way, a binary string of digits is produced, each
change in height corresponding to the digit 1, an absence of a change in height
being a 0 digit.

1 I t

000001001000100000100

During the recording, the music is sampled 44,100 times per second, the
amplitude of the sound wave at each sample being assigned a binary word of
length 16. So the range of amplitudes is divided into 2' values. Recording in
stereo requires 2 amplitude measurements to be taken 44, 100 times per second,
one from the left and one from the right.

For encoding purposes, each binary word of length 16 corresponding to
an amplitude measurement is represented by 2 field elements in GF(28); we
refer to each field element as a byte. So when recording in stereo, 4 bytes
TMge, Mar41, Magy2, and M3 are produced at each “tick” ¢ (calling 1/44,100%
of a second a tick). Measurements of the amplitude from 6 consecutive ticks
Maat, Ma4z41, Ma4sr23 are grouped together to form a message M, of length 24,
each byte being in GF(28). Let C be an RS(28,5) code. Then M, is encoded to
the codeword ¢; using the code C; = C(227), the shortened Reed-Solomon code
over GF(28) with (ny, ki, d;) = (28,24,5) (see Example 6.2.11).

The codewords in C, thus produced are then 4-frame delay interleaved (see
Table 7.2). Notice that each column in the array in Table 7.2 in this case
has length n; = 28. Also, since the bytes of the codeword ¢; occur in columns
t,t+4,1+8,...,1+108, it is natural to label the bytes in C; with ¢;4¢p 414, €3 448,
veoy C28,t4108-

Column £ of the array in Table 7.2 contains the bytes c; ;, €22, - - -5 C2gs (recall
that ¢;; is the i** byte in the codeword Cj-4(i—1)), and these are now used as
messages of length 28 over GF(2®) that then are encoded using C, = C(223),
the shortened Reed-Solomon code over GF(28) with (ng, ks, d;) = (32,28, 5).

To each codeword in C;, one further byte is added for control and display
purposes, so codewords now have length 33.

Up until now, all bytes carry information or have been added for error correc-
tion and detection purposes. However, physical limitations of the laser tracking
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make it desirable that changes in height in the spiral track do not occur too
close together nor too far apart. It was therefore determined that in the bi-
nary representation of each codeword, between any two 1’s there should be at
least two and at most ten 0’s. The Reed-Solomon codewords do not have this
property. However there are exactly 267 binary words of length 14 that do have
this property. The 256 field elements are matched to 256 of these words using a
table look up, 11 of the 267 words being discarded. This process is called eight
to fourteen modulation (EFM). Then, to make sure that the property holds be-
tween the words of length 14, 3 further bits (0’ of 1’s) are added. So now, the
binary representation of each codeword has length 33 x 17 = 561.

Finally, to each codeword, a binary word of length 27 is added for synchro-
nization purposes, which also has the above property. Therefore in total, audio
information from 6 consecutive ticks is initially stored as a binary vector of length
24 x 8 = 196, and after all the processes are complete, appear on the compact
disc as a binary word of length 588.

It remains to discuss the decoding. First, all extra manipulation such as
the EFM (see also the remark at the end of this section) is undone to leave
“received” words which are hopefully codewords in Cy. Cy is used to correct all
single errors. However if more than one error is detected then all bytes in the
received word are flagged (see Section 7.2 on cross-interleaving). The effect of
the 4-frame delay interleaving is then removed. Finally C; is used to correct up
to 4 erasures (recall C; has distance 5), treating all flagged bytes as erasures,
and all unflagged bytes as being correct.

How good is this decoding? First, notice that the only way that the decoding
using C; can go wrong is if the received word is within distance 1 of a C; codeword
that is not the right codeword. There are very few error patterns that will do
this! There are (27)% = (28)% = 2224 codewords in Cj, one of which is the right
codeword. Each of the remaining 2?2 — 1 codewords is within distance 1 of
1+ 32(2° — 1) words of length 32. So of all (28)3 binary error patterns that
might be added to a C; codeword, only (2224 — 1)(1 4 32(28 — 1)) of them result
in a word within distance 1 of a different C; codeword; that is about 1 in 21°
of them. This correction of single error by C, is designed to cope with small
random errors caused by inaccuracies in the coating and cutting of the compact
discs.

Secondly, after the effect of the 4-frame delay interleaving is removed, a
received word will be decoded to the correct codeword in C if it contains at
most 4 flagged digits (and assuming that C, detects all errors, which we just
saw is very likely). But for a single burst to affect 5 digits of a C; codeword,
it would have to affect 17 columns of the array in Table 7.2, or more precisely,
at least 15 X 32 4 2 + 2 bytes (if 2 bytes are altered in the first or seventeenth
columns, then all bytes in that column are flagged by C,). Since each column of
Table 7.2 is represented by a word of length 588 on the compact disc, all bursts
of length (15 x 588) + (3 x 17) = 8871 (or if you prefer, all bursts affecting
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(15 x 24 x 8) + (3 x 8) = 2904 audio bits) are decoded correctly. This burst
length corresponds to approximately 2.5mm of track length on the compact disc.

Remark. Here we have presented the most important aspects of the encoding
process. In practice, several other interleaving operations are incorporated into
the encoding.

For example, the bytes in the odd numbered positions in the codewords in
C, are all moved along n, = 32 positions, so they are mixed with the bytes in
the even numbered positions of the following codeword. This is done to improve
the chances of correcting single errors with Cs, since now 2 consecutive errors
affect different codewords.

Also, the bytes within codewords in C are reorganized. Such a codeword con-
tains information from 6 consecutive ticks from the left and right, say L;,..., Ls
and Ry,..., Re as well as two parity symbols @1 and @, added when encoding
with C;. These are arranged in the following order:

Ll L3 LS Rl R3 RS Ql Q2 L2 L4 LG R2 R4 Rﬁ

The point of this is that if several consecutive bytes are still flagged after the
decoding process, they can be treated as unreliable information. In such a case,
an unreliable value say L; can be replaced by an amplitude found by interpolating
the (hopefully) reliable values of L;; and L;;y. For example, if the values
L3, Ls, Ry, R3, Rs, @y and Q) are all still flagged, L3 can be found by “averaging”
the amplitudes of the reliable values of Ls and Ly, and so on.

Chapter 8

Convolutional Codes

8.1 Shift Registers and Polynomials

One reason cyclic codes are so useful is that polynomial encoding and decod-
ing can be implemented easily and efficiently by hardware devices known as shift
registers. Briefly, these devices consist of n registers (or delay elements) and a
“clock” which controls the movement or shifting of the data contained in the
registers. After each clock “tick”, the new contents of the registers are combined
(binary addition) to form the output. In Figure 8.1, the squares denote registers;
arrows indicate the flow of data, and @ means binary addition.

Example 8.1.1 In the shift register of Figure 8.1, we have four registers Xj, X,
X3, X3 each containing binary digits. As the arrows indicate, the output at each
clock tick is formed by adding the contents of the registers Xp, X3, and Xj.
Suppose registers Xo, X1, Xs, and X3 contain 1,1,0, and 1 respectively. If the
next input digit is 0, then at the next clock tick, the input digit is “shifted” into
Xo and at the same time the contents of each register is shifted into the next.
The new contents of Xg, Xy, X2, X3 will be 0,1, 1,0, and the output digit will be
0+140=1.

Suppose we have an input sequence ag, ay, ... , etc. then we can keep track
of the input, output and contents of the registers at each clock tick by means of

output
AN
input

Xo X1 X, X3

Figure 8.1: A shift register

185
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a table.

Example 8.1.2 Consider the 4-stage shift register in Figure 8.1. Assume the
contents of the registers is initially (0,0, 0, 0) and the input stream ao, a1, ag, . . . a¢
is 1010000. The contents of the registers and outputs are summarized in the fol-
lowing table.

time | input | XoX1X2X3 | output = Xo+ X; + X3
T — 0000
0 1000
0100
1010
0101
0010
0001
0000

S Ut b W N e
OO0 OO O
O o O D e

Thus the shift register outputs 1110010 for input 1010000, where the initial state
of the registers was 0000.

In general, an s-stage shift register is a shift register with s registers. The
output of an s-stage shift register is a linear combination of the contents of the
registers and can be described using coefficients gg,91,-..9s—1, With g; € K =
{0,1}; that is, ¢; = goXo(t) + - - + gs—1X,—1(¢) where ¢; is the output at time ¢
and X;(t) is the value of the contents of register X; at time ¢.

The action of these devices can be described in terms of polynomials. If

90191, - - - » §s—1 are the coefficients of the s-stage shift register then g(z) = go -+
f1T+ ...+ gs—12™! is the polynomial corresponding to this shift register; this
polynomial is the generator of the shift register. For instance g{z) = 1+ z + z°
is the generator of the 4-stage shift register in Figure 8.1. If we represent the
input and output sequences by polynomials a(z) and c(z), then we claim that
for input sequences a(z), the shift register with polynomial g(z) will output
o(z) = a(z)g(z).
Example 8.1.3 Let g(z) = 14z + 23, the polynomial corresponding to the shift
register in Figure 8.1. The input sequence 1010000 corresponds to a(z) = 1+z2.
Assuming the 4 registers all contain 0, then from Example 8.1.2 we know that
the output sequence of the device will be 1110010, or ¢(z) = 1 + = + z? + 5.
But,

az)g(z) =(1+2*)(1+z+2%
=1+z+z2+2°
= ¢(z).
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Example 8.1.4 Let g(z) = 1 + z + 2° be the polynomial associated with the
shift register of Figure 8.1. The following table gives us the output sequence for
the arbitrary input sequence ag, a1, as, as, 0, 0,0.

time input XQ X1 Xg X3 output = Xo + X1 + .X3

-1 0 0 0 o0 :

0 Qg ag 0 0 0 ag

1 ay a; ay O 0 a; + ay

2 ag as ay ag 0 ag + aq

3 a3 (a3 a2 a7 ao az+az + ag

4 0 0 as ag ay as + a;

5 0 0 0 az aq as

6 0 0 0 0 a3 as

Clearly,

a(z)g(z) = (ao+ a1 + ay2% + azz®)(1 + z + z3)
= ag + (a1 + ao)z + (az + a;)z?
+(as + a2 + ag)z® + (a5 + ay)zt + ay2° + azz®

= ¢(z)
and the coefficients of ¢(z) correspond to the output sequence of the device.
Given a fixed generator polynomial 9(z) of degree n—k for a cyclic linear code

one can build an n — k +- 1 stage shift register with generator g(z) to implement
polynomial encoding of information polynomials a(z).

Exercises

8.1.5 Draw the diagrams for the shift registers corresponding to generator
polynomials g(z):
(a) 1+ =
{b) 1+ 22
(c) 14+ 2% +23
(d) 1+2% 424
8.1.6 Use the shift registers constructe@in Exercise 8.1.5 to compute a(z)g(z) =
c(z). Compute a(z)g(x) directly and compare the results.
(2) 9(2) =1+ 2% a(z) =1 + 5
(b) g(z) =142+ 2% a(z) =1+ 23 + 25
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(c) g(z2) =14 2%+ 2% a(z) = 2 + 2
(d) g(z) =1+ 2°+ z%,a(z) = 2% + 2° + af
8.1.7 For the shift register in Figure 8.1, with g(2) = 1 + z + 2%, compute
the output sequence ¢, ¢y, . . . for each input sequence ag, ay,. .. below.
Assume registers are all initially zero.
(a) 10101000...
(b) 0011000. ..
{c) 1010010000...
Now we show that, in general, shift registers accomplish polynomial multipli-

cation. Let a(z) = ap+a1z+...+ar12* and g(z) = go+ g1z +.. ..+gg_.1$l;__1.
First recall that a(z)g(x) = ¢(z) means that ¢;, the coefficient of z! in ¢(z), is

C = goGs + §1a-1+ ...+ aggy Ht<L—1

and
¢ = goQs + 1041 + ... + Otngi1Gn—1 Ht>£4-1.

For convenience we assume that a; = 0 if ¢ > k — 1 = deg(a(z)).
Consider now the shift register with generator g(z). The output at time ¢, is
the linear combination of the X;(t):

C = g()XQ(t) +...+ g[_lX(_l(t).
At time t = 0, Xo(0) = ao, and X1(0) = ... = X,,_;(0) = 0, so ¢o = goao.

More generally at time ¢, ¢ <£—1, Xo(t) = as, X1(t) = @t-1,...,X:(t) = a9
and the remaining registers are all zero. Thus,

¢t = gots + g10s—1 + ... + grag, for t <L —1
Finally at time t > £ — 1, we have
Xo(t) = a4, Xa(t) = aiey. ooy Xmi(t) = @1ppn
and ¢; = got; + G141 + ... + gem1@spy1,t > £ — 1.

(We note again that we use the convention that if ag,a;,. .., a, is the input
sequence then a; = 0, for ¢ > k).

Theorem 8.1.8 A shift register with generator g(z), given an input sequence
ao, a1, . .. will output co, c1,.. ., where ¢(z) = a(z)g(z), with ¢(z) = o +arz+...,
and a(z) = ap+ a1z +....
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Figure 8.2: A feedback shift register

We see that polynomial multiplication (and hence polynomial encoding for
cyclic codes) can be implemented using shift registers: the generator g(z) of the
shift register is the generator polynomial of the linear cyclic code. We can also
modify the shift registers to implement division of polynomials, which is of use
when decoding linear cyclic codes. Polynomial division (and thus polynomial
decoding for cyclic codes) can be implemented by hardware devices known as
feedback shift registers (FSR). Basically an FSR is a shift register with the output
fed back into the device.

(For those readers only interested in convolutional codes, the rest of this
section may be omitted.)

First recall that in computing the parity check matrix H for the cyclic code
with generator g(z), the i** row of H is r; +» r;(z), where

ri(z) = 7' mod g(z).
In particular
riz) = ari_y(z) mod g(z)

Example 8.1.9 Let g(z) = 1 + z + z® be the generator polynomial. In the
parity matrix,

r3 =110 «+ 1 + 2 = z* mod ¢(z), and
rs =011 & 2z + 2% = 2* mod g(z).

But r5 < 2%+ z° mod g(z) or r5 = 001 + 110. We consider the vector 110 to be
the feedback vector which is added back in to the registers if the output digit is
1. The feedback shift register in Figure 8.2 performs this operation.

We use the convention that if more than one input comes into a register the
contents will be the binary sum of their values. That is, the two diagrams below
represent the same thing.



190 CHAPTER 8. CONVOLUTIONAL CODES

At each clock tick the input and contents of the registers are shifted and the
output digit c;, is added back into selected registers. Equivalently the (new)
vector ¢(1,1,0) is added to the contents of the registers.

time | input | Xo+¢ Xi+¢ Xi| ¢ = output

1 — 0 0 0

0 1 1 0 0 0
1 0 0 1 0 0
2 0 0 0 1 0
3 0 0+1 0+1 0 1
4 0 0 1 1 0
5 0 0+1 0+1 1 1
6 0 0+1 1+1 1 1
7 0 1 0 0 1

In general, an s-stage FSR with feedback vector (go, 91, - - - gs—1) corresponds
to a polynomial g(z) = go + 1% + ... + gs-12°! + z° of degree s. The contents
of the registers at time ¢ = deg(c(z)) will be the remainder of ¢(x)/g(z) and
the output sequence will be the quotient a(z). However, the received word must
be fed in reverse order, high order digits first. (Notice that for an FSR, the
associated polynomial has degree s, whereas the polynomial associated with a,
shift register has degree s — 1; however in both cases we have s registers.)

Example 8.1.10 Let z + 2% + z* be the received polynomial and 0110100 be
the corresponding word. Assume g(z) = 1 + = + z° and so the corresponding

FSR be as in Figure 8.2.

time |input | Xy X; X, |output

1 |~ 0 0 0| —
0 1 1 0 0 0

1 0 0 1 0 0

2 1 1 0 1 0

3 1 I+1 141 0O 1

4 0 0 0 0 0

The remainder is 000 and the quotient z «<» 0100000, corresponding to the output
sequence in reverse order.

In general the contents of the registers at time ¢ = n, will be the remainder
of ¢(z) mod g(z), where ¢(z) represents the input sequence.

ke s i
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Theorem 8.1.11 Feeding c(z) = ¢ + c12 + ... + cp_12™! into a FSR corre-
sponding to g(z) = go+ g1z + ...+ 1 - z° with high order coefficients fed in first
(i-e. ca1yCnz,...,C0) is equivalent to dividing c(z) by g(z). The output after
n clock ticks will be the quotient (high order coefficients first) and the registers
will contain the remainder (high order digits to the right).

Proof: Since the output of the sum of two input streams will be the sum of
the corresponding output streams all we need to do is verify this theorem for
o(z) = z%. But it is clear that the FSR corresponds to our earlier algorithm for
computing z‘ mod g(z) (see Example 4.3.7). Thus the registers will contain the
remainder. It is less obvious but not too difficult to prove that the output will
be the quotient on dividing c(z) by ¢(z). 0

Exercises

8.1.12 Given the feedback shift register in Figure 8.2, with the registers ini-
tially set to zero, generate the output sequence for each of the following
received words. Indicate the final state of the registers and quotient if
the remainder is zero.

{a) 0011010

(b) 1010110

(¢) 0010001
8.1.13 Given g(z) = 1+ z + z°, compute the syndrome polynomials for each
of the received words in Exercise 8.1.12. Compare the syndrome poly-

nomial with the corresponding final state of the registers computed in
8.1.12.

8.1.14 For each generator polynomial g(z) construct a corresponding feedback
shift register. Compute the output sequence and find the final state of
the registers for the given input sequence c(z).
(a) g(z) =142 + 23,c = 0010110
(b) g(z) =1+4+z+2%c=111
(c) g(z) =1+ z + z*, ¢ = 010000000100000

8.2 Encoding Convolutional Codes

Convolutional codes are extremely pr;,ctical codes. They have been adopted
by both NASA and the European Space Agency for ensuring that communica-
tions during space missions are reliable. In fact, they are used in conjunction
with Reed-Solomon codes: each message is first encoded with a Reed-Solomon
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code, and the resulting codeword is then encoded with a convolutional code. In
the following sections we consider the encoding and decoding of convolutiona.tl
codes, then some problems that arise with these codes. We begin with a defini-
tion.

An (n, k = 1,m) (binary) convolutional code with generators gl(:zz)., e , 9n(2),
where g;(z) = gio + gia(z) + ... + gimz™, g; € K[z] is the code consisting of all
codewords

e(z) = (a(z), &2(2),- .-, ea(2))

where ¢;(z) = m(z)g:(z), and m(z) = mo + myz + myz® +... € K[z]. (We w§11
briefly discuss the parameter k, later, which for simplicity is set equal to one in
this definition.) Of course, m(z) is the message and is encoded to c(x). Suppose
that ¢(z) and ¢/(z) are codewords. Then

(cl(m)? AR cn(m)) + (cll(z)a me 1C;($))
(m(z)g1(2); - -, m(@)gn(2)) + (M ()91 (), - - .,/ (z)gn(2))
((m(z) + m'(2))ga(2), .. -, (=) + m/())gn(2))

which is just the codeword corresponding to the message m(z)+m'(z). Therefore
convolutional codes are linear codes.

Convolutional codes are different from the codes considered so far in that
they are codes of infinite length, and the message also has infinite length.

Example 8.2.1 Let C; be the (2,1,3) convolutional code with g1(z) = 1+z+2°
and go(z) = 1 + 2 4 z®. We use C} to encode the following messages.

]

e(z) + (=)

It

(2) The message m(z) = 1+ z? is encoded to

oz) = ((1+2)gi(z),(1+2%)g(2)),
1+z+2*+2°1+2° + 2% + %),
«+ (11100100...,10011100...),

(b) The meésa,ge m(z)=1+z+22+23+... =32,z is encoded to
z) = (+22+z*+2%+.., 142+ +24+2%+..)
= (1+)41+z+) 7%

=3 i=3

e (100111...,110111...).

Exercises

8.2.2 Encode the following messages using the (3,1,3) convolutional code
with generators gi(z) = 1+ x4+ 23, g2{z) = 1 + o+ 22+ 2° and g3(z) =
14+2%+ 23
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message@
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Figure 8.3: Encoding the (2,1,3) convolutional code C;

(a) m{z) =1+ 2%
(b) m(z)=1+z+z°
(c) mz)=l+z+zt+... =12,

8.2.3 Encode the following messages using the (2,1,4) convolutional code
with generators g1(z) = 1+ 2%+ z* and gy(z) = 1 + = + 22 + 2*.

(a) m(z) =14z +2*
(b) m(z)=1+z+2°
() m(z)=1+22+2"+... = 12, 2%

As can easily be seen from Theorem 8.1.8, an alternate description of convo-
lutional codes can be given in terms of shift registers: ¢i(z) is the output from
the shift register with generator g;(z) when m(z) is the input.

Example 8.2.4 Let’s consider the convolutional code C; in Example 8.2.1. We
can describe the code with a shift register with the 2 generators g (z) = 14+2+2°
and gz(z) = 1 + z® 4 z° (see Figure 8.3).

Using this description, if we encode m(z) = 1 + 22 « 10100... then it is
clear that ¢; = 11100100.. . as was calculated in Example 8.1.2 (and this agrees

with the calculation in Example 8.2.1), and similarly ¢, can be shown to be
10011100....

Of course ¢(z) can be made into a single stream of digits, instead of the n
streams we have been describing, by interleaving ¢;(z), ¢5(z), . .., ¢u{(z). For the
rest of this chapter we will display c(z) in this interleaved form, so the output
consists of the coefficients of z° in ¢;(z),... sea(z) followed by the coefficients
of z,22,.... When displaying the interleaved form of ¢ « ¢(z), the n digits
consisting of the coeflicients of z*, for > 0, will be grouped together.

Example 8.2.5 The interleaved representation of ¢(z) in Example 8.2.1(a) is
c=11101001 61 1100 00...,
and in Example 8.2.1(b) is
c=110100111111....
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Exercises

8.2.6 For the convolutional codes in Exercises 8.2.2 and 8.2.3, construct the
relevant shift register which can be used to encode the code. Then check
your answers to those exercises by using the shift registers to encode the
given messages. Finally, represent each codeword in its interleaved form.

Considering an (n,1,m) convolutional code as being encoded with shift reg-
isters, when 1 message digit is moved into the shift register, n code digits are
produced. Therefore each message digit in an {(n, k = 1,m) binary convolutional
code in effect produces n code digits, one in each of ¢;(z),...,c,(z), so the rate
of such a convolutional code is defined to be 1/n (recall that the rate of a code
measures the fraction of information that each code digit carries). One might
then ask if it is possible to design convolutional codes with rates other than 1/n,
and in particular rates higher than %

The obvious way to do this is to move more than one, say k, message digits
into the shift register before calculating the next code digits, thus producing a
code of rate k/n. This is, in fact the definition of the parameter k for an (n, k,m)
convolutional code. Notice that if we do this then each message digit will appear
in the registers X, Xiyx, Xitok, - - - , for some ¢,0 < 7 < k. Therefore, rather than
moving k message digits at a time into the shift register, we could equivalently
divide the shift register into k shift registers XoXp Xop ..., X3 Xr41Xok41 .-, and
so on. Correspondingly, the message is divided into k streams, each stream being
fed into one of the k shift registers. The one complication is that now contents
from registers in different shift registers may be combined in a single generator.
This last description is the method of encoding that is used in practice. The
following example makes all this clear.

Example 8.2.7 Use the (3,2, 3) convolutional code C with generators g{z) =
14 2% gs(z) = 1+ z + 22 and gs(z) = = + 22 + 2% to encode the message
m = 100101110000.. ..

The first interpretation of £ = 2 is to encode m using the single shift register
in Figure 8.4 and moving & = 2 message digits in to the shift register at each
tick. Then the contents of the registers and the outputs are summarized in the
following table.

output
time input X0X1X2X3 C C C3
-1 - 0000 -
0 01 0100 011
1 10 1001 001
2 10 1010 111
3 11 1110 100
4 00 0011 110
5 00 0000 000
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Figure 8.4: Encoding a (3,2,3) convolutional code

(&1

C3

Figure 8.5: Encoding a (3,2,3) convolutional code

So m is encoded to the codeword (in interleaved form)
c¢=011001 111 100 110 000 ...

The second interpretation of k = 2 is to notice that the first, third, fifth, ...
message digits fed into this shift register only ever appear in Xy and X,, and
the second, fourth, sixth, ... message digits fed into the shift register only every
appear in X; and X3. Therefore we can split the message and the registers into
k = 2 parts as Figure 8.5 suggests.

Exercises

8.2.8 Encode the following messages using the (3,2,4) convolutional code
with generators

gi(z) =1+2%g)(z) =24 2% and gs(z) =1 + z + 22 + 23 + z*.
Use both techniques of encoding described above.

(@) m{z)=14+z+23+2*+2°
(b) m(z) =1+ 2%+ 2%+ 27 + 2°
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() m(z) =14z +22+2°

The rest of the chapter mainly deals with rate 1/2, (2,1,m) binary con-
volutional codes. The results and techniques presented can be generalized to
(n, k,m) convolutional codes, but the main ideas can all be found in this nota-
tionally simpler setting. For those interested in convolutional codes with & > 1,
we have included some exercises that indicate how to generalize the material
presented for k = 1.

Finally, there is another way of viewing the encoding of convolutional codes.
Recall that a (2,1,m) convolutional code can be encoded using a shift register
containing m + 1 registers. At each tick, the contents of the first m registers
is called the state of the shift register. The zero state is the state when each
of the first m registers contains 0. If the shift register is currently in state
50,815+, 5m~1 then at the next tick, it will be either in state 0,59, 5y,. .., Spm_2
or in state 1,s0,51,...,5m_2, depending on whether the message digit shifted
in to register X was a 0 or a 1 respectively. Also, if we know the current
state sp,$1,...,5m-1 and the previous state sq,s2,...,5,, then we know the
current contents of ALL of the registers; therefore we know the current output.
This information is often presented graphically: the state diagram of a (2,1,m)
convolutional code is a directed graph in which the vertices, or states, are all
binary words of length m, and for each state s = sy, s3,...,5,, there is an edge
directed from s to state 0,51,53,...,5n,—1 that is labelled with the output when
the registers Xo, X;,...,X,, contain 0,sy,...,5, respectively and there is an
edge directed from s to state 1,s;,5,...,8,_1 that is labelled with the output
when the registers Xo, Xj, ..., X,, contain 1,sy,..., s, respectively.

The information in the state diagram of a (2,1,m) convolutional code can
also be represented in tabular form. Each row of the table lists the current
state (that is, the contents of registers Xy, X3,..., X;n_1) and the corresponding
output, which of course depends on whether X,, =0 or X,, = 1.

Example 8.2.9 Let C; be the (2,1, 3) convolutional code with generators g (z) =
1+z+2° and g,(z) = 1+2°+2° (see Examples 8.2.1 and 8.2.4). The states are all
binary words of length m = 3 : 000,100, 010,001,110, 101,011,111. Considering
the state s = sys35; = 011 for example, there is a directed edge from s to the
state 0s1s2 = 001, and a directed edge from s to 1s;s, = 101. The directed edge
from 011 to 001 is labelled with the output when XoX1 X3 X5 = 0011, namely
10, and the edge directed from 011 to 101 is labelled with the output when
XoX1 X, X3 = 1011, namely 01. If we do this for every state then we obtain the
state diagram in Figure 8.6:

This state diagram can also be represented by the following table.
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" [100} u {110
11 10 10 00
10
00( ooo] 0d 010 101 13 11
01
11 01 01 00
001}

Figure 8.6: The state diagram for C;

State Output
XgXng X3 = 0 X3 =1
000 00 11
100 11 00
010 10 01
110 01 10
001 01 10
101 10 01
011 11 00
111 00 11

Recall that initially the contents of each register is set equal to 0, so the
initial state of the shift register is XX} ... X1 = 00...0. As each message
digit is fed into the shift register, the shift register moves to a different state
and each generator outputs a code digit. In the state diagram, this obviously
corresponds to moving from state to adjacent state following directed edges, the
outputs being the labels on the directed edges. In this way, a codeword naturally
corresponds to a (directed) walk in the state diagram that begins at the zero state
and moves along directed edges to adjacent states. Notice that at each tick, the
message digit being moved in to the shift register is the first digit in the state in
the state diagram to which the shift register moves. Therefore it is also easy to
recover the message corresponding to°any codeword.

Example 8.2.10 Continuing Examples 8.2.1 and 8.2.9, the message m(z) =
14 2% « 10100... corresponds to the walk starting at state 000, then moving to
states 100,010,101,010,001,000,000,... in turn. The labels on-these directed
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edges are 11,10,10,01,01,11,00,... respectively, and this is precisely the code-
word to which m(z) is encoded (in interleaved form; see Example 8.2.5).

Also, given a codeword, we can easily recover the corresponding message.
Consider the codeword

¢=001101110101011100....
The walk in the state diagram that produces ¢ proceeds through the states
000,000,100,110,011,101,010,001,000,000. ..

(of course, all codewords start at the zero state 000). Since, at each tick, the
message digit is the first digit in the state to which the register moves, the
message corresponding to ¢ is produced by writing down the first digit in each
of the states in the walk other than the initial state:

m=011010000 ...

Exercises

8.2.11 (a) Find the state diagram, and its representation in tabular form, for
the (2,1,2) convolutional code with generators gi{z) = 14 2® and
golz)y =14z + 22

(b) Use the state diagram to encode the following messages:
(i) m(z) =1+22
(i) m(z) = 1+ z + 22

(c) Use the state diagram to find the message corresponding to the
following codewords:

(i) 11 01 00 01 11 00 ...
(i) 00 11 10 01 01 10 00...

8.2.12 (a) Find the state diagram, and its representation in tabular form, for
the (2,1,3) convolutional code with generators g;(z) = 1 + z +
2® +z° and gy(z) = 1 4+ 22 + 23,

(b) Use the state diagram to encode the following messages.
(i) m{z) =1+ 2°
(i) m(z) =142+ 2°
(i) m(z) =14+z+22+... =2,z

(c) Use the state diagram to find the message corresponding to the
following codewords.
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(i) 11 10 00 01 00 10 10...
(ii) 00 11 01 10 01 10 00 ...

8.2.13 (a) Find the state diagram, and its representation in tabular form, for
the (2,1,4) convolutional code with generators g;(z) = 1 + 2% + z*
and go(z) = 1+ 2 + 22 4+ z.
(b) Use the state diagram to encode the following messages.
(1) m(z)=1+z+=2*
(i) m(z)=1+z+2°
(iii) m(z) =142+ 2+ ... = T2, 2%
Compare your answers to those of Exercise 8.2.3.

8.2.14 For 1 < k < m/2, we can similarly define a state diagram for (n, k,m)
convolutional codes. The states are all binary words of length m+1 —k
and for each state s = s, Sk41,...,5m and for each binary word u of
length k there is an edge directed from state s to state u, sz, 8g1q,.- .,
Sm—i that is labelled with the output when the registers Xy, X1,..., Xm

contain u, sk, Skt1,---,8m (for & > 1, here we are using the encoding
description of shifting k message digits into a single shift register at
each tick).

Find the state diagram for the (n,k,m) convolutional codes with the
following generators.

(a) g1(z) = 14+ z+12%g2(z) = 1+ z+ 2% +2°, and g3(z) = 1+ 22 +2°,

with k=1

(b) g1(z) =1+42%,g5(z) = 1 + = + 2°, and g3(2) = z + 22 + 23, with
k=2 |

(¢) gi(z) =14+ 2% go(z) =z + z?“, and g3(z) = 1 + = + 2% 4 2% + 24,
with k=2

8.3 Decoding Convolutional Codes

Clearly, decoding convolutional codes is going to be somewhat different from
the decoding of other codes because each codeword has infinite length. To avoid
storage problems, decoding must begin before the entire codeword is received, so
it is natural to consider how long we should wait before beginning to decode. For
example, consider Cy, the (2,1,3) convolutional code with generators ¢, (z) =
1+2 +2° and go(z) = 1 + 22 + 2° (the state diagram for this code in Figure
8.6 will be useful in the following discussion). Suppose that the received word is
w(z) =1+ 11000000 ... = w. We know that codewords correspond to
directed walks in the state diagram that start at state 000, but clearly there is
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no directed walk that would give an output of w. Therefore we are faced with
finding a codeword that “most closely” fits w; that is, a directed walk in the
state diagram with an output that is close to w.

If we know all of w, then the directed walk that never leaves state 000 pro-
duces the codeword ¢; = 00 00 00 ... that is distance 2 from w. It is not hard
to check that every other walk produces an output that differs from w in more
than 2 places, so ¢; is the “closest codeword”. So we decode w to the message
m=000....

However, suppose that our storage capabilities are so limited that at each
tick we have to decode a message digit. At the first tick, we start at state 000
and we see the digits 11 in w. Our best choice is to move to state 100, because
11 is the label on the directed edge from state 000 to state 100, so is an output
that agrees with the received digits of w. Therefore we decode the first message
digit as 1. At the second tick, we are in state 100, we see the digits 00 of w
and so we are in a quandary: moving to adjacent state 010 or 110 produces an
output of 10 or 01 respectively, both of which are distance 1 from the received
digits. We are forced to make an arbitrary decision, knowing that errors have
occurred during transmission that we have been unable to correct. So we have
decoded w to either ¢; = 11 10 ... or to ¢, = 11 01..., with the most likely
message being m = 1 * ... (we write * whenever we face an arbitrary decision
between decoding a 0 or a 1). Notice that if we decode *, then the next current
state must also be arbitrarily chosen from the two states adjacent to the current
state.

Consider one further possibility, where we can store two ticks worth of infor-
mation before decoding. So now we can begin by considering all walks of length
2 from the zero state and compare their labels with the first 2 ticks of w, namely
11 00, to obtain the information in Figure 8.7. Two of the walks are closest to

Walk Qutput Distance from 11 00

000, 000, 000 00 00 2
000, 000, 100 00 11 4
000, 100, 010 11 10 1
000, 100, 110 11 01 1

Figure 8.7: Information for the first decoding decision

11 00, the part of w that we have seen so far. However this is not-a problem,
because both of these walks agree that we should first move to state 100. These
two walks only disagree as to where to proceed after state 100, but that decision
need not yet be made; we make that decision after receiving another two digits of
w. Therefore we make the decoding decision to move to state 100 and decode the
first message digit as 1. Now we use the second and third ticks of information of
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w, namely 00 00, to make the next decoding decision. We consider the distance
from 00 00 to the output of each walk of length 2 from the current state 100
(see Figure 8.8). In this case there is a unique closest walk to the piece of w we

Walk Qutput Distance from 00 00

100, 010, 001 10 01 2
100, 010, 101 10 10 2
100, 110, 011 01 11 3
100, 110, 111 01 00 1

Figure 8.8: Information for the second decoding decision

are currently considering. That walk is 100,110,111, so we make the decoding
decision to move to state 110 and decode the second message digit to 1.

Exercises

8.3.1 Let C be the (2,1, 3) convolutional code with generators g;(z) = 1+z+
2% + 2% and g3(z) = 1 + 2% + 2° (the state diagram for C' is constructed
in Exercise 8.2.12). By forming tables similar to those in Figures 8.7
and 8.8, decode the first 4 message digits of the received word w =
11000000 ... «~ 1+ z = w(z) by waiting for

(a) 2 ticks before decoding,
(b) 3 ticks before decoding,
{c) 4 ticks before decoding.

Decode the “message digit” * if two closest walks disagree as to which
state to move. If an * is decoded, assume that the message digit 0 is
decoded to determine the next current state.

Notice that if we decide to wait 7 steps before decoding, then a decoding
decision looks at all walks of length 7 from the current state, compares each
such walk to the 7 ticks of information of the received word currently in our
possession, then moves to the next state in all walks that most closely agree
with w. Another tick of w is received before another step is taken. Also, if two
closest walks to w disagree as to which state to move to (as was the case at
the second tick when we chose 7 =¢1), then we could arbitrarily select one of
the states. Call this decoding algorithm the ezhaustive decoding algorithm for
convolutional codes (because all walks of length 7 from the current state are
considered for each message digit to be decoded), and call 7 the window size
(since 7 is the amount of w we “see” when making each decoding decision).
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Clearly the amount of time we wait before making a decoding decision is
affecting our answer to what is the closest codeword. The problem now is to
see if there is a happy medium, between making a decoding decision at every
tick and decoding after all of the received word has been seen, that allows all
error patterns of a certain type to be corrected. But this raises another question:
which error patterns can be corrected? We will obtain several answers to this
question, then in each case address the problem of how long to wait before
decoding.

First, however, we need to consider yet another problem! Consider the
(2,1,3) convolutional code with generators g;(z) = 1+ 2% and g5(x) = 1+ z +22.
The state diagram for this code is in Figure 8.9.

[100] 10 [110
01 06 1
00(Yo00] 10 00

1
1
01 010 101 01
11
01 0 10
001]

11
10
11 iOll]

Figure 8.9: The state diagram of a catastrophic convolutional code

Suppose that the codeword transmitted is the zero codeword, with corre-
sponding message m = 000. .., and that the received word is

w=11 10 00 00... < 1+z + 2% = w(z).

Decoding w is simple because it is a codeword, as can be seen from the state
diagram, following the walk through the states 000, 100,110,011,101,110,....
In this case we presume that no errors occurred during transmission, and so
we assume that the most likely messageism =110110... & To(z® +
£**1), This is a disastrous situation because in fact what happened was that
the first three digits were transmitted incorrectly (we were assuming that ¢ =
00 00... was sent) and this led us to make infinitely many errors in decoding
(because we decoded m = 110110... instead of m = 000000.. .). Fortunately
it is easy to see what the problem is: the state diagram has a cycle, other than
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the loop on the zero state, in which every directed edge is labelled with the
zero output. Whenever such a cycle occurs, this problem of finitely many errors
during transmission causing infinitely many decoding errors can occur. Define
the weight of a walk (or cycle) in the state diagram to be the weight of the
outputs on the directed edges in the walk. Then a convolutional code is called
catastrophic if its state diagram contains a zero weight cycle different from the
loop on the zero state. (The loop on the zero state in any convolutional code
has weight 0. Why?) It is not hard to prove that a (2,1,m) convolutional
code is catastrophic precisely when the ged(gi(z), g2(z)) # 1. Notice that in the
convolutional code we are considering, g1(z) = 1+ 2° = (1 + 2)(1 + = + z?), so
ged(gi(z),g2(z)) =1+ z+ 2" #1.

Exercises

8.3.2 Find the ged{gi(z), g2(x)) for each of the following (2,1,m) convolu-
tional codes to decide if the code is catastrophic. If the ged £ 1 then
find a zero weight cycle in the state diagram other than the loop on the
zero state.

(a‘) gl($)=1+x and gg(z):1+z+x2+z3
(b) gi(z) =1+ z+2* and go(z) = 1 + 2% + 2*
(C) 91($)=1+$+$2andgz(:c)=1+$+x3+$4

Throughout the rest of this chapter we shall assume that the codes are not
catastrophic.

We now return to the questions of how long to wait before decoding and which
error patterns can be corrected. Obviously we should begin by considering the
minimum distance, d of a convolutional code (this is often called the minimum
free distance). We observed earlier that convolutional codes are linear, so d is the
weight of a non-zero codeword of least weight. Since we are only considering non-
catastrophic convolutional codes, a non-zero, finite weight codeword corresponds
to a walk that leaves the zero state (so that the weight of the codeword is non-
zero) and at some time returns to the zero state and stays there forever more
(so that the weight of the codeword is finite). Notice that for a non-catastrophic
code, if ever a walk leaves the zero state it must accumulate some positive weight
because there are no zero weight cycles other than the loop on the zero state. For
example, in Figure 8.6, the walk through the states 000,100,010, 001,000,000 ...
has weight 6 (corresponding to the codeword 11 10 01 11 00 00.. . of weight 6), as
does the walk through states 000,100, }10,111,011,001, 000,000 (corresponding
to the codeword 11 01 00 00 10 11 00 00...), but all other walks have weight
greater than 6. Therefore the minimum distance of the code C; is d(C;) = 6.
(An algorithmic procedure for calculating d{C) will be presented in the next
section.)
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Exercises

8.3.3 Find the minimum distance for the convolutional codes with the follow-
ing generators (the state diagrams for these codes were constructed in
Exercises 8.2.11, 8.2.12 and 8.2.13).

(2) g1(z) = 1+2% and go(z) =1 +z + 2’
() gi(z) =1+ +2>+2° and gy(z) = 1+ 2% +2°
(c) gi(z) =1+ 2%+ z* and 92(33)=1+.'E+:1:2+x4_

Having calculated the minimum distance, we should at least try to correct all
error patterns of weight at most |(d—1)/2]. But now the second question arises:
how long should we wait before starting to decode? Recall that d(C}) = 6, yet we
found that if we use the exhaustive decoding algorithm with window size 7 = 1
then the received word w = 11 00 00. .. was not decoded to 00 00 00.. ., so this
error pattern w of weight 2 < 3 = [(d(C1) — 1) /2] is not corrected. However w
is corrected to 00 00... if we wait “forever”.

Define the length of a walk to be the number of directed edges in the walk
(count each directed edge as many times as it appears in the walk). If all error
patterns of weight at most e are to be corrected then the time 7(e) that we must
wait before decoding should be long enough so that all walks of length 7(e) from
the zero state that immediately leave the zero state have weight greater than 2e.

To see this, suppose that the zero codeword is sent and at most e errors occur
during transmission (by the linearity of convolutional codes, there is no loss of
generality in assuming that the zero codeword is sent). Using the exhaustive
decoding algorithm with window size 7(e), after 7(e) ticks we compare the labels
on all walks from the zero state that have length 7(e) to the first 7(e) ticks of
the received word w, then select the closest walks to determine to which state
we should move. Of course, to decode correctly we should decide to stay at the
zero state since we are assuming that the zero codeword was sent. By the choice
of 7(e), all walks that immediately leave the zero state have weight greater than
¢ after 7(e) steps, so disagree with the first 7(e) ticks of w in more than e
positions. On the other hand, the walk that never leaves the zero state has
weight zero, so is distance wi{w) < e from the first 7(e) ticks of w. Therefore

none of the walks that immediately leave the zero state are closest walks, and
so all closest walks to w over the first 7(e) ticks agree that we should stay in the
zero state. As we noted when considering the information in Figures 8.7 and 8.8,
no further decoding step is made until we receive another tick of w. However,
having received such new information, the same argument can be repeated, thus
showing that indeed we decode w correctly. In fact, this argument proves that
we can decode w correctly if at most e errors occur in any 7(e) consecutive ticks
of the received word. So we can correct infinitely many errors, providing we
never get more than e errors in some 7(e) consecutive ticks. (This is similar to
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the situation with block codes of finite length since for such codes, errors are
corrected providing at most e errors occur in any codeword. )

Therefore we now know how long to wait. Given a non-catastrophic convo-
lutional code C, for 1 < e < [(d — 1)/2] define 7(e) to be the least integer =
such that all walks of length = in the state diagram that immediately leave the
zero state have weight greater than 2e.

Notice that the exhaustive decoding algorithm with window size 7(e) requires
that we consider all walks of length 7(e) from the current state for each message
digit to be decoded. Constructing all 27(¢) such walks at each tick is very time
consuming, so we will present a faster algorithm in Section 8.4. However, at
least we now have the following result. 7

Theorem 8.3.4 Let C be a non-catastrophic convolutional code. For anye,1 <
e < |(d—1)/2], if any error pattern containing at most e errors in any 7(e) ’cm:—
secutive steps occurs during transmission, then the ezhaustive decoding algorithm
using the window size 7(e) will decode the received word correctly.

Example 8.3.5 Consider again C;, the convolutional code with generators
91(z) = 14z + 2% and go(z) = 1 + 2% + 2° (Figure 8.6 is the state diagram of
C}). Since d(C;) = 6, we consider both e = 1 and e = 2.

e=1 All walks of length 2 immediately leaving the zero state have weight
more than 2e = 2. At least one walk of length 1 immediately leaving the zero
state has weight at most 2e. Therefore 7(1) = 2.

e =2 All walks of length 7 immediately leaving the zero state have weight
more than 2e = 4 (this takes some checking!). At least one walk of length 6 imme-
dlate.:ly leaving the zero state has weight at most 2e : 000,100,110,111,011,001
100 is such a walk. Therefore 7(2) = 7. (The faster decoding algorit7hm éo be;
presented in Section 8.4 will also calculate 7(e) quickly.)

‘ Theor(?m 8.3.4 says that if we use the exhaustive decoding algorithm with
window size 7(1), then all error patterns with at most ¢ = 1 errors in any
7(1) = 2 consecutive ticks will be corrected. So for example, the error pattern

e; =10 0001 00 01 00 10...

VYiH be corrected. Also, if we use the exhaustive decoding algorithm with window
size 1(2)', the'an all error patterns with at most e = 2 errors in any 7(2) = 7
consecutive ticks will be corrected. So for example, the error pattern

ez =11 00 00,00 00 00 00 ...

w?ll be corrected. .Notice though that Theorem 8.3.4 does not guarantee that e,
will be corrected 1‘f we choose e = 1 (there are 2 > e errors in the first tick of
€z), nor that e; will be corrected if we choose e = 2 (there are 4 > ¢ errors in
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e2), nor that e; will be corrected if we choose e = 2 (there are 4 > e errors in
the first 7(2) = 7 consecutive ticks of e;). So, unlike the situation with block
codes (of finite length) where there was no reason to consider e < |(d —1)/2],
for decoding convolutional codes we have to make such a decision, choosing e so
that the “most likely” (in some sense) error patterns will be corrected.

Exercises

8.3.6 For each of the following codes C and for 1 < e < |(d(C) — 1)/2/, find
7(e)(d(C) is found in Exercise 8.3.3, the state diagrams were found in
Exercise 8.2.11, 8.2.12, and 8.2.13).

(2) g1(z) =147%and g2(2) =1 + 2+ 27
(8) (@) = Lo +57 4% and go(e) = 12+
(c) gz(m)=1+m3+$4 andgz(az)=1+m+$2+z4

8.3.7 What happens if you try to calculate 7(e) when e > [(d —1)/2]?

8.4 Truncated Viterbi Decoding

In this section we present a truncated Viterbi decoding algorithm for (2,1,m)
binary convolutional codes. This algorithm only makes 2™ calculations and
stores 2™ walks of length 7 at each tick, compared to calculating and storing 27
walks of length 7 that the exhaustive decoding algorithm requires. It’s worth
mentioning at this point that in practice the window size T is chosen to be
somewhere between 4m and 6m (a number which is often considerably more
than 7(e)); this choice is based on probabilistic arguments that show that with
such a choice of the window size, “very few” error patterns will be decoded
incorrectly. So storing 2™ walks instead of 27 walks is a considerable saving in
both time and space.

The truncated Viterbi decoder is faster than the exhaustive decoding algo-
rithm because, for each state s, at most one walk of length 7 from the current
state to s is stored. We briefly describe this decoder, then present the algorithm
more formally. Let the received word be w = wq, wy, - ... Recall that for: >0,
w; is an n-tuple since we are representing codewords and received words in inter-
leaved form. Therefore, because we are considering the case n = 2, w; consists
of 2 digits (the 2 digits received at time i). '

For the first m ticks the decoder is still storing all walks from the zero state.
However at time m, there are 2™ walks, each ending in a different state, sot =m
is the first time at which we have exactly one walk ending in each state. As the
decoder builds the 2™ walks, it calculates how far the output of such a walk is
from the received word and stores that distance together with the walk.
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Once t > m, for each state s = sg,8y,...,Sm—1 there are 2 states from
which there are directed edges to state s; these 2 states are of course S, =
$1,52,+++y8m~1,0 and Sy = s3,82,...,8m-1,1. At t = m the decoder stores
walks Wy and W; from the current state to Sy and S; respectively, as well as the
distances d(So;t) and d(Si;t) of W, and W, respectively to the received word.
For t > m, at tick ¢ the distance between w,_; and the outputs on the directed
edges from Sp and S to s are added to d(So,t — 1) and d(Sy,t — 1) respectively;
the smaller of these two sums becomes d(s;{) along with the extension of the
walk Wy or W, (whichever gave the smaller distance) to state s.

The walks are stored as a sequence of message digits, rather than a sequence
of states or a sequence of outputs on directed edges. Once t > 7, a message digit
is to be decoded at each tick. The states with the smallest distance function
d(s; ) are considered: if the walks stored in each such state agree on which state
to move to (that is, the walks have the same oldest message digit), then this
message digit is decoded; if not all walks agree then we will flag the decoded
message digit by decoding to * (we could just arbitrarily decode to 0 in these
51.tuations, but it helps to see where neither message digit is obviously best).
Since we have now decided upon this message digit, it can be removed from all
stored walks. So the length of the stored walks is now reduced to 7 — 1, but will
be increased back to 7 when these walks are extended at tick ¢ + 1. ’

A.Igori'thm 8.4.1 (Truncated Viterbi decoding of (n,1,m) convolutional codes
with window size 7). Let wow ... be the received word.

1. (Initialization) If ¢ = 0 then define

W(s;t) =s**...% (of length 7), and
d(s;t) = 0 ifsis t'he zero state, and
oo otherwise.

2. (Distance calculation) For t > 0 and for each state s = 80,51, -

 ySm-1
define T

d(s;t) = min{d(sy,52,...,8m-1,0;t — 1) + do(s),
d(s1,82, -, Sm-1, 15t — 1) + dy (s)}

where d;(s) is the distance between w,_; and the output on the directed
edge from sy,59,...,5,_1,% to s.

3. (Walk calculation)

(a) If. d.(sl,.. 38m-1,5¢ — 1) + di(s) < d(s1,...,5m—1,7;t — 1) + dj(s),
{i,5} = {0,1}, then form W (s;t) from W(sy,...,Sm—1,4; — 1) by
adding the leftmost digit of s to the left of W{st,. . 8mo1,5;t — 1)
and then deleting the rightmost digit. “
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(b) d(s1,...,5m-1,0;¢— 1)+ do(s) = d(sy,.-. » Sms 1;t—1)) +di(s) fo'rr‘n
W(s,t) from W(s1,...,8m-1,0;¢ — 1) by addmg.the leftmc‘>s.t digit
of s to the left of W(sy,...,Sm—1,0;f — 1), replacing each dlsxt that
disagrees with W(sy,...,8m-1,1;¢ — 1) with %, and then deleting the

rightmost digit.

4. (Decoding) For t > 7, let 5(2) = {s|d(s;t) < d(s';¢) for all states s'}. If the
rightmost digit in W(s;t) is the same, say 1, for all s€ S(t) then decode
the message digit 4; otherwise decode the message digit *.

Remarks Notice that the leftmost m digits in W (s;t) necessarily e‘qua.l s, 50
do not need to be stored. In Exercise 8.4.6 a generalization of Algorithm 8.4.1
is presented that decodes (n, k,m) convolutional codes.

Example 8.4.2 Consider the code C; with gi(z) = 1+ z 4 2° anfi g2(z) =
1+ 2%+ 2% Let w = wewywy...=110000... & 1+ z be the recel.ved woxfd.
We considered this example in some detail in Section 8.3. Choo'se a window size
of 7 = 7(2) = 7 (see Example 8.3.5). Recall that the state diagram for Ci is

Figure 8.10.

Figure 8.10: The state diagram of C,

t =0 Define W(s;0) = s**x*x for all states s, define d(000;0) = 0 and
d(s';0) = oo for all states s’ other than the zero state. .
t=1w,_; = wo = 11. From step 2 of Algorithm 8.4.1 , we consider each

tate in turn.
Sem 000 d(000;1) = min{d(000;0) +2,d(001;0) + 0}

= min{2, 00}
=2
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(The fact that dy(000) = 2 follows from observing that the output on the directed
edge from state 000 to 000 is 00, which differs from we = 11 in 2 positions.
Similarly d;(000) = 0 since the output on the directed edge from state 001 to
000 is 11 which differs from wg in no positions.) Using the notation of step 3a
of Algorithm 8.4.1, this minimum is achieved when i = 0, so we form W(000;1)
from W(000,0) by adding the leftmost digit of state 000 to W(000;0) = 000#x**
and then deleting the rightmost digit; therefore W(000; 1) = 0000 % .
s=100: d(100;1) = min{d(000;0) + dy(100),d(001;0) + d;(100)}

= min{0 + 0, 0o + 2}

=0.
Again the minimum is achieved when i = 0, so we form W (100; 1) from W (000; 0)
by adding the leftmost digit of s = 100 to W(000;0) then deleting the rightmost
digit; so W(100;1) = 1000%*x.
s=010: d(010;1) = min{d(100;0) + dy(010),d(101;0) + d;{010)}

= min{oo + 1,00 + 1}

= 0.
In this case we use step 3b, since the mininum is achieved by both terms. We
have

i

W(100;0) = 100%##*, and
W(101;0)
W(010; 1)

i

101 %*x%, so
010 %% %%,

i

The fourth “digit” of W(010;1) is an * because W(100;0) and W (101;0) disagree
in this position.

Similarly, we can calculate W(s;t) and d(s;t) for the remaining states. Al-
together we have calculated the following.

State

s t=20 =1
000 0, 000%*#x 2, 0000
100 | oo, 100%*** 0, 1000%*x*
010 | oo, 010k*x* o0, (10%%*%
116 | 0o, 110%*#* 00, 110%*%*
001 o0, ;001**** 00, 001 % x%%
101 | oo, 1014sk** o0, 101x%%x
011 00, 011#*%* 00, 011 #%*x%
111 | oo, 11lss** 00, 111k

(Each entry in the above table is: d(s; ), W{s;t).)

Notice that the tabular representation of the state diagram lists beside each
state s, the output on the edges directed in to s in the state diagram. These are
precisely the outputs needed in the calculation of do(s) and dy(s), so the tabular
form is extremely useful here. We shall include it in the following tables.
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Continuing the decoding process for ¢ = 2 and ¢ = 3, we obtain the following
(notice now w; = 00 and wz = 00).

State Output
s= X X; Xo | Xa=0 ]| Xz=1 =2 t =3
000 00 11 2,00000%+  2,000000%
100 11 00 4,10000*+ 4,100000*
010 10 01 1,01000«% 5,010000%
110 01 10 1,11000%* 5, 110000+
001 01 10 00,001 %%+ 2,001000%
101 10 01 00,101*%**  2,101000+
011 11 00 00,011%***x 3,011000+
111 00 11 | oo, 111#%x 1,111000%

Notice that we have reached ¢ = 3 = m. At this point d(s;t) < oo for all
states s. This represents the fact that there is a walk of length m from the zero
state to each other state. Until this point, when calculating the minimum value
of the set in step 2 of Algorithm 8.4.1, one of the two values was co. For ¢ > m,
this is no longer the case.

t = 4 ws = 00. Consider each state in turn.

s=000: d(000;4) = min{d(000;3) + do,d(001;3) + d1}
= min{2 + 0,2 + 2}
=2
with the minimum being achieved when 7 = 0; so W(000;4) is produced from
W(000; 3). Therefore W(000;4) = 0000000.
s=100: d(100;4) = min{d(000;3) + do,d(001;3) + d1}
= min{2 + 2,2 + 0}
=2
with the minimum being achieved when ¢ = 1; so W(100;4) is produced from
W(001;3). Therefore W(100;4) = 1001000.
s=010: d(010;4) = min{(100;3) + d.,d(101;3) + ds}
=min{4+1,2+1}
=3
(where dj is the distance from ws to the output on the directed edge from state
100 to state 010, so dg = 1, and d; is the distance from ws to the output on the
directed edge from 101 to 100, so d; = 1). Therefore W(010;4) is produced from
W(101;3); so W(0101;4) = 0101000.

Proceeding similarly for each other state we get the following.
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State %p_ut_

s Xa=0|X3=1 =4
000 00 11 2,0000000
100 11 00 2,1001000
010 10 01 3,0101000
110 01 10 3,1101000
001 01 10 |4,0011000
101 10 01 4,1011000
011 11 00 1,0111000
111 00 11 3,1111000

t = § wyq = 00. Consider each state in turn.

5=1000: d(000;5) = min{d(000;4)+ dy,d(001,4) + d}

=min{2 + 0,4 + 2}

=2, and
0000000.
min{d(000;4) + do, d(001;4) + d,}
min{2 + 2,4 + 0}

=4,
In this case, d(000; 4)+do = d(001;4) +d;, so fom step 3b, W(100:5) is produced
from both W(000;4) and W(001;4) by putting an * whenever they disagree,
géding the leftmost digit of 100 to the left and deleting the rightmost digit.
ince

W (000; 5)
s=100: d(100;5)

i

i

Il

W (000;4) = 0000000, and
W(001;4) = 0011000,
we get  W(100;5) = 100+%00.

Proceeding similarly for the remaining states and then for ¢ = 6 and 7 pro-
duces the following information.

State Output
s Xz=0]Xzg=1|t=35 t =26 t=7

000 00 11 2,0000000 2,0000000 2,0000000
100 11 00 4,100%+00 2,1001110 4,100%%*x*
010 10 01 3,0100100 3,0101110 3,0100111
110 01 10 3,1100100 3,1101110 3,1100111
001 01 10 2,0011100 4,001%%10 4,001%1%1
101 10 01 2,1011100 4,101%+10 4,101x1%1
011 11 00 3,0111100 3,0111010 3,0111001
111 00 11 3,1110100 3,1110010 3,1110111

. Finally we have reached t = 7. We can now decode our first message digit
using step 4 of Algorithm 8.4.1. In this case, S(7) = {000} since d(000;7) =
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2 < d(s;7) for all states s # 000. Therefore the first message digit we decod‘e
is the rightmost digit in W(000;7), namely 0. The rightmost digit in W(s;7) is
no longer used, so is discarded at ¢ = 8 when constructing W(s;8) (see step 3 of
Algorithm 8.4.1). .

The following table continues the decoding for several more ticks.

State
s t =28 t=9 =10 t=11 t=12
000 2,0000000 2,0000000 2,0000000 2,0000000 2,0000000

100 4,100% %%  4,100%%kx 4, 100%#%%  4,100x*xx  4,1000000
010 5,010% %%+ 5,010%%*x 5010%%%x 5,110%*x%x 501005 %%
110 5,110%#%% 5 110%#%k 5,110%%%%x  5,110%%xx  5,1100%
001 4,00T#+*x+ 4,0011101 4,0011100 6,001%xx  6,001%x*x*
101 4,101%%*%x  4,1011101 4,1011100 6,101s*%* 6,1015***

011 3,0111011  3,0111001 5,0111%%* 5, 1110%%x  5,01110%x*
111 3,1110011  5,111x##% 5, 1110%%% 5,1110%** 5,1110%*x*
Decode to: 0 0 0 0 0

Example 8.4.3 Again consider the code C; of Example 8§.4.2 and let w =
11000000 1000... + 1+ z + z% be the received word. Again we will apply
Algorithm 8.4.1 using a window size of 7(2) = 7 (see Example 8.3.5). The
calculations are the same as in Example 8.4.2 until ¢ = 5, at which point the z®
term in w(z) comes in to play.

State Output
s | X3=0]Xz=1 t=4 t=5 t=6 t=7

000 00 11 2,0000000 3,0000000 3,000%xx0 3,0000%%*
100 11 00 2,1001000 3,1000000 1,1001110 3,1001001
010 10 01 3,0101000 2,0100100 4,010%%x0 2,0100111
110 01 10 3,1101000 4,110%100 4,110%**0 2,1100111
001 01 10 4.0011000 1,0011100 3,0010010 5,001 x%%x*
101 10 01 4,1011000 3,101%100 3,1010010 5,101 %%x*
011 11 00 1,0111000 4,011x100 4,0111x10 4,01110%1
111 00 11 3,1111000 4,111%100 4,1110%10 4,1110%:*x*
Decode to: h 1

In this case, at ¢ = 7 the message digit 1 is decoded. If we assume the zero
word was sent, then the third error introduced in w(z) has caused the decoder
to decode incorrectly.

Exercises

8.4.4 Continue decode w(z) in Example 8.4.3 for t = 8,9,10,11 and 12. Will
the decoded message digit be 0 for ¢ > 127
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8.4.5 Again using the convolutional code C; with ¢(z) = 1 + z + 23 and
92(z) = 14+ 2% + 2*, use Algorithm 8.4.1 with a window size of T(2) =7
to decode the following received words. Continue decoding until ¢ = 9.

(a) wz)=1+2>=10010000...
(b) w(z)=14z+2+11100000...
{c) w(x) =242+ 2" = 0001 0000100010 00...

8.4.6 Algorithm 8.4.1 can be gencralized to decode (n, k,m) convolutional
codes as follows. (The state diagrams for such codes are defined in
Exercise 8.2.14.)

1. Same as Algorithm 38.4.1.

2. For all £ > 0 and for ecach state sq,,,....5,_x define
d(s;t) = muin{d(sk, s S ust = 1) 4 dy )

where u ranges over all binary words of length k and where d,, is
the distance between w,.; and the outpul on the directed edge
from state s, ..., 8,1, © 10 state s in the state diagram.

3. (a) Ifd(sk, ., Smop,uit—1)+d, < d{sk, ... Sm_k,v;t—1)4+d, for
all v 5 u then form W(s;t) from Wi(sg, ..., smoi,ujt — 1) by
deleting the rightmost & digits from it and adding the leftmost
k digits of s to it.

(b) Ifd(sk, ..., Smk,u;t—1) is not the smallest value for a unique
choice of u, then we could form W(s: ¢) by choosing any such u
and proceeding as in 3(a). Alternatively, as in Algorithm 8.4.1,
we can take a combination of all the walks Wisky- ooy Smop,ust—
1) for which d(sk, ..., smk,ujt—1)isa minimum, placing an
* in any position where 2 such walks disagree.

4. For t > 7, let S(t) = {sld(s;1) < d(s';) for all states s'}. Decode
the message digits My, Mag ... My, where my, is the itk digit in
the rightmost k digits of W(s, ), for all s € S(¢), unless two such
walks disagree in the ith position in which case M = *.

Check that this is a generalization of Algorithm 8.4.1.

There are several comments that should be made concerning Algorithm 8.4.1.
First, there are other ways to define the decoding step, step 4 of Algorithm
8.4.1. For example, it could be argued that decoding should not take place until
the walks to each state agree on the rightmost digit (that is, the digit used for
decoding). However in such an algorithm we might need to wait for many ticks
before any decoding can be done, thus raising the problem of open ended storage
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requirements. Another variation of step 4 of Algorithm 8.4.1 would be to delete
each walk in which the rightmost digit disagrees with the message digit currently
being decoded (because such walks choose to move to a different state). This
decoding technique poses theoretical problems in the analysis of the algorithm,
as it is conceivable that such a decoding algorithm might itself impose infinitely
many decoding errors after a finite burst of errors during transmission.

Second, we should ask if we can still prove a result as strong as Theorem 8.3.4
for the truncated Viterbi decoder of Algorithm 8.4.1. The answer is no, because
this truncated Viterbi decoding algorithm takes some time to recover from errors
imposed on the codeword during transmission. To see why there should be a
difference between the two algorithms, consider tick ¢ = 2 in Example 8.4.2.
When using the truncated Viterbi decoding algorithm, the walk staying in state
000 “remembers” the 2 errors that occurred in w at tick ¢ = 1 when w,_; = 11.
It remembers the errors because d(000;2) = 2. In Example 8.4.7 we will see
that the effect of these 2 errors lasts until ¢ = 12. On the other hand, for the
exhaustive decoding algorithm the 2 errors affected the decoding decision at tick
t = 1, but had no effect for ¢ > 2 (recall that for ¢ > 2, the walks of length 7
from state 000 were all compared to wy_y,wy,. .., Wirr—2 = 00...0, a portion of
the received word that agrees exactly with the walk staying in the zero state).

We shall now be more precise about how long errors during transmission will
affect the decoding when using the truncated Viterbi decoder with window size
7(e) defined by Algorithm 8.4.1. We begin with some definitions. Let w(s,s’)

be the weight of a least weight path from s to s’ in the state diagram. Suppose -

that state s(t) is the correct state at some tick ¢ (that is, s(z) is the state the
codeword sent is in at tick ¢). Then the decoder is defined to be e-ready at tick
t if the following conditions hold:

(1) d(s';) > d(s(¢);t) + min{l + e, w(s(t), s)} for all states s’ # s(¢), and
(2) if w(s(t),s") < 1+ e then W(s';t) = s'v (of length 7), where v is defined
by W(s(t);t) = s(t)v. CF

Example 8.4.7 Consider Example 8.4.2. The correct state for all ¢t > 1 is
s(t) = 000, since we are assuming that the codeword sent was the zero word.
Since in this case m = 3 is small, it is not hard to calculate w(s(t), s') = w(000, s)
for all states s’ # 000 from the state diagram:

w(000,100) = 2,w(000,010) = 3,w(000, 001) = 4,(000,110) = 3,

w(000,101) = 4,w(000,011) = 3,(000,111) = 3.

The first time that the decoder is 2-ready in Example 8.4.2 is at ¢t = 12. To
see this, notice the following observations.
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At ¢ =10,d(001;10) =4 < 5 = d(000;10) + min{1 + e,(000,001)}, so (1)
in the definition of e-ready is not satisfied.

At ¢ = 11, all states satisfy (1) in the definition of e-ready, but w(000, 100) =
2<3=1+eand W(100;11) = 100%+*+ % 100v (since W(000;11) = 0000000 =
s(11)v, so v = 0000).

At t = 12, all states satisfy (1). ' = 100 is the only state with w(000, ¢') <
1+ e, and W(100;12) = 1000000 = 50000 = s'o.

The following result demonstrates, the value of being e-ready.

Theorem 8.4.8 Let C be a non-catastrophic convolutional code which is decoded
using the truncated Viterbi decoder of Algorithm 8.4.1. At tick t, if the decoder
is e-ready, then correct decoding will occur if at most ¢ errors are subsequently
made during transmission.

This result makes sense of the name e-ready. However, clearly this result is
still much weaker than Theorem 8.3.4. A guard space is defined to be a time
period of error-free transmission following a burst of errors. To obtain a result
comparable to Theorem 8.3.4 would require knowing how long a guard space
is required before the decoder is e-ready. For the exhaustive decoder, Theorem
8.3.4 says that the guard space required is 0 (if we think of e-ready as meaning
that any subsequent error pattern of weight at most e will still result in a received
word that is decoded correctly). It turns out that it can be proved that the guard
space required for our truncated Viterbi decoder to become e-ready after a burst
of errors is finite, and that the length of the guard space is known for some

convolutional codes where m is small. The closest we can get to Theorem 8.3.4
is the following result.

T}?eorem 8.4.9 Let C be a non-catastrophic convolutional code whick is decoded
using the truncated Viterbi decoder with window size 7(e) of Algorithm 8.4.1. If
the error pattern can be partitioned into bursts of errors, each of weight at most

e and each followed by a sufficiently long (finite) guard space, then the decoder
will decode correctly.

Exercises

8.4.10 (a) Apply Algorithm 8.4.1 using a window size of 7(2) = 6 to decode
the received word w = 11 00 00... & 14z = w(z) that was
originally encoded using the (2,1,2) convolutional code with gen-
erators g;(z) = 1 + 2% and g5(z) = 1 + = + 2. Continue decoding
to show that the decoder is 2-ready at ¢ = 10, assuming that the
zero word is the codeword that was sent (so the correct state s(t)
is the zero state, for all ).
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(b) At ¢t = 9 the decoder is not 2-ready, so Theorem §.4.8 does not
guarantee that any subsequent error pattern of weight at most
e = 2 will be decoded correctly. Show that if at ¢ = 10 and at
t = 11, the digits in the received word are each changed to 10, (so
the received word is w(z) = 1 + z + 2'® + 2%°) then the decoder
decodes an * at t = 12.

8.4.11 For each of the received words in Exercise 8.4.5, find the smallest ¢ such
that at tick ¢ the decoder is 2-ready.

Finally, we return to the calculation of d(C) and 7(e). In both cases we have
to find weights of walks from the zero state that immediately leave the zero state.
To find d(C) we want the weight of such a walk that has the smallest possible
weight, to find 7(e) we want the length z such that all such walks of length at
least = have weight more than 2¢. We can modify the truncated Viterbi decoder
of Algorithm 8.4.1 to do both these tasks. First, by assuming that the zero word
is sent, the distance function is simply measuring the weights of the walks, as we
now require. Second, to force the walks to immediately leave the zero state, we
simply define d(00...0;1) = co. This has the effect of removing the walk that
stays at the zero state from consideration, since the only walk remaining with
d(s; 1) being finite is the walk to s = 100 ...0 (that is, the walk that immediately
leaves the zero state). Third, we need not store the walks W(s;t) since they are
of no concern in these calculations. Fourth, we need to recognize the answer! For
any non-catastrophic code, every finite weight walk returns to the zero state and
remains there. At each tick ¢,d(s;1) is the weight of a least weight walk of length
t that immediately leaves the zero state (in view of the second consideration)
and ends in state s. Also, if at tick ¢ d(s;¢) > d(00...0;¢) for all states s then
d(00...0;¢) = d(00...0;t) for all ' > ¢ {because from Step 2 of Algorithm
8.4.1 it is clear that for any state s', d(s’;¢') = mins{d(s;#' — 1)}). Therefore
d(C) = d(00...0;¢). Similarly, once d(s;t) > 2e for all states s, all walks of
length ¢ that immediately leave the zero state have weight more than 2e. So
(e} is the first tick t such that d(s;t) > 2e for all states s. Therefore we have
the following modification of Algorithm 8.4.1 to find d(C) and 7(e).

Algorithm 8.4.12 (For finding d(C) and 7(e) for a non-catastrophic {n,1,m)
convolutional code). Let wi(s; s’) be the weight on the edge in the state diagram
directed from s to s'.

1. If t = 1 then define

d(s;t)___{ g(oo...o;loo...o) if s=100...0

otherwise

2. For ¢ > 1 and for each state s = sg,...,8n_1, define

d(s;t) = min{d(s1,- .., $m-1,0;t — 1) + wi(s1,-- ., 8m-1,0; ),
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d(s1, 0y Smar it = 1) +wt(sy, .., 8, 15 8) )
3. If d(00...0;t) > d(s;1) for all states s then d(C) = d(00...0;¢).

4. If d(s;t) > 2e for all states s and if d(s':¢ — 1) < 2e for some state s’ then
7(e) = t.

Remark. If we assume that w = 000... is the received word, then Algorithm
8.4.11 is essentially Algorithm 8.4.1 except that d(00...0;1) is defined to be oo
and W (s;t) is never calculated.

Example 8.4.13 We find d(C) and 7(e),1 < ¢ < [(d(C) — 1)/2] for the con-
volutional code C; with generators g,(z) = 1 + z + 2% and go{z) = 1 + 2% + 2%
{These were previously calculated in Example 8.3.6 and in the text before Exer-
cise 8.3.5.) We follow the format used in Example 8.1.2 when applying Algorithm
8.4.1.

State Output

s X3 = Xz=1jt=1 2 3 4 5 6 7 8 9 10
000 00 11 o oo o 66 6 6 6 6 6
100 11 00 2 o o 4 6 4 6 6 6 6
010 10 01 o0 3 o~ 5 3 5 5 717 7
110 01 10 0 3 < 3% 5 5 5 7717 7
001 01 10 o oo 4 6 4 6 6 6 6 6
101 10 01 o o0 4 6 4 6 6 6 6 6
011 11 00 00 c©o 5 3 5 5 5 5 5 7
111 00 11 c©o o 3 35 56 5 5 7T 7

At ¢ =10,d(000;10) > d(s; 10) for all states s, so d(C) = d(000;10) = 6 (by

Step 3 of Algorithm 8.4.11).

Since 1 < e < [(d(C} —1)/2], we consider e = 1 and e = 2 in turn.

If e =1 then d(s;2) > 2e for all states s and d(100;1) = 2 < 2e. Therefore
7(1) = 2 (by Step 4 of Algorithm 8.4.11).

If e = 2, then d(s;7) > 2e¢ for all states s and d(100;6) = 4 < 2e, Therefore
7(2) = T (by Step 4) of Algorithm 8.4.11).

Exercises

8.4.14 For each of the convolutional codes C with the following generators,
use Algorithm 8.4.11 to find d(C) and 7(e) for 1 < e < |(d(C) —1)/2].
Compare your answers to those of Exercises 8.3.3 and 8.3.6.

(@) g1{z) =142 and gy(z) = 1 + = + 22
(b) gr(z) =14z + 2%+ 2% and go(z) = 1 + 22 + 23
(c) g1(z) =1+ 2%+ 2% and go(z) = 1 + 7 + 2% + z%.



Chapter 9

Reed-Muller and Preparata
Codes

9.1 Reed-Muller Codes

In Chapter 3, we gave a method of constructing Reed-Muller Codes, RM{r,m)
and established many basic properties. Recall that these are linear (n, k, d) codes
withn =2 k=737, (T) and d = 2™, In this section we will give an alter-
nate construction of these codes; one that is better suited to decoding.

As with Reed-Solomon and other codes we will label the coordinate positions
of words of length n = 2™, this time by vectors in K™. As a matter of conve-
nience and consistency we will label coordinate position 7 with vector u; € K™,
where u; is the binary representation of the integer 7, with digits in reverse order
(low order digit first); call this the standard ordering of K™,

Example 9.1.1 Standard ordering for
K* is (00,10,01,11), and for K* is (000, 100,010, 110,001, 101,011, 111).

Any function, f, from K™ to {0,1} has a unique representation or vec-
tor form v = (f(uo), f(w),..., f(ugm_y)) € K™ where u; € K™ n = 2™ and
Ug, U1, . - ., Ugm_1 15 the standard ordering of vectors in K™ as described above.

We are interested in a certain class of basic functions. Given a subset [ -
{0,1,...,m — 1}, define a function

fr(zo, 21, ... 2me) = { Il—LEI(xl +1 1§ ﬁ i g

(fr is a function mapping K™ to {0,1}). Define v; to be the corresponding
vector form of f;.

219
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Example 9.1.2 Let m = 3, so n = 2.

(a) ¥ I = {1,2} then fi(zo,21,72) = (21 + 1){z2 + 1). The vector form
of fr2y(%e, 21,72) is formed by taking each of. the elements zoz 7, €
K? (using the standard ordering) and evaluating f12y(%0,%1,%2). So
f{l.Z}(Ovovo) = 1:f{1»2}(170’0) = I’f{lﬁ}(O’lvO) = O7f{1,2}(17170) = 0,
F.23(0,0,1) =0, fr123(1,0,1) = 0, fu (0,1, 1) = 0 and fy32(1,1,1) = 0.
Therefore vy = 11000000.

(b) If I = {0} then fi(zo,x1,22) = (2o + 1) and v; = 10101010.
(c) If I =0, then fyp(zo,z12,) = 1 and v; = 11111111

There are two facts about the function f;, which we will use later.

First of all, fi(zo,21,---,%m-1) = 1 if and only if z; = 0 for all 2 € I.
Thus in Example 9.1.2(a), I = {1,2}, fi{zo,z1,%2) = (=1 + 1){z2 + 1) and
f(ToOO) = (0 + 1)(0 + 1) =]forzy € {0, 1}

Second, for each u; € K™ fr(w;)fs(u;) = fIU_,(u,-) and thus

2m -1

vrevy = Zf{(ui)fJ(“i)
i=0
2m_1

= Z f[UJ(ui)

=0

= wt(vIUJ)(mon).

We will use Z,, to denote the set of integers {0,1,2,...,m —1}.

Exercises

9.1.3 Let m = 4, so n = 2*. For each of the following choices of I, subsets of
Zy, find fr and vy:

() I'=1{0,3} () I=1{23}
(b) I=1{0,1,3} o) T=10
() I={1) 0 1=z

9.1.4 Let m =5, so n = 25. For each of the following choices of I, subsets of
Zs, find fr and vy

(a) T=1{0,2,4} (d) I={1,2,4}
(b) I=1{0,1,3,4} (e) I=90
(c) I={1} (f) I=2Zs.
9.1.5 Let I be a subset of Z,,. Use the first fact above to show that wt(vy) =
om={I|_

9.1.6 If v is a linear combination of vectors of the form vy, when will v have
even weight?
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9.1.7 Let m =4, s0n = 2%. For I = {0,1,3} and J = {2,3}, compute v; - vy.

The Reed-Muller code RM (r,m) can be defined as the linear code {vr]I C
Zoy [I) < 7}). We claim that § = {oll CZn Il <r}isa linearly independent
set (see Exercise 9.1.10), and thus a basis for RM(r,m). By counting the number
of words vy with I C Z,, and |7} < r, we have that for RM(r,m)

k= (™) 4 (™ R L
—\o 1 r)’
and clearly n = 2™. Of course the words v; can be arranged in any order to
form a generating matrix for RM(r,m). We define the generating matrix G,
of RM(r,m) to be in canonical form if the rows are ordered so that vy comes

before vy if [I| < |J], or if 1 = |Jl, fi(u;) < fi(x;) and fr(w) = fi(u) for
t> 7.

E

Example 9.1.8 The generator matrix for R(4,4) in canonical form is G 4 given
in Figure 9.1. For convenience, we have written vz as v3 (and similarly for
the other subscripts). This ordering follows from the definition as the following
examples indicate. If 7 = {3} and J = {2,3}, since |I| < |J|,vs = vy precedes
v23 = vy. If I = {2,3} and J = {0,2} then fr{us) = fy(w) for ¢ > 10 but
Sfr(uie) = 0 < 1 = fs(ug) (of course, u; in the standard ordering of K* is
0101). Therefore vq3 = v precedes Voo = vy.

Now it is easy to see that Goa, G4, Gaq and ('3 4 are simply the submatrices
of Gy, formed by the first <g> =1, (g) + (;‘) = 5, (;) + (‘;) + (;) = 11 and
(8) + (‘1‘) + (‘;) + (g) = 15 rows respectively.

Exercises

919 Fmd (a) Gz,g (b) G2,4 (C) G375 (d) G(),]o

9.1.10 Show that for all r < m, {v;lI] < r, T C Zn} is a linearly independent
set. (Hint: Arrange the words in this set so that vy comes before vy if,
for some j, fr(u;) = fi(w) for j +1 < i < m and fr(u;) > fi(u;). Or,
more formally, use induction on m and r.)

Encoding is done, as for any linear code, by multiplying a message by Grm.
Then any codeword ¢ can be written as

c= Z myvy,

IC Zm [1I<r

(where the message digits are labelled m 1 to correspond to the rows v of G, ,,).
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4,4 =

1111111100000000
1111000011110000
1100110011001100
1010101010101010

1111000000000000
11001100000600000
1010101000000000
1100000011000000
1010000010100000
1000100010001000

1100000000000000
1010000000000000
1000100000000000
10000000100600000

1111111111 111111]

11000000000000000 |

Uy
U3
(%]
U1
Vg

V2,3
V1,3
Vg,3
V1,2
Vo,2
Vo,1

V1,2,3
V0,2,3
V0,1,3
Vo,1,2

Vo,1,2,3

Figure 9.1: The generator matrix Gq4.
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Example 9.1.11 Encoding the following messages m using G4 results in the
corresponding codeword c.

(a) If m =1 0000001000 (so mg =1 and mq3 = 1) then

c= 1y +vgz = 0101010111111111.

(b) Tf m = 00101 001001 (50 my = mg = mg3 = mg, = 1) then

€= vy + vy + vg3 + vgy = 0111100011010010.

Exercises
9.1.12 Encode the following messages using G 4.

(a) 00101 000000
(b) 00000 000001
(c) 00100 001000

9.2 Decoding Reed-Muller Codes

We shall decode the Reed-Muller codes using an casily implementable pro-
cess known as majority logic decoding. To understand this, we shall need some
preliminary results. For any I C Z,,, define I = Zx\I to be the complement of
lin Z,,.

Let Hy = {u € K™|f(u) = 1}. Recall fi(zo,...,2m-1) = [Lics(zi +1) = 1 if
and only if z; = 0 for all ¢ € I. Clearly if z,y € Hy, then z; = 4 = 0 = z; + y;
for all i € I, thus z +y € Hj. Therefore H; is a subspace of K™.

For any u = (z0,21,...,2m-1) € K™ and for any ¢ = (t5,t1,...,tp_q) € K™,
define another function fr4(zo,21,...;2m-1) = fi(zo + to,. .., Tmoq + tpe1) =
fi(z +t) and define v, to be the vector form of fra

We will be interested in finding vy, - vyey, and so we need to count the
number of words u € K™ for which f; (u)fse,(u) = 1. By the definition of
Hy, fia(u) = frilu+¢) = 1ifand only if u +¢ = v/ € Hj, or equivalently
u=1u'+t¢€ Hy+1t, where H; +t is the coset of H; determined by t. And the
value of f1s(u)fre (u) = [licr(zi+5:+1) []jese(z; +¢;+1) remains the same for
all choices of =} € {0,1},k € Z,,\(JUJ®). As there are 2"~ Ul such choices
for u as u ranges over the elements of K™, the number of times

Frs(u)fres(u) =1

is a multiple of 27~HU7l and thus even unless IIUJ®| = m; that is, unless

I J° = Z,,. However, if we assume that I} < |J] then [J¢] < {I°]. So [TUJ¢| =
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|+ 1J¢| = INJ°| < m unless I = J. If I = J then there is only one u € K™
for which fr,.(x)fre (u) = 1, namely the u for which z; = s; for all 7 € I and
z; =t; for all 1 € I°.

Of course, finding the number of places where f1,(u) fse, (1) = 1 immediately
gives vy, - Ve, 50 we have the following result.

Lemma 9.2.1 Let I and J be subsets of Z,,, with \I| < |J|. For any s € Hye
and for anyt € Hy,

Vig-vgey =1 if and only if I = J.

Now we can easily obtain the following result which is the basis of the de-
coding scheme that we shall use.

Corollary 9.2.2 Ifcis a codeword in RM(r,m) and if |J| = r then my = c-vje,
foranyt € Hy.

Proof: If |J| = r then for any t € Hy,

CVjer = z TV - Ve = IMGUy - Vjeg = Mj.
1CZm lII<r
since by Lemma 9.2.1, the only dot product in the sum which is not zero is the
one with [ = J. O

Lemma 9.2.3 Let J C Z,,. For any word e (of length 2™),e - vjey =1 for at
most wi(e) values of t € Hy.

Proof: Recall that for any subspace S of K™, two words are in the same coset
in the coset decomposition of S precisely when their sum is a word in S. Also,
Hj is a subspace of K™ and the only word in both H; and H e is the zero word.
It follows from these observations that no two words of H; occur together in a
coset of Hye. Therefore as ¢ ranges over the elements of Hj, Hyc +t forms the
coset decomposition of Hje.

The result now follows since if #; # t, are two different elements of Hj, we
have just shown that (Hy + £;1)(He + t2) = 0, s0 vyey, and vyey, have no
positions in common where both the digits are 1. Therefore each of the wi(e)
non-zero digits in e affects exactly one of the values of ¢ - vyc; as t ranges over
the elements of H;. a

We can now obtain a decoding algorithm as follows. Let w = ¢+ e be a
received word where ¢ is a codeword in RM(r,m); so ¢ = 3 icz,, mivi, where
Il < r. Let J € Z,,, be a set of size r. Then by Lemma 9.2.3, - vje; = 0 for at
least |H ;| — wt(e) values of ¢ in Hj; for such values of ¢ we have that

W-Vjey = C-Ujeg+€-Vjey

Il

c- 'UJc1t
my (by Corollary 9.2.2)

il
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So if 2wt(e) < |H;l, as ¢ ranges over the elements of H;, more than half of the
w - vyey will be my.

Once my has been calculated in this way for all J C I, with |J| = 7, let
w(r = 1) = w4+ Y= myvy. Now w(r — 1) can be decoded by treating it as
a received word that was encoded using RM(r — 1,m). This process can be
continued until m; has been found for all J C I, with |J| <.

Before summarizing this algorithm we make note of the fact that this al-
gorithm corrects all error patterns of weight less than |H;|/2 where |J| < ».
However by Exercise 9.1.5, |H;| = wt(vy) = 2™Vl So all error patterns of
weight less than 2™~ are corrected and therefore RM(r,m) has minimum
distance at least 2~7. However, if [ C Z,, and |I] = r then v; is a codeword in
RM(r,m) and has weight 2”77, so we have another proof of the following result:

Lemma 9.2.4 The minimum distance of RM(r,m) is 2™77.

Algorithm 9.2.5 Majority logic decoding of RM(r,m). Let w be a received
word.

1. Let 1 = r and let w(r) = w.

2. For each J C Z,, with [J| = 4, calculate w(i) - vse, for cach t € H),
until either 0 or 1 occurs more than 2™~} times and let my be 0 or 1
respectively; if both 0 and 1 occur more than € = 27"~ — 1 times then
ask for retransmission.

3. If ¢ > 0 then let w(i — 1) = w(?) + ¢ 5, myvy where |J]| = . If w(i —1)
has weight at most ¢ = 2™~"~1 — 1 then set my = 0 for all J C Z,, with
|J] < r and stop. Otherwise replace ¢ with i — 1 and return to step 2. {If
¢ = 0 then mj has been calculated for all J C Z,, with IJ] < 7, so the
most likely message has been found.)

Example 9.2.6 Use Algorithm 9.2.5 to decode the received word w =
0101011110100000 that was originally encoded using G 4.

Begin with ¢ = r = 2 and w(2) = w.

From the computations of Figure 9.2 we see that mg3 = 0,m13 = 0,mg3 =
0,my2 = 0,mp2 =1, and mq; = 0. Then

w(l) = w(2) 4+ vg2 = 1111 0111 0000 0000

and 7 = 1.

Again from the computations of Figure 9.3 we conclude that my = 1,m, =
0,my =0, and mg = 0.

Let w(0) = w(1) — vz = 0000 1000 0000 0000 and let i = 0. Since w(0) has
weight at most e = 1, set mp = 0 and stop.

So the most likely message is 0 1000 000010, (since messages were encoded
using G 4).
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Ly

{0, 1}

{0, 2}

{1, 2}

{0, 3}

{1, 3}

{2,3}

Figure 9.2: Majority logic decoding of RM(2,4), Step 1 (see Example 9.2.6)
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Figure 9.3: Majority logic decoding of RM(2,4), Step 2 (see Example 9.2.6).
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Exercises

9.2.7 Messages are encoded using the generator matrix Gy 4. If possible de-

code the following received words:

(a) w= 01110101 1000 1000

(b} w = 0110 0110 0001 0000

(c) w = 0101 1010 0100 0101

(d) w = 1110 1000 1001 0001

(e) w = 0011 0000 0011 0100

(f) w = 1001 0110 0101 1010

{(g) w = 1010 1000 1010 0000

(h) w = 0011 1100 0001 1100

(i) w = 1001 1101 0001 1101

9.2.8 Messages are encoded using the generator matrix Go5. If possible de-

code the following received words:

(a) w = 1100 1006 1110 0000 1100 0000 1100 0100

(b) w = 0101 0111 0101 1000 1000 1000 0111 1010

(c) w=00110011 1111 0011 0011 Q011 1111 1111

(d) w = 01000000 1111 1111 0000 1100 0000 1111

(e) w = 1001 0101 0110 1001 1001 0111 0110 1010

(f) w=0011 1111 0011 0011 1100 1100 1100 0100

(g) w = 0100 0100 1111 1111 0000 1100 0000 1111

9.3 Extended Preparata Codes

In this section we shall refer to the coordinate positions of words of length 27
by using the elements of GF(2). This labelling of the positions was also used
when considering BC H codes, although there the field element 0 was never used
as a label. So for any subset U consisting of elements of GF(27) let x(U) be the
word of length 27 which is

1 in position 1 if felU(for0<i< — 2),
1 inposition 2"—1 if 0€U, and
0 otherwise

(where, as usual § is a primitive element of GF(2)).

[V
[
0
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Example 9.3.1 Let 3 be a primitive element of GF(23). Then

x({0}) 000000001,
x({8%,. 6%, 8°}) 00100110, and
x(8) = 00000000.

i

Il

For any element « and any subset U of elements of GF/(27), let U + o =
{u+ aju € U} and let @l = {aulu € U}. Also, for any two subsets U/ and V
of elements of GF(27), define the symmetric difference UAV of U and V 1o be
{zlz € UorzeVbutz ¢ UNV}. Then it is easy to sce that x(UU) + x(V) =
x(UAV).

Example 9.3.2 Let GF(2%) be constructed using 1+a+25. Let U = {§?, 5%, 5%}
and let V = {#°,0}. Then

U+ 3% ={B*+ 5, 8°+ 8, 8° + 8°} = {0, 5%, £°},
B2U = {p*p%, 5°8°. 3°6°} = {B*,5° B}, and

V(U)+ x(V) = 00100110 + 00000101,
= 00100011,

= x(#,8°0}),
= x(UAV).
Definition 9.3.3 The extended Preparata code P(r) is the set of codewords

of the form x(U) followed by x(V) where U and V are subsets of elements of
GF(27) which satisfy

(i) |U] and |V] are even,
(i) Tuev v =Teev v,
(i) Tuev v+ (Lueuw)® = Loev v°, and
(iv) r is odd.
We denote such codewords by [x(U), x(V}].

Example 9.3.4 Construct GF(2%) using 1 +z + 2°. Let U = {5, 5, 4°,0} and

let V = {8° 8, 8% 8%, 8°%,0}. Clearly (i) and (iv) of Definition 9.3.3 are satisfied.

Also .
du=p8+pF+ 4 +0=010+001 + 111 4+ 000 = £°,

uelU

Sv=p"+ B+ +F+°+0=100+ 010 4 001 + 110 + 101 + 000 = £°,
veV
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so (ii) is satisfied, and

doud=p4 4%+ +0=110+ 101 + 010 + 000 = 3%,
uel

STt =p+ 82+ %+ B+ B+ 0 =100 + 110 + 101 + 001 + 011 4 000 = g°,
veV

so (iii) is satisfied since B2 + (8°)® = f° Therefore [x(U), x(V)] = 01100101
11110011 is a codeword in P(3).

Since both x(U) and x(V) have length 27, P(r) is a code of length 27+1.

Notice that whether or not 0 is an element of U or of V does not affect any
of the calculations in (ii), (iii) or (iv) of Definition 9.3.3. So 0 is only used in
U or V to make |U] or |V]| even. Therefore the digit in position 2"7* of x(U) is
simply a parity check digit for x(U), and similarly the digit in position 2" — 1 of
x(V) is a parity check digit for x(V).

It turns out that P(r) is not a linear code as the following result suggests
(see Theorem 9.3.18). Therefore P(r) does not have a dimension.

Lemma 9.3.5 Suppose that [x(U),x(V)] and [x(A),x(B)] are codewords in
P(r). Let o = Y cpu. Then [x(UAA + a),x(VAB)] is also a codeword in
P(r).

Proof: We check conditions (i), (ii), and (iii) of Definition 9.3.3 are satisfied by
(UAA+ @), x(VAB)).

(i) Since |U],|V],]A| and |B| are even,

i

[VAB
[UAA +af

[V]+|B] - 2|V () B] is even, and
[UAA] (see Example 9.3.2)
U]+ |A] = 2|U() A is even.

(i) First notice that for any subsets I and J of elements of GF(27), Yocelag T =
Yeer T+ ¥ .y T since any element 8 in both I and J is counted twice on
the right hand side and not at all on the left, but 26" = 0. Therefore

Yoz= 3 (yt+a) = 3 y+alUAA4]

zeUAA+o yeUAA yeUODA

= > y+ Y y+0, (since [UAA]is even) ,
yeU yEA

= D y+ )y

yeV y€B

= T o

yeVAB
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(i)

) $“+( ZZ«Q3= Ej(y+af+( ij>3

reUAA4+o U DA+ yeUAA yeEVAB
3
= Y (y+aP+ 3 (w+a)+ (Zy+ Zy)
yeU yEA yEV yeB
= Yy tad ¥+’ Y y+allUl+ 3y +a)d y’
yeU yeU yel yEA yeEA

2

e g (5] ¢ (5] (504 (54) (50)
-z

2 .
But o = L cpyand 50 3 ey = Lpeny = @ Also, (Zyev y) =3 ev y? and
again we use the fact that |{'] and |A| are even. Therefore the above expression

reduces to simply
DY = Y R

yeV yEB yeEVAHLB
d

Even though P(r) is a non-linear code. it does have some properties in com-
mon with linear codes.

Definition 9.3.6 A code is distance invariant if for any pair of codewords ¢; and
¢y, the number of codewords distance 7 from ¢; equals the number of codewords
distance ¢ from ¢; for 1 < i< n.

So for any distance invariant code that contains the zero word, it follows
immediately that the minimum distance is the weight of a non-zero codeword of
smallest weight.

Corollary 9.3.7 P(r) is distance invariant.

Proof: Let [x(U),x(V)] and [x(A), x(B)] be codewords in P(r) that are dis-
tance ¢ apart. By Lemma 9.3.5, [x(UAU + a),x(VAV)] and [x(UAA + &),
x(VAB)] are both codewords, and it’s not hard to see they must also be dis-
tance ¢ apart. Since UAU = §, [x(UAU + a), x(VAV)] is the zero word and so
X(UAA + a),x(VAB)] is a codeword of weight . a

The following lemma, lists various properties of P(r). These can be proved
using the same ideas as were used in proving Lemma 9.3.5, and so are left as
exercises.
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Lemma 9.8.8 Suppose that [x(U), x(V)] is a codeword in P(r). Then P(r) also
contains the following codewords:

(D) [x(V), x(U)),

(i1) [x(U + a),x(V + a)] for any o € GF(27) and
(i) [x(al), x(aV)] for any a € GF(2"),a #£ 0.
Example 9.3.9 From Example 9.3.4, (U), x(V)] is a codeword in P(3) where

- U={8,6%06°0} and V = {5° 8, 6%, 5%, 5%0}. By applying Lemma 9.3.8 with

a = % we find that the following are also codewords:

(i) [x(V), x(U)} = 11110011 01100101,

(ii)

(U + @), x(V + a)]

Il

(X({8°, £°, 82, 8°}), x({8, 8% £°,0, 8, 3°})]
10110100 11011101,

I

(i)

x(al),x(aV)] ({8, 8°,8,01), x({8°, 8%, B°, B°, 8%, 0})]

01001101 00111111.

Exercises

9.3.10 Apply Lemma 9.3.8 to the codeword [x(U), x(V)] defined in Example
9.3.9 by using

(@) a=p° (b)a=p (c) a=p°

9.3.11 Why is [x(aU), x(aV)] not a codeword when « = 0 (this possibility is
excluded in Lemma 9.3.8)?

9.3.12 Show that the three words formed in Example 9.3.9 satisfy Definition
9.3.6.

We can use Lemma 9.3.8 to simplify the problem of finding the minimum
distance of P(r), but first we need one more lemma which indicates the reason
that we require r to be odd.

Lemma 9.3.13 If § is a primitive element of GF(27) then B° is a primitive
element if r is odd and is not primitive if 7 is even.
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Proof: We know that £ is primitive if and only if the greatest common divisor
of 2 and 2" — 1 is 1; that, is ¢ and 27 — 1 are relatively prime. (Exercise 5.1.18).
If r is odd then 2" — 1 = 1 (mod 3) and if r is even then 2" — 1 = 0 (mod
3) (this is easy to prove, say by induction). So if r is even then we can write
27— 1 = 3z for some integer z and #° is not primitive. However if r is odd then
write 27 — 1 = 3z + 1 and clearly 5° is a primitive element. 0

Corollary 9.3.14 If 8 is a primitive element of GF(27) and if m is odd then
Jor each nonzero element z of GF(27) there is a unique element y (called the
cube root of ) such that y® = z.

Theorem 9.3.15 P(r) has minimum distance 6.

Proof: Since P(r) is distance invariant, P(r) contains a codeword of weight d,

say (X(U),x(V)). Then
d = wi(x(U)) + wi(x(V)) = U] + [V

By (i) of Definition 9.3.3, d is even so we only need to show that d #2,d+#4
and that there is a codeword of weight 6.

Suppose that d = 2. Then by using Lemma 9.3.8 (1) we can assume that
[Ul =2 and [V| = 0. From (ii) of Lemma 9.3.8 we can assume that {/ = {0,z}
for some z € K;z # 0. But then Pwevu =04z =z and since V = §, condition
(ii) of Definition 9.3.3 does not hold.

Suppose that d = 4. Then again from Lemma 9.3.8 (i) we can assume that
either [U| = 4 and [V| = 0 or |U] = 2 and V] = 2. In the former case,
by Lemma 9.3.8 (ii) we can sssume that U = {0,2,y,2} where z,y and = are
distinct non-zero elements of X7. Then condition (iii) of Definition 9.3.3 gives
that

Ct+z+y®+ 224 (0+z+y+2)°=0, so
@+y)z+2)y+2)=0

which is impossible since z,y and z are distinct and non-zero. In the latter case,
from Lemma 9.3.8 (ii) we can assume that U = {0,z} and that V = {y, 2}, y +# 2.
Then from condition (iii) of Definition 9.3.3 we know that

C+2°+ (042)° =42+ 22

But by Corollary 9.3.14 if y® = 2° then y = » which is a contradiction.

To find a codeword of weight 6, for any distinct non-zero elements z,y and
z of K, let w be the unique (by Corollary 9.3.14) element of K" for which
w? = 2%+ y%+ 2% Also, define u = w+z +y+ 2. Then w is not equal to z,y or
z (since if w = z say, then w® = 23, 50 0 = y*+2°, so by Corollary 9.3.14 y = z)
and u £ 0 (for v’ + (z4+y +2) = (z+y)(z + z)(y + 2) # 0, so by Corollary
93.14 w# +z+y # z). Now let U = {0,u} and V = {w,z,y,2}. Since u # 0
and since w, z,y and z are distinct, X(U), x(V)] is a word of weight 6 and it is
easy to check that it is also a codeword in P(r). o
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Example 9.3.16 Construct K° as in Example 9.3.14. Following the notation
of Theorem 9.3.15, let z,y and z be distinct non-zero field elements, say = =
B,y = 8% and z = 85, Then define

w3=m3+y3+z3

B+ 8%+ B,
110 + 001 + 100,
= B8 (since f7 = 1),
— (ﬁG)Z&7
so w = 3% Now defineu =w+z+y+z =%+ B+ B+ 5 = B4 Then with
U={0,u} ={0,8} and V = {w, z,3 2} = {B%,8,5% 8%}, we have that

i

X(U), x(V)] = 00001001 01010110

is a codeword in P(3) of weight 6.

Exercises

9.3.17 Construct K* with 1 + 8 + 8% = 0. For the following elements z,y and
z of K* define w and u as in Theorem 9.3.15 to construct a codeword
of weight 6 in P(3).

(b)Z=B7y:lH47Z:ﬁ67
() =8y =p%z=p°

Theorem 9.3.18 P(r) is not a linear code.

Proof: As was noted at the beginning of the section, [x(U), x(V)]+ [x(A), x(B)]
= [x(UAA),x(VAB)]. From the proof of Theorem 9.3.15, we can construct
codewords [x(U),x(V)] and X(A),x(B)] of P(r) with U = {0,u,},
V= A{z,p1, 21,01}, A = {0,u;} and B = {z2,92,22,w;}. Then by Lemma 1.5,
c=[X(UAA+w),x(VAB)] is codeword in P(r). Since [UAA +uy| < 2, since
the distance between ¢ and x(UAA),x(VAB)] is at most AUAA+ | < 4
and since P(r) has minimum distance 6, X(U), x(V)] + [x(A), x(B)] is not a
codeword in P(r). Therefore P(r) is a nonlinear code. a

Being nonlinear, P(r) does not have a dimension, and we do not yet know the
number of codewords in P(r) but this number will be obtained as a consequence
of the encoding scheme. '
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9.4 Encoding Extended Preparata Codes

In Section 5.4 we saw that g(z) = mg(z)mgs(z) is the generator of a 2
error-correcting BC'H code with parity-check matrix

p° 8°
Ieh B
H=| 5 IoN (9.1)

ﬂz';‘~2 B3@"=2)

where 8 is a primitive element of GF(27). Recall that deg(g(z)) = 2r. Since
g{z) is the non-zero codeword of smallest degree, no linear combination of the
first 2r rows of H in 9.1 can be zero. In fact, since g{x) generates a cyclic code,
it follows that each submatrix of H formed by 2r consecutive rows has full rank,
and so has an inverse. Define A to be the submatrix of H formed by the last 2r
rows, and let H' be formed by deleting the last 2r rows from H.

Example 9.4.1 Constructing K?® using 1 + z + z°, we have that

010 110 5 B 001 011
001 101 g pe 111 010
3 2 1 1
A=lon [ | =47 =] T T
111 010 g B 101 110
101 011 B pt 111 001

Constructing GF(2°) using 1 + 2® + z° (see Exercise 5.1.15) we have that

00011 01000 00111 00010
0 ooto1 | [ 67 5 Y0011 00011
01111 10001 pg* g% 11011 01010

| 10011 00111 _, _ | 01101 10101
A=111101 11011 | © oo AT =1 0101, 11001
11010 01100 00110 11111
01101 10101 g oo 11001 01110
10010 10011 11000 00111

| 01001 01101 | | 10001 10100 |

Let m = my, mp be any binary word of length 271 — 2r — 2, where my, is
a binary word of length 2" — 1 and mp is a binary word of length 2" — 2r — 1.
Then by using polynomial notation for my, and mg, we have that

(me(B),mr(6*)] < mpH, and
[mr(B),mr(8%)] < mgH.
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Now define
vr = [mr(B) + mr(B), mL(B%) + (mr(B))® + mp(B%)]A™

Theorem 9.4.2 Let r be odd. For any binary word m of length 2+t —2r — 2,
if x(U) = [my,pL) and if x(V) = [m&, vr, prl, where py and pr are parity-check
digits for my, and [mg, vR] respectively, then [x(U), x(V)] is a codeword in P(r).

Proof:

[mr,vRlH = [mg]H' + [vr]4,

[ma(8), ma(8%)] + [mr(B) + mr(B),mL(B) + (ms(8))* + mz(6°)],
= [mp(B),ms(B%) + (me(B))’).

But [mg, valH = [Ceev v, Tvev ¢ Similarly, mp(B) = Cuev u and mp(8%) +
(mp(B)) = Tuer v® + (Tuev u)®. Therefore conditions (ii) and (i1i) of Def-
inition 9.3.3 hold, and clearly conditions (i) and (iv) are satisfied. Therefore
[x(U), x(V)] is a codeword in P(r). 0

Corollary 9.4.3 P(r) has 22" =% ~% codewords.

Proof: In Theorem 9.4.2 there are 22" =27~ choices for m, each giving a dif-
ferent codeword, the remaining digits of the codeword containing m being com-
pletely determined by conditions (i), (ii) and (iii) of Definition 9.3.3. O

Algorithm 9.4.4 (for encoding P(r)). Let my and mg be words of length
97=1 and 27 — 2r — 1 respectively. Let vg be as defined in Theorem 9.4.2. Then
[mL,pL, MR, VR, Pr) is the codeword corresponding to the message m = [mp, mg).

Example 9.4.5 Let r = 3,my = 0110010 and mp = 1. Then
mp(B) = B+ B + B° = B°,mr(f) = B°,

mu(6%) = B0+ F°+ B = B and my (%) = £
From (2.3)

i

(B + 8%, B2+ B + B° + BY1A™Y
[000,001] A~
111001,

VR

i

where A~! was constructed in Example 9.4.1. Then we encode m = [0110010, 1]
to ¢ = [my, pr, mr, vR, P

= [0110010,1,1,111001, 1].
So in the notation used in Section 9.1, ¢ = [x(U), x(V)], where
x(U) = 01100101 and x(V) = 11110011.
This is the codeword of P(3) considered in Example 9.3.4.
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Exercises

9.4.6 Construct K* using 1 + z + 2% A~! was constructed in Example 9.4.1.
Encode the following messages using P(3).
(a) my = 1010100 and mp = 1.
(b) my = 1010100 and mpg = 0.
{c¢) my = 1111111 and mp = 1.
(d) mp = 1111111 and mp = 0.
(e) my = 0000000 and mp = 1.

9.4.7 .Constvruct K using 1+z%+2° (see Exercise 5.1.5). A~! was constructed
in Example 9.4.1 Encode the following messages using P(5).

a

b

my = 10100...0 and mp == 000001000100 ...0.

(
(b) my =10100...0 and mp = 00...0.

)
)
(¢) mz = 10100...0 and mpg = 11110...0.
(d) m, =00...0 and mp =100...0.

9.4.8 In Exercise 9.4.7, what is the length of

9.5 Decoding Extended Preparata Codes

' From Theorem 9.3.15, P(r) has minimum distance 6 so we want an algo-
rithm that corrects up to 2 errors. Let w be a received word and write w =
{wr, pr, wr, pr] where wy, and wg are both words of length 27 — 1 and where p,
and pp are the parity check digits. Then we can calculate [wr(B),w (B3] = wr H

and [wr(B), wr(8%)] « wr(H). We consider various cases depending on where
the errors occur.

L. If errors are confined to the parity check digits then

wL(IB) = wR(ﬂ)’ and
wr(B%) + (wp(B))® wr(B*)

(by Definition 9.3.3 (ii) and (iii)), so this case is easily checked.
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If there are no errors in wy, one error in position ¢ of wr and at most one
error in the parity check digits, then

wr(B) = wr(B)+ Ji vand
wr(B%) + (wi(B))® = wr(B®)+ %, so
(wi(B) + wr(B))® = wr(B®) + (wr(B))® + wr(B);

(by Definition 9.3.3 (ii) and (iii)). If this last equation holds then write
B¢ = wp () +wgr(fB) and change the ith digit in wg and at most one parity
check digit.

. If there are no errors in wp, one error in position 7 of wy and at most

one error in the parity check digits, then using Lemma 9.3.8(i) we can
repeat the steps in case 2 above to find that (wr(B) + wr(8))® = wa(f®) +
wr(B))? + wr(8°); in this case write 5 = wr(f) + wi(B), change the ith
digit of wy, and at most one parity check digit.

. If two errors occur in wpg, say in positions ¢ and j then again by Definition
9.3.3
wr(B) = wgr(B)+ B + B, and
w(B°) + (wi(B))°® = wr(B®)+ 6% + ¥,

so B+ 7 and B¥ + §% are known; ¢ and j can be found in the same
manner as was used for the 2 error-correcting BC H code (see Section 5.5).

. If two errors occur in wy, then, as in case 3 we can use Lemma 9.3.8(i) and

the argument in case 4 to find the locations of the errors.

If there is one error in wy, and one error in wg, say in positions ¢ and j
respectively, then again by Definition 9.3.3

wi(B)+ F = wr(B)+p, and
wi(6) + B + (wi(B) + B = wr(F) + F7.

Il

We can solve these two equations for §° and 7 as follows. From the first
equation,

B =wr(B) + B + wr(B).

Substituting this into the second equation gives

wr(B%) + B% + (wp(B) + B)° wr(B%) + (wi(B) + F)°
(wr(B) + ﬂ':)sz(ﬂ)
(wi(B) + B ywr(B)* + wr(B)°.

il

+ +
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Simplifying this gives

B% + B¥wa(B) + B (wr(B))® + (wr(8))®
= w (%) + wr(F®) + w(B)wr(f) + wi(B)wr(B)?

(B +wr(B)® = (wi(B)+wrl(6%) + (wi(B) + wr(B))*
+U)L(ﬁ)3 + wn(ﬁ)3.
= A, say.
Therefore
/3' = wp(B) + AV, and
B = wy(B)+ A3,

So in all cases we can easily calculate the locations of the errors. The parity
check conditions on each half of w make it easy to decide which of the above
cases.applies to w. Putting all of these observations together we get the following
algorithm. The steps in the algorithm correspond to the cases just considered.

Algorithm 9.5.1 (for decoding P(r)). Let w = [

wr, Pr,wp, pr| be a received

word.

0.
1.

Calculate L; = wy(8), L = wr (%), Ry = wp(B) and Ry = wr(%).

If 1%1 + Ry =0 and Ly + L? + R; = 0 then the only errors occur in the
parity check digits.

- U (L + Ry )*+ L3+ L3 + Ry = 0 then write B* = L1+ Ry. Correct position

) of. wr and af most one parity check digit; ask for retransmission if both
parity check digits need to be changed.

- I (Li+Ry)*+ Ry + R+ Ly = 0 then write B = L+ R;. Correct position

i of' wy, and at‘ most one parity check digit; ask for retransmission if both
parity check digits need to be changed.

- If both halves of w have even parity and

2+ (L + Ry)z+ (La+ L3 + Ry + (L, + R /(L + By) = (2 + F)(z + 5)

for some 7 and j, then correct positions 7 and j of wy,

. If both halves of w have even parity and

2+ (Lit Bz 4+ (Rat B + Lo+ (Lo + Ba)?) /(L + By) = (24 ) (s + §7)

for some 7 and j then correct positions ¢ and j of wpg.
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6. If both halves of w have odd parity, then write 8 = R; + (BL? + R34+ (Lll/j
Ri)®+ Ls+ Ra)'/?, and B9 = Ly + (L3 + R} + (L1 + Ba)® + Ls + Ry)'°.
Correct position ¢ of wy, and position j of wg.

7. If no closest codewords has yet been found then conclude that .at. least
three errors occurred during transmission, and ask for a retransmission.

Example 9.5.2 Decode the following received words which were encoded using
P(3), where GF(2%) is constructed using 1+ z + z°.

(a) 10010011 11100111
(b) 10100100 10001001
(c) 10001000 11101001

Decoding (a):
(0) [L1, Ls] = wpH = [111,110] and [Ry, Ry) = wrl = [101,110].
(1) Ly+ Ry = 111 + 101 = B # 0.
@) In+R)P+ L+ L3+ Ra=+ 5+ 5+ =5 #0.
B) i+ R+ R+ R+ Li =+ + %+ 5 =p°#0.

(4) @2+ Bz + (B2 + B + B2+ B+ f2)[B =2 + Bz + ° = (z + B*)(z + ).

Decode w to 10010011 11001111, Decoding (b):
(0) [L1, Ls] = wr H = [010,011] and [Ry, R3] = wpH = [111,011].
(1) Ly + Ry = 010 + 111 = 5 # 0.
2) (L1 + B>+ Lo+ L + Ry = 25 + B+ 2+ B = ° £ 0.
(3) (L1+ Ry)® + Ry + B} + Ly = '8 + B* + 1%+ f* = * # 0.
(4) and (5) Both halves of w have odd parity.
(6)
ﬂi - '35 + (ﬂ3 + ,315 + ﬂ18 + IB4 + ,34)1/3
ﬂs + (‘35)1/3
ﬂs + (ﬂ12)1/3
5+ Bt
=

il
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so ¢ = 0. Then we can immediately write
F o= pp
= p,
so j = 2. Decode w to 00100100 10101001.
Decoding (c):

(0) [Ly, Ls) = wy H = [111,011] and [y, Rs] = wr H = 100, 000].
(1) Ly+ Ry =11+ 100 = 8* # 0.
@) i+ RaP + Lo+ L3+ Ry =812+ 1 4+ 15 + 0 = 5° #£ 0.
@) (Li+ R+ R+ R34+ Ly =240+ 04 f* = 0.

Let ' =L+ R, = B s0i=4. However, changing position 4 of wy, requires
both parity check digits to be changed, so we ask for retransmission (since we
can find a codeword distance 3 from w).

Exercises

9.5.3 Decode the following received words that were encoded using P(3),

where GF(2°) is constructed using 1 + z + z3.
{a) 10000001, 11101000

(b) 00011010, 01000010

(¢) 00100101, 10100100

(d) 01010110, 00011110

(e) 11101000, 10001001

(f) 10011001, 01010101

{g) 01000111, 11001000

(h) 10101101, 11010000

(i) 11101110, OlOlDlOl

(3) 10111011, 01101010

(k) 01011101, 11101101

(1) 10011100, 10100100
(m) 01101101, 10011000

() 106101010, 10111011

(0) 10100101, 00010001
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9.5.4 Decode the following received words that were encoded using P(5),
where GF(2°) is constructed using 1 + z* + z° (see Exercise 5.1.15).

(a) 11000 11000 10000 00000 00000 10000 10,
00011 11000 00000 00000 00011 00100 00

(b) 10100 00000 10000 00000 00000 00000 00,
00000 10001 0000C 00100 01010 10111 00

9.5.5 If w is a received word, the left half of which has odd parity and. the right
half has even parity, can w every be decoded to a codeword distance at

most 2 from w at Step 2 of Algorithm 9.5.17

Appendix A

The Euclidean Algorithm

The greatest common divisor (or ged) of two polynomials f(z),g(z) € Klz] is
the polynomial d(z) € K[z] of largest degree such that f(z) = ¢,(z)d(z) and
9(z) = go()d(z). In which case we will denote this by g.c.d. (f(z),g(z)) = d(z).

Example A.6 We find the greatest common divisor of f(z) and g(z) assuming
that we know the factorization of f(z) and ¢(z)) into irreducible polynomials
where f(z) =1+ 2 +2°+2°+ 2" + 2% = (1 + 2)(1 + z + 23)(1 + %) and
9(z) = 1+2°+ 2%+ 2° = (1 + z)(1 + 2?)(1 + 2 + 2%). The polynomial of highest
degree which is a common factor of both f(z) and g(z) is 1 + z + z°. Thus

ged(f(z),9(z)) =14z + 2>

Factoring f(z) and g(z), then hunting for the common factor of highest degree,
is not an efficient way to find the greatest common divisor. Below we give a
famous algorithm for accomplishing this task more readily.

Euclidean Algorithm Given f(z),9(z) € K[z] with degree f(z) > degree
g(z) and g(z) #0

1. (Initialize) ro(z) = f(z),r1(z) = g(z),s = 1

2. While ry(z) > 0, divide r;(z) into ri-1(z) and let r;41(z) be the remainder.
That is ri41(2z) = ri-1(z) mod r;(z). Increment i and repeat.

3. ri(z) = 0. Then gcd(f(z),g(z)) = ri1(z).

Note that this Algorithm must stop, after a finite number of steps, since for
each ¢ > 1, the degree of the remainder riy;(z) is less than the degree of the
remainder r;(z).

We can modify this algorithm to produce polynomial #;(z), si(z) € K[z} such
that

ti(2)f(2) + si(2)g(z) = ri(z) for i = 0,1,...

243
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Define
to(z) =1 H(z)=0
so(z) =0 s(z)=1

Assuming that r;_;(z) = ¢:(z)r:(z) + riza1(z) (using the Division Algorithm)
define

() = gia(e)tiza(2) + tiza(2)
5i(z) = go1(x)sic1(z) + sica(z) fori=2,....
Then
ri(@) = (=1)[~t;(z)ro(z) + s;(z)ri(z)]

i

tj(z)ro(z) + sj(z)ra ().
Since we are working over the binary field we can ignore the minus signs.

Example A.7 We use the Euclidean Algorithm to find the greatest common
divisor of the polynomials

f(z)
g(z)

2+ 2P+ 28+ 27
14 2%+ 2%+ 25

i

The computations proceed as follows.
Set 1 = 0,10(z) = f(z) and r,(z) = g(z). Dividing r1(z) into ro(z) yields,

P+t =1+ + o+ )1+ 27+ (1 +2Y).
Thus ro(z) = 1 + z? and g(z) = 1 + 22, Dividing rs(z) into ri(z) yields
1+:53+:1:4+x5=(1+x4)(1+x)+(x+m3).
Thus r3(z) = z + z° and ¢3(z) = 1 + z. Next,
1+t = (z+2%)(z) + (1 + 2.
Thus ry(z) = 1 + z% and g4(z) = z. Next
z+7° = (1+2%)(z) +0,
so r5(z) = 0.
Since the last nonzero remainder is r4(z) = 1+ z%,r4{z) is the required common
divisor of f(z) and g(z):

l+z2=gcd(1 +x3+z4+z5,x2+x6+x7)~
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(We note that the Euclidean Algorithm works for the integers as well.)

ta(z) f(z) + s2(z)g(x)
= f(z)+ (1 +2%)g(z)

72(z)

In this example, we could also compute ti(z) and s;(z) using the quotients
¢:(z) computed in each iteration of (see table below). We claim that for each

ii=0,1,2,3,4
ri(z) = ti(z) f(z) + s:(2)g(z)

It is obviously true for 7 = 0,1, and 7 = 2 since ro(z) + qi(x)ri(z) = ro(z). For
¢ = 3 we have

ra(z)=z+2° = (1+2)f(z)+(z+2%+ z%)g(x)
= (1+z)(z® + 2% +2° + 27)
+Haz+z? + )1+ 2%+ 2+ z%)
and rg(z) =14+2° = (I+z+2)f(z)+(1+2°+ z%)g(z)

1+z z+z2+ 2% | ¢+ 28
142422 | 14+28 421 | 1422
- ~ 0

2 ti(z) si(z) ri(z)
0 1 0 (@)

1 0 1 g(z)

2 1 1+ z? 142t
3

4

Using induction one can prove the following.

Theorem A.8 Ifgcd(f(z),9(z)) = d(x) then there ezist polynomials t(z), s(z) €
K{z] such that

tz)f(z) + s(z)g(z) = d(x).
Exercises

A9 F ind. the greatest common divisor of each of the following pairs of poly-
nomials.
(@) f@)=14+z+2°+25+27,g(z) =1 + 24+ 23 + 25
(b) fleg) =1+22+ 22+ 2", g(z) =1+ 2 + 23
(c) fl=)= 1+m+z4+x5+x8+‘z9,g(:&) =14z 423427
(d) fe)=1+z+22+2°+ 2% g(z) =z + 2%+ z*

A.10 Find ged(f(z), g(z)) for f(z) =1+ 2° and 9(z) as given in each part.
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(@) g(z)=z+z*+ 2t + 2%+ 27 + 28
(b) g(z) = =* +2°

() g(z)=1+z+2*+2*+2°+ 27 + 28
(d) g(z)=1+2*+2°

(e) g(z) =z 4+ 2+ 28+ 2"+ 2° + 28+ 27 + 2° Appendix B

A.11 Find ged(f(z),g(z)) for f(z) =1+ 2'° and g(z) = = + z* + 2* + 25

A.12 Find ged(f(z),9(z)) for f(z) =1+ 22 and F‘dCtOI‘ization Of 1 + :En

g(.’IZ):$+12+$3+x4+I6+$8+I9+$12+213+.’I16+$18.

The factorization of 1 + z™ into irreducible polynomials for 1 < n < 31,n odd.

= JEN IS R JCRTy 1=
—

13
15
17
19
21
23
25
27

29
31

Factorization

1+z

1+z)(14+z+z%

(1+z)(l+z+x2+z3+x“)

(14+2)(1 +z+2%)(1 + 2% + 2°)

El + x%El +z+ z)(1 —}—1(;“5)3 + %)

I+z)I+4+z+...4+2

(1+z)(1+x+...+m12)
(I+z)(ltz+2®)1+z+22+2°+ )1+ 2+ 291 + 23+ 21)
(I+z)(l+z+a®+2' + 25427+ 28)(1 + 2% + 2t + 2° + 28)
1+2)0+z+2>+...+2%)
(I+2)14+z+2)(1+ 22+ 2%)(1 + z + 2°)
(I+2*+2* +2°+ 251 + = + 22 + 2* + 25)
(1+z2)1+z+2°+2°+ 2" + 2% + 1)

(1422 + 2% + 25 + 25 + 210 4 g11)

(1+2)(1 42+ 2% +2° + 2*)(1 + 25 + 210 4 215 4 £20)
(I+2)(1+2z+2?)(1 +2° + 25 (1 + 2° + 278)
Q+z)1+z+...+2%)

(I+2)1+ 22+ 2%) 1+ 2+ 2%)(1 + 2 + 2* + 2% + 2°)
(1+z+x2+z4+$5)(1+$+z3+z4+x5)(1+1:2+x3+a:4+z5)
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Appendix C

Example of Compact Disc
Encoding

Since it would take too much space and time to do an example of Compact
Disc encoding (see section 7.3), let us scale it down to something reasonable to
do by hand. Consider the Reed-Solomon code C over GF(2*) with generator
9(z) = (1 +2)(B+ 2)(8” +2)(B* + 2) = f° + % + B2® + 1% + 2. This is
a (15,11,5) code, which we could shorten to an (8,4,5) code C; or a (12,8,5)
code Cz. These could be delay interleaved by two columns and to a depth of 8.

A message stream such as m would first be encoded, using C;, as c (see below
Table 3.1), using a generating matrix

ﬂ‘i 0 0 ﬂB ﬂlO ﬂ4 ,38 ,33 /37 137 ﬂO IB3
ﬂl [312 133 0 ﬂ7 ﬂs ,34 ﬂlo ﬂ4 ﬁll 53 0
0 0 52 ,84 0 0 ﬁs ﬂ4 '812 ﬂG ﬁs ﬂ4
0 0 0 ﬂ13 0 0 0 ,84 /613 62 ,310 ,313
ﬂl 0 0 0 ﬂ7 ﬁl ,85 . ,313 ﬂl 0 0 0
0 ,33 '32 0 0 ,69 ﬁ13 ,312 ,613 ﬁo ,32 0
0 0 0 o0 0 0 0 0 0 o0 o0 o
m = ﬂ4 ﬁ4 0 ,31 — ¢ = 1310 ﬂz ﬁs 136 ﬂfl 58 ,313 ﬂl
0 0 0 o 0 0 0 0 0 o0 o0 o
0 ¢ 0 0 0 0 0 0 0 o0 o0 o
ﬂl 0 0 0 ﬁ7 ﬂl ,85 ﬁls ,31 0 0 0
0 0 0 o0 0 0 0 g5 g pt gz g
0 0 0 o 0 0 0 0 0 0 o0 o
0 0 0 o 0 0°0 0 0 0 0 o
0 0 0 o 0 00 0 o o0 o o..

Table C.1: Message stream and first encoding
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To delay interleave these codewords in ', they should be viewed as

ﬂlO ﬁ7 0 0 ﬁ7 0

Bt g

0 0

0
i

g Bt g

The columns of this array are then viewed as messages and encoded to codewords

B3

[310 0

ﬂS 0 ﬂZ 1]

0 B
g g
g

=3
2R

in C, with each row of the following array a codeword:

181 ﬂlO
ﬂla ‘37
0 )610
o s
ﬂ13 IH7
0

ﬁ’l
ﬂS
0

168
ﬂ’i
0

ﬂT
0

(2]

S oo Ooc o

ﬂ14
ﬁll
ﬁ({
ﬂg
ﬂlO
,310
ﬂ7
54
'311
ﬂm
‘311
'611
ﬂl
0
ﬂll

o

OO O

ﬁ7
ﬁ‘i
ﬂ8
ﬂlB
@

In binary, these codewords would be:

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
g0
gt 0
ﬂG ,37
ﬂs ﬂll
'314 ﬂ4
ﬂlZ ﬂs
ﬁl ﬁ12
ﬂs ﬂs
ﬂ4 BS
ﬂlO ﬂz
g0

0 ...

0 0 0 ...~
g0 0 0

0 0 ﬁ13 ﬁe

0 g 0 0

0 g 0 B
ﬂS IBIO 0 /32
ﬂB 0 ,34 ﬂ13

RS = R R R e i — S e R R R )
w O

g1
g
B!
B
0

T OO D OO OO OO
- [
w

0...
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0100
1011
0000
0000
1011
0000
0000
0100
0000
0000
1011
0000
0000
0000
0000
0000
0000
0000
0000

1110
1101
1110
1000
1101
0000
1101
0110
0000
1010
1101
0000
1101
0000
0000
0000
0000
0000
0000

1001
0111
1100
0101
1110
1110
1101
1100
0111
1110
0111
0111
0100
1111
0111
0000
0000
0000
0000

1101
1100
1010
1011
0110
1100
1001
0010
1000
0110
0000
0111
0110
1111
0110
0000
1100
1111
0000

1110
1101
0100
0011
0010
1010
0101
0011
0010
1001
0111
0110
0110
1111
0101
1110
1011
0011
1101

0000
0000
1100
0101
0110
0100
1111
1100
0101
1010
0110
0111
1111
0100
0010
1111
0010
0111
0100

0000
0000
0000
0000
1010
1100
0010
1101
0101
0101
0111
0110
0110
1111
0001
0110
1110
0001
0110

0000
0000
0000
06000
0000
0000
0001
1110
0000
1000
1001
1001
1101
1111
0011
0110
0101
0010
1011

0000
0000
0000
0000
0000
0000
0000
0000
1101
1100
0011
0001
1001
1010
0100
1010
1100
1110
0100

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
1101 0000
0111 0000
1100 1000
0001 0000
1111 1110
0101 1110
1010 0100
0001 1100
0000 0000
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0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
0000
1100

‘1011
0000 ...

This could be modulated from 4-bit strings to 6-bit strings (say, having the
property that at least 1 and at most 4 zeros occur between ones ) by using the
following table look-up:

0000
1000
0100
1100
0010
1010
0110
1110

000100
000101
001010
001001
001000
010100
010101
010010

0001
1001
0101
1101
0011
1011
0111
1111

010001
101000
101001
101010
100100
100101
100010
100001

Between 6-bit words, a bit is added (the nor of the two neighboring end bits) to

maintain this property. The original message stream m (see Table 3.1) would
then finally appear as:

001010 1 010010 0 101000 0 101010 1 010010 1 000100 1 000100 1 000100
1000100 1 000100 1 000100 1 000100 0~ 100101 0 101010 0 100010 1 001001
0 101010 1 000100 1 000100 1 000100 1 600100 1 000100 1 000100 1 000100
1~ 000100 1 010010 1 001001 0 010100 1 001010 1 001001 0 000100 1 000100
1000100 1 000100 1 000100 1 000100 1- 000100 1 000101 0 101001 O 100101
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0 100100 0 101001 0 000100 1 000100 1 000100 1 000100 1 000100 1 000100
0- 100101 0 101010 1 010010 1 010101 0 001000 1 010101 0 010100 1 000100
1 000100 1 000100 1 000100 1 000100 1- 000100 1 000100 1 610010 1 001001
0 010100 1 001010 1 001001 O 000100 1 000100 1 000100 1 000100 1 000100
1- 000100 0 101010 0 101010 0 101000 0 101001 0 100001 0 0010060 0 010001
0 000100 1 000100 1 000100 1 000100 1- 001010 1 010101 O 001001 O 001000
0 100100 1 001001 0 101010 1 010010 1 000100 1 000100 1 000100 1 000100
1- 000100 1 000100 0 100010 1 000100 1 000100 0 101001 O 101001 0 000100
0 101010 1 000100 1 000100 1 000100 1- 000100 1 010100 1 010010 1 010101
0 101000 1 010100 0 101001 0 000101 © 001001 O 000100 1 000100 1 000100
0- 100101 0 101010 0 100010 1 000100 0 100010 1 010101 0 000100 0 101000
0 100100 0 101010 1 000100 1 000100 1- 000100 1 000100 O 100010 O 100010
1 010101 0 100010 0 010101 0 101000 1 010001 C 100010 1 000100 1 000100
1- 0006100 0 101010 1 001010 1 010101 0 010101 0 100001 O 010101 0 101010
0 101000 1 001001 © 000101 O 000100 1- 000100 1 000100 0 100001 0 100001
0 100001 0 001010 0 100001 0 100001 0 010100 1 010001 0 000100 1 000100
1- 000100 1 000100 0 1060010 1 010101 0 101001 0 001000 1 010001 0 100100
1 001010 0 100001 0 010010 1 010001 0- 000100 1 000100 1 660100 1 000100
1 010010 0 100001 0 010101 0 010101 0 010100 0 101001 0 010010 1 000100
1~ 000100 1 000100 1 000100 1 001001 ¢ 100101 G 001000 1 010010 0 101001
0 001001 0 010100 1 001010 1 001001 0~ 000100 1 000100 1 000100 O 100001
0 100100 0 100010 1 010001 0 001000 1 010010 1 010001 O 001001 O 100101
0- 000100 1 000100 1 000100 1 000100 0 101010 1 001010 1010101 0 100101 0
001010 1 000100 1 000100 1 000100 7-

Appendix D

Answers to Selected Exercises

Chapter 1

1.2.1 (a) 000, 010, 100, 110, 001, 011, 101, 111 (b) 0000, 0100, 1000, 1100,
0001, 0101, 1001, 1101 0010, 0110, 1010, 1110, 0011, 0111, 1011, 1111 1.2.2 2"

1.2.4 Such a channel can be converted into a perfect channel by replacing
each 1 with a 0 and each 0 with a 1.

1.2.5 Replace each 0 with a 1 and each 1 with a 0.

1.2.6 Nothing can be deduced about the codeword sent from the word re-
ceived.

1.3.4 001 1.3.5 C = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}
(a) Yes. (b) 0101, 1001, 1100, 1111. (c) No. Each word of length 4 which does
not belong to C has 4 different closest codewords.

1.3.78 1.3.816, 32, 2! 1.4.1"1,':;/4, 1/3

1.6.2 (a) pP(1 —p)°*=2-2%x 1078, (b) p" = .81, (c) (1 —p)* = 2-4 x 1078,
(d) p* = 86, (e) p*(1 —p)® =2-4x107% (f) (1 —p)® = 2-4 x 1078, (g)
(1-pf=7-3x1071°

1.6.5 0001110  1.6.6 101101101 1.6.7 00011 1.6.8 100110

1.6.9 110101 or 101000  1.6.10 () é,(vs,w) < dp(vz,w) iff dy < dy (b)
#p(v,w) = (1/2)" for any w and any v.
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1.9.5 If 000, 001, 010, or 011 is received then IM LD decides that 001 was
sent. In all other cases IM LD incorrectly decides that 101 was sent.

1.9.6 000 is decoded as 000. 001, 011 and 101 are decoded as 001. 110 and
111 are decoded as 110. 010 and 100 requires retransmission.

1.9.7  in the following table indicates that retransmission is required.

Received Decoded to:
Word  a b
000 * 000
001 * 001
010 011 010
011 011 o011
100 101 000
101 101 001
110 111 010
111 111 011

1.10.2 (a) L(001) = {000,001, 010,011}. Therefore 8,(C,001) = p*+2p*(1—
p)+p(1-p)’.

(b) L(101) = {100,101,110,111}. Therefore 8,(C,101) = PP +2p*(1—p)+p(1 -
p)?

1.10.4 (a) 6,(C,110) = p® + p*(1 —p)  (b) To decode to 000 only 000 can
be received, so 6,(110,000) = p(1 — p)2.

1.10.5 (a) 6,(C,101) = p®> + p*(1 —p) for all v € C. = (b) 6,(C,v) =
PP +p*(1—p)forallweC.

(c) 6,(C,0000) = p*+3p*(1—p), 6,(C,0001) = p*+3p*(1—p) and 6,(C, 1110) =
p*+4p*(1—=p).  (e) 6,(C,00000) = 6,(C,11111) = p*+45p*(1—p)+10p%(1 —p)2.
(8) 6(C,) = p°+3p'(1 —p) for all v € C.  (h) 6,(Cv) = p° + 6p°(1 — p) +
9p*(1 —p)forallveC.

1.11.2 (a) No (b) Yes (c) No  1.11.3 (a)(i) No (ii) Yes (iii) No  (b)(i) Yes
(ii) Yes (iii) No 1.11.4 None
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1.11.7 (a) 001, 011, 101, 111 (c) K*\{0000,0001,1110,1111}
(e) K5\{00000,11111}. (h) K®\{000000,101010,010101,111111}.  1.11.12
(a)1(b)1(c)1(d)2(e)5(f)3(g)2(h)3 1.11.132 1.11.18 K3\{000,011,
101,110}

1.11.19 (a) None (d) 1000, 0100, 0010 and 0001 (e) all error patterns of
weight 1, 2, 3 or 4 (h) all error patterns of weight 1 or 2 1.12.12 (a) (i) 000,
001 (ii) 000  (c) (i) 0000, 0010, 0100, 1000 (i) 0000  (f) (i) 00000, 10000,
01000, 00100, 00010, 00001 (ii) 00000, 10000, 01000, 00100, 060010, 00001  (g)
(i) 00000, 01000, 00100, 00010 (i) 00000

Chapter 2

2.1.1 a and c are not linear codes; the rest are linear codes 2.2.3 (a)
(S) = {000,010,011,111,001,101, 100,110} (b) {S) = {0000,1010,0101,1111}
(d) (S) = K*

2.2.7 (a) C*+ = {000} (b) C* = {0000,1010,0101,1111}

(c) C*+ ={0000,1111}  2.3.4 (a) linearly independent (b) {101, 011, 010} (e)
linearly independent (f) {1100, 1010, 1001} (i) {10101010,01010101}

2.3.7 (a) B = {100,010,001}, B* = @ (b) B = {1010,0101}, B* = B (c)
B = {0101,1010,1100}, B* = {1111} (¢) B = {11000,01111,11110,01010}, B* =
{11111}

2.3.8 (a) dimC = 3,dimC* = 0 (b) dimC = 2,dimC* = 2 (c) dimC =
3,dimC* =1 (e) dimC = 4,dimC* = 1 (f) diimC = 3,dimC* = 2

2.3.16 (a) dimC =4 (b) [C| =16 2.3.17 |C| = 32

101011
110000 1000
110000
2.4.1 BC=| 011101 | BD = | 0010 | DC =
011011
101101 1010
000110
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ICl=8,R=3/5(f) IC| =8,R=1/3 (g) |C| = 16, R = 4/7

101011 1000
11011 1001 001
011011 0101 01
2.46 A« | 00101 | B | 0101 |C «~ D 1 111
00000 0000 000110 0010 10
2.7.4 b
000000 0000 @0 By ()00
2.5.3 (a) {100,010,001}. {(c) {1001,0101,0011}. 0 o1 010
() {100001,01001,00101,00011}. (g) {101,0101,0011} 2.5.6 (a) {010,011,111} | 001 )
(c) {0101,1010,1100} (e) {11000,01111,11110,01010} (g) {0110, 1010,0011} oo ] 1000
2.5.10 (a) § (b) {1010,0101} (e) {11111} (h) {101000,110110,000101} 110 01010 1000 (17 ]
2.5.12 (a) B = {111000,000111}, (b) B = {1000110,0100011,0010111,0001101}. 101 00101 0010 ol
B = {1000001, 0100001, 0010001, 0001001 101 011 0010
(c) { , ,0000101, 0000011} 2.7.5 (a) 100 (b) 10000 (e) 0100 (g) | 10
f)B=
) {001000, 000100, 000010, 000001} 01000 ol
010 1001 11011 010 0100
2.6.4 (i) Yes (ii) No  2.6.5 (a) (b) (d) 2.6.6 00100 01
001 0110 00111 | 001 | 0001 -
00010 00001
100110 ) - oot ]
(a) | 010101 |,dimC =3. (111 ]
001011 110
[ 10010110 101
100100100 .
01010101 (i) | 100
2.6.7 (a) ,(8,4,4). (c) | 610010010 |,(9,3,3).
00110011 011
001001001
| 00001111 010
. 1001011 001
101010 -
0101010 110000
(f) | 011010 | (6,3,2). (&) :(7,4,3).
000111 0011001 2.7.9(a) G(GL) =G(C) = | 001010 2.7.10 C* consists of the 16 words
- 0000111 000101
2.6.10 (a) (i) 10011 (ii) 01010 (iii) 11100 2.6.11 10110, 01011, 01110, of even weight in K°.
00101, 01011, 10011, 01011  2.6.12 (a) 1001100, 0001011, 1110100, 1111111 2.7.11 (a) dimC = t,dimC* = 2' - ¢ — 1,|C| = 24, |CY| = 2¥-*"L,R =
(b) 0001100, 0001011, 1110101, 1111001 t/(2* — 1) (b) dimC = 11,dimC* = 12,|C| = 21 = 2048,|Ct| = 22 =
2.6.13 (2.6.6) (a) |C| =8,R=1/2(b) |C|=8,R=1/3(c) |C| =4,R=1/5 4096, R = 11/23 (c) &imC = 8,dimC* = 7,|C| = 28 = 256,|Ct| = 27 =

(2.6.7) (2) |C| = 16,R = 1/2 (b) |C| = 16,R = 1/2 (c) |C] = 8, R = 1/3 (d) 128, R = 8/15
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2.8.4 (a) 1111100 (b) 1011000  2.8.10 (a) C* = {00000, 11100,10101,01001}

100011

010010 10110
2.8.11 (a) G' = 2.8.12 (a) G' =

001001 01011

000100

2.8.14 (a) Yes (b) No (c) No 2.9.4 (a) 4 (b) 4 (c) 4 2.10.6 (a) C,C +
1000,C + 0010,C + 0011. (b) C,C + 1000,C + 0100,C + 0001  2.10.7 (a)
€, C 4100000, C + 010000, C + 001000, C + 000100, C + 000010, C -+ 000001, C +
001001. (d) C,C + 100000 (f) C,C + 1000, C + 0100, C + 0010, C + 0001,C +
1100, C + 1010, C + 1001

2.10.8 (a) C,C+1000,C+0100,C+0001 (b) C, C+1000000, C+0100000, C+
0010000, C + 0010000, C + 0001000, C + 0000100, C + 0000010, C + 0000001. (c)
C, C 4000100, C +010000, C + 001100, C + 100000, C + 100100, C 4 110000, C +
110100.

2.11.2 (a) 010011 (b) 101001 (c) 001111 (d) 010011 (e) 110101 (f) 001111.

2.11.8 (a)
Error Pattern | Syndrome
01
* 11
01
0000 00 H=
10
* 01
01
0010 10

APPENDIX D. ANSWERS TO SELECTED EXERCISES

H=

011
101
1160
100
010
001

259
2.11.10 (b)

Error Pattern | Syndrome
00000600 000
0000001 001
0000010 010
0001000 011
0000100 100
0010000 101
0100000 110
1000000 111

2.11.19 (a) (i) 1100 (ii) 1001 (iii) 0101 (c) (i) 001110 (ii) 001110 (iii) 011011

2.11.9 (a)

Error Pattern | Syndrome
000000 000
000001 001
000010 010
100000 011
000100 100
010000 101
001000 110

* 111
2.11.21 (a)

Error Pattern | Syndrome
0000000 000
0000001 001
0000010 010
0001000 011
0000100 100
0010000 101
0100000 110
1000000 111

2.12.2(2.10.6) () 6,(C) = p*+p*(1—p) (c) 6,(C) = p*+3p*(1-p) (2.10.7)
() 6,(C) = p°+ 655(1 = p) (b) 6,(C) = p° + 6p°(1 — p) + (1 —p)?  (210.8)
(@) 8,(C) = p* +2p*(1 = p) (b) 0,(C) = p” + 7p°(1 — p)

Chapter 3

3.1.5 (a) 2* (b) 2* (c) 2* (e) 2° (f) 4096  3.1.18 (a) (8,6,3), No 16 < |C| <

16 (d) (15, 6, 3), Yes 2048

3.1.19 (a) 64 < |C] < 256 (b) 2048 < |C] < 2048
(c) 128 < |C| < 128 (d) 256 < |C] < 256 (e) 32 < |C < 256 () 16 < |C] < 32
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3.1.20 No 3.3.4

Error Pattern | Syndrome
0000000 000 [ 111 ]
1000000 111 110
0100000 110 011
0010000 101, H=1101 | () 0101011 (c) 0011110
0001000 101 ’ 100
0000100 100 010
0000010 010 | 001 |
0000001 001

3.4.7 (a) 696 (b) 17 (c) 17  3.6.5 (a) 100000001001, 000000000000 (b)
000000100000, 001000010000 (c) 000000100000, 000000010000 (d) ask for re-
transmission (e) 011000000000, 00000000100 (g) 600000000000, 001010000000

3.6.6 (a) 010010000000, 600000000000 (b) 000000000000, 001000110000 (c)
001000000000, 1000600000000 (d) 000000000101, 000000000001 (e) 000100000000,
000110000000 (f) 000001000000, 060000001000 3.7.3 (a) 111111100000,
10101111011 (b) 1000000600000, 11011100010 (c) 000101011001, 11100000000 (d)
011000001001, 011011011011

385
1111 1111

0101 0101
0011 0011
0001 0001
0000 1111
0000 0101

| 0000 0011 |
3.8.10 (a) 0101 1010 (b) 0110 0110 {(c) ask to retransmit (d) 1100 1100

3.9.6

(a) ws = (2,-2,2,-2,—2,—6,—2,2) m = (0101)
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(b) ws =(2,-2,-2,-6,-2,2,2,2) m = (0110)

(¢) ws =(—4,—4,0,0,0,0,—4,4) m =7

(d) w3 =(2,2,6,—-2,-2,-2,2,2) m = (1010)
Chapter 4

4.1.10 (a) ¢(z) = 2%, r(z) = 2® 4.1.13 (a) {1 + 2%, 1 + =z + 2%,z + 2%} (c)
{0,231 +2+2% 4.222@)g(z)=1(e)glz)=1+z

1011000
0101100 101010
4.3.5 (a) 436 (a)g(z)=1+22+2*
0010110 010101
0001011
Chapter 5
5.1.15
00 0
10 B
(a)
01 B
11 g
000 0
100 B°
010 g
001 #?
(b)
101 B33
111 B84
110 B

o1 A
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5.1.17 ﬂa ﬂ21 ﬂéa ﬁ7, :387 ﬂ117 1313’ /814

element ‘ minimal polynomial

0 T
5.2.7
1 14z
8,5, 6 1+z+2°
0 T
1 14z
5’ 10 1 . 2
5.2.8 s trta
87, B4, g13, git 1+z+2z
B, p%, 6%, B® 14 2° 4 2
B3, B5,8° 8 | 1+z+a+23+zt

5.5.9 (a) Ask for retransmission (b) 10 (c) 5 and 8 (d) 6 and 11 (e) Ask for

retransmission (f) Ask for retransmission (g) 0 and 13 (h) Codeword
Chapter 6

6.1.6 (2) 2'° (b) g(z) = f+z-+47 (<) (5) AAB*°000 (d) ge(z) = (1+2)(B+
2)(B2+2)(B'+a)  6.1.7 (a) 2 (b) g(2) = B0+ Pz + B2+ B+ 24 (0) (i)
BROB°66 131000006260 B1BB7 (d) gy = (B° + 2)(8° + 2)(B + 2)(B° + z)g(=)
6.2.3 (a) A% (b) #° (c) B* 6.2.7 () n =3,k =1,d = 3 and |C] = 4. (b)
G = [8871]

message codeword ¢ i(_cl
0 000 000000
() 1 A1 011110
8 B*18 111001
5? 188 100111

6.2.8 (a) n = T,k = 3,d = 5 and |C| = 8 = 512. (b) g(z) = B° + f°z +
ﬁsxz +ﬁ2m3 + g

6.2.9 (a) B+ 'z +2% = (B +2)(B*+2) = (1 +2)(B+z) (b) 1+ foz+22 =
(B° +2)(B* +2) (c) B°+ Bz +2? + B2 + ot = (B+2)(F* + 2)(B° + 2)(B* + z)
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(d) B0+ Bz + B%% + B22° + 2 = (B + z)(B2 + 2)(B° + 2)(B* + ) (e) B +
ﬂ24$+ﬁ16$2 +,3241113+ﬁ9$4 +,31°:£5 -{-ZG — (5"}‘33)(/32 +x)(ﬁ5 +z)

6.3.5 (a) 0088°8°3%B131°5000000 (b) 15*F2BB*24°1088° 635261218 (<)
BBYA7041243 4310000000  6.3.6 (a) 001554 524500000000
(b) 0ﬂ1°ﬂ3ﬁ6[3130ﬁ8ﬁ“ﬂ3ﬂ500000 (C) ﬂ4,3121,370ﬁ2,35,312ﬁ“000000

6.3.8 (a) 0420000000000000 (b) 008005°000000000 (c) 160000000000000 (d)
B511100000000000 (&) £'°B30001000010000 (f) 5*00008200003%0000

6.5.4 (a) (B+ ) (b) (B2 +2)(F° +2) (c) (B + =)(F° +2) (d) (L +2)(B+
2)(B2 +2)(8 +2) () (L+2)(B+2)(8°+2)(B0+2) (£) (L+2)(° +2)(5+x)

In the following tables, for p; and ¢; the symbol * represents the zero field

element and 7 represents 3.

1] 023 4 5 6 7 8 9 0] -1 -0
0} 2 3 4 5 6 T 89 0 x| O -1
1f 7 8 9 10 11 12 13 0 2 =] 0 0
2 * ok ok ok k% 0 1 % =* 1 1

2) 3 * % *  *x % 0 1 % % x 2 1

47 % *x * ok 0 1 * % x 3 1

5 * ok ok 0 1 = % =% 4 1

6 * ok 0 1 % * = 5 1

71 = 0 1 =% %= =% 6 1

8 0 1 x * x M @
o(z) =z +
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9 13 7 4 12
13 7 4 12 4
* 0 1 12 3
13 9 0 = 7
14 10 1«
¥ % %
* %
* 0
0 1
0 1 7
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3 13 3 12 5 13 3
13 3 12 5 13 3 0
13 1 13 6 13 0 10
0 + % 2 0 8 =«
9 6 13 0+ 3
6 13 0 13 2 %
9 0 11 2 7

0 11 * 7 5
0 12 4 0 6

G’(:T,) — m4+ﬂ1213+,84a:2+,6'°x+ﬁ6
(@+8)(z + )z + B) (= + 8°)

8 % 7 13 4 13 0

* 7 13 4 13 0 0
711 2 12 5 0 12
8 14 6 7 0 11
0 5 3 08 4«
14 7 0 3 14 x =
2 0 4 3 11

o(z) = z*4p'2°+ ,303: + 6!
= (+ )@+ )z + )z + £)

-1
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-1 0 2 % * 2 % % 2 % 0]-1 —oco
0 2 % x 2 % x 2 % 0 x| 0 -1
1 4 % 2 4 % 2 4 0 2 x| 0 0
2 ¥ 2 x * 2 x 0 * * x| 1 1

0 3 2 x % 2 % 0 * * *x x| 2 1
4 * 0 x * 0 *= 13 0 = 1 3
5 0 * = 0 = 13 0 = 2 3
6 * % 0 = = 0 = 3

o(z) =2® +1=(z +B°)(z + B%)(z + ')

6.6.9 (a) 1010 1111 1111 0011 1001 0000 0000 (b) 1001 1010 0000 0011 1010
0011 1001 (c) 0101 1001 0000 1100 1001 1100 0101 {d) 0000 1010 1111 1111 0011
1001 0000

6.6.10 Decode f(w) to f(c), where c is: (a) B2 87 33 512 88 48 320000000
(b) B°0B57B704° 420000000 (c) 05214545 5 4200000000

6.6.11 Decode f(w) to f(c) where ¢ is given below: (a) B76718°B41° 3810000000

Chapter 7

7.1.5 C is not a 2 error-correcting code since it has only 32 cosets.
7.1.6 C is not 3 error-correcting code since it has only 64 cosets.
7.1.13 () 101100000001000 (c) 100000101010011 {e) 00000111100100
7.1.14 (a) 010100000010010 (c) 001110000000100 (e) 000000011111010
7.2.4 (a) 1000110 0110110 1110000 0011100 0110110 0001111

(b) 10 01 01 00 11 11 00 10 10 11 01 01 00 00 00 10 10 01 11 11 01

(c) 101 011 011 000 110 110 000 000 010 110 101 111 011 001
7.2.8 (a) L# %% %% 00 % % % % 110 %+ * #0110 % % + 00101 011011+

{b) Lotk o o w0 ok ok ook ok 10 o % % e ok O o % % % % 010 o 5 #0071 * % % %

7.2.9 The codewords are transmitted in order with no interleaving.
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7.2.13 (a) 01 10 11 11 10 01 10 11 11 01 01 00 01 00 11 01 10 11 10 10 11
00 01 01 (b) 011 101 111 110 100 010 001 100 111 101 110 011

7.2.14 (a) my = 0000, m; = 0011, ms = 0000 (b) mq = 1000, m, = 0110, my
0011.

Chapter 8

8.1.7 (a) 11101001...  (b) 0010111. ..
8.1.12 (a) 000, 0010000  (b) 001, 1110000
8.1.14 (a) 000, 0010000  (b) 000, 100 :
8.2.2(a)c(z) = (1+z+a'+25 1424224 24 + 2% +2% 1+ 22 + 25 4 25)
(b) c{z) :(1+xz+16,1+x3+m5+z6,1+1+x2+m3+z4+x5+z6)
(e() =(1+T250" 1+ 2% 1 + o+ T2, 2)
8.2.3 (a) c(z) = (1 + 2 + 2% + 2% + 25,1 + 2%+ z° + z5)
(B e@)=(1+z+2°+2°+27,1 +z7)
() clz) =1+ 22+ 52, 2%+ 1 4z + TR z')
8.2.6 The interleaved form of the codewords are as follows:
(from 8.2.2) (a) 111 110 011 000 110 011 111 ...
(b) 111 001 101 011 001 011 111 (c) 111 001 010 101 101 101 101 ...

(from 8.2.3) (a) 1110 11 10 00 01 11 ... (b) 11 10 00 00 00 10 10 11 ..
(c) 11011011 01 11 01 11 01 ...
8.2.11 (a)
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(b) () 11 01 00 01 11 00 00 ... (i) 11 10 01 10 11 00 00 ...
()(()101000... (d)(ii)0111101 ...

8.2.12 (a)

100 oL 110
11 10 10 10
00
00(Yooo]  od 010 101 0] 01
01
11 11 11 10

001] 5 011]

(b) (i) 1110 11 00 10 11 11 00 00 ...
(i) 11 01 01 11 01 11 11 00 00 ... (iii) 11 01 10 01 01 01 ...
(c)())1010111...()0111100...

8.3.1 (a) m =1010101...=32,z% (b) 1+ 1% 1x... {c) *000...

8.3.2 (a) ged = 14 z; the loop on state 111 is a zero weight cycle (b) ged = 1;
not catastrophic (¢) ged = 1+ = + %;(0110,1011,1101) is a zero weight cycle.

8.3.3(a)5(b)6(c)7

8.3.6 (a) 7(a) = 2,7(2) = 6 (b) 7(1) = 2,7(2) = 6 (c) 7(1) = 2,7(2) =
9,7(3) = 13
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8.4.4
State
s t =28 t=9 {t =10 t=11 t=12
000 3,00000«+  3,000000+« 3,0000000 3,0000000 3,0000000
100 5,100%*%+  3,1001001 5,100%*+*x 3,1001110 5,100 +x*
010 4,0100100 4,0101001 4,0100100 4,0101110 4,0100111
110 4,1100100 4,1101001 4,1100100 4,1101110 4,1100111
001 3,0010011 5,001#%*x 3,0011100 5,001+**0 5,001x1x1
101 3,1010011  5,10%1x#%x 31011100 35,101x**0 5,101x1x1
011 4,011+0%+ 2,0111001 4,0111x0%« 4,0111010 5,0111001
111 2,1110011  4,111%0+% 4,1110100 4,1110010 4.1110111
Decode to: 1 1 0 0 0
84.5(a) m=000 (b)m=1x*0
8.4.14 (b)
State Output
s Xa=0|Xz=1|t=1 2 3 4 5 6 7 8§
000 00 11 o o oo 7T 6 6 6 6
100 11 00 2 © oo 5 4 5 5 6
010 10 01 o0 3 o0 4 6 5 6 6
110 01 10 0 3 oo 4 6 5 6 6
001 11 00 o oo 5 4 5 5 6 6
101 00 11 o oo 3 6 4 6 5 6
011 01 10 c©o oo 4 5 5 6 6 7
1| 10 | 00 | o oo 4 556 6 7

d=6,7(1)=2,7(2) = 6.
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Chapter 9

9.1.3 (a) fr(z) = (zo + 1)(z3 + 1) (b) vy = 1000100000000000, f;(z) =
(zo+ 1)(z1 +1)(z3+1) (¢) fi(z) = (z1+1) (d) vy = 1111000000000000, f1(z) =
(z2 +1)(z3+1) (e) vr =1, fi(z) =1 (£) 100...0, fi(z) = [Tho(z: + 1)

9.1.4 (3) fi(z) = (zo+1)(za+1) (¢) fi(z) = (21+1) (d) f1(2) = (z:1+1)(z2+
D(za+1) (€ vr=11...1, fi{z) = 1 () vy = 100...0, fr(z) = [Tiey{zi + 1)

9.1.5 There are |I| coordinates which must be 0 and there are two choices
for each of the other m — |I| coordinates in H;.  9.1.6 Since all v; have even
weight except for vy,,,v will have even weight if and only if v € (v, )*.

9.1.9 (a)

11111111 | e
11110000 | v,
11001100 | v,
10101010 | vy
11000000 | vy,
10100000 | vo

| 10001000 | Vo,1
9.1.12 (a) ¢ = v, 4 vp = 0101 1010 0101 1010

(b) ¢ = vo; = 1000 1000 1000 1000 (c) ¢ = vy + vos = 0101 1010 1111 0000
9.2.7 (a) 0 1000 000001 (b) 0 0000 0 11000 (c) 1 1001 100000 (d) 1 1111 111111
(e) 0 0100 000100 (£) 0 0101 010000 (g) 0 0000 000010 (h) 0 0110 00000 (i)
1 0001 000101  9.2.8 (a) 0 00000 0000000100 (b) 0 00100 1000100001 (c) 1
00000 0000010000 (d) 1 00100 1100000000 () 0 01001 0000000100 (£) 0 10010
00000060000 (g) ask for retransmission

9.3.10 (a) (if) 10011010 11110011 (iii) 01100101 11110011 (c) (ii) 11000110
10101111 (iif) 11001001 11100111 9.1.11 (a) If & = 0 then aU = {0}, so jaU|
is odd, so [x(U), x(V)] does not satisfy (i) of Definition 9.3.3.

9.3.17 (a) 01000001 01110100 (b) 00001001 01001110 (c) 00000011 11010010
9.4.6 (a) 10101001 11011011 (b) 10101001 00100100 (c) 11111111 11111111 (d)

APPENDIX D. ANSWERES TO SELECTED EXERCISES 271

11111111 00000000 (e) 00000000 11111111

9.4.7 (a) 10100...0 00000100010...0 (b) 10100...0 00 ... 0  9.4.8 (a)
31 (b) 21

9.5.3 (a) 10000001 11101000 (b) 00011110 01000010 (c) 00000101 10100110
{d) 01000010 00011110 (e) 11101000 10000001 (f) 10011001 01111101 (g) Ask
for retransmission (h) 10100101 10010000 (i) 11101101 01010101 (j) 10111011
01101010 (k) 01010101 11101101 (n) 01101010 10111011 (o) 10100101 10010000
9.5.4 (a) 11000 11060 10000 00000 00000 10000 11 00011 11000 00000 01000
00011 00100 00 (b) 10100 00000 00000 00000 0G000 00000 00 00000 10001 00000
00000 01010 10111 00 9.5.5 No
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