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Foreword

The workshop ” Algebraic Geometry and Coding Theory - 3” organized by the Insti-
tute of Information Transmission (Moscow), University of Essen, Equipe Arithmétique
et Théorie de 'Information de C.N.R.S. (Marseille-Luminy), and Group d’Etude du
Codage de Toulon took place in the Centre International de Rencontres Mathemathues,
June 17-21, 1991.

The workshop was a continuation of AGCT-1 and AGCT-2 that took place in 1987
and 1989, respectively. It is to be followed by AGCT-4 in 1993, etc., each time held in
C.LRM.

The list of participants follows.

It is our pleasure to thank the staff of C.I.R.M. for their hospitality, the participants
for their interest, all supporting organizations for their financial support, and Springer-
Verlag for the Proceedings.
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Algebraic Geometry and Coding Theory
An Introduction

Henning Stichtenoth, Michael A. Tsfasman
H.St.: Fachbereich 6 - Mathematik, Univ.GHS Essen,
D-4300 Essen 1, Germany
M.Ts.: Institute of Informatxon Transmission,

19 Ermolovoi st., Moscow GSP-4, U.S.S.R.

About ten years ago V.D.Goppa discovered an amazing connection between the
theory of algebraic curves over a finite field Fy and the theory of error-correcting block
g-ary codes. The idea is quite simple and generalizes the well known construction of
Reed-Solomon codes. The latter use polynomials in one variable over Fq and Goppa
generalized this idea using rational functions on an algebraic curve.

Here is the definition of an algebraic geometric code (or a geometric Goppa code).
Let X be an absolutely irreducible smooth projective algebraic curve of genus g over
F,. Consider an (ordered) set P = {Py,...,P,} of distinct Fy-rational points on X
and an Fg-divisor D on X. For simplicity let us assume that the support of D is disjoint

from P. The linear space L(D) of rat:onal functions on X associated to D yields the
linear evaluation map

Evp : L(D) - F?
f (f(Pr),..., f(Pa))
The image of this map is the linear code C = (X, P, D)L we study.

The parameters of such a code can be easily estimated. Indeed let P = P+...+P,,
then the dimension k is given by

k=4¢D)-¢D-P)
and in particular if 0 < deg D < n then |
k=4¢D)>degD—-g+1.
The minimum distance
d>n-—degD

since the number of zeroes of a function cannot be greater than the number of its poles.
We get the lower bound

k+d2n+1-g

which is by g worse than the simplest upper bound valid for any code




k+d<n+1l.

An equivalent description of these codes can be given in terms of algebraic function
fields in one variable over Fy. The curve X corresponds to the function field F = F,(X),
and Fg-points on X correspond to places of F' of degree one.

Originally, Goppa used the dual construction using differentials on X rather than
functions, and the residue map.

Unfortunately, there are at least two different traditions of notation. The second
one uses D for our P and G for our D , and the code is denoted Cr(D,G).

The construction can be generalized in several directions. In particular one can use
sheaves (or some other tricks) to avoid the condition PNSuppD = @. The generalization
to the case of higher dimensional algebraic varieties looks very promising but so far the
results are few.

There are several main streams of the development of the theory. Let us briefly -

discuss some of them.

* Asymptotic problems. One of the fundamental problems of coding theory is
to construct long codes with good parameters (rate and relative minimum distance).
One of the starting points of the theory was the construction of long codes which
are asymptotically better than the Gilbert-Varshamov bound. The other asymptotic
question is which codes can be constructed in polynomial time.

Specific curves. There are many interesting examples of curves with many Fg-
points which lead to codes with good parameters. Sometimes such curves and codes
have nice additional properties, such as large automorphism groups.

Spectra and duality. The study of weight distribution and of duality leads to
interesting questions of algebraic geometry, such as the study of Weierstrass points and
special divisors on a curve.

Decoding. Surprisingly enough the decoding problem can be set in purely alge-
braic geometric terms and again one needs information about special divisors.

Exponential sums. Another component of the picture is the theory of exponential
sums closely related both to algebraic geometry and to coding theory.

Related areas. The theory of algebraic geometric codes has either analogues
or applications in several other topics. Such are sphere packings and spherical codes,
multiplication complexity in finite fields, graph theory, and so on. These applications
also require subtle information about the geometry and arithmetic both of function
fields and of number fields.

To conclude, the first ten years of development show that the connection between
algebraic geometry and coding theory proves fruitful for both, giving new results and
posing many exciting questions.

) Several books and many papers on the subject are either published or in prepa-
ration. The papers are too numerous to list them here and we refer to the extensive

bibliography in [Ts/V1] and to references given in the papers of this volume. Here is
the list of books.

[Go] V.D.Goppa, Geometry and Codes. Kluwer Acad. Publ., 1988
[Mo] C.J. Moreno, Curves over Finite Fields. Cambridge Univ. Press, 1991
[Sti] H.Stichtenoth, Algebraic Function Fields and Codes. Springer-Verlag
(in preparation) _
[Ts/Vl] M.A.Tsfasman, S.G.Vladut, Algebraic Geometric Codes.
Kluwer Acad. Publ., 1991 '

[vG/vL] J.H.van Lint, G.van der Geer, Linear Codes and Algebraic Curves.
Birkhauser, 1988




Reed-Muller Codes Associated to

Projective Algebraic Varieties

Yves AUBRY
Equipe CNRS "Arithmétique et Théorie de I'Information”
C.ILRM. Luminy Case 916 - 13288 Marseille Cedex 9 - France.

Abstract

The classical generalized Reed-Muller codes introduced by Kasami, Lin and Peterson [5], and studied also

by Delsarte, Goethals and Mac Williams [2], are defined over the affine space A“(Fq) over the finite field Fy
with q elements. Moreover Lachaud {6), following Manin and Viadut [7), has considered projective Reed-Muller
codes, i.e. defined over the projective space P*(F,).
In this paper, the evaluation of the forms with coefficients in the finite field Fy is made on the points of a
projective algebraic variety V over the projective space Pn(Fq). Firstly, we consider the case where Visa
quadric hypersurface, singular or not, Parabolic, Hyperbolic or Elliptic. Some results about the number of points
in a (possibly degenerate) quadric and in the hyperplane sections are given, and also is given an upper bound of
the number of points in the intersection of two quadrics.

In application of these results, we obtain Reed-Muller codes of order 1 associated to quadrics with three
weights and we give their parameters, as well as Reed-Muller codes of order 2 with their parameters.

Secondly, we take V as a hypersurface, which is the union of hyperplanes containing a linear variety of
codimension 2 (these hypersurfaces reach the Serre bound). If V is of degree h, we give parameters of Reed-
Muller codes of order d < h, associated to V.

1. Construction of the Projective Reed-Muller codes

We denote by P“(Fq) the projective space of dimension n over the finite field Fq with q

elements, q a power of a prime p. The number of (rational) points (over Fq) of P“G‘q) is:
n+l
nn=|P“(Fq)|=q“+q“'l +.+q+1 =_q§—1:1_1'

Let W; be the set of points with homogeneous coordinates Xo:xp:..1xp€ P“(Fq) such that
X0 =X] = =X} =0andxi¢0.
The family { W; } ;. is clearly a partition of PY(Fy).

Let Fq[Xo, X15 v Xn]g be the vector space of homogeneous polynomials of degreé d with

(n+1) variables and with coefficients in Fq. Let V be a projective algebraic variety of Pn(Fq)

and let | V| denotes the number of theirs rational points over Fg. Following G. Lachaud ([6]),

we define the projective Reed-Muller code R(d,V) of order d associated to the variety V as the
image of the linear map '

- € Fq[Xg, Xy, .y Xgl§ - FM
defined by c(P) = ( ¢,(P) )xe v, where
P(xp; ..., . :
cx(P)=—>(’£Q—ﬁ—-—ﬁ12 1fx=(xo:.f,:xn)e W; . N

Xi

G. Lachaud has considered in [6] the case where V = P“(Fq), with d < q.Moreover,

A.B. Sorensen has considered in [12] the case where V is equal to P"(Fq) too, but with a
weaker hypothesis on d.

Now we are going, firstly, to study the case where V is a quadric, degenerate or not, but
before we have to establish results on quadrics and this is the subject of the following
paragraph.

2. Results on quadrics

In what follows the characteristic of the field Fq is supposed to be arbitrary (the results hold in
characteristic 2 as well as in characteristic different of 2).

2.1. The quadrics in P"(Fy). ' I

I'n this paragr.aph, we recall some properties of quadrics in the projective space P“(Fq).
JF. P.r%mrose has given in [8] the number of points in a nondegenerate quadric (see below the
definition of the rank of a quadric), and D.K. Ray-Chaudhuri [9] gave more general results

(which with, in a particular case, we recover those of Primrose's). We are going here to follow
the notations of J.W.P. Hirschfeld in [4].

A quadric Q of P“(Fq) is the set of zeros in P“(Fq) of a quadratic form
Fe Fy[Xo, X, ... Xq13,




that is of an homogeneous polynomial of degree 2. We set Q = ZP,,(F) or si;nply Z:lF) if nc;
ion i i ic Q is said to be degenerate if there exists a linear change o
2253:;2;1: gnots:l:::ugl‘lh :v?:uzgnn iw?it: the form F vgvith a fewer number of variables. More
precisely, if T is an invertible linear transformation defined over P“(F q_), df:‘notc by Fr(X) the
form F(TX). Let i(F) be the number of indeterminates appearing explicitly in F. The rank r(F)
of F (and by abuse of language, of the quadric Q), is defined by :
o r(F) = min i(F)
where T ranges over all the invertible transformations defined over Fq. A form F (and by abuse
the quadric Q) is said to be degenerate if :
rF)<n+ 1.
erwise, the quadric are nondegenerate.
I.O;lus rem’atrl;: ttt:;n; :It:dadnc?s degenerate if and only if it is singular (see [4]).

We recall after J.W.P. Hirschfeld (see [4]) that in P“(Fq), the number of dif.ferent types
of nondegenerate quadrics Q is 1 or 2 as n is even.or odd, and they are respectively called
Parabolic (), and Hyperbolic (#)) or Elliptic (E). ‘ '
The maximum dimension g(Q) of linear subspaces lying on the qondegenerate quad.nc Qis
called the projective index of Q. The projective index has the following values (see {4]) :

- -1 -3
B@="77, gt gB=tT

The character Q) of a nondegenerate quadric Q of P“(Fq) is defined by :
o(Q =2g(Q —-n+3.

Consequently, we have :
o@®=1, o#H=2, (=0 .

Then, we have the following proposition (for a proof see [4]) :

Proposition 1 : The number of points of a nondegenerate quadric Qof P“(Fq) is:
1Ql=my_1 +(@Q-1) g~ D2,

We want now to evaluate the number of points of a degenerate quadric Q = Z(F) of P“(Fq) of
rank r (called a "cone" of rank 1). . o
We have the following decomposition in disjoint union (an analogous decomposition is given
by R.A. Games in [3]) : .
Q=VprVQir-1
We have set _
C Vpor={0:0:...:0:y,:...:y5) € P'.‘(Fq)} =P I(Fy), e
if we suppose that the r variables appearing in the quadratic t:orm Fare Xg, Xy, .o X 10
set Vy, _is called the veriex of Q, and is the set of singular points of Q. We note also
Q' 1={(Xp: e 2%y ¥l 2V € P“(F‘l) | F(Xgy---,» Yp) = 0 and the x; are not all zero}.
Let Q; _ ; be the nondegenerate quadric of P*~ (Fg) associated to Q, i.e. defined by
Q-1 =Zpr-1(Fr- D

or more precisely,

Qr_1=((xo:...:%_ e P FYIF_(xg, ..., %,_) =0},
where Fy_ 1(Xg, ... , X;_1) = F(Xg, ... .X,). The (degenerate) quadric Q will abusively be
said to be parabolic, hyperbolic or elliptic according to the type of its associated nondegenerate
quadric Q; _ 1. Its character «(Q) is by definition the character &(Q,_pof Q_;.
Then, we have the following result which can be found in R.A. Games [3] :

Theorem 1 ;: The number of points of a quadric Q of P“(Fq) of rank ris :

1QI=m_ 1 +(@(Q 1) g -D"2
and we have @(Q) = 1 if ris odd, and @(Q) =0or ¥(Q) =2 ifris even.

In particular, a quadric of odd rank is necessarily parabolic, and a quadric of even rank is
hyperbolic or elliptic. ‘

Corollary : Let Q be a quadric of P"(Fq), with n 2 2. We have :

Ty-2S1QIsSmy_;+q"1,
and the bounds are reached.

Observe that the lower bound is the Warning bound and that the upper bound reaches the
following Serre bound, conjectured by Tsfasman, which says that (see (11D if F e

Fq[Xo,...,Xn]g is a nonzero form of degree d < q, with n > 2, then the number N of zeros of F
in Fq“ is such that ;
N <dq"l-@-nq-2

2.2, Hyperplane sections of quadrics.

This paragraph deals with the number of points in the intersection of a quadric and a *
hyperplane. When the quadric is nondegenerate, the result is known (see for example [13]).
R.A. Games has given the result when the quadric has the size of a hyperplane, provided the
quadric itself is not a hyperplane (see [3)). Furthermore, I M. Chakravarti in [1] has solved the

_case when the quadric is 1-degenerate, that is a quadric of rank n in P"(Fq).

We are going, here, to consider the general case, i.e. quadrics in P“(Fq) of any rank.

We begin by the known nondegenerate case. If Q is a nondegenerate quadric of P“(Fq)
(ic.ofrankr=n+1)andifHisa hyperplane ofP"(Fq), with n > 1, then Q N H can be seen
as a quadric in a space of dimension n — 1. We know (see for example [8]) that the rank of
QN Hisr —1orr—2. Then, either Q N His nondegenerate (in P"~ l(Fq)), or QN His of

rank r—2 = n - 1 (whence degenerate in P~ l(l“q)) ; one says in this last case that H is tangent
to Q.



Now we have to know what is the value of ®(Q N H), i.e. what happens to the type of
the quadric. If the hyperplane H is not tangent to Q, it is obvious that Q N H becomes parabolic
if Q is hyperbolic or elliptic (indeed r(Q) is necessarily even, and if H is not tangent we have
1(Q N H) =r(Q) - 1 hence odd, then Q N H is parabolic) ; and Q N H becomes hyperbolic or
elliptic if Q is parabolic (same reason rest on the parity of the ranks).

Now if the hyperplane H is tangent to Q, we have the following proposition (see [13]) :

Proposition 2 : The quadric Q N His of the same type as the nondegenerate quadric Q if the
hyperplane H is tangent to Q.

Then, we can give the result about the hyperplane sections of a quadric of any rank :

Theorem 2 : Let Q be a quadric of P“(Fq) of rank r whose decomposition is
Q=V,. rUQr 1
and let H be a hyperplane of P“(Fq). Then:
a)IfHDVn r then :
1QAHI=R,_s+(@(Q_1NH)-1) g -T-DR2
if H, is not tangent to Q. _,, and
IQAHI=T_p+ (@(Q~1)q?" =2
if H, is tangent to Q;_ 1, where H,, is the hyperplane ofP"l(Fq) defined by
H, = Zpe1(®)

where h is the linear form in Fg[Xo.....X,_ 1] ; defining H; moreover o(Q,_ 1 N H,) is equal
to 1 if Q is hyperbolic or elliptic, and equal to 0 or 2 if Q is parabolic.

b)IfH;':Vn_, then
1QNAHI=m_p+(@(Q -1 g® -7~ D2,

Q’og(f : W;z( suppose that the 1 variables appearing in the quadratic form F defining Q are
If%vc ;et I:Ii trhe ixyperplane whose equation is Xj = 0, we have

Vn__t=Hoﬁ‘H1ﬁ...ﬂHr_1.
But

| QNH=(Vy_;UQ - NH=(Vp_ "B UEQ;-1nH),
Thus .
- 1QNHI=IV,_ AHIHIQ _ NHI = 1V Q' 1 nHI;
butVn ,r\Qr 1—@ thus :
1QAHI=IVy_~nHI+IQ 1 nHL

1°) Suppose that Ho V,, _, .
Then, we have : | Vy _ N HI=1V,_ =P "Fpl=mn,_,.
Furthermore, the linear form h defining His such thath e Fq[Xo,...,X,_ 1](1). Indeed, if

a
"h= Y 3X;,
=0
we have foralli2r, P;=(0:...:0:1 :0:...:0)wherethe1isatﬂ1eith coordinate,
Pie Vy_randHO V, _ rthush(P,) 0. Buth(P;) = a;, thusa; = 0 foralli 2. Hence,
1Q%_1NHI=¢g"""*11Q,_;nH, I
The quadanr 1NH, of P~ 2(F ) is degenerate or not, accordmgasH. is tangent or not
to Qp_ 1, Now: ‘
— If H, is not tangent to Q,_ , then by proposition l (smcc Qr,_ 1N H. is
nondegenerate inP'- 2(Fq) ), we have :
1Q_ 1N H =T _3+(@(Q_ 1 N H) -1 g =32,
Thus
IQAHI=m,_ +q" " 11Q_;nH, =1, _,+((Q,_ lnH.) 1)q@-r-D2
—If H, is tangent to Q, _ 1 , then by theorem 1, we have :
1Q_ 1 Hul=m_3+((Q_1 N H,) - 1) qF 27,
but by proposition 2 we know that ®(Q; _; N H,) = @(Q, _ {),which is equal to @(Q) by
definition. Finally, '
IQNHI=m_+¢" 1 (m_3+ (@Q~1) ¢F-272)
=M+ Q-1 -2

2°) Suppose now that H not contains Va_r-
Wehave Vy_nH=HynH n..NnH_;NnH,thus :
I Voo nHI=IP T E) 1=0, .
n
Ifh = i-—f-loaixi is the linear form defining H, there exist necessarily one j,r <j < n, such that
aj;tO. Thus R

*
Q1NnH={(x: ... HYjrite yJ+1 yn)e PY(F,)
w1thQ, l(xo, wXp 1) = Oandthex,arenotallzero I

where t is such that
At == X0 = .o — 8 Xy 1= 8Yr— e~ B 1¥j-1— 84+ 1Yj+ 1~ -~ Yy
Thus

1Qr_1nHI=q®~ ™Dl g _,1
with Q; _ ; a nondegenerate quadric of P*~ 1(F'q), then :
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1Q 1 NHI=g" " (1 g+ @(Qr— )~ 1) g ~2)
and finally :
1QAHI=m 1 +q" T Rz + @Q_ - 1) qF D)
=Tp_2+(@Q~1)q® T2
which concludes the proof. ¢

.2.3. Intersection of two quadrics in P(F q).
The subject matter of this paragraph is.to estimate the number of points in the intersection of
two quadrics in P“(Fq) with n > 1. We give an exact value of this number in a particular case,
and an upper bound in the general case (Theorem 3), inspired by an another upper bound of
W.M. Schmidt ([10] p.152). We need first a lemma :

Lemma : If Q, and Q, are two distinct quadrics in P“(Fq), then :
QN Qismy_1+q"~2

Proof : By theorem 1,1Q; | =1, _ 1 + (@(Q;) - 1) q® =972 if t is the rank of Q;. Thus :
—if r 2 4, we have 2‘12-r5n—2andthele1 I1<m,_q +q“‘2 , hence a fortiori
1QNQyISTy_1+q"2

—ifr=3 orr=1 then Q is parabolic and
1QNQIgIQi=n,_1<my_;+q" 2.
— if r=2: either Q is elliptic, and then | Qq 1 =x, _; — q" ~ ! and the result holds ; or
Q1 is hyperbolic, and then Q; is the union of two distinct hyperplanes. We can suppose that the
quadric Qs is also hyperbolic of rank 2, otherwise the same reasoning which we have made to
Qy must hold for Q,.
We set Q; =HpUH; and Q =H,; U H,, and without loss of generality, we can take for H;j
the hyperplane X; = 0. Since, by hypothesis, the quadrics Q; and Q, are distincts, two cases
can appear : 0 3 » - . . 3
1°) The four hyperplanes are distincts, i.e. t is different of 0 and 1. We obtain, simply in
"counting” the points : )
1QNQyl=my_4+4q" 2sm,_;+q"~2.
the preceding inequality is equivalent to (q— 1)220).
¢ p;eoc) Ql gande‘éz hat\y\"e :q common hyperplane, i.e. t =0 or t = 1. Suppose that t = 0. Then,
we have : : ]
QUNQ={0:x:...:xp) € P"(Fq))u{(l :0:0:%3:...:x5) € P(FQ },
where the union is disjoint. Hence :
1QnQli=m,_; +q“‘2 » and the upper bound of this lemma is reached in this case. ¢

11

Theorem 3 : Let Fy(X,,...,X;) and F»(Xp....,Xy) be two non zero quadratic forms with

coefficients in Fg, and let Q; and Q; respectively the two associated quadrics of P"(Fq). Three

cases can appear :

1°) the forms Fy and F, are proportional (i.¢ there exists Ae Fq' such that Fy=AF, ) and then :
QN QI=1QyI=1Qyl. ‘

2°) F) and F; have a common factor of degree 1, and then :

1QNQyl=m,_;+q""2,
3°) F; and F, have no common factor (no constant), and then :

7¢""! 6q"-2
|Q1(\Q2|51Cn_2+q (_l_ l—q q___ i

(for 9 2 7 this upper bound is indeed better than the lemma).

Proof : 1°) Trivial. ' :
2°) We are necessarily in the case where Q1 and Q, are the union of two hyperplanes with one
in common ; it is proved in the lemma, :
3°) Let F; and F, be two quadratic forms without nonconstant common factor.
The result is obvious if q < 4. Indeed, by the lemma, we have :
QN Qlsmy_1+¢* 2
and furthermore,
7 q“ -1 6 q" -2

a-1 ~q-1 is equivalent to q <5.

nn__1+q"‘251cn__2+

Suppose now that q > 4.
We set, foriequal 1 and 2 ;
F’i(XO,...,Xn) = FI(X() N X1+CIX0 N X2+62X0 y eeny Xn+ch0)

= Pi(cl,C2,...,Cn) Xg +.. .

The polynomials Py and P, are not the zero polynomial (otherwise F; and F» would be t00),
and are not also identically zero, since they have degree at most 2, and q > 4 implies that Fjand
F, have at most 24"~ 1< q" zeros in Fg" (because a polynomial of degree d in Fy[Xj,... Xyl
have at most dq"~ !zeros in Fqn » see for example [10]).
Moreover, the total number of zeros of P; added to those of P, is then at most
4 qn -1

which is < q" since q > 4 .
Thus it is possible to choose (C1,...,cp) € Fg" such that

Pl(cl,...,cn) #0 and P2(cl,...,cn) #0.
Thus, after a nonsingular linear transformation and after divided by Py(cy,...,c,;) and
Py(cy,....cp) respectively, we may suppose without loss of generality that :

F(XgrsXp) = X5 + Xg 81X Xp) + g2(X 10 Xy) and
F2(Xguw-Xp) = X5 + X by (X1,ererXp) + hy(X poereiXi)
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where g1,h;€ Fo[X,...Xpl0 and.gp,hoe FylXp,...Xq19.

If we look at now the polynomials F; and F, as polynomials in X, their resultant is a
homogeneous polynomial R(Xy,....X,) of degree 4. By the well known properties of the
resultant, we can say that for any common zero (in Fq“”l ) (XgsX1s.Xy) Of F(X,.... X)) and
Fo(Xs....Xp)» we have R(xj,....xq) = 0.

If we apply the Serre bound (see § 2.1) to the resultant R, we obtain that
the number of zeros in F" of R(X),...Xp) is S4¢° ! - 3q"~2

Moreover, for such n-uple , the number of possibilities for x;) is at most 2, and the forms F;

and F; are of degree 2, thus the total number of common zeros (xg,...,X,) of F; and F; in

Fq““is SSq“’l —6q“"2. :

And by the following usual equality :
: NA®P) =1+ (q~1) Np(F)

where N (F) represent the number of zeros in A“*’l(Fq) = Fq“+1 of F and Np(F) the number

of zeros in P“(Fq) of F, we deduce :

n-1 n-2
1Q, N Q,ls—34 q‘_ﬁg =1
_ n-1 Taqh~1 6 n-2
=1cn_2+6qn 2+ag‘—':——f =1tn_2+qq‘_ 1-qq__ 1.0

3. Projective Reed-Muller codes of order 1 associated to a quadric

Let Q be a quadric in P“(Fq) of rank r, decomposing in disjoint union of its vertex Vy, _ and of
Q‘,_ 1» where Q, _; is the nondegenerate associated quadric of P*~ I(Fq). We will apply the
results of § 2.2 to determine the parameters of the projective Reed-Muller codes of order 1
associated to Q. Since these parameters vary according to the type of the quadric Q, we have to
distinguish three cases.

Theorem 4 (parabolic case) : Let Q be a parabolic quadric of P“(Fq) of rank r # 1. Then the
projective Reed-Muller code of order 1 associated to Q is a code with three weights :

wy ___qn-l_ q(211—1'—1)/2 , W2=qn— l+ q(2n—r—l)/2, w3 =qn-l
with the following parameters :

length =7, _;, dimension = n + 1, distance =q"~ ! — q@*-7-D2

Theorem 5§ (hyperbolic case) : Let Q be an hyperbolic quadric ‘of P“(Fq) of rank r. Then the
projective Reed-Muller code of order 1 associated to Q is a code with three weights :
wy= qn-- 1 + q(2n—r)/2’ w2=qn- l, wa= qnf 1, q(2n--r)/2 _ q(2n—-r—2)/2
with the following parameters :
length =m, _; +q@" "2, dimension =n + 1, distance = q"~ ! .
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Theorem 6 (elliptic case) : Let Q be an elliptic quadric of P"(Fq) of rank r > 2. Then the
projective Reed-Muller code of order 1 associated to Q is a code with three weights :

W= qn- 1 _ q(2n—r)/2, w2___qn— 1 , W3 = qn—l _ q(2n-r)/2 + q(2n—r—-2)/2
with the following parameters : :

length =1, _; — =972, dimension =n + 1, distance = g°~ ! — q@n-02

Let us remark that we recover the results of J. Wolfmann as a particular case of these results
(see [13]), indeed he had considered the case of nondegenerate quadrics : his results correspond

to the case where the rank r = n+1. Note that, here, the case H3 V;, _ is excluded, and then

we find only two weights for the hyperbolic and elliptic quadrics, but still three weights for the
parabolic one. We recover also the results of L. M. Chakravarti (see [1]) : it corresponds to the
case where the rank r=n.

Proof : The lengths of the respective codes are equal to the number of points of the respective
quadrics : theorem 1 gives the result. -
The map ¢ defining the code ( see § 1) is one to one, and thus the dimension of the code is

equal to the dimension of Fq[Xo,...,Xn](l) over Fg,ie.n+1: indeed, if H is a hyperplane of

P“(Fq), ( which amounts to taking a linear form of Fq[Xo,...,Xn] ), it is sufficient to apply the
results of Theorem 2 to see that | Q VH <1 Q| and to have also the different weights. ¢

4. Projective Reed-Muller codes of order 2 associated to a quadric

The map c: Fq[Xo,...,Xn]g - Fq'Q' as introduced in § 1 defining the projective Reed-Muller
code of order 2 associated to the quadric Q has for domain the vector space of quadratic forms
over Fg ; this is why we gave previously some results on the intersection of two quadrics of
PY(F,).

q

Theorem 7 (péfabolic case) : Let Q be a parabolic quadric in P“(Fq), n22.Ifq 28 then the

projective Reed-Muller code of order 2 associated to Q has the following parameters :

n-1
length = 7, _ {, dimension =-9£92i§)-. distance 2 q" "1~ 6 q“'z—fj-i- .

Theorem 8 (clliptic case) : Let Q be an elliptic quadric in P"(Fq) of rankr > 2. If q 2 8 then
the projective Reed-Muller code of order 2 associated to Q has the following parameters :
_ @a-02 4 . _n(n+3)
length=m,_; - q , dimension =7,
n-—

distance 2 q"~1- @ -02_ 6q“"2—q-L-_ 11



14

We reserve the case where the quadric is hyperbolic of rank 2 for the theorem 10 (we have
indeed more precise results).

Theorem 9 (hyperbolic case of rank r 2 4) : Let Q be an hyperbolic quadric in P“(Fq) of rank
r24. If q 2 8 then the projective Reed-Muller code of order 2 associated to Q has the following
parameters :

length =1;n_1+q(2“"’)/2, dimension =_2n(n2+ 3 R
-1
; n-1, (@n-02_ -2, 4"
distance 2q" ~ '+ q 6q +q— T-

Let us remark that we can have, for the theorem 9, the same results with a weaker hypothesis
on q when the rank of Q is equal to 4 or 6, namely g > 5.

Now we consider the case of maximal quadrics, that is hyperbolic quadrics of rank 2. By the
corollary of theorem 1, the number of points of these quadrics reaches the maximum number of
points of a quadric, and it is in this sense that we call them "maximal”. We can remark that they
are particular quadrics (they are the union of two distinct hyperplanes). The codes which are
associated to them have a minimum distance precisely known. These codes will have a
generalization in the next paragraph.

Theorem 10 (hyperbolic case of rank = 2) : Let Q be an hyperbolic quadric in P“(Fq) of rank

2. The projective Reed-Muller code of order 2 associated to Q has the following parameters :
length = 1, _ 1+ "~ 1, dimension ___n(_%'t}_l, distance =q"~2(q-1).

Proof : The length of the codes is the number of points of the quadric Q, and is given by

Theorem 1.

Let F'e Fy[Xg....Xql) and Q" = Zy(F), Q = Z,(F).

Either F and F are proportional, and then Q = Q. Remark that there is ¢ ~ 1 such non zero
forms F ; thus there is at least q quadratic forms vanishing in Q, hence in the kernel of the map
¢ defining these codes. We claim that there are no other forms in Ker(c), and thus the
dimension of this codes is :

0
| ). . & |
: . n2 + D +2
dim(fm ) = dim — g = 0+ o+2) log,(1Ker(c)!)
(0 + 1)(n +2) n®+3n _ n(n+3)
= 0) - 1= 3 = ) .
Indeed, suppose now that F and F' are not proportional, we have by Theorem 3 :

6gn—2

. 7 n-1
IQNQ ’Snn_z-i'a—?_—l—— q-1"
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- if Q is parabolic (Th 7), we have
n-1 n-2
nn—Z*Lq_l ‘6qq__1 <lQ|@q2— 8q+6>0¢>q28.

Moreover, F and F' cannot have a common factor of degree 1 since Q would be the union of
two hyperplanes and thus would be hyperbolic.

The minimum distance follows from the same inequality of the Theorem 3.

~if Qis elliptic (Th 8), F and F' cannot also have a common factor of degree 1, and we have :

n-1 n-2
"n—2+‘_q“—“zl I —'%*g‘_——l*<|Q|=1tn_1 - q@n-02 if and only if q > 8 forr = 4, and

thus a fortiori for r 2 4, i.e. since r is even, r > 2.
- if Q is hyperbolic of rank > 4 (Th 9), the same reasoning gives a fortiori the results (indeed
the hypothesis q > 8 holds for more "smallest " quadrics).
- if Q is hyperbolic of rank = 2 (Th 10) :
« either F and F' have a common factor of degree 1, and by the Theorem 3 :
QN Q I=m,_1+q" 2 whichis<IQl=m,_;+q*~ L.
+ or F and F have not a common factor of degree 1, and by the lemma preceding Theorem 3
wehave :1QN Q' IS®, _1+¢"~ 2 whichis <1 QI.
The minimum distance in this case is :
1QI - (M _1+q" %) =q"" 1= g 2=g""%g-1).0

5. Projective Reed-Muller codes associated to a .maximal

hypersurface

We consider here hypersurfaces of degree h < q reaching the Serre bound, i.e. which are the
union of h distinct hyperplanes containing a linear variety of codimension 2. The Serre bound

enunciated in § 2.1 has the following projective version : if F is a non zero form of degreeh<q
of Fq[Xo,...,Xn], then

IZPn(F)ISnn_2+hq“'l'
The construction of such varieties (called maximal) is easy ; indeed we can take for example :
F=]1 t(IXO - AXD

1<i<

where the A; are h distinct elements of Fg. We are going to construct projective Reed-Muller
codes associated to such varieties.

Theorem 11 : Let V = ZPn(F) be a variety of P“(Fq) which is the union of h distinct

hyperplanes containing a linear variety of codimension 2, with h < q. Then the projective Reed-
Muller code of order d < h associated to V has the following parameters :

length = 1, _ 5+ hq"~ !, dimension = (n‘;— d), distance = (h—d) ¢*~ .
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Let us remark that we find again the projective Reed-Muller codes of order 1 associated to a
maximal quadric (in the particular case h=2and d = 1).

Proof : The length of the code is equal to the number of points of the variety V which is, by
construction,

Mg+ hqn—bl.
The map c: Fq[Xg,...,Xn]g - qu' defining the code is obviously one to one since d <h.
Thus the dimension of the code is equal to the dimension, over F q» of

F[Xgn. X0 ie. (° 7 9).

IfV =H, U ... U Hy, then the subvariety V' of degree d of V defined by V’ = Hju...UHy
where the d hyperplanes are taken among the h defining V, is such that :

IViI=m,_,+dq"~ L
Thus the minimum distance of the code is equal to :

IVI- (my_p+dq" H=hq" " 1-dq" '=m-d)q" Lo

We can say more if we consider the particular case of the codes above of order 1. Indeed,
itis easy to see that the hyperplane sections of such maximal varieties have three possible sizes,
namely %, 1,%,_js0r®m,_3+hq"” 2, Thus, the projective Reed-Muller code of order 1
associated to V (with h > 1) is a code with three weights :

wi=(h-1)q"" 1, wy=hq" !, wy3=hq"~14+(1 - h)q"~2
and with the following parameters :
length=m, _o+hq"~!, dimension =n+ 1, distance = (h— 1) qQ-l.
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Decoding Algebraic-Geometric Codes
by solving a key equation

Dirk Ehrhard*

1 Introduction

The recent work about the problem of decoding Algebraic-Geometric Codes has led to an
algorithm (e.g., see [2,3]). Another algorithm has been given by Porter, see [6,7,8,9,10],
generalizing Berlekamp’s decoding algorithm. The main step is to solve a so-called
“key-equation”. For this purpose, Porter gave a generalization of Euclid’s algorithm for
functions on curves. Unfortunately, therefore he had to impose some strong restrictions
to the code and its underlying curve, such that the resulting algorithm works only for
a very small class of Algebraic-Geometric Codes. Recently, the generalized Euclidian
algorithm was investigated and corrected by Porter, Shen and Pellikaan ({11}) and Shen
({12)).

Here, we will show how to generalize Porters ideas to all Algebraic-Geometric Codes
and moreover, how to solve the key equation by simple linear algebra operations. Two
observations on Porter’s methods have motivated our work:

1. The operations done by Porters algorithm at the so-called “resultant-matrix”, may
be considered as a Gaussian algorithm, applied to the transposed matrix.

2. The key equation may be viewed as linear.

The result is given in section 2: A decoding algorithm of complexity order O(n?),
that corrects up to B(d‘ -1- g)J errors, exactly as the well known algorithm does.
In section 3 we describe how strongly both algorithms are connected. We conclude
with section 4, giving a short overview over Porters algorithm and explaining, in what
manner Porters work embeds in ours.

2 The decoding procedure
2.1 The code

We will use the notations of {1]: Let X be a curve of genus g (i.e. a non-singular, abso-
lutely irreducible projective curve defined over the finite field IF,), Pi,..., P, rational

“The author is with the Mathematisches Institut IV der Heinrich-Heine-Universitat, 4000 Diisseldorf 1,
Germany. The contents of this paper are also part of the author’s Ph. D. Thesis ([13])
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points on X, and G a divisor which has support disjoint from the P,’s. We will as-
sume that 29 —~ 2 < degG < n+ g — 1 and define D := P, +... + P,. Then the code
C = C*(D,G) is the image of the linear, injective map
Resp: G -D) — Iy
n ~— (Resp7,...,Resp,n).

This is a linear [n, k, d], - code with k > n—1—deg G+g and d > d* = deg G —(29—2).
For details see [1]. Note, that Resp may be extended to ©(X) in a canonical way.

2.2 A theorem for preparation

L.et G’ be a divisor with support disjoint from the P,’s such that G — G is effective and
dim L(G') = 0. An easy consequence is: (G — D) C (&' — D), which we will use to
generalize {7, Theorem V.1, p. 16]:

Theorem 1 There ezists a vector space V: QG - D) C V C YG' — D) such that
Resply: V — IF? is an isomorphism

Proof. Since Resplgc- p) is injective, it suffices to prove that Resplaer-p) is surjective.
We have

ker (Releg(G/-D)) ={n € QG ~D):Respn=0,v=1...n} = YG).

Therefore

rank (ResD[Q(G:_D)) = dim QG - D) ~ dim QG")
= g—1—deg(G'—D)—(g—1~degG")
= degD =n,

using the Riemann-Roch-Theorem and the fact that 0 < dim L(G” -D) < dim L{(G’) = 0.

The problem of decoding is: For an arbitrary given y € IF3, find ¢ € C with minimal

Hamming distance wt(y — c). According to Theorem 1, Resp gives a correspondence of
vector spaces:

AG-D) ¢ V C QG -D)
lResD 1R€SD
C C IFy

If F; — V, w + 75, denotes the inverse map of Resply, then we can describe the

decoding problem in terms of differentials: For a given 1y, find 9. € QG — D), such
that 0. := n, — n. has minimal number of Poles in Py,..., P, i.e such that . may

- be written as a fraction of functions with low degree. We will precise that in the next

section.
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2.3 The key equation

Let y = cte€ IF’; with ¢ € C and F' an arbitrary divisor on X. Let D, denote the unique
Divisor with 0 < D, < D and P, € suppD. & e, # 0, that is, D. = ((%e)oo )bupp D-

Definition 1 By a solution of the key equation we will denote any tripel (B,w,a) €
(L(F)\ {0}) x QG — F) x QG — D — F), satisfying By, = o + w.

Proposition 1 If deg F + wt(e) < d*, then any solution (B,w,qa) of the key equation

satisfies 5. = § and n. = §

Proof. Let (B,w,a) be a solution of the key equation. From w = By, — a and 7, =
1+ 7. one concludes w — By, = B1. — a. If the two sides of this equation do not vanish,
we may estimate their divisors:

(w ~ B7.) 2 min((w),(B) + (7.)) > min(G' - F,G' - F-D,)=G -F - D,

(Bne — @) 2 min((B) + (n.),(a)) 2 min(-F+G-D,G~-D~F)=G-D~F
Since D and G’ have disjoint supports and G < &, we get
(w—Bn.) > max(@' -~ F— D.,,G-D~F)=G~- D, —F,

but deg(G —~ D, — F) = deg G —wt(e) —degF > deg G—d* = 29 —~2, what contradicts the
assumption that w—Br), is a non-vanishing differential. Therefore w—Bn, = Bn.—a = 0,
what proves the statement.

Proposition 2 If deg F' > wt(e) + g, then there ezists a solution of the key equation.

Proof. By the Riemann-Roch-Theorem, dimL(F — D,) > 1+ deg F — deg D, — g >
1+ wt(e) + g — wt(e) — g = 1, which guarantees the existence of B € L(F — D,)\ {0} C
L(F)\ {0}. Now we have By, = By + Bn., (Bn.) = (B) + (n.) > —F + G — D, and
(Bny—Bn.) = (Bn.) = (B)+(n.) 2 —F+D.+G'— D, = G'~ F, therefore (B, B1., By.)
is a solution of the key equation.

Corollary 1 Let F be a divisor of degree [5——“529—‘1} For any y € ] such that there is

c € C with wt(fe:=y—¢) < 14::-2-‘7-:1], there exists a solution of the key equation. On
the other hand, for any solution (B, a,w) the equality n, = % holds.

Proof. One easily checks, that we have deg F'+ wt(e) < d* and deg F > wt(e)+g. Now
apply Propositions 1 and 2.

The proofs of the Propositions show, that already the assumptions dim Q(G ~ D, —
F) =0 resp. dim L(F — D,) > 0 suffice to guarantee existence and uniqueness of solu-
tions. This coincides exactly with the assumptions needed by the well-known algorithm

(see [3]).

2.4 Solving the key equation

Assume g 1= ld—'ﬁ“—J to be non-negative (i.e. d* > g) and F to be a divisor of degree

.

[5—+§:1—J = to +¢. For an arbitrary y € IF} consider the linear map

6, + L(F) — G'—-D-F),
B - B-my

Notice, that (G -~ D —~ F) N QG - F) = Q(G — F) = {0}, since deg(G ~ F) =
deg G — deg F' > deg G — d* = 2g — 2. Hence there exists a vector space W such that

UG —D-F)=G - D - F)oQ(G ~ F)oWw. (1)

Let mw, mq(g'-r) denote the natural projections onto W resp. Q(G’ — F).

If there is any codeword ¢ with wt(y—c¢) < £o, then, by the Corollary, there will exist
B € L(F)\ {0}, a € Q(G— D~ F) and w € (G’ — F) such that §,(B) = By, = a+w.
Every such triple will suffice 7. = 4. In this case, the following algorithm will compute
the error vector e:

1. Compute the matrix describing §,.
2. Determine B € ker(mw o0 §,) \ {0}.
3. Compute w := mq(gr-r)(6y(B)).

4. Compute ¢ := Reng.

If too many errors have occured, then either ker(mw 06,) = {0} or the computed e won’t
suffice the conditions wt(e) <t and y ~e € C.

2.5 Realisation and complexity

Let (e,).=1..n denote the canonical basis of IF7. If the matrices describing é., are’
computed before the algorithm starts and once forever, the matrix of 6, = ¥"_; .6.,
may be computed with complexity order O(n®) in run time. Then parts 2 and 3 of
our algorithm may be done by simple linear algebra operations; the first one with
complexity order O(n®) and the second with order O(n?). We will now describe shortly
how to realize the remaining third part in O(n?) steps:

Assume w and B have been determined; now we want to compute ResP—B- for any

oid .

P € supp D. Let t be alocal coordinate on X around P, j := —vp(F) and w = Zw;t' dt
=j

and B = Z B;t' the local power series around P. Now,

=7

w Qi -1
Resp— = —

B~ B,

where ¢ = min{i : B; # 0} = vp(B) and a;_; = 0. Hence the computation can be done
as follows:
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o Compute B;, Bjiy,... until B;, # 0 occurs.
. o Compute a1
W Ky
o Set Respj : _L—B.o .

Since w and B are given as linear combinations of certain basis differentials (resp.
functions), any coefficient of their power series may be computed as an corresponding
linear combination if the power series at every point of supp D of any basis differential
(resp. function) is known a priori. The complexity to compute one coefficient that way
is O(n). Altogether, there have to be computed

2(1 +14vp(B) +vp (F)) < 2n+deg((B) + Fluppp < 2n + deg F

v=1
coefficients, hence one can get along with complexity order O(n?) in the decoding algo-
rithm’s fourth part. Furthermore, an analogous computation shows that not more than
deg F' coefficients of each power series around each point of the basis differentials (resp.
functions) must be known a priori.

3 Essentially that’s nothing new

To demonstrate how our method of decoding is connected to that of [3] resp. [4], we will
show that the main steps of each of the decoding procedures are equivalent. We first
consider the map

®: QG — D~ F) — L(G — F)" = {linear ¢: L(G — F) — TF,},
where ®(n)(f) = L0, Resp,(f - 7)-

Proposition 3 If the supports of F and D are disjoint, then ®lw is an isomorphism.!

Proof. Since equation (1) holds, it suffices to show that

1. @ is surjective,

2. YG' - F)eYG —D - F)Cker® and

‘3. dimW = dim L(G - F)".

1.: The map L(G ~ F) — ¥}, f = (f(P.),..., f(Pn)) has kernel L(G — D - F) =
{0}, hence is injective, therefore it suffices to prove that &:Q(G' — D — F) —
(IF;‘)V, ®(n)(v) = ¥ Resp,v,, is surjective. Let (e} ),=1.» denote the canonical basis
of (IF;)V. For any v, G - F - P,)\ G’ - F) is not empty as a consequence
of the Riemann-Roch-Theorem, and the image by @ of any such differential is ey,
Hence ¢ is surjective, hence @, too.

1Proposition 3 together with decomposition (1) show the exactness of
0—+Q(G-D~-F)®RG —F) L QG -D-F) X L(G-F)' =0,

that may be also derived in a canonical way of a short exact sequence of sheaves on the curve X. For
details see [13]
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2: If n € QG — F) then for any v, Resp.n =
, ,7 = 0, hence () = 0. Now take n €
Q(G’ —D~—F)and f € L(G— F). Then fn € Q(—D) and, by the residue theorem
is: 3 Resp,(fn) = 0. ,

dmW = dimQ(G - D - F) - dimQ(G' - F) - dimQ(G - D — F)
= g—1-deg(G'~D~F)—(g—1-deg(G' — F)) -
—(9—1~deg(G-D-F)) '
1— g+ deg(G — F)
= dimL(G - F)
= dim (G ~ F)",

by the Riemann-Roch-Theorem, usin
, g the fact that deg(G — F -
deg(G-D - F) < 0. el ) > 2 =2 end

In our decoding procedure, the fundamental step is to find an element of ker(mw08,)\

{0} which is by P roposition 3 equi va.lent to ﬁnding someth'ng con ained in kex P w O
’ ’
Tw O é!l) \ {O} But l t l ( l

(@lw o mw o 6,(B)) (f)

&(6,(B))F) = ®(ny - B)(f)
D Resp,(f -7, B)

Y f(P.)- B(P,) - Resp,(n,)
2_f(R)-B(R)-y,,

for any B € L(F) and any f € L(G - F). Hence ®fw o mw o §, is exactly the error

locating map E, in [4]. Findi . ”
Y - Finding a non-trivial element of its kernel is t ; .
the known algorithm, too. is the main step in

4 Porter’s decoding algorithm

We will give a very short overview over Porter’s algorithm and explain why we consider
the presented algorithm as its generalisation. Porter makes some restrictions to the
codes he treats. We will formulate them using the notations of Section 2:

1. G' = —P,, where P, is a rational point on X, distinct from supp D.
2. G is lineary equivalent to (deg G) Py, G+ Py is effectivé and deg G > 0.
3. (29 — 2)P, is canonical.

ES}.Jegially assumption 3 won’t be realizable for most curves, but fortunately this re-
striction may be dismissed easily.
First remember the isomorphism Resp: V — IF™ of Section 2, and let ¢ En @
basis of V such that R i anoni is. thermon
at Resp(e;),...,Resp(e,) is the canonical basis of IF7. Furthermore,
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let v be a rational function? with (v) = G —~ (deg G) + P, wp a differential with (wo) =
(29 — 2)Ps, and m := —vp_(). For any “received” vector y = c + e € IFy, Porter
defines a rational function called “syndrom” by

Y
.,z_:x (P )
Note that § € R := Us»o L(tP), Swo = n, (mod v), i.e. Swo = 5, + vf for some
f€R,and —vp (S)<m+2g—1.

In order to decode Porter looks for solutions of the “polynomial congruence” A —

BS = 0 (mod v) subject to a certain “condition at P,,"”. More precisely, one may
describe this by®

If there is an integer t <d - wt(e) and A, B, C € R satisfying —vp,(A) <
t +2g — 1 and —vp_(B) <t such that

A-BS =0y, @)
_ then 5. = {uwo.

In the following, we give a short description of Porter’s method of finding such 4, B, C.
Consider the linear map

. L(tPw)®L((t + 29 — 1)Pu) — L(m+t+2g—1)Py)
(B,C) . BS +Cy.

The solutions of (2) clearly will satisfy —vp (C) < t + 2g — 1, therefore they coincide
exactly with the tripels

" §(B,C),B,C where §(B,C)€ L(t+2g—1).
If one chooses elements ¢; € R such that

L(rP,) = span {¢1, . ,¢d;m1,(,.p°°)} for any 7 € IN,

then the matrix M, describing § with respect to those bases, is the transpose of Porter’s
resultant matrix. Clearly, searching for a solution of (2), may be done by looking for a
non-trivial linear combinition of the columns of M with zeroes in the m lower positions.
One way to do that is Porter’s “row reduction process” at M7T, but clearly there are
several other methods.

We conclude by explaining, how Porter’s method and the one described in section
2, are connected. Multiplying equation (2) by we and substituting Awo by w, Swo by
o and Cuwp by «, one do not need neither the differential wy nor assumption 3 for the
equivalent statement :

3In genus 0 case, v is the Goppa-Polynomial, if P, denotes the infinite point of the projective line
- 3This are sligthly weaker assurptions than those in the original, where only solutions of minimal
degree (= —vp_ ) are taken into account; for more detailed information see {13}

25

If there is an integer t < d* — wt(e) and B € L(tPy), w € Q(—(t + 1)P)
such that w — Bo = ay for some a € Q(X), then . = §

The underlying idea of this is to write ¢ = % (mod v) where B has few zeros, i.e. few
poles. More directly and without the need of S* one may, provided a given 7,, search
for w and B such that g, = % (mod Q(G — D)) and B has few poles (e.g. (B)+F >0
for some “small” divisor F'). This is the main idea of the method of decoding described
in Section 2.
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On the Different of Abelian Extensions of Global Fields
G. Frey, M. Perret, H. Stichtenoth

O. Introduction

Let ¢ be a power of some prime number p, and let F, be the field with ¢ elements.
Coding theorists are interested in explicitly described function fields over F; having
a large number of F-rational places (or, equivalently, irreducible complete smooth
algebraic curves over Fy with many F-rational points). For small values of the genus,
such function fields are often abelian extensions of the rational function field F4(2). For
instance, this is the case for Hermitian curves, some Fermat curves, and some Artin-
Schreier extensions of Fy(z). Moreover, one way to exhibit families of function fields
E[F, of genus growing to infinity and having good asymplotic behaviour (i.e., the ratio
(numbser of rational places/genus) has a limit > 0), is to construct a tower of function
fields Eo C Ey C E,... over Fg, each step E;y,/E; being Galois with an abelian Galois
group. In other words, solvable extensions may have a good asymptotic behaviour,

of. [3).

One aim of our paper is to show that abelian extensions E; /F (where F is some fixed
function field over Fy, and F, is assumed to be the full constant field of F and all
Ei,i > 1) are asymptotically bad (i.e., the ratio (number of rational places/genus) tends
. to 0 as the genus of E;/F, goes to infinity).

It should be pointed out that our method uses only elementary results from Hilbert’s
ramification theory, cf. [2,4], and the finiteness of the residue class fields. In the case of
global fields, one may also use class field theory in order to obtain some results of this
paper.

1. Hilbert’s Ramification Theory for Locally Abelian Extensions

In this section, we consider the following situation. K is some field, o0 C K a discrete
valuation ring and p C o the maximal ideal of 0. Let L/K be a finite abelian field
eztension with Galois group G (i.e. L/K is Galois, and its Galois group G is abelian).
Let O C L be a discrete valuation ring of L with o C @ and maximal ideal P, hence
# = PNo. Throughout section 1, we suppose that @ is the only discrete valuation ring
of L containing o. Let k := o/p and I := O/P denote the residue class fields of o resp.
O. Then I/k is a finite field extension, and we shall always assume that l/k is separable.

We choose some P-prime element 7 € P (i-e., P is the principal ideal generated by =),
and consider the groups

Go:={c€G|oz=z mod P forall ze O}
and, fori > 1,

Gi:={os€Go|or=n mod Pt}
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It is well-known that the definition of G; is independent of the choice of 7, and
GDGy DG D...D G, = {1} for sufficiently large n > 1, see [2,4]. The factor groups
'P‘7’P"“"1 (for i > 0) are considered as vector spaces over I via

(z +P)-(a + PH) := za + P! (z € 0,a € P),

and @ acts on P¢/Pit! by
r(a+ PH) = 7(a) + P!

(in order to see that this action is well-defined observe that O is the only extension of
oin L, hence 7(P) = P for all r € G). We set

Xi:={a+ P e PP |r(a+P*)=a+ P! foral 7€G}
Clearly, X; is a k-subspace of P*/Pit1.
Proposition 1: The dimension of X; as a vector space over k is at most one.

Proof: By Hilbert’s ramification theory l/k is a n?rmal fi'eld extension. Due to our
assumption I/k being separable we obtain that I/k is Galois. .Moreover, any automor-
phism 7y in the Galois group of I/k is induced by some 7 € G, i.e. 1"0.(3; +P)=r(z)+P
for any z + P € Of/P = I, see [2] In order to prove the pr(_)posxtx?n we ?a.nii.slstxme
that X; # {0}. We choose a + P! € X; with a € P*\P**!. Since P /"P1 is a
one-dimensional vector space over [ (this is obvious) we have for all a; + 7.3'*‘ € X;:
a3 + P! = (¢ + P) - (a + P**!) for some ¢ € O. For any 7 € G, the following holds:

(c+P)- (a+P*) =y + P+ = r(a; +P**)
=1(c+P) - r(a+P*) =1(c+P) (a+P*),

consequently 7(c + P) = ¢ + P for any 7 € G. Thus ¢+ P is invariant under any auto-
morphism of I/k, i.e. ¢+ P € k. This proves Proposition 1. n

It is well known that the mappings
¥ {Go/ G — I*

a———»i’;rimod'P

resp. fori > 1 o
pit {Gi/Gi+1 — PP

o — 2£-1 mod P!

are embeddings of Gy/G; into the multiplicative group of I (resp. of Gi/Gi41 intf) the
additive group P*/P**1), and the definition of ¥ and g; is independent of. the choice of
the prime element 7. For our purposes, the following refinement is essential:
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Proposition 2: Under the hypotheses of this section, the image of % is contained in
k*, and the image of ; is contained in X;; for any i > 1.

Proof: (a) Let o € G. We have to show that 70(¥(0)) = (o) for all 74 in the Galois
group of I/k. As before, 7y is induced by some T € G, and we obtain

(we have used that G is abelian and 7(rr) is a P-prime element as well).
(b) An analogous argument proves that ¢;(c) € X; for any o € G;. n

We recall some facts from ramification theory. Let f = f(P | g) = [l : k] denote the
residue class degree and e := e(P | p) the ramification indez of P over p, i.e. pO = Pe,
Since O is the only extension of o in L and 1/k is separable, we have e - f = [L: K]
Let s:= char(k) be the characteristic of the residue class field and gi := ord G; for any
¢ 2 0. Then G| is the unique s-Sylow subgroup of Gy, and g = e. The extension P |p
is said to be tame if g; = 1 (hence (s,¢) = 1), otherwise P | p is wildly ramified.

Let W C k* be the group of roots of unity in k. If W is finite, we set w 1= #W.

Corollary 3: In addition to the hypotheses of this section, suppose that k contains
only finitely many roots of unity. If P | p is tame then e < w,

Proof: Consider the map 3 : Gy — I* as before. Since G: = 1,% is a monomorphism.
By Proposition 2, the image of 1 is contained in W. ™

In order to obtain a similar estimate for the ramification index also in the case of wild

ramification, we introduce the following notion: an integer i > 0 is called a jump (for
P | p) if Gi # Giya. :

Corollary 4: In addition to the hypotheses of this section, assume that k is a finite
field. Then e < (#k)" where r denotes the number of Jjumps. '

Proof: e = go =(g0/91) - (91/92) - .. . - (9n/gn+1) where n is chosen such that gnt1 =1
Proposition 1 and 2 yield g;/gi4; < #k for any ¢ > 0. The corollary follows immediately.n

Hilbert’s formula [2,4] states that the different ezponent d := d(P | p) is given by

d=7 (9:-1).

i>0
This formula can be restated as follows. We consider the set {v1,...,vr} of jumps
(where 0 <y <13 <...< v, and r is the number of jumps) and set

bhi=n+l; ti:=vij—-v,_y for t=2,...,n
Then

,,,,,,,, 2,9
d= z': ti(gw — 1).
i=1
Since G is abelian, the Hasse-Arf theorem [2] applies. It yields
ti-g,, =0 mod e
fori=1,...,r. :C'ombining this with Hilbert’s formula we obtain

Proposition 5: Under the hypotheses of this section, the different exponent d satisfies
the estimate

d> —;-re )
where r denotes the number of jumps.
" Proof:
,.
d=Y tig,(1-g;)
i=1
1 O 1
25 &tigw 2 5re
by the Hasse-Arf theorem. =

2. The Different of Abelian Extensions of Global Fields

In this section, F' denotes a global field. This means that either F is a number field, or
F is an algebraic function field of one variable over a finite field F, (we assume that F,
is the full constant field of F). A place of F is the maximal ideal of a discrete valuation
ring of F. If p is a place of F, its corresponding valuation ring will be denoted by
0p. The residue class field o,/p is a finite field, and in the function field case we have
F, C o,. The degree of p is defined by

degp := log #(0p/p)

(in the number field case, log is taken with respect to the basis e = 2,718...;if Fisa
function field over Fy, we take log = log, - the logarithm with respect to the basis ).
The definition of the degree is extended to divisors of F (a divisor is a formal finite sum
of places) by linearity.
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Let E/F be an abelian eztension of F and Gal(E/F) be its Galois group. If p is a place
of F, there are g = g(p) places Pi,...,P, of E lying over p (i.e. p C P,). All of them
have the same ramification index e(p) := e(P, | p) and the same residue class degree

f(p) :== f(Py | p), and we have e(p) - f(p) - 9(p) = [E : F]. For an extension P = P,
of p in E/F, we consider the decomposition group

G(p) == G(P | p) := {0 € Gal(E/F) | 0P = P}

(this is independent of the choice of the extension P since E/F is abelian), and the
decomposition field Z = Z(p),i.e. F C Z C E and G(p) = Gal(E/Z).

There exists the unique mazimal unramified subeztension F C M C E. This means
that all places of F are unramified in M/F, and M is a maximal subfield of E with this
property. Let S := S(E/F) be the set of places of F' which are ramified in E/F (it is
well-known that S is finite).

Lemma 6: With the notations as above, we have

Z loge(p) > log[E : F] —log[M : F].
PES

Proof: For any p € S, let Go(p) C G be the inertia group of g, see [2,4]. Its order is
e(p), and if U C G is the subgroup of G generated by all Go(p) (with p € S), then M is
the fixed field of U. Therefore ord U = [E : M] = [E: F]/[M : F). Since G is abelian,

ord U< [Jord G(p) =[] elp).

pES pES
Taking logarithms yields the assertion of the lemma. n

Let D(E/F) be the different of E/F. The main result of this section is the following;

Theorem 7: Suppose that E/F is an abelian extension of global fields and
F C M C E is the maximal unramified subextension. In the function field case we

assuine, in addition, that E and F have the same constant field F;. Then the degree
of the different D(E/F) satisfies '

deg D(E/F) > %[E : F)- (loglE : F| ~ log[M : F}).

Proof: For p € S, let d(p) be the different exponent of a place P of E lying over p, and
r(p) be the number of jumps, cf. section 1 (observe that we can apply the results of
section 1 if F' is replaced by the decomposition field Z (p)). We obtain
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deg D(E[F) =YY d(p)-degP

pES Plp
=) g(p)-dp)- f(p) - degp

pES ‘
> % > 9(p) - r(p) - e(p) - f(p) - degp  (by Proposition 5)

pES ‘
= 3B FI- Y r(p) - degp
pES

> -1-[E 1 F)- Z loge(p) (by Corollary 4)

2 e
> -;—[E : F) - (log[E : F] —log[M : F)) (by Lemma 6). )

3. Abelian Extensions of Function Fields Are Asymptotically Bad

We want to prove a slightly more general result than we announced in the introduction.
For an algebraic function field E/F, (with F, as its full constant field) we set

g(E)=genusof E )
N(E) = number of rational places of E/F,.

If E/F is a Galois extension with Galois group G, we let G’ be the commutator'su.bgrotzp
of G. The fixed field E% D F of G' is the mazimal abelian eztension of F' contained in

E. In particular, if G is abelian, G' = {1} and E®* = E.

Theorem 8: Let F/F, be an algebraic function field and (E,),>1 be a sequence of
extension fields of F' with the following properties:

(i) F, is the full constant field of F and all E,..
(i) E,/F is Galois with Galois group G,.
(iii) ord (G,/G}) — oc0asv—r 0.

Then the quotient N(E,)/g(E,) tends to zero as v — 00 .

Proof: There is a constant h (the class number of F) such that any abelian unramified
extension M/F with the same constant field Fy is of degree [M : F] < h, cf. [1] We
consider the maximal abelian extension F, C E, of F' contained in E,. By (iii), the
degree n, := [F, : F] — 0o as v —» oo , and the degree d, of the different D(F, /F)
satisfies the estimate
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dy > %n,(log ny —logh)
by Theorem 7. The Hurwitz genus formula yields
9(B) 2 mu(g(F) ~ 1) + 7,
Zn(g(F) -1+ %(log n, — iog h)).

On the other hand, we have the trivial estimate N(F,) < n, - N (F), hence

N(F,) _ N(F)
9(F) = g(F) =1+ (logn, —logh)

0

for v — co. Eventually, since N(E,) < [E, : F,]- N (F.,) and
9(E)) 2 [B, : F)(g(F,)—1) > L[E, : F,] - ¢(F,) (observe that 9(F,) — oo for
¥ — 00), we obtain N(E,)/g(E,) — 0.
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Goppa Codes and Weierstrass Gaps
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We generalize an example of Goppa to show how the gap sequence at a point may
often be used to define Goppa codes that have minimum distance greater than the usual
lower bound. :

1. Let X denote a nonsingular, geometrically irreducible, projective curve of genus g
defined over the finite field F; with ¢ elements. Assume that X has F,-rational points.
Let D be a divisor on X defined over Fy (i.e., D is invariant under Gal(Fy/F,)). Then
L(D) will denote the Fg-vector space of all rational functions f on X, defined over F,
with divisor (f) > —D, together with the zero function, and Q(D) will denote the F,-
vector space of all rational differentials 77 on X, defined over F,, with divisor (n) > D,
together with the zero differential. Put {(D) = dimp L(D) and #(D) = dimp, Q(D).
The Riemann-Roch Theorem states that

I(D) = deg D +1— g +i(D).

Also, we will write Dy (resp. Do) for the divisor of zeros (resp. divisor of poles) of D.
Hence we have

D¢ > 0,Dy > 0,(Supp Dy) N (Supp Doy) =9, and D = Dy — Do,

V. D. Goppa [3,4] realized that one could use divisor theory on a curve to define
nice codes. A g-ary linear code of length n and dimension % is a vector subspace of
dimension k of Fy. The minimum distance of a code is the minimum number of places
in which two distinct codewords differ. For a linear code, the minimum distance is also
the minimum weight of a nonzero codeword, where the weight of a codeword is the
number of nonzero places in that codeword. A linear code of length 7, dimension k and
minimum distance d is called an [n, k,d]-code. Let C denote an [n, k, d}-code over F,.
A generator matrix of C is a k X n matrix whose rows form a basis for the code. A
parity check matrix for C is an (n — k) X n matrix B of rank n — k such that AB* =0
for some generator matrix A of C. Two codes C and C* are called dual if a generator
matrix of C* is a parity check matrix of C. The code C has minimum distance d if and
only if in any parity check matrix for C every d ~ 1 columns are linearly independent
and some d columns are linearly dependent. : '

The first author was supported by the Alexander von Humboldt-Stiftung while
visiting Universitit GHS Essen within the GMD-CNPq exchange program. The sec-
ond author was partially supported by a grant from the Louisiana Education Quality
Support Fund through the Board of Regents.
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Let G be a divisor on X defined over F,andlet D = Py + P +---+ P, be another
divisor on X where Py,..., P, are distinct F,-rational points and none of the P, is in
the support of G. The geometric Goppa code C(D, G) (cf. [6]) is the image of the linear
map a : L(G) — F} defined by

f — (f(P1)7f(P2)v'--’f(Pﬂ))‘
The geometric Goppa code C*(D,G) (cf. [6]) is the image of the linear map a* :
G — D) — F} defined by
nr (I‘GSPI (n), Iesp, (-, resp, (77))

The codes C(D, G) and C*(D, G) are dual codes ([6, I1.3.3]). Alternatively, if one fixes
a nonzero rational differential w with (canonical) divisor K, then, the image of a* is
the same as the image of the map *: L(K + D ~ G) — F, defined by
J v (resp, (fw),resp,(fw),...,resp, (fw)).
~We will be mainly interested in the code C*(D,G). This code has length n and
dimension ‘
k=dim L(K + D - G) — dim L(K — G).

In particular, if G has degree greater than 2g — 2, then k = dim L(K+D-G). Ifk >0,
then the minimum distance d of C*(D, G) satisfies the well-known bound

d > deg(G) — 2g + 2.

2. Now let P denote a (closed) F,-rational point on X and let B be a divisor defined
over F;. We call a natural number vy a B-gap at P if there is no rational function fon
X such that

((f) + B)o, = 7P.

We say that y —1 is an order at P for the divisor K — B (where K denotes a canonical
divisor on X) if we have

K-B~(y-1)P+E,

w!lere E >0, P ¢ Supp(E), and ~ denotes linear equivalence. It follows from the
Riemann-Roch Theorem that - is a B-gap at P if and only if v — 1 is an order at P

for the divisor K — B. Note that with this terminology, the usual Weierstrass gaps at
P are the 0-gaps at P. ’

Let ] a.nd 7k be B-gaps at P. Put
G=(vi+m—1)P+2B. (1)
Our divisor D used to define the code C*(D, G) will be of the form
D=P+P+---+P,
where the P; are n distinct F-rational points, each not belonging to the support of G.
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(2.1) THEOREM. Assume that the dimension of C'(b, G) is positive (where G is
of the form specified in (1)). Then the minimum distance of C*(D,G) is at least

deg(G) — 29 + 3.

PROOF. Put w = deg G — (29 — 2). If there exists a codeword of weight w, then there
exists 7 € (G — D) with exactly w simple poles Py, Ps,..., P, in Supp(D). We then
have ,
(m)o = Go and (0)oo £ Goo + Pr+ P2+ -+ + Pu.

Hence, 29 —2 = deg(n) > deg G — deg Goo —w = 2g — 2. It follows that (7)o = Go and
(Moo = Goo + Py + P2 + -+ + Py. Thus there exists a canonical divisor K of the form

K=G-(Pi+P+---+Py). )
Since -y is a B-gap at P, we have
| K—B~ (7 —-1)P+E, NG
where E > 0 and P ¢ Supp(E). From (1), (2), and (3), we have
E+(Pi+Py+---+P,)— (B+7P)~0.

Thus there exists a rational function f such that ((f) + B)eo = -v; P, contradicting the
fact that -y; is a B-gap at P.

(2.2) REMARK. If B = 0, then degG = 7; + 7 — 1 and it is natural to ask which
integers can be written as the sum of two Weierstrass gaps. In this direction, G. Oliveira
[7] showed that if X is nonhyperelliptic, then each r, for 2 < r < 2g, is the sum of two
gaps, with the exception of r = 2g — 1 in the case that 7, = 2g — 1.

Let ¢ : X — P¥ be a morphism with nondegenerate image. As in [10], we may
view ¢ : X — P¥ as a parametrized curve in P¥ and the points of X as its branches.
To any point P € X, one associates a sequence of natural numbers

e(P) < e(P) < -+ < en(P),

which are the possible intersection multiplicities of the curve ¢(X) with the hyperplanes

in P¥ at the branch centered at P. We denote by Lg‘l)X (cf. [10]) the osculating
space of dimension j — 1 at P (associated to the morphism ¢); thus,

L¢™DX = (\{H : H is a hyperplane with I(P;o(X) - H) > ¢(P)},

where I(P; (X)) - H) denotes intersection number.

Assume from now on that the linear system |K — B] is base-point-free. If 11(P) <
Y2(P) < +++ < yn4+1{P) are the B-gaps at P, then for the morphism ¢ associated to
the linear system |K — B|, we have

ej(P) = 'Yj+1(P) -1.
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(2.3) THEOREM. With notation as in Theorem (2.1), assume moreover that Vi1 =

75 + 1 and that the osculating space Lg—l)X (with respect to the morphism defined by
|K — BY) does not meet the curve (X) at another Fg-rational point. If C*(D,G) has
positive dimension, then its minimum distance is at least deg G — 2g + 4.

PROOF. By Theorem (2.1), the minimum distance of C*(D, G) is at least deg G—2g+3.
Put w = deg G — 2g + 3 and suppose that there is a codeword of weight w. Proceeding
as in the proof of Theorem 1, we see that there is a canonical divisor K of the form

K=G+Q-(Pi+P+--+Py), (4)
where Q is an Fg-rational point on X. Using equations (1), (3), and (4), we get
B~-—7P-Q+(Pi+ P+ +P,)+E.

Since ; and 7;+1 are both B-gaps at P, we see that Q ¢ {P, Py, P;,...,P,}U Supp(E).
Hence,

L(B +7;P) # L(B + ;P + Q).
By Riemann-Roch, we then have

L(K ~ B-;P)=L(K - B - ;P - Q).

This equality means that for any divisor A linearly equivalent to K — B, if A > 7P,
then A > v7; P+Q. Now, Ej(P) =Y+ —1=1;,s0if A > €;(P)P, then A > 6 (P)P+Q.
It follows from this that Q is in Lg-l)X , contradicting our hypothesis. g

(2.4) REMARK. Suppose B = 0; i.e., ¢ : X — P91 is the canonical morphism. If at
an Fg-rational point P, we have Y9 =29 — 1, then Lg—z)X , the osculating hyperplane
at P, meets X only at P and hence Lg_l)X, for j = 1,2,...,9 — 1, meets X only at
P, so the condition on the osculating space in Theorem (2.3) will be satisfied. The next
result gives another useful criterion for verifying this osculating space condition.

(2.5) PROPOSITION. Suppose that B = 0 and that X is not hyperelliptic. For
j€{1,2,...,9 -2}, we have
Y =2 = LEIVX)nX = {P}.

PROOF. First we remark that ;3 < 2j for j = 1,2,...,9—2. For suppose 7;4+1 > 2j.
Then there are at most j gaps less than or equal to 2j. Hence the dimension of L(2jP)
would be at least 2j +1 ~j =j +1, contradicting Clifford’s Theorem.

Now, the intersection divisor of X and Lg—l)X is of the form A = (y;4; -1)P+E,
where E > 0 and P ¢ Supp(E). By the geometric version of the Riemann-Roch

Theorem [1, p.12], we have »
dim L(A) = deg A ~ dim LE ™)X = deg A — (j — 1). (5)

From Clifford’s Theorem, we have

dim L(A) < (deg A)/2 + 1. (6)
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From (5) and (6), we get deg A < 2j — 1, which implies that deg E is at most 2j — 7;41.
So, if yj41 = 2§, then E = 0 and the Proposition follows. j

We note that Proposition (2.5) was proven by G. Oliveira [7] in the case j = g — 2.

(2.6) EXAMPLE. We give an example to show that the converse of Proposition (2.5)
is false, and that one can sometimes deduce the fact that L(g‘l) N X = {P} by testing
the condition ;43 = 21 for some I > j.

Let X denote the nonsingular curve with function field Fg4(z,y) where y®+y = z3.
If P = (1,a), with a® + a = 1, is an Fgy-rational point, then by Garcia-Viana [2] the
gap sequence at P is 1, 2, 3, 4, 5, 10, 11. Taking ! = 5, we see that 743 = 10 = 2J;
hence, Lg)X meets X only at P. It follows that Lg)X must also meet X only at P,
but notice that for j == 4, we have 7,41 =5 #2j = 8.

In the case where the next ¢ consecutive integers after «; are also B-gaps, one can
prove results similar to Theorem (2.3) by assuming more conditions on the osculating
spaces. .

(2.7) THEOREM. Suppose that ;3¢ = 7; + ¢ for t = 1,2. Suppose that Lg)X does
not meet X in another F,-rational point. Also suppose that L(,Z_I)X does not meet
any of the following lines: :

(i) A line joining two other Fg-rational points.

(ii) A line joining two Fg-rational points that are conjugate over F,.

(iii) A tangent line at another F-rational point. ,
If C*(D, G) has positive dimension, then the minimum distance of C*(D, G) is at least
deg G —2g +5.

PROOF. Put w = deg G — 29 + 4. Since L(,Z)X does not meet X at another F-rational
point, the same is true for Lg—l)X . Thus by Theorem (2.3), the code C*(D,G) has
minimum distance at least w. Suppose that there is a codeword of weight w. Then
there is a canonical divisor K of the form '

K=G+A-~(Pi+P+---+P,), . ‘ (M

for some positive divisor A = Q1 + Q3 of degree 2 defined over F,. From (1), (3), and
(7), we have

B =P —(@1+ Q)+ (Pi+ P+ + Pu)+E, (8)

where £ > 0 and P ¢ Supp(E). ' :

Now, either @, and Q; are both F-rational points or they are F j2-rational points
that are conjugate over Fy. Since ;42 is a B-gap at P, we cannot have Q1=Q,=P.
By applying the proof of Theorem (2.3) to the divisor G+ P (note that Y541 and Y41 +1
are B—gaps), we see that neither @y nor Q; can equal P, since then the other point would
lie in Lﬁ;;’)X - Also, we have that neither Q; nor Q; is in {Py, P;,...,P,} U Supp(E).
It then follows from (8) that we have

L(B+2%P+Q1) # LB +%P+Q1 +Q2),
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where these are now vector spaces of rational functions defined over Fpa. It follows from
the Riemann-Roch Theorem that

L(K~B-7P—-Q1)=L(K~-B~vP-Q1- Q).
Thus for any divisor H ~ (K — B), we have '
H2 %P+ Qi1 =¢(P)P+Q1=> H2> 7P+ Q1+ Q2 =¢(P)P + Qy + Qo

Therefore, the osculating space Zg_l)X meets the line joining Q; and Q3, contradicting
our hypothesis. g

The conditions on Lg'l)X in Theorem (2.7) can be expressed as: Lgfl) X misses
all the lines determined by degree two F,-rational divisors A, where P ¢ Supp(A). By
using induction, one can generalize Theorem (2.7) in the case of ¢ consecutive gaps after

<; to obtain the following result.

(2.8) THEOREM. Suppose that v;4; = 7; +t for some natural number ¢. Suppose
that for each s € {0,1,...,¢—1} the osculating space Lg"lﬂ)X misses the linear space
spanned by each degree t — s Fg-rational divisor with support disjoint from {P}. I
C*(D, G) has positive dimension, then its minimum distance is at least deg G — (29 —
2) + (t+1).

3. We present some examples illustrating the theorems in the previous section.

(3.1) EXAMPLE. Goppa [4, pp. 139-145] considers the plane quintic y*z + yz* 4-
2% — z%2% over the field Fy. This curve has 17 points over F4. Put P =(0,1,0). Then
the gap sequence at P is shown to be 1,2,3,6,7,11. Goppa shows (p. 144) that the code
C*(D,16P), where D is the sum of the remaining 16 Fy-rational points, has minimum
distance at least 8. This follows from Theorem (2.3). Our proofs of Theorems (2.1) and
(2.3) are essentially generalizations of Goppa’s argument.

(3.2) EXAMPLE. Let X denote the curve y9 + y = 291 defined over F, where
g 2 5. This is an example of a Hermitian curve. There are @ +1 F p2-rational points
on X, the maximum possible (by the Hasse-Weil bound) on a smooth curve of genus
9 = (¢~ 1)q/2 over Fyz. Let P be an F ;a-rational point on X and let D denote the
sum of the remaining ¢° F g-rational points. The codes C(D, sP) have been studied
extensively by Tiersma [11] and Stichtenoth [9], and recently Yang and Kumar [12] have
determined the exact minimum distances of these codes. In this example, we show how
to use Theorem (2.7) to give an alternate derivation of some of the results of Yang and
Kumar. -

Let P = (a,b) be an Fj:-rational point on X. The canonical morphism ¢ : X —
P9~ given by a Hermite basis at P of the regular differentials (cf. [2,8]) is ¢((z,y)) =

(l:(z—a):---: P14 (z - a) P44 : (z - a)?pa—t . f‘""” i (z —a)Pe-3 ; pa-?),

where P = (y—b) — al(z - a) is the tangent line at P. We note that P meets X only at
P (with multiplicity ¢ + 1). Denoting by P, the point on X at infinity, we have that
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9(Poo) = (0:0:---:0:1). By [8] (or see [2]), the Weicrstrass nongaps at P smaller
than 2g are given by:

0
0,q+1
29,29 + 1a2(q+1)

(9-4a,(g—-9g+1,...,(g- 4)(g+1)
(1-3)a,(g—3)g+1,...,(¢~3)(g+1)
(1-2)g,(g—2)g+1,...,(g—-2)(g+1)

Take j = g -5, so that 7; = (¢ —4)(g+1) +1. Note that i +1, and 7; + 2 are
three consecutive gaps. ‘ .

Let Gy denote the divisor (y; +9: —1)P = (1 + (¢g—4)(g+1))P and let D denote
the sum of the other ¢° F ja-rational points on X. The usual lower bound on Goppa
codes would show that the minimum distance of C* (D, Gy) is at least deg G, —(29—-2) =
7k — 2(g+1). We claim that the conditions of Theorem (2.7) are satisfied here, so that
the minimum distance of C*(D, Gy) is at least ;, — 2(g+1)+3.

To establish this claim, first note that Lg—z)X NX = {P}, since 7, = 29 — 1.
Next, we will see that L(ﬂ_l) X= Lg"ﬁ)X (i.e., the osculating space of codimension 5
at P) does not meet any line determined by two (distinct) F-rational points (different
from P). Since ¢ is given by the Hermite basis associated to the point P, the osculating
space Lg"G)X in P97 is given by Xgu1 =Xy 2 = --- = g~5 = 0 (where the X;
are homogeneous coordinates). Suppose w(z1,91) and (z2,y;) are distinct points on
©(X), both different from o(P). The line determined by these points is

{ap(z1,31) + Be(z2,9) : @, B € Fy}.
Put L |
Fi = P(zi,y:) = (yi — b) — a%(z; — @) for i = 1,2.
If there is a point on the above line that also lies in Lgf's)X , then we have

aPf7 4+ pP~ =0
(*) o(zy — a)PF~3 + B(zz —a)PF3 =0
P 4 BRIt =0

Note that P, 3# 0 and B, # 0; otherwise, there would be another point on the curve
(the point (z;,y;)) lying on the tangent line to the plane curve X at the point (a,b).
Multiplying the first equation in (*) by A, and comparing the resulting equation
with the third equation in (%), we have P, = P, Multiplying the first equation in
(*) by (z; - a) and comparing the resulting equation with the second equation in (),
we see that ; = z3. From P, = P; and Ty = Z3, We may conclude that y; = y,.
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This contradicts the assumption that ¢(z;,y;) and ¢(z2,y3) were distinct points. One
argues similarly if one of the two points (z;, ;) is P.

Finally, suppose (z1,31) is an F-rational point distinct from the point (a,b).
In order to determine the tangent line to ¢(X) at ¢(z;,¥:), we take derivatives with
respect to z:

d dP
Ey (z1,31) = z{ and I (%1,41) = (z1 — a)2.

Put P, = P(z;,3;). From the definition of ¢, the tangent line to ¢(X) at p(x;,y;) is
{ap(z1,31) +BV : o, € F,}, where V =

0:1:--:(g—3)(z1—a)?PF™*: P34 (q—3)(z1—a)?H P14 (g—2)(z1 —a)1P2™3),
1 1 1 1

Suppose there is a point Q on this tangent line that also lies in Lg'G)X . Since no
rational point on X except (a,b) lies in this osculating space, we see that B#0atQ,
80 we may assume § = 1 at Q. Then at Q we must have

{aﬁf'a +a= (e - By =0

afa ~ @)BI™ + B + (g - )@ - ) = 0

Multiplying the first equation by (z1 — @) and comparing the resulting equation with
the second equation, we see that P, = 0. But this says that (x1,y1) belongs to the
tangent line to X at (a,b), a contradiction. Again, one can argue similarly if (z1,9;) is
P,

Since the projective change of coordinates (z : y : 2) (z : 2z : y) induces an
automorphism of X that takes (0 : 1: 0) to (0 : 0 : 1), we see that the conditions
of Theorem (2.7) are also satisfied at P,. Put dj equal to the minimum distance of
C*(D,Gy). If we take v = (2+m)g~1, where 1 < m < ¢ — 3, then by Theorem (2.7),
we have di > mq. Put z = (z—a;)(z—az) - (z—a.), where a3, ay,...,a,, are distinct
elements in F 2. Then the differential dz/z has a zero of order (¢*—g—2)+mq > deg Gy
at P and has exactly mgq simple poles, so it is a codeword of weight mgq. Thus, the
minimum distance of C*(D,Gi) will be exactly mq when e = (2+ m)q — 1. Using
Riemann-Roch to compute the dimension of this code, we see that C*(D,Gy) is a

l¢*¢®* +4—q(g+2m - 1)/2, mg]-code
when 7 = (2+m)q - 1.

4. Although our theorems show that the minimum distance of the code C*(D,sP) is
related to the Weierstrass gap sequence at P, we close with an example to demonstrate
that this minimum distance does not depend solely on the gaps. Specifically, we give a
curve with two points with the same Weierstrass gaps such that corresponding Goppa
codes have different minimum distances.

(4.1) EXAMPLE. Let X denote the nonsingular plane quartic

4Pzt 42 o =0
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over the field Fg. Then X has the following eight Fs-rational points:

P = (03130)a P, = (31191)’ Py = (411,1)
Py = (3’2a1), P = (4y311)a P = (2,4’1)
P =(0,0,1), and P' = (2,3,1)..

The points P and P’ are (ordinary) flexes of X, so the Weierstrass gap sequence at each
of these two points is 1,2,4. Put D = Py +P;+---+4Ps+P' and D' = P,+Py+---+Ps;+P.
The functions 1 and z/z are a basis for L(3P) and a generator matrix for the code

C(D,3P)is
: 1111111
0 2 4 2 43 3/
It can then be seen that the weight enumerator (cf. [5, p. 38]) of C(D,3P) is
1+122° + 425 + 847
By the MacWilliams identity (cf. [5, p. 39]), the weight enumerator of the dual code

C*(D,3P) is
1+ 122% + 802° + 4002* + 8042° + 118025 + 64827,

The functions 1 and (z + z)/(y + 22) form a basis of L(3P’). A generator matrix
for C(D',3P') is then
1111111
(o 3010 3 3) :

The weight enumerator of C(D’,3P’) is then
1+ 82% +425 41227,

Thus C(D,3P) and C(D’,3P’) have different minimum distances. However, the weight
enumerator of C*(D',3P') is I

1+ 242 +602° + 3602* + 9242° + 10802° + 6762,

and so C*(D',3P') has the same minimum distance as C*(D, 3P).
But now consider the divisors 5P and 5P’. The functions 1,z/z, and (z + y)z/z®
form a basis for L(5P). A generator matrix for C(D,5P) is

1111111
0 2 4 2 4.3 31}.
0100240
The weight enumerator of C(D,5P) is then
1+ 82% + 362° + 6425 4 1627
and the weight enumerator of the dual code C*(D,5P) is
14 322% + 522* 4+ 1562° + 2722 + 11227,
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The functions 1,(z + 2)/(y + 2z), and (z + 2)(z + 3z)/(y + 2z)? form a basis for
L(5P"). A generator matrix for C(D',5P') is

111
0 3 0
010
The weight enumerator of C(D’,5P') is then

1+42° +162* + 322° + 402° + 3227
and the weight enumerator of C*(D’,5P') is

W e L

1
0
2

(=3 TR
N SO

1+ 422 +122° 4 722 + 17625 + 23225 + 12827,

In particular, the minimum distance of C*(D,5P) is 3, while the minimum distance of
C*(D',5P') is only 2.
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On a Characterization of Some Minihypers in P.G(t,q)
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Abstract

A set F of f points in a finite projective geometry PG(, q) is an {f, m; 1, q}—minihyper
if m (= 0) is the largest integer such that all hyperplanes in PG(t,q) contain at least m
points in F where ¢ > 2, f > 1 and ¢ is a prime power. Hamada z%nd Deza [9], [11]
characterized all {2va41 + 2vp41,2va + 2vg;t, ¢} —minihypers for any integers ¢, %@ and
B such that ¢ > 5 and 0 < a < B < t where v = (¢' —1)/(g~1) for any .mteger
[ > 0. Recently, Hamada [5], [6] and Hamada, Helleseth and Ytrehus [18] characterized all
{2v1 + 2v3, 2vp + 2v1; ¢, g} —minihypers for the case ¢ > 2 and ¢ € {3,4}. The purpose of
this paper is to characterize all {2va41 + 2vg41, 2va + 2vg; ¢, q}—mlmhypexs for any integers
t,q, and f such that ¢ € {3,4}, 0 < a < f < tand B # a+ 1 using several results in
Hamada and Helleseth [12], [13], [14], [16], [17]. -

1. Introduction

Let F be a set of f points in a finite projective geometry PG(t,q) of ¢ dimensions
where ¢ > 2 and ¢ is a prime power. If |[F'N H| > m for any hyperplane H in PG(t‘, g) and
|F' N H| = m for some hyperplane H in PG(t,q), then F is called an {f, m;¢, q.}—mmxhyper
where m > 0 and |4| denotes the number of elements in the set A. In the special case ¢ = 2
and m > 2, an {f,m;2,g}—minihyper F is also called an m—blocking set if F contains
no 1-flat in PG(2,q). The concept of a minihyper (or a minchyper) has been introduced
by Hamada and Tamari [19].

' Panially supported by Grant-in-aid for Scientific Research of the Ministry of Education, Science and Culture under Contract Numbers
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: Partially supported by the Scandinavia Japan Sasakawa Foundation. Partially supported by the Norwegian Research Council for
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Inthe case k >3 and 1 < d < ¢*~! — ¢, d can be expressed uniquely as follows:

h
d=gt1- (e + Zq"‘)

. f==1
using some ordered set (€, p1,p2,---,pp) in U(k — 1,q) where U(t,q) denotes the set of
all ordered sets (e, 1,2, -+, p3) of integers €,k and p; such that @0<e<qg-1,
1<h<(t-1)g-1),1<prSpa<---<pp <tand (b) at most ¢ — 1 of the y;’s
take the same value.

Hamada [4] showed that in order to characterize all [n, k, d; g]—codes meeting the Grismer
A
bound (cf. [2], [23]) for the case k > 3 and d = ¢*-! — (e +Y q"") it is sufficient to

=1

solve Problem 1.1 below. The connection between codes meeting the Griesmer bound and
minihypers is explained in detail in Appendix IV.
Problem 1.1. (1) Find a necessary and sufficient condition on an ordered set
h A
(es 1,2, -+, ) in U(2,q) such that there exists a {va + ) vup1, 600+ Y vm;t,q}—
=1 =1
minihyper where v; = (g — 1) /(g — 1) for any integer ! > 0,

A A
(2) Characterize all { EV1+ Y Vpur 1,600 + Y vy t,q} — minihypers in the case where
i=1 t=1
there exist such minihypers. '

.- Let A(t,q) be the set of all ordered sets (A1yA2,---,2y) of integers 5 and

Ai(i=1,2---,n) such that 1 < n < #g—1), 0 < A\; < Ap < -+ < Ap < t-1,
Ay #0and 0 < my{QA) < g-1forl = 0,1,---,t — 1 where ny()) denotes the num-
ber of integers A; in A = (A, Ag,---,),) such that X; = ! for the given integer I. Note
that there is a one-to-one correspondence between the set U (t,9) and the set A(2,q) as fol-
lows : ()inthe case e = 0, = h and \; = pi for i =1,2,--- k and (ii) in the case
E#0,n=€e+h A=l =--=) =0and Aeti = pi for i = 1,2,--+ k. As occa-
sion demands, we shall consider the following problem instead of Problem 1.1. Of course,
Problem 1.2 is equivalent to Problem 1.1,

Problem 1.2, (1) Find a necessary and sufficient condition on an ordered set
. 1 n
(M5 A2,+-+,7) in A(2, ¢) such that there exists a { PILTWEIDY v,\,.;t,q}- minihyper.
i=1

=

: n n
(03] Chmamm all {Z V)41, 21 v,\..;t,q}—minihypers in the case where there exist
such minihypers, = =

.Problem 1.2 was solved completely ‘by Helleseth '[21] in the case ¢ = 2 and by Hamada
[3] 1nthecaseq23,1snStand0<A1<A2<---<A,,5t—1. Hence it is sufficient
1o solve Problem 1.2 for the case ¢ > 3, 72 2 and A; = A; for some distinct integers 4 and j.
In the case 7 = 2 and A; = )9, Problem 1.2 was solved by Hamada [7]. In the case
7 = 3, Problem 1.2 was solved completely by Hamada [6], [7], Hamada and Deza [8] and
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Hamada and Helleseth [12]-[17]. In the case = 4, ¢ > 5 and A; = X2 < A3 = )4, Problem
1.2 was solved by Hamada and Deza [9), [11].

Recently, Hamada, Helleseth and Ytrehus [18] solved Problem 1.2 for the case 7 = 4,
g € {3,4} and (X1, Az, )3, A4) = (0,0,1,1) (cf. Propositions J1.3 and II1.4 in Appendix).
The purpose of this paper is to solve Problem 1.2 for the case = 4, ¢ € {3,4},
A1 = A2 < A3 = Aq and A3 # A1 + 1 using the results in Appendices I, II and IIL. The
main result is as follows.

Theorem 1.1. Let t,9,c and B be any integers such that g =3 or4,0< a < f <t
and 8 # a + 1.

(1) In the case ¢ < 2, there is 00 {2vg41 + 20p41,2v4 + 2vg;¢, ¢} — minihyper. .

(2Inthecaset >28+1, Fisa {2va+1 + 2vg41,2va + 2vﬂ;t,q}—- minihyper if and
only if F is a union of two a—flats and two S—flats in PG(%, ¢) which are mutually disjoint.

Remark 1.1. Hamada and Deza [9], [11] showed that in the case ¢ > 5 Theorem 1.1
holds for any integers f,« and A such that 0 < a < A < t. But Hamada, Helleseth and
Ytrehus [18] showed that Theorem 1.1 does not hold in the case g € {3,4}, @ = 0 and
B = 1. From Remark 1.3 in Appendix I and Theorem 1.2 in Hamada and Helleseth [14],
it follows that Theorem 1.1 does not hold for any integers t,q, and B such that ¢ = 4,
a20,f=a+1andt> 2a+2.

Corollary 1.1. Let n = vj ~ 2va41 — 2vg4; and d = ¢¥~1 — 2¢® — 248 where g = 3
or4,0<a<f<tand B #a+l.

(1) In the case k < 28 + 1, there is no [n, k, d; g)—code meeting the Griesmer bound.

(2 In the case k > 28 + 2, C is a [n, k, d; g]—code meeting the Griesmer bound if and
only if C is congruent to some [n, k, d; g]—code constructed by using a union of two a—flats
and two f—flats in PG(t,q) which are mutually disjoint.

Remark 1.2. It is unknown whether or not there exists a (93, 5,61;3]—code meeting

the Griesmer bound. Since n = 93,d = 61,v; = 1,93 = 13,v5 = 121 in the case

= 3,k = 5,a = 0 and § = 2, Corollary 1.1 shows that there is no [93,5,61; 3]—code
meeting the Griesmer bound.

2, The proof of Theorem 1.1

) .
Let F(e, 8,7, 6;t,q) denote the family of all unions |J V; of an a—flat V1, a f—flat V5, a

=1
v—flat V3, a 6—flat V4 in PG(2, g) which are mutually dis}oim where0 <a<B<y<é<t.
In order to prove Theorem 1.1, we prepare the following two theorems whose proofs will be
given in Sections 3 and 4 respectively.

Theorem 2.1 Let g =0,v; =1, 53 = q}l and v3 =g+ ¢+1 where g =3 or 4.
(1) In the case ¢ = 3 or 4, there is no {2v1 + 2vs, 2v + 2v;1, ¢}~ minihyper.
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(2 In the case t > 5, F € F(0,0,2,2;¢,q) for any {2v; + 2v3,2ve+ 2v3;t,q}—
minihyper F,

Theorem 2.2. Let ¢,8 and g be integers such that ¢t > 28 > 6 and g=3o0r4 If
Fisa {2v2 + 2vg41,2v1.+ 2ug;t, ¢} — minihyper such that (a) |F NG| = 2vg_y for some
(t —2)-flat G in PG(¢,q) and (b) F N H; € 7(0,0,8 1,8 — 1;1,q) for any hyperplane
H;(1<j<q+1)in PG(t,q) which contain G, then F € F(1,1,8,8;t,9).

Remark 2.1. Since F(1,1,8,8;t,q) = 0 in the case ¢ = 28 (cf. Remark I .1), Theorem
2.2 shows that in the case ¢ = 23, there is no {2v + 2vg,1, 2v1 + 2ug; t,q}— minihyper F
which satisfies the conditions (a) and (b) in Theorem 2.2.

(Proof of Theorem 1.1) It follows from Proposition I.1 and Remark I.1 that if F €
Fla,a,8,8;t,q) in the case ¢ > 28 + 1, then F is a {2va41 + 2v841,2va + 2vg;t,q}—
minihyper.

Conversely, suppose there exists a {2va+1+ 2vp.1, 204 + 2951, ¢} — minihyper F for
some integers ¢,9,c and B such that g =3 or4,0 < & < § < t and B # a+1. Then it
follows from Proposition I.2 ((i) in the case @ = 0, ¢ = 2, h = 2 and 41 = py = B and
(i)inthecase a #0, e =0, h=4, gy =p3 = a and p3 = pg4 = B) that there exists a
(t — 2)—flat G in PG(t,q) such that [FNG| = 2vq_1 + 2vg_1 where v_1 = vy = 0. Let
H;(j=1,2,-+-,q4+1) be g + 1 hyperplanes in PQG(t,q) which contain G.

Case I : (=0 and B=2) 1t follows from Theorem 2.1 that Theorem 1.1 holds.

Case Il : (a=0 and f=3) It follows from Proposition I.2 that F N H; is a
{8; + 2vg,2v5_1;¢,9}— minihyper in Hj for j = 1,2,--.,9 + 1 where the §; are non-
k3 - q+1
negative integers such that Y §; = 2. Without loss of generality, we can assume that either
j=1 .
@ =6=--=8§_ 1=0andf = gri=lor®)b1=6br=+..= g = 0 and 6341 = 2.
‘(A)Inthecase §y =6 =--- =§;_; =0 and §, = 6g+1 =1, it follows that F N H; is
a {2vp,2vs_1;t,q}— minihyper in the (¢t — 1)—flat H; fori = 1,2,-.-,¢—1 and F N H;
is a {131.+ 2vg,v0 + 2vg-1;t,q}— minihyper in Hj for j = ¢,q + 1. From Remark 1.2,
Propo§mon 1.5, 11.1 and I11.1 in Appendices, it follows that (i) in the case t— 1 <2(6-1),
fhere is no {2’Uﬁ,2vﬂ__1;t,q}—' minihyper in any (¢ — 1)~flat H, a contradiction, and (ii)
inthecase t—1>2(8-1)+1, FNH; e F(B-1,B-1t,q) fori =1,2,-..,g—1
and F.r? H; € F(0,8-1,8-1;t,q) for j = q,q + 1. Hence it follows from (i) and
Proposition I.3 (¢ = 2, h = 2, iy = pp = ) that (1) in the case t < 28 — 1, there is no
{2v1 + 2vg41, 29p + 2vp; 1, q}— minihyper F which satisfies the condition (a) and (2) in the
caset > 28, F € .77.(0,0,ﬁ,ﬂ; t,q). Since 7(0,0,8,8;t,q) # 0 if and only ift > 28+1 (cf.
Remark I.1), there is no {2v1 + 2vg41,2v0 + 2vg_3; t,q}~ minihyper in the case ¢ = 28.
(B). .In the case 61 = 8 = -+ = §, = 0 and §41 = 2, it follows from Remark I .2,
Proposition 1.5, Case I and induction on 3 that (1) in the case t — 1 < 2(B — 1), there is no
{2vg, ng..l;t,q}— minihyper in Hj, a contradiction, and (ii) in the case t—1 > 2(8-1)+1,
FnH;.e F(B~-1,8~1;t,q) fori=1,2,--.,q and FNHgiy € F(0,0,8-1,8 - 1;t,q).
Hence it follows from (i), Proposition 1.3 and Remark 1.1 that (1) in the case t < 28, there
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is no {2v1 + 2vg41,2v0 + 2vg;, ¢} — minihyper F which satisfies the condition (b) and (2)
inthe case t > 28 + 1, F € F(0,0,0,8;t,49).

From (A) and (B), it follows that Theorem 1.1 holds in Case I .

Case IIl : (a=1 and B=3) 1t follows from Proposition I.2 (e =0, h =4, p1 = p2 =1,
ps = pg = P) that F N H; is a {2v1 + 2vg,2v0 + 2vg_1;%,q}— minihyper in H; for
j = 1,2,---,9 + 1. Hence it follows from Remark I.2, Cases I and II that (i) in the
case t — 1 < 2(8 — 1), there is no {2v; + 2vg,2vp + 2vg_1;t,q}— minihyper in Hy, a
contradiction, and (ii) in the case t —1 > 2(f — 1) + 1, Fn H; € F(0,0,8 1,8 — 1;t,9)
for j =1,2,---,9+ 1. Using Theorem 2.2 and Remark I.1, it can be shown that Theorem
1.1 holds in Case IIL -

Case IV : (az2 and (za+2) It follows from Proposition I.2 that F N Hj is a
{Zva + 2vg,2v4-1 + 2vg_1; t,q}-— minihyper in H; forj = 1,2,---,¢+1. Hence it follows
from Remark 1.2, Cases I, I, HI, induction on « and 8, Proposition I.3 and Remark I.1 that
Theorem 1.1 holds in Case IV. This completes the proof of Theorem 1.1.

3. The proof of Theorem 2.1

Let F(A1,22,- -+, t,9), F(0,1,1;1,3), F(0,0,1,1;¢,3) and F5(0,0,1,1;¢,4) (i =
1,2,3,4) denote the families given in Appendix I, Definition I1.1, I1.2, I11.2 respectively.
In order to prove Theorem 2.1, we prepare the following four lemmas whose proofs will be
given in Sections 5, 6, 7 and 8 respectively.

Lemma 3.1. In the case t > 4, there is no {2v1 + 2v3,2vg + 2v9;¢,3}— minihyper F
such that (a) |F N G| = 2 for some (¢ —2)—flat G in PG(¢,3) and (b) FNHy € F(1,1;t,3),
FnNH; € F(1,1;¢,3), FN Hs € F(0,1,1;¢,3) and F N Hy € F(0,1,1;,3) where vp = 0,
vy =1, va = 4, v3 = 13 and the H; denote four hyperplanes in PG(t,3) which contain G.

Lemma 3.2. In the case ¢ > 4, there is no {2v1 + 2v3,2vg + 2v2;1,3}— minihyper F
such that (a) |F N G| = 2 for some (f —2)—flat G in PG(t,3) and (b) FNH; € F(1,1;t,3),
Fn H; € F(1,1;¢,3), Fn Hs € F(0,1,1;¢,3) and F N Hy € F(0,1,1;¢,3) where the H;
denote four hyperplanes in PG(%,3) which contain G.

Lemma 3.3. In the case t > 4, there is no {2v; + 2v3,2vg + 2v2;¢,3}— minihyper F
such that () |F N G| = 2 for some (¢ —2)—flat G in PG(%,3) and (b) FNH; € F(1,1;,3),
FnH, € F(1,1;¢,3), FN Hz € F(1,1;1,3) and F N Hy € 74(0,0,1,1;¢,3) for some 8 in
{1,2,3,4} where the H; denote four hyperplanes in PG(t,3) which contain G.

Lemma 3.4. In the case ¢ > 4, there is no {2v; + 2v3,2vg + 2v2;¢,4}— minihyper F
such that (a) |[F'N G| = 2 for some (¢ — 2)—flat G in PG(t,4) and (b) FN H; € F(1,1;1,4)
for i = 1,2,3,4 and F N Hs € F5(0,0,1,1;¢,4) for some 8 in {1,2,3,4} where vy = 0,
v1 =1, v2 =5, v3 = 21 and the H; denote five hyperplanes in PG(t,4) which contain G.

(Proof of Theorem 2.1) Suppose there exists a {2v1 + 2v3,2vg + 2vs; ¢, ¢} — minihyper
F for some integer ¢ > 3. Then it follows from Proposition 1.2 (€ = 2, h = 2, p1 = pg = 2)
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that (@) |FNG| = 2 for some (¢ ~ 2)-flat G in PG(t,q) and ) FNH;is a
{6; + 2v2,2v1;¢, ¢} —minihyper in H; for any hyperplane H; (1 < j < g+1) in PG(t,q)
g+l

which contain G where the §; are nonnegative integers such that 2 8 = 2. Without loss

1
of generality, we can assume that either @bé=b=..= 6,_1J= 0 and §; = §g41 =1
Or(ﬂ)&=52=---=5q=08nd6q+1=2. o

Casel: (q=3, 61 = 82 = 0 and 63 = &4 = 1). It follows from Remark I .2, Propositions
1.5 and II.2 that (i) in the case ¢ — 1 = 2, there is no {2v2,2w;¢, 3} —minihyper in Hj, a
contradiction, and (ji) in the case t —1 > 3, FN H; ¢ F(1,1;t,3), FNHy € F(1,1;¢,3)
and either F N H; € F(0,1,1;t,3) or FN H; € .7—‘(0,1,1;t,3) for i = 3,4. It follows
from Lemmas 3.1 and 3.2 that F N H; ¢ F(0,1,1;¢,3) for i = 3,4. Hence it follows from
(D, Proposition 1.3 (¢ =2, h=2, p; = k2 =2) and Remark I.1 that Theorem 2.1 holds
in Case L .

Case Il : (q=4, 6 = 63 = 83 = 0 and 64 = &5 = 1). It follows from Remark
1.2, Propositions I.5 and I11.1 (a=0,8 =7 =1) that (i) in the case t — 1 = 2, there
is no {2v2,2v1;t,4}~minihyper in H1, a contradiction, and (ii) in the case ¢ — 1 >3,
FnH; € F(1,1;,4), fori = 1,2,3 and F N Hj € 7(0,1,1;¢,4) for 7 = 4,5. Hence it
follows from (i), Proposition I.3 and Remark 1.1 that Theorem 2.1 holds in Case II.

CaseIll : (q=3, 61 = 82 = 63 = 0 and 64 = 2). It follows from Remark I.2, Propositions
I.5 and II.3 that (i) in the case ¢ — 1 = 2, there is no {2v2,2v1;¢,3}~minihyper in H;,
a contradiction, and (i) in the case ¢t — 1 > 3, Fn H; € F(1,1;¢,3), for i = 1,2,3 and
either FN Hy € F(0,0,1,1;¢,3) or FNHy € ._7-"'9(0,0,1,1;t,3) for some 4 in {1,2,3,4}.
Hence it follows from (i), Lemma 3.3, Proposition 1.3 and Remark I.1 that Theorem 2.1
holds in Case IIIL

Case IV : (q=4, 61 = 62 = 63 = 64 = 0 and 85 = 2). It follows from Remark 1.2,
Propositions 1.5 and I11.4 that (i) in the case t—1 = 2, there is 0o {2v2, 2v1;¢, 4} —minihyper
in H), a contradiction, and (i)inthecaset—1>3, FNH; e F(1,15t,4) fori =1,2,3,4
and either FNHs € 7(0,0,1,1;¢,4) or FNH; € F5(0,0,1,1;¢,4) for some 8 in {1,2,3,4}.
Hence it follows from (i), Lemma 3.4, Proposition 1.3 and Remark 1.1 that Theorem 2.1 holds
in Case IV. This completes the proof of Theorem 2.1.

4. The proof of Theorem 2.2

Lemma 4.1. Let ¢,3 and q be integers such that ¢ > 28 + 1 2T7andg>3 KHFis
a {sz + 2vg41,2v + 2vp;t,q}—minihyper such that F = X UY; UY> for some set X (of
2v; points in PG(t,q)) and some S-flats Y1, Y2 in PG(t,q) which are mutually disjoint,
then X € F(1,1;¢,9) and F € F(1,1,8,8;t,9).

Proof. If [ XN H| > 2 for any hyperplane H in PG(t,q) and |X N H| = 2 for some

hyperplane hyperplane H in PG(t,q), it follows from |X| = 2v, and Proposition 1.5 that
2

X € F(L,1;t,q) and F € F(1,1,,6;t,q). Sines [FNH| = X H| + 3" [t; 1 H| and
]

|Y: N H| = vg or vy, for any hyperplane H in PG(t,q), it is sufficient to show that there
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is no hyperplane H in PG(t,q) such that |[F N H| = vg + vg41, 1 + vg + vg41, 2vp41
or 1+ 2vg,,. ) )
Suppose there exists a hyperplane H in PG(t,q) such that |FN H| = 3 + 2vg, 4 +
2vg, vg + vgy1, 1 + vg + vg41, 2041 OF 1+ 2054 .
CaseI: (|F N H| = 3v; + 2vg). Suppose there exists a (¢ — 2)—flat G in H such t?xat
[FNG| < 2vg_1. Let H; (i =1,2,--,q) be ¢ hyperplanes in PG(t, q), except for .H, which
contain G. Since |F| = 2v2 +2vg41 and |F N H;| > 2v1 + 2vg fori = 1,2,---, g, it follows

q
- from gvg..1 = vg—1 and qug = vgy) — 1 that ]FI:IFnHl-i-;{[FﬂHil—anGl}Z

=
2vg41+2¢ + 3 > |F|, a contradiction. Hence |F N G| > v; + 2vg_ for any (¢ — 2)—flat G
in H. Using Proposition 1.6 (§ =t —1,6; = 1,e5_; = 2), we have |F N H| > vy 4 2v5 >
3+ 2yg = [F'N H|, a contradiction. Therefore, there is no hyperplane H in PG(t,q) such
that |[F N H| = 3 + 2uvp.

Case Il : (q=4 and |F N H| = 4v; + 2vg). Using a method similar to Case I, it can
be shown that there is no hyperplane H in PG(t,q) such that |F N H| = 4 + 2vg in the
case ¢ 2 4.

Caselll : (q=3 and |F N H| = v2+2vg). Suppose there exists a (t—2)—flat G in H such
that [F NG| < ~14+v;1+2v_1. Let H; (i = 1,25 3) be three hyperplanes in PG(t, 3), except

for H, which contain G. Then |[F| = |[FNH|+ Y {|[FNH;| - |[FNG|} > 2vp+1+vz+6 >

i:l .
|F|, a contradiction. Hence |FNG| > v + 2vg_; for any (¢ — 2)—flat G in H. Sm?e
|FNH| = vy + 2v, it follows from Proposition 1.6 that there exists a (¢ — 2)—flat G in
H such that |[F NG| = v1 + 2vg..1. Let I; (i =1,2,3) be three hyperplanes in PG(t,3),
except for H, which contain G. :

3
Since 3 [FN(IL\G)| = |F| - |[FNH| = 3(2-3%~' +1) + 1 and |F N (I;\G)| =
i=1

IF A~ [FN G| > 2381 41 fori = 1,2,3, there exists a hyperplane I in {IL;, Iz, Iz}
such that |[F N II| = (2v1 + 2vg) +1 = 3+2vp,2 contradiction. Hence there is no hyperplane
H in PG(t,3) such that |[F'N H| = 4 + 2v in the case ¢ = 3.

Case IV : (|F N H| = vg + vg41). Using a method similar to Case III, it can be shown
that there exists a (¢ —2)—flat G in H such that |F' N G| = vg_;+vg. LetI; (i = 1,2,---,q)
be ¢ hyperplanes in PG(t,q), except for H, which contain G.

Since 3" [FN(IAG)| = |F| - [FNH| = o(¢®1+2) + 2 and |F N (T\G)| =
=1

|F N IL -—'-an Gl 2 ¢#1+2fori=12.,q there exists a hyperplane I in
{II;, 0y, -+, M } such that |[FNII| = 3 + 2vg or 4 + 2vg, a contradiction. Hence there
is no hyperplane H in PG(t,q) such that |F N H| = vg + vg41.

Similarly, it can be shown that there is no hyperplane H in PG(t,q) such that |[F N H| =
2‘Uﬂ+1.

Case V: (|[FNH| =1+ vg+vgy; or 1 + 2vg4)). Using a method similar to Case 1II,
it can be shown that there exists a hyperplane II in PG(t,q) such that |[F N H| = 3 +2vg,
a contradiction. This completes the proof.
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(Proof of Theorem 2.2) Let F be any {2v2 + 2vg.1,2v; + 2vg;t, ¢} — minihyper which
satisfies the conditions (a) and (b) in Theorem 2.2 where ¢ > 28 > 6. Then FN H; =
{P;1, Pie} U Win U W;a for some points Pi1, Pi2 and some (8 — 1)—flats Wi, Wiz in H;
which are mutually disjoint for i = 1,2,---,9 + 1. Since |G N W| = vg_; or vg for any
(8 — 1)—flat W and any (¢ — 2)—flat G in H;, it follows from |[FNG| = 203_1. that
P; ¢ G zmcl1 GNW;; =V; (3 -:—'11,2,---,q+1, j;—; 1,2) for some (B — 2)—flat V; in G.

-+

q q q
Let X = U {Pa, P2}, h = Ul Wi and Y3 = U Wia.
=1 =

i=1

Let E; = H; N (W11 ® Wy) for i = 3,4,---,g+ 1. Then E; is a (8 — 1)—flat in H;
such that GNE; = V; fori = 3,4,---,q+ 1. Note that (i) WinUWaUE3U---UE 1 isa
p—flat in PG(t,q) and (ii) either Wiy = E; or Wi N E; = Vi for each i. Hence if Wiy = E;
for i = 3,4,--+,9+ 1, then Y7 is a B—flat in PG(2,q).

Suppose Wi; N E; = Vy for some ¢ in {3,4,---,¢9 4+ 1}. Without loss of generality,
we can assume that Wy = Ej, W3 = E3, -+, Wy_1) = Ep_j and Wy N Eg = --- =
Wet11 N Egq1 = Vi for some 8 in {3,4,---,¢ + 1} where Ea = Wha;.

Let 2 be a (¢t ~ 2)—flat in Hgy1 such that B4 CQ, QNWeg1=Viand QN is a
(8—3)-flatinG. LetI; (I =1,2,.-,q) be q hyperplanes in PG(t,q), except for Hyy1,
which contain . Then I; N W11 = QN Wy = Vi and I N Wiz is a (B — 2)—flat in
H; (ie, IHNWia| =vg_1)for 1 =1,2,---,qand i =1,2,---,¢+ 1.

Since W1y C Ilq, Wa1 C I, and Wy C I, for some integers o, 03,04, ,8, in
{1,2,.--,q}, there exists a hyperplane II in {II;,I5,... I} such that TN W;; = W, for
t=1,2,--.,q. Hence it follows from F = X UYiUYs that |[FNI| = | X NO|+[Yi NI+
YanHj = | X 00| + V1] + (g+ L)vg-1 = [ X NO| + (g+2)vg_1 < 2v; + 2vg unless
g=3F=3and [XNII| = 8.

Case I : (q=4 or q=3 and B=24). 1t follows that |[F NII| < 2v; + 2vg, a contradiction.
Hence Wi1 = E; for i = 3,4,---,¢ + 1. This implies that ¥, is a #—flat in PG(t,q).
Similarly, it can be shown that Y2 is a —flat in PG(¢,q). Hence it follows from Lemma
4.1 that F € F(1,1,B,8;t,q) in the case t > 28 + 1.

In the case ¢ = 28, there do not exist two S—flats Y7 and Y2 in PG(t,q) such that
YiNYz = 0. Hence in the case t = 24, there is no {2va + 2vg41,2v; + 2us; ¢, ¢} —minihyper
F which satisfies the conditions (a) and (b) in Theorem 2.2. This implies that Theorem 2.2
holds in Case I

Case II : (q=3 and B=3). It follows that § = 3 or 4, i.e., either (@) W31 N E3 =
WaunEy=Vior(8) Wiy = E3 and Wy N Ey = V4.

(A) In the case W3; = Ej3, we can assume without loss of generality that Wi C
Oy, Wa1 C IOi and Wi C II; . Hence there exists a hyperplane I in {II2, I3} such
that Py ¢ M and N Wi = Vi fori = 1,2,3. This implies that |[X NII| < 7, ie.,
|F NI} < 2v; + 2vg, a contradiction. Using a method similar to Case 1, it can be shown
that Theorem 2.2 holds in the case (A).

(B) In the case W31 N Ey = V; and Py; € Ej there exists a hyperplane IT in {II3, Iz, I3}
such that Py ¢ IT and TN W;; = V; for i = 1,2,3. This implies that |X N1I| < 7, ie.
[F NI < 2v; + 2vg, a contradiction. Hence Theorem 2.2 holds in the case (B).
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(©) In the case W31 N E3 = V) and Ps3; ¢ Ej, let Q be a (t — 2)—flat in Hs such that
Py g, B3CQ,QnNWa =V, and QNVais a (8 — 3)—flat in G. Let I (1=1,2,3) be
three hyperplanes in PG(t,3), except for H3, which contain Q. Since P3; ¢ II; forl = 1, 2,3,
there exists a hyperplane IT in {Il1, I3, I3} such that |[F N 1| < 2v; + 2vg, a contradiction.
Hence Theorem 2.2 holds in the case (C). This completes the proof of Theorem 2.2.

S. The proof of Lemma 3.1

Suppose there exists a {2v1 + 2v3,2vp + 2v9;¢,3}—minihyper F which satisfies the
conditions (a) and (b) in Lemma 3.1. Then FNG = {P;, P}, FN Hy = Ly U Ly,
FNHy = LnULy, FNH; = L3 ULy U {Ps} and F N Hy = V\{Q1,Q2,Q3,Q4} for
some 2—flat V' in Hy and some 4—arc {Q1, Q2,Q3,Q4} in V where L;; and L;z are 1—flats
in Hy such that Ly N Lia =0, GNLj = {Pi} and GNLy = {Pp} fori=1,2,3 and P; is
a point in H3\G and GNV is a 1-flat in G which contains two points P and -P;. Without
loss of generality, we can assume that GN.V = {P1, P2,Q1,Q2}.

In order to prove Lemma 3.1, it is sufficient to show that there exists a hyperplane 1I
in PG(t,3) such that |[FNII| < 2v2 = 8. Let B; = H;N (Ln @ L3) for i = 1,4. Then
E; is a 1-flat in H; such that GN E; = {P1} for i = 1,4. Note that either L1; = E; or
LiiNE, = {Pl}

CaseI: (LuNE, = {P}). Let M = GN(L11® E;). Then M is a 1—flat in G
passing through Py. Let £ be a (t — 3)—flat in G such that SN M = {P1} and P, ¢ Z. Let
I;(j = 1,2,3) be three hyperplanes in PG(t, 3), except for H;, which contain the (t—2)—flat
L@E;in Hy. Since Pa€ V, Po € Lis, Py gHjand M ¢ IT; fori =1,2,3 and j = 1,2,3,
we have |V NII;| =4, |LiaN 1| =1 and L1 N O ={P} fori=1,2,3 and j = 1,2,3.

Since Ly C 4, L31 C O, and P3 € Iz for some integers « and B in {1,2,3},
there exists a hyperplane II in {II;,II2, I3} such that P; ¢ I and 1IN Ly = {P} for
i = 2,3. This implies that there exists a hyperplane II in PG(t,3) such that [FNI| =

3
) L NO|+ [(FNH)NIO <3+ [V NI = 7 < 2vy, a contradiction. Hence Ly, = E;.

Case Il : (L11 = Ej). Let X be a (t — 3)—flat in G such that P, € ¥ and P ¢ ¥,
Let II; (j = 1,2,3) be three hyperplanes in PG(t,3), except for Hs, which contain the
(t—2)—flat © @ By in Hs. Since Ly C Iy, Ly C Mo, L3 C Iy and P3 € g for some
integers « and 8 in {1,2, 3}, there exists a hyperplane3[[ in {II;, I, 3} such that P; ¢ I

and N Ly = {P1} for i = 1,2,3, i, |FNI] = ¥, |Ly N 1| + [(F N Hy) NI < 209,

a contradiction. Hence there is no {2v; + 2v3, 2vg + E:g; t,3}—minihyper F' which satisfies
the conditions (a) and (b) in Lemma 3.1.

1=

6. The proof of Lemma 3.2

Suppose there exists a {2v1 + 2v3, 2vg + 2vg; 1, 3}—minihyper F which satisfies the
conditions (a) and (b) in Lemma 3.2. Then FN G = {P,,R}, FNHy = Ly; U Ly,
FNHy=LnULypand FNH; = Vi\{Qj1,Qj2,Qj3, Q;4} for some 2—flat Vj in H; and
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some 4—arc {Qj1,Qj2, Q;3,Qjs} in V; (§ = 3,4) where L;, and L; are 1—flats in H; such
that Ly N Lz =0, GN Ly = {P1} and GN Ly = {P} fori = 1,2,

Since G NV; is a 1—-flat in G which contains two points P; and Ps, we can assume
without loss of generality that G N V3 = G NV, = {P, P2,Q1,Q2} where Qj1 = Q1 and
Qj2 = Q2 for j = 3,4. Since {Q1,Q2,Q43,Q44} and P; ® P, are a 4—arc and a 1-flat,
respectively, in the 2—flat Vj, it follows that (P1 @ P2) N (Q43 ® Qu) = {P1} or {P2}.
Without loss of generality, we can assume that (P & P2) N (Q43 ® Qu4) = {P1}.

Let X be a (¢ — 3)—flat in G such that P, € ¥ and P» ¢ X. Let II; (I = 1,2,3) be three
hyperplanes in PG(t,3), except for Hy, which contain the (¢ — 2)—flat & @ (Q43 ® Qa4) in
Hy. Then [LipnI =1, | Ly NI =1, (V3NIg| =4 and Van1l; = {Q43,Q44,P1,R}
(e, (FNVa)NIL| = 2) for I = 1,2,3 where R denotes the point in Q43 ® Qa4 except
for three points Py, Q43 and Q4.

Since L1y C Il and Ly C IIg for some integers « and B in {1,2,3}, there exists
a hyperplane I in {II;, M, I3} such that I N Ly; = {P;} and I N Ly = {P} ie,
[FNO] = {LipnT] + |[LonTO| + (FAVR)NO| + (FAVA)NIO] =1 < 7 < 2w, 2
contradiction. Hence there is no {2v1 + 2v3, 2vp + 2v2;¢, 3} —minihyper F' which satisfies
the conditions (a) and (b) in Lemma 3.2.

7. The proof of Lemma 3.3

Suppose there exists a {2v; + 2v3,2vq + 2v2;1,3} —minihyper F' which satisfies the
conditions (a) and (b) in Lemma 3.3. Then FNG = {P,,P}, FN Hy = L1 U L1y,
FNHz = La1U Lz, FN H3 = L31 U L3z where L;1 and L; are 1—flats in H; such that
LiaNLp=0,GNLy = {P} and GN Ljp = {P} fori = 1,2,3.

- Casel: (9=1). 1t follows from Definition II.2 that F N Hy = V\{Q1, Q2, @3} for some
2—flat V in Hy and some 3—arc {Q1,Q2,Q3} in V. Let E4 = HsN (L11 ® L) and let &
be a (t—3)—flatin G such that P; € £ and P ¢ . Let II;(j = 1,2, 3) be three hyperplanes
in PG(t,3), except for Hy, which contain the (¢ — 2)—flat £ @ E4 in Hy. Then there exists
a hyperplane II in {II;,1I5,II3} such that |F N1I| < 2v2, a contradiction.

Case Il : (6=2). It follows that F N Hy = (V\S) U {P} for some 2—flat V in Hy, some
4—arc § = {Q1,Q2,@3,Q4} in V and some point P in H\V. Let Es = HynN(L11 & La1)
and GNV = {P, P,Q1,Q2}.

(A)Inthe case P ¢ Ey let M = GN(E; @ P) and let © be a (¢ — 3)—flat in G such that
ENM = {P} and P ¢ 3. Let II; (j = 1,2,3) be three hyperplanes in PG(t,3), except
for Hjy, which contain ¥ @ E4. Since P ¢ II; and |V N 11| = 4 for j = 1,2, 3, there exists
a hyperplane II in {II;, 5,113} such that |F N II| < 2vy, a contradiction.

(B) In the case P € Ey, let N = GN (B4 @ Q3) and let T be a (¢t — 3)—flat in G such
that N C X and P, ¢ 2. Let IT; (j = 1,2,3) be three hyperplanes in PG(t,3), except for
Ha, which contain £ @ Ey. Since VNII; = P @ Qs (ie., [(V\S)N 1| < 3) for j = 1,2,3,
there exists a hyperplane I in {II;, I3, I3} such that |F N II| < 29, a contradiction.

Case Ill : (6=3). 1t follows that F N Hy = L U K* for some 1~flat L in Hy and some

minihyper K* in 7(0,0,1;¢,3) such that LNK* = §, GNL = {P;} and GNK* = {P3}. Let
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V be the 2—fiat in Hy which contains K* and let M = GN V. Let B4 = HyN(L12 ® L)
and let X be a (2 — 3)—flat in G such that Py ¢ £ and ZN M = {Pp}. Let II; (j = 1,2,3)
be three hyperplanes in PG(t,3), except for Hy, which contain © @ Es.

Since M ¢ ¥ and |[K*NL* < 3 for any 1-flat L* in V, VN 1II; is a 1—flat in
V and [K*N(V NI;)| < 3 for j = 1,2,3. Hence it follows from |L;; N1;| = 1 and
ILNI;[ =1 (i = 1,2,3, j = 1,2,3) that there exists a hyperplane II in {II}, IT5, M3} such
that |F NI} < 2vy, a contradiction. :

Case IV : (0=4). It follows from Definition II.2 that F n H; = K for
some minihyper K in F3(0,0,1,1;t,3) where K = {(fo),(£1),(£2),(£3), (260 + &1),
(260 + £2), (260 + &3), (261 + £2), (261 + £3), (2¢2 + ¢3)} for some four linearly independent
points (€o),(£1),(é2) and (&3) in PG(4,3).

Let W be the 3—flat in H4 generated by four points (o), (1), (¢2) and (¢&3) in PG(¢,3).
Since G is a (¢ —2)—flat in the (¢ — 1)—flat Hy such that KNG = (FNH)NG = FNG =
{P1, P}, WNG must be a 2—flat (denoted by A) in G such that KNA = {P1, P;}. Without
loss of generality, we can assume that Py = (2£o + £1) and Py = (2¢2 + £3).

Let J = PO Py, Ay = J @ (20+&), Az = T @ (b), As = T & (é2) and
Ay =T (fo+ &1 +é2+ €3). Then A; (i =1,2,3,4) are four 2—flats in W which contain
J and K N A1 = {(260 + £1), (260 + €2), (260 + &), (261 + €2), (261 + £3), (262 + &)},
K N Az = {(£0): (61), (260 + 1), (262 + &3)}, K N Az = {(&2), (£3), (260 + £1), (262 + &3)}
and K N Ay = {(2& + &1), (2¢2 + &3)} where A = Ay. Let By = HyN (L11® L21). Then
E4 is a 1—flat in Hy such that GN E4 = {P1}. Note that either Es C W or EsNW = {P}.

(A) In the case B4 C W (ie., B4 C A;) for some 4 in {1,2,3}), there exists a 2—flat V
inWsuchthat By, C W, Pp¢d Voand |[KNV|<4. Let N=GNV. Then N is a 1-flat
in G such that P1 € N and P, ¢ N. .

Let & be a (¢ — 3)—flat in G such that N C X and P ¢ . Let I; (j = 1,2, 3) be three
hyperplanes in PG(t,3), except for Hs, which contain £ @ E4. Since |Liz N 1| = 1 and
Wnl; =V fori=1,2,8 and j = 1,2,3, there exists a hyperplane II in {II3, I, I3} such
that [FNII| =3+ |[KNV| <7 < 2v,, a contradiction.

(B) In the case EsNW = {P1}, let V be a 2—flatin W such that P, € V, P, ¢ V
and |[KNV| < 4. Let Q be a (t — 2)—flat in Hy such that B4 C Q and QN W = V. Let
II; ( =1,2,3) be threc hyperplanes in PG(t,3), except for Hy, which contain . Since
WnIL;=WnR=V forj =1,2,3, there exists a hyperplane IT in {II;, I3, I3} such that
IF NI} < 2vs, a contradiction. This completes the proof.

8. The proof of Lemma 3.4

Suppose there exists a {2v; + 2v3,2vp + 2v;¢,4}—minihyper F which satisfies the
conditions (a) and (b) in Lemma 3.4 where vg = 0, v; = 1, v2 = 5 and v3 = 21. Then
FNG = {P, P} and FN H; = M;; U Mo for some 1—flats M;; and M;s in H; such that
MianNMi2=0,GNM; ={P} and GN M = {P2} fori=1,2,3,4.

Casel: (6=1). It follows from Definition III.2 that F N Hy = K for some minihyper
K in 1(0,0,1,1;¢,4). Let V be the 2—flat which contains K. Let E = HsN(My & M),
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Then E is a 1—flat in Hs such that GNE = {P;}. Note that ) KNG = (FNH;)NG =
FNG = {P,, P} and (ii) either EC Vor ENV = {P}.

(A) In the case E C V, let  be a (¢t — 2)—flat in Hp such that NV = E. Let
I, (I = 1,2,3,4) be four hyperplanes in PG(t,4), except for Hs, which contain 2. Since
Poe My, PoeV,PagQand P, g I fori=1,2,3,4 and ! = 1,2,3,4, it follows that
that [Mp NI =1and VNI = VN = E. Since My C Iy, Moy C I, M3 C 1T, and
My C Il for some integers a,b and ¢ in {1,2,3,4}, there exists at least one hyperplane
IO in {I;,H2,03,1I4} such that 1 N M;; = {P1} for i = 1,2,3,4. This implies that

4

IFNH| = Z‘ M N+ |(FNH))NIO| <44V N =9 < 2vy, a contradiction. Hence

VNE = {Pl} Note that 2vp = 10 in Lemma 3.4.

(B) In the case VN E = {P1}, let Q be a (t — 2)—flat in H5 such that E C O and
QNV = N where N is a 1-flat in V such that P, € N and P> ¢ N. Using a method
similar to (A), we have a contradiction. Hence 6 # 1.

Case II : (=2 or 3). Using a method similar to Case I, it can be shown that there exists
a hyperplane II in PG(t,4) such that |FF N II| < 2vs, a contradiction. Hence 8 # 2,3.

Case IIT : (8=4). 1t follows from Definition IJ1.2 that F N Hs = L U K* for .

some 1—flat L in Hs and some minihyper K* in F(0,0,1;¢,4) such that LN K* =
where K* = {(wo),(w1),(w2),(wo + w1), (wo + wa), (w1 + w2)(wo + w1 + w2)} for some
noncollinear points (wp),(w1) and (ws) in Hs. Note that |[K*N E| < 3 for any 1-flat
E in V where V denotes the 2—flat generated by the three points (wp), (w1) and (ws).

Since |[LNG|] =1o0r5 and (LUK*)NG = (FNHs)NG = FNG = {P, P},
we can assume without loss of generality that K* N G = {P,} and LN G = {Py}. Let
E = Hs N (M1 ® Ma1). Then either EC V or ENV = {P1}

(A) In the case E C V, let Q be a (¢ — 2)—flat in Hs such that P, ¢ {1 and
QNV = E. Let I0; (I = 1,2,3,4) be four hyperplanes in PG(t,4), except for Hj, which
contain Q. Then [MppNIy = 1, |LNIL| = 1 and VNI = E for i = 1,2,3,4
and | = 1, 2 3,4. Hence there exists a hyperplane II in {II;,II2,II3, 14} such that

|[FNIO| = }:|M.2nnl + |[LnI| + |[K*NE| <
VNE = {P1}

(B) In the case VN E = {Pi}, let §) be a {t — 2)—flat in Hy such that E C Q and
NV = N where N is a 1—flat in V such that P, € N and P» ¢ N. Using a method similar
to (A), we have a contradiction. Hence 6 # 4. This completes the proof of Lemma 3.4.

8 < 2w, a contradiction. Hence

Appendix L Preliminary results in the general case

Let U(t, g) denote the set of all ordered sets (e, p1, 2, --,p1) of integers €, b and
(i=1,2,--+,h)suchthat0 S € S g—1,1 S h < (t-1)(g—1), 1< p1 Spa < +-- S pp <1
and 0 < my(p) < ¢—1forl=1,2,+,¢~1 where m(g) denotes the number of integers
i in p = (p1,p2,+ -+, pa) such that p; = [ for the given integer I. In the case k > 3 and
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1< d < g¥ ! —gq, d and the Griesmer bound can be expressed as follows.

h
d=q" -1 (e-l—Zq"‘) and n > v ~ (€+Z1’y.+l) Ly

i=1 i=1

using some ordered set (e, 1, p2, -+, pa) in U(k — 1,q) where v = (¢! —1)/(g—1) for
any integer I > 0.

Let Fu(e,p1,p2,+-+,p4;t,q) denote the family of all unions of ¢ points,
a p1—Hat, a po—flat, -.-, a py—flat in PG(f,q) which are mutually disjoint
where (&, p1,p2,-+-,18) € U(t,q). As occasion demands, we shall denote
Ful(e, p1s B2, -+ 5 prit, @) by F(A1, A2y« Agst,q) where = hte, li =0 (i =1,2,-+,¢)
and ,\,.,.i =p; (=1,2,---,h). For example, F(a,B,7,6;t,q) denotes the family of all
unions U Vi of an a—flat V1, a f—flat V5, a y—flat V3 and a §—flat V4 in PG'(t,q) which
are mutually disjoint where 0 S a < < y<§<t.

In order to prove Theorem 1.1, we prepare the followmg proposmons which play an
important role in solving Problem 1.1 or 1.2.

Proposition L1. (Hamada [4]). (1) If F € Fuy(e,p;t,q) in the case t > p + 1, then F
is a {ev1 + vut1,€v0 + vy; ¢, g} —minihyper.

QUFr E Fu(e, p1, p2, - ,p;,,t g)inthecase h > 2 and £ > pp_q + pp + 1, then F
isadev; + 2 Vyi+1,EV9 + z vyt q} —minihyper.
=1 =1

Remark L1. It is known (cf. Theorems 2.2 and 2.3 in Hamada and Tamari [20]))
that Fy(e, p1, 42, -+, nit,q) # O if and only if either (@) b = 1 or ® h > 2 and
t 2 pp—1+ pp + 1 where (511"1:[‘2’ : ’“h) € U(t,Q)

Proposition 1.2. (Hamada [3)).

If there exists a {ev1 + E Vi1, €V0+
E w3, ¢} —minihyper F for some ordered set (&1, 2, -+ 1) in U(t, q), then | FNA |>

Z Vy;—1 for any (¢ — 2)—flat A in PG(t,q) and | FNG |= E vy,;—1 for some (¢ — 2)~flat
G in PG(t,q). Let H; (j=1,2,- ,q +1)beg+1 hyperplancs in PG(t,q) which con-
tain G. Then F N Hj is a { 1 + Ev“_, 8v0 + E Vpy—1; ,q}—mlmhyper in H; for

i g+1
J=1,2,.--,q+1 where the §; are nonnegative integers such that Y. 8 =¢.

=1

Remark 1.2. (1) For any (¢ — 2)-flat G in PG(2,q), there are g + 1 hyperplanes in
PG(t,q) which contain G.
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(2) There exists an {f,m;t,q}—minihyper F' such that F C  for some 6—flat
in PG(t,q) if and only if there exists an {f,m;#,g}—minihyper where 2 < 6 < ¢ and
0 <m< f < vy

Proposition 1.3, (Hamada [4]). Let (e, p1, 2, -+, 44) be an ordered set in U(t, g) such
thateither () h=land 1 22, (B h 22,6 =0, p1 =1, pa>2and ¢ 2 pp1 +
or () h>2 p1 2>2andt > pp1 +ps. Let§ (j=1,2,---,4+1) be nonnegative

-+ h h

g+1
integers such that 216,- = €. If there exists a {ev1 + Y vu,+1,6v0+ D vy;;t, ¢} —minihyper
i= =1 i=1 ‘

b
F suchthat (8) | FNG |= .Zl"“i‘l for some (¢t — 2)—flat G in PG(t,q) and (b)

FQHj € Fy(bj, 81— 1,42 —1,--+,ps — 1;t,q) for any hyperplane H; (1 < j < g+1)
which contains G, then F € Fy(e, i1, B2, + , 443 ¢, 9)-

Proposition 14, (Hamada [3]). Let ¢, g, €, h and p; (i=1,2,---,h) be any integers
suchthatt > 2,923, e=0o0rl,1<h<tandl <pi<p2<---<pp <t

(1) In the case h = 1, F is a {ev1 + vu41,€v0 + vy;5t, ¢} —minihyper if and only if
F € Fy(e, ity 9).

h h
() Inthecaseh > 2andt > pp_1+up+1,Fisa {em + 3 vut1,6v0+ Y vm;t,q}—
o s : 3 =1 =1
minihyper if and only if F € Fy(e,p1, 2, pai t, ¢). .

h b
(3)Inthecasch > 2 and ¢ < pp—1+ 44, there is no {em + 2 V41,00 + 2 v,,‘;t,q}—
minihyper. =t =

Proposition L5. (Hamada [7]). Lett >2,¢>3and1 <pu <t
(1) In the case t < 2y, there is no {2v,41,2v,;t, ¢}—minihyper.

(2) In the case t 2> 2p + 1, F is a {2vu41,2v,;t,q}—minihyper if and only if F €
F(p, ity q).

Definition L1. Let V be a 6—flat in PG(t,q) where 2 < 6 < t. A set S of m points in
V is called an m—arc in V if no 8+1 points in S are linearly dependent where m > 8 + 1.
For convenience sake, a set S of # points in V is also called an #—arc in V if 8 points in
S are linearly independent.

Remark 13. Let ¢;; and €3 (3 = 0,1,--- ,tl-— 1) be nonnegative integers such that
(1= -
0<ei+er<g—1.IF;isa Zoe;jv,-+1, Ze;jv;;t,q}—-minihypet for j = 1,2 and
1= 1=1
-1

t-1
FiNF,=0,then FUF, isa {}3 (e +e)vitn, 3 (e + e.'z)v,-;t,,q}—-minihypcr (k.

. ™ =° =1
(1), (2) and (3) in Definition 1.2 and (4) in Definition II1.2).
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Definition 1.2. Let V and W be a u—flat and a v—flat in PG(t, g), respectively, such
that V N W is an m—flat in PG(t,q) where 0 < m < p < v < t. Let V & W denote the
(p+v—m)—flatin PG(t, ) which contain two flats V and W. In the special case VNW = 0
(e, m = —1), V @ W denotes the (p + » + 1)—flat in P@(t,q) which contains V and W.

Proposition 16. (Hamada [7]). Let & (i=1,2,---,£—1) be integers such that
either (8) 0 < ¢g; < g—1fori = 1,2, t—1lor (el =¢€ = - =éex1=0
ex=¢ 0<erxy1 <g—1, 0< g1 < g—1 for some integer A in {1,2,---,t — 1},
Let H be a §—flat in PG(t,q) where 2 < 8 < t. If F is a set toflpoints in H such that

t-1
|[FNG| 2 Y eiv; for any (0 — 1)—flat G in H, then |F N H| > Y eivig1.
=1 i=1

Appendix IL Preliminary results in the case ¢=3 B
In this appendix, let ¢ = 3 and v = (3! — 1) /(3 — 1) for any integer 1 2 0. .~

Proposition IL1. (Hamada and Helleseth [16], [17]). Let ¢, &, B and -y be integers such
that either @) 0 S a=pf<y<tandy#a+l orM)0<a<f=y<tandy#c+l

(1) In the case t < B + «, there is no {v‘,+1 +v841 + Vpp1, % + V8 + u.,;t,3}-—
minihyper. :

(@) Inthe case t > B+7+1, F is & {va41 + Vg41 + Vys1, Va + vg + vyit, 3} — minihyper
if and only if F € F(a,8,7;t,3)-

Definition IL1. (1) Let 7(0,1,1;¢,3) denote the family of all sets K in PG(¢,3) such
that K = V \ § for some 2—flat V in PG(¢,3) and some 4—arc § in V where ¢ > 2 (cf.
Definition I.1 in Appendix I).

(2) Let 7(0,0,1;¢,3) denote the family of all sets K in PG(t,3) such that K =
{(1), (w0 + 1), (2v0 + v1), (v2), (11 + v2), (vo+ 211+ v2)} for some noncollinear points
(vo), (v1) and (v2) in PG(t,3).

Remark IL1. In this appendix, (~) and (2v) represent the same point in PG(t, 3) for
any nonzero element v in the Galois field GF(3'*1).

Remark IL2. In (2) of Definition II.1, let £o = v1, &1 = 2v0 + 211 and §2 = w1 + 2.
Then K = {(o), (1), (€2), (20 + &1), (260 + £2), (261 + £2)} (cf. (4) in Definition I1.2).

Proposition IL2. - (Hamada [6], [7]). (1) In the case ¢ 2> 2, F is a
{_2v1+v2,2vo+vl;t_,3}— minihyper if and only if either F € F(0,0,1;¢,3) or F €
¥(0,0,1;¢,3). : :

(2 In the case t = 2, F is a {v; + 2vg, v + 2v1;2,3}—minihyper if and only if
F € F(0,1,1;2,3).

(3) In the case t > 3, F is a {vy + 2v2,v9 + 2v1;¢,3}—minihyper if and only if either
F ¢ F(0,1,1;,3) or F € F(0,1,1;1,3).



58

Definition IL2. (1) Let 71(0,0,1,1;¢,3) denote the family of all sets X in PG(t,3)
such that K = V'\ S for some 2—flat V in PG(t,3) and some 3—arc S in V where t > 2.
(2) Let F5(0,0,1,1;¢,3) denote the family of all sets K in PG(t,3) such that I; =
(V\ S) U {P} for some 2—flat V in PG(t,3), some 4—arc S in V and some point P ¢V
where ¢t > 3. . .
(3) Let F5(0, 0,1,1;¢,3) denote the family of all sets K in PG(t,3) such that K = LUK*
for some 1—-flat L in PG(t,3) and some minihyper K* in F{(0,0,1;t,3) such that LN K* = ¢
_where ¢ > 2. ’
(4) Let 74(0,0,1,1;¢,3) denote the family of all sets K in PG(t,3)
) 13y »3) such that K =
{(£0): (1), (€2), (£3), (260 + £0), (260 + €2), (260 + £3), (261 + £2), (261 + £3), (262 + £3)}
for some four linearly independent points (¢o), (£1), (£2) and (&3) in PG(t,3) where t > 3.

Remark IL3. In Theorem 2.2 of Hamada, Helleseth and Ytrehus [18], let & = 2wy,

§1 = e, €2 = covp and €3 = cav3. Then the set of 10 points i
, . . points in Theorem 2.2 can be
expressed as K in (4) of Definition I7.2.

: Propt?sition IL3. (Hamada [6] and Hamada, Helleseth and Ytrehus [18]). (1) In the case
t=2, Fis a {2v1 + 2v,2v0 + 21; 2,3} — minihyper if and only if F € F1(0,0,1,1;2,3).
(2 Inthe case t > 3, F is a {2v) + 2vs, 2vp + 2v1;¢, 3} —minihyper if and only if either

F € 7(0,0,1,1;t,3) or F € Fi(0,0,1,1;¢,3) for some i in {1,2,3,4}.

Appgndix ITL. Preliminary results in the case q=4
= In this appendix, let g = 4 and v; = (4/ — 1) /(4 — 1) for any integer I > 0.

' Proposition IIL1. (Hamada and Helleseth [13]). Let ¢, c, B and - be integers such that
elther(a)OSa<ﬂ5,7<tor(b)05a=ﬂ<7<tand77£a+1.
(1) In the case t < i
nins S B+, there is 10 {vay1 + vp41 + vy41, va + vg + vy3t, 4} -

(2)Inthecaset>p+7+1 Fisa{vap +v o
i = ’ 1+ Vi1, v + 4.4
if and only if F € F(a,B,7;t, 1), { o B+ 7+1, Va + Vg + V5 ,4} minihyper

N l};ﬁnition IL1. Let 7(0,0,1;¢,4) denote the family of all sets K in PG(t,4) such
at K = {(w9), (w1), (w2), (wo + w1), (wo + wa), (w1 + w2), (wo + w1 + w2)} for some
noncollinear points (wp), (w1) and (ws) in PG(t,4) where t > 2.

Proposition IIL2. (Hamada [6]). In the case t > 2, F is »
B ; (Ha . 22, a {2v1 + v, 2up + v1:¢,4}—
minihyper if and only if either F ¢ F(0,0,1;¢,4) or F € F(0,0,1;1,4). ’ 4

hDeﬁnition IIL2. (1) Let F1(0,0,1,1;2,4) denote the family of all seis K in PG(2,4)
such that K = LoUL} U{(cowp + w1 + wy), (c;wp + awy + wy), (cg‘wo + o?wy + wz)} for
some noncollinear points (wp), (w:) and (ws) in PG(t,4) and some elements cg, ¢; and ¢z
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in {0,1,&,0®} where t > 2, Ly = (wo) & (w1), L1 = (wo) ® (w2) and « is a primitive
element in GF(22) such that & = & + 1.

(2 Let 7%(0,0,1,1;¢,4) denote the family of all sets K in PG(t,4) such
that K = Lo U {(w2), (w1 + wa), (wo + w1 + wa), (wo + ew; + wa), (a?wg + aw; + wy),
(wo + a?wy + w2), (ewo + a’w1 + w2) } for some noncollinear points (wo), (w:) and (w2)
in PG(t,4) where t > 2 and Lo = (wo) ® (w1).

(3) Let 73(0,0,1,1;t,4) denote the family of all sets K in PG(t,4) such that K =
(Zo\{(w)}) U (1\{(w2)}) U (Z2\{(w1 + w2) DU {(erws +w2), (@’w1 + w3)} for some
noncollinear points (wo), (w1) and (wz) in PG(t,4) where ¢ > 2, Lo = (wo) ® (w1),
Ly = (wo) ® (w2) and Ly = (wo) ® (w1 + wa). ,

(4) Let F4(0,0,1,1;¢,4) denote the family of all sets X in PG(¢,4) such that K = LUK*
for some 1—flat L in PG(t,4) and some minihyper K* in 7{0,0,1;¢,4) such that LNK* = §
where ¢t 2> 3.

Remark IL1. If ¢p = coa +c1a? in (1) of Definition I11.2, then K in (1) contains three
1—flats Lg, Ly and L* where L* = (cowg + w1 + w2) © (c1‘wo + awi + wz) (cf. Definition
1.2 with respect to the notation @).

Proposition IIL3. (Hamada [5], [6])- In the case £ = 2, F is a
{2v1 + 2v9, 20 + 2v1;2,4}—minihyper if and only if F € F;(0,0,1,1;2,4) for some i in
{1,2,3}.

Proposition M4, (Hamada, Helleseth and Ytrehus [18]). In the case ¢ > 3, F
is a {2v1 + 2v2,2vg + 2v1;¢,4}—minihyper if and only if either F' € F(0,0,1,1;¢,4) or
F ¢ F(0,0,1,1;t,4) for some i in {1,2,3,4}.

Appendix IV. The correspondence between minihypers and
codes meeting the Griesmer bound

Let S(k,q) be the set of all column vectors ¢, €'= (co,¢1,°+,¢x-1), in W(k,q) such
that either czg—1 = 1 or ¢; = 1, ¢i41 = €iy2 = +++ = cg—1 = 0, for some integer ¢ in
{0,1,---,k — 2} where k > 3 and W(k, q) denotes a k—dimensional vector space consisting
of column vectors over GF(g). Then S(k,q) consists of (¢* —1)/(g — 1) nonzero vectors
in W(k,g) and there is no element o in GF(g) such that xa=ox1 for any two vectors x1
and x3 in S(k,g). Hence the (¢* — 1) /(g — 1) nonzero vectors in S(k,g) may be regarded
as (¢* —1)/(g 1) points in PG(k —1,9).

Proposition IV.1. (Hamada[4]). Let F be a set of f vectors in S(k,¢) and let C be the
subspace of V(n,q) generated by a k x n matrix (denoted by G) whose column vectors are
all the vectors in S(k,g) \Fwheren=v,— f,1< f<vyp—land v = (¢ -1)/(g-1)
for any integer 1 > 0.

(1) Let H, = {yeS(k,q)| z'y = 0 over GF(q)} for a nonzero vector z in W(k, q). Then
H, is a hyperplane in PG(k — 1,q) and the weight of the code vector z'G in C is equal
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to |[FNHy| + ¢*~ ! — §, ie.,

w(z' G) = [FN Hy| +¢* ! - §, av.y

where w(x) and 2’ denote the number of nonzero elements in the vector x and the transpose
of the vector z, respectively.

(2) In the casek>3and1<d< ¢*~1, C is an [n, k,d; g]—code meeting the Griesmer
bound if and only if F is a {vy — n,v:_1 — n + d; k — 1, g} —minihyper.

Rexl}ark IV.1. For any two k x n matrices G1 and G2 whose column vectors are all the
vectors in S(k,g) \ F, there exists an n x n permutation matrix P such that G = G, P.

Let C be an [n, k,d; g]—code meeting the Griesmer bound for some integers k,d and
q suf:h that k > 3and1 <d < ¢g*!. Let 4 = [a:,85,---,8,) be a k x n generator
matrix of C. Then there exists a unique vector b; in S(k, q) for each vector a; in A such
that F).- = g;8; for some nonzero element o; in GF(g). This implies that B = AD for a
ponsmgular diagonal matrix D=diag(c1,02,:--,0,) where B = [b,,b,,---, by,]. Hence we
introduce an equivalence relation among [n, k, d; g]—codes as follows:

' Definition IVl Two [n, k,d; g]—codes C; and C, are said to be equivalent if there
exists a Ic Xxn mgtnx G2 of the code C; such that G2 = G, PD (or G2 = G1.DP) for some
permutation matrix P and some nonsingular diagonal matrix D with entries from GF(q),
whe;c G1 is a k x n generator matrix of C.

From Proposition IV.1 and Definition IV.1, we have

Proposition IV.2. In the case k > 3 and 1 < d < ¢*!, there is a one-to-one
correspondence between the set of all nonequivalent [n, k, d; g]—codes meeting the Griesmer
bound and the set of all {vy —n,v;_; —n+d;k — 1, ¢} —minihypers.

B
Corollary IV.3. In the case k > 3 and d = ¢*~1 — [+ 3 g% ), there is a one-
=1
to-one correspondence between the set of all nonequivalent [n, k, d; g]—codes meeting the

) b
Griesmer bound and the set of all {em + Y vy41,600 +
“ :

= =

1v,“; k- 1,q}—minihypexs

h

where n = v — (e-ul +3 v,“+1).
Corollary IV4. In the case k > 3 and d = gk-1 — i g™, there is a one-to-one

correspondence between the set of all nonequivalent [n, &, d; q]‘féodcs meeting the Griesmer
n

) n
bound and the set of all Z:’ v,\..+1,.§ vy k-1, 4 —minihypers where n = v -—; Uil
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Abstract

We construct algebraic geometric codes using the Deligne-Lusatig varieties
[De-Lu] associated to a connected reductive algebraic group G defined over a finite
field Fg, with Frobenius map F . The codes are obtained as geometric Goppa codes,
that is linear error-correctini codes constructed from algebraic varieties [Gol] and
[Go2] . The finite group G* of Lie type acts as Fy-rational automo;phisms on the
codes and they become modules over the group algebra Fo[G"]. Algebraic
geometric codes with a group algebra structure induced from automorphisms of the
underlying variety have been constructed and studied in [Hal}, [Ha2], [Ha-St] and
(V] 3

The Deligne-Lusatig varieties used in the construction of the codes have in
some cases many F¢-rational points, which ensures that the codes have a large word
length. In case G is of type 2A, the Deligne-Lusztig curve considered have 1+ ¢
points over F 2.1In case G is a Suzuki group 2B, , respectively a Ree group 3G,
, the Deligne-tusztig curves considered have 1+ ¢° , respectively 1+ ¢* , points
over F,. In relation to their genera these numbers are maximal as determined by
the ”explicit formulas” of Weil.
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Deligne-Lusztig varieties.
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Suzuki groups 2B,
Ree groups 202
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Introduction

Many classical linear error-correcting codes can be realized as ideals in group-
algebras or as modules over group-algebras. S. D. Berman [Be] etablished that the
Reed-Muller codes over F, are ideals in a group-algebra over an elementary abelian
2-group. This was generalized by P. Charpin [Chl], [Ch2], {Ch3] and P. Landrock
and O. Manz [La-Ma] , who showed that any Generalized Reed-Muller code is an
ideal in a group-algebra over an elementary abelian p-group.

In [Hal] , [Ha2] and [Ha-St] H. Stichtenoth and the author construct
algebraic geometric error-correcting codes with a group algebra structure. In {V] 8.
G. Vladut shows that the asymptotically good codes on classical and Drinfeld
modular curves [T-V-Z], [M-V] constructed by Yu. I. Manin, M. A. Tsfasman,
Th. Zink and himself can be realized as group codes.

The general setup, which is treated in section 1, is to consider an algebraic
variety X , defined over a finite field F,, with a group G of F ¢-Trational
automorphisms. On the variety X we consider an Fg-rational and G-invariant
divisor D together with a G-stable set P;,P,,....,Pn of Fg-rational points on
X, none in the support of D. The associated Goppa code [Gol] and [Go2] is the
image C = ¢(L(D)) C F7 of the F,-linear map:

' $:L(D)y — F}

fom (AP, f(Pa)) .
The group G acts on the G-stable set P,,P;,....,P. of F ¢-rational points
giving Fg a F,[G]-module structure. As the divisor D is G-stable, G acts on
L(D) and it becomes a F,4[ G]-module. The F,-linear map: ‘
' ¢:L(D) - F}

becomes a F,|[ G]-morphism, and the geometric Goppa code
C=¢(L(D)) C F,
a F¢[ G]-module.

In [Hal] a series of geometric Goppa codes is obtained from the Klein quartic,
codes which are ideals in the group-algebra F3[G], where G is a Frobenius group
of order 21. In [Ha2] , [St2] and [Ti] series of geometric Goppa codes are
constructed from Hermitian curves, among these there are codes that are ideals in the
group-algebra F ,[G] , G being a non-abelian p-group of order ¢3, ¢ = p”, p
prime. In [Ha-St] another series of group codes are presented. The codes are ideals in
Fq[S] , where S is a Sylow-2-subgroup of order ¢* of the Suzuki-group of order
F(g—=1)(¢+1) and ¢ = 2*™*' The codes are geometric Goppa codes over F,
with good parameters.

Section 2 introduces another series of varieties with large groups of
automorphisms. The varieties are Deligne-Lusztig varieties associated to a connected
reductive algebraic groups G defined over a finite field F,, with Frobenius map
F:G — G [De-Lu]. Specifically, let G be a connected, reductive algebraic group
G and let X, be the Fy-scheme of all Borel subgroups of G with Frobenius
morphism F: g c— X G - For we W in the Weyl group

X(w) C X
is the subshceme of X of all Borel subgroups B of G such that B and F(B)
are in relative position w. Let w = $1*...+5n be a minimal expression for w.
Then
) X(8150--95n)
is the space of sequences (By,...,Bn) of Borel subgroups of G such that B, =
FBy, and B;_; and B; are in relative position e or s;« 'The - scheme
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X (515+--45n) i8 of dimension n and it is a compactification of ﬁ}'(w) The Fq-
rational points of X(s;,...,5n) is X(e) and the finite group G* of Lie type acts
as Fg-rational automorphisms on X(s),...,%s), X(w) and the Fq-rational
points X(e).
Section 3 treats the case where G is of type. 24, . Then the finite group
GF has order (¢ ~1 )(g®+1) . For a simple reflection s€ W in the Weyl
group, the curve X (s) is irreducible with genus
_@-0
§="7
and it has 1+ ¢*+2g¢ F ;-rational points. This is the maximal number of F &
rational points a curve of thit genus can have according to the Weil bound.

Section 4 treats the case where G is a Suzuki-group. Then the finite group
¢f = 2B,(q) , ¢=2°"*', has order q_z(q—-l)(q2+ 1) . For a simple
reflection s€ W in the Weyl group, the curve X (s) is irreducible with genus

B

2
and it has 1+ ¢*> F,-rational points. This is the maximal number of F,- ration.al'
points a curve of that genus can have according to Weil’s explicit bound discussed in
the appendix. In [ Ha-St ] plane models have been given and resulting codes have been

-studied.

Section 5 treats the case where G is a Ree group. Then the finite group GF
= 2G,(q) , ¢= 3%, has order qa(_q-—l)(qa-i-l) . For a simple
reflection s€ W in the Weyl group, the curve X(s) is irreducible with genus

= B (o0

and it has 1+ ¢° F ,-rational points, which is the maximal number a curve of that
genus can have according to Weil’s explicit bound discussed in the appendix.

The appendix discusses Weil’s explicit formulas bounding the number of F,-
rational points on the curves and thereby the length of the resulting geometric
Goppa codes.

I am grateful to J.P. Serre who suggested me to study Deligne-Lusztig
varieties in search of curves with large groups of automorphisms in relation to their
genera. :

1. Geometric Goppa codes as group codes

1.1 Let X be a projective curve of genus g defined over a finite field F, .
Let D be a Fg-rational and positive divisor and let L(D) denote the l-gq-
vectorspace of rational functions defined over F, such that f=0 or div(f)
> —D. Finally let Py, P,,....,Pn be a set of F,-rational points on X, none in
the support of D. The associated Goppa code [Gol] and [Go2] is the image C =
¢(L(D)) € FJ of the Fy-linear map: -

(1.1.1) ¢:L(D) — FP

- f = (f(P1)ye-o o f(Pa)).
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Theorem 1.2 (V. D. Goppa, cf. [Gol],[|Go2]). Assume 0 < degD < =n.
The length n and the minimal distance d of the code C = ¢(L(D)) C F7
satisfies:

(1.2.1) d>n—degD.

If X is smooth, the dimension k of the code C satisfies:

(1.2.2) k = degD+1—¢g for degD > 2g-—2
(1.2.3) k > degD+1—¢ Jor degD < 2g-—2
In particular

(1.2.4) krd>1+1-4.

1.3 From (1.2.4) it’s clear that geometric Goppa codes with good parameters
are to be found on curves where 3 is small, that is on curves with a large number
n of Fg-rational points compared to the genus g. As for the number N of all Fy-
rational points on a curve, Weil’s bound asserts, that
(13.1) IN=(1+9)| <29
With the ”explicit formula” of Weil this general bound can in concrete cases be
improved. This technique is presented in the appendix and applied in the last 3
sections of this paper.

14 Let G be a group of F,-rational automorphisms on the curve X .
The action of G on X induces an action on the divisors on X . Assume that the
divisor D is G-invariant and assume that the set Py, P,,....,Pn of F,-rational
peoints on X is G-stable. The group G acts on the G-stable set P,,P,,....,Ps
of Fg-rational points giving F7 a F.[ G]-module structure. As the divisor D is
G-invariant, G acts on L(D) by f = fog™ for feL(D)and g€ G , and it
becomes a left F,[ G]-module. The F4-linear map:
¢:L(D) — F}
of (1.1.1) becomes a F 4| G}- morphism, and the geometric Goppa code
C=¢(L(D)) C F}
a left Fy[G]-module. In case G acts freely and transitively on P,,P,,....,Pn
then the Fg¢-vectorspace on the points can be identified with the group algebra
F[G] and the geometric Goppa code C = ¢( L(D)) C Fj becomes a left
ideal in F,[G].

1.5 Let X be a projective curve of genus g defined over a finite field F,
of characteristic p . Let G denote the automorphism group of X. In case p=0
Hurwitz showed that G is finite and that
(1.5.1) |Gl < 84(g-1), p=0
In case p>0 H. L. Schmidt showed that G is finite, but |G| is not bounded as
above. Stichtenoth [St1] obtains

(1.5.2) 16| < 164, p20
except in the case where X is defined by the affine equation

. n n
(1.5.2.1) f 4y =L T >3
H.-W. Henn [ He] obtains
(1.5.3) : 1G] < 84, p>0
excluding 4 cases. In a footnote he asserts that this bound can be strengthen to
(1.5.3.1) 1G] < 3(29)%{2¢

excluding 2 more cases. However in section 5 we will construct curves not on his list
of excluded curves with more automorphisms than allowed by the proclaimed bound

(15.3.1).
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2. Deligne-Lusztig varieties

Let k be an algebraically closed field of characteristic p.

2.1 The basic properties of affine algebraic groups can be found in [Cal} and
[Ca2] . Here we recollect what is needed for our purpose. An affine algebraic group
G over k is an affine variety defined over k which is also a group such that the
multiplication map Gx G — G and the inversion map G — G are morphisms of
varieties. Every affine algebraic group is isomorphic to a closed subgroup of the
general linear group GLj (k) for some n . An affine algebraic group is called simple
if it has no non-trivial closed connected normal subgroup.

2.1.1 The multiplicative group ¥* = GL,(k) is an algebraic group. An
algebraic group isomorphic to ¥ x...x k¥ is caﬁed a lorus. A Borel subgroup B
of a connected affine algebraic group G is a maximal connected solvable subgroup
of G. Any two Borel subgroups of G are conjugate in G . A maximal torus lies in
some Borel subgroup of G and two maximal tori in G are conjugate. The group
G has a maxima! closed connected normal subgroup all of whose elements are
unipotent. This is the unipotent radical. The group G is called reductive if the
unipotent radical is trivial. Let G be a connected, reductive algebraic groups G
defined over the field k. Let B be a Borel subgroup of G , let T be a maximal
torus of G in B and let U be the unipotent radical of B . The Weyl group of G
is the finite group W = N(T)/ T where N(T) is the normalizer T in G.

2.1.2 Let X == Hom(7,k*) be the character group of T, that is the
group of algebraic group homomorphisms from T to the multiplicative group &*
and let likewise Y = Hom(k*,T) be the group of cocharacters of T. X and Y
are free abelian groups of the same finite rank. Let x€X and y€Y. By
composition we obtain a morphism

Lor X
so that x oy € Hom(k*,k*) and therefore of the form

(xo7)(A) = A™ re ¥
for some integer m .

This gives a nondegenerate pairing
XxY - 1
(x:7) » <xy7>

< >
(xoy)(2) = ASX!7
The groups X and Y are in duality and there is a bijection between them
X - Y

C!Hav

where
de kK

such that <a,av> = 2.

2.1.3 Consider the finitely many minimal closed subgroups of U normalised
by T. Each of these are isomorphic to the additive group k. An element {€ T acts
on any of these subgroups by conjugation, the corresponding automorhism &k — k is
multiplication by an element in ¥* . Hence the action of T by conjugation gives an
element in X = Hom (T,&*) for any minimal closed subgroups of U normalised
by T. These elements are called positive roots. There is a unique Borel subgroup
B~ of G containing T such that BNB— = T. Let U~ be the unipotent
radical of B—. As before we consider the minimal closed subgroups of U—

normalised by T. The action of T by conjugation gives an element in X =
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Hom( T,k*) for any of these groups. These elements are called negative rools .
The action of the Weyl group W on T gives rise to actions of W on X and Y
defined by

(2.1.3.1) (wx)t = x(w(1)), weW,xeX, teT

(wy) A = w(y(2), weEW, €Y, ek
For each root o there is an element wq € W such that
Wy = w_q and wd =1
Let & C X be the set of roots. Then { wg | a €60} generatess W and such that
the action of the Weyl group on X and Y is determined by
(2.1.3.2) wa(x) = x — <x,a¥>a X €X
wa(71) = 7 <a,7> aV T€EY

2.1.4 We have scen (2.1.3) that every connected reductive group G has a
root datum
(x,0,Y,8Y)
associated to it, where X, Y are the character and cocharacter groups of a maximal
torus of G and 6 is the set of roots and 8V the set of coroots. The root datum
(X0, Y,ﬂv) uniguely determines the connected reductive group G .

2.1.5 Let G be a simple algebraic group. Let ot denote the positive roots
(2.1.3). A positive root is called simple if it can not be expressed as the sum of two
positive roots. Let {a;,...,0q} be the simple roots for G . The Carlan inlegers
(2-1.5.1) A'-j = < orj,a,-v>
takes on the value 2 if i=; and the values 0, —1, =2, -3 ifi#; in such a way
that the integers

(2-1.5-2) ﬂ.-j = ASJ AJI
takes on one of the values 0, 1, 2, 3. Let

(2.1.5.3) = wy. €W i=1,...,1

s
and let the order of $;5; be mg . 'i‘hen !

m..
W= <s,..5(5)0=1, (sisj) Y =1 for i#j>

and

: n; = 0 & m. = 2

(2.1.5.4) B =1 & m:j =3
B;; = 3 <> m.. = 6

S,
o

Q

The Dynkin diagram of is a graph with ! nodes corresponding to the simple
roots a;. The nodes corresponding to different simple roots a; and a; are
connected by n;; = A;; A;; bounds. An arrow is pointing from the node
corresponding to «; to the node corresponding to a; if A; # -1

The Dynkin diagrams interesting for our purpose are the following:

Az O—0
Bz : . m
G, ' e =— =

2.2 A connected reductive group G over k is isomorphic to a closed
subgroup af GLp(k) for some n (2.1). A map
F"?c: G - G
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is called a standard Frobenius map if Fr_. is the rgstriction of the morphism
p 14

Fr cgqll = a ‘]
on GLy(k) for some embedding & ¢Vt somme GLy (k) . A Frobenius map is a
morphism ’

F:G —- G

such that some power F* is a standard Frobenius map. The finite groups F
where G is a connected reductive group and F is a Frobenius map are called finite
groups of Lie type. The real number Q defined by )
(2.2.0.1) Q = p* where F* = Frp,
will be of later importance.

The fundamental theorem of Lang-Steinberg [L] and [Ste] asserts that the
map .
(2.2.0.2) L: G = G , L(g)=g'F(y)
is surjective. This result has important consequences; in the following we recollect
what is needed for our purpose.

2.2.1 Let G be a connected reductive group, then G has a F-stable Borel
subgroup. Namely let B be a fixed Borel subgroup, any other Borel subgroup is of
the form gBg~' for some g€ G (2.1.1). The group F(B) is also a Borel
subgroup, so there is an element go€ G such that g, F(B)(g)™"' = B.From
(2.2.0.2) we find a g€ G such that L(g) = ¢ F(g) = g, - Now gBg™! is a
F-stable Borel subgroup as F(gBg™') = F(g) F(B) F(g') =
(990) F(B)(990)™" = gBg™".

2.2.2 Let G be a connected reductive group, then any two F-stable Borel
subgroups are conjugale by an element in G". For let By, B; be two F-stable Borel
subgroups, then B, = gB,g¢~! for some g€ G (2.2.1). As both groups are F-
stable we have g~1F(g) € Ng(Bo)= By . By the theorem of Lang-Steinberg
applied to, B, thereisa b€ B, such that L(b) = b7 F(b) = g 'F(g), thatis
gbte GF and B, = (gb7!)By(gb7!). ,

2.2.3 A Frobenius morphism induces a graph automorphism p of the
Dynkin diagram (2.1.5) when the arrows are disregarded. Let T be a maximally
split torus. The Frobenius morphism induces an action on the character and
cocharacter groups of T':

F: X — X .
F(x)t = x(F(1)) _ X€X
and '
F:Y =Y
F(7) A = F(v(A)) 7€Y

The action of F on the roots is related to the graph automorphism p of the
Dynkin diagram. Specifically F(p(a))is a positive multiple of a each positive
root «.

The Dynkin diagrams with F-action interesting for our purpose are the
following twisted groups where the F-action permutes the two roots:

2A3 VN

g

e N
=D
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2.24 f G has type ?A, , the real number Q (2.2.0.1) can take any value
p°, ¢€N, e#0. These groups are defined with respect to a non-degenerate
Hermitian form in 3 variables on F Q¢ corresponding to the involution A + A,

2.2.5 If G has type ?B; , then then characteristic p has to be 2 and the
real number Q (2.2.0.1) must satiesfy Q* = . 22™*!  neN. The finite groups
GF= 2B,(@*) are the Suzuki groups.

2.2.6 If G has type 2G; , then then characteristic p has to be 3 and the
rea] number Q (2.2.0.1) must satiesfy Q* = 32™*! neN. The finite groups
G"= ?G,(Q*) are the Ree groups.

2.3 We now introduce the Deligne-Lusztig varieties associated to a connected
reductive algebraic groups G defined over a finite field F,, with Frobenius map
F:G — G [De-Lu] . Specifically, le¢ G be a connected, reductive algebraic group
G and let X, be the Fg-scheme of all Borel subgroups of G with Frobenius
morphism F: G~ . The group G actson X G by conjugation and for each
Borel subgroup B of 8 the stabiliser of the corresponding point in X Pe. is B,
and their is a natural isomorphism G/ B -~ Xg 9+~ gBgt.

2.3.1 The set of orbits of G in X xX G ¢an be identified with the Weyl
group (2.2.1). For T a maximal torus and B a Borel subgroup containing it we
have isomorphisms:

W= N(T)/T S B\G/B= G\(G/BxG/B) = G\(XgxXn)
Fo‘rl w€ W in the Weyl group the orbit of G in X ¢ XX is denoted gy O(w)
an
(2.3.1.1) X(w) € Xg
is the subshceme of X, of all Borel subgroups B of G such that (B,F(B)) €
O(w) are in relative position w .

2.3.2 The subscheme X(w) C X, (2.3.1.1) is smooth of pure
dimension
(2.3.2.1) ’ dim X(w) = l(w) = a
where w = s;-...+ 5, is a minimal expression for w as simple reflections [ De-Lu,

1.3}
2.3.3 The subscheme X(w) C Xg (23.1.1) is GF -stable.

2.3.4 Let w = s;-...-sn be a minimal expression for w . Then
(2.3.4.1) X (815--218n)
is the space of sequences (B,,...,Bn) of Borel subgroups of G such that B, =
FB, and B; ; and B; are in relative position e or 5;. The scheme
X(815.++18n) is of dimension @ and it is a compactification of X(w) [De-Lu,
1}

9.1]

2.3.5 The F,-rational points of X(s;,...,3:) is X(e) and the finite
group G of Lie type acts as F-rational automorphisms on X (s1,...,9 ), X(w)
and the Fg-rational points X(e).

2.3.6 Let w=s)-...-5, be a minimal expression for w as simple
reflections. Then X (s;,...,sn) is irreducible if and only if any simple reflection
s€ W is in the F-orbit of some s; where i=1,...,n [Lul,3.10d]

2.3.7 The Euler characteristic of X(w) is according to [De-Lu,Theorem
7.1] determined by
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o(G)~o(T) __|GF]
‘ Stgle) |TF|
where T is a F-stable maxjmal torus contained in B€ X(w), Sty is the

Steinberg representation of GFand o0(G) (resp. o(T)) is the Fgrank of G
(resp. T ). The order | ¥ | is calculated by the formula

(2.3.6.1) x(X(w)) = (-1)

(2362) | = |dety gr(weF—1)],

cf. {Ca2], where Y, = Hom (¥*,T,) be the group of cocharacters of T, (2.2.1),
where T, is a F-stable maximal torus contained in a F-stable Borel subgroup and
the action of F and w on Y is described in (2.2.3) and (2.1.3) .

24 In case s€ W is a simple reflection we obtain from (2.3) that the
Deligne-Lusztig variety
X(s) = X(s)UX(e)
is a curve with the group G° of Lie type acting as F4-rational automorphisms. The
F,-rational points on X(s) is X(e¢) and the curve X(s) is irreducible if and
only if any simple reflection s€ W is in the F-orbit of 5.

2.4.1 The genus and Euler characteristic of X(s) = X(s)UX(e) is
determined by
(2.4.1.1) 2—-2¢g = x(X(w))+x(X(e)) _
which is calculated using (2.3.6.1) and the number of F,-rational points on X (s)
is x(X(e)) , which is also calculated using (2.3.6.1) .

3. Groups of type 2~A, — Hermite curves. There are two simple roots a ,
a3 . The corresponding Dynkin diagram has two nodes with 1 bound between them.
The Cartan matrix (2.1.5.1) is ’ '

301 +2 -1
@.00) ~1 +2
The Frobenius morphism interchanges the two nodes. If G has type 2A2 , the real
number @ (2.2.0.1) can take any value p®, e€N, e#0. Let ¢ = Q. These
groups are defined with respect to a non-degenerate Hermitian form z' + 3" +2'= 0
on F 2 corresponding to the involution A — A, The finite groups G =
2A2($) have order ¢*(®—1)(+1).
The element wg, € W acts on the simple coroots according to (2.1.3.2) and the
Cartan matrix (3.0.1)
wa, (&) = \;rlv-— <ah\;'1v>\?‘lv = o’
wa (@) = a — <o, >0 = a3 + o

The endomorphism. of Y,®R induced by the element wq, € W therefore has
matrix

-1 1

(3.0.2) o 1

The endomorphism of Y, @R induced by the Frobenius has matrix
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(3.0.3) q

f;G is the Steinberg represent.atiqn of ’A,(q?) and assumes the value St G(c) =

3.1 Now let T be a F-stable maximal torus contained in B€ X(wq, ) and
let T, be a F-stable maximal torus contained in B, € X(e) . Then accoréing to
(2.3.6.2) we obtain

(3.1.1) || = dety gp(vayoF —1)| =
-1 1 0 1 1 0 \
o 1 |%f 1 o [T 1| [T
(3.1.2) 1| = ldety gplecF—1)] =
0 1 1 o \
1y o | ] o 1 =7~

PROPOSITION 3.2 Let G be a connected reductive group of type A,
over k=F ,. Ifet wa, € W be a simple reflection and let X (wal) be the
corresponding Deligne-Lusztig variety. Then X ("'0‘1) is an irreducible curve of
genus

2
_ =g
9= "3

. 3 - ..
ugthzl-l-l q gomts over F g, < The finite  group cF = 2A,(¢%) has  order
¢ (g —1)(q +1) and il dcis as a group of qu-ratzonal automorphisms on

WQI .

The variety is a curve according to (2.3.2) and irreducible according to
(2.3.6).as the Frobenius interchanges the two simple roots. From (2.3.7) we
determine the Euler characteristica using (3.1.1) and (3.1.2): '

(3.2.1) X(X(wa,)) = (_1)"'(G)"‘7(T) |GF| -
Stg(e) 177

_ (@ -1)(P+1)

ClE—qg+1)

- (¢ =1)(g+1)

F
(3:2.2) x(X(e)) = (1) (O—o(T) _1G | _
: Stp(e) [Ty |

qa(q:;z;z)iq:)-i-l) = 1+4¢°
and the genus using 2.4.1.1
(3.2.3) 2-2g = x(X(e)) + x(X(va,)) =
1+¢- (¢ =1)(g+1) @
=g

2

The finite group GF = 2A;(q) order ¢*(¢*—1)(¢°+1) and it acts as a group
of qu-rat.ional automorphisms on X (wg,) by (2.3.3).

PROPOSITION 3.3 The irreducible curve X (wq,) of genus

2
g=L51

with 1+ ¢° points over F , has the mazimal number of rational poinis allowed by
the Weil-bound. The Zeta-fifnction of the curve is

(1+q8%)?
(1-1)(1—q1)

and the number Np of qu- rational points is determined by the formula

Z(X,Fg)(1) =

m
Nm = 1+¢"— (" +(-)Mge*, meN

The claim follows from the general theory of Zeta-functions (see the
appendix), as the formula for N, is seen to be true by inspection.

REMARK 3.4 It is possible to construct geometric Goppa codes over F ,
such that 1
2 —
dimension + minimal distance > 1+¢* — 2——2—-2
The codes are modules over the group-ring F ,[?A,(¢*)] . These codes have been
studied in detail in [Ha2]. g

4. Groups of type _2B2 — Suzuki groups. There are two sirﬁple roots a; ,
a; . The corresponding Dynkin diagram has two nodes with 2 bounds between them
and an arrow from the node corresponding to a; to that of «y (2.2.4). The Cartan
matrix (2.1.5.1) is
+2 -1
4.0.1
( ) -2 42
The Frobenius morphism interchanges the two nodes. If G has type °B, , then
then characteristic p has to be 2 and the real number @ (2,2.0.1) must satiesfy
Q= 22" aeN. Let ¢= Q. The finite groups G' = 2Bz(q) are the
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Suzuki groups and they have order q’( g—1)(f+1)
The element wg, € W acts on the simple coroots according to (2.1.3.2) and the
Cartan matrix (4.0.1)

wal(alv) = alv— <« ,alv>valv = —a;/
'”al(az) = @y — <0,y >0 = “¥+2"1v

Thi .endomorphism of Y,®R induced by the element Wy, € W therefore has
matrix

-1 1

(4.0.2)
0 2

The endomorphism of Y, ®R induced by the Frobenius has matrix

(4.0.3) q (1) °
Tﬁ 0

S,tG is the Steinberg representation of 2B,(¢) and assumes the value St gle)=

4.1 Now let T be a F-stable maximal torus contained in B€ X(wg,. ) and
le¢ T, be a F-stable maximal torus contained in B,€ X Th i
(2.3.6.2) we obtain € X(e) - Then according to

(4.1.1) |TF| = dety gRp(uayef —1)| =
-1 1 @ 0 10
o Jg — —g —
0 2 .413 0 0 1 g— 2§ +1
(4.1.2) |tF| = ldety gr(eoF —1)| =
0 1 0
TlL o |70 1 =e¢-1
2

PROPOSITIOzl;JH%J Let G be a connected reductive group of type 282
;_;)cr kqu y = 2 , 1.l€N . Let o, € W be a simple reflection and let
' (wal) be 1he corresponding Deligne-Lusztig variety. Then X(wq, ) is an
irreducible curve of genus !

g — 4
2
with 1+ ¢° points over Fg . The finite group ¢F= 2B,(q) is @ Suzuki group, i

has order (g—1)(¢*+1) and it acts as a group of F ¢~ rational automorphisms
on X(wg,)

The variety is a curve according to (2.3.2) and irreducible according to
(2.3.6) as the Frobenius interchanges the two simple roots. From (2.3.7) we
determine the Euler characteristica using (4.1.1) and (4.1.2):

e(G)—o(T) __16F]

(4.2.1) x(X(va,)) = (_1? ; ) StG(c) ‘TF‘ =
CU-D(E+D) (2 B(GP-€E-1)

TPa-va+1)
o(G)—o(To) __|GF]

(4.2.2) x(X(e)) = (-1) Stg(e) (7T | =
Fla=1)(@+1) _ 2
fa-n ! *
and the genus using 2.4.1.1
(4.2.9) 2-2¢ = x(Xgcp) + x(Xrcp) =
F+1- (F+R(EP-RE-1) - ®
0= N
2

The finite group ¢F= 3B,(q) is a Suzuki group, it has order Flg—1)(F+1)
and it acts as a group of Fg-rational automorphisms on X (wal) by (2.3.3). We
collect what we know about X(wq l) in the following proposition.

PROPOSITION 4.3 The irreducible curve )—((wal) of genus
=¥

with 1+ ¢° points over Fg has the mazim@l number of rational points allowed by
the ? explicit formulas® of Weil. The Zela-function of the curve is

1+ gt+e?)
(1-1)(1-4q?)
and the number Nm of qu-raiional points is delermined by the formula

Z(X,Fg)(1) =

m
Nm = 14+q"—gg%é

where & = —2 if m=4 mod 38§, §=— if m=1,7mod8,5=0if m=2 mod
4, 6= if m=3,5mod8 and 6=2 if m=0mod8. '

The claims follow from the determination of the eigenvalues of the Frobenius
given in [Lu2] and the remarks in the appendix using

£(0) = 1+2(¥cos(o)+§cos(2o))

in (a.6) having roots 0= 3= , such that the a; of (a.3) are {7 (—-‘J,—E + i-‘i—i )
imidiately giving the Zeta-function and consequentely the formulas for My; .




REMARK 4.4 It is possible to construct geometric Goppa codes over Fq
g = 218+l peN, such that

3

dimension + minimal dist > 140 - ¥ ¥

imension minimal aistance 2 +q T
The codes are modules over the group-ring Fqlez(q)] . These codes have been
studied in detail in [Ha-St].

5. Group codes from Ree groups. There are two simple roots o; , a3 . The
corresponding Dynkin diagram has two nodes with 3 bounds between them and an
arrow from the node corresponding to a; to that of &y . The Cartan matrix is

+2 -1

5.0.1
¢ ) -3 +2

The Frobenius morphism interchanges the two nodes. If G has type %G, , then
then characteristic p has to be 3 and the real number Q@ (2.2.0.1) must satiesfy
Q@ = 3!, 5eN. The finite groups ¢F= 2G,( Q) are the Ree groups. Let
¢=@Q*, then G° =2G;(q) , ¢=3""*", has order ¢*(g—1)(F+1).
The element wy € W acts on the simple coroots according to (2.1.3.2) and the
Cartan matrix (5.0.1)

g, (0 ) = al\/ - <a ,01V> "lv = V—-alv v
WQI(QZ ) = Qg — <al,az > ap = -+ 3(11

The endomorphism of Y,®R induced by the element wy € W therefore has
matrix

-1 1

(5.0.2) o s

The endomorphism of Y, ® R induced by the Frobenius has matrix

0 3

(5.0.3) U H P
: B

3

3t ¢ 8 the Steinberg representation of 2G,(¢) and assumes the value St G(e) =

5.1 Now let T be a F-stable maximal torus contained in B € X(wg,) and
le¢ T, be a F-stable maximal torus contained in B, € X(e) . Then accoréing to
(2.3.6.2) we obtain

(5.1.1) Tf| = |dety gglvaoF—1)] =

-1 1 0 3 1 0
o I - =q—-‘]§‘ﬁ+l

1
33 0 0 1
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(5.1.2) (tF| = |dety gg(eoF — 1)1 =
g 0o B 1 0 .
[ 1 - . = 49—
0 0 1
B

PROPOSITION 5.2 Let G be a connected reduclive group of type 3G,
over k=Fg,¢= 32P+1 4eN. Let wo, € W be a simple reflection a.nd let
X (wq,) be the corresponding Deligne-Lusztig variety. Then X (wq,) is an
irreducible curve of genus

5 _ 3 .
gz*ﬁ(ﬁz &) (412 q)

with 14 ¢® points over Fq. The finite group 6F= 3G,(q) is a Ree group, it
has order ¢(g—1)(#+1) and it acts as o group of Fy- rational
automorphisms on X (wq, )- ,

The variety is a curve according to (2.3.2) and irreducible according to
(2.3.6) as the Frobenius interchanges the two simple roots. From (2.3.7) we
determine the Euler characteristica using (5.1.1) and (5.1.2):

e(G)—o(T) __ |GF]

(5.2.1) x(Xpcp) = (-1) Stg(e) Rl -
Cl—1)(P+1) _ _ “r e g B 1)
srares £ R U U
‘ _ a(G)—o(T,) |GF' =
5.22)  x(Xgcg) = (1) Stg(e) 1T |
CU-D(P+1) _ pyy

¢(¢—1)
and the genus using 2.4.1.1
2—-2g = X(XTQQBO) + X(XTQB) =

P+l —(FP+B(E+I-¢-BE-1) &
_BE -8, (-0
g= 3 +

‘The finite group ¢F= 2G,(¢) is'a Ree group, it has order F£lg—1)(+1)
and it acts as a group of Fg-rational automorphisms on X (wa,) by (2.3.3). We
collect what we know about X(wq,) in the following proposition.
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PROPOSITION 5.3 The irreducible curve X (va,) of genus
B - @) , (-0
P T

g =

with 1+ ¢° poinis over Fgq has the maa:‘jmal number of rational points allowed by
the ® explicit formulas® of Weil Lel ¢y= é the Zela-function of the curve ts

Z(X,F 1) =
(XFa () qo(q’—l)(l+qtz)410(q—1)(4+3qo+1)/2

(1-1)(1—q1)
and the number Nm of qu- rational poinis is determined by the formula

(1+3g1+¢8)

Nm = 144"~ qoﬁ(q—1)[(q+3qo+1)cosmr/2+2(1+q)cas5m1r/6]

The claims follow from the determination of the eigenvalues of the Frobenius
given in [Lu2] and the remarks in the appendix using

£(0) = 5(1+ Boos(8) +cos(20) )’

in (a.6) having roots 0;=+1x counted with multiplicity & and +%x counted
with multiplicity 5 , such that the a; of (a.3) are +iJg, -——; + i% 1
imidiately giving the Zeta-function and consequentely the formulas for Mm . (cf.

[Pe]).

REMARK 5.4 It is possible to construct geometric Goppa codes over Fg ,

g= 3*"*1 aeN, such that

. 5 _ 2
dimension + minimal distance > 1+q3— (Jﬁ(“ﬁz W) + (g 5 q))

The codes are modules over the group-ring F q[ng( ).

REMARK 4.5 In [PE] curves with the same genera, Zeta-function and
automorphism groups have been realized as singular curves in P3.

Appendix. Weil’s "explicit formulas”.
In [Sel] the "explicit formulas” of Weil for bounding the number N of

F 4-rational points on a curve of genus g is treated. Let X be a curve defined over -

the finite field Fg . Let a; denote the number of primedivisors on X of degree d
and let

(a-l) Nm-"-‘- E d-ad, le
d|lm

be the number of F - rational pointson X .
The Zeta-function oiq X is the formal power series

(22) 2(X,F)(1) = en(X Nm'ly ),
m2>1
which is a rational function of the form
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1 (1—a;1)(1-5;1)
i=1

(a.3) . Z(X,Fq)(1) = — TED¢ETD) ,
satiesfying the Riemann hypotheses
(a.4) a; = Jgexp(ib;), 6;eR

Taking the logarithmic derivative of Z(X,Fg)(?) we obtain
g
(a-5) Npp= 14 ¢" = (@)™ 21 2cos(mb;)
=t
Consider the trigonometric expressions
(a.6) fO) = 1425 cacos(n0) , ¥ (1) = T, dx1
n3i nal
Then it follows from (a.5) that
y —
(@7) .Elf(gi) + dgl doay-¥y(t) = g+ ¥(() He¥ ()
i= 2 .

From this one concludes about the number N = Ny of Fg- rational pointson X.

Proposition a.8 Let the notation be as above and assume that f(6) >0
forall 4R and that ¢, > 0 forall n > 1. Then

Yegwam 't (wl(ua)-‘) 1
and eguality holds if and only if

g
J§1f(0j) =0 and d);z deay-¥,(1) = 0.

The Deligne-Lusatig curves associated to the algebraic groups of type 2A,,
2B, and 2G, all have the maximal number F ¢- rational points on X allowed by
the above formulas as we have seen.
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Introduction

One of the most important characteristics of an
error-correcting code is its spectrum. Therefore for asymptotic
families of codes of growing length it is natural to consider
the asymptotic behaviour of their spectra. Moreover the
knowledge of this behaviour helps one to estimate the
probability of error for maximum likelihood decoding for the
considered family of codes.

This paper is based on the study of spectra of
algebraic-geometric codes - and arbitrary linear codes as well -
carried out in [1] ( cf. also [2] 1.1.3, 3.1.3). The main idea
of that paper was to.redevelop the enumerator wc(x:y) over the
basis (xJ(x-y)n-J} and to estimate the corresponding
coefficients B, which have a 1lucid algebraic-geometric
interpretation.

Let C be a linear [n,k,d]q-code and Ai be the number
of codewords of weight i . The enumerator is given by

W, (x:y) = E 2,7yt = P el Jypi
c(x: &y =2+ 1 Bx-p)lY" .
i=0 Jj=0 J
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For a family F of codes with n —— o Wwe set

= 1
aF(w) = lim sup 2 loqu[nw] ’

where O0sws1, the limit is taken over all [n,k,d]q—codes
CeF, n—w, and [-] denotes the integer part.

We would like to find out or at least to estimate the
function aF(w) in terms of asymptotic parameters of the family
F, such as the rate R, the relative distance 3 , the
relative dual distanse st . etc.

First (in Section 1) we use the estimate for B obtained
in [1] and obvious relations between A4, and B. to estimate
4., and aF(w) for arbitrary linear codes. Then (in Section 2)

i
we give some subtler estimates for algebraic-geometric codes.

Bounds for op(w) can be used to estimate the error
probability of maximum likelihood decoding. Let xeC Dbe an
input .of a g-ary symmetric channel with error probability per
symbol p., let y be the output of maximum likelihood
decoding. Then P,(p) is defined as the probability for y to
be different from x . For a family F we can set

1
EF(p) = lim sup o logq Pc(p) .
Then for the given rate R let
E(p,R) = lim inf EF(p) .

the limit being taken over all families F whose rate equals
R, i.e. E(p,R) corresponds to the error probability of
decoding in the best family of codes with rate R.

This is the function to estimate. The best estimate known
is due to Gallager [3].

It is but natural that using algebraic-geometric codes and
estimates for their spectra we can ameliorate the Gallager bound
in many cases (Section 3).
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1. Spectra of linear codes

In this section we give some upper bounds for the spectrum
of an arbitrary linear g-ary code in terms of its parameters
and its dual distance. Here we present some asymptotic results
(for sequences of codes of growing length). For the case of a

fixed code of a "finite length" see Remark 3 below.

We use the approach introduced in [1] (see also [2] 1.1.3).
Let us recall some notation.

let C be a linear |[n,k,d] q-code, d* its dual distance.
Its spectrum (AJ.) is defined as

a.=2.() = |(x e c] |x]=i})] .
J J
Of course 4 =1 and A.,=0 for

0
enumerator W,(x:y) is defined as

1sjsd=-=1. The
n i s

Wc(x:y) =x" + h) ax" JyJ .
j=a J

We define B; from the decomposition

n-d -
Wo(x:y) = P +i§° B; (r~y)iY" i,

Clearly
n

-1
n-j
B, =171 ("ya,zo0.
i g 4 J

We get the following obvious

Lemma 1. 4, s min Bi/(n;j) ‘-

Osisn-j
It is easy to check that

B, =3 (e i) gy,
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where k(‘iz""'it) = dim C(i1,...,i£) . the subcode
c(ix"" ,.iz) S C being defined as the space of vectors having
zeroes at the positions i greee ,it , and the sum is taken over
all subsets (dr0000dy) S (1,...,0) "of cardinality L,
15115... S.izsn .

The following statement (see [2] thm.
follows from the MacWilliams identity.

1.1.26)  easily

isd'-1. Then

By = [2} @ -1 ‘m

Lemma 2, Let

Together Lemma 1 and Lemma 2 show that

()= (7] -

A. s min N
Osisd -1

veng (3)(75) = (7)o e

Lemma 3., 4, = [nlcf‘ min -i/[n—i} .
37 U9 osiegta T J) .

The next statement is just as simple.

Lemma 4, 4. s {n] min gK(n-i 'd>)/[n3‘i] ,

J 0sisn-d

vhere K(n - i, d) is the maximal possible dimension k of an
fn - i, Kk, d]q—code. ’

Proof:

B, = X (qk(‘ill"'li‘) -1) s (?) qx(n_zld) .

Ljt J jjr ¢

Then use again Lemma 1 and [n] [n—-t] = [n] [n-j] .
m

Let us establish an asymptotic upper bound for the
spectrum. To do this the following notation looks appropriate.
Consider an (n,k,d) q-code C with the dual distance d* . Let
R=R(C) = k/n , &d=8(C) =d/mn, §'=38'(c) =d'/n., Fo¥
j=d,...,n let w= j/n and S




=1
aq(w,C) =a logq Aj .

Consider a family of codes F = (C,} of growing length. By an
abuse of language we speak then about "a code" of growing
iength. We shall consider only families F such that the limit
R = R(F) = lim R(ce) does exist. Note that any family contains
such a subfamily. Set 3 =8(F) = 1lim inf 6(Cz) ‘ and
' = 8*(F) = lim inf 5'(C,) . We would like to study the "limit"
value of “‘q(“"cl) . Set

= 1
ap(w) = lim sup 2 logq Al'nw] .

where O sws 1, the limit is taken over all [n,k,d) q-codes
CeF, n—> o, and [] denotes the integer part. Since
‘j s q}( for any j , we see that aF(w) sSR.

Here goes the principal result of this section. Let
[+]
=R-1+H
aq(w) R-1 q(w) '

Hq being the g-ary entropy function. It is well known that,
the spectrum of a random code asymptotically behaves as a;(w) .

In particular, the following statement is valid.

Proposition 1. For any R there exists a family F of
linear codes such that R(F) =R and

- » for 0 s w < SGV(R)

a (W) s
F { a;(w) for GGV(R) sws=s1 ,

- -1 -
where GGV(R) --Hq (1 -R) , Hq
the g-ary entropy.-

being the inverse function to

Let

i
of = (1 - st (R rad/lal)]
g 1-3
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Theorem 1. Let F be a family of linear qg-ary codes with
R(F) =R, &(F) =8, and &(F) =&, Then

(- ® for O0sw<32$

a;(w) +[1-R-qgs/(q-1)] for & swsw

o®(w) + (1-8%)(1-H_(w/(1-8%))) for
q q * L
w sws (g-1)(1-87)/q

ag(w)  for (g-1)(1-8')/q = w = (g-1)/q
| R for (g-1)/9q s w s 1

Proof: . Since the function £ (w) is non-increasing in

parameters § and &t , we can suppose that for the family

(Cy) the limits 1lim B(C't) and 1lim 8"'((:8) do exist and equal
5§ and &t , respectively.

For the first and the last segments the statement is clear
and we assume §sws (g-1)/g. Lemma 3 and the Stirling
formula yield '

p(w) = H, () long + R —o’:g)sta"(v + (1 - v) (loqu)Hz(w/(l-v)))

(informally speaking, here v "is" 1lim i/n ).
One easily checks that the function

f(v) =v + (1 -v) (long)Hz(w/(l - v))

attains its maximum for

v* =1=-wqg/(q - 1) and
*
f(v)=1- wlogq(q -1) .

If (g-21)(Q1 - 8"‘)/q sws (¢g-1)/q then v* s 8* and
ap(w) = H,(w)log 2 + R - £ =
= Hz(w)log 2-1+R+ wlogq(q -1) =

q

= - = a0
= Hy(w) + R -1 = a () .
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If ws (g-1)(1~ 5*)/q then v* = 5' and the maximum
on [0,8*] is attained at the end point v = 5% . Therefore

p(w) =R + Hy(v)log 2 - st - (@ -38Y (loqu)Hz(w/(l-s‘L)) =
o - & - - 4
= af () + 4(1 %) (1 - Hy(w/(1-3 ))‘ .

For ws w® this estimate can be ameliorated using the
asymptotic Plotkin bound

lim sup K(n,d)/n s 1 - g3/(q - 1) .
Indeed, let i run over a family with lim,% =y , then we get
lim sup K(n-i,d)/ns1-v -qg8/(q-1),

and Lemma 4 yields

aF(w) = Hz(w) long +

+ min (1 -v-gd/(q~-1) - (1 -V) (loqqZ)Hz(w/(l-V))) =
0sys1-3

= Hz(w)long +1-qgd/(q -1) - max £(v) =

= a;(w) +(1-qg8/(q-1)-R) ,

since v*=1-wq/(q—1)<1-—6 for §sws (g-1)/q.

This bound is valid for any w in this range, and one easily
checks that for © s w® it is better than the previous bound.-

Remark 1. One can also use other upper bounds for K(n,d).
The result becomes slightly better but the formulae are much
more complicated and the calculations are very cumbersome.

Remark 2. Though it does not influence the error
probability of decoding, it is interesting to bound aF(w) for
wz (g ~-1)/q , the estimate‘ aF(u) s R being very rough. This
can be done using somewhat different idea instead of Lemma 1
(cf. [4])-

Remark 3. The estimate of Theorem 1 is approximately valid
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First we have calculated £ (v*) at a non-integer point, second
we have used the asymptotic Plotkin bound rather than its exact
form. The deviation between integral and real maximum is very
small and the error in the Plotkin bound also is not very
important. We do not write out the exact answer which does not
look very beautiful, let us just mention that the error term is
o(1/n%.

2. Spectra of algebraic-geometric codes

For an algebraic-geometric code the Clifford theorem gives
a better estimate for B, when i is not too large, and thus
yields a better estimate for the spectrum.

Let C= (X,?,D) L be an algebraic-geometric code. Here X
is a smooth absolutely irreducible projective curve of genus g
over Fq . ?sx(rq) ' P=A{P,... P} and D is an
F q ~rational divisor of degree a . Let g-1<a<n. Then

kzk*=a-'g+1,

*
d=zd n-a,

ded*=a-2g+2.

The values K R a* . and at* are called the designed
* * * * i* *
parameters of C . Iet R =k /n, & =d/n,: 38 =d*/n.

To simplify the situation from now on we suppose that
az2g -1 so that k=k*=a-—g+1 and R*=R,andwedo
not distinguish between R and R . i

Lemma 5. Let C = (x,?,D)L . If a-8s2g then

*
B, s [’;](q("-d -l)/2+‘1_1) .

Proof: It is enough to show that
K(i,...i) s (n-d" -8/2+1=(a-8/2+1.
Indeed, ’




'C(il,...,it)'(x,?"(f’ I"‘lpi)lD'-D— I

1 L ; J=1

If D is non-special, i.e. ¢{(D’) =ma-l=-g+ 1, then
{D') s (a-8) /2 +1 since a -¢s2g., Otherwise D’ is

P )t
1JL

special and the Clifford theorenm shows that -

{p'y s (a-¢8)/2+1.
| |

Now we proceed exactly as in the proof of Theorem 1 using
Lemma 5 instead of Lemma 4 and the Plotkin bound. We get

Theorenm 2. Let F be a family of algebraic-geomctric
codes with R(F) =R, 6 (F) =6 , and st (F) z 8" . Then.

(- for 0sw<a"
a(@) + (1-R-gs*/(g-1)) for &%sw s
a® (w) + (1-R-6/2-wlog( +1))
for ot sws (1-s5t )(\/-"-1)/\/?
a;(w) + (1—6**) (1-H (w/(l-G‘*)) for
(1-8* )(\/—'-1)/\/—‘ s ws (g-1)(1-5*%)/q

o
[}
A

4 (0) = £,(w)

a‘OI(u) for (g-1) (1—8 )/q s ws (g-l)/q

(R for (g-1)/g s w s 1
vhere w'* = 5% V ‘
(1/(q = 1) + 1/2)/1og (Vg™ + 1) .

Proof: From Lemmal and Lemma 5 we see that

a5 s d‘*—-;:?sn-j [?] q(n;d*-i )/2+1 /[n; j] i

- [31] ¢;I(n-d"*)/2+1 min q /2
n-i
d‘*-2sisn- J Jj

o eies * N
(the condition i=zd'" -2 being equivalent to

Thus we get a-1s2g9).

(w) = H (w)1 2 + (1~ -
% ) ogq (1 5 /2 6"*:‘:: {v/2+(1~v) (log z)H (1-v)
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The maximum of

g(w) = v/2 + (1-v)(1ogq‘z)uz[i-‘_f_’-;]

is attained for V=1 - w/g /g - 1) and
g(v*) = 1/2 - v log (VG - 1) . | o
Therefore if 81* s s1-w . i.e. it

ws (1-8")Wg/(vg -1) wve have’
*
ap(w) s Hz(w)long + w logq(\/q—‘ -1) -3 /2=
' *
=Hy(w) -8/2 -0 log (V@ + 1) =

=ad() +1-R- *2 -0 log (V" + 1) -

: *
The rest follows from Theorem 1. (of course, one can put &
and st* in place of & and &' since our function is

non-increasing in these parameters) ‘m

Remark 4. It is clear that Theorem 2 remains valid if we
sustitute & and st for 8* and 5"* . We prefer the above
statement of the theorem since. the parameters ° 6* . 81* can be
directly calculated in terms of algebraic-geometric parameters
g, n and a . It is also useful +o note that the "clifford"
part of Theorem 2 (i.e. that on the segnment
(**, (1 - 8**)(v@" - 1)/¥g"1 can be written as :

a (w) + (1 -8 )/2 - wlogq(f'“+1)

Let us also remark that f, (w) is differentiable everywhere
except w** and 6* (and at 6 it is not even continuous).

Remark 5. Using slightly different ideas one can obtain
similar bound for F((.)) which is non-trivial for & > 9———-—-

(see [4]).

The bound of Theorem 2 is valid for any family of codes on
algebraic curves provided the limit R(F) does exist. Using
technique developed in [5] one can obtain ‘a similar (but a
better) bound for a "random code" on algebraic curves. We give
here the answer only in the most important case of

asymptotically maximal curves.
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Let g % 49 be an even power of a prime, let (X} be a
family of asymptotically maximal curves, i.e. curves with

lim E—g(£2-=t’q -1

g—» .
(the maximal possible ratio of the number of F -points to the
genus) .
Let &, 8,, 5, 8, ([0, (g-1)/q] be defined by the
following conditions:
i. 0<8:<82<63<6‘<(q-1)/q:

ii. 5 and & ‘ are the roots of the equation

Hq(8)+‘—1—g—1(1—a)=1+1-

iii. 8, and 3 ; are the roots of the equation
H_(3) + (1 - -1) = ;
q( ) (1 5)1°9q(¢1 1) =1+7;

where 7 = g = g - 1)t

Then it is known (see [5], or [2]) Theorem 3.4.11) that for
any R . there exists a choice aof divisors D such that the
family F = {(C = (X,?,D) L) has the following relation between

R  and & . (and in some precise sense almost any choice is
such).

If Osssa1 or 5‘565 (q -1)/q then
R=1-'Hq(8). If 6256583 then R=1«~7y-8. 1If
6158552. or 835656‘ then

F,(R,8) := (R + 7) (1 - Hq[;—z—g)) +H (8) ~1-7=0.

For a given 'R such that 1 - Hq(81) ZRz1l~-7 - s, or
1-7- 53 ZR=z1 - Hq(s‘) let V(R) be the (unique)
solution of the last equation. Let cv(R) = H (1 ~ R) , where
H; is the inverse functlon to the q—ary entropy. '.l'he following
statement is proved in [4], the technique bemg the same as in
{51.
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Theorem 3. Let q &z 49 be an even power of a prime, let
{X} be a family of asymptotically maximal curves. Then for any
R there exists a choice of divisors D such that the family
F = ((X,?,D)L) has the above relation between R and & and

If Re[0,1-H(5)]v (1 - By (3,), 1] then

{-—u for 03 w < 3,,(R)
(w) =

a;(w) for ) sSews1 .

GGV(R

If Re [1 -‘Hq(s‘), 1
then

5, -7 vIl=-8, -7, 1-H(5)]

- for 0 s w< GV(R)

R

[}] l - w »
a @) s{ af(@) - R+ (@ - Hq[__:l__.?)) for 5,(R) 5w =0
(4] X :
aq(w) for W, sws 1 ’

vhere o =1~ (R+7)(q-1)/q .
If 'Re[1—53-1,1-52-1] then

o W) =

[+
w for 1 -R - sws1 .,
aq() v S 'm

3. Error probability of decoding

et C be a linear [n, k, d] -code. This code can be used
to transmit information over a noisy g~ary symmetric channel.
This means that we transmit code words x e C , and the error
probability per symbol equals some p ; moreover the probability
that a given symbol is distorted to another given symbol equals
p/(q - 1) . The distorted word z is then transformed (decoded)
into a code word Y nearest to z (so called maximum
likelihood or minimum distance decoding). Let Pc(p) be the
probability of wrong decoding (y # x) .
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Let F be a family of codes C . Let

E = lim sup  lo
and let

E(p,R) = 1lim inf EF(p)

over all families of codes whose rate equals R .

Let eq(n,w.p) be the probability that for x = 0 ¢ "
the received word =z is nearer to a given y of weight w
than to ' x (note that eq(n,v. p) does not depend on y but
only on ¥ ). The following result bounding P.(p) in terms of
the spectrum is well known.

n
Lemma 6. P,(p) = I Aieq(n,i,p) .

i=1

Proof: If there is an error of decoding, y should be a
code word of some weight i . The probability that y differs
from 0 is at most the sum of probabilities that y equals
some given non-zero code word.

Let us calculate eq(n,.i,p) and its asymptotical behaviour.
Let

- 1
eq(w,p) = 1lim ﬁlogqeq(n, [wn],p) .

" Lemma 7. a) eq(n,i,p) =

_; n .. . n n-n_-n_-n ntntn
=I [" ‘] (g-1) ‘[‘ ] [‘ "z) (g-2) *(1- 273 (—-—p ol
n, n,)| n, ) “(1-p) qg-1
where the sum is taken over all triples (n, n, n) of
1! M2! T3

non-negative integers subject to the conditions n sn-1i,
nz+nssi,.2n2+n3=.i. '

b ==
) eq(w.p) w logq Bq(p) ’
where ’

Bq(p) =p(g -~ 2)/(q - 1) + 2vp(1-p)/(g-1Y .

Proof: Let X=0c¢€ l-'g ' Ye F; R wt(y) =i . Suppose
that the first n - i positions are zeroes. lLet z e F!' have
n . sn-4i non-zero entries in the first n - i positions and
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n,+n s i non-zero entries in other positions. Besides we
suppose that in n, positions the coordinates of 2z are equal
to those of y. If n , n,, and n, are fixed' then the
probability of receiving 2z as an output of a g-ary symmetric
channel when the zero word was transmitted equals .

n +n_+n
nninzna[pll 2 3

qg-1

-

(et ™ (4) () o s

The distance between x and 2 equals n, +n, +n,, and
petween y and z it equals i - n,+n . Thus eq(n,i,p) =

- (n=i) q i (i Y [i-n n, n-n,-n,~n,( P M
e ) (e
n_s=n-i
n;+nssi
2n2+n3=i

and the first statement is proved.

To prove the second statement we need to logarithmize the
previous expression, and note that %-logqn is asymptotically
small. So the asymptotic value of the sum equals the maximum of
its summands. It is not difficult to see that this maximum is as

stated in b).
-

Remark 6. It is clear that Bq(p) for O0sps (g-1)/q
is an increasing concave function tangent to the vertical axis
at p=20 and to the horizontal 1line g=1 at

p=(qg-1/q9.

We are ready to estimate the error probability for a given
family F .

Lemma 8.

Ep(p) = 8:!:;:1 (ap(w) + w log B (P)} .

Proof: We logarithmize the expression of Leuma 6 and note
that asymptotically the sum equals the maximal summand. Then we
use part b of Lemma 7..
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The following statement is obtained by a direct calculation
combining Lemma 8 and Proposition 1.

Theorem 4. Let

' (@ - 1)8,(P)
B(P) =1 = Boly5g = 1)B,(PY| °
Then
SGV(R)loquq(p) for 0 s R = Ro(p)
(R + 1) + log (1 + (q - 1)8,(P))
for Ro(p) s R ‘m

E(p,R) = EG(P'R) =

Remark 7. This bound is called the Gallager bound without
expurgation. The Gallager bound with expurgation is

E(p,R) = E(';(le) =

= min_(p(R-1)+(p+1)leg, ((p/(g-1)) Y/ 1*P) (g-1)+(1-p) 1/ (1*P))
0sps1

which is better than EL(P,R) starting from some R, = R (P) .
Moreover, it is known that for R,sRsC=1 ~ Hq(p) we have
the complete answer v

E(p,R) = E4(P,R) .

" Because of that further on we are interested only in
‘R <R, , for which E,(p,R) is the best previously known bound
for E(p,R) .

Let us combine Lemma 8 with Theorem 3. We get
Theorem 5. Let g z 49 be an even power of a prime. Then
a) For Re [0, 1~ Hq(a‘)] vl - Hq(61), 1] we have
E(p,R) = Ec(le) .

b) For Re[l-Hq(a‘),1-83-7]\1[1-82—7,1~Hq(81)]
wve have
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VBGV(R)logq.Bq(p) for 0 s, B.(P) < B, (R)
Fy(R,w(p)) + w(p)log B, (p) 1Ry

for  8,(R) = Bq(P) < o1y (RERY

E(p,R) s E,(p,R) =

where
(-BV(R) + R+ 7 - 1)8V(R)

2
(A = 5,(R)

8,(R) =

L]

and w(p) is the unique positive solution of the equation
(W+R+7-1)e=8(p)(1 -w)?.

c) For Re[l-5 -7,1-8,-7] we have

a® (1-R-7)+(1-R-7) log 8. (P)
o for 0 < Bq( ) < AR
q'P) < @) (FFy

1-R-7
FolPR) for goay(resy = Fq(P) '

E(p,R) = EAG(P:R) =

Sketch of proof: We apply Lemma 8 to the family F with
R(F) = R . The direct maximization using formulae of Theorem 3
yields the result..

Remark 7. Since the bound of Theorem 3 is not worse . than
that of Proposition 1, the bound of Theorem 5 is never worse
than that of Theorem 4 and often ameliorates it. For example,
let Re (1 - 62 -%, 1~ Hq(si)) . and let

1
Bq(p) = min {(q a5,

8 (82+R+1-1)82}-
2
(1-3))
Then

Eg(D.R) = E,(P,R) = (35, (R) = 5,(R))10og 8 (p) > O .

Note that in this case R < Ro(p) <R, .
Similar examples exist for Exp (p,R) for
Re(1-8,-7,1~8,-7).




Remark 8. Theorem 5 estimates the error probability of
decoding for "almost any" family of algebraic geometric codes on
asymptotically maximal curves. It is however difficult to
produce ari example of such a family. On the other hand, Theorem
2 bounds the spectra of any given family of algebraic geometric
codes. One can substitute this result into Lemma 8, thus
obtaining a bound for:  the error probability for the given
family. For some explicit families (say, with R=1-8 -7 on
the segment where this line ameliorates the Gilbert—-Varshamov
bound) this bound is sometimes also better than the Gallager
bound.
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Abstract

A class of geometric Goppa codes based on Hermitian curves was introduced by Stichtenoth
[3]. These codes are parametrized by an integer m that governs both dimension and min-
imum distance of the code. In that paper, the exact minimum distance is given in the
range that 0 < m < ¢ — ¢ or m = 0 (mod g) with m < ¢*. In this paper we determine
the exact minimum distance of these codes for any m with m > ¢® — ¢*. Taken together
the two results give the exact minimum distance of Hermxtla.n codes for all values of the
parameter m.

I. Introduction

In 1], van Lint and Springer considered a class of codes defined by Goppa’s algebraic-
geometric construction over Hermitian curves and remarked that these codes are usually
better than the corresponding Reed-Solomon codes with the same rate. Tiersma [2] stud-
ied these codes in more detail and provided a clear description of their dual codes. By
working with an isomorphic curve having only one point at infinity, Stichtenoth [3] gen-
eralized and simplified the results of Tiersma. Codes of length n = ¢* and any dimension
0 < k < ¢® over GF(q?) were considered by him. In particular, the exact minimum
distance of these codes in the range that 0 < m < ¢ — ¢ or m = 0 (mod ¢) with m < ¢,
(where m is a parameter that governs both dimension and minimum distance of the code)
was determined in his paper.

In this paper, we evaluate the exact minimum distance of those codes defined in [3]
for any m with m > ¢® — ¢*. Combined with Stichtenoth’s results, these results give the
exact minimum distance of Hermitian codes for all values of the parameter m.

This paper is organized as follows. In section II, we will review some properties of
Hermitian curves based on Stichtenoth’s results and give our results. In section III, we
will give the proof of the main theorem. Partial results on the minimum distance obtained
independently by other researchers are given at the end of this section. :
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I1. Background and Results

We adopt almost all the notation in [3]. Let K be a finite field K = GF(¢?) (¢ a power of
some prime) and F = K(z,y) be the function field of the Hermitian curve y? + y = 291,
The genus g of the function field F/K is g = (¢* ~¢)/2 and F/K has exactly 1+ ¢° places
of degree one. Let Q be the common pole of z and y, and P, g be a common zero of z —
and y — B for any a € K and any 8 € K such that 8% + 8 = a?*l. Then the divisor of

y—-Pis
(q+1)Pos—(g+1)Q, fpI+8=0
W-B=\ ¥ Pa-(¢t1)Q, s +A£0. (1)
‘|+‘;i:'l+p

Proposition 1 ( [3], Proposition 1 ) For each integer m > 0, L(mQ) has a basis B(m)
L

B(m)2 (= |0<i,0<j < q—1, ig+j(g+1) <m}. @)
Let D =Y e pP" s and Cp = C(mQ, D). Let d(C,,) denote the minimum
afti=ged, R

distance of the code C,,. Note that Cp, is a linear code of blocklength n = ¢* and if
m, S ms then d(Gmx) 2 d(sz )'

Proposition 2 ( 3], Theorem 1 ) For any m € Z the codes Cry, and Cpyga_g_3_m are
dual to cach other.

An integer ! is a gap number of Q if there is no function f € F such that f €

LIQ)\ L((I — 1)Q). From Proposition 1, we know that {ag+b|0<a<b< ¢g-—1}is
the set of all gap numbers of Q. Now define

n 2 maz{l|I=ig+j(g+1)<m, 05§, 0<5< g1} (3)

K m > 29 = ¢ — g then 72 = m by the Riemann-Roch theorem. Note that m is a gap
number of Q if and only if m # #, i.e., m > M.

Proposition 3 ( [3], Theorem 4 ) For any integerm > 0
| | (Cr) 2 1 — i, @

Proposition 4 ( [3], Theorem 5 ) Assume m =ig+ j(g+1) < ¢® — 1 with 0 < 4,
0<j<gq—1. Ifeither j=0 (i.e., m=0 mod q) orm < ¢* — ¢ then
d(Cn) = ¢ — 1. (5)

Theorem 1 (Main Theorem) The code Cp, is a linear [¢*, k,d(C,n)] code as shown in
the Table 1.

Remark: The dimension of the code Cr is completely given by Stichtenoth ( [3], Theorem

2 ). By Proposition 4, d(C,,) for any m with m < ¢® — ¢ is determined, We will prove
d(C») in the range of m > ¢* — ¢? in the next section.
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Corollary 1

(a) The numbers of the form ¢* — aq — b with 1 < b < a < ¢ — 2 are not achieved by
d(Cr

(I(:) G)iven d(Cp) = @* — aq with 0 < a < g — 2, the best code is parametrized by m =
¢ ~q*+ag+a.

(¢c) Given d(Cr) = g—a with 0 < a < q—1, the best code is parametrized by m = ¢*+ag+a.
(d) Ezcept for (b) and (c), the given minimum distance uniguely determines the dimension
of the code C,,.

Proof: It follows immediately from the above theorem. a

Dimension Min. Dist. | Remarks

m k d(Cp)
1) m<0 0 . Trivial
0<m<¢g—g a(a+1)/2
2) m=aq+b, +b+1 n—m Stichtenoth

0<b< a<g-1

3) g-gq<m<g-¢
r-¢<m<g;

4) m=¢—-¢+ag+b, m—-g+1 n—m | Theorem 2

0<a<b<q-1

¢ -¢<m<qy

5) m=¢—¢+ag+b m-g+1 n—m+b | Corollary 2
0<b<a<qg—1

rEim<gC+e—qg-2

6) my=¢"+¢*—q—2—m, || *—a(a+1)/2|a+2ifb=a | Theorem 6

m—g+1 n—m Stichtenoth

ny =aq+b, ~b-1 a+lifb<a
0<b<a<qg-1 ¥
7) m>¢+q —q—2 T 1 Trivial

Table 1: Parameters of the code C,,, = C(m@Q, D).
III. Proof of the Main Theorem

A. The Minimum Distance of the Code C,,, in the
Range that ¢* —¢? <m < ¢
Note that in this range m = /2 and m can be expressed as m = ¢* — ¢* + ag + b, where
0 < a,b < ¢— 1. The gap sequence will play an important role in determining d(C,,).

Lemma 1 Assume 0 < m < n = ¢ and let § = n — m. Then there ezists a function
f € L(mQ) having ezactly m distinct zeroes in supp(D) iff there ezists b € L(6Q) havmy
ezactly § distinct zeroes in supp(D). -

Proof: Let u = z%° — z. The proof then follows from noting that (u) = D — ¢*Q and

from considering the function u/f for a given f satisfying the condition in the lemma.,
D .
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Theorem 2 Assume m = ¢® —~ ¢®* + aq+ b, where 0 < a,b < g— 1. If either b= 0 or

a < b, then : ‘ ,
dCn)=n—-m=q'—ag—b. (6)

Proof: i b = 0 then d(C,,) = ¢* — aq from Proposition 4. Thus we can assume that
a < b. It suffices to show that there exists a function f € L(mQ) such that f has exactly
m distinct zeroes in supp(D). Note that ' :

f=n-m=¢"—ag-b=(g~(a+1))g+(g-b).

Since ¢ —(a+1) > g—b, § is not a gap number of Q, so there exists a function & € L(6Q)
having exactly § distinct zeroes in supp(D) by Proposition 4. An application of Lemma
1 completes the proof. o

Theorem 3 Assumem =g —¢g +aqg+a wherel <a < q—1. Let f € L(mQ) be e
nonzero function. Then f has at most m — a distinct zeroes in supp(D).

Proof: Let §, =n —m +r, where 0 < r £ a — 1. Then we have

5, = ¢¢—-ag—a+r
= (g—a-1)g+(g—a+r)

Notethat 0 S g—a—-1<g—a+r < ¢g—1. So é, is a gap number of Q for any r
with 0 < r < a ~ 1. Thus by Lemma 1 there does not exist a function f € L((m - r)@),
m—a+1<m—r < m,such that f has exactly m — r distinct zeroes in supp(D).

Now assume that there is a function f € L(mQ) such that f has exactly m —r,
m—a+1< m—r < m, distinct zeroes in supp(D). Then it must be that for some m’
withm—-r<m'<m

(=E+S-m'Q
where E is an effective divisor such that £ < D, deg(E) = m — r, and S is an effective

divisor such that supp(S)Nsupp(D) C supp(E), Q & supp(S), and s 2 deg(§) =m' —
(m —r). Note that 0 < s < r < g 2. Thus

u 2 —z ' 3 .
(F=(F")=D-E-5-(¢ -m)Q.

Consider the constaat field extension [5] F' which is the composite of F' and the algebraic
closure K of K = GF(q?). It is easy to show that F has the same genus and the same

gap sequence at Q. Our aim is to show that even in the larger field F*, such a function

u/f with divisor as given above does not exist. In F', all places (except Q) are of degree
one and correspond to points (a,8) with coordinates in K. Given a place of degree one
(a point) Py g contained in the support of S, we consider the line y — B passing through
Pag. Since (y— B) = Pog +J ~ (g +1)Q where f7+ 8 = ™, J > 0 and Q ¢ supp(J),
we get Pog = —J +(g+1)Q. Replacing each place of degree one in the support of § with
an equivalent divisor in this way, we get

=~-R+s(q+1)Q
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where R > 0 and Q ¢ supp(R). Thus
(P=D-E+R-(g~m'+sg+1)Q o

where D — E + R > 0 and Q ¢ supp(D — E)|J supp(R). Let m' = m — j with 0‘_<_j <r
§0 8 =7 ~ j. Then

¢-m'+s(g+l) = ¢F-m+j+s(g+1)
¢ —ag—a+tj+slg+1)

(g—a+s-1)g+(g—a+s+7).

I

Note that
0Sq—a+a—1<q-—a+a+j=q_a+rsq._1,

:I‘hus g -—-m:'-i.-a(q+ 1) is a gap number of Q for any m’ with m —r < m’ < m. This
is a contradiction to our equivalence of (u/f) in (7). Therefore, there is no function
J € L(mQ) such that f has exactly m — r distinct zeroes in supp(D) for any m — r with
m—-a+l<m-—r<m. a '

Theorem 4 Ifm = ¢* — ¢ + ag+ a where 1 La<q-1, then
d(Cm)=n—~m+a=g"—aqg. @)
Proof: Note that d(Cpn) < d(Cps_g2444) = ¢* — ag by Proposition 4 since m > ¢S—-¢+
ag. By Theorem 3, there is no function f € L(mQ) having exactly m — r distinct zeroes
in supp(D) for each r = 0,1,...,a — 1. Thus d(Cp) > n —m +a = ¢ —aq. o
Corollary 2 If m=¢*—¢* + ag+ b where 0 < b<a<q-—1, then
dCn)=n-m+b=¢ —aq. )
Proof: Since m > ¢* — ¢* + aq, d(C,,) < d(Cps_g24aq) = ¢ — aq by Proposition 4.

SDoince m< ¢ — ¢ +ag+a,dCy)> d(Cgs -3 4ag4a) = ¢* — ag from the above theorem.

B. The Minimum Distance of the Code C,,, in the
Range that m > ¢* '

' Note t.hf;t L(r{tQ — D) is no longer {0} in this range. Also, the lower bound for d(Cp)
in Proposition 3 is not useful any more. Recall that Cr = Cppyqa—g-2-m for any integer

m € Z from Proposition 2. To simplify notation, we define m L 2 C+¢—-qg—-2—m.

Thus CL = Cn,-

Hm>¢+¢—-g—2,thenmy <0,s50 L(m Q) = {0} and C,,, =
Gm_—‘K" a.nd d(Cm):l., + ( "LQ) {}m my {-0-}' Asaresult!

We can therefore restrict our attention to ¢* < m < +¢—qg—2 Then0<m, <
" - ¢— 2 =29 — 2. Applying Proposition 1, we get that for this range of m, -

my =ag+b (10)




104

(where niy denotes the ~ operator applied to m ) where 0 < b < @ < ¢ — 2. Obviously,
Cm L = C,,Q.

Consider a generator matrix H for C,¢, (i.e., a parity check matrix for C,,,) obtained
by using a basis B(ni;). Note that each row in H corresponds to a function in the basis.
We examine H and get an upper bound on d(C.,).

Theorem 5 (Upper Bound) Ifni;, =ag+b where0<b<a < q‘—- 2, then

a0 <{ 111 Ji%E @

Proof: We prove it by finding linearly dependent columns of H over K. For fixed
a € K, we find a subset {P;| P; = Po g, i = 1,2,...,q} of supp(D). Note that §; # B; for
iZjanda+2<q. '

(i) caseb = a : A basis of L(n3, Q) is B(ag+a) = {1, =, v, ..., 2%, 2*~'y, 2>~ %3, ..., ¥°}.
Consider a submatrix Hy of H with columns corresponding to Py, Py, ..., Pay2. By using
the Gaussian elimination method, we can make Hj as follows.

1 1 1-... 1]

ﬂl ﬂz ﬂs i ﬁ¢+z
ﬂlz .322 ot ﬂ-’tz i ﬂo-}-:z

B B B o B | (12)
0 0 ... 0

e O

[ 0 0 0 .- 0
Thus renk(H;) = a + 1 and H; has a + 2 columns, so columns of H; are linearly
dependent. Therefore, d(Cp) < a + 2.

 (ii) case b < a : Note that ni; < ag+a. Since y® has a(g+1) poles at Q, it can not be

~contained in L(ni; Q). Thus the row corresponding to y° is deleted from the above Hj.
Call as Hz the matrix obtained by deleting the row corresponding to y* from H;. Then
rank(H3z) = a, so any a + 1 columns of Hj are linearly dependent over K. Therefore,
dCn)<a+1l. o

This theorem gives us an upper bound on d(C,,) in the range that @& < m <
¢+ ¢* — ¢— 2. Our next goal is to find a lower bound and thus the true minimum
distance.

At first, we focus on the case that 7i; = aq+ a where 0 < a < g —2. Consider a
submatrix A of H obtained by choosing a + 1 distinct columns from H arbitrarily. Since
each column of H corresponds to a place P, 5 of degree one, we can reorder columns of
A according to a. That is,

Pax.ﬁx.n Pax.ﬂx,n Ty Pax.ﬂt,o,
Pa:.ﬁn.n Pa:.ﬁm: *tty Pa:.ﬂz.s,

. . .
. . .

(13)

Pcnﬁr.n Pav.ﬂr.z: MR Par.ﬂ',»,
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where o;’s are pairwise distinct and b; + bz + ...+ b =a+1withb 202> ... 25 > 1.
It is easy to check that

Zlyi € B(my), 0<ji<b-1; 1<i<r (14)
We rewrite these basis elements in the form.

1, Y, yz: nee yb‘-:
z, zY, zyz: .ee zyh- ‘
2z}, 2y, P, ... iyt (15)

: : :
zr—l’ zr—ly, zr-lyz, ves gtlgbr-1

Then we can extract an (a + 1) X (a + 1) submatrix B of A as follows: i) Each row
corresponds to a function in (15) in the given order. ii) Each column corresponds to
a place of degree one in (13) in the given order. iii) Each entry of B is obtained by
evaluation. That is, 4

B = [Bigly )i =1,2,07 (16)
where By is a (b; % b;) matrix whose (k,l)th entry is a1k, de,
By=a Dy | ()
with
1 1 1 ... 1
Bix  Biz  Big - Biy .
Dij:= Bia Bia Big® e+ Bin;® |. (18)

ﬂj,lbi-l ﬂj,zbi-l ﬂj,ab‘-l 2 ,b,-bi-l
Using the Gaussian elimination method and the induction method, we get the following
lemma.

Lemma 2 Assuming the above notations,

det(®) = ([ de(Dus)- () (19)
where i » , ‘ o
7; 2 g(aj - a,-), J=2,3,.01 (20)

Lemma 3 Assume niy = aq+a where 0 < a < q—2. Then any a+ 1 columns of H are
linearly independent over K.

Proof: Consider any a+ 1 distinct columns of H and reorder those columns according
to o of P,g. Then we can construct matrices A and B, efc., as before. Since o;'s are
pairwise distinct for i = 1,2,...,r, we have 7; # 0 for any j = 2,3,...,r. Since B, ;' are
pairwise distinct for j = 1,2,...,b; and a given i, we get det(D;;) # 0. Thus det(B) # 0
by Lemma 2. This means that a+1 = rank(B) < rank(A) < ¢+1, so rank(A) =a+1.

Therefore, the columns of A are linearly independent over K. o
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Theorem 6 Assume niy = aq+ b where 0 Lb<La<qg—2. Then

wcw={ 211 Mz @

Proof: If b = a then any a + 1 columns of H are linearly independent over K by
Lemma 3, 50 d(C,n) 2 a + 2. But, we have d(C\n) < a + 2 by Theorem 5. Therefore, we
get d(C)=a+2. _ .

Ifb < a then let m) = (a —1)g+ (a — 1). Since m| < niy, we have Cy C Cow, 50
d(Cw) 2 d(Cw) = (a—1)+2 = a + 1. But, d(C,,) < a+ 1 by Theorem 5. n

Note that this theorem tells us the true minimum distance of C,, for any m with
¢ <m< P+ ¢ —q—2. Assaid before, if m > ¢® + ¢> — g~ 2 then d(Cp,) = 1. Finally,
we have:

Corollary 3 If@* —g<m < ¢ then
d(Cnm) = g¢. (22)
Proof- Im = ¢*, thenm, = ¢*+¢*—g—2—m = ¢*~q—2, s0 i, = (g—2)q+(g—2) =
m,. Thus, d(Cp) = (g—2)+2 = g from Theorem 6. Recall that d(Cp.,) = ¢ by Proposi-

tion 4. Since *—¢<m < ¢, Cps_, CC, CCp,s0g= d(Cp) £ d(Cr) £ d(Cp.y) = ¢.
(8]

Remark: The referee has brought to our attention that the exact minimum distance
of C,, for m in the range n — ¢ < m < n — 1 has also been determined by Xing [8]. It is
also shown in [8] that if m=gqr+¢,0< ¢ <q -1, and 29 -1<m <n-—1,then

dCn)<n—-m+t.
Pellikaan [9] also shows that the minimum distance of the codes Cntay 0 < a < g, satisfies
d(0n+n) 2g—a.

The exact minimum distance in cases m = %, n + 1 is also given here [9]. Some special
cases of m are also considered by Garcia and Lax in [10], where the true value of d(C),)
for ¢* — ¢* <m < ¢® and m = 3 (mod g) is given.
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Sphere Packings Centered at S-units of Algebraic Tori
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0. Introduction

This paper 1s inspired by a series of articles [L/Ts], [R/Tsl, I[Tsl,
introducing several new explicit constructions of dense sphere packings in R"
which have good asymptotic properties while n tends to infinity. We present
here a generalization of these constructions which seems quite natural. The
main idea 1s to consider the group of S-units of an algebralc torus defined
over a global field and to embed the torsion-free component of this finltely
generated group into R" with the ‘help of the logarithmic map (in the case of a
number ground field), or the divisorial map (in the case of a function fleld).
(For the trivial torus T=G- it is nothing but a construction of [R/Tsl). The
resulting lattice in R" generates a sphere packing whose parameters can be
estimated with the help of the technique developed in [Shi1-Sh3l,° [V2] while
investigating arithmetical properties of algebraic tori. The key points are
the (generalized) Dirichlet unit theorem‘ valid for S-units of algebraic tori
and some class number relations.

Section 1 contains most necessary definitions concerning sphere packings
and tori. The main construction is described in Section 2. In Section 3 we
estimate the parameters of the obtained lattices. Section 4 deals with several
examples where we succeed with the calculation of the numerical values of all
the constants. In Section 5 we present a generalization of the main
construction to the case of a congruence lattice assoclated to a divisor.
Some final remarks and open questions are collected in Section 6.

The long-term collaboration with M.A.Tsfasman was the source of my
interest in sphere packings, and I thank him for many stimulating discussions.
I am also grateful to V.E.Voskresenskii and A.A.Klyachko for the constant
interest in my work and valuable remarks. .

~ This work has been partly done during my stay at the University Paris-7.
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I especlally thank J.-J.Sansuc for hls hospitality. I also thank I.H.E.S.

where this work was finilshed.
1. Definitions

See [C/S] for a detalled exposition of the problems concerning dense
sphere packings, and [02], [V1] for those concerning algebraic tori.

1.1. Packings

Let Ln be a lattice in R". Let us consider a set P of non-overlapping
open spheres centered at the polnts of Ln, and let V denote a sphere of the

. vol(PnV) ‘
radius r. We call A(Ln].—lit‘l_l_s)gp ~ollh the density of the sphgre packing

assoclated to Ln. and A(Ln):=(-long(Ln).)/n ~ the density exponent.
Let £ be a family of lattices anR“ with n tending to infinity. Let us
define 1(2):=llgn_)£nf 3\(%). We say that £ 1s asymptotically good if A(£) < o .

1.2. Problem

Give an explicit construction of an asymptotically good family £ and

calculate (or, at least, estimate) A(Z£).
1.3. Bounds for the density

We recall the best known upper and lower bounds for A given by Minkowskl
[Mil: A{(£) s 1 for some £ (which we cannot construct in an effective way), and
by Kabatiansky - Levenshtein [K/L}: A(£) = 0.599 for any £.

See {L/Ts], [R/Tsl], [Tsl for a series of explicit constructions of
asymptotically good families. Note that the obtained density exponents are
worse than the Minkowskl bound.

1.4. Algebraic tori

Let K be a field, and let T be an algebraic K-torus split' by a fleld L,

“i.e. TxKL is isomorphic to the product of n copies of the multiplicative group

G_ v The minimal field among such L's is called the splitting field of T, and
let G be the splitting group (the Galois group of L over K). Let T=Hom(TxKL,
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G ) be the character module of T. It is a torslon—free Z-module of a flnite
Z-rank (equal to the K-dimension of T); _We can conslder T as a G-module.

Let (T) denote the submodule of T consisting of the characters defined
over K (l.e. (T) =TG is the submodule of G-invariant elements). We call T
anisotropic if (T) ==(0) Denote by T(K) the group of K-points of T.

From now on let K denote a global field, i.e. a number field (a finite
extension of @ of degree m), or a function fleld (K=Fq(X) with X denoting a
smooth projective curve over a finite fleld of g elements). Let S be a finite
set of places of K containing S (the set of all archimedean places) For each
veS let T *T(K) denote the group of K—point.s of T, and let (T) be the
submodule of T conslsting of the characters defined over Kv (Kv denotes. as
usual, the completion of K at v).

2. Construction of packings

In this section we present a natural generalization of a construction
introduced by Rosenbloom and Tsfasman [R/Ts].

2.1. S-units of an algebraic torus

Let T (S):= IETSTV ><"T‘_ISTc R T denoting the maximal compact subgroup of T .
In other terms, T:=(xeTv: llx(x)ll =1 for all xe(T) S llv denoting the

normalized absolute value.

Definition [V1], [Shil]. We call TK(S):=T(K)nTA(S) the group of S-units of
T

Remark. In the case of the trivial torus T=G- we obtain the usual group
of S—units of K.

Set 1°:= m‘: , w(r):=r(x)nr° . W(T) is a finite group coinciding with the
group of the roots of 1 in K in the case T=G

For each v set r :—rankz(T) » r(S):= vie:sr". Suppose that rv>0 for all
veS, and fix a Z-basis {x _,...,x )} of (T) .
v,1 Vi v

v
2.2. Number field case
Let 15 : T,(S) —» R be a map defined as follows:

ls({tv)) 1= “"“xv,x(tv)"v)ves
lslsrv

1M1

(here and further on ln denoting .logo).
In fact, for veS we have llxv"(tv)llfl because tveT: , and so the
corresponding components vanish.
Definition. Set Ng := I,(T.(S)).
The following result generalizes Dirichlet’s unit theorenm.
Theorem. [V1i], [Shi], (K]
Ng is a lattice of Z-rank r{S)-r, where r: =rank(;')K.
This lattice is the main object of our conslideration.
Remarks.
1. Ker(ls)=w(T).
2. For S=S“° the above theorem was proved in [O1].

2.3. Function field case

In this section K=Fq(X) is the fleld of rational functlons of a smooth
projective curve X over a finite field l-'q.

Recall a construction from [R/Ts]l, [Ts]. Let S:X(l-‘q) be a finite set of
places of K, and let 0 -(fEK : Supp(f)sS}. We have a natural map
0 —_— Div (x)«z (divisors supported in S), gos(f):=d1v(t‘).
A generalization of this construction to the group of S-units of a
T (S)—> I" . (We set
(ws(t)) =ord (x (t ))). We have n=r(S) as in the previous section, and
define F. as the image of n[;s As above, we have rankF, —r(S)—r. and Ken[l =W(T)

S
(for T=6_ the latter group coincides with F ).

L

K-torus T gives rise to a map ws

3. Estimation of parameters
3.1. The main asymptotic formula [L/Ts], [R/Tsl, [Tsl.

If £ is a family of lattices L of growing rank, the Stirling formula
yields A(£) » ~ log Vne/2 + log vn - log d(L )+ —log(detL ),
where for brevity we denote log= log2 , det L i1s the determinant of L (the
volume of a fundamental parallelotopé of L), d(L) is the minimum distance of L
( =xeil.§’{o)lx”' and = means an asymptotic equality.

The above formula shows that we have to obtaln an upper bound for det Ln
and a lower bound for d(Ln).

From now on we assume T anisotropic. In this case we have n=r(S).
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3.2. Number field case

Denote by L the splitting field of T, and let p be the degree of L/K. Let
-
S=SmuS x and let S’ be the set of places of L over S. Denote by O_, the group
of S'-units in L, and let W denote the group of roots of 1 in L. Set
= 9% %
Theorem.
(1) det N s h(T) R(T)vgsfrv 1n N(v) ,

h(T) denoting the class number of T ([02], [V1l, and R(T) denoting the
regulator of T [02]; N(v) is the cardinality of the residue fleld at v.
(11)Assume that the following condition holds.
(H) For each teT (K)\W(T) and any collection (x E(T) } s there exists
feO s, such that llt‘ll and llx (t)u (w denotes a place over v) are as near as we
ulsh

Then d(N } & ipf I linifu |
'R re0_,\W wes’ ¥

In particular, if L is totally real, and S=Sm. we have
det N = h(T) R(T) ,

ang) = L84, R
vY’n 2

m denoting the degree of K.

“Proof.

(1) We go along the lines of the proof of Lemma 4.1 (iii) in [Ts]. Recall
that h(T)=[TA:T(K)TA(S”)]. where 7‘A denotes the 1nductive limit of TA(S). it
T=G-, we have h(T)=h(K) - the usual class number of K.

The regulator can be defined as follows.

First suppose T to be defined over Q. Set r :-rank(T) (we have an

obvious equality rm=r(sw):= ) r, }); fix a basis {x )1515 of (T) such that
vesm
- ATRRYY X form a basis of (T)n , and a basis (81}r+151$r“ of Tn(Sw). A

positive number tdet(lnlx‘(ej)l) is called the regulator of T over @

re1S1, )Sr
(it depends neither on {x }, nor on (s 1.

For a torus T def 1ned over an arbitrary K let T (T) be the @-torus
obtained by Well's restrictions of scalars [V1], and we deflne R(T).=R(T1). If
T=G_ » we have R(T)=R(K) - the usual regulator of K.
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If T 1s anisotropic, the corresponding lattice of S-units Ns is a full
lattice in R®, so we can decompose detNS into two factors: “archimedean* hz

and "non-archimedean" hz (to obtain this decomposition we can order the
coordinates in R" in such a way that the first coordinates correspond to
archimedean places). The first factor h1 equals R(T), the second one, being

the determinant of a lattice whose index in vgsrlrvlnﬂ(v) does not exceed
h(T), satisfies an inequality hzs h(T) vlélsfrv In N{v).

(i1) The idea is to reduce everything to the case of the trivial torus
T=G_ using the assumption (H), and to exploit [Ts], Lemma 4.1 (1), (1f).

Let teT (S)I\W(T). For veS and lsISr set Yy, xlnllx (t )ll where tv
denotes the 1mage of t under the natural embeddlng T(K)—-) T(K) Let
Y= (y } . All the elements of Y are non-zero. We have

vES
1SiSp
v

d(Ng) = inf D> Z ¥

Y ves =1 !
Let feO ,\W. For weS’ set x, :=1nl|t'll ‘Let X={x )wes' .

For each veS let z = ;n y =1nllc l! » where ¢ is the value of some of
v 1} vv v

the X, 's at tv. Using the assumption (H) we can find feO;, such that f and
¢, are as near (in v-adic metric) as we wish. We can say the same thing about
x, and Z, In being continuous.

Thus d(Ng) = inf \/—Z r z° =z inf I r x2 (we take in the right-hand sum

Y ves YV X  wes’
one w for each v}. To complete the proof of the assertion (i11), it remains to

use the inequality
/ z b d Z zb I“ .l

1=1 N i=1

X b
1=1 ’
valld for any positive b"s and any “x s , and remark that over each place veS

there is at most p places weS’.

To prove the assertion concerning the case of a totally real field we act
as in [R/Ts] and use Schinzel’s inequality [Schil:

= N2
,lell > 1+§ 5

valid for any x#1 such that llxll >1 for all weS’, M denoting the degree of the
extension L/Q. : ‘

To complete the proof of the theorem, it remalns to note that
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Y linif II"I = 2T llnif llul because of the product formula
wes’ wes’
0f II">1

*»
written for t‘eos, . m
3.3. Function field case

In this section w: ¥ — X denotei a Gaiois covering of degree p,
K=Fq(x). L=Fq(Y). S’sY(l’q), S=r(s’), Os,s(feL :  SuppfsS’}, Fs is the
corresponding lattice of S-units of T (see 2.3).

Arguing as in the previous section, i.e. using the assumption (H) and the
results of [Ts], we obtain the following estimates.

Iheorem.

(1) det F_ s h(T)

S
(11) Under the assumption (H)

e #Y (Fq)
aFy =& g vZdegr =&/ EHTS
s - » — q+l
VP feO,,\F_ vp
Remark. Maybe the above lower bounds for d are valid without the
assumption (H). Anyway this assumption is fulfilled in the examples below.

4. Particular cases
4.1. Tori of the norm type

In this section T denotes a torus of the norm type defined over a number
field K of degree m, i.e. T is the kernel of the norm map RL/KG.—" G_ (which
is the usual norm L‘———) K' if we consider the K-points), where L/K 1s an
arbitrary finite extension. We restrict ourselves to the case of cyclic
extenslons, where we can use the results of Voskresenskii and Shyr concerning
some class number problems for algebraic tori. Note that tori of the norm type

are anisotropic. Throughout this section we assume S=Sm.
4.1.1. Quadratic extensions

First, consider the simplest interesting case of a quadratic extenslon
L/K. In this case we have dim T = 1, the splitting group G is isomorphic to
1/21.

Let us make the estimates of the previous section more explicit. First of
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all we note that the rank of Ns equalé n:=#{veS: v splits in L} because rv=1
for such v’'s, and rv=0 otherwise [Sh2]. It is obvious that pu=1. The assump}:ion
(H) is fulfilled. In fact, for each veS splitting in L a generator y of T is
defined over K , ind we can view it as a generator x of (;')v. For teTK(S) we
can take f=x(t)eOs, with llfllfllxv(tlllv.

Furthermore, according to [V2], [Sh3], we have
h(L)R(L) 1-u
h(T)R(T) m.w.z *

where w:=[V(K):NUK(HL)l =1 or 2, and u:=#{veS: v is ramified in L}.

Now we use some rough estimates in order to obtaln the numerical values
of constants and see that our method leads to asymptotically good packings, -
Assume K totally real so that m=n. According to Theorem 3.2, we have
d(Ns) z vn In((1+¥5)/2). Further, as in [Ts], we can glve an upper bound for
h(L)R(L): h(L)R(L) « |DL|/1t2". D, denoting the discriminant of L. Letting n
tend to infinity we obtain an asymptotic inequality for the denominator
(IL},ch.XVI, §4): log h(K)R(K) / log \/TDK_I > 1, whence

A(NS) < ~log v nes2 - log 1n((1+v/5)/2) +(log(|DL|/v/ IDKl )/n = (u-1)/n.
Now, as in [Ts], let K run over an unramified tower of totally real
flelds beginning from Ko (so (logIDKI)/n is constant), and let L/K lie inside

the tower so that L/K is unramified and u=0. For such a family £ we finally
obtain: '

() g -log V' n®esz - log In((1+5)/2) + 3(1ogID, 1)/n,
[+}

(n0 denoting the degree of Ko). If, as in ([Ts], we use Martinet’s tower

beginning from K =0(VZ,V70035) with n =4, 1D, 1=2%3%5%7%23%29° [Ma], we get
[+]
A<11.78.

4.1.2. Cyclic extensions: K growing, L growing

We can consider an analogue of the above family taking an arbitrary
cyclic extension L/K of degree p instead of a quadratic extension. In this
case we have rv=p-1 if v splits in L, and rv=0 otherwise, so p=p~1, n=m(p-1),
and Theorem 3.2 gives for d(Ns) the same lower bound as above. Using the

results of [VZ], [Sh2] we can obtain an analogous upper bound for detN.. :
h(L)R(L) 1-u s
detN_, « p
S h(KIR(K) '

and construct asymptotically good families (whose parameters are worse than
those obtained for p=2),
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4.1.3. Cyclic extensions: K fixed, L growing

Let us try to go in another direction. Namely, we can flx K (for example,
K=0) and consider a -family arising from the tori of the norm type
corresponding to totally real cyclic extensions L/Q of degree p with p tending
to iInfinity. In this case we have S=Sw=(w}. n=rk(;‘)w=p-1, p=p-1=n, mw=1, and we
obtain the same bounds for d(Ns) and detdNg as above. Note that here L/Q is
ramified, and we cannot guarantee that this way leads to an asymptotically

good family.
4.2. Function field case

The constructions of the previous section have functional analogues. We
assume ¢ being prime to the degree of L/K 1in order to avold wild ramification.
Here we only consider a quadratic case.

Let X be a smooth projective curve over l-'q. and let m:Y— X be a
covering of degree 2. Denote by K=Fq(X) and L=Fq(Y) the corresponding flelds
of rational functions; as above, T will denote the K-torus of the norm type
corresponding to the extension L/K. Suppose S=X (l-‘q). and let I-'s be the lattice
of S-units of T (see 2.3, 3.3). Let us estimate the parameters of FS.

As in 4.1, n =} r, = #{veS: v splits in L} . As to h(T), we have an
vES
analogue of the results of Voskresenskli and Shyr (which were formulated for

tori over number fields): .
#J,(F ) 1-u

h(T) =—#j;’:-ﬁr.w.z ,
where u 1s the number of ramification (scheme) points of =, w=[F;:F;2]=2, and
Jx (resp. JY) is the Jacobian of X (resp. Y).
Arguing as in [Ts], consider a family of curves X of growing genus gx

# X(F)
such that ——é——g— > \’5-1 (this is the maximal possible value of such a limit
X
{v/D]l). Suppose that m is unramified, so that u=0, g, =2g,-1 (the Hurwitz
$ Y(F) Yoo
formula), hence TL e \/&-1. According to [R/Ts], we have an asymptotic
Y .
formula valid for both X and Y:

é—log #J(Fq) = log q + (Vg-1) log —‘3—1- .

As in 4.1.1, the assumption (H) is fulfilled. Since p=1, and #Y(Fq)=2#x(ﬁ-’q). L4
being unramified, we have the same lower bound as in [Ts]:

2 #X(Fq)
d(FS) z / g
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which ylelds the same asymptotic inequality as in [R/Ts]:

A(2L) < - log Vme + log Vq:i + Ya log q
q ‘,a'l

For g=9 we obtain, as in [Ts], the best estimate: A < 1.87 .
5. Congruence sublattices

In this section we generalize our construction Imitating [Ts], §6. We
only consider the function field case where the parameters are better.

S.1. Construction and parameters

Let D =} aJPJ be a positive divisor on X such that Supp D n S = g, and
denote by a = T ajmj its degree, mj denoting the degree of P 5 Denote by P the
set of Pj's. Consider a subgroup

TK,D(S):g{tETK(S): xv"(tv)ﬁl (mod D”ve? .
1358 Srv
and denote by FDS its image in R" under 'I‘S (see 2.3). Let us estimate the
parameters of FDS .
Denote by D’ the inverse image (D), and let a’ be the degree of D’.
Theorem.

h(T) a b}
(1) det FDg = v 9 Ijlrj(l—q ),

where w(T)=#W(T).
(11) Under the assumption (H),
d(FDs) z pv2a'/p

Proof.

(1) As in [Ts], we estimate the index of FDS in Fs and use Theorenm

3.3(i). Consider an embedding TK(S) — T TK(PJ) , Wwhere

~e - -
TK(PJ) = { teTP: x(t)eOP for all xeTP 1 0; denoting the group of units
3 3 ] ]

in the completion of the local ring at I’J . Let

a e a
on,a) = { xeon; x=1 (mod P J) }, and let

TK(Pj.aJ) = { teTK(PJ): x(t)EE)PJ,aJ for all xef'Pj}. We have
T S) =

K,D( ) TK(S) n IITK(PJ,aJ). a 2 (a.-1)
. . 3_ 3

and [TK(S)'TK,D(SH = [0 TK(PJ)'TK(Pj'aj)) s Hrj((q 1)q ).
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Since Kerws = W(T) , we have [TK(S):TK,D
required inequality.
(i1) As in Theorem 3.3 (i1) , we have

(s)] = w(T) [FS:FDs]. whence the

\/;_ degf ,

a(Fng) =t ynf
vp fre0_, o \F
where Os, D= {feO .3 fml(modD’)}. (In fact. using the weak approximation

theorem, we may add a finite number of restrictions in order to obtain

fe0 S' D") To conclude, remark that degf = deg(f-1) = degDl’ = a’
=

5.2. Particular case

Now, as in 4.2, consider the torus of the norm type corresponding to a
quadratic extension L/K , where K=Fq(X) , L=fq(Y), wm Y— X E atic):verinﬁ_zf
degree 2. Here we have rJ=1. w(T)=(0), w(T)=1, p=1, W(T) = w}—t—@i}—.w.z ,
where u 1is the m.ﬁnber of ramification points of =n. :

Suppose S=X(Fq). and take X and Y as in 4.2. We have a‘=pa, m being
unramified. As in [Ts], let us choose D in such a way that

—:—;—g@gy —_ 5 .lln e Then we obtain the same asymptotic 1nequality as in
q
[Ts]:

A(L) < - log V72 + %log(ln q) + Yq log q ~ log(qg-1).
q-1
For q=472 we obtain the same constant as in [Ts]l: A < 1.389 .

6. Remarks and questions

6.1. It seems quite natural to interpret the quotient TEY as the

number of Fq-—points on the Prymian of m (this remark is due to A.A.‘;Clyachko).
It is interesting whether we can ameliorate the estimates for deth exploiting
geometric properties of Prymians, for 1instance, their distinction from
Jacobians.

6.2. One can try to consider some tori T other than those of the norm
type. The problem consists in estimating h(T)R(T). There exists an analogue of
the analytic class number formula {Sh2]:

h(TIR(T)=c (T p(TW(TIWDBIT) ,
where T(T) is the Tamagawa number [02], [V1]; w(T)=#W(T), p(T) 1is the residue
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of the L-function L(T,s) at s=1 [V1], {sh2], and D(T) 1is the
*quasi-discriminant” (roughly speaking, VD(T) is the factor distinguishing the
two measures on TA: the Tamagawa measure and the product of natural local

r
measures - the archimedean measures dtv/tv on (R:) Y and the canonical

r

discrete measures on Z © ; see [Sh2] for more detalils). Is it possible to use

the above relation to obtain better estimates?

6.3. Another way to strengthen the estimates for A is to ameliorate the
lower bounds for d. The estimates gliven here do not reflect the arithmetic
propertles of T. It may be possible to obtain better estimates studying a
function of the "height" type like the following one.

Let X={x .} be .a collection of bases of (T)

v,1 vES v
1SiSr

—rank(T) v’ and W(T): "T(K)nT

(recall that

. Let us define

r
v

htx(T): =ters(%?{w(r) )3 1§1 Ilnllxv’ 1

How can one obtain lower bounds for ht.x(T) ? Is it possible to use here a
general theory of heights on commutative group schemes [D]1?

(t ) |
vilv

6.4. One can consider other lattices corresponding to an algebraic torus
T. For example, let O be the ring of integers in K, and let J denote the Néron
model of T over O. Denote by J° its connected component, and let 01 be the
ring of S-integers in K. We can study the lattice 3°(01) which has a finite
index in the lattice of S-units of T [Schn]l. In the case S={veK dividing p} ,
p being z: prime integer, there exists a non-degenerate pairing between 7°(01)
and K] S(T)v » whose determinant enters in the expression for the value of
L-function of T at s=0; see [Schn] for more details.

6.5. In general, if L/K is a Galois extension with the group G, and M is a
G-module of arithmetical interest related to L, we can consider a group
Homc(;',l‘l). ;‘ being the character module of a K-torus T split by L; if M=02 is
the group of units of L, we obtain the group of units of T [K].

6.6. The authors of [B/M] introduce another characteristic of the density

of a lattice. If we denote 7(Ln) = 4(1&(Lu)/1,'“)z’n (Vn denoting the volume of

= Voll )y(L°) ,
n n

= Vd(Ln)d(L:). We can introduce

the unit sphere in R"), set ¢’ ) L: denoting the dual

lattice. It is obvious that 3’ (Ln)
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’ n/2
1 7 (Ln) 4
A’(Ln) = - = log

o and pose the problem: to construct

211

famllies £ with A’ (£) := 111,1‘\_1)‘%{ A’ (Ln)<en. We have an obvious asymptotic
equality A’(£) = - log Vre/Z + log vn - (log a(L )+log d(L:))/Z. Is it
possible to choose among the families of lattices of S-units of tori one with

A (2£)<w ? Surely it is, If there exists such a famlly with LnuL: .
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A FUNCTION FIELD RELATED TO THE REE GROUP

Jens Peter Pedersent

Abstract

We construct an algebraic function field over a finite field of characteristic
3, which has the Ree group as automorphism group. In this way, we obtain an
explicit construction of the Ree group. We also prove, that the function field has
as many rational places as possible, and that the number for certain extensions of
the ground field reaches the Hasse-Weil bound.

Keywords: algebraic function fields, Ree groups, Hasse-Weil bound.

1. Introduction

Lef F be an algebraic function field of one variable over an algebraically closed field
K. (see e.g. Chevalley [3]). F has characteristic p and genus g > 2. Let G = Aut(F/K)
der.xote !;he group of automorphisms of F fixing K. For p = O,-i{urwitz [8] proved that
Gis I.imte and satiesfies |G| < 84(g — 1). For p > 0, the finiteness of G was proved by
Schm.u% [15], who also noted that the bound above didn’t apply in this case.

Stxcl:}tenoth [19] proved that |G| is bounded by |G| < 164*, except in the case where
the function field is Hermitian. Henn [7] improved the bound to |G| < 8¢® by excluding
three more cases, and in a footnote he claims that the latter bound can be strengthened
to [G| < 3(29)°/? by excluding another two cases. However, in [6] Hansen presented
an 1rreduci.ble algebraic curve (and thereby a function field) for which |G| > 3(2¢)%/?
without being on the list of excluded cases. This curve is a Deligne-Lusztig \;_ariety [4]
LIDIA, geﬁngdcftzrf = %;= gR = %qo(q~1)3(q+qo+1), where g = 32°+1, ¢y = 3°, s € N:

= 2Gy(q), a oup o —1)(¢3 i

brstional pOiqnt,s' group of order ¢*(q¢ — 1)(¢® + 1), [14]. This curve has ¢% + 1

Our aim is to construct explicitly a function field Fg over F, wi
above. This is done in Section II, where we also write dlf)wn all :hel:?lt?;cﬁ'?}?gxztsegi
Fg/F, and prove that they form a Ree group. Furthermore, we briefly discuss how Fp
can be seen as the function field of a curve. It should be noted, that even though we
obtax.n a function field with the desired parameters and automorphism group, it still
remains to be shown, that it is unique and/or corresponds to a Deligne—Lusztig’va.riety.
. In [6], Hansen extracted from [4] a family of Deligne-Lusztig varieties in the follow-
ing way. A connected reductive algebraic group gives rise to a Deligne-Lusztig variety X

’ g ?
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with a group G of automorphisms. (see e.g. Gorenstein [5] and Carter [2] for a descrip-

tion of algebraic groups and the associated notation). The variety & is an irreducible

algebraic curve and G is simple, if and only if

(i) G is the projective special unitary group 2 Ay(q?), ¢ is a prime power. In this case
X has a function field with genus gy = ;q(g — 1). Over the algebraic closure
F2, the function field is unique up to isomorphism to the Hermitian function field
Fy =Fp(z,y) defined by y? +y = z7+1, see Segre [16] and Stichtenoth [20].

(i) G is the Suzuki group ?Bs(q), ¢ = 925+1 5 ¢ N. In this case X has a function field
with genus gs = qo(q — 1), g = 2°. Over the algebraic closure Fy, the function
field is unique up to isomorphism to the function field Fs = Fy(z,y) defined by
y? +y = 2% (29 + z), see Henn [7].

(iii) G is the Ree group 2Gy(q), ¢ = 3*°*!, s € N. In this case & has a function field
defined over F; with genus gr = S0(¢—1)g+q + 1), g0 = 3°.

It is well- known, that Fiy/F,: has the maximal number of Fj2-rational places for a
function field of genus gy w.r.t. the Hasse-Weil bound. Serre (cf. [17], [18]) proved that
the function fields of case (ii) and (iii) have the maximal number of F,-rational places for
function fields of their genus. In Section III, we exhibit the Zeta functions of Fs and Fpg,
and we obtain that the number of rational places in these functions fields in fact satisfies
the Hasse-Weil bound for certain extensions of their ground field. So even though the
connection between Fg and case (iii) is not established, we can conclude, that all three
function fields corresponding to irreducible Deligne-Lusztig curves with automorphism
groups which are simple, reaches the Hasse-Weil bound for suitable extensions of their
ground fields.

II. The function fleld Fg and its automorphisms

In [12] it was shown, that the equation y? —y = 2% (z? — z) yields a function field
F,(z,y) with [Fe(z,y) : Fy(z)] = ¢ for any prime power ¢ and g3 |¢, 0 < ¢ < /2.

The construction of these function fields were inspired by the construction of Fs, and
motivates the following definition of Fg.

Definition 1: Let ¢ = 32**1,s € N, and ¢o = 3°. Define the function field Fp =
Fq(z,yhy?) by :
yi — oy =2"(e* —2) 1)
3 —ye ==y —w1) 2

From now on we always consider Fg as an extension of F,(z). Let Qo be the
place at infinity of F,(z) and let Po be a place of Fgr lying above Qoo. We denote the
discrete valuation at Peo by Voo and the ramification index of Poo W.r.t. Qoo by €. In
Appendix A, we have constructed some functions of Fr and computed their valuations
at P.,. These functions will be used throughout the paper. z
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Theorem 1:

(i) eoo = g* and Py, is the only place of Fy lying abov .

(i) Fg has ¢® + 1 F,-rational :l:ces. 1 lying " Qe
(iii) Fr has genus gr = 390(q — 1)(g+ g0 +1).
Proof: (i) From Appendix A we have voo(ws) = —(1+ -}o— + % + -q—:—q- + ;1-;)600, implying
€x = eg?, e € N. On the other hand e, < [Fg : F,(z)] < ¢*, and we conclude e, = ¢2.
Consequently, P, is the only place of Fg lying above Q.
(i1) From (i) we have, that P, is a Fg-rational place. Let Qg,8 € Fy, be a F -rational
place f)f F¢(z) outside infinity. Then there are ¢*> F,-rational places Pﬂ.,g,'y,g €F,, of
FR lying above Qg. (Ps,s denotes the place corresponding to the solution z = B ;1, =
Ty = 6 of (1) and (2)). Hence, F has ¢® + 1 Fy-rational places. ’
(iii) Ps is the only place of Fg which ramifies w.r.t. F,(z), and we have

) T 2 dﬂ:—l
29n—2=~2 +”°°(du ’ @)

whefe 4 € FR is a prime element of Po,. From Appendix A we get, that u = wg Jws is
a prime element. It is straightforward to compute that

dz~t wd
du x2(wsw:;qo _ wiqows)
and
dz™?
"oo( du )=39042+3q2—q—-3qo-—2. 4)

Substituting (4) into (3) proves (iii). ¢

.FR is the .function field of a curve X'g. The obvious thing to do is to try to embed
X in the projective space P3. Let

fi=2%(Yf - Y1Z"‘) — X(X9 - X791 )
fo=2%(Y] ~Y,297) - XY -Y;12971).
fi and f; gives us Fy, if we divide them by Z9+
R y 2979 and put ¢ = X/Z, y; = Yi/Z
and y; = Y2/Z. However, fi and f, define a reducible curve ¥ r. It is easy to sc/ae
that Xp = Xg U L, where L is a line defined by hy = X% and hy = Z%. In ordex"

to get t}.ze equations for Xp C P‘;, we have to apply linkage theory. (see e.g. Peskine
and Szpiro [13]). We get that Xg is a non-complete intersection defined by fi, f» and

an a2
fa =det where
azy az )’

fi=anh +azhy = (X9 - XZ9 Yy + (Y] - Y1297 )hy,
fr=anh +aphy =Y -¥129 ), + (Y7 = Y2297 1)h,.

Hence,
fo=(Y =NZ971 ) — (X9 - XZ971) (Y] - ¥, 2971),
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and we observe, that the place Po corresponds to the solution X = Z =YY =0and
Y; = 1 of fy = fo = fa = 0. Equivalently, Xr can be seen as the (2 x 2)-minors of the

matrix

Xo (-%Z) (%)

zo —(X1-X27) ~(¥i-Yiz )
It should be noted, that this model of Xg is singular. This can be seen in the following
way. The curve is non-singular outside infinity (Z=0). At infinity, the point Py is
singular, since the ideal (f1,f2,f3) corresponding to the curve, is contained in m?,,
where m, is the maximal ideal of the local ring of Peo.

Naturally, Xz has a plane model. It turns out to be easy to determine an equation

for a plane model. Consider the function w; = zdP — 3% which satisfy w§ — wp =
y39 (29 — ). (see Appendix A). By using this equation and (1), we obtain

flovws) = wf] — (14 (2 — 27 o + (o — &)y — 29(at - )70 =0.

Define the function field Fi = Fy(z,w2) by f(z,wz) = 0. Then F is isomorphic to Fq
under the isomorphism

T — T
w—wy | 90
gl o (BE2)" a6 -9)

oo (522)" - o)t
Hence, the curve defined by Z€9+33+1) f(X/Z W, /Z) is a plane model of Xg.

Now, we will determine the automorphism group Gr = Aut(Fr /Fy). It turns out
that Gr = Aut(Fg/F,), i.. all the automorphisms are F,-rational. Ggr acts as a
permutation group on the set of places Pr, in Fr/F,. Let P, (F,) C Py denote the
set of places which are Fy-rational in Fg/F,.

Theorem 2: Gg is the Ree group 2Gs(q), |Grl = ¢®(g — 1)(¢® +1).
In order to prove Theorem 2, we need the following notation and lemmas. Let T be

a nonempty subset of Pr,. We denote by Ggr(T') the stabilizer of T, i.e. the subgroup
of Gp fixing T

Lemma 3: Gg(Po) = {taps |a € F}, B,7,6 € Fy}, where

z w—az+f
Paprs:q w1 a®tly +afPz +y .
Yy a?totly, atotl gty 4 af?®z +§

Proof: Let 1 € Gr(Px). Then ¢ maps L(kPo) bijectively to L(kPw). We are
interested in the case where k = (¢ + 2¢o). Obviously, 1,z,v1,¥2 € L(g(g + 290)Pw),
since these functions have poles only at Po, and 0 = —veo(1) < =Voo %) < —Veo(¥1) <
—veo(y2) = q(q + 2¢0). (Appendix A and Theorem 1 (i)). Furthermore, by a result of
Lewittes [10, Th. 1.b] we get that z € L(kPo) \ Fq = —voo(2) > ¢*. Hence, a basis for
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L(q(q + 290)Poo) is 1,Z,21,15+++y21,my 1 ¥1,22,05- -+ 22,mz, Y2, Where the elements have
strictly increasing pole order at Po,. Now, we have that 1 is of the form

T az+f, aefz,ﬂei‘—q
Y-+ a+lzty, A EF;,Ag,y eF, ,
ngA3y2+23+z\4y1 + 22 + A5z + 6, AaEF_;,A4,A5,5E_F_q

where 2), 2, are linear combinations of 21 1,...,21,m,, and z3 of 221,...,22 m,. From
(1) and (2) we have that ¢ has to satisfy

P() — $(u) = $(@)°(¥(2)? - ¥(2)),
$(y2)? — $(ye) = (=) ($(31)* — ¥(w)),

and from these equations, it is easy to conclude that 1 must be as in the Lemma. ¢

Lemma 4: Let Syz, 5, = {‘l/)ap-,a(P,\o,\l)‘,)‘t/)apw € GR(POO)} be the Gp(Poo)-orbit of
PA,,,\I,\2 € PFR \ {POO}. Then S,\a,\lx2 == PFR(Fq) \ {Pco} if PAo»\v\z € PFR(FQ), and
[Sxorixal = €3(g = 1) if Paoasns € Pra(Fy).

Proof: From Lemma 3, it is easy to see, that Gr(Pe) acts transitively on Pp,(Fy) \
{Pw}, proving the first statement of the Lemma.

Suppose Piax, € Pro(F,), implying that Xo, M, de € Fy \ Fo. If [Saan,l <
¢3(g — 1), then there exits distinct automorphisms ¥a, 8, 1,6 Yazfzy26:s € Gr(Poo) s:t.
Yay 17161 (Prorirs) = Yazfavesz(Prorra,)- It is easy to see, that this is impossible. ¢

Proof of Theorem 2: First we determine the group Gr C Gg acting on Pr,(F,).
Cleatly, Gr(Po) C Gr. Now, consider the mapping
z > wsfws
¢:8 ;i wpfws,
Y2 > wgfws

where the functions involved are defined in Appendix A. It can be checked, that

$(y1)! — (1) = ¢(z)*(é(z)? - ¢(2)),

$(y2)! — $(12) = ()" (8(11)? — d(11)),
implying that~¢ is an automorphism. ¢! = ¢ and ¢ acts on P, (F,) mapping Py to
Pooo. Hence, G acts transitively on P, (F,), and we have that |Gr| = ¢*(g—1)(g®+1).
Suppose G is not the full automorphism group. Then G is a proper subgroup of Gg

and there exists an automorphism mapping P to a place outside P g, (F;). Therefore,
G r must act trausitively on a finite set of places

S=PF3(FQ)USIU"'USm, m >0,

where S1,...,Sn are distinct Gp(Ps)-orbits outside Pr.(F,). Hence, |Gr| = |S!-
|Gr(Pso)l, and by Lemma 3 and 4 we get e

|Grl = [mg* (g~ 1) + ¢* +1)P(g - 1).
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On the other hand, |Gg| has to divide |G|, implying that 1(¢® +1) divides'm. There-
fore,
Gl 2 [5(¢® + 1)¢* (@ — 1) +¢* +11¢° (¢ — 1) > 16g,

contradicting the bound of Stichtenoth [19], and we conclude Gg = Gr.

Now, we have to prove that G is a Ree group. First of all, we note that Gg acts
2-transitively on P, (F,). Secondly, we observe, that the stabilizer of P, and Pooo,
Gr(Pso, Pooo) = {%ao00 | € F;}, has a unique nontrivial element ¥_1g00 fixing more
than two places. Then, by a result of Kantor, O’Nan and Seitz [9, Th. 2.3}, we have
that Gr is of Ree type. Since the only groups of Ree type are 2Ga(g), ¢ = 325+ we
are finished. (Bombieri [5]). ¢

II1. The number of places in Fg .

Let F be a function field of genus ¢ defined over a finite field Fy, and let Ny,
denote the number of places of degree one in F/Fgm. The number Ny, is bounded by
the Hasse-Weil bound : .

Np < ¢™ +142g9V/¢™.
If equality holds in the Hasse-Weil bound, F/Fym is said to be a maximal function field.

Theorem 5:
(i) Fr has the mazimal number of F,-rational places possible for a function field of

genus gg.
(ii) The Zeta function of Fg is

(1 + 3got + gt?)9le’ -1)(1 4 gt?)90(a—1Xa+3g0+1)/2
(1 -t)(1—qt)

(iii) The number of places of degree one in Fg[Fym is ’
N =q™ +1 - 0v/a(g ~ 1)l(¢ + 3q0 + 1) cos m/2 + 2(q + 1) cos S /6}.
In particularly, Fg/Fm is @ mazimal function field if and only if m =6 mod 12.
Proof: (i) follows from [17], [18]. From [11], we get that
= (1— ayt)(1 - &51)
-tH1-g¢)

Z(Fr,Fy)(t) =

Z(Fg,F,)(t) =

where

a; € {i\/—éei"/z’ \/ae:l:iS'lr/G} ? .7 = 1,- <+s9R-

Let a be the number of j’s for which a; = :i:\/zjeis"/ 6 and b the number of j’s for which
aj = £,/ge'™/?. Then we have

(1 + 3got + ¢t*)°(1 + gt?)®
1-t)(1—qt)

Z(Fr,Fg)(t) = )
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It is well-known, that Ny, = ¢™ + 1 — 35, (eT + &), and we obtain
Np =q™ +1 - 2/g™(acosmbr /6 + bcosmn/2). (6)

Combmmg Theorem 1 (ii) and (6) yields Ny = @3 +1 = ¢ +1+3ga, i.e. a =qo(g* —1),
and since a + b = gp we get b= $qo(g — 1)(¢ + 3¢o +1). Substituting a and b into (5)
and (6) proves (ii) and (iii), respectlvely ¢

Computations, similar to those in the proof of Theorem 7, can be carried out for
the function field Fs = Fy(z,y), ¢ =2¥*, g =2*, y? —y = :c""(a:" — ), associated
with the Suzuki group. In this case we get
(1 + 2ot + gt? )qo(q—l)

a-tl-qt)

and that Fs/Fgm is a maximal function field if and only if m =4 mod 8.

Z(Fs,F)(t) =
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Appendix A: Some functions of Fg and their valuations at Py,

By definition we have v,,(z) = —ey. Furthermore,

W—wn=2902"-2) = veoln)=-(1+ g}l—o-)eoo, (A1)
- =20 -n) = ve(e)=-1+3%)e (A2)
From (A1) and (A2), we define
wy = g5t y?qo
W =ty = ve(wn) = —(1+ Deo
w{ —w = *P(z? 1) (A3)
and
we = zyf“ - ygqo
wd =zPy —yp = Veolwz)=—(1 + =+ )ew
w§ — wy = 4}% (27 - 7). (A4)

From (A1), (A2) and (A3) we get

w] —wy =2%(y§ — y2), (A5)
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and we define
w3y = zygq" - w:liqo
wl =%y, —wy => veo(ws)=—(1+ 31; + %)em
w§ — wy = y3°°(a? - z).
From (A3) and (A4) we get

B0 (wf — wy) = 22 (w§ — we),

and we define
wg = Twi® — ywi’
wgqo = 0w, — yaq°w1 = Voo(ws) =—(1+ 35 390 + %)ew
wi —wy = wi’(z? —z) —w (v —n)-

From (A3) and (A6) we get
4B (uf — 1) = 5§ — ),
and we define
v=zwi — ygw1
0390 = 13q°w3 - y2 ‘wy = Voo(‘v) = “(1 + + l‘)eoo

v — v = wi’(z? - z) — wi’(y§ — ).

From (A4) and (A8) we get

3 3 »
y qﬂ(,“,q w: ) — quo("’q 1w )’
a.nd we deﬁne

ws =y wi’ — yzwq"
Wi =y} Cws —1}Pwy = veolws)=—(1+ 45 +5+
wi —ws = w3 (yf —w)— w3 (y3 — v2)-
From (A4), (A8) and (A10) we get
v? — v = wi —wp — 2% (W] —wy),

and we define

we = VO

WP =v—wy £ 2PwWy = veolws)=—(1+ 5 +2 +;;;

_ wgqo + :szqo

wd — wg = w3 (z? ~ z).

3909

(A6)

(AT)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)
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Since wg = y§ — zy2, combining (A4), (A6) and (A14) yields

q e 9,390 (0 3
wg — we = Y; (w§ — wy) — 2P (wi — w3), (A15)
and we define
wr = ywg® — Twi® — wg“
3g0 340 3
w — - q0 — — 2 1
7 Y we—Pwy —wsg = y(wr)=—(1+ et t 3ql°q Yeoo

wf = wr = w4} — 1) — wf*(a*  z). (A16)
From (A12) and (A16) we get

wg — ws = ~z9(w§ — wy), (A17)

and we define

3
ws = w3% + zws™®

do __
wg’ =ws +2Pwr = veo(ws) =—(1+ 5+ 2+ L+ Bew

w§ — ws = w®(z? - z). (A18)

From (A4) and (A14) we get

3
Y (w§ — we) = Wi (w§ — wy), (A19)
and we define
I —
w3 = 370 _ 3% — 1 2 1
9 2Wy Y, ws = Voo(wB)——(1+E+;+;;_q;'q‘)eoo
q —
- wy — wy = w3’ (wf — ws) — wf*(yf —y1). (A20)

From (A6) and (A14) we get

B (wg - we) = Wi (w§ —ws), (A21)

and we define

w10 = Yowp’ — wi'wy

3g0 __ 3¢0 3g0 :
wig’ = Yo ws — waw} =  veo(wio) = —(1+ ;1; + % + :T;;;)eoc

wiy — wio = wl(y§ — y2) — wd° (w] — wy). (A22)

References

1. E. Bombieri, Th?n.zpson’.s Problem (o* = 3), Inv. Math. 58, p. 77-100 (1980).

2. R.W. Carter, ““ante Gr.oups of Lie type”, John Wiley & Sons Ltd., (1985).

3. C. Chevalley, “Introduction to the Theory of Algebraic Functions of One Variable”,
A.M.S., Providence, RI (1951).

131

4. P. Deligne and G. Lusztig, Representations of Reductive Groups over Finite Fields,
Ann. Math. 103, p. 103-161 (1976).
D. Gorenstein, “Finite Simple Groups”, Plenum Press, New York (1982).
. J.P. Hansen, Deligne-Lusztig Varieties and Group Codes, to appear in these pro-
ceedings. _
7. H.-W. Henn, Funktionenkirper mit grofler Automorphismengruppe, J. Reine Angew.
Math. 172, p. 96-115 (1978).
8. A. Hurwitz, Uber algebraische Gebilde mit eindeutigen Transformationen in sich,
Math. Ann. 41, p. 403442 (1893).
9. W.M. Kantor, M.E. O’Nan and G.M. Seitz, 2- Transitive Groups in which the Sta-
bilizer of Two Points is Cyclic, J. Alg. 21, p. 17-50 (1972).
10. J. Lewittes, Places of Degree One in Function Fields over Finite Fields, J. Pure
App. Alg. 69, p. 177-183 (1990).
11. G. Lusztig, Cozeter Orbits and Eigenspaces of Frobenius, Invent. Math. 38, p.
101-159 (1976). .
12. J.P. Pedersen and A.B. Sgrensen, Codes from certain Algebraic Function Fields
with many Rational Places, Mat-Report 1990-11, Tech. Uni. Denmark.
13. C. Peskine and L. Szpiro, Liaison des Variétés Algébriques I, Inv. Math. 26, p.
271302 (1974).
14. R. Ree, A Family of Simple Groups associated with the Simple Lie Algebra of Type
(G2), Am. J. Math. 83, p. 432-462 (1961).
15. H.L. Schmid, Uber die Automorphismen eines algebraischen Funktionenkorpers von
Primzahlcharacteristik, J. Reine Angew. Math. 179, p. 5-15 (1938).
16. B. Segre, Forme ¢ Geometrie Hermitiane, con particolare riguardo al Caso Finito,
Ann. Mat. Pura Appl. 70, p. 1-201.
17. J.-P. Serre, Sur le Nombre des Poinis Rationnels d’une Courbe Algébrique sur un
Corps Fini, C. R. Acad. Sci. Paris Sér. I Math. 296, p. 397-402 (1983).
18. J.-P. Serre, Algébre et Géométirie, Ann. College de France 1983-1984, p. 79-84.
18. H. Stichtenoth, Uber die Automorphismengruppe eines algebraischen Funktionen-
korpers von Primzahlcharacteristik, Teil I: Eine Abschdtzung der Ordnung der Au-
tomorphismengruppe, Archiv Math. 24, p. 527-544 (1973).
20. H. Stichtenoth, Uber die Automorphismengruppe eines algebraischen Funktionen-
kérpers von Primzahlcharacteristik, Teil II: Ein spezieller Typ von Funktionenkor-
pern, Archiv Math. 24, p. 615-631 (1973).

o o



On the gonality of curves, abundant codes and
decoding

Ruud Pellikaan *

1 Introduction

Let X be a curve defined over the finite field F, with ¢ elements. The genus of & is
denoted by g(X’), or more often by g. Let P,..., P, be n distinct rational points on
the curve X. Let D be the divisor P, + ...+ P,. Let G be a divisor on X of degree
m. The code Cp(D,G) is defined as the image of L(G) in Fy, under the evaluation
map fr— (f(P1)y..., f(Pa)). Goppa [5] showed that the functional code C(D,G) has
dimension at least m + 1 — g and minimum distance at least n — m in case m < n. If
moreover m > 2g — 2, then the dimension is equal to m + 1 — g. We call n — m the
Goppa designed minimum distance of C(D, G), and denote it by dg. Tsfasman, V1idut,
Zink and Ihara showed that modular curves have many rational points with respect to
the genus, if ¢ is a square, that is to say N ~ (/g — 1)g, see [21, 4.1.52]. In case ¢ > 49
the Tsfasman-V18dut-Zink bound Revz gives an improvement of the Gilbert-Varshamov
bound Rgv, see [21, 3.4.4]. In the corners, where the graphs of Rpyz and Rgy meet,
Viiduy made a slight improvement, moreover he showed that there are codes, comming
from curves, with parameters lying on the maximum of the above mentioned bounds, see
[21, 3.4.11]. Later Pellikaan, Shen and van Wee [14] proved that every linear code can
be represented with a curve, but if one imposes the condition m < n, then long binary
algebraic-geometric codes have information rate at most }. So the question of finding
good codes can be restated in the question: Which divisors give good codes ?

_ There are two ways to improve the bounds Goppa gave. In the first place by taking
divisors such that the dimension is bigger than m + 1 — g. These are so called special
divisors. If the field of constants is algebraically closed and g — k(g ~m +k—1) 2 0,
then there exists a divisor of degree m and dimension at least k , by Brill-Noether theory.
But this is no longer true over a finite field. The second possibility, which we will pursue
in this paper, is to try to improve the bound on the minimum distance.

In section 2 we show that the minimum distance is at least t(X) — a for an abundant
divisor of abundance a, that is for a divisor which is equivalent to D + A, where A is
an effective divisor of degree a. The number t(X) is the minimal degree of a map from
the curve to the projective line, also called the gonality of the curve. This was proved
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by Goppa [5, section 10] in the case a = 0, he called such codes canonical. It is easily
seen that t(X) > N/(q + 1), where N is the number of rational points of the curve X' In
section 3 we show that abundant codes give asymptotically good codes for small relative
minimum distance, better than the TVZ-bound, but still worse than the GV-bound. We
discuss upper bounds of the gonality in section 4, using upper bounds for the parameters
of codes. We will give an application to the error correcting capacity of some codes in
section 5. We use the book of Tsfasman and Viidut [21] as a reference, but our. notation
is different. We denote the functional code (X, D, G)g by Ci(D, G), and the residue code
(X’-D’G)ﬂ by Cﬂ(Da G) : ‘

2 Abundant codes

In this section we show that divisors equivalent with D + A, so called abundant divisors,
give an improvement on the bound of Goppa on the minimum distance. As a preparation
we define the gonality of a curve and proof some simple properties. At the end’ we give
some examples with the Hermitian curve and weighted Reed-Muller codes.

Definition 2.1 The gonality of a curve X over a field F is the smallest degree of a
non-constant map, defined over the field F, from X to the projective line. We denote the
gonality of X by t(X), or shortly by ¢. '

Lemma 2.2 If E is a divisor of degree smaller than ¥ X), then I(E) < 1.

Proof If I(E) > 1, then there exists a non-constant rational function f such that
(f) = —E, 50 (f)eo < E. One can consider f as a non-constant map, defined over the
field of constants, from X to the projective line. The degree of this map is equal to
deg((f)e), Which is at most deg(E), and smaller than t{X), by assumption. This gives a
contradiction with the definition of the gonality of X. O

Corollary 2.3 t<g+1.

Proof Over a finite field there exists a divisor of degree g + 1, see [11, Theorem 3.2],
and such a divisor has dimension at least 2, by the Riemann-Roch Theorem. .Now the
claim follows from Lemma 2.2. O

Corollary 2.4 If X has a rational point and deg(E) 2> t —1, then I(E) < deg(E}+2—1t.

Proof Let P be a rational point of X. Let b = deg(£) — ¢t + 1. Then b > 0, since
deg(E) > t—1. Let F = E —bP. If I(E) > deg(E) +2 —t, then I(F) > I(E) - b > L.
But deg(F) =t — 1, which contradicts Lemma 2.2. O

Remark 2.5 The gonality is one if and only if X is isomorphic with the projective line.
The gonality of a curve is two if and only if the curve is elliptic or hyperelliptic.

For a plane curve of degree m with a rational point P one can project the curve with
center P to a line outside this point. In this way we get a map from the curve to the
projective line of degree at most m — 1, so the gonality is at most m — 1. In fact the
gonality is equal to m — 1, which follows from Namba [12] in characteristic zero, and
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Homma [6] in general. Coppens (2] considered the gonality of plane curves with nodes.
If the field of constants is algebraically closed, then t(X) < |(g + 3)/2], by Brill-Noether
theory, and equality holds for a general curve. The above inequality is not true over a finite
field, as the following example shows. Consider a smooth plane curve of degree four over
a finite field without rational points. Such curves exist. Take for example the curve with
equation X*4Y*4Z* = 0 over Fs. The fourth power of an element in Fy is either zero or
one, so z* +y* + z* is equal to 0,1,2 or 3 whenever 3,2,1 or 0, respectively, out of the three
elements z,y, z € Fy are zero. Thus this curve has no Fy-rational points. Another example
is the curve with equation X*+Y*+244+Y2 22+ X2 2+ XY+ XY Z+ XY3*Z + XY Z2?
over F;. If there exists an effective special divisor of degree m and dimension k on a curve
of genus g, then there exists an effective special divisor of degree 29 —2—m and dimension
k —~m — 1+ g, by the Riemann-Roch Theorem. A smooth plane curve of degree 4 has
genus 3. If such a curve has no rational points, then its gonality is 4. Otherwise there
exists an effective divisor of degree 3 and dimension 2, so this divisor is special and by the
above remark there is an effective special divisor of degree one, thus there is a rational
point, which is a contradiction. Therefore the gonality of such curves is 4, which is greater
than |(g + 3)/2].

This example shows that the gonality can change if one extends the field of constants.
The above example also shows that the upperbound g+1 in Corollary 2.3 can be obtained
for curves of genus greater than 1. If a curve has gonality g+1 > 2, then it has no rational
points, it even has no effective divisors of degree g — 2. Otherwise, let A be an effective
divisor of degree g — 2, then there exists a canonical divisor X with support disjoint from
A. So l{(K — A) 2 I(I{) — deg(A) = 2, and deg(K — A) = g. Thus ¢ < g, by Lemma 2.2.
Thus a curve of gonality g +1 > 2 has no effective divisors of degree g — 2, and therefore
it has no rational points over an extension of degree g — 2. So g < 2log,(2g) + 1, by the
Hasse-Weil bound, thus g £ 10 and ¢ < 31.

In section 4 we will consider upper bounds for the gonality of curves over a finite field
using coding theory.

Remark 2.6 Over a finite field one has the following lower bound, which is proved and
used by Rosenbloon and Tsfasman (15, Lemma 1.1]. A similar reasoning can be found in
a paper of Lewittes [9], where it is proved that N < ga + 1, if a is non-gap of a rational
point. A third place where this reasoning can be found is in a paper of Lachaud and
Martin-Deschamps [8], where it is applied to all finite extensions of F, to get a relation
between the zeta function and the gonality of the curve.

Proposition 2.7 Let X be a curve defined over F,. Let N be the number of rational
points of X. Then {X) 2 N/(q +1).

Proof Let f be a non-constant map, defined over F,, of degree ¢ = t(X). Then the
rational points on X’ are mapped to the ¢ + 1 rational points on the projective line. The
map has degree ¢, so there are at most ¢ rational points on X above a rational point on
the projective line. So the number of rational points N on X is at most (g +1). O

Definition 2.8 A divisor with support disjoint from the support of D and which is
linear equivalent with D+ A for some effective divisor A is called abundant, and deg(4) is
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called the abundance of G. If G is an abundant divisor, then the code Cr(D,G) is called
abundant.

Remark 2.9 The name abundant refers to the fact that the degree of such divisors is
at least n, whereas in Goppa’'s bound one assumes m < n. In [14, Proposition 11} it is
proved that binary AG codes (i.e. binary codes of the form Cz(D,G) such that m < n)
of length longer than 13 have information rate smaller than 1/2.

Note that Cr(D,G) = Cq(D, K — A), for some canonical divisor K [18, Corollary 2.6]. So
abundant codes of abundance zero are also of the form Cq(D, K), where K is a canonical
divisor. These codes were called canonical by Goppa [5, section 10].

For every effective divisor A there exists a divisor G with support disjoint from the support
of D, which is equivalent with D + A, by the independance of valuations [1]. But it is not
true that for every divisor G of degree at least n there exists an effective divisor A such
that G is equivalent to D + A.

Lemma 2.10 Let G be equivalent with D+ A, for some eﬁ'ective divisor A. If there ezists
a non-zero code word in Cr(D,G) of wetght d, then I(P;, + ...+ P;, + A) > 1 for some
7 <...<1iq.

Proof Let ¢ be a non-zero codeword of weight d. After a permutation of Py,... F,, we
may assume that the first d coordinates of c are non-zero. So there exists an f € L(G)
such that f(P;) = ¢i. Thus (f) = —G and f(FP;) =0 for all i > d. Therefore (f) > -G+
Pip1 +.. .+ Py, since G has disjoint support with D. Let E = (f)+G = (Pay1 +. ..+ Pn).
Then E is effective and

E~G—(Py1+...4P)~D+A—(Pia+...+B)~Pi+...+ Pit+ A

If P; € supp(E) for some i < d, then ¢; = f(P;) = 0 for i < d , which is a contradiction.
Thus E and P, +. ..+ P;+ A are equivalent but not equal. Thus (P, +...+ Ps+A) > 1.
a

Theorem 2.11 Let X be a curve over ¥y with N rational points and of gonality t. If G,
is an abundant divisor of abundance a and a < t , then Cr(D, G) is an {n, k, d] code such
thatd>t—aandk>n+a—g. If moreovern+a>2g9—2, thenk=n+a—g.

Proof The special case a = 0 is treated by Goppa [5, section 10]. The statement about
the minimum distance follows directly from Lemma 2.10 and 2.2. The code Cr(D, G) is
the image under the evaluation map of the vector space L(G) and I(G) 2n+a+1~—g,
by the Riemann-Roch Theorem, and equality holds in case n + a > 2g — 2. The kernel of
this map is equal to L(G — D), which is isomorphic to L(A), since G is equivalent with
D 4 A. The dimension of L(A) is 1, by lemma 2.2, since ¢ < t. Thus the dimension of
the code is at least n + a — g, and equality holds in casen +a > 2¢g—2. O

Remark 2.12 If G is equivalent with D — A, for some effective divisor A, then the
minimum distance of C(D, G) is at least ¢, since Cr(D, G) is contained in Cr(D,G + A)
and the last one is abundant of abundance zero.

Definition 2.13 We cal] t the abundant designed minimum distance, and denote it by
dy.
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Example 2.14 A specific case of an abundant code is studied in [14, Proposition 15].
There it is shown that the binary (7,4,3] Hamming code is canonical, see also [11, 5.7.1].
The curve used is'a smooth plane curve of degree 4, hence of genus 3, which goes through

. all the 7 rational points of the projective plane. If we take for D the sum of these 7 points,
and for G a divisor equivalent with D, and disjoint support with D, we get a (7,4, > 3]
code, by Theorem 2.11, which must be the [7,4,3] Hamming code.

Example 2.15 The Hermitian plane curve with equation X™*! + Y+ 4 Z7+1 = 0 over
F,, where ¢ = r?, has r* + 1 rational points and genus r(r — 1)/2. So the gonality is
at least (r° +1)/(r? + 1), by Proposition 2.7, and at most r, since the curve is a plane
curve of degree r + 1, see Remark 2.5. Thus the gonality is equal to r. Fix any of the
rational points and call it Py, and let D be the sum of the remaining r2 rational points.
Let n = r* and G, = mP,. The code C,,, where Cp, = Cy(D,Gp) is extensively
studied. If m < n, then the Goppa designed minimum distance dg is equal to n — m. If
m < n and m is a multiple of r or m < n — g, then the true minimum distance of C,, is
equal to dg, see Stichtenoth [19, Theorem 4]. Yang and Kumar [24] and Xing [23] proved
that C,, has minimum distance at most n — m + ¢, in case m < n and m = rs 4 ¢ and
0 <t < r — 1. Furthermore the divisor r* P, is equivalent with D, see [20] or [19]. Thus
if m > n, then G,, is an abundant divisor of abundance m — n. Therefore Chia 18 an
[r*,r*+a—~r(r—1)/2,> r —a] code for all 0 < a < r, by Theorem 2.11. Every line
over F, either intersects the curve in exactly r + 1 different rational points or is tangent
to a rational point with multiplicity » + 1, i.e. the rational points of a Hermitian curve
form a 2 — (r®+ 1,7 + 1,1) design. If { is the tangent line to the curve at P, and m is
another line through P, containing the points P,,...P,, Py, then the rational function
m/l has divisor Py +...+ P, = rPo, s0 (P, +...+ P,) > 1. Thus the minimum distance
of C, is exactly r, by Lemma 2.10. Similarly there exists a rational function with divisor
Pi+...4+P._; + Py —~rP,, thus the minimum distance of Chry1 18 exactly » — 1. We also
get as a result that the codes C,, have at least minimum distance r, for all n—r < m < n,
by Remark 2.13. Yang and Kumar [24] and Xing [23] proved that in fact equality holds.

Definition 2.16
w <...<w. Let

V(w,m,l,q) = {fe Fc[Xh «oo, Xi)|degy (f) < m},

where degwX7* ... X' = ¥; w;e;, and degw(f) is the largest weighted degree of a mono-
mial in f with a non-zero coefficient. Let P;,..., P, be the ¢ rational points of the affine
space over F, of dimension /. Define WARM(w,m,l,q), the weighted affine Reed-Muller
code of weight w, order m and lenth ¢! over g, as follows

WARM(w,m,l,q) = {(f(P),..., f(P))f € V(w,m,1,q)}.

Remark 2.17 The definition of the weighted affine Reed-Muller code is due to Sgrensen
(17], who proved that the minimum distance is equal to (g=—c)g"*"?, where b = max{i|m >
(- 1)(w1 +... 4+ wi)}, and ¢ = max{s|m > (¢~ 1)(wy +...wp) + swy41}. This code
appears on the curve X(l,q) in [14]. This curve has ¢! + 1 rational points over F,, one of
them is called Py, and P,,..., P, are tpe remaining rational points. Let D = Py +...4 P,.
Then WARM(w,m,l,q) = Cy(D, mP,), see [17, Example 4.1].

Let w = (wy,...,w;) be an l-tuple of positive integers such that
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Proposition 2.18 Let w; = ¢~ (q+ 1), for 1 S i < |, and w = (wry-.- ). If
m > ¢, then WARM(w,m,l,q) is an abundant code.

Proof One has .
[I(z1 = @) = D = nPe,.

where a runs over all the elements of F,. Hence G is equivalent with D + (m — n)P,?.
Thus G is abundant, since m = v(q+1)*! > ¢ = n, and therefore WARM(w,m, 1,q) is
abundant, by Remark 2.18. O

Remark 2.19 The curve X(l,q) has ¢’ + 1 rational points over F;. Thus th‘e gonality
t of X(l,q) is at least (¢! +1)/(g +1). The value ¢! is a non-gap of the point P, s0
t<qg-1l f0<b<g—1and m = ¢ +bg?, then the abundant designed dl:ta.nce of
Ci(D,mBy) is dg = t —bg%, 50 (¢! +1)/(q+1) = b¢2 < da < ¢t —zbq"' , by our
results. Sgrensen [17] proved that the true minimim distance is (¢ — b)¢'~?, see Remark
2.18. So we are left with the following question: Is the gonality of the curve X (I, q) equal
to gt ?

3 Abundant codes are asymptotically good

In this section we consider the parameters of asymptotically good .a.l.mndant. codes. As
usual we denote the information rate k/n by R, and the relative minimum distance d/n
by 6.

Definition 3.1 Let A(q) be the limes superior of all quotients N/g, taken over all curves
X over F, with IV rational points and genus g. Let v, = 1/A(q).

Definition 3;2 Define the function R4 as follows.

1+;—i—;-—7,,—5 forOS&S;}_—l-
R‘(s)"{ 1=(g+1)yé  for Fysss ¥yt

We call the graph of R4 the abundant- or A-bound.

Proposition 3.3 If q is a square of a prime power, then for every0 < & < (v/g— 1)/(q +
1) there ezists a sequence of abundant codes of increasing length such that the relative
minimum distance is at least § and the information rate is at least R4(9).

Proof By Theorem 2.11 and Proposition 2.7, there exist abundant codes such that
k>n+a+N/(g+1)—gandd> N(g+1)—a, for all n and a such that n < N and
0 < a < N/(q+1), if there exists a curve with NV rational points. It follows from the work
of Tsfasman, Vlidut, Zink and Ihara, see {21], that 7, = 1/(y/g — 1). If we taken = N
and 0 < a < N/(q+ 1), then we get the result for § in the first interval; and if a = 0 and
0 < n < N, then for é in the second interval. O

Remark 3.4 In Figures 1, 2, 3, and 4, respectively, we give the graphs of these func-
tions in case ¢ = 4,9, 16 and 25, respectively, on scale. The A-bound is always below the
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GV-bound, and for 0 < § < g — /g + 2, the A-bound is above the TVZ-bound.

It is not difficult to show that the codes obtained by Katsman and Tsfasman [21, 3.4.23],
using subfield subcodes of algebraic-geometric codes, are always better than the A-bound.
Concatenation of abundant codes over Fy with a [3,2,2] binary code, gives binary codes
above the line R + § = 2/15, also this bound is below the KT-bound

Codes on the TVZ- and KT-bound, and also abundant codes have a polynomial construc-
tion. It is not known whether codes on the GV-bound have a polynomial construction.

4 Applications of bounds on codes to bounds on the
gonality

Remark 4.1 We used that the gonality of a curve is always at least N/(g + 1), but
maybe there exists a sequence of curves with many rational points and high gomality. Let
X, be the modular curve over F,, p a prime, as defined in {21, 4.1.50]. Then this curve
has at least 2™~3(p — 1) rational points over F,, where g = p?, and genus 2™~ +1 — 6,
where &, is equal to 3.2™/2-2 in case m is even, and 2(m=1)/2 ip case m is odd, see [21,
4.1.59]. So the gonality of the curve is at least 2™~*(/q — 1)/(q + 1), by Proposition
2.7. The divisor 2™ *co has dimension 2 and degree 2™~*, see [21, 4.1.60]. So the go-
nality of the curve is at most 2™~*, which is asymptotically of the size 9/2, see Remark 2.5.

Question Is there a sequence of curves over F, with an increasing number of rational
points such that X(F,) ~ (v/g—1)gand t ~ g/2 7

A positive answer would give a considerable improvement of the asymptotic parame-
ters of abundant codes. So we are looking for curves with high gonality. We already
remarked in 2:5 that t(X) < (g + 3)/2], for a curve X over an algebraically closed field.
In the sequel we investigate upper bounds on the gonality over finite fields, by applying
bounds on codes.

Proposition 4.2 If there exists a curve over Fy of genus g and gonality t with N rational
points, then

e

g2 log, (- (V) (a=1)),

=0

where e = |(t — 1)/2].

Proof This result is due to Goppa [5, section 10]. There exists an [N, k,d] code such
that k > N — g and d > ¢t. The Hamming bound gives

¢" < A(N,d) < " [V(N,e),

see [21, 1.1.41]. Hence V(N,e) < ¢¥* < ¢°. Taking the g-logarithm gives the desired
result. O
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Proposition 4.3 Let § = (¢~ 1)/q. Let n and N be positive integers such that n <N,
If there ezists a curve over Fy of genus g, gonality t and N rational points, then

n+log (1 -0Nft)<g if t>6n
t—0log,(t)<bOg+1 if t<ON

Proof The proof is similar to the application of the Hamming bound on abundant
codes, but now with the Plotkin bound on abundant codes, see (10, 5.2.4 and 5.2.5]. O

Remark 4.4 We give another application of the Plotkin bound, now on the existence
of special divisors. Brill-Noether says that if g — k(g~m+k—120, then on a curve of
genus g there exists a divisor of degree m and dimension at least k. Take the particular
case m = g — 1 and k* > g, then there exists a divisor of degree g-1 and dimension at
least \/g. If we apply this to Goppa’s construction on this curve, then we get a code of
length equal to the number of rational points on the curve, the dimension is at least /g,
and the minimum distance is at least n — g + 1. If we use a sequence of modular curves,
then we get a sequence of codes with information rate R > v/7q, and relative minimum
distance § > 1 — 7, see [21]. In particular for ¢ = 9 we get 7o = 1/2,R > +/2/2, and
§ > 1/2. But the Plokin bound gives the upper bound R < 1 — 6q/(q — 1) for such a
sequence, so in the above case, we get R < 7/16, which is a contradiction. This is one
example, but for many m and ¢ one gets a lower bound for R conflicting with an upper
bound, like the Plotkin bound.

Remark 4.5 We are interested in asymptotically good abundant codes, and the asymp-
totic Plotkin bound implies that curves of gonality ¢ and N rational points such that

t > N(q—1)/q do not give asymptotically good codes. We therefore give the following
definition.

Definition 4.6 Let Aq be the limes superior of the set of quotients t/g, taken over all
curves over ¥ of genus g, gonality ¢ and at least tg/(q — 1) rational points.

Proposition 4.7

A< (9-1)/q
(Va-1)/(g+1) <Ay ifq is a square

Proof The first inequality follows immediately from Proposition 4.3, since Olog,(t)/g <
Olog,(g + 1)/g, by Corollary 2.3, and the last expression tends to zero if g tends to
infinity. The second inequality follows from Proposition 2.7 and the existence of curves
with N ~ (/g — 1)g rational points whenever q is a square, see [21]. O

Remark 4.8 The asymptotic Hamming bound gives H,(6/2) < 4, if 6 and v are the
asymptotic relative distance and relative genus of a sequence of curves. But one verifies
in a straightforward way that H,(7,/2) < Y if ¢ is a square, so this gives not an im-
provement of the bound Ay < 1.

141

5 An application to decoding

Remark 5.1 The dual of the functional code Cr(D,G) is the residue code Cq(D, G),
which is the image of the residue map from Q(G — D) to Fg, see [21], and is an [nk,d]
codesuch that k> n—m+g—1and d>m~2g+2,if m > 29 —2. If morover m < n,
then k = n—m+ g — 1. We call m — 2¢ + 2 the Goppa designed minimum distance of
Ca(D,G), and denote it by dg. It is known that every functional code Cz(D, G) is also
a residue code, i.e. of the form Cq(D,G’), where G' = K + D — G, for some canonical
divisor K, see [18, Corollary 2.6]. Now we discuss the decoding of Cq(D, G). Let F be a
divisor such that F' has disjoint support with D and furthermore

1. dim(L(F)) > e
2. d(Ca(D,G - F)) > e
3. d(Ci(D,G)) + d(Ca(D,G)) > n

Then one can decode e errors with F, see [7], [16] and [21, 3.3]. There always exists such a
divisor F'if e = |(dg—1—g)/2]. By applying the above idea several times one can decode
[{dg — 1)/2] errors, see [13] and[22], but an efficient algorithm to find these divisors is
known only in case of (hyper)elliptic curves, see {16} and [3]. Ehrhard {4] showed that one
can decode [(dg — 1 — g +t)/2] errors with ¢ + 1 divisors, given explicitly.

Now we want to apply section 2 to decoding. If the minimum distance of Cq(D,G — F)
is more than one expects, i.e. deg(G — F) — 2g + 2, then maybe one can decode more
than e = |[(dg — 1 — g)/2] errors with a single F; and indeed this is the case. Before we
do that we need a slight change of the conditions 2 and 3. Remark that condition 2 is
equivalent with

- 4. Ca(Q,G—~ F) =0 for all Q such that 0 < Q < D and deg(@) < e

. Furthermore Cq(Q,G — F) = 0 if and only if (G - F) = (G = F — Q). Consider the

following condition ‘
5. YG—-F—-Q)=0for all Q such that 0 < Q < D and deg(Q) < e

Duursma (3] showed that conditions 1 and 5 imply that one can decode e errors with F.

Lemma 5.2 Let X be a curve of gonality t. Let Py,..., Pa, Ps be n+1 distinct rational
points on X. Let D = P, + ...+ P,. Let Fy be a divisor of dimension at least e + 2. Let
A be an effective divisor of degree t — e — 1 and disjoint support with D andP,,. Let K be
a canonical divisor with disjoint support with D and such that P,, is not in the negative
part of K. Let G = Fy+ K — A and F = Fy — P,,. Then one can decode e errors of
Co(D,G) with F.

Proof The dimension of L(F) is at least e + 1, since the dimension of L(Fp) is at least
e+1 by assumption. Furthermore G— Fy = K — A, so Cq(D, G — Fp) is an abundant code
of abundance ¢ — e — 1, by Remark 2.10, and therefore its minimum distance is at least
e+ 1. So UG - Fy) = UG - Fy — Q) for all @ such that 0 < Q < D and deg(Q) < e, by
Remark 5.1. Now Q(G — Fy) = Q(K — A), which is equal to Q(I), since A is effective and
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of degree smaller than the gonality t. Thus Q(G — F,) is one dimensional and generated
by a differential w with support K. So (G — Fy — Q) = (K — A — Q), is generated by
w, and the valuation of w and K — A at P, are the same, since Py, is not in the negative
part of K and not in the support of A+ Q. Hence (G~ F — Q) = 0, for all Q such that
0 < Q £ D and deg(Q) < e. Thus conditions 1 and 5 are satisfied, and one can decode ¢
errors with F. O

Proposition 5.3 Let X be a curve of gonality t. Let P;,. ees Poy P be n + 1 distinet
rational points on X. Let D = Py + ...+ P,. Let G be a divisor of degree m. Let
e = |(dg —2—g+t)/2]. If there is an effective divisor of degree e —t — 1 and disjoint
support with D and P, then there ezists a divisor F' such that one can decode ¢ errors
of the code Cq(D,G) with F.

Proof Let A be an effective divisor of degree ¢t — ¢ — 1 and disjoint support with D
and P. Such a divisor exsits by assumption. Let K be a canonical divisor such that the
support of K is disjoint from D, and P, is not in the negative part of K. Such a divisor
exists, by the independence of valuations. Let Fy = G — K + A, and let F = Fy - P,.
Then Fy has degree m — 2g + 1 + t — e, which is at least g + e + 1, by the choice of e.
Hence the dimension of L(F,) is at least e + 2, by the Riemann-Roch Theorem. Thus one
can decode e errors of Cq(D,G) with F, by Lemma 5.2. O

Rem.ax:k 5.4 If the number of rational points is at least n + 2, then the existence of
the divisor 4 is assured. One can take A = (¢ — € — 1)Qq,, Wwhere Q. is a rational point
different from P, and not contained in D. Now 0 < t—e — 1, since m < 3g —2+t. Hence
A is effective.- -

Example 5.5 The code Cq(D,mP,) on the Hermitian curve over F,, where q = r?,
has Goppa designed minimum distance m — r* 4 r + 2. It follows from work of Tiersma
[20], in case g is even, and Stichtenoth [19] for arbitrary q, that Cq(D,mP,) is the
dual of C,, which is equal to Cpaypa_p_gmm. Suppose m < 7(3r —1)/2—2. Let e =
l(m - r(3r — 5)/2)/2). Suppose r —e ~1 > 2. It follows from the zeta function of the
Hermitian curve that there exist places of any degree not equal to 2. Let A be a place
of degree r — e — 1. Let K = (r? — r — 2)P,,. Then K is a canonical divisor. If we take
F =(m—r?+r+1)Ps + A, then we can decode ¢ errors of the code Ca(D, mPy) with
F, by Proposition 5.3.

Example 5.6 If not only the minimum distance of Ca(D, G — F) is greater than one
expects, but also the dimension of L(F) is greater than deg(#)+1—g, then sometimes one
can decode even more errors. Let F, be the divisor i(r+1)Py, for0 <i<r—1,on the
Hermitian curve of degree r+1. Then L(F,) has dimension (";2) . Let e = (*+3i - 2)/2.
Suppose r —e — 1 > 2. Let A be a place of degree r — e — 1. Let K = (r? — r — 2)Py.
Then K is a canonical divisor. Let G = Fp+ K — A and F = F, - P,,. Then the code
Ca(D, G) has Goppa designed minimum distance #(¢ +2r +5)/2 — r and one can decode
e= (% + 3i — 2)/2 errors of this code with (ir + i — 1) Py, by Lemma 5.2. In particular,
if i = 1, then the designed minimum distance is 3 and one can decode 1 error with rPs,.
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Remark 5.7 The function o %=n(§) of asymptotic good linear codes with a poly-
nomial construction and polynomial contructable decoding algorithm, is bounded below
by the Skorobogatov-V1idui-bound Rsy(8) = 1 — 27, — 9, see {21, Theorem 3.4.34]. We
have the following improvement.

Proposition 5.8
ot deckin(g) 2 1 =2y, + (g + 1) -6
Proof This follows immediately from Proposition 5.2 and Remark 5.3, whenever 6 <

2),. For arbitrary 4 it is proved by Ehrhard (4], see also Remark 5.1.
g
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Introduction

The main purpose of this paper is 'to understand and develop a brilliant
idea of David and Gregory Chudnovsky [1] who applied curves with many points
over finite flelds to construct fast bilinear multiplication algorithms in
large extensions of a given finite fleld. One should admit that their paper
{1] has some unclear arguments and not all of its results can be considered
as really proved. In thls paper we would like to achieve the following aims.

1. To put the problem of multiplication in finite flelds clearly,
especlally in its asymptotic statement.

2. To point out which properties of error-correcting codes are essen-
tial to apply them to the multiplication problem in finite fields.

3. To explain in simple algebraic-geometric terms the main idea of the
algorithm of David and Gregory Chudnovsky.

4. To state and to prove the results of David and Gregory Chudnovsky
which we consider to be really proved.

5. To ameliorate their results using some additlonal arguments and to
write down some corollaries.

6. To explain why we consider some results announced by David and
Gregory Chudnovsky to be unproved, and to point out the gaps that should be
filled in to get complete proofs.

In Section 1 we recall some basic definitions and results which connect
algorithms of mdltlplication in finite fields with the notions of tensor
rank, codes, and what we call supercodes. Section 2 contains a description
of the algorithm of David and Gregory Chudnovsky [1]. In Section 3 we prove
the main results which are improvements of those of [1]. The last section is
devoted to the gaps to be filled in to get the results announced by David
and Gregory Chudnovsky.
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This paper was partly written when two of the authors (M.Ts. & S.V1.)
were visiting the Institut fiir Experimentelle Mathematik, University of
Essen, and took its final form when they were visiting the University of
Geneva; we would like to express our deep gratitude to the institute and
both universities, and especially to G.Frey, H.Stichtenoth, and D.Coray for
their warm hospitality. One of the authors (I.Sp.) would llke to thank J.
von zur Gathen who elucidated many points concerning multiplicative
complexity.

The general reference for coding theory and algebraic geometry used
‘below is ([3].

1. Multiplicative complexity, tensor rank,
codes, and supercodes

) Multiplicative complexity of multiplication. Let K be a field and
A a commutative K-algebra of dimension k . If (el. vees en) is a basis

k k
of A over K then for x = leel , ¥y = EyjejeA their product
k i=1 J=1
z= Y z,e equals
'hzlhh
k k
z=xy= Y| ¥ t..x.y.]le , (1.1)
) n=1l1,J=1 i1jhi’ j|"h
where
k
ee. = Y t e , (1.2)
1" j h=1 ijh "h

t ijh €K being some constants. The direct calculation of

z= (zl....,zk) using (1.1) requires k¥  non-scalar multiplications
x;y g plus some extra multiplications by constants (which do not depend on
x and y ) and some additions.

" Suppose that we have found a set of linear forms 2, and bt such
that
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z = Lglclhat(ﬂbt(y) . (1.3)°
Then the computation of 2z = xy can be done as follows. First compute the
values al(x) and bt(y) , this computation requires only additlions and
scalar multiplications (i.e. multiplications by constants), Then we have to
make n non-scalar multiplications to compute ‘t(")'bt(y) , and some
scalar multiplications and additions to compute z, -

An expression (1.3) 1is called a bilinear multiplication algorithm
a4 .

The number n of non-scalar multiplications in & 1is called the
multiplicative complexity up(#) of @ . Since non-scalar multiplications
are much more complicated than scalar multiplicatlons and additions, the
total complexity of & is (roughly speaking) close to u(d) .

The value l

MK(A) = min p(9)
i

& running over all bilinear multiplication algorithms #& 1is called the
multiplicative complexily of multiplication.

Tensor rank. Let us pass to a more invariant language. Multiplication
in A 1s bilinear. Therefore it defines the map

AeA —— A
or, which is the same, the tensor
L] °
tm € A 84 04
where 4A° = lloK(A, K) . The product of x and y 1is the convolution of
this tensor with xey € 484 , and if we fix a basis we obtain the formula

(1.1) , ¢ ijh being the components of tm in that basis.

Any decomposition into a sum of rank one tensors (i.e. of decomposable
tensors)

t,= L agbgc, (1.4)

(where a, € A, . € A ¢y € 4 ) ylelds (1.3) whenever we fix a basis,

‘thus giving a bilinear multiplication algorithm of multiplicative complexity
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n . It is also clear that any billnear multiplication algorithm of multipli-
cative complexity n can be obtained from such a decomposition.

Thus we see that uK(A) equals the tensor rank rk(tn) , which is
defined as the minimum possible number of summands in (1.4) .

Remark 1.1. The definitions we have given can be easily generalized to
the case of any system of bilinear forms over K , 1.e. to the case of any

3-tensor t instead of tn .

Finite field case. From now on we suppose the ground fleld to be
finite

and A to be its unique fleld extension of degree k

A=Fk.
q

We write

uq(k) = py(4)

since it depends only on q and k .
From the definition one obtains

Lemma 1.2. uq(m) s uq(nn) s uq(n)-uqn(m) ‘w

Asymptotic parameters. Our maln concern in this paper is asymptotic
behaviour of uq(k) for k — o and q being fixed.
It is convenient to introduce the following asymptotic parameters

M = lim sup p (k)/k ;
q kw9

= lim inf (k)/k .
mq\ m “q )

k—»

It is not at all obvious that either of these values is finite since it
means that the multiplicative complexity of multiplication 1s asymptotically
linear in the degree of extension. Moreover, the paper [1] was the first to
prove that mq <o for some values of q . In this paper we shall prove
that both mq and Hq are finite for any gq .

Corollary 1.3. For any positive integer k

nq = nqk-uq(k)/k ’

M sH _-u (K.
AL

Proof: The second inequality of Lemma 1.2 shows that

Mo (k) /ak 3 (u_ (k) /K)- (nqk(n)/n)

which 1s enough for the lower limit. For the upper limit we need all values
of m (not only those divisible by k ), therefore we use

uq(m)/m = pq(k)'(uqk(n)/n) ‘u

Connection with codes. We use the following notation: a linear error-
correcting code C over l-'q of length n , dimension k , and minimum dis-
tance d 1is called an [n.k.d]q—code; the rate k/n of such a code is de-
noted by R, and its relative minimum distance d/n by & .

One can construct a code using decomposition of tm into a sum of rank
one tensors. Indeed, if

with ut,vt € F;k . wz € Fqk then one defines an Fq-linear map

szk———)F:’
q

X — (ux(x)....,un(x)) .

let C=1Img .
Proposition 1.4. C isan [n, k, 2 k]q—code.

Proof: We have to check that ¢ 1s injective and that the weight of

*
any codeword is at least k , For any x€F K let us consider the element
q
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n
t (x) = § ulxlvew, e Hom_ (F, , F ) .
n &y e "‘l»'q &K

It is clear that t.-(x) is the multiplication by x in F k
q

tn(x) Y 3 yx .

This gives the injectiveness of ¢ since F k has no zero divisors.
q
Since tn(X) is an l-'q—llnear authomorphism of F P its rank is k and

q
thus the weight of g(x) = (ul(x).....un(x)) is at least k . Indeed, the

image of tn(x) is spanned by those w, for which UL(X) *#0 .
i ]

Corollary 1.5. Let nq(k) be the minimum length of a linear
[n, k, kl-code. Then pu (k) =z n (k) .
q q [}

Let us recall ([3] 1.3.1) that there exists a continuous decreasing
function a:;"(a) on the segment [0, 1 - 1/q] which is the “true* bound
for the rate R of linear codes over Fq with relative minimum distance at
least & . -

Corollary 1.6. One has a_ = 6;1 , where Gq is the unique solution
of the equation a(‘l“‘(a) =3.
|

Any upper bound for a:"(al glves an upper bound for sq and thus a
lower bound for mq

Corollary 1.7. o, z 3.52 .

Proof [1]: Apply the bound of “four® ({3] 1.3.2) for asymptotic para-
meters of binary codes.
]

1
Corollary 1.8. =21« 1.
Tq [ g- 1]

Proof [1]: Apply the asymptotic Plotkin bound ([3] 1.3.2).
=

Supercodes. We have seen that a decomposition of tm into a sum of n
summands of rank 1 produces an [n, k, z qu—code. One can.ask if it is
possible vice versa to construct such a decomposition using a 1linear
{n, k, k]q—code. Generally speaking this is impossible since decomposition
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(or a bilinear multiplication algorithm, which is the same) has to do some-~
thing with the multiplicative structure which 1is not used in a code. To
construct a bilinear multiplication algorithm we need the following notion.

Let S<F x® Fg be an Fq—llnear subspace. We call . § an
q .

[n.' kl q—supercode if the following condltions/ are satisfled:

1. The first projection

restricted to S 1s surjective

ulls :‘S—-)-)Fqk -

2. Let §%= (t-:ls2 i 5:5, € S} where the multiplication >is that in

Fq—algebra F P FZ , and let <s®> be the subspace in F x [} F: spanned
q
by 5% . Then the second projection

restricted to <$*> is injective

11.'2|<Sz> : <SS s F: .

Note that 1f S 1is a supercode then “z's is also injective. Indeed,
iIf se€esS, s+#0, and )

uz(s) = (ul(s), . ,un(s)) € I-':
then
x, (%) = ws),....u (% = 0

since 1rzls2 is injective, and hence 1:2(3) #0 .

We call a supercode S exact if "1'3 is an isomorphism, 1.e. if
dim S = k . Any supercode contalns an exact one.
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Lesma 1.9. Let S be an [n, qu—supercode. and C = 1:2(8) . Then ¢
isan [n, 2k, 2 k]q—code.

Proof: We have to prove only that the minimum distance of ¢ is at
least k . Indeed let the weight of tz(x) equal w . Since for any y e S
the vector xz(xy) = uz(x)nz(y) has zeroes at all positions where ua(x)
does, the cardinality of the set uzlxs) is at most qw . Since “zlsz is

injective, Itz(xs)l z S| = qk and thus wz k .

Note that if S 1s exact then C is an I[n, k, = k]q—code.

Supercodes and decompositions. We are golﬁg to show that the notion of
an exact supercode is almost equivalent to that of a decomposition of tn
into a sum of n rank one tensors.

Let S be an exact supercode. Let ¥ be a subspace of F; such that
x(<SD>) eV = 2 and let V=c<>ov where
v = {(0,v) | veV}Sl-'koF; - It is clear that w,|, : V-"—)F'q" is an

isomorphism and that tl(V') =0 .
Since 'l"ls and :zlv are isomorphisms, we can consider inverse maps

q

and

P, r; I T

Let

p= (:rzls)«pl : F o — F;
q

and

V= (x i )ep, : Fl— Fr

Let 1, = (0,...,0,1,0,...,0) € F; and let ¢ € (FZ)° be the linear
form dual to 1, , in the sense that ¢(1,) =1 and L =1 for
i# j . Consider the tensor ’

n
T=F ¢°0)ee (L) ey(l,),
PR 1 1

L ] ] .
where ¢  denotes the dual map ¢ : (F:) —3 (F k) . Note that T |is

q
vell-defined, it does not depend on the cholce of V since ¥ 1s unique
because of the condition ‘1“") =0 .

Propgsition 1.10. T= tn .

Proof: We have to show that T(xey) = xy . We have

n E
Tley) = T 9’ (2, (x)9” () (y)op(1,) =

n
= 151 £1(¢(x))'¢1(¢(1))'¢(11) .

et s=p{x) , t = ply) . Then

n
uz(s) = (lx(tp(x)),...,tnw(x))) = 1§1 ti(”(x”'li ,

n
nz(t) = (ti(w(y)).....tn(p(y))) = 1§1 ll(q)(y)%ll ,

and
n
uz(st) = uz(s)-uz(t) = 1§1 ll(w(x))-tl(v(y))-ll .
Thus
¥ 1) (p(y))-p (1))

p.(n (st}) = ¥ L (p(x))-L (ply))-p .

22 i=1 i i 21
Therefore

n
Xy = nl(st) = )—:1 ‘1"“”"1‘?"”"‘,(Pz“;” =

i

0
= I 4Gt 00w

and we are done.
n
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n

Let tn = ¥ uieviowl . We call this decompositon symmetric if
i=1
u; = vl . We denote the symmetric decomposition

n ‘
t, = j§1 [ (ll)w ui)wuil
by Z(s) .

n
Consider an arbitrary symmetric decomposition tn = Yu 18U oV, which
i=1

we denote by I . Let ¢lx) = (ul(x).....un(x)) € l-'; . We shall study the
subspace

S(E) ={ (x;px)) | x € qu } :‘ qu ® r('; .

Proposition 1.11. S(Z) 1is an exact supercode.

Proof: Of course, dim S(£) =k and Ttll is surjective. We have

S(z)
to check that = |

. 2 is injective. Let
<S(Z)>
r

u= ¥ ast,e<S(E>,
PR

xj = ’tx(sj) , yj = "1(tj) . Suppose that zz(u) =0, then

r n
j§1 aj L “i(xj)°"1(yj)'11 =0 .
r
Hence P ajoui(xj)-uj(yj) =0 for any i . Therefore

r r n
n (u) = X = . . =
N }__31 a; Xy, P 2, 151 u;(x))uyly ) v,

n r
N DA S LA LR

Thus u = 0 and we are done.
]
n n
Let 21 = i§1 uioujowj and 22 = 1§1 V;““'fz; be two symmetric decom-

positions of tm . We call 21 and 22 equivalent if ul = vl for every i.
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Theorem 1.12. The map. S +—> £(S) gives a bijectlion between the set
of exact supercodes and the set of equivalence classes of symmetric decompo-
sitions of t, . Moreover, S(z(s)) =S5, Z(sS(E(s))) = Z(s) .

Proof: First let us check that S(Z(S)) =S . The decomposition ZX(S)

is written as
t T (2 )ep° (2 dep(1,)
ctg= Lo (Eep (Ly)ep(ny) .
1=1
Then

SES)) = { (x5 ¢ () (0),....0 (¢ )(x)) } =
={ (x; tl(qz)(x),...,tn(q))(x)) }={(x; p(x)) } =5 .

From the relation S(Z£(S)) =S it follows that the map I —— S(Z) s
onto and that the map S > E(S) 1is injective. Now it is sufficlent to
prove that any equivalence class of symmetric decomposition contains a
unique element of the form Z(S) . It is implied by the following state-
ments. ’

(1) If I 1is equivalent to Z’ then S(Z) = s(2’) .

(11) Z(S(Z)) 1is equivalent to ¥ for any I .

(111) Z(s(=(s))) = 2(s) .
Statement (1) 1s obvious since the definitlon of S(X) involves only u R

n n
(i1) is clear since if £ = Y u.eu.ew then Z(S(E)) = [ u,eu oy(l,)
=T e a iy M

in the above notation; (iii) 1is also clear since Z(S) 1is of the form
n
T uveueyp(l.) .
R M M A

Corollary 1.13. Any supercode S S F k
q
plication algorithm of multiplicative complexity n .

® r; ylelds a bilinear multi-

Proof: Any supercode contains an exact sub-supercode. If we fix such a
sub-supercode, we get a decomposition £ which gives us a bllinear multi-
plication algorithm.

|}

Remark 1.14. In fact, for Lemma 1.9 and Corollary 1.13 to hold, one
can weaken the Condition 2 in the definition of supercode, requiring injec-
tivity only on S2 rather than on <S> .




156
The following question looks very interesting.

Problem 1.15. How can one characterize those [n, = k, z k] ~codes
which are projections of supercodes? ?

2. The algorithm of Chudnovsky & Chudnovsky

What David and Gregory Chudnovsky (1] discovered, is in our terms the
fact that some algebraic-geometric codes can be 1lifted to supercodes and
thus can be applied to comstruct multiplication algorithms.

Their algorithm uses the following data:

1. An absolutely irreducible smooth curve X over F

2. Apoint Q of X of degree k . N
3. An Fq—-rational divisor D on X.

‘4. A‘ Sét P = (P1""'Pn} of Fq—rational points of X .

Let

(® U tae1) N Supp D = o (2.1)

and let two condition be satisfied:

A. The evaluation map

o ¢ LD} —>» Fq(Q) = Fqk

f — £(Q)

is surjective.

B. The evaluation map

evy : L(2D) — e F_(P) = F?
pep 1 9

£ — (f(PIJ,....f(Pn))

is injective.
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Then we have
Proposition 2.1. uq(k) =n.
Proof: Let S be the image of the map

.cv?) s L(D) — Fqk ® F: .

ev = (ev

Q

This map is injective because of B. Since L(D)? € L(2D) the conditions A
and B show that S = ev(L(D)) 1s a supercode and we are done by Corollary

1.13.
|

Remark 2.2. One can easily show that the corresponding multiplication
algorithm can be derived as follows. Consider the commutative diagram

ev, & ev,

ev, ® ev,
FkoerQ——Q—L(D)GL(D)—-—’;-——-gF;crz
e ! !
ev, ev
F L« Q L(2D) ? N
g q

where the vertical darts denote multiplication maps. Since the diagram is

commutative for any x,y € F P we have:

xy = ev, [ev;,1 (ev? [ev;1 (x)]-evy [eval 1)) .

where ev;(z) for zeF M denotes an arbitrary function f € L(D)  with

q
f(Q) = z . In other words we represent F P the residue field of Q@ and

q
to multiply elements we 1ift them to rational functlons and multiply their
values at Fq—ratlonal points of P .

Remark 2.3. One can also dispense with the condition (2.1). Indeed, it
is sufficlent to consider adjusted evaluation maps ev’Q and evé, which
are defined as follows: If Pe€ X, f ¢ L(D) then

fr)y , iIf PeSupp D,
evg, = { ap '
(tP “£)(P),if D = a P + D' with P ¢ Supp D',
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where tP is an arbitrary (fixed) local parameter at P . Using evb , and
evé one can obtain Proposition 2.1 without (2.1).

3. Results

Let us now show that the idea of David and Gregory Chudnovsky in many
cases glves good asymptotic estimates for multiplicative complexity.

Denote by N(q,g) the maximum number of Fq—ratlonal points N(X) on
an absolutely irreducible smooth curve X over Fq of genus g and let

4(q) = lim sup N(q,g)/g .
g > @

Here and belpw we use the following convenlent abuse of notation. For a
family of curves {Xs} of growing genus g = & = g(x;) we often omit the

index s and write {X} , g — «» , and so on.
It is known (cf. [3] 2.3.3) that

c-logzq s AMg) svg -1, (3.1)

where ¢ > 0 1is some absolute constant (the lower bound is due to Serre,
the upper one to Drinfeld and Vladut). Moreover, for q = pzm being an even
power of a prime

AlQ) =vVg -1,

The following theorem is a generalization and an improvement of the
corresponding result from [1].

Theorem 3.1. Let Al(q) > 1 . Then
1
s
mq 2[1 * A = 1} .

Proof: Let (xs) be a famlly of absolutely irreducible smooth curves,
let g = gs be the genus of X = Xs . Suppose that g —» » and

lim [X(F )l/g = Alq) ,
g—aw 9
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X(Fq) being the set of Fq—rational points of X . Let us fix a small
€>0 . Let n= lX(Fq)I . We set

a=[(n+g(l-¢e))2],

k= [(n-g(1+3e))2],
[-] denoting the integer part.

Claim. If g is large enough then there exist a point Qe X of
degree k and a divisor D of degree a such that Conditions A and B are
satisfied for P = X(Fq) , Q and D .

The theorem follows from the claim since by Proposition 2.1 we éee that
uq(k) = n and hence -

m_ s lim n/k =2:'1im n/(n - g(1 + 3¢)) =
q £ 8-

= 2:A(q)/(A(q) - 1 - 3¢} .
Since €& > 0 1is arbitrary, we are done.

Proof of the claim. First of all we have to prove that for a suffi-
clently large g there exists a point of degree k . Indeed for any k we
have

4 is the number of points of degree d on X .

Applying the Mobius inversion formula and the Weil bound we get

where Nk = |X(F k)l and B

1
B z-(N - L N)J=
k k(k dsk/2 )

= 3@ -2d?+1- 3 @ +2¢Y% 4 1)
dsk/2

and thus B

K is positive since k 1is proportional to g .

Let us fix an arbitrary point @ of degree k . We shall prove that
for a sufficiently large g there exists a divisor D of degree a such
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that
«) UK-D+Q) =0
and
where
P= YT P
PeP

and K 1is the canonical class of X .
Conditions «
bave otk o e 8 :x:: Bthinply A and B. Indeed, from Condition « we
ce e divisor
tares o Q 1is poslitive. By the Rlemann-Roch

D) ~ - =
) - D Q)-—(degD-g*l)-(dex (D-Q-g+1)=degQ=k

and thus the evaluati
on map ev,
has the “correct" codimension kQ ::;: surjective since its kernel L(D - Q)
. nditi
evy 1is trivial. on § implies that the kernel of

We Shall use the app; . &
roach of [4] Considex a f“ily (x) of curves X

over F_  of growing
q genus g = g(X) ® . Th
— . e f
tically exact if for all m there exist mite amlily is called asympto-

B
B, = lim =
g—m £ '

wne, s the numbex of ints f e
O degr e m on X . A Simple
ag gume nt shows that each famil y f curves of 8 ing g
di onal ar; (<) W () eSs O T'OW. enus contalns
an asymptotically exact Subf amlly . Pas 1‘18 to a s bfamily wi th = A

We can assume our famil
Y to be asymptoticall
y exact.
statements follow from Corollary 2 and Theorem 6 of [:] e following tio

R Lemma 3.2. Let
{X} be an asymptotically exact family of curves. Let

h = h(X) be the
number of F -
C q points on the Jacobian of X . Then

log_ h [ * o
=g 1 +Y¥B -1 q ]

q m 08 + olg) .

m=1 94" -1 =

Lemma 3.3. Let D
be the number
b=blg) on X.Ir b of positive F_-divisors of degree

‘ ) 161

b s © m Bn
g|L 3 - o(g)
a1 q -1

then

« n' .
q
log D, = b+ g ¥ B log + o(g) .
q b Fln qql ]

Let D be a divisor of degree & such that either Condition « or
Condition B falls. It means that elther the divisor K-D+Q 1s equl-
valent to an effective divisor or this is the case for 2D ~ P . Consider

the degrees of K~-D+Q and 2D -P:

deg(x-o+o)=2g-z—a+ks[g-(l—c)]-1.

deg (zD-P)=2a-ns|'g-(1-c)'|+1.

rent from that of D,

If D’ 1lies in a linear equivalence class diffe
Thus the number of

the corresponding effective divisors are different.
linear equivalence classes of divisors of degree a for which either Condi-
[ or Condition B fails 1is at most D, * Db s 2D, , where

tion
and b = [g-(1 - €)] +1 . The total number of linear

b= [ge(1-e)] -1
5 equivalence classes of degree
which is given by Lemma 3.2. To apply Lemma 3.3 we

ciently large. Indeed, for large enough g we have

b does not depend on b and equals h,
need b to be suffi-

w @mB w BB
It o= = It <2
=1 g0 -1 Vg +1 w1l q -1
® ; Bn
since ¢gz2 and L /3 <1 (see Corollary 1 of [4]). Therefore
m=1q -1
there exist divisors D for which Con~

ZDb < h for g large enough. Hence
ditions « and B are satisfled and we are done..

Since for q = pZm it 1s known that A(q) =vg -1 we get

Corollary 3.4. Let g=p2z9 . Then




m os2l1+ 1 |,
a T -2) o
In the case of arbitrary q we can try to use Serre’'s bound

Alq) = c-logzq . For q large enough we get

Corellary 3.5. There exists a positive constant c¢ independent of q
such that if q > 2 then

. 1
m s 2[1 + ._.._.._.___] .
q c-logzq -1} 'm

Remark 3.6. One can also apply lower bounds for A(q) due to Th.Zink
and M.Perret (see [3] Theorem 2.3.25), which are valid for some special

values of q . For example, if q= ;)3‘n then we get

1/3
..qsz[1+._2‘,73__.__:3____ .
2473 - M3 _ 4

Using Theorem 3.1 and Corollary 1.2 we can obtain some results for an
arbitrary q (which are not covered by preceeding results when q=4, or
q 1s an Qdd power of a prime too small for Corollary 3.5).

Corollary 3.7. m, = 35/6 .

Proof: By Lemma 1.2 we have u2(6) = u2(2)-p‘(3) = 15 since
uz(Z) =3, n‘(B) =5 (see [1]). By Corollary 1.3 we get

m, = n“°u2(6)/6 s 165--2[1 + 1 = 35/6 .
Vel - 2 L

This bound improves the bound m, s 6 from [1].

Corollary 3.8. For any q= pm >2

m 53{1+ 1 ]
q-=

q 2

Proof: For any q = pm > 2 we have q2 = p2m 2 9 and thus Theorem
3.1 gives

nzsz[1+ i ]
q q
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By Corollary 1.3 we have

- 1
mq < qu-uq(Z)/Z = 3[1 + 2] .

since it is well known that uq(Z) =3 for any q ‘m

In particular, we have proved that mq <o for any q .

Now we are going to consider the more complex and interesting case of
M . We are going to show that for Hq the same upper bound as for nq can
be proved though only in the case of q being an even power of a prime.

Theorem 3.9. Let q = p>® =z 9 . Then

quz[1+___1.__.] .
vqg -2 ™

Proof: Let us first deduce the theorem from the following

Claim. For gq = pzm 2 9 there exists a family (Xs} of absolutely

irreducible smooth curves of genus g = gs with

lim |X(F )l/g =vq -1, (3.2)
&0 q
and
lim g/g ., =1. (3.3)
S—0 s s+l

This means that we can choose a family of curves with the maximum
possible ratio of the number of l-‘q—rational points to the genus and such
that the sequence of its genera 1s sufficlently dense. k

Assume the claim to hold. Fix € > 0 and consider an arbitrary k.
Let g(k) be the least genus of a curve in our family such that

2k + g(k)(1 + 3¢) = n(k)

where n{k) "is the number of points on the corresponding curve. From (3.2)

and (3.3) we get
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k = (nk) ~ g(k)(1 + 3e))/2 + olg(k)) (3.4)
and
lim n(k)/g(k) =vgqg -1 > 1. (3.5)
k-

It is clear that for sufficlently large k we have

k/2

-28k)g% + 1 - ¥ (¢% 2800¢%3+ 1) > 0
dsk/2

since qk grows faster than the other terms. Therefore there exists a point
Q = Q(k) of degree k . Set

alk) = [k + glk)(1 - )]

and consider divisors of degree a(k) . Using the same arguments as in the
proof of Theorem 3.1 we get uq(k) s n(k) . Thus from (3.4) and (3.5) we get

K K)/k = 2n(k)/ (nlk)- (k) (1 + 3¢) + o(g(k))) .

Using (3.2) we see that

M os2-Ya -1
T vg-2-3

.

Since € > 0 1is arbitrary, then from this inequality and from (3.2) we
obtain the bound of the theorem.

Proof of the claim: First note that for q= I:v3 the existence of the
required family is clear: it is sufficient to put X = x (1u ) where lk
1s the k-th prime number. Then g ={ = £ and it is well—known (see [3]
4.1.2) that

1X(F 2)l z(p-1(+1).
P

For the general case q = pz'n the situation is similar but a bit more

complicated since one has to use Shimura curves.

2m
Let qg=p and let F be a totally real abelian over @ number

fleld of degree & in which p 1s inert, thus OF/(p) % F _ vhere Op 1s
p

the ring of integers of F . Let p be a prime of F which does not divide
p and let B be a quarternion algebra for which

BsI'R = HZ(R)xHx .os xH

where H 1s the skew field of Hamilton quarternions. Let B be also
unramified at any finite place if (@ ~ 1) 1s even; let B be unramified
outside infinity and p if (@ - 1) 1is odd. Then, over F one can define
the Shimura curve by its complex points

where H 1s the upper half-plane and T 1s the group Vof units of é maximal
order O of B with totally positive norm modulo its center. Moreover, it
is well known that its reduction Xr P modulo p 1is good and (see [2])

X

I‘p Zn)lt(p -1(g+1).

Let now ¢ be a prime which is greater than the maximum order of stabili-
zers l"z , where 2z e€H 1is a fixed point of I" and let p} ¢ .
Let l‘o(t)c be the following subgroup of GLaut)

r (£)¢ {[cd € GL (Zt) l c®0 (nod t)}

Suppose that ¢ splits completely in F . Then there exists an
embedding F l}£ , and since Bapﬂl = H (a ) we have a natural map

#p r —» GLz(ZL) .

Let I't be the inverse image of l‘o(l)t in I  under K Then l'l

is a subgroup of I of index ¢ . We consider the Shimura curve Xc with
Xz(C) = ’.‘)/l‘e .

It can be defined over F and its reduction Xz modulo p 1is good,
Moreover it 1s not hard to show that superslngular" F P-polnts of XC P
14

split completely in the natural projection
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Thus, their number is at least £-(Vg - 1):(g + 1) . Since ¢

is greater
than the maximum order of a fixed point of T on % , the projection r
¢

is unramified and thus by the Hurwitz formula

& =1+g~-1)
where. & is the genus of Xh . This shows that

lim |X F = -
Ln 1%, (F)Igy =G - 1.

Moreover, since ¢ runs over primes in an arithmetical progression (F
being abelian over Q ) the ratio of two consecutive genera in the sequence

(Xi'p} tends to 1 and we are done.
. | |

Corollary 3.10. For any q = pm >2

1
M =
; s[1+q_2).

For q =2

H} =27 .,
Proof: Both inequalities follow from Corollary 1.3 and Theorem 3.9.
For ¢>2 weput k=2, for 9 =2 we have to put k = 4

. Then we use
uq(2) =3 and u2(4) =9 (cf. [1]).
| ]

4. Remarks

One can ask what is new in this paper in comparison with [1]? The prin-
cipal idea is contained in [1].

tioned.
1.

There are however some points to be men-

We divide the idea of David and Gregory Chudnovsky into two parts,
that of linear algebra and that of algebraic geometry. The first one leads
us to the notion of supercode which may be useful even without algebraic
geometry. All statements of our Paper concerning supercodes are new.

2. They do not distinguish between mq and M

o g " Their statements con-
q ut the proofs are good only for mq . All statements in our paper

167

concerning Mq are therefore also new.
3. For gq = pZm our estimate for mq is better. Their estimate 1is

obtained by a slightly different method and is

m = 2|1 + S -
q Y7 -3
It is valld for gq = pzm z 25 (and the case ¢q =25 1is not completely
proved in [1]).
4. For g being an odd power of a prime they consider only the case
q = 2 . Their estimate for g =2 is

m s6
2

which is slightly worse than ours. Our estimates for other odd powers (and
also for q = 4, 9, 16) are new.

S. They claim that one can construct a polynomial complexity bilinear
multiplication algorithm realizing the upper bound for mq . This last
assertion seems to be unproved. Let us explain this point.

The argument of David and Gregory Chudnovsky is that the curves we need
can be constructed effectively {i.e. in polynomial time). This 1s true (see
[3] 4.3) but unfortunately unsufficlent in two respects:

First, the arguments used both in [1] and in this paper I1nvolve some
“random choice® over an exponentlally large set, since they prove only
existence of a divisor with some prescribed properties and the set of divi-
sors under consideration is exponentially large.

At the expense of constants being worse one can overcome this difficul-
ty (provided one can explicitly construct points Q of degree we need).
This can be done as follows. Let g = pzm z 49 and let {XI) be a family of

absolutely irreducible smooth curves of genus g = gi with

lim |X(F)l/g =vq -1,
L0 q

such that one can polynomially work with points and linear systems on these
curves. It is known that such families do exist (see [3] 4.3). For example
i = Xo(lltl) to be the reduction of the classical modular
being the i-th prime (for q =-p2 ), or XI = X6(pj) where P,

one can choose X
curve, tl
is an irreducible polynomial over Fq of odd degree coprime with (q - 1)
(for q= pZm )}, here Xb(pi) is the reduction of the Drinfeld modular

curve. One can prove



Proposition 4.1. Suppose that for a family of modular curves described
above for any X € {X 1} there is given an explicit point Q@ of X of some
degree k such that

g-WWq - 85)2 -olg) sksg-(Vqg - 5)/2 .

(Let Q be defined, say, by its coordinates in some projective embedding).
Then one can polynomially construct a sequence #H = ﬁi of bilinear multi-

plication algorithms in finite fields F K for the given sequence of
q

k —— o such that

lim p(Eizk =2|1 + —% .
g—o Vg -5

Proof: Since Q 1is given and we can polynomially compute on X and
work with linear systems on them including computation of evaluation maps,
it is sufficient to show that one can find appropriate divisors D and sets
P of Fq*points of X . In fact, one can take # to be the set of "super-
singular” points of X (see {3] 4.2.2) and D = a‘R, where R is any
Fq—point of X . Put a= [(N-1)/2] , where N = {P| . For modular curves
it is known that N=g-(Vg - 1) . Let us check that for the triple
@ b, P Cc;nditions A and B of Section 2 hold. Indeed, we have

deg (D-Q)=a-kz

z (g-(Vg -1)-2)/2-g- (Vg -5)/2=2¢g -1

and
deg (20 - P) = 2-[(N - 1)/2] - N <O
where
P= F§ P.
PeP

Therefore, by the Riemann-Roch theoren,
D -Q) =deg(D -Q) - g =
=deg D-g+1-k=1L0D) -k

and £&(2D - P) = 0 . Thus Conditions « and B8 of Section 2 (and therefore A

and B) are satisfied. By Proposition 2.1 we see that the multiplication
algorithm ﬂl corresponding to the triple (Q, D, ) has multiplicative

complexity
w(@) s N=g-(Vg_ - 1) + o(g) =

= 2k- (Vg - 1/(WVq - 5) ~olg) .

and involves only computation of bases of L{Q} and L(2D) and computation

of evaluation maps which can be done polynomlally..

This proposition means that to get a polynomially constructable algo-
rithm with linear complexity, one needs to construct explicitly (i.e. poly-
nomially) points of corresponding degrees on modular curves (or on other

curves with many points).

Unfortunately, it is completely unclear how to produce such points
and this is the second difficulty which as yet we are unable to overcome.
Moreover we do not know a single polynomial constructlion of billnear multi-
plication algorithm with linear multiplicative complexity.
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The Domain of Covering Codes

Philip Stokes, C.N.R.S. - U.R.A.1376, Laboratoire L.3.5,,
250 rue Albert Einstein, 06560 Valbonne, France.

Abstract
In this paper the relationship between the normalised covering radius and the
rate is considered for both linear and unrestricted codes. We characterise explicitly,
for both cases, the region in the unit square where this type of behaviour is possible
and show that certain types of asyniptotic properties are wholly dependent upon it.

1 Introduction

The covering radius, »(C), of a code ( of length » over an arbitrary alphabet F is defined
by

r(C) = max min d(v,c)
veFn ceC

where d(v, c) is the Hamming distance between the vectors v and c.

There is an extensive literature devoted to the study of this parameter and the reader
who is unacquainted with it is referred to {1].

For the time being, we shall consider exclusively the class of linear codes and shall use
[n, E]r to denote the parameters of a linear code of length n, dimension £ and covering
radius 7. The class of unrestricted codes will be addressed in Section 4.

Let C be an [n,k]r code. The rate of C. R(C), is defined by R(C) = k/n and its
covering fraction by p = r/n.

In this paper we shall determine:

1. For which points of the (p. R)-plane it is possible to find a sequence of q-ary linear
codes ()%, such that :Tig‘; — p. %%% ~— R and n(C;) — 00 as { — o0.

2. Properties of the set of points in the (p. R)-plane which are realised by g-ary linear
codes.

2 Preliminaries

We state here some elementary results on coding theory which will be needed later. Firstly,
we define the g-ary entropy function H, :[o. ﬂfl] — [0, 1] by

Ho(a) 0 ‘ ifz=0,
a(z) = rlog,(q 1) - rlog, & ~ (1 —e)log, (1 —x) if0<uz gLt
3, p. 53]

The proofs of the following are omitted as they are well-known,
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Lemma 2.1 [7, p- 2615]
Let 0 < v < n(%*). Then

) < 3 (7) (g - 1) < gHelE)

n + l j=0
0
Lemma 2.2 [2, p. 331] [The Redundancy Bound.]
Let C be an [n,k]r code. Thenr <n —k. 0
Lemma 2.3 [2, p. 329] [The Sphere-Covering Bound.]
Let C be an [n, k}r code. Then
() e-1yz e
j=0
o

We now turn our attention to a simple method of combining codes which will be used to
prove our main results. ' ‘

Let Cy, C; be g-ary linear codes. The direct sum of Cy and Cs, C1 @ C;, is defined by
Ci®Co={(c1]cz):¢1 € Crye2 € Cp} [4, p. T6).

Proposition 2.4

Let Cy be an [ny, kylry code, Ca be an [ny, ka]ry code.

Then Cy @ Cs is an [ng + na, ky + koJry + vy code.

Proof . ‘

See [4, p. 76] and [2, p. 329]. o
Corollary 2.5

Let C be an [n, k]r code. Then for any a € N there exists an [an, ak]ar code.

Proof : ,

The code

a
C'=pcC
i=1
is such a code, by Proposition 2.4. oo (]

Proposition 2.6

There exist codes C, and Cz such that Cy has parameters [1,0]1 and C, has parameters
[1,1]o.

Proof

Choose C , C; to be the subspaces (0) , (1) of GF(q) respectively. o

Finally, we shall need the following result.

Theorem 2.7 '
Let t[n, k] denote the minimum possible covering radius of an [n, k] linear code. Then, for
fized £ = R,
. t[n, Rn]
lim

X n

= H;'(1- R).

Proof
The proof is given in [1, p. 127]. . o
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3 Linear Codes

We are now in a position to start to tackle the problems raised in the introduction. Let
(X, d) be a metric space and let A C X. An element z € X is called a limit point of A if
each open sphere centred on - contains at least one point of A different from z [6, p. 65].
The closure of A, denoted by A4, is the union of A and the set of all its limit points 6, p.
68]. A is said to be dense in X if A= X [6, p. 70]. Sets K,, L, are defined as follows:

K, {(p, R) : p(C) = p, R(C) = R for some q — ary linear code C}.
L, = {(¢',R):(¢',R') is a limit point of K,}.

When we consider a point (Z, f‘;) € K, arising from some g-ary linear code C, we shall

assume, without loss of generality, that no cancellation of common factors of n(C), k(C)
and r(C) has taken place. In this way it will be permissible to consider C to be an [n, k]r
code. Before proceeding further we define a function J, : [0,1] — [0,1] by

1-Hy(z) if0<e< et
o) = Sz &
Ja(2) {0 if %l<m51.

which will be of use shortly. (

There is a close inter-relationship between the set L, and certain sequences of g-ary
linear codes, as the following results indicate.

Lemma 3.1

Let (p,R) € L,. Then there exists a sequence of g-ary linear codes (C)R, such that
%——-ﬁp, f{%‘}——rR and n(C;) — oo as i —s oo.

Proof

As (p, R) € L, it is possible , by the definition of L, to find a sequence of points (p;, R;) €
K, with the property that (p;, R;) — (p, R) as i — oo and such that (i, Bi) # (p, R)
for all :. Now, for each i, there is a g-ary linear code, B; say, which gives rise to the point
(pi, R:), by the definition of K. Hence we have established the existence of a sequence of
g-ary linear codes (B;)$2, such that ;4(%‘} — p and :J%jl — R as ¢ — co. It remains
to ensure that a sequence of codes (C;)22; can be found which has all the properties of the
sequence (B;){2, but that has the additional property that n(C;) —» oo as i — c0. To

construct such a sequence we alter the sequence (B;){2, in the following way. Let C; = B
and forz > 1 let

Cip1 = @ Bin
i=1
t:or any a € N such that a.n(Bi1) > n(C;). Hence n(Ciyy) = a.n(Biy1) > n(C;) for all
t > 1 by the above construction. Thus n(C;) — 00 as i — co. The result now follows.

o

Lemma 3.2
Let (C;)%2, be a sequence of g-ary linear codes with the property that ;J(%); —p,
%%:%”"’Rwdn(ci)—'*ooasi-——»oo.Then :
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1. R>J,(p) if 0<p<1l
9, R<1—-p if 0<p<L.
Proof

1. When 0 < p < =1, by estimating the sum in Lemma 2.3 by Lemma 2.1, we have for
each code C; in the sequence

<Y () g1 s
j=0 .
and hence 1 — -f; < H, ({;) By taking limits as i — oo the result follows.

For 1—;—1 < p <1 the result is trivial. o
9. From Lemma 2.2 we have £ <1 — -ﬁ and the result now follows upon letting : — oo.

[m]
Corollary 3.3
L, c {(p,R) € [0,1]2 s Jolp) £ R<1-p}
Proof : ]

Immediate from Lemma 3.1 and Lemma 3.2.
The next result is fundamental to the approach we employ.

Lemma 3.4 . o
The line segment joining any two points of K, lies in L,.

Proof ‘

Let (ﬂ- L8 (1z "4) € K,. We may assume, without loss of generality, that n; =ny =n

nytm /0 \n2? n2 . .
. § . . ring kn rzn n ) K..
say, because if n; # nz we know from Corollary 2.5 that (—‘--z-nm2 e nz) and (J—Lm"2 o) € Kq

Hence we are able to assume that [n, kiJry and [n, ka]ry codes exist. It again follows
from Corollary 2.5 that for any u,v € N we can construct [nu, kyu}riu and [nv,kgv]rgv
codes. Hence by Proposition 2.4 an [n(u + v), ku + kovlriu + rv code exists and 50
(%,% € K,. Now set A = ;%-. Hence we have shown that for any points _
A,B€ K, and any A € QN(0,1), MM+ (1 -A)B € K,. As Q is dense in R, these points
are dense on the line AB and hence this line lies in L,. a

There are several consequences of this result.

Corollary 3.5
K, CL,. a

Corollary 3.6
I<q = Lq. 0

So, as may have been expected, K, is dense in L,.

Coroliary 8.7

L, is conver.

Proof

Immediate from Lemma 3.4 and the definition of L,.
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Lemma 3.8
1. .
2. %8:, {q_(p)) (;) <S pPSI}C L, It can be easily verified that, with the exception of Lemma 2.2, and the results consequen-
Proof’ p):0<p<1}CL,. tial upon it, all the proofs exhibited so far hold not only for the class of linear codes but
1.(2) When 0 < p < =1 also for the much larger class of unrestricted codes. This should not be at all surprising
This follows fr 0— pTIx g’ , as the direct sum construction, the main weapon used in the attack on the problems
(b) When 2=2 r<n <eorem 2.1 { presented, applies equally well to both classes of codes. Hence it remains to find a tight
From (a) bq P I\‘ . . upper bound for the domain of unrestricted codes. In order to do this we construct a
above we know that (£1,0) € L : " code which has a maximal number of codewords for a given length and covering radius.
;ve know that (1,0) € L,. The re;ult 1)1ow fgl;:?s i;"é(i:;&osit;o;l 2.6 and Corollary 3.5 Let r and n be integerssuch that 0 < v < n and define a code HP by H} = F "\ Br-1(w)
- As (1,0) and (0,1) € Ly, applying Corollary 3.7 gives theri,e .lt' where By(y) denotes the sphere with centre y and radius t with respect to the Hamming
Lemma 3.9 S o metric anddw is sox:lle arbi?rary fixed vector in F. Trivially, this code has length n,
{(,RY€IP:J(p)<R<]~ covering radius r and contains
Proof () S R1-p}C L, =2 Y i
Let (a,8) € {(p, R) € [0,1]2: J,(p) <R < . ~ -1 =2 -1
intersects the carve B > J (;)) ;tps )< R < 1 — p}. Trivially, the line joining (0, 1) to (a,b) =0 i=r
Now, (0,1) and (g, J,( )q) c L b € point (P(i, Jq(po)) for some po such that a < g, <’1 codewords.
Wi +Jalpo)) € Ly by Lemma 38. Hence, by Corollary 3.7, (a,b) € L,. O Proposition 4.1
e are now abl e . AT gq- ropositio . ]
. able to precisely determine the elements of L, Let C be a code over F with length n and covering radius r. Then |C} < |H}|.
eorem 3.10 Proof
L, ={(p,R) €[0,1}?: Jo(p) SR <1 -p}. As H? has covering radius r there exists an « € F"and a ¢ € H? such that c is the
froof' nearest codeword neighbour of  and such that d(a,c) = r. Hence B,_1(a) € F™\C. Thus
mmediate from Corollary 3.3 and Lemma 3.9. |C| < |F* = |B;afa)l = |H?|. ul
This result enables us to = In order to facilitate the presentati f future results we defi functi
! answer completel ) . o . 1 order to facilitate the presentation of future results we define a unction
For given any point (, R) € L, we kxl ? y the first qgestlon raised in the introduction. U, :[0,1] — [0,1] by
q - ary linear cod . row lrom Lemma 3.1 that there exists a se
as i codes (C;)22, such that 1{%—1 — %C;) . Randn(C) quence of 1 if 0< <
7 —_ oo. C § . ~n o * n(C,) 1) n i — —_ ] — q
% e ‘ilj_\iexj;ly, dglven a sequence of q-ary linear codes (C;)%2, such th(:t) Uy(2) log,(¢ —1) + {1 — log,{q — 1)}H“4_T(1 ~z) if 13—‘- <z<lL
Th:eorem 3.1,0ntc}';)at (s, R) :lL n(geizil — %0asi — 00, we know from L:s—r.nma 3.2 and
] . ce .
can be found if and only if (p,qR) €L, @ sequence of codes with the specified properties Lemma 4.2
| ' (0, Uy(p)) : 2 <p <1 C N,
4 U tri Proof '
nrestricted Codes Let (r;)2;,(ni)%2; be sequences of integers such that 0 < r; S m; for all ¢ and such that
Th n; — 00, & —» p as i — o0. Now consider the sequence of codes { A7 =
e results ‘tha.t have been presented here can be extended : . We have ( )‘=l
codes, as will now be shown. For t} i to cover the class of unrestricted
of size g. Let C be - I'or the remainder of this section F will denote an alphab n,
codewords. The o (n, M) code over F, i.e. a block code of length dap- abet VHY | = 2 @)e-1)°
(n, k)r Wili be 9(;31twlcldzsed dimension of C, k(C), is defined. to be logg Mn f;ﬁ with M ol
s used to denote a code of this i ' g M. The notation i =
k a'rIl d covering radius . of this type which has length n, generalised dimension ! = S (N~ 1y
D a manner analogous t e b=0
as follows gous to the method for linear codes, we define the sets M, and N n X (n b -1
| ‘ ’ = (¢-1)™ T () —1), wherey—1=(¢-1)7"
M, = R): o(C) = , : b=0
Nq - {(P: )/ P(C;) = P., R(C) = R for some code C over F}. i
e = {(¢'\R'):(p',R)is a limit point of M,}. i Hence, by Lemma 2.1
‘ 1 ¢ St ) L“;!L
—(a- 1" (5 < < g (5)
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when &=} < 4L < 1,

n
1t follows from this that in the same interval »

— i log",(:_li *+1) +log, (¢ — 1) + H,(1 - -:%).logq'y < log, 171 'H:H
and l " " 1
2T < ogyta = 1)+ B (1 - ) log,
Hence . log, |H™|
lim ——2" = Jog, (¢ — 1) + {1 ~ log,(¢ — 1}H 2. (1~p)

when 9—'5'-1- <p<L

The result now follows. 0o
Corollary 4.3

Let (p, R) € N,. Then R < U,(p).

Proof

1. When 0 < p < =2,

In this case the result is trivial.

2. Whengfl-Spgl.

The result follows by Proposition 4.1 and Lemma 4.9, 0

We are now in a position to obtain an analogue of Theorem 3.10.

Theorem 4.4
No={(p, B) € [0,1]* : J,(p) < R < U,(p)}.

Proof
Immediate from the unrestricted analogues of Corollary 3.7, Lemma 3.8(i) and from
Lemma 4.2 and Corollary 4.3. 0

5 Conclusion

In this article we have shown that the domains of linear and unrestricted covering codes
are as depicted in Figure 1. It is interesting to observe from this that it is possible to find
non-linear codes which are a lot worse than any of their linear counterparts, in the sense
that they have large covering fractions for a given value of the rate.

The analogous problem to the above, in which minimum distance replaces covering
radius, has been studied by Vladut and Manin [5, 7). Whilst the problems are ostensibly
similar, there turn out to be significant differences between the two situations. Indeed,
in [7] it was shown that it is possible to find points in the (6, R)-plane which are realised
by codes but which are not limits of sequences of such points. This cannot happen in the
(p, R)-plane, as Corollary 3.5 and its unrestricted analogue show. '

A curious occurrence is that while, in general, it is much easier to find the minimum
distance of a code than its covering radius, the domain problem for minimum distance is
much harder than the corresponding one we have studied. The method we have employed
hinges crucially on Theorem 2.7 and the difference is largely explained by this. The exact
nature of the packing domain is still not completely determined, although it is known that
the region in question is bounded by a continuous decreasing function of & [7, p.2614]. -
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0 -1
T 1

Figure 1: The domain of linear and unrestricted covering codes (left and right respec-
tively).
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Introduction

The geometry of varieties defined over a finite field is
somehow reflected in their numerical properties. The numerical
invariants of a curve over F - such as the number of points
over a given ground field extension, the number of points on its
Jacobian, the number of positive divisors of a given degree, and
SO0 on - can be expressed in terms of the Galois action on
cohomologies, i.e. in terms of the Frobenius roots. The
behaviour of these roots is rather restricted when the genus of

the curve is much larger than the cardinality of the field.

When, for a given finite ground field, the genus tends to

infinity, there happen to exist nice asymptotic formulae for
different numerical invariants.

In this paper we generalize some results on the number of
peints on the curve (due to Drinfeld-Vladut ([Dr/Vl1]) and Serre
[Se]), and on its Jacobian (due to Vladu{ ([V1], Rosenbloom and
the author [Ro/Ts]), give a formula for the asymptotic number of
divisors, and some estimates for the number of points in the
"Poincare filtration®.

We introduce the notion of an asymptotically exact family
of curves and try to use it whenever possible.

I would like to thank S.Vladut and the referee for many
valuable remarks.
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Zeta-function

It is well known that the number Nr of points over

F on a curve X over Fq is given by the formula
r
q
2g
r
N.=|x(F )] =q +1-F w; ,

q i=1,

and the number of points on its Jacobian is given by the formula

2
h = IJX(Fq)I = ﬁ{ (1 - “’i) '

w; being the Frobenius roots, wg,; = w; o Ju;l =vg .

Let Bm be the number of points of degree m on X . It
is clear that N =m}i‘,rm-Bm .

We consider the behaviour of these values in a sequence of
curves X over Fq whose genus g = g(X) tends to infinity.

To study numerical invariants it is extremely fruitful to
consider the zeta-function of X .

Zeta function is defined in one of the four equivalent ways

Z(t) exp [mgl m'—%f ] =

P(t)
(1 -t)(1 - qt)

= ;(l—tm)-m=
=1

2
here P(t) =T |(1 - a&-t) ’ and Dm denotes the number of
i=1

effective divisors of degree m .
The zeta-function satisfies the functional equation

Z(g't™) = (vgt)2 9.z
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Divergent series

Let us for a while play some dubious game with the
zeta~function of a curve X over Fq

We have the following two equalities (of formal series
in t).

Proposition 1. We have the equality

2g
Tt — - L 54— = Impp—l .
th -1 gt -1 dmiweltTt - m=1 B¢R o

Proof: We use the second and the third definitions of the
zeta-function:

2
log Z(t) = - log (1 - t) - log (1 - qt) + Zgiog (1 - wit) =
i=1

(]
=- I B log (1-th,
m=1

Taking derivatives and multlplylng by t we obtain the
proposition.
]

Proposition 2. We have the equality
2g-2 o B
P(t) =t“97% (1 - t).(1 - qt)-q9 ;1 - g By B
m=1
Proof: This time we again use the second and the third
definitions of the zeta-function, but we also make use of the
functional equation:

P(t) = (1 -¢t)-(1 - qt)-2(t) =

= (1-1t)-(1~-qt)2(gt?) (Vg t)29"2

-1 2g-2 ® -B
=(1-1t)(1-qt)-q91e?92 g (1 - g M) B
m=1 -

Now let us put t = g*?

We get

L B

m=1 qm 2

in the formula of Proposition 1.

[ 1 1 ] g 1
= + - 1
172 - z { - + ] =

‘g-lo
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Putting t = 1 in the formula of Proposition 2 we get

h=|Iy(F)| -Ig'[(l-wi)-P(l)-

. . © - -B
=1-1-1-qadtpg(1-q%) ",
‘ m=1

Both formulae look very suspicious. The first one, besides the
fact that it can happen that qu2 = 1 , has the disadvantage
of the series on the left being dlvergent; The second one needs
some way to multiply (1 - 1) by the divergent product on the

right hand side.
‘The first goal of this paper is to show that nevertheless
these formulae are not so far from being reasonable.

Results

Let us start with some formulae for the number of points on

the curve (in terms of B, ).

Theorem 1. Let g——>w and let f : N—— N be any

function such that
f =
Lim oy =0

Then
f(g) mB
. 1 m
1 e R S, T

All the proofs will be given in the next section.

Remark. For f(g) = one gets the Drinfeld-Vladut

inequality ([Dx/V1]
N,
lim sup al s Vg =-1.
For f(g) equal to a constant the theorem was stated without

proof in [Se].

The condition on f(g) in Theorem 1 is really important.

We have
[

i .
B I /'//I
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Theorem 2., Let g-—>w and let f :N-—3> N be any

function such that
f
lim —1——(1)—0 gg -°-

LA "By
) gm-—-l qm/2 -1 .

Then

lim
-

A simple diagonal argument proves that each sequence of
curves of growing genus has a subsequence for which for all n
there exist limits

We shall call such sequences of curves asymptotically exact
families.

For such families we obtain

Corollary 1. For an asymptotically exact family of curves

> "Fn_ oy

.. I .

m=1 g% -1 L
w m-Bm

The *"defect" 1~ is in fact "the 1limit

) S —— -
m=1 g% - 1
number of Frobenius roots equal to Vg ™. We hope to return to
this remark in another paper.

Now let us consider the number of points on the Jacobian.
Here we shall get some equalities.

Theorem 3. Let g-——>o and let f : N-—> N be any
function such that

lim f(g) = o»
and

o

log f
- 1im 2og f(g) _
m =L 0

Then

f(g)
lim [-;—-log n-31 T Bm-log __ﬂ_] = log q.
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For a family of curves let us consider the quantities

H.

= 11 1.
inf °= lim inf [g log h] ’

= i e @
HSUp := lim sSup [g logb'h] .
If they coincide we just write

» o i 1- =
H := 1lim [-g— log h) = Hinf Hsup .

Corollary 2. For an asymptotically exact family of curves
the limit H does exist and

(]
H= log q + ):Bm-log——ﬂ—.
m=1 qm-l

Remark. Even if we know only partial information, we can
get something. If lim (Bl/g) = ’31 then Theorem.. 3 gives us
Vliadut{’s inequality [V1]

H

.inf,z log q + 81-10g

-9 _ .
g-1

Moreover, if lim inf L. 8 for m=1,...,k then

g m, inf

x &
zlogqgq+ Y B_ . .log
=1 m, inf qm -1

Binf

It can happen that "almost all points of a curve are of
small degree", in this case the same is true for its Jacobian:

Theorem 4. Let g——>w ., If

k mB
. 1 m
lim —=- E — = ]
9 m=1 q‘m/2 -1
then
1 1 k m
lim [._.log h - =. 2 Bm'log .._g___._] = log q.
g 9 m=1 " -1 -

Here is a simple corollary:

Corollary 3. If for a sequence of curves for m sk there
exist limits
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and moreover
k m-g
m=1 gV? -1

then the limit for H also does exist and

k
H=logqg+ ¥} 3m-log———£—.
' m=] qm-l

Remark. For k=1 we get the result from [Ro/Ts]: If

N
lim sup 51 = Vg -1

’llim‘é-log,h = logq + (\/q'-l)-log-TI-—gT

The following result is an easy consequence of Corollary 2.

Theorem 5. consider all curves over l-'q . Then
logqsﬂinfsusupslogq+ T - 1)-log&—g-—1 .
. n
Remark. From h =y(1 - w;) it is obvious that H; r and
Hsup lie between 1log (q - 2¥g +1) and log (@+2vg" +1) .
The Quebbemann’s estimate [Qu] gives 1log (q + vq') as an upper
bound. oOur lower bound follows also from Theorem 2 of Lachaud
and Martin-Deschamp {La/MD]. The estimates of Theorem 5 are
tight. Indeed, for an exact family with Bm =0 for all m
(such are, for example, families of abelian coverings
[Fr/Pe/st]) the lower bound is attained, and if g is a square,
the upper bound is attained for exact families of modular curves
with 31==‘/¢'F-1 and Bp=0 for m=z=2,

Now we turn to the last definition of the Zeta-function. If
mz2g -1 then

D =nh 9 -
m = qg -1
since any divisor class L of degree m containg

(gt - 1)/(q - 1) positive divisors and I(L) =degL -g+1
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if deg Lz 2g -1 . The Riemann-Roch theorem also shows that

for any m

1-g 1-g _ 4
D, = & "Dygogep * B =T .
Therefore it is enough to study D, , D, ., cee o Dg-l .

In the asymptotic setting we shall look for the values
1
g
Here of course by ug we mean the nearest integer and for the
limit to exist one needs some hypothesis on the family of curves
we consider. When A(u) does not exist, we can consider

A(u) := lim =-log Dyg -

N

. . 1 -
A(W) jpp = .lJ.mv inf -5-109 Du '

. 1
A(W) gyp i= 1lim sup g 109 Dyg -

The following result was proved by S.G.Vladut and the
author (the proof is to appear elsewhere).

Theorem 6. For an ésymptotically exact family of curves
the limit in the definition of A(u) does exist and if we set

o M'Bm
R
m=1 ¢" -1

__‘ZL-H- (1 ~u)-loggqg

-]
= y-lo + ¥ B log
Mu) =wlogg+ T By, p

then for u= i,

and for 0 =pu=p,

: w© Am
= . + .lo r—————————
A(u) = u-log A NEIB,, 9@ !
where A = A(u) is uniquely defined by the condition
© m-B
m
z M =4.
m=1 A" -1 =

Remark. 1Let us remark that u 5 s1 . In fact,
© m.B o me Bm .
m
= < ¥ s1
Ho m£1 -1 m1 gV
because of Corollary 1. It is also worthwhile to remark that
A(n) can be written as a sum of the linear function u-loggq,
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which corresponds to the "no points" situation (when all Bm
equal zero) and something depending on the numbers of points.
The latter quantity grows for O =su = K, and becomes constant
for larger u .

The next question concerns the "Poincare filtration® on the
Jacobian. Let 'jm be the number of classes of positive divisors
of degree m . We are now Ainterested in the values

I(“)inf := lim inf {—-log'jug)

T(u)sup = lim sup [%-Iog jug]

here again we abuse notation writing ug for the nearest
integer. When these values coincide, we write

T(u) :=lim [X-Jog j ) = 1), . =1(n)
g ug inf

In the most interesting case when X (I-'q) is not empty, let us
fix an- F q—point P, . Then any positive divisor D is mapped
to the element D - (deg D) P eJ (F ) . By J denote the

sup °

m
image of the set of positive d1v1sors of degree m in Jx .
Then =|J,l -+ It is well known that Jg= X(Fq) .
Therefore, T(u) =H for pu=z=1. We call
= J(F =2 J 2J 2 .02 J = {0
Ig = Ix(F 23, 27, (0}

the Poincare filtration (the name is due to the fact that Jg -1
is known under the name of the Poincare divisor).

Theorem 7. For an asymptotically exact family of curves
and u< 2

Aw) - 5-log g = T(u); .= T(H) gyp 5 B(H) .

Moreover, if u < Bl/(q + 1) then the limit does exist and

T(u) = o(u) .
Remark. One can conjecture that in fact for an
asymptotically exact family of curves T{u) does exist and
T(u) = &(u)

for all values of us1. As yet I am however unable to prove
this.
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Proofs

We shall start with two known statements (cf. ([Dr/V1]},
[Vl], or section 2.3.3 of {Ts/V1l]). The proofs being very short

we give them here.

Lemma 1 [Dr/Vl1l]. For any integer bz 1
b .\ N b LG (il gmIlA).
N e R A (et UL

j=1

Proof: Let a, = wi/\/q' . Since for any oy

i
2 ES |
0= joP + a‘i”l + u.. 4+ 1]2 = (bF1) + _z (b+1-1) - (af+ald) ,
. Jj=
b
we get b+l = -): (b+1-j): (aJ+a J) , summing it over
= j -j g .
i=1,...,29 and using Y oy = r oy and igla
- Nj.q-j/z — gl o g e get
b s . i/
g (b +1) =2 T (b+l-j)- [ g2 - gil? - g J/]
=1 J -
Jj=
Lemma 2 [Vl1]. For any integer b=z 1
b _-j
1 1 9 -_.N. -
= h=1 + = .
glog °9a*g L TN
b -5 © j/2 2g
- l- i+ T - !‘.- . o -
gj£1 J 9j=§+1 T g=m i
Proof: We have
2 ~-1/2
-1-°logh=}--log| (1 - w),) =—-log[ l l(l-a q )]
g g i=1 i
=j/z 2g j
logq+—' Zlog (1 - a;-q/? —logq-—' > L5— Laf=
9 i=1 J-l : .i—l

—j/z . . o J/Z 2g
1_ ~i/a_gqife_gmil?) ._. 4. )j of.
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Proof of Theorem 1: The second term in Lemma 1 is at most

b
2. p 2.2 - 1!/
g ) 1/2
Jj=1 g-{g’” - 1)
and for b = f(g) it tends to zero because of the condition of
the theorem. In fact, there exists a function 1(g) such that

it also tends to zero for b= 1(g) and such that f(g)/1 (9)
tends to zero. :

Lemma 1 now shows that

1(qg) N,

- J d _gmi/e
1+ o(1) =j§1 (1 TG 1) 9 =
£(g) N £y
- d.g=d/2 N g) -
=L - rh) e a Mg 1 L — a7

J=1

The last expression tends to

f(g) i - £(a) -
j/z E .:_l..q J/z. z mB =

_]—1 j=1 9 m| j m
_ f(g) m-B i [f(g)/m gz
m=1 g i=1
_ fz(:g) mBy  omsa_1 - gV IE(g)/m]/2
m=1 g 7 1-g ™2 !

which tends to what we want.
[ ]

Proof of Theorem 2: Suppose that

llm_fb'égé— =@,

limi?l = ©

(in fact this weaker condition is sufficient for Theorem 2). Let
b = £(g) . Then

Then

b-Bb Ny=LdByg=N, -FT N =

dib dib
z P - 2g+ qb/2 )l:b(qd +2g-q%/% 4 1),
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(9)/2
and since d s b/2 and lim -—{f—— = w , we see that

g
£(g) m-B b-B i/z
1 m . 1 b
1im L. —_—2 = lim =- z lim =e.
R P 7Y g -

Proof of Theorem 3: The last term of Lemma 2 tends to zero
for any b tending to infinity. Note that

§ -(1 + log £(g))

also tends to zero because of the condition on f£(g) . Therefore

Lemma 2 gives

£ (g) -j £(9) o]
1, - = 1. = 1. . ‘B =
g log h - logg=z j=1 93._ N K j£1 93— m)I:j mBy,
(9) {(£(g)/m] ~im
1
= = B - ) E _g.,___ =
g m§1 m i=1 .
| £(9) £(g) = ~im
: 1 q : 1 . g,
i = = B -1 - T B :
g piy Pm 19 -1 9 iy [f(9§:/m]+1 A

The last term can be estimated as follows:

N fi(:g) .. - gin l.f,‘;g’ Ny gm(If(@/m+)
9 m=1 ™ (f(g)y/my+1 * Im=1 ™ ([f(g)/m1+1)-(2-¢ ")
It tends to

-£(g)

f(g) ~f£(g) (g)
5 __.‘l____s_ (q‘"+1+2gc{"/2——-—1——-—-—-——-—

gnr-l "r@-(-g™ 9 N £(g)- (1~ ™)
vhich is at most
~f(g)
%. (qf(g) + 1+ zg,qf(g)/z) ._q_____ .
(1-g° %)

The last expression tends to zero since both g and f(g) tend
ta infinity.- ‘
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Proof of Theorem 4: Let £(g) = (log g) vz, Then

lim £(g) =w, 1lim£(g)/(logg) =0 and lim (log £(g))/g = 0.
Thus we can apply both Theorem 1 and Theorem 3. If

k m-B
. 1 m
lim = E e e
Im=1 V2 -1

then, because of Theorem 1,
1 fl@) mB

lim =- Y =0
I mtr1 V2 - 1

It is clear that

m m -im im,, =1, -1
> =m- ¥ > L qg /i =1og (1 - .
-1 P i=1 i=1 g-any
Therefore
£(g) -
lim L. Y Bplog (1-g Mt =0,
m=k+1

and Theorem 3 gives the answer.

Proof of Theorem 5: The left-hand inequality immediately
follows from Corollary 2 since any family contains an exact one

and Bm 2 0. To estimate H sup from above we should find the
maximum of

F(8) = I Bm-log—‘ﬂ—

m=1 " -1
for all B = (Bz'Bz"”) subject to the condition

] m-Bm

I — 2 —s1.
m=1 V2% -
If the last inequality is strict, change B, by a larger §;

such that the sum equals 1, then F(B) will also become larger.
Thus we can suppose that

. @ m,Bm
8, (VE‘-1)[1-m£2 s 1]

and F -1) =7
(B) equals (vg~ -1)-log Lo plus G() L Cufa
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= q - VT - 1) — 9. . We
where cm-.log 3 (vq 1) qm/z_llogq_l
shall show that Cn = 0 for any m=z 2 . Indeed
w ~nn -1
n q.
c = z[__q__(/?_l).___. ]=
m n= n dn/z -1 n
© -mn
-1)n
=¥ "g‘ﬁ—(l - (Vg - 1),_____/_{:______.11(111 ) } s
n=1 3 dv? -
and ]
/2 _ m-1 m-1 - -
1=\/q + vou +1smvVg. <1u-c_(mlsm-q(m 1)n
ql 2 _ 1
Therefore, the maximum of F(B) is attained = when

Bl=1/q -1, and ﬁm=0 for mzz..

Proof of Theorem 7: We have a map
+

p : Div, — J,

from the set of positive divisors of degree m to Jm , mapping
D to the class of D - (deg D) -P0 . If Le Jx(l-'q) then
I(L)
-1 -1

g = et @] = Tg—7=.
and I is defined by the condition

Tp = (L€ Ty(Fp) | n 21y .
Therefore D, = |Div;| z |J m| , and the right-hand inequality
follows. On the other hand, for m=s2g - 2, we have either
I(K=-L) =0 and I(L)=m-g+ 1<g-+1 . or L 1is special
1(L) s‘-;-+ 1. Thus

which yields the

and the Clifford theorem gives

ana_g_l_.qm/z « and Dmsq—‘l—y-q'"/z-w,,.l

left-hand inequality.

To prove the last assertion, note that if m< B1/ (g + 1)
then 1(L) =1 for any L e In * Indeed, if D =D, + (f) and
both D1 and D2 are positive, then deg(f) = deg D1 =m, on
the other hand deg(f)-(q + 1) = |X(Fq)| since f : X —— P'

maps F q—points into F q-points.

In fact, we have just counted the number of classes of
positive divisors of degree m . Therefore the assumption that
there exists an Fq-point is not important for the proof ‘.




192
References

[Dr/v1] v1adu;, S.6., Drinfeld, V.G.: Number of points of an
algebraic curve. Funct. Anal. 17, 53-54 (1983)

[Fr/Pe/st]) Frey, G., Perret, M., Stichtenoth, H.: Oon the
different of tamely ramified abelian extensions of global
fields. This volume

[La/MD] Lachaud, G., Martin-Deschamp,“M.: Nombre de points des
Jjacobiennes sur un corps fini. Acta Arithm. 56, 329-340 (1990)

[Qu] Quebbemann, H.-G,: Lattices from curves over finite
fields. Preprint (1989)

[Ro/Ts]) Rosenbloom, M.Yu., Tsfasman, M.A.: Multiplicative
lattices in global fields. Invent.Math. 101, 687-696 (1990)

[Se] Serre, J.-P. The number of rational points on curves over
finite fields. Notes by E.Bayer, Princeton lectures (1983)

[Ts/V1] Tsfasman, M.A,, Viadut, S.G.: Algebraic-Geometric
Codes. Kluwer Acad. Publ., Dordrecht/Boston/London, 1991

[Vi] Viadug, sS.G6.: an exhaustion bound for algebraic-geometric
modular codes. Probl.Info.Trans. 23, 22-34 (1987)

ON THE WEIGHTS OF TRACE CODES

Conny Voss

0. Introduction

Let C be a linear code of length n over the field GF(¢™) (where ¢ is a power of some
prime p) and tr : GF(¢g™) — GF(q) denote the trace map, i.e.

tr(y) =9+ +...+ 7"“_1 for v€ GF(g"‘).

‘We define the trace code of C to be

tr(C) = {(tr(n),-- -, tr(w)) € GF(9)" | (m,.--,1) €C).

Clearly, tr(C) is a linear code of length n over GF(q). Many interesting codes over GF(q)
can be represented as trace codes. For example, the dual code of a subfield subcode is
always a trace code (Delsarte’s theorem [3, p.208]). In particular, the duals of BC H codes
can be considered as trace codes.

By using the Hasse-Weil-Serre bound for the number of rational places of algebraic func-
tion fields over GF(¢™), we obtain an estimate for the weights of codewords in tr(C) for
a large class of trace codes. Our bound generalizes some recent results of Wolfmann {61,
Lachaud [2] and C. Moreno and O. Moreno [4]. Trace codes also were considered by van
der Geer and van der Vlugt [5].

1. Notations

Throughout this paper, we consider an algebraic function field F/GF(¢™) of one vari-
able. We assume that GF(¢™) is the full constant field of F, and we denote by g(F) the
genus of F/GF(¢™). We fix aset S = {P,,..., P} of n distinct places of F of degree one
and a finite-dimensional GF(g™)-vector space V' C F satisfying the following condition:

The pole set of any f € V is disjoint from S.
Due to these assumptions, we can evaluate f €V at any place P: € S, and we define the

code '
C={(f(R),....f(P)) | f€V}SGF(g")

and its trace code

tr(C) = {(tr f(P),...,tr f(Pa)) | f €V} < GF(q)"

Observe that our definition of the code C is slightly more general than Goppa’s construc-
tion of algebraic geometric codes. This generalization is motivated by the fact that any
cyclic code over GF(q) can be represented as tr(C) for an appropriate choice of F, V and
§ (see section 4 below).
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An element f € V is said to be degenerate if there exist some A € F, a € GF(g)
and § € GF(q™) such that

f=a-(*-h)+3,

otherwise f is non-degenerate (note that p = char (GF(q))). The vector space V is
called non-degenerate if V consists not only of constant elements and if any non-constant

element f € V is non-degenerate. For any non-degenerate f € V we consider the function
field Ey = F(y), defined by the equation

yY-y=f

Since f is non-degenerate, the extension E¢/F is an elementary abelian p-extension
of degree ¢ (cf.[1], Lemma 1.3), and GF(q™) is algebraically closed in Ey. Finally let

g =max {g(Es) | f €V is non-degenerate } and N(E;) = § { places of E;|GF(q™) of
degree one }.

2. Main result

2.1 Theorem. Let V be non-degenerate. Then for the weight w of any codeword of
tr(C) we have w = 0, w = n or

-1 1 -1
Jw- 2 -nISE(g—y(F))Pq’"’zH———qq -k,

q

where k denotes the number of places of F' of degree one which are not in S.

Proof. For any non-constant element f €V we have

(*) | N(Es) = N(F) | < (g(Ey) - 9(F))24™"?

(cf. [2, Rem.4.4]).
Consider a codeword ¢; = (¢r J(P1),...,tr f(P,)) of weight w.
Observe that for every 1 < i <n

tr f(P)=0 iff f(P)=+"—+ for some v € GF(¢™)

(Hilbert’s theorem 90).
This is equivalent to the fact that there exist g places of degree one of E; lying over P,

since y? — y = f is the defining equation of E;. The number of zero components of ¢; is
n — w, and thus we have

N(Ej) =q(n —w) +r,

where r denotes the number of places of Ey of degree one which are not lying over a place
of S. Setting

€f=r—k,
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4 and observing that

0<r<gk and N(F)=n+k,

we can write

N(Ef)—= N(F)=g(n—w)—n+e with —k <e; < (g—1)k.

i i by g.
Therefore the assertion follows by () if we replace g(Ej). Vg
{ For any constant f € V we have w = 0 or w = n depending on the value of tr(f). O

22 Corollary. Let V be non-degenerate. Then the mininum distance d of tr(C) sat-
isfies : :

- 1 K
a> L0 Lg— gm2emr- £
q q q

23 Remark. If ¢ = p is a prime and if f € V is degenerate then the weight w of

the corresponding codeword ¢y is 0 or n.

| Proof. K f =a-(h*—h)+B, h € F, a € GF(q)* and f € GF(q™), then tr f(B:) = tr(f)

forevery1<i<n. O

© Now we want to apply theorem 2.1 to the class of trace codes of geometric Goppa codes.

3. Trace codes of geometric Goppa codes

LetD= YimPiand G=37 rﬁij be divisors of F with G > 0, supp GNsupp D =0
- andlett =377 deg Q;. Consider the geometric Goppa code

C= {(f(A),....f(P)) | f € L(G)}.

. We assume that V = L(G) is non-degenerate.

- 31 Proposition. For every non-constant f € L(G) we have

-1
9(Ef) < q-g(F)+ 2 —(deg G+1-2).

Proof. The proposition follows from the genus formula for elementary abelian p-extensions
in {1, Th.2.1 and Prop.2.2). O

As an immediate consequence of theorem 2.1 and proposition 3.1 we obtain the following
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result (cf. Lachaud [ 2, Th. 6.3], Moreno’s [4, Th.9}):

3.2 Theorem. Under the above assumptions the weight w of any codeword in tr(C)
satisfies w =0, w=nor

-1 -1 : -1
Iw—q—q———-nl S-q—2-q-—-(2g(F)+deg G+t—-'2)[2q"'/2]+?—q-—-k

4. Cyclic codes

Let n € IN,(n,q) = 1, such that GF(¢™) is the splitting field of 2™ — 1 over GF(g),
and let 8 € GF(¢™) be a primitive n-th root of unity. For any integer ¢, the cyclotomic
class of 1 is defined to be

I(#)= {0<t<n-1|t=ig (modn) for some i}
and the minimal polynomial of §* over GF(q) is
mgi(z) = [] (= - BY).
ter(i)

Now we consider an arbitrary cyclic code of length n over GF(g). In order to apply the
main theorem we first have to represent C as a trace code. ‘

Let 2" — 1 = g(z)h(z) where g(z) is the generator polynomial of C. We denote the
reciprocal polynomial of k(z) by ht(z).
A subset J C {0,...,n — 1} such that

hl(z) = Hmpj(.’l),
el

is called a B-check set of C.

Let F = GF(q™)(z) be the rational function field over GF(g™) and S = {P,...,Pau}
where P; is the zero of z — §°, 0<i<n—-1. We define

V={flz) =) ajz’ | a = (a))jes € GF(g™)}.
jeJ

" Then we have

C=tr(V)={(tr fo(8°),...,tr fu(B"Y)) | fa€V }

(cf. [6, Prop.2.1]).
Let r € IN such that nr = g™ ~ 1. Then the set of n-th roots of unity in GF(g™) is also
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the set of r-th powers in GF(¢™)". Therefore the elementary abelian p-extension Ej, is
defined by the equation
Ty -y =fale).
Observe that
§ {z € GF(¢™)" | tr fu(e") = 0} = r(n — w,),

where w, is the weight of the codeword in tr(V) corresponding to f,.
Thus we have
N(Efa) Z qr(n - w“)'

4.1 Theorem. Let C be a cyclic code of length n over GF(q) with 8-check set J such that
(js9) = 1 for every j € J, and let p = max {j € J}. Then the weight of any non-zero
codeword in C satisfies ' ’

| W — qm--l(: - 1) l < (q - 1)(91‘ - 1) [2qm/2].v

2rq

Proof. Since every element of J is prime to ¢ it follows that V is non-degenerate and that

for every f, € V 4
g(Ej,) —_ (q - 1)(7‘ '2eg fa - 1)‘

Thus we have (0= 1)( 1)
— 1D)(or —
| N(B) = (" +1) | < 222 ogmra,

! Moreover, since f,(0) = 0, there are ¢ places of degree one in E;, lying over the zero of

2, and there is only one place of degree one lying over the pole of z. Therefore
N(Eg)=qr(n—w)+q+1

and, as rn = ¢™ — 1, the theorem follows. O
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1. Introduction

Soit Cpp, un code BCH binaire, de longueur 2™ — 1 = g — 1, de distance prescrite
6 =2t +1. Alors, d’aprés la borne de Carlitz-Uchiyama ([7] p. 280) le poids w d*un mot
de code non nul du dual de C,, est tel que

fw — 2™ < (¢ - 1)2™/2,

Dans [7] (Research Problem (9.5)), MacWilliams et Sloane suggérent un résultat un peu
plus fort:
fw — 2™ < (8 —1)2lm/A,

ol par [a] on dénote la partie entiére de a. Pour un nombre m impair cela veut dire
jw — 21| < (¢ — 1)2(m-D/2,

On peut montrer que cette inégalité est vraie pour les codes de distance prescrite 3, 5
ou 7. En effet le dual du code étendu C,, se plonge dans un code de Reed et Muller
R(2,m) ([7], p. 385) et les poids de ce dernier sont multiples de 2((m=1/2 ([7], p. 447)
Cest-a-dire de 2(™=1)/2 5j le nombre m est impair. De ce fait et de 'inégalité de Carlitz-
Uchiyama, on déduit, pour le code C%, dual du code BCH de longueur 2™ — 1 et de
distance prescrite 8, que .

w-2m"1 € {0} si §=3,

jw-2m-1 ¢ {0,2(m-1/2} si §=35,
lw—2m"1 € {0,2m~D/2)2.2(m-D/2} 4 §=7,
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ol w est le poids d’un mot non nul du code Ck et oty m est iinpa.ir. Donc P'inégalité
lw—2"71 < (¢ - 1)20m-)/2

est vraie dans ces trois cas-la.

Cette inégalité n’est plus vraie pour § = 9 comme on ’a montré récemment dans
[8]. On va montrer ici qu'il en va de méme pour d’autres valeurs de § (par exemple
6=19,25,49,73,81... On conjecture qu’il y en a une infinité, cf. par. 4). En effet pour
ces 6-1a il existe une infinité de nombres m impairs tels que

[w—2771 > (¢ - 1)20m-1/2

pour au moins un mot du dual de C,,.
Plus précisément, on a, pour de tels §

. jw —2m"1
li L N S -
Amp oy = VA= D,

Pour cela on montre d’abord que les mots de code ¢ du dual du code étendu Cn
peuvent se représenter par des polyndmes f dans Pespace Fy[z] de degré k = § — 2, puis
que le poids w du mot de code c est 1ié & la somme

Sm(f) = Yo (~1) 12
F,
par
Sm(f) = 2™ — 2w.

Ensqite l.e théoréme qui sera prouvé ici donne une minoration des sommes Sm(f), pour
une infinité de valeurs de m:

lim sup [Sm(A) ] =2(t~1),

m impair 2"'/ 2
ol f est un polyndme particulier. C’est la meilleure minoration possible, puisqu’on a

1Sm(A)|

e <2t - 1)

d’aprés la borne due & Weil [10] (voir aussi Serre [9D.
Rappelons que Bas{salygo, Zinov’ev et Litsyn ont obtenu une autre minoration de
telles sommes exponentielles [1]. En caractéristique 2 on peut déduire de leurs résultats

qu’il existe un polynéme f de degré 2" + 1 & coefficients dans Fj2r41, de trace non
constante, tel que

| S2r4a(f) | 2 2%

Qe }1’est pas suffisant pour ce que ’on veut démontrer ici, puisque ¢a ne montre que
I'inégalité
Iw - 2m-1| ->- (t _ 1)2(m-—1)/2,

avec m = 2r + 1, pour un code BCH de distance prescrite § = 2" + 3 = 2t + 1.
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Par contre, en caractéristique p différente de 2, ils considérent les sommes

Sulf) = FE; arp (2EELE),

ot ¢ = p'. De leurs résultats, on déduit que pour tout r il existe un polynéme f de degré
d = q" +1 & coefficients dans Fgr+1, de trace non constante, tel que

| Sm(£) | = (d = 1)g™?,

pour m =2r + 1.
Autrement dit les expressions | S,,(f) | atteignent leur borne de Weil, pour au
moins un f de degré ¢" + 1. dans Fparsa[z]j et m =2r + 1.

2. Les codes BCH binaires étendus

Soit &, le code BCH binaire étendu de longueur 2™ = ¢ et de distance prescrite
§. On définit la trace Tr de Fy sur F3 par

m—1

Tr(z) = z xzi.

i=0

Proposition 1.

1) Le dual de C,, est le code associé & I’espace F[z}i des polynémes f € Fy[z] tels
quedeg f < k, avec k=6 — 2.
2) Les mots de code ¢y peuvent s’écrire

cs = (Tr f(a1), Tr f(az), ..., Tr f(ay))
ot les a; sont les éléments de Fq.
Démonstration.— Soit C le code donné par P'image de 'application
¢+ Fylali o (Fy)*

définie par ¢(f) = (f(a1),..., f(aq)). Une base de Fy[z]; est donnée par la famille des
mondmes 1,z,...,z*. Le code dual C* a par conséquent une matrice de contréle donnée

par

1 .01
a [+
H=|™ !
af ... a

On a d’aprés le théoréme de Delsarte ([7] chap. 7, théoréme 11, p. 208)
(TrC)* = (CH)IFy,
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et donc (Tr C)* est le code BCH binaire étendu, de lon m i
y gueur 2™ et de dist i
k +2 (cf. [5] exemple (7.2) ou [7] exemple 5, p. 345). S prescrite

SoitAf un polynéme dans F,[z];. On appellera ¢ ¢ le mot de code associé dans le
dual de C'm et wy le poids du mot de code c;. Soit

Sm(f) = Y (-,

F,
Proposition 2. Soit f un polynéme dans F,lz]z. On a
Sm(f) = q - 2wy.
Démonstration.— D’aprés la proposition précédente, on a

Sm(f) = #{z | Ir f(z) = 0} — #{z | Tr f(z) = 1}
= (g~ wy) —wy
= q — 2wy.

3. Le résultat

Soit k un nombre premier. On suppose que
* {1) k est congru & —1 (mod. 8),
2) k ne divise aucun des nombres 2 — 1 pour 1 < i < (k — 1)/2.

Théoréme. Soit k un nombre premier. Posons f(z) = %, et soit

Sm = Z(_l)T" f(z)

ot la somme est sur le corps Fam. Si la condition (*) est vérifiée alors on a:

lm sup
m—00
m impair

S |
m/2 =k-1

On en déduit immédiatement un corollaire sur les codes.

Corollaire 1. Soit k un nombre premier vérifiant la condition (*). Soit Cy, Ie code

BCH binaire de longueur 2™ —1 et de distance prescri !
crite § = k+2.
du mot ¢ du code C. On a ? + Appelons . fo poii

Iwc — 2m—1|

limsup sup Ecy

m impair c#0

=V3(t-1)> (t-1),
ot d=2t41.

Par conséquent, P'inégalité espérée par MacWilliams et Sloane est fausse pour une

infinité de valeurs de m.
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Corollaire 2. Soit k un nombre premier. On considére la courbe projective sur F;
d’équation
yry=z*
et on note N, son nombre de points sur Fam. Si la condition (*) est vérifiée on a
. Np—2m—1
hmsup .!._._'.l_—_------—----—l

m—00 om/2
m impair

=k-—~1.

Démonstration.— En effet, on a

Np—~2"—-1=Sn.

La démonstration du théoréme se fera aprés une série de lemmes.
Posons g = (k —1)/2.

Lemme 1. Si m n’est pas divisible par g, alors Sy, = 0.

Démonstration.— En effet 'application z + z* est une permutation de F, sauf
si Fy contient les racines ki®me de I'unité, c’est-a-dire si k divise ¢ — 1. Or d’aprés la
condition (*), on a k = —1 (mod. 8), donc 2 est un résidu quadratique modulo k, ce qui

veut dire que
29 = 2(5-1/2 = 1 (mod. k),

donc k divise 29 — 1. Toujours d’aprés la condition (*) on déduit que g est le plus petit
des entiers m tel que k divise 2™ — 1, donc Fy, est le plus petit des corps Fy = Fom qui
contiennent les racines ki¢™¢ de unité. Par conséquent, = + z* est une permutation de
F, et donc Sy, = 0 si et seulement si

F2m = Fq 25 Fzﬂ,

c’est-a-dire si et seulement si g ne divise pas m.

On va noter Re la partie réelle d’un nombre complexe.

Lemme 2. Lasomme Sy, est égale a —2¢(v/2)9™ Rew™, ot w est un nombre complexe
" de valeur absolue 1 et dont la partie réelle est donnée par

S
Rew = —— L,
| 2g(V2)9
Démonstration.— D’apres [10] (voir aussi [6] p. 220, et [9]) on sait qu'il existe des
nombres complexes 7; pour 1 < i < k —1 tels que

~Sm= Y, w

1<i<k—1

De plus ils sont conjugués 2 & 2 et de valeur absolue égale a V2.
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y Le(s) #; sont les racines d’un polyndme unitaire A(X) a coefficients entiers de degré
—1.0na
AX)= Y aX'.
0<i<k—1

Les nombres S, sont tous nuls d’aprés le lemme 1, sauf peut-étre si g divise m. Donc
d’aprés les relations de Newton ([2] chap. IV, par. 6, n° 4, lemme 4, p. 65), les coefficients
a; sont tous nuls, sauf peut-étre ag, ax.; et ay. Onaag_y=1;onadonc

30 S
ao=H1r,~=2’ et a,=-—£.
=1 g

Par conséquent, le polynéme A s’écrit

AX)= X294 5050 4 05
9

Ses racines sont 1 exp(2rjv/=1/g) et Ty exp(2rj/~T/g) pour 1 < j < g.

Posons ¢ = x{. Alors ¢ et ¢ sont racines de I’équation
| X+ %—X +29=0.
Soit w = ¢/|é| = ¢/(v/2)9. Alors w est racine de
29X2 4 (\/i)ﬂ%x +29=0.
Ona

am
Z L

1<i<k—1

—Sym =
C’est-a-dire, puisque ¢ = 7
—Som =9($™ +3") = g(VD™ (W™ +T™) = 29(VZ)™ Rew™.
Lemme 3. Le nombre S, est congru 4 1 (mod. k).

Démonatra.tio'n.——- Comme k divise 29 — 1 par hypothése, Papplication f restreinte
au groupe multiplicatif de Fp, qui est cyclique induit une suite exacte

0—2/kZ - F3, - F3, — Z/kZ — 0.

Par conséquent ceci définit une partition du groupe FJ, en classes de k éléments.
Dya (‘2’ —~ 1)/k classes et chacun des éléments z d’une méme classe donne la méme
valeur & (—1)™ 7). On en déduit que

Sy = (-1)™° =1 (mod. k).

Lemme 4. Le nombre w n’est pas une racine de I'unité.

ou encore
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Démonstration.— Le nombre w vérifie 'équation
29X2 + (V2)? a; X +29 =0,
avec ay, = Sy/g. Cette équation peut s’écrire
(V2)9 a,X = —(2°X2 +29)
donc, en élevant au carré, et en regroupant les termes

29X + (29 —a2)X? +29 =0

a2
X+ (2—?2%))(24-1:0.
Pour que w soit racine de I'unité, il faut et il suffit que w? le soit. Or w? est racine de
I'équation du second degré '
2
X2+ (2-§§)x+1=o.

Cette équation admet des racines de valeur absolue égale & 1 si et seulement si son

| déterminant A, qui est égal a

2
a2 a2 a2
— _ -5 o = S _ a3
A= (2 29) 4 ( 29 4) 59

¢ est négatif ou nul c’est-a-dire si I'on a

a? a2
-4 _ i3
( 59 4) 59 <0.

Montrons que A ne peut pas étre nul. Comme on a S; = 1 (mod. k) d’aprés le

~ lemme 3, on a S, # 0 donc ay = §,/g # 0. De méme si I'on avait (a2/29) — 4 = 0, on

aurait §7/g% = 29%2, d’odt S} = 29%%¢?, ce qui est impossible puisque S, est un entier
et que, g étant impair, 2912 n’est pas un carré parfait.

On a donc
a3 ag
A= 59~ 4 29 <0

. Dans ce cas I’équation est irréductible et c’est donc I’équation minimale de w? sur le
. corps Q. Si w? était une racine de 1'unité, ce serait en particulier un entier algébrique.
. Donc son équation minimale serait & coefficients entiers. Par conséquent ag /29 serait un

|

. entier inférieur & 4. Comme de plus a2 est un carré et que g est impair, on ne pourrait
P g »

avoir que aj/29 = 2.
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Supposons que ce soit le cas. Cela implique a, = +v/29%1, donc
S, = +gV29+T = +(k — 1)V/29-1,

Par conséquent on a

1 =5, (mod. k),
= (k- 1)v29-1  (mod. k),
= FV29-1 (mod. k),
= F200-1/2 (mod. k).

Donc on a, en élevant au carré
1=29"" (mod. k),

ce qui veut dire que k divise 297! —1, ce qui est contraire & ’hypothése. Par conséquent,
on ne peut pas avoir a2/29 =2,

2

Donc w? n’est pas une racine de I'unité et w non plus.

Lemme 5. On a
Hmsup |Rew™| = 1.
m—+00
m impair

Démonstration.— Comme w n’est pas racine de I'unité, alors, d’aprés un théoréme
de Kronecker (cf. [3] théoréme 439, p. 376), les w™ pour m entier positif, sont partout
denses sur le cercle T des nombres complexes de valeur absolue égale & 1. On va montrer
qu’il en va de méme des w™ pour m entier impair et positif.

En effet les ensembles {w™ | m impair et positif} et {w™ | m impair} ont
méme adhérence dans T Cela est dii au fait qu’il existe une suite d’entiers positifs m,
tels que

lim w2m,+m =™
T

pour tout entier impair m (positif ou négatif).

Or, dans le groupe T, I'adhérence de I’ensemble {w™ | m impair} des w™ pour
m impair est une classe latérale du sous-groupe des w?™ donc aussi de son adhérence
{w?m}. Mais ce dernier est justement le groupe T tout entier. On a donc

{w™ | m impair et positif} = {w™ [ m impair} = T.

Par conséquent on a
limsup [Rew™|=1.

700,
m impair

207

Démonstration du théoréme.—Pour montrer

. | Sm | _
h'xrij&p oz = k-1,
m impair

1 il suffit de montrer

. | ng | —
limsup 5 =k~ 1,
m impair

| puisque Sy, = 0 si m n’est pas divisible par g. D’aprés la décomposition de Sy, donnée
1 au début de la démonstration du lemme 2, cela revient & montrer

limsup 279™/2
M —+00
m impair

Z " =k-1,

1<i<k—1

c'est-a-dire, puisque ¢ = 7

limsup 279™/? l¢’" +$ml = 2.
mmi;;:.i:

. Comme w = ¢/(v/2)9, Péquation précédente peut s’écrire

limsup |jw™ +&™| =2,
7 -—s 00,
m impair
ou
limsup [Rew™| =1,

17—+ 00,
m impair

| ce qui est la conclusion du lemme 5.

4. Discussion sur la condition (*)
La condition (¥*) est vérifiée pour les nombres premiers
k=1,23,47,71,79,103,167,191,199... '

On peut conjecturer qu’il y en a une infinité, et que de plus leur densité est égale a

% 10 (I—Iﬁ) =0,1869...

p premier
Cette conjecture est analogue & la conjecture d’Artin suivante.

Conjecture (Artin). Pour tout nombre entier a distinct de 1, —1 et qui ne soit pas
un carré parfait, il existe une infinité de nombres premiers k tels que a soit une racine



primitive (mod. k) . De plus ces nombres ont une densité positive. Si a = 2 elle est

égale &
I (-%-p)

P premier

En effet pour que a soit une racine primitive modulo ¥ (c’est-a-dire que a engendre
le groupe Z}), il faut et il suffit que a ne soit pas multiple de k et que k ne divise aucun
des nombres a™ — 1 pour 1 <m < k- 2.

C. Hooley a montré que I’hypothése de Riemann généralisée impliquait 1a conjecture
d’Artin [4]. On peut montrer également qu’elle implique la conjecture que nous avons
faite ci-dessus.

Schéma de démonstration.—

La condition (*) comporte 2 sous-conditions. La premiére (k = —1 (mod. 8)) peut
se décomposer en

26D/ = 1 (mod. k) et (=1)*"V/2 £ 1 (mod. k),

" d’aprés la théorie des résidus quadratiques. Elle implique en particulier que le nombre
2 est dans le sous-groupe d’indice 2 du groupe cyclique (Z/kZ)*.
La deuxiéme sous-condition est que
2™ #1(mod. k) pour 1<m<(k—1)/2
c’est-a-dire que 2 engendre le sous-groupe d’indice 2 du groupe (Z/kZ)*. Cela équivaut
a dire que
2(5=D/P £ 1 (mod. k) si p divise k— 1 et p # 2.
D’aprés la théorie algébrique des nombres, k se décompose complétement dans

K, = Q(¥1, ¥?2) si et seulement si 2:-1/p = 1 (mod. k). De méme k se décompose
complétement dans Q(+/~1) si et seulement si (—1)*~1/2 = 1 (mod. k).

On montre alors que la densité des nombres premiers qui se décomposent complé-
tement dans K, est égale & 1/[K, : Q] = 1/p(p — 1).

En suivant les raisonnements de Hooley utilisant ’hypothése de Riemann généra-
lisée [4] on montre que la densité des k qui vérifient (*) est égale a

(-ma)

(- avoa) a1

P premier
P#2
11 1
== 1w —e ),
22 I ( P(P—l))

P premier
p#2
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