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Preface
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and cryptography at the University of Alberta. I would like to thank my colleagues,
Professors Hans Brungs, Gerald Cliff, and Ted Lewis, for their written notes and
examples, on which these notes are partially based (in addition to the references
listed in the bibliography).



Chapter 1

Introduction

In the modern era, digital information has become a valuable commodity. For exam-
ple, the news media, governments, corporations, and universities all exchange enor-
mous quantities of digitized information every day. However, the transmission lines
that we use for sending and receiving data and the magnetic media (and even semi-
conductor memory devices) that we use to store data are imperfect.

Since transmission line and storage devices are not 100% reliable device, it has
become necessary to develop ways of detecting when an error has occurred and,
ideally, correcting it. The theory of error-correcting codes originated with Claude
Shannon’s famous 1948 paper “A Mathematical Theory of Communication” and has
grown to connect to many areas of mathematics, including algebra and combinatorics.
The cleverness of the error-correcting schemes that have been developed since 1948 is
responsible for the great reliability that we now enjoy in our modern communications
networks, computer systems, and even compact disk players.

Suppose you want to send the message “Yes” (denoted by 1) or “No” (denoted
by 0) through a noisy communication channel. We assume that for there is a uniform
probability p < 1 that any particular binary digit (often called a bit) could be altered,
independent of whether or not any other bits are transmitted correctly. This kind
of transmission line is called a binary symmetric channel. (In a g-ary symmetric
channel, the digits can take on any of ¢ different values and the errors in each digit
occur independently and manifest themselves as the ¢ — 1 other possible values with
equal probability.)

If a single bit is sent, a binary channel will be reliable only a fraction 1 — p of the
time. The simplest way of increasing the reliability of such transmissions is to send
the message twice. This relies on the fact that, if p is small then the probability p? of
two errors occurring, is very small. The probability of no errors occurring is (1 — p)?.
The probability of one error occurring is 2p(1 — p) since there are two possible ways
this could happen. While reception of the original message is more likely than any
other particular result if p < 1/2, we need p < 1 — 1/4/2 =~ 0.29 to be sure that the
correct message is received most of the time.
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If the message 11 or 00 is received, we would expect with conditional probability

N _ (d-pp?
(1=p2+p* (1—-p)?+p?

that the sent message was “Yes” or “No”, respectively. If the message 01 or 10 is
received we know for sure that an error has occurred, but we have no way of knowing,
or even reliably guessing, what message was sent (it could with equal probability have
been the message 00 or 11). Of course, we could simply ask the sender to retransmit
the message; however this would now require a total of 4 bits of information to be sent.
If errors are reasonably frequent, it would make more sense to send three, instead of
two, copies of the original data in a single message. That is, we should send “111”
for “Yes” or “000” for “No”. Then, if only one bit-flip occurs, we can always guess,
with good reliability what the original message was. For example, suppose “1117 is
sent. Then of the eight possible received results, the patterns “1117, “0117, “101”,
and “110” would be correctly decoded as “Yes”. The probability of the first pattern
occurring is (1 — p)® and the probability for each of the next three possibilities is
p(1 — p)2. Hence the probability that the message is correctly decoded is

(1—p)®+3p(1—p)? = (1—p)2(1+2p) =1 — 3p> + 2°.

In other words, the probability of a decoding error, 3p? — 2p?, is small. This kind of
data encoding is known as a repetition code. For example, suppose that p = 0.001,
so that on average one bit in every thousand is garbled. Triple-repetition decoding
ensures that only about one bit in every 330 000 is garbled.

1.A Error Detection and Correction

Despite the inherent simplicity of repetition coding, sending the entire message like
this in triplicate is not an efficient means of error correction. Our goal is to find
optimal encoding and decoding schemes for reliable error correction of data sent
through noisy transmission channels.

The sequences “000” and “111” in the previous example are known as binary
codewords. Together they comprise a binary code. More generally, we make the
following definitions.

Definition: Let q € Z. A g-ary codeword is a finite sequence of symbols, where each
symbol is chosen from the alphabet (set) F, = {A1, Ao, ..., A\, }. Typically, we will
take F, to be the set Z, = {0,1,2,...,¢g—1}. (We use the symbol = to emphasize
a definition, although the notation := is more common.) The codeword itself
can be thought of as a vector in the space F' = Fq x Fy x ... F,.

-

n times
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e A binary codeword, corresponding to the case ¢ = 2, is just a finite sequence of Os
and 1s.

Definition: A g-ary code is a set of M codewords, where M € N is known as the
size of the code.

e The set of all words in the English language is a code over the 26-letter alphabet
{A,B,...,Z}.

One important aspect of all error-correcting schemes is that the extra information
that accomplishes this must itself be transmitted and is hence subject to the same
kinds of errors as is the data. So there is no way to guarantee accuracy; one just
attempts to make the probability of accurate decoding as high as possible. Hence,
a good code is one in which the codewords have little resemblance to each other. If
the codewords are sufficiently different, we will soon see that it is possible not only to
detect errors but even to correct them, using nearest-neighbour decoding, where one
maps the received vector back to the closest nearby codeword.

e The set of all 10-digit telephone numbers in the United Kingdom is a 10-ary code of
length 10. It is possible to use a code of over 82 million 10-digit telephone num-
bers (enough to meet the needs of the U.K.) such that if just one digit of any
phone number is misdialled, the correct connection can still be made. Unfor-
tunately, little thought was given to this, and as a result, frequently misdialled
numbers do occur in the U.K. (as well as in North Americal).

Definition: We define the Hamming distance d(z,y) between two codewords = and
y of F}' as the number of places in which they differ.

Remark: Notice that d(x,y) is a metric on F}' since it is always non-negative and
satisfies

1. d(z,y) =0 <= z =y,

2. d(z,y) = d(y, ) for all x,y € F,

3. d(r,y) <d(v,z) +d(z,y) for all x,y,2z € F.
The first two properties are immediate consequences of the definition, while the
third property is known as the triangle inequality. It follows from the simple
observation that d(z,y) is the minimum number of digit changes required to
change x to y. However, if we change x to y by first changing x to z and

then changing z to y, we require d(x,z) + d(z,y) changes. Thus d(z,y) <
d(x, z) + d(z,y).

Remark: We can use property P to rewrite the triangle inequality as

d(z,y) —d(y,2) < d(x,2) Va,y,z € F].
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Definition: The weight w(z) of a binary codeword z is the number of nonzero digits
it has.

Remark: Let z and y be binary codewords in Z3. Then d(z,y) = w(z —y) =
w(z) +w(y) — 2w(zy). Here, x — y and xy are computed mod 2, digit by digit.

Remark: Let x and y be codewords in Z]. Then d(z,y) = w(z —y). Here, z — y is
computed mod ¢, digit by digit.

Definition: Let C' be a code in F. We define the minimum distance d(C) of the
code to be
A(C) = min{d(r.y) : 2.y € F.x £y},

Remark: In view of the previous discussion, a good code is one with a relatively
large minimum distance.

Definition: An (n, M,d) code is a code of length n, containing M codewords and
having minimum distance d.

e For example, here is a (5,4, 3) code, consisting of four codewords from Fy, which
are at least a distance 3 from each other.

00 0 0 0
01 1 0 1
“=110110
1 1 0 1 1
Upon considering each of the (;1) = 4%3 = 6 pairs of distinct codewords (rows),

we see that the minimum distance of Cj3 is indeed 3. With this code, we can
either (i) detect up to two errors (since the members of each pair of distinct
codewords are more than a distance 2 apart), or (ii) detect and correct a single
error (since, if only a single error has occurred, the received vector will still be
closer to the transmitted codeword than to any other).

The following theorem shows how this works in general.

Theorem 1.1 (Error Detection and Correction) In a symmetric channel with
error-probability p > 0,

(i) a code C' can detect up to t errors in every codeword <= d(C) >t+1;

(i) a code C' can correct up to t errors in any codeword <= d(C) > 2t + 1.

Proof:
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“=" Suppose d(C) >t + 1. Suppose a codeword z is transmitted and ¢ or
fewer errors are introduced, resulting in a new vector y € F'. Then d(z,y) =
w(x —y) <t <t+1=d(C), so the received codeword cannot be another
codeword. Hence errors can be detected.

“<” Likewise, if d(C) < t + 1, then there is some pair of codewords z and
y that have distance d(x,y) < t. Since it is possible to send the codeword x
and receive the codeword y by the introduction of ¢ errors, we conclude that C
cannot detect ¢ errors.

Suppose d(C') > 2t + 1. Suppose a codeword z is transmitted and t or fewer
errors are introduced, resulting in a new vector y € F' satisfying d(z,y) < t. If
2’ is a codeword other than x then d(x,z") > 2t + 1 and the friangle Tnequality]
d(z,2") < d(x,y) + d(y,2’) implies that

d(y, ') > d(z, ') —d(z,y) 22+ 1 -t =t + 1>t > d(y, ).

Hence the received vector y is closer to x than to any other codeword z’, making
it possible to identify the original transmitted codeword x correctly.

Likewise, if d(C') < 2t 4+ 1, then there is some pair of codewords z and 2’
that have distance d(z,2’) < 2t. If d(z,2") < t, let y = /. Otherwise, if
t < d(z,2") < 2t, construct a vector y from x by changing t of the digits of x
that are in disagreement with x’ to their corresponding values in 2’. In this way
we construct a vector y such that 0 < d(y,z') <t < d(y,x). It is possible to
send the codeword x and receive the vector y because of the introduction of ¢
errors, and this would not be correctly decoded as x by using nearest-neighbour
decoding.

Corollary 1.1.1 If a code C' has minimum distance d, then C can be used either (i)
to detect up to d—1 errors or (ii) to correct up to | %51 errors in any codeword. Here
|| represents the greatest integer less than or equal to x.

A good (n, M,d) code has small n (for rapid message transmission), large M (to
maximize the amount of information transmitted), and large d (to be able to correct
many errors. A main problem in coding theory is to find codes that optimize M for
fixed values of n and d.

Definition: Let A,(n,d) be the largest value of M such that there exists a g-ary

(n, M,d) code.

e Since we have already constructed a (5,4, 3) code, we know that A,(5,3) > 4. We
=4

will soon see that 4 is in fact the maximum possible value of M; i.e. Ay(5,3)

To help us tabulate A,(n,d), let us first consider the following special cases:
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Theorem 1.2 (Special Cases) For any values of ¢ and n,
(1) Ag(n,1) = q";
(i) Ay(n,n) =q.

Proof:

(i) When the minimum distance d = 1, we require only that the codewords be
distinct. The largest code with this property is the whole of F, which has
M = q" codewords.

(ii) When the minimum distance d = n, we require that any two distinct codewords
differ in all n positions. In particular, this means that the symbols appearing in
the first position must be distinct, so there can be no more than ¢ codewords.
A g-ary Fepetition codd of length n is an example of an (n,¢,n) code, so the
bound A,(n,n) = ¢ can actually be realized.

Remark: There must be more at least two codewords for d(C') even to be defined.
This means that A,(n,d) is not defined if d > n, since d(z,y) = w(z —y) <n
for distinct codewords x,y € F".

Lemma 1.1 (Reduction Lemma) If a g-ary (n, M, d) code exists, there also ezists
an (n—1,M,d —1) code.

Proof: Given an (n, M,d) code, let z and y be codewords such that d(z,y) = d and
choose any column where z and y differ. Delete this column from all codewords. The
result is an (n — 1, M,d — 1) code.

Theorem 1.3 (Even Values of d) Suppose d is even. Then a binary (n, M, d) code
exists <= a binary (n — 1, M,d — 1) code exists.

Proof:

“=" This follows from Lemma [L]].

“<” Suppose C'is a binary (n — 1, M,d — 1) code. Let C be the code of
length n obtained by extending each codeword x of C' by adding a parity
bit w(x) (mod2). This makes the weight w(Z) of every codeword Z of
C even. Then d(zx,y) = w(z) + w(y) — 2w(zy) must be even for every
codewords z and y in C, so d(C) is even. Note that d —1 < d(C) < d.
But d — 1 is odd, so in fact d(C) = d. Thus C is a (n, M, d) code.

Corollary 1.3.1 (Maximum code size for even d) Ifd is even, then Ay(n,d) =

AQ(H — 1,d— 1)
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n d=3 d=5|d="7
3 4 2

6 8 2

7 16 2 2
8 20 4 2
9 40 6 2
10 72-79 12 2
11 144-158 24 4
12 256 32 4
13 512 64 8
14 1024 128 16
15 2048 256 32
16 || 2560-3276 | 256-340 | 36-37

Table 1.1: Maximum code size Ay(n,d) for n < 16 and d < 7.

This result means that we only need to calculate As(n,d) for odd d. In fact, in
view of Theorem [L.1, there is little advantage in considering codes with even d if the
goal is error correction. In Table [[T1], we present values of As(n,d) for n < 16 and for
odd values of d < 7.

As an example, we now compute the value Ay(5,3) entered in Table [T1], after
establishing a useful simplification, beginning with the following definition.

Definition: Two g-ary codes are equivalent if one can be obtained from the other by
a combination of

(A) permutation of the columns of the code;

(B) relabelling the symbols appearing in a fixed column.

Remark: Note that the distances between codewords are unchanged by each of these
operations. That is, equivalent codes have the same (n, M, d) parameters and
will correct the same number of errors. Furthermore, in a g-ary symmetric
channel, the error-correction performance of equivalent codes will be identical.

e The binary code

01 0 10
11 1 1 1
0 01 00
1 0 0 0 1
is seen to be equivalent to our previous (5, 4, 3) code C'3 by switching columns 1

and 2 and then applying the permutation 0 < 1 to the first and fourth columns
of the resulting matrix.
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Lemma 1.2 (Zero Vector) Any code over an alphabet containing the symbol 0 is
equivalent to a code containing the zero vector 0.

Proof: Given a code of length n, choose any codeword zix...x,. For each ¢ such
that x; # 0, apply the permutation 0 < x; to the symbols in the ith column.

e Armed with the above lemma and the concept of equivalence, it is now easy to
prove that A5(5,3) = 4. Let C be a (5, M, 3) code with M > 4. Without loss
of generality, we may assume that C' contains the zero vector (if necessary, by
replacing C' with an equivalent code). Then there can be no codewords with
just one or two 1s, since d = 3. Also, there can be at most one codeword with
four or more 1s; otherwise there would be two codewords with at least three 1s
in common positions and less than a distance 3 apart. Since M > 4, there must
be at least two codewords containing exactly three 1s. By rearranging columns,
if necessary, we see that the code contains the codewords

00 0 0O
1 1.1 00
0 01 11

There is no way to add any more codewords containing exactly three 1s and we
can also now rule out the possibility of five 1s. This means that there can be
at most four codewords, that is, A2(5,3) < 4. Since we have previously shown
that As(5,3) > 4, we deduce that Ay(5,3) = 4.

Remark: A fourth codeword, if present in the above code, must have exactly four 1s.
The only possible position for the 0 symbol is in the middle position, so the
fourth codeword must be 11011. We then see that the resulting code is equiva-
lent to C3 and hence As(5,3) is unique, up to equivalence.

The above trial-and-error approach becomes impractical for large codes. In some
of these cases, an important bound, known as the sphere-packing or Hamming bound,
can be used to establish that a code is the largest possible for given values of n and

d.

Lemma 1.3 (Counting) A sphere of radius t in F}', with 0 < t < n, contains

exactly t
> (Z) (q— 1)

k=0
vectors.

Proof: The number of vectors that are a distance k from a fixed vector in F' is
(Z) (g — 1)*, because there are (Z) choices for the k positions that differ from those of
the fixed vector and there are ¢ — 1 values that can be assigned independently to each
of these k£ positions. Summing over the possible values of k, we obtain the desired

result.
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Theorem 1.4 (Sphere-Packing Bound) A g-ary (n, M,2t+ 1) code satisfies

MZ ()a-vr <o ()

Proof: By the friangle inequality], any two spheres of radius t that are centered on
distinct codewords will have no vectors in common. The total number of vectors in
the M spheres of radius t centered on the M codewords is thus given by the left-hand
side of the above inequality; this number can be no more than the total number ¢"
of vectors in F".

e For our (5,4,3) code, Eq. ([.1) gives the bound M(1+ 5) < 2° = 32 which implies
that Ay(5,3) < 5. We have already seen that A5(5,3) = 4. This emphasizes,
that just because some set of numbers n, M, and d satisfy Eq. ([.1]), there is
no guarantee that such a code actually exists.

Definition: A perfect code is a code for which equality occurs in [LT. For such a
code, the M spheres of radius ¢ centered on the codewords fill the whole space
F}' completely, without overlapping.

Remark: Codes which consist of a single codeword (taking ¢t = n) and codes which

contain all vectors of F’, along with the g-ary fepetition codd of length n are

trivially perfect codes.

1.B Balanced Block Designs

Definition: A balanced block design consists of a collection of b subsets, called blocks,
of a set S containing v points such that, for some fixed r, k, and \:
(i) each point lies in exactly r blocks;
(ii) each block contains exactly k points;

(iii) each pair of points occurs together in exactly A blocks.
Such a design is called a (b, v, 7, k, \) design.

e Let S = {1,2,3,4,5,6,7} and consider the subsets {1,2,4}, {2,3,5}, {3,4,6},
{4,5,7}, {5,6,1}, {6,7,2}, {7,1,3} of S. Each number lies in exactly 3 blocks,
each block contains 3 numbers, and each pair of numbers occur together in
exactly 1 block. The six lines and circle in Fig. illustrate these relationships.
Hence these subsets form a (7,7,3,3,1) design.
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Figure 1.1: Seven-point plane.

Remark: The parameters (b,v,r, k, \) are not independent. Consider the set of
ordered pairs

T ={(z,B) : x is a point, B is a block, z € B}.

Since each of the v points lie in r blocks, there must be a total of vr ordered
pairs in T'. Alternatively, we know that since there are b blocks and k points
in each block, we can form exactly bk such pairs. Thus bk = vr. Similarly, by
considering the set

U ={(z,y,B) : z,y are distinct points, B is a block, z,y € B},

we deduce
k(k—1) AU(U -1)

2 2
which, using bk = vr, simplifies to r(k — 1) = A(v — 1).

b

Definition: A block design is symmetric if v = b (and hence k = r), that is, the
number of points and blocks are identical. For brevity, this is called a (v, k, \)
design.

Definition: The incidence matriz of a block design is a v X b matrix with entries

. 1 ifx; € Bj,

where x;, ¢ = 1,..., v are the design points and B;, j = 1,...,b are the design
blocks.

e For our above (7,3,1) symmetric design, the incidence matrix A is

100 0 1 01
1100 0 1 0
01 10001
101 1 000
0101 100
001 0110
00 01 0 11
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e We now construct a (7,16, 3) binary code C consisting of the zero vector 0, the

unit vector 1, the 7 rows of A, and the 7 rows of the matrix B obtained from
A by the interchange 0 < 1:

0 000000 0
1 1 1 1 1 1 11
a; 1000101
a, 1100010
a; 0110001
a, 1011000
as 010110 0
c_la|_]oo 10110
a; 0001011
b, 0111010
b, 0011101
bs 1001110
b, 0100111
bs 1010011
be 1101001
b, 1110100

To find the minimum distance of this code, note that each row of A has exactly
three 1s and, by construction, any two distinct rows of A have exactly one 1 in
common. Hence d(a;,a;) =3+ 3 —2(1) =4 for i # j. Likewise, d(b;, b;) = 4.
Furthermore,

d(0

(li) d(O, bl) = 4,
d(l a; = 3,

) = 37
) ) = 47 d(la bz)
d(aia bl) = d(07 1) = 7a

for i = 1,...,7. Finally, a;, and b; disagree in precisely those places where a;
and a; agree, so

d(a;,b;) =7 —d(a;,a;) =7—4=3,  fori#j.

Thus C'is a (7,16, 3) code, which in fact is perfect, since the equality in Eq. ([[.1)

is satisfied: . -
16 ((0) + (1)) =16(1+7) =128 =2".

The existence of a perfect binary (7,16, 3) code establishes A5(7,3) = 16, so we
have now established another entry of Table [.1]
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1.C The ISBN code

Modern books are assigned an International Standard Book Number (ISBN),
a 10-digit codeword, by the publisher. For example, Hill [1997] has the ISBN
number 0-19-853803-0. Note that three hyphens separate the codeword into
four fields. The first field specifies the language (0 means English), the second
field indicates the publisher (19 means Oxford University Press), the third field
(853803) is the the book number assigned by the publisher, and the final digit
(0) is a check digit. If the digits of the ISBN number is denoted & = x; ... x1o,
then the check digit xg is chosen as

9
T = Z kxy (mod11).

k=1

If £1p turns out to be 10, an X is printed in place of the final digit. The tenth
digit serves to make the weighted check sum

10 9 9 9
Zk’l’k = Zk’l’k + 102/{?l‘k = 112/{?l‘k =0 (modll).
k=1 k=1 k=1 k=1

So, if S22, kxy, # 0 (mod 11), we know that an error has occurred. In fact, the
ISBN number is able to (ii) detect a single error or (ii) detect a transposition
error that results in two digits (not necessarily adjacent) being interchanged.

If a single error occurs, then some digit x; is received as x; +e with e # 0. Then
S kx4 je = je (mod 11) # 0(mod 11) since j and e are nonzero.

Let y be the vector obtained by exchanging the digits z; and z; in an ISBN
code x, where j # k. Then

= (k—j)(x; — ;) (mod11) # 0 (mod 11)

if x; # xy.

In the above arguments we have used the property of the field Z; (the integers
modulo 11) that the product of two nonzero elements is always nonzero (that
is, ab=0and a # 0 = a~'ab = 0 = b = 0). Consequently, Z,, with a,b > 1
cannot be a field because the product ab = 0 (modab), even though a # 0

and b # 0. Note also that there can be no inverse a=! in Zg, for otherwise
b=a"tab=a"'0=0 (modab).

In fact, Z, is a field <= p is prime. For this reason, the ISBN code is
calculated in Z;; and not in Zo, where 2-5 =0 (modn).
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The ISBN code cannot be used to correct error unless we know a priori which
digit is in error. To do this, we first need to construct a table of inverses modulo
11 using the Euclidean division algorithm. For example, let y be the inverse of 2
modulo 11. Then 2y = 1 (mod 11) implies 2y = 11g+1 or 1 = —11¢+2y for some
integers y and ¢. On dividing 11 by 2 as we would to show that ged(11,2) =1,
we find 11 =5-2+1so that 1 =11 — 52, from which we see that ¢ = —1 and
y = —5 (mod11) = 6 (mod11) are solutions. Similarly, 37! =4 (mod 11) since
11=3-3+2and3=1-24+1,s01=3-1-2=3-1-(11-3-3) = —1-11+4-3.
The complete table of inverses modulo 11 are shown in Table .3

x [1]12]3|14]5|6|7]8[9]10
x V16141319287 [5]10

Table 1.2: Inverses modulo 11.

Suppose that we detect an error and we know in addition that it is the digit z;
that is in error (and hence unknown). Then we can use our table of inverses to
solve for the value of z;, assuming all of the other digits are correct. Since

10
Jjx + kak =0 (mod 11),

k=1
k£

we know that

10
r=—j" Zk‘xk (mod 11).
oy

For example, if we did not know the fourth digit x4 of the ISBN 0-19-253803-0,

we would calculate

r4=—-411-0+2-14+3-94+5-54+6-3+7-84+8-0+9-3+10-0) (mod11)
=-304+2+5+34+7+14+0+5+0) (mod11) = —3(1) (mod 11) =8,

which is indeed correct.
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Linear Codes

An important class of codes are linear codes in the vector space F".

Definition: A linear code C' is a code for which, whenever v € C' and v € C, then
au+ fv € C for all a, f € F,;. That is, C is a linear subspace of F".

Remark: The zero vector 0 automatically belongs to all linear codes.

Remark: A binary code C' is linear <= it contains 0 and the sum of any two
codewords in C'is also in C.

Exercise: Show that the (7,16, 3) code developed in the previous chapter is linear.

Remark: A linear code C' will always be a k-dimensional linear subspace of F' for
some integer k between 1 and n. A k-dimensional code C'is simply the set of all
linear combinations of k£ linearly independent codewords, called basis vectors.
We say that these k basis codewords generate or span the entire code space C.

Definition: We say that a k-dimensional code in F' is a [n, k] code, or if we also
wish to specify the minimum distance d, a |n, k, d] code.

Remark: Note that a g-ary [n, k,d] code is a (n, ¢*,d) code. To see this, let the k
basis vectors of a [n, k,d] code be u;, for j = 1,...,k. The ¢* codewords are

obtained as the linear combinations Z?Zl a;u;; there are ¢ possible values for
each of the k coefficients a;. Note that

k k k
D aju; = bu; =Y (4 —bju; =0=a;=b;, j=1,...k
j=1 j=1

j=1

by the linear independence of the basis vectors, so the ¢* generated codewords
are distinct.

Remark: Not every (n,¢",d) code is a g-ary [n, k,d] code (it might not be linear).

19
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Definition: Define the minimum weight of a code to be w(C') = min{w(z) : z € C}.
One of the advantage of linear codes is illustrated by the following lemma.

Lemma 2.1 (Distance of a Linear Code) IfC is a linear code in F}, then d(C) =
w(C).

Proof: There exist codewords x, y, and z such that d(z,y) = d(C) and w(z) = w(C).
Then

d(C) < d(2,0) = w(z = 0) = w(z) = w(C) < w(z —y) = d(zr,y) = d(C),
so w(C) =d(C).

Remark: Lemma P.1] implies, for a linear code, that we only have to examine the
weights of the M — 1 nonzero codewords in order to find the minimum distance.
In contrast, for a general nonlinear code, we need to make (}) = M(M —1)/2
comparisons (between all possible pairs of distinct codewords) to determine the

minimum distance.

Definition: A k£ x n matrix with rows that are basis vectors for a linear [n, k] code
C'is called a generator matriz of C.

e A g-ary repetition code of length n is an [n,1,n] code with generator matrix
11...1].

Exercise: Show that the (7,16, 3) perfect code in Chapter [[is a [7, 4, 3] linear code
(note that 2* = 16) with generator matrix

1 1111111
a| (1000101
a| |1 100010
as 0110001

Remark: Linear g-ary codes are not defined unless ¢ is a power of a prime (this
is simply the requirement for the existence of the field F,). However, lower-
dimensional codes can always be obtained from linear ¢g-ary codes by projection
onto a lower-dimensional subspace of F'. For example, the ISBN code is a sub-
set of the 9-dimensional subspace of F}) consisting of all vectors perpendicular
to the vector (1,2,3,4,5,6,7,8,9,10); this is the space

{(213‘1.3(72 .. .1’10) : ikl’k =0 (HlOd 11)} .

k=1
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However, not all vectors in this set (for example X-00-000000-1) are in the ISBN
code. That is, the ISBN code is not a linear code.

For linear codes we must slightly restrict our definition of equivalence so that
the codes remain linear (e.g., in order that the zero vector remains in the code).

Definition: Two linear g-ary codes are equivalent if one can be obtained from the
other by a combination of

(A) permutation of the columns of the code;

(B) multiplication of the symbols appearing in a fixed column by a nonzero
scalar.

Definition: A k x n matrix of rank k is in reduced echelon form (or standard form)
if it can be written as
[1e | AT,

where 1y is the k x k identity matrix and A is a k x (n — k) matrix.

Remark: A generator matrix for a vector space can always be reduced to an equiv-
alent reduced echelon form spanning the same vector space, by permutation of
its rows, multiplication of a row by a non-zero scalar, or addition of one row
to another. Note that any combinations of these operators with (A) and (B)
above will generate equivalent linear codes.

Exercise: Show that the generator matrix for the (7,16, 3) perfect code in Chapter fi
can be written in reduced echelon form as

100 0 1 01
01 00111
G_0010110
0001011

2.A Encoding and Decoding

A [n, k] linear code C' contains ¢* codewords, corresponding to ¢* distinct mes-
sages. We identify each message with a k-tuple

w=[u us ... ul,

where the components u; are elements of F,,. We can encode u by multiplying it
on the right with the generator matrix G. This maps u to the linear combina-
tion uG of the codewords. In particular the message with components u; = d;
gets mapped to the codeword appearing in the kth row of G.
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e Given the message [0, 1,0, 1] and the above generator matrix for our (7, 16, 3) code,
the encoded codeword

1000101
0100111

010 1)y 51011 0/=l0101100]
00010 11

is just the sum of the second and fourth rows of G.

Definition: Let C' be a linear code over F'. Let a be any vector in F. The set
a+C={a+z:xecC}iscalled a coset of C.

Lemma 2.2 (Equivalent Cosets) Suppose that a+ C' is a coset of a linear code C
and b € a+ C. Then
b+C=a+C.

Proof: Since b € a + C, then b = a 4+ x for some x € C. Consider any vector
b+yeb+C, with y € C. Then

bt+y=(a+z)+y=a+(r+y) €a+C,

so b+ C C a+ C. Furthermore a = b+ (—z) € b+ C, so the same argument implies
a+C Cb+C. Hence b+C =a+C.

The following theorem from group theory states that F" is just the union of g
distinct cosets of a linear [n, k] code C, each containing ¢* elements.

Theorem 2.1 (Lagrange’s Theorem) Suppose C' is an [n, k] code in F;'. Then
(i) every vector of I is in some coset of C;
(ii) every coset contains exactly q* vectors;

(7ii) any two cosets are either equivalent or disjoint.

Proof:
(i) a=a+0¢€a+C forevery a € F}.

(ii) Since the mapping ¢(x) = a + x is one-to-one, |a + C| = |C] = ¢*. Here |C|
denotes the number of elements in C'.

(iii) Let a,b € C. Suppose that the cosets a + C' and b+ C have a common vector
v=a+x =0b+y, withz,y € C. Then b= a+(x—y) € a+C, so by Lemma P.g
b+C=a+C.
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Definition: The standard array (or Slepian) of a linear [n,k] code C' in F} is a
¢"* x ¢* array listing all the cosets of C'. The first row consists of the codewords
in C' themselves, listed with 0 appearing in the first column. Subsequent rows
are listed one a a time, beginning with a vector of minimal weight that has not
already been listed in previous rows, such that the entry in the (7, j)th position
is the sum of the entries in position (4, 1) and position (1, j). The vectors in the

first column of the array are referred to as coset leaders.

e Let us revisit our linear (5,4, 3) code

Cs =

__— 0 O
—_— 0 = O
O = = O
— = o O
—_ O = O

with generator matrix
101 10
Gs = {0 10 1} ‘

The standard array for C5 is a 8 x 4 array of cosets listed here in three groups
of increasing coset leader weight:

—_

0 0 0 0 0 01 1 01 101 1 0 1 1 0 1 1

0 0 0 01 01 1 00 1 01 11 11010
0 0 01O 01 1 11 1 01 00 11 0 0 1
0 01 0O 01 0 01 1 00 10 11 1 11
01 0 0 0 0 01 01 111 10 1 00 1 1
100 0 O 11101 0 01 10 01 011
0 0 0 11 01110 1 01 01 1 1.0 00
01 010 0 01 11 1 1.1 00 10 0 0 1

Remark: The last two rows of the standard array for C3 could equally well have
been written as

1 1.0 00 101 0 1 01 1 10 0 00 11

1 00 0 1 111 00 0 01 11 01 010

Definition: If the codeword « is sent, but the received vector is y, we define the
error vector e =y — .

Remark: If no more than ¢ errors have occurred, the coset leaders of weight t or less
are precisely the error vectors that can be corrected. Recall that the code Cj,
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having minimum distance 3, can only correct one error. For the code C}, as long
as no more than one error has occurred, the error vector will have weight at most
one. We can then decode the received vector by checking to see under which
codeword it appears in the standard array, remembering that the codewords
themselves are listed in the first row. For example, if y = 10111 is received,
we know that the error vector e = 00001, and the transmitted codeword must
have been = y — e = 10111 — 00001 = 10110.

Remark: If two errors have occurred, one cannot determine the original vector with
certainty, because in each row with coset leader weight 2, there are actually
two vectors of weight 2. For a code with minimum distance 2t + 1, the rows in
the standard array of coset leader weight greater than t can be written in more
than one way, as we have seen above. Thus, if 01110 is received, then either
01110 — 00011 = 01101 or 01110 — 11000 = 10110 could have been transmitted.

Remark: Let C' be a binary [n, k] linear code and «; denote the number of coset
leaders for C' having weight ¢, where ¢ = 0,...,n. If p is the error probability
for a single bit, then the probability P, (C) that a received vector is correctly
decoded is

Pcorr(C) = Z Oézpl(l - p>n—z
=0

Remark: If C' can correct t errors then the coset leaders of weight no more than ¢
are unique and hence the total number of such leaders of weight ¢ is a; = (7;)
for 0 < i < t. In particular, if n = t, then

- n % n—i n
Peon(€) = 3 (i)P (1=p)""=@+1-p)" =1L
i=0
such a code is able to correct all possible errors.

Remark: Fori > t, the coefficients o; can be difficult to calculate. For a perfect code,
however, we know that every vector is within a distance ¢ of some codeword.
Thus, the error vectors that can be corrected by a perfect code are precisely
those vectors of weight no more than ¢; consequently,

(7,’) for 0 < i <t,
a; = 7
0 for 1 > t.

e For the code (5, we see that ag =1, a; =5, as = 2, and a3 = a4y = a5 = 0. Hence

Peorr(C3) = (1= p)° +5p(1 — p)* + 2p°(1 = p)* = (1 — p)*(1 + 3p — 2p°).
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For example, if p = 0.01, then P.,, = 0.99921 and P,,, = 1 — P, = 0.00079,
more than a factor 12 lower than the raw bit error probability p. Of course,
this improvement in reliability comes at a price: we must now send n = 5 bits
for every k = 2 information bits. The ratio k/n is referred to as the rate of
the code. It is interesting to compare the performance of C's with a code that
sends two bits of information by using two back-to-back repetition codes each
of length 5 and for which ay = 1, a; = 5, and ay = 10. We find that P, for
such a code is

[(1=p)° +5p(1 —p)* +10p*(1 = p)°]* = [(1 — p)°(1 + 3p + 6p*)]* = 0.99998

so that P, = 0.00002. While this error rate is almost four times lower than
that for C'3, bear in mind that the repetition scheme requires the transmission
of twice as much data for the same number of information digits (i.e. it has half
the rate of Cj).

2.B Syndrome Decoding

The standard array for our (5, 4, 3) code had 32 entries; for a general code of length n,
we will have to search through 2" entries every time we wish to decode a received
vector. For codes of any reasonable length, this is not practical. Fortunately, there is
a more efficient alternative, which we now describe.

Definition: Let C' be a [n, k] linear code. The dual code C* of C'in F}" is the set of
all vectors that are orthogonal to every codeword of C"

CL:{UEFq":v-u:O, Vu € C}.

Remark: The dual code C* is just the null space of G. That is,
veECt <= Gv'=0

(where the superscript ¢ denotes transposition). This just says that v is orthog-
onal to each of the rows of G. From linear algebra, we know that the space
spanned by the k independent rows of GG is a k dimensional subspace and the
null space of G, which is just C*, is an n — k dimensional subspace.

Definition: Let C' be a [n, k] linear code. The (n — k) x n generator matrix H for
CY is called a parity-check matriz.

Remark: The number r = n — k corresponds to the number of parity check digits
in the code and is known as the redundancy of the code.
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Remark: A code C' is completely specified by its parity-check matrix:
C={uecF}:Hu' =0}

since this is just the space of all vectors that are orthogonal to every vector in
C+. That is, Hu'! =0 < u € C.

Theorem 2.2 (Minimum Distance) A linear code has minimum distance d <=
d is the maximum number such that any d — 1 columns of its parity-check matriz are
linearly independent.

Proof: Let C be a linear code and u be a vector such that w(u) = d(C) = d. But
ue(C < Hu' =0.

Since u has d nonzero components, we see that some d columns of H are linearly
dependent. However, any d — 1 columns of H must be linearly independent, or else
there would exist a nonzero codeword in C' with weight d — 1.

e For a code with weight 3, Theorem .9 tells us that any two columns of its parity-
check matrix must be linearly independent, but that some 3 columns are linearly
dependent.

Definition: Given a linear code with parity-check matrix H, the column vector Hu'
is called the syndrome of u.

Lemma 2.3 Two vectors w and v are in the same coset <= they have the same
syndrome.

Proof:
(u—v)eC < H(u-v) =0 < Hu'= Hv"

Remark: We thus see that is there is a one-to-one correspondence between cosets and
syndromes. This leads to an alternative decoding scheme known as syndrome
decoding. When a vector u is received, one computes the syndrome Hu! and
compares it to the syndromes of the coset leaders. If the coset leader having the
same syndrome is of minimal weight within its coset, we know the error vector
for decoding u.

To compute the syndrome for a code, we need only first determine the parity
check matrix. The following lemma describes an easy way to construct the
standard form of the parity-check matrix from the standard form generator
matrix.
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Lemma 2.4 The (n — k) x n parity-check matriz H for an [n,k] code generated by
the matriz G = [1; | A], where A is a k x (n — k) matriz, is given by

[—A" | 1_k].

Proof: This follows from the fact that the rows of G are orthogonal to every row of H,
in other words, that

—A
1n—k

GH'=[1, A] { ] =1(—A)+ (A1, =—-A+A=0,

the k x (n — k) zero matrix.

e A parity-check matrix Hj for our (5,4, 3) code is

EL;::

O~ =
— O
o O =
O = O
= o O

Remark: The syndrome He' of a binary error vector e is just the sum of those
columns of H for which the corresponding entry in e is nonzero.

The following theorem makes it particularly easy to correct errors of unit weight.
It will play a particularly important role for the Hamming codes discussed in the next
chapter.

Theorem 2.3 The syndrome of a vector which has a single error of m in the ith
position is m times the ith column of H.

Proof: Let e; be the vector with the value m in the ith position and zero in all other
positions. If the codeword x is sent and the vector y = x+e€; is received the syndrome
Hy'= Hx'+ Hel = 0+ Hel = He! is just m times the ith column of H.

e For our (5,4,3) code, if y = 10111 is received, we compute Hy’ = 001, which
matches the fifth column of H. Thus, the fifth digit is in error (assuming that
only a single error has occurred), and we decode y to the codeword 10110, just
as we deduced earlier using the standard array.

Remark: If the syndrome does not match any of the columns of H, we know that
more than one error has occurred. We can still determine which coset the
syndrome belongs to by comparing the computed syndrome with a table of
syndromes of all coset leaders. If the corresponding coset leader has minimal
weight within its coset, we are able to correct the error. To decode errors of
weight greater than one we will need to construct a syndrome table, but this
table, having only ¢"~* entries, is smaller than the standard array, which has ¢"
entries.
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Hamming Codes

One way to construct perfect binary [n, k] codes that can correct single errors is to
ensure that every nonzero vector in an_k appears as a unique column of H. In this
manner, the syndrome of every possible vector in F3' can be identified with a column
of H, so that every vector in FJ' is at most a distance one away from a codeword.
This is called a binary Hamming code, which we now discuss in the general space F}'.

Remark: One can form ¢ — 1 distinct scalar multiples of any nonzero vector in F.

Definition: Given an integer r > 2, let n = (¢" — 1)/(q¢ — 1). The Hamming code
Ham(r, q) is a linear code in F, o for which the columns of the r x n parity-check
matrix H are the n distinct non-zero vectors of F] with first nonzero entry equal
to 1.

Remark: Not only are the columns of H distinct, all nonzero multiples of any two
columns are also distinct. That is, any two columns of H are linearly indepen-
dent. The total number of nonzero column multiples that can thus be formed
isn(¢g—1) = ¢" — 1. Including the zero vector, we see that H yields a total of ¢"
distinct syndromes, corresponding to all possible error vectors of unit weight
in FJ.

e The columns of the parity-check matrix for the binary Hamming code Ham(r, 2)
consists of all possible nonzero binary codewords of length 7.

Remark: The columns of the parity-check matrix may be written in any order.

Remark: The dimension k of Ham(r, ¢) is given by

Exercise: Show that the standard form of the parity-check matrix for a binary Ham-
ming code can be obtained by simply rearranging its columns.

28
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e A parity-check matrix for the one-dimensional code Ham(2, 2) is

0 1 1

1 0 1}’
which can be written in standard form as

1 1 0

1 0 1]|°

The generator matrix is then seen to be [1 1 1]. That is, Ham(2,2) is just
the binary triple-repetition code.

e A parity-check matrix for the one-dimensional code Ham(3, 2) in standard form, is

)
_ o =
O~
—_ =
o O =
O = O
_ o O

Exercise: Show that this code is equivalent to the (7, 16, 3) perfect code in Chapter Il

Remark: An equivalent way to construct the binary Hamming code Ham(r, 2) is to
consider all n = 2" — 1 nonempty subsets of a set S containing r elements. Each
of these subsets corresponds to a position of a code in Fj'. A codeword can
then be thought of as just a collection of nonzero subsets of S. Any particular
element a of the set will appear in exactly half (i.e. in 27! subsets) of all
2" subsets of S, so that an even number of the 2" — 1 nonempty subsets, will
contain a. This gives us a parity-check equation, which says that the sum of all
digits corresponding to a subset containing a must be 0 (mod 2). There will be
a parity-check equation for each of the r elements of S corresponding to a row
of the parity-check matrix H. That is, each column of H corresponds to one
of the subsets, with a 1 appearing in the ith position if the subset contains the
1th element and 0 if it doesn’t.

e The parity check matrix for Ham(3, 2) can be constructed by considering all possible
nonempty subsets of {a, b, c}, each of which corresponds to one of the digits of
a codeword © = x125 ... 27 in Fy:

b b b
& C & C
Ty Ty Ty Ty | Ts Te a7

Given any four binary information digits x1, x9, x3, and x4, there will be a
unique codeword satisfying Hx = 0; the parity-check digits x5, xg, and x; can
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be determined from the three checksum equations corresponding to each of the
elements a, b, and c:

a: xy+x3+ x4+ 25 =0 (mod2),

b: x4+ x5+ 24+ 26 =0 (mod?2),

and
c: x + a9+ 24+ 27 =0 (mod?2).

For example, the vector & = 1100110 corresponds to the collection

{{0,¢}, {a, c}, {a}, {b}}.

Since there are an even number of as, bs, and c¢s in this collection, we know that
x is a codeword.

Exercise: Show that two distinct codewords @ and y that satisfy the above three
parity check equations must differ in at least 3 places.

Remark: For binary Hamming codes, there is a distinct advantage in rearranging
the parity-check matrix so that the columns, treated as binary numbers, are
arranged in ascending order. The syndrome, interpreted in exactly the same
way as a binary number, immediately tells us in which position a single error
has occurred.

e We can write the parity-check matrix for Ham(3,2) in the binary ascending form

H =

_= o O
O = O
—— O

11 11
0 01 1
01 0 1

If the vector 1110110 is received, the syndrome is [0,1, 1]*, which corresponds
to the binary number 3, so we know immediately that the a single error must
have occurred in the third position, without even looking at H. Thus, the
transmitted codeword was 1100110.

Remark: For nonbinary Hamming codes, we need to compare the computed syn-
drome with all nonzero multiples of the columns of the parity-check matrix.

e A parity-check matrix for Ham(2, 3) is

01 11
H‘{1012}'

If the vector 2020, which has syndrome [2, 1]t = 2[1, 2]*, is received and at most
a single digit is in error, we see that an error of 2 has occurred in the last
position and decode the vector as z = y — e = 2020 — 0002 = 2021.
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e A parity-check matrix for Ham(3, 3) is

H =

_ O O
o = O

0
1
1

N = O

111111111
000111 2 2 2
01 2 01 2 0 1 2

If the vector 2000 0000 00001 is sent and at most a single error has occurred,
then from the syndrome [1,2,1]" we see that an error of 1 has occurred in the
second-last position, so the transmitted vector was 2000 0000 00021.

The following theorem establishes that Hamming codes can always correct single
errors, as we saw in the above examples, and also that they are perfect.

Theorem 3.1 (Hamming Codes are Perfect) Every Ham(r, q) code is perfect and
has distance 3.

Proof: Since any two columns of H are linearly independent, we know from Theo-
rem 2.3 that Ham(r, q) has distance at least 3, so it can correct single errors. The
distance cannot be any greater than 3 because the nonzero columns

0 0 0
01,(0],10
0 1 1
1 0 1

are linearly dependent.
Furthermore, we know that Ham(r,q) has M = ¢* = ¢"" codewords, so the
sphere-packing bound

¢"A+nlg—1) =¢""(14+4q" —1) =¢"
is perfectly achieved.

Corollary 3.1.1 (Hamming Size) For any integer r > 2, we have Ay(2" —1,3) =
92" —1-r

o Thus A3(3,3) =2, Ay(7,3) = 16, A3(15,3) = 2'1 = 2048, and A,(31,3) = 226,
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Golay Codes

We saw in the last chapter that the linear Hamming codes are nontrivial perfect
codes.

Q. Are there any other nontrivial perfect codes?

A. Yes, two other linear perfect codes were found by Golay in 1949. In addition,
several nonlinear perfect codes are known that have the same n, M, and d
parameters as Hamming codes.

A necessary condition for a code to be perfect is that its n, M, and d values satisfy
the sphere-packing bound

Mi ()= (11)

with d = 2t + 1. Golay found three other possible integer triples (n, M, d) that do
not correspond to the parameters of a Hamming or trivial perfect codes. They are
(23,2'2,7) and (90,27,5) for ¢ = 2 and (11,3%,5) for ¢ = 3. It turns out that there
do indeed exist linear binary [23,12, 7] and ternary [11, 6, 5] codes; these are known as
Golay codes. But, as we shall soon, it is impossible for linear or nonlinear (90,27, 5)
codes to exist.

Exercise: Show that the (n, M,d) triples (23,2'%,7), (90,27 5) for ¢ = 2, and
(11, 35,5) for ¢ = 3 satisfy the sphere-packing bound ([.1]).

Remark: In view of Theorem [[.3, a convenient way of finding a binary [23,12,7]
Golay code is to construct first the extended Golay [24,12,8] code, which is
just the [23,12,7] Golay code augmented with a final parity check in the last
position (such that the weight of every codeword is even).

32
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The extended binary Golay [24,12,8] code Cyy can be generated by the matrix
(G54 defined by

100 00000O0O0O0OO0OO0OCO0O0CTIT1T11 1111111
o100O0O0OO0O0OOOOOOI11T1TO0T1T1TT1TO0®O0OQO0T1TFP0
oo100O0O0OO0O0OO0OO0OO0OI11O01110O0®0T1TFV9071
oo0oo01o00O0OO0OOOO0OOI1I OI1111O0O0O0OT1O0T11
o 0o oo100000O0O0OI11T11O0O0O0O0OI1O0T1TT1TO0
o 0o ooo1o0000O0OO0O1T110O0O0O0OI1O01 101
o 0ooo0oo001O0O0OO0OO0O0OO0O0OT1IT1TO0O0OO0O1O0T1T1TO0T11
o 0oooo0o0O01 00001 00010110111
o 0oo0o0o00O0OO0O1TO0OO0OO0OI1I OOT1TO0OT1TT1O01TT1T1TO0
o 0o oooo0oo00010010101 1011 100O0
o 0o oooo0oo00001 011011011 1TO00O0
o 000000600001 1011O011T1TT00O0O0 1]

Remark: We can express Gog = [112| 4], where A is a 12 x 12 symmetric matriz;

that is, A® = A.

Exercise: Show that u-v = 0 for all rows u and v of GGy4. Hint: note that the first
row of GG is orthogonal to itself. Then establish that w-v = 0 when wu is the
second row and v is any row of Go4. Then use the cyclic symmetry of the rows
of the matrix A’ formed by deleting the first column and first row of A.

Remark: The above exercise establishes that the rows of GGo4 are orthogonal to each
other. Noting that the weight of each row of Gy is 8, we now make use of the
following result.

Definition: A linear code C is self-orthogonal if C C C*.
Definition: A linear code C is self-dual if C = C*.

Exercise: Let C be a binary linear code with generator matrix G. If the rows of G
are orthogonal to each other and have weights divisible by 4, prove that C' is
self-orthogonal and that the weight of every codeword in C'is a multiple of 4.

Remark: Since k = 12 and n — k = 12, the linear spaces Cy4 and C;; have the same
dimension. Hence Coy C C3; implies Cyy = C3;. This means that the parity
check matrix Hoy = [A|112] for Cyy is also a generator matrix for Cy,!

We are now ready to show that distance of Cy4 is 8 and, consequently, that the bi-
nary Golay [23, 12] code generated by the first 23 columns of Go4 must have minimum
distance either 7 or 8. But since the second row of this reduced generator matrix is
a codeword of weight 7, we can be sure that the minimum distance is exactly 7.
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Theorem 4.1 (Extended Golay [24,12] code) The [24,12] code generated by Gy
has minimum distance 8.

Proof: We know that the code generated by G4, must have weight divisible by 4.
Since both Go4 and Hy, are generator matrices for the code, any codeword can be
expressed either as a linear combination of the rows of GGo4 or as a linear combination
of the rows of Hyy. We now show that a codeword x € (4 cannot have weight 4. It is
not possible for the all of the left-most twelve bits of & to be 0 since & must be some
nontrivial linear combination of the rows of Go4. Likewise, it is not possible for all
of the right-most twelve symbols of & to be 0 since & must be some nontrivial linear
combination of the rows of Hyy. It is also not possible for only one of the left-most
(right-most) twelve bits of @ to be 1 since & would then be one of the rows of Gay
(Ha4), none of which has weight 4. The only other possibility is that @ is the sum of
two rows of Gay, but it is easily seen (again using the cyclic symmetry of A’) that no
two rows of (o4 differ in only four positions. Since the weight of every codeword in
C54 must be a multiple of 4, we now know that Cy; must have a minimum distance
of at least 8. In fact, since the second row of Go4 is a codeword of weight 8, we see
that the minimum distance of Cyy is exactly 8.

Exercise: Show that the ternary Golay [11, 6] code generated by the first 11 columns
of the generator matrix

100000011111
010000101221
GL_|0 01000110122
000100121012
000010122101
000001 112210

has minimum distance 5.
Theorem 4.2 (Nonexistence of (90,27, 5) codes) There exist no (90,2, 5) codes.

Proof: Suppose that a binary (90,27, 5) code C exists. By Lemma [[.3, without loss
of generality we may assume that 0 € C. Let Y be the set of vectors in F3° of
weight 3 that begin with two ones. Since there are 88 possible positions for the third
one, |Y| = 88. From Eq. ([1)), we know that C' is perfect, with d(C) = 5. Thus
each y € Y is within a distance 2 from a unique codeword . But then from the
triangle iequality),

2= d(C) - w(y) < wlz) - w(y) < wie—y) <2,

from which we see that w(x) = 5 and d(z,y) = w(x — y) = 2. This means that x
must have a one in every position that y does.
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Let X be the set of all codewords of weight 5 that begin with two ones. We know
that for each y € Y there is a unique € X such that d(x,y) = 2. That is, there are
exactly |Y| = 88 elements in the set {(z,y) : x € X,y € Y,d(z,y) = 2}. But each
x € X contains exactly three ones after the first two positions. Thus, for each x € X
there are precisely three vectors y € Y such that d(x,y) = 2. That is, 3|X| = 88.
This is a contradiction, since | X| must be an integer.

Remark: In 1973, Tietavainen, based on work by Van Lint, proved that any non-
trivial perfect code over the field F;' must either have the parameters ((¢" —
1)/(g—1),¢"",3) of a Hamming code, the parameters (23,2'2,7) of the binary
Golay code, or the parameters (11, 3%,5) of the ternary Golay code.



Chapter 5

Cyclic Codes

Cyclic codes are an important class of linear codes for which the encoding and de-
coding can be efficiently implemented using shift registers. In the binary case, shift
registers are built out of two-state storage elements known as flip-flops and arith-
metic devices called binary adders that output the sum of their two binary inputs,
modulo 2.

Many common linear codes, including Hamming and Golay codes, have an equiv-
alent cyclic representation.

Definition: A linear code C'is cyclic if

agady ...0p_1 € C= Ap_1Q9Q71 . ..Ap_2 € C.

Remark: If x is a codeword of a cyclic code C, then all cyclic shifts of & also belong
to C.

e The binary linear code (000,101,011, 110) is cyclic.

e The (7,16,3) perfect code in Chapter [, which we now know is equivalent to
Ham(3, 2), is cyclic.

e The binary linear code (0000, 1001,0110,1111) is not cyclic. However, upon inter-
changing the third and fourth positions, we note that it is equivalent to the
linear code (0000, 1010,0101,1111), which is cyclic.

It is convenient to identify a codeword aga; ...a,_1 in a cyclic code C with the

polynomial
1

c(z) = ap + ayz + asx® + ...+ a,_z" L
Then a,,_1apa; ... a,—2 corresponds to the polynomial

Un_1 + aor + a1 + ...+ ap_9x™ = xc(z) (mod 2™ — 1),

36
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since " = 1 (modz™ — 1). Thus, a linear code C is cyclic iff
c(x) € C = ze(zr) (moda™ — 1) € C.

That is, multiplication by x (modulo the polynomial ™ — 1) corresponds to a cyclic
shift.

Definition: The polynomial ring F,[z] is the set of all polynomials P(z) with coef-
ficients in Fj,.

Definition: The residue class ring R,, = Fy[z]/(z™ — 1) is the set of all polynomial
remainders obtained by long division of polynomials in F,[x] by ™ — 1. That
is, R, is the set of all polynomials of degree less than n.

Remark: A cyclic code in F' can be thought of as a particular subset of the residue
class polynomial ring R,. In fact, the following theorem shows that a cyclic

code C' is an ideal of R,,.
Theorem 5.1 (Cyclic Codes are Ideals) A linear code C in R, is cyclic <=
c(x) € C)r(x) € R, = r(z)c(z) € C.

Proof: Suppose C is a cyclic code in R,,. We know that multiplication of a codeword
¢(x) in C by z corresponds to a cyclic shift of its coefficients, and since C' is linear,
we know that c(x) € C' = ac(x) € C for all a € F,. We thus see by induction that

c(lx) e C=r(x)c(zr) e C Vr(zr) € Ry, (5.1)

where the multiplication is performed modulo ™ — 1. Conversely, suppose that C
satisfies Eq. (B.0]). Taking r(z) = « shows that C' is cyclic.

Definition: The principal ideal

(g(x)) = {r(x)g(x) : r(z) € Ry}
of R, is the cyclic code generated by the polynomial g(x).
Exercise: Verify that (g(z)) is an ideal.

Remark: The next theorem states that every ideal in R,, is a principal ideal (i.e. R,
is a Principal Ideal Domain).

Definition: A polynomial is monic if its highest-degree coefficient is 1.

Theorem 5.2 (Generator Polynomial) Let C' be a nonzero q-ary cyclic code in
R,,. Then
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(i) there exists a unique monic polynomial g(x) of smallest degree in C;

(1) C = (g(x));
(i1i) g(x) is a factor of x™ — 1 in F,|x].

Proof:

(i) If g(z) and h(z) are both monic polynomials in C' of smallest degree, then
g(x) —h(z) is a polynomial in C' of smaller degree. Then g(x) —h(z) # 0 would
imply that a certain scalar multiple of g(x) — h(z) is a monic polynomial in C'
of degree smaller than deg g, which is a contradiction. Hence g(x) = h(x).

(ii) Theorem p.J]shows that (g(z)) C C, so it only remains to show that C' C (g(z)).
Suppose ¢(z) € C. Using long division, we can express ¢(x) = q(z)g(z) + r(x),
where degr < deg g. But since ¢(x) and ¢(z)g(x) are both in the cyclic code C,
we know by the linearity of C' that r(x) = ¢(z) — g(x)g(x) is also in C. Hence
r(z) = 0 (otherwise a scalar multiple of (z) would be a monic polynomial in

C of degree smaller than deg g). That is ¢(x) € (g(x)).

(iii) By long division, we may express 2" —1 = ¢(z)g(x) +r(z), where degr < deg g.
But then r(x) = —q(z)g(x) (modz™ — 1) implies that r(z) € (g(z)). By the
minimality of deg g, we see that r(x) = 0; that is, 2™ — 1 is a multiple of g(x).

Definition: The monic polynomial of least degree in Theorem [.J is called the
generator polynomial of C'.

Theorem 5.3 (Lowest Generator Polynomial Coefficient) Let g(z) = go+g12+
...+ g:x" be the generator polynomial of a cyclic code. Then gy # 0.

Proof: Suppose g = 0. Then 2" 'g(z) = 27 g(z) is a codeword of C of degree r — 1,
contradicting the minimality of deg g.

Theorem 5.4 (Cyclic Generator Matrix) A cyclic code with generator polyno-
mial
g(x)=go+gix+ ...+ gx"

has dimension n — r and generator matrix

g ¢ 92 .. g 0 0 ... O
0O 9 o 9 ... g 0 ... 0
G=10 0 9 @ 9 -~ g .. O

0O 0 ... 0 g9 g g2 ... Gr
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Proof: Let ¢(z) be a codeword in a cyclic code C' with generator g(z). From Theo-
rem .2, we know that

c(x) = q(x)g(x)
for some polynomial ¢(z). Note that degq < n — r since deg f < n. That is,
"_’"_1) g(z) = qg(x)+qrg(x)+. . Agu_r_1z" " g(z),
which is a linear combination of the n — r rows g(z), zg(x), 2%g(z),..., 2" " 1g(z)
of GG. The diagonal of nonzero ggs next to a lower-triangular zero submatrix ensures
that the rows of G are linearly independent. Thus, the span of the rows of G is the
n — r dimensional code C'.

c(x) = (QO +qr+ ...+ Gpr

Remark: Together, Theorems p.] and p-4 say that an [n, k| code is cyclic <= it is
generated by a factor of ™ — 1. The following lemma is useful in finding these
factors.

Lemma 5.1 (Linear Factors) A polynomial c(x) has a linear factor v — a <=
c(a) =0.

Proof: Exercise.

Definition: A polynomial is said to be rreducible in F[z] if it cannot be factored
into polynomials of smaller degree.

Lemma 5.2 (Irreducible 2nd or 3rd Degree Polynomials) A polynomial c(x)
in Fy[z] of degree 2 or 3 is irreducible <= c(a) # 0 for all a € F,.

Proof: If ¢(x) can be factored into polynomials of smaller degree <= it has at least
one linear factor (r —a) <= ¢(a) =0, by Lemma p.1].

e Suppose we wish to find all ternary cyclic codes of length n = 4. The generators
for such codes must be factors of z* — 1 in the ring F3[z]. Since 1 is a root of
the equation z* — 1 we know that (z — 1) is a factor and hence

(* -1 =(@-1)(@*+2°+z+1)

By Lemma [.3, the factor 2® + 22 + = + 1 is not irreducible because it has a
linear root at a =2 = —1 in F3. Using long division, we obtain

(' = 1) = (x — 1)(z+ 1)(z* + 1).

Since any combination of these three factors can be used to construct a generator
polynomial g(z) for a cyclic code, there are a total of 23 = 8 ternary cyclic codes
of length 4, as illustrated in Table p.I. Upon examining the weights of the rows
of the possible generator matrices, we see that the generated codes either have
minimum distance less than or equal to 2 or else equal to 4. Hence, it is not
possible to have a cyclic code of length 4 and minimum distance 3. In particular,
Ham(2, 3), for which n = (32 — 1)/(3 — 1) = 4, cannot be cyclic. That is, not
all Hamming codes have a cyclic representation.
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9(x) G
10 0 0
1 01 0 O
0 01 0
0 0 0 1
-1 1 0 O
r—1 0O -1 1 0
0 0 -1 1
(1 1 0 0]
r+1 01 1 0
00 1 1]
(1 0 1 0]
2
vl 01 0 1)
-1 0 1 0
— — 72 _

(x—1)(z+1)=2"—-1 [0 1 0 1}
(z—1(@*+1l)=2*—-2*+2—-1| [-1 1 -1 1]
(x+1)@*+1)=2*+22+2+1 [1 1 1 1]

- 1=0 00 0 0]

Table 5.1: Generator polynomial g(z) and corresponding generator matrix G for all
possible ternary cyclic codes of length 4.
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An easy way to find the parity check matrix for a cyclic [n, k] code (without
requiring that we first put G given by Theorem p.4 in standard form) is to first
construct the check polynomial h(z) of C' from its generator polynomial ¢g(z), where
h(x) satisfies

" —1=g(x)h(z).

Since ¢ is monic and has degree n — k, we see that h is monic and has degree k.

Theorem 5.5 (Cyclic Check Polynomial) An element c(x) of R,, is a codeword
of the cyclic code with check polynomial h <= c(z)h(x) =0 in R,.

Proof:

“=" If ¢(z) is a codeword, then in R,, we have

c(x) = a(z)g(x) = c(x)h(z) = a(x)g(x)h(x) = a(z)(x"—1) = a(z)0 (mod 2" —1) = 0.

“<" We can express any polynomial ¢(z) in R, as ¢(z) = q(z)g(z) +r(x)
where degr < degg =n — k. If ¢(x)h(z) = 0 then

r(x)h(z) = c(z)h(x) — q(x)g(x)h(zr) =0 (mod x™ — 1).

But degr(z)h(z) < n—k+k = n, so r(z)h(z) = 0 in F,[z], not just
in R,. If r(x) # 0, consider its highest degree coefficient a # 0. Then
since h is monic, the coefficient of the highest degree term of the product
r(x)h(z) is a = a(1) = 0, which is a contradiction. Thus r(z) = 0 and so
¢(x) is a codeword: c(z) = q(z)g(z) € (g(x)).

Theorem 5.6 (Cyclic Parity Check Matrix) A cyclic code with check polyno-
mial h(z)
h(z) = ho 4+ hiz + ... + hpa”

has dimension k and parity check matrix

he hi_1 higo ... ho 0 0 .. 0
0 hy hpr hieo ... ho 0 .. 0
H = 0 0 hk hk—l hk_g Ce ho Ce 0
0 0 . 0 hy  hpg_1 hi_o ... hg

Proof: Since the degree of the generator polynomial g is » = n — k, by Theorem p.4}
the dimension of the code must be k. From Theorem p.5, we know that a codeword
c(z) = coterz+. . .+, 12" must satisfy c¢(x)h(x) = 0. In particular, the coefficients
ak b+ a1 of the product c(z)h(x) must be zero; for £ =k, k+1,...,n—1 we

then have
0= Z Cihj.

itj=0
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But then, since each of these equations is one of the n — k rows of the matrix equation

hk hk—l hk_g ce h(] 0 0 Ce 0 Co 0
0 hk hk—l hk_g Ce ho 0 Ce 0 C1 0
0 0 hi hip_1  hi_o . ho ... 0 c| =101,
0 0 ce 0 hk hk—l hk_g ce ho Cp, 0

the codewords are orthogonal to all cyclic shifts of the vector hyhg_1hg_o...ho00...0.
Hence, the codewords are orthogonal to all linear combinations of the rows of H. This
means that C contains the span of the rows of H. But hj, = 1, so we see that H
has rank n — k and hence generates exactly the linear subspace C+. That is, H is a
parity check matrix for the code with check polynomial h(z).

Definition: The reciprocal polynomial h(zx) of a polynomial
is obtained by reversing the order of its coefficients:

h(z) = 2"h(z™") = hor® + b ' 4+ .. 4+ hy = by + bz + .+ hot,

Remark: Since
2" h(x)g(x™) = 2"h(z g(aT) = 2" [(z7 )" = 1] = 1 — 2",

we see that h(z) is a factor of 2 — 1. In view of Theorem .3, this says that
C is itself a cyclic code, with (monic) generator hy'h(x).

We are now able to show that all binary Hamming codes have an equivalent cyclic
representation.

Theorem 5.7 (Cyclic Binary Hamming Codes) The binary Hamming code Ham(r, 2)
1s equivalent to a cyclic code.

Proof: Let p(x) be an irreducible polynomial of degree r in Fy[z]. By Theorem A3
Fy[x]/p(x) is a field of order 2", and by Theorem [A.4 we know that Fy[x]/p(x) can be
expressed as the set of distinct elements {0,a°, o', a?, ..., a* 72} for some primitive
element o. We associate each element ag + a1 + agz? + ... + a,_12""! € Fylz]/p(x)

with the column vector
Qo

a1

Qr_1
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Let n = 2" — 1. The r x n matrix
H=[1 a o* ... o"]

is then seen to be the parity check matrix for C' = Ham(r,2) since its columns are
precisely the distinct nonzero vectors of Fyr. A codeword () = co+ciz+. .. cp_12™ "
in this code must then satisfy the vector equation ¢y + ciaq +cias ...+ cp1a™ ! =0,
so that

C ={c(z) € R, : c(a) =0 in Fyz]/p(x)}
If ¢(x) € C and r(z) € R,,, we have r(a)c(a) = r(a)0 = 0 in Fy[z]/p(x), so r(z)c(x)
is also an element of C'. Theorem p.1] then implies that C' is cyclic.

e The irreducible polynomial 23 + z + 1 in Fy[z] can be used to generate the field
Fy = Fy[z]/(2® + 2 +1) with 2% = 8 elements. Note that Fy has  as a primitive
element since all polynomials in Fy[z] of degree less than 3 can be expressed as
powers of x:

Fo={0,1, 2,20 =a+ 12" =2+ 2,2 =2 + o+ 1,20 = 2% + 1}.

Note that 27 = 2% + = = 1; that is, the primitive element has order 7 = 8 — 1.
The primitive element x is a root of the primitive polynomial x® +x + 1 in Fy.

e A parity check matrix for a cyclic version of the Hamming code Ham(3, 2) is thus

H =

O O =
O = O
_ o O

1 0 1 1
1 1 1 0
0O 1 1 1
Q. What is the generator polynomial for Ham(r, 2)?

A. The close parallel between Theorem p.3 and Theorem .5 when n = p" — 1
gives us a clue: on comparing these results, we see from Theorem [.4 that any
minimal polynomial of F, is a generator polynomial for a cyclic code in Fj. (see
Appendix [A]). In particular, the following Corollary to Theorem p.7 establishes
that Ham(r, 2) can be generated by any primitive polynomial of Fy-, which is
just an irreducible polynomial in Fy[z] having a primitive element as a root.

Corollary 5.7.1 (Binary Hamming Generator Polynomials) Any primitive poly-
nomial of Fyr is a generator polynomial for a cyclic Hamming code Ham(r,2).

Proof: Let a be a primitive element of Fy-. Its minimal polynomial p(z) is a primitive
polynomial of Fy. From the proof of Theorem .7, we see that Ham(r,2) consists
precisely of those polynomials ¢(z) for which ¢(a) = 0, for example, p(x) itself. By
Theorem [A], any such polynomial must be a multiple of p(z). That is, Ham(r, 2) C
(p(z)). Moreover, Theorem implies that every multiple of p(x) belongs to the
cyclic code Ham(r,2). Hence Ham(r,2) = (p(z)).
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e Consider the irreducible polynomial p(x) = x®+z+1 in Fy[z]. Since x is a primitive
element of Fy[z]/p(x) and p(zr) = 0 mod(z® + = + 1), we know that p(z) is a
primitive polynomial of Fys = Fy[z]/p(x) and hence Ham(3,2) = (p(z)). From
Theorem p.4, we can then immediately write down a generator matrix for a
cyclic Ham(3, 2) code:

1 1.0 1 0 0 0
0110100
001 1 010
0001101



Chapter 6
BCH Codes

For noisy transmission lines, Hamming codes are of limited use because they cannot
correct more than one error. In this chapter, we discuss a class of important and
widely used cyclic codes that can correct multiple errors, developed by R. C. Bose
and D. K. Ray-Chaudhuri (1960) and independently by A. Hocquenghem (1959),
known as Bose—Chaudhuri-Hocquenghem (BCH) codes.

Definition: Let a be an element of order n in a finite field Fis. An [n, k] BCH code
of design distance d is a cyclic code of length n generated by a polynomial g(x)
in F,[z] of degree n — k that has roots at a,a?,..., a1,

Remark: Often we take a to be a primitive element of Fis, so that n = ¢° — 1. The
resulting BCH code is known as a primitive BCH code. However, it is possible
to construct BCH codes over Fys of length n, where n is any factor of ¢° — 1.

Remark: We will establish that a BCH code of odd design distance d has minimum
distance of at least d, by showing that such a code can correct (d —1)/2 errors.

Exercise: Show that a polynomial ¢(z) belongs to an [n, k] BCH code of design
distance d <= c(a) =c(a?) = ... =c(a® 1) =0.

To encode the message word agay ...ar_1, we represent it by the polynomial
f(x) = Zfz_ol a;z° and form its product with the generator polynomial g(z), to obtain
the codeword c¢(z) = f(z)g(z).

e For the primitive element o = z of the field Fps = Fylx]/(2* + z + 1), we can
construct a [15,7] code that can correct two errors, by finding a generator
polynomial g(x) that that has roots at a, a?, a®, and a*. Such a generator can
be created from the product of the minimal polynomials m(x) = 2% + x + 1
of a and my(x) = 2* + 2° + 2> + 2 + 1 of a*:

g(z) = mi(x)ms(z) = (' +2+ ) (@' +2° +2* +a+1) =2® + 2"+ 2%+ 2 + 1.

45
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Note that g(x) has even more roots than prescribed, namely at «, a2, a?, of,

a3, ab o'?, and o®. Once we have shown that this code can correct two errors,
we will know that its minimum distance is exactly 5 since the codeword g(z)

has weight 5.

Remark: In the binary case ¢ = 2, we may choose g(z) to be the product of the
minimal polynomials of the odd powers, from 1 to d—1, of the primitive element.

We now describe the decoding procedure for BCH codes. To keep the notation
simple we begin by illustrating the procedure first for the binary case, where ¢ = 2.
Suppose that v(z) is received rather than c¢(x) and that ¢ errors have occurred. Then
the error polynomial e(x) = v(x) — c¢(x) can be written as e(z) = x% + 2% + ... + 2%
for some unknown powers ¢y, {5, ..., ¢;. We then compute the syndrome S; by
substituting a into v(x),

S1 =v(a) =cla)+e(la)=cla)=e +...+e,

where e¢; = ot for i =1,2,...,t. Likewise, we evaluate
Sy = v(a?) = c(a?) +e(a?) = e(a®) =2 + ... + €7,
Sz =v(a?) = c(a®) +e(a®) = e(a®) =€ + ... + €,

Si_1 = v(ad_l) = c(ad_l) + e(ad_l) = e(ad_l) = ef‘l + ...+ ef‘l.

The decoding problem now amounts to determining which value of ¢ and which choices
of the field elements eq, eo, ..., ¢; are consistent with the above equations. Once these
are found, from a table of the elements of F,:, we can determine the corresponding
powers {1, ls, ..., ¢, such that e; = o’i. These powers tell us directly which bits we
need to toggle. To find a solution to the above equations, the following definition will
be helpful.

Definition: The error locator polynomaial is
O'(.T) = (615(7 — 1)(625(7 — 1) Ce (etx — 1) = btl't + bt_l.ilft_l +...+ blx + 1.
Notice that the roots of o(x) are just the inverses of ¢;, 1 = 1,2,...,t.

To understand how the above syndrome equations are solved, it will be helpful to
first discuss the case where d = 5 and ¢t < 2 errors have occurred. We define ¢; = 0
for ¢ > t and write

Sl =€ +€2,

2 2
SQ == el +€2,
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3 3
53 - el +€2,
4 4

The error locator polynomial is o (z) = byz®+byz+1. Since o(e; ') = 0 fori = 1,2
we know that

0= ei’a(efl) = 6?(()261_2 + blefl +1) =bey + ble% + ei’

and
0= 6% 0'(62_1) = b2€2 + bleg + 6%.

Upon adding these equations, we obtain
0 = by(e; + ) + bi(ed +e3) + (eF +e3),

ie.

S1by + Saby = Ss.
If for each i we had multiplied o(e; ') = 0 by e} instead of e} and added the resulting
equations, we would have obtained

Saby + Ssby = Sy.

To find b; and by, we only need to solve the system of equations

Sl Sg bg S3
5 2]l -[5] o
If the coefficient matrix in Eq. (B.1]) has rank 0, then S; = Sy = S3 = S; = 0 and
hence e; = es. This would imply that ¢; = ¢, in which case e(xz) = 0; that is, no
error has occurred. That is, the system of equations will have rank 0 <= no errors
have occurred.

Suppose that the coefficient matrix has rank 1. Since ¢ = 2, we know that Sy = S%.
Note that S7 # 0, for otherwise the first equation would imply that S3 = 0 and the
rank of the coefficient matrix would be 0. Since the determinant S;S5 — Sz = 0, we
deduce S3 = S3. But

6? + 6; = (61 + 62)3 = 0= 36162(61 + 62) = 3616251.

This implies that e; = 0 (only one error has occurred) and that S; = e; = ‘.
Conversely, if only one error has occurred, then S; = S? # 0 and the coefficient
matrix of Eq. (B-]]) will have rank 1. Using a power table for Fyr, we simply look
up the exponent £; such that ot = S; and then toggle bit ¢; of v(z) to obtain the
transmitted codeword ¢(x).

Finally, if the rank of the coefficient matrix is 2, we can solve for the coefficients by
and by. If two errors have occurred, the error locator polynomial o(x) = byz?+bix+1
must have two roots in Fy1, which we can determine by trial and error. The powers
of o associated with the inverses of these roots identify the two bit positions in which
errors have occurred.
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e Let us demonstrate this decoding scheme for the [15, 7] BCH code generated by the
polynomial g(z) = 2® + 2" + 2% + 2* + 1. Given the message word 110 0000,
the transmitted codeword is 110 011 100 100 000, i.e. ¢(z) = (1 + z)g(x) =
2? + 2% + 2% + 2* + 2 + 1. Suppose that two errors have occurred, so that the
received vector is 110 010 101 100 000, that is, v(z) = 2% + 2% + 2 + 2t + 2 + 1.

Consulting the power table for Fy[z|/(z* + = + 1), we see that the syndromes
are

Si=v(@)=a’+a® +a’ +a'+a+1
=(a’+a)+(@®+ 1)+ (" +a)+(a+)+a+l=a+tl=a,
Sy =52 =a,
Sy=v(e’) ="+ +a®+a?+a’+1
— a2+’ +al+a2+aP+1=a’+1=aP+a+1=a

Sy=95}=8]=0a'’=q.
Since S; # 0 and S35 — 53 = a” — a'? # 0, the system of equations,
Slbg + Sgbl = Sg = &462 + O.fgbl = (1/7,

Sgbg + Sgbl = S4 = &862 + (1/7b1 =,

has rank 2. Upon adding the first equation times a? to the second equation, we
see that

(@' +a")b, =o' +a.

Thus, b, = a 2a% = o' and hence by = a™*(a” + a®a?) = a™a? = a'®. Thus,
the error polynomial is

o(r) = oa®2® + o’z + 1.

We determine the roots of this equation by trial and error, That is, we search
through the field until we find an 7 such that a'®*% + o**" = 1. Incrementing
from i = 0, the first ¢ we find is i = 7, so one root is a’. If we divide o(z) by
x + a’, we obtain the quotient o'3z + a®, so the other root is x = a®~13 = 10,
The errors e; and ey are just the inverses of these roots, namely o® and o®. That
is, the two errors are in the fifth and eighth positions, so we decode the received
vector 110 010 101 100 000 as the codeword 110 011 100 100 000. Upon division
of the associated polynomial 2°+2%+2°+2*+x+1 by g(z) = 28 +2"+25+ 21 +1
we obtain x + 1, which corresponds to the original message, 110 0000.

e In the previous example, if instead the received vector was 110 010 100 100 000,
that is, v(z) = 2 + 2% + 2* + 2 + 1, the syndromes would be
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Si=v(la)=a’+a’+a'+a+1
=@+a)+(@+a’)+(a+1)+a+l=a’+a=a’
Sy = 5% = o',
Sy=v(a®) =’ +a® +a? +a® +1
— a2 4P a4t +1=1,
Sy=S8]=52=a" =0
Since S3 = S} # 0, we know that only one error has occurred. In fact, S; = a?,

so the error must be in the fifth position; one again we see that the transmitted
codeword was 110 011 100 100 000.

In general, decoding requires that we solve the nonlinear system of d—1 syndrome
equations

Si=v(@)=¢e +...+e, i=1,...,d-1 (6.2)
for the values e; and t. Here t < (d — 1)/2 is the actual number of errors that have
occurred, so that each of the values e; for j = 1,...,¢ are nonzero and distinct.

A straightforward generalization of the ¢ = 2 decoding scheme leads to the ¢
equations:
0=co(e;) =be; +b_re? 4+ ...+ brel + el

t42 -1 2 3 t+1 t42
O:6i+ 0'(62- ):btei +bt—16i +"‘+b1€i+ +€i+,

0=cro(e;) =bel +brel™ +.. +bef !+ e
On summing each of these equations over i, we obtain a linear system of equations
for the values by, bs, ..., b, in terms of the 2t < d — 1 syndromes Sy, Ss, ..., So:

Sl SQ N St bt St+1
Sz 5.3 - St.—l—l bt.—l _ St.—i-2 6.3)
St Sip1 .. S by Sor
Exercise: Show that we may rewrite the coefficient matrix in Eq. (f.3) as
M =VDV,
where V is the Vandermonde matrix
1 1 o 1
€1 €9 Ce €t
V=] € ez ... €
ei;l eg—l o ef_l

and D = diag(ey, es, ..., ¢e;) is a diagonal matrix with components d;; = e;.
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Remark: The matrix D is nonsingular <= each of its eigenvalues e;,7 = 1,...,1
are nonzero. Also, the following theorem establishes that the matrix V' is non-
singular <= the values e; are distinct.

Theorem 6.1 (Vandermonde Determinants) For ¢t > 2 the tXt Vandermonde
matrie

1 1 ... 1
€1 €9 c. €
2 2 2
V = (e e ... €&
t—1 t—1 t—1
61 62 DY et

has determinant H (e; —€j).

i,j=1
>3

Proof: When ¢ = 2 we see that V' = es —e;. For t > 2, suppose that all (t—1)X (t—1)
Vandermonde matrices have determinant

t

|
—

t—1 i—1

(3

S
Il

=

1 i=1 j=1

K3

\Y

J

By subtracting e; times row ¢ — 1 from row ¢, for ¢ = ¢,t — 1,...,2, we can rewrite
the determinant of any Xt Vandermonde matrix as

1 1 .. 1 1
€1 — € €9 — €4 €1 — € 0
er(er — &) esea —e) ... eq(em1—e) 0O
e (e; —e) e ea—e) ... el (e)1—e) O
€1 — € €y — €4 €t—1 — €¢
B ( 1>t—1 €1 (61 — €t) 62(62 — €t) e €t_1(6t_1 — €t)
el (e —e) ehea—e) ... e e —e)
1 1 o 1
€1 €2 €t—1
=& e Ci-1](e; —e1)(er —e2) ... (er —ei1)
eﬁ_z 6t2_2 . ei:f
t—1 i—1 t—1 i—1

I
|
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Remark: We thus see that the matrix M = VDV! is nonsingular <= the error
values e; are nonzero and distinct.

Remark: If we attempt to increase the value of ¢ in Eq. (p.3) beyond the actual
number of errors that have occurred, either the values e; will no longer be
distinct or at least one of them will be zero. In either case, M will no longer
be invertible. This gives us a method for finding the number of errors: ¢ is just
the largest number such that

S1 Sy ... S5

Sy S3 ... S
M |72 t41

St Sy ... S

is invertible.

Remark: Ifitis a priori known that no more than t errors have occurred in a received
vector v, then it is impossible for a (t + 1) x (t + 1) or larger syndrome matrix
based on v to be invertible.

Remark: Once we have determined the maximum value of ¢ such that the coefficient
matrix M is invertible, we simply solve the linear system Eq. (B.J) for the
coefficients by, by, . . ., by of the error locator polynomial o(x). We can determine
all t roots of o(z) simply by searching through all of the field elements (at most
one pass is required). The exponents ¢y, {5, ..., {; corresponding to the inverses
of these roots precisely identify the ¢ positions of the received vector that are
in error.

Remark: The above decoding procedure can be easily extended to nonbinary codes.
In this case, the error vector becomes e(r) = ¢z + gz + ... + g2, where
the ¢; € {0,1,...,¢—1}, the syndromes become S; = gie! + ...+ qel, and D =
diag(qie1, goea, - . ., qie;). We then see that any BCH code of design distance d
can correct [(d — 1)/2] errors. We encapsulate this result in the following
theorem.

Theorem 6.2 (BCH Bound) The minimum distance of a BCH code of odd design
distance d is at least d.

Proof: This follows from Theorem and the fact that the BCH code can correct
(d —1)/2 errors.

Remark: Although Theorem may be shown to hold also when the design dis-
tance d is even, we are normally interested only in the case of odd d.

Remark: It may happen that the minimum distance of a BCH code exceeds its
design distance d, as illustrated by the following example.
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e Let a be a primitive element of Fyii. Since 2 — 1 = 2047 = 23 x 89, the el-
ement 3 = o® has order n = 23. The cyclotomic cosets mod23 are {0},
{1,2,4,8,16,9,18,13,3,6,12}, and {5,10,20,17,11,22,21,19,15,7,14}. Thus
the minimal polynomials of my(z) of 8 and mj;(z) of 3° in Fyin each have degree
11[] We can then construct a [23,12] BCH code of length 23 from the degree
11 generator polynomial m;(z), which has roots at 3, 5%, 33, and 3*. While the
design distance of this code is 5, the actual minimum distance is 7; in fact, this
BCH code is equivalent to the triple-error correcting [23,12,7] Golay code we
encountered in Chapter .

Remark: The special case of a BCH code where s = 1, that is, the primitive ele-
ment a comes from the same field Fj, as the coefficients of the generator poly-
nomial, is known as a Reed—Solomon code. Note that the minimal polynomial
of any element of F, has degree s = 1. The generator polynomial of a Reed-
Solomon code of design distance d,

g(x) = (x —a)(z —a®)(z —a®) ... (z — ™),

thus has degree n — k = d — 1. That is, the minimum distance of the code must
at least n — k + 1. But since there are tk H < n — k independent columns in
the parity check matrix, we know from Theorem P.J that the minimum distance
can be no more than n — k + 1. Thus, a Reed—Solomon code achieves the so-
called singleton upper bound n — k + 1 for the minimum distance of a code.
Because Reed—Solomon codes are optimal in this sense and easily implementable
in hardware (using shift registers), they are widely used for error correction in
computer memory chips, magnetic and optical (compact disk) storage systems,
high-speed modems, and data transmission channels.

e Since 2 is a primitive element of Z;;, the polynomial
g(z) = (2—2)(x—4)(x—8)(x—5)(z—10)(x—9) = 25 +62°+52*+ 723+ 22>+ 8242

generates a triple-error correcting [10, 4, 7] Reed—Solomon code over Zj;. One
of the codewords is g(x) itself, which has weight 7, so the design distance in
this case is the actual minimum distance.

e Compact disk players use a double-error correcting [255, 251, 5] Reed—Solomon code
over Fysg (the symbols are eight-bit bytes) with interleaving of the data over
the disk to increase robustness to localized data loss.

e High-performance computer memory chips containing so-called ECC SDRAM use
Reed—Solomon codes to correct one error per 64-bit word in addition to detecting
very rare multiple errors (which are programmed to generate a machine halt).

Since f** = 1, we know from Theorem [A.5 that z?* — 1 = (2 — 1)my(z)ms(z), moreover,
Theorem [A.7 implies that ms(z) = 1 ()



Chapter 7

Cryptographic Codes

In contrast to error-correcting codes, which are designed only to increase the reliability
of data communications, cryptographic codes are designed to increase their security.
In cryptography, the sender uses a key to encrypt a message before it is sent through
an insecure channel (such as a telephone line, radio transmission or the internet).
An authorized receiver at the other end then uses a key to decrypt the received data
to a message. Often, data compression algorithms and error-correcting codes are
used in tandem with cryptographic codes to yield communications that are both
efficient, robust to data transmission errors, and secure to eavesdropping and/or
tampering. Typically, data compression is performed first; the resulting compressed
data is then encrypted and finally encoded with an error-correcting scheme before
being transmitted through the channel.

Definition: Let K be a set of cryptographic keys. A cryptosystem is a set
{e,d,E.,Dy:e €K}

of encrypting and decrypting keys, e and d, and their associated encrypting
function &, and Dy, respectively.

Most cryptosystems, or ciphers, fall into one of two broad classes: symmetric-key
cryptosystems, where essentially the same key is used both to encrypt and decrypt
a message (precisely, where d can be easily determined whenever e is known) and
public-key cryptosystems, where the encryption key e is made publicly available, but
the decryption key d is kept secret and is (hopefully) known only to the receiver.

7.A Symmetric-Key Cryptography

One of the simplest cryptographic system is the shift cipher employed by Julius
Caeser. Shift ciphers encode each symbol m € {0,1,...,n — 1} in the message as

c=&(m)=m+e (modn),

23
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where e € N. Decoding is accomplished via the inverse transformation
m = Dy(c) = ¢+ d (modn),

where d = —e. That is, encoding is accomplished by addition modulo e and decoding

key is accomplished by subtraction modulo e. Caeser adopted the value e = 3 to

encrypt the n = 26 symbols of the Roman alphabet, using 0 to represent the letter A

and 25 to represent the letter Z. Some fans of the film “2001: A Space Odyssey” even

suggest that the computer name HAL is really a shift cipher for IBM, with e = 25!
A slight generalization of the shift cipher is the affine cipher, defined by

c¢=Eup(m) =am+b (modn),

where a € N is relatively prime to n. This condition guarantees the existence of an
inverse transformation,

m = D,4(c) = a*(c—b) (modn).

Both shift and affine ciphers are very insecure since they are easily decoded simply
by trying all possible values of a and b! They are both special cases of simple sub-
stitution ciphers or monoalphabetic substitution ciphers, which permute the alphabet
symbol in a prescribed manner. Simple substitution ciphers can be cryptanalyzed
(decoded by an unauthorized third party) by frequency analysis, in which the en-
crypted symbol frequencies are compared to those of the original message language
to determine the applied permutation. Block substitution ciphers or polyalphabetic
substitution ciphers divide the message into blocks of length r and apply different
permutations to the symbols in individual positions of the block. Given enough en-
crypted text, block substitution ciphers are also easily cryptanalyzed once the block
size r is determined, simply by doing a frequency analysis on the letters in each fixed
position of all blocks.

Digraph ciphers map pairs of letters in the message text to encrypted pairs of
letters. A general example of this is the linear block or Hill cipher, which uses an
r X r invertible matrix e to encrypt an entire block of r message symbols:

c¢=E&(m) =em (modn),

m = D,(c) = e 'c (modn).
The existence of e~! requires that det e have an inverse in Z,, which happens only

when ged(dete,n) = 1.

e Choose r =2, n =26 and
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We see that det e = 5 has no common factors with 26. To find the inverse of 5
in Zog we use the Euclidean division algorithm: 1 = 5x 4 26y,26 =5-5+1 =
1 =26 —5-5, from which we see that x = —5 is a solution. Thus

a1 3]
-3 2 15 16 |-

We can use e to encrypt the word “SECRET”, in other words the message 18
4217 4 19, by breaking the message up into vectors of length two: [18 4], [2
17], [4 19] and then multiplying the transpose of each vector by e on the left.
The result is [14 18], [21 22], [1 10], or the cipher text “OSVWBK”. Note that
the two letters “E” are not mapped to the same symbol in the ciphertext. For
this reason the Hill cipher is less susceptible to frequency analysis (particularly

for large block sizes; however, the number of entries in the key matrix then
becomes unreasonably large).

Exercise: Verify that the original message “SECRET” is recovered when “OSVWBK?”

is decoded with the matrix e~ 1.

A special case of the block cipher is the permutation cipher, in which the order
of the characters in every block of text are rearranged in a prescribed manner. They
can be detected by frequency analysis since they preserve the frequency distribution
of each symbol. All of the linear or affine block methods are subject to cryptanalysis
using linear algebra, once r or r + 1 plaintext—ciphertext pairs are known.

A widely used commercial symmetric-key cryptosystem is the Data Encryption
Standard (DES), which is a type of Feistel cipher endorsed in 1977 by the United
States National Bureau of Standards for the protection of confidential (but unclassi-
fied) government data. In 1981, DES was approved also for use in the private-sector.
Feistel ciphers are block ciphers over F2!. One divides a plaintext block message of 2t
bits into two halves, Ly and Ry, and then performs the iteration

Li=R;_y,
Ri=Li 1+ f(Ri—1,€), 1=1,...,m,

where the e; are the keys and f is a specific nonlinear cipher function. The encryption
function is E.(Lg | Ry) = R, | L., where | denotes concatenation, and e = (eq,...e,)
denotes a set of r encryption keys. The decryption function D.(L, | R.) = Ry | Lo, is
implemented by applying the inverse iteration

Liy=R;+ f(Li_1,€),
Ri_lzLi, ’i:T,...,l.

With Feistel ciphers, the encryption and decryption algorithms are essentially the
same, except that the key sequence is reversed.
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The DES cipher uses the half width ¢ = 32 and r = 16 rounds of encryption. All
16 keys are generated from a bit sequence of length 64 that are divided into 8 bytes.
The eighth bit of each byte is an (odd) parity check, so in fact there are only 56
information bits in the key. Hence the number of keys that need to be searched in
a brute-force attack on DES is 2°¢. In fact, because of an inherent ones-complement
symmetry, only 25 keys need to be checked. On a modern supercomputer this is quite
feasible; moreover, DES has recently been shown to be susceptible to relatively new
cryptanalytic techniques, such as differential cryptanalysis and linear cryptanalysis.
Somewhat more secure variants of DES (such as Triple-DES, where DES is applied
three times in succession with three different keys), has been developed as an interim
solution. One common application of DES that persists today is its use in encrypting
computer passwords, using the password itself as a key. This is why many computer
passwords are still restricted to a length of eight characters (64 bits).

In October 2000, the Rijndael Cryptosystem was adopted by the National Bureau
of Standards as the Advanced Encryption Standard (AES) to replace DES. It is
based on a combinations of byte substitutions, shifts, and key additions, along with a
diffusion-enhancing technique based on cyclic coding theory, where the data values are
multiplied by the polynomial 3z3+x?+z+2 in the polynomial ring Ry = Fy[z]/(x*—1).

7.B Public-Key Cryptography

A principle difficulty with symmetric-key cryptosystems is the problem of key distri-
bution and management. Somehow, both parties, which may be quite distant from
each other, have to securely exchange their secret keys before they can begin commu-
nication.

One technique for avoiding the problem of key exchange makes use of two secure
envelopes, or locks, which each party alternately applies and later removes from the
sensitive data, as the data makes a total of three transits between sender and receiver.
The required three transmissions makes this method awkward to use in practice.

In public-key cryptosystems, key exchange is avoided altogether by making copies
of the receiver’s encrypting key (lock) available to anyone who wants to communicate
with him. Both the secure envelope technique and the public-key technique require
that the encrypting key e is designed so that the decrypting key d is extremely difficult
to determine from knowledge of e. They also require authentication of the lock itself,
to guard against so-called man-in-the-middle attacks.

7.B.1 RSA Cryptosystem

The most well known public-key cipher is the Rivest-Shamir-Aldeman (RSA) Cryp-
tosystem. First, the receiver forms the product n of two distinct large primes numbers
p and ¢ chosen at random, but such that p and ¢ cannot be easily determined from
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nJ] The receiver then selects a random integer e between 1 and ¢(n) = (p—1)(¢—1)
that is relatively prime to ¢(n) and, using the Euclidean division algorithm, com-
putes d = e~ in Zy(,) (why does e~! exist?). The numbers n and e are made publicly
available, but d, p, q are kept secret.

Anyone who wishes to send a message m, where 0 < m < n, to the receiver
encrypts the message using the encoding function

c=E&(m)=m° (modn)

and transmits c. Because the receiver has knowledge of d, the receiver can decrypt c
using the decoding function

M = D.(c) = ¢ (modn).
To show that M = m, we will need the following results.

Theorem 7.1 (Modified Fermat’s Little Theorem) If s is prime and a and m
are natural numbers, then

m [m“(s_l) — 1] =0 (mod s).

Proof: If m is a multiple of s we are done. Otherwise, we know that m® is not a
multiple of s, so Fermat’s Little Theoremf] implies that (m®)*~! = 1 (mods), from
which the result follows.

Corollary 7.1.1 (RSA Inversion) The RSA decoding function D, is the inverse
of the RSA encoding function &..

By construction ed = 1 4 kp(n) for some integer k, so

M = DG(C) _ Cd _ (me)d _ med _ ml—i—kgp(n) _ ml-l—k(p—l)(q—l) (mod TL)
We first apply Theorem [.1] with @ = k(¢ — 1), s = p and then with a = k(p — 1),
s = ¢, to deduce that m[m*a~)®=1) 1] is a multiple of both of the distinct primes p
and ¢, that is, m[m*@~D®=Y — 1] =0 (mod pq). Thus

M = mm*@=YVP=Y — m (mod pg) = m (modn).

IFor example, if p and ¢ are close enough that (p+¢)%2 —4n = (p+q)? — 4pg = (p — q)? is small,
then the sum p+ q could be determined by searching for a small value of p — ¢ such that (p—q)2+4n
is a perfect square, which must be p + q. Knowledge of p — ¢ and p + ¢ is sufficient to determine
both p and gq.

2This follows from applying Theorem @ to the field Z;.
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e Let us encode the message “SECRET” (18 4 2 17 4 19) using the RSA scheme with
a block size of 1. The receiver chooses p = 5 and ¢ = 11, so that n = pqg = 55
and p(n) = 40. He then selects e = 17 and finds d = e™! in Zy, so that
17d = 40k 4 1 for some k € N. This amounts to finding ged(17,40):

40 =2-17 46, 17=2-6+405, 6=1-54+1,
from which we see that
1=6-5=6—(17—2-6)=3-(40—-2-17)—-17=3-40—-7-17.
That is, d = —7 (mod40) = 33. The receiver publishes the numbers n = 55

and e = 17, but keeps the factors p =5, ¢ = 11, and d = 33 (and ¢(n)) secret.
The sender then encodes 18 4 2 17 4 19 as

1817 417 21 17 417 1917 (mod 55) = 28 49 7 52 49 24

The two Es are encoded in exactly the same way, since the block size is 1: obvi-
ously, a larger block size should be used to thwart frequency analysis attacks.[]

The receiver would then decode the received message 28 49 7 52 49 24 as
28%3 4933 733 5233 49 243 (mod 55) = 18 4 2 17 4 19.

Remark: While the required exponentiations can be performed by repeated squar-
ing and multiplication in Zg) (e.g. 2* = 2% - x), RSA decryption can be
implemented in a more efficient manner. This is important, since to make com-
puting the secret key d (from knowledge of n and e alone) difficult, d must be
chosen to be about as large as n. Instead of computing m = ¢ directly, we first
compute a = ¢? (modp) and b = ¢? (modq). This is very easy since Fermat’s

Little Theorem says that ¢?~! = 1 (mod p), so these definitions reduce to
a = ¢ ™41 (mod p), b=t moda (modg).

The Chinese Remainder Theorem then guarantees that the system of linear
congruences
m = a (mod p), m = b (mod q)

has exactly one solution in {0,1,...,n — 1}. One can find this solution by
using the Euclidean division algorithm to construct integers x and y such that
1 =xp+yq. Since yg =1 (modp) and xp = 1 (mod q), we see that

m = ayq + brp (modn)

is the desired solution. Since the numbers x and y are independent of the
ciphertext the factors pxr and py can be precomputed.

3For example, we could encode pairs of letters ¢ and j as 26i + j and choose n > 262 = 676,
although such a limited block size would still be vulnerable to more time consuming but feasible
digraph frequency attacks
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e To set up an efficient decoding scheme we precompute x and y such that 1 =
5r 4+ 11y. We see that x = —2 and y = 1 are solutions, so that zp = —10
and yg = 11. Once a and b are determined from the ciphertext we can quickly
compute m = 11a — 10b (mod n). For example, to compute 283 we evaluate

a = 282 mod4d) (164 5) = 28 (mod 5) = 3,

b =283 mod10) (1164 11) = 28% mod 11 = 6> mod 11 =7
and then compute m = 1la — 10b = (33 — 70) (mod 55) = 18.

Remark: Determining d from e and n can be shown to be equivalent to determining
the prime factors p and ¢ of n. Since factoring large integers in general is an ex-
tremely difficult problem, the belief by many that RSA is a secure cryptographic
system rests on this equivalence. However, it has not been ruled out that no
other technique for decrypting RSA ciphertext exists. If such a technique exists,
presumably it does not involve direct knowledge of d (as that would constitute
an efficient algorithm for factorizing integers!).

7.B.2 Rabin Public-Key Cryptosystem

In contrast to the RSA scheme, the Rabin Public-Key Cryptosystem has been proven
to be as secure as factorizing large integers is difficult. Again the receiver forms the
product n = pq of two large distinct primes p and ¢ that are kept secret. To make
decoding efficient, p and ¢ are normally chosen to be both congruent to 3 (mod4).
This time, the sender encodes the message m € {0,1,...,n — 1} as

c=E.(m) =m? (modn).

To decode the message, the receiver must be able to compute square roots modulo n.
This can be efficiently accomplished in terms of integers x and y satisfying 1 = xp+yq.
First one notes from Lemma [.]] that the equation 0 = 22 —¢ has at most two solutions
in Z,. In fact, these solutions are given by +a, where a = cP*V/4 (mod p):

(+a)? = P2 (mod p) = cc?V/2 (mod p) = em®~Y (mod p) = ¢ (mod p).

Similarly, the two square roots of ¢ in Z, are £b, where b = clatD/4 (mod ¢). Conse-
quently, by the Chinese Remainder Theorem, the linear congruences

M = +a (modp), M = +b (mod q)

yield four solutions:
M = +(ayq £ bxp) (modn),

one of which is the original message m.
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7.B.3 Cryptographic Error-Correcting Codes

We conclude with an interesting cryptographic application of error-correcting codes
due to McEliece [1978]. The receiver selects a block size k and a private key consisting
of an [n, k, 2t+1] linear code C' with generator matrix G, a k x k nonsingular scrambler
matriz S, and an n X n random permutation matriz P. He then constructs the k x n
matrix K = SGP as his public key. A sender encodes each message block m as

c=E(m)=mK + z,

where z is a random error vector of length n and weight no more than ¢. The receiver
then computes

cP™'=(mK +2)P~' = (mSGP + 2)P~' =mSG + 2P~

Since the weight of zP~! is no more than ¢, he can use the code C' to decode the
vector mSG + zP~! to the codeword m.S. After multiplication on the right by S,
he recovers the original message m.



Appendix A

Finite Fields

Theorem A.1 (Z,) The ring Zy, is a field <= n is prime.

Proof:

“=7 Let Z, be a field. If n = ab, with 1 < a,b < n, then b = a~tab =
0 (modn), a contradiction. Hence n must be prime.

“«<" Let n be prime. Since Z, has a unit and is commutative, we need
only verify that each element a # 0 has an inverse. Consider the elements
ia, for i = 1,2,...n — 1. Each of these elements must be nonzero since
neither ¢ nor a is divisible by the prime number n. These n — 1 elements
are distinct from each other since, for 7,57 € 1,2,...n — 1,

ia =ja = (i —j)a=0 (modn) =n|(i —jla=n|(i—j)=1i=].

Thus, the n — 1 elements a, 2a, ..., (n — 1)a must be equal to the n — 1
elements 1, 2, ...n — 1 in some order. One of them, say 7a, must be equal
to 1. That is, a has inverse .

Definition: The order of a finite field F' is the number of elements in F'.

Theorem A.2 (Subfield Isomorphic to Z,) Every finite field has the order of a
power of a prime p and contains a subfield isomorphic to Z,.

Proof: Let 1 (one) denote the (unique) multiplicative identity in F, a field of
order n. The element 1+ 1 must be in F', so label this element 2. Similarly 2+1 € F',
which we label by 3. We continue in this manner until the first time we encounter
an element k to which we have already assigned a label ¢ (F' is a finite field). That
is, the sum of k& ones must equal to the sum of ¢ ones, where £ > ¢. Hence the sum
of p = k — ¢ ones must be the additive identity, 0. If p is composite, p = ab, then
the product of the elements which we have labelled a and b would be 0, contradicting
the fact that F' is a field. Thus p must be prime and the set of numbers that we
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have labelled {0,1,2,...,p — 1} is isomorphic to the field Z,. Consider all subsets
{z1,..., 2.} of linearly independent elements of F', in the sense that

T+ agry + ...+ ax, =0=a; =ay = ... =0, where q; € Z,.

There must be at least one such subset having a maximal number of elements. Then,
if x is any element of F'| the elements {z, z,...,x,} cannot be linearly independent,
so that x can be written as a linear combination of {zy,...,z,}. Thus {zy,..., 2.}
forms a basis for F', so that the elements of F' may be uniquely identified by all
possible values of the coefficients a1, as, ..., a,. Since there are p choices for each of
the r coefficients, there are exactly p” distinct elements in F'.

Corollary A.2.1 (Isomorphism to Z,) Any field F' with prime order p is isomor-
phic to Z,.

Proof: Theorem [A.9 says that the prime p must be the power of a prime, which can
only be p itself. It also says that F' contains Z,. Since the order of Z, is already p,
there can be no other elements in F'.

Theorem A.3 (Prime Power Fields) There exists a field F' of order n <= n is
a power of a prime.

Proof:

“=" This is implied by Theorem [A.2

“<" Let p be prime and g be an irreducible polynomial of degree r in
the polynomial ring Z,[x] (for a proof of the existence of such a polyno-
mial, see van Lint [1991] ). Recall that every polynomial can be written
as a polynomial multiple of g plus a residue polynomial of degree less
than r. The field Z,[z]/g, which is just the residue class polynomial ring
Zy|x] (mod g), establishes the existence of a field with exactly p” elements,
corresponding to the p possible choices for each of the r coefficients of a
polynomial of degree less than r.

e For example, we can construct a field with 8 = 23 elements using the polynomial
g(z) = 23 + x4+ 1 in Zy[z]. Note that g is irreducible, because if g(x) =
(2% + bz + ¢)(x + d), then

cd=1=c=d=1

and hence
c+bd=0=b=1,

which contradicts b+ d = 1. [Alternatively, we could note that g(—d) = d* +
d+1+#0 for all d € Zy, so g(x) cannot have a linear factor (z + d).]
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That is, if @ and b are two polynomials in Zs[z]/g, their product can be zero
(mod g) only if one of them is itself zero. Thus, Zy[z|/g is a field with ex-
actly 8 elements, corresponding to the 8 possible choices for the 3 polynomial
coeflicients in Z,.

Definition: The order of an element « of a finite field is the smallest natural number
e such that ¢ = 1.

Definition: The Euler indicator or Euler totient function
on)={meN:1<m<n,(mn)=1}

is the number of positive integers less than or equal to n that are relatively
prime (share no common factors).

e ©(p) = p— 1 for any prime number p.

r—1

o p(p") =p" —p ! for any prime number p and any r € N since p, 2p, 3p, ..., p" " 'p

all have a factor in common with p".

Remark: If we denote the set of integers in Z,, that are not zero divisors by Z;, we
see for n > 2 that ¢(n) = |Z7|.

e Here are the first 12 values of ¢:

x |1]2[3[4[5]6[7[8[9]10]11]12
o@) |1 ][1]|2]2[4[2[6[4]6] 4 [10] 4

Remark: Note that
(1) +¢((2) +¢(3) +¢(6) =1+1+2+2=6,
(1) +9(2) +0(3) +p(4) +p(6) + p(12) =1+ 1+2+2+2+4 =12,
and (1) + ¢(p) =1+ (p — 1) = p for any prime p.

Exercise: The Chinese Remainder Theorem implies that p(mn) = ¢(m)e(n) when-
ever (m,n) = 1. Use this result to prove for any n € N that

> pld) =n.
dln

Theorem A.4 (Primitive Element of a Field) The nonzero elements of any fi-
nite field can all be written as a power of a single element.
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Proof: Given a finite field F' of order ¢, let 1 < e < ¢ — 1. Either there exists no
elements in I’ of order e or there exists at least one element « of order e. In the
latter case, « is a root of the polynomial z¢ — 1 in F[z]; that is, a® = 1. Hence
(™) = (a®)* =1 forn =0,1,2,.... Since o has order e, we know that each of the
roots " for n = 1,2, ..., e are distinct. Since 2¢ — 1 can have a most e zeros in F[z],
we then immediately know the factorization of the polynomial z¢ — 1 in F[z]:

*—1=(x—-1)(z—a)(zr—a?)...(z—a" ).

Thus, the only possible elements of order e in F' are powers o' for 1 < i < e. However,
if  and e share a common factor n > 1, then (a?)¥™ = 1 and the order of o/ would
be less than or equal to e/n. So this leaves only the elements o’ where (i,e) = 1
as possible candidates for elements of order e. Note that the e powers of o are a
subgroup (coset) of the multiplicative group G formed by the nonzero elements of F,
so [Lagrange’s Theoren] implies that e must divide the order of G, that is, e|(q — 1).

Consequently, the number of elements of order e, where e divides ¢ — 1 is either 0
or p(e). If the number of elements of order e were 0 for some divisor e of ¢ — 1, then
the total number of nonzero elements in F' would be less than Zd\(q—n o(d) =q—1,
which is a contradiction. Hence, there exist elements in F' of any order e that divides
q — 1, including ¢ — 1 itself. The distinct powers of an element of order ¢ — 1 are just
the ¢ — 1 nonzero elements of F'.

Definition: An element of order ¢—1 in a finite field F} is called a primitive element.

Remark: Theorem [A.] states that the elements of a finite field F, can be listed in
terms of a primitive element, say a:

F,={0,a° " a? ... a7 %}

Remark: The fact that all elements in a field Fj, can be expressed as powers of a
primitive element can be exploited whenever we wish to multiply two elements
together. We can compute the product a‘a’ simply by determining which ele-
ment can be expressed as « raised to the power (i + j) mod(q — 1), in exactly
the same manner as one uses a table of logarithms to perform multiplication.

Remark: The primitive element of a finite field F, need not be unique. In fact, we
see from the proof of Theorem [A-] that the number of such elements is ¢(g—1).
Specifically, if « is a primitive element, then the powers af, for the ¢(p” — 1)
values of ¢ that are relatively prime to p” — 1, are also primitive elements.

Remark: A primitive element « of F, satisfies the equation a4~ = 1, so that a? = a,
and has the highest possible order (¢ — 1). Note that (o)~ = a4 17%

Remark: If o is a primitive element of F}, then a™! is also a primitive element of F.
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The fact that the primitive element « satisfies a? = « leads to the following
corollary of Theorem [A4.

Corollary A.4.1 (Cyclic Nature of Fields) Fuvery element 5 of a finite field of
order q is a root of the equation 39— 3 = 0.

Remark: In particular, Corollary states that every element (3 in a finite field
F,- is a root of some polynomial f(z) € F,[z].

Definition: Given an element 3 in a field Fjr, the monic polynomial m(z) in F)[z]
of least degree with (8 as a root is called the minimal polynomial of (.

Theorem A.5 (Minimal Polynomial) If f(z) € F,[x] has B as a root, then f(x)
1s divisible by the minimal polynomial of 3.

Proof: If f(3) = 0, then expressing f(z) = g(x)m(z) + r(z) with degr < degm, we
see that r(8) = 0. By the minimality of degm, we see that r(z) is identically zero.

Corollary A.5.1 (Minimal Polynomials Divide 29 — x) The minimal polynomial
of an element of a field F, divides x? — x.

Corollary A.5.2 (Irreducibility of Minimal Polynomial) Let m(x) be a monic
polynomial in F,|x] that has B as a root. Then m(x) is the minimal polynomial
of B <= m(x) is irreducible in Fy[z].

Proof:

“=7 If m(z) = a(z)b(x), where a and b are of smaller degree, then
a(B)b(B) = 0 implies that a(8) = 0 or b() = 0; this would contradict the
minimality of degm. Thus m(x) is irreducible.

“<” If f(B) =0, then by Theorem A, m(x) is divisible by the minimal
polynomial of 3. But since m(x) is irreducible and monic, the minimal
polynomial must be m(z) itself.

Definition: A primitive polynomial of a field is the minimal polynomial of a primitive
element of the field.

Q. How do we find the minimal polynomial of an element o in the field F,-?

A. The following theorems provide some assistance.
Theorem A.6 (Functions of Powers) If f(x) € F)[z], then f(2P) = [f(x)]*.

Proof: Exercise.
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Corollary A.6.1 (Root Powers) If « is a root of a polynomial f(x) € F,|x] then
aP is also a root of f(x).

Theorem A.7 (Reciprocal Polynomials) In a finite field F,- the following state-
ments hold:

(a) If o € Fyr is a nonzero root of f(x) € F,[x], then a™ is a root of the reciprocal
polynomial of f(x).

(b) a polynomial is irreducible <= its reciprocal polynomial is irreducible.

(¢) a polynomial is a minimal polynomial of a nonzero element o € Fr = a (con-
stant) multiple of its reciprocal polynomial is a minimal polynomial of a™*.

(d) a polynomial is primitive = a (constant) multiple of its reciprocal polynomial is
primitive.

Proof: Exercise.

Suppose we want to find the minimal polynomial m(x) of ' in F,-. Identify the
set of distinct elements {o, &, a™*, .. .}. The powers of a modulo p” — 1 in this set
form the cyclotomic coset of i. Suppose there are s distinct elements in this set. By
Theorem [A.6.1], each of these elements are roots of m(z) and so the polynomial

is a factor of m(z). It can readily be shown that f(z) has coefficients in F), (that is,
upon expanding all of the factors, all of the as disappear!). Hence f(x) € F,[z] and
f(a*) = 0, so by Theorem A5, we know also that m(z) is a factor of f(z). Thus,

m(x) = f(x).

Remark: Since the degree of the minimal polynomial m(z) of a’ equals the number
of elements s in the cyclotomic coset of o, we can sometimes use the previous
theorems to help us quickly determine m(x) without having to actually multiply
out all of its factors. Note that, since p” = 1 mod(p" — 1), minimal polynomials
in F,» have degree s <.

Remark: Every primitive polynomial of Fj,- has degree r and each of its roots is a
primitive element of F,-.

e We now find the minimal polynomial of all 16 elements of the field Fys = Fy[z]/(z*+
2% +1). The polynomial z is a primitive element of the field. Since x is a root
of the irreducible polynomial z* + 2% + 1, we know from Corollary [A.5.9 that
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% + 2% + 1 is the minimal polynomial of  and hence is a primitive polynomial
of Fi5. The cyclotomic cosets consist of powers 2% (mod 15) of each element o:

{1,2,4,8},

{3,6,12,9},
{5, 10},
{7,14,13,11},
{0}

The first cyclotomic coset corresponds to the primitive element o = z, for which
the minimal polynomial is 2* + 23 + 1. This is also the minimal polynomial for
the other powers of alpha in the cyclotomic coset containing 1, namely o2, a?,
and o®.

The reciprocal polynomial of z% + 2 + 1 is 2* + x + 1; this is the minimal
polynomial of the inverse elements o~ = o'®~% for i = 1, 2,4, 8, that is, for a''4,
a'? o' and of. We see that these are just the elements corresponding to the
second last coset.

We can also easily find the minimal polynomial of a?, a% «a'?, and o”. Since

a'® = 1, we observe that o satisfies the equation 2° — 1 = 0. We can factorize
=1 = (x—1)(z*+ 2>+ 2> + z + 1) and since o® # 1, we know that
a3 must be a root of the remaining factor, z* + 23 + 22 + x + 1. Furthermore,
since the cyclotomic coset corresponding to o contains 4 elements, the minimal
polynomial must have degree 4. So z* + 23 + 22 + x + 1 is in fact the minimal
polynomial of a?, a8 o and a'? (hence we have indirectly proven that z* +
3 + 2% + 2z + 1 is irreducible in Fy[x]).

Likewise, since the minimal polynomial of #° must be a factor of 23 — 1 =

(x —1)(2® + 2+ 1) with degree 2, we see that the minimal polynomial for these
elements is 72 + x + 1.

Finally, the minimal polynomial of the multiplicative unit o = 1 is just the
first degree polynomial x + 1. The minimal polynomial of 0 is x.

Remark: The cyclotomic cosets containing powers that are relatively prime to p" —1
contain the ¢(p” — 1) primitive elements of Fjr; their minimal polynomials
are primitive and have degree r. Note that z* + 2% + 1 and 2* + 2 + 1
are primitive polynomials of Fyz]/(z* + 2* + 1) and their roots comprise the
©(15) = ¢(5)¢(3) = 4 - 2 = 8 primitive elements of F,-. Even though the min-
imal polynomial of the element a® also has degree r = 4, it is not a primitive
polynomial, since (a®)° = 1.
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Remark: There is another interpretation of finite fields, as demonstrated by the
following example. Consider the field Fy = Fy[z]/(2? + x + 1), which contains
the elements {0,1,z,x + 1}. Since the primitive element o« = x satisfies the
equation 22 + x + 1 = 0, we could, using the quadratic formula, think of o as
the complex number

—14+V1—-4 1 V3
oO=—= .
2 2 2

The other root to the equation 22 4+ x + 1 = 0 is the complex conjugate & of .
That is, 22+ + 1 = (z — a)(z — @). From this it follows that 1 = aa = |a/?
and hence a = € = cos + isin@ for some real number . In fact, we see
that 0 = 2m/3. Thus a® = ¥ = ¥ = 1. In this way, we have constructed a
number « that is a primitive third root of unity, which is precisely what we mean
when we say that « is a primitive element of Fj. The field F; may be thought
of either as the set {0,1,z,z + 1} or as the set {0,1,e?™/3 ¢=27/3} Similarly,
the field F3 = {0,1,2} is isomorphic to {0,1,—1} and F5 = {0,1,2,3,4} is
isomorphic to {0,1,4, —1, —i}.
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