Chapter 1

6.897 Algorithmic Introduction to Coding Theory September 5, 2001

Lecture 1
Lecturer: Madhu Sudan Scribe: Ryan O’Donnell

1.1 Error correcting codes and this class

This course teaches the mathematics underlying objects called error correcting codes (ECCs). We
won’t define what they are today - for reasons to be clarified later. For now it will suffice to know
that they are combinatorial objects that possess certain extremal properties which are very useful
for the communication and storage of information.

Modulo the definition of ECCs, we can still discuss the big outline of this course. The contents of this
course can be divided into four roughly equal parts. Our first part will be explain some of the basic
constructions of error-correcting codes. Next we will show “negative results” showing limitations,
or bounds, on the performance of codes. The two parts above are essentially combinatorial in
nature, with few computational themes. We will get into the computational aspects in the third
and fourth parts of this course. The third part of the course is where we focus on algorithmic tasks
associated with ECCs and some solutions to these tasks. Finally, in the fourth part we will discuss
some consequences one can derive in computational complexity theory as a result of the existence
of ECCs and from the algorithmic capabilities surrounding them.

1.1.1 Standard references

Since the subject is quite old, there are plenty of texts. Yet we won’t follow any one of them. Here
are comments on some of them.

1. The text by MacWilliams and Sloane [74].

1-1

(a) This is possibly the most referenced text in CS?

(b) Unfortunately, it is getting outdated pretty fast.

(c) Has detailed coverage of (too) many families of codes.
)

(d) Coverage of algorithms is not so good.
2. The text by van Lint [117].
(a) The book is much more concise and handy than MacWilliams and Sloane. Easier to get

to some of the results here, if they are available.

(b) Still, the emphasis is more combinatorial than algorithmic.
3. A text by Blahut [19].

(a) Book was targetted at engineers rather than mathematics, or so the author claims.

(b) Yet the coverage is excellent, especially for insight, motivations, definitions, even algo-
rithms

(¢) The main drawback is that it is out of print and not easily available (not in MIT library,
e.g.).
4. The Handbook of Coding Theory [88].

(a) Offers extensive coverage of many recent themes.
(b) Sometimes excessive. (E.g. 130 pages of table of best known codes.)

(c) But contains many interesting chapters. E.g., chapter on algebraic-geometry codes, and
the chapter on deep-space applications.

1.2 Information Theory

Even though this course is on coding theory, we start with a brief coverage of information theory.
Part of the reason is historic. Coding theory was initiated by two seminal papers:

1. In 1948, Shannon wrote a detailed treatise on the mathematics behind communication [100].

2. In 1950, Hamming, motivated by the task of correcting small number of errors on magnetic
storage media, wrote the first paper introducing error-correcting codes [48].

In this lecture we will discuss the main results from the Shannon paper, which founded the theory
of information, while also co-founding (with Hamming) the theory of error-correcting codes. The
theory of information provides the motivation for many questions in coding theory and so we will
study this first.

Shannon considered the problem of two parties, say Alice and Bob, who wish to communicate
digitally. In particular, Alice wishes to send a message to Bob over a certain digital channel.
Shannon considered both “noiseless” and “noisy” channels. We start by considering the “noiseless”
case.

1-2

1.2.1 Noiseless coding

In this case, the channels perfectly transmits the bits Alice wants to send to Bob. However, we
might imagine that the channel is slow, so our goal is to compress the information we want to send
down to as few bits as possible. Then we send these bits across the channel for Bob to receive and
decompress. We start with an example which shows how to effect such a compression scheme.

1.2.2 An example

Consider transmitting the contents of a piece of paper, which contains some handwritten material
on it, by fax. If the paper has just a small amount of black text on a white background, when it is
digitized it might consist of 99% 0’s and 1% 1’s. Let’s say for the sake of argument that we want to
transmit a message in which each bit is independently 0 with probability .99 and 1 with probability
.01.

Consider the following encoding scheme: We split the message up into blocks of 10 bits. If the block
is 0000000000, we send the bit 0. If the block is anything else, say z, we send the string 1z. Now
the expected length of the encoding of a block is:

1 - Pr[block is 0000000000] 4 11 - Pr[block is not 0000000000 = 11 — 10q

where ¢ := Pr[block is 0000000000] = .99!% > .9. Hence the expected length of the encoding of one
10 bit block is at most 2 bits. Thus the original message has been compressed to within 20% of its
length! (Food for thought: Do we really need the probabilistic model to acheive this compression?)

Can we do better? This is exactly the question Shannon raised and answered with his theorem on
noiseless coding.

Entropy

To analyze how much a distribution could be compressed, Shannon introduced some mathematical
definitions associated with information. The source of information is modeled as a probability dis-
tribution, and a message is a random variable drawn from this distribution. The goal of compression
is to encode the support of the probability space (using, say binary strings) so as to minimize the
expected length of the message. To any source (or more correctly, to any distribution), Shannon
assigned a non-negative real number, that he termed “entropy”, that measures the information con-
tent of the distribution. He then showed that this quantity (to within an additive term of one bit)
measures the compressibility of a bit.

The simplest possible distribution is a coin flip, in which heads has probability p and tails has
probability 1 — p. The entropy assigned to this is:

def 1 1
H(p)=plog, — 1-p)l .
(p) p0g2p+(p) ngl_p

We can generalize this notion to arbitrary distributions.

Definition 1.1 Let U be any finite set, and let D be a probability distribution on U, i.e., D : U —
[0,1] with }~, ., D(x) = 1. Let X be a random variable distributed according to D. Then the entropy

1-3

of D is':

def Z D 10
g2 77N
zeU D)

The noiseless coding theorem of Shannon essentially says the following:

Theorem 1.2 For every finite set U and for every distribution D : U — [0,1], There exists an
encoding function Enc : U — {0,1}* and a decoding function Dec : {0,1}* — U such that for every
x € U, Dec(Enc(x)) = z, and

Exp, . pl|Enc(z)[] € [H(D), H(D) + 1],

where |s| denotes the length of a string s. Conversely, no error-free encoding can do better.

Shannon’s actual theorem is often stated differently, but we will state the theorem in the above
since it is clearer. We don’t prove the theorem here, but the main idea for the existence result is the
following: (1) Round all probabilities down so that they become powers of 2 (i.e., construct D' such
that for every z, D'(z) = 2 for some integer i, and D(z)/2 < D'(z) < D(z). (2) Show that there
exists an encoding Enc that encodes an element z, whose new probability D'(x) equals 2~¢, with 4
bits (so that no strings have the same encoding). (3) Conclude that this encoding has an expected
length in the desired range! The converse is harder to prove - we won’t get into it.

An elegant algebraical identity

The entropy function exhibits some very nice mathematical properties. For example if a distribution
D decomposes into two independent distributions Dy and Dy (i.e., U = Uy x Uz, Dy : U; — [0,1]
and Dj : Uy — [0,1] and D(z,y) = D1(z)D2(y)), then H(D) = H(D1) + H(D>). This fact can be
use to prove an interesting algebraic identity, which is otherwise quite tricky to prove.

From the above property and the entropy of a bit, we find that the entropy in n independent p-biased
coin flips is nH(p). On the other hand, this should be equal to the entropy of the distribution D
given by D(z) := p#!1¢in2(1 — p)#0sin 2 [ging the second formula, we calculate this as:

(1) povons
Z Dylog, —
im0 \1 Dy
where Dy := p'(1 — p)"~t. Thus we get

n

3 (;L) D, log, Dit = nH(p).

t=0

Entropy and its variants play an important role in combinatorics and probability. Some very useful
notions to keep track of in this area are those of mutual information, conditional entropy, and relative
entropy!

To turn back to our example, what is the optimal compression factor for the case of our message to
be faxed, whose bits were 1 with probability 1%? The answer is H(.01) = 8% — message can be
compressed to within H(.01) of their original length, if we know ones occur with probability about
1%.

n lecture, we used a random variable X drawn according to D and defined this to be the entropy of X, rather

than D. In these notes we will switch to the more appropriate notation, which defines it to be a function of the
distribution and not the variable.

1-4

1.2.3 Noisy channels

For the purposes of this course, the more interesting notion of a channel is the class of “noisy”
channels considered by Shannon — i.e., channels that flip some of the bits sent across them. The
problem here is for Alice to encode the message she wishes to send in such a way that even if the
channel corrupts some of the bits in the encoding, Bob will be able to decode the result into Alice’s
original message, with high probability. Shannon considered a large class of probabilistic models
for noisy channels, and for each proved the surprising theorem that you could always overcome a
constant error rate by sending an encoded message that was longer by a constant factor.

The general model Shannon gave for channels is as follows. There is an input alphabet ¥ and an
output alphabet I' (both usually finite). Then we have a bipartite graph with ¥ on the left and T on
the right; each edge (o,) is labeled with a probability of the channel converting a ¢ to a . (The
channel operates independently on each character.) Of course, for each o on the left, the sum of the
labels on the edges touching it must be 1.

We will illustrate his results for such channels only in cases where ¥ C T". (In such cases, it is clear
what an error is.)

Two commonly considered channels:
1. Binary Symmetric Channel — the channel considered in the theorem. ¥ =T = {0,1}, (0,0)
and (1,1) get probability 1 — p, and (0,1) and (1,0) get probability p.
2. Binary Erasure Channel — in this channel, bits don’t get flipped — rather they get erased.

Specfically, ¥ = {0,1}, T = {0,1,7}, (0,0) and (1, 1) get probability 1 — p, and (0, ?) and (1,?)
get probability p.

Noisy coding theorem

The noisy coding theorem of Shannon is a powerful and general one. When specialized to the case
of a binary symmetric channel with error probability p, we get the following result.

Theorem 1.3 For every p < 1/2, there exists a constant ¢ < oo and a pair of functions E :
{0,1}* — {0,1}°*, and D : {0,1}* — {0,1}* with the following property: If we pick a message
uniformly at random from {0,1}*, encode with E and then send the result across the noisy channel,
and decode the result, then we recover the original message with probability 1 — o(1).2

Theorem 1.3 applies — with different constants — to the binary erasure channel as well.
Hamming notations
We need just a few definitions before proceeding with the proof of the theorem.

Definition 1.4 Ifx and y are in X", then the Hamming distance between them is A(z,y) := # of
coordinates on which z and y differ.

2The o(1) term depends only on k.

1-5

Definition 1.5 The Hamming ball of radius r centered at y is B(y,r) := {z € ¥" : A(z,y) <r}.

Definition 1.6 Vol(r,n) denotes the volume of (any) radius-r ball in {0,1}"; i.e., |B(y,r)|. Ezactly,
this quantity is Y ;_o (7). If we fiz some p > 0 and letn — oo then we get Vol(pn,n) = 9(H(p)+o(1))n_

Proof of Theorem 1.3

Proof The proof is highly non-constructive; it uses the probabilistic method.

Let n > k be decided upon later. Pick the encoding function E : {0,1}¥ — {0,1}" at random, i.e.,
for every m € {0,1}*, E(m) is chosen uniformly at random from {0, 1}", independently of all other
choices.

The decoding function D : {0,1}™ — {0,1}* works as follows. Given a string y € {0,1}", we find
(non-constructively) the m € {0,1}* such that A(y, E(m)) is minimized. This m is the value of

D(y).

We now prove that D and E have the required property, with high probability, over the random
choice of E.

Fix m € {0,1}* as also E(m). (The rest of the proof will use the fact that E(m/') for m' # m is still
random.) the message being sent. Denote by y the corrupted version of E(m) that is received by
Bob. Let 1 denote the error vector y — E(m). Note that the 7 is a random variable with each of its
coordinates being 1 w.p. p and 0 w.p. 1 — p, independent of other coordinates.

Fix € > 0. Let » = (p + €)n. In order for D(y) # m at least one of the following two events must

occur:

1. y ¢ B(E(m),r) (i.e., too many errors occurred in transmission.)

2. There exists some m' # m such that E(m') € B(y.r). (The errors take the received word too
close to the encoding of some other message.)

In particular, if neither event occurs, then m is the unique message such that E(m) is within a
distance of r from y and so D(y) = m.

We show that for an appropriate choice of n, the events above happen with low probability. For the
first event to happen, it must be that n has more than p + € fraction of 1s. We can apply Chernoff
bounds (see appendix at the end of this lecture) to see that:

Prly ¢ B(E(m), n)] <27/

For any € > 0, we can pick n to be large enough that the above quantity is as small as we want.

We now move onto the second event. First fix y and an m' # m and consider the event that
E(m') ¢ B(y,r). The probability of this event, taken over the random variable E(m'), is exactly
Vol(B(y,r))/2™. Using the approximation Vol(B(y, pn) ~ 2H®" and ignoring e (which is arbitrarily
small), we find that for every m' # m.

Pr[E(m') € B(y,)] = oH(p)n—n

1-6

Using the union bound, we get that
lzr[ﬂm' #m s.t. E(m') € B(y,r)] ~ 2k nTH®n,

Thus we find that if ¢ > #(1))7 then k/n < 1— H(p) and thus the quantity above is less than one.

This gives the choice of ¢ that we need.

Our proof is not yet complete! Why? Well, we have argued that a fixed m is likely to be decoded
correctly, but what about other messages? To complete the argument, we will actually need to lose
a little bit.

Let § = 2-(€/2)n 4 gk—n+H(p)ndenote the total probability of error in either of the two steps above.
We have shown that for any fixed m, for a random choice of E and the associated D, the expected
decoding error probability is at most . Thus we can now conclude that this expectation continues
to hold if we make m a random variable chosen uniformly from {0, 1}*. We get

Exp,, g, [D(E(m) +n) # m] < 6.
In particular this implies that there exists an F such that for the corresponding D, we have
Exp,, ,[D(E(m) +n) #m] < 6.

This concludes the proof of Shannon’s theorem. H

Capacity of the channel

Shannon’s theorem above shows that if we are willing to slow down the effective transmission rate
of the channel to 1/¢ < 1 — H(p), then we can acheive error-free communication with vanishingly
small probability. Furthermore this quantity 1 — H(p) is only a function of the “noisy channel” and
not of the number of bits we wish to transmit over it. Le., the effective rate of transmission can be
an absolute constant independent of n. Shannon called this quantity (the limiting rate of k/n, as
n — oo) the capacity of the noisy channel.

For the Binary Symmetric Channel, how large can its capacity be? The proof above shows that the
capacity, denoted Crsc(p), is at least 1 — H(p). It is natural to ask if this quantity is an artifact of
the proof, or is it the correct capacity for the channel. Shannon proved that the latter was the case.
We will prove this in the next lecture, but first let us see why this is the case intuitively.

Suppose that we are actually is a setup there is a noiseless channel between Alice’s location and
Bob’s, but this channel has been “hijacked” by Eve and Fred. Say Alice and Eve are in the same
physical location while Fred and Bob are at the other. To send a message over, Alice must hand
it over to Eve who then sends it through the channel (after some potential corruption). Similarly
at the receiving end, Fred receives the message and hands it over to Bob. Suppose Eve and Fred
want to use this channel to exchange some messages of their own (at Alice & Bob’s expense). They
do so by informing Alice and Bob that the channel is noisy with bits being flipped with probability
p. They advise Alice and Bob to use some encoding/decoding schemes. Alice and Bob agree on an
encoding scheme F and a decoding scheme D and in their naivette share these functions with Eve
and Fred as well.

In truth it may be that Eve wishes to use the “noise” to send some messages of her own to Fred. Say
she has a message n which is a plain paper image, where each pixel of the page is 1 independently

1-7

with probability p. The way she sends 7 to Fred (at Alice’s expense) is that when Alice gives her
a encoded message E(m) to transmit, Eve sends over E(m) + 7. Fred receives y = E(m) + n (the
channel does not introduce any noise) at the receiving end and passes it on, untampered, to Bob,
but also retains a copy. As far as Alice and Bob are concerned, nothing mailicious is occuring -
with high probability D(y) = m and so they are exchanging messages at capacity of the “noisy
channel”. But note the situation w.r.t. Eve and Fred. Fred also knows E and D and can compute
n=y— E(D(y)) = E(m) +n— E(m), with high probability. So Eve and Fred are also exchanging
messages among themselves (with some small probability of exchanging incorrect messages). But
now if we consider Alice & Eve together at one end of the noiseless channel, and Bob & Fred
together at the other end, the parties are exchanging bits at a rate of at least C(p) + H(p) across
the noiseless channel (assuming we believe the tightness of the noiseless coding theorem). Since we
are normalizing so that the rate the noiseless channel is 1, we get C(p) + H(p) < 1! This is the link
between the noisy case and the noiseless case of the Shannon theorems.

Appendix

Notation used in the lecture. We mention some notation that we used earlier or may use in
later lectures. Z denotes the set of integers, Z=° denotes the set of non-negative integers, and Z+
the set of positive integers. R denote the set of reals, and Q the rationals. For real numbers a and
b, the notation [a,b] stands for the closed interval from a to b, i.e., the set {z € Rla < z < b},
while (a,b) is the open interval between a and b. For an integer k, we will use [k] to denote the
set {1,...,k}. If D is a distribution on the universe U, then X+ D denotes a random variable X
drawn from U according to the distribution D. For an event £ C U, the quantity Prx. p[X € £]
denotes the probability of the event £ when X is chosen according to D. For a real-valued function
f : U = R, the quantity Expx, p[f(X)] denotes the expected value of f(X) when X is chosen
according to D. When the distribution D is clear from context, we may abbreviate these quantities
to Pr[€] and Expx[f(X)]. Similarly Varx. p[f(X)] denotes the variance of f(X) (i.e., Var(f(X)) =
Exp[(f(X))?] — Exp[f(X)]?).

Some basic probability facts Here is a quick recap of basic facts on probability and expectations.

Probability One of the most used facts on probability is the union bound: Pr[€; U &) < Pr[&] +
Pr[&;]. Note that the bound makes no “independence” assumptions.

Expectations Analogous to the above we have: Exp[X; + X»] = Exp[X;] + Exp[X3]. Note that
this is an equality! If random variables are independent, then we get a product relationship
EXp[Xle] = EXp[Xl]EXp[Xz]

Converting probabilities to expectations: Since expectations are more amenable to algebraic
manipulations, it is often useful to convert statements on probability to statements of events.
The standard way to do this is to use “indicator variables”. For an event &, let Iz be the
0/1-valued variable given by I¢(X) = 1if X € £ and I¢(X) = 0 otherwise. Then we have
Expx[I¢ (X)] = Pr[€].

Converting expectations to probabilities: Since probabilities are the quantities that have more
intuitive meaning, these are the more standard targets of our investigation. Since expectations
figure in proofs, we would like to find ways to convert statements on expectations back into
probability statements. This conversion is not standard. Several “tail inequalities” are used
to acheive this conversion, e.g., Markov’s, Chebychev’s, and Chernoff’s: We state them below:

1-8

Markov’s inequality For a non-negative random variable X and positive real «, then
Pr[X >a] < %

Chebychev’s inequality In its general form, this inequality is just an application of Markov’s
inequality to the random variable Y2, for arbitrary Y. In the general form, it is quite
hard to see its strength, so we give a special form.

Let Y =37 , Y;, where the ¥;’s identically distributed random variables that are pairwise
(but not fully) independent. Let Exp[Y;] = p and Var[¥;] = o2. Then for A > 0, we have
Pr[Y > (u+ An] < %

= ’I’LA2 .

Chernoff bounds If Y;,...,Y,, are completely independent it is possible to get stronger
bounds on the probability that their sum deviates much from their expectation. We
consider the special case of variables taking values in the interval [0, 1]

Let Y7,...,Y, be independent and identically distributed random variables taking values
in the interval [0, 1] with mean p. Let Y = >, Y;. Then Pr[Y > (u+ A\)n] < e~ (\?/2)n,
where e is the base of the natural logarithm.

For further elaboration on probabilities and expectations one may consult the text on Randomized
Algorithms [82].

1-9

Chapter 2

6.897 Algorithmic Introduction to Coding Theory September 10, 2001

Lecture 2

Lecturer: Madhu Sudan Scribe: Omprakash Gnawali

Today we will cover the following topics:

e Converse to Shannon’s coding theorem.
e Some remarks on Shannon’s coding theorem.
e Error correcting codes.

e Linear codes.

2.1 Converse to Shannon’s coding theorem

Recall that the Binary Symmetric Channel (BSC) with parameter p is the channel that transmits
bits, flipping each transmitted bit with probability p independent of all other events. Lets start by
recalling Shannon’s coding theorem informally.

Over the BSC with parameter p, it is possible to transmit information at any rate less
than 1 — H(p).

(To give a sense of how to make the above formal, here is the formal version in all its quantified

glory: “For every p < % and €,0 > 0, there exists an ng < oo such that for every n > ng and

k < (1— H(p) — €)n, there exist functions E : {0,1}¥ — {0,1}" and D : {0,1}" — {0, 1}* such that
Pr [D(E(m)+mn)=m]>1-4,

N<Dp n ,m+Uy

where Uy, is the uniform distribution on {0,1}* and D, ,, is the distribution on n bits chosen inde-
pendently with each bit being 1 with probability p.”)

We will now proof a converse to this theorem.

2-10

Theorem 2.1 For every p < % and €,6 > 0, there exists an ng < 0o such that for every n > ng,
k> (1 — H(p) + €)n, and functions E : {0,1}* — {0,1}" and D : {0,1}" — {0,1}*, it is the case
that
[D(E(m) +n) #m] 21—,
N<Dyp n ,m+Up
where Uy, is the uniform distribution on {0,1}* and D,, ,, is the distribution on n bits chosen inde-
pendently with each bit being 1 with probability p.

Ignoring all quantifiers above, the essense is that if we are trying to send information at a rate of
1 — H(p) + ¢, then the decoding is erroneous with probability almost 1, no matter which encoding
and decoding function we use.

Proof Thehard part of this proof is deciding how to deal with the encoding and decoding functions
which are completely arbitrary! Turns out, we will ignore the encoding function entirely, and ignore
the decoding function almost entirely! The main focus is on the error, and the fact that the error
distributes the transmitted word over a large space of possibilities (and so any decoding function
should be helpless). Specifically, we note the following:

e The number of errors is unlikely to be too small or too large: Formally, for every m and E,
Pr[E(m) + 7 € B(E(m), (p— e)n)] = Pr[y € BO,(p—)] < e~ (2.1)
n n

The equality above is obtained by simply translating the center of the ball from E(m) to the
origin 0, the string consisting of all 0’s. The inequality above is a straightforward application
of Chernoff bounds - however, this time we are using the fact that it proves that a random
variable is not likely to take on a value much less than its expectation. Similarly, we get that

2

Pr[E(m) +n ¢ B(E(m), (p+)n)] = Pr[n € B0, (p—e)n)] <™ ™.

e Given that the error is large (but not too large), no single point in the space has a high
probability of being the received word. Specifically, for every m, E and y € B(E(m),(p +
e)n) — B(E(m), (p — €)n),

n

< QG- (2.2)

Pr[B(m) +1 =]
To see why the above is true, let R = A(y, E(m)) be the Hamming distance between y and
E(m). Note we have R € [(p — €)n,(p + €)n]. Let Ng be the number of binary vectors
with R ones and n — R zeroes. Since all error patterns n with the same number of errors
are equally likely, we note we the probability of having any fixed vector containing exactly R
ones as the error vector is at most NLR Thus to upper bound the probability of the event
in question it suffices to lower bound Ng for R € [(p — €)n, (p + €)n]. Using the fact that
Ng = Vol(R,n) —Vol(R—1,n), and the fact that Ng is increasing for R in the range [0, 3], we
get than Ny > Vd(f’") > VOI((”:)"’"). Now using the fact that Vol((p — €)n,n) ~ 2~ Hp—e)n,
we get that the probability n =y — E(m) is at most 5rp=ay -

To continue the proof, we finally look at the decoding function (though even this look will be very
superficial). Let K = 2F and let {my,... ,mx} denote the K possible messages. Let S; = {y|D(y) =
m;} be the set of received words that are decoded to the ith message. The only property we use
about the decoding is that zgl |Si| = 2™, i.e., the decoding is a function! (On the other hand,

2-11

there is little else to use!) We now use the observations in the previous paragraph to prove that the
decoding function is not very likely to succeed.

Let p be the probability of decoding successfully. In order for the decoding to succeed, we must pick
some message m; to encode and transmit, and the error vector must be such that the received
vector y = E(m;) + n must lie in S;. This gives:

K
p= Z Z 7132['[71 =m;andn =y — E(mz)] = Ifnr[m = ml] 1?71'[77 =y - E(mz)],
i=1 y€S;

where the second equality follows from the fact that the events considered are independent. Fixed
m; and let us bound the inner summation above. The probability that m equals m; is exactly
1/K = 27F. The event that n = y — E(m;) is independent of m and so we can estimate this quantity
separately. Fix m;. Let U = B(E(m;),(p — €)n) and V = {0,1}" — B(E(m;), (p + €)n) (ie., U is
the points too close to E(m) and V the points too far from E(m). Then

> 1;1"[77 =y — E(m;)

yES;
< N Prn=y—-Em)|+) Prln=y—Em)]+ Y Prn=y— E(m)]
n n n
yeU yev yeS;—U-V
_2n) n
< 2 + |Sz|72H(p_€)n,

where the second inequality above follows from Equations (2.1) and (2.2). Combining the above, we
have:

X 2 n|S;|
—k —e 2
p < D2 (ze "+72H(pe)n)
i=1

—e%n n2ik X
= 2"+ S | 2184
=1

_ 26—62n+n2—k—H(p—e)n+n

The theorem follows from the f%ct that for every €,d > 0 we can pick ng large enough so that for every
n > ng, it is the case that 2= " < §/2 and n2~*—H{P—9ntn < §/2 (assuming k > (1— H(p) +€)n).
]

Recall that at the end of the previous lecture we showed that if we assumed the noiseless coding
theorem is tight (i.e, has a converse) then the converse to the noisy coding theorem follows. While
the theorem above does not imply a converse to the noiseless coding theorem, the proof technique
is general enough to capture the noiseless coding theorem as well. This motivates the following
exercise.

Exercise: Prove converse of the noiseless coding theorem (from Lecture 1).

2-12

2.2 Remarks on Shannon’s Theorem

2.2.1 Discrete Memoryless Channels

Shannon’s coding theorem is, of course, much more general that what we have presented. We
only presented the result for the case of the Binary Symmetric Channel. For starters, the result
can be generalized to the case of all “Discrete Memoryless Channels (DMCs)”. Such channels
are characterized by two finite sets — ¥ representing the input alphabet of the channel and T’
representing the output alphabet of the channel — and a transition probability matrix P = {p,},
where p,, denotes that probability that the output alphabet is v given than the input alphabet is
o. We require that 27611 Poy = 1 for every o € X, so that this definition makes sense. When we
attempt to transmit a sequence of symbols from X over this channel, it behaves on each element of
the channel independently and produces a sequence of elements from I', according to the transition
probability matrix P.

Given such a channel, characterized by P, Shannon gave a procedure to compute the capacity of
the channel. This capacity relates to the mutual information between two random variables.

Given a distribution Dy, over X, let o be a random variable chosen according to Dyx,. Pick «y at random
from I" with probability p,~. Denote by Dx r the joint distribution on the pairs (o,) so generated,
and by Dr the marginal distribution of . Since Dy, Dr and Dy r are all distributions on finite sets,
their entropy is well defined. Define the “mutual information” between variables ¢ and v (or more
correctly of the transition matrix P with initial distribution Dy) to be H(Dx)+ H(Dr)— H(Dxsr).

Shannon’s theorem showed that the capacity of the channel characterized by P, is the maximum
over all distributions Dy, of the mutual information between ¢ and . He also gave a linear system
whose solution gave the distribution that maximizes this information.

2.2.2 Markovian Channels

Shannon’s theory extends even further. Natural scenarios of error may actually flips bits with
some correlation rather than doing so independently. A subclass of such correlations is given by
“Markovian channels”, where the channel can be in one of several (finitely many) states. Depending
on which state the channel is in, the probability with which it makes errors may be different.

Such models are useful in capturing, say, “burst error” scenarios. In this situation the channel
makes sporadic sequences of many errors. One can model this source by a channel with two states
(noisy/normal) with two different channel characteristics for the two states. (see Figure 2.1). When
in the “noisy” state the channel flips every bit, say, with probability % (and so a channel that is
perpetually in a noisy state can transmit no information). When in the normal state, however, the
channel flips bits with only a small probability, say p. Further, if the channel is in a given state at
time ¢ it tends to stay in the same state at time ¢ + 1 with probability 1 — ¢ and tends to flip its
state with a small probability ¢. Is it possible to transmit information on such a channel? If so, at
what rate? Working this out would be a good exercise!

Shannon’s theory actually gives the capacity of such a channel as well. Deciphering what the theory
says and unravelling the proofs would be a good topic for a term paper.

2-13

State Diagram

1-q 1-q

Normal Channel Noisy Channel

0 0.5

Figure 2.1: State diagram of a simple burst error channel

2.2.3 Zero Error Capacity of a channel

An interesting by product of the Shannon theory is the so called “Zero error capacity” of a channel.
To motivate this notion, let us consider a “stuck typewriter”. Suppose the keys in the typewriter
are sticky and likely to produce the wrong symbol when you hit it. Further suppose that the error
pattern is very simple. If you hit a letter of the keyboard, you get as output either the correct letter
or the next letter of the alphabet. and that such an error happens with probability % for every
keystroke independently. In other words, typing A results in A or B, typing B results in B or C,
etc. and typing Z results in Z or A (so we have a wrap around). (See Figure 2.2.)

Some analysis of this channel reveals that it has a channel capacity of log, 13. Le., each keystroke
is capable, on the average of conveying one of 13 possibilities. If the typewriter had not been stuck,
it would have had a capacity of log, 26. Thus the error cuts down the number of possibilities per
stroke by a factor of 2.

If we think hard (actually may be not even so hard) we can see a way of achieving this capacity.
Simply don’t use the even-numbered letters of the alphabet (B,D,F, etc.) and work only with the
odd-numbered ones (A, C, E etc.). Since there is no possibility of confusion within the odd-numbered
letters, there is no ambiguity in the message (if an A or B is received, A must have been the keystroke
typed, if C or D is received, C is the keystroke etc.). The interesting aspect of this way of using
the channel is that we acheive the capacity, with zero error! This motivates a general concept: The
Zero Error Capacity of a channel is informally defined as the optimal rate of transmission that can
be achieved while maintaining a zero probability of decoding error.

In the case of the stuck typewriter the zero error capacity equals the Shannon capacity. This is

2-14

A A
B B
C C
Z yi

Figure 2.2: Channel for a stuck typewriter

not always the case. For example, the zero error capacity of the binary symmetric channel for any
p # 0,1 is zero! (Any string has positive probability of being corrupted into to any other string.) It
is true that the zero error capacity is less than or equal to the Shannon capacity. Computing the
Shannon capacity of even simple channels is non-trivial, and in general this function is not known
to be computable.

A simple illustrative example is the zero error capacity of a stuck keyboard with only five keys (or
in general an odd number of keys)! Then it is no longer clear what the zero error capacity of this
channel is. In 1979, L. Lovész [71] wrote a brilliant paper that showed how to compute the Shannon
capacity of several graphs (and in general give a lower bound on the Shannon capacity). In particular
he shows that the Shannon capacity of a stuck typewriter with 5 keys is v/5 - an irrational number!
This paper has played a pioneering role in computer science leading to the notion of semi-definite
programming and its consequences on combinatorial optimization.

Term paper topic: Study the zero error capacity of arbitrary channels and survey the work of Lovasz
and successors.

This will terminate our discussion of the Shannon based theory. As mentioned in the first lecture,
Shannon’s original paper [100] and the text by Cover and Thomas [26] are excellent sources for
further reading.

2.3 Error correcting codes

Shannon’s theory, while providing exact results for the rate at which one can communicate on a
noisy channel, are unfortunately highly non-constructive. Specifically the two key ingredients: the

2-15

encoding and decoding functions are totally non-constructive. In order to get some sense of how to
make these results constructive, one has to examine the encoding function and see what properties
about it are useful. Shannon noticed that a result of Hamming indeed does so, and that this may
be a step in making his results more constructive. In retrospect it seems this was crucial in making
Shannon’s results constructive. This is the theory of error-correcting codes, as initiated by the work
of Hamming [48]. Hamming focussed on the set of strings in the image of the encoding map, and
called them “error-correcting codes”. He identified the distance property that would be desirable
among the codes and initiated a systematic study. We develop some notation to study these notions.

2.3.1 Notation
We consider codes over some alphabet ¥ and reserve the letter ¢ to denote the cardinality of ¥. It
is often helpful to think of ¥ = {0,1} and then the codes are termed binary codes.

We consider transmissions of sequences of n symbols from ¥ from sender to receiver. Recall that
for two strings z,y € X", the Hamming distance between z and y, denoted A(z,y), is the number
of coordinates where z differs from y. We note that the Hamming distance is indeed a metric: i.e.,
Az, z) = Az, z) < Az,y) + Ay, 2) and A(z,y) = 0if and only if z = y.

A code C' is simply a subset of X" for some positive integer n. The minimum distance of a code
C, denoted A(C), is given by A(C) = min, yec z2y{A(z,y)}. The Hamming theory focusses on
the task of constructing (or showing the existence of) codes with large minimum distance and large
cardinality.

There are four fundamental parameters associated with a code C:

o Its block length: n, where C' C ™.

e Its message length: k = log, |C|. (To make sense of this parameter, recall that we are thinking
of the code as the image of an encoding map E : % — £" and in this case log, |C| = k is the
length of the messages.)

o Its minimum distance d = A(C).

e Its alphabet size: ¢ = |X|.

It is often customary to characterize a code by just the four parameters it achieves and refer to such
a code as an (n, k,d),-code.

2.3.2 Broad Goals of Coding Theory

In a nutshell the broad goal of coding theory can be stated in one of the four ways below, where we
fix three of the four parameters and try to optimize the fourth. The correct optimizations are:

Given k,d, ¢ find an (n, k,d), code that minimizes n.

Given n,d, q find an (n, k,d), code that maximizes k.

Given n, k,q find an (n, k,d), code that maximizes d.
(

Given n, k,d find an (n, k,d), code that minimizes q.

2-16

The first three choices are self-explanatory. It is always desirable to have a small block length, large
message length, and large distance. However it is not so immediate that minimizing ¢ is the right
thing to do (in particular, we don’t have a monotonicity result). However empirically (and almost
certainly) it seems to be the case that one can get get values of the parameters for larger values of
q and getting good parameters for small values of ¢ is the challenging part. Furthermore, building
codes with large ¢ and then trying to reduce q is a very clever way of getting good codes. So we will
keep this version in mind explicitly.

2.3.3 Error Correcting Codes

Why are we interested in codes of large minimum distance? It may be worth our while to revisit
Hamming’s paper and see what he had to say about this. Hamming actually defined three related
properties of a code C.

1. The minimum distance of C', which we have already seen.

2. The error detection capacity of C: A code C' is e-error detecting if under the promise that no
more than e errors occur during transmission, it is always possible to detect whether errors
have occured or not, and e is the largest integer with this property. Hamming notes that a
e-error correcting code has minimum distance e + 1.

3. The error correction capacity of C: A code C' is t-error correcting if under the promise that no
more than ¢ errors occur during transmission, it is always possible to determine which locations
are in error (information-theoretically, but not necessarily efficiently) and correct them, and if
t is the largest integer with this property. Hamming notes that a t-error correcting code has
minimum distance 2t + 1 or 2t + 2.

Thus the minimum distance of a code is directly relevant to the task of correcting errors and we
will focus on this parameter for now. Later (in the second part of the course) we will turn our
attention to the question - how can we make these error-detection and error-correction capabilities
algorithmic.

2.3.4 Some simple codes

The famed Hamming codes are codes of minimum distance three. Even though Hamming’s name is
associated with distance-3 codes, he also gave, in the same paper. codes of distance two and four!
Let us start even slower and describe the distance one codes first!

e d = 1: This is trivial. All we want is that the encoding function be injective. So the identity
function works and gives the best possible (n,n, 1), code.

e d = 2, This is already interesting. A simple way to achieve distance 2 is to append the parity
of all the message bits to message and thus get a code with n = k + 1, i.e., an (n,n — 1,2),
code. For general g, one identifies 3 with Z, the additive group of integers modulo ¢ and uses
(instead of the parity check bit) the check symbol that is the sum of all message symbols over
Z,. This gives, for every ¢, a (n,n —1,2), code.

e d = 3, non-trivial interesting case.

2-17

Interpolating from the first two examples, one may conjecture that a (n,n —d+1,d), code is always
possible. This turns out not to be the case and in fact d = 3 already gives a counterexample to this
conjecture. Hamming gave codes for this case and proved their optimality. We will describe the
codes in the next lecture.

2-18

6.897 Algorithmic Introduction to Coding Theory September 12, 2001

Lecture Notes on Algebra
Lecturer: Madhu Sudan Scribe: Madhu Sudan

These notes describe some basic algebraic structures that we will encounter during this course,
including;:

— Finite fields of all sizes (and shapes).
— (Univariate and multivariate) polynomials over finite fields in one or more variables.

— Vector spaces over finite fields (or Linear algebra).

Unfortunately, there is no simple order in which one can present all these objects — their presentation
is interleaved for essential reasons. Polynomials are typically defined with coefficients from fields.
Fields are constructed by constructing polynomial rings and then reducing them modulo irreducible
polynomials. Linear algebra needs to be based on fields. But it also provides convenient ways of
looking at fields. We will try to describe all these connections below. Mostly we are interested in
computational and combinatorial consequences. We would like to see how to represent fields so as
to perform elementary manipulations efficiently. We would also like to know if some computational
problems from linear algebra can be solved efficiently. We are also interested in combinatorial
questions such as: How often can a polynomial evaluate to zero? How does one prove that this can
not happen too often? The notes below present answers to such questions.

2.4 Main definition

Since we are interested in polynomials over fields, it would be nice to know the basic algebraic
structures which unify both fields and polynomials. Commutative rings are such structures and we
define them below.

Definition 2.2 (Commutative Rings and Fields) A commutative ring is given by a triple
(R,+,-), where R is an arbitrary set containing two special elements 0 and 1 and +,- are func-
tions mapping R x R to R satisfying the following properties for every triple a,b,c € R:

Associativity: Both + and - are associative, i.e., a+(b+c) = (a+b)+c and a-(b-¢) = (a-b)-c.
Commutativity Both + and - are commutative, i.e., a+b=b+a anda-b=">b-a.
Distributivity: - distributes over +, i.e., a-(b+¢)=a-b+a-c.

Identities: a+0=a anda-1=a.

Additive Inverses: For every a € R, there exists an additive inverse —a € R such that
a+ (—a) =0.

If in addition, every non-zero element has a multiplicative inverse, then R is a field. (Le., for every
a € R — {0}, there exists an a™' € R such thata-a=' =1.)

Notes on Algebra-19

Often we will skip the operators + and - and simply refer to the set R as the ring (with addition
and multiplication being specified implicitly). Commutative rings form the foundation for much of
the elegant results of algebra and algebraic geometry. Within the class of commutative rings, one
can get nicer and nicer domains (rings with nicer and nicer properties) and this culminates with the
notion of a field. Informally, rings allow the operations of addition, subtraction and multiplication,
while a field also allows division. We will see some of the intermediate notions later. Right now we
turn to polynomials.

2.5 Polynomial rings

Given any ring R, and a symbol ¢ (usually referred to as an indeterminate, one can create a ring
RJt] of polynomials over R. Such a ring inherits most of the nice properties of the underlying ring.
Below is a formal definition of the ring of polynomials.

Definition 2.3 Given a commutative ring R and indeterminate t, the set R[t] has as its ele-
ments finite sequences of R, with the sequence f = (fo,... , fi) being interpreted as the formal sum
22:0 fitt. Addition and multiplication over R[t] are defined accordingly, i.e., if f = (fo,--- , fi) and
9="{go,---,9x) withl <k then f+g=(fo+9go,---, fi+ 9, 9141,--- ,9) and f-g=(ho,-.. , huiyr
where h; = Z;ZO figi—j. For a polynomial f € R[t], given by f = ELO fitt, we define its degree,
denoted deg(f) to be the largest index d' such that fg is non-zero.

Proposition 2.4 For every commutative ring R and indeterminate t, R[t] is a commutative ring.

The most natural ring of polynomials that we will encounter are the ring of polynomials over some
(finite) field F, say F[z]. Now we can adjoin a new indeterminate y to this ring to another ring
F[z][y]. We will use the notation F[z,y] to denote such a ring whose elements are simply poly-
nomials in two variables z and y. In particular Fly][z] = F[z][y] = F[z,y]. Continuing this way,
adjoining m variables z1, ... ,z,, to F' for some integer m, we get the space of m-variate polynomials
Flz1,... ,zy,]. It is also possible to define this ring directly and we do so in order to define various
notions of degree associated with it.

Definition 2.5 (Multivariate polynomial rings) Given a ring R and indeterminates
X1,... ,%m the m-variate polynomial ring over R, denoted R|xi,...,%.,] has as its elements
finite sequences indexed by d-tuple of non-negative integers f = (fi, . i,)o<ij<d;- The element
represents the formal sum Eil,...,im Firrs im m'f ---gim - Addition and multiplication are interpreted
appropriately. The xj-degree of f, denoted degmj (f), is the largest index d;- such that there exist
indices i1, .. ,im such that fil,...,ij_1,d-,ij+1,...,im is non-zero. The total degree of f is the largest

J
sum Z;"zl ij, among tuples i1,... ,im for which f;, .. ;. is non-zero.

We will come back to multivariate polynomials later. Right now we move on to descriptions of fields
and this will need univariate polynomials.

2.6 Finite Fields

Fields are the nicest of algebraic structures. that allow all sorts of manipulations efficiently. In
particular we can not only define addition and multiplication, but also subtraction (a—b = a+ (—b))

Notes on Algebra-20

and division (a/b = a-b~'). The most familiar examples of fields are the field of rational numbers Q
and the field of real numbers R. For our purposes fields that have only a finite number of elements
are much more important. The following theorem tells us what kind of finite fields exist.

Theorem 2.6 For a positive integer q, a field F of cardinality q exists if and only if ¢ = p' for a
prime p and positive integer [.

We use the notation F, to denote the field with ¢ elements. Since we eventually intend to use the
fields computationally, we will need to know a little more about such fields. Specifically, given ¢ how
can one represent the elements of the field F,? Given (such representations of elements) «, 8 € Fy,
how can we compute (representation of) a+ 8, a — 8, a - 8 and a/B? We answer these questions
below:

Prime fields. If ¢ = p for a prime p, then the field F, is simply the field of arithmetic modulo
p- Thus the natural way to represent the elements of F, is using the integers {0,...,p —1}. It is
easy to carry out addition, multiplication, and subtraction in the field can be carried out in time
poly log g. Fermat’s little theorem also tell us that if 3 # 0, then f~! = fP~2(modp) and by using
a fast modular exponentiation algorithm, 3~! can also be computed in time polylogq. (Actually
addition, multiplication, and subtraction can be computed in time O(loggpoly loglogq).)

Before going on to describing fields of cardinality p', where [> 2, we need to define the notion of
irreducible polynomials.

Definition 2.7 (Irreducible polynomials) Given a ring F[t] of polynomials over a field F, a
polynomial f € F[t] is said to be reducible if there exist polynomials g and h in F[t] of degree at
least one such that f = g-h. f is said to be irreducible if no such polynomial exists.

We are now ready to describe the remaining finite fields.

Prime power fields. Let ¢ = p! for prime p and positive integer I. Suppose f is an irreducible
polynomial of degree ! in F, [¢t]. Then F, = F,[t]/(f), i-e., the ring of polynomials in ¢ reduced modulo
f. Specifically, the elements of F,[t]/(f) are polynomials of degree strictly less than . (Note that
there are exactly p! such polynomials.) Addition is straightforward polynomial addition. (Note that
the degree of the sum is less than [if both polynomials have degree less than [.) Multiplication is
performed modulo f, i.e., given g and h we compute p = gh using regular polynomial multiplication
and then compute the remainder when p is divided by f. This is a polynomial r of degree less than
! and we define g - h to be r in the “field” F,[t]/(f). Fermat’s little theorem applied to groups shows
that ¢! = ¢g972 in this field also.

Exercise: Verify that I, as described above satisfies the definitions of a field.

The above construction is would not be very useful, if it weren’t for the fact that irreducible poly-
nomials exist and can be found efficiently.

Theorem 2.8 (cf. [102]) For every prime p and positive integer |, there exists an irreducible poly-
nomial of degree I over I, [t]. Furthermore such a polynomial can be found deterministically in time
poly(l,p) and probabilistically in expected time poly(l,logp).

Notes on Algebra-21

Given the above we see that we can pre-compute a representation of a field in expected time poly log ¢
and then perform all field operations deterministically in time poly log ¢. In certain scenarios it may
be useful to have irreducible polynomial explicitly. In F»[t] an infinite sequence of such polynomials
is known (cf. [117, Theorem 1.1.28]).

3

Theorem 2.9 For everyl > 0, the polynomial 223" + 23 4+ 1 4s irreducible over Fy [z].

Thus we can construct fields of size 223" for every integer [totally explicitly. Thus if we were
interested in a field of size at least ¢ = 2™, and m is not of the form 2 - 3!, we can find an m' of
the right form with m’ < 3m and the resulting field would be of size less than ¢, which is only
polynomially larger than our lower bound.

2.7 Evaluations of polynomials

We introduced polynomials merely as formal sums — syntactic expressions with no semantics asso-
ciated with them. Evaluations associate some semantics to them.

Definition 2.10 The evaluation of a polynomial f = Z?ZO fit! € R[t] at the point o € R, denoted

f(a), is given by Z?:o fiat. Ewvaluations of multivariate polynomials are defined analogously; the
evaluation of f € R[z1,... ,2m] and a = (aq,... ,an) is denoted f(a) or f(a,...,am).

Evaluations carry natural semantics, i.e., f(a) + g(a) = (f + g)(a) and f(a)-g(a) = (f-g9)(a). We
are interested in knowing how often a polynomial can evaluate to zero. To answer this question, we
first introduce the notion of division of polynomials.

Proposition 2.11 (Division Algorithm) Given polynomials f,g € F[t] for some field F, there
exists a unique pair of polynomials q and r (for quotient and remainder) in F[t] satisfying deg(r) <
deg(g) and f = g-q+r. Further the polynomial q satisfies deg(q) = deg(f) — deg(g) if deg(f) >
deg(g).

The name of the proposition above is due to the fact that the proposition is proved by simply
performing long division in the usual manner. Applying the above proposition with g = ¢t — a for
some « € F, we get that f = ¢- (t — a) + r where r has degree zero and hence r € F. Furthermore
evaluating the expression above at « yields f(a) = g(a) - (& — @) + r, and thus r = f(a). Thus we
have f =¢q- (t — o) + f(a) for some ¢ of degree deg(f) — 1. The following proposition then follows.

Proposition 2.12 The polynomial t — « divides f if and only if f(a) = 0.

Thus we get that if distinct elements a;. ... ,ay are all zeroes of a polynomial f (i.e., f(a;) =0 for
i € [k]) then the polynomial h = Hle(t — ;) divides f. Since the degree of h is k it follows that
the degree of f is at least k. So we get:

Theorem 2.13 For a field F', an element f € F[t] evaluates to zero on at most deg(f) points in F.

Notes on Algebra-22

We now move onto estimating the number of zeroes of multivariate polynomials. To do so, we need
a variant of Theorem 2.13 for multivariate polynomials. We obtain such a result by expanding the
scope of the theorem above. We first need a definition.

Definition 2.14 A commutative ring R is an integral domain if it does not contain any zero divi-
sors, i.e., there do not exist non-zero elements a,b € R such that a-b = 0.

Note that the rings F[z1,... ,Zn] are integral domains. Integral domains are of interest in that they
are almost as nice as fields. Specifically, the following construction gives a field that contains any
given integral domain.

Definition 2.15 For an integral domain R, its field of fractions, denoted R, is the ring whose
elements are pairs (a,b) with a € R and b € R — {0}, modulo the equivalence (a,b) = (c,d) if
a-d =b-c. The element (a,b) is interpreted as the ratio a/b. Addition and multiplication are
defined analogously with (a,b) + (¢,d) = (a-d+b-¢,b-d) and (a,b) - (¢,d) = (a-¢,b-d).

The following proposition is easily verified.
Proposition 2.16 For every integral domain R, R is a field. Further, R is contained in R.

The field of fractions of F[z1,... ,Z,,] is usually denoted F(zy,...,z,) and its elements are the
rational functions (ratios of polynomials) in z1,... ,Z,.

The following lemma is now an easy consequence of the notions of integral domains, fields of fractions,
and Theorem 2.13.

Lemma 2.17 The polynomial g(x) € F[x] is a zero of the polynomial f(x,t) € F[x][t] (i.e.,
f(x,9(x)) = 0) if and only if t — g(x) divides the polynomial f(x,t). Hence the polynomial f
has at most deg,(f) zeroes in Flx1,... ,Tn].

Proof The proof is simple. We simply view f as a polynomial in K[t], where K = F(21,... ,Zm)
is the field of fractions of F[z1,...,zy]. Since g € K, it follows that f(g) = 0 iff ¢ — g divides f
(from Proposition 2.12). Furthermore, Theorem 2.13, applied to f € K|t], says that f has at most
deg,(f) roots in K, which contains F[z1,... ,z,]. B

The following theorem is now an easy inductive consequence of Lemma 2.17.

Theorem 2.18 A non-zero polynomial f € Fylzy,... 2] is non-zero on at least [];-,(qg —
deg,, (f)) points in F" .

Proof We start by viewing F,[z1,...,%,] as a polynomial in Fy[z1,...,Zm_1]m]. By
Lemma 2.17, there are at most deg, (f) choices of a,, € Fy[z1,...,2m—_1] and hence in F, such
that f(z1,...,Zm-1,am) = 0. For an a,, such that f(z1,...,Zm—1,0m) # 0 (and there exist
q—deg, (f)such ay’s),let fo, (1, ,Tm-1) = f(21,--. ,Tm_1,y). Since f,,, is a polynomial
in Flzy,... Ty, 1] with deg, (fa,.) < deg,.(f), it follows (by induction on m) that f,,, is non-zero
on at least H:;l(q — deg,, (f)) points in F7*~". The theorem follows. H

Notes on Algebra-23

We can derive other variants of the theorem above. One such variant that is quite popular in the
CS community, often termed Schwartz’s lemma or the DeMillo-Lipton-Schwartz-Zippel lemma [28,
98, 125, is the following;:

Theorem 2.19 A non-zero polynomial f € Fy[x] of total degree d is zero on at most a d/q fraction
of the points in F*.

Remark: Both Theorems 2.18 and 2.19 can also be extended to count the number of zeroes in some
space of the form S™ for S C F;, but we don’t do so here.

Proof The proof again goes by induction, but this time in the reverse order. Let d,, be the
degree of f in x,, and let f,, € F[z1,...,2,, 1] be the coefficient of 2% in f, where we view f as
an element of Fx1,... ,Zm_1][x]. Note that the total degree f,, is at most d — d,,,. For a random
choice of a4,... ,am_1 € Fy, by induction we have that the probability that fn(oa,... ,am—1) =0
is at most (d —d,;)/g. If this event happens, then we give up (and assume f(aq,... ,Qm-1,0m) =0
for all a,y,). Else we get a polynomial g(xm)déff(al, -+ ,Qm—1,Tn) in one variable of degree d,,. By
Theorem 2.13 a random choice of e, is a zero of g with probability at most d,, /q. For f(ai,... ,anm)
to be zero, it must be the case that f,(a1,... ,0m-1) =0 or g(a,,) = 0, Thus by the union bound,
we find that f(au,...,a,) = 0 with probability at most (d —d,,)/q+ dm/q = d/q. B

Finally we describe yet another variant that was the version used in the classical Reed-Muller codes.

Theorem 2.20 If f € Fy[z1,... ,%,] has individual degree at most | in each variable and has total
degree d = Ik +r, then it is non-zero on at least (1 —1/q)*(1 —r/q) fraction of the inputs from Fr.

The proof of the theorem is a simple variant of the two proofs above and so we won’t repeat it. It
is more interesting to see a consequence. Suppose we have a multilinear polynomial of total degree
k over Fy. Then it is non-zero on at least a 27* fraction of the domain F§*. This is exactly the kind
of result that was used in the original Reed-Muller codes.

2.8 Vector spaces over fields

Here we relay some basic definitions and results about linear algebra that form the basis of linear
codes.

We will be considering subspaces of the vector space Iy , which is endowed with an addition operator
“+” and a scalar-vector product “-”, where if x = (x1,... ,2,) and y = {y1,... ,yn), then x+y =
(T1 +y1,--- ,Zn +yp) and for a € Fy, a-x = (- 21,... , 0 2y).

Definition 2.21 (Linear subspace) A subset L C T, is a linear subspace of ¥y if for every

X,y € L and every o € F, it is the case that x+y € L and a-x € L.

Definition 2.22 (Basis, Dimension) The span of vectors x1,... ,Xy, denoted span(xy,...,Xy),
1s the set {Ele @ X; | a1,... 0 € Fy}. A set of vectors X1,...,%y is linearly independent
if Zle a; - x; = 0 implies ;. = --- = ap = 0. For a linear subspace L C Fy, a set of vectors
X1,...,Xx € L forms a basis if the vectors are linearly independent and their span equals L. The
dimension of L, denoted dim(L), is the size of the largest basis for L.

Notes on Algebra-24

Playing around with the definitions, one can show easily that the span of a set of vectors is a linear
subspace, that every linear subspace has a basis, and that all bases for a given subspace have the
same size. One way to describe a linear subspace is to give its basis. A different way is to give
constraints satisfied by elements of the subspace. We move towards this notion next. To do so, we
need the notion of an dot product of vectors. For x = (z1,... ,z,) and y = {y1,... ,yn), the dot
product of x and y, denoted (x,y), equals Y ;" | Z;y;.

Definition 2.23 (Null Space) For a linear subspace L C Ty, it null space, denoted Lt is the set
{v ey | (x,y) =0}

Proposition 2.24 The null space of a linear subspace L C Fy is also a linear subspace of ¥y and
has dimension n — dim(L).

A full proof of this assertion turns out to be somewhat complicated, and seems to involve proving
the well-known but non-trivial fact that the row rank of a matrix equals its column rank. Instead
of proving this, we will give a sense of how the proof goes, by essentially giving an algorithm to
compute the basis of the null space L', given a basis of the space L. The description in the following
paragraph is not self-contained — reading this paragraph is not suited for all audiences. A better
approach may be to read a chapter on linear algebra from a text on algebra (e.g., [73]).

Suppose x1,...,X; form a basis for L. Let G € F’;X" be the matrix whose ith row is x;. Since
X1,...,X) are linearly independent, it follows that the rank of G is k. (Note that we didn’t really
define the rank of a matrix — there will be other such transgressions in this paragraph.) In particular
this means there is an invertible £ x k submatrix in G. By permuting the columns of G, we can
write it as G = [A|B] where A is an invertible square matrix and B is the rest. Note that we are
interested in a basis of the space L+ = {y | yG = 0}. Writing all vectors y € Fy asy = (ya,¥B)
where y4 € ¥ and yp € F} ™%, we get y4A + ypB = 0 for all y € L*. This essentially yields
Lt ={(-ysBA~',yg)|lys € F;*}, Taking yp to be all the unit vectors gives n — k vectors that

generate L.

The correct way to think of the null space L' is that its members give linear constraints on the
members of L. E.g., the vector y € L+ enforces the constraint 2?21 y;x; = 0 on the vectors x in
L. Since it suffices to satisfy the constraints given by any basis of L' (the other constraints get
satisfied automatically), the basis of L' gives an alternate succinct representation of L.

We now move on to computational versions of the above results: Most of these computational results
just build on the essential fact that Gaussian elimination works over any field (and not just rationals
or reals or complexes).

Theorem 2.25 Given a matric G whose rows are the vectors xi,...,xx € Ky, let L =
span(xXy,... ,Xx). Then, the following problems can be solved in time O((n + k)3):

1. For n =k, compute the determinant of G.

2. Compute the rank of G.

3. If rank G = k, then a pseudo-inverse matriz G~ such that GG~ = I, where I, is the k x k
identity matriz.

4. Given a vector b € ¥y, compute a vector x and a matriz H such that the set {zy =x+yH |y}
is the set of solutions to zG = b if such a solution exists.

Notes on Algebra-25

2.9 Representing fields by matrices

We have already encountered one representation for element of a field F,, where ¢ = p' for some
prime (power) p — namely, the elements of F, are polynomials over IF,,. However it is often to know
about other representations. Here we describe two (actually one and a half) representations.

The first representation is only semi-adequate in that it describes how to do addition in F,, but not
how to multiply. But it is useful to get to the second representation. Further it is often useful to
think of the two simultaneously. We now start with the simple representation.

Fields as vector spaces. A simple way to think of F,; is as Fzg - i.e., field elements are just vectors
over I, and field addition is just vector addition. Formally, there is an invertible transformation L :
F, — F,, that o € F,; is represented by the element L(a) € F,. such that L(a+) = L(a) + L(B).
However this representation does not give a clue on how to do field multiplication.

Field elements as linear transformations. One way to think of a field element is that the
element « defines a map § — a - 3. Now if we represent 8 by its linear representation, then we
get that a is a linear map from]Fz, to Fﬁ,. In other words, if we fix the linear representation L,
then corresponding to o, we can define a map M, : F, — F,, with M,(L(8)) = L(a -). Note
that this map satisfies My (L(8) + L(7y)) = My (L(B)) + My(L(7y)). Since this is a linear map, this
says there is a matrix My € FE** such that My (x) = xM,. Furthermore, in this case we have
My, .0, = My, - Ma,. and Mgy, 40, = Ma, + Mg,. Thus the transformation a — M, maps Fy
to Ff,Xk and has the property that addition and multiplication in the field are just addition and
multiplication of matrices! This representation (of a by M,) can be quite useful at times.

2.10 Conclusions

Not all the descriptions above were intended to be complete. The idea is to list facts that (a) are
true and (b) are assumed to be true in this course. Hopefully we won’t use stuff that is not in these
notes — but if we do we will try to make explicit note of this later. If you are planning to learn from
this class you should either (a) be completely comfortable with assuming the facts stated, or (b) read
appropriate algebra texts to review the material on fields and linear algebra. Some recommendations
(this may be expanded later) include the text by Lidl and Neidereitter on finite fields [68] and by
MacLane and Birkhoff on algebra in general [73].

Notes on Algebra-26

Chapter 3

6.897 Algorithmic Introduction to Coding Theory September 12, 2001

Lecture 3
Lecturer: Madhu Sudan Seribe: Arian Shahdadi

Today we will talk about Hamming codes and the Hamming bound. In order to talk about Ham-
ming’s codes, we will define linear codes. The lecture also contained material on some basic and
linear algebra, which is deferred to a separate handout.

3.1 Linear Codes

There are many ways to specifiy a code given our established formalisms. One convenient way is to
give an encoding function, thereby specifying how to create arbitrary codewords. This generalized
mapping can be used to decribe classes of codes in a succinct manner. For a special class of codes
called linear codes, other succinct options are available. We will define these codes here.

Linear codes are obtained when the alphabet ¥ is associated with the field F, for some finite ¢g. In
such cases, one can think of the “ambient space” (X"), which contains the codewords and received
words, as a vector space.

Recall that L C Iy is a linear subspace of the vector space Iy’ if for every pair x,y € L and a € Fy, it
is the case that x+y € L and a-x € L. (Here + is vector addition and - is scalar-vector multiplication.
Specifically, if x = (z1,... ,2,) and y = (y1,--- ,yn), then x +y = (1 + y1,--- ,Zn + yn) and
a-Xx=(a-T1,...,a Tp).)

When a code C C Ty is a linear subspace of ', then the code is called a linear code. Notationally,
we express the fact that an (n,k,d), code is linear by using square brackets and denoting it an
[n, k,d]q code.

3.1.1 Generator matrix and Parity check matrix

Linear algebra gives us several succinct ways of representing codes. Recall that a linear subspace
C C Fy of dimension k can be specified by giving a basis for the subspace, i.e., by giving an

3-27

independent set of vectors X1, ... ,x; C I} such that C' = {Zle ;i X | oa,...,0 € Fg}. Note in
particular that the code has ¢* vectors and so we are not abusing notation here by using k to mean

two different things — the dimension does equal the message length.

Using matrix notation, we can thus represent the code C by a generator matriz G € IF’;X", where
the rows of G are the basis vectors x, ... ,xg. (Throughout this course we will denote vectors by
row vectors, unless otherwise specified.) In this notation, C = {aG | o € F¥ }.

Another way of describing a linear subspace is by enumerating the constraints that vectors in the
subspace obey, or equivalently, by describing its “null space”. For x,y € Fy, let (x,y) = > ;-
y; where the multiplications and summation denote field operations. Recall that for every linear
subspace C of dimension k, one can find a linear subspace, denoted C+, of dimension n — k, such
that for every x € C and y € C*, (x,y) = 0. Let HT € F{""¥*" be the generator matrix for

CL. The matrix H € F2*"%) s called the parity check matriz of C. Note that one can express
C={y|yH=0}

Note that under both representations, we can show trivially that the 0 word is a codeword for all
linear codes. We will return to this fact later on.

Both the generator matrix and the parity check matrix representations give an O(n?logq) sized
representation of the code C. These representations take poly(nlogq) bits to describe and are thus
fairly compact.

Furthermore these representations are equivalent computationally. With some rudimentary linear
algebra, we can show that parity check matrices and generator matricies are essentially the same.
That is, given G we can compute H and given H we can compute G.

Although we have shown that generator and parity check matrices are equivalent in both a mathe-
matical and computational sense, do they work in the same manner? As we will see, parity check
matrices have some properties that are very useful.

3.1.2 Applications of the parity check matrix

Error-detection: Suppose we are given a received vector y obtained from the transmission of
a codeword from a code of minimum distance d. Further, suppose that we are guaranteed that
that d — 1 or fewer errors have occurred. As we noted earlier, it is possible to tell, given unlimited
computational resources, if an error has occured or not. Can we do this computation efficiently? It
turns out that the answer, for linear codes C' given by their parity check matrix H, is “YES”! We
simply compute the vector yH. If the result is the all zeroes vector, then y is a codeword and hence
no errors occurred during transmission. If yH # 0, then y is not a codeword, by the definition of
the parity check matrix. Thus we conclude that error-detection is “easy” (in polynomial time) for
linear codes.

Another nice property of parity check matricies is that they give a sense of the minimum distance of
a code. One important question is that of how we can determine the minimum distance of a linear
code. Unfortunately, there are no known efficient methods of computing this — and the problem
is known to be NP hard [118, 29]. Nevertheless parity check matricies offer some aid in designing
codes with reasonable minimum distance as we will see shortly. First, we digress in order to define
a new concept, the Hamming weight of a codeword.

Definition 3.1 The Hamming weight of a vector x € F', denoted wt(x), is the number of non-zero

3-28

coordinates in X.

Now, in order to find the minimum distance of a linear code, we can find a non-zero codeword x
of smallest weight such that x - H = 0. The weight of this codeword, wt(x), equals the minimum
distance of the code. We can prove this assertion using elementary linear algebra.

Proposition 3.2 The minimum distance of a linear code C' with parity check H equals the smallest
integer d such that there exist d rows of H that are linearly dependent.

Proof First, note that the proposition is equivalent to the assertion that the minimum distance
of C equals the weight of the non-zero vector x of smallest weight that satisfies xH = 0. To see this,
let h; denote the ith row of H. Now suppose xH = 0 and let z;,,... ,z;, be the non-zero elements
of x. Then Z;.izl z;;h;; = 0 and thus the rows h;,,... ,h;, are linearly dependent. Similarly any
collection of d linearly dependent rows lead to a vector x of weight d such that xH = 0.

Now we turn to showing that min{yoxa=0}{Wt(x)} is the minimum distance of the code. First
note that if xH = 0, then its weight is an upper bound on the minimum distance since its distance
from 0 (which is also a codeword) is wt(x). On the other hand this quantity also lower bounds the
minimum distance: If y and z are the nearest pair of codewords, then the vector x =y —z is a
codeword whose Hamming weight equals the Hamming distance between y and z.

3.1.3 Systematic Codes

Finally we introduce another side-effect of linearity, which is the notion of a systematic code.

Definition 3.3 An (n, k, d), systematic code s a code in which the encoding of a message consists
of k message symbols followed by n — k check symbols.

In other words, in a systematic encoding, the message is recoverable without decoding if there are no
errors. Systematic codes are very common in practical implementations of encoding and decoding
schemes.

The term “systematic” is from the paper of Hamming [48]. Hamming observed that codes obtained
from “linear” operations can be turned into systematic ones without loss of generality. (Hamming
did not explicitly introduce linear codes, though linearity did play a dominant role in his codes.) To
do so, note that if the generator matrix G is of the form [I | A] where I is the k x k identity matrix,
and A is a k x (n — k) matrix, then the code generated by G is systematic. So what can we do if
G is not of this form? For simplicity, we describe the procedure when ¢ = 2 and the code is binary.
(The method also generalizes to other fields.) First we permute the columns and rows of G till the
leftmost entry of the first row is a 1. (Permuting the rows does not alter the code, while permuting
the columns only changes the naming of the coordinate indices.) Now we can arrange it so that all
the leftmost entry of all remaining rows is 0. We do so by subtracting the first row from any given
row if the row has a 1 in the leftmost entry. Again this process does not change the code — it only
changes the basis we are using for the code. Repeating this process for the remaining indices, we
arrive at a generator matrix with an identity matrix in the left part - as desired.

We conclude that every linear code is systematic. The converse need not be true.

3-29

3.2 Hamming Codes

The machinery of linear codes developed above allows us to arrive at the Hamming codes with
minimum distance d = 3 naturally. In order to describe these codes, we construct their parity check
matrix H.

For simplicity, we will construct the matrix over the alphabet ¥ = {0,1}. This puts us in the field
F,, where the addition and multiplication operations are just arithmetic modulo 2.

Notice our goal is to construct a matrix H € FZX(”*) such that xH # 0 for any vector x of weight
1 or 2. (Then the code will have distance > 3. We will do so for as large an n as possible, given
a fixed choice of I = n — k. Denote by h; the ith row of this matrix. We will first determine what
conditions h; must satisfy.

First, consider a vector x of weight 1. Say this vector has a 1 in the ith position and is zero elsewhere.
Then xH = h;. Since we don’t want xH to be zero, this imposes the constraint that h; should not
be zero. If H satisfies this property, then it gives the parity check matrix of a code with distance
> 2.

Now, consider a vector x of weight 2. Say, this vector has a 1 in the ith and jth coordinates and is
zero elsewhere. Here, we get, xXH = h; + h;. If this result is to be non-zero, we need h; # h;, for
every i # j. We conclude that H is the parity check matrix of a code of minimum distance > 3 over
I, if and only if all its rows are distinct and non-zero.

Thus if I = n — k, then the largest n we can allow is the number of distinct non-zero vectors h; € F,.
This is a simple enumeration problem — there are exactly 2! —1 such vectors and so we get n = 2! —1.
Using our previously defined notation, we can now fully specify the parameters of the generalized
Hamming codes:

Proposition 3.4 For every positive integer I, there exists an [2! —1,2! —1 —1,3]y code, called the
Hamming code.

Exercises:

e Describe the parameters and parity check matrix of the g-ary Hamming codes.

e Describe the generator matrix of the Hamming code. Put it in systematic form [I | A] and
describe the entries of the matrix A.

To make some sense of the growth of parameters, notice that if k = 2! —[— 1, then [= O(logk).
Thus the Hamming codes are obtained by appending ©(log k) parity check bits to the k-bit message.
This gives a code of minimum distance 3, or equivalently, a 1-error-correcting code. The next section
addresses the issue of whether one needs to expend so much redundancy to correct one error. But
first we describe a simple error-correcting algorithm for the Hamming code.

3.2.1 Error-correction in the Hamming code

Given a received vector y, where y = x + e for some codeword x and a vector e of weight one, how
can we compute the location ¢ such that e; = 17

3-30

The naive method for computing this would be by brute force. For j = 1 to n, we try flipping the
jth bit of y and see if this gives us a codeword. We can check if such a vector y' is a codeword by
computing y'H and checking to see if it is zero. This gives an O(n®) algorithm.

Hamming wasn’t satisfied with this approach and instead relied on the parity check matrix to simplify
this computation. Since we know that xH = 0, we have that yH = eH = h;, where 7 is the index of
the error location. Furthermore, if we arrange H so that the ith row is simply the number i written
in binary, then the vector yH simply gives the location of the error in binary. This speeds up our
computation by a factor of n, giving an O(n?) algorithm to correct errors.

3.3 The Hamming bound and perfect codes

Is it necessary to add logarithmically many bits to correct 1 error? Hamming proved that this was
the optimal result by introducing what is called the Hamming bound. We now derive this bound.

Let us recall some notation we have used earlier. Let B(y,r) denote the ball of radius r around
vector y (where for this section the vectors will be from F}). Let Vol(r,n) = >_7_; (%) be the volume
of such a ball. The Hamming bound gives the following:

Theorem 3.5 If an (n, k,d)s code exists, then

2kVol ({%J n) <2n,

Proof Let C = (n,k,d)> code and let r = |45 |. The Hamming bound is based on the simple
observation that if x and y are codewords of C, then B(x,r) and B(y,r) are disjoint. Since
Uxee B(x,7) € {0,1}" and the sets on the LHS are all disjoint, we get: > - |B(x,r)| < 2". The
bound follows immediately. l

The Hamming bound generalizes naturally to g-ary alphabets. Let Voly(r,n) = Y7, (7) (¢ — 1)
Then we have:

Theorem 3.6 For every n,k,d and g, an (n,k,d), code exists only if

quolq ({%J ,n) <q".

For the case d = 3 and ¢ = 2, the above bound says that 2F(n + 1) < 2", and this bound is met
ezactly by the Hamming codes (and this is true also for g-ary Hamming codes). The Hamming
bound defines a class of codes known as perfect codes.

Definition 3.7 An (n,k,d), code is perfect if it meets the Hamming bound ezactly: i.e.,

d—1
quolq ({TJ ,n) =q".

An interesting fact here is that other than the Hamming codes and two specific codes proposed
by Golay [37] no other perfect codes exist. This was supsected for long and finally proved by van
Lint [116] and Tietavainen [113]. This proof is way beyond the scope of this class.

3-31

Converting odd minimum distance to even minimum distance

The Hamming bound is clearly “jerky” - it proves nothing interesting for d = 2, but jumps to proving
that the Hamming codes for d = 3 are best possible. It does not improve for d = 4 but then jumps
again when d = 5. Why does this discontinuity happen? Is it that the Hamming bound is too weak,
or is it truly easier to construct codes of even minimum distance? Hamming showed, surprisingly
enough, that the latter was the case. The argument is quite simple - the same that we used to
construct distance 2 codes from distance 1 codes and we describe it next.

Proposition 3.8 If an (n,k,2t+ 1)y code ezists, then so does an (n + 1,k,2t + 2) code.

Proof Let C bean (n,k,2t+1)2 code. We construct C', an (n+1, k, 2¢t+2)5 code from C as follows:
Let x = (z1,...,%,) € C. Corresponding to x, C’' contains the codeword x' = (z1,... ,Tn, Y 1y Ti)-
(All summations in this proof are sums modulo 2.) It is clear that C’' is an (n + 1,%,d)2 code for
some d, and what we wish to show is that d > 2t + 2.

It suffices to show that if x,y € C, then A(x',y') > 2t + 2. Notice first that A(x',y') > A(x,y).
So if the latter is at least 2t + 2 then we are done. Thus it suffices to consider the case where
A(x,y) = 2t + 1. In this case, let us permute the coordinates of C' so that x and y agree in the
first m = n — (2t + 1) locations and disagree in the last 2¢ + 1 locations. Now consider the quantity
iy (x; +y;). This quantity equals the parity of “(2x # 1’s in x in the first m coordinates)
+(2t + 1)”. Clearly, this parity is odd (since the first expression as well as 2t are even and the last
term, 1 is odd). We thus get that exactly one of .7 z; and)7 | y; is one (modulo 2) and the
other is zero. Thus x' and y' disagree in the last coordinate and so the distance between them is
2t + 2 in this case also. B

Exercise: Does the proposition above extend for other values of ¢?

Applying the proposition above to the distance 3 codes, Hamming got a family of distance 4 codes.
Going from d = 4 to d = 5 is non-trivial. In particular the Hamming bound implies that one needs
approximately 2logk check bits to get such a code. Getting such a code proved to be non-trivial
and was finally discovered, independently by Bose and Ray-Chaudhuri [23], and Hocquenghem [49],
in 1959. These codes, which are quite famous under the label “BCH codes”, give binary codes of
block length n and odd minimum distance d using d—gl logn check bits. The Hamming bound shows
this is tight to within lesser order terms.

3-32

Chapter 4

6.897 Algorithmic Introduction to Coding Theory September 19, 2001

Lecture 4
Lecturer: Madhu Sudan Scribe: Joe Aung

Today’s topics:

e Singleton bound and Maximum Distance Separable (MDS) codes.
e Reed Solomon codes.
e Reed Muller codes.

e Hadamard codes.

4.1 The Singleton Bound

Our first result is a simple lower bound on the block length of a codeword, given a fixed distance
and message length. This bound is due to R. C. Singleton [106] and is hence named the Singleton
bound. To motivate this result, recall that in lecture 2, we saw an [n,n, 1], code and an [n,n—1,2],
and wondered if we could generalize these results to a [n,n —d + 1,d]2 code (and the Hamming
bound ruled this out for d = 3 in the binary case). A more elementary question is why should we
only ask for £ < n —d+ 1 and not better! The Singleton bound shows that this is indeed the best
possible, over any alphabet.

Theorem 4.1 ([106]) If C is an (n,k,d), code thend <n —k+ 1.

Proof Let X be the g-ary alphabet of C. Consider the projection map 7 : £¥” — XF~1 that
projects every word in X" to its first k — 1 coordinates. Since the range of 7 has only ¢*~! elements
and |C| = ¢¥ > ¢!, we see that there must exist two distinct codewords x,y € C such that
m(x) = 7(y). Since x and y agree on their first £k — 1 coordinates, it follows that they may differ on
at most all remaining n — (k — 1) coordinates, and thus we have A(x,y) < n —k+ 1. It follows that
the minimum distance of C' is at most n — k + 1. l

4-33

Codes that meet the Singleton bound, i.e., satisfy kK = n — d + 1, are called Mazimum Distance
Separable (MDS) codes. Last time we defined Perfect Codes as codes that meet the Hamming
bound, and we said that the only perfect codes were the Hamming codes and two codes discovered
by Golay. MDS codes and perfect codes are incomparable: i.e., there exist perfect codes that are
not MDS and MDS codes that are not perfect. Each meets an incomparable optimality criterion.
Today we will see a simple but large family of MDS codes, namely the Reed-Solomon codes.

4.2 Reed Solomon codes

Reed-Solomon codes were introduced in a paper by Reed and Solomon in 1959 [92]. They are
based on properties of univariate polynomials and in particular the following property of univariate
polynomials as introduced in the last lecture (see Lecture Notes on Algebra).

Fact 4.2 Two distinct polynomials p1, p2 € Fy[z] of degree strictly less than k, agree in strictly less
than k points in Fy. Le., there exist at most k — 1 points o € Fy s.t. p1(alpha)=p2(alpha).

4.2.1 Construction of Reed-Solomon Codes

We describe the Reed-Solomon codes by giving the encoding function for them. Note that the
encoding function is not unique. Our choice is made simply to ease the exposition.

Given a prime power ¢ and n < ¢, and k < n, a Reed-Solomon code RS, ,, is constructed as follows:

1. Generate the field F, explicitly (say via an irreducible polynomial over the underlying prime).
2. Pick n distinct elements a;,. .. ,a, € Fj. Note this is where we need the property n < q.

3. To define the encoding, we first pick a convenient representation for the messages. Note that
the message is k elements of F,, say cg,... ,cx—1. We let the message define the polynomial

C’(m)déf Ef;é cjal.

4. The encoding of the message C(x) is its evaluation at aj,...,an, i.e., the sequence

(C(aq),...,Clap)).

4.2.2 Parameters acheived by the code RS, «

First we note the the Reed Solomon codes are linear.
Proposition 4.3 The Reed-Solomon code RS, is linear.

Proof Suppose we are given two codewords (C(a1),...,C(ay)) and (D(a1),...,D(ay)) and
suppose B € F,. We need to show that the sequences (C(a1) + D(a1),...,C(an) + D(ay)) and
(BC(a1),---,BC(ay,)) are also codewords. Note that the former sequence is the evaluations of the
polynomial (C'+ D)(z) at the points ayq, .. . ,a,, while the latter is the evaluations of the polynomial
BC at the same points. Further, note that if C, D are polynomials of degree at most k¥ — 1 then

4-34

the polynomials C'+ D and BC are also polynomials of degree at most k — 1. Thus the resulting
sequences are also codewords of the Reed-Solomon code. B

It is obvious from the construction that the Reed-Solomon code RS, has block length n and
message length k. The only parameter that does not follow by definition is the distance, but that is
easily argued.

Proposition 4.4 The Reed-Solomon code RS, .., has distance n — k + 1.

Proof By the Singleton bound we know that the distance d < n — k + 1. So it suffices to prove
d >mn—k+ 1. Suppose we have two distinct polynomials C(z) and D(z) of degree at most k — 1.
Then by Fact 4.2 we have that C(z) and D(z) agree on at most k—1 points of F, and hence disagree
on at least n — k + 1 points of the set {ay,...,a,}. The distance follows. H

As a result we get the following theorem.

Theorem 4.5 For every prime power q, and every pair of positive integers k,n such that k <n < g,
there exists an [n,k,n — k + 1], code.

4.2.3 Applications of the Reed-Solomon codes

By playing games with the alphabet size, we’ve managed to construct codes that meet the Singleton
bound. But a natural question to ask at this stage is: “How useful is it to have a code over large
alphabets?”.

To answer the question, we first invoke empirical evidence! Reed-Solomon codes are possibly the
most commonly used codes in practical applications. In particular they are used to store informa-
tion/music/video in compact discs (CDs) and digital video discs (DVDs), making them the most
deployed family of codes! How do these technologies end up using codes over large alphabets? We
describe the basic idea below. (Warning: The numbers used below are mostly for example. They
are close to, but not exactly equal to the numbers used in practice.)

CDs and DVDs store information as a sequence of bits. The actual sequence of bits is quite long.
The usual error-correcting methods break this long sequence into a collection of small chunks and
encode each chunk separately. For example, we may pick each chunk to contain 240 bytes each
(where one byte equals 8 bits). This gives a message sequence of 240 bytes where we now interpret
each byte as an element of Fa56, the field on 256 elements. Using n = ¢ = 256, one may encode
this sequence using a Reed-Solomon code RSa56,256,240 t0 get a sequence of 256 bytes which are then
recorded on the CD. Thus in actuality we have described a binary error-correcting code of message
length 240 x 8 bits, and block length 256 x 8 bits. What is the distance of this code? To analyze the
distance, first let us recall that the underlying Reed-Solomon code over Fa56 has distance 17 — i.e.,
we must change at least 17 bytes of the encoded message to get an encoding of some other message.
In turn this implies that we need to flip at least 17 bits in the binary encodings to get from one
codeword to another. Abstracting this idea for arbitrary n, k& and ¢, we get the following implication
for binary codes.

Proposition 4.6 For every k < n < q, where q is a prime power, there exists a family of
(n[log, ql, klogs g,n — k + 1)2 code.

4-35

Exercise: Show that if ¢ = 2!, then the above code construction can be made linear.

How good is such a code? Written slightly differently, and throwing away some floors and ceilings,
we see that the above amounts to codes of the form (K + (1+ o(1))dlog K, K, d)2 codes. In contrast
the Hamming bound says a code with message length K and distance d must have block length at
least K + (1 — o(1))2log K, for any fixed d and K — co. So these codes based on Reed-Solomon
codes are not too bad compared to the impossibility result. As we mentioned last time, better codes
are known. In particular for the same block length and distance, BCH codes could encode 248 bytes
of data. But analyzing those codes is somewhat harder, which is why we don’t present them here.

Still the complexity of analyzing the distance of the code can not possibly a reason not to use them
in practice. So do people prefer to use a weaker Reed-Solomon code as opposed to a potentially
better BCH code? The main reason is the nature of the error. Typical errors on storage devices
tend to happen in bursts. So when, say, 30 bits on the chunk are flipped it is quite likely that these
30 bit errors are not distributed uniformly over the chunk, but are localized to five or six bytes. In
such as case, the Reed-Solomon code can actually correct all these errors (since it can correct upto 8
byte errors)! This enhanced performance of the Reed-Solomon codes in case of bursty error patterns
is the main reason why it is so commonly used.

4.3 Codes based on Multivariate Polynomials

The major bottleneck with the Reed Solomon codes is the restriction ¢ > n. In this section, we use
minor algebraic extensions of such codes to get codes which work over smaller alphabets, including
one non-trivial family of codes over the binary alphabet.

4.3.1 Bivariate polynomials

We start by generalizing the idea behind Reed Solomon codes in a simple way using bivariate
polynomials instead of univariate polynomials. This will already give codes over an alphabet of size
q = +/n. We proceed as follows:

For prime power ¢ and integer [< g the bivariate polynomial code By is defined as follows:

e Messages consist of (I + 1)? field elements which we view as an (I + 1) x (I + 1) matrix of
coefficients (m,-j)éio,jzo. We identify this message with the bivariate polynomial M (z,y) =

’ . T
2izo Ej:o mijz'y’.

e The encoding of a message corresponding to M (x,y) is its evaluation at all field elements.
Thus the encoding of M is (M (a, 3))acF,,3¢F,-

This gives us an [n, k,d], code with n = ¢*> and k = (I + 1)2. How much is the distance? It follows
from Theorem 17 of Lecture 2.5 (Lecture notes on algebra) that its distance is d = (¢ —[)2. In
contrast, the Singleton bound allows d = ¢*> — (I + 1)?. The difference, approximately, 2I(q — 1), is
the price we pay for the smaller alphabet size.

4-36

4.3.2 Multivariate polynomial codes: Reed-Muller codes

We now extend the generalization of the previous section fully, to multivariate polynomials with
an arbitrary number of variables, say m. These codes are termed Reed-Muller codes after their
discoverers: These codes were discovered by D. E. Muller [83] and then I. S. Reed gave a decoding
procedure for them [91]. The codes as described here are generalized to a range of parameters that
were not covered originally, which seems to have focussed on codes over Fy only. (In particular,
the way we describe them, these will be strict generalizations of Reed-Solomon codes, while Reed-
Solomon codes were actually discovered much later!)

Here we will work with the notion of the total degree of a polynomial. Recall this is the maximum,
over all monomials with non-zero coefficients, of the total degree of the monomial, where the total
degree of a monomial is the sum of the degrees of all variables in it. E.g. the total degree of the
monomial z3y*2? is 10, and the total degree of the polynomial 3z° + 4y® + 223y* 22 is also 10. Recall
Theorem 18 from Lecture 2.5 shows that a polynomial of total degree [is zero on at most [/g fraction

of the inputs — we will use this fact below.

We will start by presenting a computer scientist’s view of Reed-Muller codes, which only consider
polynomials of degree I < q.

Reed-Muller Codes - Case 1. For positive integers m,l and prime power ¢ with | < g, the
Reed-Muller code RM,, ;4 is defined as follows:

e The message is a sequence of coefficients (m;,.... i,.)i;+.-+in<i- The message represents the
polynomial
— i i
M(z1,...,2m) = E My, i T1 - T
i1 i <I

e The encoding of a polynomial M (x) is the sequence (M (a))qaeFr -

It is obvious that the block length of the code RM,,;, is n = ¢™. The message length equals
the number of m-long sequences of non-negative integers that sum to at most [, and this number
turns out to be (™). Finally, from Theorem 18 of Lecture 2.5, the distance of the code is at least
(actually exactly) (1 — é)n We will summarize the properties of the code shortly, but before doing
S0, let us consider a choice of parameters which is somewhat illustrative of the powers of this code.

Sample setting of parameters: Suppose we wish to encode k elements of some alphabet. It seems
reasonable to ask for codes of length n = poly(k) that have large minimum distance (say n/2) with
as small an alphabet as possible. It turns out Reed-Muller codes can give such codes with alphabet

size poly(log k), by the following setting of parameters: We choose m = ; Olgol 0’; and ¢ = log® k and

such that (mIH) = k. For this choice of parameters, we note that the code RM,, ; , has block length
n = ¢™ = k? which was one of our goals. To estimate the distance, note the (™) > (I/m)™. Thus
we have I < mk'/™ = mlogk = log® k/ loglog k = o(q) as k — infty. Thus this family of codes has
distance (1 — o(1)) - n.

Reed-Muller codes - Case 2. Now we consider the case where the total degree | > ¢q. In
such case, we associate messages with polynomials of total degree at most | and individual degree
at most ¢ — 1 in every variable. Let S(m,l,q) = {(i1,--. ,im)|22;4; < 1,0 < 4; < ¢} and let
K(m,l,q) =|S(m,l,q)|. The Reed-Muller codes RM,, ; , are described as follows:

4-37

e The messages are a sequence of K(m, 1, q) elements of F, denoted (m;)ics(m.,i,q)- This message
is associated with the polynomial

; .
M(z1,...,2m) = E mixyt Ty
ieS(m,l,q)

e The encoding of the message is its evaluation at all points a € F, ie., the sequence
(M())aery -

This yields a code of block length ¢™ and message length K(m,l,q). To estimate the distance of
the code write | = a(q —1) + b with b < ¢ — 1. Then by Theorem 19 of the Lecture 2.5, the distance
of this code is at least g™ %(1 — b/q). Again the setting of parameters may be somewhat confusing.
So we give an example setting of parameters to illustrate the power of this code:

Sample setting of parameters: (This is the original setting of the parameters in the papers of Reed
and Muller.) We let ¢ = 2 and pick | < m. Then K (m,1,2) = Vol(l,m) (that’s right! - the volume of
the Hamming ball in {0,1}™ of radius /.) We may lower bound this quantity by ('}'). The distance

of the code is 2™~!. Thus the RMy, ;> code gives a [2™, (7}),2™7!]; code!

4.4 Hadamard codes

Before concluding today’s lecture we give one more example of codes, which again turn out to be
special cases of Reed-Muller codes. (The presentation here is different from the way we did it in
lecture.)

Jacques Hadamard was interested in some constructions of self-orthogonal matrices with all entries
being +1 or —1. The ensuing constructions lead to nice error-correcting codes and we describe this
connection here.

Definition 4.7 Ann xn matric H = {h;;} is e Hadamard matrix if h;; € {+1, -1} for all 4, j and
HHT = nl, where I is the n x n identity matriz, and all arithmetic is regular integer arithmetic.

Viewed appropriately, the rows of an n x n Hadamard matrix give a binary code of block length n,
with n codewords (i.e., a message length of logn). To get this view, note that every row of H is
just a binary vector (where the binary alphabet just happens to be {+1,—1} rather than the usual
{0,1}). Thus clearly the rows form a binary code (of message length logn and block length n).
The most interesting aspect of this code is the distance. The fact that HH” = nl is equivalent to
saying that the codewords are at distance exactly n/2 from each other! To see this, note that the
(i,7)th entry of HH” is >, _, h;hj,. For any k, the quantity h;zhj, is either +1 or —1, with —1
indicating h;x # hjr and +1 indicating h;, = hji. For i # j, we have ZZZI h;thjr, = 0, and this
implies that exactly n/2 of the summands are +1 and exactly —1 of the summands are +1. In turn
this yields that for that half the coordinates k, h;; = h;; and so the codewords corresponding to
the ith and jth rows agree on exactly n/2 coordinates.

There are several ways to augment this obvious code and all of these are interchangeably referred to
as Hadamard codes. For our purpose, we will fix the following codes to be Hadamard codes based
on an n X n Hadamard matrix H.

4-38

Definition 4.8 Given an n x n Hadamard matriz H, the Hadamard code of block length n, Had,,,
is the binary code whose codewords are the rows of H (with +1s replaced by 0s and —1s replaced by
1s), and the complements of the rows of H.

Proposition 4.9 For every n such that an nxn Hadamard matriz exists, the Hadamard code Had,,
is a (n,log(2n), §)2-code.

Proof The block length and message length follow by definition. We have also argued that two
codewords that correspond to distinct rows of the Hadamard matrix differ in n/2 places. Now if
c is a codeword corresponding to a row of the matrix and ¢’ is a codeword corresponding to the
complement of a row of the matrix, then if the corresponding rows are the same, then the codewords
differ everywhere; and if the corresponding rows are different then the codewords disagree whenever
the corresponding rows agree, but this also happens exactly n/2 times. The proposition follows. H

We now point to one family of codes with the above parameters that we actually know of! Note
that if we take the Reed-Muller code RM,, 1,2 with m variables and total degree 1 over a binary
alphabet, then we get a [2™,m + 1,2™ '], code, which is of the form [n,log(2n),n/2]2. So it is
worthwhile asking if this is a Hadamard code, i.e., is there an underlying Hadamard matrix.

It turns out that the RMy, 1,2 codes do come from an underlying Hadamard matrix. To do so
recall that the messages of the Reed-Muller code correspond to coefficients cq, ... , ¢, representing
the polynomial C'(x) = co + Y., ¢;z;. Now if we consider only those codewords corresponding to
co = 0, then we get a collection of codewords that differ in exactly half the places, and using them
as the rows yields the Hadamard matrix.

As an aside note that the usual construction of Hadamard matrices with n being a power of 2 is
inductive, with H,,,, the 2™ x 2™ Hadamard matrix being defined as:

11 _[H, H,
H1—|:1 _1:| and Hm+1—|:Hm —Hm:|

4.5 Summary

We’ve seen a number of different codes with incomparable merits. The Reed-Solomon codes have
optimal distance to message length behaviour but require large alphabets. Hadamard codes work
over a binary alphabet, but have very poor relationship between message length and block length.
Hamming codes have a good relationship between message and block length, but only offer a distance
of 3. In going forward we will look for families of codes which maintain a constant ratio between
message length and block length, while also maintaining a constant ratio between distance and block
length.

4-39

6.897 Algorithmic Introduction to Coding Theory September 19, 2001

Lecture On BCH Codes
Lecturer: Madhu Sudan Scribe: Madhu Sudan

In Lecture 4, we spoke about BCH codes in vague terms. Here we give a self-contained account of
the codes with full proofs of its parameters. Note that these may not be the most general possible
BCH codes, but it shows the specific version that is interesting.

To remind the reader where we are going, recall our definition of a g-ary BCH code. In these notes,
we will focus only on the case where the block length of the code equals ¢™ for some integer m.!

Definition 4.10 For prime power q, integer m and integer d, the BCH code BCHy, . q s obtained as
follows: Letn = q™ and let Fym be an extension of By and let C' be the (extended) [n,n—(d—1),d]¢m
Reed-Solomon code obtained by evaluating polynomials of degree at most n — d over Fym at all
the points of Fym. Then the code BCH, ,, 4 is the F,-subfield subcode of C'. (In other words,
BCHq’m,d = Cl n]Fg’)

It is evident from the definition that the codes have distance at least d. (The code could have a larger
distance, so the literature in coding theory refers to d as the designed distance of the code.) Our goal
is to lower bound the dimension of this code as a function of n and d (and m and ¢). The reader
may not realize immediately why this code even has positive dimension for small d. We will explain
why this is so — and in doing so, we will lower bound the dimension by n —m(d — 1). The rest of
the writeup will focus on a mild improvement by adding roughly %m(d — 1) to the dimension. The
interest in this mild improvement is that in the binary case, this brings us close to the Hamming
bound (for small d) as opposed to the Gilbert-Varshamov bound. So these shows that the BCH
codes beat the Gilbert-Varshamov bound (as do every other family of codes we know).

Let us start with a simple argument showing this code has dimension at least n — m(d — 1). First
recall that every function from Fym to I, is a polynomial over Fym of degree at most n — 1. Thus
the space of polynomials from Fy~ to I, is a Fy-linear space of dimension exactly n. We wish to
know what is the dimension of the subspace of polynomials of degree at most n — d. But now note

that the restriction that a polynomial f(z) = 2?2—01 ;' has degree at most n — d is equivalent to
saying that the coefficients f; must equal zero, for i € {n — (d —1),...,n — 1}. Each such condition

is a single linear constraint over Fym , but this translates into a block of m linear constraints over
F,. Since we have d — 1 such blocks of constraints, the restriction that the functions have degree at
most n — d places at most m(d — 1) linear constraints. Thus the resulting space has dimension at
least n — m(d — 1). The argument above is informal, but easy to formalize (and in fact some of the
ingredients are even included later in these notes). Formalizing the argument leads to the following
bound.

Proposition 4.11 (Weak dimension bound) The code BCH, ,, ¢ has dimension at least ¢™ —
m(d —1).

To improve the bound we will argue that not all the constraints above are independent. In particular
we will show that the condition that f; = 0 for i = (¢™ — 1) — j implies that coefficient fy = 0 for

1Strictly speaking, the classical BCH codes fix n = ¢"™ — 1, but I see no reason to do so. If you want the classical
codes, just puncture the codes we obtain and you’ll get a code matching the classical parameters!

On BCH Codes-40

i' = (¢™ — 1) — gj under the restriction that f maps Fym to F,;. This allows us to recover some of
the lost dimensions, and gives us the required bound. To do so we first need to understand the role
that F, plays within Fym .

4.6 I, versus F=

We have seen how we can go from the field F, to its extension Fym . (See Lecture Notes of Algebra -
Lecture 2.5). In Section 6 there, we described a canonical representation of Fym as an m-dimensional
vector space over I, which contains the original field I, as a one-dimensional subspace.

Now we invert the question. Suppose someone gives us the field F;» and asks for the elements
corresponding to the base field IF,. Can we obtain this subfield without referring to our construction?
What is the structure of a subfield I, in the bigger field F;~ ? Are these well-defined objects inside
a field, or does a field F;» contain many copies of F, floating around inside it? These are questions
that no self-respecting algebraist would ask — so we will. (A reader comfortable with finite fields
can safely skip this section.)

Recall that every element o € F, satisfies the property a? = a. We can look for elements in Fym
satisfying this property. Turns out there are exactly g of these and these form the subfield F; in
Fgm . We will prove this below, but first let us see why it is reasonable that the roots of z¢ —x =0
should form a field. It is evident that if a? = a and 89 = 3, then (af)? = af and so the roots of
x? — z are closed under multiplication. But why is (a + 8)? = a+ 37 We prove this in a proposition
that will be several times in this lecture.

Proposition 4.12 Let F; be a field of characteristic p. In other words, p is a prime and ¢ = p".
Then for every non-negative £, and o, € Fy, it is the case that (o + ﬂ)Pl =o? + ﬂ”l.

Proof We start with an even more elementary fact. For every v € F,, p-+v = 0 (where p - is
just shorthand for y + - - - +«y, with p copies of v in there). The simplest way to see this fact is that
addition in F; is just vector addition in F;, and the sum of p copies of any vector in F} is zero.

Now we move to proving the proposition. Note that it is trivial for £ = 0. So, we prove the propostion
for the case £ = 1. In this case (a + B)P = 37, (?)aP~*B*. Now note that p divides () for every

2 . .
i € [p—1]. Since py = 0 for every v € F,, we have (?)aP~" = 0 for every i € [p — 1] and we are
only left with the cases ¢ € {0, p} which gives: (a +)P = a? + SP.

The proposition now follows by induction on £. For £ > 2, we have

(@+B = ((a+B8yy”
= (P + 477
— (ap)pl_l + (510)1)2_
_ apz " ﬂpé.

1

Now we argue formally that the roots of £ — & do form the subfield F; of Fgm .

On BCH Codes-41

Proposition 4.13 There are exactly q elements oo € Fgm satisfying o = a and these form the
subfield Fy of Fym .

Proof We’ve already argued that the roots are closed under addition and multiplication. Thus
the roots of 7 — ¢ form a field. It suffices to argue that the cardinality of this field is q.

It is easy to see there are at most ¢ elements o in Fy= satisfying a? — a = 0, since these are
roots of the degree ¢ polynomial 7 — z. To see that this polynomial has ¢ roots, note that every
element of F,m is a root of 29" — z. Furthermore we have z¢" — xz = (2% —) - h(z), where
h(z) = 29" "9 429" ~2¢ 4 ... 4 29 + 1 is a polynomial of degree ¢™ — q. Thus every element of Fym
is a either a root of the polynomial 7 — z or of h(z). Since at most ¢"™ — ¢ elements can be roots
of h(z), we have that h(z) has exactly g™ — g roots, and z? — z has exactly g roots. H

We conclude that the roots of 9 — z in Fym define the subfield F, of F,~ uniquely. Thus the
operation of restricting a code in Fj\ to Fy is not arbitrary (such as say, as restricting the code to
S™ for some arbitrary subset S of F;m). Next we extend our understanding of subfields to functions
mapping Fym to IF,.

4.7 Functions from F,~ to F,

We first extend Propositions 4.12 and 4.13 to the case of functions.

Proposition 4.14 For functions f,g : Fym — Fym , the following hold:

1 (f+9)?=f1+g"

2. f1= f if and only if the range of f is contained in F,.

We omit the proof since it is straightforward given Propositions 4.12 and 4.13. We now move to the
proposition that is the crux of the improved dimension analysis.

Proposition 4.15 Suppose f(z) = 2212—01 fiz® is a polynomial over Fym mapping Fym to F,. Sup-
pose §,£ € {1,...,n —2} are such that ¢ = g¢j(mod (n —1)). Then fo =0 if f; = 0. Furthermore
fn—l €]Fq -

Proof Since f maps F;m to Fy, we must have f? = f (Proposition 4.14, Part 2). Using Propo-
sition 4.14, Part 1, we get that f(z)? = Z?:_Ol(fi)7z%. Since this expansion has terms of degree
larger than n — 1, we reduce terms above using the identity z™ = x to get that f9 takes the form
S L(fi)atalmod (n=1) 4 (£, 1)9z™ L. (The coefficient f,_1 needs to be treated separately since
we don’t have ! = 1, but only #™ = z. Nevertheless each term can be verified to be correct.) Now
using the fact that the functions f?¢ and f are identical over F =, we get that fd = fo, fr_1 = fa—1
and fyjmod (n—1)) = fJ‘-’. The proposition follows as a special case. B

Before going on to the final claim giving the better bound on the dimension of BCH codes, let us just
ensure that the constraints we are looking at are all linear. We already insisted that the collection

On BCH Codes-42

of functions mapping Fg= to Fy is linear, but in what representation? The natural representation of
such a function f : Fgm — Fy is f = (f(a))aeF,~ - But, in such a case, are constraints of the form
fi = 0 linear in this representation, (where f; is the coefficient of z* in the polynomial representation
of f)? The answer is affirmative, and the proposition below asserts this.

Proposition 4.16 Let f = Z?:_Ol fizi be a polynomial mapping Fgm to Fy. Then the constraint
fi = 0 is a conjunction of at most m linear constraints on the the vector f = (f(a))acr,m - The
condition f,_1 = 0 is one linear constraint on the vector f.

Proof The first part is easy if we recall the right relationships between F, and Fy=, and in
particular that elements of Fy= form a m-dimensional vector space over F,. Viewing f as a vector
from Fj and recalling that interpolation is linear, we obtain that f; is a Fym is a linear form in f.
But since Fj" can be embedded in Fj" preserving linearity, we get that f; is given my m F,-linear
forms in f. The condition f; = 0 just forces all these linear forms to be zero.

For the furthermore part, recall by Proposition 4.15 that f,,_; is already an element of I, which is
a one-dimensional subspace of Fy* = F;m . Thus the f, 1 = 0 forces one additional linear constraint
on this space, and thus on the vector f. l

4.8 Bounding the dimension of BCH codes

We are now ready to prove a stronger bound on the dimension of BCH codes.

Lemma 4.17 The dimension of the code BCH 1, 4 is at least ¢™ — 1 —m [W-‘

Proof The proof is straightforward given all our work so far. The basic idea is to consider the
space of all functions from Fy= to IF,, which forms a Fy-vector space of dimension n. Viewing these
functions as polynomials from F,m [z], we then restrict them to have zero as the coefficients of x® for
ie{n—(d-1),...,n—1}.

The condition that the coefficient of 2”~! is zero imposes one linear constraint and reduces the
dimension of the space to n — 1. The remaining conditions, corresponding to coefficients of z for
i€{n—(d—1),...,n— 2}, lead to at most m conditions each. However, we don’t need to impose
all such conditions. In particular we can skip every gth condition (starting at n — 2 and going
down) since these are exponents of the form ¢ = (n — 1) — ¢j, where j is a positive integer. Since
£ =q(n—1-j)(mod (n — 1)), by Proposition 4.15, the condition that the coefficient of ¢ equals
zero is implied by the condition that the coefficient of z"~'~J equals zero. Thus the constraints

corresponding to the coefficients of z? for i € {n—(d—1),... ,n—2}, lead to at most m [%

linear constraints. Thus the dimension of the remaining space is at least n — 1 — m [Mfﬂqﬁ] as
claimed. W

We conclude with the following theorem summarizing the properties of the BCH codes.

Theorem 4.18 ([23, 49, 42]) For prime power g, integers m and d, the code BCHy .4 is an

[n,n —-1- m[%],d code, for n = q™.
q

On BCH Codes-43

Of particular interest is the case ¢ = 2 and even d. In this case, the messy ceilings and floor disappear
and we the following nice corollary:

Corollary 4.19 For every integer m and t, the code BCHa , 21 is a [n,n—1— (t — 1) logn, 2t]-code,
for n=2m.

As pointed out earlier, this is particularly nice, since it is very close to the Hamming bound, for
constant d, and in particular matches the Hamming code of distance 4 (and by puncturing matches
parameters of the Hamming code of distance 3 as well).

Bibliographic notes

Binary BCH codes were discovered independently by Hocquenghem [49] and Bose and Ray-
Chaudhuri [23]. The extension to the general g-ary case is due to Gorenstein and Zierler [42].

The proofs in these notes are original. This proof was inspired by a simple self-contained description
of BCH codes by Riidiger Urbanke [115]. (The only short and self-contained description I could
find!) These description here is different in that it does not go to the Fourier transform (something
I am allergic to). An earlier version of these notes had a more elaborate proof. It was also buggy!
Thanks to Amnon Ta-Shma for pointing out the bug. Fixing the bug resulted in the final (simpler)
proof.

On BCH Codes-44

Chapter 5

6.897 Algorithmic Introduction to Coding Theory September 24, 2001

Lecture 5
Lecturer: Madhu Sudan Scribe: Mohammad Mahdian

Today we will talk about:

e Asides on Reed-Solomon codes.
e Asymptotics of codes.

e Random codes.

5.1 Reed-Solomon codes
There are two equivalent ways to look at Reed-Solomon codes:

e Evaluation of polynomials: This is the definition that we have seen in the previous lecture.
It’s usually more convenient to prove theorems using this definition.

o Coeflicients of polynomials: Some special cases of Reed-Solomon codes RS, ., (g is the size
of the alphabet (field), n is the block length, and k is the message length) can be described as
follows:

— Generator polynomial: A polynomial g(z) € F,[z] of degree n — k.
— Message: coefficients of a polynomial M (z) of degree less than k.

— Encoding: coefficients of g(z)M (z).

This definition gives us various codes depending on which g we pick. If g is a polynomial that divides
™ — 1, then we get a general family of codes called “cyclic codes”. For some further restrictions,
we get BCH codes, which in turn contain the special cases of RS codes. To define the generator
polynomial for these RS codes, we first need to introduce the notion of a primitive element of I, .

5-45

Definition 5.1 An element o € F, is a primitive element if a,a?,... ,a?"" are all the nonzero
elements of the field.

It is well-known that every field has many primitive elements. Given a primitive element «, we can
define the generator polynomial g for RS, » x as follows:

n—~k
g(z) :== H (x — at).

Using this polynomial with n = g—i and o; = a*, we get an RS code RSg.n,k- (Recall that aq,... ,0p
are the set of points on which the polynomial in the first definition is evaluated.) A proof of this
fact can be found at the end of this lecture.

5.2 Alternant Codes

Given n distinct elements oy, ... ,a, and n nonzero elements 1, ... , B, of F,, the Alternant Code
is defined as follows:

e Message: Polynomial M(z) of degree less than k.

e Encoding: (51 M (a1),...,0.M(am)).

In terms of the minimum distance, it is clear that alternant codes are equivalent to the RS codes.
In particular a given coordinate of an encoding a given message in the alternant code is non-zero
if and only if the same coordinate of the RS encoding of the same message is non-zero. However,
the alternant code might have different properties in terms of its sub-codes. A sub-code of a code is
defined as follows:

Let ¢ = 2%. We know that F, is a subfield of F,. Consider an [n,k,d], code C;. The F, sub-code
of C1, denoted Cs, is an [n,k',d']s code that consists of all codewords of C; that are also in Fy
(Cy = Cy NFZ). Such an operation can be carried out in general for any pair of field FV) C F2),
and the resulting codes are called sub-field sub-codes of the original code.

The resulting codes have minimum distance at least as much as that of the original code. However
their message length may be much smaller. In fact, a priori it is unclear as to why the sub-field
sub-code should contain any non-zero vector. However their performance is not as bad as it looks!
Many interesting families of codes can be obtained as sub-field sub-codes of Alternant codes. BCH
codes form one such example, for some clever choice of a,... ,an,B1,---,0n-

Readers more interested in this material can find it in [74, Chapter 12].

5.3 Asymptotics of Codes

So far we have seen a variety of codes:

Hamming code These codes have a good relationship between k and n, but d is small.

5-46

RS codes They meet the Singleton bound, but need large alphabet size.
Hadamard code d = n/2, but k = logn, i.e., encoding increases the length of the message expo-

nentially.

We sense that none of these codes is “good enough”, but we have not defined a concept of “good”
codes. To do so, we need to study the asymptotics of codes. To do so, we will consider infinite
families of codes C = {(n;, ki, di)g; }521, with lim; ,{n;} = oo.

Definition 5.2 The (message) rate of a family of codes C = {(n;, ki, di)q; }:2,, denoted R(C),
is defined to be liminf;_, {fl—’} The relative distance of C, denoted §(C), is defined to be

liminf;_ { 2—1 } .
Definition 5.3 A family of codes C is asymptotically good if R(C),d(C) > 0.

When the family C is clear from context, we will skip the argument and just refer to R and 4.

One of the early “holy grails” of coding theory was to construct asymptotically good codes. This
was achieved early on. We will see in this lecture that such codes do exist, and in the next lecture
we will show how to construct a family of asymptotically good codes.

Every result in coding theory tends to have an asymptotic interpretation, and often the asymptotic
version is much more succinct. For example, the Singleton bound (n — k 4+ 1 > d) implies

§<1-R.

Similarly, the Hamming bound has an asymptotic interpretation. Recall that this bound says that
for binary codes, 2Vol(%4;1,n) < 2". Using the approximations 51 ~ % and Vol(pn,n) ~ 2H®)",
we have 5

For ¢ = 2, R+H(§)§1.
The above bounds are shown in Figure 5.1. In the rest of this lecture, we will show that random
binary codes satisfy R > 1 — H(d). We don’t know of an explicit construction for a code satisfying
this bound.

5.4 The Gilbert-Varshamov bound

The Gilbert-Varshamov bound says that there is an infinite family of codes C satisfying R(C) >
1— H(6(C)). We will present three proofs for this fact. These proofs are due to:

e Gilbert [36], who showed essentially that a random code has this property

e Varshamov [119] who showed that random linear codes have this property.

o Wozencraft [124] who constructed a small space of linear codes most of whose members meet
the Gilbert-Varshamov bound.

5-47

R

Hamming code <—XX
binary rep of
RS codes %, &, — No codein thisregion
\ \'\?//// ., (Singleton bound)
0.6 \\\ \‘f//// &,
<, RS codes
\ \/////
Random _ \ %,
codes \ <, ; — ;
\ 2, No binary code in this region
041 \ ((//// (Hamming bound)
A\ ‘<//////
\\/é
\ %
\ -//(
0.24 N\ éf/
N
0 02 04 06 08 1
Hadamard code 5
Figure 5.1:

5.4.1 Gilbert’s code (Greedy code)

Gilbert showed the family of codes C with its nth element picked greedily according to the following
procedure satisfies the bound R(C) > 1 — H(§(C)). Later we will view the result as showing that a
randomized procedure leads to good codes with high probability.

e GREEDY(n,d)
e Intitialize: S « {0,1}",C « 0.
o Tterate until S = §:

1. Pick x € § and add x to C.
2. Delete B(x,d) (ball of radius d around x) from S. (See Figure 5.2.)

Lemma 5.4 Fizx 0 < d < % and € > 0 and let R > 1 — H(§) — €. Then for all sufficiently large n,
the procedure GREEDY(n, [6n]) produces a code with at least 2" codewords.

Proof Let n be large enough so that Vol(d,n) < 2(H(9)+en,

Assume the algorithm picks K codewords. At every step, the greedy algorithm deletes at most
Vol(d,n) elements from S. Therefore, since S started with 2™ elements, we have
n

2
K> > 2(17H(6)7e)n — 9kn
~ Vol(d,n) —

5-48

Figure 5.2: Hypercube and the greedy algorithm
The following theorem follows:
Theorem 5.5 There exists a family of codes C with R(C) > 1 — H(§(C)).
An alternate way to get a similar result is to follow the following probabilistic procedure.

1. Pick a subset C' C {0,1}" of size 2¥ at random.
2. Let B C C' be the set {x € C'|qy € C' — {x} s.t. A(x,y) < d}.

3. Let C = C' — B. Output C.

We argue (informally) that for an appropriate setting of parameters, C' still has ©(2*) codewords
and that its distance is at least d. To do so, note that the expected number of neighbours from
C' — x that a vector x has of distance at most d is approximately 2¥~"Vol(d, n). For appropriate
setting of parameters (still maintaining R ~ 1 — H(4)) this expected number of neighbours can be
made arbitrarily small, say . Thus the probability that x belongs to B is at most v. By Markov’s
inequaltiy, we have that the event that half of the elements of C' are in B occurs with probability
at most 2v. Deleting this set still leaves us with a C of size 2¥~! and this happens with probability
at least 1 — 2.

5.4.2 Varshamov’s linear code

Varshamov’s linear codes are constructed using the following probabilistic procedure:

RANDOM-LINEAR(n, k)

Pick the entries of the k x n generator matrix G uniformly and independently at random
from F¥*". Let C = {yG :y € F§ }.

Lemma 5.6 Let 0 <3 < 1 ande > 0. Let R = 1— H(S) —e. For sufficiently large n and k = [Rn],
the procedure RANDOM-LINEAR(n, k) produces a code with 2% codewords and distance at least én,
with high probability.

5-49

Proof We really need to prove two separate assertions here: First, that the matrix G has full
column rank k so that the code does have 2¥ codewords. Next, we need to show that no pair of
distinct codewords in the code generated by G are within distance dn of each other. We will combine
the two steps into one and simply argue that for every non-zero vector y, it is the case that yG does
not lie in B(0,dn). The first part (rank of G) is implied by the fact that yG # 0 for any non-zero
y. The second part follows, since we would have proved that no codeword has Hamming weight less
than dn and we know that the the minimum distance of a linear code equals the minimum weight
of a non-zero codeword.

Suppose n is large enough so that Vol(dn,n) < 2(H@)+e/2n et d = jn. For every fixed y # 0 in
F%, it is easy to see that yG is a random vector in {0,1}", and therefore,

Prlwi(yG) <d] = Pr[yG € B(0,d)]
Vol(d,n)

2n
< 9H(8)+e/2—1)n_

Therefore, by the union bound, the probability that there is a y with wt(yG) < d is at most
2k(H@)+e/2=Un 1t R = kE <1 — H(5) — ¢, then this probability is at most 27(¢/ which goes to
zero as n — 0o0. Therefore with high probability, the random procedure outputs a linear code with
minimum distance at least én. H

5.4.3 Wozencraft construction

Varmashov’s construction gives an algorithm of running time 2*” for constructing the code. Wozen-
craft uses a clever idea to reduce this running time to 2". The idea is to find a family of disjoint
sets S1,S2,...,S; C {0,1}"™ — 0 such that for every i, S; U {0} is a linear subspace of {0,1}".

Claim 5.7 If such a family exists and t > Vol(d,n), then there is an i such that S; U{0} is a linear
code with distance at least d.

Proof Every vector x € B(0,d) — {0} lies in at most one of the S;’s (since the S;’s are disjoint).
Since ¢t > Vol(d,n) — 1, it follows that at least one of the S; does not contain any of the elements
of B(0,d) — {0}. Such an S; has minimum weight at least d, and since S; U {0} is linear, it has
distance at least d. H

Furthermore, if we can construct this partition with the additional property that all |S;|’s are equal,
we will get a linear code of size 2"/¢. Such a construction will be presented in the next lecture.

5.5 Appendix: Equivalence of Reed Solomon code

Here we show that the two definitions of Reed-Solomon codes coincide for appropriate choice of
parameters. To be explicit let us reintroduce the two definitions (with more parameters).

5-50

Definition 5.8 For prime power q, integers k < n < q and a vector a = {a1,...,Q,) €
I} of distinct elements of F;, the Reed-Solomon code RSy n ko is the collection of wvectors
{{M(a1), ..., M(an))|M € Fy[z], deg(M) < k}.

The second definition below is via the coefficients of polynomials.

Definition 5.9 For a prime power g, a primitive element o € F, and integer k, the alternate Reed-
Solomon code RS, , is the collection of vectors {(co,... ,cq—2)|g(x) divides C(x) = Y2 ety

where g(z) = Hg;i_k(x —al).

The following proposition gives the equivalence:

Proposition 5.10 For every prime power q, primitive element o and k < q¢—1 and forn=q—1
and o =(a®,...,a""), RSqnk,a = RS, o

Proof Since both codes have the same number of codewords, it suffices to prove that every
codeword according to the first definition is a codeword according to the second definition.

Consider a vector {cg,...,c,—1) and the associated polynomial C(z) = ngol c;xzt. To prove this

vector is a codeword according to the second definition, it suffices to prove that C (@) = 0 for every
Jj € [n — K] (since this implies that [];(z — o’) divides C(x)).

Consider a message m = {my,... ,my_1) and the associated polynomial M (z) = Zf;ol myxt. Let
c = (M(a),...,M(a™ 1)) be the encoding of m according to the first definition. Let Cy(z) be
the polynomial with ¢ as its coefficients, i.e., the coefficient of z? is M(a!). We show below that
Cm(a?) = 0 for every j € [n — k.

Cmla?) = 3 M(a)(ad)
ik
= T Y mila)(ad)
=0 [=0
k—1 n—1
= Zle(ala’)’
=0 =0

k-1 q—2
— i
= D mi) v
=0 =0

where v;,; = a/*!. Notice that for every 5,0 s.t. j+1# q—1, v;; # 1. Notice further that for every

such 7;,; the summation 392 vi; = 0. Since I € {0,... ,k — 1}, we find that ;; # 1 for every

j € [n — k]. Thus for every j € [n — k], we find that Cp,(a?) = 0. This concludes the proof. B

IThis identity is obtained as follows: Recall that Fermat’s little theorem asserts that 72~1 —1 = 0 for every
non-zero 7 in Fy. Factoring the left hand side, we find that either y —1 =0 or Zg;g v* = 0. Since 7y # 1, the latter
must be the case.

5-51

Chapter 6

6.897 Algorithmic Introduction to Coding Theory September 26, 2001

Lecture 6

Lecturer: Madhu Sudan Seribe: Nicole Immorlica

Today we will talk about:

e Wozencraft construction continued
e Building codes from other codes

— Parity check bit

Puncturing
Restriction

Direct Product

— Concatenation
e Forney codes

e Justesen codes

6.1 Wozencraft construction (continued)

The Wozencraft construction gives a 2°(™ time algorithm for constructing [n, k,d]2 codes. We pick
up where we left off in the last lecture. Recall our goal is to construct a family of sets Sy, Ss,...,5; C
{0,1}™ — 0 such that

1. The sets are pairwise disjoint.

2. Vi, S; U {0} is a linear subspace of {0,1}".

3. ¢ > Vol(d, n).

6-52

4. Vi, j:|Si| =2k —1.

We saw last lecture that if we can construct such a family of sets, one of these sets will yield a
[n, k,d]2 code. Today we will see Wozencraft’s construction of such a family of sets. We will show
the construction only n = 2k. It is fairly simple to generalize it to a construction for n = ck for any
integer c.

We will use the correspondence between fields and vector spaces that preserves addition (see Lecture
Notes on Algebra, Section 6). In particular we will view F§ as Fyx and F} as]F‘gk. The sets we will
construct will be indexed by a € Fyr, with S, defined as follows: S, = {(z,ax) | z € Fyx — {0}}.
We now verify that the S,’s satisfy the above conditions for t = 2¥ and d such that Vol(d,n) < t.

1. Su’s are pairwise disjoint: In particular, For every (z,y) € FZQ,e7 there is at most one a such
that (z,y) € Sa, namely a = zy~! provided y is non-zero and o = 0 if y = 0. (If z = 0 then
(z,y) & S, for any a.)

2. Sq U {0} is linear: Clearly each S, is a linear subspace of F3, and is generated by the matrix
[1a]. Since the correspondence between Fs and Fyr respects addition, it follows that S, U {0}
are linear over IF, as well.

3. There are clearly t = 2% of the S,’s. The condition ¢ > Vol(d,n) follows from the definition of
d.

4. Tt is also obvious that |S,| = 2F — 1.

Taking the ratios k/n and d/n we note that the codes S, always have a rate of . Further if we fix
any € > 0, and set d = (H~'(3) — €)n then for all sufficiently large n we have Vol(d,n) < 27/2 and
thus the family above gives a code of rate % and relative distance approaching H _1(%).

By a slightly more careful argument we can actually verify that most codes in the family achieve
the Gilbert-Varshamov bound. Specifically, we can prove:

Theorem 6.1 For every € > 0 and for all sufficiently large even numbers n, Wozencraft’s con-
struction with parameter n gives a family of 2™? codes with all but € fraction of which are
[n, in, (H71(3) — €)n]2-codes.

Remarks:

1. Furthermore, for all such n, given an index ¢ of a code from the family with parameter n, any
specific entry of the generator matrix of the ith code can be computed in time polynomial in
n.

2. If n is of the form 4 - 3%, then the computation can be carried out in O(logn) space. This part
follows from the fact that the irreducible polynomial for such Fox where k = n/2 is known
explicitly and this polynomial is sparse. (Thanks to Dieter van Melkebeek (dieter@ias.edu) for
pointing out this use of sparsity.)

Exercise: Extend the argument above to construct for every integer ¢, every € > 0, and all suffi-
ciently large k, an ensemble of 2(~D¥ codes such that all but an e-fraction of the ensemble are
[ck, k, (H~'(1 — L) — €)(ck)]2-codes. Your construction should take time 20(ck).

6-53

References: The Wozencraft ensemble of codes do not appear in any paper by Wozencraft. They
are alluded to in a monograph by Massey [78, Section 2.5]. The actual family as described above is
from Justesen’s paper [56]. The extension asked for in the exercise is from the paper of Weldon [123].

6.2 Building codes from other codes

In the previous section we saw that asymptotically good codes exist. However, we had no explicit
construction for them. The second holy grail of coding theory is to construct in polynomial time
binary codes that meet the GV-bound. No one knows how to do this yet. One approach to this
problem is to create new codes from existing ones. We look at five ways of getting new codes from
old codes. Four of them don’t improve the asymptotics of the code. The fifth leads to constructions
of families of asymptotically good codes. (However, they do not meet the GV-bound.)

6.2.1 Parity check bit

We recall a construction of Hamming (see notes for Lecture 3). Given a code C = [n, k, d]s, create
a new code C' = [n + 1,k,d']2 as follows. First encode the message using C to get a codeword ¢
of length n. Then, add an extra bit which is the parity of the bits of ¢. This new codeword, ¢’
has length n + 1. Furthermore, as argued in Lecture 3, if n is odd, the new distance d' = d + 1.
Otherwise the distance may remain d.

The parity check bit operation does improve relative distance for codes of odd length but not for
codes of even length. Furthermore, the rate suffers. So we can not repeat this method to obtain
really great codes.

6.2.2 Puncturing

Given a code C = [n, k,d|,, create a new code C' = [n — ¢, k,d'], by simply deleting ¢ coordinates.
The new distance d’ will be d —t < d’ < d. For t = 1 we can think of the puncturing operation as
achieving the effect of the inverse of the parity check bit operation (in a very loose sense).

This operation has the benefit of decreasing the encoding length thereby improving the rate. But
at the same time it sacrifices the minimum distance of the code and thus decreases the relative
distance.

While this operation does not yield a generic construction method for good codes, it turns out to
be very useful in special cases. Often the best known code for a specific choice of, say n and k,
might be a code obtained from puncturing a well-known code of longer block length. In such cases,
special features of the code are often used to show that the distance is larger than the proven bound.
Note further that all linear codes are punctured Hadamard codes! So obviously puncturing can lead
to good codes. The question remains: When does it work? and what part of the codes should be
punctured?

6-54

6.2.3 Restriction

Given a code C = (n,k,d), over an alphabet X, create a new code C' = (n — 1,k’,d), by choosing
a € ¥ and i € [n] and retaining only those codewords ¢ in which the ith coordinate of the codeword
is a. The code C' is then obtained by deleting the ith coordinate from all remaining codewords.

The resulting code has block length n. If we pick a so that it is the most common letter in the ith
coordinate (among codewords of C) then at least ¢* /q messages will remain in C’. Since codewords
differed in d positions to start with, and the only codewords that remain agreed in the deleted
coordinate, the new codewords are still at Hamming distance at least d.

Restriction does improve the relative distance, but not necessarily the rate.

6.2.4 Direct Product

Given a codes C1 = [n1,k1,d1]q and Cy = [na, ka, ds2],, the direct product of C; and C3, denoted
C1 ® Cy, is an [nyng, k1ks, d1dz], constructed as follows. View a message of C; ® Cs as a ky by k;
matrix M. Encode each row of M by the code C} to obtain an k5 by n; intermediary matrix. Encode
each column of this intermediary matrix with the Cy code to get an ny by ny matrix representing
the codeword encoding M. This process works generally - for linear as well as non-linear codes C
and C3. We first show that the resulting code has distance at least dyds in either case. Then we
show that if C'y and C are linear, then the resulting code is also linear, and furthermore is the same
as the code that would be obtained by encoding the columns with C5 first and then encoding the
rows with C7.

We prove this new code has distance at least dida. Consider two distinct message matrices M;
and M». Let Ny and Ny be the intermediate matrices obtained after the first step of the encoding
process. Let C; and C, be the final codewords obtained from these matrices. Suppose M; and M,
differ on the ith row. Then N; and N5 must differ on at least d; coordinates on the ith row. In
particular they differ on at least dy columns. Say ji,...,Jq4, are indices of d; such columns where
N; and N, differ. Then the column-by-column encoding results in codewords C; and C, which
differ on at least dy coordinates on each of these d; columns. Thus C; and C, differ on at least
dydy entries.

Next we show that C'; ® Cs is linear if C; and Cs are linear, and the encoding functions used are
linear functions.

Claim 6.2 Let R; €]F{;1 *m1 generate the code C1 and let Ry €]F{!c2 Xn2 generate the code Cy. Then
the direct product code C1 ®Cs is a linear code that has as its codewords {RQTMRl | M€ F’;Z xk1 }.

Remark: As a consequence, we note that it does not matter if we encode the rows first and then
the columns as above or vice versa.

Proof The proof follows easily from the fact that the intermediate matrix equals MR, and thus
the final matrix equals Ro” (MR;). The interchangeability follows from associativity of matrix
multiplication. The linear follows from the fact that the matrix R."M;iR; + Ro.TM3yR; is just the
encoding of M; + M and the matrix aR2TM1R1 is the encoding of aM;, where o € F,. l

Exercise: In general the direct product of two codes depends on the choice of the encoding function.

6-55

Prove that this is not the case for linear codes. Specifically, prove that if R; and R} generate C}
and Ry and R}, generate Cy, then {R,"MR,; | M} = {R," MR/, | M}.

Again, the direct product does not help in the construction of asymptotically good codes. E.g. if
we started with codes C; and Cy of rate and relative distance %, then the resulting code is weaker
and has rate and relative distance of only ﬁ.

So far all the operations on codes have been ineffective in getting to asymptotically good codes. In
retrospect one may say that this is because all these operations fixed the alphabet and tried to play
around with the other three parameters. A simply but brilliant idea, due to Forney [54], showed
how to extend the game to include the alphabet size in the parameters altered/expoited by the
operations on codes. This operation is that of “concatenating codes”. This method turns out to
have profound impact on our ability to construct asymptotically good binary codes. We describe
this method an its consequences in the next section.

6.3 Concatenation of codes

To motivate the notion of concatenation, let us recall the example using Reed-Solomon codes on
CD players. Reed-Solomon codes were defined on large alphabets, while CD players work with the
binary alphabet. However, given an [n, k, d]2» Reed-Solomon code, we interpreted this code as an
[nr, kr,d]2 binary code by naively representing the alphabet of the RS code, elements of Far, as
binary strings of length r. The main idea of concatenation is to focus on this “naive interpretation”
step and to generalize it so that elements of Far can be represented by binary strings of length larger
than r. Note that the main loss in performance is due to the fact that in going from strings of
length n (over Fa-) to binary strings of length nr, we did not increase the minimum distance of the
code, and so lost in terms of the relative distance. A careful choice of the encoding in the second
step ought to be able to moderate this loss, and this is exactly what the method of concatenation
addresses.

As in the case of direct product codes, it is best to explain concatenation of codes in terms of the
encoding functions. First we define the [-fold concatenation of a single encoding function.

Definition 6.3 For positive integer I, linearity preserving bijective map m : Fpr — lF"q“ and encoding
function E :]F{; — Fy the l-fold concatenation of E is the function o] E : Iﬁ’flk —]Fgl given by
(X1,...,%x1) = (E(7(x1)),. .., E(m(x;))), where x; € Fye fori € [l].

Typically the exact map 7 : Fx —]F’q“ is irrelevant so we will simply ignore it. Further if [is clear

from context, we will ignore it and simply refer to the map ¢E. We now define the concatenation of
two codes.

Definition 6.4 For encoding functions E; : Eﬁ;Q — FZ,: and Es : F’;Z’ - Fy? (and some implicit
2

bijection m : Fpry — IF{,”), the concatenation of Ey and Es is the function E; o Es : Ili"q“1 ka Fg1n2
given by

-1

ko T Ey ™ n1 oF n1
Fyrh T o, —s T, T (F) " 23 (Fp2)™ — Fpre.

In the message (X1, ... ,Xp,) is mapped to the vector of Er(Ey((m~1(x1),..., 7 (Xk,))))-

If the encoding functions E;, E» are linear maps giving linear codes C; and C> respectively, then
E; ¢ Es is a linear map whose image is denoted by Cy ¢ C5. It may be verified that C; ¢ Cs is a

6-56

function of C; and C5 alone and not dependent on E;, Fs or w. It is customary to call the code Cy
the outer code and the code Cs the inner code, and C; ¢ Cs is the concatenated code.

The next proposition verifies the distance properties of concatenated codes.

Proposition 6.5 If Cy is an [ny, k1, di]x -code and Cy is an [ny, k2, ds]q-code then Cy o Cy is an
[n1na, k1kz, di1d2]q-code.

Proof The only part that needs to be verified is the distance. To do so consider the encoding of
a non-zero message. The encoding by E; leads to an intermediate word from F". that in non-zero
in dy coordinates. The ni-fold concatenation of Fy applied to the resulting codeword produces ds
non-zero symbols in every block where the outer encoding produced a non-zero symbol. Thus we
end up with at least dids non-zero symbols in the concatenated encoding. H

If we ignore the non-trivial behavior with respect to the alphabet size, then the concatenation oper-
ator has essentially the same parameters as the direct product operator. However the concatenation
operator allows the outer code to be over a larger alphabet and we have seen that it is easier to
construct good codes over large alphabets. Thus the concatenation operator is strictly better than
direct product. Below we show an example of non-trivial results it yields.

Example - RS ¢ Hadamard: Suppose we concatenate an outer code that is an [n, k,n — k],-Reed-
Solomon code with a [n,logn, §]>-Hadamard code. (Assume for this example that n is a power of
2.) Then the concatenated codes is an [n?, klogn, % (n — k)]2-code. Depending on our choice of rate
k/n of the outer code, we get a family of binary codes of constant relative distance and an inverse
polynomial rate R = kls#. This is a new range of parameters that we have not seen in the codes
so far.

While it is possible to employ multiple levels of concatenation to improve the dependence of the
block length n on the message length k£ making n closer and closer to being linear in n, we can never
get an asymptotically good code this way. Informally, to get an asymptotically good family, we need
both the inner code and outer code to be asymptotically good. In what follows, we will describe two
approaches at getting constructions of asymptotically good codes using concatenation.

6.3.1 Forney codes/Zyablov bound

The first family of codes we describe are due to Forney [54], who described the basic idea of the
codes, but did not stress the choice of parameters that would optimize the tradeoff between rate
and relative distance. (Forney was after bigger fish, specifically an algorithmic version of Shannon’s
theorem. We will get to this when we get to algorithms.) The actual bounds were worked out by
Zyablov [126] and are usually referred to as the Zyablov bounds.

The idea to get a polynomial time constructible family of asymptotically good codes is a simple one.
As an outer code we will use a Reed-Solomon code over an n-ary alphabet, say an [n, k,n — k],-code.
For the inner code, we will search for the best linear code in, say, Wozencraft’s ensemble of codes.
This takes exponential time in the block length of the inner code, but the block length of the inner
code only needs to be linear in the message length and the message length of the inner code is only
logn. Thus the time it takes to find the best code in Wozencraft’s ensemble is only polynomial in n.

Getting a little more specific, to construct a code of relatve distance &, we pick §; and d2 so that
0102 = 4. For the outer code we pick an [n, (1 — é1)n, d;n],-RS-code. For the inner code we search

6-57

Wozencraft’s ensemble to obtain an [n/, (1 — H(d2))n', dan']2-code with (1 — H(d2))n' = logn. The
resulting code has block length nn' = O(nlogn), relative distance § and rate (1 — d1)(1 — H(d2)).
Thus we obtain the following theorem:

Theorem 6.6 For every § € (0, %), there exists an infinite family of polynomial time constructible
codes C with rate R and relative distance & satisfying

R> max {(1 —H(3,)) - (1 - %) } _ (6.1)

65(52<%

The bound (6.1) above is the Zyablov bound.

6.3.2 Explicit constructions

We take a brief digression to discuss what it means to construct a code explicitly. It is clear that
this ought to be a complexity-theoretic definition, since a code is a finite set and one can obviously
enumerate all finite sets to see if one of them gives, say, an (n,k,d)-code. The constructions of
Gilbert took exponential time, while Varshamov’s is a randomized polynomial time construction
that possibly returns an erroneous solution (to the task of finding an [n, k, d] code). We asserted that
Forney’s construction is somehow explicit, and yet this is not satisfactory to many mathematicians.
Here we enumerate some criteria for explicit constructions for the case of codes (though similar
criteria apply to constructions of all combinatorial objects).

Let {Cr,s}(r,5) be a collection of families of codes, where the family Cg s has rate R and relative
distance §. The following are possible notions of C being explicitly constructible:

Polytime For every 0 < R < 1 and 0 < 6 < 1, there exists a polynomial p such that generator
matrix of the ith element of the family Cg s, with block length n;, is constructible in time
p(n;), if such a family exists.

Uniform polytime There exists a polynomial p such that for every 0 < R < 1and 0 < § < 1,
generator matrix of the ith element of the family Cg s, with block length n;, is constructible
in time p(n;), if such a family exists.

The difference between polytime constructibility and uniform polytime constructibility is rel-
atively small. This distinction can be made in the remaining definitions too, but we will skip
the extra quantifiers, and simply focus on what makes a code C constructible (leaving it to the
reader to find a preference within uniform and nonuniform time bounds).

Logspace The generator matrix of the ith member of C is constructible in logarithmic space. (This
implies that C is polynomial time constructible.)

Locally Polytime Constructible ! Here we will require that a specific entry, say the j, lth entry,
of the generator matrix of the ith member of the code C be computable in time polynomial in
the size of the binary representation of 4, j,{. (Note this representation has size logarithmic in
n and so this notion is much more explicit than earlier notions.)

Locally Logspace Constructible The j,lth entry of the generator matrix of the ith code is
logspace constructible in the length of the binary representations of i, j and [.

! Actually, this notion does not have a name and I had to generate one on the fly. Thanks to Anna Lysyanskaya
for suggesting this name.

6-58

As noted, the requirements get more stringent as we go down the list above. The notion of Locally
Logspace Constructible is about as strong a requirement we can pose without getting involved with
machine-dependent problems. (What operations are allowed? Why? etc.)

Forney’s codes, as described above, are polytime constructible, but not uniform polytime or logspace
constructible. The next family of codes we will describe are locally logspace constructible, making
them as explicit as we could desire (define?).

6.3.3 Justesen Codes

The principal barrier we seem to face in producing codes explicitly is that we know how to construct
smaller and smaller ensembles of good codes, but we don’t know how to get our hands on any
particular good one. In fact in the ensembles we construct almost all codes are good. Is there any
way to use this fact? Justesen’s idea [56] is a brilliant one — one that “derandomizers” should take
note of: On the one hand we can produce a small sample space of mostly good codes. On the other
hand we need one good code that we wish to use repeatedly — n; times in the concatenation. Do
we really need to use the same code n; times? Do they all have to be good? The answer, to both
questions, is NO! And so, surprisingly enough, the ensemble of codes is exactly what suffices for the
construction. Specifically, we take an [n1, k1, d;] k2 -outer code with encoding function F; and an

ensemble consisting of n; inner codes with the ¢th member denoted Eéi). We encode a message m
by first applying the outer encoding function to get E;(m) and then applying the ith inner encoding

function to the ith coordinate of E; (m), getting the vector (E2(1) ((E1(m))y), ... ,Eé"l) ((E1(m))p,))-

The above definition can be formalized to get a notion of concatenating an [n, k1, %] x.-outer code
with an ensemble containing n1 [ng, k2, *];-inner codes (x representing the fact that the distances
are unknown, or possibly not all the same). Denoting the outer code by C;, and the inner ensemble
by C5, we extend the notation for concatenation and use C; ¢ Cy to denote such concatenations.
The following proposition shows how the parameters of the concatenated codes relate to those of
the outer code and inner ensemble.

Proposition 6.7 Let Cy be an [ni,k1,di]x. code. Let C be an ensemble of ny [n2, k2, *]4-codes

of which all but e-fraction have minimum distance do. Then the concatenated code Cy o Cy is an
['I’Llnz, kle, (dl - €n1)d2]q code.

Proof The proof follows from the fact that the first level encoding of a non-zero message leaves
at least d; coordinates that are non-zero. At most en; of the inner codes do not have minimum
distance dy. Thus at least di — en; coordinates, when encoded by C5 result in dy non-zero zymbols
each. The distance follows. H

Note that it is not entirely trivial to find an ensemble with just the right parameters: To use every
element of the ensemble at least once, we need the inner ensemble size to be no larger than the outer
block length. To use an RS code at the outer level, we need the outer block length to be no larger
than the outer alphabet size. To use concatenation, we need the number of outer alphabet size to
be no larger than the number of inner codewords. Putting it all together, we need an ensemble with
no more members than codewords per member of the ensemble. Fortunately enough, this is exactly
what is achieved by Wozencraft’s ensemble, so we can use it. Consequenntly we get one fully explicit
(locally logspace constructible) family of error-correcting codes on the Zyablov bound. In particular
the code is asymptotically good.

6-59

Theorem 6.8 For every0<d < H _1(%), there exists a locally logspace constructible infinite family
of codes C that has relative distance 6 and rate % (1 - H+(l))
2

The code above is obtained by concatenating a Reed-Solomon code of appropriate rate with the
Wozencraft ensemble. We note that to get local logspace constructibility, we need the inner code
length to be 4-3! for some integer [so that we can use the explicit construction of fields of size 2-3'.

6-60

Chapter 7

6.897 Algorithmic Introduction to Coding Theory October 1, 2001

Lecture 7
Lecturer: Madhu Sudan Seribe: Adam Smith

Today we’ll describe a new family of codes, called algebraic-geometry codes. These codes generalize
Reed-Solomon codes and yield surprisingly good codes over constant sized alphabets. We’ll motivate
the codes from two points of view. First we’ll show how they challenge the “conjectured converse of
the Gilbert-Varshamov bound”. We’ll then motivate the codes from the algebraic perspective.

The reader is warned that this lecture is not self-contained. It describes the “nature” of the codes
without showing how to construct them, or why they even exist.

7.1 Motivation 1: Getting Better Parameters

Gilbert-Varshamov Bounds In order to motivate the construction of AG codes, we first recall
the Gilbert-Varshamov (GV) bound for g-ary codes. Let the define the g-ary entropy function to
be:

qg—1 1
H =plog, — +(1—p)log, ——
¢(p) = plog, » +(1-p) 81
The g-ary entropy function serves as an analogue to the binary entropy function when we deal with
Hamming distance over g-ary alphabets. In particular, we get a similar volume approximation to the

binary case. Let B,(0,r) be the ball of radius r about 0 in Fy. Further, let Vol,(r,n) = |B,(0,r)]|
be the volume of this ball. For fixed 0 < p < 1, we have

Vol, (pn, n) ~ ¢" (),

(Strictly, the approximation is really only any good when we’re considering the logarithm of the
volume, i.e. Vol (pn,n) = g"Ha(P)(1—o(1))

Given this notation, we can state the g-ary GV bound: There exists an infinite family of codes C
with rate R and relative distance J satisfying:

R>1-H,©9).

7-61

(Note that the random linear code will also attain this bound with high probability.)

In order to get a better feeling for that bound, we will fix §, and let ¢ tend to co. We get

) = blog,(q= 1)+ o Ha0)
o4 F20) | 5L)
loggq qlogq
(using the fact that % =1- log ¢ _I(I)qu(q i) ~1-—1/(qlog q)>
~ 5+0(@)

This means that for fixed d, random codes will more or less achieve
R=1-46-0(1/logg).
(Note: All logarithms are base 2 unless noted otherwise).

Note that the Singleton bound shows that no code can achieve R > 1 — §. The above bound shows
that random (linear) codes approach the Singleton bound with an inverse logarithmic deficit in the
alphabet size. Is this the best deficit we can hope for? We recall a familiar family which seems to
do better.

Reed-Solomon Codes Recall that Reed-Solomon codes met the Singleton bound exactly and
did so with an alphabet size of exactly n (for infinitely many choices of n). So Reed-Solomon codes
seem to perform much better, although in this case one cannot really talk about g and n separately.
With RS codes, we must have ¢ > n, and so ¢ must go to oo with n. Nonetheless, we know that
R=1-§—-0(1/n) for RS codes (for any ¢ > n), and so we can wave our hands and claim that we
get

R=1-46-0(1/9g).

So in effect the difference between 1 — § and R is growing inversely in ¢, rather than inversely in
the logarithm of ¢. This motivates the question - can we somehow turn the Reed-Solomon intuition
into a formal proof where we actually get to fix ¢ and let n go to infinity and see the behavior of R
vs. 0. Algebraic-geometry (AG) codes turn out to do exactly this.

AG codes The constructions of AG codes in fact yield

1
Vi-1

for every even prime power ¢ (i.e., ¢ must equal p* for prime p and even integer £). These codes do
not require that ¢ scale with n i.e. in our “analysis” we may fix § and ¢, and let n — oo; then we
can let ¢ increase and see how the parameters scale with q. While the codes do not achieve a deficit
of an inverse in ¢, they do get a polynomial decay in this deficit as a function of ¢q. So it becomes
clear that as ¢ grows this family of codes will outperform the Gilbert-Varshamov bound. Since the
deficit functions are quite explicit, it is possible to compare them exactly and note that the function
§ +1/(,/q — 1) is smaller than H,(J) for § = } and ¢ >~ 44. The smallest square larger than this
number is 49 and so we get that for ¢ > 49 the algebraic-geometry codes outperform random codes!

R=1-6-

=1-6-0(1/9),

7-62

7.2 Motivation 2: Generalizing Previous Constructions

Recall that in previous classes we got codewords by taking multivariate polynomials and evaluating
them at all points in F}* (RS codes were the univariate case m = 1). Consider the univariate and
bivariate cases with degree £:

Univariate case: Yields [¢%, £, ¢* — £%],2-code.
Bivariate case: Yields [¢?, 2, (q — £)?],-code.

Thus, reducing the alphabet size from ¢2 to ¢ cost us a reduction in the distance of 2¢(q— £). Where
does this difference come from? Intuitively, this is because in the bivariate plane F; x F;, there are
many small subspaces that encode quite inefficiently. For example, if we take any axis-parallel line
in the plane. Knowing that a codeword is 0 on £+ 1 of the points means it must be 0 at all ¢ points
on the line. Yet this code may still be non-zero elsewhere. Thus these g zeroes of the codeword only
lead to £ + 1 linear constraints on the codeword - a deficit roughly of ¢ — £.

Another example of such a subspace is the circle 2 + y? = ¢ for some constant c¢. One can prove
that if the polynomial is 0 on 2/ of the points, then it must 0 everywhere on that circle—this could
be up to 2¢q points, depending on ¢ and on the field size.

The big idea: One idea for improving the performance of the bivariate code is to find a subset of
points in the plane to use as evaluation points. If the subset is chosen carefully, then we might be able
retain the distance properties of bivariate polynomials, while not picking too many points from any
one dimensional curve. How does one go around trying to pick subsets with small intersection any
one-dimensional curve? It turns out pick a different curve is a good way to minimize the intersection.
Concentrating on algebraic curves (also known as “varieties”) yields the basic idea for AG codes. Of
course, once one starts playing around with the idea, one starts going to arbitrarily polynomials in
many variables, and picks curves of low dimension in this high dimensional space to evaluate them.
We'll get to the constructions briefly, but first we give some history behind these constructions.

7.3 History of AG codes

e AG codes were conceived by V.D. Goppa, a Russian coding theorist around 1975. When he
published his first paper on this topic [41], it was not clear that the resulting codes would lead
to new asymptotic results — in particular, the necessary algebra had not been studied yet.
His paper motivated the study of the associated algebraic questions and eventually led to the
breakthrough results.

e The first family of AG codes meeting the bound R > 1—§— \/6171 were discovered by Tsfasman,
Vladuts and Zink [114]. There underlying algebra was quite involved, and the constructions
were very complicated. Manin and Vladuts [77] put some effort into showing that these codes

were actually polynomial time constructible (with an O(n3°) construction time!).

e In a sequence of works Garcia and Stichtenoth [32, 33] simplified both the constructions and
the proofs significantly. The resulting codes were built on curves that were completely explicit
in the specification. The proofs involved in showing some of the properties are also significantly
simpler. (One could even say these are “elementary”, as works on algebraic geometry go.)

7-63

e Recent works by Shum et al. [104, 103] clarifies the Garcia-Stichtenoth papers further, even-

tually getting some codes with O(n3) construction time (the notation O(-) means ignoring
polylog factors). The eventual hope is that these families will become completely explicit.

7.4 An Example in 2-D

We now return towards the task of describing algebraic-geometry codes. We will start by giving an
example of a very concrete algebraic-geometry code — specifically a [19, 6,13]13 code. We will then
attempt to show how the construction generalizes.

Our example will be a code based on the “plane” 13 x F;3. We want to choose a subset of the plane
with lots of points on which to evaluate low-degree bivariate polynomials in order to get codewords.
We know that if we choose something that intersects too much with lines or circles, then we will
have the same problem that we did with the whole plane — there will be subspaces don’t contain
much information.

Goppa’s insight was to use an algebraic curve: pick a polynomial R(x,y) of small degree, and
consider the subset
S=V(R) ={(z,y) : R(z,y) =0}.

In order to avoid intersecting too much with lines, circles and their other small-degree friends, we
can choose R so that it’s irreducible (see Bezout’s theorem below). This, together with a judicious
choice of which polynomials to use, will yield the desired properties.

So in our example, we will use:

® = 13, 1e IF = Z13
e S =V(R) given by R(z,y) = y> — 2(z —)z(z + 1).

e The polynomials we will use as codewords are linear combinations of the 6 basis polynomials
{1,z,y,2? zy,z3}. Notice that we aren’t taking all polynomials of a given degree, but a
carefully chosen subspace.

The parameters given by this code are described below:

q = 13: By choice.

n = 19: This parameter is typically verified by exhaustive search. In this specific case,
it maybe verified that S = {(0,0),(%£1,0),(2,%5),(3,+£3), (4,%4),(6,+£2),(7,£3), (9, +6),
(10,+£2),(11,£1)}.

e k= 6: A message is a polynomial of the form ag + a1 + asz? + aszz3 + boy + bizy which is
given by six coefficients, thus giving a message length of 6.

e d =13, as we will argue below.
In general finding the block length (n) is non-trivial task, however the distance can be argued
algebraically. In this special case, we do so by an ad-hoc argument tuned to give the best possible

result. Later we will mention a slightly more general argument that is more illustrative of the
principle behind the construction.

7-64

Claim 7.1 Any non-zero polynomial f(z,y) = ap + a1x + azx? + azz® + by + bizy is zero on at
most six points in S.

Proof We divide the analysis into two cases:
Case 1: by + byz does not divide ag + a1z + a2z + azx®.

Consider any common zero (a,) of f(z,y) and R(z,y). Such a zero must also be a zero of any
polynomial of the form f-g+ R-T, for any polynomials g(z,y) and T'(z,y). If we choose g(z,y) =
y(bo + biz) — (ap + a1z + a22? + azz®) and T'(z,y) = —(bo + b1z)?, then the resulting polynomial
f-9+R-T is independent of y and equals U(z) = 2(bo+b1z)2(z—1)z(z+1)— (ao+aiz+a:2? +a3z?)?,
a polynomial of degree 6 is z. Since (a,) should be a root of any such polynomial we conclude
that « is a root of U(z) and thus there are at most six possible choices for a.

Next we note that by + ab; # 0, since in such a case ag + aja + a2a® + aza?® would also have to be
zero, which contradicts the assumption for this case. So we can now use the relation f(z,y) =0 to
conclude that 8 = —(ag + a1 + aza® + aza®) /(b + bia) and thus the number of pairs (a, 3) that
satisfy both f and R is at most six.

Case 2: bg + byz divides ag + a1z + asz? + asz.

In this case f(z,y) = (bo + b1z)(y + co + 17 + c222) = f1(z) f2(z,y). Since every zero of f is a zero
of fi or of fy, we can divide this analysis into two parts.

Note first that fi(z) and R(z,y) have at most two common zeros (a, 3), with & = —bo/b1 and S
satisfying 8% = 2(a — 1)a(a + 1).

Next eliminating y from f2(z,y) and R(z,y) we find that any common zero («, 3) must satisfy
(co + cra+ cza®)? = 2(a — Dafa + 1),

and = —(co + cra + c20?).

Again, we conclude that there are at most four choices of «a satisfying the first condition, every such
choice leads to one (3 satisfying the second condition. Thus f» and R have at most four common
ZEroes.

Putting the two parts together, we see that in this case also f and R have at most six common
Zeroes.

Hence, we get a [19,6,13];3 code. In contrast a Reed-Solomon code could give a slight increase in the
distance, to 14, for a big increase in the alphabet size, to 19. This demonstrates, non-asymptotically,
some of the tradeoffs that become possible with AG codes.

Bezout’s Theorem Before going on to describing AG codes in their full generality, we mention
one general principle that can be used to determine the distance, for AG codes in the plane. Of
course, the trick in getting codes of large minimum distance is to pick the right curve R, and the
right basis set of polynomials. A guide in this choice is Bezout’s theorem, which gives us some idea
of where to look:

Theorem 7.2 (Bezout, a long, long time ago) If A(z,y),B(z,y) are polynomials of degree
dy,dy respectively, then if they share more than didy zeroes, they must share a common factor.

7-65

A proof of this fact can be found in most texts on algebraic geometry or algebraic curves (cf. [120,
Theorem 3.1]). The rough idea is to eliminate one of the variables y by finding polynomials C(z,y)
and D(z,y) such that A-C + B - D is a function of z alone. The fact that such a polynomial exists
is not trivial, but not too hard to prove either. Once one gets this polynomial, it limits the number
of choices in x and in turn one can limit the number of y’s for every such z.

Returning to our previous example, the key to the example was ensuring that no polynomial in the
subspace spanned by the basis elements could have a common factor with R(z,y). We established
this by ensuring R was irreducible, then by restricting the y degree to being just 1.

7.5 A General Result

Generalizing the idea of the previous example to more than two variables and one polynomial relation
among them, one builds AG codes as follows:

1. Pick m — 1 polynomial constraints on m variables:

Pl(mla"'axm) =0
mel(ivl, ...,.Z'm) =0
2. Let S=V(P,....; Pp—1) ={x : Pi(x) =---= P,_1(x) = 0} be the set of common zeroes of

Pi,...,Pu_i.

3. Choose a linear subspace of polynomials which can’t agree too often when restricted to S.

Of course, once again everything depends on how one chooses the polynomials Pi,..., P, 1 and
then the basis of polynomials to evaluate at the set S. Specifically, one tries to pick polynomials
Pi,...,P,_1 so that |S| is large, while there exists a large collection of polynomials which don’t
agree too often on S.

Somewhat surprisingly, algebraic-geometers had been considering exactly this problem for a long
time. A collection of polynomials is associated with a “curve” that consists of all zeroes of the
polynomials over the algebraic closure, F,, of F,. Such a curve consists of infinitely many points,
but only finitely many are rational, i.e., from F;* (not surprising, since F;* is finite). To every curve
they associate two integer parameters - its “genus” and the number of “rational points” lying on the
curve. Both concepts are algebraic abstractions of analogous topological terms. Genus of a curve
is a non-negative integer indicating the “twistedness” of the curve - the higher the genus, the more
twisted the curve. From the point of view of establishing distance of codes, the best curves are
the least twisted ones. However to get many rational points one needs twisted curves. This follows
from a fundamental result in algebraic-geometry, first due to Hasse and Weil, and then improved
by Drinfeld and Vladuts. The latter bound says that the number of rational points is at most the
genus times (/g —1). The curves used by the AG codes are the “examples” showing the tightness of
this bound. Once one finds curves matching this bound, a second “fundamental” result of algebra,
known as the Riemann-Roch theorem, is invoked to show that a large basis of “polynomials” exists
over this curve. We’ll get to this part later. First we’ll say something about curves of small genus
with many rational points.

7-66

The first family of curves meeting the Drinfeld-Vladuts bound were found by Tsfasman, Vladuts
and Zink [114]. Analyzing these curves was significantly hard. Subsequently much more elementary
families were discovered by Garcia and Stichtenoth [32, 33]. We describe a family developed by them
below.

Example ([32])

1. We assume g = r2 for some prime power r.

2. The curves are described by 2m — 1 polynomial equations over 2m variables
Llyeeeo s LmsY1y--+ yYm-

3. The polynomial equations are the following:

7 = Yty (=1..m)

TiTi4+1 = Yi (Z = 1, ey — 1)

A relatively simple inductive argument shows that there are roughly ¢™ rational points (in this 2m
dimensional space) giving the set S. The genus of this curve, determined by a so-called “Hurwitz’s
genus formula” is then established to be at most |S|/(,/g — 1). To choose the right space of poly-
nomials for encoding, one then uses the notion of “order” of a polynomial. We’ll omit its definition
(along with so many others) but explain what properties it satisfies, since that will be useful in
understanding how to work with the codes (for solving some algorithmic tasks).

The order of a polynomial behaves similarly to degree:

e ord(af + ph) < max{ord(f),ord(h)} where o, § € F,. Furthermore, ord(a.f + Sh) = ord(h)}
if 8#0 and ord(f) < ord(h).

e ord(f - h) = ord(f) + ord(h)

o If f is zero on ord(f) + 1 points on S, then f =0on S.

By the properties above, it is clear that the set of polynomials of order at most ¢ for a vector space.
However unlike the case of univariate polynomials over IF;, one need not have polynomials of every
order. The Riemann-Roch theorem shows, however that there do exist polynomials of all but g
values of the order, where g is the genus of the curve. (This is why we like curves of small genus).
Applying this theorem to the curves of Garcia and Stichtenoth one now gets the family of AG codes
as claimed.

Specifically, let n = |S| be the number of rational points on the curve S (fixed once g and m are fixed).
By the fact that these curves meet the Drinfeld-Vladuts bound, we get that its genus g < n/(,/g—1).
For any distance parameter d, let Py be the set of all polynomials of order n — d. Notice that the
evaluations of polynomials in L gives a linear code of distance d. By the Riemann-Roch theorem,
we get that this space has dimension at least n —d —g+1>n—d —n/(,/g —1). We obtain:

Theorem 7.3 (Very Good AG Codes Exist) For every even power of a prime q, and every
parameter § < 1 — ﬁ, there exists an infinite family of q-ary linear codes of relative distance &

and rate R>1—4§ — \/61—1' Further a generator matriz for such a code can be constructed in O(n?’)
time.

7-67

Chapter 8

6.897 Algorithmic Introduction to Coding Theory October 3, 2001

Lecture 8
Lecturer: Madhu Sudan Scribe: Shien Jin Ong

Today we will discuss upper bounds on the rate of any family code, given a lower bound on its relative
distance. Specifically we will present the Plotkin bound and the Elias-Bassalygo bounds. En route
we will also encounter a different bound, called the Johnson bound. The unifying theme for the
lecture is that of finding upper bounds on the rate of codes by geometric arguments. In particular,
we will embed Hamming space into Euclidean space and use the embeddings, in combination with
geometric facts, to derive our proofs.

These notes include extensions of various proofs to g-ary cases - the lecture only covered the binary
case. Throughout this lecture, we will use R to denote the rate of some (unspecified) family of codes
and ¢ to denote the relative distance of the same family.

8.1 Embedding Hamming spaces in Euclidean spaces

To motivate our first bound, let us recall our current state of knowledge, for binary codes. On the
one hand we have the Singleton and Hamming upper bounds on codes, with the latter dominating
the former and showing R < 1 — H(d/2). The best existence result, the Gibert-Varshamov (GV)
bound, shows there exists a family with R > 1 — H(d). For any § > 0, the bounds are far away from
each other. However to get a qualitative sense of the gap, consider the largest distance that these
bounds suggest are feasible for codes of positive rate. The Hamming bound rules out a relative
distance of 1 for codes of positive rate. One the other hand, the GV bound only finds codes of
positive rate with relative distance close to % Clearly there is a qualitative gap here — and we
address this gap first.

It is reasonably easy to guess which of these bounds is closer to the truth. Over a binary alphabet,
random words have a relative distance of % from each other and it seems quite impossible to construct
codes with better distance. The Hamming bound on the other seems quite weak around these parts.
We just need a way to formalize our intuition, and we will do so geometrically, by embedding the
binary Hamming space into Euclidean space. We develop the embedding below.

8-68

Definition 8.1 (Embedding) The embedding function Embed : {0,1} — R, mapping bits to the
reals is given by Embed(0) = +1 and Embed(1) = —1. For n > 1, the n-dimensional embedding
function extends the embedding above, with Embed : {0,1}" — R™ being given by

Embed({(b, ... ,bn)) = (Embed(by), ... , Embed(by)).

The property of this embedding is that Hamming distances are preserved as Euclidean distances, or
in inner products. We recall some familiar definitions for vector spaces over the reals.

Definition 8.2 For vectors x,y € R™, the inner product between x and 'y, denoted (x,y), equals
Yoy xiyi. The norm of a vector x, denoted ||x||, is \/(x,x), The Euclidean distance between x and
y, is simply the norm of x —y.

The following proposition lists some of the elementary properties of our embedding from Hamming
to Euclidean spaces. The proof is easily verified from the definitions and hence omitted.

Proposition 8.3 For b,c € {0,1}", the function Embed satisfies (Embed(b), Embed(c)) = n —
2A(b, c), where A(-,-) is the Hamming distance function. Hence, we have

|Embed(b)||*> = n, and ||[Embed(b) — Embed(c)|* = 4A(b,c).
The embedding above thus allows us to transform questions about Hamming space into questions

about Euclidean space. We will then appeal to our geometric intuition backed by linear algebra for
proofs of coding-theoretic statements.

8.2 The Plotkin bound

Theorem 8.4 (Plotkin bound [89])

1. An (n,k,d)s code with d > % has at most 2n codewords. In other words, k <log2n.

2. If an (n,k,d)s code exists, then k < n — 2d + log(4d).

Proof The first part is the harder part and the second part follows easily by using restrictions.
We start with the first part.

Let cq,..., ¢, be all the codewords of the (n, k,d)2 code. Let x1, ... ,X,, be their embeddings, i.e.,
x; = Embed(c;). By Proposition 8.3, we have that the inner product between x; and x;, for i # j,
is equal to n — 2A(c;,¢;) < 0 from the fact that the code has distance d > n/2. In Lemma 8.6
we show that in R™ there can be at most 2n vectors such that every pair has an non-positive inner
product. The first part of the theorem follows.

To see the second part, let us write n = 2d + £ and suppose C is an (n,k,d)> code. Then by
restricting C' to the most commonly occuring pattern in the first £ coordinates and deleting these
coordinates, we get a (2d,k — £,d), code. By the first part of the theorem, we have k — ¢ < log(4d).
]

Before stating or proving the critical Lemma 8.6, we state the asymptotic version of Plotkin’s bound.

8-69

Corollary 8.5 For any family of binary codes C with rate R and relative distance d, it is the case
that R <1 —26.

We now move on to proving Lemma 8.6,

8.3 Geometric assertions, Linear-algebraic proofs

Our first goal here is to prove a geometric fact: In n dimensions there exist at most 2n vectors that
pairwise subtend an angle of at least T at the origin. We start with an intuitive, inductive proof.
However the proof actually uses a fair bit of intuition about Euclidean spaces that we haven’t (or
won’t) prove. We will then give an alternate, linear-algebraic proof that only uses the fact that the
norm of a vector is non-negative, and that any n+ 1 vectors in n dimensions are linearly dependent.

Before proving the lemma, let us see why it is proving the right fact. We already know that the
Hadamard code matches the Plotkin bound (or the first part of it) and so its embedding should
match the lemma below tightly. But we can come up with a simpler example (geometrically the
same, actually!) which shows that the lemma is tight. Take x1,... ,%, to be the unit vectors along
the coordinate axes, and let x,,1; = —x; for ¢ € [n]. This gives 2n non-zero vectors that are mutually
at an angle of at least /2.

Lemma 8.6 If x1,... ,X,m € R" are non-zero and satisfy (x;,%x;) < 0 for every i # j € [m], then
m < 2n.

Proof We prove the lemma by induction on n. Without loss of generality we may assume that
the vector x,, is the unit vector (1,0,...,0). (The fact that this assumption follows without loss
of generality is intuitively obvious, but would require some work if we decided to prove it!) Write
x; = {a;,y;), where y; € R"1. Since we know that all other vectors have a non-positive inner
product with x,,, we find that a; = (x;,x;,) < 0. It follows that for distinct 4, j € [m — 1], we have

(¥i,y;) = (xi,x5) — ooy < (x4,%;5) <O0.

So we have 2m — 1 vectors in n — 1 dimensions, as so we should be able to apply the inductive
hypothesis — right? Well, that would be too strong and would yield m < n — a bit better than
some of the examples we have. Why does this happen. Well, the inductive hypothesis assumes y;’s
are non-zero, and we didn’t prove this yet. So to complete the lemma, we note that at most one of
the y;’s may be zero. (If two, say y1 and y» are zero, then their inner product would be positive!)
We delete the zero vector and then we are left with m — 2 non-zero vectors in n — 1 dimensions with

a pairwise non-positive inner product. This allows us to apply induction and the lemma is proved.
]

What if we were actually given that pairwise the vectors have a stricly negative inner product of say
—a? Could we improve the bound? The reader may try modifying the proof above to show that it
this case the number of vectors is at most 1 + é, a bound independent of the number of dimensions.
But the proof also starts to get more tedious. Motivated by such tasks, we now state a stronger
lemma and give a self-contained proof. In particular, the proof is easier to verify (though possibly
harder to conceive).

Lemma 8.7

8-70

1. If o is a positive number and X1,... ,X,;, € R" are unit vectors i.e., ||x;|| = 1, that satisfy
(x4,%x5) < —a, for every distinct pair i,j € [m], then m <1+ é

2. Ify,x1,... ,Xm € R” satisfy (x;,x;) <0 for distinct i, j, while (y,x;) > 0, then m < n.

3. If x1,...,Xm € R™ are non-zero and satisfy (x;,x;) <0 for every i # j € [m], then m < 2n.
Proof We prove the three parts in order.

1. Let z = x1 + -- - + X;». On the one hand, we have (z,z) > 0. On the other, we have

(z,2) = > (xuxi)+ Y. (xi,%))
i=1 i#j€[m]

< m-l1+m(m—1)-(-a)
= m-(1-(m-1)a).

Putting the two together, we have 1 — (m — 1)a > 0, implying m <1+ é

2. For this part, assume for the sake of contradiction that m > n + 1. Then there must exist a
linearly dependent set of vectors among the x;’s. Specifically there exist disjoint sets S, T' C [m]
and positive \;, for i € SUT, such that >, ¢ Aix; = ZjeT Ajx;. It is not necessary that
both S and T be non-empty, but at least one is non-empty. Assume without loss of generality
that S is non-empty. Let z =), s Aix; = Y ;cp AjX;j. Our analysis divides into two cases
depending on whether z = 0 or not.

Case: z # 0. Here we obtain the following contradication:

0 < (z,2)
= (Z)\iXi,Z)\ij)
i€s JET
= Zz/\i)‘j<xiaxj)
ieS jeT
< 0

where the last inequality uses the fact that S and T are disjoint and so (x;,x;) < 0 for every
ie€SandjeT.

Case: z = 0: Here we use the existence of the vector y and obtain a contradiction as follows:
0 = <y7 0)
= <y7 Z>

= <Y7 Z)\le>

€S
= z/\i<yaxi>
i€S
> 0.

The last inequality is strict since S # 0, A\; > 0 and (y,x;) > 0.

3. Finally we move to Part (3) which is exactly the same statement as that of Lemma 8.6. Our
new proof follows easily from Part (2) of the current lemma. Pick a vector y in general position,
i.e., so that (y,x;) # 0 for any ¢ € [m]. At least half the vectors x; must have a positive inner
product with either y or —y. Assume without loss of generality that xi,... ,X[,, /2] have a
positive inner product with y. Applying Part(2) to these vectors and y, we get [m/2] < n.

8-71

Exercise: (A) Give an example showing the result in Part (1) of Lemma 8.7 is tight. (B) Interpret
this part as a coding-theoretic bound. (C) Give codes that make this interpretation tight.

The exercise above gives the natural motivation for Part (1) of the lemma. Part (3) was already
motivated by the Plotkin bound. What motivates us to study Part (2). On the one hand it provides
a simple proof of Part (3). But it actually turns out to be even more important on its own and we
will use it several times in the rest of these notes.

8.4 The Elias-Bassalygo bound

We now return to the task of bounding the rate of a code, given its relative distance. The current
picture of the upper bounds involves two incomparable bounds: the Hamming bound is stronger for
smaller § and the Plotkin bound is stronger for larger §. Our next bound unifies the two techniques
and thus gets a bound which is always stronger, though the bound is very close to the Hamming
bound for small 6.

To motivate this bound, we introduce a new notion of error-correction. Later we will refer to this
notion as that of “list-decoding”. Currently, we will use a terminology that is more reminiscent of
the notion of “t-error-correcting codes” of Hamming.

Definition 8.8 ((t,£)-error-correcting code) A code C C X" is a (t,£) error correcting code if
for every received word y € X", the ball of radius t around y, B(y,t), contains at most £ codewords

of C.

For a code C and integer ¢, we refer to the largest ¢ for which C is a (¢, £)-error-correcting code to
be the list of £ error-correcting radius of C.

Recall that Hamming’s notion of a t¢-error-correcting code becomes a (t,1)-error-correcting code
in this new definition. Let us take a peek back at Hamming’s proof of the Hamming bound for
binary codes. The crux of the proof was that the balls B(c,t) around the codewords of a t-error-
correcting code are disjoint. Thus if the code has 2% codewords we get 2¥Vol(t,n) < 2", where
Vol(t,n) = |B(c,t)|. Note that we didn’t say exactly this when we proved the Hamming bound.
Instead we considered balls of radius (d—1)/2 around codewords, where d was the minimum distance,
and implicitly used the fact that such a code is a (d — 1)/2-error-correcting code. But when we
generalize the Hamming bound it will be better to explicit with notion of t-error-correcting codes.

Proposition 8.9 Suppose a (n,k,d)y code C is a (t,£)-error-correcting code. Then 2¥Vol(t,n) <
£-2m.

Proof The proposition follows easily. If we consider the balls of radius ¢ around the codewords,
then any word in {0,1}" is considered at most ¢ times. Thus the sum of the volumes of these balls
is at most £-2". A

Of course, the proposition does not immediately translate into new asymptotic relationships between
rate and relative minimum distance. To get such relationships we have to relate the minimum

8-72

distance of a code to its list of Z-error-correcting radius for non-trivial values of £. Any £ > 2, but
less than 2™ would be of interest. We will study such a bound next. Such bounds are closely related
to bounds studied by S. Johnson [52, 53] and are termed the Johnson bounds.

Theorem 8.10 (Johnson bound [52]) Every (n,k,dn)s code is also a (Tn—1,n)-error-correcting

code for T =% - (1 —+/1—25).

Proof Asusual we turn the problem into a geometric one by using the embedding function Embed.
Let ¢4, ... , ¢, be codewords of a code of minimum distance d = én that are within a Hamming ball
of radius t = ™n — 1 from a received vector b. We wish to show m < n.

We will embed the vectors into Euclidean space, scaling them by a factor of 1/4/n to get vectors
of unit norm. For i € [m], let x; = \/LﬁEmbed(ci) and let y = ﬁEmbed(b). By the properties
of the embedding function (Proposition 8.3), we get: (1) ||x;|| = |lyll = 1. (2) (xi,x;) < 1—24, if
i#j. (3) {y,x;) > 1—27. In other words, we have a collection of unit vectors x; whose pairwise
inner product is small, but which have a common, large inner product with y. Notice the syntactic
similarity to Part (2) of Lemma 8.7. In fact we will reduce our problem to exactly this case. How?
We will just shift our origin to a new vector v so that from this vector, the vectors x; mutually
subtend an angle of at least 7/2. And how do we find such a vector v? Well the most natural idea
is to shift the origin closer to the scene of action — namely, towards y. Specifically, we will move to
some point ay and inspect our world from there. The following claim asserts that we will see what
we hope to see.

Claim 8.11 There ezists an a such that for everyi # j € [m], (x; — ay,x; — ay) > 0, while for
every i, (X; — ay,y —ay) > 0.

Proof We will not specify a yet only that it will lie in the interval 0 < a < 1. For such a, note
that
(xi —ay,x; —ay) <1-2§ —2a(1l —27) +a® = (1 — a)® + daT — 26.

The right-hand side is minimized at « = 1—27. For this setting, the RHS above equals 47 — 472 —24.
Recall we set 7 = (1 — v/1—26), and so we have (1 — 27)%> = 1 — 2§, which in turn implies
41 — 47% — 26 = 0. We conclude that for this setting (x; — ay,x; — ay) > 0, as desired.

To conclude, we note that for the same setting &« = 1 — 27, we have
(xi—ay,(1-a)y) > (1 -a)(1-27) - (a)(1 -a) =0,

which yields the other part of the claim. H

We are now in a position to apply Lemma 8.7, Part (2), to the vectors {x; — ay}; and y — ay to
conclude that m < n. This concludes the proof of the theorem. l

Combining Proposition 8.9 with Theorem 8.10 gives us the Elias-Bassalygo upper bound on the rate
of a family of codes with relative distance 4.

Theorem 8.12 (Elias-Bassalygo bound [12, 101]) IfC is an infinite family of binary codes with
rate R and relative distance 6, then R <1— H(% - (1 —+/1-24)).

8-73

Proof The theorem follows essentially from Proposition 8.9 and Theorem 8.10. The missing in-
gredients are dry exercises showing that one can pick n large enough so as to overcome all problems
posed by identities which hold only asymptotically. (The volume of Hamming balls is not exactly re-
lated to the binary entropy function; the Johnson bound only lower bounds the (¢, £)-error-correcting
radius of codes when / is a growing function of n. And the bound only allows a list-decoding radius
of 7n — 1 and not 7n.) We’ll spare the reader the details. B

Before concluding the section, let us digress briefly to understand when and why the Elias-Bassalygo
bound is better. To do so, let us recall two of the previous bounds that we have worked with. The
Hamming upper bound says R < 1 — H(0/2), while the GV lower bound says R > 1 — H(J).
The Elias-Bassalygo bound shows R < 1 — H(7(8)), for 7(8) = 1 - (1 — /1 —26). First note that
4/2 < 7(8) < § and H, is monotone decreasing, and so the Elias-Bassalygo bound is always between
the Hamming bound and the GV bound. Further if 6 > 0, then 7(d) > 0/2 and so the Elias-
Bassalygo bound is strictly better than the Hamming bound. However if § is close to zero then §/2
is a very good approximation to 7(J) and so for small values of § the Elias-Bassalygo bound is not
much better than the Hamming bound. However for large values of §, 7(§) starts to get closer to 4.
In particular, if § = 1 — ¢, then 7(6) = 1 — /€/2 and so 7 approaches % as § approaches 3. So as
§d— %, the Elias-Bassalygo bound really starts to get better and approaches the GV bound!

What else could we hope for? While the Elias-Bassalygo bound gives us the right bound for § = %,
it does not quite have the right growth around this point. In particular, the GV bound shows that
one can find codes of rate O(e?) and relative distance % — ¢, as € = 0. The Elias-Bassalygo bound
only rules out codes of rate Q(¢) at this distance. Which bound is closer to the truth? Turns out
the GV bound is correct here, and the E-B bound is too weak. In the next lecture we will describe
a different upper bound, called the Linear Programming (LP) bound, which ends up showing the
tightness of the GV bound.

8.5 g¢-ary bounds

We now extend the results of earlier section to codes over general alphabets. We start with g-ary
embeddings. The definition does not extend the previous definition, but in fact, gives an alternate
embedding which works as well.

Fix an arbitrary bijection ind : F, — [¢] be any bijection between F, and [g]. For 1 <1i < n, Let €;
be the unit vector along the ith coordinate direction in R™. We now define our g-ary embeddings.
Definition 8.13 (Embedding ¢-ary space in Euclidean space) The embedding function
g-Embed : F; — R? is defined as follows:

q-Embed(a) = €jnq(a),q-

Forn > 1, the n-dimensional embedding function extends the embedding above, with q-Embed : Ty —
RI™ being given by

g-Embed({a1, ... ,an)) = {(g-Embed(a), . .. ,q-Embed(ay,)).

Proposition 8.14 For vectors a, € Iy, the embedding q-Embed satisfies:

llg-Embed(a)||* = n, (g-Embed(c), g-Embed(8)) =n — Ae, B).

8-74

It will be preferrable to index our gn-dimensional space by two indices ¢, j with ¢ € [n] and j € [g].
Let H; denote the hyperlane in R?" given by 23:1 z;; = 1. Note that the g-ary embedding lies
in the affine subspace #H given by the intersection of the hyperplanes H;, i.e., H = N}, H;. Let
Q.. € RI" be the vector (%, e %) Then @, also lies in # and will play the role of the origin in
H. We will use the following proposition to tighten our results.

Proposition 8.15 The vectors {q-Embed(x) — Qu|x € Ty } lie in an (¢ — 1)n-dimensional vector
space over R.

We are now ready to prove some bounds. We start with the g-ary Plotkin bound.

Theorem 8.16 (¢-ary Plotkin bound) If C is an (n,k,d), code, then k < n — qi#l -d+
2
log, (qud)

Proof It suffices to prove the theorem for d > %n. The remaining cases follow by the restriction

argument. For the case d > q%ln, we need to show that the number of codewords is at most gn.
(This bound is met by Reed-Muller codes of degree 1.) It would be slightly easier to prove a bound
of 2(¢ — 1)n. This may satisfy mere mortals, but since we’re superhuman, we’ll prove the correct

result.

Let C be an (n,k,d), code with d > %n. Let a be the least commonly occurring symbol in the
first coordinate among codewords of C. Let C' be the code obtained by throwing away from C all
codewords that have an a in the first coordinate position. Note that [C'| > ’I;ql|C |. Thus it will
suffice to prove that |C'| < (g — 1)n (to get |C| < gn). We will do so below.

Let c¢1,...,¢, be the codewords of C'. Let xi1,...,X,, € R be the vectors given x; =
g-Embed(c;) — Q. Let y = — ({(¢-Embed(a), Q,_1) — Q). We will show below that the following
are true: (1) (x;,x;) <0, (2) (x;,y) > 0, and (3) x;,y’s are contained in a (¢ — 1)n dimensional real
vector space. Applying Lemma 8.7 to these vectors, we get that m < (¢ — 1)n, as desired. Thus it
suffices to verify the three conditions above to prove the theorem. We do so below.

1. Note that
(xi,x;) = (g-Embed(c;) — Qn,¢-Embed(c;) — Q,)
< n—Alei,) — Z
< 0

2. We need to show (x;,y) > 0. Since y is zero on all but the first ¢ coordinates, it suffices to
consider the contribution to the inner product from the first ¢ terms. Let the first coordinate
of ¢; = . Then (x;,y) = (¢-Embed(8) — Q1, —g-Embed(a) + Q). Since a # f, the first
inner product is zero, while the others are %. Summing them all up, we get (x;,y) = % > 0.

3. The final part follows from Proposition 8.14 and the fact that y also lies on the intersection
of hyperplanes in which each of the n blocks of ¢ coordinates sum to zero.

We move on to the Johnson bound for g-ary codes.

8-75

Theorem 8.17 (g-ary Johnson bound) Ewvery (n,k,dn), code is also a (tn —1,(g — 1)n)-error-

correcting code for T = % (11— /1— #5)_

Proof Letd=0nandt=1mn—1. Let C be an (n,k,d) — g code. For a received vector b, let
C1,...,Cy be codewords of C within a Hamming distance of ¢ from b. Define x; = ¢-Embed(c¢;)—Qn,
for i € [m]. Define y = g-Embed(b) — Q,,. The vectors x;, for i € [m], are contained in a (¢ — 1)n
dimensional subspace of R?" with the property that their pairwise inner product is small, while
each has a large inner product with some fixed vector v. As in the proof of Theorem 8.10, we can

conclude that under the setting 7 = % -(1—,/1— (1%15), we can find an « such that the vectors

{x; — av};, have a pairwise non-positive inner product, while their inner product with v is positive.
Applying Part (2) of Lemma 8.7 (our favorite workhorse) we get m < (g — 1)n. B

The g-ary Elias-Bassalygo bound is now straightforward. We state it for completeness.

Theorem 8.18 (¢-ary Elias-Bassalygo bound) If C is a family of g-ary codes with rate R and

relative distance &, then
R<1-H, (u (1—,/1—L5>).
q q—1

Bibliographic Notes

The Plotkin bound was shown in [89], and the Johnson bound in [52, 53]. The Elias-Bassalygo
bound was discovered independently by P. Elias and L. Bassalygo. Elias seemingly discovered the
bound in the 1950s but never published his result — it just got integrated into the folklore of
coding theory in the US. The first journal paper to mention Elias’s proof seems to be a paper by
Shannon, Gallager, and Berlekamp [101] in 1967. In the meanwhile, L.A. Bassalygo discovered the
same bound in 1965 [12]. The Johnson bounds are from some intermediate period (between Elias’s
observation, and Bassalygo’s publication). The proofs of the Johnson bound in this notes are not
from the original papers, but rather from more recent work. The proofs over the binary alphabet
are from Agrell, Vardy, and Zeger [1]. The g-ary version is from [47].

8-76

Chapter 9

6.897 Algorithmic Introduction to Coding Theory October 10, 2001

Lecture 9

Lecturer: Madhu Sudan Scribe: Nitin Thaper

Today we will talk about:

e MacWilliams identities
e LP bound

e Some perspectives on asymptotics

9.1 MacW.illiams Identities

Recall that our theme in the last lecture was to upper bounds on the rate of any family of codes
given its relative distance. Bounds of this form, that hold for every code or family of codes, are
termed universal bounds. Our first topic today are bounds of this form for all linear codes. While
these are not directly formulated as upper bounds on the rate of codes, given their relative distance,
these bounds do play an essential role in some of the strongest known bounds on rate. We will get
to that part later, but first we introduce and prove the MacWilliams Identities.

9.1.1 Linear codes and their duals

Recall that a linear code C' is specified by a k x n generator matrix G. Alternatively, the code can
be specified by a n x (n — k) parity check matrix H. The matrix G consists of & linearly independent
rows while H consists of n — k linearly independent columns.

The dual of the linear code C, denoted C*, is the the code generated by H”, the transpose of the
parity check matrix of C. It is obvious that C* is also a linear code, with block length n and message
length n — k. Furthermore every pair of codewords b € C and ¢ € C* satisfy (b,c) = 0. A slightly
stronger fact is proven in the proposition below.

9-77

Proposition 9.1 For linear code C C F} and vector x € Fy, the following hold:

e Ifx € Ct, then for every c € C, (c,x) = 0.

o Ifx ¢ Ct, then for every a,3 € F,, the sets {c € C | {c,x) = a} and {c € C | {c,x) = 3}
have the same cardinality.

Proof The first part of the proposition follows from the definition of the dual of a code. For
the second part note first that without loss of generality, we may assume f = 0 and a # 0. Let
Soa ={c€C | (c,x) =a},and Sop = {c € C | (¢c,x) = 0}. Note that 0 € Sy and hence the latter
is non-empty. We note next that the former is also non-empty. Since x ¢ C we have that there
exists ¢ € C such that {(c,x) = o/ # 0. Then we have that b = (a/)"!ac is an element of C' with
(b,x) = a, and thus b € S,.

For a set A C ;' and vector y € F}, let y + A denote the set {y +x | x € A}. Fix b € S,. We get
|Sa| = |So| from the following series of facts:

1. b+ Sy CS,: Ifae Sy then (b+a,x) =(b,x)+{a,x) =a+0=aqa.

2. |b+ Sp| = |So|: Follows sinceb+a=b+a'iffa=a'.

3. |So| <€ |Sql: Follows from Parts (1) and (2) above.

4. |Se| < |So|: Similar to Parts (1)-(3) above, except that here we work with the set (—b) + S,.
]

9.1.2 Weight distributions and the weight generating function

Definition 9.2 (Weight distribution & generating function) Given an [n,k,d]; code C, and
index i € {0,...,n}, the ith weight enumerator of C is the number of codewords in C of Hamming
weight exactly i. The weight distribution of C is the sequence (Ao, ... , Ay), where A; is the ith weight
enumerator of C. The weight generating function of C is the formal polynomial Ac(z) = E?:o Azt
where (Ao, ... ,Ay) is the weight distribution of C.

The MacWilliams Identities relate the weight distribution of a code C' with that of the code C*.
We will do so by studying the weight generating function, Ac(y) = > ._, Aiy’, of the code C, and
relating Ac to Agi. As is by now usual, we will prove the identity first for the binary case, and
then move to the g-ary case later.

9.1.3 The extended generating function

We will start by defining an elaborate generating function of a code C, called its extended generating
function. It will be quite evident that this generating function preserves all information about the
code C (unlike the weight generating function which does not tell us exactly what the code is). We
will then relate this elaborate generating function of the code to that of its dual.

9-78

We will introduce the extended generating function gently. We will start by defining the extended
generating function of a single bit(!), and then define it for a word in {0,1}". and then define the
extended generating function of a code.

Definition 9.3 (Extended generating function of a bit) The weight generating function of C
is the formal polynomial A(z) = Y, A;z'. For a bit b € {0,1}, the extended generating function
Wi(z,y), is a polynomial in two variables x and y defined as:

Wilzy) = = ifb=0
=y ifb=1

Definition 9.4 (Extended generating function of a word) For a vector b = (b1,... ,by) €

{0,1}™, the extended generating function Wy (x,y), is a polynomial in 2n variables, x = (x1,... ,Zp)

and Yy = <y17 .. 7yn)7 deﬁned as: Wb(x7 X) = Hinzl Wbi ("Ei: yl)
Finally we define the extended generating function of a code C.

Definition 9.5 (Extended generating function of a code) For a code C C {0,1}", the ex-
tended generating function We(x,y), is a polynomial in 2n wvariables, x = (z1,...,z,) and
Y = (Y1, ,Yn), defined as: Weo(x,%x) = Y pec Wh(x,).

To make sense of the definitions above, it would help to see an example. Consider the code C' =
{000,101,110,011}. The extended generating function for this code is:

We(x,y) = 212223 + Y1223 + y1Y223 + Y14273 + T1Y2y3.

It should be immediately clear that the extended generating function carries all the information
about a code and does not do so in any especially clever way. The extended generating function is
not intended to be a way of compressing information about the code, but rather an elaborate way
of representing the code, which will come in useful in studying the combinatorics of codes. At the
outset we are not hoping to use them to glean any information about codes in a computationally
efficient manner.

Given this elaborate representation of a code, it should not come as a surprise that given the extended
generating function of a code C we can derive the extended generating function of its dual. After
all. all the information of C' is embedded into W (x,y), so C can be derived from W¢, C* can be
derived from C, and finally W1 can be derived from C+. The generalized MacWilliams Identity
just gives an explicit form of this rather obvious statement. The strength of the result lies in the fact
that the relationship takes an especially simple closed form - one that will turn out to be especially
amenable to manipulations later on.

The crux of the identity is some sort of a “Discrete Fourier Transform” (or Hadamard transform or
Walsh transform, depending on your loyalties). Instead of focusing on the function We (x,y) we will
focus on the function W¢(x +y,x — y). Before saying what this transform does to the generating
function of a code, we will describe what the transform does to the generating function of a single
vector b.

Lemma 9.6
Wo(x+y,x—y)= Y (-)®W(x,y).
ce{0,1}"

9-79

Proof Note by definition of W}, that

We(x+y,x—y)= H W, (i + yi, mi — yi) = H (zi + (=1)%y;) .

=1 =1

Expanding the right hand side above we get a sum of 2" terms of the form +z;---z,, where
z; € {z;,y;} and the sign is odd iff there is an odd number of indices ¢ such that where z; = y; and
b; = 1. Letting ¢ € {0,1}" denote the index of this sum of 2" terms, and setting z; = y; if ¢; = 1,
we see that z; = W, (x;,y;) and the sign in front is odd iff (b,¢) = 1. Thus we have

i

I[@i+ D)= > DO [[Weleny) = Y H®OWelx,y).

i=1 ce{0,1}n i=1 ce{0,1}n

This yields the lemma. W

Theorem 9.7 (Generalized MacWilliams Identity [75]) The extended generating function of
a code C and its dual C* satify the identity:

1
_WC(X+y7X_y)'

VVC’L (XJ y) = |C|

Proof The proof follows easily from Proposition 9.1 and Lemma 9.6. Note that

WC(X+Y7X_y) ZWb(X+Y7x_y)

beC

= Z Z 1)*9We(x,y) (By Lemma 9.6)
beC ce{0,1}

= ZZny+ZZ <b°)ny)

beC ceCt beC cgCL
= |C|WC(X7Y) +07

where the first part of the last equation is by definition of the extended generating function and the
second part applies Proposition 9.1 to every ¢ C*. The theorem follows. l

9.1.4 The MacWilliams Identities

We now return to the goal of studying the weight distribution of a code C'. The following, simple
proposition shows that we have made some progress already!

Proposition 9.8 For every linear code C, we have z"Ac(y/x) = Wo(z, ... ,z,y,...,9).

9-80

Proof The proposal follows easily by inspecting the right hand side. Under the substitution
z; = ¢ and y; = y, we have

WC("E;"' s Ly Yoo 5y) = Zmn_Wt(b)th(b)
belC

= " Y (/)

bel

=Y Y @y

i=0 beC | wi(b)=i
= z" ZAi(y/a:)i

i=0
= z"Ac(y/z).

The MacWilliams Identity now follows easily:
Theorem 9.9 (MacWilliams Identity [75])

Aci(y) = ﬁ(l +y)"Ac (i;—z> .

Proof The proposition we just proved, Proposition 9.8, tells us that Aoi(y) =
1"Wee(1,...,1,y,...,y). Now, applying the generalized MacWilliams identity (Theorem 9.7),
we get

1
WWC(I"F:U, ,1+y,1—y,,1—y)

Finally applying Proposition 9.8 again, we have

WCJ-(]-;"' ;1,2/;--- 5y):

Putting the above together, we get the theorem. H

In the appendix to this lecture, we extend the bound above to the g-ary case. We state the g-ary
version so that we can discuss the more general result and its implications.

Theorem 9.10 (¢g-ary MacWilliams Identity) For a g-ary linear code C of block length n, we

have
(I +(g=1y)" 1—y
o) = GG e ()

The MacWilliams identity shows that the weight distribution of a linear code can be computed from
the weight distribution of its dual! Note, this is totally non-trivial - we can see no obvious reason
why specifying the weight distribution of C, should fix the weight distribution of C+. In a sense the
identity suggests that any two linear codes of a given weight distribution are essentially the same,
motivating the following question (the answer to which is not obvious to Madhu).

9-81

Question: True or False: For any pair of ¢g-ary codes C; and C5 of block length n that have the
same weight distribution, there exists a permutation 7 : [n] — [n] such that ¢ = (¢1,... ,¢,) € C1
iff such that ¢’ = (c(;), ... ;Cr(n)) € Ca.

We now examine the exact form of the relationship obtained between the weight distribution of a
code and its dual. As in the case of the relationship between the extended (elaborate?) generating
functions of a code and its dual, the exact form of the relationship turns out to be simple and quite
useful. In particular, the weight distribution of the dual code is just a linear function of the weight
distribution of the primal code, as we note below.

Corollary 9.11 For every q and n there exists an (n + 1) X (n + 1) rational matriz M such that
the following holds: Let a = (Ay,... ,A,) be the weight distribution of a g-ary linear code C of block
length n, and let b = (By, ... ,B,) be the weight distribution of C+. Then

1
b=—————aM.
A0+...+Ana

PFurthermore, the matriz M = {my;} is given by my; = S o_o ("23) (3) (=1)(g — 1)'~¢

Proof Since B; is the coefficient of y* in A-1(y), we need to examine the coefficient of 3¢ in

(1+((fa|1)y) Ac (1+(q l)y)' Write this quantity as \é_l > i=0"4;(1+ (¢ —1)y)" (1 —y). The

coefficient of y* in this sum is obtained as the coefficient of y¢ in the expansion of (1 —y)7 times the
coefficient of y*~* in the expansion of (1 + (¢ — 1)y)"~#, summed up over £ € [i]. We thus get:

b= |0|Z Z(?:J)O(q‘”i_e(‘”e
- |0|2Am”

The corollary follows from the fact that |C| = Ao +---+ A,.

In the rest of this lecture we will describe (without proof) two consequences of this explicit form of
the MacWilliams Identity.

9.2 Weight distribution of MDS codes

Recall the notion of an MDS (Maximum Distance Separable) code. These code are codes that meet
the Singleton bound, i.e., have a minimum distance equal to n — k + 1, where n is the block length
and k is the message length of the code. In this section, we will describe the weight distribution
function of linear MDS codes exactly, for every n and k! This ought to be surprising, since this
implies that all MDS codes have the same weight distribution and we have no prior reason to believe
so! The first step in our proof is a simple but surprising fact.

Proposition 9.12 If C is a linear MDS code, then so is its dual C+.

9-82

Proof The proof is a slight variation of the proof of the Singleton bound. Let C be an [n, k,n —
k+1]-code. We know that C* is an [n,n — k, d]-code for some d < k+1 (using the Singleton bound),
and we need to show d > k + 1. Assume otherwise, and suppose there exists a vector ¢ € C+ with
wt(c) < k. Without loss of generality assume that the first i < k coordinates of ¢ are non-zero
and the remaining coordinates are zero. Then for every codeword b € C, we have Ele bjc; = 0.
Project the codewords of C to their first £ coordinates. We claim that the projection of C' is a
subspace of Fy of dimension k — 1 or less (since 25:1 bjc; = 0 for all vectors in the projection). In
such a case there exist two vectors ¢; and ¢z in C, whose projection on to the first k£ coordinates is
the same. But then A(cy,c2) < n — k contradicting the hypothesis that C' has minimum distance
n—k+1. 1

Combining the proposition above with MacWilliams Identities, one gets the following surprising
result — explicit expressions for the weight distribution for all MDS codes.

Theorem 9.13 If C is an [n,k,n — k + 1],-MDS code, then the weight distribution (Ao,...,An) of

C is given by A; = (}) T80 (-1 () ((¢"HF 7~ 1),

We won’t prove the theorem here — but lets see why it should not be too surprising if we put
together what we know. Consider the 2n + 2 variables corresponding to the weight distribution of
C and C+. The MacWilliams Identities gives us n + 1 linear conditions relating these variables
once the dimension of the primal code is fixed. Using these conditions in the obvious way, one can
see that one can compute the dual weights given the primal distribution. By duality, one can also
compute the primal weights given the dual weight distribution. Presumably there are other subsets
of (n + 1) of the weights that would lead to the rest being specified as well! In the case of MDS
codes we know A4g = Bgp = 1and 4 = --- = A, = By = --- = B, = 0 - which turns to be
n + 2 variables, that fortunately are of full rank. So the linear system can be solved and yields the
theorem above!

Exercise: Determine which subsets of the 2n 4 2 variables in the MacWilliams Identities are linearly
independent. (Answer not known to Madhu.)

Notice a simple corollary to the above theorem: There are exactly A; polynomials in F, [z] of degree
< k that have exactly n — i zeroes in any given subset S C I, of cardinality n.

On the one hand the theorem above is quite impressive in that it gives exact numbers. However since
the final expressions are not closed forms it is hard to get a sense of the growth of the expressions.
A coarse approximation that works out reasonably is A; = ©((7)¢¥+=™) for MDS codes.

9.3 The Linear Programming bound

We now describe the most powerful application of the MacWilliams Identities, namely the Linear
Programming (LP) bound on the rate of a code.

Let C be a [n,?,d], code with weight distribution Ag, Aj,...,A,. The number of codewords for
the code is), A; and hence the rate R = log, (3" A;)/n. As mentioned earlier our goal is to get an
asymptotic upper bound on the rate R. This reduces to deriving an upper bound on) A; subject
to the restrictions that

AO = 1,A1 =0,A2 = 0, ,Ad,1 =0

9-83

By =1,B1,Bs,...,B, >0

As noted earlier, B;’s are essentially linear functions of A;’s. Precisely, B; - (Z?:o Aj) is given by
a linear function of the A;’s.

This motivates the following linear program:

Maximize K, =1, A4;

=0
subject to
aM >0
Ag=1
Aj=---=A4;1=0
Agy... A, >0

where a = (Ag,...,A4,), M is the matrix described in Corollary 9.11, and the notation x > 0,
implies every coordinate of x is non-negative.

The linear program above bounds the number of codewords that any linear code of distance d can
have over a g-ary alphabet, and one can hope that linear programming and duality could help anaylze

the quantity K, above. The quantity Rip% log, (K7,)/n is called the LP (upper) bound on the rate
of a linear code. Somewhat surprisingly, even though the linear program was motivated only for
linear codes, the LP bound holds also for non-linear codes, as implied by the following theorem.

Theorem 9.14 If C is an (n,k,d), code with Aidéflé—‘ Ycccl{b € C | A(b,c) = i}|. Leta =

(Ao, ... ,Apn) and let M be as in Corollary 9.11. Then aM > 0.

Thus the quantity Rpp is the LP bound on the rate of all codes. The LP upper bound was discovered
by Delsarte [27] who showed how to derive several known upper bounds using this framework.
Performing a tight asymptotic analysis of the LP bound is non-trivial and took a while after the
work of Delsarte. The best asymptotic analysis of the LP bound is due to McEliece, Rodemich,
Rumsey and Welch [80] who give two upper bounds on the LP bound. We state their bounds for
the binary case:

Theorem 9.15 (MRRW bound [80]) IfC is a family of binary codes (not necessarily linear) of
rate R and relative distance 0 then

R<HG - /5(1-9),

and R< min]{1 + g(u?) — g(u® + 26u + 28)} where g(x) = Ho (5

u€[0,1—26

1—m>_

Proving these bounds is way out of scope of this lecture(r)! The interested reader is pointed to thesis
of Samorodnitsky [94], or the article by Levenshtein [67] for further details.

9.4 Perspectives on Asymptotics

We earlier saw the Gilbert-Varshanov bound, namely R(d,q) > 1 — H,(6) and saw that codes based
on algebraic geometry out-performed this bound. However for the binary alphabet this is the best
known lower bound on the rate of a code. Natural questions to ask at this stage are:

9-84

1. Is the GV bound tight (or are there codes that do better than the GV bound)?
2. Is the LP bound tight (or do there exist codes that meet the LP bound)?

3. Is the MRRW bound tight (or do there exist codes that meet the MRRW bound)?

Both the GV bound and MRRW bound are known functions and we know that they are not equal.
So it is not possible to believe that both bounds are tight. However till recently none of the remaining
possibilities even considered pairwize could be ruled out. L.e., it was conceivable that the LP bound
and GV bound were both tight, or that the LP bound and MRRW bound were both tight. Recently
Samorodnitsky [94] managed to rule out one of these possibilities — he showed that for every §, the
LP bound is at least the arithmetic mean of the GV bound and the MRRW bound. So if the GV
bound is tight, then the LP bound can not prove this fact!

Is the GV bound tight for binary codes? Obviously this question can not be answered at
the moment. Yet one could ask what the evidence so far suggests. On the one hand no better
code has been found, and we could take this as evidence that the GV bound is tight. On the other
hand we could ask if there are examples that suggest, without proving, that the GV bound does
not appear to be tight. We have already seen one such example — namely the Reed-Solomon codes
were doing “better than random” but were using alphabet sizes that were growing with the block
length. Turning this intuition into a refutation of the g-ary GV-bound required all the heavy-duty
machinery of AG-codes, but it did pay off. Two significant lessons could be learned from this success
— (1) we need some example of an anamolous behavior as exhibited by the RS code, and (2) we
need an asymptotic direction to exploit in our investigation. Are there other examples of anamolous
behaviour? Turns out every example we have seen shows some anamoly.

Hadamard codes If the best we could do with code is to assume that the spheres of radius d
around them do not overlap, then a binary code with relative distance n/2 should have only
two codewords. The Hadamard codes with Q(n) codewords are doing significantly better.

Hamming codes & BCH codes If we fix a distance d and consider n — k for [n, k, d]-codes then
the GV bound requires n — k > dlogn, while the BCH and Hamming codes only need n — k ~
(d/2)logn. Thus once again, these codes outperform the GV principle.

So the next question ought to be: Is there an asymptotic sense in which one should try to exploit
these examples. We describe two approaches below.

Relative Distance close to % The MRRW bound, together with the GV bound, implies that
the binary code of relative distance 3 — e with highest possible rate has rate ©(e?). So in a certain
asymptotic sense, the MRRW bound and the GV bound are already tight at this extreme. However
the GV bound is non-constructive and constructive results are still lagging behind the GV/MRRW
bound in this case. The best known constructive results yield codes of rate O(e®) with distance
1

5 — €. Some constructions that achieve this bound are:

e Reed-Solomon code concatenated with random linear code. (The reader should work this out
as an exercise.)

e Algebraic Geometry code concatenated with Hadamard code. Such a construction was given
by Katsman, Tsfasman and Vladuts [60] and could be attempted by the reader as an exercise.

9-85

o Codes derived from expander graphs due to Alon, Bruck, Naor, Naor, and Roth [4].

Improving these constructions would be a significant step towards achieving the GV bound con-
structively.

Rate close to 1 At rate close to 1, or as § — 0, the GV bound says that R > 1 — dlog(1/4). All
bounds upto the Elias bound only show R > 1 — (§/2)log(2/6). In this regime the gap between the
GV bound and the upper bounds seems maximal. This regime may offer one of the best options for
“beating the GV bound” if this is possible at all.

9-86

Chapter 10

6.897 Algorithmic Introduction to Coding Theory October 22, 2001

Lecture 10

Lecturer: Madhu Sudan Scribe: Aram Harrow

Today we move on to the second phase of our course: Algorithms in Coding theory. We will
introduce some of the algorithmic tasks associated with coding theory. We’ll then move on to a
specific algorithm for decoding Reed-Solomon codes.

10.1 Algorithmic Tasks

10.1.1 Algorithmic tasks from Shannon’s theory

Shannon’s theorem already introduced specified two basic algorithmic tasks, namely Encoding and
Decoding. The final objective is only defined as a combination of the two, given a channel that fixes
the error model. Specifically the Shannon algorithmic challenge, restricted to the binary symmetric
channel is the following;:

The Shannon Problem: Let D, , be the distribution on n independently chosen
random bits where each bit is 1 with probability p and 0 with probability 1 — p. Given
R < 1— H(p), find an efficiently computable family of functions {E,}, and {D,},
where E, : {0,1}f" — {0,1}" and D,, : {0,1}" — {0,1}%" so as to maximize the error
exponent, i.e.,

lim {—%log< Pr [Dn(En(m)+n)=m])}.

n— 00 m<—URgn ,n<Dn

In the above challenge one may plug in any notion of efficiency one feels comfortable with. We
will use the notion of “polynomial time computability” for starters. Later, we will switch to more
efficient notions such as linear time computability.

Unfortunately this challenge is too complex to handle all at once. The Hamming setup provides a
nice modular breakdown of the task. To motivate this, suppose we introduced the Hamming version

10-87

of the problem, where an adversary is allowed to choose the message and introduce errors, up to a
specified limit ¢. Then the above problem transforms to:

The Hamming Problem: Given R > 0 find the largest 7 and an efficiently computable
family of functions {E,}, and {D,}, where E, : {0,1}#" — {0,1}" and D,, : {0,1}" —
{0,1}E" such that:

Vn € B(0,7n), Dup(En(m)+n)=m.

In this setup one can decouple, at least partially, two steps in the goal: First the image of the encoding
function better be a good error-correcting code. Next, this error-correcting code better have a good
decoding algorithm. Thus by fixing the intermediate point — namely, the error correcting code, we
get two independent problems, whose goals can be decoupled. Still the task of defining the problems
precisely is riddled with subtleties. So we will do so slowly.

10.1.2 Encoding

What could be be subtle about the following question? “Given a family of codes C = {C,}, with
C,, being an (n, k,d), code, find an efficient family of algorithms E,, : £¥ — ¥" so that the image
of E, equals C},.” This definition works for most purposes, and we will be happy with it. However
it will be good to recognize that there are issues here that might involve choices.

The main issue, stated in “data structural language”, is the distinction between preprocessing and
querying. Preprocessing is the work we do during the design phase of the code. Query processing is
the work we do to encode a given message, with all the help that the preprocessing stage may have
given.

The goals of preprocessing are often misunderstood. Unless one pins down the family of codes
quite succinctly efficiency with respect to this task may not make a lot of sense. (An example of a
question that does not make sense given what we know is: “How fast can the generator matrix of an
algebraic-geometry code be constructed?” We know some specific families for which this question
is well-defined — but in general, how do we even represent the algebraic geometry code whose
generator matrix is to be constructed.)

The issue that does make sense to focus on, is to ask that the output of the preprocessing stage be
succinct. If the code is linear, then a choice for the output is obvious: Output the generator matrix
(or almost equivalently, the parity check matrix). But a more satisfactory answer, applicable to all
codes and not just the linear ones, is to output a circuit describing the query processing function
totally constructively. (Such a circuit would be composed of binary logic gates hooked up as an
acyclic digraph with k input wires and n output wires. Computing the output of the circuit, given
a fixed input takes time linear in the size of the circuit.)

What are the right goals for the “query processing” phase? The goal is fairly obvious here: We
would like the encoding of the message to be performed as efficiently as possible. For linear codes,
if we force the preprocessing phase to output a generator matrix, then the query processing is just
a matrix-vector product and can be computed in polynomial (specifically O(n?)) time. Later in the
course, we will focus on the task of doing this more efficiently — but for now, we will consider this
good enough. On the other hand, if the preprocessing phase outputs an encoding circuit, then the
size of the output of the first phase is the running time of the query processing phase.

We conclude with the following two algorithmic tasks:

10-88

Preprocessing Problem: For a fixed family of codes C, given an index i, compute an
encoding circuit (or the generator matrix) for the ith code of the family.

A weak requirement is that the above produce an output that has size that is a polynomial in n;
— the block length of the ith code. A stronger requirement is that the above process take time

polynomial in n;. The good news here is that for linear codes the weak requirement can always be
fulfilled.

The second algorithmic task, corresponding to the “query phase” is:

Encoding Problem: Given an encoding circuit E (or the generator matrix) for the ith
member of a family of codes C, and a message m, compute its encoding.

Of course, in this sense, the encoding problem is trivial to solve in linear time in the size of E.

As mentioned earlier, we won’t dwell on the subtleties introduced in this section during this course.
But they ought to be kept in mind, when designing and evaluating the “utility” of new codes.

10.1.3 Decoding

Informally, the problem to be formalized is: Given a corrupted version r € Fy of an encoding of
message m, compute m. However the problem is not well-posed yet, since we haven’t quite given a
formal definition of m. Another issue is the specification of the encoding function E. When is this
specified? And how much time are we given to design the decoding algorithm?

For the first issue: How is m defined as a function of r, the natural definition based on the Shannon
challenge described above, is the mazimum likelihood vector, i.e., the vector m for which the prob-
ability that the received vector is r is largest, given the probabilistic channel. This motivates the
following problem:

Maximum Likelihood Decoding: Given a channel Channel corrupting strings in
F; — Fy, an encoding function E : IF;“ — Fy, and a received vector r € F find m € IF;“
that maximizes Prchannel [f = Channel(E(m))].

When the channel noise model is that of the g-ary symmetric channel, then this question simplifies
to the Hamming problem below:

Nearest Codeword Problem: Given an encoding function E : IE"qc — 7, and a

q)
received vector r € F? find m € F% that minimizes A(r, E(m)).

The problems above are both quite hard. On the one hand, they don’t allow the decoding algorithm
to preprocess the code to be decoded. Further, they ask for error-correction possibly well beyond the
distance of the code. So it should not be a surprise that versions of these problems become NP-hard.
In particular, Berlekamp, McEliece, and van Tilborg [18] showed that the Nearest Codeword Problem
above is NP-hard, even when the encoding functions are restricted to be linear functions given by
their generator matrix. Later, Bruck and Naor [24] showed that one could even fix the family of
codes, and thus the decoding algorithm could be allowed to preprocess the code, and the problem
remains hard (unless NP has polynomial sized circuits).

10-89

Yet neither of these results are sufficiently negative to put a damper on the goal of meeting Shannon’s
challenge algorithmically. First - they only rule out decoding for some codes (and the codes are not
particularly nice). Furthermore, they only rule out decoding these codes when the number of errors
is much more than the distance of the code. To get a sense of the positive results in coding theory,
we should look at some of the more reasonable decoding problems.

Reasonable decoding problems

The main restrictions that allow for algorithmic results are the following:

e We should only try to decode some fixed, well-known code (where we know the minimum
distance etc.).

e We should place limits on the number of errors, and only expect to correct a number of errors
in proportion to the distance.

The following three questions are natural questions along this line:

Unambiguous decoding: For a fixed family of codes C, given an index ¢ and a vector
r € F} find a codeword ¢ € Cj, such that A(e,r) < A(C;)/2 if such a codeword exists.

Note that the underlying assumption is that A(C};) is known, or can be computed efficiently. Further,
the question is posed so that the answer is unique and somehow reasonable to expect to compute,
given the distance of the code. Actually the question remains reasonable for slightly larger values
of the error, say up to the minimum distance of the code, though in such cases the answer is no
longer unique or unambiguous. Here we can pose two slightly different questions. We call the first of
these the “bounded distance decoding” problem, though this term is often used to allude to slightly
related questions in the literature (and sometimes this is the unambiguous decoding problem).

Bounded distance decoding: For a fixed family of codes C, and error function ¢, given
an index ¢ and a vector r € Fy and find any codeword c € Cj, such that A(c,r) < (i) if
such a codeword exists.

The bounded distance decoding problem is solvable for some codes for some functions #(i) that
are noticaebly larger than A(C;)/2. This is done by solving a slightly harder problem called the
“list-decoding” problem described below. In principle, we would like to solve this problem for
t(i) = A(C;), but we know of no interesting codes where we can do this.

List decoding: For a fixed family of codes C, and error function ¢, given an index ¢ and
a vector r € I and find a list of all codewords c € Cj, such that A(e,r) < #(4).

Both the bounded distance decoding problem and the list decoding problem are really families of
problems (even once we fix the code C) parametrized by the error function ¢(-). The larger this
function for which an algorithm works, the better the algorithm.

In the sequel we will give an unambiguous decoding algorithm for Reed Solomon codes. But first
we solve a problem that was too trivial to even pose above!

10-90

10.2 Erasure-decoding problem

Before we move on to the issue of handling actual errors, lets resolve one simple problem — that
of decoding from erasures, at least in the case of linear codes. The erasure decoding problem is the
following;:

Erasure-decoding problem:

GIVEN: An k x n generator matrix G for a linear code C over F; and a vector r €
(Fy U{?})™, where ? is a special symbol denoting an erasure.

FIND: A (or all) codeword ¢ € C satisfying ¢; = r; for all ¢ € [n] such that r; #7.

The algorithm for this part is quite simple. Suppose s symbols in r are erased. Let r’ be the (n — s)-
dimensional vector obtained by projecting r onto the non-erased symbols and let G’ be the matrix
obtained by projecting G onto columns corresponding to non-erasures. Let m be any solution to
mG’' =r' and let ¢ = mG. Then c is a solution to the erasure decoding problem.

When is this solution unique? We can’t really look at the linear system and try to argue it can’t
have multiple solutions. So, we will use the properties of the code. Note that that if the code
has minimum distance d, then d — 1 erasures still allow for recovery of the codeword, information
theoretically, since d — 1 errors are detectable. In our case, this implies that if s < d, then the
solution is unique.

Even if the solution is not unique, we don’t have to give up hope. Since the solution to the erasure-
decoding problem is obtained by solving some linear systems, we can actually enumerate all solutions
to the erasure decoding problem. The set of solutions take the form {c + bM|b € F.} for some
non-negative ¢, and some vector ¢ and some ¢ x n matrix M. Furthermore the vector ¢ and matrix
M can be found efficiently. Thus the erasure decoding problem for linear codes can be solved as
satisfactorily as one could hope for!

10.3 Unambiguous decoding for Reed-Solomon codes
Let us recall the unambiguous decoding problem for Reed-Solomon codes.

Reed-Solomon decoding:
GIVEN: n distinct elements zi,...,z, € Fy, y1,...,yn € Fy and parameters k¥ and
t < nok,

>3
FIND: A polynomial p € F,[z] of degree less than k, such that p(x;) # y; for at most ¢
values of i € [n].

The problem is quite a non-trivial one. At first glance the best we can say about it is that it is in
NP — i.e., if such a polynomial exists, then this fact can be verified efficiently, given p. However it
is not even clear that it lies in co-NP, i.e. given a received vector y, is there a short proof that no
polynomial p of degree less than k such that p(z;) # y; for at most ¢ values of i. Yet a polynomial
time solution can be found for this problem. This solution dates back to 1960 when Peterson [87].
came up with an algorithm essentially solving this problem. Strictly speaking, the solution actually
applied only to binary BCH codes. The decoding for the Reed-Solomon case is from the extension
of Gorenstein and Zierler [42] who generalized BCH codes to the non-binary case and observed that

10-91

the algorithm generalizes, and also that Reed-Solomon codes are special cases of BCH codes (in this
incestuous world).

The Peterson-Gorentstein-Zierler algorithm actually ran in time O(n?). Later Berlekamp [14] and
Massey [79] speeded this algorithm so that it ran in O(n?) time. Currently the fastest versions run
in time O(npolylogn) time [57]. We will not give these faster algorithms, but actually give a simple
algorithm, running in O(n?®) time, due to Welch and Berlekamp [122, 15]. The actual exposition we
give is from [35] (see also [108, Appendix A]).

10.3.1 Error-locating polynomial

The crux of the decoding algorithm is an object called the error-locating polynomial. We define
this polynomial below. We warn the reader that, at least from its definition, this polynomial is not
necessarily easier to find than the solution polynomial p. However its properties end up helping us.

Definition 10.1 (Error locating polynomial) Given a vector x and a recieved vector r that is
within a distance of t from some polynomial p of degree less than k, a polynomial E(x) is called an
error-locating polynomial if it has degree t and satisfies E(x;) = 0 if p(x;) # ;.

Note that such a polynomial always does exist: Simply take a set T C [n] that contains all the error
locations and satisfies |T'| = ¢ and let E(z) = [[;cr(— 4).

Next, we define one more polynomial, that is also as hard to find as p, or E. This is the polynomial
N (m)dgp(w) - E(x). While each of these polynomials F, p and N is hard to find, together they are

easier to find! Below we list some properties of the triple of polynmials p, £ and N.

E(z;) = 0if y; # p(z;) and deg,(E) =t
N(z) = p(z)E(z) and deg,(N) < k+t (10.1)
Vi€ [n] N(z:)=p(z:)E(z:) = yiE(z:)

The last equation above might require some explanation. Note that if E(x;) = 0, then p(z;)E(x;) =
yiE(z;) = 0. When E(xz;) # 0, we know p(z;) = y; and so we still have p(z;)E(z;) = y; E(x;).
Now how do we find any of the above? Turns out, if we just ignore all references to p in Equa-

tion (10.1) and just look for E and N satisfying the remaining conditions (and this suffices to pin
them down essentially uniquely)! We describe this precisely next.

10.3.2 The Welch-Berlekamp algorithm

We start by describing the major steps in the Welch-Berlekamp algorithm. A priori, it may not be
clear as to why this algorithm is either correct, or efficient. We will argue this later.

Welch-Berlekamp Algorithm:

Given: n,k,t < % and n pairs {(z;.y;)}?, with z;’s distinct.

10-92

Step 1: Find polynomials N and FE satisfying the following, if they exist:

deg,(E) =t
deg,(N) <k+t (10.2)
Vie[n] N(z;)=yE(z;)

Step 2: Output N(z)/E(z).

Efficiency

We first note that the algorithm above can be implemented to run in polynomial (O(n?)) time. The
second step is obvious, and all we need to argue this for is the first step. However the first step is
essentially just solving a linear system. Specifically, we need to find coefficients (No, ... , Ngys 1)
and (Ey, ..., E;) such that for all 4,

k+t—1 t

J _ Jj
Z Njz; _inEJx
=0 =0

Note that for every i, the constraint above is just a linear constraint in the unknowns. So solving the
system above, just amounts to solving a linear system. The only catch is that we need E; # 0 and
this is not a linear constraint. But notice we can actually force E; = 1 since otherwise we can just
divide all coefficients by E; to get an alternate solution which satisfies the requirements. So, finding
a solution to Step 1 just amounts to solving a linear system and hence can be done efficiently.

Correctness

Next we argue the correctness. For this part, assume p is a polynomial of degree < k that agrees
with the given set of points at all but ¢ points. In such a case we will show that a pair of polynomials
N and E satisfying (10.2) do exist. However we will not be able to claim that there is a unique such
pair. Instead we we will show that any pair of polynomials satisfying (refl10:eqn:two) have the same
ratio (and this ratio equals p).

Claim 10.2 There exists a pair of polynomials E and N satisfying (10.2) with the property that
N(z)/E(x) = p(z).

Proof We just take E to be an error-locating polynomial for p and the given set of points, and
let N(z) = p(z)E(z). Then N and E satisfy all the requirements. l

We now move to the more interesting claim. Note that it suffices to argue that N/E = N'/E' for
any pair of solutions to (10.2) since the claim above can then be used to see that this ratio must be
p-

Claim 10.3 Any solutions (N, E) and (N', E") to (10.2) satisfy

N(z) _ N'()
B B(a)

or equivalently N(z)E'(z) = N'(z)E(z).

10-93

Proof Note that the degrees of the polynomials N(z)E'(x) and N'(z)E(z) is at most k — 1 + 2¢.
Furthermore, from (10.2) we have, for every ¢ € [n],

yiE(x;) = N(z;) and N'(z;) = y:E' ().

Multiplying the two we get:
Yi E(zi)N'(2:) = yi B’ (z:) N (2:).

Now we claim that actually
E(z;)N'(z;) = E'(zi)N(z:)-

This equality is obvious if y; # 0, by cancellation. But why is it true is y; = 07 Well, in such a
case, we note (from (10.2) again) that N(z;) = N'(z;) = 0 and so again we have E(z;)N'(z;) =
E'(z;)N(z;) =0. Now if n > k + 2t — 1, then we get that the polynomials N - E' and E - N' agree
on more points than their degree, and hence they are identical, as desired. B

We summarize with the following theorem:

Theorem 10.4 The Welch-Berlekamp algorithm solves the Unambiguous Reed-Solomon
decoding problem in O(n?) time.

As mentioned earlier, this is not the fastest possible algorithm for solving the unambiguous decoding
problem. In fact, even the algorithm from [122] is faster and runs in time O(n?). If we look at the
steps of the algorithm given here, one notes that all that the algorithm needs to be able to is solve
a “rational function interpolation” problem and a “polynomial division” problem efficiently. Turns
out both steps can be solved efficiently, in O(npolylogn) time. For the task of polynomial division,
such an algorithm dates back to Sieveking [105]. The text by Aho, Hopcroft, and Ullman [2, Chapter
8] is an excellent source for material on this algorithm (and other fast algorithms for polynomial
manipulation). The task of rational function interpolation on the other hand reduces to a “GCD-like”
computation, which in turn was shown to be efficiently computable in the 1970s, by Schonhage [97].
Madhu’s hastily written notes [111] and Michael Rosenblum’s more careful writeup [93] fill in the
details of the reduction and sketch the algorithm.

10-94

Chapter 11

6.897 Algorithmic Introduction to Coding Theory October 24, 2001

Lecture 11
Lecturer: Madhu Sudan Scribe: Matt Lepinski

Today we will talk about:

1. Abstraction of the Decoding Algorithm for Reed-Solomon Codes

2. Decoding Concatenated Codes (specifically, the Forney Codes).

11.1 Abstraction of Reed-Solomon Decoding Algorithm

Our first goal today is to give a very abstract view of the Welch-Berlekamp decoding algorithm for
Reed-Solomon codes. This abstraction will allow us to see its generality, and thus apply it to other
families of error-correcting codes. The algorithm we describe here is from the works of Pellikaan [86],
Kotter [61], and Duursma [30].

11.1.1 Reed-Solomon Decoding Review

Recall the Reed-Solomon decoding algorithm from last lecture. Here we have n distinct points
Z1,...,%y € Fy given implicitly, and we are explicitly given as input elements yq,...,y, € F;. The
decoding algorithm consists of the following two steps:

1. FIND: Polynomials a(z) and b(z) such that:

e For all i € [n], a(z;)y; = b(z;).
e Degree of a is small (at most).
e Degree of b is small (less than k + ¢).

2. OUTPUT: %

11-95

11.1.2 Special Structure of Reed-Solomon Codes

The above algorithm and its proof of correctness used the properties of Reed-Solomon codes in
several ways. Below we list the different aspects that seem specific to Reed-Solomon codes.
1. We used the fact that the indices of the codewords (i.e., x1,... , ;) are field elements.

2. We used the fact that two low degree polynomials cannot agree in very many places, several
times (in the construction of the code, as well as the analysis of the decoding algorithm).

3. We used the fact that multiplication of two low degree polynomials is a low degree polynomial.
4. We also used the fact that under the right conditions, the ratio of two polynomials is a poly-

nomial.

Not very many of these above facts were really critical to the proof — they were just the simplest
way to get to the end. Some of the above properties (like (2)) are just facts that hold for any
error-correcting code. Others, in particular (3), are somewhat special, but can still be abstracted
with care.

11.1.3 Multiplication of vectors

One of the critical operations in the decoding algorithm is that of multiplying the error-locator
polynomial a(z) with the message polynomial p(z) and considering the evaluations of the product
at z1,... ,T,. This is essentially a coordinatewise product of vectors, defined below.

Definition 11.1 For u,v € I}, their coordinatewise product, denoted uxv, is given by

uxv = (Uvy,... ,Uplp).

If the coordinatewise product is a strange operation in linear algebra, then the following product of
sets is even stranger, but is critical to the working of the Reed-Solomon decoding algorithm.

Definition 11.2 For U,V C Fy their product, denoted U xV is given by
UxV ={uxvlueUveV}

Why are these operations interesting? To motivate them, let us look back at the RS decoding
algorithm:

e Let U be the set of vectors obtained by evaluations of polynomials of degree at most ¢.
e Let V be the set of vectors obtained by evaluations of polynomials of degree less than k.

e Then U %V is the set of evaluations of polynomials of degree less than k + ¢ that factor into a
polynomial of degree less than k and a polynomial of degree at most ¢.

e In particular U %V is a subset of the set of evaluations of polynomials of degree less than k+¢.

11-96

e To see that this is special, note that U is a vector space of dimension ¢ + 1 and V is a vector
space of dimension k. What we have noticed is that their product is contained in a vector
space of dimension k +t. This is very special. In general if we take two arbitrary vector spaces
of dimension k and ¢, their product would not be contained in any vector space of dimension
less than kt — so polynomials end up being very special!

In what follows we will show that this is the only speciality of polynomial based codes. We will show
that if any code ends up having nice properties with respect to product with some other codes, then
it can be decoded.

11.1.4 Error-Locating Pairs

Let C be a [n, k, ?], code and suppose, we wish to decode up to e errors with C. The following defi-
nition describes a simple combinatorial object, whose existence suffices to give a decoding algorithm
for C.

Definition 11.3 A pair of linear codes (A, B), with A, B C Ty, form an e-error-correcting pair for
a linear code C C Iy if they satisfy the following conditions:

~

. AxC CB.

2. The dimension of A is sufficiently large: Specifically, dim(A) > e.

3. The minimum distance of B is sufficiently large: Specifically, A(B) > e.
4. The minimum distance of C is sufficiently large: A(C) > n — A(A).

11.1.5 The Generalized Algorithm

In this algorithm, we assume that we are given generator matrices for linear codes A, B, and C,
where (A, B form an e-error-correcting pair for C.

Abstract decoding algorithm

Given: Matrices A,B, C generating codes A, B,C C Fy, with (A, B) forming e-error-correcting
pair for C. Received vector y € Fy'.

Step 1: Find a € A and b € B such that axy = b and (a,b) # (0,0), if such a pair exists.
Step 2: Compute z € (F, U {?})™ as follows: If a; = 0, then z; =7 else z; = y;.

Step 3: Output the result of performing erasure decoding on z for code C, if this results in a unique
codeword.

As usual we argue efficiency first and correctness later. Efficiency is obvious for Step 2. For Step 3,
recall that we observed in the last lecture that erasure-decoding can be done in O(n?) time for every
linear code. So it suffices to argue efficiency of Step 1. We do so by claiming this is a task of finding
a solution to a linear system. Note that we are searching for unknowns ai,... ,an,b1,... ,b, € Fy.
The condition that a € A places linear constraints on ay, ... ,a,. Similarly, the condition b € B

11-97

turns into linear constraints on by, ... ,b,. Also, the constraints a;y; = b; is also linear in a; and b;
(since y; is fixed). Lastly, the condition (a,b) # (0,0) is just asking for a non-zero solution to this
linear system. So the task at hand is that of finding a non-trivial solution to a homogenous linear
system. Again this can be done efficiently, in O(n?) time. It remains to prove correctness of the
above algorithm, and we do so next.

11.1.6 Correctness

The proof of correctness goes through the usual steps. We assume below that there exists a codeword
c € C that is close to (within a Hamming distance of e of) the received vector y. We fix this codeword
and use it to argue correctness.

Below we argue that a solution pair (a,b) to Step 1 does exist. We argue that any solution pair
(a’,b’) to Step 1 satisfies a’ x ¢ = b’. Next we show that for any pair a’ € A and b’ € B there is
at most one ¢’ € C such that a’ x¢’ = b’. The correctness follows by noticing that the solution
¢’ output by the algorithm satisfies a' xc’ = b’, if (a’,b’) is the solution found by Step 1. Details
below.

Claim 11.4 There exists a pair (a,b) as required in Step 1 exists. Furthermore they satisfy axc = b.

Proof By peeking back at the analogous claim in the Reed-Solomon decoder, we realize we want a
to be the “error-locator”, i.e., satisfying a; = 0 if y; # ¢;. Can we find such a vector that is non-zero?
Turns out we can, if we know A has sufficiently large dimension. In particular, the constraints a; = 0
give e homogenous linear constraints on ay, ... ,a,. Since A has dimension e+1 or larger (Condition
(2) of the definition of an error-correcting pair), it contains a non-zero vector that satisfies all these
constraints!

Now take a to be any non-zero vector satisfying a; = 0 if ¢; # y;. Take b to be the vector axc. Note
that b € B since AxC C B. Furthermore, for every i, we have either ¢; = y; and so b; = a;c; = a;y;,
or we have a; = 0 and hence b; = a;c; = 0 = a;y;. Furthermore the pair is non-zero since a # 0.
This concludes the proof of the claim. l

Claim 11.5 Ifa’,b’ are any pair of solutions to Step 1, then a’ xc =b’.

Proof Since a’, b’ are outputs of Step 1, they satisfy the condition, a’ xy = b’. Let a’ xc = b*.
To prove the claim we need to show b’ = b*. Since A x C C B, we know that b* € B. Therefore,
b’ and b* are two codewords of B that agree on every coordinate ¢ for which y; = ¢; (b} = a;y;
and b} = a;c;). But y; = ¢; on at least n — e coordinates, and so A(b’,b*) < e. But A(B) > e
(Condition (3) of the definition of an error-correcting pair), implying b’ = b* as required. H

Claim 11.6 For any (a’,b’) € Ax B—{(0,0)} there exists at most one ¢ € C' such that a’xc =b'.

Proof Let ¢,¢’ € C satisfy a’ xc = b’ = a’ x¢'. First, let us note that we actually have a’ # 0.
(If not, then b’ = a’ x ¢’ would also be 0 and this contradicts the condition that together then are
non-zero.)

11-98

To prove the claim, we wish to show ¢ = ¢’. Since both are codewords of C, it suffices to show that
A(c,c’) < A(C). But note that ¢; = ¢} for every i, where a} # 0. Further, since a’ # 0, we have
a; # 0 on at least A(A) coordinates. Thus we have, A(c,c¢’) <n — A(A). But Condition (4) in the
definition of an error-locating pair ensures that n — A(A4) < A(C). Thus we get A(c,c’) < A(C) as
desired. B

We can now formally prove the correctness of the decoding algorithm.

Lemma 11.7 If (A, B) form an e-error-correcting pair for C and ¢ € C and y € F satisfy

A(c,y) < e, then the Abstract decoding algorithm outputs ¢ on input A, B.C, and y.

Proof By Claim 11.4, we have that there exists a pair a, b satisfying the conditions of Step 1. So
some such pair a’, b’ will be found. By Claim 11.5, ¢ will satisfy a'xc = b’. Since, a'xc = b’ = a’xy,
we have ¢; = y; whenever a; # 0 and thus ¢; is a valid solution to Step 3 of the algorithm. To
conclude, we need to ensure that ¢ is the only solution to Step 3 of the algorithm. But this is also
clear, since any solution ¢’ to this step must satisfy a}c; = ajy; = b} for every 4, and thus must be a

codeword of C satisfying a’' x¢’ = b’ and by Claim 11.6, ¢ is the unique vector with this property. H

We conclude with the following theorem:

Theorem 11.8 Any code C that has an e-error-correcting pair has an efficient (O(n®) time) algo-
rithm solving the bounded distance decoding problem for up to e errors.

11.1.7 Applications

Exercise: Verify that the Welch-Berlekamp algorithm from the last lecture is an instantiation of
the Abstract decoding algorithm given today.

We now move on to a more interesting application. Recall the construction of algebraic-geometry
codes. (To be more precise, recall that we know very little about them to recall much.)

Algebraic-geometry codes. These codes were constructed by finding n points in Fy* and eval-
uating all polynomials of “order” at most £ at all n places. The following properties of order were

used in asserting that these gave good codes:
1. There exists an integer g such that for every /¢, the evaluations of polynomials of order at most
¢ formed a subspace of Fy of dimension at least £ — g + 1.

2. Two distinct polynomials of order at most £ can agree on at most £ out of the n evaluation
points.

3. The product of two polynomials of order ¢; and £5 has order at most 1 + /5.

These properties suffice to prove that codes obtained by the evaluation of polynomials of order at
most n—d+1 give an [n, k, d], code for some k > n—d—g+1. As we see below, the same properties
also give us an L%_Z_lj—error—correcting pair for these codes.

11-99

Lemma 11.9 If C is an algebraic-geometry code obtained by evaluating polynomials of order at
most £, then it has an L%ﬁl*lj -error-correcting pair.

Proof Lete< %_e_l. Below all references to the “Conditions” are to the four conditions in
the definition of an e-error-correcting pair.

To get an e-error-correcting pair, we need dim(A4) > e (to satisfy Condition 2). We will pick A4 to
be the algebraic-geometry code obtained by evaluations of all polynomials of order at most e + g.
Since we need A x C C B, we pick B to be the algebraic-geometry code obtained by all evaluations
of polynomials of order at most e + g + £, and thus satisfy Condition 1. To satisfy Condition 3, we
need A(B) > e. We know from the properties of algebraic-geometry codes, that B has distance at
least n — e — g — £. From the choice of e, it follows that n —e — g — £ > e. Finally, to get Condition
4, we need to verify that A(A) + A(C) > n. Since A(A) > n—e—g and A(C) > n — £, this amount
to verifying that 2n — £ — e — g > n which is equivalent to verifying that e < n — £ — g. But in fact
e is less than half the RHS. Thus (A, B) as chosen above give an e-error-correcting code for C. B

As a corollary we see that we get a pretty decent decoding algorithm for algebraic-geometry codes,
correcting about (n — £ — g)/2 errors. However, it does not decode up to half the minimum distance,
since the distance is n — £ and we are only correcting (n — £ — g)/2 errors. Later in the course we
will see a better algorithm.

Before concluding this section, we mention one more case where the abstract decoding algorithm
provides an inspiration for a decoding algorithm. This is the case of the Chinese Remainder Codes,
described next.

Chinese Remainder Codes. The Chinese Remainder Codes are number-theoretic codes defined
as follows:

e Fix primes py,...,p, such that py <py < --- < py,
o A message is an integer m € [0... K — 1] where K = Hle Di-

e The encoding of m is the vector (m(modpy),... ,m(modp,))-

By the Chinese Remainder Theorem, residues of m modulo any k of the n primes, suffices to specify
m. Thus specifying its residue modulo n primes, makes the above a redundant encoding. This is
not one of our usual algebraic codes — in fact it is not even linear! However, one can apply our
usual notions of distance, error-detection and correction to this code. We note the code has distance
n — k + 1 (since specifying the residues modulo k primes, specifies the message). So one can as
the question - is it possible to correct (n — k)/2 errors. The first decoding algorithm was given
by Mandelbaum [76]. Later work of Goldreich, Ron, and Sudan [39] showed how to interpret this
algorithm as a relative of the abstract decoding algorithm given here. Turns out both algorithms
correct slightly less than (n — k) /2 errors in polynomial time — this was fixed later by Guruswami,
Sahai, and Sudan [44] using the algorithm of [39] in combination with an algorithm known as the
“Generalized Minimum Distance Algorithm” that we will talk about in the next section.

11-100

~—— Quter Decoding

Figure 11.2: Decoding concatenated codes

11.2 Decoding Concatenated Codes

We now move on to an elegant solution for the unambiguous decoding problem for some families of
concatenated codes. Let us start by recalling concatenated codes.

Concatenated Codes. Given an [n,k,d]g outer code C; with encoding function E; and an
[n2, k2, d2]4 inner code Cs, with encoding function E,, where) = ¢*>, their concatenation, denoted
C1 0 Cy, is the [nng, kk2, dds], code obtained as follows: Start with a message m €]F’é2 and encode
it using Ey to get a vector X = (%1,...,&,), where x; € Fg. Now, viewing the z;’s as elements of
]F‘;C2 encode them using E> to get y = (y1,... ,yn) where y; € Fy? ad the encoding of m. (See also
Figure 11.1.)

Getting some reasonable algorithms for decoding concatenated codes is not so hard, under some
reasonable assumptions. Such an algorithm would take a received vector r = {ry,...,r,), where
r; € F}? and decode them in two steps, inverting the encoding steps. So first it would decode the
r;’s individually to their nearest codewords. For i € [n], let E3(u;) be the codeword of Cy nearest
to ¥, where we view u; € Fg as an element of]F’q“2. Now we treat u = (uy,... ,u,) as a corrupted
codeword of Cy and decode it using a decoding algorithm for E;. (See Figure 11.2.)

First, let us note that for the concatenated codes we have considered so far (Forney codes and
Justesen codes), the above is actually efficient. Recall that in these applications the outer code
is a well-studied code such as the Reed-Solomon code with efficient decoding algorithms. On the

11-101

other hand the inner code is not well-understood — the only thing we know about it is that it
has good minimum distance properties. So it is not reasonable to expect a sophisticated decoding
algorithm for the inner code. But then the inner codes are so small the brute-force decoding only
takes polynomial time in the length of the concatenated code, so we don’t need a sophisticated inner
decoding algorithm. So the entire decoding process described above takes time polynomial in the
length of the concatenated code, for the typical codes.

However, this doesn’t give us an algorithm decoding upto half the minimum distance of the concate-
nated code! It may only decode d% errors. We won’t prove that it can correct so many errors, or
that it can’t correct more. But to see a plausibility argument, note that to get a decoding failure,
the adversary only has to ensure d/2 of the symbols u; # z; and to get any such decoding error for
the inner decoder it may only need to flip d5/2 symbols of the inner alphabet. Thus a total of dds /4
errors may lead to a decoding failure. Below we will show a clever algorithm which gets around this
problem with relatively little extra information about the outer decoding algorithm. This algorithm
is the Generalized Minimum Distance (GMD) Decoding Algorithm, due to Forney [55] (see

also [54]).

Exercise: Prove that the decoding algorithm outlined above does indeed correct at least (d—1)(d2 —
1)/4 errors.

11.2.1 Decoding errors and erasures

Let us start by looking at the decoding algorithm we have for the outer code. We already seem to
be making full use of it — we assume it can correct (d — 1)/2 errors, and it can’t possibly correct
more errors unambiguously. Turns out, there is one additional feature of the decoding algorithm for
the outer code that comes in quite handy. This is the feature that it can deal with erasures quite
naturally and benefit from it.

Proposition 11.10 Let C be an [n,n — d + 1,d], Reed-Solomon code. Suppose r € (F, U {?})"
is a vector derived from a codeword ¢ € C by s erasures and t errors. Le., |{i|r; =7}| = s and
[{ilc; # ri and r; #7}| =t. Then ¢ can computed efficiently given r, s, t provided s + 2t < d.

Proof The proposition is straightforward, given the observation that the code C’, obtained by
puncturing C on the coordinates where there are erasures, is an [n —s,n—d+1, d — s] Reed-Solomon
code and thus (d — s — 1)/2 errors can be corrected efficiently. H

How can we use the option to declare erasures? In the process of decoding the inner code, we ignored
some obvious information that was available to us. We not only could find out the encoding of which
message word u; was closest to the i¢th received block r;, but we also know how many errors have
(potentially) occurred in each block. Somehow we should make use of this information. A natural
idea is to to declare blocks with large number of errors to be erasures. This works out roughly
correct. We will see that a simple probabilistic interpretation of the distances give a right strategy
for declaring erasures.

11.2.2 A randomized decoding algorithm

Let us fix some notation, that we have been introducing as we went along. The message vector is
m, its encoding under the outer code is x = (z1,... ,z,), where z; € Fg = IF";Z. The encoding of

11-102

x; under the inner code is y; and thus the final codeword is y = (y1,... ,¥»n). The noisy channel
corrupts y and a vector r = (rq,...,r,) is received. We now describe the decoding algorithm for
this code.

Random-Concat-Decoder

Given: r = (ry,...,rp).

Step 1: For i € [n], compute u; that minimizes A(E5(u;),r;).

Step 2: Set e} = min{dy/2, A(Es(u;).r;).

Step 3: For every i € [n] repeat the following: With probability 2e}/ds, set v; =7, else set v; = w;.
Step 4: Perform errors and erasures decoding of the vector v = {vy,... ,v,).

Step 5: If a vector m' € g, is obtained in Step 4, check to see if A(Ez o Ey(m),r) < (dd2)/2 and
if so output m'.

The above algorithm clearly works in time that is O(nna@ + T'(n)), where T'(n) is the time taken by
the errors and erasures decoding algorithm. The main issue is how many errors it corrects. We will
claim that it “essentially” solves the unambiguous decoding algorithms for the concatenated code.
We do so via a claim that is weak in that it only shows that the expected number of errors and
erasures fall within the decoding capability of the outer code.

Lemma 11.11 Let e; = A(r;,y;) and e = Y. e;. When v is picked at random by Random-
Concat-Decoder, then we have:

Exp [# erasures in v +2- (# errors in v)] < 2e/ds.

Remark: Note that if e < ddy /2, the RHS above is less than d as one would hope for.
Proof Note that is suffices to argue that for every i
Pr [erasure in ith coordinate] 2 - Pr[error in ith coordinate] < 2e;/da, (11.1)

and then the lemma will follow by linearity of expectations. We prove this in cases.

Case 1: u; = z;: In this case, the probability of an error in the ith coordinate is 0 and the probability
of an erasure in the ith coordinate is 2e}/dy. Since u; = z;, we also have e; = e}, and so we find
that the LHS of (11.1) is indeed equal to 2e;/d>.

Case 2: w; # ;. In this case, we could have an error in the ith coordinate — this happens with
probability 1 — 2e}/d., while with probability 2e]/d; we get an error. We need to express these
quantities as a function of e; (rather than e}) and so we note that e; > dy — €} (since A(Ey(z;),1;) >
A(Es (), Ea(ui))— A(ri, E2(ui))). Now we have that the probability of an error is at most 2e;/dz—1
and the probability of an erasure is at most 2 — 2e;/ds2. Plugging these into the LHS of (11.1), again
we find that the LHS is bounded by 2e;/d>. B

The above lemma implies that there is positive probability associated with the event that v has
small number of errors and erasures. However we did prove not a high probability result. We won’t
do so; instead we will just derandomize the algorithm above to get a deterministic algorithm for the
unambiguous decoding problem.

11-103

11.2.3 Deterministic Decoder for Concatenated Codes

We will develop the deterministic decoder in two (simple) steps. First note that we didn’t really
need the random choices in Step 3 of Random-Concat-Decoder do not need to independent
and expectation bound (Lemma 11.11) also holds if these events are completely dependent. So, in
particular, the following algorithm would work as well.

Modified-Random-Concat-Decoder

Given: r = (ry,... ,rp,).

Step 1: For ¢ € [n], compute u; that minimizes A(E5(u;),r;).

Step 2: Set e} = min{d>/2, A(E2(u;).r;).

Step 3.1: Pick p<[0, 1] uniformly at random.

Step 3.2: For every i € [n] if 2e}/d> > p, set v; =7, else set v; = u;.

Step 4: Perform errors and erasures decoding of the vector v = {vy,... ,v,).

Step 5: If a vector m' €]F’j2 is obtained in Step 4, check to see if A(E2 ¢ Eq(m),r) < (dd2)/2 and
if so output m’.

As in the analysis of Random-Concat-Decoder we see that the random variable v as defined in
Steps 3.1 and 3.2 above satisfies the condition:

Exp [# erasures in v + 2 - (# errors in v)] < 2e/ds.

In particular, there exists a choice of p in Step 3.1, such that for this choice of p, the vector v
obtained in Step 3.2 satisfies the condition:

(# erasures in v) + 2- (# errors in v) < 2e/ds.

The only interesting choices of p are from the set S = {0,1} U {2e}/ds|i € [n]} since for every other
choice of p, there is some p’ € S for which the vector v obtained is identical for p' and p. This gives
us the deterministic algorithm below:

Deterministic-Concat-Decoder

Given: r = (r1,... ,rp,).

Step 1: For i € [n], compute u; that minimizes A(E5(u;),r;).

Step 2: Set e} = min{ds/2, A(E2(u;).r;).

Step 3.1: Let S = {0,1} U {2¢]/da|i € [n]}. Repeat Steps 3.2 to 5 for every choice of p € S.

Step 3.2: For every i € [n] if 2e}/ds > p, set v; =7, else set v; = u;.

Step 4: Perform errors and erasures decoding of the vector v = {vy,... ,v,).

Step 5: If a vector m' €]F’é is obtained in Step 4, check to see if A(Ez ¢ Eq(m),r) < (dd2)/2 and
if so output m’.

11-104

The running time of this algorithm is O(nn2@ +nT(n)) where T'(n) is the running time of the errors
and erasures decoder of the outer code. Correctness follows from the arguments developed so far.
We summarize the discussion with the following theorem:

Theorem 11.12 Let C be the concatenation of an [n, k,d|g outer code Cy and an [na, k2, ds], inner
codee Cy with Q = ¢*2. Suppose Ci has an “errors and erasures decoding algorithm” running in
time T'(n) decoding up to s erasures and t errors provided s + 2t < d. Then C has an unambiguous
decoding algorithm running in time O(nn2@ + nT'(n)).

Again, the running times can be improved with some effort. In particular, Kotter [62] shows how to
cut down the run time to just O(nn2@ + T'(n)) for some families of concatenated codes.

11-105

Chapter 12

6.897 Algorithmic Introduction to Coding Theory October 29, 2001

Lecture 12
Lecturer: Madhu Sudan Scribe: George Savvides

Today’s topics:

1. Combinatorics (revisited), including two new proofs of the Johnson bound.

2. List decoding for Reed-Solomon codes.

12.1 Combinatorics revisited

Let us recall the notion of an (e, £)-error-correcting code !

Definition 12.1 Given an [n,k,d];-code C, we say that C is an (e, £)-error correcting code, if for
any received vector r € Ty, there exist at most £ codewords ci.. .. ,c¢ € C such that A(c;,r) <e.

In other words the code C' can correct up to e errors with lists of size £. The natural algorithmic
problem arising out of the above definition is whether (and how) we can find all such codewords in
polynomial time. That is:

Given: r € F}, an arbitrary received vector).

Output: A set (list) of codewords {cy, ... ,c/} such that every codeword c that satisfies A(c,r) <e
is included in this set.

We will require that our algorithm’s running time be polynomial in the input size. Notice that it
is possible that if £ is superpolynomial, then such an algorithm can not exist! So, a prerequisite

INote that in previous lectures, we used to call this a (t,£)-error-correcting code. We are changing the parameter
label for this lecture, since we end up using ¢ for the “opposite” of e, i.e., the number of agreements rather than
number of errors.

12-106

for the existence of this algorithm is that the code be an (e, f)-error-correcting code for £ that is
a polynomial in the block length of the code. When do we know that an [n, k,d],; code is also an
(e, £)-error-correcting code for some £ that is polynomial in n? The Johnson bound ought to come
to mind at this stage. (Though, given the general sentiment against naming bounds by discoverer’s
names, one can be forgiven for not coming up with the right name. Hopefully the question still does
ring a bell.) We recall the Johnson bound below:

Theorem 12.2 (Johnson bound) Let ¢ = £ and § = . An [n,k,d],-code is an (e,n)-error-

correcting® code provided that
-1
e< (1o fi- L)
q g—1

Recall that in class we proved the binary case of the theorem, where the condition on € was

65%(1—@).

The Johnson bound applied to Reed-Solomon codes In the case of RS codes, ¢ — 00, so
we can simplify the bound above. In particular, we get that the [n, k, d], RS-code is also an (en,n)-
error-correcting code for e < 1—+/1 — 4. Using the fact that the rate R of such a code is 1 — §, the
above bound says that the “list-of-n decoding radius” of the code is 1 — v/R. To compare this with
the list-of-1 decoding radius (or the unambiguous decoding radius), in such case we can only allow
e < %. Thus, as we would hope, the list-decoding radius is strictly larger than the unambiguous
decoding radius for any Reed-Solomon code of rate less than 1.

Furthermore, to highlight the difference, let us consider an extremal case when we let the rate
approach zero:

1.Im1-vVR=1 (soe—1)
R—0

1-R
2. lim —— =1/2 1/2
lim — /2 (soe—1/2)

Thus in Case 2 (unambiguous decoding), a necessary condition for successful decoding is that the
fraction of errors be bounded from above by the fraction of correct information. However, list-
decoding seems feasible (combinatorially, at least) even when this condition is violated — i.e., when
the amount of correct information is overwhelmed by the amount of erroneous information. As we will
see over the course of the next couple of lectures, this barrier can be overcome even algorithmically!
But first, we will celebrate the Johnson bound (er ... yes, we still don’t have a better way to name
the bounds) by giving two alternate proofs of the bound.

12.2 Two proofs of the Johnson bound

The elegance and beauty of some of the (numerous) proofs of the Johnson bound are part of the
reason why this particular bound is of interest to us. Below we will see two new proofs of the Johnson
bound for the case of Reed-Solomon codes. Let us first recall the problem being considered:

2yes, n is both the size of the codewords and the size of the list

12-107

Given n distinct points z1,... ,2, € F; and n values rq,... .r, € F;, bound the number
of polynomials p of degree at most k, such that p(z;) = r; for at least ¢ values of i € [n].

Note that we have shifted the focus to the number of agreements rather than the number of errors.
This is a better choice, since this is the smaller number and hence it is a more refined number to
look at (as opposed to the number of disagreements). Our bounds will be of the form “the number
of such polynomials is small, provided ¢ > ¢vkn. We now give the proofs.

12.2.1 Using the Inclusion-Exclusion principle

The inclusion-exclusion principle shows how to count the number of elements in the union of £ sets,
given the sizes of all interesections. While the full formula (not given here) gives the size exactly,
portions of the formula are known to give bounds on the size of the union. The union bound is a
simple version which says that the size of the union is at most the sum of the sizes of the individual
sets. Looking at sizes of pairwise intersections gives the lower bound below:

Proposition 12.3 (Weak Inclusion-Exclusion Principle) For any{ subsets Sy, ... ,S; of some
finite universe X, the following inequality holds:

4 l
Usi| = YIsil - > ‘Sjlﬂsjz
7j=1 j=1

1<51<j2<1

Exercise: Prove Proposition 12.3.

Now, we show how to apply the Inclusion-Exclusion Principle to our problem. Suppose p1,... ,pe
are degree k polynomials that agree with the given points on at least ¢ places. We define S;, j € [{]
as follows:

Sj=A{i € [n] | pj(xi) =ri}.

We note that S;’s satisfy the following properties:

e For every j € [n], |S;| > t: By hypothesis.

Uj’:1 Sj| < n: Obvious, since each S; C [n].

e For every distinct ji,j2, |Sj, [Sj.| < k: Since pj, (x;) = pj, (z;) for every i € S;, (S;,, and
two distinct degree k polynomials may agree on at most k distinct elements of [, .

From the above, and the inclusion-exclusion principle, and the fact that there are (g) pairs of

intersections to consider, we have:

nze-t—@)-k. (12.1)

Further, by monotonicity, we actually have

!
Ve <¢ nZé'-t—(i)-k. (12.2)

12-108

.
, < .
(If there are £ polynomials with agreement of ¢, then are also £’ < £ polynomials with agreement ¢.)

The following unremarkable and tedious lemma finishes off the proof:

Lemma 12.4 Suppose n, k,t are positive integers such that t > v/2kn. Thenn < ¢ -t — (g) -k for
r=2)

Proof Let g(z) = 2% — (¢t + £) z +n. Note that 2n < ¢' < 22 4 1. By convexity of g(-) we have
g(') <max{g(22),g (22 +1)}. We argue that both g (22 —1) and g (22) are negative. First,
2n 2kn? n(2t+k
PCARELUL AL
_ n(2kn —t2 — kt)
= ==
—nkt
; (Using 2nk < t2)
< 0.
Next, we have:
2n kE(2n+t)? (2t+k)2n+1t)
Ly = -
95+ 212 2
_ An’k + 4Ankt + tk — 4nt® — 2t3 — 2nkt — kt* + 2nt?
B 212
_ 4n®k + 2nkt — 2n¢* — 263
B 2t2
t2(2n +t) — 2nt? — 2¢3
< (2n +)2t2 n (Using 2nk < t?)
_ (2n+t)—-2n-2t
B 2
_
)
< 0.

We conclude with the first bound.

Theorem 12.5 Given points {(x;,7;)}", there are at most 27” polynomials p of degree at most k
that satisfy |{i € [n] | p(z;) = yi}| >t if t > V2kn.

Note that this bound as well as the next one are just weak versions of the bound given in Theo-
rem 12.2. Both apply generally to codes. However we are just specializing the arguments to the
case of polynomials, to keep the notation simple. We just repeat them here to give further intuition
into what they are trying to prove, and to illustrate the simple proof techniques.

12.2.2 Using graph theory

Our second proof of the “Johnson-like bound” goes via graph theory. We model the problem graph-
theoretically as follows:

12-109

Given a received vector r and codewords cy,...,cy we construct a bipartite graph B with vertex
set L U R and edges being a subset of L x R as follows:

Left vertices: L = [n], corresponding to the n coordinates of the received vector.
Right vertices: R = [{] corresponding to the ¢ codewords cy, ... ,cp.

Edges: There is an edge between i € L and j € R iff r; = (c;);.
The properties of the problem at hand translate to graph theoretic properties as follows:

Distance property: Two codewords can’t agree with each other on & indices. In particular this
implies that two coordinates can’t agree with r on the same subset of k indices. Thus the
graph B does not contain K}, o, the complete bipartite graph with &k vertices on the left and 2
vertices on the right, as a subgraph.

Agreement property: The agreement between codewords and r implies that every vertex on the
right is adjacent to at least ¢ vertices on the left. For simplicity in the analysis we will throw
away some edges in the graph, so as to get right vertices to have degree exactly ¢. Notice the
graph still does not have any Ky » after this deletion.

We will see that these properties will allow us to conclude that the graph doesn’t have too many
vertices on the right (so £ is “small”, as desired). Such bounds are called “Zarankiewicz bounds” after
a Polish mathematician Kazimierz Zarankiewicz who studied such forbidden subgraph problems.

Lemma 12.6 If a bipartite graph B = (L, R, E), with |L| = n and |R| = ¢, has right degree t and
no Ky 2,
n(t —k)

5 Tn provided t2 > nk.

L <

Proof We prove the lemma using a probabilistic argument. Let d; denote the degree of the ith
vertex in L. Note that) . d; =£-t.

Let p; denote the probability, when two distinct elements j; and js are picked uniformly at random
from R, that both j; and j» are adjacent to i. We have:

pi = (3) _di—d
) e-e

Now consider the expected number of common neighbours that distinct elements j; and js have
when they are picked uniformly at random from R. This quantity is given by

1 &,
Dpi= g 2(d —do).
i i=1
Since this quantity better be less than k, we get
1 n

a2 —di) <k

i=1

12-110

The non-trivial component in the inequality above is)" ;.. Subject to the condition that). d; = ¢t,
this quantity is minimized when all the d;’s are equal This is proves via a standard inequality known
as the Cauchy-Schwartz inequality. For any two real vectors a = {as,... ,a,) and b = (b1, ... ,b,),
the Cauchy-Schwartz inequality says that (a,b)> < (||a]|? - ||b||?). Applying it to a = (dy,... ,d,)
and b=(1,...,1), we get (31, d;)> <n >, d7. Thus the inequality above becomes:

1 [< ’)
E(;d,) —;di<k(€ —0).

€22
@T—Et<k(€2—£).

t2
@E(——k) <t-—k.
n

n(t—k)
t2 —kn

Thus we have

L< provided t? > nk.

Theorem 12.7 Given points {(x;,r;)}_, there are at most ’;gi‘k’j} polynomials p of degree at most

k that satisfy |{i € [n] | p(zi) = vi}| >t if t > VEn.

12.3 List decoding for RS codes

We now move on to the algorithmic versions of Theorems 12.5 and 12.7. We state the problem next.

List decoding of Reed-Solomon codes:

GIVEN: Point pairs {(z;,y;) | ¢ € [n]} with each pair being distinct and parameters k
and t.

FIND: A list of all polynomials p of degree at most k that satisfy p(z;) = y; for at least
t values of i € [n].

Our goal is to get a solution that works provided ¢t > vkn (so as to match Theorem 12.7). Today we
will settle for any t = ©(vkn). The algorithm is actually pretty simple. We motivate it by looking
at a toy problem.

12.3.1 A toy problem

Suppose the message polynomial is a polynomial p; and the errors in our point pairs actually come
from a second polynomial py. It is clear that our algorithm should output as answers p; and po
(assuming both polynomials are represented often enough). How do we come up with an algorithm
whose output is “The answer is pi(-) OR p2(-)”? The Boolean OR in the statement seems to be
hard to capture algebraically. We attempt to capture this by introducing two variables z and y
representing the two coordinates of the pairs that are given to us and noticing that it is easy to
come up with an algebraic relation explaining all the given points.

12-111

The given set of points satisfy:

(yi — p1(=:)) - (yi — pa(=)) = 0.

(In other words, multiplication captures the OR of two relations). Indeed if we can find two polyno-
mials p; and py such that the above relation is satisfied by all pairs of points, then we could output
p1 and py as our solution, and this would seems to be good enough. (We will prove later that this
would suffice, but now we turn to the more important question.) The question is, how do we find
such polynomials?

To find p; and p2, we expand the quadratic expression above, and see that there must exist two
polynomials B(z) and C(z) such that the following conditions hold:

1. For every i € [n], y? — B(xi)y; + C(z;) = 0.
2. There exist polynomials p; and ps such that

e B(z) = pi(z) + p2().
e C(z) = pi(z) - p2().
3. deg(B) < k and deg(C) < 2k.

As in previous cases (e.g., the Welch-Berlekamp algorithm), we ignore conditions that seem to be
hard to enforce and hope the rest suffice to find the solution anyway. In the above set of conditions,
(1) and (3) are easy to enforce (we will see so shortly), but condition (2) is not! So we will omit
condition (2) and look for B and C' satisfying the remaining conditions. This motivates the following
algorithm.

Algorithm for toy problem:
Step 1: find B and C such that V i € [n]:

o y7 — B(xi)y; + C(z;) = 0,
e deg(B) <k, and
e deg(C) < 2k,

provided such a pair exists.

Step 2: Factor the polynomial y? — B(z)y + C(z). If it factors into (y — f(z)) - (y — g(x)), output
fand g.

As in the case of the Welch-Berlekamp algorithm, we have to argue that this algorithm is efficient
and correct and we go through the usual steps to do so. Btw, this paradigm is not special to coding
theory, but rather to algebraic algorithms, where one finds out enough information about the solution
to outline an algorithm, and then shows that the information is sufficient to have pinned down the
answer separately.

We start by describing the algorithmic complexity of the two steps above:
Step 1: We can approach this problem through linear algebra. We wish to find polynomials B and
C, or rather their coefficients so that the constraints of Step 1 are satisfied. The constraints

are linear in the coefficients (though not linear in z;’s and y;’s) and so if a solution exists, one
can be found efficiently.

12-112

Step 2: This specific case is easy to handle based on the standard formula for computing roots of
quadratic equations. However, we will appeal to a more general solution. It turns out that
the task of factoring multivariate polynomials is solvable very efficiently in general. Three
indepent works in the eighties, Grigoriev [43], Kaltofen [58], and Lenstra [65], addressed this
problem. At the very least, they show that every polynomial in a constant number of variables
can be factored in time polynomial in the degree of the input polynomial. This is sufficient
for our purposes. But in case you care, Kaltofen and Trager [59] give much stronger results,
essentially giving running times that are polynomial in the degree of the polynomials and the
number of variables, provided you let them pick the representation of the polynomials. A note
on the dependence on the field size. If the field is finite and has characteristic p (i.e., the
field is an extension of F,, for some prime p) then the running time is polynomial in p and the
logarithm of the field size. It can also be made purely polynomial in the logarithm of the field
size, if we allow the algorithm to be randomized. All of this is inherited from the underlying
algorithms for factoring univariate polynomials (see [16, 17, 25] etc.). Over the rationals, the
algorithms run deterministically in time polynomial in the input size, again inheriting their
performance from the univariate case, solved by Lenstra, Lenstra, and Lovasz [66].

Back to the algorithm at hand, notice that Step 1 requires that a solution exist, and Step 2 has a
solution only if a possible factorization exists. Below we argue that the solutions do exist assuming
our problem instance is fitting the promises of the toy problem.

12.3.2 Correctness of algorithm for the toy problem

We argue the correctness of the two steps in order.
Claim 12.8 Under the hypothesis of the toy problem, a solution to Step 1 exists.

We already argued this in motivating the algorithm, so we won’t restate the proof. We move on to
the more important claim, which states that any solution to Step 1, has the “right” factorization.
This claim is important in that its proof generalizes naturally to the “non-toy case”.

Claim 12.9 If B and C are any solutions to Step 1 and p is any degree k polynomial that agrees
with the given point set on t > 2k + 1 points, then y — p(z) | y?> — B(x)y + C(z).

Remark: Recall that the above claim is a specialization of “Bezout’s theorem in the plane” —
something we alluded to in our coverage of algebraic-geometry codes. This theorem (family of
theorems, really) says that two algebraic curves in the plane can not share too many points without
sharing a common component.rather Below we find a proof of this fact in this special case. We will
generalize the proof a little more, but not completely, by the end of this lecture.

Proof Before we go into the proof of this particular case, let’s see how we may prove that some
polynomial of the form y — p(z) divides some other polynomial. The classical way to do this, is to
think of the polynomial Q(z,y) = y? — B(x)y + C(x) as a polynomial Q(y) only in y with coefficients
that happen to be from F,[z]. To prove that some polynomial y — « divides Q(y), we need to show
that @Q(a) = 0. In our case, this says we should consider the quantity g(z) = Q(x,p(z)), which
happens to be a polynomial in 2 and show that it is zero. Now the question has turned into one
about showing a polynomial in z is zero. The standard method for this step is to bound the degree
of g from above, and show that g has more zeroes than its degree. This is exactly what we do below.

12-113

Let g(z) = Q(z,p(x)). By inspection, we note that g(z) is a polynomial of degree at most 2k in z.
Now consider an index ¢ such that y; = p(x;). For such an 4, we have

g(z;) = Q(=z;,p(x;)) (By definition of g)
Q(z;,y;)) (By choice of i)
= 0 (By property of @, returned in Step 1)

Since y; = p(z;) on at least 2k+1 points, we have g has more roots than its degree, and thus g(z) = 0.
Now, viewing @ as a polynomial in y with coefficients from F,[z], we get that Q(p(z)) = 0, and so

y — p(z) divides Q(y). A

In our treatment of the “toy problem” above, very little was specific to having the solution come
from one of two polynomials. We could easily handle 20 polynomials in the same way. Note however
that the answers must come from a finite set of polynomials.

General case

We now move to the general case, (i.e., no longer sticking with the toy problem). Surprisingly
enough, we won’t change the algorithm, and even the analysis will change only mildly!

RS-list-decoder-1:
Given Set of n distinct pairs {(z;,y;)|¢ € [n]}, and integers ¢ and k.
Parameters: ¢ and D to be set later.

Step 1: Find a bivariate polynomial Q(x,y) of degree £ in y and degree D in x such that:

* Qzi,y)) =0 Vi
* QF0.

Step 2: Factor (z,y) and output the list of polynomials p of degree at most k provided:

®y —p(iﬂ) | Q(may)a and
e p(z;) = y; for at least t values of i € [n].

It is evident that this still works efficiently — Step 1 is still solving a linear system and Step 2 is
factoring a multivariate polynomial. What we need to argue is the correctness. The main concern in
the correct is that we have no reason to believe a solution should exist for Step 1. It turns out that
this is completely trivial — in a technical sense! We will show that really nice polynomials fitting
the condition of Step 1 exist without any conditions on the points (only on the degree of @).

Proposition 12.10 Given any set S = {(z;,y:)|i € [n]}, of n pairs from F, xF, there is a non-zero
polynomial Q) with deg,(Q) < % and deg, (Q) < £, such that Q(xi,y;) = 0 for every i € [n].

Proof Note that the linear system to be solved, to find @ is a homogenous linear system (which
is why we go to the trouble of avoiding the all zero solution), and it has (£ + 1)(|n/¢] +1) > n
coeflicients, and only n constraints. So the system is “underdetermined” and thus has a non-trivial
solution. W

12-114

As a special case, we could ask for polynomials of degree v/n in 2 and y, and Proposition 12.10 asserts
that such a polynomial fitting n points always exists. Notice that we are gaining upon univariate
fits, by a whole /n factor and this is where the crucial advantage comes from. Of course, the proof
makes it totally clear that this @-polynomial is very unlikely to be uniquely specified at this stage
— but this is usually tackled by algebraic means.

We will prove a stronger version of Claim 12.9 below (actually, state a stronger version and let the
reader prove it as an exercise).

Lemma 12.11 If Q is any solution to Step 1 and p is any degree k polynomial that agrees with the
given point set on t > D + £ - k points, then y — p(z) | Q(z,y).

The proof is totally identical to that of Claim 12.9, with the minor change that the degree of the
g polynomial (and hence the agreement required) go up to Df. The reader should verify the claim
though!

Putting Proposition 12.10 and Lemma 12.11 together, we get the following theorem.

Theorem 12.12 The algorithm RS-list-decoder-1 with the setting D = +/nk and £ = \/n/k
solves the RS list decoding problem in polynomial time provided t > 2v/kn.

Proof By Proposition 12.10, a non-zero polynomial Q(z,y) with deg,(Q) < D and deg, (Q) < D
does exist. By Lemma 12.11, such a polynomial will have y — p(z) as a factor, if p is any degree k
polynomial that has agreement D + £ -k = 2v/nk. B

This bound is not optimal. Notice that the “Johnson bound” from Theorem 12.7 only requires
t > vkn and so we are off by a factor of 2. We can actually get rid of one /2 factor in ¢ by a close
examination of the proof, and defining and controlling the degree of) more carefully. We will see
this at the beginning of the next lecture. The second /2 factor is more important. We will get rid
of this in a much more involved algorithm later next lecture.

Bibliographic Notes
The first proof of the Johnson bound (inclusion-exclusion) is a “folklore” result in the CS literature
(cf. [31, 40] etc.). The second proof of the Johnson bound is due to Jaikumar Radhakrishnan [90].

The algorithm for list-decoding of Reed-Solomon codes is from Sudan [109]. Most of the key insights,
and in particular the solution to the “toy problem”, is from the work of Ar, Lipton, Rubinfeld, and
Sudan [5]. The main observation in [109] is the “triviality proposition”, Proposition 12.10.

12-115

Chapter 13

6.897 Algorithmic Introduction to Coding Theory October 31, 2001

Lecture 13
Lecturer: Madhu Sudan Scribe: Hoeteck Wee

Today’s topics:
e Review of & improvement to list-decoding from last lecture.

e Mo’ better list-decoding.

e Towards generalization of decoding algorithms.

13.1 Review of List-Decoding

We will start by reviewing the list-decoding algorithm for Reed-Solomon codes from the last lecture,
from a very high-level (or hand-wavy, if you prefer) perspective. The goal is to stress the simplicity
of the algorithm. Then we will do a careful analysis of the algorithm to see how to get rid of one of
the two /2 factors that separate the algorithm from the combinatorial bounds.

13.1.1 The algorithm on an example

To recall the idea of the algorithm, it is illustrative to consider an example. We will consider an
example consisting of 13 points in the real (Euclidean) plane (x;,¥;),1 <1 < 13, We will try to find
all degree one polynomials passing through at least five points. Note that the numbers are chosen
for illustration only. Certainly the ability to find degree one polynomials should not be considered
the high-point of the algorithm, since “brute-force” algorithms could do this in quadratic time.

13-116

The main notion that distinguishes this approach from the traditional coding-theoretic approach is
that instead of pulling out our calculators and interpolating, we are sitting back and contemplating.
We try to find a nice algebraic curve that can explain all the 13 points. One such curve is drawn
below.

The curve turn out to be Q(z,y) = z* — y* — 22 + 4% = 0 (assuming the central point is the origin
and that the points are scaled appropriately). The picture above is the plot of all its zeroes. Clearly
there are three distinct components to the set of all zeroes. These correspond to the factorization of
@ whose factors are — y, © + y and z? + y2 — 1. While the algebraic operation of factorization is
needed to tell the components, the human eye doesn’t need this calculation either - since the picture
clearly distinguishes the three factors. In fact a close look at existing factorization algorithms for
multivariate polynomials reveals that they are based on the geometric intuition that is evident in
the picture above — they factors can be derived by fitting polynomials to zome zero of Q(z,y) and
its local naighborhood.

13.1.2 Weighted degree and some minor improvements

To get the best possible performance out of the algorithm above, we need to be more careful with
the degree of the polynomial @) that we pick. For example, when we are trying to find a list of all
degree 1 polynomials, p, it is better to pick @) of the smallest possible total degree, rather than the
smallest individual degrees in z and y. Based on this idea, and keeping in mind that at some point
we end up substituting for y a degree k polynomial p in z (and that we have no idea what this
polynomial p is going to be), it is best to fit a polynomial @ that minimizes a “weighted” degree
function. We define this weighted degree next:

Definition 13.1 The (ky, ko)-weighted degree of a monomial x'y’ is the quantity i - k1 + j - ka.
The (k1, k2)-weighted degree of a polynomial Q(x,y) is the mazimum, over all monomials in Q with
non-zero coefficients, of their (ky, ka)-weighted degree.

13-117

We now present the fully optimized algorithm for Reed-Solomon decoding;:

RS-list-decoder-2:
Given Set of n distinct pairs {(z;,y;)|i € [n]}, and integers ¢ and k.
Parameter: D to be set later.

Step 1: Find a bivariate polynomial Q(z,y) of (1, k)-weighted degree D such that:

* Q(zy:) =0 Vi
* QF0.

Step 2: Factor Q(z,y) and output the list of polynomials p of degree at most k provided:

e y—p(=) | Q(z,y), and

e p(z;) = y; for at least ¢ values of i € [n].

The standard claims adapted for the case of weighted degrees are given below. We skip the proofs,
but they are obvious.

Proposition 13.2 For any set S = {(z;,y;)|i € [n]} of n points in Fy x Fy, there exists a non-zero
polynomial Q) of (1,k)-weighted degree at most V/2nk such that Q(z;,y;) =0 for all i € [n].

Lemma 13.3 If a polynomial Q(z,y) of (1, k)-weighted degree D and the polynomial y — p(x), with
p having degree at most k, have more than D common zeroes, then y — p(x) divides Q(z,y).

Putting the two together, we get:

Theorem 13.4 ([109]) The algorithm RS-list-decoder-2 with the setting D = +/2nk solves the
RS list decoding problem in polynomial time provided t > /2kn.

We now move towards a better algorithm for list-decoding. But first we try to motivate it. Why
should we try to improve this algorithm? One of the main motivations is the goal to get the
combinatorial results and algorithmic bounds to match. The algorithm above ends up solving the
list-decoding problem exactly when the inclusion-exclusion bound works. What we want next is an
algorithm that meets the graph-theoretic bound, i.e., when t > vkn.'.

13.2 An improved list-decoder for RS codes

Before proceeding let us be warned that the “improvement” is only in the number of errors it
can correct; and not in the running time. Our running times will actually get worse, but remain
polynomially bounded.

lthe case t < vkn is not known

13-118

13.2.1 Weighted Decoding Problem

We will actually find an indirect route to our improvement. Rather than solving the standard
list-decoding problem, we will explore a weighted list-decoding algorithm.

Weighted Reed Solomon List-Decoding Problem:

GIVEN: n distinct points (x1,v1), (®2,¥2),.-.,(Zn,yn) with corresponding integer
weights wy,ws, ... ,w, (specified in unary), degree bound k, and an agreement bound
W (which replaces the parameter ¢ in the previous problem statement).

GoaL Find all degree k polynomials p such that Ei‘ plzi)=y; Wi > W

To motivate this problem, let us note that this is in the spirit of the GMD (generalized minimum
distance) decoding problem of Forney [55]. The main differences being that (1) Forney’s problem
associated a “penalty” with each pair (z;,y;) and the goal was to find polynomials that minimized
the total penalties, and (2) Forney’s problem expected the z;’s to be distinct and we won’t. As
in the case of the GMD algorithm of Forney, a solution to the weighted RS list-decoding problem
has the potential to improve the decoding of concatenated codes and indeed several papers do just
this [46, 63, 84].

The main technical result today will be the following:

Lemma 13.5 There exists a polynomial time algorithm to solve the weighted RS list-decoding prob-
lem, provided W > (/2k 37 (Vi)

At a quick glance the lemma may not seem surprising. Indeed if we set all the w;’s to 1, then the
lemma is identical to Theorem 13.4. To see that the lemma is doing something different, notice that
the lemma has a peculiar behaviour with respect to the weights w;’s — it is not scale invariant. On
the one hand if we take all the weights, w;’s as well as W, and say double them, then the solution
set of polynomials does not change. However, the lemma may not guarantee to find the solutions
with the smaller weights, but might be able to guarantee to find all solutions with the larger weight.
Indeed setting all weights to 2, and setting W = v/6kn gives us a list of all polynomials that agree

an unweighted set of n distinct pairs in 4/ %kn points. Sending w;’s to infinity gives us the result we
want for this section, as proven below formally.

Theorem 13.6 ([45]) There exists a polynomial time to solve the RS list decoding problem in
polynomial time provided t > Vkn.

Proof Since t is an integer, we have t > |Vkn| + 1. Set wy; = -+ = w, = w = 2nk (ie., large
enough that some later inequalities can be handled) and W = ¢ - w and apply the algorithm from
Lemma 13.5. If a polynomial p agrees with the point set on ¢ points, then its weighted agreement
is at least tw and Lemma 13.5 guarantees that this polynomial will be included in the output list

provided tw > \/nkw(w+ 1), or in other words, provided ¢t > /nk(1+1/w) = (/nk+ 1. Tt

can be easily verified that 4/nk + % < |Vnk] +1 < t and so the conditions required for applying
Lemmm 13.5 are indeed satisfied. B

Thus to conclude our goal it suffices to build the algorithm that Lemma 13.5 claims to exist.

13-119

13.2.2 Algorithm

Our basic problem at this stage is to figure out how to make some algebraic sense of the weights that
are given to us. L.e., how to modify the definition of the @-polynomial so that points with larger
weights constraint it more than the points with smaller weight, or to make it clear that Q) “respects”
points of larger weight more than the points of smaller weight. A natural idea, if we can make any
formal sense of it, is to make the polynomial go through points as many times as their weight. So
Q@ should pass through a point with weight 2 twice, while it should pass through a point of weight
10, ten times!

Let us first see an example of what it means to have a curve passing through the point (0,0) twice.

The equation of this curve is (y—azx)(y—Bz) = 0, or y?> — (a+ B)zy +afz? = 0. Intuitively, it is clear
what it means for a curve to pass through the origin twice, and that the example above indeed does
s0. Analytically, this may be explained in terms of the partial derivatives of @) at (0,0). However,
since we are working over finite fields of potentially small characteristic, the partial derivatives may
not be informative enough. So we’ll describe the algebraic definition. To guess this definition, let us
look at two familiar examples. We know what it means for a curve to pass through (0,0) once - it
means that the coefficient of the constant term must be zero. In the example above, where the curve
passes through the origin twice, the constant term as well as the monomials of degree one (i.e.,
and y) have zero as coefficients. Deducing from these cases, we guess that a polynomial) passes
through (0,0) at least r times if the monomials of total degree less than r have a zero coefficient.

Now how can we extend the definition to an arbitrary point (a,3) € F; x F;? The natural way
to do this is to shift the system so that («, 3) becomes the origin. Thus we arrive at the following
definition. (We stress that nothing is being proved so far - we are just guessing a definition; later
we will need to prove that this actually works!)

Definition 13.7 A polynomial Q(x,y) passes through the point (a,B) at least r times if all the

coefficients of monomials of total degree less than r of the polynomial Q4 5(z, y)de(m +a,y+ B)
are zero.

With the above definition in hand, we now describe the optimized algorithm for weighted polynomial
fitting:

RS-list-decoder-3:

Given Set of n distinct pairs {(z;,y;)|i € [n]}, integer weights wy,... ,w, and an integer degree
bound k.

Parameter: D to be set later.

13-120

Step 1: Find a bivariate polynomial Q(z,y) of (1, k)-weighted degree D such that:

e For every i € [n], the polynomial @ passes through the point (z;,y;) at least w; times.
* Q#0.
Step 2: Factor Q(z,y) and output the list of polynomials p of degree at most k provided:

®y —p(iﬂ) | Q(may)a and
e p(z;) = y; for at least t values of ¢ € [n].

To see that the new algorithm still runs in time polynomial in)", w; and D, we need to show
that Step 1 is solvable in so much time. The critical part of this is to show that the conditions
being enforced here are still linear and homogenous. Note that the condition being enforced for @
to pass through the origin multiple times are linear and homogenous. What we need to establish is
that the shifting of a polynomial leads to coefficients that are linear in the coefficients of). This is
established below.

Proposition 13.8 The coefficients of the polynomial Qq p(x, y)défQ(x +a,y + B) are linear in the
coefficients of Q).

Proof We will prove this by giving the coefficients of (), s explicitly. This is Just an ordinary

]

calculation. We get the coefficient of z'y’ in Q4 equals Disi i (’Z) (JJ) of ~igd' ~Jqyj where
Qz,y) =3, ;aiz’y’. A

Now we can go about the proof in our usual manner. We start with the observation that a non-zero
polynomial does exist, provided we pick D to be large enough.

Proposition 13.9 For any sequence of distinct points (z1,y1),- -, (@n,yn) € Fy x Fy, and non-
negative integral weights wa, ... ,wy, there exists a non-zero polynomial Q of (1,k)-weighted degree

at most \/2k >, (w’+1) such that Q passes through (z;,y;) at least w; times for every i € [n].

Proof Each condition of the form () must pass through (z;,y;) at least w; times, turns into the
condition that (“t!) coefficients of @, ,, must be zero. In turn these turn into (“%;') homogenous

linear conditions on the coefficients of @ (by Proposition 13.8). Thus all in all we have Y 7, (’””Ll)
homogenous linear constraints. A simple calculation shows that the number of coefficients of (1, k)-

weighted degree at most 1/2k "7, (“") is more than -7, (“') and thus a non-zero solution
to the homogenous linear system exists. ll

So far we have proved that multiplicities can be handled. But we haven’t related it to the problem
at hand - why does making) pass through a point w; times, help weight this point w; times?

We start to prove this below:

Lemma 13.10 If Q(x,y) passes through a point (c,B) at least w times and p is any polynomial
such that p(a) = B, then (x — @) divides the polynomial g(x) fQ(a: p(x)).

13-121

Proof First by translation, we will turn this into a question about (0,0). Let Qqup(z,y) =
Qx + o,y + B). Let pop(x) = p(z + a) — B. Since p(0) = 0, we have x divides pq,g(x). Let
90,8(2) = Qa (%, pa,8(2)) = Q(z + a,p(z +) = g(z + @). Thus (z — a)® divides g(z) if and only
if z* divides g(z + @) = ga,5(z). In other words we wish to show that the monomials of degree less
than w in g4 g have zero coefficient. But this is syntactically true. Q4 g has no terms of total degree
less than w and we are substituting for y a polynomial p, g(z) that is itself a mutliple of z. Thus
all terms have degree at least w. W

The rest of what we want is now straightforward. We will show that if for some degree k polynomial
p, the weights of points (x;,y;) where p(x;) = y; sum to more than the (1, k)-weighted degree of @,
then y — p(z) must divide Q.

Lemma 13.11 Let Q(z,y) be any polynomial of (1, k)-weighted degree D that satisfies the conditions
of Step 1. Suppose p is a degree k polynomial such that E{ie[ﬂ”p(l'i Wi > D, then y—p(x) divides
Q(z,y).

)=yi

Proof Let g(z) = Q(z,p(x)). Then g has degree at most D. We wish to show that g is identically
zero. For a change we won’t do this by showing that it has more zeroes than D but by showing that
a polynomial of degree greater than D divides it (and this can happen only to the zero polynomial).

Let S = {i € [n] | ys = p(x;)}. Note first that for 4,j € S, x; # z; since otherwise we would
have y; = p(z;) = p(x;) = y; and thus (z;,y;) = (z;,y;). Next note that for every i € .S, we have
(x — z;)" divides g(z) (by Lemma 13.10. Putting these together, we get [],.g(z — z;)"¢ divides
g(z). (Here we are using the fact that the x;’s are distinct. Really what we should observe first is
that the least common multiple of the (z — x;)*’s divides g. Then using the distinctness of the x;’s
we should claim that the product divides g. But this would require defining least common multiple
etc.) II\Iovs{ we are done since the polynomial [];.s(z — 2;)"¢ has degree Z{ie[n]lp(l'i):yi} w; > D,
thus yielding that ¢ =0. B

We may now have a proof of Lemma 13.5 with the algorithm described explicitly, as summarized
below:

Theorem 13.12 ([45]) The algorithm RS-list-decoder-3 with the setting D = /2k Y"1, (“H)
solves the Weighted RS list decoding problem in polynomial time provided W >

V2L ("5).

Recall that as this concludes the proof of Theorem 13.6 which may be considered the main theorem
of this lecture.

13.3 Towards Generalization of Decoding Algorithms

We now move towards an abstraction of the algorithm above. We motivate by considering the
decoding problem for a fairly different code — the Chinese Remainder Code — lecture. We already
defined this code in a previous lecture. We start by recalling the definition.

13-122

13.3.1 Chinese Remainder Codes and Decoding

We start with the classical “Chinese Remainder Theorem”.

Theorem 13.13 (Chinese Remainder Theorem (CRT)) Letpi,p2,... ,pr be positive integers
that are pairwise relatively prime. Then, the map CRT that takes m € Zk to the k-tuple (m(mod
p1),-.. ,m(modpy)), where K = Hle pi, s a bijection. Furthermore, there are polynomial time
algorithms to compute CRT as well as its inverse.

In other words, m € Zk is fully specified given its residues modulo py,... .pg. The CRT code is
based on the observation that specifying m € Z g modulo a large number of relatively prime integers
(larger than the minimum required) gives a redundant representation of m. We formalize this next.

Let p1 < ps < ... < p,p be primes, and let K = Hle pi and N =[], pi where k < n. Then,
(m(modpy), ... ,m(modp,)) is a redundant encoding of m. In particular, given any k out of the
n possible residues, we can recover m uniquely. It follows that the encoding of any two message
must differ in at least k — 1 positions, so this encoding yields a “(n,k,n — k + 1) code”. This code
motivates the natural (list-)decoding problem.

PROBLEM Given p; < ... < pp, k¥ < n and a codeword corresponding to the residues (r1,... ,rp).

Task Find am € {0,1,... ,Hle p; — 1} such that m(modp;) = r; for many values of i.

CRT List-Decoding Problem:

GIVEN: p; < ... < pp, integer K, a vector of residues (r1,...,r,), and an agreement
parameter t.

GoaL Find a list of all m € Z g such that, m(modp;) = r; for at least ¢ values of i € [n].

Our plan to get a decoding algorithm for this problem is by the following sequence of steps: First,
we will find a common generalization of the Reed-Solomon and CRT codes; Next, we will “lift” our
algorithm for decoding for RS decoding to this common generalization. This won’t quite give us
an algorithm for the common generalization, but an outline of one. Finally, we will specialize the
“algorithm” to the case of CRT codes and then prove its efficiency and correctness. Today we will
move towards the first of these steps.

13.3.2 Algebra Review

The Chinese Remainder Codes and the Reed-Solomon Codes may be viewed as examples of a more
general class of error-correcting codes based “ideals” in commutative rings. We start by recalling
some of the jargon.

e A commutative ring R is an integral domain if it does not contain any zero divisors, i.e., there
do not exist non-zero elements a,b € R such that a-b= 0.

e An ideal I in a ring R is a subset of R closed under addition and general multiplication (by
any element in R), i.e., for any a,b € I and r € R, it is the case that a + b,ar € I.

13-123

Ideals in commutative rings are nice objects to work with. First, they capture the “modulo” opera-
tion (as formalized in the next definition). The collection of ideals in a ring is interesting to study
since they are closed under some natural (and some slightly concocted) operations.

e Let I be an ideal of a ring R. The cosets of the additive subgroup of I of Rt are the subsets
a+1,a € R. The set of cosets R/I forms a group with a ring structure inherited from R. This
ring is known as the gquotient ring of R over the ideal I.

The quotient ring R/I of a ring R over an ideal I forms the basis of a modular reduction. This is
the reduction that maps an element a € R to the coset a + I. However, we (especially the computer
scientists among us) are used to thinking about modular reductions in slightly different language.
First, given an ideal I, we usually pick a set ¥ C R of representatives for the quotient ring R/I,
i.e., for every a € R, there exists exactly one b € ¥ such that b € a + I. Note that the one-to-one
correspondence between R/I and ¥ gives a ring structure to ¥. Having picked such a set, we use a
slightly different notation a(modI), or just a(I), to denote the element b € ¥ such that b € a + I.
If I is the ideal generated by a single element p € R (i.e., I = {pr | r € R}), then this gives the
familiar (modp) operation.

The choice of repreesentatives does not alter the algebra underneath. So we will often leave this
choice unspecified. However representations are always important to computation. Unless we fix a
set ¥ and representations of elements in ¥, computational aspects can not be clarified. We now go
on to other properties of ideals.

Proposition 13.14 Let I and J be ideals of a ring R. Then their sum, denoted I 4 J, intersection,
denoted I N J, and product, denoted IJ and defined to be IJ = {3, a;b; | a; € I,b; € J}, are also
ideals of R.

13.3.3 1Ideal Error-Correcting Codes

We now describe how the language of ideals can be used to define error-correcting codes.

Definition 13.15 An ideal error-correcting code C' is given by an integral domain R, a sequence
of n ideals I,...,I, C R (and associated sets of representatives X1,...,%,), and a message
space M C R. The canonical encoding function for C maps the message m € M to the sequence

(m(L),...,m(I,)).

Some of the previous choice of notation may become clearer now: Usually ¥ = --- = X,, = ¥ and
then the code maps M to X". But is other cases ¥;’s may be different (as in the case of the CRT
code). For practical usage ¥;’s better be finite. However the mathematics does not enforce such
a restriction. We now see how Reed-Solomon codes and CRT codes are both special cases of ideal
error-correcting codes.

1. Chinese Remainder Codes. This corresponds to R = Z, I} = p1Z,...,I, = ppZ, and M =
{0,1,... ,Hle pi; — 1}. The representative set ; representing Z /p;Z is the natural one, i.e.,

2. Reed-Solomon Codes. This corresponds to R = Fy[z], [1 = (x —a1),... ,In = (¥ —) where
ai,...,q, are the n distinct elements of I, that we pick to evaluate the polynomial. M is

13-124

the set of polynomials in R of degree less than k. The choice of representatives is again the
natural one with ¥y = --- = ¥, = F;, where F,; stands for the set of degree zero polynomials
in R.

In the next lecture we will see how to lift our decoding algorithm(s) and then specialize them to get
a decoding algorithm for the CRT code.

Bibliographic notes

The optimized version of the Reed-Solomon decoding algorithm that worked if the agreement pa-
rameter t > v/2kn is from [109]. A careful analysis of this algorithm for every choice of rate is given
in [110]. The improved algorithm working if ¢ > vkn is due to Guruswami and Sudan [45].

Chinese remainder codes have been studied for a long time now. Early papers on this code include
those of Asmuth and Bloom [9] and Watson [121]. Even some books have been written on this topic
(see Krishna et al. [64] and Soderstrand et al. [107]). References for decoding algorithms for this
code include [76, 39, 22, 44]. We will discuss their contributions in further detail in the next lecture.
For now, we mention that the formalization of “ideal error-correcting codes” is from [44].

13-125

Chapter 14

6.897 Algorithmic Introduction to Coding Theory November 5, 2001

Lecture 14
Lecturer: Madhu Sudan Seribe: Daniel Preda

Topics for today:

o Ideal codes
e Abstract list-decoding
e Decoding of CRT codes

14.1 Ideal Error-Correcting Codes

Let us recall the following definition of an ideal error-correcting code from the last lecture.

Definition 14.1 An ideal error-correcting code C is given by an integral domain R, a sequence
of n ideals Ii,...,I, C R (and associated sets of representatives ¥1,...,%,), and a message
space M C R. The canonical encoding function for C maps the message m € M to the sequence

(m(L),...,m(I,)).

We will show to abstract the list-decoding algorithm for Reed-Solomon codes in this framework,
and then apply it to the CRT codes. First lets recall how Reed-Solomon and CRT codes fit in this
framework.

Reed-Solomon codes
We saw how to express Reed-Solomon codes in this framework:

e The ring R =T, [z].

14-126

e The ideals I1,...,I, being given by I; = (z — «;), where (z — ;) represents the ideal of
polynomials that are multiples of — oy, i.e., (x — ;) = {p() - (x — a;) | p(x) € Fy[z]}. The
quotient ring R/I; = F, where the representatives are the set of polynomials of degree zero.

e The message space M C R is the set of polynomials of degree less than k.

The ith coordinate of the encoding of a message polynomial m is the unique polynomial m;(x) of
degree zero that is contained in the coset m(z) + {p(z) - (x — ;) | a; € F,;}, which turns out to
be the constant m(«;). Thus this definition is consistent with our usual definition of Reed-Solomon
codes.

CRT Codes

In the case of the CRT codes we have:

e R is the integral domain, i.e., the integers.

e I1,...,I, are the ideals p1Z, ... ,p,Z where p1,...,p, are n relatively prime integers, with
Y; being Z,, the set of non-negative integers of value less than p;.

e The message space M C Z, is the set M = {0,1,..., K — 1} (where for convenience we pick
k
K =12y pi)-

Once again a message m € Zg is mapped to the vector (m (modpy),... ,m (modpy,)).

Size and distance of ideal error-correcting codes

While the abstraction so far describes how to construct the ideal error-correcting codes, it doesn’t
shed light on the minimum distance of the codes constructed this way. Here we give an informal
discussion of a notion that is used to prove distance properties (as also specify decoding algorithms).
To argue about distance properties, we associate with elements of the ring, a “size”. E.g. the size of
an integer will simply be its absolute value; the size of a polynomial of degree k over F, will be g+,
etc. In general the size function must satisfy some axioms such as size(a + b) < size(a) + size(b);
and size(ab) = size(a)size(b) etc. Here we won’t go over this concept rigorously — though it can
be done [44]. Instead we will keep this property in mind loosely and become precise in the case of
Reed-Solomon codes and CRT codes. In the rigorous case, one also associates a size with ideals in
R — the size of I being the size of the smallest non-zero element in I. If the size of the ideal also
satisfies some size axioms, then minimum distance of the code can be established formally.

14.2 Abstracting the Reed-Solomon decoding algorithm

We start by recalling the (first) list-decoding algorithm for decoding Reed-Solomon codes and slowly
translating it so it sounds like a generic decoding algorithm for ideal error correcting codes. The
table below is best read row-by-row.

14-127

Given:

Find:

Step 1:

Step 2:

We summarize the resulting “high-level algorithm” for decoding ideal codes below. In the explana-
tion, we make a slight syntactic change: Instead of saying Q(y;) € I;, we define a new ideal J; C RJ[y]
consisting of polynomials @) such that Q(y;) € I;. It can be verified that J; is just the sum of the
ideals I; (viewed as an ideal of R[y]) and (y — y;). While the change is syntactic, it allows us to take

RS decoder
A1y... ,0p
Yi,---,Ynt €y

All polynomials p of degree less than k
such that p(=z;) for many values of i € [n]

Find Q(z,y) € Fy[z,y] such that

@ non-zero

deg, (Q) small

deg, (Q) small

Q(ay,y;) =0 for all 4

Factor (and report all polynomials
p(z) € M such that y — p(x) divides @

Abstraction

L,...
Y1,

s In
»Yn, with Yi € Ez

All messages m € M such that m (mod
I;) = y; for many values of i.

Since R = F,[z], it makes sense to in-
terpret Fy[z,y] as R[y] and thus the
sentence on the left translates to “Find
Q(y) € R[y] such that”

“@ non-zero”
“deg, (Q) small”

Notice that R is not necessarily a ring
over some variable; so we can’t use deg,;
instead we should ask that the coeffi-
cients of () be small. Thus we get “Co-
efficients of) have small size”.

This is a little trickier — but guessing
that «; is somehow related to I; and
y; remains as it is, we come up with
“Q(y;) € I; for all i” — this guess can
be verified to be right.

The translation seems obvious: “Factor
@ and report all messages m € M such
y —m divides ().” The important thing
to note is that it is a fortunate coinci-
dence that this is actually well-defined.
In particular R[y] is a unique factoriza-
tion domain (upto multiplications by el-
ements of R). (This need not have been
the case if R were not an integral do-
main, or so we believe.)

a few extra steps in these notes (which we didn’t manage in the lecture).

Ideal List-Decoder:

Given: n relatively prime!, ideals I3, ...

deals I and J are relatively prime if T NJ = IJ.

14-128

I, in a ring R, a message space M C R and n elements

yl,...,ynGR.

Unspecified parameters: £ and B, whose choices depend on the ring R, its size structure, the
message space M, etc.

Step 0: Define ideals Ji,...,J, C R[y] to be J; = (L;) + (y — yi)-

Step 1: Find non-zero () € R[y] such that deg(Q) < £ and every coefficient of () is has size at most
B such that @ € N7, J;.

Step 2: Factor () and output all m € M such that y — m divides Q.

To specify the parameters, and to show how to achieve the steps above effectively, we need to know
more about the ring R. Below we give an example of how we can apply the above structure to
get a CRT list-decoder. We will still end up doing a lot of work to prove correctness and analyze
bounds. But before going on to the case of the CRT codes, lets describe a “minor” twist to the
above algorithm. Suppose the ideals I, ... , I, had not been relatively prime? What would the right
definition have been? The one place where we use the relative primality (of J’s but they inherit it
from the relative primality of the I’s) is in saying the @ should lie in the intersection of the ideals
Ji,--.,Jn. If relative primality doesn’t hold, we should probably revert to what seems to be the
more correct statement to insist on — i.e.,) should lie in the product of Jy,...,J,. Thus we get
the following modified algorithm for decoding ideal codes.

Ideal List-Decoder-2:

Given: n ideals I,... .I, in a ring R, a message space M C R and n elements y1,... ,y, € R.

Unspecified parameters: ¢ and B, whose choices depend on the ring R, its size structure, the
message space M, etc.

Step 0: Define ideals Ji,...,J, C R[y] to be J; = (L;) + (y — yi)-

Step 1: Find non-zero () € R[y] such that deg(Q) < £ and every coefficient of @) is has size at most
B such that Q € [[;, J;.

Step 2: Factor () and output all m € M such that y — m divides Q.

So what does this “minor change” buy us? Well, it turns out we get the weighted list-decoding
algorithm immediately. Since we don’t make any restrictions on the I;’s, we can repeat each one
w; times if needed. The change will be in the analysis, in which we need to argue that low-degree
polynomials of small degree still exist in the ideal [}, J;. We didn’t argue this generically even in
the simpler case; We certainly won’t do it now! But in specific examples it can be done!

We now specialize the simpler algorithm above for the case of CRT codes and analyze it.

14.3 Decoding CRT codes

The algorithm above, applied to the case of CRT codes, becomes the following:

CRT-decoding-1:

14-129

Given: n relatively prime integers (p; < --- < pp), residues (r,... ,r,) with r; € Z,,, and param-
eters k and t.

Goal Output all m € Zg, where K = Hle pi, such that m = r; (modp;).
Parameters: B, /.

Step 1: Find Q € Z[y] such that:

* Q#O.
e deg(Q) <L
e Coefficients of () are at most B in absolute value.

e Q(r;) =0 (modp;) for every i € [n].

Step 2: Factor @ and report all integers m such that y —m divides @ and m = r; (modp;) for at
least ¢ values of i € [n].

The conditions Q(r;) = 0 (mod p;) are not so nice to deal with. So, we modify them to an equivalent
form which is easier to deal with: Let N =[]}, p; and let R be the unique element of Z y satisfying
R =r; (modp;) for every i € [n] (as guaranteed to exist by the CRT theorem). Note that

Q(r;) =0 (modp;), Vie[n], < Q(R)=0 (modN).

Thus our goal in Step 1 is to find a polynomial with small coefficients that is zero modulo N at
just one point. We will show below that this problem can be reduced to a “shortest vector problem
(SVP)” in integer lattices. We define SVP below.

Shortest Vector Problem (SVP): Approximation version with parameter o : ZT —
Z+

GIVEN: Integer d x n matrix B over the integers, integer bound L, with the promise that
there exists a vector x' € Z¢ such that ||x'B|| < L/a(d).

FIND: A x € Z% such that ||[xB|| < L.

The set of vectors xB form an integer “lattice” in d-dimensional space. The task of finding short
vectors in such lattices is a classical and well-studied problem. It was long conjectured to be NP-
hard to solve exactly, i.e., when «a(-) = 1. Finally, in a breakthrough result, shown to be true under
randomized reductions by Ajtai [3]. Subsequently Micciancio [81] showed that the approximation
version with a(-) = @ < v/2 is also NP-hard under randomized reductions. Note that the problem
becomes potentially easier as a becomes larger. We are interested in positive results. A seminal
result by Lenstra, Lenstra, and Lovasz [66] showed that this problem is tractable for some finite
function a(-) (i.e., a(d) < oo for every d). Their theorem is given below.

Theorem 14.2 ([66]) The SVP problem with approzimation parameter a(d) = 2% is solvable in
polynomial time in the length of the input.

We now show how to find a polynomial as required in Step 1, using Theorem 14.2.

Lemma 14.3 Given t-bit integers R and N and a degree bound £ and coefficient bound B, a non-
zero polynomial Q) of degree at most £ and coefficients at most B in absolute value satisfying Q(R) =
0 (mod N) can be found in polynomial time (int and £) provided such a polynomial with coefficients
at most B/ (£2%) exists.

14-130

Proof We will set up a lattice generated by the matrix B such that short vectors in this lattice
correspond to polynomials @) such that Q(R) = 0 (mod N). The intuition behind why this should be
feasible is the following alternate characterization of a lattice: A lattice in Z?is a subset L C Z that
is closed under scalar multiplication and addition, i.e., if x,y € L and A € Z then Ax,x+y € L. If
we consider the set of coefficient vectors {qo, - .. ,g¢ of polynomials @) such that Q(R) =0 (modN),
then indeed such a set is closed under addition and scalar multiplication. Thus we see that the set
of such vectors forms a lattice in Z*t! and it is only a matter of perseverance to find an explicit
basis. Below we give an explicit basis, using the fact that any such polynomial can be expressed as
p(z)(z — R) + ¢ - N, where p(z) has degree at most £ — 1. Consider the (£ + 1) x (£ + 1) matrix

N 0 0 0 0
-R 1 0 0 0
0 -R 1 0 0
B=10 0 -R 1 0
| O 0 0 -R 1 |
We leave it to the reader to verify that the set of vectors {qq, - - . , ¢¢) that can be expressed as xB for

x € Z**! is the set of coefficients of all polynomials Q(y) = Zf:o q;y® such that Q(R) = 0 (mod N).
By Theorem 14.2, a vector of £>-norm, and thus all coefficients, at most B can be found in polynomial
time in this lattice, provided a vector of £ norm at most B/2¢+! exists in this lattice. In turn such
a vector does exist provided a vector all of whose coordinates are at most B/((£+1)2*!) exists. in
this lattice. The lemma is thus proven.

We now move towards the efficiency of the second step. Once again this follows from the same
seminal work of Lenstra, Lenstra, and Lovasz [66] mentioned above, but actually is a completely
different result within this work (which uses the algorithm from Theorem 14.2 as a subroutine).

Theorem 14.4 Given a polynomial Q € Z[y] of degree £ with t-bit coefficients, Q) can be factored
over integers (modulo the factorization of the leading term) in time polynomial in £ and t.

As a consequence we have that Step 2 of the algorithm above can also be executed in polynomial
time. We only need to show that a good solution exists to Step 1 and then reason about the
parameters for which the decoding algorithm works.

In the next lemma we prove that a very short solution to Step 1 exists, and thus Theorem 14.2 can
find a moderately short solution.

Lemma 14.5 A polynomial Q) satisfying the conditions of Step 1 with coefficients of absolute value
at most B' < N/t egists.

Proof Consider the function f : Z%' — Zy given by f(qo,-.- ,q) = Efzo ¢;R* (modN). The
range of f is finite and has smaller cardinality than the domain (i.e., N < (B')¢*!). Thus there must
exist distinct vectors a,b € Zf;?l such that f(a) = f(b). We conclude that f(a —b) =0 (modN).

Thus we have a non-zero polynomial Q(y) = Ef:o(ai — b;)y* such that Q(R) = 0 (modN). Since
a;,b; € Zp, we have |a; — b;| < B'.

Next, we prove the usual next lemma — that any solution to Step 1 suffices.

14-131

Lemma 14.6 For relatively prime integers p1 < --- < pp, let N = H?:lpi, and T = H’;:l pi- If
Q(y) s any polynomial of degree £ with coefficients at most B such that Q(R) = 0 (modN), and
m < K is any integer such that m = R (modp;) for t values of i and ({ + 1)BK* < T, then y —m
divides Q(y).

Proof The lemma turns out to be harder to state than to prove! Let S = {i|lm = R (modp;)}.
Let T" = [[;cg pi- Note that 7' > T. By the conditions on (), we have for every i € S,

Q(m)(modp;) = Q(R)(modp;) = 0(modp;).

We conclude that Q(m) = 0(modT"). But on the other hand we have |Q(m)| < Zf:o BK® <
(£ +1)BK® < T < T'. Combining the two conditions, we get Q(m) = 0, and thus y — m divides

Qy). |

Now we seem to have all the ingredients — all we need is to find out what they really mean -
the number of parameters flowing around is huge and it is not clear if all the above combine to
give any error-correction! To make sense of the above, lets us try using an inappropriate choice of
parameters. Let us suppose py = p2 = --- = p, = p. (Ahem! We this is somewhat inconsistent with
the hypothesis that p;’s are relatively prime. But this is the best way to get a sense of the idea.) Then
N =p", T = pt, K = p*. Fix some £. We can apply Lemma 14.5 if we let B' = N'/¢ = p"/t and
then Lemma 14.3 can be applied if B ~ 2p™/*. Lemma 14.6 can then be applied if (/+1)BK* < T,
which is well approximated by p™/¢t*¢ < pt. So with all these outrageous approximations and
assumptions, we see we are in a situation similar to the Reed-Solomon decoding case two lectures
back: We can decode provided n/f + kf < t. The expression on the LHS is minimized by setting
¢ = y/n/k and this gives decoding from 2v/nk agreements. The following theorem is what can be
obtained from a rigorous analysis of the above after some minor optimizations in the bounds on
the coefficients of the polynomials, and is proven by Goldreich, Ron, and Sudan [39]. The main
difference is a \/logp,/logp; factor in the amount of agreements required. This comes up because
the p;’s are, unfortunately, not all equal.

Theorem 14.7 ([39]) There exists a list-decoder for CRT codes that on input an instance with rel-
atively prime integers py,... ,pn, and information parameter k and agreement parameter t, recovers
all messages with agreement t provided t > \/ 2knlogpn/logp: in polynomial time.

Using the ideas of multiplicities one can (almost) get rid of the factor v/2 in the above agreement;
and this was done by Boneh [22]. Boneh uses the same multiplicities on each coordinate. Using
multiplicities that vary as a function of the p;’s, gives further improvements and one can now decode
from t > /(1 + €)kn error in time polynomial in 1/¢, n and logp,. This final result was given by
Guruswami, Sahai, and Sudan [44].

Bibliographic notes

We never mentioned an unambiguous decoding algorithm for CRT codes, but one certainly exists.
The first such algorithm was given by Mandelbaum [76]. Surprisingly this algorithm does not decode
up to half the minimum distance, at least not in polynomial time. To get a decoder decoding up to
half the minimum distance, one needs to combine this algorithm with a GMD decoder.?2 This was
done by [44].

2This could be a good, healthy, workout. The Mandelbaum algorithm is what you would get if you set £ = 1 above
and picked optimal bounds on the coefficients of the constant and degree one term in the @Q-polynomial. Compute the

14-132

The first list-decoding algorithm for CRT codes was due to Goldreich et al.[40]. Boneh [22] and
Guruswami et al. [44] improved the error-correction bounds subsequently. Guruswami et al. [44]
also developed the machinery of ideal codes.

number of errors this algorithm can recover from. Then show how to do a GMD like algorithm + analysis to recover
from (n — k)/2 errors.

14-133

Chapter 15

6.897 Algorithmic Introduction to Coding Theory September 5, 2001

Lecture 15

Lecturer: Madhu Sudan Scribe: Constantine Caramanis

15.1 Introduction

This lecture covers the decoding of Reed-Muller Codes. Over the years, these codes have been
repeated targets of decoding algorithms, with many successful approaches. In fact, the one of the
two papers that led to the current name of these codes really only gives an algorithm for decoding
(and doesn’t construct codes, per se). Much of this work is carried out in the coding theory literature.
It culminates in a decoding algorithm that can decode Reed-Muller codes up to half the minimum
distance, for every choice of parameters. An elegant description of this algorithm is given in The
Handbook of Coding Theory [88] in the chapter on Algebraic Geometry Codes by Hgholdt, van Lint,
and Pellikaan [50]. We won’t cover their algorithm today, but if Madhu gets the energy, he might
add a writeup on their algorithm to these lecture notes sometime soon.

Instead today’s lecture will focus on list-decoding algorithms for Reed-Muller codes. Unlike the
algorithms mentioned above, these do not work for every choice of parameters. However if the
alphabet size ¢ is sufficiently large, compared to the degree of the polynomials in the message space,
these algorithms work very well and decode much more than half the errors.

In addition to the ability to correct many errors, these algorithms are significant in that they
played a significant role in many developments in complexity theory over the past two decades. E.g.,
Lipton [70] showed that the “permanent of a matrix was hard to compute on random matrices”. This
result was a consequence of a simple unambiguous decoding algorithm for Reed-Muller codes implicit
in Beaver and Feigenbaum [13]. The decoding algorithm for Reed-Muller codes also played a role
in results showing “IP = PSPACE [72, 99]”, “MIP=PSPACE [10])” and the “PCP Theorem [7, 6]”.
There is also a sequence of results showing progressively weaker complexity-theoretic conditions that
would suffice to show “BPP = P” [85, 11, 51]. These results can also be simplified and optimized
by using list-decoders for Reed-Muller codes [112].

The algorithm in today’s lecture will be derived as a simple algorithm that exploits some randomness
properties of “lines” in ", rather than any serious algebraic properties. The only algebraic elements

15-134

will be decoding algorithms for Reed-Solomon codes and we’ll just adopt them as a black box from
previous lecture. We’ll describe the algorithm in two steps - first we give an algorithm that decodes
from a small number of errors (much less than half the minimum distance). Then we jump to a
list-decoder recovering from large number of errors (under the above-mentioned caveat of g > £).

Let us first recall the definition of Reed-Muller codes (first covered in lecture 4 on September 19th,
2001). Recall that these are the generalization of Reed-Solomon codes to multivariate polynomials.

Definition 15.1 (Reed-Muller Codes) A Reed-Muller code, RMy, 4,4, is the code whose code-
words are evaluations of m-variate polynomials of total degree at most d, over all elements in F,.

The RM,4,4 code is a linear code with n = ¢™, k = (™}9), and with relative distance (1 - %),

when d < ¢. The goal of today’s lecture to give list-decoding algorithms that work provided d < gq.

For today’s lecture it is convenient to think of this task as a “function reconstruction task” rather
than that of the task of reconstructing a vector or string representing the codeword. We will thus
think of the received word being given by some function f : F* — F,, and our goal is to output
a list of all nearby codewords, where the codewords are also given by functions p : F' — F,. We
will also extend the relative Hamming distance to apply to functions. Thus we have the distance
between functions f and g to be 0(f, g) = Prxery [f(z) # g(z)]. Note that this is just the standard
Hamming distance normalized so as to be between 0 and 1, if f and g are interpreted as strings
rather than functions.

Reed-Muller Decoding:

GIVEN: Oracle access to a function f: Fy* — F,, a degree parameter d and a disagree-
ment parameter J.

Task: A (list of all) degree d polynomials p : F* — F, such that d(f,p) < 4.

Note that we haven’t specified representation of the output polynomial p precisely. The natural
representation may be the coefficients of p. However, given that interpolation is a simple task, it
would be equally useful to have p represented as a table of values. The latter representation certainly
allows one to compute the former representation in time poly(¢™). However our algorithms will be
more natural in the latter representation; and also significantly more efficient. In fact we will produce
randomized algorithms that compute p(a) for any vector a € F* in time poly(m,d, q). When d ~ m
this is vastly more efficient that poly(¢™). The model needs careful fleshing out; but we won’t do so
right away. Instead we will let it evolve and the spend some time reviewing the final model at the
end of these notes.

15.2 Decoding from very low error

We start with describing an extremely simple randomized algorithm that recovers from very little
error §. The amount of error will certainly be small enough to put us in the case of the unambiguous
decoding problem. So the polynomial p that is d-close to f is unique. Our algorithm will try to
guess the value p(a), by looking at f on a small random sample of values. The trick is in picking the
right “random sample”. We will look at f on a “line” in Fj". We define the notion of a line next.

15-135

15.2.1 Lines in IF;"

Definition 15.2 The line F' through a point a with slope b is the set of points:

lap:={a+tb|teF,}.

Note that if b = 0, then the line £, ;, consists of a single point, else it consists of exactly g distinct
points of Fj". While it might be tempting to simply rule out all lines with b = 0 as uninteresting,
we won’t do so, for reasons to be clarified later. However we will refer to them as degenerate lines,
just to put them in their place.

In the definition above, we thought of the line as an unordered set of points. However it is also
useful to think of them as a “parameterized” set of points. More precisely, a line is a function
lay : Fy — F, given by lan(t) =a+thb.

The two representations have their advantages. Switching between them is even further beneficial,
as we will see towards the end of this lecture. While switching, one should keep in mind that the
parameterization specifies the set uniquely; however the set does not specify the parameterization
uniquely. In particular the lines £ap and fatt,bt,b are the same for ti,t2 € F, if ¢2 # 0. This will
be useful to us later.

We start by describing the nice properties of lines. The first nice property of a line is its randomness
property. We first define the notion of a random line and a random line through a point a € F".

Definition 15.3 For a point a € F", a random line through a is the random variable L1, where b
is picked uniformly from F'. A random line in F* is the random variable lap where both a and b

are chosen independently and uniformly at random from Fy".
The following proposition explains the niceties of random lines.

Proposition 15.4 A random line through I is a collection of pairwise independent points in Fy" .
Le., for t1 # to € By, the points Lan(t1) and Lan(t2) are distributed independently and uniformly
from F* . Furthermore, for every a every non-zero point on a random line through F]* is a random
point. Le., for every t € F, — {0}, the point Lan(t) is distributed uniformly in F', when b is

distributed uniformly in F" .

Remark: Note that the proposition above relies on the fact that we allow lines to be degenerate,
else it would not be true.

Proof Proof to be added. B

Next we point out the nice algebraic properties of the line. This notion alludes to the restrictions
of functions to lines. Note that when the line is viewed as a function £ : F, — ", then it composes
naturally with a function f : F' — F, to give a “univariate function” fl, : F;, — F,, given by
fle(t) = f(£(t)). The following proposition asserts that restrictions of algebraically nice functions
give algebraically nice functions.

Proposition 15.5 For every degree d polynomial p : F' — Fy and every line £ : F; — F*, the
function p|y is a univariate polynomial of degree at most d.

15-136

Given a line £ : F;, — " we say that a point z € F" lies on the line £ if there exists ¢ € F; such that
z = £(t). If the line is not degenerate, then such a t is unique if it exists. If the line is degenerate,
then every ¢ works, and we will default to ¢ = 0 in case of ambiguities. Specifically, if z lies on £,
then we let £-1(z) = ¢ such that z = £(t), if £ is not degenerate, and £~ 1(z) = 0 otherwise.

Univariate functions defined on lines arise naturally in this lecture. Given a univariate polynomial
h and a line £ : F; — F*, we will let hy—1 denote the partial function from ¢ (viewed as a subset of
Fi*) to F, given as follows: h,-1{z} = h(£~!(z)). If the line £ is clear from context we will omit it,
and use the notation h{z} to denote h,-1{z}.

15.2.2 The algorithm

Our first algorithm for decoding Reed-Muller codes is an elementary consequence of the two proper-
ties of random lines in)" mentioned above. (The latter property is actually a property of all lines
and hence also a property of random lines.)

As noted earlier it suffices to construct an algorithm that computes p(a), given oracle access to a
function f : Fj' — I, that is very close to a degree d polynomial p : Fj" — IF,.

In fact it even suffices to give a randomized algorithm that computes this value with probability
greater than, say, 2/3, over its internal coin tosses. Repetition followed by a plurality vote suffices
to reduce this error probability. Once the error probability reduces to say less than %q_m, then
repeating this trial for every choice of a produces the correct codeword with probability at least %

The basic idea to compute p(a) is to focus on just a random line £ through a and to reconstruct
the function p|,. By Proposition 15.5 this is a univariate polynomial of degree d; and based on
Proposition 15.4 we know that p|, and f|, have good agreement. So p|,; can, hopefully, be recovered
efficiently and once this is done, all we need to do is output p;{a}. Below we describe and analyze
the most elementary form of this algorithm. In this form the algorithm only needs ¢ > d+ 2 to work.
However the amount of error it will correct is quite small. We will worry about that later though.

Simple RM decoder:

Given: Oracle access to f : Fj' — F,. Point a € F]* and parameter d.

Promise: There exists a degree d polynomial p : F)* — T, such that 6 = é(p, f) < m.
Goal: Output p(a).

Step 1: Pick b<-F;" at random and let £ = £ p.

Step 2: Let ai,...,aq+1 be distinct elements of Fy — {0}. For ¢ € [d + 1], let 3; = f(a+ a;b).

Step 3; Interpolate to find a degree d univariate polynomial h such that h(a;) = B; for every
ied+1].

Step 4: Output h(0).

Note that Step 2 above requires ¢ > d + 1. We will show below that this requirement suffices for
correctness, provided the error is small enough.

Lemma 15.6 Under the assumption 6 = 6(f,p) < 3(d1—+1) the algorithm Simple RM decoder

outputs p(a) with probability at least %

15-137

Proof We define d +1 “bad” events B; over the random choice of b. We show that if none of
these events occurs, then the algorithm correctly outputs p(a). Then we show that the probability
that none of these events occurs is at least 1 — (d+1)d. The lemma follows once the above is shown.

We define the event B; to be the case “B; # pl¢(a;)”. Note that if none of these events occur, then
we know the value of the function p|,(-) at d + 1 distinct values in F,. Further, by Proposition 15.5,
ple is a polynomial of degree at most d. Thus, the polynomial h found in Step 3 is the function p|,.
Thus the value output in Step 4 is p|,(0) = p(£(0)) = p(a). It thus suffices to bound the probability
of the bad events.

Note that B; happens if and only if f(¢(a;)) # p(€(e;)). By Proposition 15.4, we have that £(c;) is
a random point of Fi* and thus the probability that f does not agree with p at this point is exactly
0(f,p). Thus we have that the probability of B; is §. By the union bound, the probability that at
least one of the bad events occurs is at most (d + 1)d. The probability that none of them occurs is
at most 1 — (d + 1)d. This concludes the proof. l

Note that the algorithm is quite efficient — it runs in time poly(m, d), while the codeword has length
(m;d) which could be exponentially larger. Of course, it does not recover all the codeword at once
— this is simply impossible in this much time; but it can recover any coordinate of the codeword
in such time. When we formally describe the model in which the algorithm works, we will focus on
these aspects and then formally describe the result obtained so far. For now, we will satisfy ourselves
with just an informal understanding of the result.

15.3 Improving the error-correction capability

We now describe ideas that can be applied to improving the error-correction capability of the simple
algorithm described in the previous section. The error-correction capability comes at a price: The
requirement on the field size now goes up, and the algorithms get slightly more complicated.

To motivate the basic idea behind the improvement, let us look back to the reason why the error
correction capability was so low (©(1/d)) in the algorithm of the last section. The reason we lost so
much was that we required that d + 1 queries on a random line through a should all be error-free.
To improve the performance, we will make a few more queries, but then allow for the possibility that
a few answers are incorrect. The polynomial p|, will then be the polynomial that “usually” agrees
with the queried values — this polynomial can be found by a Reed-Solomon decoding step. The
number of queries that the algorithm makes can be varied depending on the rate of error we wish
to correct, the run time we desire, and the field size. We will set this number, somewhat arbitrarily,
to 5(d + 1) and demonstrate the effect. We thus get the algorithm below:

Improved RM decoder:

Given: Oracle access to f : Fj' — F,. Point a € F* and parameter d.

Promise: There exists a degree d polynomial p : F;* — T, such that 6 = é(p, f) < Z.
Goal: Output p(a).

Step 1: Pick b« " at random and let £ = {5 p.

Step 2: Let ay,... ,a5(4+1) be distinct elements of F, —{0}. For i € [5(d+1)], let §; = f(a+a;b).

15-138

Step 3; Find a degree d univariate polynomial h such that h(a;) = B; for at least 3(d + 1) choices
of i € [5(d+1)].

Step 4: Output h(0).

All steps above are efficient. In particular, Step 3 can be executed in poly(d) time by using any
unambiguous decoding algorithm for the problem such as the Welch-Berlekamp algorithm described
in a previous lecture. We thus get the following proposition.

Proposition 15.7 Improved RM decoder runs in poly(d,m) time.

Lemma 15.8 Under the assumption § = 6(f,p) < % the algorithm Simple RM decoder outputs
p(a) with probability at least %

Proof As in the proof of Lemma 15.6 we define, for every i € [5(d + 1)], B; to be the event
“B; # ple(e;)”. Note that for every i the probability of B; is exactly 6. Now let B be the event
that B; is true for more than 2(d + 1) choices of i. The probability that B occurs can be upper
bounded, using Markov’s inequality, by & = (5(d + 1))/(2(d + 1)) < 1/3. Thus with probability at
least 2/3rd B does not occur. Now we note that if B does not occur, then p|, agrees with the points
{(ei,B:) | i €[(5(d+1)]} on 3(d + 1) points and hence is the unique solution in Step 3. Thus in
Step 4 we output p|,(0) = p(a) with probability at least 2/3. B

The ideas in the algorithm above can be pushed further to get an algorithm correcting almost % of
error though this requires some work (and further restrictions on the ratio of ¢ to d). However, we
won’t describe the details. Instead we move on to the task of list-decoding.

15.4 A List Decoding Algorithm

Part of the reason why the algorithms from the previous section could not correct too many errors
is that they never exploited the ability to list-decode the Reed-Solomon codes (in Step 4). If we
did, we would be able to find polynomials with much smaller agreement with f on any given line £.
However this doesn’t suffice to solve the list-decoding problem for Reed-Muller codes. What should
we do with a list of univariate polynomials that agree with f on £? How do we find out which one
is the polynomial “p”? In fact, come to think of it, what is p? In previous sections p was uniquely
specified as the nearest polynomial (codeword) to the function f (the received vector). Now that
we are hoping to perform list-decoding, there is a list of polynomials that could have the desired
agreement. It seems that we can no longer use the “reconstruction problem” (compute the value of
the nearest polynomial at some fixed point a € F7*) to solve the decoding problem.

Turns out one can salvage this path after all. The way we’ll do this is by focussing on one of the
specific polynomials p that is close to f, and by giving a small amount of additional information,
called advice, that suffices to specify it uniquely. We will then give a reconstruction procedure to
computes p(a) given a. By varying the advice, we’ll then be able to compute all the polynomials
close to f.

So what is the advice that we’ll use to specify p? It turns out the value of p at one, randomly chosen
point b € ", specifies it uniquely, provided g is large enough relative to § and d. As usual, when it

15-139

comes to list-decoding it is more informative to focus on the amount of agreement rather than the
amount of disagreement between f and the polynomial p. Define 7(f, g) = Prxcrn[f(z) = g(z)] to
be the agreement between f and g. We start with the following simple proposition that proves that
the value of a polynomial at a random point specifies it uniquely, given a nearby function f.

Proposition 15.9 Let p1,... ,p, be a list of all m-variate degree d polynomials over I, satisfying
7(f,9) > 10. If T > \/2d/q, then n < 2/T and with probability at least 1 — (g)(%) >1- TQqu over the
choice of z € T it is the case that the sequence of elements (p1(z),. .. ,pn(z)) are all distinct.

Proof The first part of the proposition, claiming n < 2/7 is just recalling the Johnson bound
from a previous lecture. The second part follows from an application of the union bound to the (g)
possible “bad” events B;;, 1 < i < j < n, where B;; is the event “p;(z) = p;(z)”. Note that B;;

occurs with probability at most d/q (by the “Schwartz Lemma”). H

So this motivates the plan of the next algorithm. We will assume that we are given one useful piece
of information — namely the value of p at one (randomly chosen) point z € F*. Say p(z) = 7.
Now suppose we wish to reconstruct the value of p at a € Fj". We will execute the algorithm of
the previous sections and pick a line £ through a. Suppose we are fortunate enough that z lies on
£. In this case, given a list of polynomials Ay, ... , h, that have non-trivial agreement with f on £,
we can determine which one is p|; by considering the values h;{z}. Hopefully they are all different
and then the polynomial h; for which h;{z} = v is p|,. h;{a} is then the value we are seeking. The
only catch is that a random line will no longer work - it is very unlikely to pass through z. We will
fix this by deterministically picking the line that passes through z! This plan is implemented below,
with some of the steps being clarified further. The algorithm is described for a fixed choice of z and
advice 7. For reasons to be clarified later, we will simply call this a subroutine.

List-decoding subroutine A, ,

Given: Oracle access to f and point a € F".
Step 1: Let b=z —a and let £ =/, .
Step 2: For a € F,, let 8, = f(a+ ab).

Step 3; Find all degree d univariate polynomials hi, ... , h, such that h;(a) = B, for at least Zq
choices of o € F,.

Step 4: If there exists a unique index i € [n] such that h;{z} = ~, output h;(0), else output error.

We start by noticing that all steps above run in polynomial time provided the parameters are
favorable. In particular, Step 3 can be executed in polynomial time assuming 7 > \/d/q using the
improved List-decoding algorithm for Reed-Solomon codes from a previous lecture.

Proposition 15.10 If 7 > /4d/q then the subroutine A, runs in time poly(g,m).

Exercise: Suggest variations of the algorithm above so it runs in time poly(d, %,log q)-

Next we analyze the correctness of the algorithm. We show first that for a random pair (z,a), the
algorithm A,) is very likely to output p(a). We conclude that there exists a vector z (in fact most

15-140

choices would work) such that A, ,,) computes a function very close to p. This is not what we want
— we want an algorithm that always computes p. However the algorithms of the previous section
can now be applied to A4, ,(;) to get a randomized algorithm that computes p correctly everywhere
with high probability. Thus the following lemma will be quite sufficient for our purposes.

Lemma 15.11 For any € > 0, suppose q > % and p is a polynomial with agreement T with f.

Then, for a random pair z,a € F, Az p(z) outputs p(a) with probability at least 1 — €.

Proof As in previous proofs, we describe some bad events and then claim that if none of the bad
events occur, then the algorithm A ,.,y outputs p(a). Our first bad event B corresponds the bad
events of previous proofs, i.e., to poor agreement between p and f on £. Specifically B is the event
that “p and f have less than 7/2 agreement on ¢”. We now describe the second bad event: Let
hi,...,h, be all univariate polynomials that have 7/2 agreement with f|,. Let C be the event that
there exists a pair 1 <14 < j < n such that h;{z} = h;{z}. We show below that if neither B nor C
occurs, then the algorithm A, ;) outputs p(a). Later we give upper bounds on the probabilities of
B and C.

Claim 15.12 If neither of the events B or C occurs, then A,) outputs p(a) on input
a.

Proof This is relatively straightforward. Since the event B does not occur, we have
that the polynomial p|, has at least 7/2 agreement with f on the line £. Thus one of the
polynomials hi, ... , h, computed by A ;) in Step 3 is p|¢. Say it is the polynomial h;.
Then h;{z} = p(z). But since the event C did not occur, we know that h;{z} # h;{z}
for any other index j. Thus h; is the unique polynomial satisfying the condition of Step
4 and thus Step 4 results in the output h;(0) = p(a). B

Claim 15.13 The probability of event B, taken over the choices of z and a, is at most
4

Tq"

Proof This is a simple application of the Chernoff bound (see first lecture). By
Proposition 15.4, the points of the line £ are distributed uniformly over Fj" and pairwise
independent. On any one point, the probability that f agrees with p is 7. The expected
number of agreements between f and p on ¢ pairwise independent points is thus 7q. The
probability that this number deviates from its expectation by half the expectation (a
requirement for the event B) is bounded by Tiq. |

Claim 15.14 The probability of event C, taken over the choice of z and a, is at most
%, provided T > 24/d/q.

Proof The claim would be obvious, following immediately from Proposition 15.10, if
z was chosen to be a random point on line £ after the line is fixed. But this is not the
case! Or is it?

In the way the algorithm is described, a and z are chosen first and then £ is defined based
on them. However we could pick ¢ at random first, as a set and then a and z to be two
random (distinct, assuming £ turns out to be non-degenerate) points on it later. Note
that the polynomials hy, ... , h, are already well-defined once the line is chosen as a set,

15-141

without fixing the parameterization. (They are not fixed in terms of their coeflicients;
but they are fixed as functions from £ to F;.) Thus the probability, when we pick z
at random on £ that h;{z} = h;{z} for some distinct pair 4, j is at most ;82‘1—(1 (applying
Proposition 15.10 in the univariate case with agreement set to 7/2). The claim follows.
|

We are now ready to glue together the proof of the lemma. We will pick ¢ large enough so that the two
events above happen with probability at most €/2 each. Thus we get the condition ¢ > max{%, %‘: .
To make this simpler we set ¢ > %. Once we have this condition we find that the probability
that B or C occurs is at most € and with the remaining probability A4, ;) outputs p(a). B

Now we describe the actual list-decoding algorithm. The algorithm simply picks a collection of
random points z1,...,2;’s and enumerates all possible choices of v € F, for p(z;). It then applies
the algorithm Improved RM decoder to the functions A, ,. For every degree d polynomial p
that has agreement 7 with f, one of the algorithms above computes p. Again we summarize this
formally below:

RM List-decoder

Given: Oracle access to f : Fj* — F,. Point a € Fj', agreement parameter 7 and degree parameter
d.

Goal: To produce a list of randomized algorithms computing functions g1, ... ,g, : F* — F, that
includes every degree d polynomial p : Fj* — F, with 7 agreement with f.

1

Step 1: Compute parameters € = 7%,

t=log 2 and n = tq.
Step 2: Pick zi,...,2; independently and uniformly at random from Fy*.

Step 3: For every ¢ € [t] and v € F; output the algorithm Improved RM Decoder accessing the
oracle Az, .

The following lemma analyzes the correctness of the algorithm.

Lemma 15.15 With probability at least %, the algorithms constructed by RM List-Decoder in-

clude one for every polynomial p that has agreement T with f, provided q > 2405#”.
Proof Let py,...,p, be all polynomials of degree at most d that have agreement at least 7 with

f. Note, by the usual Johnson bounding argument, that m < % Fix i € [m] and let p = p;. We
prove that the event that none of the algorithms constructed by RM List-decoder turns out to
be a randomized algorithm computing p occurs with probability at most 27 < T (this inequality is
the one that leads to the setting of ¢ in the algorithm). By the union bound it follows that all the
required polynomials are in the output list with probability at least %

Fix j € [t]. Note that the choice of ¢ ensures that Lemma 15.11 can be applied for € = % By
Lemma 15.11, A, ,,; computes p(a’) with probability at least 1 — € for random input a’. Thus,
with probability at least % it must be the case that z; is such that A4, ,,, has agreement at least

1 — 2¢ with p. Since 2e < 2/15, we have that Improved RM Decoder computes p(a) correctly

15-142

i £(i)

— Oracle O

Figure 15.1: Implicit representation of input

on every input a with probability at least 2/3. Thus with probability at most %, the algorithm
Improved RM Decoder with oracle access to A, ,(z,) does not compute p. The probability that
this happens for every j € [t] is thus at most 2~¢. W

15.5 Formal Model and Theorems

To encapsulate the results of this lecture in the strongest possible way, we ought to formalize the
model that is being developed to represent words and decoding algorithms. The main feature we
wish to focus on is the extreme efficiency of the algorithms in some implicit model of the inputs,
outputs, decoding and list-decoding. We describe these in order.

In implicit decoding problems, both inputs and outputs will be represented implicitly. In particular,
the received vector will be given by an oracle. A vector v = (v1,... ,v,) € F} is specified implicitly
by an oracle O for a function f : [n] - F,. Given an index 7 € [n] the oracle responds with the
value f (i) = v;. Since the vector v, the oracle O, and the function f represent the same information
(though they carry different meanings as computational entities) we will save ourselves some symbols
and use the function to represent all three objects. Figure 15.1 gives a pictorial view of implicit
inputs.

The implicit representation of outputs requires some care. A first attempt may be to suggest
exactly the same definition as used for implicit inputs, i.e., by oracles. But that does not appear
to be constructive! What does it mean to say we will simply output a box — we need to be more
explicit. How does the box compute its functions. So really we should be representing outputs
by algorithms to compute them. But then if the output contains & bits of information, then it is
impossible to produce a small algorithm (of length smaller than k) that can give out these k bits
of information. Yet, we have seen above that it is possible to decode very efficiently, much more
efficiently than the time it would take to write down the output. How did we acheive that? Close
examination reveals that our outputs were actually being specified relative to the input. Specifically,
we produced an algorithm to compute the output vector that made oracle calls to the input oracle.
(See Figure 15.2.) Strictly speaking all we describe is the algorithm A (pictured in Figure 15.3)
that, when given oracle access to the input f, computes the output word. These kind of objects are
referred to in the computer science literature as probabilistic oracle machines and play a significant
role in some of the major developments there.

We now formally describe the implicit decoding problem:

Definition 15.16 (Implicit unambiguous decoding) For a fized family of codes C, the implicit
decoding problem is:

15-143

i f(i
Oracle O Ui

Y

i f(i)

— Algorithm A

Figure 15.2: Implicit representation of output

—| Algorithm A T

Figure 15.3: The actual implicit output

15-144

GIVEN: Parameters n,q (and any other parameters that are relevant) of the code C € C, error
parameter e < #, and implicit representation of received vector f € Fy .
GoAL: Output an implicit representation A of codeword ¢ € C such that A(c,f) < e, if such a

codeword ezists. Specifically, A takes as input i € [n] and outputs c;, the ith coordinate of c.

Remarks:

1. The running time of the decoder is defined to be the sum of the the time taken to compute a
description of A and the worst-case running time of A.

2. A is allowed to be randomized, in which case it must produce the correct answer (for every
coordinate) with probability at least 2 (as is standard for randomized algorithms).

3. If the algorithm runs in time ¢(n) and uses r(n) random bits on codes of length n, then it can be
converted into a randomized algorithm producing the entire codeword in time O(nt(n)logn)
by running it O(logn) times on each coordinate and taking majority votes and outputting the
string so obtained. It can also be converted into a deterministic decoding algorithm running
in time O(n2"(™t(n)) by simulating all random strings of length 7(n).

The following theorem sums up the unambiguous decoding results for Reed-Muller codes that we
obtained in this lecture.

Theorem 15.17 For a Reed-Muller code RMy, 4,4 with ¢ > 5(d+1), the algorithm Improved RM

decoder is a randomized algorithm that corrects upto a fraction 12—5 error in time poly(m,d,logq).

The list-decoding version can be defined analogously. The list-decoding algorithm should output
implicit representations of the f-nearby codewords. We will be slightly more relaxed and allow the
algorithm to output £/ > £ algorithms, with the condition that every nearby codeword be represented
(as also other algorithms that don’t correspond to codewords). Thus we obtain the following problem:

Definition 15.18 (Implicit list decoding) For a fized family of codes C, the implicit decoding
problem is:

GIVEN: Parameters n,q (and any other parameters that are relevant) of the code C € C, error
parameter e < A(ZC) , and implicit representation of received vector £ € Fy .

GOAL: OQutput £' algorithms Ay,...,Ap such that for every codeword c € C such that A(c,f) <e

there ezists an index i € [{'] such that A; with oracle access to £ is an algorithm to compute c.

In terms of this definition, we can summarize our list-decoding algorithm as follows:

Theorem 15.19 For a Reed-Muller code RM, 4,4 with ¢ > %, for some v > 0, the algorithm
RM List-decoder is a randomized algorithm that corrects upto a fraction 1 — v error in time

poly(m,d, q).

15.6 Bibliographic notes

We start with the implicit models discussed in the last section. It is hard to pin down the exact
point where these models were first introduced. Often they were implicit in some technical results

15-145

and then made explicit only by later works. They also have multiple origins within computer science
— several works in the late eighties seem to converge on these models independently. One of the
first works that used such models is that of Kaltofen and Trager [59], who applied it in the context
of algebraic algorithms. This work explicitly focusses on the implicit models (ahem!) and thereby
captured the efficiency of several algorithms very elegantly. Around the same time, the implicit
input model was introduced into coding theory by Goldreich and Levin [38]. In the language of
coding theory, they developed a list-decoding algorithm (the first non-trivial list-decoder!) for the
Hadamard code in the implicit input model. They also showed a powerful application of list-decoding
to the foundations of cryptography. (We might talk about this result in a later lecture.) Also, at
the same time, such models were exploited to check or improve correctness of programs by Blum
and Kannan [20] and Blum, Luby, and Rubinfeld [21]. As it turned out, such results could be
interpreted as error-correction algorithms for some codes [108, Section 1.3]. Finally, the full-fledged
model (implicit input and output, with list-decoding capabilities) were considered in Ar et al. [5]
and Arora and Sudan [8], and made explicit in Sudan, Trevisan, and Vadhan [112].

The algorithms have a somewhat simpler history. (As always, notions are harder to trace than
algorithms!) The simple algorithm for decoding Reed-Muller codes from Section 15.2 is based on an
algorithm of Beaver and Feigenbaum [13], whose ability to decode all polynomials was pointed out by
Lipton [70]. The improvement in Section 15.3 is due to Gemmell et al. [34]. Further improvements
to this algorithm, decoding arbitrarily close to half the minimum distance for ¢ > d were given by
Gemmell and Sudan [35]. The list-decoding algorithm in Section 15.4 is due to Sudan, Trevisan, and
Vadhan [112]. This algorithm simplifies a previous list-decoding algorithm of Arora and Sudan [8].

15-146

Bibliography

[1] Erik Agrell, Alexander Vardy, and Kenneth Zeger. Upper bounds for constant-weight codes.
IEEE Transactions on Information Theory, 46:2373-2395, 2000.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Anaylsis of Computer
Algorithms. Addison Wesley Publishing Company, 1974.

[3] Miklos Ajtai. The shortest vector problem is NP-hard for randomized reductions. In Pro-
ceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 10-19, Dallas,
Texas, 23-26 May 1998.

[4] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ronny Roth. Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEFE
Transactions on Information Theory, 38:509-516, 1992.

[5] Sigal Ar, Richard Lipton, Ronitt Rubinfeld, and Madhu Sudan. Reconstructing algebraic
functions from mixed data. SIAM Journal on Computing, 28(2):488-511, 1999.

[6] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501-555,
May 1998.

[7] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. Journal of the ACM, 45(1):70-122, January 1998.

[8] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. In Proceed-
ings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 485-495,
El Paso, Texas, 4-6 May 1997.

[9] C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Transactions on
Information Theory, 29:208-210, March 1983.

[10] Lészl6 Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complezity, 1(1):3-40, 1991.

[11] Lészl6 Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complezity, 3(4):307—
318, 1993.

[12] L.A. Bassalygo. New upper boundes for error-correcting codes. Problems of Information
Transmission, 1(1):32-35, 1965.

[13] Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In C. Choffrut
and T. Lengauer, editors, Proceedings of the 7th Annual Symposium on Theoretical Aspects of
Computer Science, pages 3748, Rouen, France, 22-24 February 1990. Springer.

15-147

[14] Elwyn Berlekamp. Algebraic Coding Theory. McGraw Hill, New York, 1968.

[15] Elwyn Berlekamp. Bounded distance +1 soft-decision Reed-Solomon decoding. IEEE Trans-
actions on Information Theory, 42(3):704-720, 1996.

[16] Elwyn R. Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal,
46:1853-1859, 1967.

[17] Elwyn R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Compu-
tation, 24:713-735, 1970.

[18] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the inherent in-
tractability of certain coding problems. IEEE Transactions on Information Theory, 24(3):384—
386, May 1978.

[19] Richard E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley, Reading,
Massachusetts, 1983.

[20] Manuel Blum and Sampath Kannan. Designing programs that check their work. Journal of
the ACM, 42(1):269-291, January 1995.

[21] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549-595, 1993.

[22] Dan Boneh. Finding smooth integers in short intervals using CRT decoding. Proceedings of
the 82nd Annual ACM Symposium on Theory of Computing, pages 265—272, 2000.

[23] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary group codes.
Information and Control, 3:68-79, 1960.

[24] Jehoshua Bruck and Moni Naor. The hardness of decoding linear codes with preprocessing.
IEEE Transactions on Information Theory, 36(2), March 1990.

[25] Henri Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts in
Mathematics 138, Springer Verlag, Berlin, 1993.

[26] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Publishing,
New York, 1991.

[27] Phillipe Delsarte. An algebraic approach to the association schemes of coding theory. Philips
Research Reports, Suppl. 10, 1973.

[28] Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193-195, June 1978.

[29] ILlya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the mini-
mum distance of a linear code. Proceedings of the 40th IEEE Symposium on Foundations of
Computer Science, pages 475-484, 1999.

[30] Iwan M. Duursma. Decoding Codes from Curves and Cyclic Codes. PhD thesis, Eindhoven
University of Technology, 1993.

[31] Uriel Feige and Carsten Lund. On the hardness of computing the permanent of random
matrices. Computational Complezity, 6(2):101-132, 1997.

[32] Arnaldo Garcia and Henning Stichtenoth. A tower of Artin-Schreier extensions of function
fields attaining the Drinfeld-V1adut bound. Inventiones Mathematicae, 121:211-222, 1995.

15-148

[33] Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behavior of some towers of
function fields over finite fields. Journal of Number Theory, 61(2):248-273, December 1996.

[34] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In Proceedings of the
Twenty Third Annual ACM Symposium on Theory of Computing, pages 32—42, New Orleans,
Louisiana, 6-8 May 1991.

[35] Peter Gemmell and Madhu Sudan. Highly resilient correctors for multivariate polynomials.
Information Processing Letters, 43(4):169-174, September 1992.

[36] E. N. Gilbert. A comparison of signalling alphabets. Bell System Technical Journal, 31:504—
522, May 1952.

[37] M. J. E. Golay. Notes on digital coding. Proceedings of the IRE, 37:657, June 1949.

[38] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pages
25-32, Seattle, Washington, 15-17 May 1989.

[39] Oded Goldreich, Dana Ron, and Madhu Sudan. Chinese remaindering with errors. IEEE
Transactions on Information Theory, 46(5):1330-1338, July 2000. Extended version appears
as ECCC Technical Report TR98-062 (Revision 4), http://www.eccc.uni-trier.de/eccc.

[40] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with queries:
The highly noisy case. SIAM Journal on Discrete Mathematics, 13(4):535-570, November
2000.

[41] V. D. Goppa. Codes associated with divisors. Problems of Information Transmission, 13(1):22—
26, 1977.

[42] Daniel Gorenstein and Neal Zierler. A class of error-correcting codes in p™ symbols. Journal
of the Society for Industrial and Applied Mathematics, 9:207-214, June 1961.

[43] Dima Grigoriev. Factorization of polynomials over a finite field and the solutions of systems
of algebraic equations. Translated from Zapiski Nauchnykh Seminarov Lenningradskogo Otde-
leniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, 137:20-79, 1984.

[44] Venkatesan Guruswami, Amit Sahai, and Madhu Sudan. Soft-decision decoding of Chinese
Remainder codes. In Proceedings of the 41st IEEE Symposium on Foundations of Computer
Science, pages 159-168, Redondo Beach, California, 12-14 November 2000.

[45] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and algebraic-
geometric codes. IEEE Transactions on Information Theory, 45:1757-1767, 1999.

[46] Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain concatenated
codes. Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages
181-190, 2000.

[47] Venkatesan Guruswami and Madhu Sudan. Extensions to the Johnson bound. Manuscript,
February 2001.

[48] Richard W. Hamming. Error Detecting and Error Correcting Codes. Bell System Technical
Journal, 29:147-160, April 1950.

[49] A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres (Paris), 2:147-156, 1959.

15-149

[50] Tom Hgholdt, J. H. van Lint, and Ruud Pellikaan. Algebraic geometry codes. Handbook of
Coding Theory, Chapter 10, 1998.

[51] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 220-229, May 1997.

[52] Selmer M. Johnson. A new upper bound for error-correcting codes. IEEE Transactions on
Information Theory, 8:203-207, 1962.

[53] Selmer M. Johnson. Improved asymptotic bounds for error-correcting codes. IEEE Transac-
tions on Information Theory, 9:198-205, 1963.

[54] G. David Forney Jr. Concatenated Codes. MIT Press, Cambridge, MA, 1966.

[65] G. David Forney Jr. Generalized minimum distance decoding. IEEE Transactions on Infor-
mation Theory, 12(2):125-131, April 1966.

[56] Jorn Justesen. A class of constructive asymptotically good algebraic codes. IEEE Transactions
on Information Theory, 18:652—656, 1972.

[57] Jorn Justesen. On the complexity of decoding Reed-Solomon codes (corresp.). IEEE Trans-
actions on Information Theory, 22(2):237-238, March 1976.

[58] Erich Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate integral
polynomial factorization. SIAM Journal on Computing, 14(2):469-489, 1985.

[69] Erich Kaltofen and Barry Trager. Computing with polynomials given by black boxes for their
evaluations: Greatest common divisors, factorization, separation of numerators and denomi-
nators. Journal of Symbolic Computation, 9(3):301-320, 1990.

[60] G. L. Katsman, Michael A. Tsfasman, and Serge G. Vladut. Modular curves and codes with
a polynomial construction. IEEFE Transactions on Information Theory, 30:353—-355, 1984.

[61] Ralf Kotter. A unified description of an error locating procedure for linear codes. In Proceedings
of the International Workshop on Algebraic and Combinatorial Coding Theory, pages 113-117,
Voneshta Voda, Bulgaria, 1992.

[62] Ralf Kotter. Fast generalized minimum distance decoding of algebraic geometry and Reed-
Solomon codes. IEEE Transactions on Information Theory, 42(3):721-737, May 1996.

[63] Ralf Kotter and Alexander Vardy. Algebraic soft-decision decoding of Reed-Solomon codes.
Proceedings of the 38th Annual Allerton Conference on Communication, Control and Comput-
ing, pages 625—-635, October 2000.

[64] H. Krishna, B. Krishna, K.-Y. Lin, and J.-D. Sun. Computational Number Theory and Digital
Signal Processing: Fast Algorithms and Error Control Techniques. CRC Press Inc., Boca
Raton, Florida, 1994.

[65] Arjen K. Lenstra. Factoring multivariate polynomials over finite fields. Journal of Computer
and System Sciences, 30(2):235-248, April 1985.

[66] Arjen K. Lenstra, Hendrik W. Lenstra, and Laszlo Lovasz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515-534, 1982.

[67] V. I Levenshtein. Universal bounds for codes and designs, pages 499-648. Volume 1 of Pless
and Huffman [88], 1998.

15-150

[68] Rudolf Lidl and Harald Niedereitter. Introduction to Finite Fields and Their Applications.
Cambridge University Press, 2nd edition, 1994.

[69] Nati Linial and Alex Samorodnitsky. Linear codes and sum of characters. Combinatorica, (To
appear).

[70] Richard Lipton. New directions in testing. In Distributed Computing and Cryptography,
volume 2 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 191-202. AMS, 1991.

[71] Lészl6 Lovész. On the Shannon capacity of a graph. IEEE Transactions on Information
Theory, 25:1-7, January 1979.

[72] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39(4):859-868, October 1992.

[73] Saunders MacLane and Garrett Birkhoff. Algebra. Chelsea Publishing Company, N.Y., 3rd
edition, 1988.

[74] F. J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes.
Elsevier /North-Holland, Amsterdam, 1981.

[75] Florence Jessie MacWilliams. A theorem on the distribution of weights in a systematic code.
Bell Systems Technical Journal, 42:79-94, January 1963.

[76] David M. Mandelbaum. On a class of arithmetic codes and a decoding algorithm. IEEE
Transactions on Information Theory, 21(1):85-88, January 1976.

[77] Y. I Manin and Serge G. V1ddut. Linear codes and modular curves. J. Soviet. Math., 30:2611—
2643, 1985.

[78] James L. Massey. Threshold decoding. MIT Press, Cambridge, Massachusetts, USA, 1963.

[79] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on Infor-
mation Theory, 15:122-127, January 1969.

[80] Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey Jr., and Lloyd R. Welch. New up-
per bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Transactions
on Information Theory, 23:157-166, 1977.

[81] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some
constant. In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer
Science, pages 92-98, Palo Alto, California, 8-11 November 1998.

[82] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[83] D. E. Muller. Application of Boolean algebra to switching circuit design and to error detection.
IEEE Transactions on Computers, 3:6-12, 1954.

[84] Rasmus R. Nielsen. Decoding concatenated codes using Sudan’s algorithm. Manuscript sub-
mitted for publication, May 2000.

[85] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149-167, October 1994.

[86] Ruud Pellikaan. On decoding linear codes by error correcting pairs. Preprint, Eindhoven
University of Technology, 1988.

15-151

[87] W. Wesley Peterson. Encoding and error-correction procedures for Bose-Chaudhuri codes.
IEEE Transactions on Information Theory, 6:459-470, 1960.

[88] Vera S. Pless and W. Cary Huffman (Eds.). Handbook of Coding Theory (2 Volumes). Elsevier,
1998.

[89] M. Plotkin. Binary codes with specified minimum distance. IRE Transactions on Information
Theory, 6:445-450, 1960.

[90] Jaikumar Radhakrishnan. Personal communication, January 1997.

[91] Irving S. Reed. A class of multiple-error-correcting codes and the decoding scheme. IEEE
Transactions on Information Theory, 4:38-49, 1954.

[92] Irving S. Reed and Gustav Solomon. Polynomial codes over certain finite fields. J. SIAM,
8:300-304, 1960.

[93] Michael Rosenblum. A fast algorithm for rational function approximations. Available from
http://theory.lcs.mit.edu/ madhu/FT01/notes/rosenblum.ps, November 1999.

[94] Alex Samorodnitsky. Applications of Harmonic Analysis in Combinatorics and in Coding
Theory. PhD thesis, Department of Mathematics, Hebrew University, 1998.

[95] Alex Samorodnitsky. On the Kabatyanskii-Levenshtein bound for sphere packing, 2000.

[96] Alex Samorodnitsky. On the optimum of Delsarte’s linear program. Journal of Combinatorial
Theory, (To appear).

[97] Arnold Schénhage. Schnelle berechnung von ketterbruchentwicklungen. Acta Informatica,
1:139-144, 1971.

[98] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal
of the ACM, 27(4):701-717, October 1980.

[99] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, October 1992.

[100] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379-423, 623656, 1948.

[101] Claude E. Shannon, Robert G. Gallager, and Elwyn R. Berlekamp. Lower bounds to error
probability for coding on discrete memoryless channels. Information and Control, 10:65-103
(Part 1), 522-552 (Part II), 1967.

[102] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields. Mathe-
matics of Computation, 54:435-447, 1990.

[103] Kenneth Shum. A Low-Complezity Construction of Algebraic Geometric Codes Better Than
the Gilbert-Varshamov Bound. PhD thesis, University of Southern California, December 2000.

[104] Kenneth W. Shum, Ilia Aleshnikov, P. Vijay Kumar, Henning Stichtenoth, and Vinay Deola-
likar. A low-complexity algorithm for the construction of algebraic geometric codes better than
the Gilbert-Varshamov bound. IEEE Transactions on Information Theory, 47(6):2225-2241,
September 2001.

[105] Malte Sieveking. An algorithm for division of power series. Computing, 10:153-156, 1972.

[106] Richard C. Singleton. Maximum distance g-nary codes. IEEE Transactions on Information
Theory, 10:116-118, April 1964.

15-152

[107] M.A. Soderstrand, W.K. Jenkins, G.A. Jullien, and F.J. Taylor. Residue Number System
Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press, New York, 1986.

[108] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Approzima-
tion Problems. PhD thesis, University of California at Berkeley, October 1992. Also appears
as Lecture Notes in Computer Science, vol. 1001, Springer, 1996.

[109] Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal
of Complezity, 13(1):180-193, 1997.

[110] Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction diameter. Pro-
ceedings of the 35th Annual Allerton Conference on Communication, Control and Computing,
1997.

[111] Madhu Sudan. Notes on an efficient solution to the rational function interpolation problem.
Available from http://theory.lcs.mit.edu/ madhu/FTO1/notes/rational.ps, 1999.

[112] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the XOR
lemma. Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pages
537-546, 1999.

[113] Aimo Tietavainen. On the nonexistence of perfect codes over finite fields. SIAM Journal of
Applied Mathematics, 24(1):88-96, January 1973.

[114] Michael A. Tsfasman, Serge G. Vladut, and Thomas Zink. Modular curves, Shimura curves,
and codes better than the Varshamov-Gilbert bound. Math. Nachrichten, 109:21-28, 1982.

[115] Ridiger Urbanke. Modern Coding Theory — SS2001. EPFL, DSC-LTHC, Available from
http://lthcwww.epfl.ch/content.php?title=coding2001, May 15 2001.

[116] Jacobus H. van Lint. Nonexistence theorems for perfect error-correcting codes. In G. Birkhoff
and M. Hall Jr., editors, Proceedings of the Symposium on Computers in Algebra and Number
Theory, New York, 1970, pages 89-95. American Mathematical Society, Providence, RI, 1971.

[117] Jacobus H. van Lint. Introduction to Coding Theory. Graduate Texts in Mathematics 86,
(Third Edition) Springer-Verlag, Berlin, 1999.

[118] Alexander Vardy. The intractability of computing the minimum distance of a code. IEEE
Transactions on Information Theory, 43:1757-1766, November 1997.

[119] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Doklady
Akadamii Nauk, 117:739-741, 1957.

[120] Robert J. Walker. Algebraic Curves. Springer-Verlag, 1978.

[121] R. W. Watson and C. W. Hastings. Self-checked computation using residue arithmetic. In
Proceedings of the IEEE, volume 44, pages 1920-1931, December 1966.

[122] Lloyd R. Welch and Elwyn R. Berlekamp. Error correction of algebraic block codes. US Patent
Number 4,633,470, December 1986.

[123] Edward J. Weldon, Jr. Justesen’s construction — the low-rate case. IEEE Transactions on
Information Theory, 19:711-713, 1973.

[124] J. M. Wozencraft. Threshold decoding. Personal communication in [78, Section 2.5], 1963.

[125] Richard E. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM *79, Lecture
Notes in Computer Science, volume 72, pages 216-225, 1979.

15-153

[126] Victor V. Zyablov. An estimate on the complexity of constructing binary linear cascade codes.
Problems of Information Transmission, 7(1):3-10, 1971.

15-154

